diff --git a/.bazelrc b/.bazelrc deleted file mode 100644 index 8664d43f868..00000000000 --- a/.bazelrc +++ /dev/null @@ -1,154 +0,0 @@ -# TensorFlow Bazel configuration file. -# This file tries to group and simplify build options for TensorFlow -# -# ----CONFIG OPTIONS---- -# -# Other build options: -# short_logs: Only log errors during build, skip warnings. -# verbose_logs: Show all compiler warnings during build. -# monolithic: Build all TF C++ code into a single shared object. -# dynamic_kernels: Try to link all kernels dynamically (experimental). -# libc++: Link against libc++ instead of stdlibc++ -## -# TF version options; -# v1: Build TF V1 (without contrib) -# v2: Build TF v2 -# -# Feature and Third party library support options: -# xla: Build TF with XLA -# tpu: Build TF with TPU support -# using_cuda: CUDA is available to build system. -# cuda: Build with full cuda support. -# rocm: Build with AMD GPU support (rocm). -# mkl: Enable full mkl support. -# tensorrt: Enable Tensorrt support. -# numa: Enable numa using hwloc. -# noaws: Disable AWS S3 storage support -# nogcp: Disable GCS support. -# nohdfs: Disable hadoop hdfs support. -# nonccl: Disable nccl support. - -# Sets the default Apple platform to macOS. -build --apple_platform_type=macos - -# Flags for open source build, always set to be true. -build --define open_source_build=true -test --define open_source_build=true - -# For workaound the use_fast_cpp_protos issue in protobuf deps. -build --define=use_fast_cpp_protos=false -test --define=use_fast_cpp_protos=false - -# This config refers to building with CUDA available. It does not necessarily -# mean that we build CUDA op kernels. -build:using_cuda --define=using_cuda=true -build:using_cuda --action_env TF_NEED_CUDA=1 -build:using_cuda --crosstool_top=@local_config_cuda//crosstool:toolchain - -# Enable the mlir generated GPU kernels only for cuda builds. -build --define=tensorflow_enable_mlir_generated_gpu_kernels=0 -# This is a more specific option, so it takes precedence over the line above for cuda builds. -build:using_cuda --define=tensorflow_enable_mlir_generated_gpu_kernels=1 - -# This config refers to building CUDA op kernels with nvcc. -build:cuda --config=using_cuda -build:cuda --define=using_cuda_nvcc=true - -# dbg config, as a shorthand for '--config=opt -c dbg' -build:dbg --config=opt -c dbg -# for now, disable arm_neon. see: https://github.com/tensorflow/tensorflow/issues/33360 -build:dbg --cxxopt -DTF_LITE_DISABLE_X86_NEON -# AWS SDK must be compiled in release mode. see: https://github.com/tensorflow/tensorflow/issues/37498 -build:dbg --copt -DDEBUG_BUILD - -build:tensorrt --action_env TF_NEED_TENSORRT=1 - -build:rocm --crosstool_top=@local_config_rocm//crosstool:toolchain -build:rocm --define=using_rocm=true --define=using_rocm_hipcc=true -build:rocm --action_env TF_NEED_ROCM=1 - -# Options extracted from configure script -build:numa --define=with_numa_support=true - -# Options to disable default on features -build:noaws --define=no_aws_support=true -build:nogcp --define=no_gcp_support=true -build:nohdfs --define=no_hdfs_support=true -build:nonccl --define=no_nccl_support=true - -build --define=allow_oversize_protos=true - -build --spawn_strategy=standalone -build -c opt - -# Make Bazel print out all options from rc files. -build --announce_rc - -# Other build flags. -build --define=grpc_no_ares=true - -build:linux --copt=-w -build:linux --host_copt=-w -build:macos --copt=-w -build:windows --copt=/W0 - -# Tensorflow uses M_* math constants that only get defined by MSVC headers if -# _USE_MATH_DEFINES is defined. -build:windows --copt=/D_USE_MATH_DEFINES -build:windows --host_copt=/D_USE_MATH_DEFINES - -# Default paths for TF_SYSTEM_LIBS -build:linux --define=PREFIX=/usr -build:linux --define=LIBDIR=$(PREFIX)/lib -build:linux --define=INCLUDEDIR=$(PREFIX)/include -build:linux --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include -build:macos --define=PREFIX=/usr -build:macos --define=LIBDIR=$(PREFIX)/lib -build:macos --define=INCLUDEDIR=$(PREFIX)/include -build:macos --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include -# TF_SYSTEM_LIBS do not work on windows. - -# On windows, we still link everything into a single DLL. -build:windows --config=monolithic - -# On linux, we dynamically link small amount of kernels -build:linux --config=dynamic_kernels - -# Make sure to include as little of windows.h as possible -build:windows --copt=-DWIN32_LEAN_AND_MEAN -build:windows --host_copt=-DWIN32_LEAN_AND_MEAN -build:windows --copt=-DNOGDI -build:windows --host_copt=-DNOGDI - -# MSVC (Windows): Standards-conformant preprocessor mode -# See https://docs.microsoft.com/en-us/cpp/preprocessor/preprocessor-experimental-overview -build:windows --copt=/experimental:preprocessor -build:windows --host_copt=/experimental:preprocessor - -# Misc build options we need for windows. -build:windows --linkopt=/DEBUG -build:windows --host_linkopt=/DEBUG -build:windows --linkopt=/OPT:REF -build:windows --host_linkopt=/OPT:REF -build:windows --linkopt=/OPT:ICF -build:windows --host_linkopt=/OPT:ICF -build:windows --experimental_strict_action_env=true - -# Verbose failure logs when something goes wrong -build:windows --verbose_failures - -# Suppress all warning messages. -build:short_logs --output_filter=DONT_MATCH_ANYTHING -build:verbose_logs --output_filter= -build --config=short_logs - -# Options to build TensorFlow 1.x or 2.x. -build:v1 --define=tf_api_version=1 -build:v2 --define=tf_api_version=2 -build:v1 --action_env=TF2_BEHAVIOR=0 -build:v2 --action_env=TF2_BEHAVIOR=1 -build --config=v2 -test --config=v2 - -# Enable XLA -build:xla --define=with_xla_support=true diff --git a/.bazelversion b/.bazelversion deleted file mode 100644 index 1e20ec35c64..00000000000 --- a/.bazelversion +++ /dev/null @@ -1 +0,0 @@ -5.4.0 \ No newline at end of file diff --git a/.devcontainer/Dockerfile b/.devcontainer/Dockerfile deleted file mode 100644 index db1320533ff..00000000000 --- a/.devcontainer/Dockerfile +++ /dev/null @@ -1,8 +0,0 @@ -FROM mcr.microsoft.com/vscode/devcontainers/python:3.8 -COPY setup.sh /setup.sh - -# Install Bazel -RUN sudo apt install wget -y -RUN wget https://github.com/bazelbuild/bazelisk/releases/download/v1.11.0/bazelisk-linux-amd64 -RUN chmod a+x bazelisk-linux-amd64 -RUN mv bazelisk-linux-amd64 /usr/bin/bazel \ No newline at end of file diff --git a/.devcontainer/devcontainer.json b/.devcontainer/devcontainer.json deleted file mode 100644 index 9c7b688f524..00000000000 --- a/.devcontainer/devcontainer.json +++ /dev/null @@ -1,13 +0,0 @@ -{ - "dockerFile": "Dockerfile", - "postCreateCommand": "sh /setup.sh", - "extensions": ["ms-python.python"], - "settings": { - "files.watcherExclude": { - "**/bazel-*/**": true - }, - "search.exclude": { - "**/bazel-*/**": true - } - } -} \ No newline at end of file diff --git a/.devcontainer/setup.sh b/.devcontainer/setup.sh deleted file mode 100644 index dc6232affd6..00000000000 --- a/.devcontainer/setup.sh +++ /dev/null @@ -1,6 +0,0 @@ -#!/bin/bash -sudo pip install -r requirements.txt -sudo pip uninstall keras-nightly -y - -wget https://github.com/cli/cli/releases/download/v2.17.0/gh_2.17.0_linux_amd64.deb -P /tmp -sudo apt install /tmp/gh_2.17.0_linux_amd64.deb -y \ No newline at end of file diff --git a/.github/ISSUE_TEMPLATE/00-bug-template.md b/.github/ISSUE_TEMPLATE/00-bug-template.md deleted file mode 100644 index 195e5e59300..00000000000 --- a/.github/ISSUE_TEMPLATE/00-bug-template.md +++ /dev/null @@ -1,61 +0,0 @@ ---- -name: Bug Issue -about: Use this template for reporting a bug -labels: 'type:bug' - ---- - -Please go to TF Forum for help and support: - -https://discuss.tensorflow.org/tag/keras - -If you open a GitHub issue, here is our policy: - -It must be a bug, a feature request, or a significant problem with the documentation (for small docs fixes please send a PR instead). -The form below must be filled out. - -**Here's why we have that policy:**. - -Keras developers respond to issues. We want to focus on work that benefits the whole community, e.g., fixing bugs and adding features. Support only helps individuals. GitHub also notifies thousands of people when issues are filed. We want them to see you communicating an interesting problem, rather than being redirected to Stack Overflow. - -**System information**. -- Have I written custom code (as opposed to using a stock example script provided in Keras): -- OS Platform and Distribution (e.g., Linux Ubuntu 16.04): -- TensorFlow installed from (source or binary): -- TensorFlow version (use command below): -- Python version: -- Bazel version (if compiling from source): -- GPU model and memory: -- Exact command to reproduce: - -You can collect some of this information using our environment capture script: - -https://github.com/tensorflow/tensorflow/tree/master/tools/tf_env_collect.sh - -You can obtain the TensorFlow version with: -python -c "import tensorflow as tf; print(tf.version.GIT_VERSION, tf.version.VERSION)" - -**Describe the problem**. - -Describe the problem clearly here. Be sure to convey here why it's a bug in Keras or why the requested feature is needed. - -**Describe the current behavior**. - - -**Describe the expected behavior**. - -**[Contributing](https://github.com/keras-team/keras/blob/master/CONTRIBUTING.md)**. - -- Do you want to contribute a PR? (yes/no): -- If yes, please read [this page](https://github.com/keras-team/keras/blob/master/CONTRIBUTING.md) for instructions -- Briefly describe your candidate solution(if contributing): - -**Standalone code to reproduce the issue**. - -Provide a reproducible test case that is the bare minimum necessary to generate -the problem. If possible, please share a link to Colab/Jupyter/any notebook. - - -**Source code / logs**. - -Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached. Try to provide a reproducible test case that is the bare minimum necessary to generate the problem. diff --git a/.github/ISSUE_TEMPLATE/10-feature-request.md b/.github/ISSUE_TEMPLATE/10-feature-request.md deleted file mode 100644 index 4add0bcc339..00000000000 --- a/.github/ISSUE_TEMPLATE/10-feature-request.md +++ /dev/null @@ -1,37 +0,0 @@ ---- -name: Feature Request -about: Use this template for raising a feature request -labels: 'type:feature' - ---- - - -If you open a GitHub issue, here is our policy: - -It must be a bug, a feature request, or a significant problem with the documentation (for small docs fixes please send a PR instead). -The form below must be filled out. - -**Here's why we have that policy:**. - -Keras developers respond to issues. We want to focus on work that benefits the whole community, e.g., fixing bugs and adding features. Support only helps individuals. GitHub also notifies thousands of people when issues are filed. We want them to see you communicating an interesting problem, rather than being redirected to Stack Overflow. - -**System information**. - -TensorFlow version (you are using): -Are you willing to contribute it (Yes/No) : - -**Describe the feature and the current behavior/state**. - -Describe the feature clearly here. Be sure to convey here why the requested feature is needed. Any brief description about the use-case would help. - -**Will this change the current api? How?** - - -**Who will benefit from this feature?** - - -**[Contributing](https://github.com/keras-team/keras/blob/master/CONTRIBUTING.md)** - -- Do you want to contribute a PR? (yes/no): -- If yes, please read [this page](https://github.com/keras-team/keras/blob/master/CONTRIBUTING.md) for instructions -- Briefly describe your candidate solution(if contributing): diff --git a/.github/ISSUE_TEMPLATE/20-documentation-issue.md b/.github/ISSUE_TEMPLATE/20-documentation-issue.md deleted file mode 100644 index 09cc385ec3f..00000000000 --- a/.github/ISSUE_TEMPLATE/20-documentation-issue.md +++ /dev/null @@ -1,63 +0,0 @@ ---- -name: Documentation Issue -about: Use this template for documentation related issues -labels: 'type:docs' - ---- - -Please go to TF Forum for help and support: - -https://discuss.tensorflow.org/tag/keras - -If you open a GitHub issue, here is our policy: - -It must be a bug, a feature request, or a significant problem with the documentation (for small docs fixes please send a PR instead). -The form below must be filled out. - -**Here's why we have that policy:**. - -Keras developers respond to issues. We want to focus on work that benefits the whole community, e.g., fixing bugs and adding features. Support only helps individuals. GitHub also notifies thousands of people when issues are filed. We want them to see you communicating an interesting problem, rather than being redirected to Stack Overflow. - -**URL(s) with the issue:**. - -Please provide a link to the documentation entry, for example: https://keras.io/guides/customizing_what_happens_in_fit/ - - -**Description of issue (what needs to be changed):**. - - -**Correct links**. -Is the link to the source code correct? - - -**Parameters defined**. - -Are all parameters defined and formatted correctly? - - -**Returns defined**. - -Are return values defined? - - -**Raises listed and defined** - -Are the errors defined? - - -**Usage example** - -Is there a usage example? -See the API guide: https://www.tensorflow.org/community/contribute/docs_ref on how to write testable usage examples. - - -**Request visuals, if applicable**. - -Are there currently visuals? If not, will it clarify the content? - - -**Submit a pull request?**. - -Are you planning to also submit a pull request to fix the issue? See the [docs contributor guide](https://github.com/keras-team/keras/blob/master/CONTRIBUTING.md): - - diff --git a/.github/ISSUE_TEMPLATE/config.yml b/.github/ISSUE_TEMPLATE/config.yml deleted file mode 100644 index 3ba13e0cec6..00000000000 --- a/.github/ISSUE_TEMPLATE/config.yml +++ /dev/null @@ -1 +0,0 @@ -blank_issues_enabled: false diff --git a/.github/bot_config.yml b/.github/bot_config.yml deleted file mode 100644 index 11cb9eb6ccc..00000000000 --- a/.github/bot_config.yml +++ /dev/null @@ -1,19 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ - -# A list of assignees -assignees: - - tilakrayal - - sushreebarsa diff --git a/.github/workflows/format.yml b/.github/workflows/format.yml deleted file mode 100644 index 68e0256ba2b..00000000000 --- a/.github/workflows/format.yml +++ /dev/null @@ -1,52 +0,0 @@ -name: Format the code - -on: - workflow_dispatch: - -permissions: {} -jobs: - createPullRequest: - permissions: - contents: write # to create branch (peter-evans/create-pull-request) - pull-requests: write # to create a PR (peter-evans/create-pull-request) - - runs-on: ubuntu-latest - steps: - - uses: actions/checkout@v3 - - - name: Get pip cache dir - id: pip-cache - run: | - python -m pip install --upgrade pip setuptools - echo "::set-output name=dir::$(pip cache dir)" - - name: pip cache - uses: actions/cache@v2 - with: - path: ${{ steps.pip-cache.outputs.dir }} - key: ${{ runner.os }}-pip-${{ hashFiles('requirements.txt') }} - restore-keys: | - ${{ runner.os }}-pip- - - name: Install dependencies - run: | - pip install black==22.3.0 isort==5.10.1 flake8==4.0.1 - - name: Format the code - run: sh shell/format.sh - - - name: Create Pull Request - id: cpr - uses: peter-evans/create-pull-request@v4 - with: - commit-message: format the code - committer: A. Unique TensorFlower - author: A. Unique TensorFlower - branch: format - delete-branch: true - title: 'Format the code' - body: | - This is a pull request automatically created by a Github Action to format the code. - - If there is any conflict, click the run workflow button on - [this page](https://github.com/keras-team/keras/actions/workflows/format.yml). - labels: | - ready to pull - draft: false diff --git a/.github/workflows/lint.yml b/.github/workflows/lint.yml deleted file mode 100644 index 66388041bc5..00000000000 --- a/.github/workflows/lint.yml +++ /dev/null @@ -1,34 +0,0 @@ -name: Lint - -on: - push: - pull_request: - workflow_dispatch: - -permissions: - contents: read # to fetch code (actions/checkout) - -jobs: - lint: - name: Check the code format - runs-on: ubuntu-latest - steps: - - uses: actions/checkout@v3 - - - name: Get pip cache dir - id: pip-cache - run: | - python -m pip install --upgrade pip setuptools - echo "::set-output name=dir::$(pip cache dir)" - - name: pip cache - uses: actions/cache@v2 - with: - path: ${{ steps.pip-cache.outputs.dir }} - key: ${{ runner.os }}-pip-${{ hashFiles('requirements.txt') }} - restore-keys: | - ${{ runner.os }}-pip- - - name: Install dependencies - run: | - pip install black==22.3.0 isort==5.10.1 flake8==4.0.1 - - name: Lint the code - run: sh shell/lint.sh diff --git a/.github/workflows/stale-issues-pr.yml b/.github/workflows/stale-issues-pr.yml deleted file mode 100644 index 3eab7a47959..00000000000 --- a/.github/workflows/stale-issues-pr.yml +++ /dev/null @@ -1,47 +0,0 @@ -name: Close inactive issues -on: - schedule: - - cron: "30 1 * * *" - -jobs: - close-issues: - runs-on: ubuntu-latest - permissions: - issues: write - pull-requests: write - steps: - - name: Awaiting response issues - uses: actions/stale@v5 - with: - days-before-issue-stale: 14 - days-before-issue-close: 14 - stale-issue-label: "stale" - # reason for closed the issue default value is not_planned - close-issue-reason: completed - only-labels: "stat:awaiting response from contributor" - stale-issue-message: > - This issue is stale because it has been open for 14 days with no activity. - It will be closed if no further activity occurs. Thank you. - close-issue-message: > - This issue was closed because it has been inactive for 28 days. - Please reopen if you'd like to work on this further. - days-before-pr-stale: 14 - days-before-pr-close: 14 - stale-pr-message: "This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you." - close-pr-message: "This PR was closed because it has been inactive for 28 days. Please reopen if you'd like to work on this further." - repo-token: ${{ secrets.GITHUB_TOKEN }} - - name: Contribution issues - uses: actions/stale@v5 - with: - days-before-issue-stale: 180 - days-before-issue-close: 365 - stale-issue-label: "stale" - # reason for closed the issue default value is not_planned - close-issue-reason: not_planned - any-of-labels: "stat:contributions welcome,good first issue" - stale-issue-message: > - This issue is stale because it has been open for 180 days with no activity. - It will be closed if no further activity occurs. Thank you. - close-issue-message: > - This issue was closed because it has been inactive for more than 1 year. - repo-token: ${{ secrets.GITHUB_TOKEN }} \ No newline at end of file diff --git a/.gitignore b/.gitignore deleted file mode 100644 index 2ff890af6ec..00000000000 --- a/.gitignore +++ /dev/null @@ -1,21 +0,0 @@ -# macOS -.DS_Store - -# Python temp files -__pycache__/ -*.py[cod] -*$py.class - -# Vim temp files -*.swp -*.swo - -# VS Code configs -.devcontainer -.vscode - -# Bazel files -bazel-bin -bazel-keras -bazel-out -bazel-testlogs diff --git a/.vscode/settings.json b/.vscode/settings.json deleted file mode 100644 index 4c3bb7528b9..00000000000 --- a/.vscode/settings.json +++ /dev/null @@ -1,27 +0,0 @@ -{ - "python.linting.flake8Enabled": true, - "python.linting.pylintEnabled": false, - "python.linting.enabled": true, - "editor.rulers": [ - 80 - ], - "editor.formatOnSave": true, - "python.formatting.provider": "black", - "python.formatting.blackArgs": [ - "--line-length", - "80" - ], - "python.sortImports.args": [ - "--profile", - "black", - "--sl" - ], - "[python]": { - "editor.codeActionsOnSave": { - "source.organizeImports": true - } - }, - "python.analysis.diagnosticSeverityOverrides": { - "reportMissingImports": "none" - } -} diff --git a/BUILD b/BUILD deleted file mode 100644 index 73742ab2ae1..00000000000 --- a/BUILD +++ /dev/null @@ -1,118 +0,0 @@ -py_library( - name = "expect_absl_installed", - # This is a dummy rule used as a absl dependency in open-source. - # We expect absl to already be installed on the system, e.g. via - # `pip install absl` - visibility = ["//visibility:public"], - deps = [], -) - -py_library( - name = "expect_h5py_installed", - # This is a dummy rule used as a h5 dependency in open-source. - # We expect h5py to already be installed on the system, e.g. via - # `pip install h5py' - visibility = ["//visibility:public"], - deps = [], -) - -py_library( - name = "expect_numpy_installed", - # This is a dummy rule used as a numpy dependency in open-source. - # We expect numpy to already be installed on the system, e.g. via - # `pip install numpy` - visibility = ["//visibility:public"], - deps = [], -) - -py_library( - name = "expect_pandas_installed", - # This is a dummy rule used as a pandas dependency in open-source. - # We expect pandas to already be installed on the system, e.g. via - # `pip install pandas' - visibility = ["//visibility:public"], - deps = [], -) - -py_library( - name = "expect_pillow_installed", - # This is a dummy rule used as a pillow dependency in open-source. - # We expect pillow to already be installed on the system, e.g. via - # `pip install Pillow' - visibility = ["//visibility:public"], - deps = [], -) - -# Note that this dependency is for testing only. -py_library( - name = "expect_portpicker_installed", - # This is a dummy rule used as a pandas dependency in open-source. - # We expect portpicker to already be installed on the system, e.g. via - # `pip install portpicker' - visibility = ["//visibility:public"], - deps = [], -) - -py_library( - name = "expect_pydot_installed", - # This is a dummy rule used as a pydot dependency in open-source. - # We expect pydot to already be installed on the system, e.g. via - # `pip install pydot' - visibility = ["//visibility:public"], - deps = [], -) - -py_library( - name = "expect_scipy_installed", - # This is a dummy rule used as a scipy dependency in open-source. - # We expect scipy to already be installed on the system, e.g. via - # `pip install scipy' - visibility = ["//visibility:public"], - deps = [], -) - -py_library( - name = "expect_six_installed", - # This is a dummy rule used as a six dependency in open-source. - # We expect six to already be installed on the system, e.g. via - # `pip install six` - visibility = ["//visibility:public"], - deps = [], -) - -py_library( - name = "expect_tensorboard_installed", - # This is a dummy rule used as a tensorboard dependency in open-source. - # We expect tensorboard to already be installed on the system, e.g. via - # `pip install tensorflow` - visibility = ["//visibility:public"], - deps = [], -) - -py_library( - name = "expect_tensorflow_installed", - # This is a dummy rule used as a tensorflow dependency in open-source. - # We expect tensorflow to already be installed on the system, e.g. via - # `pip install tensorflow` - visibility = ["//visibility:public"], - deps = [], -) - -py_library( - name = "expect_yaml_installed", - # This is a dummy rule used as a yaml dependency in open-source. - # We expect yaml to already be installed on the system, e.g. via - # `pip install yaml` - visibility = ["//visibility:public"], - deps = [], -) - -# Note that this dependency is for testing only. -py_library( - name = "expect_tensorflow_io_installed", - # This is a dummy rule used as a tensorflow_io dependency in open-source. - # We expect tensorflow_io to already be installed on the system, e.g. via - # `pip install tensorflow-io` - visibility = ["//visibility:public"], - deps = [], -) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md deleted file mode 100644 index 7dc9fe96eeb..00000000000 --- a/CONTRIBUTING.md +++ /dev/null @@ -1,316 +0,0 @@ -## How to contribute code - -Follow these steps to submit your code contribution. - -### Step 1. Open an issue - -Before making any changes, we recommend opening an issue (if one doesn't already -exist) and discussing your proposed changes. This way, we can give you feedback -and validate the proposed changes. - -If the changes are minor (simple bug fix or documentation fix), then feel free -to open a PR without discussion. - -### Step 2. Make code changes - -To make code changes, you need to fork the repository. You will need to setup a -development environment and run the unit tests. This is covered in the section -"Setup environment". - -### Step 3. Create a pull request - -Once the change is ready, open a pull request from your branch in your fork to -the master branch in [keras-team/keras](https://github.com/keras-team/keras). - -### Step 4. Sign the Contributor License Agreement - -After creating the pull request, the `google-cla` bot will comment on your pull -request with instructions on signing the Contributor License Agreement (CLA) if -you haven't done so. Please follow the instructions to sign the CLA. A `cla:yes` -tag is then added to the pull request. - -![Tag added](https://i.imgur.com/LHEdIfL.png) - - -### Step 5. Code review - -A reviewer will review the pull request and provide comments. The reviewer may -add a `kokoro:force-run` label to trigger the continuous integration tests. - -![CI tests tag](https://i.imgur.com/58NOCB0.png) - -If the tests fail, look into the error messages and try to fix them. - -![CI tests](https://i.imgur.com/vVY0dZD.png) - -There may be -several rounds of comments and code changes before the pull request gets -approved by the reviewer. - -![Approval from reviewer](https://i.imgur.com/Ywl4ets.png) - -### Step 6. Merging - -Once the pull request is approved, a `ready to pull` tag will be added to the -pull request. A team member will take care of the merging. - -![Ready to pull](https://i.imgur.com/yCEqJsA.png) - -Here is an [example pull request](https://github.com/keras-team/keras/pull/15015) -for your reference. - -## Setup environment - -To setup the development environment, We provide two options. One is to use our -Dockerfile, which builds into a container the required dev tools. Another one is -to setup a local environment by installing the dev tools needed. - -### Option 1: Use a Docker container - -We provide a -[Dockerfile](https://github.com/keras-team/keras/blob/master/.devcontainer/Dockerfile) -to build the dev environment. You can build the Dockerfile into a Docker image -named `keras-dev` with the following command at the root directory of your -cloned repo. - -```shell -docker build -t keras-dev .devcontainer -``` - -You can launch a Docker container from the image with the following command. The -`-it` option gives you an interactive shell of the container. The `-v -path/to/repo/:/home/keras/` mounts your cloned repo to the container. Replace -`path/to/repo` with the path to your cloned repo directory. - -```shell -docker run -it -v path/to/repo/:/home/keras/ keras-dev -``` - -In the container shell, you need to install the latest dependencies with the -following command. - -```shell -pip install -r /home/keras/requirements.txt && pip uninstall keras-nightly -y -``` - -Now, the environment setup is complete. You are ready to run the tests. - -You may modify the Dockerfile to your specific needs, like installing your own -dev tools. You may also mount more volumes with the `-v` option, like your SSH -credentials. - -Many popular editors today support developing in a container. Here is the list of -[supported editors](https://discuss.tensorflow.org/t/setup-your-favorite-editor-to-develop-keras) -with setup instructions. - -### Option 2: Setup a local environment - -To setup your local dev environment, you will need the following tools. - -1. [Bazel](https://bazel.build/) is the tool to build and test Keras. See the - [installation guide](https://docs.bazel.build/versions/4.0.0/install.html) - for how to install and config bazel for your local environment. -2. [git](https://github.com/) for code repository management. -3. [python](https://www.python.org/) to build and code in Keras. - -The following commands check the tools above are successfully installed. Note -that Keras requires at least Python 3.7 to run. - -```shell -bazel --version -git --version -python --version -``` - -A [Python virtual environment](https://docs.python.org/3/tutorial/venv.html) -(venv) is a powerful tool to create a self-contained environment that isolates -any change from the system level config. It is highly recommended to avoid any -unexpected dependency or version issues. - -With the following commands, you create a new venv, named `venv_dir`. - -```shell -mkdir venv_dir -python3 -m venv venv_dir -``` - -You can activate the venv with the following command. You should always run the -tests with the venv activated. You need to activate the venv every time you open -a new shell. - -```shell -source venv_dir/bin/activate # for Linux or MacOS -venv_dir\Scripts\activate.bat # for Windows -``` - -Clone your forked repo to your local machine. Go to the cloned directory to -install the dependencies into the venv. Since `tf-nightly` uses `keras-nightly` -as a dependency, we need to uninstall `keras-nightly` so that tests will run -against Keras code in the local workspace. - -```shell -git clone https://github.com/YOUR_GITHUB_USERNAME/keras.git -cd keras -pip install -r requirements.txt -pip uninstall keras-nightly -``` - -The environment setup is completed. You may need to update the `tf-nightly` -version regularly to keep your environment up-to-date with the following -command. - -```shell -pip install --upgrade tf-nightly -``` - -## Code style - -The Keras uses [Black](https://black.readthedocs.io/en/stable/) and -[isort](https://pycqa.github.io/isort/) to format the code. Please refer to -[requirements.txt](https://github.com/keras-team/keras/blob/master/requirements.txt) -for the required versions. Run the following command **at the root directory of -the repo** to format your code. - -``` -sh shell/format.sh -``` - -It will also display the errors that cannot be resolved by autoformatting. You -need to follow the output of the command to resolve them manually. - -If you do not want to auto format the code but only show the lint errors, you -can run `sh shell/lint.sh` **at the root directory of the repo**. - -### Docstrings - -We do not have an automated way to check docstring style, so if you write -or edit any docstring, please make sure to check them manually. -Keras docstrings follow the conventions below: - -A **class docstring** may contain the following items: - -* A one-line description of the class. -* Paragraph(s) of more detailed information. -* Optional `Examples` section. -* `Args` section for arguments in `__init__()`. -* If it's a layer: - * `Call arguments` section for arguments in `Layer.call()`. - * `Returns` section for the return values of `Layer.call()`. - * Optional `Raises` section for possible errors. - -You can check out `MultiHeadAttention` as an example -[(link)](https://github.com/keras-team/keras/blob/v2.12.0-rc1/keras/layers/attention/multi_head_attention.py#L131). - -A **function docstring** may contain the following items: - -* One-line description of the function. -* Paragraph(s) of more detailed information. -* Optional `Examples` section. -* `Args` section for the function arguments. -* `Returns` section for the return values. -* Optional `Raises` section for possible errors. - -You can check out `text_dataset_from_directory` as an example -[(link)](https://github.com/keras-team/keras/blob/v2.12.0-rc1/keras/utils/text_dataset.py#L31). - - -## Run tests - -We use [Bazel](https://bazel.build/) to build and run the tests. - -### Run a test file - -For example, to run the tests in `keras/engine/base_layer_test.py`, -we can run the following command at the root directory of the repo. - -```shell -bazel test keras/engine:base_layer_test -``` - -`keras/engine` is the relative path to the directory containing the `BUILD` file -defining the test. `base_layer_test` is the test target name defined with -`tf_py_test` in the `BUILD` file. - -### Run a single test case - -To run a single test, you can use `--test_filter=` -to use the regular expression to match the test you want to run. For example, you -can use the following command to run all the tests in `activations_test.py`, -whose names contain `test_serialization`. - -``` -bazel test keras:activations_test --test_filter=*test_serialization* -``` - -### Run all tests - -You can run all the tests locally by running the following command in the repo -root directory. - -``` -bazel test --test_timeout 300,450,1200,3600 --test_output=errors --keep_going --define=use_fast_cpp_protos=false --build_tests_only --build_tag_filters=-no_oss,-oss_excluded --test_tag_filters=-no_oss,-oss_excluded keras/... -``` - -### Useful configs - -Here we provide a list of useful configs you can use with Bazel. - -```shell -bazel test [CONFIGS] [YOUR_TEST] -``` - -To use these configs, just replace `[CONFIGS]` with the actual config in the -command above. -* `-c opt` enables the optimizations during the build. -* `--test_sharding_strategy=disabled` disables the sharding so that all the - test outputs are in one file. - However, it may slow down the tests for not running in parallel - and may cause the test to timeout. - -## Contributing to Keras applications - -Contributions to the -[pre-trained application library](https://keras.io/api/applications/) are -welcome. Code for Keras applications is located in Keras repository in -[keras/applications](https://github.com/keras-team/keras/blob/master/keras/applications). -When contributing to Keras applications, please keep following checklist in -mind. - -- Keras applications must implement an established and widely used model. - Applications should include a link to a paper describing the architecture of - the model with at least 20 citations. -- Applications should be provided with pre-trained weights. - - When submitting a pull request for a Keras application, these weights - can be provided at any publically available URL (e.g. a personal Cloud - Storage bucket). The weights will be uploaded to a Keras storage bucket - while merging the pull request. - - Weights should be downloaded with the - [get_file()](https://keras.io/api/utils/python_utils/#getfile-function) - utility function. Be sure to include the `file_hash` argument, which - allows cache invalidation on the downloaded weights. The command line - programs `shasum` and `sha256sum` can compute a file hash. -- You should help us verify that the accuracy of the model with pre-trained - weighted matches the reported results of the cited paper. -- You should add any new applications to the unit tests defined in - `applications_test.py` and `applications_load_weight_test.py`. -- For backwards compatibility, all applications should provide a - `preprocess_input()` function. For new applications, you should leave the - function empty (pass through inputs unaltered), and write the model so it - can handle raw inputs directly. Adding - [preprocessing layers](https://keras.io/guides/preprocessing_layers/) to the - application model may help with this. For image applications, a - [Rescaling](https://keras.io/api/layers/preprocessing_layers/image_preprocessing/rescaling/) - layer at the beginning of the model is often all that is needed. -- Once the PR is approved, you should create a companion PR to the keras.io - [application page](https://keras.io/api/applications/) updating the - "Available Models" section. The contribution guide for keras.io can be found - [here](https://github.com/keras-team/keras-io/blob/master/contributor_guide.md). -- As every PR requires several CPU/GPU hours of CI testing, we discourage - submitting PRs to fix one typo, one warning,etc. We recommend fixing the - same issue at the file level at least (e.g.: fix all typos in a file, fix - all compiler warnings in a file, etc.) - -## Security vulnerability reports - -Since Keras is the high-level API of TensorFlow 2, Keras follows same security practices as TensorFlow. -For details on guidelines on vulnerabilities and reporting them, you can refer [Using TensorFlow Securely](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md). diff --git a/ISSUE_TEMPLATE.md b/ISSUE_TEMPLATE.md deleted file mode 100644 index e87fa93239e..00000000000 --- a/ISSUE_TEMPLATE.md +++ /dev/null @@ -1,41 +0,0 @@ -Please go to Stack Overflow for help and support: - -https://stackoverflow.com/questions/tagged/keras - -If you open a GitHub issue, here is our policy: - -1. It must be a bug, a feature request, or a significant problem with the - documentation (for small docs fixes please send a PR instead). -2. The form below must be filled out. - -**Here's why we have that policy**: Keras developers respond to issues. We want to focus on work that benefits the whole community, e.g., fixing bugs and adding features. Support only helps individuals. GitHub also notifies thousands of people when issues are filed. We want them to see you communicating an interesting problem, rather than being redirected to Stack Overflow. - ------------------------- - -### System information - -- **Have I written custom code (as opposed to using a stock example script - provided in Keras)**: -- **OS Platform and Distribution (e.g., Linux Ubuntu 16.04)**: -- **TensorFlow installed from (source or binary)**: -- **TensorFlow version (use command below)**: -- **Python version**: -- **Bazel version (if compiling from source)**: -- **GPU model and memory**: -- **Exact command to reproduce**: - -You can collect some of this information using our environment capture script: - -https://github.com/tensorflow/tensorflow/tree/master/tools/tf_env_collect.sh - -You can obtain the TensorFlow version with: - -```bash -python -c "import tensorflow as tf; print(tf.version.GIT_VERSION, tf.version.VERSION)" -``` - -### Describe the problem -Describe the problem clearly here. Be sure to convey here why it's a bug in Keras or why the requested feature is needed. - -### Source code / logs -Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached. Try to provide a reproducible test case that is the bare minimum necessary to generate the problem. diff --git a/LICENSE b/LICENSE deleted file mode 100644 index 7a4a3ea2424..00000000000 --- a/LICENSE +++ /dev/null @@ -1,202 +0,0 @@ - - Apache License - Version 2.0, January 2004 - http://www.apache.org/licenses/ - - TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION - - 1. Definitions. - - "License" shall mean the terms and conditions for use, reproduction, - and distribution as defined by Sections 1 through 9 of this document. - - "Licensor" shall mean the copyright owner or entity authorized by - the copyright owner that is granting the License. - - "Legal Entity" shall mean the union of the acting entity and all - other entities that control, are controlled by, or are under common - control with that entity. For the purposes of this definition, - "control" means (i) the power, direct or indirect, to cause the - direction or management of such entity, whether by contract or - otherwise, or (ii) ownership of fifty percent (50%) or more of the - outstanding shares, or (iii) beneficial ownership of such entity. - - "You" (or "Your") shall mean an individual or Legal Entity - exercising permissions granted by this License. - - "Source" form shall mean the preferred form for making modifications, - including but not limited to software source code, documentation - source, and configuration files. - - "Object" form shall mean any form resulting from mechanical - transformation or translation of a Source form, including but - not limited to compiled object code, generated documentation, - and conversions to other media types. - - "Work" shall mean the work of authorship, whether in Source or - Object form, made available under the License, as indicated by a - copyright notice that is included in or attached to the work - (an example is provided in the Appendix below). - - "Derivative Works" shall mean any work, whether in Source or Object - form, that is based on (or derived from) the Work and for which the - editorial revisions, annotations, elaborations, or other modifications - represent, as a whole, an original work of authorship. For the purposes - of this License, Derivative Works shall not include works that remain - separable from, or merely link (or bind by name) to the interfaces of, - the Work and Derivative Works thereof. - - "Contribution" shall mean any work of authorship, including - the original version of the Work and any modifications or additions - to that Work or Derivative Works thereof, that is intentionally - submitted to Licensor for inclusion in the Work by the copyright owner - or by an individual or Legal Entity authorized to submit on behalf of - the copyright owner. For the purposes of this definition, "submitted" - means any form of electronic, verbal, or written communication sent - to the Licensor or its representatives, including but not limited to - communication on electronic mailing lists, source code control systems, - and issue tracking systems that are managed by, or on behalf of, the - Licensor for the purpose of discussing and improving the Work, but - excluding communication that is conspicuously marked or otherwise - designated in writing by the copyright owner as "Not a Contribution." - - "Contributor" shall mean Licensor and any individual or Legal Entity - on behalf of whom a Contribution has been received by Licensor and - subsequently incorporated within the Work. - - 2. Grant of Copyright License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - copyright license to reproduce, prepare Derivative Works of, - publicly display, publicly perform, sublicense, and distribute the - Work and such Derivative Works in Source or Object form. - - 3. Grant of Patent License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - (except as stated in this section) patent license to make, have made, - use, offer to sell, sell, import, and otherwise transfer the Work, - where such license applies only to those patent claims licensable - by such Contributor that are necessarily infringed by their - Contribution(s) alone or by combination of their Contribution(s) - with the Work to which such Contribution(s) was submitted. If You - institute patent litigation against any entity (including a - cross-claim or counterclaim in a lawsuit) alleging that the Work - or a Contribution incorporated within the Work constitutes direct - or contributory patent infringement, then any patent licenses - granted to You under this License for that Work shall terminate - as of the date such litigation is filed. - - 4. Redistribution. You may reproduce and distribute copies of the - Work or Derivative Works thereof in any medium, with or without - modifications, and in Source or Object form, provided that You - meet the following conditions: - - (a) You must give any other recipients of the Work or - Derivative Works a copy of this License; and - - (b) You must cause any modified files to carry prominent notices - stating that You changed the files; and - - (c) You must retain, in the Source form of any Derivative Works - that You distribute, all copyright, patent, trademark, and - attribution notices from the Source form of the Work, - excluding those notices that do not pertain to any part of - the Derivative Works; and - - (d) If the Work includes a "NOTICE" text file as part of its - distribution, then any Derivative Works that You distribute must - include a readable copy of the attribution notices contained - within such NOTICE file, excluding those notices that do not - pertain to any part of the Derivative Works, in at least one - of the following places: within a NOTICE text file distributed - as part of the Derivative Works; within the Source form or - documentation, if provided along with the Derivative Works; or, - within a display generated by the Derivative Works, if and - wherever such third-party notices normally appear. The contents - of the NOTICE file are for informational purposes only and - do not modify the License. You may add Your own attribution - notices within Derivative Works that You distribute, alongside - or as an addendum to the NOTICE text from the Work, provided - that such additional attribution notices cannot be construed - as modifying the License. - - You may add Your own copyright statement to Your modifications and - may provide additional or different license terms and conditions - for use, reproduction, or distribution of Your modifications, or - for any such Derivative Works as a whole, provided Your use, - reproduction, and distribution of the Work otherwise complies with - the conditions stated in this License. - - 5. Submission of Contributions. Unless You explicitly state otherwise, - any Contribution intentionally submitted for inclusion in the Work - by You to the Licensor shall be under the terms and conditions of - this License, without any additional terms or conditions. - Notwithstanding the above, nothing herein shall supersede or modify - the terms of any separate license agreement you may have executed - with Licensor regarding such Contributions. - - 6. Trademarks. This License does not grant permission to use the trade - names, trademarks, service marks, or product names of the Licensor, - except as required for reasonable and customary use in describing the - origin of the Work and reproducing the content of the NOTICE file. - - 7. Disclaimer of Warranty. Unless required by applicable law or - agreed to in writing, Licensor provides the Work (and each - Contributor provides its Contributions) on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or - implied, including, without limitation, any warranties or conditions - of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A - PARTICULAR PURPOSE. You are solely responsible for determining the - appropriateness of using or redistributing the Work and assume any - risks associated with Your exercise of permissions under this License. - - 8. Limitation of Liability. In no event and under no legal theory, - whether in tort (including negligence), contract, or otherwise, - unless required by applicable law (such as deliberate and grossly - negligent acts) or agreed to in writing, shall any Contributor be - liable to You for damages, including any direct, indirect, special, - incidental, or consequential damages of any character arising as a - result of this License or out of the use or inability to use the - Work (including but not limited to damages for loss of goodwill, - work stoppage, computer failure or malfunction, or any and all - other commercial damages or losses), even if such Contributor - has been advised of the possibility of such damages. - - 9. Accepting Warranty or Additional Liability. While redistributing - the Work or Derivative Works thereof, You may choose to offer, - and charge a fee for, acceptance of support, warranty, indemnity, - or other liability obligations and/or rights consistent with this - License. However, in accepting such obligations, You may act only - on Your own behalf and on Your sole responsibility, not on behalf - of any other Contributor, and only if You agree to indemnify, - defend, and hold each Contributor harmless for any liability - incurred by, or claims asserted against, such Contributor by reason - of your accepting any such warranty or additional liability. - - END OF TERMS AND CONDITIONS - - APPENDIX: How to apply the Apache License to your work. - - To apply the Apache License to your work, attach the following - boilerplate notice, with the fields enclosed by brackets "[]" - replaced with your own identifying information. (Don't include - the brackets!) The text should be enclosed in the appropriate - comment syntax for the file format. We also recommend that a - file or class name and description of purpose be included on the - same "printed page" as the copyright notice for easier - identification within third-party archives. - - Copyright [yyyy] [name of copyright owner] - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. \ No newline at end of file diff --git a/README.md b/README.md deleted file mode 100644 index 288a3c90278..00000000000 --- a/README.md +++ /dev/null @@ -1,213 +0,0 @@ -# Keras: Deep Learning for humans - -![Keras logo](https://s3.amazonaws.com/keras.io/img/keras-logo-2018-large-1200.png) - -This repository hosts the development of the Keras library. -Read the documentation at [keras.io](https://keras.io/). - -## About Keras - -Keras is a deep learning API written in Python, -running on top of the machine learning platform [TensorFlow](https://github.com/tensorflow/tensorflow). -It was developed with a focus on enabling fast experimentation and -providing a delightful developer experience. - -**The purpose of Keras is to give an *unfair advantage* to any developer looking to ship ML-powered apps.** - -Keras is: - -- **Simple** -- but not simplistic. Keras reduces developer *cognitive load* - to free you to focus on the parts of the problem that really matter. - Keras focuses on ease of use, debugging speed, code elegance & conciseness, - maintainability, and deployability (via TFServing, TFLite, TF.js). -- **Flexible** -- Keras adopts the principle of *progressive disclosure of - complexity*: simple workflows should be quick and easy, while arbitrarily - advanced workflows should be *possible* via a clear path that builds upon - what you've already learned. -- **Powerful** -- Keras provides industry-strength performance and - scalability: it is used by organizations and companies including NASA, - YouTube, and Waymo. That's right -- your YouTube recommendations are - powered by Keras, and so is the world's most advanced driverless vehicle. - ---- - -## Keras & TensorFlow 2 - -[TensorFlow 2](https://www.tensorflow.org/) is an end-to-end, open-source machine learning platform. -You can think of it as an infrastructure layer for -[differentiable programming](https://en.wikipedia.org/wiki/Differentiable_programming). -It combines four key abilities: - -- Efficiently executing low-level tensor operations on CPU, GPU, or TPU. -- Computing the gradient of arbitrary differentiable expressions. -- Scaling computation to many devices, such as clusters of hundreds of GPUs. -- Exporting programs ("graphs") to external runtimes such as servers, browsers, mobile and embedded devices. - -Keras is the high-level API of TensorFlow 2: an approachable, highly-productive interface -for solving machine learning problems, -with a focus on modern deep learning. It provides essential abstractions and building blocks for developing -and shipping machine learning solutions with high iteration velocity. - -Keras empowers engineers and researchers to take full advantage of the scalability -and cross-platform capabilities of TensorFlow 2: you can run Keras on TPU or on large clusters of GPUs, -and you can export your Keras models to run in the browser or on a mobile device. - ---- - -## First contact with Keras - -The core data structures of Keras are __layers__ and __models__. -The simplest type of model is the [`Sequential` model](https://keras.io/guides/sequential_model/), a linear stack of layers. -For more complex architectures, you should use the [Keras functional API](https://keras.io/guides/functional_api/), -which allows you to build arbitrary graphs of layers or [write models entirely from scratch via subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/). - -Here is the `Sequential` model: - -```python -from tensorflow.keras.models import Sequential - -model = Sequential() -``` - -Stacking layers is as easy as `.add()`: - -```python -from tensorflow.keras.layers import Dense - -model.add(Dense(units=64, activation='relu')) -model.add(Dense(units=10, activation='softmax')) -``` - -Once your model looks good, configure its learning process with `.compile()`: - -```python -model.compile(loss='categorical_crossentropy', - optimizer='sgd', - metrics=['accuracy']) -``` - -If you need to, you can further configure your optimizer. The Keras philosophy is to keep simple things simple, -while allowing the user to be fully in control when they need to (the ultimate control being the easy extensibility of the source code via subclassing). - -```python -model.compile(loss=tf.keras.losses.categorical_crossentropy, - optimizer=tf.keras.optimizers.SGD( - learning_rate=0.01, momentum=0.9, nesterov=True)) -``` - -You can now iterate on your training data in batches: - -```python -# x_train and y_train are Numpy arrays. -model.fit(x_train, y_train, epochs=5, batch_size=32) -``` - -Evaluate your test loss and metrics in one line: - -```python -loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128) -``` - -Or generate predictions on new data: - -```python -classes = model.predict(x_test, batch_size=128) -``` - -What you just saw is the most elementary way to use Keras. - -However, Keras is also a highly-flexible framework suitable to iterate on state-of-the-art research ideas. -Keras follows the principle of **progressive disclosure of complexity**: it makes it easy to get started, -yet it makes it possible to handle arbitrarily advanced use cases, -only requiring incremental learning at each step. - -In much the same way that you were able to train & evaluate a simple neural network above in a few lines, -you can use Keras to quickly develop new training procedures or exotic model architectures. -Here's a low-level training loop example, combining Keras functionality with the TensorFlow `GradientTape`: - -```python -import tensorflow as tf - -# Prepare an optimizer. -optimizer = tf.keras.optimizers.Adam() -# Prepare a loss function. -loss_fn = tf.keras.losses.kl_divergence - -# Iterate over the batches of a dataset. -for inputs, targets in dataset: - # Open a GradientTape. - with tf.GradientTape() as tape: - # Forward pass. - predictions = model(inputs) - # Compute the loss value for this batch. - loss_value = loss_fn(targets, predictions) - - # Get gradients of loss wrt the weights. - gradients = tape.gradient(loss_value, model.trainable_weights) - # Update the weights of the model. - optimizer.apply_gradients(zip(gradients, model.trainable_weights)) -``` - -For more in-depth tutorials about Keras, you can check out: - -- [Introduction to Keras for engineers](https://keras.io/getting_started/intro_to_keras_for_engineers/) -- [Introduction to Keras for researchers](https://keras.io/getting_started/intro_to_keras_for_researchers/) -- [Developer guides](https://keras.io/guides/) -- [Other learning resources](https://keras.io/getting_started/learning_resources/) - ---- - -## Installation - -Keras comes packaged with TensorFlow 2 as `tensorflow.keras`. -To start using Keras, simply [install TensorFlow 2](https://www.tensorflow.org/install). -You can then import Keras as follows: - -```python -from tensorflow import keras -``` - ---- - -## Release and compatibility - -Keras has **nightly releases** (`keras-nightly` on PyPI) -and **stable releases** (`keras` on PyPI). -The nightly Keras releases are usually compatible with the corresponding version -of the `tf-nightly` releases -(e.g. `keras-nightly==2.7.0.dev2021100607` should be -used with `tf-nightly==2.7.0.dev2021100607`). -We don't maintain backward compatibility for nightly releases. -For stable releases, each Keras -version maps to a specific stable version of TensorFlow. - -The table below shows the compatibility version mapping -between TensorFlow versions and Keras versions. - -All the release branches can be found on [GitHub](https://github.com/keras-team/keras/releases). - -All the release binaries can be found on [Pypi](https://pypi.org/project/keras/#history). - ---- -## Support - -You can ask questions and join the development discussion: - -- In the [TensorFlow forum](https://discuss.tensorflow.org/). -- On the [Keras mailing list](https://groups.google.com/forum/#!forum/keras-users). - ---- - -## Opening an issue - -You can also post **bug reports and feature requests** (only) -in [GitHub issues](https://github.com/keras-team/keras/issues). - - ---- - -## Opening a PR - -We welcome contributions! Before opening a PR, please read -[our contributor guide](https://github.com/keras-team/keras/blob/master/CONTRIBUTING.md), -and the [API design guideline](https://github.com/keras-team/governance/blob/master/keras_api_design_guidelines.md). diff --git a/WORKSPACE b/WORKSPACE deleted file mode 100644 index c0ebc4e52ac..00000000000 --- a/WORKSPACE +++ /dev/null @@ -1,53 +0,0 @@ -workspace(name = "org_keras") - -load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") - -# Needed by protobuf -load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") -http_archive( - name = "bazel_skylib", - urls = [ - "https://mirror.bazel.build/github.com/bazelbuild/bazel-skylib/releases/download/1.3.0/bazel-skylib-1.3.0.tar.gz", - "https://github.com/bazelbuild/bazel-skylib/releases/download/1.3.0/bazel-skylib-1.3.0.tar.gz", - ], - sha256 = "74d544d96f4a5bb630d465ca8bbcfe231e3594e5aae57e1edbf17a6eb3ca2506", -) -load("@bazel_skylib//:workspace.bzl", "bazel_skylib_workspace") -bazel_skylib_workspace() - -# Needed by protobuf -http_archive( - name = "six_archive", - build_file = "//third_party:six.BUILD", - sha256 = "1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926", - strip_prefix = "six-1.16.0", - urls = ["https://pypi.python.org/packages/source/s/six/six-1.16.0.tar.gz"], -) - -bind( - name = "six", - actual = "@six_archive//:six", -) - -http_archive( - name = "com_google_protobuf", - sha256 = "f66073dee0bc159157b0bd7f502d7d1ee0bc76b3c1eac9836927511bdc4b3fc1", - strip_prefix = "protobuf-3.21.9", - urls = ["https://github.com/protocolbuffers/protobuf/archive/v3.21.9.zip"], -) - -# ZLIB. Need by com_google_protobuf. -http_archive( - name = "zlib", - build_file = "@com_google_protobuf//:third_party/zlib.BUILD", - sha256 = "b3a24de97a8fdbc835b9833169501030b8977031bcb54b3b3ac13740f846ab30", - strip_prefix = "zlib-1.2.13", - urls = [ - "https://storage.googleapis.com/mirror.tensorflow.org/zlib.net/zlib-1.2.13.tar.gz", - "https://zlib.net/zlib-1.2.13.tar.gz", - ], -) - - -load("@com_google_protobuf//:protobuf_deps.bzl", "protobuf_deps") -protobuf_deps() diff --git a/keras/BUILD b/keras/BUILD deleted file mode 100644 index b6da8f48c4d..00000000000 --- a/keras/BUILD +++ /dev/null @@ -1,385 +0,0 @@ -# Description: -# Contains the Keras API (internal TensorFlow version). - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [":friends"], - licenses = ["notice"], -) - -# Keras code that doesn't live in core Keras directory, but still -# need to directly access the keras code. -# We shouldn't add any client side package to this list. -package_group( - name = "friends", - packages = ["//keras/..."], -) - -exports_files(["LICENSE"]) - -config_setting( - name = "no_keras_py_deps", - define_values = {"no_keras_py_deps": "true"}, - visibility = ["//visibility:public"], -) - -py_library( - name = "keras", - srcs = [ - "__init__.py", - ], - srcs_version = "PY3", - deps = [ - ":backend", - ":engine", - "//:expect_h5py_installed", - "//:expect_numpy_installed", - "//:expect_pydot_installed", - "//:expect_scipy_installed", - "//:expect_tensorflow_installed", - "//:expect_yaml_installed", - "//keras/applications", - "//keras/datasets", - "//keras/distribute", - "//keras/estimator", - "//keras/feature_column", - "//keras/layers", - "//keras/layers/rnn:legacy_cell_wrappers", - "//keras/layers/rnn:legacy_cells", - "//keras/legacy_tf_layers:layers", - "//keras/mixed_precision:mixed_precision_experimental", - "//keras/models", - "//keras/optimizers", - "//keras/premade_models", - "//keras/preprocessing", - "//keras/saving", - "//keras/testing_infra:keras_doctest_lib", - "//keras/testing_infra:test_utils", # For keras.__internal__ API - "//keras/utils", - ], -) - -py_library( - name = "backend", - srcs = ["backend.py"], - srcs_version = "PY3", - deps = [ - ":backend_config", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/distribute:distribute_coordinator_utils", - "//keras/engine:keras_tensor", - "//keras/utils:control_flow_util", - "//keras/utils:object_identity", - "//keras/utils:tf_contextlib", - "//keras/utils:tf_inspect", - ], -) - -py_library( - name = "backend_config", - srcs = ["backend_config.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -# TODO(scottzhu): Cleanup this target and point all the user to keras/engine. -py_library( - name = "engine", - srcs = [ - "//keras/metrics", - "//keras/models", - ], - srcs_version = "PY3", - deps = [ - "//keras/engine", - ], -) - -py_library( - name = "activations", - srcs = [ - "activations.py", - ], - srcs_version = "PY3", - deps = [ - ":backend", - "//keras/layers/activation", - "//keras/utils:engine_utils", - ], -) - -# TODO(scottzhu): Cleanup this target and point all the user to keras/engine. -py_library( - name = "base_layer", - srcs = [], - srcs_version = "PY3", - deps = [ - "//keras/engine:base_layer", - ], -) - -py_library( - name = "callbacks", - srcs = [ - "callbacks.py", - ], - srcs_version = "PY3", - deps = [ - ":backend", - "//:expect_tensorboard_installed", - "//:expect_tensorflow_installed", - "//keras/distribute:distributed_file_utils", - "//keras/distribute:worker_training_state", - "//keras/protobuf:projector_config_proto_py_pb2", - "//keras/utils:engine_utils", - "//keras/utils:mode_keys", - ], -) - -py_library( - name = "callbacks_v1", - srcs = [ - "callbacks_v1.py", - ], - srcs_version = "PY3", - deps = [ - ":backend", - "//:expect_tensorboard_installed", - "//:expect_tensorflow_installed", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "constraints", - srcs = [ - "constraints.py", - ], - srcs_version = "PY3", - deps = [ - ":backend", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "losses", - srcs = [ - "losses.py", - ], - srcs_version = "PY3", - deps = [ - ":backend", - "//:expect_tensorflow_installed", - "//keras/saving:saving_lib", - "//keras/utils:engine_utils", - "//keras/utils:generic_utils", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "regularizers", - srcs = [ - "regularizers.py", - ], - srcs_version = "PY3", - deps = [ - ":backend", - "//keras/utils:engine_utils", - ], -) - -# Internally urllib.request.urlretrieve library requires Google -# SSL context to be provided to work in python 3. This isn't needed in OSS. -# copybara:uncomment_begin(google-only) -# py_library( -# name = "url_utils", -# srcs = ["google/url_utils.py"], -# srcs_version = "PY3", -# deps = ["//pyglib/contrib/google_ssl"], -# ) -# copybara:uncomment_end - -# Some tf.distribute related feature requires detecting platform. -# Internally we'd like to recognize Borg, which is not needed in OSS. -# copybara:uncomment_begin(google-only) -# py_library( -# name = "distribute_utils", -# srcs = ["google/distribute_utils.py"], -# deps = [ -# "//:expect_six_installed", -# "//:expect_tensorflow_installed", -# "//third_party/py/requests", -# ], -# ) -# copybara:uncomment_end - -tf_py_test( - name = "activations_test", - size = "small", - srcs = ["activations_test.py"], - python_version = "PY3", - deps = [ - ":activations", - ":backend", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_scipy_installed", - "//:expect_tensorflow_installed", - "//keras/layers", - "//keras/layers/activation", - "//keras/layers/core", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "constraints_test", - size = "small", - srcs = ["constraints_test.py"], - python_version = "PY3", - deps = [ - ":backend", - ":constraints", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "regularizers_test", - size = "medium", - srcs = ["regularizers_test.py"], - python_version = "PY3", - deps = [ - ":keras", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "losses_test", - size = "small", - srcs = ["losses_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "noasan", # b/186128525 - ], - deps = [ - ":backend", - ":losses", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - "//keras/utils:engine_utils", - ], -) - -tf_py_test( - name = "callbacks_test", - size = "medium", - srcs = ["callbacks_test.py"], - python_version = "PY3", - shard_count = 6, - tags = [ - "no_pip", # TODO(b/276923757) - "no_tfrt", # TODO(b/179690526) - "notsan", - ], - deps = [ - ":keras", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "callbacks_v1_test", - size = "medium", - srcs = ["callbacks_v1_test.py"], - python_version = "PY3", - tags = [ - "nomac", # Using profiler causes segfault in MacOS runs. - "notsan", - ], - deps = [ - ":callbacks", - ":callbacks_v1", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/engine", - "//keras/layers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:np_utils", - ], -) - -tf_py_test( - name = "backend_test", - size = "medium", - srcs = ["backend_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":backend", - ":engine", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_scipy_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "backend_config_test", - size = "medium", - srcs = ["backend_config_test.py"], - python_version = "PY3", - deps = [ - ":backend", - ":backend_config", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -# copybara:uncomment_begin(google-only) -# tf_py_test( -# name = "url_utils_test", -# srcs = ["google/url_utils_test.py"], -# python_version = "PY3", -# deps = [ -# ":url_utils", -# "//:expect_tensorflow_installed", -# "//testing/pymocks:matchers", -# ], -# ) -# copybara:uncomment_end - -# copybara:uncomment_begin(google-only) -# tf_py_test( -# name = "distribute_utils_test", -# srcs = ["google/distribute_utils_test.py"], -# python_version = "PY3", -# deps = [ -# ":distribute_utils", -# "//:expect_tensorflow_installed", -# "//keras/distribute", -# "//testing/pymocks:matchers", -# ], -# ) -# copybara:uncomment_end diff --git a/keras/__init__.py b/keras/__init__.py deleted file mode 100644 index 7c020265fda..00000000000 --- a/keras/__init__.py +++ /dev/null @@ -1,33 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Implementation of the Keras API, the high-level API of TensorFlow. - -Detailed documentation and user guides are available at -[keras.io](https://keras.io). -""" -from keras import distribute -from keras import models -from keras.engine.input_layer import Input -from keras.engine.sequential import Sequential -from keras.engine.training import Model - -# isort: off - -from tensorflow.python import tf2 -from tensorflow.python.util.tf_export import keras_export - -__version__ = "2.13.0" - -keras_export("keras.__version__").export_constant(__name__, "__version__") diff --git a/keras/activations.py b/keras/activations.py deleted file mode 100644 index 67def449e4f..00000000000 --- a/keras/activations.py +++ /dev/null @@ -1,709 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Built-in activation functions.""" - -import sys -import types - -import tensorflow.compat.v2 as tf - -import keras.layers.activation as activation_layers -from keras import backend -from keras.saving import object_registration -from keras.saving import serialization_lib -from keras.saving.legacy import serialization as legacy_serialization -from keras.saving.legacy.saved_model import utils as saved_model_utils -from keras.utils import generic_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -# b/123041942 -# In TF 2.x, if the `tf.nn.softmax` is used as an activation function in Keras -# layers, it gets serialized as 'softmax_v2' instead of 'softmax' as the -# internal method name is returned in serialization. This results in errors in -# model exporting and loading as Keras can't find any activation function with -# the name of `softmax_v2`. -# This dict maps the activation function name from its v2 version to its -# canonical name. -_TF_ACTIVATIONS_V2 = { - "softmax_v2": "softmax", -} - - -@keras_export("keras.activations.softmax") -@tf.__internal__.dispatch.add_dispatch_support -def softmax(x, axis=-1): - """Softmax converts a vector of values to a probability distribution. - - The elements of the output vector are in range (0, 1) and sum to 1. - - Each vector is handled independently. The `axis` argument sets which axis - of the input the function is applied along. - - Softmax is often used as the activation for the last - layer of a classification network because the result could be interpreted as - a probability distribution. - - The softmax of each vector x is computed as - `exp(x) / tf.reduce_sum(exp(x))`. - - The input values in are the log-odds of the resulting probability. - - Args: - x : Input tensor. - axis: Integer, axis along which the softmax normalization is applied. - - Returns: - Tensor, output of softmax transformation (all values are non-negative - and sum to 1). - - Examples: - - **Example 1: standalone usage** - - >>> inputs = tf.random.normal(shape=(32, 10)) - >>> outputs = tf.keras.activations.softmax(inputs) - >>> tf.reduce_sum(outputs[0, :]) # Each sample in the batch now sums to 1 - - - **Example 2: usage in a `Dense` layer** - - >>> layer = tf.keras.layers.Dense(32, - ... activation=tf.keras.activations.softmax) - """ - if x.shape.rank <= 1: - raise ValueError( - f"Cannot apply softmax to a tensor that is 1D. Received input: {x}" - ) - - if isinstance(axis, int): - output = tf.nn.softmax(x, axis=axis) - else: - # nn.softmax does not support tuple axis. - numerator = tf.exp(x - tf.reduce_max(x, axis=axis, keepdims=True)) - denominator = tf.reduce_sum(numerator, axis=axis, keepdims=True) - output = numerator / denominator - - # Cache the logits to use for crossentropy loss. - output._keras_logits = x - return output - - -@keras_export("keras.activations.elu") -@tf.__internal__.dispatch.add_dispatch_support -def elu(x, alpha=1.0): - """Exponential Linear Unit. - - The exponential linear unit (ELU) with `alpha > 0` is: - `x` if `x > 0` and - `alpha * (exp(x) - 1)` if `x < 0` - The ELU hyperparameter `alpha` controls the value to which an - ELU saturates for negative net inputs. ELUs diminish the - vanishing gradient effect. - - ELUs have negative values which pushes the mean of the activations - closer to zero. - Mean activations that are closer to zero enable faster learning as they - bring the gradient closer to the natural gradient. - ELUs saturate to a negative value when the argument gets smaller. - Saturation means a small derivative which decreases the variation - and the information that is propagated to the next layer. - - Example Usage: - - >>> import tensorflow as tf - >>> model = tf.keras.Sequential() - >>> model.add(tf.keras.layers.Conv2D(32, (3, 3), activation='elu', - ... input_shape=(28, 28, 1))) - >>> model.add(tf.keras.layers.MaxPooling2D((2, 2))) - >>> model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='elu')) - >>> model.add(tf.keras.layers.MaxPooling2D((2, 2))) - >>> model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='elu')) - - - - Args: - x: Input tensor. - alpha: A scalar, slope of negative section. `alpha` controls the value - to which an ELU saturates for negative net inputs. - - Returns: - The exponential linear unit (ELU) activation function: `x` if `x > 0` - and `alpha * (exp(x) - 1)` if `x < 0`. - - - Reference: - - [Fast and Accurate Deep Network Learning by Exponential Linear Units - (ELUs) (Clevert et al, 2016)](https://arxiv.org/abs/1511.07289) - """ - return backend.elu(x, alpha) - - -@keras_export("keras.activations.selu") -@tf.__internal__.dispatch.add_dispatch_support -def selu(x): - """Scaled Exponential Linear Unit (SELU). - - The Scaled Exponential Linear Unit (SELU) activation function is defined as: - - - `if x > 0: return scale * x` - - `if x < 0: return scale * alpha * (exp(x) - 1)` - - where `alpha` and `scale` are pre-defined constants - (`alpha=1.67326324` and `scale=1.05070098`). - - Basically, the SELU activation function multiplies `scale` (> 1) with the - output of the `tf.keras.activations.elu` function to ensure a slope larger - than one for positive inputs. - - The values of `alpha` and `scale` are - chosen so that the mean and variance of the inputs are preserved - between two consecutive layers as long as the weights are initialized - correctly (see `tf.keras.initializers.LecunNormal` initializer) - and the number of input units is "large enough" - (see reference paper for more information). - - Example Usage: - - >>> num_classes = 10 # 10-class problem - >>> model = tf.keras.Sequential() - >>> model.add(tf.keras.layers.Dense(64, kernel_initializer='lecun_normal', - ... activation='selu')) - >>> model.add(tf.keras.layers.Dense(32, kernel_initializer='lecun_normal', - ... activation='selu')) - >>> model.add(tf.keras.layers.Dense(16, kernel_initializer='lecun_normal', - ... activation='selu')) - >>> model.add(tf.keras.layers.Dense(num_classes, activation='softmax')) - - Args: - x: A tensor or variable to compute the activation function for. - - Returns: - The scaled exponential unit activation: `scale * elu(x, alpha)`. - - Notes: - - To be used together with the - `tf.keras.initializers.LecunNormal` initializer. - - To be used together with the dropout variant - `tf.keras.layers.AlphaDropout` (not regular dropout). - - References: - - [Klambauer et al., 2017](https://arxiv.org/abs/1706.02515) - """ - return tf.nn.selu(x) - - -@keras_export("keras.activations.softplus") -@tf.__internal__.dispatch.add_dispatch_support -def softplus(x): - """Softplus activation function, `softplus(x) = log(exp(x) + 1)`. - - Example Usage: - - >>> a = tf.constant([-20, -1.0, 0.0, 1.0, 20], dtype = tf.float32) - >>> b = tf.keras.activations.softplus(a) - >>> b.numpy() - array([2.0611537e-09, 3.1326166e-01, 6.9314718e-01, 1.3132616e+00, - 2.0000000e+01], dtype=float32) - - Args: - x: Input tensor. - - Returns: - The softplus activation: `log(exp(x) + 1)`. - """ - return tf.math.softplus(x) - - -@keras_export("keras.activations.softsign") -@tf.__internal__.dispatch.add_dispatch_support -def softsign(x): - """Softsign activation function, `softsign(x) = x / (abs(x) + 1)`. - - Example Usage: - - >>> a = tf.constant([-1.0, 0.0, 1.0], dtype = tf.float32) - >>> b = tf.keras.activations.softsign(a) - >>> b.numpy() - array([-0.5, 0. , 0.5], dtype=float32) - - Args: - x: Input tensor. - - Returns: - The softsign activation: `x / (abs(x) + 1)`. - """ - return tf.math.softsign(x) - - -@keras_export("keras.activations.swish") -@tf.__internal__.dispatch.add_dispatch_support -def swish(x): - """Swish activation function, `swish(x) = x * sigmoid(x)`. - - Swish activation function which returns `x*sigmoid(x)`. - It is a smooth, non-monotonic function that consistently matches - or outperforms ReLU on deep networks, it is unbounded above and - bounded below. - - - Example Usage: - - >>> a = tf.constant([-20, -1.0, 0.0, 1.0, 20], dtype = tf.float32) - >>> b = tf.keras.activations.swish(a) - >>> b.numpy() - array([-4.1223075e-08, -2.6894143e-01, 0.0000000e+00, 7.3105860e-01, - 2.0000000e+01], dtype=float32) - - Args: - x: Input tensor. - - Returns: - The swish activation applied to `x` (see reference paper for details). - - Reference: - - [Ramachandran et al., 2017](https://arxiv.org/abs/1710.05941) - """ - return tf.nn.silu(x) - - -@keras_export("keras.activations.relu") -@tf.__internal__.dispatch.add_dispatch_support -def relu(x, alpha=0.0, max_value=None, threshold=0.0): - """Applies the rectified linear unit activation function. - - With default values, this returns the standard ReLU activation: - `max(x, 0)`, the element-wise maximum of 0 and the input tensor. - - Modifying default parameters allows you to use non-zero thresholds, - change the max value of the activation, - and to use a non-zero multiple of the input for values below the threshold. - - Example: - - >>> foo = tf.constant([-10, -5, 0.0, 5, 10], dtype = tf.float32) - >>> tf.keras.activations.relu(foo).numpy() - array([ 0., 0., 0., 5., 10.], dtype=float32) - >>> tf.keras.activations.relu(foo, alpha=0.5).numpy() - array([-5. , -2.5, 0. , 5. , 10. ], dtype=float32) - >>> tf.keras.activations.relu(foo, max_value=5.).numpy() - array([0., 0., 0., 5., 5.], dtype=float32) - >>> tf.keras.activations.relu(foo, threshold=5.).numpy() - array([-0., -0., 0., 0., 10.], dtype=float32) - - Args: - x: Input `tensor` or `variable`. - alpha: A `float` that governs the slope for values lower than the - threshold. - max_value: A `float` that sets the saturation threshold (the largest - value the function will return). - threshold: A `float` giving the threshold value of the activation - function below which values will be damped or set to zero. - - Returns: - A `Tensor` representing the input tensor, - transformed by the relu activation function. - Tensor will be of the same shape and dtype of input `x`. - """ - return backend.relu( - x, alpha=alpha, max_value=max_value, threshold=threshold - ) - - -@keras_export("keras.activations.gelu", v1=[]) -@tf.__internal__.dispatch.add_dispatch_support -def gelu(x, approximate=False): - """Applies the Gaussian error linear unit (GELU) activation function. - - Gaussian error linear unit (GELU) computes - `x * P(X <= x)`, where `P(X) ~ N(0, 1)`. - The (GELU) nonlinearity weights inputs by their value, rather than gates - inputs by their sign as in ReLU. - - Example: - - >>> x = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype=tf.float32) - >>> y = tf.keras.activations.gelu(x) - >>> y.numpy() - array([-0.00404951, -0.15865529, 0. , 0.8413447 , 2.9959507 ], - dtype=float32) - >>> y = tf.keras.activations.gelu(x, approximate=True) - >>> y.numpy() - array([-0.00363752, -0.15880796, 0. , 0.841192 , 2.9963627 ], - dtype=float32) - - Args: - x: Input tensor. - approximate: A `bool`, whether to enable approximation. - - Returns: - The gaussian error linear activation: - `0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))` - if `approximate` is `True` or - `x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2)))`, - where `P(X) ~ N(0, 1)`, - if `approximate` is `False`. - - Reference: - - [Gaussian Error Linear Units (GELUs)](https://arxiv.org/abs/1606.08415) - """ - return tf.nn.gelu(x, approximate) - - -@keras_export("keras.activations.tanh") -@tf.__internal__.dispatch.add_dispatch_support -def tanh(x): - """Hyperbolic tangent activation function. - - Example: - - >>> a = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype = tf.float32) - >>> b = tf.keras.activations.tanh(a) - >>> b.numpy() - array([-0.9950547, -0.7615942, 0., 0.7615942, 0.9950547], dtype=float32) - - Args: - x: Input tensor. - - Returns: - Tensor of same shape and dtype of input `x`, with tanh activation: - `tanh(x) = sinh(x)/cosh(x) = ((exp(x) - exp(-x))/(exp(x) + exp(-x)))`. - """ - return tf.tanh(x) - - -@keras_export("keras.activations.sigmoid") -@tf.__internal__.dispatch.add_dispatch_support -def sigmoid(x): - """Sigmoid activation function, `sigmoid(x) = 1 / (1 + exp(-x))`. - - Applies the sigmoid activation function. For small values (<-5), - `sigmoid` returns a value close to zero, and for large values (>5) - the result of the function gets close to 1. - - Sigmoid is equivalent to a 2-element Softmax, where the second element is - assumed to be zero. The sigmoid function always returns a value between - 0 and 1. - - Example: - - >>> a = tf.constant([-20, -1.0, 0.0, 1.0, 20], dtype = tf.float32) - >>> b = tf.keras.activations.sigmoid(a) - >>> b.numpy() - array([2.0611537e-09, 2.6894143e-01, 5.0000000e-01, 7.3105860e-01, - 1.0000000e+00], dtype=float32) - - Args: - x: Input tensor. - - Returns: - Tensor with the sigmoid activation: `1 / (1 + exp(-x))`. - """ - output = tf.sigmoid(x) - # Cache the logits to use for crossentropy loss. - output._keras_logits = x - return output - - -@keras_export("keras.activations.exponential") -@tf.__internal__.dispatch.add_dispatch_support -def exponential(x): - """Exponential activation function. - - Example: - - >>> a = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype = tf.float32) - >>> b = tf.keras.activations.exponential(a) - >>> b.numpy() - array([0.04978707, 0.36787945, 1., 2.7182817 , 20.085537], dtype=float32) - - Args: - x: Input tensor. - - Returns: - Tensor with exponential activation: `exp(x)`. - """ - return tf.exp(x) - - -@keras_export("keras.activations.hard_sigmoid") -@tf.__internal__.dispatch.add_dispatch_support -def hard_sigmoid(x): - """Hard sigmoid activation function. - - A faster approximation of the sigmoid activation. - Piecewise linear approximation of the sigmoid function. - Ref: 'https://en.wikipedia.org/wiki/Hard_sigmoid' - - Example: - - >>> a = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype = tf.float32) - >>> b = tf.keras.activations.hard_sigmoid(a) - >>> b.numpy() - array([0. , 0.3, 0.5, 0.7, 1. ], dtype=float32) - - Args: - x: Input tensor. - - Returns: - The hard sigmoid activation, defined as: - - - `if x < -2.5: return 0` - - `if x > 2.5: return 1` - - `if -2.5 <= x <= 2.5: return 0.2 * x + 0.5` - """ - return backend.hard_sigmoid(x) - - -@keras_export("keras.activations.linear") -@tf.__internal__.dispatch.add_dispatch_support -def linear(x): - """Linear activation function (pass-through). - - Example: - - >>> a = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype = tf.float32) - >>> b = tf.keras.activations.linear(a) - >>> b.numpy() - array([-3., -1., 0., 1., 3.], dtype=float32) - - Args: - x: Input tensor. - - Returns: - The input, unmodified. - """ - return x - - -@keras_export("keras.activations.mish") -@tf.__internal__.dispatch.add_dispatch_support -def mish(x): - """Mish activation function. - - It is defined as: - - ```python - def mish(x): - return x * tanh(softplus(x)) - ``` - - where `softplus` is defined as: - - ```python - def softplus(x): - return log(exp(x) + 1) - ``` - - Example: - - >>> a = tf.constant([-3.0, -1.0, 0.0, 1.0], dtype = tf.float32) - >>> b = tf.keras.activations.mish(a) - >>> b.numpy() - array([-0.14564745, -0.30340144, 0., 0.86509836], dtype=float32) - - Args: - x: Input tensor. - - Returns: - The mish activation. - - Reference: - - [Mish: A Self Regularized Non-Monotonic - Activation Function](https://arxiv.org/abs/1908.08681) - """ - return x * tf.math.tanh(tf.math.softplus(x)) - - -@keras_export("keras.activations.serialize") -@tf.__internal__.dispatch.add_dispatch_support -def serialize(activation, use_legacy_format=False): - """Returns the string identifier of an activation function. - - Args: - activation : Function object. - - Returns: - String denoting the name attribute of the input function - - Example: - - >>> tf.keras.activations.serialize(tf.keras.activations.tanh) - 'tanh' - >>> tf.keras.activations.serialize(tf.keras.activations.sigmoid) - 'sigmoid' - >>> tf.keras.activations.serialize('abcd') - Traceback (most recent call last): - ... - ValueError: Unknown activation function 'abcd' cannot be serialized. - - Raises: - ValueError: The input function is not a valid one. - """ - if ( - hasattr(activation, "__name__") - and activation.__name__ in _TF_ACTIVATIONS_V2 - ): - return _TF_ACTIVATIONS_V2[activation.__name__] - - if use_legacy_format: - return legacy_serialization.serialize_keras_object(activation) - - fn_config = serialization_lib.serialize_keras_object(activation) - if ( - not tf.__internal__.tf2.enabled() - or saved_model_utils.in_tf_saved_model_scope() - ): - return fn_config - if "config" not in fn_config: - raise ValueError( - f"Unknown activation function '{activation}' cannot be " - "serialized due to invalid function name. Make sure to use " - "an activation name that matches the references defined in " - "activations.py or use `@keras.utils.register_keras_serializable` " - "for any custom activations. " - f"config={fn_config}" - ) - if not isinstance(activation, types.FunctionType): - # Case for additional custom activations represented by objects - return fn_config - if ( - isinstance(fn_config["config"], str) - and fn_config["config"] not in globals() - ): - # Case for custom activation functions from external activations modules - fn_config["config"] = object_registration.get_registered_name( - activation - ) - return fn_config - return fn_config["config"] - # Case for keras.activations builtins (simply return name) - - -# Add additional globals so that deserialize() can find these common activation -# functions -leaky_relu = tf.nn.leaky_relu -log_softmax = tf.nn.log_softmax -relu6 = tf.nn.relu6 -silu = tf.nn.silu - - -@keras_export("keras.activations.deserialize") -@tf.__internal__.dispatch.add_dispatch_support -def deserialize(name, custom_objects=None, use_legacy_format=False): - """Returns activation function given a string identifier. - - Args: - name: The name of the activation function. - custom_objects: Optional `{function_name: function_obj}` - dictionary listing user-provided activation functions. - - Returns: - Corresponding activation function. - - Example: - - >>> tf.keras.activations.deserialize('linear') - - >>> tf.keras.activations.deserialize('sigmoid') - - >>> tf.keras.activations.deserialize('abcd') - Traceback (most recent call last): - ... - ValueError: Unknown activation function 'abcd' cannot be deserialized. - - Raises: - ValueError: `Unknown activation function` if the input string does not - denote any defined Tensorflow activation function. - """ - activation_functions = {} - current_module = sys.modules[__name__] - - # we put 'current_module' after 'activation_layers' to prefer the local one - # if there is a collision - generic_utils.populate_dict_with_module_objects( - activation_functions, - (activation_layers, current_module), - obj_filter=callable, - ) - - if use_legacy_format: - return legacy_serialization.deserialize_keras_object( - name, - module_objects=activation_functions, - custom_objects=custom_objects, - printable_module_name="activation function", - ) - - returned_fn = serialization_lib.deserialize_keras_object( - name, - module_objects=activation_functions, - custom_objects=custom_objects, - printable_module_name="activation function", - ) - - if isinstance(returned_fn, str): - raise ValueError( - f"Unknown activation function '{name}' cannot be deserialized." - ) - - return returned_fn - - -@keras_export("keras.activations.get") -@tf.__internal__.dispatch.add_dispatch_support -def get(identifier): - """Returns function. - - Args: - identifier: Function or string - - Returns: - Function corresponding to the input string or input function. - - Example: - - >>> tf.keras.activations.get('softmax') - - >>> tf.keras.activations.get(tf.keras.activations.softmax) - - >>> tf.keras.activations.get(None) - - >>> tf.keras.activations.get(abs) - - >>> tf.keras.activations.get('abcd') - Traceback (most recent call last): - ... - ValueError: Unknown activation function:abcd - - Raises: - ValueError: Input is an unknown function or string, i.e., the input does - not denote any defined function. - """ - if identifier is None: - return linear - if isinstance(identifier, (str, dict)): - use_legacy_format = ( - "module" not in identifier - if isinstance(identifier, dict) - else False - ) - return deserialize(identifier, use_legacy_format=use_legacy_format) - elif callable(identifier): - return identifier - raise TypeError( - f"Could not interpret activation function identifier: {identifier}" - ) diff --git a/keras/activations_test.py b/keras/activations_test.py deleted file mode 100644 index 2222d1574ec..00000000000 --- a/keras/activations_test.py +++ /dev/null @@ -1,299 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras activation functions.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras.layers.activation as activation_layers -from keras import activations -from keras import backend -from keras.layers import core -from keras.layers import serialization -from keras.testing_infra import test_combinations - - -def _ref_softmax(values): - m = np.max(values) - e = np.exp(values - m) - return e / np.sum(e) - - -def _ref_softplus(x): - return np.log(np.ones_like(x) + np.exp(x)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class KerasActivationsTest(tf.test.TestCase, parameterized.TestCase): - def test_serialization(self): - all_activations = [ - "softmax", - "relu", - "elu", - "tanh", - "sigmoid", - "hard_sigmoid", - "linear", - "softplus", - "softsign", - "selu", - "gelu", - "relu6", - "mish", - ] - for name in all_activations: - fn = activations.get(name) - ref_fn = getattr(activations, name) - assert fn == ref_fn - config = activations.serialize(fn) - fn = activations.deserialize(config) - assert fn == ref_fn - - def test_serialization_v2(self): - activation_map = {tf.math.softmax: "softmax"} - for fn_v2_key in activation_map: - fn_v2 = activations.get(fn_v2_key) - config = activations.serialize(fn_v2) - fn = activations.deserialize(config) - assert fn.__name__ == activation_map[fn_v2_key] - - def test_serialization_with_layers(self): - activation = activation_layers.LeakyReLU(alpha=0.1) - layer = core.Dense(3, activation=activation) - config = serialization.serialize(layer) - # with custom objects - deserialized_layer = serialization.deserialize( - config, custom_objects={"LeakyReLU": activation} - ) - self.assertEqual( - deserialized_layer.__class__.__name__, layer.__class__.__name__ - ) - self.assertEqual( - deserialized_layer.activation.__class__.__name__, - activation.__class__.__name__, - ) - # without custom objects - deserialized_layer = serialization.deserialize(config) - self.assertEqual( - deserialized_layer.__class__.__name__, layer.__class__.__name__ - ) - self.assertEqual( - deserialized_layer.activation.__class__.__name__, - activation.__class__.__name__, - ) - - def test_softmax(self): - x = backend.placeholder(ndim=2) - f = backend.function([x], [activations.softmax(x)]) - test_values = np.random.random((2, 5)) - - result = f([test_values])[0] - expected = _ref_softmax(test_values[0]) - self.assertAllClose(result[0], expected, rtol=1e-05) - - x = backend.placeholder(ndim=1) - with self.assertRaises(ValueError): - activations.softmax(x) - - def test_softmax_2d_axis_0(self): - x = backend.placeholder(ndim=2) - f = backend.function([x], [activations.softmax(x, axis=0)]) - test_values = np.random.random((2, 5)) - result = f([test_values])[0] - expected = np.zeros((2, 5)) - for i in range(5): - expected[:, i] = _ref_softmax(test_values[:, i]) - self.assertAllClose(result, expected, rtol=1e-05) - - def test_softmax_3d_axis_tuple(self): - x = backend.placeholder(ndim=3) - f = backend.function([x], [activations.softmax(x, axis=(1, 2))]) - test_values = np.random.random((2, 3, 5)) - result = f([test_values])[0] - expected = np.zeros((2, 3, 5)) - for i in range(2): - expected[i, :, :] = _ref_softmax(test_values[i, :, :]) - self.assertAllClose(result, expected, rtol=1e-05) - - def test_temporal_softmax(self): - x = backend.placeholder(shape=(2, 2, 3)) - f = backend.function([x], [activations.softmax(x)]) - test_values = np.random.random((2, 2, 3)) * 10 - result = f([test_values])[0] - expected = _ref_softmax(test_values[0, 0]) - self.assertAllClose(result[0, 0], expected, rtol=1e-05) - - def test_selu(self): - x = backend.placeholder(ndim=2) - f = backend.function([x], [activations.selu(x)]) - alpha = 1.6732632423543772848170429916717 - scale = 1.0507009873554804934193349852946 - - positive_values = np.array([[1, 2]], dtype=backend.floatx()) - result = f([positive_values])[0] - self.assertAllClose(result, positive_values * scale, rtol=1e-05) - - negative_values = np.array([[-1, -2]], dtype=backend.floatx()) - result = f([negative_values])[0] - true_result = (np.exp(negative_values) - 1) * scale * alpha - self.assertAllClose(result, true_result) - - def test_softplus(self): - x = backend.placeholder(ndim=2) - f = backend.function([x], [activations.softplus(x)]) - test_values = np.random.random((2, 5)) - result = f([test_values])[0] - expected = _ref_softplus(test_values) - self.assertAllClose(result, expected, rtol=1e-05) - - def test_softsign(self): - def softsign(x): - return np.divide(x, np.ones_like(x) + np.absolute(x)) - - x = backend.placeholder(ndim=2) - f = backend.function([x], [activations.softsign(x)]) - test_values = np.random.random((2, 5)) - result = f([test_values])[0] - expected = softsign(test_values) - self.assertAllClose(result, expected, rtol=1e-05) - - def test_sigmoid(self): - def ref_sigmoid(x): - if x >= 0: - return 1 / (1 + np.exp(-x)) - else: - z = np.exp(x) - return z / (1 + z) - - sigmoid = np.vectorize(ref_sigmoid) - - x = backend.placeholder(ndim=2) - f = backend.function([x], [activations.sigmoid(x)]) - test_values = np.random.random((2, 5)) - result = f([test_values])[0] - expected = sigmoid(test_values) - self.assertAllClose(result, expected, rtol=1e-05) - - def test_hard_sigmoid(self): - def ref_hard_sigmoid(x): - x = (x * 0.2) + 0.5 - z = 0.0 if x <= 0 else (1.0 if x >= 1 else x) - return z - - hard_sigmoid = np.vectorize(ref_hard_sigmoid) - x = backend.placeholder(ndim=2) - f = backend.function([x], [activations.hard_sigmoid(x)]) - test_values = np.random.random((2, 5)) - result = f([test_values])[0] - expected = hard_sigmoid(test_values) - self.assertAllClose(result, expected, rtol=1e-05) - - def test_relu(self): - x = backend.placeholder(ndim=2) - f = backend.function([x], [activations.relu(x)]) - positive_values = np.random.random((2, 5)) - result = f([positive_values])[0] - self.assertAllClose(result, positive_values, rtol=1e-05) - - negative_values = np.random.uniform(-1, 0, (2, 5)) - result = f([negative_values])[0] - expected = np.zeros((2, 5)) - self.assertAllClose(result, expected, rtol=1e-05) - - def test_gelu(self): - def gelu(x, approximate=False): - if approximate: - return ( - 0.5 - * x - * ( - 1.0 - + np.tanh( - np.sqrt(2.0 / np.pi) - * (x + 0.044715 * np.power(x, 3)) - ) - ) - ) - else: - from scipy.stats import norm - - return x * norm.cdf(x) - - x = backend.placeholder(ndim=2) - f = backend.function([x], [activations.gelu(x)]) - test_values = np.random.random((2, 5)) - result = f([test_values])[0] - expected = gelu(test_values) - self.assertAllClose(result, expected, rtol=1e-05) - - f = backend.function([x], [activations.gelu(x, True)]) - test_values = np.random.random((2, 5)) - result = f([test_values])[0] - expected = gelu(test_values, True) - self.assertAllClose(result, expected, rtol=1e-05) - - def test_elu(self): - x = backend.placeholder(ndim=2) - f = backend.function([x], [activations.elu(x, 0.5)]) - test_values = np.random.random((2, 5)) - result = f([test_values])[0] - self.assertAllClose(result, test_values, rtol=1e-05) - negative_values = np.array([[-1, -2]], dtype=backend.floatx()) - result = f([negative_values])[0] - true_result = (np.exp(negative_values) - 1) / 2 - self.assertAllClose(result, true_result) - - def test_tanh(self): - test_values = np.random.random((2, 5)) - x = backend.placeholder(ndim=2) - exp = activations.tanh(x) - f = backend.function([x], [exp]) - result = f([test_values])[0] - expected = np.tanh(test_values) - self.assertAllClose(result, expected, rtol=1e-05) - - def test_exponential(self): - test_values = np.random.random((2, 5)) - x = backend.placeholder(ndim=2) - exp = activations.exponential(x) - f = backend.function([x], [exp]) - result = f([test_values])[0] - expected = np.exp(test_values) - self.assertAllClose(result, expected, rtol=1e-05) - - def test_mish(self): - test_values = np.random.random((2, 5)) - x = backend.placeholder(ndim=2) - output = activations.mish(x) - f = backend.function([x], [output]) - result = f([test_values])[0] - expected = test_values * np.tanh(_ref_softplus(test_values)) - self.assertAllClose(result, expected, rtol=1e-05) - - def test_linear(self): - x = np.random.random((10, 5)) - self.assertAllClose(x, activations.linear(x)) - - def test_invalid_usage(self): - with self.assertRaises(ValueError): - activations.get("unknown") - - # The following should be possible but should raise a warning: - activations.get(activation_layers.LeakyReLU()) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/api/BUILD b/keras/api/BUILD deleted file mode 100644 index 0402cc1befb..00000000000 --- a/keras/api/BUILD +++ /dev/null @@ -1,197 +0,0 @@ -# Description: -# Package for Keras. - -load("//keras/api:api_gen.bzl", "gen_api_init_files") -load("//keras/api:api_init_files.bzl", "KERAS_API_INIT_FILES", "KERAS_API_INIT_FILES_V1") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/py/tensorflow:__subpackages__", - ], - licenses = ["notice"], # Apache 2.0 License -) - -exports_files( - [ - "create_python_api_wrapper.py", - ], -) - -keras_packages = [ - "keras", - "keras.activations", - "keras.applications.convnext", - "keras.applications.densenet", - "keras.applications.efficientnet", - "keras.applications.efficientnet_v2", - "keras.applications.imagenet_utils", - "keras.applications.inception_resnet_v2", - "keras.applications.inception_v3", - "keras.applications.mobilenet", - "keras.applications.mobilenet_v2", - "keras.applications.mobilenet_v3", - "keras.applications.nasnet", - "keras.applications.regnet", - "keras.applications.resnet", - "keras.applications.resnet_v2", - "keras.applications.resnet_rs", - "keras.applications.vgg16", - "keras.applications.vgg19", - "keras.applications.xception", - "keras.backend", - "keras.backend_config", - "keras.callbacks", - "keras.callbacks_v1", - "keras.constraints", - "keras.datasets.boston_housing", - "keras.datasets.cifar10", - "keras.datasets.cifar100", - "keras.datasets.fashion_mnist", - "keras.datasets.imdb", - "keras.datasets.mnist", - "keras.datasets.reuters", - "keras.dtensor.layout_map", - "keras.engine.base_layer", - "keras.engine.data_adapter", - "keras.engine.input_layer", - "keras.engine.input_spec", - "keras.engine.sequential", - "keras.engine.training", - "keras.estimator", - "keras.export.export_lib", - "keras.feature_column.dense_features", - "keras.feature_column.dense_features_v2", - "keras.feature_column.sequence_feature_column", - # Placeholder for internal API - "keras.initializers", - "keras.initializers.initializers", - "keras.initializers.initializers_v1", - "keras.layers.activation", - "keras.layers.attention", - "keras.layers.convolutional", - "keras.layers.core", - "keras.layers.locally_connected", - "keras.layers.merging", - "keras.layers.normalization", - "keras.layers.preprocessing", - "keras.layers.pooling", - "keras.layers.regularization", - "keras.layers.rnn", - "keras.layers.rnn.legacy_cell_wrappers", - "keras.layers.rnn.legacy_cells", - "keras.layers.serialization", - "keras.legacy_tf_layers.base", - "keras.legacy_tf_layers.convolutional", - "keras.legacy_tf_layers.core", - "keras.legacy_tf_layers.normalization", - "keras.legacy_tf_layers.pooling", - "keras.losses", - "keras.metrics", - "keras.mixed_precision.loss_scale_optimizer", - "keras.mixed_precision.policy", - "keras.models", - "keras.optimizers.adadelta", - "keras.optimizers.adagrad", - "keras.optimizers.adam", - "keras.optimizers.adamax", - "keras.optimizers.ftrl", - "keras.optimizers.nadam", - "keras.optimizers.sgd", - "keras.optimizers.optimizer", - "keras.optimizers.rmsprop", - "keras.optimizers.legacy.adadelta", - "keras.optimizers.legacy.adagrad", - "keras.optimizers.legacy.adam", - "keras.optimizers.legacy.adamax", - "keras.optimizers.legacy.ftrl", - "keras.optimizers.legacy.gradient_descent", - "keras.optimizers.legacy.nadam", - "keras.optimizers.legacy.optimizer_v2", - "keras.optimizers.legacy.rmsprop", - "keras.optimizers.schedules.learning_rate_schedule", - "keras.optimizers", - "keras.premade_models.linear", - "keras.premade_models.wide_deep", - "keras.preprocessing.image", - "keras.preprocessing.sequence", - "keras.preprocessing.text", - "keras.regularizers", - "keras.saving.legacy.model_config", - "keras.saving.legacy.save", - "keras.saving.legacy.serialization", - "keras.testing_infra.test_utils", - "keras.utils.data_utils", - "keras.utils.generic_utils", - "keras.utils.io_utils", - "keras.utils.layer_utils", - "keras.utils.losses_utils", - "keras.utils.np_utils", - "keras.utils.tf_utils", - "keras.utils.vis_utils", -] - -# The target used by PIP package which need to generate API init files during OSS build. -py_library( - name = "keras_api", - srcs = [ - ":keras_python_api_gen", - ":keras_python_api_gen_compat_v1", - ":keras_python_api_gen_compat_v2", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - ], -) - -gen_api_init_files( - name = "keras_python_api_gen", - api_name = "keras", - api_version = 1, - output_files = KERAS_API_INIT_FILES_V1, - output_package = "keras.api", - package_deps = [ - "//keras", - "//:expect_tensorflow_installed", - # "//third_party/tensorflow/lite/python:analyzer", - # "//third_party/tensorflow/lite/python:lite", - # "//third_party/tensorflow/lite/python/authoring", - ], - packages = keras_packages, -) - -gen_api_init_files( - name = "keras_python_api_gen_compat_v1", - api_name = "keras", - api_version = 1, - output_dir = "_v1/", - output_files = KERAS_API_INIT_FILES_V1, - output_package = "keras.api._v1", - package_deps = [ - "//keras", - "//:expect_tensorflow_installed", - # "//third_party/tensorflow/lite/python:analyzer", - # "//third_party/tensorflow/lite/python:lite", - # "//third_party/tensorflow/lite/python/authoring", - ], - packages = keras_packages, -) - -gen_api_init_files( - name = "keras_python_api_gen_compat_v2", - api_name = "keras", - api_version = 2, - output_dir = "_v2/", - output_files = KERAS_API_INIT_FILES, - output_package = "keras.api._v2", - package_deps = [ - "//keras", - "//:expect_tensorflow_installed", - # "//third_party/tensorflow/lite/python:analyzer", - # "//third_party/tensorflow/lite/python:lite", - # "//third_party/tensorflow/lite/python/authoring", - ], - packages = keras_packages, -) diff --git a/keras/api/api_gen.bzl b/keras/api/api_gen.bzl deleted file mode 100644 index 7a85eafff5c..00000000000 --- a/keras/api/api_gen.bzl +++ /dev/null @@ -1,129 +0,0 @@ -"""Targets for generating Keras API __init__.py files. - -This bzl file is copied with slight modifications from -tensorflow/python/tools/api/generator/api_gen.bzl -so that we can avoid needing to depend on TF source code in Bazel build. - -It should be noted that because this file is executed during the build, -and it imports TensorFlow code, that installing TensorFlow python package -is required to Bazel build Keras. -""" - -load("@org_keras//keras:keras.bzl", "if_indexing_source_code") - -def gen_api_init_files( - name, - output_files, - root_init_template = None, - srcs = [], - api_name = "keras", - api_version = 2, - compat_api_versions = [], - compat_init_templates = [], - packages = ["keras"], - package_deps = [ - "//keras:keras", - ], - output_package = "keras.api", - output_dir = "", - root_file_name = "__init__.py"): - """Creates API directory structure and __init__.py files. - - Creates a genrule that generates a directory structure with __init__.py - files that import all exported modules (i.e. modules with tf_export - decorators). - - Args: - name: name of genrule to create. - output_files: List of __init__.py files that should be generated. - This list should include file name for every module exported using - tf_export. For e.g. if an op is decorated with - @tf_export('module1.module2', 'module3'). Then, output_files should - include module1/module2/__init__.py and module3/__init__.py. - root_init_template: Python init file that should be used as template for - root __init__.py file. "# API IMPORTS PLACEHOLDER" comment inside this - template will be replaced with root imports collected by this genrule. - srcs: genrule sources. If passing root_init_template, the template file - must be included in sources. - api_name: Name of the project that you want to generate API files for - (e.g. "tensorflow" or "estimator"). - api_version: TensorFlow API version to generate. Must be either 1 or 2. - compat_api_versions: Older TensorFlow API versions to generate under - compat/ directory. - compat_init_templates: Python init file that should be used as template - for top level __init__.py files under compat/vN directories. - "# API IMPORTS PLACEHOLDER" comment inside this - template will be replaced with root imports collected by this genrule. - packages: Python packages containing the @tf_export decorators you want to - process - package_deps: Python library target containing your packages. - output_package: Package where generated API will be added to. - output_dir: Subdirectory to output API to. - If non-empty, must end with '/'. - root_file_name: Name of the root file with all the root imports. - """ - root_init_template_flag = "" - if root_init_template: - root_init_template_flag = "--root_init_template=$(location " + root_init_template + ")" - - primary_package = packages[0] - api_gen_binary_target = ("create_" + primary_package + "_api_%d_%s") % (api_version, name) - native.py_binary( - name = api_gen_binary_target, - srcs = ["//keras/api:create_python_api_wrapper.py"], - main = "//keras/api:create_python_api_wrapper.py", - python_version = "PY3", - srcs_version = "PY2AND3", - visibility = ["//visibility:public"], - deps = package_deps, - ) - - # Replace name of root file with root_file_name. - output_files = [ - root_file_name if f == "__init__.py" else f - for f in output_files - ] - all_output_files = ["%s%s" % (output_dir, f) for f in output_files] - compat_api_version_flags = "" - for compat_api_version in compat_api_versions: - compat_api_version_flags += " --compat_apiversion=%d" % compat_api_version - - compat_init_template_flags = "" - for compat_init_template in compat_init_templates: - compat_init_template_flags += ( - " --compat_init_template=$(location %s)" % compat_init_template - ) - - # The Keras package within tf project is accessible via both paths below - # Disable them for now so that we don't get SymbolExposedTwiceError - # from create_python_api.py - packages_to_ignore = ["tensorflow.python.keras", "tensorflow.keras"] - - flags = [ - root_init_template_flag, - "--apidir=$(@D)" + output_dir, - "--apiname=" + api_name, - "--apiversion=" + str(api_version), - compat_api_version_flags, - compat_init_template_flags, - "--packages=" + ",".join(packages), - "--packages_to_ignore=" + ",".join(packages_to_ignore), - "--output_package=" + output_package, - ] - - native.genrule( - name = name, - outs = all_output_files, - cmd = if_indexing_source_code( - _make_cmd(api_gen_binary_target, flags, loading = "static"), - _make_cmd(api_gen_binary_target, flags, loading = "default"), - ), - srcs = srcs, - exec_tools = [":" + api_gen_binary_target], - visibility = ["//visibility:public"], - ) - -def _make_cmd(api_gen_binary_target, flags, loading = "default"): - binary = "$(location :" + api_gen_binary_target + ")" - flags.append("--loading=" + loading) - return " ".join([binary] + flags + ["$(OUTS)"]) diff --git a/keras/api/api_init_files.bzl b/keras/api/api_init_files.bzl deleted file mode 100644 index 48cfef198d7..00000000000 --- a/keras/api/api_init_files.bzl +++ /dev/null @@ -1,150 +0,0 @@ -"""Keras API __init__.py files.""" - -# keep sorted -KERAS_API_INIT_FILES = [ - "__init__.py", - "keras/__init__.py", - "keras/__internal__/__init__.py", - "keras/__internal__/backend/__init__.py", - "keras/__internal__/layers/__init__.py", - "keras/__internal__/losses/__init__.py", - "keras/__internal__/models/__init__.py", - "keras/__internal__/optimizers/__init__.py", - "keras/__internal__/utils/__init__.py", - "keras/activations/__init__.py", - "keras/applications/__init__.py", - "keras/applications/convnext/__init__.py", - "keras/applications/densenet/__init__.py", - "keras/applications/efficientnet/__init__.py", - "keras/applications/efficientnet_v2/__init__.py", - "keras/applications/imagenet_utils/__init__.py", - "keras/applications/inception_resnet_v2/__init__.py", - "keras/applications/inception_v3/__init__.py", - "keras/applications/mobilenet/__init__.py", - "keras/applications/mobilenet_v2/__init__.py", - "keras/applications/mobilenet_v3/__init__.py", - "keras/applications/nasnet/__init__.py", - "keras/applications/regnet/__init__.py", - "keras/applications/resnet/__init__.py", - "keras/applications/resnet50/__init__.py", - "keras/applications/resnet_rs/__init__.py", - "keras/applications/resnet_v2/__init__.py", - "keras/applications/vgg16/__init__.py", - "keras/applications/vgg19/__init__.py", - "keras/applications/xception/__init__.py", - "keras/backend/__init__.py", - "keras/backend/experimental/__init__.py", - "keras/callbacks/__init__.py", - "keras/callbacks/experimental/__init__.py", - "keras/constraints/__init__.py", - "keras/datasets/__init__.py", - "keras/datasets/boston_housing/__init__.py", - "keras/datasets/cifar10/__init__.py", - "keras/datasets/cifar100/__init__.py", - "keras/datasets/fashion_mnist/__init__.py", - "keras/datasets/imdb/__init__.py", - "keras/datasets/mnist/__init__.py", - "keras/datasets/reuters/__init__.py", - "keras/dtensor/__init__.py", - "keras/dtensor/experimental/__init__.py", - "keras/dtensor/experimental/optimizers/__init__.py", - "keras/estimator/__init__.py", - "keras/experimental/__init__.py", - "keras/export/__init__.py", - # Placeholder for internal API - "keras/initializers/__init__.py", - "keras/layers/__init__.py", - "keras/layers/experimental/__init__.py", - "keras/layers/experimental/preprocessing/__init__.py", - "keras/losses/__init__.py", - "keras/metrics/__init__.py", - "keras/metrics/experimental/__init__.py", - "keras/mixed_precision/__init__.py", - "keras/models/__init__.py", - "keras/models/experimental/__init__.py", - "keras/optimizers/__init__.py", - "keras/optimizers/experimental/__init__.py", - "keras/optimizers/legacy/__init__.py", - "keras/optimizers/schedules/__init__.py", - "keras/premade/__init__.py", - "keras/preprocessing/__init__.py", - "keras/preprocessing/image/__init__.py", - "keras/preprocessing/sequence/__init__.py", - "keras/preprocessing/text/__init__.py", - "keras/regularizers/__init__.py", - "keras/saving/__init__.py", - "keras/utils/__init__.py", - "keras/utils/experimental/__init__.py", - "keras/utils/legacy/__init__.py", - "keras/wrappers/__init__.py", - "keras/wrappers/scikit_learn/__init__.py", -] - -KERAS_API_INIT_FILES_V1 = [ - "__init__.py", - "keras/__init__.py", - "keras/__internal__/__init__.py", - "keras/__internal__/legacy/__init__.py", - "keras/__internal__/legacy/layers/__init__.py", - "keras/__internal__/layers/__init__.py", - "keras/__internal__/legacy/layers/experimental/__init__.py", - "keras/__internal__/legacy/rnn_cell/__init__.py", - "keras/activations/__init__.py", - "keras/applications/__init__.py", - "keras/applications/convnext/__init__.py", - "keras/applications/densenet/__init__.py", - "keras/applications/efficientnet/__init__.py", - "keras/applications/efficientnet_v2/__init__.py", - "keras/applications/imagenet_utils/__init__.py", - "keras/applications/inception_resnet_v2/__init__.py", - "keras/applications/inception_v3/__init__.py", - "keras/applications/mobilenet/__init__.py", - "keras/applications/mobilenet_v2/__init__.py", - "keras/applications/mobilenet_v3/__init__.py", - "keras/applications/nasnet/__init__.py", - "keras/applications/regnet/__init__.py", - "keras/applications/resnet/__init__.py", - "keras/applications/resnet_v2/__init__.py", - "keras/applications/resnet50/__init__.py", - "keras/applications/resnet_rs/__init__.py", - "keras/applications/vgg16/__init__.py", - "keras/applications/vgg19/__init__.py", - "keras/applications/xception/__init__.py", - "keras/backend/__init__.py", - "keras/callbacks/__init__.py", - "keras/callbacks/experimental/__init__.py", - "keras/constraints/__init__.py", - "keras/datasets/__init__.py", - "keras/datasets/boston_housing/__init__.py", - "keras/datasets/cifar10/__init__.py", - "keras/datasets/cifar100/__init__.py", - "keras/datasets/fashion_mnist/__init__.py", - "keras/datasets/imdb/__init__.py", - "keras/datasets/mnist/__init__.py", - "keras/datasets/reuters/__init__.py", - "keras/estimator/__init__.py", - "keras/experimental/__init__.py", - "keras/export/__init__.py", - "keras/initializers/__init__.py", - "keras/layers/__init__.py", - "keras/layers/experimental/__init__.py", - "keras/layers/experimental/preprocessing/__init__.py", - "keras/losses/__init__.py", - "keras/metrics/__init__.py", - "keras/mixed_precision/__init__.py", - "keras/models/__init__.py", - "keras/optimizers/__init__.py", - "keras/optimizers/schedules/__init__.py", - "keras/optimizers/legacy/__init__.py", - "keras/premade/__init__.py", - "keras/preprocessing/__init__.py", - "keras/preprocessing/image/__init__.py", - "keras/preprocessing/sequence/__init__.py", - "keras/preprocessing/text/__init__.py", - "keras/regularizers/__init__.py", - "keras/saving/__init__.py", - "keras/utils/__init__.py", - "keras/utils/legacy/__init__.py", - "keras/wrappers/__init__.py", - "keras/wrappers/scikit_learn/__init__.py", -] diff --git a/keras/api/create_python_api_wrapper.py b/keras/api/create_python_api_wrapper.py deleted file mode 100644 index c02c26e2cf9..00000000000 --- a/keras/api/create_python_api_wrapper.py +++ /dev/null @@ -1,34 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Thin wrapper to call TensorFlow's API generation script. - -This file exists to provide a main function for the py_binary in the API -generation genrule. It just calls the main function for the actual API -generation script in TensorFlow. -""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import keras # noqa: F401 - -# isort: off -from tensorflow.python.tools.api.generator import ( - create_python_api, -) - -if __name__ == "__main__": - create_python_api.main() diff --git a/keras/api/golden/BUILD b/keras/api/golden/BUILD deleted file mode 100644 index 5c2a24c0669..00000000000 --- a/keras/api/golden/BUILD +++ /dev/null @@ -1,16 +0,0 @@ -# TensorFlow API backwards compatibility test goldens. - -package( - default_visibility = ["//visibility:public"], - licenses = ["notice"], # Apache 2.0 -) - -filegroup( - name = "api_golden_v1", - srcs = glob(["v1/*.pbtxt"]), -) - -filegroup( - name = "api_golden_v2", - srcs = glob(["v2/*.pbtxt"]), -) diff --git a/keras/api/golden/v1/tensorflow.keras.-model.pbtxt b/keras/api/golden/v1/tensorflow.keras.-model.pbtxt deleted file mode 100644 index 186d1e2e453..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.-model.pbtxt +++ /dev/null @@ -1,403 +0,0 @@ -path: "tensorflow.keras.Model" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.-sequential.pbtxt b/keras/api/golden/v1/tensorflow.keras.-sequential.pbtxt deleted file mode 100644 index 21e40a34955..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.-sequential.pbtxt +++ /dev/null @@ -1,413 +0,0 @@ -path: "tensorflow.keras.Sequential" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'layers\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add" - argspec: "args=[\'self\', \'layer\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "pop" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.layers.-base-random-layer.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.layers.-base-random-layer.pbtxt deleted file mode 100644 index 68aa8fd6556..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.layers.-base-random-layer.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.__internal__.layers.BaseRandomLayer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\', \'force_generator\', \'rng_type\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.layers.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.layers.pbtxt deleted file mode 100644 index 1a3ec3c07eb..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.layers.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.__internal__.layers" -tf_module { - member { - name: "BaseRandomLayer" - mtype: "" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-average-pooling1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-average-pooling1-d.pbtxt deleted file mode 100644 index b724000004d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-average-pooling1-d.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.AveragePooling1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'valid\', \'channels_last\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-average-pooling2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-average-pooling2-d.pbtxt deleted file mode 100644 index 509a218c1f5..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-average-pooling2-d.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.AveragePooling2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'valid\', \'channels_last\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-average-pooling3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-average-pooling3-d.pbtxt deleted file mode 100644 index 4a4f882460b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-average-pooling3-d.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.AveragePooling3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'valid\', \'channels_last\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-batch-normalization.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-batch-normalization.pbtxt deleted file mode 100644 index 77ae4cffed0..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-batch-normalization.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.BatchNormalization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\', \'momentum\', \'epsilon\', \'center\', \'scale\', \'beta_initializer\', \'gamma_initializer\', \'moving_mean_initializer\', \'moving_variance_initializer\', \'beta_regularizer\', \'gamma_regularizer\', \'beta_constraint\', \'gamma_constraint\', \'renorm\', \'renorm_clipping\', \'renorm_momentum\', \'fused\', \'trainable\', \'virtual_batch_size\', \'adjustment\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'-1\', \'0.99\', \'0.001\', \'True\', \'True\', \'\', \'\', \'\', \'\', \'None\', \'None\', \'None\', \'None\', \'False\', \'None\', \'0.99\', \'None\', \'True\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'False\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv1-d.pbtxt deleted file mode 100644 index 70cef7d5638..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv1-d.pbtxt +++ /dev/null @@ -1,270 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.Conv1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'trainable\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'channels_last\', \'1\', \'None\', \'True\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv2-d-transpose.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv2-d-transpose.pbtxt deleted file mode 100644 index 2a1dc3989ad..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv2-d-transpose.pbtxt +++ /dev/null @@ -1,271 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.Conv2DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'trainable\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'channels_last\', \'None\', \'True\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv2-d.pbtxt deleted file mode 100644 index 3562610db38..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv2-d.pbtxt +++ /dev/null @@ -1,270 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.Conv2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'trainable\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'channels_last\', \'(1, 1)\', \'None\', \'True\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv3-d-transpose.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv3-d-transpose.pbtxt deleted file mode 100644 index 743619e0478..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv3-d-transpose.pbtxt +++ /dev/null @@ -1,271 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.Conv3DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'trainable\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'valid\', \'channels_last\', \'None\', \'True\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv3-d.pbtxt deleted file mode 100644 index 1975283a781..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-conv3-d.pbtxt +++ /dev/null @@ -1,270 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.Conv3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'trainable\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'valid\', \'channels_last\', \'(1, 1, 1)\', \'None\', \'True\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-dense.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-dense.pbtxt deleted file mode 100644 index 9c354098057..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-dense.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.Dense" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'trainable\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'True\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-dropout.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-dropout.pbtxt deleted file mode 100644 index 99f55801f52..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-dropout.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.Dropout" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'rate\', \'noise_shape\', \'seed\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.5\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-flatten.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-flatten.pbtxt deleted file mode 100644 index d390aade084..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-flatten.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.Flatten" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-input-spec.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-input-spec.pbtxt deleted file mode 100644 index 0f44da5f637..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-input-spec.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.InputSpec" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'dtype\', \'shape\', \'ndim\', \'max_ndim\', \'min_ndim\', \'axes\', \'allow_last_axis_squeeze\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'False\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-layer.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-layer.pbtxt deleted file mode 100644 index fa5c90d9b19..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-layer.pbtxt +++ /dev/null @@ -1,263 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.Layer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'trainable\', \'name\', \'dtype\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-max-pooling1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-max-pooling1-d.pbtxt deleted file mode 100644 index 5a57d0d4f74..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-max-pooling1-d.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.MaxPooling1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'valid\', \'channels_last\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-max-pooling2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-max-pooling2-d.pbtxt deleted file mode 100644 index f0a9659a69d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-max-pooling2-d.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.MaxPooling2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'valid\', \'channels_last\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-max-pooling3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-max-pooling3-d.pbtxt deleted file mode 100644 index dd0436a5821..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-max-pooling3-d.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.MaxPooling3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'valid\', \'channels_last\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-separable-conv1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-separable-conv1-d.pbtxt deleted file mode 100644 index f1169e363e5..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-separable-conv1-d.pbtxt +++ /dev/null @@ -1,271 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.SeparableConv1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'depth_multiplier\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'pointwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'pointwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'pointwise_constraint\', \'bias_constraint\', \'trainable\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'channels_last\', \'1\', \'1\', \'None\', \'True\', \'None\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-separable-conv2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-separable-conv2-d.pbtxt deleted file mode 100644 index 9815b88f8fa..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.-separable-conv2-d.pbtxt +++ /dev/null @@ -1,271 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.SeparableConv2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'depth_multiplier\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'pointwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'pointwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'pointwise_constraint\', \'bias_constraint\', \'trainable\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'channels_last\', \'(1, 1)\', \'1\', \'None\', \'True\', \'None\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.experimental.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.experimental.pbtxt deleted file mode 100644 index a4bbdfb0e0e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.experimental.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers.experimental" -tf_module { - member_method { - name: "keras_style_scope" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_keras_style" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.pbtxt deleted file mode 100644 index f2f26cdac84..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.layers.pbtxt +++ /dev/null @@ -1,151 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.layers" -tf_module { - member { - name: "AveragePooling1D" - mtype: "" - } - member { - name: "AveragePooling2D" - mtype: "" - } - member { - name: "AveragePooling3D" - mtype: "" - } - member { - name: "BatchNormalization" - mtype: "" - } - member { - name: "Conv1D" - mtype: "" - } - member { - name: "Conv2D" - mtype: "" - } - member { - name: "Conv2DTranspose" - mtype: "" - } - member { - name: "Conv3D" - mtype: "" - } - member { - name: "Conv3DTranspose" - mtype: "" - } - member { - name: "Dense" - mtype: "" - } - member { - name: "Dropout" - mtype: "" - } - member { - name: "Flatten" - mtype: "" - } - member { - name: "InputSpec" - mtype: "" - } - member { - name: "Layer" - mtype: "" - } - member { - name: "MaxPooling1D" - mtype: "" - } - member { - name: "MaxPooling2D" - mtype: "" - } - member { - name: "MaxPooling3D" - mtype: "" - } - member { - name: "SeparableConv1D" - mtype: "" - } - member { - name: "SeparableConv2D" - mtype: "" - } - member { - name: "experimental" - mtype: "" - } - member_method { - name: "average_pooling1d" - argspec: "args=[\'inputs\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'name\'], varargs=None, keywords=None, defaults=[\'valid\', \'channels_last\', \'None\'], " - } - member_method { - name: "average_pooling2d" - argspec: "args=[\'inputs\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'name\'], varargs=None, keywords=None, defaults=[\'valid\', \'channels_last\', \'None\'], " - } - member_method { - name: "average_pooling3d" - argspec: "args=[\'inputs\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'name\'], varargs=None, keywords=None, defaults=[\'valid\', \'channels_last\', \'None\'], " - } - member_method { - name: "batch_normalization" - argspec: "args=[\'inputs\', \'axis\', \'momentum\', \'epsilon\', \'center\', \'scale\', \'beta_initializer\', \'gamma_initializer\', \'moving_mean_initializer\', \'moving_variance_initializer\', \'beta_regularizer\', \'gamma_regularizer\', \'beta_constraint\', \'gamma_constraint\', \'training\', \'trainable\', \'name\', \'reuse\', \'renorm\', \'renorm_clipping\', \'renorm_momentum\', \'fused\', \'virtual_batch_size\', \'adjustment\'], varargs=None, keywords=None, defaults=[\'-1\', \'0.99\', \'0.001\', \'True\', \'True\', \'\', \'\', \'\', \'\', \'None\', \'None\', \'None\', \'None\', \'False\', \'True\', \'None\', \'None\', \'False\', \'None\', \'0.99\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "conv1d" - argspec: "args=[\'inputs\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'trainable\', \'name\', \'reuse\'], varargs=None, keywords=None, defaults=[\'1\', \'valid\', \'channels_last\', \'1\', \'None\', \'True\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\', \'None\'], " - } - member_method { - name: "conv2d" - argspec: "args=[\'inputs\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'trainable\', \'name\', \'reuse\'], varargs=None, keywords=None, defaults=[\'(1, 1)\', \'valid\', \'channels_last\', \'(1, 1)\', \'None\', \'True\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\', \'None\'], " - } - member_method { - name: "conv2d_transpose" - argspec: "args=[\'inputs\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'trainable\', \'name\', \'reuse\'], varargs=None, keywords=None, defaults=[\'(1, 1)\', \'valid\', \'channels_last\', \'None\', \'True\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\', \'None\'], " - } - member_method { - name: "conv3d" - argspec: "args=[\'inputs\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'trainable\', \'name\', \'reuse\'], varargs=None, keywords=None, defaults=[\'(1, 1, 1)\', \'valid\', \'channels_last\', \'(1, 1, 1)\', \'None\', \'True\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\', \'None\'], " - } - member_method { - name: "conv3d_transpose" - argspec: "args=[\'inputs\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'trainable\', \'name\', \'reuse\'], varargs=None, keywords=None, defaults=[\'(1, 1, 1)\', \'valid\', \'channels_last\', \'None\', \'True\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\', \'None\'], " - } - member_method { - name: "dense" - argspec: "args=[\'inputs\', \'units\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'trainable\', \'name\', \'reuse\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\', \'None\'], " - } - member_method { - name: "dropout" - argspec: "args=[\'inputs\', \'rate\', \'noise_shape\', \'seed\', \'training\', \'name\'], varargs=None, keywords=None, defaults=[\'0.5\', \'None\', \'None\', \'False\', \'None\'], " - } - member_method { - name: "flatten" - argspec: "args=[\'inputs\', \'name\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\', \'channels_last\'], " - } - member_method { - name: "max_pooling1d" - argspec: "args=[\'inputs\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'name\'], varargs=None, keywords=None, defaults=[\'valid\', \'channels_last\', \'None\'], " - } - member_method { - name: "max_pooling2d" - argspec: "args=[\'inputs\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'name\'], varargs=None, keywords=None, defaults=[\'valid\', \'channels_last\', \'None\'], " - } - member_method { - name: "max_pooling3d" - argspec: "args=[\'inputs\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'name\'], varargs=None, keywords=None, defaults=[\'valid\', \'channels_last\', \'None\'], " - } - member_method { - name: "separable_conv1d" - argspec: "args=[\'inputs\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'depth_multiplier\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'pointwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'pointwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'pointwise_constraint\', \'bias_constraint\', \'trainable\', \'name\', \'reuse\'], varargs=None, keywords=None, defaults=[\'1\', \'valid\', \'channels_last\', \'1\', \'1\', \'None\', \'True\', \'None\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\', \'None\'], " - } - member_method { - name: "separable_conv2d" - argspec: "args=[\'inputs\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'depth_multiplier\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'pointwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'pointwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'pointwise_constraint\', \'bias_constraint\', \'trainable\', \'name\', \'reuse\'], varargs=None, keywords=None, defaults=[\'(1, 1)\', \'valid\', \'channels_last\', \'(1, 1)\', \'1\', \'None\', \'True\', \'None\', \'None\', \'\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\', \'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.pbtxt deleted file mode 100644 index 6b7d393b18b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy" -tf_module { - member { - name: "layers" - mtype: "" - } - member { - name: "rnn_cell" - mtype: "" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-basic-l-s-t-m-cell.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-basic-l-s-t-m-cell.pbtxt deleted file mode 100644 index 91129cd63d4..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-basic-l-s-t-m-cell.pbtxt +++ /dev/null @@ -1,282 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.rnn_cell.BasicLSTMCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "output_size" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "state_size" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_units\', \'forget_bias\', \'state_is_tuple\', \'activation\', \'reuse\', \'name\', \'dtype\'], varargs=None, keywords=kwargs, defaults=[\'1.0\', \'True\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'state\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "zero_state" - argspec: "args=[\'self\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-basic-r-n-n-cell.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-basic-r-n-n-cell.pbtxt deleted file mode 100644 index a056b2db71e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-basic-r-n-n-cell.pbtxt +++ /dev/null @@ -1,282 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.rnn_cell.BasicRNNCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "output_size" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "state_size" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_units\', \'activation\', \'reuse\', \'name\', \'dtype\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'state\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "zero_state" - argspec: "args=[\'self\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-device-wrapper.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-device-wrapper.pbtxt deleted file mode 100644 index 06e5a0742dc..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-device-wrapper.pbtxt +++ /dev/null @@ -1,282 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.rnn_cell.DeviceWrapper" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "output_size" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "state_size" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cell\', \'device\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'_\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "zero_state" - argspec: "args=[\'self\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-dropout-wrapper.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-dropout-wrapper.pbtxt deleted file mode 100644 index 560abe76df7..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-dropout-wrapper.pbtxt +++ /dev/null @@ -1,286 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.rnn_cell.DropoutWrapper" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "output_size" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "state_size" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member { - name: "wrapped_cell" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cell\', \'input_keep_prob\', \'output_keep_prob\', \'state_keep_prob\', \'variational_recurrent\', \'input_size\', \'dtype\', \'seed\', \'dropout_state_filter_visitor\'], varargs=None, keywords=kwargs, defaults=[\'1.0\', \'1.0\', \'1.0\', \'False\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "zero_state" - argspec: "args=[\'self\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-g-r-u-cell.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-g-r-u-cell.pbtxt deleted file mode 100644 index f047c7b161c..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-g-r-u-cell.pbtxt +++ /dev/null @@ -1,282 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.rnn_cell.GRUCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "output_size" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "state_size" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_units\', \'activation\', \'reuse\', \'kernel_initializer\', \'bias_initializer\', \'name\', \'dtype\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'state\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "zero_state" - argspec: "args=[\'self\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-l-s-t-m-cell.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-l-s-t-m-cell.pbtxt deleted file mode 100644 index 917b7da630f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-l-s-t-m-cell.pbtxt +++ /dev/null @@ -1,282 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.rnn_cell.LSTMCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "output_size" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "state_size" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_units\', \'use_peepholes\', \'cell_clip\', \'initializer\', \'num_proj\', \'proj_clip\', \'num_unit_shards\', \'num_proj_shards\', \'forget_bias\', \'state_is_tuple\', \'activation\', \'reuse\', \'name\', \'dtype\'], varargs=None, keywords=kwargs, defaults=[\'False\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'1.0\', \'True\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'state\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "zero_state" - argspec: "args=[\'self\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-l-s-t-m-state-tuple.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-l-s-t-m-state-tuple.pbtxt deleted file mode 100644 index 3f2cb22ade0..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-l-s-t-m-state-tuple.pbtxt +++ /dev/null @@ -1,27 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.rnn_cell.LSTMStateTuple" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "c" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "h" - mtype: "" - } - member_method { - name: "__init__" - } - member_method { - name: "count" - } - member_method { - name: "index" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-multi-r-n-n-cell.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-multi-r-n-n-cell.pbtxt deleted file mode 100644 index b87a1077437..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-multi-r-n-n-cell.pbtxt +++ /dev/null @@ -1,281 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.rnn_cell.MultiRNNCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "output_size" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "state_size" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cells\', \'state_is_tuple\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'_\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'state\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "zero_state" - argspec: "args=[\'self\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-r-n-n-cell.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-r-n-n-cell.pbtxt deleted file mode 100644 index b12bdab443b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-r-n-n-cell.pbtxt +++ /dev/null @@ -1,280 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.rnn_cell.RNNCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "output_size" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "state_size" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'trainable\', \'name\', \'dtype\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'_\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "zero_state" - argspec: "args=[\'self\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-residual-wrapper.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-residual-wrapper.pbtxt deleted file mode 100644 index 0c537a8bdea..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.-residual-wrapper.pbtxt +++ /dev/null @@ -1,282 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.rnn_cell.ResidualWrapper" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "graph" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "output_size" - mtype: "" - } - member { - name: "scope_name" - mtype: "" - } - member { - name: "state_size" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cell\', \'residual_fn\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\', \'None\'], " - } - member_method { - name: "apply" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "build" - argspec: "args=[\'self\', \'_\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "zero_state" - argspec: "args=[\'self\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.pbtxt deleted file mode 100644 index 613a2fc1c56..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.legacy.rnn_cell.pbtxt +++ /dev/null @@ -1,43 +0,0 @@ -path: "tensorflow.keras.__internal__.legacy.rnn_cell" -tf_module { - member { - name: "BasicLSTMCell" - mtype: "" - } - member { - name: "BasicRNNCell" - mtype: "" - } - member { - name: "DeviceWrapper" - mtype: "" - } - member { - name: "DropoutWrapper" - mtype: "" - } - member { - name: "GRUCell" - mtype: "" - } - member { - name: "LSTMCell" - mtype: "" - } - member { - name: "LSTMStateTuple" - mtype: "" - } - member { - name: "MultiRNNCell" - mtype: "" - } - member { - name: "RNNCell" - mtype: "" - } - member { - name: "ResidualWrapper" - mtype: "" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.__internal__.pbtxt b/keras/api/golden/v1/tensorflow.keras.__internal__.pbtxt deleted file mode 100644 index 6b25413391c..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.__internal__.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.__internal__" -tf_module { - member { - name: "layers" - mtype: "" - } - member { - name: "legacy" - mtype: "" - } - member_method { - name: "enable_unsafe_deserialization" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.activations.pbtxt b/keras/api/golden/v1/tensorflow.keras.activations.pbtxt deleted file mode 100644 index ab982a5c4e4..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.activations.pbtxt +++ /dev/null @@ -1,67 +0,0 @@ -path: "tensorflow.keras.activations" -tf_module { - member_method { - name: "deserialize" - argspec: "args=[\'name\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "elu" - argspec: "args=[\'x\', \'alpha\'], varargs=None, keywords=None, defaults=[\'1.0\'], " - } - member_method { - name: "exponential" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "hard_sigmoid" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "linear" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mish" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "relu" - argspec: "args=[\'x\', \'alpha\', \'max_value\', \'threshold\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'0.0\'], " - } - member_method { - name: "selu" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'activation\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "sigmoid" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "softmax" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "softplus" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "softsign" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "swish" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "tanh" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.convnext.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.convnext.pbtxt deleted file mode 100644 index bd3523a95ab..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.convnext.pbtxt +++ /dev/null @@ -1,31 +0,0 @@ -path: "tensorflow.keras.applications.convnext" -tf_module { - member_method { - name: "ConvNeXtBase" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_base\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtLarge" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_large\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtSmall" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_small\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtTiny" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_tiny\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtXLarge" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_xlarge\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.densenet.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.densenet.pbtxt deleted file mode 100644 index 38171a727da..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.densenet.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.applications.densenet" -tf_module { - member_method { - name: "DenseNet121" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "DenseNet169" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "DenseNet201" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.efficientnet.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.efficientnet.pbtxt deleted file mode 100644 index f4103c50713..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.efficientnet.pbtxt +++ /dev/null @@ -1,43 +0,0 @@ -path: "tensorflow.keras.applications.efficientnet" -tf_module { - member_method { - name: "EfficientNetB0" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB1" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB3" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB4" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB5" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB6" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB7" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.efficientnet_v2.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.efficientnet_v2.pbtxt deleted file mode 100644 index 3e045c9de28..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.efficientnet_v2.pbtxt +++ /dev/null @@ -1,39 +0,0 @@ -path: "tensorflow.keras.applications.efficientnet_v2" -tf_module { - member_method { - name: "EfficientNetV2B0" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2B1" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2B2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2B3" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2L" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2M" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2S" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.imagenet_utils.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.imagenet_utils.pbtxt deleted file mode 100644 index 9bbd3102ab8..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.imagenet_utils.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.applications.imagenet_utils" -tf_module { - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'caffe\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.inception_resnet_v2.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.inception_resnet_v2.pbtxt deleted file mode 100644 index c352536e0e5..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.inception_resnet_v2.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.inception_resnet_v2" -tf_module { - member_method { - name: "InceptionResNetV2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.inception_v3.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.inception_v3.pbtxt deleted file mode 100644 index aa55da6fd70..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.inception_v3.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.inception_v3" -tf_module { - member_method { - name: "InceptionV3" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.mobilenet.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.mobilenet.pbtxt deleted file mode 100644 index aff73b43871..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.mobilenet.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.mobilenet" -tf_module { - member_method { - name: "MobileNet" - argspec: "args=[\'input_shape\', \'alpha\', \'depth_multiplier\', \'dropout\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1.0\', \'1\', \'0.001\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.mobilenet_v2.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.mobilenet_v2.pbtxt deleted file mode 100644 index e55633f33b6..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.mobilenet_v2.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.mobilenet_v2" -tf_module { - member_method { - name: "MobileNetV2" - argspec: "args=[\'input_shape\', \'alpha\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1.0\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.mobilenet_v3.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.mobilenet_v3.pbtxt deleted file mode 100644 index 418ace0882f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.mobilenet_v3.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.applications.mobilenet_v3" -tf_module { - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.nasnet.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.nasnet.pbtxt deleted file mode 100644 index d246ee62cd9..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.nasnet.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.applications.nasnet" -tf_module { - member_method { - name: "NASNetLarge" - argspec: "args=[\'input_shape\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "NASNetMobile" - argspec: "args=[\'input_shape\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.pbtxt deleted file mode 100644 index ca41e9141e3..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.pbtxt +++ /dev/null @@ -1,363 +0,0 @@ -path: "tensorflow.keras.applications" -tf_module { - member { - name: "convnext" - mtype: "" - } - member { - name: "densenet" - mtype: "" - } - member { - name: "efficientnet" - mtype: "" - } - member { - name: "efficientnet_v2" - mtype: "" - } - member { - name: "imagenet_utils" - mtype: "" - } - member { - name: "inception_resnet_v2" - mtype: "" - } - member { - name: "inception_v3" - mtype: "" - } - member { - name: "mobilenet" - mtype: "" - } - member { - name: "mobilenet_v2" - mtype: "" - } - member { - name: "mobilenet_v3" - mtype: "" - } - member { - name: "nasnet" - mtype: "" - } - member { - name: "regnet" - mtype: "" - } - member { - name: "resnet" - mtype: "" - } - member { - name: "resnet50" - mtype: "" - } - member { - name: "resnet_rs" - mtype: "" - } - member { - name: "resnet_v2" - mtype: "" - } - member { - name: "vgg16" - mtype: "" - } - member { - name: "vgg19" - mtype: "" - } - member { - name: "xception" - mtype: "" - } - member_method { - name: "ConvNeXtBase" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_base\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtLarge" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_large\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtSmall" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_small\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtTiny" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_tiny\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtXLarge" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_xlarge\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "DenseNet121" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "DenseNet169" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "DenseNet201" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB0" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB1" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB3" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB4" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB5" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB6" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB7" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetV2B0" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2B1" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2B2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2B3" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2L" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2M" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2S" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "InceptionResNetV2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "InceptionV3" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "MobileNet" - argspec: "args=[\'input_shape\', \'alpha\', \'depth_multiplier\', \'dropout\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1.0\', \'1\', \'0.001\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "MobileNetV2" - argspec: "args=[\'input_shape\', \'alpha\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1.0\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "MobileNetV3Large" - argspec: "args=[\'input_shape\', \'alpha\', \'minimalistic\', \'include_top\', \'weights\', \'input_tensor\', \'classes\', \'pooling\', \'dropout_rate\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'1.0\', \'False\', \'True\', \'imagenet\', \'None\', \'1000\', \'None\', \'0.2\', \'softmax\', \'True\'], " - } - member_method { - name: "MobileNetV3Small" - argspec: "args=[\'input_shape\', \'alpha\', \'minimalistic\', \'include_top\', \'weights\', \'input_tensor\', \'classes\', \'pooling\', \'dropout_rate\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'1.0\', \'False\', \'True\', \'imagenet\', \'None\', \'1000\', \'None\', \'0.2\', \'softmax\', \'True\'], " - } - member_method { - name: "NASNetLarge" - argspec: "args=[\'input_shape\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "NASNetMobile" - argspec: "args=[\'input_shape\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX002" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx002\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX004" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx004\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX006" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx006\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX008" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx008\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX016" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx016\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX032" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx032\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX040" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx040\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX064" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx064\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX080" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx080\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX120" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx120\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX160" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx160\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX320" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx320\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY002" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety002\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY004" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety004\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY006" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety006\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY008" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety008\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY016" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety016\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY032" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety032\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY040" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety040\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY064" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety064\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY080" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety080\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY120" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety120\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY160" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety160\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY320" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety320\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ResNet101" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "ResNet101V2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ResNet152" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "ResNet152V2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ResNet50" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "ResNet50V2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ResNetRS101" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS152" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS200" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS270" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS350" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS420" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS50" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "VGG16" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "VGG19" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "Xception" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.regnet.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.regnet.pbtxt deleted file mode 100644 index be09c43f820..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.regnet.pbtxt +++ /dev/null @@ -1,107 +0,0 @@ -path: "tensorflow.keras.applications.regnet" -tf_module { - member_method { - name: "RegNetX002" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx002\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX004" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx004\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX006" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx006\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX008" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx008\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX016" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx016\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX032" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx032\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX040" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx040\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX064" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx064\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX080" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx080\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX120" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx120\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX160" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx160\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX320" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx320\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY002" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety002\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY004" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety004\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY006" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety006\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY008" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety008\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY016" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety016\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY032" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety032\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY040" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety040\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY064" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety064\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY080" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety080\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY120" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety120\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY160" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety160\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY320" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety320\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.resnet.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.resnet.pbtxt deleted file mode 100644 index fa450325245..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.resnet.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.applications.resnet" -tf_module { - member_method { - name: "ResNet101" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "ResNet152" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "ResNet50" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.resnet50.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.resnet50.pbtxt deleted file mode 100644 index 33f33e4c5d8..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.resnet50.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.resnet50" -tf_module { - member_method { - name: "ResNet50" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.resnet_rs.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.resnet_rs.pbtxt deleted file mode 100644 index c76a617ae4b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.resnet_rs.pbtxt +++ /dev/null @@ -1,39 +0,0 @@ -path: "tensorflow.keras.applications.resnet_rs" -tf_module { - member_method { - name: "ResNetRS101" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS152" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS200" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS270" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS350" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS420" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS50" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.resnet_v2.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.resnet_v2.pbtxt deleted file mode 100644 index 87f76e1046e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.resnet_v2.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.applications.resnet_v2" -tf_module { - member_method { - name: "ResNet101V2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ResNet152V2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ResNet50V2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.vgg16.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.vgg16.pbtxt deleted file mode 100644 index b50587e5bd2..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.vgg16.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.vgg16" -tf_module { - member_method { - name: "VGG16" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.vgg19.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.vgg19.pbtxt deleted file mode 100644 index 1caf84dcb51..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.vgg19.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.vgg19" -tf_module { - member_method { - name: "VGG19" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.applications.xception.pbtxt b/keras/api/golden/v1/tensorflow.keras.applications.xception.pbtxt deleted file mode 100644 index 3c1b861d852..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.applications.xception.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.xception" -tf_module { - member_method { - name: "Xception" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.backend.name_scope.pbtxt b/keras/api/golden/v1/tensorflow.keras.backend.name_scope.pbtxt deleted file mode 100644 index 335c7d61efc..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.backend.name_scope.pbtxt +++ /dev/null @@ -1,13 +0,0 @@ -path: "tensorflow.keras.backend.name_scope" -tf_class { - is_instance: "" - is_instance: "" - member { - name: "name" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'default_name\', \'values\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.backend.pbtxt b/keras/api/golden/v1/tensorflow.keras.backend.pbtxt deleted file mode 100644 index 6cc28ec691a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.backend.pbtxt +++ /dev/null @@ -1,599 +0,0 @@ -path: "tensorflow.keras.backend" -tf_module { - member { - name: "name_scope" - mtype: "" - } - member_method { - name: "abs" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "all" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "any" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "arange" - argspec: "args=[\'start\', \'stop\', \'step\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'int32\'], " - } - member_method { - name: "argmax" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "argmin" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "backend" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "batch_dot" - argspec: "args=[\'x\', \'y\', \'axes\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "batch_flatten" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "batch_get_value" - argspec: "args=[\'tensors\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "batch_normalization" - argspec: "args=[\'x\', \'mean\', \'var\', \'beta\', \'gamma\', \'axis\', \'epsilon\'], varargs=None, keywords=None, defaults=[\'-1\', \'0.001\'], " - } - member_method { - name: "batch_set_value" - argspec: "args=[\'tuples\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "bias_add" - argspec: "args=[\'x\', \'bias\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "binary_crossentropy" - argspec: "args=[\'target\', \'output\', \'from_logits\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "binary_focal_crossentropy" - argspec: "args=[\'target\', \'output\', \'apply_class_balancing\', \'alpha\', \'gamma\', \'from_logits\'], varargs=None, keywords=None, defaults=[\'False\', \'0.25\', \'2.0\', \'False\'], " - } - member_method { - name: "cast" - argspec: "args=[\'x\', \'dtype\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "cast_to_floatx" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "categorical_crossentropy" - argspec: "args=[\'target\', \'output\', \'from_logits\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'-1\'], " - } - member_method { - name: "categorical_focal_crossentropy" - argspec: "args=[\'target\', \'output\', \'alpha\', \'gamma\', \'from_logits\', \'axis\'], varargs=None, keywords=None, defaults=[\'0.25\', \'2.0\', \'False\', \'-1\'], " - } - member_method { - name: "clear_session" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "clip" - argspec: "args=[\'x\', \'min_value\', \'max_value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "concatenate" - argspec: "args=[\'tensors\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "constant" - argspec: "args=[\'value\', \'dtype\', \'shape\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "conv1d" - argspec: "args=[\'x\', \'kernel\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\'], varargs=None, keywords=None, defaults=[\'1\', \'valid\', \'None\', \'1\'], " - } - member_method { - name: "conv2d" - argspec: "args=[\'x\', \'kernel\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\'], varargs=None, keywords=None, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\'], " - } - member_method { - name: "conv2d_transpose" - argspec: "args=[\'x\', \'kernel\', \'output_shape\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\'], varargs=None, keywords=None, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\'], " - } - member_method { - name: "conv3d" - argspec: "args=[\'x\', \'kernel\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\'], varargs=None, keywords=None, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'(1, 1, 1)\'], " - } - member_method { - name: "cos" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "ctc_batch_cost" - argspec: "args=[\'y_true\', \'y_pred\', \'input_length\', \'label_length\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "ctc_decode" - argspec: "args=[\'y_pred\', \'input_length\', \'greedy\', \'beam_width\', \'top_paths\'], varargs=None, keywords=None, defaults=[\'True\', \'100\', \'1\'], " - } - member_method { - name: "ctc_label_dense_to_sparse" - argspec: "args=[\'labels\', \'label_lengths\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "cumprod" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "cumsum" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "depthwise_conv2d" - argspec: "args=[\'x\', \'depthwise_kernel\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\'], varargs=None, keywords=None, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\'], " - } - member_method { - name: "dot" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "dropout" - argspec: "args=[\'x\', \'level\', \'noise_shape\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "dtype" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "elu" - argspec: "args=[\'x\', \'alpha\'], varargs=None, keywords=None, defaults=[\'1.0\'], " - } - member_method { - name: "epsilon" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "equal" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "eval" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "exp" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "expand_dims" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "eye" - argspec: "args=[\'size\', \'dtype\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "flatten" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "floatx" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "foldl" - argspec: "args=[\'fn\', \'elems\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "foldr" - argspec: "args=[\'fn\', \'elems\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "function" - argspec: "args=[\'inputs\', \'outputs\', \'updates\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "gather" - argspec: "args=[\'reference\', \'indices\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_session" - argspec: "args=[\'op_input_list\'], varargs=None, keywords=None, defaults=[\'()\'], " - } - member_method { - name: "get_uid" - argspec: "args=[\'prefix\'], varargs=None, keywords=None, defaults=[\'\'], " - } - member_method { - name: "get_value" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "gradients" - argspec: "args=[\'loss\', \'variables\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "greater" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "greater_equal" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "hard_sigmoid" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "image_data_format" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "in_test_phase" - argspec: "args=[\'x\', \'alt\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "in_top_k" - argspec: "args=[\'predictions\', \'targets\', \'k\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "in_train_phase" - argspec: "args=[\'x\', \'alt\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "int_shape" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "is_keras_tensor" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "is_sparse" - argspec: "args=[\'tensor\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "l2_normalize" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "learning_phase" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "learning_phase_scope" - argspec: "args=[\'value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "less" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "less_equal" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "local_conv1d" - argspec: "args=[\'inputs\', \'kernel\', \'kernel_size\', \'strides\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "local_conv2d" - argspec: "args=[\'inputs\', \'kernel\', \'kernel_size\', \'strides\', \'output_shape\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "log" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "manual_variable_initialization" - argspec: "args=[\'value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "map_fn" - argspec: "args=[\'fn\', \'elems\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "max" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "maximum" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "min" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "minimum" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "moving_average_update" - argspec: "args=[\'x\', \'value\', \'momentum\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "ndim" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "normalize_batch_in_training" - argspec: "args=[\'x\', \'gamma\', \'beta\', \'reduction_axes\', \'epsilon\'], varargs=None, keywords=None, defaults=[\'0.001\'], " - } - member_method { - name: "not_equal" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "one_hot" - argspec: "args=[\'indices\', \'num_classes\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "ones" - argspec: "args=[\'shape\', \'dtype\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "ones_like" - argspec: "args=[\'x\', \'dtype\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "permute_dimensions" - argspec: "args=[\'x\', \'pattern\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "placeholder" - argspec: "args=[\'shape\', \'ndim\', \'dtype\', \'sparse\', \'name\', \'ragged\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'None\', \'False\'], " - } - member_method { - name: "pool2d" - argspec: "args=[\'x\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'pool_mode\'], varargs=None, keywords=None, defaults=[\'(1, 1)\', \'valid\', \'None\', \'max\'], " - } - member_method { - name: "pool3d" - argspec: "args=[\'x\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'pool_mode\'], varargs=None, keywords=None, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'max\'], " - } - member_method { - name: "pow" - argspec: "args=[\'x\', \'a\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "print_tensor" - argspec: "args=[\'x\', \'message\', \'summarize\'], varargs=None, keywords=None, defaults=[\'\', \'3\'], " - } - member_method { - name: "prod" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "random_bernoulli" - argspec: "args=[\'shape\', \'p\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'None\'], " - } - member_method { - name: "random_binomial" - argspec: "args=[\'shape\', \'p\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'None\'], " - } - member_method { - name: "random_normal" - argspec: "args=[\'shape\', \'mean\', \'stddev\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'None\', \'None\'], " - } - member_method { - name: "random_normal_variable" - argspec: "args=[\'shape\', \'mean\', \'scale\', \'dtype\', \'name\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "random_uniform" - argspec: "args=[\'shape\', \'minval\', \'maxval\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'None\', \'None\'], " - } - member_method { - name: "random_uniform_variable" - argspec: "args=[\'shape\', \'low\', \'high\', \'dtype\', \'name\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "relu" - argspec: "args=[\'x\', \'alpha\', \'max_value\', \'threshold\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'0.0\'], " - } - member_method { - name: "repeat" - argspec: "args=[\'x\', \'n\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "repeat_elements" - argspec: "args=[\'x\', \'rep\', \'axis\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_uids" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reshape" - argspec: "args=[\'x\', \'shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "resize_images" - argspec: "args=[\'x\', \'height_factor\', \'width_factor\', \'data_format\', \'interpolation\'], varargs=None, keywords=None, defaults=[\'nearest\'], " - } - member_method { - name: "resize_volumes" - argspec: "args=[\'x\', \'depth_factor\', \'height_factor\', \'width_factor\', \'data_format\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reverse" - argspec: "args=[\'x\', \'axes\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "rnn" - argspec: "args=[\'step_function\', \'inputs\', \'initial_states\', \'go_backwards\', \'mask\', \'constants\', \'unroll\', \'input_length\', \'time_major\', \'zero_output_for_mask\', \'return_all_outputs\'], varargs=None, keywords=None, defaults=[\'False\', \'None\', \'None\', \'False\', \'None\', \'False\', \'False\', \'True\'], " - } - member_method { - name: "round" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "separable_conv2d" - argspec: "args=[\'x\', \'depthwise_kernel\', \'pointwise_kernel\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\'], varargs=None, keywords=None, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\'], " - } - member_method { - name: "set_epsilon" - argspec: "args=[\'value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_floatx" - argspec: "args=[\'value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_image_data_format" - argspec: "args=[\'data_format\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_learning_phase" - argspec: "args=[\'value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_session" - argspec: "args=[\'session\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_value" - argspec: "args=[\'x\', \'value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "shape" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sigmoid" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sign" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sin" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "softmax" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "softplus" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "softsign" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sparse_categorical_crossentropy" - argspec: "args=[\'target\', \'output\', \'from_logits\', \'axis\', \'ignore_class\'], varargs=None, keywords=None, defaults=[\'False\', \'-1\', \'None\'], " - } - member_method { - name: "spatial_2d_padding" - argspec: "args=[\'x\', \'padding\', \'data_format\'], varargs=None, keywords=None, defaults=[\'((1, 1), (1, 1))\', \'None\'], " - } - member_method { - name: "spatial_3d_padding" - argspec: "args=[\'x\', \'padding\', \'data_format\'], varargs=None, keywords=None, defaults=[\'((1, 1), (1, 1), (1, 1))\', \'None\'], " - } - member_method { - name: "sqrt" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "square" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "squeeze" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "stack" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "std" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "stop_gradient" - argspec: "args=[\'variables\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sum" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "switch" - argspec: "args=[\'condition\', \'then_expression\', \'else_expression\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "tanh" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "temporal_padding" - argspec: "args=[\'x\', \'padding\'], varargs=None, keywords=None, defaults=[\'(1, 1)\'], " - } - member_method { - name: "tile" - argspec: "args=[\'x\', \'n\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_dense" - argspec: "args=[\'tensor\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "transpose" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "truncated_normal" - argspec: "args=[\'shape\', \'mean\', \'stddev\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'None\', \'None\'], " - } - member_method { - name: "update" - argspec: "args=[\'x\', \'new_x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_add" - argspec: "args=[\'x\', \'increment\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_sub" - argspec: "args=[\'x\', \'decrement\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "var" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "variable" - argspec: "args=[\'value\', \'dtype\', \'name\', \'constraint\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "zeros" - argspec: "args=[\'shape\', \'dtype\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "zeros_like" - argspec: "args=[\'x\', \'dtype\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-base-logger.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-base-logger.pbtxt deleted file mode 100644 index 3a8597db7bf..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-base-logger.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.BaseLogger" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'stateful_metrics\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-c-s-v-logger.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-c-s-v-logger.pbtxt deleted file mode 100644 index fbeada72976..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-c-s-v-logger.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.CSVLogger" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filename\', \'separator\', \'append\'], varargs=None, keywords=None, defaults=[\',\', \'False\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-callback-list.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-callback-list.pbtxt deleted file mode 100644 index d3b5171b22c..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-callback-list.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.callbacks.CallbackList" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'callbacks\', \'add_history\', \'add_progbar\', \'model\'], varargs=None, keywords=params, defaults=[\'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "append" - argspec: "args=[\'self\', \'callback\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_logs" - argspec: "args=[\'self\', \'model\', \'logs\', \'outputs\', \'mode\', \'prefix\'], varargs=None, keywords=None, defaults=[\'\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-callback.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-callback.pbtxt deleted file mode 100644 index faa4541b709..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-callback.pbtxt +++ /dev/null @@ -1,81 +0,0 @@ -path: "tensorflow.keras.callbacks.Callback" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-early-stopping.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-early-stopping.pbtxt deleted file mode 100644 index 2f6f3059b9b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-early-stopping.pbtxt +++ /dev/null @@ -1,86 +0,0 @@ -path: "tensorflow.keras.callbacks.EarlyStopping" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'monitor\', \'min_delta\', \'patience\', \'verbose\', \'mode\', \'baseline\', \'restore_best_weights\', \'start_from_epoch\'], varargs=None, keywords=None, defaults=[\'val_loss\', \'0\', \'0\', \'0\', \'auto\', \'None\', \'False\', \'0\'], " - } - member_method { - name: "get_monitor_value" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-history.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-history.pbtxt deleted file mode 100644 index 379a9f3aa1d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-history.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.History" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-lambda-callback.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-lambda-callback.pbtxt deleted file mode 100644 index 61c47980e73..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-lambda-callback.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.LambdaCallback" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'on_epoch_begin\', \'on_epoch_end\', \'on_batch_begin\', \'on_batch_end\', \'on_train_begin\', \'on_train_end\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-learning-rate-scheduler.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-learning-rate-scheduler.pbtxt deleted file mode 100644 index 02a8faf671e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-learning-rate-scheduler.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.LearningRateScheduler" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'schedule\', \'verbose\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-model-checkpoint.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-model-checkpoint.pbtxt deleted file mode 100644 index e1304433601..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-model-checkpoint.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.ModelCheckpoint" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filepath\', \'monitor\', \'verbose\', \'save_best_only\', \'save_weights_only\', \'mode\', \'save_freq\', \'options\', \'initial_value_threshold\'], varargs=None, keywords=kwargs, defaults=[\'val_loss\', \'0\', \'False\', \'False\', \'auto\', \'epoch\', \'None\', \'None\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-progbar-logger.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-progbar-logger.pbtxt deleted file mode 100644 index e8f92604bb2..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-progbar-logger.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.ProgbarLogger" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'count_mode\', \'stateful_metrics\'], varargs=None, keywords=None, defaults=[\'samples\', \'None\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-reduce-l-r-on-plateau.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-reduce-l-r-on-plateau.pbtxt deleted file mode 100644 index a7792b96431..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-reduce-l-r-on-plateau.pbtxt +++ /dev/null @@ -1,86 +0,0 @@ -path: "tensorflow.keras.callbacks.ReduceLROnPlateau" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'monitor\', \'factor\', \'patience\', \'verbose\', \'mode\', \'min_delta\', \'cooldown\', \'min_lr\'], varargs=None, keywords=kwargs, defaults=[\'val_loss\', \'0.1\', \'10\', \'0\', \'auto\', \'0.0001\', \'0\', \'0\'], " - } - member_method { - name: "in_cooldown" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-remote-monitor.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-remote-monitor.pbtxt deleted file mode 100644 index 98552f19de4..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-remote-monitor.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.RemoteMonitor" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'root\', \'path\', \'field\', \'headers\', \'send_as_json\'], varargs=None, keywords=None, defaults=[\'http://localhost:9000\', \'/publish/epoch/end/\', \'data\', \'None\', \'False\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-sidecar-evaluator-model-export.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-sidecar-evaluator-model-export.pbtxt deleted file mode 100644 index 0a33bbb4e38..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-sidecar-evaluator-model-export.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.callbacks.SidecarEvaluatorModelExport" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'export_filepath\', \'checkpoint_filepath\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-tensor-board.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-tensor-board.pbtxt deleted file mode 100644 index ca8b6dd1868..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-tensor-board.pbtxt +++ /dev/null @@ -1,84 +0,0 @@ -path: "tensorflow.keras.callbacks.TensorBoard" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'log_dir\', \'histogram_freq\', \'batch_size\', \'write_graph\', \'write_grads\', \'write_images\', \'embeddings_freq\', \'embeddings_layer_names\', \'embeddings_metadata\', \'embeddings_data\', \'update_freq\', \'profile_batch\'], varargs=None, keywords=None, defaults=[\'./logs\', \'0\', \'32\', \'True\', \'False\', \'False\', \'0\', \'None\', \'None\', \'None\', \'epoch\', \'2\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.-terminate-on-na-n.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.-terminate-on-na-n.pbtxt deleted file mode 100644 index 62ccd1ec26b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.-terminate-on-na-n.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.TerminateOnNaN" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.callbacks.pbtxt b/keras/api/golden/v1/tensorflow.keras.callbacks.pbtxt deleted file mode 100644 index 1d92b38192a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.callbacks.pbtxt +++ /dev/null @@ -1,63 +0,0 @@ -path: "tensorflow.keras.callbacks" -tf_module { - member { - name: "BaseLogger" - mtype: "" - } - member { - name: "CSVLogger" - mtype: "" - } - member { - name: "Callback" - mtype: "" - } - member { - name: "CallbackList" - mtype: "" - } - member { - name: "EarlyStopping" - mtype: "" - } - member { - name: "History" - mtype: "" - } - member { - name: "LambdaCallback" - mtype: "" - } - member { - name: "LearningRateScheduler" - mtype: "" - } - member { - name: "ModelCheckpoint" - mtype: "" - } - member { - name: "ProgbarLogger" - mtype: "" - } - member { - name: "ReduceLROnPlateau" - mtype: "" - } - member { - name: "RemoteMonitor" - mtype: "" - } - member { - name: "SidecarEvaluatorModelExport" - mtype: "" - } - member { - name: "TensorBoard" - mtype: "" - } - member { - name: "TerminateOnNaN" - mtype: "" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.constraints.-constraint.pbtxt b/keras/api/golden/v1/tensorflow.keras.constraints.-constraint.pbtxt deleted file mode 100644 index ebce5a630d4..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.constraints.-constraint.pbtxt +++ /dev/null @@ -1,16 +0,0 @@ -path: "tensorflow.keras.constraints.Constraint" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.constraints.-max-norm.pbtxt b/keras/api/golden/v1/tensorflow.keras.constraints.-max-norm.pbtxt deleted file mode 100644 index 751357a36cb..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.constraints.-max-norm.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.constraints.MaxNorm" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'max_value\', \'axis\'], varargs=None, keywords=None, defaults=[\'2\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.constraints.-min-max-norm.pbtxt b/keras/api/golden/v1/tensorflow.keras.constraints.-min-max-norm.pbtxt deleted file mode 100644 index f385c813ca5..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.constraints.-min-max-norm.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.constraints.MinMaxNorm" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'min_value\', \'max_value\', \'rate\', \'axis\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'1.0\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.constraints.-non-neg.pbtxt b/keras/api/golden/v1/tensorflow.keras.constraints.-non-neg.pbtxt deleted file mode 100644 index ab3251209ef..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.constraints.-non-neg.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.constraints.NonNeg" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.constraints.-radial-constraint.pbtxt b/keras/api/golden/v1/tensorflow.keras.constraints.-radial-constraint.pbtxt deleted file mode 100644 index 54e6adf3e71..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.constraints.-radial-constraint.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.constraints.RadialConstraint" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.constraints.-unit-norm.pbtxt b/keras/api/golden/v1/tensorflow.keras.constraints.-unit-norm.pbtxt deleted file mode 100644 index b821bbb8acc..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.constraints.-unit-norm.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.constraints.UnitNorm" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.constraints.max_norm.pbtxt b/keras/api/golden/v1/tensorflow.keras.constraints.max_norm.pbtxt deleted file mode 100644 index 42aeaf7e0f0..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.constraints.max_norm.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.constraints.max_norm" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'max_value\', \'axis\'], varargs=None, keywords=None, defaults=[\'2\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.constraints.min_max_norm.pbtxt b/keras/api/golden/v1/tensorflow.keras.constraints.min_max_norm.pbtxt deleted file mode 100644 index 47ab0d1105b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.constraints.min_max_norm.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.constraints.min_max_norm" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'min_value\', \'max_value\', \'rate\', \'axis\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'1.0\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.constraints.non_neg.pbtxt b/keras/api/golden/v1/tensorflow.keras.constraints.non_neg.pbtxt deleted file mode 100644 index 0a8c2315310..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.constraints.non_neg.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.constraints.non_neg" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.constraints.pbtxt b/keras/api/golden/v1/tensorflow.keras.constraints.pbtxt deleted file mode 100644 index be3658a1222..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.constraints.pbtxt +++ /dev/null @@ -1,59 +0,0 @@ -path: "tensorflow.keras.constraints" -tf_module { - member { - name: "Constraint" - mtype: "" - } - member { - name: "MaxNorm" - mtype: "" - } - member { - name: "MinMaxNorm" - mtype: "" - } - member { - name: "NonNeg" - mtype: "" - } - member { - name: "RadialConstraint" - mtype: "" - } - member { - name: "UnitNorm" - mtype: "" - } - member { - name: "max_norm" - mtype: "" - } - member { - name: "min_max_norm" - mtype: "" - } - member { - name: "non_neg" - mtype: "" - } - member { - name: "radial_constraint" - mtype: "" - } - member { - name: "unit_norm" - mtype: "" - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'constraint\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.constraints.radial_constraint.pbtxt b/keras/api/golden/v1/tensorflow.keras.constraints.radial_constraint.pbtxt deleted file mode 100644 index 78d401b280f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.constraints.radial_constraint.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.constraints.radial_constraint" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.constraints.unit_norm.pbtxt b/keras/api/golden/v1/tensorflow.keras.constraints.unit_norm.pbtxt deleted file mode 100644 index 137cb505e73..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.constraints.unit_norm.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.constraints.unit_norm" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.datasets.boston_housing.pbtxt b/keras/api/golden/v1/tensorflow.keras.datasets.boston_housing.pbtxt deleted file mode 100644 index bda31751d42..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.datasets.boston_housing.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.datasets.boston_housing" -tf_module { - member_method { - name: "load_data" - argspec: "args=[\'path\', \'test_split\', \'seed\'], varargs=None, keywords=None, defaults=[\'boston_housing.npz\', \'0.2\', \'113\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.datasets.cifar10.pbtxt b/keras/api/golden/v1/tensorflow.keras.datasets.cifar10.pbtxt deleted file mode 100644 index 8a5142f793d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.datasets.cifar10.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.datasets.cifar10" -tf_module { - member_method { - name: "load_data" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.datasets.cifar100.pbtxt b/keras/api/golden/v1/tensorflow.keras.datasets.cifar100.pbtxt deleted file mode 100644 index 16f184eeb5e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.datasets.cifar100.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.datasets.cifar100" -tf_module { - member_method { - name: "load_data" - argspec: "args=[\'label_mode\'], varargs=None, keywords=None, defaults=[\'fine\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.datasets.fashion_mnist.pbtxt b/keras/api/golden/v1/tensorflow.keras.datasets.fashion_mnist.pbtxt deleted file mode 100644 index a0e14356fa5..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.datasets.fashion_mnist.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.datasets.fashion_mnist" -tf_module { - member_method { - name: "load_data" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.datasets.imdb.pbtxt b/keras/api/golden/v1/tensorflow.keras.datasets.imdb.pbtxt deleted file mode 100644 index ff962876b66..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.datasets.imdb.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.datasets.imdb" -tf_module { - member_method { - name: "get_word_index" - argspec: "args=[\'path\'], varargs=None, keywords=None, defaults=[\'imdb_word_index.json\'], " - } - member_method { - name: "load_data" - argspec: "args=[\'path\', \'num_words\', \'skip_top\', \'maxlen\', \'seed\', \'start_char\', \'oov_char\', \'index_from\'], varargs=None, keywords=kwargs, defaults=[\'imdb.npz\', \'None\', \'0\', \'None\', \'113\', \'1\', \'2\', \'3\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.datasets.mnist.pbtxt b/keras/api/golden/v1/tensorflow.keras.datasets.mnist.pbtxt deleted file mode 100644 index 530bb075506..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.datasets.mnist.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.datasets.mnist" -tf_module { - member_method { - name: "load_data" - argspec: "args=[\'path\'], varargs=None, keywords=None, defaults=[\'mnist.npz\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.datasets.pbtxt b/keras/api/golden/v1/tensorflow.keras.datasets.pbtxt deleted file mode 100644 index 36e3aafbe4d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.datasets.pbtxt +++ /dev/null @@ -1,31 +0,0 @@ -path: "tensorflow.keras.datasets" -tf_module { - member { - name: "boston_housing" - mtype: "" - } - member { - name: "cifar10" - mtype: "" - } - member { - name: "cifar100" - mtype: "" - } - member { - name: "fashion_mnist" - mtype: "" - } - member { - name: "imdb" - mtype: "" - } - member { - name: "mnist" - mtype: "" - } - member { - name: "reuters" - mtype: "" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.datasets.reuters.pbtxt b/keras/api/golden/v1/tensorflow.keras.datasets.reuters.pbtxt deleted file mode 100644 index 6f6446eb429..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.datasets.reuters.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.datasets.reuters" -tf_module { - member_method { - name: "get_label_names" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_word_index" - argspec: "args=[\'path\'], varargs=None, keywords=None, defaults=[\'reuters_word_index.json\'], " - } - member_method { - name: "load_data" - argspec: "args=[\'path\', \'num_words\', \'skip_top\', \'maxlen\', \'test_split\', \'seed\', \'start_char\', \'oov_char\', \'index_from\'], varargs=None, keywords=kwargs, defaults=[\'reuters.npz\', \'None\', \'0\', \'None\', \'0.2\', \'113\', \'1\', \'2\', \'3\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.estimator.pbtxt b/keras/api/golden/v1/tensorflow.keras.estimator.pbtxt deleted file mode 100644 index 0a9ee49aecd..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.estimator.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.estimator" -tf_module { - member_method { - name: "model_to_estimator" - argspec: "args=[\'keras_model\', \'keras_model_path\', \'custom_objects\', \'model_dir\', \'config\', \'checkpoint_format\', \'metric_names_map\', \'export_outputs\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'saver\', \'None\', \'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.experimental.-cosine-decay-restarts.pbtxt b/keras/api/golden/v1/tensorflow.keras.experimental.-cosine-decay-restarts.pbtxt deleted file mode 100644 index 4e15111ec7c..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.experimental.-cosine-decay-restarts.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.experimental.CosineDecayRestarts" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'first_decay_steps\', \'t_mul\', \'m_mul\', \'alpha\', \'name\'], varargs=None, keywords=None, defaults=[\'2.0\', \'1.0\', \'0.0\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.experimental.-cosine-decay.pbtxt b/keras/api/golden/v1/tensorflow.keras.experimental.-cosine-decay.pbtxt deleted file mode 100644 index 81bdedcb4e2..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.experimental.-cosine-decay.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.experimental.CosineDecay" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'alpha\', \'name\', \'warmup_target\', \'warmup_steps\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.experimental.-linear-model.pbtxt b/keras/api/golden/v1/tensorflow.keras.experimental.-linear-model.pbtxt deleted file mode 100644 index a77978693f9..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.experimental.-linear-model.pbtxt +++ /dev/null @@ -1,404 +0,0 @@ -path: "tensorflow.keras.experimental.LinearModel" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'None\', \'True\', \'zeros\', \'zeros\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.experimental.-sequence-features.pbtxt b/keras/api/golden/v1/tensorflow.keras.experimental.-sequence-features.pbtxt deleted file mode 100644 index e87a1ec3ddc..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.experimental.-sequence-features.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.experimental.SequenceFeatures" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'feature_columns\', \'trainable\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'_\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'features\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.experimental.-wide-deep-model.pbtxt b/keras/api/golden/v1/tensorflow.keras.experimental.-wide-deep-model.pbtxt deleted file mode 100644 index 3fd35725641..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.experimental.-wide-deep-model.pbtxt +++ /dev/null @@ -1,404 +0,0 @@ -path: "tensorflow.keras.experimental.WideDeepModel" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'linear_model\', \'dnn_model\', \'activation\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.experimental.pbtxt b/keras/api/golden/v1/tensorflow.keras.experimental.pbtxt deleted file mode 100644 index c658bcdc5b6..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.experimental.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.experimental" -tf_module { - member { - name: "CosineDecay" - mtype: "" - } - member { - name: "CosineDecayRestarts" - mtype: "" - } - member { - name: "LinearModel" - mtype: "" - } - member { - name: "SequenceFeatures" - mtype: "" - } - member { - name: "WideDeepModel" - mtype: "" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.export.-export-archive.pbtxt b/keras/api/golden/v1/tensorflow.keras.export.-export-archive.pbtxt deleted file mode 100644 index bd1c5aac7d0..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.export.-export-archive.pbtxt +++ /dev/null @@ -1,27 +0,0 @@ -path: "tensorflow.keras.export.ExportArchive" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_endpoint" - argspec: "args=[\'self\', \'name\', \'fn\', \'input_signature\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_variable_collection" - argspec: "args=[\'self\', \'name\', \'variables\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "track" - argspec: "args=[\'self\', \'layer\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "write_out" - argspec: "args=[\'self\', \'filepath\', \'options\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.export.pbtxt b/keras/api/golden/v1/tensorflow.keras.export.pbtxt deleted file mode 100644 index ee81034d610..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.export.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.export" -tf_module { - member { - name: "ExportArchive" - mtype: "" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.-constant.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.-constant.pbtxt deleted file mode 100644 index cbaba78ed5a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.-constant.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.Constant" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'value\', \'dtype\', \'verify_shape\'], varargs=None, keywords=None, defaults=[\'0\', \"\", \'False\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.-identity.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.-identity.pbtxt deleted file mode 100644 index a5f7f348de9..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.-identity.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.Identity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'gain\', \'dtype\'], varargs=None, keywords=None, defaults=[\'1.0\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.-initializer.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.-initializer.pbtxt deleted file mode 100644 index 848e5d35265..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.-initializer.pbtxt +++ /dev/null @@ -1,16 +0,0 @@ -path: "tensorflow.keras.initializers.Initializer" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.-ones.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.-ones.pbtxt deleted file mode 100644 index 2fbfa774f8e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.-ones.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.Ones" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'dtype\'], varargs=None, keywords=None, defaults=[\"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.-orthogonal.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.-orthogonal.pbtxt deleted file mode 100644 index 874d320d73d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.-orthogonal.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.Orthogonal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'gain\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'1.0\', \'None\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.-random-normal.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.-random-normal.pbtxt deleted file mode 100644 index 06cb91b6642..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.-random-normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.RandomNormal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'0.0\', \'0.05\', \'None\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.-random-uniform.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.-random-uniform.pbtxt deleted file mode 100644 index 5b33476ee65..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.-random-uniform.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.RandomUniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'minval\', \'maxval\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'-0.05\', \'0.05\', \'None\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.-truncated-normal.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.-truncated-normal.pbtxt deleted file mode 100644 index a5815daa9fd..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.-truncated-normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.TruncatedNormal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'0.0\', \'0.05\', \'None\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.-variance-scaling.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.-variance-scaling.pbtxt deleted file mode 100644 index 03f4064b9ef..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.-variance-scaling.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.VarianceScaling" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'scale\', \'mode\', \'distribution\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'1.0\', \'fan_in\', \'truncated_normal\', \'None\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.-zeros.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.-zeros.pbtxt deleted file mode 100644 index b6ab68e5beb..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.-zeros.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.Zeros" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'dtype\'], varargs=None, keywords=None, defaults=[\"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.constant.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.constant.pbtxt deleted file mode 100644 index bddc37b907e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.constant.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.constant" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'value\', \'dtype\', \'verify_shape\'], varargs=None, keywords=None, defaults=[\'0\', \"\", \'False\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.glorot_normal.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.glorot_normal.pbtxt deleted file mode 100644 index ef0815972d2..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.glorot_normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.glorot_normal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.glorot_uniform.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.glorot_uniform.pbtxt deleted file mode 100644 index 439b5ada9bb..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.glorot_uniform.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.glorot_uniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.he_normal.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.he_normal.pbtxt deleted file mode 100644 index 4d1f9b815fc..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.he_normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.he_normal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.he_uniform.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.he_uniform.pbtxt deleted file mode 100644 index bf4296a74cf..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.he_uniform.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.he_uniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.identity.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.identity.pbtxt deleted file mode 100644 index a4c5a614904..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.identity.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.identity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'gain\', \'dtype\'], varargs=None, keywords=None, defaults=[\'1.0\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.lecun_normal.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.lecun_normal.pbtxt deleted file mode 100644 index 144c9f992e4..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.lecun_normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.lecun_normal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.lecun_uniform.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.lecun_uniform.pbtxt deleted file mode 100644 index 4f73d928118..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.lecun_uniform.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.lecun_uniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.normal.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.normal.pbtxt deleted file mode 100644 index dc3bb2b8a73..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.normal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'0.0\', \'0.05\', \'None\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.ones.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.ones.pbtxt deleted file mode 100644 index a89f78d1e1a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.ones.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.ones" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'dtype\'], varargs=None, keywords=None, defaults=[\"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.orthogonal.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.orthogonal.pbtxt deleted file mode 100644 index ee1e9bbae2b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.orthogonal.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.orthogonal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'gain\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'1.0\', \'None\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.pbtxt deleted file mode 100644 index b8832017c3c..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.pbtxt +++ /dev/null @@ -1,119 +0,0 @@ -path: "tensorflow.keras.initializers" -tf_module { - member { - name: "Constant" - mtype: "" - } - member { - name: "Identity" - mtype: "" - } - member { - name: "Initializer" - mtype: "" - } - member { - name: "Ones" - mtype: "" - } - member { - name: "Orthogonal" - mtype: "" - } - member { - name: "RandomNormal" - mtype: "" - } - member { - name: "RandomUniform" - mtype: "" - } - member { - name: "TruncatedNormal" - mtype: "" - } - member { - name: "VarianceScaling" - mtype: "" - } - member { - name: "Zeros" - mtype: "" - } - member { - name: "constant" - mtype: "" - } - member { - name: "glorot_normal" - mtype: "" - } - member { - name: "glorot_uniform" - mtype: "" - } - member { - name: "he_normal" - mtype: "" - } - member { - name: "he_uniform" - mtype: "" - } - member { - name: "identity" - mtype: "" - } - member { - name: "lecun_normal" - mtype: "" - } - member { - name: "lecun_uniform" - mtype: "" - } - member { - name: "normal" - mtype: "" - } - member { - name: "ones" - mtype: "" - } - member { - name: "orthogonal" - mtype: "" - } - member { - name: "random_normal" - mtype: "" - } - member { - name: "random_uniform" - mtype: "" - } - member { - name: "truncated_normal" - mtype: "" - } - member { - name: "uniform" - mtype: "" - } - member { - name: "zeros" - mtype: "" - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'initializer\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.random_normal.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.random_normal.pbtxt deleted file mode 100644 index 985d4dd524b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.random_normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.random_normal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'0.0\', \'0.05\', \'None\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.random_uniform.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.random_uniform.pbtxt deleted file mode 100644 index caf51f1fd4a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.random_uniform.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.random_uniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'minval\', \'maxval\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'-0.05\', \'0.05\', \'None\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.truncated_normal.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.truncated_normal.pbtxt deleted file mode 100644 index beaee23b8d6..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.truncated_normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.truncated_normal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'0.0\', \'0.05\', \'None\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.uniform.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.uniform.pbtxt deleted file mode 100644 index f50e925b0a2..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.uniform.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.uniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'minval\', \'maxval\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'-0.05\', \'0.05\', \'None\', \"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.initializers.zeros.pbtxt b/keras/api/golden/v1/tensorflow.keras.initializers.zeros.pbtxt deleted file mode 100644 index a262390687f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.initializers.zeros.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.zeros" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'dtype\'], varargs=None, keywords=None, defaults=[\"\"], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-abstract-r-n-n-cell.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-abstract-r-n-n-cell.pbtxt deleted file mode 100644 index d7238394f94..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-abstract-r-n-n-cell.pbtxt +++ /dev/null @@ -1,254 +0,0 @@ -path: "tensorflow.keras.layers.AbstractRNNCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "output_size" - mtype: "" - } - member { - name: "state_size" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'trainable\', \'name\', \'dtype\', \'dynamic\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'states\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-activation.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-activation.pbtxt deleted file mode 100644 index d1ee21e3e90..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-activation.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Activation" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'activation\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-activity-regularization.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-activity-regularization.pbtxt deleted file mode 100644 index 8c47a61250e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-activity-regularization.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ActivityRegularization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'l1\', \'l2\'], varargs=None, keywords=kwargs, defaults=[\'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-add.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-add.pbtxt deleted file mode 100644 index 5127ff3dfaf..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-add.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Add" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-additive-attention.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-additive-attention.pbtxt deleted file mode 100644 index 8ed84a4a760..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-additive-attention.pbtxt +++ /dev/null @@ -1,244 +0,0 @@ -path: "tensorflow.keras.layers.AdditiveAttention" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'use_scale\'], varargs=None, keywords=kwargs, defaults=[\'True\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'return_attention_scores\', \'use_causal_mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'False\', \'False\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-alpha-dropout.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-alpha-dropout.pbtxt deleted file mode 100644 index b65b0c1c182..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-alpha-dropout.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AlphaDropout" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'rate\', \'noise_shape\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-attention.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-attention.pbtxt deleted file mode 100644 index c8c3027e9f6..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-attention.pbtxt +++ /dev/null @@ -1,244 +0,0 @@ -path: "tensorflow.keras.layers.Attention" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'use_scale\', \'score_mode\'], varargs=None, keywords=kwargs, defaults=[\'False\', \'dot\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'return_attention_scores\', \'use_causal_mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'False\', \'False\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-average-pooling1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-average-pooling1-d.pbtxt deleted file mode 100644 index d1d687125d8..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-average-pooling1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AveragePooling1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'2\', \'None\', \'valid\', \'channels_last\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-average-pooling2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-average-pooling2-d.pbtxt deleted file mode 100644 index c3c3f70274a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-average-pooling2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AveragePooling2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-average-pooling3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-average-pooling3-d.pbtxt deleted file mode 100644 index cdd976ab992..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-average-pooling3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AveragePooling3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-average.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-average.pbtxt deleted file mode 100644 index 5552bd55547..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-average.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Average" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-avg-pool1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-avg-pool1-d.pbtxt deleted file mode 100644 index 0fb5acc44d0..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-avg-pool1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AvgPool1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'2\', \'None\', \'valid\', \'channels_last\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-avg-pool2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-avg-pool2-d.pbtxt deleted file mode 100644 index b46848ddfc0..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-avg-pool2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AvgPool2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-avg-pool3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-avg-pool3-d.pbtxt deleted file mode 100644 index c5f4a9b9b82..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-avg-pool3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AvgPool3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-batch-normalization.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-batch-normalization.pbtxt deleted file mode 100644 index 81ab7531f21..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-batch-normalization.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.BatchNormalization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-bidirectional.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-bidirectional.pbtxt deleted file mode 100644 index 4df4de9226d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-bidirectional.pbtxt +++ /dev/null @@ -1,251 +0,0 @@ -path: "tensorflow.keras.layers.Bidirectional" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "constraints" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'layer\', \'merge_mode\', \'weights\', \'backward_layer\'], varargs=None, keywords=kwargs, defaults=[\'concat\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\', \'initial_state\', \'constants\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-category-encoding.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-category-encoding.pbtxt deleted file mode 100644 index dfa0cbabae9..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-category-encoding.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.CategoryEncoding" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_tokens\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'multi_hot\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'count_weights\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-center-crop.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-center-crop.pbtxt deleted file mode 100644 index c4a5aa0e3c9..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-center-crop.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.CenterCrop" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height\', \'width\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-concatenate.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-concatenate.pbtxt deleted file mode 100644 index 229006d485a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-concatenate.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Concatenate" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\'], varargs=None, keywords=kwargs, defaults=[\'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-conv-l-s-t-m1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-conv-l-s-t-m1-d.pbtxt deleted file mode 100644 index 13da3b785c9..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-conv-l-s-t-m1-d.pbtxt +++ /dev/null @@ -1,341 +0,0 @@ -path: "tensorflow.keras.layers.ConvLSTM1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activation" - mtype: "" - } - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "bias_constraint" - mtype: "" - } - member { - name: "bias_initializer" - mtype: "" - } - member { - name: "bias_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "data_format" - mtype: "" - } - member { - name: "dilation_rate" - mtype: "" - } - member { - name: "dropout" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "filters" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "kernel_constraint" - mtype: "" - } - member { - name: "kernel_initializer" - mtype: "" - } - member { - name: "kernel_regularizer" - mtype: "" - } - member { - name: "kernel_size" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "padding" - mtype: "" - } - member { - name: "recurrent_activation" - mtype: "" - } - member { - name: "recurrent_constraint" - mtype: "" - } - member { - name: "recurrent_dropout" - mtype: "" - } - member { - name: "recurrent_initializer" - mtype: "" - } - member { - name: "recurrent_regularizer" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "strides" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "unit_forget_bias" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "use_bias" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'unit_forget_bias\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'dropout\', \'recurrent_dropout\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'1\', \'tanh\', \'hard_sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'True\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'False\', \'False\', \'False\', \'False\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-conv-l-s-t-m2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-conv-l-s-t-m2-d.pbtxt deleted file mode 100644 index 341d73a2cc9..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-conv-l-s-t-m2-d.pbtxt +++ /dev/null @@ -1,341 +0,0 @@ -path: "tensorflow.keras.layers.ConvLSTM2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activation" - mtype: "" - } - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "bias_constraint" - mtype: "" - } - member { - name: "bias_initializer" - mtype: "" - } - member { - name: "bias_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "data_format" - mtype: "" - } - member { - name: "dilation_rate" - mtype: "" - } - member { - name: "dropout" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "filters" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "kernel_constraint" - mtype: "" - } - member { - name: "kernel_initializer" - mtype: "" - } - member { - name: "kernel_regularizer" - mtype: "" - } - member { - name: "kernel_size" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "padding" - mtype: "" - } - member { - name: "recurrent_activation" - mtype: "" - } - member { - name: "recurrent_constraint" - mtype: "" - } - member { - name: "recurrent_dropout" - mtype: "" - } - member { - name: "recurrent_initializer" - mtype: "" - } - member { - name: "recurrent_regularizer" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "strides" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "unit_forget_bias" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "use_bias" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'unit_forget_bias\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'dropout\', \'recurrent_dropout\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\', \'tanh\', \'hard_sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'True\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'False\', \'False\', \'False\', \'False\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-conv-l-s-t-m3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-conv-l-s-t-m3-d.pbtxt deleted file mode 100644 index e6257107a1d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-conv-l-s-t-m3-d.pbtxt +++ /dev/null @@ -1,341 +0,0 @@ -path: "tensorflow.keras.layers.ConvLSTM3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activation" - mtype: "" - } - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "bias_constraint" - mtype: "" - } - member { - name: "bias_initializer" - mtype: "" - } - member { - name: "bias_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "data_format" - mtype: "" - } - member { - name: "dilation_rate" - mtype: "" - } - member { - name: "dropout" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "filters" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "kernel_constraint" - mtype: "" - } - member { - name: "kernel_initializer" - mtype: "" - } - member { - name: "kernel_regularizer" - mtype: "" - } - member { - name: "kernel_size" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "padding" - mtype: "" - } - member { - name: "recurrent_activation" - mtype: "" - } - member { - name: "recurrent_constraint" - mtype: "" - } - member { - name: "recurrent_dropout" - mtype: "" - } - member { - name: "recurrent_initializer" - mtype: "" - } - member { - name: "recurrent_regularizer" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "strides" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "unit_forget_bias" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "use_bias" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'unit_forget_bias\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'dropout\', \'recurrent_dropout\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'(1, 1, 1)\', \'tanh\', \'hard_sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'True\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'False\', \'False\', \'False\', \'False\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-conv1-d-transpose.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-conv1-d-transpose.pbtxt deleted file mode 100644 index 5b3beb8b16d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-conv1-d-transpose.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.Conv1DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'None\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-conv1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-conv1-d.pbtxt deleted file mode 100644 index 5dff50a6f50..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-conv1-d.pbtxt +++ /dev/null @@ -1,247 +0,0 @@ -path: "tensorflow.keras.layers.Conv1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'groups\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'channels_last\', \'1\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-conv2-d-transpose.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-conv2-d-transpose.pbtxt deleted file mode 100644 index 67f03d1ce30..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-conv2-d-transpose.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.Conv2DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'None\', \'(1, 1)\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-conv2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-conv2-d.pbtxt deleted file mode 100644 index 7413b8674af..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-conv2-d.pbtxt +++ /dev/null @@ -1,247 +0,0 @@ -path: "tensorflow.keras.layers.Conv2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'groups\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-conv3-d-transpose.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-conv3-d-transpose.pbtxt deleted file mode 100644 index c66d6ffb327..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-conv3-d-transpose.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.Conv3DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'None\', \'(1, 1, 1)\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-conv3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-conv3-d.pbtxt deleted file mode 100644 index 5c0774f967b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-conv3-d.pbtxt +++ /dev/null @@ -1,247 +0,0 @@ -path: "tensorflow.keras.layers.Conv3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'groups\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'(1, 1, 1)\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-convolution1-d-transpose.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-convolution1-d-transpose.pbtxt deleted file mode 100644 index 7484ce7ebb5..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-convolution1-d-transpose.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.Convolution1DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'None\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-convolution1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-convolution1-d.pbtxt deleted file mode 100644 index 418e5d2b6bd..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-convolution1-d.pbtxt +++ /dev/null @@ -1,247 +0,0 @@ -path: "tensorflow.keras.layers.Convolution1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'groups\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'channels_last\', \'1\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-convolution2-d-transpose.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-convolution2-d-transpose.pbtxt deleted file mode 100644 index dc4369ec905..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-convolution2-d-transpose.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.Convolution2DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'None\', \'(1, 1)\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-convolution2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-convolution2-d.pbtxt deleted file mode 100644 index 47258f5833e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-convolution2-d.pbtxt +++ /dev/null @@ -1,247 +0,0 @@ -path: "tensorflow.keras.layers.Convolution2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'groups\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-convolution3-d-transpose.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-convolution3-d-transpose.pbtxt deleted file mode 100644 index 8219381a59e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-convolution3-d-transpose.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.Convolution3DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'None\', \'(1, 1, 1)\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-convolution3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-convolution3-d.pbtxt deleted file mode 100644 index b334463bb54..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-convolution3-d.pbtxt +++ /dev/null @@ -1,247 +0,0 @@ -path: "tensorflow.keras.layers.Convolution3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'groups\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'(1, 1, 1)\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-cropping1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-cropping1-d.pbtxt deleted file mode 100644 index 1d516ece0c4..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-cropping1-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Cropping1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cropping\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-cropping2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-cropping2-d.pbtxt deleted file mode 100644 index 569ff8d2665..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-cropping2-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Cropping2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cropping\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'((0, 0), (0, 0))\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-cropping3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-cropping3-d.pbtxt deleted file mode 100644 index 0d1f2865f73..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-cropping3-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Cropping3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cropping\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'((1, 1), (1, 1), (1, 1))\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-cu-d-n-n-g-r-u.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-cu-d-n-n-g-r-u.pbtxt deleted file mode 100644 index 1827cda0cf3..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-cu-d-n-n-g-r-u.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.layers.CuDNNGRU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "cell" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\'], varargs=None, keywords=kwargs, defaults=[\'glorot_uniform\', \'orthogonal\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'False\', \'False\', \'False\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-cu-d-n-n-l-s-t-m.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-cu-d-n-n-l-s-t-m.pbtxt deleted file mode 100644 index cdad1bfac32..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-cu-d-n-n-l-s-t-m.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.layers.CuDNNLSTM" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "cell" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'unit_forget_bias\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\'], varargs=None, keywords=kwargs, defaults=[\'glorot_uniform\', \'orthogonal\', \'zeros\', \'True\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'False\', \'False\', \'False\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_losses_for" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-dense-features.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-dense-features.pbtxt deleted file mode 100644 index 4e91e6e6709..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-dense-features.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.DenseFeatures" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'feature_columns\', \'trainable\', \'name\', \'partitioner\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'_\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'features\', \'cols_to_output_tensors\', \'training\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-dense.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-dense.pbtxt deleted file mode 100644 index b29161038bc..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-dense.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Dense" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-depthwise-conv1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-depthwise-conv1-d.pbtxt deleted file mode 100644 index 5d3179479b7..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-depthwise-conv1-d.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.DepthwiseConv1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'kernel_size\', \'strides\', \'padding\', \'depth_multiplier\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'1\', \'None\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-depthwise-conv2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-depthwise-conv2-d.pbtxt deleted file mode 100644 index 42f987270aa..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-depthwise-conv2-d.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.DepthwiseConv2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'kernel_size\', \'strides\', \'padding\', \'depth_multiplier\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'1\', \'None\', \'(1, 1)\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-discretization.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-discretization.pbtxt deleted file mode 100644 index 5563d613800..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-discretization.pbtxt +++ /dev/null @@ -1,267 +0,0 @@ -path: "tensorflow.keras.layers.Discretization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'bin_boundaries\', \'num_bins\', \'epsilon\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'0.01\', \'int\', \'False\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-dot.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-dot.pbtxt deleted file mode 100644 index a43e3ea8e12..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-dot.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Dot" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axes\', \'normalize\'], varargs=None, keywords=kwargs, defaults=[\'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-dropout.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-dropout.pbtxt deleted file mode 100644 index 0c504b38714..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-dropout.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Dropout" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'rate\', \'noise_shape\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-e-l-u.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-e-l-u.pbtxt deleted file mode 100644 index 338f8569be2..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-e-l-u.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ELU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'alpha\'], varargs=None, keywords=kwargs, defaults=[\'1.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-einsum-dense.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-einsum-dense.pbtxt deleted file mode 100644 index 0d878e1b6c7..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-einsum-dense.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.EinsumDense" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'equation\', \'output_shape\', \'activation\', \'bias_axes\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'_\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-embedding.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-embedding.pbtxt deleted file mode 100644 index d0acb29f450..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-embedding.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Embedding" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'input_dim\', \'output_dim\', \'embeddings_initializer\', \'embeddings_regularizer\', \'activity_regularizer\', \'embeddings_constraint\', \'mask_zero\', \'input_length\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'uniform\', \'None\', \'None\', \'None\', \'False\', \'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-flatten.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-flatten.pbtxt deleted file mode 100644 index 26ff207938f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-flatten.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Flatten" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-g-r-u-cell.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-g-r-u-cell.pbtxt deleted file mode 100644 index f6fe569b952..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-g-r-u-cell.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.layers.GRUCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'dropout\', \'recurrent_dropout\', \'reset_after\'], varargs=None, keywords=kwargs, defaults=[\'tanh\', \'hard_sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0.0\', \'0.0\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'states\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_recurrent_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_recurrent_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-g-r-u.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-g-r-u.pbtxt deleted file mode 100644 index a6e6dec7d7b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-g-r-u.pbtxt +++ /dev/null @@ -1,323 +0,0 @@ -path: "tensorflow.keras.layers.GRU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activation" - mtype: "" - } - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "bias_constraint" - mtype: "" - } - member { - name: "bias_initializer" - mtype: "" - } - member { - name: "bias_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dropout" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "implementation" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "kernel_constraint" - mtype: "" - } - member { - name: "kernel_initializer" - mtype: "" - } - member { - name: "kernel_regularizer" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "recurrent_activation" - mtype: "" - } - member { - name: "recurrent_constraint" - mtype: "" - } - member { - name: "recurrent_dropout" - mtype: "" - } - member { - name: "recurrent_initializer" - mtype: "" - } - member { - name: "recurrent_regularizer" - mtype: "" - } - member { - name: "reset_after" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "units" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "use_bias" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'dropout\', \'recurrent_dropout\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'unroll\', \'reset_after\'], varargs=None, keywords=kwargs, defaults=[\'tanh\', \'hard_sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0.0\', \'0.0\', \'False\', \'False\', \'False\', \'False\', \'False\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-gaussian-dropout.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-gaussian-dropout.pbtxt deleted file mode 100644 index cfafd9e73d2..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-gaussian-dropout.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GaussianDropout" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'rate\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-gaussian-noise.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-gaussian-noise.pbtxt deleted file mode 100644 index 03c265aeb58..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-gaussian-noise.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GaussianNoise" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'stddev\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-global-average-pooling1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-global-average-pooling1-d.pbtxt deleted file mode 100644 index aaffbb42402..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-global-average-pooling1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalAveragePooling1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'channels_last\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-global-average-pooling2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-global-average-pooling2-d.pbtxt deleted file mode 100644 index 5a5d6400685..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-global-average-pooling2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalAveragePooling2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-global-average-pooling3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-global-average-pooling3-d.pbtxt deleted file mode 100644 index d211a3a0ac1..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-global-average-pooling3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalAveragePooling3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-global-avg-pool1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-global-avg-pool1-d.pbtxt deleted file mode 100644 index f98c5fe73db..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-global-avg-pool1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalAvgPool1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'channels_last\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-global-avg-pool2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-global-avg-pool2-d.pbtxt deleted file mode 100644 index 93ccb22cc8a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-global-avg-pool2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalAvgPool2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-global-avg-pool3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-global-avg-pool3-d.pbtxt deleted file mode 100644 index f8a2802d8e5..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-global-avg-pool3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalAvgPool3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pool1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pool1-d.pbtxt deleted file mode 100644 index 0c9d82c9946..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pool1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalMaxPool1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'channels_last\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pool2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pool2-d.pbtxt deleted file mode 100644 index 6aa97dfdc59..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pool2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalMaxPool2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pool3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pool3-d.pbtxt deleted file mode 100644 index 80177870bba..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pool3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalMaxPool3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pooling1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pooling1-d.pbtxt deleted file mode 100644 index 8b9a4c6e7c6..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pooling1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalMaxPooling1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'channels_last\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pooling2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pooling2-d.pbtxt deleted file mode 100644 index 8f4bf30b451..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pooling2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalMaxPooling2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pooling3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pooling3-d.pbtxt deleted file mode 100644 index b165d98428f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-global-max-pooling3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalMaxPooling3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-hashing.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-hashing.pbtxt deleted file mode 100644 index ef1b9e56c2b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-hashing.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Hashing" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_bins\', \'mask_value\', \'salt\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'int\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-identity.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-identity.pbtxt deleted file mode 100644 index 3c3e3999658..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-identity.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Identity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'trainable\', \'name\', \'dtype\', \'dynamic\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-input-layer.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-input-layer.pbtxt deleted file mode 100644 index 7564a7f8bc7..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-input-layer.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.InputLayer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'input_shape\', \'batch_size\', \'dtype\', \'input_tensor\', \'sparse\', \'name\', \'ragged\', \'type_spec\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-input-spec.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-input-spec.pbtxt deleted file mode 100644 index 6f146e09d02..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-input-spec.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.layers.InputSpec" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'dtype\', \'shape\', \'ndim\', \'max_ndim\', \'min_ndim\', \'axes\', \'allow_last_axis_squeeze\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'False\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-l-s-t-m-cell.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-l-s-t-m-cell.pbtxt deleted file mode 100644 index b86e2487a1e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-l-s-t-m-cell.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.layers.LSTMCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'unit_forget_bias\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'dropout\', \'recurrent_dropout\'], varargs=None, keywords=kwargs, defaults=[\'tanh\', \'hard_sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'True\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'states\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_recurrent_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_recurrent_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-l-s-t-m.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-l-s-t-m.pbtxt deleted file mode 100644 index 07d70ebe693..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-l-s-t-m.pbtxt +++ /dev/null @@ -1,323 +0,0 @@ -path: "tensorflow.keras.layers.LSTM" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activation" - mtype: "" - } - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "bias_constraint" - mtype: "" - } - member { - name: "bias_initializer" - mtype: "" - } - member { - name: "bias_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dropout" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "implementation" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "kernel_constraint" - mtype: "" - } - member { - name: "kernel_initializer" - mtype: "" - } - member { - name: "kernel_regularizer" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "recurrent_activation" - mtype: "" - } - member { - name: "recurrent_constraint" - mtype: "" - } - member { - name: "recurrent_dropout" - mtype: "" - } - member { - name: "recurrent_initializer" - mtype: "" - } - member { - name: "recurrent_regularizer" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "unit_forget_bias" - mtype: "" - } - member { - name: "units" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "use_bias" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'unit_forget_bias\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'dropout\', \'recurrent_dropout\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'unroll\'], varargs=None, keywords=kwargs, defaults=[\'tanh\', \'hard_sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'True\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0.0\', \'0.0\', \'False\', \'False\', \'False\', \'False\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-lambda.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-lambda.pbtxt deleted file mode 100644 index bb97d088dad..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-lambda.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Lambda" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'function\', \'output_shape\', \'mask\', \'arguments\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-layer-normalization.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-layer-normalization.pbtxt deleted file mode 100644 index 1a81ce6f16e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-layer-normalization.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.LayerNormalization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\', \'epsilon\', \'center\', \'scale\', \'beta_initializer\', \'gamma_initializer\', \'beta_regularizer\', \'gamma_regularizer\', \'beta_constraint\', \'gamma_constraint\'], varargs=None, keywords=kwargs, defaults=[\'-1\', \'0.001\', \'True\', \'True\', \'zeros\', \'ones\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-layer.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-layer.pbtxt deleted file mode 100644 index b50481b62f7..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-layer.pbtxt +++ /dev/null @@ -1,241 +0,0 @@ -path: "tensorflow.keras.layers.Layer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'trainable\', \'name\', \'dtype\', \'dynamic\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-leaky-re-l-u.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-leaky-re-l-u.pbtxt deleted file mode 100644 index 96cc14f91e0..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-leaky-re-l-u.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.LeakyReLU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'alpha\'], varargs=None, keywords=kwargs, defaults=[\'0.3\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-locally-connected1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-locally-connected1-d.pbtxt deleted file mode 100644 index f8b6b11e281..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-locally-connected1-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.LocallyConnected1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'implementation\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-locally-connected2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-locally-connected2-d.pbtxt deleted file mode 100644 index fb34dfb1c8e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-locally-connected2-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.LocallyConnected2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'implementation\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-masking.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-masking.pbtxt deleted file mode 100644 index cb3ac42a4af..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-masking.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Masking" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mask_value\'], varargs=None, keywords=kwargs, defaults=[\'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-max-pool1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-max-pool1-d.pbtxt deleted file mode 100644 index 0d9dc7499d5..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-max-pool1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.MaxPool1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'2\', \'None\', \'valid\', \'channels_last\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-max-pool2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-max-pool2-d.pbtxt deleted file mode 100644 index e1092bf0767..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-max-pool2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.MaxPool2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-max-pool3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-max-pool3-d.pbtxt deleted file mode 100644 index 4696c58634a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-max-pool3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.MaxPool3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-max-pooling1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-max-pooling1-d.pbtxt deleted file mode 100644 index a021d15e361..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-max-pooling1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.MaxPooling1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'2\', \'None\', \'valid\', \'channels_last\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-max-pooling2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-max-pooling2-d.pbtxt deleted file mode 100644 index 8bea460ac28..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-max-pooling2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.MaxPooling2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-max-pooling3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-max-pooling3-d.pbtxt deleted file mode 100644 index 14a7d00de1c..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-max-pooling3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.MaxPooling3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-maximum.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-maximum.pbtxt deleted file mode 100644 index cc8218f7a9d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-maximum.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Maximum" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-minimum.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-minimum.pbtxt deleted file mode 100644 index 709c847a695..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-minimum.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Minimum" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-multi-head-attention.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-multi-head-attention.pbtxt deleted file mode 100644 index 4b8080a1b78..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-multi-head-attention.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.MultiHeadAttention" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_heads\', \'key_dim\', \'value_dim\', \'dropout\', \'use_bias\', \'output_shape\', \'attention_axes\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'0.0\', \'True\', \'None\', \'None\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'query\', \'value\', \'key\', \'attention_mask\', \'return_attention_scores\', \'training\', \'use_causal_mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'False\', \'None\', \'False\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'query_shape\', \'value_shape\', \'key_shape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-multiply.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-multiply.pbtxt deleted file mode 100644 index 3ef05dd0015..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-multiply.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Multiply" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-normalization.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-normalization.pbtxt deleted file mode 100644 index baa8fba13bd..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-normalization.pbtxt +++ /dev/null @@ -1,267 +0,0 @@ -path: "tensorflow.keras.layers.Normalization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\', \'mean\', \'variance\', \'invert\'], varargs=None, keywords=kwargs, defaults=[\'-1\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-p-re-l-u.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-p-re-l-u.pbtxt deleted file mode 100644 index 899af13f336..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-p-re-l-u.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.PReLU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'alpha_initializer\', \'alpha_regularizer\', \'alpha_constraint\', \'shared_axes\'], varargs=None, keywords=kwargs, defaults=[\'zeros\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-permute.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-permute.pbtxt deleted file mode 100644 index e08c6381543..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-permute.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Permute" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'dims\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-r-n-n.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-r-n-n.pbtxt deleted file mode 100644 index 4dc7b8c6031..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-r-n-n.pbtxt +++ /dev/null @@ -1,254 +0,0 @@ -path: "tensorflow.keras.layers.RNN" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cell\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'unroll\', \'time_major\'], varargs=None, keywords=kwargs, defaults=[\'False\', \'False\', \'False\', \'False\', \'False\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\', \'constants\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-re-l-u.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-re-l-u.pbtxt deleted file mode 100644 index 831131154f9..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-re-l-u.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ReLU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'max_value\', \'negative_slope\', \'threshold\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-repeat-vector.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-repeat-vector.pbtxt deleted file mode 100644 index a401a54ae02..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-repeat-vector.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.RepeatVector" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'n\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-rescaling.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-rescaling.pbtxt deleted file mode 100644 index 2b52e5fa301..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-rescaling.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Rescaling" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'scale\', \'offset\'], varargs=None, keywords=kwargs, defaults=[\'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-reshape.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-reshape.pbtxt deleted file mode 100644 index 8af2743e906..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-reshape.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Reshape" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'target_shape\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-resizing.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-resizing.pbtxt deleted file mode 100644 index f04ecffd3a1..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-resizing.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Resizing" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height\', \'width\', \'interpolation\', \'crop_to_aspect_ratio\'], varargs=None, keywords=kwargs, defaults=[\'bilinear\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-separable-conv1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-separable-conv1-d.pbtxt deleted file mode 100644 index 6922c591005..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-separable-conv1-d.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.SeparableConv1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'depth_multiplier\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'pointwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'pointwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'pointwise_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'1\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-separable-conv2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-separable-conv2-d.pbtxt deleted file mode 100644 index b4d94323999..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-separable-conv2-d.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.SeparableConv2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'depth_multiplier\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'pointwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'pointwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'pointwise_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-separable-convolution1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-separable-convolution1-d.pbtxt deleted file mode 100644 index d21d6693bcc..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-separable-convolution1-d.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.SeparableConvolution1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'depth_multiplier\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'pointwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'pointwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'pointwise_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'1\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-separable-convolution2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-separable-convolution2-d.pbtxt deleted file mode 100644 index 312c27f69b3..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-separable-convolution2-d.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.SeparableConvolution2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'depth_multiplier\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'pointwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'pointwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'pointwise_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-simple-r-n-n-cell.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-simple-r-n-n-cell.pbtxt deleted file mode 100644 index 20da793c2a3..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-simple-r-n-n-cell.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.layers.SimpleRNNCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'dropout\', \'recurrent_dropout\'], varargs=None, keywords=kwargs, defaults=[\'tanh\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'states\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_recurrent_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_recurrent_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-simple-r-n-n.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-simple-r-n-n.pbtxt deleted file mode 100644 index 60a8f517240..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-simple-r-n-n.pbtxt +++ /dev/null @@ -1,311 +0,0 @@ -path: "tensorflow.keras.layers.SimpleRNN" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activation" - mtype: "" - } - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "bias_constraint" - mtype: "" - } - member { - name: "bias_initializer" - mtype: "" - } - member { - name: "bias_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dropout" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "kernel_constraint" - mtype: "" - } - member { - name: "kernel_initializer" - mtype: "" - } - member { - name: "kernel_regularizer" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "recurrent_constraint" - mtype: "" - } - member { - name: "recurrent_dropout" - mtype: "" - } - member { - name: "recurrent_initializer" - mtype: "" - } - member { - name: "recurrent_regularizer" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "units" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "use_bias" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'dropout\', \'recurrent_dropout\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'unroll\'], varargs=None, keywords=kwargs, defaults=[\'tanh\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0.0\', \'0.0\', \'False\', \'False\', \'False\', \'False\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-softmax.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-softmax.pbtxt deleted file mode 100644 index e8e05a00ece..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-softmax.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Softmax" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\'], varargs=None, keywords=kwargs, defaults=[\'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-spatial-dropout1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-spatial-dropout1-d.pbtxt deleted file mode 100644 index 0f926be02b9..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-spatial-dropout1-d.pbtxt +++ /dev/null @@ -1,244 +0,0 @@ -path: "tensorflow.keras.layers.SpatialDropout1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'rate\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-spatial-dropout2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-spatial-dropout2-d.pbtxt deleted file mode 100644 index 1bb81438fca..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-spatial-dropout2-d.pbtxt +++ /dev/null @@ -1,244 +0,0 @@ -path: "tensorflow.keras.layers.SpatialDropout2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'rate\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-spatial-dropout3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-spatial-dropout3-d.pbtxt deleted file mode 100644 index f31ec33f7cf..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-spatial-dropout3-d.pbtxt +++ /dev/null @@ -1,244 +0,0 @@ -path: "tensorflow.keras.layers.SpatialDropout3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'rate\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-stacked-r-n-n-cells.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-stacked-r-n-n-cells.pbtxt deleted file mode 100644 index 747de047f96..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-stacked-r-n-n-cells.pbtxt +++ /dev/null @@ -1,254 +0,0 @@ -path: "tensorflow.keras.layers.StackedRNNCells" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "output_size" - mtype: "" - } - member { - name: "state_size" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cells\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'states\', \'constants\', \'training\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-subtract.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-subtract.pbtxt deleted file mode 100644 index d6bba621d77..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-subtract.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Subtract" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-thresholded-re-l-u.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-thresholded-re-l-u.pbtxt deleted file mode 100644 index 835f784b295..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-thresholded-re-l-u.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ThresholdedReLU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'theta\'], varargs=None, keywords=kwargs, defaults=[\'1.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-time-distributed.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-time-distributed.pbtxt deleted file mode 100644 index 814d7168679..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-time-distributed.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.TimeDistributed" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'layer\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-up-sampling1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-up-sampling1-d.pbtxt deleted file mode 100644 index ff61b890cee..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-up-sampling1-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.UpSampling1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'size\'], varargs=None, keywords=kwargs, defaults=[\'2\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-up-sampling2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-up-sampling2-d.pbtxt deleted file mode 100644 index 383e2896751..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-up-sampling2-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.UpSampling2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'size\', \'data_format\', \'interpolation\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2)\', \'None\', \'nearest\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-up-sampling3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-up-sampling3-d.pbtxt deleted file mode 100644 index b2a2d89c174..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-up-sampling3-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.UpSampling3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'size\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2, 2)\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-wrapper.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-wrapper.pbtxt deleted file mode 100644 index 149f9e61613..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-wrapper.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Wrapper" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'layer\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-zero-padding1-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-zero-padding1-d.pbtxt deleted file mode 100644 index 2ef8d53b694..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-zero-padding1-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ZeroPadding1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'padding\'], varargs=None, keywords=kwargs, defaults=[\'1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-zero-padding2-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-zero-padding2-d.pbtxt deleted file mode 100644 index 5f5c510ec23..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-zero-padding2-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ZeroPadding2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.-zero-padding3-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.-zero-padding3-d.pbtxt deleted file mode 100644 index 03fc8519bb0..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.-zero-padding3-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ZeroPadding3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.experimental.-einsum-dense.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.experimental.-einsum-dense.pbtxt deleted file mode 100644 index 0da8e034e5a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.experimental.-einsum-dense.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.EinsumDense" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'equation\', \'output_shape\', \'activation\', \'bias_axes\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'_\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.experimental.-random-fourier-features.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.experimental.-random-fourier-features.pbtxt deleted file mode 100644 index fb529f555a8..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.experimental.-random-fourier-features.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.RandomFourierFeatures" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'output_dim\', \'kernel_initializer\', \'scale\', \'trainable\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'gaussian\', \'None\', \'False\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.experimental.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.experimental.pbtxt deleted file mode 100644 index 81d2acbd71f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.experimental.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.layers.experimental" -tf_module { - member { - name: "EinsumDense" - mtype: "" - } - member { - name: "RandomFourierFeatures" - mtype: "" - } - member { - name: "preprocessing" - mtype: "" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-category-encoding.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-category-encoding.pbtxt deleted file mode 100644 index a741778c72d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-category-encoding.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.CategoryEncoding" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_tokens\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'multi_hot\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'count_weights\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-center-crop.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-center-crop.pbtxt deleted file mode 100644 index b2b7d584a5f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-center-crop.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.CenterCrop" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height\', \'width\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-discretization.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-discretization.pbtxt deleted file mode 100644 index f61c4f82c5b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-discretization.pbtxt +++ /dev/null @@ -1,267 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.Discretization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'bin_boundaries\', \'num_bins\', \'epsilon\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'0.01\', \'int\', \'False\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-hashing.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-hashing.pbtxt deleted file mode 100644 index a608049a6d8..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-hashing.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.Hashing" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_bins\', \'mask_value\', \'salt\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'int\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-normalization.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-normalization.pbtxt deleted file mode 100644 index e6f797f6341..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-normalization.pbtxt +++ /dev/null @@ -1,267 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.Normalization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\', \'mean\', \'variance\', \'invert\'], varargs=None, keywords=kwargs, defaults=[\'-1\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-preprocessing-layer.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-preprocessing-layer.pbtxt deleted file mode 100644 index 942ce222c3e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-preprocessing-layer.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.PreprocessingLayer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-rescaling.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-rescaling.pbtxt deleted file mode 100644 index fdbab246741..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-rescaling.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.Rescaling" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'scale\', \'offset\'], varargs=None, keywords=kwargs, defaults=[\'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-resizing.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-resizing.pbtxt deleted file mode 100644 index c11fb59691f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.-resizing.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.Resizing" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height\', \'width\', \'interpolation\', \'crop_to_aspect_ratio\'], varargs=None, keywords=kwargs, defaults=[\'bilinear\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.pbtxt deleted file mode 100644 index a624e03a4d9..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.experimental.preprocessing.pbtxt +++ /dev/null @@ -1,35 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing" -tf_module { - member { - name: "CategoryEncoding" - mtype: "" - } - member { - name: "CenterCrop" - mtype: "" - } - member { - name: "Discretization" - mtype: "" - } - member { - name: "Hashing" - mtype: "" - } - member { - name: "Normalization" - mtype: "" - } - member { - name: "PreprocessingLayer" - mtype: "" - } - member { - name: "Rescaling" - mtype: "" - } - member { - name: "Resizing" - mtype: "" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.layers.pbtxt b/keras/api/golden/v1/tensorflow.keras.layers.pbtxt deleted file mode 100644 index 6ae37c06b75..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.layers.pbtxt +++ /dev/null @@ -1,535 +0,0 @@ -path: "tensorflow.keras.layers" -tf_module { - member { - name: "AbstractRNNCell" - mtype: "" - } - member { - name: "Activation" - mtype: "" - } - member { - name: "ActivityRegularization" - mtype: "" - } - member { - name: "Add" - mtype: "" - } - member { - name: "AdditiveAttention" - mtype: "" - } - member { - name: "AlphaDropout" - mtype: "" - } - member { - name: "Attention" - mtype: "" - } - member { - name: "Average" - mtype: "" - } - member { - name: "AveragePooling1D" - mtype: "" - } - member { - name: "AveragePooling2D" - mtype: "" - } - member { - name: "AveragePooling3D" - mtype: "" - } - member { - name: "AvgPool1D" - mtype: "" - } - member { - name: "AvgPool2D" - mtype: "" - } - member { - name: "AvgPool3D" - mtype: "" - } - member { - name: "BatchNormalization" - mtype: "" - } - member { - name: "Bidirectional" - mtype: "" - } - member { - name: "CategoryEncoding" - mtype: "" - } - member { - name: "CenterCrop" - mtype: "" - } - member { - name: "Concatenate" - mtype: "" - } - member { - name: "Conv1D" - mtype: "" - } - member { - name: "Conv1DTranspose" - mtype: "" - } - member { - name: "Conv2D" - mtype: "" - } - member { - name: "Conv2DTranspose" - mtype: "" - } - member { - name: "Conv3D" - mtype: "" - } - member { - name: "Conv3DTranspose" - mtype: "" - } - member { - name: "ConvLSTM1D" - mtype: "" - } - member { - name: "ConvLSTM2D" - mtype: "" - } - member { - name: "ConvLSTM3D" - mtype: "" - } - member { - name: "Convolution1D" - mtype: "" - } - member { - name: "Convolution1DTranspose" - mtype: "" - } - member { - name: "Convolution2D" - mtype: "" - } - member { - name: "Convolution2DTranspose" - mtype: "" - } - member { - name: "Convolution3D" - mtype: "" - } - member { - name: "Convolution3DTranspose" - mtype: "" - } - member { - name: "Cropping1D" - mtype: "" - } - member { - name: "Cropping2D" - mtype: "" - } - member { - name: "Cropping3D" - mtype: "" - } - member { - name: "CuDNNGRU" - mtype: "" - } - member { - name: "CuDNNLSTM" - mtype: "" - } - member { - name: "Dense" - mtype: "" - } - member { - name: "DenseFeatures" - mtype: "" - } - member { - name: "DepthwiseConv1D" - mtype: "" - } - member { - name: "DepthwiseConv2D" - mtype: "" - } - member { - name: "Discretization" - mtype: "" - } - member { - name: "Dot" - mtype: "" - } - member { - name: "Dropout" - mtype: "" - } - member { - name: "ELU" - mtype: "" - } - member { - name: "EinsumDense" - mtype: "" - } - member { - name: "Embedding" - mtype: "" - } - member { - name: "Flatten" - mtype: "" - } - member { - name: "GRU" - mtype: "" - } - member { - name: "GRUCell" - mtype: "" - } - member { - name: "GaussianDropout" - mtype: "" - } - member { - name: "GaussianNoise" - mtype: "" - } - member { - name: "GlobalAveragePooling1D" - mtype: "" - } - member { - name: "GlobalAveragePooling2D" - mtype: "" - } - member { - name: "GlobalAveragePooling3D" - mtype: "" - } - member { - name: "GlobalAvgPool1D" - mtype: "" - } - member { - name: "GlobalAvgPool2D" - mtype: "" - } - member { - name: "GlobalAvgPool3D" - mtype: "" - } - member { - name: "GlobalMaxPool1D" - mtype: "" - } - member { - name: "GlobalMaxPool2D" - mtype: "" - } - member { - name: "GlobalMaxPool3D" - mtype: "" - } - member { - name: "GlobalMaxPooling1D" - mtype: "" - } - member { - name: "GlobalMaxPooling2D" - mtype: "" - } - member { - name: "GlobalMaxPooling3D" - mtype: "" - } - member { - name: "Hashing" - mtype: "" - } - member { - name: "Identity" - mtype: "" - } - member { - name: "InputLayer" - mtype: "" - } - member { - name: "InputSpec" - mtype: "" - } - member { - name: "LSTM" - mtype: "" - } - member { - name: "LSTMCell" - mtype: "" - } - member { - name: "Lambda" - mtype: "" - } - member { - name: "Layer" - mtype: "" - } - member { - name: "LayerNormalization" - mtype: "" - } - member { - name: "LeakyReLU" - mtype: "" - } - member { - name: "LocallyConnected1D" - mtype: "" - } - member { - name: "LocallyConnected2D" - mtype: "" - } - member { - name: "Masking" - mtype: "" - } - member { - name: "MaxPool1D" - mtype: "" - } - member { - name: "MaxPool2D" - mtype: "" - } - member { - name: "MaxPool3D" - mtype: "" - } - member { - name: "MaxPooling1D" - mtype: "" - } - member { - name: "MaxPooling2D" - mtype: "" - } - member { - name: "MaxPooling3D" - mtype: "" - } - member { - name: "Maximum" - mtype: "" - } - member { - name: "Minimum" - mtype: "" - } - member { - name: "MultiHeadAttention" - mtype: "" - } - member { - name: "Multiply" - mtype: "" - } - member { - name: "Normalization" - mtype: "" - } - member { - name: "PReLU" - mtype: "" - } - member { - name: "Permute" - mtype: "" - } - member { - name: "RNN" - mtype: "" - } - member { - name: "ReLU" - mtype: "" - } - member { - name: "RepeatVector" - mtype: "" - } - member { - name: "Rescaling" - mtype: "" - } - member { - name: "Reshape" - mtype: "" - } - member { - name: "Resizing" - mtype: "" - } - member { - name: "SeparableConv1D" - mtype: "" - } - member { - name: "SeparableConv2D" - mtype: "" - } - member { - name: "SeparableConvolution1D" - mtype: "" - } - member { - name: "SeparableConvolution2D" - mtype: "" - } - member { - name: "SimpleRNN" - mtype: "" - } - member { - name: "SimpleRNNCell" - mtype: "" - } - member { - name: "Softmax" - mtype: "" - } - member { - name: "SpatialDropout1D" - mtype: "" - } - member { - name: "SpatialDropout2D" - mtype: "" - } - member { - name: "SpatialDropout3D" - mtype: "" - } - member { - name: "StackedRNNCells" - mtype: "" - } - member { - name: "Subtract" - mtype: "" - } - member { - name: "ThresholdedReLU" - mtype: "" - } - member { - name: "TimeDistributed" - mtype: "" - } - member { - name: "UpSampling1D" - mtype: "" - } - member { - name: "UpSampling2D" - mtype: "" - } - member { - name: "UpSampling3D" - mtype: "" - } - member { - name: "Wrapper" - mtype: "" - } - member { - name: "ZeroPadding1D" - mtype: "" - } - member { - name: "ZeroPadding2D" - mtype: "" - } - member { - name: "ZeroPadding3D" - mtype: "" - } - member { - name: "experimental" - mtype: "" - } - member_method { - name: "Input" - argspec: "args=[\'shape\', \'batch_size\', \'name\', \'dtype\', \'sparse\', \'tensor\', \'ragged\', \'type_spec\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add" - argspec: "args=[\'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "average" - argspec: "args=[\'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "concatenate" - argspec: "args=[\'inputs\', \'axis\'], varargs=None, keywords=kwargs, defaults=[\'-1\'], " - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "disable_v2_dtype_behavior" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "dot" - argspec: "args=[\'inputs\', \'axes\', \'normalize\'], varargs=None, keywords=kwargs, defaults=[\'False\'], " - } - member_method { - name: "enable_v2_dtype_behavior" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "maximum" - argspec: "args=[\'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "minimum" - argspec: "args=[\'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "multiply" - argspec: "args=[\'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'layer\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "subtract" - argspec: "args=[\'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-binary-crossentropy.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-binary-crossentropy.pbtxt deleted file mode 100644 index 9affaaf6ed0..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-binary-crossentropy.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.BinaryCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'from_logits\', \'label_smoothing\', \'axis\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'0.0\', \'-1\', \'auto\', \'binary_crossentropy\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-binary-focal-crossentropy.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-binary-focal-crossentropy.pbtxt deleted file mode 100644 index ac49b8fc870..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-binary-focal-crossentropy.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.BinaryFocalCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'apply_class_balancing\', \'alpha\', \'gamma\', \'from_logits\', \'label_smoothing\', \'axis\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'0.25\', \'2.0\', \'False\', \'0.0\', \'-1\', \'auto\', \'binary_focal_crossentropy\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-categorical-crossentropy.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-categorical-crossentropy.pbtxt deleted file mode 100644 index 7a50f8b0e05..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-categorical-crossentropy.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.CategoricalCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'from_logits\', \'label_smoothing\', \'axis\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'0.0\', \'-1\', \'auto\', \'categorical_crossentropy\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-categorical-focal-crossentropy.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-categorical-focal-crossentropy.pbtxt deleted file mode 100644 index f06b44ec876..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-categorical-focal-crossentropy.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.CategoricalFocalCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'alpha\', \'gamma\', \'from_logits\', \'label_smoothing\', \'axis\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'0.25\', \'2.0\', \'False\', \'0.0\', \'-1\', \'auto\', \'categorical_focal_crossentropy\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-categorical-hinge.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-categorical-hinge.pbtxt deleted file mode 100644 index fc23af9c5b7..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-categorical-hinge.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.CategoricalHinge" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'categorical_hinge\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-cosine-similarity.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-cosine-similarity.pbtxt deleted file mode 100644 index 7bd4ab61c50..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-cosine-similarity.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.CosineSimilarity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'-1\', \'auto\', \'cosine_similarity\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-hinge.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-hinge.pbtxt deleted file mode 100644 index a154c2a2964..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-hinge.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.Hinge" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'hinge\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-huber.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-huber.pbtxt deleted file mode 100644 index b9da506b5ce..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-huber.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.Huber" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'delta\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'1.0\', \'auto\', \'huber_loss\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-k-l-divergence.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-k-l-divergence.pbtxt deleted file mode 100644 index b16a275a919..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-k-l-divergence.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.KLDivergence" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'kl_divergence\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-log-cosh.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-log-cosh.pbtxt deleted file mode 100644 index 97253a93e3c..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-log-cosh.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.LogCosh" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'log_cosh\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-loss.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-loss.pbtxt deleted file mode 100644 index f6e062b1460..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-loss.pbtxt +++ /dev/null @@ -1,21 +0,0 @@ -path: "tensorflow.keras.losses.Loss" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'None\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-mean-absolute-error.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-mean-absolute-error.pbtxt deleted file mode 100644 index 91dab6787d8..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-mean-absolute-error.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.MeanAbsoluteError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'mean_absolute_error\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-mean-absolute-percentage-error.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-mean-absolute-percentage-error.pbtxt deleted file mode 100644 index f4c1b5cf022..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-mean-absolute-percentage-error.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.MeanAbsolutePercentageError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'mean_absolute_percentage_error\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-mean-squared-error.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-mean-squared-error.pbtxt deleted file mode 100644 index 815bddaf39b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-mean-squared-error.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.MeanSquaredError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'mean_squared_error\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-mean-squared-logarithmic-error.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-mean-squared-logarithmic-error.pbtxt deleted file mode 100644 index d08388055fd..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-mean-squared-logarithmic-error.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.MeanSquaredLogarithmicError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'mean_squared_logarithmic_error\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-poisson.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-poisson.pbtxt deleted file mode 100644 index 5313398aad1..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-poisson.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.Poisson" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'poisson\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-sparse-categorical-crossentropy.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-sparse-categorical-crossentropy.pbtxt deleted file mode 100644 index 389b05c75d5..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-sparse-categorical-crossentropy.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.SparseCategoricalCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'from_logits\', \'ignore_class\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'None\', \'auto\', \'sparse_categorical_crossentropy\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.-squared-hinge.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.-squared-hinge.pbtxt deleted file mode 100644 index 3f2cf2c5b13..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.-squared-hinge.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.SquaredHinge" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'squared_hinge\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.losses.pbtxt b/keras/api/golden/v1/tensorflow.keras.losses.pbtxt deleted file mode 100644 index 2b628cdc794..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.losses.pbtxt +++ /dev/null @@ -1,207 +0,0 @@ -path: "tensorflow.keras.losses" -tf_module { - member { - name: "BinaryCrossentropy" - mtype: "" - } - member { - name: "BinaryFocalCrossentropy" - mtype: "" - } - member { - name: "CategoricalCrossentropy" - mtype: "" - } - member { - name: "CategoricalFocalCrossentropy" - mtype: "" - } - member { - name: "CategoricalHinge" - mtype: "" - } - member { - name: "CosineSimilarity" - mtype: "" - } - member { - name: "Hinge" - mtype: "" - } - member { - name: "Huber" - mtype: "" - } - member { - name: "KLDivergence" - mtype: "" - } - member { - name: "LogCosh" - mtype: "" - } - member { - name: "Loss" - mtype: "" - } - member { - name: "MeanAbsoluteError" - mtype: "" - } - member { - name: "MeanAbsolutePercentageError" - mtype: "" - } - member { - name: "MeanSquaredError" - mtype: "" - } - member { - name: "MeanSquaredLogarithmicError" - mtype: "" - } - member { - name: "Poisson" - mtype: "" - } - member { - name: "SparseCategoricalCrossentropy" - mtype: "" - } - member { - name: "SquaredHinge" - mtype: "" - } - member_method { - name: "KLD" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MAE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MAPE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MSE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MSLE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "binary_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "binary_focal_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'apply_class_balancing\', \'alpha\', \'gamma\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'0.25\', \'2.0\', \'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "categorical_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "categorical_focal_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'alpha\', \'gamma\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'0.25\', \'2.0\', \'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "categorical_hinge" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "cosine" - argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "cosine_proximity" - argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "cosine_similarity" - argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "deserialize" - argspec: "args=[\'name\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "hinge" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "kl_divergence" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "kld" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "kullback_leibler_divergence" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "log_cosh" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "logcosh" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mae" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mape" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_absolute_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_absolute_percentage_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_squared_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_squared_logarithmic_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mse" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "msle" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "poisson" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'loss\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "sparse_categorical_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'axis\', \'ignore_class\'], varargs=None, keywords=None, defaults=[\'False\', \'-1\', \'None\'], " - } - member_method { - name: "squared_hinge" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-a-u-c.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-a-u-c.pbtxt deleted file mode 100644 index 171da23f3bc..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-a-u-c.pbtxt +++ /dev/null @@ -1,271 +0,0 @@ -path: "tensorflow.keras.metrics.AUC" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "thresholds" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_thresholds\', \'curve\', \'summation_method\', \'name\', \'dtype\', \'thresholds\', \'multi_label\', \'num_labels\', \'label_weights\', \'from_logits\'], varargs=None, keywords=None, defaults=[\'200\', \'ROC\', \'interpolation\', \'None\', \'None\', \'None\', \'False\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "interpolate_pr_auc" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-accuracy.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-accuracy.pbtxt deleted file mode 100644 index 863b948441e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-accuracy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.Accuracy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'accuracy\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-binary-accuracy.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-binary-accuracy.pbtxt deleted file mode 100644 index 4b8759cf762..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-binary-accuracy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.BinaryAccuracy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\', \'threshold\'], varargs=None, keywords=None, defaults=[\'binary_accuracy\', \'None\', \'0.5\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-binary-crossentropy.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-binary-crossentropy.pbtxt deleted file mode 100644 index 16228d4229f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-binary-crossentropy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.BinaryCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\', \'from_logits\', \'label_smoothing\'], varargs=None, keywords=None, defaults=[\'binary_crossentropy\', \'None\', \'False\', \'0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-binary-io-u.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-binary-io-u.pbtxt deleted file mode 100644 index 49e4ac2946e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-binary-io-u.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.metrics.BinaryIoU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'target_class_ids\', \'threshold\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'(0, 1)\', \'0.5\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-categorical-accuracy.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-categorical-accuracy.pbtxt deleted file mode 100644 index c56abceaeb1..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-categorical-accuracy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.CategoricalAccuracy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'categorical_accuracy\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-categorical-crossentropy.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-categorical-crossentropy.pbtxt deleted file mode 100644 index 92d50ec7a5f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-categorical-crossentropy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.CategoricalCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'categorical_crossentropy\', \'None\', \'False\', \'0\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-categorical-hinge.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-categorical-hinge.pbtxt deleted file mode 100644 index f4386171e6f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-categorical-hinge.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.CategoricalHinge" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'categorical_hinge\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-cosine-similarity.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-cosine-similarity.pbtxt deleted file mode 100644 index 221cbe34edd..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-cosine-similarity.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.CosineSimilarity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\', \'axis\'], varargs=None, keywords=None, defaults=[\'cosine_similarity\', \'None\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-f-beta-score.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-f-beta-score.pbtxt deleted file mode 100644 index 37847a1f933..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-f-beta-score.pbtxt +++ /dev/null @@ -1,263 +0,0 @@ -path: "tensorflow.keras.metrics.FBetaScore" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'average\', \'beta\', \'threshold\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'1.0\', \'None\', \'fbeta_score\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'y_true_shape\', \'y_pred_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-f1-score.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-f1-score.pbtxt deleted file mode 100644 index 56d233b0b5f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-f1-score.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.F1Score" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'average\', \'threshold\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'f1_score\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'y_true_shape\', \'y_pred_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-false-negatives.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-false-negatives.pbtxt deleted file mode 100644 index 12518c046e4..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-false-negatives.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.FalseNegatives" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-false-positives.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-false-positives.pbtxt deleted file mode 100644 index d3a260bc7f5..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-false-positives.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.FalsePositives" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-hinge.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-hinge.pbtxt deleted file mode 100644 index c01adca8b43..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-hinge.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.Hinge" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'hinge\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-io-u.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-io-u.pbtxt deleted file mode 100644 index 3b3e4ed1e70..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-io-u.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.IoU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_classes\', \'target_class_ids\', \'name\', \'dtype\', \'ignore_class\', \'sparse_y_true\', \'sparse_y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'True\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-k-l-divergence.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-k-l-divergence.pbtxt deleted file mode 100644 index 8fe4028c968..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-k-l-divergence.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.KLDivergence" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'kullback_leibler_divergence\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-log-cosh-error.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-log-cosh-error.pbtxt deleted file mode 100644 index 862a2c127f6..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-log-cosh-error.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.LogCoshError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'logcosh\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-absolute-error.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-mean-absolute-error.pbtxt deleted file mode 100644 index 4db04735810..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-absolute-error.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.MeanAbsoluteError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'mean_absolute_error\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-absolute-percentage-error.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-mean-absolute-percentage-error.pbtxt deleted file mode 100644 index c1a4285ba95..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-absolute-percentage-error.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.MeanAbsolutePercentageError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'mean_absolute_percentage_error\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-io-u.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-mean-io-u.pbtxt deleted file mode 100644 index eb8b2c471f4..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-io-u.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.metrics.MeanIoU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_classes\', \'name\', \'dtype\', \'ignore_class\', \'sparse_y_true\', \'sparse_y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'True\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-metric-wrapper.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-mean-metric-wrapper.pbtxt deleted file mode 100644 index d84345e14e3..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-metric-wrapper.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.metrics.MeanMetricWrapper" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'fn\', \'name\', \'dtype\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-relative-error.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-mean-relative-error.pbtxt deleted file mode 100644 index 697c4e0bb74..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-relative-error.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.metrics.MeanRelativeError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'normalizer\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-squared-error.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-mean-squared-error.pbtxt deleted file mode 100644 index ceb5282f074..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-squared-error.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.MeanSquaredError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'mean_squared_error\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-squared-logarithmic-error.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-mean-squared-logarithmic-error.pbtxt deleted file mode 100644 index 2d5cf64c2c3..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-squared-logarithmic-error.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.MeanSquaredLogarithmicError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'mean_squared_logarithmic_error\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-tensor.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-mean-tensor.pbtxt deleted file mode 100644 index 6e8ba1767c9..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-mean-tensor.pbtxt +++ /dev/null @@ -1,271 +0,0 @@ -path: "tensorflow.keras.metrics.MeanTensor" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "count" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "total" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\', \'shape\'], varargs=None, keywords=None, defaults=[\'mean_tensor\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'values\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-mean.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-mean.pbtxt deleted file mode 100644 index c31d49e14b7..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-mean.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.Mean" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'mean\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'values\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-metric.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-metric.pbtxt deleted file mode 100644 index 916ae93096e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-metric.pbtxt +++ /dev/null @@ -1,262 +0,0 @@ -path: "tensorflow.keras.metrics.Metric" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-one-hot-io-u.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-one-hot-io-u.pbtxt deleted file mode 100644 index 23fd50224c5..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-one-hot-io-u.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.metrics.OneHotIoU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_classes\', \'target_class_ids\', \'name\', \'dtype\', \'ignore_class\', \'sparse_y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-one-hot-mean-io-u.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-one-hot-mean-io-u.pbtxt deleted file mode 100644 index 98b63a62da9..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-one-hot-mean-io-u.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.OneHotMeanIoU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_classes\', \'name\', \'dtype\', \'ignore_class\', \'sparse_y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-poisson.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-poisson.pbtxt deleted file mode 100644 index 1d5f8c6efcb..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-poisson.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.Poisson" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'poisson\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-precision-at-recall.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-precision-at-recall.pbtxt deleted file mode 100644 index 21f1c36bdc1..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-precision-at-recall.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.PrecisionAtRecall" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'recall\', \'num_thresholds\', \'class_id\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-precision.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-precision.pbtxt deleted file mode 100644 index d9c49540edc..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-precision.pbtxt +++ /dev/null @@ -1,263 +0,0 @@ -path: "tensorflow.keras.metrics.Precision" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'thresholds\', \'top_k\', \'class_id\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-r2-score.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-r2-score.pbtxt deleted file mode 100644 index 1e76ffb29ad..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-r2-score.pbtxt +++ /dev/null @@ -1,263 +0,0 @@ -path: "tensorflow.keras.metrics.R2Score" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'class_aggregation\', \'num_regressors\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'uniform_average\', \'0\', \'r2_score\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'y_true_shape\', \'y_pred_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-recall-at-precision.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-recall-at-precision.pbtxt deleted file mode 100644 index 5aa668718b0..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-recall-at-precision.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.RecallAtPrecision" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'precision\', \'num_thresholds\', \'class_id\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-recall.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-recall.pbtxt deleted file mode 100644 index e7c4864a1bb..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-recall.pbtxt +++ /dev/null @@ -1,263 +0,0 @@ -path: "tensorflow.keras.metrics.Recall" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'thresholds\', \'top_k\', \'class_id\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-root-mean-squared-error.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-root-mean-squared-error.pbtxt deleted file mode 100644 index 64671f63b4c..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-root-mean-squared-error.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.metrics.RootMeanSquaredError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'root_mean_squared_error\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-sensitivity-at-specificity.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-sensitivity-at-specificity.pbtxt deleted file mode 100644 index 9b35e4f1419..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-sensitivity-at-specificity.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.SensitivityAtSpecificity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'specificity\', \'num_thresholds\', \'class_id\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-sparse-categorical-accuracy.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-sparse-categorical-accuracy.pbtxt deleted file mode 100644 index d960b99eccb..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-sparse-categorical-accuracy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.SparseCategoricalAccuracy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'sparse_categorical_accuracy\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-sparse-categorical-crossentropy.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-sparse-categorical-crossentropy.pbtxt deleted file mode 100644 index c5bd4c6f59d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-sparse-categorical-crossentropy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.SparseCategoricalCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\', \'from_logits\', \'ignore_class\', \'axis\'], varargs=None, keywords=None, defaults=[\'sparse_categorical_crossentropy\', \'None\', \'False\', \'None\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-sparse-top-k-categorical-accuracy.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-sparse-top-k-categorical-accuracy.pbtxt deleted file mode 100644 index 069a3e3b272..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-sparse-top-k-categorical-accuracy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.SparseTopKCategoricalAccuracy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'k\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'5\', \'sparse_top_k_categorical_accuracy\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-specificity-at-sensitivity.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-specificity-at-sensitivity.pbtxt deleted file mode 100644 index 9f42d1f0b3c..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-specificity-at-sensitivity.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.SpecificityAtSensitivity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'sensitivity\', \'num_thresholds\', \'class_id\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-squared-hinge.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-squared-hinge.pbtxt deleted file mode 100644 index 83437f33225..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-squared-hinge.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.SquaredHinge" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'squared_hinge\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-sum.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-sum.pbtxt deleted file mode 100644 index 6cb46d1f93e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-sum.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.Sum" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'sum\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'values\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-top-k-categorical-accuracy.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-top-k-categorical-accuracy.pbtxt deleted file mode 100644 index 6355e88e185..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-top-k-categorical-accuracy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.TopKCategoricalAccuracy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'k\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'5\', \'top_k_categorical_accuracy\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-true-negatives.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-true-negatives.pbtxt deleted file mode 100644 index 95bc523abd0..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-true-negatives.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.TrueNegatives" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.-true-positives.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.-true-positives.pbtxt deleted file mode 100644 index 863fb291187..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.-true-positives.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.TruePositives" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.metrics.pbtxt b/keras/api/golden/v1/tensorflow.keras.metrics.pbtxt deleted file mode 100644 index 40356586b0a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.metrics.pbtxt +++ /dev/null @@ -1,331 +0,0 @@ -path: "tensorflow.keras.metrics" -tf_module { - member { - name: "AUC" - mtype: "" - } - member { - name: "Accuracy" - mtype: "" - } - member { - name: "BinaryAccuracy" - mtype: "" - } - member { - name: "BinaryCrossentropy" - mtype: "" - } - member { - name: "BinaryIoU" - mtype: "" - } - member { - name: "CategoricalAccuracy" - mtype: "" - } - member { - name: "CategoricalCrossentropy" - mtype: "" - } - member { - name: "CategoricalHinge" - mtype: "" - } - member { - name: "CosineSimilarity" - mtype: "" - } - member { - name: "F1Score" - mtype: "" - } - member { - name: "FBetaScore" - mtype: "" - } - member { - name: "FalseNegatives" - mtype: "" - } - member { - name: "FalsePositives" - mtype: "" - } - member { - name: "Hinge" - mtype: "" - } - member { - name: "IoU" - mtype: "" - } - member { - name: "KLDivergence" - mtype: "" - } - member { - name: "LogCoshError" - mtype: "" - } - member { - name: "Mean" - mtype: "" - } - member { - name: "MeanAbsoluteError" - mtype: "" - } - member { - name: "MeanAbsolutePercentageError" - mtype: "" - } - member { - name: "MeanIoU" - mtype: "" - } - member { - name: "MeanMetricWrapper" - mtype: "" - } - member { - name: "MeanRelativeError" - mtype: "" - } - member { - name: "MeanSquaredError" - mtype: "" - } - member { - name: "MeanSquaredLogarithmicError" - mtype: "" - } - member { - name: "MeanTensor" - mtype: "" - } - member { - name: "Metric" - mtype: "" - } - member { - name: "OneHotIoU" - mtype: "" - } - member { - name: "OneHotMeanIoU" - mtype: "" - } - member { - name: "Poisson" - mtype: "" - } - member { - name: "Precision" - mtype: "" - } - member { - name: "PrecisionAtRecall" - mtype: "" - } - member { - name: "R2Score" - mtype: "" - } - member { - name: "Recall" - mtype: "" - } - member { - name: "RecallAtPrecision" - mtype: "" - } - member { - name: "RootMeanSquaredError" - mtype: "" - } - member { - name: "SensitivityAtSpecificity" - mtype: "" - } - member { - name: "SparseCategoricalAccuracy" - mtype: "" - } - member { - name: "SparseCategoricalCrossentropy" - mtype: "" - } - member { - name: "SparseTopKCategoricalAccuracy" - mtype: "" - } - member { - name: "SpecificityAtSensitivity" - mtype: "" - } - member { - name: "SquaredHinge" - mtype: "" - } - member { - name: "Sum" - mtype: "" - } - member { - name: "TopKCategoricalAccuracy" - mtype: "" - } - member { - name: "TrueNegatives" - mtype: "" - } - member { - name: "TruePositives" - mtype: "" - } - member_method { - name: "KLD" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MAE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MAPE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MSE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MSLE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "binary_accuracy" - argspec: "args=[\'y_true\', \'y_pred\', \'threshold\'], varargs=None, keywords=None, defaults=[\'0.5\'], " - } - member_method { - name: "binary_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "binary_focal_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'apply_class_balancing\', \'alpha\', \'gamma\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'0.25\', \'2.0\', \'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "categorical_accuracy" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "categorical_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "categorical_focal_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'alpha\', \'gamma\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'0.25\', \'2.0\', \'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "cosine" - argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "cosine_proximity" - argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "hinge" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "kl_divergence" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "kld" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "kullback_leibler_divergence" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "log_cosh" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "logcosh" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mae" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mape" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_absolute_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_absolute_percentage_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_squared_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_squared_logarithmic_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mse" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "msle" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "poisson" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'metric\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "sparse_categorical_accuracy" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sparse_categorical_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'axis\', \'ignore_class\'], varargs=None, keywords=None, defaults=[\'False\', \'-1\', \'None\'], " - } - member_method { - name: "sparse_top_k_categorical_accuracy" - argspec: "args=[\'y_true\', \'y_pred\', \'k\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "squared_hinge" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "top_k_categorical_accuracy" - argspec: "args=[\'y_true\', \'y_pred\', \'k\'], varargs=None, keywords=None, defaults=[\'5\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.mixed_precision.-loss-scale-optimizer.pbtxt b/keras/api/golden/v1/tensorflow.keras.mixed_precision.-loss-scale-optimizer.pbtxt deleted file mode 100644 index 50931ad7947..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.mixed_precision.-loss-scale-optimizer.pbtxt +++ /dev/null @@ -1,40 +0,0 @@ -path: "tensorflow.keras.mixed_precision.LossScaleOptimizer" -tf_class { - is_instance: "" - is_instance: "" - member { - name: "dynamic" - mtype: "" - } - member { - name: "dynamic_counter" - mtype: "" - } - member { - name: "dynamic_growth_steps" - mtype: "" - } - member { - name: "initial_scale" - mtype: "" - } - member { - name: "inner_optimizer" - mtype: "" - } - member { - name: "loss_scale" - mtype: "" - } - member_method { - name: "__init__" - } - member_method { - name: "get_scaled_loss" - argspec: "args=[\'self\', \'loss\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_unscaled_gradients" - argspec: "args=[\'self\', \'grads\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.mixed_precision.pbtxt b/keras/api/golden/v1/tensorflow.keras.mixed_precision.pbtxt deleted file mode 100644 index 16255151955..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.mixed_precision.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.mixed_precision" -tf_module { - member { - name: "LossScaleOptimizer" - mtype: "" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.models.-linear-model.pbtxt b/keras/api/golden/v1/tensorflow.keras.models.-linear-model.pbtxt deleted file mode 100644 index d0abda54f50..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.models.-linear-model.pbtxt +++ /dev/null @@ -1,404 +0,0 @@ -path: "tensorflow.keras.models.LinearModel" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'None\', \'True\', \'zeros\', \'zeros\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.models.-model.pbtxt b/keras/api/golden/v1/tensorflow.keras.models.-model.pbtxt deleted file mode 100644 index 437212b72c2..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.models.-model.pbtxt +++ /dev/null @@ -1,403 +0,0 @@ -path: "tensorflow.keras.models.Model" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.models.-sequential.pbtxt b/keras/api/golden/v1/tensorflow.keras.models.-sequential.pbtxt deleted file mode 100644 index 6a463d995b1..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.models.-sequential.pbtxt +++ /dev/null @@ -1,413 +0,0 @@ -path: "tensorflow.keras.models.Sequential" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'layers\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add" - argspec: "args=[\'self\', \'layer\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "pop" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.models.-wide-deep-model.pbtxt b/keras/api/golden/v1/tensorflow.keras.models.-wide-deep-model.pbtxt deleted file mode 100644 index dfb4df02c9e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.models.-wide-deep-model.pbtxt +++ /dev/null @@ -1,404 +0,0 @@ -path: "tensorflow.keras.models.WideDeepModel" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'linear_model\', \'dnn_model\', \'activation\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.models.pbtxt b/keras/api/golden/v1/tensorflow.keras.models.pbtxt deleted file mode 100644 index 8d5fd58f277..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.models.pbtxt +++ /dev/null @@ -1,43 +0,0 @@ -path: "tensorflow.keras.models" -tf_module { - member { - name: "LinearModel" - mtype: "" - } - member { - name: "Model" - mtype: "" - } - member { - name: "Sequential" - mtype: "" - } - member { - name: "WideDeepModel" - mtype: "" - } - member_method { - name: "clone_model" - argspec: "args=[\'model\', \'input_tensors\', \'clone_function\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "load_model" - argspec: "args=[\'filepath\', \'custom_objects\', \'compile\', \'safe_mode\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'True\', \'True\'], " - } - member_method { - name: "model_from_config" - argspec: "args=[\'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "model_from_json" - argspec: "args=[\'json_string\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "model_from_yaml" - argspec: "args=[\'yaml_string\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_model" - argspec: "args=[\'model\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.-adadelta.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.-adadelta.pbtxt deleted file mode 100644 index ff4531cd44f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.-adadelta.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.Adadelta" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.95\', \'1e-07\', \'Adadelta\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.-adagrad.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.-adagrad.pbtxt deleted file mode 100644 index 4e35fed07fd..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.-adagrad.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.Adagrad" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'initial_accumulator_value\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.1\', \'1e-07\', \'Adagrad\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.-adam.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.-adam.pbtxt deleted file mode 100644 index 697ca03f615..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.-adam.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.Adam" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'amsgrad\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'False\', \'Adam\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.-adamax.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.-adamax.pbtxt deleted file mode 100644 index c488d88b72e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.-adamax.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.Adamax" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'Adamax\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.-ftrl.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.-ftrl.pbtxt deleted file mode 100644 index e75a11b74f4..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.-ftrl.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.Ftrl" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'learning_rate_power\', \'initial_accumulator_value\', \'l1_regularization_strength\', \'l2_regularization_strength\', \'name\', \'l2_shrinkage_regularization_strength\', \'beta\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'-0.5\', \'0.1\', \'0.0\', \'0.0\', \'Ftrl\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.-nadam.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.-nadam.pbtxt deleted file mode 100644 index a09e7ac9a46..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.-nadam.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.Nadam" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'Nadam\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.-optimizer.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.-optimizer.pbtxt deleted file mode 100644 index 43c247557a6..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.-optimizer.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.optimizers.Optimizer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'gradient_aggregator\', \'gradient_transformers\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.-r-m-sprop.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.-r-m-sprop.pbtxt deleted file mode 100644 index 8b093190fb7..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.-r-m-sprop.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.RMSprop" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'momentum\', \'epsilon\', \'centered\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.0\', \'1e-07\', \'False\', \'RMSprop\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.-s-g-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.-s-g-d.pbtxt deleted file mode 100644 index 78fdecf4d12..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.-s-g-d.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.SGD" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'momentum\', \'nesterov\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.01\', \'0.0\', \'False\', \'SGD\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-adadelta.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-adadelta.pbtxt deleted file mode 100644 index 05ae2888d36..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-adadelta.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Adadelta" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.95\', \'1e-07\', \'Adadelta\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-adagrad.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-adagrad.pbtxt deleted file mode 100644 index 507148f08db..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-adagrad.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Adagrad" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'initial_accumulator_value\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.1\', \'1e-07\', \'Adagrad\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-adam.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-adam.pbtxt deleted file mode 100644 index d79093442bd..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-adam.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Adam" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'amsgrad\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'False\', \'Adam\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-adamax.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-adamax.pbtxt deleted file mode 100644 index b18db03163b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-adamax.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Adamax" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'Adamax\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-ftrl.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-ftrl.pbtxt deleted file mode 100644 index b852c98df0e..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-ftrl.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Ftrl" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'learning_rate_power\', \'initial_accumulator_value\', \'l1_regularization_strength\', \'l2_regularization_strength\', \'name\', \'l2_shrinkage_regularization_strength\', \'beta\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'-0.5\', \'0.1\', \'0.0\', \'0.0\', \'Ftrl\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-nadam.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-nadam.pbtxt deleted file mode 100644 index ef505faade8..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-nadam.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Nadam" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'Nadam\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-optimizer.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-optimizer.pbtxt deleted file mode 100644 index f28c0103704..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-optimizer.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Optimizer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'gradient_aggregator\', \'gradient_transformers\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-r-m-sprop.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-r-m-sprop.pbtxt deleted file mode 100644 index f53b0568fe1..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-r-m-sprop.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.RMSprop" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'momentum\', \'epsilon\', \'centered\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.0\', \'1e-07\', \'False\', \'RMSprop\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-s-g-d.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-s-g-d.pbtxt deleted file mode 100644 index ab104159207..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.-s-g-d.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.SGD" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'momentum\', \'nesterov\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.01\', \'0.0\', \'False\', \'SGD\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.pbtxt deleted file mode 100644 index e2b86827a40..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.legacy.pbtxt +++ /dev/null @@ -1,39 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy" -tf_module { - member { - name: "Adadelta" - mtype: "" - } - member { - name: "Adagrad" - mtype: "" - } - member { - name: "Adam" - mtype: "" - } - member { - name: "Adamax" - mtype: "" - } - member { - name: "Ftrl" - mtype: "" - } - member { - name: "Nadam" - mtype: "" - } - member { - name: "Optimizer" - mtype: "" - } - member { - name: "RMSprop" - mtype: "" - } - member { - name: "SGD" - mtype: "" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.pbtxt deleted file mode 100644 index a06dbfc7390..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.pbtxt +++ /dev/null @@ -1,59 +0,0 @@ -path: "tensorflow.keras.optimizers" -tf_module { - member { - name: "Adadelta" - mtype: "" - } - member { - name: "Adagrad" - mtype: "" - } - member { - name: "Adam" - mtype: "" - } - member { - name: "Adamax" - mtype: "" - } - member { - name: "Ftrl" - mtype: "" - } - member { - name: "Nadam" - mtype: "" - } - member { - name: "Optimizer" - mtype: "" - } - member { - name: "RMSprop" - mtype: "" - } - member { - name: "SGD" - mtype: "" - } - member { - name: "legacy" - mtype: "" - } - member { - name: "schedules" - mtype: "" - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'optimizer\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-cosine-decay-restarts.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-cosine-decay-restarts.pbtxt deleted file mode 100644 index 16daa97b8f4..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-cosine-decay-restarts.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.CosineDecayRestarts" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'first_decay_steps\', \'t_mul\', \'m_mul\', \'alpha\', \'name\'], varargs=None, keywords=None, defaults=[\'2.0\', \'1.0\', \'0.0\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-cosine-decay.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-cosine-decay.pbtxt deleted file mode 100644 index 6df561f3342..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-cosine-decay.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.CosineDecay" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'alpha\', \'name\', \'warmup_target\', \'warmup_steps\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-exponential-decay.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-exponential-decay.pbtxt deleted file mode 100644 index c38633e5a38..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-exponential-decay.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.ExponentialDecay" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'decay_rate\', \'staircase\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-inverse-time-decay.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-inverse-time-decay.pbtxt deleted file mode 100644 index 56f6937bb1c..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-inverse-time-decay.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.InverseTimeDecay" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'decay_rate\', \'staircase\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-learning-rate-schedule.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-learning-rate-schedule.pbtxt deleted file mode 100644 index 243f00aba5c..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-learning-rate-schedule.pbtxt +++ /dev/null @@ -1,16 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.LearningRateSchedule" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-piecewise-constant-decay.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-piecewise-constant-decay.pbtxt deleted file mode 100644 index f5ceeb32659..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-piecewise-constant-decay.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.PiecewiseConstantDecay" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'boundaries\', \'values\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-polynomial-decay.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-polynomial-decay.pbtxt deleted file mode 100644 index fb200007259..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.-polynomial-decay.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.PolynomialDecay" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'end_learning_rate\', \'power\', \'cycle\', \'name\'], varargs=None, keywords=None, defaults=[\'0.0001\', \'1.0\', \'False\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.pbtxt b/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.pbtxt deleted file mode 100644 index 8ed0edccf92..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.optimizers.schedules.pbtxt +++ /dev/null @@ -1,39 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules" -tf_module { - member { - name: "CosineDecay" - mtype: "" - } - member { - name: "CosineDecayRestarts" - mtype: "" - } - member { - name: "ExponentialDecay" - mtype: "" - } - member { - name: "InverseTimeDecay" - mtype: "" - } - member { - name: "LearningRateSchedule" - mtype: "" - } - member { - name: "PiecewiseConstantDecay" - mtype: "" - } - member { - name: "PolynomialDecay" - mtype: "" - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "serialize" - argspec: "args=[\'learning_rate_schedule\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.pbtxt b/keras/api/golden/v1/tensorflow.keras.pbtxt deleted file mode 100644 index a5592a0f08b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.pbtxt +++ /dev/null @@ -1,95 +0,0 @@ -path: "tensorflow.keras" -tf_module { - member { - name: "Model" - mtype: "" - } - member { - name: "Sequential" - mtype: "" - } - member { - name: "activations" - mtype: "" - } - member { - name: "applications" - mtype: "" - } - member { - name: "backend" - mtype: "" - } - member { - name: "callbacks" - mtype: "" - } - member { - name: "constraints" - mtype: "" - } - member { - name: "datasets" - mtype: "" - } - member { - name: "estimator" - mtype: "" - } - member { - name: "experimental" - mtype: "" - } - member { - name: "export" - mtype: "" - } - member { - name: "initializers" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "mixed_precision" - mtype: "" - } - member { - name: "models" - mtype: "" - } - member { - name: "optimizers" - mtype: "" - } - member { - name: "preprocessing" - mtype: "" - } - member { - name: "regularizers" - mtype: "" - } - member { - name: "saving" - mtype: "" - } - member { - name: "utils" - mtype: "" - } - member_method { - name: "Input" - argspec: "args=[\'shape\', \'batch_size\', \'name\', \'dtype\', \'sparse\', \'tensor\', \'ragged\', \'type_spec\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.preprocessing.image.-directory-iterator.pbtxt b/keras/api/golden/v1/tensorflow.keras.preprocessing.image.-directory-iterator.pbtxt deleted file mode 100644 index e584a165e7d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.preprocessing.image.-directory-iterator.pbtxt +++ /dev/null @@ -1,48 +0,0 @@ -path: "tensorflow.keras.preprocessing.image.DirectoryIterator" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "allowed_class_modes" - mtype: "" - } - member { - name: "filepaths" - mtype: "" - } - member { - name: "labels" - mtype: "" - } - member { - name: "sample_weight" - mtype: "" - } - member { - name: "white_list_formats" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'directory\', \'image_data_generator\', \'target_size\', \'color_mode\', \'classes\', \'class_mode\', \'batch_size\', \'shuffle\', \'seed\', \'data_format\', \'save_to_dir\', \'save_prefix\', \'save_format\', \'follow_links\', \'subset\', \'interpolation\', \'keep_aspect_ratio\', \'dtype\'], varargs=None, keywords=None, defaults=[\'(256, 256)\', \'rgb\', \'None\', \'categorical\', \'32\', \'True\', \'None\', \'None\', \'None\', \'\', \'png\', \'False\', \'None\', \'nearest\', \'False\', \'None\'], " - } - member_method { - name: "next" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_processing_attrs" - argspec: "args=[\'self\', \'image_data_generator\', \'target_size\', \'color_mode\', \'data_format\', \'save_to_dir\', \'save_prefix\', \'save_format\', \'subset\', \'interpolation\', \'keep_aspect_ratio\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.preprocessing.image.-image-data-generator.pbtxt b/keras/api/golden/v1/tensorflow.keras.preprocessing.image.-image-data-generator.pbtxt deleted file mode 100644 index 200135f9092..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.preprocessing.image.-image-data-generator.pbtxt +++ /dev/null @@ -1,41 +0,0 @@ -path: "tensorflow.keras.preprocessing.image.ImageDataGenerator" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'featurewise_center\', \'samplewise_center\', \'featurewise_std_normalization\', \'samplewise_std_normalization\', \'zca_whitening\', \'zca_epsilon\', \'rotation_range\', \'width_shift_range\', \'height_shift_range\', \'brightness_range\', \'shear_range\', \'zoom_range\', \'channel_shift_range\', \'fill_mode\', \'cval\', \'horizontal_flip\', \'vertical_flip\', \'rescale\', \'preprocessing_function\', \'data_format\', \'validation_split\', \'interpolation_order\', \'dtype\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'False\', \'False\', \'False\', \'1e-06\', \'0\', \'0.0\', \'0.0\', \'None\', \'0.0\', \'0.0\', \'0.0\', \'nearest\', \'0.0\', \'False\', \'False\', \'None\', \'None\', \'None\', \'0.0\', \'1\', \'None\'], " - } - member_method { - name: "apply_transform" - argspec: "args=[\'self\', \'x\', \'transform_parameters\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'augment\', \'rounds\', \'seed\'], varargs=None, keywords=None, defaults=[\'False\', \'1\', \'None\'], " - } - member_method { - name: "flow" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'shuffle\', \'sample_weight\', \'seed\', \'save_to_dir\', \'save_prefix\', \'save_format\', \'ignore_class_split\', \'subset\'], varargs=None, keywords=None, defaults=[\'None\', \'32\', \'True\', \'None\', \'None\', \'None\', \'\', \'png\', \'False\', \'None\'], " - } - member_method { - name: "flow_from_dataframe" - argspec: "args=[\'self\', \'dataframe\', \'directory\', \'x_col\', \'y_col\', \'weight_col\', \'target_size\', \'color_mode\', \'classes\', \'class_mode\', \'batch_size\', \'shuffle\', \'seed\', \'save_to_dir\', \'save_prefix\', \'save_format\', \'subset\', \'interpolation\', \'validate_filenames\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'filename\', \'class\', \'None\', \'(256, 256)\', \'rgb\', \'None\', \'categorical\', \'32\', \'True\', \'None\', \'None\', \'\', \'png\', \'None\', \'nearest\', \'True\'], " - } - member_method { - name: "flow_from_directory" - argspec: "args=[\'self\', \'directory\', \'target_size\', \'color_mode\', \'classes\', \'class_mode\', \'batch_size\', \'shuffle\', \'seed\', \'save_to_dir\', \'save_prefix\', \'save_format\', \'follow_links\', \'subset\', \'interpolation\', \'keep_aspect_ratio\'], varargs=None, keywords=None, defaults=[\'(256, 256)\', \'rgb\', \'None\', \'categorical\', \'32\', \'True\', \'None\', \'None\', \'\', \'png\', \'False\', \'None\', \'nearest\', \'False\'], " - } - member_method { - name: "get_random_transform" - argspec: "args=[\'self\', \'img_shape\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "random_transform" - argspec: "args=[\'self\', \'x\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "standardize" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.preprocessing.image.-iterator.pbtxt b/keras/api/golden/v1/tensorflow.keras.preprocessing.image.-iterator.pbtxt deleted file mode 100644 index 94b1da3b70b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.preprocessing.image.-iterator.pbtxt +++ /dev/null @@ -1,26 +0,0 @@ -path: "tensorflow.keras.preprocessing.image.Iterator" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "white_list_formats" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'n\', \'batch_size\', \'shuffle\', \'seed\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "next" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.preprocessing.image.-numpy-array-iterator.pbtxt b/keras/api/golden/v1/tensorflow.keras.preprocessing.image.-numpy-array-iterator.pbtxt deleted file mode 100644 index c5dbf052f4a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.preprocessing.image.-numpy-array-iterator.pbtxt +++ /dev/null @@ -1,27 +0,0 @@ -path: "tensorflow.keras.preprocessing.image.NumpyArrayIterator" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "white_list_formats" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'x\', \'y\', \'image_data_generator\', \'batch_size\', \'shuffle\', \'sample_weight\', \'seed\', \'data_format\', \'save_to_dir\', \'save_prefix\', \'save_format\', \'subset\', \'ignore_class_split\', \'dtype\'], varargs=None, keywords=None, defaults=[\'32\', \'False\', \'None\', \'None\', \'None\', \'None\', \'\', \'png\', \'None\', \'False\', \'None\'], " - } - member_method { - name: "next" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.preprocessing.image.pbtxt b/keras/api/golden/v1/tensorflow.keras.preprocessing.image.pbtxt deleted file mode 100644 index c88a6778229..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.preprocessing.image.pbtxt +++ /dev/null @@ -1,71 +0,0 @@ -path: "tensorflow.keras.preprocessing.image" -tf_module { - member { - name: "DirectoryIterator" - mtype: "" - } - member { - name: "ImageDataGenerator" - mtype: "" - } - member { - name: "Iterator" - mtype: "" - } - member { - name: "NumpyArrayIterator" - mtype: "" - } - member_method { - name: "apply_affine_transform" - argspec: "args=[\'x\', \'theta\', \'tx\', \'ty\', \'shear\', \'zx\', \'zy\', \'row_axis\', \'col_axis\', \'channel_axis\', \'fill_mode\', \'cval\', \'order\'], varargs=None, keywords=None, defaults=[\'0\', \'0\', \'0\', \'0\', \'1\', \'1\', \'1\', \'2\', \'0\', \'nearest\', \'0.0\', \'1\'], " - } - member_method { - name: "apply_brightness_shift" - argspec: "args=[\'x\', \'brightness\', \'scale\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "apply_channel_shift" - argspec: "args=[\'x\', \'intensity\', \'channel_axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "array_to_img" - argspec: "args=[\'x\', \'data_format\', \'scale\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'None\'], " - } - member_method { - name: "img_to_array" - argspec: "args=[\'img\', \'data_format\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "load_img" - argspec: "args=[\'path\', \'grayscale\', \'color_mode\', \'target_size\', \'interpolation\', \'keep_aspect_ratio\'], varargs=None, keywords=None, defaults=[\'False\', \'rgb\', \'None\', \'nearest\', \'False\'], " - } - member_method { - name: "random_brightness" - argspec: "args=[\'x\', \'brightness_range\', \'scale\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "random_channel_shift" - argspec: "args=[\'x\', \'intensity_range\', \'channel_axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "random_rotation" - argspec: "args=[\'x\', \'rg\', \'row_axis\', \'col_axis\', \'channel_axis\', \'fill_mode\', \'cval\', \'interpolation_order\'], varargs=None, keywords=None, defaults=[\'1\', \'2\', \'0\', \'nearest\', \'0.0\', \'1\'], " - } - member_method { - name: "random_shear" - argspec: "args=[\'x\', \'intensity\', \'row_axis\', \'col_axis\', \'channel_axis\', \'fill_mode\', \'cval\', \'interpolation_order\'], varargs=None, keywords=None, defaults=[\'1\', \'2\', \'0\', \'nearest\', \'0.0\', \'1\'], " - } - member_method { - name: "random_shift" - argspec: "args=[\'x\', \'wrg\', \'hrg\', \'row_axis\', \'col_axis\', \'channel_axis\', \'fill_mode\', \'cval\', \'interpolation_order\'], varargs=None, keywords=None, defaults=[\'1\', \'2\', \'0\', \'nearest\', \'0.0\', \'1\'], " - } - member_method { - name: "random_zoom" - argspec: "args=[\'x\', \'zoom_range\', \'row_axis\', \'col_axis\', \'channel_axis\', \'fill_mode\', \'cval\', \'interpolation_order\'], varargs=None, keywords=None, defaults=[\'1\', \'2\', \'0\', \'nearest\', \'0.0\', \'1\'], " - } - member_method { - name: "save_img" - argspec: "args=[\'path\', \'x\', \'data_format\', \'file_format\', \'scale\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'True\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.preprocessing.pbtxt b/keras/api/golden/v1/tensorflow.keras.preprocessing.pbtxt deleted file mode 100644 index 5a78581fc56..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.preprocessing.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.preprocessing" -tf_module { - member { - name: "image" - mtype: "" - } - member { - name: "sequence" - mtype: "" - } - member { - name: "text" - mtype: "" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.preprocessing.sequence.-timeseries-generator.pbtxt b/keras/api/golden/v1/tensorflow.keras.preprocessing.sequence.-timeseries-generator.pbtxt deleted file mode 100644 index 1e99d483a7d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.preprocessing.sequence.-timeseries-generator.pbtxt +++ /dev/null @@ -1,22 +0,0 @@ -path: "tensorflow.keras.preprocessing.sequence.TimeseriesGenerator" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data\', \'targets\', \'length\', \'sampling_rate\', \'stride\', \'start_index\', \'end_index\', \'shuffle\', \'reverse\', \'batch_size\'], varargs=None, keywords=None, defaults=[\'1\', \'1\', \'0\', \'None\', \'False\', \'False\', \'128\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.preprocessing.sequence.pbtxt b/keras/api/golden/v1/tensorflow.keras.preprocessing.sequence.pbtxt deleted file mode 100644 index cf59f8a2726..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.preprocessing.sequence.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.preprocessing.sequence" -tf_module { - member { - name: "TimeseriesGenerator" - mtype: "" - } - member_method { - name: "make_sampling_table" - argspec: "args=[\'size\', \'sampling_factor\'], varargs=None, keywords=None, defaults=[\'1e-05\'], " - } - member_method { - name: "pad_sequences" - argspec: "args=[\'sequences\', \'maxlen\', \'dtype\', \'padding\', \'truncating\', \'value\'], varargs=None, keywords=None, defaults=[\'None\', \'int32\', \'pre\', \'pre\', \'0.0\'], " - } - member_method { - name: "skipgrams" - argspec: "args=[\'sequence\', \'vocabulary_size\', \'window_size\', \'negative_samples\', \'shuffle\', \'categorical\', \'sampling_table\', \'seed\'], varargs=None, keywords=None, defaults=[\'4\', \'1.0\', \'True\', \'False\', \'None\', \'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.preprocessing.text.-tokenizer.pbtxt b/keras/api/golden/v1/tensorflow.keras.preprocessing.text.-tokenizer.pbtxt deleted file mode 100644 index 2e841daf0a2..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.preprocessing.text.-tokenizer.pbtxt +++ /dev/null @@ -1,49 +0,0 @@ -path: "tensorflow.keras.preprocessing.text.Tokenizer" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_words\', \'filters\', \'lower\', \'split\', \'char_level\', \'oov_token\', \'analyzer\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'!\"#$%&()*+,-./:;<=>?@[\\\\]^_`{|}~\\t\\n\', \'True\', \' \', \'False\', \'None\', \'None\'], " - } - member_method { - name: "fit_on_sequences" - argspec: "args=[\'self\', \'sequences\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit_on_texts" - argspec: "args=[\'self\', \'texts\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sequences_to_matrix" - argspec: "args=[\'self\', \'sequences\', \'mode\'], varargs=None, keywords=None, defaults=[\'binary\'], " - } - member_method { - name: "sequences_to_texts" - argspec: "args=[\'self\', \'sequences\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sequences_to_texts_generator" - argspec: "args=[\'self\', \'sequences\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "texts_to_matrix" - argspec: "args=[\'self\', \'texts\', \'mode\'], varargs=None, keywords=None, defaults=[\'binary\'], " - } - member_method { - name: "texts_to_sequences" - argspec: "args=[\'self\', \'texts\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "texts_to_sequences_generator" - argspec: "args=[\'self\', \'texts\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.preprocessing.text.pbtxt b/keras/api/golden/v1/tensorflow.keras.preprocessing.text.pbtxt deleted file mode 100644 index b756e1de8d3..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.preprocessing.text.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.preprocessing.text" -tf_module { - member { - name: "Tokenizer" - mtype: "" - } - member_method { - name: "hashing_trick" - argspec: "args=[\'text\', \'n\', \'hash_function\', \'filters\', \'lower\', \'split\', \'analyzer\'], varargs=None, keywords=None, defaults=[\'None\', \'!\"#$%&()*+,-./:;<=>?@[\\\\]^_`{|}~\\t\\n\', \'True\', \' \', \'None\'], " - } - member_method { - name: "one_hot" - argspec: "args=[\'input_text\', \'n\', \'filters\', \'lower\', \'split\', \'analyzer\'], varargs=None, keywords=None, defaults=[\'!\"#$%&()*+,-./:;<=>?@[\\\\]^_`{|}~\\t\\n\', \'True\', \' \', \'None\'], " - } - member_method { - name: "text_to_word_sequence" - argspec: "args=[\'input_text\', \'filters\', \'lower\', \'split\'], varargs=None, keywords=None, defaults=[\'!\"#$%&()*+,-./:;<=>?@[\\\\]^_`{|}~\\t\\n\', \'True\', \' \'], " - } - member_method { - name: "tokenizer_from_json" - argspec: "args=[\'json_string\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.regularizers.-l1-l2.pbtxt b/keras/api/golden/v1/tensorflow.keras.regularizers.-l1-l2.pbtxt deleted file mode 100644 index b704de99ca0..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.regularizers.-l1-l2.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.regularizers.L1L2" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'l1\', \'l2\'], varargs=None, keywords=None, defaults=[\'0.0\', \'0.0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.regularizers.-l1.pbtxt b/keras/api/golden/v1/tensorflow.keras.regularizers.-l1.pbtxt deleted file mode 100644 index 31d5659bd0f..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.regularizers.-l1.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.regularizers.L1" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'l1\'], varargs=None, keywords=kwargs, defaults=[\'0.01\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.regularizers.-l2.pbtxt b/keras/api/golden/v1/tensorflow.keras.regularizers.-l2.pbtxt deleted file mode 100644 index 5253aec0fd3..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.regularizers.-l2.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.regularizers.L2" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'l2\'], varargs=None, keywords=kwargs, defaults=[\'0.01\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.regularizers.-regularizer.pbtxt b/keras/api/golden/v1/tensorflow.keras.regularizers.-regularizer.pbtxt deleted file mode 100644 index 4a7bbb34f53..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.regularizers.-regularizer.pbtxt +++ /dev/null @@ -1,16 +0,0 @@ -path: "tensorflow.keras.regularizers.Regularizer" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.regularizers.l1.pbtxt b/keras/api/golden/v1/tensorflow.keras.regularizers.l1.pbtxt deleted file mode 100644 index b3c5b3dfdc0..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.regularizers.l1.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.regularizers.l1" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'l1\'], varargs=None, keywords=kwargs, defaults=[\'0.01\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.regularizers.l2.pbtxt b/keras/api/golden/v1/tensorflow.keras.regularizers.l2.pbtxt deleted file mode 100644 index 4db49bd4449..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.regularizers.l2.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.regularizers.l2" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'l2\'], varargs=None, keywords=kwargs, defaults=[\'0.01\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.regularizers.pbtxt b/keras/api/golden/v1/tensorflow.keras.regularizers.pbtxt deleted file mode 100644 index f424d54785b..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.regularizers.pbtxt +++ /dev/null @@ -1,43 +0,0 @@ -path: "tensorflow.keras.regularizers" -tf_module { - member { - name: "L1" - mtype: "" - } - member { - name: "L1L2" - mtype: "" - } - member { - name: "L2" - mtype: "" - } - member { - name: "Regularizer" - mtype: "" - } - member { - name: "l1" - mtype: "" - } - member { - name: "l2" - mtype: "" - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "l1_l2" - argspec: "args=[\'l1\', \'l2\'], varargs=None, keywords=None, defaults=[\'0.01\', \'0.01\'], " - } - member_method { - name: "serialize" - argspec: "args=[\'regularizer\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.saving.custom_object_scope.pbtxt b/keras/api/golden/v1/tensorflow.keras.saving.custom_object_scope.pbtxt deleted file mode 100644 index cf877e5ae4d..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.saving.custom_object_scope.pbtxt +++ /dev/null @@ -1,9 +0,0 @@ -path: "tensorflow.keras.saving.custom_object_scope" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=args, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.saving.pbtxt b/keras/api/golden/v1/tensorflow.keras.saving.pbtxt deleted file mode 100644 index e1df1e64293..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.saving.pbtxt +++ /dev/null @@ -1,39 +0,0 @@ -path: "tensorflow.keras.saving" -tf_module { - member { - name: "custom_object_scope" - mtype: "" - } - member_method { - name: "deserialize_keras_object" - argspec: "args=[\'config\', \'custom_objects\', \'safe_mode\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'True\'], " - } - member_method { - name: "get_custom_objects" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_registered_name" - argspec: "args=[\'obj\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_registered_object" - argspec: "args=[\'name\', \'custom_objects\', \'module_objects\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "load_model" - argspec: "args=[\'filepath\', \'custom_objects\', \'compile\', \'safe_mode\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'True\', \'True\'], " - } - member_method { - name: "register_keras_serializable" - argspec: "args=[\'package\', \'name\'], varargs=None, keywords=None, defaults=[\'Custom\', \'None\'], " - } - member_method { - name: "save_model" - argspec: "args=[\'model\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "serialize_keras_object" - argspec: "args=[\'obj\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.utils.-custom-object-scope.pbtxt b/keras/api/golden/v1/tensorflow.keras.utils.-custom-object-scope.pbtxt deleted file mode 100644 index 3ccf719d8c8..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.utils.-custom-object-scope.pbtxt +++ /dev/null @@ -1,9 +0,0 @@ -path: "tensorflow.keras.utils.CustomObjectScope" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=args, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.utils.-deterministic-random-test-tool.pbtxt b/keras/api/golden/v1/tensorflow.keras.utils.-deterministic-random-test-tool.pbtxt deleted file mode 100644 index fefb0a2760a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.utils.-deterministic-random-test-tool.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.utils.DeterministicRandomTestTool" -tf_class { - is_instance: "" - is_instance: "" - member { - name: "operation_seed" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\', \'mode\'], varargs=None, keywords=None, defaults=[\'42\', \'constant\'], " - } - member_method { - name: "scope" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.utils.-generator-enqueuer.pbtxt b/keras/api/golden/v1/tensorflow.keras.utils.-generator-enqueuer.pbtxt deleted file mode 100644 index ac1c5387bc1..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.utils.-generator-enqueuer.pbtxt +++ /dev/null @@ -1,26 +0,0 @@ -path: "tensorflow.keras.utils.GeneratorEnqueuer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'generator\', \'use_multiprocessing\', \'random_seed\'], varargs=None, keywords=None, defaults=[\'False\', \'None\'], " - } - member_method { - name: "get" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "is_running" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "start" - argspec: "args=[\'self\', \'workers\', \'max_queue_size\'], varargs=None, keywords=None, defaults=[\'1\', \'10\'], " - } - member_method { - name: "stop" - argspec: "args=[\'self\', \'timeout\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.utils.-ordered-enqueuer.pbtxt b/keras/api/golden/v1/tensorflow.keras.utils.-ordered-enqueuer.pbtxt deleted file mode 100644 index 9cd4b730b32..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.utils.-ordered-enqueuer.pbtxt +++ /dev/null @@ -1,26 +0,0 @@ -path: "tensorflow.keras.utils.OrderedEnqueuer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'sequence\', \'use_multiprocessing\', \'shuffle\'], varargs=None, keywords=None, defaults=[\'False\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "is_running" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "start" - argspec: "args=[\'self\', \'workers\', \'max_queue_size\'], varargs=None, keywords=None, defaults=[\'1\', \'10\'], " - } - member_method { - name: "stop" - argspec: "args=[\'self\', \'timeout\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.utils.-progbar.pbtxt b/keras/api/golden/v1/tensorflow.keras.utils.-progbar.pbtxt deleted file mode 100644 index a1b31c0389a..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.utils.-progbar.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.utils.Progbar" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'target\', \'width\', \'verbose\', \'interval\', \'stateful_metrics\', \'unit_name\'], varargs=None, keywords=None, defaults=[\'30\', \'1\', \'0.05\', \'None\', \'step\'], " - } - member_method { - name: "add" - argspec: "args=[\'self\', \'n\', \'values\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "update" - argspec: "args=[\'self\', \'current\', \'values\', \'finalize\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.utils.-sequence-enqueuer.pbtxt b/keras/api/golden/v1/tensorflow.keras.utils.-sequence-enqueuer.pbtxt deleted file mode 100644 index eb3bbc5b897..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.utils.-sequence-enqueuer.pbtxt +++ /dev/null @@ -1,25 +0,0 @@ -path: "tensorflow.keras.utils.SequenceEnqueuer" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'sequence\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "is_running" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "start" - argspec: "args=[\'self\', \'workers\', \'max_queue_size\'], varargs=None, keywords=None, defaults=[\'1\', \'10\'], " - } - member_method { - name: "stop" - argspec: "args=[\'self\', \'timeout\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.utils.-sequence.pbtxt b/keras/api/golden/v1/tensorflow.keras.utils.-sequence.pbtxt deleted file mode 100644 index 43e0717ccaa..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.utils.-sequence.pbtxt +++ /dev/null @@ -1,12 +0,0 @@ -path: "tensorflow.keras.utils.Sequence" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.utils.custom_object_scope.pbtxt b/keras/api/golden/v1/tensorflow.keras.utils.custom_object_scope.pbtxt deleted file mode 100644 index 08f84e0f825..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.utils.custom_object_scope.pbtxt +++ /dev/null @@ -1,9 +0,0 @@ -path: "tensorflow.keras.utils.custom_object_scope" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=args, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.utils.legacy.pbtxt b/keras/api/golden/v1/tensorflow.keras.utils.legacy.pbtxt deleted file mode 100644 index 267629bf49c..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.utils.legacy.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.utils.legacy" -tf_module { - member_method { - name: "deserialize_keras_object" - argspec: "args=[\'identifier\', \'module_objects\', \'custom_objects\', \'printable_module_name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'object\'], " - } - member_method { - name: "serialize_keras_object" - argspec: "args=[\'instance\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v1/tensorflow.keras.utils.pbtxt b/keras/api/golden/v1/tensorflow.keras.utils.pbtxt deleted file mode 100644 index 17b22c50c54..00000000000 --- a/keras/api/golden/v1/tensorflow.keras.utils.pbtxt +++ /dev/null @@ -1,135 +0,0 @@ -path: "tensorflow.keras.utils" -tf_module { - member { - name: "CustomObjectScope" - mtype: "" - } - member { - name: "DeterministicRandomTestTool" - mtype: "" - } - member { - name: "GeneratorEnqueuer" - mtype: "" - } - member { - name: "OrderedEnqueuer" - mtype: "" - } - member { - name: "Progbar" - mtype: "" - } - member { - name: "Sequence" - mtype: "" - } - member { - name: "SequenceEnqueuer" - mtype: "" - } - member { - name: "custom_object_scope" - mtype: "" - } - member { - name: "legacy" - mtype: "" - } - member_method { - name: "array_to_img" - argspec: "args=[\'x\', \'data_format\', \'scale\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'None\'], " - } - member_method { - name: "deserialize_keras_object" - argspec: "args=[\'config\', \'custom_objects\', \'safe_mode\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'True\'], " - } - member_method { - name: "disable_interactive_logging" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "enable_interactive_logging" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_custom_objects" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_file" - argspec: "args=[\'fname\', \'origin\', \'untar\', \'md5_hash\', \'file_hash\', \'cache_subdir\', \'hash_algorithm\', \'extract\', \'archive_format\', \'cache_dir\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'False\', \'None\', \'None\', \'datasets\', \'auto\', \'False\', \'auto\', \'None\'], " - } - member_method { - name: "get_or_create_layer" - argspec: "args=[\'name\', \'create_layer_method\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_registered_name" - argspec: "args=[\'obj\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_registered_object" - argspec: "args=[\'name\', \'custom_objects\', \'module_objects\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_source_inputs" - argspec: "args=[\'tensor\', \'layer\', \'node_index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "img_to_array" - argspec: "args=[\'img\', \'data_format\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "is_interactive_logging_enabled" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_img" - argspec: "args=[\'path\', \'grayscale\', \'color_mode\', \'target_size\', \'interpolation\', \'keep_aspect_ratio\'], varargs=None, keywords=None, defaults=[\'False\', \'rgb\', \'None\', \'nearest\', \'False\'], " - } - member_method { - name: "model_to_dot" - argspec: "args=[\'model\', \'show_shapes\', \'show_dtype\', \'show_layer_names\', \'rankdir\', \'expand_nested\', \'dpi\', \'subgraph\', \'layer_range\', \'show_layer_activations\', \'show_trainable\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'True\', \'TB\', \'False\', \'96\', \'False\', \'None\', \'False\', \'False\'], " - } - member_method { - name: "normalize" - argspec: "args=[\'x\', \'axis\', \'order\'], varargs=None, keywords=None, defaults=[\'-1\', \'2\'], " - } - member_method { - name: "pad_sequences" - argspec: "args=[\'sequences\', \'maxlen\', \'dtype\', \'padding\', \'truncating\', \'value\'], varargs=None, keywords=None, defaults=[\'None\', \'int32\', \'pre\', \'pre\', \'0.0\'], " - } - member_method { - name: "plot_model" - argspec: "args=[\'model\', \'to_file\', \'show_shapes\', \'show_dtype\', \'show_layer_names\', \'rankdir\', \'expand_nested\', \'dpi\', \'layer_range\', \'show_layer_activations\', \'show_trainable\'], varargs=None, keywords=None, defaults=[\'model.png\', \'False\', \'False\', \'True\', \'TB\', \'False\', \'96\', \'None\', \'False\', \'False\'], " - } - member_method { - name: "register_keras_serializable" - argspec: "args=[\'package\', \'name\'], varargs=None, keywords=None, defaults=[\'Custom\', \'None\'], " - } - member_method { - name: "save_img" - argspec: "args=[\'path\', \'x\', \'data_format\', \'file_format\', \'scale\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'True\'], " - } - member_method { - name: "serialize_keras_object" - argspec: "args=[\'obj\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_categorical" - argspec: "args=[\'y\', \'num_classes\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'float32\'], " - } - member_method { - name: "to_ordinal" - argspec: "args=[\'y\', \'num_classes\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'float32\'], " - } - member_method { - name: "track_tf1_style_variables" - argspec: "args=[\'method\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "warmstart_embedding_matrix" - argspec: "args=[\'base_vocabulary\', \'new_vocabulary\', \'base_embeddings\', \'new_embeddings_initializer\'], varargs=None, keywords=None, defaults=[\'uniform\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.-model.pbtxt b/keras/api/golden/v2/tensorflow.keras.-model.pbtxt deleted file mode 100644 index 186d1e2e453..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.-model.pbtxt +++ /dev/null @@ -1,403 +0,0 @@ -path: "tensorflow.keras.Model" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.-sequential.pbtxt b/keras/api/golden/v2/tensorflow.keras.-sequential.pbtxt deleted file mode 100644 index 21e40a34955..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.-sequential.pbtxt +++ /dev/null @@ -1,413 +0,0 @@ -path: "tensorflow.keras.Sequential" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'layers\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add" - argspec: "args=[\'self\', \'layer\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "pop" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.__internal__.-keras-tensor.pbtxt b/keras/api/golden/v2/tensorflow.keras.__internal__.-keras-tensor.pbtxt deleted file mode 100644 index 9b09b44a8bf..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.__internal__.-keras-tensor.pbtxt +++ /dev/null @@ -1,61 +0,0 @@ -path: "tensorflow.keras.__internal__.KerasTensor" -tf_class { - is_instance: "" - is_instance: "" - member { - name: "dtype" - mtype: "" - } - member { - name: "is_tensor_like" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "node" - mtype: "" - } - member { - name: "op" - mtype: "" - } - member { - name: "shape" - mtype: "" - } - member { - name: "type_spec" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'type_spec\', \'inferred_value\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "experimental_ref" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_tensor" - argspec: "args=[\'cls\', \'tensor\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_type_spec" - argspec: "args=[\'cls\', \'type_spec\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_shape" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "ref" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_shape" - argspec: "args=[\'self\', \'shape\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.__internal__.-ragged-keras-tensor.pbtxt b/keras/api/golden/v2/tensorflow.keras.__internal__.-ragged-keras-tensor.pbtxt deleted file mode 100644 index 7c91676b2f7..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.__internal__.-ragged-keras-tensor.pbtxt +++ /dev/null @@ -1,138 +0,0 @@ -path: "tensorflow.keras.__internal__.RaggedKerasTensor" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "dtype" - mtype: "" - } - member { - name: "flat_values" - mtype: "" - } - member { - name: "is_tensor_like" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "nested_row_splits" - mtype: "" - } - member { - name: "node" - mtype: "" - } - member { - name: "op" - mtype: "" - } - member { - name: "ragged_rank" - mtype: "" - } - member { - name: "row_splits" - mtype: "" - } - member { - name: "shape" - mtype: "" - } - member { - name: "type_spec" - mtype: "" - } - member { - name: "values" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'type_spec\', \'inferred_value\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "bounding_shape" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "experimental_ref" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_tensor" - argspec: "args=[\'cls\', \'tensor\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_type_spec" - argspec: "args=[\'cls\', \'type_spec\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_shape" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_dims" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "nested_row_lengths" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "nested_value_rowids" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "nrows" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "ref" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "row_lengths" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "row_limits" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "row_starts" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "set_shape" - argspec: "args=[\'self\', \'shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_sparse" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "to_tensor" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "value_rowids" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "with_flat_values" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "with_row_splits_dtype" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "with_values" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.__internal__.-sparse-keras-tensor.pbtxt b/keras/api/golden/v2/tensorflow.keras.__internal__.-sparse-keras-tensor.pbtxt deleted file mode 100644 index c25a8784dd4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.__internal__.-sparse-keras-tensor.pbtxt +++ /dev/null @@ -1,78 +0,0 @@ -path: "tensorflow.keras.__internal__.SparseKerasTensor" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "dense_shape" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "indices" - mtype: "" - } - member { - name: "is_tensor_like" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "node" - mtype: "" - } - member { - name: "op" - mtype: "" - } - member { - name: "shape" - mtype: "" - } - member { - name: "type_spec" - mtype: "" - } - member { - name: "values" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'type_spec\', \'inferred_value\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "experimental_ref" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_tensor" - argspec: "args=[\'cls\', \'tensor\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_type_spec" - argspec: "args=[\'cls\', \'type_spec\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_shape" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "ref" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_shape" - argspec: "args=[\'self\', \'shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_values" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.__internal__.backend.pbtxt b/keras/api/golden/v2/tensorflow.keras.__internal__.backend.pbtxt deleted file mode 100644 index 9a0fdc90ed8..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.__internal__.backend.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.__internal__.backend" -tf_module { - member_method { - name: "initialize_variables" - argspec: "args=[\'session\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "track_variable" - argspec: "args=[\'v\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.__internal__.layers.-base-dense-attention.pbtxt b/keras/api/golden/v2/tensorflow.keras.__internal__.layers.-base-dense-attention.pbtxt deleted file mode 100644 index bb4b1660032..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.__internal__.layers.-base-dense-attention.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.__internal__.layers.BaseDenseAttention" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'dropout\'], varargs=None, keywords=kwargs, defaults=[\'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'return_attention_scores\', \'use_causal_mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'False\', \'False\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.__internal__.layers.-base-random-layer.pbtxt b/keras/api/golden/v2/tensorflow.keras.__internal__.layers.-base-random-layer.pbtxt deleted file mode 100644 index 68aa8fd6556..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.__internal__.layers.-base-random-layer.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.__internal__.layers.BaseRandomLayer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\', \'force_generator\', \'rng_type\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.__internal__.layers.pbtxt b/keras/api/golden/v2/tensorflow.keras.__internal__.layers.pbtxt deleted file mode 100644 index 8f5b1b17068..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.__internal__.layers.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.__internal__.layers" -tf_module { - member { - name: "BaseDenseAttention" - mtype: "" - } - member { - name: "BaseRandomLayer" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.__internal__.losses.-loss-function-wrapper.pbtxt b/keras/api/golden/v2/tensorflow.keras.__internal__.losses.-loss-function-wrapper.pbtxt deleted file mode 100644 index b59c57da8ce..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.__internal__.losses.-loss-function-wrapper.pbtxt +++ /dev/null @@ -1,22 +0,0 @@ -path: "tensorflow.keras.__internal__.losses.LossFunctionWrapper" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'fn\', \'reduction\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'auto\', \'None\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.__internal__.losses.pbtxt b/keras/api/golden/v2/tensorflow.keras.__internal__.losses.pbtxt deleted file mode 100644 index d2b2abf80f4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.__internal__.losses.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.__internal__.losses" -tf_module { - member { - name: "LossFunctionWrapper" - mtype: "" - } - member_method { - name: "compute_weighted_loss" - argspec: "args=[\'losses\', \'sample_weight\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'sum_over_batch_size\', \'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.__internal__.models.pbtxt b/keras/api/golden/v2/tensorflow.keras.__internal__.models.pbtxt deleted file mode 100644 index 2fdc1641344..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.__internal__.models.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.__internal__.models" -tf_module { - member_method { - name: "clone_and_build_model" - argspec: "args=[\'model\', \'input_tensors\', \'target_tensors\', \'custom_objects\', \'compile_clone\', \'in_place_reset\', \'optimizer_iterations\', \'optimizer_config\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\', \'None\', \'None\'], " - } - member_method { - name: "in_place_subclassed_model_state_restoration" - argspec: "args=[\'model\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.__internal__.optimizers.pbtxt b/keras/api/golden/v2/tensorflow.keras.__internal__.optimizers.pbtxt deleted file mode 100644 index 5afce7e73dd..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.__internal__.optimizers.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.__internal__.optimizers" -tf_module { - member_method { - name: "convert_to_legacy_optimizer" - argspec: "args=[\'optimizer\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.__internal__.pbtxt b/keras/api/golden/v2/tensorflow.keras.__internal__.pbtxt deleted file mode 100644 index aadf3076c12..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.__internal__.pbtxt +++ /dev/null @@ -1,47 +0,0 @@ -path: "tensorflow.keras.__internal__" -tf_module { - member { - name: "KerasTensor" - mtype: "" - } - member { - name: "RaggedKerasTensor" - mtype: "" - } - member { - name: "SparseKerasTensor" - mtype: "" - } - member { - name: "backend" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "models" - mtype: "" - } - member { - name: "optimizers" - mtype: "" - } - member { - name: "utils" - mtype: "" - } - member_method { - name: "apply_name_scope_on_model_declaration" - argspec: "args=[\'enable\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "enable_unsafe_deserialization" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.__internal__.utils.pbtxt b/keras/api/golden/v2/tensorflow.keras.__internal__.utils.pbtxt deleted file mode 100644 index ab38e0f7001..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.__internal__.utils.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.__internal__.utils" -tf_module { - member_method { - name: "get_data_handler" - argspec: "args=[], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "layer_test" - argspec: "args=[\'layer_cls\', \'kwargs\', \'input_shape\', \'input_dtype\', \'input_data\', \'expected_output\', \'expected_output_dtype\', \'expected_output_shape\', \'validate_training\', \'adapt_data\', \'custom_objects\', \'test_harness\', \'supports_masking\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'True\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "register_symbolic_tensor_type" - argspec: "args=[\'cls\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.activations.pbtxt b/keras/api/golden/v2/tensorflow.keras.activations.pbtxt deleted file mode 100644 index 863800e0530..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.activations.pbtxt +++ /dev/null @@ -1,71 +0,0 @@ -path: "tensorflow.keras.activations" -tf_module { - member_method { - name: "deserialize" - argspec: "args=[\'name\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "elu" - argspec: "args=[\'x\', \'alpha\'], varargs=None, keywords=None, defaults=[\'1.0\'], " - } - member_method { - name: "exponential" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "gelu" - argspec: "args=[\'x\', \'approximate\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "hard_sigmoid" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "linear" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mish" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "relu" - argspec: "args=[\'x\', \'alpha\', \'max_value\', \'threshold\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'0.0\'], " - } - member_method { - name: "selu" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'activation\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "sigmoid" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "softmax" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "softplus" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "softsign" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "swish" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "tanh" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.convnext.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.convnext.pbtxt deleted file mode 100644 index bd3523a95ab..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.convnext.pbtxt +++ /dev/null @@ -1,31 +0,0 @@ -path: "tensorflow.keras.applications.convnext" -tf_module { - member_method { - name: "ConvNeXtBase" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_base\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtLarge" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_large\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtSmall" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_small\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtTiny" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_tiny\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtXLarge" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_xlarge\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.densenet.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.densenet.pbtxt deleted file mode 100644 index 38171a727da..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.densenet.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.applications.densenet" -tf_module { - member_method { - name: "DenseNet121" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "DenseNet169" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "DenseNet201" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.efficientnet.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.efficientnet.pbtxt deleted file mode 100644 index f4103c50713..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.efficientnet.pbtxt +++ /dev/null @@ -1,43 +0,0 @@ -path: "tensorflow.keras.applications.efficientnet" -tf_module { - member_method { - name: "EfficientNetB0" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB1" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB3" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB4" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB5" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB6" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB7" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.efficientnet_v2.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.efficientnet_v2.pbtxt deleted file mode 100644 index 3e045c9de28..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.efficientnet_v2.pbtxt +++ /dev/null @@ -1,39 +0,0 @@ -path: "tensorflow.keras.applications.efficientnet_v2" -tf_module { - member_method { - name: "EfficientNetV2B0" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2B1" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2B2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2B3" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2L" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2M" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2S" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.imagenet_utils.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.imagenet_utils.pbtxt deleted file mode 100644 index 9bbd3102ab8..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.imagenet_utils.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.applications.imagenet_utils" -tf_module { - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'caffe\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.inception_resnet_v2.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.inception_resnet_v2.pbtxt deleted file mode 100644 index c352536e0e5..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.inception_resnet_v2.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.inception_resnet_v2" -tf_module { - member_method { - name: "InceptionResNetV2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.inception_v3.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.inception_v3.pbtxt deleted file mode 100644 index aa55da6fd70..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.inception_v3.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.inception_v3" -tf_module { - member_method { - name: "InceptionV3" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.mobilenet.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.mobilenet.pbtxt deleted file mode 100644 index aff73b43871..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.mobilenet.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.mobilenet" -tf_module { - member_method { - name: "MobileNet" - argspec: "args=[\'input_shape\', \'alpha\', \'depth_multiplier\', \'dropout\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1.0\', \'1\', \'0.001\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.mobilenet_v2.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.mobilenet_v2.pbtxt deleted file mode 100644 index e55633f33b6..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.mobilenet_v2.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.mobilenet_v2" -tf_module { - member_method { - name: "MobileNetV2" - argspec: "args=[\'input_shape\', \'alpha\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1.0\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.mobilenet_v3.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.mobilenet_v3.pbtxt deleted file mode 100644 index 418ace0882f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.mobilenet_v3.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.applications.mobilenet_v3" -tf_module { - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.nasnet.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.nasnet.pbtxt deleted file mode 100644 index d246ee62cd9..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.nasnet.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.applications.nasnet" -tf_module { - member_method { - name: "NASNetLarge" - argspec: "args=[\'input_shape\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "NASNetMobile" - argspec: "args=[\'input_shape\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.pbtxt deleted file mode 100644 index ca41e9141e3..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.pbtxt +++ /dev/null @@ -1,363 +0,0 @@ -path: "tensorflow.keras.applications" -tf_module { - member { - name: "convnext" - mtype: "" - } - member { - name: "densenet" - mtype: "" - } - member { - name: "efficientnet" - mtype: "" - } - member { - name: "efficientnet_v2" - mtype: "" - } - member { - name: "imagenet_utils" - mtype: "" - } - member { - name: "inception_resnet_v2" - mtype: "" - } - member { - name: "inception_v3" - mtype: "" - } - member { - name: "mobilenet" - mtype: "" - } - member { - name: "mobilenet_v2" - mtype: "" - } - member { - name: "mobilenet_v3" - mtype: "" - } - member { - name: "nasnet" - mtype: "" - } - member { - name: "regnet" - mtype: "" - } - member { - name: "resnet" - mtype: "" - } - member { - name: "resnet50" - mtype: "" - } - member { - name: "resnet_rs" - mtype: "" - } - member { - name: "resnet_v2" - mtype: "" - } - member { - name: "vgg16" - mtype: "" - } - member { - name: "vgg19" - mtype: "" - } - member { - name: "xception" - mtype: "" - } - member_method { - name: "ConvNeXtBase" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_base\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtLarge" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_large\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtSmall" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_small\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtTiny" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_tiny\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ConvNeXtXLarge" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'convnext_xlarge\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "DenseNet121" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "DenseNet169" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "DenseNet201" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB0" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB1" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB3" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB4" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB5" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB6" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetB7" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "EfficientNetV2B0" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2B1" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2B2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2B3" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2L" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2M" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "EfficientNetV2S" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\', \'True\'], " - } - member_method { - name: "InceptionResNetV2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "InceptionV3" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "MobileNet" - argspec: "args=[\'input_shape\', \'alpha\', \'depth_multiplier\', \'dropout\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1.0\', \'1\', \'0.001\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "MobileNetV2" - argspec: "args=[\'input_shape\', \'alpha\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1.0\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "MobileNetV3Large" - argspec: "args=[\'input_shape\', \'alpha\', \'minimalistic\', \'include_top\', \'weights\', \'input_tensor\', \'classes\', \'pooling\', \'dropout_rate\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'1.0\', \'False\', \'True\', \'imagenet\', \'None\', \'1000\', \'None\', \'0.2\', \'softmax\', \'True\'], " - } - member_method { - name: "MobileNetV3Small" - argspec: "args=[\'input_shape\', \'alpha\', \'minimalistic\', \'include_top\', \'weights\', \'input_tensor\', \'classes\', \'pooling\', \'dropout_rate\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'1.0\', \'False\', \'True\', \'imagenet\', \'None\', \'1000\', \'None\', \'0.2\', \'softmax\', \'True\'], " - } - member_method { - name: "NASNetLarge" - argspec: "args=[\'input_shape\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "NASNetMobile" - argspec: "args=[\'input_shape\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX002" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx002\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX004" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx004\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX006" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx006\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX008" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx008\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX016" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx016\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX032" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx032\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX040" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx040\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX064" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx064\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX080" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx080\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX120" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx120\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX160" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx160\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX320" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx320\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY002" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety002\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY004" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety004\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY006" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety006\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY008" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety008\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY016" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety016\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY032" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety032\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY040" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety040\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY064" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety064\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY080" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety080\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY120" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety120\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY160" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety160\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY320" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety320\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ResNet101" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "ResNet101V2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ResNet152" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "ResNet152V2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ResNet50" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "ResNet50V2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ResNetRS101" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS152" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS200" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS270" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS350" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS420" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS50" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "VGG16" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "VGG19" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "Xception" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.regnet.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.regnet.pbtxt deleted file mode 100644 index be09c43f820..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.regnet.pbtxt +++ /dev/null @@ -1,107 +0,0 @@ -path: "tensorflow.keras.applications.regnet" -tf_module { - member_method { - name: "RegNetX002" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx002\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX004" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx004\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX006" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx006\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX008" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx008\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX016" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx016\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX032" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx032\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX040" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx040\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX064" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx064\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX080" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx080\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX120" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx120\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX160" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx160\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetX320" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnetx320\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY002" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety002\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY004" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety004\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY006" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety006\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY008" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety008\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY016" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety016\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY032" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety032\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY040" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety040\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY064" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety064\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY080" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety080\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY120" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety120\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY160" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety160\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "RegNetY320" - argspec: "args=[\'model_name\', \'include_top\', \'include_preprocessing\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'regnety320\', \'True\', \'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.resnet.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.resnet.pbtxt deleted file mode 100644 index fa450325245..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.resnet.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.applications.resnet" -tf_module { - member_method { - name: "ResNet101" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "ResNet152" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "ResNet50" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.resnet50.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.resnet50.pbtxt deleted file mode 100644 index 33f33e4c5d8..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.resnet50.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.resnet50" -tf_module { - member_method { - name: "ResNet50" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.resnet_rs.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.resnet_rs.pbtxt deleted file mode 100644 index c76a617ae4b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.resnet_rs.pbtxt +++ /dev/null @@ -1,39 +0,0 @@ -path: "tensorflow.keras.applications.resnet_rs" -tf_module { - member_method { - name: "ResNetRS101" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS152" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS200" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS270" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS350" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS420" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "ResNetRS50" - argspec: "args=[\'include_top\', \'weights\', \'classes\', \'input_shape\', \'input_tensor\', \'pooling\', \'classifier_activation\', \'include_preprocessing\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'1000\', \'None\', \'None\', \'None\', \'softmax\', \'True\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.resnet_v2.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.resnet_v2.pbtxt deleted file mode 100644 index 87f76e1046e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.resnet_v2.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.applications.resnet_v2" -tf_module { - member_method { - name: "ResNet101V2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ResNet152V2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "ResNet50V2" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.vgg16.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.vgg16.pbtxt deleted file mode 100644 index b50587e5bd2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.vgg16.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.vgg16" -tf_module { - member_method { - name: "VGG16" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.vgg19.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.vgg19.pbtxt deleted file mode 100644 index 1caf84dcb51..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.vgg19.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.vgg19" -tf_module { - member_method { - name: "VGG19" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.applications.xception.pbtxt b/keras/api/golden/v2/tensorflow.keras.applications.xception.pbtxt deleted file mode 100644 index 3c1b861d852..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.applications.xception.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.applications.xception" -tf_module { - member_method { - name: "Xception" - argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], " - } - member_method { - name: "decode_predictions" - argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "preprocess_input" - argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.backend.experimental.pbtxt b/keras/api/golden/v2/tensorflow.keras.backend.experimental.pbtxt deleted file mode 100644 index eb015a5c188..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.backend.experimental.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.backend.experimental" -tf_module { - member_method { - name: "disable_tf_random_generator" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "enable_tf_random_generator" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "is_tf_random_generator_enabled" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.backend.pbtxt b/keras/api/golden/v2/tensorflow.keras.backend.pbtxt deleted file mode 100644 index 6e29da804c4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.backend.pbtxt +++ /dev/null @@ -1,595 +0,0 @@ -path: "tensorflow.keras.backend" -tf_module { - member { - name: "experimental" - mtype: "" - } - member_method { - name: "abs" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "all" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "any" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "arange" - argspec: "args=[\'start\', \'stop\', \'step\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'int32\'], " - } - member_method { - name: "argmax" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "argmin" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "backend" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "batch_dot" - argspec: "args=[\'x\', \'y\', \'axes\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "batch_flatten" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "batch_get_value" - argspec: "args=[\'tensors\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "batch_normalization" - argspec: "args=[\'x\', \'mean\', \'var\', \'beta\', \'gamma\', \'axis\', \'epsilon\'], varargs=None, keywords=None, defaults=[\'-1\', \'0.001\'], " - } - member_method { - name: "batch_set_value" - argspec: "args=[\'tuples\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "bias_add" - argspec: "args=[\'x\', \'bias\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "binary_crossentropy" - argspec: "args=[\'target\', \'output\', \'from_logits\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "binary_focal_crossentropy" - argspec: "args=[\'target\', \'output\', \'apply_class_balancing\', \'alpha\', \'gamma\', \'from_logits\'], varargs=None, keywords=None, defaults=[\'False\', \'0.25\', \'2.0\', \'False\'], " - } - member_method { - name: "cast" - argspec: "args=[\'x\', \'dtype\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "cast_to_floatx" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "categorical_crossentropy" - argspec: "args=[\'target\', \'output\', \'from_logits\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'-1\'], " - } - member_method { - name: "categorical_focal_crossentropy" - argspec: "args=[\'target\', \'output\', \'alpha\', \'gamma\', \'from_logits\', \'axis\'], varargs=None, keywords=None, defaults=[\'0.25\', \'2.0\', \'False\', \'-1\'], " - } - member_method { - name: "clear_session" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "clip" - argspec: "args=[\'x\', \'min_value\', \'max_value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "concatenate" - argspec: "args=[\'tensors\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "constant" - argspec: "args=[\'value\', \'dtype\', \'shape\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "conv1d" - argspec: "args=[\'x\', \'kernel\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\'], varargs=None, keywords=None, defaults=[\'1\', \'valid\', \'None\', \'1\'], " - } - member_method { - name: "conv2d" - argspec: "args=[\'x\', \'kernel\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\'], varargs=None, keywords=None, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\'], " - } - member_method { - name: "conv2d_transpose" - argspec: "args=[\'x\', \'kernel\', \'output_shape\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\'], varargs=None, keywords=None, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\'], " - } - member_method { - name: "conv3d" - argspec: "args=[\'x\', \'kernel\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\'], varargs=None, keywords=None, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'(1, 1, 1)\'], " - } - member_method { - name: "cos" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "ctc_batch_cost" - argspec: "args=[\'y_true\', \'y_pred\', \'input_length\', \'label_length\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "ctc_decode" - argspec: "args=[\'y_pred\', \'input_length\', \'greedy\', \'beam_width\', \'top_paths\'], varargs=None, keywords=None, defaults=[\'True\', \'100\', \'1\'], " - } - member_method { - name: "ctc_label_dense_to_sparse" - argspec: "args=[\'labels\', \'label_lengths\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "cumprod" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "cumsum" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "depthwise_conv2d" - argspec: "args=[\'x\', \'depthwise_kernel\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\'], varargs=None, keywords=None, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\'], " - } - member_method { - name: "dot" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "dropout" - argspec: "args=[\'x\', \'level\', \'noise_shape\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "dtype" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "elu" - argspec: "args=[\'x\', \'alpha\'], varargs=None, keywords=None, defaults=[\'1.0\'], " - } - member_method { - name: "epsilon" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "equal" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "eval" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "exp" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "expand_dims" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "eye" - argspec: "args=[\'size\', \'dtype\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "flatten" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "floatx" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "foldl" - argspec: "args=[\'fn\', \'elems\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "foldr" - argspec: "args=[\'fn\', \'elems\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "function" - argspec: "args=[\'inputs\', \'outputs\', \'updates\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "gather" - argspec: "args=[\'reference\', \'indices\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_uid" - argspec: "args=[\'prefix\'], varargs=None, keywords=None, defaults=[\'\'], " - } - member_method { - name: "get_value" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "gradients" - argspec: "args=[\'loss\', \'variables\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "greater" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "greater_equal" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "hard_sigmoid" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "image_data_format" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "in_test_phase" - argspec: "args=[\'x\', \'alt\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "in_top_k" - argspec: "args=[\'predictions\', \'targets\', \'k\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "in_train_phase" - argspec: "args=[\'x\', \'alt\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "int_shape" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "is_keras_tensor" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "is_sparse" - argspec: "args=[\'tensor\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "l2_normalize" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "learning_phase" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "learning_phase_scope" - argspec: "args=[\'value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "less" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "less_equal" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "local_conv1d" - argspec: "args=[\'inputs\', \'kernel\', \'kernel_size\', \'strides\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "local_conv2d" - argspec: "args=[\'inputs\', \'kernel\', \'kernel_size\', \'strides\', \'output_shape\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "log" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "manual_variable_initialization" - argspec: "args=[\'value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "map_fn" - argspec: "args=[\'fn\', \'elems\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "max" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "maximum" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "min" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "minimum" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "moving_average_update" - argspec: "args=[\'x\', \'value\', \'momentum\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "name_scope" - argspec: "args=[\'name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "ndim" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "normalize_batch_in_training" - argspec: "args=[\'x\', \'gamma\', \'beta\', \'reduction_axes\', \'epsilon\'], varargs=None, keywords=None, defaults=[\'0.001\'], " - } - member_method { - name: "not_equal" - argspec: "args=[\'x\', \'y\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "one_hot" - argspec: "args=[\'indices\', \'num_classes\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "ones" - argspec: "args=[\'shape\', \'dtype\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "ones_like" - argspec: "args=[\'x\', \'dtype\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "permute_dimensions" - argspec: "args=[\'x\', \'pattern\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "placeholder" - argspec: "args=[\'shape\', \'ndim\', \'dtype\', \'sparse\', \'name\', \'ragged\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'None\', \'False\'], " - } - member_method { - name: "pool2d" - argspec: "args=[\'x\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'pool_mode\'], varargs=None, keywords=None, defaults=[\'(1, 1)\', \'valid\', \'None\', \'max\'], " - } - member_method { - name: "pool3d" - argspec: "args=[\'x\', \'pool_size\', \'strides\', \'padding\', \'data_format\', \'pool_mode\'], varargs=None, keywords=None, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'max\'], " - } - member_method { - name: "pow" - argspec: "args=[\'x\', \'a\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "print_tensor" - argspec: "args=[\'x\', \'message\', \'summarize\'], varargs=None, keywords=None, defaults=[\'\', \'3\'], " - } - member_method { - name: "prod" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "random_bernoulli" - argspec: "args=[\'shape\', \'p\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'None\'], " - } - member_method { - name: "random_binomial" - argspec: "args=[\'shape\', \'p\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'None\'], " - } - member_method { - name: "random_normal" - argspec: "args=[\'shape\', \'mean\', \'stddev\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'None\', \'None\'], " - } - member_method { - name: "random_normal_variable" - argspec: "args=[\'shape\', \'mean\', \'scale\', \'dtype\', \'name\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "random_uniform" - argspec: "args=[\'shape\', \'minval\', \'maxval\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'None\', \'None\'], " - } - member_method { - name: "random_uniform_variable" - argspec: "args=[\'shape\', \'low\', \'high\', \'dtype\', \'name\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "relu" - argspec: "args=[\'x\', \'alpha\', \'max_value\', \'threshold\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'0.0\'], " - } - member_method { - name: "repeat" - argspec: "args=[\'x\', \'n\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "repeat_elements" - argspec: "args=[\'x\', \'rep\', \'axis\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_uids" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reshape" - argspec: "args=[\'x\', \'shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "resize_images" - argspec: "args=[\'x\', \'height_factor\', \'width_factor\', \'data_format\', \'interpolation\'], varargs=None, keywords=None, defaults=[\'nearest\'], " - } - member_method { - name: "resize_volumes" - argspec: "args=[\'x\', \'depth_factor\', \'height_factor\', \'width_factor\', \'data_format\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reverse" - argspec: "args=[\'x\', \'axes\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "rnn" - argspec: "args=[\'step_function\', \'inputs\', \'initial_states\', \'go_backwards\', \'mask\', \'constants\', \'unroll\', \'input_length\', \'time_major\', \'zero_output_for_mask\', \'return_all_outputs\'], varargs=None, keywords=None, defaults=[\'False\', \'None\', \'None\', \'False\', \'None\', \'False\', \'False\', \'True\'], " - } - member_method { - name: "round" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "separable_conv2d" - argspec: "args=[\'x\', \'depthwise_kernel\', \'pointwise_kernel\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\'], varargs=None, keywords=None, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\'], " - } - member_method { - name: "set_epsilon" - argspec: "args=[\'value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_floatx" - argspec: "args=[\'value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_image_data_format" - argspec: "args=[\'data_format\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_learning_phase" - argspec: "args=[\'value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_value" - argspec: "args=[\'x\', \'value\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "shape" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sigmoid" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sign" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sin" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "softmax" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "softplus" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "softsign" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sparse_categorical_crossentropy" - argspec: "args=[\'target\', \'output\', \'from_logits\', \'axis\', \'ignore_class\'], varargs=None, keywords=None, defaults=[\'False\', \'-1\', \'None\'], " - } - member_method { - name: "spatial_2d_padding" - argspec: "args=[\'x\', \'padding\', \'data_format\'], varargs=None, keywords=None, defaults=[\'((1, 1), (1, 1))\', \'None\'], " - } - member_method { - name: "spatial_3d_padding" - argspec: "args=[\'x\', \'padding\', \'data_format\'], varargs=None, keywords=None, defaults=[\'((1, 1), (1, 1), (1, 1))\', \'None\'], " - } - member_method { - name: "sqrt" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "square" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "squeeze" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "stack" - argspec: "args=[\'x\', \'axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "std" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "stop_gradient" - argspec: "args=[\'variables\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sum" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "switch" - argspec: "args=[\'condition\', \'then_expression\', \'else_expression\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "tanh" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "temporal_padding" - argspec: "args=[\'x\', \'padding\'], varargs=None, keywords=None, defaults=[\'(1, 1)\'], " - } - member_method { - name: "tile" - argspec: "args=[\'x\', \'n\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_dense" - argspec: "args=[\'tensor\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "transpose" - argspec: "args=[\'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "truncated_normal" - argspec: "args=[\'shape\', \'mean\', \'stddev\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'None\', \'None\'], " - } - member_method { - name: "update" - argspec: "args=[\'x\', \'new_x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_add" - argspec: "args=[\'x\', \'increment\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_sub" - argspec: "args=[\'x\', \'decrement\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "var" - argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "variable" - argspec: "args=[\'value\', \'dtype\', \'name\', \'constraint\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "zeros" - argspec: "args=[\'shape\', \'dtype\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "zeros_like" - argspec: "args=[\'x\', \'dtype\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-backup-and-restore.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-backup-and-restore.pbtxt deleted file mode 100644 index ea38be4adcd..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-backup-and-restore.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.BackupAndRestore" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'backup_dir\', \'save_freq\', \'delete_checkpoint\', \'save_before_preemption\'], varargs=None, keywords=None, defaults=[\'epoch\', \'True\', \'False\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-base-logger.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-base-logger.pbtxt deleted file mode 100644 index 3a8597db7bf..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-base-logger.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.BaseLogger" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'stateful_metrics\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-c-s-v-logger.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-c-s-v-logger.pbtxt deleted file mode 100644 index fbeada72976..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-c-s-v-logger.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.CSVLogger" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filename\', \'separator\', \'append\'], varargs=None, keywords=None, defaults=[\',\', \'False\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-callback-list.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-callback-list.pbtxt deleted file mode 100644 index d3b5171b22c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-callback-list.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.callbacks.CallbackList" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'callbacks\', \'add_history\', \'add_progbar\', \'model\'], varargs=None, keywords=params, defaults=[\'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "append" - argspec: "args=[\'self\', \'callback\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_logs" - argspec: "args=[\'self\', \'model\', \'logs\', \'outputs\', \'mode\', \'prefix\'], varargs=None, keywords=None, defaults=[\'\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-callback.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-callback.pbtxt deleted file mode 100644 index faa4541b709..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-callback.pbtxt +++ /dev/null @@ -1,81 +0,0 @@ -path: "tensorflow.keras.callbacks.Callback" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-early-stopping.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-early-stopping.pbtxt deleted file mode 100644 index 2f6f3059b9b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-early-stopping.pbtxt +++ /dev/null @@ -1,86 +0,0 @@ -path: "tensorflow.keras.callbacks.EarlyStopping" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'monitor\', \'min_delta\', \'patience\', \'verbose\', \'mode\', \'baseline\', \'restore_best_weights\', \'start_from_epoch\'], varargs=None, keywords=None, defaults=[\'val_loss\', \'0\', \'0\', \'0\', \'auto\', \'None\', \'False\', \'0\'], " - } - member_method { - name: "get_monitor_value" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-history.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-history.pbtxt deleted file mode 100644 index 379a9f3aa1d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-history.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.History" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-lambda-callback.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-lambda-callback.pbtxt deleted file mode 100644 index 61c47980e73..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-lambda-callback.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.LambdaCallback" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'on_epoch_begin\', \'on_epoch_end\', \'on_batch_begin\', \'on_batch_end\', \'on_train_begin\', \'on_train_end\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-learning-rate-scheduler.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-learning-rate-scheduler.pbtxt deleted file mode 100644 index 02a8faf671e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-learning-rate-scheduler.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.LearningRateScheduler" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'schedule\', \'verbose\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-model-checkpoint.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-model-checkpoint.pbtxt deleted file mode 100644 index e1304433601..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-model-checkpoint.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.ModelCheckpoint" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filepath\', \'monitor\', \'verbose\', \'save_best_only\', \'save_weights_only\', \'mode\', \'save_freq\', \'options\', \'initial_value_threshold\'], varargs=None, keywords=kwargs, defaults=[\'val_loss\', \'0\', \'False\', \'False\', \'auto\', \'epoch\', \'None\', \'None\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-progbar-logger.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-progbar-logger.pbtxt deleted file mode 100644 index e8f92604bb2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-progbar-logger.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.ProgbarLogger" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'count_mode\', \'stateful_metrics\'], varargs=None, keywords=None, defaults=[\'samples\', \'None\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-reduce-l-r-on-plateau.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-reduce-l-r-on-plateau.pbtxt deleted file mode 100644 index a7792b96431..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-reduce-l-r-on-plateau.pbtxt +++ /dev/null @@ -1,86 +0,0 @@ -path: "tensorflow.keras.callbacks.ReduceLROnPlateau" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'monitor\', \'factor\', \'patience\', \'verbose\', \'mode\', \'min_delta\', \'cooldown\', \'min_lr\'], varargs=None, keywords=kwargs, defaults=[\'val_loss\', \'0.1\', \'10\', \'0\', \'auto\', \'0.0001\', \'0\', \'0\'], " - } - member_method { - name: "in_cooldown" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-remote-monitor.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-remote-monitor.pbtxt deleted file mode 100644 index 98552f19de4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-remote-monitor.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.RemoteMonitor" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'root\', \'path\', \'field\', \'headers\', \'send_as_json\'], varargs=None, keywords=None, defaults=[\'http://localhost:9000\', \'/publish/epoch/end/\', \'data\', \'None\', \'False\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-sidecar-evaluator-model-export.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-sidecar-evaluator-model-export.pbtxt deleted file mode 100644 index 0a33bbb4e38..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-sidecar-evaluator-model-export.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.callbacks.SidecarEvaluatorModelExport" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'export_filepath\', \'checkpoint_filepath\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-tensor-board.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-tensor-board.pbtxt deleted file mode 100644 index afde757a3b3..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-tensor-board.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.callbacks.TensorBoard" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'log_dir\', \'histogram_freq\', \'write_graph\', \'write_images\', \'write_steps_per_second\', \'update_freq\', \'profile_batch\', \'embeddings_freq\', \'embeddings_metadata\'], varargs=None, keywords=kwargs, defaults=[\'logs\', \'0\', \'True\', \'False\', \'False\', \'epoch\', \'0\', \'0\', \'None\'], " - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.-terminate-on-na-n.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.-terminate-on-na-n.pbtxt deleted file mode 100644 index 62ccd1ec26b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.-terminate-on-na-n.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.callbacks.TerminateOnNaN" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.experimental.-backup-and-restore.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.experimental.-backup-and-restore.pbtxt deleted file mode 100644 index d7b57d50a99..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.experimental.-backup-and-restore.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.callbacks.experimental.BackupAndRestore" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "on_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_begin" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_predict_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_test_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_begin" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_batch_end" - argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_begin" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "on_train_end" - argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_model" - argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_params" - argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.experimental.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.experimental.pbtxt deleted file mode 100644 index 670df243e9c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.experimental.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.callbacks.experimental" -tf_module { - member { - name: "BackupAndRestore" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.callbacks.pbtxt b/keras/api/golden/v2/tensorflow.keras.callbacks.pbtxt deleted file mode 100644 index 6b162ce1e34..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.callbacks.pbtxt +++ /dev/null @@ -1,71 +0,0 @@ -path: "tensorflow.keras.callbacks" -tf_module { - member { - name: "BackupAndRestore" - mtype: "" - } - member { - name: "BaseLogger" - mtype: "" - } - member { - name: "CSVLogger" - mtype: "" - } - member { - name: "Callback" - mtype: "" - } - member { - name: "CallbackList" - mtype: "" - } - member { - name: "EarlyStopping" - mtype: "" - } - member { - name: "History" - mtype: "" - } - member { - name: "LambdaCallback" - mtype: "" - } - member { - name: "LearningRateScheduler" - mtype: "" - } - member { - name: "ModelCheckpoint" - mtype: "" - } - member { - name: "ProgbarLogger" - mtype: "" - } - member { - name: "ReduceLROnPlateau" - mtype: "" - } - member { - name: "RemoteMonitor" - mtype: "" - } - member { - name: "SidecarEvaluatorModelExport" - mtype: "" - } - member { - name: "TensorBoard" - mtype: "" - } - member { - name: "TerminateOnNaN" - mtype: "" - } - member { - name: "experimental" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.constraints.-constraint.pbtxt b/keras/api/golden/v2/tensorflow.keras.constraints.-constraint.pbtxt deleted file mode 100644 index ebce5a630d4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.constraints.-constraint.pbtxt +++ /dev/null @@ -1,16 +0,0 @@ -path: "tensorflow.keras.constraints.Constraint" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.constraints.-max-norm.pbtxt b/keras/api/golden/v2/tensorflow.keras.constraints.-max-norm.pbtxt deleted file mode 100644 index 751357a36cb..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.constraints.-max-norm.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.constraints.MaxNorm" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'max_value\', \'axis\'], varargs=None, keywords=None, defaults=[\'2\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.constraints.-min-max-norm.pbtxt b/keras/api/golden/v2/tensorflow.keras.constraints.-min-max-norm.pbtxt deleted file mode 100644 index f385c813ca5..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.constraints.-min-max-norm.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.constraints.MinMaxNorm" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'min_value\', \'max_value\', \'rate\', \'axis\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'1.0\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.constraints.-non-neg.pbtxt b/keras/api/golden/v2/tensorflow.keras.constraints.-non-neg.pbtxt deleted file mode 100644 index ab3251209ef..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.constraints.-non-neg.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.constraints.NonNeg" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.constraints.-radial-constraint.pbtxt b/keras/api/golden/v2/tensorflow.keras.constraints.-radial-constraint.pbtxt deleted file mode 100644 index 54e6adf3e71..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.constraints.-radial-constraint.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.constraints.RadialConstraint" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.constraints.-unit-norm.pbtxt b/keras/api/golden/v2/tensorflow.keras.constraints.-unit-norm.pbtxt deleted file mode 100644 index b821bbb8acc..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.constraints.-unit-norm.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.constraints.UnitNorm" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.constraints.max_norm.pbtxt b/keras/api/golden/v2/tensorflow.keras.constraints.max_norm.pbtxt deleted file mode 100644 index 42aeaf7e0f0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.constraints.max_norm.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.constraints.max_norm" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'max_value\', \'axis\'], varargs=None, keywords=None, defaults=[\'2\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.constraints.min_max_norm.pbtxt b/keras/api/golden/v2/tensorflow.keras.constraints.min_max_norm.pbtxt deleted file mode 100644 index 47ab0d1105b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.constraints.min_max_norm.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.constraints.min_max_norm" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'min_value\', \'max_value\', \'rate\', \'axis\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'1.0\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.constraints.non_neg.pbtxt b/keras/api/golden/v2/tensorflow.keras.constraints.non_neg.pbtxt deleted file mode 100644 index 0a8c2315310..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.constraints.non_neg.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.constraints.non_neg" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.constraints.pbtxt b/keras/api/golden/v2/tensorflow.keras.constraints.pbtxt deleted file mode 100644 index be3658a1222..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.constraints.pbtxt +++ /dev/null @@ -1,59 +0,0 @@ -path: "tensorflow.keras.constraints" -tf_module { - member { - name: "Constraint" - mtype: "" - } - member { - name: "MaxNorm" - mtype: "" - } - member { - name: "MinMaxNorm" - mtype: "" - } - member { - name: "NonNeg" - mtype: "" - } - member { - name: "RadialConstraint" - mtype: "" - } - member { - name: "UnitNorm" - mtype: "" - } - member { - name: "max_norm" - mtype: "" - } - member { - name: "min_max_norm" - mtype: "" - } - member { - name: "non_neg" - mtype: "" - } - member { - name: "radial_constraint" - mtype: "" - } - member { - name: "unit_norm" - mtype: "" - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'constraint\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.constraints.radial_constraint.pbtxt b/keras/api/golden/v2/tensorflow.keras.constraints.radial_constraint.pbtxt deleted file mode 100644 index 78d401b280f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.constraints.radial_constraint.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.constraints.radial_constraint" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.constraints.unit_norm.pbtxt b/keras/api/golden/v2/tensorflow.keras.constraints.unit_norm.pbtxt deleted file mode 100644 index 137cb505e73..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.constraints.unit_norm.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.constraints.unit_norm" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.datasets.boston_housing.pbtxt b/keras/api/golden/v2/tensorflow.keras.datasets.boston_housing.pbtxt deleted file mode 100644 index bda31751d42..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.datasets.boston_housing.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.datasets.boston_housing" -tf_module { - member_method { - name: "load_data" - argspec: "args=[\'path\', \'test_split\', \'seed\'], varargs=None, keywords=None, defaults=[\'boston_housing.npz\', \'0.2\', \'113\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.datasets.cifar10.pbtxt b/keras/api/golden/v2/tensorflow.keras.datasets.cifar10.pbtxt deleted file mode 100644 index 8a5142f793d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.datasets.cifar10.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.datasets.cifar10" -tf_module { - member_method { - name: "load_data" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.datasets.cifar100.pbtxt b/keras/api/golden/v2/tensorflow.keras.datasets.cifar100.pbtxt deleted file mode 100644 index 16f184eeb5e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.datasets.cifar100.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.datasets.cifar100" -tf_module { - member_method { - name: "load_data" - argspec: "args=[\'label_mode\'], varargs=None, keywords=None, defaults=[\'fine\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.datasets.fashion_mnist.pbtxt b/keras/api/golden/v2/tensorflow.keras.datasets.fashion_mnist.pbtxt deleted file mode 100644 index a0e14356fa5..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.datasets.fashion_mnist.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.datasets.fashion_mnist" -tf_module { - member_method { - name: "load_data" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.datasets.imdb.pbtxt b/keras/api/golden/v2/tensorflow.keras.datasets.imdb.pbtxt deleted file mode 100644 index ff962876b66..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.datasets.imdb.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.datasets.imdb" -tf_module { - member_method { - name: "get_word_index" - argspec: "args=[\'path\'], varargs=None, keywords=None, defaults=[\'imdb_word_index.json\'], " - } - member_method { - name: "load_data" - argspec: "args=[\'path\', \'num_words\', \'skip_top\', \'maxlen\', \'seed\', \'start_char\', \'oov_char\', \'index_from\'], varargs=None, keywords=kwargs, defaults=[\'imdb.npz\', \'None\', \'0\', \'None\', \'113\', \'1\', \'2\', \'3\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.datasets.mnist.pbtxt b/keras/api/golden/v2/tensorflow.keras.datasets.mnist.pbtxt deleted file mode 100644 index 530bb075506..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.datasets.mnist.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.datasets.mnist" -tf_module { - member_method { - name: "load_data" - argspec: "args=[\'path\'], varargs=None, keywords=None, defaults=[\'mnist.npz\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.datasets.pbtxt b/keras/api/golden/v2/tensorflow.keras.datasets.pbtxt deleted file mode 100644 index 36e3aafbe4d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.datasets.pbtxt +++ /dev/null @@ -1,31 +0,0 @@ -path: "tensorflow.keras.datasets" -tf_module { - member { - name: "boston_housing" - mtype: "" - } - member { - name: "cifar10" - mtype: "" - } - member { - name: "cifar100" - mtype: "" - } - member { - name: "fashion_mnist" - mtype: "" - } - member { - name: "imdb" - mtype: "" - } - member { - name: "mnist" - mtype: "" - } - member { - name: "reuters" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.datasets.reuters.pbtxt b/keras/api/golden/v2/tensorflow.keras.datasets.reuters.pbtxt deleted file mode 100644 index 6f6446eb429..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.datasets.reuters.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.datasets.reuters" -tf_module { - member_method { - name: "get_label_names" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_word_index" - argspec: "args=[\'path\'], varargs=None, keywords=None, defaults=[\'reuters_word_index.json\'], " - } - member_method { - name: "load_data" - argspec: "args=[\'path\', \'num_words\', \'skip_top\', \'maxlen\', \'test_split\', \'seed\', \'start_char\', \'oov_char\', \'index_from\'], varargs=None, keywords=kwargs, defaults=[\'reuters.npz\', \'None\', \'0\', \'None\', \'0.2\', \'113\', \'1\', \'2\', \'3\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.-layout-map.pbtxt b/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.-layout-map.pbtxt deleted file mode 100644 index 15402cd0214..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.-layout-map.pbtxt +++ /dev/null @@ -1,53 +0,0 @@ -path: "tensorflow.keras.dtensor.experimental.LayoutMap" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mesh\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "clear" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get" - argspec: "args=[\'self\', \'key\', \'default\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_default_mesh" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "items" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "keys" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "pop" - argspec: "args=[\'self\', \'key\', \'default\'], varargs=None, keywords=None, defaults=[\'\'], " - } - member_method { - name: "popitem" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "scope" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "setdefault" - argspec: "args=[\'self\', \'key\', \'default\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "update" - argspec: "args=[\'self\', \'other\'], varargs=None, keywords=kwds, defaults=[\'()\'], " - } - member_method { - name: "values" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-adadelta.pbtxt b/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-adadelta.pbtxt deleted file mode 100644 index 1bde9e5882c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-adadelta.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.dtensor.experimental.optimizers.Adadelta" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'epsilon\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.95\', \'1e-07\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Adadelta\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'grad\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-adagrad.pbtxt b/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-adagrad.pbtxt deleted file mode 100644 index 792f6724080..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-adagrad.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.dtensor.experimental.optimizers.Adagrad" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'initial_accumulator_value\', \'epsilon\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.1\', \'1e-07\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Adagrad\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'grad\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-adam-w.pbtxt b/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-adam-w.pbtxt deleted file mode 100644 index 2e5c929d6d2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-adam-w.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.dtensor.experimental.optimizers.AdamW" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'weight_decay\', \'beta_1\', \'beta_2\', \'epsilon\', \'amsgrad\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.004\', \'0.9\', \'0.999\', \'1e-07\', \'False\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'AdamW\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-adam.pbtxt b/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-adam.pbtxt deleted file mode 100644 index 93fe2d44bd9..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-adam.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.dtensor.experimental.optimizers.Adam" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'amsgrad\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'False\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Adam\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-r-m-sprop.pbtxt b/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-r-m-sprop.pbtxt deleted file mode 100644 index 16efcd4fc38..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-r-m-sprop.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.dtensor.experimental.optimizers.RMSprop" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'momentum\', \'epsilon\', \'centered\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.0\', \'1e-07\', \'False\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'100\', \'True\', \'RMSprop\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-s-g-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-s-g-d.pbtxt deleted file mode 100644 index e994213fe41..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.-s-g-d.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.dtensor.experimental.optimizers.SGD" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'momentum\', \'nesterov\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.01\', \'0.0\', \'False\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'SGD\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.pbtxt b/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.pbtxt deleted file mode 100644 index 18bd1acf13e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.optimizers.pbtxt +++ /dev/null @@ -1,27 +0,0 @@ -path: "tensorflow.keras.dtensor.experimental.optimizers" -tf_module { - member { - name: "Adadelta" - mtype: "" - } - member { - name: "Adagrad" - mtype: "" - } - member { - name: "Adam" - mtype: "" - } - member { - name: "AdamW" - mtype: "" - } - member { - name: "RMSprop" - mtype: "" - } - member { - name: "SGD" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.pbtxt b/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.pbtxt deleted file mode 100644 index 20f3bd29b56..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.dtensor.experimental.pbtxt +++ /dev/null @@ -1,15 +0,0 @@ -path: "tensorflow.keras.dtensor.experimental" -tf_module { - member { - name: "LayoutMap" - mtype: "" - } - member { - name: "optimizers" - mtype: "" - } - member_method { - name: "layout_map_scope" - argspec: "args=[], varargs=args, keywords=kwds, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.dtensor.pbtxt b/keras/api/golden/v2/tensorflow.keras.dtensor.pbtxt deleted file mode 100644 index bf8cb3b63b8..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.dtensor.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.dtensor" -tf_module { - member { - name: "experimental" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.estimator.pbtxt b/keras/api/golden/v2/tensorflow.keras.estimator.pbtxt deleted file mode 100644 index 28d62d03936..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.estimator.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.estimator" -tf_module { - member_method { - name: "model_to_estimator" - argspec: "args=[\'keras_model\', \'keras_model_path\', \'custom_objects\', \'model_dir\', \'config\', \'checkpoint_format\', \'metric_names_map\', \'export_outputs\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'checkpoint\', \'None\', \'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.experimental.-cosine-decay-restarts.pbtxt b/keras/api/golden/v2/tensorflow.keras.experimental.-cosine-decay-restarts.pbtxt deleted file mode 100644 index 4e15111ec7c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.experimental.-cosine-decay-restarts.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.experimental.CosineDecayRestarts" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'first_decay_steps\', \'t_mul\', \'m_mul\', \'alpha\', \'name\'], varargs=None, keywords=None, defaults=[\'2.0\', \'1.0\', \'0.0\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.experimental.-cosine-decay.pbtxt b/keras/api/golden/v2/tensorflow.keras.experimental.-cosine-decay.pbtxt deleted file mode 100644 index 81bdedcb4e2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.experimental.-cosine-decay.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.experimental.CosineDecay" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'alpha\', \'name\', \'warmup_target\', \'warmup_steps\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.experimental.-linear-model.pbtxt b/keras/api/golden/v2/tensorflow.keras.experimental.-linear-model.pbtxt deleted file mode 100644 index a77978693f9..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.experimental.-linear-model.pbtxt +++ /dev/null @@ -1,404 +0,0 @@ -path: "tensorflow.keras.experimental.LinearModel" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'None\', \'True\', \'zeros\', \'zeros\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.experimental.-sequence-features.pbtxt b/keras/api/golden/v2/tensorflow.keras.experimental.-sequence-features.pbtxt deleted file mode 100644 index e87a1ec3ddc..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.experimental.-sequence-features.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.experimental.SequenceFeatures" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'feature_columns\', \'trainable\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'_\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'features\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.experimental.-sidecar-evaluator.pbtxt b/keras/api/golden/v2/tensorflow.keras.experimental.-sidecar-evaluator.pbtxt deleted file mode 100644 index 9ca14da2e73..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.experimental.-sidecar-evaluator.pbtxt +++ /dev/null @@ -1,14 +0,0 @@ -path: "tensorflow.keras.experimental.SidecarEvaluator" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "start" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.experimental.-wide-deep-model.pbtxt b/keras/api/golden/v2/tensorflow.keras.experimental.-wide-deep-model.pbtxt deleted file mode 100644 index 3fd35725641..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.experimental.-wide-deep-model.pbtxt +++ /dev/null @@ -1,404 +0,0 @@ -path: "tensorflow.keras.experimental.WideDeepModel" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'linear_model\', \'dnn_model\', \'activation\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.experimental.pbtxt b/keras/api/golden/v2/tensorflow.keras.experimental.pbtxt deleted file mode 100644 index a7107f7feb7..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.experimental.pbtxt +++ /dev/null @@ -1,27 +0,0 @@ -path: "tensorflow.keras.experimental" -tf_module { - member { - name: "CosineDecay" - mtype: "" - } - member { - name: "CosineDecayRestarts" - mtype: "" - } - member { - name: "LinearModel" - mtype: "" - } - member { - name: "SequenceFeatures" - mtype: "" - } - member { - name: "SidecarEvaluator" - mtype: "" - } - member { - name: "WideDeepModel" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.export.-export-archive.pbtxt b/keras/api/golden/v2/tensorflow.keras.export.-export-archive.pbtxt deleted file mode 100644 index bd1c5aac7d0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.export.-export-archive.pbtxt +++ /dev/null @@ -1,27 +0,0 @@ -path: "tensorflow.keras.export.ExportArchive" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_endpoint" - argspec: "args=[\'self\', \'name\', \'fn\', \'input_signature\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "add_variable_collection" - argspec: "args=[\'self\', \'name\', \'variables\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "track" - argspec: "args=[\'self\', \'layer\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "write_out" - argspec: "args=[\'self\', \'filepath\', \'options\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.export.pbtxt b/keras/api/golden/v2/tensorflow.keras.export.pbtxt deleted file mode 100644 index ee81034d610..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.export.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.export" -tf_module { - member { - name: "ExportArchive" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.google.pbtxt b/keras/api/golden/v2/tensorflow.keras.google.pbtxt deleted file mode 100644 index 5440371f49c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.google.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.google" -tf_module { - member_method { - name: "load_model" - argspec: "args=[\'filepath\'], varargs=None, keywords=load_model_kwargs, defaults=None" - } - member_method { - name: "load_model_from_cns" - argspec: "args=[\'filepath\', \'custom_objects\', \'compile\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "load_weights" - argspec: "args=[\'model\', \'filepath\'], varargs=None, keywords=load_weights_kwargs, defaults=None" - } - member_method { - name: "save_model" - argspec: "args=[\'model\', \'filepath\', \'overwrite\'], varargs=None, keywords=saved_model_kwargs, defaults=[\'False\'], " - } - member_method { - name: "save_model_to_cns" - argspec: "args=[\'model\', \'filepath\', \'overwrite\', \'include_optimizer\'], varargs=None, keywords=saved_model_kwargs, defaults=[\'True\', \'True\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-constant.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-constant.pbtxt deleted file mode 100644 index 026836fe460..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-constant.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.Constant" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'value\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-glorot-normal.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-glorot-normal.pbtxt deleted file mode 100644 index 570cb6015a7..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-glorot-normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.GlorotNormal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-glorot-uniform.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-glorot-uniform.pbtxt deleted file mode 100644 index 4f6b5719e75..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-glorot-uniform.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.GlorotUniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-he-normal.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-he-normal.pbtxt deleted file mode 100644 index af6f28ad7bd..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-he-normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.HeNormal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-he-uniform.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-he-uniform.pbtxt deleted file mode 100644 index a3ae35b25e8..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-he-uniform.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.HeUniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-identity.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-identity.pbtxt deleted file mode 100644 index 11d9180d0e4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-identity.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.Identity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'gain\'], varargs=None, keywords=None, defaults=[\'1.0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-initializer.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-initializer.pbtxt deleted file mode 100644 index 848e5d35265..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-initializer.pbtxt +++ /dev/null @@ -1,16 +0,0 @@ -path: "tensorflow.keras.initializers.Initializer" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-lecun-normal.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-lecun-normal.pbtxt deleted file mode 100644 index 1a3b20240c3..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-lecun-normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.LecunNormal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-lecun-uniform.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-lecun-uniform.pbtxt deleted file mode 100644 index cb09e896305..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-lecun-uniform.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.LecunUniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-ones.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-ones.pbtxt deleted file mode 100644 index 78065e847a2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-ones.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.initializers.Ones" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-orthogonal.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-orthogonal.pbtxt deleted file mode 100644 index 1623468564f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-orthogonal.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.Orthogonal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'gain\', \'seed\'], varargs=None, keywords=None, defaults=[\'1.0\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-random-normal.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-random-normal.pbtxt deleted file mode 100644 index d56e2e30d60..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-random-normal.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.RandomNormal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'0.05\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-random-uniform.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-random-uniform.pbtxt deleted file mode 100644 index a80f1ea48f5..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-random-uniform.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.RandomUniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'minval\', \'maxval\', \'seed\'], varargs=None, keywords=None, defaults=[\'-0.05\', \'0.05\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-truncated-normal.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-truncated-normal.pbtxt deleted file mode 100644 index 38c1b18ae58..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-truncated-normal.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.TruncatedNormal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'0.05\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-variance-scaling.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-variance-scaling.pbtxt deleted file mode 100644 index 52b639a1ac2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-variance-scaling.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.VarianceScaling" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'scale\', \'mode\', \'distribution\', \'seed\'], varargs=None, keywords=None, defaults=[\'1.0\', \'fan_in\', \'truncated_normal\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.-zeros.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.-zeros.pbtxt deleted file mode 100644 index 263040949a2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.-zeros.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.initializers.Zeros" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.constant.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.constant.pbtxt deleted file mode 100644 index fedf0b9a178..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.constant.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.constant" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'value\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.glorot_normal.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.glorot_normal.pbtxt deleted file mode 100644 index 35bbb24fa5d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.glorot_normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.glorot_normal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.glorot_uniform.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.glorot_uniform.pbtxt deleted file mode 100644 index 76eb02bbf5b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.glorot_uniform.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.glorot_uniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.he_normal.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.he_normal.pbtxt deleted file mode 100644 index 59ee38972d4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.he_normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.he_normal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.he_uniform.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.he_uniform.pbtxt deleted file mode 100644 index f1b7ce285b2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.he_uniform.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.he_uniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.identity.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.identity.pbtxt deleted file mode 100644 index 6b4b4cee808..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.identity.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.identity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'gain\'], varargs=None, keywords=None, defaults=[\'1.0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.lecun_normal.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.lecun_normal.pbtxt deleted file mode 100644 index e6802630101..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.lecun_normal.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.lecun_normal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.lecun_uniform.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.lecun_uniform.pbtxt deleted file mode 100644 index 1d8f833fcfc..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.lecun_uniform.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.initializers.lecun_uniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.ones.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.ones.pbtxt deleted file mode 100644 index 4b6fccb960f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.ones.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.initializers.ones" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.orthogonal.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.orthogonal.pbtxt deleted file mode 100644 index 5e9e3cad98a..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.orthogonal.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.orthogonal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'gain\', \'seed\'], varargs=None, keywords=None, defaults=[\'1.0\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.pbtxt deleted file mode 100644 index 7c3b8f1f8d4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.pbtxt +++ /dev/null @@ -1,139 +0,0 @@ -path: "tensorflow.keras.initializers" -tf_module { - member { - name: "Constant" - mtype: "" - } - member { - name: "GlorotNormal" - mtype: "" - } - member { - name: "GlorotUniform" - mtype: "" - } - member { - name: "HeNormal" - mtype: "" - } - member { - name: "HeUniform" - mtype: "" - } - member { - name: "Identity" - mtype: "" - } - member { - name: "Initializer" - mtype: "" - } - member { - name: "LecunNormal" - mtype: "" - } - member { - name: "LecunUniform" - mtype: "" - } - member { - name: "Ones" - mtype: "" - } - member { - name: "Orthogonal" - mtype: "" - } - member { - name: "RandomNormal" - mtype: "" - } - member { - name: "RandomUniform" - mtype: "" - } - member { - name: "TruncatedNormal" - mtype: "" - } - member { - name: "VarianceScaling" - mtype: "" - } - member { - name: "Zeros" - mtype: "" - } - member { - name: "constant" - mtype: "" - } - member { - name: "glorot_normal" - mtype: "" - } - member { - name: "glorot_uniform" - mtype: "" - } - member { - name: "he_normal" - mtype: "" - } - member { - name: "he_uniform" - mtype: "" - } - member { - name: "identity" - mtype: "" - } - member { - name: "lecun_normal" - mtype: "" - } - member { - name: "lecun_uniform" - mtype: "" - } - member { - name: "ones" - mtype: "" - } - member { - name: "orthogonal" - mtype: "" - } - member { - name: "random_normal" - mtype: "" - } - member { - name: "random_uniform" - mtype: "" - } - member { - name: "truncated_normal" - mtype: "" - } - member { - name: "variance_scaling" - mtype: "" - } - member { - name: "zeros" - mtype: "" - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'initializer\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.random_normal.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.random_normal.pbtxt deleted file mode 100644 index 15ab42e9557..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.random_normal.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.random_normal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'0.05\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.random_uniform.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.random_uniform.pbtxt deleted file mode 100644 index 3e54ce21b24..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.random_uniform.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.random_uniform" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'minval\', \'maxval\', \'seed\'], varargs=None, keywords=None, defaults=[\'-0.05\', \'0.05\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.truncated_normal.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.truncated_normal.pbtxt deleted file mode 100644 index 65d698377d3..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.truncated_normal.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.truncated_normal" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'0.05\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.variance_scaling.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.variance_scaling.pbtxt deleted file mode 100644 index f598610395f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.variance_scaling.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.initializers.variance_scaling" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'scale\', \'mode\', \'distribution\', \'seed\'], varargs=None, keywords=None, defaults=[\'1.0\', \'fan_in\', \'truncated_normal\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.initializers.zeros.pbtxt b/keras/api/golden/v2/tensorflow.keras.initializers.zeros.pbtxt deleted file mode 100644 index 2c421334244..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.initializers.zeros.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.initializers.zeros" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-abstract-r-n-n-cell.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-abstract-r-n-n-cell.pbtxt deleted file mode 100644 index d7238394f94..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-abstract-r-n-n-cell.pbtxt +++ /dev/null @@ -1,254 +0,0 @@ -path: "tensorflow.keras.layers.AbstractRNNCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "output_size" - mtype: "" - } - member { - name: "state_size" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'trainable\', \'name\', \'dtype\', \'dynamic\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'states\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-activation.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-activation.pbtxt deleted file mode 100644 index d1ee21e3e90..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-activation.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Activation" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'activation\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-activity-regularization.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-activity-regularization.pbtxt deleted file mode 100644 index 8c47a61250e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-activity-regularization.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ActivityRegularization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'l1\', \'l2\'], varargs=None, keywords=kwargs, defaults=[\'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-add.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-add.pbtxt deleted file mode 100644 index 5127ff3dfaf..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-add.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Add" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-additive-attention.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-additive-attention.pbtxt deleted file mode 100644 index 8ed84a4a760..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-additive-attention.pbtxt +++ /dev/null @@ -1,244 +0,0 @@ -path: "tensorflow.keras.layers.AdditiveAttention" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'use_scale\'], varargs=None, keywords=kwargs, defaults=[\'True\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'return_attention_scores\', \'use_causal_mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'False\', \'False\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-alpha-dropout.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-alpha-dropout.pbtxt deleted file mode 100644 index b65b0c1c182..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-alpha-dropout.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AlphaDropout" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'rate\', \'noise_shape\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-attention.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-attention.pbtxt deleted file mode 100644 index c8c3027e9f6..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-attention.pbtxt +++ /dev/null @@ -1,244 +0,0 @@ -path: "tensorflow.keras.layers.Attention" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'use_scale\', \'score_mode\'], varargs=None, keywords=kwargs, defaults=[\'False\', \'dot\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'return_attention_scores\', \'use_causal_mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'False\', \'False\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-average-pooling1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-average-pooling1-d.pbtxt deleted file mode 100644 index d1d687125d8..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-average-pooling1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AveragePooling1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'2\', \'None\', \'valid\', \'channels_last\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-average-pooling2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-average-pooling2-d.pbtxt deleted file mode 100644 index c3c3f70274a..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-average-pooling2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AveragePooling2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-average-pooling3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-average-pooling3-d.pbtxt deleted file mode 100644 index cdd976ab992..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-average-pooling3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AveragePooling3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-average.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-average.pbtxt deleted file mode 100644 index 5552bd55547..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-average.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Average" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-avg-pool1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-avg-pool1-d.pbtxt deleted file mode 100644 index 0fb5acc44d0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-avg-pool1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AvgPool1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'2\', \'None\', \'valid\', \'channels_last\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-avg-pool2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-avg-pool2-d.pbtxt deleted file mode 100644 index b46848ddfc0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-avg-pool2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AvgPool2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-avg-pool3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-avg-pool3-d.pbtxt deleted file mode 100644 index c5f4a9b9b82..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-avg-pool3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.AvgPool3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-batch-normalization.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-batch-normalization.pbtxt deleted file mode 100644 index 0429225779d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-batch-normalization.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.BatchNormalization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\', \'momentum\', \'epsilon\', \'center\', \'scale\', \'beta_initializer\', \'gamma_initializer\', \'moving_mean_initializer\', \'moving_variance_initializer\', \'beta_regularizer\', \'gamma_regularizer\', \'beta_constraint\', \'gamma_constraint\', \'synchronized\'], varargs=None, keywords=kwargs, defaults=[\'-1\', \'0.99\', \'0.001\', \'True\', \'True\', \'zeros\', \'ones\', \'zeros\', \'ones\', \'None\', \'None\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-bidirectional.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-bidirectional.pbtxt deleted file mode 100644 index 4df4de9226d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-bidirectional.pbtxt +++ /dev/null @@ -1,251 +0,0 @@ -path: "tensorflow.keras.layers.Bidirectional" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "constraints" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'layer\', \'merge_mode\', \'weights\', \'backward_layer\'], varargs=None, keywords=kwargs, defaults=[\'concat\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\', \'initial_state\', \'constants\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-category-encoding.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-category-encoding.pbtxt deleted file mode 100644 index dfa0cbabae9..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-category-encoding.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.CategoryEncoding" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_tokens\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'multi_hot\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'count_weights\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-center-crop.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-center-crop.pbtxt deleted file mode 100644 index c4a5aa0e3c9..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-center-crop.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.CenterCrop" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height\', \'width\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-concatenate.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-concatenate.pbtxt deleted file mode 100644 index 229006d485a..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-concatenate.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Concatenate" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\'], varargs=None, keywords=kwargs, defaults=[\'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-conv-l-s-t-m1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-conv-l-s-t-m1-d.pbtxt deleted file mode 100644 index 13da3b785c9..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-conv-l-s-t-m1-d.pbtxt +++ /dev/null @@ -1,341 +0,0 @@ -path: "tensorflow.keras.layers.ConvLSTM1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activation" - mtype: "" - } - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "bias_constraint" - mtype: "" - } - member { - name: "bias_initializer" - mtype: "" - } - member { - name: "bias_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "data_format" - mtype: "" - } - member { - name: "dilation_rate" - mtype: "" - } - member { - name: "dropout" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "filters" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "kernel_constraint" - mtype: "" - } - member { - name: "kernel_initializer" - mtype: "" - } - member { - name: "kernel_regularizer" - mtype: "" - } - member { - name: "kernel_size" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "padding" - mtype: "" - } - member { - name: "recurrent_activation" - mtype: "" - } - member { - name: "recurrent_constraint" - mtype: "" - } - member { - name: "recurrent_dropout" - mtype: "" - } - member { - name: "recurrent_initializer" - mtype: "" - } - member { - name: "recurrent_regularizer" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "strides" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "unit_forget_bias" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "use_bias" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'unit_forget_bias\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'dropout\', \'recurrent_dropout\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'1\', \'tanh\', \'hard_sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'True\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'False\', \'False\', \'False\', \'False\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-conv-l-s-t-m2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-conv-l-s-t-m2-d.pbtxt deleted file mode 100644 index 341d73a2cc9..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-conv-l-s-t-m2-d.pbtxt +++ /dev/null @@ -1,341 +0,0 @@ -path: "tensorflow.keras.layers.ConvLSTM2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activation" - mtype: "" - } - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "bias_constraint" - mtype: "" - } - member { - name: "bias_initializer" - mtype: "" - } - member { - name: "bias_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "data_format" - mtype: "" - } - member { - name: "dilation_rate" - mtype: "" - } - member { - name: "dropout" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "filters" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "kernel_constraint" - mtype: "" - } - member { - name: "kernel_initializer" - mtype: "" - } - member { - name: "kernel_regularizer" - mtype: "" - } - member { - name: "kernel_size" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "padding" - mtype: "" - } - member { - name: "recurrent_activation" - mtype: "" - } - member { - name: "recurrent_constraint" - mtype: "" - } - member { - name: "recurrent_dropout" - mtype: "" - } - member { - name: "recurrent_initializer" - mtype: "" - } - member { - name: "recurrent_regularizer" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "strides" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "unit_forget_bias" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "use_bias" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'unit_forget_bias\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'dropout\', \'recurrent_dropout\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\', \'tanh\', \'hard_sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'True\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'False\', \'False\', \'False\', \'False\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-conv-l-s-t-m3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-conv-l-s-t-m3-d.pbtxt deleted file mode 100644 index e6257107a1d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-conv-l-s-t-m3-d.pbtxt +++ /dev/null @@ -1,341 +0,0 @@ -path: "tensorflow.keras.layers.ConvLSTM3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activation" - mtype: "" - } - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "bias_constraint" - mtype: "" - } - member { - name: "bias_initializer" - mtype: "" - } - member { - name: "bias_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "data_format" - mtype: "" - } - member { - name: "dilation_rate" - mtype: "" - } - member { - name: "dropout" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "filters" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "kernel_constraint" - mtype: "" - } - member { - name: "kernel_initializer" - mtype: "" - } - member { - name: "kernel_regularizer" - mtype: "" - } - member { - name: "kernel_size" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "padding" - mtype: "" - } - member { - name: "recurrent_activation" - mtype: "" - } - member { - name: "recurrent_constraint" - mtype: "" - } - member { - name: "recurrent_dropout" - mtype: "" - } - member { - name: "recurrent_initializer" - mtype: "" - } - member { - name: "recurrent_regularizer" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "strides" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "unit_forget_bias" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "use_bias" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'unit_forget_bias\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'dropout\', \'recurrent_dropout\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'(1, 1, 1)\', \'tanh\', \'hard_sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'True\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'False\', \'False\', \'False\', \'False\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-conv1-d-transpose.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-conv1-d-transpose.pbtxt deleted file mode 100644 index 5b3beb8b16d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-conv1-d-transpose.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.Conv1DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'None\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-conv1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-conv1-d.pbtxt deleted file mode 100644 index 5dff50a6f50..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-conv1-d.pbtxt +++ /dev/null @@ -1,247 +0,0 @@ -path: "tensorflow.keras.layers.Conv1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'groups\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'channels_last\', \'1\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-conv2-d-transpose.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-conv2-d-transpose.pbtxt deleted file mode 100644 index 67f03d1ce30..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-conv2-d-transpose.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.Conv2DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'None\', \'(1, 1)\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-conv2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-conv2-d.pbtxt deleted file mode 100644 index 7413b8674af..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-conv2-d.pbtxt +++ /dev/null @@ -1,247 +0,0 @@ -path: "tensorflow.keras.layers.Conv2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'groups\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-conv3-d-transpose.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-conv3-d-transpose.pbtxt deleted file mode 100644 index c66d6ffb327..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-conv3-d-transpose.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.Conv3DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'None\', \'(1, 1, 1)\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-conv3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-conv3-d.pbtxt deleted file mode 100644 index 5c0774f967b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-conv3-d.pbtxt +++ /dev/null @@ -1,247 +0,0 @@ -path: "tensorflow.keras.layers.Conv3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'groups\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'(1, 1, 1)\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-convolution1-d-transpose.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-convolution1-d-transpose.pbtxt deleted file mode 100644 index 7484ce7ebb5..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-convolution1-d-transpose.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.Convolution1DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'None\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-convolution1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-convolution1-d.pbtxt deleted file mode 100644 index 418e5d2b6bd..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-convolution1-d.pbtxt +++ /dev/null @@ -1,247 +0,0 @@ -path: "tensorflow.keras.layers.Convolution1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'groups\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'channels_last\', \'1\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-convolution2-d-transpose.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-convolution2-d-transpose.pbtxt deleted file mode 100644 index dc4369ec905..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-convolution2-d-transpose.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.Convolution2DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'None\', \'(1, 1)\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-convolution2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-convolution2-d.pbtxt deleted file mode 100644 index 47258f5833e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-convolution2-d.pbtxt +++ /dev/null @@ -1,247 +0,0 @@ -path: "tensorflow.keras.layers.Convolution2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'groups\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-convolution3-d-transpose.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-convolution3-d-transpose.pbtxt deleted file mode 100644 index 8219381a59e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-convolution3-d-transpose.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.Convolution3DTranspose" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'output_padding\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'None\', \'(1, 1, 1)\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-convolution3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-convolution3-d.pbtxt deleted file mode 100644 index b334463bb54..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-convolution3-d.pbtxt +++ /dev/null @@ -1,247 +0,0 @@ -path: "tensorflow.keras.layers.Convolution3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'groups\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'valid\', \'None\', \'(1, 1, 1)\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-cropping1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-cropping1-d.pbtxt deleted file mode 100644 index 1d516ece0c4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-cropping1-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Cropping1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cropping\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-cropping2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-cropping2-d.pbtxt deleted file mode 100644 index 569ff8d2665..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-cropping2-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Cropping2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cropping\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'((0, 0), (0, 0))\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-cropping3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-cropping3-d.pbtxt deleted file mode 100644 index 0d1f2865f73..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-cropping3-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Cropping3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cropping\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'((1, 1), (1, 1), (1, 1))\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-dense-features.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-dense-features.pbtxt deleted file mode 100644 index cb71ae4d69c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-dense-features.pbtxt +++ /dev/null @@ -1,244 +0,0 @@ -path: "tensorflow.keras.layers.DenseFeatures" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'feature_columns\', \'trainable\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'_\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'features\', \'cols_to_output_tensors\', \'training\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-dense.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-dense.pbtxt deleted file mode 100644 index b29161038bc..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-dense.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Dense" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-depthwise-conv1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-depthwise-conv1-d.pbtxt deleted file mode 100644 index 5d3179479b7..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-depthwise-conv1-d.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.DepthwiseConv1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'kernel_size\', \'strides\', \'padding\', \'depth_multiplier\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'1\', \'None\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-depthwise-conv2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-depthwise-conv2-d.pbtxt deleted file mode 100644 index 42f987270aa..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-depthwise-conv2-d.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.DepthwiseConv2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'kernel_size\', \'strides\', \'padding\', \'depth_multiplier\', \'data_format\', \'dilation_rate\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'1\', \'None\', \'(1, 1)\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-discretization.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-discretization.pbtxt deleted file mode 100644 index 5563d613800..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-discretization.pbtxt +++ /dev/null @@ -1,267 +0,0 @@ -path: "tensorflow.keras.layers.Discretization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'bin_boundaries\', \'num_bins\', \'epsilon\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'0.01\', \'int\', \'False\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-dot.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-dot.pbtxt deleted file mode 100644 index a43e3ea8e12..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-dot.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Dot" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axes\', \'normalize\'], varargs=None, keywords=kwargs, defaults=[\'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-dropout.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-dropout.pbtxt deleted file mode 100644 index 0c504b38714..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-dropout.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Dropout" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'rate\', \'noise_shape\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-e-l-u.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-e-l-u.pbtxt deleted file mode 100644 index 338f8569be2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-e-l-u.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ELU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'alpha\'], varargs=None, keywords=kwargs, defaults=[\'1.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-einsum-dense.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-einsum-dense.pbtxt deleted file mode 100644 index 0d878e1b6c7..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-einsum-dense.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.EinsumDense" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'equation\', \'output_shape\', \'activation\', \'bias_axes\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'_\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-embedding.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-embedding.pbtxt deleted file mode 100644 index d0acb29f450..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-embedding.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Embedding" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'input_dim\', \'output_dim\', \'embeddings_initializer\', \'embeddings_regularizer\', \'activity_regularizer\', \'embeddings_constraint\', \'mask_zero\', \'input_length\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'uniform\', \'None\', \'None\', \'None\', \'False\', \'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-flatten.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-flatten.pbtxt deleted file mode 100644 index 26ff207938f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-flatten.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Flatten" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-g-r-u-cell.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-g-r-u-cell.pbtxt deleted file mode 100644 index 0ecc1109cfa..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-g-r-u-cell.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.layers.GRUCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'dropout\', \'recurrent_dropout\', \'reset_after\'], varargs=None, keywords=kwargs, defaults=[\'tanh\', \'sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0.0\', \'0.0\', \'True\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'states\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_recurrent_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_recurrent_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-g-r-u.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-g-r-u.pbtxt deleted file mode 100644 index cabd8b355be..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-g-r-u.pbtxt +++ /dev/null @@ -1,341 +0,0 @@ -path: "tensorflow.keras.layers.GRU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activation" - mtype: "" - } - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "bias_constraint" - mtype: "" - } - member { - name: "bias_initializer" - mtype: "" - } - member { - name: "bias_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dropout" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "implementation" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "kernel_constraint" - mtype: "" - } - member { - name: "kernel_initializer" - mtype: "" - } - member { - name: "kernel_regularizer" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "recurrent_activation" - mtype: "" - } - member { - name: "recurrent_constraint" - mtype: "" - } - member { - name: "recurrent_dropout" - mtype: "" - } - member { - name: "recurrent_initializer" - mtype: "" - } - member { - name: "recurrent_regularizer" - mtype: "" - } - member { - name: "reset_after" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "units" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "use_bias" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'dropout\', \'recurrent_dropout\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'unroll\', \'time_major\', \'reset_after\'], varargs=None, keywords=kwargs, defaults=[\'tanh\', \'sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0.0\', \'0.0\', \'False\', \'False\', \'False\', \'False\', \'False\', \'False\', \'True\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_recurrent_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_recurrent_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-gaussian-dropout.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-gaussian-dropout.pbtxt deleted file mode 100644 index cfafd9e73d2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-gaussian-dropout.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GaussianDropout" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'rate\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-gaussian-noise.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-gaussian-noise.pbtxt deleted file mode 100644 index 03c265aeb58..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-gaussian-noise.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GaussianNoise" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'stddev\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-global-average-pooling1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-global-average-pooling1-d.pbtxt deleted file mode 100644 index aaffbb42402..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-global-average-pooling1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalAveragePooling1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'channels_last\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-global-average-pooling2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-global-average-pooling2-d.pbtxt deleted file mode 100644 index 5a5d6400685..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-global-average-pooling2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalAveragePooling2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-global-average-pooling3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-global-average-pooling3-d.pbtxt deleted file mode 100644 index d211a3a0ac1..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-global-average-pooling3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalAveragePooling3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-global-avg-pool1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-global-avg-pool1-d.pbtxt deleted file mode 100644 index f98c5fe73db..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-global-avg-pool1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalAvgPool1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'channels_last\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-global-avg-pool2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-global-avg-pool2-d.pbtxt deleted file mode 100644 index 93ccb22cc8a..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-global-avg-pool2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalAvgPool2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-global-avg-pool3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-global-avg-pool3-d.pbtxt deleted file mode 100644 index f8a2802d8e5..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-global-avg-pool3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalAvgPool3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pool1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pool1-d.pbtxt deleted file mode 100644 index 0c9d82c9946..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pool1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalMaxPool1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'channels_last\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pool2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pool2-d.pbtxt deleted file mode 100644 index 6aa97dfdc59..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pool2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalMaxPool2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pool3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pool3-d.pbtxt deleted file mode 100644 index 80177870bba..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pool3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalMaxPool3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pooling1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pooling1-d.pbtxt deleted file mode 100644 index 8b9a4c6e7c6..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pooling1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalMaxPooling1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'channels_last\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pooling2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pooling2-d.pbtxt deleted file mode 100644 index 8f4bf30b451..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pooling2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalMaxPooling2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pooling3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pooling3-d.pbtxt deleted file mode 100644 index b165d98428f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-global-max-pooling3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.GlobalMaxPooling3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data_format\', \'keepdims\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-group-normalization.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-group-normalization.pbtxt deleted file mode 100644 index 4a67664ded5..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-group-normalization.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.GroupNormalization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'groups\', \'axis\', \'epsilon\', \'center\', \'scale\', \'beta_initializer\', \'gamma_initializer\', \'beta_regularizer\', \'gamma_regularizer\', \'beta_constraint\', \'gamma_constraint\'], varargs=None, keywords=kwargs, defaults=[\'32\', \'-1\', \'0.001\', \'True\', \'True\', \'zeros\', \'ones\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-hashed-crossing.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-hashed-crossing.pbtxt deleted file mode 100644 index eab9f207e7b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-hashed-crossing.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.HashedCrossing" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_bins\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'int\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shapes\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_specs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-hashing.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-hashing.pbtxt deleted file mode 100644 index ef1b9e56c2b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-hashing.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Hashing" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_bins\', \'mask_value\', \'salt\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'int\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-identity.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-identity.pbtxt deleted file mode 100644 index 3c3e3999658..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-identity.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Identity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'trainable\', \'name\', \'dtype\', \'dynamic\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-input-layer.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-input-layer.pbtxt deleted file mode 100644 index 7564a7f8bc7..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-input-layer.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.InputLayer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'input_shape\', \'batch_size\', \'dtype\', \'input_tensor\', \'sparse\', \'name\', \'ragged\', \'type_spec\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-input-spec.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-input-spec.pbtxt deleted file mode 100644 index 6f146e09d02..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-input-spec.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.layers.InputSpec" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'dtype\', \'shape\', \'ndim\', \'max_ndim\', \'min_ndim\', \'axes\', \'allow_last_axis_squeeze\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'False\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-integer-lookup.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-integer-lookup.pbtxt deleted file mode 100644 index 60e70390c05..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-integer-lookup.pbtxt +++ /dev/null @@ -1,292 +0,0 @@ -path: "tensorflow.keras.layers.IntegerLookup" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'max_tokens\', \'num_oov_indices\', \'mask_token\', \'oov_token\', \'vocabulary\', \'vocabulary_dtype\', \'idf_weights\', \'invert\', \'output_mode\', \'sparse\', \'pad_to_max_tokens\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1\', \'None\', \'-1\', \'None\', \'int64\', \'None\', \'False\', \'int\', \'False\', \'False\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_vocabulary" - argspec: "args=[\'self\', \'include_special_tokens\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_assets" - argspec: "args=[\'self\', \'dir_path\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_assets" - argspec: "args=[\'self\', \'dir_path\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_vocabulary" - argspec: "args=[\'self\', \'vocabulary\', \'idf_weights\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "vocab_size" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "vocabulary_size" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-l-s-t-m-cell.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-l-s-t-m-cell.pbtxt deleted file mode 100644 index d038c1493fc..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-l-s-t-m-cell.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.layers.LSTMCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'unit_forget_bias\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'dropout\', \'recurrent_dropout\'], varargs=None, keywords=kwargs, defaults=[\'tanh\', \'sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'True\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'states\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_recurrent_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_recurrent_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-l-s-t-m.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-l-s-t-m.pbtxt deleted file mode 100644 index 893a35071d8..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-l-s-t-m.pbtxt +++ /dev/null @@ -1,341 +0,0 @@ -path: "tensorflow.keras.layers.LSTM" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activation" - mtype: "" - } - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "bias_constraint" - mtype: "" - } - member { - name: "bias_initializer" - mtype: "" - } - member { - name: "bias_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dropout" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "implementation" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "kernel_constraint" - mtype: "" - } - member { - name: "kernel_initializer" - mtype: "" - } - member { - name: "kernel_regularizer" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "recurrent_activation" - mtype: "" - } - member { - name: "recurrent_constraint" - mtype: "" - } - member { - name: "recurrent_dropout" - mtype: "" - } - member { - name: "recurrent_initializer" - mtype: "" - } - member { - name: "recurrent_regularizer" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "unit_forget_bias" - mtype: "" - } - member { - name: "units" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "use_bias" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'unit_forget_bias\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'dropout\', \'recurrent_dropout\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'time_major\', \'unroll\'], varargs=None, keywords=kwargs, defaults=[\'tanh\', \'sigmoid\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'True\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0.0\', \'0.0\', \'False\', \'False\', \'False\', \'False\', \'False\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_recurrent_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_recurrent_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-lambda.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-lambda.pbtxt deleted file mode 100644 index bb97d088dad..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-lambda.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Lambda" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'function\', \'output_shape\', \'mask\', \'arguments\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-layer-normalization.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-layer-normalization.pbtxt deleted file mode 100644 index 1a81ce6f16e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-layer-normalization.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.LayerNormalization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\', \'epsilon\', \'center\', \'scale\', \'beta_initializer\', \'gamma_initializer\', \'beta_regularizer\', \'gamma_regularizer\', \'beta_constraint\', \'gamma_constraint\'], varargs=None, keywords=kwargs, defaults=[\'-1\', \'0.001\', \'True\', \'True\', \'zeros\', \'ones\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-layer.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-layer.pbtxt deleted file mode 100644 index b50481b62f7..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-layer.pbtxt +++ /dev/null @@ -1,241 +0,0 @@ -path: "tensorflow.keras.layers.Layer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'trainable\', \'name\', \'dtype\', \'dynamic\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-leaky-re-l-u.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-leaky-re-l-u.pbtxt deleted file mode 100644 index 96cc14f91e0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-leaky-re-l-u.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.LeakyReLU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'alpha\'], varargs=None, keywords=kwargs, defaults=[\'0.3\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-locally-connected1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-locally-connected1-d.pbtxt deleted file mode 100644 index f8b6b11e281..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-locally-connected1-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.LocallyConnected1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'implementation\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-locally-connected2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-locally-connected2-d.pbtxt deleted file mode 100644 index fb34dfb1c8e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-locally-connected2-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.LocallyConnected2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\', \'implementation\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-masking.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-masking.pbtxt deleted file mode 100644 index cb3ac42a4af..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-masking.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Masking" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mask_value\'], varargs=None, keywords=kwargs, defaults=[\'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-max-pool1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-max-pool1-d.pbtxt deleted file mode 100644 index 0d9dc7499d5..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-max-pool1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.MaxPool1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'2\', \'None\', \'valid\', \'channels_last\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-max-pool2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-max-pool2-d.pbtxt deleted file mode 100644 index e1092bf0767..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-max-pool2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.MaxPool2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-max-pool3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-max-pool3-d.pbtxt deleted file mode 100644 index 4696c58634a..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-max-pool3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.MaxPool3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-max-pooling1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-max-pooling1-d.pbtxt deleted file mode 100644 index a021d15e361..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-max-pooling1-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.MaxPooling1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'2\', \'None\', \'valid\', \'channels_last\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-max-pooling2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-max-pooling2-d.pbtxt deleted file mode 100644 index 8bea460ac28..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-max-pooling2-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.MaxPooling2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-max-pooling3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-max-pooling3-d.pbtxt deleted file mode 100644 index 14a7d00de1c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-max-pooling3-d.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.MaxPooling3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'pool_size\', \'strides\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2, 2)\', \'None\', \'valid\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-maximum.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-maximum.pbtxt deleted file mode 100644 index cc8218f7a9d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-maximum.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Maximum" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-minimum.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-minimum.pbtxt deleted file mode 100644 index 709c847a695..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-minimum.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Minimum" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-multi-head-attention.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-multi-head-attention.pbtxt deleted file mode 100644 index 4b8080a1b78..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-multi-head-attention.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.MultiHeadAttention" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_heads\', \'key_dim\', \'value_dim\', \'dropout\', \'use_bias\', \'output_shape\', \'attention_axes\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'0.0\', \'True\', \'None\', \'None\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'query\', \'value\', \'key\', \'attention_mask\', \'return_attention_scores\', \'training\', \'use_causal_mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'False\', \'None\', \'False\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'query_shape\', \'value_shape\', \'key_shape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-multiply.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-multiply.pbtxt deleted file mode 100644 index 3ef05dd0015..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-multiply.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Multiply" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-normalization.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-normalization.pbtxt deleted file mode 100644 index baa8fba13bd..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-normalization.pbtxt +++ /dev/null @@ -1,267 +0,0 @@ -path: "tensorflow.keras.layers.Normalization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\', \'mean\', \'variance\', \'invert\'], varargs=None, keywords=kwargs, defaults=[\'-1\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-p-re-l-u.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-p-re-l-u.pbtxt deleted file mode 100644 index 899af13f336..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-p-re-l-u.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.PReLU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'alpha_initializer\', \'alpha_regularizer\', \'alpha_constraint\', \'shared_axes\'], varargs=None, keywords=kwargs, defaults=[\'zeros\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-permute.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-permute.pbtxt deleted file mode 100644 index e08c6381543..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-permute.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Permute" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'dims\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-r-n-n.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-r-n-n.pbtxt deleted file mode 100644 index 4dc7b8c6031..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-r-n-n.pbtxt +++ /dev/null @@ -1,254 +0,0 @@ -path: "tensorflow.keras.layers.RNN" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cell\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'unroll\', \'time_major\'], varargs=None, keywords=kwargs, defaults=[\'False\', \'False\', \'False\', \'False\', \'False\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\', \'constants\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-random-brightness.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-random-brightness.pbtxt deleted file mode 100644 index d246250fbd2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-random-brightness.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.RandomBrightness" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'factor\', \'value_range\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'(0, 255)\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-random-contrast.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-random-contrast.pbtxt deleted file mode 100644 index 85454d84200..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-random-contrast.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.RandomContrast" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'factor\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-random-crop.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-random-crop.pbtxt deleted file mode 100644 index 23f80ad15a0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-random-crop.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.RandomCrop" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height\', \'width\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-random-flip.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-random-flip.pbtxt deleted file mode 100644 index 0807d1d10d8..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-random-flip.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.RandomFlip" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mode\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'horizontal_and_vertical\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-random-height.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-random-height.pbtxt deleted file mode 100644 index 9ce1de081c0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-random-height.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.RandomHeight" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'factor\', \'interpolation\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'bilinear\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-random-rotation.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-random-rotation.pbtxt deleted file mode 100644 index df4e253ee92..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-random-rotation.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.RandomRotation" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'factor\', \'fill_mode\', \'interpolation\', \'seed\', \'fill_value\'], varargs=None, keywords=kwargs, defaults=[\'reflect\', \'bilinear\', \'None\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-random-translation.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-random-translation.pbtxt deleted file mode 100644 index 97cbab083bb..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-random-translation.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.RandomTranslation" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height_factor\', \'width_factor\', \'fill_mode\', \'interpolation\', \'seed\', \'fill_value\'], varargs=None, keywords=kwargs, defaults=[\'reflect\', \'bilinear\', \'None\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-random-width.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-random-width.pbtxt deleted file mode 100644 index 2f566e0cf93..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-random-width.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.RandomWidth" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'factor\', \'interpolation\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'bilinear\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-random-zoom.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-random-zoom.pbtxt deleted file mode 100644 index 9997add64fd..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-random-zoom.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.RandomZoom" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height_factor\', \'width_factor\', \'fill_mode\', \'interpolation\', \'seed\', \'fill_value\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'reflect\', \'bilinear\', \'None\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-re-l-u.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-re-l-u.pbtxt deleted file mode 100644 index 831131154f9..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-re-l-u.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ReLU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'max_value\', \'negative_slope\', \'threshold\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-repeat-vector.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-repeat-vector.pbtxt deleted file mode 100644 index a401a54ae02..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-repeat-vector.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.RepeatVector" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'n\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-rescaling.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-rescaling.pbtxt deleted file mode 100644 index 2b52e5fa301..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-rescaling.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Rescaling" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'scale\', \'offset\'], varargs=None, keywords=kwargs, defaults=[\'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-reshape.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-reshape.pbtxt deleted file mode 100644 index 8af2743e906..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-reshape.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Reshape" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'target_shape\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-resizing.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-resizing.pbtxt deleted file mode 100644 index f04ecffd3a1..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-resizing.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Resizing" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height\', \'width\', \'interpolation\', \'crop_to_aspect_ratio\'], varargs=None, keywords=kwargs, defaults=[\'bilinear\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-separable-conv1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-separable-conv1-d.pbtxt deleted file mode 100644 index 6922c591005..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-separable-conv1-d.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.SeparableConv1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'depth_multiplier\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'pointwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'pointwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'pointwise_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'1\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-separable-conv2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-separable-conv2-d.pbtxt deleted file mode 100644 index b4d94323999..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-separable-conv2-d.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.SeparableConv2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'depth_multiplier\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'pointwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'pointwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'pointwise_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-separable-convolution1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-separable-convolution1-d.pbtxt deleted file mode 100644 index d21d6693bcc..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-separable-convolution1-d.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.SeparableConvolution1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'depth_multiplier\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'pointwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'pointwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'pointwise_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'valid\', \'None\', \'1\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-separable-convolution2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-separable-convolution2-d.pbtxt deleted file mode 100644 index 312c27f69b3..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-separable-convolution2-d.pbtxt +++ /dev/null @@ -1,248 +0,0 @@ -path: "tensorflow.keras.layers.SeparableConvolution2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'filters\', \'kernel_size\', \'strides\', \'padding\', \'data_format\', \'dilation_rate\', \'depth_multiplier\', \'activation\', \'use_bias\', \'depthwise_initializer\', \'pointwise_initializer\', \'bias_initializer\', \'depthwise_regularizer\', \'pointwise_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'depthwise_constraint\', \'pointwise_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'valid\', \'None\', \'(1, 1)\', \'1\', \'None\', \'True\', \'glorot_uniform\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "convolution_op" - argspec: "args=[\'self\', \'inputs\', \'kernel\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-simple-r-n-n-cell.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-simple-r-n-n-cell.pbtxt deleted file mode 100644 index 20da793c2a3..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-simple-r-n-n-cell.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.layers.SimpleRNNCell" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'dropout\', \'recurrent_dropout\'], varargs=None, keywords=kwargs, defaults=[\'tanh\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'states\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_recurrent_dropout_mask_for_cell" - argspec: "args=[\'self\', \'inputs\', \'training\', \'count\'], varargs=None, keywords=None, defaults=[\'1\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_recurrent_dropout_mask" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-simple-r-n-n.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-simple-r-n-n.pbtxt deleted file mode 100644 index 60a8f517240..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-simple-r-n-n.pbtxt +++ /dev/null @@ -1,311 +0,0 @@ -path: "tensorflow.keras.layers.SimpleRNN" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activation" - mtype: "" - } - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "bias_constraint" - mtype: "" - } - member { - name: "bias_initializer" - mtype: "" - } - member { - name: "bias_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dropout" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "kernel_constraint" - mtype: "" - } - member { - name: "kernel_initializer" - mtype: "" - } - member { - name: "kernel_regularizer" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "recurrent_constraint" - mtype: "" - } - member { - name: "recurrent_dropout" - mtype: "" - } - member { - name: "recurrent_initializer" - mtype: "" - } - member { - name: "recurrent_regularizer" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "states" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "units" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "use_bias" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'units\', \'activation\', \'use_bias\', \'kernel_initializer\', \'recurrent_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'recurrent_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'recurrent_constraint\', \'bias_constraint\', \'dropout\', \'recurrent_dropout\', \'return_sequences\', \'return_state\', \'go_backwards\', \'stateful\', \'unroll\'], varargs=None, keywords=kwargs, defaults=[\'tanh\', \'True\', \'glorot_uniform\', \'orthogonal\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0.0\', \'0.0\', \'False\', \'False\', \'False\', \'False\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\', \'training\', \'initial_state\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\', \'states\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-softmax.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-softmax.pbtxt deleted file mode 100644 index e8e05a00ece..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-softmax.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Softmax" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\'], varargs=None, keywords=kwargs, defaults=[\'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-spatial-dropout1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-spatial-dropout1-d.pbtxt deleted file mode 100644 index 0f926be02b9..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-spatial-dropout1-d.pbtxt +++ /dev/null @@ -1,244 +0,0 @@ -path: "tensorflow.keras.layers.SpatialDropout1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'rate\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-spatial-dropout2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-spatial-dropout2-d.pbtxt deleted file mode 100644 index 1bb81438fca..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-spatial-dropout2-d.pbtxt +++ /dev/null @@ -1,244 +0,0 @@ -path: "tensorflow.keras.layers.SpatialDropout2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'rate\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-spatial-dropout3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-spatial-dropout3-d.pbtxt deleted file mode 100644 index f31ec33f7cf..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-spatial-dropout3-d.pbtxt +++ /dev/null @@ -1,244 +0,0 @@ -path: "tensorflow.keras.layers.SpatialDropout3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'rate\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-spectral-normalization.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-spectral-normalization.pbtxt deleted file mode 100644 index 72a04d40b89..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-spectral-normalization.pbtxt +++ /dev/null @@ -1,247 +0,0 @@ -path: "tensorflow.keras.layers.SpectralNormalization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'layer\', \'power_iterations\'], varargs=None, keywords=kwargs, defaults=[\'1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "normalize_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-stacked-r-n-n-cells.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-stacked-r-n-n-cells.pbtxt deleted file mode 100644 index 747de047f96..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-stacked-r-n-n-cells.pbtxt +++ /dev/null @@ -1,254 +0,0 @@ -path: "tensorflow.keras.layers.StackedRNNCells" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "output_size" - mtype: "" - } - member { - name: "state_size" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'cells\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'states\', \'constants\', \'training\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_initial_state" - argspec: "args=[\'self\', \'inputs\', \'batch_size\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-string-lookup.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-string-lookup.pbtxt deleted file mode 100644 index 2b3d513fef9..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-string-lookup.pbtxt +++ /dev/null @@ -1,292 +0,0 @@ -path: "tensorflow.keras.layers.StringLookup" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'max_tokens\', \'num_oov_indices\', \'mask_token\', \'oov_token\', \'vocabulary\', \'idf_weights\', \'encoding\', \'invert\', \'output_mode\', \'sparse\', \'pad_to_max_tokens\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1\', \'None\', \'[UNK]\', \'None\', \'None\', \'utf-8\', \'False\', \'int\', \'False\', \'False\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_vocabulary" - argspec: "args=[\'self\', \'include_special_tokens\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_assets" - argspec: "args=[\'self\', \'dir_path\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_assets" - argspec: "args=[\'self\', \'dir_path\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_vocabulary" - argspec: "args=[\'self\', \'vocabulary\', \'idf_weights\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "vocab_size" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "vocabulary_size" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-subtract.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-subtract.pbtxt deleted file mode 100644 index d6bba621d77..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-subtract.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.Subtract" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-text-vectorization.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-text-vectorization.pbtxt deleted file mode 100644 index 8824c0eac14..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-text-vectorization.pbtxt +++ /dev/null @@ -1,287 +0,0 @@ -path: "tensorflow.keras.layers.TextVectorization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'max_tokens\', \'standardize\', \'split\', \'ngrams\', \'output_mode\', \'output_sequence_length\', \'pad_to_max_tokens\', \'vocabulary\', \'idf_weights\', \'sparse\', \'ragged\', \'encoding\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'lower_and_strip_punctuation\', \'whitespace\', \'None\', \'int\', \'None\', \'False\', \'None\', \'None\', \'False\', \'False\', \'utf-8\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_vocabulary" - argspec: "args=[\'self\', \'include_special_tokens\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_assets" - argspec: "args=[\'self\', \'dir_path\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_assets" - argspec: "args=[\'self\', \'dir_path\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_vocabulary" - argspec: "args=[\'self\', \'vocabulary\', \'idf_weights\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "vocabulary_size" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-thresholded-re-l-u.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-thresholded-re-l-u.pbtxt deleted file mode 100644 index 835f784b295..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-thresholded-re-l-u.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ThresholdedReLU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'theta\'], varargs=None, keywords=kwargs, defaults=[\'1.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'instance\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-time-distributed.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-time-distributed.pbtxt deleted file mode 100644 index 814d7168679..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-time-distributed.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.TimeDistributed" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'layer\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-unit-normalization.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-unit-normalization.pbtxt deleted file mode 100644 index ae5f06b382a..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-unit-normalization.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.UnitNormalization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\'], varargs=None, keywords=kwargs, defaults=[\'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-up-sampling1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-up-sampling1-d.pbtxt deleted file mode 100644 index ff61b890cee..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-up-sampling1-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.UpSampling1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'size\'], varargs=None, keywords=kwargs, defaults=[\'2\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-up-sampling2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-up-sampling2-d.pbtxt deleted file mode 100644 index 383e2896751..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-up-sampling2-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.UpSampling2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'size\', \'data_format\', \'interpolation\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2)\', \'None\', \'nearest\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-up-sampling3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-up-sampling3-d.pbtxt deleted file mode 100644 index b2a2d89c174..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-up-sampling3-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.UpSampling3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'size\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(2, 2, 2)\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-wrapper.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-wrapper.pbtxt deleted file mode 100644 index 149f9e61613..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-wrapper.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.Wrapper" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'layer\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-zero-padding1-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-zero-padding1-d.pbtxt deleted file mode 100644 index 2ef8d53b694..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-zero-padding1-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ZeroPadding1D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'padding\'], varargs=None, keywords=kwargs, defaults=[\'1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-zero-padding2-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-zero-padding2-d.pbtxt deleted file mode 100644 index 5f5c510ec23..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-zero-padding2-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ZeroPadding2D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1)\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.-zero-padding3-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.-zero-padding3-d.pbtxt deleted file mode 100644 index 03fc8519bb0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.-zero-padding3-d.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.ZeroPadding3D" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'padding\', \'data_format\'], varargs=None, keywords=kwargs, defaults=[\'(1, 1, 1)\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.-einsum-dense.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.-einsum-dense.pbtxt deleted file mode 100644 index 0da8e034e5a..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.-einsum-dense.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.EinsumDense" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'equation\', \'output_shape\', \'activation\', \'bias_axes\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\', \'activity_regularizer\', \'kernel_constraint\', \'bias_constraint\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'glorot_uniform\', \'zeros\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'_\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.-random-fourier-features.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.-random-fourier-features.pbtxt deleted file mode 100644 index fb529f555a8..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.-random-fourier-features.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.RandomFourierFeatures" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'output_dim\', \'kernel_initializer\', \'scale\', \'trainable\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'gaussian\', \'None\', \'False\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.-sync-batch-normalization.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.-sync-batch-normalization.pbtxt deleted file mode 100644 index 63b1be08dc4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.-sync-batch-normalization.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.experimental.SyncBatchNormalization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\', \'momentum\', \'epsilon\', \'center\', \'scale\', \'beta_initializer\', \'gamma_initializer\', \'moving_mean_initializer\', \'moving_variance_initializer\', \'beta_regularizer\', \'gamma_regularizer\', \'beta_constraint\', \'gamma_constraint\'], varargs=None, keywords=kwargs, defaults=[\'-1\', \'0.99\', \'0.001\', \'True\', \'True\', \'zeros\', \'ones\', \'zeros\', \'ones\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.pbtxt deleted file mode 100644 index 53d4adbed30..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.layers.experimental" -tf_module { - member { - name: "EinsumDense" - mtype: "" - } - member { - name: "RandomFourierFeatures" - mtype: "" - } - member { - name: "SyncBatchNormalization" - mtype: "" - } - member { - name: "preprocessing" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-category-encoding.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-category-encoding.pbtxt deleted file mode 100644 index a741778c72d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-category-encoding.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.CategoryEncoding" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_tokens\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'multi_hot\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'count_weights\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-center-crop.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-center-crop.pbtxt deleted file mode 100644 index b2b7d584a5f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-center-crop.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.CenterCrop" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height\', \'width\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-discretization.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-discretization.pbtxt deleted file mode 100644 index f61c4f82c5b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-discretization.pbtxt +++ /dev/null @@ -1,267 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.Discretization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'bin_boundaries\', \'num_bins\', \'epsilon\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'0.01\', \'int\', \'False\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-hashed-crossing.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-hashed-crossing.pbtxt deleted file mode 100644 index 9a9602229b2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-hashed-crossing.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.HashedCrossing" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_bins\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'int\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shapes\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_specs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-hashing.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-hashing.pbtxt deleted file mode 100644 index a608049a6d8..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-hashing.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.Hashing" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_bins\', \'mask_value\', \'salt\', \'output_mode\', \'sparse\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'int\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-integer-lookup.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-integer-lookup.pbtxt deleted file mode 100644 index d221e8bc29b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-integer-lookup.pbtxt +++ /dev/null @@ -1,292 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.IntegerLookup" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'max_tokens\', \'num_oov_indices\', \'mask_token\', \'oov_token\', \'vocabulary\', \'vocabulary_dtype\', \'idf_weights\', \'invert\', \'output_mode\', \'sparse\', \'pad_to_max_tokens\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1\', \'None\', \'-1\', \'None\', \'int64\', \'None\', \'False\', \'int\', \'False\', \'False\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_vocabulary" - argspec: "args=[\'self\', \'include_special_tokens\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_assets" - argspec: "args=[\'self\', \'dir_path\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_assets" - argspec: "args=[\'self\', \'dir_path\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_vocabulary" - argspec: "args=[\'self\', \'vocabulary\', \'idf_weights\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "vocab_size" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "vocabulary_size" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-normalization.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-normalization.pbtxt deleted file mode 100644 index e6f797f6341..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-normalization.pbtxt +++ /dev/null @@ -1,267 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.Normalization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\', \'mean\', \'variance\', \'invert\'], varargs=None, keywords=kwargs, defaults=[\'-1\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-preprocessing-layer.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-preprocessing-layer.pbtxt deleted file mode 100644 index 942ce222c3e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-preprocessing-layer.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.PreprocessingLayer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-contrast.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-contrast.pbtxt deleted file mode 100644 index 4a98b7dc741..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-contrast.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.RandomContrast" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'factor\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-crop.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-crop.pbtxt deleted file mode 100644 index ff0e93b7a3d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-crop.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.RandomCrop" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height\', \'width\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-flip.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-flip.pbtxt deleted file mode 100644 index dcd4bc07bb1..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-flip.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.RandomFlip" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'mode\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'horizontal_and_vertical\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-height.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-height.pbtxt deleted file mode 100644 index 2d5ada3de9c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-height.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.RandomHeight" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'factor\', \'interpolation\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'bilinear\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-rotation.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-rotation.pbtxt deleted file mode 100644 index 634d29f4505..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-rotation.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.RandomRotation" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'factor\', \'fill_mode\', \'interpolation\', \'seed\', \'fill_value\'], varargs=None, keywords=kwargs, defaults=[\'reflect\', \'bilinear\', \'None\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-translation.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-translation.pbtxt deleted file mode 100644 index bfb7693580b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-translation.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.RandomTranslation" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height_factor\', \'width_factor\', \'fill_mode\', \'interpolation\', \'seed\', \'fill_value\'], varargs=None, keywords=kwargs, defaults=[\'reflect\', \'bilinear\', \'None\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-width.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-width.pbtxt deleted file mode 100644 index c2d3ef92be9..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-width.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.RandomWidth" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'factor\', \'interpolation\', \'seed\'], varargs=None, keywords=kwargs, defaults=[\'bilinear\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-zoom.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-zoom.pbtxt deleted file mode 100644 index ff3f05b1f9c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-random-zoom.pbtxt +++ /dev/null @@ -1,243 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.RandomZoom" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height_factor\', \'width_factor\', \'fill_mode\', \'interpolation\', \'seed\', \'fill_value\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'reflect\', \'bilinear\', \'None\', \'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-rescaling.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-rescaling.pbtxt deleted file mode 100644 index fdbab246741..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-rescaling.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.Rescaling" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'scale\', \'offset\'], varargs=None, keywords=kwargs, defaults=[\'0.0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-resizing.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-resizing.pbtxt deleted file mode 100644 index c11fb59691f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-resizing.pbtxt +++ /dev/null @@ -1,242 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.Resizing" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'height\', \'width\', \'interpolation\', \'crop_to_aspect_ratio\'], varargs=None, keywords=kwargs, defaults=[\'bilinear\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-string-lookup.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-string-lookup.pbtxt deleted file mode 100644 index f7ee995f2ea..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-string-lookup.pbtxt +++ /dev/null @@ -1,292 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.StringLookup" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'max_tokens\', \'num_oov_indices\', \'mask_token\', \'oov_token\', \'vocabulary\', \'idf_weights\', \'encoding\', \'invert\', \'output_mode\', \'sparse\', \'pad_to_max_tokens\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1\', \'None\', \'[UNK]\', \'None\', \'None\', \'utf-8\', \'False\', \'int\', \'False\', \'False\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_vocabulary" - argspec: "args=[\'self\', \'include_special_tokens\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_assets" - argspec: "args=[\'self\', \'dir_path\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_assets" - argspec: "args=[\'self\', \'dir_path\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_vocabulary" - argspec: "args=[\'self\', \'vocabulary\', \'idf_weights\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "vocab_size" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "vocabulary_size" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-text-vectorization.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-text-vectorization.pbtxt deleted file mode 100644 index d9c28d3a36d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.-text-vectorization.pbtxt +++ /dev/null @@ -1,287 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing.TextVectorization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "is_adapted" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'max_tokens\', \'standardize\', \'split\', \'ngrams\', \'output_mode\', \'output_sequence_length\', \'pad_to_max_tokens\', \'vocabulary\', \'idf_weights\', \'sparse\', \'ragged\', \'encoding\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'lower_and_strip_punctuation\', \'whitespace\', \'None\', \'int\', \'None\', \'False\', \'None\', \'None\', \'False\', \'False\', \'utf-8\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'data\', \'batch_size\', \'steps\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'run_eagerly\', \'steps_per_execution\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_vocabulary" - argspec: "args=[\'self\', \'include_special_tokens\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_assets" - argspec: "args=[\'self\', \'dir_path\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "make_adapt_function" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_assets" - argspec: "args=[\'self\', \'dir_path\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_vocabulary" - argspec: "args=[\'self\', \'vocabulary\', \'idf_weights\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "vocabulary_size" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.pbtxt deleted file mode 100644 index 3e1f7453f92..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.experimental.preprocessing.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.layers.experimental.preprocessing" -tf_module { - member { - name: "CategoryEncoding" - mtype: "" - } - member { - name: "CenterCrop" - mtype: "" - } - member { - name: "Discretization" - mtype: "" - } - member { - name: "HashedCrossing" - mtype: "" - } - member { - name: "Hashing" - mtype: "" - } - member { - name: "IntegerLookup" - mtype: "" - } - member { - name: "Normalization" - mtype: "" - } - member { - name: "PreprocessingLayer" - mtype: "" - } - member { - name: "RandomContrast" - mtype: "" - } - member { - name: "RandomCrop" - mtype: "" - } - member { - name: "RandomFlip" - mtype: "" - } - member { - name: "RandomHeight" - mtype: "" - } - member { - name: "RandomRotation" - mtype: "" - } - member { - name: "RandomTranslation" - mtype: "" - } - member { - name: "RandomWidth" - mtype: "" - } - member { - name: "RandomZoom" - mtype: "" - } - member { - name: "Rescaling" - mtype: "" - } - member { - name: "Resizing" - mtype: "" - } - member { - name: "StringLookup" - mtype: "" - } - member { - name: "TextVectorization" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.layers.pbtxt b/keras/api/golden/v2/tensorflow.keras.layers.pbtxt deleted file mode 100644 index a2b218a4c0d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.layers.pbtxt +++ /dev/null @@ -1,583 +0,0 @@ -path: "tensorflow.keras.layers" -tf_module { - member { - name: "AbstractRNNCell" - mtype: "" - } - member { - name: "Activation" - mtype: "" - } - member { - name: "ActivityRegularization" - mtype: "" - } - member { - name: "Add" - mtype: "" - } - member { - name: "AdditiveAttention" - mtype: "" - } - member { - name: "AlphaDropout" - mtype: "" - } - member { - name: "Attention" - mtype: "" - } - member { - name: "Average" - mtype: "" - } - member { - name: "AveragePooling1D" - mtype: "" - } - member { - name: "AveragePooling2D" - mtype: "" - } - member { - name: "AveragePooling3D" - mtype: "" - } - member { - name: "AvgPool1D" - mtype: "" - } - member { - name: "AvgPool2D" - mtype: "" - } - member { - name: "AvgPool3D" - mtype: "" - } - member { - name: "BatchNormalization" - mtype: "" - } - member { - name: "Bidirectional" - mtype: "" - } - member { - name: "CategoryEncoding" - mtype: "" - } - member { - name: "CenterCrop" - mtype: "" - } - member { - name: "Concatenate" - mtype: "" - } - member { - name: "Conv1D" - mtype: "" - } - member { - name: "Conv1DTranspose" - mtype: "" - } - member { - name: "Conv2D" - mtype: "" - } - member { - name: "Conv2DTranspose" - mtype: "" - } - member { - name: "Conv3D" - mtype: "" - } - member { - name: "Conv3DTranspose" - mtype: "" - } - member { - name: "ConvLSTM1D" - mtype: "" - } - member { - name: "ConvLSTM2D" - mtype: "" - } - member { - name: "ConvLSTM3D" - mtype: "" - } - member { - name: "Convolution1D" - mtype: "" - } - member { - name: "Convolution1DTranspose" - mtype: "" - } - member { - name: "Convolution2D" - mtype: "" - } - member { - name: "Convolution2DTranspose" - mtype: "" - } - member { - name: "Convolution3D" - mtype: "" - } - member { - name: "Convolution3DTranspose" - mtype: "" - } - member { - name: "Cropping1D" - mtype: "" - } - member { - name: "Cropping2D" - mtype: "" - } - member { - name: "Cropping3D" - mtype: "" - } - member { - name: "Dense" - mtype: "" - } - member { - name: "DenseFeatures" - mtype: "" - } - member { - name: "DepthwiseConv1D" - mtype: "" - } - member { - name: "DepthwiseConv2D" - mtype: "" - } - member { - name: "Discretization" - mtype: "" - } - member { - name: "Dot" - mtype: "" - } - member { - name: "Dropout" - mtype: "" - } - member { - name: "ELU" - mtype: "" - } - member { - name: "EinsumDense" - mtype: "" - } - member { - name: "Embedding" - mtype: "" - } - member { - name: "Flatten" - mtype: "" - } - member { - name: "GRU" - mtype: "" - } - member { - name: "GRUCell" - mtype: "" - } - member { - name: "GaussianDropout" - mtype: "" - } - member { - name: "GaussianNoise" - mtype: "" - } - member { - name: "GlobalAveragePooling1D" - mtype: "" - } - member { - name: "GlobalAveragePooling2D" - mtype: "" - } - member { - name: "GlobalAveragePooling3D" - mtype: "" - } - member { - name: "GlobalAvgPool1D" - mtype: "" - } - member { - name: "GlobalAvgPool2D" - mtype: "" - } - member { - name: "GlobalAvgPool3D" - mtype: "" - } - member { - name: "GlobalMaxPool1D" - mtype: "" - } - member { - name: "GlobalMaxPool2D" - mtype: "" - } - member { - name: "GlobalMaxPool3D" - mtype: "" - } - member { - name: "GlobalMaxPooling1D" - mtype: "" - } - member { - name: "GlobalMaxPooling2D" - mtype: "" - } - member { - name: "GlobalMaxPooling3D" - mtype: "" - } - member { - name: "GroupNormalization" - mtype: "" - } - member { - name: "HashedCrossing" - mtype: "" - } - member { - name: "Hashing" - mtype: "" - } - member { - name: "Identity" - mtype: "" - } - member { - name: "InputLayer" - mtype: "" - } - member { - name: "InputSpec" - mtype: "" - } - member { - name: "IntegerLookup" - mtype: "" - } - member { - name: "LSTM" - mtype: "" - } - member { - name: "LSTMCell" - mtype: "" - } - member { - name: "Lambda" - mtype: "" - } - member { - name: "Layer" - mtype: "" - } - member { - name: "LayerNormalization" - mtype: "" - } - member { - name: "LeakyReLU" - mtype: "" - } - member { - name: "LocallyConnected1D" - mtype: "" - } - member { - name: "LocallyConnected2D" - mtype: "" - } - member { - name: "Masking" - mtype: "" - } - member { - name: "MaxPool1D" - mtype: "" - } - member { - name: "MaxPool2D" - mtype: "" - } - member { - name: "MaxPool3D" - mtype: "" - } - member { - name: "MaxPooling1D" - mtype: "" - } - member { - name: "MaxPooling2D" - mtype: "" - } - member { - name: "MaxPooling3D" - mtype: "" - } - member { - name: "Maximum" - mtype: "" - } - member { - name: "Minimum" - mtype: "" - } - member { - name: "MultiHeadAttention" - mtype: "" - } - member { - name: "Multiply" - mtype: "" - } - member { - name: "Normalization" - mtype: "" - } - member { - name: "PReLU" - mtype: "" - } - member { - name: "Permute" - mtype: "" - } - member { - name: "RNN" - mtype: "" - } - member { - name: "RandomBrightness" - mtype: "" - } - member { - name: "RandomContrast" - mtype: "" - } - member { - name: "RandomCrop" - mtype: "" - } - member { - name: "RandomFlip" - mtype: "" - } - member { - name: "RandomHeight" - mtype: "" - } - member { - name: "RandomRotation" - mtype: "" - } - member { - name: "RandomTranslation" - mtype: "" - } - member { - name: "RandomWidth" - mtype: "" - } - member { - name: "RandomZoom" - mtype: "" - } - member { - name: "ReLU" - mtype: "" - } - member { - name: "RepeatVector" - mtype: "" - } - member { - name: "Rescaling" - mtype: "" - } - member { - name: "Reshape" - mtype: "" - } - member { - name: "Resizing" - mtype: "" - } - member { - name: "SeparableConv1D" - mtype: "" - } - member { - name: "SeparableConv2D" - mtype: "" - } - member { - name: "SeparableConvolution1D" - mtype: "" - } - member { - name: "SeparableConvolution2D" - mtype: "" - } - member { - name: "SimpleRNN" - mtype: "" - } - member { - name: "SimpleRNNCell" - mtype: "" - } - member { - name: "Softmax" - mtype: "" - } - member { - name: "SpatialDropout1D" - mtype: "" - } - member { - name: "SpatialDropout2D" - mtype: "" - } - member { - name: "SpatialDropout3D" - mtype: "" - } - member { - name: "SpectralNormalization" - mtype: "" - } - member { - name: "StackedRNNCells" - mtype: "" - } - member { - name: "StringLookup" - mtype: "" - } - member { - name: "Subtract" - mtype: "" - } - member { - name: "TextVectorization" - mtype: "" - } - member { - name: "ThresholdedReLU" - mtype: "" - } - member { - name: "TimeDistributed" - mtype: "" - } - member { - name: "UnitNormalization" - mtype: "" - } - member { - name: "UpSampling1D" - mtype: "" - } - member { - name: "UpSampling2D" - mtype: "" - } - member { - name: "UpSampling3D" - mtype: "" - } - member { - name: "Wrapper" - mtype: "" - } - member { - name: "ZeroPadding1D" - mtype: "" - } - member { - name: "ZeroPadding2D" - mtype: "" - } - member { - name: "ZeroPadding3D" - mtype: "" - } - member { - name: "experimental" - mtype: "" - } - member_method { - name: "Input" - argspec: "args=[\'shape\', \'batch_size\', \'name\', \'dtype\', \'sparse\', \'tensor\', \'ragged\', \'type_spec\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add" - argspec: "args=[\'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "average" - argspec: "args=[\'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "concatenate" - argspec: "args=[\'inputs\', \'axis\'], varargs=None, keywords=kwargs, defaults=[\'-1\'], " - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "dot" - argspec: "args=[\'inputs\', \'axes\', \'normalize\'], varargs=None, keywords=kwargs, defaults=[\'False\'], " - } - member_method { - name: "maximum" - argspec: "args=[\'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "minimum" - argspec: "args=[\'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "multiply" - argspec: "args=[\'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'layer\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "subtract" - argspec: "args=[\'inputs\'], varargs=None, keywords=kwargs, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-binary-crossentropy.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-binary-crossentropy.pbtxt deleted file mode 100644 index 9affaaf6ed0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-binary-crossentropy.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.BinaryCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'from_logits\', \'label_smoothing\', \'axis\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'0.0\', \'-1\', \'auto\', \'binary_crossentropy\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-binary-focal-crossentropy.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-binary-focal-crossentropy.pbtxt deleted file mode 100644 index ac49b8fc870..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-binary-focal-crossentropy.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.BinaryFocalCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'apply_class_balancing\', \'alpha\', \'gamma\', \'from_logits\', \'label_smoothing\', \'axis\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'0.25\', \'2.0\', \'False\', \'0.0\', \'-1\', \'auto\', \'binary_focal_crossentropy\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-categorical-crossentropy.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-categorical-crossentropy.pbtxt deleted file mode 100644 index 7a50f8b0e05..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-categorical-crossentropy.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.CategoricalCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'from_logits\', \'label_smoothing\', \'axis\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'0.0\', \'-1\', \'auto\', \'categorical_crossentropy\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-categorical-focal-crossentropy.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-categorical-focal-crossentropy.pbtxt deleted file mode 100644 index f06b44ec876..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-categorical-focal-crossentropy.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.CategoricalFocalCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'alpha\', \'gamma\', \'from_logits\', \'label_smoothing\', \'axis\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'0.25\', \'2.0\', \'False\', \'0.0\', \'-1\', \'auto\', \'categorical_focal_crossentropy\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-categorical-hinge.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-categorical-hinge.pbtxt deleted file mode 100644 index fc23af9c5b7..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-categorical-hinge.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.CategoricalHinge" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'categorical_hinge\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-cosine-similarity.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-cosine-similarity.pbtxt deleted file mode 100644 index 7bd4ab61c50..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-cosine-similarity.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.CosineSimilarity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'axis\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'-1\', \'auto\', \'cosine_similarity\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-hinge.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-hinge.pbtxt deleted file mode 100644 index a154c2a2964..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-hinge.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.Hinge" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'hinge\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-huber.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-huber.pbtxt deleted file mode 100644 index b9da506b5ce..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-huber.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.Huber" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'delta\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'1.0\', \'auto\', \'huber_loss\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-k-l-divergence.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-k-l-divergence.pbtxt deleted file mode 100644 index b16a275a919..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-k-l-divergence.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.KLDivergence" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'kl_divergence\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-log-cosh.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-log-cosh.pbtxt deleted file mode 100644 index 97253a93e3c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-log-cosh.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.LogCosh" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'log_cosh\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-loss.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-loss.pbtxt deleted file mode 100644 index f6e062b1460..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-loss.pbtxt +++ /dev/null @@ -1,21 +0,0 @@ -path: "tensorflow.keras.losses.Loss" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'None\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-mean-absolute-error.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-mean-absolute-error.pbtxt deleted file mode 100644 index 91dab6787d8..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-mean-absolute-error.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.MeanAbsoluteError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'mean_absolute_error\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-mean-absolute-percentage-error.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-mean-absolute-percentage-error.pbtxt deleted file mode 100644 index f4c1b5cf022..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-mean-absolute-percentage-error.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.MeanAbsolutePercentageError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'mean_absolute_percentage_error\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-mean-squared-error.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-mean-squared-error.pbtxt deleted file mode 100644 index 815bddaf39b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-mean-squared-error.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.MeanSquaredError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'mean_squared_error\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-mean-squared-logarithmic-error.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-mean-squared-logarithmic-error.pbtxt deleted file mode 100644 index d08388055fd..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-mean-squared-logarithmic-error.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.MeanSquaredLogarithmicError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'mean_squared_logarithmic_error\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-poisson.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-poisson.pbtxt deleted file mode 100644 index 5313398aad1..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-poisson.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.Poisson" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'poisson\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-reduction.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-reduction.pbtxt deleted file mode 100644 index 226a8ba193f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-reduction.pbtxt +++ /dev/null @@ -1,32 +0,0 @@ -path: "tensorflow.keras.losses.Reduction" -tf_class { - is_instance: "" - is_instance: "" - member { - name: "AUTO" - mtype: "" - } - member { - name: "NONE" - mtype: "" - } - member { - name: "SUM" - mtype: "" - } - member { - name: "SUM_OVER_BATCH_SIZE" - mtype: "" - } - member_method { - name: "__init__" - } - member_method { - name: "all" - argspec: "args=[\'cls\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "validate" - argspec: "args=[\'cls\', \'key\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-sparse-categorical-crossentropy.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-sparse-categorical-crossentropy.pbtxt deleted file mode 100644 index 389b05c75d5..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-sparse-categorical-crossentropy.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.SparseCategoricalCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'from_logits\', \'ignore_class\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'None\', \'auto\', \'sparse_categorical_crossentropy\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.-squared-hinge.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.-squared-hinge.pbtxt deleted file mode 100644 index 3f2cf2c5b13..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.-squared-hinge.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.losses.SquaredHinge" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'reduction\', \'name\'], varargs=None, keywords=None, defaults=[\'auto\', \'squared_hinge\'], " - } - member_method { - name: "call" - argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.losses.pbtxt b/keras/api/golden/v2/tensorflow.keras.losses.pbtxt deleted file mode 100644 index 8fb5dcb54f7..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.losses.pbtxt +++ /dev/null @@ -1,207 +0,0 @@ -path: "tensorflow.keras.losses" -tf_module { - member { - name: "BinaryCrossentropy" - mtype: "" - } - member { - name: "BinaryFocalCrossentropy" - mtype: "" - } - member { - name: "CategoricalCrossentropy" - mtype: "" - } - member { - name: "CategoricalFocalCrossentropy" - mtype: "" - } - member { - name: "CategoricalHinge" - mtype: "" - } - member { - name: "CosineSimilarity" - mtype: "" - } - member { - name: "Hinge" - mtype: "" - } - member { - name: "Huber" - mtype: "" - } - member { - name: "KLDivergence" - mtype: "" - } - member { - name: "LogCosh" - mtype: "" - } - member { - name: "Loss" - mtype: "" - } - member { - name: "MeanAbsoluteError" - mtype: "" - } - member { - name: "MeanAbsolutePercentageError" - mtype: "" - } - member { - name: "MeanSquaredError" - mtype: "" - } - member { - name: "MeanSquaredLogarithmicError" - mtype: "" - } - member { - name: "Poisson" - mtype: "" - } - member { - name: "Reduction" - mtype: "" - } - member { - name: "SparseCategoricalCrossentropy" - mtype: "" - } - member { - name: "SquaredHinge" - mtype: "" - } - member_method { - name: "KLD" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MAE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MAPE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MSE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MSLE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "binary_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "binary_focal_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'apply_class_balancing\', \'alpha\', \'gamma\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'0.25\', \'2.0\', \'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "categorical_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "categorical_focal_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'alpha\', \'gamma\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'0.25\', \'2.0\', \'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "categorical_hinge" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "cosine_similarity" - argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " - } - member_method { - name: "deserialize" - argspec: "args=[\'name\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "hinge" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "huber" - argspec: "args=[\'y_true\', \'y_pred\', \'delta\'], varargs=None, keywords=None, defaults=[\'1.0\'], " - } - member_method { - name: "kl_divergence" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "kld" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "kullback_leibler_divergence" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "log_cosh" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "logcosh" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mae" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mape" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_absolute_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_absolute_percentage_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_squared_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_squared_logarithmic_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mse" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "msle" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "poisson" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'loss\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "sparse_categorical_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'axis\', \'ignore_class\'], varargs=None, keywords=None, defaults=[\'False\', \'-1\', \'None\'], " - } - member_method { - name: "squared_hinge" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-a-u-c.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-a-u-c.pbtxt deleted file mode 100644 index 171da23f3bc..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-a-u-c.pbtxt +++ /dev/null @@ -1,271 +0,0 @@ -path: "tensorflow.keras.metrics.AUC" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "thresholds" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_thresholds\', \'curve\', \'summation_method\', \'name\', \'dtype\', \'thresholds\', \'multi_label\', \'num_labels\', \'label_weights\', \'from_logits\'], varargs=None, keywords=None, defaults=[\'200\', \'ROC\', \'interpolation\', \'None\', \'None\', \'None\', \'False\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "interpolate_pr_auc" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-accuracy.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-accuracy.pbtxt deleted file mode 100644 index 863b948441e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-accuracy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.Accuracy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'accuracy\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-binary-accuracy.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-binary-accuracy.pbtxt deleted file mode 100644 index 4b8759cf762..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-binary-accuracy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.BinaryAccuracy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\', \'threshold\'], varargs=None, keywords=None, defaults=[\'binary_accuracy\', \'None\', \'0.5\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-binary-crossentropy.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-binary-crossentropy.pbtxt deleted file mode 100644 index 16228d4229f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-binary-crossentropy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.BinaryCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\', \'from_logits\', \'label_smoothing\'], varargs=None, keywords=None, defaults=[\'binary_crossentropy\', \'None\', \'False\', \'0\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-binary-io-u.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-binary-io-u.pbtxt deleted file mode 100644 index 49e4ac2946e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-binary-io-u.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.metrics.BinaryIoU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'target_class_ids\', \'threshold\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'(0, 1)\', \'0.5\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-categorical-accuracy.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-categorical-accuracy.pbtxt deleted file mode 100644 index c56abceaeb1..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-categorical-accuracy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.CategoricalAccuracy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'categorical_accuracy\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-categorical-crossentropy.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-categorical-crossentropy.pbtxt deleted file mode 100644 index 92d50ec7a5f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-categorical-crossentropy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.CategoricalCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'categorical_crossentropy\', \'None\', \'False\', \'0\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-categorical-hinge.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-categorical-hinge.pbtxt deleted file mode 100644 index f4386171e6f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-categorical-hinge.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.CategoricalHinge" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'categorical_hinge\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-cosine-similarity.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-cosine-similarity.pbtxt deleted file mode 100644 index 221cbe34edd..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-cosine-similarity.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.CosineSimilarity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\', \'axis\'], varargs=None, keywords=None, defaults=[\'cosine_similarity\', \'None\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-f-beta-score.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-f-beta-score.pbtxt deleted file mode 100644 index 37847a1f933..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-f-beta-score.pbtxt +++ /dev/null @@ -1,263 +0,0 @@ -path: "tensorflow.keras.metrics.FBetaScore" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'average\', \'beta\', \'threshold\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'1.0\', \'None\', \'fbeta_score\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'y_true_shape\', \'y_pred_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-f1-score.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-f1-score.pbtxt deleted file mode 100644 index 56d233b0b5f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-f1-score.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.F1Score" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'average\', \'threshold\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'f1_score\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'y_true_shape\', \'y_pred_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-false-negatives.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-false-negatives.pbtxt deleted file mode 100644 index 12518c046e4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-false-negatives.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.FalseNegatives" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-false-positives.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-false-positives.pbtxt deleted file mode 100644 index d3a260bc7f5..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-false-positives.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.FalsePositives" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-hinge.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-hinge.pbtxt deleted file mode 100644 index c01adca8b43..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-hinge.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.Hinge" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'hinge\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-io-u.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-io-u.pbtxt deleted file mode 100644 index 3b3e4ed1e70..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-io-u.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.IoU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_classes\', \'target_class_ids\', \'name\', \'dtype\', \'ignore_class\', \'sparse_y_true\', \'sparse_y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'True\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-k-l-divergence.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-k-l-divergence.pbtxt deleted file mode 100644 index 8fe4028c968..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-k-l-divergence.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.KLDivergence" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'kullback_leibler_divergence\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-log-cosh-error.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-log-cosh-error.pbtxt deleted file mode 100644 index 862a2c127f6..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-log-cosh-error.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.LogCoshError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'logcosh\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-absolute-error.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-mean-absolute-error.pbtxt deleted file mode 100644 index 4db04735810..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-absolute-error.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.MeanAbsoluteError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'mean_absolute_error\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-absolute-percentage-error.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-mean-absolute-percentage-error.pbtxt deleted file mode 100644 index c1a4285ba95..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-absolute-percentage-error.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.MeanAbsolutePercentageError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'mean_absolute_percentage_error\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-io-u.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-mean-io-u.pbtxt deleted file mode 100644 index eb8b2c471f4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-io-u.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.metrics.MeanIoU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_classes\', \'name\', \'dtype\', \'ignore_class\', \'sparse_y_true\', \'sparse_y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'True\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-metric-wrapper.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-mean-metric-wrapper.pbtxt deleted file mode 100644 index d84345e14e3..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-metric-wrapper.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.metrics.MeanMetricWrapper" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'fn\', \'name\', \'dtype\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-relative-error.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-mean-relative-error.pbtxt deleted file mode 100644 index 697c4e0bb74..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-relative-error.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.metrics.MeanRelativeError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'normalizer\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-squared-error.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-mean-squared-error.pbtxt deleted file mode 100644 index ceb5282f074..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-squared-error.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.MeanSquaredError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'mean_squared_error\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-squared-logarithmic-error.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-mean-squared-logarithmic-error.pbtxt deleted file mode 100644 index 2d5cf64c2c3..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-squared-logarithmic-error.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.MeanSquaredLogarithmicError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'mean_squared_logarithmic_error\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-tensor.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-mean-tensor.pbtxt deleted file mode 100644 index 6e8ba1767c9..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-mean-tensor.pbtxt +++ /dev/null @@ -1,271 +0,0 @@ -path: "tensorflow.keras.metrics.MeanTensor" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "count" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "total" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\', \'shape\'], varargs=None, keywords=None, defaults=[\'mean_tensor\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'values\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-mean.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-mean.pbtxt deleted file mode 100644 index c31d49e14b7..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-mean.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.Mean" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'mean\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'values\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-metric.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-metric.pbtxt deleted file mode 100644 index 916ae93096e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-metric.pbtxt +++ /dev/null @@ -1,262 +0,0 @@ -path: "tensorflow.keras.metrics.Metric" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-one-hot-io-u.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-one-hot-io-u.pbtxt deleted file mode 100644 index 23fd50224c5..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-one-hot-io-u.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.metrics.OneHotIoU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_classes\', \'target_class_ids\', \'name\', \'dtype\', \'ignore_class\', \'sparse_y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-one-hot-mean-io-u.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-one-hot-mean-io-u.pbtxt deleted file mode 100644 index 98b63a62da9..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-one-hot-mean-io-u.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.OneHotMeanIoU" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_classes\', \'name\', \'dtype\', \'ignore_class\', \'sparse_y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-poisson.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-poisson.pbtxt deleted file mode 100644 index 1d5f8c6efcb..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-poisson.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.Poisson" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'poisson\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-precision-at-recall.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-precision-at-recall.pbtxt deleted file mode 100644 index 21f1c36bdc1..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-precision-at-recall.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.PrecisionAtRecall" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'recall\', \'num_thresholds\', \'class_id\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-precision.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-precision.pbtxt deleted file mode 100644 index d9c49540edc..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-precision.pbtxt +++ /dev/null @@ -1,263 +0,0 @@ -path: "tensorflow.keras.metrics.Precision" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'thresholds\', \'top_k\', \'class_id\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-r2-score.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-r2-score.pbtxt deleted file mode 100644 index 1e76ffb29ad..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-r2-score.pbtxt +++ /dev/null @@ -1,263 +0,0 @@ -path: "tensorflow.keras.metrics.R2Score" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'class_aggregation\', \'num_regressors\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'uniform_average\', \'0\', \'r2_score\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'y_true_shape\', \'y_pred_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-recall-at-precision.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-recall-at-precision.pbtxt deleted file mode 100644 index 5aa668718b0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-recall-at-precision.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.RecallAtPrecision" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'precision\', \'num_thresholds\', \'class_id\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-recall.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-recall.pbtxt deleted file mode 100644 index e7c4864a1bb..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-recall.pbtxt +++ /dev/null @@ -1,263 +0,0 @@ -path: "tensorflow.keras.metrics.Recall" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'thresholds\', \'top_k\', \'class_id\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-root-mean-squared-error.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-root-mean-squared-error.pbtxt deleted file mode 100644 index 64671f63b4c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-root-mean-squared-error.pbtxt +++ /dev/null @@ -1,265 +0,0 @@ -path: "tensorflow.keras.metrics.RootMeanSquaredError" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'root_mean_squared_error\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-sensitivity-at-specificity.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-sensitivity-at-specificity.pbtxt deleted file mode 100644 index 9b35e4f1419..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-sensitivity-at-specificity.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.SensitivityAtSpecificity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'specificity\', \'num_thresholds\', \'class_id\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-sparse-categorical-accuracy.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-sparse-categorical-accuracy.pbtxt deleted file mode 100644 index d960b99eccb..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-sparse-categorical-accuracy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.SparseCategoricalAccuracy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'sparse_categorical_accuracy\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-sparse-categorical-crossentropy.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-sparse-categorical-crossentropy.pbtxt deleted file mode 100644 index c5bd4c6f59d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-sparse-categorical-crossentropy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.SparseCategoricalCrossentropy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\', \'from_logits\', \'ignore_class\', \'axis\'], varargs=None, keywords=None, defaults=[\'sparse_categorical_crossentropy\', \'None\', \'False\', \'None\', \'-1\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-sparse-top-k-categorical-accuracy.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-sparse-top-k-categorical-accuracy.pbtxt deleted file mode 100644 index 069a3e3b272..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-sparse-top-k-categorical-accuracy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.SparseTopKCategoricalAccuracy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'k\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'5\', \'sparse_top_k_categorical_accuracy\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-specificity-at-sensitivity.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-specificity-at-sensitivity.pbtxt deleted file mode 100644 index 9f42d1f0b3c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-specificity-at-sensitivity.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.SpecificityAtSensitivity" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'sensitivity\', \'num_thresholds\', \'class_id\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-squared-hinge.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-squared-hinge.pbtxt deleted file mode 100644 index 83437f33225..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-squared-hinge.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.SquaredHinge" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'squared_hinge\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-sum.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-sum.pbtxt deleted file mode 100644 index 6cb46d1f93e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-sum.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.Sum" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'sum\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'values\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-top-k-categorical-accuracy.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-top-k-categorical-accuracy.pbtxt deleted file mode 100644 index 6355e88e185..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-top-k-categorical-accuracy.pbtxt +++ /dev/null @@ -1,266 +0,0 @@ -path: "tensorflow.keras.metrics.TopKCategoricalAccuracy" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'k\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'5\', \'top_k_categorical_accuracy\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-true-negatives.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-true-negatives.pbtxt deleted file mode 100644 index 95bc523abd0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-true-negatives.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.TrueNegatives" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.-true-positives.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.-true-positives.pbtxt deleted file mode 100644 index 863fb291187..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.-true-positives.pbtxt +++ /dev/null @@ -1,264 +0,0 @@ -path: "tensorflow.keras.metrics.TruePositives" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.experimental.-py-metric.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.experimental.-py-metric.pbtxt deleted file mode 100644 index 468898868b3..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.experimental.-py-metric.pbtxt +++ /dev/null @@ -1,263 +0,0 @@ -path: "tensorflow.keras.metrics.experimental.PyMetric" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'dtype\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregationV2.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "merge_state" - argspec: "args=[\'self\', \'metrics\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_state" - argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.experimental.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.experimental.pbtxt deleted file mode 100644 index f5614c4b76a..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.experimental.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.metrics.experimental" -tf_module { - member { - name: "PyMetric" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.metrics.pbtxt b/keras/api/golden/v2/tensorflow.keras.metrics.pbtxt deleted file mode 100644 index 1ab81fed686..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.metrics.pbtxt +++ /dev/null @@ -1,327 +0,0 @@ -path: "tensorflow.keras.metrics" -tf_module { - member { - name: "AUC" - mtype: "" - } - member { - name: "Accuracy" - mtype: "" - } - member { - name: "BinaryAccuracy" - mtype: "" - } - member { - name: "BinaryCrossentropy" - mtype: "" - } - member { - name: "BinaryIoU" - mtype: "" - } - member { - name: "CategoricalAccuracy" - mtype: "" - } - member { - name: "CategoricalCrossentropy" - mtype: "" - } - member { - name: "CategoricalHinge" - mtype: "" - } - member { - name: "CosineSimilarity" - mtype: "" - } - member { - name: "F1Score" - mtype: "" - } - member { - name: "FBetaScore" - mtype: "" - } - member { - name: "FalseNegatives" - mtype: "" - } - member { - name: "FalsePositives" - mtype: "" - } - member { - name: "Hinge" - mtype: "" - } - member { - name: "IoU" - mtype: "" - } - member { - name: "KLDivergence" - mtype: "" - } - member { - name: "LogCoshError" - mtype: "" - } - member { - name: "Mean" - mtype: "" - } - member { - name: "MeanAbsoluteError" - mtype: "" - } - member { - name: "MeanAbsolutePercentageError" - mtype: "" - } - member { - name: "MeanIoU" - mtype: "" - } - member { - name: "MeanMetricWrapper" - mtype: "" - } - member { - name: "MeanRelativeError" - mtype: "" - } - member { - name: "MeanSquaredError" - mtype: "" - } - member { - name: "MeanSquaredLogarithmicError" - mtype: "" - } - member { - name: "MeanTensor" - mtype: "" - } - member { - name: "Metric" - mtype: "" - } - member { - name: "OneHotIoU" - mtype: "" - } - member { - name: "OneHotMeanIoU" - mtype: "" - } - member { - name: "Poisson" - mtype: "" - } - member { - name: "Precision" - mtype: "" - } - member { - name: "PrecisionAtRecall" - mtype: "" - } - member { - name: "R2Score" - mtype: "" - } - member { - name: "Recall" - mtype: "" - } - member { - name: "RecallAtPrecision" - mtype: "" - } - member { - name: "RootMeanSquaredError" - mtype: "" - } - member { - name: "SensitivityAtSpecificity" - mtype: "" - } - member { - name: "SparseCategoricalAccuracy" - mtype: "" - } - member { - name: "SparseCategoricalCrossentropy" - mtype: "" - } - member { - name: "SparseTopKCategoricalAccuracy" - mtype: "" - } - member { - name: "SpecificityAtSensitivity" - mtype: "" - } - member { - name: "SquaredHinge" - mtype: "" - } - member { - name: "Sum" - mtype: "" - } - member { - name: "TopKCategoricalAccuracy" - mtype: "" - } - member { - name: "TrueNegatives" - mtype: "" - } - member { - name: "TruePositives" - mtype: "" - } - member { - name: "experimental" - mtype: "" - } - member_method { - name: "KLD" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MAE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MAPE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MSE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "MSLE" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "binary_accuracy" - argspec: "args=[\'y_true\', \'y_pred\', \'threshold\'], varargs=None, keywords=None, defaults=[\'0.5\'], " - } - member_method { - name: "binary_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "binary_focal_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'apply_class_balancing\', \'alpha\', \'gamma\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'0.25\', \'2.0\', \'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "categorical_accuracy" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "categorical_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "categorical_focal_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'alpha\', \'gamma\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=None, keywords=None, defaults=[\'0.25\', \'2.0\', \'False\', \'0.0\', \'-1\'], " - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "hinge" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "kl_divergence" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "kld" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "kullback_leibler_divergence" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "log_cosh" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "logcosh" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mae" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mape" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_absolute_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_absolute_percentage_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_squared_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mean_squared_logarithmic_error" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "mse" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "msle" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "poisson" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'metric\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "sparse_categorical_accuracy" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sparse_categorical_crossentropy" - argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'axis\', \'ignore_class\'], varargs=None, keywords=None, defaults=[\'False\', \'-1\', \'None\'], " - } - member_method { - name: "sparse_top_k_categorical_accuracy" - argspec: "args=[\'y_true\', \'y_pred\', \'k\'], varargs=None, keywords=None, defaults=[\'5\'], " - } - member_method { - name: "squared_hinge" - argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "top_k_categorical_accuracy" - argspec: "args=[\'y_true\', \'y_pred\', \'k\'], varargs=None, keywords=None, defaults=[\'5\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.mixed_precision.-loss-scale-optimizer.pbtxt b/keras/api/golden/v2/tensorflow.keras.mixed_precision.-loss-scale-optimizer.pbtxt deleted file mode 100644 index 50931ad7947..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.mixed_precision.-loss-scale-optimizer.pbtxt +++ /dev/null @@ -1,40 +0,0 @@ -path: "tensorflow.keras.mixed_precision.LossScaleOptimizer" -tf_class { - is_instance: "" - is_instance: "" - member { - name: "dynamic" - mtype: "" - } - member { - name: "dynamic_counter" - mtype: "" - } - member { - name: "dynamic_growth_steps" - mtype: "" - } - member { - name: "initial_scale" - mtype: "" - } - member { - name: "inner_optimizer" - mtype: "" - } - member { - name: "loss_scale" - mtype: "" - } - member_method { - name: "__init__" - } - member_method { - name: "get_scaled_loss" - argspec: "args=[\'self\', \'loss\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_unscaled_gradients" - argspec: "args=[\'self\', \'grads\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.mixed_precision.-policy.pbtxt b/keras/api/golden/v2/tensorflow.keras.mixed_precision.-policy.pbtxt deleted file mode 100644 index dc2141f4f83..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.mixed_precision.-policy.pbtxt +++ /dev/null @@ -1,29 +0,0 @@ -path: "tensorflow.keras.mixed_precision.Policy" -tf_class { - is_instance: "" - is_instance: "" - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.mixed_precision.pbtxt b/keras/api/golden/v2/tensorflow.keras.mixed_precision.pbtxt deleted file mode 100644 index cc7748cb82e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.mixed_precision.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.mixed_precision" -tf_module { - member { - name: "LossScaleOptimizer" - mtype: "" - } - member { - name: "Policy" - mtype: "" - } - member_method { - name: "global_policy" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_global_policy" - argspec: "args=[\'policy\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.models.-model.pbtxt b/keras/api/golden/v2/tensorflow.keras.models.-model.pbtxt deleted file mode 100644 index 437212b72c2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.models.-model.pbtxt +++ /dev/null @@ -1,403 +0,0 @@ -path: "tensorflow.keras.models.Model" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.models.-sequential.pbtxt b/keras/api/golden/v2/tensorflow.keras.models.-sequential.pbtxt deleted file mode 100644 index 6a463d995b1..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.models.-sequential.pbtxt +++ /dev/null @@ -1,413 +0,0 @@ -path: "tensorflow.keras.models.Sequential" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'layers\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add" - argspec: "args=[\'self\', \'layer\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\', \'training\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "pop" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.models.experimental.-sharpness-aware-minimization.pbtxt b/keras/api/golden/v2/tensorflow.keras.models.experimental.-sharpness-aware-minimization.pbtxt deleted file mode 100644 index a7469c8fba7..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.models.experimental.-sharpness-aware-minimization.pbtxt +++ /dev/null @@ -1,404 +0,0 @@ -path: "tensorflow.keras.models.experimental.SharpnessAwareMinimization" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "distribute_reduction_method" - mtype: "" - } - member { - name: "distribute_strategy" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "jit_compile" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "metrics_names" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "run_eagerly" - mtype: "" - } - member { - name: "state_updates" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'model\', \'rho\', \'num_batch_splits\', \'name\'], varargs=None, keywords=None, defaults=[\'0.05\', \'None\', \'None\'], " - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compile" - argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'weighted_metrics\', \'run_eagerly\', \'steps_per_execution\', \'jit_compile\', \'pss_evaluation_shards\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "compile_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_loss" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_metrics" - argspec: "args=[\'self\', \'x\', \'y\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "evaluate" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'return_dict\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'auto\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\', \'False\'], " - } - member_method { - name: "evaluate_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "export" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_batch_size\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'auto\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "fit_generator" - argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_compile_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_layer" - argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_metrics_result" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weight_paths" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_weights" - argspec: "args=[\'self\', \'filepath\', \'skip_mismatch\', \'by_name\', \'options\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'None\'], " - } - member_method { - name: "make_predict_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_test_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "make_train_function" - argspec: "args=[\'self\', \'force\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "predict" - argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'auto\', \'None\', \'None\', \'10\', \'1\', \'False\'], " - } - member_method { - name: "predict_generator" - argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " - } - member_method { - name: "predict_on_batch" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "predict_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_metrics" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset_states" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_spec" - argspec: "args=[\'self\', \'dynamic_batch\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "save_weights" - argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\', \'options\'], varargs=None, keywords=None, defaults=[\'True\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "summary" - argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\', \'expand_nested\', \'show_trainable\', \'layer_range\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'False\', \'False\', \'None\'], " - } - member_method { - name: "test_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "test_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "to_yaml" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "train_on_batch" - argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\', \'return_dict\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\', \'False\'], " - } - member_method { - name: "train_step" - argspec: "args=[\'self\', \'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.models.experimental.pbtxt b/keras/api/golden/v2/tensorflow.keras.models.experimental.pbtxt deleted file mode 100644 index 65806b642b6..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.models.experimental.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.models.experimental" -tf_module { - member { - name: "SharpnessAwareMinimization" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.models.pbtxt b/keras/api/golden/v2/tensorflow.keras.models.pbtxt deleted file mode 100644 index 49ba3fbf464..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.models.pbtxt +++ /dev/null @@ -1,39 +0,0 @@ -path: "tensorflow.keras.models" -tf_module { - member { - name: "Model" - mtype: "" - } - member { - name: "Sequential" - mtype: "" - } - member { - name: "experimental" - mtype: "" - } - member_method { - name: "clone_model" - argspec: "args=[\'model\', \'input_tensors\', \'clone_function\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "load_model" - argspec: "args=[\'filepath\', \'custom_objects\', \'compile\', \'safe_mode\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'True\', \'True\'], " - } - member_method { - name: "model_from_config" - argspec: "args=[\'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "model_from_json" - argspec: "args=[\'json_string\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "model_from_yaml" - argspec: "args=[\'yaml_string\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_model" - argspec: "args=[\'model\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.-adadelta.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.-adadelta.pbtxt deleted file mode 100644 index bc24d928cb4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.-adadelta.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.Adadelta" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'epsilon\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.95\', \'1e-07\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Adadelta\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'grad\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.-adafactor.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.-adafactor.pbtxt deleted file mode 100644 index fb3952d2b26..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.-adafactor.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.Adafactor" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_2_decay\', \'epsilon_1\', \'epsilon_2\', \'clip_threshold\', \'relative_step\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'-0.8\', \'1e-30\', \'0.001\', \'1.0\', \'True\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Adafactor\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.-adagrad.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.-adagrad.pbtxt deleted file mode 100644 index 4e6b8a67982..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.-adagrad.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.Adagrad" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'initial_accumulator_value\', \'epsilon\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.1\', \'1e-07\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Adagrad\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'grad\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.-adam-w.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.-adam-w.pbtxt deleted file mode 100644 index 12b1548926b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.-adam-w.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.AdamW" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'weight_decay\', \'beta_1\', \'beta_2\', \'epsilon\', \'amsgrad\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.004\', \'0.9\', \'0.999\', \'1e-07\', \'False\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'AdamW\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.-adam.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.-adam.pbtxt deleted file mode 100644 index 978f3b87489..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.-adam.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.Adam" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'amsgrad\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'False\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Adam\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.-adamax.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.-adamax.pbtxt deleted file mode 100644 index 302da145cd5..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.-adamax.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.Adamax" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Adamax\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.-ftrl.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.-ftrl.pbtxt deleted file mode 100644 index be804558c67..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.-ftrl.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.Ftrl" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'learning_rate_power\', \'initial_accumulator_value\', \'l1_regularization_strength\', \'l2_regularization_strength\', \'l2_shrinkage_regularization_strength\', \'beta\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'-0.5\', \'0.1\', \'0.0\', \'0.0\', \'0.0\', \'0.0\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Ftrl\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.-lion.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.-lion.pbtxt deleted file mode 100644 index 5d4faf4150b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.-lion.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.Lion" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.0001\', \'0.9\', \'0.99\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Lion\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.-nadam.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.-nadam.pbtxt deleted file mode 100644 index b6c91c10e99..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.-nadam.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.Nadam" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Nadam\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.-optimizer.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.-optimizer.pbtxt deleted file mode 100644 index d30f25489a3..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.-optimizer.pbtxt +++ /dev/null @@ -1,88 +0,0 @@ -path: "tensorflow.keras.optimizers.Optimizer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\'], varargs=None, keywords=kwargs, defaults=[\'0\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.-r-m-sprop.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.-r-m-sprop.pbtxt deleted file mode 100644 index 9bcb35ea798..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.-r-m-sprop.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.RMSprop" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'momentum\', \'epsilon\', \'centered\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.0\', \'1e-07\', \'False\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'100\', \'True\', \'RMSprop\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.-s-g-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.-s-g-d.pbtxt deleted file mode 100644 index 73dc46d8598..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.-s-g-d.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.SGD" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'momentum\', \'nesterov\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.01\', \'0.0\', \'False\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'SGD\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adadelta.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adadelta.pbtxt deleted file mode 100644 index 2ada86ac054..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adadelta.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.experimental.Adadelta" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'epsilon\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.95\', \'1e-07\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Adadelta\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'grad\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adafactor.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adafactor.pbtxt deleted file mode 100644 index 30a77095af1..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adafactor.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.experimental.Adafactor" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_2_decay\', \'epsilon_1\', \'epsilon_2\', \'clip_threshold\', \'relative_step\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'-0.8\', \'1e-30\', \'0.001\', \'1.0\', \'True\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Adafactor\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adagrad.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adagrad.pbtxt deleted file mode 100644 index bcdc12926a7..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adagrad.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.experimental.Adagrad" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'initial_accumulator_value\', \'epsilon\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.1\', \'1e-07\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Adagrad\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'grad\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adam-w.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adam-w.pbtxt deleted file mode 100644 index 240e92cf962..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adam-w.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.experimental.AdamW" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'weight_decay\', \'beta_1\', \'beta_2\', \'epsilon\', \'amsgrad\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.004\', \'0.9\', \'0.999\', \'1e-07\', \'False\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'AdamW\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adam.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adam.pbtxt deleted file mode 100644 index a3675177854..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adam.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.experimental.Adam" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'amsgrad\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'False\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Adam\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adamax.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adamax.pbtxt deleted file mode 100644 index f8b070a6b70..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-adamax.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.experimental.Adamax" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Adamax\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-ftrl.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-ftrl.pbtxt deleted file mode 100644 index 892d407e86e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-ftrl.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.experimental.Ftrl" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'learning_rate_power\', \'initial_accumulator_value\', \'l1_regularization_strength\', \'l2_regularization_strength\', \'l2_shrinkage_regularization_strength\', \'beta\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'-0.5\', \'0.1\', \'0.0\', \'0.0\', \'0.0\', \'0.0\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Ftrl\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-nadam.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-nadam.pbtxt deleted file mode 100644 index 887e8bb5278..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-nadam.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.experimental.Nadam" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'Nadam\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-optimizer.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-optimizer.pbtxt deleted file mode 100644 index f4a84d45488..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-optimizer.pbtxt +++ /dev/null @@ -1,88 +0,0 @@ -path: "tensorflow.keras.optimizers.experimental.Optimizer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\'], varargs=None, keywords=kwargs, defaults=[\'0\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-r-m-sprop.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-r-m-sprop.pbtxt deleted file mode 100644 index c8998cffcf4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-r-m-sprop.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.experimental.RMSprop" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'momentum\', \'epsilon\', \'centered\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.0\', \'1e-07\', \'False\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'100\', \'True\', \'RMSprop\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-s-g-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-s-g-d.pbtxt deleted file mode 100644 index 7a73dc7f423..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.-s-g-d.pbtxt +++ /dev/null @@ -1,89 +0,0 @@ -path: "tensorflow.keras.optimizers.experimental.SGD" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "iterations" - mtype: "" - } - member { - name: "learning_rate" - mtype: "" - } - member { - name: "lr" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'momentum\', \'nesterov\', \'weight_decay\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.01\', \'0.0\', \'False\', \'None\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'None\', \'True\', \'SGD\'], " - } - member_method { - name: "add_variable" - argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " - } - member_method { - name: "add_variable_from_reference" - argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "aggregate_gradients" - argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_gradients" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "exclude_from_weight_decay" - argspec: "args=[\'self\', \'var_list\', \'var_names\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "finalize_variable_values" - argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "update_step" - argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.pbtxt deleted file mode 100644 index 9d9f9cfe72d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.experimental.pbtxt +++ /dev/null @@ -1,47 +0,0 @@ -path: "tensorflow.keras.optimizers.experimental" -tf_module { - member { - name: "Adadelta" - mtype: "" - } - member { - name: "Adafactor" - mtype: "" - } - member { - name: "Adagrad" - mtype: "" - } - member { - name: "Adam" - mtype: "" - } - member { - name: "AdamW" - mtype: "" - } - member { - name: "Adamax" - mtype: "" - } - member { - name: "Ftrl" - mtype: "" - } - member { - name: "Nadam" - mtype: "" - } - member { - name: "Optimizer" - mtype: "" - } - member { - name: "RMSprop" - mtype: "" - } - member { - name: "SGD" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-adadelta.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-adadelta.pbtxt deleted file mode 100644 index 05ae2888d36..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-adadelta.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Adadelta" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.95\', \'1e-07\', \'Adadelta\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-adagrad.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-adagrad.pbtxt deleted file mode 100644 index 507148f08db..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-adagrad.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Adagrad" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'initial_accumulator_value\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.1\', \'1e-07\', \'Adagrad\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-adam.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-adam.pbtxt deleted file mode 100644 index d79093442bd..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-adam.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Adam" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'amsgrad\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'False\', \'Adam\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-adamax.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-adamax.pbtxt deleted file mode 100644 index b18db03163b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-adamax.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Adamax" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'Adamax\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-ftrl.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-ftrl.pbtxt deleted file mode 100644 index b852c98df0e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-ftrl.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Ftrl" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'learning_rate_power\', \'initial_accumulator_value\', \'l1_regularization_strength\', \'l2_regularization_strength\', \'name\', \'l2_shrinkage_regularization_strength\', \'beta\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'-0.5\', \'0.1\', \'0.0\', \'0.0\', \'Ftrl\', \'0.0\', \'0.0\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-nadam.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-nadam.pbtxt deleted file mode 100644 index ef505faade8..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-nadam.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Nadam" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'Nadam\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-optimizer.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-optimizer.pbtxt deleted file mode 100644 index f28c0103704..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-optimizer.pbtxt +++ /dev/null @@ -1,82 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.Optimizer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'name\', \'gradient_aggregator\', \'gradient_transformers\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-r-m-sprop.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-r-m-sprop.pbtxt deleted file mode 100644 index f53b0568fe1..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-r-m-sprop.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.RMSprop" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'momentum\', \'epsilon\', \'centered\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.0\', \'1e-07\', \'False\', \'RMSprop\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-s-g-d.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-s-g-d.pbtxt deleted file mode 100644 index ab104159207..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.-s-g-d.pbtxt +++ /dev/null @@ -1,83 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy.SGD" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "clipnorm" - mtype: "" - } - member { - name: "clipvalue" - mtype: "" - } - member { - name: "global_clipnorm" - mtype: "" - } - member { - name: "iterations" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'learning_rate\', \'momentum\', \'nesterov\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.01\', \'0.0\', \'False\', \'SGD\'], " - } - member_method { - name: "add_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\', \'shape\'], varargs=None, keywords=None, defaults=[\'zeros\', \'None\'], " - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "apply_gradients" - argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'experimental_aggregate_gradients\'], varargs=None, keywords=None, defaults=[\'None\', \'True\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_gradients" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot" - argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_slot_names" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_updates" - argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "minimize" - argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "variables" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.pbtxt deleted file mode 100644 index e2b86827a40..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.legacy.pbtxt +++ /dev/null @@ -1,39 +0,0 @@ -path: "tensorflow.keras.optimizers.legacy" -tf_module { - member { - name: "Adadelta" - mtype: "" - } - member { - name: "Adagrad" - mtype: "" - } - member { - name: "Adam" - mtype: "" - } - member { - name: "Adamax" - mtype: "" - } - member { - name: "Ftrl" - mtype: "" - } - member { - name: "Nadam" - mtype: "" - } - member { - name: "Optimizer" - mtype: "" - } - member { - name: "RMSprop" - mtype: "" - } - member { - name: "SGD" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.pbtxt deleted file mode 100644 index 00b8c8fd342..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.pbtxt +++ /dev/null @@ -1,75 +0,0 @@ -path: "tensorflow.keras.optimizers" -tf_module { - member { - name: "Adadelta" - mtype: "" - } - member { - name: "Adafactor" - mtype: "" - } - member { - name: "Adagrad" - mtype: "" - } - member { - name: "Adam" - mtype: "" - } - member { - name: "AdamW" - mtype: "" - } - member { - name: "Adamax" - mtype: "" - } - member { - name: "Ftrl" - mtype: "" - } - member { - name: "Lion" - mtype: "" - } - member { - name: "Nadam" - mtype: "" - } - member { - name: "Optimizer" - mtype: "" - } - member { - name: "RMSprop" - mtype: "" - } - member { - name: "SGD" - mtype: "" - } - member { - name: "experimental" - mtype: "" - } - member { - name: "legacy" - mtype: "" - } - member { - name: "schedules" - mtype: "" - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "serialize" - argspec: "args=[\'optimizer\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-cosine-decay-restarts.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-cosine-decay-restarts.pbtxt deleted file mode 100644 index 16daa97b8f4..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-cosine-decay-restarts.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.CosineDecayRestarts" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'first_decay_steps\', \'t_mul\', \'m_mul\', \'alpha\', \'name\'], varargs=None, keywords=None, defaults=[\'2.0\', \'1.0\', \'0.0\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-cosine-decay.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-cosine-decay.pbtxt deleted file mode 100644 index 6df561f3342..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-cosine-decay.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.CosineDecay" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'alpha\', \'name\', \'warmup_target\', \'warmup_steps\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'None\', \'0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-exponential-decay.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-exponential-decay.pbtxt deleted file mode 100644 index c38633e5a38..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-exponential-decay.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.ExponentialDecay" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'decay_rate\', \'staircase\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-inverse-time-decay.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-inverse-time-decay.pbtxt deleted file mode 100644 index 56f6937bb1c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-inverse-time-decay.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.InverseTimeDecay" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'decay_rate\', \'staircase\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-learning-rate-schedule.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-learning-rate-schedule.pbtxt deleted file mode 100644 index 243f00aba5c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-learning-rate-schedule.pbtxt +++ /dev/null @@ -1,16 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.LearningRateSchedule" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-piecewise-constant-decay.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-piecewise-constant-decay.pbtxt deleted file mode 100644 index f5ceeb32659..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-piecewise-constant-decay.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.PiecewiseConstantDecay" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'boundaries\', \'values\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-polynomial-decay.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-polynomial-decay.pbtxt deleted file mode 100644 index fb200007259..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.-polynomial-decay.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules.PolynomialDecay" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'end_learning_rate\', \'power\', \'cycle\', \'name\'], varargs=None, keywords=None, defaults=[\'0.0001\', \'1.0\', \'False\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.pbtxt b/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.pbtxt deleted file mode 100644 index 8ed0edccf92..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.optimizers.schedules.pbtxt +++ /dev/null @@ -1,39 +0,0 @@ -path: "tensorflow.keras.optimizers.schedules" -tf_module { - member { - name: "CosineDecay" - mtype: "" - } - member { - name: "CosineDecayRestarts" - mtype: "" - } - member { - name: "ExponentialDecay" - mtype: "" - } - member { - name: "InverseTimeDecay" - mtype: "" - } - member { - name: "LearningRateSchedule" - mtype: "" - } - member { - name: "PiecewiseConstantDecay" - mtype: "" - } - member { - name: "PolynomialDecay" - mtype: "" - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "serialize" - argspec: "args=[\'learning_rate_schedule\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.pbtxt b/keras/api/golden/v2/tensorflow.keras.pbtxt deleted file mode 100644 index c080bc27539..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.pbtxt +++ /dev/null @@ -1,100 +0,0 @@ -path: "tensorflow.keras" -tf_module { - member { - name: "Model" - mtype: "" - } - member { - name: "Sequential" - mtype: "" - } - member { - name: "activations" - mtype: "" - } - member { - name: "applications" - mtype: "" - } - member { - name: "backend" - mtype: "" - } - member { - name: "callbacks" - mtype: "" - } - member { - name: "constraints" - mtype: "" - } - member { - name: "datasets" - mtype: "" - } - member { - name: "dtensor" - mtype: "" - } - member { - name: "estimator" - mtype: "" - } - member { - name: "experimental" - mtype: "" - } - member { - name: "export" - mtype: "" - } - # Placeholder for internal API - member { - name: "initializers" - mtype: "" - } - member { - name: "layers" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "mixed_precision" - mtype: "" - } - member { - name: "models" - mtype: "" - } - member { - name: "optimizers" - mtype: "" - } - member { - name: "preprocessing" - mtype: "" - } - member { - name: "regularizers" - mtype: "" - } - member { - name: "saving" - mtype: "" - } - member { - name: "utils" - mtype: "" - } - member_method { - name: "Input" - argspec: "args=[\'shape\', \'batch_size\', \'name\', \'dtype\', \'sparse\', \'tensor\', \'ragged\', \'type_spec\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.preprocessing.image.-directory-iterator.pbtxt b/keras/api/golden/v2/tensorflow.keras.preprocessing.image.-directory-iterator.pbtxt deleted file mode 100644 index e584a165e7d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.preprocessing.image.-directory-iterator.pbtxt +++ /dev/null @@ -1,48 +0,0 @@ -path: "tensorflow.keras.preprocessing.image.DirectoryIterator" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "allowed_class_modes" - mtype: "" - } - member { - name: "filepaths" - mtype: "" - } - member { - name: "labels" - mtype: "" - } - member { - name: "sample_weight" - mtype: "" - } - member { - name: "white_list_formats" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'directory\', \'image_data_generator\', \'target_size\', \'color_mode\', \'classes\', \'class_mode\', \'batch_size\', \'shuffle\', \'seed\', \'data_format\', \'save_to_dir\', \'save_prefix\', \'save_format\', \'follow_links\', \'subset\', \'interpolation\', \'keep_aspect_ratio\', \'dtype\'], varargs=None, keywords=None, defaults=[\'(256, 256)\', \'rgb\', \'None\', \'categorical\', \'32\', \'True\', \'None\', \'None\', \'None\', \'\', \'png\', \'False\', \'None\', \'nearest\', \'False\', \'None\'], " - } - member_method { - name: "next" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_processing_attrs" - argspec: "args=[\'self\', \'image_data_generator\', \'target_size\', \'color_mode\', \'data_format\', \'save_to_dir\', \'save_prefix\', \'save_format\', \'subset\', \'interpolation\', \'keep_aspect_ratio\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.preprocessing.image.-image-data-generator.pbtxt b/keras/api/golden/v2/tensorflow.keras.preprocessing.image.-image-data-generator.pbtxt deleted file mode 100644 index 200135f9092..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.preprocessing.image.-image-data-generator.pbtxt +++ /dev/null @@ -1,41 +0,0 @@ -path: "tensorflow.keras.preprocessing.image.ImageDataGenerator" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'featurewise_center\', \'samplewise_center\', \'featurewise_std_normalization\', \'samplewise_std_normalization\', \'zca_whitening\', \'zca_epsilon\', \'rotation_range\', \'width_shift_range\', \'height_shift_range\', \'brightness_range\', \'shear_range\', \'zoom_range\', \'channel_shift_range\', \'fill_mode\', \'cval\', \'horizontal_flip\', \'vertical_flip\', \'rescale\', \'preprocessing_function\', \'data_format\', \'validation_split\', \'interpolation_order\', \'dtype\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'False\', \'False\', \'False\', \'1e-06\', \'0\', \'0.0\', \'0.0\', \'None\', \'0.0\', \'0.0\', \'0.0\', \'nearest\', \'0.0\', \'False\', \'False\', \'None\', \'None\', \'None\', \'0.0\', \'1\', \'None\'], " - } - member_method { - name: "apply_transform" - argspec: "args=[\'self\', \'x\', \'transform_parameters\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit" - argspec: "args=[\'self\', \'x\', \'augment\', \'rounds\', \'seed\'], varargs=None, keywords=None, defaults=[\'False\', \'1\', \'None\'], " - } - member_method { - name: "flow" - argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'shuffle\', \'sample_weight\', \'seed\', \'save_to_dir\', \'save_prefix\', \'save_format\', \'ignore_class_split\', \'subset\'], varargs=None, keywords=None, defaults=[\'None\', \'32\', \'True\', \'None\', \'None\', \'None\', \'\', \'png\', \'False\', \'None\'], " - } - member_method { - name: "flow_from_dataframe" - argspec: "args=[\'self\', \'dataframe\', \'directory\', \'x_col\', \'y_col\', \'weight_col\', \'target_size\', \'color_mode\', \'classes\', \'class_mode\', \'batch_size\', \'shuffle\', \'seed\', \'save_to_dir\', \'save_prefix\', \'save_format\', \'subset\', \'interpolation\', \'validate_filenames\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'filename\', \'class\', \'None\', \'(256, 256)\', \'rgb\', \'None\', \'categorical\', \'32\', \'True\', \'None\', \'None\', \'\', \'png\', \'None\', \'nearest\', \'True\'], " - } - member_method { - name: "flow_from_directory" - argspec: "args=[\'self\', \'directory\', \'target_size\', \'color_mode\', \'classes\', \'class_mode\', \'batch_size\', \'shuffle\', \'seed\', \'save_to_dir\', \'save_prefix\', \'save_format\', \'follow_links\', \'subset\', \'interpolation\', \'keep_aspect_ratio\'], varargs=None, keywords=None, defaults=[\'(256, 256)\', \'rgb\', \'None\', \'categorical\', \'32\', \'True\', \'None\', \'None\', \'\', \'png\', \'False\', \'None\', \'nearest\', \'False\'], " - } - member_method { - name: "get_random_transform" - argspec: "args=[\'self\', \'img_shape\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "random_transform" - argspec: "args=[\'self\', \'x\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "standardize" - argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.preprocessing.image.-iterator.pbtxt b/keras/api/golden/v2/tensorflow.keras.preprocessing.image.-iterator.pbtxt deleted file mode 100644 index 94b1da3b70b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.preprocessing.image.-iterator.pbtxt +++ /dev/null @@ -1,26 +0,0 @@ -path: "tensorflow.keras.preprocessing.image.Iterator" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "white_list_formats" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'n\', \'batch_size\', \'shuffle\', \'seed\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "next" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.preprocessing.image.-numpy-array-iterator.pbtxt b/keras/api/golden/v2/tensorflow.keras.preprocessing.image.-numpy-array-iterator.pbtxt deleted file mode 100644 index c5dbf052f4a..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.preprocessing.image.-numpy-array-iterator.pbtxt +++ /dev/null @@ -1,27 +0,0 @@ -path: "tensorflow.keras.preprocessing.image.NumpyArrayIterator" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "white_list_formats" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'x\', \'y\', \'image_data_generator\', \'batch_size\', \'shuffle\', \'sample_weight\', \'seed\', \'data_format\', \'save_to_dir\', \'save_prefix\', \'save_format\', \'subset\', \'ignore_class_split\', \'dtype\'], varargs=None, keywords=None, defaults=[\'32\', \'False\', \'None\', \'None\', \'None\', \'None\', \'\', \'png\', \'None\', \'False\', \'None\'], " - } - member_method { - name: "next" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "reset" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.preprocessing.image.pbtxt b/keras/api/golden/v2/tensorflow.keras.preprocessing.image.pbtxt deleted file mode 100644 index 8e28b7abb62..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.preprocessing.image.pbtxt +++ /dev/null @@ -1,75 +0,0 @@ -path: "tensorflow.keras.preprocessing.image" -tf_module { - member { - name: "DirectoryIterator" - mtype: "" - } - member { - name: "ImageDataGenerator" - mtype: "" - } - member { - name: "Iterator" - mtype: "" - } - member { - name: "NumpyArrayIterator" - mtype: "" - } - member_method { - name: "apply_affine_transform" - argspec: "args=[\'x\', \'theta\', \'tx\', \'ty\', \'shear\', \'zx\', \'zy\', \'row_axis\', \'col_axis\', \'channel_axis\', \'fill_mode\', \'cval\', \'order\'], varargs=None, keywords=None, defaults=[\'0\', \'0\', \'0\', \'0\', \'1\', \'1\', \'1\', \'2\', \'0\', \'nearest\', \'0.0\', \'1\'], " - } - member_method { - name: "apply_brightness_shift" - argspec: "args=[\'x\', \'brightness\', \'scale\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "apply_channel_shift" - argspec: "args=[\'x\', \'intensity\', \'channel_axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "array_to_img" - argspec: "args=[\'x\', \'data_format\', \'scale\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'None\'], " - } - member_method { - name: "img_to_array" - argspec: "args=[\'img\', \'data_format\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "load_img" - argspec: "args=[\'path\', \'grayscale\', \'color_mode\', \'target_size\', \'interpolation\', \'keep_aspect_ratio\'], varargs=None, keywords=None, defaults=[\'False\', \'rgb\', \'None\', \'nearest\', \'False\'], " - } - member_method { - name: "random_brightness" - argspec: "args=[\'x\', \'brightness_range\', \'scale\'], varargs=None, keywords=None, defaults=[\'True\'], " - } - member_method { - name: "random_channel_shift" - argspec: "args=[\'x\', \'intensity_range\', \'channel_axis\'], varargs=None, keywords=None, defaults=[\'0\'], " - } - member_method { - name: "random_rotation" - argspec: "args=[\'x\', \'rg\', \'row_axis\', \'col_axis\', \'channel_axis\', \'fill_mode\', \'cval\', \'interpolation_order\'], varargs=None, keywords=None, defaults=[\'1\', \'2\', \'0\', \'nearest\', \'0.0\', \'1\'], " - } - member_method { - name: "random_shear" - argspec: "args=[\'x\', \'intensity\', \'row_axis\', \'col_axis\', \'channel_axis\', \'fill_mode\', \'cval\', \'interpolation_order\'], varargs=None, keywords=None, defaults=[\'1\', \'2\', \'0\', \'nearest\', \'0.0\', \'1\'], " - } - member_method { - name: "random_shift" - argspec: "args=[\'x\', \'wrg\', \'hrg\', \'row_axis\', \'col_axis\', \'channel_axis\', \'fill_mode\', \'cval\', \'interpolation_order\'], varargs=None, keywords=None, defaults=[\'1\', \'2\', \'0\', \'nearest\', \'0.0\', \'1\'], " - } - member_method { - name: "random_zoom" - argspec: "args=[\'x\', \'zoom_range\', \'row_axis\', \'col_axis\', \'channel_axis\', \'fill_mode\', \'cval\', \'interpolation_order\'], varargs=None, keywords=None, defaults=[\'1\', \'2\', \'0\', \'nearest\', \'0.0\', \'1\'], " - } - member_method { - name: "save_img" - argspec: "args=[\'path\', \'x\', \'data_format\', \'file_format\', \'scale\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'True\'], " - } - member_method { - name: "smart_resize" - argspec: "args=[\'x\', \'size\', \'interpolation\'], varargs=None, keywords=None, defaults=[\'bilinear\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.preprocessing.pbtxt b/keras/api/golden/v2/tensorflow.keras.preprocessing.pbtxt deleted file mode 100644 index a92bba65115..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.preprocessing.pbtxt +++ /dev/null @@ -1,27 +0,0 @@ -path: "tensorflow.keras.preprocessing" -tf_module { - member { - name: "image" - mtype: "" - } - member { - name: "sequence" - mtype: "" - } - member { - name: "text" - mtype: "" - } - member_method { - name: "image_dataset_from_directory" - argspec: "args=[\'directory\', \'labels\', \'label_mode\', \'class_names\', \'color_mode\', \'batch_size\', \'image_size\', \'shuffle\', \'seed\', \'validation_split\', \'subset\', \'interpolation\', \'follow_links\', \'crop_to_aspect_ratio\'], varargs=None, keywords=kwargs, defaults=[\'inferred\', \'int\', \'None\', \'rgb\', \'32\', \'(256, 256)\', \'True\', \'None\', \'None\', \'None\', \'bilinear\', \'False\', \'False\'], " - } - member_method { - name: "text_dataset_from_directory" - argspec: "args=[\'directory\', \'labels\', \'label_mode\', \'class_names\', \'batch_size\', \'max_length\', \'shuffle\', \'seed\', \'validation_split\', \'subset\', \'follow_links\'], varargs=None, keywords=None, defaults=[\'inferred\', \'int\', \'None\', \'32\', \'None\', \'True\', \'None\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "timeseries_dataset_from_array" - argspec: "args=[\'data\', \'targets\', \'sequence_length\', \'sequence_stride\', \'sampling_rate\', \'batch_size\', \'shuffle\', \'seed\', \'start_index\', \'end_index\'], varargs=None, keywords=None, defaults=[\'1\', \'1\', \'128\', \'False\', \'None\', \'None\', \'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.preprocessing.sequence.-timeseries-generator.pbtxt b/keras/api/golden/v2/tensorflow.keras.preprocessing.sequence.-timeseries-generator.pbtxt deleted file mode 100644 index 1e99d483a7d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.preprocessing.sequence.-timeseries-generator.pbtxt +++ /dev/null @@ -1,22 +0,0 @@ -path: "tensorflow.keras.preprocessing.sequence.TimeseriesGenerator" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'data\', \'targets\', \'length\', \'sampling_rate\', \'stride\', \'start_index\', \'end_index\', \'shuffle\', \'reverse\', \'batch_size\'], varargs=None, keywords=None, defaults=[\'1\', \'1\', \'0\', \'None\', \'False\', \'False\', \'128\'], " - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.preprocessing.sequence.pbtxt b/keras/api/golden/v2/tensorflow.keras.preprocessing.sequence.pbtxt deleted file mode 100644 index cf59f8a2726..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.preprocessing.sequence.pbtxt +++ /dev/null @@ -1,19 +0,0 @@ -path: "tensorflow.keras.preprocessing.sequence" -tf_module { - member { - name: "TimeseriesGenerator" - mtype: "" - } - member_method { - name: "make_sampling_table" - argspec: "args=[\'size\', \'sampling_factor\'], varargs=None, keywords=None, defaults=[\'1e-05\'], " - } - member_method { - name: "pad_sequences" - argspec: "args=[\'sequences\', \'maxlen\', \'dtype\', \'padding\', \'truncating\', \'value\'], varargs=None, keywords=None, defaults=[\'None\', \'int32\', \'pre\', \'pre\', \'0.0\'], " - } - member_method { - name: "skipgrams" - argspec: "args=[\'sequence\', \'vocabulary_size\', \'window_size\', \'negative_samples\', \'shuffle\', \'categorical\', \'sampling_table\', \'seed\'], varargs=None, keywords=None, defaults=[\'4\', \'1.0\', \'True\', \'False\', \'None\', \'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.preprocessing.text.-tokenizer.pbtxt b/keras/api/golden/v2/tensorflow.keras.preprocessing.text.-tokenizer.pbtxt deleted file mode 100644 index 2e841daf0a2..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.preprocessing.text.-tokenizer.pbtxt +++ /dev/null @@ -1,49 +0,0 @@ -path: "tensorflow.keras.preprocessing.text.Tokenizer" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'num_words\', \'filters\', \'lower\', \'split\', \'char_level\', \'oov_token\', \'analyzer\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'!\"#$%&()*+,-./:;<=>?@[\\\\]^_`{|}~\\t\\n\', \'True\', \' \', \'False\', \'None\', \'None\'], " - } - member_method { - name: "fit_on_sequences" - argspec: "args=[\'self\', \'sequences\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "fit_on_texts" - argspec: "args=[\'self\', \'texts\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sequences_to_matrix" - argspec: "args=[\'self\', \'sequences\', \'mode\'], varargs=None, keywords=None, defaults=[\'binary\'], " - } - member_method { - name: "sequences_to_texts" - argspec: "args=[\'self\', \'sequences\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "sequences_to_texts_generator" - argspec: "args=[\'self\', \'sequences\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "texts_to_matrix" - argspec: "args=[\'self\', \'texts\', \'mode\'], varargs=None, keywords=None, defaults=[\'binary\'], " - } - member_method { - name: "texts_to_sequences" - argspec: "args=[\'self\', \'texts\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "texts_to_sequences_generator" - argspec: "args=[\'self\', \'texts\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "to_json" - argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.preprocessing.text.pbtxt b/keras/api/golden/v2/tensorflow.keras.preprocessing.text.pbtxt deleted file mode 100644 index b756e1de8d3..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.preprocessing.text.pbtxt +++ /dev/null @@ -1,23 +0,0 @@ -path: "tensorflow.keras.preprocessing.text" -tf_module { - member { - name: "Tokenizer" - mtype: "" - } - member_method { - name: "hashing_trick" - argspec: "args=[\'text\', \'n\', \'hash_function\', \'filters\', \'lower\', \'split\', \'analyzer\'], varargs=None, keywords=None, defaults=[\'None\', \'!\"#$%&()*+,-./:;<=>?@[\\\\]^_`{|}~\\t\\n\', \'True\', \' \', \'None\'], " - } - member_method { - name: "one_hot" - argspec: "args=[\'input_text\', \'n\', \'filters\', \'lower\', \'split\', \'analyzer\'], varargs=None, keywords=None, defaults=[\'!\"#$%&()*+,-./:;<=>?@[\\\\]^_`{|}~\\t\\n\', \'True\', \' \', \'None\'], " - } - member_method { - name: "text_to_word_sequence" - argspec: "args=[\'input_text\', \'filters\', \'lower\', \'split\'], varargs=None, keywords=None, defaults=[\'!\"#$%&()*+,-./:;<=>?@[\\\\]^_`{|}~\\t\\n\', \'True\', \' \'], " - } - member_method { - name: "tokenizer_from_json" - argspec: "args=[\'json_string\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.regularizers.-l1-l2.pbtxt b/keras/api/golden/v2/tensorflow.keras.regularizers.-l1-l2.pbtxt deleted file mode 100644 index b704de99ca0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.regularizers.-l1-l2.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.regularizers.L1L2" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'l1\', \'l2\'], varargs=None, keywords=None, defaults=[\'0.0\', \'0.0\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.regularizers.-l1.pbtxt b/keras/api/golden/v2/tensorflow.keras.regularizers.-l1.pbtxt deleted file mode 100644 index 31d5659bd0f..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.regularizers.-l1.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.regularizers.L1" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'l1\'], varargs=None, keywords=kwargs, defaults=[\'0.01\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.regularizers.-l2.pbtxt b/keras/api/golden/v2/tensorflow.keras.regularizers.-l2.pbtxt deleted file mode 100644 index 5253aec0fd3..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.regularizers.-l2.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.regularizers.L2" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'l2\'], varargs=None, keywords=kwargs, defaults=[\'0.01\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.regularizers.-orthogonal-regularizer.pbtxt b/keras/api/golden/v2/tensorflow.keras.regularizers.-orthogonal-regularizer.pbtxt deleted file mode 100644 index 9281bb9567c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.regularizers.-orthogonal-regularizer.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.regularizers.OrthogonalRegularizer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'factor\', \'mode\'], varargs=None, keywords=None, defaults=[\'0.01\', \'rows\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.regularizers.-regularizer.pbtxt b/keras/api/golden/v2/tensorflow.keras.regularizers.-regularizer.pbtxt deleted file mode 100644 index 4a7bbb34f53..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.regularizers.-regularizer.pbtxt +++ /dev/null @@ -1,16 +0,0 @@ -path: "tensorflow.keras.regularizers.Regularizer" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.regularizers.l1.pbtxt b/keras/api/golden/v2/tensorflow.keras.regularizers.l1.pbtxt deleted file mode 100644 index b3c5b3dfdc0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.regularizers.l1.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.regularizers.l1" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'l1\'], varargs=None, keywords=kwargs, defaults=[\'0.01\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.regularizers.l2.pbtxt b/keras/api/golden/v2/tensorflow.keras.regularizers.l2.pbtxt deleted file mode 100644 index 4db49bd4449..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.regularizers.l2.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.regularizers.l2" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'l2\'], varargs=None, keywords=kwargs, defaults=[\'0.01\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.regularizers.orthogonal_regularizer.pbtxt b/keras/api/golden/v2/tensorflow.keras.regularizers.orthogonal_regularizer.pbtxt deleted file mode 100644 index 4b1f0df10fd..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.regularizers.orthogonal_regularizer.pbtxt +++ /dev/null @@ -1,18 +0,0 @@ -path: "tensorflow.keras.regularizers.orthogonal_regularizer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'factor\', \'mode\'], varargs=None, keywords=None, defaults=[\'0.01\', \'rows\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.regularizers.pbtxt b/keras/api/golden/v2/tensorflow.keras.regularizers.pbtxt deleted file mode 100644 index 7272c0fb670..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.regularizers.pbtxt +++ /dev/null @@ -1,51 +0,0 @@ -path: "tensorflow.keras.regularizers" -tf_module { - member { - name: "L1" - mtype: "" - } - member { - name: "L1L2" - mtype: "" - } - member { - name: "L2" - mtype: "" - } - member { - name: "OrthogonalRegularizer" - mtype: "" - } - member { - name: "Regularizer" - mtype: "" - } - member { - name: "l1" - mtype: "" - } - member { - name: "l2" - mtype: "" - } - member { - name: "orthogonal_regularizer" - mtype: "" - } - member_method { - name: "deserialize" - argspec: "args=[\'config\', \'custom_objects\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "l1_l2" - argspec: "args=[\'l1\', \'l2\'], varargs=None, keywords=None, defaults=[\'0.01\', \'0.01\'], " - } - member_method { - name: "serialize" - argspec: "args=[\'regularizer\', \'use_legacy_format\'], varargs=None, keywords=None, defaults=[\'False\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.saving.custom_object_scope.pbtxt b/keras/api/golden/v2/tensorflow.keras.saving.custom_object_scope.pbtxt deleted file mode 100644 index cf877e5ae4d..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.saving.custom_object_scope.pbtxt +++ /dev/null @@ -1,9 +0,0 @@ -path: "tensorflow.keras.saving.custom_object_scope" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=args, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.saving.pbtxt b/keras/api/golden/v2/tensorflow.keras.saving.pbtxt deleted file mode 100644 index e1df1e64293..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.saving.pbtxt +++ /dev/null @@ -1,39 +0,0 @@ -path: "tensorflow.keras.saving" -tf_module { - member { - name: "custom_object_scope" - mtype: "" - } - member_method { - name: "deserialize_keras_object" - argspec: "args=[\'config\', \'custom_objects\', \'safe_mode\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'True\'], " - } - member_method { - name: "get_custom_objects" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_registered_name" - argspec: "args=[\'obj\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_registered_object" - argspec: "args=[\'name\', \'custom_objects\', \'module_objects\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "load_model" - argspec: "args=[\'filepath\', \'custom_objects\', \'compile\', \'safe_mode\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'True\', \'True\'], " - } - member_method { - name: "register_keras_serializable" - argspec: "args=[\'package\', \'name\'], varargs=None, keywords=None, defaults=[\'Custom\', \'None\'], " - } - member_method { - name: "save_model" - argspec: "args=[\'model\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'None\'], " - } - member_method { - name: "serialize_keras_object" - argspec: "args=[\'obj\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.utils.-custom-object-scope.pbtxt b/keras/api/golden/v2/tensorflow.keras.utils.-custom-object-scope.pbtxt deleted file mode 100644 index 3ccf719d8c8..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.utils.-custom-object-scope.pbtxt +++ /dev/null @@ -1,9 +0,0 @@ -path: "tensorflow.keras.utils.CustomObjectScope" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=args, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.utils.-feature-space.pbtxt b/keras/api/golden/v2/tensorflow.keras.utils.-feature-space.pbtxt deleted file mode 100644 index 1ae0313d8ec..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.utils.-feature-space.pbtxt +++ /dev/null @@ -1,298 +0,0 @@ -path: "tensorflow.keras.utils.FeatureSpace" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - is_instance: "" - member { - name: "activity_regularizer" - mtype: "" - } - member { - name: "compute_dtype" - mtype: "" - } - member { - name: "dtype" - mtype: "" - } - member { - name: "dtype_policy" - mtype: "" - } - member { - name: "dynamic" - mtype: "" - } - member { - name: "inbound_nodes" - mtype: "" - } - member { - name: "input" - mtype: "" - } - member { - name: "input_mask" - mtype: "" - } - member { - name: "input_shape" - mtype: "" - } - member { - name: "input_spec" - mtype: "" - } - member { - name: "losses" - mtype: "" - } - member { - name: "metrics" - mtype: "" - } - member { - name: "name" - mtype: "" - } - member { - name: "name_scope" - mtype: "" - } - member { - name: "non_trainable_variables" - mtype: "" - } - member { - name: "non_trainable_weights" - mtype: "" - } - member { - name: "outbound_nodes" - mtype: "" - } - member { - name: "output" - mtype: "" - } - member { - name: "output_mask" - mtype: "" - } - member { - name: "output_shape" - mtype: "" - } - member { - name: "stateful" - mtype: "" - } - member { - name: "submodules" - mtype: "" - } - member { - name: "supports_masking" - mtype: "" - } - member { - name: "trainable" - mtype: "" - } - member { - name: "trainable_variables" - mtype: "" - } - member { - name: "trainable_weights" - mtype: "" - } - member { - name: "updates" - mtype: "" - } - member { - name: "variable_dtype" - mtype: "" - } - member { - name: "variables" - mtype: "" - } - member { - name: "weights" - mtype: "" - } - member_method { - name: "__init__" - argspec: "args=[\'self\', \'features\', \'output_mode\', \'crosses\', \'crossing_dim\', \'hashing_dim\', \'num_discretization_bins\'], varargs=None, keywords=None, defaults=[\'concat\', \'None\', \'32\', \'32\', \'32\'], " - } - member_method { - name: "adapt" - argspec: "args=[\'self\', \'dataset\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_loss" - argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None" - } - member_method { - name: "add_metric" - argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " - } - member_method { - name: "add_update" - argspec: "args=[\'self\', \'updates\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "add_variable" - argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "add_weight" - argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregationV2.NONE\'], " - } - member_method { - name: "build" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "build_from_config" - argspec: "args=[\'self\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "call" - argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" - } - member_method { - name: "compute_mask" - argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "compute_output_shape" - argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "compute_output_signature" - argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "count_params" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "cross" - argspec: "args=[\'cls\', \'feature_names\', \'crossing_dim\', \'output_mode\'], varargs=None, keywords=None, defaults=[\'one_hot\'], " - } - member_method { - name: "feature" - argspec: "args=[\'cls\', \'dtype\', \'preprocessor\', \'output_mode\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "finalize_state" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "float" - argspec: "args=[\'cls\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "float_discretized" - argspec: "args=[\'cls\', \'num_bins\', \'bin_boundaries\', \'output_mode\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'one_hot\', \'None\'], " - } - member_method { - name: "float_normalized" - argspec: "args=[\'cls\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "float_rescaled" - argspec: "args=[\'cls\', \'scale\', \'offset\', \'name\'], varargs=None, keywords=None, defaults=[\'1.0\', \'0.0\', \'None\'], " - } - member_method { - name: "from_config" - argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_build_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_config" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_encoded_features" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_input_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_inputs" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_mask_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_output_shape_at" - argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_weights" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "integer_categorical" - argspec: "args=[\'cls\', \'max_tokens\', \'num_oov_indices\', \'output_mode\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'one_hot\', \'None\'], " - } - member_method { - name: "integer_hashed" - argspec: "args=[\'cls\', \'num_bins\', \'output_mode\', \'name\'], varargs=None, keywords=None, defaults=[\'one_hot\', \'None\'], " - } - member_method { - name: "load_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save" - argspec: "args=[\'self\', \'filepath\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "save_own_variables" - argspec: "args=[\'self\', \'store\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_weights" - argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "string_categorical" - argspec: "args=[\'cls\', \'max_tokens\', \'num_oov_indices\', \'output_mode\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'one_hot\', \'None\'], " - } - member_method { - name: "string_hashed" - argspec: "args=[\'cls\', \'num_bins\', \'output_mode\', \'name\'], varargs=None, keywords=None, defaults=[\'one_hot\', \'None\'], " - } - member_method { - name: "with_name_scope" - argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.utils.-generator-enqueuer.pbtxt b/keras/api/golden/v2/tensorflow.keras.utils.-generator-enqueuer.pbtxt deleted file mode 100644 index ac1c5387bc1..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.utils.-generator-enqueuer.pbtxt +++ /dev/null @@ -1,26 +0,0 @@ -path: "tensorflow.keras.utils.GeneratorEnqueuer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'generator\', \'use_multiprocessing\', \'random_seed\'], varargs=None, keywords=None, defaults=[\'False\', \'None\'], " - } - member_method { - name: "get" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "is_running" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "start" - argspec: "args=[\'self\', \'workers\', \'max_queue_size\'], varargs=None, keywords=None, defaults=[\'1\', \'10\'], " - } - member_method { - name: "stop" - argspec: "args=[\'self\', \'timeout\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.utils.-ordered-enqueuer.pbtxt b/keras/api/golden/v2/tensorflow.keras.utils.-ordered-enqueuer.pbtxt deleted file mode 100644 index 9cd4b730b32..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.utils.-ordered-enqueuer.pbtxt +++ /dev/null @@ -1,26 +0,0 @@ -path: "tensorflow.keras.utils.OrderedEnqueuer" -tf_class { - is_instance: "" - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'sequence\', \'use_multiprocessing\', \'shuffle\'], varargs=None, keywords=None, defaults=[\'False\', \'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "is_running" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "start" - argspec: "args=[\'self\', \'workers\', \'max_queue_size\'], varargs=None, keywords=None, defaults=[\'1\', \'10\'], " - } - member_method { - name: "stop" - argspec: "args=[\'self\', \'timeout\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.utils.-progbar.pbtxt b/keras/api/golden/v2/tensorflow.keras.utils.-progbar.pbtxt deleted file mode 100644 index a1b31c0389a..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.utils.-progbar.pbtxt +++ /dev/null @@ -1,17 +0,0 @@ -path: "tensorflow.keras.utils.Progbar" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'target\', \'width\', \'verbose\', \'interval\', \'stateful_metrics\', \'unit_name\'], varargs=None, keywords=None, defaults=[\'30\', \'1\', \'0.05\', \'None\', \'step\'], " - } - member_method { - name: "add" - argspec: "args=[\'self\', \'n\', \'values\'], varargs=None, keywords=None, defaults=[\'None\'], " - } - member_method { - name: "update" - argspec: "args=[\'self\', \'current\', \'values\', \'finalize\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.utils.-sequence-enqueuer.pbtxt b/keras/api/golden/v2/tensorflow.keras.utils.-sequence-enqueuer.pbtxt deleted file mode 100644 index eb3bbc5b897..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.utils.-sequence-enqueuer.pbtxt +++ /dev/null @@ -1,25 +0,0 @@ -path: "tensorflow.keras.utils.SequenceEnqueuer" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'sequence\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'False\'], " - } - member_method { - name: "get" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "is_running" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "start" - argspec: "args=[\'self\', \'workers\', \'max_queue_size\'], varargs=None, keywords=None, defaults=[\'1\', \'10\'], " - } - member_method { - name: "stop" - argspec: "args=[\'self\', \'timeout\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.utils.-sequence.pbtxt b/keras/api/golden/v2/tensorflow.keras.utils.-sequence.pbtxt deleted file mode 100644 index 43e0717ccaa..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.utils.-sequence.pbtxt +++ /dev/null @@ -1,12 +0,0 @@ -path: "tensorflow.keras.utils.Sequence" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - } - member_method { - name: "on_epoch_end" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.utils.-sidecar-evaluator.pbtxt b/keras/api/golden/v2/tensorflow.keras.utils.-sidecar-evaluator.pbtxt deleted file mode 100644 index 1d3a83fa52e..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.utils.-sidecar-evaluator.pbtxt +++ /dev/null @@ -1,13 +0,0 @@ -path: "tensorflow.keras.utils.SidecarEvaluator" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'model\', \'data\', \'checkpoint_dir\', \'steps\', \'max_evaluations\', \'callbacks\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " - } - member_method { - name: "start" - argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.utils.custom_object_scope.pbtxt b/keras/api/golden/v2/tensorflow.keras.utils.custom_object_scope.pbtxt deleted file mode 100644 index 08f84e0f825..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.utils.custom_object_scope.pbtxt +++ /dev/null @@ -1,9 +0,0 @@ -path: "tensorflow.keras.utils.custom_object_scope" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\'], varargs=args, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.utils.experimental.-dataset-creator.pbtxt b/keras/api/golden/v2/tensorflow.keras.utils.experimental.-dataset-creator.pbtxt deleted file mode 100644 index 1db6fa5c63b..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.utils.experimental.-dataset-creator.pbtxt +++ /dev/null @@ -1,9 +0,0 @@ -path: "tensorflow.keras.utils.experimental.DatasetCreator" -tf_class { - is_instance: "" - is_instance: "" - member_method { - name: "__init__" - argspec: "args=[\'self\', \'dataset_fn\', \'input_options\'], varargs=None, keywords=None, defaults=[\'None\'], " - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.utils.experimental.pbtxt b/keras/api/golden/v2/tensorflow.keras.utils.experimental.pbtxt deleted file mode 100644 index 81d11563df0..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.utils.experimental.pbtxt +++ /dev/null @@ -1,7 +0,0 @@ -path: "tensorflow.keras.utils.experimental" -tf_module { - member { - name: "DatasetCreator" - mtype: "" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.utils.legacy.pbtxt b/keras/api/golden/v2/tensorflow.keras.utils.legacy.pbtxt deleted file mode 100644 index 267629bf49c..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.utils.legacy.pbtxt +++ /dev/null @@ -1,11 +0,0 @@ -path: "tensorflow.keras.utils.legacy" -tf_module { - member_method { - name: "deserialize_keras_object" - argspec: "args=[\'identifier\', \'module_objects\', \'custom_objects\', \'printable_module_name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'object\'], " - } - member_method { - name: "serialize_keras_object" - argspec: "args=[\'instance\'], varargs=None, keywords=None, defaults=None" - } -} diff --git a/keras/api/golden/v2/tensorflow.keras.utils.pbtxt b/keras/api/golden/v2/tensorflow.keras.utils.pbtxt deleted file mode 100644 index dc55174cbbc..00000000000 --- a/keras/api/golden/v2/tensorflow.keras.utils.pbtxt +++ /dev/null @@ -1,167 +0,0 @@ -path: "tensorflow.keras.utils" -tf_module { - member { - name: "CustomObjectScope" - mtype: "" - } - member { - name: "FeatureSpace" - mtype: "" - } - member { - name: "GeneratorEnqueuer" - mtype: "" - } - member { - name: "OrderedEnqueuer" - mtype: "" - } - member { - name: "Progbar" - mtype: "" - } - member { - name: "Sequence" - mtype: "" - } - member { - name: "SequenceEnqueuer" - mtype: "" - } - member { - name: "SidecarEvaluator" - mtype: "" - } - member { - name: "custom_object_scope" - mtype: "" - } - member { - name: "experimental" - mtype: "" - } - member { - name: "legacy" - mtype: "" - } - member_method { - name: "array_to_img" - argspec: "args=[\'x\', \'data_format\', \'scale\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'None\'], " - } - member_method { - name: "audio_dataset_from_directory" - argspec: "args=[\'directory\', \'labels\', \'label_mode\', \'class_names\', \'batch_size\', \'sampling_rate\', \'output_sequence_length\', \'ragged\', \'shuffle\', \'seed\', \'validation_split\', \'subset\', \'follow_links\'], varargs=None, keywords=None, defaults=[\'inferred\', \'int\', \'None\', \'32\', \'None\', \'None\', \'False\', \'True\', \'None\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "deserialize_keras_object" - argspec: "args=[\'config\', \'custom_objects\', \'safe_mode\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'True\'], " - } - member_method { - name: "disable_interactive_logging" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "enable_interactive_logging" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_custom_objects" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_file" - argspec: "args=[\'fname\', \'origin\', \'untar\', \'md5_hash\', \'file_hash\', \'cache_subdir\', \'hash_algorithm\', \'extract\', \'archive_format\', \'cache_dir\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'False\', \'None\', \'None\', \'datasets\', \'auto\', \'False\', \'auto\', \'None\'], " - } - member_method { - name: "get_registered_name" - argspec: "args=[\'obj\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "get_registered_object" - argspec: "args=[\'name\', \'custom_objects\', \'module_objects\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "get_source_inputs" - argspec: "args=[\'tensor\', \'layer\', \'node_index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "image_dataset_from_directory" - argspec: "args=[\'directory\', \'labels\', \'label_mode\', \'class_names\', \'color_mode\', \'batch_size\', \'image_size\', \'shuffle\', \'seed\', \'validation_split\', \'subset\', \'interpolation\', \'follow_links\', \'crop_to_aspect_ratio\'], varargs=None, keywords=kwargs, defaults=[\'inferred\', \'int\', \'None\', \'rgb\', \'32\', \'(256, 256)\', \'True\', \'None\', \'None\', \'None\', \'bilinear\', \'False\', \'False\'], " - } - member_method { - name: "img_to_array" - argspec: "args=[\'img\', \'data_format\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "is_interactive_logging_enabled" - argspec: "args=[], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "load_img" - argspec: "args=[\'path\', \'grayscale\', \'color_mode\', \'target_size\', \'interpolation\', \'keep_aspect_ratio\'], varargs=None, keywords=None, defaults=[\'False\', \'rgb\', \'None\', \'nearest\', \'False\'], " - } - member_method { - name: "model_to_dot" - argspec: "args=[\'model\', \'show_shapes\', \'show_dtype\', \'show_layer_names\', \'rankdir\', \'expand_nested\', \'dpi\', \'subgraph\', \'layer_range\', \'show_layer_activations\', \'show_trainable\'], varargs=None, keywords=None, defaults=[\'False\', \'False\', \'True\', \'TB\', \'False\', \'96\', \'False\', \'None\', \'False\', \'False\'], " - } - member_method { - name: "normalize" - argspec: "args=[\'x\', \'axis\', \'order\'], varargs=None, keywords=None, defaults=[\'-1\', \'2\'], " - } - member_method { - name: "pack_x_y_sample_weight" - argspec: "args=[\'x\', \'y\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " - } - member_method { - name: "pad_sequences" - argspec: "args=[\'sequences\', \'maxlen\', \'dtype\', \'padding\', \'truncating\', \'value\'], varargs=None, keywords=None, defaults=[\'None\', \'int32\', \'pre\', \'pre\', \'0.0\'], " - } - member_method { - name: "plot_model" - argspec: "args=[\'model\', \'to_file\', \'show_shapes\', \'show_dtype\', \'show_layer_names\', \'rankdir\', \'expand_nested\', \'dpi\', \'layer_range\', \'show_layer_activations\', \'show_trainable\'], varargs=None, keywords=None, defaults=[\'model.png\', \'False\', \'False\', \'True\', \'TB\', \'False\', \'96\', \'None\', \'False\', \'False\'], " - } - member_method { - name: "register_keras_serializable" - argspec: "args=[\'package\', \'name\'], varargs=None, keywords=None, defaults=[\'Custom\', \'None\'], " - } - member_method { - name: "save_img" - argspec: "args=[\'path\', \'x\', \'data_format\', \'file_format\', \'scale\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'True\'], " - } - member_method { - name: "serialize_keras_object" - argspec: "args=[\'obj\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "set_random_seed" - argspec: "args=[\'seed\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "split_dataset" - argspec: "args=[\'dataset\', \'left_size\', \'right_size\', \'shuffle\', \'seed\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'False\', \'None\'], " - } - member_method { - name: "text_dataset_from_directory" - argspec: "args=[\'directory\', \'labels\', \'label_mode\', \'class_names\', \'batch_size\', \'max_length\', \'shuffle\', \'seed\', \'validation_split\', \'subset\', \'follow_links\'], varargs=None, keywords=None, defaults=[\'inferred\', \'int\', \'None\', \'32\', \'None\', \'True\', \'None\', \'None\', \'None\', \'False\'], " - } - member_method { - name: "timeseries_dataset_from_array" - argspec: "args=[\'data\', \'targets\', \'sequence_length\', \'sequence_stride\', \'sampling_rate\', \'batch_size\', \'shuffle\', \'seed\', \'start_index\', \'end_index\'], varargs=None, keywords=None, defaults=[\'1\', \'1\', \'128\', \'False\', \'None\', \'None\', \'None\'], " - } - member_method { - name: "to_categorical" - argspec: "args=[\'y\', \'num_classes\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'float32\'], " - } - member_method { - name: "to_ordinal" - argspec: "args=[\'y\', \'num_classes\', \'dtype\'], varargs=None, keywords=None, defaults=[\'None\', \'float32\'], " - } - member_method { - name: "unpack_x_y_sample_weight" - argspec: "args=[\'data\'], varargs=None, keywords=None, defaults=None" - } - member_method { - name: "warmstart_embedding_matrix" - argspec: "args=[\'base_vocabulary\', \'new_vocabulary\', \'base_embeddings\', \'new_embeddings_initializer\'], varargs=None, keywords=None, defaults=[\'uniform\'], " - } -} diff --git a/keras/api/tests/API_UPDATE_WARNING.txt b/keras/api/tests/API_UPDATE_WARNING.txt deleted file mode 100644 index 54b0cfcb3c1..00000000000 --- a/keras/api/tests/API_UPDATE_WARNING.txt +++ /dev/null @@ -1,7 +0,0 @@ -Golden file update requested! -All test failures have been skipped, see the logs for detected diffs. -This test is now going to write new golden files. -Make sure to package the updates together with your change. - -You will need an explicit API approval. This may take longer than a normal -review. diff --git a/keras/api/tests/BUILD b/keras/api/tests/BUILD deleted file mode 100644 index 3077ff5e644..00000000000 --- a/keras/api/tests/BUILD +++ /dev/null @@ -1,41 +0,0 @@ -# TensorFlow API backwards compatibility tests. - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = ["//keras/api:__subpackages__"], - licenses = ["notice"], # Apache 2.0 -) - -exports_files([ - "README.txt", - "API_UPDATE_WARNING.txt", -]) - -tf_py_test( - name = "api_compatibility_test", - srcs = ["api_compatibility_test.py"], - data = [ - "//keras/api/golden:api_golden_v1", - "//keras/api/golden:api_golden_v2", - "//keras/api/tests:API_UPDATE_WARNING.txt", - "//keras/api/tests:README.txt", - ], - python_version = "PY3", - srcs_version = "PY3", - tags = [ - "no_oss", # TODO(scottzhu): Fix this in OSS test. - "no_pip", - "no_rocm", - "no_windows", # Bugs due to some paths. - ], - deps = [ - "//:expect_six_installed", - "//third_party/py/tensorflow", - "//third_party/tensorflow/python:lib", - "//third_party/tensorflow/python:platform", - "//third_party/tensorflow/tools/api/lib:python_object_to_proto_visitor", - "//third_party/tensorflow/tools/common:public_api", - "//third_party/tensorflow/tools/common:traverse", - ], -) diff --git a/keras/api/tests/README.txt b/keras/api/tests/README.txt deleted file mode 100644 index 3756f452ea9..00000000000 --- a/keras/api/tests/README.txt +++ /dev/null @@ -1,12 +0,0 @@ -TensorFlow API backwards compatibility test -This test ensures all changes to the public API of TensorFlow are intended. - -If this test fails, it means a change has been made to the public API. Backwards -incompatible changes are not allowed. You can run the test as follows to update -test goldens and package them with your change. - - $ bazel run keras/api/tests:api_compatibility_test \ - # -- --update_goldens True - -You will need an API approval to make changes to the public TensorFlow API. This -includes additions to the API. diff --git a/keras/api/tests/api_compatibility_test.py b/keras/api/tests/api_compatibility_test.py deleted file mode 100644 index 371b13d779e..00000000000 --- a/keras/api/tests/api_compatibility_test.py +++ /dev/null @@ -1,418 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -# ============================================================================== -"""Keras API compatibility tests. - -This test ensures all changes to the public API of Keras are intended. - -If this test fails, it means a change has been made to the public API. Backwards -incompatible changes are not allowed. You can run the test with -"--update_goldens" flag set to "True" to update goldens when making changes to -the public Keras python API. -""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import argparse -import os -import re -import sys - -import six -import tensorflow as tf - -# isort: off -from google.protobuf import message -from google.protobuf import text_format -from tensorflow.python.lib.io import file_io -from tensorflow.python.platform import tf_logging as logging -from tensorflow.tools.api.lib import api_objects_pb2 -from tensorflow.tools.api.lib import ( - python_object_to_proto_visitor, -) -from tensorflow.tools.common import public_api -from tensorflow.tools.common import traverse - -# FLAGS defined at the bottom: -FLAGS = None -# DEFINE_boolean, update_goldens, default False: -_UPDATE_GOLDENS_HELP = """ - Update stored golden files if API is updated. WARNING: All API changes - have to be authorized by TensorFlow leads. -""" - -# DEFINE_boolean, verbose_diffs, default True: -_VERBOSE_DIFFS_HELP = """ - If set to true, print line by line diffs on all libraries. If set to - false, only print which libraries have differences. -""" - -# Initialized with _InitPathConstants function below. -_API_GOLDEN_FOLDER_V1 = None -_API_GOLDEN_FOLDER_V2 = None - - -def _InitPathConstants(): - global _API_GOLDEN_FOLDER_V1 - global _API_GOLDEN_FOLDER_V2 - root_golden_path_v2 = os.path.join( - tf.compat.v1.resource_loader.get_data_files_path(), - "..", - "golden", - "v2", - "tensorflow.keras.pbtxt", - ) - - if FLAGS.update_goldens: - root_golden_path_v2 = os.path.realpath(root_golden_path_v2) - # Get API directories based on the root golden file. This way - # we make sure to resolve symbolic links before creating new files. - _API_GOLDEN_FOLDER_V2 = os.path.dirname(root_golden_path_v2) - _API_GOLDEN_FOLDER_V1 = os.path.normpath( - os.path.join(_API_GOLDEN_FOLDER_V2, "..", "v1") - ) - - -_TEST_README_FILE = os.path.join( - tf.compat.v1.resource_loader.get_data_files_path(), "README.txt" -) -_UPDATE_WARNING_FILE = os.path.join( - tf.compat.v1.resource_loader.get_data_files_path(), "API_UPDATE_WARNING.txt" -) - - -def _KeyToFilePath(key, api_version): - """From a given key, construct a filepath. - - Filepath will be inside golden folder for api_version. - - Args: - key: a string used to determine the file path - api_version: a number indicating the tensorflow API version, e.g. 1 or 2. - - Returns: - A string of file path to the pbtxt file which describes the public API - """ - - def _ReplaceCapsWithDash(matchobj): - match = matchobj.group(0) - return f"-{match.lower()}" - - case_insensitive_key = re.sub( - "([A-Z]{1})", _ReplaceCapsWithDash, six.ensure_str(key) - ) - api_folder = ( - _API_GOLDEN_FOLDER_V2 if api_version == 2 else _API_GOLDEN_FOLDER_V1 - ) - return os.path.join(api_folder, f"{case_insensitive_key}.pbtxt") - - -def _FileNameToKey(filename): - """From a given filename, construct a key we use for api objects.""" - - def _ReplaceDashWithCaps(matchobj): - match = matchobj.group(0) - return match[1].upper() - - base_filename = os.path.basename(filename) - base_filename_without_ext = os.path.splitext(base_filename)[0] - api_object_key = re.sub( - "((-[a-z]){1})", - _ReplaceDashWithCaps, - six.ensure_str(base_filename_without_ext), - ) - return api_object_key - - -def _VerifyNoSubclassOfMessageVisitor(path, parent, unused_children): - """A Visitor that crashes on subclasses of generated proto classes.""" - # If the traversed object is a proto Message class - if not (isinstance(parent, type) and issubclass(parent, message.Message)): - return - if parent is message.Message: - return - # Check that it is a direct subclass of Message. - if message.Message not in parent.__bases__: - raise NotImplementedError( - "Object tf.%s is a subclass of a generated proto Message. " - "They are not yet supported by the API tools." % path - ) - - -def _FilterGoldenProtoDict(golden_proto_dict, omit_golden_symbols_map): - """Filter out golden proto dict symbols that should be omitted.""" - if not omit_golden_symbols_map: - return golden_proto_dict - filtered_proto_dict = dict(golden_proto_dict) - for key, symbol_list in six.iteritems(omit_golden_symbols_map): - api_object = api_objects_pb2.TFAPIObject() - api_object.CopyFrom(filtered_proto_dict[key]) - filtered_proto_dict[key] = api_object - module_or_class = None - if api_object.HasField("tf_module"): - module_or_class = api_object.tf_module - elif api_object.HasField("tf_class"): - module_or_class = api_object.tf_class - if module_or_class is not None: - for members in ( - module_or_class.member, - module_or_class.member_method, - ): - filtered_members = [ - m for m in members if m.name not in symbol_list - ] - # Two steps because protobuf repeated fields disallow slice - # assignment. - del members[:] - members.extend(filtered_members) - return filtered_proto_dict - - -class ApiCompatibilityTest(tf.test.TestCase): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - self._update_golden_warning = file_io.read_file_to_string( - _UPDATE_WARNING_FILE - ) - - self._test_readme_message = file_io.read_file_to_string( - _TEST_README_FILE - ) - - def _AssertProtoDictEquals( - self, - expected_dict, - actual_dict, - verbose=False, - update_goldens=False, - additional_missing_object_message="", - api_version=2, - ): - """Diff given dicts of protobufs and report differences a readable way. - - Args: - expected_dict: a dict of TFAPIObject protos constructed from golden - files. - actual_dict: a ict of TFAPIObject protos constructed by reading from - the TF package linked to the test. - verbose: Whether to log the full diffs, or simply report which files - were different. - update_goldens: Whether to update goldens when there are diffs found. - additional_missing_object_message: Message to print when a symbol is - missing. - api_version: TensorFlow API version to test. - """ - diffs = [] - verbose_diffs = [] - - expected_keys = set(expected_dict.keys()) - actual_keys = set(actual_dict.keys()) - only_in_expected = expected_keys - actual_keys - only_in_actual = actual_keys - expected_keys - all_keys = expected_keys | actual_keys - - # This will be populated below. - updated_keys = [] - - for key in all_keys: - diff_message = "" - verbose_diff_message = "" - # First check if the key is not found in one or the other. - if key in only_in_expected: - diff_message = ( - "Object %s expected but not found (removed). %s" - % (key, additional_missing_object_message) - ) - verbose_diff_message = diff_message - elif key in only_in_actual: - diff_message = f"New object {key} found (added)." - verbose_diff_message = diff_message - else: - # Do not truncate diff - self.maxDiff = None - # Now we can run an actual proto diff. - try: - self.assertProtoEquals(expected_dict[key], actual_dict[key]) - except AssertionError as e: - updated_keys.append(key) - diff_message = f"Change detected in python object: {key}." - verbose_diff_message = str(e) - - # All difference cases covered above. If any difference found, add - # to the list. - if diff_message: - diffs.append(diff_message) - verbose_diffs.append(verbose_diff_message) - - # If diffs are found, handle them based on flags. - if diffs: - diff_count = len(diffs) - logging.error(self._test_readme_message) - logging.error( - "%d differences found between API and golden.", diff_count - ) - - if update_goldens: - # Write files if requested. - logging.warning(self._update_golden_warning) - - # If the keys are only in expected, some objects are deleted. - # Remove files. - for key in only_in_expected: - filepath = _KeyToFilePath(key, api_version) - tf.io.gfile.remove(filepath) - - # If the files are only in actual (current library), these are - # new modules. Write them to files. Also record all updates in - # files. - for key in only_in_actual | set(updated_keys): - filepath = _KeyToFilePath(key, api_version) - file_io.write_string_to_file( - filepath, text_format.MessageToString(actual_dict[key]) - ) - else: - # Include the actual differences to help debugging. - for d, verbose_d in zip(diffs, verbose_diffs): - logging.error(" %s", d) - logging.error(" %s", verbose_d) - # Fail if we cannot fix the test by updating goldens. - self.fail( - "%d differences found between API and golden." % diff_count - ) - - else: - logging.info("No differences found between API and golden.") - - def _checkBackwardsCompatibility( - self, - root, - golden_file_patterns, - api_version, - additional_private_map=None, - omit_golden_symbols_map=None, - ): - # Extract all API stuff. - visitor = python_object_to_proto_visitor.PythonObjectToProtoVisitor( - default_path="tensorflow.keras" - ) - - public_api_visitor = public_api.PublicAPIVisitor(visitor) - if additional_private_map: - public_api_visitor.private_map.update(additional_private_map) - public_api_visitor.set_root_name("tf.keras") - - traverse.traverse(root, public_api_visitor) - proto_dict = visitor.GetProtos() - - # Read all golden files. - golden_file_list = tf.compat.v1.gfile.Glob(golden_file_patterns) - - def _ReadFileToProto(filename): - """Read a filename, create a protobuf from its contents.""" - ret_val = api_objects_pb2.TFAPIObject() - text_format.Merge(file_io.read_file_to_string(filename), ret_val) - return ret_val - - golden_proto_dict = { - _FileNameToKey(filename): _ReadFileToProto(filename) - for filename in golden_file_list - } - golden_proto_dict = _FilterGoldenProtoDict( - golden_proto_dict, omit_golden_symbols_map - ) - - # Diff them. Do not fail if called with update. - # If the test is run to update goldens, only report diffs but do not - # fail. - self._AssertProtoDictEquals( - golden_proto_dict, - proto_dict, - verbose=FLAGS.verbose_diffs, - update_goldens=FLAGS.update_goldens, - api_version=api_version, - ) - - def testAPIBackwardsCompatibility(self): - api_version = 1 - if hasattr(tf, "_major_api_version") and tf._major_api_version == 2: - api_version = 2 - golden_file_patterns = [ - os.path.join( - tf.compat.v1.resource_loader.get_root_dir_with_all_resources(), - _KeyToFilePath("*", api_version), - ) - ] - - self._checkBackwardsCompatibility( - tf.keras, - golden_file_patterns, - api_version, - # Skip compat.v1 and compat.v2 since they are validated - # in separate tests. - additional_private_map={"tf.compat": ["v1", "v2"]}, - omit_golden_symbols_map={}, - ) - - def testAPIBackwardsCompatibilityV1(self): - api_version = 1 - golden_file_patterns = os.path.join( - tf.compat.v1.resource_loader.get_root_dir_with_all_resources(), - _KeyToFilePath("*", api_version), - ) - self._checkBackwardsCompatibility( - tf.compat.v1.keras, - golden_file_patterns, - api_version, - additional_private_map={ - "tf": ["pywrap_tensorflow"], - "tf.compat": ["v1", "v2"], - }, - omit_golden_symbols_map={}, - ) - - def testAPIBackwardsCompatibilityV2(self): - api_version = 2 - golden_file_patterns = [ - os.path.join( - tf.compat.v1.resource_loader.get_root_dir_with_all_resources(), - _KeyToFilePath("*", api_version), - ) - ] - self._checkBackwardsCompatibility( - tf.compat.v2.keras, - golden_file_patterns, - api_version, - additional_private_map={"tf.compat": ["v1", "v2"]}, - omit_golden_symbols_map={}, - ) - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument( - "--update_goldens", type=bool, default=False, help=_UPDATE_GOLDENS_HELP - ) - parser.add_argument( - "--verbose_diffs", type=bool, default=True, help=_VERBOSE_DIFFS_HELP - ) - FLAGS, unparsed = parser.parse_known_args() - _InitPathConstants() - - # Now update argv, so that unittest library does not get confused. - sys.argv = [sys.argv[0]] + unparsed - tf.test.main() diff --git a/keras/applications/BUILD b/keras/applications/BUILD deleted file mode 100644 index 7d011b9d162..00000000000 --- a/keras/applications/BUILD +++ /dev/null @@ -1,415 +0,0 @@ -# Description: -# Contains the Keras Application package (internal TensorFlow version). - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - # Remove this deps to integration test. - "//keras:friends", - ], - licenses = ["notice"], -) - -py_library( - name = "applications", - srcs = [ - "__init__.py", - "convnext.py", - "densenet.py", - "efficientnet.py", - "efficientnet_v2.py", - "imagenet_utils.py", - "inception_resnet_v2.py", - "inception_v3.py", - "mobilenet.py", - "mobilenet_v2.py", - "mobilenet_v3.py", - "nasnet.py", - "regnet.py", - "resnet.py", - "resnet_rs.py", - "resnet_v2.py", - "vgg16.py", - "vgg19.py", - "xception.py", - ], - srcs_version = "PY3", - visibility = ["//visibility:public"], - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:backend", - "//keras/engine", - "//keras/layers", - "//keras/models", - "//keras/utils:data_utils", - "//keras/utils:layer_utils", - ], -) - -tf_py_test( - name = "applications_test", - size = "medium", - srcs = ["applications_test.py"], - shard_count = 50, - tags = [ - "no_rocm", - "notsan", # b/168814536 - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -# Add target for each application module file, to make sure it only -# runs the test for the application models contained in that -# application module when it has been modified. -# TODO(b/146940090): Remove the "no_oss" tag in the following tests. -tf_py_test( - name = "applications_load_weight_test_resnet", - srcs = ["applications_load_weight_test.py"], - args = ["--module=resnet"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - "notsan", # b/168814536 - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_resnet_v2", - srcs = ["applications_load_weight_test.py"], - args = ["--module=resnet_v2"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - "notsan", # TODO(b/170901700) - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_vgg16", - srcs = ["applications_load_weight_test.py"], - args = ["--module=vgg16"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_vgg19", - srcs = ["applications_load_weight_test.py"], - args = ["--module=vgg19"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_xception", - srcs = ["applications_load_weight_test.py"], - args = ["--module=xception"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_inception_v3", - srcs = ["applications_load_weight_test.py"], - args = ["--module=inception_v3"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_inception_resnet_v2", - srcs = ["applications_load_weight_test.py"], - args = ["--module=inception_resnet_v2"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_mobilenet", - srcs = ["applications_load_weight_test.py"], - args = ["--module=mobilenet"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_mobilenet_v2", - srcs = ["applications_load_weight_test.py"], - args = ["--module=mobilenet_v2"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_mobilenet_v3_small", - srcs = ["applications_load_weight_test.py"], - args = ["--module=mobilenet_v3_small"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_mobilenet_v3_large", - srcs = ["applications_load_weight_test.py"], - args = ["--module=mobilenet_v3_large"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_convnext", - size = "large", - srcs = ["applications_load_weight_test.py"], - args = ["--module=convnext"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_densenet", - size = "large", - srcs = ["applications_load_weight_test.py"], - args = ["--module=densenet"], - main = "applications_load_weight_test.py", - shard_count = 3, - tags = [ - "no_oss", - "no_pip", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_efficientnet", - size = "large", - srcs = ["applications_load_weight_test.py"], - args = ["--module=efficientnet"], - main = "applications_load_weight_test.py", - shard_count = 8, - tags = [ - "no_oss", - "no_pip", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_efficientnet_v2", - size = "large", - srcs = ["applications_load_weight_test.py"], - args = ["--module=efficientnet_v2"], - main = "applications_load_weight_test.py", - shard_count = 8, - tags = [ - "no_oss", - "no_pip", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_regnet", - size = "large", - srcs = ["applications_load_weight_test.py"], - args = ["--module=regnet"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_nasnet_mobile", - srcs = ["applications_load_weight_test.py"], - args = ["--module=nasnet_mobile"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "applications_load_weight_test_nasnet_large", - srcs = ["applications_load_weight_test.py"], - args = ["--module=nasnet_large"], - main = "applications_load_weight_test.py", - tags = [ - "no_oss", - "no_pip", - "requires-net:external", - ], - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/preprocessing", - ], -) - -tf_py_test( - name = "imagenet_utils_test", - size = "medium", - srcs = ["imagenet_utils_test.py"], - shard_count = 2, - deps = [ - ":applications", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/applications/__init__.py b/keras/applications/__init__.py deleted file mode 100644 index c08ee2843fd..00000000000 --- a/keras/applications/__init__.py +++ /dev/null @@ -1,64 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras Applications are premade architectures with pre-trained weights.""" - - -from keras.applications.convnext import ConvNeXtBase -from keras.applications.convnext import ConvNeXtLarge -from keras.applications.convnext import ConvNeXtSmall -from keras.applications.convnext import ConvNeXtTiny -from keras.applications.convnext import ConvNeXtXLarge -from keras.applications.densenet import DenseNet121 -from keras.applications.densenet import DenseNet169 -from keras.applications.densenet import DenseNet201 -from keras.applications.efficientnet import EfficientNetB0 -from keras.applications.efficientnet import EfficientNetB1 -from keras.applications.efficientnet import EfficientNetB2 -from keras.applications.efficientnet import EfficientNetB3 -from keras.applications.efficientnet import EfficientNetB4 -from keras.applications.efficientnet import EfficientNetB5 -from keras.applications.efficientnet import EfficientNetB6 -from keras.applications.efficientnet import EfficientNetB7 -from keras.applications.efficientnet_v2 import EfficientNetV2B0 -from keras.applications.efficientnet_v2 import EfficientNetV2B1 -from keras.applications.efficientnet_v2 import EfficientNetV2B2 -from keras.applications.efficientnet_v2 import EfficientNetV2B3 -from keras.applications.efficientnet_v2 import EfficientNetV2L -from keras.applications.efficientnet_v2 import EfficientNetV2M -from keras.applications.efficientnet_v2 import EfficientNetV2S -from keras.applications.inception_resnet_v2 import InceptionResNetV2 -from keras.applications.inception_v3 import InceptionV3 -from keras.applications.mobilenet import MobileNet -from keras.applications.mobilenet_v2 import MobileNetV2 -from keras.applications.mobilenet_v3 import MobileNetV3Large -from keras.applications.mobilenet_v3 import MobileNetV3Small -from keras.applications.nasnet import NASNetLarge -from keras.applications.nasnet import NASNetMobile -from keras.applications.resnet import ResNet50 -from keras.applications.resnet import ResNet101 -from keras.applications.resnet import ResNet152 -from keras.applications.resnet_rs import ResNetRS50 -from keras.applications.resnet_rs import ResNetRS101 -from keras.applications.resnet_rs import ResNetRS152 -from keras.applications.resnet_rs import ResNetRS200 -from keras.applications.resnet_rs import ResNetRS270 -from keras.applications.resnet_rs import ResNetRS350 -from keras.applications.resnet_rs import ResNetRS420 -from keras.applications.resnet_v2 import ResNet50V2 -from keras.applications.resnet_v2 import ResNet101V2 -from keras.applications.resnet_v2 import ResNet152V2 -from keras.applications.vgg16 import VGG16 -from keras.applications.vgg19 import VGG19 -from keras.applications.xception import Xception diff --git a/keras/applications/applications_load_weight_test.py b/keras/applications/applications_load_weight_test.py deleted file mode 100644 index 875f0e4cd3e..00000000000 --- a/keras/applications/applications_load_weight_test.py +++ /dev/null @@ -1,198 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Integration tests for Keras applications.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl import flags -from absl.testing import parameterized - -from keras.applications import convnext -from keras.applications import densenet -from keras.applications import efficientnet -from keras.applications import efficientnet_v2 -from keras.applications import inception_resnet_v2 -from keras.applications import inception_v3 -from keras.applications import mobilenet -from keras.applications import mobilenet_v2 -from keras.applications import mobilenet_v3 -from keras.applications import nasnet -from keras.applications import regnet -from keras.applications import resnet -from keras.applications import resnet_rs -from keras.applications import resnet_v2 -from keras.applications import vgg16 -from keras.applications import vgg19 -from keras.applications import xception -from keras.utils import data_utils -from keras.utils import image_utils - -ARG_TO_MODEL = { - "resnet": (resnet, [resnet.ResNet50, resnet.ResNet101, resnet.ResNet152]), - "resnet_v2": ( - resnet_v2, - [resnet_v2.ResNet50V2, resnet_v2.ResNet101V2, resnet_v2.ResNet152V2], - ), - "vgg16": (vgg16, [vgg16.VGG16]), - "vgg19": (vgg19, [vgg19.VGG19]), - "xception": (xception, [xception.Xception]), - "inception_v3": (inception_v3, [inception_v3.InceptionV3]), - "inception_resnet_v2": ( - inception_resnet_v2, - [inception_resnet_v2.InceptionResNetV2], - ), - "mobilenet": (mobilenet, [mobilenet.MobileNet]), - "mobilenet_v2": (mobilenet_v2, [mobilenet_v2.MobileNetV2]), - "mobilenet_v3_small": (mobilenet_v3, [mobilenet_v3.MobileNetV3Small]), - "mobilenet_v3_large": (mobilenet_v3, [mobilenet_v3.MobileNetV3Large]), - "convnext": ( - convnext, - [ - convnext.ConvNeXtTiny, - convnext.ConvNeXtSmall, - convnext.ConvNeXtBase, - convnext.ConvNeXtLarge, - convnext.ConvNeXtXLarge, - ], - ), - "densenet": ( - densenet, - [densenet.DenseNet121, densenet.DenseNet169, densenet.DenseNet201], - ), - "nasnet_mobile": (nasnet, [nasnet.NASNetMobile]), - "nasnet_large": (nasnet, [nasnet.NASNetLarge]), - "efficientnet": ( - efficientnet, - [ - efficientnet.EfficientNetB0, - efficientnet.EfficientNetB1, - efficientnet.EfficientNetB2, - efficientnet.EfficientNetB3, - efficientnet.EfficientNetB4, - efficientnet.EfficientNetB5, - efficientnet.EfficientNetB6, - efficientnet.EfficientNetB7, - ], - ), - "efficientnet_v2": ( - efficientnet_v2, - [ - efficientnet_v2.EfficientNetV2B0, - efficientnet_v2.EfficientNetV2B1, - efficientnet_v2.EfficientNetV2B2, - efficientnet_v2.EfficientNetV2B3, - efficientnet_v2.EfficientNetV2S, - efficientnet_v2.EfficientNetV2M, - efficientnet_v2.EfficientNetV2L, - ], - ), - "resnet_rs": ( - resnet_rs, - [ - resnet_rs.ResNetRS50, - resnet_rs.ResNetRS101, - resnet_rs.ResNetRS152, - resnet_rs.ResNetRS200, - resnet_rs.ResNetRS270, - resnet_rs.ResNetRS350, - resnet_rs.ResNetRS420, - ], - ), - "regnet": ( - regnet, - [ - regnet.RegNetX002, - regnet.RegNetX004, - regnet.RegNetX006, - regnet.RegNetX008, - regnet.RegNetX016, - regnet.RegNetX032, - regnet.RegNetX040, - regnet.RegNetX064, - regnet.RegNetX080, - regnet.RegNetX120, - regnet.RegNetX160, - regnet.RegNetX320, - regnet.RegNetY002, - regnet.RegNetY004, - regnet.RegNetY006, - regnet.RegNetY008, - regnet.RegNetY016, - regnet.RegNetY032, - regnet.RegNetY040, - regnet.RegNetY064, - regnet.RegNetY080, - regnet.RegNetY120, - regnet.RegNetY160, - regnet.RegNetY320, - ], - ), -} - -TEST_IMAGE_PATH = ( - "https://storage.googleapis.com/tensorflow/" - "keras-applications/tests/elephant.jpg" -) -_IMAGENET_CLASSES = 1000 - -# Add a flag to define which application module file is tested. -# This is set as an 'arg' in the build target to guarantee that -# it only triggers the tests of the application models in the module -# if that module file has been modified. -FLAGS = flags.FLAGS -flags.DEFINE_string("module", None, "Application module used in this test.") - - -def _get_elephant(target_size): - # For models that don't include a Flatten step, - # the default is to accept variable-size inputs - # even when loading ImageNet weights (since it is possible). - # In this case, default to 299x299. - if target_size[0] is None: - target_size = (299, 299) - test_image = data_utils.get_file("elephant.jpg", TEST_IMAGE_PATH) - img = image_utils.load_img(test_image, target_size=tuple(target_size)) - x = image_utils.img_to_array(img) - return np.expand_dims(x, axis=0) - - -class ApplicationsLoadWeightTest(tf.test.TestCase, parameterized.TestCase): - def assertShapeEqual(self, shape1, shape2): - if len(shape1) != len(shape2): - raise AssertionError( - f"Shapes are different rank: {shape1} vs {shape2}" - ) - if shape1 != shape2: - raise AssertionError(f"Shapes differ: {shape1} vs {shape2}") - - def test_application_pretrained_weights_loading(self): - app_module = ARG_TO_MODEL[FLAGS.module][0] - apps = ARG_TO_MODEL[FLAGS.module][1] - for app in apps: - try: - model = app(weights="imagenet") - except Exception: - self.skipTest("TODO(b/227700184): Re-enable.") - self.assertShapeEqual(model.output_shape, (None, _IMAGENET_CLASSES)) - x = _get_elephant(model.input_shape[1:3]) - x = app_module.preprocess_input(x) - preds = model.predict(x) - names = [p[1] for p in app_module.decode_predictions(preds)[0]] - # Test correct label is in top 3 (weak correctness test). - self.assertIn("African_elephant", names[:3]) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/applications/applications_test.py b/keras/applications/applications_test.py deleted file mode 100644 index 0ee27367a12..00000000000 --- a/keras/applications/applications_test.py +++ /dev/null @@ -1,249 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Integration tests for Keras applications.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import backend -from keras import utils -from keras.applications import convnext -from keras.applications import densenet -from keras.applications import efficientnet -from keras.applications import efficientnet_v2 -from keras.applications import inception_resnet_v2 -from keras.applications import inception_v3 -from keras.applications import mobilenet -from keras.applications import mobilenet_v2 -from keras.applications import mobilenet_v3 -from keras.applications import nasnet -from keras.applications import regnet -from keras.applications import resnet -from keras.applications import resnet_rs -from keras.applications import resnet_v2 -from keras.applications import vgg16 -from keras.applications import vgg19 -from keras.applications import xception - -MODEL_LIST_NO_NASNET = [ - (resnet.ResNet50, 2048), - (resnet.ResNet101, 2048), - (resnet.ResNet152, 2048), - (resnet_v2.ResNet50V2, 2048), - (resnet_v2.ResNet101V2, 2048), - (resnet_v2.ResNet152V2, 2048), - (vgg16.VGG16, 512), - (vgg19.VGG19, 512), - (xception.Xception, 2048), - (inception_v3.InceptionV3, 2048), - (inception_resnet_v2.InceptionResNetV2, 1536), - (mobilenet.MobileNet, 1024), - (mobilenet_v2.MobileNetV2, 1280), - (mobilenet_v3.MobileNetV3Small, 576), - (mobilenet_v3.MobileNetV3Large, 960), - (convnext.ConvNeXtTiny, 768), - (convnext.ConvNeXtSmall, 768), - (convnext.ConvNeXtBase, 1024), - (convnext.ConvNeXtLarge, 1536), - (convnext.ConvNeXtXLarge, 2048), - (densenet.DenseNet121, 1024), - (densenet.DenseNet169, 1664), - (densenet.DenseNet201, 1920), - (efficientnet.EfficientNetB0, 1280), - (efficientnet.EfficientNetB1, 1280), - (efficientnet.EfficientNetB2, 1408), - (efficientnet.EfficientNetB3, 1536), - (efficientnet.EfficientNetB4, 1792), - (efficientnet.EfficientNetB5, 2048), - (efficientnet.EfficientNetB6, 2304), - (efficientnet.EfficientNetB7, 2560), - (efficientnet_v2.EfficientNetV2B0, 1280), - (efficientnet_v2.EfficientNetV2B1, 1280), - (efficientnet_v2.EfficientNetV2B2, 1408), - (efficientnet_v2.EfficientNetV2B3, 1536), - (efficientnet_v2.EfficientNetV2S, 1280), - (efficientnet_v2.EfficientNetV2M, 1280), - (efficientnet_v2.EfficientNetV2L, 1280), - (regnet.RegNetX002, 368), - (regnet.RegNetX004, 384), - (regnet.RegNetX006, 528), - (regnet.RegNetX008, 672), - (regnet.RegNetX016, 912), - (regnet.RegNetX032, 1008), - (regnet.RegNetX040, 1360), - (regnet.RegNetX064, 1624), - (regnet.RegNetX080, 1920), - (regnet.RegNetX120, 2240), - (regnet.RegNetX160, 2048), - (regnet.RegNetX320, 2520), - (regnet.RegNetY002, 368), - (regnet.RegNetY004, 440), - (regnet.RegNetY006, 608), - (regnet.RegNetY008, 768), - (regnet.RegNetY016, 888), - (regnet.RegNetY032, 1512), - (regnet.RegNetY040, 1088), - (regnet.RegNetY064, 1296), - (regnet.RegNetY080, 2016), - (regnet.RegNetY120, 2240), - (regnet.RegNetY160, 3024), - (regnet.RegNetY320, 3712), - (resnet_rs.ResNetRS50, 2048), - (resnet_rs.ResNetRS101, 2048), - (resnet_rs.ResNetRS152, 2048), - (resnet_rs.ResNetRS200, 2048), - (resnet_rs.ResNetRS270, 2048), - (resnet_rs.ResNetRS350, 2048), - (resnet_rs.ResNetRS420, 2048), -] - -NASNET_LIST = [ - (nasnet.NASNetMobile, 1056), - (nasnet.NASNetLarge, 4032), -] - -MODEL_LIST = MODEL_LIST_NO_NASNET + NASNET_LIST - -# Parameters for loading weights for MobileNetV3. -# (class, alpha, minimalistic, include_top) -MOBILENET_V3_FOR_WEIGHTS = [ - (mobilenet_v3.MobileNetV3Large, 0.75, False, False), - (mobilenet_v3.MobileNetV3Large, 1.0, False, False), - (mobilenet_v3.MobileNetV3Large, 1.0, True, False), - (mobilenet_v3.MobileNetV3Large, 0.75, False, True), - (mobilenet_v3.MobileNetV3Large, 1.0, False, True), - (mobilenet_v3.MobileNetV3Large, 1.0, True, True), - (mobilenet_v3.MobileNetV3Small, 0.75, False, False), - (mobilenet_v3.MobileNetV3Small, 1.0, False, False), - (mobilenet_v3.MobileNetV3Small, 1.0, True, False), - (mobilenet_v3.MobileNetV3Small, 0.75, False, True), - (mobilenet_v3.MobileNetV3Small, 1.0, False, True), - (mobilenet_v3.MobileNetV3Small, 1.0, True, True), -] - - -class ApplicationsTest(tf.test.TestCase, parameterized.TestCase): - def assertShapeEqual(self, shape1, shape2): - if len(shape1) != len(shape2): - raise AssertionError( - f"Shapes are different rank: {shape1} vs {shape2}" - ) - for v1, v2 in zip(shape1, shape2): - if v1 != v2: - raise AssertionError(f"Shapes differ: {shape1} vs {shape2}") - - @parameterized.parameters(*MODEL_LIST) - def test_application_base(self, app, _): - # Can be instantiated with default arguments - model = app(weights=None) - # Can be serialized and deserialized - config = model.get_config() - if "ConvNeXt" in app.__name__: - custom_objects = {"LayerScale": convnext.LayerScale} - with utils.custom_object_scope(custom_objects): - reconstructed_model = model.__class__.from_config(config) - else: - reconstructed_model = model.__class__.from_config(config) - self.assertEqual(len(model.weights), len(reconstructed_model.weights)) - backend.clear_session() - - @parameterized.parameters(*MODEL_LIST) - def test_application_notop(self, app, last_dim): - if "NASNet" in app.__name__: - only_check_last_dim = True - else: - only_check_last_dim = False - output_shape = _get_output_shape( - lambda: app(weights=None, include_top=False) - ) - if only_check_last_dim: - self.assertEqual(output_shape[-1], last_dim) - else: - self.assertShapeEqual(output_shape, (None, None, None, last_dim)) - backend.clear_session() - - @parameterized.parameters(*MODEL_LIST) - def test_application_notop_custom_input_shape(self, app, last_dim): - output_shape = _get_output_shape( - lambda: app( - weights="imagenet", include_top=False, input_shape=(224, 224, 3) - ) - ) - - self.assertEqual(output_shape[-1], last_dim) - - @parameterized.parameters(MODEL_LIST) - def test_application_pooling(self, app, last_dim): - output_shape = _get_output_shape( - lambda: app(weights=None, include_top=False, pooling="avg") - ) - self.assertShapeEqual(output_shape, (None, last_dim)) - - @parameterized.parameters(MODEL_LIST) - def test_application_classifier_activation(self, app, _): - if "RegNet" in app.__name__: - self.skipTest("RegNet models do not support classifier activation") - model = app( - weights=None, include_top=True, classifier_activation="softmax" - ) - last_layer_act = model.layers[-1].activation.__name__ - self.assertEqual(last_layer_act, "softmax") - - @parameterized.parameters(*MODEL_LIST_NO_NASNET) - def test_application_variable_input_channels(self, app, last_dim): - if backend.image_data_format() == "channels_first": - input_shape = (1, None, None) - else: - input_shape = (None, None, 1) - output_shape = _get_output_shape( - lambda: app( - weights=None, include_top=False, input_shape=input_shape - ) - ) - self.assertShapeEqual(output_shape, (None, None, None, last_dim)) - backend.clear_session() - - if backend.image_data_format() == "channels_first": - input_shape = (4, None, None) - else: - input_shape = (None, None, 4) - output_shape = _get_output_shape( - lambda: app( - weights=None, include_top=False, input_shape=input_shape - ) - ) - self.assertShapeEqual(output_shape, (None, None, None, last_dim)) - backend.clear_session() - - @parameterized.parameters(*MOBILENET_V3_FOR_WEIGHTS) - def test_mobilenet_v3_load_weights( - self, mobilenet_class, alpha, minimalistic, include_top - ): - mobilenet_class( - input_shape=(224, 224, 3), - weights="imagenet", - alpha=alpha, - minimalistic=minimalistic, - include_top=include_top, - ) - - -def _get_output_shape(model_fn): - model = model_fn() - return model.output_shape - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/applications/convnext.py b/keras/applications/convnext.py deleted file mode 100644 index 8304d776e5d..00000000000 --- a/keras/applications/convnext.py +++ /dev/null @@ -1,773 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""ConvNeXt models for Keras. - -References: - -- [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) - (CVPR 2022) -""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import initializers -from keras import layers -from keras import utils -from keras.applications import imagenet_utils -from keras.engine import sequential -from keras.engine import training as training_lib - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -BASE_WEIGHTS_PATH = ( - "https://storage.googleapis.com/tensorflow/keras-applications/convnext/" -) - -WEIGHTS_HASHES = { - "convnext_tiny": ( - "8ae6e78ce2933352b1ef4008e6dd2f17bc40771563877d156bc6426c7cf503ff", - "d547c096cabd03329d7be5562c5e14798aa39ed24b474157cef5e85ab9e49ef1", - ), - "convnext_small": ( - "ce1277d8f1ee5a0ef0e171469089c18f5233860ceaf9b168049cb9263fd7483c", - "6fc8009faa2f00c1c1dfce59feea9b0745eb260a7dd11bee65c8e20843da6eab", - ), - "convnext_base": ( - "52cbb006d3dadd03f6e095a8ca1aca47aecdd75acb4bc74bce1f5c695d0086e6", - "40a20c5548a5e9202f69735ecc06c990e6b7c9d2de39f0361e27baeb24cb7c45", - ), - "convnext_large": ( - "070c5ed9ed289581e477741d3b34beffa920db8cf590899d6d2c67fba2a198a6", - "96f02b6f0753d4f543261bc9d09bed650f24dd6bc02ddde3066135b63d23a1cd", - ), - "convnext_xlarge": ( - "c1f5ccab661354fc3a79a10fa99af82f0fbf10ec65cb894a3ae0815f17a889ee", - "de3f8a54174130e0cecdc71583354753d557fcf1f4487331558e2a16ba0cfe05", - ), -} - - -MODEL_CONFIGS = { - "tiny": { - "depths": [3, 3, 9, 3], - "projection_dims": [96, 192, 384, 768], - "default_size": 224, - }, - "small": { - "depths": [3, 3, 27, 3], - "projection_dims": [96, 192, 384, 768], - "default_size": 224, - }, - "base": { - "depths": [3, 3, 27, 3], - "projection_dims": [128, 256, 512, 1024], - "default_size": 224, - }, - "large": { - "depths": [3, 3, 27, 3], - "projection_dims": [192, 384, 768, 1536], - "default_size": 224, - }, - "xlarge": { - "depths": [3, 3, 27, 3], - "projection_dims": [256, 512, 1024, 2048], - "default_size": 224, - }, -} - -BASE_DOCSTRING = """Instantiates the {name} architecture. - - References: - - [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) - (CVPR 2022) - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - The `base`, `large`, and `xlarge` models were first pre-trained on the - ImageNet-21k dataset and then fine-tuned on the ImageNet-1k dataset. The - pre-trained parameters of the models were assembled from the - [official repository](https://github.com/facebookresearch/ConvNeXt). To get a - sense of how these parameters were converted to Keras compatible parameters, - please refer to - [this repository](https://github.com/sayakpaul/keras-convnext-conversion). - - Note: Each Keras Application expects a specific kind of input preprocessing. - For ConvNeXt, preprocessing is included in the model using a `Normalization` - layer. ConvNeXt models expect their inputs to be float or uint8 tensors of - pixels with values in the [0-255] range. - - When calling the `summary()` method after instantiating a ConvNeXt model, - prefer setting the `expand_nested` argument `summary()` to `True` to better - investigate the instantiated model. - - Args: - include_top: Whether to include the fully-connected - layer at the top of the network. Defaults to True. - weights: One of `None` (random initialization), - `"imagenet"` (pre-training on ImageNet-1k), or the path to the weights - file to be loaded. Defaults to `"imagenet"`. - input_tensor: Optional Keras tensor - (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: Optional shape tuple, only to be specified - if `include_top` is False. - It should have exactly 3 inputs channels. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. Defaults to None. - - `None` means that the output of the model will be - the 4D tensor output of the last convolutional layer. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional layer, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will - be applied. - classes: Optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. Defaults to 1000 (number of - ImageNet classes). - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - Defaults to `"softmax"`. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - - Returns: - A `keras.Model` instance. -""" - - -class StochasticDepth(layers.Layer): - """Stochastic Depth module. - - It performs batch-wise dropping rather than sample-wise. In libraries like - `timm`, it's similar to `DropPath` layers that drops residual paths - sample-wise. - - References: - - https://github.com/rwightman/pytorch-image-models - - Args: - drop_path_rate (float): Probability of dropping paths. Should be within - [0, 1]. - - Returns: - Tensor either with the residual path dropped or kept. - """ - - def __init__(self, drop_path_rate, **kwargs): - super().__init__(**kwargs) - self.drop_path_rate = drop_path_rate - - def call(self, x, training=None): - if training: - keep_prob = 1 - self.drop_path_rate - shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) - random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) - random_tensor = tf.floor(random_tensor) - return (x / keep_prob) * random_tensor - return x - - def get_config(self): - config = super().get_config() - config.update({"drop_path_rate": self.drop_path_rate}) - return config - - -class LayerScale(layers.Layer): - """Layer scale module. - - References: - - https://arxiv.org/abs/2103.17239 - - Args: - init_values (float): Initial value for layer scale. Should be within - [0, 1]. - projection_dim (int): Projection dimensionality. - - Returns: - Tensor multiplied to the scale. - """ - - def __init__(self, init_values, projection_dim, **kwargs): - super().__init__(**kwargs) - self.init_values = init_values - self.projection_dim = projection_dim - - def build(self, input_shape): - self.gamma = self.add_weight( - shape=(self.projection_dim,), - initializer=initializers.Constant(self.init_values), - trainable=True, - ) - - def call(self, x): - return x * self.gamma - - def get_config(self): - config = super().get_config() - config.update( - { - "init_values": self.init_values, - "projection_dim": self.projection_dim, - } - ) - return config - - -def ConvNeXtBlock( - projection_dim, drop_path_rate=0.0, layer_scale_init_value=1e-6, name=None -): - """ConvNeXt block. - - References: - - https://arxiv.org/abs/2201.03545 - - https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py - - Notes: - In the original ConvNeXt implementation (linked above), the authors use - `Dense` layers for pointwise convolutions for increased efficiency. - Following that, this implementation also uses the same. - - Args: - projection_dim (int): Number of filters for convolution layers. In the - ConvNeXt paper, this is referred to as projection dimension. - drop_path_rate (float): Probability of dropping paths. Should be within - [0, 1]. - layer_scale_init_value (float): Layer scale value. Should be a small float - number. - name: name to path to the keras layer. - - Returns: - A function representing a ConvNeXtBlock block. - """ - if name is None: - name = "prestem" + str(backend.get_uid("prestem")) - - def apply(inputs): - x = inputs - - x = layers.Conv2D( - filters=projection_dim, - kernel_size=7, - padding="same", - groups=projection_dim, - name=name + "_depthwise_conv", - )(x) - x = layers.LayerNormalization(epsilon=1e-6, name=name + "_layernorm")(x) - x = layers.Dense(4 * projection_dim, name=name + "_pointwise_conv_1")(x) - x = layers.Activation("gelu", name=name + "_gelu")(x) - x = layers.Dense(projection_dim, name=name + "_pointwise_conv_2")(x) - - if layer_scale_init_value is not None: - x = LayerScale( - layer_scale_init_value, - projection_dim, - name=name + "_layer_scale", - )(x) - if drop_path_rate: - layer = StochasticDepth( - drop_path_rate, name=name + "_stochastic_depth" - ) - else: - layer = layers.Activation("linear", name=name + "_identity") - - return inputs + layer(x) - - return apply - - -def PreStem(name=None): - """Normalizes inputs with ImageNet-1k mean and std. - - Args: - name (str): Name prefix. - - Returns: - A presemt function. - """ - if name is None: - name = "prestem" + str(backend.get_uid("prestem")) - - def apply(x): - x = layers.Normalization( - mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], - variance=[ - (0.229 * 255) ** 2, - (0.224 * 255) ** 2, - (0.225 * 255) ** 2, - ], - name=name + "_prestem_normalization", - )(x) - return x - - return apply - - -def Head(num_classes=1000, classifier_activation=None, name=None): - """Implementation of classification head of ConvNeXt. - - Args: - num_classes: number of classes for Dense layer - classifier_activation: activation function for the Dense layer - name: name prefix - - Returns: - Classification head function. - """ - if name is None: - name = str(backend.get_uid("head")) - - def apply(x): - x = layers.GlobalAveragePooling2D(name=name + "_head_gap")(x) - x = layers.LayerNormalization( - epsilon=1e-6, name=name + "_head_layernorm" - )(x) - x = layers.Dense( - num_classes, - activation=classifier_activation, - name=name + "_head_dense", - )(x) - return x - - return apply - - -def ConvNeXt( - depths, - projection_dims, - drop_path_rate=0.0, - layer_scale_init_value=1e-6, - default_size=224, - model_name="convnext", - include_preprocessing=True, - include_top=True, - weights=None, - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates ConvNeXt architecture given specific configuration. - - Args: - depths: An iterable containing depths for each individual stages. - projection_dims: An iterable containing output number of channels of - each individual stages. - drop_path_rate: Stochastic depth probability. If 0.0, then stochastic - depth won't be used. - layer_scale_init_value: Layer scale coefficient. If 0.0, layer scaling - won't be used. - default_size: Default input image size. - model_name: An optional name for the model. - include_preprocessing: boolean denoting whther to include preprocessing in - the model. When `weights="imagenet"` this should be always set to True. - But for other models (e.g., randomly initialized) users should set it - to False and apply preprocessing to data accordingly. - include_top: Boolean denoting whether to include classification head to - the model. - weights: one of `None` (random initialization), `"imagenet"` (pre-training - on ImageNet-1k), or the path to the weights file to be loaded. - input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to - use as image input for the model. - input_shape: optional shape tuple, only to be specified if `include_top` - is False. It should have exactly 3 inputs channels. - pooling: optional pooling mode for feature extraction when `include_top` - is `False`. - - `None` means that the output of the model will be the 4D tensor output - of the last convolutional layer. - - `avg` means that global average pooling will be applied to the output - of the last convolutional layer, and thus the output of the model will - be a 2D tensor. - - `max` means that global max pooling will be applied. - classes: optional number of classes to classify images into, only to be - specified if `include_top` is True, and if no `weights` argument is - specified. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - - Returns: - A `keras.Model` instance. - - Raises: - ValueError: in case of invalid argument for `weights`, - or invalid input shape. - ValueError: if `classifier_activation` is not `softmax`, or `None` - when using a pretrained top layer. - ValueError: if `include_top` is True but `num_classes` is not 1000 - when using ImageNet. - """ - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded." - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - "If using `weights` as `'imagenet'` with `include_top`" - " as true, `classes` should be 1000" - ) - - # Determine proper input shape. - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=default_size, - min_size=32, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - if input_tensor is not None: - inputs = utils.layer_utils.get_source_inputs(input_tensor)[0] - else: - inputs = img_input - - x = inputs - if include_preprocessing: - channel_axis = ( - 3 if backend.image_data_format() == "channels_last" else 1 - ) - num_channels = input_shape[channel_axis - 1] - if num_channels == 3: - x = PreStem(name=model_name)(x) - - # Stem block. - stem = sequential.Sequential( - [ - layers.Conv2D( - projection_dims[0], - kernel_size=4, - strides=4, - name=model_name + "_stem_conv", - ), - layers.LayerNormalization( - epsilon=1e-6, name=model_name + "_stem_layernorm" - ), - ], - name=model_name + "_stem", - ) - - # Downsampling blocks. - downsample_layers = [] - downsample_layers.append(stem) - - num_downsample_layers = 3 - for i in range(num_downsample_layers): - downsample_layer = sequential.Sequential( - [ - layers.LayerNormalization( - epsilon=1e-6, - name=model_name + "_downsampling_layernorm_" + str(i), - ), - layers.Conv2D( - projection_dims[i + 1], - kernel_size=2, - strides=2, - name=model_name + "_downsampling_conv_" + str(i), - ), - ], - name=model_name + "_downsampling_block_" + str(i), - ) - downsample_layers.append(downsample_layer) - - # Stochastic depth schedule. - # This is referred from the original ConvNeXt codebase: - # https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py#L86 - depth_drop_rates = [ - float(x) for x in np.linspace(0.0, drop_path_rate, sum(depths)) - ] - - # First apply downsampling blocks and then apply ConvNeXt stages. - cur = 0 - - num_convnext_blocks = 4 - for i in range(num_convnext_blocks): - x = downsample_layers[i](x) - for j in range(depths[i]): - x = ConvNeXtBlock( - projection_dim=projection_dims[i], - drop_path_rate=depth_drop_rates[cur + j], - layer_scale_init_value=layer_scale_init_value, - name=model_name + f"_stage_{i}_block_{j}", - )(x) - cur += depths[i] - - if include_top: - imagenet_utils.validate_activation(classifier_activation, weights) - x = Head( - num_classes=classes, - classifier_activation=classifier_activation, - name=model_name, - )(x) - - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D()(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D()(x) - x = layers.LayerNormalization(epsilon=1e-6)(x) - - model = training_lib.Model(inputs=inputs, outputs=x, name=model_name) - - # Load weights. - if weights == "imagenet": - if include_top: - file_suffix = ".h5" - file_hash = WEIGHTS_HASHES[model_name][0] - else: - file_suffix = "_notop.h5" - file_hash = WEIGHTS_HASHES[model_name][1] - file_name = model_name + file_suffix - weights_path = utils.data_utils.get_file( - file_name, - BASE_WEIGHTS_PATH + file_name, - cache_subdir="models", - file_hash=file_hash, - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - - return model - - -## Instantiating variants ## - - -@keras_export( - "keras.applications.convnext.ConvNeXtTiny", - "keras.applications.ConvNeXtTiny", -) -def ConvNeXtTiny( - model_name="convnext_tiny", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return ConvNeXt( - depths=MODEL_CONFIGS["tiny"]["depths"], - projection_dims=MODEL_CONFIGS["tiny"]["projection_dims"], - drop_path_rate=0.0, - layer_scale_init_value=1e-6, - default_size=MODEL_CONFIGS["tiny"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.convnext.ConvNeXtSmall", - "keras.applications.ConvNeXtSmall", -) -def ConvNeXtSmall( - model_name="convnext_small", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return ConvNeXt( - depths=MODEL_CONFIGS["small"]["depths"], - projection_dims=MODEL_CONFIGS["small"]["projection_dims"], - drop_path_rate=0.0, - layer_scale_init_value=1e-6, - default_size=MODEL_CONFIGS["small"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.convnext.ConvNeXtBase", - "keras.applications.ConvNeXtBase", -) -def ConvNeXtBase( - model_name="convnext_base", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return ConvNeXt( - depths=MODEL_CONFIGS["base"]["depths"], - projection_dims=MODEL_CONFIGS["base"]["projection_dims"], - drop_path_rate=0.0, - layer_scale_init_value=1e-6, - default_size=MODEL_CONFIGS["base"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.convnext.ConvNeXtLarge", - "keras.applications.ConvNeXtLarge", -) -def ConvNeXtLarge( - model_name="convnext_large", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return ConvNeXt( - depths=MODEL_CONFIGS["large"]["depths"], - projection_dims=MODEL_CONFIGS["large"]["projection_dims"], - drop_path_rate=0.0, - layer_scale_init_value=1e-6, - default_size=MODEL_CONFIGS["large"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.convnext.ConvNeXtXLarge", - "keras.applications.ConvNeXtXLarge", -) -def ConvNeXtXLarge( - model_name="convnext_xlarge", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return ConvNeXt( - depths=MODEL_CONFIGS["xlarge"]["depths"], - projection_dims=MODEL_CONFIGS["xlarge"]["projection_dims"], - drop_path_rate=0.0, - layer_scale_init_value=1e-6, - default_size=MODEL_CONFIGS["xlarge"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -ConvNeXtTiny.__doc__ = BASE_DOCSTRING.format(name="ConvNeXtTiny") -ConvNeXtSmall.__doc__ = BASE_DOCSTRING.format(name="ConvNeXtSmall") -ConvNeXtBase.__doc__ = BASE_DOCSTRING.format(name="ConvNeXtBase") -ConvNeXtLarge.__doc__ = BASE_DOCSTRING.format(name="ConvNeXtLarge") -ConvNeXtXLarge.__doc__ = BASE_DOCSTRING.format(name="ConvNeXtXLarge") - - -@keras_export("keras.applications.convnext.preprocess_input") -def preprocess_input(x, data_format=None): - """A placeholder method for backward compatibility. - - The preprocessing logic has been included in the convnext model - implementation. Users are no longer required to call this method to - normalize the input data. This method does nothing and only kept as a - placeholder to align the API surface between old and new version of model. - - Args: - x: A floating point `numpy.array` or a `tf.Tensor`. - data_format: Optional data format of the image tensor/array. Defaults to - None, in which case the global setting - `tf.keras.backend.image_data_format()` is used (unless you changed it, - it defaults to "channels_last").{mode} - - Returns: - Unchanged `numpy.array` or `tf.Tensor`. - """ - return x - - -@keras_export("keras.applications.convnext.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ diff --git a/keras/applications/densenet.py b/keras/applications/densenet.py deleted file mode 100644 index 57372d6a123..00000000000 --- a/keras/applications/densenet.py +++ /dev/null @@ -1,494 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""DenseNet models for Keras. - -Reference: - - [Densely Connected Convolutional Networks]( - https://arxiv.org/abs/1608.06993) (CVPR 2017) -""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.applications import imagenet_utils -from keras.engine import training -from keras.layers import VersionAwareLayers -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -BASE_WEIGHTS_PATH = ( - "https://storage.googleapis.com/tensorflow/keras-applications/densenet/" -) -DENSENET121_WEIGHT_PATH = ( - BASE_WEIGHTS_PATH + "densenet121_weights_tf_dim_ordering_tf_kernels.h5" -) -DENSENET121_WEIGHT_PATH_NO_TOP = ( - BASE_WEIGHTS_PATH - + "densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5" -) -DENSENET169_WEIGHT_PATH = ( - BASE_WEIGHTS_PATH + "densenet169_weights_tf_dim_ordering_tf_kernels.h5" -) -DENSENET169_WEIGHT_PATH_NO_TOP = ( - BASE_WEIGHTS_PATH - + "densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5" -) -DENSENET201_WEIGHT_PATH = ( - BASE_WEIGHTS_PATH + "densenet201_weights_tf_dim_ordering_tf_kernels.h5" -) -DENSENET201_WEIGHT_PATH_NO_TOP = ( - BASE_WEIGHTS_PATH - + "densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5" -) - -layers = VersionAwareLayers() - - -def dense_block(x, blocks, name): - """A dense block. - - Args: - x: input tensor. - blocks: integer, the number of building blocks. - name: string, block label. - - Returns: - Output tensor for the block. - """ - for i in range(blocks): - x = conv_block(x, 32, name=name + "_block" + str(i + 1)) - return x - - -def transition_block(x, reduction, name): - """A transition block. - - Args: - x: input tensor. - reduction: float, compression rate at transition layers. - name: string, block label. - - Returns: - output tensor for the block. - """ - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - x = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_bn" - )(x) - x = layers.Activation("relu", name=name + "_relu")(x) - x = layers.Conv2D( - int(backend.int_shape(x)[bn_axis] * reduction), - 1, - use_bias=False, - name=name + "_conv", - )(x) - x = layers.AveragePooling2D(2, strides=2, name=name + "_pool")(x) - return x - - -def conv_block(x, growth_rate, name): - """A building block for a dense block. - - Args: - x: input tensor. - growth_rate: float, growth rate at dense layers. - name: string, block label. - - Returns: - Output tensor for the block. - """ - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - x1 = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_0_bn" - )(x) - x1 = layers.Activation("relu", name=name + "_0_relu")(x1) - x1 = layers.Conv2D( - 4 * growth_rate, 1, use_bias=False, name=name + "_1_conv" - )(x1) - x1 = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_1_bn" - )(x1) - x1 = layers.Activation("relu", name=name + "_1_relu")(x1) - x1 = layers.Conv2D( - growth_rate, 3, padding="same", use_bias=False, name=name + "_2_conv" - )(x1) - x = layers.Concatenate(axis=bn_axis, name=name + "_concat")([x, x1]) - return x - - -def DenseNet( - blocks, - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates the DenseNet architecture. - - Reference: - - [Densely Connected Convolutional Networks]( - https://arxiv.org/abs/1608.06993) (CVPR 2017) - - This function returns a Keras image classification model, - optionally loaded with weights pre-trained on ImageNet. - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - Note: each Keras Application expects a specific kind of input preprocessing. - For DenseNet, call `tf.keras.applications.densenet.preprocess_input` on your - inputs before passing them to the model. - `densenet.preprocess_input` will scale pixels between 0 and 1 and then - will normalize each channel with respect to the ImageNet dataset statistics. - - Args: - blocks: numbers of building blocks for the four dense layers. - include_top: whether to include the fully-connected - layer at the top of the network. - weights: one of `None` (random initialization), - 'imagenet' (pre-training on ImageNet), - or the path to the weights file to be loaded. - input_tensor: optional Keras tensor - (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: optional shape tuple, only to be specified - if `include_top` is False (otherwise the input shape - has to be `(224, 224, 3)` (with `'channels_last'` data format) - or `(3, 224, 224)` (with `'channels_first'` data format). - It should have exactly 3 inputs channels, - and width and height should be no smaller than 32. - E.g. `(200, 200, 3)` would be one valid value. - pooling: optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model will be - the 4D tensor output of the - last convolutional block. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional block, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will - be applied. - classes: optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - - Returns: - A `keras.Model` instance. - """ - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded." - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - 'If using `weights` as `"imagenet"` with `include_top`' - " as true, `classes` should be 1000" - ) - - # Determine proper input shape - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=224, - min_size=32, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - - x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input) - x = layers.Conv2D(64, 7, strides=2, use_bias=False, name="conv1/conv")(x) - x = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name="conv1/bn" - )(x) - x = layers.Activation("relu", name="conv1/relu")(x) - x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x) - x = layers.MaxPooling2D(3, strides=2, name="pool1")(x) - - x = dense_block(x, blocks[0], name="conv2") - x = transition_block(x, 0.5, name="pool2") - x = dense_block(x, blocks[1], name="conv3") - x = transition_block(x, 0.5, name="pool3") - x = dense_block(x, blocks[2], name="conv4") - x = transition_block(x, 0.5, name="pool4") - x = dense_block(x, blocks[3], name="conv5") - - x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name="bn")(x) - x = layers.Activation("relu", name="relu")(x) - - if include_top: - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Dense( - classes, activation=classifier_activation, name="predictions" - )(x) - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D(name="max_pool")(x) - - # Ensure that the model takes into account - # any potential predecessors of `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - - # Create model. - if blocks == [6, 12, 24, 16]: - model = training.Model(inputs, x, name="densenet121") - elif blocks == [6, 12, 32, 32]: - model = training.Model(inputs, x, name="densenet169") - elif blocks == [6, 12, 48, 32]: - model = training.Model(inputs, x, name="densenet201") - else: - model = training.Model(inputs, x, name="densenet") - - # Load weights. - if weights == "imagenet": - if include_top: - if blocks == [6, 12, 24, 16]: - weights_path = data_utils.get_file( - "densenet121_weights_tf_dim_ordering_tf_kernels.h5", - DENSENET121_WEIGHT_PATH, - cache_subdir="models", - file_hash="9d60b8095a5708f2dcce2bca79d332c7", - ) - elif blocks == [6, 12, 32, 32]: - weights_path = data_utils.get_file( - "densenet169_weights_tf_dim_ordering_tf_kernels.h5", - DENSENET169_WEIGHT_PATH, - cache_subdir="models", - file_hash="d699b8f76981ab1b30698df4c175e90b", - ) - elif blocks == [6, 12, 48, 32]: - weights_path = data_utils.get_file( - "densenet201_weights_tf_dim_ordering_tf_kernels.h5", - DENSENET201_WEIGHT_PATH, - cache_subdir="models", - file_hash="1ceb130c1ea1b78c3bf6114dbdfd8807", - ) - else: - if blocks == [6, 12, 24, 16]: - weights_path = data_utils.get_file( - "densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5", - DENSENET121_WEIGHT_PATH_NO_TOP, - cache_subdir="models", - file_hash="30ee3e1110167f948a6b9946edeeb738", - ) - elif blocks == [6, 12, 32, 32]: - weights_path = data_utils.get_file( - "densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5", - DENSENET169_WEIGHT_PATH_NO_TOP, - cache_subdir="models", - file_hash="b8c4d4c20dd625c148057b9ff1c1176b", - ) - elif blocks == [6, 12, 48, 32]: - weights_path = data_utils.get_file( - "densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5", - DENSENET201_WEIGHT_PATH_NO_TOP, - cache_subdir="models", - file_hash="c13680b51ded0fb44dff2d8f86ac8bb1", - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - - return model - - -@keras_export( - "keras.applications.densenet.DenseNet121", "keras.applications.DenseNet121" -) -def DenseNet121( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates the Densenet121 architecture.""" - return DenseNet( - [6, 12, 24, 16], - include_top, - weights, - input_tensor, - input_shape, - pooling, - classes, - classifier_activation, - ) - - -@keras_export( - "keras.applications.densenet.DenseNet169", "keras.applications.DenseNet169" -) -def DenseNet169( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates the Densenet169 architecture.""" - return DenseNet( - [6, 12, 32, 32], - include_top, - weights, - input_tensor, - input_shape, - pooling, - classes, - classifier_activation, - ) - - -@keras_export( - "keras.applications.densenet.DenseNet201", "keras.applications.DenseNet201" -) -def DenseNet201( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates the Densenet201 architecture.""" - return DenseNet( - [6, 12, 48, 32], - include_top, - weights, - input_tensor, - input_shape, - pooling, - classes, - classifier_activation, - ) - - -@keras_export("keras.applications.densenet.preprocess_input") -def preprocess_input(x, data_format=None): - return imagenet_utils.preprocess_input( - x, data_format=data_format, mode="torch" - ) - - -@keras_export("keras.applications.densenet.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( - mode="", - ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TORCH, - error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, -) -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ - -DOC = """ - - Reference: - - [Densely Connected Convolutional Networks]( - https://arxiv.org/abs/1608.06993) (CVPR 2017) - - Optionally loads weights pre-trained on ImageNet. - Note that the data format convention used by the model is - the one specified in your Keras config at `~/.keras/keras.json`. - - Note: each Keras Application expects a specific kind of input preprocessing. - For DenseNet, call `tf.keras.applications.densenet.preprocess_input` on your - inputs before passing them to the model. - - Args: - include_top: whether to include the fully-connected - layer at the top of the network. - weights: one of `None` (random initialization), - 'imagenet' (pre-training on ImageNet), - or the path to the weights file to be loaded. - input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: optional shape tuple, only to be specified - if `include_top` is False (otherwise the input shape - has to be `(224, 224, 3)` (with `'channels_last'` data format) - or `(3, 224, 224)` (with `'channels_first'` data format). - It should have exactly 3 inputs channels, - and width and height should be no smaller than 32. - E.g. `(200, 200, 3)` would be one valid value. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model will be - the 4D tensor output of the - last convolutional block. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional block, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will - be applied. - classes: optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - - Returns: - A Keras model instance. -""" - -setattr(DenseNet121, "__doc__", DenseNet121.__doc__ + DOC) -setattr(DenseNet169, "__doc__", DenseNet169.__doc__ + DOC) -setattr(DenseNet201, "__doc__", DenseNet201.__doc__ + DOC) diff --git a/keras/applications/efficientnet.py b/keras/applications/efficientnet.py deleted file mode 100644 index 619499e671a..00000000000 --- a/keras/applications/efficientnet.py +++ /dev/null @@ -1,871 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""EfficientNet models for Keras. - -Reference: - - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]( - https://arxiv.org/abs/1905.11946) (ICML 2019) -""" - -import copy -import math - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.applications import imagenet_utils -from keras.engine import training -from keras.layers import VersionAwareLayers -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -BASE_WEIGHTS_PATH = "https://storage.googleapis.com/keras-applications/" - -WEIGHTS_HASHES = { - "b0": ( - "902e53a9f72be733fc0bcb005b3ebbac", - "50bc09e76180e00e4465e1a485ddc09d", - ), - "b1": ( - "1d254153d4ab51201f1646940f018540", - "74c4e6b3e1f6a1eea24c589628592432", - ), - "b2": ( - "b15cce36ff4dcbd00b6dd88e7857a6ad", - "111f8e2ac8aa800a7a99e3239f7bfb39", - ), - "b3": ( - "ffd1fdc53d0ce67064dc6a9c7960ede0", - "af6d107764bb5b1abb91932881670226", - ), - "b4": ( - "18c95ad55216b8f92d7e70b3a046e2fc", - "ebc24e6d6c33eaebbd558eafbeedf1ba", - ), - "b5": ( - "ace28f2a6363774853a83a0b21b9421a", - "38879255a25d3c92d5e44e04ae6cec6f", - ), - "b6": ( - "165f6e37dce68623721b423839de8be5", - "9ecce42647a20130c1f39a5d4cb75743", - ), - "b7": ( - "8c03f828fec3ef71311cd463b6759d99", - "cbcfe4450ddf6f3ad90b1b398090fe4a", - ), -} - -DEFAULT_BLOCKS_ARGS = [ - { - "kernel_size": 3, - "repeats": 1, - "filters_in": 32, - "filters_out": 16, - "expand_ratio": 1, - "id_skip": True, - "strides": 1, - "se_ratio": 0.25, - }, - { - "kernel_size": 3, - "repeats": 2, - "filters_in": 16, - "filters_out": 24, - "expand_ratio": 6, - "id_skip": True, - "strides": 2, - "se_ratio": 0.25, - }, - { - "kernel_size": 5, - "repeats": 2, - "filters_in": 24, - "filters_out": 40, - "expand_ratio": 6, - "id_skip": True, - "strides": 2, - "se_ratio": 0.25, - }, - { - "kernel_size": 3, - "repeats": 3, - "filters_in": 40, - "filters_out": 80, - "expand_ratio": 6, - "id_skip": True, - "strides": 2, - "se_ratio": 0.25, - }, - { - "kernel_size": 5, - "repeats": 3, - "filters_in": 80, - "filters_out": 112, - "expand_ratio": 6, - "id_skip": True, - "strides": 1, - "se_ratio": 0.25, - }, - { - "kernel_size": 5, - "repeats": 4, - "filters_in": 112, - "filters_out": 192, - "expand_ratio": 6, - "id_skip": True, - "strides": 2, - "se_ratio": 0.25, - }, - { - "kernel_size": 3, - "repeats": 1, - "filters_in": 192, - "filters_out": 320, - "expand_ratio": 6, - "id_skip": True, - "strides": 1, - "se_ratio": 0.25, - }, -] - -CONV_KERNEL_INITIALIZER = { - "class_name": "VarianceScaling", - "config": { - "scale": 2.0, - "mode": "fan_out", - "distribution": "truncated_normal", - }, -} - -DENSE_KERNEL_INITIALIZER = { - "class_name": "VarianceScaling", - "config": { - "scale": 1.0 / 3.0, - "mode": "fan_out", - "distribution": "uniform", - }, -} - -layers = VersionAwareLayers() - -BASE_DOCSTRING = """Instantiates the {name} architecture. - - Reference: - - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]( - https://arxiv.org/abs/1905.11946) (ICML 2019) - - This function returns a Keras image classification model, - optionally loaded with weights pre-trained on ImageNet. - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - Note: each Keras Application expects a specific kind of input preprocessing. - For EfficientNet, input preprocessing is included as part of the model - (as a `Rescaling` layer), and thus - `tf.keras.applications.efficientnet.preprocess_input` is actually a - pass-through function. EfficientNet models expect their inputs to be float - tensors of pixels with values in the [0-255] range. - - Args: - include_top: Whether to include the fully-connected - layer at the top of the network. Defaults to True. - weights: One of `None` (random initialization), - 'imagenet' (pre-training on ImageNet), - or the path to the weights file to be loaded. Defaults to 'imagenet'. - input_tensor: Optional Keras tensor - (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: Optional shape tuple, only to be specified - if `include_top` is False. - It should have exactly 3 inputs channels. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. Defaults to None. - - `None` means that the output of the model will be - the 4D tensor output of the - last convolutional layer. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional layer, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will - be applied. - classes: Optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. Defaults to 1000 (number of - ImageNet classes). - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - Defaults to 'softmax'. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - - Returns: - A `keras.Model` instance. -""" - - -IMAGENET_STDDEV_RGB = [0.229, 0.224, 0.225] - - -def EfficientNet( - width_coefficient, - depth_coefficient, - default_size, - dropout_rate=0.2, - drop_connect_rate=0.2, - depth_divisor=8, - activation="swish", - blocks_args="default", - model_name="efficientnet", - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates the EfficientNet architecture. - - Args: - width_coefficient: float, scaling coefficient for network width. - depth_coefficient: float, scaling coefficient for network depth. - default_size: integer, default input image size. - dropout_rate: float, dropout rate before final classifier layer. - drop_connect_rate: float, dropout rate at skip connections. - depth_divisor: integer, a unit of network width. - activation: activation function. - blocks_args: list of dicts, parameters to construct block modules. - model_name: string, model name. - include_top: whether to include the fully-connected - layer at the top of the network. - weights: one of `None` (random initialization), - 'imagenet' (pre-training on ImageNet), - or the path to the weights file to be loaded. - input_tensor: optional Keras tensor - (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: optional shape tuple, only to be specified - if `include_top` is False. - It should have exactly 3 inputs channels. - pooling: optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model will be - the 4D tensor output of the - last convolutional layer. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional layer, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will - be applied. - classes: optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - - Returns: - A `keras.Model` instance. - - Raises: - ValueError: in case of invalid argument for `weights`, - or invalid input shape. - ValueError: if `classifier_activation` is not `softmax` or `None` when - using a pretrained top layer. - """ - if blocks_args == "default": - blocks_args = DEFAULT_BLOCKS_ARGS - - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded." - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - 'If using `weights` as `"imagenet"` with `include_top`' - " as true, `classes` should be 1000" - ) - - # Determine proper input shape - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=default_size, - min_size=32, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - - def round_filters(filters, divisor=depth_divisor): - """Round number of filters based on depth multiplier.""" - filters *= width_coefficient - new_filters = max( - divisor, int(filters + divisor / 2) // divisor * divisor - ) - # Make sure that round down does not go down by more than 10%. - if new_filters < 0.9 * filters: - new_filters += divisor - return int(new_filters) - - def round_repeats(repeats): - """Round number of repeats based on depth multiplier.""" - return int(math.ceil(depth_coefficient * repeats)) - - # Build stem - x = img_input - x = layers.Rescaling(1.0 / 255.0)(x) - x = layers.Normalization(axis=bn_axis)(x) - if weights == "imagenet": - # Note that the normaliztion layer uses square value of STDDEV as the - # variance for the layer: result = (input - mean) / sqrt(var) - # However, the original implemenetation uses (input - mean) / var to - # normalize the input, we need to divide another sqrt(var) to match the - # original implementation. - # See https://github.com/tensorflow/tensorflow/issues/49930 for more - # details - x = layers.Rescaling( - [1.0 / math.sqrt(stddev) for stddev in IMAGENET_STDDEV_RGB] - )(x) - - x = layers.ZeroPadding2D( - padding=imagenet_utils.correct_pad(x, 3), name="stem_conv_pad" - )(x) - x = layers.Conv2D( - round_filters(32), - 3, - strides=2, - padding="valid", - use_bias=False, - kernel_initializer=CONV_KERNEL_INITIALIZER, - name="stem_conv", - )(x) - x = layers.BatchNormalization(axis=bn_axis, name="stem_bn")(x) - x = layers.Activation(activation, name="stem_activation")(x) - - # Build blocks - blocks_args = copy.deepcopy(blocks_args) - - b = 0 - blocks = float(sum(round_repeats(args["repeats"]) for args in blocks_args)) - for i, args in enumerate(blocks_args): - assert args["repeats"] > 0 - # Update block input and output filters based on depth multiplier. - args["filters_in"] = round_filters(args["filters_in"]) - args["filters_out"] = round_filters(args["filters_out"]) - - for j in range(round_repeats(args.pop("repeats"))): - # The first block needs to take care of stride and filter size - # increase. - if j > 0: - args["strides"] = 1 - args["filters_in"] = args["filters_out"] - x = block( - x, - activation, - drop_connect_rate * b / blocks, - name=f"block{i + 1}{chr(j + 97)}_", - **args, - ) - b += 1 - - # Build top - x = layers.Conv2D( - round_filters(1280), - 1, - padding="same", - use_bias=False, - kernel_initializer=CONV_KERNEL_INITIALIZER, - name="top_conv", - )(x) - x = layers.BatchNormalization(axis=bn_axis, name="top_bn")(x) - x = layers.Activation(activation, name="top_activation")(x) - if include_top: - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - if dropout_rate > 0: - x = layers.Dropout(dropout_rate, name="top_dropout")(x) - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Dense( - classes, - activation=classifier_activation, - kernel_initializer=DENSE_KERNEL_INITIALIZER, - name="predictions", - )(x) - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D(name="max_pool")(x) - - # Ensure that the model takes into account - # any potential predecessors of `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - - # Create model. - model = training.Model(inputs, x, name=model_name) - - # Load weights. - if weights == "imagenet": - if include_top: - file_suffix = ".h5" - file_hash = WEIGHTS_HASHES[model_name[-2:]][0] - else: - file_suffix = "_notop.h5" - file_hash = WEIGHTS_HASHES[model_name[-2:]][1] - file_name = model_name + file_suffix - weights_path = data_utils.get_file( - file_name, - BASE_WEIGHTS_PATH + file_name, - cache_subdir="models", - file_hash=file_hash, - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - return model - - -def block( - inputs, - activation="swish", - drop_rate=0.0, - name="", - filters_in=32, - filters_out=16, - kernel_size=3, - strides=1, - expand_ratio=1, - se_ratio=0.0, - id_skip=True, -): - """An inverted residual block. - - Args: - inputs: input tensor. - activation: activation function. - drop_rate: float between 0 and 1, fraction of the input units to drop. - name: string, block label. - filters_in: integer, the number of input filters. - filters_out: integer, the number of output filters. - kernel_size: integer, the dimension of the convolution window. - strides: integer, the stride of the convolution. - expand_ratio: integer, scaling coefficient for the input filters. - se_ratio: float between 0 and 1, fraction to squeeze the input filters. - id_skip: boolean. - - Returns: - output tensor for the block. - """ - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - - # Expansion phase - filters = filters_in * expand_ratio - if expand_ratio != 1: - x = layers.Conv2D( - filters, - 1, - padding="same", - use_bias=False, - kernel_initializer=CONV_KERNEL_INITIALIZER, - name=name + "expand_conv", - )(inputs) - x = layers.BatchNormalization(axis=bn_axis, name=name + "expand_bn")(x) - x = layers.Activation(activation, name=name + "expand_activation")(x) - else: - x = inputs - - # Depthwise Convolution - if strides == 2: - x = layers.ZeroPadding2D( - padding=imagenet_utils.correct_pad(x, kernel_size), - name=name + "dwconv_pad", - )(x) - conv_pad = "valid" - else: - conv_pad = "same" - x = layers.DepthwiseConv2D( - kernel_size, - strides=strides, - padding=conv_pad, - use_bias=False, - depthwise_initializer=CONV_KERNEL_INITIALIZER, - name=name + "dwconv", - )(x) - x = layers.BatchNormalization(axis=bn_axis, name=name + "bn")(x) - x = layers.Activation(activation, name=name + "activation")(x) - - # Squeeze and Excitation phase - if 0 < se_ratio <= 1: - filters_se = max(1, int(filters_in * se_ratio)) - se = layers.GlobalAveragePooling2D(name=name + "se_squeeze")(x) - if bn_axis == 1: - se_shape = (filters, 1, 1) - else: - se_shape = (1, 1, filters) - se = layers.Reshape(se_shape, name=name + "se_reshape")(se) - se = layers.Conv2D( - filters_se, - 1, - padding="same", - activation=activation, - kernel_initializer=CONV_KERNEL_INITIALIZER, - name=name + "se_reduce", - )(se) - se = layers.Conv2D( - filters, - 1, - padding="same", - activation="sigmoid", - kernel_initializer=CONV_KERNEL_INITIALIZER, - name=name + "se_expand", - )(se) - x = layers.multiply([x, se], name=name + "se_excite") - - # Output phase - x = layers.Conv2D( - filters_out, - 1, - padding="same", - use_bias=False, - kernel_initializer=CONV_KERNEL_INITIALIZER, - name=name + "project_conv", - )(x) - x = layers.BatchNormalization(axis=bn_axis, name=name + "project_bn")(x) - if id_skip and strides == 1 and filters_in == filters_out: - if drop_rate > 0: - x = layers.Dropout( - drop_rate, noise_shape=(None, 1, 1, 1), name=name + "drop" - )(x) - x = layers.add([x, inputs], name=name + "add") - return x - - -@keras_export( - "keras.applications.efficientnet.EfficientNetB0", - "keras.applications.EfficientNetB0", -) -def EfficientNetB0( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - **kwargs, -): - return EfficientNet( - 1.0, - 1.0, - 224, - 0.2, - model_name="efficientnetb0", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - **kwargs, - ) - - -@keras_export( - "keras.applications.efficientnet.EfficientNetB1", - "keras.applications.EfficientNetB1", -) -def EfficientNetB1( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - **kwargs, -): - return EfficientNet( - 1.0, - 1.1, - 240, - 0.2, - model_name="efficientnetb1", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - **kwargs, - ) - - -@keras_export( - "keras.applications.efficientnet.EfficientNetB2", - "keras.applications.EfficientNetB2", -) -def EfficientNetB2( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - **kwargs, -): - return EfficientNet( - 1.1, - 1.2, - 260, - 0.3, - model_name="efficientnetb2", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - **kwargs, - ) - - -@keras_export( - "keras.applications.efficientnet.EfficientNetB3", - "keras.applications.EfficientNetB3", -) -def EfficientNetB3( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - **kwargs, -): - return EfficientNet( - 1.2, - 1.4, - 300, - 0.3, - model_name="efficientnetb3", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - **kwargs, - ) - - -@keras_export( - "keras.applications.efficientnet.EfficientNetB4", - "keras.applications.EfficientNetB4", -) -def EfficientNetB4( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - **kwargs, -): - return EfficientNet( - 1.4, - 1.8, - 380, - 0.4, - model_name="efficientnetb4", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - **kwargs, - ) - - -@keras_export( - "keras.applications.efficientnet.EfficientNetB5", - "keras.applications.EfficientNetB5", -) -def EfficientNetB5( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - **kwargs, -): - return EfficientNet( - 1.6, - 2.2, - 456, - 0.4, - model_name="efficientnetb5", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - **kwargs, - ) - - -@keras_export( - "keras.applications.efficientnet.EfficientNetB6", - "keras.applications.EfficientNetB6", -) -def EfficientNetB6( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - **kwargs, -): - return EfficientNet( - 1.8, - 2.6, - 528, - 0.5, - model_name="efficientnetb6", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - **kwargs, - ) - - -@keras_export( - "keras.applications.efficientnet.EfficientNetB7", - "keras.applications.EfficientNetB7", -) -def EfficientNetB7( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - **kwargs, -): - return EfficientNet( - 2.0, - 3.1, - 600, - 0.5, - model_name="efficientnetb7", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - **kwargs, - ) - - -EfficientNetB0.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB0") -EfficientNetB1.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB1") -EfficientNetB2.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB2") -EfficientNetB3.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB3") -EfficientNetB4.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB4") -EfficientNetB5.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB5") -EfficientNetB6.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB6") -EfficientNetB7.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB7") - - -@keras_export("keras.applications.efficientnet.preprocess_input") -def preprocess_input(x, data_format=None): - """A placeholder method for backward compatibility. - - The preprocessing logic has been included in the efficientnet model - implementation. Users are no longer required to call this method to - normalize the input data. This method does nothing and only kept as a - placeholder to align the API surface between old and new version of model. - - Args: - x: A floating point `numpy.array` or a `tf.Tensor`. - data_format: Optional data format of the image tensor/array. Defaults to - None, in which case the global setting - `tf.keras.backend.image_data_format()` is used (unless you changed it, - it defaults to "channels_last").{mode} - - Returns: - Unchanged `numpy.array` or `tf.Tensor`. - """ - return x - - -@keras_export("keras.applications.efficientnet.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ diff --git a/keras/applications/efficientnet_v2.py b/keras/applications/efficientnet_v2.py deleted file mode 100644 index 910ba4602a0..00000000000 --- a/keras/applications/efficientnet_v2.py +++ /dev/null @@ -1,1361 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""EfficientNet V2 models for Keras. - -Reference: -- [EfficientNetV2: Smaller Models and Faster Training]( - https://arxiv.org/abs/2104.00298) (ICML 2021) -""" - -import copy -import math - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import layers -from keras.applications import imagenet_utils -from keras.engine import training -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -BASE_WEIGHTS_PATH = "https://storage.googleapis.com/tensorflow/keras-applications/efficientnet_v2/" # noqa: E501 - -WEIGHTS_HASHES = { - "b0": ( - "21ecbf6da12460d5c40bb2f29ceb2188", - "893217f2bb855e2983157299931e43ff", - ), - "b1": ( - "069f0534ff22adf035c89e2d9547a9dc", - "0e80663031ca32d657f9caa404b6ec37", - ), - "b2": ( - "424e49f28180edbde1e94797771950a7", - "1dfe2e7a5d45b6632553a8961ea609eb", - ), - "b3": ( - "1f1fc43bd98a6e4fd8fdfd551e02c7a0", - "f6abf7b5849ac99a89b50dd3fd532856", - ), - "-s": ( - "e1d88a8495beba45748fedd0cecbe016", - "af0682fb74e8c54910f2d4393339c070", - ), - "-m": ( - "a3bf6aa3276309f4fc6a34aa114c95cd", - "1b8dc055df72dde80d614482840fe342", - ), - "-l": ( - "27e6d408b53c7ebc868fefa357689935", - "b0b66b5c863aef5b46e8608fe1711615", - ), -} - -DEFAULT_BLOCKS_ARGS = { - "efficientnetv2-s": [ - { - "kernel_size": 3, - "num_repeat": 2, - "input_filters": 24, - "output_filters": 24, - "expand_ratio": 1, - "se_ratio": 0.0, - "strides": 1, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 4, - "input_filters": 24, - "output_filters": 48, - "expand_ratio": 4, - "se_ratio": 0.0, - "strides": 2, - "conv_type": 1, - }, - { - "conv_type": 1, - "expand_ratio": 4, - "input_filters": 48, - "kernel_size": 3, - "num_repeat": 4, - "output_filters": 64, - "se_ratio": 0, - "strides": 2, - }, - { - "conv_type": 0, - "expand_ratio": 4, - "input_filters": 64, - "kernel_size": 3, - "num_repeat": 6, - "output_filters": 128, - "se_ratio": 0.25, - "strides": 2, - }, - { - "conv_type": 0, - "expand_ratio": 6, - "input_filters": 128, - "kernel_size": 3, - "num_repeat": 9, - "output_filters": 160, - "se_ratio": 0.25, - "strides": 1, - }, - { - "conv_type": 0, - "expand_ratio": 6, - "input_filters": 160, - "kernel_size": 3, - "num_repeat": 15, - "output_filters": 256, - "se_ratio": 0.25, - "strides": 2, - }, - ], - "efficientnetv2-m": [ - { - "kernel_size": 3, - "num_repeat": 3, - "input_filters": 24, - "output_filters": 24, - "expand_ratio": 1, - "se_ratio": 0, - "strides": 1, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 5, - "input_filters": 24, - "output_filters": 48, - "expand_ratio": 4, - "se_ratio": 0, - "strides": 2, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 5, - "input_filters": 48, - "output_filters": 80, - "expand_ratio": 4, - "se_ratio": 0, - "strides": 2, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 7, - "input_filters": 80, - "output_filters": 160, - "expand_ratio": 4, - "se_ratio": 0.25, - "strides": 2, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 14, - "input_filters": 160, - "output_filters": 176, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 1, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 18, - "input_filters": 176, - "output_filters": 304, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 2, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 5, - "input_filters": 304, - "output_filters": 512, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 1, - "conv_type": 0, - }, - ], - "efficientnetv2-l": [ - { - "kernel_size": 3, - "num_repeat": 4, - "input_filters": 32, - "output_filters": 32, - "expand_ratio": 1, - "se_ratio": 0, - "strides": 1, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 7, - "input_filters": 32, - "output_filters": 64, - "expand_ratio": 4, - "se_ratio": 0, - "strides": 2, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 7, - "input_filters": 64, - "output_filters": 96, - "expand_ratio": 4, - "se_ratio": 0, - "strides": 2, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 10, - "input_filters": 96, - "output_filters": 192, - "expand_ratio": 4, - "se_ratio": 0.25, - "strides": 2, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 19, - "input_filters": 192, - "output_filters": 224, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 1, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 25, - "input_filters": 224, - "output_filters": 384, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 2, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 7, - "input_filters": 384, - "output_filters": 640, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 1, - "conv_type": 0, - }, - ], - "efficientnetv2-b0": [ - { - "kernel_size": 3, - "num_repeat": 1, - "input_filters": 32, - "output_filters": 16, - "expand_ratio": 1, - "se_ratio": 0, - "strides": 1, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 2, - "input_filters": 16, - "output_filters": 32, - "expand_ratio": 4, - "se_ratio": 0, - "strides": 2, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 2, - "input_filters": 32, - "output_filters": 48, - "expand_ratio": 4, - "se_ratio": 0, - "strides": 2, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 3, - "input_filters": 48, - "output_filters": 96, - "expand_ratio": 4, - "se_ratio": 0.25, - "strides": 2, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 5, - "input_filters": 96, - "output_filters": 112, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 1, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 8, - "input_filters": 112, - "output_filters": 192, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 2, - "conv_type": 0, - }, - ], - "efficientnetv2-b1": [ - { - "kernel_size": 3, - "num_repeat": 1, - "input_filters": 32, - "output_filters": 16, - "expand_ratio": 1, - "se_ratio": 0, - "strides": 1, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 2, - "input_filters": 16, - "output_filters": 32, - "expand_ratio": 4, - "se_ratio": 0, - "strides": 2, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 2, - "input_filters": 32, - "output_filters": 48, - "expand_ratio": 4, - "se_ratio": 0, - "strides": 2, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 3, - "input_filters": 48, - "output_filters": 96, - "expand_ratio": 4, - "se_ratio": 0.25, - "strides": 2, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 5, - "input_filters": 96, - "output_filters": 112, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 1, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 8, - "input_filters": 112, - "output_filters": 192, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 2, - "conv_type": 0, - }, - ], - "efficientnetv2-b2": [ - { - "kernel_size": 3, - "num_repeat": 1, - "input_filters": 32, - "output_filters": 16, - "expand_ratio": 1, - "se_ratio": 0, - "strides": 1, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 2, - "input_filters": 16, - "output_filters": 32, - "expand_ratio": 4, - "se_ratio": 0, - "strides": 2, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 2, - "input_filters": 32, - "output_filters": 48, - "expand_ratio": 4, - "se_ratio": 0, - "strides": 2, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 3, - "input_filters": 48, - "output_filters": 96, - "expand_ratio": 4, - "se_ratio": 0.25, - "strides": 2, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 5, - "input_filters": 96, - "output_filters": 112, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 1, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 8, - "input_filters": 112, - "output_filters": 192, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 2, - "conv_type": 0, - }, - ], - "efficientnetv2-b3": [ - { - "kernel_size": 3, - "num_repeat": 1, - "input_filters": 32, - "output_filters": 16, - "expand_ratio": 1, - "se_ratio": 0, - "strides": 1, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 2, - "input_filters": 16, - "output_filters": 32, - "expand_ratio": 4, - "se_ratio": 0, - "strides": 2, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 2, - "input_filters": 32, - "output_filters": 48, - "expand_ratio": 4, - "se_ratio": 0, - "strides": 2, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 3, - "input_filters": 48, - "output_filters": 96, - "expand_ratio": 4, - "se_ratio": 0.25, - "strides": 2, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 5, - "input_filters": 96, - "output_filters": 112, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 1, - "conv_type": 0, - }, - { - "kernel_size": 3, - "num_repeat": 8, - "input_filters": 112, - "output_filters": 192, - "expand_ratio": 6, - "se_ratio": 0.25, - "strides": 2, - "conv_type": 0, - }, - ], -} - -CONV_KERNEL_INITIALIZER = { - "class_name": "VarianceScaling", - "config": { - "scale": 2.0, - "mode": "fan_out", - "distribution": "truncated_normal", - }, -} - -DENSE_KERNEL_INITIALIZER = { - "class_name": "VarianceScaling", - "config": { - "scale": 1.0 / 3.0, - "mode": "fan_out", - "distribution": "uniform", - }, -} - -BASE_DOCSTRING = """Instantiates the {name} architecture. - - Reference: - - [EfficientNetV2: Smaller Models and Faster Training]( - https://arxiv.org/abs/2104.00298) (ICML 2021) - - This function returns a Keras image classification model, - optionally loaded with weights pre-trained on ImageNet. - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - Note: each Keras Application expects a specific kind of input preprocessing. - For EfficientNetV2, by default input preprocessing is included as a part of - the model (as a `Rescaling` layer), and thus - `tf.keras.applications.efficientnet_v2.preprocess_input` is actually a - pass-through function. In this use case, EfficientNetV2 models expect their - inputs to be float tensors of pixels with values in the [0-255] range. - At the same time, preprocessing as a part of the model (i.e. `Rescaling` - layer) can be disabled by setting `include_preprocessing` argument to False. - With preprocessing disabled EfficientNetV2 models expect their inputs to be - float tensors of pixels with values in the [-1, 1] range. - - Args: - include_top: Boolean, whether to include the fully-connected - layer at the top of the network. Defaults to True. - weights: One of `None` (random initialization), - `"imagenet"` (pre-training on ImageNet), - or the path to the weights file to be loaded. Defaults to `"imagenet"`. - input_tensor: Optional Keras tensor - (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: Optional shape tuple, only to be specified - if `include_top` is False. - It should have exactly 3 inputs channels. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. Defaults to None. - - `None` means that the output of the model will be - the 4D tensor output of the - last convolutional layer. - - `"avg"` means that global average pooling - will be applied to the output of the - last convolutional layer, and thus - the output of the model will be a 2D tensor. - - `"max"` means that global max pooling will - be applied. - classes: Optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. Defaults to 1000 (number of - ImageNet classes). - classifier_activation: A string or callable. The activation function to use - on the `"top"` layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - Defaults to `"softmax"`. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - - Returns: - A `keras.Model` instance. -""" - - -def round_filters(filters, width_coefficient, min_depth, depth_divisor): - """Round number of filters based on depth multiplier.""" - filters *= width_coefficient - minimum_depth = min_depth or depth_divisor - new_filters = max( - minimum_depth, - int(filters + depth_divisor / 2) // depth_divisor * depth_divisor, - ) - return int(new_filters) - - -def round_repeats(repeats, depth_coefficient): - """Round number of repeats based on depth multiplier.""" - return int(math.ceil(depth_coefficient * repeats)) - - -def MBConvBlock( - input_filters: int, - output_filters: int, - expand_ratio=1, - kernel_size=3, - strides=1, - se_ratio=0.0, - bn_momentum=0.9, - activation="swish", - survival_probability: float = 0.8, - name=None, -): - """MBConv block: Mobile Inverted Residual Bottleneck.""" - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - - if name is None: - name = backend.get_uid("block0") - - def apply(inputs): - # Expansion phase - filters = input_filters * expand_ratio - if expand_ratio != 1: - x = layers.Conv2D( - filters=filters, - kernel_size=1, - strides=1, - kernel_initializer=CONV_KERNEL_INITIALIZER, - padding="same", - data_format="channels_last", - use_bias=False, - name=name + "expand_conv", - )(inputs) - x = layers.BatchNormalization( - axis=bn_axis, - momentum=bn_momentum, - name=name + "expand_bn", - )(x) - x = layers.Activation(activation, name=name + "expand_activation")( - x - ) - else: - x = inputs - - # Depthwise conv - x = layers.DepthwiseConv2D( - kernel_size=kernel_size, - strides=strides, - depthwise_initializer=CONV_KERNEL_INITIALIZER, - padding="same", - data_format="channels_last", - use_bias=False, - name=name + "dwconv2", - )(x) - x = layers.BatchNormalization( - axis=bn_axis, momentum=bn_momentum, name=name + "bn" - )(x) - x = layers.Activation(activation, name=name + "activation")(x) - - # Squeeze and excite - if 0 < se_ratio <= 1: - filters_se = max(1, int(input_filters * se_ratio)) - se = layers.GlobalAveragePooling2D(name=name + "se_squeeze")(x) - if bn_axis == 1: - se_shape = (filters, 1, 1) - else: - se_shape = (1, 1, filters) - se = layers.Reshape(se_shape, name=name + "se_reshape")(se) - - se = layers.Conv2D( - filters_se, - 1, - padding="same", - activation=activation, - kernel_initializer=CONV_KERNEL_INITIALIZER, - name=name + "se_reduce", - )(se) - se = layers.Conv2D( - filters, - 1, - padding="same", - activation="sigmoid", - kernel_initializer=CONV_KERNEL_INITIALIZER, - name=name + "se_expand", - )(se) - - x = layers.multiply([x, se], name=name + "se_excite") - - # Output phase - x = layers.Conv2D( - filters=output_filters, - kernel_size=1, - strides=1, - kernel_initializer=CONV_KERNEL_INITIALIZER, - padding="same", - data_format="channels_last", - use_bias=False, - name=name + "project_conv", - )(x) - x = layers.BatchNormalization( - axis=bn_axis, momentum=bn_momentum, name=name + "project_bn" - )(x) - - if strides == 1 and input_filters == output_filters: - if survival_probability: - x = layers.Dropout( - survival_probability, - noise_shape=(None, 1, 1, 1), - name=name + "drop", - )(x) - x = layers.add([x, inputs], name=name + "add") - - return x - - return apply - - -def FusedMBConvBlock( - input_filters: int, - output_filters: int, - expand_ratio=1, - kernel_size=3, - strides=1, - se_ratio=0.0, - bn_momentum=0.9, - activation="swish", - survival_probability: float = 0.8, - name=None, -): - """Fused MBConv Block: Fusing the proj conv1x1 and depthwise_conv into a - conv2d.""" - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - - if name is None: - name = backend.get_uid("block0") - - def apply(inputs): - filters = input_filters * expand_ratio - if expand_ratio != 1: - x = layers.Conv2D( - filters, - kernel_size=kernel_size, - strides=strides, - kernel_initializer=CONV_KERNEL_INITIALIZER, - data_format="channels_last", - padding="same", - use_bias=False, - name=name + "expand_conv", - )(inputs) - x = layers.BatchNormalization( - axis=bn_axis, momentum=bn_momentum, name=name + "expand_bn" - )(x) - x = layers.Activation( - activation=activation, name=name + "expand_activation" - )(x) - else: - x = inputs - - # Squeeze and excite - if 0 < se_ratio <= 1: - filters_se = max(1, int(input_filters * se_ratio)) - se = layers.GlobalAveragePooling2D(name=name + "se_squeeze")(x) - if bn_axis == 1: - se_shape = (filters, 1, 1) - else: - se_shape = (1, 1, filters) - - se = layers.Reshape(se_shape, name=name + "se_reshape")(se) - - se = layers.Conv2D( - filters_se, - 1, - padding="same", - activation=activation, - kernel_initializer=CONV_KERNEL_INITIALIZER, - name=name + "se_reduce", - )(se) - se = layers.Conv2D( - filters, - 1, - padding="same", - activation="sigmoid", - kernel_initializer=CONV_KERNEL_INITIALIZER, - name=name + "se_expand", - )(se) - - x = layers.multiply([x, se], name=name + "se_excite") - - # Output phase: - x = layers.Conv2D( - output_filters, - kernel_size=1 if expand_ratio != 1 else kernel_size, - strides=1 if expand_ratio != 1 else strides, - kernel_initializer=CONV_KERNEL_INITIALIZER, - padding="same", - use_bias=False, - name=name + "project_conv", - )(x) - x = layers.BatchNormalization( - axis=bn_axis, momentum=bn_momentum, name=name + "project_bn" - )(x) - if expand_ratio == 1: - x = layers.Activation( - activation=activation, name=name + "project_activation" - )(x) - - # Residual: - if strides == 1 and input_filters == output_filters: - if survival_probability: - x = layers.Dropout( - survival_probability, - noise_shape=(None, 1, 1, 1), - name=name + "drop", - )(x) - x = layers.add([x, inputs], name=name + "add") - return x - - return apply - - -def EfficientNetV2( - width_coefficient, - depth_coefficient, - default_size, - dropout_rate=0.2, - drop_connect_rate=0.2, - depth_divisor=8, - min_depth=8, - bn_momentum=0.9, - activation="swish", - blocks_args="default", - model_name="efficientnetv2", - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - include_preprocessing=True, -): - """Instantiates the EfficientNetV2 architecture using given scaling - coefficients. - - Args: - width_coefficient: float, scaling coefficient for network width. - depth_coefficient: float, scaling coefficient for network depth. - default_size: integer, default input image size. - dropout_rate: float, dropout rate before final classifier layer. - drop_connect_rate: float, dropout rate at skip connections. - depth_divisor: integer, a unit of network width. - min_depth: integer, minimum number of filters. - bn_momentum: float. Momentum parameter for Batch Normalization layers. - activation: activation function. - blocks_args: list of dicts, parameters to construct block modules. - model_name: string, model name. - include_top: whether to include the fully-connected layer at the top of - the network. - weights: one of `None` (random initialization), `"imagenet"` (pre-training - on ImageNet), or the path to the weights file to be loaded. - input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) or - numpy array to use as image input for the model. - input_shape: optional shape tuple, only to be specified if `include_top` - is False. It should have exactly 3 inputs channels. - pooling: optional pooling mode for feature extraction when `include_top` - is `False`. - - `None` means that the output of the model will be the 4D tensor output - of the last convolutional layer. - - "avg" means that global average pooling will be applied to the output - of the last convolutional layer, and thus the output of the model will - be a 2D tensor. - - `"max"` means that global max pooling will be applied. - classes: optional number of classes to classify images into, only to be - specified if `include_top` is True, and if no `weights` argument is - specified. - classifier_activation: A string or callable. The activation function to - use on the `"top"` layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the `"top"` layer. - include_preprocessing: Boolean, whether to include the preprocessing layer - (`Rescaling`) at the bottom of the network. Defaults to `True`. - - Returns: - A `keras.Model` instance. - - Raises: - ValueError: in case of invalid argument for `weights`, - or invalid input shape. - ValueError: if `classifier_activation` is not `"softmax"` or `None` when - using a pretrained top layer. - """ - - if blocks_args == "default": - blocks_args = DEFAULT_BLOCKS_ARGS[model_name] - - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded." - f"Received: weights={weights}" - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - "If using `weights` as `'imagenet'` with `include_top`" - " as true, `classes` should be 1000" - f"Received: classes={classes}" - ) - - # Determine proper input shape - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=default_size, - min_size=32, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - - x = img_input - - if include_preprocessing: - # Apply original V1 preprocessing for Bx variants - # if number of channels allows it - num_channels = input_shape[bn_axis - 1] - if model_name.split("-")[-1].startswith("b") and num_channels == 3: - x = layers.Rescaling(scale=1.0 / 255)(x) - x = layers.Normalization( - mean=[0.485, 0.456, 0.406], - variance=[0.229**2, 0.224**2, 0.225**2], - axis=bn_axis, - )(x) - else: - x = layers.Rescaling(scale=1.0 / 128.0, offset=-1)(x) - - # Build stem - stem_filters = round_filters( - filters=blocks_args[0]["input_filters"], - width_coefficient=width_coefficient, - min_depth=min_depth, - depth_divisor=depth_divisor, - ) - x = layers.Conv2D( - filters=stem_filters, - kernel_size=3, - strides=2, - kernel_initializer=CONV_KERNEL_INITIALIZER, - padding="same", - use_bias=False, - name="stem_conv", - )(x) - x = layers.BatchNormalization( - axis=bn_axis, - momentum=bn_momentum, - name="stem_bn", - )(x) - x = layers.Activation(activation, name="stem_activation")(x) - - # Build blocks - blocks_args = copy.deepcopy(blocks_args) - b = 0 - blocks = float(sum(args["num_repeat"] for args in blocks_args)) - - for i, args in enumerate(blocks_args): - assert args["num_repeat"] > 0 - - # Update block input and output filters based on depth multiplier. - args["input_filters"] = round_filters( - filters=args["input_filters"], - width_coefficient=width_coefficient, - min_depth=min_depth, - depth_divisor=depth_divisor, - ) - args["output_filters"] = round_filters( - filters=args["output_filters"], - width_coefficient=width_coefficient, - min_depth=min_depth, - depth_divisor=depth_divisor, - ) - - # Determine which conv type to use: - block = {0: MBConvBlock, 1: FusedMBConvBlock}[args.pop("conv_type")] - repeats = round_repeats( - repeats=args.pop("num_repeat"), depth_coefficient=depth_coefficient - ) - for j in range(repeats): - # The first block needs to take care of stride and filter size - # increase. - if j > 0: - args["strides"] = 1 - args["input_filters"] = args["output_filters"] - - x = block( - activation=activation, - bn_momentum=bn_momentum, - survival_probability=drop_connect_rate * b / blocks, - name=f"block{i + 1}{chr(j + 97)}_", - **args, - )(x) - b += 1 - - # Build top - top_filters = round_filters( - filters=1280, - width_coefficient=width_coefficient, - min_depth=min_depth, - depth_divisor=depth_divisor, - ) - x = layers.Conv2D( - filters=top_filters, - kernel_size=1, - strides=1, - kernel_initializer=CONV_KERNEL_INITIALIZER, - padding="same", - data_format="channels_last", - use_bias=False, - name="top_conv", - )(x) - x = layers.BatchNormalization( - axis=bn_axis, - momentum=bn_momentum, - name="top_bn", - )(x) - x = layers.Activation(activation=activation, name="top_activation")(x) - - if include_top: - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - if dropout_rate > 0: - x = layers.Dropout(dropout_rate, name="top_dropout")(x) - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Dense( - classes, - activation=classifier_activation, - kernel_initializer=DENSE_KERNEL_INITIALIZER, - bias_initializer=tf.constant_initializer(0), - name="predictions", - )(x) - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D(name="max_pool")(x) - - # Ensure that the model takes into account - # any potential predecessors of `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - - # Create model. - model = training.Model(inputs, x, name=model_name) - - # Load weights. - if weights == "imagenet": - if include_top: - file_suffix = ".h5" - file_hash = WEIGHTS_HASHES[model_name[-2:]][0] - else: - file_suffix = "_notop.h5" - file_hash = WEIGHTS_HASHES[model_name[-2:]][1] - file_name = model_name + file_suffix - weights_path = data_utils.get_file( - file_name, - BASE_WEIGHTS_PATH + file_name, - cache_subdir="models", - file_hash=file_hash, - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - - return model - - -@keras_export( - "keras.applications.efficientnet_v2.EfficientNetV2B0", - "keras.applications.EfficientNetV2B0", -) -def EfficientNetV2B0( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - include_preprocessing=True, -): - return EfficientNetV2( - width_coefficient=1.0, - depth_coefficient=1.0, - default_size=224, - model_name="efficientnetv2-b0", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - include_preprocessing=include_preprocessing, - ) - - -@keras_export( - "keras.applications.efficientnet_v2.EfficientNetV2B1", - "keras.applications.EfficientNetV2B1", -) -def EfficientNetV2B1( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - include_preprocessing=True, -): - return EfficientNetV2( - width_coefficient=1.0, - depth_coefficient=1.1, - default_size=240, - model_name="efficientnetv2-b1", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - include_preprocessing=include_preprocessing, - ) - - -@keras_export( - "keras.applications.efficientnet_v2.EfficientNetV2B2", - "keras.applications.EfficientNetV2B2", -) -def EfficientNetV2B2( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - include_preprocessing=True, -): - return EfficientNetV2( - width_coefficient=1.1, - depth_coefficient=1.2, - default_size=260, - model_name="efficientnetv2-b2", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - include_preprocessing=include_preprocessing, - ) - - -@keras_export( - "keras.applications.efficientnet_v2.EfficientNetV2B3", - "keras.applications.EfficientNetV2B3", -) -def EfficientNetV2B3( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - include_preprocessing=True, -): - return EfficientNetV2( - width_coefficient=1.2, - depth_coefficient=1.4, - default_size=300, - model_name="efficientnetv2-b3", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - include_preprocessing=include_preprocessing, - ) - - -@keras_export( - "keras.applications.efficientnet_v2.EfficientNetV2S", - "keras.applications.EfficientNetV2S", -) -def EfficientNetV2S( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - include_preprocessing=True, -): - return EfficientNetV2( - width_coefficient=1.0, - depth_coefficient=1.0, - default_size=384, - model_name="efficientnetv2-s", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - include_preprocessing=include_preprocessing, - ) - - -@keras_export( - "keras.applications.efficientnet_v2.EfficientNetV2M", - "keras.applications.EfficientNetV2M", -) -def EfficientNetV2M( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - include_preprocessing=True, -): - return EfficientNetV2( - width_coefficient=1.0, - depth_coefficient=1.0, - default_size=480, - model_name="efficientnetv2-m", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - include_preprocessing=include_preprocessing, - ) - - -@keras_export( - "keras.applications.efficientnet_v2.EfficientNetV2L", - "keras.applications.EfficientNetV2L", -) -def EfficientNetV2L( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - include_preprocessing=True, -): - return EfficientNetV2( - width_coefficient=1.0, - depth_coefficient=1.0, - default_size=480, - model_name="efficientnetv2-l", - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - include_preprocessing=include_preprocessing, - ) - - -EfficientNetV2B0.__doc__ = BASE_DOCSTRING.format(name="EfficientNetV2B0") -EfficientNetV2B1.__doc__ = BASE_DOCSTRING.format(name="EfficientNetV2B1") -EfficientNetV2B2.__doc__ = BASE_DOCSTRING.format(name="EfficientNetV2B2") -EfficientNetV2B3.__doc__ = BASE_DOCSTRING.format(name="EfficientNetV2B3") -EfficientNetV2S.__doc__ = BASE_DOCSTRING.format(name="EfficientNetV2S") -EfficientNetV2M.__doc__ = BASE_DOCSTRING.format(name="EfficientNetV2M") -EfficientNetV2L.__doc__ = BASE_DOCSTRING.format(name="EfficientNetV2L") - - -@keras_export("keras.applications.efficientnet_v2.preprocess_input") -def preprocess_input(x, data_format=None): - """A placeholder method for backward compatibility. - - The preprocessing logic has been included in the EfficientNetV2 model - implementation. Users are no longer required to call this method to - normalize the input data. This method does nothing and only kept as a - placeholder to align the API surface between old and new version of model. - - Args: - x: A floating point `numpy.array` or a `tf.Tensor`. - data_format: Optional data format of the image tensor/array. Defaults to - None, in which case the global setting - `tf.keras.backend.image_data_format()` is used (unless you changed it, - it defaults to "channels_last").{mode} - - Returns: - Unchanged `numpy.array` or `tf.Tensor`. - """ - return x - - -@keras_export("keras.applications.efficientnet_v2.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ diff --git a/keras/applications/imagenet_utils.py b/keras/applications/imagenet_utils.py deleted file mode 100644 index 3aafbad0a17..00000000000 --- a/keras/applications/imagenet_utils.py +++ /dev/null @@ -1,481 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities for ImageNet data preprocessing & prediction decoding.""" - -import json -import warnings - -import numpy as np - -from keras import activations -from keras import backend -from keras.utils import data_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -CLASS_INDEX = None -CLASS_INDEX_PATH = ( - "https://storage.googleapis.com/download.tensorflow.org/" - "data/imagenet_class_index.json" -) - - -PREPROCESS_INPUT_DOC = """ - Preprocesses a tensor or Numpy array encoding a batch of images. - - Usage example with `applications.MobileNet`: - - ```python - i = tf.keras.layers.Input([None, None, 3], dtype = tf.uint8) - x = tf.cast(i, tf.float32) - x = tf.keras.applications.mobilenet.preprocess_input(x) - core = tf.keras.applications.MobileNet() - x = core(x) - model = tf.keras.Model(inputs=[i], outputs=[x]) - - image = tf.image.decode_png(tf.io.read_file('file.png')) - result = model(image) - ``` - - Args: - x: A floating point `numpy.array` or a `tf.Tensor`, 3D or 4D with 3 color - channels, with values in the range [0, 255]. - The preprocessed data are written over the input data - if the data types are compatible. To avoid this - behaviour, `numpy.copy(x)` can be used. - data_format: Optional data format of the image tensor/array. None, means - the global setting `tf.keras.backend.image_data_format()` is used - (unless you changed it, it uses "channels_last").{mode} - Defaults to `None`. - - Returns: - Preprocessed `numpy.array` or a `tf.Tensor` with type `float32`. - {ret} - - Raises: - {error} - """ - -PREPROCESS_INPUT_MODE_DOC = """ - mode: One of "caffe", "tf" or "torch". - - caffe: will convert the images from RGB to BGR, - then will zero-center each color channel with - respect to the ImageNet dataset, - without scaling. - - tf: will scale pixels between -1 and 1, - sample-wise. - - torch: will scale pixels between 0 and 1 and then - will normalize each channel with respect to the - ImageNet dataset. - Defaults to "caffe". - """ - -PREPROCESS_INPUT_DEFAULT_ERROR_DOC = """ - ValueError: In case of unknown `mode` or `data_format` argument.""" - -PREPROCESS_INPUT_ERROR_DOC = """ - ValueError: In case of unknown `data_format` argument.""" - -PREPROCESS_INPUT_RET_DOC_TF = """ - The inputs pixel values are scaled between -1 and 1, sample-wise.""" - -PREPROCESS_INPUT_RET_DOC_TORCH = """ - The input pixels values are scaled between 0 and 1 and each channel is - normalized with respect to the ImageNet dataset.""" - -PREPROCESS_INPUT_RET_DOC_CAFFE = """ - The images are converted from RGB to BGR, then each color channel is - zero-centered with respect to the ImageNet dataset, without scaling.""" - - -@keras_export("keras.applications.imagenet_utils.preprocess_input") -def preprocess_input(x, data_format=None, mode="caffe"): - """Preprocesses a tensor or Numpy array encoding a batch of images.""" - if mode not in {"caffe", "tf", "torch"}: - raise ValueError( - "Expected mode to be one of `caffe`, `tf` or `torch`. " - f"Received: mode={mode}" - ) - - if data_format is None: - data_format = backend.image_data_format() - elif data_format not in {"channels_first", "channels_last"}: - raise ValueError( - "Expected data_format to be one of `channels_first` or " - f"`channels_last`. Received: data_format={data_format}" - ) - - if isinstance(x, np.ndarray): - return _preprocess_numpy_input(x, data_format=data_format, mode=mode) - else: - return _preprocess_symbolic_input(x, data_format=data_format, mode=mode) - - -preprocess_input.__doc__ = PREPROCESS_INPUT_DOC.format( - mode=PREPROCESS_INPUT_MODE_DOC, - ret="", - error=PREPROCESS_INPUT_DEFAULT_ERROR_DOC, -) - - -@keras_export("keras.applications.imagenet_utils.decode_predictions") -def decode_predictions(preds, top=5): - """Decodes the prediction of an ImageNet model. - - Args: - preds: Numpy array encoding a batch of predictions. - top: Integer, how many top-guesses to return. Defaults to 5. - - Returns: - A list of lists of top class prediction tuples - `(class_name, class_description, score)`. - One list of tuples per sample in batch input. - - Raises: - ValueError: In case of invalid shape of the `pred` array - (must be 2D). - """ - global CLASS_INDEX - - if len(preds.shape) != 2 or preds.shape[1] != 1000: - raise ValueError( - "`decode_predictions` expects " - "a batch of predictions " - "(i.e. a 2D array of shape (samples, 1000)). " - "Found array with shape: " + str(preds.shape) - ) - if CLASS_INDEX is None: - fpath = data_utils.get_file( - "imagenet_class_index.json", - CLASS_INDEX_PATH, - cache_subdir="models", - file_hash="c2c37ea517e94d9795004a39431a14cb", - ) - with open(fpath) as f: - CLASS_INDEX = json.load(f) - results = [] - for pred in preds: - top_indices = pred.argsort()[-top:][::-1] - result = [tuple(CLASS_INDEX[str(i)]) + (pred[i],) for i in top_indices] - result.sort(key=lambda x: x[2], reverse=True) - results.append(result) - return results - - -def _preprocess_numpy_input(x, data_format, mode): - """Preprocesses a Numpy array encoding a batch of images. - - Args: - x: Input array, 3D or 4D. - data_format: Data format of the image array. - mode: One of "caffe", "tf" or "torch". - - caffe: will convert the images from RGB to BGR, - then will zero-center each color channel with - respect to the ImageNet dataset, - without scaling. - - tf: will scale pixels between -1 and 1, - sample-wise. - - torch: will scale pixels between 0 and 1 and then - will normalize each channel with respect to the - ImageNet dataset. - - Returns: - Preprocessed Numpy array. - """ - if not issubclass(x.dtype.type, np.floating): - x = x.astype(backend.floatx(), copy=False) - - if mode == "tf": - x /= 127.5 - x -= 1.0 - return x - elif mode == "torch": - x /= 255.0 - mean = [0.485, 0.456, 0.406] - std = [0.229, 0.224, 0.225] - else: - if data_format == "channels_first": - # 'RGB'->'BGR' - if x.ndim == 3: - x = x[::-1, ...] - else: - x = x[:, ::-1, ...] - else: - # 'RGB'->'BGR' - x = x[..., ::-1] - mean = [103.939, 116.779, 123.68] - std = None - - # Zero-center by mean pixel - if data_format == "channels_first": - if x.ndim == 3: - x[0, :, :] -= mean[0] - x[1, :, :] -= mean[1] - x[2, :, :] -= mean[2] - if std is not None: - x[0, :, :] /= std[0] - x[1, :, :] /= std[1] - x[2, :, :] /= std[2] - else: - x[:, 0, :, :] -= mean[0] - x[:, 1, :, :] -= mean[1] - x[:, 2, :, :] -= mean[2] - if std is not None: - x[:, 0, :, :] /= std[0] - x[:, 1, :, :] /= std[1] - x[:, 2, :, :] /= std[2] - else: - x[..., 0] -= mean[0] - x[..., 1] -= mean[1] - x[..., 2] -= mean[2] - if std is not None: - x[..., 0] /= std[0] - x[..., 1] /= std[1] - x[..., 2] /= std[2] - return x - - -def _preprocess_symbolic_input(x, data_format, mode): - """Preprocesses a tensor encoding a batch of images. - - Args: - x: Input tensor, 3D or 4D. - data_format: Data format of the image tensor. - mode: One of "caffe", "tf" or "torch". - - caffe: will convert the images from RGB to BGR, - then will zero-center each color channel with - respect to the ImageNet dataset, - without scaling. - - tf: will scale pixels between -1 and 1, - sample-wise. - - torch: will scale pixels between 0 and 1 and then - will normalize each channel with respect to the - ImageNet dataset. - - Returns: - Preprocessed tensor. - """ - if mode == "tf": - x /= 127.5 - x -= 1.0 - return x - elif mode == "torch": - x /= 255.0 - mean = [0.485, 0.456, 0.406] - std = [0.229, 0.224, 0.225] - else: - if data_format == "channels_first": - # 'RGB'->'BGR' - if backend.ndim(x) == 3: - x = x[::-1, ...] - else: - x = x[:, ::-1, ...] - else: - # 'RGB'->'BGR' - x = x[..., ::-1] - mean = [103.939, 116.779, 123.68] - std = None - - mean_tensor = backend.constant(-np.array(mean)) - - # Zero-center by mean pixel - if backend.dtype(x) != backend.dtype(mean_tensor): - x = backend.bias_add( - x, - backend.cast(mean_tensor, backend.dtype(x)), - data_format=data_format, - ) - else: - x = backend.bias_add(x, mean_tensor, data_format) - if std is not None: - std_tensor = backend.constant(np.array(std), dtype=backend.dtype(x)) - if data_format == "channels_first": - std_tensor = backend.reshape(std_tensor, (-1, 1, 1)) - x /= std_tensor - return x - - -def obtain_input_shape( - input_shape, - default_size, - min_size, - data_format, - require_flatten, - weights=None, -): - """Internal utility to compute/validate a model's input shape. - - Args: - input_shape: Either None (will return the default network input shape), - or a user-provided shape to be validated. - default_size: Default input width/height for the model. - min_size: Minimum input width/height accepted by the model. - data_format: Image data format to use. - require_flatten: Whether the model is expected to - be linked to a classifier via a Flatten layer. - weights: One of `None` (random initialization) - or 'imagenet' (pre-training on ImageNet). - If weights='imagenet' input channels must be equal to 3. - - Returns: - An integer shape tuple (may include None entries). - - Raises: - ValueError: In case of invalid argument values. - """ - if weights != "imagenet" and input_shape and len(input_shape) == 3: - if data_format == "channels_first": - if input_shape[0] not in {1, 3}: - warnings.warn( - "This model usually expects 1 or 3 input channels. " - "However, it was passed an input_shape with " - + str(input_shape[0]) - + " input channels.", - stacklevel=2, - ) - default_shape = (input_shape[0], default_size, default_size) - else: - if input_shape[-1] not in {1, 3}: - warnings.warn( - "This model usually expects 1 or 3 input channels. " - "However, it was passed an input_shape with " - + str(input_shape[-1]) - + " input channels.", - stacklevel=2, - ) - default_shape = (default_size, default_size, input_shape[-1]) - else: - if data_format == "channels_first": - default_shape = (3, default_size, default_size) - else: - default_shape = (default_size, default_size, 3) - if weights == "imagenet" and require_flatten: - if input_shape is not None: - if input_shape != default_shape: - raise ValueError( - "When setting `include_top=True` " - "and loading `imagenet` weights, " - f"`input_shape` should be {default_shape}. " - f"Received: input_shape={input_shape}" - ) - return default_shape - if input_shape: - if data_format == "channels_first": - if input_shape is not None: - if len(input_shape) != 3: - raise ValueError( - "`input_shape` must be a tuple of three integers." - ) - if input_shape[0] != 3 and weights == "imagenet": - raise ValueError( - "The input must have 3 channels; Received " - f"`input_shape={input_shape}`" - ) - if ( - input_shape[1] is not None and input_shape[1] < min_size - ) or (input_shape[2] is not None and input_shape[2] < min_size): - raise ValueError( - f"Input size must be at least {min_size}" - f"x{min_size}; Received: " - f"input_shape={input_shape}" - ) - else: - if input_shape is not None: - if len(input_shape) != 3: - raise ValueError( - "`input_shape` must be a tuple of three integers." - ) - if input_shape[-1] != 3 and weights == "imagenet": - raise ValueError( - "The input must have 3 channels; Received " - f"`input_shape={input_shape}`" - ) - if ( - input_shape[0] is not None and input_shape[0] < min_size - ) or (input_shape[1] is not None and input_shape[1] < min_size): - raise ValueError( - "Input size must be at least " - f"{min_size}x{min_size}; Received: " - f"input_shape={input_shape}" - ) - else: - if require_flatten: - input_shape = default_shape - else: - if data_format == "channels_first": - input_shape = (3, None, None) - else: - input_shape = (None, None, 3) - if require_flatten: - if None in input_shape: - raise ValueError( - "If `include_top` is True, " - "you should specify a static `input_shape`. " - f"Received: input_shape={input_shape}" - ) - return input_shape - - -def correct_pad(inputs, kernel_size): - """Returns a tuple for zero-padding for 2D convolution with downsampling. - - Args: - inputs: Input tensor. - kernel_size: An integer or tuple/list of 2 integers. - - Returns: - A tuple. - """ - img_dim = 2 if backend.image_data_format() == "channels_first" else 1 - input_size = backend.int_shape(inputs)[img_dim : (img_dim + 2)] - if isinstance(kernel_size, int): - kernel_size = (kernel_size, kernel_size) - if input_size[0] is None: - adjust = (1, 1) - else: - adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2) - correct = (kernel_size[0] // 2, kernel_size[1] // 2) - return ( - (correct[0] - adjust[0], correct[0]), - (correct[1] - adjust[1], correct[1]), - ) - - -def validate_activation(classifier_activation, weights): - """validates that the classifer_activation is compatible with the weights. - - Args: - classifier_activation: str or callable activation function - weights: The pretrained weights to load. - - Raises: - ValueError: if an activation other than `None` or `softmax` are used with - pretrained weights. - """ - if weights is None: - return - - classifier_activation = activations.get(classifier_activation) - if classifier_activation not in { - activations.get("softmax"), - activations.get(None), - }: - raise ValueError( - "Only `None` and `softmax` activations are allowed " - "for the `classifier_activation` argument when using " - "pretrained weights, with `include_top=True`; Received: " - f"classifier_activation={classifier_activation}" - ) diff --git a/keras/applications/imagenet_utils_test.py b/keras/applications/imagenet_utils_test.py deleted file mode 100644 index 8369884ee6d..00000000000 --- a/keras/applications/imagenet_utils_test.py +++ /dev/null @@ -1,325 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for imagenet_utils.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.applications import imagenet_utils as utils -from keras.mixed_precision.policy import set_global_policy -from keras.testing_infra import test_combinations - - -class TestImageNetUtils(test_combinations.TestCase): - def test_preprocess_input(self): - # Test invalid mode check - x = np.random.uniform(0, 255, (10, 10, 3)) - with self.assertRaises(ValueError): - utils.preprocess_input(x, mode="some_unknown_mode") - - # Test image batch with float and int image input - x = np.random.uniform(0, 255, (2, 10, 10, 3)) - xint = x.astype("int32") - self.assertEqual(utils.preprocess_input(x).shape, x.shape) - self.assertEqual(utils.preprocess_input(xint).shape, xint.shape) - - out1 = utils.preprocess_input(x, "channels_last") - out1int = utils.preprocess_input(xint, "channels_last") - out2 = utils.preprocess_input( - np.transpose(x, (0, 3, 1, 2)), "channels_first" - ) - out2int = utils.preprocess_input( - np.transpose(xint, (0, 3, 1, 2)), "channels_first" - ) - self.assertAllClose(out1, out2.transpose(0, 2, 3, 1)) - self.assertAllClose(out1int, out2int.transpose(0, 2, 3, 1)) - - # Test single image - x = np.random.uniform(0, 255, (10, 10, 3)) - xint = x.astype("int32") - self.assertEqual(utils.preprocess_input(x).shape, x.shape) - self.assertEqual(utils.preprocess_input(xint).shape, xint.shape) - - out1 = utils.preprocess_input(x, "channels_last") - out1int = utils.preprocess_input(xint, "channels_last") - out2 = utils.preprocess_input( - np.transpose(x, (2, 0, 1)), "channels_first" - ) - out2int = utils.preprocess_input( - np.transpose(xint, (2, 0, 1)), "channels_first" - ) - self.assertAllClose(out1, out2.transpose(1, 2, 0)) - self.assertAllClose(out1int, out2int.transpose(1, 2, 0)) - - # Test that writing over the input data works predictably - for mode in ["torch", "tf"]: - x = np.random.uniform(0, 255, (2, 10, 10, 3)) - xint = x.astype("int") - x2 = utils.preprocess_input(x, mode=mode) - xint2 = utils.preprocess_input(xint) - self.assertAllClose(x, x2) - self.assertNotEqual(xint.astype("float").max(), xint2.max()) - - # Caffe mode works differently from the others - x = np.random.uniform(0, 255, (2, 10, 10, 3)) - xint = x.astype("int") - x2 = utils.preprocess_input( - x, data_format="channels_last", mode="caffe" - ) - xint2 = utils.preprocess_input(xint) - self.assertAllClose(x, x2[..., ::-1]) - self.assertNotEqual(xint.astype("float").max(), xint2.max()) - - @parameterized.named_parameters( - [ - {"testcase_name": "mode_torch", "mode": "torch"}, - {"testcase_name": "mode_tf", "mode": "tf"}, - {"testcase_name": "mode_caffe", "mode": "caffe"}, - ] - ) - def test_preprocess_input_symbolic(self, mode): - # Test image batch - x = np.random.uniform(0, 255, (2, 10, 10, 3)) - inputs = keras.layers.Input(shape=x.shape[1:]) - outputs = keras.layers.Lambda( - lambda x: utils.preprocess_input(x, mode=mode), - output_shape=x.shape[1:], - )(inputs) - model = keras.Model(inputs, outputs) - self.assertEqual(model.predict(x).shape, x.shape) - - outputs1 = keras.layers.Lambda( - lambda x: utils.preprocess_input(x, "channels_last", mode=mode), - output_shape=x.shape[1:], - )(inputs) - model1 = keras.Model(inputs, outputs1) - out1 = model1.predict(x) - x2 = np.transpose(x, (0, 3, 1, 2)) - inputs2 = keras.layers.Input(shape=x2.shape[1:]) - outputs2 = keras.layers.Lambda( - lambda x: utils.preprocess_input(x, "channels_first", mode=mode), - output_shape=x2.shape[1:], - )(inputs2) - model2 = keras.Model(inputs2, outputs2) - out2 = model2.predict(x2) - self.assertAllClose(out1, out2.transpose(0, 2, 3, 1)) - - # Test single image - x = np.random.uniform(0, 255, (10, 10, 3)) - inputs = keras.layers.Input(shape=x.shape) - outputs = keras.layers.Lambda( - lambda x: utils.preprocess_input(x, mode=mode), output_shape=x.shape - )(inputs) - model = keras.Model(inputs, outputs) - self.assertEqual(model.predict(x[np.newaxis])[0].shape, x.shape) - - outputs1 = keras.layers.Lambda( - lambda x: utils.preprocess_input(x, "channels_last", mode=mode), - output_shape=x.shape, - )(inputs) - model1 = keras.Model(inputs, outputs1) - out1 = model1.predict(x[np.newaxis])[0] - x2 = np.transpose(x, (2, 0, 1)) - inputs2 = keras.layers.Input(shape=x2.shape) - outputs2 = keras.layers.Lambda( - lambda x: utils.preprocess_input(x, "channels_first", mode=mode), - output_shape=x2.shape, - )(inputs2) - model2 = keras.Model(inputs2, outputs2) - out2 = model2.predict(x2[np.newaxis])[0] - self.assertAllClose(out1, out2.transpose(1, 2, 0)) - - @parameterized.named_parameters( - [ - {"testcase_name": "mode_torch", "mode": "torch"}, - {"testcase_name": "mode_tf", "mode": "tf"}, - {"testcase_name": "mode_caffe", "mode": "caffe"}, - ] - ) - def test_preprocess_input_symbolic_mixed_precision(self, mode): - if not tf.__internal__.tf2.enabled(): - self.skipTest( - "The global policy can only be tested in TensorFlow 2" - ) - set_global_policy("mixed_float16") - shape = (20, 20, 3) - inputs = keras.layers.Input(shape=shape) - try: - keras.layers.Lambda( - lambda x: utils.preprocess_input(x, mode=mode), - output_shape=shape, - )(inputs) - finally: - set_global_policy("float32") - - @parameterized.named_parameters( - [ - { - "testcase_name": "channels_last_format", - "data_format": "channels_last", - }, - { - "testcase_name": "channels_first_format", - "data_format": "channels_first", - }, - ] - ) - def test_obtain_input_shape(self, data_format): - # input_shape and default_size are not identical. - with self.assertRaises(ValueError): - utils.obtain_input_shape( - input_shape=(224, 224, 3), - default_size=299, - min_size=139, - data_format="channels_last", - require_flatten=True, - weights="imagenet", - ) - - # Test invalid use cases - - shape = (139, 139) - if data_format == "channels_last": - input_shape = shape + (99,) - else: - input_shape = (99,) + shape - - # input_shape is smaller than min_size. - shape = (100, 100) - if data_format == "channels_last": - input_shape = shape + (3,) - else: - input_shape = (3,) + shape - with self.assertRaises(ValueError): - utils.obtain_input_shape( - input_shape=input_shape, - default_size=None, - min_size=139, - data_format=data_format, - require_flatten=False, - ) - - # shape is 1D. - shape = (100,) - if data_format == "channels_last": - input_shape = shape + (3,) - else: - input_shape = (3,) + shape - with self.assertRaises(ValueError): - utils.obtain_input_shape( - input_shape=input_shape, - default_size=None, - min_size=139, - data_format=data_format, - require_flatten=False, - ) - - # the number of channels is 5 not 3. - shape = (100, 100) - if data_format == "channels_last": - input_shape = shape + (5,) - else: - input_shape = (5,) + shape - with self.assertRaises(ValueError): - utils.obtain_input_shape( - input_shape=input_shape, - default_size=None, - min_size=139, - data_format=data_format, - require_flatten=False, - ) - - # require_flatten=True with dynamic input shape. - with self.assertRaises(ValueError): - utils.obtain_input_shape( - input_shape=None, - default_size=None, - min_size=139, - data_format="channels_first", - require_flatten=True, - ) - - # test include top - self.assertEqual( - utils.obtain_input_shape( - input_shape=(3, 200, 200), - default_size=None, - min_size=139, - data_format="channels_first", - require_flatten=True, - ), - (3, 200, 200), - ) - - self.assertEqual( - utils.obtain_input_shape( - input_shape=None, - default_size=None, - min_size=139, - data_format="channels_last", - require_flatten=False, - ), - (None, None, 3), - ) - - self.assertEqual( - utils.obtain_input_shape( - input_shape=None, - default_size=None, - min_size=139, - data_format="channels_first", - require_flatten=False, - ), - (3, None, None), - ) - - self.assertEqual( - utils.obtain_input_shape( - input_shape=None, - default_size=None, - min_size=139, - data_format="channels_last", - require_flatten=False, - ), - (None, None, 3), - ) - - self.assertEqual( - utils.obtain_input_shape( - input_shape=(150, 150, 3), - default_size=None, - min_size=139, - data_format="channels_last", - require_flatten=False, - ), - (150, 150, 3), - ) - - self.assertEqual( - utils.obtain_input_shape( - input_shape=(3, None, None), - default_size=None, - min_size=139, - data_format="channels_first", - require_flatten=False, - ), - (3, None, None), - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/applications/inception_resnet_v2.py b/keras/applications/inception_resnet_v2.py deleted file mode 100644 index 93713918989..00000000000 --- a/keras/applications/inception_resnet_v2.py +++ /dev/null @@ -1,438 +0,0 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Inception-ResNet V2 model for Keras. - -Reference: - - [Inception-v4, Inception-ResNet and the Impact of - Residual Connections on Learning](https://arxiv.org/abs/1602.07261) - (AAAI 2017) -""" - -import tensorflow.compat.v2 as tf - -import keras -from keras import backend -from keras import layers as keras_layers -from keras.applications import imagenet_utils -from keras.engine import training -from keras.layers import VersionAwareLayers -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -BASE_WEIGHT_URL = ( - "https://storage.googleapis.com/tensorflow/" - "keras-applications/inception_resnet_v2/" -) -layers = None - - -@keras_export( - "keras.applications.inception_resnet_v2.InceptionResNetV2", - "keras.applications.InceptionResNetV2", -) -def InceptionResNetV2( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - **kwargs, -): - """Instantiates the Inception-ResNet v2 architecture. - - Reference: - - [Inception-v4, Inception-ResNet and the Impact of - Residual Connections on Learning](https://arxiv.org/abs/1602.07261) - (AAAI 2017) - - This function returns a Keras image classification model, - optionally loaded with weights pre-trained on ImageNet. - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - Note: each Keras Application expects a specific kind of input preprocessing. - For InceptionResNetV2, call - `tf.keras.applications.inception_resnet_v2.preprocess_input` - on your inputs before passing them to the model. - `inception_resnet_v2.preprocess_input` - will scale input pixels between -1 and 1. - - Args: - include_top: whether to include the fully-connected - layer at the top of the network. - weights: one of `None` (random initialization), - 'imagenet' (pre-training on ImageNet), - or the path to the weights file to be loaded. - input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: optional shape tuple, only to be specified - if `include_top` is `False` (otherwise the input shape - has to be `(299, 299, 3)` (with `'channels_last'` data format) - or `(3, 299, 299)` (with `'channels_first'` data format). - It should have exactly 3 inputs channels, - and width and height should be no smaller than 75. - E.g. `(150, 150, 3)` would be one valid value. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model will be - the 4D tensor output of the last convolutional block. - - `'avg'` means that global average pooling - will be applied to the output of the - last convolutional block, and thus - the output of the model will be a 2D tensor. - - `'max'` means that global max pooling will be applied. - classes: optional number of classes to classify images - into, only to be specified if `include_top` is `True`, and - if no `weights` argument is specified. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - **kwargs: For backwards compatibility only. - - Returns: - A `keras.Model` instance. - """ - global layers - if "layers" in kwargs: - layers = kwargs.pop("layers") - else: - layers = VersionAwareLayers() - if kwargs: - raise ValueError(f"Unknown argument(s): {kwargs}") - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded." - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - 'If using `weights` as `"imagenet"` with `include_top`' - " as true, `classes` should be 1000" - ) - - # Determine proper input shape - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=299, - min_size=75, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - # Stem block: 35 x 35 x 192 - x = conv2d_bn(img_input, 32, 3, strides=2, padding="valid") - x = conv2d_bn(x, 32, 3, padding="valid") - x = conv2d_bn(x, 64, 3) - x = layers.MaxPooling2D(3, strides=2)(x) - x = conv2d_bn(x, 80, 1, padding="valid") - x = conv2d_bn(x, 192, 3, padding="valid") - x = layers.MaxPooling2D(3, strides=2)(x) - - # Mixed 5b (Inception-A block): 35 x 35 x 320 - branch_0 = conv2d_bn(x, 96, 1) - branch_1 = conv2d_bn(x, 48, 1) - branch_1 = conv2d_bn(branch_1, 64, 5) - branch_2 = conv2d_bn(x, 64, 1) - branch_2 = conv2d_bn(branch_2, 96, 3) - branch_2 = conv2d_bn(branch_2, 96, 3) - branch_pool = layers.AveragePooling2D(3, strides=1, padding="same")(x) - branch_pool = conv2d_bn(branch_pool, 64, 1) - branches = [branch_0, branch_1, branch_2, branch_pool] - channel_axis = 1 if backend.image_data_format() == "channels_first" else 3 - x = layers.Concatenate(axis=channel_axis, name="mixed_5b")(branches) - - # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320 - for block_idx in range(1, 11): - x = inception_resnet_block( - x, scale=0.17, block_type="block35", block_idx=block_idx - ) - - # Mixed 6a (Reduction-A block): 17 x 17 x 1088 - branch_0 = conv2d_bn(x, 384, 3, strides=2, padding="valid") - branch_1 = conv2d_bn(x, 256, 1) - branch_1 = conv2d_bn(branch_1, 256, 3) - branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding="valid") - branch_pool = layers.MaxPooling2D(3, strides=2, padding="valid")(x) - branches = [branch_0, branch_1, branch_pool] - x = layers.Concatenate(axis=channel_axis, name="mixed_6a")(branches) - - # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088 - for block_idx in range(1, 21): - x = inception_resnet_block( - x, scale=0.1, block_type="block17", block_idx=block_idx - ) - - # Mixed 7a (Reduction-B block): 8 x 8 x 2080 - branch_0 = conv2d_bn(x, 256, 1) - branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding="valid") - branch_1 = conv2d_bn(x, 256, 1) - branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding="valid") - branch_2 = conv2d_bn(x, 256, 1) - branch_2 = conv2d_bn(branch_2, 288, 3) - branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding="valid") - branch_pool = layers.MaxPooling2D(3, strides=2, padding="valid")(x) - branches = [branch_0, branch_1, branch_2, branch_pool] - x = layers.Concatenate(axis=channel_axis, name="mixed_7a")(branches) - - # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080 - for block_idx in range(1, 10): - x = inception_resnet_block( - x, scale=0.2, block_type="block8", block_idx=block_idx - ) - x = inception_resnet_block( - x, scale=1.0, activation=None, block_type="block8", block_idx=10 - ) - - # Final convolution block: 8 x 8 x 1536 - x = conv2d_bn(x, 1536, 1, name="conv_7b") - - if include_top: - # Classification block - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Dense( - classes, activation=classifier_activation, name="predictions" - )(x) - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D()(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D()(x) - - # Ensure that the model takes into account - # any potential predecessors of `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - - # Create model. - model = training.Model(inputs, x, name="inception_resnet_v2") - - # Load weights. - if weights == "imagenet": - if include_top: - fname = "inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5" - weights_path = data_utils.get_file( - fname, - BASE_WEIGHT_URL + fname, - cache_subdir="models", - file_hash="e693bd0210a403b3192acc6073ad2e96", - ) - else: - fname = ( - "inception_resnet_v2_weights_" - "tf_dim_ordering_tf_kernels_notop.h5" - ) - weights_path = data_utils.get_file( - fname, - BASE_WEIGHT_URL + fname, - cache_subdir="models", - file_hash="d19885ff4a710c122648d3b5c3b684e4", - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - - return model - - -def conv2d_bn( - x, - filters, - kernel_size, - strides=1, - padding="same", - activation="relu", - use_bias=False, - name=None, -): - """Utility function to apply conv + BN. - - Args: - x: input tensor. - filters: filters in `Conv2D`. - kernel_size: kernel size as in `Conv2D`. - strides: strides in `Conv2D`. - padding: padding mode in `Conv2D`. - activation: activation in `Conv2D`. - use_bias: whether to use a bias in `Conv2D`. - name: name of the ops; will become `name + '_ac'` for the activation - and `name + '_bn'` for the batch norm layer. - - Returns: - Output tensor after applying `Conv2D` and `BatchNormalization`. - """ - x = layers.Conv2D( - filters, - kernel_size, - strides=strides, - padding=padding, - use_bias=use_bias, - name=name, - )(x) - if not use_bias: - bn_axis = 1 if backend.image_data_format() == "channels_first" else 3 - bn_name = None if name is None else name + "_bn" - x = layers.BatchNormalization(axis=bn_axis, scale=False, name=bn_name)( - x - ) - if activation is not None: - ac_name = None if name is None else name + "_ac" - x = layers.Activation(activation, name=ac_name)(x) - return x - - -@keras.utils.register_keras_serializable() -class CustomScaleLayer(keras_layers.Layer): - def __init__(self, scale, **kwargs): - super().__init__(**kwargs) - self.scale = scale - - def get_config(self): - config = super().get_config() - config.update({"scale": self.scale}) - return config - - def call(self, inputs): - return inputs[0] + inputs[1] * self.scale - - -def inception_resnet_block(x, scale, block_type, block_idx, activation="relu"): - """Adds an Inception-ResNet block. - - This function builds 3 types of Inception-ResNet blocks mentioned - in the paper, controlled by the `block_type` argument (which is the - block name used in the official TF-slim implementation): - - Inception-ResNet-A: `block_type='block35'` - - Inception-ResNet-B: `block_type='block17'` - - Inception-ResNet-C: `block_type='block8'` - - Args: - x: input tensor. - scale: scaling factor to scale the residuals (i.e., the output of passing - `x` through an inception module) before adding them to the shortcut - branch. Let `r` be the output from the residual branch, the output of - this block will be `x + scale * r`. - block_type: `'block35'`, `'block17'` or `'block8'`, determines the network - structure in the residual branch. - block_idx: an `int` used for generating layer names. The Inception-ResNet - blocks are repeated many times in this network. We use `block_idx` to - identify each of the repetitions. For example, the first - Inception-ResNet-A block will have `block_type='block35', block_idx=0`, - and the layer names will have a common prefix `'block35_0'`. - activation: activation function to use at the end of the block (see - [activations](../activations.md)). When `activation=None`, no activation - is applied - (i.e., "linear" activation: `a(x) = x`). - - Returns: - Output tensor for the block. - - Raises: - ValueError: if `block_type` is not one of `'block35'`, - `'block17'` or `'block8'`. - """ - if block_type == "block35": - branch_0 = conv2d_bn(x, 32, 1) - branch_1 = conv2d_bn(x, 32, 1) - branch_1 = conv2d_bn(branch_1, 32, 3) - branch_2 = conv2d_bn(x, 32, 1) - branch_2 = conv2d_bn(branch_2, 48, 3) - branch_2 = conv2d_bn(branch_2, 64, 3) - branches = [branch_0, branch_1, branch_2] - elif block_type == "block17": - branch_0 = conv2d_bn(x, 192, 1) - branch_1 = conv2d_bn(x, 128, 1) - branch_1 = conv2d_bn(branch_1, 160, [1, 7]) - branch_1 = conv2d_bn(branch_1, 192, [7, 1]) - branches = [branch_0, branch_1] - elif block_type == "block8": - branch_0 = conv2d_bn(x, 192, 1) - branch_1 = conv2d_bn(x, 192, 1) - branch_1 = conv2d_bn(branch_1, 224, [1, 3]) - branch_1 = conv2d_bn(branch_1, 256, [3, 1]) - branches = [branch_0, branch_1] - else: - raise ValueError( - "Unknown Inception-ResNet block type. " - 'Expects "block35", "block17" or "block8", ' - "but got: " + str(block_type) - ) - - block_name = block_type + "_" + str(block_idx) - channel_axis = 1 if backend.image_data_format() == "channels_first" else 3 - mixed = layers.Concatenate(axis=channel_axis, name=block_name + "_mixed")( - branches - ) - up = conv2d_bn( - mixed, - backend.int_shape(x)[channel_axis], - 1, - activation=None, - use_bias=True, - name=block_name + "_conv", - ) - - x = CustomScaleLayer(scale)([x, up]) - if activation is not None: - x = layers.Activation(activation, name=block_name + "_ac")(x) - return x - - -@keras_export("keras.applications.inception_resnet_v2.preprocess_input") -def preprocess_input(x, data_format=None): - return imagenet_utils.preprocess_input( - x, data_format=data_format, mode="tf" - ) - - -@keras_export("keras.applications.inception_resnet_v2.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( - mode="", - ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF, - error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, -) -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ diff --git a/keras/applications/inception_v3.py b/keras/applications/inception_v3.py deleted file mode 100644 index d3ab844e16a..00000000000 --- a/keras/applications/inception_v3.py +++ /dev/null @@ -1,463 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Inception V3 model for Keras. - -Reference: - - [Rethinking the Inception Architecture for Computer Vision]( - http://arxiv.org/abs/1512.00567) (CVPR 2016) -""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.applications import imagenet_utils -from keras.engine import training -from keras.layers import VersionAwareLayers -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -WEIGHTS_PATH = ( - "https://storage.googleapis.com/tensorflow/keras-applications/" - "inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels.h5" -) -WEIGHTS_PATH_NO_TOP = ( - "https://storage.googleapis.com/tensorflow/keras-applications/" - "inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5" -) - -layers = VersionAwareLayers() - - -@keras_export( - "keras.applications.inception_v3.InceptionV3", - "keras.applications.InceptionV3", -) -def InceptionV3( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates the Inception v3 architecture. - - Reference: - - [Rethinking the Inception Architecture for Computer Vision]( - http://arxiv.org/abs/1512.00567) (CVPR 2016) - - This function returns a Keras image classification model, - optionally loaded with weights pre-trained on ImageNet. - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - Note: each Keras Application expects a specific kind of input preprocessing. - For `InceptionV3`, call - `tf.keras.applications.inception_v3.preprocess_input` on your inputs before - passing them to the model. `inception_v3.preprocess_input` will scale input - pixels between -1 and 1. - - Args: - include_top: Boolean, whether to include the fully-connected - layer at the top, as the last layer of the network. Defaults to `True`. - weights: One of `None` (random initialization), - `imagenet` (pre-training on ImageNet), - or the path to the weights file to be loaded. Defaults to `imagenet`. - input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) - to use as image input for the model. `input_tensor` is useful for - sharing inputs between multiple different networks. Defaults to `None`. - input_shape: Optional shape tuple, only to be specified - if `include_top` is False (otherwise the input shape - has to be `(299, 299, 3)` (with `channels_last` data format) - or `(3, 299, 299)` (with `channels_first` data format). - It should have exactly 3 inputs channels, - and width and height should be no smaller than 75. - E.g. `(150, 150, 3)` would be one valid value. - `input_shape` will be ignored if the `input_tensor` is provided. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` (default) means that the output of the model will be - the 4D tensor output of the last convolutional block. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional block, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will be applied. - classes: optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. Defaults to 1000. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - - Returns: - A `keras.Model` instance. - """ - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded; " - f"Received: weights={weights}" - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - 'If using `weights` as `"imagenet"` with `include_top` ' - "as true, `classes` should be 1000; " - f"Received classes={classes}" - ) - - # Determine proper input shape - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=299, - min_size=75, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - if backend.image_data_format() == "channels_first": - channel_axis = 1 - else: - channel_axis = 3 - - x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding="valid") - x = conv2d_bn(x, 32, 3, 3, padding="valid") - x = conv2d_bn(x, 64, 3, 3) - x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x) - - x = conv2d_bn(x, 80, 1, 1, padding="valid") - x = conv2d_bn(x, 192, 3, 3, padding="valid") - x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x) - - # mixed 0: 35 x 35 x 256 - branch1x1 = conv2d_bn(x, 64, 1, 1) - - branch5x5 = conv2d_bn(x, 48, 1, 1) - branch5x5 = conv2d_bn(branch5x5, 64, 5, 5) - - branch3x3dbl = conv2d_bn(x, 64, 1, 1) - branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) - branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) - - branch_pool = layers.AveragePooling2D( - (3, 3), strides=(1, 1), padding="same" - )(x) - branch_pool = conv2d_bn(branch_pool, 32, 1, 1) - x = layers.concatenate( - [branch1x1, branch5x5, branch3x3dbl, branch_pool], - axis=channel_axis, - name="mixed0", - ) - - # mixed 1: 35 x 35 x 288 - branch1x1 = conv2d_bn(x, 64, 1, 1) - - branch5x5 = conv2d_bn(x, 48, 1, 1) - branch5x5 = conv2d_bn(branch5x5, 64, 5, 5) - - branch3x3dbl = conv2d_bn(x, 64, 1, 1) - branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) - branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) - - branch_pool = layers.AveragePooling2D( - (3, 3), strides=(1, 1), padding="same" - )(x) - branch_pool = conv2d_bn(branch_pool, 64, 1, 1) - x = layers.concatenate( - [branch1x1, branch5x5, branch3x3dbl, branch_pool], - axis=channel_axis, - name="mixed1", - ) - - # mixed 2: 35 x 35 x 288 - branch1x1 = conv2d_bn(x, 64, 1, 1) - - branch5x5 = conv2d_bn(x, 48, 1, 1) - branch5x5 = conv2d_bn(branch5x5, 64, 5, 5) - - branch3x3dbl = conv2d_bn(x, 64, 1, 1) - branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) - branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) - - branch_pool = layers.AveragePooling2D( - (3, 3), strides=(1, 1), padding="same" - )(x) - branch_pool = conv2d_bn(branch_pool, 64, 1, 1) - x = layers.concatenate( - [branch1x1, branch5x5, branch3x3dbl, branch_pool], - axis=channel_axis, - name="mixed2", - ) - - # mixed 3: 17 x 17 x 768 - branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding="valid") - - branch3x3dbl = conv2d_bn(x, 64, 1, 1) - branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) - branch3x3dbl = conv2d_bn( - branch3x3dbl, 96, 3, 3, strides=(2, 2), padding="valid" - ) - - branch_pool = layers.MaxPooling2D((3, 3), strides=(2, 2))(x) - x = layers.concatenate( - [branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name="mixed3" - ) - - # mixed 4: 17 x 17 x 768 - branch1x1 = conv2d_bn(x, 192, 1, 1) - - branch7x7 = conv2d_bn(x, 128, 1, 1) - branch7x7 = conv2d_bn(branch7x7, 128, 1, 7) - branch7x7 = conv2d_bn(branch7x7, 192, 7, 1) - - branch7x7dbl = conv2d_bn(x, 128, 1, 1) - branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1) - branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7) - branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1) - branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) - - branch_pool = layers.AveragePooling2D( - (3, 3), strides=(1, 1), padding="same" - )(x) - branch_pool = conv2d_bn(branch_pool, 192, 1, 1) - x = layers.concatenate( - [branch1x1, branch7x7, branch7x7dbl, branch_pool], - axis=channel_axis, - name="mixed4", - ) - - # mixed 5, 6: 17 x 17 x 768 - for i in range(2): - branch1x1 = conv2d_bn(x, 192, 1, 1) - - branch7x7 = conv2d_bn(x, 160, 1, 1) - branch7x7 = conv2d_bn(branch7x7, 160, 1, 7) - branch7x7 = conv2d_bn(branch7x7, 192, 7, 1) - - branch7x7dbl = conv2d_bn(x, 160, 1, 1) - branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1) - branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7) - branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1) - branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) - - branch_pool = layers.AveragePooling2D( - (3, 3), strides=(1, 1), padding="same" - )(x) - branch_pool = conv2d_bn(branch_pool, 192, 1, 1) - x = layers.concatenate( - [branch1x1, branch7x7, branch7x7dbl, branch_pool], - axis=channel_axis, - name="mixed" + str(5 + i), - ) - - # mixed 7: 17 x 17 x 768 - branch1x1 = conv2d_bn(x, 192, 1, 1) - - branch7x7 = conv2d_bn(x, 192, 1, 1) - branch7x7 = conv2d_bn(branch7x7, 192, 1, 7) - branch7x7 = conv2d_bn(branch7x7, 192, 7, 1) - - branch7x7dbl = conv2d_bn(x, 192, 1, 1) - branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1) - branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) - branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1) - branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) - - branch_pool = layers.AveragePooling2D( - (3, 3), strides=(1, 1), padding="same" - )(x) - branch_pool = conv2d_bn(branch_pool, 192, 1, 1) - x = layers.concatenate( - [branch1x1, branch7x7, branch7x7dbl, branch_pool], - axis=channel_axis, - name="mixed7", - ) - - # mixed 8: 8 x 8 x 1280 - branch3x3 = conv2d_bn(x, 192, 1, 1) - branch3x3 = conv2d_bn(branch3x3, 320, 3, 3, strides=(2, 2), padding="valid") - - branch7x7x3 = conv2d_bn(x, 192, 1, 1) - branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7) - branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1) - branch7x7x3 = conv2d_bn( - branch7x7x3, 192, 3, 3, strides=(2, 2), padding="valid" - ) - - branch_pool = layers.MaxPooling2D((3, 3), strides=(2, 2))(x) - x = layers.concatenate( - [branch3x3, branch7x7x3, branch_pool], axis=channel_axis, name="mixed8" - ) - - # mixed 9: 8 x 8 x 2048 - for i in range(2): - branch1x1 = conv2d_bn(x, 320, 1, 1) - - branch3x3 = conv2d_bn(x, 384, 1, 1) - branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3) - branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1) - branch3x3 = layers.concatenate( - [branch3x3_1, branch3x3_2], - axis=channel_axis, - name="mixed9_" + str(i), - ) - - branch3x3dbl = conv2d_bn(x, 448, 1, 1) - branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3) - branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3) - branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1) - branch3x3dbl = layers.concatenate( - [branch3x3dbl_1, branch3x3dbl_2], axis=channel_axis - ) - - branch_pool = layers.AveragePooling2D( - (3, 3), strides=(1, 1), padding="same" - )(x) - branch_pool = conv2d_bn(branch_pool, 192, 1, 1) - x = layers.concatenate( - [branch1x1, branch3x3, branch3x3dbl, branch_pool], - axis=channel_axis, - name="mixed" + str(9 + i), - ) - if include_top: - # Classification block - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Dense( - classes, activation=classifier_activation, name="predictions" - )(x) - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D()(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D()(x) - - # Ensure that the model takes into account - # any potential predecessors of `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - # Create model. - model = training.Model(inputs, x, name="inception_v3") - - # Load weights. - if weights == "imagenet": - if include_top: - weights_path = data_utils.get_file( - "inception_v3_weights_tf_dim_ordering_tf_kernels.h5", - WEIGHTS_PATH, - cache_subdir="models", - file_hash="9a0d58056eeedaa3f26cb7ebd46da564", - ) - else: - weights_path = data_utils.get_file( - "inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5", - WEIGHTS_PATH_NO_TOP, - cache_subdir="models", - file_hash="bcbd6486424b2319ff4ef7d526e38f63", - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - - return model - - -def conv2d_bn( - x, filters, num_row, num_col, padding="same", strides=(1, 1), name=None -): - """Utility function to apply conv + BN. - - Args: - x: input tensor. - filters: filters in `Conv2D`. - num_row: height of the convolution kernel. - num_col: width of the convolution kernel. - padding: padding mode in `Conv2D`. - strides: strides in `Conv2D`. - name: name of the ops; will become `name + '_conv'` - for the convolution and `name + '_bn'` for the - batch norm layer. - - Returns: - Output tensor after applying `Conv2D` and `BatchNormalization`. - """ - if name is not None: - bn_name = name + "_bn" - conv_name = name + "_conv" - else: - bn_name = None - conv_name = None - if backend.image_data_format() == "channels_first": - bn_axis = 1 - else: - bn_axis = 3 - x = layers.Conv2D( - filters, - (num_row, num_col), - strides=strides, - padding=padding, - use_bias=False, - name=conv_name, - )(x) - x = layers.BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x) - x = layers.Activation("relu", name=name)(x) - return x - - -@keras_export("keras.applications.inception_v3.preprocess_input") -def preprocess_input(x, data_format=None): - return imagenet_utils.preprocess_input( - x, data_format=data_format, mode="tf" - ) - - -@keras_export("keras.applications.inception_v3.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( - mode="", - ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF, - error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, -) -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ diff --git a/keras/applications/mobilenet.py b/keras/applications/mobilenet.py deleted file mode 100644 index e3a0cdd09e1..00000000000 --- a/keras/applications/mobilenet.py +++ /dev/null @@ -1,489 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""MobileNet v1 models for Keras. - -MobileNet is a general architecture and can be used for multiple use cases. -Depending on the use case, it can use different input layer size and -different width factors. This allows different width models to reduce -the number of multiply-adds and thereby -reduce inference cost on mobile devices. - -MobileNets support any input size greater than 32 x 32, with larger image sizes -offering better performance. -The number of parameters and number of multiply-adds -can be modified by using the `alpha` parameter, -which increases/decreases the number of filters in each layer. -By altering the image size and `alpha` parameter, -all 16 models from the paper can be built, with ImageNet weights provided. - -The paper demonstrates the performance of MobileNets using `alpha` values of -1.0 (also called 100 % MobileNet), 0.75, 0.5 and 0.25. -For each of these `alpha` values, weights for 4 different input image sizes -are provided (224, 192, 160, 128). - -The following table describes the size and accuracy of the 100% MobileNet -on size 224 x 224: ----------------------------------------------------------------------------- -Width Multiplier (alpha) | ImageNet Acc | Multiply-Adds (M) | Params (M) --------------------------|---------------|-------------------|-------------- -| 1.0 MobileNet-224 | 70.6 % | 529 | 4.2 | -| 0.75 MobileNet-224 | 68.4 % | 325 | 2.6 | -| 0.50 MobileNet-224 | 63.7 % | 149 | 1.3 | -| 0.25 MobileNet-224 | 50.6 % | 41 | 0.5 | - -The following table describes the performance of -the 100 % MobileNet on various input sizes: ------------------------------------------------------------------------- -Resolution | ImageNet Acc | Multiply-Adds (M) | Params (M) -----------------------|---------------|-------------------|---------------- -| 1.0 MobileNet-224 | 70.6 % | 569 | 4.2 | -| 1.0 MobileNet-192 | 69.1 % | 418 | 4.2 | -| 1.0 MobileNet-160 | 67.2 % | 290 | 4.2 | -| 1.0 MobileNet-128 | 64.4 % | 186 | 4.2 | - -Reference: - - [MobileNets: Efficient Convolutional Neural Networks - for Mobile Vision Applications]( - https://arxiv.org/abs/1704.04861) -""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.applications import imagenet_utils -from keras.engine import training -from keras.layers import VersionAwareLayers -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - -BASE_WEIGHT_PATH = ( - "https://storage.googleapis.com/tensorflow/keras-applications/mobilenet/" -) -layers = None - - -@keras_export( - "keras.applications.mobilenet.MobileNet", "keras.applications.MobileNet" -) -def MobileNet( - input_shape=None, - alpha=1.0, - depth_multiplier=1, - dropout=1e-3, - include_top=True, - weights="imagenet", - input_tensor=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - **kwargs, -): - """Instantiates the MobileNet architecture. - - Reference: - - [MobileNets: Efficient Convolutional Neural Networks - for Mobile Vision Applications]( - https://arxiv.org/abs/1704.04861) - - This function returns a Keras image classification model, - optionally loaded with weights pre-trained on ImageNet. - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - Note: each Keras Application expects a specific kind of input preprocessing. - For MobileNet, call `tf.keras.applications.mobilenet.preprocess_input` - on your inputs before passing them to the model. - `mobilenet.preprocess_input` will scale input pixels between -1 and 1. - - Args: - input_shape: Optional shape tuple, only to be specified if `include_top` - is False (otherwise the input shape has to be `(224, 224, 3)` (with - `channels_last` data format) or (3, 224, 224) (with `channels_first` - data format). It should have exactly 3 inputs channels, and width and - height should be no smaller than 32. E.g. `(200, 200, 3)` would be one - valid value. Defaults to `None`. - `input_shape` will be ignored if the `input_tensor` is provided. - alpha: Controls the width of the network. This is known as the width - multiplier in the MobileNet paper. - If `alpha` < 1.0, proportionally - decreases the number of filters in each layer. - If `alpha` > 1.0, - proportionally increases the number of filters in each layer. - If - `alpha` = 1, default number of filters from the paper are used at each - layer. Defaults to `1.0`. - depth_multiplier: Depth multiplier for depthwise convolution. This is - called the resolution multiplier in the MobileNet paper. - Defaults to `1.0`. - dropout: Dropout rate. Defaults to `0.001`. - include_top: Boolean, whether to include the fully-connected layer at the - top of the network. Defaults to `True`. - weights: One of `None` (random initialization), 'imagenet' (pre-training - on ImageNet), or the path to the weights file to be loaded. Defaults to - `imagenet`. - input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to - use as image input for the model. `input_tensor` is useful for sharing - inputs between multiple different networks. Defaults to `None`. - pooling: Optional pooling mode for feature extraction when `include_top` - is `False`. - - `None` (default) means that the output of the model will be - the 4D tensor output of the last convolutional block. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional block, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will be applied. - classes: Optional number of classes to classify images into, only to be - specified if `include_top` is True, and if no `weights` argument is - specified. Defaults to `1000`. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - **kwargs: For backwards compatibility only. - Returns: - A `keras.Model` instance. - """ - global layers - if "layers" in kwargs: - layers = kwargs.pop("layers") - else: - layers = VersionAwareLayers() - if kwargs: - raise ValueError(f"Unknown argument(s): {(kwargs,)}") - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded. " - f"Received weights={weights}" - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - 'If using `weights` as `"imagenet"` with `include_top` ' - "as true, `classes` should be 1000. " - f"Received classes={classes}" - ) - - # Determine proper input shape and default size. - if input_shape is None: - default_size = 224 - else: - if backend.image_data_format() == "channels_first": - rows = input_shape[1] - cols = input_shape[2] - else: - rows = input_shape[0] - cols = input_shape[1] - - if rows == cols and rows in [128, 160, 192, 224]: - default_size = rows - else: - default_size = 224 - - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=default_size, - min_size=32, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if backend.image_data_format() == "channels_last": - row_axis, col_axis = (0, 1) - else: - row_axis, col_axis = (1, 2) - rows = input_shape[row_axis] - cols = input_shape[col_axis] - - if weights == "imagenet": - if depth_multiplier != 1: - raise ValueError( - "If imagenet weights are being loaded, " - "depth multiplier must be 1. " - f"Received depth_multiplier={depth_multiplier}" - ) - - if alpha not in [0.25, 0.50, 0.75, 1.0]: - raise ValueError( - "If imagenet weights are being loaded, " - "alpha can be one of" - "`0.25`, `0.50`, `0.75` or `1.0` only. " - f"Received alpha={alpha}" - ) - - if rows != cols or rows not in [128, 160, 192, 224]: - rows = 224 - logging.warning( - "`input_shape` is undefined or non-square, " - "or `rows` is not in [128, 160, 192, 224]. " - "Weights for input shape (224, 224) will be " - "loaded as the default." - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - x = _conv_block(img_input, 32, alpha, strides=(2, 2)) - x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1) - - x = _depthwise_conv_block( - x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2 - ) - x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3) - - x = _depthwise_conv_block( - x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4 - ) - x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5) - - x = _depthwise_conv_block( - x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6 - ) - x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7) - x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8) - x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9) - x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10) - x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11) - - x = _depthwise_conv_block( - x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12 - ) - x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13) - - if include_top: - x = layers.GlobalAveragePooling2D(keepdims=True)(x) - x = layers.Dropout(dropout, name="dropout")(x) - x = layers.Conv2D(classes, (1, 1), padding="same", name="conv_preds")(x) - x = layers.Reshape((classes,), name="reshape_2")(x) - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Activation( - activation=classifier_activation, name="predictions" - )(x) - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D()(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D()(x) - - # Ensure that the model takes into account - # any potential predecessors of `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - - # Create model. - model = training.Model(inputs, x, name=f"mobilenet_{alpha:0.2f}_{rows}") - - # Load weights. - if weights == "imagenet": - if alpha == 1.0: - alpha_text = "1_0" - elif alpha == 0.75: - alpha_text = "7_5" - elif alpha == 0.50: - alpha_text = "5_0" - else: - alpha_text = "2_5" - - if include_top: - model_name = "mobilenet_%s_%d_tf.h5" % (alpha_text, rows) - weight_path = BASE_WEIGHT_PATH + model_name - weights_path = data_utils.get_file( - model_name, weight_path, cache_subdir="models" - ) - else: - model_name = "mobilenet_%s_%d_tf_no_top.h5" % (alpha_text, rows) - weight_path = BASE_WEIGHT_PATH + model_name - weights_path = data_utils.get_file( - model_name, weight_path, cache_subdir="models" - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - - return model - - -def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)): - """Adds an initial convolution layer (with batch normalization and relu6). - - Args: - inputs: Input tensor of shape `(rows, cols, 3)` (with `channels_last` - data format) or (3, rows, cols) (with `channels_first` data format). - It should have exactly 3 inputs channels, and width and height should - be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. - filters: Integer, the dimensionality of the output space (i.e. the - number of output filters in the convolution). - alpha: controls the width of the network. - If `alpha` < 1.0, - proportionally decreases the number of filters in each layer. - If - `alpha` > 1.0, proportionally increases the number of filters in each - layer. - If `alpha` = 1, default number of filters from the paper are - used at each layer. - kernel: An integer or tuple/list of 2 integers, specifying the width and - height of the 2D convolution window. Can be a single integer to - specify the same value for all spatial dimensions. - strides: An integer or tuple/list of 2 integers, specifying the strides - of the convolution along the width and height. Can be a single integer - to specify the same value for all spatial dimensions. Specifying any - stride value != 1 is incompatible with specifying any `dilation_rate` - value != 1. # Input shape - 4D tensor with shape: `(samples, channels, rows, cols)` if - data_format='channels_first' - or 4D tensor with shape: `(samples, rows, cols, channels)` if - data_format='channels_last'. # Output shape - 4D tensor with shape: `(samples, filters, new_rows, new_cols)` if - data_format='channels_first' - or 4D tensor with shape: `(samples, new_rows, new_cols, filters)` if - data_format='channels_last'. `rows` and `cols` values might have - changed due to stride. - - Returns: - Output tensor of block. - """ - channel_axis = 1 if backend.image_data_format() == "channels_first" else -1 - filters = int(filters * alpha) - x = layers.Conv2D( - filters, - kernel, - padding="same", - use_bias=False, - strides=strides, - name="conv1", - )(inputs) - x = layers.BatchNormalization(axis=channel_axis, name="conv1_bn")(x) - return layers.ReLU(6.0, name="conv1_relu")(x) - - -def _depthwise_conv_block( - inputs, - pointwise_conv_filters, - alpha, - depth_multiplier=1, - strides=(1, 1), - block_id=1, -): - """Adds a depthwise convolution block. - - A depthwise convolution block consists of a depthwise conv, - batch normalization, relu6, pointwise convolution, - batch normalization and relu6 activation. - - Args: - inputs: Input tensor of shape `(rows, cols, channels)` (with - `channels_last` data format) or (channels, rows, cols) (with - `channels_first` data format). - pointwise_conv_filters: Integer, the dimensionality of the output space - (i.e. the number of output filters in the pointwise convolution). - alpha: controls the width of the network. - If `alpha` < 1.0, - proportionally decreases the number of filters in each layer. - If - `alpha` > 1.0, proportionally increases the number of filters in each - layer. - If `alpha` = 1, default number of filters from the paper are - used at each layer. - depth_multiplier: The number of depthwise convolution output channels - for each input channel. The total number of depthwise convolution - output channels will be equal to `filters_in * depth_multiplier`. - strides: An integer or tuple/list of 2 integers, specifying the strides - of the convolution along the width and height. Can be a single integer - to specify the same value for all spatial dimensions. Specifying any - stride value != 1 is incompatible with specifying any `dilation_rate` - value != 1. - block_id: Integer, a unique identification designating the block number. - # Input shape - 4D tensor with shape: `(batch, channels, rows, cols)` if - data_format='channels_first' - or 4D tensor with shape: `(batch, rows, cols, channels)` if - data_format='channels_last'. # Output shape - 4D tensor with shape: `(batch, filters, new_rows, new_cols)` if - data_format='channels_first' - or 4D tensor with shape: `(batch, new_rows, new_cols, filters)` if - data_format='channels_last'. `rows` and `cols` values might have - changed due to stride. - - Returns: - Output tensor of block. - """ - channel_axis = 1 if backend.image_data_format() == "channels_first" else -1 - pointwise_conv_filters = int(pointwise_conv_filters * alpha) - - if strides == (1, 1): - x = inputs - else: - x = layers.ZeroPadding2D( - ((0, 1), (0, 1)), name="conv_pad_%d" % block_id - )(inputs) - x = layers.DepthwiseConv2D( - (3, 3), - padding="same" if strides == (1, 1) else "valid", - depth_multiplier=depth_multiplier, - strides=strides, - use_bias=False, - name="conv_dw_%d" % block_id, - )(x) - x = layers.BatchNormalization( - axis=channel_axis, name="conv_dw_%d_bn" % block_id - )(x) - x = layers.ReLU(6.0, name="conv_dw_%d_relu" % block_id)(x) - - x = layers.Conv2D( - pointwise_conv_filters, - (1, 1), - padding="same", - use_bias=False, - strides=(1, 1), - name="conv_pw_%d" % block_id, - )(x) - x = layers.BatchNormalization( - axis=channel_axis, name="conv_pw_%d_bn" % block_id - )(x) - return layers.ReLU(6.0, name="conv_pw_%d_relu" % block_id)(x) - - -@keras_export("keras.applications.mobilenet.preprocess_input") -def preprocess_input(x, data_format=None): - return imagenet_utils.preprocess_input( - x, data_format=data_format, mode="tf" - ) - - -@keras_export("keras.applications.mobilenet.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( - mode="", - ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF, - error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, -) -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ diff --git a/keras/applications/mobilenet_v2.py b/keras/applications/mobilenet_v2.py deleted file mode 100644 index cc09e0e1713..00000000000 --- a/keras/applications/mobilenet_v2.py +++ /dev/null @@ -1,590 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""MobileNet v2 models for Keras. - -MobileNetV2 is a general architecture and can be used for multiple use cases. -Depending on the use case, it can use different input layer size and -different width factors. This allows different width models to reduce -the number of multiply-adds and thereby -reduce inference cost on mobile devices. - -MobileNetV2 is very similar to the original MobileNet, -except that it uses inverted residual blocks with -bottlenecking features. It has a drastically lower -parameter count than the original MobileNet. -MobileNets support any input size greater -than 32 x 32, with larger image sizes -offering better performance. - -The number of parameters and number of multiply-adds -can be modified by using the `alpha` parameter, -which increases/decreases the number of filters in each layer. -By altering the image size and `alpha` parameter, -all 22 models from the paper can be built, with ImageNet weights provided. - -The paper demonstrates the performance of MobileNets using `alpha` values of -1.0 (also called 100 % MobileNet), 0.35, 0.5, 0.75, 1.0, 1.3, and 1.4 -For each of these `alpha` values, weights for 5 different input image sizes -are provided (224, 192, 160, 128, and 96). - -The following table describes the performance of -MobileNet on various input sizes: ------------------------------------------------------------------------- -MACs stands for Multiply Adds -Classification Checkpoint|MACs (M)|Parameters (M)|Top 1 Accuracy|Top 5 Accuracy ---------------------------|------------|---------------|---------|------------ -| [mobilenet_v2_1.4_224] | 582 | 6.06 | 75.0 | 92.5 | -| [mobilenet_v2_1.3_224] | 509 | 5.34 | 74.4 | 92.1 | -| [mobilenet_v2_1.0_224] | 300 | 3.47 | 71.8 | 91.0 | -| [mobilenet_v2_1.0_192] | 221 | 3.47 | 70.7 | 90.1 | -| [mobilenet_v2_1.0_160] | 154 | 3.47 | 68.8 | 89.0 | -| [mobilenet_v2_1.0_128] | 99 | 3.47 | 65.3 | 86.9 | -| [mobilenet_v2_1.0_96] | 56 | 3.47 | 60.3 | 83.2 | -| [mobilenet_v2_0.75_224] | 209 | 2.61 | 69.8 | 89.6 | -| [mobilenet_v2_0.75_192] | 153 | 2.61 | 68.7 | 88.9 | -| [mobilenet_v2_0.75_160] | 107 | 2.61 | 66.4 | 87.3 | -| [mobilenet_v2_0.75_128] | 69 | 2.61 | 63.2 | 85.3 | -| [mobilenet_v2_0.75_96] | 39 | 2.61 | 58.8 | 81.6 | -| [mobilenet_v2_0.5_224] | 97 | 1.95 | 65.4 | 86.4 | -| [mobilenet_v2_0.5_192] | 71 | 1.95 | 63.9 | 85.4 | -| [mobilenet_v2_0.5_160] | 50 | 1.95 | 61.0 | 83.2 | -| [mobilenet_v2_0.5_128] | 32 | 1.95 | 57.7 | 80.8 | -| [mobilenet_v2_0.5_96] | 18 | 1.95 | 51.2 | 75.8 | -| [mobilenet_v2_0.35_224] | 59 | 1.66 | 60.3 | 82.9 | -| [mobilenet_v2_0.35_192] | 43 | 1.66 | 58.2 | 81.2 | -| [mobilenet_v2_0.35_160] | 30 | 1.66 | 55.7 | 79.1 | -| [mobilenet_v2_0.35_128] | 20 | 1.66 | 50.8 | 75.0 | -| [mobilenet_v2_0.35_96] | 11 | 1.66 | 45.5 | 70.4 | - - Reference: - - [MobileNetV2: Inverted Residuals and Linear Bottlenecks]( - https://arxiv.org/abs/1801.04381) (CVPR 2018) -""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.applications import imagenet_utils -from keras.engine import training -from keras.layers import VersionAwareLayers -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - -BASE_WEIGHT_PATH = ( - "https://storage.googleapis.com/tensorflow/keras-applications/mobilenet_v2/" -) -layers = None - - -@keras_export( - "keras.applications.mobilenet_v2.MobileNetV2", - "keras.applications.MobileNetV2", -) -def MobileNetV2( - input_shape=None, - alpha=1.0, - include_top=True, - weights="imagenet", - input_tensor=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - **kwargs, -): - """Instantiates the MobileNetV2 architecture. - - MobileNetV2 is very similar to the original MobileNet, - except that it uses inverted residual blocks with - bottlenecking features. It has a drastically lower - parameter count than the original MobileNet. - MobileNets support any input size greater - than 32 x 32, with larger image sizes - offering better performance. - - Reference: - - [MobileNetV2: Inverted Residuals and Linear Bottlenecks]( - https://arxiv.org/abs/1801.04381) (CVPR 2018) - - This function returns a Keras image classification model, - optionally loaded with weights pre-trained on ImageNet. - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - Note: each Keras Application expects a specific kind of input preprocessing. - For MobileNetV2, call `tf.keras.applications.mobilenet_v2.preprocess_input` - on your inputs before passing them to the model. - `mobilenet_v2.preprocess_input` will scale input pixels between -1 and 1. - - Args: - input_shape: Optional shape tuple, to be specified if you would - like to use a model with an input image resolution that is not - (224, 224, 3). - It should have exactly 3 inputs channels (224, 224, 3). - You can also omit this option if you would like - to infer input_shape from an input_tensor. - If you choose to include both input_tensor and input_shape then - input_shape will be used if they match, if the shapes - do not match then we will throw an error. - E.g. `(160, 160, 3)` would be one valid value. - alpha: Float, larger than zero, controls the width of the network. This is - known as the width multiplier in the MobileNetV2 paper, but the name is - kept for consistency with `applications.MobileNetV1` model in Keras. - - If `alpha` < 1.0, proportionally decreases the number - of filters in each layer. - - If `alpha` > 1.0, proportionally increases the number - of filters in each layer. - - If `alpha` = 1.0, default number of filters from the paper - are used at each layer. - include_top: Boolean, whether to include the fully-connected layer at the - top of the network. Defaults to `True`. - weights: String, one of `None` (random initialization), 'imagenet' - (pre-training on ImageNet), or the path to the weights file to be - loaded. - input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) - to use as image input for the model. - pooling: String, optional pooling mode for feature extraction when - `include_top` is `False`. - - `None` means that the output of the model - will be the 4D tensor output of the - last convolutional block. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional block, and thus - the output of the model will be a - 2D tensor. - - `max` means that global max pooling will - be applied. - classes: Optional integer number of classes to classify images into, only - to be specified if `include_top` is True, and if no `weights` argument - is specified. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - **kwargs: For backwards compatibility only. - - Returns: - A `keras.Model` instance. - """ - global layers - if "layers" in kwargs: - layers = kwargs.pop("layers") - else: - layers = VersionAwareLayers() - if kwargs: - raise ValueError(f"Unknown argument(s): {kwargs}") - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded. " - f"Received `weights={weights}`" - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - 'If using `weights` as `"imagenet"` with `include_top` ' - f"as true, `classes` should be 1000. Received `classes={classes}`" - ) - - # Determine proper input shape and default size. - # If both input_shape and input_tensor are used, they should match - if input_shape is not None and input_tensor is not None: - try: - is_input_t_tensor = backend.is_keras_tensor(input_tensor) - except ValueError: - try: - is_input_t_tensor = backend.is_keras_tensor( - layer_utils.get_source_inputs(input_tensor) - ) - except ValueError: - raise ValueError( - f"input_tensor: {input_tensor}" - "is not type input_tensor. " - f"Received `type(input_tensor)={type(input_tensor)}`" - ) - if is_input_t_tensor: - if backend.image_data_format() == "channels_first": - if backend.int_shape(input_tensor)[1] != input_shape[1]: - raise ValueError( - "input_shape[1] must equal shape(input_tensor)[1] " - "when `image_data_format` is `channels_first`; " - "Received `input_tensor.shape=" - f"{input_tensor.shape}`" - f", `input_shape={input_shape}`" - ) - else: - if backend.int_shape(input_tensor)[2] != input_shape[1]: - raise ValueError( - "input_tensor.shape[2] must equal input_shape[1]; " - "Received `input_tensor.shape=" - f"{input_tensor.shape}`, " - f"`input_shape={input_shape}`" - ) - else: - raise ValueError( - "input_tensor is not a Keras tensor; " - f"Received `input_tensor={input_tensor}`" - ) - - # If input_shape is None, infer shape from input_tensor. - if input_shape is None and input_tensor is not None: - - try: - backend.is_keras_tensor(input_tensor) - except ValueError: - raise ValueError( - "input_tensor must be a valid Keras tensor type; " - f"Received {input_tensor} of type {type(input_tensor)}" - ) - - if input_shape is None and not backend.is_keras_tensor(input_tensor): - default_size = 224 - elif input_shape is None and backend.is_keras_tensor(input_tensor): - if backend.image_data_format() == "channels_first": - rows = backend.int_shape(input_tensor)[2] - cols = backend.int_shape(input_tensor)[3] - else: - rows = backend.int_shape(input_tensor)[1] - cols = backend.int_shape(input_tensor)[2] - - if rows == cols and rows in [96, 128, 160, 192, 224]: - default_size = rows - else: - default_size = 224 - - # If input_shape is None and no input_tensor - elif input_shape is None: - default_size = 224 - - # If input_shape is not None, assume default size. - else: - if backend.image_data_format() == "channels_first": - rows = input_shape[1] - cols = input_shape[2] - else: - rows = input_shape[0] - cols = input_shape[1] - - if rows == cols and rows in [96, 128, 160, 192, 224]: - default_size = rows - else: - default_size = 224 - - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=default_size, - min_size=32, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if backend.image_data_format() == "channels_last": - row_axis, col_axis = (0, 1) - else: - row_axis, col_axis = (1, 2) - rows = input_shape[row_axis] - cols = input_shape[col_axis] - - if weights == "imagenet": - if alpha not in [0.35, 0.50, 0.75, 1.0, 1.3, 1.4]: - raise ValueError( - "If imagenet weights are being loaded, " - "alpha must be one of `0.35`, `0.50`, `0.75`, " - "`1.0`, `1.3` or `1.4` only;" - f" Received `alpha={alpha}`" - ) - - if rows != cols or rows not in [96, 128, 160, 192, 224]: - rows = 224 - logging.warning( - "`input_shape` is undefined or non-square, " - "or `rows` is not in [96, 128, 160, 192, 224]. " - "Weights for input shape (224, 224) will be " - "loaded as the default." - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - channel_axis = 1 if backend.image_data_format() == "channels_first" else -1 - - first_block_filters = _make_divisible(32 * alpha, 8) - x = layers.Conv2D( - first_block_filters, - kernel_size=3, - strides=(2, 2), - padding="same", - use_bias=False, - name="Conv1", - )(img_input) - x = layers.BatchNormalization( - axis=channel_axis, epsilon=1e-3, momentum=0.999, name="bn_Conv1" - )(x) - x = layers.ReLU(6.0, name="Conv1_relu")(x) - - x = _inverted_res_block( - x, filters=16, alpha=alpha, stride=1, expansion=1, block_id=0 - ) - - x = _inverted_res_block( - x, filters=24, alpha=alpha, stride=2, expansion=6, block_id=1 - ) - x = _inverted_res_block( - x, filters=24, alpha=alpha, stride=1, expansion=6, block_id=2 - ) - - x = _inverted_res_block( - x, filters=32, alpha=alpha, stride=2, expansion=6, block_id=3 - ) - x = _inverted_res_block( - x, filters=32, alpha=alpha, stride=1, expansion=6, block_id=4 - ) - x = _inverted_res_block( - x, filters=32, alpha=alpha, stride=1, expansion=6, block_id=5 - ) - - x = _inverted_res_block( - x, filters=64, alpha=alpha, stride=2, expansion=6, block_id=6 - ) - x = _inverted_res_block( - x, filters=64, alpha=alpha, stride=1, expansion=6, block_id=7 - ) - x = _inverted_res_block( - x, filters=64, alpha=alpha, stride=1, expansion=6, block_id=8 - ) - x = _inverted_res_block( - x, filters=64, alpha=alpha, stride=1, expansion=6, block_id=9 - ) - - x = _inverted_res_block( - x, filters=96, alpha=alpha, stride=1, expansion=6, block_id=10 - ) - x = _inverted_res_block( - x, filters=96, alpha=alpha, stride=1, expansion=6, block_id=11 - ) - x = _inverted_res_block( - x, filters=96, alpha=alpha, stride=1, expansion=6, block_id=12 - ) - - x = _inverted_res_block( - x, filters=160, alpha=alpha, stride=2, expansion=6, block_id=13 - ) - x = _inverted_res_block( - x, filters=160, alpha=alpha, stride=1, expansion=6, block_id=14 - ) - x = _inverted_res_block( - x, filters=160, alpha=alpha, stride=1, expansion=6, block_id=15 - ) - - x = _inverted_res_block( - x, filters=320, alpha=alpha, stride=1, expansion=6, block_id=16 - ) - - # no alpha applied to last conv as stated in the paper: - # if the width multiplier is greater than 1 we increase the number of output - # channels. - if alpha > 1.0: - last_block_filters = _make_divisible(1280 * alpha, 8) - else: - last_block_filters = 1280 - - x = layers.Conv2D( - last_block_filters, kernel_size=1, use_bias=False, name="Conv_1" - )(x) - x = layers.BatchNormalization( - axis=channel_axis, epsilon=1e-3, momentum=0.999, name="Conv_1_bn" - )(x) - x = layers.ReLU(6.0, name="out_relu")(x) - - if include_top: - x = layers.GlobalAveragePooling2D()(x) - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Dense( - classes, activation=classifier_activation, name="predictions" - )(x) - - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D()(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D()(x) - - # Ensure that the model takes into account any potential predecessors of - # `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - - # Create model. - model = training.Model(inputs, x, name=f"mobilenetv2_{alpha:0.2f}_{rows}") - - # Load weights. - if weights == "imagenet": - if include_top: - model_name = ( - "mobilenet_v2_weights_tf_dim_ordering_tf_kernels_" - + str(float(alpha)) - + "_" - + str(rows) - + ".h5" - ) - weight_path = BASE_WEIGHT_PATH + model_name - weights_path = data_utils.get_file( - model_name, weight_path, cache_subdir="models" - ) - else: - model_name = ( - "mobilenet_v2_weights_tf_dim_ordering_tf_kernels_" - + str(float(alpha)) - + "_" - + str(rows) - + "_no_top" - + ".h5" - ) - weight_path = BASE_WEIGHT_PATH + model_name - weights_path = data_utils.get_file( - model_name, weight_path, cache_subdir="models" - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - - return model - - -def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id): - """Inverted ResNet block.""" - channel_axis = 1 if backend.image_data_format() == "channels_first" else -1 - - in_channels = backend.int_shape(inputs)[channel_axis] - pointwise_conv_filters = int(filters * alpha) - # Ensure the number of filters on the last 1x1 convolution is divisible by - # 8. - pointwise_filters = _make_divisible(pointwise_conv_filters, 8) - x = inputs - prefix = f"block_{block_id}_" - - if block_id: - # Expand with a pointwise 1x1 convolution. - x = layers.Conv2D( - expansion * in_channels, - kernel_size=1, - padding="same", - use_bias=False, - activation=None, - name=prefix + "expand", - )(x) - x = layers.BatchNormalization( - axis=channel_axis, - epsilon=1e-3, - momentum=0.999, - name=prefix + "expand_BN", - )(x) - x = layers.ReLU(6.0, name=prefix + "expand_relu")(x) - else: - prefix = "expanded_conv_" - - # Depthwise 3x3 convolution. - if stride == 2: - x = layers.ZeroPadding2D( - padding=imagenet_utils.correct_pad(x, 3), name=prefix + "pad" - )(x) - x = layers.DepthwiseConv2D( - kernel_size=3, - strides=stride, - activation=None, - use_bias=False, - padding="same" if stride == 1 else "valid", - name=prefix + "depthwise", - )(x) - x = layers.BatchNormalization( - axis=channel_axis, - epsilon=1e-3, - momentum=0.999, - name=prefix + "depthwise_BN", - )(x) - - x = layers.ReLU(6.0, name=prefix + "depthwise_relu")(x) - - # Project with a pointwise 1x1 convolution. - x = layers.Conv2D( - pointwise_filters, - kernel_size=1, - padding="same", - use_bias=False, - activation=None, - name=prefix + "project", - )(x) - x = layers.BatchNormalization( - axis=channel_axis, - epsilon=1e-3, - momentum=0.999, - name=prefix + "project_BN", - )(x) - - if in_channels == pointwise_filters and stride == 1: - return layers.Add(name=prefix + "add")([inputs, x]) - return x - - -def _make_divisible(v, divisor, min_value=None): - if min_value is None: - min_value = divisor - new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) - # Make sure that round down does not go down by more than 10%. - if new_v < 0.9 * v: - new_v += divisor - return new_v - - -@keras_export("keras.applications.mobilenet_v2.preprocess_input") -def preprocess_input(x, data_format=None): - return imagenet_utils.preprocess_input( - x, data_format=data_format, mode="tf" - ) - - -@keras_export("keras.applications.mobilenet_v2.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( - mode="", - ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF, - error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, -) -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ diff --git a/keras/applications/mobilenet_v3.py b/keras/applications/mobilenet_v3.py deleted file mode 100644 index ac61c9970e1..00000000000 --- a/keras/applications/mobilenet_v3.py +++ /dev/null @@ -1,698 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""MobileNet v3 models for Keras.""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import models -from keras.applications import imagenet_utils -from keras.layers import VersionAwareLayers -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - -# TODO(scottzhu): Change this to the GCS path. -BASE_WEIGHT_PATH = ( - "https://storage.googleapis.com/tensorflow/keras-applications/mobilenet_v3/" -) -WEIGHTS_HASHES = { - "large_224_0.75_float": ( - "765b44a33ad4005b3ac83185abf1d0eb", - "40af19a13ebea4e2ee0c676887f69a2e", - ), - "large_224_1.0_float": ( - "59e551e166be033d707958cf9e29a6a7", - "07fb09a5933dd0c8eaafa16978110389", - ), - "large_minimalistic_224_1.0_float": ( - "675e7b876c45c57e9e63e6d90a36599c", - "ec5221f64a2f6d1ef965a614bdae7973", - ), - "small_224_0.75_float": ( - "cb65d4e5be93758266aa0a7f2c6708b7", - "ebdb5cc8e0b497cd13a7c275d475c819", - ), - "small_224_1.0_float": ( - "8768d4c2e7dee89b9d02b2d03d65d862", - "d3e8ec802a04aa4fc771ee12a9a9b836", - ), - "small_minimalistic_224_1.0_float": ( - "99cd97fb2fcdad2bf028eb838de69e37", - "cde8136e733e811080d9fcd8a252f7e4", - ), -} - -layers = VersionAwareLayers() - - -BASE_DOCSTRING = """Instantiates the {name} architecture. - - Reference: - - [Searching for MobileNetV3]( - https://arxiv.org/pdf/1905.02244.pdf) (ICCV 2019) - - The following table describes the performance of MobileNets v3: - ------------------------------------------------------------------------ - MACs stands for Multiply Adds - - |Classification Checkpoint|MACs(M)|Parameters(M)|Top1 Accuracy|Pixel1 CPU(ms)| - |---|---|---|---|---| - | mobilenet_v3_large_1.0_224 | 217 | 5.4 | 75.6 | 51.2 | - | mobilenet_v3_large_0.75_224 | 155 | 4.0 | 73.3 | 39.8 | - | mobilenet_v3_large_minimalistic_1.0_224 | 209 | 3.9 | 72.3 | 44.1 | - | mobilenet_v3_small_1.0_224 | 66 | 2.9 | 68.1 | 15.8 | - | mobilenet_v3_small_0.75_224 | 44 | 2.4 | 65.4 | 12.8 | - | mobilenet_v3_small_minimalistic_1.0_224 | 65 | 2.0 | 61.9 | 12.2 | - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - Note: each Keras Application expects a specific kind of input preprocessing. - For MobileNetV3, by default input preprocessing is included as a part of the - model (as a `Rescaling` layer), and thus - `tf.keras.applications.mobilenet_v3.preprocess_input` is actually a - pass-through function. In this use case, MobileNetV3 models expect their - inputs to be float tensors of pixels with values in the [0-255] range. - At the same time, preprocessing as a part of the model (i.e. `Rescaling` - layer) can be disabled by setting `include_preprocessing` argument to False. - With preprocessing disabled MobileNetV3 models expect their inputs to be float - tensors of pixels with values in the [-1, 1] range. - - Args: - input_shape: Optional shape tuple, to be specified if you would - like to use a model with an input image resolution that is not - (224, 224, 3). - It should have exactly 3 inputs channels (224, 224, 3). - You can also omit this option if you would like - to infer input_shape from an input_tensor. - If you choose to include both input_tensor and input_shape then - input_shape will be used if they match, if the shapes - do not match then we will throw an error. - E.g. `(160, 160, 3)` would be one valid value. - alpha: controls the width of the network. This is known as the - depth multiplier in the MobileNetV3 paper, but the name is kept for - consistency with MobileNetV1 in Keras. - - If `alpha` < 1.0, proportionally decreases the number - of filters in each layer. - - If `alpha` > 1.0, proportionally increases the number - of filters in each layer. - - If `alpha` = 1, default number of filters from the paper - are used at each layer. - minimalistic: In addition to large and small models this module also - contains so-called minimalistic models, these models have the same - per-layer dimensions characteristic as MobilenetV3 however, they don't - utilize any of the advanced blocks (squeeze-and-excite units, hard-swish, - and 5x5 convolutions). While these models are less efficient on CPU, they - are much more performant on GPU/DSP. - include_top: Boolean, whether to include the fully-connected - layer at the top of the network. Defaults to `True`. - weights: String, one of `None` (random initialization), - 'imagenet' (pre-training on ImageNet), - or the path to the weights file to be loaded. - input_tensor: Optional Keras tensor (i.e. output of - `layers.Input()`) - to use as image input for the model. - pooling: String, optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model - will be the 4D tensor output of the - last convolutional block. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional block, and thus - the output of the model will be a - 2D tensor. - - `max` means that global max pooling will - be applied. - classes: Integer, optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. - dropout_rate: fraction of the input units to drop on the last layer. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - include_preprocessing: Boolean, whether to include the preprocessing - layer (`Rescaling`) at the bottom of the network. Defaults to `True`. - - Call arguments: - inputs: A floating point `numpy.array` or a `tf.Tensor`, 4D with 3 color - channels, with values in the range [0, 255] if `include_preprocessing` - is True and in the range [-1, 1] otherwise. - - Returns: - A `keras.Model` instance. -""" - - -def MobileNetV3( - stack_fn, - last_point_ch, - input_shape=None, - alpha=1.0, - model_type="large", - minimalistic=False, - include_top=True, - weights="imagenet", - input_tensor=None, - classes=1000, - pooling=None, - dropout_rate=0.2, - classifier_activation="softmax", - include_preprocessing=True, -): - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded. " - f"Received weights={weights}" - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - 'If using `weights` as `"imagenet"` with `include_top` ' - "as true, `classes` should be 1000. " - f"Received classes={classes}" - ) - - # Determine proper input shape and default size. - # If both input_shape and input_tensor are used, they should match - if input_shape is not None and input_tensor is not None: - try: - is_input_t_tensor = backend.is_keras_tensor(input_tensor) - except ValueError: - try: - is_input_t_tensor = backend.is_keras_tensor( - layer_utils.get_source_inputs(input_tensor) - ) - except ValueError: - raise ValueError( - "input_tensor: ", - input_tensor, - "is not type input_tensor. " - f"Received type(input_tensor)={type(input_tensor)}", - ) - if is_input_t_tensor: - if backend.image_data_format() == "channels_first": - if backend.int_shape(input_tensor)[1] != input_shape[1]: - raise ValueError( - "When backend.image_data_format()=channels_first, " - "input_shape[1] must equal " - "backend.int_shape(input_tensor)[1]. Received " - f"input_shape={input_shape}, " - "backend.int_shape(input_tensor)=" - f"{backend.int_shape(input_tensor)}" - ) - else: - if backend.int_shape(input_tensor)[2] != input_shape[1]: - raise ValueError( - "input_shape[1] must equal " - "backend.int_shape(input_tensor)[2]. Received " - f"input_shape={input_shape}, " - "backend.int_shape(input_tensor)=" - f"{backend.int_shape(input_tensor)}" - ) - else: - raise ValueError( - "input_tensor specified: ", - input_tensor, - "is not a keras tensor", - ) - - # If input_shape is None, infer shape from input_tensor - if input_shape is None and input_tensor is not None: - - try: - backend.is_keras_tensor(input_tensor) - except ValueError: - raise ValueError( - "input_tensor: ", - input_tensor, - "is type: ", - type(input_tensor), - "which is not a valid type", - ) - - if backend.is_keras_tensor(input_tensor): - if backend.image_data_format() == "channels_first": - rows = backend.int_shape(input_tensor)[2] - cols = backend.int_shape(input_tensor)[3] - input_shape = (3, cols, rows) - else: - rows = backend.int_shape(input_tensor)[1] - cols = backend.int_shape(input_tensor)[2] - input_shape = (cols, rows, 3) - # If input_shape is None and input_tensor is None using standard shape - if input_shape is None and input_tensor is None: - input_shape = (None, None, 3) - - if backend.image_data_format() == "channels_last": - row_axis, col_axis = (0, 1) - else: - row_axis, col_axis = (1, 2) - rows = input_shape[row_axis] - cols = input_shape[col_axis] - if rows and cols and (rows < 32 or cols < 32): - raise ValueError( - "Input size must be at least 32x32; Received `input_shape=" - f"{input_shape}`" - ) - if weights == "imagenet": - if ( - not minimalistic - and alpha not in [0.75, 1.0] - or minimalistic - and alpha != 1.0 - ): - raise ValueError( - "If imagenet weights are being loaded, " - "alpha can be one of `0.75`, `1.0` for non minimalistic " - "or `1.0` for minimalistic only." - ) - - if rows != cols or rows != 224: - logging.warning( - "`input_shape` is undefined or non-square, " - "or `rows` is not 224. " - "Weights for input shape (224, 224) will be " - "loaded as the default." - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - channel_axis = 1 if backend.image_data_format() == "channels_first" else -1 - - if minimalistic: - kernel = 3 - activation = relu - se_ratio = None - else: - kernel = 5 - activation = hard_swish - se_ratio = 0.25 - - x = img_input - if include_preprocessing: - x = layers.Rescaling(scale=1.0 / 127.5, offset=-1.0)(x) - x = layers.Conv2D( - 16, - kernel_size=3, - strides=(2, 2), - padding="same", - use_bias=False, - name="Conv", - )(x) - x = layers.BatchNormalization( - axis=channel_axis, epsilon=1e-3, momentum=0.999, name="Conv/BatchNorm" - )(x) - x = activation(x) - - x = stack_fn(x, kernel, activation, se_ratio) - - last_conv_ch = _depth(backend.int_shape(x)[channel_axis] * 6) - - # if the width multiplier is greater than 1 we - # increase the number of output channels - if alpha > 1.0: - last_point_ch = _depth(last_point_ch * alpha) - x = layers.Conv2D( - last_conv_ch, - kernel_size=1, - padding="same", - use_bias=False, - name="Conv_1", - )(x) - x = layers.BatchNormalization( - axis=channel_axis, epsilon=1e-3, momentum=0.999, name="Conv_1/BatchNorm" - )(x) - x = activation(x) - if include_top: - x = layers.GlobalAveragePooling2D(keepdims=True)(x) - x = layers.Conv2D( - last_point_ch, - kernel_size=1, - padding="same", - use_bias=True, - name="Conv_2", - )(x) - x = activation(x) - - if dropout_rate > 0: - x = layers.Dropout(dropout_rate)(x) - x = layers.Conv2D( - classes, kernel_size=1, padding="same", name="Logits" - )(x) - x = layers.Flatten()(x) - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Activation( - activation=classifier_activation, name="Predictions" - )(x) - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D(name="max_pool")(x) - # Ensure that the model takes into account - # any potential predecessors of `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - - # Create model. - model = models.Model(inputs, x, name="MobilenetV3" + model_type) - - # Load weights. - if weights == "imagenet": - model_name = "{}{}_224_{}_float".format( - model_type, "_minimalistic" if minimalistic else "", str(alpha) - ) - if include_top: - file_name = "weights_mobilenet_v3_" + model_name + ".h5" - file_hash = WEIGHTS_HASHES[model_name][0] - else: - file_name = "weights_mobilenet_v3_" + model_name + "_no_top_v2.h5" - file_hash = WEIGHTS_HASHES[model_name][1] - weights_path = data_utils.get_file( - file_name, - BASE_WEIGHT_PATH + file_name, - cache_subdir="models", - file_hash=file_hash, - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - - return model - - -@keras_export("keras.applications.MobileNetV3Small") -def MobileNetV3Small( - input_shape=None, - alpha=1.0, - minimalistic=False, - include_top=True, - weights="imagenet", - input_tensor=None, - classes=1000, - pooling=None, - dropout_rate=0.2, - classifier_activation="softmax", - include_preprocessing=True, -): - def stack_fn(x, kernel, activation, se_ratio): - def depth(d): - return _depth(d * alpha) - - x = _inverted_res_block(x, 1, depth(16), 3, 2, se_ratio, relu, 0) - x = _inverted_res_block(x, 72.0 / 16, depth(24), 3, 2, None, relu, 1) - x = _inverted_res_block(x, 88.0 / 24, depth(24), 3, 1, None, relu, 2) - x = _inverted_res_block( - x, 4, depth(40), kernel, 2, se_ratio, activation, 3 - ) - x = _inverted_res_block( - x, 6, depth(40), kernel, 1, se_ratio, activation, 4 - ) - x = _inverted_res_block( - x, 6, depth(40), kernel, 1, se_ratio, activation, 5 - ) - x = _inverted_res_block( - x, 3, depth(48), kernel, 1, se_ratio, activation, 6 - ) - x = _inverted_res_block( - x, 3, depth(48), kernel, 1, se_ratio, activation, 7 - ) - x = _inverted_res_block( - x, 6, depth(96), kernel, 2, se_ratio, activation, 8 - ) - x = _inverted_res_block( - x, 6, depth(96), kernel, 1, se_ratio, activation, 9 - ) - x = _inverted_res_block( - x, 6, depth(96), kernel, 1, se_ratio, activation, 10 - ) - return x - - return MobileNetV3( - stack_fn, - 1024, - input_shape, - alpha, - "small", - minimalistic, - include_top, - weights, - input_tensor, - classes, - pooling, - dropout_rate, - classifier_activation, - include_preprocessing, - ) - - -@keras_export("keras.applications.MobileNetV3Large") -def MobileNetV3Large( - input_shape=None, - alpha=1.0, - minimalistic=False, - include_top=True, - weights="imagenet", - input_tensor=None, - classes=1000, - pooling=None, - dropout_rate=0.2, - classifier_activation="softmax", - include_preprocessing=True, -): - def stack_fn(x, kernel, activation, se_ratio): - def depth(d): - return _depth(d * alpha) - - x = _inverted_res_block(x, 1, depth(16), 3, 1, None, relu, 0) - x = _inverted_res_block(x, 4, depth(24), 3, 2, None, relu, 1) - x = _inverted_res_block(x, 3, depth(24), 3, 1, None, relu, 2) - x = _inverted_res_block(x, 3, depth(40), kernel, 2, se_ratio, relu, 3) - x = _inverted_res_block(x, 3, depth(40), kernel, 1, se_ratio, relu, 4) - x = _inverted_res_block(x, 3, depth(40), kernel, 1, se_ratio, relu, 5) - x = _inverted_res_block(x, 6, depth(80), 3, 2, None, activation, 6) - x = _inverted_res_block(x, 2.5, depth(80), 3, 1, None, activation, 7) - x = _inverted_res_block(x, 2.3, depth(80), 3, 1, None, activation, 8) - x = _inverted_res_block(x, 2.3, depth(80), 3, 1, None, activation, 9) - x = _inverted_res_block( - x, 6, depth(112), 3, 1, se_ratio, activation, 10 - ) - x = _inverted_res_block( - x, 6, depth(112), 3, 1, se_ratio, activation, 11 - ) - x = _inverted_res_block( - x, 6, depth(160), kernel, 2, se_ratio, activation, 12 - ) - x = _inverted_res_block( - x, 6, depth(160), kernel, 1, se_ratio, activation, 13 - ) - x = _inverted_res_block( - x, 6, depth(160), kernel, 1, se_ratio, activation, 14 - ) - return x - - return MobileNetV3( - stack_fn, - 1280, - input_shape, - alpha, - "large", - minimalistic, - include_top, - weights, - input_tensor, - classes, - pooling, - dropout_rate, - classifier_activation, - include_preprocessing, - ) - - -MobileNetV3Small.__doc__ = BASE_DOCSTRING.format(name="MobileNetV3Small") -MobileNetV3Large.__doc__ = BASE_DOCSTRING.format(name="MobileNetV3Large") - - -def relu(x): - return layers.ReLU()(x) - - -def hard_sigmoid(x): - return layers.ReLU(6.0)(x + 3.0) * (1.0 / 6.0) - - -def hard_swish(x): - return layers.Multiply()([x, hard_sigmoid(x)]) - - -# This function is taken from the original tf repo. -# It ensures that all layers have a channel number that is divisible by 8 -# It can be seen here: -# https://github.com/tensorflow/models/blob/master/research/ -# slim/nets/mobilenet/mobilenet.py - - -def _depth(v, divisor=8, min_value=None): - if min_value is None: - min_value = divisor - new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) - # Make sure that round down does not go down by more than 10%. - if new_v < 0.9 * v: - new_v += divisor - return new_v - - -def _se_block(inputs, filters, se_ratio, prefix): - x = layers.GlobalAveragePooling2D( - keepdims=True, name=prefix + "squeeze_excite/AvgPool" - )(inputs) - x = layers.Conv2D( - _depth(filters * se_ratio), - kernel_size=1, - padding="same", - name=prefix + "squeeze_excite/Conv", - )(x) - x = layers.ReLU(name=prefix + "squeeze_excite/Relu")(x) - x = layers.Conv2D( - filters, - kernel_size=1, - padding="same", - name=prefix + "squeeze_excite/Conv_1", - )(x) - x = hard_sigmoid(x) - x = layers.Multiply(name=prefix + "squeeze_excite/Mul")([inputs, x]) - return x - - -def _inverted_res_block( - x, expansion, filters, kernel_size, stride, se_ratio, activation, block_id -): - channel_axis = 1 if backend.image_data_format() == "channels_first" else -1 - shortcut = x - prefix = "expanded_conv/" - infilters = backend.int_shape(x)[channel_axis] - if block_id: - # Expand - prefix = f"expanded_conv_{block_id}/" - x = layers.Conv2D( - _depth(infilters * expansion), - kernel_size=1, - padding="same", - use_bias=False, - name=prefix + "expand", - )(x) - x = layers.BatchNormalization( - axis=channel_axis, - epsilon=1e-3, - momentum=0.999, - name=prefix + "expand/BatchNorm", - )(x) - x = activation(x) - - if stride == 2: - x = layers.ZeroPadding2D( - padding=imagenet_utils.correct_pad(x, kernel_size), - name=prefix + "depthwise/pad", - )(x) - x = layers.DepthwiseConv2D( - kernel_size, - strides=stride, - padding="same" if stride == 1 else "valid", - use_bias=False, - name=prefix + "depthwise", - )(x) - x = layers.BatchNormalization( - axis=channel_axis, - epsilon=1e-3, - momentum=0.999, - name=prefix + "depthwise/BatchNorm", - )(x) - x = activation(x) - - if se_ratio: - x = _se_block(x, _depth(infilters * expansion), se_ratio, prefix) - - x = layers.Conv2D( - filters, - kernel_size=1, - padding="same", - use_bias=False, - name=prefix + "project", - )(x) - x = layers.BatchNormalization( - axis=channel_axis, - epsilon=1e-3, - momentum=0.999, - name=prefix + "project/BatchNorm", - )(x) - - if stride == 1 and infilters == filters: - x = layers.Add(name=prefix + "Add")([shortcut, x]) - return x - - -@keras_export("keras.applications.mobilenet_v3.preprocess_input") -def preprocess_input(x, data_format=None): - """A placeholder method for backward compatibility. - - The preprocessing logic has been included in the mobilenet_v3 model - implementation. Users are no longer required to call this method to - normalize the input data. This method does nothing and only kept as a - placeholder to align the API surface between old and new version of model. - - Args: - x: A floating point `numpy.array` or a `tf.Tensor`. - data_format: Optional data format of the image tensor/array. Defaults to - None, in which case the global setting - `tf.keras.backend.image_data_format()` is used (unless you changed it, - it defaults to "channels_last").{mode} - - Returns: - Unchanged `numpy.array` or `tf.Tensor`. - """ - return x - - -@keras_export("keras.applications.mobilenet_v3.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ diff --git a/keras/applications/nasnet.py b/keras/applications/nasnet.py deleted file mode 100644 index 7667d14d1b9..00000000000 --- a/keras/applications/nasnet.py +++ /dev/null @@ -1,910 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""NASNet-A models for Keras. - -NASNet refers to Neural Architecture Search Network, a family of models -that were designed automatically by learning the model architectures -directly on the dataset of interest. - -Here we consider NASNet-A, the highest performance model that was found -for the CIFAR-10 dataset, and then extended to ImageNet 2012 dataset, -obtaining state of the art performance on CIFAR-10 and ImageNet 2012. -Only the NASNet-A models, and their respective weights, which are suited -for ImageNet 2012 are provided. - -The below table describes the performance on ImageNet 2012: ---------------------------------------------------------------------------- -Architecture | Top-1 Acc | Top-5 Acc | Multiply-Adds | Params (M) ----------------------|-----------|-----------|----------------|------------ -NASNet-A (4 @ 1056) | 74.0 % | 91.6 % | 564 M | 5.3 -NASNet-A (6 @ 4032) | 82.7 % | 96.2 % | 23.8 B | 88.9 - -Reference: - - [Learning Transferable Architectures for Scalable Image Recognition]( - https://arxiv.org/abs/1707.07012) (CVPR 2018) -""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.applications import imagenet_utils -from keras.engine import training -from keras.layers import VersionAwareLayers -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - -BASE_WEIGHTS_PATH = ( - "https://storage.googleapis.com/tensorflow/keras-applications/nasnet/" -) -NASNET_MOBILE_WEIGHT_PATH = BASE_WEIGHTS_PATH + "NASNet-mobile.h5" -NASNET_MOBILE_WEIGHT_PATH_NO_TOP = BASE_WEIGHTS_PATH + "NASNet-mobile-no-top.h5" -NASNET_LARGE_WEIGHT_PATH = BASE_WEIGHTS_PATH + "NASNet-large.h5" -NASNET_LARGE_WEIGHT_PATH_NO_TOP = BASE_WEIGHTS_PATH + "NASNet-large-no-top.h5" - -layers = VersionAwareLayers() - - -def NASNet( - input_shape=None, - penultimate_filters=4032, - num_blocks=6, - stem_block_filters=96, - skip_reduction=True, - filter_multiplier=2, - include_top=True, - weights="imagenet", - input_tensor=None, - pooling=None, - classes=1000, - default_size=None, - classifier_activation="softmax", -): - """Instantiates a NASNet model. - - Reference: - - [Learning Transferable Architectures for Scalable Image Recognition]( - https://arxiv.org/abs/1707.07012) (CVPR 2018) - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - Note: each Keras Application expects a specific kind of input preprocessing. - For NasNet, call `tf.keras.applications.nasnet.preprocess_input` - on your inputs before passing them to the model. - `nasnet.preprocess_input` will scale input pixels between -1 and 1. - - Args: - input_shape: Optional shape tuple, the input shape - is by default `(331, 331, 3)` for NASNetLarge and - `(224, 224, 3)` for NASNetMobile. - It should have exactly 3 input channels, - and width and height should be no smaller than 32. - E.g. `(224, 224, 3)` would be one valid value. - penultimate_filters: Number of filters in the penultimate layer. - NASNet models use the notation `NASNet (N @ P)`, where: - - N is the number of blocks - - P is the number of penultimate filters - num_blocks: Number of repeated blocks of the NASNet model. - NASNet models use the notation `NASNet (N @ P)`, where: - - N is the number of blocks - - P is the number of penultimate filters - stem_block_filters: Number of filters in the initial stem block - skip_reduction: Whether to skip the reduction step at the tail - end of the network. - filter_multiplier: Controls the width of the network. - - If `filter_multiplier` < 1.0, proportionally decreases the number - of filters in each layer. - - If `filter_multiplier` > 1.0, proportionally increases the number - of filters in each layer. - - If `filter_multiplier` = 1, default number of filters from the - paper are used at each layer. - include_top: Whether to include the fully-connected - layer at the top of the network. - weights: `None` (random initialization) or - `imagenet` (ImageNet weights) - input_tensor: Optional Keras tensor (i.e. output of - `layers.Input()`) - to use as image input for the model. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model - will be the 4D tensor output of the - last convolutional block. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional block, and thus - the output of the model will be a - 2D tensor. - - `max` means that global max pooling will - be applied. - classes: Optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. - default_size: Specifies the default image size of the model - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - - Returns: - A `keras.Model` instance. - """ - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded." - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - 'If using `weights` as `"imagenet"` with `include_top` ' - "as true, `classes` should be 1000" - ) - - if ( - isinstance(input_shape, tuple) - and None in input_shape - and weights == "imagenet" - ): - raise ValueError( - "When specifying the input shape of a NASNet" - " and loading `ImageNet` weights, " - "the input_shape argument must be static " - "(no None entries). Got: `input_shape=" + str(input_shape) + "`." - ) - - if default_size is None: - default_size = 331 - - # Determine proper input shape and default size. - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=default_size, - min_size=32, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if backend.image_data_format() != "channels_last": - logging.warning( - "The NASNet family of models is only available " - 'for the input data format "channels_last" ' - "(width, height, channels). " - "However your settings specify the default " - 'data format "channels_first" (channels, width, height).' - ' You should set `image_data_format="channels_last"` ' - "in your Keras config located at ~/.keras/keras.json. " - "The model being returned right now will expect inputs " - 'to follow the "channels_last" data format.' - ) - backend.set_image_data_format("channels_last") - old_data_format = "channels_first" - else: - old_data_format = None - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - if penultimate_filters % (24 * (filter_multiplier**2)) != 0: - raise ValueError( - "For NASNet-A models, the `penultimate_filters` must be a multiple " - "of 24 * (`filter_multiplier` ** 2). Current value: %d" - % penultimate_filters - ) - - channel_dim = 1 if backend.image_data_format() == "channels_first" else -1 - filters = penultimate_filters // 24 - - x = layers.Conv2D( - stem_block_filters, - (3, 3), - strides=(2, 2), - padding="valid", - use_bias=False, - name="stem_conv1", - kernel_initializer="he_normal", - )(img_input) - - x = layers.BatchNormalization( - axis=channel_dim, momentum=0.9997, epsilon=1e-3, name="stem_bn1" - )(x) - - p = None - x, p = _reduction_a_cell( - x, p, filters // (filter_multiplier**2), block_id="stem_1" - ) - x, p = _reduction_a_cell( - x, p, filters // filter_multiplier, block_id="stem_2" - ) - - for i in range(num_blocks): - x, p = _normal_a_cell(x, p, filters, block_id="%d" % (i)) - - x, p0 = _reduction_a_cell( - x, p, filters * filter_multiplier, block_id="reduce_%d" % (num_blocks) - ) - - p = p0 if not skip_reduction else p - - for i in range(num_blocks): - x, p = _normal_a_cell( - x, - p, - filters * filter_multiplier, - block_id="%d" % (num_blocks + i + 1), - ) - - x, p0 = _reduction_a_cell( - x, - p, - filters * filter_multiplier**2, - block_id="reduce_%d" % (2 * num_blocks), - ) - - p = p0 if not skip_reduction else p - - for i in range(num_blocks): - x, p = _normal_a_cell( - x, - p, - filters * filter_multiplier**2, - block_id="%d" % (2 * num_blocks + i + 1), - ) - - x = layers.Activation("relu")(x) - - if include_top: - x = layers.GlobalAveragePooling2D()(x) - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Dense( - classes, activation=classifier_activation, name="predictions" - )(x) - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D()(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D()(x) - - # Ensure that the model takes into account - # any potential predecessors of `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - - model = training.Model(inputs, x, name="NASNet") - - # Load weights. - if weights == "imagenet": - if default_size == 224: # mobile version - if include_top: - weights_path = data_utils.get_file( - "nasnet_mobile.h5", - NASNET_MOBILE_WEIGHT_PATH, - cache_subdir="models", - file_hash="020fb642bf7360b370c678b08e0adf61", - ) - else: - weights_path = data_utils.get_file( - "nasnet_mobile_no_top.h5", - NASNET_MOBILE_WEIGHT_PATH_NO_TOP, - cache_subdir="models", - file_hash="1ed92395b5b598bdda52abe5c0dbfd63", - ) - model.load_weights(weights_path) - elif default_size == 331: # large version - if include_top: - weights_path = data_utils.get_file( - "nasnet_large.h5", - NASNET_LARGE_WEIGHT_PATH, - cache_subdir="models", - file_hash="11577c9a518f0070763c2b964a382f17", - ) - else: - weights_path = data_utils.get_file( - "nasnet_large_no_top.h5", - NASNET_LARGE_WEIGHT_PATH_NO_TOP, - cache_subdir="models", - file_hash="d81d89dc07e6e56530c4e77faddd61b5", - ) - model.load_weights(weights_path) - else: - raise ValueError( - "ImageNet weights can only be loaded with NASNetLarge" - " or NASNetMobile" - ) - elif weights is not None: - model.load_weights(weights) - - if old_data_format: - backend.set_image_data_format(old_data_format) - - return model - - -@keras_export( - "keras.applications.nasnet.NASNetMobile", "keras.applications.NASNetMobile" -) -def NASNetMobile( - input_shape=None, - include_top=True, - weights="imagenet", - input_tensor=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates a Mobile NASNet model in ImageNet mode. - - Reference: - - [Learning Transferable Architectures for Scalable Image Recognition]( - https://arxiv.org/abs/1707.07012) (CVPR 2018) - - Optionally loads weights pre-trained on ImageNet. - Note that the data format convention used by the model is - the one specified in your Keras config at `~/.keras/keras.json`. - - Note: each Keras Application expects a specific kind of input preprocessing. - For NASNet, call `tf.keras.applications.nasnet.preprocess_input` on your - inputs before passing them to the model. - - Args: - input_shape: Optional shape tuple, only to be specified - if `include_top` is False (otherwise the input shape - has to be `(224, 224, 3)` for NASNetMobile - It should have exactly 3 inputs channels, - and width and height should be no smaller than 32. - E.g. `(224, 224, 3)` would be one valid value. - include_top: Whether to include the fully-connected - layer at the top of the network. - weights: `None` (random initialization) or - `imagenet` (ImageNet weights). For loading `imagenet` weights, - `input_shape` should be (224, 224, 3) - input_tensor: Optional Keras tensor (i.e. output of - `layers.Input()`) - to use as image input for the model. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model - will be the 4D tensor output of the - last convolutional layer. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional layer, and thus - the output of the model will be a - 2D tensor. - - `max` means that global max pooling will - be applied. - classes: Optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. - classifier_activation: A `str` or callable. The activation function to - use on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" - layer. When loading pretrained weights, `classifier_activation` can - only be `None` or `"softmax"`. - - Returns: - A Keras model instance. - - Raises: - ValueError: In case of invalid argument for `weights`, - or invalid input shape. - RuntimeError: If attempting to run this model with a - backend that does not support separable convolutions. - """ - return NASNet( - input_shape, - penultimate_filters=1056, - num_blocks=4, - stem_block_filters=32, - skip_reduction=False, - filter_multiplier=2, - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - pooling=pooling, - classes=classes, - default_size=224, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.nasnet.NASNetLarge", "keras.applications.NASNetLarge" -) -def NASNetLarge( - input_shape=None, - include_top=True, - weights="imagenet", - input_tensor=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates a NASNet model in ImageNet mode. - - Reference: - - [Learning Transferable Architectures for Scalable Image Recognition]( - https://arxiv.org/abs/1707.07012) (CVPR 2018) - - Optionally loads weights pre-trained on ImageNet. - Note that the data format convention used by the model is - the one specified in your Keras config at `~/.keras/keras.json`. - - Note: each Keras Application expects a specific kind of input preprocessing. - For NASNet, call `tf.keras.applications.nasnet.preprocess_input` on your - inputs before passing them to the model. - - Args: - input_shape: Optional shape tuple, only to be specified - if `include_top` is False (otherwise the input shape - has to be `(331, 331, 3)` for NASNetLarge. - It should have exactly 3 inputs channels, - and width and height should be no smaller than 32. - E.g. `(224, 224, 3)` would be one valid value. - include_top: Whether to include the fully-connected - layer at the top of the network. - weights: `None` (random initialization) or - `imagenet` (ImageNet weights). For loading `imagenet` weights, - `input_shape` should be (331, 331, 3) - input_tensor: Optional Keras tensor (i.e. output of - `layers.Input()`) - to use as image input for the model. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model - will be the 4D tensor output of the - last convolutional layer. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional layer, and thus - the output of the model will be a - 2D tensor. - - `max` means that global max pooling will - be applied. - classes: Optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. - classifier_activation: A `str` or callable. The activation function to - use on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" - layer. When loading pretrained weights, `classifier_activation` can - only be `None` or `"softmax"`. - - Returns: - A Keras model instance. - - Raises: - ValueError: in case of invalid argument for `weights`, - or invalid input shape. - RuntimeError: If attempting to run this model with a - backend that does not support separable convolutions. - """ - return NASNet( - input_shape, - penultimate_filters=4032, - num_blocks=6, - stem_block_filters=96, - skip_reduction=True, - filter_multiplier=2, - include_top=include_top, - weights=weights, - input_tensor=input_tensor, - pooling=pooling, - classes=classes, - default_size=331, - classifier_activation=classifier_activation, - ) - - -def _separable_conv_block( - ip, filters, kernel_size=(3, 3), strides=(1, 1), block_id=None -): - """Adds 2 blocks of [relu-separable conv-batchnorm]. - - Args: - ip: Input tensor - filters: Number of output filters per layer - kernel_size: Kernel size of separable convolutions - strides: Strided convolution for downsampling - block_id: String block_id - - Returns: - A Keras tensor - """ - channel_dim = 1 if backend.image_data_format() == "channels_first" else -1 - - with backend.name_scope(f"separable_conv_block_{block_id}"): - x = layers.Activation("relu")(ip) - if strides == (2, 2): - x = layers.ZeroPadding2D( - padding=imagenet_utils.correct_pad(x, kernel_size), - name=f"separable_conv_1_pad_{block_id}", - )(x) - conv_pad = "valid" - else: - conv_pad = "same" - x = layers.SeparableConv2D( - filters, - kernel_size, - strides=strides, - name=f"separable_conv_1_{block_id}", - padding=conv_pad, - use_bias=False, - kernel_initializer="he_normal", - )(x) - x = layers.BatchNormalization( - axis=channel_dim, - momentum=0.9997, - epsilon=1e-3, - name=f"separable_conv_1_bn_{block_id}", - )(x) - x = layers.Activation("relu")(x) - x = layers.SeparableConv2D( - filters, - kernel_size, - name=f"separable_conv_2_{block_id}", - padding="same", - use_bias=False, - kernel_initializer="he_normal", - )(x) - x = layers.BatchNormalization( - axis=channel_dim, - momentum=0.9997, - epsilon=1e-3, - name=f"separable_conv_2_bn_{block_id}", - )(x) - return x - - -def _adjust_block(p, ip, filters, block_id=None): - """Adjusts the input `previous path` to match the shape of the `input`. - - Used in situations where the output number of filters needs to be changed. - - Args: - p: Input tensor which needs to be modified - ip: Input tensor whose shape needs to be matched - filters: Number of output filters to be matched - block_id: String block_id - - Returns: - Adjusted Keras tensor - """ - channel_dim = 1 if backend.image_data_format() == "channels_first" else -1 - img_dim = 2 if backend.image_data_format() == "channels_first" else -2 - - ip_shape = backend.int_shape(ip) - - if p is not None: - p_shape = backend.int_shape(p) - - with backend.name_scope("adjust_block"): - if p is None: - p = ip - - elif p_shape[img_dim] != ip_shape[img_dim]: - with backend.name_scope(f"adjust_reduction_block_{block_id}"): - p = layers.Activation("relu", name=f"adjust_relu_1_{block_id}")( - p - ) - p1 = layers.AveragePooling2D( - (1, 1), - strides=(2, 2), - padding="valid", - name=f"adjust_avg_pool_1_{block_id}", - )(p) - p1 = layers.Conv2D( - filters // 2, - (1, 1), - padding="same", - use_bias=False, - name=f"adjust_conv_1_{block_id}", - kernel_initializer="he_normal", - )(p1) - - p2 = layers.ZeroPadding2D(padding=((0, 1), (0, 1)))(p) - p2 = layers.Cropping2D(cropping=((1, 0), (1, 0)))(p2) - p2 = layers.AveragePooling2D( - (1, 1), - strides=(2, 2), - padding="valid", - name=f"adjust_avg_pool_2_{block_id}", - )(p2) - p2 = layers.Conv2D( - filters // 2, - (1, 1), - padding="same", - use_bias=False, - name=f"adjust_conv_2_{block_id}", - kernel_initializer="he_normal", - )(p2) - - p = layers.concatenate([p1, p2], axis=channel_dim) - p = layers.BatchNormalization( - axis=channel_dim, - momentum=0.9997, - epsilon=1e-3, - name=f"adjust_bn_{block_id}", - )(p) - - elif p_shape[channel_dim] != filters: - with backend.name_scope(f"adjust_projection_block_{block_id}"): - p = layers.Activation("relu")(p) - p = layers.Conv2D( - filters, - (1, 1), - strides=(1, 1), - padding="same", - name=f"adjust_conv_projection_{block_id}", - use_bias=False, - kernel_initializer="he_normal", - )(p) - p = layers.BatchNormalization( - axis=channel_dim, - momentum=0.9997, - epsilon=1e-3, - name=f"adjust_bn_{block_id}", - )(p) - return p - - -def _normal_a_cell(ip, p, filters, block_id=None): - """Adds a Normal cell for NASNet-A (Fig. 4 in the paper). - - Args: - ip: Input tensor `x` - p: Input tensor `p` - filters: Number of output filters - block_id: String block_id - - Returns: - A Keras tensor - """ - channel_dim = 1 if backend.image_data_format() == "channels_first" else -1 - - with backend.name_scope(f"normal_A_block_{block_id}"): - p = _adjust_block(p, ip, filters, block_id) - - h = layers.Activation("relu")(ip) - h = layers.Conv2D( - filters, - (1, 1), - strides=(1, 1), - padding="same", - name=f"normal_conv_1_{block_id}", - use_bias=False, - kernel_initializer="he_normal", - )(h) - h = layers.BatchNormalization( - axis=channel_dim, - momentum=0.9997, - epsilon=1e-3, - name=f"normal_bn_1_{block_id}", - )(h) - - with backend.name_scope("block_1"): - x1_1 = _separable_conv_block( - h, - filters, - kernel_size=(5, 5), - block_id=f"normal_left1_{block_id}", - ) - x1_2 = _separable_conv_block( - p, filters, block_id=f"normal_right1_{block_id}" - ) - x1 = layers.add([x1_1, x1_2], name=f"normal_add_1_{block_id}") - - with backend.name_scope("block_2"): - x2_1 = _separable_conv_block( - p, filters, (5, 5), block_id=f"normal_left2_{block_id}" - ) - x2_2 = _separable_conv_block( - p, filters, (3, 3), block_id=f"normal_right2_{block_id}" - ) - x2 = layers.add([x2_1, x2_2], name=f"normal_add_2_{block_id}") - - with backend.name_scope("block_3"): - x3 = layers.AveragePooling2D( - (3, 3), - strides=(1, 1), - padding="same", - name=f"normal_left3_{block_id}", - )(h) - x3 = layers.add([x3, p], name=f"normal_add_3_{block_id}") - - with backend.name_scope("block_4"): - x4_1 = layers.AveragePooling2D( - (3, 3), - strides=(1, 1), - padding="same", - name=f"normal_left4_{block_id}", - )(p) - x4_2 = layers.AveragePooling2D( - (3, 3), - strides=(1, 1), - padding="same", - name=f"normal_right4_{block_id}", - )(p) - x4 = layers.add([x4_1, x4_2], name=f"normal_add_4_{block_id}") - - with backend.name_scope("block_5"): - x5 = _separable_conv_block( - h, filters, block_id=f"normal_left5_{block_id}" - ) - x5 = layers.add([x5, h], name=f"normal_add_5_{block_id}") - - x = layers.concatenate( - [p, x1, x2, x3, x4, x5], - axis=channel_dim, - name=f"normal_concat_{block_id}", - ) - return x, ip - - -def _reduction_a_cell(ip, p, filters, block_id=None): - """Adds a Reduction cell for NASNet-A (Fig. 4 in the paper). - - Args: - ip: Input tensor `x` - p: Input tensor `p` - filters: Number of output filters - block_id: String block_id - - Returns: - A Keras tensor - """ - channel_dim = 1 if backend.image_data_format() == "channels_first" else -1 - - with backend.name_scope(f"reduction_A_block_{block_id}"): - p = _adjust_block(p, ip, filters, block_id) - - h = layers.Activation("relu")(ip) - h = layers.Conv2D( - filters, - (1, 1), - strides=(1, 1), - padding="same", - name=f"reduction_conv_1_{block_id}", - use_bias=False, - kernel_initializer="he_normal", - )(h) - h = layers.BatchNormalization( - axis=channel_dim, - momentum=0.9997, - epsilon=1e-3, - name=f"reduction_bn_1_{block_id}", - )(h) - h3 = layers.ZeroPadding2D( - padding=imagenet_utils.correct_pad(h, 3), - name=f"reduction_pad_1_{block_id}", - )(h) - - with backend.name_scope("block_1"): - x1_1 = _separable_conv_block( - h, - filters, - (5, 5), - strides=(2, 2), - block_id=f"reduction_left1_{block_id}", - ) - x1_2 = _separable_conv_block( - p, - filters, - (7, 7), - strides=(2, 2), - block_id=f"reduction_right1_{block_id}", - ) - x1 = layers.add([x1_1, x1_2], name=f"reduction_add_1_{block_id}") - - with backend.name_scope("block_2"): - x2_1 = layers.MaxPooling2D( - (3, 3), - strides=(2, 2), - padding="valid", - name=f"reduction_left2_{block_id}", - )(h3) - x2_2 = _separable_conv_block( - p, - filters, - (7, 7), - strides=(2, 2), - block_id=f"reduction_right2_{block_id}", - ) - x2 = layers.add([x2_1, x2_2], name=f"reduction_add_2_{block_id}") - - with backend.name_scope("block_3"): - x3_1 = layers.AveragePooling2D( - (3, 3), - strides=(2, 2), - padding="valid", - name=f"reduction_left3_{block_id}", - )(h3) - x3_2 = _separable_conv_block( - p, - filters, - (5, 5), - strides=(2, 2), - block_id=f"reduction_right3_{block_id}", - ) - x3 = layers.add([x3_1, x3_2], name=f"reduction_add3_{block_id}") - - with backend.name_scope("block_4"): - x4 = layers.AveragePooling2D( - (3, 3), - strides=(1, 1), - padding="same", - name=f"reduction_left4_{block_id}", - )(x1) - x4 = layers.add([x2, x4]) - - with backend.name_scope("block_5"): - x5_1 = _separable_conv_block( - x1, filters, (3, 3), block_id=f"reduction_left4_{block_id}" - ) - x5_2 = layers.MaxPooling2D( - (3, 3), - strides=(2, 2), - padding="valid", - name=f"reduction_right5_{block_id}", - )(h3) - x5 = layers.add([x5_1, x5_2], name=f"reduction_add4_{block_id}") - - x = layers.concatenate( - [x2, x3, x4, x5], - axis=channel_dim, - name=f"reduction_concat_{block_id}", - ) - return x, ip - - -@keras_export("keras.applications.nasnet.preprocess_input") -def preprocess_input(x, data_format=None): - return imagenet_utils.preprocess_input( - x, data_format=data_format, mode="tf" - ) - - -@keras_export("keras.applications.nasnet.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( - mode="", - ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF, - error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, -) -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ diff --git a/keras/applications/regnet.py b/keras/applications/regnet.py deleted file mode 100644 index b12956e514a..00000000000 --- a/keras/applications/regnet.py +++ /dev/null @@ -1,1838 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""RegNet models for Keras. - -References: - -- [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) - (CVPR 2020) -- [Fast and Accurate Model Scaling](https://arxiv.org/abs/2103.06877) - (CVPR 2021) -""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import layers -from keras.applications import imagenet_utils -from keras.engine import training -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -BASE_WEIGHTS_PATH = ( - "https://storage.googleapis.com/tensorflow/keras-applications/regnet/" -) - -WEIGHTS_HASHES = { - "x002": ( - "49fb46e56cde07fdaf57bffd851461a86548f6a3a4baef234dd37290b826c0b8", - "5445b66cd50445eb7ecab094c1e78d4d3d29375439d1a7798861c4af15ffff21", - ), - "x004": ( - "3523c7f5ac0dbbcc2fd6d83b3570e7540f7449d3301cc22c29547302114e4088", - "de139bf07a66c9256f2277bf5c1b6dd2d5a3a891a5f8a925a10c8a0a113fd6f3", - ), - "x006": ( - "340216ef334a7bae30daac9f414e693c136fac9ab868704bbfcc9ce6a5ec74bb", - "a43ec97ad62f86b2a96a783bfdc63a5a54de02eef54f26379ea05e1bf90a9505", - ), - "x008": ( - "8f145d6a5fae6da62677bb8d26eb92d0b9dfe143ec1ebf68b24a57ae50a2763d", - "3c7e4b0917359304dc18e644475c5c1f5e88d795542b676439c4a3acd63b7207", - ), - "x016": ( - "31c386f4c7bfef4c021a583099aa79c1b3928057ba1b7d182f174674c5ef3510", - "1b8e3d545d190271204a7b2165936a227d26b79bb7922bac5ee4d303091bf17a", - ), - "x032": ( - "6c025df1409e5ea846375bc9dfa240956cca87ef57384d93fef7d6fa90ca8c7f", - "9cd4522806c0fcca01b37874188b2bd394d7c419956d77472a4e072b01d99041", - ), - "x040": ( - "ba128046c588a26dbd3b3a011b26cb7fa3cf8f269c184c132372cb20b6eb54c1", - "b4ed0ca0b9a98e789e05000e830403a7ade4d8afa01c73491c44610195198afe", - ), - "x064": ( - "0f4489c3cd3ad979bd6b0324213998bcb36dc861d178f977997ebfe53c3ba564", - "3e706fa416a18dfda14c713423eba8041ae2509db3e0a611d5f599b5268a46c4", - ), - "x080": ( - "76320e43272719df648db37271a247c22eb6e810fe469c37a5db7e2cb696d162", - "7b1ce8e29ceefec10a6569640ee329dba7fbc98b5d0f6346aabade058b66cf29", - ), - "x120": ( - "5cafc461b78897d5e4f24e68cb406d18e75f31105ef620e7682b611bb355eb3a", - "36174ddd0299db04a42631d028abcb1cc7afec2b705e42bd28fcd325e5d596bf", - ), - "x160": ( - "8093f57a5824b181fb734ea21ae34b1f7ee42c5298e63cf6d587c290973195d2", - "9d1485050bdf19531ffa1ed7827c75850e0f2972118a996b91aa9264b088fd43", - ), - "x320": ( - "91fb3e6f4e9e44b3687e80977f7f4412ee9937c0c704232664fc83e4322ea01e", - "9db7eacc37b85c98184070e1a172e6104c00846f44bcd4e727da9e50d9692398", - ), - "y002": ( - "1e8091c674532b1a61c04f6393a9c570113e0197f22bd1b98cc4c4fe800c6465", - "f63221f63d625b8e201221499682587bfe29d33f50a4c4f4d53be00f66c0f12c", - ), - "y004": ( - "752fdbad21c78911bf1dcb8c513e5a0e14697b068e5d9e73525dbaa416d18d8e", - "45e6ba8309a17a77e67afc05228454b2e0ee6be0dae65edc0f31f1da10cc066b", - ), - "y006": ( - "98942e07b273da500ff9699a1f88aca78dfad4375faabb0bab784bb0dace80a9", - "b70261cba4e60013c99d130cc098d2fce629ff978a445663b6fa4f8fc099a2be", - ), - "y008": ( - "1b099377cc9a4fb183159a6f9b24bc998e5659d25a449f40c90cbffcbcfdcae4", - "b11f5432a216ee640fe9be6e32939defa8d08b8d136349bf3690715a98752ca1", - ), - "y016": ( - "b7ce1f5e223f0941c960602de922bcf846288ce7a4c33b2a4f2e4ac4b480045b", - "d7404f50205e82d793e219afb9eb2bfeb781b6b2d316a6128c6d7d7dacab7f57", - ), - "y032": ( - "6a6a545cf3549973554c9b94f0cd40e25f229fffb1e7f7ac779a59dcbee612bd", - "eb3ac1c45ec60f4f031c3f5180573422b1cf7bebc26c004637517372f68f8937", - ), - "y040": ( - "98d00118b335162bbffe8f1329e54e5c8e75ee09b2a5414f97b0ddfc56e796f6", - "b5be2a5e5f072ecdd9c0b8a437cd896df0efa1f6a1f77e41caa8719b7dfcb05d", - ), - "y064": ( - "65c948c7a18aaecaad2d1bd4fd978987425604ba6669ef55a1faa0069a2804b7", - "885c4b7ed7ea339daca7dafa1a62cb7d41b1068897ef90a5a3d71b4a2e2db31a", - ), - "y080": ( - "7a2c62da2982e369a4984d3c7c3b32d6f8d3748a71cb37a31156c436c37f3e95", - "3d119577e1e3bf8d153b895e8ea9e4ec150ff2d92abdca711b6e949c3fd7115d", - ), - "y120": ( - "a96ab0d27d3ae35a422ee7df0d789069b3e3217a99334e0ce861a96595bc5986", - "4a6fa387108380b730b71feea2ad80b5224b5ea9dc21dc156c93fe3c6186485c", - ), - "y160": ( - "45067240ffbc7ca2591313fee2f80dbdda6d66ec1a7451446f9a6d00d8f7ac6e", - "ead1e6b568be8f34447ec8941299a9df4368736ba9a8205de5427fa20a1fb316", - ), - "y320": ( - "b05e173e4ae635cfa22d06392ee3741284d17dadfee68f2aa6fd8cb2b7561112", - "cad78f74a586e24c61d38be17f3ae53bb9674380174d2585da1a526b8c20e1fd", - ), -} - -# The widths and depths are deduced from a quantized linear function. For -# more information, please refer to "Designing Network Design Spaces" by -# Radosavovic et al. - -# BatchNorm momentum and epsilon values taken from original implementation. - -MODEL_CONFIGS = { - "x002": { - "depths": [1, 1, 4, 7], - "widths": [24, 56, 152, 368], - "group_width": 8, - "default_size": 224, - "block_type": "X", - }, - "x004": { - "depths": [1, 2, 7, 12], - "widths": [32, 64, 160, 384], - "group_width": 16, - "default_size": 224, - "block_type": "X", - }, - "x006": { - "depths": [1, 3, 5, 7], - "widths": [48, 96, 240, 528], - "group_width": 24, - "default_size": 224, - "block_type": "X", - }, - "x008": { - "depths": [1, 3, 7, 5], - "widths": [64, 128, 288, 672], - "group_width": 16, - "default_size": 224, - "block_type": "X", - }, - "x016": { - "depths": [2, 4, 10, 2], - "widths": [72, 168, 408, 912], - "group_width": 24, - "default_size": 224, - "block_type": "X", - }, - "x032": { - "depths": [2, 6, 15, 2], - "widths": [96, 192, 432, 1008], - "group_width": 48, - "default_size": 224, - "block_type": "X", - }, - "x040": { - "depths": [2, 5, 14, 2], - "widths": [80, 240, 560, 1360], - "group_width": 40, - "default_size": 224, - "block_type": "X", - }, - "x064": { - "depths": [2, 4, 10, 1], - "widths": [168, 392, 784, 1624], - "group_width": 56, - "default_size": 224, - "block_type": "X", - }, - "x080": { - "depths": [2, 5, 15, 1], - "widths": [80, 240, 720, 1920], - "group_width": 120, - "default_size": 224, - "block_type": "X", - }, - "x120": { - "depths": [2, 5, 11, 1], - "widths": [224, 448, 896, 2240], - "group_width": 112, - "default_size": 224, - "block_type": "X", - }, - "x160": { - "depths": [2, 6, 13, 1], - "widths": [256, 512, 896, 2048], - "group_width": 128, - "default_size": 224, - "block_type": "X", - }, - "x320": { - "depths": [2, 7, 13, 1], - "widths": [336, 672, 1344, 2520], - "group_width": 168, - "default_size": 224, - "block_type": "X", - }, - "y002": { - "depths": [1, 1, 4, 7], - "widths": [24, 56, 152, 368], - "group_width": 8, - "default_size": 224, - "block_type": "Y", - }, - "y004": { - "depths": [1, 3, 6, 6], - "widths": [48, 104, 208, 440], - "group_width": 8, - "default_size": 224, - "block_type": "Y", - }, - "y006": { - "depths": [1, 3, 7, 4], - "widths": [48, 112, 256, 608], - "group_width": 16, - "default_size": 224, - "block_type": "Y", - }, - "y008": { - "depths": [1, 3, 8, 2], - "widths": [64, 128, 320, 768], - "group_width": 16, - "default_size": 224, - "block_type": "Y", - }, - "y016": { - "depths": [2, 6, 17, 2], - "widths": [48, 120, 336, 888], - "group_width": 24, - "default_size": 224, - "block_type": "Y", - }, - "y032": { - "depths": [2, 5, 13, 1], - "widths": [72, 216, 576, 1512], - "group_width": 24, - "default_size": 224, - "block_type": "Y", - }, - "y040": { - "depths": [2, 6, 12, 2], - "widths": [128, 192, 512, 1088], - "group_width": 64, - "default_size": 224, - "block_type": "Y", - }, - "y064": { - "depths": [2, 7, 14, 2], - "widths": [144, 288, 576, 1296], - "group_width": 72, - "default_size": 224, - "block_type": "Y", - }, - "y080": { - "depths": [2, 4, 10, 1], - "widths": [168, 448, 896, 2016], - "group_width": 56, - "default_size": 224, - "block_type": "Y", - }, - "y120": { - "depths": [2, 5, 11, 1], - "widths": [224, 448, 896, 2240], - "group_width": 112, - "default_size": 224, - "block_type": "Y", - }, - "y160": { - "depths": [2, 4, 11, 1], - "widths": [224, 448, 1232, 3024], - "group_width": 112, - "default_size": 224, - "block_type": "Y", - }, - "y320": { - "depths": [2, 5, 12, 1], - "widths": [232, 696, 1392, 3712], - "group_width": 232, - "default_size": 224, - "block_type": "Y", - }, -} - -BASE_DOCSTRING = """Instantiates the {name} architecture. - - Reference: - - [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) - (CVPR 2020) - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - Note: Each Keras Application expects a specific kind of input preprocessing. - For Regnets, preprocessing is included in the model using a `Rescaling` layer. - RegNet models expect their inputs to be float or uint8 tensors of pixels with - values in the [0-255] range. - - The naming of models is as follows: `RegNet` where - `block_type` is one of `(X, Y)` and `flops` signifies hundred million - floating point operations. For example RegNetY064 corresponds to RegNet with - Y block and 6.4 giga flops (64 hundred million flops). - - Args: - include_top: Whether to include the fully-connected - layer at the top of the network. Defaults to True. - weights: One of `None` (random initialization), - `"imagenet"` (pre-training on ImageNet), or the path to the weights - file to be loaded. Defaults to `"imagenet"`. - input_tensor: Optional Keras tensor - (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: Optional shape tuple, only to be specified - if `include_top` is False. - It should have exactly 3 inputs channels. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. Defaults to None. - - `None` means that the output of the model will be - the 4D tensor output of the - last convolutional layer. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional layer, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will - be applied. - classes: Optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. Defaults to 1000 (number of - ImageNet classes). - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - Defaults to `"softmax"`. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - - Returns: - A `keras.Model` instance. -""" - - -def PreStem(name=None): - """Rescales and normalizes inputs to [0,1] and ImageNet mean and std. - - Args: - name: name prefix - - Returns: - Rescaled and normalized tensor - """ - if name is None: - name = "prestem" + str(backend.get_uid("prestem")) - - def apply(x): - x = layers.Rescaling( - scale=1.0 / 255.0, name=name + "_prestem_rescaling" - )(x) - return x - - return apply - - -def Stem(name=None): - """Implementation of RegNet stem. - - (Common to all model variants) - Args: - name: name prefix - - Returns: - Output tensor of the Stem - """ - if name is None: - name = "stem" + str(backend.get_uid("stem")) - - def apply(x): - x = layers.Conv2D( - 32, - (3, 3), - strides=2, - use_bias=False, - padding="same", - kernel_initializer="he_normal", - name=name + "_stem_conv", - )(x) - x = layers.BatchNormalization( - momentum=0.9, epsilon=1e-5, name=name + "_stem_bn" - )(x) - x = layers.ReLU(name=name + "_stem_relu")(x) - return x - - return apply - - -def SqueezeAndExciteBlock(filters_in, se_filters, name=None): - """Implements the Squeeze & Excite block (https://arxiv.org/abs/1709.01507). - - Args: - filters_in: input filters to the block - se_filters: filters to squeeze to - name: name prefix - - Returns: - A function object - """ - if name is None: - name = str(backend.get_uid("squeeze_and_excite")) - - def apply(inputs): - x = layers.GlobalAveragePooling2D( - name=name + "_squeeze_and_excite_gap", keepdims=True - )(inputs) - x = layers.Conv2D( - se_filters, - (1, 1), - activation="relu", - kernel_initializer="he_normal", - name=name + "_squeeze_and_excite_squeeze", - )(x) - x = layers.Conv2D( - filters_in, - (1, 1), - activation="sigmoid", - kernel_initializer="he_normal", - name=name + "_squeeze_and_excite_excite", - )(x) - x = tf.math.multiply(x, inputs) - return x - - return apply - - -def XBlock(filters_in, filters_out, group_width, stride=1, name=None): - """Implementation of X Block. - - Reference: [Designing Network Design - Spaces](https://arxiv.org/abs/2003.13678) - Args: - filters_in: filters in the input tensor - filters_out: filters in the output tensor - group_width: group width - stride: stride - name: name prefix - Returns: - Output tensor of the block - """ - if name is None: - name = str(backend.get_uid("xblock")) - - def apply(inputs): - if filters_in != filters_out and stride == 1: - raise ValueError( - f"Input filters({filters_in}) and output " - f"filters({filters_out}) " - f"are not equal for stride {stride}. Input and output filters " - f"must be equal for stride={stride}." - ) - - # Declare layers - groups = filters_out // group_width - - if stride != 1: - skip = layers.Conv2D( - filters_out, - (1, 1), - strides=stride, - use_bias=False, - kernel_initializer="he_normal", - name=name + "_skip_1x1", - )(inputs) - skip = layers.BatchNormalization( - momentum=0.9, epsilon=1e-5, name=name + "_skip_bn" - )(skip) - else: - skip = inputs - - # Build block - # conv_1x1_1 - x = layers.Conv2D( - filters_out, - (1, 1), - use_bias=False, - kernel_initializer="he_normal", - name=name + "_conv_1x1_1", - )(inputs) - x = layers.BatchNormalization( - momentum=0.9, epsilon=1e-5, name=name + "_conv_1x1_1_bn" - )(x) - x = layers.ReLU(name=name + "_conv_1x1_1_relu")(x) - - # conv_3x3 - x = layers.Conv2D( - filters_out, - (3, 3), - use_bias=False, - strides=stride, - groups=groups, - padding="same", - kernel_initializer="he_normal", - name=name + "_conv_3x3", - )(x) - x = layers.BatchNormalization( - momentum=0.9, epsilon=1e-5, name=name + "_conv_3x3_bn" - )(x) - x = layers.ReLU(name=name + "_conv_3x3_relu")(x) - - # conv_1x1_2 - x = layers.Conv2D( - filters_out, - (1, 1), - use_bias=False, - kernel_initializer="he_normal", - name=name + "_conv_1x1_2", - )(x) - x = layers.BatchNormalization( - momentum=0.9, epsilon=1e-5, name=name + "_conv_1x1_2_bn" - )(x) - - x = layers.ReLU(name=name + "_exit_relu")(x + skip) - - return x - - return apply - - -def YBlock( - filters_in, - filters_out, - group_width, - stride=1, - squeeze_excite_ratio=0.25, - name=None, -): - """Implementation of Y Block. - - Reference: [Designing Network Design - Spaces](https://arxiv.org/abs/2003.13678) - Args: - filters_in: filters in the input tensor - filters_out: filters in the output tensor - group_width: group width - stride: stride - squeeze_excite_ratio: expansion ration for Squeeze and Excite block - name: name prefix - Returns: - Output tensor of the block - """ - if name is None: - name = str(backend.get_uid("yblock")) - - def apply(inputs): - if filters_in != filters_out and stride == 1: - raise ValueError( - f"Input filters({filters_in}) and output " - f"filters({filters_out}) " - f"are not equal for stride {stride}. Input and output filters " - f"must be equal for stride={stride}." - ) - - groups = filters_out // group_width - se_filters = int(filters_in * squeeze_excite_ratio) - - if stride != 1: - skip = layers.Conv2D( - filters_out, - (1, 1), - strides=stride, - use_bias=False, - kernel_initializer="he_normal", - name=name + "_skip_1x1", - )(inputs) - skip = layers.BatchNormalization( - momentum=0.9, epsilon=1e-5, name=name + "_skip_bn" - )(skip) - else: - skip = inputs - - # Build block - # conv_1x1_1 - x = layers.Conv2D( - filters_out, - (1, 1), - use_bias=False, - kernel_initializer="he_normal", - name=name + "_conv_1x1_1", - )(inputs) - x = layers.BatchNormalization( - momentum=0.9, epsilon=1e-5, name=name + "_conv_1x1_1_bn" - )(x) - x = layers.ReLU(name=name + "_conv_1x1_1_relu")(x) - - # conv_3x3 - x = layers.Conv2D( - filters_out, - (3, 3), - use_bias=False, - strides=stride, - groups=groups, - padding="same", - kernel_initializer="he_normal", - name=name + "_conv_3x3", - )(x) - x = layers.BatchNormalization( - momentum=0.9, epsilon=1e-5, name=name + "_conv_3x3_bn" - )(x) - x = layers.ReLU(name=name + "_conv_3x3_relu")(x) - - # Squeeze-Excitation block - x = SqueezeAndExciteBlock(filters_out, se_filters, name=name)(x) - - # conv_1x1_2 - x = layers.Conv2D( - filters_out, - (1, 1), - use_bias=False, - kernel_initializer="he_normal", - name=name + "_conv_1x1_2", - )(x) - x = layers.BatchNormalization( - momentum=0.9, epsilon=1e-5, name=name + "_conv_1x1_2_bn" - )(x) - - x = layers.ReLU(name=name + "_exit_relu")(x + skip) - - return x - - return apply - - -def ZBlock( - filters_in, - filters_out, - group_width, - stride=1, - squeeze_excite_ratio=0.25, - bottleneck_ratio=0.25, - name=None, -): - """Implementation of Z block Reference: [Fast and Accurate Model - Scaling](https://arxiv.org/abs/2103.06877). - - Args: - filters_in: filters in the input tensor - filters_out: filters in the output tensor - group_width: group width - stride: stride - squeeze_excite_ratio: expansion ration for Squeeze and Excite block - bottleneck_ratio: inverted bottleneck ratio - name: name prefix - Returns: - Output tensor of the block - """ - if name is None: - name = str(backend.get_uid("zblock")) - - def apply(inputs): - if filters_in != filters_out and stride == 1: - raise ValueError( - f"Input filters({filters_in}) and output filters({filters_out})" - f"are not equal for stride {stride}. Input and output filters " - f"must be equal for stride={stride}." - ) - - groups = filters_out // group_width - se_filters = int(filters_in * squeeze_excite_ratio) - - inv_btlneck_filters = int(filters_out / bottleneck_ratio) - - # Build block - # conv_1x1_1 - x = layers.Conv2D( - inv_btlneck_filters, - (1, 1), - use_bias=False, - kernel_initializer="he_normal", - name=name + "_conv_1x1_1", - )(inputs) - x = layers.BatchNormalization( - momentum=0.9, epsilon=1e-5, name=name + "_conv_1x1_1_bn" - )(x) - x = tf.nn.silu(x) - - # conv_3x3 - x = layers.Conv2D( - inv_btlneck_filters, - (3, 3), - use_bias=False, - strides=stride, - groups=groups, - padding="same", - kernel_initializer="he_normal", - name=name + "_conv_3x3", - )(x) - x = layers.BatchNormalization( - momentum=0.9, epsilon=1e-5, name=name + "_conv_3x3_bn" - )(x) - x = tf.nn.silu(x) - - # Squeeze-Excitation block - x = SqueezeAndExciteBlock(inv_btlneck_filters, se_filters, name=name) - - # conv_1x1_2 - x = layers.Conv2D( - filters_out, - (1, 1), - use_bias=False, - kernel_initializer="he_normal", - name=name + "_conv_1x1_2", - )(x) - x = layers.BatchNormalization( - momentum=0.9, epsilon=1e-5, name=name + "_conv_1x1_2_bn" - )(x) - - if stride != 1: - return x - else: - return x + inputs - - return apply - - -def Stage(block_type, depth, group_width, filters_in, filters_out, name=None): - """Implementation of Stage in RegNet. - - Args: - block_type: must be one of "X", "Y", "Z" - depth: depth of stage, number of blocks to use - group_width: group width of all blocks in this stage - filters_in: input filters to this stage - filters_out: output filters from this stage - name: name prefix - - Returns: - Output tensor of Stage - """ - if name is None: - name = str(backend.get_uid("stage")) - - def apply(inputs): - x = inputs - if block_type == "X": - x = XBlock( - filters_in, - filters_out, - group_width, - stride=2, - name=f"{name}_XBlock_0", - )(x) - for i in range(1, depth): - x = XBlock( - filters_out, - filters_out, - group_width, - name=f"{name}_XBlock_{i}", - )(x) - elif block_type == "Y": - x = YBlock( - filters_in, - filters_out, - group_width, - stride=2, - name=name + "_YBlock_0", - )(x) - for i in range(1, depth): - x = YBlock( - filters_out, - filters_out, - group_width, - name=f"{name}_YBlock_{i}", - )(x) - elif block_type == "Z": - x = ZBlock( - filters_in, - filters_out, - group_width, - stride=2, - name=f"{name}_ZBlock_0", - )(x) - for i in range(1, depth): - x = ZBlock( - filters_out, - filters_out, - group_width, - name=f"{name}_ZBlock_{i}", - )(x) - else: - raise NotImplementedError( - f"Block type `{block_type}` not recognized." - "block_type must be one of (`X`, `Y`, `Z`). " - ) - return x - - return apply - - -def Head(num_classes=1000, name=None): - """Implementation of classification head of RegNet. - - Args: - num_classes: number of classes for Dense layer - name: name prefix - - Returns: - Classification head function. - """ - if name is None: - name = str(backend.get_uid("head")) - - def apply(x): - x = layers.GlobalAveragePooling2D(name=name + "_head_gap")(x) - x = layers.Dense(num_classes, name=name + "head_dense")(x) - return x - - return apply - - -def RegNet( - depths, - widths, - group_width, - block_type, - default_size, - model_name="regnet", - include_preprocessing=True, - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates RegNet architecture given specific configuration. - - Args: - depths: An iterable containing depths for each individual stages. - widths: An iterable containing output channel width of each individual - stages - group_width: Number of channels to be used in each group. See grouped - convolutions for more information. - block_type: Must be one of `{"X", "Y", "Z"}`. For more details see the - papers "Designing network design spaces" and "Fast and Accurate Model - Scaling" - default_size: Default input image size. - model_name: An optional name for the model. - include_preprocessing: boolean denoting whther to include preprocessing in - the model - include_top: Boolean denoting whether to include classification head to - the model. - weights: one of `None` (random initialization), "imagenet" (pre-training - on ImageNet), or the path to the weights file to be loaded. - input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to - use as image input for the model. - input_shape: optional shape tuple, only to be specified if `include_top` - is False. It should have exactly 3 inputs channels. - pooling: optional pooling mode for feature extraction when `include_top` - is `False`. - `None` means that the output of the model will be the 4D - tensor output of the last convolutional layer. - `avg` means that global - average pooling will be applied to the output of the last convolutional - layer, and thus the output of the model will be a 2D tensor. - `max` - means that global max pooling will be applied. - classes: optional number of classes to classify images into, only to be - specified if `include_top` is True, and if no `weights` argument is - specified. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - - Returns: - A `keras.Model` instance. - - Raises: - ValueError: in case of invalid argument for `weights`, - or invalid input shape. - ValueError: if `classifier_activation` is not `softmax` or `None` when - using a pretrained top layer. - ValueError: if `include_top` is True but `num_classes` is not 1000. - ValueError: if `block_type` is not one of `{"X", "Y", "Z"}` - - """ - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded." - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - "If using `weights` as `'imagenet'` with `include_top`" - " as true, `classes` should be 1000" - ) - - # Determine proper input shape - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=default_size, - min_size=32, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor)[0] - else: - inputs = img_input - - x = inputs - if include_preprocessing: - x = PreStem(name=model_name)(x) - x = Stem(name=model_name)(x) - - in_channels = 32 # Output from Stem - - for num_stage in range(4): - depth = depths[num_stage] - out_channels = widths[num_stage] - - x = Stage( - block_type, - depth, - group_width, - in_channels, - out_channels, - name=model_name + "_Stage_" + str(num_stage), - )(x) - in_channels = out_channels - - if include_top: - x = Head(num_classes=classes)(x) - imagenet_utils.validate_activation(classifier_activation, weights) - - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D()(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D()(x) - - model = training.Model(inputs=inputs, outputs=x, name=model_name) - - # Load weights. - if weights == "imagenet": - if include_top: - file_suffix = ".h5" - file_hash = WEIGHTS_HASHES[model_name[-4:]][0] - else: - file_suffix = "_notop.h5" - file_hash = WEIGHTS_HASHES[model_name[-4:]][1] - file_name = model_name + file_suffix - weights_path = data_utils.get_file( - file_name, - BASE_WEIGHTS_PATH + file_name, - cache_subdir="models", - file_hash=file_hash, - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - - return model - - -## Instantiating variants ## - - -@keras_export( - "keras.applications.regnet.RegNetX002", "keras.applications.RegNetX002" -) -def RegNetX002( - model_name="regnetx002", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["x002"]["depths"], - MODEL_CONFIGS["x002"]["widths"], - MODEL_CONFIGS["x002"]["group_width"], - MODEL_CONFIGS["x002"]["block_type"], - MODEL_CONFIGS["x002"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetX004", "keras.applications.RegNetX004" -) -def RegNetX004( - model_name="regnetx004", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["x004"]["depths"], - MODEL_CONFIGS["x004"]["widths"], - MODEL_CONFIGS["x004"]["group_width"], - MODEL_CONFIGS["x004"]["block_type"], - MODEL_CONFIGS["x004"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetX006", "keras.applications.RegNetX006" -) -def RegNetX006( - model_name="regnetx006", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["x006"]["depths"], - MODEL_CONFIGS["x006"]["widths"], - MODEL_CONFIGS["x006"]["group_width"], - MODEL_CONFIGS["x006"]["block_type"], - MODEL_CONFIGS["x006"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetX008", "keras.applications.RegNetX008" -) -def RegNetX008( - model_name="regnetx008", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["x008"]["depths"], - MODEL_CONFIGS["x008"]["widths"], - MODEL_CONFIGS["x008"]["group_width"], - MODEL_CONFIGS["x008"]["block_type"], - MODEL_CONFIGS["x008"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetX016", "keras.applications.RegNetX016" -) -def RegNetX016( - model_name="regnetx016", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["x016"]["depths"], - MODEL_CONFIGS["x016"]["widths"], - MODEL_CONFIGS["x016"]["group_width"], - MODEL_CONFIGS["x016"]["block_type"], - MODEL_CONFIGS["x016"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetX032", "keras.applications.RegNetX032" -) -def RegNetX032( - model_name="regnetx032", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["x032"]["depths"], - MODEL_CONFIGS["x032"]["widths"], - MODEL_CONFIGS["x032"]["group_width"], - MODEL_CONFIGS["x032"]["block_type"], - MODEL_CONFIGS["x032"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetX040", "keras.applications.RegNetX040" -) -def RegNetX040( - model_name="regnetx040", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["x040"]["depths"], - MODEL_CONFIGS["x040"]["widths"], - MODEL_CONFIGS["x040"]["group_width"], - MODEL_CONFIGS["x040"]["block_type"], - MODEL_CONFIGS["x040"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetX064", "keras.applications.RegNetX064" -) -def RegNetX064( - model_name="regnetx064", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["x064"]["depths"], - MODEL_CONFIGS["x064"]["widths"], - MODEL_CONFIGS["x064"]["group_width"], - MODEL_CONFIGS["x064"]["block_type"], - MODEL_CONFIGS["x064"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetX080", "keras.applications.RegNetX080" -) -def RegNetX080( - model_name="regnetx080", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["x080"]["depths"], - MODEL_CONFIGS["x080"]["widths"], - MODEL_CONFIGS["x080"]["group_width"], - MODEL_CONFIGS["x080"]["block_type"], - MODEL_CONFIGS["x080"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetX120", "keras.applications.RegNetX120" -) -def RegNetX120( - model_name="regnetx120", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["x120"]["depths"], - MODEL_CONFIGS["x120"]["widths"], - MODEL_CONFIGS["x120"]["group_width"], - MODEL_CONFIGS["x120"]["block_type"], - MODEL_CONFIGS["x120"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetX160", "keras.applications.RegNetX160" -) -def RegNetX160( - model_name="regnetx160", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["x160"]["depths"], - MODEL_CONFIGS["x160"]["widths"], - MODEL_CONFIGS["x160"]["group_width"], - MODEL_CONFIGS["x160"]["block_type"], - MODEL_CONFIGS["x160"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetX320", "keras.applications.RegNetX320" -) -def RegNetX320( - model_name="regnetx320", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["x320"]["depths"], - MODEL_CONFIGS["x320"]["widths"], - MODEL_CONFIGS["x320"]["group_width"], - MODEL_CONFIGS["x320"]["block_type"], - MODEL_CONFIGS["x320"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetY002", "keras.applications.RegNetY002" -) -def RegNetY002( - model_name="regnety002", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["y002"]["depths"], - MODEL_CONFIGS["y002"]["widths"], - MODEL_CONFIGS["y002"]["group_width"], - MODEL_CONFIGS["y002"]["block_type"], - MODEL_CONFIGS["y002"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetY004", "keras.applications.RegNetY004" -) -def RegNetY004( - model_name="regnety004", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["y004"]["depths"], - MODEL_CONFIGS["y004"]["widths"], - MODEL_CONFIGS["y004"]["group_width"], - MODEL_CONFIGS["y004"]["block_type"], - MODEL_CONFIGS["y004"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetY006", "keras.applications.RegNetY006" -) -def RegNetY006( - model_name="regnety006", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["y006"]["depths"], - MODEL_CONFIGS["y006"]["widths"], - MODEL_CONFIGS["y006"]["group_width"], - MODEL_CONFIGS["y006"]["block_type"], - MODEL_CONFIGS["y006"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetY008", "keras.applications.RegNetY008" -) -def RegNetY008( - model_name="regnety008", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["y008"]["depths"], - MODEL_CONFIGS["y008"]["widths"], - MODEL_CONFIGS["y008"]["group_width"], - MODEL_CONFIGS["y008"]["block_type"], - MODEL_CONFIGS["y008"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetY016", "keras.applications.RegNetY016" -) -def RegNetY016( - model_name="regnety016", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["y016"]["depths"], - MODEL_CONFIGS["y016"]["widths"], - MODEL_CONFIGS["y016"]["group_width"], - MODEL_CONFIGS["y016"]["block_type"], - MODEL_CONFIGS["y016"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetY032", "keras.applications.RegNetY032" -) -def RegNetY032( - model_name="regnety032", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["y032"]["depths"], - MODEL_CONFIGS["y032"]["widths"], - MODEL_CONFIGS["y032"]["group_width"], - MODEL_CONFIGS["y032"]["block_type"], - MODEL_CONFIGS["y032"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetY040", "keras.applications.RegNetY040" -) -def RegNetY040( - model_name="regnety040", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["y040"]["depths"], - MODEL_CONFIGS["y040"]["widths"], - MODEL_CONFIGS["y040"]["group_width"], - MODEL_CONFIGS["y040"]["block_type"], - MODEL_CONFIGS["y040"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetY064", "keras.applications.RegNetY064" -) -def RegNetY064( - model_name="regnety064", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["y064"]["depths"], - MODEL_CONFIGS["y064"]["widths"], - MODEL_CONFIGS["y064"]["group_width"], - MODEL_CONFIGS["y064"]["block_type"], - MODEL_CONFIGS["y064"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetY080", "keras.applications.RegNetY080" -) -def RegNetY080( - model_name="regnety080", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["y080"]["depths"], - MODEL_CONFIGS["y080"]["widths"], - MODEL_CONFIGS["y080"]["group_width"], - MODEL_CONFIGS["y080"]["block_type"], - MODEL_CONFIGS["y080"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetY120", "keras.applications.RegNetY120" -) -def RegNetY120( - model_name="regnety120", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["y120"]["depths"], - MODEL_CONFIGS["y120"]["widths"], - MODEL_CONFIGS["y120"]["group_width"], - MODEL_CONFIGS["y120"]["block_type"], - MODEL_CONFIGS["y120"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetY160", "keras.applications.RegNetY160" -) -def RegNetY160( - model_name="regnety160", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["y160"]["depths"], - MODEL_CONFIGS["y160"]["widths"], - MODEL_CONFIGS["y160"]["group_width"], - MODEL_CONFIGS["y160"]["block_type"], - MODEL_CONFIGS["y160"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.regnet.RegNetY320", "keras.applications.RegNetY320" -) -def RegNetY320( - model_name="regnety320", - include_top=True, - include_preprocessing=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - return RegNet( - MODEL_CONFIGS["y320"]["depths"], - MODEL_CONFIGS["y320"]["widths"], - MODEL_CONFIGS["y320"]["group_width"], - MODEL_CONFIGS["y320"]["block_type"], - MODEL_CONFIGS["y320"]["default_size"], - model_name=model_name, - include_top=include_top, - include_preprocessing=include_preprocessing, - weights=weights, - input_tensor=input_tensor, - input_shape=input_shape, - pooling=pooling, - classes=classes, - classifier_activation=classifier_activation, - ) - - -RegNetX002.__doc__ = BASE_DOCSTRING.format(name="RegNetX002") -RegNetX004.__doc__ = BASE_DOCSTRING.format(name="RegNetX004") -RegNetX006.__doc__ = BASE_DOCSTRING.format(name="RegNetX006") -RegNetX008.__doc__ = BASE_DOCSTRING.format(name="RegNetX008") -RegNetX016.__doc__ = BASE_DOCSTRING.format(name="RegNetX016") -RegNetX032.__doc__ = BASE_DOCSTRING.format(name="RegNetX032") -RegNetX040.__doc__ = BASE_DOCSTRING.format(name="RegNetX040") -RegNetX064.__doc__ = BASE_DOCSTRING.format(name="RegNetX064") -RegNetX080.__doc__ = BASE_DOCSTRING.format(name="RegNetX080") -RegNetX120.__doc__ = BASE_DOCSTRING.format(name="RegNetX120") -RegNetX160.__doc__ = BASE_DOCSTRING.format(name="RegNetX160") -RegNetX320.__doc__ = BASE_DOCSTRING.format(name="RegNetX320") - -RegNetY002.__doc__ = BASE_DOCSTRING.format(name="RegNetY002") -RegNetY004.__doc__ = BASE_DOCSTRING.format(name="RegNetY004") -RegNetY006.__doc__ = BASE_DOCSTRING.format(name="RegNetY006") -RegNetY008.__doc__ = BASE_DOCSTRING.format(name="RegNetY008") -RegNetY016.__doc__ = BASE_DOCSTRING.format(name="RegNetY016") -RegNetY032.__doc__ = BASE_DOCSTRING.format(name="RegNetY032") -RegNetY040.__doc__ = BASE_DOCSTRING.format(name="RegNetY040") -RegNetY064.__doc__ = BASE_DOCSTRING.format(name="RegNetY064") -RegNetY080.__doc__ = BASE_DOCSTRING.format(name="RegNetY080") -RegNetY120.__doc__ = BASE_DOCSTRING.format(name="RegNetY120") -RegNetY160.__doc__ = BASE_DOCSTRING.format(name="RegNetY160") -RegNetY320.__doc__ = BASE_DOCSTRING.format(name="RegNetY320") - - -@keras_export("keras.applications.regnet.preprocess_input") -def preprocess_input(x, data_format=None): - """A placeholder method for backward compatibility. - - The preprocessing logic has been included in the regnet model - implementation. Users are no longer required to call this method to - normalize the input data. This method does nothing and only kept as a - placeholder to align the API surface between old and new version of model. - - Args: - x: A floating point `numpy.array` or a `tf.Tensor`. - data_format: Optional data format of the image tensor/array. Defaults to - None, in which case the global setting - `tf.keras.backend.image_data_format()` is used (unless you changed it, - it defaults to "channels_last").{mode} - - Returns: - Unchanged `numpy.array` or `tf.Tensor`. - """ - return x - - -@keras_export("keras.applications.regnet.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ diff --git a/keras/applications/resnet.py b/keras/applications/resnet.py deleted file mode 100644 index adcd2b746e0..00000000000 --- a/keras/applications/resnet.py +++ /dev/null @@ -1,693 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""ResNet models for Keras. - -Reference: - - [Deep Residual Learning for Image Recognition]( - https://arxiv.org/abs/1512.03385) (CVPR 2015) -""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.applications import imagenet_utils -from keras.engine import training -from keras.layers import VersionAwareLayers -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -BASE_WEIGHTS_PATH = ( - "https://storage.googleapis.com/tensorflow/keras-applications/resnet/" -) -WEIGHTS_HASHES = { - "resnet50": ( - "2cb95161c43110f7111970584f804107", - "4d473c1dd8becc155b73f8504c6f6626", - ), - "resnet101": ( - "f1aeb4b969a6efcfb50fad2f0c20cfc5", - "88cf7a10940856eca736dc7b7e228a21", - ), - "resnet152": ( - "100835be76be38e30d865e96f2aaae62", - "ee4c566cf9a93f14d82f913c2dc6dd0c", - ), - "resnet50v2": ( - "3ef43a0b657b3be2300d5770ece849e0", - "fac2f116257151a9d068a22e544a4917", - ), - "resnet101v2": ( - "6343647c601c52e1368623803854d971", - "c0ed64b8031c3730f411d2eb4eea35b5", - ), - "resnet152v2": ( - "a49b44d1979771252814e80f8ec446f9", - "ed17cf2e0169df9d443503ef94b23b33", - ), - "resnext50": ( - "67a5b30d522ed92f75a1f16eef299d1a", - "62527c363bdd9ec598bed41947b379fc", - ), - "resnext101": ( - "34fb605428fcc7aa4d62f44404c11509", - "0f678c91647380debd923963594981b3", - ), -} - -layers = None - - -def ResNet( - stack_fn, - preact, - use_bias, - model_name="resnet", - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", - **kwargs, -): - """Instantiates the ResNet, ResNetV2, and ResNeXt architecture. - - Args: - stack_fn: a function that returns output tensor for the - stacked residual blocks. - preact: whether to use pre-activation or not - (True for ResNetV2, False for ResNet and ResNeXt). - use_bias: whether to use biases for convolutional layers or not - (True for ResNet and ResNetV2, False for ResNeXt). - model_name: string, model name. - include_top: whether to include the fully-connected - layer at the top of the network. - weights: one of `None` (random initialization), - 'imagenet' (pre-training on ImageNet), - or the path to the weights file to be loaded. - input_tensor: optional Keras tensor - (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: optional shape tuple, only to be specified - if `include_top` is False (otherwise the input shape - has to be `(224, 224, 3)` (with `channels_last` data format) - or `(3, 224, 224)` (with `channels_first` data format). - It should have exactly 3 inputs channels. - pooling: optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model will be - the 4D tensor output of the - last convolutional layer. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional layer, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will - be applied. - classes: optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - **kwargs: For backwards compatibility only. - - Returns: - A `keras.Model` instance. - """ - global layers - if "layers" in kwargs: - layers = kwargs.pop("layers") - else: - layers = VersionAwareLayers() - if kwargs: - raise ValueError(f"Unknown argument(s): {kwargs}") - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded." - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - 'If using `weights` as `"imagenet"` with `include_top`' - " as true, `classes` should be 1000" - ) - - # Determine proper input shape - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=224, - min_size=32, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - - x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)), name="conv1_pad")( - img_input - ) - x = layers.Conv2D(64, 7, strides=2, use_bias=use_bias, name="conv1_conv")(x) - - if not preact: - x = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name="conv1_bn" - )(x) - x = layers.Activation("relu", name="conv1_relu")(x) - - x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name="pool1_pad")(x) - x = layers.MaxPooling2D(3, strides=2, name="pool1_pool")(x) - - x = stack_fn(x) - - if preact: - x = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name="post_bn" - )(x) - x = layers.Activation("relu", name="post_relu")(x) - - if include_top: - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Dense( - classes, activation=classifier_activation, name="predictions" - )(x) - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D(name="max_pool")(x) - - # Ensure that the model takes into account - # any potential predecessors of `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - - # Create model. - model = training.Model(inputs, x, name=model_name) - - # Load weights. - if (weights == "imagenet") and (model_name in WEIGHTS_HASHES): - if include_top: - file_name = model_name + "_weights_tf_dim_ordering_tf_kernels.h5" - file_hash = WEIGHTS_HASHES[model_name][0] - else: - file_name = ( - model_name + "_weights_tf_dim_ordering_tf_kernels_notop.h5" - ) - file_hash = WEIGHTS_HASHES[model_name][1] - weights_path = data_utils.get_file( - file_name, - BASE_WEIGHTS_PATH + file_name, - cache_subdir="models", - file_hash=file_hash, - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - - return model - - -def block1(x, filters, kernel_size=3, stride=1, conv_shortcut=True, name=None): - """A residual block. - - Args: - x: input tensor. - filters: integer, filters of the bottleneck layer. - kernel_size: default 3, kernel size of the bottleneck layer. - stride: default 1, stride of the first layer. - conv_shortcut: default True, use convolution shortcut if True, - otherwise identity shortcut. - name: string, block label. - - Returns: - Output tensor for the residual block. - """ - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - - if conv_shortcut: - shortcut = layers.Conv2D( - 4 * filters, 1, strides=stride, name=name + "_0_conv" - )(x) - shortcut = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_0_bn" - )(shortcut) - else: - shortcut = x - - x = layers.Conv2D(filters, 1, strides=stride, name=name + "_1_conv")(x) - x = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_1_bn" - )(x) - x = layers.Activation("relu", name=name + "_1_relu")(x) - - x = layers.Conv2D( - filters, kernel_size, padding="SAME", name=name + "_2_conv" - )(x) - x = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_2_bn" - )(x) - x = layers.Activation("relu", name=name + "_2_relu")(x) - - x = layers.Conv2D(4 * filters, 1, name=name + "_3_conv")(x) - x = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_3_bn" - )(x) - - x = layers.Add(name=name + "_add")([shortcut, x]) - x = layers.Activation("relu", name=name + "_out")(x) - return x - - -def stack1(x, filters, blocks, stride1=2, name=None): - """A set of stacked residual blocks. - - Args: - x: input tensor. - filters: integer, filters of the bottleneck layer in a block. - blocks: integer, blocks in the stacked blocks. - stride1: default 2, stride of the first layer in the first block. - name: string, stack label. - - Returns: - Output tensor for the stacked blocks. - """ - x = block1(x, filters, stride=stride1, name=name + "_block1") - for i in range(2, blocks + 1): - x = block1( - x, filters, conv_shortcut=False, name=name + "_block" + str(i) - ) - return x - - -def block2(x, filters, kernel_size=3, stride=1, conv_shortcut=False, name=None): - """A residual block. - - Args: - x: input tensor. - filters: integer, filters of the bottleneck layer. - kernel_size: default 3, kernel size of the bottleneck layer. - stride: default 1, stride of the first layer. - conv_shortcut: default False, use convolution shortcut if True, - otherwise identity shortcut. - name: string, block label. - - Returns: - Output tensor for the residual block. - """ - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - - preact = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_preact_bn" - )(x) - preact = layers.Activation("relu", name=name + "_preact_relu")(preact) - - if conv_shortcut: - shortcut = layers.Conv2D( - 4 * filters, 1, strides=stride, name=name + "_0_conv" - )(preact) - else: - shortcut = ( - layers.MaxPooling2D(1, strides=stride)(x) if stride > 1 else x - ) - - x = layers.Conv2D( - filters, 1, strides=1, use_bias=False, name=name + "_1_conv" - )(preact) - x = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_1_bn" - )(x) - x = layers.Activation("relu", name=name + "_1_relu")(x) - - x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name=name + "_2_pad")(x) - x = layers.Conv2D( - filters, - kernel_size, - strides=stride, - use_bias=False, - name=name + "_2_conv", - )(x) - x = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_2_bn" - )(x) - x = layers.Activation("relu", name=name + "_2_relu")(x) - - x = layers.Conv2D(4 * filters, 1, name=name + "_3_conv")(x) - x = layers.Add(name=name + "_out")([shortcut, x]) - return x - - -def stack2(x, filters, blocks, stride1=2, name=None): - """A set of stacked residual blocks. - - Args: - x: input tensor. - filters: integer, filters of the bottleneck layer in a block. - blocks: integer, blocks in the stacked blocks. - stride1: default 2, stride of the first layer in the first block. - name: string, stack label. - - Returns: - Output tensor for the stacked blocks. - """ - x = block2(x, filters, conv_shortcut=True, name=name + "_block1") - for i in range(2, blocks): - x = block2(x, filters, name=name + "_block" + str(i)) - x = block2(x, filters, stride=stride1, name=name + "_block" + str(blocks)) - return x - - -def block3( - x, - filters, - kernel_size=3, - stride=1, - groups=32, - conv_shortcut=True, - name=None, -): - """A residual block. - - Args: - x: input tensor. - filters: integer, filters of the bottleneck layer. - kernel_size: default 3, kernel size of the bottleneck layer. - stride: default 1, stride of the first layer. - groups: default 32, group size for grouped convolution. - conv_shortcut: default True, use convolution shortcut if True, - otherwise identity shortcut. - name: string, block label. - - Returns: - Output tensor for the residual block. - """ - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - - if conv_shortcut: - shortcut = layers.Conv2D( - (64 // groups) * filters, - 1, - strides=stride, - use_bias=False, - name=name + "_0_conv", - )(x) - shortcut = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_0_bn" - )(shortcut) - else: - shortcut = x - - x = layers.Conv2D(filters, 1, use_bias=False, name=name + "_1_conv")(x) - x = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_1_bn" - )(x) - x = layers.Activation("relu", name=name + "_1_relu")(x) - - c = filters // groups - x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name=name + "_2_pad")(x) - x = layers.DepthwiseConv2D( - kernel_size, - strides=stride, - depth_multiplier=c, - use_bias=False, - name=name + "_2_conv", - )(x) - x_shape = backend.shape(x)[:-1] - x = backend.reshape(x, backend.concatenate([x_shape, (groups, c, c)])) - x = layers.Lambda( - lambda x: sum(x[:, :, :, :, i] for i in range(c)), - name=name + "_2_reduce", - )(x) - x = backend.reshape(x, backend.concatenate([x_shape, (filters,)])) - x = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_2_bn" - )(x) - x = layers.Activation("relu", name=name + "_2_relu")(x) - - x = layers.Conv2D( - (64 // groups) * filters, 1, use_bias=False, name=name + "_3_conv" - )(x) - x = layers.BatchNormalization( - axis=bn_axis, epsilon=1.001e-5, name=name + "_3_bn" - )(x) - - x = layers.Add(name=name + "_add")([shortcut, x]) - x = layers.Activation("relu", name=name + "_out")(x) - return x - - -def stack3(x, filters, blocks, stride1=2, groups=32, name=None): - """A set of stacked residual blocks. - - Args: - x: input tensor. - filters: integer, filters of the bottleneck layer in a block. - blocks: integer, blocks in the stacked blocks. - stride1: default 2, stride of the first layer in the first block. - groups: default 32, group size for grouped convolution. - name: string, stack label. - - Returns: - Output tensor for the stacked blocks. - """ - x = block3(x, filters, stride=stride1, groups=groups, name=name + "_block1") - for i in range(2, blocks + 1): - x = block3( - x, - filters, - groups=groups, - conv_shortcut=False, - name=name + "_block" + str(i), - ) - return x - - -@keras_export( - "keras.applications.resnet50.ResNet50", - "keras.applications.resnet.ResNet50", - "keras.applications.ResNet50", -) -def ResNet50( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - **kwargs, -): - """Instantiates the ResNet50 architecture.""" - - def stack_fn(x): - x = stack1(x, 64, 3, stride1=1, name="conv2") - x = stack1(x, 128, 4, name="conv3") - x = stack1(x, 256, 6, name="conv4") - return stack1(x, 512, 3, name="conv5") - - return ResNet( - stack_fn, - False, - True, - "resnet50", - include_top, - weights, - input_tensor, - input_shape, - pooling, - classes, - **kwargs, - ) - - -@keras_export( - "keras.applications.resnet.ResNet101", "keras.applications.ResNet101" -) -def ResNet101( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - **kwargs, -): - """Instantiates the ResNet101 architecture.""" - - def stack_fn(x): - x = stack1(x, 64, 3, stride1=1, name="conv2") - x = stack1(x, 128, 4, name="conv3") - x = stack1(x, 256, 23, name="conv4") - return stack1(x, 512, 3, name="conv5") - - return ResNet( - stack_fn, - False, - True, - "resnet101", - include_top, - weights, - input_tensor, - input_shape, - pooling, - classes, - **kwargs, - ) - - -@keras_export( - "keras.applications.resnet.ResNet152", "keras.applications.ResNet152" -) -def ResNet152( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - **kwargs, -): - """Instantiates the ResNet152 architecture.""" - - def stack_fn(x): - x = stack1(x, 64, 3, stride1=1, name="conv2") - x = stack1(x, 128, 8, name="conv3") - x = stack1(x, 256, 36, name="conv4") - return stack1(x, 512, 3, name="conv5") - - return ResNet( - stack_fn, - False, - True, - "resnet152", - include_top, - weights, - input_tensor, - input_shape, - pooling, - classes, - **kwargs, - ) - - -@keras_export( - "keras.applications.resnet50.preprocess_input", - "keras.applications.resnet.preprocess_input", -) -def preprocess_input(x, data_format=None): - return imagenet_utils.preprocess_input( - x, data_format=data_format, mode="caffe" - ) - - -@keras_export( - "keras.applications.resnet50.decode_predictions", - "keras.applications.resnet.decode_predictions", -) -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( - mode="", - ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE, - error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, -) -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ - -DOC = """ - - Reference: - - [Deep Residual Learning for Image Recognition]( - https://arxiv.org/abs/1512.03385) (CVPR 2015) - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - Note: each Keras Application expects a specific kind of input preprocessing. - For ResNet, call `tf.keras.applications.resnet.preprocess_input` on your - inputs before passing them to the model. - `resnet.preprocess_input` will convert the input images from RGB to BGR, - then will zero-center each color channel with respect to the ImageNet dataset, - without scaling. - - Args: - include_top: whether to include the fully-connected - layer at the top of the network. - weights: one of `None` (random initialization), - 'imagenet' (pre-training on ImageNet), - or the path to the weights file to be loaded. - input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: optional shape tuple, only to be specified - if `include_top` is False (otherwise the input shape - has to be `(224, 224, 3)` (with `'channels_last'` data format) - or `(3, 224, 224)` (with `'channels_first'` data format). - It should have exactly 3 inputs channels, - and width and height should be no smaller than 32. - E.g. `(200, 200, 3)` would be one valid value. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model will be - the 4D tensor output of the - last convolutional block. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional block, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will - be applied. - classes: optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - - Returns: - A Keras model instance. -""" - -setattr(ResNet50, "__doc__", ResNet50.__doc__ + DOC) -setattr(ResNet101, "__doc__", ResNet101.__doc__ + DOC) -setattr(ResNet152, "__doc__", ResNet152.__doc__ + DOC) diff --git a/keras/applications/resnet_rs.py b/keras/applications/resnet_rs.py deleted file mode 100644 index 2aad806b094..00000000000 --- a/keras/applications/resnet_rs.py +++ /dev/null @@ -1,985 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""ResNet-RS models for Keras. - -Reference: -- [Revisiting ResNets: Improved Training and Scaling Strategies]( - https://arxiv.org/pdf/2103.07579.pdf) -""" -import sys -from typing import Callable -from typing import Dict -from typing import List -from typing import Union - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import layers -from keras.applications import imagenet_utils -from keras.engine import training -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -BASE_WEIGHTS_URL = ( - "https://storage.googleapis.com/tensorflow/keras-applications/resnet_rs/" -) - -WEIGHT_HASHES = { - "resnet-rs-101-i160.h5": "544b3434d00efc199d66e9058c7f3379", - "resnet-rs-101-i160_notop.h5": "82d5b90c5ce9d710da639d6216d0f979", - "resnet-rs-101-i192.h5": "eb285be29ab42cf4835ff20a5e3b5d23", - "resnet-rs-101-i192_notop.h5": "f9a0f6b85faa9c3db2b6e233c4eebb5b", - "resnet-rs-152-i192.h5": "8d72a301ed8a6f11a47c4ced4396e338", - "resnet-rs-152-i192_notop.h5": "5fbf7ac2155cb4d5a6180ee9e3aa8704", - "resnet-rs-152-i224.h5": "31a46a92ab21b84193d0d71dd8c3d03b", - "resnet-rs-152-i224_notop.h5": "dc8b2cba2005552eafa3167f00dc2133", - "resnet-rs-152-i256.h5": "ba6271b99bdeb4e7a9b15c05964ef4ad", - "resnet-rs-152-i256_notop.h5": "fa79794252dbe47c89130f65349d654a", - "resnet-rs-200-i256.h5": "a76930b741884e09ce90fa7450747d5f", - "resnet-rs-200-i256_notop.h5": "bbdb3994718dfc0d1cd45d7eff3f3d9c", - "resnet-rs-270-i256.h5": "20d575825ba26176b03cb51012a367a8", - "resnet-rs-270-i256_notop.h5": "2c42ecb22e35f3e23d2f70babce0a2aa", - "resnet-rs-350-i256.h5": "f4a039dc3c421321b7fc240494574a68", - "resnet-rs-350-i256_notop.h5": "6e44b55025bbdff8f51692a023143d66", - "resnet-rs-350-i320.h5": "7ccb858cc738305e8ceb3c0140bee393", - "resnet-rs-350-i320_notop.h5": "ab0c1f9079d2f85a9facbd2c88aa6079", - "resnet-rs-420-i320.h5": "ae0eb9bed39e64fc8d7e0db4018dc7e8", - "resnet-rs-420-i320_notop.h5": "fe6217c32be8305b1889657172b98884", - "resnet-rs-50-i160.h5": "69d9d925319f00a8bdd4af23c04e4102", - "resnet-rs-50-i160_notop.h5": "90daa68cd26c95aa6c5d25451e095529", -} - -DEPTH_TO_WEIGHT_VARIANTS = { - 50: [160], - 101: [160, 192], - 152: [192, 224, 256], - 200: [256], - 270: [256], - 350: [256, 320], - 420: [320], -} -BLOCK_ARGS = { - 50: [ - {"input_filters": 64, "num_repeats": 3}, - {"input_filters": 128, "num_repeats": 4}, - {"input_filters": 256, "num_repeats": 6}, - {"input_filters": 512, "num_repeats": 3}, - ], - 101: [ - {"input_filters": 64, "num_repeats": 3}, - {"input_filters": 128, "num_repeats": 4}, - {"input_filters": 256, "num_repeats": 23}, - {"input_filters": 512, "num_repeats": 3}, - ], - 152: [ - {"input_filters": 64, "num_repeats": 3}, - {"input_filters": 128, "num_repeats": 8}, - {"input_filters": 256, "num_repeats": 36}, - {"input_filters": 512, "num_repeats": 3}, - ], - 200: [ - {"input_filters": 64, "num_repeats": 3}, - {"input_filters": 128, "num_repeats": 24}, - {"input_filters": 256, "num_repeats": 36}, - {"input_filters": 512, "num_repeats": 3}, - ], - 270: [ - {"input_filters": 64, "num_repeats": 4}, - {"input_filters": 128, "num_repeats": 29}, - {"input_filters": 256, "num_repeats": 53}, - {"input_filters": 512, "num_repeats": 4}, - ], - 350: [ - {"input_filters": 64, "num_repeats": 4}, - {"input_filters": 128, "num_repeats": 36}, - {"input_filters": 256, "num_repeats": 72}, - {"input_filters": 512, "num_repeats": 4}, - ], - 420: [ - {"input_filters": 64, "num_repeats": 4}, - {"input_filters": 128, "num_repeats": 44}, - {"input_filters": 256, "num_repeats": 87}, - {"input_filters": 512, "num_repeats": 4}, - ], -} -CONV_KERNEL_INITIALIZER = { - "class_name": "VarianceScaling", - "config": { - "scale": 2.0, - "mode": "fan_out", - "distribution": "truncated_normal", - }, -} - -BASE_DOCSTRING = """Instantiates the {name} architecture. - - Reference: - [Revisiting ResNets: Improved Training and Scaling Strategies]( - https://arxiv.org/pdf/2103.07579.pdf) - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - Note: each Keras Application expects a specific kind of input preprocessing. - For ResNetRs, by default input preprocessing is included as a part of the - model (as a `Rescaling` layer), and thus - `tf.keras.applications.resnet_rs.preprocess_input` is actually a - pass-through function. In this use case, ResNetRS models expect their inputs - to be float tensors of pixels with values in the [0-255] range. - At the same time, preprocessing as a part of the model (i.e. `Rescaling` - layer) can be disabled by setting `include_preprocessing` argument to False. - With preprocessing disabled ResNetRS models expect their inputs to be float - tensors of pixels with values in the [-1, 1] range. - - Args: - depth: Depth of ResNet network. - input_shape: optional shape tuple. It should have exactly 3 inputs - channels, and width and height should be no smaller than 32. - E.g. (200, 200, 3) would be one valid value. - bn_momentum: Momentum parameter for Batch Normalization layers. - bn_epsilon: Epsilon parameter for Batch Normalization layers. - activation: activation function. - se_ratio: Squeeze and Excitation layer ratio. - dropout_rate: dropout rate before final classifier layer. - drop_connect_rate: dropout rate at skip connections. - include_top: whether to include the fully-connected layer at the top of - the network. - block_args: list of dicts, parameters to construct block modules. - model_name: name of the model. - pooling: optional pooling mode for feature extraction when `include_top` - is `False`. - - `None` means that the output of the model will be - the 4D tensor output of the - last convolutional layer. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional layer, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will - be applied. - weights: one of `None` (random initialization), `'imagenet'` - (pre-training on ImageNet), or the path to the weights file to be - loaded. Note: one model can have multiple imagenet variants - depending on input shape it was trained with. For input_shape - 224x224 pass `imagenet-i224` as argument. By default, highest input - shape weights are downloaded. - input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to - use as image input for the model. - classes: optional number of classes to classify images into, only to be - specified if `include_top` is True, and if no `weights` argument is - specified. - classifier_activation: A `str` or callable. The activation function to - use on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" - layer. - include_preprocessing: Boolean, whether to include the preprocessing - layer (`Rescaling`) at the bottom of the network. Defaults to - `True`. Note: Input image is normalized by ImageNet mean and - standard deviation. - - Returns: - A `keras.Model` instance. -""" - - -def Conv2DFixedPadding(filters, kernel_size, strides, name=None): - """Conv2D block with fixed padding.""" - if name is None: - counter = backend.get_uid("conv_") - name = f"conv_{counter}" - - def apply(inputs): - if strides > 1: - inputs = fixed_padding(inputs, kernel_size) - return layers.Conv2D( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding="same" if strides == 1 else "valid", - use_bias=False, - kernel_initializer=CONV_KERNEL_INITIALIZER, - name=name, - )(inputs) - - return apply - - -def STEM( - bn_momentum: float = 0.0, - bn_epsilon: float = 1e-5, - activation: str = "relu", - name=None, -): - """ResNet-D type STEM block.""" - if name is None: - counter = backend.get_uid("stem_") - name = f"stem_{counter}" - - def apply(inputs): - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - - # First stem block - x = Conv2DFixedPadding( - filters=32, kernel_size=3, strides=2, name=name + "_stem_conv_1" - )(inputs) - x = layers.BatchNormalization( - axis=bn_axis, - momentum=bn_momentum, - epsilon=bn_epsilon, - name=name + "_stem_batch_norm_1", - )(x) - x = layers.Activation(activation, name=name + "_stem_act_1")(x) - - # Second stem block - x = Conv2DFixedPadding( - filters=32, kernel_size=3, strides=1, name=name + "_stem_conv_2" - )(x) - x = layers.BatchNormalization( - axis=bn_axis, - momentum=bn_momentum, - epsilon=bn_epsilon, - name=name + "_stem_batch_norm_2", - )(x) - x = layers.Activation(activation, name=name + "_stem_act_2")(x) - - # Final Stem block: - x = Conv2DFixedPadding( - filters=64, kernel_size=3, strides=1, name=name + "_stem_conv_3" - )(x) - x = layers.BatchNormalization( - axis=bn_axis, - momentum=bn_momentum, - epsilon=bn_epsilon, - name=name + "_stem_batch_norm_3", - )(x) - x = layers.Activation(activation, name=name + "_stem_act_3")(x) - - # Replace stem max pool: - x = Conv2DFixedPadding( - filters=64, kernel_size=3, strides=2, name=name + "_stem_conv_4" - )(x) - x = layers.BatchNormalization( - axis=bn_axis, - momentum=bn_momentum, - epsilon=bn_epsilon, - name=name + "_stem_batch_norm_4", - )(x) - x = layers.Activation(activation, name=name + "_stem_act_4")(x) - return x - - return apply - - -def SE( - in_filters: int, se_ratio: float = 0.25, expand_ratio: int = 1, name=None -): - """Squeeze and Excitation block.""" - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - if name is None: - counter = backend.get_uid("se_") - name = f"se_{counter}" - - def apply(inputs): - x = layers.GlobalAveragePooling2D(name=name + "_se_squeeze")(inputs) - if bn_axis == 1: - se_shape = (x.shape[-1], 1, 1) - else: - se_shape = (1, 1, x.shape[-1]) - x = layers.Reshape(se_shape, name=name + "_se_reshape")(x) - - num_reduced_filters = max(1, int(in_filters * 4 * se_ratio)) - - x = layers.Conv2D( - filters=num_reduced_filters, - kernel_size=[1, 1], - strides=[1, 1], - kernel_initializer=CONV_KERNEL_INITIALIZER, - padding="same", - use_bias=True, - activation="relu", - name=name + "_se_reduce", - )(x) - - x = layers.Conv2D( - filters=4 - * in_filters - * expand_ratio, # Expand ratio is 1 by default - kernel_size=[1, 1], - strides=[1, 1], - kernel_initializer=CONV_KERNEL_INITIALIZER, - padding="same", - use_bias=True, - activation="sigmoid", - name=name + "_se_expand", - )(x) - - return layers.multiply([inputs, x], name=name + "_se_excite") - - return apply - - -def BottleneckBlock( - filters: int, - strides: int, - use_projection: bool, - bn_momentum: float = 0.0, - bn_epsilon: float = 1e-5, - activation: str = "relu", - se_ratio: float = 0.25, - survival_probability: float = 0.8, - name=None, -): - """Bottleneck block variant for residual networks with BN.""" - if name is None: - counter = backend.get_uid("block_0_") - name = f"block_0_{counter}" - - def apply(inputs): - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - - shortcut = inputs - - if use_projection: - filters_out = filters * 4 - if strides == 2: - shortcut = layers.AveragePooling2D( - pool_size=(2, 2), - strides=(2, 2), - padding="same", - name=name + "_projection_pooling", - )(inputs) - shortcut = Conv2DFixedPadding( - filters=filters_out, - kernel_size=1, - strides=1, - name=name + "_projection_conv", - )(shortcut) - else: - shortcut = Conv2DFixedPadding( - filters=filters_out, - kernel_size=1, - strides=strides, - name=name + "_projection_conv", - )(inputs) - - shortcut = layers.BatchNormalization( - axis=bn_axis, - momentum=bn_momentum, - epsilon=bn_epsilon, - name=name + "_projection_batch_norm", - )(shortcut) - - # First conv layer: - x = Conv2DFixedPadding( - filters=filters, kernel_size=1, strides=1, name=name + "_conv_1" - )(inputs) - x = layers.BatchNormalization( - axis=bn_axis, - momentum=bn_momentum, - epsilon=bn_epsilon, - name=name + "batch_norm_1", - )(x) - x = layers.Activation(activation, name=name + "_act_1")(x) - - # Second conv layer: - x = Conv2DFixedPadding( - filters=filters, - kernel_size=3, - strides=strides, - name=name + "_conv_2", - )(x) - x = layers.BatchNormalization( - axis=bn_axis, - momentum=bn_momentum, - epsilon=bn_epsilon, - name=name + "_batch_norm_2", - )(x) - x = layers.Activation(activation, name=name + "_act_2")(x) - - # Third conv layer: - x = Conv2DFixedPadding( - filters=filters * 4, kernel_size=1, strides=1, name=name + "_conv_3" - )(x) - x = layers.BatchNormalization( - axis=bn_axis, - momentum=bn_momentum, - epsilon=bn_epsilon, - name=name + "_batch_norm_3", - )(x) - - if 0 < se_ratio < 1: - x = SE(filters, se_ratio=se_ratio, name=name + "_se")(x) - - # Drop connect - if survival_probability: - x = layers.Dropout( - survival_probability, - noise_shape=(None, 1, 1, 1), - name=name + "_drop", - )(x) - - x = layers.Add()([x, shortcut]) - - return layers.Activation(activation, name=name + "_output_act")(x) - - return apply - - -def BlockGroup( - filters, - strides, - num_repeats, - se_ratio: float = 0.25, - bn_epsilon: float = 1e-5, - bn_momentum: float = 0.0, - activation: str = "relu", - survival_probability: float = 0.8, - name=None, -): - """Create one group of blocks for the ResNet model.""" - if name is None: - counter = backend.get_uid("block_group_") - name = f"block_group_{counter}" - - def apply(inputs): - # Only the first block per block_group uses projection shortcut and - # strides. - x = BottleneckBlock( - filters=filters, - strides=strides, - use_projection=True, - se_ratio=se_ratio, - bn_epsilon=bn_epsilon, - bn_momentum=bn_momentum, - activation=activation, - survival_probability=survival_probability, - name=name + "_block_0_", - )(inputs) - - for i in range(1, num_repeats): - x = BottleneckBlock( - filters=filters, - strides=1, - use_projection=False, - se_ratio=se_ratio, - activation=activation, - bn_epsilon=bn_epsilon, - bn_momentum=bn_momentum, - survival_probability=survival_probability, - name=name + f"_block_{i}_", - )(x) - return x - - return apply - - -def get_survival_probability(init_rate, block_num, total_blocks): - """Get survival probability based on block number and initial rate.""" - return init_rate * float(block_num) / total_blocks - - -def allow_bigger_recursion(target_limit: int): - """Increase default recursion limit to create larger models.""" - current_limit = sys.getrecursionlimit() - if current_limit < target_limit: - sys.setrecursionlimit(target_limit) - - -def fixed_padding(inputs, kernel_size): - """Pad the input along the spatial dimensions independently of input - size.""" - pad_total = kernel_size - 1 - pad_beg = pad_total // 2 - pad_end = pad_total - pad_beg - - # Use ZeroPadding as to avoid TFOpLambda layer - padded_inputs = layers.ZeroPadding2D( - padding=((pad_beg, pad_end), (pad_beg, pad_end)) - )(inputs) - - return padded_inputs - - -def ResNetRS( - depth: int, - input_shape=None, - bn_momentum=0.0, - bn_epsilon=1e-5, - activation: str = "relu", - se_ratio=0.25, - dropout_rate=0.25, - drop_connect_rate=0.2, - include_top=True, - block_args: List[Dict[str, int]] = None, - model_name="resnet-rs", - pooling=None, - weights="imagenet", - input_tensor=None, - classes=1000, - classifier_activation: Union[str, Callable] = "softmax", - include_preprocessing=True, -): - """Build Resnet-RS model, given provided parameters. - - Args: - depth: Depth of ResNet network. - input_shape: optional shape tuple. It should have exactly 3 inputs - channels, and width and height should be no smaller than 32. E.g. - (200, 200, 3) would be one valid value. - bn_momentum: Momentum parameter for Batch Normalization layers. - bn_epsilon: Epsilon parameter for Batch Normalization layers. - activation: activation function. - se_ratio: Squeeze and Excitation layer ratio. - dropout_rate: dropout rate before final classifier layer. - drop_connect_rate: dropout rate at skip connections. - include_top: whether to include the fully-connected layer at the top of - the network. - block_args: list of dicts, parameters to construct block modules. - model_name: name of the model. - pooling: optional pooling mode for feature extraction when `include_top` - is `False`. - - `None` means that the output of the model will be the 4D tensor - output of the last convolutional layer. - - `avg` means that global average pooling will be applied to the - output of the last convolutional layer, and thus the output of the - model will be a 2D tensor. - - `max` means that global max pooling will be applied. - weights: one of `None` (random initialization), `'imagenet'` - (pre-training on ImageNet), or the path to the weights file to be - loaded. Note- one model can have multiple imagenet variants depending - on input shape it was trained with. For input_shape 224x224 pass - `imagenet-i224` as argument. By default, highest input shape weights - are downloaded. - input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to - use as image input for the model. - classes: optional number of classes to classify images into, only to be - specified if `include_top` is True, and if no `weights` argument is - specified. - classifier_activation: A `str` or callable. The activation function to - use on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - include_preprocessing: Boolean, whether to include the preprocessing - layer (`Rescaling`) at the bottom of the network. Defaults to `True`. - Note- Input image is normalized by ImageNet mean and standard - deviation. - - Returns: - A `tf.keras.Model` instance. - - Raises: - ValueError: in case of invalid argument for `weights`, or invalid input - shape. - ValueError: if `classifier_activation` is not `softmax` or `None` when - using a pretrained top layer. - """ - # Validate parameters - available_weight_variants = DEPTH_TO_WEIGHT_VARIANTS[depth] - if weights == "imagenet": - max_input_shape = max(available_weight_variants) - # `imagenet` argument without explicit weights input size. - # Picking weights trained with biggest available shape - weights = f"{weights}-i{max_input_shape}" - - weights_allow_list = [f"imagenet-i{x}" for x in available_weight_variants] - if not ( - weights in {*weights_allow_list, None} or tf.io.gfile.exists(weights) - ): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `'imagenet'` " - "(pre-training on ImageNet, with highest available input shape)," - " or the path to the weights file to be loaded. " - f"For ResNetRS{depth} the following weight variants are " - f"available {weights_allow_list} (default=highest)." - f" Received weights={weights}" - ) - - if weights in weights_allow_list and include_top and classes != 1000: - raise ValueError( - "If using `weights` as `'imagenet'` or any " - f"of {weights_allow_list} " - "with `include_top` as true, `classes` should be 1000. " - f"Received classes={classes}" - ) - - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=224, - min_size=32, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - # Define input tensor - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 - - x = img_input - - if include_preprocessing: - num_channels = input_shape[bn_axis - 1] - x = layers.Rescaling(scale=1.0 / 255)(x) - if num_channels == 3: - x = layers.Normalization( - mean=[0.485, 0.456, 0.406], - variance=[0.229**2, 0.224**2, 0.225**2], - axis=bn_axis, - )(x) - - # Build stem - x = STEM( - bn_momentum=bn_momentum, bn_epsilon=bn_epsilon, activation=activation - )(x) - - # Build blocks - if block_args is None: - block_args = BLOCK_ARGS[depth] - - for i, args in enumerate(block_args): - survival_probability = get_survival_probability( - init_rate=drop_connect_rate, - block_num=i + 2, - total_blocks=len(block_args) + 1, - ) - - x = BlockGroup( - filters=args["input_filters"], - activation=activation, - strides=(1 if i == 0 else 2), - num_repeats=args["num_repeats"], - se_ratio=se_ratio, - bn_momentum=bn_momentum, - bn_epsilon=bn_epsilon, - survival_probability=survival_probability, - name=f"BlockGroup{i + 2}_", - )(x) - - # Build head: - if include_top: - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - if dropout_rate > 0: - x = layers.Dropout(dropout_rate, name="top_dropout")(x) - - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Dense( - classes, activation=classifier_activation, name="predictions" - )(x) - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D(name="max_pool")(x) - - # Ensure that the model takes into account - # any potential predecessors of `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - - # Create model. - model = training.Model(inputs, x, name=model_name) - - # Download weights - if weights in weights_allow_list: - weights_input_shape = weights.split("-")[-1] # e. g. "i160" - weights_name = f"{model_name}-{weights_input_shape}" - if not include_top: - weights_name += "_notop" - - filename = f"{weights_name}.h5" - download_url = BASE_WEIGHTS_URL + filename - weights_path = data_utils.get_file( - fname=filename, - origin=download_url, - cache_subdir="models", - file_hash=WEIGHT_HASHES[filename], - ) - model.load_weights(weights_path) - - elif weights is not None: - model.load_weights(weights) - - return model - - -@keras_export( - "keras.applications.resnet_rs.ResNetRS50", "keras.applications.ResNetRS50" -) -def ResNetRS50( - include_top=True, - weights="imagenet", - classes=1000, - input_shape=None, - input_tensor=None, - pooling=None, - classifier_activation="softmax", - include_preprocessing=True, -): - """Build ResNet-RS50 model.""" - return ResNetRS( - depth=50, - include_top=include_top, - drop_connect_rate=0.0, - dropout_rate=0.25, - weights=weights, - classes=classes, - input_shape=input_shape, - input_tensor=input_tensor, - pooling=pooling, - classifier_activation=classifier_activation, - model_name="resnet-rs-50", - include_preprocessing=include_preprocessing, - ) - - -@keras_export( - "keras.applications.resnet_rs.ResNetRS101", "keras.applications.ResNetRS101" -) -def ResNetRS101( - include_top=True, - weights="imagenet", - classes=1000, - input_shape=None, - input_tensor=None, - pooling=None, - classifier_activation="softmax", - include_preprocessing=True, -): - """Build ResNet-RS101 model.""" - return ResNetRS( - depth=101, - include_top=include_top, - drop_connect_rate=0.0, - dropout_rate=0.25, - weights=weights, - classes=classes, - input_shape=input_shape, - input_tensor=input_tensor, - pooling=pooling, - classifier_activation=classifier_activation, - model_name="resnet-rs-101", - include_preprocessing=include_preprocessing, - ) - - -@keras_export( - "keras.applications.resnet_rs.ResNetRS152", "keras.applications.ResNetRS152" -) -def ResNetRS152( - include_top=True, - weights="imagenet", - classes=1000, - input_shape=None, - input_tensor=None, - pooling=None, - classifier_activation="softmax", - include_preprocessing=True, -): - """Build ResNet-RS152 model.""" - return ResNetRS( - depth=152, - include_top=include_top, - drop_connect_rate=0.0, - dropout_rate=0.25, - weights=weights, - classes=classes, - input_shape=input_shape, - input_tensor=input_tensor, - pooling=pooling, - classifier_activation=classifier_activation, - model_name="resnet-rs-152", - include_preprocessing=include_preprocessing, - ) - - -@keras_export( - "keras.applications.resnet_rs.ResNetRS200", "keras.applications.ResNetRS200" -) -def ResNetRS200( - include_top=True, - weights="imagenet", - classes=1000, - input_shape=None, - input_tensor=None, - pooling=None, - classifier_activation="softmax", - include_preprocessing=True, -): - """Build ResNet-RS200 model.""" - return ResNetRS( - depth=200, - include_top=include_top, - drop_connect_rate=0.1, - dropout_rate=0.25, - weights=weights, - classes=classes, - input_shape=input_shape, - input_tensor=input_tensor, - pooling=pooling, - classifier_activation=classifier_activation, - model_name="resnet-rs-200", - include_preprocessing=include_preprocessing, - ) - - -@keras_export( - "keras.applications.resnet_rs.ResNetRS270", "keras.applications.ResNetRS270" -) -def ResNetRS270( - include_top=True, - weights="imagenet", - classes=1000, - input_shape=None, - input_tensor=None, - pooling=None, - classifier_activation="softmax", - include_preprocessing=True, -): - """Build ResNet-RS-270 model.""" - allow_bigger_recursion(1300) - return ResNetRS( - depth=270, - include_top=include_top, - drop_connect_rate=0.1, - dropout_rate=0.25, - weights=weights, - classes=classes, - input_shape=input_shape, - input_tensor=input_tensor, - pooling=pooling, - classifier_activation=classifier_activation, - model_name="resnet-rs-270", - include_preprocessing=include_preprocessing, - ) - - -@keras_export( - "keras.applications.resnet_rs.ResNetRS350", "keras.applications.ResNetRS350" -) -def ResNetRS350( - include_top=True, - weights="imagenet", - classes=1000, - input_shape=None, - input_tensor=None, - pooling=None, - classifier_activation="softmax", - include_preprocessing=True, -): - """Build ResNet-RS350 model.""" - allow_bigger_recursion(1500) - return ResNetRS( - depth=350, - include_top=include_top, - drop_connect_rate=0.1, - dropout_rate=0.4, - weights=weights, - classes=classes, - input_shape=input_shape, - input_tensor=input_tensor, - pooling=pooling, - classifier_activation=classifier_activation, - model_name="resnet-rs-350", - include_preprocessing=include_preprocessing, - ) - - -@keras_export( - "keras.applications.resnet_rs.ResNetRS420", "keras.applications.ResNetRS420" -) -def ResNetRS420( - include_top=True, - weights="imagenet", - classes=1000, - input_shape=None, - input_tensor=None, - pooling=None, - classifier_activation="softmax", - include_preprocessing=True, -): - """Build ResNet-RS420 model.""" - allow_bigger_recursion(1800) - return ResNetRS( - depth=420, - include_top=include_top, - dropout_rate=0.4, - drop_connect_rate=0.1, - weights=weights, - classes=classes, - input_shape=input_shape, - input_tensor=input_tensor, - pooling=pooling, - classifier_activation=classifier_activation, - model_name="resnet-rs-420", - include_preprocessing=include_preprocessing, - ) - - -@keras_export("keras.applications.resnet_rs.preprocess_input") -def preprocess_input(x, data_format=None): - """A placeholder method for backward compatibility. - - The preprocessing logic has been included in the ResnetRS model - implementation. Users are no longer required to call this method to - normalize - the input data. This method does nothing and only kept as a placeholder to - align the API surface between old and new version of model. - - Args: - x: A floating point `numpy.array` or a `tf.Tensor`. - data_format: Optional data format of the image tensor/array. Defaults to - None, in which case the global setting - `tf.keras.backend.image_data_format()` is used (unless you changed it, - it defaults to "channels_last").{mode} - - Returns: - Unchanged `numpy.array` or `tf.Tensor`. - """ - return x - - -@keras_export("keras.applications.resnet_rs.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ - -ResNetRS50.__doc__ = BASE_DOCSTRING.format(name="ResNetRS50") -ResNetRS101.__doc__ = BASE_DOCSTRING.format(name="ResNetRS101") -ResNetRS152.__doc__ = BASE_DOCSTRING.format(name="ResNetRS152") -ResNetRS200.__doc__ = BASE_DOCSTRING.format(name="ResNetRS200") -ResNetRS270.__doc__ = BASE_DOCSTRING.format(name="ResNetRS270") -ResNetRS350.__doc__ = BASE_DOCSTRING.format(name="ResNetRS350") -ResNetRS420.__doc__ = BASE_DOCSTRING.format(name="ResNetRS420") diff --git a/keras/applications/resnet_v2.py b/keras/applications/resnet_v2.py deleted file mode 100644 index 98117d6acbd..00000000000 --- a/keras/applications/resnet_v2.py +++ /dev/null @@ -1,214 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""ResNet v2 models for Keras. - -Reference: - - [Identity Mappings in Deep Residual Networks]( - https://arxiv.org/abs/1603.05027) (CVPR 2016) -""" - -from keras.applications import imagenet_utils -from keras.applications import resnet - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.applications.resnet_v2.ResNet50V2", "keras.applications.ResNet50V2" -) -def ResNet50V2( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates the ResNet50V2 architecture.""" - - def stack_fn(x): - x = resnet.stack2(x, 64, 3, name="conv2") - x = resnet.stack2(x, 128, 4, name="conv3") - x = resnet.stack2(x, 256, 6, name="conv4") - return resnet.stack2(x, 512, 3, stride1=1, name="conv5") - - return resnet.ResNet( - stack_fn, - True, - True, - "resnet50v2", - include_top, - weights, - input_tensor, - input_shape, - pooling, - classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.resnet_v2.ResNet101V2", "keras.applications.ResNet101V2" -) -def ResNet101V2( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates the ResNet101V2 architecture.""" - - def stack_fn(x): - x = resnet.stack2(x, 64, 3, name="conv2") - x = resnet.stack2(x, 128, 4, name="conv3") - x = resnet.stack2(x, 256, 23, name="conv4") - return resnet.stack2(x, 512, 3, stride1=1, name="conv5") - - return resnet.ResNet( - stack_fn, - True, - True, - "resnet101v2", - include_top, - weights, - input_tensor, - input_shape, - pooling, - classes, - classifier_activation=classifier_activation, - ) - - -@keras_export( - "keras.applications.resnet_v2.ResNet152V2", "keras.applications.ResNet152V2" -) -def ResNet152V2( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates the ResNet152V2 architecture.""" - - def stack_fn(x): - x = resnet.stack2(x, 64, 3, name="conv2") - x = resnet.stack2(x, 128, 8, name="conv3") - x = resnet.stack2(x, 256, 36, name="conv4") - return resnet.stack2(x, 512, 3, stride1=1, name="conv5") - - return resnet.ResNet( - stack_fn, - True, - True, - "resnet152v2", - include_top, - weights, - input_tensor, - input_shape, - pooling, - classes, - classifier_activation=classifier_activation, - ) - - -@keras_export("keras.applications.resnet_v2.preprocess_input") -def preprocess_input(x, data_format=None): - return imagenet_utils.preprocess_input( - x, data_format=data_format, mode="tf" - ) - - -@keras_export("keras.applications.resnet_v2.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( - mode="", - ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF, - error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, -) -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ - -DOC = """ - - Reference: - - [Identity Mappings in Deep Residual Networks]( - https://arxiv.org/abs/1603.05027) (CVPR 2016) - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - Note: each Keras Application expects a specific kind of input preprocessing. - For ResNetV2, call `tf.keras.applications.resnet_v2.preprocess_input` on your - inputs before passing them to the model. - `resnet_v2.preprocess_input` will scale input pixels between -1 and 1. - - Args: - include_top: whether to include the fully-connected - layer at the top of the network. - weights: one of `None` (random initialization), - 'imagenet' (pre-training on ImageNet), - or the path to the weights file to be loaded. - input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: optional shape tuple, only to be specified - if `include_top` is False (otherwise the input shape - has to be `(224, 224, 3)` (with `'channels_last'` data format) - or `(3, 224, 224)` (with `'channels_first'` data format). - It should have exactly 3 inputs channels, - and width and height should be no smaller than 32. - E.g. `(200, 200, 3)` would be one valid value. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model will be - the 4D tensor output of the - last convolutional block. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional block, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will - be applied. - classes: optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - - Returns: - A `keras.Model` instance. -""" - -setattr(ResNet50V2, "__doc__", ResNet50V2.__doc__ + DOC) -setattr(ResNet101V2, "__doc__", ResNet101V2.__doc__ + DOC) -setattr(ResNet152V2, "__doc__", ResNet152V2.__doc__ + DOC) diff --git a/keras/applications/vgg16.py b/keras/applications/vgg16.py deleted file mode 100644 index f7eebee3d96..00000000000 --- a/keras/applications/vgg16.py +++ /dev/null @@ -1,272 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""VGG16 model for Keras. - -Reference: - - [Very Deep Convolutional Networks for Large-Scale Image Recognition] - (https://arxiv.org/abs/1409.1556) (ICLR 2015) -""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.applications import imagenet_utils -from keras.engine import training -from keras.layers import VersionAwareLayers -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -WEIGHTS_PATH = ( - "https://storage.googleapis.com/tensorflow/keras-applications/" - "vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5" -) -WEIGHTS_PATH_NO_TOP = ( - "https://storage.googleapis.com/tensorflow/" - "keras-applications/vgg16/" - "vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5" -) - -layers = VersionAwareLayers() - - -@keras_export("keras.applications.vgg16.VGG16", "keras.applications.VGG16") -def VGG16( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates the VGG16 model. - - Reference: - - [Very Deep Convolutional Networks for Large-Scale Image Recognition]( - https://arxiv.org/abs/1409.1556) (ICLR 2015) - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - The default input size for this model is 224x224. - - Note: each Keras Application expects a specific kind of input preprocessing. - For VGG16, call `tf.keras.applications.vgg16.preprocess_input` on your - inputs before passing them to the model. - `vgg16.preprocess_input` will convert the input images from RGB to BGR, - then will zero-center each color channel with respect to the ImageNet - dataset, without scaling. - - Args: - include_top: whether to include the 3 fully-connected - layers at the top of the network. - weights: one of `None` (random initialization), - 'imagenet' (pre-training on ImageNet), - or the path to the weights file to be loaded. - input_tensor: optional Keras tensor - (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: optional shape tuple, only to be specified - if `include_top` is False (otherwise the input shape - has to be `(224, 224, 3)` - (with `channels_last` data format) - or `(3, 224, 224)` (with `channels_first` data format). - It should have exactly 3 input channels, - and width and height should be no smaller than 32. - E.g. `(200, 200, 3)` would be one valid value. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model will be - the 4D tensor output of the - last convolutional block. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional block, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will - be applied. - classes: optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. - classifier_activation: A `str` or callable. The activation function to - use on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" - layer. When loading pretrained weights, `classifier_activation` can - only be `None` or `"softmax"`. - - Returns: - A `keras.Model` instance. - """ - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded. Received: " - f"weights={weights}" - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - 'If using `weights` as `"imagenet"` with `include_top` ' - "as true, `classes` should be 1000. " - f"Received `classes={classes}`" - ) - # Determine proper input shape - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=224, - min_size=32, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - # Block 1 - x = layers.Conv2D( - 64, (3, 3), activation="relu", padding="same", name="block1_conv1" - )(img_input) - x = layers.Conv2D( - 64, (3, 3), activation="relu", padding="same", name="block1_conv2" - )(x) - x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block1_pool")(x) - - # Block 2 - x = layers.Conv2D( - 128, (3, 3), activation="relu", padding="same", name="block2_conv1" - )(x) - x = layers.Conv2D( - 128, (3, 3), activation="relu", padding="same", name="block2_conv2" - )(x) - x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block2_pool")(x) - - # Block 3 - x = layers.Conv2D( - 256, (3, 3), activation="relu", padding="same", name="block3_conv1" - )(x) - x = layers.Conv2D( - 256, (3, 3), activation="relu", padding="same", name="block3_conv2" - )(x) - x = layers.Conv2D( - 256, (3, 3), activation="relu", padding="same", name="block3_conv3" - )(x) - x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block3_pool")(x) - - # Block 4 - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block4_conv1" - )(x) - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block4_conv2" - )(x) - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block4_conv3" - )(x) - x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block4_pool")(x) - - # Block 5 - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block5_conv1" - )(x) - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block5_conv2" - )(x) - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block5_conv3" - )(x) - x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block5_pool")(x) - - if include_top: - # Classification block - x = layers.Flatten(name="flatten")(x) - x = layers.Dense(4096, activation="relu", name="fc1")(x) - x = layers.Dense(4096, activation="relu", name="fc2")(x) - - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Dense( - classes, activation=classifier_activation, name="predictions" - )(x) - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D()(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D()(x) - - # Ensure that the model takes into account - # any potential predecessors of `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - # Create model. - model = training.Model(inputs, x, name="vgg16") - - # Load weights. - if weights == "imagenet": - if include_top: - weights_path = data_utils.get_file( - "vgg16_weights_tf_dim_ordering_tf_kernels.h5", - WEIGHTS_PATH, - cache_subdir="models", - file_hash="64373286793e3c8b2b4e3219cbf3544b", - ) - else: - weights_path = data_utils.get_file( - "vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5", - WEIGHTS_PATH_NO_TOP, - cache_subdir="models", - file_hash="6d6bbae143d832006294945121d1f1fc", - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - - return model - - -@keras_export("keras.applications.vgg16.preprocess_input") -def preprocess_input(x, data_format=None): - return imagenet_utils.preprocess_input( - x, data_format=data_format, mode="caffe" - ) - - -@keras_export("keras.applications.vgg16.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( - mode="", - ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE, - error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, -) -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ diff --git a/keras/applications/vgg19.py b/keras/applications/vgg19.py deleted file mode 100644 index b763dff5f28..00000000000 --- a/keras/applications/vgg19.py +++ /dev/null @@ -1,280 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""VGG19 model for Keras. - -Reference: - - [Very Deep Convolutional Networks for Large-Scale Image Recognition]( - https://arxiv.org/abs/1409.1556) (ICLR 2015) -""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.applications import imagenet_utils -from keras.engine import training -from keras.layers import VersionAwareLayers -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -WEIGHTS_PATH = ( - "https://storage.googleapis.com/tensorflow/keras-applications/" - "vgg19/vgg19_weights_tf_dim_ordering_tf_kernels.h5" -) -WEIGHTS_PATH_NO_TOP = ( - "https://storage.googleapis.com/tensorflow/" - "keras-applications/vgg19/" - "vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5" -) - -layers = VersionAwareLayers() - - -@keras_export("keras.applications.vgg19.VGG19", "keras.applications.VGG19") -def VGG19( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates the VGG19 architecture. - - Reference: - - [Very Deep Convolutional Networks for Large-Scale Image Recognition]( - https://arxiv.org/abs/1409.1556) (ICLR 2015) - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - The default input size for this model is 224x224. - - Note: each Keras Application expects a specific kind of input preprocessing. - For VGG19, call `tf.keras.applications.vgg19.preprocess_input` on your - inputs before passing them to the model. - `vgg19.preprocess_input` will convert the input images from RGB to BGR, - then will zero-center each color channel with respect to the ImageNet - dataset, without scaling. - - Args: - include_top: whether to include the 3 fully-connected - layers at the top of the network. - weights: one of `None` (random initialization), - 'imagenet' (pre-training on ImageNet), - or the path to the weights file to be loaded. - input_tensor: optional Keras tensor - (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: optional shape tuple, only to be specified - if `include_top` is False (otherwise the input shape - has to be `(224, 224, 3)` - (with `channels_last` data format) - or `(3, 224, 224)` (with `channels_first` data format). - It should have exactly 3 inputs channels, - and width and height should be no smaller than 32. - E.g. `(200, 200, 3)` would be one valid value. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model will be - the 4D tensor output of the - last convolutional block. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional block, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will - be applied. - classes: optional number of classes to classify images - into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - - Returns: - A `keras.Model` instance. - """ - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded. " - f"Received: `weights={weights}.`" - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - 'If using `weights` as `"imagenet"` with `include_top` ' - "as true, `classes` should be 1000. " - f"Received: `classes={classes}.`" - ) - # Determine proper input shape - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=224, - min_size=32, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - # Block 1 - x = layers.Conv2D( - 64, (3, 3), activation="relu", padding="same", name="block1_conv1" - )(img_input) - x = layers.Conv2D( - 64, (3, 3), activation="relu", padding="same", name="block1_conv2" - )(x) - x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block1_pool")(x) - - # Block 2 - x = layers.Conv2D( - 128, (3, 3), activation="relu", padding="same", name="block2_conv1" - )(x) - x = layers.Conv2D( - 128, (3, 3), activation="relu", padding="same", name="block2_conv2" - )(x) - x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block2_pool")(x) - - # Block 3 - x = layers.Conv2D( - 256, (3, 3), activation="relu", padding="same", name="block3_conv1" - )(x) - x = layers.Conv2D( - 256, (3, 3), activation="relu", padding="same", name="block3_conv2" - )(x) - x = layers.Conv2D( - 256, (3, 3), activation="relu", padding="same", name="block3_conv3" - )(x) - x = layers.Conv2D( - 256, (3, 3), activation="relu", padding="same", name="block3_conv4" - )(x) - x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block3_pool")(x) - - # Block 4 - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block4_conv1" - )(x) - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block4_conv2" - )(x) - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block4_conv3" - )(x) - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block4_conv4" - )(x) - x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block4_pool")(x) - - # Block 5 - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block5_conv1" - )(x) - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block5_conv2" - )(x) - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block5_conv3" - )(x) - x = layers.Conv2D( - 512, (3, 3), activation="relu", padding="same", name="block5_conv4" - )(x) - x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block5_pool")(x) - - if include_top: - # Classification block - x = layers.Flatten(name="flatten")(x) - x = layers.Dense(4096, activation="relu", name="fc1")(x) - x = layers.Dense(4096, activation="relu", name="fc2")(x) - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Dense( - classes, activation=classifier_activation, name="predictions" - )(x) - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D()(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D()(x) - - # Ensure that the model takes into account - # any potential predecessors of `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - # Create model. - model = training.Model(inputs, x, name="vgg19") - - # Load weights. - if weights == "imagenet": - if include_top: - weights_path = data_utils.get_file( - "vgg19_weights_tf_dim_ordering_tf_kernels.h5", - WEIGHTS_PATH, - cache_subdir="models", - file_hash="cbe5617147190e668d6c5d5026f83318", - ) - else: - weights_path = data_utils.get_file( - "vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5", - WEIGHTS_PATH_NO_TOP, - cache_subdir="models", - file_hash="253f8cb515780f3b799900260a226db6", - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - - return model - - -@keras_export("keras.applications.vgg19.preprocess_input") -def preprocess_input(x, data_format=None): - return imagenet_utils.preprocess_input( - x, data_format=data_format, mode="caffe" - ) - - -@keras_export("keras.applications.vgg19.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( - mode="", - ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE, - error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, -) -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ diff --git a/keras/applications/xception.py b/keras/applications/xception.py deleted file mode 100644 index e7e4ff597c8..00000000000 --- a/keras/applications/xception.py +++ /dev/null @@ -1,380 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Xception V1 model for Keras. - -On ImageNet, this model gets to a top-1 validation accuracy of 0.790 -and a top-5 validation accuracy of 0.945. - -Reference: - - [Xception: Deep Learning with Depthwise Separable Convolutions]( - https://arxiv.org/abs/1610.02357) (CVPR 2017) -""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.applications import imagenet_utils -from keras.engine import training -from keras.layers import VersionAwareLayers -from keras.utils import data_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -TF_WEIGHTS_PATH = ( - "https://storage.googleapis.com/tensorflow/keras-applications/" - "xception/xception_weights_tf_dim_ordering_tf_kernels.h5" -) -TF_WEIGHTS_PATH_NO_TOP = ( - "https://storage.googleapis.com/tensorflow/keras-applications/" - "xception/xception_weights_tf_dim_ordering_tf_kernels_notop.h5" -) - -layers = VersionAwareLayers() - - -@keras_export( - "keras.applications.xception.Xception", "keras.applications.Xception" -) -def Xception( - include_top=True, - weights="imagenet", - input_tensor=None, - input_shape=None, - pooling=None, - classes=1000, - classifier_activation="softmax", -): - """Instantiates the Xception architecture. - - Reference: - - [Xception: Deep Learning with Depthwise Separable Convolutions]( - https://arxiv.org/abs/1610.02357) (CVPR 2017) - - For image classification use cases, see - [this page for detailed examples]( - https://keras.io/api/applications/#usage-examples-for-image-classification-models). - - For transfer learning use cases, make sure to read the - [guide to transfer learning & fine-tuning]( - https://keras.io/guides/transfer_learning/). - - The default input image size for this model is 299x299. - - Note: each Keras Application expects a specific kind of input preprocessing. - For Xception, call `tf.keras.applications.xception.preprocess_input` on your - inputs before passing them to the model. - `xception.preprocess_input` will scale input pixels between -1 and 1. - - Args: - include_top: whether to include the fully-connected - layer at the top of the network. - weights: one of `None` (random initialization), - 'imagenet' (pre-training on ImageNet), - or the path to the weights file to be loaded. - input_tensor: optional Keras tensor - (i.e. output of `layers.Input()`) - to use as image input for the model. - input_shape: optional shape tuple, only to be specified - if `include_top` is False (otherwise the input shape - has to be `(299, 299, 3)`. - It should have exactly 3 inputs channels, - and width and height should be no smaller than 71. - E.g. `(150, 150, 3)` would be one valid value. - pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. - - `None` means that the output of the model will be - the 4D tensor output of the - last convolutional block. - - `avg` means that global average pooling - will be applied to the output of the - last convolutional block, and thus - the output of the model will be a 2D tensor. - - `max` means that global max pooling will - be applied. - classes: optional number of classes to classify images - into, only to be specified if `include_top` is True, - and if no `weights` argument is specified. - classifier_activation: A `str` or callable. The activation function to use - on the "top" layer. Ignored unless `include_top=True`. Set - `classifier_activation=None` to return the logits of the "top" layer. - When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. - - Returns: - A `keras.Model` instance. - """ - if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): - raise ValueError( - "The `weights` argument should be either " - "`None` (random initialization), `imagenet` " - "(pre-training on ImageNet), " - "or the path to the weights file to be loaded." - ) - - if weights == "imagenet" and include_top and classes != 1000: - raise ValueError( - 'If using `weights` as `"imagenet"` with `include_top`' - " as true, `classes` should be 1000" - ) - - # Determine proper input shape - input_shape = imagenet_utils.obtain_input_shape( - input_shape, - default_size=299, - min_size=71, - data_format=backend.image_data_format(), - require_flatten=include_top, - weights=weights, - ) - - if input_tensor is None: - img_input = layers.Input(shape=input_shape) - else: - if not backend.is_keras_tensor(input_tensor): - img_input = layers.Input(tensor=input_tensor, shape=input_shape) - else: - img_input = input_tensor - - channel_axis = 1 if backend.image_data_format() == "channels_first" else -1 - - x = layers.Conv2D( - 32, (3, 3), strides=(2, 2), use_bias=False, name="block1_conv1" - )(img_input) - x = layers.BatchNormalization(axis=channel_axis, name="block1_conv1_bn")(x) - x = layers.Activation("relu", name="block1_conv1_act")(x) - x = layers.Conv2D(64, (3, 3), use_bias=False, name="block1_conv2")(x) - x = layers.BatchNormalization(axis=channel_axis, name="block1_conv2_bn")(x) - x = layers.Activation("relu", name="block1_conv2_act")(x) - - residual = layers.Conv2D( - 128, (1, 1), strides=(2, 2), padding="same", use_bias=False - )(x) - residual = layers.BatchNormalization(axis=channel_axis)(residual) - - x = layers.SeparableConv2D( - 128, (3, 3), padding="same", use_bias=False, name="block2_sepconv1" - )(x) - x = layers.BatchNormalization(axis=channel_axis, name="block2_sepconv1_bn")( - x - ) - x = layers.Activation("relu", name="block2_sepconv2_act")(x) - x = layers.SeparableConv2D( - 128, (3, 3), padding="same", use_bias=False, name="block2_sepconv2" - )(x) - x = layers.BatchNormalization(axis=channel_axis, name="block2_sepconv2_bn")( - x - ) - - x = layers.MaxPooling2D( - (3, 3), strides=(2, 2), padding="same", name="block2_pool" - )(x) - x = layers.add([x, residual]) - - residual = layers.Conv2D( - 256, (1, 1), strides=(2, 2), padding="same", use_bias=False - )(x) - residual = layers.BatchNormalization(axis=channel_axis)(residual) - - x = layers.Activation("relu", name="block3_sepconv1_act")(x) - x = layers.SeparableConv2D( - 256, (3, 3), padding="same", use_bias=False, name="block3_sepconv1" - )(x) - x = layers.BatchNormalization(axis=channel_axis, name="block3_sepconv1_bn")( - x - ) - x = layers.Activation("relu", name="block3_sepconv2_act")(x) - x = layers.SeparableConv2D( - 256, (3, 3), padding="same", use_bias=False, name="block3_sepconv2" - )(x) - x = layers.BatchNormalization(axis=channel_axis, name="block3_sepconv2_bn")( - x - ) - - x = layers.MaxPooling2D( - (3, 3), strides=(2, 2), padding="same", name="block3_pool" - )(x) - x = layers.add([x, residual]) - - residual = layers.Conv2D( - 728, (1, 1), strides=(2, 2), padding="same", use_bias=False - )(x) - residual = layers.BatchNormalization(axis=channel_axis)(residual) - - x = layers.Activation("relu", name="block4_sepconv1_act")(x) - x = layers.SeparableConv2D( - 728, (3, 3), padding="same", use_bias=False, name="block4_sepconv1" - )(x) - x = layers.BatchNormalization(axis=channel_axis, name="block4_sepconv1_bn")( - x - ) - x = layers.Activation("relu", name="block4_sepconv2_act")(x) - x = layers.SeparableConv2D( - 728, (3, 3), padding="same", use_bias=False, name="block4_sepconv2" - )(x) - x = layers.BatchNormalization(axis=channel_axis, name="block4_sepconv2_bn")( - x - ) - - x = layers.MaxPooling2D( - (3, 3), strides=(2, 2), padding="same", name="block4_pool" - )(x) - x = layers.add([x, residual]) - - for i in range(8): - residual = x - prefix = "block" + str(i + 5) - - x = layers.Activation("relu", name=prefix + "_sepconv1_act")(x) - x = layers.SeparableConv2D( - 728, - (3, 3), - padding="same", - use_bias=False, - name=prefix + "_sepconv1", - )(x) - x = layers.BatchNormalization( - axis=channel_axis, name=prefix + "_sepconv1_bn" - )(x) - x = layers.Activation("relu", name=prefix + "_sepconv2_act")(x) - x = layers.SeparableConv2D( - 728, - (3, 3), - padding="same", - use_bias=False, - name=prefix + "_sepconv2", - )(x) - x = layers.BatchNormalization( - axis=channel_axis, name=prefix + "_sepconv2_bn" - )(x) - x = layers.Activation("relu", name=prefix + "_sepconv3_act")(x) - x = layers.SeparableConv2D( - 728, - (3, 3), - padding="same", - use_bias=False, - name=prefix + "_sepconv3", - )(x) - x = layers.BatchNormalization( - axis=channel_axis, name=prefix + "_sepconv3_bn" - )(x) - - x = layers.add([x, residual]) - - residual = layers.Conv2D( - 1024, (1, 1), strides=(2, 2), padding="same", use_bias=False - )(x) - residual = layers.BatchNormalization(axis=channel_axis)(residual) - - x = layers.Activation("relu", name="block13_sepconv1_act")(x) - x = layers.SeparableConv2D( - 728, (3, 3), padding="same", use_bias=False, name="block13_sepconv1" - )(x) - x = layers.BatchNormalization( - axis=channel_axis, name="block13_sepconv1_bn" - )(x) - x = layers.Activation("relu", name="block13_sepconv2_act")(x) - x = layers.SeparableConv2D( - 1024, (3, 3), padding="same", use_bias=False, name="block13_sepconv2" - )(x) - x = layers.BatchNormalization( - axis=channel_axis, name="block13_sepconv2_bn" - )(x) - - x = layers.MaxPooling2D( - (3, 3), strides=(2, 2), padding="same", name="block13_pool" - )(x) - x = layers.add([x, residual]) - - x = layers.SeparableConv2D( - 1536, (3, 3), padding="same", use_bias=False, name="block14_sepconv1" - )(x) - x = layers.BatchNormalization( - axis=channel_axis, name="block14_sepconv1_bn" - )(x) - x = layers.Activation("relu", name="block14_sepconv1_act")(x) - - x = layers.SeparableConv2D( - 2048, (3, 3), padding="same", use_bias=False, name="block14_sepconv2" - )(x) - x = layers.BatchNormalization( - axis=channel_axis, name="block14_sepconv2_bn" - )(x) - x = layers.Activation("relu", name="block14_sepconv2_act")(x) - - if include_top: - x = layers.GlobalAveragePooling2D(name="avg_pool")(x) - imagenet_utils.validate_activation(classifier_activation, weights) - x = layers.Dense( - classes, activation=classifier_activation, name="predictions" - )(x) - else: - if pooling == "avg": - x = layers.GlobalAveragePooling2D()(x) - elif pooling == "max": - x = layers.GlobalMaxPooling2D()(x) - - # Ensure that the model takes into account - # any potential predecessors of `input_tensor`. - if input_tensor is not None: - inputs = layer_utils.get_source_inputs(input_tensor) - else: - inputs = img_input - # Create model. - model = training.Model(inputs, x, name="xception") - - # Load weights. - if weights == "imagenet": - if include_top: - weights_path = data_utils.get_file( - "xception_weights_tf_dim_ordering_tf_kernels.h5", - TF_WEIGHTS_PATH, - cache_subdir="models", - file_hash="0a58e3b7378bc2990ea3b43d5981f1f6", - ) - else: - weights_path = data_utils.get_file( - "xception_weights_tf_dim_ordering_tf_kernels_notop.h5", - TF_WEIGHTS_PATH_NO_TOP, - cache_subdir="models", - file_hash="b0042744bf5b25fce3cb969f33bebb97", - ) - model.load_weights(weights_path) - elif weights is not None: - model.load_weights(weights) - - return model - - -@keras_export("keras.applications.xception.preprocess_input") -def preprocess_input(x, data_format=None): - return imagenet_utils.preprocess_input( - x, data_format=data_format, mode="tf" - ) - - -@keras_export("keras.applications.xception.decode_predictions") -def decode_predictions(preds, top=5): - return imagenet_utils.decode_predictions(preds, top=top) - - -preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( - mode="", - ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF, - error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, -) -decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ diff --git a/keras/backend.py b/keras/backend.py deleted file mode 100644 index 4652c4a9c40..00000000000 --- a/keras/backend.py +++ /dev/null @@ -1,7556 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""Keras backend API.""" - -import collections -import itertools -import json -import os -import random -import sys -import threading -import warnings -import weakref - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend_config -from keras.distribute import distribute_coordinator_utils as dc -from keras.dtensor import dtensor_api as dtensor -from keras.engine import keras_tensor -from keras.utils import control_flow_util -from keras.utils import object_identity -from keras.utils import tf_contextlib -from keras.utils import tf_inspect -from keras.utils import tf_utils - -# isort: off -from tensorflow.core.protobuf import config_pb2 -from tensorflow.python.eager import context -from tensorflow.python.eager.context import get_config -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export -from tensorflow.tools.docs import doc_controls - -py_all = all -py_sum = sum -py_any = any - -# INTERNAL UTILS - -# The internal graph maintained by Keras and used by the symbolic Keras APIs -# while executing eagerly (such as the functional API for model-building). -# This is thread-local to allow building separate models in different threads -# concurrently, but comes at the cost of not being able to build one model -# across threads. -_GRAPH = threading.local() - -# A graph which is used for constructing functions in eager mode. -_CURRENT_SCRATCH_GRAPH = threading.local() - - -# This is a thread local object that will hold the default internal TF session -# used by Keras. It can be set manually via `set_session(sess)`. -class SessionLocal(threading.local): - def __init__(self): - super().__init__() - self.session = None - - -_SESSION = SessionLocal() - - -# A global dictionary mapping graph objects to an index of counters used -# for various layer/optimizer names in each graph. -# Allows to give unique autogenerated names to layers, in a graph-specific way. -PER_GRAPH_OBJECT_NAME_UIDS = weakref.WeakKeyDictionary() - - -# A global set tracking what object names have been seen so far. -# Optionally used as an avoid-list when generating names -OBSERVED_NAMES = set() - - -# _DUMMY_EAGER_GRAPH.key is used as a key in _GRAPH_LEARNING_PHASES. -# We keep a separate reference to it to make sure it does not get removed from -# _GRAPH_LEARNING_PHASES. -# _DummyEagerGraph inherits from threading.local to make its `key` attribute -# thread local. This is needed to make set_learning_phase affect only the -# current thread during eager execution (see b/123096885 for more details). -class _DummyEagerGraph(threading.local): - """_DummyEagerGraph provides a thread local `key` attribute. - - We can't use threading.local directly, i.e. without subclassing, because - gevent monkey patches threading.local and its version does not support - weak references. - """ - - class _WeakReferencableClass: - """This dummy class is needed for two reasons. - - - We need something that supports weak references. Basic types like - string and ints don't. - - We need something whose hash and equality are based on object identity - to make sure they are treated as different keys to - _GRAPH_LEARNING_PHASES. - - An empty Python class satisfies both of these requirements. - """ - - pass - - def __init__(self): - # Constructors for classes subclassing threading.local run once - # per thread accessing something in the class. Thus, each thread will - # get a different key. - super().__init__() - self.key = _DummyEagerGraph._WeakReferencableClass() - self.learning_phase_is_set = False - - -_DUMMY_EAGER_GRAPH = _DummyEagerGraph() - -# This boolean flag can be set to True to leave variable initialization -# up to the user. -# Change its value via `manual_variable_initialization(value)`. -_MANUAL_VAR_INIT = False - -# This list holds the available devices. -# It is populated when `_get_available_gpus()` is called for the first time. -# We assume our devices don't change henceforth. -_LOCAL_DEVICES = None - -# The below functions are kept accessible from backend for compatibility. -epsilon = backend_config.epsilon -floatx = backend_config.floatx -image_data_format = backend_config.image_data_format -set_epsilon = backend_config.set_epsilon -set_floatx = backend_config.set_floatx -set_image_data_format = backend_config.set_image_data_format - - -@keras_export("keras.backend.backend") -@doc_controls.do_not_generate_docs -def backend(): - """Publicly accessible method for determining the current backend. - - Only exists for API compatibility with multi-backend Keras. - - Returns: - The string "tensorflow". - """ - return "tensorflow" - - -@keras_export("keras.backend.cast_to_floatx") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def cast_to_floatx(x): - """Cast a Numpy array to the default Keras float type. - - Args: - x: Numpy array or TensorFlow tensor. - - Returns: - The same array (Numpy array if `x` was a Numpy array, or TensorFlow - tensor if `x` was a tensor), cast to its new type. - - Example: - - >>> tf.keras.backend.floatx() - 'float32' - >>> arr = np.array([1.0, 2.0], dtype='float64') - >>> arr.dtype - dtype('float64') - >>> new_arr = cast_to_floatx(arr) - >>> new_arr - array([1., 2.], dtype=float32) - >>> new_arr.dtype - dtype('float32') - - """ - if isinstance(x, (tf.Tensor, tf.Variable, tf.SparseTensor)): - return tf.cast(x, dtype=floatx()) - return np.asarray(x, dtype=floatx()) - - -@keras_export("keras.backend.get_uid") -def get_uid(prefix=""): - """Associates a string prefix with an integer counter in a TensorFlow graph. - - Args: - prefix: String prefix to index. - - Returns: - Unique integer ID. - - Example: - - >>> get_uid('dense') - 1 - >>> get_uid('dense') - 2 - - """ - graph = get_graph() - if graph not in PER_GRAPH_OBJECT_NAME_UIDS: - PER_GRAPH_OBJECT_NAME_UIDS[graph] = collections.defaultdict(int) - layer_name_uids = PER_GRAPH_OBJECT_NAME_UIDS[graph] - layer_name_uids[prefix] += 1 - return layer_name_uids[prefix] - - -@keras_export("keras.backend.reset_uids") -def reset_uids(): - """Resets graph identifiers.""" - - PER_GRAPH_OBJECT_NAME_UIDS.clear() - OBSERVED_NAMES.clear() - - -@keras_export("keras.backend.clear_session") -def clear_session(): - """Resets all state generated by Keras. - - Keras manages a global state, which it uses to implement the Functional - model-building API and to uniquify autogenerated layer names. - - If you are creating many models in a loop, this global state will consume - an increasing amount of memory over time, and you may want to clear it. - Calling `clear_session()` releases the global state: this helps avoid - clutter from old models and layers, especially when memory is limited. - - Example 1: calling `clear_session()` when creating models in a loop - - ```python - for _ in range(100): - # Without `clear_session()`, each iteration of this loop will - # slightly increase the size of the global state managed by Keras - model = tf.keras.Sequential([ - tf.keras.layers.Dense(10) for _ in range(10)]) - - for _ in range(100): - # With `clear_session()` called at the beginning, - # Keras starts with a blank state at each iteration - # and memory consumption is constant over time. - tf.keras.backend.clear_session() - model = tf.keras.Sequential([ - tf.keras.layers.Dense(10) for _ in range(10)]) - ``` - - Example 2: resetting the layer name generation counter - - >>> import tensorflow as tf - >>> layers = [tf.keras.layers.Dense(10) for _ in range(10)] - >>> new_layer = tf.keras.layers.Dense(10) - >>> print(new_layer.name) - dense_10 - >>> tf.keras.backend.set_learning_phase(1) - >>> print(tf.keras.backend.learning_phase()) - 1 - >>> tf.keras.backend.clear_session() - >>> new_layer = tf.keras.layers.Dense(10) - >>> print(new_layer.name) - dense - """ - global _SESSION - global _GRAPH_LEARNING_PHASES - global _GRAPH_VARIABLES - global _GRAPH_TF_OPTIMIZERS - global _GRAPH - _GRAPH.graph = None - tf.compat.v1.reset_default_graph() - reset_uids() - if _SESSION.session is not None: - _SESSION.session.close() - _SESSION.session = None - graph = get_graph() - with graph.as_default(): - _DUMMY_EAGER_GRAPH.learning_phase_is_set = False - - _GRAPH_LEARNING_PHASES = {} - # Create the learning phase placeholder in graph using the default - # factory - phase = _default_learning_phase() - _internal_set_learning_phase(graph, phase) - - _GRAPH_VARIABLES.pop(graph, None) - _GRAPH_TF_OPTIMIZERS.pop(graph, None) - if tf.executing_eagerly(): - # Clear pending nodes in eager executors, kernel caches and - # step_containers. - context.context().clear_kernel_cache() - - -# Inject the clear_session function to keras_deps to remove the dependency -# from TFLite to Keras. -tf.__internal__.register_clear_session_function(clear_session) - - -@keras_export("keras.backend.manual_variable_initialization") -@doc_controls.do_not_generate_docs -def manual_variable_initialization(value): - """Sets the manual variable initialization flag. - - This boolean flag determines whether - variables should be initialized - as they are instantiated (default), or if - the user should handle the initialization - (e.g. via `tf.compat.v1.initialize_all_variables()`). - - Args: - value: Python boolean. - """ - global _MANUAL_VAR_INIT - _MANUAL_VAR_INIT = value - - -@keras_export("keras.backend.learning_phase") -@doc_controls.do_not_generate_docs -def learning_phase(): - """Returns the learning phase flag. - - The learning phase flag is a bool tensor (0 = test, 1 = train) - to be passed as input to any Keras function - that uses a different behavior at train time and test time. - - Returns: - Learning phase (scalar integer tensor or Python integer). - """ - graph = tf.compat.v1.get_default_graph() - if graph is getattr(_GRAPH, "graph", None): - # Don't enter an init_scope for the learning phase if eager execution - # is enabled but we're inside the Keras workspace graph. - learning_phase = symbolic_learning_phase() - else: - with tf.init_scope(): - # We always check & set the learning phase inside the init_scope, - # otherwise the wrong default_graph will be used to look up the - # learning phase inside of functions & defuns. - # - # This is because functions & defuns (both in graph & in eager mode) - # will always execute non-eagerly using a function-specific default - # subgraph. - if context.executing_eagerly(): - if _DUMMY_EAGER_GRAPH.key not in _GRAPH_LEARNING_PHASES: - return _default_learning_phase() - else: - return _internal_get_learning_phase(_DUMMY_EAGER_GRAPH.key) - else: - learning_phase = symbolic_learning_phase() - _mark_func_graph_as_unsaveable(graph, learning_phase) - return learning_phase - - -def global_learning_phase_is_set(): - return _DUMMY_EAGER_GRAPH.learning_phase_is_set - - -def _mark_func_graph_as_unsaveable(graph, learning_phase): - """Mark graph as unsaveable due to use of symbolic keras learning phase. - - Functions that capture the symbolic learning phase cannot be exported to - SavedModel. Mark the funcgraph as unsaveable, so that an error will be - raised if it is exported. - - Args: - graph: Graph or FuncGraph object. - learning_phase: Learning phase placeholder or int defined in the graph. - """ - if graph.building_function and is_placeholder(learning_phase): - graph.mark_as_unsaveable( - "The keras learning phase placeholder was used inside a function. " - "Exporting placeholders is not supported when saving out a " - "SavedModel. Please call `tf.keras.backend.set_learning_phase(0)` " - "in the function to set the learning phase to a constant value." - ) - - -def symbolic_learning_phase(): - graph = get_graph() - with graph.as_default(): - if graph not in _GRAPH_LEARNING_PHASES: - phase = _default_learning_phase() - _internal_set_learning_phase(graph, phase) - - return _internal_get_learning_phase(graph) - - -def _internal_set_learning_phase(graph, value): - global _GRAPH_LEARNING_PHASES - - if isinstance(value, tf.Tensor): - # The 'value' here is a tf.Tensor with attribute 'graph'. - # There is a circular reference between key 'graph' and attribute - # 'graph'. So we need use a weakref.ref to refer to the 'value' tensor - # here. Otherwise, it would lead to memory leak. - value_ref = weakref.ref(value) - _GRAPH_LEARNING_PHASES[graph] = value_ref - else: - _GRAPH_LEARNING_PHASES[graph] = value - - -def _internal_get_learning_phase(graph): - phase = _GRAPH_LEARNING_PHASES.get(graph, None) - if isinstance(phase, weakref.ref): - return phase() - else: - return phase - - -def _default_learning_phase(): - if context.executing_eagerly(): - return 0 - else: - with name_scope(""): - return tf.compat.v1.placeholder_with_default( - False, shape=(), name="keras_learning_phase" - ) - - -@keras_export("keras.backend.set_learning_phase") -@doc_controls.do_not_generate_docs -def set_learning_phase(value): - """Sets the learning phase to a fixed value. - - The backend learning phase affects any code that calls - `backend.learning_phase()` - In particular, all Keras built-in layers use the learning phase as the - default for the `training` arg to `Layer.__call__`. - - User-written layers and models can achieve the same behavior with code that - looks like: - - ```python - def call(self, inputs, training=None): - if training is None: - training = backend.learning_phase() - ``` - - Args: - value: Learning phase value, either 0 or 1 (integers). - 0 = test, 1 = train - - Raises: - ValueError: if `value` is neither `0` nor `1`. - """ - warnings.warn( - "`tf.keras.backend.set_learning_phase` is deprecated and " - "will be removed after 2020-10-11. To update it, simply " - "pass a True/False value to the `training` argument of the " - "`__call__` method of your layer or model." - ) - deprecated_internal_set_learning_phase(value) - - -def deprecated_internal_set_learning_phase(value): - """A deprecated internal implementation of set_learning_phase. - - This method is an internal-only version of `set_learning_phase` that - does not raise a deprecation error. It is required because - saved_model needs to keep working with user code that uses the deprecated - learning phase methods until those APIs are fully removed from the public - API. - - Specifically SavedModel saving needs to make sure the learning phase is 0 - during tracing even if users overwrote it to a different value. - - But, we don't want to raise deprecation warnings for users when savedmodel - sets learning phase just for compatibility with code that relied on - explicitly setting the learning phase for other values. - - Args: - value: Learning phase value, either 0 or 1 (integers). - 0 = test, 1 = train - - Raises: - ValueError: if `value` is neither `0` nor `1`. - """ - if value not in {0, 1}: - raise ValueError("Expected learning phase to be 0 or 1.") - with tf.init_scope(): - if tf.executing_eagerly(): - # In an eager context, the learning phase values applies to both the - # eager context and the internal Keras graph. - _DUMMY_EAGER_GRAPH.learning_phase_is_set = True - _internal_set_learning_phase(_DUMMY_EAGER_GRAPH.key, value) - - _internal_set_learning_phase(get_graph(), value) - - -@keras_export("keras.backend.learning_phase_scope") -@tf_contextlib.contextmanager -@doc_controls.do_not_generate_docs -def learning_phase_scope(value): - """Provides a scope within which the learning phase is equal to `value`. - - The learning phase gets restored to its original value upon exiting the - scope. - - Args: - value: Learning phase value, either 0 or 1 (integers). - 0 = test, 1 = train - - Yields: - None. - - Raises: - ValueError: if `value` is neither `0` nor `1`. - """ - warnings.warn( - "`tf.keras.backend.learning_phase_scope` is deprecated and " - "will be removed after 2020-10-11. To update it, simply " - "pass a True/False value to the `training` argument of the " - "`__call__` method of your layer or model.", - stacklevel=2, - ) - with deprecated_internal_learning_phase_scope(value): - try: - yield - finally: - pass - - -@tf_contextlib.contextmanager -def deprecated_internal_learning_phase_scope(value): - """An internal-only version of `learning_phase_scope`. - - Unlike the public method, this method does not raise a deprecation warning. - This is needed because saved model saving needs to set learning phase - to maintain compatibility - with code that sets/gets the learning phase, but saved model - saving itself shouldn't raise a deprecation warning. - - We can get rid of this method and its usages when the public API is - removed. - - Args: - value: Learning phase value, either 0 or 1 (integers). - 0 = test, 1 = train - - Yields: - None. - - Raises: - ValueError: if `value` is neither `0` nor `1`. - """ - global _GRAPH_LEARNING_PHASES - if value not in {0, 1}: - raise ValueError("Expected learning phase to be 0 or 1.") - - with tf.init_scope(): - if tf.executing_eagerly(): - previous_eager_value = _internal_get_learning_phase( - _DUMMY_EAGER_GRAPH.key - ) - previous_graph_value = _internal_get_learning_phase(get_graph()) - - learning_phase_previously_set = _DUMMY_EAGER_GRAPH.learning_phase_is_set - try: - deprecated_internal_set_learning_phase(value) - yield - finally: - # Restore learning phase to initial value. - if not learning_phase_previously_set: - _DUMMY_EAGER_GRAPH.learning_phase_is_set = False - with tf.init_scope(): - if tf.executing_eagerly(): - if previous_eager_value is not None: - _internal_set_learning_phase( - _DUMMY_EAGER_GRAPH.key, previous_eager_value - ) - elif _DUMMY_EAGER_GRAPH.key in _GRAPH_LEARNING_PHASES: - del _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH.key] - - graph = get_graph() - if previous_graph_value is not None: - _internal_set_learning_phase(graph, previous_graph_value) - elif graph in _GRAPH_LEARNING_PHASES: - del _GRAPH_LEARNING_PHASES[graph] - - -@tf_contextlib.contextmanager -def eager_learning_phase_scope(value): - """Internal scope that sets the learning phase in eager / tf.function only. - - Args: - value: Learning phase value, either 0 or 1 (integers). - 0 = test, 1 = train - - Yields: - None. - - Raises: - ValueError: if `value` is neither `0` nor `1`. - """ - global _GRAPH_LEARNING_PHASES - assert value in {0, 1} - assert tf.compat.v1.executing_eagerly_outside_functions() - global_learning_phase_was_set = global_learning_phase_is_set() - if global_learning_phase_was_set: - previous_value = learning_phase() - try: - _internal_set_learning_phase(_DUMMY_EAGER_GRAPH.key, value) - yield - finally: - # Restore learning phase to initial value or unset. - if global_learning_phase_was_set: - _internal_set_learning_phase(_DUMMY_EAGER_GRAPH.key, previous_value) - else: - del _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH.key] - - -def _as_graph_element(obj): - """Convert `obj` to a graph element if possible, otherwise return `None`. - - Args: - obj: Object to convert. - - Returns: - The result of `obj._as_graph_element()` if that method is available; - otherwise `None`. - """ - conv_fn = getattr(obj, "_as_graph_element", None) - if conv_fn and callable(conv_fn): - return conv_fn() - return None - - -def _assert_same_graph(original_item, item): - """Fail if the 2 items are from different graphs. - - Args: - original_item: Original item to check against. - item: Item to check. - - Raises: - ValueError: if graphs do not match. - """ - original_graph = getattr(original_item, "graph", None) - graph = getattr(item, "graph", None) - if original_graph and graph and original_graph is not graph: - raise ValueError( - "%s must be from the same graph as %s (graphs are %s and %s)." - % (item, original_item, graph, original_graph) - ) - - -def _current_graph(op_input_list, graph=None): - """Returns the appropriate graph to use for the given inputs. - - This library method provides a consistent algorithm for choosing the graph - in which an Operation should be constructed: - - 1. If the default graph is being used to construct a function, we - use the default graph. - 2. If the "graph" is specified explicitly, we validate that all of the - inputs in "op_input_list" are compatible with that graph. - 3. Otherwise, we attempt to select a graph from the first Operation- - or Tensor-valued input in "op_input_list", and validate that all other - such inputs are in the same graph. - 4. If the graph was not specified and it could not be inferred from - "op_input_list", we attempt to use the default graph. - - Args: - op_input_list: A list of inputs to an operation, which may include - `Tensor`, `Operation`, and other objects that may be converted to a - graph element. - graph: (Optional) The explicit graph to use. - - Raises: - TypeError: If op_input_list is not a list or tuple, or if graph is not a - Graph. - ValueError: If a graph is explicitly passed and not all inputs are from - it, or if the inputs are from multiple graphs, or we could not find a - graph and there was no default graph. - - Returns: - The appropriate graph to use for the given inputs. - - """ - current_default_graph = tf.compat.v1.get_default_graph() - if current_default_graph.building_function: - return current_default_graph - - op_input_list = tuple(op_input_list) # Handle generators correctly - if graph and not isinstance(graph, tf.Graph): - raise TypeError(f"Input graph needs to be a Graph: {graph}") - - # 1. We validate that all of the inputs are from the same graph. This is - # either the supplied graph parameter, or the first one selected from one - # the graph-element-valued inputs. In the latter case, we hold onto - # that input in original_graph_element so we can provide a more - # informative error if a mismatch is found. - original_graph_element = None - for op_input in op_input_list: - # Determine if this is a valid graph_element. - # TODO(joshl): Note that we exclude subclasses of Tensor. Need to clean - # this up. - if isinstance( - op_input, (tf.Operation, tf.Tensor, tf.__internal__.CompositeTensor) - ) and ( - (not isinstance(op_input, tf.Tensor)) or type(op_input) == tf.Tensor - ): - graph_element = op_input - else: - graph_element = _as_graph_element(op_input) - - if graph_element is not None: - if not graph: - original_graph_element = graph_element - graph = getattr(graph_element, "graph", None) - elif original_graph_element is not None: - _assert_same_graph(original_graph_element, graph_element) - elif graph_element.graph is not graph: - raise ValueError( - f"{graph_element} is not from the passed-in graph." - ) - - # 2. If all else fails, we use the default graph, which is always there. - return graph or current_default_graph - - -def _get_session(op_input_list=()): - """Returns the session object for the current thread.""" - global _SESSION - default_session = tf.compat.v1.get_default_session() - if default_session is not None: - session = default_session - else: - if tf.inside_function(): - raise RuntimeError( - "Cannot get session inside Tensorflow graph function." - ) - # If we don't have a session, or that session does not match the current - # graph, create and cache a new session. - if getattr( - _SESSION, "session", None - ) is None or _SESSION.session.graph is not _current_graph( - op_input_list - ): - # If we are creating the Session inside a tf.distribute.Strategy - # scope, we ask the strategy for the right session options to use. - if tf.distribute.has_strategy(): - configure_and_create_distributed_session( - tf.distribute.get_strategy() - ) - else: - _SESSION.session = tf.compat.v1.Session( - config=get_default_session_config() - ) - session = _SESSION.session - return session - - -@keras_export(v1=["keras.backend.get_session"]) -def get_session(op_input_list=()): - """Returns the TF session to be used by the backend. - - If a default TensorFlow session is available, we will return it. - - Else, we will return the global Keras session assuming it matches - the current graph. - - If no global Keras session exists at this point: - we will create a new global session. - - Note that you can manually set the global session - via `K.set_session(sess)`. - - Args: - op_input_list: An option sequence of tensors or ops, which will be used - to determine the current graph. Otherwise the default graph will be - used. - - Returns: - A TensorFlow session. - """ - session = _get_session(op_input_list) - if not _MANUAL_VAR_INIT: - with session.graph.as_default(): - _initialize_variables(session) - return session - - -# Inject the get_session function to keras_deps to remove the dependency -# from TFLite to Keras. -tf.__internal__.register_get_session_function(get_session) - -# Inject the get_session function to tracking_util to avoid the backward -# dependency from TF to Keras. -tf.__internal__.tracking.register_session_provider(get_session) - - -def get_graph(): - if tf.executing_eagerly(): - global _GRAPH - if not getattr(_GRAPH, "graph", None): - _GRAPH.graph = tf.__internal__.FuncGraph("keras_graph") - return _GRAPH.graph - else: - return tf.compat.v1.get_default_graph() - - -@tf_contextlib.contextmanager -def _scratch_graph(graph=None): - """Retrieve a shared and temporary func graph. - - The eager execution path lifts a subgraph from the keras global graph into - a scratch graph in order to create a function. DistributionStrategies, in - turn, constructs multiple functions as well as a final combined function. In - order for that logic to work correctly, all of the functions need to be - created on the same scratch FuncGraph. - - Args: - graph: A graph to be used as the current scratch graph. If not set then - a scratch graph will either be retrieved or created: - - Yields: - The current scratch graph. - """ - global _CURRENT_SCRATCH_GRAPH - scratch_graph = getattr(_CURRENT_SCRATCH_GRAPH, "graph", None) - # If scratch graph and `graph` are both configured, they must match. - if ( - scratch_graph is not None - and graph is not None - and scratch_graph is not graph - ): - raise ValueError("Multiple scratch graphs specified.") - - if scratch_graph: - yield scratch_graph - return - - graph = graph or tf.__internal__.FuncGraph("keras_scratch_graph") - try: - _CURRENT_SCRATCH_GRAPH.graph = graph - yield graph - finally: - _CURRENT_SCRATCH_GRAPH.graph = None - - -@keras_export(v1=["keras.backend.set_session"]) -def set_session(session): - """Sets the global TensorFlow session. - - Args: - session: A TF Session. - """ - global _SESSION - _SESSION.session = session - - -def get_default_session_config(): - if os.environ.get("OMP_NUM_THREADS"): - logging.warning( - "OMP_NUM_THREADS is no longer used by the default Keras config. " - "To configure the number of threads, use tf.config.threading APIs." - ) - - config = get_config() - config.allow_soft_placement = True - - return config - - -def get_default_graph_uid_map(): - graph = tf.compat.v1.get_default_graph() - name_uid_map = PER_GRAPH_OBJECT_NAME_UIDS.get(graph, None) - if name_uid_map is None: - name_uid_map = collections.defaultdict(int) - PER_GRAPH_OBJECT_NAME_UIDS[graph] = name_uid_map - return name_uid_map - - -# DEVICE MANIPULATION - - -class _TfDeviceCaptureOp: - """Class for capturing the TF device scope.""" - - def __init__(self): - self.device = None - - def _set_device(self, device): - """This method captures TF's explicit device scope setting.""" - if isinstance(device, tf.DeviceSpec): - device = device.to_string() - self.device = device - - def _set_device_from_string(self, device_str): - self.device = device_str - - -def _get_current_tf_device(): - """Return explicit device of current context, otherwise returns `None`. - - Returns: - If the current device scope is explicitly set, it returns a string with - the device (`CPU` or `GPU`). If the scope is not explicitly set, it will - return `None`. - """ - graph = get_graph() - op = _TfDeviceCaptureOp() - graph._apply_device_functions(op) - if tf.__internal__.tf2.enabled(): - return tf.DeviceSpec.from_string(op.device) - else: - return tf.compat.v1.DeviceSpec.from_string(op.device) - - -def _is_current_explicit_device(device_type): - """Check if the current device is explicitly set to `device_type`. - - Args: - device_type: A string containing `GPU` or `CPU` (case-insensitive). - - Returns: - A boolean indicating if the current device scope is explicitly set on - the device type. - - Raises: - ValueError: If the `device_type` string indicates an unsupported device. - """ - device_type = device_type.upper() - if device_type not in ["CPU", "GPU"]: - raise ValueError('`device_type` should be either "CPU" or "GPU".') - device = _get_current_tf_device() - return device is not None and device.device_type == device_type.upper() - - -def _get_available_gpus(): - """Get a list of available GPU devices (formatted as strings). - - Returns: - A list of available GPU devices. - """ - if tf.compat.v1.executing_eagerly_outside_functions(): - # Returns names of devices directly. - return [d.name for d in tf.config.list_logical_devices("GPU")] - - global _LOCAL_DEVICES - if _LOCAL_DEVICES is None: - _LOCAL_DEVICES = get_session().list_devices() - return [x.name for x in _LOCAL_DEVICES if x.device_type == "GPU"] - - -def _has_nchw_support(): - """Check whether the current scope supports NCHW ops. - - TensorFlow does not support NCHW on CPU. Therefore we check if we are not - explicitly put on - CPU, and have GPUs available. In this case there will be soft-placing on the - GPU device. - - Returns: - bool: if the current scope device placement would support nchw - """ - explicitly_on_cpu = _is_current_explicit_device("CPU") - gpus_available = bool(_get_available_gpus()) - return not explicitly_on_cpu and gpus_available - - -# VARIABLE MANIPULATION - - -def _constant_to_tensor(x, dtype): - """Convert the input `x` to a tensor of type `dtype`. - - This is slightly faster than the _to_tensor function, at the cost of - handling fewer cases. - - Args: - x: An object to be converted (numpy arrays, floats, ints and lists of - them). - dtype: The destination type. - - Returns: - A tensor. - """ - return tf.constant(x, dtype=dtype) - - -def _to_tensor(x, dtype): - """Convert the input `x` to a tensor of type `dtype`. - - Args: - x: An object to be converted (numpy array, list, tensors). - dtype: The destination type. - - Returns: - A tensor. - """ - return tf.convert_to_tensor(x, dtype=dtype) - - -@keras_export("keras.backend.is_sparse") -@doc_controls.do_not_generate_docs -def is_sparse(tensor): - """Returns whether a tensor is a sparse tensor. - - Args: - tensor: A tensor instance. - - Returns: - A boolean. - - Example: - - - >>> a = tf.keras.backend.placeholder((2, 2), sparse=False) - >>> print(tf.keras.backend.is_sparse(a)) - False - >>> b = tf.keras.backend.placeholder((2, 2), sparse=True) - >>> print(tf.keras.backend.is_sparse(b)) - True - - """ - spec = getattr(tensor, "_type_spec", None) - if spec is not None: - return isinstance(spec, tf.SparseTensorSpec) - return isinstance(tensor, tf.SparseTensor) - - -@keras_export("keras.backend.to_dense") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def to_dense(tensor): - """Converts a sparse tensor into a dense tensor and returns it. - - Args: - tensor: A tensor instance (potentially sparse). - - Returns: - A dense tensor. - - Examples: - - - >>> b = tf.keras.backend.placeholder((2, 2), sparse=True) - >>> print(tf.keras.backend.is_sparse(b)) - True - >>> c = tf.keras.backend.to_dense(b) - >>> print(tf.keras.backend.is_sparse(c)) - False - - """ - if is_sparse(tensor): - return tf.sparse.to_dense(tensor) - else: - return tensor - - -@keras_export("keras.backend.name_scope", v1=[]) -@doc_controls.do_not_generate_docs -def name_scope(name): - """A context manager for use when defining a Python op. - - This context manager pushes a name scope, which will make the name of all - operations added within it have a prefix. - - For example, to define a new Python op called `my_op`: - - - def my_op(a): - with tf.name_scope("MyOp") as scope: - a = tf.convert_to_tensor(a, name="a") - # Define some computation that uses `a`. - return foo_op(..., name=scope) - - - When executed, the Tensor `a` will have the name `MyOp/a`. - - Args: - name: The prefix to use on all names created within the name scope. - - Returns: - Name scope context manager. - """ - return tf.name_scope(name) - - -# Export V1 version. -_v1_name_scope = tf.compat.v1.name_scope -keras_export(v1=["keras.backend.name_scope"], allow_multiple_exports=True)( - _v1_name_scope -) - - -@keras_export("keras.backend.variable") -@doc_controls.do_not_generate_docs -def variable(value, dtype=None, name=None, constraint=None): - """Instantiates a variable and returns it. - - Args: - value: Numpy array, initial value of the tensor. - dtype: Tensor type. - name: Optional name string for the tensor. - constraint: Optional projection function to be - applied to the variable after an optimizer update. - - Returns: - A variable instance (with Keras metadata included). - - Examples: - - >>> val = np.array([[1, 2], [3, 4]]) - >>> kvar = tf.keras.backend.variable(value=val, dtype='float64', - ... name='example_var') - >>> tf.keras.backend.dtype(kvar) - 'float64' - >>> print(kvar) - - - """ - if dtype is None: - dtype = floatx() - if hasattr(value, "tocoo"): - sparse_coo = value.tocoo() - indices = np.concatenate( - ( - np.expand_dims(sparse_coo.row, 1), - np.expand_dims(sparse_coo.col, 1), - ), - 1, - ) - v = tf.SparseTensor( - indices=indices, - values=sparse_coo.data, - dense_shape=sparse_coo.shape, - ) - v._keras_shape = sparse_coo.shape - return v - v = tf.Variable( - value, dtype=tf.as_dtype(dtype), name=name, constraint=constraint - ) - if isinstance(value, np.ndarray): - v._keras_shape = value.shape - elif hasattr(value, "shape"): - v._keras_shape = int_shape(value) - track_variable(v) - return v - - -def track_tf_optimizer(tf_optimizer): - """Tracks the given TF optimizer for initialization of its variables.""" - if tf.executing_eagerly(): - return - optimizers = _GRAPH_TF_OPTIMIZERS[None] - optimizers.add(tf_optimizer) - - -@keras_export("keras.__internal__.backend.track_variable", v1=[]) -def track_variable(v): - """Tracks the given variable for initialization.""" - if tf.executing_eagerly(): - return - graph = v.graph if hasattr(v, "graph") else get_graph() - _GRAPH_VARIABLES[graph].add(v) - - -def observe_object_name(name): - """Observe a name and make sure it won't be used by `unique_object_name`.""" - OBSERVED_NAMES.add(name) - - -def unique_object_name( - name, - name_uid_map=None, - avoid_names=None, - namespace="", - zero_based=False, - avoid_observed_names=False, -): - """Makes a object name (or any string) unique within a Keras session. - - Args: - name: String name to make unique. - name_uid_map: An optional defaultdict(int) to use when creating unique - names. If None (default), uses a per-Graph dictionary. - avoid_names: An optional set or dict with names which should not be used. - If None (default), don't avoid any names unless `avoid_observed_names` - is True. - namespace: Gets a name which is unique within the (graph, namespace). - Layers which are not Networks use a blank namespace and so get - graph-global names. - zero_based: If True, name sequences start with no suffix (e.g. "dense", - "dense_1"). If False, naming is one-based ("dense_1", "dense_2"). - avoid_observed_names: If True, avoid any names that have been observed by - `backend.observe_object_name`. - - Returns: - Unique string name. - - Example: - - - unique_object_name('dense') # dense_1 - unique_object_name('dense') # dense_2 - - """ - if name_uid_map is None: - name_uid_map = get_default_graph_uid_map() - if avoid_names is None: - if avoid_observed_names: - avoid_names = OBSERVED_NAMES - else: - avoid_names = set() - proposed_name = None - while proposed_name is None or proposed_name in avoid_names: - name_key = (namespace, name) - if zero_based: - number = name_uid_map[name_key] - if number: - proposed_name = name + "_" + str(number) - else: - proposed_name = name - name_uid_map[name_key] += 1 - else: - name_uid_map[name_key] += 1 - proposed_name = name + "_" + str(name_uid_map[name_key]) - return proposed_name - - -def _get_variables(graph=None): - """Returns variables corresponding to the given graph for initialization.""" - assert not tf.executing_eagerly() - variables = _GRAPH_VARIABLES[graph] - for opt in _GRAPH_TF_OPTIMIZERS[graph]: - variables.update(opt.optimizer.variables()) - return variables - - -@keras_export("keras.__internal__.backend.initialize_variables", v1=[]) -def _initialize_variables(session): - """Utility to initialize uninitialized variables on the fly.""" - variables = _get_variables(get_graph()) - candidate_vars = [] - for v in variables: - if not getattr(v, "_keras_initialized", False): - candidate_vars.append(v) - if candidate_vars: - # This step is expensive, so we only run it on variables not already - # marked as initialized. - is_initialized = session.run( - [tf.compat.v1.is_variable_initialized(v) for v in candidate_vars] - ) - # TODO(kathywu): Some metric variables loaded from SavedModel are never - # actually used, and do not have an initializer. - should_be_initialized = [ - (not is_initialized[n]) and v.initializer is not None - for n, v in enumerate(candidate_vars) - ] - uninitialized_vars = [] - for flag, v in zip(should_be_initialized, candidate_vars): - if flag: - uninitialized_vars.append(v) - v._keras_initialized = True - if uninitialized_vars: - session.run(tf.compat.v1.variables_initializer(uninitialized_vars)) - - -@keras_export("keras.backend.constant") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def constant(value, dtype=None, shape=None, name=None): - """Creates a constant tensor. - - Args: - value: A constant value (or list) - dtype: The type of the elements of the resulting tensor. - shape: Optional dimensions of resulting tensor. - name: Optional name for the tensor. - - Returns: - A Constant Tensor. - """ - if dtype is None: - dtype = floatx() - - return tf.constant(value, dtype=dtype, shape=shape, name=name) - - -@keras_export("keras.backend.is_keras_tensor") -def is_keras_tensor(x): - """Returns whether `x` is a Keras tensor. - - A "Keras tensor" is a tensor that was returned by a Keras layer, - (`Layer` class) or by `Input`. - - Args: - x: A candidate tensor. - - Returns: - A boolean: Whether the argument is a Keras tensor. - - Raises: - ValueError: In case `x` is not a symbolic tensor. - - Examples: - - >>> np_var = np.array([1, 2]) - >>> # A numpy array is not a symbolic tensor. - >>> tf.keras.backend.is_keras_tensor(np_var) - Traceback (most recent call last): - ... - ValueError: Unexpectedly found an instance of type - ``. - Expected a symbolic tensor instance. - >>> keras_var = tf.keras.backend.variable(np_var) - >>> # A variable created with the keras backend is not a Keras tensor. - >>> tf.keras.backend.is_keras_tensor(keras_var) - False - >>> keras_placeholder = tf.keras.backend.placeholder(shape=(2, 4, 5)) - >>> # A placeholder is a Keras tensor. - >>> tf.keras.backend.is_keras_tensor(keras_placeholder) - True - >>> keras_input = tf.keras.layers.Input([10]) - >>> # An Input is a Keras tensor. - >>> tf.keras.backend.is_keras_tensor(keras_input) - True - >>> keras_layer_output = tf.keras.layers.Dense(10)(keras_input) - >>> # Any Keras layer output is a Keras tensor. - >>> tf.keras.backend.is_keras_tensor(keras_layer_output) - True - - """ - if not isinstance( - x, - ( - tf.Tensor, - tf.Variable, - tf.SparseTensor, - tf.RaggedTensor, - keras_tensor.KerasTensor, - ), - ): - raise ValueError( - "Unexpectedly found an instance of type `" - + str(type(x)) - + "`. Expected a symbolic tensor instance." - ) - if tf.compat.v1.executing_eagerly_outside_functions(): - return isinstance(x, keras_tensor.KerasTensor) - return hasattr(x, "_keras_history") - - -@keras_export("keras.backend.placeholder") -@doc_controls.do_not_generate_docs -def placeholder( - shape=None, ndim=None, dtype=None, sparse=False, name=None, ragged=False -): - """Instantiates a placeholder tensor and returns it. - - Args: - shape: Shape of the placeholder - (integer tuple, may include `None` entries). - ndim: Number of axes of the tensor. - At least one of {`shape`, `ndim`} must be specified. - If both are specified, `shape` is used. - dtype: Placeholder type. - sparse: Boolean, whether the placeholder should have a sparse type. - name: Optional name string for the placeholder. - ragged: Boolean, whether the placeholder should have a ragged type. - In this case, values of 'None' in the 'shape' argument represent - ragged dimensions. For more information about RaggedTensors, see - this [guide](https://www.tensorflow.org/guide/ragged_tensor). - - Raises: - ValueError: If called with sparse = True and ragged = True. - - Returns: - Tensor instance (with Keras metadata included). - - Examples: - - - >>> input_ph = tf.keras.backend.placeholder(shape=(2, 4, 5)) - >>> input_ph - - - """ - if sparse and ragged: - raise ValueError( - "Cannot set both sparse and ragged to " - "True when creating a placeholder." - ) - if dtype is None: - dtype = floatx() - if not shape: - if ndim: - shape = (None,) * ndim - if tf.compat.v1.executing_eagerly_outside_functions(): - if sparse: - spec = tf.SparseTensorSpec(shape=shape, dtype=dtype) - elif ragged: - ragged_rank = 0 - for i in range(1, len(shape)): - # Hacky because could be tensorshape or tuple maybe? - # Or just tensorshape? - if shape[i] is None or ( - hasattr(shape[i], "value") and shape[i].value is None - ): - ragged_rank = i - spec = tf.RaggedTensorSpec( - shape=shape, dtype=dtype, ragged_rank=ragged_rank - ) - else: - spec = tf.TensorSpec(shape=shape, dtype=dtype, name=name) - x = keras_tensor.keras_tensor_from_type_spec(spec, name=name) - else: - with get_graph().as_default(): - if sparse: - x = tf.compat.v1.sparse_placeholder( - dtype, shape=shape, name=name - ) - elif ragged: - ragged_rank = 0 - for i in range(1, len(shape)): - if shape[i] is None: - ragged_rank = i - type_spec = tf.RaggedTensorSpec( - shape=shape, dtype=dtype, ragged_rank=ragged_rank - ) - - def tensor_spec_to_placeholder(tensorspec): - return tf.compat.v1.placeholder( - tensorspec.dtype, tensorspec.shape - ) - - x = tf.nest.map_structure( - tensor_spec_to_placeholder, - type_spec, - expand_composites=True, - ) - else: - x = tf.compat.v1.placeholder(dtype, shape=shape, name=name) - - if tf.executing_eagerly(): - # Add keras_history connectivity information to the placeholder - # when the placeholder is built in a top-level eager context - # (intended to be used with keras.backend.function) - from keras.engine import ( - input_layer, - ) - - x = input_layer.Input(tensor=x) - x._is_backend_placeholder = True - - return x - - -def is_placeholder(x): - """Returns whether `x` is a placeholder. - - Args: - x: A candidate placeholder. - - Returns: - Boolean. - """ - try: - if tf.compat.v1.executing_eagerly_outside_functions(): - return hasattr(x, "_is_backend_placeholder") - - # TODO(b/246438937): Remove the special case for tf.Variable once - # tf.Variable becomes CompositeTensor and will be expanded into - # dt_resource tensors. - if tf_utils.is_extension_type(x) and not isinstance(x, tf.Variable): - flat_components = tf.nest.flatten(x, expand_composites=True) - return py_any(is_placeholder(c) for c in flat_components) - else: - return x.op.type == "Placeholder" - except AttributeError: - return False - - -@keras_export("keras.backend.shape") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def shape(x): - """Returns the symbolic shape of a tensor or variable. - - Args: - x: A tensor or variable. - - Returns: - A symbolic shape (which is itself a tensor). - - Examples: - - >>> val = np.array([[1, 2], [3, 4]]) - >>> kvar = tf.keras.backend.variable(value=val) - >>> tf.keras.backend.shape(kvar) - - >>> input = tf.keras.backend.placeholder(shape=(2, 4, 5)) - >>> tf.keras.backend.shape(input) - - - """ - return tf.shape(x) - - -@keras_export("keras.backend.int_shape") -@doc_controls.do_not_generate_docs -def int_shape(x): - """Returns shape of tensor/variable as a tuple of int/None entries. - - Args: - x: Tensor or variable. - - Returns: - A tuple of integers (or None entries). - - Examples: - - >>> input = tf.keras.backend.placeholder(shape=(2, 4, 5)) - >>> tf.keras.backend.int_shape(input) - (2, 4, 5) - >>> val = np.array([[1, 2], [3, 4]]) - >>> kvar = tf.keras.backend.variable(value=val) - >>> tf.keras.backend.int_shape(kvar) - (2, 2) - - """ - try: - shape = x.shape - if not isinstance(shape, tuple): - shape = tuple(shape.as_list()) - return shape - except ValueError: - return None - - -@keras_export("keras.backend.ndim") -@doc_controls.do_not_generate_docs -def ndim(x): - """Returns the number of axes in a tensor, as an integer. - - Args: - x: Tensor or variable. - - Returns: - Integer (scalar), number of axes. - - Examples: - - - >>> input = tf.keras.backend.placeholder(shape=(2, 4, 5)) - >>> val = np.array([[1, 2], [3, 4]]) - >>> kvar = tf.keras.backend.variable(value=val) - >>> tf.keras.backend.ndim(input) - 3 - >>> tf.keras.backend.ndim(kvar) - 2 - - """ - return x.shape.rank - - -@keras_export("keras.backend.dtype") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def dtype(x): - """Returns the dtype of a Keras tensor or variable, as a string. - - Args: - x: Tensor or variable. - - Returns: - String, dtype of `x`. - - Examples: - - >>> tf.keras.backend.dtype(tf.keras.backend.placeholder(shape=(2,4,5))) - 'float32' - >>> tf.keras.backend.dtype(tf.keras.backend.placeholder(shape=(2,4,5), - ... dtype='float32')) - 'float32' - >>> tf.keras.backend.dtype(tf.keras.backend.placeholder(shape=(2,4,5), - ... dtype='float64')) - 'float64' - >>> kvar = tf.keras.backend.variable(np.array([[1, 2], [3, 4]])) - >>> tf.keras.backend.dtype(kvar) - 'float32' - >>> kvar = tf.keras.backend.variable(np.array([[1, 2], [3, 4]]), - ... dtype='float32') - >>> tf.keras.backend.dtype(kvar) - 'float32' - - """ - return x.dtype.base_dtype.name - - -@doc_controls.do_not_generate_docs -def dtype_numpy(x): - """Returns the numpy dtype of a Keras tensor or variable. - - Args: - x: Tensor or variable. - - Returns: - numpy.dtype, dtype of `x`. - """ - return tf.as_dtype(x.dtype).as_numpy_dtype - - -@keras_export("keras.backend.eval") -@doc_controls.do_not_generate_docs -def eval(x): - """Evaluates the value of a variable. - - Args: - x: A variable. - - Returns: - A Numpy array. - - Examples: - - >>> kvar = tf.keras.backend.variable(np.array([[1, 2], [3, 4]]), - ... dtype='float32') - >>> tf.keras.backend.eval(kvar) - array([[1., 2.], - [3., 4.]], dtype=float32) - - """ - return get_value(to_dense(x)) - - -@keras_export("keras.backend.zeros") -@doc_controls.do_not_generate_docs -def zeros(shape, dtype=None, name=None): - """Instantiates an all-zeros variable and returns it. - - Args: - shape: Tuple or list of integers, shape of returned Keras variable - dtype: data type of returned Keras variable - name: name of returned Keras variable - - Returns: - A variable (including Keras metadata), filled with `0.0`. - Note that if `shape` was symbolic, we cannot return a variable, - and will return a dynamically-shaped tensor instead. - - Example: - - >>> kvar = tf.keras.backend.zeros((3,4)) - >>> tf.keras.backend.eval(kvar) - array([[0., 0., 0., 0.], - [0., 0., 0., 0.], - [0., 0., 0., 0.]], dtype=float32) - >>> A = tf.constant([1,2,3]) - >>> kvar2 = tf.keras.backend.zeros(A.shape) # [0., 0., 0.] - >>> tf.keras.backend.eval(kvar2) - array([0., 0., 0.], dtype=float32) - >>> kvar3 = tf.keras.backend.zeros(A.shape,dtype=tf.int32) - >>> tf.keras.backend.eval(kvar3) - array([0, 0, 0], dtype=int32) - >>> kvar4 = tf.keras.backend.zeros([2,3]) - >>> tf.keras.backend.eval(kvar4) - array([[0., 0., 0.], - [0., 0., 0.]], dtype=float32) - - """ - with tf.init_scope(): - if dtype is None: - dtype = floatx() - tf_dtype = tf.as_dtype(dtype) - v = tf.zeros(shape=shape, dtype=tf_dtype, name=name) - if py_all(v.shape.as_list()): - return variable(v, dtype=dtype, name=name) - return v - - -@keras_export("keras.backend.ones") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def ones(shape, dtype=None, name=None): - """Instantiates an all-ones variable and returns it. - - Args: - shape: Tuple of integers, shape of returned Keras variable. - dtype: String, data type of returned Keras variable. - name: String, name of returned Keras variable. - - Returns: - A Keras variable, filled with `1.0`. - Note that if `shape` was symbolic, we cannot return a variable, - and will return a dynamically-shaped tensor instead. - - Example: - - - >>> kvar = tf.keras.backend.ones((3,4)) - >>> tf.keras.backend.eval(kvar) - array([[1., 1., 1., 1.], - [1., 1., 1., 1.], - [1., 1., 1., 1.]], dtype=float32) - - """ - with tf.init_scope(): - if dtype is None: - dtype = floatx() - tf_dtype = tf.as_dtype(dtype) - v = tf.ones(shape=shape, dtype=tf_dtype, name=name) - if py_all(v.shape.as_list()): - return variable(v, dtype=dtype, name=name) - return v - - -@keras_export("keras.backend.eye") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def eye(size, dtype=None, name=None): - """Instantiate an identity matrix and returns it. - - Args: - size: Integer, number of rows/columns. - dtype: String, data type of returned Keras variable. - name: String, name of returned Keras variable. - - Returns: - A Keras variable, an identity matrix. - - Example: - - - >>> kvar = tf.keras.backend.eye(3) - >>> tf.keras.backend.eval(kvar) - array([[1., 0., 0.], - [0., 1., 0.], - [0., 0., 1.]], dtype=float32) - - - """ - if dtype is None: - dtype = floatx() - tf_dtype = tf.as_dtype(dtype) - return variable(tf.eye(size, dtype=tf_dtype), dtype, name) - - -@keras_export("keras.backend.zeros_like") -@doc_controls.do_not_generate_docs -def zeros_like(x, dtype=None, name=None): - """Instantiates an all-zeros variable of the same shape as another tensor. - - Args: - x: Keras variable or Keras tensor. - dtype: dtype of returned Keras variable. - `None` uses the dtype of `x`. - name: name for the variable to create. - - Returns: - A Keras variable with the shape of `x` filled with zeros. - - Example: - - ```python - kvar = tf.keras.backend.variable(np.random.random((2,3))) - kvar_zeros = tf.keras.backend.zeros_like(kvar) - K.eval(kvar_zeros) - # array([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=float32) - ``` - """ - return tf.zeros_like(x, dtype=dtype, name=name) - - -@keras_export("keras.backend.ones_like") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def ones_like(x, dtype=None, name=None): - """Instantiates an all-ones variable of the same shape as another tensor. - - Args: - x: Keras variable or tensor. - dtype: String, dtype of returned Keras variable. - None uses the dtype of x. - name: String, name for the variable to create. - - Returns: - A Keras variable with the shape of x filled with ones. - - Example: - - >>> kvar = tf.keras.backend.variable(np.random.random((2,3))) - >>> kvar_ones = tf.keras.backend.ones_like(kvar) - >>> tf.keras.backend.eval(kvar_ones) - array([[1., 1., 1.], - [1., 1., 1.]], dtype=float32) - - """ - return tf.ones_like(x, dtype=dtype, name=name) - - -def identity(x, name=None): - """Returns a tensor with the same content as the input tensor. - - Args: - x: The input tensor. - name: String, name for the variable to create. - - Returns: - A tensor of the same shape, type and content. - """ - return tf.identity(x, name=name) - - -# Global flag to enforce tf.random.Generator for RandomGenerator. -# When this is enabled, for any caller to RandomGenerator, it will use -# tf.random.Generator to generate random numbers. -# The legacy behavior is to use TF's legacy stateful RNG ops like -# tf.random.uniform. -_USE_GENERATOR_FOR_RNG = False - -# The global generator to create the seed when initializing the -# tf.random.Genrator used by RandomGenerator. When tf.random.Generator becomes -# the default solution, we would like the it to be initialized in a controlable -# way, so that each client of the program could start with same seed. This is -# very important for certain use case that requires all the client to have their -# state in sync. This instance will be set when user call -# `tf.keras.utils.set_random_seed()` -_SEED_GENERATOR = threading.local() - - -@keras_export( - "keras.backend.experimental.is_tf_random_generator_enabled", v1=[] -) -def is_tf_random_generator_enabled(): - """Check whether `tf.random.Generator` is used for RNG in Keras. - - Compared to existing TF stateful random ops, `tf.random.Generator` uses - `tf.Variable` and stateless random ops to generate random numbers, - which leads to better reproducibility in distributed training. - Note enabling it might introduce some breakage to existing code, - by producing differently-seeded random number sequences - and breaking tests that rely on specific random numbers being generated. - To disable the - usage of `tf.random.Generator`, please use - `tf.keras.backend.experimental.disable_random_generator`. - - We expect the `tf.random.Generator` code path to become the default, and - will remove the legacy stateful random ops such as `tf.random.uniform` in - the future (see the [TF RNG guide]( - https://www.tensorflow.org/guide/random_numbers)). - - This API will also be removed in a future release as well, together with - `tf.keras.backend.experimental.enable_tf_random_generator()` and - `tf.keras.backend.experimental.disable_tf_random_generator()` - - Returns: - boolean: whether `tf.random.Generator` is used for random number - generation in Keras. - """ - return _USE_GENERATOR_FOR_RNG - - -@keras_export("keras.backend.experimental.enable_tf_random_generator", v1=[]) -def enable_tf_random_generator(): - """Enable the `tf.random.Generator` as the RNG for Keras. - - See `tf.keras.backend.experimental.is_tf_random_generator_enabled` for more - details. - """ - - global _USE_GENERATOR_FOR_RNG - _USE_GENERATOR_FOR_RNG = True - - -@keras_export("keras.backend.experimental.disable_tf_random_generator", v1=[]) -def disable_tf_random_generator(): - """Disable the `tf.random.Generator` as the RNG for Keras. - - See `tf.keras.backend.experimental.is_tf_random_generator_enabled` for more - details. - """ - global _USE_GENERATOR_FOR_RNG - _USE_GENERATOR_FOR_RNG = False - - -class RandomGenerator(tf.__internal__.tracking.AutoTrackable): - """Random generator that selects appropriate random ops. - - This class contains the logic for legacy stateful random ops, as well as the - new stateless random ops with seeds and tf.random.Generator. Any class that - relies on RNG (eg initializer, shuffle, dropout) should use this class to - handle the transition from legacy RNGs to new RNGs. - - Args: - seed: Optional int seed. When `rng_type` is "stateful", the seed is used - to create `tf.random.Generator` to produce deterministic sequences. - When `rng_type` is "stateless", new seed will be created if it is not - provided by user, and it will be passed down to stateless random ops. - When `rng_type` is "legacy_stateful", the seed will be passed down to - stateful random ops. - rng_type: Type of RNG to use, one of "stateful", "stateless", - "legacy_stateful". When `None` it uses "stateful" if - `enable_tf_random_generator` has been activated, or - "legacy_stateful" otherwise. - - When using "stateless", the random ops outputs are constant (the same - inputs result in the same outputs). - - When using "stateful" or "legacy_stateful", the random ops outputs are - non-constant, but deterministic: calling the same random op multiple - times with the same inputs results in a deterministic sequence of - different outputs. - - "legacy_stateful" is backed by TF1 stateful RNG ops - (e.g. `tf.random.uniform`), while "stateful" - is backed by TF2 APIs (e.g. `tf.random.Generator.uniform`). - Defaults to `None`. - """ - - RNG_STATELESS = "stateless" - RNG_STATEFUL = "stateful" - RNG_LEGACY_STATEFUL = "legacy_stateful" - - def __init__(self, seed=None, rng_type=None, **kwargs): - self._seed = seed - self._set_rng_type(rng_type, **kwargs) - self._built = False - - def _set_rng_type(self, rng_type, **kwargs): - # Only supported kwargs is "force_generator", which we will remove once - # we clean up all the caller. - # TODO(scottzhu): Remove the kwargs for force_generator. - if kwargs.get("force_generator", False): - rng_type = self.RNG_STATEFUL - if rng_type is None: - if is_tf_random_generator_enabled(): - self._rng_type = self.RNG_STATEFUL - else: - self._rng_type = self.RNG_LEGACY_STATEFUL - else: - if rng_type not in [ - self.RNG_STATEFUL, - self.RNG_LEGACY_STATEFUL, - self.RNG_STATELESS, - ]: - raise ValueError( - "Invalid `rng_type` received. " - 'Valid `rng_type` are ["stateless", ' - '"stateful", "legacy_stateful"].' - f" Got: {rng_type}" - ) - self._rng_type = rng_type - - def _maybe_init(self): - """Lazily init the RandomGenerator. - - The TF API executing_eagerly_outside_functions() has some side effect, - and couldn't be used before API like tf.enable_eager_execution(). Some - of the client side code was creating the initializer at the code load - time, which triggers the creation of RandomGenerator. Lazy init this - class to walkaround this issue until it is resolved on TF side. - """ - # TODO(b/167482354): Change this back to normal init when the bug is - # fixed. - if self._built: - return - - if ( - self._rng_type == self.RNG_STATEFUL - and not tf.compat.v1.executing_eagerly_outside_functions() - ): - # Fall back to legacy stateful since the generator need to work in - # tf2. - self._rng_type = self.RNG_LEGACY_STATEFUL - - if self._rng_type == self.RNG_STATELESS: - self._seed = self._create_seed(self._seed) - self._generator = None - elif self._rng_type == self.RNG_STATEFUL: - with tf_utils.maybe_init_scope(self): - seed = self._create_seed(self._seed) - self._generator = tf.random.Generator.from_seed( - seed, alg=tf.random.Algorithm.AUTO_SELECT - ) - else: - # In legacy stateful, we use stateful op, regardless whether user - # provide seed or not. Seeded stateful op will ensure generating - # same sequences. - self._generator = None - self._built = True - - def make_seed_for_stateless_op(self): - """Generate a new seed based on the init config. - - Note that this will not return python ints which will be frozen in the - graph and cause stateless op to return the same value. It will only - return value when generator is used, otherwise it will return None. - - Returns: - A tensor with shape [2,]. - """ - self._maybe_init() - if self._rng_type == self.RNG_STATELESS: - return [self._seed, 0] - elif self._rng_type == self.RNG_STATEFUL: - return self._generator.make_seeds()[:, 0] - return None - - def make_legacy_seed(self): - """Create a new seed for the legacy stateful ops to use. - - When user didn't provide any original seed, this method will return - None. Otherwise it will increment the counter and return as the new - seed. - - Note that it is important to generate different seed for stateful ops in - the `tf.function`. The random ops will return same value when same seed - is provided in the `tf.function`. - - Returns: - int as new seed, or None. - """ - if self._seed is not None: - result = self._seed - self._seed += 1 - return result - return None - - def _create_seed(self, user_specified_seed): - if user_specified_seed is not None: - return user_specified_seed - elif getattr(_SEED_GENERATOR, "generator", None): - return _SEED_GENERATOR.generator.randint(1, 1e9) - else: - return random.randint(1, int(1e9)) - - def random_normal( - self, shape, mean=0.0, stddev=1.0, dtype=None, nonce=None - ): - """Produce random number based on the normal distribution. - - Args: - shape: The shape of the random values to generate. - mean: Floats, default to 0. Mean of the random values to generate. - stddev: Floats, default to 1. Standard deviation of the random values - to generate. - dtype: Optional dtype of the tensor. Only floating point types are - supported. If not specified, `tf.keras.backend.floatx()` is used, - which default to `float32` unless you configured it otherwise (via - `tf.keras.backend.set_floatx(float_dtype)`) - nonce: Optional integer scalar, that will be folded into the seed in - the stateless mode. - """ - self._maybe_init() - dtype = dtype or floatx() - if self._rng_type == self.RNG_STATEFUL: - return self._generator.normal( - shape=shape, mean=mean, stddev=stddev, dtype=dtype - ) - elif self._rng_type == self.RNG_STATELESS: - seed = self.make_seed_for_stateless_op() - if nonce: - seed = tf.random.experimental.stateless_fold_in(seed, nonce) - return tf.random.stateless_normal( - shape=shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed - ) - return tf.random.normal( - shape=shape, - mean=mean, - stddev=stddev, - dtype=dtype, - seed=self.make_legacy_seed(), - ) - - def random_uniform( - self, shape, minval=0.0, maxval=None, dtype=None, nonce=None - ): - """Produce random number based on the uniform distribution. - - Args: - shape: The shape of the random values to generate. - minval: Floats, default to 0. Lower bound of the range of - random values to generate (inclusive). - minval: Floats, default to None. Upper bound of the range of - random values to generate (exclusive). - dtype: Optional dtype of the tensor. Only floating point types are - supported. If not specified, `tf.keras.backend.floatx()` is used, - which default to `float32` unless you configured it otherwise (via - `tf.keras.backend.set_floatx(float_dtype)`) - nonce: Optional integer scalar, that will be folded into the seed in - the stateless mode. - """ - self._maybe_init() - dtype = dtype or floatx() - if self._rng_type == self.RNG_STATEFUL: - return self._generator.uniform( - shape=shape, minval=minval, maxval=maxval, dtype=dtype - ) - elif self._rng_type == self.RNG_STATELESS: - seed = self.make_seed_for_stateless_op() - if nonce: - seed = tf.random.experimental.stateless_fold_in(seed, nonce) - return tf.random.stateless_uniform( - shape=shape, - minval=minval, - maxval=maxval, - dtype=dtype, - seed=seed, - ) - return tf.random.uniform( - shape=shape, - minval=minval, - maxval=maxval, - dtype=dtype, - seed=self.make_legacy_seed(), - ) - - def truncated_normal( - self, shape, mean=0.0, stddev=1.0, dtype=None, nonce=None - ): - """Produce random number based on the truncated normal distribution. - - Args: - shape: The shape of the random values to generate. - mean: Floats, default to 0. Mean of the random values to generate. - stddev: Floats, default to 1. Standard deviation of the random values - to generate. - dtype: Optional dtype of the tensor. Only floating point types are - supported. If not specified, `tf.keras.backend.floatx()` is used, - which default to `float32` unless you configured it otherwise (via - `tf.keras.backend.set_floatx(float_dtype)`) - nonce: Optional integer scalar, that will be folded into the seed in - the stateless mode. - """ - self._maybe_init() - dtype = dtype or floatx() - if self._rng_type == self.RNG_STATEFUL: - return self._generator.truncated_normal( - shape=shape, mean=mean, stddev=stddev, dtype=dtype - ) - elif self._rng_type == self.RNG_STATELESS: - seed = self.make_seed_for_stateless_op() - if nonce: - seed = tf.random.experimental.stateless_fold_in(seed, nonce) - return tf.random.stateless_truncated_normal( - shape=shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed - ) - return tf.random.truncated_normal( - shape=shape, - mean=mean, - stddev=stddev, - dtype=dtype, - seed=self.make_legacy_seed(), - ) - - def dropout(self, inputs, rate, noise_shape=None): - self._maybe_init() - if self._rng_type == self.RNG_STATEFUL: - return tf.nn.experimental.general_dropout( - inputs, - rate=rate, - noise_shape=noise_shape, - uniform_sampler=self._generator.uniform, - ) - elif self._rng_type == self.RNG_STATELESS: - return tf.nn.experimental.stateless_dropout( - inputs, - rate=rate, - noise_shape=noise_shape, - seed=self.make_seed_for_stateless_op(), - ) - else: - return tf.nn.dropout( - inputs, - rate=rate, - noise_shape=noise_shape, - seed=self.make_legacy_seed(), - ) - - -@keras_export("keras.backend.random_uniform_variable") -@doc_controls.do_not_generate_docs -def random_uniform_variable(shape, low, high, dtype=None, name=None, seed=None): - """Instantiates a variable with values drawn from a uniform distribution. - - Args: - shape: Tuple of integers, shape of returned Keras variable. - low: Float, lower boundary of the output interval. - high: Float, upper boundary of the output interval. - dtype: String, dtype of returned Keras variable. - name: String, name of returned Keras variable. - seed: Integer, random seed. - - Returns: - A Keras variable, filled with drawn samples. - - Example: - - >>> kvar = tf.keras.backend.random_uniform_variable(shape=(2,3), - ... low=0.0, high=1.0) - >>> kvar - - """ - if dtype is None: - dtype = floatx() - tf_dtype = tf.as_dtype(dtype) - if seed is None: - # ensure that randomness is conditioned by the Numpy RNG - seed = np.random.randint(10e8) - value = tf.compat.v1.random_uniform_initializer( - low, high, dtype=tf_dtype, seed=seed - )(shape) - return variable(value, dtype=dtype, name=name) - - -@keras_export("keras.backend.random_normal_variable") -@doc_controls.do_not_generate_docs -def random_normal_variable( - shape, mean, scale, dtype=None, name=None, seed=None -): - """Instantiates a variable with values drawn from a normal distribution. - - Args: - shape: Tuple of integers, shape of returned Keras variable. - mean: Float, mean of the normal distribution. - scale: Float, standard deviation of the normal distribution. - dtype: String, dtype of returned Keras variable. - name: String, name of returned Keras variable. - seed: Integer, random seed. - - Returns: - A Keras variable, filled with drawn samples. - - Example: - - >>> kvar = tf.keras.backend.random_normal_variable(shape=(2,3), - ... mean=0.0, scale=1.0) - >>> kvar - - """ - if dtype is None: - dtype = floatx() - tf_dtype = tf.as_dtype(dtype) - if seed is None: - # ensure that randomness is conditioned by the Numpy RNG - seed = np.random.randint(10e8) - value = tf.compat.v1.random_normal_initializer( - mean, scale, dtype=tf_dtype, seed=seed - )(shape) - return variable(value, dtype=dtype, name=name) - - -@keras_export("keras.backend.count_params") -@doc_controls.do_not_generate_docs -def count_params(x): - """Returns the static number of elements in a variable or tensor. - - Args: - x: Variable or tensor. - - Returns: - Integer, the number of scalars in `x`. - - Example: - - >>> kvar = tf.keras.backend.zeros((2,3)) - >>> tf.keras.backend.count_params(kvar) - 6 - >>> tf.keras.backend.eval(kvar) - array([[0., 0., 0.], - [0., 0., 0.]], dtype=float32) - - """ - return np.prod(x.shape.as_list()) - - -@keras_export("keras.backend.cast") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def cast(x, dtype): - """Casts a tensor to a different dtype and returns it. - - You can cast a Keras variable but it still returns a Keras tensor. - - Args: - x: Keras tensor (or variable). - dtype: String, either (`'float16'`, `'float32'`, or `'float64'`). - - Returns: - Keras tensor with dtype `dtype`. - - Examples: - Cast a float32 variable to a float64 tensor - - >>> input = tf.keras.backend.ones(shape=(1,3)) - >>> print(input) - - >>> cast_input = tf.keras.backend.cast(input, dtype='float64') - >>> print(cast_input) - tf.Tensor([[1. 1. 1.]], shape=(1, 3), dtype=float64) - - """ - return tf.cast(x, dtype) - - -# UPDATES OPS - - -@keras_export("keras.backend.update") -@doc_controls.do_not_generate_docs -def update(x, new_x): - return tf.compat.v1.assign(x, new_x) - - -@keras_export("keras.backend.update_add") -@doc_controls.do_not_generate_docs -def update_add(x, increment): - """Update the value of `x` by adding `increment`. - - Args: - x: A Variable. - increment: A tensor of same shape as `x`. - - Returns: - The variable `x` updated. - """ - return tf.compat.v1.assign_add(x, increment) - - -@keras_export("keras.backend.update_sub") -@doc_controls.do_not_generate_docs -def update_sub(x, decrement): - """Update the value of `x` by subtracting `decrement`. - - Args: - x: A Variable. - decrement: A tensor of same shape as `x`. - - Returns: - The variable `x` updated. - """ - return tf.compat.v1.assign_sub(x, decrement) - - -@keras_export("keras.backend.moving_average_update") -@doc_controls.do_not_generate_docs -def moving_average_update(x, value, momentum): - """Compute the exponential moving average of a value. - - The moving average 'x' is updated with 'value' following: - - ``` - x = x * momentum + value * (1 - momentum) - ``` - - For example: - - >>> x = tf.Variable(0.0) - >>> momentum=0.9 - >>> moving_average_update(x, value = 2.0, momentum=momentum).numpy() - >>> x.numpy() - 0.2 - - The result will be biased towards the initial value of the variable. - - If the variable was initialized to zero, you can divide by - `1 - momentum ** num_updates` to debias it (Section 3 of - [Kingma et al., 2015](https://arxiv.org/abs/1412.6980)): - - >>> num_updates = 1.0 - >>> x_zdb = x/(1 - momentum**num_updates) - >>> x_zdb.numpy() - 2.0 - - Args: - x: A Variable, the moving average. - value: A tensor with the same shape as `x`, the new value to be - averaged in. - momentum: The moving average momentum. - - Returns: - The updated variable. - """ - if tf.__internal__.tf2.enabled(): - momentum = tf.cast(momentum, x.dtype) - value = tf.cast(value, x.dtype) - return x.assign_sub((x - value) * (1 - momentum)) - else: - return tf.__internal__.train.assign_moving_average( - x, value, momentum, zero_debias=True - ) - - -# LINEAR ALGEBRA - - -@keras_export("keras.backend.dot") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def dot(x, y): - """Multiplies 2 tensors (and/or variables) and returns a tensor. - - This operation corresponds to `numpy.dot(a, b, out=None)`. - - Args: - x: Tensor or variable. - y: Tensor or variable. - - Returns: - A tensor, dot product of `x` and `y`. - - Examples: - - If inputs `x` and `y` are 2-D arrays, then it is equivalent to `tf.matmul`. - >>> x = tf.keras.backend.placeholder(shape=(2, 3)) - >>> y = tf.keras.backend.placeholder(shape=(3, 4)) - >>> xy = tf.keras.backend.dot(x, y) - >>> xy - - - >>> x = tf.keras.backend.placeholder(shape=(32, 28, 3)) - >>> y = tf.keras.backend.placeholder(shape=(3, 4)) - >>> xy = tf.keras.backend.dot(x, y) - >>> xy - - - If `x` is an N-D array and `y` is an M-D array (where M>=2), it is a sum - product over the last axis of `x` and the second-to-last axis of `y`. - >>> x = tf.keras.backend.random_uniform_variable( - ... shape=(2, 3), low=0., high=1.) - >>> y = tf.keras.backend.ones((4, 3, 5)) - >>> xy = tf.keras.backend.dot(x, y) - >>> tf.keras.backend.int_shape(xy) - (2, 4, 5) - """ - if ndim(x) is not None and (ndim(x) > 2 or ndim(y) > 2): - x_shape = [] - for i, s in zip(int_shape(x), tf.unstack(tf.shape(x))): - if i is not None: - x_shape.append(i) - else: - x_shape.append(s) - x_shape = tuple(x_shape) - y_shape = [] - for i, s in zip(int_shape(y), tf.unstack(tf.shape(y))): - if i is not None: - y_shape.append(i) - else: - y_shape.append(s) - y_shape = tuple(y_shape) - y_permute_dim = list(range(ndim(y))) - y_permute_dim = [y_permute_dim.pop(-2)] + y_permute_dim - xt = tf.reshape(x, [-1, x_shape[-1]]) - yt = tf.reshape( - tf.compat.v1.transpose(y, perm=y_permute_dim), [y_shape[-2], -1] - ) - return tf.reshape( - tf.matmul(xt, yt), x_shape[:-1] + y_shape[:-2] + y_shape[-1:] - ) - if is_sparse(x): - out = tf.sparse.sparse_dense_matmul(x, y) - else: - out = tf.matmul(x, y) - return out - - -@keras_export("keras.backend.batch_dot") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def batch_dot(x, y, axes=None): - """Batchwise dot product. - - `batch_dot` is used to compute dot product of `x` and `y` when - `x` and `y` are data in batch, i.e. in a shape of - `(batch_size, :)`. - `batch_dot` results in a tensor or variable with less dimensions - than the input. If the number of dimensions is reduced to 1, - we use `expand_dims` to make sure that ndim is at least 2. - - Args: - x: Keras tensor or variable with `ndim >= 2`. - y: Keras tensor or variable with `ndim >= 2`. - axes: Tuple or list of integers with target dimensions, or single integer. - The sizes of `x.shape[axes[0]]` and `y.shape[axes[1]]` should be equal. - - Returns: - A tensor with shape equal to the concatenation of `x`'s shape - (less the dimension that was summed over) and `y`'s shape - (less the batch dimension and the dimension that was summed over). - If the final rank is 1, we reshape it to `(batch_size, 1)`. - - Examples: - - >>> x_batch = tf.keras.backend.ones(shape=(32, 20, 1)) - >>> y_batch = tf.keras.backend.ones(shape=(32, 30, 20)) - >>> xy_batch_dot = tf.keras.backend.batch_dot(x_batch, y_batch, axes=(1, 2)) - >>> tf.keras.backend.int_shape(xy_batch_dot) - (32, 1, 30) - - Shape inference: - Let `x`'s shape be `(100, 20)` and `y`'s shape be `(100, 30, 20)`. - If `axes` is (1, 2), to find the output shape of resultant tensor, - loop through each dimension in `x`'s shape and `y`'s shape: - * `x.shape[0]` : 100 : append to output shape - * `x.shape[1]` : 20 : do not append to output shape, - dimension 1 of `x` has been summed over. (`dot_axes[0]` = 1) - * `y.shape[0]` : 100 : do not append to output shape, - always ignore first dimension of `y` - * `y.shape[1]` : 30 : append to output shape - * `y.shape[2]` : 20 : do not append to output shape, - dimension 2 of `y` has been summed over. (`dot_axes[1]` = 2) - `output_shape` = `(100, 30)` - """ - x_shape = int_shape(x) - y_shape = int_shape(y) - - x_ndim = len(x_shape) - y_ndim = len(y_shape) - - if x_ndim < 2 or y_ndim < 2: - raise ValueError( - "Cannot do batch_dot on inputs " - "with rank < 2. " - "Received inputs with shapes " - + str(x_shape) - + " and " - + str(y_shape) - + "." - ) - - x_batch_size = x_shape[0] - y_batch_size = y_shape[0] - - if x_batch_size is not None and y_batch_size is not None: - if x_batch_size != y_batch_size: - raise ValueError( - "Cannot do batch_dot on inputs " - "with different batch sizes. " - "Received inputs with shapes " - + str(x_shape) - + " and " - + str(y_shape) - + "." - ) - if isinstance(axes, int): - axes = [axes, axes] - - if axes is None: - if y_ndim == 2: - axes = [x_ndim - 1, y_ndim - 1] - else: - axes = [x_ndim - 1, y_ndim - 2] - - if py_any(isinstance(a, (list, tuple)) for a in axes): - raise ValueError( - "Multiple target dimensions are not supported. " - + "Expected: None, int, (int, int), " - + "Provided: " - + str(axes) - ) - - # if tuple, convert to list. - axes = list(axes) - - # convert negative indices. - if axes[0] < 0: - axes[0] += x_ndim - if axes[1] < 0: - axes[1] += y_ndim - - # sanity checks - if 0 in axes: - raise ValueError( - "Cannot perform batch_dot over axis 0. " - "If your inputs are not batched, " - "add a dummy batch dimension to your " - "inputs using K.expand_dims(x, 0)" - ) - a0, a1 = axes - d1 = x_shape[a0] - d2 = y_shape[a1] - - if d1 is not None and d2 is not None and d1 != d2: - raise ValueError( - "Cannot do batch_dot on inputs with shapes " - + str(x_shape) - + " and " - + str(y_shape) - + " with axes=" - + str(axes) - + ". x.shape[%d] != y.shape[%d] (%d != %d)." - % (axes[0], axes[1], d1, d2) - ) - - # backup ndims. Need them later. - orig_x_ndim = x_ndim - orig_y_ndim = y_ndim - - # if rank is 2, expand to 3. - if x_ndim == 2: - x = tf.expand_dims(x, 1) - a0 += 1 - x_ndim += 1 - if y_ndim == 2: - y = tf.expand_dims(y, 2) - y_ndim += 1 - - # bring x's dimension to be reduced to last axis. - if a0 != x_ndim - 1: - pattern = list(range(x_ndim)) - for i in range(a0, x_ndim - 1): - pattern[i] = pattern[i + 1] - pattern[-1] = a0 - x = tf.compat.v1.transpose(x, pattern) - - # bring y's dimension to be reduced to axis 1. - if a1 != 1: - pattern = list(range(y_ndim)) - for i in range(a1, 1, -1): - pattern[i] = pattern[i - 1] - pattern[1] = a1 - y = tf.compat.v1.transpose(y, pattern) - - # normalize both inputs to rank 3. - if x_ndim > 3: - # squash middle dimensions of x. - x_shape = shape(x) - x_mid_dims = x_shape[1:-1] - x_squashed_shape = tf.stack([x_shape[0], -1, x_shape[-1]]) - x = tf.reshape(x, x_squashed_shape) - x_squashed = True - else: - x_squashed = False - - if y_ndim > 3: - # squash trailing dimensions of y. - y_shape = shape(y) - y_trail_dims = y_shape[2:] - y_squashed_shape = tf.stack([y_shape[0], y_shape[1], -1]) - y = tf.reshape(y, y_squashed_shape) - y_squashed = True - else: - y_squashed = False - - result = tf.matmul(x, y) - - # if inputs were squashed, we have to reshape the matmul output. - output_shape = tf.shape(result) - do_reshape = False - - if x_squashed: - output_shape = tf.concat( - [output_shape[:1], x_mid_dims, output_shape[-1:]], 0 - ) - do_reshape = True - - if y_squashed: - output_shape = tf.concat([output_shape[:-1], y_trail_dims], 0) - do_reshape = True - - if do_reshape: - result = tf.reshape(result, output_shape) - - # if the inputs were originally rank 2, we remove the added 1 dim. - if orig_x_ndim == 2: - result = tf.squeeze(result, 1) - elif orig_y_ndim == 2: - result = tf.squeeze(result, -1) - - return result - - -@keras_export("keras.backend.transpose") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def transpose(x): - """Transposes a tensor and returns it. - - Args: - x: Tensor or variable. - - Returns: - A tensor. - - Examples: - - >>> var = tf.keras.backend.variable([[1, 2, 3], [4, 5, 6]]) - >>> tf.keras.backend.eval(var) - array([[1., 2., 3.], - [4., 5., 6.]], dtype=float32) - >>> var_transposed = tf.keras.backend.transpose(var) - >>> tf.keras.backend.eval(var_transposed) - array([[1., 4.], - [2., 5.], - [3., 6.]], dtype=float32) - >>> input = tf.keras.backend.placeholder((2, 3)) - >>> input - - >>> input_transposed = tf.keras.backend.transpose(input) - >>> input_transposed - - """ - return tf.compat.v1.transpose(x) - - -@keras_export("keras.backend.gather") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def gather(reference, indices): - """Retrieves the elements of indices `indices` in the tensor `reference`. - - Args: - reference: A tensor. - indices: An integer tensor of indices. - - Returns: - A tensor of same type as `reference`. - - Examples: - - >>> var = tf.keras.backend.variable([[1, 2, 3], [4, 5, 6]]) - >>> tf.keras.backend.eval(var) - array([[1., 2., 3.], - [4., 5., 6.]], dtype=float32) - >>> var_gathered = tf.keras.backend.gather(var, [0]) - >>> tf.keras.backend.eval(var_gathered) - array([[1., 2., 3.]], dtype=float32) - >>> var_gathered = tf.keras.backend.gather(var, [1]) - >>> tf.keras.backend.eval(var_gathered) - array([[4., 5., 6.]], dtype=float32) - >>> var_gathered = tf.keras.backend.gather(var, [0,1,0]) - >>> tf.keras.backend.eval(var_gathered) - array([[1., 2., 3.], - [4., 5., 6.], - [1., 2., 3.]], dtype=float32) - """ - return tf.compat.v1.gather(reference, indices) - - -# ELEMENT-WISE OPERATIONS - - -@keras_export("keras.backend.max") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def max(x, axis=None, keepdims=False): - """Maximum value in a tensor. - - Args: - x: A tensor or variable. - axis: An integer, the axis to find maximum values. - keepdims: A boolean, whether to keep the dimensions or not. - If `keepdims` is `False`, the rank of the tensor is reduced - by 1. If `keepdims` is `True`, - the reduced dimension is retained with length 1. - - Returns: - A tensor with maximum values of `x`. - """ - return tf.reduce_max(x, axis, keepdims) - - -@keras_export("keras.backend.min") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def min(x, axis=None, keepdims=False): - """Minimum value in a tensor. - - Args: - x: A tensor or variable. - axis: An integer, the axis to find minimum values. - keepdims: A boolean, whether to keep the dimensions or not. - If `keepdims` is `False`, the rank of the tensor is reduced - by 1. If `keepdims` is `True`, - the reduced dimension is retained with length 1. - - Returns: - A tensor with minimum values of `x`. - """ - return tf.reduce_min(x, axis, keepdims) - - -@keras_export("keras.backend.sum") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def sum(x, axis=None, keepdims=False): - """Sum of the values in a tensor, alongside the specified axis. - - Args: - x: A tensor or variable. - axis: An integer, the axis to sum over. - keepdims: A boolean, whether to keep the dimensions or not. - If `keepdims` is `False`, the rank of the tensor is reduced - by 1. If `keepdims` is `True`, - the reduced dimension is retained with length 1. - - Returns: - A tensor with sum of `x`. - """ - return tf.reduce_sum(x, axis, keepdims) - - -@keras_export("keras.backend.prod") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def prod(x, axis=None, keepdims=False): - """Multiplies the values in a tensor, alongside the specified axis. - - Args: - x: A tensor or variable. - axis: An integer, the axis to compute the product. - keepdims: A boolean, whether to keep the dimensions or not. - If `keepdims` is `False`, the rank of the tensor is reduced - by 1. If `keepdims` is `True`, - the reduced dimension is retained with length 1. - - Returns: - A tensor with the product of elements of `x`. - """ - return tf.reduce_prod(x, axis, keepdims) - - -@keras_export("keras.backend.cumsum") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def cumsum(x, axis=0): - """Cumulative sum of the values in a tensor, alongside the specified axis. - - Args: - x: A tensor or variable. - axis: An integer, the axis to compute the sum. - - Returns: - A tensor of the cumulative sum of values of `x` along `axis`. - """ - return tf.cumsum(x, axis=axis) - - -@keras_export("keras.backend.cumprod") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def cumprod(x, axis=0): - """Cumulative product of the values in a tensor alongside `axis`. - - Args: - x: A tensor or variable. - axis: An integer, the axis to compute the product. - - Returns: - A tensor of the cumulative product of values of `x` along `axis`. - """ - return tf.math.cumprod(x, axis=axis) - - -@keras_export("keras.backend.var") -@doc_controls.do_not_generate_docs -def var(x, axis=None, keepdims=False): - """Variance of a tensor, alongside the specified axis. - - Args: - x: A tensor or variable. - axis: An integer, the axis to compute the variance. - keepdims: A boolean, whether to keep the dimensions or not. - If `keepdims` is `False`, the rank of the tensor is reduced - by 1. If `keepdims` is `True`, - the reduced dimension is retained with length 1. - - Returns: - A tensor with the variance of elements of `x`. - """ - if x.dtype.base_dtype == tf.bool: - x = tf.cast(x, floatx()) - return tf.math.reduce_variance(x, axis=axis, keepdims=keepdims) - - -@keras_export("keras.backend.std") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def std(x, axis=None, keepdims=False): - """Standard deviation of a tensor, alongside the specified axis. - - It is an alias to `tf.math.reduce_std`. - - Args: - x: A tensor or variable. It should have numerical dtypes. Boolean type - inputs will be converted to float. - axis: An integer, the axis to compute the standard deviation. If `None` - (the default), reduces all dimensions. Must be in the range - `[-rank(x), rank(x))`. - keepdims: A boolean, whether to keep the dimensions or not. - If `keepdims` is `False`, the rank of the tensor is reduced - by 1. If `keepdims` is `True`, the reduced dimension is retained - with length 1. - - Returns: - A tensor with the standard deviation of elements of `x` with same dtype. - Boolean type input will be converted to float. - """ - if x.dtype.base_dtype == tf.bool: - x = tf.cast(x, floatx()) - return tf.math.reduce_std(x, axis=axis, keepdims=keepdims) - - -@keras_export("keras.backend.mean") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def mean(x, axis=None, keepdims=False): - """Mean of a tensor, alongside the specified axis. - - Args: - x: A tensor or variable. - axis: A list of integer. Axes to compute the mean. - keepdims: A boolean, whether to keep the dimensions or not. - If `keepdims` is `False`, the rank of the tensor is reduced - by 1 for each entry in `axis`. If `keepdims` is `True`, - the reduced dimensions are retained with length 1. - - Returns: - A tensor with the mean of elements of `x`. - """ - if x.dtype.base_dtype == tf.bool: - x = tf.cast(x, floatx()) - return tf.reduce_mean(x, axis, keepdims) - - -@keras_export("keras.backend.any") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def any(x, axis=None, keepdims=False): - """Bitwise reduction (logical OR). - - Args: - x: Tensor or variable. - axis: axis along which to perform the reduction. - keepdims: whether the drop or broadcast the reduction axes. - - Returns: - A uint8 tensor (0s and 1s). - """ - x = tf.cast(x, tf.bool) - return tf.reduce_any(x, axis, keepdims) - - -@keras_export("keras.backend.all") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def all(x, axis=None, keepdims=False): - """Bitwise reduction (logical AND). - - Args: - x: Tensor or variable. - axis: axis along which to perform the reduction. - keepdims: whether the drop or broadcast the reduction axes. - - Returns: - A uint8 tensor (0s and 1s). - """ - x = tf.cast(x, tf.bool) - return tf.reduce_all(x, axis, keepdims) - - -@keras_export("keras.backend.argmax") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def argmax(x, axis=-1): - """Returns the index of the maximum value along an axis. - - Args: - x: Tensor or variable. - axis: axis along which to perform the reduction. - - Returns: - A tensor. - """ - return tf.argmax(x, axis) - - -@keras_export("keras.backend.argmin") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def argmin(x, axis=-1): - """Returns the index of the minimum value along an axis. - - Args: - x: Tensor or variable. - axis: axis along which to perform the reduction. - - Returns: - A tensor. - """ - return tf.argmin(x, axis) - - -@keras_export("keras.backend.square") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def square(x): - """Element-wise square. - - Args: - x: Tensor or variable. - - Returns: - A tensor. - """ - return tf.square(x) - - -@keras_export("keras.backend.abs") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def abs(x): - """Element-wise absolute value. - - Args: - x: Tensor or variable. - - Returns: - A tensor. - """ - return tf.abs(x) - - -@keras_export("keras.backend.sqrt") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def sqrt(x): - """Element-wise square root. - - This function clips negative tensor values to 0 before computing the - square root. - - Args: - x: Tensor or variable. - - Returns: - A tensor. - """ - zero = _constant_to_tensor(0.0, x.dtype.base_dtype) - x = tf.maximum(x, zero) - return tf.sqrt(x) - - -@keras_export("keras.backend.exp") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def exp(x): - """Element-wise exponential. - - Args: - x: Tensor or variable. - - Returns: - A tensor. - """ - return tf.exp(x) - - -@keras_export("keras.backend.log") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def log(x): - """Element-wise log. - - Args: - x: Tensor or variable. - - Returns: - A tensor. - """ - return tf.math.log(x) - - -def logsumexp(x, axis=None, keepdims=False): - """Computes log(sum(exp(elements across dimensions of a tensor))). - - This function is more numerically stable than log(sum(exp(x))). - It avoids overflows caused by taking the exp of large inputs and - underflows caused by taking the log of small inputs. - - Args: - x: A tensor or variable. - axis: An integer, the axis to reduce over. - keepdims: A boolean, whether to keep the dimensions or not. - If `keepdims` is `False`, the rank of the tensor is reduced - by 1. If `keepdims` is `True`, the reduced dimension is - retained with length 1. - - Returns: - The reduced tensor. - """ - return tf.reduce_logsumexp(x, axis, keepdims) - - -@keras_export("keras.backend.round") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def round(x): - """Element-wise rounding to the closest integer. - - In case of tie, the rounding mode used is "half to even". - - Args: - x: Tensor or variable. - - Returns: - A tensor. - """ - return tf.round(x) - - -@keras_export("keras.backend.sign") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def sign(x): - """Element-wise sign. - - Args: - x: Tensor or variable. - - Returns: - A tensor. - """ - return tf.sign(x) - - -@keras_export("keras.backend.pow") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def pow(x, a): - """Element-wise exponentiation. - - Args: - x: Tensor or variable. - a: Python integer. - - Returns: - A tensor. - """ - return tf.pow(x, a) - - -@keras_export("keras.backend.clip") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def clip(x, min_value, max_value): - """Element-wise value clipping. - - Args: - x: Tensor or variable. - min_value: Python float, integer, or tensor. - max_value: Python float, integer, or tensor. - - Returns: - A tensor. - """ - if isinstance(min_value, (int, float)) and isinstance( - max_value, (int, float) - ): - if max_value < min_value: - max_value = min_value - if min_value is None: - min_value = -np.inf - if max_value is None: - max_value = np.inf - return tf.clip_by_value(x, min_value, max_value) - - -@keras_export("keras.backend.equal") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def equal(x, y): - """Element-wise equality between two tensors. - - Args: - x: Tensor or variable. - y: Tensor or variable. - - Returns: - A bool tensor. - """ - return tf.equal(x, y) - - -@keras_export("keras.backend.not_equal") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def not_equal(x, y): - """Element-wise inequality between two tensors. - - Args: - x: Tensor or variable. - y: Tensor or variable. - - Returns: - A bool tensor. - """ - return tf.not_equal(x, y) - - -@keras_export("keras.backend.greater") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def greater(x, y): - """Element-wise truth value of (x > y). - - Args: - x: Tensor or variable. - y: Tensor or variable. - - Returns: - A bool tensor. - """ - return tf.greater(x, y) - - -@keras_export("keras.backend.greater_equal") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def greater_equal(x, y): - """Element-wise truth value of (x >= y). - - Args: - x: Tensor or variable. - y: Tensor or variable. - - Returns: - A bool tensor. - """ - return tf.greater_equal(x, y) - - -@keras_export("keras.backend.less") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def less(x, y): - """Element-wise truth value of (x < y). - - Args: - x: Tensor or variable. - y: Tensor or variable. - - Returns: - A bool tensor. - """ - return tf.less(x, y) - - -@keras_export("keras.backend.less_equal") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def less_equal(x, y): - """Element-wise truth value of (x <= y). - - Args: - x: Tensor or variable. - y: Tensor or variable. - - Returns: - A bool tensor. - """ - return tf.less_equal(x, y) - - -@keras_export("keras.backend.maximum") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def maximum(x, y): - """Element-wise maximum of two tensors. - - Args: - x: Tensor or variable. - y: Tensor or variable. - - Returns: - A tensor with the element wise maximum value(s) of `x` and `y`. - - Examples: - - >>> x = tf.Variable([[1, 2], [3, 4]]) - >>> y = tf.Variable([[2, 1], [0, -1]]) - >>> m = tf.keras.backend.maximum(x, y) - >>> m - - """ - return tf.maximum(x, y) - - -@keras_export("keras.backend.minimum") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def minimum(x, y): - """Element-wise minimum of two tensors. - - Args: - x: Tensor or variable. - y: Tensor or variable. - - Returns: - A tensor. - """ - return tf.minimum(x, y) - - -@keras_export("keras.backend.sin") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def sin(x): - """Computes sin of x element-wise. - - Args: - x: Tensor or variable. - - Returns: - A tensor. - """ - return tf.sin(x) - - -@keras_export("keras.backend.cos") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def cos(x): - """Computes cos of x element-wise. - - Args: - x: Tensor or variable. - - Returns: - A tensor. - """ - return tf.cos(x) - - -def _regular_normalize_batch_in_training( - x, gamma, beta, reduction_axes, epsilon=1e-3 -): - """Non-fused version of `normalize_batch_in_training`. - - Args: - x: Input tensor or variable. - gamma: Tensor by which to scale the input. - beta: Tensor with which to center the input. - reduction_axes: iterable of integers, - axes over which to normalize. - epsilon: Fuzz factor. - - Returns: - A tuple length of 3, `(normalized_tensor, mean, variance)`. - """ - mean, var = tf.compat.v1.nn.moments(x, reduction_axes, None, None, False) - normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, epsilon) - return normed, mean, var - - -def _broadcast_normalize_batch_in_training( - x, gamma, beta, reduction_axes, epsilon=1e-3 -): - """Non-fused, broadcast version of `normalize_batch_in_training`. - - Args: - x: Input tensor or variable. - gamma: Tensor by which to scale the input. - beta: Tensor with which to center the input. - reduction_axes: iterable of integers, - axes over which to normalize. - epsilon: Fuzz factor. - - Returns: - A tuple length of 3, `(normalized_tensor, mean, variance)`. - """ - mean, var = tf.compat.v1.nn.moments(x, reduction_axes, None, None, False) - target_shape = [] - for axis in range(ndim(x)): - if axis in reduction_axes: - target_shape.append(1) - else: - target_shape.append(tf.shape(x)[axis]) - target_shape = tf.stack(target_shape) - - broadcast_mean = tf.reshape(mean, target_shape) - broadcast_var = tf.reshape(var, target_shape) - if gamma is None: - broadcast_gamma = None - else: - broadcast_gamma = tf.reshape(gamma, target_shape) - if beta is None: - broadcast_beta = None - else: - broadcast_beta = tf.reshape(beta, target_shape) - - normed = tf.nn.batch_normalization( - x, - broadcast_mean, - broadcast_var, - broadcast_beta, - broadcast_gamma, - epsilon, - ) - return normed, mean, var - - -def _fused_normalize_batch_in_training( - x, gamma, beta, reduction_axes, epsilon=1e-3 -): - """Fused version of `normalize_batch_in_training`. - - Args: - x: Input tensor or variable. - gamma: Tensor by which to scale the input. - beta: Tensor with which to center the input. - reduction_axes: iterable of integers, - axes over which to normalize. - epsilon: Fuzz factor. - - Returns: - A tuple length of 3, `(normalized_tensor, mean, variance)`. - """ - if list(reduction_axes) == [0, 1, 2]: - normalization_axis = 3 - tf_data_format = "NHWC" - else: - normalization_axis = 1 - tf_data_format = "NCHW" - - if gamma is None: - gamma = tf.constant( - 1.0, dtype=x.dtype, shape=[x.shape[normalization_axis]] - ) - if beta is None: - beta = tf.constant( - 0.0, dtype=x.dtype, shape=[x.shape[normalization_axis]] - ) - - return tf.compat.v1.nn.fused_batch_norm( - x, gamma, beta, epsilon=epsilon, data_format=tf_data_format - ) - - -@keras_export("keras.backend.normalize_batch_in_training") -@doc_controls.do_not_generate_docs -def normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3): - """Computes mean and std for batch then apply batch_normalization on batch. - - Args: - x: Input tensor or variable. - gamma: Tensor by which to scale the input. - beta: Tensor with which to center the input. - reduction_axes: iterable of integers, - axes over which to normalize. - epsilon: Fuzz factor. - - Returns: - A tuple length of 3, `(normalized_tensor, mean, variance)`. - """ - if ndim(x) == 4 and list(reduction_axes) in [[0, 1, 2], [0, 2, 3]]: - if not _has_nchw_support() and list(reduction_axes) == [0, 2, 3]: - return _broadcast_normalize_batch_in_training( - x, gamma, beta, reduction_axes, epsilon=epsilon - ) - return _fused_normalize_batch_in_training( - x, gamma, beta, reduction_axes, epsilon=epsilon - ) - else: - if sorted(reduction_axes) == list(range(ndim(x)))[:-1]: - return _regular_normalize_batch_in_training( - x, gamma, beta, reduction_axes, epsilon=epsilon - ) - else: - return _broadcast_normalize_batch_in_training( - x, gamma, beta, reduction_axes, epsilon=epsilon - ) - - -@keras_export("keras.backend.batch_normalization") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def batch_normalization(x, mean, var, beta, gamma, axis=-1, epsilon=1e-3): - """Applies batch normalization on x given mean, var, beta and gamma. - - I.e. returns: - `output = (x - mean) / (sqrt(var) + epsilon) * gamma + beta` - - Args: - x: Input tensor or variable. - mean: Mean of batch. - var: Variance of batch. - beta: Tensor with which to center the input. - gamma: Tensor by which to scale the input. - axis: Integer, the axis that should be normalized. - (typically the features axis). - epsilon: Fuzz factor. - - Returns: - A tensor. - """ - if ndim(x) == 4: - # The CPU implementation of `fused_batch_norm` only supports NHWC - if axis == 1 or axis == -3: - tf_data_format = "NCHW" - elif axis == 3 or axis == -1: - tf_data_format = "NHWC" - else: - tf_data_format = None - - if ( - tf_data_format == "NHWC" - or tf_data_format == "NCHW" - and _has_nchw_support() - ): - # The mean / var / beta / gamma tensors may be broadcasted - # so they may have extra axes of size 1, which should be squeezed. - if ndim(mean) > 1: - mean = tf.reshape(mean, [-1]) - if ndim(var) > 1: - var = tf.reshape(var, [-1]) - if beta is None: - beta = zeros_like(mean) - elif ndim(beta) > 1: - beta = tf.reshape(beta, [-1]) - if gamma is None: - gamma = ones_like(mean) - elif ndim(gamma) > 1: - gamma = tf.reshape(gamma, [-1]) - y, _, _ = tf.compat.v1.nn.fused_batch_norm( - x, - gamma, - beta, - epsilon=epsilon, - mean=mean, - variance=var, - data_format=tf_data_format, - is_training=False, - ) - return y - return tf.nn.batch_normalization(x, mean, var, beta, gamma, epsilon) - - -# SHAPE OPERATIONS - - -@keras_export("keras.backend.concatenate") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def concatenate(tensors, axis=-1): - """Concatenates a list of tensors alongside the specified axis. - - Args: - tensors: list of tensors to concatenate. - axis: concatenation axis. - - Returns: - A tensor. - - Example: - - >>> a = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) - >>> b = tf.constant([[10, 20, 30], [40, 50, 60], [70, 80, 90]]) - >>> tf.keras.backend.concatenate((a, b), axis=-1) - - - """ - if axis < 0: - rank = ndim(tensors[0]) - if rank: - axis %= rank - else: - axis = 0 - - if py_all(is_sparse(x) for x in tensors): - return tf.compat.v1.sparse_concat(axis, tensors) - elif py_all(isinstance(x, tf.RaggedTensor) for x in tensors): - return tf.concat(tensors, axis) - else: - return tf.concat([to_dense(x) for x in tensors], axis) - - -@keras_export("keras.backend.reshape") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def reshape(x, shape): - """Reshapes a tensor to the specified shape. - - Args: - x: Tensor or variable. - shape: Target shape tuple. - - Returns: - A tensor. - - Example: - - >>> a = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) - >>> a - - >>> tf.keras.backend.reshape(a, shape=(2, 6)) - - - """ - return tf.reshape(x, shape) - - -@keras_export("keras.backend.permute_dimensions") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def permute_dimensions(x, pattern): - """Permutes axes in a tensor. - - Args: - x: Tensor or variable. - pattern: A tuple of - dimension indices, e.g. `(0, 2, 1)`. - - Returns: - A tensor. - - Example: - - >>> a = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) - >>> a - - >>> tf.keras.backend.permute_dimensions(a, pattern=(1, 0)) - - - """ - return tf.compat.v1.transpose(x, perm=pattern) - - -@keras_export("keras.backend.resize_images") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def resize_images( - x, height_factor, width_factor, data_format, interpolation="nearest" -): - """Resizes the images contained in a 4D tensor. - - Args: - x: Tensor or variable to resize. - height_factor: Positive integer. - width_factor: Positive integer. - data_format: One of `"channels_first"`, `"channels_last"`. - interpolation: A string, one of `"area"`, `"bicubic"`, `"bilinear"`, - `"gaussian"`, `"lanczos3"`, `"lanczos5"`, `"mitchellcubic"`, - `"nearest"`. - - Returns: - A tensor. - - Raises: - ValueError: in case of incorrect value for - `data_format` or `interpolation`. - """ - if data_format == "channels_first": - rows, cols = 2, 3 - elif data_format == "channels_last": - rows, cols = 1, 2 - else: - raise ValueError(f"Invalid `data_format` argument: {data_format}") - - new_shape = x.shape[rows : cols + 1] - if new_shape.is_fully_defined(): - new_shape = tf.constant(new_shape.as_list(), dtype="int32") - else: - new_shape = tf.shape(x)[rows : cols + 1] - new_shape *= tf.constant( - np.array([height_factor, width_factor], dtype="int32") - ) - - if data_format == "channels_first": - x = permute_dimensions(x, [0, 2, 3, 1]) - interpolations = { - "area": tf.image.ResizeMethod.AREA, - "bicubic": tf.image.ResizeMethod.BICUBIC, - "bilinear": tf.image.ResizeMethod.BILINEAR, - "gaussian": tf.image.ResizeMethod.GAUSSIAN, - "lanczos3": tf.image.ResizeMethod.LANCZOS3, - "lanczos5": tf.image.ResizeMethod.LANCZOS5, - "mitchellcubic": tf.image.ResizeMethod.MITCHELLCUBIC, - "nearest": tf.image.ResizeMethod.NEAREST_NEIGHBOR, - } - interploations_list = '"' + '", "'.join(interpolations.keys()) + '"' - if interpolation in interpolations: - x = tf.image.resize(x, new_shape, method=interpolations[interpolation]) - else: - raise ValueError( - "`interpolation` argument should be one of: " - f'{interploations_list}. Received: "{interpolation}".' - ) - if data_format == "channels_first": - x = permute_dimensions(x, [0, 3, 1, 2]) - - return x - - -@keras_export("keras.backend.resize_volumes") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def resize_volumes(x, depth_factor, height_factor, width_factor, data_format): - """Resizes the volume contained in a 5D tensor. - - Args: - x: Tensor or variable to resize. - depth_factor: Positive integer. - height_factor: Positive integer. - width_factor: Positive integer. - data_format: One of `"channels_first"`, `"channels_last"`. - - Returns: - A tensor. - - Raises: - ValueError: if `data_format` is neither - `channels_last` or `channels_first`. - """ - if data_format == "channels_first": - output = repeat_elements(x, depth_factor, axis=2) - output = repeat_elements(output, height_factor, axis=3) - output = repeat_elements(output, width_factor, axis=4) - return output - elif data_format == "channels_last": - output = repeat_elements(x, depth_factor, axis=1) - output = repeat_elements(output, height_factor, axis=2) - output = repeat_elements(output, width_factor, axis=3) - return output - else: - raise ValueError("Invalid data_format: " + str(data_format)) - - -@keras_export("keras.backend.repeat_elements") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def repeat_elements(x, rep, axis): - """Repeats the elements of a tensor along an axis, like `np.repeat`. - - If `x` has shape `(s1, s2, s3)` and `axis` is `1`, the output - will have shape `(s1, s2 * rep, s3)`. - - Args: - x: Tensor or variable. - rep: Python integer, number of times to repeat. - axis: Axis along which to repeat. - - Returns: - A tensor. - - Example: - - >>> b = tf.constant([1, 2, 3]) - >>> tf.keras.backend.repeat_elements(b, rep=2, axis=0) - - - """ - x_shape = x.shape.as_list() - # For static axis - if x_shape[axis] is not None: - # slices along the repeat axis - splits = tf.split(value=x, num_or_size_splits=x_shape[axis], axis=axis) - # repeat each slice the given number of reps - x_rep = [s for s in splits for _ in range(rep)] - return concatenate(x_rep, axis) - - # Here we use tf.tile to mimic behavior of np.repeat so that - # we can handle dynamic shapes (that include None). - # To do that, we need an auxiliary axis to repeat elements along - # it and then merge them along the desired axis. - - # Repeating - auxiliary_axis = axis + 1 - x_shape = tf.shape(x) - x_rep = tf.expand_dims(x, axis=auxiliary_axis) - reps = np.ones(len(x.shape) + 1) - reps[auxiliary_axis] = rep - x_rep = tf.tile(x_rep, reps) - - # Merging - reps = np.delete(reps, auxiliary_axis) - reps[axis] = rep - reps = tf.constant(reps, dtype="int32") - x_shape *= reps - x_rep = tf.reshape(x_rep, x_shape) - - # Fix shape representation - x_shape = x.shape.as_list() - x_rep.set_shape(x_shape) - x_rep._keras_shape = tuple(x_shape) - return x_rep - - -@keras_export("keras.backend.repeat") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def repeat(x, n): - """Repeats a 2D tensor. - - if `x` has shape (samples, dim) and `n` is `2`, - the output will have shape `(samples, 2, dim)`. - - Args: - x: Tensor or variable. - n: Python integer, number of times to repeat. - - Returns: - A tensor. - - Example: - - >>> b = tf.constant([[1, 2], [3, 4]]) - >>> b - - >>> tf.keras.backend.repeat(b, n=2) - - - """ - assert ndim(x) == 2 - x = tf.expand_dims(x, 1) - pattern = tf.stack([1, n, 1]) - return tf.tile(x, pattern) - - -@keras_export("keras.backend.arange") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def arange(start, stop=None, step=1, dtype="int32"): - """Creates a 1D tensor containing a sequence of integers. - - The function arguments use the same convention as - Theano's arange: if only one argument is provided, - it is in fact the "stop" argument and "start" is 0. - - The default type of the returned tensor is `'int32'` to - match TensorFlow's default. - - Args: - start: Start value. - stop: Stop value. - step: Difference between two successive values. - dtype: Integer dtype to use. - - Returns: - An integer tensor. - - Example: - - >>> tf.keras.backend.arange(start=0, stop=10, step=1.5) - - - - - """ - # Match the behavior of numpy and Theano by returning an empty sequence. - if stop is None and start < 0: - start = 0 - result = tf.range(start, limit=stop, delta=step, name="arange") - if dtype != "int32": - result = cast(result, dtype) - return result - - -@keras_export("keras.backend.tile") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def tile(x, n): - """Creates a tensor by tiling `x` by `n`. - - Args: - x: A tensor or variable - n: A list of integer. The length must be the same as the number of - dimensions in `x`. - - Returns: - A tiled tensor. - """ - if isinstance(n, int): - n = [n] - return tf.tile(x, n) - - -@keras_export("keras.backend.flatten") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def flatten(x): - """Flatten a tensor. - - Args: - x: A tensor or variable. - - Returns: - A tensor, reshaped into 1-D - - Example: - - >>> b = tf.constant([[1, 2], [3, 4]]) - >>> b - - >>> tf.keras.backend.flatten(b) - - - """ - return tf.reshape(x, [-1]) - - -@keras_export("keras.backend.batch_flatten") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def batch_flatten(x): - """Turn a nD tensor into a 2D tensor with same 0th dimension. - - In other words, it flattens each data samples of a batch. - - Args: - x: A tensor or variable. - - Returns: - A tensor. - - Examples: - Flattening a 3D tensor to 2D by collapsing the last dimension. - - >>> x_batch = tf.keras.backend.ones(shape=(2, 3, 4, 5)) - >>> x_batch_flatten = batch_flatten(x_batch) - >>> tf.keras.backend.int_shape(x_batch_flatten) - (2, 60) - - """ - x = tf.reshape(x, tf.stack([-1, prod(shape(x)[1:])])) - return x - - -@keras_export("keras.backend.expand_dims") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def expand_dims(x, axis=-1): - """Adds a 1-sized dimension at index "axis". - - Args: - x: A tensor or variable. - axis: Position where to add a new axis. - - Returns: - A tensor with expanded dimensions. - """ - return tf.expand_dims(x, axis) - - -@keras_export("keras.backend.squeeze") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def squeeze(x, axis): - """Removes a 1-dimension from the tensor at index "axis". - - Args: - x: A tensor or variable. - axis: Axis to drop. - - Returns: - A tensor with the same data as `x` but reduced dimensions. - """ - return tf.squeeze(x, [axis]) - - -@keras_export("keras.backend.temporal_padding") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def temporal_padding(x, padding=(1, 1)): - """Pads the middle dimension of a 3D tensor. - - Args: - x: Tensor or variable. - padding: Tuple of 2 integers, how many zeros to - add at the start and end of dim 1. - - Returns: - A padded 3D tensor. - """ - assert len(padding) == 2 - pattern = [[0, 0], [padding[0], padding[1]], [0, 0]] - return tf.compat.v1.pad(x, pattern) - - -@keras_export("keras.backend.spatial_2d_padding") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def spatial_2d_padding(x, padding=((1, 1), (1, 1)), data_format=None): - """Pads the 2nd and 3rd dimensions of a 4D tensor. - - Args: - x: Tensor or variable. - padding: Tuple of 2 tuples, padding pattern. - data_format: One of `channels_last` or `channels_first`. - - Returns: - A padded 4D tensor. - - Raises: - ValueError: if `data_format` is neither - `channels_last` or `channels_first`. - """ - assert len(padding) == 2 - assert len(padding[0]) == 2 - assert len(padding[1]) == 2 - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - - if data_format == "channels_first": - pattern = [[0, 0], [0, 0], list(padding[0]), list(padding[1])] - else: - pattern = [[0, 0], list(padding[0]), list(padding[1]), [0, 0]] - return tf.compat.v1.pad(x, pattern) - - -@keras_export("keras.backend.spatial_3d_padding") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def spatial_3d_padding(x, padding=((1, 1), (1, 1), (1, 1)), data_format=None): - """Pads 5D tensor with zeros along the depth, height, width dimensions. - - Pads these dimensions with respectively - "padding[0]", "padding[1]" and "padding[2]" zeros left and right. - - For 'channels_last' data_format, - the 2nd, 3rd and 4th dimension will be padded. - For 'channels_first' data_format, - the 3rd, 4th and 5th dimension will be padded. - - Args: - x: Tensor or variable. - padding: Tuple of 3 tuples, padding pattern. - data_format: One of `channels_last` or `channels_first`. - - Returns: - A padded 5D tensor. - - Raises: - ValueError: if `data_format` is neither - `channels_last` or `channels_first`. - - """ - assert len(padding) == 3 - assert len(padding[0]) == 2 - assert len(padding[1]) == 2 - assert len(padding[2]) == 2 - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - - if data_format == "channels_first": - pattern = [ - [0, 0], - [0, 0], - [padding[0][0], padding[0][1]], - [padding[1][0], padding[1][1]], - [padding[2][0], padding[2][1]], - ] - else: - pattern = [ - [0, 0], - [padding[0][0], padding[0][1]], - [padding[1][0], padding[1][1]], - [padding[2][0], padding[2][1]], - [0, 0], - ] - return tf.compat.v1.pad(x, pattern) - - -@keras_export("keras.backend.stack") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def stack(x, axis=0): - """Stacks a list of rank `R` tensors into a rank `R+1` tensor. - - Args: - x: List of tensors. - axis: Axis along which to perform stacking. - - Returns: - A tensor. - - Example: - - >>> a = tf.constant([[1, 2],[3, 4]]) - >>> b = tf.constant([[10, 20],[30, 40]]) - >>> tf.keras.backend.stack((a, b)) - - - """ - return tf.stack(x, axis=axis) - - -@keras_export("keras.backend.one_hot") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def one_hot(indices, num_classes): - """Computes the one-hot representation of an integer tensor. - - Args: - indices: nD integer tensor of shape - `(batch_size, dim1, dim2, ... dim(n-1))` - num_classes: Integer, number of classes to consider. - - Returns: - (n + 1)D one hot representation of the input - with shape `(batch_size, dim1, dim2, ... dim(n-1), num_classes)` - - Returns: - The one-hot tensor. - """ - return tf.one_hot(indices, depth=num_classes, axis=-1) - - -@keras_export("keras.backend.reverse") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def reverse(x, axes): - """Reverse a tensor along the specified axes. - - Args: - x: Tensor to reverse. - axes: Integer or iterable of integers. - Axes to reverse. - - Returns: - A tensor. - """ - if isinstance(axes, int): - axes = [axes] - return tf.reverse(x, axes) - - -# VALUE MANIPULATION -_VALUE_SET_CODE_STRING = """ - >>> K = tf.keras.backend # Common keras convention - >>> v = K.variable(1.) - - >>> # reassign - >>> K.set_value(v, 2.) - >>> print(K.get_value(v)) - 2.0 - - >>> # increment - >>> K.set_value(v, K.get_value(v) + 1) - >>> print(K.get_value(v)) - 3.0 - - Variable semantics in TensorFlow 2 are eager execution friendly. The above - code is roughly equivalent to: - - >>> v = tf.Variable(1.) - - >>> v.assign(2.) - >>> print(v.numpy()) - 2.0 - - >>> v.assign_add(1.) - >>> print(v.numpy()) - 3.0"""[ - 3: -] # Prune first newline and indent to match the docstring template. - - -@keras_export("keras.backend.get_value") -@doc_controls.do_not_generate_docs -def get_value(x): - """Returns the value of a variable. - - `backend.get_value` is the complement of `backend.set_value`, and provides - a generic interface for reading from variables while abstracting away the - differences between TensorFlow 1.x and 2.x semantics. - - {snippet} - - Args: - x: input variable. - - Returns: - A Numpy array. - """ - if not tf.is_tensor(x): - return x - if tf.executing_eagerly() or isinstance(x, tf.__internal__.EagerTensor): - return x.numpy() - if not getattr(x, "_in_graph_mode", True): - # This is a variable which was created in an eager context, but is being - # evaluated from a Graph. - with tf.__internal__.eager_context.eager_mode(): - return x.numpy() - - if tf.compat.v1.executing_eagerly_outside_functions(): - # This method of evaluating works inside the Keras FuncGraph. - with tf.init_scope(): - return x.numpy() - - with x.graph.as_default(): - return x.eval(session=get_session((x,))) - - -@keras_export("keras.backend.batch_get_value") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def batch_get_value(tensors): - """Returns the value of more than one tensor variable. - - Args: - tensors: list of ops to run. - - Returns: - A list of Numpy arrays. - - Raises: - RuntimeError: If this method is called inside defun. - """ - if tf.executing_eagerly(): - return [x.numpy() for x in tensors] - elif tf.inside_function(): - raise RuntimeError("Cannot get value inside Tensorflow graph function.") - if tensors: - return get_session(tensors).run(tensors) - else: - return [] - - -@keras_export("keras.backend.set_value") -@doc_controls.do_not_generate_docs -def set_value(x, value): - """Sets the value of a variable, from a Numpy array. - - `backend.set_value` is the complement of `backend.get_value`, and provides - a generic interface for assigning to variables while abstracting away the - differences between TensorFlow 1.x and 2.x semantics. - - {snippet} - - Args: - x: Variable to set to a new value. - value: Value to set the tensor to, as a Numpy array - (of the same shape). - """ - value = np.asarray(value, dtype=dtype_numpy(x)) - if tf.compat.v1.executing_eagerly_outside_functions(): - _assign_value_to_variable(x, value) - else: - with get_graph().as_default(): - tf_dtype = tf.as_dtype(x.dtype.name.split("_")[0]) - if hasattr(x, "_assign_placeholder"): - assign_placeholder = x._assign_placeholder - assign_op = x._assign_op - else: - # In order to support assigning weights to resizable variables - # in Keras, we make a placeholder with the correct number of - # dimensions but with None in each dimension. This way, we can - # assign weights of any size (as long as they have the correct - # dimensionality). - placeholder_shape = tf.TensorShape([None] * value.ndim) - assign_placeholder = tf.compat.v1.placeholder( - tf_dtype, shape=placeholder_shape - ) - assign_op = x.assign(assign_placeholder) - x._assign_placeholder = assign_placeholder - x._assign_op = assign_op - get_session().run(assign_op, feed_dict={assign_placeholder: value}) - - -@keras_export("keras.backend.batch_set_value") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def batch_set_value(tuples): - """Sets the values of many tensor variables at once. - - Args: - tuples: a list of tuples `(tensor, value)`. - `value` should be a Numpy array. - """ - if tf.executing_eagerly() or tf.inside_function(): - for x, value in tuples: - value = np.asarray(value, dtype=dtype_numpy(x)) - _assign_value_to_variable(x, value) - else: - with get_graph().as_default(): - if tuples: - assign_ops = [] - feed_dict = {} - for x, value in tuples: - value = np.asarray(value, dtype=dtype_numpy(x)) - tf_dtype = tf.as_dtype(x.dtype.name.split("_")[0]) - if hasattr(x, "_assign_placeholder"): - assign_placeholder = x._assign_placeholder - assign_op = x._assign_op - else: - # In order to support assigning weights to resizable - # variables in Keras, we make a placeholder with the - # correct number of dimensions but with None in each - # dimension. This way, we can assign weights of any size - # (as long as they have the correct dimensionality). - placeholder_shape = tf.TensorShape([None] * value.ndim) - assign_placeholder = tf.compat.v1.placeholder( - tf_dtype, shape=placeholder_shape - ) - assign_op = x.assign(assign_placeholder) - x._assign_placeholder = assign_placeholder - x._assign_op = assign_op - assign_ops.append(assign_op) - feed_dict[assign_placeholder] = value - get_session().run(assign_ops, feed_dict=feed_dict) - - -get_value.__doc__ = get_value.__doc__.format(snippet=_VALUE_SET_CODE_STRING) -set_value.__doc__ = set_value.__doc__.format(snippet=_VALUE_SET_CODE_STRING) - - -def _assign_value_to_variable(variable, value): - # Helper function to assign value to variable. It handles normal tf.Variable - # as well as DTensor variable. - if isinstance(variable, dtensor.DVariable): - mesh = variable.layout.mesh - replicate_layout = dtensor.Layout.replicated( - rank=variable.shape.rank, mesh=mesh - ) - # TODO(b/262894693): Avoid the broadcast of tensor to all devices. - d_value = dtensor.copy_to_mesh(value, replicate_layout) - d_value = dtensor.relayout(d_value, variable.layout) - variable.assign(d_value) - else: - # For the normal tf.Variable assign - variable.assign(value) - - -@keras_export("keras.backend.print_tensor") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def print_tensor(x, message="", summarize=3): - """Prints `message` and the tensor value when evaluated. - - Note that `print_tensor` returns a new tensor identical to `x` - which should be used in the following code. Otherwise the - print operation is not taken into account during evaluation. - - Example: - - >>> x = tf.constant([[1.0, 2.0], [3.0, 4.0]]) - >>> tf.keras.backend.print_tensor(x) - - - Args: - x: Tensor to print. - message: Message to print jointly with the tensor. - summarize: The first and last `summarize` elements within each dimension - are recursively printed per Tensor. If None, then the first 3 and - last 3 elements of each dimension are printed for each tensor. If - set to -1, it will print all elements of every tensor. - - Returns: - The same tensor `x`, unchanged. - """ - if isinstance(x, tf.Tensor) and hasattr(x, "graph"): - with get_graph().as_default(): - op = tf.print( - message, x, output_stream=sys.stdout, summarize=summarize - ) - with tf.control_dependencies([op]): - return tf.identity(x) - else: - tf.print(message, x, output_stream=sys.stdout, summarize=summarize) - return x - - -# GRAPH MANIPULATION - - -class GraphExecutionFunction: - """Runs a computation graph. - - It's possible to pass arguments to `tf.Session.run()` via `session_kwargs`. - In particular additional operations via `fetches` argument and additional - tensor substitutions via `feed_dict` arguments. Note that given - substitutions are merged with substitutions from `inputs`. Even though - `feed_dict` is passed once in the constructor (called in `model.compile()`) - we can modify the values in the dictionary. Through this feed_dict we can - provide additional substitutions besides Keras inputs. - - Args: - inputs: Feed placeholders to the computation graph. - outputs: Output tensors to fetch. - updates: Additional update ops to be run at function call. - name: A name to help users identify what this function does. - session_kwargs: Arguments to `tf.Session.run()`: - `fetches`, `feed_dict`, `options`, `run_metadata`. - """ - - def __init__( - self, inputs, outputs, updates=None, name=None, **session_kwargs - ): - updates = updates or [] - if not isinstance(updates, (list, tuple)): - raise TypeError( - "`updates` in a Keras backend function " - "should be a list or tuple." - ) - - self.inputs = tf.nest.flatten( - tf_utils.convert_variables_to_tensors(inputs), - expand_composites=True, - ) - self._outputs_structure = tf_utils.convert_variables_to_tensors(outputs) - self.outputs = tf.nest.flatten( - self._outputs_structure, expand_composites=True - ) - # TODO(b/127668432): Consider using autograph to generate these - # dependencies in call. - # Index 0 = total loss or model output for `predict`. - with tf.control_dependencies([self.outputs[0]]): - updates_ops = [] - for update in updates: - if isinstance(update, tuple): - p, new_p = update - updates_ops.append(tf.compat.v1.assign(p, new_p)) - else: - # assumed already an op - updates_ops.append(update) - self.updates_op = tf.group(*updates_ops) - self.name = name - # additional tensor substitutions - self.feed_dict = session_kwargs.pop("feed_dict", None) - # additional operations - self.fetches = session_kwargs.pop("fetches", []) - if not isinstance(self.fetches, list): - self.fetches = [self.fetches] - self.run_options = session_kwargs.pop("options", None) - self.run_metadata = session_kwargs.pop("run_metadata", None) - # The main use case of `fetches` being passed to a model is the ability - # to run custom updates - # This requires us to wrap fetches in `identity` ops. - self.fetches = [tf.identity(x) for x in self.fetches] - self.session_kwargs = session_kwargs - # This mapping keeps track of the function that should receive the - # output from a fetch in `fetches`: { fetch: function(fetch_output) } - # A Callback can use this to register a function with access to the - # output values for a fetch it added. - self.fetch_callbacks = {} - - if session_kwargs: - raise ValueError( - "Some keys in session_kwargs are not supported at this time: %s" - % (session_kwargs.keys(),) - ) - - self._callable_fn = None - self._feed_arrays = None - self._feed_symbols = None - self._symbol_vals = None - self._fetches = None - self._session = None - - def _make_callable(self, feed_arrays, feed_symbols, symbol_vals, session): - """Generates a callable that runs the graph. - - Args: - feed_arrays: List of input tensors to be fed Numpy arrays at runtime. - feed_symbols: List of input tensors to be fed symbolic tensors at - runtime. - symbol_vals: List of symbolic tensors to be fed to `feed_symbols`. - session: Session to use to generate the callable. - - Returns: - Function that runs the graph according to the above options. - """ - # Prepare callable options. - callable_opts = config_pb2.CallableOptions() - # Handle external-data feed. - for x in feed_arrays: - callable_opts.feed.append(x.name) - if self.feed_dict: - for key in sorted(self.feed_dict.keys()): - callable_opts.feed.append(key.name) - # Handle symbolic feed. - for x, y in zip(feed_symbols, symbol_vals): - connection = callable_opts.tensor_connection.add() - if x.dtype != y.dtype: - y = tf.cast(y, dtype=x.dtype) - from_tensor = _as_graph_element(y) - if from_tensor is None: - from_tensor = y - connection.from_tensor = from_tensor.name # Data tensor - connection.to_tensor = x.name # Placeholder - # Handle fetches. - for x in self.outputs + self.fetches: - callable_opts.fetch.append(x.name) - # Handle updates. - callable_opts.target.append(self.updates_op.name) - # Handle run_options. - if self.run_options: - callable_opts.run_options.CopyFrom(self.run_options) - # Create callable. - callable_fn = session._make_callable_from_options(callable_opts) - # Cache parameters corresponding to the generated callable, so that - # we can detect future mismatches and refresh the callable. - self._callable_fn = callable_fn - self._feed_arrays = feed_arrays - self._feed_symbols = feed_symbols - self._symbol_vals = symbol_vals - self._fetches = list(self.fetches) - self._session = session - - def _call_fetch_callbacks(self, fetches_output): - for fetch, output in zip(self._fetches, fetches_output): - if fetch in self.fetch_callbacks: - self.fetch_callbacks[fetch](output) - - def _eval_if_composite(self, tensor): - """Helper method which evaluates any CompositeTensors passed to it.""" - # We need to evaluate any composite tensor objects that have been - # reconstructed in 'pack_sequence_as', since otherwise they'll be output - # as actual CompositeTensor objects instead of the value(s) contained in - # the CompositeTensors. E.g., if output_structure contains a - # SparseTensor, then this ensures that we return its value as a - # SparseTensorValue rather than a SparseTensor. - - if tf_utils.is_extension_type(tensor): - return self._session.run(tensor) - else: - return tensor - - def __call__(self, inputs): - inputs = tf.nest.flatten( - tf_utils.convert_variables_to_tensors(inputs), - expand_composites=True, - ) - - session = get_session(inputs) - feed_arrays = [] - array_vals = [] - feed_symbols = [] - symbol_vals = [] - for tensor, value in zip(self.inputs, inputs): - if value is None: - continue - - if tf.is_tensor(value): - # Case: feeding symbolic tensor. - feed_symbols.append(tensor) - symbol_vals.append(value) - else: - # Case: feeding Numpy array. - feed_arrays.append(tensor) - # We need to do array conversion and type casting at this level, - # since `callable_fn` only supports exact matches. - tensor_type = tf.as_dtype(tensor.dtype) - array_vals.append( - np.asarray(value, dtype=tensor_type.as_numpy_dtype) - ) - - if self.feed_dict: - for key in sorted(self.feed_dict.keys()): - array_vals.append( - np.asarray( - self.feed_dict[key], dtype=key.dtype.as_numpy_dtype - ) - ) - - # Refresh callable if anything has changed. - if ( - self._callable_fn is None - or feed_arrays != self._feed_arrays - or symbol_vals != self._symbol_vals - or feed_symbols != self._feed_symbols - or self.fetches != self._fetches - or session != self._session - ): - self._make_callable(feed_arrays, feed_symbols, symbol_vals, session) - - fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata) - self._call_fetch_callbacks(fetched[-len(self._fetches) :]) - output_structure = tf.nest.pack_sequence_as( - self._outputs_structure, - fetched[: len(self.outputs)], - expand_composites=True, - ) - # We need to evaluate any composite tensor objects that have been - # reconstructed in 'pack_sequence_as', since otherwise they'll be output - # as actual CompositeTensor objects instead of the value(s) contained in - # the CompositeTensors. E.g., if output_structure contains a - # SparseTensor, then this ensures that we return its value as a - # SparseTensorValue rather than a SparseTensor. - return tf.nest.map_structure(self._eval_if_composite, output_structure) - - -@keras_export("keras.backend.function") -@doc_controls.do_not_generate_docs -def function(inputs, outputs, updates=None, name=None, **kwargs): - """Instantiates a Keras function. - - Args: - inputs: List of placeholder tensors. - outputs: List of output tensors. - updates: List of update ops. - name: String, name of function. - **kwargs: Passed to `tf.Session.run`. - - Returns: - Output values as Numpy arrays. - - Raises: - ValueError: if invalid kwargs are passed in or if in eager execution. - """ - if tf.compat.v1.executing_eagerly_outside_functions(): - if kwargs: - raise ValueError( - "Session keyword arguments are not supported during " - "eager execution. You passed: %s" % (kwargs,) - ) - if updates: - raise ValueError( - "`updates` argument is not supported during " - "eager execution. You passed: %s" % (updates,) - ) - from keras import models - - model = models.Model(inputs=inputs, outputs=outputs) - - wrap_outputs = isinstance(outputs, list) and len(outputs) == 1 - - def func(model_inputs): - outs = model(model_inputs) - if wrap_outputs: - outs = [outs] - return tf_utils.sync_to_numpy_or_python_type(outs) - - return func - - if kwargs: - for key in kwargs: - if key not in tf_inspect.getfullargspec(tf.compat.v1.Session.run)[ - 0 - ] and key not in ["inputs", "outputs", "updates", "name"]: - msg = ( - 'Invalid argument "%s" passed to K.function with ' - "TensorFlow backend" % key - ) - raise ValueError(msg) - return GraphExecutionFunction( - inputs, outputs, updates=updates, name=name, **kwargs - ) - - -@keras_export("keras.backend.gradients") -@doc_controls.do_not_generate_docs -def gradients(loss, variables): - """Returns the gradients of `loss` w.r.t. `variables`. - - Args: - loss: Scalar tensor to minimize. - variables: List of variables. - - Returns: - A gradients tensor. - """ - return tf.compat.v1.gradients( - loss, variables, colocate_gradients_with_ops=True - ) - - -@keras_export("keras.backend.stop_gradient") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def stop_gradient(variables): - """Returns `variables` but with zero gradient w.r.t. every other variable. - - Args: - variables: Tensor or list of tensors to consider constant with respect - to any other variable. - - - Returns: - A single tensor or a list of tensors (depending on the passed argument) - that has no gradient with respect to any other variable. - """ - if isinstance(variables, (list, tuple)): - return map(tf.stop_gradient, variables) - return tf.stop_gradient(variables) - - -# CONTROL FLOW - - -@keras_export("keras.backend.rnn") -@tf.__internal__.dispatch.add_dispatch_support -def rnn( - step_function, - inputs, - initial_states, - go_backwards=False, - mask=None, - constants=None, - unroll=False, - input_length=None, - time_major=False, - zero_output_for_mask=False, - return_all_outputs=True, -): - """Iterates over the time dimension of a tensor. - - Args: - step_function: RNN step function. - Args; - input; Tensor with shape `(samples, ...)` (no time dimension), - representing input for the batch of samples at a certain - time step. - states; List of tensors. - Returns; - output; Tensor with shape `(samples, output_dim)` - (no time dimension). - new_states; List of tensors, same length and shapes - as 'states'. The first state in the list must be the - output tensor at the previous timestep. - inputs: Tensor of temporal data of shape `(samples, time, ...)` - (at least 3D), or nested tensors, and each of which has shape - `(samples, time, ...)`. - initial_states: Tensor with shape `(samples, state_size)` - (no time dimension), containing the initial values for the states - used in the step function. In the case that state_size is in a - nested shape, the shape of initial_states will also follow the - nested structure. - go_backwards: Boolean. If True, do the iteration over the time - dimension in reverse order and return the reversed sequence. - mask: Binary tensor with shape `(samples, time, 1)`, - with a zero for every element that is masked. - constants: List of constant values passed at each step. - unroll: Whether to unroll the RNN or to use a symbolic `while_loop`. - input_length: An integer or a 1-D Tensor, depending on whether - the time dimension is fixed-length or not. In case of variable - length input, it is used for masking in case there's no mask - specified. - time_major: Boolean. If true, the inputs and outputs will be in shape - `(timesteps, batch, ...)`, whereas in the False case, it will be - `(batch, timesteps, ...)`. Using `time_major = True` is a bit more - efficient because it avoids transposes at the beginning and end of - the RNN calculation. However, most TensorFlow data is batch-major, - so by default this function accepts input and emits output in - batch-major form. - zero_output_for_mask: Boolean. If True, the output for masked timestep - will be zeros, whereas in the False case, output from previous - timestep is returned. - return_all_outputs: Boolean. If True, return the recurrent outputs for - all timesteps in the sequence. If False, only return the output for - the last timestep (which consumes less memory). - - Returns: - A tuple, `(last_output, outputs, new_states)`. - last_output: the latest output of the rnn, of shape `(samples, ...)` - outputs: - - If `return_all_outputs=True`: a tensor with shape - `(samples, time, ...)` where each entry `outputs[s, t]` is the - output of the step function at time `t` for sample `s` - - Else, a tensor equal to `last_output` with shape - `(samples, 1, ...)` - new_states: list of tensors, latest states returned by - the step function, of shape `(samples, ...)`. - - Raises: - ValueError: if input dimension is less than 3. - ValueError: if `unroll` is `True` but input timestep is not a fixed - number. - ValueError: if `mask` is provided (not `None`) but states is not - provided (`len(states)` == 0). - """ - if not tf.__internal__.tf2.enabled(): - return_all_outputs = True # Not supported in TF1. - - def swap_batch_timestep(input_t): - # Swap the batch and timestep dim for the incoming tensor. - axes = list(range(len(input_t.shape))) - axes[0], axes[1] = 1, 0 - return tf.compat.v1.transpose(input_t, axes) - - if not time_major: - inputs = tf.nest.map_structure(swap_batch_timestep, inputs) - - flatted_inputs = tf.nest.flatten(inputs) - time_steps = flatted_inputs[0].shape[0] - batch = flatted_inputs[0].shape[1] - time_steps_t = tf.shape(flatted_inputs[0])[0] - - for input_ in flatted_inputs: - input_.shape.with_rank_at_least(3) - - if mask is not None: - if mask.dtype != tf.bool: - mask = tf.cast(mask, tf.bool) - if len(mask.shape) == 2: - mask = expand_dims(mask) - if not time_major: - mask = swap_batch_timestep(mask) - - if constants is None: - constants = [] - - # tf.where needs its condition tensor to be the same shape as its two - # result tensors, but in our case the condition (mask) tensor is - # (nsamples, 1), and inputs are (nsamples, ndimensions) or even more. - # So we need to broadcast the mask to match the shape of inputs. - # That's what the tile call does, it just repeats the mask along its - # second dimension n times. - def _expand_mask(mask_t, input_t, fixed_dim=1): - if tf.nest.is_nested(mask_t): - raise ValueError( - f"mask_t is expected to be tensor, but got {mask_t}" - ) - if tf.nest.is_nested(input_t): - raise ValueError( - f"input_t is expected to be tensor, but got {input_t}" - ) - rank_diff = len(input_t.shape) - len(mask_t.shape) - for _ in range(rank_diff): - mask_t = tf.expand_dims(mask_t, -1) - multiples = [1] * fixed_dim + input_t.shape.as_list()[fixed_dim:] - return tf.tile(mask_t, multiples) - - if unroll: - if not time_steps: - raise ValueError("Unrolling requires a fixed number of timesteps.") - states = tuple(initial_states) - successive_states = [] - successive_outputs = [] - - # Process the input tensors. The input tensor need to be split on the - # time_step dim, and reverse if go_backwards is True. In the case of - # nested input, the input is flattened and then transformed - # individually. The result of this will be a tuple of lists, each of - # the item in tuple is list of the tensor with shape (batch, feature) - def _process_single_input_t(input_t): - input_t = tf.unstack(input_t) # unstack for time_step dim - if go_backwards: - input_t.reverse() - return input_t - - if tf.nest.is_nested(inputs): - processed_input = tf.nest.map_structure( - _process_single_input_t, inputs - ) - else: - processed_input = (_process_single_input_t(inputs),) - - def _get_input_tensor(time): - inp = [t_[time] for t_ in processed_input] - return tf.nest.pack_sequence_as(inputs, inp) - - if mask is not None: - mask_list = tf.unstack(mask) - if go_backwards: - mask_list.reverse() - - for i in range(time_steps): - inp = _get_input_tensor(i) - mask_t = mask_list[i] - output, new_states = step_function( - inp, tuple(states) + tuple(constants) - ) - tiled_mask_t = _expand_mask(mask_t, output) - - if not successive_outputs: - prev_output = zeros_like(output) - else: - prev_output = successive_outputs[-1] - - output = tf.where(tiled_mask_t, output, prev_output) - - flat_states = tf.nest.flatten(states) - flat_new_states = tf.nest.flatten(new_states) - tiled_mask_t = tuple( - _expand_mask(mask_t, s) for s in flat_states - ) - flat_final_states = tuple( - tf.where(m, s, ps) - for m, s, ps in zip( - tiled_mask_t, flat_new_states, flat_states - ) - ) - states = tf.nest.pack_sequence_as(states, flat_final_states) - - if return_all_outputs: - successive_outputs.append(output) - successive_states.append(states) - else: - successive_outputs = [output] - successive_states = [states] - last_output = successive_outputs[-1] - new_states = successive_states[-1] - outputs = tf.stack(successive_outputs) - - if zero_output_for_mask: - last_output = tf.where( - _expand_mask(mask_list[-1], last_output), - last_output, - zeros_like(last_output), - ) - outputs = tf.where( - _expand_mask(mask, outputs, fixed_dim=2), - outputs, - zeros_like(outputs), - ) - - else: # mask is None - for i in range(time_steps): - inp = _get_input_tensor(i) - output, states = step_function( - inp, tuple(states) + tuple(constants) - ) - if return_all_outputs: - successive_outputs.append(output) - successive_states.append(states) - else: - successive_outputs = [output] - successive_states = [states] - last_output = successive_outputs[-1] - new_states = successive_states[-1] - outputs = tf.stack(successive_outputs) - - else: # Unroll == False - states = tuple(initial_states) - - # Create input tensor array, if the inputs is nested tensors, then it - # will be flattened first, and tensor array will be created one per - # flattened tensor. - input_ta = tuple( - tf.TensorArray( - dtype=inp.dtype, - size=time_steps_t, - tensor_array_name=f"input_ta_{i}", - ) - for i, inp in enumerate(flatted_inputs) - ) - input_ta = tuple( - ta.unstack(input_) - if not go_backwards - else ta.unstack(reverse(input_, 0)) - for ta, input_ in zip(input_ta, flatted_inputs) - ) - - # Get the time(0) input and compute the output for that, the output will - # be used to determine the dtype of output tensor array. Don't read from - # input_ta due to TensorArray clear_after_read default to True. - input_time_zero = tf.nest.pack_sequence_as( - inputs, [inp[0] for inp in flatted_inputs] - ) - # output_time_zero is used to determine the cell output shape and its - # dtype. the value is discarded. - output_time_zero, _ = step_function( - input_time_zero, tuple(initial_states) + tuple(constants) - ) - - output_ta_size = time_steps_t if return_all_outputs else 1 - output_ta = tuple( - tf.TensorArray( - dtype=out.dtype, - size=output_ta_size, - element_shape=out.shape, - tensor_array_name=f"output_ta_{i}", - ) - for i, out in enumerate(tf.nest.flatten(output_time_zero)) - ) - - time = tf.constant(0, dtype="int32", name="time") - - # We only specify the 'maximum_iterations' when building for XLA since - # that causes slowdowns on GPU in TF. - if ( - not tf.executing_eagerly() - and control_flow_util.GraphOrParentsInXlaContext( - tf.compat.v1.get_default_graph() - ) - ): - if input_length is None: - max_iterations = time_steps_t - else: - max_iterations = tf.reduce_max(input_length) - else: - max_iterations = None - - while_loop_kwargs = { - "cond": lambda time, *_: time < time_steps_t, - "maximum_iterations": max_iterations, - "parallel_iterations": 32, - "swap_memory": True, - } - if mask is not None: - if go_backwards: - mask = reverse(mask, 0) - - mask_ta = tf.TensorArray( - dtype=tf.bool, size=time_steps_t, tensor_array_name="mask_ta" - ) - mask_ta = mask_ta.unstack(mask) - - def masking_fn(time): - return mask_ta.read(time) - - def compute_masked_output(mask_t, flat_out, flat_mask): - tiled_mask_t = tuple( - _expand_mask(mask_t, o, fixed_dim=len(mask_t.shape)) - for o in flat_out - ) - return tuple( - tf.where(m, o, fm) - for m, o, fm in zip(tiled_mask_t, flat_out, flat_mask) - ) - - elif isinstance(input_length, tf.Tensor): - if go_backwards: - max_len = tf.reduce_max(input_length, axis=0) - rev_input_length = tf.subtract(max_len - 1, input_length) - - def masking_fn(time): - return tf.less(rev_input_length, time) - - else: - - def masking_fn(time): - return tf.greater(input_length, time) - - def compute_masked_output(mask_t, flat_out, flat_mask): - return tuple( - tf.compat.v1.where(mask_t, o, zo) - for (o, zo) in zip(flat_out, flat_mask) - ) - - else: - masking_fn = None - - if masking_fn is not None: - # Mask for the T output will be base on the output of T - 1. In the - # case T = 0, a zero filled tensor will be used. - flat_zero_output = tuple( - tf.zeros_like(o) for o in tf.nest.flatten(output_time_zero) - ) - - def _step(time, output_ta_t, prev_output, *states): - """RNN step function. - - Args: - time: Current timestep value. - output_ta_t: TensorArray. - prev_output: tuple of outputs from time - 1. - *states: List of states. - - Returns: - Tuple: `(time + 1, output_ta_t, output) + tuple(new_states)` - """ - current_input = tuple(ta.read(time) for ta in input_ta) - # maybe set shape. - current_input = tf.nest.pack_sequence_as(inputs, current_input) - mask_t = masking_fn(time) - output, new_states = step_function( - current_input, tuple(states) + tuple(constants) - ) - # mask output - flat_output = tf.nest.flatten(output) - flat_mask_output = ( - flat_zero_output - if zero_output_for_mask - else tf.nest.flatten(prev_output) - ) - flat_new_output = compute_masked_output( - mask_t, flat_output, flat_mask_output - ) - - # mask states - flat_state = tf.nest.flatten(states) - flat_new_state = tf.nest.flatten(new_states) - for state, new_state in zip(flat_state, flat_new_state): - if isinstance(new_state, tf.Tensor): - new_state.set_shape(state.shape) - flat_final_state = compute_masked_output( - mask_t, flat_new_state, flat_state - ) - new_states = tf.nest.pack_sequence_as( - new_states, flat_final_state - ) - - ta_index_to_write = time if return_all_outputs else 0 - output_ta_t = tuple( - ta.write(ta_index_to_write, out) - for ta, out in zip(output_ta_t, flat_new_output) - ) - - return (time + 1, output_ta_t, tuple(flat_new_output)) + tuple( - new_states - ) - - final_outputs = tf.compat.v1.while_loop( - body=_step, - loop_vars=(time, output_ta, flat_zero_output) + states, - **while_loop_kwargs, - ) - # Skip final_outputs[2] which is the output for final timestep. - new_states = final_outputs[3:] - else: - - def _step(time, output_ta_t, *states): - """RNN step function. - - Args: - time: Current timestep value. - output_ta_t: TensorArray. - *states: List of states. - - Returns: - Tuple: `(time + 1,output_ta_t) + tuple(new_states)` - """ - current_input = tuple(ta.read(time) for ta in input_ta) - current_input = tf.nest.pack_sequence_as(inputs, current_input) - output, new_states = step_function( - current_input, tuple(states) + tuple(constants) - ) - flat_state = tf.nest.flatten(states) - flat_new_state = tf.nest.flatten(new_states) - for state, new_state in zip(flat_state, flat_new_state): - if isinstance(new_state, tf.Tensor): - new_state.set_shape(state.shape) - - flat_output = tf.nest.flatten(output) - ta_index_to_write = time if return_all_outputs else 0 - output_ta_t = tuple( - ta.write(ta_index_to_write, out) - for ta, out in zip(output_ta_t, flat_output) - ) - - new_states = tf.nest.pack_sequence_as( - initial_states, flat_new_state - ) - return (time + 1, output_ta_t) + tuple(new_states) - - final_outputs = tf.compat.v1.while_loop( - body=_step, - loop_vars=(time, output_ta) + states, - **while_loop_kwargs, - ) - new_states = final_outputs[2:] - - output_ta = final_outputs[1] - - outputs = tuple(o.stack() for o in output_ta) - last_output = tuple(o[-1] for o in outputs) - - outputs = tf.nest.pack_sequence_as(output_time_zero, outputs) - last_output = tf.nest.pack_sequence_as(output_time_zero, last_output) - - # static shape inference - def set_shape(output_): - if isinstance(output_, tf.Tensor): - shape = output_.shape.as_list() - if return_all_outputs: - shape[0] = time_steps - else: - shape[0] = 1 - shape[1] = batch - output_.set_shape(shape) - return output_ - - outputs = tf.nest.map_structure(set_shape, outputs) - - if not time_major: - outputs = tf.nest.map_structure(swap_batch_timestep, outputs) - - return last_output, outputs, new_states - - -@keras_export("keras.backend.switch") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def switch(condition, then_expression, else_expression): - """Switches between two operations depending on a scalar value. - - Note that both `then_expression` and `else_expression` - should be symbolic tensors of the *same shape*. - - Args: - condition: tensor (`int` or `bool`). - then_expression: either a tensor, or a callable that returns a tensor. - else_expression: either a tensor, or a callable that returns a tensor. - - Returns: - The selected tensor. - - Raises: - ValueError: If rank of `condition` is greater than rank of expressions. - """ - if condition.dtype != tf.bool: - condition = tf.cast(condition, "bool") - cond_ndim = ndim(condition) - if not cond_ndim: - if not callable(then_expression): - - def then_expression_fn(): - return then_expression - - else: - then_expression_fn = then_expression - if not callable(else_expression): - - def else_expression_fn(): - return else_expression - - else: - else_expression_fn = else_expression - x = tf.compat.v1.cond(condition, then_expression_fn, else_expression_fn) - else: - # tf.where needs its condition tensor - # to be the same shape as its two - # result tensors - if callable(then_expression): - then_expression = then_expression() - if callable(else_expression): - else_expression = else_expression() - expr_ndim = ndim(then_expression) - if cond_ndim > expr_ndim: - raise ValueError( - "Rank of `condition` should be less than or" - " equal to rank of `then_expression` and " - "`else_expression`. ndim(condition)=" - + str(cond_ndim) - + ", ndim(then_expression)=" - + str(expr_ndim) - ) - if cond_ndim > 1: - ndim_diff = expr_ndim - cond_ndim - cond_shape = tf.concat( - [tf.shape(condition), [1] * ndim_diff], axis=0 - ) - condition = tf.reshape(condition, cond_shape) - expr_shape = tf.shape(then_expression) - shape_diff = expr_shape - cond_shape - tile_shape = tf.where( - shape_diff > 0, expr_shape, tf.ones_like(expr_shape) - ) - condition = tf.tile(condition, tile_shape) - x = tf.where(condition, then_expression, else_expression) - return x - - -@keras_export("keras.backend.in_train_phase") -@doc_controls.do_not_generate_docs -def in_train_phase(x, alt, training=None): - """Selects `x` in train phase, and `alt` otherwise. - - Note that `alt` should have the *same shape* as `x`. - - Args: - x: What to return in train phase - (tensor or callable that returns a tensor). - alt: What to return otherwise - (tensor or callable that returns a tensor). - training: Optional scalar tensor - (or Python boolean, or Python integer) - specifying the learning phase. - - Returns: - Either `x` or `alt` based on the `training` flag. - the `training` flag defaults to `K.learning_phase()`. - """ - from keras.engine import ( - base_layer_utils, - ) - - if training is None: - training = base_layer_utils.call_context().training - - if training is None: - training = learning_phase() - - # TODO(b/138862903): Handle the case when training is tensor. - if not tf.is_tensor(training): - if training == 1 or training is True: - if callable(x): - return x() - else: - return x - - elif training == 0 or training is False: - if callable(alt): - return alt() - else: - return alt - - # else: assume learning phase is a placeholder tensor. - x = switch(training, x, alt) - return x - - -@keras_export("keras.backend.in_test_phase") -@doc_controls.do_not_generate_docs -def in_test_phase(x, alt, training=None): - """Selects `x` in test phase, and `alt` otherwise. - - Note that `alt` should have the *same shape* as `x`. - - Args: - x: What to return in test phase - (tensor or callable that returns a tensor). - alt: What to return otherwise - (tensor or callable that returns a tensor). - training: Optional scalar tensor - (or Python boolean, or Python integer) - specifying the learning phase. - - Returns: - Either `x` or `alt` based on `K.learning_phase`. - """ - return in_train_phase(alt, x, training=training) - - -# NN OPERATIONS - - -@keras_export("keras.backend.relu") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def relu(x, alpha=0.0, max_value=None, threshold=0.0): - """Rectified linear unit. - - With default values, it returns element-wise `max(x, 0)`. - - Otherwise, it follows: - `f(x) = max_value` for `x >= max_value`, - `f(x) = x` for `threshold <= x < max_value`, - `f(x) = alpha * (x - threshold)` otherwise. - - Args: - x: A tensor or variable. - alpha: A scalar, slope of negative section (default=`0.`). - max_value: float. Saturation threshold. - threshold: float. Threshold value for thresholded activation. - - Returns: - A tensor. - """ - # While x can be a tensor or variable, we also see cases where - # numpy arrays, lists, tuples are passed as well. - # lists, tuples do not have 'dtype' attribute. - dtype = getattr(x, "dtype", floatx()) - if alpha != 0.0: - if max_value is None and threshold == 0: - return tf.nn.leaky_relu(x, alpha=alpha) - - if threshold != 0: - negative_part = tf.nn.relu(-x + threshold) - else: - negative_part = tf.nn.relu(-x) - - clip_max = max_value is not None - - if threshold != 0: - # computes x for x > threshold else 0 - x = x * tf.cast(tf.greater(x, threshold), dtype=dtype) - elif max_value == 6: - # if no threshold, then can use nn.relu6 native TF op for performance - x = tf.nn.relu6(x) - clip_max = False - else: - x = tf.nn.relu(x) - - if clip_max: - max_value = _constant_to_tensor(max_value, x.dtype.base_dtype) - zero = _constant_to_tensor(0, x.dtype.base_dtype) - x = tf.clip_by_value(x, zero, max_value) - - if alpha != 0.0: - alpha = _to_tensor(alpha, x.dtype.base_dtype) - x -= alpha * negative_part - return x - - -@keras_export("keras.backend.elu") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def elu(x, alpha=1.0): - """Exponential linear unit. - - Args: - x: A tensor or variable to compute the activation function for. - alpha: A scalar, slope of negative section. - - Returns: - A tensor. - """ - res = tf.nn.elu(x) - if alpha == 1: - return res - else: - return tf.where(x > 0, res, alpha * res) - - -@keras_export("keras.backend.softmax") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def softmax(x, axis=-1): - """Softmax of a tensor. - - Args: - x: A tensor or variable. - axis: The dimension softmax would be performed on. - The default is -1 which indicates the last dimension. - - Returns: - A tensor. - """ - return tf.nn.softmax(x, axis=axis) - - -@keras_export("keras.backend.softplus") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def softplus(x): - """Softplus of a tensor. - - Args: - x: A tensor or variable. - - Returns: - A tensor. - """ - return tf.math.softplus(x) - - -@keras_export("keras.backend.softsign") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def softsign(x): - """Softsign of a tensor. - - Args: - x: A tensor or variable. - - Returns: - A tensor. - """ - return tf.math.softsign(x) - - -def _get_logits(output, from_logits, op_type, fn_name): - output_ = output - from_logits_ = from_logits - - has_keras_logits = hasattr(output, "_keras_logits") - if has_keras_logits: - output_ = output._keras_logits - from_logits_ = True - - from_expected_op_type = ( - not isinstance(output, (tf.__internal__.EagerTensor, tf.Variable)) - and output.op.type == op_type - ) and not has_keras_logits - - if from_expected_op_type: - # When softmax activation function is used for output operation, we - # use logits from the softmax function directly to compute loss in order - # to prevent collapsing zero when training. - # See b/117284466 - assert len(output.op.inputs) == 1 - output_ = output.op.inputs[0] - from_logits_ = True - - if from_logits and (has_keras_logits or from_expected_op_type): - warnings.warn( - f'"`{fn_name}` received `from_logits=True`, but ' - f"the `output` argument was produced by a {op_type} " - "activation and thus does not represent logits. " - "Was this intended?", - stacklevel=2, - ) - - return output_, from_logits_ - - -@keras_export("keras.backend.categorical_crossentropy") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def categorical_crossentropy(target, output, from_logits=False, axis=-1): - """Categorical crossentropy between an output tensor and a target tensor. - - Args: - target: A tensor of the same shape as `output`. - output: A tensor resulting from a softmax - (unless `from_logits` is True, in which - case `output` is expected to be the logits). - from_logits: Boolean, whether `output` is the - result of a softmax, or is a tensor of logits. - axis: Int specifying the channels axis. `axis=-1` corresponds to data - format `channels_last`, and `axis=1` corresponds to data format - `channels_first`. - - Returns: - Output tensor. - - Raises: - ValueError: if `axis` is neither -1 nor one of the axes of `output`. - - Example: - - >>> a = tf.constant([1., 0., 0., 0., 1., 0., 0., 0., 1.], shape=[3,3]) - >>> print(a) - tf.Tensor( - [[1. 0. 0.] - [0. 1. 0.] - [0. 0. 1.]], shape=(3, 3), dtype=float32) - >>> b = tf.constant([.9, .05, .05, .05, .89, .06, .05, .01, .94], - ... shape=[3, 3]) - >>> print(b) - tf.Tensor( - [[0.9 0.05 0.05] - [0.05 0.89 0.06] - [0.05 0.01 0.94]], shape=(3, 3), dtype=float32) - >>> loss = tf.keras.backend.categorical_crossentropy(a, b) - >>> print(np.around(loss, 5)) - [0.10536 0.11653 0.06188] - >>> loss = tf.keras.backend.categorical_crossentropy(a, a) - >>> print(np.around(loss, 5)) - [0. 0. 0.] - - """ - target = tf.convert_to_tensor(target) - output = tf.convert_to_tensor(output) - target.shape.assert_is_compatible_with(output.shape) - - output, from_logits = _get_logits( - output, from_logits, "Softmax", "categorical_crossentropy" - ) - if from_logits: - return tf.nn.softmax_cross_entropy_with_logits( - labels=target, logits=output, axis=axis - ) - - # Adjust the predictions so that the probability of - # each class for every sample adds up to 1 - # This is needed to ensure that the cross entropy is - # computed correctly. - output = output / tf.reduce_sum(output, axis, True) - - # Compute cross entropy from probabilities. - epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype) - output = tf.clip_by_value(output, epsilon_, 1.0 - epsilon_) - return -tf.reduce_sum(target * tf.math.log(output), axis) - - -@keras_export("keras.backend.categorical_focal_crossentropy") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def categorical_focal_crossentropy( - target, - output, - alpha=0.25, - gamma=2.0, - from_logits=False, - axis=-1, -): - """Computes the alpha balanced focal crossentropy loss. - - According to [Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf), it - helps to apply a focal factor to down-weight easy examples and focus more on - hard examples. The general formula for the focal loss (FL) - is as follows: - - `FL(p_t) = (1 − p_t)^gamma * log(p_t)` - - where `p_t` is defined as follows: - `p_t = output if y_true == 1, else 1 - output` - - `(1 − p_t)^gamma` is the `modulating_factor`, where `gamma` is a focusing - parameter. When `gamma` = 0, there is no focal effect on the cross entropy. - `gamma` reduces the importance given to simple examples in a smooth manner. - - The authors use alpha-balanced variant of focal loss (FL) in the paper: - `FL(p_t) = −alpha * (1 − p_t)^gamma * log(p_t)` - - where `alpha` is the weight factor for the classes. If `alpha` = 1, the - loss won't be able to handle class imbalance properly as all - classes will have the same weight. This can be a constant or a list of - constants. If alpha is a list, it must have the same length as the number - of classes. - - The formula above can be generalized to: - `FL(p_t) = alpha * (1 − p_t)^gamma * CrossEntropy(target, output)` - - where minus comes from `CrossEntropy(target, output)` (CE). - - Extending this to multi-class case is straightforward: - `FL(p_t) = alpha * (1 − p_t)^gamma * CategoricalCE(target, output)` - - Args: - target: Ground truth values from the dataset. - output: Predictions of the model. - alpha: A weight balancing factor for all classes, default is `0.25` as - mentioned in the reference. It can be a list of floats or a scalar. - In the multi-class case, alpha may be set by inverse class - frequency by using `compute_class_weight` from `sklearn.utils`. - gamma: A focusing parameter, default is `2.0` as mentioned in the - reference. It helps to gradually reduce the importance given to - simple examples in a smooth manner. - from_logits: Whether `output` is expected to be a logits tensor. By - default, we consider that `output` encodes a probability - distribution. - axis: Int specifying the channels axis. `axis=-1` corresponds to data - format `channels_last`, and `axis=1` corresponds to data format - `channels_first`. - - Returns: - A tensor. - """ - target = tf.convert_to_tensor(target) - output = tf.convert_to_tensor(output) - target.shape.assert_is_compatible_with(output.shape) - - output, from_logits = _get_logits( - output, from_logits, "Softmax", "categorical_focal_crossentropy" - ) - - if from_logits: - output = tf.nn.softmax(output, axis=axis) - - # Adjust the predictions so that the probability of - # each class for every sample adds up to 1 - # This is needed to ensure that the cross entropy is - # computed correctly. - output = output / tf.reduce_sum(output, axis=axis, keepdims=True) - - epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype) - output = tf.clip_by_value(output, epsilon_, 1.0 - epsilon_) - - # Calculate cross entropy - cce = -target * tf.math.log(output) - - # Calculate factors - modulating_factor = tf.pow(1.0 - output, gamma) - weighting_factor = tf.multiply(modulating_factor, alpha) - - # Apply weighting factor - focal_cce = tf.multiply(weighting_factor, cce) - focal_cce = tf.reduce_sum(focal_cce, axis=axis) - return focal_cce - - -@keras_export("keras.backend.sparse_categorical_crossentropy") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def sparse_categorical_crossentropy( - target, output, from_logits=False, axis=-1, ignore_class=None -): - """Categorical crossentropy with integer targets. - - Args: - target: An integer tensor. - output: A tensor resulting from a softmax - (unless `from_logits` is True, in which - case `output` is expected to be the logits). - from_logits: Boolean, whether `output` is the - result of a softmax, or is a tensor of logits. - axis: Int specifying the channels axis. `axis=-1` corresponds to data - format `channels_last`, and `axis=1` corresponds to data format - `channels_first`. - ignore_class: Optional integer. The ID of a class to be ignored - during loss computation. This is useful, for example, in - segmentation problems featuring a "void" class (commonly -1 - or 255) in segmentation maps. - By default (`ignore_class=None`), all classes are considered. - - Returns: - Output tensor. - - Raises: - ValueError: if `axis` is neither -1 nor one of the axes of `output`. - """ - target = tf.convert_to_tensor(target) - output = tf.convert_to_tensor(output) - - target = cast(target, "int64") - - output, from_logits = _get_logits( - output, from_logits, "Softmax", "sparse_categorical_crossentropy" - ) - if not from_logits: - epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype) - output = tf.clip_by_value(output, epsilon_, 1 - epsilon_) - output = tf.math.log(output) - - # Permute output so that the last axis contains the logits/probabilities. - if isinstance(output.shape, (tuple, list)): - output_rank = len(output.shape) - else: - output_rank = output.shape.ndims - if output_rank is not None: - axis %= output_rank - if axis != output_rank - 1: - permutation = list( - itertools.chain( - range(axis), range(axis + 1, output_rank), [axis] - ) - ) - output = tf.compat.v1.transpose(output, perm=permutation) - elif axis != -1: - raise ValueError( - "Cannot compute sparse categorical crossentropy with `axis={}` " - "on an output tensor with unknown rank".format(axis) - ) - - # Try to adjust the shape so that rank of labels = rank of logits - 1. - output_shape = tf.shape(output) - target_rank = target.shape.ndims - - update_shape = ( - target_rank is not None - and output_rank is not None - and target_rank != output_rank - 1 - ) - if update_shape: - target = flatten(target) - output = tf.reshape(output, [-1, output_shape[-1]]) - - if ignore_class is not None: - valid_mask = tf.not_equal(target, cast(ignore_class, target.dtype)) - target = target[valid_mask] - output = output[valid_mask] - - if py_any(_is_symbolic_tensor(v) for v in [target, output]): - with get_graph().as_default(): - res = tf.nn.sparse_softmax_cross_entropy_with_logits( - labels=target, logits=output - ) - else: - res = tf.nn.sparse_softmax_cross_entropy_with_logits( - labels=target, logits=output - ) - - if ignore_class is not None: - res_shape = cast(output_shape[:-1], "int64") - valid_mask = tf.reshape(valid_mask, res_shape) - res = tf.scatter_nd(tf.where(valid_mask), res, res_shape) - res._keras_mask = valid_mask - - return res - - if update_shape and output_rank >= 3: - # If our output includes timesteps or - # spatial dimensions we need to reshape - res = tf.reshape(res, output_shape[:-1]) - - return res - - -@keras_export("keras.backend.binary_crossentropy") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def binary_crossentropy(target, output, from_logits=False): - """Binary crossentropy between an output tensor and a target tensor. - - Args: - target: A tensor with the same shape as `output`. - output: A tensor. - from_logits: Whether `output` is expected to be a logits tensor. - By default, we consider that `output` - encodes a probability distribution. - - Returns: - A tensor. - """ - target = tf.convert_to_tensor(target) - output = tf.convert_to_tensor(output) - - output, from_logits = _get_logits( - output, from_logits, "Sigmoid", "binary_crossentropy" - ) - if from_logits: - return tf.nn.sigmoid_cross_entropy_with_logits( - labels=target, logits=output - ) - - epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype) - output = tf.clip_by_value(output, epsilon_, 1.0 - epsilon_) - - # Compute cross entropy from probabilities. - bce = target * tf.math.log(output + epsilon()) - bce += (1 - target) * tf.math.log(1 - output + epsilon()) - return -bce - - -@keras_export("keras.backend.binary_focal_crossentropy") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def binary_focal_crossentropy( - target, - output, - apply_class_balancing=False, - alpha=0.25, - gamma=2.0, - from_logits=False, -): - """Binary focal crossentropy between an output tensor and a target tensor. - - According to [Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf), it - helps to apply a focal factor to down-weight easy examples and focus more on - hard examples. By default, the focal tensor is computed as follows: - - `focal_factor = (1 - output) ** gamma` for class 1 - `focal_factor = output ** gamma` for class 0 - where `gamma` is a focusing parameter. When `gamma` = 0, there is no focal - effect on the binary crossentropy. - - If `apply_class_balancing == True`, this function also takes into account a - weight balancing factor for the binary classes 0 and 1 as follows: - - `weight = alpha` for class 1 (`target == 1`) - `weight = 1 - alpha` for class 0 - where `alpha` is a float in the range of `[0, 1]`. - - Args: - target: A tensor with the same shape as `output`. - output: A tensor. - apply_class_balancing: A bool, whether to apply weight balancing on the - binary classes 0 and 1. - alpha: A weight balancing factor for class 1, default is `0.25` as - mentioned in the reference. The weight for class 0 is `1.0 - alpha`. - gamma: A focusing parameter, default is `2.0` as mentioned in the - reference. - from_logits: Whether `output` is expected to be a logits tensor. By - default, we consider that `output` encodes a probability - distribution. - - Returns: - A tensor. - """ - - sigmoidal = sigmoid(output) if from_logits else output - - p_t = target * sigmoidal + (1 - target) * (1 - sigmoidal) - - # Calculate focal factor - focal_factor = tf.pow(1.0 - p_t, gamma) - - # Binary crossentropy - bce = binary_crossentropy( - target=target, - output=output, - from_logits=from_logits, - ) - focal_bce = focal_factor * bce - - if apply_class_balancing: - weight = target * alpha + (1 - target) * (1 - alpha) - focal_bce = weight * focal_bce - - return focal_bce - - -@keras_export("keras.backend.sigmoid") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def sigmoid(x): - """Element-wise sigmoid. - - Args: - x: A tensor or variable. - - Returns: - A tensor. - """ - return tf.math.sigmoid(x) - - -@keras_export("keras.backend.hard_sigmoid") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def hard_sigmoid(x): - """Segment-wise linear approximation of sigmoid. - - Faster than sigmoid. - Returns `0.` if `x < -2.5`, `1.` if `x > 2.5`. - In `-2.5 <= x <= 2.5`, returns `0.2 * x + 0.5`. - - Args: - x: A tensor or variable. - - Returns: - A tensor. - """ - point_two = _constant_to_tensor(0.2, x.dtype.base_dtype) - point_five = _constant_to_tensor(0.5, x.dtype.base_dtype) - x = tf.multiply(x, point_two) - x = tf.add(x, point_five) - x = tf.clip_by_value(x, 0.0, 1.0) - return x - - -@keras_export("keras.backend.tanh") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def tanh(x): - """Element-wise tanh. - - Args: - x: A tensor or variable. - - Returns: - A tensor. - """ - return tf.tanh(x) - - -@keras_export("keras.backend.dropout") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def dropout(x, level, noise_shape=None, seed=None): - """Sets entries in `x` to zero at random, while scaling the entire tensor. - - Args: - x: tensor - level: fraction of the entries in the tensor - that will be set to 0. - noise_shape: shape for randomly generated keep/drop flags, - must be broadcastable to the shape of `x` - seed: random seed to ensure determinism. - - Returns: - A tensor. - """ - if seed is None: - seed = np.random.randint(10e6) - return tf.nn.dropout(x, rate=level, noise_shape=noise_shape, seed=seed) - - -@keras_export("keras.backend.l2_normalize") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def l2_normalize(x, axis=None): - """Normalizes a tensor wrt the L2 norm alongside the specified axis. - - Args: - x: Tensor or variable. - axis: axis along which to perform normalization. - - Returns: - A tensor. - """ - return tf.linalg.l2_normalize(x, axis=axis) - - -@keras_export("keras.backend.in_top_k") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def in_top_k(predictions, targets, k): - """Returns whether the `targets` are in the top `k` `predictions`. - - Args: - predictions: A tensor of shape `(batch_size, classes)` and type - `float32`. - targets: A 1D tensor of length `batch_size` and type `int32` or `int64`. - k: An `int`, number of top elements to consider. - - Returns: - A 1D tensor of length `batch_size` and type `bool`. - `output[i]` is `True` if `predictions[i, targets[i]]` is within top-`k` - values of `predictions[i]`. - """ - return tf.compat.v1.math.in_top_k(predictions, targets, k) - - -# CONVOLUTIONS - - -def _preprocess_conv1d_input(x, data_format): - """Transpose and cast the input before the conv1d. - - Args: - x: input tensor. - data_format: string, `"channels_last"` or `"channels_first"`. - - Returns: - A tensor. - """ - tf_data_format = "NWC" # to pass TF Conv2dNative operations - if data_format == "channels_first": - if not _has_nchw_support(): - x = tf.compat.v1.transpose(x, (0, 2, 1)) # NCW -> NWC - else: - tf_data_format = "NCW" - return x, tf_data_format - - -def _preprocess_conv2d_input(x, data_format, force_transpose=False): - """Transpose and cast the input before the conv2d. - - Args: - x: input tensor. - data_format: string, `"channels_last"` or `"channels_first"`. - force_transpose: Boolean. If True, the input will always be transposed - from NCHW to NHWC if `data_format` is `"channels_first"`. - If False, the transposition only occurs on CPU (GPU ops are - assumed to support NCHW). - - Returns: - A tensor. - """ - tf_data_format = "NHWC" - if data_format == "channels_first": - if not _has_nchw_support() or force_transpose: - x = tf.compat.v1.transpose(x, (0, 2, 3, 1)) # NCHW -> NHWC - else: - tf_data_format = "NCHW" - return x, tf_data_format - - -def _preprocess_conv3d_input(x, data_format): - """Transpose and cast the input before the conv3d. - - Args: - x: input tensor. - data_format: string, `"channels_last"` or `"channels_first"`. - - Returns: - A tensor. - """ - tf_data_format = "NDHWC" - if data_format == "channels_first": - if not _has_nchw_support(): - x = tf.compat.v1.transpose(x, (0, 2, 3, 4, 1)) - else: - tf_data_format = "NCDHW" - return x, tf_data_format - - -def _preprocess_padding(padding): - """Convert keras' padding to TensorFlow's padding. - - Args: - padding: string, one of 'same' , 'valid' - - Returns: - a string, one of 'SAME', 'VALID'. - - Raises: - ValueError: if invalid `padding'` - """ - if padding == "same": - padding = "SAME" - elif padding == "valid": - padding = "VALID" - else: - raise ValueError("Invalid padding: " + str(padding)) - return padding - - -@keras_export("keras.backend.conv1d") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def conv1d( - x, kernel, strides=1, padding="valid", data_format=None, dilation_rate=1 -): - """1D convolution. - - Args: - x: Tensor or variable. - kernel: kernel tensor. - strides: stride integer. - padding: string, `"same"`, `"causal"` or `"valid"`. - data_format: string, one of "channels_last", "channels_first". - dilation_rate: integer dilate rate. - - Returns: - A tensor, result of 1D convolution. - - Raises: - ValueError: if `data_format` is neither `channels_last` or - `channels_first`. - """ - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - - kernel_shape = kernel.shape.as_list() - if padding == "causal": - # causal (dilated) convolution: - left_pad = dilation_rate * (kernel_shape[0] - 1) - x = temporal_padding(x, (left_pad, 0)) - padding = "valid" - padding = _preprocess_padding(padding) - - x, tf_data_format = _preprocess_conv1d_input(x, data_format) - x = tf.compat.v1.nn.convolution( - input=x, - filter=kernel, - dilation_rate=dilation_rate, - strides=strides, - padding=padding, - data_format=tf_data_format, - ) - if data_format == "channels_first" and tf_data_format == "NWC": - x = tf.compat.v1.transpose(x, (0, 2, 1)) # NWC -> NCW - return x - - -@keras_export("keras.backend.conv2d") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def conv2d( - x, - kernel, - strides=(1, 1), - padding="valid", - data_format=None, - dilation_rate=(1, 1), -): - """2D convolution. - - Args: - x: Tensor or variable. - kernel: kernel tensor. - strides: strides tuple. - padding: string, `"same"` or `"valid"`. - data_format: `"channels_last"` or `"channels_first"`. - dilation_rate: tuple of 2 integers. - - Returns: - A tensor, result of 2D convolution. - - Raises: - ValueError: if `data_format` is neither `channels_last` or - `channels_first`. - """ - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - - x, tf_data_format = _preprocess_conv2d_input(x, data_format) - padding = _preprocess_padding(padding) - x = tf.compat.v1.nn.convolution( - input=x, - filter=kernel, - dilation_rate=dilation_rate, - strides=strides, - padding=padding, - data_format=tf_data_format, - ) - if data_format == "channels_first" and tf_data_format == "NHWC": - x = tf.compat.v1.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW - return x - - -@keras_export("keras.backend.conv2d_transpose") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def conv2d_transpose( - x, - kernel, - output_shape, - strides=(1, 1), - padding="valid", - data_format=None, - dilation_rate=(1, 1), -): - """2D deconvolution (i.e. - - transposed convolution). - - Args: - x: Tensor or variable. - kernel: kernel tensor. - output_shape: 1D int tensor for the output shape. - strides: strides tuple. - padding: string, `"same"` or `"valid"`. - data_format: string, `"channels_last"` or `"channels_first"`. - dilation_rate: Tuple of 2 integers. - - Returns: - A tensor, result of transposed 2D convolution. - - Raises: - ValueError: if `data_format` is neither `channels_last` or - `channels_first`. - """ - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - - # `atrous_conv2d_transpose` only supports NHWC format, even on GPU. - if data_format == "channels_first" and dilation_rate != (1, 1): - force_transpose = True - else: - force_transpose = False - - x, tf_data_format = _preprocess_conv2d_input( - x, data_format, force_transpose - ) - - if data_format == "channels_first" and tf_data_format == "NHWC": - output_shape = ( - output_shape[0], - output_shape[2], - output_shape[3], - output_shape[1], - ) - if output_shape[0] is None: - output_shape = (shape(x)[0],) + tuple(output_shape[1:]) - - if isinstance(output_shape, (tuple, list)): - output_shape = tf.stack(list(output_shape)) - - padding = _preprocess_padding(padding) - if tf_data_format == "NHWC": - strides = (1,) + strides + (1,) - else: - strides = (1, 1) + strides - - if dilation_rate == (1, 1): - x = tf.compat.v1.nn.conv2d_transpose( - x, - kernel, - output_shape, - strides, - padding=padding, - data_format=tf_data_format, - ) - else: - if dilation_rate[0] != dilation_rate[1]: - raise ValueError( - "Expected the 2 dimensions of the `dilation_rate` argument " - "to be equal to each other. " - f"Received: dilation_rate={dilation_rate}" - ) - x = tf.nn.atrous_conv2d_transpose( - x, kernel, output_shape, rate=dilation_rate[0], padding=padding - ) - if data_format == "channels_first" and tf_data_format == "NHWC": - x = tf.compat.v1.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW - return x - - -def separable_conv1d( - x, - depthwise_kernel, - pointwise_kernel, - strides=1, - padding="valid", - data_format=None, - dilation_rate=1, -): - """1D convolution with separable filters. - - Args: - x: input tensor - depthwise_kernel: convolution kernel for the depthwise convolution. - pointwise_kernel: kernel for the 1x1 convolution. - strides: stride integer. - padding: string, `"same"` or `"valid"`. - data_format: string, `"channels_last"` or `"channels_first"`. - dilation_rate: integer dilation rate. - - Returns: - Output tensor. - - Raises: - ValueError: if `data_format` is neither `channels_last` or - `channels_first`. - """ - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - - if isinstance(strides, int): - strides = (strides,) - if isinstance(dilation_rate, int): - dilation_rate = (dilation_rate,) - - x, tf_data_format = _preprocess_conv1d_input(x, data_format) - padding = _preprocess_padding(padding) - if not isinstance(strides, tuple): - strides = tuple(strides) - if tf_data_format == "NWC": - spatial_start_dim = 1 - strides = (1,) + strides * 2 + (1,) - else: - spatial_start_dim = 2 - strides = (1, 1) + strides * 2 - x = tf.expand_dims(x, spatial_start_dim) - depthwise_kernel = tf.expand_dims(depthwise_kernel, 0) - pointwise_kernel = tf.expand_dims(pointwise_kernel, 0) - dilation_rate = (1,) + dilation_rate - - x = tf.compat.v1.nn.separable_conv2d( - x, - depthwise_kernel, - pointwise_kernel, - strides=strides, - padding=padding, - rate=dilation_rate, - data_format=tf_data_format, - ) - - x = tf.squeeze(x, [spatial_start_dim]) - - if data_format == "channels_first" and tf_data_format == "NWC": - x = tf.compat.v1.transpose(x, (0, 2, 1)) # NWC -> NCW - - return x - - -@keras_export("keras.backend.separable_conv2d") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def separable_conv2d( - x, - depthwise_kernel, - pointwise_kernel, - strides=(1, 1), - padding="valid", - data_format=None, - dilation_rate=(1, 1), -): - """2D convolution with separable filters. - - Args: - x: input tensor - depthwise_kernel: convolution kernel for the depthwise convolution. - pointwise_kernel: kernel for the 1x1 convolution. - strides: strides tuple (length 2). - padding: string, `"same"` or `"valid"`. - data_format: string, `"channels_last"` or `"channels_first"`. - dilation_rate: tuple of integers, - dilation rates for the separable convolution. - - Returns: - Output tensor. - - Raises: - ValueError: if `data_format` is neither `channels_last` or - `channels_first`. - ValueError: if `strides` is not a tuple of 2 integers. - """ - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - if len(strides) != 2: - raise ValueError("`strides` must be a tuple of 2 integers.") - - x, tf_data_format = _preprocess_conv2d_input(x, data_format) - padding = _preprocess_padding(padding) - if not isinstance(strides, tuple): - strides = tuple(strides) - if tf_data_format == "NHWC": - strides = (1,) + strides + (1,) - else: - strides = (1, 1) + strides - - x = tf.compat.v1.nn.separable_conv2d( - x, - depthwise_kernel, - pointwise_kernel, - strides=strides, - padding=padding, - rate=dilation_rate, - data_format=tf_data_format, - ) - if data_format == "channels_first" and tf_data_format == "NHWC": - x = tf.compat.v1.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW - return x - - -@keras_export("keras.backend.depthwise_conv2d") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def depthwise_conv2d( - x, - depthwise_kernel, - strides=(1, 1), - padding="valid", - data_format=None, - dilation_rate=(1, 1), -): - """2D convolution with separable filters. - - Args: - x: input tensor - depthwise_kernel: convolution kernel for the depthwise convolution. - strides: strides tuple (length 2). - padding: string, `"same"` or `"valid"`. - data_format: string, `"channels_last"` or `"channels_first"`. - dilation_rate: tuple of integers, - dilation rates for the separable convolution. - - Returns: - Output tensor. - - Raises: - ValueError: if `data_format` is neither `channels_last` or - `channels_first`. - """ - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - - x, tf_data_format = _preprocess_conv2d_input(x, data_format) - padding = _preprocess_padding(padding) - if tf_data_format == "NHWC": - strides = (1,) + strides + (1,) - else: - strides = (1, 1) + strides - - x = tf.compat.v1.nn.depthwise_conv2d( - x, - depthwise_kernel, - strides=strides, - padding=padding, - rate=dilation_rate, - data_format=tf_data_format, - ) - if data_format == "channels_first" and tf_data_format == "NHWC": - x = tf.compat.v1.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW - return x - - -@keras_export("keras.backend.conv3d") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def conv3d( - x, - kernel, - strides=(1, 1, 1), - padding="valid", - data_format=None, - dilation_rate=(1, 1, 1), -): - """3D convolution. - - Args: - x: Tensor or variable. - kernel: kernel tensor. - strides: strides tuple. - padding: string, `"same"` or `"valid"`. - data_format: string, `"channels_last"` or `"channels_first"`. - dilation_rate: tuple of 3 integers. - - Returns: - A tensor, result of 3D convolution. - - Raises: - ValueError: if `data_format` is neither `channels_last` or - `channels_first`. - """ - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - - x, tf_data_format = _preprocess_conv3d_input(x, data_format) - padding = _preprocess_padding(padding) - x = tf.compat.v1.nn.convolution( - input=x, - filter=kernel, - dilation_rate=dilation_rate, - strides=strides, - padding=padding, - data_format=tf_data_format, - ) - if data_format == "channels_first" and tf_data_format == "NDHWC": - x = tf.compat.v1.transpose(x, (0, 4, 1, 2, 3)) - return x - - -def conv3d_transpose( - x, - kernel, - output_shape, - strides=(1, 1, 1), - padding="valid", - data_format=None, -): - """3D deconvolution (i.e. - - transposed convolution). - - Args: - x: input tensor. - kernel: kernel tensor. - output_shape: 1D int tensor for the output shape. - strides: strides tuple. - padding: string, "same" or "valid". - data_format: string, `"channels_last"` or `"channels_first"`. - - Returns: - A tensor, result of transposed 3D convolution. - - Raises: - ValueError: if `data_format` is neither `channels_last` or - `channels_first`. - """ - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - if isinstance(output_shape, (tuple, list)): - output_shape = tf.stack(output_shape) - - x, tf_data_format = _preprocess_conv3d_input(x, data_format) - - if data_format == "channels_first" and tf_data_format == "NDHWC": - output_shape = ( - output_shape[0], - output_shape[2], - output_shape[3], - output_shape[4], - output_shape[1], - ) - if output_shape[0] is None: - output_shape = (tf.shape(x)[0],) + tuple(output_shape[1:]) - output_shape = tf.stack(list(output_shape)) - - padding = _preprocess_padding(padding) - if tf_data_format == "NDHWC": - strides = (1,) + strides + (1,) - else: - strides = (1, 1) + strides - - x = tf.compat.v1.nn.conv3d_transpose( - x, - kernel, - output_shape, - strides, - padding=padding, - data_format=tf_data_format, - ) - if data_format == "channels_first" and tf_data_format == "NDHWC": - x = tf.compat.v1.transpose(x, (0, 4, 1, 2, 3)) - return x - - -@keras_export("keras.backend.pool2d") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def pool2d( - x, - pool_size, - strides=(1, 1), - padding="valid", - data_format=None, - pool_mode="max", -): - """2D Pooling. - - Args: - x: Tensor or variable. - pool_size: tuple of 2 integers. - strides: tuple of 2 integers. - padding: string, `"same"` or `"valid"`. - data_format: string, `"channels_last"` or `"channels_first"`. - pool_mode: string, `"max"` or `"avg"`. - - Returns: - A tensor, result of 2D pooling. - - Raises: - ValueError: if `data_format` is neither `"channels_last"` or - `"channels_first"`. - ValueError: if `pool_size` is not a tuple of 2 integers. - ValueError: if `strides` is not a tuple of 2 integers. - ValueError: if `pool_mode` is neither `"max"` or `"avg"`. - """ - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - if len(pool_size) != 2: - raise ValueError("`pool_size` must be a tuple of 2 integers.") - if len(strides) != 2: - raise ValueError("`strides` must be a tuple of 2 integers.") - - x, tf_data_format = _preprocess_conv2d_input(x, data_format) - padding = _preprocess_padding(padding) - if tf_data_format == "NHWC": - strides = (1,) + strides + (1,) - pool_size = (1,) + pool_size + (1,) - else: - strides = (1, 1) + strides - pool_size = (1, 1) + pool_size - - if pool_mode == "max": - x = tf.compat.v1.nn.max_pool( - x, pool_size, strides, padding=padding, data_format=tf_data_format - ) - elif pool_mode == "avg": - x = tf.compat.v1.nn.avg_pool( - x, pool_size, strides, padding=padding, data_format=tf_data_format - ) - else: - raise ValueError("Invalid pooling mode: " + str(pool_mode)) - - if data_format == "channels_first" and tf_data_format == "NHWC": - x = tf.compat.v1.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW - return x - - -@keras_export("keras.backend.pool3d") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def pool3d( - x, - pool_size, - strides=(1, 1, 1), - padding="valid", - data_format=None, - pool_mode="max", -): - """3D Pooling. - - Args: - x: Tensor or variable. - pool_size: tuple of 3 integers. - strides: tuple of 3 integers. - padding: string, `"same"` or `"valid"`. - data_format: string, `"channels_last"` or `"channels_first"`. - pool_mode: string, `"max"` or `"avg"`. - - Returns: - A tensor, result of 3D pooling. - - Raises: - ValueError: if `data_format` is neither `"channels_last"` or - `"channels_first"`. - ValueError: if `pool_mode` is neither `"max"` or `"avg"`. - """ - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - - x, tf_data_format = _preprocess_conv3d_input(x, data_format) - padding = _preprocess_padding(padding) - if tf_data_format == "NDHWC": - strides = (1,) + strides + (1,) - pool_size = (1,) + pool_size + (1,) - else: - strides = (1, 1) + strides - pool_size = (1, 1) + pool_size - - if pool_mode == "max": - x = tf.nn.max_pool3d( - x, pool_size, strides, padding=padding, data_format=tf_data_format - ) - elif pool_mode == "avg": - x = tf.nn.avg_pool3d( - x, pool_size, strides, padding=padding, data_format=tf_data_format - ) - else: - raise ValueError("Invalid pooling mode: " + str(pool_mode)) - - if data_format == "channels_first" and tf_data_format == "NDHWC": - x = tf.compat.v1.transpose(x, (0, 4, 1, 2, 3)) - return x - - -def local_conv( - inputs, kernel, kernel_size, strides, output_shape, data_format=None -): - """Apply N-D convolution with un-shared weights. - - Args: - inputs: (N+2)-D tensor with shape - (batch_size, channels_in, d_in1, ..., d_inN) - if data_format='channels_first', or - (batch_size, d_in1, ..., d_inN, channels_in) - if data_format='channels_last'. - kernel: the unshared weight for N-D convolution, - with shape (output_items, feature_dim, channels_out), where - feature_dim = np.prod(kernel_size) * channels_in, - output_items = np.prod(output_shape). - kernel_size: a tuple of N integers, specifying the - spatial dimensions of the N-D convolution window. - strides: a tuple of N integers, specifying the strides - of the convolution along the spatial dimensions. - output_shape: a tuple of (d_out1, ..., d_outN) specifying the spatial - dimensionality of the output. - data_format: string, "channels_first" or "channels_last". - - Returns: - An (N+2)-D tensor with shape: - (batch_size, channels_out) + output_shape - if data_format='channels_first', or: - (batch_size,) + output_shape + (channels_out,) - if data_format='channels_last'. - - Raises: - ValueError: if `data_format` is neither - `channels_last` nor `channels_first`. - """ - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - - kernel_shape = int_shape(kernel) - feature_dim = kernel_shape[1] - channels_out = kernel_shape[-1] - ndims = len(output_shape) - spatial_dimensions = list(range(ndims)) - - xs = [] - output_axes_ticks = [range(axis_max) for axis_max in output_shape] - for position in itertools.product(*output_axes_ticks): - slices = [slice(None)] - - if data_format == "channels_first": - slices.append(slice(None)) - - slices.extend( - slice( - position[d] * strides[d], - position[d] * strides[d] + kernel_size[d], - ) - for d in spatial_dimensions - ) - - if data_format == "channels_last": - slices.append(slice(None)) - - xs.append(reshape(inputs[slices], (1, -1, feature_dim))) - - x_aggregate = concatenate(xs, axis=0) - output = batch_dot(x_aggregate, kernel) - output = reshape(output, output_shape + (-1, channels_out)) - - if data_format == "channels_first": - permutation = [ndims, ndims + 1] + spatial_dimensions - else: - permutation = [ndims] + spatial_dimensions + [ndims + 1] - - return permute_dimensions(output, permutation) - - -@keras_export("keras.backend.local_conv1d") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def local_conv1d(inputs, kernel, kernel_size, strides, data_format=None): - """Apply 1D conv with un-shared weights. - - Args: - inputs: 3D tensor with shape: - (batch_size, steps, input_dim) - if data_format is "channels_last" or - (batch_size, input_dim, steps) - if data_format is "channels_first". - kernel: the unshared weight for convolution, - with shape (output_length, feature_dim, filters). - kernel_size: a tuple of a single integer, - specifying the length of the 1D convolution window. - strides: a tuple of a single integer, - specifying the stride length of the convolution. - data_format: the data format, channels_first or channels_last. - - Returns: - A 3d tensor with shape: - (batch_size, output_length, filters) - if data_format='channels_first' - or 3D tensor with shape: - (batch_size, filters, output_length) - if data_format='channels_last'. - """ - output_shape = (kernel.shape[0],) - return local_conv( - inputs, kernel, kernel_size, strides, output_shape, data_format - ) - - -@keras_export("keras.backend.local_conv2d") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def local_conv2d( - inputs, kernel, kernel_size, strides, output_shape, data_format=None -): - """Apply 2D conv with un-shared weights. - - Args: - inputs: 4D tensor with shape: - (batch_size, filters, new_rows, new_cols) - if data_format='channels_first' - or 4D tensor with shape: - (batch_size, new_rows, new_cols, filters) - if data_format='channels_last'. - kernel: the unshared weight for convolution, - with shape (output_items, feature_dim, filters). - kernel_size: a tuple of 2 integers, specifying the - width and height of the 2D convolution window. - strides: a tuple of 2 integers, specifying the strides - of the convolution along the width and height. - output_shape: a tuple with (output_row, output_col). - data_format: the data format, channels_first or channels_last. - - Returns: - A 4D tensor with shape: - (batch_size, filters, new_rows, new_cols) - if data_format='channels_first' - or 4D tensor with shape: - (batch_size, new_rows, new_cols, filters) - if data_format='channels_last'. - """ - return local_conv( - inputs, kernel, kernel_size, strides, output_shape, data_format - ) - - -@keras_export("keras.backend.bias_add") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def bias_add(x, bias, data_format=None): - """Adds a bias vector to a tensor. - - Args: - x: Tensor or variable. - bias: Bias tensor to add. - data_format: string, `"channels_last"` or `"channels_first"`. - - Returns: - Output tensor. - - Raises: - ValueError: In one of the two cases below: - 1. invalid `data_format` argument. - 2. invalid bias shape. - the bias should be either a vector or - a tensor with ndim(x) - 1 dimension - """ - if data_format is None: - data_format = image_data_format() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError("Unknown data_format: " + str(data_format)) - bias_shape = int_shape(bias) - if len(bias_shape) != 1 and len(bias_shape) != ndim(x) - 1: - raise ValueError( - "Unexpected bias dimensions %d, expect to be 1 or %d dimensions" - % (len(bias_shape), ndim(x) - 1) - ) - - if len(bias_shape) == 1: - if data_format == "channels_first": - return tf.nn.bias_add(x, bias, data_format="NCHW") - return tf.nn.bias_add(x, bias, data_format="NHWC") - if ndim(x) in (3, 4, 5): - if data_format == "channels_first": - bias_reshape_axis = (1, bias_shape[-1]) + bias_shape[:-1] - return x + reshape(bias, bias_reshape_axis) - return x + reshape(bias, (1,) + bias_shape) - return tf.nn.bias_add(x, bias) - - -# RANDOMNESS - - -@keras_export("keras.backend.random_normal") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def random_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): - """Returns a tensor with normal distribution of values. - - It is an alias to `tf.random.normal`. - - Args: - shape: A tuple of integers, the shape of tensor to create. - mean: A float, the mean value of the normal distribution to draw - samples. Defaults to `0.0`. - stddev: A float, the standard deviation of the normal distribution - to draw samples. Defaults to `1.0`. - dtype: `tf.dtypes.DType`, dtype of returned tensor. None uses Keras - backend dtype which is float32. Defaults to `None`. - seed: Integer, random seed. Will use a random numpy integer when not - specified. - - Returns: - A tensor with normal distribution of values. - - Example: - - >>> random_normal_tensor = tf.keras.backend.random_normal(shape=(2,3), - ... mean=0.0, stddev=1.0) - >>> random_normal_tensor - - """ - if dtype is None: - dtype = floatx() - if seed is None: - seed = np.random.randint(10e6) - return tf.random.normal( - shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed - ) - - -@keras_export("keras.backend.random_uniform") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def random_uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None): - """Returns a tensor with uniform distribution of values. - - Args: - shape: A tuple of integers, the shape of tensor to create. - minval: A float, lower boundary of the uniform distribution - to draw samples. - maxval: A float, upper boundary of the uniform distribution - to draw samples. - dtype: String, dtype of returned tensor. - seed: Integer, random seed. - - Returns: - A tensor. - - Example: - - >>> random_uniform_tensor = tf.keras.backend.random_uniform(shape=(2,3), - ... minval=0.0, maxval=1.0) - >>> random_uniform_tensor - - """ - if dtype is None: - dtype = floatx() - if seed is None: - seed = np.random.randint(10e6) - return tf.random.uniform( - shape, minval=minval, maxval=maxval, dtype=dtype, seed=seed - ) - - -@keras_export("keras.backend.random_binomial") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def random_binomial(shape, p=0.0, dtype=None, seed=None): - """Returns a tensor with random binomial distribution of values. - - DEPRECATED, use `tf.keras.backend.random_bernoulli` instead. - - The binomial distribution with parameters `n` and `p` is the probability - distribution of the number of successful Bernoulli process. Only supports - `n` = 1 for now. - - Args: - shape: A tuple of integers, the shape of tensor to create. - p: A float, `0. <= p <= 1`, probability of binomial distribution. - dtype: String, dtype of returned tensor. - seed: Integer, random seed. - - Returns: - A tensor. - - Example: - - >>> random_binomial_tensor = tf.keras.backend.random_binomial(shape=(2,3), - ... p=0.5) - >>> random_binomial_tensor - - """ - warnings.warn( - "`tf.keras.backend.random_binomial` is deprecated, " - "and will be removed in a future version." - "Please use `tf.keras.backend.random_bernoulli` instead.", - stacklevel=2, - ) - return random_bernoulli(shape, p, dtype, seed) - - -@keras_export("keras.backend.random_bernoulli") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def random_bernoulli(shape, p=0.0, dtype=None, seed=None): - """Returns a tensor with random bernoulli distribution of values. - - Args: - shape: A tuple of integers, the shape of tensor to create. - p: A float, `0. <= p <= 1`, probability of bernoulli distribution. - dtype: String, dtype of returned tensor. - seed: Integer, random seed. - - Returns: - A tensor. - """ - if dtype is None: - dtype = floatx() - if seed is None: - seed = np.random.randint(10e6) - return tf.where( - tf.random.uniform(shape, dtype=dtype, seed=seed) <= p, - tf.ones(shape, dtype=dtype), - tf.zeros(shape, dtype=dtype), - ) - - -@keras_export("keras.backend.truncated_normal") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): - """Returns a tensor with truncated random normal distribution of values. - - The generated values follow a normal distribution - with specified mean and standard deviation, - except that values whose magnitude is more than - two standard deviations from the mean are dropped and re-picked. - - Args: - shape: A tuple of integers, the shape of tensor to create. - mean: Mean of the values. - stddev: Standard deviation of the values. - dtype: String, dtype of returned tensor. - seed: Integer, random seed. - - Returns: - A tensor. - """ - if dtype is None: - dtype = floatx() - if seed is None: - seed = np.random.randint(10e6) - return tf.random.truncated_normal( - shape, mean, stddev, dtype=dtype, seed=seed - ) - - -# CTC -# TensorFlow has a native implementation, but it uses sparse tensors -# and therefore requires a wrapper for Keras. The functions below convert -# dense to sparse tensors and also wraps up the beam search code that is -# in TensorFlow's CTC implementation - - -@keras_export("keras.backend.ctc_label_dense_to_sparse") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def ctc_label_dense_to_sparse(labels, label_lengths): - """Converts CTC labels from dense to sparse. - - Args: - labels: dense CTC labels. - label_lengths: length of the labels. - - Returns: - A sparse tensor representation of the labels. - """ - label_shape = tf.shape(labels) - num_batches_tns = tf.stack([label_shape[0]]) - max_num_labels_tns = tf.stack([label_shape[1]]) - - def range_less_than(old_input, current_input): - return tf.expand_dims(tf.range(tf.shape(old_input)[1]), 0) < tf.fill( - max_num_labels_tns, current_input - ) - - init = tf.cast(tf.fill([1, label_shape[1]], 0), tf.bool) - dense_mask = tf.compat.v1.scan( - range_less_than, label_lengths, initializer=init, parallel_iterations=1 - ) - dense_mask = dense_mask[:, 0, :] - - label_array = tf.reshape( - tf.tile(tf.range(0, label_shape[1]), num_batches_tns), label_shape - ) - label_ind = tf.compat.v1.boolean_mask(label_array, dense_mask) - - batch_array = tf.compat.v1.transpose( - tf.reshape( - tf.tile(tf.range(0, label_shape[0]), max_num_labels_tns), - reverse(label_shape, 0), - ) - ) - batch_ind = tf.compat.v1.boolean_mask(batch_array, dense_mask) - indices = tf.compat.v1.transpose( - tf.reshape(concatenate([batch_ind, label_ind], axis=0), [2, -1]) - ) - - vals_sparse = tf.compat.v1.gather_nd(labels, indices) - - return tf.SparseTensor( - tf.cast(indices, tf.int64), vals_sparse, tf.cast(label_shape, tf.int64) - ) - - -@keras_export("keras.backend.ctc_batch_cost") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def ctc_batch_cost(y_true, y_pred, input_length, label_length): - """Runs CTC loss algorithm on each batch element. - - Args: - y_true: tensor `(samples, max_string_length)` - containing the truth labels. - y_pred: tensor `(samples, time_steps, num_categories)` - containing the prediction, or output of the softmax. - input_length: tensor `(samples, 1)` containing the sequence length for - each batch item in `y_pred`. - label_length: tensor `(samples, 1)` containing the sequence length for - each batch item in `y_true`. - - Returns: - Tensor with shape (samples,1) containing the - CTC loss of each element. - """ - label_length = tf.cast(tf.squeeze(label_length, axis=-1), tf.int32) - input_length = tf.cast(tf.squeeze(input_length, axis=-1), tf.int32) - sparse_labels = tf.cast( - ctc_label_dense_to_sparse(y_true, label_length), tf.int32 - ) - - y_pred = tf.math.log( - tf.compat.v1.transpose(y_pred, perm=[1, 0, 2]) + epsilon() - ) - - return tf.expand_dims( - tf.compat.v1.nn.ctc_loss( - inputs=y_pred, labels=sparse_labels, sequence_length=input_length - ), - 1, - ) - - -@keras_export("keras.backend.ctc_decode") -@tf.__internal__.dispatch.add_dispatch_support -@doc_controls.do_not_generate_docs -def ctc_decode(y_pred, input_length, greedy=True, beam_width=100, top_paths=1): - """Decodes the output of a softmax. - - Can use either greedy search (also known as best path) - or a constrained dictionary search. - - Args: - y_pred: tensor `(samples, time_steps, num_categories)` - containing the prediction, or output of the softmax. - input_length: tensor `(samples, )` containing the sequence length for - each batch item in `y_pred`. - greedy: perform much faster best-path search if `true`. - This does not use a dictionary. - beam_width: if `greedy` is `false`: a beam search decoder will be used - with a beam of this width. - top_paths: if `greedy` is `false`, - how many of the most probable paths will be returned. - - Returns: - Tuple: - List: if `greedy` is `true`, returns a list of one element that - contains the decoded sequence. - If `false`, returns the `top_paths` most probable - decoded sequences. - Each decoded sequence has shape (samples, time_steps). - Important: blank labels are returned as `-1`. - Tensor `(top_paths, )` that contains - the log probability of each decoded sequence. - """ - input_shape = shape(y_pred) - num_samples, num_steps = input_shape[0], input_shape[1] - y_pred = tf.math.log( - tf.compat.v1.transpose(y_pred, perm=[1, 0, 2]) + epsilon() - ) - input_length = tf.cast(input_length, tf.int32) - - if greedy: - (decoded, log_prob) = tf.nn.ctc_greedy_decoder( - inputs=y_pred, sequence_length=input_length - ) - else: - (decoded, log_prob) = tf.compat.v1.nn.ctc_beam_search_decoder( - inputs=y_pred, - sequence_length=input_length, - beam_width=beam_width, - top_paths=top_paths, - ) - decoded_dense = [] - for st in decoded: - st = tf.SparseTensor(st.indices, st.values, (num_samples, num_steps)) - decoded_dense.append(tf.sparse.to_dense(sp_input=st, default_value=-1)) - return (decoded_dense, log_prob) - - -# HIGH ORDER FUNCTIONS - - -@keras_export("keras.backend.map_fn") -@doc_controls.do_not_generate_docs -def map_fn(fn, elems, name=None, dtype=None): - """Map the function fn over the elements elems and return the outputs. - - Args: - fn: Callable that will be called upon each element in elems - elems: tensor - name: A string name for the map node in the graph - dtype: Output data type. - - Returns: - Tensor with dtype `dtype`. - """ - return tf.compat.v1.map_fn(fn, elems, name=name, dtype=dtype) - - -@keras_export("keras.backend.foldl") -@doc_controls.do_not_generate_docs -def foldl(fn, elems, initializer=None, name=None): - """Reduce elems using fn to combine them from left to right. - - Args: - fn: Callable that will be called upon each element in elems and an - accumulator, for instance `lambda acc, x: acc + x` - elems: tensor - initializer: The first value used (`elems[0]` in case of None) - name: A string name for the foldl node in the graph - - Returns: - Tensor with same type and shape as `initializer`. - """ - return tf.compat.v1.foldl(fn, elems, initializer=initializer, name=name) - - -@keras_export("keras.backend.foldr") -@doc_controls.do_not_generate_docs -def foldr(fn, elems, initializer=None, name=None): - """Reduce elems using fn to combine them from right to left. - - Args: - fn: Callable that will be called upon each element in elems and an - accumulator, for instance `lambda acc, x: acc + x` - elems: tensor - initializer: The first value used (`elems[-1]` in case of None) - name: A string name for the foldr node in the graph - - Returns: - Same type and shape as initializer - """ - return tf.compat.v1.foldr(fn, elems, initializer=initializer, name=name) - - -# Load Keras default configuration from config file if present. -# Set Keras base dir path given KERAS_HOME env variable, if applicable. -# Otherwise either ~/.keras or /tmp. -if "KERAS_HOME" in os.environ: - _keras_dir = os.environ.get("KERAS_HOME") -else: - _keras_base_dir = os.path.expanduser("~") - _keras_dir = os.path.join(_keras_base_dir, ".keras") -_config_path = os.path.expanduser(os.path.join(_keras_dir, "keras.json")) -if os.path.exists(_config_path): - try: - with open(_config_path) as fh: - _config = json.load(fh) - except ValueError: - _config = {} - _floatx = _config.get("floatx", floatx()) - assert _floatx in {"float16", "float32", "float64"} - _epsilon = _config.get("epsilon", epsilon()) - assert isinstance(_epsilon, float) - _image_data_format = _config.get("image_data_format", image_data_format()) - assert _image_data_format in {"channels_last", "channels_first"} - set_floatx(_floatx) - set_epsilon(_epsilon) - set_image_data_format(_image_data_format) - -# Save config file. -if not os.path.exists(_keras_dir): - try: - os.makedirs(_keras_dir) - except OSError: - # Except permission denied and potential race conditions - # in multi-threaded environments. - pass - -if not os.path.exists(_config_path): - _config = { - "floatx": floatx(), - "epsilon": epsilon(), - "backend": "tensorflow", - "image_data_format": image_data_format(), - } - try: - with open(_config_path, "w") as f: - f.write(json.dumps(_config, indent=4)) - except IOError: - # Except permission denied. - pass - - -def configure_and_create_distributed_session(distribution_strategy): - """Configure session config and create a session with it.""" - - def _create_session(distribution_strategy): - """Create the Distributed Strategy session.""" - session_config = get_default_session_config() - - # If a session already exists, merge in its config; in the case there is - # a conflict, take values of the existing config. - global _SESSION - if getattr(_SESSION, "session", None) and _SESSION.session._config: - session_config.MergeFrom(_SESSION.session._config) - - if is_tpu_strategy(distribution_strategy): - # TODO(priyag, yuefengz): Remove this workaround when Distribute - # Coordinator is integrated with keras and we can create a session - # from there. - distribution_strategy.configure(session_config) - master = ( - distribution_strategy.extended._tpu_cluster_resolver.master() - ) - session = tf.compat.v1.Session(config=session_config, target=master) - else: - worker_context = dc.get_current_worker_context() - if worker_context: - dc_session_config = worker_context.session_config - # Merge the default session config to the one from distribute - # coordinator, which is fine for now since they don't have - # conflicting configurations. - dc_session_config.MergeFrom(session_config) - session = tf.compat.v1.Session( - config=dc_session_config, - target=worker_context.master_target, - ) - else: - distribution_strategy.configure(session_config) - session = tf.compat.v1.Session(config=session_config) - - set_session(session) - - if distribution_strategy.extended._in_multi_worker_mode(): - dc.run_distribute_coordinator(_create_session, distribution_strategy) - else: - _create_session(distribution_strategy) - - -def _is_tpu_strategy_class(clz): - is_tpu_strat = lambda k: k.__name__.startswith("TPUStrategy") - if is_tpu_strat(clz): - return True - return py_any(map(_is_tpu_strategy_class, clz.__bases__)) - - -def is_tpu_strategy(strategy): - """Returns whether input is a TPUStrategy instance or subclass instance.""" - return _is_tpu_strategy_class(strategy.__class__) - - -def _is_symbolic_tensor(x): - return tf.is_tensor(x) and not isinstance(x, tf.__internal__.EagerTensor) - - -def convert_inputs_if_ragged(inputs): - """Converts any ragged tensors to dense.""" - - def _convert_ragged_input(inputs): - if isinstance(inputs, tf.RaggedTensor): - return inputs.to_tensor() - return inputs - - flat_inputs = tf.nest.flatten(inputs) - contains_ragged = py_any( - isinstance(i, tf.RaggedTensor) for i in flat_inputs - ) - - if not contains_ragged: - return inputs, None - - inputs = tf.nest.map_structure(_convert_ragged_input, inputs) - # Multiple mask are not yet supported, so one mask is used on all inputs. - # We approach this similarly when using row lengths to ignore steps. - nested_row_lengths = tf.cast( - flat_inputs[0].nested_row_lengths()[0], "int32" - ) - return inputs, nested_row_lengths - - -def maybe_convert_to_ragged( - is_ragged_input, output, nested_row_lengths, go_backwards=False -): - """Converts any ragged input back to its initial structure.""" - if not is_ragged_input: - return output - - if go_backwards: - # Reverse based on the timestep dim, so that nested_row_lengths will - # mask from the correct direction. Return the reverse ragged tensor. - output = reverse(output, [1]) - ragged = tf.RaggedTensor.from_tensor(output, nested_row_lengths) - return reverse(ragged, [1]) - else: - return tf.RaggedTensor.from_tensor(output, nested_row_lengths) - - -class ContextValueCache(weakref.WeakKeyDictionary): - """Container that caches (possibly tensor) values based on the context. - - This class is similar to defaultdict, where values may be produced by the - default factory specified during initialization. This class also has a - default value for the key (when key is `None`) -- the key is set to the - current graph or eager context. The default factories for key and value are - only used in `__getitem__` and `setdefault`. The `.get()` behavior remains - the same. - - This object will return the value of the current graph or closest parent - graph if the current graph is a function. This is to reflect the fact that - if a tensor is created in eager/graph, child functions may capture that - tensor. - - The default factory method may accept keyword arguments (unlike defaultdict, - which only accepts callables with 0 arguments). To pass keyword arguments to - `default_factory`, use the `setdefault` method instead of `__getitem__`. - - An example of how this class can be used in different contexts: - - ``` - cache = ContextValueCache(int) - - # Eager mode - cache[None] += 2 - cache[None] += 4 - assert cache[None] == 6 - - # Graph mode - with tf.Graph().as_default() as g: - cache[None] += 5 - cache[g] += 3 - assert cache[g] == 8 - ``` - - Example of a default factory with arguments: - - ``` - cache = ContextValueCache(lambda x: x + 1) - g = tf.get_default_graph() - - # Example with keyword argument. - value = cache.setdefault(key=g, kwargs={'x': 3}) - assert cache[g] == 4 - ``` - """ - - def __init__(self, default_factory): - self.default_factory = default_factory - weakref.WeakKeyDictionary.__init__(self) - - def _key(self): - if tf.executing_eagerly(): - return _DUMMY_EAGER_GRAPH.key - else: - return tf.compat.v1.get_default_graph() - - def _get_parent_graph(self, graph): - """Returns the parent graph or dummy eager object.""" - # TODO(b/149317164): Currently FuncGraphs use ops.get_default_graph() as - # the outer graph. This results in outer_graph always being a Graph, - # even in eager mode (get_default_graph will create a new Graph if there - # isn't a default graph). Because of this bug, we have to specially set - # the key when eager execution is enabled. - parent_graph = graph.outer_graph - if ( - not isinstance(parent_graph, tf.__internal__.FuncGraph) - and tf.compat.v1.executing_eagerly_outside_functions() - ): - return _DUMMY_EAGER_GRAPH.key - return parent_graph - - def _get_recursive(self, key): - """Gets the value at key or the closest parent graph.""" - value = self.get(key) - if value is not None: - return value - - # Since FuncGraphs are able to capture tensors and variables from their - # parent graphs, recursively search to see if there is a value stored - # for one of the parent graphs. - if isinstance(key, tf.__internal__.FuncGraph): - return self._get_recursive(self._get_parent_graph(key)) - return None - - def __getitem__(self, key): - """Gets the value at key (or current context), or sets default value. - - Args: - key: May be `None` or `Graph`object. When `None`, the key is set to - the current context. - - Returns: - Either the cached or default value. - """ - if key is None: - key = self._key() - - value = self._get_recursive(key) - if value is None: - value = self[key] = self.default_factory() - return value - - def setdefault(self, key=None, default=None, kwargs=None): - """Sets the default value if key is not in dict, and returns the - value.""" - if key is None: - key = self._key() - kwargs = kwargs or {} - - if default is None and key not in self: - default = self.default_factory(**kwargs) - return weakref.WeakKeyDictionary.setdefault(self, key, default) - - -# This dictionary holds a mapping {graph: learning_phase}. In eager mode, a -# dummy object is used. -# A learning phase is a bool tensor used to run Keras models in -# either train mode (learning_phase == 1) or test mode (learning_phase == 0). -_GRAPH_LEARNING_PHASES = ContextValueCache( - object_identity.ObjectIdentityWeakSet -) - -# This dictionary holds a mapping between a graph and variables to initialize -# in the graph. -_GRAPH_VARIABLES = ContextValueCache(object_identity.ObjectIdentityWeakSet) - -# This dictionary holds a mapping between a graph and TF optimizers created in -# the graph. -_GRAPH_TF_OPTIMIZERS = ContextValueCache(object_identity.ObjectIdentityWeakSet) diff --git a/keras/backend_config.py b/keras/backend_config.py deleted file mode 100644 index 948cec33184..00000000000 --- a/keras/backend_config.py +++ /dev/null @@ -1,157 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras backend config API.""" - -import tensorflow.compat.v2 as tf - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -# The type of float to use throughout a session. -_FLOATX = "float32" - -# Epsilon fuzz factor used throughout the codebase. -_EPSILON = 1e-7 - -# Default image data format, one of "channels_last", "channels_first". -_IMAGE_DATA_FORMAT = "channels_last" - - -@keras_export("keras.backend.epsilon") -@tf.__internal__.dispatch.add_dispatch_support -def epsilon(): - """Returns the value of the fuzz factor used in numeric expressions. - - Returns: - A float. - - Example: - >>> tf.keras.backend.epsilon() - 1e-07 - """ - return _EPSILON - - -@keras_export("keras.backend.set_epsilon") -def set_epsilon(value): - """Sets the value of the fuzz factor used in numeric expressions. - - Args: - value: float. New value of epsilon. - - Example: - >>> tf.keras.backend.epsilon() - 1e-07 - >>> tf.keras.backend.set_epsilon(1e-5) - >>> tf.keras.backend.epsilon() - 1e-05 - >>> tf.keras.backend.set_epsilon(1e-7) - """ - global _EPSILON - _EPSILON = value - - -@keras_export("keras.backend.floatx") -def floatx(): - """Returns the default float type, as a string. - - E.g. `'float16'`, `'float32'`, `'float64'`. - - Returns: - String, the current default float type. - - Example: - >>> tf.keras.backend.floatx() - 'float32' - """ - return _FLOATX - - -@keras_export("keras.backend.set_floatx") -def set_floatx(value): - """Sets the default float type. - - Note: It is not recommended to set this to float16 for training, as this - will likely cause numeric stability issues. Instead, mixed precision, which - is using a mix of float16 and float32, can be used by calling - `tf.keras.mixed_precision.set_global_policy('mixed_float16')`. See the - [mixed precision guide]( - https://www.tensorflow.org/guide/keras/mixed_precision) for details. - - Args: - value: String; `'float16'`, `'float32'`, or `'float64'`. - - Example: - >>> tf.keras.backend.floatx() - 'float32' - >>> tf.keras.backend.set_floatx('float64') - >>> tf.keras.backend.floatx() - 'float64' - >>> tf.keras.backend.set_floatx('float32') - - Raises: - ValueError: In case of invalid value. - """ - global _FLOATX - accepted_dtypes = {"float16", "float32", "float64"} - if value not in accepted_dtypes: - raise ValueError( - f"Unknown `floatx` value: {value}. " - f"Expected one of {accepted_dtypes}" - ) - _FLOATX = str(value) - - -@keras_export("keras.backend.image_data_format") -@tf.__internal__.dispatch.add_dispatch_support -def image_data_format(): - """Returns the default image data format convention. - - Returns: - A string, either `'channels_first'` or `'channels_last'` - - Example: - >>> tf.keras.backend.image_data_format() - 'channels_last' - """ - return _IMAGE_DATA_FORMAT - - -@keras_export("keras.backend.set_image_data_format") -def set_image_data_format(data_format): - """Sets the value of the image data format convention. - - Args: - data_format: string. `'channels_first'` or `'channels_last'`. - - Example: - >>> tf.keras.backend.image_data_format() - 'channels_last' - >>> tf.keras.backend.set_image_data_format('channels_first') - >>> tf.keras.backend.image_data_format() - 'channels_first' - >>> tf.keras.backend.set_image_data_format('channels_last') - - Raises: - ValueError: In case of invalid `data_format` value. - """ - global _IMAGE_DATA_FORMAT - accepted_formats = {"channels_last", "channels_first"} - if data_format not in accepted_formats: - raise ValueError( - f"Unknown `data_format`: {data_format}. " - f"Expected one of {accepted_formats}" - ) - _IMAGE_DATA_FORMAT = str(data_format) diff --git a/keras/backend_config_test.py b/keras/backend_config_test.py deleted file mode 100644 index 5e8e9e2c035..00000000000 --- a/keras/backend_config_test.py +++ /dev/null @@ -1,52 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for backend_config.""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import backend_config -from keras.testing_infra import test_combinations - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class BackendConfigTest(tf.test.TestCase): - def test_backend(self): - self.assertEqual(backend.backend(), "tensorflow") - - def test_epsilon(self): - epsilon = 1e-2 - backend_config.set_epsilon(epsilon) - self.assertEqual(backend_config.epsilon(), epsilon) - backend_config.set_epsilon(1e-7) - self.assertEqual(backend_config.epsilon(), 1e-7) - - def test_floatx(self): - floatx = "float64" - backend_config.set_floatx(floatx) - self.assertEqual(backend_config.floatx(), floatx) - backend_config.set_floatx("float32") - self.assertEqual(backend_config.floatx(), "float32") - - def test_image_data_format(self): - image_data_format = "channels_first" - backend_config.set_image_data_format(image_data_format) - self.assertEqual(backend_config.image_data_format(), image_data_format) - backend_config.set_image_data_format("channels_last") - self.assertEqual(backend_config.image_data_format(), "channels_last") - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/backend_test.py b/keras/backend_test.py deleted file mode 100644 index 28384bc21de..00000000000 --- a/keras/backend_test.py +++ /dev/null @@ -1,3172 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras backend.""" - -import gc -import warnings - -import numpy as np -import scipy.sparse -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import activations -from keras import backend -from keras.engine import input_layer -from keras.layers import activation -from keras.layers.normalization import batch_normalization_v1 -from keras.testing_infra import test_combinations -from keras.utils import losses_utils -from keras.utils import tf_inspect -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.eager import context -from tensorflow.python.eager.context import get_config -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -def compare_single_input_op_to_numpy( - keras_op, - np_op, - input_shape, - dtype="float32", - negative_values=True, - keras_args=None, - keras_kwargs=None, - np_args=None, - np_kwargs=None, -): - keras_args = keras_args or [] - keras_kwargs = keras_kwargs or {} - np_args = np_args or [] - np_kwargs = np_kwargs or {} - inputs = 2.0 * np.random.random(input_shape) - if negative_values: - inputs -= 1.0 - keras_output = keras_op( - backend.variable(inputs, dtype=dtype), *keras_args, **keras_kwargs - ) - keras_output = backend.eval(keras_output) - np_output = np_op(inputs.astype(dtype), *np_args, **np_kwargs) - try: - np.testing.assert_allclose(keras_output, np_output, atol=1e-4) - except AssertionError: - raise AssertionError( - "Test for op `" - + str(keras_op.__name__) - + "` failed; Expected " - + str(np_output) - + " but got " - + str(keras_output) - ) - - -def compare_two_inputs_op_to_numpy( - keras_op, - np_op, - input_shape_a, - input_shape_b, - dtype="float32", - keras_args=None, - keras_kwargs=None, - np_args=None, - np_kwargs=None, -): - keras_args = keras_args or [] - keras_kwargs = keras_kwargs or {} - np_args = np_args or [] - np_kwargs = np_kwargs or {} - input_a = np.random.random(input_shape_a) - input_b = np.random.random(input_shape_b) - keras_output = keras_op( - backend.variable(input_a, dtype=dtype), - backend.variable(input_b, dtype=dtype), - *keras_args, - **keras_kwargs, - ) - keras_output = backend.eval(keras_output) - np_output = np_op( - input_a.astype(dtype), input_b.astype(dtype), *np_args, **np_kwargs - ) - try: - np.testing.assert_allclose(keras_output, np_output, atol=1e-4) - except AssertionError: - raise AssertionError( - "Test for op `" - + str(keras_op.__name__) - + "` failed; Expected " - + str(np_output) - + " but got " - + str(keras_output) - ) - - -class BackendResetTest(tf.test.TestCase, parameterized.TestCase): - def test_new_config(self): - # User defined jit setting - tf.config.optimizer.set_jit(False) - sess = backend.get_session() - default_config = get_config() - self.assertEqual( - sess._config.graph_options.optimizer_options.global_jit_level, - default_config.graph_options.optimizer_options.global_jit_level, - ) - backend.clear_session() - - # New session has the same jit setting - sess = backend.get_session() - default_config = get_config() - self.assertEqual( - sess._config.graph_options.optimizer_options.global_jit_level, - default_config.graph_options.optimizer_options.global_jit_level, - ) - backend.clear_session() - - # Change respected - tf.config.optimizer.set_jit(True) - sess = backend.get_session() - default_config = get_config() - self.assertEqual( - sess._config.graph_options.optimizer_options.global_jit_level, - default_config.graph_options.optimizer_options.global_jit_level, - ) - backend.clear_session() - - # We can't use the normal parameterized decorator because the test session - # will block graph clearing. - @parameterized.named_parameters( - ("_v1", context.graph_mode), - ("_v2", tf.__internal__.eager_context.eager_mode), - ) - def test_new_graph(self, test_context): - with test_context(): - g_old = backend.get_graph() - backend.clear_session() - g = backend.get_graph() - - assert g_old is not g - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class BackendUtilsTest(tf.test.TestCase): - def test_backend(self): - self.assertEqual(backend.backend(), "tensorflow") - - def test_get_reset_uids(self): - self.assertEqual(backend.get_uid("foo"), 1) - self.assertEqual(backend.get_uid("foo"), 2) - - backend.reset_uids() - self.assertEqual(backend.get_uid("foo"), 1) - - def test_learning_phase(self): - with self.cached_session() as sess: - with self.assertRaises(ValueError): - backend.set_learning_phase(2) - - # Test running with a learning-phase-consuming layer - with backend.learning_phase_scope(0): - x = input_layer.Input((3,)) - y = batch_normalization_v1.BatchNormalization()(x) - if not tf.executing_eagerly(): - self.evaluate(tf.compat.v1.global_variables_initializer()) - sess.run(y, feed_dict={x: np.random.random((2, 3))}) - - def test_get_learning_phase_eager(self): - if not tf.executing_eagerly(): - self.skipTest("Check for eager only.") - # see b/251520266 for more details. - # By default the learning phase should be False - self.assertFalse(backend.learning_phase()) - # Also make sure retrieving the learning phase doesn't set the default - # value - self.assertFalse(backend.global_learning_phase_is_set()) - - with backend.learning_phase_scope(1): - self.assertTrue(backend.learning_phase()) - self.assertTrue(backend.global_learning_phase_is_set()) - - self.assertFalse(backend.global_learning_phase_is_set()) - - def test_learning_phase_name(self): - with backend.name_scope("test_scope"): - # Test that outer name scopes do not affect the learning phase's - # name. - lp = backend.symbolic_learning_phase() - self.assertEqual(lp.name, "keras_learning_phase:0") - - def test_learning_phase_scope(self): - initial_learning_phase = backend.learning_phase() - with backend.learning_phase_scope(1): - self.assertEqual(backend.learning_phase(), 1) - self.assertEqual(backend.learning_phase(), initial_learning_phase) - with backend.learning_phase_scope(0): - self.assertEqual(backend.learning_phase(), 0) - self.assertEqual(backend.learning_phase(), initial_learning_phase) - with self.assertRaises(ValueError): - with backend.learning_phase_scope(None): - pass - self.assertEqual(backend.learning_phase(), initial_learning_phase) - - new_learning_phase = 0 - backend.set_learning_phase(new_learning_phase) - self.assertEqual(backend.learning_phase(), new_learning_phase) - with backend.learning_phase_scope(1): - self.assertEqual(backend.learning_phase(), 1) - self.assertEqual(backend.learning_phase(), new_learning_phase) - - def test_learning_phase_scope_in_graph(self): - initial_learning_phase_outside_graph = backend.learning_phase() - with backend.get_graph().as_default(): - initial_learning_phase_in_graph = backend.learning_phase() - - self.assertEqual( - backend.learning_phase(), initial_learning_phase_outside_graph - ) - with backend.learning_phase_scope(1): - self.assertEqual(backend.learning_phase(), 1) - self.assertEqual( - backend.learning_phase(), initial_learning_phase_outside_graph - ) - - with backend.get_graph().as_default(): - self.assertIs( - backend.learning_phase(), initial_learning_phase_in_graph - ) - - self.assertEqual( - backend.learning_phase(), initial_learning_phase_outside_graph - ) - - def test_int_shape(self): - x = backend.ones(shape=(3, 4)) - self.assertEqual(backend.int_shape(x), (3, 4)) - - if not tf.executing_eagerly(): - x = backend.placeholder(shape=(None, 4)) - self.assertEqual(backend.int_shape(x), (None, 4)) - - def test_in_train_phase(self): - y1 = backend.variable(1) - y2 = backend.variable(2) - if tf.executing_eagerly(): - with backend.learning_phase_scope(0): - y_val_test = backend.in_train_phase(y1, y2).numpy() - with backend.learning_phase_scope(1): - y_val_train = backend.in_train_phase(y1, y2).numpy() - else: - y = backend.in_train_phase(y1, y2) - f = backend.function([backend.learning_phase()], [y]) - y_val_test = f([0])[0] - y_val_train = f([1])[0] - self.assertAllClose(y_val_test, 2) - self.assertAllClose(y_val_train, 1) - - def test_is_keras_tensor(self): - x = backend.variable(1) - self.assertEqual(backend.is_keras_tensor(x), False) - x = input_layer.Input(shape=(1,)) - self.assertEqual(backend.is_keras_tensor(x), True) - x = input_layer.Input(shape=(None,), ragged=True) - self.assertEqual(backend.is_keras_tensor(x), True) - x = input_layer.Input(shape=(None, None), sparse=True) - self.assertEqual(backend.is_keras_tensor(x), True) - with self.assertRaises(ValueError): - backend.is_keras_tensor(0) - - def test_stop_gradient(self): - x = backend.variable(1) - y = backend.stop_gradient(x) - if not tf.executing_eagerly(): - self.assertEqual(y.op.name[:12], "StopGradient") - - xs = [backend.variable(1) for _ in range(3)] - ys = backend.stop_gradient(xs) - if not tf.executing_eagerly(): - for y in ys: - self.assertEqual(y.op.name[:12], "StopGradient") - - def test_placeholder(self): - x = backend.placeholder(shape=(3, 4)) - self.assertEqual(x.shape.as_list(), [3, 4]) - x = backend.placeholder(shape=(3, 4), sparse=True) - self.assertEqual(x.shape.as_list(), [3, 4]) - - def test_is_placeholder(self): - x = backend.placeholder(shape=(1,)) - self.assertEqual(backend.is_placeholder(x), True) - x = backend.variable(1) - self.assertEqual(backend.is_placeholder(x), False) - - def test_print_tensor(self): - # Unfortunately it seems impossible to use `mock` (or any other method) - # to capture stdout when used inside a graph or graph function, thus - # we cannot test correctness. - # The message gets correctly printed in practice. - x = backend.placeholder(shape=()) - y = backend.print_tensor(x, f"eager={tf.executing_eagerly()}") - f = backend.function(x, y) - f(0) - - def test_cast_to_floatx(self): - x = backend.variable(1, dtype="float64") - x = backend.cast_to_floatx(x) - self.assertEqual(x.dtype.name, "float32") - x = backend.cast_to_floatx(2) - self.assertEqual(x.dtype.name, "float32") - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class BackendVariableTest(tf.test.TestCase): - def test_zeros(self): - x = backend.zeros((3, 4)) - val = backend.eval(x) - self.assertAllClose(val, np.zeros((3, 4))) - - def test_ones(self): - x = backend.ones((3, 4)) - val = backend.eval(x) - self.assertAllClose(val, np.ones((3, 4))) - - def test_eye(self): - x = backend.eye(4) - val = backend.eval(x) - self.assertAllClose(val, np.eye(4)) - - def test_zeros_like(self): - x = backend.zeros((3, 4)) - y = backend.zeros_like(x) - val = backend.eval(y) - self.assertAllClose(val, np.zeros((3, 4))) - - def test_ones_like(self): - x = backend.zeros((3, 4)) - y = backend.ones_like(x) - val = backend.eval(y) - self.assertAllClose(val, np.ones((3, 4))) - - def test_random_uniform_variable(self): - x = backend.random_uniform_variable((30, 20), low=1.0, high=2.0, seed=0) - val = backend.eval(x) - self.assertAllClose(val.mean(), 1.5, atol=1e-1) - self.assertAllClose(val.max(), 2.0, atol=1e-1) - self.assertAllClose(val.min(), 1.0, atol=1e-1) - - def test_random_normal_variable(self): - x = backend.random_normal_variable((30, 20), 1.0, 0.5, seed=0) - val = backend.eval(x) - self.assertAllClose(val.mean(), 1.0, atol=1e-1) - self.assertAllClose(val.std(), 0.5, atol=1e-1) - - def test_count_params(self): - x = backend.zeros((4, 5)) - val = backend.count_params(x) - self.assertAllClose(val, 20) - - def test_constant(self): - ref_val = np.random.random((3, 4)).astype("float32") - x = backend.constant(ref_val) - val = backend.eval(x) - self.assertAllClose(val, ref_val) - - def test_sparse_variable(self): - val = scipy.sparse.eye(10) - x = backend.variable(val) - self.assertTrue(isinstance(x, tf.SparseTensor)) - - y = backend.to_dense(x) - self.assertFalse(backend.is_sparse(y)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class BackendLinearAlgebraTest(tf.test.TestCase, parameterized.TestCase): - def test_dot(self): - x = backend.ones(shape=(2, 3)) - y = backend.ones(shape=(3, 4)) - xy = backend.dot(x, y) - self.assertEqual(xy.shape.as_list(), [2, 4]) - - x = backend.ones(shape=(32, 28, 3)) - y = backend.ones(shape=(3, 4)) - xy = backend.dot(x, y) - self.assertEqual(xy.shape.as_list(), [32, 28, 4]) - - @parameterized.parameters( - [(2, 3, 4, 5), (2, 5, 6, 7), (2, 3, 4, 6, 7), (3, 1)], - [(2, 20, 1), (2, 30, 20), (2, 1, 30), (1, 2)], - [(4, 2, 3), (4, 5, 3), (4, 2, 5), (2, 2)], - [(4, 2), (4, 2, 3), (4, 3), (1, 1)], - [(4, 2), (4, 2, 3), (4, 3), 1], - [(4, 2, 3), (4, 3), (4, 2), (2, 1)], - ) - def test_batch_dot(self, x_shape, y_shape, output_shape, axes): - x_val = np.random.random(x_shape) - y_val = np.random.random(y_shape) - x = backend.variable(x_val) - y = backend.variable(y_val) - xy = backend.batch_dot(x, y, axes=axes) - self.assertEqual(tuple(xy.shape.as_list()), output_shape) - xy_val = backend.eval(xy) - ref_val = self._reference_batch_dot(x_val, y_val, axes) - self.assertAllClose(xy_val, ref_val, atol=1e-5) - - def _reference_batch_dot(self, x, y, axes): - if isinstance(axes, int): - axes = [axes, axes] - elif isinstance(axes, tuple): - axes = list(axes) - if axes is None: - if y.ndim == 2: - axes = [x.ndim - 1, y.ndim - 1] - else: - axes = [x.ndim - 1, y.ndim - 2] - if axes[0] < 0: - axes[0] += x.ndim - if axes[1] < 0: - axes[1] += y.ndim - result = [] - axes = [axes[0] - 1, axes[1] - 1] - for xi, yi in zip(x, y): - result.append(np.tensordot(xi, yi, axes)) - result = np.array(result) - if result.ndim == 1: - result = np.expand_dims(result, -1) - return result - - def test_reduction_ops(self): - ops_to_test = [ - (backend.max, np.max), - (backend.min, np.min), - (backend.sum, np.sum), - (backend.prod, np.prod), - (backend.var, np.var), - (backend.std, np.std), - (backend.mean, np.mean), - (backend.argmin, np.argmin), - (backend.argmax, np.argmax), - ] - for keras_op, np_op in ops_to_test: - compare_single_input_op_to_numpy( - keras_op, - np_op, - input_shape=(4, 7, 5), - keras_kwargs={"axis": 1}, - np_kwargs={"axis": 1}, - ) - compare_single_input_op_to_numpy( - keras_op, - np_op, - input_shape=(4, 7, 5), - keras_kwargs={"axis": -1}, - np_kwargs={"axis": -1}, - ) - if "keepdims" in tf_inspect.getargspec(keras_op).args: - compare_single_input_op_to_numpy( - keras_op, - np_op, - input_shape=(4, 7, 5), - keras_kwargs={"axis": 1, "keepdims": True}, - np_kwargs={"axis": 1, "keepdims": True}, - ) - - def test_elementwise_ops(self): - ops_to_test = [ - (backend.square, np.square), - (backend.abs, np.abs), - (backend.round, np.round), - (backend.sign, np.sign), - (backend.sin, np.sin), - (backend.cos, np.cos), - (backend.exp, np.exp), - ] - for keras_op, np_op in ops_to_test: - compare_single_input_op_to_numpy( - keras_op, np_op, input_shape=(4, 7) - ) - - ops_to_test = [ - (backend.sqrt, np.sqrt), - (backend.log, np.log), - ] - for keras_op, np_op in ops_to_test: - compare_single_input_op_to_numpy( - keras_op, np_op, input_shape=(4, 7), negative_values=False - ) - - compare_single_input_op_to_numpy( - backend.clip, - np.clip, - input_shape=(6, 4), - keras_kwargs={"min_value": 0.1, "max_value": 2.4}, - np_kwargs={"a_min": 0.1, "a_max": 1.4}, - ) - - compare_single_input_op_to_numpy( - backend.pow, - np.power, - input_shape=(6, 4), - keras_args=[3], - np_args=[3], - ) - - def test_two_tensor_ops(self): - ops_to_test = [ - (backend.equal, np.equal), - (backend.not_equal, np.not_equal), - (backend.greater, np.greater), - (backend.greater_equal, np.greater_equal), - (backend.less, np.less), - (backend.less_equal, np.less_equal), - (backend.maximum, np.maximum), - (backend.minimum, np.minimum), - ] - for keras_op, np_op in ops_to_test: - compare_two_inputs_op_to_numpy( - keras_op, np_op, input_shape_a=(4, 7), input_shape_b=(4, 7) - ) - - def test_relu(self): - x = tf.convert_to_tensor([[-4, 0], [2, 7]], "float32") - - # standard relu - relu_op = backend.relu(x) - self.assertAllClose(backend.eval(relu_op), [[0, 0], [2, 7]]) - - # alpha (leaky relu used) - relu_op = backend.relu(x, alpha=0.5) - if not tf.executing_eagerly(): - self.assertTrue("LeakyRelu" in relu_op.name) - self.assertAllClose(backend.eval(relu_op), [[-2, 0], [2, 7]]) - - # max_value < some elements - relu_op = backend.relu(x, max_value=5.0) - self.assertAllClose(backend.eval(relu_op), [[0, 0], [2, 5]]) - - # nn.relu6 used - relu_op = backend.relu(x, max_value=6.0) - if not tf.executing_eagerly(): - self.assertTrue("Relu6" in relu_op.name) # uses tf.nn.relu6 - self.assertAllClose(backend.eval(relu_op), [[0, 0], [2, 6]]) - - # max value > 6 - relu_op = backend.relu(x, max_value=10.0) - self.assertAllClose(backend.eval(relu_op), [[0, 0], [2, 7]]) - - # max value is float - relu_op = backend.relu(x, max_value=4.3) - self.assertAllClose(backend.eval(relu_op), [[0, 0], [2, 4.3]]) - - # max value == 0 - relu_op = backend.relu(x, max_value=0.0) - self.assertAllClose(backend.eval(relu_op), [[0, 0], [0, 0]]) - - # alpha and max_value - relu_op = backend.relu(x, alpha=0.25, max_value=3.0) - self.assertAllClose(backend.eval(relu_op), [[-1, 0], [2, 3]]) - - # threshold - relu_op = backend.relu(x, threshold=3) - self.assertAllClose(backend.eval(relu_op), [[0, 0], [0, 7]]) - - # threshold is float - relu_op = backend.relu(x, threshold=1.5) - self.assertAllClose(backend.eval(relu_op), [[0, 0], [2, 7]]) - - # threshold is negative - relu_op = backend.relu(x, threshold=-5) - self.assertAllClose(backend.eval(relu_op), [[-4, 0], [2, 7]]) - - # threshold and max_value - relu_op = backend.relu(x, threshold=3, max_value=5.0) - self.assertAllClose(backend.eval(relu_op), [[0, 0], [0, 5]]) - - # threshold and alpha - relu_op = backend.relu(x, alpha=0.25, threshold=4.0) - self.assertAllClose(backend.eval(relu_op), [[-2, -1], [-0.5, 7]]) - - # threshold, alpha, and max_value - relu_op = backend.relu(x, alpha=0.25, threshold=4.0, max_value=5.0) - self.assertAllClose(backend.eval(relu_op), [[-2, -1], [-0.5, 5]]) - - # Test case for GitHub issue 35430, with integer dtype - x = input_layer.Input(shape=(), name="x", dtype="int64") - _ = activation.ReLU(max_value=100.0, dtype="int64")(x) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class BackendShapeOpsTest(tf.test.TestCase): - def test_reshape(self): - compare_single_input_op_to_numpy( - backend.reshape, - np.reshape, - input_shape=(4, 7), - keras_args=[(2, 14)], - np_args=[(2, 14)], - ) - - def test_concatenate(self): - a = backend.variable(np.ones((1, 2, 3))) - b = backend.variable(np.ones((1, 2, 2))) - y = backend.concatenate([a, b], axis=-1) - self.assertEqual(y.shape.as_list(), [1, 2, 5]) - - def test_permute_dimensions(self): - compare_single_input_op_to_numpy( - backend.permute_dimensions, - np.transpose, - input_shape=(4, 7), - keras_args=[(1, 0)], - np_args=[(1, 0)], - ) - - def test_resize_images(self): - height_factor = 2 - width_factor = 2 - data_format = "channels_last" - x = backend.variable(np.ones((1, 2, 2, 3))) - y = backend.resize_images(x, height_factor, width_factor, data_format) - self.assertEqual(y.shape.as_list(), [1, 4, 4, 3]) - - data_format = "channels_first" - x = backend.variable(np.ones((1, 3, 2, 2))) - y = backend.resize_images(x, height_factor, width_factor, data_format) - self.assertEqual(y.shape.as_list(), [1, 3, 4, 4]) - - # Use with a dynamic axis: - if not tf.executing_eagerly(): - x = backend.placeholder(shape=(1, 3, None, None)) - y = backend.resize_images( - x, height_factor, width_factor, data_format - ) - self.assertEqual(y.shape.as_list(), [1, 3, None, None]) - - # Invalid use: - with self.assertRaises(ValueError): - backend.resize_images( - x, height_factor, width_factor, data_format="unknown" - ) - - def test_resize_volumes(self): - height_factor = 2 - width_factor = 2 - depth_factor = 2 - data_format = "channels_last" - x = backend.variable(np.ones((1, 2, 2, 2, 3))) - y = backend.resize_volumes( - x, depth_factor, height_factor, width_factor, data_format - ) - self.assertEqual(y.shape.as_list(), [1, 4, 4, 4, 3]) - - data_format = "channels_first" - x = backend.variable(np.ones((1, 3, 2, 2, 2))) - y = backend.resize_volumes( - x, depth_factor, height_factor, width_factor, data_format - ) - self.assertEqual(y.shape.as_list(), [1, 3, 4, 4, 4]) - - # Invalid use: - with self.assertRaises(ValueError): - backend.resize_volumes( - x, - depth_factor, - height_factor, - width_factor, - data_format="unknown", - ) - - def test_repeat_elements(self): - x = backend.variable(np.ones((1, 3, 2))) - y = backend.repeat_elements(x, 3, axis=1) - self.assertEqual(y.shape.as_list(), [1, 9, 2]) - - # Use with a dynamic axis: - if not tf.executing_eagerly(): - x = backend.placeholder(shape=(2, None, 2)) - y = backend.repeat_elements(x, 3, axis=1) - self.assertEqual(y.shape.as_list(), [2, None, 2]) - - def test_repeat(self): - x = backend.variable(np.ones((1, 3))) - y = backend.repeat(x, 2) - self.assertEqual(y.shape.as_list(), [1, 2, 3]) - - def test_flatten(self): - compare_single_input_op_to_numpy( - backend.flatten, - np.reshape, - input_shape=(4, 7, 6), - np_args=[(4 * 7 * 6,)], - ) - - def test_batch_flatten(self): - compare_single_input_op_to_numpy( - backend.batch_flatten, - np.reshape, - input_shape=(4, 7, 6), - np_args=[(4, 7 * 6)], - ) - - def test_temporal_padding(self): - def ref_op(x, padding): - shape = list(x.shape) - shape[1] += padding[0] + padding[1] - y = np.zeros(tuple(shape)) - y[:, padding[0] : -padding[1], :] = x - return y - - compare_single_input_op_to_numpy( - backend.temporal_padding, - ref_op, - input_shape=(4, 7, 6), - keras_args=[(2, 3)], - np_args=[(2, 3)], - ) - - def test_spatial_2d_padding(self): - def ref_op(x, padding, data_format="channels_last"): - shape = list(x.shape) - if data_format == "channels_last": - shape[1] += padding[0][0] + padding[0][1] - shape[2] += padding[1][0] + padding[1][1] - y = np.zeros(tuple(shape)) - y[ - :, - padding[0][0] : -padding[0][1], - padding[1][0] : -padding[1][1], - :, - ] = x - else: - shape[2] += padding[0][0] + padding[0][1] - shape[3] += padding[1][0] + padding[1][1] - y = np.zeros(tuple(shape)) - y[ - :, - :, - padding[0][0] : -padding[0][1], - padding[1][0] : -padding[1][1], - ] = x - return y - - compare_single_input_op_to_numpy( - backend.spatial_2d_padding, - ref_op, - input_shape=(2, 3, 2, 3), - keras_args=[((2, 3), (1, 2))], - keras_kwargs={"data_format": "channels_last"}, - np_args=[((2, 3), (1, 2))], - np_kwargs={"data_format": "channels_last"}, - ) - compare_single_input_op_to_numpy( - backend.spatial_2d_padding, - ref_op, - input_shape=(2, 3, 2, 3), - keras_args=[((2, 3), (1, 2))], - keras_kwargs={"data_format": "channels_first"}, - np_args=[((2, 3), (1, 2))], - np_kwargs={"data_format": "channels_first"}, - ) - - def test_spatial_3d_padding(self): - def ref_op(x, padding, data_format="channels_last"): - shape = list(x.shape) - if data_format == "channels_last": - shape[1] += padding[0][0] + padding[0][1] - shape[2] += padding[1][0] + padding[1][1] - shape[3] += padding[2][0] + padding[2][1] - y = np.zeros(tuple(shape)) - y[ - :, - padding[0][0] : -padding[0][1], - padding[1][0] : -padding[1][1], - padding[2][0] : -padding[2][1], - :, - ] = x - else: - shape[2] += padding[0][0] + padding[0][1] - shape[3] += padding[1][0] + padding[1][1] - shape[4] += padding[2][0] + padding[2][1] - y = np.zeros(tuple(shape)) - y[ - :, - :, - padding[0][0] : -padding[0][1], - padding[1][0] : -padding[1][1], - padding[2][0] : -padding[2][1], - ] = x - return y - - compare_single_input_op_to_numpy( - backend.spatial_3d_padding, - ref_op, - input_shape=(2, 3, 2, 3, 2), - keras_args=[((2, 3), (1, 2), (2, 3))], - keras_kwargs={"data_format": "channels_last"}, - np_args=[((2, 3), (1, 2), (2, 3))], - np_kwargs={"data_format": "channels_last"}, - ) - compare_single_input_op_to_numpy( - backend.spatial_3d_padding, - ref_op, - input_shape=(2, 3, 2, 3, 2), - keras_args=[((2, 3), (1, 2), (2, 3))], - keras_kwargs={"data_format": "channels_first"}, - np_args=[((2, 3), (1, 2), (2, 3))], - np_kwargs={"data_format": "channels_first"}, - ) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class BackendNNOpsTest(tf.test.TestCase, parameterized.TestCase): - def test_bias_add(self): - keras_op = backend.bias_add - np_op = np.add - compare_two_inputs_op_to_numpy( - keras_op, np_op, input_shape_a=(4, 7), input_shape_b=(7,) - ) - compare_two_inputs_op_to_numpy( - keras_op, np_op, input_shape_a=(4, 3, 7), input_shape_b=(7,) - ) - compare_two_inputs_op_to_numpy( - keras_op, np_op, input_shape_a=(4, 3, 5, 7), input_shape_b=(7,) - ) - compare_two_inputs_op_to_numpy( - keras_op, np_op, input_shape_a=(4, 3, 5, 2, 7), input_shape_b=(7,) - ) - - with self.assertRaises((ValueError, tf.errors.InvalidArgumentError)): - x = backend.variable((3, 4)) - b = backend.variable((3, 4)) - backend.bias_add(x, b) - with self.assertRaises(ValueError): - x = backend.variable((3, 4)) - b = backend.variable((4,)) - backend.bias_add(x, b, data_format="unknown") - - def test_bias_add_channels_first(self): - def keras_op(x, b): - return backend.bias_add(x, b, data_format="channels_first") - - def np_op(x, b): - if x.ndim == 3: - b = b.reshape((1, b.shape[0], 1)) - if x.ndim == 4: - b = b.reshape((1, b.shape[0], 1, 1)) - return x + b - - compare_two_inputs_op_to_numpy( - keras_op, np_op, input_shape_a=(4, 3, 7), input_shape_b=(3,) - ) - compare_two_inputs_op_to_numpy( - keras_op, np_op, input_shape_a=(4, 3, 5, 7), input_shape_b=(3,) - ) - - def test_pool2d(self): - val = np.random.random((10, 3, 10, 10)) - x = backend.variable(val) - y = backend.pool2d( - x, - (2, 2), - strides=(1, 1), - padding="valid", - data_format="channels_first", - pool_mode="max", - ) - self.assertEqual(y.shape.as_list(), [10, 3, 9, 9]) - - y = backend.pool2d( - x, - (2, 2), - strides=(1, 1), - padding="valid", - data_format="channels_first", - pool_mode="avg", - ) - self.assertEqual(y.shape.as_list(), [10, 3, 9, 9]) - - val = np.random.random((10, 10, 10, 3)) - x = backend.variable(val) - y = backend.pool2d( - x, - (2, 2), - strides=(1, 1), - padding="valid", - data_format="channels_last", - ) - self.assertEqual(y.shape.as_list(), [10, 9, 9, 3]) - - val = np.random.random((10, 10, 10, 3)) - x = backend.variable(val) - y = backend.pool2d( - x, - (2, 2), - strides=(1, 1), - padding="same", - data_format="channels_last", - ) - self.assertEqual(y.shape.as_list(), [10, 10, 10, 3]) - - val = np.random.random((10, 10, 10, 3)) - x = backend.variable(val) - y = backend.pool2d( - x, - (2, 2), - strides=(2, 2), - padding="same", - data_format="channels_last", - ) - self.assertEqual(y.shape.as_list(), [10, 5, 5, 3]) - - with self.assertRaises(ValueError): - y = backend.pool2d( - x, - (2, 2), - strides=(2, 2), - padding="other", - data_format="channels_last", - ) - with self.assertRaises(ValueError): - y = backend.pool2d(x, (2, 2), strides=(2, 2), data_format="other") - with self.assertRaises(ValueError): - y = backend.pool2d(x, (2, 2, 2), strides=(2, 2)) - with self.assertRaises(ValueError): - y = backend.pool2d(x, (2, 2), strides=(2, 2, 2)) - with self.assertRaises(ValueError): - y = backend.pool2d(x, (2, 2), strides=(2, 2), pool_mode="other") - - def test_pool3d(self): - val = np.random.random((10, 3, 10, 10, 10)) - x = backend.variable(val) - y = backend.pool3d( - x, - (2, 2, 2), - strides=(1, 1, 1), - padding="valid", - data_format="channels_first", - pool_mode="max", - ) - self.assertEqual(y.shape.as_list(), [10, 3, 9, 9, 9]) - - y = backend.pool3d( - x, - (2, 2, 2), - strides=(1, 1, 1), - padding="valid", - data_format="channels_first", - pool_mode="avg", - ) - self.assertEqual(y.shape.as_list(), [10, 3, 9, 9, 9]) - - val = np.random.random((10, 10, 10, 10, 3)) - x = backend.variable(val) - y = backend.pool3d( - x, - (2, 2, 2), - strides=(1, 1, 1), - padding="valid", - data_format="channels_last", - ) - self.assertEqual(y.shape.as_list(), [10, 9, 9, 9, 3]) - - val = np.random.random((10, 10, 10, 10, 3)) - x = backend.variable(val) - y = backend.pool3d( - x, - (2, 2, 2), - strides=(1, 1, 1), - padding="same", - data_format="channels_last", - ) - self.assertEqual(y.shape.as_list(), [10, 10, 10, 10, 3]) - - val = np.random.random((10, 10, 10, 10, 3)) - x = backend.variable(val) - y = backend.pool3d( - x, - (2, 2, 2), - strides=(2, 2, 2), - padding="same", - data_format="channels_last", - ) - self.assertEqual(y.shape.as_list(), [10, 5, 5, 5, 3]) - - def test_conv1d(self): - val = np.random.random((10, 4, 10)) - x = backend.variable(val) - kernel_val = np.random.random((3, 4, 5)) - k = backend.variable(kernel_val) - y = backend.conv1d( - x, k, strides=(1,), padding="valid", data_format="channels_first" - ) - self.assertEqual(y.shape.as_list(), [10, 5, 8]) - - val = np.random.random((10, 10, 4)) - x = backend.variable(val) - y = backend.conv1d( - x, k, strides=(1,), padding="valid", data_format="channels_last" - ) - self.assertEqual(y.shape.as_list(), [10, 8, 5]) - - val = np.random.random((10, 10, 4)) - x = backend.variable(val) - y = backend.conv1d( - x, k, strides=(1,), padding="same", data_format="channels_last" - ) - self.assertEqual(y.shape.as_list(), [10, 10, 5]) - - val = np.random.random((10, 10, 4)) - x = backend.variable(val) - y = backend.conv1d( - x, k, strides=(2,), padding="same", data_format="channels_last" - ) - self.assertEqual(y.shape.as_list(), [10, 5, 5]) - - def test_local_conv_channels_dim(self): - filters = 3 - batch_size = 2 - - for input_shape in [(3, 5), (2, 3, 5), (2, 5, 3, 4)]: - channels_in = input_shape[0] - input_spatial_shape = input_shape[1:] - dim = len(input_spatial_shape) - - inputs = np.random.normal(0, 1, (batch_size,) + input_shape) - inputs_cf = backend.variable(inputs) - - for kernel_size in [1, 2]: - for stride in [1, 2]: - kernel_sizes = (kernel_size,) * dim - strides = (stride,) * dim - - output_shape = tuple( - [ - (i - kernel_size + stride) // stride - for i in input_spatial_shape - ] - ) - - kernel_shape = ( - np.prod(output_shape), - np.prod(kernel_sizes) * channels_in, - filters, - ) - - kernel = np.random.normal( - 0, - 1, - output_shape - + (channels_in, np.prod(kernel_sizes), filters), - ) - - kernel_cf = np.reshape(kernel, kernel_shape) - kernel_cf = backend.variable(kernel_cf) - - conv_cf = backend.local_conv( - inputs_cf, - kernel_cf, - kernel_sizes, - strides, - output_shape, - "channels_first", - ) - - inputs_cl = np.transpose( - inputs, [0, 2] + list(range(3, dim + 2)) + [1] - ) - inputs_cl = backend.variable(inputs_cl) - - kernel_cl = np.reshape( - np.transpose( - kernel, list(range(dim)) + [dim + 1, dim, dim + 2] - ), - kernel_shape, - ) - kernel_cl = backend.variable(kernel_cl) - - conv_cl = backend.local_conv( - inputs_cl, - kernel_cl, - kernel_sizes, - strides, - output_shape, - "channels_last", - ) - - conv_cf = backend.eval(conv_cf) - conv_cl = backend.eval(conv_cl) - - self.assertAllCloseAccordingToType( - conv_cf, - np.transpose( - conv_cl, [0, dim + 1] + list(range(1, dim + 1)) - ), - atol=1e-5, - ) - - @parameterized.named_parameters( - ("local_conv1d", (5, 6), (3,), (1,), (3,)), - ("local_conv2d", (4, 5, 6), (3, 3), (1, 1), (2, 3)), - ) - def test_local_conv_1d_and_2d( - self, input_shape, kernel_sizes, strides, output_shape - ): - filters = 3 - batch_size = 2 - - inputs = np.random.normal(0, 1, (batch_size,) + input_shape) - inputs = backend.variable(inputs) - - kernel = np.random.normal( - 0, - 1, - ( - np.prod(output_shape), - np.prod(kernel_sizes) * input_shape[-1], - filters, - ), - ) - kernel = backend.variable(kernel) - - local_conv = backend.local_conv( - inputs, kernel, kernel_sizes, strides, output_shape, "channels_last" - ) - if len(output_shape) == 1: - local_conv_dim = backend.local_conv1d( - inputs, kernel, kernel_sizes, strides, "channels_last" - ) - else: - local_conv_dim = backend.local_conv2d( - inputs, - kernel, - kernel_sizes, - strides, - output_shape, - "channels_last", - ) - - local_conv = backend.eval(local_conv) - local_conv_dim = backend.eval(local_conv_dim) - - self.assertAllCloseAccordingToType(local_conv, local_conv_dim) - - def test_conv2d(self): - kernel_val = np.random.random((3, 3, 4, 5)) - k = backend.variable(kernel_val) - - # Test channels_first - val = np.random.random((10, 4, 10, 10)) - x = backend.variable(val) - y = backend.conv2d(x, k, padding="valid", data_format="channels_first") - self.assertEqual(y.shape.as_list(), [10, 5, 8, 8]) - - # Test channels_last - val = np.random.random((10, 10, 10, 4)) - x = backend.variable(val) - y = backend.conv2d( - x, k, strides=(1, 1), padding="valid", data_format="channels_last" - ) - self.assertEqual(y.shape.as_list(), [10, 8, 8, 5]) - - # Test same padding - val = np.random.random((10, 10, 10, 4)) - x = backend.variable(val) - y = backend.conv2d(x, k, padding="same", data_format="channels_last") - self.assertEqual(y.shape.as_list(), [10, 10, 10, 5]) - - # Test dilation_rate - val = np.random.random((10, 10, 10, 4)) - x = backend.variable(val) - y = backend.conv2d( - x, - k, - dilation_rate=(2, 2), - padding="same", - data_format="channels_last", - ) - self.assertEqual(y.shape.as_list(), [10, 10, 10, 5]) - - # Test strides - val = np.random.random((10, 10, 10, 4)) - x = backend.variable(val) - y = backend.conv2d( - x, k, strides=(2, 2), padding="same", data_format="channels_last" - ) - self.assertEqual(y.shape.as_list(), [10, 5, 5, 5]) - - # Test invalid arguments - with self.assertRaises(ValueError): - y = backend.conv2d( - x, k, (2, 2), padding="other", data_format="channels_last" - ) - with self.assertRaises(ValueError): - y = backend.conv2d(x, k, (2, 2), data_format="other") - with self.assertRaises(ValueError): - y = backend.conv2d(x, k, (2, 2, 2)) - - def test_conv2d_transpose(self): - input_size = (7, 8) - kernel_size = (3, 3) - input_depth = 6 - filters = 6 - batch_size = 2 - - kernel_val = np.random.random(kernel_size + (input_depth, filters)) - k = backend.variable(kernel_val) - - # Test channels_first - input_val = np.random.random((batch_size, input_depth) + input_size) - x = backend.variable(input_val) - y = backend.conv2d_transpose( - x, - k, - (batch_size, filters) + input_size, - padding="same", - data_format="channels_first", - ) - self.assertEqual( - tuple(y.shape.as_list()), (batch_size, filters) + input_size - ) - - # Test channels_last - input_val = np.random.random( - (batch_size,) + input_size + (input_depth,) - ) - x = backend.variable(input_val) - y = backend.conv2d_transpose( - x, - k, - (batch_size,) + input_size + (filters,), - padding="same", - data_format="channels_last", - ) - self.assertEqual( - tuple(y.shape.as_list()), (batch_size,) + input_size + (filters,) - ) - - # Test dilation_rate - y = backend.conv2d_transpose( - x, - k, - (batch_size,) + input_size + (filters,), - padding="same", - data_format="channels_last", - dilation_rate=(2, 2), - ) - self.assertEqual( - tuple(y.shape.as_list()), (batch_size,) + input_size + (filters,) - ) - - # Test dilation_rate error - with self.assertRaisesRegex(ValueError, "Expected the 2 dimensions"): - y = backend.conv2d_transpose( - x, - k, - (batch_size,) + input_size + (filters,), - padding="same", - data_format="channels_last", - dilation_rate=(1, 2), - ) - - # Test batch size of None in output_shape - y = backend.conv2d_transpose( - x, - k, - (None,) + input_size + (filters,), - padding="same", - data_format="channels_last", - ) - self.assertEqual( - tuple(y.shape.as_list()), (batch_size,) + input_size + (filters,) - ) - - # Test invalid values - with self.assertRaises(ValueError): - y = backend.conv2d_transpose( - x, k, (2, 2, 8, 9), padding="other", data_format="channels_last" - ) - with self.assertRaises(ValueError): - y = backend.conv2d_transpose( - x, k, (2, 2, 8, 9), data_format="other" - ) - - def test_separable_conv2d(self): - val = np.random.random((10, 4, 10, 10)) - x = backend.variable(val) - depthwise_kernel_val = np.random.random((3, 3, 4, 1)) - pointwise_kernel_val = np.random.random((1, 1, 4, 5)) - dk = backend.variable(depthwise_kernel_val) - pk = backend.variable(pointwise_kernel_val) - y = backend.separable_conv2d( - x, dk, pk, padding="valid", data_format="channels_first" - ) - self.assertEqual(y.shape.as_list(), [10, 5, 8, 8]) - - val = np.random.random((10, 10, 10, 4)) - x = backend.variable(val) - y = backend.separable_conv2d( - x, - dk, - pk, - strides=(1, 1), - padding="valid", - data_format="channels_last", - ) - self.assertEqual(y.shape.as_list(), [10, 8, 8, 5]) - - val = np.random.random((10, 10, 10, 4)) - x = backend.variable(val) - y = backend.separable_conv2d( - x, - dk, - pk, - strides=(1, 1), - padding="same", - data_format="channels_last", - ) - self.assertEqual(y.shape.as_list(), [10, 10, 10, 5]) - - val = np.random.random((10, 10, 10, 4)) - x = backend.variable(val) - y = backend.separable_conv2d( - x, - dk, - pk, - strides=(2, 2), - padding="same", - data_format="channels_last", - ) - self.assertEqual(y.shape.as_list(), [10, 5, 5, 5]) - with self.assertRaises(ValueError): - y = backend.separable_conv2d( - x, dk, pk, (2, 2), padding="other", data_format="channels_last" - ) - with self.assertRaises(ValueError): - y = backend.separable_conv2d(x, dk, pk, (2, 2), data_format="other") - with self.assertRaises(ValueError): - y = backend.separable_conv2d(x, dk, pk, (2, 2, 2)) - - def test_conv3d(self): - val = np.random.random((10, 4, 10, 10, 10)) - x = backend.variable(val) - kernel_val = np.random.random((3, 3, 3, 4, 5)) - k = backend.variable(kernel_val) - y = backend.conv3d(x, k, padding="valid", data_format="channels_first") - self.assertEqual(y.shape.as_list(), [10, 5, 8, 8, 8]) - - val = np.random.random((10, 10, 10, 10, 4)) - x = backend.variable(val) - y = backend.conv3d( - x, - k, - strides=(1, 1, 1), - padding="valid", - data_format="channels_last", - ) - self.assertEqual(y.shape.as_list(), [10, 8, 8, 8, 5]) - - val = np.random.random((10, 10, 10, 10, 4)) - x = backend.variable(val) - y = backend.conv3d( - x, k, strides=(1, 1, 1), padding="same", data_format="channels_last" - ) - self.assertEqual(y.shape.as_list(), [10, 10, 10, 10, 5]) - - val = np.random.random((10, 10, 10, 10, 4)) - x = backend.variable(val) - y = backend.conv3d( - x, k, strides=(2, 2, 2), padding="same", data_format="channels_last" - ) - self.assertEqual(y.shape.as_list(), [10, 5, 5, 5, 5]) - with self.assertRaises(ValueError): - y = backend.conv3d( - x, k, (2, 2, 2), padding="other", data_format="channels_last" - ) - with self.assertRaises(ValueError): - y = backend.conv3d(x, k, (2, 2, 2), data_format="other") - with self.assertRaises(ValueError): - y = backend.conv3d(x, k, (2, 2)) - - def test_rnn(self): - # implement a simple RNN - num_samples = 4 - input_dim = 5 - output_dim = 3 - timesteps = 6 - - input_val = np.random.random( - (num_samples, timesteps, input_dim) - ).astype(np.float32) - init_state_val = np.random.random((num_samples, output_dim)).astype( - np.float32 - ) - w_i_val = np.random.random((input_dim, output_dim)).astype(np.float32) - w_o_val = np.random.random((output_dim, output_dim)).astype(np.float32) - np_mask = np.random.randint(2, size=(num_samples, timesteps)) - - def rnn_step_fn(): - w_i = backend.variable(w_i_val) - w_o = backend.variable(w_o_val) - - def step_function(x, states): - assert len(states) == 1 - prev_output = states[0] - output = backend.dot(x, w_i) + backend.dot(prev_output, w_o) - return output, [output] - - return step_function - - # test default setup - last_output_list = [[], [], [], [], [], []] - outputs_list = [[], [], [], [], [], []] - state_list = [[], [], [], [], [], []] - - rnn_fn = rnn_step_fn() - inputs = backend.variable(input_val) - initial_states = [backend.variable(init_state_val)] - mask = backend.variable(np_mask) - - kwargs_list = [ - {"go_backwards": False, "mask": None}, - {"go_backwards": False, "mask": None, "unroll": True}, - {"go_backwards": True, "mask": None}, - {"go_backwards": True, "mask": None, "unroll": True}, - {"go_backwards": False, "mask": mask}, - {"go_backwards": False, "mask": mask, "unroll": True}, - ] - for i, kwargs in enumerate(kwargs_list): - last_output, outputs, new_states = backend.rnn( - rnn_fn, inputs, initial_states, **kwargs - ) - # check static shape inference - self.assertEqual( - last_output.shape.as_list(), [num_samples, output_dim] - ) - self.assertEqual( - outputs.shape.as_list(), [num_samples, timesteps, output_dim] - ) - for state in new_states: - self.assertEqual( - state.shape.as_list(), [num_samples, output_dim] - ) - - last_output_list[i].append(backend.eval(last_output)) - outputs_list[i].append(backend.eval(outputs)) - self.assertLen(new_states, 1) - state_list[i].append(backend.eval(new_states[0])) - - def assert_list_pairwise(z_list, atol=1e-05): - for z1, z2 in zip(z_list[1:], z_list[:-1]): - self.assertAllClose(z1, z2, atol=atol) - - assert_list_pairwise(last_output_list[0], atol=1e-04) - assert_list_pairwise(outputs_list[0], atol=1e-04) - assert_list_pairwise(state_list[0], atol=1e-04) - assert_list_pairwise(last_output_list[2], atol=1e-04) - assert_list_pairwise(outputs_list[2], atol=1e-04) - assert_list_pairwise(state_list[2], atol=1e-04) - - for l, u_l in zip(last_output_list[0], last_output_list[1]): - self.assertAllClose(l, u_l, atol=1e-04) - - for o, u_o in zip(outputs_list[0], outputs_list[1]): - self.assertAllClose(o, u_o, atol=1e-04) - - for s, u_s in zip(state_list[0], state_list[1]): - self.assertAllClose(s, u_s, atol=1e-04) - - for b_l, b_u_l in zip(last_output_list[2], last_output_list[3]): - self.assertAllClose(b_l, b_u_l, atol=1e-04) - - for b_o, b_u_o in zip(outputs_list[2], outputs_list[3]): - self.assertAllClose(b_o, b_u_o, atol=1e-04) - - for b_s, b_u_s in zip(state_list[2], state_list[3]): - self.assertAllClose(b_s, b_u_s, atol=1e-04) - - def test_rnn_additional_states(self): - # implement a simple RNN - num_samples = 4 - input_dim = 5 - output_dim = 3 - timesteps = 6 - - input_val = np.random.random( - (num_samples, timesteps, input_dim) - ).astype(np.float32) - init_state_val = np.random.random((num_samples, output_dim)).astype( - np.float32 - ) - w_i_val = np.random.random((input_dim, output_dim)).astype(np.float32) - w_o_val = np.random.random((output_dim, output_dim)).astype(np.float32) - np_mask = np.random.randint(2, size=(num_samples, timesteps)) - - def rnn_step_fn(): - w_i = backend.variable(w_i_val) - w_o = backend.variable(w_o_val) - - def step_function(x, states): - assert len(states) == 2 - prev_output = states[0] - output = backend.dot(x, w_i) + backend.dot(prev_output, w_o) - return output, [ - output, - backend.concatenate([output, output], axis=-1), - ] - - return step_function - - # test default setup - last_output_list = [[], [], [], [], [], []] - outputs_list = [[], [], [], [], [], []] - state_list = [[], [], [], [], [], []] - additional_state_list = [[], [], [], [], [], []] - - rnn_fn = rnn_step_fn() - inputs = backend.variable(input_val) - initial_states = [ - backend.variable(init_state_val), - tf.convert_to_tensor( - np.concatenate([init_state_val, init_state_val], axis=-1) - ), - ] - mask = backend.variable(np_mask) - - kwargs_list = [ - {"go_backwards": False, "mask": None}, - {"go_backwards": False, "mask": None, "unroll": True}, - {"go_backwards": True, "mask": None}, - {"go_backwards": True, "mask": None, "unroll": True}, - {"go_backwards": False, "mask": mask}, - {"go_backwards": False, "mask": mask, "unroll": True}, - ] - for i, kwargs in enumerate(kwargs_list): - last_output, outputs, new_states = backend.rnn( - rnn_fn, inputs, initial_states, **kwargs - ) - # check static shape inference - self.assertEqual( - last_output.shape.as_list(), [num_samples, output_dim] - ) - self.assertEqual( - outputs.shape.as_list(), [num_samples, timesteps, output_dim] - ) - # for state in new_states: - # self.assertEqual(state.shape.as_list(), - # [num_samples, output_dim]) - self.assertEqual( - new_states[0].shape.as_list(), [num_samples, output_dim] - ) - self.assertEqual( - new_states[1].shape.as_list(), [num_samples, 2 * output_dim] - ) - - last_output_list[i].append(backend.eval(last_output)) - outputs_list[i].append(backend.eval(outputs)) - self.assertLen(new_states, 2) - state_list[i].append(backend.eval(new_states[0])) - additional_state_list[i].append(backend.eval(new_states[1])) - - def assert_list_pairwise(z_list, atol=1e-05): - for z1, z2 in zip(z_list[1:], z_list[:-1]): - self.assertAllClose(z1, z2, atol=atol) - - assert_list_pairwise(last_output_list[0], atol=1e-04) - assert_list_pairwise(outputs_list[0], atol=1e-04) - assert_list_pairwise(state_list[0], atol=1e-04) - assert_list_pairwise(additional_state_list[0], atol=1e-04) - assert_list_pairwise(last_output_list[2], atol=1e-04) - assert_list_pairwise(outputs_list[2], atol=1e-04) - assert_list_pairwise(state_list[2], atol=1e-04) - assert_list_pairwise(additional_state_list[2], atol=1e-04) - - for l, u_l in zip(last_output_list[0], last_output_list[1]): - self.assertAllClose(l, u_l, atol=1e-04) - - for o, u_o in zip(outputs_list[0], outputs_list[1]): - self.assertAllClose(o, u_o, atol=1e-04) - - for s, u_s in zip(state_list[0], state_list[1]): - self.assertAllClose(s, u_s, atol=1e-04) - - for s, u_s in zip( - additional_state_list[0], additional_state_list[1] - ): - self.assertAllClose(s, u_s, atol=1e-04) - - for b_l, b_u_l in zip(last_output_list[2], last_output_list[3]): - self.assertAllClose(b_l, b_u_l, atol=1e-04) - - for b_o, b_u_o in zip(outputs_list[2], outputs_list[3]): - self.assertAllClose(b_o, b_u_o, atol=1e-04) - - for b_s, b_u_s in zip(state_list[2], state_list[3]): - self.assertAllClose(b_s, b_u_s, atol=1e-04) - - for s, u_s in zip( - additional_state_list[2], additional_state_list[3] - ): - self.assertAllClose(s, u_s, atol=1e-04) - - def test_rnn_output_and_state_masking_independent(self): - num_samples = 2 - num_timesteps = 4 - state_and_io_size = 2 - mask_last_num_timesteps = 2 # for second sample only - - # a step function that just outputs inputs, - # but increments states +1 per timestep - def step_function(inputs, states): - return inputs, [s + 1 for s in states] - - inputs_vals = np.random.random( - (num_samples, num_timesteps, state_and_io_size) - ) - initial_state_vals = np.random.random((num_samples, state_and_io_size)) - # masking of two last timesteps for second sample only - mask_vals = np.ones((num_samples, num_timesteps)) - mask_vals[1, -mask_last_num_timesteps:] = 0 - - # outputs expected to be same as inputs for the first sample - expected_outputs = inputs_vals.copy() - # but for the second sample all outputs in masked region should be the - # same as last output before masked region - expected_outputs[1, -mask_last_num_timesteps:] = expected_outputs[ - 1, -(mask_last_num_timesteps + 1) - ] - - expected_last_state = initial_state_vals.copy() - # first state should be incremented for every timestep (no masking) - expected_last_state[0] += num_timesteps - # second state should not be incremented for last two timesteps - expected_last_state[1] += num_timesteps - mask_last_num_timesteps - - # verify same expected output for `unroll=true/false` - inputs = backend.variable(inputs_vals) - initial_states = [backend.variable(initial_state_vals)] - mask = backend.variable(mask_vals) - for unroll in [True, False]: - _, outputs, last_states = backend.rnn( - step_function, - inputs, - initial_states, - mask=mask, - unroll=unroll, - input_length=num_timesteps if unroll else None, - ) - - self.assertAllClose(backend.eval(outputs), expected_outputs) - self.assertAllClose( - backend.eval(last_states[0]), expected_last_state - ) - - def test_rnn_output_num_dim_larger_than_2_masking(self): - num_samples = 3 - num_timesteps = 4 - num_features = 5 - - def step_function(inputs, states): - outputs = backend.tile(backend.expand_dims(inputs), [1, 1, 2]) - return outputs, [backend.identity(s) for s in states] - # Note: cannot just return states (which can be a problem) -> - # tensorflow/python/ops/resource_variable_ops.py", line 824, in - # set_shape NotImplementedError: ResourceVariable does not implement - # set_shape() - - inputs_vals = np.random.random( - (num_samples, num_timesteps, num_features) - ) - initial_state_vals = np.random.random((num_samples, 6)) - mask_vals = np.ones((num_samples, num_timesteps)) - mask_vals[-1, -1] = 0 # final timestep masked for last sample - - expected_outputs = np.repeat(inputs_vals[..., None], repeats=2, axis=-1) - # for the last sample, the final timestep (in masked region) should be - # the same as the second to final output (before masked region) - expected_outputs[-1, -1] = expected_outputs[-1, -2] - - inputs = backend.variable(inputs_vals) - initial_states = [backend.variable(initial_state_vals)] - mask = backend.variable(mask_vals) - for unroll in [True, False]: - _, outputs, _ = backend.rnn( - step_function, - inputs, - initial_states, - mask=mask, - unroll=unroll, - input_length=num_timesteps if unroll else None, - ) - - self.assertAllClose(backend.eval(outputs), expected_outputs) - - def test_rnn_state_num_dim_larger_than_2_masking(self): - num_samples = 3 - num_timesteps = 4 - - def step_function(inputs, states): - return inputs, [s + 1 for s in states] - - inputs_vals = np.random.random((num_samples, num_timesteps, 5)) - initial_state_vals = np.random.random((num_samples, 6, 7)) - mask_vals = np.ones((num_samples, num_timesteps)) - mask_vals[0, -2:] = 0 # final two timesteps masked for first sample - - expected_last_state = initial_state_vals.copy() - expected_last_state[0] += num_timesteps - 2 - expected_last_state[1:] += num_timesteps - - inputs = backend.variable(inputs_vals) - initial_states = [backend.variable(initial_state_vals)] - mask = backend.variable(mask_vals) - for unroll in [True, False]: - _, _, last_states = backend.rnn( - step_function, - inputs, - initial_states, - mask=mask, - unroll=unroll, - input_length=num_timesteps if unroll else None, - ) - - self.assertAllClose( - backend.eval(last_states[0]), expected_last_state - ) - - def test_rnn_function_jit_compile_no_unroll_input_length_none(self): - num_samples = 3 - num_timesteps = 4 - - def step_function(inputs, states): - return inputs, [s + 1 for s in states] - - inputs_vals = np.random.random((num_samples, num_timesteps, 5)) - initial_state_vals = np.random.random((num_samples, 6, 7)) - mask_vals = np.ones((num_samples, num_timesteps)) - mask_vals[0, -2:] = 0 # final two timesteps masked for first sample - - expected_last_state = initial_state_vals.copy() - expected_last_state[0] += num_timesteps - 2 - expected_last_state[1:] += num_timesteps - - inputs = backend.variable(inputs_vals) - initial_states = [backend.variable(initial_state_vals)] - mask = backend.variable(mask_vals) - - @tf.function(jit_compile=True) - def fn(): - _, _, last_states = backend.rnn( - step_function, - inputs, - initial_states, - mask=mask, - unroll=False, - input_length=None, - ) - return last_states - - last_states = fn() - self.assertAllClose(backend.eval(last_states[0]), expected_last_state) - - def test_batch_normalization(self): - g_val = np.random.random((3,)) - b_val = np.random.random((3,)) - gamma = backend.variable(g_val) - beta = backend.variable(b_val) - - # 3D NHC case - val = np.random.random((10, 5, 3)) - x = backend.variable(val) - mean, var = tf.nn.moments(x, (0, 1), None, None, False) - normed = backend.batch_normalization( - x, mean, var, beta, gamma, axis=-1, epsilon=1e-3 - ) - self.assertEqual(normed.shape.as_list(), [10, 5, 3]) - - # 4D NHWC case - val = np.random.random((10, 5, 5, 3)) - x = backend.variable(val) - mean, var = tf.nn.moments(x, (0, 1, 2), None, None, False) - normed = backend.batch_normalization( - x, mean, var, beta, gamma, axis=-1, epsilon=1e-3 - ) - self.assertEqual(normed.shape.as_list(), [10, 5, 5, 3]) - - # 4D NCHW case - if not tf.executing_eagerly(): - # Eager CPU kernel for NCHW does not exist. - val = np.random.random((10, 3, 5, 5)) - x = backend.variable(val) - mean, var = tf.nn.moments(x, (0, 2, 3), None, None, False) - normed = backend.batch_normalization( - x, mean, var, beta, gamma, axis=1, epsilon=1e-3 - ) - self.assertEqual(normed.shape.as_list(), [10, 3, 5, 5]) - - def test_normalize_batch_in_training(self): - val = np.random.random((10, 3, 10, 10)) - x = backend.variable(val) - reduction_axes = (0, 2, 3) - - g_val = np.random.random((3,)) - b_val = np.random.random((3,)) - gamma = backend.variable(g_val) - beta = backend.variable(b_val) - normed, mean, var = backend.normalize_batch_in_training( - x, gamma, beta, reduction_axes, epsilon=1e-3 - ) - self.assertEqual(normed.shape.as_list(), [10, 3, 10, 10]) - self.assertEqual( - mean.shape.as_list(), - [ - 3, - ], - ) - self.assertEqual( - var.shape.as_list(), - [ - 3, - ], - ) - - # case: gamma=None - gamma = None - normed, mean, var = backend.normalize_batch_in_training( - x, gamma, beta, reduction_axes, epsilon=1e-3 - ) - self.assertEqual(normed.shape.as_list(), [10, 3, 10, 10]) - self.assertEqual( - mean.shape.as_list(), - [ - 3, - ], - ) - self.assertEqual( - var.shape.as_list(), - [ - 3, - ], - ) - - # case: beta=None - beta = None - normed, mean, var = backend.normalize_batch_in_training( - x, gamma, beta, reduction_axes, epsilon=1e-3 - ) - self.assertEqual(normed.shape.as_list(), [10, 3, 10, 10]) - self.assertEqual( - mean.shape.as_list(), - [ - 3, - ], - ) - self.assertEqual( - var.shape.as_list(), - [ - 3, - ], - ) - - def test_dropout(self): - inputs = tf.ones((200, 200)) - outputs = backend.dropout(inputs, 0.2) - outputs_val = backend.eval(outputs) - self.assertEqual(np.min(outputs_val), 0) - self.assertAllClose(np.count_nonzero(outputs_val), 32000, atol=1000) - # Test noise shape - outputs = backend.dropout(inputs, 0.2, noise_shape=(200, 1)) - outputs_val = backend.eval(outputs) - # Make sure the whole column gets the same dropout - self.assertEqual(np.min(outputs_val[0, :]), np.max(outputs_val[0, :])) - - -class BackendCrossEntropyLossesTest(tf.test.TestCase, parameterized.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_binary_crossentropy_with_sigmoid(self): - t = backend.constant([[0, 1, 0]]) - logits = backend.constant([[8.0, 1.0, 1.0]]) - p = backend.sigmoid(logits) - p = tf.identity(tf.identity(p)) - result = self.evaluate(backend.binary_crossentropy(t, p)) - self.assertArrayNear(result[0], [8.0, 0.313, 1.313], 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_categorical_crossentropy_loss(self): - t = backend.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) - - p = backend.constant( - [[0.9, 0.05, 0.05], [0.05, 0.89, 0.06], [0.05, 0.01, 0.94]] - ) - result = backend.categorical_crossentropy(t, p) - self.assertArrayNear(self.evaluate(result), [0.105, 0.116, 0.062], 1e-3) - - p = backend.constant( - [[0.9, 0.05, 0.05], [0.05, 0.89, 0.01], [0.05, 0.06, 0.94]] - ) - result = backend.categorical_crossentropy(t, p, axis=0) - self.assertArrayNear(self.evaluate(result), [0.105, 0.116, 0.062], 1e-3) - - p = backend.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - result = (backend.categorical_crossentropy(t, p, from_logits=True),) - self.assertArrayNear(self.evaluate(result)[0], [0.002, 0, 0.17], 1e-3) - - p = backend.constant( - [[8.0, 0.0, 2.0], [1.0, 9.0, 3.0], [1.0, 1.0, 5.0]] - ) - result = ( - backend.categorical_crossentropy(t, p, from_logits=True, axis=0), - ) - self.assertArrayNear(self.evaluate(result)[0], [0.002, 0, 0.17], 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_categorical_crossentropy_loss_with_unknown_rank_tensor(self): - t = backend.placeholder() - p = backend.placeholder() - o = backend.categorical_crossentropy(t, p) - - t_val = tf.convert_to_tensor( - [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] - ) - p_val = tf.convert_to_tensor( - [[0.9, 0.05, 0.05], [0.05, 0.89, 0.06], [0.05, 0.01, 0.94]] - ) - f = backend.function([t, p], o) - - result = f([t_val, p_val]) - self.assertArrayNear(result, [0.105, 0.116, 0.062], 1e-3) - - # With axis set - o = backend.categorical_crossentropy(t, p, axis=0) - f = backend.function([t, p], o) - - result = f([t_val, p_val]) - self.assertArrayNear(result, [0.105, 0.065, 0.111], 1e-3) - - # from logits - p_val = tf.convert_to_tensor( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - o = backend.categorical_crossentropy(t, p, from_logits=True) - f = backend.function([t, p], o) - - result = f([t_val, p_val]) - self.assertArrayNear(result, [0.002, 0, 0.17], 1e-3) - - # from logits and axis set - o = backend.categorical_crossentropy(t, p, from_logits=True, axis=0) - f = backend.function([t, p], o) - - result = f([t_val, p_val]) - self.assertArrayNear(result, [0.002, 0.003, 0.036], 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_categorical_crossentropy_with_softmax(self): - t = backend.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) - logits = backend.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - p = backend.softmax(logits) - p = tf.identity(tf.identity(p)) - result = self.evaluate(backend.categorical_crossentropy(t, p)) - self.assertArrayNear(result, [0.002, 0.0005, 0.17], 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_sparse_categorical_crossentropy_loss(self): - t = backend.constant([0, 1, 2]) - - p = backend.constant( - [[0.9, 0.05, 0.05], [0.05, 0.89, 0.06], [0.05, 0.01, 0.94]] - ) - result = backend.sparse_categorical_crossentropy(t, p) - self.assertArrayNear(self.evaluate(result), [0.105, 0.116, 0.062], 1e-3) - - p = backend.constant( - [[0.9, 0.05, 0.05], [0.05, 0.89, 0.01], [0.05, 0.06, 0.94]] - ) - result = backend.sparse_categorical_crossentropy(t, p, axis=0) - self.assertArrayNear(self.evaluate(result), [0.105, 0.116, 0.062], 1e-3) - - p = backend.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - result = ( - backend.sparse_categorical_crossentropy(t, p, from_logits=True), - ) - self.assertArrayNear(self.evaluate(result)[0], [0.002, 0, 0.17], 1e-3) - - p = backend.constant( - [[8.0, 0.0, 2.0], [1.0, 9.0, 3.0], [1.0, 1.0, 5.0]] - ) - result = ( - backend.sparse_categorical_crossentropy( - t, p, from_logits=True, axis=0 - ), - ) - self.assertArrayNear(self.evaluate(result)[0], [0.002, 0, 0.17], 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_sparse_categorical_crossentropy_loss_with_ignore_class(self): - tests = (([255, 1, 2, 2], 255), ([-1, 1, 2, 2], -1)) - p = backend.softmax( - backend.constant( - [ - [1.8, 1.2, 0.5], - [0.2, 3.8, 0.8], - [1.1, 0.4, 3.4], - [1.3, 0.7, 3.8], - ] - ) - ) - - for t, ignore_class in tests: - t = backend.constant(t) - result = backend.sparse_categorical_crossentropy( - t, p, ignore_class=ignore_class - ) - self.assertArrayNear( - self.evaluate(result), - [0.0, 0.07428224, 0.13980183, 0.11967831], - 1e-3, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_sparse_cce_loss_with_ignore_class_for_segmentation(self): - t = backend.constant( - [[[0, 2], [-1, -1]], [[0, 2], [-1, -1]], [[0, 0], [0, 0]]] - ) - p = backend.constant( - [ - [ - [[1.0, 0.0, 0.0], [0.0, 0.0, 1.0]], - [[0.2, 0.5, 0.3], [0.0, 1.0, 0.0]], - ], - [ - [[1.0, 0.0, 0.0], [0.0, 0.5, 0.5]], - [[0.2, 0.5, 0.3], [0.0, 1.0, 0.0]], - ], - [ - [[1.0, 0.0, 0.0], [1.0, 0.0, 0.0]], - [[0.1, 0.9, 0.0], [0.2, 0.8, 0.0]], - ], - ] - ) - - expected_result = [ - [[0.0, 0.0], [0.0, 0.0]], - [[0.0, 0.693148], [0.0, 0.0]], - [[0.0, 0.0], [2.302585, 1.609438]], - ] - - # total_entries = 12 - # valid_entries = 8 - expected_mask = backend.constant( - [ - [[True, True], [False, False]], - [[True, True], [False, False]], - [[True, True], [True, True]], - ] - ) - - result = backend.sparse_categorical_crossentropy(t, p, ignore_class=-1) - mask = losses_utils.get_mask(result) - - self.assertIsNotNone( - mask, - "expected sparse_categorical_crossentropy to set the " - "`_keras_mask` attribute when `ignore_class is not None`, " - "which indicates which loss values are valid.", - ) - - result = self.evaluate(result) - mask = self.evaluate(mask) - self.assertAllEqual(mask, expected_mask) - self.assertAllClose(result, expected_result, atol=1e-6) - - @test_combinations.generate(test_combinations.combine(mode=["graph"])) - def test_sparse_categorical_crossentropy_loss_with_unknown_rank_tensor( - self, - ): - # This test only runs in graph because the TF op layer is not supported - # yet for sparse ops. - t = backend.placeholder() - p = backend.placeholder() - o = backend.sparse_categorical_crossentropy(t, p) - - t_val = tf.convert_to_tensor([0, 1, 2]) - p_val = tf.convert_to_tensor( - [[0.9, 0.05, 0.05], [0.05, 0.89, 0.06], [0.05, 0.01, 0.94]] - ) - f = backend.function([t, p], o) - - result = f([t_val, p_val]) - self.assertArrayNear(result, [0.105, 0.116, 0.062], 1e-3) - - # With axis set - with self.assertRaisesRegex( - ValueError, - "Cannot compute sparse categorical crossentropy with `axis=0`", - ): - o = backend.sparse_categorical_crossentropy(t, p, axis=0) - f = backend.function([t, p], o) - - _ = f([t_val, p_val]) - - # from logits - p_val = tf.convert_to_tensor( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - o = backend.sparse_categorical_crossentropy(t, p, from_logits=True) - f = backend.function([t, p], o) - - result = f([t_val, p_val]) - self.assertArrayNear(result, [0.002, 0, 0.17], 1e-3) - - # from logits and axis set - with self.assertRaisesRegex( - ValueError, - "Cannot compute sparse categorical crossentropy with `axis=0`", - ): - o = backend.sparse_categorical_crossentropy( - t, p, from_logits=True, axis=0 - ) - f = backend.function([t, p], o) - - _ = f([t_val, p_val]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_sparse_categorical_crossentropy_with_softmax(self): - t = backend.constant([0, 1, 2]) - logits = backend.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - p = backend.softmax(logits) - p = tf.identity(tf.identity(p)) - result = self.evaluate(backend.sparse_categorical_crossentropy(t, p)) - self.assertArrayNear(result, [0.002, 0.0005, 0.17], 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_binary_crossentropy_from_logits_no_warnings(self): - t = backend.constant([[0, 1, 0]]) - logits = backend.constant([[8.0, 1.0, 1.0]]) - with warnings.catch_warnings(record=True) as w: - self.evaluate( - backend.binary_crossentropy(t, logits, from_logits=True) - ) - self.assertEmpty(w) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_binary_crossentropy_from_logits_with_sigmoid(self): - t = backend.constant([[0, 1, 0]]) - logits = backend.constant([[8.0, 1.0, 1.0]]) - p = activations.sigmoid(logits) - with warnings.catch_warnings(record=True) as w: - self.evaluate(backend.binary_crossentropy(t, p, from_logits=True)) - self.assertLen(w, 1) - self.assertIn("received `from_logits=True`", str(w[0].message)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_categorical_crossentropy_from_logits_with_softmax(self): - t = backend.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) - logits = backend.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - p = activations.softmax(logits) - with warnings.catch_warnings(record=True) as w: - self.evaluate( - backend.categorical_crossentropy(t, p, from_logits=True) - ) - self.assertLen(w, 1) - self.assertIn("received `from_logits=True`", str(w[0].message)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_sparse_categorical_crossentropy_from_logits_with_softmax(self): - t = backend.constant([0, 1, 2]) - logits = backend.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - p = activations.softmax(logits) - with warnings.catch_warnings(record=True) as w: - self.evaluate( - backend.sparse_categorical_crossentropy(t, p, from_logits=True) - ) - self.assertLen(w, 1) - self.assertIn("received `from_logits=True`", str(w[0].message)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_binary_focal_crossentropy_with_sigmoid(self): - t = backend.constant([[0, 1, 0]]) - logits = backend.constant([[8.0, 1.0, 1.0]]) - p = backend.sigmoid(logits) - p = tf.identity(tf.identity(p)) - result = self.evaluate( - backend.binary_focal_crossentropy(t, p, gamma=2.0) - ) - self.assertArrayNear(result[0], [7.995, 0.022, 0.701], 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_categorical_focal_crossentropy_with_softmax(self): - t = backend.constant([[0, 1, 0]]) - logits = backend.constant([[8.0, 1.0, 1.0]]) - p = backend.softmax(logits) - p = tf.identity(tf.identity(p)) - result = self.evaluate( - backend.categorical_focal_crossentropy(t, p, gamma=2.0) - ) - self.assertArrayNear(result, [1.747], 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_binary_focal_crossentropy_from_logits(self): - t = backend.constant([[0, 1, 0]]) - logits = backend.constant([[8.0, 1.0, 1.0]]) - result = self.evaluate( - backend.binary_focal_crossentropy( - target=t, - output=logits, - gamma=2.0, - from_logits=True, - ) - ) - self.assertArrayNear(result[0], [7.995, 0.022, 0.701], 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_categorical_focal_crossentropy_from_logits(self): - t = backend.constant([[0, 1, 0]]) - logits = backend.constant([[8.0, 1.0, 1.0]]) - result = self.evaluate( - backend.categorical_focal_crossentropy( - target=t, - output=logits, - from_logits=True, - ) - ) - self.assertArrayNear(result, [1.7472], 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_binary_focal_crossentropy_no_focal_effect_with_zero_gamma(self): - t = backend.constant([[0, 1, 0]]) - logits = backend.constant([[8.0, 1.0, 1.0]]) - p = backend.sigmoid(logits) - p = tf.identity(tf.identity(p)) - gamma = 0 - focal_result = self.evaluate( - backend.binary_focal_crossentropy( - target=t, - output=p, - gamma=gamma, - ) - ) - non_focal_result = self.evaluate(backend.binary_crossentropy(t, p)) - self.assertArrayNear(focal_result[0], non_focal_result[0], 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_categorical_focal_crossentropy_no_focal_effect(self): - t = backend.constant([[0, 1, 0]]) - logits = backend.constant([[8.0, 1.0, 1.0]]) - p = backend.softmax(logits) - p = tf.identity(tf.identity(p)) - focal_result = self.evaluate( - backend.categorical_focal_crossentropy( - target=t, - output=p, - gamma=0.0, - alpha=1.0, - ) - ) - non_focal_result = self.evaluate(backend.categorical_crossentropy(t, p)) - self.assertArrayNear(focal_result, non_focal_result, 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_binary_weighted_focal_crossentropy_with_sigmoid(self): - t = backend.constant([[0, 1, 0]]) - logits = backend.constant([[8.0, 1.0, 1.0]]) - p = backend.sigmoid(logits) - p = tf.identity(tf.identity(p)) - result = self.evaluate( - backend.binary_focal_crossentropy( - target=t, - output=p, - apply_class_balancing=True, - ) - ) - self.assertArrayNear(result[0], [5.996, 0.006, 0.526], 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_binary_weighted_focal_crossentropy_from_logits(self): - t = backend.constant([[0, 1, 0]]) - logits = backend.constant([[8.0, 1.0, 1.0]]) - result = self.evaluate( - backend.binary_focal_crossentropy( - target=t, - output=logits, - apply_class_balancing=True, - from_logits=True, - ) - ) - self.assertArrayNear(result[0], [5.996, 0.006, 0.526], 1e-3) - - -@tf_test_utils.with_control_flow_v2 -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class TestCTC(tf.test.TestCase): - def test_ctc_decode(self): - depth = 6 - seq_len_0 = 5 - input_prob_matrix_0 = np.asarray( - [ - [0.30999, 0.309938, 0.0679938, 0.0673362, 0.0708352, 0.173908], - [0.215136, 0.439699, 0.0370931, 0.0393967, 0.0381581, 0.230517], - [0.199959, 0.489485, 0.0233221, 0.0251417, 0.0233289, 0.238763], - [0.279611, 0.452966, 0.0204795, 0.0209126, 0.0194803, 0.20655], - [0.51286, 0.288951, 0.0243026, 0.0220788, 0.0219297, 0.129878], - # Random entry added in at time=5 - [0.155251, 0.164444, 0.173517, 0.176138, 0.169979, 0.160671], - ], - dtype=np.float32, - ) - - # len max_time_steps array of batch_size x depth matrices - inputs = [ - input_prob_matrix_0[t, :][np.newaxis, :] for t in range(seq_len_0) - ] + 2 * [ # Pad to max_time_steps = 8 - np.zeros((1, depth), dtype=np.float32) - ] - - inputs = backend.variable(np.asarray(inputs).transpose((1, 0, 2))) - - # batch_size length vector of sequence_lengths - input_length = backend.variable(np.array([seq_len_0], dtype=np.int32)) - # batch_size length vector of negative log probabilities - log_prob_truth = np.array( - [-3.5821197, -3.777835], # output beam 0 # output beam 1 - np.float32, - )[np.newaxis, :] - - decode_truth = [ - np.array([1, 0, -1, -1, -1, -1, -1]), - np.array([0, 1, 0, -1, -1, -1, -1]), - ] - beam_width = 2 - top_paths = 2 - - decode_pred_tf, log_prob_pred_tf = backend.ctc_decode( - inputs, - input_length, - greedy=False, - beam_width=beam_width, - top_paths=top_paths, - ) - - self.assertEqual(len(decode_pred_tf), top_paths) - log_prob_pred = backend.eval(log_prob_pred_tf) - for i in range(top_paths): - self.assertTrue( - np.alltrue(decode_truth[i] == backend.eval(decode_pred_tf[i])) - ) - self.assertAllClose(log_prob_truth, log_prob_pred) - - def test_ctc_batch_cost(self): - with self.cached_session(): - label_lens = np.expand_dims(np.asarray([5, 4]), 1) - input_lens = np.expand_dims( - np.asarray([5, 5]), 1 - ) # number of timesteps - loss_log_probs = [3.34211, 5.42262] - - # dimensions are batch x time x categories - labels = np.asarray([[0, 1, 2, 1, 0], [0, 1, 1, 0, -1]]) - inputs = np.asarray( - [ - [ - [ - 0.633766, - 0.221185, - 0.0917319, - 0.0129757, - 0.0142857, - 0.0260553, - ], - [ - 0.111121, - 0.588392, - 0.278779, - 0.0055756, - 0.00569609, - 0.010436, - ], - [ - 0.0357786, - 0.633813, - 0.321418, - 0.00249248, - 0.00272882, - 0.0037688, - ], - [ - 0.0663296, - 0.643849, - 0.280111, - 0.00283995, - 0.0035545, - 0.00331533, - ], - [ - 0.458235, - 0.396634, - 0.123377, - 0.00648837, - 0.00903441, - 0.00623107, - ], - ], - [ - [ - 0.30176, - 0.28562, - 0.0831517, - 0.0862751, - 0.0816851, - 0.161508, - ], - [ - 0.24082, - 0.397533, - 0.0557226, - 0.0546814, - 0.0557528, - 0.19549, - ], - [ - 0.230246, - 0.450868, - 0.0389607, - 0.038309, - 0.0391602, - 0.202456, - ], - [ - 0.280884, - 0.429522, - 0.0326593, - 0.0339046, - 0.0326856, - 0.190345, - ], - [ - 0.423286, - 0.315517, - 0.0338439, - 0.0393744, - 0.0339315, - 0.154046, - ], - ], - ], - dtype=np.float32, - ) - - labels = backend.variable(labels, dtype="int32") - inputs = backend.variable(inputs, dtype="float32") - input_lens = backend.variable(input_lens, dtype="int32") - label_lens = backend.variable(label_lens, dtype="int32") - res = backend.eval( - backend.ctc_batch_cost(labels, inputs, input_lens, label_lens) - ) - self.assertAllClose(res[:, 0], loss_log_probs, atol=1e-05) - - # test when batch_size = 1, that is, one sample only - ref = [3.34211] - input_lens = np.expand_dims(np.asarray([5]), 1) - label_lens = np.expand_dims(np.asarray([5]), 1) - - labels = np.asarray([[0, 1, 2, 1, 0]]) - inputs = np.asarray( - [ - [ - [ - 0.633766, - 0.221185, - 0.0917319, - 0.0129757, - 0.0142857, - 0.0260553, - ], - [ - 0.111121, - 0.588392, - 0.278779, - 0.0055756, - 0.00569609, - 0.010436, - ], - [ - 0.0357786, - 0.633813, - 0.321418, - 0.00249248, - 0.00272882, - 0.0037688, - ], - [ - 0.0663296, - 0.643849, - 0.280111, - 0.00283995, - 0.0035545, - 0.00331533, - ], - [ - 0.458235, - 0.396634, - 0.123377, - 0.00648837, - 0.00903441, - 0.00623107, - ], - ] - ], - dtype=np.float32, - ) - - k_labels = backend.variable(labels, dtype="int32") - k_inputs = backend.variable(inputs, dtype="float32") - k_input_lens = backend.variable(input_lens, dtype="int32") - k_label_lens = backend.variable(label_lens, dtype="int32") - res = backend.eval( - backend.ctc_batch_cost( - k_labels, k_inputs, k_input_lens, k_label_lens - ) - ) - self.assertAllClose(res[:, 0], ref, atol=1e-05) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class TestRandomOps(tf.test.TestCase): - def test_random_normal(self): - np.random.seed(123) - x = backend.random_normal((500, 500)) - val = backend.eval(x) - self.assertAllClose(np.mean(val), 0.0, atol=0.01) - self.assertAllClose(np.std(val), 1.0, atol=0.01) - - def test_random_uniform(self): - np.random.seed(123) - x = backend.random_uniform((500, 500)) - val = backend.eval(x) - self.assertAllClose(np.mean(val), 0.5, atol=0.01) - self.assertAllClose(np.max(val), 1.0, atol=0.01) - self.assertAllClose(np.min(val), 0.0, atol=0.01) - - def test_random_binomial(self): - np.random.seed(123) - x = backend.random_binomial((500, 500), p=0.5) - self.assertAllClose(np.mean(backend.eval(x)), 0.5, atol=0.01) - - def test_truncated_normal(self): - np.random.seed(123) - x = backend.truncated_normal((500, 500), mean=0.0, stddev=1.0) - x = backend.truncated_normal((1000, 1000), mean=0.0, stddev=1.0) - y = backend.eval(x) - self.assertAllClose(np.mean(y), 0.0, atol=0.01) - self.assertAllClose(np.std(y), 0.88, atol=0.01) - self.assertAllClose(np.max(y), 2.0, atol=0.01) - self.assertAllClose(np.min(y), -2.0, atol=0.01) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class FunctionTest(tf.test.TestCase): - def test_function_basics(self): - if tf.executing_eagerly(): - self.skipTest("eager backend.function does not support updates") - x1 = backend.placeholder(shape=(), dtype="float32") - x2 = backend.placeholder(shape=(), dtype="int32") - v = backend.variable(10.0) - - y1 = x1 + backend.cast(x2, "float32") + v - y2 = x1 * backend.cast(x2, "float32") - - with tf.control_dependencies([y1]): - u = backend.update(v, x1) - - f = backend.function([x1, x2], [y1, y2], updates=[u]) - output_values = f([2, 3]) - self.assertEqual(output_values, [15.0, 6.0]) - self.assertEqual(backend.eval(v), 2.0) - - def test_function_dict_outputs(self): - x_ph = backend.placeholder(shape=(), name="x") - y_ph = backend.placeholder(shape=(), name="y") - outputs = {"x*y": y_ph * x_ph, "x*x": x_ph * x_ph} - - f = backend.function(inputs=[x_ph, y_ph], outputs=outputs) - x, y = 2.0, 5.0 - results = f([x, y]) - - self.assertEqual(results["x*y"], 10.0) - self.assertEqual(results["x*x"], 4) - - def test_function_dict_inputs(self): - placeholders = { - "x": backend.placeholder(shape=()), - "y": backend.placeholder(shape=()), - } - outputs = [placeholders["x"] * placeholders["y"]] - - f = backend.function(inputs=placeholders, outputs=outputs) - results = f({"x": 2.0, "y": 3.0}) - self.assertEqual(results[0], 6.0) - - def test_function_variable_inputs(self): - placeholders = { - "x": backend.placeholder(shape=()), - "y": backend.placeholder(shape=()), - } - outputs = [placeholders["x"] * placeholders["y"]] - - f = backend.function(inputs=placeholders, outputs=outputs) - results = f({"x": backend.variable(2.0), "y": 3.0}) - self.assertEqual(results[0], 6.0) - - def test_function_composite_variable_inputs(self): - if context.executing_eagerly(): - self.skipTest( - "Only graph mode flattens composite tensor inputs into flat " - "tensors." - ) - - class Spec(tf.TypeSpec): - value_type = property(lambda self: CompositeVariable) - - def _serialize(self): - pass - - def _component_specs(self): - pass - - def _to_components(self, value): - return value.variables - - def _from_components(self, variable_list): - return CompositeVariable(variable_list) - - class CompositeVariable(tf.__internal__.CompositeTensor): - def __init__(self, variable_list): - self.variables = variable_list - - @property - def _type_spec(self): - return Spec() - - def _convert_variables_to_tensors(self): - self.variables = tf.nest.map_structure( - tf_utils.convert_variables_to_tensors, self.variables - ) - return self - - placeholders = { - "x": backend.placeholder(shape=()), - "y": backend.placeholder(shape=()), - } - outputs = [placeholders["x"] * placeholders["y"]] - - f = backend.function(inputs=placeholders, outputs=outputs) - results = f({"x": CompositeVariable([backend.variable(2.0)]), "y": 3.0}) - self.assertEqual(results[0], 6.0) - - def test_function_single_input_output(self): - x_ph = backend.placeholder(shape=(), name="x") - output = x_ph * x_ph - f = backend.function(x_ph, output) - result = f(2.0) - self.assertEqual(result, 4.0) - - def test_tuple_updates(self): - if tf.executing_eagerly(): - self.skipTest("eager backend.function does not support updates") - - x_ph = backend.placeholder(ndim=2) - v = backend.variable(np.ones((4, 2))) - output = x_ph**2 + v - new_v = v + x_ph - f = backend.function(x_ph, output, updates=[(v, new_v)]) - input_val = np.random.random((4, 2)) - result = f(input_val) - self.assertAllClose(result, input_val**2 + 1) - self.assertAllClose(backend.get_value(v), np.ones((4, 2)) + input_val) - - -class BackendGraphTests(tf.test.TestCase, parameterized.TestCase): - @test_combinations.generate(test_combinations.combine(mode=["graph"])) - def test_function_placeholder_with_default(self): - with backend.get_graph().as_default(): - x1 = tf.compat.v1.placeholder_with_default( - np.array(2.0, dtype="float32"), shape=() - ) - x2 = tf.compat.v1.placeholder_with_default( - np.array(3, dtype="int32"), shape=() - ) - y1 = x1 + backend.cast(x2, "float32") - y2 = x1 * backend.cast(x2, "float32") - f = backend.function([x1, x2], [y1, y2]) - output_values = f([4, 5]) - self.assertEqual(output_values, [9.0, 20.0]) - output_values = f([None, None]) - self.assertEqual(output_values, [5.0, 6.0]) - - def test_function_tf_feed_symbols(self): - # Test Keras backend functions with TF tensor inputs. - with tf.Graph().as_default(), self.cached_session(): - # Test feeding a resource variable to `function`. - x1 = backend.placeholder(shape=()) - x2 = backend.placeholder(shape=()) - lr = backend.learning_phase() # Include a placeholder_with_default. - - y1 = backend.variable(10.0) - y2 = 3 - - f = backend.function( - inputs=[x1, x2, lr], - outputs=[x1 + 1, backend.in_train_phase(x2 + 2, x2 - 1)], - ) - outs = f([y1, y2, None]) # Use default learning_phase value. - self.assertEqual(outs, [11.0, 2.0]) - outs = f([y1, y2, 1]) # Set learning phase value. - self.assertEqual(outs, [11.0, 5.0]) - - # Test triggering a callable refresh by changing the input. - y3 = backend.constant(20.0) # Test with tensor - outs = f([y3, y2, None]) - self.assertEqual(outs, [21.0, 2.0]) - - y4 = 4 # Test with non-symbol - outs = f([y4, y2, None]) - self.assertEqual(outs, [5.0, 2.0]) - - # Test with a different dtype - y5 = backend.constant(10.0, dtype="float64") - outs = f([y5, y2, None]) - self.assertEqual(outs, [11.0, 2.0]) - - def test_function_tf_fetches(self): - # Additional operations can be passed to tf.compat.v1.Session().run() - # via its `fetches` arguments. In contrast to `updates` argument of - # backend.function() these do not have control dependency on `outputs` - # so they can run in parallel. Also they should not contribute to output - # of backend.function(). - with tf.Graph().as_default(), self.cached_session(): - x = backend.variable(0.0) - y = backend.variable(0.0) - x_placeholder = backend.placeholder(shape=()) - y_placeholder = backend.placeholder(shape=()) - - f = backend.function( - inputs=[x_placeholder, y_placeholder], - outputs=[x_placeholder + y_placeholder], - updates=[(x, x_placeholder + 1.0)], - fetches=[backend.update(y, 5.0)], - ) - output = f([10.0, 20.0]) - self.assertEqual(output, [30.0]) - self.assertEqual( - backend.get_session().run(fetches=[x, y]), [11.0, 5.0] - ) - - def test_function_tf_feed_dict(self): - # Additional substitutions can be passed to - # `tf.compat.v1.Session().run()` via its `feed_dict` arguments. Note - # that the feed_dict is passed once in the constructor but we can modify - # the values in the dictionary. Through this feed_dict we can provide - # additional substitutions besides Keras inputs. - with tf.Graph().as_default(), self.cached_session(): - x = backend.variable(0.0) - y = backend.variable(0.0) - x_placeholder = backend.placeholder(shape=()) - y_placeholder = backend.placeholder(shape=()) - - feed_dict = {y_placeholder: 3.0} - fetches = [backend.update(y, y_placeholder * 10.0)] - f = backend.function( - inputs=[x_placeholder], - outputs=[x_placeholder + 1.0], - updates=[(x, x_placeholder + 10.0)], - feed_dict=feed_dict, - fetches=fetches, - ) - output = f([10.0]) - self.assertEqual(output, [11.0]) - self.assertEqual( - backend.get_session().run(fetches=[x, y]), [20.0, 30.0] - ) - - # updated value in feed_dict will be modified within the - # K.function() - feed_dict[y_placeholder] = 4.0 - output = f([20.0]) - self.assertEqual(output, [21.0]) - self.assertEqual( - backend.get_session().run(fetches=[x, y]), [30.0, 40.0] - ) - - def test_function_tf_run_options_with_run_metadata(self): - with tf.Graph().as_default(), self.cached_session(): - x_placeholder = backend.placeholder(shape=()) - y_placeholder = backend.placeholder(shape=()) - - run_options = tf.compat.v1.RunOptions(output_partition_graphs=True) - run_metadata = tf.compat.v1.RunMetadata() - # enable run_options. - f = backend.function( - inputs=[x_placeholder, y_placeholder], - outputs=[x_placeholder + y_placeholder], - options=run_options, - run_metadata=run_metadata, - ) - output = f([10.0, 20.0]) - self.assertEqual(output, [30.0]) - self.assertNotEmpty(run_metadata.partition_graphs) - # disable run_options. - f1 = backend.function( - inputs=[x_placeholder, y_placeholder], - outputs=[x_placeholder + y_placeholder], - run_metadata=run_metadata, - ) - output1 = f1([10.0, 20.0]) - self.assertEqual(output1, [30.0]) - self.assertEmpty(run_metadata.partition_graphs) - - def test_function_fetch_callbacks(self): - class CallbackStub: - def __init__(self): - self.times_called = 0 - self.callback_result = 0 - - def _fetch_callback(self, result): - self.times_called += 1 - self.callback_result = result - - with tf.Graph().as_default(), self.cached_session(): - callback = CallbackStub() - x_placeholder = backend.placeholder(shape=()) - y_placeholder = backend.placeholder(shape=()) - - callback_op = x_placeholder * y_placeholder - - f = backend.function( - inputs=[x_placeholder, y_placeholder], - outputs=[x_placeholder + y_placeholder], - ) - f.fetches.append(callback_op) - f.fetch_callbacks[callback_op] = callback._fetch_callback - - _ = f([10.0, 20.0]) - - self.assertEqual(callback.times_called, 1) - self.assertEqual(callback.callback_result, 200) - - def test_get_session_different_graphs(self): - with tf.Graph().as_default(): - x = backend.constant(1) - session = backend.get_session() - self.assertIs(session, backend.get_session((x,))) - self.assertIs(session, backend.get_session()) - with tf.Graph().as_default(): - self.assertIs(session, backend.get_session((x,))) - self.assertIsNot(session, backend.get_session()) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class ControlOpsTests(tf.test.TestCase): - def test_function_switch_basics(self): - x = tf.constant(2.0) - y = tf.constant(3.0) - - def xpowy(): - return backend.pow(x, y) - - def ypowx(): - return backend.pow(y, x) - - tensor = backend.switch(backend.less(x, y), xpowy, ypowx) - self.assertEqual(backend.eval(tensor), [8.0]) - - tensor = backend.switch(backend.greater(x, y), xpowy, ypowx) - self.assertEqual(backend.eval(tensor), [9.0]) - - def test_unequal_rank(self): - x = tf.convert_to_tensor( - np.array([[1, 2, 3], [4, 5, 6]]), dtype="float32" - ) - y = tf.convert_to_tensor(np.array([1, 2, 3]), dtype="float32") - - def true_func(): - return x - - def false_func(): - return y - - with self.assertRaisesRegex( - ValueError, "Rank of `condition` should be less than" - ): - backend.switch(backend.equal(x, x), false_func, true_func) - - -class ContextValueCacheTest(tf.test.TestCase): - def test_cache(self): - cache = backend.ContextValueCache(list) - graph1 = tf.Graph() - graph2 = tf.Graph() - - cache[graph1].append(1) - with graph1.as_default(): - cache[None].append(2) - - with graph2.as_default(): - cache[None].append(3) - cache[graph2].append(4) - - self.assertAllEqual(cache[graph1], [1, 2]) - self.assertAllEqual(cache[graph2], [3, 4]) - - with tf.__internal__.eager_context.eager_mode(): - cache[None].append(5) - cache[None].append(6) - self.assertAllEqual(cache[None], [5, 6]) - - self.assertLen(cache, 3) - - del graph1 - gc.collect() - self.assertLen(cache, 2) - - def test_cache_in_parent_graph(self): - cache = backend.ContextValueCache(int) - cache.setdefault(None, backend.constant(5)) - - with tf.Graph().as_default() as g: - # g is not a child graph of the default test context, so the - # recursive lookup will create a new default value. - self.assertAllEqual(cache[g], 0) - - @tf.function - def fn(): - # The function graph is a child of the default test context, so - # __getitem__ will return the previously saved value. - return cache[tf.compat.v1.get_default_graph()] - - self.assertEqual(self.evaluate(fn()), 5) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class RandomGeneratorTest(tf.test.TestCase, parameterized.TestCase): - def test_generator_reproducibility(self): - seed = 1337 - gen1 = backend.RandomGenerator(seed, rng_type="stateful") - output1 = gen1.random_normal(shape=[2, 3]) - output2 = gen1.random_normal(shape=[2, 3]) - - self.assertNotAllClose(output1, output2) - - gen2 = backend.RandomGenerator(seed, rng_type="stateful") - output3 = gen2.random_normal(shape=[2, 3]) - output4 = gen2.random_normal(shape=[2, 3]) - - if tf.compat.v1.executing_eagerly(): - # Make sure generator with same seed will produce same sequence. - self.assertAllEqual(output1, output3) - self.assertAllEqual(output2, output4) - - def test_unseeded(self): - seed = None - gen1 = backend.RandomGenerator(seed, rng_type="stateful") - output1 = gen1.random_normal(shape=[2, 3]) - - gen2 = backend.RandomGenerator(seed, rng_type="stateful") - output2 = gen2.random_normal(shape=[2, 3]) - - self.assertNotAllClose(output1, output2) - - def test_implementation(self): - seed = 1337 - seeded = backend.RandomGenerator(seed, rng_type="stateful") - seeded._maybe_init() - unseeded = backend.RandomGenerator(None, rng_type="stateful") - unseeded._maybe_init() - if tf.compat.v1.executing_eagerly(): - # Make sure we use tf.random.Generator in v2. - self.assertIsNotNone(seeded._generator) - self.assertIsNotNone(unseeded._generator) - else: - # In v1, we can't use tf.random.Generator since it is not compatible - # with graph mode. - self.assertIsNone(seeded._generator) - self.assertIsNone(unseeded._generator) - - def test_unseeded_with_utils_set_random_seed(self): - keras_seed = 1337 - tf_utils.set_random_seed(keras_seed) - gen1 = backend.RandomGenerator(seed=None, rng_type="stateful") - output1 = gen1.random_normal(shape=[2, 3]) - output2 = gen1.random_normal(shape=[2, 3]) - - self.assertNotAllClose(output1, output2) - - # Make sure even with unseeded backend generator, as long as we set the - # keras random seed, it will make the generator to produce the same - # sequence. This will ensure all the client are in sync in the - # multi-client setting, when they all set the keras seed. - tf_utils.set_random_seed(keras_seed) - gen2 = backend.RandomGenerator(seed=None, rng_type="stateful") - output3 = gen2.random_normal(shape=[2, 3]) - output4 = gen2.random_normal(shape=[2, 3]) - - gen3 = backend.RandomGenerator(seed=None, rng_type="stateful") - output5 = gen3.random_normal(shape=[2, 3]) - output6 = gen3.random_normal(shape=[2, 3]) - - if tf.compat.v1.executing_eagerly(): - # The generator is only used in the tf2 with eager. - self.assertAllEqual(output1, output3) - self.assertAllEqual(output2, output4) - - # Also make sure different generator instance are still producing - # different result - self.assertNotAllEqual(output3, output5) - self.assertNotAllEqual(output4, output6) - - def test_force_stateless(self): - gen = backend.RandomGenerator(seed=None, rng_type="stateless") - output1 = gen.random_normal(shape=[2, 3]) - seed1 = gen._seed - output2 = gen.random_normal(shape=[2, 3]) - seed2 = gen._seed - - self.assertAllClose(output1, output2) - # Make sure we always use the same seed, and it is not None - self.assertEqual(seed1, seed2) - self.assertIsNotNone(seed1) - - # Make sure a new seed is used when creating a new generator instance. - gen2 = backend.RandomGenerator(seed=None, rng_type="stateless") - output3 = gen2.random_normal(shape=[2, 3]) - seed3 = gen2._seed - output4 = gen2.random_normal(shape=[2, 3]) - seed4 = gen2._seed - - self.assertAllClose(output3, output4) - self.assertEqual(seed3, seed4) - self.assertNotEqual(seed1, seed3) - - def test_force_stateless_with_seed(self): - seed = 1337 - gen = backend.RandomGenerator(seed=seed, rng_type="stateless") - output1 = gen.random_normal(shape=[2, 3]) - seed1 = gen._seed - output2 = gen.random_normal(shape=[2, 3]) - seed2 = gen._seed - - self.assertAllClose(output1, output2) - # Make sure we always use the same seed, and it is not None - self.assertEqual(seed, seed1) - self.assertEqual(seed, seed2) - - # Make sure RandomGenerator always generate same value with same seed. - gen2 = backend.RandomGenerator(seed=seed, rng_type="stateless") - output3 = gen2.random_normal(shape=[2, 3]) - self.assertAllClose(output3, output1) - - @parameterized.named_parameters(("seeded", 1337), ("unseeded", None)) - def test_stateless_with_seed_delta(self, seed): - gen = backend.RandomGenerator(seed=seed, rng_type="stateless") - output1 = gen.random_normal(shape=[2, 3], nonce=hash((1, 1))) - seed1 = gen._seed - output2 = gen.random_normal(shape=[2, 3], nonce=hash((1, 1))) - seed2 = gen._seed - output3 = gen.random_normal(shape=[2, 3], nonce=hash((2, 1))) - seed3 = gen._seed - - self.assertAllClose(output1, output2) - # Different seed_delta will produce different value. - self.assertNotAllClose(output1, output3) - # Make sure the internal seed is not changed at all. - self.assertEqual(seed1, seed2) - self.assertEqual(seed1, seed3) - - def test_unknown_rng_type(self): - with self.assertRaisesRegex(ValueError, "Got: unknown"): - backend.RandomGenerator(seed=None, rng_type="unknown") - - def test_prefer_stateless_over_global_generator(self): - try: - generator_enabled = backend.is_tf_random_generator_enabled() - if not generator_enabled: - backend.enable_tf_random_generator() - - seed = 1337 - gen = backend.RandomGenerator(seed=seed, rng_type="stateless") - output1 = gen.random_normal(shape=[2, 3]) - output2 = gen.random_normal(shape=[2, 3]) - - self.assertIsNone(gen._generator) - self.assertAllClose(output1, output2) - finally: - if not generator_enabled: - # Change the global flag back. - backend.disable_tf_random_generator() - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/BUILD b/keras/benchmarks/BUILD deleted file mode 100644 index 94e5e2e4f76..00000000000 --- a/keras/benchmarks/BUILD +++ /dev/null @@ -1,166 +0,0 @@ -# Description: -# Implementation of Keras benchmarks. - -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -package( - default_visibility = ["//visibility:public"], - licenses = ["notice"], -) - -# To run CPU benchmarks: -# bazel run -c opt benchmarks_test -- --benchmarks=. - -# To run GPU benchmarks: -# bazel run --config=cuda -c opt --copt="-mavx" benchmarks_test -- \ -# --benchmarks=. - -# To run a subset of benchmarks using --benchmarks flag. -# --benchmarks: the list of benchmarks to run. The specified value is interpreted -# as a regular expression and any benchmark whose name contains a partial match -# to the regular expression is executed. -# e.g. --benchmarks=".*lstm*." will run all lstm layer related benchmarks. - -# Add all benchmarks related utils here for pip testing dependencies. -py_library( - name = "keras_benchmark_lib_pip", - srcs_version = "PY3", - deps = [ - ":benchmark_util", - ":distribution_util", - "//keras/benchmarks/saved_model_benchmarks:saved_model_benchmark_util", - ], -) - -# This lib is mainly for running benchmarks on mlcompass infra. -py_library( - name = "profiler_lib", - srcs_version = "PY3", - visibility = [ - "//keras:friends", - "//learning/brain/contrib/keras_benchmark:__subpackages__", - ], -) - -COMMON_TAGS = [ - "no_pip", # b/161253163 - "no_windows", # b/160628318 -] - -py_test( - name = "keras_cpu_benchmark_test", - size = "large", - srcs = ["keras_cpu_benchmark_test.py"], - python_version = "PY3", - tags = COMMON_TAGS, - deps = [ - ":benchmark_util", - ":profiler_lib", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -cuda_py_test( - name = "eager_microbenchmarks_test", - size = "medium", - srcs = ["eager_microbenchmarks_test.py"], - python_version = "PY3", - tags = COMMON_TAGS + [ - "no_oss_py38", # TODO(b/162044699) - ], - deps = [ - ":profiler_lib", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/utils:tf_inspect", - ], -) - -cuda_py_test( - name = "model_components_benchmarks_test", - srcs = ["model_components_benchmarks_test.py"], - python_version = "PY3", - deps = [ - ":profiler_lib", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -py_library( - name = "benchmark_util", - srcs = ["benchmark_util.py"], - srcs_version = "PY3", - deps = [ - ":distribution_util", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -py_test( - name = "benchmark_util_test", - srcs = ["benchmark_util_test.py"], - python_version = "PY3", - tags = COMMON_TAGS, - deps = [ - ":benchmark_util", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -py_library( - name = "distribution_util", - srcs = ["distribution_util.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -py_test( - name = "optimizer_benchmarks_test", - srcs = ["optimizer_benchmarks_test.py"], - python_version = "PY3", - tags = COMMON_TAGS + [ - "no_oss_py38", # TODO(b/162044699) - ], - deps = [ - ":benchmark_util", - ":profiler_lib", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/optimizers/legacy:optimizers", - ], -) - -# Run memory profiler on Keras model. -# Please make sure `memory_profiler` is installed. -# To run the memory profiler: -# With CPU: -# bazel run -c opt model_memory_profile -- --model=YOUR_MODEL_NAME -# With GPU: -# bazel run -c opt --config=cuda model_memory_profile -- --model=YOUR_MODEL_NAME -py_binary( - name = "model_memory_profile", - srcs = ["model_memory_profile.py"], - python_version = "PY3", - tags = ["no_oss"], - deps = ["//:expect_tensorflow_installed"], -) - -py_test( - name = "metrics_memory_benchmark_test", - srcs = ["metrics_memory_benchmark_test.py"], - python_version = "PY3", - tags = COMMON_TAGS, - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) diff --git a/keras/benchmarks/README.md b/keras/benchmarks/README.md deleted file mode 100644 index 17e458b3a77..00000000000 --- a/keras/benchmarks/README.md +++ /dev/null @@ -1,3 +0,0 @@ -# Keras Benchmark - -This package contains benchmarks on Keras models and components. diff --git a/keras/benchmarks/__init__.py b/keras/benchmarks/__init__.py deleted file mode 100644 index 3d82e468df5..00000000000 --- a/keras/benchmarks/__init__.py +++ /dev/null @@ -1,15 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras Benchmarks.""" diff --git a/keras/benchmarks/benchmark_util.py b/keras/benchmarks/benchmark_util.py deleted file mode 100644 index ff6aa670e3d..00000000000 --- a/keras/benchmarks/benchmark_util.py +++ /dev/null @@ -1,224 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Common utils for benchmarks.""" - -import timeit - -import numpy as np - -from keras import callbacks -from keras.benchmarks import distribution_util - - -def get_benchmark_name(name): - """Split the suffix of the benchmark name. - - For example, for the name = 'benchmark_layer_call__Conv2D_small_shape', - the return value is ['Conv2D', 'small', 'shape']. - - This is to generate the metadata of the benchmark test. - - Args: - name: A string, the benchmark name. - - Returns: - A list of strings of the suffix in the benchmark name. - """ - if "__" not in name or "_" not in name: - raise ValueError("The format of the benchmark name is wrong.") - return name.split("__")[-1].split("_") - - -def generate_benchmark_params_cpu_gpu(*params_list): - """Extend the benchmark names with CPU and GPU suffix. - - Args: - *params_list: A list of tuples represents the benchmark parameters. - - Returns: - A list of strings with the benchmark name extended with CPU and GPU - suffix. - """ - benchmark_params = [] - for params in params_list: - benchmark_params.extend( - [((param[0] + "_CPU",) + param[1:]) for param in params] - ) - benchmark_params.extend( - [((param[0] + "_GPU",) + param[1:]) for param in params] - ) - return benchmark_params - - -def get_keras_examples_metadata( - keras_model, batch_size, impl=".keras.cfit_graph" -): - return { - "model_name": "keras_examples", - "implementation": keras_model + impl, - "parameters": "bs_" + str(batch_size), - } - - -class TimerCallBack(callbacks.Callback): - """Callback for logging time in each epoch or batch.""" - - def __init__(self): - self.times = [] - self.timer = timeit.default_timer - self.startup_time = timeit.default_timer() - self.recorded_startup = False - - def on_epoch_begin(self, e, logs): - self.epoch_start_time = self.timer() - - def on_epoch_end(self, e, logs): - self.times.append(self.timer() - self.epoch_start_time) - - def on_batch_end(self, e, logs): - if not self.recorded_startup: - self.startup_time = self.timer() - self.startup_time - self.recorded_startup = True - - -def measure_performance( - model_fn, - x=None, - y=None, - epochs=2, - batch_size=32, - run_iters=4, - optimizer=None, - loss=None, - metrics=None, - verbose=0, - num_gpus=0, - distribution_strategy="off", -): - """Run models and measure the performance. - - Args: - model_fn: Model function to be benchmarked. - x: Input data. See `x` in the `fit()` method of `keras.Model`. - y: Target data. See `y` in the `fit()` method of `keras.Model`. - epochs: Integer. Number of epochs to train the model. - If unspecified, `epochs` will default to 2. - batch_size: Integer. Number of samples per gradient update. If - unspecified, `batch_size` will default to 32. - run_iters: Integer. Number of iterations to run the performance - measurement. If unspecified, `run_iters` will default to 4. - optimizer: String (name of optimizer) or optimizer instance. See - `tf.keras.optimizers`. - loss: String (name of objective function), objective function or - `tf.keras.losses.Loss` instance. See `tf.keras.losses`. - metrics: Lists of metrics to be evaluated by the model during training. - See `metrics` in the `compile()` method of `keras.Model`. - verbose: 0, 1, 2. Verbosity mode. See `verbose` in the `fit()` method of - `keras.Model`. If unspecified, `verbose` will default to 0. - num_gpus: Number of GPUs to run the model. - distribution_strategy: Distribution strategies. It could be - `multi_worker_mirrored`, `one_device`, `mirrored`. If unspecified, - `distribution_strategy` will default to 'off'. Note that, `TPU` - and `parameter_server` are not supported yet. - - Returns: - Performance summary, which contains build_time, compile_time, - startup_time, avg_epoch_time, wall_time, exp_per_sec, epochs, - distribution_strategy. - - Raise: - ValueError: If `x` is none or if `optimizer` is not provided or - if `loss` is not provided or if `num_gpus` is negative. - """ - if "x" is None: - raise ValueError("Input data is required.") - if "optimizer" is None: - raise ValueError("Optimizer is required.") - if "loss" is None: - raise ValueError("Loss function is required.") - if num_gpus < 0: - raise ValueError("`num_gpus` cannot be negative") - - # TODO(xingyulong): we will add tfds support later and - # get the `num_examples` from info. - num_examples = x.shape[0] - - build_time_list, compile_time_list, startup_time_list = [], [], [] - avg_epoch_time_list, wall_time_list, exp_per_sec_list = [], [], [] - total_num_examples = epochs * num_examples - - strategy = distribution_util.get_distribution_strategy( - distribution_strategy=distribution_strategy, num_gpus=num_gpus - ) - - for _ in range(run_iters): - timer = timeit.default_timer - start_time = timer() - # Init the distribution strategy scope for each iteration. - strategy_scope = distribution_util.get_strategy_scope(strategy) - with strategy_scope: - t0 = timer() - model = model_fn() - build_time = timer() - t0 - - t1 = timer() - model.compile( - optimizer=optimizer, - loss=loss, - metrics=metrics, - ) - compile_time = timer() - t1 - # Run one warm up epoch. - model.fit(x=x, y=y, batch_size=batch_size, epochs=1) - cbk = TimerCallBack() - t2 = timer() - model.fit( - x=x, - y=y, - batch_size=batch_size, - epochs=epochs, - callbacks=[cbk], - verbose=verbose, - ) - end_time = timer() - - build_time_list.append(build_time) - compile_time_list.append(compile_time) - startup_time_list.append(cbk.startup_time) - avg_epoch_time_list.append(np.mean(cbk.times)) - wall_time_list.append(end_time - start_time) - exp_per_sec_list.append(total_num_examples / (end_time - t2)) - - metrics = [] - metrics.append({"name": "build_time", "value": np.mean(build_time_list)}) - metrics.append( - {"name": "compile_time", "value": np.mean(compile_time_list)} - ) - metrics.append( - {"name": "startup_time", "value": np.mean(startup_time_list)} - ) - metrics.append( - {"name": "avg_epoch_time", "value": np.mean(avg_epoch_time_list)} - ) - metrics.append({"name": "exp_per_sec", "value": np.mean(exp_per_sec_list)}) - metrics.append({"name": "epochs", "value": epochs}) - - wall_time = np.mean(wall_time_list) - extras = { - "distribution_strategy": distribution_strategy, - "num_gpus": num_gpus, - } - - return metrics, wall_time, extras diff --git a/keras/benchmarks/benchmark_util_test.py b/keras/benchmarks/benchmark_util_test.py deleted file mode 100644 index a667f53c5fd..00000000000 --- a/keras/benchmarks/benchmark_util_test.py +++ /dev/null @@ -1,48 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for benchmark utitilies.""" - -import tensorflow.compat.v2 as tf - -from keras.benchmarks import benchmark_util - - -class BenchmarkUtilTest(tf.test.TestCase): - def test_get_benchmark_name(self): - name = "benchmark_layer_call__Conv2D_small_shape" - expected = ["Conv2D", "small", "shape"] - out = benchmark_util.get_benchmark_name(name) - self.assertAllEqual(out, expected) - - def test_generate_benchmark_params_cpu_gpu(self): - adam_opt = tf.keras.optimizers.Adam() - sgd_opt = tf.keras.optimizers.SGD() - params = [ - ("Adam", adam_opt, 10), - ("SGD", sgd_opt, 10), - ] - expected = [ - ("Adam_CPU", adam_opt, 10), - ("SGD_CPU", sgd_opt, 10), - ("Adam_GPU", adam_opt, 10), - ("SGD_GPU", sgd_opt, 10), - ] - - out = benchmark_util.generate_benchmark_params_cpu_gpu(params) - self.assertAllEqual(out, expected) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/distribution_util.py b/keras/benchmarks/distribution_util.py deleted file mode 100644 index a4868749ed5..00000000000 --- a/keras/benchmarks/distribution_util.py +++ /dev/null @@ -1,199 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utils for running models in a distribution setting. - -Mostly from -https://github.com/tensorflow/models/blob/master/official/utils/misc/distribution_utils.py. -""" - -import json -import os - -import tensorflow.compat.v2 as tf - - -def _collective_communication(all_reduce_alg): - """Return a CollectiveCommunication based on all_reduce_alg. - - Args: - all_reduce_alg: a string specifying which collective communication to - pick, or None. - - Returns: - tf.distribute.experimental.CollectiveCommunication object - - Raises: - ValueError: if `all_reduce_alg` not in [None, "ring", "nccl"] - """ - collective_communication_options = { - None: tf.distribute.experimental.CollectiveCommunication.AUTO, - "ring": tf.distribute.experimental.CollectiveCommunication.RING, - "nccl": tf.distribute.experimental.CollectiveCommunication.NCCL, - } - if all_reduce_alg not in collective_communication_options: - raise ValueError( - "When used with `multi_worker_mirrored`, valid values for " - "all_reduce_alg are [`ring`, `nccl`]. Supplied value: {}".format( - all_reduce_alg - ) - ) - return collective_communication_options[all_reduce_alg] - - -def _mirrored_cross_device_ops(all_reduce_alg, num_packs): - """Return a CrossDeviceOps based on all_reduce_alg and num_packs. - - Args: - all_reduce_alg: a string specifying which cross device op to pick, or - None. - num_packs: an integer specifying number of packs for the cross device op. - - Returns: - tf.distribute.CrossDeviceOps object or None. - - Raises: - ValueError: if `all_reduce_alg` not in [None, "nccl", - "hierarchical_copy"]. - """ - if all_reduce_alg is None: - return None - mirrored_all_reduce_options = { - "nccl": tf.distribute.NcclAllReduce, - "hierarchical_copy": tf.distribute.HierarchicalCopyAllReduce, - } - if all_reduce_alg not in mirrored_all_reduce_options: - raise ValueError( - "When used with `mirrored`, valid values for all_reduce_alg are " - "[`nccl`, `hierarchical_copy`]. Supplied value: {}".format( - all_reduce_alg - ) - ) - cross_device_ops_class = mirrored_all_reduce_options[all_reduce_alg] - return cross_device_ops_class(num_packs=num_packs) - - -def get_distribution_strategy( - distribution_strategy="mirrored", - num_gpus=0, - all_reduce_alg=None, - num_packs=1, -): - """Return a DistributionStrategy for running the model. - - Args: - distribution_strategy: a string specifying which distribution strategy to - use. Accepted values are "off", "one_device", "mirrored", and - "multi_worker_mirrored" -- case insensitive. "off" means not to use - Distribution Strategy. - num_gpus: Number of GPUs to run this model. - - Returns: - tf.distribute.DistibutionStrategy object. - Raises: - ValueError: if `distribution_strategy` is "off" or "one_device" and - `num_gpus` is larger than 1; or `num_gpus` is negative. - """ - if num_gpus < 0: - raise ValueError("`num_gpus` can not be negative.") - - distribution_strategy = distribution_strategy.lower() - - if distribution_strategy == "off": - if num_gpus > 1: - raise ValueError( - "When {} GPUs are specified, distribution_strategy " - "flag cannot be set to `off`.".format(num_gpus) - ) - return None - - if distribution_strategy == "multi_worker_mirrored": - return tf.distribute.experimental.MultiWorkerMirroredStrategy( - communication=_collective_communication(all_reduce_alg) - ) - - if distribution_strategy == "one_device": - if num_gpus == 0: - return tf.distribute.OneDeviceStrategy("device:CPU:0") - if num_gpus > 1: - raise ValueError( - "`OneDeviceStrategy` can not be used for more than one device." - ) - return tf.distribute.OneDeviceStrategy("device:GPU:0") - - if distribution_strategy == "mirrored": - if num_gpus == 0: - devices = ["device:CPU:0"] - else: - devices = ["device:GPU:%d" % i for i in range(num_gpus)] - return tf.distribute.MirroredStrategy( - devices=devices, - cross_device_ops=_mirrored_cross_device_ops( - all_reduce_alg, num_packs - ), - ) - - raise ValueError( - f"Unrecognized Distribution Strategy: {distribution_strategy}" - ) - - -def configure_cluster(worker_hosts=None, task_index=-1): - """Set multi-worker cluster spec in TF_CONFIG environment variable. - - Args: - worker_hosts: comma-separated list of worker ip:port pairs. - - Returns: - Number of workers in the cluster. - """ - tf_config = json.loads(os.environ.get("TF_CONFIG", "{}")) - if tf_config: - num_workers = len(tf_config["cluster"].get("chief", [])) + len( - tf_config["cluster"].get("worker", []) - ) - elif worker_hosts: - workers = worker_hosts.split(",") - num_workers = len(workers) - if num_workers > 1 and task_index < 0: - raise ValueError( - "Must specify task_index when number of workers > 1" - ) - task_index = 0 if num_workers == 1 else task_index - os.environ["TF_CONFIG"] = json.dumps( - { - "cluster": {"worker": workers}, - "task": {"type": "worker", "index": task_index}, - } - ) - else: - num_workers = 1 - return num_workers - - -def get_strategy_scope(strategy): - if strategy: - strategy_scope = strategy.scope() - else: - strategy_scope = DummyContextManager() - - return strategy_scope - - -class DummyContextManager: - def __enter__(self): - pass - - def __exit__(self, *args): - pass diff --git a/keras/benchmarks/eager_microbenchmarks_test.py b/keras/benchmarks/eager_microbenchmarks_test.py deleted file mode 100644 index aad975f1f96..00000000000 --- a/keras/benchmarks/eager_microbenchmarks_test.py +++ /dev/null @@ -1,242 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Microbenchmarks for Keras components in eager mode.""" - -import time - -import tensorflow.compat.v2 as tf - -from keras.utils import tf_inspect - -# isort: off -from tensorflow.python.eager import context -from tensorflow.python.eager.context import get_executor - - -def _run_benchmark(func, num_iters, execution_mode=None): - with context.execution_mode(execution_mode): - # call func to warm up - func() - if execution_mode == context.ASYNC: - get_executor().wait() - start = time.time() - for _ in range(num_iters): - func() - if execution_mode == context.ASYNC: - get_executor().wait() - end = time.time() - - return end - start - - -class MicroBenchmarksBase(tf.test.Benchmark): - """Run and report benchmark results.""" - - def run_report(self, run_benchmark, func, num_iters, execution_mode=None): - """Run and report benchmark results.""" - total_time = run_benchmark(func, num_iters, execution_mode) - mean_us = total_time * 1e6 / num_iters - metrics = [ - { - "name": "exp_per_sec", - "value": float(f"{num_iters / total_time:.3f}"), - }, - { - "name": "us_per_exp", - "value": float(f"{total_time * 1000000.0 / num_iters:.3f}"), - }, - ] - benchmark_name = self._get_benchmark_name() - self.report_benchmark( - iters=num_iters, - wall_time=mean_us, - metrics=metrics, - name=benchmark_name, - ) - - def _get_benchmark_name(self): - """Mostly copied from benchmark.py _get_name().""" - stack = tf_inspect.stack() - name = None - for frame in stack[::-1]: - f_locals = frame[0].f_locals - f_self = f_locals.get("self", None) - if isinstance(f_self, tf.test.Benchmark): - name = frame[3] # Get the method name - # This is a hack to get around the fact that some methods might - # have a disable_tfrt decorator around them. In that case a - # function called 'decorated' wraps the real called function - # underneath and so we peek one deeper into the stack to get the - # real name. - if name == "decorated": - continue - else: - break - if name is None: - raise ValueError("Unable to determine calling Benchmark function.") - if tf.__internal__.is_tfrt_enabled(): - name = name + "_tfrt" - return name - - def _run(self, func, num_iters, execution_mode=None): - self.run_report(_run_benchmark, func, num_iters, execution_mode) - - def benchmark_layers_call_overhead(self): - class OnlyOverheadLayer(tf.keras.layers.Layer): - def call(self, x): - return x - - layer = OnlyOverheadLayer() - x = tf.convert_to_tensor([[1.0]]) - - def fn(): - layer(x) - - self._run(fn, 10000) - - def benchmark_op_layer_call_overhead(self): - model_input = tf.keras.Input(shape=(1,)) - model_output = model_input - x = tf.convert_to_tensor([[1.1]]) - - for _ in range(20): - model_output = tf.multiply(model_output, x) - model = tf.keras.Model(inputs=model_input, outputs=model_output) - - def fn(): - model(x) - - fn() - self._run(fn, 100) - - def benchmark_model_predict_tensorlike_overhead(self): - class OnlyOverheadLayer(tf.keras.layers.Layer): - def call(self, x): - return x - - model = tf.keras.Sequential([OnlyOverheadLayer()]) - x = tf.convert_to_tensor([[1.0]]) - - def fn(): - model.predict(x) - - self._run(fn, 20) - - def benchmark_layers_embeddings_embedding_overhead(self): - - layer = tf.keras.layers.Embedding(1, 1) - x = tf.zeros((1, 1), dtype="int32") - - def fn(): - layer(x) - - self._run(fn, 10000) - - -class KerasLayerCallOverheadBenchmarks( - MicroBenchmarksBase, metaclass=tf.__internal__.test.ParameterizedBenchmark -): - - # The set of layers for benchmarking. To add benchmarks for new layers, - # please add the parameter configs to "_benchmark_paramters". - - # The parameter of each layer benchmark is a tuple contains: - # 1) The benchmark name with convention "{module_name}_{layer_name}"; - # 2) The layer instance; - # 3) The shape of the input to the layer; - # 4) The kwargs used in the benchmark. It can include the number of - # iterations to run the benchmarks, and kwargs used in the layer call. - # By default, # of iteration is 10000. - _benchmark_parameters = [ - ( - "advanced_activations_leaky_relu", - tf.keras.layers.LeakyReLU(), - (1, 1), - ), - ("advanced_activations_prelu", tf.keras.layers.PReLU(), (1, 1)), - ("advanced_activations_elu", tf.keras.layers.ELU(), (1, 1)), - ( - "advanced_activations_thresholded_relu", - tf.keras.layers.ThresholdedReLU(), - (1, 1), - ), - ("advanced_activations_softmax", tf.keras.layers.Softmax(), (1, 1)), - ("advanced_activations_relu", tf.keras.layers.ReLU(), (1, 1)), - ("core_masking", tf.keras.layers.Masking(), (1, 1)), - ( - "core_dropout", - tf.keras.layers.Dropout(0.5), - (1, 1), - {"training": True}, - ), - ("core_flatten", tf.keras.layers.Flatten(), (1, 1, 1)), - ("core_dense", tf.keras.layers.Dense(1), (1, 1)), - ("convolutional_conv1d", tf.keras.layers.Conv1D(1, (1,)), (1, 1, 1)), - ( - "convolutional_conv2d", - tf.keras.layers.Conv2D(1, (1, 1)), - (1, 1, 1, 1), - ), - ( - "convolutional_conv3d", - tf.keras.layers.Conv3D(1, (1, 1, 1)), - (1, 1, 1, 1, 1), - ), - ( - "batch_norm_fused_inf", - tf.keras.layers.BatchNormalization(fused=True), - (1, 1, 1, 1), - ), - ( - "batch_norm_fused_train", - tf.keras.layers.BatchNormalization(fused=True), - (1, 1, 1, 1), - {"training": True}, - ), - ( - "batch_norm_nonfused_inf", - tf.keras.layers.BatchNormalization(fused=False), - (1, 1, 1, 1), - ), - ( - "batch_norm_nonfused_train", - tf.keras.layers.BatchNormalization(fused=False), - (1, 1, 1, 1), - {"training": True}, - ), - ( - "normalization_layer_normalization", - tf.keras.layers.LayerNormalization(), - (1, 1), - {"iters": 100, "training": True}, - ), - ] - - def benchmark_layer(self, layer, input_shape, kwargs=None): - - x = tf.ones(input_shape) - - def fn(): - layer(x, **(kwargs or {})) - - default_iters = 10000 - iters = kwargs.pop("iters", default_iters) if kwargs else default_iters - self._run(fn, iters) - - -if __name__ == "__main__": - if tf.compat.v1.executing_eagerly(): - # Only run test when eager is enabled (skip test in v1). - tf.test.main() diff --git a/keras/benchmarks/keras_cpu_benchmark_test.py b/keras/benchmarks/keras_cpu_benchmark_test.py deleted file mode 100644 index 6ca5cb8c387..00000000000 --- a/keras/benchmarks/keras_cpu_benchmark_test.py +++ /dev/null @@ -1,154 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark tests for CPU performance of Keras models.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.benchmarks import benchmark_util - -# Loss function and optimizer. -_LOSS = "binary_crossentropy" -_OPTIMIZER = "rmsprop" - - -class KerasModelCPUBenchmark( - tf.test.Benchmark, metaclass=tf.__internal__.test.ParameterizedBenchmark -): - """Required Arguments for measure_performance. - - x: Input data, it could be Numpy or load from tfds. - y: Target data. If `x` is a dataset, generator instance, - `y` should not be specified. - loss: Loss function for model. - optimizer: Optimizer for model. - Other details can see in `measure_performance()` method of - benchmark_util. - """ - - # The parameters of each benchmark is a tuple: - - # (benchmark_name_suffix, batch_size, run_iters). - # benchmark_name_suffix: The suffix of the benchmark test name with - # convention `{bs}_{batch_size}`. - # batch_size: Integer. Number of samples per gradient update. - # run_iters: Integer. Number of iterations to run the - # performance measurement. - - _benchmark_parameters = [ - ("bs_32", 32, 3), - ("bs_64", 64, 2), - ("bs_128", 128, 2), - ("bs_256", 256, 1), - ("bs_512", 512, 1), - ] - - def _mnist_mlp(self): - """Simple MLP model.""" - model = tf.keras.Sequential() - model.add( - tf.keras.layers.Dense(512, activation="relu", input_shape=(784,)) - ) - model.add(tf.keras.layers.Dropout(0.2)) - model.add(tf.keras.layers.Dense(512, activation="relu")) - model.add(tf.keras.layers.Dropout(0.2)) - model.add(tf.keras.layers.Dense(10, activation="softmax")) - - return model - - def _mnist_convnet(self): - """Simple Convnet model.""" - model = tf.keras.Sequential() - model.add( - tf.keras.layers.Conv2D( - 32, - kernel_size=(3, 3), - activation="relu", - input_shape=(28, 28, 1), - ) - ) - model.add(tf.keras.layers.Conv2D(64, (3, 3), activation="relu")) - model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) - model.add(tf.keras.layers.Dropout(0.25)) - model.add(tf.keras.layers.Flatten()) - model.add(tf.keras.layers.Dense(128, activation="relu")) - model.add(tf.keras.layers.Dropout(0.5)) - model.add(tf.keras.layers.Dense(10, activation="softmax")) - - return model - - def _imdb_lstm(self): - """Simple LSTM model.""" - model = tf.keras.Sequential() - model.add(tf.keras.layers.Embedding(20000, 128)) - model.add(tf.keras.layers.LSTM(128, dropout=0.2, recurrent_dropout=0.2)) - model.add(tf.keras.layers.Dense(1, activation="sigmoid")) - - return model - - def benchmark_mnist_mlp(self, batch_size, run_iters): - """Benchmark for MLP model on synthetic mnist data.""" - mlp_x = np.random.random((5000, 784)) - mlp_y = np.random.random((5000, 10)) - metrics, wall_time, extras = benchmark_util.measure_performance( - self._mnist_mlp, - x=mlp_x, - y=mlp_y, - batch_size=batch_size, - run_iters=run_iters, - optimizer=_OPTIMIZER, - loss=_LOSS, - ) - self.report_benchmark( - iters=run_iters, wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_mnist_convnet(self, batch_size, run_iters): - """Benchmark for Convnet model on synthetic mnist data.""" - convnet_x = np.random.random((5000, 28, 28, 1)) - convnet_y = np.random.random((5000, 10)) - metrics, wall_time, extras = benchmark_util.measure_performance( - self._mnist_convnet, - x=convnet_x, - y=convnet_y, - batch_size=batch_size, - run_iters=run_iters, - optimizer=_OPTIMIZER, - loss=_LOSS, - ) - self.report_benchmark( - iters=run_iters, wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_imdb_lstm(self, batch_size, run_iters): - """Benchmark for LSTM model on synthetic imdb review dataset.""" - lstm_x = np.random.randint(0, 1999, size=(2500, 100)) - lstm_y = np.random.random((2500, 1)) - metrics, wall_time, extras = benchmark_util.measure_performance( - self._imdb_lstm, - x=lstm_x, - y=lstm_y, - batch_size=batch_size, - run_iters=run_iters, - optimizer=_OPTIMIZER, - loss=_LOSS, - ) - self.report_benchmark( - iters=run_iters, wall_time=wall_time, metrics=metrics, extras=extras - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/keras_examples_benchmarks/BUILD b/keras/benchmarks/keras_examples_benchmarks/BUILD deleted file mode 100644 index 4668cacaf1c..00000000000 --- a/keras/benchmarks/keras_examples_benchmarks/BUILD +++ /dev/null @@ -1,147 +0,0 @@ -# Description: -# Implementation of Keras benchmarks. - -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -package( - default_visibility = ["//visibility:public"], - licenses = ["notice"], -) - -# To run CPU benchmarks: -# bazel run -c opt benchmarks_test -- --benchmarks=. - -# To run GPU benchmarks: -# bazel run --config=cuda -c opt --copt="-mavx" benchmarks_test -- \ -# --benchmarks=. - -# To run a subset of benchmarks using --benchmarks flag. -# --benchmarks: the list of benchmarks to run. The specified value is interpreted -# as a regular expression and any benchmark whose name contains a partial match -# to the regular expression is executed. -# e.g. --benchmarks=".*lstm*." will run all lstm layer related benchmarks. - -COMMON_TAGS = [ - "no_pip", # b/161253163 - "no_windows", # b/160628318 -] - -cuda_py_test( - name = "bidirectional_lstm_benchmark_test", - srcs = ["bidirectional_lstm_benchmark_test.py"], - python_version = "PY3", - tags = COMMON_TAGS, - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:benchmark_util", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "text_classification_transformer_benchmark_test", - srcs = ["text_classification_transformer_benchmark_test.py"], - python_version = "PY3", - tags = COMMON_TAGS, - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:benchmark_util", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "antirectifier_benchmark_test", - srcs = ["antirectifier_benchmark_test.py"], - python_version = "PY3", - tags = COMMON_TAGS, - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:benchmark_util", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "mnist_conv_benchmark_test", - srcs = ["mnist_conv_benchmark_test.py"], - python_version = "PY3", - tags = COMMON_TAGS, - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:benchmark_util", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "mnist_hierarchical_rnn_benchmark_test", - srcs = ["mnist_hierarchical_rnn_benchmark_test.py"], - python_version = "PY3", - tags = COMMON_TAGS, - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:benchmark_util", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "mnist_irnn_benchmark_test", - srcs = ["mnist_irnn_benchmark_test.py"], - python_version = "PY3", - tags = COMMON_TAGS, - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:benchmark_util", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "reuters_mlp_benchmark_test", - srcs = ["reuters_mlp_benchmark_test.py"], - python_version = "PY3", - tags = COMMON_TAGS, - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:benchmark_util", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "cifar10_cnn_benchmark_test", - srcs = ["cifar10_cnn_benchmark_test.py"], - python_version = "PY3", - tags = COMMON_TAGS, - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:benchmark_util", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "mnist_conv_custom_training_benchmark_test", - srcs = ["mnist_conv_custom_training_benchmark_test.py"], - python_version = "PY3", - tags = COMMON_TAGS, - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:benchmark_util", - "//keras/benchmarks:distribution_util", - "//keras/benchmarks:profiler_lib", - ], -) diff --git a/keras/benchmarks/keras_examples_benchmarks/README.md b/keras/benchmarks/keras_examples_benchmarks/README.md deleted file mode 100644 index 42bae76a5e2..00000000000 --- a/keras/benchmarks/keras_examples_benchmarks/README.md +++ /dev/null @@ -1,240 +0,0 @@ -# Benchmarks for keras model examples - -- [Benchmarks for keras model examples](#benchmarks-for-keras-model-examples) - - [Keras benchmarks](#keras-benchmarks) - - [Available models](#available-models) - - [Computer Vision examples](#computer-vision-examples) - - [Text & Sequence examples](#text--sequence-examples) - - [Other examples](#other-examples) - - [Available benchmark results](#available-benchmark-results) - - [Cifar10 CNN benchmark](#cifar10-cnn-benchmark) - - [MNIST Conv benchmark](#mnist-conv-benchmark) - - [MNIST Hierarchical RNN (HRNN) benchmark](#mnist-hierarchical-rnn-hrnn-benchmark) - - [Bidirectional LSTM benchmark](#bidirectional-lstm-benchmark) - - [Text classification with transformer benchmark](#text-classification-with-transformer-benchmark) - - [MLP benchmark](#mlp-benchmark) - - [Antirectifier benchmark](#antirectifier-benchmark) - - [IRNN benchmark](#irnn-benchmark) - - [Install Bazel](#install-bazel) - - [Run benchmarks](#run-benchmarks) - - [Add new benchmarks](#add-new-benchmarks) - - [Troubleshooting](#troubleshooting) - -## Keras benchmarks - -These are benchmark tests running on keras models: models from -[keras/examples](https://github.com/keras-team/keras/tree/master/examples). -Benchmarks in the current folder -(`https://github.com/keras-team/keras/blob/master/keras/benchmarks/keras_examples_benchmarks`) use Keras -[built-in dataset](https://keras.io/api/datasets/). In addition, these -benchmarks support different -[distribution strategies](https://www.tensorflow.org/guide/distributed_training) -on multiple GPUs. - -### Available models - -These examples are implemented by Functional API and Sequential API. - -#### Computer Vision examples - -- [cifar10_cnn_benchmark_test.py](https://github.com/keras-team/keras/blob/master/keras/benchmarks/keras_examples_benchmarks/cifar10_cnn_benchmark_test.py): - Simple CNN on CIFAR10 image dataset. -- [mnist_conv_benchmark_test.py](https://github.com/keras-team/keras/blob/master/keras/benchmarks/keras_examples_benchmarks/mnist_conv_benchmark_test.py): - Simple Convnet that achieves ~99% test accuracy on MNIST. -- [mnist_hierarchical_rnn_benchmark_test.py](https://github.com/keras-team/keras/blob/master/keras/benchmarks/keras_examples_benchmarks/mnist_hierarchical_rnn_benchmark_test.py): - Hierarchical RNN (HRNN) to classify MNIST digits. - -#### Text & Sequence examples - -- [Bidirectional_lstm_benchmark_test.py](https://github.com/keras-team/keras/blob/master/keras/benchmarks/keras_examples_benchmarks/bidirectional_lstm_benchmark_test.py): - 2-layer bidirectional LSTM on IMDB movie review dataset. -- [text_classification_transformer_benchmark_test.py](https://github.com/keras-team/keras/blob/master/keras/benchmarks/keras_examples_benchmarks/text_classification_transformer_benchmark_test.py): - Text classification with custom transformer block. -- [reuters_mlp_benchmark_test.py](https://github.com/keras-team/keras/blob/master/keras/benchmarks/keras_examples_benchmarks/reuters_mlp_benchmark_test.py): - Simple MLP on Reuters newswire topic classification dataset. - -#### Other examples - -- [antirectifier_benchmark_test.py](https://github.com/keras-team/keras/blob/master/keras/benchmarks/keras_examples_benchmarks/antirectifier_benchmark_test.py): - Simple custom layer example. -- [mnist_irnn_benchmark_test.py](https://github.com/keras-team/keras/blob/master/keras/benchmarks/keras_examples_benchmarks/mnist_irnn_benchmark_test.py):Reproduction - of the IRNN experiment with pixel-by-pixel sequential MNIST in - ["A Simple Way to Initialize Recurrent Networks of Rectified Linear Units"](https://arxiv.org/abs/1504.00941) - by Le et al. - -### Available benchmark results - -The listed benchmark results are obtained by running on Google Cloud Platform (GCP) with the following setup:
- -- GPU: 2 x Tesla V100
-- OS: Ubuntu 18.04
-- CPU: 8 x vCPUs, 30 GB memory
-- CUDA: 10.1
-- Bazel: 3.1.0
- -If you want to run benchmark tests on GPU, please make sure you already installed CUDA and other dependencies by following the instructions from the [official tutorial](https://www.tensorflow.org/install/gpu) for GPU support.
- -Metrics for following benchmarks:
- -- Batch_size: Number of samples per batch of computation.
-- Wall_time: Total time to run benchmark test in seconds.
-- Avg_epoch_time: Average time for each epoch.
-- Exp_per_sec: Examples per second. The number of examples processed in one second.
-- Distribution_Strategy: The [distribution strategies](https://www.tensorflow.org/guide/distributed_training) used in the benchmark.
- -#### Cifar10 CNN benchmark - - | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy -:---: | :--------: | :-------: | :------------: | :---------: | :-------------------: -CPU | 256 | 1393.4896 | 3.21 | 15397.69 | `off` -GPU:2 | 256 | 76.49 | 2.59 | 18758.01 | `mirrored` - -#### MNIST Conv benchmark - - | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy -:---: | :--------: | :-------: | :------------: | :---------: | :-------------------: -CPU | 256 | 196.52 | 12.19 | 4915.26 | `off` -GPU:2 | 256 | 24.5794 | 1.21 | 47899.32 | `mirrored` - -#### MNIST Hierarchical RNN (HRNN) benchmark - - | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy -:---: | :--------: | :-------: | :------------: | :---------: | :-------------------: -CPU | 256 | 654.05 | 218.68 | 274.24 | `off` -GPU:2 | 256 | 20.77 | 3.73 | 15088.06 | `mirrored` - -#### Bidirectional LSTM benchmark - - | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy -:---: | :--------: | :-------: | :------------: | :---------: | :-------------------: -CPU | 512 | 225.57 | 72.55 | 344.70 | `off` -GPU:2 | 512 | 23.54 | 3.23 | 7532.53 | `mirrored` - -#### Text classification with transformer benchmark - - | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy -:---: | :--------: | :-------: | :------------: | :---------: | :-------------------: -CPU | 512 | 109.22 | 35.93 | 698.10 | `off` -GPU:2 | 512 | 9.28 | 0.83 | 26567.54 | `mirrored` - -#### MLP benchmark - - | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy -:---: | :--------: | :-------: | :------------: | :---------: | :-------------------: -CPU | 128 | 3.76 | 0.54 | 17678.54 | `off` -GPU:2 | 128 | 5.91 | 0.30 | 25435.14 | `mirrored` - -#### Antirectifier benchmark - - | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy -:---: | :--------: | :-------: | :------------: | :---------: | :-------------------: -CPU | 512 | 6.77 | 1.79 | 30916.39 | `off` -GPU:2 | 512 | 6.81 | 0.66 | 66563.17 | `mirrored` - -#### IRNN benchmark - - | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy -:---: | :--------: | :-------: | :------------: | :---------: | :-------------------: -CPU | 1024 | 213.00 | 69.01 | 868.08 | `off` -GPU:2 | 1024 | 92.71 | 29.12 | 2042.94 | `mirrored` - -**Note**: For the small models, running on GPU might be even slower than CPU. -The potential reason is, training small models is not computation dominant, and -there might be some overhead on model replication and data sharding with -distributed training on GPUs. - -## Install Bazel - -This step can be skipped if Bazel is already installed.
- -[Bazel](https://bazel.build/) is used to build targets based on BUILD files. It -will take a while for the first time because it will compile all dependencies -from your BUILD file. For the next time, Bazel will use the cache and it’ll be -much faster. For Ubuntu OS, please use the following steps for Bazel -installation. For other platforms, you may follow the corresponding guide for -the installation. - -1. Add bazel as package source - - ```shell - sudo apt install curl gnupg - ``` - - ```shell - curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add - - ``` - - ```shell - echo "deb [arch=amd64] https://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list - ``` - - Before we install the bazel, We should take a look for a bazel version that - can build the specific tensorflow version, you can check it from - [here](https://www.tensorflow.org/install/source#tested_build_configurations). - In addition, you can follow the instructions from - [Bazel website](https://docs.bazel.build/versions/3.4.0/install.html). - -2. Install Bazel - - ```shell - sudo apt update && sudo apt install bazel-`version` - ``` - -## Run benchmarks - -To run benchmarks in -[keras/benchmarks](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/keras/benchmarks), -please take the following steps: - -1. Pull the latest tensorflow repo from GitHub. -2. Install the Bazel tool which works with tensorflow, please take a look for - the [Install bazel](#install-bazel) section. -3. To run benchmarks with Bazel, use the `--benchmarks=.` flags to specify the - benchmarks to run. - - - To run all benchmarks on CPU - - ```shell - bazel run -c opt benchmark_test -- --benchmarks=. - ``` - - - To run all benchmarks on GPU - - ```shell - bazel run run --config=cuda -c opt --copt="-mavx" benchmarks_test -- --benchmarks=. - ``` - - - To run a subset of benchmarks using `--benchmarks` flag, `--benchmarks`: - the list of benchmarks to run. The specified value is interpreted as a - regular expression and any benchmarks whose name contains a partial - match to the regular expression is executed. e.g. - `--benchmarks=".*lstm*."`, will run all lstm layer related benchmarks. - -## Add new benchmarks - -To add a new benchmark, please take the following steps: - -1. Create your own benchmark test file, `xxxx_benchmark_test.py`. -2. Import `benchmark_util` to measure and track performance if needed. -3. Create class which inherits from `tf.test.Benchmark` -4. Define and load dataset in `__init__` method. -5. Design and create a model in `_build_model` method. -6. Define the benchmark_xxx method to measure the performance of benchmarks - with different hyper parameters, such as `batch_size`, `run_iters`, - `distribution_strategy` and etc. You can check examples from - [here](https://github.com/keras-team/keras/blob/master/keras/benchmarks/keras_examples_benchmarks/bidirectional_lstm_benchmark_test.py#L60). -7. Add the benchmark target to the - [BUILD](https://github.com/keras-team/keras/blob/master/keras/benchmarks/BUILD) - file. - -## Troubleshooting - -1. tensorflow.python.framework.errors_impl.InternalError: CUDA runtime implicit - initialization on GPU:0 failed. Status: device kernel image is invalid - - - Make sure CUDA is installed on your machine. - - Pull the latest tensorflow repo and run the `./configure` in the root - folder of tensorflow. It will help you to create the configuration file - which shows your local environment. Please check - [this post](https://www.tensorflow.org/install/source#configure_the_build) - for more details. diff --git a/keras/benchmarks/keras_examples_benchmarks/antirectifier_benchmark_test.py b/keras/benchmarks/keras_examples_benchmarks/antirectifier_benchmark_test.py deleted file mode 100644 index be16c0a2cb4..00000000000 --- a/keras/benchmarks/keras_examples_benchmarks/antirectifier_benchmark_test.py +++ /dev/null @@ -1,190 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks on Antirectifier.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks import benchmark_util - - -class AntirectifierBenchmark(tf.test.Benchmark): - """Benchmarks for Antirectifier using `tf.test.Benchmark`.""" - - def __init__(self): - super().__init__() - (self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data() - self.x_train = self.x_train.reshape(-1, 784) - self.x_train = self.x_train.astype("float32") / 255 - - def _build_model(self): - """Model from https://keras.io/examples/keras_recipes/antirectifier/.""" - model = tf.keras.Sequential( - [ - tf.keras.Input(shape=(784,)), - tf.keras.layers.Dense(256), - Antirectifier(), - tf.keras.layers.Dense(256), - Antirectifier(), - tf.keras.layers.Dropout(0.5), - tf.keras.layers.Dense(10), - ] - ) - return model - - # In each benchmark test, the required arguments for the - # method `measure_performance` include: - # x: Input data, it could be Numpy or loaded from tfds. - # y: Target data. If `x` is a dataset or generator instance, - # `y` should not be specified. - # loss: Loss function for model. - # optimizer: Optimizer for model. - # Check more details in `measure_performance()` method of - # benchmark_util. - def benchmark_antirectifier_bs_128(self): - """Measure performance with batch_size=128.""" - batch_size = 128 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - optimizer="rmsprop", - loss=tf.keras.losses.SparseCategoricalCrossentropy( - from_logits=True - ), - metrics=["sparse_categorical_accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "antirectifier", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_antirectifier_bs_256(self): - """Measure performance with batch_size=256.""" - batch_size = 256 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - optimizer="rmsprop", - loss=tf.keras.losses.SparseCategoricalCrossentropy( - from_logits=True - ), - metrics=["sparse_categorical_accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "antirectifier", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_antirectifier_bs_512(self): - """Measure performance with batch_size=512.""" - batch_size = 512 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - optimizer="rmsprop", - loss=tf.keras.losses.SparseCategoricalCrossentropy( - from_logits=True - ), - metrics=["sparse_categorical_accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "antirectifier", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_antirectifier_bs_512_gpu_2(self): - """Measure performance with batch_size=512, gpu=2 and - - distribution_strategy=`mirrored`. - """ - batch_size = 512 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - num_gpus=2, - distribution_strategy="mirrored", - optimizer="rmsprop", - loss=tf.keras.losses.SparseCategoricalCrossentropy( - from_logits=True - ), - metrics=["sparse_categorical_accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "antirectifier", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - -class Antirectifier(tf.keras.layers.Layer): - """Build simple custom layer.""" - - def __init__(self, initializer="he_normal", **kwargs): - super().__init__(**kwargs) - self.initializer = tf.keras.initializers.get(initializer) - - def build(self, input_shape): - output_dim = input_shape[-1] - self.kernel = self.add_weight( - shape=(output_dim * 2, output_dim), - initializer=self.initializer, - name="kernel", - trainable=True, - ) - - def call(self, inputs): - inputs -= tf.reduce_mean(inputs, axis=-1, keepdims=True) - pos = tf.nn.relu(inputs) - neg = tf.nn.relu(-inputs) - concatenated = tf.concat([pos, neg], axis=-1) - mixed = tf.matmul(concatenated, self.kernel) - return mixed - - def get_config(self): - # Implement get_config to enable serialization. This is optional. - base_config = super().get_config() - config = { - "initializer": tf.keras.initializers.serialize(self.initializer) - } - return dict(list(base_config.items()) + list(config.items())) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/keras_examples_benchmarks/bidirectional_lstm_benchmark_test.py b/keras/benchmarks/keras_examples_benchmarks/bidirectional_lstm_benchmark_test.py deleted file mode 100644 index 771612a3138..00000000000 --- a/keras/benchmarks/keras_examples_benchmarks/bidirectional_lstm_benchmark_test.py +++ /dev/null @@ -1,151 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks on Bidirectional LSTM on IMDB.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks import benchmark_util - - -class BidirectionalLSTMBenchmark(tf.test.Benchmark): - """Benchmarks for Bidirectional LSTM using `tf.test.Benchmark`.""" - - def __init__(self): - super().__init__() - self.max_feature = 20000 - self.max_len = 200 - (self.imdb_x, self.imdb_y), _ = tf.keras.datasets.imdb.load_data( - num_words=self.max_feature - ) - self.imdb_x = tf.keras.preprocessing.sequence.pad_sequences( - self.imdb_x, maxlen=self.max_len - ) - - def _build_model(self): - """Model from https://keras.io/examples/nlp/bidirectional_lstm_imdb/.""" - inputs = tf.keras.Input(shape=(None,), dtype="int32") - x = tf.keras.layers.Embedding(self.max_feature, 128)(inputs) - x = tf.keras.layers.Bidirectional( - tf.keras.layers.LSTM(64, return_sequences=True) - )(x) - x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64))(x) - outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x) - model = tf.keras.Model(inputs, outputs) - return model - - # In each benchmark test, the required arguments for the - # method `measure_performance` include: - # x: Input data, it could be Numpy or loaded from tfds. - # y: Target data. If `x` is a dataset or generator instance, - # `y` should not be specified. - # loss: Loss function for model. - # optimizer: Optimizer for model. - # Check more details in `measure_performance()` method of - # benchmark_util. - def benchmark_bidirect_lstm_imdb_bs_128(self): - """Measure performance with batch_size=128.""" - batch_size = 128 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.imdb_x, - y=self.imdb_y, - batch_size=batch_size, - optimizer="adam", - loss="binary_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "bidirectional_lstm", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_bidirect_lstm_imdb_bs_256(self): - """Measure performance with batch_size=256.""" - batch_size = 256 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.imdb_x, - y=self.imdb_y, - batch_size=batch_size, - optimizer="adam", - loss="binary_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "bidirectional_lstm", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_bidirect_lstm_imdb_bs_512(self): - """Measure performance with batch_size=512.""" - batch_size = 512 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.imdb_x, - y=self.imdb_y, - batch_size=batch_size, - optimizer="adam", - loss="binary_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "bidirectional_lstm", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_bidirect_lstm_imdb_bs_512_gpu_2(self): - """Measure performance with batch_size=512, gpu=2 and - - distribution_strategy=`mirrored`. - """ - batch_size = 512 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.imdb_x, - y=self.imdb_y, - batch_size=batch_size, - num_gpus=2, - distribution_strategy="mirrored", - optimizer="adam", - loss="binary_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "bidirectional_lstm", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/keras_examples_benchmarks/cifar10_cnn_benchmark_test.py b/keras/benchmarks/keras_examples_benchmarks/cifar10_cnn_benchmark_test.py deleted file mode 100644 index cd8537cdd64..00000000000 --- a/keras/benchmarks/keras_examples_benchmarks/cifar10_cnn_benchmark_test.py +++ /dev/null @@ -1,173 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks on CNN on cifar10 dataset.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks import benchmark_util - - -class Cifar10CNNBenchmark(tf.test.Benchmark): - """Benchmarks for CNN using `tf.test.Benchmark`.""" - - def __init__(self): - super().__init__() - self.num_classes = 10 - (self.x_train, self.y_train), _ = tf.keras.datasets.cifar10.load_data() - self.x_train = self.x_train.astype("float32") / 255 - self.y_train = tf.keras.utils.to_categorical( - self.y_train, self.num_classes - ) - self.epochs = 5 - - def _build_model(self): - """Model from - https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py. - """ - model = tf.keras.Sequential() - model.add( - tf.keras.layers.Conv2D( - 32, (3, 3), padding="same", input_shape=self.x_train.shape[1:] - ) - ) - model.add(tf.keras.layers.Activation("relu")) - model.add(tf.keras.layers.Conv2D(32, (3, 3))) - model.add(tf.keras.layers.Activation("relu")) - model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) - model.add(tf.keras.layers.Dropout(0.25)) - - model.add(tf.keras.layers.Conv2D(64, (3, 3), padding="same")) - model.add(tf.keras.layers.Activation("relu")) - model.add(tf.keras.layers.Conv2D(64, (3, 3))) - model.add(tf.keras.layers.Activation("relu")) - model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) - model.add(tf.keras.layers.Dropout(0.25)) - - model.add(tf.keras.layers.Flatten()) - model.add(tf.keras.layers.Dense(512)) - model.add(tf.keras.layers.Activation("relu")) - model.add(tf.keras.layers.Dropout(0.5)) - model.add(tf.keras.layers.Dense(self.num_classes)) - model.add(tf.keras.layers.Activation("softmax")) - return model - - # In each benchmark test, the required arguments for the - # method `measure_performance` include: - # x: Input data, it could be Numpy or loaded from tfds. - # y: Target data. If `x` is a dataset or generator instance, - # `y` should not be specified. - # loss: Loss function for model. - # optimizer: Optimizer for model. - # Check more details in `measure_performance()` method of - # benchmark_util. - def benchmark_cnn_cifar10_bs_256(self): - """Measure performance with batch_size=256.""" - batch_size = 256 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - epochs=self.epochs, - optimizer=tf.keras.optimizers.RMSprop( - learning_rate=0.0001, decay=1e-6 - ), - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata("cnn", batch_size) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_cnn_cifar10_bs_512(self): - """Measure performance with batch_size=512.""" - batch_size = 512 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - epochs=self.epochs, - optimizer=tf.keras.optimizers.RMSprop( - learning_rate=0.0001, decay=1e-6 - ), - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata("cnn", batch_size) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_cnn_cifar10_bs_1024(self): - """Measure performance with batch_size=1024.""" - batch_size = 1024 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - epochs=self.epochs, - optimizer=tf.keras.optimizers.RMSprop( - learning_rate=0.0001, decay=1e-6 - ), - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata("cnn", batch_size) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_cnn_cifar10_bs_1024_gpu_2(self): - """Measure performance with batch_size=1024, gpu=2 and - - distribution_strategy=`mirrored`. - """ - batch_size = 1024 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - num_gpus=2, - distribution_strategy="mirrored", - epochs=self.epochs, - optimizer=tf.keras.optimizers.RMSprop( - learning_rate=0.0001, decay=1e-6 - ), - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata("cnn", batch_size) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/keras_examples_benchmarks/mnist_conv_benchmark_test.py b/keras/benchmarks/keras_examples_benchmarks/mnist_conv_benchmark_test.py deleted file mode 100644 index fc5cedd27df..00000000000 --- a/keras/benchmarks/keras_examples_benchmarks/mnist_conv_benchmark_test.py +++ /dev/null @@ -1,165 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks on Convnet on MNIST dataset.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.benchmarks import benchmark_util - - -class ConvMnistBenchmark(tf.test.Benchmark): - """Benchmarks for Convnet using `tf.test.Benchmark`.""" - - def __init__(self): - super().__init__() - self.num_classes = 10 - self.input_shape = (28, 28, 1) - (self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data() - self.x_train = self.x_train.astype("float32") / 255 - self.x_train = np.expand_dims(self.x_train, -1) - self.y_train = tf.keras.utils.to_categorical( - self.y_train, self.num_classes - ) - self.epochs = 15 - - def _build_model(self): - """Model from https://keras.io/examples/vision/mnist_convnet/.""" - model = tf.keras.Sequential( - [ - tf.keras.Input(shape=self.input_shape), - tf.keras.layers.Conv2D( - 32, kernel_size=(3, 3), activation="relu" - ), - tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), - tf.keras.layers.Conv2D( - 64, kernel_size=(3, 3), activation="relu" - ), - tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), - tf.keras.layers.Flatten(), - tf.keras.layers.Dropout(0.5), - tf.keras.layers.Dense(self.num_classes, activation="softmax"), - ] - ) - return model - - # In each benchmark test, the required arguments for the - # method `measure_performance` include: - # x: Input data, it could be Numpy or loaded from tfds. - # y: Target data. If `x` is a dataset or generator instance, - # `y` should not be specified. - # loss: Loss function for model. - # optimizer: Optimizer for model. - # Check more details in `measure_performance()` method of - # benchmark_util. - def benchmark_conv_mnist_bs_128(self): - """Measure performance with batch_size=128.""" - batch_size = 128 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - epochs=self.epochs, - optimizer="adam", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "conv", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_conv_mnist_bs_256(self): - """Measure performance with batch_size=256.""" - batch_size = 256 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - epochs=self.epochs, - optimizer="adam", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "conv", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_conv_mnist_bs_512(self): - """Measure performance with batch_size=512.""" - batch_size = 512 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - epochs=self.epochs, - optimizer="adam", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "conv", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_conv_mnist_bs_512_gpu_2(self): - """Measure performance with batch_size=512, gpu=2 and - - distribution_strategy='mirrored' - """ - batch_size = 512 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - num_gpus=2, - distribution_strategy="mirrored", - epochs=self.epochs, - optimizer="adam", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "conv", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/keras_examples_benchmarks/mnist_conv_custom_training_benchmark_test.py b/keras/benchmarks/keras_examples_benchmarks/mnist_conv_custom_training_benchmark_test.py deleted file mode 100644 index 70762325ee7..00000000000 --- a/keras/benchmarks/keras_examples_benchmarks/mnist_conv_custom_training_benchmark_test.py +++ /dev/null @@ -1,464 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks using custom training loop on MNIST dataset.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import timeit - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.benchmarks import benchmark_util -from keras.benchmarks import distribution_util - - -class CustomMnistBenchmark(tf.test.Benchmark): - """Benchmarks for custom training loop using `tf.test.Benchmark`.""" - - def __init__(self): - super().__init__() - self.num_classes = 10 - self.input_shape = (28, 28, 1) - self.epochs = 15 - (x_train, y_train), _ = tf.keras.datasets.mnist.load_data() - x_train = x_train.astype("float32") / 255 - x_train = np.expand_dims(x_train, -1) - y_train = tf.keras.utils.to_categorical(y_train, self.num_classes) - self.num_examples = x_train.shape[0] - # Use `tf.data.Dataset` for custom training loop. - self.train_dataset = tf.data.Dataset.from_tensor_slices( - (x_train, y_train) - ) - - def _build_model(self): - """Model from https://keras.io/examples/vision/mnist_convnet/.""" - model = tf.keras.Sequential( - [ - tf.keras.Input(shape=self.input_shape), - tf.keras.layers.Conv2D( - 32, kernel_size=(3, 3), activation="relu" - ), - tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), - tf.keras.layers.Conv2D( - 64, kernel_size=(3, 3), activation="relu" - ), - tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), - tf.keras.layers.Flatten(), - tf.keras.layers.Dropout(0.5), - tf.keras.layers.Dense(self.num_classes, activation="softmax"), - ] - ) - - return model - - def compute_loss(self, targets, predictions, loss_fn, batch_size): - """Compute average loss.""" - per_example_loss = loss_fn(targets, predictions) - return tf.nn.compute_average_loss( - per_example_loss, global_batch_size=batch_size - ) - - @tf.function(reduce_retracing=True) - def train_step(self, inputs, model, loss_fn, optimizer, batch_size): - """Compute loss and optimize model by optimizer. - - Args: - inputs: `tf.data`. - model: See `model` in `train_function()` method. - loss_fn: See `loss_fn` in `train_function()` method. - optimizer: See `optimizer` in `train_function()` method. - batch_size: See `batch_size` in `train_function()` method. - - Returns: - Loss value. - """ - train_x, train_y = inputs - with tf.GradientTape() as tape: - predictions = model(train_x, training=True) - loss = self.compute_loss(train_y, predictions, loss_fn, batch_size) - grads = tape.gradient(loss, model.trainable_weights) - optimizer.apply_gradients(zip(grads, model.trainable_weights)) - return loss - - @tf.function(reduce_retracing=True) - def distributed_train_step( - self, - batch_dataset, - model, - loss_fn, - optimizer, - batch_size, - distribution_strategy, - ): - """Train step in distribution strategy setting. - - Args: - batch_dataset: `tf.data`. - model: See `model` in `train_function()` method. - loss_fn: See `loss_fn` in `train_function()` method. - optimizer: See `optimizer` in `train_function()` method. - batch_size: See `batch_size` in `train_function()` method. - distribution_strategy: See `distribution_strategy` in - `train_function()` method. - - Returns: - Sum of per_replica_losses. - """ - per_replica_losses = distribution_strategy.run( - self.train_step, - args=( - batch_dataset, - model, - loss_fn, - optimizer, - batch_size, - ), - ) - return distribution_strategy.reduce( - tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None - ) - - def train_function( - self, - model, - train_dataset, - loss_fn, - optimizer, - epochs=2, - distribution_strategy=None, - batch_size=256, - ): - """Train model in custom training loop and return average - - train_step_time. - - Args: - model: Model function to be benchmarked. - train_dataset: `tf.data` dataset. Should return a tuple of either - (inputs, targets) or (inputs, targets, sample_weights). - loss_fn: `tf.keras.losses.Loss` instance. - optimizer: `tf.keras.optimizers` instance. - epochs: Integer. Number of epochs to train the model. If unspecified, - `epochs` will default to 2. - distribution_strategy: Distribution strategies. It could be - `multi_worker_mirrored`, `one_device`, `mirrored`. If unspecified, - `distribution_strategy` will default to 'off'. Note that, `TPU` and - `parameter_server` are not supported yet. - batch_size: Integer. Number of samples per gradient update. If - unspecified, `batch_size` will default to 32. - - Returns: - Average train_step_time. - """ - train_step_time_list = [] - timer = timeit.default_timer - - total_loss = 0.0 - num_batches = 0 - for _ in range(epochs): - # Iterate over the batches of the dataset. - for batch_dataset in train_dataset: - - start_time = timer() - - if distribution_strategy is not None: - total_loss += self.distributed_train_step( - batch_dataset, - model, - loss_fn, - optimizer, - batch_size, - distribution_strategy, - ) - else: - total_loss += self.train_step( - batch_dataset, model, loss_fn, optimizer, batch_size - ) - num_batches += 1 - - end_time = timer() - train_step_time_list.append(end_time - start_time) - - return np.mean(train_step_time_list) - - def measure_performance( - self, - model, - dataset, - loss_fn, - optimizer, - batch_size=32, - run_iters=4, - epochs=10, - distribution_strategy=None, - ): - """Run models and measure the performance. - - Args: - model_fn: Model function to be benchmarked. - dataset: `tf.data` dataset. Should return a tuple of either (inputs, - targets) or (inputs, targets, sample_weights). - loss_fn: `tf.keras.losses.Loss` instance. - optimizer: `tf.keras.optimizers` instance. - batch_size: Integer. Number of samples per gradient update. If - unspecified, `batch_size` will default to 32. - run_iters: Integer. Number of iterations to run the performance - measurement. If unspecified, `run_iters` will default to 4. - epochs: Integer. Number of epochs to train the model. If unspecified, - `epochs` will default to 10. - distribution_strategy: Distribution strategies. It could be - `multi_worker_mirrored`, `one_device`, `mirrored`. If unspecified, - `distribution_strategy` will default to 'off'. Note that, `TPU` and - `parameter_server` are not supported yet. - - Returns: - Performance summary, which contains build_time, avg_epoch_time, - wall_time, exp_per_sec, epochs, warmup_time, train_step_time. - - Raise: - ValueError: if `dataset` is None or if `optimizer` instance is - not provided or if `loss_fn` instance is not provided. - """ - if distribution_strategy is not None and not isinstance( - dataset, tf.distribute.DistributedDataset - ): - raise ValueError( - "tf.distribute.DistributedDataset" - " required in distribution strategy." - ) - - if distribution_strategy is None and not isinstance( - dataset, tf.data.Dataset - ): - raise ValueError("`tf.data` is required.") - - if not isinstance(loss_fn, tf.keras.losses.Loss): - raise ValueError( - "`tf.keras.losses.Loss` instance for loss_fn is required." - ) - - if not isinstance(optimizer, tf.keras.optimizers.Optimizer): - raise ValueError( - "`tf.keras.optimizers` instance for optimizer is required." - ) - - avg_epoch_time_list, train_step_time_list = [], [] - wall_time_list, exp_per_sec_list, warmup_time_list = [], [], [] - - total_num_examples = epochs * self.num_examples - - for _ in range(run_iters): - timer = timeit.default_timer - start_time = timer() - t1 = timer() - self.train_function( - model, - dataset, - loss_fn, - optimizer, - 1, - distribution_strategy, - batch_size, - ) - warmup_time = timer() - t1 - - t2 = timer() - train_step_time = self.train_function( - model, - dataset, - loss_fn, - optimizer, - epochs, - distribution_strategy, - batch_size, - ) - end_time = timer() - - train_step_time_list.append(train_step_time) - warmup_time_list.append(warmup_time) - wall_time_list.append(end_time - start_time) - exp_per_sec_list.append(total_num_examples / (end_time - t2)) - avg_epoch_time_list.append((end_time - t2) / epochs) - - metrics = [] - metrics.append( - {"name": "avg_epoch_time", "value": np.mean(avg_epoch_time_list)} - ) - metrics.append( - {"name": "exp_per_sec", "value": np.mean(exp_per_sec_list)} - ) - metrics.append( - {"name": "warmup_time", "value": np.mean(warmup_time_list)} - ) - metrics.append( - {"name": "train_step_time", "value": np.mean(train_step_time_list)} - ) - metrics.append({"name": "epochs", "value": epochs}) - - wall_time = np.mean(wall_time_list) - - return metrics, wall_time - - def benchmark_custom_training_mnist_bs_128(self): - """Measure performance with batch_size=128 and run_iters=5.""" - batch_size = 128 - run_iters = 5 - train_dataset = self.train_dataset.shuffle(buffer_size=1024).batch( - batch_size - ) - - # Instantiate a loss function. - loss_fn = tf.keras.losses.CategoricalCrossentropy( - reduction=tf.keras.losses.Reduction.NONE - ) - # Instantiate an optimizer to train the model. - optimizer = tf.keras.optimizers.Adam() - model = self._build_model() - - metrics, wall_time = self.measure_performance( - model, - train_dataset, - loss_fn, - optimizer, - batch_size, - run_iters, - self.epochs, - ) - extras = benchmark_util.get_keras_examples_metadata( - "conv", batch_size, ".keras.ctl_graph" - ) - self.report_benchmark( - iters=run_iters, wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_custom_training_mnist_bs_256(self): - """Measure performance with batch_size=256 and run_iters=5.""" - batch_size = 256 - run_iters = 5 - train_dataset = self.train_dataset.shuffle(buffer_size=1024).batch( - batch_size - ) - - # Instantiate a loss function. - loss_fn = tf.keras.losses.CategoricalCrossentropy( - reduction=tf.keras.losses.Reduction.NONE - ) - # Instantiate an optimizer to train the model. - optimizer = tf.keras.optimizers.Adam() - model = self._build_model() - - metrics, wall_time = self.measure_performance( - model, - train_dataset, - loss_fn, - optimizer, - batch_size, - run_iters, - self.epochs, - ) - extras = benchmark_util.get_keras_examples_metadata( - "conv", batch_size, ".keras.ctl_graph" - ) - self.report_benchmark( - iters=run_iters, wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_custom_training_mnist_bs_512(self): - """Measure performance with batch_size=512 and run_iters=10.""" - batch_size = 512 - run_iters = 5 - train_dataset = self.train_dataset.shuffle(buffer_size=1024).batch( - batch_size - ) - - # Instantiate a loss function. - loss_fn = tf.keras.losses.CategoricalCrossentropy( - reduction=tf.keras.losses.Reduction.NONE - ) - # Instantiate an optimizer to train the model. - optimizer = tf.keras.optimizers.Adam() - model = self._build_model() - - metrics, wall_time = self.measure_performance( - model, - train_dataset, - loss_fn, - optimizer, - batch_size, - run_iters, - self.epochs, - ) - extras = benchmark_util.get_keras_examples_metadata( - "conv", batch_size, ".keras.ctl_graph" - ) - self.report_benchmark( - iters=run_iters, wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_custom_training_mnist_bs_512_gpu_2(self): - """Measure performance with batch_size=512, run_iters=10, gpu=2 and - - distribution_strategy='mirrored'. - """ - batch_size = 512 - run_iters = 10 - train_dataset = self.train_dataset.shuffle(buffer_size=1024).batch( - batch_size - ) - - distribution_strategy = "mirrored" - - strategy = distribution_util.get_distribution_strategy( - distribution_strategy=distribution_strategy, num_gpus=2 - ) - - if distribution_strategy != "off": - train_dataset = strategy.experimental_distribute_dataset( - train_dataset - ) - - strategy_scope = distribution_util.get_strategy_scope(strategy) - - with strategy_scope: - # Instantiate a loss function. - loss_fn = tf.keras.losses.CategoricalCrossentropy( - reduction=tf.keras.losses.Reduction.NONE - ) - # Instantiate an optimizer to train the model. - optimizer = tf.keras.optimizers.Adam() - model = self._build_model() - - metrics, wall_time = self.measure_performance( - model, - train_dataset, - loss_fn, - optimizer, - batch_size, - run_iters, - self.epochs, - strategy, - ) - extras = benchmark_util.get_keras_examples_metadata( - "conv", batch_size, ".keras.ctl_graph" - ) - self.report_benchmark( - iters=run_iters, wall_time=wall_time, metrics=metrics, extras=extras - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/keras_examples_benchmarks/mnist_hierarchical_rnn_benchmark_test.py b/keras/benchmarks/keras_examples_benchmarks/mnist_hierarchical_rnn_benchmark_test.py deleted file mode 100644 index 4103c3a3ee4..00000000000 --- a/keras/benchmarks/keras_examples_benchmarks/mnist_hierarchical_rnn_benchmark_test.py +++ /dev/null @@ -1,157 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks on Hierarchical RNN on MNIST digits.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks import benchmark_util - - -class HierarchicalRNNBenchmark(tf.test.Benchmark): - """Benchmarks for Hierarchical RNN using `tf.test.Benchmark`.""" - - def __init__(self): - super().__init__() - self.num_classes = 10 - self.row_hidden, self.col_hidden = 128, 128 - (self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data() - self.x_train = self.x_train.reshape(self.x_train.shape[0], 28, 28, 1) - self.x_train = self.x_train.astype("float32") / 255 - self.y_train = tf.keras.utils.to_categorical( - self.y_train, self.num_classes - ) - - def _build_model(self): - """Model from https://github.com/keras-team/keras/blob/master/examples - - /mnist_hierarchical_rnn.py. - """ - row, col, pixel = self.x_train.shape[1:] - inputs = tf.keras.layers.Input(shape=(row, col, pixel)) - encoded_rows = tf.keras.layers.TimeDistributed( - tf.keras.layers.LSTM(self.row_hidden) - )(inputs) - encoded_cols = tf.keras.layers.LSTM(self.col_hidden)(encoded_rows) - outputs = tf.keras.layers.Dense(self.num_classes, activation="softmax")( - encoded_cols - ) - model = tf.keras.Model(inputs, outputs) - - return model - - # In each benchmark test, the required arguments for the - # method `measure_performance` include: - # x: Input data, it could be Numpy or loaded from tfds. - # y: Target data. If `x` is a dataset or generator instance, - # `y` should not be specified. - # loss: Loss function for model. - # optimizer: Optimizer for model. - # Check more details in `measure_performance()` method of - # benchmark_util. - def benchmark_hrnn_mnist_bs_256(self): - """Measure performance with batch_size=256.""" - batch_size = 256 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - optimizer="rmsprop", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "hierarchical_rnn", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_hrnn_mnist_bs_512(self): - """Measure performance with batch_size=512.""" - batch_size = 512 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - optimizer="rmsprop", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "hierarchical_rnn", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_hrnn_mnist_bs_1024(self): - """Measure performance with batch_size=1024.""" - batch_size = 1024 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - optimizer="rmsprop", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "hierarchical_rnn", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_hrnn_mnist_bs_1024_gpu_2(self): - """Measure performance with batch_size=1024, gpu=2 and - - distribution_strategy='mirrored' - """ - batch_size = 1024 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - num_gpus=2, - distribution_strategy="mirrored", - optimizer="rmsprop", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "hierarchical_rnn", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/keras_examples_benchmarks/mnist_irnn_benchmark_test.py b/keras/benchmarks/keras_examples_benchmarks/mnist_irnn_benchmark_test.py deleted file mode 100644 index 42dbfede4a4..00000000000 --- a/keras/benchmarks/keras_examples_benchmarks/mnist_irnn_benchmark_test.py +++ /dev/null @@ -1,169 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks on IRNN on MNIST digits.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks import benchmark_util - - -class IRNNMnistBenchmark(tf.test.Benchmark): - """Benchmarks for IRNN using `tf.test.Benchmark`.""" - - def __init__(self): - super().__init__() - self.num_classes = 10 - self.hidden_units = 100 - self.learning_rate = 1e-6 - (self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data() - self.x_train = self.x_train.reshape(self.x_train.shape[0], -1, 1) - self.x_train = self.x_train.astype("float32") / 255 - self.y_train = tf.keras.utils.to_categorical( - self.y_train, self.num_classes - ) - - def _build_model(self): - """Model from https://github.com/keras-team/keras/ - - blob/master/examples/mnist_irnn.py. - """ - model = tf.keras.Sequential() - model.add( - tf.keras.layers.SimpleRNN( - self.hidden_units, - kernel_initializer=tf.keras.initializers.RandomNormal( - stddev=0.001 - ), - recurrent_initializer=tf.keras.initializers.Identity(gain=1.0), - activation="relu", - input_shape=self.x_train.shape[1:], - ) - ) - model.add(tf.keras.layers.Dense(self.num_classes)) - model.add(tf.keras.layers.Activation("softmax")) - return model - - # In each benchmark test, the required arguments for the - # method `measure_performance` include: - # x: Input data, it could be Numpy or loaded from tfds. - # y: Target data. If `x` is a dataset or generator instance, - # `y` should not be specified. - # loss: Loss function for model. - # optimizer: Optimizer for model. - # Check more details in `measure_performance()` method of - # benchmark_util. - def benchmark_irnn_mnist_bs_256(self): - """Measure performance with batch_size=256.""" - batch_size = 256 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - optimizer=tf.keras.optimizers.RMSprop( - learning_rate=self.learning_rate - ), - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "irnn", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_irnn_mnist_bs_512(self): - """Measure performance with batch_size=512.""" - batch_size = 512 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - optimizer=tf.keras.optimizers.RMSprop( - learning_rate=self.learning_rate - ), - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "irnn", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_irnn_mnist_bs_1024(self): - """Measure performance with batch_size=1024.""" - batch_size = 1024 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - optimizer=tf.keras.optimizers.RMSprop( - learning_rate=self.learning_rate - ), - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "irnn", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_irnn_mnist_bs_1024_gpu_2(self): - """Measure performance with batch_size=1024, gpu=2 and - - distribution_strategy='mirrored' - """ - batch_size = 1024 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - num_gpus=2, - distribution_strategy="mirrored", - optimizer=tf.keras.optimizers.RMSprop( - learning_rate=self.learning_rate - ), - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "irnn", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/keras_examples_benchmarks/reuters_mlp_benchmark_test.py b/keras/benchmarks/keras_examples_benchmarks/reuters_mlp_benchmark_test.py deleted file mode 100644 index 39fc136c461..00000000000 --- a/keras/benchmarks/keras_examples_benchmarks/reuters_mlp_benchmark_test.py +++ /dev/null @@ -1,156 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks on MLP on Reuters dataset.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.benchmarks import benchmark_util - - -class MLPReutersBenchmark(tf.test.Benchmark): - """Benchmarks for MLP using `tf.test.Benchmark`.""" - - def __init__(self): - super().__init__() - self.max_words = 1000 - (self.x_train, self.y_train), _ = tf.keras.datasets.reuters.load_data( - num_words=self.max_words - ) - self.num_classes = np.max(self.y_train) + 1 - tokenizer = tf.keras.preprocessing.text.Tokenizer( - num_words=self.max_words - ) - self.x_train = tokenizer.sequences_to_matrix( - self.x_train, mode="binary" - ) - self.y_train = tf.keras.utils.to_categorical( - self.y_train, self.num_classes - ) - self.epochs = 5 - - def _build_model(self): - """Model from https://github.com/keras-team/keras/blob/master/ - - examples/reuters_mlp.py. - """ - model = tf.keras.Sequential() - model.add(tf.keras.layers.Dense(512, input_shape=(self.max_words,))) - model.add(tf.keras.layers.Activation("relu")) - model.add(tf.keras.layers.Dropout(0.5)) - model.add(tf.keras.layers.Dense(self.num_classes)) - model.add(tf.keras.layers.Activation("softmax")) - return model - - # In each benchmark test, the required arguments for the - # method `measure_performance` include: - # x: Input data, it could be Numpy or loaded from tfds. - # y: Target data. If `x` is a dataset or generator instance, - # `y` should not be specified. - # loss: Loss function for model. - # optimizer: Optimizer for model. - # Check more details in `measure_performance()` method of - # benchmark_util. - def benchmark_mlp_reuters_bs_128(self): - """Measure performance with batch_size=128.""" - batch_size = 128 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - epochs=self.epochs, - optimizer="adam", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata("mlp", batch_size) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_mlp_reuters_bs_256(self): - """Measure performance with batch_size=256.""" - batch_size = 256 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - epochs=self.epochs, - optimizer="adam", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata("mlp", batch_size) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_mlp_reuters_bs_512(self): - """Measure performance with batch_size=512.""" - batch_size = 512 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - epochs=self.epochs, - optimizer="adam", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata("mlp", batch_size) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_mlp_reuters_bs_512_gpu_2(self): - """Measure performance with batch_size=512, gpu=2 and - - distribution_strategy='mirrored' - """ - batch_size = 512 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.x_train, - y=self.y_train, - batch_size=batch_size, - num_gpus=2, - distribution_strategy="mirrored", - epochs=self.epochs, - optimizer="adam", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata("mlp", batch_size) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/keras_examples_benchmarks/text_classification_transformer_benchmark_test.py b/keras/benchmarks/keras_examples_benchmarks/text_classification_transformer_benchmark_test.py deleted file mode 100644 index 7277c955f21..00000000000 --- a/keras/benchmarks/keras_examples_benchmarks/text_classification_transformer_benchmark_test.py +++ /dev/null @@ -1,267 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks on Text classification with Transformer.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks import benchmark_util - - -class TextWithTransformerBenchmark(tf.test.Benchmark): - """Benchmarks for Text classification with Transformer - using `tf.test.Benchmark`. - """ - - def __init__(self): - super().__init__() - self.max_feature = 20000 - self.max_len = 200 - (self.imdb_x, self.imdb_y), _ = tf.keras.datasets.imdb.load_data( - num_words=self.max_feature - ) - self.imdb_x = tf.keras.preprocessing.sequence.pad_sequences( - self.imdb_x, maxlen=self.max_len - ) - - def _build_model(self): - """Model from - https://keras.io/examples/nlp/text_classification_with_transformer/.""" - embed_dim = 32 - num_heads = 2 - ff_dim = 32 - inputs = tf.keras.layers.Input(shape=(self.max_len,)) - embedding_layer = TokenAndPositionEmbedding( - self.max_len, self.max_feature, embed_dim - ) - x = embedding_layer(inputs) - transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim) - x = transformer_block(x) - x = tf.keras.layers.GlobalAvgPool1D()(x) - x = tf.keras.layers.Dropout(0.1)(x) - x = tf.keras.layers.Dense(20, activation="relu")(x) - x = tf.keras.layers.Dropout(0.1)(x) - outputs = tf.keras.layers.Dense(2, activation="softmax")(x) - - model = tf.keras.Model(inputs=inputs, outputs=outputs) - return model - - # In each benchmark test, the required arguments for the - # method `measure_performance` include: - # x: Input data, it could be Numpy or loaded from tfds. - # y: Target data. If `x` is a dataset or generator instance, - # `y` should not be specified. - # loss: Loss function for model. - # optimizer: Optimizer for model. - # Check more details in `measure_performance()` method of - # benchmark_util. - def benchmark_text_classification_bs_128(self): - """Measure performance with batch_size=128.""" - batch_size = 128 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.imdb_x, - y=self.imdb_y, - batch_size=batch_size, - optimizer="adam", - loss="sparse_categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "transformer", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_text_classification_bs_256(self): - """Measure performance with batch_size=256.""" - batch_size = 256 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.imdb_x, - y=self.imdb_y, - batch_size=batch_size, - optimizer="adam", - loss="sparse_categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "transformer", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_text_classification_bs_512(self): - """Measure performance with batch_size=512.""" - batch_size = 512 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.imdb_x, - y=self.imdb_y, - batch_size=batch_size, - optimizer="adam", - loss="sparse_categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "transformer", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - def benchmark_text_classification_bs_512_gpu_2(self): - """Measure performance with batch_size=512, gpu=1 and - - distribution_strategy='mirrored' - """ - batch_size = 512 - metrics, wall_time, extras = benchmark_util.measure_performance( - self._build_model, - x=self.imdb_x, - y=self.imdb_y, - batch_size=batch_size, - num_gpus=2, - distribution_strategy="mirrored", - optimizer="adam", - loss="sparse_categorical_crossentropy", - metrics=["accuracy"], - ) - - metadata = benchmark_util.get_keras_examples_metadata( - "transformer", batch_size - ) - extras.update(metadata) - self.report_benchmark( - wall_time=wall_time, metrics=metrics, extras=extras - ) - - -class MultiHeadSelfAttention(tf.keras.layers.Layer): - """Implement multi head self attention as a Keras layer.""" - - def __init__(self, embed_dim, num_heads=8): - super().__init__() - self.embed_dim = embed_dim - self.num_heads = num_heads - if embed_dim % num_heads != 0: - raise ValueError( - f"embedding dimension = {embed_dim} should be divisible" - f"by number of heads = {num_heads}" - ) - self.projection_dim = embed_dim // num_heads - self.query_dense = tf.keras.layers.Dense(embed_dim) - self.key_dense = tf.keras.layers.Dense(embed_dim) - self.value_dense = tf.keras.layers.Dense(embed_dim) - self.combine_heads = tf.keras.layers.Dense(embed_dim) - - def attention(self, query, key, value): - score = tf.matmul(query, key, transpose_b=True) - dim_key = tf.cast(tf.shape(key)[-1], tf.float32) - scaled_score = score / tf.math.sqrt(dim_key) - weights = tf.nn.softmax(scaled_score, axis=-1) - output = tf.matmul(weights, value) - return output, weights - - def separate_heads(self, x, batch_size): - x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim)) - return tf.transpose(x, perm=[0, 2, 1, 3]) - - def call(self, inputs): - # x.shape = [batch_size, seq_len, embedding_dim] - batch_size = tf.shape(inputs)[0] - query = self.query_dense(inputs) # (batch_size, seq_len, embed_dim) - key = self.key_dense(inputs) # (batch_size, seq_len, embed_dim) - value = self.value_dense(inputs) # (batch_size, seq_len, embed_dim) - query = self.separate_heads( - query, batch_size - ) # (batch_size, num_heads, seq_len, projection_dim) - key = self.separate_heads( - key, batch_size - ) # (batch_size, num_heads, seq_len, projection_dim) - value = self.separate_heads( - value, batch_size - ) # (batch_size, num_heads, seq_len, projection_dim) - attention, _ = self.attention(query, key, value) - attention = tf.transpose( - attention, perm=[0, 2, 1, 3] - ) # (batch_size, seq_len, num_heads, projection_dim) - concat_attention = tf.reshape( - attention, (batch_size, -1, self.embed_dim) - ) # (batch_size, seq_len, embed_dim) - output = self.combine_heads( - concat_attention - ) # (batch_size, seq_len, embed_dim) - return output - - -class TransformerBlock(tf.keras.layers.Layer): - """Implement a Transformer block as a layer.""" - - def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1): - super().__init__() - self.att = MultiHeadSelfAttention(embed_dim, num_heads) - self.ffn = tf.keras.Sequential( - [ - tf.keras.layers.Dense(ff_dim, activation="relu"), - tf.keras.layers.Dense(embed_dim), - ] - ) - self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) - self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) - self.dropout1 = tf.keras.layers.Dropout(rate) - self.dropout2 = tf.keras.layers.Dropout(rate) - - def call(self, inputs, training): - attn_output = self.att(inputs) - attn_output = self.dropout1(attn_output, training=training) - out1 = self.layernorm1(inputs + attn_output) - ffn_output = self.ffn(out1) - ffn_output = self.dropout2(ffn_output, training=training) - return self.layernorm2(out1 + ffn_output) - - -class TokenAndPositionEmbedding(tf.keras.layers.Layer): - """Implement embedding layer.""" - - def __init__(self, maxlen, vocab_size, embed_dim): - super().__init__() - self.token_emb = tf.keras.layers.Embedding( - input_dim=vocab_size, output_dim=embed_dim - ) - self.pos_emb = tf.keras.layers.Embedding( - input_dim=maxlen, output_dim=embed_dim - ) - - def call(self, x): - maxlen = tf.shape(x)[-1] - positions = tf.range(start=0, limit=maxlen, delta=1) - positions = self.pos_emb(positions) - x = self.token_emb(x) - return x + positions - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/layer_benchmarks/BUILD b/keras/benchmarks/layer_benchmarks/BUILD deleted file mode 100644 index ef34aff6d7c..00000000000 --- a/keras/benchmarks/layer_benchmarks/BUILD +++ /dev/null @@ -1,64 +0,0 @@ -# Description: -# Implementation of benchmarks on Keras layers. - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = ["//visibility:public"], - licenses = ["notice"], -) - -BECHMARK_TAGS = [ - "no_oss_py38", # TODO(b/162044699) - "no_pip", # TODO(b/161253163) - "no_windows", # TODO(b/160628318) -] - -# To run CPU benchmarks: -# bazel run -c opt benchmarks_test -- --benchmarks=. - -# To run GPU benchmarks: -# bazel run -c opt --config=cuda benchmarks_test -- \ -# --benchmarks=. - -# To run benchmarks with TFRT: -# bazel run -c opt --config=cuda --test_env=EXPERIMENTAL_ENABLE_TFRT=1 benchmarks_test -- \ -# --benchmarks=. - -# To run a subset of benchmarks using --benchmarks flag. -# --benchmarks: the list of benchmarks to run. The specified value is interpreted -# as a regular expression and any benchmark whose name contains a partial match -# to the regular expression is executed. -# e.g. --benchmarks=".*lstm*." will run all lstm layer related benchmarks. - -py_library( - name = "run_xprof", - srcs = ["run_xprof.py"], - srcs_version = "PY3", - visibility = ["//visibility:private"], -) - -py_library( - name = "layer_benchmarks_test_base", - srcs = ["layer_benchmarks_test_base.py"], - srcs_version = "PY3", - visibility = ["//visibility:private"], - deps = [ - ":run_xprof", - "//:expect_tensorflow_installed", - "//keras/benchmarks:profiler_lib", - ], -) - -tf_py_test( - name = "layer_benchmarks_test", - srcs = ["layer_benchmarks_test.py"], - python_version = "PY3", - tags = BECHMARK_TAGS, - deps = [ - ":layer_benchmarks_test_base", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:benchmark_util", - ], -) diff --git a/keras/benchmarks/layer_benchmarks/layer_benchmarks_test.py b/keras/benchmarks/layer_benchmarks/layer_benchmarks_test.py deleted file mode 100644 index 42c5d17fa06..00000000000 --- a/keras/benchmarks/layer_benchmarks/layer_benchmarks_test.py +++ /dev/null @@ -1,541 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks on Keras layers.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import functools - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.benchmarks import benchmark_util -from keras.benchmarks.layer_benchmarks import layer_benchmarks_test_base - - -def _get_metadata(name): - return { - "model_name": "ideal_layers", - "parameters": name[1] + "_shape", - } - - -def _get_layer_args(layer_cls, layer_args): - # To make benchmark parameters compatible with GPU platform. - if layer_cls is tf.keras.layers.Bidirectional: - return {"layer": tf.keras.layers.LSTM(1)} - return layer_args - - -def _get_input_data(inputs): - if "input_shape" in inputs: - return tf.ones(inputs["input_shape"]) - elif "input" in inputs: - return inputs["input"] - else: - raise ValueError( - "Please specify either `input_shape` or `input`" - "for the benchmark test" - ) - - -def _layer_call_backward(layer, x): - with tf.GradientTape() as tape: - y = layer(x) - loss = tf.reduce_mean(y**2) - - _ = tape.gradient(loss, layer.trainable_variables) - - -CORE_LAYERS = [ - ( - "Dense_small_shape", - tf.keras.layers.Dense, - {"units": 32, "activation": "relu"}, - {"input_shape": (1, 16)}, - 100, - ), - ( - "Activation_small_shape", - tf.keras.layers.Activation, - {"activation": "relu"}, - {"input_shape": (1, 4)}, - 100, - ), - ( - "Embedding_small_shape", - tf.keras.layers.Embedding, - {"input_dim": 1, "output_dim": 1, "input_length": 1}, - {"input": np.random.randint(1, size=(1, 1))}, - 100, - ), - ( - "Embedding_normal_shape", - tf.keras.layers.Embedding, - {"input_dim": 1000, "output_dim": 64, "input_length": 10}, - {"input": np.random.randint(1000, size=(32, 10))}, - 100, - ), - ( - "Masking_small_shape", - tf.keras.layers.Masking, - {"mask_value": 1}, - {"input_shape": (1, 1)}, - 100, - ), - ( - "Lambda_small_shape", - tf.keras.layers.Lambda, - {"function": lambda x: x**2}, - {"input_shape": (1, 1)}, - 100, - ), - ( - "Flatten_small_shape", - tf.keras.layers.Flatten, - {}, - {"input_shape": (1, 1)}, - 100, - ), -] - -CONV_LAYERS = [ - ( - "Conv1D_small_shape", - tf.keras.layers.Conv1D, - {"filters": 1, "kernel_size": 1, "activation": "relu"}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "Conv2D_small_shape", - tf.keras.layers.Conv2D, - {"filters": 1, "kernel_size": 1, "activation": "relu"}, - {"input_shape": (1, 1, 1, 1)}, - 100, - ), - ( - "Conv2D_normal_shape", - tf.keras.layers.Conv2D, - {"filters": 1, "kernel_size": 1, "activation": "relu"}, - {"input_shape": (64, 28, 28, 3)}, - 100, - ), - ( - "Conv3D_small_shape", - tf.keras.layers.Conv3D, - {"filters": 1, "kernel_size": 1, "activation": "relu"}, - {"input_shape": (1, 1, 1, 1, 1)}, - 100, - ), - ( - "Conv1DTranspose_small_shape", - tf.keras.layers.Conv1DTranspose, - {"filters": 1, "kernel_size": 1, "activation": "relu"}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "Conv2DTranspose_small_shape", - tf.keras.layers.Conv2DTranspose, - {"filters": 1, "kernel_size": 1, "activation": "relu"}, - {"input_shape": (1, 1, 1, 1)}, - 100, - ), - ( - "Conv3DTranspose_small_shape", - tf.keras.layers.Conv3DTranspose, - {"filters": 1, "kernel_size": 1, "activation": "relu"}, - {"input_shape": (1, 1, 1, 1, 1)}, - 100, - ), - ( - "SeparableConv1D_small_shape", - tf.keras.layers.SeparableConv1D, - {"filters": 1, "kernel_size": 1, "activation": "relu"}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "SeparableConv2D_small_shape", - tf.keras.layers.SeparableConv2D, - {"filters": 1, "kernel_size": 1, "activation": "relu"}, - {"input_shape": (1, 1, 1, 1)}, - 100, - ), - ( - "DepthwiseConv2D_small_shape", - tf.keras.layers.DepthwiseConv2D, - {"kernel_size": 1, "activation": "relu"}, - {"input_shape": (1, 1, 1, 1)}, - 100, - ), -] - -RECURRENT_LAYERS = [ - ( - "LSTM_small_shape", - tf.keras.layers.LSTM, - {"units": 1}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "LSTM_normal_shape", - tf.keras.layers.LSTM, - {"units": 4}, - {"input_shape": (32, 10, 8)}, - 100, - ), - ( - "GRU_small_shape", - tf.keras.layers.GRU, - {"units": 1}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "SimpleRNN_small_shape", - tf.keras.layers.SimpleRNN, - {"units": 1}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "TimeDistributed_small_shape", - tf.keras.layers.TimeDistributed, - {"layer": tf.keras.layers.Conv2D(1, 1)}, - {"input_shape": (1, 1, 1, 1, 1)}, - 100, - ), - ( - "Bidirectional_small_shape", - tf.keras.layers.Bidirectional, - {}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "ConvLSTM2D_small_shape", - tf.keras.layers.ConvLSTM2D, - {"filters": 1, "kernel_size": 1, "activation": "relu"}, - {"input_shape": (1, 1, 1, 1, 1)}, - 100, - ), - ( - "RNN_small_shape", - tf.keras.layers.RNN, - {"cell": tf.keras.layers.LSTMCell(1)}, - {"input_shape": (1, 1, 1)}, - 100, - ), -] - -NORMALIZATION_LAYERS = [ - ( - "BatchNormalization_small_shape", - tf.keras.layers.BatchNormalization, - {"axis": -1}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "LayerNormalization_small_shape", - tf.keras.layers.LayerNormalization, - {"axis": -1}, - {"input_shape": (1, 1, 1)}, - 100, - ), -] - -REGULARIZATION_LAYERS = [ - ( - "Dropout_small_shape", - tf.keras.layers.Dropout, - {"rate": 0.2}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "SpatialDropout1D_small_shape", - tf.keras.layers.SpatialDropout1D, - {"rate": 0.2}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "SpatialDropout2D_small_shape", - tf.keras.layers.SpatialDropout2D, - {"rate": 0.2}, - {"input_shape": (1, 1, 1, 1)}, - 100, - ), - ( - "SpatialDropout3D_small_shape", - tf.keras.layers.SpatialDropout3D, - {"rate": 0.2}, - {"input_shape": (1, 1, 1, 1, 1)}, - 100, - ), - ( - "GaussianDropout_small_shape", - tf.keras.layers.GaussianDropout, - {"rate": 0.2}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "GaussianNoise_small_shape", - tf.keras.layers.GaussianNoise, - {"stddev": 0.1}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "ActivityRegularization_small_shape", - tf.keras.layers.ActivityRegularization, - {"l1": 0.3}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "AlphaDropout_small_shape", - tf.keras.layers.AlphaDropout, - {"rate": 0.2}, - {"input_shape": (1, 1, 1)}, - 100, - ), -] - - -ATTENSION_LAYERS = [ - ( - "Attention_small_shape", - tf.keras.layers.Attention, - {"use_scale": False}, - {"input": [np.ones((1, 1, 1)), np.ones((1, 1, 1))]}, - 100, - ), - ( - "AdditiveAttention_small_shape", - tf.keras.layers.AdditiveAttention, - {"use_scale": True}, - {"input": [np.ones((1, 1, 1)), np.ones((1, 1, 1))]}, - 100, - ), -] - -POOLING_LAYERS = [ - ( - "MaxPooling1D_small_shape", - tf.keras.layers.MaxPooling1D, - {"pool_size": 1, "strides": 1}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "MaxPooling2D_small_shape", - tf.keras.layers.MaxPooling2D, - {"pool_size": 1, "strides": 1}, - {"input_shape": (1, 1, 1, 1)}, - 100, - ), - ( - "MaxPooling3D_small_shape", - tf.keras.layers.MaxPooling3D, - {"pool_size": 1, "strides": 1}, - {"input_shape": (1, 1, 1, 1, 1)}, - 100, - ), - ( - "AveragePooling1D_small_shape", - tf.keras.layers.AveragePooling1D, - {"pool_size": 1, "strides": 1}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "AveragePooling2D_small_shape", - tf.keras.layers.AveragePooling2D, - {"pool_size": 1, "strides": 1}, - {"input_shape": (1, 1, 1, 1)}, - 100, - ), - ( - "AveragePooling3D_small_shape", - tf.keras.layers.AveragePooling3D, - {"pool_size": 1, "strides": 1}, - {"input_shape": (1, 1, 1, 1, 1)}, - 100, - ), - ( - "GlobalMaxPooling1D_small_shape", - tf.keras.layers.GlobalMaxPooling1D, - {}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "GlobalMaxPooling2D_small_shape", - tf.keras.layers.GlobalMaxPooling2D, - {}, - {"input_shape": (1, 1, 1, 1)}, - 100, - ), - ( - "GlobalMaxPooling3D_small_shape", - tf.keras.layers.GlobalMaxPooling3D, - {}, - {"input_shape": (1, 1, 1, 1, 1)}, - 100, - ), - ( - "GlobalAveragePooling1D_small_shape", - tf.keras.layers.GlobalAveragePooling1D, - {}, - {"input_shape": (1, 1, 1)}, - 100, - ), - ( - "GlobalAveragePooling2D_small_shape", - tf.keras.layers.GlobalAveragePooling2D, - {}, - {"input_shape": (1, 1, 1, 1)}, - 100, - ), - ( - "GlobalAveragePooling3D_small_shape", - tf.keras.layers.GlobalAveragePooling3D, - {}, - {"input_shape": (1, 1, 1, 1, 1)}, - 100, - ), -] - - -class KerasLayerBenchmarks( - layer_benchmarks_test_base.LayerBenchmarksBase, - metaclass=tf.__internal__.test.ParameterizedBenchmark, -): - - # The parameter of each layer benchmark is a tuple, and the first one is - # the benchmark name. It must follow the convention of - # "{layer_name}_{small|normal|large}_shape" to make it compatible with - # `self.report_benchmark()` method. - _benchmark_parameters = benchmark_util.generate_benchmark_params_cpu_gpu( - CORE_LAYERS - + CONV_LAYERS - + RECURRENT_LAYERS - + NORMALIZATION_LAYERS - + REGULARIZATION_LAYERS - + ATTENSION_LAYERS - + POOLING_LAYERS - ) - - def benchmark_layer_call(self, layer_cls, layer_args, inputs, num_iters): - layer = layer_cls(**_get_layer_args(layer_cls, layer_args)) - x = _get_input_data(inputs) - - fn = functools.partial(layer, x) - name = benchmark_util.get_benchmark_name(self._get_name()) - metadata = {"implementation": name[0] + ".layer.call"} - metadata.update(_get_metadata(name)) - self.run_report(fn, num_iters, metadata) - - def benchmark_layer_call_with_function( - self, layer_cls, layer_args, inputs, num_iters - ): - layer = layer_cls(**_get_layer_args(layer_cls, layer_args)) - x = _get_input_data(inputs) - layer.call = tf.function(layer.call) - - fn = functools.partial(layer, x) - name = benchmark_util.get_benchmark_name(self._get_name()) - metadata = {"implementation": name[0] + ".layer.call.function"} - metadata.update(_get_metadata(name)) - self.run_report(fn, num_iters, metadata) - - def benchmark_layer_call_with_xla( - self, layer_cls, layer_args, inputs, num_iters - ): - name = benchmark_util.get_benchmark_name(self._get_name()) - # TODO(b/173461426) - if layer_cls is tf.keras.layers.Embedding and name[-1] == "GPU": - return - layer = layer_cls(**_get_layer_args(layer_cls, layer_args)) - x = _get_input_data(inputs) - layer.call = tf.function(layer.call, jit_compile=True) - - fn = functools.partial(layer, x) - metadata = {"implementation": name[0] + ".layer.call.xla"} - metadata.update(_get_metadata(name)) - self.run_report(fn, num_iters, metadata) - - def benchmark_layer_call_backward( - self, layer_cls, layer_args, inputs, num_iters - ): - layer = layer_cls(**_get_layer_args(layer_cls, layer_args)) - x = _get_input_data(inputs) - - fn = functools.partial(_layer_call_backward, layer, x) - name = benchmark_util.get_benchmark_name(self._get_name()) - metadata = {"implementation": name[0] + ".layer.call.backward"} - metadata.update(_get_metadata(name)) - self.run_report(fn, num_iters, metadata) - - def benchmark_layer_call_backward_with_function( - self, layer_cls, layer_args, inputs, num_iters - ): - layer = layer_cls(**_get_layer_args(layer_cls, layer_args)) - x = _get_input_data(inputs) - layer.call = tf.function(layer.call) - - fn = functools.partial(_layer_call_backward, layer, x) - name = benchmark_util.get_benchmark_name(self._get_name()) - metadata = {"implementation": name[0] + ".layer.call.backward.function"} - metadata.update(_get_metadata(name)) - self.run_report(fn, num_iters, metadata) - - def benchmark_layer_call_backward_with_xla( - self, layer_cls, layer_args, inputs, num_iters - ): - name = benchmark_util.get_benchmark_name(self._get_name()) - # TODO(b/153480400) - if layer_cls in [ - tf.keras.layers.LSTM, - tf.keras.layers.Bidirectional, - tf.keras.layers.ConvLSTM2D, - tf.keras.layers.GRU, - tf.keras.layers.RNN, - tf.keras.layers.SimpleRNN, - ]: - return - # TODO(b/173461426) - if layer_cls is tf.keras.layers.Embedding and name[-1] == "GPU": - return - layer = layer_cls(**_get_layer_args(layer_cls, layer_args)) - x = _get_input_data(inputs) - layer.call = tf.function(layer.call, jit_compile=True) - - fn = functools.partial(_layer_call_backward, layer, x) - metadata = {"implementation": name[0] + ".layer.call.backward.xla"} - metadata.update(_get_metadata(name)) - self.run_report(fn, num_iters, metadata) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/layer_benchmarks/layer_benchmarks_test_base.py b/keras/benchmarks/layer_benchmarks/layer_benchmarks_test_base.py deleted file mode 100644 index d64e95c241d..00000000000 --- a/keras/benchmarks/layer_benchmarks/layer_benchmarks_test_base.py +++ /dev/null @@ -1,86 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -r"""Benchmark base to run and report Keras layers benchmark results.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import time - -import tensorflow.compat.v2 as tf - -from keras.benchmarks.layer_benchmarks import run_xprof - - -class LayerBenchmarksBase(tf.test.Benchmark): - """Run and report benchmark results. - - The first run is without any profiling to purly measure running time. - Second run is with xprof but no python trace. - Third run is with xprof and python trace. - Note: xprof runs fewer iterations, and the maximum iterations is 100. - """ - - def run_report(self, func, num_iters, metadata=None): - """Run and report benchmark results for different settings.""" - - # 0. Warm up. - func() - - # 1. Run without profiling. - start = time.time() - for _ in range(num_iters): - func() - total_time = time.time() - start - us_mean_time = total_time * 1e6 / num_iters - - metrics = [ - { - "name": "examples_per_sec", - "value": float(f"{num_iters / total_time:.3f}"), - }, - { - "name": "us_per_example", - "value": float(f"{us_mean_time:.3f}"), - }, - ] - - # 2. Run with xprof with no python trace. - num_iters_xprof = min(100, num_iters) - xprof_link, us_per_example = run_xprof.run_with_xprof( - func, num_iters_xprof, False - ) - # This xprof link will appear in the benchmark dashboard. - extras = { - "xprof_link": xprof_link, - "us_per_example_with_xprof": us_per_example, - } - - # 3. Run with xprof and python trace. - xprof_link, us_per_example = run_xprof.run_with_xprof( - func, num_iters_xprof, True - ) - extras["python_trace_xprof_link"] = xprof_link - extras["us_per_example_with_xprof_and_python"] = us_per_example - - if metadata: - extras.update(metadata) - self.report_benchmark( - iters=num_iters, - wall_time=us_mean_time, - extras=extras, - metrics=metrics, - ) diff --git a/keras/benchmarks/layer_benchmarks/run_xprof.py b/keras/benchmarks/layer_benchmarks/run_xprof.py deleted file mode 100644 index 1eb65a367a4..00000000000 --- a/keras/benchmarks/layer_benchmarks/run_xprof.py +++ /dev/null @@ -1,47 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -from __future__ import absolute_import as _absolute_import -from __future__ import division as _division -from __future__ import print_function as _print_function - -import os -import time -import uuid - -from tensorflow.python.profiler import profiler_v2 as profiler - - -def run_with_xprof( - self, - func, - num_iters_xprof=100, - enable_python_trace=True, - logdir="/tmp/layer_benchmark_xprof/", -): - suid = str(uuid.uuid4()) - if enable_python_trace: - options = profiler.ProfilerOptions(python_tracer_level=1) - logdir = os.path.join(logdir, str(uuid.uuid4()) + "_with_python") - else: - options = profiler.ProfilerOptions(python_tracer_level=0) - logdir = os.path.join(logdir, suid) - - start = time.time() - with profiler.Profile(logdir, options): - for _ in range(num_iters_xprof): - func() - total_time = time.time() - start - us_per_example = float(f"{total_time * 1000000.0 / num_iters_xprof:.3f}") - return logdir, us_per_example diff --git a/keras/benchmarks/metrics_memory_benchmark_test.py b/keras/benchmarks/metrics_memory_benchmark_test.py deleted file mode 100644 index 2bc58d85e3c..00000000000 --- a/keras/benchmarks/metrics_memory_benchmark_test.py +++ /dev/null @@ -1,77 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark tests for Keras metrics memory consumption.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -try: - import memory_profiler -except ImportError: - memory_profiler = None - - -class KerasMetricMemoryBenchmark(tf.test.Benchmark): - - # This test is added to measure the memory footprint for - # metrics_utils._update_confusion_matrix_variables_optimized(). - - def benchmark_auc_memory_usage(self): - if memory_profiler is None: - self.skipTest("Skip test since memory_profiler is not available.") - - with tf.compat.forward_compatibility_horizon(2021, 6, 9): - self.y_true = np.random.randint(2, size=(1024, 1024)) - self.y_pred = np.random.rand(1024, 1024) - - memory_usage_1 = memory_profiler.memory_usage( - (self.even_thresholds_auc) - ) - memory_usage_2 = memory_profiler.memory_usage( - (self.uneven_thresholds_auc) - ) - # memory usage is a list of number which sampled when running the - # function The pure memory consumption is approximately max(usage) - - # min(usage) - memory_usage_1 = max(memory_usage_1) - min(memory_usage_1) - memory_usage_2 = max(memory_usage_2) - min(memory_usage_2) - - metrics = { - "even_threshold_memory_usage": memory_usage_1, - "uneven_threshold_memory_usage": memory_usage_2, - } - self.report_benchmark(iters=1, metrics=metrics) - - def even_thresholds_auc(self): - auc = tf.keras.metrics.AUC(num_thresholds=200) - self.assertTrue(auc._thresholds_distributed_evenly) - - auc(self.y_true, self.y_pred) - - def uneven_thresholds_auc(self): - num_thresholds = 200 - thresholds = [x / (num_thresholds - 1) for x in range(num_thresholds)] - thresholds[100] += 1 / 200 - thresholds = thresholds[1:-1] - - auc = tf.keras.metrics.AUC(thresholds=thresholds) - self.assertFalse(auc._thresholds_distributed_evenly) - self.assertEqual(auc.num_thresholds, num_thresholds) - - auc(self.y_true, self.y_pred) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/model_components_benchmarks_test.py b/keras/benchmarks/model_components_benchmarks_test.py deleted file mode 100644 index f10f07294b2..00000000000 --- a/keras/benchmarks/model_components_benchmarks_test.py +++ /dev/null @@ -1,313 +0,0 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -r"""Benchmarks on Keras components with different Keras model types.""" - -import time - -import numpy as np -import tensorflow.compat.v2 as tf - -# isort: off -from tensorflow.python.eager import context -from tensorflow.python.eager.context import get_executor - - -class SubclassedKerasModel(tf.keras.Model): - def __init__(self, initializer="ones"): - super().__init__() - self.layer_a = tf.keras.layers.Dense( - 64, kernel_initializer=initializer, bias_initializer="zeros" - ) - self.layer_b = tf.keras.layers.Dense( - 128, kernel_initializer=initializer, bias_initializer="zeros" - ) - self.layer_c = tf.keras.layers.Dense( - 256, kernel_initializer=initializer, bias_initializer="zeros" - ) - self.layer_d = tf.keras.layers.Dense( - 256, kernel_initializer=initializer, bias_initializer="zeros" - ) - self.layer_e = tf.keras.layers.Dense( - 10, kernel_initializer=initializer, bias_initializer="zeros" - ) - - def call(self, x): - x = self.layer_a(x) - x = self.layer_b(x) - x = self.layer_c(x) - x = self.layer_d(x) - return self.layer_e(x) - - -def make_keras_model(initializer="ones"): - model_input = tf.keras.Input(shape=(10,)) - x = tf.keras.layers.Dense( - 64, kernel_initializer=initializer, bias_initializer="zeros" - )(model_input) - x = tf.keras.layers.Dense( - 128, kernel_initializer=initializer, bias_initializer="zeros" - )(x) - x = tf.keras.layers.Dense( - 256, kernel_initializer=initializer, bias_initializer="zeros" - )(x) - x = tf.keras.layers.Dense( - 256, kernel_initializer=initializer, bias_initializer="zeros" - )(x) - x = tf.keras.layers.Dense( - 10, kernel_initializer=initializer, bias_initializer="zeros" - )(x) - return tf.keras.Model(inputs=model_input, outputs=x) - - -def make_sequential_keras_model(initializer="ones"): - model = tf.keras.models.Sequential() - model.add( - tf.keras.layers.Dense( - 64, - kernel_initializer=initializer, - bias_initializer="zeros", - input_shape=(10,), - ) - ) - model.add( - tf.keras.layers.Dense( - 128, kernel_initializer=initializer, bias_initializer="zeros" - ) - ) - model.add( - tf.keras.layers.Dense( - 256, kernel_initializer=initializer, bias_initializer="zeros" - ) - ) - model.add( - tf.keras.layers.Dense( - 256, kernel_initializer=initializer, bias_initializer="zeros" - ) - ) - model.add( - tf.keras.layers.Dense( - 10, kernel_initializer=initializer, bias_initializer="zeros" - ) - ) - return model - - -def run_benchmark(func, num_iters, execution_mode=None): - with context.execution_mode(execution_mode): - # call func to warm up - func() - if execution_mode == context.ASYNC: - get_executor().wait() - start = time.time() - for _ in range(num_iters): - func() - if execution_mode == context.ASYNC: - get_executor().wait() - end = time.time() - - return end - start - - -class KerasComponentsBenchmarks(tf.test.Benchmark): - def _run(self, func, num_iters, execution_mode=None): - total_time = run_benchmark(func, num_iters, execution_mode) - mean_us = total_time * 1e6 / num_iters - self.report_benchmark( - iters=num_iters, - wall_time=mean_us, - metrics=[ - { - "name": "exp_per_sec", - "value": float(f"{num_iters / total_time:.3f}"), - }, - { - "name": "us_per_exp", - "value": float(f"{total_time * 1000000.0 / num_iters:.3f}"), - }, - ], - ) - - def benchmark_keras_model_subclassed(self): - model = SubclassedKerasModel() - data = tf.random.uniform((10, 10)) - - func = lambda: model(data) - # First call is more expensive (creates variables etc.), discount that. - func() - - # The whole point of this test is to contrast subclassing with - # the functional style of keras model building, so validate that - # the models are equivalent. - assert np.equal(func(), make_keras_model()(data)).all() - - self._run(func, 30000) - - def benchmark_keras_model_functional(self): - model = make_keras_model() - data = tf.random.uniform((10, 10)) - func = lambda: model(data) - # Symmetry with benchmark_keras_model_subclassed - func() - assert np.equal(func(), SubclassedKerasModel()(data)).all() - self._run(func, 30000) - - def benchmark_keras_model_sequential(self): - model = make_sequential_keras_model() - data = tf.random.uniform((10, 10)) - func = lambda: model(data) - # Symmetry with benchmark_keras_model_functional - func() - assert np.equal(func(), make_keras_model()(data)).all() - self._run(func, 30000) - - def _benchmark_keras_model_fit(self, model, run_eagerly=False): - data = tf.random.uniform((10, 10), minval=-1, maxval=1) - labels = tf.random.uniform((10, 10), minval=-1, maxval=1) - dataset = tf.data.Dataset.from_tensors((data, labels)).repeat() - model.compile("sgd", loss="mse", run_eagerly=run_eagerly) - func = lambda: model.fit( - dataset, epochs=1, steps_per_epoch=1000, verbose=0 - ) - # First call is more expensive (creates variables etc.), discount that. - model.fit(dataset, epochs=1, steps_per_epoch=1, verbose=0) - - self._run(func, 1) - - def _benchmark_keras_model_evaluate(self, model, run_eagerly=False): - data = tf.random.uniform((10, 10), minval=-1, maxval=1) - labels = tf.random.uniform((10, 10), minval=-1, maxval=1) - dataset = tf.data.Dataset.from_tensors((data, labels)).repeat() - model.compile("sgd", loss="mse", run_eagerly=run_eagerly) - func = lambda: model.evaluate(dataset, steps=1000, verbose=0) - # First call is more expensive (creates variables etc.), discount that. - model.evaluate(dataset, steps=1, verbose=0) - - self._run(func, 1) - - def _benchmark_keras_model_predict(self, model, run_eagerly=False): - data = tf.random.uniform((10, 10), minval=-1, maxval=1) - dataset = tf.data.Dataset.from_tensors(data).repeat() - model.compile("sgd", loss="mse", run_eagerly=run_eagerly) - func = lambda: model.predict(dataset, steps=1000, verbose=0) - # First call is more expensive (creates variables etc.), discount that. - model.predict(dataset, steps=1, verbose=0) - - self._run(func, 1) - - def benchmark_keras_model_subclassed_fit(self): - model = SubclassedKerasModel(initializer="glorot_uniform") - self._benchmark_keras_model_fit(model) - - def benchmark_keras_model_subclassed_fit_graph_mode(self): - with context.graph_mode(): - model = SubclassedKerasModel(initializer="glorot_uniform") - self._benchmark_keras_model_fit(model) - - def benchmark_keras_model_subclassed_fit_run_model_eagerly(self): - model = SubclassedKerasModel(initializer="glorot_uniform") - self._benchmark_keras_model_fit(model, run_eagerly=True) - - def benchmark_keras_model_functional_fit(self): - model = make_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_fit(model) - - def benchmark_keras_model_functional_fit_graph_mode(self): - with context.graph_mode(): - model = make_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_fit(model) - - def benchmark_keras_model_functional_fit_graph_mode_with_profiler(self): - tf.profiler.experimental.start("") - with context.graph_mode(): - model = make_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_fit(model) - tf.profiler.experimental.stop(save=False) - - def benchmark_keras_model_functional_fit_run_model_eagerly(self): - model = make_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_fit(model, run_eagerly=True) - - def benchmark_keras_model_functional_fit_run_model_eagerly_with_profiler( - self, - ): - tf.profiler.experimental.start("") - model = make_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_fit(model, run_eagerly=True) - tf.profiler.experimental.stop(save=False) - - def benchmark_keras_model_sequential_fit(self): - model = make_sequential_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_fit(model) - - def benchmark_keras_model_sequential_fit_graph_mode(self): - with context.graph_mode(): - model = make_sequential_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_fit(model) - - def benchmark_keras_model_sequential_fit_run_model_eagerly(self): - model = make_sequential_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_fit(model, run_eagerly=True) - - def benchmark_keras_model_subclassed_evaluate(self): - model = SubclassedKerasModel(initializer="glorot_uniform") - self._benchmark_keras_model_evaluate(model) - - def benchmark_keras_model_subclassed_evaluate_run_model_eagerly(self): - model = SubclassedKerasModel(initializer="glorot_uniform") - self._benchmark_keras_model_evaluate(model, run_eagerly=True) - - def benchmark_keras_model_functional_evaluate(self): - model = make_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_evaluate(model) - - def benchmark_keras_model_functional_evaluate_run_model_eagerly(self): - model = make_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_evaluate(model, run_eagerly=True) - - def benchmark_keras_model_sequential_evaluate(self): - model = make_sequential_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_evaluate(model) - - def benchmark_keras_model_sequential_evaluate_run_model_eagerly(self): - model = make_sequential_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_evaluate(model, run_eagerly=True) - - def benchmark_keras_model_subclassed_predict(self): - model = SubclassedKerasModel(initializer="glorot_uniform") - self._benchmark_keras_model_predict(model) - - def benchmark_keras_model_subclassed_predict_run_model_eagerly(self): - model = SubclassedKerasModel(initializer="glorot_uniform") - self._benchmark_keras_model_predict(model, run_eagerly=True) - - def benchmark_keras_model_functional_predict(self): - model = make_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_predict(model) - - def benchmark_keras_model_functional_predict_run_model_eagerly(self): - model = make_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_predict(model, run_eagerly=True) - - def benchmark_keras_model_sequential_predict(self): - model = make_sequential_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_predict(model) - - def benchmark_keras_model_sequential_predict_run_model_eagerly(self): - model = make_sequential_keras_model(initializer="glorot_uniform") - self._benchmark_keras_model_predict(model, run_eagerly=True) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/model_memory_profile.py b/keras/benchmarks/model_memory_profile.py deleted file mode 100644 index 927c5fdb594..00000000000 --- a/keras/benchmarks/model_memory_profile.py +++ /dev/null @@ -1,73 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Memory profile on Keras model. - -To add a new model for memory profile: -1. Create the model. -2. Decorate it with `@memory_profiler.profile`. -3. Add the model function to the dict `models`. -""" - -import numpy as np -from absl import app -from absl import flags -from absl import logging - -import keras - -try: - import memory_profiler -except ImportError: - memory_profiler = None - - -FLAGS = flags.FLAGS -flags.DEFINE_string("model", None, "The model to run memory profiler.") - - -def main(_): - @memory_profiler.profile - def _imdb_lstm_model(): - """LSTM model.""" - x_train = np.random.randint(0, 1999, size=(2500, 100)) - y_train = np.random.random((2500, 1)) - - # IMDB LSTM model. - model = keras.Sequential() - model.add(keras.layers.Embedding(20000, 128)) - model.add(keras.layers.LSTM(128, dropout=0.2, recurrent_dropout=0.2)) - model.add(keras.layers.Dense(1, activation="sigmoid")) - - model.compile("sgd", "mse") - # Warm up the model with one epoch. - model.fit(x_train, y_train, batch_size=512, epochs=3) - - # Add the model for memory profile. - models = { - "lstm": _imdb_lstm_model, - } - - if FLAGS.model in models: - logging.info("Run memory profile on %s.", FLAGS.model) - run_model = models[FLAGS.model] - run_model() - else: - logging.info("The model does not exist. Please verify the model name.") - - -if __name__ == "__main__": - flags.mark_flags_as_required(["model"]) - if memory_profiler: - app.run(main) diff --git a/keras/benchmarks/optimizer_benchmarks_test.py b/keras/benchmarks/optimizer_benchmarks_test.py deleted file mode 100644 index 7156a1fa713..00000000000 --- a/keras/benchmarks/optimizer_benchmarks_test.py +++ /dev/null @@ -1,93 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark tests for Keras optimizers.""" - -import tensorflow.compat.v2 as tf - -from keras.benchmarks import benchmark_util -from keras.optimizers.legacy import adam - -# isort: off -from tensorflow.python.platform.benchmark import ( - ParameterizedBenchmark, -) - - -def bidirect_imdb_lstm_config(): - """Bidirectional LSTM model and IMDB data.""" - - def model_fn(): - inputs = tf.keras.Input(shape=(None,), dtype="int32") - x = tf.keras.layers.Embedding(20000, 128)(inputs) - x = tf.keras.layers.Bidirectional( - tf.keras.layers.LSTM(64, return_sequences=True) - )(x) - x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64))(x) - outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x) - model = tf.keras.Model(inputs, outputs) - return model - - (x_train, y_train), _ = tf.keras.datasets.imdb.load_data(num_words=20000) - x_train = tf.keras.preprocessing.sequence.pad_sequences(x_train, maxlen=200) - - return model_fn, x_train, y_train - - -class KerasOptimizerBenchmark( - tf.test.Benchmark, metaclass=ParameterizedBenchmark -): - """Keras optimizer benchmarks.""" - - # The parameter of each benchmark test is a tuple, and the first one is - # the optimizer name. - _benchmark_parameters = benchmark_util.generate_benchmark_params_cpu_gpu( - [ - ("Adam", tf.keras.optimizers.Adam(), 10), - ("NonFusedAdam", adam.NonFusedAdam(), 10), - ] - ) - - def benchmark_optimizer(self, optimizer, num_iters): - """Optimizer benchmark with Bidirectional LSTM model on IMDB data. - - Args: - optimizer: The optimizer instance to be benchmarked. - num_iters: The number of iterations to run for performance - measurement. - """ - model, train_x, train_y = bidirect_imdb_lstm_config() - metrics, wall_time, extras = benchmark_util.measure_performance( - model, - x=train_x, - y=train_y, - batch_size=512, - optimizer=optimizer, - loss="binary_crossentropy", - metrics=["accuracy"], - ) - name = benchmark_util.get_benchmark_name(self._get_name()) - metadata = { - "implementation": name[0], - "model_name": "optimizers", - "parameters": "lstm.512", - } - extras.update(metadata) - self.report_benchmark( - iters=num_iters, wall_time=wall_time, metrics=metrics, extras=extras - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/saved_model_benchmarks/BUILD b/keras/benchmarks/saved_model_benchmarks/BUILD deleted file mode 100644 index 01b3df2d30e..00000000000 --- a/keras/benchmarks/saved_model_benchmarks/BUILD +++ /dev/null @@ -1,152 +0,0 @@ -# Description: -# Implementation of Keras benchmarks. - -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -package( - default_visibility = ["//visibility:public"], - licenses = ["notice"], -) - -# To run CPU benchmarks: -# bazel run -c opt benchmarks_test -- --benchmarks=. - -# To run GPU benchmarks: -# bazel run --config=cuda -c opt --copt="-mavx" benchmarks_test -- \ -# --benchmarks=. - -# To run a subset of benchmarks using --benchmarks flag. -# --benchmarks: the list of benchmarks to run. The specified value is interpreted -# as a regular expression and any benchmark whose name contains a partial match -# to the regular expression is executed. -# e.g. --benchmarks=".*lstm*." will run all lstm layer related benchmarks. - -py_library( - name = "saved_model_benchmark_util", - srcs = ["saved_model_benchmark_util.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "densenet_benchmark_test", - srcs = ["densenet_benchmark_test.py"], - tags = [ - "no_pip", # b/161253163 - "no_windows", # b/160628318 - ], - deps = [ - ":saved_model_benchmark_util", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "efficientnet_benchmark_test", - srcs = ["efficientnet_benchmark_test.py"], - tags = [ - "no_pip", # b/161253163 - "no_windows", # b/160628318 - ], - deps = [ - ":saved_model_benchmark_util", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "inception_resnet_v2_benchmark_test", - srcs = ["inception_resnet_v2_benchmark_test.py"], - tags = [ - "no_pip", # b/161253163 - "no_windows", # b/160628318 - ], - deps = [ - ":saved_model_benchmark_util", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "mobilenet_benchmark_test", - srcs = ["mobilenet_benchmark_test.py"], - tags = [ - "no_pip", # b/161253163 - "no_windows", # b/160628318 - ], - deps = [ - ":saved_model_benchmark_util", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "nasnet_large_benchmark_test", - srcs = ["nasnet_large_benchmark_test.py"], - tags = [ - "no_pip", # b/161253163 - "no_windows", # b/160628318 - ], - deps = [ - ":saved_model_benchmark_util", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "resnet152_v2_benchmark_test", - srcs = ["resnet152_v2_benchmark_test.py"], - tags = [ - "no_pip", # b/161253163 - "no_windows", # b/160628318 - ], - deps = [ - ":saved_model_benchmark_util", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "vgg_benchmark_test", - srcs = ["vgg_benchmark_test.py"], - tags = [ - "no_pip", # b/161253163 - "no_windows", # b/160628318 - ], - deps = [ - ":saved_model_benchmark_util", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:profiler_lib", - ], -) - -cuda_py_test( - name = "xception_benchmark_test", - srcs = ["xception_benchmark_test.py"], - tags = [ - "no_pip", # b/161253163 - "no_windows", # b/160628318 - ], - deps = [ - ":saved_model_benchmark_util", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/benchmarks:profiler_lib", - ], -) diff --git a/keras/benchmarks/saved_model_benchmarks/densenet_benchmark_test.py b/keras/benchmarks/saved_model_benchmarks/densenet_benchmark_test.py deleted file mode 100644 index bcc94015baf..00000000000 --- a/keras/benchmarks/saved_model_benchmarks/densenet_benchmark_test.py +++ /dev/null @@ -1,48 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks for saved model on DenseNet201.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util - - -class BenchmarkSaveApplications(tf.test.Benchmark): - def benchmark_save_and_load_densenet_201(self): - app = tf.keras.applications.DenseNet201 - ( - save_result, - load_result, - ) = saved_model_benchmark_util.save_and_load_benchmark(app) - - self.report_benchmark( - iters=save_result["iters"], - wall_time=save_result["wall_time"], - name=save_result["name"], - ) - - self.report_benchmark( - iters=load_result["iters"], - wall_time=load_result["wall_time"], - name=load_result["name"], - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/saved_model_benchmarks/efficientnet_benchmark_test.py b/keras/benchmarks/saved_model_benchmarks/efficientnet_benchmark_test.py deleted file mode 100644 index 62707cdcf77..00000000000 --- a/keras/benchmarks/saved_model_benchmarks/efficientnet_benchmark_test.py +++ /dev/null @@ -1,48 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks for saved model on EfficientNetB7.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util - - -class BenchmarkSaveApplications(tf.test.Benchmark): - def benchmark_save_and_load_efficient_net_b7(self): - app = tf.keras.applications.EfficientNetB7 - ( - save_result, - load_result, - ) = saved_model_benchmark_util.save_and_load_benchmark(app) - - self.report_benchmark( - iters=save_result["iters"], - wall_time=save_result["wall_time"], - name=save_result["name"], - ) - - self.report_benchmark( - iters=load_result["iters"], - wall_time=load_result["wall_time"], - name=load_result["name"], - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/saved_model_benchmarks/inception_resnet_v2_benchmark_test.py b/keras/benchmarks/saved_model_benchmarks/inception_resnet_v2_benchmark_test.py deleted file mode 100644 index fd53786d7cc..00000000000 --- a/keras/benchmarks/saved_model_benchmarks/inception_resnet_v2_benchmark_test.py +++ /dev/null @@ -1,48 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks for saved model on InceptionResNetV2.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util - - -class BenchmarkSaveApplications(tf.test.Benchmark): - def benchmark_save_and_load_inception_resnet_v2(self): - app = tf.keras.applications.InceptionResNetV2 - ( - save_result, - load_result, - ) = saved_model_benchmark_util.save_and_load_benchmark(app) - - self.report_benchmark( - iters=save_result["iters"], - wall_time=save_result["wall_time"], - name=save_result["name"], - ) - - self.report_benchmark( - iters=load_result["iters"], - wall_time=load_result["wall_time"], - name=load_result["name"], - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/saved_model_benchmarks/mobilenet_benchmark_test.py b/keras/benchmarks/saved_model_benchmarks/mobilenet_benchmark_test.py deleted file mode 100644 index bb00e7da03f..00000000000 --- a/keras/benchmarks/saved_model_benchmarks/mobilenet_benchmark_test.py +++ /dev/null @@ -1,48 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks for saved model on MobileNetV2.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util - - -class BenchmarkSaveApplications(tf.test.Benchmark): - def benchmark_save_and_load_mobilenet_v2(self): - app = tf.keras.applications.MobileNetV2 - ( - save_result, - load_result, - ) = saved_model_benchmark_util.save_and_load_benchmark(app) - - self.report_benchmark( - iters=save_result["iters"], - wall_time=save_result["wall_time"], - name=save_result["name"], - ) - - self.report_benchmark( - iters=load_result["iters"], - wall_time=load_result["wall_time"], - name=load_result["name"], - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/saved_model_benchmarks/nasnet_large_benchmark_test.py b/keras/benchmarks/saved_model_benchmarks/nasnet_large_benchmark_test.py deleted file mode 100644 index cd97d1d5315..00000000000 --- a/keras/benchmarks/saved_model_benchmarks/nasnet_large_benchmark_test.py +++ /dev/null @@ -1,48 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks for saved model on NASNetLarge.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util - - -class BenchmarkSaveApplications(tf.test.Benchmark): - def benchmark_save_and_load_nasnet_large(self): - app = tf.keras.applications.NASNetLarge - ( - save_result, - load_result, - ) = saved_model_benchmark_util.save_and_load_benchmark(app) - - self.report_benchmark( - iters=save_result["iters"], - wall_time=save_result["wall_time"], - name=save_result["name"], - ) - - self.report_benchmark( - iters=load_result["iters"], - wall_time=load_result["wall_time"], - name=load_result["name"], - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/saved_model_benchmarks/resnet152_v2_benchmark_test.py b/keras/benchmarks/saved_model_benchmarks/resnet152_v2_benchmark_test.py deleted file mode 100644 index bab2f5a60d3..00000000000 --- a/keras/benchmarks/saved_model_benchmarks/resnet152_v2_benchmark_test.py +++ /dev/null @@ -1,48 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks for saved model on ResNet152V2.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util - - -class BenchmarkSaveApplications(tf.test.Benchmark): - def benchmark_save_and_load_resnet152_v2(self): - app = tf.keras.applications.ResNet152V2 - ( - save_result, - load_result, - ) = saved_model_benchmark_util.save_and_load_benchmark(app) - - self.report_benchmark( - iters=save_result["iters"], - wall_time=save_result["wall_time"], - name=save_result["name"], - ) - - self.report_benchmark( - iters=load_result["iters"], - wall_time=load_result["wall_time"], - name=load_result["name"], - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/saved_model_benchmarks/saved_model_benchmark_util.py b/keras/benchmarks/saved_model_benchmarks/saved_model_benchmark_util.py deleted file mode 100644 index 62271f0b718..00000000000 --- a/keras/benchmarks/saved_model_benchmarks/saved_model_benchmark_util.py +++ /dev/null @@ -1,68 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utils for saved model benchmarks.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tempfile -import time - -import tensorflow.compat.v2 as tf - -import keras - - -def save_and_load_benchmark(app): - """Util for saved model benchmarks.""" - trials = 3 - - model = app(weights=None) - model_name = app.__name__ - - tmp_dir = tf.compat.v1.test.get_temp_dir() - tf.io.gfile.makedirs(tmp_dir) - save_dir = tempfile.mkdtemp(dir=tmp_dir) - - total_save_time = 0 - total_load_time = 0 - - # Run one untimed iteration of saving/loading. - model.save(save_dir, save_format="tf") - keras.models.load_model(save_dir) - - for _ in range(trials): - start_time = time.time() - model.save(save_dir, save_format="tf") - total_save_time += time.time() - start_time - - start_time = time.time() - keras.models.load_model(save_dir) - total_load_time += time.time() - start_time - - save_result = { - "iters": trials, - "wall_time": total_save_time / trials, - "name": f"{model_name}.save", - } - - load_result = { - "iters": trials, - "wall_time": total_load_time / trials, - "name": f"{model_name}.load", - } - tf.compat.v1.gfile.DeleteRecursively(save_dir) - return save_result, load_result diff --git a/keras/benchmarks/saved_model_benchmarks/vgg_benchmark_test.py b/keras/benchmarks/saved_model_benchmarks/vgg_benchmark_test.py deleted file mode 100644 index cdb044a1fcb..00000000000 --- a/keras/benchmarks/saved_model_benchmarks/vgg_benchmark_test.py +++ /dev/null @@ -1,48 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks for saved model on VGG19.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util - - -class BenchmarkSaveApplications(tf.test.Benchmark): - def benchmark_save_and_load_vgg19(self): - app = tf.keras.applications.VGG19 - ( - save_result, - load_result, - ) = saved_model_benchmark_util.save_and_load_benchmark(app) - - self.report_benchmark( - iters=save_result["iters"], - wall_time=save_result["wall_time"], - name=save_result["name"], - ) - - self.report_benchmark( - iters=load_result["iters"], - wall_time=load_result["wall_time"], - name=load_result["name"], - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/benchmarks/saved_model_benchmarks/xception_benchmark_test.py b/keras/benchmarks/saved_model_benchmarks/xception_benchmark_test.py deleted file mode 100644 index ca9eb7c6306..00000000000 --- a/keras/benchmarks/saved_model_benchmarks/xception_benchmark_test.py +++ /dev/null @@ -1,48 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmarks for saved model on Xception.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util - - -class BenchmarkSaveApplications(tf.test.Benchmark): - def benchmark_save_and_load_xception(self): - app = tf.keras.applications.Xception - ( - save_result, - load_result, - ) = saved_model_benchmark_util.save_and_load_benchmark(app) - - self.report_benchmark( - iters=save_result["iters"], - wall_time=save_result["wall_time"], - name=save_result["name"], - ) - - self.report_benchmark( - iters=load_result["iters"], - wall_time=load_result["wall_time"], - name=load_result["name"], - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/callbacks.py b/keras/callbacks.py deleted file mode 100644 index f0f47a4d90a..00000000000 --- a/keras/callbacks.py +++ /dev/null @@ -1,3281 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""Callbacks: utilities called at certain points during model training.""" - -import collections -import copy -import csv -import json -import os -import re -import sys -import time - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.distribute import distributed_file_utils -from keras.distribute import worker_training_state -from keras.optimizers import optimizer -from keras.optimizers.schedules import learning_rate_schedule -from keras.utils import generic_utils -from keras.utils import io_utils -from keras.utils import tf_utils -from keras.utils import version_utils -from keras.utils.data_utils import Sequence -from keras.utils.generic_utils import Progbar -from keras.utils.mode_keys import ModeKeys - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util import deprecation -from tensorflow.python.util.tf_export import keras_export -from tensorflow.tools.docs import doc_controls - -try: - import requests -except ImportError: - requests = None - - -# Note: `configure_callbacks` is only used in TF1. -def configure_callbacks( - callbacks, - model, - do_validation=False, - batch_size=None, - epochs=None, - steps_per_epoch=None, - samples=None, - verbose=1, - count_mode="steps", - mode=ModeKeys.TRAIN, -): - """Configures callbacks for use in various training loops. - - Args: - callbacks: List of Callbacks. - model: Model being trained. - do_validation: Whether or not validation loop will be run. - batch_size: Number of samples per batch. - epochs: Number of epoch to train. - steps_per_epoch: Number of batches to run per training epoch. - samples: Number of training samples. - verbose: int, 0 or 1. Keras logging verbosity to pass to ProgbarLogger. - count_mode: One of 'steps' or 'samples'. Per-batch or per-sample count. - mode: String. One of ModeKeys.TRAIN, ModeKeys.TEST, or ModeKeys.PREDICT. - Which loop mode to configure callbacks for. - - Returns: - Instance of CallbackList used to control all Callbacks. - """ - # Check if callbacks have already been configured. - if isinstance(callbacks, CallbackList): - return callbacks - - if not callbacks: - callbacks = [] - - # Add additional callbacks during training. - if mode == ModeKeys.TRAIN: - model.history = History() - callbacks = [BaseLogger()] + (callbacks or []) + [model.history] - if verbose: - callbacks.append(ProgbarLogger(count_mode)) - callback_list = CallbackList(callbacks) - - # Set callback model - callback_model = model._get_callback_model() - callback_list.set_model(callback_model) - - set_callback_parameters( - callback_list, - model, - do_validation=do_validation, - batch_size=batch_size, - epochs=epochs, - steps_per_epoch=steps_per_epoch, - samples=samples, - verbose=verbose, - mode=mode, - ) - - callback_list.model.stop_training = False - return callback_list - - -def set_callback_parameters( - callback_list, - model, - do_validation=False, - batch_size=None, - epochs=None, - steps_per_epoch=None, - samples=None, - verbose=1, - mode=ModeKeys.TRAIN, -): - """Sets callback parameters. - - Args: - callback_list: CallbackList instance. - model: Model being trained. - do_validation: Whether or not validation loop will be run. - batch_size: Number of samples per batch. - epochs: Number of epoch to train. - steps_per_epoch: Number of batches to run per training epoch. - samples: Number of training samples. - verbose: int, 0 or 1. Keras logging verbosity to pass to ProgbarLogger. - mode: String. One of ModeKeys.TRAIN, ModeKeys.TEST, or ModeKeys.PREDICT. - Which loop mode to configure callbacks for. - """ - metric_names = None - for cbk in callback_list: - if isinstance(cbk, (BaseLogger, ProgbarLogger)): - if not metric_names: - metric_names = model.metrics_names - cbk.stateful_metrics = metric_names[1:] # Exclude `loss` - - # Set callback parameters - callback_metrics = [] - # When we have deferred build scenario with iterator input, we will compile - # when we standardize first batch of data. - if mode != ModeKeys.PREDICT: - if not metric_names: - metric_names = model.metrics_names - callback_metrics = copy.copy(metric_names) - if do_validation: - callback_metrics += ["val_" + n for n in metric_names] - callback_params = { - "batch_size": batch_size, - "epochs": epochs, - "steps": steps_per_epoch, - "samples": samples, - "verbose": verbose, - "do_validation": do_validation, - "metrics": callback_metrics, - } - callback_list.set_params(callback_params) - - -def _is_generator_like(data): - """Checks if data is a generator, Sequence, or Iterator.""" - return ( - hasattr(data, "__next__") - or hasattr(data, "next") - or isinstance( - data, (Sequence, tf.compat.v1.data.Iterator, tf.data.Iterator) - ) - ) - - -def make_logs(model, logs, outputs, mode, prefix=""): - """Computes logs for sending to `on_batch_end` methods.""" - metric_names = model.metrics_names - if mode in {ModeKeys.TRAIN, ModeKeys.TEST} and metric_names: - for label, output in zip(metric_names, outputs): - logs[prefix + label] = output - else: - logs["outputs"] = outputs - return logs - - -@keras_export("keras.callbacks.CallbackList") -class CallbackList: - """Container abstracting a list of callbacks.""" - - def __init__( - self, - callbacks=None, - add_history=False, - add_progbar=False, - model=None, - **params, - ): - """Container for `Callback` instances. - - This object wraps a list of `Callback` instances, making it possible - to call them all at once via a single endpoint - (e.g. `callback_list.on_epoch_end(...)`). - - Args: - callbacks: List of `Callback` instances. - add_history: Whether a `History` callback should be added, if one does - not already exist in the `callbacks` list. - add_progbar: Whether a `ProgbarLogger` callback should be added, if - one does not already exist in the `callbacks` list. - model: The `Model` these callbacks are used with. - **params: If provided, parameters will be passed to each `Callback` - via `Callback.set_params`. - """ - self.callbacks = tf.nest.flatten(callbacks) if callbacks else [] - self._add_default_callbacks(add_history, add_progbar) - - if model: - self.set_model(model) - if params: - self.set_params(params) - - # Performance optimization: determines if batch hooks need to be called. - - self._supports_tf_logs = all( - getattr(cb, "_supports_tf_logs", False) for cb in self.callbacks - ) - self._batch_hooks_support_tf_logs = all( - getattr(cb, "_supports_tf_logs", False) - for cb in self.callbacks - if cb._implements_train_batch_hooks() - or cb._implements_test_batch_hooks() - or cb._implements_predict_batch_hooks() - ) - - self._should_call_train_batch_hooks = any( - cb._implements_train_batch_hooks() for cb in self.callbacks - ) - self._should_call_test_batch_hooks = any( - cb._implements_test_batch_hooks() for cb in self.callbacks - ) - self._should_call_predict_batch_hooks = any( - cb._implements_predict_batch_hooks() for cb in self.callbacks - ) - - self._disallow_batch_hooks_in_ps_strategy() - - # Performance check: Check batch hooks for slowness compared to batch - # time. Only run check for custom callbacks (i.e. not present in this - # file). - self._check_timing = any( - cbk.__class__.__name__ not in globals() for cbk in self.callbacks - ) - self._num_batches_for_timing_check = 5 - self._hook_times = {} - self._batch_start_time = None - self._batch_times = [] - - def _add_default_callbacks(self, add_history, add_progbar): - """Adds `Callback`s that are always present.""" - self._progbar = None - self._history = None - - for cb in self.callbacks: - if isinstance(cb, ProgbarLogger): - self._progbar = cb - elif isinstance(cb, History): - self._history = cb - - if self._history is None and add_history: - self._history = History() - self.callbacks.append(self._history) - - if self._progbar is None and add_progbar: - self._progbar = ProgbarLogger(count_mode="steps") - self.callbacks.append(self._progbar) - - def _process_logs(self, logs, is_batch_hook=False): - """Turns tensors into numpy arrays or Python scalars if necessary.""" - if logs is None: - return {} - if self._supports_tf_logs: - return logs - if is_batch_hook and self._batch_hooks_support_tf_logs: - return logs - return tf_utils.sync_to_numpy_or_python_type(logs) - - def append(self, callback): - self.callbacks.append(callback) - - def set_params(self, params): - self.params = params - for callback in self.callbacks: - callback.set_params(params) - - def set_model(self, model): - self.model = model - if self._history: - model.history = self._history - for callback in self.callbacks: - callback.set_model(model) - - def _call_batch_hook(self, mode, hook, batch, logs=None): - """Helper function for all batch_{begin | end} methods.""" - if not self.callbacks: - return - - if hook == "begin": - self._call_batch_begin_hook(mode, batch, logs) - elif hook == "end": - self._call_batch_end_hook(mode, batch, logs) - else: - raise ValueError( - f"Unrecognized hook: {hook}. " - 'Expected values are ["begin", "end"]' - ) - - def _call_batch_begin_hook(self, mode, batch, logs): - """Helper function for `on_*_batch_begin` methods.""" - hook_name = f"on_{mode}_batch_begin" - self._call_batch_hook_helper(hook_name, batch, logs) - - if self._check_timing: - self._batch_start_time = time.time() - - def _call_batch_end_hook(self, mode, batch, logs): - """Helper function for `on_*_batch_end` methods.""" - hook_name = f"on_{mode}_batch_end" - - if self._check_timing and batch >= 1: - batch_time = time.time() - self._batch_start_time - self._batch_times.append(batch_time) - - self._call_batch_hook_helper(hook_name, batch, logs) - - if len(self._batch_times) >= self._num_batches_for_timing_check: - end_hook_name = hook_name - begin_hook_name = f"on_{mode}_batch_begin" - avg_batch_time = sum(self._batch_times) / len(self._batch_times) - avg_end_hook_time = sum(self._hook_times[end_hook_name]) / len( - self._hook_times[end_hook_name] - ) - avg_begin_hook_time = sum(self._hook_times[begin_hook_name]) / len( - self._hook_times[begin_hook_name] - ) - - threshold_time = 1.0 * avg_batch_time - warning_msg = ( - "Callback method `{hook}` is slow compared to " - "the batch time (batch time: {batch_time:.4f}s vs " - "`{hook}` time: {hook_time:.4f}s). Check your callbacks." - ) - if avg_begin_hook_time > threshold_time: - logging.warning( - warning_msg.format( - hook=begin_hook_name, - batch_time=avg_batch_time, - hook_time=avg_begin_hook_time, - ) - ) - if avg_end_hook_time > threshold_time: - logging.warning( - warning_msg.format( - hook=end_hook_name, - batch_time=avg_batch_time, - hook_time=avg_end_hook_time, - ) - ) - self._check_timing = False - self._batch_start_time = None - self._batch_times = [] - self._hook_times = {} - - def _call_batch_hook_helper(self, hook_name, batch, logs): - """Helper function for `on_*_batch_*` methods.""" - if self._check_timing: - start_time = time.time() - - logs = self._process_logs(logs, is_batch_hook=True) - for callback in self.callbacks: - hook = getattr(callback, hook_name) - hook(batch, logs) - - if self._check_timing: - if hook_name not in self._hook_times: - self._hook_times[hook_name] = [] - self._hook_times[hook_name].append(time.time() - start_time) - - def _call_begin_hook(self, mode): - """Helper function for on_{train|test|predict}_begin methods.""" - if mode == ModeKeys.TRAIN: - self.on_train_begin() - elif mode == ModeKeys.TEST: - self.on_test_begin() - else: - self.on_predict_begin() - - def _call_end_hook(self, mode): - """Helper function for on_{train|test|predict}_end methods.""" - if mode == ModeKeys.TRAIN: - self.on_train_end() - elif mode == ModeKeys.TEST: - self.on_test_end() - else: - self.on_predict_end() - - def on_batch_begin(self, batch, logs=None): - if self._should_call_train_batch_hooks: - self._call_batch_hook(ModeKeys.TRAIN, "begin", batch, logs=logs) - - def on_batch_end(self, batch, logs=None): - if self._should_call_train_batch_hooks: - self._call_batch_hook(ModeKeys.TRAIN, "end", batch, logs=logs) - - def on_epoch_begin(self, epoch, logs=None): - """Calls the `on_epoch_begin` methods of its callbacks. - - This function should only be called during TRAIN mode. - - Args: - epoch: Integer, index of epoch. - logs: Dict. Currently no data is passed to this argument for this - method but that may change in the future. - """ - logs = self._process_logs(logs) - for callback in self.callbacks: - callback.on_epoch_begin(epoch, logs) - - def on_epoch_end(self, epoch, logs=None): - """Calls the `on_epoch_end` methods of its callbacks. - - This function should only be called during TRAIN mode. - - Args: - epoch: Integer, index of epoch. - logs: Dict, metric results for this training epoch, and for the - validation epoch if validation is performed. Validation result - keys are prefixed with `val_`. - """ - logs = self._process_logs(logs) - for callback in self.callbacks: - callback.on_epoch_end(epoch, logs) - - def on_train_batch_begin(self, batch, logs=None): - """Calls the `on_train_batch_begin` methods of its callbacks. - - Args: - batch: Integer, index of batch within the current epoch. - logs: Dict, contains the return value of `model.train_step`. - Typically, the values of the `Model`'s metrics are returned. - Example: `{'loss': 0.2, 'accuracy': 0.7}`. - """ - if self._should_call_train_batch_hooks: - self._call_batch_hook(ModeKeys.TRAIN, "begin", batch, logs=logs) - - def on_train_batch_end(self, batch, logs=None): - """Calls the `on_train_batch_end` methods of its callbacks. - - Args: - batch: Integer, index of batch within the current epoch. - logs: Dict. Aggregated metric results up until this batch. - """ - if self._should_call_train_batch_hooks: - self._call_batch_hook(ModeKeys.TRAIN, "end", batch, logs=logs) - - def on_test_batch_begin(self, batch, logs=None): - """Calls the `on_test_batch_begin` methods of its callbacks. - - Args: - batch: Integer, index of batch within the current epoch. - logs: Dict, contains the return value of `model.test_step`. - Typically, the values of the `Model`'s metrics are returned. - Example: `{'loss': 0.2, 'accuracy': 0.7}`. - """ - if self._should_call_test_batch_hooks: - self._call_batch_hook(ModeKeys.TEST, "begin", batch, logs=logs) - - def on_test_batch_end(self, batch, logs=None): - """Calls the `on_test_batch_end` methods of its callbacks. - - Args: - batch: Integer, index of batch within the current epoch. - logs: Dict. Aggregated metric results up until this batch. - """ - if self._should_call_test_batch_hooks: - self._call_batch_hook(ModeKeys.TEST, "end", batch, logs=logs) - - def on_predict_batch_begin(self, batch, logs=None): - """Calls the `on_predict_batch_begin` methods of its callbacks. - - Args: - batch: Integer, index of batch within the current epoch. - logs: Dict, contains the return value of `model.predict_step`, - it typically returns a dict with a key 'outputs' containing - the model's outputs. - """ - if self._should_call_predict_batch_hooks: - self._call_batch_hook(ModeKeys.PREDICT, "begin", batch, logs=logs) - - def on_predict_batch_end(self, batch, logs=None): - """Calls the `on_predict_batch_end` methods of its callbacks. - - Args: - batch: Integer, index of batch within the current epoch. - logs: Dict. Aggregated metric results up until this batch. - """ - if self._should_call_predict_batch_hooks: - self._call_batch_hook(ModeKeys.PREDICT, "end", batch, logs=logs) - - def on_train_begin(self, logs=None): - """Calls the `on_train_begin` methods of its callbacks. - - Args: - logs: Dict. Currently, no data is passed via this argument - for this method, but that may change in the future. - """ - logs = self._process_logs(logs) - for callback in self.callbacks: - callback.on_train_begin(logs) - - def on_train_end(self, logs=None): - """Calls the `on_train_end` methods of its callbacks. - - Args: - logs: Dict. Currently, no data is passed via this argument - for this method, but that may change in the future. - """ - logs = self._process_logs(logs) - for callback in self.callbacks: - callback.on_train_end(logs) - - def on_test_begin(self, logs=None): - """Calls the `on_test_begin` methods of its callbacks. - - Args: - logs: Dict. Currently no data is passed to this argument for this - method but that may change in the future. - """ - logs = self._process_logs(logs) - for callback in self.callbacks: - callback.on_test_begin(logs) - - def on_test_end(self, logs=None): - """Calls the `on_test_end` methods of its callbacks. - - Args: - logs: Dict. Currently, no data is passed via this argument - for this method, but that may change in the future. - """ - logs = self._process_logs(logs) - for callback in self.callbacks: - callback.on_test_end(logs) - - def on_predict_begin(self, logs=None): - """Calls the 'on_predict_begin` methods of its callbacks. - - Args: - logs: Dict. Currently no data is passed to this argument for this - method but that may change in the future. - """ - logs = self._process_logs(logs) - for callback in self.callbacks: - callback.on_predict_begin(logs) - - def on_predict_end(self, logs=None): - """Calls the `on_predict_end` methods of its callbacks. - - Args: - logs: Dict. Currently, no data is passed via this argument - for this method, but that may change in the future. - """ - logs = self._process_logs(logs) - for callback in self.callbacks: - callback.on_predict_end(logs) - - def __iter__(self): - return iter(self.callbacks) - - def _disallow_batch_hooks_in_ps_strategy(self): - """Error out if batch-level callbacks are passed with PSStrategy.""" - - strategy = tf.distribute.get_strategy() - if strategy._should_use_with_coordinator: - unsupported_callbacks = [] - for cb in self.callbacks: - # These Callbacks can accept RemoteValues directly. - if getattr(cb, "_supports_tf_logs", False): - continue - if ( - cb._implements_train_batch_hooks() - or cb._implements_test_batch_hooks() - or cb._implements_predict_batch_hooks() - ): - unsupported_callbacks.append(cb) - if unsupported_callbacks: - raise ValueError( - "Batch-level `Callback`s are not supported with " - "`ParameterServerStrategy`. Found unsupported " - f"callbacks: {unsupported_callbacks}" - ) - - def make_logs(self, model, logs, outputs, mode, prefix=""): - """Computes logs for sending to `on_batch_end` methods.""" - if not self.callbacks: - return logs - - return make_logs(model, logs, outputs, mode, prefix=prefix) - - -@keras_export("keras.callbacks.Callback") -class Callback: - """Abstract base class used to build new callbacks. - - Callbacks can be passed to keras methods such as `fit`, `evaluate`, and - `predict` in order to hook into the various stages of the model training and - inference lifecycle. - - To create a custom callback, subclass `keras.callbacks.Callback` and - override the method associated with the stage of interest. See - https://www.tensorflow.org/guide/keras/custom_callback for more information. - - Example: - - >>> training_finished = False - >>> class MyCallback(tf.keras.callbacks.Callback): - ... def on_train_end(self, logs=None): - ... global training_finished - ... training_finished = True - >>> model = tf.keras.Sequential([ - ... tf.keras.layers.Dense(1, input_shape=(1,))]) - >>> model.compile(loss='mean_squared_error') - >>> model.fit(tf.constant([[1.0]]), tf.constant([[1.0]]), - ... callbacks=[MyCallback()]) - >>> assert training_finished == True - - If you want to use `Callback` objects in a custom training loop: - - 1. You should pack all your callbacks into a single `callbacks.CallbackList` - so they can all be called together. - 2. You will need to manually call all the `on_*` methods at the appropriate - locations in your loop. Like this: - - Example: - ```python - callbacks = tf.keras.callbacks.CallbackList([...]) - callbacks.append(...) - callbacks.on_train_begin(...) - for epoch in range(EPOCHS): - callbacks.on_epoch_begin(epoch) - for i, data in dataset.enumerate(): - callbacks.on_train_batch_begin(i) - batch_logs = model.train_step(data) - callbacks.on_train_batch_end(i, batch_logs) - epoch_logs = ... - callbacks.on_epoch_end(epoch, epoch_logs) - final_logs=... - callbacks.on_train_end(final_logs) - ``` - - Attributes: - params: Dict. Training parameters - (eg. verbosity, batch size, number of epochs...). - model: Instance of `keras.models.Model`. - Reference of the model being trained. - - The `logs` dictionary that callback methods - take as argument will contain keys for quantities relevant to - the current batch or epoch (see method-specific docstrings). - """ - - def __init__(self): - self.validation_data = None - self.model = None - # Whether this Callback should only run on the chief worker in a - # Multi-Worker setting. - # TODO(omalleyt): Make this attr public once solution is stable. - self._chief_worker_only = None - self._supports_tf_logs = False - - def set_params(self, params): - self.params = params - - def set_model(self, model): - self.model = model - - @doc_controls.for_subclass_implementers - @generic_utils.default - def on_batch_begin(self, batch, logs=None): - """A backwards compatibility alias for `on_train_batch_begin`.""" - - @doc_controls.for_subclass_implementers - @generic_utils.default - def on_batch_end(self, batch, logs=None): - """A backwards compatibility alias for `on_train_batch_end`.""" - - @doc_controls.for_subclass_implementers - def on_epoch_begin(self, epoch, logs=None): - """Called at the start of an epoch. - - Subclasses should override for any actions to run. This function should - only be called during TRAIN mode. - - Args: - epoch: Integer, index of epoch. - logs: Dict. Currently no data is passed to this argument for this - method but that may change in the future. - """ - - @doc_controls.for_subclass_implementers - def on_epoch_end(self, epoch, logs=None): - """Called at the end of an epoch. - - Subclasses should override for any actions to run. This function should - only be called during TRAIN mode. - - Args: - epoch: Integer, index of epoch. - logs: Dict, metric results for this training epoch, and for the - validation epoch if validation is performed. Validation result - keys are prefixed with `val_`. For training epoch, the values of - the `Model`'s metrics are returned. Example: - `{'loss': 0.2, 'accuracy': 0.7}`. - """ - - @doc_controls.for_subclass_implementers - @generic_utils.default - def on_train_batch_begin(self, batch, logs=None): - """Called at the beginning of a training batch in `fit` methods. - - Subclasses should override for any actions to run. - - Note that if the `steps_per_execution` argument to `compile` in - `tf.keras.Model` is set to `N`, this method will only be called every - `N` batches. - - Args: - batch: Integer, index of batch within the current epoch. - logs: Dict. Currently no data is passed to this argument for this - method but that may change in the future. - """ - # For backwards compatibility. - self.on_batch_begin(batch, logs=logs) - - @doc_controls.for_subclass_implementers - @generic_utils.default - def on_train_batch_end(self, batch, logs=None): - """Called at the end of a training batch in `fit` methods. - - Subclasses should override for any actions to run. - - Note that if the `steps_per_execution` argument to `compile` in - `tf.keras.Model` is set to `N`, this method will only be called every - `N` batches. - - Args: - batch: Integer, index of batch within the current epoch. - logs: Dict. Aggregated metric results up until this batch. - """ - # For backwards compatibility. - self.on_batch_end(batch, logs=logs) - - @doc_controls.for_subclass_implementers - @generic_utils.default - def on_test_batch_begin(self, batch, logs=None): - """Called at the beginning of a batch in `evaluate` methods. - - Also called at the beginning of a validation batch in the `fit` - methods, if validation data is provided. - - Subclasses should override for any actions to run. - - Note that if the `steps_per_execution` argument to `compile` in - `tf.keras.Model` is set to `N`, this method will only be called every - `N` batches. - - Args: - batch: Integer, index of batch within the current epoch. - logs: Dict. Currently no data is passed to this argument for this - method but that may change in the future. - """ - - @doc_controls.for_subclass_implementers - @generic_utils.default - def on_test_batch_end(self, batch, logs=None): - """Called at the end of a batch in `evaluate` methods. - - Also called at the end of a validation batch in the `fit` - methods, if validation data is provided. - - Subclasses should override for any actions to run. - - Note that if the `steps_per_execution` argument to `compile` in - `tf.keras.Model` is set to `N`, this method will only be called every - `N` batches. - - Args: - batch: Integer, index of batch within the current epoch. - logs: Dict. Aggregated metric results up until this batch. - """ - - @doc_controls.for_subclass_implementers - @generic_utils.default - def on_predict_batch_begin(self, batch, logs=None): - """Called at the beginning of a batch in `predict` methods. - - Subclasses should override for any actions to run. - - Note that if the `steps_per_execution` argument to `compile` in - `tf.keras.Model` is set to `N`, this method will only be called every - `N` batches. - - Args: - batch: Integer, index of batch within the current epoch. - logs: Dict. Currently no data is passed to this argument for this - method but that may change in the future. - """ - - @doc_controls.for_subclass_implementers - @generic_utils.default - def on_predict_batch_end(self, batch, logs=None): - """Called at the end of a batch in `predict` methods. - - Subclasses should override for any actions to run. - - Note that if the `steps_per_execution` argument to `compile` in - `tf.keras.Model` is set to `N`, this method will only be called every - `N` batches. - - Args: - batch: Integer, index of batch within the current epoch. - logs: Dict. Aggregated metric results up until this batch. - """ - - @doc_controls.for_subclass_implementers - def on_train_begin(self, logs=None): - """Called at the beginning of training. - - Subclasses should override for any actions to run. - - Args: - logs: Dict. Currently no data is passed to this argument for this - method but that may change in the future. - """ - - @doc_controls.for_subclass_implementers - def on_train_end(self, logs=None): - """Called at the end of training. - - Subclasses should override for any actions to run. - - Args: - logs: Dict. Currently the output of the last call to - `on_epoch_end()` is passed to this argument for this method but - that may change in the future. - """ - - @doc_controls.for_subclass_implementers - def on_test_begin(self, logs=None): - """Called at the beginning of evaluation or validation. - - Subclasses should override for any actions to run. - - Args: - logs: Dict. Currently no data is passed to this argument for this - method but that may change in the future. - """ - - @doc_controls.for_subclass_implementers - def on_test_end(self, logs=None): - """Called at the end of evaluation or validation. - - Subclasses should override for any actions to run. - - Args: - logs: Dict. Currently the output of the last call to - `on_test_batch_end()` is passed to this argument for this method - but that may change in the future. - """ - - @doc_controls.for_subclass_implementers - def on_predict_begin(self, logs=None): - """Called at the beginning of prediction. - - Subclasses should override for any actions to run. - - Args: - logs: Dict. Currently no data is passed to this argument for this - method but that may change in the future. - """ - - @doc_controls.for_subclass_implementers - def on_predict_end(self, logs=None): - """Called at the end of prediction. - - Subclasses should override for any actions to run. - - Args: - logs: Dict. Currently no data is passed to this argument for this - method but that may change in the future. - """ - - def _implements_train_batch_hooks(self): - """Determines if this Callback should be called for each train batch.""" - return ( - not generic_utils.is_default(self.on_batch_begin) - or not generic_utils.is_default(self.on_batch_end) - or not generic_utils.is_default(self.on_train_batch_begin) - or not generic_utils.is_default(self.on_train_batch_end) - ) - - def _implements_test_batch_hooks(self): - """Determines if this Callback should be called for each test batch.""" - return not generic_utils.is_default( - self.on_test_batch_begin - ) or not generic_utils.is_default(self.on_test_batch_end) - - def _implements_predict_batch_hooks(self): - """Determines if this Callback should be called for each predict - batch.""" - return not generic_utils.is_default( - self.on_predict_batch_begin - ) or not generic_utils.is_default(self.on_predict_batch_end) - - -@keras_export("keras.callbacks.BaseLogger") -class BaseLogger(Callback): - """Callback that accumulates epoch averages of metrics. - - This callback is automatically applied to every Keras model. - - Args: - stateful_metrics: Iterable of string names of metrics that - should *not* be averaged over an epoch. - Metrics in this list will be logged as-is in `on_epoch_end`. - All others will be averaged in `on_epoch_end`. - """ - - def __init__(self, stateful_metrics=None): - super().__init__() - self.stateful_metrics = set(stateful_metrics or []) - - def on_epoch_begin(self, epoch, logs=None): - self.seen = 0 - self.totals = {} - - def on_batch_end(self, batch, logs=None): - logs = logs or {} - batch_size = logs.get("size", 0) - # In case of distribution strategy we can potentially run multiple steps - # at the same time, we should account for that in the `seen` - # calculation. - num_steps = logs.get("num_steps", 1) - self.seen += batch_size * num_steps - - for k, v in logs.items(): - if k in self.stateful_metrics: - self.totals[k] = v - else: - if k in self.totals: - self.totals[k] += v * batch_size - else: - self.totals[k] = v * batch_size - - def on_epoch_end(self, epoch, logs=None): - if logs is not None: - for k in self.params["metrics"]: - if k in self.totals: - # Make value available to next callbacks. - if k in self.stateful_metrics: - logs[k] = self.totals[k] - else: - logs[k] = self.totals[k] / self.seen - - -@keras_export("keras.callbacks.TerminateOnNaN") -class TerminateOnNaN(Callback): - """Callback that terminates training when a NaN loss is encountered.""" - - def __init__(self): - super().__init__() - self._supports_tf_logs = True - - def on_batch_end(self, batch, logs=None): - logs = logs or {} - loss = logs.get("loss") - if loss is not None: - loss = tf_utils.sync_to_numpy_or_python_type(loss) - if np.isnan(loss) or np.isinf(loss): - io_utils.print_msg( - f"Batch {batch}: Invalid loss, terminating training" - ) - self.model.stop_training = True - - -@keras_export("keras.callbacks.ProgbarLogger") -class ProgbarLogger(Callback): - """Callback that prints metrics to stdout. - - Args: - count_mode: One of `"steps"` or `"samples"`. - Whether the progress bar should - count samples seen or steps (batches) seen. - stateful_metrics: Iterable of string names of metrics that - should *not* be averaged over an epoch. - Metrics in this list will be logged as-is. - All others will be averaged over time (e.g. loss, etc). - If not provided, defaults to the `Model`'s metrics. - - Raises: - ValueError: In case of invalid `count_mode`. - """ - - def __init__(self, count_mode: str = "samples", stateful_metrics=None): - super().__init__() - self._supports_tf_logs = True - if count_mode == "samples": - self.use_steps = False - elif count_mode == "steps": - self.use_steps = True - else: - raise ValueError( - f"Unknown `count_mode`: {count_mode}. " - 'Expected values are ["samples", "steps"]' - ) - # Defaults to all Model's metrics except for loss. - self.stateful_metrics = ( - set(stateful_metrics) if stateful_metrics else set() - ) - - self.seen = 0 - self.progbar = None - self.target = None - self.verbose = 1 - self.epochs = 1 - - self._train_step, self._test_step, self._predict_step = None, None, None - self._call_batch_hooks = True - - self._called_in_fit = False - - def set_params(self, params): - self.verbose = params["verbose"] - self.epochs = params["epochs"] - if self.use_steps and "steps" in params: - self.target = params["steps"] - elif not self.use_steps and "samples" in params: - self.target = params["samples"] - else: - self.target = ( - None # Will be inferred at the end of the first epoch. - ) - - self._call_batch_hooks = self.verbose == 1 - if self.target is None: - try: - self._train_step = self.model._train_counter - self._test_step = self.model._test_counter - self._predict_step = self.model._predict_counter - except AttributeError: - self._call_batch_hooks = True - - def on_train_begin(self, logs=None): - # When this logger is called inside `fit`, validation is silent. - self._called_in_fit = True - - def on_test_begin(self, logs=None): - if not self._called_in_fit: - self._reset_progbar() - self._maybe_init_progbar() - - def on_predict_begin(self, logs=None): - self._reset_progbar() - self._maybe_init_progbar() - - def on_epoch_begin(self, epoch, logs=None): - self._reset_progbar() - self._maybe_init_progbar() - if self.verbose and self.epochs > 1: - io_utils.print_msg(f"Epoch {epoch + 1}/{self.epochs}") - - def on_train_batch_end(self, batch, logs=None): - self._batch_update_progbar(batch, logs) - - def on_test_batch_end(self, batch, logs=None): - if not self._called_in_fit: - self._batch_update_progbar(batch, logs) - - def on_predict_batch_end(self, batch, logs=None): - # Don't pass prediction results. - self._batch_update_progbar(batch, None) - - def on_epoch_end(self, epoch, logs=None): - self._finalize_progbar(logs, self._train_step) - - def on_test_end(self, logs=None): - if not self._called_in_fit: - self._finalize_progbar(logs, self._test_step) - - def on_predict_end(self, logs=None): - self._finalize_progbar(logs, self._predict_step) - - def _reset_progbar(self): - self.seen = 0 - self.progbar = None - - def _maybe_init_progbar(self): - """Instantiate a `Progbar` if not yet, and update the stateful - metrics.""" - # TODO(rchao): Legacy TF1 code path may use list for - # `self.stateful_metrics`. Remove "cast to set" when TF1 support is - # dropped. - self.stateful_metrics = set(self.stateful_metrics) - - if self.model: - # Update the existing stateful metrics as `self.model.metrics` may - # contain updated metrics after `MetricsContainer` is built in the - # first train step. - self.stateful_metrics = self.stateful_metrics.union( - set(m.name for m in self.model.metrics) - ) - - if self.progbar is None: - self.progbar = Progbar( - target=self.target, - verbose=self.verbose, - stateful_metrics=self.stateful_metrics, - unit_name="step" if self.use_steps else "sample", - ) - - self.progbar._update_stateful_metrics(self.stateful_metrics) - - def _implements_train_batch_hooks(self): - return self._call_batch_hooks - - def _implements_test_batch_hooks(self): - return self._call_batch_hooks - - def _implements_predict_batch_hooks(self): - return self._call_batch_hooks - - def _batch_update_progbar(self, batch, logs=None): - """Updates the progbar.""" - logs = logs or {} - self._maybe_init_progbar() - if self.use_steps: - self.seen = batch + 1 # One-indexed. - else: - # v1 path only. - logs = copy.copy(logs) - batch_size = logs.pop("size", 0) - num_steps = logs.pop("num_steps", 1) - logs.pop("batch", None) - add_seen = num_steps * batch_size - self.seen += add_seen - - if self.verbose == 1: - # Only block async when verbose = 1. - logs = tf_utils.sync_to_numpy_or_python_type(logs) - self.progbar.update(self.seen, list(logs.items()), finalize=False) - - def _finalize_progbar(self, logs, counter): - logs = tf_utils.sync_to_numpy_or_python_type(logs or {}) - if self.target is None: - if counter is not None: - counter = counter.numpy() - if not self.use_steps: - counter *= logs.get("size", 1) - self.target = counter or self.seen - self.progbar.target = self.target - self.progbar.update(self.target, list(logs.items()), finalize=True) - - -@keras_export("keras.callbacks.History") -class History(Callback): - """Callback that records events into a `History` object. - - This callback is automatically applied to - every Keras model. The `History` object - gets returned by the `fit` method of models. - - Example: - - >>> model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)]) - >>> model.compile(tf.keras.optimizers.SGD(), loss='mse') - >>> history = model.fit(np.arange(100).reshape(5, 20), np.zeros(5), - ... epochs=10, verbose=1) - >>> print(history.params) - {'verbose': 1, 'epochs': 10, 'steps': 1} - >>> # check the keys of history object - >>> print(history.history.keys()) - dict_keys(['loss']) - - """ - - def __init__(self): - super().__init__() - self.history = {} - - def on_train_begin(self, logs=None): - self.epoch = [] - - def on_epoch_end(self, epoch, logs=None): - logs = logs or {} - self.epoch.append(epoch) - for k, v in logs.items(): - self.history.setdefault(k, []).append(v) - - # Set the history attribute on the model after the epoch ends. This will - # make sure that the state which is set is the latest one. - self.model.history = self - - -@keras_export("keras.callbacks.ModelCheckpoint") -class ModelCheckpoint(Callback): - """Callback to save the Keras model or model weights at some frequency. - - `ModelCheckpoint` callback is used in conjunction with training using - `model.fit()` to save a model or weights (in a checkpoint file) at some - interval, so the model or weights can be loaded later to continue the - training from the state saved. - - A few options this callback provides include: - - - Whether to only keep the model that has achieved the "best performance" so - far, or whether to save the model at the end of every epoch regardless of - performance. - - Definition of 'best'; which quantity to monitor and whether it should be - maximized or minimized. - - The frequency it should save at. Currently, the callback supports saving - at the end of every epoch, or after a fixed number of training batches. - - Whether only weights are saved, or the whole model is saved. - - Note: If you get `WARNING:tensorflow:Can save best model only with - available, skipping` see the description of the `monitor` argument for - details on how to get this right. - - Example: - - ```python - model.compile(loss=..., optimizer=..., - metrics=['accuracy']) - - EPOCHS = 10 - checkpoint_filepath = '/tmp/checkpoint' - model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( - filepath=checkpoint_filepath, - save_weights_only=True, - monitor='val_accuracy', - mode='max', - save_best_only=True) - - # Model weights are saved at the end of every epoch, if it's the best seen - # so far. - model.fit(epochs=EPOCHS, callbacks=[model_checkpoint_callback]) - - # The model weights (that are considered the best) are loaded into the - # model. - model.load_weights(checkpoint_filepath) - ``` - - Args: - filepath: string or `PathLike`, path to save the model file. e.g. - filepath = os.path.join(working_dir, 'ckpt', file_name). `filepath` - can contain named formatting options, which will be filled the value - of `epoch` and keys in `logs` (passed in `on_epoch_end`). For example: - if `filepath` is `weights.{epoch:02d}-{val_loss:.2f}.hdf5`, then the - model checkpoints will be saved with the epoch number and the - validation loss in the filename. The directory of the filepath should - not be reused by any other callbacks to avoid conflicts. - monitor: The metric name to monitor. Typically the metrics are set by - the `Model.compile` method. Note: - - * Prefix the name with `"val_`" to monitor validation metrics. - * Use `"loss"` or "`val_loss`" to monitor the model's total loss. - * If you specify metrics as strings, like `"accuracy"`, pass the same - string (with or without the `"val_"` prefix). - * If you pass `metrics.Metric` objects, `monitor` should be set to - `metric.name` - * If you're not sure about the metric names you can check the contents - of the `history.history` dictionary returned by - `history = model.fit()` - * Multi-output models set additional prefixes on the metric names. - - verbose: Verbosity mode, 0 or 1. Mode 0 is silent, and mode 1 - displays messages when the callback takes an action. - save_best_only: if `save_best_only=True`, it only saves when the model - is considered the "best" and the latest best model according to the - quantity monitored will not be overwritten. If `filepath` doesn't - contain formatting options like `{epoch}` then `filepath` will be - overwritten by each new better model. - mode: one of {'auto', 'min', 'max'}. If `save_best_only=True`, the - decision to overwrite the current save file is made based on either - the maximization or the minimization of the monitored quantity. - For `val_acc`, this should be `max`, for `val_loss` this should be - `min`, etc. In `auto` mode, the mode is set to `max` if the quantities - monitored are 'acc' or start with 'fmeasure' and are set to `min` for - the rest of the quantities. - save_weights_only: if True, then only the model's weights will be saved - (`model.save_weights(filepath)`), else the full model is saved - (`model.save(filepath)`). - save_freq: `'epoch'` or integer. When using `'epoch'`, the callback - saves the model after each epoch. When using integer, the callback - saves the model at end of this many batches. If the `Model` is - compiled with `steps_per_execution=N`, then the saving criteria will - be checked every Nth batch. Note that if the saving isn't aligned to - epochs, the monitored metric may potentially be less reliable (it - could reflect as little as 1 batch, since the metrics get reset every - epoch). Defaults to `'epoch'`. - options: Optional `tf.train.CheckpointOptions` object if - `save_weights_only` is true or optional `tf.saved_model.SaveOptions` - object if `save_weights_only` is false. - initial_value_threshold: Floating point initial "best" value of the - metric to be monitored. Only applies if `save_best_value=True`. Only - overwrites the model weights already saved if the performance of - current model is better than this value. - **kwargs: Additional arguments for backwards compatibility. Possible key - is `period`. - """ - - def __init__( - self, - filepath, - monitor: str = "val_loss", - verbose: int = 0, - save_best_only: bool = False, - save_weights_only: bool = False, - mode: str = "auto", - save_freq="epoch", - options=None, - initial_value_threshold=None, - **kwargs, - ): - super().__init__() - self._supports_tf_logs = True - self.monitor = monitor - self.verbose = verbose - self.filepath = io_utils.path_to_string(filepath) - self.save_best_only = save_best_only - self.save_weights_only = save_weights_only - self.save_freq = save_freq - self.epochs_since_last_save = 0 - self._batches_seen_since_last_saving = 0 - self._last_batch_seen = 0 - self.best = initial_value_threshold - - if save_weights_only: - if options is None or isinstance( - options, tf.train.CheckpointOptions - ): - self._options = options or tf.train.CheckpointOptions() - else: - raise TypeError( - "If save_weights_only is True, then `options` must be " - "either None or a tf.train.CheckpointOptions. " - f"Got {options}." - ) - else: - if options is None or isinstance( - options, tf.saved_model.SaveOptions - ): - self._options = options or tf.saved_model.SaveOptions() - else: - raise TypeError( - "If save_weights_only is False, then `options` must be " - "either None or a tf.saved_model.SaveOptions. " - f"Got {options}." - ) - - # Deprecated field `load_weights_on_restart` is for loading the - # checkpoint file from `filepath` at the start of `model.fit()` - # TODO(rchao): Remove the arg during next breaking release. - if "load_weights_on_restart" in kwargs: - self.load_weights_on_restart = kwargs["load_weights_on_restart"] - logging.warning( - "`load_weights_on_restart` argument is deprecated. " - "Please use `model.load_weights()` for loading weights " - "before the start of `model.fit()`." - ) - else: - self.load_weights_on_restart = False - - # Deprecated field `period` is for the number of epochs between which - # the model is saved. - if "period" in kwargs: - self.period = kwargs["period"] - logging.warning( - "`period` argument is deprecated. Please use `save_freq` " - "to specify the frequency in number of batches seen." - ) - else: - self.period = 1 - - if mode not in ["auto", "min", "max"]: - logging.warning( - "ModelCheckpoint mode %s is unknown, fallback to auto mode.", - mode, - ) - mode = "auto" - - if mode == "min": - self.monitor_op = np.less - if self.best is None: - self.best = np.Inf - elif mode == "max": - self.monitor_op = np.greater - if self.best is None: - self.best = -np.Inf - else: - if "acc" in self.monitor or self.monitor.startswith("fmeasure"): - self.monitor_op = np.greater - if self.best is None: - self.best = -np.Inf - else: - self.monitor_op = np.less - if self.best is None: - self.best = np.Inf - - if self.save_freq != "epoch" and not isinstance(self.save_freq, int): - raise ValueError( - f"Unrecognized save_freq: {self.save_freq}. " - 'Expected save_freq are "epoch" or integer' - ) - - # Only the chief worker writes model checkpoints, but all workers - # restore checkpoint at on_train_begin(). - self._chief_worker_only = False - - def on_train_begin(self, logs=None): - if self.load_weights_on_restart: - filepath_to_load = ( - self._get_most_recently_modified_file_matching_pattern( - self.filepath - ) - ) - if filepath_to_load is not None and self._checkpoint_exists( - filepath_to_load - ): - try: - # `filepath` may contain placeholders such as `{epoch:02d}`, - # and thus it attempts to load the most recently modified - # file with file name matching the pattern. - self.model.load_weights(filepath_to_load) - except (IOError, ValueError) as e: - raise ValueError( - f"Error loading file from {filepath_to_load}. " - f"Reason: {e}" - ) - - def _implements_train_batch_hooks(self): - # Only call batch hooks when saving on batch - return self.save_freq != "epoch" - - def on_train_batch_end(self, batch, logs=None): - if self._should_save_on_batch(batch): - self._save_model(epoch=self._current_epoch, batch=batch, logs=logs) - - def on_epoch_begin(self, epoch, logs=None): - self._current_epoch = epoch - - def on_epoch_end(self, epoch, logs=None): - self.epochs_since_last_save += 1 - - if self.save_freq == "epoch": - self._save_model(epoch=epoch, batch=None, logs=logs) - - def _should_save_on_batch(self, batch): - """Handles batch-level saving logic, supports steps_per_execution.""" - if self.save_freq == "epoch": - return False - - if batch <= self._last_batch_seen: # New epoch. - add_batches = batch + 1 # batches are zero-indexed. - else: - add_batches = batch - self._last_batch_seen - self._batches_seen_since_last_saving += add_batches - self._last_batch_seen = batch - - if self._batches_seen_since_last_saving >= self.save_freq: - self._batches_seen_since_last_saving = 0 - return True - return False - - def _save_model(self, epoch, batch, logs): - """Saves the model. - - Args: - epoch: the epoch this iteration is in. - batch: the batch this iteration is in. `None` if the `save_freq` - is set to `epoch`. - logs: the `logs` dict passed in to `on_batch_end` or `on_epoch_end`. - """ - logs = logs or {} - - if ( - isinstance(self.save_freq, int) - or self.epochs_since_last_save >= self.period - ): - # Block only when saving interval is reached. - logs = tf_utils.sync_to_numpy_or_python_type(logs) - self.epochs_since_last_save = 0 - filepath = self._get_file_path(epoch, batch, logs) - - # Create host directory if it doesn't exist. - dirname = os.path.dirname(filepath) - if dirname and not tf.io.gfile.exists(dirname): - tf.io.gfile.makedirs(dirname) - - try: - if self.save_best_only: - current = logs.get(self.monitor) - if current is None: - logging.warning( - "Can save best model only with %s available, " - "skipping.", - self.monitor, - ) - else: - if self.monitor_op(current, self.best): - if self.verbose > 0: - io_utils.print_msg( - f"\nEpoch {epoch + 1}: {self.monitor} " - "improved " - f"from {self.best:.5f} to {current:.5f}, " - f"saving model to {filepath}" - ) - self.best = current - if self.save_weights_only: - self.model.save_weights( - filepath, - overwrite=True, - options=self._options, - ) - else: - self.model.save( - filepath, - overwrite=True, - options=self._options, - ) - else: - if self.verbose > 0: - io_utils.print_msg( - f"\nEpoch {epoch + 1}: " - f"{self.monitor} did not improve " - f"from {self.best:.5f}" - ) - else: - if self.verbose > 0: - io_utils.print_msg( - f"\nEpoch {epoch + 1}: saving model to {filepath}" - ) - if self.save_weights_only: - self.model.save_weights( - filepath, overwrite=True, options=self._options - ) - else: - self.model.save( - filepath, overwrite=True, options=self._options - ) - - self._maybe_remove_file() - except IsADirectoryError: # h5py 3.x - raise IOError( - "Please specify a non-directory filepath for " - "ModelCheckpoint. Filepath used is an existing " - f"directory: {filepath}" - ) - except IOError as e: # h5py 2.x - # `e.errno` appears to be `None` so checking the content of - # `e.args[0]`. - if "is a directory" in str(e.args[0]).lower(): - raise IOError( - "Please specify a non-directory filepath for " - "ModelCheckpoint. Filepath used is an existing " - f"directory: f{filepath}" - ) - # Re-throw the error for any other causes. - raise e - - def _get_file_path(self, epoch, batch, logs): - """Returns the file path for checkpoint.""" - - try: - # `filepath` may contain placeholders such as - # `{epoch:02d}`,`{batch:02d}` and `{mape:.2f}`. A mismatch between - # logged metrics and the path's placeholders can cause formatting to - # fail. - if batch is None or "batch" in logs: - file_path = self.filepath.format(epoch=epoch + 1, **logs) - else: - file_path = self.filepath.format( - epoch=epoch + 1, batch=batch + 1, **logs - ) - except KeyError as e: - raise KeyError( - f'Failed to format this callback filepath: "{self.filepath}". ' - f"Reason: {e}" - ) - self._write_filepath = distributed_file_utils.write_filepath( - file_path, self.model.distribute_strategy - ) - return self._write_filepath - - def _maybe_remove_file(self): - # Remove the checkpoint directory in multi-worker training where this - # worker should not checkpoint. It is a dummy directory previously saved - # for sync distributed training. - distributed_file_utils.remove_temp_dir_with_filepath( - self._write_filepath, self.model.distribute_strategy - ) - - def _checkpoint_exists(self, filepath): - """Returns whether the checkpoint `filepath` refers to exists.""" - if filepath.endswith(".h5"): - return tf.io.gfile.exists(filepath) - tf_saved_model_exists = tf.io.gfile.exists(filepath) - tf_weights_only_checkpoint_exists = tf.io.gfile.exists( - filepath + ".index" - ) - return tf_saved_model_exists or tf_weights_only_checkpoint_exists - - def _get_most_recently_modified_file_matching_pattern(self, pattern): - """Returns the most recently modified filepath matching pattern. - - Pattern may contain python formatting placeholder. If - `tf.train.latest_checkpoint()` does not return None, use that; - otherwise, check for most recently modified one that matches the - pattern. - - In the rare case where there are more than one pattern-matching file - having the same modified time that is most recent among all, return the - filepath that is largest (by `>` operator, lexicographically using the - numeric equivalents). This provides a tie-breaker when multiple files - are most recent. Note that a larger `filepath` can sometimes indicate a - later time of modification (for instance, when epoch/batch is used as - formatting option), but not necessarily (when accuracy or loss is used). - The tie-breaker is put in the logic as best effort to return the most - recent, and to avoid undeterministic result. - - Modified time of a file is obtained with `os.path.getmtime()`. - - This utility function is best demonstrated via an example: - - ```python - file_pattern = 'f.batch{batch:02d}epoch{epoch:02d}.h5' - test_dir = self.get_temp_dir() - path_pattern = os.path.join(test_dir, file_pattern) - file_paths = [ - os.path.join(test_dir, file_name) for file_name in - ['f.batch03epoch02.h5', - 'f.batch02epoch02.h5', 'f.batch01epoch01.h5'] - ] - for file_path in file_paths: - # Write something to each of the files - self.assertEqual( - _get_most_recently_modified_file_matching_pattern(path_pattern), - file_paths[-1]) - ``` - - Args: - pattern: The file pattern that may optionally contain python - placeholder such as `{epoch:02d}`. - - Returns: - The most recently modified file's full filepath matching `pattern`. - If `pattern` does not contain any placeholder, this returns the - filepath that exactly matches `pattern`. Returns `None` if no match - is found. - """ - dir_name = os.path.dirname(pattern) - base_name = os.path.basename(pattern) - base_name_regex = "^" + re.sub(r"{.*}", r".*", base_name) + "$" - - # If tf.train.latest_checkpoint tells us there exists a latest - # checkpoint, use that as it is more robust than `os.path.getmtime()`. - latest_tf_checkpoint = tf.train.latest_checkpoint(dir_name) - if latest_tf_checkpoint is not None and re.match( - base_name_regex, os.path.basename(latest_tf_checkpoint) - ): - return latest_tf_checkpoint - - latest_mod_time = 0 - file_path_with_latest_mod_time = None - n_file_with_latest_mod_time = 0 - file_path_with_largest_file_name = None - - if tf.io.gfile.exists(dir_name): - for file_name in os.listdir(dir_name): - # Only consider if `file_name` matches the pattern. - if re.match(base_name_regex, file_name): - file_path = os.path.join(dir_name, file_name) - mod_time = os.path.getmtime(file_path) - if ( - file_path_with_largest_file_name is None - or file_path > file_path_with_largest_file_name - ): - file_path_with_largest_file_name = file_path - if mod_time > latest_mod_time: - latest_mod_time = mod_time - file_path_with_latest_mod_time = file_path - # In the case a file with later modified time is found, - # reset the counter for the number of files with latest - # modified time. - n_file_with_latest_mod_time = 1 - elif mod_time == latest_mod_time: - # In the case a file has modified time tied with the - # most recent, increment the counter for the number of - # files with latest modified time by 1. - n_file_with_latest_mod_time += 1 - - if n_file_with_latest_mod_time == 1: - # Return the sole file that has most recent modified time. - return file_path_with_latest_mod_time - else: - # If there are more than one file having latest modified time, - # return the file path with the largest file name. - return file_path_with_largest_file_name - - -@keras_export("keras.callbacks.BackupAndRestore", v1=[]) -class BackupAndRestore(Callback): - """Callback to back up and restore the training state. - - `BackupAndRestore` callback is intended to recover training from an - interruption that has happened in the middle of a `Model.fit` execution, by - backing up the training states in a temporary checkpoint file (with the help - of a `tf.train.CheckpointManager`), at the end of each epoch. Each backup - overwrites the previously written checkpoint file, so at any given time - there is at most one such checkpoint file for backup/restoring purpose. - - If training restarts before completion, the training state (which includes - the `Model` weights and epoch number) is restored to the most recently saved - state at the beginning of a new `Model.fit` run. At the completion of a - `Model.fit` run, the temporary checkpoint file is deleted. - - Note that the user is responsible to bring jobs back after the interruption. - This callback is important for the backup and restore mechanism for fault - tolerance purpose, and the model to be restored from a previous checkpoint - is expected to be the same as the one used to back up. If user changes - arguments passed to compile or fit, the checkpoint saved for fault tolerance - can become invalid. - - Note: - - 1. This callback is not compatible with eager execution disabled. - 2. A checkpoint is saved at the end of each epoch. After restoring, - `Model.fit` redoes any partial work during the unfinished epoch in which the - training got restarted (so the work done before the interruption doesn't - affect the final model state). - 3. This works for both single worker and multi-worker modes. When - `Model.fit` is used with `tf.distribute`, it supports - `tf.distribute.MirroredStrategy`, - `tf.distribute.MultiWorkerMirroredStrategy`, `tf.distribute.TPUStrategy`, - and `tf.distribute.experimental.ParameterServerStrategy`. - - Example: - - >>> class InterruptingCallback(tf.keras.callbacks.Callback): - ... def on_epoch_begin(self, epoch, logs=None): - ... if epoch == 4: - ... raise RuntimeError('Interrupting!') - >>> callback = tf.keras.callbacks.BackupAndRestore(backup_dir="/tmp/backup") - >>> model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)]) - >>> model.compile(tf.keras.optimizers.SGD(), loss='mse') - >>> try: - ... model.fit(np.arange(100).reshape(5, 20), np.zeros(5), epochs=10, - ... batch_size=1, callbacks=[callback, InterruptingCallback()], - ... verbose=0) - ... except: - ... pass - >>> history = model.fit(np.arange(100).reshape(5, 20), np.zeros(5), - ... epochs=10, batch_size=1, callbacks=[callback], - ... verbose=0) - >>> # Only 6 more epochs are run, since first training got interrupted at - >>> # zero-indexed epoch 4, second training will continue from 4 to 9. - >>> len(history.history['loss']) - 6 - - Besides the option to save at the end of every epoch or every N steps, if - you are doing distributed training with - `tf.distribute.MultiWorkerMirroredStrategy` on Google Cloud Platform or - Google Borg, you can also use the `save_before_preemption` argument - to enable saving a checkpoint right before a worker gets preempted - by other jobs and training gets interrupted. See - `tf.distribute.experimental.PreemptionCheckpointHandler` for more details. - - Args: - backup_dir: String, path to store the checkpoint. - e.g. `backup_dir = os.path.join(working_dir, 'backup')`. - This is the directory in which the system stores temporary files to - recover the model from jobs terminated unexpectedly. The directory - cannot be reused elsewhere to store other files, e.g. by the - `BackupAndRestore` callback of another training run, - or by another callback - (e.g. `ModelCheckpoint`) of the same training. - save_freq: `'epoch'`, integer, or `False`. When set to `'epoch'` - the callback saves the checkpoint at the end of each epoch. - When set to an integer, the callback saves the checkpoint every - `save_freq` batches. Set `save_freq` to `False` if only using - preemption checkpointing (with `save_before_preemption=True`). - delete_checkpoint: Boolean, default to True. This `BackupAndRestore` - callback works by saving a checkpoint to back up the training state. - If `delete_checkpoint=True`, the checkpoint will be deleted after - training is finished. Use `False` if you'd like to keep the checkpoint - for future usage. - save_before_preemption: A boolean value instructing whether to turn on - the automatic checkpoint saving for preemption/maintenance events. - This only supports - `tf.distribute.MultiWorkerMirroredStrategy` on Google Cloud Platform - or Google Borg for now. - """ - - def __init__( - self, - backup_dir, - save_freq="epoch", - delete_checkpoint=True, - save_before_preemption=False, - ): - super().__init__() - self.backup_dir = backup_dir - self._supports_tf_logs = True - self._supported_strategies = ( - tf.distribute.MirroredStrategy, - tf.distribute.MultiWorkerMirroredStrategy, - tf.distribute.experimental.TPUStrategy, - tf.distribute.TPUStrategy, - tf.distribute.experimental.ParameterServerStrategy, - ) - self.save_freq = save_freq - self.delete_checkpoint = delete_checkpoint - self.save_before_preemption = save_before_preemption - self._batches_count = 0 - self._current_epoch = 0 - - if not tf.executing_eagerly(): - if tf.inside_function(): - raise ValueError( - "This Callback's method contains Python state and " - "should be called outside of `tf.function`s." - ) - else: # Legacy graph mode: - raise ValueError( - "BackupAndRestore only supports eager mode. In graph " - "mode, consider using ModelCheckpoint to manually save " - "and restore weights with `model.load_weights()` and by " - "providing `initial_epoch` in `model.fit()` for fault " - "tolerance." - ) - if (not save_freq) and (not save_before_preemption): - raise ValueError( - "Either `save_freq` or `save_before_preemption` " "must be set." - ) - - # Only the chief worker writes model checkpoints, but all workers - # restore checkpoint at on_train_begin(). - self._chief_worker_only = False - - def on_train_begin(self, logs=None): - # TrainingState is used to manage the training state needed for - # failure-recovery of a worker in training. - - if self.model._distribution_strategy and not isinstance( - self.model.distribute_strategy, self._supported_strategies - ): - raise NotImplementedError( - f"{type(self.model.distribute_strategy)} is not supported yet. " - "Currently BackupAndRestore callback " - "only supports empty strategy, " - "MirroredStrategy, MultiWorkerMirroredStrategy and TPUStrategy." - ) - self.model._training_state = worker_training_state.WorkerTrainingState( - self.model, - self.backup_dir, - self.save_freq, - self.save_before_preemption, - ) - self._training_state = self.model._training_state - self._training_state.restore() - - def on_train_batch_begin(self, batch, logs=None): - self._training_state._ckpt_saved_batch.assign(batch) - - def on_train_batch_end(self, batch, logs=None): - self._training_state.backup_if_preempted() - if self.save_freq and self.save_freq != "epoch": - self._batches_count += 1 - if self._batches_count >= self.save_freq: - self._batches_count = 0 - self._backup(epoch=self._current_epoch, batch=batch) - - def _implements_train_batch_hooks(self): - return self.save_freq != "epoch" - - def on_train_end(self, logs=None): - if self.delete_checkpoint: - # On exit of training, delete the training state backup file saved - # for the purpose of worker recovery unless the user opts out. - self._training_state.delete_backup() - # Clean up the training state. - del self._training_state - del self.model._training_state - - def on_epoch_begin(self, epoch, logs=None): - self._training_state._ckpt_saved_epoch.assign(epoch) - self._current_epoch = epoch - - def on_epoch_end(self, epoch, logs=None): - # Back up the model and current epoch for possible future recovery. - if self.save_freq == "epoch": - self._backup(epoch=epoch) - - def _backup(self, epoch, batch=0): - self._training_state.back_up(epoch=epoch, batch=batch) - - -@keras_export("keras.callbacks.experimental.BackupAndRestore", v1=[]) -@deprecation.deprecated_endpoints( - "keras.callbacks.experimental.BackupAndRestore" -) -class BackupAndRestoreExperimental(BackupAndRestore): - """Deprecated. Please use `tf.keras.callbacks.BackupAndRestore` instead. - - Caution: `tf.keras.callbacks.experimental.BackupAndRestore` endpoint is - deprecated and will be removed in a future release. Please use - `tf.keras.callbacks.BackupAndRestore`. - """ - - def __init__(self, *args, **kwargs): - logging.warning( - "`tf.keras.callbacks.experimental.BackupAndRestore` endpoint is " - "deprecated and will be removed in a future release. Please use " - "`tf.keras.callbacks.BackupAndRestore`." - ) - super().__init__(*args, **kwargs) - - -@keras_export("keras.callbacks.EarlyStopping") -class EarlyStopping(Callback): - """Stop training when a monitored metric has stopped improving. - - Assuming the goal of a training is to minimize the loss. With this, the - metric to be monitored would be `'loss'`, and mode would be `'min'`. A - `model.fit()` training loop will check at end of every epoch whether - the loss is no longer decreasing, considering the `min_delta` and - `patience` if applicable. Once it's found no longer decreasing, - `model.stop_training` is marked True and the training terminates. - - The quantity to be monitored needs to be available in `logs` dict. - To make it so, pass the loss or metrics at `model.compile()`. - - Args: - monitor: Quantity to be monitored. - min_delta: Minimum change in the monitored quantity - to qualify as an improvement, i.e. an absolute - change of less than min_delta, will count as no - improvement. - patience: Number of epochs with no improvement - after which training will be stopped. - verbose: Verbosity mode, 0 or 1. Mode 0 is silent, and mode 1 - displays messages when the callback takes an action. - mode: One of `{"auto", "min", "max"}`. In `min` mode, - training will stop when the quantity - monitored has stopped decreasing; in `"max"` - mode it will stop when the quantity - monitored has stopped increasing; in `"auto"` - mode, the direction is automatically inferred - from the name of the monitored quantity. - baseline: Baseline value for the monitored quantity. - Training will stop if the model doesn't show improvement over the - baseline. - restore_best_weights: Whether to restore model weights from - the epoch with the best value of the monitored quantity. - If False, the model weights obtained at the last step of - training are used. An epoch will be restored regardless - of the performance relative to the `baseline`. If no epoch - improves on `baseline`, training will run for `patience` - epochs and restore weights from the best epoch in that set. - start_from_epoch: Number of epochs to wait before starting - to monitor improvement. This allows for a warm-up period in which - no improvement is expected and thus training will not be stopped. - - - Example: - - >>> callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=3) - >>> # This callback will stop the training when there is no improvement in - >>> # the loss for three consecutive epochs. - >>> model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)]) - >>> model.compile(tf.keras.optimizers.SGD(), loss='mse') - >>> history = model.fit(np.arange(100).reshape(5, 20), np.zeros(5), - ... epochs=10, batch_size=1, callbacks=[callback], - ... verbose=0) - >>> len(history.history['loss']) # Only 4 epochs are run. - 4 - """ - - def __init__( - self, - monitor="val_loss", - min_delta=0, - patience=0, - verbose=0, - mode="auto", - baseline=None, - restore_best_weights=False, - start_from_epoch=0, - ): - super().__init__() - - self.monitor = monitor - self.patience = patience - self.verbose = verbose - self.baseline = baseline - self.min_delta = abs(min_delta) - self.wait = 0 - self.stopped_epoch = 0 - self.restore_best_weights = restore_best_weights - self.best_weights = None - self.start_from_epoch = start_from_epoch - - if mode not in ["auto", "min", "max"]: - logging.warning( - "EarlyStopping mode %s is unknown, fallback to auto mode.", - mode, - ) - mode = "auto" - - if mode == "min": - self.monitor_op = np.less - elif mode == "max": - self.monitor_op = np.greater - else: - if ( - self.monitor.endswith("acc") - or self.monitor.endswith("accuracy") - or self.monitor.endswith("auc") - ): - self.monitor_op = np.greater - else: - self.monitor_op = np.less - - if self.monitor_op == np.greater: - self.min_delta *= 1 - else: - self.min_delta *= -1 - - def on_train_begin(self, logs=None): - # Allow instances to be re-used - self.wait = 0 - self.stopped_epoch = 0 - self.best = np.Inf if self.monitor_op == np.less else -np.Inf - self.best_weights = None - self.best_epoch = 0 - - def on_epoch_end(self, epoch, logs=None): - current = self.get_monitor_value(logs) - if current is None or epoch < self.start_from_epoch: - # If no monitor value exists or still in initial warm-up stage. - return - if self.restore_best_weights and self.best_weights is None: - # Restore the weights after first epoch if no progress is ever made. - self.best_weights = self.model.get_weights() - - self.wait += 1 - if self._is_improvement(current, self.best): - self.best = current - self.best_epoch = epoch - if self.restore_best_weights: - self.best_weights = self.model.get_weights() - # Only restart wait if we beat both the baseline and our previous - # best. - if self.baseline is None or self._is_improvement( - current, self.baseline - ): - self.wait = 0 - return - - # Only check after the first epoch. - if self.wait >= self.patience and epoch > 0: - self.stopped_epoch = epoch - self.model.stop_training = True - if self.restore_best_weights and self.best_weights is not None: - if self.verbose > 0: - io_utils.print_msg( - "Restoring model weights from " - "the end of the best epoch: " - f"{self.best_epoch + 1}." - ) - self.model.set_weights(self.best_weights) - - def on_train_end(self, logs=None): - if self.stopped_epoch > 0 and self.verbose > 0: - io_utils.print_msg( - f"Epoch {self.stopped_epoch + 1}: early stopping" - ) - - def get_monitor_value(self, logs): - logs = logs or {} - monitor_value = logs.get(self.monitor) - if monitor_value is None: - logging.warning( - "Early stopping conditioned on metric `%s` " - "which is not available. Available metrics are: %s", - self.monitor, - ",".join(list(logs.keys())), - ) - return monitor_value - - def _is_improvement(self, monitor_value, reference_value): - return self.monitor_op(monitor_value - self.min_delta, reference_value) - - -@keras_export("keras.callbacks.RemoteMonitor") -class RemoteMonitor(Callback): - """Callback used to stream events to a server. - - Requires the `requests` library. - Events are sent to `root + '/publish/epoch/end/'` by default. Calls are - HTTP POST, with a `data` argument which is a - JSON-encoded dictionary of event data. - If `send_as_json=True`, the content type of the request will be - `"application/json"`. - Otherwise the serialized JSON will be sent within a form. - - Args: - root: String; root url of the target server. - path: String; path relative to `root` to which the events will be sent. - field: String; JSON field under which the data will be stored. - The field is used only if the payload is sent within a form - (i.e. send_as_json is set to False). - headers: Dictionary; optional custom HTTP headers. - send_as_json: Boolean; whether the request should be - sent as `"application/json"`. - """ - - def __init__( - self, - root="http://localhost:9000", - path="/publish/epoch/end/", - field="data", - headers=None, - send_as_json=False, - ): - super().__init__() - - self.root = root - self.path = path - self.field = field - self.headers = headers - self.send_as_json = send_as_json - - def on_epoch_end(self, epoch, logs=None): - if requests is None: - raise ImportError("RemoteMonitor requires the `requests` library.") - logs = logs or {} - send = {} - send["epoch"] = epoch - for k, v in logs.items(): - # np.ndarray and np.generic are not scalar types - # therefore we must unwrap their scalar values and - # pass to the json-serializable dict 'send' - if isinstance(v, (np.ndarray, np.generic)): - send[k] = v.item() - else: - send[k] = v - try: - if self.send_as_json: - requests.post( - self.root + self.path, json=send, headers=self.headers - ) - else: - requests.post( - self.root + self.path, - {self.field: json.dumps(send)}, - headers=self.headers, - ) - except requests.exceptions.RequestException: - logging.warning( - "Warning: could not reach RemoteMonitor root server at " - + str(self.root) - ) - - -@keras_export("keras.callbacks.LearningRateScheduler") -class LearningRateScheduler(Callback): - """Learning rate scheduler. - - At the beginning of every epoch, this callback gets the updated learning - rate value from `schedule` function provided at `__init__`, with the current - epoch and current learning rate, and applies the updated learning rate on - the optimizer. - - Args: - schedule: a function that takes an epoch index (integer, indexed from 0) - and current learning rate (float) as inputs and returns a new - learning rate as output (float). - verbose: int. 0: quiet, 1: update messages. - - Example: - - >>> # This function keeps the initial learning rate for the first ten epochs - >>> # and decreases it exponentially after that. - >>> def scheduler(epoch, lr): - ... if epoch < 10: - ... return lr - ... else: - ... return lr * tf.math.exp(-0.1) - >>> - >>> model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)]) - >>> model.compile(tf.keras.optimizers.SGD(), loss='mse') - >>> round(model.optimizer.lr.numpy(), 5) - 0.01 - - >>> callback = tf.keras.callbacks.LearningRateScheduler(scheduler) - >>> history = model.fit(np.arange(100).reshape(5, 20), np.zeros(5), - ... epochs=15, callbacks=[callback], verbose=0) - >>> round(model.optimizer.lr.numpy(), 5) - 0.00607 - - """ - - def __init__(self, schedule, verbose=0): - super().__init__() - self.schedule = schedule - self.verbose = verbose - - def on_epoch_begin(self, epoch, logs=None): - if not hasattr(self.model.optimizer, "lr"): - raise ValueError('Optimizer must have a "lr" attribute.') - try: # new API - lr = float(backend.get_value(self.model.optimizer.lr)) - lr = self.schedule(epoch, lr) - except TypeError: # Support for old API for backward compatibility - lr = self.schedule(epoch) - if not isinstance(lr, (tf.Tensor, float, np.float32, np.float64)): - raise ValueError( - 'The output of the "schedule" function ' - f"should be float. Got: {lr}" - ) - if isinstance(lr, tf.Tensor) and not lr.dtype.is_floating: - raise ValueError( - f"The dtype of `lr` Tensor should be float. Got: {lr.dtype}" - ) - backend.set_value(self.model.optimizer.lr, backend.get_value(lr)) - if self.verbose > 0: - io_utils.print_msg( - f"\nEpoch {epoch + 1}: LearningRateScheduler setting learning " - f"rate to {lr}." - ) - - def on_epoch_end(self, epoch, logs=None): - logs = logs or {} - logs["lr"] = backend.get_value(self.model.optimizer.lr) - - -def keras_model_summary(name, data, step=None): - """Writes a Keras model as JSON to as a Summary. - - Writing the Keras model configuration allows the TensorBoard graph plugin to - render a conceptual graph, as opposed to graph of ops. In case the model - fails to serialize as JSON, it ignores and returns False. - - Args: - name: A name for this summary. The summary tag used for TensorBoard will - be this name prefixed by any active name scopes. - data: A Keras Model to write. - step: Explicit `int64`-castable monotonic step value for this summary. If - omitted, this defaults to `tf.summary.experimental.get_step()`, which - must not be None. - - Returns: - True on success, or False if no summary was written because no default - summary writer was available. - - Raises: - ValueError: if a default writer exists, but no step was provided and - `tf.summary.experimental.get_step()` is None. - """ - summary_metadata = tf.compat.v1.SummaryMetadata() - # Hard coding a plugin name. Please refer to go/tb-plugin-name-hardcode for - # the rationale. - summary_metadata.plugin_data.plugin_name = "graph_keras_model" - # version number = 1 - summary_metadata.plugin_data.content = b"1" - - try: - json_string = data.to_json() - except Exception as exc: - # An exception should not break a model code. - logging.warning( - "Model failed to serialize as JSON. Ignoring... %s", exc - ) - return False - - with tf.summary.experimental.summary_scope( - name, "graph_keras_model", [data, step] - ) as (tag, _): - with tf.device("cpu:0"): - tensor = tf.constant(json_string, dtype=tf.string) - return tf.summary.write( - tag=tag, tensor=tensor, step=step, metadata=summary_metadata - ) - - -@keras_export("keras.callbacks.TensorBoard", v1=[]) -class TensorBoard(Callback, version_utils.TensorBoardVersionSelector): - - """Enable visualizations for TensorBoard. - - TensorBoard is a visualization tool provided with TensorFlow. - - This callback logs events for TensorBoard, including: - - * Metrics summary plots - * Training graph visualization - * Weight histograms - * Sampled profiling - - When used in `Model.evaluate` or regular validation - ([on_test_end](https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/Callback#on_test_end)), - in addition to epoch summaries, there will be a summary that records - evaluation metrics vs `Model.optimizer.iterations` written. The metric names - will be prepended with `evaluation`, with `Model.optimizer.iterations` being - the step in the visualized TensorBoard. - - If you have installed TensorFlow with pip, you should be able - to launch TensorBoard from the command line: - - ``` - tensorboard --logdir=path_to_your_logs - ``` - - You can find more information about TensorBoard - [here](https://www.tensorflow.org/get_started/summaries_and_tensorboard). - - Args: - log_dir: the path of the directory where to save the log files to be - parsed by TensorBoard. e.g. log_dir = os.path.join(working_dir, - 'logs') This directory should not be reused by any other callbacks. - histogram_freq: frequency (in epochs) at which to compute - weight histograms for the layers of the model. If set to 0, histograms - won't be computed. Validation data (or split) must be specified for - histogram visualizations. - write_graph: whether to visualize the graph in TensorBoard. The log file - can become quite large when write_graph is set to True. - write_images: whether to write model weights to visualize as image in - TensorBoard. - write_steps_per_second: whether to log the training steps per second - into TensorBoard. This supports both epoch and batch frequency - logging. - update_freq: `'batch'` or `'epoch'` or integer. When using `'epoch'`, - writes the losses and metrics to TensorBoard after every epoch. - If using an integer, let's say `1000`, all metrics and losses - (including custom ones added by `Model.compile`) will be logged to - TensorBoard every 1000 batches. `'batch'` is a synonym for `1`, - meaning that they will be written every batch. - Note however that writing too frequently to TensorBoard can slow down - your training, especially when used with `tf.distribute.Strategy` as - it will incur additional synchronization overhead. - Use with `ParameterServerStrategy` is not supported. - Batch-level summary writing is also available via `train_step` - override. Please see - [TensorBoard Scalars tutorial](https://www.tensorflow.org/tensorboard/scalars_and_keras#batch-level_logging) # noqa: E501 - for more details. - profile_batch: Profile the batch(es) to sample compute characteristics. - profile_batch must be a non-negative integer or a tuple of integers. - A pair of positive integers signify a range of batches to profile. - By default, profiling is disabled. - embeddings_freq: frequency (in epochs) at which embedding layers will be - visualized. If set to 0, embeddings won't be visualized. - embeddings_metadata: Dictionary which maps embedding layer names to the - filename of a file in which to save metadata for the embedding layer. - In case the same metadata file is to be - used for all embedding layers, a single filename can be passed. - - Examples: - - Basic usage: - - ```python - tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="./logs") - model.fit(x_train, y_train, epochs=2, callbacks=[tensorboard_callback]) - # Then run the tensorboard command to view the visualizations. - ``` - - Custom batch-level summaries in a subclassed Model: - - ```python - class MyModel(tf.keras.Model): - - def build(self, _): - self.dense = tf.keras.layers.Dense(10) - - def call(self, x): - outputs = self.dense(x) - tf.summary.histogram('outputs', outputs) - return outputs - - model = MyModel() - model.compile('sgd', 'mse') - - # Make sure to set `update_freq=N` to log a batch-level summary every N - # batches. In addition to any `tf.summary` contained in `Model.call`, - # metrics added in `Model.compile` will be logged every N batches. - tb_callback = tf.keras.callbacks.TensorBoard('./logs', update_freq=1) - model.fit(x_train, y_train, callbacks=[tb_callback]) - ``` - - Custom batch-level summaries in a Functional API Model: - - ```python - def my_summary(x): - tf.summary.histogram('x', x) - return x - - inputs = tf.keras.Input(10) - x = tf.keras.layers.Dense(10)(inputs) - outputs = tf.keras.layers.Lambda(my_summary)(x) - model = tf.keras.Model(inputs, outputs) - model.compile('sgd', 'mse') - - # Make sure to set `update_freq=N` to log a batch-level summary every N - # batches. In addition to any `tf.summary` contained in `Model.call`, - # metrics added in `Model.compile` will be logged every N batches. - tb_callback = tf.keras.callbacks.TensorBoard('./logs', update_freq=1) - model.fit(x_train, y_train, callbacks=[tb_callback]) - ``` - - Profiling: - - ```python - # Profile a single batch, e.g. the 5th batch. - tensorboard_callback = tf.keras.callbacks.TensorBoard( - log_dir='./logs', profile_batch=5) - model.fit(x_train, y_train, epochs=2, callbacks=[tensorboard_callback]) - - # Profile a range of batches, e.g. from 10 to 20. - tensorboard_callback = tf.keras.callbacks.TensorBoard( - log_dir='./logs', profile_batch=(10,20)) - model.fit(x_train, y_train, epochs=2, callbacks=[tensorboard_callback]) - ``` - """ - - def __init__( - self, - log_dir="logs", - histogram_freq=0, - write_graph=True, - write_images=False, - write_steps_per_second=False, - update_freq="epoch", - profile_batch=0, - embeddings_freq=0, - embeddings_metadata=None, - **kwargs, - ): - super().__init__() - self._supports_tf_logs = True - self._validate_kwargs(kwargs) - - self.log_dir = io_utils.path_to_string(log_dir) - self.histogram_freq = histogram_freq - self.write_graph = write_graph - self.write_images = write_images - self.write_steps_per_second = write_steps_per_second - self.update_freq = 1 if update_freq == "batch" else update_freq - self.embeddings_freq = embeddings_freq - self.embeddings_metadata = embeddings_metadata - self._init_profile_batch(profile_batch) - self._global_train_batch = 0 - self._previous_epoch_iterations = 0 - self._train_accumulated_time = 0 - self._batch_start_time = 0 - - # Lazily initialized in order to avoid creating event files when - # not needed. - self._writers = {} - - # Used to restore any existing `SummaryWriter` after training ends. - self._prev_summary_state = [] - - def _validate_kwargs(self, kwargs): - """Handle arguments were supported in V1.""" - if kwargs.get("write_grads", False): - logging.warning( - "`write_grads` will be ignored in TensorFlow 2.0 " - "for the `TensorBoard` Callback." - ) - if kwargs.get("batch_size", False): - logging.warning( - "`batch_size` is no longer needed in the " - "`TensorBoard` Callback and will be ignored " - "in TensorFlow 2.0." - ) - if kwargs.get("embeddings_layer_names", False): - logging.warning( - "`embeddings_layer_names` is not supported in " - "TensorFlow 2.0. Instead, all `Embedding` layers " - "will be visualized." - ) - if kwargs.get("embeddings_data", False): - logging.warning( - "`embeddings_data` is not supported in TensorFlow " - "2.0. Instead, all `Embedding` variables will be " - "visualized." - ) - - supported_kwargs = { - "write_grads", - "embeddings_layer_names", - "embeddings_data", - "batch_size", - } - unrecognized_kwargs = set(kwargs.keys()) - supported_kwargs - - # Only allow kwargs that were supported in V1. - if unrecognized_kwargs: - raise ValueError( - "Unrecognized arguments in `TensorBoard` Callback: " - f"{unrecognized_kwargs}. " - f"Supported kwargs are: {supported_kwargs}" - ) - - def set_model(self, model): - """Sets Keras model and writes graph if specified.""" - self.model = model - self._log_write_dir = self._get_log_write_dir() - - self._train_dir = os.path.join(self._log_write_dir, "train") - self._train_step = self.model._train_counter - - self._val_dir = os.path.join(self._log_write_dir, "validation") - self._val_step = self.model._test_counter - - self._writers = {} # Resets writers. - - self._should_write_train_graph = False - if self.write_graph: - self._write_keras_model_summary() - self._should_write_train_graph = True - if self.embeddings_freq: - self._configure_embeddings() - - @property - def _train_writer(self): - if "train" not in self._writers: - self._writers["train"] = tf.summary.create_file_writer( - self._train_dir - ) - return self._writers["train"] - - @property - def _val_writer(self): - if "val" not in self._writers: - self._writers["val"] = tf.summary.create_file_writer(self._val_dir) - return self._writers["val"] - - def _get_log_write_dir(self): - """For multi-worker, only chief should write, others write to '/tmp'.""" - return distributed_file_utils.write_dirpath( - self.log_dir, self.model.distribute_strategy - ) - - def _delete_tmp_write_dir(self): - """Deletes tmp write directories for multi-worker.""" - distributed_file_utils.remove_temp_dirpath( - self.log_dir, self.model.distribute_strategy - ) - - def _write_keras_model_train_graph(self): - """Writes Keras model train_function graph to TensorBoard.""" - with self._train_writer.as_default(): - with tf.summary.record_if(True): - train_fn = self.model.train_tf_function - # If the train_function is a `tf.function`, we can write out a - # graph - if hasattr(train_fn, "function_spec"): - # TODO(b/243822285): Use _variable_creation_fn directly. - if hasattr(train_fn, "_concrete_stateful_fn"): - tf.summary.graph(train_fn._concrete_stateful_fn.graph) - else: - tf.summary.graph( - train_fn._concrete_variable_creation_fn.graph - ) - - def _write_keras_model_summary(self): - """Writes Keras graph network summary to TensorBoard.""" - with self._train_writer.as_default(): - with tf.summary.record_if(True): - summary_writable = ( - self.model._is_graph_network - or self.model.__class__.__name__ == "Sequential" - ) - if summary_writable: - keras_model_summary("keras", self.model, step=0) - - def _configure_embeddings(self): - """Configure the Projector for embeddings.""" - # TODO(omalleyt): Add integration tests. - from keras.layers import core - from keras.protobuf import projector_config_pb2 - - # isort: off - from google.protobuf import text_format - - config = projector_config_pb2.ProjectorConfig() - for layer in self.model.layers: - if isinstance(layer, core.Embedding): - embedding = config.embeddings.add() - # Embeddings are always the first layer, so this naming should - # be consistent in any keras models checkpoints. - name = ( - "layer_with_weights-0/embeddings/.ATTRIBUTES/VARIABLE_VALUE" - ) - embedding.tensor_name = name - - if self.embeddings_metadata is not None: - if isinstance(self.embeddings_metadata, str): - embedding.metadata_path = self.embeddings_metadata - else: - if layer.name in self.embeddings_metadata.keys(): - embedding.metadata_path = ( - self.embeddings_metadata.pop(layer.name) - ) - - if self.embeddings_metadata and not isinstance( - self.embeddings_metadata, str - ): - raise ValueError( - "Unrecognized `Embedding` layer names passed to " - "`keras.callbacks.TensorBoard` `embeddings_metadata` " - f"argument: {self.embeddings_metadata.keys()}" - ) - - config_pbtxt = text_format.MessageToString(config) - path = os.path.join(self._log_write_dir, "projector_config.pbtxt") - with tf.io.gfile.GFile(path, "w") as f: - f.write(config_pbtxt) - - def _push_writer(self, writer, step): - """Sets the default writer for custom batch-level summaries.""" - if self.update_freq == "epoch": - return - - should_record = lambda: tf.equal(step % self.update_freq, 0) - # TODO(b/151339474): Fix deadlock when not using .value() here. - summary_context = ( - writer.as_default(step.value()), - tf.summary.record_if(should_record), - ) - self._prev_summary_state.append(summary_context) - summary_context[0].__enter__() - summary_context[1].__enter__() - - def _pop_writer(self): - """Pops the current writer.""" - if self.update_freq == "epoch": - return - - # See _push_writer for the content of the previous_context, which is - # pair of context. - previous_context = self._prev_summary_state.pop() - previous_context[1].__exit__(*sys.exc_info()) - previous_context[0].__exit__(*sys.exc_info()) - - def _close_writers(self): - for writer in self._writers.values(): - writer.close() - - def _init_profile_batch(self, profile_batch): - """Validate profile_batch value and set the range of batches to profile. - - Sets values of _start_batch and _stop_batch attributes, - specifying the start and stop batch to profile. - Setting `profile_batch=0` disables profiling. - - Args: - profile_batch: The range of batches to profile. Should be a - non-negative integer or a comma separated string of pair of positive - integers. A pair of positive integers signify a range of batches to - profile. - - Raises: - ValueError: If profile_batch is not an integer or a comma separated - pair of positive integers. - - """ - profile_batch_error_message = ( - "profile_batch must be a non-negative integer or " - "2-tuple of positive " - "integers. A pair of positive integers " - "signifies a range of batches " - f"to profile. Found: {profile_batch}" - ) - - # Support legacy way of specifying "start,stop" or "start" as str. - if isinstance(profile_batch, str): - profile_batch = str(profile_batch).split(",") - profile_batch = tf.nest.map_structure(int, profile_batch) - - if isinstance(profile_batch, int): - self._start_batch = profile_batch - self._stop_batch = profile_batch - elif ( - isinstance(profile_batch, (tuple, list)) and len(profile_batch) == 2 - ): - self._start_batch, self._stop_batch = profile_batch - else: - raise ValueError(profile_batch_error_message) - - if self._start_batch < 0 or self._stop_batch < self._start_batch: - raise ValueError(profile_batch_error_message) - - # True when the profiler was successfully started by this callback. - # We track the status here to make sure callbacks do not interfere with - # each other. The callback will only stop the profiler it started. - self._profiler_started = False - if self._start_batch > 0: - # Warm up and improve the profiling accuracy. - self._start_profiler(logdir="") - self._stop_profiler(save=False) - # True when a trace is running. - self._is_tracing = False - - # Setting `profile_batch=0` disables profiling. - self._should_trace = not ( - self._start_batch == 0 and self._stop_batch == 0 - ) - - def on_train_begin(self, logs=None): - self._global_train_batch = 0 - self._previous_epoch_iterations = 0 - self._push_writer(self._train_writer, self._train_step) - - def on_train_end(self, logs=None): - self._pop_writer() - - if self._is_tracing: - self._stop_trace() - - self._close_writers() - self._delete_tmp_write_dir() - - def on_test_begin(self, logs=None): - self._push_writer(self._val_writer, self._val_step) - - def on_test_end(self, logs=None): - if self.model.optimizer and hasattr(self.model.optimizer, "iterations"): - with tf.summary.record_if(True), self._val_writer.as_default(): - for name, value in logs.items(): - tf.summary.scalar( - "evaluation_" + name + "_vs_iterations", - value, - step=self.model.optimizer.iterations.read_value(), - ) - self._pop_writer() - - def _implements_train_batch_hooks(self): - # Only call batch hooks when tracing or write_steps_per_second are - # enabled - return self._should_trace or self.write_steps_per_second - - def on_train_batch_begin(self, batch, logs=None): - self._global_train_batch += 1 - if self.write_steps_per_second: - self._batch_start_time = time.time() - if not self._should_trace: - return - - if self._global_train_batch == self._start_batch: - self._start_trace() - - def on_train_batch_end(self, batch, logs=None): - if self._should_write_train_graph: - self._write_keras_model_train_graph() - self._should_write_train_graph = False - if self.write_steps_per_second: - batch_run_time = time.time() - self._batch_start_time - tf.summary.scalar( - "batch_steps_per_second", - 1.0 / batch_run_time, - step=self._train_step, - ) - - # `logs` isn't necessarily always a dict. For example, when using - # `tf.distribute.experimental.ParameterServerStrategy`, a - # `tf.distribute.experimental.coordinator.RemoteValue` will be passed. - # For now, we just disable `update_freq` in those cases. - if isinstance(logs, dict): - for name, value in logs.items(): - tf.summary.scalar("batch_" + name, value, step=self._train_step) - - if not self._should_trace: - return - - if self._is_tracing and self._global_train_batch >= self._stop_batch: - self._stop_trace() - - def on_epoch_begin(self, epoch, logs=None): - # Keeps track of epoch for profiling. - if self.write_steps_per_second: - self._previous_epoch_iterations = ( - self.model.optimizer.iterations.numpy() - ) - self._epoch_start_time = time.time() - - def on_epoch_end(self, epoch, logs=None): - """Runs metrics and histogram summaries at epoch end.""" - self._log_epoch_metrics(epoch, logs) - - if self.histogram_freq and epoch % self.histogram_freq == 0: - self._log_weights(epoch) - - if self.embeddings_freq and epoch % self.embeddings_freq == 0: - self._log_embeddings(epoch) - - def _start_trace(self): - tf.summary.trace_on(graph=True, profiler=False) - self._start_profiler(logdir=self.log_dir) - self._is_tracing = True - - def _stop_trace(self, batch=None): - """Logs the trace graph to TensorBoard.""" - if batch is None: - batch = self._stop_batch - with self._train_writer.as_default(): - with tf.summary.record_if(True): - # TODO(b/126388999): Remove step info in the summary name. - tf.summary.trace_export(name="batch_%d" % batch, step=batch) - self._stop_profiler() - self._is_tracing = False - - def _collect_learning_rate(self, logs): - if isinstance(self.model.optimizer, optimizer.Optimizer): - lr_schedule = getattr(self.model.optimizer, "_learning_rate", None) - else: - lr_schedule = getattr(self.model.optimizer, "lr", None) - if isinstance(lr_schedule, learning_rate_schedule.LearningRateSchedule): - logs["learning_rate"] = lr_schedule(self.model.optimizer.iterations) - return logs - - def _compute_steps_per_second(self): - current_iteration = self.model.optimizer.iterations.numpy() - time_since_epoch_begin = time.time() - self._epoch_start_time - steps_per_second = ( - current_iteration - self._previous_epoch_iterations - ) / time_since_epoch_begin - return steps_per_second - - def _log_epoch_metrics(self, epoch, logs): - """Writes epoch metrics out as scalar summaries. - - Args: - epoch: Int. The global step to use for TensorBoard. - logs: Dict. Keys are scalar summary names, values are scalars. - """ - if not logs: - return - - train_logs = {k: v for k, v in logs.items() if not k.startswith("val_")} - val_logs = {k: v for k, v in logs.items() if k.startswith("val_")} - train_logs = self._collect_learning_rate(train_logs) - if self.write_steps_per_second: - train_logs["steps_per_second"] = self._compute_steps_per_second() - - with tf.summary.record_if(True): - if train_logs: - with self._train_writer.as_default(): - for name, value in train_logs.items(): - tf.summary.scalar("epoch_" + name, value, step=epoch) - if val_logs: - with self._val_writer.as_default(): - for name, value in val_logs.items(): - name = name[4:] # Remove 'val_' prefix. - tf.summary.scalar("epoch_" + name, value, step=epoch) - - def _log_weights(self, epoch): - """Logs the weights of the Model to TensorBoard.""" - with self._train_writer.as_default(): - with tf.summary.record_if(True): - for layer in self.model.layers: - for weight in layer.weights: - weight_name = weight.name.replace(":", "_") - # Add a suffix to prevent summary tag name collision. - histogram_weight_name = weight_name + "/histogram" - tf.summary.histogram( - histogram_weight_name, weight, step=epoch - ) - if self.write_images: - # Add a suffix to prevent summary tag name - # collision. - image_weight_name = weight_name + "/image" - self._log_weight_as_image( - weight, image_weight_name, epoch - ) - self._train_writer.flush() - - def _log_weight_as_image(self, weight, weight_name, epoch): - """Logs a weight as a TensorBoard image.""" - w_img = tf.squeeze(weight) - shape = backend.int_shape(w_img) - if len(shape) == 1: # Bias case - w_img = tf.reshape(w_img, [1, shape[0], 1, 1]) - elif len(shape) == 2: # Dense layer kernel case - if shape[0] > shape[1]: - w_img = tf.transpose(w_img) - shape = backend.int_shape(w_img) - w_img = tf.reshape(w_img, [1, shape[0], shape[1], 1]) - elif len(shape) == 3: # ConvNet case - if backend.image_data_format() == "channels_last": - # Switch to channels_first to display every kernel as a separate - # image. - w_img = tf.transpose(w_img, perm=[2, 0, 1]) - shape = backend.int_shape(w_img) - w_img = tf.reshape(w_img, [shape[0], shape[1], shape[2], 1]) - - shape = backend.int_shape(w_img) - # Not possible to handle 3D convnets etc. - if len(shape) == 4 and shape[-1] in [1, 3, 4]: - tf.summary.image(weight_name, w_img, step=epoch) - - def _log_embeddings(self, epoch): - embeddings_ckpt = os.path.join( - self._log_write_dir, - "train", - f"keras_embedding.ckpt-{epoch}", - ) - self.model.save_weights(embeddings_ckpt) - - def _start_profiler(self, logdir): - """Starts the profiler if currently inactive. - - Args: - logdir: Directory where profiler results will be saved. - """ - if self._profiler_started: - return - try: - tf.profiler.experimental.start(logdir=logdir) - self._profiler_started = True - except tf.errors.AlreadyExistsError as e: - # Profiler errors should not be fatal. - logging.error("Failed to start profiler: %s", e.message) - - def _stop_profiler(self, save=True): - """Stops the profiler if currently active. - - Args: - save: Whether to save the profiler results to TensorBoard. - """ - if not self._profiler_started: - return - try: - tf.profiler.experimental.stop(save=save) - except tf.errors.UnavailableError as e: - # Profiler errors should not be fatal. - logging.error("Failed to stop profiler: %s", e.message) - finally: - self._profiler_started = False - - -@keras_export("keras.callbacks.ReduceLROnPlateau") -class ReduceLROnPlateau(Callback): - """Reduce learning rate when a metric has stopped improving. - - Models often benefit from reducing the learning rate by a factor - of 2-10 once learning stagnates. This callback monitors a - quantity and if no improvement is seen for a 'patience' number - of epochs, the learning rate is reduced. - - Example: - - ```python - reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, - patience=5, min_lr=0.001) - model.fit(X_train, Y_train, callbacks=[reduce_lr]) - ``` - - Args: - monitor: quantity to be monitored. - factor: factor by which the learning rate will be reduced. - `new_lr = lr * factor`. - patience: number of epochs with no improvement after which learning rate - will be reduced. - verbose: int. 0: quiet, 1: update messages. - mode: one of `{'auto', 'min', 'max'}`. In `'min'` mode, - the learning rate will be reduced when the - quantity monitored has stopped decreasing; in `'max'` mode it will be - reduced when the quantity monitored has stopped increasing; in - `'auto'` mode, the direction is automatically inferred from the name - of the monitored quantity. - min_delta: threshold for measuring the new optimum, to only focus on - significant changes. - cooldown: number of epochs to wait before resuming normal operation - after lr has been reduced. - min_lr: lower bound on the learning rate. - """ - - def __init__( - self, - monitor="val_loss", - factor=0.1, - patience=10, - verbose=0, - mode="auto", - min_delta=1e-4, - cooldown=0, - min_lr=0, - **kwargs, - ): - super().__init__() - - self.monitor = monitor - if factor >= 1.0: - raise ValueError( - "ReduceLROnPlateau does not support " - f"a factor >= 1.0. Got {factor}" - ) - if "epsilon" in kwargs: - min_delta = kwargs.pop("epsilon") - logging.warning( - "`epsilon` argument is deprecated and " - "will be removed, use `min_delta` instead." - ) - self.factor = factor - self.min_lr = min_lr - self.min_delta = min_delta - self.patience = patience - self.verbose = verbose - self.cooldown = cooldown - self.cooldown_counter = 0 # Cooldown counter. - self.wait = 0 - self.best = 0 - self.mode = mode - self.monitor_op = None - self._reset() - - def _reset(self): - """Resets wait counter and cooldown counter.""" - if self.mode not in ["auto", "min", "max"]: - logging.warning( - "Learning rate reduction mode %s is unknown, " - "fallback to auto mode.", - self.mode, - ) - self.mode = "auto" - if self.mode == "min" or ( - self.mode == "auto" and "acc" not in self.monitor - ): - self.monitor_op = lambda a, b: np.less(a, b - self.min_delta) - self.best = np.Inf - else: - self.monitor_op = lambda a, b: np.greater(a, b + self.min_delta) - self.best = -np.Inf - self.cooldown_counter = 0 - self.wait = 0 - - def on_train_begin(self, logs=None): - self._reset() - - def on_epoch_end(self, epoch, logs=None): - logs = logs or {} - logs["lr"] = backend.get_value(self.model.optimizer.lr) - current = logs.get(self.monitor) - if current is None: - logging.warning( - "Learning rate reduction is conditioned on metric `%s` " - "which is not available. Available metrics are: %s", - self.monitor, - ",".join(list(logs.keys())), - ) - - else: - if self.in_cooldown(): - self.cooldown_counter -= 1 - self.wait = 0 - - if self.monitor_op(current, self.best): - self.best = current - self.wait = 0 - elif not self.in_cooldown(): - self.wait += 1 - if self.wait >= self.patience: - old_lr = backend.get_value(self.model.optimizer.lr) - if old_lr > np.float32(self.min_lr): - new_lr = old_lr * self.factor - new_lr = max(new_lr, self.min_lr) - backend.set_value(self.model.optimizer.lr, new_lr) - if self.verbose > 0: - io_utils.print_msg( - f"\nEpoch {epoch +1}: " - "ReduceLROnPlateau reducing " - f"learning rate to {new_lr}." - ) - self.cooldown_counter = self.cooldown - self.wait = 0 - - def in_cooldown(self): - return self.cooldown_counter > 0 - - -@keras_export("keras.callbacks.CSVLogger") -class CSVLogger(Callback): - """Callback that streams epoch results to a CSV file. - - Supports all values that can be represented as a string, - including 1D iterables such as `np.ndarray`. - - Example: - - ```python - csv_logger = CSVLogger('training.log') - model.fit(X_train, Y_train, callbacks=[csv_logger]) - ``` - - Args: - filename: Filename of the CSV file, e.g. `'run/log.csv'`. - separator: String used to separate elements in the CSV file. - append: Boolean. True: append if file exists (useful for continuing - training). False: overwrite existing file. - """ - - def __init__(self, filename, separator=",", append=False): - self.sep = separator - self.filename = io_utils.path_to_string(filename) - self.append = append - self.writer = None - self.keys = None - self.append_header = True - super().__init__() - - def on_train_begin(self, logs=None): - if self.append: - if tf.io.gfile.exists(self.filename): - with tf.io.gfile.GFile(self.filename, "r") as f: - self.append_header = not bool(len(f.readline())) - mode = "a" - else: - mode = "w" - self.csv_file = tf.io.gfile.GFile(self.filename, mode) - - def on_epoch_end(self, epoch, logs=None): - logs = logs or {} - - def handle_value(k): - is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0 - if isinstance(k, str): - return k - elif ( - isinstance(k, collections.abc.Iterable) - and not is_zero_dim_ndarray - ): - return f"\"[{', '.join(map(str, k))}]\"" - else: - return k - - if self.keys is None: - self.keys = sorted(logs.keys()) - # When validation_freq > 1, `val_` keys are not in first epoch logs - # Add the `val_` keys so that its part of the fieldnames of writer. - val_keys_found = False - for key in self.keys: - if key.startswith("val_"): - val_keys_found = True - break - if not val_keys_found: - self.keys.extend(["val_" + k for k in self.keys]) - - if not self.writer: - - class CustomDialect(csv.excel): - delimiter = self.sep - - fieldnames = ["epoch"] + self.keys - - self.writer = csv.DictWriter( - self.csv_file, fieldnames=fieldnames, dialect=CustomDialect - ) - if self.append_header: - self.writer.writeheader() - - row_dict = collections.OrderedDict({"epoch": epoch}) - row_dict.update( - (key, handle_value(logs.get(key, "NA"))) for key in self.keys - ) - self.writer.writerow(row_dict) - self.csv_file.flush() - - def on_train_end(self, logs=None): - self.csv_file.close() - self.writer = None - - -@keras_export("keras.callbacks.LambdaCallback") -class LambdaCallback(Callback): - r"""Callback for creating simple, custom callbacks on-the-fly. - - This callback is constructed with anonymous functions that will be called - at the appropriate time (during `Model.{fit | evaluate | predict}`). - Note that the callbacks expects positional arguments, as: - - - `on_epoch_begin` and `on_epoch_end` expect two positional arguments: - `epoch`, `logs` - - `on_batch_begin` and `on_batch_end` expect two positional arguments: - `batch`, `logs` - - `on_train_begin` and `on_train_end` expect one positional argument: - `logs` - - Args: - on_epoch_begin: called at the beginning of every epoch. - on_epoch_end: called at the end of every epoch. - on_batch_begin: called at the beginning of every batch. - on_batch_end: called at the end of every batch. - on_train_begin: called at the beginning of model training. - on_train_end: called at the end of model training. - - Example: - - ```python - # Print the batch number at the beginning of every batch. - batch_print_callback = LambdaCallback( - on_batch_begin=lambda batch,logs: print(batch)) - - # Stream the epoch loss to a file in JSON format. The file content - # is not well-formed JSON but rather has a JSON object per line. - import json - json_log = open('loss_log.json', mode='wt', buffering=1) - json_logging_callback = LambdaCallback( - on_epoch_end=lambda epoch, logs: json_log.write( - json.dumps({'epoch': epoch, 'loss': logs['loss']}) + '\n'), - on_train_end=lambda logs: json_log.close() - ) - - # Terminate some processes after having finished model training. - processes = ... - cleanup_callback = LambdaCallback( - on_train_end=lambda logs: [ - p.terminate() for p in processes if p.is_alive()]) - - model.fit(..., - callbacks=[batch_print_callback, - json_logging_callback, - cleanup_callback]) - ``` - """ - - def __init__( - self, - on_epoch_begin=None, - on_epoch_end=None, - on_batch_begin=None, - on_batch_end=None, - on_train_begin=None, - on_train_end=None, - **kwargs, - ): - super().__init__() - self.__dict__.update(kwargs) - if on_epoch_begin is not None: - self.on_epoch_begin = on_epoch_begin - if on_epoch_end is not None: - self.on_epoch_end = on_epoch_end - if on_batch_begin is not None: - self.on_batch_begin = on_batch_begin - if on_batch_end is not None: - self.on_batch_end = on_batch_end - if on_train_begin is not None: - self.on_train_begin = on_train_begin - if on_train_end is not None: - self.on_train_end = on_train_end diff --git a/keras/callbacks_test.py b/keras/callbacks_test.py deleted file mode 100644 index ae4e9a306c9..00000000000 --- a/keras/callbacks_test.py +++ /dev/null @@ -1,4014 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras callbacks.""" - - -import collections -import csv -import json -import os -import re -import shutil -import sys -import threading -import time -import unittest -from unittest import mock - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.callbacks import BackupAndRestore -from keras.callbacks import BackupAndRestoreExperimental -from keras.callbacks import Callback -from keras.engine import sequential -from keras.layers import Activation -from keras.layers import Dense -from keras.optimizers import sgd -from keras.optimizers.legacy import gradient_descent -from keras.optimizers.schedules import learning_rate_schedule -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import io_utils -from keras.utils import np_utils -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging - -try: - import h5py -except ImportError: - h5py = None - -try: - import requests -except ImportError: - requests = None - - -TRAIN_SAMPLES = 10 -TEST_SAMPLES = 10 -NUM_CLASSES = 2 -INPUT_DIM = 3 -NUM_HIDDEN = 5 -BATCH_SIZE = 5 - -CALLBACK_HOOKS = [ - "on_batch_begin", - "on_batch_end", - "on_epoch_begin", - "on_epoch_end", - "on_predict_batch_begin", - "on_predict_batch_end", - "on_predict_begin", - "on_predict_end", - "on_test_batch_begin", - "on_test_batch_end", - "on_test_begin", - "on_test_end", - "on_train_batch_begin", - "on_train_batch_end", - "on_train_begin", - "on_train_end", -] - - -class Counter(keras.callbacks.Callback): - """Counts the number of times each callback method was run. - - Attributes: - method_counts: dict. Contains the counts of time each callback method was - run. - """ - - def __init__(self): - self.method_counts = collections.defaultdict(int) - for method_name in CALLBACK_HOOKS: - setattr( - self, - method_name, - self.wrap_with_counts(method_name, getattr(self, method_name)), - ) - - def wrap_with_counts(self, method_name, method): - def _call_and_count(*args, **kwargs): - self.method_counts[method_name] += 1 - return method(*args, **kwargs) - - return _call_and_count - - -class CallAllHooks(keras.callbacks.Callback): - """A callback that calls self._run for all hooks""" - - def __init__(self): - for method_name in CALLBACK_HOOKS: - setattr(self, method_name, self._run) - - def _run(self, *args, logs=None): - raise NotImplementedError - - -def _get_numpy(): - return np.ones((10, 10)), np.ones((10, 1)) - - -def _get_sequence(): - class MySequence(keras.utils.data_utils.Sequence): - def __getitem__(self, _): - return np.ones((2, 10)), np.ones((2, 1)) - - def __len__(self): - return 5 - - return MySequence(), None - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes -class CallbackCountsTest(test_combinations.TestCase): - def _check_counts(self, counter, expected_counts): - """Checks that the counts registered by `counter` are those expected.""" - for method_name, expected_count in expected_counts.items(): - self.assertEqual( - counter.method_counts[method_name], - expected_count, - msg="For method {}: expected {}, got: {}".format( - method_name, - expected_count, - counter.method_counts[method_name], - ), - ) - - def _get_model(self): - layers = [ - keras.layers.Dense(10, activation="relu"), - keras.layers.Dense(1, activation="sigmoid"), - ] - model = test_utils.get_model_from_layers(layers, input_shape=(10,)) - model.compile( - tf.compat.v1.train.AdamOptimizer(0.001), - "binary_crossentropy", - run_eagerly=test_utils.should_run_eagerly(), - ) - return model - - @parameterized.named_parameters( - ("with_numpy", _get_numpy()), ("with_sequence", _get_sequence()) - ) - def test_callback_hooks_are_called_in_fit(self, data): - if not tf.executing_eagerly(): - self.skipTest("Behavior changed in v2.") - x, y = data - val_x, val_y = np.ones((4, 10)), np.ones((4, 1)) - - model = self._get_model() - counter = Counter() - model.fit( - x, - y, - validation_data=(val_x, val_y), - batch_size=2, - steps_per_epoch=5, - epochs=5, - callbacks=[counter], - ) - - self._check_counts( - counter, - { - "on_batch_begin": 25, - "on_batch_end": 25, - "on_epoch_begin": 5, - "on_epoch_end": 5, - "on_predict_batch_begin": 0, - "on_predict_batch_end": 0, - "on_predict_begin": 0, - "on_predict_end": 0, - "on_test_batch_begin": 10, - "on_test_batch_end": 10, - "on_test_begin": 5, - "on_test_end": 5, - "on_train_batch_begin": 25, - "on_train_batch_end": 25, - "on_train_begin": 1, - "on_train_end": 1, - }, - ) - - @parameterized.named_parameters( - ("with_numpy", _get_numpy()), ("with_sequence", _get_sequence()) - ) - def test_callback_hooks_are_called_in_evaluate(self, data): - x, y = data - is_sequence = isinstance(x, keras.utils.data_utils.Sequence) - - model = self._get_model() - counter = Counter() - model.evaluate( - x, - y, - batch_size=2 if not is_sequence else None, - steps=5 if is_sequence else None, - callbacks=[counter], - ) - self._check_counts( - counter, - { - "on_test_batch_begin": 5, - "on_test_batch_end": 5, - "on_test_begin": 1, - "on_test_end": 1, - }, - ) - - @parameterized.named_parameters( - ("with_numpy", _get_numpy()), ("with_sequence", _get_sequence()) - ) - def test_callback_hooks_are_called_in_predict(self, data): - x = data[0] - is_sequence = isinstance(x, keras.utils.data_utils.Sequence) - - model = self._get_model() - counter = Counter() - model.predict( - x, - batch_size=2 if not is_sequence else None, - steps=5 if is_sequence else None, - callbacks=[counter], - ) - self._check_counts( - counter, - { - "on_predict_batch_begin": 5, - "on_predict_batch_end": 5, - "on_predict_begin": 1, - "on_predict_end": 1, - }, - ) - - def test_callback_list_methods(self): - counter = Counter() - callback_list = keras.callbacks.CallbackList([counter]) - - batch = 0 - callback_list.on_test_batch_begin(batch) - callback_list.on_test_batch_end(batch) - callback_list.on_predict_batch_begin(batch) - callback_list.on_predict_batch_end(batch) - - self._check_counts( - counter, - { - "on_test_batch_begin": 1, - "on_test_batch_end": 1, - "on_predict_batch_begin": 1, - "on_predict_batch_end": 1, - }, - ) - - -class KerasCallbacksTest(test_combinations.TestCase): - def _get_model(self, input_shape=None, additional_metrics=None): - additional_metrics = additional_metrics or [] - layers = [ - keras.layers.Dense(3, activation="relu"), - keras.layers.Dense(2, activation="softmax"), - ] - model = test_utils.get_model_from_layers( - layers, input_shape=input_shape - ) - model.compile( - loss="mse", - optimizer="rmsprop", - metrics=[keras.metrics.CategoricalAccuracy(name="my_acc")] - + additional_metrics, - run_eagerly=test_utils.should_run_eagerly(), - ) - return model - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_progbar_logging(self): - model = self._get_model(input_shape=(3,)) - - x = tf.ones((200, 3)) - y = tf.zeros((200, 2)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10) - expected_log = r"(.*- loss:.*- my_acc:.*)+" - - io_utils.enable_interactive_logging() - with self.captureWritesToStream(sys.stdout) as printed: - model.fit(dataset, epochs=2, steps_per_epoch=10) - self.assertRegex(printed.contents(), expected_log) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_progbar_logging_with_stateful_metrics(self): - class AddAllOnes(keras.metrics.Metric): - """A simple metric that adds all the one's in `y_true`.""" - - def __init__(self, name="add_all_ones", **kwargs): - super().__init__(name=name, **kwargs) - self.total = self.add_weight(name="total", initializer="zeros") - - def update_state(self, y_true, y_pred, sample_weight=None): - self.total.assign_add( - tf.cast(tf.reduce_sum(y_true), dtype=tf.float32) - ) - - def result(self): - return self.total - - x_train = np.array([[0, 1, 0, 1, 0, 1, 0, 1]] * 8).astype(float) - y_train = np.array( - [[1, 0], [0, 0], [1, 1], [1, 0], [0, 1], [1, 0], [1, 0], [0, 0]] - ) - # There are 7 ones in total in `y_train` after two batches. - expected_log = r"(.*- loss:.*- my_acc:.*- add_all_ones: 7.0000)+" - - io_utils.enable_interactive_logging() - with self.captureWritesToStream(sys.stdout) as printed: - model = self._get_model( - input_shape=(8,), additional_metrics=[AddAllOnes()] - ) - model.fit(x_train, y_train, verbose=1, batch_size=4, shuffle=False) - self.assertRegex(printed.contents(), expected_log) - - # When not executing eagerly, `model.evaluate` does not have the metrics - # results printed. - if tf.executing_eagerly(): - with self.captureWritesToStream(sys.stdout) as printed: - model = self._get_model( - input_shape=(8,), additional_metrics=[AddAllOnes()] - ) - model.evaluate(x_train, y_train, verbose=1, batch_size=4) - self.assertRegex(printed.contents(), expected_log) - - @test_combinations.run_all_keras_modes - def test_trivial_backup_restore(self): - if test_utils.should_run_eagerly(): - model = keras.Sequential([keras.layers.Dense(1)]) - model.compile("sgd", "mse") - cbk = BackupAndRestore(self.get_temp_dir()) - model.fit( - np.ones((10, 1)), np.ones((10, 1)), epochs=1, callbacks=[cbk] - ) - - def test_backup_restore_train_counter(self): - if not tf.compat.v1.executing_eagerly(): - self.skipTest( - "BackupAndRestore only available when eager execution is " - "enabled" - ) - model = keras.Sequential([keras.layers.Dense(1)]) - model.compile("sgd", "mse") - cbk = BackupAndRestore(self.get_temp_dir()) - - class InterruptingCallback(keras.callbacks.Callback): - """A callback to intentionally introduce interruption to - training.""" - - def on_epoch_end(self, epoch, log=None): - logging.info(f"counter: {model._train_counter}") - if epoch == 5 or epoch == 12: - raise RuntimeError("Interruption") - - self.get_temp_dir() - - # The following asserts that the train counter is fault tolerant. - self.assertEqual(model._train_counter.numpy(), 0) - try: - model.fit( - np.ones((10, 1)), - np.ones((10, 1)), - epochs=20, - callbacks=[cbk, InterruptingCallback()], - ) - except RuntimeError: - pass - self.assertEqual(model._train_counter.numpy(), 6) - try: - model.fit( - np.ones((10, 1)), - np.ones((10, 1)), - epochs=20, - callbacks=[cbk, InterruptingCallback()], - ) - except RuntimeError: - pass - self.assertEqual(model._train_counter.numpy(), 13) - - def _test_backup_and_restore_callback_with(self, cls): - if not tf.compat.v1.executing_eagerly(): - self.skipTest( - "BackupAndRestore only available when execution is enabled" - ) - - class InterruptingCallback(keras.callbacks.Callback): - """A callback to intentionally introduce interruption to - training.""" - - def on_epoch_end(self, epoch, log=None): - if epoch == 15: - raise RuntimeError("Interruption") - - model = keras.Sequential([keras.layers.Dense(10)]) - optimizer = sgd.SGD() - model.compile(optimizer, loss="mse") - - x = tf.random.uniform((24, 10)) - y = tf.random.uniform((24,)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)).repeat().batch(2) - - backup_callback = cls(backup_dir=self.get_temp_dir()) - try: - model.fit( - dataset, - epochs=20, - steps_per_epoch=5, - callbacks=[backup_callback, InterruptingCallback()], - ) - except RuntimeError: - logging.warning("***Handling interruption***") - # This continues at the epoch where it left off. - model.fit( - dataset, - epochs=20, - steps_per_epoch=5, - callbacks=[backup_callback], - ) - - def _test_backup_and_restore_callback_at_steps( - self, cls, epoch_int, steps_int, mode - ): - if not tf.compat.v1.executing_eagerly(): - self.skipTest( - "BackupAndRestore only available when eager execution is " - "enabled" - ) - - class InterruptingCallback(keras.callbacks.Callback): - """A callback to intentionally introduce interruption to - training.""" - - batch_count = 0 - - def on_epoch_end(self, epoch, log=None): - if epoch == epoch_int: - raise RuntimeError("EpochInterruption") - - def on_batch_end(self, batch, logs=None): - self.batch_count += 1 - if self.batch_count == steps_int: - raise RuntimeError("StepsInterruption") - - class VerifyRestore(Callback): - """Verify if the training restored to the correct epoch and step.""" - - def __init__(self, initial_epoch, initial_step): - super(VerifyRestore, self).__init__() - self.initial_epoch = initial_epoch - self.initial_step = initial_step - self._current_epoch = 0 - - def on_epoch_begin(self, epoch, logs=None): - self._current_epoch = epoch - if epoch < self.initial_epoch: - raise ValueError( - "Training did not restore at epoch (%d) and step (%d)" - % (self.initial_epoch, self.initial_step) - ) - - def on_batch_begin(self, batch, logs=None): - if ( - batch <= self.initial_step - and self._current_epoch < self.initial_epoch - ): - raise ValueError( - "Training did not restore at Epoch (%d) and step (%d)" - % (self.initial_epoch, self.initial_step) - ) - - model = keras.Sequential([keras.layers.Dense(10)]) - optimizer = sgd.SGD() - model.compile(optimizer, loss="mse") - - x = tf.random.uniform((24, 10)) - y = tf.random.uniform((24,)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)).repeat().batch(2) - save_freq_arg = "epoch" if mode == "epoch" else 7 - backup_callback = cls( - backup_dir=self.get_temp_dir(), save_freq=save_freq_arg - ) - # epoch where the restore should resume from - if save_freq_arg == "epoch": - init_epoch = epoch_int - init_step = 0 - elif save_freq_arg: - init_epoch = int(((steps_int // 7) * 7) // 5) - init_step = int((((steps_int // 7) * 7) % 5) - 1) - else: - init_epoch = 0 - init_step = 0 - - # callback to verify accurate training state restore - verify_restore_callback = VerifyRestore( - initial_epoch=init_epoch, initial_step=init_step - ) - try: - model.fit( - dataset, - epochs=20, - steps_per_epoch=5, - callbacks=[backup_callback, InterruptingCallback()], - ) - except RuntimeError as e: - if str(e) == "EpochInterruption": - logging.warning("***Handling interruption at epoch***") - elif str(e) == "StepsInterruption": - logging.warning("***Handling interruption at Nth step***") - # This continues at the epoch and step where it left off. - model.fit( - dataset, - epochs=20, - steps_per_epoch=5, - callbacks=[backup_callback, verify_restore_callback], - ) - - def test_experimental_backup_and_restore(self): - """Ensure the legacy endpoint of `BackupAndRestore` gives warning.""" - - warning_messages = [] - - def warning(msg): - warning_messages.append(msg) - - with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): - self._test_backup_and_restore_callback_with( - BackupAndRestoreExperimental - ) - - warning_msg = ( - "`tf.keras.callbacks.experimental.BackupAndRestore` " - "endpoint is deprecated" - ) - self.assertIn(warning_msg, "\n".join(warning_messages)) - warning_msg = "***Handling interruption***" - self.assertIn(warning_msg, "\n".join(warning_messages)) - - def test_backup_and_restore(self): - """Ensure the public endpoint of `BackupAndRestore` is working.""" - - warning_messages = [] - - def warning(msg): - warning_messages.append(msg) - - with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): - self._test_backup_and_restore_callback_with(BackupAndRestore) - - warning_msg = ( - "`tf.keras.callbacks.experimental.BackupAndRestore` " - "endpoint is deprecated" - ) - self.assertNotIn(warning_msg, "\n".join(warning_messages)) - warning_msg = "***Handling interruption***" - self.assertIn(warning_msg, "\n".join(warning_messages)) - - def test_backup_and_restore_steps(self): - """Ensure the public endpoint of `BackupAndRestore` is working.""" - - warning_messages = [] - - def warning(msg): - warning_messages.append(msg) - - with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): - # interrupt at steps before 1 epoch - self._test_backup_and_restore_callback_at_steps( - BackupAndRestore, epoch_int=20, steps_int=3, mode="batch" - ) - warning_msg = ( - "`tf.keras.callbacks.experimental.BackupAndRestore` " - "endpoint is deprecated" - ) - self.assertNotIn(warning_msg, "\n".join(warning_messages)) - warning_msg = "***Handling interruption at Nth step***" - self.assertIn(warning_msg, "\n".join(warning_messages)) - - # interrupt at steps after 1 epoch - warning_messages = [] - with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): - self._test_backup_and_restore_callback_at_steps( - BackupAndRestore, epoch_int=20, steps_int=8, mode="batch" - ) - warning_msg = "***Handling interruption at Nth step***" - self.assertIn(warning_msg, "\n".join(warning_messages)) - - # interrupt at epoch before steps - warning_messages = [] - with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): - self._test_backup_and_restore_callback_at_steps( - BackupAndRestore, epoch_int=1, steps_int=12, mode="epoch" - ) - warning_msg = "***Handling interruption at epoch***" - self.assertIn(warning_msg, "\n".join(warning_messages)) - - def test_backup_and_restore_steps_last_batch(self): - """Ensure the public endpoint of `BackupAndRestore` is working.""" - - warning_messages = [] - - def warning(msg): - warning_messages.append(msg) - - with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): - # interrupt at last step in 7th epoch - self._test_backup_and_restore_callback_at_steps( - BackupAndRestore, epoch_int=20, steps_int=35, mode="batch" - ) - warning_msg = ( - "`tf.keras.callbacks.experimental.BackupAndRestore` " - "endpoint is deprecated" - ) - self.assertNotIn(warning_msg, "\n".join(warning_messages)) - warning_msg = "***Handling interruption at Nth step***" - self.assertIn(warning_msg, "\n".join(warning_messages)) - - def test_backup_and_restore_steps_false_save_freq(self): - """Ensure the public endpoint of `BackupAndRestore` is working.""" - warning_messages = [] - - def warning(msg): - warning_messages.append(msg) - - with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): - # interrupt at steps before 1 epoch - self._test_backup_and_restore_callback_at_steps( - BackupAndRestore, epoch_int=20, steps_int=3, mode=False - ) - warning_msg = ( - "`tf.keras.callbacks.experimental.BackupAndRestore` " - "endpoint is deprecated" - ) - self.assertNotIn(warning_msg, "\n".join(warning_messages)) - warning_msg = "***Handling interruption at Nth step***" - self.assertIn(warning_msg, "\n".join(warning_messages)) - - # interrupt at steps after 1 epoch - warning_messages = [] - with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): - self._test_backup_and_restore_callback_at_steps( - BackupAndRestore, epoch_int=20, steps_int=8, mode="batch" - ) - warning_msg = "***Handling interruption at Nth step***" - self.assertIn(warning_msg, "\n".join(warning_messages)) - - # interrupt at epoch before steps - warning_messages = [] - with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): - self._test_backup_and_restore_callback_at_steps( - BackupAndRestore, epoch_int=1, steps_int=12, mode="epoch" - ) - warning_msg = "***Handling interruption at epoch***" - self.assertIn(warning_msg, "\n".join(warning_messages)) - - def test_backup_and_restore_steps_clean_up(self): - if not tf.executing_eagerly(): - self.skipTest( - "BackupAndRestore only available when eager execution is " - "enabled." - ) - path = self.get_temp_dir() - callback = BackupAndRestore(path, delete_checkpoint=True) - model = keras.Sequential([keras.layers.Dense(10)]) - optimizer = gradient_descent.SGD() - model.compile(optimizer, loss="mse") - - x = tf.random.uniform((24, 10)) - y = tf.random.uniform((24,)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(2) - model.fit(dataset, epochs=1, callbacks=[callback]) - self.assertEmpty(os.listdir(path)) - - callback = BackupAndRestore(path, delete_checkpoint=False) - model.fit(dataset, epochs=1, callbacks=[callback]) - self.assertNotEmpty(os.listdir(path)) - - @test_combinations.run_all_keras_modes - def test_callback_warning(self): - class SleepCallback(keras.callbacks.Callback): - def on_train_batch_end(self, batch, logs=None): - time.sleep(0.1) - - model = sequential.Sequential() - model.add(keras.layers.Dense(1)) - model.compile( - "sgd", loss="mse", run_eagerly=test_utils.should_run_eagerly() - ) - - warning_messages = [] - - def warning(msg): - warning_messages.append(msg) - - with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): - model.fit( - np.ones((16, 1), "float32"), - np.ones((16, 1), "float32"), - batch_size=3, - epochs=1, - callbacks=[SleepCallback()], - ) - warning_msg = ( - "Callback method `on_train_batch_end` is slow compared " - "to the batch time" - ) - self.assertIn(warning_msg, "\n".join(warning_messages)) - - @test_combinations.run_all_keras_modes - def test_default_callbacks_no_warning(self): - # Test that without the callback no warning is raised - model = sequential.Sequential() - model.add(keras.layers.Dense(1)) - model.compile( - "sgd", loss="mse", run_eagerly=test_utils.should_run_eagerly() - ) - - warning_messages = [] - - def warning(msg): - warning_messages.append(msg) - - with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): - model.fit( - np.ones((16, 1), "float32"), - np.ones((16, 1), "float32"), - batch_size=3, - epochs=1, - ) - self.assertListEqual(warning_messages, []) - - @test_combinations.run_with_all_model_types(exclude_models="functional") - @test_combinations.run_all_keras_modes - def test_progbar_logging_deferred_model_build(self): - model = self._get_model() - self.assertFalse(model.built) - - x = tf.ones((200, 3)) - y = tf.zeros((200, 2)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10) - expected_log = r"(.*- loss:.*- my_acc:.*)+" - - io_utils.enable_interactive_logging() - with self.captureWritesToStream(sys.stdout) as printed: - model.fit(dataset, epochs=2, steps_per_epoch=10) - self.assertRegex(printed.contents(), expected_log) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_progbar_logging_validation_data(self): - model = self._get_model(input_shape=(3,)) - - x = tf.ones((50, 3)) - y = tf.zeros((50, 2)) - training_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10) - val_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10) - expected_log = ( - r"(.*5/5.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:.*)+" - ) - - io_utils.enable_interactive_logging() - with self.captureWritesToStream(sys.stdout) as printed: - model.fit(training_dataset, epochs=2, validation_data=val_dataset) - self.assertRegex(printed.contents(), expected_log) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_progbar_logging_validation_split(self): - model = self._get_model(input_shape=(3,)) - - x = np.ones((100, 3)) - y = np.zeros((100, 2)) - expected_log = ( - r"(?s).*1/2.*8/8.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:" - r".*2/2.*8/8.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:.*" - ) - - io_utils.enable_interactive_logging() - with self.captureWritesToStream(sys.stdout) as printed: - model.fit(x, y, batch_size=10, epochs=2, validation_split=0.2) - self.assertRegex(printed.contents(), expected_log) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_progbar_logging_training_validation(self): - model = self._get_model(input_shape=(2,)) - - def generator(): - for _ in range(100): - yield [1, 1], 1 - - training = ( - tf.data.Dataset.from_generator( - generator=generator, - output_types=("float64", "float64"), - output_shapes=([2], []), - ) - .batch(2) - .repeat() - ) - validation = tf.data.Dataset.from_generator( - generator=generator, - output_types=("float64", "float64"), - output_shapes=([2], []), - ).batch(2) - expected_log = ( - r"(?s).*1/2.*20/20.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:" - r".*2/2.*20/20.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:.*" - ) - - io_utils.enable_interactive_logging() - with self.captureWritesToStream(sys.stdout) as printed: - model.fit( - x=training, - validation_data=validation, - epochs=2, - steps_per_epoch=20, - ) - self.assertRegex(printed.contents(), expected_log) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_progbar_logging_with_dataset_and_partial_batch(self): - model = self._get_model(input_shape=(2,)) - - def generator(): - # Have a partial batch at the end. - for _ in range(9): - yield np.random.random(2), 1 - - training = tf.data.Dataset.from_generator( - generator=generator, - output_types=("float64", "float64"), - output_shapes=([2], []), - ).batch(2) - validation = tf.data.Dataset.from_generator( - generator=generator, - output_types=("float64", "float64"), - output_shapes=([2], []), - ).batch(2) - - io_utils.enable_interactive_logging() - with self.captureWritesToStream(sys.stdout) as printed: - model.fit(x=training, validation_data=validation) - - # Make sure the value of val_ metrics are not zeros. - log_content = printed.contents() - val_loss = re.findall(r"val_loss: (\d\.\d+)", log_content) - self.assertLen(val_loss, 1) - self.assertGreater(float(val_loss[0]), 0.0) - - @test_combinations.run_with_all_model_types - def test_ModelCheckpoint(self): - if h5py is None: - return # Skip test if models cannot be saved. - - model_type = test_utils.get_model_type() - if model_type == "subclass": - # Skip test since subclassed models cannot be saved in .h5 format. - return - if not tf.__internal__.tf2.enabled(): - self.skipTest("Checkpoint callback only available in v2.") - - layers = [ - keras.layers.Dense( - NUM_HIDDEN, input_dim=INPUT_DIM, activation="relu" - ), - keras.layers.Dense(NUM_CLASSES, activation="softmax"), - ] - model = test_utils.get_model_from_layers(layers, input_shape=(3,)) - model.compile( - loss="categorical_crossentropy", - optimizer="rmsprop", - metrics=["acc"], - ) - - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - - # Save model to a subdir inside the temp_dir so we can test - # automatic directory creation. - filepath = os.path.join(temp_dir, "subdir", "checkpoint.h5") - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - - # Case 1 - monitor = "val_loss" - save_best_only = False - mode = "auto" - - cbks = [ - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - mode=mode, - ) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=1, - verbose=0, - ) - assert os.path.exists(filepath) - os.remove(filepath) - - # Case 2 - mode = "min" - cbks = [ - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - mode=mode, - ) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=1, - verbose=0, - ) - assert os.path.exists(filepath) - os.remove(filepath) - - # Case 3 - mode = "max" - monitor = "val_acc" - cbks = [ - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - mode=mode, - ) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=1, - verbose=0, - ) - assert os.path.exists(filepath) - os.remove(filepath) - - # Case 4 - save_best_only = True - cbks = [ - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - mode=mode, - ) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=1, - verbose=0, - ) - assert os.path.exists(filepath) - os.remove(filepath) - - # Case 5: metric not available. - cbks = [ - keras.callbacks.ModelCheckpoint( - filepath, monitor="unknown", save_best_only=True - ) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=1, - verbose=0, - ) - # File won't be written. - assert not os.path.exists(filepath) - - # Case 6 - save_best_only = False - period = 2 - mode = "auto" - - filepath = os.path.join(temp_dir, "checkpoint.{epoch:02d}.h5") - cbks = [ - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - mode=mode, - period=period, - ) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=4, - verbose=1, - ) - assert os.path.exists(filepath.format(epoch=2)) - assert os.path.exists(filepath.format(epoch=4)) - os.remove(filepath.format(epoch=2)) - os.remove(filepath.format(epoch=4)) - assert not os.path.exists(filepath.format(epoch=1)) - assert not os.path.exists(filepath.format(epoch=3)) - - # Invalid use: this will raise a warning but not an Exception. - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - mode="unknown", - ) - - # Case 7: `ModelCheckpoint` with a combination of `save_freq` and - # `period`. Though `period` is deprecated, we're testing it for - # backward-compatibility. - filepath = os.path.join(temp_dir, "checkpoint.epoch{epoch:02d}.h5") - cbks = [ - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - mode=mode, - save_freq="epoch", - period=5, - ) - ] - assert not os.path.exists(filepath.format(epoch=0)) - assert not os.path.exists(filepath.format(epoch=5)) - model.fit( - x_train, - y_train, - batch_size=2, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=10, - verbose=1, - ) - assert not os.path.exists(filepath.format(epoch=1)) - assert not os.path.exists(filepath.format(epoch=2)) - assert not os.path.exists(filepath.format(epoch=3)) - assert not os.path.exists(filepath.format(epoch=4)) - assert os.path.exists(filepath.format(epoch=5)) - assert not os.path.exists(filepath.format(epoch=6)) - assert os.path.exists(filepath.format(epoch=10)) - os.remove(filepath.format(epoch=5)) - os.remove(filepath.format(epoch=10)) - - # Case 8: `ModelCheckpoint` with an integer `save_freq` - filepath = os.path.join(temp_dir, "checkpoint.epoch{epoch:02d}.h5") - cbks = [ - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - mode=mode, - save_freq=15, - period=100, - ) # The period should be ignored (this test tests this). - ] - assert not os.path.exists(filepath.format(epoch=3)) - model.fit( - x_train, - y_train, - batch_size=2, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=10, - verbose=1, - ) - assert not os.path.exists(filepath.format(epoch=1)) - assert not os.path.exists(filepath.format(epoch=2)) - assert os.path.exists(filepath.format(epoch=3)) - assert not os.path.exists(filepath.format(epoch=4)) - assert not os.path.exists(filepath.format(epoch=5)) - assert os.path.exists(filepath.format(epoch=6)) - assert not os.path.exists(filepath.format(epoch=7)) - assert not os.path.exists(filepath.format(epoch=8)) - assert os.path.exists(filepath.format(epoch=9)) - os.remove(filepath.format(epoch=3)) - os.remove(filepath.format(epoch=6)) - os.remove(filepath.format(epoch=9)) - - # Case 9: `ModelCheckpoint` with valid and invalid save_freq argument. - with self.assertRaisesRegex(ValueError, "Unrecognized save_freq"): - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - mode=mode, - save_freq="invalid_save_freq", - ) - # The following should not raise ValueError. - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - mode=mode, - save_freq="epoch", - ) - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - mode=mode, - save_freq=3, - ) - - # Case 10: `ModelCheckpoint` with valid and invalid `options` argument. - with self.assertRaisesRegex(TypeError, "tf.train.CheckpointOptions"): - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - save_weights_only=True, - mode=mode, - options=tf.saved_model.SaveOptions(), - ) - with self.assertRaisesRegex(TypeError, "tf.saved_model.SaveOptions"): - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - save_weights_only=False, - mode=mode, - options=tf.train.CheckpointOptions(), - ) - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - save_weights_only=True, - mode=mode, - options=tf.train.CheckpointOptions(), - ) - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - save_weights_only=False, - mode=mode, - options=tf.saved_model.SaveOptions(), - ) - - # Case 11: `ModelCheckpoint` save model with batch number in filename. - filepath = os.path.join( - temp_dir, "checkpoint.epoch{epoch:02d}batch{batch:02d}.h5" - ) - cbks = [ - keras.callbacks.ModelCheckpoint( - filepath, monitor=monitor, save_freq=1 - ) - ] - assert not os.path.exists(filepath.format(epoch=1, batch=1)) - assert not os.path.exists(filepath.format(epoch=1, batch=2)) - assert not os.path.exists(filepath.format(epoch=2, batch=1)) - assert not os.path.exists(filepath.format(epoch=2, batch=2)) - assert not os.path.exists(filepath.format(epoch=3, batch=1)) - assert not os.path.exists(filepath.format(epoch=3, batch=2)) - assert not os.path.exists(filepath.format(epoch=4, batch=1)) - assert not os.path.exists(filepath.format(epoch=4, batch=2)) - assert not os.path.exists(filepath.format(epoch=5, batch=1)) - assert not os.path.exists(filepath.format(epoch=5, batch=2)) - model.fit( - x_train, - y_train, - batch_size=5, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=5, - verbose=1, - ) - - assert os.path.exists(filepath.format(epoch=1, batch=1)) - assert os.path.exists(filepath.format(epoch=1, batch=2)) - assert os.path.exists(filepath.format(epoch=2, batch=1)) - assert os.path.exists(filepath.format(epoch=2, batch=2)) - assert os.path.exists(filepath.format(epoch=3, batch=1)) - assert os.path.exists(filepath.format(epoch=3, batch=2)) - assert os.path.exists(filepath.format(epoch=4, batch=1)) - assert os.path.exists(filepath.format(epoch=4, batch=2)) - assert os.path.exists(filepath.format(epoch=5, batch=1)) - assert os.path.exists(filepath.format(epoch=5, batch=2)) - - os.remove(filepath.format(epoch=1, batch=1)) - os.remove(filepath.format(epoch=1, batch=2)) - os.remove(filepath.format(epoch=2, batch=1)) - os.remove(filepath.format(epoch=2, batch=2)) - os.remove(filepath.format(epoch=3, batch=1)) - os.remove(filepath.format(epoch=3, batch=2)) - os.remove(filepath.format(epoch=4, batch=1)) - os.remove(filepath.format(epoch=4, batch=2)) - os.remove(filepath.format(epoch=5, batch=1)) - os.remove(filepath.format(epoch=5, batch=2)) - - # Case 12: ModelCheckpoint saves model with initial_value_threshold - # param - mode = "max" - monitor = "val_acc" - initial_value_threshold = 0 - save_best_only = True - filepath = os.path.join(temp_dir, "checkpoint.h5") - cbks = [ - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - initial_value_threshold=initial_value_threshold, - mode=mode, - ) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=1, - verbose=0, - ) - assert os.path.exists(filepath) - os.remove(filepath) - - # Case 13: ModelCheckpoint saves model with initial_value_threshold - # param - mode = "auto" - monitor = "val_loss" - initial_value_threshold = None - save_best_only = True - cbks = [ - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - initial_value_threshold=initial_value_threshold, - mode=mode, - ) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=1, - verbose=0, - ) - assert os.path.exists(filepath) - os.remove(filepath) - - # Case 14: ModelCheckpoint doesnt save model if loss was minimum earlier - mode = "min" - monitor = "val_loss" - initial_value_threshold = 0 - save_best_only = True - cbks = [ - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - initial_value_threshold=initial_value_threshold, - mode=mode, - ) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=1, - verbose=0, - ) - assert not os.path.exists(filepath) - - # Case 15: ModelCheckpoint doesnt save model if loss was min earlier in - # auto mode - mode = "auto" - monitor = "val_loss" - initial_value_threshold = 0 - save_best_only = True - cbks = [ - keras.callbacks.ModelCheckpoint( - filepath, - monitor=monitor, - save_best_only=save_best_only, - initial_value_threshold=initial_value_threshold, - mode=mode, - ) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=1, - verbose=0, - ) - assert not os.path.exists(filepath) - - @test_utils.run_v2_only - def test_ModelCheckpoint_subclass_save_weights_false(self): - model = test_utils.get_small_subclass_mlp(NUM_HIDDEN, NUM_CLASSES) - model.compile( - loss="categorical_crossentropy", - optimizer="rmsprop", - metrics=["acc"], - ) - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - filepath = os.path.join(temp_dir, "checkpoint") - cbks = [ - keras.callbacks.ModelCheckpoint(filepath, save_weights_only=False) - ] - - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_train = np_utils.to_categorical(y_train, num_classes=NUM_CLASSES) - - model.fit(x_train, y_train, callbacks=cbks, epochs=1, verbose=0) - # Check that the filepath is a SavedModel directory. - self.assertIn("saved_model.pb", os.listdir(filepath)) - - def _get_dummy_resource_for_model_checkpoint_testing(self): - def get_input_datasets(): - # Simple training input. - train_input = [[1.0]] * 16 - train_label = [[0.0]] * 16 - ds = tf.data.Dataset.from_tensor_slices((train_input, train_label)) - return ds.batch(8, drop_remainder=True) - - # Very simple bias model to eliminate randomness. - optimizer = gradient_descent.SGD(0.1) - model = sequential.Sequential() - model.add(test_utils.Bias(input_shape=(1,))) - model.compile(loss="mae", optimizer=optimizer, metrics=["mae"]) - train_ds = get_input_datasets() - - temp_dir = self.get_temp_dir() - filepath = os.path.join(temp_dir, "checkpoint.epoch{epoch:02d}.h5") - - # The filepath shouldn't exist at the beginning. - self.assertFalse(os.path.exists(filepath)) - callback = keras.callbacks.ModelCheckpoint( - filepath=filepath, save_weights_only=True - ) - - return model, train_ds, callback, filepath - - def _run_load_weights_on_restart_test_common_iterations(self): - ( - model, - train_ds, - callback, - filepath, - ) = self._get_dummy_resource_for_model_checkpoint_testing() - initial_epochs = 3 - model.fit(train_ds, epochs=initial_epochs, callbacks=[callback]) - - # The files should exist after fitting with callback. - for epoch in range(initial_epochs): - self.assertTrue(os.path.exists(filepath.format(epoch=epoch + 1))) - self.assertFalse( - os.path.exists(filepath.format(epoch=initial_epochs + 1)) - ) - self.assertEqual( - callback._get_most_recently_modified_file_matching_pattern( - filepath - ), - filepath.format(epoch=initial_epochs), - ) - - model.fit(train_ds, epochs=1) - weights_after_one_more_epoch = model.get_weights() - - # The filepath should continue to exist after fitting without callback. - for epoch in range(initial_epochs): - self.assertTrue(os.path.exists(filepath.format(epoch=epoch + 1))) - - return model, train_ds, filepath, weights_after_one_more_epoch - - @staticmethod - def get_ModelCheckpoint_load_weights_on_restart_true_test( - save_weights_only, - ): - def func(self): - ( - model, - train_ds, - filepath, - weights_after_one_more_epoch, - ) = self._run_load_weights_on_restart_test_common_iterations() - - # Sleep for some short time period ensuring the files are created - # with a different time (in MacOS OSS the granularity is only 1 - # second). - time.sleep(2) - callback = keras.callbacks.ModelCheckpoint( - filepath=filepath, - save_weights_only=save_weights_only, - load_weights_on_restart=True, - ) - model.fit(train_ds, epochs=1, callbacks=[callback]) - weights_after_model_restoring_and_one_more_epoch = ( - model.get_weights() - ) - - self.assertEqual( - callback._get_most_recently_modified_file_matching_pattern( - filepath - ), - filepath.format(epoch=1), - ) - - model.fit( - train_ds, - epochs=1, - callbacks=[ - keras.callbacks.ModelCheckpoint( - filepath=filepath, - save_weights_only=save_weights_only, - load_weights_on_restart=True, - ) - ], - ) - weights_with_one_final_extra_epoch = model.get_weights() - - # Asserting the weights one epoch after initial fitting and another - # epoch after that are closed, if a ModelCheckpoint with - # load_weights_on_restart=True is given (so the model is restored at - # the beginning of training). - self.assertAllClose( - weights_after_one_more_epoch, - weights_after_model_restoring_and_one_more_epoch, - ) - - self.assertNotAllClose( - weights_after_one_more_epoch, weights_with_one_final_extra_epoch - ) - - return func - - @staticmethod - def get_ModelCheckpoint_load_weights_on_restart_false_test( - save_weights_only, - ): - def func(self): - ( - model, - train_ds, - filepath, - weights_after_one_more_epoch, - ) = self._run_load_weights_on_restart_test_common_iterations() - - model.fit( - train_ds, - epochs=1, - callbacks=[ - keras.callbacks.ModelCheckpoint( - filepath=filepath, save_weights_only=save_weights_only - ) - ], - ) - weights_after_model_restoring_and_one_more_epoch = ( - model.get_weights() - ) - - # Asserting the weights one epoch after initial fitting and another - # epoch after that are different, if a ModelCheckpoint with - # load_weights_on_restart=False is given (so the model is not - # restored at the beginning of training). - self.assertNotAllClose( - weights_after_one_more_epoch, - weights_after_model_restoring_and_one_more_epoch, - ) - - return func - - test_model_checkpoint_load_weights_on_restart_true_save_weights_only_true = get_ModelCheckpoint_load_weights_on_restart_true_test.__func__( # noqa: E501 - True - ) - - test_model_checkpoint_load_weights_on_restart_true_save_weights_only_false = get_ModelCheckpoint_load_weights_on_restart_true_test.__func__( # noqa: E501 - False - ) - - test_model_checkpoint_load_weights_on_restart_false_save_weights_only_true = get_ModelCheckpoint_load_weights_on_restart_false_test.__func__( # noqa: E501 - True - ) - - test_model_checkpoint_load_weights_on_restart_false_save_weights_only_false = get_ModelCheckpoint_load_weights_on_restart_false_test.__func__( # noqa: E501 - False - ) - - def test_ModelCheckpoint_override_if_file_exist(self): - ( - model, - train_ds, - filepath, - _, - ) = self._run_load_weights_on_restart_test_common_iterations() - - # Sleep for some short time period to ensure the files are created with - # a different time (in MacOS OSS the granularity is only 1 second). - time.sleep(2) - callback = keras.callbacks.ModelCheckpoint( - filepath=filepath, save_weights_only=True - ) - model.load_weights( - callback._get_most_recently_modified_file_matching_pattern(filepath) - ) - weights_before_additional_fit = model.get_weights() - model.fit(train_ds, epochs=1, callbacks=[callback]) - model.load_weights( - callback._get_most_recently_modified_file_matching_pattern(filepath) - ) - weights_after_additional_fit = model.get_weights() - - self.assertNotAllClose( - weights_before_additional_fit, weights_after_additional_fit - ) - - def test_fit_with_ModelCheckpoint_with_tf_config(self): - ( - model, - train_ds, - callback, - _, - ) = self._get_dummy_resource_for_model_checkpoint_testing() - - os.environ["TF_CONFIG"] = json.dumps( - { - "cluster": {"worker": ["localhost:23333"]}, - "task": {"type": "worker", "index": 0}, - } - ) - - # `model.fit()` should work regardless of the presence of `TF_CONFIG`. - model.fit(train_ds, epochs=1, callbacks=[callback]) - - def test_fit_with_ModelCheckpoint_with_dir_as_h5_filepath(self): - ( - model, - train_ds, - callback, - filepath, - ) = self._get_dummy_resource_for_model_checkpoint_testing() - - temp_dir = self.get_temp_dir() - filepath = os.path.join(temp_dir, "temp.h5") - - self.assertFalse(os.path.exists(filepath)) - os.mkdir(filepath) - self.assertTrue(os.path.exists(filepath)) - - callback = keras.callbacks.ModelCheckpoint(filepath=filepath) - - with self.assertRaisesRegex( - IOError, - "Please specify a non-directory filepath for ModelCheckpoint.", - ): - model.fit(train_ds, epochs=1, callbacks=[callback]) - - def test_ModelCheckpoint_with_bad_path_placeholders(self): - ( - model, - train_ds, - callback, - filepath, - ) = self._get_dummy_resource_for_model_checkpoint_testing() - - temp_dir = self.get_temp_dir() - filepath = os.path.join(temp_dir, "chkpt_{epoch:02d}_{mape:.2f}.h5") - callback = keras.callbacks.ModelCheckpoint(filepath=filepath) - - with self.assertRaisesRegex( - KeyError, "Failed to format this callback filepath.*" - ): - model.fit(train_ds, epochs=1, callbacks=[callback]) - - def test_ModelCheckpoint_nonblocking(self): - filepath = self.get_temp_dir() - # Should only cause a sync block when saving is actually performed. - callback = keras.callbacks.ModelCheckpoint( - filepath=filepath, save_freq=100 - ) - self.assertTrue(callback._supports_tf_logs) - - model = keras.Sequential([keras.layers.Dense(1)]) - cb_list = keras.callbacks.CallbackList( - [callback], model=model, epochs=1, steps=10, verbose=0 - ) - - tensor = tf.convert_to_tensor(1.0) - - def mock_numpy(): - raise RuntimeError( - "If this error is seen, ModelCheckpoint is causing a blocking " - "NumPy conversion even when not checkpointing." - ) - - tensor.numpy = mock_numpy - - logs = {"metric": tensor} - - cb_list.on_train_begin(logs) - cb_list.on_epoch_begin(0, logs) - cb_list.on_train_batch_begin(0, logs) - cb_list.on_train_batch_end(0, logs) - cb_list.on_epoch_end(0, logs) - cb_list.on_train_end(logs) - - cb_list.on_test_begin(logs) - cb_list.on_test_batch_begin(0, logs) - cb_list.on_test_batch_end(0, logs) - cb_list.on_test_end(logs) - - cb_list.on_predict_begin(logs) - cb_list.on_predict_batch_begin(logs) - cb_list.on_predict_batch_end(logs) - cb_list.on_predict_end(logs) - - def test_verbose_2_logging(self): - data = np.random.random((100, 1)) - labels = np.where(data > 0.5, 1, 0) - model = keras.models.Sequential( - ( - keras.layers.Dense(1, input_dim=1, activation="relu"), - keras.layers.Dense(1, activation="sigmoid"), - ) - ) - model.compile( - optimizer="sgd", loss="binary_crossentropy", metrics=["accuracy"] - ) - expected_log = r"(.*- loss:.*- acc.*:.*epoch)+" - with self.captureWritesToStream(sys.stdout) as printed: - model.fit(data, labels, verbose=2, epochs=20) - self.assertRegex(printed.contents(), expected_log) - - def test_ProgbarLogger_verbose_2_nonblocking(self): - # Should only cause a sync block on epoch end methods. - callback = keras.callbacks.ProgbarLogger(count_mode="steps") - self.assertTrue(callback._supports_tf_logs) - - model = keras.Sequential([keras.layers.Dense(1)]) - cb_list = keras.callbacks.CallbackList( - [callback], model=model, epochs=1, steps=10, verbose=2 - ) - - tensor = tf.convert_to_tensor(1.0) - - def mock_numpy(): - raise RuntimeError( - "If this error is seen, ModelCheckpoint is causing a blocking " - "NumPy conversion even when not checkpointing." - ) - - tensor.numpy = mock_numpy - logs = {"metric": tensor} - - cb_list.on_train_begin(logs) - cb_list.on_epoch_begin(0, logs) - cb_list.on_train_batch_begin(0, logs) - cb_list.on_train_batch_end(0, logs) - - cb_list.on_test_begin(logs) - cb_list.on_test_batch_begin(0, logs) - cb_list.on_test_batch_end(0, logs) - cb_list.on_test_end(logs) - - with self.assertRaisesRegex(RuntimeError, "NumPy conversion"): - # on_epoch_end should still block. - cb_list.on_epoch_end(0, logs) - cb_list.on_train_end(logs) - - def test_EarlyStopping(self): - with self.cached_session(): - np.random.seed(123) - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - model = test_utils.get_small_sequential_mlp( - num_hidden=NUM_HIDDEN, - num_classes=NUM_CLASSES, - input_dim=INPUT_DIM, - ) - model.compile( - loss="categorical_crossentropy", - optimizer="rmsprop", - metrics=["acc"], - ) - - cases = [ - ("max", "val_acc"), - ("min", "val_loss"), - ("auto", "val_acc"), - ("auto", "loss"), - ("unknown", "unknown"), - ] - for mode, monitor in cases: - patience = 0 - cbks = [ - keras.callbacks.EarlyStopping( - patience=patience, monitor=monitor, mode=mode - ) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=5, - verbose=0, - ) - - def test_EarlyStopping_patience(self): - cases = [0, 1, 2, 3] - losses = [10.0, 9.0, 8.0, 9.0, 8.9, 8.8, 8.7, 8.6, 8.5] - - for patience in cases: - stopper = keras.callbacks.EarlyStopping( - monitor="loss", patience=patience - ) - stopper.model = keras.models.Sequential() - stopper.on_train_begin() - - for epoch, loss in enumerate(losses): - stopper.on_epoch_end(epoch=epoch, logs={"loss": loss}) - if stopper.model.stop_training: - break - - self.assertEqual(stopper.stopped_epoch, max(patience, 1) + 2) - - def test_EarlyStopping_reuse(self): - with self.cached_session(): - np.random.seed(1337) - patience = 3 - data = np.random.random((100, 1)) - labels = np.where(data > 0.5, 1, 0) - model = keras.models.Sequential( - ( - keras.layers.Dense(1, input_dim=1, activation="relu"), - keras.layers.Dense(1, activation="sigmoid"), - ) - ) - model.compile( - optimizer="sgd", - loss="binary_crossentropy", - metrics=["accuracy"], - ) - weights = model.get_weights() - - # This should allow training to go for at least `patience` epochs - model.set_weights(weights) - - stopper = keras.callbacks.EarlyStopping( - monitor="acc", patience=patience - ) - hist = model.fit( - data, labels, callbacks=[stopper], verbose=0, epochs=20 - ) - assert len(hist.epoch) >= patience - - def test_EarlyStopping_with_baseline(self): - with self.cached_session(): - np.random.seed(1337) - baseline = 0.6 - (data, labels), _ = test_utils.get_test_data( - train_samples=100, - test_samples=50, - input_shape=(1,), - num_classes=NUM_CLASSES, - ) - model = test_utils.get_small_sequential_mlp( - num_hidden=1, num_classes=1, input_dim=1 - ) - model.compile( - optimizer="sgd", loss="binary_crossentropy", metrics=["acc"] - ) - - stopper = keras.callbacks.EarlyStopping( - monitor="acc", baseline=baseline - ) - hist = model.fit( - data, labels, callbacks=[stopper], verbose=0, epochs=20 - ) - assert len(hist.epoch) == 2 - - patience = 3 - stopper = keras.callbacks.EarlyStopping( - monitor="acc", patience=patience, baseline=baseline - ) - hist = model.fit( - data, labels, callbacks=[stopper], verbose=0, epochs=20 - ) - assert len(hist.epoch) >= patience - - def test_EarlyStopping_final_weights_when_restoring_model_weights(self): - class DummyModel: - def __init__(self): - self.stop_training = False - self.weights = -1 - - def get_weights(self): - return self.weights - - def set_weights(self, weights): - self.weights = weights - - def set_weight_to_epoch(self, epoch): - self.weights = epoch - - early_stop = keras.callbacks.EarlyStopping( - monitor="val_loss", patience=2, restore_best_weights=True - ) - early_stop.model = DummyModel() - losses = [0.2, 0.15, 0.1, 0.11, 0.12] - # The best configuration is in the epoch 2 (loss = 0.1000). - epochs_trained = 0 - early_stop.on_train_begin() - for epoch in range(len(losses)): - epochs_trained += 1 - early_stop.model.set_weight_to_epoch(epoch=epoch) - early_stop.on_epoch_end(epoch, logs={"val_loss": losses[epoch]}) - if early_stop.model.stop_training: - break - # The best configuration is in epoch 2 (loss = 0.1000), - # and while patience = 2, we're restoring the best weights, - # so we end up at the epoch with the best weights, i.e. epoch 2 - self.assertEqual(early_stop.model.get_weights(), 2) - - # Check early stopping when no model beats the baseline. - early_stop = keras.callbacks.EarlyStopping( - monitor="val_loss", - patience=5, - baseline=0.5, - restore_best_weights=True, - ) - early_stop.model = DummyModel() - losses = [0.9, 0.8, 0.7, 0.71, 0.72, 0.73] - # The best configuration is in the epoch 2 (loss = 0.7000). - epochs_trained = 0 - early_stop.on_train_begin() - for epoch in range(len(losses)): - epochs_trained += 1 - early_stop.model.set_weight_to_epoch(epoch=epoch) - early_stop.on_epoch_end(epoch, logs={"val_loss": losses[epoch]}) - if early_stop.model.stop_training: - break - # No epoch improves on the baseline, so we should train for only 5 - # epochs, and restore the second model. - self.assertEqual(epochs_trained, 5) - self.assertEqual(early_stop.model.get_weights(), 2) - - def test_EarlyStopping_with_start_from_epoch(self): - with self.cached_session(): - np.random.seed(1337) - (data, labels), _ = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - labels = np_utils.to_categorical(labels) - model = test_utils.get_small_sequential_mlp( - num_hidden=NUM_HIDDEN, - num_classes=NUM_CLASSES, - input_dim=INPUT_DIM, - ) - model.compile( - optimizer="sgd", loss="binary_crossentropy", metrics=["acc"] - ) - start_from_epoch = 2 - patience = 3 - stopper = keras.callbacks.EarlyStopping( - monitor="acc", - patience=patience, - start_from_epoch=start_from_epoch, - ) - history = model.fit( - data, labels, callbacks=[stopper], verbose=0, epochs=20 - ) - # Test 'patience' argument functions correctly when used - # in conjunction with 'start_from_epoch'. - self.assertGreaterEqual( - len(history.epoch), patience + start_from_epoch - ) - - start_from_epoch = 2 - patience = 0 - stopper = keras.callbacks.EarlyStopping( - monitor="acc", - patience=patience, - start_from_epoch=start_from_epoch, - ) - history = model.fit( - data, labels, callbacks=[stopper], verbose=0, epochs=20 - ) - # Test for boundary condition when 'patience' = 0. - self.assertGreaterEqual(len(history.epoch), start_from_epoch) - - def test_RemoteMonitor(self): - if requests is None: - self.skipTest("`requests` required to run this test") - return None - - monitor = keras.callbacks.RemoteMonitor() - # This will raise a warning since the default address in unreachable: - monitor.on_epoch_end(0, logs={"loss": 0.0}) - - def test_LearningRateScheduler(self): - with self.cached_session(): - np.random.seed(1337) - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - model = test_utils.get_small_sequential_mlp( - num_hidden=NUM_HIDDEN, - num_classes=NUM_CLASSES, - input_dim=INPUT_DIM, - ) - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - metrics=["accuracy"], - ) - - cbks = [ - keras.callbacks.LearningRateScheduler( - lambda x: 1.0 / (1.0 + x), verbose=1 - ) - ] - io_utils.enable_interactive_logging() - with self.captureWritesToStream(sys.stdout) as printed: - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=5, - ) - self.assertIn( - "LearningRateScheduler setting learning rate to 1.0", - printed.contents(), - ) - assert ( - float(keras.backend.get_value(model.optimizer.lr)) - 0.2 - ) < keras.backend.epsilon() - - cbks = [keras.callbacks.LearningRateScheduler(lambda x, lr: lr / 2)] - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - metrics=["accuracy"], - ) - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=2, - verbose=0, - ) - assert ( - float(keras.backend.get_value(model.optimizer.lr)) - 0.01 / 4 - ) < keras.backend.epsilon() - - cbks = [ - keras.callbacks.LearningRateScheduler( - lambda epoch, _: learning_rate_schedule.CosineDecay( - 0.01, 2 - )(epoch) - ) - ] - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - metrics=["accuracy"], - ) - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=2, - verbose=0, - ) - - cosine_decay_np = 0.5 * (1 + np.cos(np.pi * (1 / 2))) - decayed_learning_rate = 0.01 * cosine_decay_np - - assert ( - float(keras.backend.get_value(model.optimizer.lr)) - - decayed_learning_rate - ) < keras.backend.epsilon() - - def test_ReduceLROnPlateau(self): - with self.cached_session(): - tf_utils.set_random_seed(1337) - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - - def make_model(): - tf_utils.set_random_seed(1337) - model = test_utils.get_small_sequential_mlp( - num_hidden=NUM_HIDDEN, - num_classes=NUM_CLASSES, - input_dim=INPUT_DIM, - ) - model.compile( - loss="categorical_crossentropy", - optimizer=gradient_descent.SGD(lr=0.1), - ) - return model - - # TODO(psv): Make sure the callback works correctly when min_delta - # is set as 0. Test fails when the order of this callback and - # assertion is interchanged. - model = make_model() - cbks = [ - keras.callbacks.ReduceLROnPlateau( - monitor="val_loss", - factor=0.1, - min_delta=0, - patience=1, - cooldown=5, - ) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=2, - verbose=0, - ) - self.assertAllClose( - float(keras.backend.get_value(model.optimizer.lr)), - 0.1, - atol=1e-4, - ) - - model = make_model() - # This should reduce the LR after the first epoch (due to high - # epsilon). - cbks = [ - keras.callbacks.ReduceLROnPlateau( - monitor="val_loss", - factor=0.1, - min_delta=10, - patience=1, - cooldown=5, - ) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=2, - verbose=2, - ) - self.assertAllClose( - float(keras.backend.get_value(model.optimizer.lr)), - 0.01, - atol=1e-4, - ) - - def test_ReduceLROnPlateau_patience(self): - class DummyOptimizer: - def __init__(self): - self.lr = keras.backend.variable(1.0) - - class DummyModel: - def __init__(self): - self.optimizer = DummyOptimizer() - - reduce_on_plateau = keras.callbacks.ReduceLROnPlateau( - monitor="val_loss", patience=2 - ) - reduce_on_plateau.model = DummyModel() - - losses = [0.0860, 0.1096, 0.1040] - lrs = [] - - for epoch in range(len(losses)): - reduce_on_plateau.on_epoch_end( - epoch, logs={"val_loss": losses[epoch]} - ) - lrs.append( - keras.backend.get_value(reduce_on_plateau.model.optimizer.lr) - ) - - # The learning rates should be 1.0 except the last one - for lr in lrs[:-1]: - self.assertEqual(lr, 1.0) - self.assertLess(lrs[-1], 1.0) - - def test_ReduceLROnPlateau_backwards_compatibility(self): - with tf.compat.v1.test.mock.patch.object( - logging, "warning" - ) as mock_log: - reduce_on_plateau = keras.callbacks.ReduceLROnPlateau(epsilon=1e-13) - self.assertRegex( - str(mock_log.call_args), "`epsilon` argument is deprecated" - ) - self.assertFalse(hasattr(reduce_on_plateau, "epsilon")) - self.assertTrue(hasattr(reduce_on_plateau, "min_delta")) - self.assertEqual(reduce_on_plateau.min_delta, 1e-13) - - def test_CSVLogger(self): - with self.cached_session(): - np.random.seed(1337) - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - filepath = os.path.join(temp_dir, "log.tsv") - - sep = "\t" - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - - def make_model(): - np.random.seed(1337) - model = test_utils.get_small_sequential_mlp( - num_hidden=NUM_HIDDEN, - num_classes=NUM_CLASSES, - input_dim=INPUT_DIM, - ) - model.compile( - loss="categorical_crossentropy", - optimizer=gradient_descent.SGD(lr=0.1), - metrics=["accuracy"], - ) - return model - - # case 1, create new file with defined separator - model = make_model() - cbks = [keras.callbacks.CSVLogger(filepath, separator=sep)] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=1, - verbose=0, - ) - - assert os.path.exists(filepath) - with open(filepath) as csvfile: - dialect = csv.Sniffer().sniff(csvfile.read()) - assert dialect.delimiter == sep - del model - del cbks - - # case 2, append data to existing file, skip header - model = make_model() - cbks = [ - keras.callbacks.CSVLogger(filepath, separator=sep, append=True) - ] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=1, - verbose=0, - ) - - # case 3, reuse of CSVLogger object - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=2, - verbose=0, - ) - - with open(filepath) as csvfile: - list_lines = csvfile.readlines() - for line in list_lines: - assert line.count(sep) == 4 - assert len(list_lines) == 5 - output = " ".join(list_lines) - assert len(re.findall("epoch", output)) == 1 - - os.remove(filepath) - - # case 3, Verify Val. loss also registered when Validation Freq > 1 - model = make_model() - cbks = [keras.callbacks.CSVLogger(filepath, separator=sep)] - hist = model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - validation_freq=3, - callbacks=cbks, - epochs=5, - verbose=0, - ) - assert os.path.exists(filepath) - # Verify that validation loss is registered at val. freq - with open(filepath) as csvfile: - rows = csv.DictReader(csvfile, delimiter=sep) - for idx, row in enumerate(rows, 1): - self.assertIn("val_loss", row) - if idx == 3: - self.assertEqual( - row["val_loss"], str(hist.history["val_loss"][0]) - ) - else: - self.assertEqual(row["val_loss"], "NA") - - def test_stop_training_csv(self): - # Test that using the CSVLogger callback with the TerminateOnNaN - # callback does not result in invalid CSVs. - np.random.seed(1337) - tmpdir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, tmpdir, ignore_errors=True) - - with self.cached_session(): - fp = os.path.join(tmpdir, "test.csv") - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - cbks = [ - keras.callbacks.TerminateOnNaN(), - keras.callbacks.CSVLogger(fp), - ] - model = keras.models.Sequential() - for _ in range(5): - model.add( - keras.layers.Dense( - 2, input_dim=INPUT_DIM, activation="relu" - ) - ) - model.add(keras.layers.Dense(NUM_CLASSES, activation="linear")) - model.compile(loss="mean_squared_error", optimizer="rmsprop") - - def data_generator(): - i = 0 - max_batch_index = len(x_train) // BATCH_SIZE - tot = 0 - while 1: - if tot > 3 * len(x_train): - yield ( - np.ones([BATCH_SIZE, INPUT_DIM]) * np.nan, - np.ones([BATCH_SIZE, NUM_CLASSES]) * np.nan, - ) - else: - yield ( - x_train[i * BATCH_SIZE : (i + 1) * BATCH_SIZE], - y_train[i * BATCH_SIZE : (i + 1) * BATCH_SIZE], - ) - i += 1 - tot += 1 - i %= max_batch_index - - history = model.fit_generator( - data_generator(), - len(x_train) // BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=20, - ) - loss = history.history["loss"] - assert len(loss) > 1 - assert loss[-1] == np.inf or np.isnan(loss[-1]) - - values = [] - with open(fp) as f: - # On Windows, due to \r\n line ends, we may end up reading empty - # lines after each line. Skip empty lines. - values = [x for x in csv.reader(f) if x] - - assert "nan" in values[-1], "The last epoch was not logged." - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_TerminateOnNaN(self): - np.random.seed(1337) - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - cbks = [keras.callbacks.TerminateOnNaN()] - model = keras.models.Sequential() - initializer = keras.initializers.Constant(value=1e5) - for _ in range(5): - model.add( - keras.layers.Dense( - 2, - input_dim=INPUT_DIM, - activation="relu", - kernel_initializer=initializer, - ) - ) - model.add(keras.layers.Dense(NUM_CLASSES)) - model.compile(loss="mean_squared_error", optimizer="rmsprop") - - history = model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=20, - ) - loss = history.history["loss"] - self.assertEqual(len(loss), 1) - self.assertTrue(np.isnan(loss[0]) or np.isinf(loss[0])) - - @unittest.skipIf( - os.name == "nt", - "use_multiprocessing=True does not work on windows properly.", - ) - def test_LambdaCallback(self): - with self.cached_session(): - np.random.seed(1337) - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - model = keras.models.Sequential() - model.add( - keras.layers.Dense( - NUM_HIDDEN, input_dim=INPUT_DIM, activation="relu" - ) - ) - model.add(keras.layers.Dense(NUM_CLASSES, activation="softmax")) - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - metrics=["accuracy"], - ) - - # Start an arbitrary process that should run during model - # training and be terminated after training has completed. - e = threading.Event() - - def target(): - e.wait() - - t = threading.Thread(target=target) - t.start() - cleanup_callback = keras.callbacks.LambdaCallback( - on_train_end=lambda logs: e.set() - ) - - cbks = [cleanup_callback] - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=5, - verbose=0, - ) - t.join() - assert not t.is_alive() - - def test_RemoteMonitor_np_array(self): - if requests is None: - self.skipTest("`requests` required to run this test") - with tf.compat.v1.test.mock.patch.object( - requests, "post" - ) as requests_post: - monitor = keras.callbacks.RemoteMonitor(send_as_json=True) - a = np.arange(1) # a 1 by 1 array - logs = {"loss": 0.0, "val": a} - monitor.on_epoch_end(0, logs=logs) - send = {"loss": 0.0, "epoch": 0, "val": 0} - requests_post.assert_called_once_with( - monitor.root + monitor.path, json=send, headers=monitor.headers - ) - - def test_RemoteMonitor_np_float32(self): - if requests is None: - self.skipTest("`requests` required to run this test") - - with tf.compat.v1.test.mock.patch.object( - requests, "post" - ) as requests_post: - monitor = keras.callbacks.RemoteMonitor(send_as_json=True) - a = np.float32(1.0) # a float32 generic type - logs = {"loss": 0.0, "val": a} - monitor.on_epoch_end(0, logs=logs) - send = {"loss": 0.0, "epoch": 0, "val": 1.0} - requests_post.assert_called_once_with( - monitor.root + monitor.path, json=send, headers=monitor.headers - ) - - def test_RemoteMonitorWithJsonPayload(self): - if requests is None: - self.skipTest("`requests` required to run this test") - return None - with self.cached_session(): - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_test = keras.utils.np_utils.to_categorical(y_test) - y_train = keras.utils.np_utils.to_categorical(y_train) - model = keras.models.Sequential() - model.add( - keras.layers.Dense( - NUM_HIDDEN, input_dim=INPUT_DIM, activation="relu" - ) - ) - model.add(keras.layers.Dense(NUM_CLASSES, activation="softmax")) - model.compile( - loss="categorical_crossentropy", - optimizer="rmsprop", - metrics=["accuracy"], - ) - cbks = [keras.callbacks.RemoteMonitor(send_as_json=True)] - - with tf.compat.v1.test.mock.patch.object(requests, "post"): - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=1, - ) - - def test_progbar_infers_steps(self): - x, y = np.ones((10, 1)), np.ones((10, 1)) - data = tf.data.Dataset.from_tensor_slices((x, y)).batch(2) - data = data.filter(lambda x, y: True) # Unknown cardinality. - - progbar = keras.callbacks.ProgbarLogger("steps") - model = keras.Sequential([keras.layers.Dense(1)]) - model.compile("sgd", "mse") - self.assertIsNone(progbar.target) - model.fit(data, epochs=2, callbacks=[progbar]) - self.assertEqual(progbar.target, 5) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_callback_passed_floats(self): - class MyCallback(keras.callbacks.Callback): - def on_batch_end(self, batch, logs=None): - assert isinstance(batch, int) - assert isinstance(logs["loss"], float) - self.on_batch_end_called = True - - def on_epoch_end(self, batch, logs=None): - assert isinstance(batch, int) - assert isinstance(logs["loss"], float) - self.on_epoch_end_called = True - - x, y = np.ones((10, 1)), np.ones((10, 1)) - model = keras.Sequential([keras.layers.Dense(1)]) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - - callback = MyCallback() - model.fit(x, y, epochs=2, callbacks=[callback]) - self.assertTrue(callback.on_batch_end_called) - self.assertTrue(callback.on_batch_end_called) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_implements_batch_hooks(self): - class MyCallbackWithBatchHooks(keras.callbacks.Callback): - def __init__(self): - self.train_batches = 0 - self.test_batches = 0 - self.predict_batches = 0 - - def on_train_batch_end(self, batch, logs=None): - self.train_batches += 1 - - def on_test_batch_end(self, batch, logs=None): - self.test_batches += 1 - - def on_predict_batch_end(self, batch, logs=None): - self.predict_batches += 1 - - class MyCallbackWithTFBatchHooks(keras.callbacks.Callback): - def __init__(self): - super().__init__() - self._supports_tf_logs = True - - class MyCallbackWithoutBatchHooks(keras.callbacks.Callback): - def __init__(self): - self.epochs = 0 - - def on_epoch_end(self, epoch, logs=None): - self.epochs += 1 - - x, y = np.ones((10, 1)), np.ones((10, 1)) - model = keras.Sequential([keras.layers.Dense(1)]) - model.compile("sgd", "mse") - - my_cb = MyCallbackWithBatchHooks() - cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) - self.assertTrue(cb_list._should_call_train_batch_hooks) - self.assertTrue(cb_list._should_call_test_batch_hooks) - self.assertTrue(cb_list._should_call_predict_batch_hooks) - self.assertFalse(cb_list._batch_hooks_support_tf_logs) - - model.fit(x, y, epochs=2, batch_size=10, callbacks=[my_cb], verbose=0) - model.evaluate(x, y, batch_size=10, callbacks=[my_cb], verbose=0) - model.predict(x, batch_size=10, callbacks=[my_cb], verbose=0) - - self.assertEqual(my_cb.train_batches, 2) - self.assertEqual(my_cb.test_batches, 1) - self.assertEqual(my_cb.predict_batches, 1) - - my_cb = MyCallbackWithTFBatchHooks() - cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) - self.assertTrue(cb_list._batch_hooks_support_tf_logs) - - my_cb = MyCallbackWithoutBatchHooks() - cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) - self.assertLen(cb_list.callbacks, 1) - self.assertFalse(cb_list._should_call_train_batch_hooks) - self.assertFalse(cb_list._should_call_test_batch_hooks) - self.assertFalse(cb_list._should_call_predict_batch_hooks) - - model.fit(x, y, epochs=2, batch_size=10, callbacks=[my_cb], verbose=0) - model.evaluate(x, y, batch_size=10, callbacks=[my_cb], verbose=0) - model.predict(x, batch_size=10, callbacks=[my_cb], verbose=0) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_logs_conversion(self): - assert_dict_equal = self.assertDictEqual - - class MutateNumpyLogs(CallAllHooks): - def _run(self, *args, logs=None): - logs = logs or args[-1] - logs["numpy"] = 1 - - class MutateTensorFlowLogs(CallAllHooks): - def __init__(self): - super().__init__() - self._supports_tf_logs = True - - def _run(self, *args, logs=None): - logs = logs or args[-1] - logs["tf"] = 2 - - class AssertNumpyLogs(CallAllHooks): - def _run(self, *args, logs=None): - logs = logs or args[-1] - assert_dict_equal(logs, {"all": 0, "numpy": 1, "tf": 2}) - - class AssertTensorFlowLogs(AssertNumpyLogs): - def __init__(self): - super().__init__() - self._supports_tf_logs = True - - cb_list = keras.callbacks.CallbackList( - [ - MutateNumpyLogs(), - MutateTensorFlowLogs(), - AssertNumpyLogs(), - AssertTensorFlowLogs(), - ] - ) - - assert len(cb_list.callbacks) == 4 - cb_list.on_epoch_begin(0, logs={"all": 0}) - cb_list.on_epoch_end(0, logs={"all": 0}) - cb_list.on_predict_batch_begin(0, logs={"all": 0}) - cb_list.on_predict_batch_end(0, logs={"all": 0}) - cb_list.on_predict_begin(logs={"all": 0}) - cb_list.on_predict_end(logs={"all": 0}) - cb_list.on_test_batch_begin(0, logs={"all": 0}) - cb_list.on_test_batch_end(0, logs={"all": 0}) - cb_list.on_test_begin(logs={"all": 0}) - cb_list.on_test_end(logs={"all": 0}) - cb_list.on_train_batch_begin(0, logs={"all": 0}) - cb_list.on_train_batch_end(0, logs={"all": 0}) - cb_list.on_train_begin(logs={"all": 0}) - cb_list.on_train_end(logs={"all": 0}) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_implements_batch_hooks_override(self): - class MyCallback(keras.callbacks.Callback): - def __init__(self, should_run=True): - self.should_run = should_run - self.train_batches = 0 - self.test_batches = 0 - self.predict_batches = 0 - - def on_train_batch_end(self, batch, logs=None): - self.train_batches += 1 - - def on_test_batch_end(self, batch, logs=None): - self.test_batches += 1 - - def on_predict_batch_end(self, batch, logs=None): - self.predict_batches += 1 - - def _implements_train_batch_hooks(self): - return self.should_run - - def _implements_test_batch_hooks(self): - return self.should_run - - def _implements_predict_batch_hooks(self): - return self.should_run - - x, y = np.ones((10, 1)), np.ones((10, 1)) - model = keras.Sequential([keras.layers.Dense(1)]) - model.compile("sgd", "mse") - - my_cb = MyCallback(should_run=True) - cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) - self.assertTrue(cb_list._should_call_train_batch_hooks) - self.assertTrue(cb_list._should_call_test_batch_hooks) - self.assertTrue(cb_list._should_call_predict_batch_hooks) - - model.fit(x, y, epochs=2, batch_size=10, callbacks=[my_cb], verbose=0) - model.evaluate(x, y, batch_size=10, callbacks=[my_cb], verbose=0) - model.predict(x, batch_size=10, callbacks=[my_cb], verbose=0) - - self.assertEqual(my_cb.train_batches, 2) - self.assertEqual(my_cb.test_batches, 1) - self.assertEqual(my_cb.predict_batches, 1) - - my_cb = MyCallback(should_run=False) - cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) - self.assertFalse(cb_list._should_call_train_batch_hooks) - self.assertFalse(cb_list._should_call_test_batch_hooks) - self.assertFalse(cb_list._should_call_predict_batch_hooks) - - model.fit(x, y, epochs=2, batch_size=10, callbacks=[my_cb], verbose=0) - model.evaluate(x, y, batch_size=10, callbacks=[my_cb], verbose=0) - model.predict(x, batch_size=10, callbacks=[my_cb], verbose=0) - - self.assertEqual(my_cb.train_batches, 0) - self.assertEqual(my_cb.test_batches, 0) - self.assertEqual(my_cb.predict_batches, 0) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_default_callbacks_do_not_call_batch_hooks(self): - model = keras.Sequential([keras.layers.Dense(1)]) - log_dir = self.get_temp_dir() - cb_list = keras.callbacks.CallbackList( - [ - keras.callbacks.TensorBoard(log_dir, profile_batch=0), - keras.callbacks.ModelCheckpoint(log_dir), - ], - add_progbar=True, - model=model, - verbose=2, - epochs=3, - ) - self.assertLen(cb_list.callbacks, 3) - self.assertFalse(cb_list._should_call_train_batch_hooks) - self.assertFalse(cb_list._should_call_test_batch_hooks) - self.assertFalse(cb_list._should_call_predict_batch_hooks) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_change_tf_functions_during_fit(self): - class ChangeFunctions(keras.callbacks.Callback): - def on_epoch_end(self, epochs, logs=None): - def new_fn(iterator): - raise ValueError("New function substituted successfully.") - - self.model.train_function = new_fn - self.model.test_function = new_fn - self.model.predict_function = new_fn - - model = keras.Sequential([keras.layers.Dense(1)]) - model.compile("sgd", "mse") - - x, y = np.ones((10, 10)), np.ones((10, 1)) - with self.assertRaisesRegex(ValueError, "New function "): - model.fit( - x, y, batch_size=2, epochs=2, callbacks=[ChangeFunctions()] - ) - with self.assertRaisesRegex(ValueError, "New function "): - model.evaluate(x, y, batch_size=2) - with self.assertRaisesRegex(ValueError, "New function "): - model.predict(x, batch_size=2) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_stop_training_batch_level(self): - class MyCallback(keras.callbacks.Callback): - def __init__(self): - super().__init__() - self.batch_counter = 0 - - def on_train_batch_end(self, batch, logs=None): - self.batch_counter += 1 - if batch == 2: - self.model.stop_training = True - - model = keras.Sequential([keras.layers.Dense(1)]) - model.compile("sgd", "mse") - x, y = np.ones((10, 10)), np.ones((10, 1)) - my_cb = MyCallback() - # Will run 5 batches if `stop_training` doesn't work. - model.fit(x, y, batch_size=2, callbacks=[my_cb]) - self.assertEqual(my_cb.batch_counter, 3) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_built_in_callback_order(self): - class CustomCallback(keras.callbacks.Callback): - pass - - class TestingCallbackList(keras.callbacks.CallbackList): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - if ( - (not isinstance(self.callbacks[0], CustomCallback)) - or ( - not isinstance( - self.callbacks[1], keras.callbacks.History - ) - ) - or ( - not isinstance( - self.callbacks[2], keras.callbacks.ProgbarLogger - ) - ) - ): - raise AssertionError( - f"Callback order unexpected: {self.callbacks}" - ) - - with mock.patch.object( - keras.callbacks, "CallbackList", TestingCallbackList - ): - model = keras.Sequential([keras.layers.Dense(1)]) - model.compile("sgd", "mse") - custom_callback = CustomCallback() - model.fit( - np.ones((10, 10)), - np.ones((10, 1)), - epochs=5, - callbacks=[custom_callback], - ) - - -# A summary that was emitted during a test. Fields: -# logdir: str. The logdir of the FileWriter to which the summary was -# written. -# tag: str. The name of the summary. -_ObservedSummary = collections.namedtuple("_ObservedSummary", ("logdir", "tag")) - - -class _SummaryFile: - """A record of summary tags and the files to which they were written. - - Fields `scalars`, `images`, `histograms`, and `tensors` are sets - containing `_ObservedSummary` values. - """ - - def __init__(self): - self.scalars = set() - self.images = set() - self.histograms = set() - self.tensors = set() - self.graph_defs = [] - self.convert_from_v2_summary_proto = False - - -def list_summaries(logdir): - """Read all summaries under the logdir into a `_SummaryFile`. - - Args: - logdir: A path to a directory that contains zero or more event - files, either as direct children or in transitive subdirectories. - Summaries in these events must only contain old-style scalars, - images, and histograms. Non-summary events, like `graph_def`s, are - ignored. - - Returns: - A `_SummaryFile` object reflecting all summaries written to any - event files in the logdir or any of its descendant directories. - - Raises: - ValueError: If an event file contains an summary of unexpected kind. - """ - result = _SummaryFile() - for dirpath, _, filenames in os.walk(logdir): - for filename in filenames: - if not filename.startswith("events.out."): - continue - path = os.path.join(dirpath, filename) - for event in tf.compat.v1.train.summary_iterator(path): - if event.graph_def: - result.graph_defs.append(event.graph_def) - if not event.summary: # (e.g., it's a `graph_def` event) - continue - for value in event.summary.value: - tag = value.tag - # Case on the `value` rather than the summary metadata - # because the Keras callback uses `summary_ops_v2` to emit - # old-style summaries. See b/124535134. - kind = value.WhichOneof("value") - container = { - "simple_value": result.scalars, - "image": result.images, - "histo": result.histograms, - "tensor": result.tensors, - }.get(kind) - if container is None: - raise ValueError( - "Unexpected summary kind %r in event file %s:\n%r" - % (kind, path, event) - ) - elif kind == "tensor" and tag != "keras": - # Convert the tf2 summary proto to old style for type - # checking. - plugin_name = value.metadata.plugin_data.plugin_name - container = { - "images": result.images, - "histograms": result.histograms, - "scalars": result.scalars, - }.get(plugin_name) - if container is not None: - result.convert_from_v2_summary_proto = True - else: - container = result.tensors - container.add(_ObservedSummary(logdir=dirpath, tag=tag)) - return result - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TestTensorBoardV2(test_combinations.TestCase): - def setUp(self): - super(TestTensorBoardV2, self).setUp() - self.logdir = os.path.join(self.get_temp_dir(), "tb") - self.train_dir = os.path.join(self.logdir, "train") - self.validation_dir = os.path.join(self.logdir, "validation") - - def _get_model(self, compile_model=True): - layers = [ - keras.layers.Conv2D(8, (3, 3)), - keras.layers.Flatten(), - keras.layers.Dense(1), - ] - model = test_utils.get_model_from_layers( - layers, input_shape=(10, 10, 1) - ) - if compile_model: - opt = gradient_descent.SGD(learning_rate=0.001) - model.compile( - opt, "mse", run_eagerly=test_utils.should_run_eagerly() - ) - return model - - def test_TensorBoard_default_logdir(self): - """Regression test for cross-platform pathsep in default logdir.""" - os.chdir(self.get_temp_dir()) - - model = self._get_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard() # no logdir specified - - model.fit( - x, - y, - batch_size=2, - epochs=2, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - - summary_file = list_summaries(logdir=".") - train_dir = os.path.join(".", "logs", "train") - validation_dir = os.path.join(".", "logs", "validation") - self.assertEqual( - summary_file.scalars, - { - _ObservedSummary(logdir=train_dir, tag="epoch_loss"), - _ObservedSummary(logdir=validation_dir, tag="epoch_loss"), - _ObservedSummary( - logdir=validation_dir, tag="evaluation_loss_vs_iterations" - ), - }, - ) - - def test_TensorBoard_basic(self): - model = self._get_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard(self.logdir) - - model.fit( - x, - y, - batch_size=2, - epochs=2, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - - summary_file = list_summaries(self.logdir) - self.assertEqual( - summary_file.scalars, - { - _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), - _ObservedSummary(logdir=self.validation_dir, tag="epoch_loss"), - _ObservedSummary( - logdir=self.validation_dir, - tag="evaluation_loss_vs_iterations", - ), - }, - ) - - def test_TensorBoard_across_invocations(self): - """Regression test for summary writer resource use-after-free. - - See: - """ - model = self._get_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard(self.logdir) - - for _ in (1, 2): - model.fit( - x, - y, - batch_size=2, - epochs=2, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - - summary_file = list_summaries(self.logdir) - self.assertEqual( - summary_file.scalars, - { - _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), - _ObservedSummary(logdir=self.validation_dir, tag="epoch_loss"), - _ObservedSummary( - logdir=self.validation_dir, - tag="evaluation_loss_vs_iterations", - ), - }, - ) - - def test_TensorBoard_no_spurious_event_files(self): - model = self._get_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard(self.logdir) - - model.fit(x, y, batch_size=2, epochs=2, callbacks=[tb_cbk]) - - events_file_run_basenames = set() - for dirpath, _, filenames in os.walk(self.train_dir): - if any(fn.startswith("events.out.") for fn in filenames): - events_file_run_basenames.add(os.path.basename(dirpath)) - self.assertEqual(events_file_run_basenames, {"train"}) - - def test_TensorBoard_batch_metrics(self): - model = self._get_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard(self.logdir, update_freq=1) - - model.fit( - x, - y, - batch_size=2, - epochs=2, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - - summary_file = list_summaries(self.logdir) - self.assertEqual( - summary_file.scalars, - { - _ObservedSummary(logdir=self.train_dir, tag="batch_loss"), - _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), - _ObservedSummary(logdir=self.validation_dir, tag="epoch_loss"), - _ObservedSummary( - logdir=self.validation_dir, - tag="evaluation_loss_vs_iterations", - ), - }, - ) - - def test_TensorBoard_learning_rate_schedules(self): - model = self._get_model(compile_model=False) - opt = gradient_descent.SGD(learning_rate_schedule.CosineDecay(0.01, 1)) - model.compile(opt, "mse", run_eagerly=test_utils.should_run_eagerly()) - - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - - model.fit( - x, - y, - batch_size=2, - epochs=2, - callbacks=[keras.callbacks.TensorBoard(self.logdir)], - ) - - summary_file = list_summaries(self.logdir) - self.assertEqual( - summary_file.scalars, - { - _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), - _ObservedSummary( - logdir=self.train_dir, tag="epoch_learning_rate" - ), - }, - ) - - def test_TensorBoard_global_step(self): - model = self._get_model(compile_model=False) - opt = gradient_descent.SGD(learning_rate_schedule.CosineDecay(0.01, 1)) - model.compile(opt, "mse", run_eagerly=test_utils.should_run_eagerly()) - - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - - model.fit( - x, - y, - batch_size=2, - epochs=2, - verbose=0, - callbacks=[ - keras.callbacks.TensorBoard( - self.logdir, - update_freq=1, - profile_batch=0, - write_steps_per_second=True, - ) - ], - ) - - summary_file = list_summaries(self.logdir) - self.assertEqual( - summary_file.scalars, - { - _ObservedSummary(logdir=self.train_dir, tag="batch_loss"), - _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), - _ObservedSummary( - logdir=self.train_dir, tag="epoch_learning_rate" - ), - _ObservedSummary( - logdir=self.train_dir, tag="epoch_steps_per_second" - ), - _ObservedSummary( - logdir=self.train_dir, tag="batch_steps_per_second" - ), - }, - ) - - def test_TensorBoard_weight_histograms(self): - model = self._get_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard(self.logdir, histogram_freq=1) - model_type = test_utils.get_model_type() - - model.fit( - x, - y, - batch_size=2, - epochs=2, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - summary_file = list_summaries(self.logdir) - - self.assertEqual( - summary_file.scalars, - { - _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), - _ObservedSummary(logdir=self.validation_dir, tag="epoch_loss"), - _ObservedSummary( - logdir=self.validation_dir, - tag="evaluation_loss_vs_iterations", - ), - }, - ) - self.assertEqual( - self._strip_layer_names(summary_file.histograms, model_type), - { - _ObservedSummary(logdir=self.train_dir, tag="bias_0/histogram"), - _ObservedSummary( - logdir=self.train_dir, tag="kernel_0/histogram" - ), - }, - ) - - def test_TensorBoard_weight_images(self): - model = self._get_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard( - self.logdir, histogram_freq=1, write_images=True - ) - model_type = test_utils.get_model_type() - - model.fit( - x, - y, - batch_size=2, - epochs=2, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - summary_file = list_summaries(self.logdir) - - self.assertEqual( - summary_file.scalars, - { - _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), - _ObservedSummary(logdir=self.validation_dir, tag="epoch_loss"), - _ObservedSummary( - logdir=self.validation_dir, - tag="evaluation_loss_vs_iterations", - ), - }, - ) - self.assertEqual( - self._strip_layer_names(summary_file.histograms, model_type), - { - _ObservedSummary(logdir=self.train_dir, tag="bias_0/histogram"), - _ObservedSummary( - logdir=self.train_dir, tag="kernel_0/histogram" - ), - }, - ) - if summary_file.convert_from_v2_summary_proto: - expected_image_summaries = { - _ObservedSummary(logdir=self.train_dir, tag="bias_0/image"), - _ObservedSummary(logdir=self.train_dir, tag="kernel_0/image"), - } - else: - expected_image_summaries = { - _ObservedSummary(logdir=self.train_dir, tag="bias_0/image/0"), - _ObservedSummary(logdir=self.train_dir, tag="kernel_0/image/0"), - _ObservedSummary(logdir=self.train_dir, tag="kernel_0/image/1"), - _ObservedSummary(logdir=self.train_dir, tag="kernel_0/image/2"), - } - self.assertEqual( - self._strip_layer_names(summary_file.images, model_type), - expected_image_summaries, - ) - - def test_TensorBoard_projector_callback(self): - layers = [ - keras.layers.Embedding(10, 10, name="test_embedding"), - keras.layers.Dense(10, activation="relu"), - keras.layers.Dense(1, activation="sigmoid"), - ] - model = test_utils.get_model_from_layers(layers, input_shape=(10,)) - model.compile( - optimizer="adam", - loss=keras.losses.BinaryCrossentropy(from_logits=True), - run_eagerly=test_utils.should_run_eagerly(), - ) - x, y = np.ones((10, 10)), np.ones((10, 10)) - tb_cbk = keras.callbacks.TensorBoard( - self.logdir, - embeddings_freq=1, - embeddings_metadata={"test_embedding": "metadata.tsv"}, - ) - - model.fit( - x, - y, - batch_size=2, - epochs=2, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - - with open(os.path.join(self.logdir, "projector_config.pbtxt")) as f: - self.assertEqual( - f.readlines(), - [ - "embeddings {\n", - " tensor_name: " - '"layer_with_weights-0/embeddings/.ATTRIBUTES/' - 'VARIABLE_VALUE"\n', - ' metadata_path: "metadata.tsv"\n', - "}\n", - ], - ) - - def test_custom_summary(self): - if not tf.executing_eagerly(): - self.skipTest("Custom summaries only supported in V2 code path.") - - def scalar_v2_mock(name, data, step=None): - """A reimplementation of the scalar plugin to avoid circular - deps.""" - metadata = tf.compat.v1.SummaryMetadata() - # Should match value in tensorboard/plugins/scalar/metadata.py. - metadata.plugin_data.plugin_name = "scalars" - with tf.summary.experimental.summary_scope( - name, "scalar_summary", values=[data, step] - ) as (tag, _): - return tf.summary.write( - tag=tag, - tensor=tf.cast(data, "float32"), - step=step, - metadata=metadata, - ) - - class LayerWithSummary(keras.layers.Layer): - def call(self, x): - scalar_v2_mock("custom_summary", tf.reduce_sum(x)) - return x - - model = test_utils.get_model_from_layers( - [LayerWithSummary()], input_shape=(5,), name="model" - ) - - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - tb_cbk = keras.callbacks.TensorBoard(self.logdir, update_freq=1) - x, y = np.ones((10, 5)), np.ones((10, 5)) - model.fit( - x, y, batch_size=2, validation_data=(x, y), callbacks=[tb_cbk] - ) - summary_file = list_summaries(self.logdir) - self.assertEqual( - summary_file.scalars, - { - _ObservedSummary(logdir=self.train_dir, tag="batch_loss"), - _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), - _ObservedSummary(logdir=self.validation_dir, tag="epoch_loss"), - _ObservedSummary( - logdir=self.validation_dir, - tag="evaluation_loss_vs_iterations", - ), - _ObservedSummary( - logdir=self.train_dir, - tag="model/layer_with_summary/custom_summary", - ), - _ObservedSummary( - logdir=self.validation_dir, - tag="model/layer_with_summary/custom_summary", - ), - }, - ) - - def _strip_layer_names(self, summaries, model_type): - """Deduplicate summary names modulo layer prefix. - - This removes the first slash-component of each tag name: for - instance, "foo/bar/baz" becomes "bar/baz". - - Args: - summaries: A `set` of `_ObservedSummary` values. - model_type: The model type currently being tested. - - Returns: - A new `set` of `_ObservedSummary` values with layer prefixes - removed. - """ - result = set() - for summary in summaries: - if "/" not in summary.tag: - raise ValueError(f"tag has no layer name: {summary.tag!r}") - start_from = 2 if "subclass" in model_type else 1 - new_tag = "/".join(summary.tag.split("/")[start_from:]) - result.add(summary._replace(tag=new_tag)) - return result - - def test_TensorBoard_invalid_argument(self): - with self.assertRaisesRegex(ValueError, "Unrecognized arguments"): - keras.callbacks.TensorBoard(wwrite_images=True) - - def test_TensorBoard_non_blocking(self): - model = keras.Sequential([keras.layers.Dense(1)]) - tb = keras.callbacks.TensorBoard(self.logdir) - self.assertTrue(tb._supports_tf_logs) - cb_list = keras.callbacks.CallbackList( - [tb], model=model, epochs=1, steps=100, verbose=0 - ) - - tensor = tf.convert_to_tensor(1.0) - - def mock_numpy(): - raise RuntimeError( - "If this error is seen, TensorBoard is causing a blocking " - "NumPy conversion." - ) - - with tf.compat.v1.test.mock.patch.object(tensor, "numpy", mock_numpy): - logs = {"metric": tensor} - - cb_list.on_train_begin(logs) - cb_list.on_epoch_begin(0, logs) - cb_list.on_train_batch_begin(0, logs) - cb_list.on_train_batch_end(0, logs) - cb_list.on_epoch_end(0, logs) - cb_list.on_train_end(logs) - - cb_list.on_test_begin(logs) - cb_list.on_test_batch_begin(0, logs) - cb_list.on_test_batch_end(0, logs) - cb_list.on_test_end(logs) - - cb_list.on_predict_begin(logs) - cb_list.on_predict_batch_begin(logs) - cb_list.on_predict_batch_end(logs) - cb_list.on_predict_end(logs) - - -# Note that this test specifies model_type explicitly. -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TestTensorBoardV2NonParameterizedTest(test_combinations.TestCase): - def setUp(self): - super(TestTensorBoardV2NonParameterizedTest, self).setUp() - self.logdir = os.path.join(self.get_temp_dir(), "tb") - self.train_dir = os.path.join(self.logdir, "train") - self.validation_dir = os.path.join(self.logdir, "validation") - - def _get_seq_model(self): - model = keras.models.Sequential( - [ - keras.layers.Conv2D(8, (3, 3), input_shape=(10, 10, 1)), - keras.layers.Flatten(), - keras.layers.Dense(1), - ] - ) - opt = gradient_descent.SGD(learning_rate=0.001) - model.compile(opt, "mse", run_eagerly=test_utils.should_run_eagerly()) - return model - - def _count_xplane_file(self, logdir): - profile_dir = os.path.join(logdir, "plugins", "profile") - count = 0 - for dirpath, dirnames, filenames in os.walk(profile_dir): - del dirpath # unused - del dirnames # unused - for filename in filenames: - if filename.endswith(".xplane.pb"): - count += 1 - return count - - def fitModelAndAssertKerasModelWritten(self, model): - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard( - self.logdir, write_graph=True, profile_batch=0 - ) - model.fit( - x, - y, - batch_size=2, - epochs=3, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - summary_file = list_summaries(self.logdir) - self.assertEqual( - summary_file.tensors, - { - _ObservedSummary(logdir=self.train_dir, tag="keras"), - }, - ) - if not model.run_eagerly: - # There should be one train graph - self.assertLen(summary_file.graph_defs, 1) - for graph_def in summary_file.graph_defs: - graph_def_str = str(graph_def) - - # All the model layers should appear in the graphs - for layer in model.layers: - if "input" not in layer.name: - self.assertIn(layer.name, graph_def_str) - - def test_TensorBoard_writeSequentialModel_noInputShape(self): - model = keras.models.Sequential( - [ - keras.layers.Conv2D(8, (3, 3)), - keras.layers.Flatten(), - keras.layers.Dense(1), - ] - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - self.fitModelAndAssertKerasModelWritten(model) - - def test_TensorBoard_writeSequentialModel_withInputShape(self): - model = keras.models.Sequential( - [ - keras.layers.Conv2D(8, (3, 3), input_shape=(10, 10, 1)), - keras.layers.Flatten(), - keras.layers.Dense(1), - ] - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - self.fitModelAndAssertKerasModelWritten(model) - - def test_TensorBoard_writeModel(self): - inputs = keras.layers.Input([10, 10, 1]) - x = keras.layers.Conv2D(8, (3, 3), activation="relu")(inputs) - x = keras.layers.Flatten()(x) - x = keras.layers.Dense(1)(x) - model = keras.models.Model(inputs=inputs, outputs=[x]) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - self.fitModelAndAssertKerasModelWritten(model) - - def test_TensorBoard_autoTrace(self): - model = self._get_seq_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard( - self.logdir, histogram_freq=1, profile_batch=1, write_graph=False - ) - - model.fit( - x, - y, - batch_size=2, - epochs=2, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - summary_file = list_summaries(self.logdir) - - self.assertEqual( - summary_file.tensors, - { - _ObservedSummary(logdir=self.train_dir, tag="batch_1"), - }, - ) - self.assertEqual(1, self._count_xplane_file(logdir=self.logdir)) - - def test_TensorBoard_autoTrace_outerProfiler(self): - """Runs a profiler session that interferes with the callback's one. - - The callback will not generate a profile but execution will proceed - without crashing due to unhandled exceptions. - """ - tf.profiler.experimental.start(logdir="") - model = self._get_seq_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard( - self.logdir, histogram_freq=1, profile_batch=1, write_graph=False - ) - - model.fit( - x, - y, - batch_size=2, - epochs=2, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - summary_file = list_summaries(self.logdir) - tf.profiler.experimental.stop(save=False) - - self.assertEqual( - summary_file.tensors, - { - _ObservedSummary(logdir=self.train_dir, tag="batch_1"), - }, - ) - self.assertEqual(0, self._count_xplane_file(logdir=self.train_dir)) - - def test_TensorBoard_autoTrace_tagNameWithBatchNum(self): - model = self._get_seq_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard( - self.logdir, histogram_freq=1, profile_batch=2, write_graph=False - ) - - model.fit( - x, - y, - batch_size=2, - epochs=2, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - summary_file = list_summaries(self.logdir) - - self.assertEqual( - summary_file.tensors, - { - _ObservedSummary(logdir=self.train_dir, tag="batch_2"), - }, - ) - self.assertEqual(1, self._count_xplane_file(logdir=self.logdir)) - - def test_TensorBoard_autoTrace_profileBatchRangeSingle(self): - model = self._get_seq_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard( - self.logdir, - histogram_freq=1, - profile_batch="2,2", - write_graph=False, - ) - - model.fit( - x, - y, - batch_size=3, - epochs=2, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - summary_file = list_summaries(self.logdir) - - self.assertEqual( - summary_file.tensors, - { - # Trace will be logged once at the batch it stops profiling. - _ObservedSummary(logdir=self.train_dir, tag="batch_2"), - }, - ) - self.assertEqual(1, self._count_xplane_file(logdir=self.logdir)) - - def test_TensorBoard_autoTrace_profileBatchRangeTwice(self): - model = self._get_seq_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard( - self.logdir, - histogram_freq=1, - profile_batch="10,10", - write_graph=False, - ) - - model.fit( - x, - y, - batch_size=3, - epochs=10, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - - time.sleep(1) # Avoids the second profile over-writing the first. - - model.fit( - x, - y, - batch_size=3, - epochs=10, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - self.assertEqual(2, self._count_xplane_file(logdir=self.logdir)) - - # Test case that replicates a GitHub issue. - # https://github.com/tensorflow/tensorflow/issues/37543 - def test_TensorBoard_autoTrace_profileTwiceGraphMode(self): - tf.compat.v1.disable_eager_execution() - inp = keras.Input((1,)) - out = keras.layers.Dense(units=1)(inp) - model = keras.Model(inp, out) - - model.compile(gradient_descent.SGD(1), "mse") - - logdir = os.path.join(self.get_temp_dir(), "tb1") - model.fit( - np.zeros((64, 1)), - np.zeros((64, 1)), - batch_size=32, - callbacks=[keras.callbacks.TensorBoard(logdir, profile_batch=1)], - ) - # Verifies trace exists in the first logdir. - self.assertEqual(1, self._count_xplane_file(logdir=logdir)) - logdir = os.path.join(self.get_temp_dir(), "tb2") - model.fit( - np.zeros((64, 1)), - np.zeros((64, 1)), - batch_size=32, - callbacks=[keras.callbacks.TensorBoard(logdir, profile_batch=2)], - ) - # Verifies trace exists in the second logdir. - self.assertEqual(1, self._count_xplane_file(logdir=logdir)) - - def test_TensorBoard_autoTrace_profileBatchRange(self): - model = self._get_seq_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard( - self.logdir, - histogram_freq=1, - profile_batch="1,3", - write_graph=False, - ) - - model.fit( - x, - y, - batch_size=4, - epochs=2, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - summary_file = list_summaries(self.logdir) - - self.assertEqual( - summary_file.tensors, - { - # Trace will be logged once at the batch it stops profiling. - _ObservedSummary(logdir=self.train_dir, tag="batch_3"), - }, - ) - self.assertEqual(1, self._count_xplane_file(logdir=self.logdir)) - - def test_TensorBoard_autoTrace_profileInvalidBatchRange(self): - with self.assertRaises(ValueError): - keras.callbacks.TensorBoard( - self.logdir, - histogram_freq=1, - profile_batch="-1,3", - write_graph=False, - ) - - with self.assertRaises(ValueError): - keras.callbacks.TensorBoard( - self.logdir, - histogram_freq=1, - profile_batch="1,None", - write_graph=False, - ) - - with self.assertRaises(ValueError): - keras.callbacks.TensorBoard( - self.logdir, - histogram_freq=1, - profile_batch="6,5", - write_graph=False, - ) - - with self.assertRaises(ValueError): - keras.callbacks.TensorBoard( - self.logdir, - histogram_freq=1, - profile_batch=-1, - write_graph=False, - ) - - def test_TensorBoard_autoTrace_profile_batch_largerThanBatchCount(self): - model = self._get_seq_model() - x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) - tb_cbk = keras.callbacks.TensorBoard( - self.logdir, - histogram_freq=1, - profile_batch=10000, - write_graph=False, - ) - - model.fit( - x, - y, - batch_size=2, - epochs=2, - validation_data=(x, y), - callbacks=[tb_cbk], - ) - summary_file = list_summaries(self.logdir) - - # Enabled trace only on the 10000th batch, thus it should be empty. - self.assertEmpty(summary_file.tensors) - self.assertEqual(0, self._count_xplane_file(logdir=self.train_dir)) - - -class MostRecentlyModifiedFileMatchingPatternTest(tf.test.TestCase): - def test_get_most_recently_modified_file_matching_pattern(self): - file_pattern = "f.batch{batch:02d}epoch{epoch:02d}.h5" - test_dir = self.get_temp_dir() - path_pattern = os.path.join(test_dir, file_pattern) - file_paths = [ - os.path.join(test_dir, file_name) - for file_name in [ - "f.batch03epoch02.h5", - "f.batch02epoch02.h5", - "f.batch01epoch01.h5", - ] - ] - for file_path in file_paths: - with open(file_path, "w") as f: - # Ensure there are some intervals between file creation. - time.sleep(2) - f.write("foo bar") - # Ensure the files have been actually written. - self.assertEqual( - set( - [ - os.path.join(test_dir, file_name) - for file_name in os.listdir(test_dir) - ] - ), - set(file_paths), - ) - self.assertEqual( - keras.callbacks.ModelCheckpoint( - None - )._get_most_recently_modified_file_matching_pattern(path_pattern), - file_paths[-1], - ) - - def test_some_file_not_matching_pattern(self): - file_pattern = "f.batch{batch:02d}epoch{epoch:02d}.h5" - test_dir = self.get_temp_dir() - path_pattern = os.path.join(test_dir, file_pattern) - file_paths = [ - os.path.join(test_dir, file_name) - for file_name in [ - "f.batch03epoch02.h5", - "f.batch02epoch02.h5", - "f.baatch01epoch01.h5", - ] - ] - for file_path in file_paths: - with open(file_path, "w") as f: - # Ensure there are some intervals between file creation. - time.sleep(2) - f.write("foo bar") - self.assertEqual( - keras.callbacks.ModelCheckpoint( - None - )._get_most_recently_modified_file_matching_pattern(path_pattern), - file_paths[-2], - ) - - def test_get_same_file_if_file_name_equals_pattern(self): - file_name = "f.batch02.h5" - test_dir = self.get_temp_dir() - file_path = os.path.join(test_dir, file_name) - with open(file_path, "w") as f: - f.write("foo bar") - self.assertEqual( - os.path.join(test_dir, os.listdir(test_dir)[0]), file_path - ) - self.assertEqual( - keras.callbacks.ModelCheckpoint( - None - )._get_most_recently_modified_file_matching_pattern(file_path), - file_path, - ) - - def test_get_none_if_file_does_not_exist(self): - file_name = "f.batch02.h5" - test_dir = self.get_temp_dir() - file_path = os.path.join(test_dir, file_name) - self.assertEmpty(os.listdir(test_dir)) - self.assertEqual( - keras.callbacks.ModelCheckpoint( - None - )._get_most_recently_modified_file_matching_pattern(file_path), - None, - ) - - def test_using_checkpoint_management_latest_checkpoint(self): - file_pattern = "f.batch{batch:02d}epoch{epoch:02d}" - ckpt_file_name = "f.batchXepochY" - test_dir = self.get_temp_dir() - path_pattern = os.path.join(test_dir, file_pattern) - ckpt_file_path = os.path.join(test_dir, ckpt_file_name) - with open(ckpt_file_path, "w") as f: - f.write("dummy ckpt") - tf.__internal__.train.update_checkpoint_state(test_dir, ckpt_file_path) - - file_paths = [ - os.path.join(test_dir, file_name) - for file_name in ["f.batch03epoch02", "f.batch02epoch02"] - ] - for file_path in file_paths: - with open(file_path, "w") as f: - f.write("foo bar") - - # The result returned from checkpoint_management.latest_checkpoint takes - # priority, so even if it was written earlier, we should still return - # that. - self.assertEqual( - keras.callbacks.ModelCheckpoint( - None - )._get_most_recently_modified_file_matching_pattern(path_pattern), - ckpt_file_path, - ) - - -class SummaryOpsTest(tf.test.TestCase): - def tearDown(self): - super(SummaryOpsTest, self).tearDown() - tf.summary.trace_off() - - def keras_model(self, *args, **kwargs): - logdir = self.get_temp_dir() - writer = tf.summary.create_file_writer(logdir) - with writer.as_default(): - keras.callbacks.keras_model_summary(*args, **kwargs) - writer.close() - events = events_from_logdir(logdir) - # The first event contains no summary values. The written content goes - # to the second event. - return events[1] - - @test_utils.run_v2_only - def testKerasModel(self): - model = keras.Sequential( - [Dense(10, input_shape=(100,)), Activation("relu", name="my_relu")] - ) - event = self.keras_model(name="my_name", data=model, step=1) - first_val = event.summary.value[0] - self.assertEqual( - model.to_json(), first_val.tensor.string_val[0].decode() - ) - - @test_utils.run_v2_only - def testKerasModel_usesDefaultStep(self): - model = keras.Sequential( - [Dense(10, input_shape=(100,)), Activation("relu", name="my_relu")] - ) - try: - tf.summary.experimental.set_step(42) - event = self.keras_model(name="my_name", data=model) - self.assertEqual(42, event.step) - finally: - # Reset to default state for other tests. - tf.summary.experimental.set_step(None) - - @test_utils.run_v2_only - def testKerasModel_subclass(self): - class SimpleSubclass(keras.Model): - def __init__(self): - super().__init__(name="subclass") - self.dense = Dense(10, input_shape=(100,)) - self.activation = Activation("relu", name="my_relu") - - def call(self, inputs): - x = self.dense(inputs) - return self.activation(x) - - # Intentionally erroring out at json serialization to test the - # warning. - def get_config(self): - raise NotImplementedError - - model = SimpleSubclass() - with tf.compat.v1.test.mock.patch.object( - logging, "warning" - ) as mock_log: - self.assertFalse( - keras.callbacks.keras_model_summary( - name="my_name", data=model, step=1 - ) - ) - self.assertRegex( - str(mock_log.call_args), "Model failed to serialize as JSON." - ) - - @test_utils.run_v2_only - def testKerasModel_otherExceptions(self): - model = keras.Sequential() - - with tf.compat.v1.test.mock.patch.object( - model, "to_json" - ) as mock_to_json: - with tf.compat.v1.test.mock.patch.object( - logging, "warning" - ) as mock_log: - mock_to_json.side_effect = Exception("oops") - self.assertFalse( - keras.callbacks.keras_model_summary( - name="my_name", data=model, step=1 - ) - ) - self.assertRegex( - str(mock_log.call_args), - "Model failed to serialize as JSON. Ignoring", - ) - - -def events_from_file(filepath): - """Returns all events in a single event file. - - Args: - filepath: Path to the event file. - - Returns: - A list of all tf.Event protos in the event file. - """ - result = [] - raw_dataset = tf.data.TFRecordDataset([filepath]) - for raw_record in raw_dataset.take(10): - event = tf.compat.v1.Event() - event.ParseFromString(raw_record.numpy()) - result.append(event) - return result - - -def events_from_logdir(logdir): - """Returns all events in the single eventfile in logdir. - - Args: - logdir: The directory in which the single event file is sought. - - Returns: - A list of all tf.Event protos from the single event file. - - Raises: - AssertionError: If logdir does not contain exactly one file. - """ - assert tf.compat.v1.gfile.Exists(logdir) - files = tf.compat.v1.gfile.ListDirectory(logdir) - assert len(files) == 1, f"Found not exactly one file in logdir: {files}" - return events_from_file(os.path.join(logdir, files[0])) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/callbacks_v1.py b/keras/callbacks_v1.py deleted file mode 100644 index 013b7bcadef..00000000000 --- a/keras/callbacks_v1.py +++ /dev/null @@ -1,528 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""Callbacks: utilities called at certain points during model training.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import callbacks - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - - -@keras_export(v1=["keras.callbacks.TensorBoard"]) -class TensorBoard(callbacks.TensorBoard): - - """Enable visualizations for TensorBoard. - - TensorBoard is a visualization tool provided with TensorFlow. - - This callback logs events for TensorBoard, including: - * Metrics summary plots - * Training graph visualization - * Activation histograms - * Sampled profiling - - If you have installed TensorFlow with pip, you should be able - to launch TensorBoard from the command line: - - ```sh - tensorboard --logdir=path_to_your_logs - ``` - - You can find more information about TensorBoard - [here](https://www.tensorflow.org/get_started/summaries_and_tensorboard). - - Args: - log_dir: the path of the directory where to save the log files to be - parsed by TensorBoard. - histogram_freq: frequency (in epochs) at which to compute activation and - weight histograms for the layers of the model. If set to 0, histograms - won't be computed. Validation data (or split) must be specified for - histogram visualizations. - write_graph: whether to visualize the graph in TensorBoard. The log file - can become quite large when write_graph is set to True. - write_grads: whether to visualize gradient histograms in TensorBoard. - `histogram_freq` must be greater than 0. - batch_size: size of batch of inputs to feed to the network for - histograms computation. - write_images: whether to write model weights to visualize as image in - TensorBoard. - embeddings_freq: frequency (in epochs) at which selected embedding - layers will be saved. If set to 0, embeddings won't be computed. Data - to be visualized in TensorBoard's Embedding tab must be passed as - `embeddings_data`. - embeddings_layer_names: a list of names of layers to keep eye on. If - None or empty list all the embedding layer will be watched. - embeddings_metadata: a dictionary which maps layer name to a file name - in which metadata for this embedding layer is saved. - [Here are details]( - https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional) - about metadata files format. In case if the same metadata file is - used for all embedding layers, string can be passed. - embeddings_data: data to be embedded at layers specified in - `embeddings_layer_names`. Numpy array (if the model has a single - input) or list of Numpy arrays (if the model has multiple inputs). - Learn more about embeddings [in this guide]( - https://www.tensorflow.org/programmers_guide/embedding). - update_freq: `'batch'` or `'epoch'` or integer. When using `'batch'`, - writes the losses and metrics to TensorBoard after each batch. The - same applies for `'epoch'`. If using an integer, let's say `1000`, the - callback will write the metrics and losses to TensorBoard every 1000 - samples. Note that writing too frequently to TensorBoard can slow down - your training. - profile_batch: Profile the batch to sample compute characteristics. By - default, it will profile the second batch. Set profile_batch=0 to - disable profiling. - - Raises: - ValueError: If histogram_freq is set and no validation data is provided. - - @compatibility(eager) - Using the `TensorBoard` callback will work when eager execution is enabled, - with the restriction that outputting histogram summaries of weights and - gradients is not supported. Consequently, `histogram_freq` will be ignored. - @end_compatibility - """ - - def __init__( - self, - log_dir="./logs", - histogram_freq=0, - batch_size=32, - write_graph=True, - write_grads=False, - write_images=False, - embeddings_freq=0, - embeddings_layer_names=None, - embeddings_metadata=None, - embeddings_data=None, - update_freq="epoch", - profile_batch=2, - ): - # Don't call super's init since it is an eager-only version. - callbacks.Callback.__init__(self) - self.log_dir = log_dir - self.histogram_freq = histogram_freq - if self.histogram_freq and tf.executing_eagerly(): - logging.warning( - UserWarning( - "Weight and gradient histograms not supported for eager" - "execution, setting `histogram_freq` to `0`." - ) - ) - self.histogram_freq = 0 - self.merged = None - self.write_graph = write_graph - self.write_grads = write_grads - self.write_images = write_images - self.batch_size = batch_size - self._current_batch = 0 - self._total_batches_seen = 0 - self._total_val_batches_seen = 0 - self.embeddings_freq = embeddings_freq - self.embeddings_layer_names = embeddings_layer_names - self.embeddings_metadata = embeddings_metadata - self.embeddings_data = embeddings_data - if update_freq == "batch": - self.update_freq = 1 - else: - self.update_freq = update_freq - self._samples_seen = 0 - self._samples_seen_at_last_write = 0 - # TODO(fishx): Add a link to the full profiler tutorial. - self._profile_batch = profile_batch - # True when the profiler was successfully started by this callback. - # We track the status here to make sure callbacks do not interfere with - # each other. The callback will only stop the profiler it started. - self._profiler_started = False - - # TensorBoard should only write summaries on the chief when in a - # Multi-Worker setting. - self._chief_worker_only = True - - def _init_writer(self, model): - """Sets file writer.""" - if tf.executing_eagerly(): - self.writer = tf.summary.create_file_writer(self.log_dir) - if not model.run_eagerly and self.write_graph: - with self.writer.as_default(): - tf.summary.graph(backend.get_graph()) - elif self.write_graph: - self.writer = tf.compat.v1.summary.FileWriter( - self.log_dir, backend.get_graph() - ) - else: - self.writer = tf.compat.v1.summary.FileWriter(self.log_dir) - - def _make_histogram_ops(self, model): - """Defines histogram ops when histogram_freq > 0.""" - # only make histogram summary op if it hasn't already been made - if self.histogram_freq and self.merged is None: - for layer in self.model.layers: - for weight in layer.weights: - mapped_weight_name = weight.name.replace(":", "_") - tf.compat.v1.summary.histogram(mapped_weight_name, weight) - if self.write_images: - w_img = tf.compat.v1.squeeze(weight) - shape = tuple(w_img.shape) - if len(shape) == 2: # dense layer kernel case - if shape[0] > shape[1]: - w_img = tf.compat.v1.transpose(w_img) - shape = tuple(w_img.shape) - w_img = tf.reshape( - w_img, [1, shape[0], shape[1], 1] - ) - elif len(shape) == 3: # convnet case - if backend.image_data_format() == "channels_last": - # switch to channels_first to display - # every kernel as a separate image - w_img = tf.compat.v1.transpose( - w_img, perm=[2, 0, 1] - ) - shape = tuple(w_img.shape) - w_img = tf.reshape( - w_img, [shape[0], shape[1], shape[2], 1] - ) - elif len(shape) == 1: # bias case - w_img = tf.reshape(w_img, [1, shape[0], 1, 1]) - else: - # not possible to handle 3D convnets etc. - continue - - shape = tuple(w_img.shape) - assert len(shape) == 4 and shape[-1] in [1, 3, 4] - tf.compat.v1.summary.image(mapped_weight_name, w_img) - - if self.write_grads: - for weight in layer.trainable_weights: - mapped_weight_name = weight.name.replace(":", "_") - grads = model.optimizer.get_gradients( - model.total_loss, weight - ) - - def is_indexed_slices(grad): - return type(grad).__name__ == "IndexedSlices" - - grads = [ - grad.values if is_indexed_slices(grad) else grad - for grad in grads - ] - tf.compat.v1.summary.histogram( - f"{mapped_weight_name}_grad", grads - ) - - if hasattr(layer, "output"): - if isinstance(layer.output, list): - for i, output in enumerate(layer.output): - tf.compat.v1.summary.histogram( - f"{layer.name}_out_{i}", output - ) - else: - tf.compat.v1.summary.histogram( - f"{layer.name}_out", layer.output - ) - - def set_model(self, model): - """Sets Keras model and creates summary ops.""" - - self.model = model - self._init_writer(model) - # histogram summaries only enabled in graph mode - if not tf.executing_eagerly(): - self._make_histogram_ops(model) - self.merged = tf.compat.v1.summary.merge_all() - - # If both embedding_freq and embeddings_data are available, we will - # visualize embeddings. - if self.embeddings_freq and self.embeddings_data is not None: - # Avoid circular dependency. - from keras.engine import ( - training_utils_v1, - ) - - self.embeddings_data = training_utils_v1.standardize_input_data( - self.embeddings_data, model.input_names - ) - - # If embedding_layer_names are not provided, get all of the - # embedding layers from the model. - embeddings_layer_names = self.embeddings_layer_names - if not embeddings_layer_names: - embeddings_layer_names = [ - layer.name - for layer in self.model.layers - if type(layer).__name__ == "Embedding" - ] - - self.assign_embeddings = [] - embeddings_vars = {} - - self.batch_id = batch_id = tf.compat.v1.placeholder(tf.int32) - self.step = step = tf.compat.v1.placeholder(tf.int32) - - for layer in self.model.layers: - if layer.name in embeddings_layer_names: - embedding_input = self.model.get_layer(layer.name).output - embedding_size = np.prod(embedding_input.shape[1:]) - embedding_input = tf.reshape( - embedding_input, (step, int(embedding_size)) - ) - shape = ( - self.embeddings_data[0].shape[0], - int(embedding_size), - ) - embedding = tf.Variable( - tf.zeros(shape), name=layer.name + "_embedding" - ) - embeddings_vars[layer.name] = embedding - batch = tf.compat.v1.assign( - embedding[batch_id : batch_id + step], embedding_input - ) - self.assign_embeddings.append(batch) - - self.saver = tf.compat.v1.train.Saver( - list(embeddings_vars.values()) - ) - - # Create embeddings_metadata dictionary - if isinstance(self.embeddings_metadata, str): - embeddings_metadata = { - layer_name: self.embeddings_metadata - for layer_name in embeddings_vars.keys() - } - else: - # If embedding_metadata is already a dictionary - embeddings_metadata = self.embeddings_metadata - - try: - # isort: off - from tensorboard.plugins import projector - except ImportError: - raise ImportError( - "Failed to import TensorBoard. Please make sure that " - 'TensorBoard integration is complete."' - ) - - # TODO(psv): Add integration tests to test embedding visualization - # with TensorBoard callback. We are unable to write a unit test for - # this because TensorBoard dependency assumes TensorFlow package is - # installed. - config = projector.ProjectorConfig() - for layer_name, tensor in embeddings_vars.items(): - embedding = config.embeddings.add() - embedding.tensor_name = tensor.name - - if ( - embeddings_metadata is not None - and layer_name in embeddings_metadata - ): - embedding.metadata_path = embeddings_metadata[layer_name] - - projector.visualize_embeddings(self.writer, config) - - def _fetch_callback(self, summary): - self.writer.add_summary(summary, self._total_val_batches_seen) - self._total_val_batches_seen += 1 - - def _write_custom_summaries(self, step, logs=None): - """Writes metrics out as custom scalar summaries. - - Args: - step: the global step to use for TensorBoard. - logs: dict. Keys are scalar summary names, values are - NumPy scalars. - - """ - logs = logs or {} - if tf.executing_eagerly(): - # use v2 summary ops - with self.writer.as_default(), tf.summary.record_if(True): - for name, value in logs.items(): - if isinstance(value, np.ndarray): - value = value.item() - tf.summary.scalar(name, value, step=step) - else: - # use FileWriter from v1 summary - for name, value in logs.items(): - if isinstance(value, np.ndarray): - value = value.item() - summary = tf.compat.v1.Summary() - summary_value = summary.value.add() - summary_value.simple_value = value - summary_value.tag = name - self.writer.add_summary(summary, step) - self.writer.flush() - - def on_train_batch_begin(self, batch, logs=None): - if self._total_batches_seen == self._profile_batch - 1: - self._start_profiler() - - def on_train_batch_end(self, batch, logs=None): - return self.on_batch_end(batch, logs) - - def on_test_begin(self, logs=None): - pass - - def on_test_end(self, logs=None): - pass - - def on_batch_end(self, batch, logs=None): - """Writes scalar summaries for metrics on every training batch. - - Performs profiling if current batch is in profiler_batches. - """ - # Don't output batch_size and batch number as TensorBoard summaries - logs = logs or {} - self._samples_seen += logs.get("size", 1) - samples_seen_since = ( - self._samples_seen - self._samples_seen_at_last_write - ) - if ( - self.update_freq != "epoch" - and samples_seen_since >= self.update_freq - ): - batch_logs = { - ("batch_" + k): v - for k, v in logs.items() - if k not in ["batch", "size", "num_steps"] - } - self._write_custom_summaries(self._total_batches_seen, batch_logs) - self._samples_seen_at_last_write = self._samples_seen - self._total_batches_seen += 1 - self._stop_profiler() - - def on_train_begin(self, logs=None): - pass - - def on_epoch_begin(self, epoch, logs=None): - """Add histogram op to Model eval_function callbacks, reset batch - count.""" - - # check if histogram summary should be run for this epoch - if self.histogram_freq and epoch % self.histogram_freq == 0: - - # add the histogram summary op if it should run this epoch - self.model._make_test_function() - if self.merged not in self.model.test_function.fetches: - self.model.test_function.fetches.append(self.merged) - self.model.test_function.fetch_callbacks[ - self.merged - ] = self._fetch_callback - - def on_epoch_end(self, epoch, logs=None): - """Checks if summary ops should run next epoch, logs scalar - summaries.""" - - # don't output batch_size and - # batch number as TensorBoard summaries - logs = { - ("epoch_" + k): v - for k, v in logs.items() - if k not in ["batch", "size", "num_steps"] - } - if self.update_freq == "epoch": - step = epoch - else: - step = self._samples_seen - self._write_custom_summaries(step, logs) - - # pop the histogram summary op after each epoch - if self.histogram_freq: - - if self.merged in self.model.test_function.fetches: - self.model.test_function.fetches.remove(self.merged) - if self.merged in self.model.test_function.fetch_callbacks: - self.model.test_function.fetch_callbacks.pop(self.merged) - - if self.embeddings_data is None and self.embeddings_freq: - raise ValueError( - "To visualize embeddings, embeddings_data must be provided." - ) - - if self.embeddings_freq and self.embeddings_data is not None: - if epoch % self.embeddings_freq == 0: - # We need a second forward-pass here because we're passing - # the `embeddings_data` explicitly. This design allows to pass - # arbitrary data as `embeddings_data` and results from the fact - # that we need to know the size of the `tf.Variable`s which - # hold the embeddings in `set_model`. At this point, however, - # the `validation_data` is not yet set. - - embeddings_data = self.embeddings_data - n_samples = embeddings_data[0].shape[0] - i = 0 - sess = backend.get_session() - while i < n_samples: - step = min(self.batch_size, n_samples - i) - batch = slice(i, i + step) - - if isinstance(self.model.input, list): - feed_dict = { - model_input: embeddings_data[idx][batch] - for idx, model_input in enumerate(self.model.input) - } - else: - feed_dict = { - self.model.input: embeddings_data[0][batch] - } - - feed_dict.update({self.batch_id: i, self.step: step}) - - if not isinstance(backend.learning_phase(), int): - feed_dict[backend.learning_phase()] = False - - sess.run(self.assign_embeddings, feed_dict=feed_dict) - self.saver.save( - sess, - os.path.join(self.log_dir, "keras_embedding.ckpt"), - epoch, - ) - - i += self.batch_size - - def on_train_end(self, logs=None): - self._stop_profiler() - self.writer.close() - - def _start_profiler(self): - """Starts the profiler if currently inactive.""" - if self._profiler_started: - return - try: - tf.profiler.experimental.start(logdir=self.log_dir) - self._profiler_started = True - except tf.errors.AlreadyExistsError as e: - # Profiler errors should not be fatal. - logging.error("Failed to start profiler: %s", e.message) - - def _stop_profiler(self): - """Stops the profiler if currently active.""" - if not self._profiler_started: - return - try: - tf.profiler.experimental.stop() - except tf.errors.UnavailableError as e: - # Profiler errors should not be fatal. - logging.error("Failed to stop profiler: %s", e.message) - finally: - self._profiler_started = False diff --git a/keras/callbacks_v1_test.py b/keras/callbacks_v1_test.py deleted file mode 100644 index b46c6e9f185..00000000000 --- a/keras/callbacks_v1_test.py +++ /dev/null @@ -1,621 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras callbacks.""" - -import os -import shutil -import tempfile - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import callbacks -from keras import callbacks_v1 -from keras import layers -from keras.engine import input_layer -from keras.engine import sequential -from keras.engine import training -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import np_utils - -TRAIN_SAMPLES = 10 -TEST_SAMPLES = 10 -NUM_CLASSES = 2 -INPUT_DIM = 3 -NUM_HIDDEN = 5 -BATCH_SIZE = 5 - - -class TestTensorBoardV1(tf.test.TestCase, parameterized.TestCase): - def test_TensorBoard(self): - np.random.seed(1337) - - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - - def data_generator(train): - if train: - max_batch_index = len(x_train) // BATCH_SIZE - else: - max_batch_index = len(x_test) // BATCH_SIZE - i = 0 - while 1: - if train: - yield ( - x_train[i * BATCH_SIZE : (i + 1) * BATCH_SIZE], - y_train[i * BATCH_SIZE : (i + 1) * BATCH_SIZE], - ) - else: - yield ( - x_test[i * BATCH_SIZE : (i + 1) * BATCH_SIZE], - y_test[i * BATCH_SIZE : (i + 1) * BATCH_SIZE], - ) - i += 1 - i %= max_batch_index - - # case: Sequential - with tf.Graph().as_default(), self.cached_session(): - model = sequential.Sequential() - model.add( - layers.Dense(NUM_HIDDEN, input_dim=INPUT_DIM, activation="relu") - ) - # non_trainable_weights: moving_variance, moving_mean - model.add(layers.BatchNormalization()) - model.add(layers.Dense(NUM_CLASSES, activation="softmax")) - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - metrics=["accuracy"], - ) - tsb = callbacks_v1.TensorBoard( - log_dir=temp_dir, - histogram_freq=1, - write_images=True, - write_grads=True, - batch_size=5, - ) - cbks = [tsb] - - # fit with validation data - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=3, - verbose=0, - ) - - # fit with validation data and accuracy - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=2, - verbose=0, - ) - - # fit generator with validation data - model.fit_generator( - data_generator(True), - len(x_train), - epochs=2, - validation_data=(x_test, y_test), - callbacks=cbks, - verbose=0, - ) - - # fit generator without validation data - # histogram_freq must be zero - tsb.histogram_freq = 0 - model.fit_generator( - data_generator(True), - len(x_train), - epochs=2, - callbacks=cbks, - verbose=0, - ) - - # fit generator with validation data and accuracy - tsb.histogram_freq = 1 - model.fit_generator( - data_generator(True), - len(x_train), - epochs=2, - validation_data=(x_test, y_test), - callbacks=cbks, - verbose=0, - ) - - # fit generator without validation data and accuracy - tsb.histogram_freq = 0 - model.fit_generator( - data_generator(True), len(x_train), epochs=2, callbacks=cbks - ) - assert os.path.exists(temp_dir) - - def test_TensorBoard_multi_input_output(self): - np.random.seed(1337) - tmpdir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, tmpdir, ignore_errors=True) - - with tf.Graph().as_default(), self.cached_session(): - filepath = os.path.join(tmpdir, "logs") - - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - - def data_generator(train): - if train: - max_batch_index = len(x_train) // BATCH_SIZE - else: - max_batch_index = len(x_test) // BATCH_SIZE - i = 0 - while 1: - if train: - # simulate multi-input/output models - yield ( - [x_train[i * BATCH_SIZE : (i + 1) * BATCH_SIZE]] - * 2, - [y_train[i * BATCH_SIZE : (i + 1) * BATCH_SIZE]] - * 2, - ) - else: - yield ( - [x_test[i * BATCH_SIZE : (i + 1) * BATCH_SIZE]] * 2, - [y_test[i * BATCH_SIZE : (i + 1) * BATCH_SIZE]] * 2, - ) - i += 1 - i %= max_batch_index - - inp1 = input_layer.Input((INPUT_DIM,)) - inp2 = input_layer.Input((INPUT_DIM,)) - inp = layers.add([inp1, inp2]) - hidden = layers.Dense(2, activation="relu")(inp) - hidden = layers.Dropout(0.1)(hidden) - output1 = layers.Dense(NUM_CLASSES, activation="softmax")(hidden) - output2 = layers.Dense(NUM_CLASSES, activation="softmax")(hidden) - model = training.Model([inp1, inp2], [output1, output2]) - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - metrics=["accuracy"], - ) - - # we must generate new callbacks for each test, as they aren't - # stateless - def callbacks_factory(histogram_freq): - return [ - callbacks_v1.TensorBoard( - log_dir=filepath, - histogram_freq=histogram_freq, - write_images=True, - write_grads=True, - batch_size=5, - ) - ] - - # fit without validation data - model.fit( - [x_train] * 2, - [y_train] * 2, - batch_size=BATCH_SIZE, - callbacks=callbacks_factory(histogram_freq=0), - epochs=3, - ) - - # fit with validation data and accuracy - model.fit( - [x_train] * 2, - [y_train] * 2, - batch_size=BATCH_SIZE, - validation_data=([x_test] * 2, [y_test] * 2), - callbacks=callbacks_factory(histogram_freq=1), - epochs=2, - ) - - # fit generator without validation data - model.fit_generator( - data_generator(True), - len(x_train), - epochs=2, - callbacks=callbacks_factory(histogram_freq=0), - ) - - # fit generator with validation data and accuracy - model.fit_generator( - data_generator(True), - len(x_train), - epochs=2, - validation_data=([x_test] * 2, [y_test] * 2), - callbacks=callbacks_factory(histogram_freq=1), - ) - assert os.path.isdir(filepath) - - def test_Tensorboard_histogram_summaries_in_test_function(self): - class FileWriterStub: - def __init__(self, logdir, graph=None): - self.logdir = logdir - self.graph = graph - self.steps_seen = [] - - def add_summary(self, summary, global_step): - summary_obj = tf.compat.v1.Summary() - - # ensure a valid Summary proto is being sent - if isinstance(summary, bytes): - summary_obj.ParseFromString(summary) - else: - assert isinstance(summary, tf.compat.v1.Summary) - summary_obj = summary - - # keep track of steps seen for the merged_summary op, - # which contains the histogram summaries - if len(summary_obj.value) > 1: - self.steps_seen.append(global_step) - - def flush(self): - pass - - def close(self): - pass - - def _init_writer(obj, _): - obj.writer = FileWriterStub(obj.log_dir) - - np.random.seed(1337) - tmpdir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, tmpdir, ignore_errors=True) - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - - with tf.Graph().as_default(), self.cached_session(): - model = sequential.Sequential() - model.add( - layers.Dense(NUM_HIDDEN, input_dim=INPUT_DIM, activation="relu") - ) - # non_trainable_weights: moving_variance, moving_mean - model.add(layers.BatchNormalization()) - model.add(layers.Dense(NUM_CLASSES, activation="softmax")) - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - metrics=["accuracy"], - ) - callbacks_v1.TensorBoard._init_writer = _init_writer - tsb = callbacks_v1.TensorBoard( - log_dir=tmpdir, - histogram_freq=1, - write_images=True, - write_grads=True, - batch_size=5, - ) - cbks = [tsb] - - # fit with validation data - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=3, - verbose=0, - ) - - self.assertAllEqual(tsb.writer.steps_seen, [0, 1, 2, 3, 4, 5]) - - def test_Tensorboard_histogram_summaries_with_generator(self): - np.random.seed(1337) - tmpdir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, tmpdir, ignore_errors=True) - - def generator(): - x = np.random.randn(10, 100).astype(np.float32) - y = np.random.randn(10, 10).astype(np.float32) - while True: - yield x, y - - with tf.Graph().as_default(), self.cached_session(): - model = test_utils.get_small_sequential_mlp( - num_hidden=10, num_classes=10, input_dim=100 - ) - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - metrics=["accuracy"], - ) - tsb = callbacks_v1.TensorBoard( - log_dir=tmpdir, - histogram_freq=1, - write_images=True, - write_grads=True, - batch_size=5, - ) - cbks = [tsb] - - # fit with validation generator - model.fit_generator( - generator(), - steps_per_epoch=2, - epochs=2, - validation_data=generator(), - validation_steps=2, - callbacks=cbks, - verbose=0, - ) - - with self.assertRaises(ValueError): - # fit with validation generator but no - # validation_steps - model.fit_generator( - generator(), - steps_per_epoch=2, - epochs=2, - validation_data=generator(), - callbacks=cbks, - verbose=0, - ) - - self.assertTrue(os.path.exists(tmpdir)) - - def test_TensorBoard_with_ReduceLROnPlateau(self): - with self.cached_session(): - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - - model = test_utils.get_small_sequential_mlp( - num_hidden=NUM_HIDDEN, - num_classes=NUM_CLASSES, - input_dim=INPUT_DIM, - ) - model.compile( - loss="binary_crossentropy", - optimizer="sgd", - metrics=["accuracy"], - ) - - cbks = [ - callbacks.ReduceLROnPlateau( - monitor="val_loss", factor=0.5, patience=4, verbose=1 - ), - callbacks_v1.TensorBoard(log_dir=temp_dir), - ] - - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=2, - verbose=0, - ) - - assert os.path.exists(temp_dir) - - def test_Tensorboard_batch_logging(self): - class FileWriterStub: - def __init__(self, logdir, graph=None): - self.logdir = logdir - self.graph = graph - self.batches_logged = [] - self.summary_values = [] - self.summary_tags = [] - - def add_summary(self, summary, step): - self.summary_values.append(summary.value[0].simple_value) - self.summary_tags.append(summary.value[0].tag) - self.batches_logged.append(step) - - def flush(self): - pass - - def close(self): - pass - - with tf.Graph().as_default(): - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - - tb_cbk = callbacks_v1.TensorBoard(temp_dir, update_freq="batch") - tb_cbk.writer = FileWriterStub(temp_dir) - - for batch in range(5): - tb_cbk.on_batch_end(batch, {"acc": batch}) - self.assertEqual(tb_cbk.writer.batches_logged, [0, 1, 2, 3, 4]) - self.assertEqual( - tb_cbk.writer.summary_values, [0.0, 1.0, 2.0, 3.0, 4.0] - ) - self.assertEqual(tb_cbk.writer.summary_tags, ["batch_acc"] * 5) - - def test_Tensorboard_epoch_and_batch_logging(self): - class FileWriterStub: - def __init__(self, logdir, graph=None): - self.logdir = logdir - self.graph = graph - - def add_summary(self, summary, step): - if "batch_" in summary.value[0].tag: - self.batch_summary = (step, summary) - elif "epoch_" in summary.value[0].tag: - self.epoch_summary = (step, summary) - - def flush(self): - pass - - def close(self): - pass - - with tf.Graph().as_default(): - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - - tb_cbk = callbacks_v1.TensorBoard(temp_dir, update_freq="batch") - tb_cbk.writer = FileWriterStub(temp_dir) - - tb_cbk.on_batch_end(0, {"acc": 5.0}) - tb_cbk.on_train_end() - batch_step, batch_summary = tb_cbk.writer.batch_summary - self.assertEqual(batch_step, 0) - self.assertEqual(batch_summary.value[0].simple_value, 5.0) - - tb_cbk = callbacks_v1.TensorBoard(temp_dir, update_freq="epoch") - tb_cbk.writer = FileWriterStub(temp_dir) - tb_cbk.on_epoch_end(0, {"acc": 10.0}) - tb_cbk.on_train_end() - epoch_step, epoch_summary = tb_cbk.writer.epoch_summary - self.assertEqual(epoch_step, 0) - self.assertEqual(epoch_summary.value[0].simple_value, 10.0) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_Tensorboard_eager(self): - temp_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - - model = test_utils.get_small_sequential_mlp( - num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM - ) - model.compile( - loss="binary_crossentropy", - optimizer=tf.compat.v1.train.AdamOptimizer(0.01), - metrics=["accuracy"], - ) - - cbks = [callbacks_v1.TensorBoard(log_dir=temp_dir)] - - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=cbks, - epochs=2, - verbose=0, - ) - - self.assertTrue(os.path.exists(temp_dir)) - - def test_TensorBoard_update_freq(self): - class FileWriterStub: - def __init__(self, logdir, graph=None): - self.logdir = logdir - self.graph = graph - self.batch_summaries = [] - self.epoch_summaries = [] - - def add_summary(self, summary, step): - if "batch_" in summary.value[0].tag: - self.batch_summaries.append((step, summary)) - elif "epoch_" in summary.value[0].tag: - self.epoch_summaries.append((step, summary)) - - def flush(self): - pass - - def close(self): - pass - - with tf.Graph().as_default(): - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - - # Epoch mode - tb_cbk = callbacks_v1.TensorBoard(temp_dir, update_freq="epoch") - tb_cbk.writer = FileWriterStub(temp_dir) - - tb_cbk.on_batch_end(0, {"acc": 5.0, "size": 1}) - self.assertEqual(tb_cbk.writer.batch_summaries, []) - tb_cbk.on_epoch_end(0, {"acc": 10.0, "size": 1}) - self.assertLen(tb_cbk.writer.epoch_summaries, 1) - tb_cbk.on_train_end() - - # Batch mode - tb_cbk = callbacks_v1.TensorBoard(temp_dir, update_freq="batch") - tb_cbk.writer = FileWriterStub(temp_dir) - - tb_cbk.on_batch_end(0, {"acc": 5.0, "size": 1}) - self.assertLen(tb_cbk.writer.batch_summaries, 1) - tb_cbk.on_batch_end(0, {"acc": 5.0, "size": 1}) - self.assertLen(tb_cbk.writer.batch_summaries, 2) - self.assertFalse(tb_cbk.writer.epoch_summaries) - tb_cbk.on_train_end() - - # Integer mode - tb_cbk = callbacks_v1.TensorBoard(temp_dir, update_freq=20) - tb_cbk.writer = FileWriterStub(temp_dir) - - tb_cbk.on_batch_end(0, {"acc": 5.0, "size": 10}) - self.assertFalse(tb_cbk.writer.batch_summaries) - tb_cbk.on_batch_end(0, {"acc": 5.0, "size": 10}) - self.assertLen(tb_cbk.writer.batch_summaries, 1) - tb_cbk.on_batch_end(0, {"acc": 5.0, "size": 10}) - self.assertLen(tb_cbk.writer.batch_summaries, 1) - tb_cbk.on_batch_end(0, {"acc": 5.0, "size": 10}) - self.assertLen(tb_cbk.writer.batch_summaries, 2) - tb_cbk.on_batch_end(0, {"acc": 10.0, "size": 10}) - self.assertLen(tb_cbk.writer.batch_summaries, 2) - self.assertFalse(tb_cbk.writer.epoch_summaries) - tb_cbk.on_train_end() - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/constraints.py b/keras/constraints.py deleted file mode 100644 index 30c23adf6d1..00000000000 --- a/keras/constraints.py +++ /dev/null @@ -1,398 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""Constraints: functions that impose constraints on weight values.""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.saving.legacy import serialization as legacy_serialization -from keras.saving.serialization_lib import deserialize_keras_object -from keras.saving.serialization_lib import serialize_keras_object - -# isort: off -from tensorflow.python.util.tf_export import keras_export -from tensorflow.tools.docs import doc_controls - - -@keras_export("keras.constraints.Constraint") -class Constraint: - """Base class for weight constraints. - - A `Constraint` instance works like a stateless function. - Users who subclass this - class should override the `__call__` method, which takes a single - weight parameter and return a projected version of that parameter - (e.g. normalized or clipped). Constraints can be used with various Keras - layers via the `kernel_constraint` or `bias_constraint` arguments. - - Here's a simple example of a non-negative weight constraint: - - >>> class NonNegative(tf.keras.constraints.Constraint): - ... - ... def __call__(self, w): - ... return w * tf.cast(tf.math.greater_equal(w, 0.), w.dtype) - - >>> weight = tf.constant((-1.0, 1.0)) - >>> NonNegative()(weight) - - - >>> tf.keras.layers.Dense(4, kernel_constraint=NonNegative()) - """ - - def __call__(self, w): - """Applies the constraint to the input weight variable. - - By default, the inputs weight variable is not modified. - Users should override this method to implement their own projection - function. - - Args: - w: Input weight variable. - - Returns: - Projected variable (by default, returns unmodified inputs). - """ - return w - - def get_config(self): - """Returns a Python dict of the object config. - - A constraint config is a Python dictionary (JSON-serializable) that can - be used to reinstantiate the same object. - - Returns: - Python dict containing the configuration of the constraint object. - """ - return {} - - @classmethod - def from_config(cls, config): - """Instantiates a weight constraint from a configuration dictionary. - - Example: - - ```python - constraint = UnitNorm() - config = constraint.get_config() - constraint = UnitNorm.from_config(config) - ``` - - Args: - config: A Python dictionary, the output of `get_config`. - - Returns: - A `tf.keras.constraints.Constraint` instance. - """ - return cls(**config) - - -@keras_export("keras.constraints.MaxNorm", "keras.constraints.max_norm") -class MaxNorm(Constraint): - """MaxNorm weight constraint. - - Constrains the weights incident to each hidden unit - to have a norm less than or equal to a desired value. - - Also available via the shortcut function `tf.keras.constraints.max_norm`. - - Args: - max_value: the maximum norm value for the incoming weights. - axis: integer, axis along which to calculate weight norms. - For instance, in a `Dense` layer the weight matrix - has shape `(input_dim, output_dim)`, - set `axis` to `0` to constrain each weight vector - of length `(input_dim,)`. - In a `Conv2D` layer with `data_format="channels_last"`, - the weight tensor has shape - `(rows, cols, input_depth, output_depth)`, - set `axis` to `[0, 1, 2]` - to constrain the weights of each filter tensor of size - `(rows, cols, input_depth)`. - - """ - - def __init__(self, max_value=2, axis=0): - self.max_value = max_value - self.axis = axis - - @doc_controls.do_not_generate_docs - def __call__(self, w): - norms = backend.sqrt( - tf.reduce_sum(tf.square(w), axis=self.axis, keepdims=True) - ) - desired = backend.clip(norms, 0, self.max_value) - return w * (desired / (backend.epsilon() + norms)) - - @doc_controls.do_not_generate_docs - def get_config(self): - return {"max_value": self.max_value, "axis": self.axis} - - -@keras_export("keras.constraints.NonNeg", "keras.constraints.non_neg") -class NonNeg(Constraint): - """Constrains the weights to be non-negative. - - Also available via the shortcut function `tf.keras.constraints.non_neg`. - """ - - def __call__(self, w): - return w * tf.cast(tf.greater_equal(w, 0.0), backend.floatx()) - - -@keras_export("keras.constraints.UnitNorm", "keras.constraints.unit_norm") -class UnitNorm(Constraint): - """Constrains the weights incident to each hidden unit to have unit norm. - - Also available via the shortcut function `tf.keras.constraints.unit_norm`. - - Args: - axis: integer, axis along which to calculate weight norms. - For instance, in a `Dense` layer the weight matrix - has shape `(input_dim, output_dim)`, - set `axis` to `0` to constrain each weight vector - of length `(input_dim,)`. - In a `Conv2D` layer with `data_format="channels_last"`, - the weight tensor has shape - `(rows, cols, input_depth, output_depth)`, - set `axis` to `[0, 1, 2]` - to constrain the weights of each filter tensor of size - `(rows, cols, input_depth)`. - """ - - def __init__(self, axis=0): - self.axis = axis - - @doc_controls.do_not_generate_docs - def __call__(self, w): - return w / ( - backend.epsilon() - + backend.sqrt( - tf.reduce_sum(tf.square(w), axis=self.axis, keepdims=True) - ) - ) - - @doc_controls.do_not_generate_docs - def get_config(self): - return {"axis": self.axis} - - -@keras_export("keras.constraints.MinMaxNorm", "keras.constraints.min_max_norm") -class MinMaxNorm(Constraint): - """MinMaxNorm weight constraint. - - Constrains the weights incident to each hidden unit - to have the norm between a lower bound and an upper bound. - - Also available via the shortcut function - `tf.keras.constraints.min_max_norm`. - - Args: - min_value: the minimum norm for the incoming weights. - max_value: the maximum norm for the incoming weights. - rate: rate for enforcing the constraint: weights will be - rescaled to yield - `(1 - rate) * norm + rate * norm.clip(min_value, max_value)`. - Effectively, this means that rate=1.0 stands for strict - enforcement of the constraint, while rate<1.0 means that - weights will be rescaled at each step to slowly move - towards a value inside the desired interval. - axis: integer, axis along which to calculate weight norms. - For instance, in a `Dense` layer the weight matrix - has shape `(input_dim, output_dim)`, - set `axis` to `0` to constrain each weight vector - of length `(input_dim,)`. - In a `Conv2D` layer with `data_format="channels_last"`, - the weight tensor has shape - `(rows, cols, input_depth, output_depth)`, - set `axis` to `[0, 1, 2]` - to constrain the weights of each filter tensor of size - `(rows, cols, input_depth)`. - """ - - def __init__(self, min_value=0.0, max_value=1.0, rate=1.0, axis=0): - self.min_value = min_value - self.max_value = max_value - self.rate = rate - self.axis = axis - - @doc_controls.do_not_generate_docs - def __call__(self, w): - norms = backend.sqrt( - tf.reduce_sum(tf.square(w), axis=self.axis, keepdims=True) - ) - desired = ( - self.rate * backend.clip(norms, self.min_value, self.max_value) - + (1 - self.rate) * norms - ) - return w * (desired / (backend.epsilon() + norms)) - - @doc_controls.do_not_generate_docs - def get_config(self): - return { - "min_value": self.min_value, - "max_value": self.max_value, - "rate": self.rate, - "axis": self.axis, - } - - -@keras_export( - "keras.constraints.RadialConstraint", "keras.constraints.radial_constraint" -) -class RadialConstraint(Constraint): - """Constrains `Conv2D` kernel weights to be the same for each radius. - - Also available via the shortcut function - `tf.keras.constraints.radial_constraint`. - - For example, the desired output for the following 4-by-4 kernel: - - ``` - kernel = [[v_00, v_01, v_02, v_03], - [v_10, v_11, v_12, v_13], - [v_20, v_21, v_22, v_23], - [v_30, v_31, v_32, v_33]] - ``` - - is this:: - - ``` - kernel = [[v_11, v_11, v_11, v_11], - [v_11, v_33, v_33, v_11], - [v_11, v_33, v_33, v_11], - [v_11, v_11, v_11, v_11]] - ``` - - This constraint can be applied to any `Conv2D` layer version, including - `Conv2DTranspose` and `SeparableConv2D`, and with either `"channels_last"` - or `"channels_first"` data format. The method assumes the weight tensor is - of shape `(rows, cols, input_depth, output_depth)`. - """ - - @doc_controls.do_not_generate_docs - def __call__(self, w): - w_shape = w.shape - if w_shape.rank is None or w_shape.rank != 4: - raise ValueError( - "The weight tensor must have rank 4. " - f"Received weight tensor with shape: {w_shape}" - ) - - height, width, channels, kernels = w_shape - w = backend.reshape(w, (height, width, channels * kernels)) - # TODO(cpeter): Switch map_fn for a faster tf.vectorized_map once - # backend.switch is supported. - w = backend.map_fn( - self._kernel_constraint, - backend.stack(tf.unstack(w, axis=-1), axis=0), - ) - return backend.reshape( - backend.stack(tf.unstack(w, axis=0), axis=-1), - (height, width, channels, kernels), - ) - - def _kernel_constraint(self, kernel): - """Radially constraints a kernel with shape (height, width, - channels).""" - padding = backend.constant([[1, 1], [1, 1]], dtype="int32") - - kernel_shape = backend.shape(kernel)[0] - start = backend.cast(kernel_shape / 2, "int32") - - kernel_new = backend.switch( - backend.cast(tf.math.floormod(kernel_shape, 2), "bool"), - lambda: kernel[start - 1 : start, start - 1 : start], - lambda: kernel[start - 1 : start, start - 1 : start] - + backend.zeros((2, 2), dtype=kernel.dtype), - ) - index = backend.switch( - backend.cast(tf.math.floormod(kernel_shape, 2), "bool"), - lambda: backend.constant(0, dtype="int32"), - lambda: backend.constant(1, dtype="int32"), - ) - while_condition = lambda index, *args: backend.less(index, start) - - def body_fn(i, array): - return i + 1, tf.pad( - array, padding, constant_values=kernel[start + i, start + i] - ) - - _, kernel_new = tf.compat.v1.while_loop( - while_condition, - body_fn, - [index, kernel_new], - shape_invariants=[index.get_shape(), tf.TensorShape([None, None])], - ) - return kernel_new - - -# Aliases. - -max_norm = MaxNorm -non_neg = NonNeg -unit_norm = UnitNorm -min_max_norm = MinMaxNorm -radial_constraint = RadialConstraint - -# Legacy aliases. -maxnorm = max_norm -nonneg = non_neg -unitnorm = unit_norm - - -@keras_export("keras.constraints.serialize") -def serialize(constraint, use_legacy_format=False): - if use_legacy_format: - return legacy_serialization.serialize_keras_object(constraint) - return serialize_keras_object(constraint) - - -@keras_export("keras.constraints.deserialize") -def deserialize(config, custom_objects=None, use_legacy_format=False): - if use_legacy_format: - return legacy_serialization.deserialize_keras_object( - config, - module_objects=globals(), - custom_objects=custom_objects, - printable_module_name="constraint", - ) - return deserialize_keras_object( - config, - module_objects=globals(), - custom_objects=custom_objects, - printable_module_name="constraint", - ) - - -@keras_export("keras.constraints.get") -def get(identifier): - """Retrieves a Keras constraint function.""" - if identifier is None: - return None - if isinstance(identifier, dict): - use_legacy_format = "module" not in identifier - return deserialize(identifier, use_legacy_format=use_legacy_format) - elif isinstance(identifier, str): - config = {"class_name": str(identifier), "config": {}} - return get(config) - elif callable(identifier): - return identifier - else: - raise ValueError( - f"Could not interpret constraint function identifier: {identifier}" - ) diff --git a/keras/constraints_test.py b/keras/constraints_test.py deleted file mode 100644 index b0fdb95b436..00000000000 --- a/keras/constraints_test.py +++ /dev/null @@ -1,119 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras weights constraints.""" - -import math - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import constraints -from keras.testing_infra import test_combinations - - -def get_test_values(): - return [0.1, 0.5, 3, 8, 1e-7] - - -def get_example_array(): - np.random.seed(3537) - example_array = np.random.random((100, 100)) * 100.0 - 50.0 - example_array[0, 0] = 0.0 # 0 could possibly cause trouble - return example_array - - -def get_example_kernel(width): - np.random.seed(3537) - example_array = np.random.rand(width, width, 2, 2) - return example_array - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class KerasConstraintsTest(tf.test.TestCase): - def test_serialization(self): - all_activations = ["max_norm", "non_neg", "unit_norm", "min_max_norm"] - for name in all_activations: - fn = constraints.get(name) - ref_fn = getattr(constraints, name)() - assert fn.__class__ == ref_fn.__class__ - config = constraints.serialize(fn) - fn = constraints.deserialize(config) - assert fn.__class__ == ref_fn.__class__ - - def test_max_norm(self): - array = get_example_array() - for m in get_test_values(): - norm_instance = constraints.max_norm(m) - normed = norm_instance(backend.variable(array)) - assert np.all(backend.eval(normed) < m) - - # a more explicit example - norm_instance = constraints.max_norm(2.0) - x = np.array([[0, 0, 0], [1.0, 0, 0], [3, 0, 0], [3, 3, 3]]).T - x_normed_target = np.array( - [ - [0, 0, 0], - [1.0, 0, 0], - [2.0, 0, 0], - [2.0 / np.sqrt(3), 2.0 / np.sqrt(3), 2.0 / np.sqrt(3)], - ] - ).T - x_normed_actual = backend.eval(norm_instance(backend.variable(x))) - self.assertAllClose(x_normed_actual, x_normed_target, rtol=1e-05) - - def test_non_neg(self): - non_neg_instance = constraints.non_neg() - normed = non_neg_instance(backend.variable(get_example_array())) - assert np.all(np.min(backend.eval(normed), axis=1) == 0.0) - - def test_unit_norm(self): - unit_norm_instance = constraints.unit_norm() - normalized = unit_norm_instance(backend.variable(get_example_array())) - norm_of_normalized = np.sqrt( - np.sum(backend.eval(normalized) ** 2, axis=0) - ) - # In the unit norm constraint, it should be equal to 1. - difference = norm_of_normalized - 1.0 - largest_difference = np.max(np.abs(difference)) - assert np.abs(largest_difference) < 10e-5 - - def test_min_max_norm(self): - array = get_example_array() - for m in get_test_values(): - norm_instance = constraints.min_max_norm( - min_value=m, max_value=m * 2 - ) - normed = norm_instance(backend.variable(array)) - value = backend.eval(normed) - l2 = np.sqrt(np.sum(np.square(value), axis=0)) - assert not l2[l2 < m] - assert not l2[l2 > m * 2 + 1e-5] - - def test_conv2d_radial_constraint(self): - for width in (3, 4, 5, 6): - array = get_example_kernel(width) - norm_instance = constraints.radial_constraint() - normed = norm_instance(backend.variable(array)) - value = backend.eval(normed) - assert np.all(value.shape == array.shape) - assert np.all(value[0:, 0, 0, 0] == value[-1:, 0, 0, 0]) - assert len(set(value[..., 0, 0].flatten())) == math.ceil( - float(width) / 2 - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/datasets/BUILD b/keras/datasets/BUILD deleted file mode 100644 index 06be216b348..00000000000 --- a/keras/datasets/BUILD +++ /dev/null @@ -1,32 +0,0 @@ -# Description: -# Contains the Keras datasets package (internal TensorFlow version). - -package( - default_visibility = [ - "//keras:friends", - ], - licenses = ["notice"], -) - -py_library( - name = "datasets", - srcs = [ - "__init__.py", - "boston_housing.py", - "cifar.py", - "cifar10.py", - "cifar100.py", - "fashion_mnist.py", - "imdb.py", - "mnist.py", - "reuters.py", - ], - srcs_version = "PY3", - visibility = ["//visibility:public"], - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/utils:engine_utils", - ], -) diff --git a/keras/datasets/__init__.py b/keras/datasets/__init__.py deleted file mode 100644 index 76e1f3c38bd..00000000000 --- a/keras/datasets/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""Small NumPy datasets for debugging/testing.""" diff --git a/keras/datasets/boston_housing.py b/keras/datasets/boston_housing.py deleted file mode 100644 index 08a31e34614..00000000000 --- a/keras/datasets/boston_housing.py +++ /dev/null @@ -1,88 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Boston housing price regression dataset.""" - -import numpy as np - -from keras.utils.data_utils import get_file - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.datasets.boston_housing.load_data") -def load_data(path="boston_housing.npz", test_split=0.2, seed=113): - """Loads the Boston Housing dataset. - - This is a dataset taken from the StatLib library which is maintained at - Carnegie Mellon University. - - **WARNING:** This dataset has an ethical problem: the authors of this - dataset included a variable, "B", that may appear to assume that racial - self-segregation influences house prices. As such, we strongly discourage - the use of this dataset, unless in the context of illustrating ethical - issues in data science and machine learning. - - Samples contain 13 attributes of houses at different locations around the - Boston suburbs in the late 1970s. Targets are the median values of - the houses at a location (in k$). - - The attributes themselves are defined in the - [StatLib website](http://lib.stat.cmu.edu/datasets/boston). - - Args: - path: path where to cache the dataset locally - (relative to `~/.keras/datasets`). - test_split: fraction of the data to reserve as test set. - seed: Random seed for shuffling the data - before computing the test split. - - Returns: - Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. - - **x_train, x_test**: numpy arrays with shape `(num_samples, 13)` - containing either the training samples (for x_train), - or test samples (for y_train). - - **y_train, y_test**: numpy arrays of shape `(num_samples,)` containing the - target scalars. The targets are float scalars typically between 10 and - 50 that represent the home prices in k$. - """ - assert 0 <= test_split < 1 - origin_folder = ( - "https://storage.googleapis.com/tensorflow/tf-keras-datasets/" - ) - path = get_file( - path, - origin=origin_folder + "boston_housing.npz", - file_hash=( # noqa: E501 - "f553886a1f8d56431e820c5b82552d9d95cfcb96d1e678153f8839538947dff5" - ), - ) - with np.load(path, allow_pickle=True) as f: - x = f["x"] - y = f["y"] - - rng = np.random.RandomState(seed) - indices = np.arange(len(x)) - rng.shuffle(indices) - x = x[indices] - y = y[indices] - - x_train = np.array(x[: int(len(x) * (1 - test_split))]) - y_train = np.array(y[: int(len(x) * (1 - test_split))]) - x_test = np.array(x[int(len(x) * (1 - test_split)) :]) - y_test = np.array(y[int(len(x) * (1 - test_split)) :]) - return (x_train, y_train), (x_test, y_test) diff --git a/keras/datasets/cifar.py b/keras/datasets/cifar.py deleted file mode 100644 index 2d21d066a46..00000000000 --- a/keras/datasets/cifar.py +++ /dev/null @@ -1,42 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities common to CIFAR10 and CIFAR100 datasets.""" - -import _pickle as cPickle - - -def load_batch(fpath, label_key="labels"): - """Internal utility for parsing CIFAR data. - - Args: - fpath: path the file to parse. - label_key: key for label data in the retrieve - dictionary. - - Returns: - A tuple `(data, labels)`. - """ - with open(fpath, "rb") as f: - d = cPickle.load(f, encoding="bytes") - # decode utf8 - d_decoded = {} - for k, v in d.items(): - d_decoded[k.decode("utf8")] = v - d = d_decoded - data = d["data"] - labels = d[label_key] - - data = data.reshape(data.shape[0], 3, 32, 32) - return data, labels diff --git a/keras/datasets/cifar10.py b/keras/datasets/cifar10.py deleted file mode 100644 index 8d3c869dde5..00000000000 --- a/keras/datasets/cifar10.py +++ /dev/null @@ -1,115 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""CIFAR10 small images classification dataset.""" - -import os - -import numpy as np - -from keras import backend -from keras.datasets.cifar import load_batch -from keras.utils.data_utils import get_file - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.datasets.cifar10.load_data") -def load_data(): - """Loads the CIFAR10 dataset. - - This is a dataset of 50,000 32x32 color training images and 10,000 test - images, labeled over 10 categories. See more info at the - [CIFAR homepage](https://www.cs.toronto.edu/~kriz/cifar.html). - - The classes are: - - | Label | Description | - |:-----:|-------------| - | 0 | airplane | - | 1 | automobile | - | 2 | bird | - | 3 | cat | - | 4 | deer | - | 5 | dog | - | 6 | frog | - | 7 | horse | - | 8 | ship | - | 9 | truck | - - Returns: - Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`. - - **x_train**: uint8 NumPy array of grayscale image data with shapes - `(50000, 32, 32, 3)`, containing the training data. Pixel values range - from 0 to 255. - - **y_train**: uint8 NumPy array of labels (integers in range 0-9) - with shape `(50000, 1)` for the training data. - - **x_test**: uint8 NumPy array of grayscale image data with shapes - `(10000, 32, 32, 3)`, containing the test data. Pixel values range - from 0 to 255. - - **y_test**: uint8 NumPy array of labels (integers in range 0-9) - with shape `(10000, 1)` for the test data. - - Example: - - ```python - (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() - assert x_train.shape == (50000, 32, 32, 3) - assert x_test.shape == (10000, 32, 32, 3) - assert y_train.shape == (50000, 1) - assert y_test.shape == (10000, 1) - ``` - """ - dirname = "cifar-10-batches-py" - origin = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" - path = get_file( - dirname, - origin=origin, - untar=True, - file_hash=( # noqa: E501 - "6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce" - ), - ) - - num_train_samples = 50000 - - x_train = np.empty((num_train_samples, 3, 32, 32), dtype="uint8") - y_train = np.empty((num_train_samples,), dtype="uint8") - - for i in range(1, 6): - fpath = os.path.join(path, "data_batch_" + str(i)) - ( - x_train[(i - 1) * 10000 : i * 10000, :, :, :], - y_train[(i - 1) * 10000 : i * 10000], - ) = load_batch(fpath) - - fpath = os.path.join(path, "test_batch") - x_test, y_test = load_batch(fpath) - - y_train = np.reshape(y_train, (len(y_train), 1)) - y_test = np.reshape(y_test, (len(y_test), 1)) - - if backend.image_data_format() == "channels_last": - x_train = x_train.transpose(0, 2, 3, 1) - x_test = x_test.transpose(0, 2, 3, 1) - - x_test = x_test.astype(x_train.dtype) - y_test = y_test.astype(y_train.dtype) - - return (x_train, y_train), (x_test, y_test) diff --git a/keras/datasets/cifar100.py b/keras/datasets/cifar100.py deleted file mode 100644 index 05572c1e3f2..00000000000 --- a/keras/datasets/cifar100.py +++ /dev/null @@ -1,100 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""CIFAR100 small images classification dataset.""" - -import os - -import numpy as np - -from keras import backend -from keras.datasets.cifar import load_batch -from keras.utils.data_utils import get_file - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.datasets.cifar100.load_data") -def load_data(label_mode="fine"): - """Loads the CIFAR100 dataset. - - This is a dataset of 50,000 32x32 color training images and - 10,000 test images, labeled over 100 fine-grained classes that are - grouped into 20 coarse-grained classes. See more info at the - [CIFAR homepage](https://www.cs.toronto.edu/~kriz/cifar.html). - - Args: - label_mode: one of "fine", "coarse". If it is "fine" the category labels - are the fine-grained labels, if it is "coarse" the output labels are the - coarse-grained superclasses. - - Returns: - Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`. - - **x_train**: uint8 NumPy array of grayscale image data with shapes - `(50000, 32, 32, 3)`, containing the training data. Pixel values range - from 0 to 255. - - **y_train**: uint8 NumPy array of labels (integers in range 0-99) - with shape `(50000, 1)` for the training data. - - **x_test**: uint8 NumPy array of grayscale image data with shapes - `(10000, 32, 32, 3)`, containing the test data. Pixel values range - from 0 to 255. - - **y_test**: uint8 NumPy array of labels (integers in range 0-99) - with shape `(10000, 1)` for the test data. - - Example: - - ```python - (x_train, y_train), (x_test, y_test) = keras.datasets.cifar100.load_data() - assert x_train.shape == (50000, 32, 32, 3) - assert x_test.shape == (10000, 32, 32, 3) - assert y_train.shape == (50000, 1) - assert y_test.shape == (10000, 1) - ``` - """ - if label_mode not in ["fine", "coarse"]: - raise ValueError( - '`label_mode` must be one of `"fine"`, `"coarse"`. ' - f"Received: label_mode={label_mode}." - ) - - dirname = "cifar-100-python" - origin = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz" - path = get_file( - dirname, - origin=origin, - untar=True, - file_hash=( # noqa: E501 - "85cd44d02ba6437773c5bbd22e183051d648de2e7d6b014e1ef29b855ba677a7" - ), - ) - - fpath = os.path.join(path, "train") - x_train, y_train = load_batch(fpath, label_key=label_mode + "_labels") - - fpath = os.path.join(path, "test") - x_test, y_test = load_batch(fpath, label_key=label_mode + "_labels") - - y_train = np.reshape(y_train, (len(y_train), 1)) - y_test = np.reshape(y_test, (len(y_test), 1)) - - if backend.image_data_format() == "channels_last": - x_train = x_train.transpose(0, 2, 3, 1) - x_test = x_test.transpose(0, 2, 3, 1) - - return (x_train, y_train), (x_test, y_test) diff --git a/keras/datasets/fashion_mnist.py b/keras/datasets/fashion_mnist.py deleted file mode 100644 index e7d64ebef17..00000000000 --- a/keras/datasets/fashion_mnist.py +++ /dev/null @@ -1,111 +0,0 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Fashion-MNIST dataset.""" - -import gzip -import os - -import numpy as np - -from keras.utils.data_utils import get_file - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.datasets.fashion_mnist.load_data") -def load_data(): - """Loads the Fashion-MNIST dataset. - - This is a dataset of 60,000 28x28 grayscale images of 10 fashion categories, - along with a test set of 10,000 images. This dataset can be used as - a drop-in replacement for MNIST. - - The classes are: - - | Label | Description | - |:-----:|-------------| - | 0 | T-shirt/top | - | 1 | Trouser | - | 2 | Pullover | - | 3 | Dress | - | 4 | Coat | - | 5 | Sandal | - | 6 | Shirt | - | 7 | Sneaker | - | 8 | Bag | - | 9 | Ankle boot | - - Returns: - Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`. - - **x_train**: uint8 NumPy array of grayscale image data with shapes - `(60000, 28, 28)`, containing the training data. - - **y_train**: uint8 NumPy array of labels (integers in range 0-9) - with shape `(60000,)` for the training data. - - **x_test**: uint8 NumPy array of grayscale image data with shapes - (10000, 28, 28), containing the test data. - - **y_test**: uint8 NumPy array of labels (integers in range 0-9) - with shape `(10000,)` for the test data. - - Example: - - ```python - (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() - assert x_train.shape == (60000, 28, 28) - assert x_test.shape == (10000, 28, 28) - assert y_train.shape == (60000,) - assert y_test.shape == (10000,) - ``` - - License: - The copyright for Fashion-MNIST is held by Zalando SE. - Fashion-MNIST is licensed under the [MIT license]( - https://github.com/zalandoresearch/fashion-mnist/blob/master/LICENSE). - - """ - dirname = os.path.join("datasets", "fashion-mnist") - base = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/" - files = [ - "train-labels-idx1-ubyte.gz", - "train-images-idx3-ubyte.gz", - "t10k-labels-idx1-ubyte.gz", - "t10k-images-idx3-ubyte.gz", - ] - - paths = [] - for fname in files: - paths.append(get_file(fname, origin=base + fname, cache_subdir=dirname)) - - with gzip.open(paths[0], "rb") as lbpath: - y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8) - - with gzip.open(paths[1], "rb") as imgpath: - x_train = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape( - len(y_train), 28, 28 - ) - - with gzip.open(paths[2], "rb") as lbpath: - y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8) - - with gzip.open(paths[3], "rb") as imgpath: - x_test = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape( - len(y_test), 28, 28 - ) - - return (x_train, y_train), (x_test, y_test) diff --git a/keras/datasets/imdb.py b/keras/datasets/imdb.py deleted file mode 100644 index 1e61771ad79..00000000000 --- a/keras/datasets/imdb.py +++ /dev/null @@ -1,217 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""IMDB sentiment classification dataset.""" - -import json - -import numpy as np - -from keras.preprocessing.sequence import _remove_long_seq -from keras.utils.data_utils import get_file - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.datasets.imdb.load_data") -def load_data( - path="imdb.npz", - num_words=None, - skip_top=0, - maxlen=None, - seed=113, - start_char=1, - oov_char=2, - index_from=3, - **kwargs, -): - """Loads the [IMDB dataset](https://ai.stanford.edu/~amaas/data/sentiment/). - - This is a dataset of 25,000 movies reviews from IMDB, labeled by sentiment - (positive/negative). Reviews have been preprocessed, and each review is - encoded as a list of word indexes (integers). - For convenience, words are indexed by overall frequency in the dataset, - so that for instance the integer "3" encodes the 3rd most frequent word in - the data. This allows for quick filtering operations such as: - "only consider the top 10,000 most - common words, but eliminate the top 20 most common words". - - As a convention, "0" does not stand for a specific word, but instead is used - to encode the pad token. - - Args: - path: where to cache the data (relative to `~/.keras/dataset`). - num_words: integer or None. Words are - ranked by how often they occur (in the training set) and only - the `num_words` most frequent words are kept. Any less frequent word - will appear as `oov_char` value in the sequence data. If None, - all words are kept. Defaults to `None`. - skip_top: skip the top N most frequently occurring words - (which may not be informative). These words will appear as - `oov_char` value in the dataset. When 0, no words are - skipped. Defaults to `0`. - maxlen: int or None. Maximum sequence length. - Any longer sequence will be truncated. None, means no truncation. - Defaults to `None`. - seed: int. Seed for reproducible data shuffling. - start_char: int. The start of a sequence will be marked with this - character. 0 is usually the padding character. Defaults to `1`. - oov_char: int. The out-of-vocabulary character. - Words that were cut out because of the `num_words` or - `skip_top` limits will be replaced with this character. - index_from: int. Index actual words with this index and higher. - **kwargs: Used for backwards compatibility. - - Returns: - Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. - - **x_train, x_test**: lists of sequences, which are lists of indexes - (integers). If the num_words argument was specific, the maximum - possible index value is `num_words - 1`. If the `maxlen` argument was - specified, the largest possible sequence length is `maxlen`. - - **y_train, y_test**: lists of integer labels (1 or 0). - - Raises: - ValueError: in case `maxlen` is so low - that no input sequence could be kept. - - Note that the 'out of vocabulary' character is only used for - words that were present in the training set but are not included - because they're not making the `num_words` cut here. - Words that were not seen in the training set but are in the test set - have simply been skipped. - """ - # Legacy support - if "nb_words" in kwargs: - logging.warning( - "The `nb_words` argument in `load_data` " - "has been renamed `num_words`." - ) - num_words = kwargs.pop("nb_words") - if kwargs: - raise TypeError(f"Unrecognized keyword arguments: {str(kwargs)}.") - - origin_folder = ( - "https://storage.googleapis.com/tensorflow/tf-keras-datasets/" - ) - path = get_file( - path, - origin=origin_folder + "imdb.npz", - file_hash=( # noqa: E501 - "69664113be75683a8fe16e3ed0ab59fda8886cb3cd7ada244f7d9544e4676b9f" - ), - ) - with np.load(path, allow_pickle=True) as f: - x_train, labels_train = f["x_train"], f["y_train"] - x_test, labels_test = f["x_test"], f["y_test"] - - rng = np.random.RandomState(seed) - indices = np.arange(len(x_train)) - rng.shuffle(indices) - x_train = x_train[indices] - labels_train = labels_train[indices] - - indices = np.arange(len(x_test)) - rng.shuffle(indices) - x_test = x_test[indices] - labels_test = labels_test[indices] - - if start_char is not None: - x_train = [[start_char] + [w + index_from for w in x] for x in x_train] - x_test = [[start_char] + [w + index_from for w in x] for x in x_test] - elif index_from: - x_train = [[w + index_from for w in x] for x in x_train] - x_test = [[w + index_from for w in x] for x in x_test] - - if maxlen: - x_train, labels_train = _remove_long_seq(maxlen, x_train, labels_train) - x_test, labels_test = _remove_long_seq(maxlen, x_test, labels_test) - if not x_train or not x_test: - raise ValueError( - "After filtering for sequences shorter than maxlen=" - f"{str(maxlen)}, no sequence was kept. Increase maxlen." - ) - - xs = x_train + x_test - labels = np.concatenate([labels_train, labels_test]) - - if not num_words: - num_words = max(max(x) for x in xs) - - # by convention, use 2 as OOV word - # reserve 'index_from' (=3 by default) characters: - # 0 (padding), 1 (start), 2 (OOV) - if oov_char is not None: - xs = [ - [w if (skip_top <= w < num_words) else oov_char for w in x] - for x in xs - ] - else: - xs = [[w for w in x if skip_top <= w < num_words] for x in xs] - - idx = len(x_train) - x_train, y_train = np.array(xs[:idx], dtype="object"), labels[:idx] - x_test, y_test = np.array(xs[idx:], dtype="object"), labels[idx:] - return (x_train, y_train), (x_test, y_test) - - -@keras_export("keras.datasets.imdb.get_word_index") -def get_word_index(path="imdb_word_index.json"): - """Retrieves a dict mapping words to their index in the IMDB dataset. - - Args: - path: where to cache the data (relative to `~/.keras/dataset`). - - Returns: - The word index dictionary. Keys are word strings, values are their - index. - - Example: - - ```python - # Use the default parameters to keras.datasets.imdb.load_data - start_char = 1 - oov_char = 2 - index_from = 3 - # Retrieve the training sequences. - (x_train, _), _ = keras.datasets.imdb.load_data( - start_char=start_char, oov_char=oov_char, index_from=index_from - ) - # Retrieve the word index file mapping words to indices - word_index = keras.datasets.imdb.get_word_index() - # Reverse the word index to obtain a dict mapping indices to words - # And add `index_from` to indices to sync with `x_train` - inverted_word_index = dict( - (i + index_from, word) for (word, i) in word_index.items() - ) - # Update `inverted_word_index` to include `start_char` and `oov_char` - inverted_word_index[start_char] = "[START]" - inverted_word_index[oov_char] = "[OOV]" - # Decode the first sequence in the dataset - decoded_sequence = " ".join(inverted_word_index[i] for i in x_train[0]) - ``` - """ - origin_folder = ( - "https://storage.googleapis.com/tensorflow/tf-keras-datasets/" - ) - path = get_file( - path, - origin=origin_folder + "imdb_word_index.json", - file_hash="bfafd718b763782e994055a2d397834f", - ) - with open(path) as f: - return json.load(f) diff --git a/keras/datasets/mnist.py b/keras/datasets/mnist.py deleted file mode 100644 index a145d167aff..00000000000 --- a/keras/datasets/mnist.py +++ /dev/null @@ -1,86 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""MNIST handwritten digits dataset.""" - -import numpy as np - -from keras.utils.data_utils import get_file - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.datasets.mnist.load_data") -def load_data(path="mnist.npz"): - """Loads the MNIST dataset. - - This is a dataset of 60,000 28x28 grayscale images of the 10 digits, - along with a test set of 10,000 images. - More info can be found at the - [MNIST homepage](http://yann.lecun.com/exdb/mnist/). - - Args: - path: path where to cache the dataset locally - (relative to `~/.keras/datasets`). - - Returns: - Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`. - - **x_train**: uint8 NumPy array of grayscale image data with shapes - `(60000, 28, 28)`, containing the training data. Pixel values range - from 0 to 255. - - **y_train**: uint8 NumPy array of digit labels (integers in range 0-9) - with shape `(60000,)` for the training data. - - **x_test**: uint8 NumPy array of grayscale image data with shapes - (10000, 28, 28), containing the test data. Pixel values range - from 0 to 255. - - **y_test**: uint8 NumPy array of digit labels (integers in range 0-9) - with shape `(10000,)` for the test data. - - Example: - - ```python - (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() - assert x_train.shape == (60000, 28, 28) - assert x_test.shape == (10000, 28, 28) - assert y_train.shape == (60000,) - assert y_test.shape == (10000,) - ``` - - License: - Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset, - which is a derivative work from original NIST datasets. - MNIST dataset is made available under the terms of the - [Creative Commons Attribution-Share Alike 3.0 license.]( - https://creativecommons.org/licenses/by-sa/3.0/) - """ - origin_folder = ( - "https://storage.googleapis.com/tensorflow/tf-keras-datasets/" - ) - path = get_file( - path, - origin=origin_folder + "mnist.npz", - file_hash=( # noqa: E501 - "731c5ac602752760c8e48fbffcf8c3b850d9dc2a2aedcf2cc48468fc17b673d1" - ), - ) - with np.load(path, allow_pickle=True) as f: - x_train, y_train = f["x_train"], f["y_train"] - x_test, y_test = f["x_test"], f["y_test"] - - return (x_train, y_train), (x_test, y_test) diff --git a/keras/datasets/reuters.py b/keras/datasets/reuters.py deleted file mode 100644 index 19b27949d84..00000000000 --- a/keras/datasets/reuters.py +++ /dev/null @@ -1,249 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Reuters topic classification dataset.""" - -import json - -import numpy as np - -from keras.preprocessing.sequence import _remove_long_seq -from keras.utils.data_utils import get_file - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.datasets.reuters.load_data") -def load_data( - path="reuters.npz", - num_words=None, - skip_top=0, - maxlen=None, - test_split=0.2, - seed=113, - start_char=1, - oov_char=2, - index_from=3, - **kwargs, -): - """Loads the Reuters newswire classification dataset. - - This is a dataset of 11,228 newswires from Reuters, labeled over 46 topics. - - This was originally generated by parsing and preprocessing the classic - Reuters-21578 dataset, but the preprocessing code is no longer packaged - with Keras. See this - [GitHub discussion](https://github.com/keras-team/keras/issues/12072) - for more info. - - Each newswire is encoded as a list of word indexes (integers). - For convenience, words are indexed by overall frequency in the dataset, - so that for instance the integer "3" encodes the 3rd most frequent word in - the data. This allows for quick filtering operations such as: - "only consider the top 10,000 most - common words, but eliminate the top 20 most common words". - - As a convention, "0" does not stand for a specific word, but instead is used - to encode any unknown word. - - Args: - path: where to cache the data (relative to `~/.keras/dataset`). - num_words: integer or None. Words are - ranked by how often they occur (in the training set) and only - the `num_words` most frequent words are kept. Any less frequent word - will appear as `oov_char` value in the sequence data. If None, - all words are kept. Defaults to `None`. - skip_top: skip the top N most frequently occurring words - (which may not be informative). These words will appear as - `oov_char` value in the dataset. 0 means no words are - skipped. Defaults to 0 - maxlen: int or None. Maximum sequence length. - Any longer sequence will be truncated. None means no truncation. - Defaults to `None`. - test_split: Float between 0 and 1. Fraction of the dataset to be used - as test data. 0.2 means that 20% of the dataset is used as - test data. Defaults to 0.2 - seed: int. Seed for reproducible data shuffling. - start_char: int. The start of a sequence will be marked with this - character. 0 is usually the padding character. Defaults to `1`. - oov_char: int. The out-of-vocabulary character. - Words that were cut out because of the `num_words` or - `skip_top` limits will be replaced with this character. - index_from: int. Index actual words with this index and higher. - **kwargs: Used for backwards compatibility. - - Returns: - Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. - - **x_train, x_test**: lists of sequences, which are lists of indexes - (integers). If the num_words argument was specific, the maximum - possible index value is `num_words - 1`. If the `maxlen` argument was - specified, the largest possible sequence length is `maxlen`. - - **y_train, y_test**: lists of integer labels (1 or 0). - - Note: The 'out of vocabulary' character is only used for - words that were present in the training set but are not included - because they're not making the `num_words` cut here. - Words that were not seen in the training set but are in the test set - have simply been skipped. - """ - # Legacy support - if "nb_words" in kwargs: - logging.warning( - "The `nb_words` argument in `load_data` " - "has been renamed `num_words`." - ) - num_words = kwargs.pop("nb_words") - if kwargs: - raise TypeError(f"Unrecognized keyword arguments: {str(kwargs)}") - - origin_folder = ( - "https://storage.googleapis.com/tensorflow/tf-keras-datasets/" - ) - path = get_file( - path, - origin=origin_folder + "reuters.npz", - file_hash=( # noqa: E501 - "d6586e694ee56d7a4e65172e12b3e987c03096cb01eab99753921ef915959916" - ), - ) - with np.load(path, allow_pickle=True) as f: - xs, labels = f["x"], f["y"] - - rng = np.random.RandomState(seed) - indices = np.arange(len(xs)) - rng.shuffle(indices) - xs = xs[indices] - labels = labels[indices] - - if start_char is not None: - xs = [[start_char] + [w + index_from for w in x] for x in xs] - elif index_from: - xs = [[w + index_from for w in x] for x in xs] - - if maxlen: - xs, labels = _remove_long_seq(maxlen, xs, labels) - - if not num_words: - num_words = max(max(x) for x in xs) - - # by convention, use 2 as OOV word - # reserve 'index_from' (=3 by default) characters: - # 0 (padding), 1 (start), 2 (OOV) - if oov_char is not None: - xs = [ - [w if skip_top <= w < num_words else oov_char for w in x] - for x in xs - ] - else: - xs = [[w for w in x if skip_top <= w < num_words] for x in xs] - - idx = int(len(xs) * (1 - test_split)) - x_train, y_train = np.array(xs[:idx], dtype="object"), np.array( - labels[:idx] - ) - x_test, y_test = np.array(xs[idx:], dtype="object"), np.array(labels[idx:]) - - return (x_train, y_train), (x_test, y_test) - - -@keras_export("keras.datasets.reuters.get_word_index") -def get_word_index(path="reuters_word_index.json"): - """Retrieves a dict mapping words to their index in the Reuters dataset. - - Actual word indices starts from 3, with 3 indices reserved for: - 0 (padding), 1 (start), 2 (oov). - - E.g. word index of 'the' is 1, but the in the actual training data, the - index of 'the' will be 1 + 3 = 4. Vice versa, to translate word indices in - training data back to words using this mapping, indices need to substract 3. - - Args: - path: where to cache the data (relative to `~/.keras/dataset`). - - Returns: - The word index dictionary. Keys are word strings, values are their - index. - """ - origin_folder = ( - "https://storage.googleapis.com/tensorflow/tf-keras-datasets/" - ) - path = get_file( - path, - origin=origin_folder + "reuters_word_index.json", - file_hash="4d44cc38712099c9e383dc6e5f11a921", - ) - with open(path) as f: - return json.load(f) - - -@keras_export("keras.datasets.reuters.get_label_names") -def get_label_names(): - """Returns labels as a list of strings with indices matching training data. - - Reference: - - - [Reuters Dataset](https://martin-thoma.com/nlp-reuters/) - """ - return ( - "cocoa", - "grain", - "veg-oil", - "earn", - "acq", - "wheat", - "copper", - "housing", - "money-supply", - "coffee", - "sugar", - "trade", - "reserves", - "ship", - "cotton", - "carcass", - "crude", - "nat-gas", - "cpi", - "money-fx", - "interest", - "gnp", - "meal-feed", - "alum", - "oilseed", - "gold", - "tin", - "strategic-metal", - "livestock", - "retail", - "ipi", - "iron-steel", - "rubber", - "heat", - "jobs", - "lei", - "bop", - "zinc", - "orange", - "pet-chem", - "dlr", - "gas", - "silver", - "wpi", - "hog", - "lead", - ) diff --git a/keras/distribute/BUILD b/keras/distribute/BUILD deleted file mode 100644 index 39324c80737..00000000000 --- a/keras/distribute/BUILD +++ /dev/null @@ -1,905 +0,0 @@ -# Description: -# keras/distribute package is intended to serve as the centralized place for things -# related to dist-strat used by Keras.. - -load("@org_keras//keras:keras.bzl", "distribute_py_test") -load("@org_keras//keras:keras.bzl", "cuda_py_test") -load("@org_keras//keras:keras.bzl", "tf_py_test") # buildifier: disable=same-origin-load - -package( - # TODO(scottzhu): Remove this deps when distribute test are converted to integration test. - default_visibility = [ - "//keras:friends", - "//third_party/tensorflow/python/distribute:__pkg__", - "//third_party/tensorflow/tools/pip_package:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "distribute", - srcs = [ - "__init__.py", - "distributed_training_utils.py", - "distributed_training_utils_v1.py", - ], - srcs_version = "PY3", - deps = [ - ":distribute_coordinator_utils", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras:callbacks", - "//keras:callbacks_v1", - "//keras:constraints", - "//keras:losses", - "//keras:regularizers", - "//keras/initializers", - "//keras/mixed_precision:policy", - "//keras/optimizers", - "//keras/utils:engine_utils", - "//keras/utils:mode_keys", - ], -) - -py_library( - name = "distribute_test_lib_pip", - srcs_version = "PY3", - deps = [ - ":dataset_creator_model_fit_test_base", - ":distribute_strategy_test_lib", - ":keras_correctness_test_lib", - ":keras_test_lib", - ":model_combinations", - ":multi_worker_testing_utils", - ":saved_model_test_base", - ":test_example", - ], -) - -py_library( - name = "optimizer_combinations", - srcs = ["optimizer_combinations.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/optimizers", - "//keras/optimizers/legacy:optimizers", - ], -) - -py_library( - name = "worker_training_state", - srcs = [ - "worker_training_state.py", - ], - srcs_version = "PY3", - deps = [ - ":distributed_file_utils", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/utils:mode_keys", - ], -) - -py_library( - name = "model_collection_base", - srcs = ["model_collection_base.py"], - srcs_version = "PY3", -) - -py_library( - name = "model_combinations", - srcs = ["model_combinations.py"], - srcs_version = "PY3", - deps = [ - ":simple_models", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "simple_models", - srcs = ["simple_models.py"], - srcs_version = "PY3", - deps = [ - ":model_collection_base", - "//:expect_tensorflow_installed", - "//keras", - ], -) - -py_library( - name = "saved_model_test_base", - srcs = ["saved_model_test_base.py"], - srcs_version = "PY3", - deps = [ - ":model_combinations", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_utils", - ], -) - -cuda_py_test( - name = "worker_training_state_test", - srcs = ["worker_training_state_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":multi_worker_testing_utils", - ":worker_training_state", - "//:expect_tensorflow_installed", - "//keras", - ], -) - -distribute_py_test( - name = "checkpointing_test", - srcs = ["checkpointing_test.py"], - main = "checkpointing_test.py", - tags = [ - "multi_and_single_gpu", - "nomultivm", # TODO(b/170502145) - ], - deps = [ - "//:expect_tensorflow_installed", - "//keras/optimizers/legacy:optimizers", - ], -) - -cuda_py_test( - name = "collective_all_reduce_strategy_test", - srcs = ["collective_all_reduce_strategy_test.py"], - python_version = "PY3", - tags = [ - "multi_and_single_gpu", - "nomsan", # TODO(b/162894966) - "notsan", # TODO(b/171040408): data race - ], - # b/155301154 broken with XLA:GPU - xla_enable_strict_auto_jit = True, - deps = [ - "//:expect_absl_installed", - "//:expect_portpicker_installed", - "//:expect_tensorflow_installed", - "//keras/engine", - "//keras/layers", - "//keras/mixed_precision:policy", - "//keras/mixed_precision:test_util", - "//keras/testing_infra:test_utils", - ], -) - -distribute_py_test( - name = "ctl_correctness_test", - srcs = ["ctl_correctness_test.py"], - main = "ctl_correctness_test.py", - shard_count = 10, - tags = [ - "multi_and_single_gpu", - "no_cuda_asan", # times out - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":optimizer_combinations", - ":strategy_combinations", - "//:expect_portpicker_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_utils", - ], -) - -distribute_py_test( - name = "custom_training_loop_metrics_test", - srcs = ["custom_training_loop_metrics_test.py"], - disable_mlir_bridge = False, - main = "custom_training_loop_metrics_test.py", - tags = [ - "multi_and_single_gpu", - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":strategy_combinations", - "//:expect_absl_installed", - "//:expect_portpicker_installed", - "//:expect_tensorflow_installed", - "//keras/metrics", - ], -) - -distribute_py_test( - name = "custom_training_loop_models_test", - srcs = ["custom_training_loop_models_test.py"], - main = "custom_training_loop_models_test.py", - tags = [ - "multi_and_single_gpu", - "no_cuda_asan", # times out - "nomultivm", # TODO(b/170502145) - "notsan", # TODO(b/170954243) - ], - tpu_tags = [ - "no_oss", # b/153615544. - "notsan", # TODO(b/170869466) - ], - deps = [ - ":strategy_combinations", - "//:expect_absl_installed", - "//:expect_portpicker_installed", - "//:expect_tensorflow_installed", - "//keras", - ], -) - -distribute_py_test( - name = "custom_training_loop_optimizer_test", - srcs = ["custom_training_loop_optimizer_test.py"], - disable_mlir_bridge = False, - main = "custom_training_loop_optimizer_test.py", - tags = [ - "multi_and_single_gpu", - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":strategy_combinations", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/optimizers/legacy:optimizers", - ], -) - -py_library( - name = "distribute_strategy_test_lib", - srcs = [ - "distribute_strategy_test.py", - ], - srcs_version = "PY3", - deps = [ - ":multi_worker_testing_utils", - ":optimizer_combinations", - ":strategy_combinations", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -distribute_py_test( - name = "keras_premade_models_test", - size = "medium", - srcs = ["keras_premade_models_test.py"], - disable_mlir_bridge = False, - full_precision = True, - main = "keras_premade_models_test.py", - shard_count = 8, - tags = [ - "multi_and_single_gpu", - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":distribute_strategy_test_lib", - ":keras_correctness_test_lib", - "//:expect_portpicker_installed", - ], -) - -distribute_py_test( - name = "distribute_strategy_test", - srcs = ["distribute_strategy_test.py"], - disable_mlir_bridge = True, # TODO(b/170352626) - full_precision = True, - main = "distribute_strategy_test.py", - python_version = "PY3", - shard_count = 20, - tags = [ - "multi_and_single_gpu", - "no_cuda_asan", # TODO(b/182391774) - "no_oss", # TODO(b/191770103) - "no_rocm", # times out on ROCm - "no_windows_gpu", - "noguitar", # TODO(b/172354344) - "nomultivm", # TODO(b/170502145) - "notpu", # b/188061768 - "notsan", - ], - tpu_tags = [ - "no_oss", # b/155502591 - ], - deps = [ - ":distribute_strategy_test_lib", - ":optimizer_combinations", - "//:expect_portpicker_installed", - ], -) - -distribute_py_test( - name = "distributed_training_utils_test", - srcs = ["distributed_training_utils_test.py"], - disable_mlir_bridge = False, - full_precision = True, - main = "distributed_training_utils_test.py", - tags = [ - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":distribute", - ":distribute_strategy_test_lib", - "//:expect_tensorflow_installed", - "//keras:callbacks", - ], -) - -py_library( - name = "keras_correctness_test_lib", - srcs = [ - "keras_correctness_test_base.py", - "keras_dnn_correctness_test.py", - "keras_embedding_model_correctness_test.py", - "keras_image_model_correctness_test.py", - "keras_rnn_model_correctness_test.py", - "keras_stateful_lstm_model_correctness_test.py", - ], - srcs_version = "PY3", - deps = [ - ":strategy_combinations", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras:backend", - "//keras/testing_infra:test_combinations", - ], -) - -distribute_py_test( - name = "keras_dnn_correctness_test", - size = "medium", - srcs = ["keras_dnn_correctness_test.py"], - disable_mlir_bridge = True, # TODO(b/170352626) - full_precision = True, - main = "keras_dnn_correctness_test.py", - # Shard count is set to an odd number to distribute tasks across - # shards more evenly. - shard_count = 19, - tags = [ - "multi_and_single_gpu", - "no_oss", # TODO(b/173021094) - "no_rocm", # times out on ROCm - "no_windows_gpu", - "nogpu", # TODO(b/170905292) - "nomultivm", # TODO(b/170502145) - "notap", # TODO(b/178803051): flaky - "notsan", - ], - deps = [ - ":keras_correctness_test_lib", - "//:expect_portpicker_installed", - ], -) - -distribute_py_test( - name = "keras_embedding_model_correctness_test", - size = "medium", - srcs = ["keras_embedding_model_correctness_test.py"], - disable_mlir_bridge = True, # TODO(b/170352626) - full_precision = True, - main = "keras_embedding_model_correctness_test.py", - shard_count = 8, - tags = [ - "broken", # b/170975619 - "multi_and_single_gpu", - "no_cuda_asan", # times out - "no_rocm", - "no_windows_gpu", - "nomultivm", # TODO(b/170502145) - "notsan", - ], - deps = [ - ":keras_correctness_test_lib", - "//:expect_portpicker_installed", - ], -) - -distribute_py_test( - name = "keras_image_model_correctness_test", - size = "medium", - srcs = ["keras_image_model_correctness_test.py"], - disable_mlir_bridge = True, # TODO(b/170352626) - full_precision = True, - main = "keras_image_model_correctness_test.py", - shard_count = 16, - tags = [ - "multi_and_single_gpu", - "no_rocm", # times out on ROCm - "no_windows_gpu", - "noasan", # TODO(b/337374867) fails with -fsanitize=null - "nomultivm", # TODO(b/170502145) - "notpu", # TODO(b/210148661) - "notsan", - ], - xla_enable_strict_auto_jit = False, # Tensorflow also fails. - deps = [ - ":keras_correctness_test_lib", - "//:expect_portpicker_installed", - ], -) - -distribute_py_test( - name = "keras_metrics_test", - srcs = ["keras_metrics_test.py"], - disable_mlir_bridge = False, - main = "keras_metrics_test.py", - shard_count = 8, - tags = [ - "multi_and_single_gpu", - "nomultivm", # TODO(b/170502145) - ], - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/metrics", - ], -) - -distribute_py_test( - name = "keras_models_test", - srcs = ["keras_models_test.py"], - main = "keras_models_test.py", - tags = [ - "multi_and_single_gpu", - "no_oss", # TODO(b/202850066) - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":strategy_combinations", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - ], -) - -distribute_py_test( - name = "keras_rnn_model_correctness_test", - size = "medium", - srcs = ["keras_rnn_model_correctness_test.py"], - full_precision = True, - main = "keras_rnn_model_correctness_test.py", - # Shard count is set to an odd number to distribute tasks across - # shards more evenly. - shard_count = 31, - tags = [ - "multi_and_single_gpu", - "no_rocm", # Would require size large, but that effectively disables the test for presubmits. - "no_windows_gpu", - "noasan", # TODO(b/337374867) fails with -fsanitize=null - "nomultivm", # TODO(b/170502145) - "notpu", # TODO(b/153672562) - "notsan", - ], - deps = [ - ":keras_correctness_test_lib", - "//:expect_portpicker_installed", - ], -) - -distribute_py_test( - name = "keras_save_load_test", - size = "medium", - srcs = ["keras_save_load_test.py"], - full_precision = True, - main = "keras_save_load_test.py", - shard_count = 7, - tags = [ - "multi_and_single_gpu", - "no_rocm", - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":saved_model_test_base", - "//keras/saving", - ], -) - -distribute_py_test( - name = "keras_stateful_lstm_model_correctness_test", - size = "medium", - srcs = ["keras_stateful_lstm_model_correctness_test.py"], - disable_mlir_bridge = False, - full_precision = True, - main = "keras_stateful_lstm_model_correctness_test.py", - shard_count = 4, - tags = [ - "multi_and_single_gpu", - "no_pip", - "no_windows_gpu", - "nomultivm", # TODO(b/170502145) - "notsan", - ], - deps = [ - ":keras_correctness_test_lib", - ], -) - -distribute_py_test( - name = "keras_utils_test", - srcs = ["keras_utils_test.py"], - disable_mlir_bridge = True, # TODO(b/170352626) - full_precision = True, - main = "keras_utils_test.py", - shard_count = 4, - tags = [ - "multi_and_single_gpu", - "no_cuda_asan", # times out - "no_pip", # The test imports distribute_strategy_test which is not in the pip package. - "no_windows_gpu", - "nomultivm", # TODO(b/170502145) - "notsan", - ], - deps = [ - ":distribute_strategy_test_lib", - ":keras_test_lib", - ":optimizer_combinations", - "//:expect_portpicker_installed", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "keras_test_lib", - srcs = [ - "keras_utils_test.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - ], -) - -cuda_py_test( - name = "keras_optimizer_v2_test", - srcs = ["keras_optimizer_v2_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "multi_and_single_gpu", - "tf_integration_test", - ], - deps = [ - ":keras_test_lib", - ], -) - -distribute_py_test( - name = "minimize_loss_test", - srcs = ["minimize_loss_test.py"], - main = "minimize_loss_test.py", - tags = [ - "multi_and_single_gpu", - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":optimizer_combinations", - ":test_example", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/layers", - ], -) - -cuda_py_test( - name = "mirrored_strategy_test", - srcs = ["mirrored_strategy_test.py"], - python_version = "PY3", - tags = [ - "multi_and_single_gpu", - "no_windows_gpu", # TODO(b/130551176) - ], - deps = [ - "//:expect_tensorflow_installed", - "//keras/engine", - "//keras/layers/core", - "//keras/utils:kpl_test_utils", - ], -) - -cuda_py_test( - name = "mirrored_variable_test", - srcs = ["mirrored_variable_test.py"], - python_version = "PY3", - tags = [ - "guitar", - "multi_and_single_gpu", - ], - deps = [ - "//:expect_tensorflow_installed", - "//keras/layers/core", - "//keras/metrics", - ], -) - -cuda_py_test( - name = "multi_worker_test", - srcs = ["multi_worker_test.py"], - python_version = "PY3", - shard_count = 2, - tags = [ - "multi_and_single_gpu", - "no_oss", # TODO(b/130369494): Investigate why it times out on OSS. - ], - deps = [ - ":multi_worker_testing_utils", - "//:expect_absl_installed", - "//:expect_portpicker_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras:backend", - "//keras:callbacks", - "//keras:engine", - "//keras/optimizers", - "//keras/optimizers/legacy:optimizers", - "//keras/utils:kpl_test_utils", - ], -) - -tf_py_test( - name = "multi_worker_callback_tf2_test", - srcs = ["multi_worker_callback_tf2_test.py"], - python_version = "PY3", - shard_count = 5, - tags = [ - "no_windows", # TODO(b/184424727): Re-enable this. - ], - deps = [ - ":distributed_file_utils", - ":multi_worker_testing_utils", - "//:expect_portpicker_installed", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "multi_worker_testing_utils", - srcs = [ - "multi_worker_testing_utils.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/optimizers/legacy:optimizers", - ], -) - -py_library( - name = "tpu_strategy_test_utils", - srcs = ["tpu_strategy_test_utils.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -distribute_py_test( - name = "saved_model_save_load_test", - size = "medium", - srcs = ["saved_model_save_load_test.py"], - full_precision = True, - main = "saved_model_save_load_test.py", - shard_count = 7, - tags = [ - "multi_and_single_gpu", - "no_cuda_asan", # times out - "no_rocm", - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":saved_model_test_base", - "//:expect_tensorflow_installed", - ], -) - -distribute_py_test( - name = "saved_model_mixed_api_test", - size = "medium", - srcs = ["saved_model_mixed_api_test.py"], - full_precision = True, - main = "saved_model_mixed_api_test.py", - shard_count = 7, - tags = [ - "multi_and_single_gpu", - "no_rocm", - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":saved_model_test_base", - "//:expect_tensorflow_installed", - "//keras/saving", - ], -) - -distribute_py_test( - name = "sharded_variable_test", - srcs = ["sharded_variable_test.py"], - python_version = "PY3", - shard_count = 2, - tags = [ - "multi_and_single_gpu", - "no_rocm", - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":multi_worker_testing_utils", - ":strategy_combinations", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - ], -) - -distribute_py_test( - name = "parameter_server_evaluation_test", - srcs = ["parameter_server_evaluation_test.py"], - python_version = "PY3", - shard_count = 1, - tags = [ - "multi_and_single_gpu", - "no_cuda_asan", # TODO(b/186361027) - "no_oss", # TODO(b/186248973) - "no_tfrt", - "nomultivm", # TODO(b/170502145) - "notpu", - ], - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_utils", - "//keras/utils:dataset_creator", - ], -) - -distribute_py_test( - name = "parameter_server_exact_evaluation_test", - srcs = ["parameter_server_exact_evaluation_test.py"], - python_version = "PY3", - shard_count = 28, - tags = [ - "multi_and_single_gpu", - "no_cuda_asan", # TODO(b/186361027) - "no_oss", # TODO(b/186248973) - "no_tfrt", - "nomultivm", # TODO(b/170502145) - "notpu", - ], - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_utils", - "//keras/utils:dataset_creator", - ], -) - -distribute_py_test( - name = "dataset_creator_model_fit_test", - srcs = ["dataset_creator_model_fit_test.py"], - disable_mlir_bridge = True, # TODO(b/170352626) - disable_tpu_use_tfrt = True, # TODO(b/195081590) - full_precision = True, - main = "dataset_creator_model_fit_test.py", - shard_count = 50, - tags = [ - "multi_gpu", - "no_oss", # TODO(b/183640564): Re-enable - "no_rocm", - "nomultivm", # TODO(b/170502145) - "notpu", # TODO(b/210168103) - "notsan", # TODO(b/184542721) - ], - deps = [ - ":dataset_creator_model_fit_test_base", - ":strategy_combinations", - "//:expect_portpicker_installed", - "//:expect_tensorflow_installed", - "//keras:callbacks", - "//keras/testing_infra:test_utils", - ], -) - -distribute_py_test( - name = "dataset_creator_model_fit_ps_only_test", - size = "medium", - srcs = ["dataset_creator_model_fit_ps_only_test.py"], - disable_mlir_bridge = True, # TODO(b/170352626) - full_precision = True, - main = "dataset_creator_model_fit_ps_only_test.py", - shard_count = 21, - tags = [ - "multi_gpu", - "no_oss", # TODO(b/183640564): Re-enable - "no_rocm", - "nomultivm", # TODO(b/170502145) - "notsan", # TODO(b/184542721) - ], - deps = [ - ":dataset_creator_model_fit_test_base", - ":strategy_combinations", - "//:expect_tensorflow_installed", - "//keras:callbacks", - "//keras/testing_infra:test_utils", - ], -) - -py_library( - name = "distributed_file_utils", - srcs = [ - "distributed_file_utils.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -tf_py_test( - name = "distributed_file_utils_test", - srcs = ["distributed_file_utils_test.py"], - python_version = "PY3", - srcs_version = "PY3", - deps = [ - ":distributed_file_utils", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "strategy_combinations", - srcs = ["strategy_combinations.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "test_example", - srcs = ["test_example.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/legacy_tf_layers:layers", - ], -) - -py_library( - name = "distribute_coordinator_utils", - srcs = [ - "distribute_coordinator_utils.py", - ], - srcs_version = "PY3", - deps = ["//:expect_tensorflow_installed"], -) - -py_library( - name = "dataset_creator_model_fit_test_base", - srcs = [ - "dataset_creator_model_fit_test_base.py", - ], - srcs_version = "PY3", - deps = [ - ":multi_worker_testing_utils", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras:callbacks", - "//keras/engine", - "//keras/layers/core", - "//keras/layers/preprocessing:string_lookup", - "//keras/optimizers/legacy:optimizers", - "//keras/utils:dataset_creator", - ], -) diff --git a/keras/distribute/README.md b/keras/distribute/README.md deleted file mode 100644 index 0c83d2c9ed8..00000000000 --- a/keras/distribute/README.md +++ /dev/null @@ -1,6 +0,0 @@ -# Keras with Distribution Strategy Tests - -This directory contains unit tests that combine Keras library with -[Distribution Training](https://www.tensorflow.org/guide/distributed_training). -Tests that use a custom training loop instead of Keras compile/fit should be -placed under python/distribute directory instead. diff --git a/keras/distribute/__init__.py b/keras/distribute/__init__.py deleted file mode 100644 index 80805509652..00000000000 --- a/keras/distribute/__init__.py +++ /dev/null @@ -1,15 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras' Distribution Strategy library.""" diff --git a/keras/distribute/checkpointing_test.py b/keras/distribute/checkpointing_test.py deleted file mode 100644 index a3d586fbc74..00000000000 --- a/keras/distribute/checkpointing_test.py +++ /dev/null @@ -1,132 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import os - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.optimizers.legacy import adam - - -class TrainingCheckpointTests(tf.test.TestCase, parameterized.TestCase): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_one_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.tpu_strategy, # noqa: E501 - tf.__internal__.distribute.combinations.tpu_strategy_packed_var, # noqa: E501 - tf.__internal__.distribute.combinations.central_storage_strategy_with_two_gpus, # noqa: E501 - ], - mode=["eager"], - ) - ) - def testCheckpointRestoreOptimizerSlots(self, distribution): - def state(): - with distribution.scope(): - v = tf.Variable(tf.random.normal([])) - opt = adam.Adam(0.001) - - @tf.function - def step(): - def f(): - with tf.GradientTape() as tape: - loss = v + v - gradients = tape.gradient(loss, [v]) - opt.apply_gradients(zip(gradients, [v])) - - distribution.run(f) - - return v, opt, step - - def checkpoint(): - v, opt, step = state() - step() - - # Save random weights into checkpoint. - checkpoint = tf.train.Checkpoint(v=v, opt=opt) - prefix = os.path.join(self.get_temp_dir(), "ckpt") - with self.test_session(): - save_path = checkpoint.save(prefix) - return save_path - - save_path = checkpoint() - - v, opt, step = state() - checkpoint = tf.train.Checkpoint(v=v, opt=opt) - # Restore from the checkpoint inside a distribution.scope(). - with self.test_session(): - with distribution.scope(): - checkpoint.restore(save_path) - step() - slot = opt.get_slot(v, "m") - self.assertEqual(v._distribute_strategy, slot._distribute_strategy) - - v, opt, step = state() - checkpoint = tf.train.Checkpoint(v=v, opt=opt) - # Restore from the checkpoint outside a distribution.scope(). - with self.test_session(): - with self.assertRaisesRegex( - ValueError, "optimizer slot variable under the scope" - ): - checkpoint.restore(save_path) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_one_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.cloud_tpu_strategy, # noqa: E501 - tf.__internal__.distribute.combinations.tpu_strategy, # noqa: E501 - tf.__internal__.distribute.combinations.tpu_strategy_packed_var, # noqa: E501 - tf.__internal__.distribute.combinations.central_storage_strategy_with_two_gpus, # noqa: E501 - ], - mode=["eager"], - ) - ) - def testCheckpointSaveRestoreIoDevice(self, distribution): - def state(): - with distribution.scope(): - v = tf.Variable(tf.random.normal([])) - return v - - ckpt_options = tf.train.CheckpointOptions( - experimental_io_device="/job:localhost" - ) - - def checkpoint(): - v = state() - # Save random weights into checkpoint. - checkpoint = tf.train.Checkpoint(v=v) - prefix = os.path.join(self.get_temp_dir(), "ckpt") - with self.test_session(): - save_path = checkpoint.save(prefix, options=ckpt_options) - return save_path - - save_path = checkpoint() - - v = state() - checkpoint = tf.train.Checkpoint(v=v) - # Restore from the checkpoint inside a distribution.scope(). - # Check that restore works without error. - with self.test_session(): - with distribution.scope(): - checkpoint.restore(save_path, options=ckpt_options) - - -if __name__ == "__main__": - tf.compat.v1.enable_eager_execution() - tf.test.main() diff --git a/keras/distribute/collective_all_reduce_strategy_test.py b/keras/distribute/collective_all_reduce_strategy_test.py deleted file mode 100644 index 42992cef34b..00000000000 --- a/keras/distribute/collective_all_reduce_strategy_test.py +++ /dev/null @@ -1,70 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for CollectiveAllReduceStrategy.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import layers -from keras.engine import training -from keras.optimizers.legacy import gradient_descent as gradient_descent_keras -from keras.testing_infra import test_utils - - -@test_utils.run_v2_only -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=[ - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_gpu, # noqa: E501 - ], - mode=["eager"], - ) -) -class MultiWorkerMirroredStrategyTest(tf.test.TestCase, parameterized.TestCase): - def testFitWithoutStepsPerEpochPartialBatch(self, strategy): - def _model_fn(): - x = layers.Input(shape=(1,), name="input") - y = layers.Dense(1, name="dense")(x) - model = training.Model(x, y) - return model - - def _get_dataset(): - inputs = tf.expand_dims(tf.constant(range(10)), axis=1) - targets = tf.expand_dims(tf.constant(range(10)), axis=1) - # Make global batch size 12 for 2 replicas and a non-repeated - # dataset with 10 elements so that we have partial batch - dataset = tf.data.Dataset.from_tensor_slices( - (inputs, targets) - ).batch(12, drop_remainder=False) - return dataset - - with strategy.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(0.001) - model = _model_fn() - loss = "mse" - metrics = ["mae"] - model.compile(optimizer, loss, metrics=metrics) - dataset = _get_dataset() - kernel_before = model.get_weights()[0][0] - model.fit(dataset, epochs=10) - kernel_after = model.get_weights()[0][0] - self.assertNotEqual(kernel_before, kernel_after) - self.assertGreater(abs(kernel_before - 1), abs(kernel_after - 1)) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/ctl_correctness_test.py b/keras/distribute/ctl_correctness_test.py deleted file mode 100644 index 48b15e8fb24..00000000000 --- a/keras/distribute/ctl_correctness_test.py +++ /dev/null @@ -1,481 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Custom Training Loop correctness test.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import optimizers -from keras.applications import resnet_v2 -from keras.datasets import fashion_mnist -from keras.distribute import optimizer_combinations -from keras.distribute import strategy_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.ops.losses import losses_impl - -_NUM_SAMPLES = 66 -_BATCH_SIZE = 32 -_RANDOM_SEED = 1337 -_NUM_EPOCHS = 2 -_STEPS_PER_EPOCH = 2 - - -class MaybeStrategyScope: - """Provides a context allowing no distribution strategy.""" - - def __init__(self, strategy): - self._strategy = strategy - self._scope = None - - def __enter__(self): - if self._strategy: - self._scope = self._strategy.scope() - self._scope.__enter__() - - def __exit__(self, exc_type, value, traceback): - if self._strategy: - self._scope.__exit__(exc_type, value, traceback) - self._scope = None - - -def get_model(sync_batchnorm=False): - model = keras.Sequential() - model.add(keras.layers.Dense(10, activation="relu", input_shape=(1,))) - model.add( - keras.layers.Dense( - 10, - activation="relu", - kernel_regularizer=keras.regularizers.l2(1e-4), - ) - ) - if sync_batchnorm: - model.add(keras.layers.BatchNormalization(synchronized=True)) - else: - model.add(keras.layers.BatchNormalization()) - model.add(keras.layers.Dense(10, activation="relu")) - model.add(keras.layers.Dense(1)) - return model - - -def get_data(): - x_train = np.random.rand(_NUM_SAMPLES, 1) - y_train = 3 * x_train - x_train = x_train.astype("float32") - y_train = y_train.astype("float32") - train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) - train_dataset = train_dataset.batch(_BATCH_SIZE) - return train_dataset - - -def compute_loss(labels, logits, reg_losses): - pred_loss = keras.losses.mean_squared_error(labels, logits) - scaled_loss = tf.nn.compute_average_loss( - pred_loss, global_batch_size=_BATCH_SIZE - ) - l2_loss = tf.nn.scale_regularization_loss(reg_losses) - return scaled_loss + l2_loss - - -def iteration_inside_func( - initial_weights, - dataset, - optimizer_fn, - iteration_type, - strategy=None, - sync_batchnorm=None, - jit_compile=False, -): - """Helper function to test iterating over data inside a tf.function.""" - with MaybeStrategyScope(strategy): - if strategy and sync_batchnorm: - model = get_model(sync_batchnorm) - else: - model = get_model() - model.set_weights(initial_weights) - optimizer = optimizer_fn() - - training_accuracy = keras.metrics.CategoricalAccuracy( - "training_accuracy", dtype=tf.float32 - ) - - @tf.function - def train_epoch(dist_input): - """Training StepFn.""" - - @tf.function(jit_compile=jit_compile) - def step_fn(inputs): - samples, labels = inputs - with tf.GradientTape() as tape: - logits = model(samples) - loss = compute_loss(labels, logits, model.losses) - grads = tape.gradient(loss, model.trainable_variables) - optimizer.apply_gradients(zip(grads, model.trainable_variables)) - training_accuracy.update_state(labels, logits) - return loss - - total_loss = 0.0 - num_batches = 0 - if iteration_type == "dataset": - for x in dist_input: - if strategy: - per_replica_losses = strategy.run(step_fn, args=(x,)) - total_loss += strategy.reduce( - tf.distribute.ReduceOp.SUM, - per_replica_losses, - axis=None, - ) - else: - total_loss += step_fn(x) - num_batches += 1 - else: - iterator = iter(dist_input) - for _ in range(_STEPS_PER_EPOCH): - if strategy: - per_replica_losses = strategy.run( - step_fn, args=(next(iterator),) - ) - total_loss += strategy.reduce( - tf.distribute.ReduceOp.SUM, - per_replica_losses, - axis=None, - ) - else: - total_loss += step_fn(next(iterator)) - num_batches += 1 - - return total_loss / tf.cast(num_batches, dtype=tf.float32) - - if strategy: - dataset = strategy.experimental_distribute_dataset(dataset) - - for _ in range(_NUM_EPOCHS): - loss = train_epoch(dataset) - - return (model.get_weights(), loss, training_accuracy.result()) - - -def iteration_outside_func( - initial_weights, - dataset, - optimizer_fn, - iteration_type, - strategy=None, - sync_batchnorm=None, - jit_compile=False, -): - """Helper function to test iterating over data outside a tf.function.""" - with MaybeStrategyScope(strategy): - model = get_model(sync_batchnorm=sync_batchnorm) - model.set_weights(initial_weights) - optimizer = optimizer_fn() - - training_accuracy = keras.metrics.CategoricalAccuracy( - "training_accuracy", dtype=tf.float32 - ) - - @tf.function - def train_step(dist_inputs): - """Training StepFn.""" - - @tf.function(jit_compile=jit_compile) - def step_fn(inputs): - samples, labels = inputs - with tf.GradientTape() as tape: - logits = model(samples) - loss = compute_loss(labels, logits, model.losses) - grads = tape.gradient(loss, model.trainable_variables) - optimizer.apply_gradients(zip(grads, model.trainable_variables)) - training_accuracy.update_state(labels, logits) - return loss - - if strategy: - per_replica_losses = strategy.run(step_fn, args=(dist_inputs,)) - return strategy.reduce( - tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None - ) - else: - return step_fn(dist_inputs) - - if strategy: - dataset = strategy.experimental_distribute_dataset(dataset) - - total_loss = 0.0 - num_batches = 0 - if iteration_type == "dataset": - for _ in range(_NUM_EPOCHS): - for x in dataset: - total_loss += train_step(x) - num_batches += 1 - else: - for _ in range(_NUM_EPOCHS): - iterator = iter(dataset) - for _ in range(_STEPS_PER_EPOCH): - total_loss += train_step(next(iterator)) - num_batches += 1 - - return ( - model.get_weights(), - total_loss / tf.cast(num_batches, dtype=tf.float32), - training_accuracy.result(), - ) - - -@test_utils.run_v2_only -class TestDistributionStrategyDnnCorrectness( - tf.test.TestCase, parameterized.TestCase -): - """Test custom training loop correctness with a simple DNN model.""" - - def setUp(self): - super().setUp() - np.random.seed(_RANDOM_SEED) - tf.compat.v1.set_random_seed(_RANDOM_SEED) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=strategy_combinations.all_strategies, - optimizer_fn=optimizer_combinations.optimizers_v2, - mode=["eager"], - iteration_type=["iterator", "dataset"], - inside_func=[False, True], - sync_batchnorm=[True, False], - jit_compile=[False], - ) - + tf.__internal__.test.combinations.combine( - distribution=strategy_combinations.multiworker_strategies, - optimizer_fn=[ - optimizer_combinations.gradient_descent_optimizer_keras_v2_fn, - optimizer_combinations.adagrad_optimizer_keras_v2_fn, - optimizer_combinations.adam_experimental_fn, - ], - mode=["eager"], - iteration_type=["iterator", "dataset"], - inside_func=[False, True], - sync_batchnorm=[True, False], - jit_compile=[False], - ) - + tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.one_device_strategy_gpu, - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, # noqa: E501 - ], - optimizer_fn=[ - optimizer_combinations.gradient_descent_optimizer_keras_v2_fn, - optimizer_combinations.adagrad_optimizer_keras_v2_fn, - ], - mode=["eager"], - iteration_type=["iterator", "dataset"], - inside_func=[False, True], - sync_batchnorm=[True, False], - jit_compile=[True], - ) - ) - def test_dnn_correctness_minus_tpus( - self, - distribution, - optimizer_fn, - iteration_type, - inside_func, - sync_batchnorm, - jit_compile, - ): - # TODO(anjs): Identify why this particular V1 optimizer needs a higher - # tol. - if ( - "FtrlV1" in optimizer_fn._name - and "TPU" in type(distribution).__name__ - ): - self.skipTest("Reduced tolerance of the order of 1e-1 required.") - self.dnn_correctness( - distribution, - optimizer_fn, - iteration_type, - inside_func, - sync_batchnorm, - jit_compile, - ) - - def dnn_correctness( - self, - distribution, - optimizer_fn, - iteration_type, - inside_func, - sync_batchnorm=None, - jit_compile=False, - ): - model = get_model(sync_batchnorm) - initial_weights = model.get_weights() - dataset = get_data() - if inside_func: - iteration_func = iteration_inside_func - else: - iteration_func = iteration_outside_func - - wts_with_ds, loss_with_ds, acc_with_ds = iteration_func( - initial_weights, - dataset, - optimizer_fn, - iteration_type, - strategy=distribution, - sync_batchnorm=sync_batchnorm, - jit_compile=jit_compile, - ) - wts, loss, acc = iteration_func( - initial_weights, - dataset, - optimizer_fn, - iteration_type, - sync_batchnorm=sync_batchnorm, - jit_compile=False, - ) - - self.assertAllClose(wts, wts_with_ds, atol=1e-3, rtol=1e-3) - self.assertAllClose(loss, loss_with_ds, atol=1e-3, rtol=1e-3) - self.assertAllClose(acc, acc_with_ds, atol=1e-3, rtol=1e-3) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, # noqa: E501 - ], - mode=["eager"], - ) - ) - def test_fused_batch_norm_uneven_batch(self, distribution): - """Test that fused BN works when the last device gets empty data. - - Adapted from - https://www.tensorflow.org/tutorials/distribute/custom_training - but using ResNet, which uses fused batchnorm, as the model. - - Arguments: - distribution: distribute test configuration - """ - self.skipTest("TODO(b/234354008): Requires fetching data from network.") - (train_images, train_labels), _ = fashion_mnist.load_data() - # add channel dimension to make 2D data into 3D, since some ops of the - # model require it. - train_images = train_images[..., None] - train_images = train_images / np.float32(255) - - # Padding images because ResNet requires a minimal shape of (32, 32) - padded_train_images = np.concatenate( - [ - np.zeros((len(train_images), 2, 28, 1)), - train_images, - np.zeros((len(train_images), 2, 28, 1)), - ], - axis=1, - ) - padded_train_images = np.concatenate( - [ - np.zeros((len(train_images), 32, 2, 1)), - padded_train_images, - np.zeros((len(train_images), 32, 2, 1)), - ], - axis=2, - ) - - buffer_size = len(train_images) - global_batch_size = distribution.num_replicas_in_sync - num_samples = global_batch_size - 1 - - epochs = 2 - - # Keep only the first images, so that the last GPU receives an empty - # batch - padded_train_images = padded_train_images[:num_samples] - train_labels = train_labels[:num_samples] - - train_dataset = ( - tf.data.Dataset.from_tensor_slices( - (padded_train_images, train_labels) - ) - .shuffle(buffer_size) - .batch(global_batch_size) - ) - train_dist_dataset = distribution.experimental_distribute_dataset( - train_dataset - ) - - def create_model(): - inputs = keras.Input((32, 32, 1)) - preprocessed = keras.layers.Conv2D(3, (1, 1))( - inputs - ) # ResNet requires 3 channels - features = resnet_v2.ResNet50V2( - include_top=False, - input_tensor=preprocessed, - pooling="avg", - weights=None, - ).output - return keras.Model(inputs, features) - - with distribution.scope(): - # Set reduction to `none` so we can do the reduction afterwards and - # divide by global batch size. - loss_object = keras.losses.SparseCategoricalCrossentropy( - from_logits=True, reduction=losses_impl.Reduction.NONE - ) - - def compute_resnet_loss(labels, predictions): - per_example_loss = loss_object(labels, predictions) - return tf.nn.compute_average_loss( - per_example_loss, global_batch_size=global_batch_size - ) - - model = create_model() - - optimizer = optimizers.adam_legacy.Adam() - - def train_step(inputs): - images, labels = inputs - - with tf.GradientTape() as tape: - predictions = model(images, training=True) - loss = compute_resnet_loss(labels, predictions) - - gradients = tape.gradient(loss, model.trainable_variables) - optimizer.apply_gradients(zip(gradients, model.trainable_variables)) - return loss - - @tf.function - def distributed_train_step(dataset_inputs): - per_replica_losses = distribution.run( - train_step, args=(dataset_inputs,) - ) - return distribution.reduce( - tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None - ) - - for epoch in range(epochs): - # Train loop - total_loss = 0.0 - num_batches = 0 - for x in train_dist_dataset: - total_loss += distributed_train_step(x) - num_batches += 1 - train_loss = total_loss / num_batches - - print(f"Epoch {epoch+1}, Loss: {train_loss}") - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/custom_training_loop_metrics_test.py b/keras/distribute/custom_training_loop_metrics_test.py deleted file mode 100644 index a48a7d6b1b8..00000000000 --- a/keras/distribute/custom_training_loop_metrics_test.py +++ /dev/null @@ -1,133 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for custom training loops.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import metrics -from keras.distribute import strategy_combinations - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -class KerasMetricsTest(tf.test.TestCase, parameterized.TestCase): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=strategy_combinations.all_strategies - + strategy_combinations.multiworker_strategies, - mode=["eager"], - ) - ) - def test_multiple_keras_metrics_experimental_run(self, distribution): - with distribution.scope(): - loss_metric = metrics.Mean("loss", dtype=np.float32) - loss_metric_2 = metrics.Mean("loss_2", dtype=np.float32) - - @tf.function - def train_step(): - def step_fn(): - loss = tf.constant(5.0, dtype=np.float32) - loss_metric.update_state(loss) - loss_metric_2.update_state(loss) - - distribution.run(step_fn) - - train_step() - self.assertEqual( - loss_metric.result().numpy(), loss_metric_2.result().numpy() - ) - self.assertEqual(loss_metric.result().numpy(), 5.0) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=strategy_combinations.all_strategies - + strategy_combinations.multiworker_strategies, - mode=["eager"], - ) - ) - def test_update_keras_metric_declared_in_strategy_scope(self, distribution): - with distribution.scope(): - metric = metrics.Mean("test_metric", dtype=np.float32) - - dataset = tf.data.Dataset.range(10).batch(2) - dataset = distribution.experimental_distribute_dataset(dataset) - - @tf.function - def step_fn(i): - metric.update_state(i) - - for i in dataset: - distribution.run(step_fn, args=(i,)) - - # This should be the mean of integers 0-9 which has a sum of 45 and a - # count of 10 resulting in mean of 4.5. - self.assertEqual(metric.result().numpy(), 4.5) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=strategy_combinations.all_strategies, mode=["eager"] - ) - ) - def test_update_keras_metric_outside_strategy_scope_cross_replica( - self, distribution - ): - metric = metrics.Mean("test_metric", dtype=np.float32) - - with distribution.scope(): - for i in range(10): - metric.update_state(i) - - # This should be the mean of integers 0-9 which has a sum of 45 and a - # count of 10 resulting in mean of 4.5. - self.assertEqual(metric.result().numpy(), 4.5) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=strategy_combinations.all_strategies, mode=["eager"] - ) - ) - @tf_test_utils.disable_mlir_bridge( - "TODO(b/168036682): Support dynamic padder" - ) - def test_update_keras_metrics_dynamic_shape(self, distribution): - with distribution.scope(): - metric = metrics.Mean("test_metric", dtype=np.float32) - - dataset = tf.data.Dataset.range(10).batch(2, drop_remainder=False) - - @tf.function - def train_fn(dataset): - weights = tf.constant([0.1, 0.1]) - - def step_fn(i): - metric.update_state(i, weights) - - for i in dataset: - distribution.run(step_fn, args=(i,)) - - train_fn(dataset) - - # This should be the mean of integers 0-9 which has a sum of 45 and a - # count of 10 resulting in mean of 4.5. - self.assertEqual(metric.result().numpy(), 4.5) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/custom_training_loop_models_test.py b/keras/distribute/custom_training_loop_models_test.py deleted file mode 100644 index cdcd869b9fa..00000000000 --- a/keras/distribute/custom_training_loop_models_test.py +++ /dev/null @@ -1,571 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for custom training loops.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.distribute import strategy_combinations -from keras.layers import core -from keras.optimizers.legacy import gradient_descent - - -class CustomModel(tf.Module): - def __init__(self, name=None): - super().__init__(name=name) - with self.name_scope: - self._layers = [ - keras.layers.Dense(4, name="dense"), - ] - - @tf.Module.with_name_scope - def __call__(self, x): - for layer in self._layers: - x = layer(x) - return x - - -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=( - strategy_combinations.all_strategies - + strategy_combinations.multiworker_strategies - ), - mode=["eager"], - ) -) -class KerasModelsTest(tf.test.TestCase, parameterized.TestCase): - def test_single_keras_layer_run(self, distribution): - dataset = _get_dataset() - input_iterator = iter( - distribution.experimental_distribute_dataset(dataset) - ) - - with distribution.scope(): - model = keras.layers.Dense(4, name="dense") - - @tf.function - def train_step(iterator): - def step_fn(inputs): - images, targets = inputs - with tf.GradientTape() as tape: - outputs = model(images) - loss = keras.losses.mean_squared_error(targets, outputs) - grads = tape.gradient(loss, model.variables) - return grads - - outputs = distribution.run(step_fn, args=(next(iterator),)) - return tf.nest.map_structure( - distribution.experimental_local_results, outputs - ) - - train_step(input_iterator) - - def test_keras_model_optimizer_run(self, distribution): - dataset = _get_dataset() - input_iterator = iter( - distribution.experimental_distribute_dataset(dataset) - ) - - with distribution.scope(): - model = _get_model() - optimizer = keras.optimizers.legacy.rmsprop.RMSprop() - - @tf.function - def train_step(replicated_inputs): - def step_fn(inputs): - images, targets = inputs - with tf.GradientTape() as tape: - outputs = model(images) - loss = keras.losses.mean_squared_error(targets, outputs) - grads = tape.gradient(loss, model.variables) - optimizer.apply_gradients(zip(grads, model.variables)) - return loss - - outputs = distribution.run(step_fn, args=(replicated_inputs,)) - return tf.nest.map_structure( - distribution.experimental_local_results, outputs - ) - - for x in input_iterator: - train_step(x) - - def test_keras_subclass_model_optimizer_run(self, distribution): - def get_subclass_model(): - class KerasSubclassModel(keras.Model): - def __init__(self): - super().__init__() - self.l = keras.layers.Dense(4, name="dense") - - def call(self, x): - return self.l(x) - - return KerasSubclassModel() - - dataset = _get_dataset() - input_iterator = iter( - distribution.experimental_distribute_dataset(dataset) - ) - - with distribution.scope(): - model = get_subclass_model() - optimizer = keras.optimizers.legacy.rmsprop.RMSprop() - - @tf.function - def train_step(iterator): - def step_fn(inputs): - images, targets = inputs - with tf.GradientTape() as tape: - outputs = model(images) - loss = keras.losses.mean_squared_error(targets, outputs) - grads = tape.gradient(loss, model.variables) - optimizer.apply_gradients(zip(grads, model.variables)) - return loss - - outputs = distribution.run(step_fn, args=(next(iterator),)) - return tf.nest.map_structure( - distribution.experimental_local_results, outputs - ) - - train_step(input_iterator) - - def test_keras_model_optimizer_run_loop(self, distribution): - dataset = _get_dataset() - input_iterator = iter( - distribution.experimental_distribute_dataset(dataset) - ) - - with distribution.scope(): - model = _get_model() - optimizer = keras.optimizers.legacy.rmsprop.RMSprop() - - @tf.function - def train_step(iterator): - def step_fn(inputs): - images, targets = inputs - with tf.GradientTape() as tape: - outputs = model(images) - loss = keras.losses.mean_squared_error(targets, outputs) - grads = tape.gradient(loss, model.variables) - optimizer.apply_gradients(zip(grads, model.variables)) - return loss - - for _ in tf.range(4): - distribution.run(step_fn, args=(next(iterator),)) - - train_step(input_iterator) - - def test_batch_norm_with_dynamic_batch(self, distribution): - inputs = np.zeros((10, 3, 3, 3), dtype=np.float32) - targets = np.zeros((10, 4), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat() - dataset = dataset.batch(10) - input_iterator = iter( - distribution.experimental_distribute_dataset(dataset) - ) - - with distribution.scope(): - x = keras.layers.Input(shape=(3, 3, 3), name="input") - y = keras.layers.BatchNormalization(fused=True, name="bn")(x) - y = keras.layers.Flatten()(y) - y = keras.layers.Dense(4, name="dense")(y) - model = keras.Model(x, y) - optimizer = keras.optimizers.legacy.rmsprop.RMSprop() - - @tf.function - def train_step(iterator): - def step_fn(inputs): - images, targets = inputs - with tf.GradientTape() as tape: - outputs = model(images, training=True) - loss = keras.losses.mean_squared_error(targets, outputs) - grads = tape.gradient(loss, model.variables) - optimizer.apply_gradients(zip(grads, model.variables)) - return loss - - distribution.run(step_fn, args=(next(iterator),)) - - train_step(input_iterator) - - def test_lstm(self, distribution): - - batch_size = 32 - - def create_lstm_model(): - model = keras.models.Sequential() - # We only have LSTM variables so we can detect no gradient issues - # more easily. - model.add( - keras.layers.LSTM( - 1, return_sequences=False, input_shape=(10, 1) - ) - ) - return model - - def create_lstm_data(): - seq_length = 10 - - x_train = np.random.rand(batch_size, seq_length, 1).astype( - "float32" - ) - y_train = np.random.rand(batch_size, 1).astype("float32") - return x_train, y_train - - x, y = create_lstm_data() - dataset = tf.data.Dataset.from_tensor_slices((x, y)) - dataset = dataset.batch(batch_size) - input_iterator = iter( - distribution.experimental_distribute_dataset(dataset) - ) - - with distribution.scope(): - model = create_lstm_model() - optimizer = keras.optimizers.legacy.gradient_descent.SGD() - - @tf.function - def train_step(input_iterator): - def step_fn(inputs): - inps, targ = inputs - with tf.GradientTape() as tape: - output = model(inps) - loss = tf.reduce_mean( - keras.losses.binary_crossentropy( - y_true=targ, y_pred=output, from_logits=False - ) - ) - grads = tape.gradient(loss, model.variables) - optimizer.apply_gradients(zip(grads, model.variables)) - return loss - - outputs = distribution.run(step_fn, args=(next(input_iterator),)) - return distribution.experimental_local_results(outputs) - - train_step(input_iterator) - - def test_nested_tf_functions(self, distribution): - # The test builds two computations with keras layers, one with nested - # tf.function, and the other without nested tf.function. We run these - # computations independently on the model with same weights, and make - # sure the variables are still the same after one training step. - - inputs = np.random.random((10, 3)).astype(np.float32) - targets = np.ones((10, 4), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)).repeat() - dataset = dataset.batch(10) - input_iterator = iter( - distribution.experimental_distribute_dataset(dataset) - ) - - def get_model(): - x = keras.layers.Input(shape=(3,), name="input") - y = keras.layers.Dense(4, name="dense")(x) - model = keras.Model(x, y) - return model - - with distribution.scope(): - model = get_model() - optimizer = keras.optimizers.legacy.gradient_descent.SGD( - 0.1, momentum=0.01 - ) - weights_file = os.path.join(self.get_temp_dir(), ".h5") - model.save_weights(weights_file) - model2 = get_model() - model2.load_weights(weights_file) - - # Make sure model and model2 variables are in sync when initialized. - for model_v, model2_v in zip(model.variables, model2.variables): - self.assertAllClose(model_v.numpy(), model2_v.numpy()) - - def compute_loss(images, targets): - outputs = model(images) - return keras.losses.mean_squared_error(targets, outputs) - - @tf.function - def train_step_without_nested_tf_function(inputs): - def step_fn(inputs): - images, targets = inputs - with tf.GradientTape() as tape: - loss = compute_loss(images, targets) - grads = tape.gradient(loss, model.variables) - optimizer.apply_gradients(zip(grads, model.variables)) - - distribution.run(step_fn, args=(inputs,)) - - @tf.function - def compute_loss2(images, targets): - outputs = model2(images) - return keras.losses.mean_squared_error(targets, outputs) - - @tf.function - def train_step_with_nested_tf_function(inputs): - def step_fn(inputs): - images, targets = inputs - with tf.GradientTape() as tape: - loss = compute_loss2(images, targets) - grads = tape.gradient(loss, model2.variables) - optimizer.apply_gradients(zip(grads, model2.variables)) - - distribution.run(step_fn, args=(inputs,)) - - inputs = next(input_iterator) - - train_step_without_nested_tf_function(inputs) - train_step_with_nested_tf_function(inputs) - - # Make sure model and model2 variables are still in sync. - for model_v, model2_v in zip(model.variables, model2.variables): - self.assertAllClose(model_v.numpy(), model2_v.numpy()) - - def test_nested_tf_functions_with_control_flow(self, distribution): - inputs = np.random.random((10, 3)).astype(np.float32) - targets = np.ones((10, 4), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)).repeat() - dataset = dataset.batch(10) - input_iterator = iter( - distribution.experimental_distribute_dataset(dataset) - ) - - def get_model(): - x = keras.layers.Input(shape=(3,), name="input") - y = keras.layers.Dense(4, name="dense")(x) - model = keras.Model(x, y) - return model - - with distribution.scope(): - model = get_model() - optimizer = keras.optimizers.legacy.gradient_descent.SGD( - 0.1, momentum=0.01 - ) - - @tf.function - def train_step(iterator): - def step_fn(inputs): - images, targets = inputs - with tf.GradientTape() as tape: - outputs = model(images) - loss = keras.losses.mean_squared_error(targets, outputs) - grads = tape.gradient(loss, model.variables) - optimizer.apply_gradients(zip(grads, model.variables)) - - distribution.run(step_fn, args=(next(iterator),)) - - @tf.function - def train_steps(iterator): - for _ in tf.range(10): - train_step(iterator) - - train_steps(input_iterator) - - def test_nested_tf_functions_with_tf_function_passing_to_strategy_run( - self, distribution - ): - self.skipTest("b/190608193") - - inputs = np.random.random((10, 3)).astype(np.float32) - targets = np.ones((10, 4), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)).repeat() - dataset = dataset.batch(10) - input_iterator = iter( - distribution.experimental_distribute_dataset(dataset) - ) - - def get_model(): - x = keras.layers.Input(shape=(3,), name="input") - y = keras.layers.Dense(4, name="dense")(x) - model = keras.Model(x, y) - return model - - with distribution.scope(): - model = get_model() - optimizer = keras.optimizers.legacy.gradient_descent.SGD( - 0.1, momentum=0.01 - ) - - @tf.function - def compute_loss(images, targets): - outputs = model(images) - return keras.losses.mean_squared_error(targets, outputs) - - @tf.function - def step_fn(inputs): - images, targets = inputs - with tf.GradientTape() as tape: - loss = compute_loss(images, targets) - grads = tape.gradient(loss, model.variables) - optimizer.apply_gradients(zip(grads, model.variables)) - - inputs = next(input_iterator) - distribution.run(step_fn, args=(inputs,)) - - def test_customized_tf_module_run(self, distribution): - dataset = _get_dataset() - input_iterator = iter( - distribution.experimental_distribute_dataset(dataset) - ) - - with distribution.scope(): - model = CustomModel() - - @tf.function - def train_step(iterator): - def step_fn(inputs): - images, targets = inputs - with tf.GradientTape() as tape: - outputs = model(images) - loss = keras.losses.mean_squared_error(targets, outputs) - grads = tape.gradient(loss, model.variables) - return grads - - outputs = distribution.run(step_fn, args=(next(iterator),)) - return tf.nest.map_structure( - distribution.experimental_local_results, outputs - ) - - train_step(input_iterator) - - def test_reduce_loss(self, distribution): - inputs = np.zeros((10, 4), dtype=np.float32) - targets = np.zeros((10, 1), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.batch(10) - input_iterator = iter( - distribution.experimental_distribute_dataset(dataset) - ) - - with distribution.scope(): - x = keras.layers.Input(shape=(4), name="input") - y = keras.layers.Dense(3, name="dense")(x) - model = keras.Model(x, y) - - @tf.function - def train_step(iterator): - def step_fn(inputs): - images, targets = inputs - outputs = model(images) - loss = keras.losses.sparse_categorical_crossentropy( - targets, outputs - ) - return loss - - return distribution.run(step_fn, args=(next(iterator),)) - - loss = train_step(input_iterator) - loss = distribution.reduce(tf.distribute.ReduceOp.MEAN, loss, axis=0) - - def test_variable_run_argument(self, distribution): - # Test that variables passed to run() remain variables. Previous - # behavior in TPUStrategy was to cast to Tensor. - - with distribution.scope(): - optimizer = gradient_descent.SGD(0.1) - net = core.Dense(1, trainable=True) - dataset = tf.data.Dataset.from_tensors([[1.0]]) - dataset = dataset.repeat() - dataset = dataset.batch(2, drop_remainder=True) - - def replica_step(trainable_variables, features): - - with tf.GradientTape() as tape: - net_out = net(features[0], training=True) - loss = (net_out - 1.0) * (net_out - 1.0) - gradients = tape.gradient(loss, trainable_variables) - optimizer.apply_gradients(zip(gradients, trainable_variables)) - return loss - - @tf.function - def step(features): - per_replica_losses = distribution.run( - replica_step, - (net.trainable_variables, features), - ) - loss = distribution.reduce( - tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None - ) - return loss - - step(next(iter(dataset))) - - -class KerasModelsXLATest(tf.test.TestCase, parameterized.TestCase): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=strategy_combinations.tpu_strategies, mode=["eager"] - ) - ) - def test_tf_function_jit_compile(self, distribution): - dataset = _get_dataset() - input_iterator = iter( - distribution.experimental_distribute_dataset(dataset) - ) - - class CustomDense(keras.layers.Layer): - def __init__(self, num_outputs): - super().__init__() - self.num_outputs = num_outputs - - def build(self, input_shape): - self.kernel = self.add_weight( - "kernel", shape=[int(input_shape[-1]), self.num_outputs] - ) - - @tf.function(jit_compile=True) - def call(self, inputs): - return tf.matmul(inputs, self.kernel) - - with distribution.scope(): - x = keras.layers.Input(shape=(3,)) - y = CustomDense(4)(x) - model = keras.Model(x, y) - - @tf.function - def train_step(iterator): - def step_fn(inputs): - images, targets = inputs - with tf.GradientTape() as tape: - outputs = model(images) - loss = keras.losses.mean_squared_error(targets, outputs) - grads = tape.gradient(loss, model.variables) - return grads - - outputs = distribution.run(step_fn, args=(next(iterator),)) - return tf.nest.map_structure( - distribution.experimental_local_results, outputs - ) - - train_step(input_iterator) - - -def _get_dataset(): - inputs = np.zeros((31, 3), dtype=np.float32) - targets = np.zeros((31, 4), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.batch(10) - return dataset - - -def _get_model(): - x = keras.layers.Input(shape=(3,), name="input") - y = keras.layers.Dense(4, name="dense")(x) - model = keras.Model(x, y) - return model - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/custom_training_loop_optimizer_test.py b/keras/distribute/custom_training_loop_optimizer_test.py deleted file mode 100644 index c972b96a2e5..00000000000 --- a/keras/distribute/custom_training_loop_optimizer_test.py +++ /dev/null @@ -1,139 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for custom training loops that involves advanced optimizer usage.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.distribute import ( - strategy_combinations as keras_strategy_combinations, -) -from keras.optimizers.legacy import gradient_descent - -# isort: off -from tensorflow.python.distribute import values - - -class OptimizerTest(tf.test.TestCase, parameterized.TestCase): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine( - distribution=keras_strategy_combinations.multidevice_strategies, - mode=["eager"], - ), - tf.__internal__.test.combinations.combine( - experimental_aggregate_gradients=True, - expected=[[[-0.3, -0.3], [-0.3, -0.3]]], - ) - + tf.__internal__.test.combinations.combine( - experimental_aggregate_gradients=False, - expected=[[[-0.1, -0.1], [-0.2, -0.2]]], - ), - ) - ) - def test_custom_aggregation( - self, distribution, experimental_aggregate_gradients, expected - ): - - with distribution.scope(): - v = tf.Variable([0.0, 0.0]) - optimizer = gradient_descent.SGD(0.1) - - class PerReplica(values.DistributedValues): - """Holds a map from replica to unsynchronized values.""" - - @property - def values(self): - """Returns the per replica values.""" - return self._values - - @tf.function - def optimize(): - with tf.device(distribution.extended.worker_devices[0]): - v1 = tf.convert_to_tensor([1.0, 1.0]) - with tf.device(distribution.extended.worker_devices[1]): - v2 = tf.convert_to_tensor([2.0, 2.0]) - grads = PerReplica([v1, v2]) - - def step_fn(grads): - optimizer.apply_gradients( - [(grads, v)], - experimental_aggregate_gradients=experimental_aggregate_gradients, # noqa: E501 - ) - return v.read_value() - - return distribution.experimental_local_results( - distribution.run(step_fn, args=(grads,)) - ) - - self.assertAllClose(optimize(), expected) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=tf.__internal__.distribute.combinations.one_device_strategy, # noqa: E501 - mode=["eager"], - experimental_aggregate_gradients=[True, False], - ) - ) - def test_custom_aggregation_one_device( - self, distribution, experimental_aggregate_gradients - ): - - with distribution.scope(): - v = tf.Variable([0.0, 0.0]) - optimizer = gradient_descent.SGD(0.1) - - @tf.function - def optimize(): - grads = tf.convert_to_tensor([1.0, 1.0]) - - def step_fn(grads): - optimizer.apply_gradients( - [(grads, v)], - experimental_aggregate_gradients=experimental_aggregate_gradients, # noqa: E501 - ) - return v.read_value() - - return distribution.experimental_local_results( - distribution.run(step_fn, args=(grads,)) - ) - - self.assertAllClose(optimize(), [[-0.1, -0.1]]) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.central_storage_strategy_with_gpu_and_cpu # noqa: E501 - ] - ) - ) - def test_custom_aggregation_central_storage(self, distribution): - with distribution.scope(): - v = tf.Variable([0.0, 0.0]) - optimizer = gradient_descent.SGD(0.1) - - grads = tf.convert_to_tensor([1.0, 1.0]) - - def step_fn(grads): - with self.assertRaises(NotImplementedError): - optimizer.apply_gradients( - [(grads, v)], experimental_aggregate_gradients=False - ) - - return distribution.run(step_fn, args=(grads,)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/distribute/dataset_creator_model_fit_ps_only_test.py b/keras/distribute/dataset_creator_model_fit_ps_only_test.py deleted file mode 100644 index 077ff151008..00000000000 --- a/keras/distribute/dataset_creator_model_fit_ps_only_test.py +++ /dev/null @@ -1,178 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for `DatasetCreator` with `Model.fit` across usages and strategies.""" - -import tensorflow.compat.v2 as tf - -from keras import callbacks as callbacks_lib -from keras.distribute import dataset_creator_model_fit_test_base as test_base -from keras.distribute import strategy_combinations -from keras.testing_infra import test_utils - - -@test_utils.run_v2_only -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=strategy_combinations.parameter_server_strategies_multi_worker, - use_dataset_creator=[True, False], - mode="eager", - ) -) -class DatasetCreatorModelFitParameterServerStrategyOnlyTest( - test_base.DatasetCreatorModelFitTestBase -): - def testModelFitWithRunEagerly(self, strategy, use_dataset_creator): - with self.assertRaisesRegex( - ValueError, - "When using `Model` with `ParameterServerStrategy`, " - "`run_eagerly` is not supported.", - ): - self._model_fit( - strategy, - run_eagerly=True, - use_dataset_creator=use_dataset_creator, - ) - - def testModelPredict(self, strategy, use_dataset_creator): - if use_dataset_creator: - self.skipTest("Unused option.") - model, _ = self._model_compile(strategy) - test_data = ( - tf.data.Dataset.from_tensor_slices( - [[1.0], [2.0], [3.0], [1.0], [5.0], [1.0]] - ) - .repeat() - .batch(2) - ) - model.predict(x=test_data, steps=3) - - def testClusterCoordinatorSingleInstance( - self, strategy, use_dataset_creator - ): - model = self._model_fit( - strategy, use_dataset_creator=use_dataset_creator - ) - strategy = model.distribute_strategy - self.assertIs( - strategy._cluster_coordinator, - tf.distribute.experimental.coordinator.ClusterCoordinator(strategy), - ) - - def testModelFitErrorOnBatchLevelCallbacks( - self, strategy, use_dataset_creator - ): - class BatchLevelCallback(callbacks_lib.Callback): - def on_train_batch_end(self, batch, logs=None): - pass - - with self.assertRaisesRegex( - ValueError, "Batch-level `Callback`s are not supported" - ): - callbacks = [BatchLevelCallback()] - self._model_fit( - strategy, - callbacks=callbacks, - use_dataset_creator=use_dataset_creator, - ) - - def testModelFitCallbackSupportsTFLogs(self, strategy, use_dataset_creator): - class MyCallback(callbacks_lib.Callback): - def __init__(self): - super().__init__() - # Fetches the RemoteValues if necessary. - self._supports_tf_logs = True - - def on_train_batch_end(self, batch, logs=None): - assert isinstance( - logs, tf.distribute.experimental.coordinator.RemoteValue - ) - - my_callback = MyCallback() - callbacks = [my_callback] - self._model_fit( - strategy, - callbacks=callbacks, - use_dataset_creator=use_dataset_creator, - ) - - def testModelFitVerbosity(self, strategy, use_dataset_creator): - class MyCallback(callbacks_lib.Callback): - pass - - my_callback = MyCallback() - callbacks = [my_callback] - self._model_fit( - strategy, - callbacks=callbacks, - use_dataset_creator=use_dataset_creator, - ) - # PSStrategy should default to epoch-level logging. - self.assertEqual(my_callback.params["verbose"], 2) - - def testModelFitTensorBoardEpochLevel(self, strategy, use_dataset_creator): - log_dir = self.get_temp_dir() - callbacks = [callbacks_lib.TensorBoard(log_dir)] - self._model_fit( - strategy, - callbacks=callbacks, - use_dataset_creator=use_dataset_creator, - ) - self.assertTrue(tf.compat.v1.gfile.Exists(log_dir)) - files = tf.compat.v1.gfile.ListDirectory(log_dir) - self.assertGreaterEqual(len(files), 1) - - def testModelFitVerbose1(self, strategy, use_dataset_creator): - with self.assertRaisesRegex( - ValueError, - "`verbose=1` is not allowed with " - "`ParameterServerStrategy` for performance " - "reasons. Received: verbose=1", - ): - self._model_fit( - strategy, use_dataset_creator=use_dataset_creator, verbose=1 - ) - - def testModelEvaluateErrorOnBatchLevelCallbacks( - self, strategy, use_dataset_creator - ): - class BatchLevelCallback(callbacks_lib.Callback): - def on_train_batch_end(self, batch, logs=None): - pass - - with self.assertRaisesRegex( - ValueError, "Batch-level `Callback`s are not supported" - ): - callbacks = [BatchLevelCallback()] - self._model_evaluate( - strategy, - callbacks=callbacks, - use_dataset_creator=use_dataset_creator, - ) - - def testClusterCoordinatorSingleInstanceWithJitCompileTrue( - self, strategy, use_dataset_creator - ): - model = self._model_fit( - strategy, use_dataset_creator=use_dataset_creator, jit_compile=True - ) - strategy = model.distribute_strategy - self.assertIs( - strategy._cluster_coordinator, - tf.distribute.experimental.coordinator.ClusterCoordinator(strategy), - ) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/dataset_creator_model_fit_test.py b/keras/distribute/dataset_creator_model_fit_test.py deleted file mode 100644 index c6b36be62c4..00000000000 --- a/keras/distribute/dataset_creator_model_fit_test.py +++ /dev/null @@ -1,300 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for `DatasetCreator` with `Model.fit` across usages and strategies.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.distribute import dataset_creator_model_fit_test_base as test_base -from keras.distribute import strategy_combinations -from keras.testing_infra import test_utils -from keras.utils import dataset_creator - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -# TODO(rchao): Investigate why there cannot be single worker and multi worker -# PS strategies running in the same shard. -@test_utils.run_v2_only -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=strategy_combinations.all_strategies - + strategy_combinations.multi_worker_mirrored_strategies - + strategy_combinations.parameter_server_strategies_multi_worker, - mode="eager", - ) -) -class DatasetCreatorModelFitTest(test_base.DatasetCreatorModelFitTestBase): - def setUp(self): - super().setUp() - if tf_test_utils.is_xla_enabled(): - self.skipTest( - "model.optimizer.iterations values is not as expected " - "with XLA: b/184384487" - ) - - def testModelFit(self, strategy): - model = self._model_fit(strategy) - self.assertEqual(model.optimizer.iterations, 100) - - def testModelFitwithStepsPerEpochNegativeOne(self, strategy): - def dataset_fn(input_context): - del input_context - x = tf.random.uniform((10, 10)) - y = tf.random.uniform((10,)) - return ( - tf.data.Dataset.from_tensor_slices((x, y)).shuffle(10).batch(2) - ) - - if strategy._should_use_with_coordinator: - with self.assertRaises( - (tf.errors.OutOfRangeError, tf.errors.CancelledError) - ): - self._model_fit( - strategy, - steps_per_epoch=-1, - x=dataset_creator.DatasetCreator(dataset_fn), - validation_data=dataset_creator.DatasetCreator(dataset_fn), - ) - else: - self._model_fit( - strategy, - steps_per_epoch=-1, - x=dataset_creator.DatasetCreator(dataset_fn), - validation_data=dataset_creator.DatasetCreator(dataset_fn), - ) - - def testModelFitWithNumpyData(self, strategy): - x = np.random.rand(100, 10) - y = np.random.rand(100, 1) - model = self._model_fit( - strategy, - x=x, - y=y, - batch_size=1, - validation_data=(x, y), - ) - self.assertEqual(model.optimizer.iterations, 100) - - def testModelFitWithTensorData(self, strategy): - x = tf.random.uniform((100, 10)) - y = tf.random.uniform((100,)) - model = self._model_fit( - strategy, - x=x, - y=y, - batch_size=1, - validation_data=(x, y), - ) - self.assertEqual(model.optimizer.iterations, 100) - - def testModelFitWithLookupLayer(self, strategy): - model = self._model_fit(strategy, use_lookup_layer=True) - self.assertEqual(model.optimizer.iterations, 100) - - def testModelFitWithNormalizationLayer(self, strategy): - model = self._model_fit(strategy, with_normalization_layer=True) - self.assertEqual(model.optimizer.iterations, 100) - - def testModelFitWithStepsPerExecution(self, strategy): - model = self._model_fit(strategy, steps_per_execution=10) - self.assertEqual(model.optimizer.iterations, 100) - - def testModelFitWithNoStepsPerEpoch(self, strategy): - with self.assertRaisesRegex( - ValueError, - "When using a `tf.keras.utils.experimental.DatasetCreator`, " - "`steps_per_epoch`, `validation_steps`, `steps`, or " - "`pss_evaluation_shards` argument must be provided in " - "`Model.fit`, `Model.evaluate`, or `Model.predict`.", - ): - self._model_fit(strategy, steps_per_epoch=None) - - def testModelEvaluate(self, strategy): - self._model_evaluate(strategy) - self.assertGreaterEqual(self._accuracy_metric.result(), 0.0) - - def testModelEvaluateWithNumpyData(self, strategy): - x = np.random.rand(100, 10) - y = np.random.rand(100, 1) - self._model_evaluate( - strategy, - x=x, - y=y, - batch_size=1, - ) - self.assertGreaterEqual(self._accuracy_metric.result(), 0.0) - - def testModelEvaluateWithTensorData(self, strategy): - x = tf.random.uniform((100, 10)) - y = tf.random.uniform((100,)) - self._model_evaluate( - strategy, - x=x, - y=y, - batch_size=1, - ) - self.assertGreaterEqual(self._accuracy_metric.result(), 0.0) - - def testModelEvaluateWithNormalizationLayer(self, strategy): - self._model_evaluate(strategy, with_normalization_layer=True) - self.assertGreaterEqual(self._accuracy_metric.result(), 0.0) - - def testModelEvaluateWithStepsPerExecution(self, strategy): - self._model_evaluate(strategy, steps_per_execution=10) - self.assertGreaterEqual(self._accuracy_metric.result(), 0.0) - - def testModelEvaluateWithNoStepsPerEpoch(self, strategy): - with self.assertRaisesRegex( - ValueError, - "When using a `tf.keras.utils.experimental.DatasetCreator`, " - "`steps_per_epoch`, `validation_steps`, `steps`, or " - "`pss_evaluation_shards` argument must be provided in " - "`Model.fit`, `Model.evaluate`, or `Model.predict`.", - ): - self._model_evaluate(strategy, steps=None) - - def testModelPredict(self, strategy): - _, predictions = self._model_predict(strategy, steps=3) - # Check the first (0th index), fourth (3rd index) and the last - # predictions because the first, fourth and the last input are the same - # in `model.predict` so there predictions should match. - self.assertTrue( - all(predictions[0] == predictions[i] for i in [0, 3, 5]) - ) - - self.assertFalse( - all(predictions[0] == predictions[i] for i in [0, 1, 2, 4]) - ) - - def testModelPredictWithNumpyData(self, strategy): - x = np.array([[1.0], [2.0], [3.0], [1.0], [5.0], [1.0]]) - _, predictions = self._model_predict(strategy, test_data=x) - - self.assertTrue( - all(predictions[0] == predictions[i] for i in [0, 3, 5]) - ) - self.assertFalse( - all(predictions[0] == predictions[i] for i in [0, 1, 2, 4]) - ) - - def testModelPredictWithTensorData(self, strategy): - x = tf.constant([[1.0], [2.0], [3.0], [1.0], [5.0], [1.0]]) - _, predictions = self._model_predict(strategy, test_data=x) - self.assertTrue( - all(predictions[0] == predictions[i] for i in [0, 3, 5]) - ) - self.assertFalse( - all(predictions[0] == predictions[i] for i in [0, 1, 2, 4]) - ) - - def testModelPredictWithNormalizationLayer(self, strategy): - _, predictions = self._model_predict( - strategy, with_normalization_layer=True, steps=3 - ) - # Check the first (0th index), fourth (3rd index) and the last - # predictions because the first, fourth and the last input is the same - # in `model.predict` so there predictions should match. - self.assertTrue( - all(predictions[0] == predictions[i] for i in [0, 3, 5]) - ) - - self.assertFalse( - all(predictions[0] == predictions[i] for i in [0, 1, 2, 4]) - ) - - def testModelPredictWithStepsPerExecution(self, strategy): - _, predictions = self._model_predict( - strategy, steps_per_execution=3, steps=3 - ) - - # Check the first (0th index), fourth (3rd index) and the last - # predictions because the first, fourth and the last input is the same - # in `model.predict` so there predictions should match. - self.assertTrue( - all(predictions[0] == predictions[i] for i in [0, 3, 5]) - ) - - self.assertFalse( - all(predictions[0] == predictions[i] for i in [0, 1, 2, 4]) - ) - - def testModelFitAndPredict(self, strategy): - def fit_dataset_fn(input_context): - del input_context - x = tf.random.uniform((10, 1)) - y = tf.random.uniform((10,)) - return ( - tf.data.Dataset.from_tensor_slices((x, y)) - .shuffle(10) - .repeat() - .batch(2) - ) - - x = dataset_creator.DatasetCreator(fit_dataset_fn) - validation_data = dataset_creator.DatasetCreator(fit_dataset_fn) - - model = self._model_fit(strategy, x=x, validation_data=validation_data) - _, predictions = self._model_predict(strategy, model, steps=3) - - # Check the first (0th index), fourth (3rd index) and the last - # predictions because the first, fourth and the last input is the same - # in `model.predict` so there predictions should match. - self.assertTrue( - all(predictions[0] == predictions[i] for i in [0, 3, 5]) - ) - - self.assertFalse( - all(predictions[0] == predictions[i] for i in [0, 1, 2, 4]) - ) - - def testModelPredictWithDatasetCreator(self, strategy): - if isinstance(strategy, tf.distribute.MultiWorkerMirroredStrategy): - self.skipTest("b/189223991") - - def _dataset_fn(input_context): - del input_context - x = tf.constant([[1.0], [2.0], [3.0], [1.0], [5.0], [1.0]]) - return tf.data.Dataset.from_tensor_slices(x).repeat().batch(2) - - _, predictions = self._model_predict( - strategy, - steps=3, - test_data=dataset_creator.DatasetCreator(_dataset_fn), - ) - - # Check the first (0th index), fourth (3rd index) and the last - # predictions because the first, fourth and the last input is the same - # in `model.predict` so there predictions should match. - self.assertTrue( - all(predictions[0] == predictions[i] for i in [0, 3, 5]) - ) - - self.assertFalse( - all(predictions[0] == predictions[i] for i in [0, 1, 2, 4]) - ) - - def testModelTrainTFFunction(self, strategy): - model = self._model_fit(strategy) - self.assertIsInstance( - model.train_tf_function, tf.__internal__.function.Function - ) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/dataset_creator_model_fit_test_base.py b/keras/distribute/dataset_creator_model_fit_test_base.py deleted file mode 100644 index e7318fdf3b3..00000000000 --- a/keras/distribute/dataset_creator_model_fit_test_base.py +++ /dev/null @@ -1,267 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for `DatasetCreator` with `Model.fit` across usages and strategies.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import callbacks as callbacks_lib -from keras.engine import sequential -from keras.layers import core as core_layers -from keras.layers.preprocessing import string_lookup -from keras.optimizers.legacy import gradient_descent -from keras.utils import dataset_creator - -# isort: off -from tensorflow.python.platform import tf_logging as logging - - -class DatasetCreatorModelFitTestBase(tf.test.TestCase, parameterized.TestCase): - """The base class for DatasetCreator with Model.fit tests.""" - - def _get_dataset_fn(self, use_lookup_layer): - - if use_lookup_layer: - - filepath = os.path.join(self.get_temp_dir(), "vocab") - with open(filepath, "w") as f: - f.write("\n".join(["earth", "wind", "and", "fire"])) - - def dataset_fn(input_context): - del input_context - lookup_layer = string_lookup.StringLookup( - num_oov_indices=1, vocabulary=filepath - ) - x = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - y = np.array([0, 1]) - map_fn = lambda x, y: (lookup_layer(x), y) - return ( - tf.data.Dataset.from_tensor_slices((x, y)) - .shuffle(10) - .repeat() - .batch(2) - .map(map_fn) - ) - - else: - - def dataset_fn(input_context): - del input_context - x = tf.random.uniform((10, 10)) - y = tf.random.uniform((10,)) - return ( - tf.data.Dataset.from_tensor_slices((x, y)) - .shuffle(10) - .repeat() - .batch(2) - ) - - return dataset_fn - - def _model_compile( - self, - strategy, - steps_per_execution=1, - run_eagerly=False, - with_normalization_layer=False, - jit_compile=None, - ): - class ResultAssertingCallback(callbacks_lib.Callback): - """A callback that asserts the result of the tests.""" - - def __init__(self): - self._prev_epoch = -1 - - def on_epoch_end(self, epoch, logs=None): - logging.info("testModelFit: epoch=%r, logs=%r", epoch, logs) - if epoch <= self._prev_epoch: - raise RuntimeError( - "Epoch is supposed to be larger than previous." - ) - self._prev_epoch = epoch - is_loss_float = logs.get( - "loss", None - ) is not None and isinstance(logs["loss"], (float, np.floating)) - if not is_loss_float: - raise RuntimeError( - "loss is supposed to be in the logs and float." - ) - - with strategy.scope(): - model = sequential.Sequential([core_layers.Dense(10)]) - if with_normalization_layer: - norm = keras.layers.BatchNormalization( - axis=-1, input_shape=(4, 4, 3), momentum=0.8 - ) - model.add(norm) - model.add(core_layers.Dense(1, activation="sigmoid")) - self._accuracy_metric = keras.metrics.Accuracy() - - model.compile( - gradient_descent.SGD(), - loss="binary_crossentropy", - metrics=[self._accuracy_metric], - steps_per_execution=steps_per_execution, - run_eagerly=run_eagerly, - jit_compile=jit_compile, - ) - return model, [ResultAssertingCallback()] - - def _model_fit( - self, - strategy, - steps_per_execution=1, - validation_data=None, - x=None, - y=None, - shuffle=True, - batch_size=None, - steps_per_epoch=10, - run_eagerly=False, - with_normalization_layer=False, - callbacks=None, - use_lookup_layer=False, - use_dataset_creator=True, - verbose="auto", - jit_compile=None, - ): - if callbacks is None: - callbacks = [] - - model, default_callbacks = self._model_compile( - strategy, - steps_per_execution, - run_eagerly, - with_normalization_layer, - jit_compile, - ) - callbacks += default_callbacks - - if x is None: - if use_dataset_creator: - x = dataset_creator.DatasetCreator( - self._get_dataset_fn(use_lookup_layer) - ) - else: - x = self._get_dataset_fn(use_lookup_layer)(None) - - if validation_data is None: - if use_dataset_creator: - validation_data = dataset_creator.DatasetCreator( - self._get_dataset_fn(use_lookup_layer) - ) - else: - validation_data = self._get_dataset_fn(use_lookup_layer)(None) - - model.fit( - x, - y, - shuffle=shuffle, - batch_size=batch_size, - epochs=10, - steps_per_epoch=steps_per_epoch, - callbacks=callbacks, - validation_data=validation_data, - validation_steps=steps_per_epoch, - verbose=verbose, - ) - return model - - def _model_evaluate( - self, - strategy, - steps_per_execution=1, - x=None, - y=None, - batch_size=None, - steps=10, - run_eagerly=False, - with_normalization_layer=False, - callbacks=None, - use_dataset_creator=True, - ): - if callbacks is None: - callbacks = [] - - model, default_callbacks = self._model_compile( - strategy, - steps_per_execution, - run_eagerly, - with_normalization_layer, - ) - callbacks += default_callbacks - - def dataset_fn(input_context): - del input_context - x = tf.random.uniform((10, 10)) - y = tf.random.uniform((10, 1)) - return ( - tf.data.Dataset.from_tensor_slices((x, y)) - .shuffle(10) - .repeat() - .batch(8) - ) - - if x is None: - if use_dataset_creator: - x = dataset_creator.DatasetCreator(dataset_fn) - else: - x = dataset_fn(None) - - model.evaluate( - x=x, y=y, steps=steps, callbacks=callbacks, batch_size=batch_size - ) - return model - - def _model_predict( - self, - strategy, - model=None, - steps_per_execution=1, - test_data=None, - steps=10, - with_normalization_layer=False, - ): - callbacks = [] - - if model is None: - model, default_callbacks = self._model_compile( - strategy, - steps_per_execution, - with_normalization_layer=with_normalization_layer, - ) - callbacks += default_callbacks - - def create_test_data(): - x = tf.constant([[1.0], [2.0], [3.0], [1.0], [5.0], [1.0]]) - return tf.data.Dataset.from_tensor_slices(x).repeat().batch(2) - - if test_data is None: - test_data = create_test_data() - - predictions = model.predict( - x=test_data, steps=steps, callbacks=callbacks - ) - predictions = np.around(predictions, 4) - return model, predictions diff --git a/keras/distribute/distribute_coordinator_utils.py b/keras/distribute/distribute_coordinator_utils.py deleted file mode 100644 index 9aa95008b3f..00000000000 --- a/keras/distribute/distribute_coordinator_utils.py +++ /dev/null @@ -1,783 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities related to distribute coordinator. - -The module is used only for utils to support legacy TF1 code path involving -distribute coordinator, and is not expected to change in any way. This is -subject to cleanup once TF1 is no longer supported. - -TODO(rchao): Remove this module once TF1 is not supported. -""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import copy -import json -import os -import threading -import time - -import tensorflow.compat.v2 as tf - -# isort: off -from tensorflow.core.protobuf import cluster_pb2 -from tensorflow.python.platform import tf_logging as logging - -_worker_context = threading.local() -_thread_local = threading.local() - - -def get_current_worker_context(): - """Returns the current task context.""" - try: - return _worker_context.current - except AttributeError: - return None - - -class _TaskType: - PS = "ps" - WORKER = "worker" - CHIEF = "chief" - EVALUATOR = "evaluator" - CLIENT = "client" - - -def _get_num_workers(cluster_spec): - """Gets number of workers including chief.""" - if not cluster_spec: - return 0 - return len(cluster_spec.as_dict().get(_TaskType.WORKER, [])) + len( - cluster_spec.as_dict().get(_TaskType.CHIEF, []) - ) - - -class _WorkerContext: - """The worker context class. - - This context object provides configuration information for each task. One - context manager with a worker context object will be created per invocation - to the `worker_fn` where `get_current_worker_context` can be called to - access the worker context object. - """ - - def __init__( - self, - strategy, - cluster_spec, - task_type, - task_id, - session_config=None, - rpc_layer="grpc", - worker_barrier=None, - ): - """Initialize the worker context object. - - Args: - strategy: a `DistributionStrategy` object. - cluster_spec: a ClusterSpec object. It can be empty or None in the - local training case. - task_type: a string indicating the role of the corresponding task, - such as "worker" or "ps". It can be None if it is local training or - in-graph replicated training. - task_id: an integer indicating id of the corresponding task. It can be - None if it is local training or in-graph replicated training. - session_config: an optional `tf.compat.v1.ConfigProto` object. - rpc_layer: optional string specifying the RPC protocol for - communication with worker masters. If None or empty, hosts in the - `cluster_spec` will be used directly. - worker_barrier: optional, the barrier object for worker - synchronization. - """ - self._strategy = strategy - self._cluster_spec = cluster_spec - self._task_type = task_type - self._task_id = task_id - self._session_config = session_config - self._worker_barrier = worker_barrier - self._rpc_layer = rpc_layer - self._master_target = self._get_master_target() - self._num_workers = _get_num_workers(cluster_spec) - self._is_chief_node = self._is_chief() - - def _debug_message(self): - if self._cluster_spec: - return "[cluster_spec: %r, task_type: %r, task_id: %r]" % ( - self._cluster_spec, - self.task_type, - self.task_id, - ) - else: - return "[local]" - - def __enter__(self): - old_context = get_current_worker_context() - if old_context: - raise ValueError( - "You cannot run distribute coordinator in a `worker_fn`.\t" - + self._debug_message() - ) - - _worker_context.current = self - - def __exit__( - self, unused_exception_type, unused_exception_value, unused_traceback - ): - - _worker_context.current = None - - def _get_master_target(self): - """Return the master target for a task.""" - # If cluster_spec is None or empty, we use local master. - if not self._cluster_spec or self._task_type == _TaskType.EVALUATOR: - return "" - - # If task_type is None, then it is in-graph replicated training. In this - # case we use the chief or first worker's master target. - if not self._task_type: - if _TaskType.CHIEF in self._cluster_spec.jobs: - task_type = _TaskType.CHIEF - task_id = 0 - else: - assert _TaskType.WORKER in self._cluster_spec.jobs - task_type = _TaskType.WORKER - task_id = 0 - else: - task_type = self._task_type - task_id = self._task_id - - prefix = "" - if self._rpc_layer: - prefix = self._rpc_layer + "://" - return prefix + self._cluster_spec.job_tasks(task_type)[task_id or 0] - - def _is_chief(self): - """Return whether the task is the chief worker.""" - if not self._cluster_spec or self._task_type in [ - _TaskType.CHIEF, - _TaskType.EVALUATOR, - None, - ]: - return True - - # If not local and chief not in the cluster_spec, use the first worker - # as chief. - if ( - _TaskType.CHIEF not in self._cluster_spec.jobs - and self._task_type == _TaskType.WORKER - and self._task_id == 0 - ): - return True - return False - - def wait_for_other_workers(self): - """Waits for other workers to reach the same call to this method. - - Raises: - ValueError: if `worker_barrier` is not passed to the __init__ method. - """ - if not self._worker_barrier: - # TODO(yuefengz): we should throw an error in independent worker - # mode. - return - self._worker_barrier.wait() - - def session_creator( - self, - scaffold=None, - config=None, - checkpoint_dir=None, - checkpoint_filename_with_path=None, - max_wait_secs=7200, - ): - """Returns a session creator. - - The returned session creator will be configured with the correct master - target and session configs. It will also run either init ops or ready - ops by querying the `strategy` object when `create_session` is called on - it. - - Args: - scaffold: A `Scaffold` used for gathering or building supportive ops. - If not specified a default one is created. It's used to finalize the - graph. - config: `ConfigProto` proto used to configure the session. - checkpoint_dir: A string. Optional path to a directory where to - restore variables. - checkpoint_filename_with_path: Full file name path to the checkpoint - file. Only one of `checkpoint_dir` or - `checkpoint_filename_with_path` can be specified. - max_wait_secs: Maximum time to wait for the session to become - available. - - Returns: - a descendant of SessionCreator. - """ - if config: - session_config = copy.deepcopy(config) - session_config.MergeFrom(self._session_config) - else: - session_config = self._session_config - - if ( - not self._strategy - or self._strategy.extended.experimental_should_init - ): - logging.info( - "Creating chief session creator with config: %r", config - ) - return tf.compat.v1.train.ChiefSessionCreator( - scaffold, - master=self.master_target, - config=session_config, - checkpoint_dir=checkpoint_dir, - checkpoint_filename_with_path=checkpoint_filename_with_path, - ) - else: - logging.info( - "Creating worker session creator with config: %r", config - ) - return tf.compat.v1.train.WorkerSessionCreator( - scaffold, - master=self.master_target, - config=session_config, - max_wait_secs=max_wait_secs, - ) - - @property - def session_config(self): - return copy.deepcopy(self._session_config) - - @property - def has_barrier(self): - """Whether the barrier is set or not.""" - return self._worker_barrier is not None - - @property - def distributed_mode(self): - """Whether it is distributed training or not.""" - return ( - bool(self._cluster_spec) and self._task_type != _TaskType.EVALUATOR - ) - - @property - def cluster_spec(self): - """Returns a copy of the cluster_spec object.""" - return copy.deepcopy(self._cluster_spec) - - @property - def task_type(self): - """Returns the role of the corresponding task.""" - return self._task_type - - @property - def task_id(self): - """Returns the id or index of the corresponding task.""" - return self._task_id - - @property - def master_target(self): - """Returns the session master for the corresponding task to connect - to.""" - return self._master_target - - @property - def is_chief(self): - """Returns whether the task is a chief node.""" - return self._is_chief_node - - @property - def num_workers(self): - """Returns number of workers in the cluster, including chief.""" - return self._num_workers - - @property - def experimental_should_init(self): - """Whether to run init ops.""" - return self._strategy.extended.experimental_should_init - - @property - def should_checkpoint(self): - """Whether to save checkpoint.""" - return self._strategy.extended.should_checkpoint - - @property - def should_save_summary(self): - """Whether to save summaries.""" - return self._strategy.extended.should_save_summary - - -def _run_single_worker( - worker_fn, - strategy, - cluster_spec, - task_type, - task_id, - session_config, - rpc_layer="", - worker_barrier=None, - coord=None, -): - """Runs a single worker by calling `worker_fn` under context.""" - session_config = copy.deepcopy(session_config) - strategy = copy.deepcopy(strategy) - # If there is an EVALUATOR task, we run single-machine eval on that task. - if task_type == _TaskType.EVALUATOR: - # It is possible to not have a strategy object for EVALUATOR task. - if strategy: - strategy.configure(session_config) - else: - assert strategy - strategy.configure(session_config, cluster_spec, task_type, task_id) - - context = _WorkerContext( - strategy, - cluster_spec, - task_type, - task_id, - session_config=session_config, - rpc_layer=rpc_layer, - worker_barrier=worker_barrier, - ) - with context: - if coord: - with coord.stop_on_exception(): - return worker_fn(strategy) - else: - return worker_fn(strategy) - - -def _split_cluster_for_evaluator(cluster_spec, task_type): - """Split the cluster for evaluator since it needn't talk to other tasks.""" - # Splitting the cluster is important to prevent the evaluator from talking - # to other tasks in the cluster. Since we allow evaluator not to use - # distribution strategies and as a result ops in the evaluator task may have - # unspecified devices. Those ops may end up on other tasks if we don't split - # the cluster. - # Note: if you bypass distribute coordinator and bring the cluster yourself, - # you can equivalently set device filters to split clusters. This is already - # done by distribution strategy's `update_config_proto` method. - new_cluster_spec = normalize_cluster_spec(cluster_spec).as_dict() - if task_type == _TaskType.EVALUATOR: - assert _TaskType.EVALUATOR in new_cluster_spec - new_cluster_spec = { - _TaskType.EVALUATOR: new_cluster_spec[_TaskType.EVALUATOR] - } - else: - new_cluster_spec.pop(_TaskType.EVALUATOR, None) - return normalize_cluster_spec(new_cluster_spec) - - -def _run_std_server( - cluster_spec=None, - task_type=None, - task_id=None, - session_config=None, - rpc_layer=None, - environment=None, -): - """Runs a standard server.""" - # Check if the Server is already running. If so, assert that no - # configuration options have changed, and return the existing Server. This - # allows us to call `run_distribute_coordinator` multiple times. - if getattr(_thread_local, "server", None) is not None: - assert _thread_local.cluster_spec == cluster_spec - assert _thread_local.task_type == task_type - assert _thread_local.task_id == task_id - assert _thread_local.session_config_str == repr(session_config) - assert _thread_local.rpc_layer == rpc_layer - assert _thread_local.environment == environment - return _thread_local.server - else: - # This method is not thread-safe. - _thread_local.server_started = True - _thread_local.cluster_spec = cluster_spec - _thread_local.task_type = task_type - _thread_local.task_id = task_id - _thread_local.session_config_str = repr(session_config) - _thread_local.rpc_layer = rpc_layer - _thread_local.environment = environment - - assert cluster_spec - target = cluster_spec.task_address(task_type, task_id) - if rpc_layer: - target = rpc_layer + "://" + target - - class _FakeServer: - """A fake server that runs a master session.""" - - def start(self): - # A tensorflow server starts when a remote session is created. - logging.info( - "Creating a remote session to start a TensorFlow server, " - "target = %r, session_config=%r", - target, - session_config, - ) - tf.compat.v1.Session(target=target, config=session_config) - - def join(self): - while True: - time.sleep(5) - - if environment == "google": - server = _FakeServer() - else: - if session_config: - logging.info( - "Starting standard TensorFlow server, target = %r, " - "session_config = %r", - target, - session_config, - ) - else: - logging.info( - "Starting standard TensorFlow server, target = %r", target - ) - cluster_spec = _split_cluster_for_evaluator(cluster_spec, task_type) - server = tf.distribute.Server( - cluster_spec, - job_name=task_type, - task_index=task_id, - config=session_config, - protocol=rpc_layer, - ) - - server.start() - _thread_local.server = server - return server - - -def _configure_session_config_for_std_servers( - strategy, eval_strategy, session_config, cluster_spec, task_type, task_id -): - - """Call strategy's `configure` to mutate the session_config. - - The session_config is currently needed as default config for a TensorFlow - server. In the future, we should be able to remove this method and only pass - the session config to a client session. - """ - if task_type == _TaskType.EVALUATOR: - if eval_strategy: - eval_strategy.configure(session_config=session_config) - else: - # The strategy may be shared in standalone client mode. - strategy = copy.deepcopy(strategy) - strategy.configure( - session_config=session_config, - cluster_spec=cluster_spec, - task_type=task_type, - task_id=task_id, - ) - # Remove the device filters specific to the strategy, so that the - # TensorFlow server brought up with one strategy can be used by other - # strategies. The device filters can be set in the client side as well. - del session_config.device_filters[:] - - -# TODO(yuefengz): propagate cluster_spec in the STANDALONE_CLIENT mode. -# TODO(yuefengz): we may need a smart way to figure out whether the current task -# is the special task when we support cluster_spec propagation. -def run_distribute_coordinator( - worker_fn, - strategy, - eval_fn=None, - eval_strategy=None, - cluster_spec=None, - task_type=None, - task_id=None, - session_config=None, - rpc_layer="grpc", -): - """Runs the coordinator for distributed TensorFlow. - - This function runs a split coordinator for distributed TensorFlow in its - default mode, i.e the STANDALONE_CLIENT mode. Given a `cluster_spec` - specifying server addresses and their roles in a cluster, this coordinator - will figure out how to set them up, give the underlying function the right - targets for master sessions via a scope object and coordinate their - training. The cluster consisting of standard servers needs to be brought up - either with the standard server binary or with a binary running distribute - coordinator with `task_type` set to non-client type which will then turn - into standard servers. - - In addition to be the distribute coordinator, this is also the source of - configurations for each job in the distributed training. As there are - multiple ways to configure a distributed TensorFlow cluster, its context - object provides these configurations so that users or higher-level APIs - don't have to figure out the configuration for each job by themselves. - - In the between-graph replicated training, this coordinator will create - multiple threads and each calls the `worker_fn` which is supposed to create - its own graph and connect to one worker master given by its context object. - In the in-graph replicated training, it has only one thread calling this - `worker_fn`. - - Another mode is the INDEPENDENT_WORKER mode where each server runs a - distribute coordinator which will start a standard server and optionally - runs `worker_fn` depending whether it is between-graph training or in-graph - replicated training. - - The `strategy` object is expected to be a DistributionStrategy object which - has implemented methods needed by distributed coordinator such as - `configure(session_config, cluster_spec, task_type, task_id)` which - configures the strategy object for a specific task and - `experimental_should_init` property which instructs the distribute - coordinator whether to run init ops for a task. The distribute coordinator - will make a copy of the `strategy` object, call its `configure` method and - pass it to `worker_fn` as an argument. - - The `worker_fn` defines the training logic and is called under its own - worker context which can be accessed to via `get_current_worker_context`. A - worker context provides access to configurations for each task, e.g. the - task_type, task_id, master target and so on. Since `worker_fn` will be - called in a thread and possibly multiple times, caller should be careful - when it accesses global data. For example, it is unsafe to define flags in a - `worker_fn` or to define different environment variables for different - `worker_fn`s. - - The `worker_fn` for the between-graph replication is defined as if there is - only one worker corresponding to the `worker_fn` and possibly ps jobs. For - example, when training with parameter servers, it assigns variables to - parameter servers and all other operations to that worker. In the in-graph - replication case, the `worker_fn` has to define operations for all worker - jobs. Using a distribution strategy can simplify the `worker_fn` by not - having to worry about the replication and device assignment of variables and - operations. - - This method is intended to be invoked by high-level APIs so that users don't - have to explicitly call it to run this coordinator. For those who don't use - high-level APIs, to change a program to use this coordinator, wrap - everything in a the program after global data definitions such as - commandline flag definition into the `worker_fn` and get task-specific - configurations from the worker context. - - The `cluster_spec` can be either passed by the argument or parsed from the - "TF_CONFIG" environment variable. Example of a TF_CONFIG: - ``` - cluster = {'chief': ['host0:2222'], - 'ps': ['host1:2222', 'host2:2222'], - 'worker': ['host3:2222', 'host4:2222', 'host5:2222']} - os.environ['TF_CONFIG'] = json.dumps({'cluster': cluster}) - ``` - - If `cluster_spec` is not given in any format, it becomes local training and - this coordinator will connect to a local session. - - For evaluation, if "evaluator" exists in the cluster_spec, a separate thread - will be created to call `eval_fn` with its `task_type` set to "evaluator". - If `eval_fn` is not defined, fall back to `worker_fn`. This implies that - evaluation will be done on a single machine if there is an "evaluator" task. - If "evaluator" doesn't exist in the cluster_spec, it entirely depends on the - `worker_fn` for how to do evaluation. - - Args: - worker_fn: the function to be called. The function should accept a - `strategy` object and will be given access to a context object via a - context manager scope. - strategy: a DistributionStrategy object specifying whether it should run - between-graph replicated training or not, whether to run init ops, etc. - This object will also be configured given `session_config`, - `cluster_spec`, `task_type` and `task_id`. - eval_fn: optional function for "evaluator" task. If `eval_fn` is not - passed in but a "evaluator" task is found in the `cluster_spec`, the - `worker_fn` will be used for this task. - eval_strategy: optional DistributionStrategy object for "evaluator" task. - cluster_spec: a dict, ClusterDef or ClusterSpec specifying servers and - roles in a cluster. If not set or empty, fall back to local training. - task_type: the current task type, optional if this is a client. - task_id: the current task id, optional if this is a client. - session_config: an optional `tf.compat.v1.ConfigProto` object which will - be passed to `strategy`'s `configure` method and used to create a - session. - rpc_layer: optional string, the protocol for RPC, e.g. "grpc". - - Raises: - ValueError: if `cluster_spec` is supplied but not a dict or a ClusterDef - or a ClusterSpec. - - Returns: - In the client job, return the value returned by `worker_fn` if - it is in-graph replication or INDEPENDENT_WORKER mode; return None - otherwise. - """ - tf_config = json.loads(os.environ.get("TF_CONFIG", "{}")) - rpc_layer = tf_config.get("rpc_layer", rpc_layer) - environment = tf_config.get("environment", None) - - if not cluster_spec: - cluster_spec = tf_config.get("cluster", {}) - task_env = tf_config.get("task", {}) - if task_env: - task_type = task_env.get("type", task_type) - task_id = int(task_env.get("index", task_id)) - - if cluster_spec: - # TODO(yuefengz): validate cluster_spec. - cluster_spec = normalize_cluster_spec(cluster_spec) - elif hasattr(strategy.extended, "_cluster_resolver"): - cluster_resolver = strategy.extended._cluster_resolver - task_type = cluster_resolver.task_type - task_id = cluster_resolver.task_id - rpc_layer = cluster_resolver.rpc_layer or rpc_layer - environment = cluster_resolver.environment - cluster_spec = cluster_resolver.cluster_spec() - - # Setting the session config is necessary for some strategies such as - # CollectiveAllReduceStrategy. - session_config = session_config or tf.compat.v1.ConfigProto( - allow_soft_placement=True - ) - - if cluster_spec: - logging.info( - "Running Distribute Coordinator with cluster_spec = %r, " - "task_type = %r, task_id = %r, environment = %r, rpc_layer = %r", - cluster_spec.as_dict(), - task_type, - task_id, - environment, - rpc_layer, - ) - - if not cluster_spec: - # `mode` is ignored in the local case. - logging.info("Running local Distribute Coordinator.") - _run_single_worker( - worker_fn, strategy, None, None, None, session_config, rpc_layer - ) - if eval_fn: - _run_single_worker( - eval_fn, - eval_strategy, - None, - None, - None, - session_config, - rpc_layer, - ) - else: - logging.warning( - "Skipped evaluation since `eval_fn` is not passed in." - ) - else: - if not eval_fn: - logging.warning( - "`eval_fn` is not passed in. The `worker_fn` will be " - 'used if an "evaluator" task exists in the cluster.' - ) - eval_fn = eval_fn or worker_fn - if not eval_strategy: - logging.warning( - "`eval_strategy` is not passed in. No distribution " - "strategy will be used for evaluation." - ) - - # Every one starts a standard server, get session config from - # `configure` method. - _configure_session_config_for_std_servers( - strategy, - eval_strategy, - session_config, - cluster_spec, - task_type, - task_id, - ) - - if task_type != _TaskType.EVALUATOR and not getattr( - strategy.extended, "_std_server_started", False - ): - # Right now, with eager mode, context is configured with a std - # server at the very beginning while with graph mode the std server - # is started when distribute coordinator is called. We should - # consolidate these two paths. - server = _run_std_server( - cluster_spec=cluster_spec, - task_type=task_type, - task_id=task_id, - session_config=session_config, - rpc_layer=rpc_layer, - environment=environment, - ) - if task_type in [_TaskType.CHIEF, _TaskType.WORKER]: - if strategy.extended.experimental_between_graph: - # All jobs run `worker_fn` if between-graph. - return _run_single_worker( - worker_fn, - strategy, - cluster_spec, - task_type, - task_id, - session_config, - rpc_layer, - ) - else: - # Only one node runs `worker_fn` if in-graph. - context = _WorkerContext( - strategy, cluster_spec, task_type, task_id - ) - if context.is_chief: - return _run_single_worker( - worker_fn, - strategy, - cluster_spec, - None, - None, - session_config, - rpc_layer, - ) - else: - server.join() - elif task_type == _TaskType.EVALUATOR: - return _run_single_worker( - eval_fn, - eval_strategy, - cluster_spec, - task_type, - task_id, - session_config, - rpc_layer, - ) - else: - if task_type != _TaskType.PS: - raise ValueError(f"Unexpected task_type: {task_type!r}") - server.join() - - -def normalize_cluster_spec(cluster_spec): - """Makes `cluster_spec` into a `ClusterSpec` object. - - Args: - cluster_spec: a dict, ClusterDef or ClusterSpec object specifying the - cluster configurations. - - Returns: - a `ClusterSpec` object. - - Raises: - ValueError: if `cluster_spec` is not a dict or a `ClusterSpec` or a - `ClusterDef`. - """ - if isinstance(cluster_spec, (dict, cluster_pb2.ClusterDef)): - return tf.train.ClusterSpec(cluster_spec) - elif not isinstance(cluster_spec, tf.train.ClusterSpec): - raise ValueError( - "`cluster_spec' should be dict or a `tf.train.ClusterSpec` or a " - "`tf.train.ClusterDef` object" - ) - return cluster_spec diff --git a/keras/distribute/distribute_strategy_test.py b/keras/distribute/distribute_strategy_test.py deleted file mode 100644 index 5931f4cc763..00000000000 --- a/keras/distribute/distribute_strategy_test.py +++ /dev/null @@ -1,3068 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for tf.keras models using tf.distribute.Strategy.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import backend -from keras.distribute import distributed_training_utils -from keras.distribute import distributed_training_utils_v1 -from keras.distribute import multi_worker_testing_utils -from keras.distribute import optimizer_combinations -from keras.distribute.strategy_combinations import all_strategies -from keras.distribute.strategy_combinations import ( - multi_worker_mirrored_strategies, -) -from keras.distribute.strategy_combinations import ( - strategies_minus_default_minus_tpu, -) -from keras.distribute.strategy_combinations import strategies_minus_tpu -from keras.distribute.strategy_combinations import tpu_strategies -from keras.engine import base_layer_utils -from keras.mixed_precision import policy -from keras.optimizers import optimizer as optimizer_base -from keras.optimizers.legacy import gradient_descent as gradient_descent_keras -from keras.testing_infra import test_utils -from keras.utils import losses_utils -from keras.utils import np_utils - -# isort: off -from tensorflow.python.distribute.cluster_resolver import ( - SimpleClusterResolver, -) - -_RANDOM_SEED = 1337 -_TRAIN_SIZE = 200 -_INPUT_SIZE = (10,) -_NUM_CLASS = 2 - -# Note: Please make sure the tests in this file are also covered in -# keras_backward_compat_test for features that are supported with both APIs. - -# TODO(anjalisridhar): Add a decorator that will allow us to run these tests as -# part of the tf.keras unit tests suite. - - -def simple_sequential_model(): - model = keras.models.Sequential() - model.add( - keras.layers.Dense(16, activation="relu", input_shape=_INPUT_SIZE) - ) - model.add(keras.layers.Dropout(0.1)) - model.add(keras.layers.Dense(_NUM_CLASS, activation="softmax")) - return model - - -def simple_subclassed_model(num_labels=_NUM_CLASS): - class _SimpleMLP(keras.Model): - def __init__(self, num_labels): - super().__init__() - self.dense = keras.layers.Dense(num_labels) - - def call(self, inputs): - return self.dense(inputs) - - return _SimpleMLP(num_labels) - - -def simple_multi_inputs_multi_outputs_model(): - input_a = keras.layers.Input(shape=(16,), name="input_a") - input_b = keras.layers.Input(shape=(16,), name="input_b") - - merged = keras.layers.concatenate([input_a, input_b], name="merge") - output_c = keras.layers.Dense(3, activation="softmax", name="dense_2")( - merged - ) - output_d = keras.layers.Dense(2, activation="softmax", name="dense_3")( - merged - ) - model = keras.models.Model( - inputs=[input_a, input_b], outputs=[output_c, output_d] - ) - return model - - -def get_multi_inputs_multi_outputs_data(): - (a_train, c_train), (a_test, c_test) = test_utils.get_test_data( - train_samples=_TRAIN_SIZE, - test_samples=50, - input_shape=(16,), - num_classes=3, - random_seed=_RANDOM_SEED, - ) - (b_train, d_train), (b_test, d_test) = test_utils.get_test_data( - train_samples=_TRAIN_SIZE, - test_samples=50, - input_shape=(16,), - num_classes=2, - random_seed=_RANDOM_SEED, - ) - (m_train, _), (m_test, _) = test_utils.get_test_data( - train_samples=_TRAIN_SIZE, - test_samples=50, - input_shape=(8,), - num_classes=2, - random_seed=_RANDOM_SEED, - ) - - c_train = np_utils.to_categorical(c_train) - c_test = np_utils.to_categorical(c_test) - d_train = np_utils.to_categorical(d_train) - d_test = np_utils.to_categorical(d_test) - - train_data = { - "input_a": a_train, - "input_b": b_train, - "input_m": m_train, - "output_c": c_train, - "output_d": d_train, - } - test_data = { - "input_a": a_test, - "input_b": b_test, - "input_m": m_test, - "output_c": c_test, - "output_d": d_test, - } - - return (train_data, test_data) - - -def batch_wrapper(dataset, batch_size, distribution, repeat=None): - if repeat: - dataset = dataset.repeat(repeat) - # TPUs currently require fully defined input shapes, drop_remainder ensures - # the input will have fully defined shapes. - if backend.is_tpu_strategy(distribution): - return dataset.batch(batch_size, drop_remainder=True) - else: - return dataset.batch(batch_size) - - -def get_model(): - x = keras.layers.Input(shape=(3,), name="input") - y = keras.layers.Dense(4, name="dense")(x) - model = keras.Model(x, y) - return model - - -def get_sample_weights_model(): - x = keras.layers.Input(shape=(1,), name="input") - y = keras.layers.Dense( - 1, kernel_initializer="ones", bias_initializer="zeros", name="dense" - )(x) - model = keras.Model(x, y) - return model - - -def get_dataset(distribution): - inputs = np.zeros((10, 3), dtype=np.float32) - targets = np.zeros((10, 4), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat(100) - dataset = batch_wrapper(dataset, 10, distribution) - return dataset - - -def get_predict_dataset(distribution): - inputs = np.zeros((10, 3), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices(inputs) - dataset = dataset.repeat(100) - dataset = batch_wrapper(dataset, 10, distribution) - return dataset - - -def convert_numpy_to_dataset_with_unknown_cardinality(inputs, targets=None): - if targets is not None: - input_slices = (inputs, targets) - dummy_op = lambda inp, target: True - else: - input_slices = inputs - dummy_op = lambda inp: True - - original_dataset = tf.data.Dataset.from_tensor_slices(input_slices) - ds_with_unknown_cardinality = original_dataset.filter(dummy_op).batch( - 10, drop_remainder=True - ) - return ds_with_unknown_cardinality - - -def multi_input_output_model(): - a = keras.layers.Input(shape=(3,), name="input_a") - b = keras.layers.Input(shape=(5,), name="input_b") - # TODO(anjalisridhar): Change the output dimension of the second Dense layer - # once the iterator output validation issue has been fixed. - dense_1 = keras.layers.Dense(7, name="dense_1") - dense_2 = keras.layers.Dense(7, name="dense_2") - c = dense_1(a) - d = dense_2(b) - e = keras.layers.Dropout(0.5, name="dropout")(c) - model = keras.models.Model([a, b], [d, e]) - return model - - -def strategy_minus_tpu_combinations(): - return tf.__internal__.test.combinations.combine( - distribution=strategies_minus_tpu, mode=["graph", "eager"] - ) - - -def tpu_strategy_combinations(): - return tf.__internal__.test.combinations.combine( - distribution=tpu_strategies, mode=["graph", "eager"] - ) - - -def tpu_strategy_combinations_graph_only(): - return tf.__internal__.test.combinations.combine( - distribution=tpu_strategies, mode=["graph"] - ) - - -def multi_worker_strategy_combinations_eager_only(): - return tf.__internal__.test.combinations.combine( - distribution=multi_worker_mirrored_strategies, mode=["eager"] - ) - - -def all_strategy_combinations(): - return ( - strategy_minus_tpu_combinations() - + tpu_strategy_combinations() - + multi_worker_strategy_combinations_eager_only() - ) - - -def all_strategy_minus_default_and_tpu_combinations(): - return tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.one_device_strategy, - tf.__internal__.distribute.combinations.one_device_strategy_gpu, - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, # noqa: E501 - ], - mode=["graph", "eager"], - ) - - -def all_strategy_combinations_minus_default(): - return ( - all_strategy_minus_default_and_tpu_combinations() - + tpu_strategy_combinations() - + multi_worker_strategy_combinations_eager_only() - ) - - -def strategy_and_optimizer_combinations(): - non_tpu_strategies = tf.__internal__.test.combinations.times( - strategy_minus_tpu_combinations(), - tf.__internal__.test.combinations.combine( - optimizer=[ - optimizer_combinations.adagrad_optimizer_v1_fn, - optimizer_combinations.adam_optimizer_v1_fn, - optimizer_combinations.gradient_descent_optimizer_v1_fn, - optimizer_combinations.rmsprop_optimizer_v1_fn, - optimizer_combinations.adadelta_optimizer_keras_v2_fn, - optimizer_combinations.adagrad_optimizer_keras_v2_fn, - optimizer_combinations.adam_optimizer_keras_v2_fn, - optimizer_combinations.adamax_optimizer_keras_v2_fn, - optimizer_combinations.gradient_descent_optimizer_keras_v2_fn, - optimizer_combinations.nadam_optimizer_keras_v2_fn, - optimizer_combinations.rmsprop_optimizer_keras_v2_fn, - optimizer_combinations.ftrl_optimizer_keras_v2_fn, - ] - ), - ) - tpu_strategies_graph = tf.__internal__.test.combinations.combine( - distribution=tpu_strategies, - mode=["graph"], - optimizer=[ - optimizer_combinations.adagrad_optimizer_v1_fn, - optimizer_combinations.adam_optimizer_v1_fn, - optimizer_combinations.gradient_descent_optimizer_v1_fn, - optimizer_combinations.rmsprop_optimizer_v1_fn, - optimizer_combinations.adagrad_optimizer_keras_v2_fn, - optimizer_combinations.adam_optimizer_keras_v2_fn, - optimizer_combinations.gradient_descent_optimizer_keras_v2_fn, - optimizer_combinations.rmsprop_optimizer_keras_v2_fn, - ], - ) - tpu_strategies_eager = tf.__internal__.test.combinations.combine( - distribution=tpu_strategies, - mode=["eager"], - optimizer=[ - optimizer_combinations.adagrad_optimizer_keras_v2_fn, - optimizer_combinations.adam_optimizer_keras_v2_fn, - optimizer_combinations.gradient_descent_optimizer_keras_v2_fn, - optimizer_combinations.rmsprop_optimizer_keras_v2_fn, - ], - ) - multi_worker_eager = tf.__internal__.test.combinations.combine( - distribution=multi_worker_mirrored_strategies, - mode=["eager"], - optimizer=[ - optimizer_combinations.adadelta_optimizer_keras_v2_fn, - optimizer_combinations.adagrad_optimizer_keras_v2_fn, - optimizer_combinations.adam_optimizer_keras_v2_fn, - optimizer_combinations.adamax_optimizer_keras_v2_fn, - optimizer_combinations.gradient_descent_optimizer_keras_v2_fn, - optimizer_combinations.nadam_optimizer_keras_v2_fn, - optimizer_combinations.rmsprop_optimizer_keras_v2_fn, - optimizer_combinations.ftrl_optimizer_keras_v2_fn, - ], - ) - return ( - non_tpu_strategies - + tpu_strategies_eager - + tpu_strategies_graph - + multi_worker_eager - ) - - -class BatchCountingCB(keras.callbacks.Callback): - def __init__(self): - super().__init__() - self.train_begin_batches = [] - self.train_end_batches = [] - self.test_begin_batches = [] - self.test_end_batches = [] - self.predict_begin_batches = [] - self.predict_end_batches = [] - - def on_train_batch_begin(self, batch, logs=None): - self.train_begin_batches.append(batch) - - def on_train_batch_end(self, batch, logs=None): - self.train_end_batches.append(batch) - - def on_test_batch_begin(self, batch, logs=None): - self.test_begin_batches.append(batch) - - def on_test_batch_end(self, batch, logs=None): - self.test_end_batches.append(batch) - - def on_predict_batch_begin(self, batch, logs=None): - self.predict_begin_batches.append(batch) - - def on_predict_batch_end(self, batch, logs=None): - self.predict_end_batches.append(batch) - - -class TestDistributionStrategyWithNumpyArrays( - tf.test.TestCase, parameterized.TestCase -): - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_calculating_input_params_no_steps_no_batch_size( - self, distribution - ): - # Calculate the per_replica_batch_size scaling factor for strategies - # that use per_core_batch_size - replica_scale_factor = 1.0 - if not distributed_training_utils.global_batch_size_supported( - distribution - ): - replica_scale_factor = distribution.num_replicas_in_sync - - with self.cached_session(): - # Default global batch size 32 for input with 64 samples run in 2 - # steps - steps, batch_size = distributed_training_utils_v1.get_input_params( - distribution, 64, steps=None, batch_size=None - ) - self.assertEqual(batch_size, 32 // replica_scale_factor) - self.assertEqual(steps, 2) - - # Computed global batch size 20 is lower than 32 if we pass less - # samples. - steps, batch_size = distributed_training_utils_v1.get_input_params( - distribution, 20, steps=None, batch_size=None - ) - self.assertEqual(batch_size, 20 // replica_scale_factor) - self.assertEqual(steps, 1) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_calculating_input_params_with_steps_no_batch_size( - self, distribution - ): - # Calculate the per_replica_batch_size scaling factor for strategies - # that use per_core_batch_size - replica_scale_factor = 1.0 - if not distributed_training_utils.global_batch_size_supported( - distribution - ): - replica_scale_factor = distribution.num_replicas_in_sync - - with self.cached_session(): - # Computed global batch size is correct for number of specified 1 - # step - steps, batch_size = distributed_training_utils_v1.get_input_params( - distribution, 64, steps=1, batch_size=None - ) - self.assertEqual(batch_size, 64 // replica_scale_factor) - self.assertEqual(steps, 1) - - # Computed global batch size is correct for number of specified 2 - # steps - steps, batch_size = distributed_training_utils_v1.get_input_params( - distribution, 64, steps=2, batch_size=None - ) - self.assertEqual(batch_size, 32 // replica_scale_factor) - self.assertEqual(steps, 2) - - # All samples can not be consumed in specified number of steps - with self.assertRaisesRegex(ValueError, "not divisible by steps"): - distributed_training_utils_v1.get_input_params( - distribution, 63, steps=2, batch_size=None - ) - - # This cases is different for different strategies due to the - # difference in supported batch size being global or per-replica. - if replica_scale_factor == 1: - # Computed global batch size is correct even if not sharadable - ( - steps, - batch_size, - ) = distributed_training_utils_v1.get_input_params( - distribution, 63, steps=3, batch_size=None - ) - self.assertEqual(batch_size, 21) - self.assertEqual(steps, 3) - else: - # Computed global batch size can not be sharded across replicas - with self.assertRaisesRegex( - ValueError, - "could not be sharded evenly across the sync replicas", - ): - distributed_training_utils_v1.get_input_params( - distribution, 63, steps=1, batch_size=None - ) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_calculating_input_params_no_steps_with_batch_size( - self, distribution - ): - # Calculate the per_replica_batch_size scaling factor for strategies - # that use per_core_batch_size - replica_scale_factor = 1.0 - if not distributed_training_utils.global_batch_size_supported( - distribution - ): - replica_scale_factor = distribution.num_replicas_in_sync - - with self.cached_session(): - # Computed steps is correct for specified batch size - steps, batch_size = distributed_training_utils_v1.get_input_params( - distribution, 64, steps=None, batch_size=16 - ) - self.assertEqual(batch_size, 16) - self.assertEqual(steps, 4 // replica_scale_factor) - - # Computed steps is correct for specified batch size - steps, batch_size = distributed_training_utils_v1.get_input_params( - distribution, 64, steps=None, batch_size=32 - ) - self.assertEqual(batch_size, 32) - self.assertEqual(steps, 2 // replica_scale_factor) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_calculating_input_params_with_steps_with_batch_size( - self, distribution - ): - with self.cached_session(): - # No change to steps and batch size if both specified and feasible - steps, batch_size = distributed_training_utils_v1.get_input_params( - distribution, 64, steps=5, batch_size=3 - ) - self.assertEqual(batch_size, 3) - self.assertEqual(steps, 5) - - # Number of samples is less than global batch size * steps - with self.assertRaisesRegex( - ValueError, "less than samples required" - ): - distributed_training_utils_v1.get_input_params( - distribution, 64, steps=10, batch_size=13 - ) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_calling_model_with_numpy_arrays(self, distribution): - with self.cached_session(): - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(0.001) - model = get_model() - loss = "mse" - metrics = ["mae"] - model.compile(optimizer, loss, metrics=metrics) - - inputs = np.zeros((64, 3), dtype=np.float32) - targets = np.zeros((64, 4), dtype=np.float32) - - # Call fit with validation data - model.fit( - inputs, - targets, - epochs=1, - batch_size=2, - verbose=0, - validation_data=(inputs, targets), - ) - - # TODO(anjalisridhar): We need tests for when the batch size and - # steps are smaller and results in a 0 batch_size and steps - # value. - model.evaluate(inputs, targets) - model.evaluate(inputs, targets, batch_size=8) - - model.predict(inputs) - model.predict(inputs, batch_size=8) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_calling_model_with_mixed_precision(self, distribution): - if isinstance( - distribution, - ( - tf.compat.v1.distribute.experimental.ParameterServerStrategy, - tf.distribute.experimental.ParameterServerStrategy, - tf.distribute.experimental.CentralStorageStrategy, - tf.compat.v1.distribute.experimental.CentralStorageStrategy, - ), - ): - self.skipTest("b/152097775") - if backend.is_tpu_strategy(distribution): - policy_name = "mixed_bfloat16" - else: - policy_name = "mixed_float16" - with self.cached_session(), distribution.scope(), policy.policy_scope( - policy_name - ): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(0.001) - x = keras.layers.Input(shape=(3,), name="input") - y = keras.layers.Dense(4, name="dense")(x) - y = keras.layers.Activation("softmax", dtype="float32")(y) - model = keras.Model(x, y) - loss = "mse" - metrics = ["mae"] - model.compile(optimizer, loss, metrics=metrics) - - # We need to pass float32 since TPUs do not support float64, even - # though these arrays will immediately be casted to bfloat16 on - # TPUs. We also cannot pass bfloat16, as Numpy does not support it. - inputs = np.zeros((64, 3), dtype="float32") - targets = np.zeros((64, 4), dtype="float32") - - model.fit( - inputs, - targets, - epochs=1, - batch_size=2, - verbose=0, - validation_data=(inputs, targets), - ) - - model.evaluate(inputs, targets) - model.evaluate(inputs, targets, batch_size=8) - - model.predict(inputs) - model.predict(inputs, batch_size=8) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_operator_overload_mixed_precision(self, distribution): - # Regression test that tests a fixed bug does not reoccur. Adding an - # AutoCastVariable to a tensor on a TPU, where the variable was the LHS - # of the '+' operator, used to cause the gradient w.r.t. the variable to - # be None. - if isinstance( - distribution, - ( - tf.compat.v1.distribute.experimental.ParameterServerStrategy, - tf.distribute.experimental.ParameterServerStrategy, - tf.distribute.experimental.CentralStorageStrategy, - tf.compat.v1.distribute.experimental.CentralStorageStrategy, - ), - ): - self.skipTest("b/152097775") - - if backend.is_tpu_strategy(distribution): - policy_name = "mixed_bfloat16" - else: - policy_name = "mixed_float16" - - class MyLayer(keras.layers.Layer): - def build(self, _): - self.v1 = self.add_weight("v", ()) - self.v2 = self.add_weight("v", ()) - - def call(self, inp): - inp += self.v1 - return self.v2 + inp - - with self.cached_session(), distribution.scope(): - layer = MyLayer(dtype=policy_name) - - def run_fn(): - x = np.array([1.0]) - with tf.GradientTape() as tape: - y = layer(x) - grad_v1, grad_v2 = tape.gradient(y, [layer.v1, layer.v2]) - return grad_v1, grad_v2 - - if tf.executing_eagerly(): - run_fn = tf.function(run_fn) - - grad_v1, grad_v2 = distribution.run(run_fn) - self.assertIsNotNone(grad_v1) - self.assertIsNotNone(grad_v2) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.one_device_strategy - ], - mode=["graph", "eager"], - ) - ) - def test_optimizer_in_cross_replica_context_raises_error( - self, distribution - ): - - with self.cached_session(), distribution.scope(): - model = keras.models.Sequential([keras.layers.Dense(1)]) - x = np.array([[1.0]]) - with tf.GradientTape() as tape: - y = model(x) - gradients = tape.gradient(y, model.trainable_variables) - optimizer = gradient_descent_keras.SGD() - - with self.assertRaisesRegex( - RuntimeError, "cannot be called in cross-replica context" - ): - optimizer.apply_gradients( - zip(gradients, model.trainable_variables) - ) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_calling_model_with_nested_numpy_arrays(self, distribution): - with self.cached_session(): - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(learning_rate=0.001) - model = multi_input_output_model() - loss = "mse" - model.compile(optimizer, loss) - - input_a_np = np.asarray(np.random.random((64, 3)), dtype=np.float32) - input_b_np = np.asarray(np.random.random((64, 5)), dtype=np.float32) - inputs = [input_a_np, input_b_np] - - output_d_np = np.asarray( - np.random.random((64, 7)), dtype=np.float32 - ) - output_e_np = np.asarray( - np.random.random((64, 7)), dtype=np.float32 - ) - targets = [output_d_np, output_e_np] - - # Call fit with validation data - model.fit(inputs, targets, epochs=1, batch_size=8, verbose=0) - - # TODO(anjalisridhar): We need tests for when the batch size and - # steps are smaller and results in a 0 batch_size and steps value. - model.evaluate(inputs, targets) - model.evaluate(inputs, targets, batch_size=8) - - model.predict(inputs) - model.predict(inputs, batch_size=8) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=strategies_minus_tpu, mode=["graph", "eager"] - ) - + tf.__internal__.test.combinations.combine( - distribution=multi_worker_mirrored_strategies, mode=["eager"] - ) - ) - def test_numpy_with_sample_weights(self, distribution): - with self.cached_session(), distribution.scope(): - model = get_sample_weights_model() - optimizer = tf.compat.v1.train.RMSPropOptimizer(learning_rate=0.001) - loss = "mse" - model.compile(optimizer, loss) - - inputs = np.array([[0], [1], [2], [3]], np.float32) - targets = np.array([[2], [4], [6], [8]], np.float32) - sample_weights = np.array([0.25, 0.5, 0.75, 1], np.float32) - - result = model.evaluate( - inputs, - targets, - batch_size=2, - sample_weight=sample_weights, - verbose=1, - ) - - # The per sample loss is multiplied by the corresponding sample - # weight. The average of these weighted losses is the return value - # of the `evaluate` call. For example, in the test above the average - # weighted loss is calculated in the following manner: - - # batch_1 = (((2-0)^2) * 0.25 + ((4-1)^2) * 0.5) / 2 = 5.5 / 2 = - # 2.75 - # batch_2 = (((6-2)^2 * 0.75) + ((8-3)^2 * 1)) / 2 = 37 / 2 = 18.5 - # final result = (batch_1 + batch_2) / 2 = 10.625. - # The first time we divide by number of input samples and the second - # time we divide by number of steps/batches that the loss is - # aggregated over. - self.assertAllClose(result, 10.625) - - # We now test without passing sample_weights: - # batch_1 = ((2-0)^2) + ((4-1)^2) / 2 = 13 / 2 = 6.5 - # batch_2 = ((6-2)^2) + ((8-3)^2) / 2 = 41 / 2 = 20.5 - # final result = (batch_1 + batch_2) / 2 = 27 / 2 = 13.5 - result = model.evaluate(inputs, targets, batch_size=2, verbose=1) - self.assertAllClose(result, 13.5) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_flatten_predict_outputs(self, distribution): - with self.cached_session(): - with distribution.scope(): - model = multi_input_output_model() - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(learning_rate=0.001) - loss = "mse" - model.compile(optimizer, loss) - - # We take 6 input samples with each input having a dimension of 3 or - # 5. - input_a_np = np.asarray(np.random.random((6, 3)), dtype=np.float32) - input_b_np = np.asarray(np.random.random((6, 5)), dtype=np.float32) - inputs = [input_a_np, input_b_np] - - outs = model.predict(inputs) - # `predict` a list that is equal in length to the number of model - # outputs. In this test our model has two outputs and each element - # of `outs` corresponds to all the samples of one of the model - # outputs. - self.assertLen(outs, 2) - # Each of the output samples have a dimension of 7. We should - # process all the available input samples(6). - self.assertAllEqual([6, 7], outs[0].shape) - self.assertAllEqual([6, 7], outs[1].shape) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - tpu_strategy_combinations_graph_only(), - tf.__internal__.test.combinations.combine(batch_size=[4, 6]), - ) - ) - def test_evaluate_with_partial_batch(self, distribution, batch_size): - with self.cached_session(): - optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.001) - loss = "mse" - metrics = ["mae", keras.metrics.CategoricalAccuracy()] - - with distribution.scope(): - model_with_ds_strategy = get_model() - model_with_ds_strategy.compile(optimizer, loss, metrics=metrics) - - cpu_model = get_model() - cpu_model.compile(optimizer, loss, metrics=metrics) - - x = np.random.random((10, 3)).astype("float32") - y = np.random.random((10, 4)).astype("float32") - - # As sample size is 10, we batch by 4 so that the last batch is a - # partial batch. Also `evaluate()` using numpy array as inputs - # without distribution strategy uses entire sample as a single - # batch. As so, we remove parameters `batch_size` and `steps`. - cpu_model.set_weights(model_with_ds_strategy.get_weights()) - evaluate_ground_truth = cpu_model.evaluate(x, y) - - # We don't compare the loss as loss is currently not computed as - # metric in Keras, the loss value is inaccurate for last partial - # batch due to more weights for the last batch samples. - steps = np.ceil(10.0 / batch_size) - self.assertAllClose( - model_with_ds_strategy.evaluate( - x, y, batch_size=batch_size, steps=steps - )[1:], - evaluate_ground_truth[1:], - atol=1e-5, - rtol=1e-5, - ) - # Test that `steps` is inferred correctly when final partial batch - # exists. - self.assertAllClose( - model_with_ds_strategy.evaluate(x, y, batch_size=batch_size)[ - 1: - ], - evaluate_ground_truth[1:], - atol=1e-5, - rtol=1e-5, - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - tpu_strategy_combinations_graph_only() - ) - ) - def test_predict_with_partial_batch(self, distribution): - with self.cached_session(): - optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.001) - loss = "mse" - - with distribution.scope(): - model_with_ds_strategy = get_model() - model_with_ds_strategy.compile(optimizer, loss) - - cpu_model = get_model() - cpu_model.compile(optimizer, loss) - - inputs = np.random.random((10, 3)).astype(np.float32) - - # As sample size is 10, we batch by 4 so that the last batch is - # a partial batch. Also `predict()` using numpy array as inputs - # without distribution strategy uses entire sample as a single - # batch. As so, we remove parameters `batch_size` and `steps`. - cpu_model.set_weights(model_with_ds_strategy.get_weights()) - predict_ground_truth = cpu_model.predict(inputs) - self.assertAllClose( - model_with_ds_strategy.predict(inputs, batch_size=4, steps=3), - predict_ground_truth, - atol=1e-5, - rtol=1e-5, - ) - # Test that `steps` is inferred correctly when final partial batch - # exists. - self.assertAllClose( - model_with_ds_strategy.predict(inputs, batch_size=4), - predict_ground_truth, - atol=1e-5, - rtol=1e-5, - ) - - @tf.__internal__.distribute.combinations.generate( - tpu_strategy_combinations_graph_only() - ) - def test_no_target_model(self, distribution): - with self.cached_session(): - optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.001) - - class MyLayer(keras.layers.Layer): - def call(self, inputs, training=None): - self.add_loss(tf.reduce_sum(inputs), inputs=True) - return inputs - - with distribution.scope(): - model = keras.models.Sequential() - model.add( - keras.layers.Dense( - 16, activation="relu", input_shape=_INPUT_SIZE - ) - ) - model.add(MyLayer()) - model.add(keras.layers.Dense(_NUM_CLASS, activation="softmax")) - - model.compile(optimizer) - inputs = np.zeros((20, 10), np.float32) - - model.fit(inputs, epochs=1, steps_per_epoch=2) - model.predict(inputs, steps=1) - model.evaluate(inputs, steps=1) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - tpu_strategy_combinations_graph_only() - ) - ) - def test_predict_multi_output_model_with_partial_batch(self, distribution): - with self.cached_session(): - optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.001) - loss = "mse" - - with distribution.scope(): - model_with_ds_strategy = ( - simple_multi_inputs_multi_outputs_model() - ) - model_with_ds_strategy.compile(optimizer, loss) - - cpu_model = simple_multi_inputs_multi_outputs_model() - cpu_model.compile(optimizer, loss) - - input_data, _ = get_multi_inputs_multi_outputs_data() - input_dict = { - "input_a": input_data["input_a"], - "input_b": input_data["input_b"], - } - - # As sample size is 200, we batch by 18 so that the last batch is - # a partial batch. Also `fit()` using numpy array as inputs without - # distribution strategy uses entire sample as a single batch. As so, - # we remove parameters `batch_size` and `steps`. - cpu_model.set_weights(model_with_ds_strategy.get_weights()) - self.assertAllClose( - model_with_ds_strategy.predict( - input_dict, batch_size=18, steps=12 - ), - cpu_model.predict(input_dict), - atol=1e-4, - rtol=1e-4, - ) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_gradients_are_none(self, distribution): - - if not tf.executing_eagerly(): - self.skipTest("None gradients are not supported in graph mode") - - class DenseWithExtraWeight(keras.layers.Dense): - def build(self, input_shape): - # Gradients w.r.t. extra_weights are None - self.extra_weight_1 = self.add_weight( - "extra_weight_1", shape=(), initializer="ones" - ) - super().build(input_shape) - self.extra_weight_2 = self.add_weight( - "extra_weight_2", shape=(), initializer="ones" - ) - - with distribution.scope(): - model = keras.Sequential( - [DenseWithExtraWeight(4, input_shape=(4,))] - ) - model.compile("adam", "mse") - - inputs = np.random.normal(size=(64, 4)) - targets = np.random.normal(size=(64, 4)) - old_kernel = model.get_weights()[1] - model.fit(inputs, targets) - new_kernel = model.get_weights()[1] - self.assertNotAllEqual(old_kernel, new_kernel) - - -class TestDistributionStrategyWithDatasets( - tf.test.TestCase, parameterized.TestCase -): - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_calling_model_on_same_dataset(self, distribution): - with self.cached_session(): - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(0.001) - model = get_model() - loss = "mse" - metrics = ["mae", keras.metrics.CategoricalAccuracy()] - model.compile(optimizer, loss, metrics=metrics) - - dataset = get_dataset(distribution) - - # Call fit with validation data - model.fit( - dataset, - epochs=1, - steps_per_epoch=2, - verbose=0, - validation_data=dataset, - validation_steps=2, - ) - model.fit( - dataset, - epochs=1, - steps_per_epoch=2, - verbose=0, - validation_data=dataset, - validation_steps=2, - ) - model.predict(get_predict_dataset(distribution), steps=2) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_model_interleaved_eval_same_as_direct_eval(self, distribution): - with self.cached_session(): - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - user_controlled_model = get_model() - user_controlled_model.compile( - optimizer_fn(0.001), - loss="mse", - metrics=["mae", keras.metrics.CategoricalAccuracy()], - ) - - interleaved_model = get_model() - interleaved_model.set_weights( - user_controlled_model.get_weights() - ) - interleaved_model.compile( - optimizer_fn(0.001), - loss="mse", - metrics=["mae", keras.metrics.CategoricalAccuracy()], - ) - - dataset = get_dataset(distribution) - - # Call fit with validation interleaved - interleaved_output = interleaved_model.fit( - dataset, - epochs=2, - steps_per_epoch=2, - verbose=1, - validation_data=dataset, - validation_steps=2, - shuffle=False, - ) - - # Manually control the validation running after each epoch. - user_controlled_output = [] - for _ in range(2): - user_controlled_model.fit( - dataset, - epochs=1, - steps_per_epoch=2, - verbose=1, - shuffle=False, - ) - user_controlled_output.append( - user_controlled_model.evaluate(dataset, steps=2) - ) - - self.assertEqual( - interleaved_output.history["val_loss"], - [x[0] for x in user_controlled_output], - ) - val_mean_absolute_error = interleaved_output.history.get( - "val_mean_absolute_error" - ) - if not val_mean_absolute_error: - # The name of the metric changed in TF2.0 - val_mean_absolute_error = interleaved_output.history["val_mae"] - self.assertEqual( - val_mean_absolute_error, [x[1] for x in user_controlled_output] - ) - self.assertEqual( - interleaved_output.history["val_categorical_accuracy"], - [x[2] for x in user_controlled_output], - ) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_fit_with_tuple_and_dict_dataset_inputs(self, distribution): - with self.cached_session(): - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(learning_rate=0.001) - model = multi_input_output_model() - loss = "mse" - metrics = ["mae", keras.metrics.CategoricalAccuracy()] - model.compile(optimizer, loss, metrics=metrics) - - input_a_np = np.random.random((10, 3)).astype("float32") - input_b_np = np.random.random((10, 5)).astype("float32") - output_d_np = np.random.random((10, 7)).astype("float32") - output_e_np = np.random.random((10, 7)).astype("float32") - - # Test with tuples - dataset_tuple = tf.data.Dataset.from_tensor_slices( - ((input_a_np, input_b_np), (output_d_np, output_e_np)) - ) - dataset_tuple = dataset_tuple.repeat(100) - dataset_tuple = dataset_tuple.batch(10) - - model.fit(dataset_tuple, epochs=1, steps_per_epoch=2, verbose=1) - - # Test with dict - dataset_dict = tf.data.Dataset.from_tensor_slices( - ( - {"input_a": input_a_np, "input_b": input_b_np}, - (output_d_np, output_e_np), - ) - ) - dataset_dict = dataset_dict.repeat(100) - dataset_dict = dataset_dict.batch(10) - - model.fit(dataset_dict, epochs=1, steps_per_epoch=2, verbose=1) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_fit_with_dictionary_in_the_dataset_b135161171(self, distribution): - - if backend.is_tpu_strategy(distribution): - self.skipTest("b/142805125") - - def custom_loss(predict, label, weight): - bce = keras.losses.binary_crossentropy(label, predict) - return tf.reduce_mean(bce * weight) - - with self.cached_session(): - with distribution.scope(): - input_img = keras.layers.Input([64, 64, 3], name="img") - input_lbl = keras.layers.Input([64, 64, 1], name="lbl") - input_weight = keras.layers.Input([64, 64], name="weight") - predict = keras.layers.Conv2D(2, [1, 1], padding="same")( - input_img - ) - loss_lambda = keras.layers.Lambda( - lambda x: custom_loss(*x), name="my_loss" - ) - my_loss = loss_lambda([predict, input_lbl, input_weight]) - model = keras.models.Model( - inputs=[input_img, input_lbl, input_weight], - outputs=[predict, my_loss], - ) - model.add_loss(model.get_layer("my_loss").output) - model.compile(optimizer="adam") - - if tf.executing_eagerly(): - - def map_fn(img, lbl, weight): - inputs = {"img": img, "lbl": lbl, "weight": weight} - return (inputs,) - - else: - - def map_fn(img, lbl, weight): - inputs = {"img": img, "lbl": lbl, "weight": weight} - return inputs, {} - - fake_imgs = np.ones([50, 64, 64, 3], dtype=np.float32) - fake_lbls = np.ones([50, 64, 64, 1], dtype=np.float32) - fake_weights = np.ones([50, 64, 64], dtype=np.float32) - - data = ( - tf.data.Dataset.from_tensor_slices( - (fake_imgs, fake_lbls, fake_weights) - ) - .map(map_fn) - .batch(10) - ) - - model.fit(data) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_fit_eval_and_predict_methods_on_dataset_without_steps( - self, distribution - ): - with self.cached_session(): - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(0.001) - model = get_model() - loss = "mse" - metrics = ["mae", keras.metrics.CategoricalAccuracy()] - model.compile(optimizer, loss, metrics=metrics) - - inputs = np.zeros((1000, 3), dtype=np.float32) - targets = np.zeros((1000, 4), dtype=np.float32) - # steps/steps_per_epoch are calculated when using numpy arrays as - # input data. - fit_with_numpy = model.fit( - inputs, targets, epochs=1, batch_size=10 - ).history - eval_with_numpy = model.evaluate(inputs, targets, batch_size=10) - predict_with_numpy = model.predict(inputs, batch_size=10) - - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.batch(10, drop_remainder=True) - fit_with_ds = model.fit(dataset, epochs=1).history - eval_with_ds = model.evaluate(dataset) - predict_dataset = tf.data.Dataset.from_tensor_slices(inputs) - predict_dataset = predict_dataset.batch(10, drop_remainder=True) - predict_with_ds = model.predict(predict_dataset) - self.assertAllClose( - fit_with_numpy, fit_with_ds, atol=1e-4, rtol=1e-4 - ) - self.assertAllClose( - eval_with_numpy, eval_with_ds, atol=1e-4, rtol=1e-4 - ) - self.assertAllClose( - predict_with_numpy, predict_with_ds, atol=1e-4, rtol=1e-4 - ) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_predict_on_dataset_with_unknown_cardinality_without_steps( - self, distribution, mode - ): - - if mode == "graph" and backend.is_tpu_strategy(distribution): - self.skipTest("partial batch not supported with TPU in graph mode.") - - with self.cached_session(): - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(0.001) - model = get_model() - loss = "mse" - metrics = ["mae", keras.metrics.CategoricalAccuracy()] - model.compile(optimizer, loss, metrics=metrics) - - inputs = np.zeros((20, 3), dtype=np.float32) - # steps/steps_per_epoch are calculated when using numpy arrays as - # input data. - predict_with_numpy = model.predict(inputs, batch_size=10) - - predict_dataset = convert_numpy_to_dataset_with_unknown_cardinality( - inputs - ) - - self.assertEqual( - keras.backend.get_value( - tf.data.experimental.cardinality(predict_dataset) - ), - tf.data.experimental.UNKNOWN_CARDINALITY, - ) - - predict_with_ds = model.predict(predict_dataset) - self.assertAllClose( - predict_with_numpy, predict_with_ds, atol=1e-4, rtol=1e-4 - ) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_on_dataset_with_unknown_cardinality_without_steps( - self, distribution, mode - ): - # TODO(b/155867206): Investigate why this test occasionally segfaults on - # TPU in eager mode. - if mode == "eager" and backend.is_tpu_strategy(distribution): - self.skipTest("caused segfault with TPU in eager mode.") - - if mode == "graph" and backend.is_tpu_strategy(distribution): - self.skipTest("partial batch not supported with TPU in graph mode.") - - with self.cached_session(): - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(0.001) - model = get_model() - loss = "mse" - metrics = ["mae", keras.metrics.CategoricalAccuracy()] - model.compile(optimizer, loss, metrics=metrics) - - inputs = np.zeros((100, 3), dtype=np.float32) - targets = np.zeros((100, 4), dtype=np.float32) - # steps/steps_per_epoch are calculated when using numpy arrays as - # input data. - fit_with_numpy = model.fit( - inputs, targets, epochs=1, batch_size=10 - ).history - fit_with_numpy_multiple_epochs = model.fit( - inputs, targets, epochs=2, batch_size=10 - ).history - eval_with_numpy = model.evaluate(inputs, targets, batch_size=10) - predict_with_numpy = model.predict(inputs, batch_size=10) - - dataset = convert_numpy_to_dataset_with_unknown_cardinality( - inputs, targets - ) - predict_dataset = convert_numpy_to_dataset_with_unknown_cardinality( - inputs - ) - - self.assertEqual( - keras.backend.get_value( - tf.data.experimental.cardinality(dataset) - ), - tf.data.experimental.UNKNOWN_CARDINALITY, - ) - self.assertEqual( - keras.backend.get_value( - tf.data.experimental.cardinality(predict_dataset) - ), - tf.data.experimental.UNKNOWN_CARDINALITY, - ) - - eval_with_ds = model.evaluate(dataset) - predict_with_ds = model.predict(predict_dataset) - self.assertAllClose( - eval_with_numpy, eval_with_ds, atol=1e-4, rtol=1e-4 - ) - self.assertAllClose( - predict_with_numpy, predict_with_ds, atol=1e-4, rtol=1e-4 - ) - - fit_with_ds = model.fit(dataset, epochs=1).history - fit_with_ds_multiple_epochs = model.fit(dataset, epochs=2).history - self.assertAllClose( - fit_with_numpy, fit_with_ds, atol=1e-4, rtol=1e-4 - ) - self.assertAllClose( - fit_with_numpy_multiple_epochs, - fit_with_ds_multiple_epochs, - atol=1e-4, - rtol=1e-4, - ) - - @tf.__internal__.distribute.combinations.generate( - tpu_strategy_combinations_graph_only() - ) - def test_on_dataset_with_unknown_cardinality(self, distribution): - with self.cached_session(): - with distribution.scope(): - model = get_model() - loss = "mse" - metrics = ["mae", keras.metrics.CategoricalAccuracy()] - model.compile( - tf.compat.v1.train.GradientDescentOptimizer(0.001), - loss, - metrics=metrics, - ) - - inputs = np.zeros((1000, 3), dtype=np.float32) - targets = np.zeros((1000, 4), dtype=np.float32) - # steps/steps_per_epoch are calculated when using numpy arrays as - # input data. - eval_with_numpy = model.evaluate(inputs, targets, batch_size=10) - predict_with_numpy = model.predict(inputs, batch_size=10) - - dataset = convert_numpy_to_dataset_with_unknown_cardinality( - inputs, targets - ) - predict_dataset = convert_numpy_to_dataset_with_unknown_cardinality( - inputs - ) - - self.assertEqual( - keras.backend.get_value( - tf.data.experimental.cardinality(dataset) - ), - tf.data.experimental.UNKNOWN_CARDINALITY, - ) - self.assertEqual( - keras.backend.get_value( - tf.data.experimental.cardinality(predict_dataset) - ), - tf.data.experimental.UNKNOWN_CARDINALITY, - ) - - eval_with_ds = model.evaluate(dataset, steps=100) - predict_with_ds = model.predict(predict_dataset, steps=100) - self.assertAllClose( - eval_with_numpy, eval_with_ds, atol=1e-4, rtol=1e-4 - ) - self.assertAllClose( - predict_with_numpy, predict_with_ds, atol=1e-4, rtol=1e-4 - ) - - with self.assertRaisesRegex( - ValueError, "Number of steps could not be inferred" - ): - model.fit(dataset, epochs=1) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_fit_eval_and_predict_methods_on_dataset(self, distribution): - with self.cached_session(): - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(0.001) - model = get_model() - loss = "mse" - metrics = ["mae", keras.metrics.CategoricalAccuracy()] - model.compile(optimizer, loss, metrics=metrics) - - dataset = get_dataset(distribution) - - model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) - model.evaluate(dataset, steps=2, verbose=1) - model.predict(get_predict_dataset(distribution), steps=2) - - @tf.__internal__.distribute.combinations.generate( - strategy_and_optimizer_combinations() - ) - def test_fit_eval_and_predict_with_optimizer(self, distribution, optimizer): - with self.cached_session(): - - with distribution.scope(): - - model = get_model() - loss = "mse" - model.compile(optimizer(), loss) - - dataset = get_dataset(distribution) - - model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) - model.evaluate(dataset, steps=2, verbose=1) - model.predict(get_predict_dataset(distribution), steps=2) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.one_device_strategy, - ], - mode=["graph", "eager"], - ) - ) - def test_dataset_wrong_input_shape(self, distribution, mode): - if mode == "graph": - self.skipTest( - "TODO(b/120943676, b/120957836): Re-enable for graph once the " - "validation code is restored." - ) - with self.cached_session(): - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(learning_rate=0.001) - model = get_model() - loss = "mse" - model.compile(optimizer, loss) - - # Wrong input shape - inputs = np.zeros((10, 5), dtype=np.float32) - targets = np.zeros((10, 4), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - - with self.assertRaisesRegex(ValueError, "is incompatible with"): - model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=0) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu # noqa: E501 - ], - mode=["graph", "eager"], - ) - ) - def test_dataset_external_batch_input_validation(self, distribution): - with self.cached_session(): - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(learning_rate=0.001) - model = get_model() - loss = "mse" - model.compile(optimizer, loss) - - # Batching is done outside tf.data's `batch` - inputs = np.zeros((100, 10, 3), dtype=np.float32) - targets = np.zeros((100, 10, 4), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat(100) - - model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, # noqa: E501 - ], - mode=["graph", "eager"], - ) - ) - def test_learning_phase_value(self, distribution): - # TODO(anjalisridhar): Modify this test to use Lambdas since we can - # compare meaningful values. Currently we don't pass the learning phase - # if the Lambda layer uses the learning phase. - with self.cached_session(): - with distribution.scope(): - x = keras.layers.Input(shape=(1,), name="input") - y = keras.layers.Dense(1, kernel_initializer="ones")(x) - z = keras.layers.Dropout(0.9999)(y) - model = keras.Model(x, z) - initial_weights = model.get_weights() - - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(0.005) - loss = "mse" - metrics = ["acc"] - model.compile(optimizer, loss, metrics=metrics) - - batch_size = 8 - if isinstance( - distribution, - ( - tf.distribute.MirroredStrategy, - tf.compat.v1.distribute.MirroredStrategy, - ), - ): - # MirroredStrategy uses global batch size. - batch_size = 8 * distribution.num_replicas_in_sync - - inputs = np.ones((10, 1), dtype=np.float32) - targets = np.ones((10, 1), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat().batch(batch_size) - hist = model.fit(dataset, epochs=1, steps_per_epoch=20, verbose=1) - self.assertAlmostEqual(hist.history["acc"][0], 0, 0) - - with distribution.scope(): - model.set_weights(initial_weights) - # TODO(psv/anjalisridhar): Enable these lines after we fix - # b/117431185. evaluate_output = model.evaluate(dataset, steps=20) - # self.assertAlmostEqual(evaluate_output[1], 1, 0) - - inputs = np.ones((10, 1), dtype=np.float32) - predict_dataset = tf.data.Dataset.from_tensor_slices(inputs) - - predict_dataset = predict_dataset.repeat().batch(batch_size) - output = model.predict(predict_dataset, steps=10) - # `predict` runs for 10 steps - ref_output = np.ones((160, 1), dtype=np.float32) - self.assertArrayNear(output, ref_output, 1e-1) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def testOptimizerWithCallbacks(self, distribution): - with self.cached_session(): - with distribution.scope(): - model = get_model() - optimizer = gradient_descent_keras.SGD(0.01) - loss = "mse" - model.compile(optimizer, loss) - - dataset = get_dataset(distribution) - - def schedule(_): - return 0.001 - - model.fit( - dataset, - epochs=1, - steps_per_epoch=2, - verbose=0, - callbacks=[keras.callbacks.LearningRateScheduler(schedule)], - ) - self.assertAllClose( - 0.001, keras.backend.get_value(model.optimizer.lr) - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - tpu_strategy_combinations_graph_only(), - tf.__internal__.test.combinations.combine(batch_size=[4, 6]), - ) - ) - def test_evaluate_with_dataset_with_partial_batch( - self, distribution, batch_size - ): - with self.cached_session(): - optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.001) - loss = "mse" - metrics = ["mae", keras.metrics.CategoricalAccuracy()] - - with distribution.scope(): - model_with_ds_strategy = get_model() - model_with_ds_strategy.compile(optimizer, loss, metrics=metrics) - - cpu_model = get_model() - cpu_model.compile(optimizer, loss, metrics=metrics) - - x = np.random.random((10, 3)).astype("float32") - y = np.random.random((10, 4)).astype("float32") - dataset = tf.data.Dataset.from_tensor_slices((x, y)) - - # As sample size is 10, we make the last batch a partial batch. - cpu_model.set_weights(model_with_ds_strategy.get_weights()) - dataset_with_partial_batch = dataset.batch(batch_size) - - # We don't compare the loss as loss is currently not computed as - # metric in Keras, the loss value is inaccurate for last partial - # batch due to more weights for the last batch samples. - steps = np.ceil(10.0 / batch_size) - self.assertAllClose( - model_with_ds_strategy.evaluate( - dataset_with_partial_batch, steps=steps - )[1:], - cpu_model.evaluate(dataset_with_partial_batch, steps=steps)[1:], - atol=1e-5, - rtol=1e-5, - ) - self.assertAllClose( - model_with_ds_strategy.evaluate(dataset_with_partial_batch)[1:], - cpu_model.evaluate(dataset_with_partial_batch)[1:], - atol=1e-5, - rtol=1e-5, - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - tpu_strategy_combinations_graph_only() - ) - ) - def test_predict_with_dataset_with_partial_batch(self, distribution): - with self.cached_session(): - optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.001) - loss = "mse" - - with distribution.scope(): - model_with_ds_strategy = get_model() - model_with_ds_strategy.compile(optimizer, loss) - - cpu_model = get_model() - cpu_model.compile(optimizer, loss) - - inputs = np.random.random((10, 3)).astype(np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs)) - - # As sample size is 10, we batch by 4 so that the last batch is - # a partial batch. - dataset_with_partial_batch = dataset.batch(4) - cpu_model.set_weights(model_with_ds_strategy.get_weights()) - - self.assertAllClose( - model_with_ds_strategy.predict( - dataset_with_partial_batch, steps=3 - ), - cpu_model.predict(dataset_with_partial_batch, steps=3), - atol=1e-5, - rtol=1e-5, - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - tpu_strategy_combinations_graph_only() - ) - ) - def test_predict_multi_output_model_with_dataset_with_partial_batch( - self, distribution - ): - with self.cached_session(): - optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.001) - loss = "mse" - - with distribution.scope(): - model_with_ds_strategy = ( - simple_multi_inputs_multi_outputs_model() - ) - model_with_ds_strategy.compile(optimizer, loss) - - cpu_model = simple_multi_inputs_multi_outputs_model() - cpu_model.compile(optimizer, loss) - - input_data, _ = get_multi_inputs_multi_outputs_data() - input_dict = { - "input_a": input_data["input_a"], - "input_b": input_data["input_b"], - } - - dataset = tf.data.Dataset.from_tensor_slices(input_dict) - - # As sample size is 200, we batch by 18 using 12 steps per epoch so - # that the last batch is a partial batch. - dataset_with_partial_batch = dataset.batch(18) - cpu_model.set_weights(model_with_ds_strategy.get_weights()) - - self.assertAllClose( - model_with_ds_strategy.predict( - dataset_with_partial_batch, steps=12 - ), - cpu_model.predict(dataset_with_partial_batch, steps=12), - atol=1e-4, - rtol=1e-4, - ) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations_minus_default() - ) - def test_match_model_input_matches_with_dataset_tensors(self, distribution): - def _create_model_input_output_tensors(): - input_a = keras.layers.Input( - shape=(16,), name="z_input_sorted_last" - ) - input_b = keras.layers.Input( - shape=(32,), name="a_input_sorted_first" - ) - intermediate_a = keras.layers.Dense(10)(input_a) - intermediate_b = keras.layers.Dense(10)(input_b) - merged = keras.layers.Add()([intermediate_a, intermediate_b]) - output = keras.layers.Dense(2)(merged) - return input_a, input_b, output - - input_dict = { - "z_input_sorted_last": np.random.rand(32, 16).astype(np.float32), - "a_input_sorted_first": np.random.rand(32, 32).astype(np.float32), - } - target = np.ones((32, 2), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((input_dict, target)) - dataset = dataset.batch(4, drop_remainder=True) - - with self.cached_session(): - with distribution.scope(): - input_a, input_b, output = _create_model_input_output_tensors() - # `input_a`, which has input name that comes last in - # alphanumeric order, is the first input of the model input - # layers. If tensors from `input_dict` is blindly flattened and - # passed to model inputs incorrectly, this would result in - # `input_a` input layer matching with tensor - # `a_input_sorted_first` and would result in shape mismatch. - model_with_array_input = keras.models.Model( - inputs=[input_a, input_b], outputs=output - ) - model_with_array_input.compile("sgd", "mse") - model_weights = model_with_array_input.get_weights() - model_with_array_input_fit = model_with_array_input.fit( - dataset, steps_per_epoch=1, epochs=1 - ).history - - input_a, input_b, output = _create_model_input_output_tensors() - model_with_dict_input = keras.models.Model( - inputs={ - "z_input_sorted_last": input_a, - "a_input_sorted_first": input_b, - }, - outputs=output, - ) - model_with_dict_input.compile("sgd", "mse") - model_with_dict_input.set_weights(model_weights) - model_with_dict_input_fit = model_with_dict_input.fit( - dataset, steps_per_epoch=1, epochs=1 - ).history - self.assertAllClose( - model_with_dict_input_fit, - model_with_array_input_fit, - atol=1e-4, - rtol=1e-4, - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=strategies_minus_tpu, mode=["graph", "eager"] - ) - + tf.__internal__.test.combinations.combine( - distribution=multi_worker_mirrored_strategies, mode=["eager"] - ) - ) - def test_dataset_with_sample_weights(self, distribution): - with self.cached_session(), distribution.scope(): - model = get_sample_weights_model() - optimizer = tf.compat.v1.train.RMSPropOptimizer(learning_rate=0.001) - loss = "mse" - model.compile(optimizer, loss) - - inputs = np.array([[0], [1], [2], [3]], np.float32) - targets = np.array([[2], [4], [6], [8]], np.float32) - sample_weights = np.array([0.25, 0.5, 0.75, 1], np.float32) - ds = tf.data.Dataset.from_tensor_slices( - (inputs, targets, sample_weights) - ).batch(2) - result = model.evaluate(ds, verbose=1) - - # The per sample loss is multiplied by the corresponding sample - # weight. The average of these weighted losses is the return value - # of the `evaluate` call. For example, in the test above the average - # weighted loss is calculated in the following manner: - # batch_1 = (((2-0)^2) * 0.25 + ((4-1)^2) * 0.5) / 2 = 5.5 / 2 = - # 2.75 - # batch_2 = (((6-2)^2 * 0.75) + ((8-3)^2 * 1)) / 2 = 37 / 2 = 18.5 - # final result = (batch_1 + batch_2) / 2 = 10.625. - # The first time we divide by number of input samples and the second - # time we divide by number of steps/batches that the loss is - # aggregated over. - self.assertAllClose(result, 10.625) - - # We now test without passing sample_weights: - # batch_1 = ((2-0)^2) + ((4-1)^2) / 2 = 13 / 2 = 6.5 - # batch_2 = ((6-2)^2) + ((8-3)^2) / 2 = 41 / 2 = 20.5 - # final result = (batch_1 + batch_2) / 2 = 27 / 2 = 13.5 - ds = tf.data.Dataset.from_tensor_slices((inputs, targets)).batch(2) - result = model.evaluate(ds, verbose=1) - self.assertAllClose(result, 13.5) - - -class TestDistributionStrategyWithDatasetsFile( - tf.test.TestCase, parameterized.TestCase -): - def setUp(self): - super().setUp() - self.input_file_name = os.path.join( - self.get_temp_dir(), "input.tfrecord" - ) - inputs = np.zeros((20, 3), dtype=np.float32) - input_dataset = tf.data.Dataset.from_tensor_slices(inputs) - input_dataset = input_dataset.map(tf.io.serialize_tensor) - writer = tf.data.experimental.TFRecordWriter(self.input_file_name) - writer.write(input_dataset) - - # TODO(wxinyi): add a multi-worker test for TPU - @tf.__internal__.distribute.combinations.generate( - multi_worker_strategy_combinations_eager_only() - ) - def test_predict_on_dataset_shard_options_file_multi_worker_mirrored( - self, distribution, mode - ): - # This test is to verify if we successfully switch auto_shard_policy of - # a input dataset inside model.predict with MultiWorkerMirroredStrategy - # to AutoShardPolicy.DATA. Since there is only one input file for - # multiple workers, AutoShardPolicy.AUTO or AutoShardPolicy.FILE will - # lead to an error. However, since we switch to AutoShardPolicy.DATA in - # model.predict, no error is raised. - del mode - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(0.001) - model = get_model() - loss = "mse" - model.compile(optimizer, loss) - - dataset = tf.data.TFRecordDataset(self.input_file_name) - dataset = dataset.map(lambda x: tf.io.parse_tensor(x, tf.float32)) - - dummy_op = lambda inp: True - - dataset = dataset.filter(dummy_op).batch(8, drop_remainder=True) - - options = tf.data.Options() - options.experimental_distribute.auto_shard_policy = ( - tf.data.experimental.AutoShardPolicy.FILE - ) - dataset = dataset.with_options(options) - - model.predict(dataset, steps=1) - - -class TestRegularizerLoss(tf.test.TestCase, parameterized.TestCase): - class IdentityRegularizer(keras.regularizers.Regularizer): - def __call__(self, x): - return tf.identity(x) - - class AddLayer(keras.layers.Layer): - def build(self, _): - self.v = self.add_weight( - "v", - (), - initializer="ones", - regularizer=TestRegularizerLoss.IdentityRegularizer(), - ) - - def call(self, inputs): - return inputs + self.v - - @staticmethod - def loss_fn(_, y_pred): - return tf.reduce_mean(y_pred) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - all_strategy_combinations_minus_default() - ) - ) - def test_regularizer_loss(self, distribution): - batch_size = 2 - if not distributed_training_utils.global_batch_size_supported( - distribution - ): - batch_size //= distribution.num_replicas_in_sync - - # Given an input x, which is always 1, and variable v, this model - # computes Loss=x+v+regularizer_loss, where regularizer_loss=v and - # the variable is initialized to 1. Therefore, this model computes - # Loss=1+2v, and so the gradient dLoss/dv = 2. This gradient of 2 is - # averaged over all examples in a batch and then multiplied by the - # learning rate of 1. As a result, the model update for one batch - # should subtract 2 from v, resulting in v being -1. If the - # regularizer loss is not scaled correctly by number of replicas, - # the variable value will be incorrect when number of replicas >1. - # For e.g. it will be -2 if num replicas = 2. - with distribution.scope(): - x = keras.layers.Input(shape=(1,), batch_size=batch_size) - y = TestRegularizerLoss.AddLayer()(x) - model = keras.models.Model(inputs=x, outputs=y) - opt = gradient_descent_keras.SGD(1.0) - model.compile(opt, loss=TestRegularizerLoss.loss_fn) - model.fit( - x=np.array([[1.0], [1.0]], dtype=np.float32), - y=np.array([[1.0], [1.0]], dtype=np.float32), - batch_size=batch_size, - ) - v = model.get_weights()[0] - self.assertEqual(-1.0, v) - - -@test_utils.run_all_without_tensor_float_32( - "Uses Dense layers, which call matmul" -) -class TestDistributionStrategyWithKerasModels( - tf.test.TestCase, parameterized.TestCase -): - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_distribution_strategy_on_sequential_model(self, distribution): - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(learning_rate=0.001) - model = simple_sequential_model() - loss = "mse" - model.compile(optimizer, loss) - - inputs = np.zeros((20, 10), np.float32) - targets = np.zeros((20, 2), np.float32) - - model.fit(inputs, targets, epochs=1, batch_size=10) - model.predict(inputs, batch_size=10) - model.evaluate(inputs, targets, batch_size=10) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations() - ) - def test_distribution_strategy_on_functional_model(self, distribution): - with distribution.scope(): - optimizer_fn = gradient_descent_keras.SGD - optimizer = optimizer_fn(learning_rate=0.001) - model = get_model() - loss = "mse" - model.compile(optimizer, loss) - - inputs = np.zeros((64, 3), dtype=np.float32) - targets = np.zeros((64, 4), dtype=np.float32) - - model.fit(inputs, targets, epochs=1) - model.predict(inputs) - model.evaluate(inputs, targets) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=all_strategies, mode=["eager"] - ) - ) - def test_distributed_dataset(self, distribution): - with distribution.scope(): - - class CBCounter(keras.callbacks.Callback): - def __init__(self): - self.epochs = 0 - self.train_batches = 0 - self.test_batches = 0 - - def on_epoch_end(self, batch, logs=None): - self.epochs += 1 - - def on_train_batch_end(self, batch, logs=None): - self.train_batches += 1 - - def on_test_batch_end(self, batch, logs=None): - self.test_batches += 1 - - model = keras.Sequential([keras.layers.Dense(1)]) - model.compile("sgd", "mse") - cb_counter = CBCounter() - - x, y = np.ones((100, 10)), np.ones((100, 1)) - ds = tf.data.Dataset.from_tensor_slices((x, y)) - ds = ds.batch(10).repeat(2) - ds = distribution.experimental_distribute_dataset(ds) - - val_ds = tf.data.Dataset.from_tensor_slices((x, y)) - val_ds = val_ds.batch(20) - val_ds = distribution.experimental_distribute_dataset(val_ds) - - model.fit( - ds, - steps_per_epoch=10, - validation_data=val_ds, - validation_steps=5, - epochs=2, - callbacks=[cb_counter], - ) - - self.assertEqual(cb_counter.train_batches, 20) - self.assertEqual(cb_counter.test_batches, 10) - self.assertEqual(cb_counter.epochs, 2) - - # Check for `steps_per_epoch`. - if distribution.num_replicas_in_sync > 1: - with self.assertRaisesRegex( - ValueError, "distributed dataset, you must specify" - ): - model.fit(ds, epochs=2) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=all_strategies, mode=["eager"] - ) - ) - def test_distributed_datasets_from_function(self, distribution): - with distribution.scope(): - - class CBCounter(keras.callbacks.Callback): - def __init__(self): - self.epochs = 0 - self.train_batches = 0 - self.test_batches = 0 - - def on_epoch_end(self, batch, logs=None): - self.epochs += 1 - - def on_train_batch_end(self, batch, logs=None): - self.train_batches += 1 - - def on_test_batch_end(self, batch, logs=None): - self.test_batches += 1 - - model = keras.Sequential([keras.layers.Dense(1)]) - model.compile("sgd", "mse") - cb_counter = CBCounter() - - def make_dataset(_): - x, y = np.ones((100, 10)), np.ones((100, 1)) - ds = tf.data.Dataset.from_tensor_slices((x, y)) - ds = ds.batch(5).repeat() - return ds - - ds = distribution.distribute_datasets_from_function(make_dataset) - val_ds = distribution.distribute_datasets_from_function( - make_dataset - ) - - model.fit( - ds, - steps_per_epoch=10, - validation_data=val_ds, - validation_steps=5, - epochs=2, - callbacks=[cb_counter], - ) - - self.assertEqual(cb_counter.train_batches, 20) - self.assertEqual(cb_counter.test_batches, 10) - self.assertEqual(cb_counter.epochs, 2) - - # Check for `steps_per_epoch`. - if distribution.num_replicas_in_sync > 1: - with self.assertRaisesRegex( - ValueError, "distributed dataset, you must specify" - ): - model.fit(ds, epochs=2) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=all_strategies, mode=["eager"] - ) - ) - def test_host_training_loop(self, distribution): - if isinstance(distribution, tf.distribute.MultiWorkerMirroredStrategy): - self.skipTest("b/172032817") - with distribution.scope(): - inputs = keras.Input((10, 10, 3)) - x = keras.layers.Conv2D(3, kernel_size=3)(inputs) - x = keras.layers.Flatten()(x) - outputs = keras.layers.Dense(1)(x) - model = keras.Model(inputs, outputs) - - model.compile("sgd", "mse", steps_per_execution=10) - - bc = BatchCountingCB() - x, y = np.ones((100, 10, 10, 3)), np.ones((100, 1)) - model.fit(x, y, batch_size=2, epochs=1, callbacks=[bc]) - self.assertEqual(bc.train_begin_batches, [0, 10, 20, 30, 40]) - self.assertEqual(bc.train_end_batches, [9, 19, 29, 39, 49]) - - model.evaluate(x, y, batch_size=2, callbacks=[bc]) - self.assertEqual(bc.test_begin_batches, [0, 10, 20, 30, 40]) - self.assertEqual(bc.test_end_batches, [9, 19, 29, 39, 49]) - - model.predict(x, batch_size=2, callbacks=[bc]) - self.assertEqual(bc.predict_begin_batches, [0, 10, 20, 30, 40]) - self.assertEqual(bc.predict_end_batches, [9, 19, 29, 39, 49]) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=all_strategies, mode=["eager"] - ) - ) - def test_host_training_loop_last_partial_execution(self, distribution): - if isinstance(distribution, tf.distribute.MultiWorkerMirroredStrategy): - self.skipTest("b/172032817") - with distribution.scope(): - inputs = keras.Input(10) - outputs = keras.layers.Dense(1)(inputs) - model = keras.Model(inputs, outputs) - - model.compile("sgd", "mse", steps_per_execution=20) - - bc = BatchCountingCB() - x, y = np.ones((100, 10)), np.ones((100, 1)) - model.fit(x, y, batch_size=2, epochs=1, callbacks=[bc]) - self.assertEqual(bc.train_begin_batches, [0, 20, 40]) - self.assertEqual(bc.train_end_batches, [19, 39, 49]) - - model.evaluate(x, y, batch_size=2, callbacks=[bc]) - self.assertEqual(bc.test_begin_batches, [0, 20, 40]) - self.assertEqual(bc.test_end_batches, [19, 39, 49]) - - model.predict(x, batch_size=2, callbacks=[bc]) - self.assertEqual(bc.predict_begin_batches, [0, 20, 40]) - self.assertEqual(bc.predict_end_batches, [19, 39, 49]) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=all_strategies, mode=["eager"] - ) - ) - def test_host_training_loop_dataset_unknown_size(self, distribution): - if isinstance(distribution, tf.distribute.MultiWorkerMirroredStrategy): - self.skipTest("b/172032817") - with distribution.scope(): - inputs = keras.Input(10) - outputs = keras.layers.Dense(1)(inputs) - model = keras.Model(inputs, outputs) - - model.compile("sgd", "mse", steps_per_execution=20) - - x, y = np.ones((100, 10)), np.ones((100, 1)) - ds = tf.data.Dataset.from_tensor_slices((x, y)).batch(2) - ds = ds.filter(lambda *args, **kwargs: True) # Makes the size UNKNOWN. - bc = BatchCountingCB() - - with self.assertRaisesRegex(ValueError, "steps_per_execution"): - model.fit(ds, epochs=2, callbacks=[bc]) - - train_ds = ds.repeat(2) - model.fit(train_ds, steps_per_epoch=50, epochs=2, callbacks=[bc]) - self.assertEqual(bc.train_begin_batches, [0, 20, 40, 0, 20, 40]) - self.assertEqual(bc.train_end_batches, [19, 39, 49, 19, 39, 49]) - - with self.assertRaisesRegex(ValueError, "steps_per_execution"): - model.evaluate(ds, callbacks=[bc]) - - test_ds = ds.repeat(2) - model.evaluate(test_ds, steps=50, callbacks=[bc]) - self.assertEqual(bc.test_begin_batches, [0, 20, 40]) - self.assertEqual(bc.test_end_batches, [19, 39, 49]) - - predict_ds = ds.repeat(2) - model.predict(predict_ds, steps=50, callbacks=[bc]) - self.assertEqual(bc.predict_begin_batches, [0, 20, 40]) - self.assertEqual(bc.predict_end_batches, [19, 39, 49]) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=all_strategies, mode=["eager"] - ) - ) - def test_host_training_loop_truncate_to_epoch(self, distribution): - if isinstance(distribution, tf.distribute.MultiWorkerMirroredStrategy): - self.skipTest("b/172032817") - with distribution.scope(): - inputs = keras.Input(10) - outputs = keras.layers.Dense(1)(inputs) - model = keras.Model(inputs, outputs) - - model.compile("sgd", "mse", steps_per_execution=500) - - x, y = np.ones((100, 10)), np.ones((100, 1)) - bc = BatchCountingCB() - model.fit(x, y, batch_size=2, epochs=2, callbacks=[bc]) - self.assertEqual(bc.train_begin_batches, [0, 0]) - self.assertEqual(bc.train_end_batches, [49, 49]) - - x, y = np.ones((50, 10)), np.ones((50, 1)) - model.evaluate(x, y, batch_size=2, callbacks=[bc]) - self.assertEqual(bc.test_begin_batches, [0]) - self.assertEqual(bc.test_end_batches, [24]) - - x = np.ones((50, 10)) - model.predict(x, batch_size=2, callbacks=[bc]) - self.assertEqual(bc.predict_begin_batches, [0]) - self.assertEqual(bc.predict_end_batches, [24]) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=all_strategies, mode=["eager"] - ) - ) - def test_gradient_clipping(self, distribution): - class MyLayer(keras.layers.Layer): - def build(self, _): - self.v1 = tf.Variable(1.0) - self.v2 = tf.Variable(1.0) - - def call(self, x): - return 3 * self.v1 - 3 * self.v2 - - x, y = np.ones((10, 1)), np.ones((10, 1)) - - with distribution.scope(): - layer = MyLayer() - model = keras.Sequential([layer]) - optimizer = gradient_descent_keras.SGD( - 1.0, clipnorm=2.0, clipvalue=2.0 - ) - model.compile(optimizer, "mae") - - if isinstance( - distribution, - ( - tf.distribute.experimental.CentralStorageStrategy, - tf.compat.v1.distribute.experimental.CentralStorageStrategy, - ), - ): - with self.assertRaisesRegex(ValueError, "not supported"): - model.fit(x, y, batch_size=10, epochs=1) - else: - model.fit(x, y, batch_size=10, epochs=1) - self.assertAllClose(self.evaluate(layer.v1), 3.0) - self.assertAllClose(self.evaluate(layer.v2), -1.0) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=all_strategies, mode=["eager"] - ) - ) - def test_custom_gradient_transformation(self, distribution): - if isinstance( - distribution, - ( - tf.distribute.experimental.CentralStorageStrategy, - tf.compat.v1.distribute.experimental.CentralStorageStrategy, - ), - ): - self.skipTest("Not supported with `CentralStorageStrategy`") - - class MyLayer(keras.layers.Layer): - def build(self, _): - self.v1 = tf.Variable(1.0) - self.v2 = tf.Variable(-1.0) - - def call(self, x): - return x + self.v1 + self.v2 - - def custom_transform(grads_and_vars): - # Always set gradients to 1. - return [(tf.ones_like(g), v) for g, v in grads_and_vars] - - x, y = np.ones((10, 1)), np.ones((10, 1)) - - with distribution.scope(): - layer = MyLayer() - model = keras.Sequential([layer]) - optimizer = gradient_descent_keras.SGD( - 1.0, gradient_transformers=[custom_transform] - ) - model.compile(optimizer, "mae") - - model.fit(x, y, batch_size=10, epochs=1) - self.assertAllClose(self.evaluate(layer.v1), 0.0) - self.assertAllClose(self.evaluate(layer.v2), -2.0) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - all_strategy_combinations_minus_default() - ) - ) - def test_distribution_strategy_one_dimensional(self, distribution): - with distribution.scope(): - inp = keras.layers.Input(shape=(10,)) - out = keras.layers.Dense(3, activation="softmax")(inp) - model = keras.Model(inputs=[inp], outputs=[out]) - model.compile( - optimizer="rmsprop", - loss="sparse_categorical_crossentropy", - metrics=["sparse_categorical_accuracy"], - ) - - x = np.random.random((64, 10)).astype("float32") - y = np.random.randint(3, size=64) - - model.fit(x, y, epochs=1, steps_per_epoch=2) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, # noqa: E501 - ], - mode=["graph", "eager"], - reduction=[ - losses_utils.ReductionV2.AUTO, - losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, - losses_utils.ReductionV2.SUM, - ], - ) - ) - def test_distribution_strategy_with_loss_reduction_types( - self, distribution, reduction - ): - np.random.seed(_RANDOM_SEED) - - def _get_model(): - inputs = keras.Input((10,)) - x1 = keras.layers.Dense(10, kernel_initializer="zeros")(inputs) - x2 = keras.layers.Dense(10, kernel_initializer="zeros")(x1) - outputs = keras.layers.Dense(1, kernel_initializer="zeros")(x2) - model = keras.Model(inputs, outputs) - return model - - x = np.random.random((64, 10)) - y = np.random.random((64, 1)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)) - dataset = dataset.batch(32) - - model = _get_model() - model.compile( - "sgd", loss=keras.losses.MeanSquaredError(reduction=reduction) - ) - history = model.fit(dataset, steps_per_epoch=2, epochs=1, shuffle=False) - - with distribution.scope(): - ds_model = _get_model() - ds_model.compile( - "sgd", loss=keras.losses.MeanSquaredError(reduction=reduction) - ) - ds_history = ds_model.fit( - dataset, steps_per_epoch=2, epochs=1, shuffle=False - ) - self.assertArrayNear( - history.history["loss"], ds_history.history["loss"], 1e-5 - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - all_strategy_combinations_minus_default() - ) - ) - def test_distribution_strategy_with_symbolic_add_loss( - self, mode, distribution - ): - def _make_model_with_add_loss(): - inputs = keras.Input((10,)) - x1 = keras.layers.Dense(10, kernel_initializer="zeros")(inputs) - x2 = keras.layers.Dense(10, kernel_initializer="zeros")(x1) - outputs = keras.layers.Dense(1, kernel_initializer="zeros")(x2) - model = keras.Model(inputs, outputs) - model.add_loss(tf.reduce_mean(x1)) - model.add_loss(tf.reduce_mean(outputs)) - return model - - x = np.ones((64, 10)).astype("float32") - - model = _make_model_with_add_loss() - model.compile("sgd") - history = model.fit(x, epochs=1) - - with distribution.scope(): - ds_model = _make_model_with_add_loss() - ds_model.compile("sgd") - ds_history = ds_model.fit(x, epochs=1) - - self.assertAllClose(history.history, ds_history.history) - - # TODO(omalleyt): Investigate flakiness and re-enable. - @tf.__internal__.distribute.combinations.generate( - all_strategy_minus_default_and_tpu_combinations() - ) - def DISABLED_test_distribution_strategy_with_callable_add_loss( - self, distribution - ): - def _make_model(): - inputs = keras.Input((10,)) - x1 = keras.layers.Dense(10, kernel_initializer="zeros")(inputs) - x2 = keras.layers.Dense(10, kernel_initializer="zeros")(x1) - d = keras.layers.Dense(1, kernel_initializer="zeros") - outputs = d(x2) - model = keras.Model(inputs, outputs) - model.add_loss(lambda: 100.0 * tf.reduce_mean(d.kernel)) - return model - - x = np.ones((64, 10)).astype("float32") - y = np.ones((64, 1)).astype("float32") - - model = _make_model() - self.assertLen(model.losses, 1) - - model.compile("sgd", "mse") - history = model.fit(x, y, steps_per_epoch=2, epochs=1) - - with distribution.scope(): - ds_model = _make_model() - self.assertLen(ds_model.losses, 1) - ds_model.compile("sgd", "mse") - ds_history = ds_model.fit(x, y, steps_per_epoch=2, epochs=1) - - self.assertAllClose(history.history, ds_history.history) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - all_strategy_minus_default_and_tpu_combinations() - ) - ) - def test_distribution_strategy_with_add_metric_in_call(self, distribution): - class Bias(keras.layers.Layer): - def build(self, input_shape): - self.bias = self.add_weight( - name="bias", initializer="zeros", shape=() - ) - - def call(self, inputs): - self.add_metric( - tf.reduce_mean(inputs), name="bias", aggregation="mean" - ) - return inputs + self.bias - - def _make_model_with_add_metric(): - inputs = keras.Input((10,)) - x1 = keras.layers.Dense(10, kernel_initializer="zeros")(inputs) - x2 = Bias()(x1) - outputs = keras.layers.Dense(1, kernel_initializer="zeros")(x2) - model = keras.Model(inputs, outputs) - return model - - x = np.ones((64, 10)).astype("float32") - y = np.ones((64, 1)).astype("float32") - - model = _make_model_with_add_metric() - self.assertLen(model.metrics, 1) - - model.compile("sgd", "mse") - history = model.fit( - x, y, validation_data=(x, y), validation_steps=2, epochs=2 - ) - - with distribution.scope(): - ds_model = _make_model_with_add_metric() - self.assertLen(ds_model.metrics, 1) - ds_model.compile("sgd", "mse") - ds_history = ds_model.fit( - x, y, validation_data=(x, y), validation_steps=2, epochs=2 - ) - # includes stateful loss metric in eager. - metrics_len = 2 if tf.executing_eagerly() else 1 - self.assertLen(ds_model.metrics, metrics_len) - - self.assertAllClose(history.history, ds_history.history) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.one_device_strategy, - tf.__internal__.distribute.combinations.one_device_strategy_gpu, - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, # noqa: E501 - ], - mode=["eager"], - ) - ) - def test_distribution_strategy_with_add_metric_object(self, distribution): - class Bias(keras.layers.Layer): - def build(self, input_shape): - self.bias = self.add_weight( - name="bias", initializer="zeros", shape=() - ) - self.mean = keras.metrics.Mean(name="mean") - - def call(self, inputs): - self.add_metric(self.mean(inputs)) - return inputs + self.bias - - def _make_model_with_add_metric_object(): - inputs = keras.Input((10,)) - x1 = keras.layers.Dense(10, kernel_initializer="zeros")(inputs) - x2 = Bias()(x1) - outputs = keras.layers.Dense(1, kernel_initializer="zeros")(x2) - model = keras.Model(inputs, outputs) - return model - - x = np.ones((64, 10)).astype("float32") - y = np.ones((64, 1)).astype("float32") - - model = _make_model_with_add_metric_object() - self.assertLen(model.metrics, 1) - - model.compile("sgd", "mse") - history = model.fit( - x, y, validation_data=(x, y), validation_steps=2, epochs=2 - ) - - with distribution.scope(): - ds_model = _make_model_with_add_metric_object() - self.assertLen(ds_model.metrics, 1) - ds_model.compile("sgd", "mse") - ds_history = ds_model.fit( - x, y, validation_data=(x, y), validation_steps=2, epochs=2 - ) - # includes stateful loss metric in eager. - metrics_len = 2 if tf.executing_eagerly() else 1 - self.assertLen(ds_model.metrics, metrics_len) - - self.assertAllClose(history.history, ds_history.history) - - @tf.__internal__.distribute.combinations.generate( - # TODO(phillypham): Why does validation_steps > 1 not work on TPUs? - tf.__internal__.test.combinations.times( - all_strategy_minus_default_and_tpu_combinations() - ) - ) - def test_distribution_strategy_with_add_metric_outside_call( - self, distribution - ): - def _make_model_with_add_metric(): - inputs = keras.Input((10,)) - x1 = keras.layers.Dense(10, kernel_initializer="zeros")(inputs) - outputs = keras.layers.Dense(1, kernel_initializer="zeros")(x1) - model = keras.Model(inputs, outputs) - model.add_metric( - tf.reduce_mean(x1), name="mid_mean", aggregation="mean" - ) - return model - - x = np.ones((64, 10)).astype("float32") - y = np.ones((64, 1)).astype("float32") - - model = _make_model_with_add_metric() - self.assertLen(model.metrics, 1) - - model.compile("sgd", "mse") - history = model.fit( - x, y, validation_data=(x, y), validation_steps=2, epochs=2 - ) - - with distribution.scope(): - ds_model = _make_model_with_add_metric() - self.assertLen(ds_model.metrics, 1) - ds_model.compile("sgd", "mse") - ds_history = ds_model.fit( - x, y, validation_data=(x, y), validation_steps=2, epochs=2 - ) - # includes stateful loss metric in eager. - metrics_len = 2 if tf.executing_eagerly() else 1 - self.assertLen(ds_model.metrics, metrics_len) - - self.assertAllClose(history.history, ds_history.history) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=strategies_minus_tpu - + multi_worker_mirrored_strategies, - mode=["eager"], - ) - ) - def test_sparse_tensor_outputs(self, distribution): - class ToSparse(keras.layers.Layer): - """Create a sparse tensor based on a given dense tensor.""" - - def call(self, inputs): - indices = tf.where(tf.not_equal(inputs, 0)) - values = tf.gather_nd(inputs, indices) - shape = tf.shape(inputs, out_type="int64") - return tf.SparseTensor(indices, values, dense_shape=shape) - - model = keras.Sequential([ToSparse()]) - - # Define some input data with additional padding. - input_data = np.array([[1, 0, 0], [2, 3, 0]]) - output = model.predict(input_data, batch_size=2) - - expected_indices = np.array([[0, 0], [1, 0], [1, 1]]) - expected_values = np.array([1, 2, 3]) - expected_dense_shape = np.array([2, 3]) - - self.assertAllEqual(output.indices, expected_indices) - self.assertAllEqual(output.values, expected_values) - self.assertAllEqual(output.dense_shape, expected_dense_shape) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=strategies_minus_tpu - + multi_worker_mirrored_strategies, - mode=["eager"], - ) - ) - def test_ragged_tensor_outputs(self, distribution): - class ToRagged(keras.layers.Layer): - """Create a ragged tensor based on a given dense tensor.""" - - def __init__(self, padding, ragged_rank=1, **kwargs): - super().__init__(**kwargs) - self._padding = padding - self._ragged_rank = ragged_rank - - def call(self, inputs): - return tf.RaggedTensor.from_tensor( - inputs, padding=self._padding, ragged_rank=self._ragged_rank - ) - - model = keras.Sequential([ToRagged(padding=0)]) - - # Define some input data with additional padding. - input_data = np.array([[1, 0, 0], [2, 3, 0]]) - output = model.predict(input_data, batch_size=2) - - expected_values = [[1], [2, 3]] - self.assertAllEqual(expected_values, output) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=strategies_minus_default_minus_tpu - + tpu_strategies - + multi_worker_mirrored_strategies, - mode=["eager"], - ) - ) - def test_correctness_of_add_loss_with_merge_call(self, distribution): - batch_size = 32 - - def _get_model(): - inputs = keras.layers.Input(shape=(1,)) - labels = keras.layers.Input(shape=(1,)) - x = keras.layers.Dense(10, activation="relu")(inputs) - y = keras.layers.Dense(1)(x) - model = keras.models.Model([inputs, labels], y) - model.add_loss(keras.losses.mean_squared_error(labels, y)) - return model - - def _get_data(): - x_train = np.random.rand(64, 1) - y_train = 3 * x_train - x_train = x_train.astype("float32") - y_train = y_train.astype("float32") - dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) - dataset = dataset.batch(batch_size) - return dataset - - with distribution.scope(): - model = _get_model() - optimizer = gradient_descent_keras.SGD(0.2) - - @tf.function - def train_step(dist_inputs): - def step_fn(inputs): - with tf.GradientTape() as tape: - logits = model(inputs) - - # Invoke a merge_call() - tf.distribute.get_replica_context().merge_call( - lambda d: None - ) - - # Verify that there is only one loss on the model. - assert len(model.losses) == 1 - loss_from_model = ( - tf.reduce_sum(model.losses) * 1.0 / batch_size - ) - - # Compute loss in this loop. - loss = keras.losses.mean_squared_error( - inputs[1], logits - ) - loss = tf.nn.compute_average_loss( - loss, global_batch_size=batch_size - ) - - # Verify that the loss computed in this loop is - # equivalent to the loss from the model that was added - # via add_loss. - tf.compat.v1.assert_equal(loss, loss_from_model) - - grads = tape.gradient(loss, model.trainable_variables) - optimizer.apply_gradients( - zip(grads, model.trainable_variables) - ) - return loss - - per_replica_losses = distribution.run( - step_fn, args=(dist_inputs,) - ) - return distribution.reduce( - tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None - ) - - dataset = distribution.experimental_distribute_dataset(_get_data()) - for _ in range(2): - for x in dataset: - train_step(x) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine(mode=["graph", "eager"]) - ) - def test_unimplemented_parameter_server_strategy(self): - cluster_spec = multi_worker_testing_utils.create_in_process_cluster( - num_workers=3, num_ps=2 - ) - cluster_resolver = SimpleClusterResolver( - cluster_spec=tf.train.ClusterSpec(cluster_spec), - task_type="worker", - task_id=1, - num_accelerators={"GPU": 0}, - ) - distribution = ( - tf.compat.v1.distribute.experimental.ParameterServerStrategy( - cluster_resolver - ) - ) - - self.assertIsInstance( - distribution, - tf.compat.v1.distribute.experimental.ParameterServerStrategy, - ) - - with self.assertRaisesRegex( - NotImplementedError, "ParameterServerStrategy*" - ): - with distribution.scope(): - model = simple_sequential_model() - optimizer = tf.compat.v1.train.RMSPropOptimizer( - learning_rate=0.001 - ) - loss = "mse" - model.compile(optimizer, loss) - - -# Models to exercise inserting ancillary layers with add_loss and add_metric. -def _functional_with_add_loss_and_metric(input_shape, num_classes, l1, l2): - inputs = keras.Input(input_shape, name="images") - x = keras.layers.Conv2D(32, kernel_size=5, activation="relu")(inputs) - x = keras.layers.MaxPooling2D(pool_size=2)(x) - x = keras.layers.Conv2D(64, kernel_size=5, activation="relu")(x) - x = keras.layers.MaxPooling2D(pool_size=2)(x) - # Apply L2 regularization to embedding. Use a mix of TensorFlow ops and - # layers to exercise all code paths. - x = keras.layers.Flatten(name="embedding")(x) - l2_loss = tf.reduce_mean(tf.reduce_sum(tf.square(x), -1)) - # Apply L1 regularization to next layer. - x = keras.layers.Dense(1024, activation="relu", name="sparse_embedding")(x) - l1_loss = keras.layers.Lambda( - lambda x: tf.reduce_mean(tf.reduce_sum(x, -1)), name="l1_loss" - )(x) - outputs = keras.layers.Dense(num_classes, name="logits")(x) - model = keras.Model(inputs=inputs, outputs=outputs) - # Weight regularization terms. - model.add_loss(keras.layers.Lambda(lambda x: x * l2)(l2_loss)) - model.add_metric(l2_loss, aggregation="mean", name="l2_loss") - model.add_loss(l1_loss * l1) - model.add_metric(l1_loss, aggregation="mean", name="l1_loss") - return model - - -def _sequential_with_add_loss_and_metric(input_shape, num_classes, l1, l2): - model = keras.Sequential( - [ - keras.layers.Conv2D( - 32, kernel_size=5, activation="relu", input_shape=input_shape - ), - keras.layers.MaxPooling2D(pool_size=2), - keras.layers.Conv2D(64, kernel_size=5, activation="relu"), - keras.layers.MaxPooling2D(pool_size=2), - keras.layers.Flatten(name="embedding"), - keras.layers.Dense( - 1024, activation="relu", name="sparse_embedding" - ), - keras.layers.Dense(num_classes, name="logits"), - ] - ) - # Extract layer outputs, add regularization terms, and rescale the metric. - # Use a mix of TensorFlow ops and layers to exercise all code paths. - x = model.get_layer("sparse_embedding").get_output_at(-1) - l1_loss = l1 * tf.reduce_mean(tf.reduce_sum(x, -1)) - model.add_loss(l1_loss) - model.add_metric( - keras.layers.Lambda(lambda x: tf.divide(x, l1))(l1_loss), - aggregation="mean", - name="l1_loss", - ) - x = model.get_layer("embedding").get_output_at(-1) - l2_loss = keras.layers.Lambda( - lambda x: l2 * tf.reduce_mean(tf.reduce_sum(x * x, -1)), name="l2_loss" - )(x) - model.add_loss(l2_loss) - model.add_metric(l2_loss / l2, aggregation="mean", name="l2_loss") - return model - - -def _functional_with_layer_reuse(input_shape, num_classes, l1, l2): - base_model = keras.Sequential( - [ - keras.layers.Conv2D( - 32, kernel_size=5, activation="relu", input_shape=input_shape - ), - keras.layers.MaxPooling2D(pool_size=2), - keras.layers.Conv2D(64, kernel_size=5, activation="relu"), - keras.layers.MaxPooling2D(pool_size=2), - keras.layers.Flatten(), - keras.layers.Dense(1024, activation="relu"), - keras.layers.Dense(num_classes, name="logits"), - ] - ) - inputs = keras.Input(input_shape, name="images") - logits = base_model(inputs) - model = keras.Model(inputs=inputs, outputs=logits) - # Reuse sequential layer and create new nodes. - zero_logits = base_model(tf.zeros_like(inputs)) - one_logits = base_model(tf.ones_like(inputs)) - # L2 loss. - l2_loss = tf.reduce_mean(tf.reduce_sum(tf.square(logits - zero_logits), -1)) - model.add_loss(l2_loss * l2) - model.add_metric(l2_loss, aggregation="mean", name="l2_loss") - # L1 loss. - l1_loss = tf.reduce_mean(tf.reduce_sum(tf.abs(logits - one_logits), -1)) - model.add_loss(l1_loss * l1) - model.add_metric(l1_loss, aggregation="mean", name="l1_loss") - return model - - -class TestDistributionStrategyWithMultipleAddLossAndMetricCalls( - tf.test.TestCase, parameterized.TestCase -): - """Tests complex models with multiple add loss and metric calls.""" - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - all_strategy_combinations_minus_default(), - tf.__internal__.test.combinations.combine( - model_fn=[ - _functional_with_add_loss_and_metric, - _sequential_with_add_loss_and_metric, - _functional_with_layer_reuse, - ], - l1=[0.01], - l2=[0.1], - ), - ) - ) - def test_fit_and_evaluate(self, distribution, model_fn, l1, l2): - # Make fake MNIST-like image data. - np.random.seed(_RANDOM_SEED) - dataset = tf.data.Dataset.from_tensor_slices( - ( - np.random.uniform(size=(64, 28, 28, 1)).astype(np.float32), - np.random.randint(0, 10, size=(64,)), - ) - ) - dataset = dataset.shuffle(64).batch( - 8 * distribution.num_replicas_in_sync, drop_remainder=True - ) - # Make model with distribution strategy and initialize with dataset - # shape. - input_shape = tf.data.experimental.get_structure(dataset)[0].shape[1:] - with distribution.scope(): - model = model_fn(input_shape, 10, l1, l2) - model.compile( - optimizer=keras.optimizers.adam_legacy.Adam(1e-4), - loss=keras.losses.SparseCategoricalCrossentropy( - from_logits=True, - reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, - ), - metrics=[ - keras.metrics.SparseCategoricalAccuracy(), - keras.metrics.SparseCategoricalCrossentropy( - from_logits=True - ), - ], - ) - # Non-eager training doesn't support steps_per_epoch=None. - for unused_epoch in range(2): - model.fit(dataset) - results = dict(zip(model.metrics_names, model.evaluate(dataset))) - # Sanity checks. - self.assertBetween(results["sparse_categorical_accuracy"], 0.02, 1.0) - self.assertGreater(results["l2_loss"], 0.0) - self.assertGreater(results["l1_loss"], 0.0) - # Assert correctness of the loss calculation and updating of metrics. - self.assertNear( - results["l1_loss"] * l1 - + results["l2_loss"] * l2 - + results["sparse_categorical_crossentropy"], - results["loss"], - 1e-6, - ) - - -class DeterministicModel(keras.Model): - """Deterministic Model that always outputs the same initial result. - - It verifies the `call` method is run inside the same distribution - strategy that the model was initially passed. - """ - - def __init__(self, strategy): - super().__init__() - self.x = None - self.strategy = strategy - - def build(self, input_shape): - self.x = tf.Variable(tf.ones(shape=())) - - def call(self, inputs, training=None, mask=None): - active_strategy = tf.distribute.get_strategy() - if active_strategy is not self.strategy: - raise ValueError("Model must execute call w/ the original strategy") - return self.x * inputs - - -class TestModelCapturesStrategy(tf.test.TestCase, parameterized.TestCase): - """Tests that model creation captures the strategy.""" - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=all_strategies, mode=["eager"] - ) - ) - def test_fit_and_evaluate(self, distribution): - dataset = tf.data.Dataset.from_tensor_slices( - (tf.ones(shape=(64,)), tf.ones(shape=(64,))) - ) - dataset = dataset.batch(8 * distribution.num_replicas_in_sync) - # Make model with distribution strategy - with distribution.scope(): - model = DeterministicModel(distribution) - optimizer = keras.optimizers.adam_legacy.Adam(1e-4) - - # Compile & evaluate the model outside of the distribution strategy - # scope - model.compile( - optimizer=optimizer, - loss=keras.losses.MeanSquaredError(), - metrics=["binary_accuracy"], - ) - - # Call `optimizer.iterations` out of strategy scope. - self.assertEqual(model.optimizer.iterations.numpy(), 0) - - # Non-eager training doesn't support steps_per_epoch=None. - for unused_epoch in range(2): - model.fit(dataset) - - results = model.evaluate(dataset) - results = dict(zip(model.metrics_names, results)) - - # Check that the metrics have a result we expect - self.assertEqual(results["binary_accuracy"], 1.0) - self.assertAllClose(results["loss"], 0.0) - - # Assert that all metric/optimizer/model variables were made in the - # distribution strategy (Test that compile uses the captured - # distribution strategy) - metric_vars = tf.nest.flatten( - [metric.variables for metric in model.metrics] - ) - for var in metric_vars: - self.assertTrue( - distribution.extended.variable_created_in_scope(var) - ) - for var in model.optimizer._weights: - self.assertTrue( - distribution.extended.variable_created_in_scope(var) - ) - for var in model.variables: - self.assertTrue( - distribution.extended.variable_created_in_scope(var) - ) - - # Make sure the metric must be created in the same scope as the model: - # This shouldn't raise any validation errors - with distribution.scope(): - metric = keras.metrics.BinaryAccuracy() - model.compile( - optimizer=optimizer, - loss=keras.losses.MeanSquaredError(), - metrics=[metric], - ) - - # This should raise an error because the metric is constructed - # outside of the scope, and not by compile - if tf.distribute.has_strategy(): - with self.assertRaisesRegex( - ValueError, "All metrics must be created in" - ): - model.compile( - optimizer=keras.optimizers.adam_v2.Adam(1e-4), - loss=keras.losses.MeanSquaredError(), - metrics=[keras.metrics.BinaryAccuracy()], - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=tf.__internal__.distribute.combinations.mirrored_strategy_with_one_cpu, # noqa: E501 - mode=["eager"], - ) - ) - def test_optimizer(self, distribution): - temp_dir = os.path.join(self.get_temp_dir(), "ckpt") - - def create_model(): - model = keras.models.Sequential( - [ - keras.layers.Dense(1), - ] - ) - model.compile(optimizer=keras.optimizers.Adam(), loss="mse") - model.build([None, 1]) # create weights. - return model - - model = create_model() - x = y = tf.ones(shape=(1, 1)) - model.fit(x=x, y=y, batch_size=1) - model.save_weights(temp_dir) - - with distribution.scope(): - model = create_model() - model.load_weights(temp_dir) - if isinstance(model.optimizer, optimizer_base.Optimizer): - model.optimizer.build(model.trainable_variables) - variables = model.optimizer.variables - else: - variables = model.optimizer.variables() - self.assertNotEmpty(variables) - self.assertTrue( - distributed_training_utils.is_distributed_variable(variables[0]) - ) - - with distribution.scope(): - model = create_model() - # create/restore slot variables outside of scope is fine. - model.load_weights(temp_dir) - if isinstance(model.optimizer, optimizer_base.Optimizer): - # V3 optimizer has to restore variables in scope. - return - # From this point on, the optimizer must be a V2 optimizer. - self.assertNotEmpty(model.optimizer.variables()) - self.assertTrue( - distributed_training_utils.is_distributed_variable( - model.optimizer.variables()[0] - ) - ) - - -if __name__ == "__main__": - base_layer_utils.enable_v2_dtype_behavior() - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/distributed_file_utils.py b/keras/distribute/distributed_file_utils.py deleted file mode 100644 index 8ff5f280d92..00000000000 --- a/keras/distribute/distributed_file_utils.py +++ /dev/null @@ -1,180 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities that help manage directory path in distributed settings. - -In multi-worker training, the need to write a file to distributed file -location often requires only one copy done by one worker despite many workers -that are involved in training. The option to only perform saving by chief is -not feasible for a couple of reasons: 1) Chief and workers may each contain -a client that runs the same piece of code and it's preferred not to make -any distinction between the code run by chief and other workers, and 2) -saving of model or model's related information may require SyncOnRead -variables to be read, which needs the cooperation of all workers to perform -all-reduce. - -This set of utility is used so that only one copy is written to the needed -directory, by supplying a temporary write directory path for workers that don't -need to save, and removing the temporary directory once file writing is done. - -Example usage: -``` -# Before using a directory to write file to. -self.log_write_dir = write_dirpath(self.log_dir, get_distribution_strategy()) -# Now `self.log_write_dir` can be safely used to write file to. - -... - -# After the file is written to the directory. -remove_temp_dirpath(self.log_dir, get_distribution_strategy()) - -``` - -Experimental. API is subject to change. -""" - -import os - -import requests -import tensorflow.compat.v2 as tf - -GCP_METADATA_HEADER = {"Metadata-Flavor": "Google"} -_GCE_METADATA_URL_ENV_VARIABLE = "GCE_METADATA_IP" - - -def _get_base_dirpath(strategy): - task_id = strategy.extended._task_id - return "workertemp_" + str(task_id) - - -def _is_temp_dir(dirpath, strategy): - return dirpath.endswith(_get_base_dirpath(strategy)) - - -def _get_temp_dir(dirpath, strategy): - if _is_temp_dir(dirpath, strategy): - temp_dir = dirpath - else: - temp_dir = os.path.join(dirpath, _get_base_dirpath(strategy)) - tf.io.gfile.makedirs(temp_dir) - return temp_dir - - -def write_dirpath(dirpath, strategy): - """Returns the writing dir that should be used to save file distributedly. - - `dirpath` would be created if it doesn't exist. - - Args: - dirpath: Original dirpath that would be used without distribution. - strategy: The tf.distribute strategy object currently used. - - Returns: - The writing dir path that should be used to save with distribution. - """ - if strategy is None: - # Infer strategy from `distribution_strategy_context` if not given. - strategy = tf.distribute.get_strategy() - if strategy is None: - # If strategy is still not available, this is not in distributed - # training. Fallback to original dirpath. - return dirpath - if not strategy.extended._in_multi_worker_mode(): - return dirpath - if strategy.extended.should_checkpoint: - return dirpath - # If this worker is not chief and hence should not save file, save it to a - # temporary directory to be removed later. - return _get_temp_dir(dirpath, strategy) - - -def remove_temp_dirpath(dirpath, strategy): - """Removes the temp path after writing is finished. - - Args: - dirpath: Original dirpath that would be used without distribution. - strategy: The tf.distribute strategy object currently used. - """ - if strategy is None: - # Infer strategy from `distribution_strategy_context` if not given. - strategy = tf.distribute.get_strategy() - if strategy is None: - # If strategy is still not available, this is not in distributed - # training. Fallback to no-op. - return - # TODO(anjalisridhar): Consider removing the check for multi worker mode - # since it is redundant when used with the should_checkpoint property. - if ( - strategy.extended._in_multi_worker_mode() - and not strategy.extended.should_checkpoint - ): - # If this worker is not chief and hence should not save file, remove - # the temporary directory. - tf.compat.v1.gfile.DeleteRecursively(_get_temp_dir(dirpath, strategy)) - - -def write_filepath(filepath, strategy): - """Returns the writing file path to be used to save file distributedly. - - Directory to contain `filepath` would be created if it doesn't exist. - - Args: - filepath: Original filepath that would be used without distribution. - strategy: The tf.distribute strategy object currently used. - - Returns: - The writing filepath that should be used to save file with distribution. - """ - dirpath = os.path.dirname(filepath) - base = os.path.basename(filepath) - return os.path.join(write_dirpath(dirpath, strategy), base) - - -def remove_temp_dir_with_filepath(filepath, strategy): - """Removes the temp path for file after writing is finished. - - Args: - filepath: Original filepath that would be used without distribution. - strategy: The tf.distribute strategy object currently used. - """ - remove_temp_dirpath(os.path.dirname(filepath), strategy) - - -def _on_gcp(): - """Detect whether the current running environment is on GCP.""" - gce_metadata_endpoint = "http://" + os.environ.get( - _GCE_METADATA_URL_ENV_VARIABLE, "metadata.google.internal" - ) - - try: - # Timeout in 5 seconds, in case the test environment has connectivity - # issue. There is not default timeout, which means it might block - # forever. - response = requests.get( - f"{gce_metadata_endpoint}/computeMetadata/v1/{'instance/hostname'}", - headers=GCP_METADATA_HEADER, - timeout=5, - ) - return response.status_code - except requests.exceptions.RequestException: - return False - - -def support_on_demand_checkpoint_callback(strategy): - if _on_gcp() and isinstance( - strategy, tf.distribute.MultiWorkerMirroredStrategy - ): - return True - - return False diff --git a/keras/distribute/distributed_file_utils_test.py b/keras/distribute/distributed_file_utils_test.py deleted file mode 100644 index 0260b45c13c..00000000000 --- a/keras/distribute/distributed_file_utils_test.py +++ /dev/null @@ -1,134 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for distributed_file_utils.""" - -import os - -import tensorflow.compat.v2 as tf - -from keras.distribute import distributed_file_utils - - -class DistributedFileUtilsTest(tf.test.TestCase): - class MockedExtended: - pass - - class MockedChiefStrategy: - def __init__(self): - self.extended = DistributedFileUtilsTest.MockedExtended() - self.extended._in_multi_worker_mode = lambda: True - self.extended.should_checkpoint = True - - class MockedWorkerStrategy: - def __init__(self): - self.extended = DistributedFileUtilsTest.MockedExtended() - self.extended._in_multi_worker_mode = lambda: True - self.extended.should_checkpoint = False - self.extended._task_id = 3 - - class MockedSingleWorkerStrategy: - def __init__(self): - self.extended = DistributedFileUtilsTest.MockedExtended() - self.extended._in_multi_worker_mode = lambda: False - - def _write_dummy_file(self, file_to_write): - with open(file_to_write, "w") as f: - f.write("foo bar") - - def testChiefWriteDirAndFilePath(self): - dirpath = self.get_temp_dir() - filepath = os.path.join(dirpath, "foo.bar") - strategy = DistributedFileUtilsTest.MockedChiefStrategy() - self.assertEqual( - distributed_file_utils.write_filepath(filepath, strategy), filepath - ) - self.assertEqual( - distributed_file_utils.write_dirpath(dirpath, strategy), dirpath - ) - - def testWorkerWriteDirAndFilePath(self): - dirpath = self.get_temp_dir() - filepath = os.path.join(dirpath, "foo.bar") - strategy = DistributedFileUtilsTest.MockedWorkerStrategy() - self.assertEqual( - distributed_file_utils.write_filepath(filepath, strategy), - os.path.join(dirpath, "workertemp_3", "foo.bar"), - ) - self.assertEqual( - distributed_file_utils.write_dirpath(dirpath, strategy), - os.path.join(dirpath, "workertemp_3"), - ) - - def testChiefDoesNotRemoveDirAndFilePath(self): - temp_dir = self.get_temp_dir() - strategy = DistributedFileUtilsTest.MockedChiefStrategy() - dir_to_write = distributed_file_utils.write_dirpath(temp_dir, strategy) - file_to_write = os.path.join(dir_to_write, "tmp") - self.assertFalse(os.path.exists(file_to_write)) - self._write_dummy_file(file_to_write) - self.assertTrue(os.path.exists(file_to_write)) - distributed_file_utils.remove_temp_dir_with_filepath( - file_to_write, strategy - ) - self.assertTrue(os.path.exists(file_to_write)) - - def testWorkerDoesRemoveFilePath(self): - temp_dir = self.get_temp_dir() - strategy = DistributedFileUtilsTest.MockedWorkerStrategy() - dir_to_write = distributed_file_utils.write_dirpath(temp_dir, strategy) - file_to_write = os.path.join(dir_to_write, "tmp") - self.assertFalse(os.path.exists(file_to_write)) - self._write_dummy_file(file_to_write) - self.assertTrue(os.path.exists(file_to_write)) - distributed_file_utils.remove_temp_dir_with_filepath( - file_to_write, strategy - ) - self.assertFalse(os.path.exists(file_to_write)) - - def testWorkerDoesRemoveDirPath(self): - temp_dir = self.get_temp_dir() - strategy = DistributedFileUtilsTest.MockedWorkerStrategy() - dir_to_write = distributed_file_utils.write_dirpath(temp_dir, strategy) - file_to_write = os.path.join(dir_to_write, "tmp") - self.assertFalse(os.path.exists(file_to_write)) - self._write_dummy_file(file_to_write) - self.assertTrue(os.path.exists(file_to_write)) - distributed_file_utils.remove_temp_dirpath(temp_dir, strategy) - self.assertFalse(os.path.exists(file_to_write)) - self.assertFalse(os.path.exists(os.path.dirname(file_to_write))) - - def testMultipleRemoveOrigDirPathIsFine(self): - temp_dir = self.get_temp_dir() - strategy = DistributedFileUtilsTest.MockedWorkerStrategy() - dir_to_write = distributed_file_utils.write_dirpath(temp_dir, strategy) - file_to_write = os.path.join(dir_to_write, "tmp") - self._write_dummy_file(file_to_write) - distributed_file_utils.remove_temp_dirpath(temp_dir, strategy) - distributed_file_utils.remove_temp_dirpath(temp_dir, strategy) - distributed_file_utils.remove_temp_dirpath(temp_dir, strategy) - - def testMultipleRemoveDirToWritePathIsFine(self): - temp_dir = self.get_temp_dir() - strategy = DistributedFileUtilsTest.MockedWorkerStrategy() - dir_to_write = distributed_file_utils.write_dirpath(temp_dir, strategy) - file_to_write = os.path.join(dir_to_write, "tmp") - self._write_dummy_file(file_to_write) - distributed_file_utils.remove_temp_dirpath(dir_to_write, strategy) - distributed_file_utils.remove_temp_dirpath(dir_to_write, strategy) - distributed_file_utils.remove_temp_dirpath(dir_to_write, strategy) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/distribute/distributed_training_utils.py b/keras/distribute/distributed_training_utils.py deleted file mode 100644 index 61edf4f5193..00000000000 --- a/keras/distribute/distributed_training_utils.py +++ /dev/null @@ -1,142 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities related to distributed training.""" - -import contextlib - -import tensorflow.compat.v2 as tf -from absl import flags - -from keras import backend - -FLAGS = flags.FLAGS - - -# TODO(b/118776054): Currently we support global batch size for TPUStrategy and -# core MirroredStrategy only. Remove this check when contrib MirroredStrategy is -# no longer needed. -def global_batch_size_supported(distribution_strategy): - return distribution_strategy.extended._global_batch_size - - -def call_replica_local_fn(fn, *args, **kwargs): - """Call a function that uses replica-local variables. - - This function correctly handles calling `fn` in a cross-replica - context. - - Args: - fn: The function to call. - *args: Positional arguments to the `fn`. - **kwargs: Keyword argument to `fn`. - - Returns: - The result of calling `fn`. - """ - # TODO(b/132666209): Remove this function when we support assign_* - # for replica-local variables. - strategy = None - if "strategy" in kwargs: - strategy = kwargs.pop("strategy") - else: - if tf.distribute.has_strategy(): - strategy = tf.distribute.get_strategy() - - # TODO(b/120571621): TPUStrategy does not implement replica-local variables. - is_tpu = backend.is_tpu_strategy(strategy) - if (not is_tpu) and strategy and tf.distribute.in_cross_replica_context(): - with strategy.scope(): - return strategy.extended.call_for_each_replica(fn, args, kwargs) - return fn(*args, **kwargs) - - -def is_distributed_variable(v): - """Returns whether `v` is a distributed variable.""" - return isinstance(v, tf.distribute.DistributedValues) and isinstance( - v, tf.Variable - ) - - -def get_strategy(): - """Creates a `tf.distribute.Strategy` object from flags. - - Example usage: - - ```python - strategy = utils.get_strategy() - with strategy.scope(): - model = tf.keras.Sequential([tf.keras.layers.Dense(10)]) - - model.compile(...) - train_ds, test_ds = ... - model.fit(train_ds, validation_data=test_ds, epochs=10) - ``` - - Returns: - `tf.distribute.Strategy` instance. - """ - cls = FLAGS.keras_distribute_strategy_class - accepted_strats = { - "tpu", - "multi_worker_mirrored", - "mirrored", - "parameter_server", - "one_device", - } - if cls == "tpu": - tpu_addr = FLAGS.keras_distribute_strategy_tpu_addr - if not tpu_addr: - raise ValueError( - "When using a TPU strategy, you must set the flag " - "`keras_distribute_strategy_tpu_addr` (TPU address)." - ) - cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver( - tpu=tpu_addr - ) - tf.config.experimental_connect_to_cluster(cluster_resolver) - tf.tpu.experimental.initialize_tpu_system(cluster_resolver) - strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver) - elif cls == "multi_worker_mirrored": - strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() - elif cls == "mirrored": - strategy = tf.distribute.MirroredStrategy() - elif cls == "parameter_server": - cluster_resolver = ( - tf.distribute.cluster_resolver.TFConfigClusterResolver() - ) - strategy = tf.distribute.experimental.ParameterServerStrategy( - cluster_resolver - ) - elif cls == "one_device": - strategy = tf.distribute.OneDeviceStrategy("/gpu:0") - else: - raise ValueError( - "Unknown distribution strategy flag. Received: " - f"keras_distribute_strategy_class={cls}. " - f"It should be one of {accepted_strats}" - ) - return strategy - - -def maybe_preemption_handler_scope(model): - - if getattr(model, "_preemption_handler", None): - preemption_checkpoint_scope = ( - model._preemption_handler.watch_preemption_scope() - ) - else: - preemption_checkpoint_scope = contextlib.nullcontext() - - return preemption_checkpoint_scope diff --git a/keras/distribute/distributed_training_utils_test.py b/keras/distribute/distributed_training_utils_test.py deleted file mode 100644 index 690cade7592..00000000000 --- a/keras/distribute/distributed_training_utils_test.py +++ /dev/null @@ -1,56 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for distributed training utility functions.""" - -import tensorflow.compat.v2 as tf - -from keras import callbacks -from keras.distribute import distributed_training_utils_v1 -from keras.optimizers.legacy import adam - - -class DistributedTrainingUtilsTest(tf.test.TestCase): - def test_validate_callbacks_predefined_callbacks(self): - supported_predefined_callbacks = [ - callbacks.TensorBoard(), - callbacks.CSVLogger(filename="./log.csv"), - callbacks.EarlyStopping(), - callbacks.ModelCheckpoint(filepath="./checkpoint"), - callbacks.TerminateOnNaN(), - callbacks.ProgbarLogger(), - callbacks.History(), - callbacks.RemoteMonitor(), - ] - - distributed_training_utils_v1.validate_callbacks( - supported_predefined_callbacks, adam.Adam() - ) - - unsupported_predefined_callbacks = [ - callbacks.ReduceLROnPlateau(), - callbacks.LearningRateScheduler(schedule=lambda epoch: 0.001), - ] - - for callback in unsupported_predefined_callbacks: - with self.assertRaisesRegex( - ValueError, "You must specify a Keras Optimizer V2" - ): - distributed_training_utils_v1.validate_callbacks( - [callback], tf.compat.v1.train.AdamOptimizer() - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/distribute/distributed_training_utils_v1.py b/keras/distribute/distributed_training_utils_v1.py deleted file mode 100644 index 8b19235f41f..00000000000 --- a/keras/distribute/distributed_training_utils_v1.py +++ /dev/null @@ -1,1265 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities related to distributed training.""" - -import functools - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import callbacks -from keras import metrics as metrics_module -from keras import optimizers -from keras.distribute import distribute_coordinator_utils as dc -from keras.distribute import distributed_training_utils as dist_utils -from keras.engine import training_utils_v1 -from keras.optimizers.legacy import optimizer_v2 -from keras.utils import tf_contextlib -from keras.utils.mode_keys import ModeKeys - -# isort: off -from tensorflow.python.platform import tf_logging as logging - - -def set_weights(distribution_strategy, dist_model, weights): - """Sets the weights of the replicated models. - - The weights of the replicated models are set to the weights of the original - model. The weights of the replicated model are Mirrored variables and hence - we need to use the `update` call within a DistributionStrategy scope. - - Args: - distribution_strategy: DistributionStrategy used to distribute training - and validation. - dist_model: The replicated models on the different devices. - weights: The weights of the original model. - """ - assign_ops = [] - for layer in dist_model.layers: - num_param = len(layer.weights) - layer_weights = weights[:num_param] - for sw, w in zip(layer.weights, layer_weights): - if tf.compat.v1.executing_eagerly_outside_functions(): - sw.assign(w) - else: - assign_ops.append(distribution_strategy.unwrap(sw.assign(w))) - weights = weights[num_param:] - - if not tf.compat.v1.executing_eagerly_outside_functions(): - backend.get_session(assign_ops).run(assign_ops) - - -def unwrap_values( - distribution_strategy, - grouped_inputs, - grouped_outputs, - grouped_updates=None, - grouped_session_args=None, - with_loss_tensor=False, -): - """Unwrap the list of values contained in the PerReplica parameters. - - This function calls `flatten_per_replica_values` to parse each of the input - parameters into a list of values on the different devices. If we set - `with_loss_tensor` to be True, we also call `reduce` on the list of losses - on the different devices to give us one loss tensor. - - Args: - distribution_strategy: DistributionStrategy used to distribute training - and validation. - grouped_inputs: PerReplica inputs returned from the train or test function - that we ran on each device. - grouped_outputs: PerReplica outputs returned from the train or test - function that we ran on each device. - grouped_updates: PerReplica updates returned from the train or test - function that we ran on each device. - grouped_session_args: PerReplica session args returned from the train or - test function that we ran on each device. - with_loss_tensor: Boolean that indicates if we need to add the reduced - loss tensor as one of the outputs. - - Returns: - Values of each of the PerReplica parameters. - - """ - # Unwrap per device values returned from each model's train function. - # This will be used to construct the main train function. - all_inputs = flatten_per_replica_values( - distribution_strategy, grouped_inputs - ) - all_outputs = unwrap_outputs( - distribution_strategy, grouped_outputs, with_loss_tensor - ) - - if grouped_updates: - all_updates = flatten_per_replica_values( - distribution_strategy, grouped_updates - ) - else: - all_updates = None - - all_session_args = {} - if grouped_session_args: - grouped_feed_dict = grouped_session_args.get("feed_dict") - if grouped_feed_dict: - all_session_args["feed_dict"] = flatten_per_replica_values( - distribution_strategy, grouped_feed_dict - ) - - grouped_fetches = grouped_session_args.get("fetches") - if grouped_fetches: - all_session_args["fetches"] = flatten_per_replica_values( - distribution_strategy, grouped_fetches - ) - - # TODO(priyag): Return only non empty/None values - return all_inputs, all_outputs, all_updates, all_session_args - - -def unwrap_output_dict(strategy, grouped_outputs, mode): - """Unwrap the list of outputs contained in the PerReplica parameters.""" - if mode == ModeKeys.PREDICT: - return flatten_per_replica_values(strategy, grouped_outputs) - - # In the case of fit/eval, the grouped_outputs is a dict, whereas in - # predict, the output is as same structure as model output. They need to be - # treated differently - total_loss = strategy.reduce( - tf.distribute.ReduceOp.SUM, grouped_outputs["total_loss"][0], axis=None - ) - output_losses = flatten_per_replica_values( - strategy, grouped_outputs["output_losses"] - ) - metrics = flatten_per_replica_values(strategy, grouped_outputs["metrics"]) - batch_size = strategy.reduce( - tf.distribute.ReduceOp.SUM, grouped_outputs["batch_size"], axis=None - ) - if ( - backend.is_tpu_strategy(strategy) - and tf.compat.v1.executing_eagerly_outside_functions() - ): - # Choose 1 value per replica in the TPU case since all replicas produce - # the same output. - # We only do this in eager mode for now since this function is used in - # both graph and eager mode and in the graph case we currently don't use - # experimental_run so would need to be removed when we converge the - # graph code path as well. - output_losses = output_losses[:: strategy.num_replicas_in_sync] - metrics = metrics[:: strategy.num_replicas_in_sync] - return { - "total_loss": [total_loss], - "output_losses": output_losses, - "metrics": metrics, - "batch_size": batch_size, - } - - -def unwrap_outputs( - distribution_strategy, grouped_outputs, with_loss_tensor=False -): - """Unwrap the list of outputs contained in the PerReplica parameters. - - This function calls `flatten_per_replica_values` to parse each of the input - parameters into a list of outputs on the different devices. If we set - `with_loss_tensor` to be True, we also call `reduce` on the list of losses - on the different devices to give us one loss tensor. - - Args: - distribution_strategy: DistributionStrategy used to distribute training - and validation. - grouped_outputs: PerReplica outputs returned from the train or test - function that we ran on each device. - with_loss_tensor: Boolean that indicates if we need to add the reduced - loss tensor as one of the outputs. - - Returns: - Values of each of the PerReplica outputs. - - """ - if not with_loss_tensor: - return flatten_per_replica_values( - distribution_strategy, grouped_outputs - ) - - if not isinstance(grouped_outputs, list): - grouped_outputs = [grouped_outputs] - # reduce loss tensor before adding it to the list of fetches - loss = distribution_strategy.reduce( - tf.distribute.ReduceOp.SUM, grouped_outputs[0], axis=None - ) - all_outputs = flatten_per_replica_values( - distribution_strategy, grouped_outputs[1:] - ) - if ( - backend.is_tpu_strategy(distribution_strategy) - and tf.compat.v1.executing_eagerly_outside_functions() - ): - # Choose 1 value per replica in the TPU case since all replicas produce - # the same output. - # We only do this in eager mode for now since this function is used in - # both graph and eager mode and in the graph case we currently don't use - # experimental_run so would need to be removed when we converge the - # graph code path as well. - all_outputs = all_outputs[:: distribution_strategy.num_replicas_in_sync] - return [loss] + all_outputs - - -def flatten_per_replica_values(distribution_strategy, per_replica_values): - """Unwraps and flattens a nest of PerReplica parameters. - - PerReplica values have one value associated with each device. Each entry in - the PerReplica dict has a device `key` and the corresponding value on the - device as the `value`. In this function we take a PerReplica value or a list - of PerReplica values and return all the values in the PerReplica dict. - - Args: - distribution_strategy: DistributionStrategy used to distribute training - and validation. - per_replica_values: List of PerReplica object or a single PerReplica - object. - - Returns: - List of values of all the PerReplica objects. - - """ - - # This function takes a PerReplica object or a list of PerReplica objects - # and returns all the values associated with it. - return [ - e - for flattened in tf.nest.flatten(per_replica_values) - for e in distribution_strategy.unwrap(flattened) - ] - - -def validate_callbacks(input_callbacks, optimizer): - """Validate whether given callbacks are supported by DistributionStrategy. - - Args: - input_callbacks: List of callbacks passed by the user to fit. - optimizer: Optimizer instance used to train the model. - - Raises: - ValueError: If `LearningRateScheduler` or `ReduceLROnPlateau` is one of - the callbacks passed. - ValueError: If `write_grads` is one of the parameters passed as part of - the TensorBoard callback. - """ - if input_callbacks: - for callback in input_callbacks: - if isinstance( - callback, - (callbacks.LearningRateScheduler, callbacks.ReduceLROnPlateau), - ): - - if not isinstance(optimizer, optimizer_v2.OptimizerV2): - raise ValueError( - "You must specify a Keras Optimizer V2 when using " - "%s callback with DistributionStrategy." % callback - ) - - # If users want to use the TensorBoard callback they cannot use - # certain features of the callback that involve accessing model - # attributes and running ops. - if isinstance(callback, callbacks.TensorBoard): - if getattr(callback, "write_grads", False): - logging.warning( - UserWarning( - "`write_grads` in the TensorBoard callback is not " - "supported when using DistributionStrategy. " - "Setting `write_grads` to `False`." - ) - ) - callback.write_grads = False - - -def validate_distributed_dataset_inputs( - distribution_strategy, x, y, sample_weights=None -): - """Validate all the components of a DistributedValue Dataset input. - - Args: - distribution_strategy: The current DistributionStrategy used to call - `fit`/`evaluate`. - x: Input Dataset DistributedValue object. For example, when we use - `MirroredStrategy` this is a PerReplica object with a tensor for each - device set in the dict. x can also be a tuple or dict. The keys of the - dict should match the names of the input layers of the model. - y: Target Dataset DistributedValue object. For example, when we use - `MirroredStrategy` this is a PerReplica object with a tensor for each - device set in the dict. y can also be a tuple or dict. The keys of the - dict should match the names of the output layers of the model. - sample_weights: Sample weights Dataset DistributedValue object. For - example, when we use `MirroredStrategy` this is a PerReplica object - with a tensor for each device set in the dict. - - Returns: - The unwrapped values list of the x and y DistributedValues inputs. - - Raises: - ValueError: If x and y do not have support for being evaluated as tensors. - or if x and y contain elements that are not tensors or if x and y - contain elements that have a shape or dtype mismatch. - """ - # If the input and target used to call the model are not dataset tensors, - # we need to raise an error. When using a DistributionStrategy, the input - # and targets to a model should be from a `tf.data.Dataset`. - - # If each element of x and y are not tensors, we cannot standardize and - # validate the input and targets. - x_values_list = validate_per_replica_inputs(distribution_strategy, x) - - if y is not None: - y_values_list = validate_per_replica_inputs(distribution_strategy, y) - else: - y_values_list = None - - if sample_weights is not None: - sample_weights_list = validate_per_replica_inputs( - distribution_strategy, sample_weights - ) - else: - sample_weights_list = None - - # Return the unwrapped values to avoid calling `unwrap` a second time. - return x_values_list, y_values_list, sample_weights_list - - -def validate_per_replica_inputs(distribution_strategy, x): - """Validates PerReplica dataset input list. - - Args: - distribution_strategy: The current DistributionStrategy used to call - `fit`, `evaluate` and `predict`. - x: A list of PerReplica objects that represent the input or - target values. - - Returns: - List containing the first element of each of the PerReplica objects in - the input list. - - Raises: - ValueError: If any of the objects in the `per_replica_list` is not a - tensor. - - """ - # Convert the inputs and targets into a list of PerReplica objects. - per_replica_list = tf.nest.flatten(x) - x_values_list = [] - for x in per_replica_list: - # At this point x should contain only tensors. - x_values = distribution_strategy.unwrap(x) - for value in x_values: - if not tf.is_tensor(value): - raise ValueError( - "Dataset input to the model should be tensors instead " - "they are of type {}".format(type(value)) - ) - - if not tf.executing_eagerly(): - # Validate that the shape and dtype of all the elements in x are the - # same. - validate_all_tensor_shapes(x, x_values) - validate_all_tensor_types(x, x_values) - - x_values_list.append(x_values[0]) - return x_values_list - - -def validate_all_tensor_types(x, x_values): - x_dtype = x_values[0].dtype - for i in range(1, len(x_values)): - if x_dtype != x_values[i].dtype: - raise ValueError( - "Input tensor dtypes do not match for distributed tensor" - " inputs {}".format(x) - ) - - -def validate_all_tensor_shapes(x, x_values): - # Validate that the shape of all the elements in x have the same shape - x_shape = x_values[0].shape.as_list() - for i in range(1, len(x_values)): - if x_shape != x_values[i].shape.as_list(): - raise ValueError( - "Input tensor shapes do not match for distributed tensor" - " inputs {}".format(x) - ) - - -def _wait_for_variable_initialization(session): - """Utility to wait for variables to be initialized.""" - all_variables = backend._get_variables(backend.get_graph()) - candidate_vars = [] - for v in all_variables: - if not getattr(v, "_keras_initialized", False): - candidate_vars.append(v) - - if not candidate_vars: - return - - while True: - is_initialized = session.run( - [tf.compat.v1.is_variable_initialized(v) for v in candidate_vars] - ) - uninitialized_vars = [] - for flag, v in zip(is_initialized, candidate_vars): - if not flag: - uninitialized_vars.append(v) - v._keras_initialized = True - if not uninitialized_vars: - break - - -def init_restore_or_wait_for_variables(): - """Initialize or restore variables or wait for variables to be - initialized.""" - backend._initialize_variables(backend._get_session()) - - -def validate_inputs(x, y): - """Validate inputs when using DistributionStrategy. - - Args: - x: Model Inputs. - y: Model Targets. - - Raises: - ValueError: if input is not a Dataset or a numpy array(when we use - MirroredStrategy). - """ - if isinstance(x, tf.compat.v1.data.Iterator) or isinstance( - y, tf.compat.v1.data.Iterator - ): - raise ValueError( - "`DistributionStrategy` does not support inputs of type " - "Iterator. You must pass a `tf.data.Dataset` object or a " - "numpy array as input." - ) - - -def is_dataset_shape_fully_defined(dataset): - """Returns whether a dataset contains a final partial batch.""" - shapes = tf.nest.flatten(tf.compat.v1.data.get_output_shapes(dataset)) - unknown_shapes = [s for s in shapes if not s.is_fully_defined()] - return not unknown_shapes - - -def process_batch_and_step_size( - strategy, inputs, batch_size, steps_per_epoch, mode, validation_split=0.0 -): - """Process the batch size and step size based on input and dist strategy.""" - first_x_value = tf.nest.flatten(inputs)[0] - if isinstance(first_x_value, np.ndarray): - num_samples = first_x_value.shape[0] - if validation_split and 0.0 < validation_split < 1.0: - num_samples = int(num_samples * (1 - validation_split)) - # Until support for partial batch is implemented across all - # functions and distribution strategy, we pass `mode` to selectively - # relax the constraint to consume all the training samples. - steps_per_epoch, batch_size = get_input_params( - strategy, num_samples, steps_per_epoch, batch_size, mode=mode - ) - return batch_size, steps_per_epoch - - -def get_input_params( - distribution_strategy, num_samples, steps, batch_size, mode=None -): - """Calculate the number of batches and steps/steps_per_epoch. - - Args: - distribution_strategy: The DistributionStrategy used to compile the model. - num_samples: The number of samples from which we determine the batch size - and steps. - steps: The specified number of steps. - batch_size: The specified batch_size. - mode: ModeKey representing whether input will be used for training, - evaluation, or prediction. This is used to relax the constraints on - consuming all the training samples to keep compatibility till we support - partial batches. If none, then partial batches are not allowed. - - Returns: - steps: The steps or steps_per_epoch argument depending on if a user is - calling `fit`, `evaluate` or `predict`. If the is_training flag is set - we don't require the number of samples to be used completely. - batch_size: The batch size to be used in model iterations. - - Raises: - ValueError: If the number of batches or steps evaluates to 0. - - """ - # TODO(b/118776054): Use global batch size for Keras/DS support. - # Currently this is only supported in TPUStrategy and CoreMirroredStrategy. - use_per_replica_batch = not dist_utils.global_batch_size_supported( - distribution_strategy - ) - - # TODO(b/128995245): In eager mode, uneven batch sizes are allowed except - # for `fit()` on TPUStrategy. - # In graph mode, the zero batch case in batch norm is not handled due to - # XLA-GPU regression. Uneven batch sizes are not allowed except - # for `test()` and `predict()` on TPUStrategy. - if tf.executing_eagerly(): - allow_partial_batch = ( - mode != ModeKeys.TRAIN - or not backend.is_tpu_strategy(distribution_strategy) - ) - else: - allow_partial_batch = mode == ModeKeys.TRAIN or ( - (mode == ModeKeys.PREDICT or mode == ModeKeys.TEST) - and backend.is_tpu_strategy(distribution_strategy) - ) - - if steps is None: - if batch_size is None: - # If neither the batch size or number of steps are set. We choose - # the global batch size as the minimum of number of samples and 32. - # 32 is chosen to provide backward compatibility. - global_batch_size = min(num_samples, 32) - else: - # If the user provided the batch size we need to handle the case - # between different strategies that use the global/per-replica batch - # size - global_batch_size = batch_size - if use_per_replica_batch: - global_batch_size *= distribution_strategy.num_replicas_in_sync - if allow_partial_batch: - steps = np.ceil(num_samples / global_batch_size).astype(int) - else: - if num_samples % global_batch_size: - raise ValueError( - "The number of samples %s is not divisible by " - "batch size %s." % (num_samples, global_batch_size) - ) - steps = num_samples // global_batch_size - else: - if batch_size is None: - # We calculate the batch size based on the number of steps specified - if num_samples % steps: - raise ValueError( - "The number of samples %s is not divisible by " - "steps %s. Please change the number of steps to a " - "value that can consume all the samples" - % (num_samples, steps) - ) - global_batch_size = num_samples // steps - else: - # If the user provided the batch size we need to handle the case - # between different strategies that use the global/per-replica batch - # size - global_batch_size = batch_size - if use_per_replica_batch: - global_batch_size *= distribution_strategy.num_replicas_in_sync - - min_num_samples = global_batch_size * steps - if allow_partial_batch: - min_num_samples = ( - global_batch_size * (steps - 1) + 1 if steps > 1 else 0 - ) - - if num_samples < min_num_samples: - raise ValueError( - "Number of samples %s is less than samples required " - "for specified batch_size %s and steps %s" - % (num_samples, global_batch_size, steps) - ) - - # We need to return the per replica or global batch size based on the - # strategy - if use_per_replica_batch: - if global_batch_size % distribution_strategy.num_replicas_in_sync: - raise ValueError( - "The batch size (%s) could not be sharded evenly across the " - "sync replicas (%s) in the distribution strategy." - % ( - global_batch_size, - distribution_strategy.num_replicas_in_sync, - ) - ) - batch_size = ( - global_batch_size // distribution_strategy.num_replicas_in_sync - ) - else: - batch_size = global_batch_size - - return steps, batch_size - - -def get_batch_dimension(iterator): - shapes = tf.nest.flatten(tf.compat.v1.data.get_output_shapes(iterator)) - # Take the batch size from the first element, as it should be the same for - # all. - dims = shapes[0].dims - return dims[0] if dims else None - - -def get_iterator(dataset, distribution_strategy): - with distribution_strategy.scope(): - iterator = distribution_strategy.make_dataset_iterator(dataset) - initialize_iterator(iterator, distribution_strategy) - return iterator - - -def initialize_iterator(iterator, distribution_strategy): - with distribution_strategy.scope(): - init_op = tf.group(iterator.initializer) - if not tf.executing_eagerly(): - backend.get_session((init_op,)).run(init_op) - - -def _get_input_from_iterator(iterator, model): - """Get elements from the iterator and verify the input shape and type.""" - next_element = iterator.get_next() - - # `len(nest.flatten(x))` is going to not count empty elements such as {}. - # len(nest.flatten([[0,1,2], {}])) is 3 and not 4. The `next_element` is - # going to get flattened in `_prepare_feed_values` to work around that. - # Empty elements are going to get filtered out as part of the flattening. - if len(tf.nest.flatten(next_element)) == len(model.inputs): - x = next_element - y = None - sample_weights = None - elif len(tf.nest.flatten(next_element)) == ( - len(model.inputs) + len(model.outputs) - ): - x, y = next_element - sample_weights = None - else: - x, y, sample_weights = next_element - - # Validate that all the elements in x and y are of the same type and shape. - validate_distributed_dataset_inputs( - model._distribution_strategy, x, y, sample_weights - ) - return x, y, sample_weights - - -def _prepare_feed_values(model, inputs, targets, sample_weights, mode): - """Prepare feed values to the model execution function. - - Args: - model: Model to prepare feed values for. - inputs: List or dict of model inputs. - targets: Optional list of model targets. - sample_weights: Optional list of sample weight arrays. - mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. - - Returns: - Feed values for the model in the given mode. - """ - strategy = model._distribution_strategy - inputs, targets, sample_weights = _get_input_from_iterator(inputs, model) - if backend.is_tpu_strategy(strategy): - if sample_weights is not None: - raise ValueError("TPUStrategy does not support sample weights.") - - # When the inputs are dict, then we want to flatten it in the same order as - # the input layers, such that the data are fed into the input layers in the - # correct order. - if isinstance(inputs, dict): - inputs = [inputs[key] for key in model._feed_input_names] - if is_distributing_by_cloning(model): - inputs = flatten_per_replica_values(strategy, inputs) - targets = flatten_per_replica_values(strategy, targets) - # Expand 1-dimensional inputs. - # TODO(b/124535720): Remove once this standarize data logic is shared - # with main flow. - inputs, targets = tf.nest.map_structure( - training_utils_v1.standardize_single_array, (inputs, targets) - ) - else: - inputs = training_utils_v1.ModelInputs(inputs).as_list() - - if mode == ModeKeys.PREDICT: - sample_weights = [] - targets = [] - elif sample_weights is not None and is_distributing_by_cloning(model): - if tf.executing_eagerly() and not model._compile_distribution: - raise NotImplementedError( - "`sample_weight` is not supported when using " - "tf.distribute.Strategy in eager mode and " - "cloning=True." - ) - sample_weights = flatten_per_replica_values(strategy, sample_weights) - - ins = [inputs, targets, sample_weights] - return tuple(ins) - - -def is_distributing_by_cloning(model): - """Decide whether this model is going to be distributed via cloning. - - We are going to distribute the model by cloning in graph mode. - - Args: - model: Keras model to distribute. - - Returns: - True if the `model` is going to be distributed using cloning and False - otherwise. - """ - if ( - backend.is_tpu_strategy(model._distribution_strategy) - and tf.executing_eagerly - ): # b/137580852 - return False - elif tf.compat.v1.executing_eagerly_outside_functions(): - return bool(model._compile_distribution) - return True - - -def _custom_compile_for_predict(model): - """Custom compile for TPU predict mode.""" - if not model.built: - # Model is not compilable because it does not know its number of inputs - # and outputs, nor their shapes and names. We will compile after the - # first time the model gets called on training data. - return - model._is_compiled = True - model.total_loss = None - model.train_function = None - model.test_function = None - model.predict_function = None - - -def _build_network_on_replica(model, mode, inputs=None, targets=None): - """Build an updated model on replicas. - - We create a new Keras model while sharing the variables from the old graph. - Building a new sub-graph is required since the original keras model creates - placeholders for the input and the output that are not accessible till we - call iterator.get_next() inside the step_fn for `fit`/`evaluate`/`predict`. - - The sharing of weights and layers between the old and the new model - guarantee that we're using Strategy variables and any updates on either - model are reflected correctly in callbacks and loop iterations. - - We need to make sure we share the optimizers between the old and the new - model as well so that optimizer state is not lost if the user is running fit - multiple times. - - Args: - model: Model to be replicated across Replicas - mode: Which of fit/eval/predict is building the distributed network - inputs: Input variables to be passed to the model - targets: Target tensor to be passed to model.compile - - Returns: - A new model with shared layers with the old model. - """ - # Need to do imports here since we run into a circular dependency error. - from keras import models - from keras.engine import sequential - - # We rely on the internal methods to avoid having share_weights weights in - # the public API. - if isinstance(model, sequential.Sequential): - updated_model = models._clone_sequential_model( - model, input_tensors=inputs, layer_fn=models.share_weights - ) - else: - updated_model = models._clone_functional_model( - model, input_tensors=inputs, layer_fn=models.share_weights - ) - # Callable losses added directly to a functional Model need to be added - # here. - updated_model._callable_losses = model._callable_losses - - # Recast all low precision outputs back to float32 since we only casted the - # inputs to bfloat16 and not targets. This is done so that we can preserve - # precision when calculating the loss value. - def _upcast_low_precision_outputs(output): - if output.dtype == tf.bfloat16: - return tf.cast(output, tf.float32) - else: - return output - - updated_model.outputs = [ - _upcast_low_precision_outputs(o) for o in updated_model.outputs - ] - - if isinstance(targets, tuple): - targets = tf.nest.flatten(targets) - - if mode == ModeKeys.PREDICT and inputs is not None: # TPU predict case - _custom_compile_for_predict(updated_model) - else: - updated_model.compile( - model.optimizer, - model.loss, - metrics=metrics_module.clone_metrics(model._compile_metrics), - loss_weights=model.loss_weights, - sample_weight_mode=model.sample_weight_mode, - weighted_metrics=metrics_module.clone_metrics( - model._compile_weighted_metrics - ), - target_tensors=targets, - ) - return updated_model - - -def _build_distributed_network( - model, strategy, mode, inputs=None, targets=None -): - """Create a cloned model on each replica.""" - with backend.get_graph().as_default(), strategy.scope(): - distributed_model = strategy.extended.call_for_each_replica( - _build_network_on_replica, args=(model, mode, inputs, targets) - ) - set_distributed_model(model, mode, distributed_model) - - -def _clone_and_build_model(model, mode, inputs=None, targets=None): - """Clone and build the given keras_model.""" - # We need to set the import here since we run into a circular dependency - # error. - from keras import models - - cloned_model = models.clone_model(model, input_tensors=inputs) - - # Compile and build model. - if isinstance(model.optimizer, optimizers.TFOptimizer): - optimizer = model.optimizer - else: - optimizer_config = model.optimizer.get_config() - optimizer = model.optimizer.__class__.from_config(optimizer_config) - - # Recast all low precision outputs back to float32 since we only casted - # the inputs to bfloat16 and not targets. This is done so that we can - # preserve precision when calculating the loss value. - def _upcast_low_precision_outputs(output): - if output.dtype == tf.bfloat16: - return tf.cast(output, tf.float32) - else: - return output - - cloned_model.outputs = [ - _upcast_low_precision_outputs(o) for o in cloned_model.outputs - ] - - if isinstance(targets, tuple): - targets = tf.nest.flatten(targets) - if mode == ModeKeys.PREDICT and inputs is not None: # TPU predict case - _custom_compile_for_predict(cloned_model) - else: - cloned_model.compile( - optimizer, - model.loss, - metrics=metrics_module.clone_metrics(model._compile_metrics), - loss_weights=model.loss_weights, - sample_weight_mode=model.sample_weight_mode, - weighted_metrics=metrics_module.clone_metrics( - model._compile_weighted_metrics - ), - target_tensors=targets, - ) - return cloned_model - - -def clone_model_on_replicas(model, strategy, mode, inputs=None, targets=None): - """Create a cloned model on each replica.""" - with backend.get_graph().as_default(), strategy.scope(): - distributed_model = strategy.extended.call_for_each_replica( - _clone_and_build_model, args=(model, mode, inputs, targets) - ) - set_distributed_model(model, mode, distributed_model) - if mode == ModeKeys.TRAIN: - model._make_callback_model(distributed_model) - - -def _make_execution_function(model, mode): - """Makes or reuses function to run one step of distributed model - execution.""" - if is_distributing_by_cloning(model): - return _make_execution_function_with_cloning(model, mode) - - distributed_function = get_distributed_function(model, mode) - if distributed_function: - return distributed_function - - distribution_function = _make_execution_function_without_cloning( - model, mode - ) - set_distributed_function(model, mode, distribution_function) - return distribution_function - - -def _make_execution_function_without_cloning(model, mode): - """Creates a function to run one step of distributed model execution.""" - strategy = model._distribution_strategy - - with strategy.scope(): - per_replica_function = _make_replica_execution_function(model, mode) - - def distributed_function(input_fn): - """A single step of the distributed execution across replicas.""" - x, y, sample_weights = input_fn() - # Call `Model.{train,test,predict}_on_batch` on every replica - # passing PerReplicas as arguments. On every replica inside this - # call, each PerReplica object will return the value for that - # replica. The outputs are PerReplicas too. - outputs = strategy.run( - per_replica_function, args=(x, y, sample_weights) - ) - # Out of PerReplica outputs reduce or pick values to return. - all_outputs = unwrap_outputs( - strategy, outputs, with_loss_tensor=(mode != ModeKeys.PREDICT) - ) - return all_outputs - - if not model.run_eagerly: - distributed_function = tf.function(distributed_function) - - def execution_function(input_fn): - # `numpy` translates Tensors to values in Eager mode. - return [out.numpy() for out in distributed_function(input_fn)] - - else: - execution_function = distributed_function - - return execution_function - - -def _make_replica_execution_function(model, mode): - """A single step of the distributed execution on a replica.""" - if mode == ModeKeys.TRAIN: - func = model.train_on_batch - elif mode == ModeKeys.TEST: - func = model.test_on_batch - else: - - def predict_on_batch(x, y=None, sample_weights=None): - del y, sample_weights - return model.predict_on_batch(x) - - func = predict_on_batch - - if mode != ModeKeys.PREDICT: - # `reset_metrics` is set to False to maintain stateful metrics across - # batch-level calls. - func = functools.partial(func, reset_metrics=False) - - return func - - -def _make_replicated_models_with_cloning(model, mode): - """Build models on each replica.""" - strategy = model._distribution_strategy - - # If distributed_model is not built, create one for `mode`. - if model._compile_distribution: - clone_model_on_replicas(model, strategy, mode) - else: - _build_distributed_network(model, strategy, mode) - - -def _make_execution_function_with_cloning(model, mode): - """Clones or re-uses models to run one step of distributed model - execution.""" - distributed_model = get_distributed_model(model, mode) - # TODO(b/134069401): Create a cache for the distributed model and exec - # function that incorporates additional attributes to be part of the cache - # key than just the mode. - # If distributed model for a particular `mode` is already built, use the - # `_distribution_function` on that distributed model. - # If you have updated the sample_weight_mode on the model, then you will - # need to recompile metrics and recreate the execution function. This is - # indicated by the `_recompile_exec_function` property. - if ( - distributed_model - and hasattr(distributed_model, "_distribution_function") - and not ( - hasattr(distributed_model, "_recompile_exec_function") - and distributed_model._recompile_exec_function - ) - ): - return distributed_model._distributed_function - - if not distributed_model: - _make_replicated_models_with_cloning(model, mode) - distributed_model = get_distributed_model(model, mode) - assert distributed_model - - # Also create an execution function on that distributed model. - if tf.executing_eagerly(): - distributed_function = _make_eager_execution_function(model, mode) - else: - distributed_function = _make_graph_execution_function(model, mode) - - # We cache the distributed execution function on the model since creating - # distributed models and execution functions are expensive. - distributed_model._distributed_function = distributed_function - distributed_model._recompile_exec_function = False - return distributed_function - - -def _make_graph_execution_function(model, mode): - """Makes function to run one step of distributed model in graph mode.""" - - def _per_replica_function(model): - f = model._make_execution_function(mode) - return (f.inputs, f.outputs, f.updates_op, f.session_kwargs) - - strategy = model._distribution_strategy - with strategy.scope(): - # Create train ops on each of the devices when we call - # `_per_replica_fit_function`. - ( - grouped_inputs, - grouped_outputs, - grouped_updates, - grouped_session_args, - ) = strategy.extended.call_for_each_replica( - _per_replica_function, args=(get_distributed_model(model, mode),) - ) - - # Initialize the variables in the replicated model. This is necessary - # for multi-worker training because on some workers, initialization is - # not needed. This method does initialization or waiting for - # initialization according to the context object of distribute - # coordinator. - init_restore_or_wait_for_variables() - - # Unwrap all the per device values returned from - # `call_for_each_replica`. Unwrapping per device values gives you a - # list of values that can be used to construct a new train function that - # is composed of update ops on all the devices over which the model is - # distributed. - ( - all_inputs, - all_outputs, - all_updates, - all_session_args, - ) = unwrap_values( - strategy, - grouped_inputs, - grouped_outputs, - grouped_updates, - grouped_session_args, - with_loss_tensor=(mode != ModeKeys.PREDICT), - ) - - return backend.function( - all_inputs, - all_outputs, - updates=all_updates, - name=f"distributed_{mode}_function", - **all_session_args, - ) - - -def _make_eager_execution_function(model, mode): - """Makes function to run one step of distributed model eager execution.""" - - def _per_replica_function(model): - f = model._make_execution_function(mode) - return (f.inputs, f.outputs) - - # NOTE(priyag): Try creating a new FuncGraph within DS scope instead of - # using the global one. - strategy = model._distribution_strategy - global_graph = backend.get_graph() - - with global_graph.as_default(), strategy.scope(): - # First we gather the relevant portions of the model across all - # replicas. `backend._scratch_graph(global_graph)` signals to Keras - # that it should not lift to a separate graph when creating the - # per-replica functions. - with backend._scratch_graph(global_graph): - # Create train ops on each of the devices when we call - # `_per_replica_fit_function`. - grouped = strategy.extended.call_for_each_replica( - _per_replica_function, - args=(get_distributed_model(model, mode),), - ) - grouped_inputs, grouped_outputs = grouped - - # Unwrap all the per device values returned from - # `call_for_each_replica`. Unwrapping per device values gives you a - # list of values that can be used to construct a new train function - # that is composed of inputs/outputs on all the devices over which - # the model is distributed. - (all_inputs, all_outputs, _, _) = unwrap_values( - strategy, - grouped_inputs, - grouped_outputs, - with_loss_tensor=(mode != ModeKeys.PREDICT), - ) - - # Finally, a joint Keras function is created; this one will be created - # in a separate FuncGraph. - return backend.function( - all_inputs, - all_outputs, - name=f"eager_distributed_{mode}_function", - ) - - -def _copy_weights_to_distributed_model(original_model, mode): - """Copies weights from original model to distributed models.""" - strategy = original_model._distribution_strategy - distributed_model = get_distributed_model(original_model, mode) - if strategy: - # Copy the weights from the original model to each of the replicated - # models. - orig_model_weights = original_model.get_weights() - first_model = strategy.unwrap(distributed_model)[0] - set_weights(strategy, first_model, orig_model_weights) - - -def _copy_weights_to_original_model(model, mode): - """Copies weights from first distributed model back to original model.""" - if model._distribution_strategy and mode == ModeKeys.TRAIN: - distributed_model = get_distributed_model(model, mode) - updated_weights = model._distribution_strategy.unwrap( - distributed_model - )[0].get_weights() - model.set_weights(updated_weights) - - -def _per_replica_aggregate_batch(strategy, batch_outs, model, mode): - """Aggregates the per-replica batch-level outputs from a distributed - step.""" - if strategy is not None and mode == ModeKeys.PREDICT: - total_batch_outs = [] - for i in range(len(model.outputs)): - num_replicas = strategy.num_replicas_in_sync - nested_outs = batch_outs[ - i * num_replicas : i * num_replicas + num_replicas - ] - total_batch_outs.append( - concat_along_batch_dimension(tf.nest.flatten(nested_outs)) - ) - return total_batch_outs - return batch_outs - - -def _reset_metrics(model): - if model._distribution_strategy: - for mode in [ModeKeys.TRAIN, ModeKeys.TEST, ModeKeys.PREDICT]: - distributed_model = get_distributed_model(model, mode) - if distributed_model: - first_model = model._distribution_strategy.unwrap( - distributed_model - )[0] - first_model.reset_metrics() - - -def get_distributed_model(model, mode): - key = _generate_cache_key(mode) - return model._distributed_model_cache.get(key, None) - - -def set_distributed_model(model, mode, distributed_model): - key = _generate_cache_key(mode) - model._distributed_model_cache[key] = distributed_model - - -def get_distributed_function(model, mode): - key = _generate_cache_key(mode) - return model._distributed_function_cache.get(key, None) - - -def set_distributed_function(model, mode, distributed_function): - key = _generate_cache_key(mode) - model._distributed_function_cache[key] = distributed_function - - -def _generate_cache_key(mode): - key = hash(mode) - return key - - -@tf_contextlib.contextmanager -def distributed_scope(strategy, learning_phase): - with strategy.scope(), backend.learning_phase_scope(learning_phase): - yield - - -def is_current_worker_chief(): - return dc.get_current_worker_context().is_chief - - -def filter_distributed_callbacks(callbacks_list, model): - """Filter Callbacks based on the worker context when running multi-worker. - - Args: - callbacks_list: A list of `Callback` instances. - model: Keras model instance. - - Returns: - The list of `Callback` instances that should be run on this worker. - """ - - if not model._in_multi_worker_mode(): - raise ValueError( - "filter_distributed_callbacks() should only be called when Keras " - "is in multi worker mode." - ) - - callbacks_list = callbacks_list or [] - if not [ - c for c in callbacks_list if isinstance(c, callbacks.ModelCheckpoint) - ]: - # TODO(rchao): Consider providing a ModelCheckpoint here if the user - # fails to (possibly with tempfile directory). - logging.warning( - "ModelCheckpoint callback is not provided. " - "Workers will need to restart training if any fails." - ) - - if callbacks_list is None or is_current_worker_chief(): - return callbacks_list - - # Some Callbacks should only run on the chief worker. - return [ - callback - for callback in callbacks_list - if not callback._chief_worker_only - ] - - -def _update_sample_weight_modes(model, mode, sample_weights): - """Update sample_weight_mode of the distributed model.""" - if is_distributing_by_cloning(model): - distributed_model = get_distributed_model(model, mode) - if not distributed_model: - _make_replicated_models_with_cloning(model, mode) - distributed_model = get_distributed_model(model, mode) - distributed_model._recompile_exec_function = any( - [e.sample_weights_mismatch() for e in model._training_endpoints] - ) - - if sample_weights: - distributed_models = flatten_per_replica_values( - model._distribution_strategy, distributed_model - ) - # sample_weights is a tuple of 1 list where the number of elements - # in the list is equal to the number of replicas in sync. - sample_weights = sample_weights[0] - if sample_weights and None not in sample_weights: - for m, sw in zip(distributed_models, sample_weights): - m._update_sample_weight_modes(sample_weights=[sw]) - - -def concat_along_batch_dimension(outputs): - """Concats prediction outputs along the batch dimension.""" - if isinstance(outputs[0], tf.SparseTensor): - return tf.sparse.concat(axis=0, sp_inputs=outputs) - if isinstance(outputs[0], tf.RaggedTensor): - return tf.concat(outputs, axis=0) - return np.concatenate(outputs) diff --git a/keras/distribute/keras_correctness_test_base.py b/keras/distribute/keras_correctness_test_base.py deleted file mode 100644 index 1e5501654ec..00000000000 --- a/keras/distribute/keras_correctness_test_base.py +++ /dev/null @@ -1,710 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Correctness tests for tf.keras using DistributionStrategy.""" - -import functools - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.distribute import distributed_training_utils -from keras.distribute.strategy_combinations import all_strategies -from keras.distribute.strategy_combinations import ( - multi_worker_mirrored_strategies, -) -from keras.distribute.strategy_combinations import strategies_minus_tpu -from keras.mixed_precision import policy -from keras.utils import data_utils - -_RANDOM_SEED = 1337 -_EVAL_STEPS = 20 -_GLOBAL_BATCH_SIZE = 64 - -# Note: Please make sure the tests in this file are also covered in -# keras_backward_compat_test for features that are supported with both APIs. - - -def eager_mode_test_configuration(): - return tf.__internal__.test.combinations.combine( - mode="eager", use_numpy=[True, False], use_validation_data=[True, False] - ) - - -def graph_mode_test_configuration(): - return tf.__internal__.test.combinations.combine( - mode="graph", use_numpy=[True, False], use_validation_data=[True, False] - ) - - -def all_strategy_and_input_config_combinations(): - return tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine(distribution=all_strategies), - eager_mode_test_configuration() + graph_mode_test_configuration(), - ) - - -def all_strategy_and_input_config_combinations_eager(): - return tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine(distribution=all_strategies), - eager_mode_test_configuration(), - ) - - -def strategy_minus_tpu_and_input_config_combinations_eager(): - return tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine( - distribution=strategies_minus_tpu - ), - eager_mode_test_configuration(), - ) - - -def strategies_for_embedding_models(): - """Returns distribution strategies to test for embedding models. - - Since embedding models take longer to train, we disregard DefaultStrategy - in order to prevent testing timeouts. - """ - - return [ - s - for s in all_strategies - if s.required_tpu - or s.required_gpus - or s is tf.__internal__.distribute.combinations.one_device_strategy - ] - - -def test_combinations_for_embedding_model(): - # TODO(sourabhbajaj): Enable tests for eager mode - eager_mode_strategies = [ - s for s in strategies_for_embedding_models() if not s.required_tpu - ] - - return tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine( - distribution=strategies_for_embedding_models() - ), - (graph_mode_test_configuration()), - ) + tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine( - distribution=eager_mode_strategies - ), - (eager_mode_test_configuration()), - ) - - -def test_combinations_with_tpu_strategies_graph(): - tpu_strategies = [ - tf.__internal__.distribute.combinations.tpu_strategy, - ] - - return tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine(distribution=tpu_strategies), - graph_mode_test_configuration(), - ) - - -def multi_worker_mirrored_eager(): - return tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine( - distribution=multi_worker_mirrored_strategies - ), - eager_mode_test_configuration(), - ) - - -def multi_worker_mirrored_eager_and_graph(): - return tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine( - distribution=multi_worker_mirrored_strategies - ), - eager_mode_test_configuration() + graph_mode_test_configuration(), - ) - - -class MaybeDistributionScope: - """Provides a context allowing no distribution strategy.""" - - def __init__(self, distribution): - self._distribution = distribution - self._scope = None - - def __enter__(self): - if self._distribution: - self._scope = self._distribution.scope() - self._scope.__enter__() - - def __exit__(self, exc_type, value, traceback): - if self._distribution: - self._scope.__exit__(exc_type, value, traceback) - self._scope = None - - -def batch_wrapper(dataset, batch_size, repeat=None): - if repeat: - dataset = dataset.repeat(repeat) - return dataset.batch(batch_size) - - -def get_batch_size(global_batch_size, distribution): - batch_size = global_batch_size - # TODO(b/118776054): Use global batch size for Keras/DS support. - use_per_core_batch_size = ( - distribution - and not distributed_training_utils.global_batch_size_supported( - distribution - ) - ) - if use_per_core_batch_size: - batch_size //= distribution.num_replicas_in_sync - return batch_size - - -def get_data_size(data): - """Gets the size of data in list, tuple, dict, or a numpy array.""" - assert isinstance(data, (np.ndarray, list, dict, tuple)) - - if isinstance(data, np.ndarray): - return len(data) - - if isinstance(data, (list, tuple)): - return len(data[0]) - - return len(data.values()) - - -def get_shapes(data): - shapes = None - if all(hasattr(x, "shape") for x in tf.nest.flatten(data)): - shapes = tf.nest.map_structure(lambda x: x.shape, data) - return shapes - - -def get_correctness_test_inputs( - use_numpy, - use_validation_data, - with_distribution, - x_train, - y_train, - x_eval, - y_eval, - x_predict, - training_epochs, -): - """Generates the inputs for correctness check when enable Keras with DS.""" - global_batch_size = _GLOBAL_BATCH_SIZE - batch_size = get_batch_size(global_batch_size, with_distribution) - - if use_numpy: - training_inputs = { - "batch_size": batch_size, - "x": x_train, - "y": y_train, - "epochs": training_epochs, - "shuffle": False, - } - - if use_validation_data: - eval_inputs = None - training_inputs["validation_data"] = (x_eval, y_eval) - else: - eval_inputs = { - "batch_size": batch_size, - "x": x_eval, - "y": y_eval, - } - predict_inputs = {"x": x_predict} - else: - training_data_size = get_data_size(x_train) - # For dataset inputs, we do not pass batch_size to - # keras.fit/evaluate/predict. The batch size is part of the dataset. - train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) - x = batch_wrapper(train_dataset, batch_size, repeat=training_epochs) - - steps_per_epoch = int( - np.ceil(1.0 * training_data_size / global_batch_size) - ) - training_inputs = { - "batch_size": None, - "x": x, - "y": None, - "epochs": training_epochs, - "shuffle": False, - "steps_per_epoch": steps_per_epoch, - } - if use_validation_data: - eval_inputs = None # Remove the eval_inputs - eval_dataset = tf.data.Dataset.from_tensor_slices((x_eval, y_eval)) - x = batch_wrapper(eval_dataset, batch_size) - training_inputs["validation_data"] = x - training_inputs["validation_steps"] = 5 - else: - eval_dataset = tf.data.Dataset.from_tensor_slices((x_eval, y_eval)) - x = batch_wrapper(eval_dataset, batch_size) - eval_steps = int( - np.ceil(1.0 * get_data_size(x_eval) / global_batch_size) - ) - eval_inputs = { - "batch_size": None, - "x": x, - "y": None, - "steps": eval_steps, - } - - predict_batch_size = get_batch_size( - get_data_size(x_predict), with_distribution - ) - predict_dataset = tf.data.Dataset.from_tensor_slices(x_predict) - predict_dataset = batch_wrapper(predict_dataset, predict_batch_size) - predict_inputs = { - "steps": 1, - "x": predict_dataset, - } - - return training_inputs, eval_inputs, predict_inputs - - -def fit_eval_and_predict( - initial_weights, - input_fn, - model_fn, - distribution=None, - is_stateful_model=False, -): - """Generates results for fit/predict/evaluate for given model.""" - training_inputs, eval_inputs, predict_inputs = input_fn() - model = model_fn( - initial_weights=initial_weights, - distribution=distribution, - input_shapes=get_shapes(training_inputs["x"]), - ) - - result = {} - result["training_history_1"] = model.fit(**training_inputs).history - - if eval_inputs is not None: - result["eval_result_1"] = model.evaluate(**eval_inputs) - - result["weights_1"] = model.get_weights() - - if predict_inputs is not None: - # Check correctness of the result of predict() invoked - # multiple times -- as for stateful models, result of - # predict may differ for each batch. - predict_length = 1 - if is_stateful_model: - predict_length = 3 - for i in range(predict_length): - result_key = f"predict_result_{i}" - result[result_key] = model.predict(**predict_inputs) - - # Train and eval again to mimic user's flow. - - result["training_history_2"] = model.fit(**training_inputs).history - - if eval_inputs is not None: - result["eval_result_2"] = model.evaluate(**eval_inputs) - - result["weights_2"] = model.get_weights() - - return result - - -def compare_results( - results_with_ds, - results_without_ds, - distribution, - testcase, - partial_last_batch=None, -): - """Compares results of model compiled with/without distribution strategy.""" - if policy.global_policy().compute_dtype in ("float16", "bfloat16"): - default_tolerance = 1e-2 - relaxed_tolerance = 1e-2 - elif partial_last_batch == "train_and_eval": - # We relax the tolerance a lot in the partial last batch case as - # 1. the examples in uneven batches may have different weights when - # applying the gradients in the distributed case. - # 2. TF Keras and TF Keras DS have different ways to handle the case - # when training with epochs > 1 with numpy inputs. In TF Keras, - # every epoch may have a partial batch. While in TF Keras DS, as we - # convert numpy inputs into dataset, it will do a repeat() first - # and calculate steps_per_epoch, so it will at most have one - # partial batch. This makes the 1-CPU result even different. - default_tolerance = 1e-3 - relaxed_tolerance = 1e-3 - else: - default_tolerance = 4e-5 - relaxed_tolerance = 1e-4 - - def _get_compare_result_tolerance(key): - """Returns tolerance to compare results.""" - # See b/119257215 for more details. DS test run on GPU could have larger - # variance then test on CPU. - if tf.test.is_gpu_available() and key.startswith( - ("weights_1", "weights_2", "predict_result") - ): - return relaxed_tolerance - - return default_tolerance - - for key in sorted(results_with_ds.keys()): - if ( - key.startswith("training_history") - and isinstance( - distribution, - ( - tf.distribute.experimental.TPUStrategy, - tf.compat.v1.distribute.experimental.TPUStrategy, - ), - ) - and distribution.extended.steps_per_run > 1 - ): - # TODO(b/119894254): Enable this test for all cases once the - # underlying bug is fixed. - continue - - tolerance = _get_compare_result_tolerance(key) - - # We don't compare the loss as loss is currently not computed as metric - # in Keras, the loss value is inaccurate for last partial batch due to - # more weights for the last batch samples. - if partial_last_batch is not None: - if key.startswith("eval_result"): - results_with_ds[key] = results_with_ds[key][1:] - results_without_ds[key] = results_without_ds[key][1:] - if key.startswith("training_history"): - results_with_ds[key]["val_loss"] = 0 - results_without_ds[key]["val_loss"] = 0 - - testcase.assertAllClose( - results_with_ds[key], - results_without_ds[key], - atol=tolerance, - rtol=tolerance, - msg=f"Fail to assert {key}.", - ) - - -def should_skip_tpu_with_eager(distribution): - return tf.executing_eagerly() and isinstance( - distribution, - ( - tf.distribute.experimental.TPUStrategy, - tf.compat.v1.distribute.experimental.TPUStrategy, - ), - ) - - -class LearningRateBatchScheduler(keras.callbacks.Callback): - """Scheduler that dynamically sets the learning rate of model.""" - - def __init__(self, update_freq=None): - self._update_freq = update_freq - - def on_batch_begin(self, batch, logs=None): - if self._update_freq and batch % self._update_freq != 0: - return - - # To avoid divergence, limit the value range. - lr = 0.001 * (batch % 10) - keras.backend.set_value(self.model.optimizer.lr, lr) - - -class TestDistributionStrategyCorrectnessBase( - tf.test.TestCase, parameterized.TestCase -): - """Model agnostic testing infra to test correctness of Keras models.""" - - def set_up_test_config( - self, use_numpy=False, use_validation_data=False, with_batch_norm=None - ): - self.use_numpy = use_numpy - self.use_validation_data = use_validation_data - self.with_batch_norm = with_batch_norm - - keras.backend.set_image_data_format("channels_last") - np.random.seed(_RANDOM_SEED) - tf.compat.v1.set_random_seed(_RANDOM_SEED) - - def get_data(self): - num_samples = 10000 - x_train = np.random.randint(0, 2, num_samples) - x_train = np.reshape(x_train, (num_samples, 1)) - y_train = x_train - return (x_train.astype("float32"), y_train.astype("float32"), None) - - def get_data_with_partial_last_batch(self): - raise NotImplementedError - - def get_data_with_partial_last_batch_eval(self): - raise NotImplementedError - - def get_input_for_correctness_test(self, **kwargs): - """Generates inputs that are dictionaries. - - We only provide a default implementation of this method here. If you - need more customized way of providing input to your model, overwrite - this method. - - Args: - **kwargs: key word arguments about how to create the input - dictionaries - - Returns: - Three dictionaries representing the input for fit(), evaluate() and - predict() - """ - - return get_correctness_test_inputs(**kwargs) - - def get_model(self, distribution=None, input_shapes=None): - raise NotImplementedError - - def run_correctness_test( - self, - distribution, - use_numpy, - use_validation_data, - with_batch_norm=None, - is_stateful_model=False, - partial_last_batch=None, - training_epochs=2, - ): - with self.cached_session(): - self.set_up_test_config( - use_numpy, use_validation_data, with_batch_norm - ) - - if partial_last_batch == "eval": - ( - x_train, - y_train, - x_eval, - y_eval, - x_predict, - ) = self.get_data_with_partial_last_batch_eval() - elif partial_last_batch == "train_and_eval": - ( - x_train, - y_train, - x_eval, - y_eval, - x_predict, - ) = self.get_data_with_partial_last_batch() - else: - x_train, y_train, x_predict = self.get_data() - x_eval = x_train - y_eval = y_train - - # The model is built once and the initial weights are saved. - # This is used to initialize the model for both the distribution and - # non-distribution run. - model = self.get_model(input_shapes=get_shapes(x_train)) - initial_weights = model.get_weights() - - ds_input_fn = functools.partial( - self.get_input_for_correctness_test, - use_numpy=use_numpy, - use_validation_data=use_validation_data, - with_distribution=distribution, - x_train=x_train, - y_train=y_train, - x_eval=x_eval, - y_eval=y_eval, - x_predict=x_predict, - training_epochs=training_epochs, - ) - - nods_input_fn = functools.partial( - self.get_input_for_correctness_test, - use_numpy=use_numpy, - use_validation_data=use_validation_data, - with_distribution=None, - x_train=x_train, - y_train=y_train, - x_eval=x_eval, - y_eval=y_eval, - x_predict=x_predict, - training_epochs=training_epochs, - ) - - results_with_ds = fit_eval_and_predict( - initial_weights, - input_fn=ds_input_fn, - model_fn=self.get_model, - distribution=distribution, - is_stateful_model=is_stateful_model, - ) - results_without_ds = fit_eval_and_predict( - initial_weights, - input_fn=nods_input_fn, - model_fn=self.get_model, - distribution=None, - is_stateful_model=is_stateful_model, - ) - - # First, special case, for multi-replica distributed training, batch - # norm is not aggregated globally. So it is expected to have - # different weights. - if ( - self.with_batch_norm == "regular" - and distribution.num_replicas_in_sync > 1 - ): - with self.assertRaises(AssertionError): - compare_results( - results_with_ds, - results_without_ds, - distribution, - testcase=self, - partial_last_batch=partial_last_batch, - ) - else: - compare_results( - results_with_ds, - results_without_ds, - distribution, - testcase=self, - partial_last_batch=partial_last_batch, - ) - - def get_input_for_dynamic_lr_test(self, **kwargs): - """Generates inputs that are dictionaries. - - We only provide a default implementation of this method here. If you - need more customized way of providing input to your model, overwrite - this method. - - Args: - **kwargs: key word arguments about how to create the input - dictionaries - - Returns: - Three dictionaries representing the input for fit(), evaluate() and - predict() - """ - - training_input = kwargs - return training_input, None, None - - def run_dynamic_lr_test(self, distribution): - with self.cached_session(): - self.set_up_test_config() - - x_train, y_train, _ = self.get_data() - model = self.get_model(input_shapes=get_shapes(x_train)) - initial_weights = model.get_weights() - update_freq = None - - if ( - isinstance( - distribution, - tf.compat.v1.distribute.experimental.TPUStrategy, - ) - and distribution.extended.steps_per_run > 1 - ): - # For TPUStrategy with steps_per_run > 1, the callback is not - # invoked every step. So, to compare the CPU/TPU, we let the CPU - # to behave the same as TPU. - update_freq = distribution.extended.steps_per_run - - training_epochs = 2 - global_batch_size = 64 - - ds_batch_size = get_batch_size(global_batch_size, distribution) - nods_batch_size = get_batch_size(global_batch_size, None) - - ds_input_fn = functools.partial( - self.get_input_for_dynamic_lr_test, - x=x_train, - y=y_train, - batch_size=ds_batch_size, - shuffle=False, - epochs=training_epochs, - callbacks=[LearningRateBatchScheduler(update_freq)], - validation_data=(x_train, y_train), - ) - - nods_input_fn = functools.partial( - self.get_input_for_dynamic_lr_test, - x=x_train, - y=y_train, - batch_size=nods_batch_size, - shuffle=False, - epochs=training_epochs, - callbacks=[LearningRateBatchScheduler(update_freq)], - validation_data=(x_train, y_train), - ) - - results_with_ds = fit_eval_and_predict( - initial_weights, - input_fn=ds_input_fn, - model_fn=self.get_model, - distribution=distribution, - ) - results_without_ds = fit_eval_and_predict( - initial_weights, - input_fn=nods_input_fn, - model_fn=self.get_model, - distribution=None, - ) - compare_results( - results_with_ds, results_without_ds, distribution, testcase=self - ) - - -class TestDistributionStrategyEmbeddingModelCorrectnessBase( - TestDistributionStrategyCorrectnessBase -): - """Base class to test correctness of Keras models with embedding layers.""" - - def get_data( - self, - count=(_GLOBAL_BATCH_SIZE * _EVAL_STEPS), - min_words=5, - max_words=10, - max_word_id=19, - num_classes=2, - ): - distribution = [] - for _ in range(num_classes): - dist = np.abs(np.random.randn(max_word_id)) - dist /= np.sum(dist) - distribution.append(dist) - - features = [] - labels = [] - for _ in range(count): - label = np.random.randint(0, num_classes, size=1)[0] - num_words = np.random.randint(min_words, max_words, size=1)[0] - word_ids = np.random.choice( - max_word_id, size=num_words, replace=True, p=distribution[label] - ) - word_ids = word_ids - labels.append(label) - features.append(word_ids) - - features = data_utils.pad_sequences(features, maxlen=max_words) - x_train = np.asarray(features, dtype=np.float32) - y_train = np.asarray(labels, dtype=np.int32).reshape((count, 1)) - x_predict = x_train[:_GLOBAL_BATCH_SIZE] - return x_train, y_train, x_predict - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/distribute/keras_dnn_correctness_test.py b/keras/distribute/keras_dnn_correctness_test.py deleted file mode 100644 index 9577957a236..00000000000 --- a/keras/distribute/keras_dnn_correctness_test.py +++ /dev/null @@ -1,374 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Correctness tests for tf.keras DNN model using DistributionStrategy.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras import backend -from keras.distribute import keras_correctness_test_base -from keras.distribute import strategy_combinations -from keras.optimizers.legacy import gradient_descent as gradient_descent_keras -from keras.testing_infra import test_utils - - -def all_strategy_combinations_with_eager_and_graph_modes(): - return tf.__internal__.test.combinations.combine( - distribution=strategy_combinations.all_strategies, - mode=["graph", "eager"], - ) + tf.__internal__.test.combinations.combine( - distribution=strategy_combinations.multi_worker_mirrored_strategies, - mode="eager", - ) - - -def all_strategy_combinations_with_graph_mode(): - return tf.__internal__.test.combinations.combine( - distribution=keras_correctness_test_base.all_strategies, mode=["graph"] - ) - - -def is_default_strategy(strategy): - with strategy.scope(): - return not tf.distribute.has_strategy() - - -@test_utils.run_all_without_tensor_float_32( - "Uses Dense layers, which call matmul" -) -class TestDistributionStrategyDnnCorrectness( - keras_correctness_test_base.TestDistributionStrategyCorrectnessBase -): - def get_model( - self, initial_weights=None, distribution=None, input_shapes=None - ): - with keras_correctness_test_base.MaybeDistributionScope(distribution): - # We add few non-linear layers to make it non-trivial. - model = keras.Sequential() - model.add( - keras.layers.Dense(10, activation="relu", input_shape=(1,)) - ) - model.add( - keras.layers.Dense( - 10, - activation="relu", - kernel_regularizer=keras.regularizers.l2(1e-4), - ) - ) - model.add(keras.layers.Dense(10, activation="relu")) - model.add(keras.layers.Dense(1)) - - if initial_weights: - model.set_weights(initial_weights) - - model.compile( - loss=keras.losses.mean_squared_error, - optimizer=gradient_descent_keras.SGD(0.05), - metrics=["mse"], - ) - return model - - def get_data(self): - x_train = np.random.rand(9984, 1).astype("float32") - y_train = 3 * x_train - x_predict = np.array([[1.0], [2.0], [3.0], [4.0]], dtype=np.float32) - return x_train, y_train, x_predict - - def get_data_with_partial_last_batch(self): - x_train = np.random.rand(10000, 1).astype("float32") - y_train = 3 * x_train - x_eval = np.random.rand(10000, 1).astype("float32") - y_eval = 3 * x_eval - x_predict = np.array([[1.0], [2.0], [3.0], [4.0]], dtype=np.float32) - return x_train, y_train, x_eval, y_eval, x_predict - - def get_data_with_partial_last_batch_eval(self): - x_train = np.random.rand(9984, 1).astype("float32") - y_train = 3 * x_train - x_eval = np.random.rand(10000, 1).astype("float32") - y_eval = 3 * x_eval - x_predict = np.array([[1.0], [2.0], [3.0], [4.0]], dtype=np.float32) - return x_train, y_train, x_eval, y_eval, x_predict - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.all_strategy_and_input_config_combinations() - + keras_correctness_test_base.multi_worker_mirrored_eager() - ) - def test_dnn_correctness( - self, distribution, use_numpy, use_validation_data - ): - self.run_correctness_test(distribution, use_numpy, use_validation_data) - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.test_combinations_with_tpu_strategies_graph() # noqa: E501 - + keras_correctness_test_base.multi_worker_mirrored_eager() - ) - def test_dnn_correctness_with_partial_last_batch_eval( - self, distribution, use_numpy, use_validation_data - ): - self.run_correctness_test( - distribution, - use_numpy, - use_validation_data, - partial_last_batch="eval", - ) - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.strategy_minus_tpu_and_input_config_combinations_eager() # noqa: E501 - + keras_correctness_test_base.multi_worker_mirrored_eager() - ) - def test_dnn_correctness_with_partial_last_batch( - self, distribution, use_numpy, use_validation_data - ): - distribution.extended.experimental_enable_get_next_as_optional = True - self.run_correctness_test( - distribution, - use_numpy, - use_validation_data, - partial_last_batch="train_and_eval", - training_epochs=1, - ) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations_with_graph_mode() - ) - def test_dnn_with_dynamic_learning_rate(self, distribution): - self.run_dynamic_lr_test(distribution) - - -class TestDistributionStrategyDnnMetricCorrectness( - keras_correctness_test_base.TestDistributionStrategyCorrectnessBase -): - def get_model(self, distribution=None, input_shapes=None): - with distribution.scope(): - model = keras.Sequential() - model.add( - keras.layers.Dense( - 1, input_shape=(1,), kernel_initializer="ones" - ) - ) - model.compile( - loss=keras.losses.mean_squared_error, - optimizer=gradient_descent_keras.SGD(0.05), - metrics=[keras.metrics.BinaryAccuracy()], - ) - return model - - def run_metric_correctness_test(self, distribution): - with self.cached_session(): - self.set_up_test_config() - - x_train, y_train, _ = self.get_data() - model = self.get_model(distribution=distribution) - - batch_size = 64 - batch_size = keras_correctness_test_base.get_batch_size( - batch_size, distribution - ) - train_dataset = tf.data.Dataset.from_tensor_slices( - (x_train, y_train) - ) - train_dataset = keras_correctness_test_base.batch_wrapper( - train_dataset, batch_size - ) - - history = model.fit(x=train_dataset, epochs=2, steps_per_epoch=10) - self.assertEqual(history.history["binary_accuracy"], [1.0, 1.0]) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations_with_eager_and_graph_modes() - ) - def test_simple_dnn_metric_correctness(self, distribution): - self.run_metric_correctness_test(distribution) - - -class TestDistributionStrategyDnnMetricEvalCorrectness( - keras_correctness_test_base.TestDistributionStrategyCorrectnessBase -): - def get_model(self, distribution=None, input_shapes=None): - with distribution.scope(): - model = keras.Sequential() - model.add( - keras.layers.Dense( - 3, activation="relu", input_dim=4, kernel_initializer="ones" - ) - ) - model.add( - keras.layers.Dense( - 1, activation="sigmoid", kernel_initializer="ones" - ) - ) - model.compile( - loss="mae", - metrics=["accuracy", keras.metrics.BinaryAccuracy()], - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.001), - ) - return model - - def run_eval_metrics_correctness_test(self, distribution): - with self.cached_session(): - self.set_up_test_config() - - model = self.get_model(distribution=distribution) - - # verify correctness of stateful and stateless metrics. - x = np.ones((100, 4)).astype("float32") - y = np.ones((100, 1)).astype("float32") - dataset = tf.data.Dataset.from_tensor_slices((x, y)).repeat() - dataset = keras_correctness_test_base.batch_wrapper(dataset, 4) - outs = model.evaluate(dataset, steps=10) - self.assertEqual(outs[1], 1.0) - self.assertEqual(outs[2], 1.0) - - y = np.zeros((100, 1)).astype("float32") - dataset = tf.data.Dataset.from_tensor_slices((x, y)).repeat() - dataset = keras_correctness_test_base.batch_wrapper(dataset, 4) - outs = model.evaluate(dataset, steps=10) - self.assertEqual(outs[1], 0.0) - self.assertEqual(outs[2], 0.0) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations_with_eager_and_graph_modes() - ) - def test_identity_model_metric_eval_correctness(self, distribution): - self.run_eval_metrics_correctness_test(distribution) - - -class SubclassedModel(keras.Model): - def __init__(self, initial_weights, input_shapes): - super().__init__() - self.dense1 = keras.layers.Dense( - 10, activation="relu", input_shape=(1,) - ) - self.dense2 = keras.layers.Dense( - 10, - activation="relu", - kernel_regularizer=keras.regularizers.l2(1e-4), - ) - self.dense3 = keras.layers.Dense(10, activation="relu") - self.dense4 = keras.layers.Dense(1) - if input_shapes: - self.build(input_shapes) - else: - # This covers cases when the input is DatasetV1Adapter. - self.build((None, 1)) - if initial_weights: - self.set_weights(initial_weights) - - def call(self, inputs): - x = self.dense1(inputs) - x = self.dense2(x) - x = self.dense3(x) - return self.dense4(x) - - -@test_utils.run_all_without_tensor_float_32( - "Uses Dense layers, which call matmul" -) -class TestDistributionStrategyDnnCorrectnessWithSubclassedModel( - TestDistributionStrategyDnnCorrectness -): - def get_model( - self, initial_weights=None, distribution=None, input_shapes=None - ): - with keras_correctness_test_base.MaybeDistributionScope(distribution): - model = SubclassedModel(initial_weights, input_shapes) - - model.compile( - loss=keras.losses.mean_squared_error, - optimizer=gradient_descent_keras.SGD(0.05), - metrics=["mse"], - ) - return model - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.all_strategy_and_input_config_combinations() - + keras_correctness_test_base.multi_worker_mirrored_eager() - ) - def test_dnn_correctness( - self, distribution, use_numpy, use_validation_data - ): - if (tf.executing_eagerly()) or is_default_strategy(distribution): - self.run_correctness_test( - distribution, use_numpy, use_validation_data - ) - elif ( - backend.is_tpu_strategy(distribution) and not tf.executing_eagerly() - ): - with self.assertRaisesRegex( - ValueError, - "Expected `model` argument to be a functional `Model` " - "instance, but got a subclassed model instead.", - ): - self.run_correctness_test( - distribution, use_numpy, use_validation_data - ) - else: - with self.assertRaisesRegex( - ValueError, - "We currently do not support distribution strategy with a " - "`Sequential` model that is created without `input_shape`/" - "`input_dim` set in its first layer or a subclassed model.", - ): - self.run_correctness_test( - distribution, use_numpy, use_validation_data - ) - - @tf.__internal__.distribute.combinations.generate( - all_strategy_combinations_with_graph_mode() - ) - def test_dnn_with_dynamic_learning_rate(self, distribution): - if ( - tf.executing_eagerly() and not backend.is_tpu_strategy(distribution) - ) or is_default_strategy(distribution): - self.run_dynamic_lr_test(distribution) - elif backend.is_tpu_strategy(distribution): - with self.assertRaisesRegex( - ValueError, - "Expected `model` argument to be a functional `Model` " - "instance, but got a subclassed model instead.", - ): - self.run_dynamic_lr_test(distribution) - else: - with self.assertRaisesRegex( - ValueError, - "We currently do not support distribution strategy with a " - "`Sequential` model that is created without `input_shape`/" - "`input_dim` set in its first layer or a subclassed model.", - ): - self.run_dynamic_lr_test(distribution) - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.test_combinations_with_tpu_strategies_graph() # noqa: E501 - ) - def test_dnn_correctness_with_partial_last_batch_eval( - self, distribution, use_numpy, use_validation_data - ): - with self.assertRaisesRegex( - ValueError, - "Expected `model` argument to be a functional `Model` instance, " - "but got a subclassed model instead.", - ): - self.run_correctness_test( - distribution, - use_numpy, - use_validation_data, - partial_last_batch="eval", - ) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/keras_embedding_model_correctness_test.py b/keras/distribute/keras_embedding_model_correctness_test.py deleted file mode 100644 index f126c41609a..00000000000 --- a/keras/distribute/keras_embedding_model_correctness_test.py +++ /dev/null @@ -1,175 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Correctness test for tf.keras Embedding models using DistributionStrategy.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.distribute import keras_correctness_test_base -from keras.optimizers.legacy import gradient_descent as gradient_descent_keras - - -class DistributionStrategyEmbeddingModelCorrectnessTest( - keras_correctness_test_base.TestDistributionStrategyEmbeddingModelCorrectnessBase # noqa: E501 -): - def get_model( - self, - max_words=10, - initial_weights=None, - distribution=None, - input_shapes=None, - ): - del input_shapes - with keras_correctness_test_base.MaybeDistributionScope(distribution): - word_ids = keras.layers.Input( - shape=(max_words,), dtype=np.int32, name="words" - ) - word_embed = keras.layers.Embedding(input_dim=20, output_dim=10)( - word_ids - ) - if self.use_distributed_dense: - word_embed = keras.layers.TimeDistributed( - keras.layers.Dense(4) - )(word_embed) - avg = keras.layers.GlobalAveragePooling1D()(word_embed) - preds = keras.layers.Dense(2, activation="softmax")(avg) - model = keras.Model(inputs=[word_ids], outputs=[preds]) - - if initial_weights: - model.set_weights(initial_weights) - - model.compile( - optimizer=gradient_descent_keras.SGD(learning_rate=0.1), - loss="sparse_categorical_crossentropy", - metrics=["sparse_categorical_accuracy"], - ) - return model - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.test_combinations_for_embedding_model() - + keras_correctness_test_base.multi_worker_mirrored_eager() - ) - def test_embedding_model_correctness( - self, distribution, use_numpy, use_validation_data - ): - - self.use_distributed_dense = False - self.run_correctness_test(distribution, use_numpy, use_validation_data) - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.test_combinations_for_embedding_model() - + keras_correctness_test_base.multi_worker_mirrored_eager() - ) - def test_embedding_time_distributed_model_correctness( - self, distribution, use_numpy, use_validation_data - ): - self.use_distributed_dense = True - self.run_correctness_test(distribution, use_numpy, use_validation_data) - - -class DistributionStrategySiameseEmbeddingModelCorrectnessTest( - keras_correctness_test_base.TestDistributionStrategyEmbeddingModelCorrectnessBase # noqa: E501 -): - def get_model( - self, - max_words=10, - initial_weights=None, - distribution=None, - input_shapes=None, - ): - del input_shapes - with keras_correctness_test_base.MaybeDistributionScope(distribution): - word_ids_a = keras.layers.Input( - shape=(max_words,), dtype=np.int32, name="words_a" - ) - word_ids_b = keras.layers.Input( - shape=(max_words,), dtype=np.int32, name="words_b" - ) - - def submodel(embedding, word_ids): - word_embed = embedding(word_ids) - rep = keras.layers.GlobalAveragePooling1D()(word_embed) - return keras.Model(inputs=[word_ids], outputs=[rep]) - - word_embed = keras.layers.Embedding( - input_dim=20, - output_dim=10, - input_length=max_words, - embeddings_initializer=keras.initializers.RandomUniform(0, 1), - ) - - a_rep = submodel(word_embed, word_ids_a).outputs[0] - b_rep = submodel(word_embed, word_ids_b).outputs[0] - sim = keras.layers.Dot(axes=1, normalize=True)([a_rep, b_rep]) - - model = keras.Model(inputs=[word_ids_a, word_ids_b], outputs=[sim]) - - if initial_weights: - model.set_weights(initial_weights) - - # TODO(b/130808953): Switch back to the V1 optimizer after - # global_step is made mirrored. - model.compile( - optimizer=gradient_descent_keras.SGD(learning_rate=0.1), - loss="mse", - metrics=["mse"], - ) - return model - - def get_data( - self, - count=( - keras_correctness_test_base._GLOBAL_BATCH_SIZE - * keras_correctness_test_base._EVAL_STEPS - ), - min_words=5, - max_words=10, - max_word_id=19, - num_classes=2, - ): - features_a, labels_a, _ = super().get_data( - count, min_words, max_words, max_word_id, num_classes - ) - - features_b, labels_b, _ = super().get_data( - count, min_words, max_words, max_word_id, num_classes - ) - - y_train = np.zeros((count, 1), dtype=np.float32) - y_train[labels_a == labels_b] = 1.0 - y_train[labels_a != labels_b] = -1.0 - # TODO(b/123360757): Add tests for using list as inputs for multi-input - # models. - x_train = { - "words_a": features_a, - "words_b": features_b, - } - x_predict = x_train - - return x_train, y_train, x_predict - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.test_combinations_for_embedding_model() - + keras_correctness_test_base.multi_worker_mirrored_eager() - ) - def test_siamese_embedding_model_correctness( - self, distribution, use_numpy, use_validation_data - ): - self.run_correctness_test(distribution, use_numpy, use_validation_data) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/keras_image_model_correctness_test.py b/keras/distribute/keras_image_model_correctness_test.py deleted file mode 100644 index 687c180aa3f..00000000000 --- a/keras/distribute/keras_image_model_correctness_test.py +++ /dev/null @@ -1,182 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Correctness tests for tf.keras CNN models using DistributionStrategy.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.distribute import keras_correctness_test_base -from keras.optimizers.legacy import gradient_descent -from keras.testing_infra import test_utils - - -@test_utils.run_all_without_tensor_float_32( - "Uses Dense layers, which call matmul. Even if Dense layers run in " - "float64, the test sometimes fails with TensorFloat-32 enabled for unknown " - "reasons" -) -@test_utils.run_v2_only() -class DistributionStrategyCnnCorrectnessTest( - keras_correctness_test_base.TestDistributionStrategyCorrectnessBase -): - def get_model( - self, initial_weights=None, distribution=None, input_shapes=None - ): - del input_shapes - with keras_correctness_test_base.MaybeDistributionScope(distribution): - image = keras.layers.Input(shape=(28, 28, 3), name="image") - c1 = keras.layers.Conv2D( - name="conv1", - filters=16, - kernel_size=(3, 3), - strides=(4, 4), - kernel_regularizer=keras.regularizers.l2(1e-4), - )(image) - if self.with_batch_norm == "regular": - c1 = keras.layers.BatchNormalization(name="bn1")(c1) - elif self.with_batch_norm == "sync": - # Test with parallel batch norms to verify all-reduce works OK. - bn1 = keras.layers.BatchNormalization( - name="bn1", synchronized=True - )(c1) - bn2 = keras.layers.BatchNormalization( - name="bn2", synchronized=True - )(c1) - c1 = keras.layers.Add()([bn1, bn2]) - c1 = keras.layers.MaxPooling2D(pool_size=(2, 2))(c1) - logits = keras.layers.Dense(10, activation="softmax", name="pred")( - keras.layers.Flatten()(c1) - ) - model = keras.Model(inputs=[image], outputs=[logits]) - - if initial_weights: - model.set_weights(initial_weights) - - model.compile( - optimizer=gradient_descent.SGD(learning_rate=0.1), - loss="sparse_categorical_crossentropy", - metrics=["sparse_categorical_accuracy"], - ) - - return model - - def _get_data(self, count, shape=(28, 28, 3), num_classes=10): - centers = np.random.randn(num_classes, *shape) - - features = [] - labels = [] - for _ in range(count): - label = np.random.randint(0, num_classes, size=1)[0] - offset = np.random.normal(loc=0, scale=0.1, size=np.prod(shape)) - offset = offset.reshape(shape) - labels.append(label) - features.append(centers[label] + offset) - - x = np.asarray(features, dtype=np.float32) - y = np.asarray(labels, dtype=np.float32).reshape((count, 1)) - return x, y - - def get_data(self): - x_train, y_train = self._get_data( - count=keras_correctness_test_base._GLOBAL_BATCH_SIZE - * keras_correctness_test_base._EVAL_STEPS - ) - x_predict = x_train - return x_train, y_train, x_predict - - def get_data_with_partial_last_batch_eval(self): - x_train, y_train = self._get_data(count=1280) - x_eval, y_eval = self._get_data(count=1000) - return x_train, y_train, x_eval, y_eval, x_eval - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.all_strategy_and_input_config_combinations() - + keras_correctness_test_base.multi_worker_mirrored_eager() - ) - def test_cnn_correctness( - self, distribution, use_numpy, use_validation_data - ): - if ( - distribution - == tf.__internal__.distribute.combinations.central_storage_strategy_with_gpu_and_cpu # noqa: E501 - ): - self.skipTest("b/183958183") - self.run_correctness_test(distribution, use_numpy, use_validation_data) - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.all_strategy_and_input_config_combinations() - + keras_correctness_test_base.multi_worker_mirrored_eager() - ) - def test_cnn_with_batch_norm_correctness( - self, distribution, use_numpy, use_validation_data - ): - self.run_correctness_test( - distribution, - use_numpy, - use_validation_data, - with_batch_norm="regular", - ) - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.all_strategy_and_input_config_combinations() - + keras_correctness_test_base.multi_worker_mirrored_eager() - ) - def test_cnn_with_sync_batch_norm_correctness( - self, distribution, use_numpy, use_validation_data - ): - if not tf.executing_eagerly(): - self.skipTest( - "BatchNorm with `synchronized` is not enabled in graph mode." - ) - self.run_correctness_test( - distribution, use_numpy, use_validation_data, with_batch_norm="sync" - ) - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.all_strategy_and_input_config_combinations_eager() # noqa: E501 - + keras_correctness_test_base.multi_worker_mirrored_eager() - + keras_correctness_test_base.test_combinations_with_tpu_strategies_graph() # noqa: E501 - ) - def test_cnn_correctness_with_partial_last_batch_eval( - self, distribution, use_numpy, use_validation_data - ): - self.run_correctness_test( - distribution, - use_numpy, - use_validation_data, - partial_last_batch=True, - training_epochs=1, - ) - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.all_strategy_and_input_config_combinations_eager() # noqa: E501 - + keras_correctness_test_base.multi_worker_mirrored_eager() - + keras_correctness_test_base.test_combinations_with_tpu_strategies_graph() # noqa: E501 - ) - def test_cnn_with_batch_norm_correctness_and_partial_last_batch_eval( - self, distribution, use_numpy, use_validation_data - ): - self.run_correctness_test( - distribution, - use_numpy, - use_validation_data, - with_batch_norm="regular", - partial_last_batch=True, - ) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/keras_metrics_test.py b/keras/distribute/keras_metrics_test.py deleted file mode 100644 index a0f79e4181e..00000000000 --- a/keras/distribute/keras_metrics_test.py +++ /dev/null @@ -1,307 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras metrics.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import metrics -from keras.engine import base_layer - -combinations = tf.__internal__.distribute.combinations - - -def _labeled_dataset_fn(): - # First four batches of x: labels, predictions -> (labels == predictions) - # 0: 0, 0 -> True; 1: 1, 1 -> True; 2: 2, 2 -> True; 3: 3, 0 -> False - # 4: 4, 1 -> False; 5: 0, 2 -> False; 6: 1, 0 -> False; 7: 2, 1 -> False - # 8: 3, 2 -> False; 9: 4, 0 -> False; 10: 0, 1 -> False; 11: 1, 2 -> False - # 12: 2, 0 -> False; 13: 3, 1 -> False; 14: 4, 2 -> False; 15: 0, 0 -> True - return ( - tf.data.Dataset.range(1000) - .map(lambda x: {"labels": x % 5, "predictions": x % 3}) - .batch(4, drop_remainder=True) - ) - - -def _boolean_dataset_fn(): - # First four batches of labels, predictions: {TP, FP, TN, FN} - # with a threshold of 0.5: - # T, T -> TP; F, T -> FP; T, F -> FN - # F, F -> TN; T, T -> TP; F, T -> FP - # T, F -> FN; F, F -> TN; T, T -> TP - # F, T -> FP; T, F -> FN; F, F -> TN - return ( - tf.data.Dataset.from_tensor_slices( - { - "labels": [True, False, True, False], - "predictions": [True, True, False, False], - } - ) - .repeat() - .batch(3, drop_remainder=True) - ) - - -def _threshold_dataset_fn(): - # First four batches of labels, predictions: {TP, FP, TN, FN} - # with a threshold of 0.5: - # True, 1.0 -> TP; False, .75 -> FP; True, .25 -> FN - # False, 0.0 -> TN; True, 1.0 -> TP; False, .75 -> FP - # True, .25 -> FN; False, 0.0 -> TN; True, 1.0 -> TP - # False, .75 -> FP; True, .25 -> FN; False, 0.0 -> TN - return ( - tf.data.Dataset.from_tensor_slices( - { - "labels": [True, False, True, False], - "predictions": [1.0, 0.75, 0.25, 0.0], - } - ) - .repeat() - .batch(3, drop_remainder=True) - ) - - -def _regression_dataset_fn(): - return tf.data.Dataset.from_tensor_slices( - {"labels": [1.0, 0.5, 1.0, 0.0], "predictions": [1.0, 0.75, 0.25, 0.0]} - ).repeat() - - -def all_combinations(): - return tf.__internal__.test.combinations.combine( - distribution=[ - combinations.default_strategy, - combinations.one_device_strategy, - combinations.mirrored_strategy_with_gpu_and_cpu, - combinations.mirrored_strategy_with_two_gpus, - ], - mode=["graph", "eager"], - ) - - -def tpu_combinations(): - return tf.__internal__.test.combinations.combine( - distribution=[ - combinations.tpu_strategy, - ], - mode=["graph"], - ) - - -class KerasMetricsTest(tf.test.TestCase, parameterized.TestCase): - def _test_metric( - self, distribution, dataset_fn, metric_init_fn, expected_fn - ): - with tf.Graph().as_default(), distribution.scope(): - metric = metric_init_fn() - - iterator = distribution.make_input_fn_iterator( - lambda _: dataset_fn() - ) - updates = distribution.experimental_local_results( - distribution.run(metric, args=(iterator.get_next(),)) - ) - batches_per_update = distribution.num_replicas_in_sync - - self.evaluate(iterator.initializer) - self.evaluate([v.initializer for v in metric.variables]) - - batches_consumed = 0 - for i in range(4): - batches_consumed += batches_per_update - self.evaluate(updates) - self.assertAllClose( - expected_fn(batches_consumed), - self.evaluate(metric.result()), - 0.001, - msg="After update #" + str(i + 1), - ) - if batches_consumed >= 4: # Consume 4 input batches in total. - break - - @combinations.generate(all_combinations() + tpu_combinations()) - def testMean(self, distribution): - def _dataset_fn(): - return ( - tf.data.Dataset.range(1000) - .map(tf.compat.v1.to_float) - .batch(4, drop_remainder=True) - ) - - def _expected_fn(num_batches): - # Mean(0..3) = 1.5, Mean(0..7) = 3.5, Mean(0..11) = 5.5, etc. - return num_batches * 2 - 0.5 - - self._test_metric(distribution, _dataset_fn, metrics.Mean, _expected_fn) - - @combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - combinations.mirrored_strategy_with_one_cpu, - combinations.mirrored_strategy_with_gpu_and_cpu, - combinations.mirrored_strategy_with_two_gpus, - combinations.tpu_strategy_packed_var, - combinations.parameter_server_strategy_1worker_2ps_cpu, - combinations.parameter_server_strategy_1worker_2ps_1gpu, - ], - mode=["eager"], - jit_compile=[False], - ) - + tf.__internal__.test.combinations.combine( - distribution=[combinations.mirrored_strategy_with_two_gpus], - mode=["eager"], - jit_compile=[True], - ) - ) - def testAddMetric(self, distribution, jit_compile): - if not tf.__internal__.tf2.enabled(): - self.skipTest( - "Skip test since tf2 is not enabled. Pass " - " --test_env=TF2_BEHAVIOR=1 to enable tf2 behavior." - ) - - class MetricLayer(base_layer.Layer): - def __init__(self): - super().__init__(name="metric_layer") - self.sum = metrics.Sum(name="sum") - # Using aggregation for jit_compile results in failure. Thus - # only set aggregation for PS Strategy for multi-gpu tests. - if isinstance( - distribution, - tf.distribute.experimental.ParameterServerStrategy, - ): - self.sum_var = tf.Variable( - 1.0, - aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, - ) - else: - self.sum_var = tf.Variable(1.0) - - def call(self, inputs): - self.add_metric(self.sum(inputs)) - self.add_metric( - tf.reduce_mean(inputs), name="mean", aggregation="mean" - ) - self.sum_var.assign(self.sum.result()) - return inputs - - with distribution.scope(): - layer = MetricLayer() - - def func(): - return layer(tf.ones(())) - - if jit_compile: - func = tf.function(jit_compile=True)(func) - - @tf.function - def run(): - return distribution.run(func) - - if distribution._should_use_with_coordinator: - coord = tf.distribute.experimental.coordinator.ClusterCoordinator( - distribution - ) - coord.schedule(run) - coord.join() - else: - run() - - self.assertEqual( - layer.metrics[0].result().numpy(), - 1.0 * distribution.num_replicas_in_sync, - ) - self.assertEqual(layer.metrics[1].result().numpy(), 1.0) - self.assertEqual( - layer.sum_var.read_value().numpy(), - 1.0 * distribution.num_replicas_in_sync, - ) - - @combinations.generate(all_combinations()) - def test_precision(self, distribution): - # True positive is 2, false positive 1, precision is 2/3 = 0.6666667 - label_prediction = ([0, 1, 1, 1], [1, 0, 1, 1]) - with distribution.scope(): - precision = metrics.Precision() - self.evaluate([v.initializer for v in precision.variables]) - updates = distribution.run(precision, args=label_prediction) - self.evaluate(updates) - self.assertAllClose(precision.result(), 0.6666667) - - @combinations.generate(all_combinations()) - def test_recall(self, distribution): - # True positive is 2, false negative 1, precision is 2/3 = 0.6666667 - label_prediction = ([0, 1, 1, 1], [1, 0, 1, 1]) - with distribution.scope(): - recall = metrics.Recall() - self.evaluate([v.initializer for v in recall.variables]) - updates = distribution.run(recall, args=label_prediction) - self.evaluate(updates) - self.assertAllClose(recall.result(), 0.6666667) - - @combinations.generate(all_combinations()) - def test_SensitivityAtSpecificity(self, distribution): - label_prediction = ([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8]) - with distribution.scope(): - metric = metrics.SensitivityAtSpecificity(0.5) - self.evaluate([v.initializer for v in metric.variables]) - updates = distribution.run(metric, args=label_prediction) - self.evaluate(updates) - self.assertAllClose(metric.result(), 0.5) - - @combinations.generate(all_combinations()) - def test_SpecificityAtSensitivity(self, distribution): - label_prediction = ([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8]) - with distribution.scope(): - metric = metrics.SpecificityAtSensitivity(0.5) - self.evaluate([v.initializer for v in metric.variables]) - updates = distribution.run(metric, args=label_prediction) - self.evaluate(updates) - self.assertAllClose(metric.result(), 0.66666667) - - @combinations.generate(all_combinations()) - def test_PrecisionAtRecall(self, distribution): - label_prediction = ([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8]) - with distribution.scope(): - metric = metrics.PrecisionAtRecall(0.5) - self.evaluate([v.initializer for v in metric.variables]) - updates = distribution.run(metric, args=label_prediction) - self.evaluate(updates) - self.assertAllClose(metric.result(), 0.5) - - @combinations.generate(all_combinations()) - def test_RecallAtPrecision(self, distribution): - label_prediction = ([0, 0, 1, 1], [0, 0.5, 0.3, 0.9]) - with distribution.scope(): - metric = metrics.RecallAtPrecision(0.8) - self.evaluate([v.initializer for v in metric.variables]) - updates = distribution.run(metric, args=label_prediction) - self.evaluate(updates) - self.assertAllClose(metric.result(), 0.5) - - @combinations.generate(all_combinations()) - def test_auc(self, distribution): - label_prediction = ([0, 0, 1, 1], [0, 0.5, 0.3, 0.9]) - with distribution.scope(): - metric = metrics.AUC(num_thresholds=3) - self.evaluate([v.initializer for v in metric.variables]) - updates = distribution.run(metric, args=label_prediction) - self.evaluate(updates) - self.assertAllClose(metric.result(), 0.75) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/keras_models_test.py b/keras/distribute/keras_models_test.py deleted file mode 100644 index 4cc9e9c35c1..00000000000 --- a/keras/distribute/keras_models_test.py +++ /dev/null @@ -1,58 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras high level APIs, e.g. fit, evaluate and predict.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.distribute.strategy_combinations import all_strategies - - -class KerasModelsTest(tf.test.TestCase, parameterized.TestCase): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=all_strategies, mode=["eager"] - ) - ) - def test_lstm_model_with_dynamic_batch(self, distribution): - input_data = np.random.random([1, 32, 64, 64, 3]) - input_shape = tuple(input_data.shape[1:]) - - def build_model(): - model = keras.models.Sequential() - model.add( - keras.layers.ConvLSTM2D( - 4, - kernel_size=(4, 4), - activation="sigmoid", - padding="same", - input_shape=input_shape, - ) - ) - model.add(keras.layers.GlobalMaxPooling2D()) - model.add(keras.layers.Dense(2, activation="sigmoid")) - return model - - with distribution.scope(): - model = build_model() - model.compile(loss="binary_crossentropy", optimizer="adam") - result = model.predict(input_data) - self.assertEqual(result.shape, (1, 2)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/distribute/keras_optimizer_v2_test.py b/keras/distribute/keras_optimizer_v2_test.py deleted file mode 100644 index 1b4c6150af2..00000000000 --- a/keras/distribute/keras_optimizer_v2_test.py +++ /dev/null @@ -1,136 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests that show that DistributionStrategy works with optimizer v2.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.optimizers.legacy import adam -from keras.optimizers.legacy import gradient_descent - - -def get_model(): - x = keras.layers.Input(shape=(3,), name="input") - y = keras.layers.Dense(4, name="dense")(x) - model = keras.Model(x, y) - return model - - -class MirroredStrategyOptimizerV2Test(tf.test.TestCase, parameterized.TestCase): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.central_storage_strategy_with_two_gpus, # noqa: E501 - ], - mode=["graph", "eager"], - ) - ) - def testKerasOptimizerWithUnequalInput(self, distribution): - with distribution.scope(): - var = tf.Variable( - 2.0, name="var", aggregation=tf.VariableAggregation.SUM - ) - optimizer = adam.Adam(learning_rate=0.01, beta_1=0.2, beta_2=0.2) - all_vars = [] - - def model_fn(): - def loss_fn(): - replica_id = _replica_id() - return tf.cast(replica_id + 1, dtype=tf.float32) * 0.5 * var - - train_op = optimizer.minimize(loss_fn, var_list=[var]) - - return train_op, optimizer - - def train_fn(): - ( - train_op, - optimizer, - ) = distribution.extended.call_for_each_replica(model_fn) - if not all_vars: - all_vars.append(var) - all_vars.append(optimizer.get_slot(var, "m")) - all_vars.append(optimizer.get_slot(var, "v")) - return distribution.group(train_op) - - if not tf.executing_eagerly(): - with self.cached_session() as sess: - train_fn = sess.make_callable(train_fn()) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # first step. - train_fn() - # var(1) = var(0) - lr * m(1) * sqrt(1 - beta2) / sqrt(v(1)) / (1 - - # beta1) - # = 2.0 - 0.01 * 1.2 * sqrt(0.8) / sqrt(1.8) / 0.8 - self.assertAllClose(1.99, self.evaluate(all_vars[0])) - # m(1) = beta1 * m(0) + (1-beta1) * grad = 0.2 * 0 + 0.8 * (1 + 2) / - # 2 - self.assertAllClose(1.2, self.evaluate(all_vars[1])) - # v(1) = beta2 * v(0) + (1-beta2) * grad^2 = 0.2 * 0 + 0.8 * 2.25 - self.assertAllClose(1.8, self.evaluate(all_vars[2])) - - # second step. - train_fn() - # var(1) = var(0) - lr * 2 = 1.98 - self.assertAllClose(1.98, self.evaluate(all_vars[0])) - # m(2) = beta1 * m(1) + (1-beta1) * grad = 0.2 * 1.2 + 0.8 * 1.5 - self.assertAllClose(1.44, self.evaluate(all_vars[1])) - # v(2) = beta2 * v(1) + (1-beta2) * grad^2 = 0.2 * 1.8 + 0.8 * 2.25 - self.assertAllClose(2.16, self.evaluate(all_vars[2])) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.central_storage_strategy_with_two_gpus, # noqa: E501 - ], - mode=["graph", "eager"], - ) - ) - def testOptimizerWithKerasModelAndNumpyArrays(self, distribution): - with self.cached_session(): - with distribution.scope(): - model = get_model() - optimizer = gradient_descent.SGD(0.001) - loss = "mse" - metrics = ["mae"] - model.compile(optimizer, loss, metrics=metrics) - - inputs = np.zeros((64, 3), dtype=np.float32) - targets = np.zeros((64, 4), dtype=np.float32) - - model.fit( - inputs, - targets, - epochs=1, - batch_size=2, - verbose=0, - validation_data=(inputs, targets), - ) - model.evaluate(inputs, targets) - model.predict(inputs) - - -def _replica_id(): - replica_id = tf.distribute.get_replica_context().replica_id_in_sync_group - if not isinstance(replica_id, tf.Tensor): - replica_id = tf.constant(replica_id) - return replica_id - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/distribute/keras_premade_models_test.py b/keras/distribute/keras_premade_models_test.py deleted file mode 100644 index e4badc57052..00000000000 --- a/keras/distribute/keras_premade_models_test.py +++ /dev/null @@ -1,170 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for keras premade models using tf.distribute.Strategy.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.engine import sequential -from keras.layers import core -from keras.optimizers.legacy import adagrad -from keras.optimizers.legacy import gradient_descent -from keras.premade_models import linear -from keras.premade_models import wide_deep -from keras.utils import dataset_creator - - -def strategy_combinations_eager_data_fn(): - return tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.default_strategy, - tf.__internal__.distribute.combinations.one_device_strategy, - tf.__internal__.distribute.combinations.one_device_strategy_gpu, - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus_no_merge_call, # noqa: E501 - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_gpu, # noqa: E501 - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x2_gpu, # noqa: E501 - tf.__internal__.distribute.combinations.parameter_server_strategy_1worker_2ps_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.parameter_server_strategy_1worker_2ps_1gpu, # noqa: E501 - # NOTE: TPUStrategy not tested because the models in this test are - # sparse and do not work with TPUs. - ], - use_dataset_creator=[True, False], - mode=["eager"], - data_fn=["numpy", "dataset"], - ) - - -INPUT_SIZE = 64 -BATCH_SIZE = 10 - - -def get_numpy(): - inputs = np.random.uniform(low=-5.0, high=5.0, size=(INPUT_SIZE, 2)).astype( - np.float32 - ) - output = 0.3 * inputs[:, 0] + 0.2 * inputs[:, 1] - return inputs, output - - -def get_dataset(input_context=None, batch_size=None): - inputs, output = get_numpy() - dataset = tf.data.Dataset.from_tensor_slices((inputs, output)) - if input_context: - dataset = dataset.shard( - input_context.num_input_pipelines, input_context.input_pipeline_id - ) - if batch_size is None: - batch_size = BATCH_SIZE - - dataset = dataset.batch(batch_size).repeat(200) - return dataset - - -# A `dataset_fn` is required for `Model.fit` to work across all strategies. -def dataset_fn(input_context): - batch_size = input_context.get_per_replica_batch_size( - global_batch_size=BATCH_SIZE - ) - return get_dataset(input_context, batch_size) - - -class KerasPremadeModelsTest(tf.test.TestCase, parameterized.TestCase): - @tf.__internal__.distribute.combinations.generate( - strategy_combinations_eager_data_fn() - ) - def test_linear_model(self, distribution, use_dataset_creator, data_fn): - if (not use_dataset_creator) and isinstance( - distribution, tf.distribute.experimental.ParameterServerStrategy - ): - self.skipTest( - "Parameter Server strategy requires dataset creator to be used " - "in model.fit." - ) - if ( - not tf.__internal__.tf2.enabled() - and use_dataset_creator - and isinstance( - distribution, tf.distribute.experimental.ParameterServerStrategy - ) - ): - self.skipTest( - "Parameter Server strategy with dataset creator needs to be " - "run when eager execution is enabled." - ) - with distribution.scope(): - model = linear.LinearModel() - opt = gradient_descent.SGD(learning_rate=0.1) - model.compile(opt, "mse") - if use_dataset_creator: - x = dataset_creator.DatasetCreator(dataset_fn) - hist = model.fit(x, epochs=3, steps_per_epoch=INPUT_SIZE) - else: - if data_fn == "numpy": - inputs, output = get_numpy() - hist = model.fit(inputs, output, epochs=3) - else: - hist = model.fit(get_dataset(), epochs=3) - self.assertLess(hist.history["loss"][2], 0.2) - - @tf.__internal__.distribute.combinations.generate( - strategy_combinations_eager_data_fn() - ) - def test_wide_deep_model(self, distribution, use_dataset_creator, data_fn): - if (not use_dataset_creator) and isinstance( - distribution, tf.distribute.experimental.ParameterServerStrategy - ): - self.skipTest( - "Parameter Server strategy requires dataset creator to be used " - "in model.fit." - ) - if ( - not tf.__internal__.tf2.enabled() - and use_dataset_creator - and isinstance( - distribution, tf.distribute.experimental.ParameterServerStrategy - ) - ): - self.skipTest( - "Parameter Server strategy with dataset creator needs to be " - "run when eager execution is enabled." - ) - with distribution.scope(): - linear_model = linear.LinearModel(units=1) - dnn_model = sequential.Sequential([core.Dense(units=1)]) - wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model) - linear_opt = gradient_descent.SGD(learning_rate=0.05) - dnn_opt = adagrad.Adagrad(learning_rate=0.1) - wide_deep_model.compile(optimizer=[linear_opt, dnn_opt], loss="mse") - - if use_dataset_creator: - x = dataset_creator.DatasetCreator(dataset_fn) - hist = wide_deep_model.fit( - x, epochs=3, steps_per_epoch=INPUT_SIZE - ) - else: - if data_fn == "numpy": - inputs, output = get_numpy() - hist = wide_deep_model.fit(inputs, output, epochs=3) - else: - hist = wide_deep_model.fit(get_dataset(), epochs=3) - self.assertLess(hist.history["loss"][2], 0.2) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/keras_rnn_model_correctness_test.py b/keras/distribute/keras_rnn_model_correctness_test.py deleted file mode 100644 index 74bf17077d3..00000000000 --- a/keras/distribute/keras_rnn_model_correctness_test.py +++ /dev/null @@ -1,160 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Correctness tests for tf.keras RNN models using DistributionStrategy.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.distribute import keras_correctness_test_base -from keras.layers.rnn import gru -from keras.layers.rnn import gru_v1 -from keras.layers.rnn import lstm -from keras.layers.rnn import lstm_v1 -from keras.mixed_precision import policy -from keras.optimizers.legacy import gradient_descent as gradient_descent_keras -from keras.testing_infra import test_utils - - -class _DistributionStrategyRnnModelCorrectnessTest( - keras_correctness_test_base.TestDistributionStrategyEmbeddingModelCorrectnessBase # noqa: E501 -): - def _get_layer_class(self): - raise NotImplementedError - - def get_model( - self, - max_words=10, - initial_weights=None, - distribution=None, - input_shapes=None, - ): - del input_shapes - rnn_cls = self._get_layer_class() - - with keras_correctness_test_base.MaybeDistributionScope(distribution): - word_ids = keras.layers.Input( - shape=(max_words,), dtype=np.int32, name="words" - ) - word_embed = keras.layers.Embedding(input_dim=20, output_dim=10)( - word_ids - ) - rnn_embed = rnn_cls(units=4, return_sequences=False)(word_embed) - - dense_output = keras.layers.Dense(2)(rnn_embed) - preds = keras.layers.Softmax(dtype="float32")(dense_output) - model = keras.Model(inputs=[word_ids], outputs=[preds]) - - if initial_weights: - model.set_weights(initial_weights) - - optimizer_fn = gradient_descent_keras.SGD - - model.compile( - optimizer=optimizer_fn(learning_rate=0.1), - loss="sparse_categorical_crossentropy", - metrics=["sparse_categorical_accuracy"], - ) - return model - - -@test_utils.run_all_without_tensor_float_32( - "Uses Dense layers, which call matmul" -) -class DistributionStrategyGruModelCorrectnessTest( - _DistributionStrategyRnnModelCorrectnessTest -): - def _get_layer_class(self): - if tf.__internal__.tf2.enabled(): - if not tf.executing_eagerly(): - self.skipTest( - "GRU v2 and legacy graph mode don't work together." - ) - return gru.GRU - else: - return gru_v1.GRU - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.test_combinations_for_embedding_model() - + keras_correctness_test_base.multi_worker_mirrored_eager() - ) - def test_gru_model_correctness( - self, distribution, use_numpy, use_validation_data - ): - self.run_correctness_test(distribution, use_numpy, use_validation_data) - - -@test_utils.run_all_without_tensor_float_32( - "Uses Dense layers, which call matmul" -) -class DistributionStrategyLstmModelCorrectnessTest( - _DistributionStrategyRnnModelCorrectnessTest -): - def _get_layer_class(self): - if tf.__internal__.tf2.enabled(): - if not tf.executing_eagerly(): - self.skipTest( - "LSTM v2 and legacy graph mode don't work together." - ) - return lstm.LSTM - else: - return lstm_v1.LSTM - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.test_combinations_for_embedding_model() - + keras_correctness_test_base.multi_worker_mirrored_eager() - ) - def test_lstm_model_correctness( - self, distribution, use_numpy, use_validation_data - ): - self.run_correctness_test(distribution, use_numpy, use_validation_data) - - @tf.__internal__.distribute.combinations.generate( - keras_correctness_test_base.test_combinations_for_embedding_model() - + keras_correctness_test_base.multi_worker_mirrored_eager() - ) - @test_utils.enable_v2_dtype_behavior - def test_lstm_model_correctness_mixed_precision( - self, distribution, use_numpy, use_validation_data - ): - if isinstance( - distribution, - ( - tf.distribute.experimental.CentralStorageStrategy, - tf.compat.v1.distribute.experimental.CentralStorageStrategy, - ), - ): - self.skipTest( - "CentralStorageStrategy is not supported by mixed precision." - ) - if isinstance( - distribution, - ( - tf.distribute.experimental.TPUStrategy, - tf.compat.v1.distribute.experimental.TPUStrategy, - ), - ): - policy_name = "mixed_bfloat16" - else: - policy_name = "mixed_float16" - - with policy.policy_scope(policy_name): - self.run_correctness_test( - distribution, use_numpy, use_validation_data - ) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/keras_save_load_test.py b/keras/distribute/keras_save_load_test.py deleted file mode 100644 index b72be7171d8..00000000000 --- a/keras/distribute/keras_save_load_test.py +++ /dev/null @@ -1,93 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for saving and loading using keras save/load APIs with DS.""" - -import tensorflow.compat.v2 as tf - -from keras.distribute import saved_model_test_base as test_base -from keras.saving.legacy import save -from keras.testing_infra import test_utils - - -@test_utils.run_all_without_tensor_float_32( - "Uses Dense layers, which call matmul" -) -class KerasSaveLoadTest(test_base.TestSavedModelBase): - def setUp(self): - self._root_dir = "keras_save_load" - super().setUp() - - def _save_model(self, model, saved_dir): - model.save(saved_dir, save_format="tf") - - def _load_and_run_model( - self, distribution, saved_dir, predict_dataset, output_name="output_1" - ): - restored_keras_model = save.load_model(saved_dir) - return restored_keras_model.predict( - predict_dataset, steps=test_base.PREDICT_STEPS - ) - - @tf.__internal__.distribute.combinations.generate( - test_base.simple_models_with_strategies() - ) - def test_save_no_strategy_restore_strategy( - self, model_and_input, distribution - ): - self.run_test_save_no_strategy_restore_strategy( - model_and_input, distribution - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - test_base.simple_models_with_strategies(), - tf.__internal__.test.combinations.combine( - save_in_scope=[True, False] - ), - ) - ) - def test_save_strategy_restore_no_strategy( - self, model_and_input, distribution, save_in_scope - ): - self.run_test_save_strategy_restore_no_strategy( - model_and_input, distribution, save_in_scope - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - test_base.simple_models_with_strategy_pairs(), - tf.__internal__.test.combinations.combine( - save_in_scope=[True, False] - ), - ) - ) - def test_save_strategy_restore_strategy( - self, - model_and_input, - distribution_for_saving, - distribution_for_restoring, - save_in_scope, - ): - self.run_test_save_strategy_restore_strategy( - model_and_input, - distribution_for_saving, - distribution_for_restoring, - save_in_scope, - ) - - -if __name__ == "__main__": - tf.compat.v1.enable_eager_execution() - tf.test.main() diff --git a/keras/distribute/keras_stateful_lstm_model_correctness_test.py b/keras/distribute/keras_stateful_lstm_model_correctness_test.py deleted file mode 100644 index 631643c645c..00000000000 --- a/keras/distribute/keras_stateful_lstm_model_correctness_test.py +++ /dev/null @@ -1,116 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for stateful tf.keras LSTM models using DistributionStrategy.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.distribute import keras_correctness_test_base -from keras.optimizers.legacy import gradient_descent as gradient_descent_keras - - -def strategies_for_stateful_embedding_model(): - """Returns TPUStrategy with single core device assignment.""" - - return [ - tf.__internal__.distribute.combinations.tpu_strategy_one_core, - ] - - -def test_combinations_for_stateful_embedding_model(): - return tf.__internal__.test.combinations.combine( - distribution=strategies_for_stateful_embedding_model(), - mode="graph", - use_numpy=False, - use_validation_data=False, - ) - - -class DistributionStrategyStatefulLstmModelCorrectnessTest( - keras_correctness_test_base.TestDistributionStrategyEmbeddingModelCorrectnessBase # noqa: E501 -): - def get_model( - self, - max_words=10, - initial_weights=None, - distribution=None, - input_shapes=None, - ): - del input_shapes - batch_size = keras_correctness_test_base._GLOBAL_BATCH_SIZE - - with keras_correctness_test_base.MaybeDistributionScope(distribution): - word_ids = keras.layers.Input( - shape=(max_words,), - batch_size=batch_size, - dtype=np.int32, - name="words", - ) - word_embed = keras.layers.Embedding(input_dim=20, output_dim=10)( - word_ids - ) - lstm_embed = keras.layers.LSTM( - units=4, return_sequences=False, stateful=True - )(word_embed) - - preds = keras.layers.Dense(2, activation="softmax")(lstm_embed) - model = keras.Model(inputs=[word_ids], outputs=[preds]) - - if initial_weights: - model.set_weights(initial_weights) - - optimizer_fn = gradient_descent_keras.SGD - - model.compile( - optimizer=optimizer_fn(learning_rate=0.1), - loss="sparse_categorical_crossentropy", - metrics=["sparse_categorical_accuracy"], - ) - return model - - # TODO(jhseu): Disabled to fix b/130808953. Need to investigate why it - # doesn't work and enable for DistributionStrategy more generally. - @tf.__internal__.distribute.combinations.generate( - test_combinations_for_stateful_embedding_model() - ) - def disabled_test_stateful_lstm_model_correctness( - self, distribution, use_numpy, use_validation_data - ): - self.run_correctness_test( - distribution, use_numpy, use_validation_data, is_stateful_model=True - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - keras_correctness_test_base.test_combinations_with_tpu_strategies_graph() # noqa: E501 - ) - ) - def test_incorrectly_use_multiple_cores_for_stateful_lstm_model( - self, distribution, use_numpy, use_validation_data - ): - with self.assertRaisesRegex( - ValueError, "not yet supported with tf.distribute.Strategy" - ): - self.run_correctness_test( - distribution, - use_numpy, - use_validation_data, - is_stateful_model=True, - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/distribute/keras_utils_test.py b/keras/distribute/keras_utils_test.py deleted file mode 100644 index 8925801ea4d..00000000000 --- a/keras/distribute/keras_utils_test.py +++ /dev/null @@ -1,697 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for tf.keras models with callbacks, checkpointing with dist -strategy.""" - -import collections -import tempfile - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import losses -from keras.distribute import distribute_strategy_test as keras_test_lib -from keras.distribute import distributed_training_utils_v1 -from keras.distribute import optimizer_combinations - - -class Counter(keras.callbacks.Callback): - """Counts the number of times each callback method was run. - - Attributes: - method_counts: dict. Contains the counts of time each callback method was - run. - """ - - def __init__(self): - self.method_counts = collections.defaultdict(int) - methods_to_count = [ - "on_batch_begin", - "on_batch_end", - "on_epoch_begin", - "on_epoch_end", - "on_predict_batch_begin", - "on_predict_batch_end", - "on_predict_begin", - "on_predict_end", - "on_test_batch_begin", - "on_test_batch_end", - "on_test_begin", - "on_test_end", - "on_train_batch_begin", - "on_train_batch_end", - "on_train_begin", - "on_train_end", - ] - for method_name in methods_to_count: - setattr( - self, - method_name, - self.wrap_with_counts(method_name, getattr(self, method_name)), - ) - - def wrap_with_counts(self, method_name, method): - def _call_and_count(*args, **kwargs): - self.method_counts[method_name] += 1 - return method(*args, **kwargs) - - return _call_and_count - - -class TestDistributionStrategyWithCallbacks( - tf.test.TestCase, parameterized.TestCase -): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - keras_test_lib.all_strategy_combinations() - ) - ) - def test_callbacks_in_fit(self, distribution): - with distribution.scope(): - model = keras_test_lib.get_model() - model.compile(optimizer="sgd", loss="mse", metrics=["mae"]) - - dataset = keras_test_lib.get_dataset(distribution) - counter = Counter() - - epochs = 2 - steps_per_epoch = 5 - validation_steps = 3 - - model.fit( - dataset, - epochs=epochs, - steps_per_epoch=steps_per_epoch, - verbose=0, - validation_data=dataset, - validation_steps=validation_steps, - callbacks=[counter], - ) - - if ( - isinstance( - distribution, tf.compat.v1.distribute.experimental.TPUStrategy - ) - and not tf.executing_eagerly() - ): - # TPU Strategy can have multi step training, from - # extended.steps_per_run if steps_per_run = 1, then - # num_batch_call_per_epoch = steps_per_epoch - steps_per_run = distribution.extended.steps_per_run - num_batch_call_per_epoch = steps_per_epoch // steps_per_run - if steps_per_epoch % steps_per_run: - num_batch_call_per_epoch += 1 - else: - num_batch_call_per_epoch = steps_per_epoch - - self.assertDictEqual( - counter.method_counts, - { - "on_batch_begin": epochs * num_batch_call_per_epoch, - "on_batch_end": epochs * num_batch_call_per_epoch, - "on_epoch_begin": epochs, - "on_epoch_end": epochs, - "on_test_batch_begin": epochs * validation_steps, - "on_test_batch_end": epochs * validation_steps, - "on_test_begin": epochs, - "on_test_end": epochs, - "on_train_batch_begin": epochs * num_batch_call_per_epoch, - "on_train_batch_end": epochs * num_batch_call_per_epoch, - "on_train_begin": 1, - "on_train_end": 1, - }, - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - keras_test_lib.all_strategy_combinations() - ) - ) - def test_callbacks_in_eval(self, distribution): - with distribution.scope(): - model = keras_test_lib.get_model() - model.compile(optimizer="sgd", loss="mse", metrics=["mae"]) - - dataset = keras_test_lib.get_dataset(distribution) - counter = Counter() - - model.evaluate(dataset, steps=5, callbacks=[counter]) - - self.assertDictEqual( - counter.method_counts, - { - "on_test_batch_begin": 5, - "on_test_batch_end": 5, - "on_test_begin": 1, - "on_test_end": 1, - }, - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - keras_test_lib.all_strategy_combinations() - ) - ) - def test_callbacks_in_predict(self, distribution): - with distribution.scope(): - model = keras_test_lib.get_model() - model.compile(optimizer="sgd", loss="mse", metrics=["mae"]) - - dataset = keras_test_lib.get_dataset(distribution) - counter = Counter() - - model.predict( - keras_test_lib.get_predict_dataset(dataset), - steps=5, - callbacks=[counter], - ) - - self.assertDictEqual( - counter.method_counts, - { - "on_predict_batch_begin": 5, - "on_predict_batch_end": 5, - "on_predict_begin": 1, - "on_predict_end": 1, - }, - ) - - -class TestDistributionStrategyErrorCases( - tf.test.TestCase, parameterized.TestCase -): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - ], - mode=["graph"], - ) - ) - def test_validating_dataset_input_tensors_with_shape_mismatch( - self, distribution - ): - with self.cached_session(): - - @tf.function - def run(): - ctx = tf.distribute.get_replica_context() - if ctx.replica_id_in_sync_group.device.endswith("GPU:0"): - return tf.constant([[1, 2]]) - else: - return tf.constant([[1, 2], [1, 2]]) - - x = distribution.run(run) - - # Removed device and input tensor shape details from the error - # message since the order of the device and the corresponding input - # tensor shape is not deterministic over different runs. - with self.assertRaisesRegex( - ValueError, - "Input tensor shapes do not match for " - "distributed tensor inputs " - "PerReplica:.+", - ): - with distribution.scope(): - distributed_training_utils_v1.validate_distributed_dataset_inputs( # noqa: E501 - distribution, x, None - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - ], - mode=["graph", "eager"], - ) - ) - def test_validating_dataset_input_tensors_with_dtype_mismatch( - self, distribution - ): - with self.cached_session(): - - @tf.function - def run(): - ctx = tf.distribute.get_replica_context() - if ctx.replica_id_in_sync_group.device.endswith("GPU:0"): - return tf.constant([[1, 2]], dtype=tf.int32) - else: - return tf.constant([[1, 2]], dtype=tf.float64) - - x = distribution.run(run) - - # Removed device and input tensor dtype details from the error - # message since the order of the device and the corresponding input - # tensor dtype is not deterministic over different runs. - with self.assertRaisesRegex( - ValueError, - "Input tensor dtypes do not match for " - "distributed tensor inputs " - "PerReplica:.+", - ): - with distribution.scope(): - distributed_training_utils_v1.validate_distributed_dataset_inputs( # noqa: E501 - distribution, x, None - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - ], - mode=["graph", "eager"], - ) - ) - def test_unsupported_features(self, distribution, mode): - with self.cached_session(): - with distribution.scope(): - model = keras_test_lib.get_model() - optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.001) - loss = "mse" - metrics = ["mae"] - model.compile(optimizer, loss, metrics=metrics) - - dataset = keras_test_lib.get_dataset(distribution) - # Test with validation split - with self.assertRaises(ValueError): - model.fit( - dataset, - epochs=1, - steps_per_epoch=2, - verbose=0, - validation_split=0.5, - validation_steps=2, - ) - - # Test with sample weight. - sample_weight = np.random.random((10,)) - with self.assertRaises(ValueError): - model.fit( - dataset, - epochs=1, - steps_per_epoch=2, - verbose=0, - sample_weight=sample_weight, - ) - - # Test with not specifying the `steps` argument for dataset with - # infinite cardinality. - dataset = dataset.repeat() - with self.assertRaises(ValueError): - model.fit(dataset, epochs=1, verbose=0) - with self.assertRaises(ValueError): - model.evaluate(dataset, verbose=0) - - with self.assertRaises(ValueError): - model.predict(dataset, verbose=0) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.one_device_strategy, - ], - mode=["graph", "eager"], - ) - ) - def test_distribution_strategy_on_subclassed_model(self, distribution): - with distribution.scope(): - - class _SimpleMLP(keras.Model): - def __init__(self, num_labels): - super().__init__() - self.dense = keras.layers.Dense(num_labels) - - def call(self, inputs): - return self.dense(inputs) - - model = _SimpleMLP(3) - - if not tf.executing_eagerly(): - with self.assertRaisesRegex( - ValueError, - "We currently do not support distribution strategy with a " - "`Sequential` model that is created without `input_shape`/" - "`input_dim` set in its first layer or a subclassed model.", - ): - model.compile("sgd") - else: - model.compile("sgd") - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.one_device_strategy, - ], - mode=["graph", "eager"], - ) - ) - def test_distribution_strategy_on_deferred_sequential_model( - self, distribution - ): - with distribution.scope(): - model = keras.models.Sequential() - model.add(keras.layers.Dense(16, activation="relu")) - model.add(keras.layers.Dense(3, activation="softmax")) - - if tf.executing_eagerly(): - model.compile("sgd") - else: - with self.assertRaisesRegex( - ValueError, - "We currently do not support distribution strategy with a " - "`Sequential` model that is created without " - "`input_shape`/`input_dim` set in its first layer or " - "a subclassed model.", - ): - model.compile("sgd") - - @tf.__internal__.distribute.combinations.generate( - keras_test_lib.all_strategy_combinations_minus_default() - ) - def test_standalone_loss_without_loss_reduction(self, distribution): - with distribution.scope(): - loss_object = losses.MeanSquaredError() - - with self.assertRaisesRegex( - ValueError, - "Please use `tf.keras.losses.Reduction.SUM` or " - "`tf.keras.losses.Reduction.NONE`", - ): - y = np.asarray([1, 0]) - loss_object(y, y) - - -class TestDistributionStrategyWithLossMasking( - tf.test.TestCase, parameterized.TestCase -): - - # TODO(priyag): Enable all strategies for this test. Currently it does not - # work for TPU due to some invalid datatype. - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - ], - mode=["graph", "eager"], - optimizer=optimizer_combinations.gradient_descent_optimizer_keras_v2_fn, # noqa: E501 - ) - ) - def test_masking(self, distribution, optimizer): - with self.cached_session(): - np.random.seed(1337) - x = np.array([[[1], [1]], [[0], [0]]]) - with distribution.scope(): - model = keras.models.Sequential() - model.add( - keras.layers.Masking(mask_value=0, input_shape=(2, 1)) - ) - model.add( - keras.layers.TimeDistributed( - keras.layers.Dense(1, kernel_initializer="one") - ) - ) - model.compile(loss="mse", optimizer=optimizer()) - y = np.array([[[1], [1]], [[1], [1]]]) - dataset = tf.data.Dataset.from_tensor_slices((x, y)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - hist = model.fit(x=dataset, epochs=1, steps_per_epoch=2) - self.assertEqual(hist.history["loss"][0], 0) - - -class TestDistributionStrategyWithNormalizationLayer( - tf.test.TestCase, parameterized.TestCase -): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - keras_test_lib.all_strategy_combinations(), - tf.__internal__.test.combinations.combine( - fused=[True, False], - optimizer=optimizer_combinations.gradient_descent_optimizer_keras_v2_fn, # noqa: E501 - ), - ) - ) - def test_batchnorm_correctness(self, distribution, fused, optimizer): - with self.cached_session(): - with distribution.scope(): - model = keras.models.Sequential() - norm = keras.layers.BatchNormalization( - input_shape=( - 10, - 20, - 30, - ), - momentum=0.8, - fused=fused, - ) - model.add(norm) - model.compile(loss="mse", optimizer=optimizer()) - - # centered on 5.0, variance 10.0 - x = np.random.normal(loc=5.0, scale=10.0, size=(1000, 10, 20, 30)) - x = x.astype("float32") - dataset = tf.data.Dataset.from_tensor_slices((x, x)) - dataset = dataset.repeat(100) - dataset = keras_test_lib.batch_wrapper(dataset, 32, distribution) - - predict_dataset = tf.data.Dataset.from_tensor_slices(x) - predict_dataset = predict_dataset.repeat(100) - predict_dataset = keras_test_lib.batch_wrapper( - predict_dataset, 32, distribution - ) - - model.fit(dataset, epochs=4, verbose=0, steps_per_epoch=10) - out = model.predict(predict_dataset, steps=2) - out -= keras.backend.eval(norm.beta) - out /= keras.backend.eval(norm.gamma) - np.testing.assert_allclose(out.mean(), 0.0, atol=1e-1) - np.testing.assert_allclose(out.std(), 1.0, atol=1e-1) - - # TODO(b/146181571): Enable this for all distribution strategies once - # DistributedVariable.assign() returns a variable for MirroredStrategy. - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - keras_test_lib.tpu_strategy_combinations(), - tf.__internal__.test.combinations.combine( - optimizer=optimizer_combinations.gradient_descent_optimizer_keras_v2_fn # noqa: E501 - ), - ) - ) - def test_batchnorm_correctness_with_renorm(self, distribution, optimizer): - with self.cached_session(): - with distribution.scope(): - model = keras.models.Sequential() - norm = keras.layers.BatchNormalization( - input_shape=( - 10, - 20, - 30, - ), - momentum=0.8, - fused=False, - renorm=True, - ) - model.add(norm) - model.compile(loss="mse", optimizer=optimizer()) - - # centered on 5.0, variance 10.0 - x = np.random.normal(loc=5.0, scale=10.0, size=(1000, 10, 20, 30)) - x = x.astype("float32") - dataset = tf.data.Dataset.from_tensor_slices((x, x)) - dataset = dataset.repeat(100) - dataset = keras_test_lib.batch_wrapper(dataset, 32, distribution) - - predict_dataset = tf.data.Dataset.from_tensor_slices(x) - predict_dataset = predict_dataset.repeat(100) - predict_dataset = keras_test_lib.batch_wrapper( - predict_dataset, 32, distribution - ) - - model.fit(dataset, epochs=4, verbose=0, steps_per_epoch=10) - out = model.predict(predict_dataset, steps=2) - out -= keras.backend.eval(norm.beta) - out /= keras.backend.eval(norm.gamma) - np.testing.assert_allclose(out.mean(), 0.0, atol=1e-1) - np.testing.assert_allclose(out.std(), 1.0, atol=1e-1) - - -class TestDistributionStrategySaveLoadWeights( - tf.test.TestCase, parameterized.TestCase -): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - keras_test_lib.all_strategy_combinations_minus_default(), - tf.__internal__.test.combinations.combine( - optimizer=optimizer_combinations.rmsprop_optimizer_keras_v2_fn - ), - ) - ) - def test_save_load_h5(self, distribution, optimizer): - with self.cached_session(): - dataset = keras_test_lib.get_dataset(distribution) - with distribution.scope(): - model = keras_test_lib.get_model() - model.compile(optimizer(), "mse") - model.fit(dataset, epochs=1, steps_per_epoch=1) - - weights_file = tempfile.mktemp(".h5") - model.save_weights(weights_file) - - model_2 = keras_test_lib.get_model() - model_2.compile(optimizer(), "mse") - model_2.load_weights(weights_file) - model_2.predict( - keras_test_lib.get_predict_dataset(distribution), steps=2 - ) - model_2.fit(dataset, epochs=1, steps_per_epoch=1) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - keras_test_lib.all_strategy_combinations_minus_default(), - tf.__internal__.test.combinations.combine( - optimizer=optimizer_combinations.rmsprop_optimizer_keras_v2_fn - ), - ) - ) - def test_save_load_trackable(self, distribution, optimizer): - # TODO(b/123533246): Enable the test for TPU once bug is fixed - if ( - isinstance( - distribution, - ( - tf.distribute.experimental.TPUStrategy, - tf.compat.v1.distribute.experimental.TPUStrategy, - ), - ) - and distribution.extended.steps_per_run > 1 - ): - self.skipTest( - "MultiStep TPU Strategy deadlocks with optimizer restore." - ) - with self.cached_session(): - dataset = keras_test_lib.get_dataset(distribution) - with distribution.scope(): - model = keras_test_lib.get_model() - model.compile(optimizer(), "mse") - model.fit(dataset, epochs=1, steps_per_epoch=1) - - weights_file = tempfile.mktemp() - model.save_weights(weights_file) - - model_2 = keras_test_lib.get_model() - model_2.compile(optimizer(), "mse") - model_2.load_weights(weights_file) - model_2.predict( - keras_test_lib.get_predict_dataset(distribution), steps=2 - ) - model_2.fit(dataset, epochs=1, steps_per_epoch=1) - - -class TestDistributionStrategyValidation( - tf.test.TestCase, parameterized.TestCase -): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - keras_test_lib.all_strategy_combinations_minus_default() - ) - ) - def test_layer_outside_scope(self, distribution): - with self.cached_session(): - with self.assertRaisesRegex( - ValueError, "was not created in the distribution strategy" - ): - x = keras.layers.Input(shape=(3,), name="input") - y = keras.layers.Dense(4, name="dense")(x) - with distribution.scope(): - model = keras.Model(x, y) - optimizer = tf.compat.v1.train.GradientDescentOptimizer( - 0.001 - ) - loss = "mse" - metrics = ["mae", keras.metrics.CategoricalAccuracy()] - model.compile(optimizer, loss, metrics=metrics) - - @tf.__internal__.distribute.combinations.generate( - keras_test_lib.all_strategy_combinations_minus_default() - ) - def test_model_outside_scope(self, distribution): - with self.cached_session(): - with self.assertRaisesRegex( - ValueError, "was not created in the distribution strategy" - ): - x = keras.layers.Input(shape=(3,), name="input") - y = keras.layers.Dense(4, name="dense")(x) - model = keras.Model(x, y) - with distribution.scope(): - optimizer = tf.compat.v1.train.GradientDescentOptimizer( - 0.001 - ) - loss = "mse" - metrics = ["mae", keras.metrics.CategoricalAccuracy()] - model.compile(optimizer, loss, metrics=metrics) - - -class TestDistributionStrategyWithStaticShapes( - tf.test.TestCase, parameterized.TestCase -): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - ], - mode=["graph", "eager"], - ) - ) - def test_input_batch_size_not_divisible_by_num_replicas(self, distribution): - with distribution.scope(): - with self.assertRaisesRegex( - ValueError, - r"The `batch_size` argument \(5\) must be divisible by " - r"the number of replicas \(2\)", - ): - keras.layers.Input(shape=(3,), batch_size=5, name="input") - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - ], - mode=["graph", "eager"], - ) - ) - def test_static_input_batch_size(self, distribution): - inputs = np.zeros((10, 3), dtype=np.float32) - targets = np.zeros((10, 4), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10, drop_remainder=True) - - with distribution.scope(): - x = keras.layers.Input(shape=(3,), batch_size=10, name="input") - y = keras.layers.Dense(4, name="dense")(x) - model = keras.Model(x, y) - model.compile(optimizer="sgd", loss="mse", metrics=["mae"]) - - model.fit(dataset, epochs=1, steps_per_epoch=5) - model.evaluate(dataset, steps=5) - model.predict(dataset) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/minimize_loss_test.py b/keras/distribute/minimize_loss_test.py deleted file mode 100644 index 14168b003fd..00000000000 --- a/keras/distribute/minimize_loss_test.py +++ /dev/null @@ -1,699 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for running legacy optimizer code with DistributionStrategy.""" - - -import numpy -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.distribute import optimizer_combinations -from keras.distribute.test_example import batchnorm_example -from keras.distribute.test_example import minimize_loss_example -from keras.layers import core -from keras.optimizers.legacy import optimizer_v2 - -VAR_MAP_V1 = { - "GradientDescent": ("dense/kernel", "dense/bias"), - "Adagrad": ( - "dense/kernel/Adagrad", - "dense/kernel", - "dense/bias/Adagrad", - "dense/bias", - ), - "Ftrl": ( - "dense/kernel/Ftrl", - "dense/kernel", - "dense/bias/Ftrl", - "dense/bias", - "dense/kernel/Ftrl_1", - "dense/bias/Ftrl_1", - ), - "RMSProp": ( - "dense/kernel", - "dense/bias/RMSProp", - "dense/bias/RMSProp_1", - "dense/bias", - "dense/kernel/RMSProp_1", - "dense/kernel/RMSProp", - ), -} - -VAR_MAP_V2 = { - "SGD": ( - "dense/bias", - "SGD/learning_rate", - "SGD/decay", - "SGD/iter", - "dense/kernel", - "SGD/momentum", - ), - "Adagrad": ( - "Adagrad/iter", - "dense/bias", - "dense/kernel", - "Adagrad/learning_rate", - "Adagrad/decay", - "Adagrad/dense/kernel/accumulator", - "Adagrad/dense/bias/accumulator", - ), -} - - -class MinimizeLossStepTest(tf.test.TestCase, parameterized.TestCase): - def _get_iterator(self, strategy, input_fn): - iterator = strategy.make_input_fn_iterator(lambda _: input_fn()) - self.evaluate(iterator.initializer) - return iterator - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - optimizer_combinations.distributions_and_v1_optimizers(), - tf.__internal__.test.combinations.combine( - mode=["graph"], use_callable_loss=[True, False] - ) - + tf.__internal__.test.combinations.combine( - mode=["eager"], use_callable_loss=[True] - ), - ) - + tf.__internal__.test.combinations.times( - optimizer_combinations.distributions_and_v2_optimizers(), - tf.__internal__.test.combinations.combine( - mode=["graph", "eager"], use_callable_loss=[True] - ), - ) - + tf.__internal__.test.combinations.combine( - distribution=[tf.__internal__.distribute.combinations.tpu_strategy], - optimizer_fn=optimizer_combinations.optimizers_v2, - mode=["graph"], - use_callable_loss=[True], - ) - + tf.__internal__.test.combinations.combine( - distribution=[tf.__internal__.distribute.combinations.tpu_strategy], - optimizer_fn=optimizer_combinations.optimizers_v1, - mode=["graph"], - use_callable_loss=[True, False], - ) - ) - def testTrainNetwork(self, distribution, optimizer_fn, use_callable_loss): - with distribution.scope(): - optimizer = optimizer_fn() - model_fn, dataset_fn, layer = minimize_loss_example( - optimizer, use_bias=True, use_callable_loss=use_callable_loss - ) - - def step_fn(ctx, inputs): - del ctx # Unused - return distribution.group( - distribution.extended.call_for_each_replica( - model_fn, args=(inputs,) - ) - ) - - iterator = self._get_iterator(distribution, dataset_fn) - - def run_step(): - return distribution.extended.experimental_run_steps_on_iterator( - step_fn, iterator, iterations=2 - ).run_op - - if not tf.executing_eagerly(): - with self.cached_session() as sess: - run_step = sess.make_callable(run_step()) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - weights, biases = [], [] - for _ in range(5): - run_step() - weights.append(self.evaluate(layer.kernel)) - biases.append(self.evaluate(layer.bias)) - - error = abs( - numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1 - ) - is_not_increasing = all(y <= x for x, y in zip(error, error[1:])) - self.assertTrue(is_not_increasing) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - optimizer_combinations.distributions_and_v1_optimizers(), - tf.__internal__.test.combinations.combine( - mode=["graph"], use_callable_loss=[True, False] - ) - + tf.__internal__.test.combinations.combine( - mode=["eager"], use_callable_loss=[True] - ), - ) - + tf.__internal__.test.combinations.times( - optimizer_combinations.distributions_and_v2_optimizers(), - tf.__internal__.test.combinations.combine( - mode=["graph", "eager"], use_callable_loss=[True] - ), - ) - ) - def testTrainNetworkByCallForEachReplica( - self, distribution, optimizer_fn, use_callable_loss - ): - with distribution.scope(): - optimizer = optimizer_fn() - model_fn, dataset_fn, layer = minimize_loss_example( - optimizer, use_bias=True, use_callable_loss=use_callable_loss - ) - - iterator = self._get_iterator(distribution, dataset_fn) - - def run_step(): - return distribution.group( - distribution.extended.call_for_each_replica( - model_fn, args=(iterator.get_next(),) - ) - ) - - if not tf.executing_eagerly(): - with self.cached_session() as sess: - run_step = sess.make_callable(run_step()) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - weights, biases = [], [] - for _ in range(10): - run_step() - - weights.append(self.evaluate(layer.kernel)) - biases.append(self.evaluate(layer.bias)) - - error = abs( - numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1 - ) - is_not_increasing = all(y <= x for x, y in zip(error, error[1:])) - self.assertTrue(is_not_increasing) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - optimizer_combinations.distributions_and_v1_and_v2_optimizers(), - tf.__internal__.test.combinations.combine(mode=["graph", "eager"]), - ) - + tf.__internal__.test.combinations.combine( - distribution=[tf.__internal__.distribute.combinations.tpu_strategy], - optimizer_fn=optimizer_combinations.optimizers_v1_and_v2, - mode=["graph"], - ) - ) - def testOptimizerInsideModelFn(self, distribution, optimizer_fn): - if ( - not tf.executing_eagerly() - and tf.compat.v1.control_flow_v2_enabled() - ): - self.skipTest("b/138751864") - created_variables = [] - trainable_variables = [] - - def appending_creator(next_creator, **kwargs): - v = next_creator(**kwargs) - # Skip the StateVar created in the tf.random.Generator, which is - # used by keras initializers. - if "StateVar" in v.name: - return v - created_variables.append(v.name) - if "trainable" in kwargs and kwargs["trainable"]: - trainable_variables.append(v.name) - return v - - # Creator scope needs to be set before it's used inside - # `distribution.scope`. - with tf.variable_creator_scope(appending_creator), distribution.scope(): - optimizer = optimizer_fn() - model_fn, dataset_fn, _ = minimize_loss_example( - optimizer, use_bias=True, use_callable_loss=True - ) - - def step_fn(ctx, inputs): - del ctx # Unused - return distribution.group( - distribution.extended.call_for_each_replica( - model_fn, args=(inputs,) - ) - ) - - iterator = self._get_iterator(distribution, dataset_fn) - - def run_step(): - return distribution.extended.experimental_run_steps_on_iterator( - step_fn, iterator, iterations=1 - ).run_op - - if not tf.executing_eagerly(): - with self.cached_session() as sess: - run_step = sess.make_callable(run_step()) - self.evaluate(tf.compat.v1.global_variables_initializer()) - run_step() - - def get_expected_variables(num_parameter_devices): - name = optimizer._name - - if isinstance(optimizer, optimizer_v2.OptimizerV2): - variables = VAR_MAP_V2[name] - else: - variables = VAR_MAP_V1[name] - - extended_variables = [ - v + f"/replica_{replica}" - for v in variables - for replica in range(1, num_parameter_devices) - ] - variables = list(variables) + extended_variables - return set(v + ":0" for v in variables) - - self.assertEqual( - get_expected_variables( - len(distribution.extended.parameter_devices) - ), - set(created_variables), - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine( - momentum=[0.8, 0.9, 0.99], renorm=[False, True] - ), - tf.__internal__.test.combinations.times( - optimizer_combinations.distributions_and_v1_and_v2_optimizers(), - tf.__internal__.test.combinations.combine( - mode=["graph", "eager"], - # TODO(isaprykin): Allow False here. Currently subsequent - # replicas will re-execute UPDATE_OPS of previous replicas. - update_ops_in_cross_replica_mode=[True], - ), - ) - + tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.tpu_strategy - ], - optimizer_fn=optimizer_combinations.optimizers_v1_and_v2, - mode=["graph"], - update_ops_in_cross_replica_mode=[False], - ), - ) - ) - def testTrainNetworkWithBatchNorm( - self, - distribution, - optimizer_fn, - momentum, - renorm, - update_ops_in_cross_replica_mode, - ): - """Verifies that moving mean updates are reduced across replicas.""" - with distribution.scope(): - num_replicas = distribution.num_replicas_in_sync - model_fn, dataset_fn, batchnorm = batchnorm_example( - optimizer_fn, - batch_per_epoch=num_replicas, - momentum=momentum, - renorm=renorm, - update_ops_in_replica_mode=not update_ops_in_cross_replica_mode, - ) - - def step_fn(ctx, inputs): - del ctx # Unused - fetches = distribution.experimental_local_results( - distribution.extended.call_for_each_replica( - model_fn, args=(inputs,) - ) - ) - if update_ops_in_cross_replica_mode: - fetches += tuple( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.UPDATE_OPS - ) - ) - return tf.group(fetches) - - iterator = self._get_iterator(distribution, dataset_fn) - - def run_step(): - return distribution.extended.experimental_run_steps_on_iterator( - step_fn, iterator, iterations=1 - ).run_op - - if not tf.executing_eagerly(): - with self.cached_session() as sess: - run_step = sess.make_callable(run_step()) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - expected_moving_means = [0.0] * 8 - - def averaged_batch_mean(i): - # Each batch has shape [16, 8] where the ith element in jth list - # is (8 * j + i + replica_id * 100). So the batch mean in each - # replica is (60 + i + replica_id * 100). So here comes its - # batch mean over all replicas: - return 60.0 + i + (num_replicas - 1.0) / 2.0 * 100.0 - - for _ in range(10): - run_step() - moving_means = self.evaluate(batchnorm.moving_mean) - - # We make sure that the moving_mean is updated as if the sample - # mean is calculated over all replicas. - for i, expected_moving_mean in enumerate(expected_moving_means): - expected_moving_means[i] -= ( - expected_moving_mean - averaged_batch_mean(i) - ) * (1.0 - momentum) - self.assertNear( - expected_moving_means[i], moving_means[i], 0.0001 - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine( - loss_reduction=[ - tf.compat.v1.losses.Reduction.SUM, - tf.compat.v1.losses.Reduction.MEAN, - tf.compat.v1.losses.Reduction.SUM_OVER_BATCH_SIZE, - tf.compat.v1.losses.Reduction.SUM_OVER_NONZERO_WEIGHTS, - ] - ), - tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.one_device_strategy, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus_no_merge_call, # noqa: E501 - ] - ), - tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine( - optimizer_fn=optimizer_combinations.gradient_descent_optimizer_v1_fn # noqa: E501 - ), - tf.__internal__.test.combinations.combine( - mode=["graph"], use_callable_loss=[True, False] - ) - + tf.__internal__.test.combinations.combine( - mode=["eager"], use_callable_loss=[True] - ), - ) - + tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine( - optimizer_fn=optimizer_combinations.gradient_descent_optimizer_keras_v2_fn # noqa: E501 - ), - tf.__internal__.test.combinations.combine( - mode=["graph", "eager"], use_callable_loss=[True] - ), - ), - ) - + tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.tpu_strategy - ], - optimizer_fn=optimizer_combinations.gradient_descent_optimizer_v1_fn, # noqa: E501 - mode=["graph"], - use_callable_loss=[True, False], - ) - + tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.tpu_strategy - ], - optimizer_fn=optimizer_combinations.gradient_descent_optimizer_keras_v2_fn, # noqa: E501 - mode=["graph"], - use_callable_loss=[True], - ), - ) - ) - def testMeanVsSum( - self, distribution, optimizer_fn, loss_reduction, use_callable_loss - ): - with distribution.scope(): - all_vars = [] - - def model_fn(inputs): - x, y = inputs - w = tf.compat.v1.get_variable("w", initializer=[[2.0]]) - all_vars.append(w) - - def loss_fn(): - # Use fixed initialization to make the steps deterministic. - predict = tf.matmul(x, w) - loss = tf.compat.v1.losses.mean_squared_error( - y, predict, reduction=loss_reduction - ) - if loss_reduction == tf.compat.v1.losses.Reduction.SUM: - return loss - return loss / distribution.num_replicas_in_sync - - optimizer = ( - optimizer_fn() - ) # GradientDescent with 0.2 learning rate - - if isinstance(optimizer, optimizer_v2.OptimizerV2): - return optimizer.minimize(loss_fn, [w]) - else: - if use_callable_loss: - return optimizer.minimize(loss_fn) - else: - return optimizer.minimize(loss_fn()) - - def dataset_fn(): - features = tf.data.Dataset.from_tensors([[2.0], [7.0]]) - labels = tf.data.Dataset.from_tensors([[6.0], [21.0]]) - return tf.data.Dataset.zip((features, labels)).repeat() - - def step_fn(ctx, inputs): - del ctx # Unused - return distribution.group( - distribution.extended.call_for_each_replica( - model_fn, args=(inputs,) - ) - ) - - iterator = self._get_iterator(distribution, dataset_fn) - - def run_step(): - return distribution.extended.experimental_run_steps_on_iterator( - step_fn, iterator, iterations=1 - ).run_op - - if not tf.executing_eagerly(): - with self.cached_session() as sess: - run_step = sess.make_callable(run_step()) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - run_step() - - v = all_vars[0] - self.assertTrue(all(v is vi for vi in all_vars[1:])) - weight = numpy.squeeze(self.evaluate(v)) - # Our model is: - # predict = x * w - # loss = (predict - y)^2 - # dloss/dpredict = 2*(predict - y) - # dloss/dw = 2 * x^T @ (predict - y) - # For our batch size of 2, assuming sum loss reduction: - # x = [2, 7] - # y = [6, 21] - # w_initial = 2 - # predict = [4, 14] - # predict - y = [-2, -7] - # dloss/dw = 2 <[2, 7], [-2, -7]> = - 2(4 + 49) = -106 - # So unreplicated the update to w with lr=0.001 is -0.2 * -106 = - # 0.106 with sum loss reduction, or 0.053 with mean. - if loss_reduction == tf.compat.v1.losses.Reduction.SUM: - # Note that the "distribution.num_replicas_in_sync" factor will - # go away once we split the input across replicas, instead of - # pulling a complete batch of input per replica. - self.assertNear( - weight, - 2 + 0.106 * distribution.num_replicas_in_sync, - 0.0001, - ) - else: - # One of the mean loss reductions. - self.assertNear(weight, 2 + 0.053, 0.0001) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - optimizer_combinations.distributions_and_v1_and_v2_optimizers(), - tf.__internal__.test.combinations.combine(mode=["graph", "eager"]), - tf.__internal__.test.combinations.combine(is_tpu=[False]), - ) - + tf.__internal__.test.combinations.combine( - distribution=[tf.__internal__.distribute.combinations.tpu_strategy], - optimizer_fn=optimizer_combinations.optimizers_v1_and_v2, - mode=["graph"], - is_tpu=[True], - ) - ) - def testRunStepsWithOutputContext(self, distribution, optimizer_fn, is_tpu): - with distribution.scope(): - - def dataset_fn(): - dataset = tf.data.Dataset.from_tensors([[1.0]]).repeat() - # TODO(priyag): batch with drop_remainder=True causes shapes to - # be fully defined for TPU. Remove this when XLA supports - # dynamic shapes. - return dataset.batch(batch_size=1, drop_remainder=True) - - optimizer = optimizer_fn() - layer = core.Dense(1, use_bias=True) - - key1 = "foo" - value1 = "bar" - - def model_fn(output_context, x): - """A very simple model written by the user.""" - - def loss_fn(): - y = tf.reshape(layer(x), []) - tf.constant(1.0) - return y * y - - if isinstance(optimizer, optimizer_v2.OptimizerV2): - train_op = optimizer.minimize( - loss_fn, lambda: layer.trainable_variables - ) - else: - train_op = optimizer.minimize(loss_fn) - loss = loss_fn() - output_context.set_last_step_output( - name="replica_loss_reduced", - output=loss, - reduce_op=tf.distribute.ReduceOp.MEAN, - ) - output_context.set_non_tensor_output(key1, value1) - return (train_op, loss) - - def step_fn(output_context, inputs): - (train_op, loss) = distribution.extended.call_for_each_replica( - model_fn, args=(output_context, inputs) - ) - output_context.set_last_step_output( - name="cross_replica_loss_reduced", - output=loss, - reduce_op=tf.distribute.ReduceOp.MEAN, - ) - output_context.set_last_step_output( - name="cross_replica_loss_not_reduced", output=loss - ) - return distribution.group(train_op) - - iterator = self._get_iterator(distribution, dataset_fn) - - def run_step(): - initial_loss = lambda: tf.constant(1e7) - # Initial values corresponding to reduced losses are just single - # tensors. But for non reduced losses, we need to have initial - # values that are of the same structure as non reduced losses. - # In MirroredStrategy, this will be a list of losses, in - # TPUStrategy it will be single tensor. Using - # `call_for_each_replica` followed by - # `experimental_local_results` gives us the desired initial - # value structure. - not_reduced = distribution.experimental_local_results( - distribution.extended.call_for_each_replica(initial_loss) - ) - initial_loop_values = { - "replica_loss_reduced": initial_loss(), - "cross_replica_loss_reduced": initial_loss(), - "cross_replica_loss_not_reduced": not_reduced, - } - ctx = distribution.extended.experimental_run_steps_on_iterator( - step_fn, - iterator, - iterations=2, - initial_loop_values=initial_loop_values, - ) - - self.assertEqual({key1: (value1,)}, ctx.non_tensor_outputs) - self._verify_loss_output( - initial_loss(), - loss_output=ctx.last_step_outputs["replica_loss_reduced"], - reduced=True, - distribution=distribution, - ) - self._verify_loss_output( - initial_loss(), - loss_output=ctx.last_step_outputs[ - "cross_replica_loss_reduced" - ], - reduced=True, - distribution=distribution, - ) - self._verify_loss_output( - initial_loss(), - loss_output=ctx.last_step_outputs[ - "cross_replica_loss_not_reduced" - ], - reduced=False, - distribution=distribution, - ) - return ( - ctx.run_op, - ctx.last_step_outputs["replica_loss_reduced"], - ) - - if not tf.executing_eagerly(): - with self.cached_session() as sess: - run_step = sess.make_callable(run_step()) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - weights, biases = [], [] - for _ in range(5): - run_step() - weights.append(self.evaluate(layer.kernel)) - biases.append(self.evaluate(layer.bias)) - - error = abs( - numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1 - ) - error_is_not_increasing = all( - y <= x for x, y in zip(error, error[1:]) - ) - self.assertTrue(error_is_not_increasing) - - def _verify_loss_output( - self, initial_loss, loss_output, reduced, distribution - ): - if not reduced: - self.assertLen( - distribution.experimental_local_results(loss_output), - distribution.num_replicas_in_sync, - ) - loss_tensor = distribution.reduce( - tf.distribute.ReduceOp.MEAN, loss_output, axis=None - ) - else: - unwrapped_output = distribution.experimental_local_results( - loss_output - ) - self.assertLen(unwrapped_output, 1) - loss_tensor = unwrapped_output[0] - self.assertEqual(initial_loss.dtype, loss_tensor.dtype) - self.assertEqual(initial_loss.shape, loss_tensor.shape) - - @tf.__internal__.distribute.combinations.generate( - optimizer_combinations.distributions_and_v2_optimizers() - ) - def test_empty_var_list(self, distribution, optimizer_fn): - opt = optimizer_fn() - with distribution.scope(): - - def run_fn(): - opt.minimize(lambda: tf.constant(1.0), []) - opt.apply_gradients([]) - - distribution.run(run_fn) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/distribute/mirrored_strategy_test.py b/keras/distribute/mirrored_strategy_test.py deleted file mode 100644 index 2f482f5ccbe..00000000000 --- a/keras/distribute/mirrored_strategy_test.py +++ /dev/null @@ -1,148 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for MirroredStrategy.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.engine import training as keras_training -from keras.layers import core as keras_core -from keras.optimizers.legacy import rmsprop -from keras.utils import kpl_test_utils - -# isort: off -from tensorflow.python.eager import backprop -from tensorflow.python.training import ( - optimizer as optimizer_lib, -) - - -class MiniModel(keras_training.Model): - """Minimal model for mnist. - - Useful for testing and debugging on slow TPU simulators. - """ - - def __init__(self): - super().__init__(name="") - self.fc = keras_core.Dense( - 1, name="fc", kernel_initializer="ones", bias_initializer="ones" - ) - - def call(self, inputs, training=True): - inputs = tf.ones([1, 10]) - return self.fc(inputs) - - -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - ], - mode=["eager"], - ) -) -class MirroredStrategyDefunTest(tf.test.TestCase, parameterized.TestCase): - def testTrain(self, distribution): - with distribution.scope(): - mock_model = MiniModel() - mock_model.call = tf.function(mock_model.call) - - def loss_fn(ctx): - del ctx - return mock_model(tf.ones([1, 10])) - - gradients_fn = backprop.implicit_grad(loss_fn) - gradients_fn = optimizer_lib.get_filtered_grad_fn(gradients_fn) - grads_and_vars = distribution.extended.call_for_each_replica( - gradients_fn, args=(None,) - ) - - optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.25) - update_ops = optimizer._distributed_apply( - distribution, grads_and_vars - ) - - if not tf.executing_eagerly(): - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(update_ops) - - updated_var_values = self.evaluate(mock_model.variables) - # All variables start at 1.0 and get two updates of 0.25. - self.assertAllEqual(0.5 * np.ones([10, 1]), updated_var_values[0]) - self.assertAllEqual([0.5], updated_var_values[1]) - - def testTrainAndServeWithKPL(self, distribution): - use_adapt = False - test_utils_obj = kpl_test_utils.DistributeKplTestUtils() - with distribution.scope(): - ( - feature_mapper, - label_mapper, - ) = test_utils_obj.define_kpls_for_training(use_adapt) - model = test_utils_obj.define_model() - optimizer = rmsprop.RMSprop(learning_rate=0.1) - accuracy = keras.metrics.Accuracy() - - def dataset_fn(_): - return test_utils_obj.dataset_fn(feature_mapper, label_mapper) - - @tf.function - def train_step(iterator): - """The step function for one training step.""" - - def step_fn(inputs): - """The computation to run on each replica(GPU).""" - features, labels = inputs - with tf.GradientTape() as tape: - pred = model(features, training=True) - loss = keras.losses.binary_crossentropy(labels, pred) - loss = tf.nn.compute_average_loss(loss) - grads = tape.gradient(loss, model.trainable_variables) - optimizer.apply_gradients( - list(zip(grads, model.trainable_variables)) - ) - - actual_pred = tf.cast(tf.greater(pred, 0.5), tf.int64) - accuracy.update_state(labels, actual_pred) - - distribution.run(step_fn, args=(next(iterator),)) - - distributed_dataset = ( - distribution.distribute_datasets_from_function(dataset_fn) - ) - distributed_iterator = iter(distributed_dataset) - num_epochs = 4 - num_steps = 7 - for _ in range(num_epochs): - accuracy.reset_state() - for _ in range(num_steps): - train_step(distributed_iterator) - - self.assertGreater(accuracy.result().numpy(), 0.5) - self.assertEqual( - optimizer.iterations.numpy(), num_epochs * num_steps - ) - - # Test save/load/serving the trained model. - test_utils_obj.test_save_load_serving_model( - model, feature_mapper, test_utils_obj.define_reverse_lookup_layer() - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/distribute/mirrored_variable_test.py b/keras/distribute/mirrored_variable_test.py deleted file mode 100644 index fc7cdb566f6..00000000000 --- a/keras/distribute/mirrored_variable_test.py +++ /dev/null @@ -1,129 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Test MirroredVariable in MirroredStrategy and MultiWorkerMirroredStrategy.""" - -import tensorflow.compat.v2 as tf - -from keras.distribute import distributed_training_utils -from keras.layers import core - - -def _mimic_two_cpus(): - try: - cpus = tf.config.list_physical_devices("CPU") - except tf.errors.NotFoundError: - # Testing device not available. Skip the test. - return False - - tf.config.set_logical_device_configuration( - cpus[0], - [ - tf.config.LogicalDeviceConfiguration(), - tf.config.LogicalDeviceConfiguration(), - ], - ) - return True - - -def get_strategy_with_mimicing_cpus(): - if not _mimic_two_cpus(): - return None - return tf.distribute.MultiWorkerMirroredStrategy._from_local_devices( - ("/device:CPU:0", "/device:CPU:1") - ) - - -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=list( - filter( - None.__ne__, - [ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - get_strategy_with_mimicing_cpus(), - ], - ) - ), - mode=["graph", "eager"], - ) -) -class MirroredVariableCreationTest(tf.test.TestCase): - """Base class that tests mirrored variable creator. - - Currently it assumes all strategy objects have two replicas. - """ - - @classmethod - def setUpClass(cls): - _mimic_two_cpus() - - def assertAllDifferent(self, objs): - for i in range(len(objs)): - for j in range(len(objs)): - if i == j: - continue - self.assertIsNot(objs[i], objs[j]) - - def _is_mirrored(self, val): - if distributed_training_utils.is_distributed_variable(val): - if val._policy: - return val._policy._is_mirrored() - # Since `Mirrored` is a private symbol in tf.distribute, we're checking - # with `DistributedValues` as an approximation. - return isinstance(val, tf.distribute.DistributedValues) - - def testWithLayers(self, distribution): - def model_fn(features): - - layer1 = core.Dense(1) - layer1(features) - layer2 = core.Dense(1) - layer2(features) - # We rely on names and orders to make sure replica references the - # same MirroredVariable. Uniquifying names may involve global - # states, merge_call switches threads so we need to test things work - # after merge_call. - tf.distribute.get_replica_context().merge_call(lambda _: _) - layer3 = core.Dense(1) - layer3(features) - return [ - (layer1.kernel, layer1.bias), - (layer2.kernel, layer2.bias), - (layer3.kernel, layer3.bias), - ] - - iterator = distribution.make_input_fn_iterator( - lambda _: tf.data.Dataset.from_tensors([[1.0]]).repeat(10) - ) - self.evaluate(iterator.initializer) - features = iterator.get_next() - - with distribution.scope(): - result = distribution.extended.call_for_each_replica( - model_fn, args=(features,) - ) - for kernel, bias in result: - self.assertTrue(self._is_mirrored(kernel)) - self.assertAllDifferent( - distribution.experimental_local_results(kernel) - ) - self.assertTrue(self._is_mirrored(bias)) - self.assertAllDifferent( - distribution.experimental_local_results(kernel) - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/distribute/model_collection_base.py b/keras/distribute/model_collection_base.py deleted file mode 100644 index 16dea694b52..00000000000 --- a/keras/distribute/model_collection_base.py +++ /dev/null @@ -1,42 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""A base class to provide a model and corresponding input data for testing.""" - - -class ModelAndInput: - """Base class to provide model and its corresponding inputs.""" - - def get_model(self): - """Returns a compiled keras model object, together with output name. - - Returns: - model: a keras model object - output_name: a string for the name of the output layer - """ - raise NotImplementedError("must be implemented in descendants") - - def get_data(self): - """Returns data for training and predicting. - - Returns: - x_train: data used for training - y_train: label used for training - x_predict: data used for predicting - """ - raise NotImplementedError("must be implemented in descendants") - - def get_batch_size(self): - """Returns the batch_size used by the model.""" - raise NotImplementedError("must be implemented in descendants") diff --git a/keras/distribute/model_combinations.py b/keras/distribute/model_combinations.py deleted file mode 100644 index 0349cad552e..00000000000 --- a/keras/distribute/model_combinations.py +++ /dev/null @@ -1,35 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Strategy and optimizer combinations for combinations.combine().""" - -import tensorflow.compat.v2 as tf - -from keras.distribute import simple_models - -simple_functional_model = tf.__internal__.test.combinations.NamedObject( - "SimpleFunctionalModel", simple_models.SimpleFunctionalModel() -) - -simple_sequential_model = tf.__internal__.test.combinations.NamedObject( - "SimpleSequentialModel", simple_models.SimpleSequentialModel() -) - -simple_subclass_model = tf.__internal__.test.combinations.NamedObject( - "SimpleSubclassModel", simple_models.SimpleSubclassModel() -) - -simple_tfmodule_model = tf.__internal__.test.combinations.NamedObject( - "SimpleTFModuleModel", simple_models.SimpleTFModuleModel() -) diff --git a/keras/distribute/multi_worker_callback_tf2_test.py b/keras/distribute/multi_worker_callback_tf2_test.py deleted file mode 100644 index 69043d6bd82..00000000000 --- a/keras/distribute/multi_worker_callback_tf2_test.py +++ /dev/null @@ -1,477 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras callbacks in multi-worker training with TF2.""" - -import json -import os - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import callbacks -from keras.distribute import distributed_file_utils -from keras.distribute import multi_worker_testing_utils - - -def checkpoint_exists(filepath): - """Returns whether the checkpoint `filepath` refers to exists.""" - if filepath.endswith(".h5"): - return tf.io.gfile.exists(filepath) - tf_saved_model_exists = tf.io.gfile.exists(filepath) - tf_weights_only_checkpoint_exists = tf.io.gfile.exists(filepath + ".index") - return tf_saved_model_exists or tf_weights_only_checkpoint_exists - - -def _model_setup(test_obj, file_format): - """Set up a MNIST Keras model for testing purposes. - - This function builds a MNIST Keras model and returns relevant information - for testing. - - Args: - test_obj: The `TestCase` testing object. - file_format: File format for checkpoints. 'tf' or 'h5'. - - Returns: - A tuple of (model, saving_filepath, train_ds, steps) where train_ds is - the training dataset. - """ - batch_size = 64 - steps = 2 - with tf.distribute.MultiWorkerMirroredStrategy().scope(): - # TODO(b/142509827): In rare cases this errors out at C++ level with the - # "Connect failed" error message. - train_ds, _ = multi_worker_testing_utils.mnist_synthetic_dataset( - batch_size, steps - ) - model = multi_worker_testing_utils.get_mnist_model((28, 28, 1)) - # Pass saving_filepath from the parent thread to ensure every worker has the - # same filepath to save. - saving_filepath = os.path.join( - test_obj.get_temp_dir(), "checkpoint." + file_format - ) - return model, saving_filepath, train_ds, steps - - -def get_tf_config_task(): - return json.loads(os.environ["TF_CONFIG"])["task"] - - -def get_tf_config_cluster_spec(): - return json.loads(os.environ["TF_CONFIG"])["cluster"] - - -def get_task_type(): - return get_tf_config_task()["type"] - - -def get_task_index(): - return get_tf_config_task()["index"] - - -def is_chief(): - return ( - "chief" not in get_tf_config_cluster_spec() - and get_task_type() == "worker" - and get_task_index() == 0 - ) - - -class KerasCallbackMultiProcessTest(parameterized.TestCase, tf.test.TestCase): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], - file_format=["h5", "tf"], - save_weights_only=[True, False], - ) - ) - def test_model_checkpoint_saves_on_chief_but_not_otherwise( - self, file_format, mode, save_weights_only - ): - def proc_model_checkpoint_saves_on_chief_but_not_otherwise( - test_obj, file_format - ): - - model, saving_filepath, train_ds, steps = _model_setup( - test_obj, file_format - ) - num_epoch = 2 - extension = os.path.splitext(saving_filepath)[1] - - # Incorporate type/index information and thread id in - # saving_filepath to ensure every worker has a unique path. Note - # that in normal use case the saving_filepath will be the same for - # all workers, but we use different ones here just to test out chief - # saves checkpoint but non-chief doesn't. - task_config = get_tf_config_task() - saving_filepath = os.path.join( - test_obj.get_temp_dir(), - "checkpoint_%s_%d%s" - % (task_config["type"], task_config["index"], extension), - ) - - # The saving_filepath shouldn't exist at the beginning (as it's - # unique). - test_obj.assertFalse(checkpoint_exists(saving_filepath)) - - model.fit( - x=train_ds, - epochs=num_epoch, - steps_per_epoch=steps, - validation_data=train_ds, - validation_steps=steps, - callbacks=[ - callbacks.ModelCheckpoint( - filepath=saving_filepath, - save_weights_only=save_weights_only, - ) - ], - ) - - # If it's chief, the model should be saved; if not, the model - # shouldn't. - test_obj.assertEqual(checkpoint_exists(saving_filepath), is_chief()) - - # If it's chief, the model should be saved (`write_filepath` should - # simply return `saving_filepath`); if not, i.e. for non-chief - # workers, the temporary path generated by `write_filepath` should - # no longer contain the checkpoint that has been deleted. - test_obj.assertEqual( - checkpoint_exists( - distributed_file_utils.write_filepath( - saving_filepath, model._distribution_strategy - ) - ), - is_chief(), - ) - - tf.__internal__.distribute.multi_process_runner.run( - proc_model_checkpoint_saves_on_chief_but_not_otherwise, - cluster_spec=tf.__internal__.distribute.multi_process_runner.create_cluster_spec( # noqa: E501 - num_workers=2 - ), - args=(self, file_format), - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine(mode=["eager"]) - ) - def test_model_checkpoint_works_with_same_file_path(self, mode): - def proc_model_checkpoint_works_with_same_file_path( - test_obj, saving_filepath - ): - model, _, train_ds, steps = _model_setup(test_obj, file_format="") - num_epoch = 2 - - # The saving_filepath shouldn't exist at the beginning (as it's - # unique). - test_obj.assertFalse(tf.io.gfile.exists(saving_filepath)) - - model.fit( - x=train_ds, - epochs=num_epoch, - steps_per_epoch=steps, - callbacks=[callbacks.ModelCheckpoint(filepath=saving_filepath)], - ) - - test_obj.assertTrue(tf.io.gfile.exists(saving_filepath)) - - saving_filepath = os.path.join(self.get_temp_dir(), "checkpoint") - - tf.__internal__.distribute.multi_process_runner.run( - proc_model_checkpoint_works_with_same_file_path, - cluster_spec=tf.__internal__.distribute.multi_process_runner.create_cluster_spec( # noqa: E501 - num_workers=2 - ), - args=(self, saving_filepath), - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine(mode=["eager"]) - ) - def test_backupandrestore_checkpoint_works_with_interruption(self, mode): - class InterruptingCallback(callbacks.Callback): - def on_epoch_begin(self, epoch, logs=None): - if epoch == 2: - raise RuntimeError("Interrupting!") - - class AssertCallback(callbacks.Callback): - def on_epoch_begin(self, epoch, logs=None): - # the interruption happened on epoch 2 as specified in - # InterruptingCallback, so the initial epoch after restart will - # begin at 2. - assert epoch > 1 - - def proc_model_checkpoint_works_with_same_file_path( - test_obj, saving_filepath - ): - model, _, train_ds, steps = _model_setup(test_obj, file_format="") - num_epoch = 4 - - # The saving_filepath shouldn't exist at the beginning (as it's - # unique). - test_obj.assertFalse(tf.io.gfile.exists(saving_filepath)) - bar_dir = os.path.join(os.path.dirname(saving_filepath), "backup") - - try: - model.fit( - x=train_ds, - epochs=num_epoch, - steps_per_epoch=steps, - callbacks=[ - callbacks.ModelCheckpoint(filepath=saving_filepath), - callbacks.BackupAndRestore(backup_dir=bar_dir), - InterruptingCallback(), - ], - ) - except RuntimeError as e: - if "Interrupting!" not in str(e): - raise - - tf.__internal__.distribute.multi_process_runner.get_barrier().wait() - backup_filepath = os.path.join(bar_dir, "chief", "checkpoint") - test_obj.assertTrue(tf.io.gfile.exists(backup_filepath)) - test_obj.assertTrue(tf.io.gfile.exists(saving_filepath)) - - model.fit( - x=train_ds, - epochs=num_epoch, - steps_per_epoch=steps, - callbacks=[ - callbacks.ModelCheckpoint(filepath=saving_filepath), - callbacks.BackupAndRestore(backup_dir=bar_dir), - AssertCallback(), - ], - ) - tf.__internal__.distribute.multi_process_runner.get_barrier().wait() - test_obj.assertFalse(tf.io.gfile.exists(backup_filepath)) - test_obj.assertTrue(tf.io.gfile.exists(saving_filepath)) - - saving_filepath = os.path.join(self.get_temp_dir(), "checkpoint") - - tf.__internal__.distribute.multi_process_runner.run( - proc_model_checkpoint_works_with_same_file_path, - cluster_spec=tf.__internal__.distribute.multi_process_runner.create_cluster_spec( # noqa: E501 - num_workers=2 - ), - args=(self, saving_filepath), - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine(mode=["eager"]) - ) - def test_profiler_saves_on_both_chief_and_non_chief(self, mode): - def proc_profiler_saves_on_both_chief_and_non_chief(test_obj): - model, _, train_ds, steps = _model_setup(test_obj, file_format="") - num_epoch = 2 - - task_config = get_tf_config_task() - saving_filepath = os.path.join( - test_obj.get_temp_dir(), - "logfile_%s_%d" % (task_config["type"], task_config["index"]), - ) - - # The saving_filepath shouldn't exist at the beginning (as it's - # unique). - test_obj.assertFalse(tf.io.gfile.exists(saving_filepath)) - - model.fit( - x=train_ds, - epochs=num_epoch, - steps_per_epoch=steps, - callbacks=[ - callbacks.TensorBoard( - log_dir=saving_filepath, profile_batch=[2, 4] - ) - ], - ) - - # Profiler dir should be created on both chief and non-chief node - profiler_dir_path = os.path.join( - saving_filepath, "plugins", "profile" - ) - test_obj.assertTrue(tf.io.gfile.exists(profiler_dir_path)) - - tf.__internal__.distribute.multi_process_runner.run( - proc_profiler_saves_on_both_chief_and_non_chief, - cluster_spec=tf.__internal__.distribute.multi_process_runner.create_cluster_spec( # noqa: E501 - num_workers=2 - ), - args=(self,), - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine(mode=["eager"]) - ) - def test_tensorboard_saves_on_chief_but_not_otherwise(self, mode): - def proc_tensorboard_saves_on_chief_but_not_otherwise(test_obj): - model, _, train_ds, steps = _model_setup(test_obj, file_format="") - num_epoch = 2 - - # Incorporate type/index information and thread id in - # saving_filepath to ensure every worker has a unique path. Note - # that in normal use case the saving_filepath will be the same for - # all workers, but we use different ones here just to test out chief - # saves summaries but non-chief doesn't. - task_config = get_tf_config_task() - saving_filepath = os.path.join( - test_obj.get_temp_dir(), - "logfile_%s_%d" % (task_config["type"], task_config["index"]), - ) - - # The saving_filepath shouldn't exist at the beginning (as it's - # unique). - test_obj.assertFalse(tf.io.gfile.exists(saving_filepath)) - - model.fit( - x=train_ds, - epochs=num_epoch, - steps_per_epoch=steps, - # disabling profiler by setting profile_batch to zero - callbacks=[ - callbacks.TensorBoard( - log_dir=saving_filepath, profile_batch=0 - ) - ], - ) - - # If it's chief, the summaries should be saved in the filepath; if - # not, the directory should be empty (although created). Using - # `file_io.list_directory()` since the directory may be created at - # this point. - test_obj.assertEqual( - bool(tf.io.gfile.listdir(saving_filepath)), is_chief() - ) - - tf.__internal__.distribute.multi_process_runner.run( - proc_tensorboard_saves_on_chief_but_not_otherwise, - cluster_spec=tf.__internal__.distribute.multi_process_runner.create_cluster_spec( # noqa: E501 - num_workers=2 - ), - args=(self,), - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine(mode=["eager"]) - ) - def test_tensorboard_can_still_save_to_temp_even_if_it_exists(self, mode): - def proc_tensorboard_can_still_save_to_temp_even_if_it_exists(test_obj): - model, _, train_ds, steps = _model_setup(test_obj, file_format="") - num_epoch = 2 - - saving_filepath = os.path.join( - test_obj.get_temp_dir(), - f"logfile_{get_tf_config_task()['type']}", - ) - - saving_filepath_for_temp = os.path.join( - saving_filepath, "workertemp_1" - ) - os.mkdir(saving_filepath) - os.mkdir(saving_filepath_for_temp) - - # Verifies that even if `saving_filepath_for_temp` exists, - # tensorboard can still save to temporary directory. - test_obj.assertTrue(tf.io.gfile.exists(saving_filepath_for_temp)) - - model.fit( - x=train_ds, - epochs=num_epoch, - steps_per_epoch=steps, - callbacks=[callbacks.TensorBoard(log_dir=saving_filepath)], - ) - - tf.__internal__.distribute.multi_process_runner.run( - proc_tensorboard_can_still_save_to_temp_even_if_it_exists, - cluster_spec=tf.__internal__.distribute.multi_process_runner.create_cluster_spec( # noqa: E501 - num_workers=2 - ), - args=(self,), - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine(mode=["eager"]) - ) - def test_tensorboard_works_with_same_file_path(self, mode): - def proc_tensorboard_works_with_same_file_path( - test_obj, saving_filepath - ): - model, _, train_ds, steps = _model_setup(test_obj, file_format="") - num_epoch = 2 - - # The saving_filepath shouldn't exist at the beginning (as it's - # unique). - test_obj.assertFalse(tf.io.gfile.exists(saving_filepath)) - - tf.__internal__.distribute.multi_process_runner.get_barrier().wait() - - model.fit( - x=train_ds, - epochs=num_epoch, - steps_per_epoch=steps, - callbacks=[callbacks.TensorBoard(log_dir=saving_filepath)], - ) - - tf.__internal__.distribute.multi_process_runner.get_barrier().wait() - - test_obj.assertTrue(tf.io.gfile.listdir(saving_filepath)) - - saving_filepath = os.path.join(self.get_temp_dir(), "logfile") - - tf.__internal__.distribute.multi_process_runner.run( - proc_tensorboard_works_with_same_file_path, - cluster_spec=tf.__internal__.distribute.multi_process_runner.create_cluster_spec( # noqa: E501 - num_workers=2 - ), - args=(self, saving_filepath), - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine(mode=["eager"]) - ) - def test_early_stopping(self, mode): - def proc_early_stopping(test_obj): - class EpochCounterCallback(callbacks.Callback): - def on_epoch_begin(self, epoch, logs): - self.last_epoch = epoch - - model, _, train_ds, steps = _model_setup(test_obj, file_format="") - epoch_counter_cbk = EpochCounterCallback() - cbks = [ - callbacks.EarlyStopping( - monitor="loss", min_delta=0.05, patience=1, verbose=1 - ), - epoch_counter_cbk, - ] - - # Empirically, it is expected that `model.fit()` terminates around - # the 22th epoch. Asserting that it should have been stopped before - # the 50th epoch to avoid flakiness and be more predictable. - model.fit( - x=train_ds, epochs=100, steps_per_epoch=steps, callbacks=cbks - ) - test_obj.assertLess(epoch_counter_cbk.last_epoch, 50) - - tf.__internal__.distribute.multi_process_runner.run( - proc_early_stopping, - cluster_spec=tf.__internal__.distribute.multi_process_runner.create_cluster_spec( # noqa: E501 - num_workers=2 - ), - args=(self,), - ) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/multi_worker_test.py b/keras/distribute/multi_worker_test.py deleted file mode 100644 index 243b6b54737..00000000000 --- a/keras/distribute/multi_worker_test.py +++ /dev/null @@ -1,430 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Test multi-worker Keras.""" - -import collections -import copy -import functools -import json -import os -import sys -import threading - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import backend -from keras import callbacks -from keras import metrics as metrics_module -from keras import models -from keras.distribute import multi_worker_testing_utils -from keras.optimizers import optimizer_v1 -from keras.optimizers.legacy import rmsprop -from keras.utils import kpl_test_utils - - -def _clone_and_build_model(model, strategy): - # The new "original" model in worker 0. - with strategy.scope(): - cloned_model = models.clone_model(model) - - # Compile and build model. - if isinstance(model.optimizer, optimizer_v1.TFOptimizer): - optimizer = model.optimizer - # TODO(yuefengz): figure out why the optimizer here is still a - # TFOptimizer. - while isinstance(optimizer, optimizer_v1.TFOptimizer): - optimizer = optimizer.optimizer - optimizer = copy.deepcopy(optimizer) - else: - optimizer_config = model.optimizer.get_config() - optimizer = type(model.optimizer).from_config(optimizer_config) - - cloned_model.compile( - optimizer, - model.loss, - metrics=metrics_module.clone_metrics(model._compile_metrics), - loss_weights=model.loss_weights, - sample_weight_mode=model.sample_weight_mode, - weighted_metrics=metrics_module.clone_metrics( - model._compile_weighted_metrics - ), - ) - return cloned_model - - -# TODO(b/123918215): Possibly merge this Callback with keras_test.Counter. -class MultiWorkerVerificationCallback(callbacks.Callback): - """MultiWorkerVerificationCallback verifies the callbacks in multi-worker - scheme. - - This Callback is intended to be used for verifying the callback is indeed - called the correct number of times in various task types. - - Attributes: - _task_dict: A nested dictionary storing the number of times a callback has - been called in specific task type, task index, and method - name. Look up structure is - task_name -> task_id -> tracking_method_name -> invoke_count - For example, a _task_dict of - { - 'ps': { - 0: { - 'on_epoch_begin': 2 - }, - 1: { - 'on_epoch_begin': 2 - } - }, - 'worker': { - 0: { - 'on_epoch_begin': 2 - }, - 1: { - 'on_epoch_begin': 2 - } - } - } - indicates the ps task has 'on_epoch_begin' called twice on - each of the two indices, and likewise for worker task. - """ - - # TODO(rchao): Add other method calls to verify. - METHODS_TO_VERIFY = ["on_epoch_begin"] - - def __init__(self, num_epoch, num_worker): - """Initialize a MultiWorkerVerificationCallback. - - Args: - num_epoch: Number of epochs this Callback is expected to be called - for. - num_worker: Number of workers this Callback is expected to be called - from. - """ - super().__init__() - self._num_epoch = num_epoch - self._num_worker = num_worker - self._task_dict = { - key: collections.defaultdict(lambda: collections.defaultdict(int)) - for key in ["ps", "worker", "chief"] - } - self._lock = threading.Lock() - self._is_between_graph = None - self.wrap_methods(self.METHODS_TO_VERIFY) - - @property - def is_between_graph(self): - return self._is_between_graph - - @is_between_graph.setter - def is_between_graph(self, is_between_graph): - self._is_between_graph = is_between_graph - - def wrap_methods(self, method_names): - """Wrap methods so that the counts of calls are tracked. - - Args: - method_names: A list of names of methods to track calls. - """ - for method_name in method_names: - method = getattr(self, method_name) - - def wrapped_method(method_to_wrap, name, *arg, **kwargs): - # Use lock to ensure += operation is thread-safe. - with self._lock: - task_config = json.loads(os.environ["TF_CONFIG"])["task"] - self._task_dict[task_config["type"]][task_config["index"]][ - name - ] += 1 - method_to_wrap(*arg, **kwargs) - - setattr( - self, - method_name, - functools.partial(wrapped_method, method, method_name), - ) - - def verify(self, test_case): - method_count_dict = { - method_name: self._num_epoch - for method_name in self.METHODS_TO_VERIFY - } - assert self._is_between_graph is not None - if self._is_between_graph: - # TODO(b/124171024): In between-graph replication, by default only - # the chief calls callback. Fix this test to cover that, as well as - # the rare cases where all workers call. - worker_call_count = { - i: method_count_dict for i in range(0, self._num_worker) - } - else: - # If in-graph, only the first worker calls callback methods. - worker_call_count = {0: method_count_dict} - chief_call_count = {0: method_count_dict} - task_config = json.loads(os.environ["TF_CONFIG"])["task"]["type"] - test_case.assertDictEqual( - self._task_dict, - { - # PS' callback is not supposed to be called. - "ps": {}, - # Worker or chief should only be called on worker/chief. - "worker": worker_call_count if task_config == "worker" else {}, - "chief": chief_call_count if task_config == "chief" else {}, - }, - ) - - -class KerasMultiWorkerTestIndependentWorker( - tf.test.TestCase, parameterized.TestCase -): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], - strategy=[ - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_gpu, # noqa: E501 - ], - ) - ) - def testSimpleModelIndependentWorkerSync(self, strategy): - verification_callback = MultiWorkerVerificationCallback( - num_epoch=2, - num_worker=len( - json.loads(os.environ["TF_CONFIG"])["cluster"]["worker"] - ), - ) - verification_callback.is_between_graph = ( - strategy.extended.experimental_between_graph - ) - batch_size = 64 - steps = 2 - train_ds, _ = multi_worker_testing_utils.mnist_synthetic_dataset( - batch_size, steps - ) - with strategy.scope(): - model = multi_worker_testing_utils.get_mnist_model((28, 28, 1)) - orig_loss, _ = model.evaluate(train_ds, steps=steps) - history = model.fit( - x=train_ds, - epochs=2, - steps_per_epoch=steps, - callbacks=[verification_callback], - ) - self.assertIsInstance(history, keras.callbacks.History) - trained_loss, _ = model.evaluate(train_ds, steps=steps) - self.assertLess(trained_loss, orig_loss) - - verification_callback.verify(self) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], - strategy=[ - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_gpu, # noqa: E501 - ], - ) - ) - def test_distribution_reduction_method_auto_default_train_step( - self, strategy - ): - BATCH = 4 - EPOCHS = 1 - STEPS = 2 - - # Dataset's targets are [0, 1, 2, 3, 4, 5, 6, 7]: - train_ds, _ = multi_worker_testing_utils.mnist_synthetic_dataset( - BATCH, STEPS, target_values="increasing" - ) - - # A model that always outputs `sum(inputs*0) + 1 = 1` - with strategy.scope(): - inputs = keras.Input(shape=(28, 28, 1)) - x = keras.layers.Flatten()(inputs) - x = keras.layers.Dense( - 1, kernel_initializer="zeros", bias_initializer="ones" - )(x) - model = keras.Model(inputs=inputs, outputs=x) - model.trainable = False - # model.distribute_reduction_method = 'auto' - - model.compile( - loss=keras.losses.MeanAbsoluteError( - reduction=keras.losses.losses_utils.ReductionV2.NONE - ), - optimizer=multi_worker_testing_utils.gradient_descent.SGD( - learning_rate=0.001 - ), - metrics=["mse"], - ) - - # For every output x_i = 1, and increasing target values in [0, 8): - # loss_i = |i-1| - # loss = (|0-1| + |1-1| + |2-1| + ... |7-1|) / (BATCH*STEPS) - # = (1+0+1+2+3+4+5+6) / 8 = 2.75 - orig_loss, _ = model.evaluate(train_ds, steps=STEPS) - self.assertEqual(2.75, orig_loss) - - history = model.fit(train_ds, epochs=EPOCHS, steps_per_epoch=STEPS) - self.assertAllClose(history.history["loss"], [2.75] * EPOCHS) - - trained_loss, _ = model.evaluate(train_ds, steps=STEPS) - self.assertEqual(2.75, trained_loss) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], - strategy=[ - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_gpu, # noqa: E501 - ], - ) - ) - def test_distribution_reduction_method_auto_custom_train_step( - self, strategy - ): - BATCH = 4 - EPOCHS = 1 - STEPS = 2 - - # Dataset's targets are [0, 1, 2, 3, 4, 5, 6, 7]: - train_ds, _ = multi_worker_testing_utils.mnist_synthetic_dataset( - BATCH, STEPS, target_values="increasing" - ) - - # A model that has loss=sum(targets) / BATCH: - class MyModel(keras.Model): - def train_step(self, data): - _, y = data - loss_value = tf.cast(y, tf.float32) - loss_value = tf.nn.compute_average_loss( - loss_value, global_batch_size=BATCH - ) - return {"loss": loss_value} - - def test_step(self, data): - _, y = data - loss_value = tf.cast(y, tf.float32) - loss_value = tf.nn.compute_average_loss( - loss_value, global_batch_size=BATCH - ) - return {"loss": loss_value} - - with strategy.scope(): - inputs = keras.Input(shape=(28, 28, 1)) - x = keras.layers.Flatten()(inputs) - x = keras.layers.Dense( - 1, kernel_initializer="ones", bias_initializer="ones" - )(x) - model = MyModel(inputs=inputs, outputs=x) - # model.distribute_reduction_method = 'auto' - - model.compile( - optimizer=multi_worker_testing_utils.gradient_descent.SGD( - learning_rate=0.001 - ), - ) - - # For epochs=1 steps=2 replicas=2 batch=4, and increasing target vals, - # loss_e0_s0_r0 = [0+1]/BATCH = 1/4 - # loss_e0_s0_r1 = [2+3]/BATCH = 5/4 - # loss_e0_s0 = 1/4 + 5/4 = 1.5 - # loss_e0_s1_r0 = [4+5]/BATCH = 9/4 - # loss_e0_s2_r1 = [6+7]/BATCH = 13/4 - # loss_e0_s1 = 9/4 + 13/4 = 5.5 - # loss_e0 = last([1.5, 5.5]) - history = model.fit(train_ds, epochs=EPOCHS, steps_per_epoch=STEPS) - self.assertAllClose([5.5], history.history["loss"]) - - eval_output = model.evaluate(train_ds, steps=STEPS) - self.assertAllClose(5.5, eval_output) - - -class KPLMultiWorkerTest(tf.test.TestCase, parameterized.TestCase): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], - use_adapt=[False], # TODO(b/180742437): Add tests for using adapt. - strategy=[ - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_gpu, # noqa: E501 - # TODO(b/183956672): Re-enable - # strategy_combinations.multi_worker_mirrored_2x2_gpu, - ], - ) - ) - def testTrainAndServeWithKPL(self, use_adapt, strategy): - test_utils_obj = kpl_test_utils.DistributeKplTestUtils() - with strategy.scope(): - ( - feature_mapper, - label_mapper, - ) = test_utils_obj.define_kpls_for_training(use_adapt) - model = test_utils_obj.define_model() - optimizer = rmsprop.RMSprop(learning_rate=0.1) - accuracy = keras.metrics.Accuracy() - - def dataset_fn(_): - return test_utils_obj.dataset_fn(feature_mapper, label_mapper) - - @tf.function - def train_step(iterator): - """The step function for one training step.""" - - def step_fn(inputs): - """The computation to run on each worker.""" - features, labels = inputs - with tf.GradientTape() as tape: - pred = model(features, training=True) - loss = keras.losses.binary_crossentropy(labels, pred) - loss = tf.nn.compute_average_loss(loss) - grads = tape.gradient(loss, model.trainable_variables) - optimizer.apply_gradients( - list(zip(grads, model.trainable_variables)) - ) - - actual_pred = tf.cast(tf.greater(pred, 0.5), tf.int64) - accuracy.update_state(labels, actual_pred) - - strategy.run(step_fn, args=(next(iterator),)) - - distributed_dataset = strategy.distribute_datasets_from_function( - dataset_fn - ) - distributed_iterator = iter(distributed_dataset) - num_epochs = 4 - num_steps = 7 - for _ in range(num_epochs): - accuracy.reset_state() - for _ in range(num_steps): - train_step(distributed_iterator) - - self.assertGreater(accuracy.result().numpy(), 0.5) - self.assertEqual( - optimizer.iterations.numpy(), num_epochs * num_steps - ) - - # Test save/load/serving the trained model. - test_utils_obj.test_save_load_serving_model( - model, feature_mapper, test_utils_obj.define_reverse_lookup_layer() - ) - - -if __name__ == "__main__": - # Enable manual variable initialization to make sure variables are - # initialized by `init_restore_or_wait_for_variables`. - backend.manual_variable_initialization(True) - with tf.compat.v1.test.mock.patch.object(sys, "exit", os._exit): - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/multi_worker_testing_utils.py b/keras/distribute/multi_worker_testing_utils.py deleted file mode 100644 index c0fd9d19d96..00000000000 --- a/keras/distribute/multi_worker_testing_utils.py +++ /dev/null @@ -1,272 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities for testing multi-worker distribution strategies with Keras.""" - -import threading -import unittest - -import tensorflow.compat.v2 as tf - -import keras -from keras.optimizers.legacy import gradient_descent - -# isort: off -from tensorflow.python.distribute.cluster_resolver import ( - SimpleClusterResolver, -) -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.training.server_lib import ( - ClusterSpec, -) - -_portpicker_import_error = None -try: - import portpicker -except ( - ImportError, - ModuleNotFoundError, -) as _error: - _portpicker_import_error = _error - portpicker = None - -ASSIGNED_PORTS = set() -lock = threading.Lock() - - -def mnist_synthetic_dataset( - batch_size, steps_per_epoch, target_values="constant" -): - """Generate synthetic MNIST dataset for testing.""" - # train dataset - x_train = tf.ones( - [batch_size * steps_per_epoch, 28, 28, 1], dtype=tf.float32 - ) - if target_values == "constant": - y_train = tf.ones([batch_size * steps_per_epoch, 1], dtype=tf.int32) - elif target_values == "increasing": - y_train = tf.reshape( - tf.range(batch_size * steps_per_epoch, dtype=tf.int32), (-1, 1) - ) - else: - raise ValueError( - 'Unknown value for `target_values` "' - + str(target_values) - + '". Valid options are "constant" and "increasing".' - ) - - train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)) - train_ds = train_ds.repeat() - # train_ds = train_ds.shuffle(100) - train_ds = train_ds.batch(batch_size, drop_remainder=True) - - # eval dataset - x_test = tf.random.uniform([10000, 28, 28, 1], dtype=tf.float32) - y_test = tf.random.uniform([10000, 1], minval=0, maxval=9, dtype=tf.int32) - eval_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)) - eval_ds = eval_ds.batch(batch_size, drop_remainder=True) - - return train_ds, eval_ds - - -def get_mnist_model(input_shape): - """Define a deterministically-initialized CNN model for MNIST testing.""" - inputs = keras.Input(shape=input_shape) - x = keras.layers.Conv2D( - 32, - kernel_size=(3, 3), - activation="relu", - kernel_initializer=keras.initializers.TruncatedNormal(seed=99), - )(inputs) - x = keras.layers.BatchNormalization()(x) - x = keras.layers.Flatten()(x) + keras.layers.Flatten()(x) - x = keras.layers.Dense( - 10, - activation="softmax", - kernel_initializer=keras.initializers.TruncatedNormal(seed=99), - )(x) - model = keras.Model(inputs=inputs, outputs=x) - - # TODO(yuefengz): optimizer with slot variables doesn't work because of - # optimizer's bug. - # TODO(yuefengz): we should not allow non-v2 optimizer. - model.compile( - loss=keras.losses.sparse_categorical_crossentropy, - optimizer=gradient_descent.SGD(learning_rate=0.001), - metrics=["accuracy"], - ) - return model - - -def make_parameter_server_cluster(num_workers, num_ps): - cluster_def = create_in_process_cluster( - num_workers=num_workers, num_ps=num_ps, rpc_layer="grpc" - ) - return SimpleClusterResolver(ClusterSpec(cluster_def), rpc_layer="grpc") - - -def pick_unused_port(): - """Returns an unused and unassigned local port.""" - if _portpicker_import_error: - raise _portpicker_import_error - - global ASSIGNED_PORTS - with lock: - while True: - try: - port = portpicker.pick_unused_port() - except portpicker.NoFreePortFoundError: - raise unittest.SkipTest( - "Flakes in portpicker library do not represent " - "TensorFlow errors." - ) - if port > 10000 and port not in ASSIGNED_PORTS: - ASSIGNED_PORTS.add(port) - logging.info("Using local port %r", port) - return port - - -def _create_cluster( - num_workers, - num_ps, - has_chief=False, - has_eval=False, - protocol="grpc", - worker_config=None, - ps_config=None, - eval_config=None, - worker_name="worker", - ps_name="ps", - chief_name="chief", -): - """Creates and starts local servers and returns the cluster_spec dict.""" - if _portpicker_import_error: - raise _portpicker_import_error - worker_ports = [pick_unused_port() for _ in range(num_workers)] - ps_ports = [pick_unused_port() for _ in range(num_ps)] - - cluster_dict = {} - if num_workers > 0: - cluster_dict[worker_name] = [ - f"localhost:{port}" for port in worker_ports - ] - if num_ps > 0: - cluster_dict[ps_name] = [f"localhost:{port}" for port in ps_ports] - if has_eval: - cluster_dict["evaluator"] = [f"localhost:{pick_unused_port()}"] - if has_chief: - cluster_dict[chief_name] = [f"localhost:{pick_unused_port()}"] - - cs = tf.train.ClusterSpec(cluster_dict) - - for i in range(num_workers): - tf.distribute.Server( - cs, - job_name=worker_name, - protocol=protocol, - task_index=i, - config=worker_config, - start=True, - ) - - for i in range(num_ps): - tf.distribute.Server( - cs, - job_name=ps_name, - protocol=protocol, - task_index=i, - config=ps_config, - start=True, - ) - - if has_chief: - tf.distribute.Server( - cs, - job_name=chief_name, - protocol=protocol, - task_index=0, - config=worker_config, - start=True, - ) - - if has_eval: - tf.distribute.Server( - cs, - job_name="evaluator", - protocol=protocol, - task_index=0, - config=eval_config, - start=True, - ) - - return cluster_dict - - -def create_in_process_cluster( - num_workers, num_ps, has_chief=False, has_eval=False, rpc_layer="grpc" -): - """Create an in-process cluster that consists of only standard server.""" - # Leave some memory for cuda runtime. - gpu_mem_frac = 0.7 / (num_workers + int(has_chief) + int(has_eval)) - worker_config = tf.compat.v1.ConfigProto() - worker_config.gpu_options.per_process_gpu_memory_fraction = gpu_mem_frac - - # The cluster may hang if workers don't have enough inter_op threads. See - # b/172296720 for more details. - if worker_config.inter_op_parallelism_threads < num_workers + 1: - worker_config.inter_op_parallelism_threads = num_workers + 1 - - # Enable collective ops which has no impact on non-collective ops. - if has_chief: - worker_config.experimental.collective_group_leader = ( - "/job:chief/replica:0/task:0" - ) - else: - worker_config.experimental.collective_group_leader = ( - "/job:worker/replica:0/task:0" - ) - - ps_config = tf.compat.v1.ConfigProto() - ps_config.device_count["GPU"] = 0 - - eval_config = tf.compat.v1.ConfigProto() - eval_config.experimental.collective_group_leader = "" - - # Create in-process servers. Once an in-process tensorflow server is - # created, there is no way to terminate it. So we create one cluster per - # test process. We could've started the server in another process, we could - # then kill that process to terminate the server. The reasons why we don"t - # want multiple processes are - # 1) it is more difficult to manage these processes; - # 2) there is something global in CUDA such that if we initialize CUDA in - # the parent process, the child process cannot initialize it again and thus - # cannot use GPUs (https://stackoverflow.com/questions/22950047). - cluster = None - try: - cluster = _create_cluster( - num_workers, - num_ps=num_ps, - has_chief=has_chief, - has_eval=has_eval, - worker_config=worker_config, - ps_config=ps_config, - eval_config=eval_config, - protocol=rpc_layer, - ) - except tf.errors.UnknownError as e: - if "Could not start gRPC server" in e.message: - raise unittest.SkipTest("Cannot start std servers.") - else: - raise - return cluster diff --git a/keras/distribute/optimizer_combinations.py b/keras/distribute/optimizer_combinations.py deleted file mode 100644 index 9df667080ac..00000000000 --- a/keras/distribute/optimizer_combinations.py +++ /dev/null @@ -1,136 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Strategy and optimizer combinations for combinations.combine().""" - -import tensorflow.compat.v2 as tf - -from keras.optimizers import adam as adam_experimental -from keras.optimizers.legacy import adadelta as adadelta_keras_v2 -from keras.optimizers.legacy import adagrad as adagrad_keras_v2 -from keras.optimizers.legacy import adam as adam_keras_v2 -from keras.optimizers.legacy import adamax as adamax_keras_v2 -from keras.optimizers.legacy import ftrl as ftrl_keras_v2 -from keras.optimizers.legacy import ( - gradient_descent as gradient_descent_keras_v2, -) -from keras.optimizers.legacy import nadam as nadam_keras_v2 -from keras.optimizers.legacy import rmsprop as rmsprop_keras_v2 - -gradient_descent_optimizer_v1_fn = ( - tf.__internal__.test.combinations.NamedObject( - "GradientDescentV1", - lambda: tf.compat.v1.train.GradientDescentOptimizer(0.001), - ) -) -adagrad_optimizer_v1_fn = tf.__internal__.test.combinations.NamedObject( - "AdagradV1", lambda: tf.compat.v1.train.AdagradOptimizer(0.001) -) -adam_optimizer_v1_fn = tf.__internal__.test.combinations.NamedObject( - "AdamV1", lambda: tf.compat.v1.train.AdamOptimizer(0.001, epsilon=1) -) -ftrl_optimizer_v1_fn = tf.__internal__.test.combinations.NamedObject( - "FtrlV1", lambda: tf.compat.v1.train.FtrlOptimizer(0.001) -) -rmsprop_optimizer_v1_fn = tf.__internal__.test.combinations.NamedObject( - "RmsPropV1", lambda: tf.compat.v1.train.RMSPropOptimizer(0.001) -) - -# TODO(shiningsun): consider adding the other v1 optimizers -optimizers_v1 = [ - gradient_descent_optimizer_v1_fn, - adagrad_optimizer_v1_fn, - ftrl_optimizer_v1_fn, - rmsprop_optimizer_v1_fn, -] - -adadelta_optimizer_keras_v2_fn = tf.__internal__.test.combinations.NamedObject( - "AdadeltaKerasV2", lambda: adadelta_keras_v2.Adadelta(0.001) -) -adagrad_optimizer_keras_v2_fn = tf.__internal__.test.combinations.NamedObject( - "AdagradKerasV2", lambda: adagrad_keras_v2.Adagrad(0.001) -) -adam_optimizer_keras_v2_fn = tf.__internal__.test.combinations.NamedObject( - "AdamKerasV2", lambda: adam_keras_v2.Adam(0.001, epsilon=1.0) -) -adam_experimental_fn = tf.__internal__.test.combinations.NamedObject( - "AdamExperimental", lambda: adam_experimental.Adam(0.001) -) -adamax_optimizer_keras_v2_fn = tf.__internal__.test.combinations.NamedObject( - "AdamaxKerasV2", lambda: adamax_keras_v2.Adamax(0.001, epsilon=1.0) -) -nadam_optimizer_keras_v2_fn = tf.__internal__.test.combinations.NamedObject( - "NadamKerasV2", lambda: nadam_keras_v2.Nadam(0.001, epsilon=1.0) -) -ftrl_optimizer_keras_v2_fn = tf.__internal__.test.combinations.NamedObject( - "FtrlKerasV2", lambda: ftrl_keras_v2.Ftrl(0.001) -) -gradient_descent_optimizer_keras_v2_fn = ( - tf.__internal__.test.combinations.NamedObject( - "GradientDescentKerasV2", lambda: gradient_descent_keras_v2.SGD(0.001) - ) -) -rmsprop_optimizer_keras_v2_fn = tf.__internal__.test.combinations.NamedObject( - "RmsPropKerasV2", lambda: rmsprop_keras_v2.RMSprop(0.001) -) - -# TODO(shiningsun): consider adding the other v2 optimizers -optimizers_v2 = [ - gradient_descent_optimizer_keras_v2_fn, - adagrad_optimizer_keras_v2_fn, -] - -optimizers_v1_and_v2 = optimizers_v1 + optimizers_v2 - - -def distributions_and_v1_optimizers(): - """A common set of combination with DistributionStrategies and - Optimizers.""" - return tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.one_device_strategy, - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus_no_merge_call, # noqa: E501 - ], - optimizer_fn=optimizers_v1, - ) - - -def distributions_and_v2_optimizers(): - """A common set of combination with DistributionStrategies and - Optimizers.""" - return tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.one_device_strategy, - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus_no_merge_call, # noqa: E501 - ], - optimizer_fn=optimizers_v2, - ) - - -def distributions_and_v1_and_v2_optimizers(): - """A common set of combination with DistributionStrategies and - Optimizers.""" - return tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.one_device_strategy, - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, # noqa: E501 - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus_no_merge_call, # noqa: E501 - ], - optimizer_fn=optimizers_v1_and_v2, - ) diff --git a/keras/distribute/parameter_server_evaluation_test.py b/keras/distribute/parameter_server_evaluation_test.py deleted file mode 100644 index 647d35d85a2..00000000000 --- a/keras/distribute/parameter_server_evaluation_test.py +++ /dev/null @@ -1,195 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for evaluation using Keras model and ParameterServerStrategy.""" - -import time - -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.distribute import ( - multi_worker_test_base, -) -from tensorflow.python.distribute.cluster_resolver import ( - SimpleClusterResolver, -) -from tensorflow.python.ops import resource_variable_ops - - -# TODO(yuefengz): move the following implementation to Keras core. -class MeanMetricSpec(tf.TypeSpec): - def __init__(self, config, weights): - self._config = config - self._weights = weights - - def _serialize(self): - return (self._config, self._weights) - - @property - def value_type(self): - return MeanMetricAsCompositeTensor - - @property - def _component_specs(self): - return self._weights - - def _to_components(self, value): - return value.weights - - def _from_components(self, weights): - counter = [0] - - def fetch_variable(next_creator, **kwargs): - del next_creator, kwargs - # TODO(yuefengz): verify the var creation order matches the weights - # property - var = weights[counter[0]] - counter[0] += 1 - return var - - with tf.variable_creator_scope(fetch_variable): - ret = MeanMetricAsCompositeTensor.from_config(self._config) - assert len(weights) == len(ret.weights) - return ret - - -class MeanMetricAsCompositeTensor( - keras.metrics.Mean, tf.__internal__.CompositeTensor -): - def element_spec(self): - raise NotImplementedError("element_spec not implemented") - - @property - def _type_spec(self): - weight_specs = [ - resource_variable_ops.VariableSpec.from_value(w) - for w in self.weights - ] - return MeanMetricSpec(self.get_config(), weight_specs) - - -@test_utils.run_v2_only -class EvaluationTest(tf.test.TestCase): - @classmethod - def setUpClass(cls): - super(EvaluationTest, cls).setUpClass() - cls._cluster = multi_worker_test_base.create_multi_process_cluster( - num_workers=3, num_ps=2, rpc_layer="grpc" - ) - cls._cluster_def = ( - cls._cluster.cluster_resolver.cluster_spec().as_dict() - ) - cluster_resolver = SimpleClusterResolver( - tf.train.ClusterSpec(cls._cluster_def), rpc_layer="grpc" - ) - - cls.strategy = tf.distribute.experimental.ParameterServerStrategy( - cluster_resolver - ) - cls.cluster_coord = ( - tf.distribute.experimental.coordinator.ClusterCoordinator( - cls.strategy - ) - ) - - @classmethod - def tearDownClass(cls): - cls._cluster.stop() - cls._cluster = None - super(EvaluationTest, cls).tearDownClass() - - def testPassMetricToTfFunction(self): - metric1 = MeanMetricAsCompositeTensor() - metric2 = MeanMetricAsCompositeTensor() - - self.assertEqual(metric1.result(), 0.0) - self.assertEqual(metric2.result(), 0.0) - - tf.nest.assert_same_structure( - metric1, metric2._type_spec, expand_composites=True - ) - tf.nest.assert_same_structure( - metric1._type_spec, metric2, expand_composites=True - ) - - @tf.function - def func(m): - m.update_state([1.0, 2.0]) - - func(metric1) - self.assertEqual(metric1.result(), 1.5) - self.assertEqual(metric2.result(), 0.0) - - concrete_f = func.get_concrete_function(metric1._type_spec) - concrete_f(metric2) - self.assertEqual(metric1.result(), 1.5) - self.assertEqual(metric2.result(), 1.5) - - def testModelEvaluatePrototype(self): - def metric_fn(): - return MeanMetricAsCompositeTensor() - - # TODO(yuefengz): make _create_per_worker_resources public and get rid - # of the type_spec hack. - per_worker_metric = self.cluster_coord._create_per_worker_resources( - metric_fn - ) - - metric_on_coordinator = metric_fn() - - for metric_remote_value in per_worker_metric._values: - metric_remote_value._type_spec = metric_on_coordinator._type_spec - - def dataset_fn(): - return tf.data.Dataset.range(1024) - - # TODO(yuefengz): integrate it into model.evaluate. - - @tf.function - def eval_fn(total_shard, shard_id, metric): - metric.reset_states() - dataset_shard = dataset_fn().shard(total_shard, shard_id) - for i in dataset_shard: - metric.update_state(i) - - # TODO(yuefengz): we should return the internal state of the metric - # and then use the combiner API. - return metric.result() - - total_shards = 128 - result_remote_values = [] - for i in range(total_shards): - result_remote_values.append( - self.cluster_coord.schedule( - eval_fn, args=(total_shards, i, per_worker_metric) - ) - ) - - self._cluster.kill_task("worker", 0) - self._cluster.kill_task("worker", 1) - time.sleep(1) - self._cluster.start_task("worker", 0) - self._cluster.start_task("worker", 1) - - results = [r.fetch() for r in result_remote_values] - result = sum(results) / len(results) - self.assertEqual(result, 511.5) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/parameter_server_exact_evaluation_test.py b/keras/distribute/parameter_server_exact_evaluation_test.py deleted file mode 100644 index c9cadd1ad02..00000000000 --- a/keras/distribute/parameter_server_exact_evaluation_test.py +++ /dev/null @@ -1,389 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for evaluation using Keras model and ParameterServerStrategy.""" -import threading -import time - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized -from tensorflow.python.platform import tf_logging as logging - -import keras -from keras.metrics import base_metric -from keras.testing_infra import test_utils -from keras.utils import dataset_creator -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.distribute import ( - multi_worker_test_base, -) -from tensorflow.python.distribute.cluster_resolver import ( - SimpleClusterResolver, -) - - -def _aggregate_results(coordinator_metrics, results): - for result in results: - for metric in coordinator_metrics: - if metric.name == "loss": - continue - assert metric.name in result.keys() - metric_result = result[metric.name] - assert len(metric_result) == len(metric.weights) - for weight, val in zip(metric.weights, metric_result): - weight.assign_add(val) - return coordinator_metrics - - -@test_utils.run_v2_only -class ExactEvaluationTest(tf.test.TestCase, parameterized.TestCase): - def setUp(self): - super(ExactEvaluationTest, self).setUp() - self._cluster = multi_worker_test_base.create_multi_process_cluster( - num_workers=5, num_ps=1, rpc_layer="grpc" - ) - self._cluster_def = ( - self._cluster.cluster_resolver.cluster_spec().as_dict() - ) - cluster_resolver = SimpleClusterResolver( - tf.train.ClusterSpec(self._cluster_def), rpc_layer="grpc" - ) - - self.strategy = tf.distribute.experimental.ParameterServerStrategy( - cluster_resolver - ) - self.cluster_coord = ( - tf.distribute.experimental.coordinator.ClusterCoordinator( - self.strategy - ) - ) - - def tearDown(self): - super(ExactEvaluationTest, self).tearDown() - self._cluster.stop() - self._cluster = None - - def testDistributedMetrics(self): - coordinator_metrics = [ - keras.metrics.AUC(), - keras.metrics.MeanAbsoluteError(), - ] - - def dataset_fn(): - y_true = np.concatenate((np.zeros(512), np.ones(512))) - y_pred = np.concatenate( - (np.linspace(0, 1, 512), np.linspace(0, 1, 512)) - ) - return tf.data.Dataset.from_tensor_slices((y_true, y_pred)).batch(1) - - @tf.function - def eval_shard_fn(total_shard, shard_id, worker_dataset): - with tf_utils.with_metric_local_vars_scope(): - worker_metrics = [] - for coord_metric in coordinator_metrics: - worker_metrics.append( - base_metric.clone_metric(coord_metric) - ) - - dataset_shard = worker_dataset.shard(total_shard, shard_id) - - for value in dataset_shard: - for worker_metric in worker_metrics: - worker_metric.update_state(*value) - - return { - metric.name: metric.weights for metric in worker_metrics - } - - per_worker_dataset = self.cluster_coord.create_per_worker_dataset( - dataset_fn() - ) - # Trigger dataset creation on workers without creating an iterator - built_dataset = per_worker_dataset.build() - - # needs to be a tf.constant so it doesn't get re-traced each time - # needs to be int64 because that's what Dataset.shard expects - total_shards = tf.constant(100, dtype=tf.int64) - - result_remote_values = [] - logging.info("Scheduling eval closures") - for i in tf.range(total_shards): - result_remote_values.append( - self.cluster_coord.schedule( - eval_shard_fn, - args=(total_shards, i, built_dataset), - ) - ) - - logging.info("Killing 2 workers") - self._cluster.kill_task("worker", 0) - self._cluster.kill_task("worker", 1) - time.sleep(1) - self._cluster.start_task("worker", 0) - self._cluster.start_task("worker", 1) - - self.cluster_coord.join() - results = [r.fetch() for r in result_remote_values] - coordinator_metrics = _aggregate_results(coordinator_metrics, results) - - expected_results = {"auc": 0.5, "mean_absolute_error": 0.5} - for metric in coordinator_metrics: - self.assertAlmostEqual( - metric.result().numpy(), expected_results[metric.name], places=5 - ) - - def testModelAddMetricErrors(self): - class MyModel(keras.Model): - def call(self, x): - self.add_metric( - tf.cast(x >= 0, tf.float32), - aggregation="sum", - name="num_positive", - ) - return tf.cast(tf.add(x, 1), tf.float32) - - dataset = tf.data.Dataset.zip( - (tf.data.Dataset.range(-5, 5), tf.data.Dataset.range(-4, 6)) - ).batch(1) - with self.strategy.scope(): - model = MyModel() - model.compile( - metrics=[keras.metrics.Accuracy()], - loss="binary_crossentropy", - pss_evaluation_shards="auto", - ) - - # run a single train step to compile metrics - model.fit(dataset, steps_per_epoch=1) - with self.assertRaises(ValueError): - model.evaluate(dataset, return_dict=True) - - def testModelInfiniteDatasetErrors(self): - dataset = tf.data.Dataset.range(10).repeat() - with self.strategy.scope(): - model = keras.Model() - model.compile(pss_evaluation_shards="auto") - with self.assertRaisesRegex( - ValueError, - "When performing exact evaluation, the dataset must " - "be finite. Make sure not to call `repeat\(\)` on your " - "dataset.", - ): - model.evaluate(dataset) - - def testTrainingWithVariablesCreatedInFunction(self): - # When metrics are specified via string, they are instantiated in a - # tf.function in the the first pass of the model when update_state is - # called. This use case should not be affected by exact visitation - # guarantee support. - - class MyModel(keras.Model): - @tf.function - def worker_fn(self, y_true, y_pred): - self.compiled_metrics.update_state(y_true, y_pred) - - with self.strategy.scope(): - model = MyModel() - model.compile(metrics=["accuracy"]) - - y_true_0 = tf.convert_to_tensor([[0.0], [0.0], [0.0]]) - y_pred_0 = tf.convert_to_tensor([[0.0], [0.0], [1.0]]) - self.cluster_coord.schedule(model.worker_fn, args=(y_true_0, y_pred_0)) - - y_true_1 = tf.convert_to_tensor([[0.0], [0.0], [0.0]]) - y_pred_1 = tf.convert_to_tensor([[0.0], [1.0], [1.0]]) - self.cluster_coord.schedule(model.worker_fn, args=(y_true_1, y_pred_1)) - - self.cluster_coord.join() - for metric in model.compiled_metrics.metrics: - self.assertAlmostEqual(metric.result().numpy(), 0.5) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - input_type=["dataset", "dataset_creator", "distributed_dataset"], - eval_in_model_fit=[True, False], - use_auto=[True, False], - custom_metric=[True, False], - ) - ) - def testDistributedModelEvaluation( - self, input_type, eval_in_model_fit, use_auto, custom_metric - ): - - # Define dataset by batch size, number of shards, and batches per shard - batch_size = 16 - num_data_shards = 32 - batches_per_shard = 4 - num_examples = batch_size * num_data_shards * batches_per_shard - - # Input dataset x: just the sequence of numbers up to the dataset size - # Input dataset y: defined such that each shard has index equal to the - # number of y_i's == True in that shard - expected_acc = sum(range(num_data_shards)) / num_examples - - # The predictions y_pred from this dummy model are fixed to True. This - # way we can control the expected accuracy by just modifying y. - class MyModel(keras.Model): - def __call__(self, x, training=False): - return tf.cast(x >= 0, tf.float32) - - def dataset_fn(input_context=None): - del input_context - x = np.arange(num_examples) - - def make_batch_with_n_true(n): - return np.concatenate((np.ones(n), np.zeros(batch_size - n))) - - y = np.zeros(num_examples) - batch_idxs = np.arange(num_examples // batch_size) - for shard_idx in range(num_data_shards): - num_correct = shard_idx - # Dataset.shard uses mod sharding, so each shard consists of the - # batches whose index mod (num_data_shards) = shard_idx - batch_idxs_for_shard = np.where( - np.mod(batch_idxs, num_data_shards) == shard_idx - )[0] - for batch_idx in batch_idxs_for_shard: - # Select the individual data elements for this batch - batch_range = range( - batch_idx * batch_size, (batch_idx + 1) * batch_size - ) - num_for_batch = min(num_correct, batch_size) - y[batch_range] = make_batch_with_n_true(num_for_batch) - num_correct -= num_for_batch - - dataset = tf.data.Dataset.from_tensor_slices((x, y)) - - dataset = dataset.batch(batch_size) - return dataset - - class CustomAccuracy(keras.metrics.Metric): - def __init__(self, name="custom_acc", dtype=None): - super().__init__(name, dtype) - self.total = self.add_weight("total", initializer="zeros") - self.count = self.add_weight("count", initializer="zeros") - - def update_state(self, y_true, y_pred, sample_weight=None): - y_true = tf.cast(y_true, tf.float32) - y_pred = tf.cast(y_pred, tf.float32) - matches = tf.cast(tf.equal(y_true, y_pred), tf.float32) - count = tf.reduce_sum(matches) - self.count.assign_add(count) - total = tf.cast(tf.size(y_true), tf.float32) - self.total.assign_add(total) - - def result(self): - return self.count / self.total - - def reset_state(self): - self.total.assign(0) - self.count.assign(0) - - def build_metric(): - metric = ( - CustomAccuracy() if custom_metric else keras.metrics.Accuracy() - ) - return metric - - logging.info("Local evaluation (exact)") - model = MyModel() - model.compile(metrics=[build_metric()]) - ground_truth_evaluation = model.evaluate(dataset_fn()) - logging.info( - "Result local evaluation (exact): %s", ground_truth_evaluation - ) - self.assertAlmostEqual(ground_truth_evaluation[1], expected_acc) - - logging.info("Distributed evaluation (exact)") - if use_auto: - num_shards = "auto" - else: - num_shards = 5 * self.strategy._extended._num_workers - - with self.strategy.scope(): - model = MyModel() - model.compile( - metrics=[build_metric()], - loss="binary_crossentropy", - pss_evaluation_shards=num_shards, - ) - - if input_type == "dataset": - train_dataset = dataset_fn() - val_dataset = dataset_fn() - elif input_type == "dataset_creator": - train_dataset = dataset_creator.DatasetCreator(dataset_fn) - val_dataset = dataset_creator.DatasetCreator(dataset_fn) - elif input_type == "distributed_dataset": - train_dataset = self.strategy.experimental_distribute_dataset( - dataset_fn() - ) - val_dataset = self.strategy.experimental_distribute_dataset( - dataset_fn() - ) - - metric_name = "custom_acc" if custom_metric else "accuracy" - expected_results = {metric_name: expected_acc} - - def kill_and_revive_in_thread(wait_secs=2): - def _kill_and_revive_fn(): - time.sleep(wait_secs) - logging.info("Killing 2 workers") - self._cluster.kill_task("worker", 0) - self._cluster.kill_task("worker", 1) - time.sleep(1) - self._cluster.start_task("worker", 0) - self._cluster.start_task("worker", 1) - - restart_thread = threading.Thread(target=_kill_and_revive_fn) - restart_thread.start() - return restart_thread - - eval_results = {} - if eval_in_model_fit: - kill_and_revive_in_thread() - history = model.fit( - train_dataset, - steps_per_epoch=1, - validation_data=val_dataset, - ) - logging.info( - "History: params (%r), history (%r)", - history.params, - history.history, - ) - eval_results = { - metric.split("val_")[1]: val[-1] - for metric, val in history.history.items() - if metric.startswith("val_") - } - else: - # run a single train step to compile metrics - model.fit(train_dataset, steps_per_epoch=1) - kill_and_revive_in_thread() - eval_results = model.evaluate(val_dataset, return_dict=True) - eval_results = { - metric: val.numpy() for metric, val in eval_results.items() - } - for metric, val in eval_results.items(): - if "loss" not in metric: - self.assertIn(metric, expected_results) - self.assertAlmostEqual(val, expected_results[metric], places=5) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/distribute/saved_model_mixed_api_test.py b/keras/distribute/saved_model_mixed_api_test.py deleted file mode 100644 index 0aaeed7c114..00000000000 --- a/keras/distribute/saved_model_mixed_api_test.py +++ /dev/null @@ -1,100 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for saving and loading with mixed APIs with distribution strategies. - -For saving, Keras's export_saved_model() API is used; and for loading, -saved_model's load() API is used. Keras's export_save_model() when used with -`serving_only` parameter equals to True should be the same as using -tf.saved_model.save(). -""" - -import tensorflow.compat.v2 as tf - -from keras.distribute import saved_model_test_base as test_base -from keras.saving.legacy import save -from keras.testing_infra import test_utils - -_DEFAULT_FUNCTION_KEY = "serving_default" - - -@test_utils.run_all_without_tensor_float_32( - "Uses Dense layers, which call matmul" -) -class SavedModelSaveAndLoadTest(test_base.TestSavedModelBase): - def setUp(self): - self._root_dir = "saved_model_save_load" - super().setUp() - - def _save_model(self, model, saved_dir): - save.save_model(model, saved_dir, save_format="tf") - - def _load_and_run_model( - self, distribution, saved_dir, predict_dataset, output_name="output_1" - ): - return test_base.load_and_run_with_saved_model_api( - distribution, saved_dir, predict_dataset, output_name - ) - - @tf.__internal__.distribute.combinations.generate( - test_base.simple_models_with_strategies() - ) - def test_save_no_strategy_restore_strategy( - self, model_and_input, distribution - ): - self.run_test_save_no_strategy_restore_strategy( - model_and_input, distribution - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - test_base.simple_models_with_strategies(), - tf.__internal__.test.combinations.combine( - save_in_scope=[True, False] - ), - ) - ) - def test_save_strategy_restore_no_strategy( - self, model_and_input, distribution, save_in_scope - ): - self.run_test_save_strategy_restore_no_strategy( - model_and_input, distribution, save_in_scope - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - test_base.simple_models_with_strategy_pairs(), - tf.__internal__.test.combinations.combine( - save_in_scope=[True, False] - ), - ) - ) - def test_save_strategy_restore_strategy( - self, - model_and_input, - distribution_for_saving, - distribution_for_restoring, - save_in_scope, - ): - self.run_test_save_strategy_restore_strategy( - model_and_input, - distribution_for_saving, - distribution_for_restoring, - save_in_scope, - ) - - -if __name__ == "__main__": - tf.compat.v1.enable_eager_execution() - tf.test.main() diff --git a/keras/distribute/saved_model_save_load_test.py b/keras/distribute/saved_model_save_load_test.py deleted file mode 100644 index 2ca75d238a8..00000000000 --- a/keras/distribute/saved_model_save_load_test.py +++ /dev/null @@ -1,227 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for saving and loading using tf's saved_model APIs with DS.""" - -import os - -import tensorflow.compat.v2 as tf - -from keras.distribute import model_combinations -from keras.distribute import saved_model_test_base as test_base -from keras.testing_infra import test_utils - - -@test_utils.run_v2_only -@test_utils.run_all_without_tensor_float_32( - "Uses Dense layers, which call matmul" -) -class SavedModelKerasModelTest(test_base.TestSavedModelBase): - def setUp(self): - self._root_dir = "saved_model_save_load" - super().setUp() - - def _save_model(self, model, saved_dir): - tf.saved_model.save(model, saved_dir) - - def _load_and_run_model( - self, distribution, saved_dir, predict_dataset, output_name="output_1" - ): - return test_base.load_and_run_with_saved_model_api( - distribution, saved_dir, predict_dataset, output_name - ) - - @tf.__internal__.distribute.combinations.generate( - test_base.simple_models_with_strategies() - ) - def test_save_no_strategy_restore_strategy( - self, model_and_input, distribution - ): - self.run_test_save_no_strategy_restore_strategy( - model_and_input, distribution - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - test_base.simple_models_with_strategies(), - tf.__internal__.test.combinations.combine( - save_in_scope=[True, False] - ), - ) - ) - def test_save_strategy_restore_no_strategy( - self, model_and_input, distribution, save_in_scope - ): - self.run_test_save_strategy_restore_no_strategy( - model_and_input, distribution, save_in_scope - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - test_base.simple_models_with_strategy_pairs(), - tf.__internal__.test.combinations.combine( - save_in_scope=[True, False] - ), - ) - ) - def test_save_strategy_restore_strategy( - self, - model_and_input, - distribution_for_saving, - distribution_for_restoring, - save_in_scope, - ): - self.run_test_save_strategy_restore_strategy( - model_and_input, - distribution_for_saving, - distribution_for_restoring, - save_in_scope, - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - test_base.simple_models_with_strategies(), - tf.__internal__.test.combinations.combine( - save_in_scope=[True, False] - ), - ) - ) - def test_no_variable_device_placement( - self, model_and_input, distribution, save_in_scope - ): - saved_dir = self.run_test_save_strategy( - model_and_input, distribution, save_in_scope - ) - func = tf.saved_model.load(saved_dir) - concrete_function = func.signatures[test_base._DEFAULT_FUNCTION_KEY] - for f in concrete_function.graph.as_graph_def().library.function: - for n in f.node_def: - if n.op == "ReadVariableOp": - self.assertEmpty(n.device) - - -@test_utils.run_v2_only -class SavedModelTFModuleTest(test_base.TestSavedModelBase): - def setUp(self): - self._root_dir = "saved_model_save_load" - super().setUp() - - def _train_model(self, model, x_train, y_train, batch_size): - pass - - def _predict_with_model(self, distribution, model, predict_dataset): - if distribution: - dist_predict_dataset = distribution.experimental_distribute_dataset( - predict_dataset - ) - per_replica_predict_data = next(iter(dist_predict_dataset)) - result = distribution.run(model, args=(per_replica_predict_data,)) - # Convert the per_replica value to a list, then concatenate them - reduced = distribution.experimental_local_results(result) - concat = tf.concat(reduced, 0) - return concat - else: - return model(next(iter(predict_dataset))) - - def _save_model(self, model, saved_dir): - call = model.__call__.get_concrete_function(tf.TensorSpec(None)) - tf.saved_model.save(model, saved_dir, signatures=call) - - def _load_and_run_model( - self, distribution, saved_dir, predict_dataset, output_name="output_1" - ): - del output_name - model = tf.saved_model.load(saved_dir) - return self._predict_with_model(distribution, model, predict_dataset) - - @tf.__internal__.distribute.combinations.generate( - test_base.tfmodule_models_with_strategies() - ) - def test_save_no_strategy_restore_strategy( - self, model_and_input, distribution - ): - self.run_test_save_no_strategy_restore_strategy( - model_and_input, distribution - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - test_base.tfmodule_models_with_strategies(), - tf.__internal__.test.combinations.combine( - save_in_scope=[True, False] - ), - ) - ) - def test_save_strategy_restore_no_strategy( - self, model_and_input, distribution, save_in_scope - ): - self.run_test_save_strategy_restore_no_strategy( - model_and_input, distribution, save_in_scope - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - test_base.tfmodule_models_with_strategy_pairs(), - tf.__internal__.test.combinations.combine( - save_in_scope=[True, False] - ), - ) - ) - def test_save_strategy_restore_strategy( - self, - model_and_input, - distribution_for_saving, - distribution_for_restoring, - save_in_scope, - ): - self.run_test_save_strategy_restore_strategy( - model_and_input, - distribution_for_saving, - distribution_for_restoring, - save_in_scope, - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - model_and_input=[model_combinations.simple_tfmodule_model], - distribution=test_base.strategies - + [tf.__internal__.distribute.combinations.cloud_tpu_strategy], - ) - ) - def test_save_load_io_device(self, model_and_input, distribution): - saved_dir = os.path.join(self.get_temp_dir(), "io_device") - with distribution.scope(): - model = model_and_input.get_model() - x_train, y_train, _ = model_and_input.get_data() - batch_size = model_and_input.get_batch_size() - self._train_model(model, x_train, y_train, batch_size) - call = model.__call__.get_concrete_function(tf.TensorSpec(None)) - save_options = tf.saved_model.SaveOptions( - experimental_io_device="/job:localhost" - ) - tf.saved_model.save( - model, saved_dir, signatures=call, options=save_options - ) - load_options = tf.saved_model.LoadOptions( - experimental_io_device="/job:localhost" - ) - # Check that the model can be loaded and training continued without - # error. - with distribution.scope(): - loaded_model = tf.saved_model.load(saved_dir, options=load_options) - self._train_model(loaded_model, x_train, y_train, batch_size) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/distribute/saved_model_test_base.py b/keras/distribute/saved_model_test_base.py deleted file mode 100644 index 09e8e5aff18..00000000000 --- a/keras/distribute/saved_model_test_base.py +++ /dev/null @@ -1,287 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Base class for testing saving/loading with DS.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.distribute import model_combinations - -_RANDOM_SEED = 1337 -_DEFAULT_FUNCTION_KEY = "serving_default" - -_TOLERANCE = 1e-30 -# TPU uses bfloat16 for computation in hardware underlying, so it has less -# precision than CPU/GPU. -_TPU_TOLERANCE = 1e-7 - -PREDICT_STEPS = 1 - -simple_models = [ - model_combinations.simple_functional_model, - model_combinations.simple_sequential_model, - model_combinations.simple_subclass_model, -] - - -strategies = [ - tf.__internal__.distribute.combinations.default_strategy, - tf.__internal__.distribute.combinations.one_device_strategy, - tf.__internal__.distribute.combinations.one_device_strategy_gpu, - tf.__internal__.distribute.combinations.mirrored_strategy_with_one_cpu, - tf.__internal__.distribute.combinations.mirrored_strategy_with_one_gpu, - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, - tf.__internal__.distribute.combinations.tpu_strategy, - tf.__internal__.distribute.combinations.tpu_strategy_packed_var, - tf.__internal__.distribute.combinations.central_storage_strategy_with_two_gpus, # noqa: E501 -] - - -def simple_models_with_strategies(): - return tf.__internal__.test.combinations.combine( - model_and_input=simple_models, distribution=strategies, mode=["eager"] - ) - - -def simple_models_with_strategy_pairs(): - return tf.__internal__.test.combinations.combine( - model_and_input=simple_models, - distribution_for_saving=strategies, - distribution_for_restoring=strategies, - mode=["eager"], - ) - - -def tfmodule_models_with_strategies(): - return tf.__internal__.test.combinations.combine( - model_and_input=[model_combinations.simple_tfmodule_model], - distribution=strategies, - mode=["eager"], - ) - - -def tfmodule_models_with_strategy_pairs(): - return tf.__internal__.test.combinations.combine( - model_and_input=[model_combinations.simple_tfmodule_model], - distribution_for_saving=strategies, - distribution_for_restoring=strategies, - mode=["eager"], - ) - - -def load_and_run_with_saved_model_api( - distribution, saved_dir, predict_dataset, output_name -): - """Loads a saved_model using tf.saved_model API, and runs it.""" - func = tf.saved_model.load(saved_dir) - if distribution: - dist_predict_dataset = distribution.experimental_distribute_dataset( - predict_dataset - ) - per_replica_predict_data = next(iter(dist_predict_dataset)) - result = distribution.run( - func.signatures[_DEFAULT_FUNCTION_KEY], - args=(per_replica_predict_data,), - ) - result = result[output_name] - - # Convert the per_replica value to a list, then concatenate them - reduced = distribution.experimental_local_results(result) - concat = tf.concat(reduced, 0) - return concat - else: - result = func.signatures[_DEFAULT_FUNCTION_KEY]( - next(iter(predict_dataset)) - ) - return result[output_name] - - -class TestSavedModelBase(tf.test.TestCase, parameterized.TestCase): - """Base class for testing saving/loading with DS.""" - - def setUp(self): - np.random.seed(_RANDOM_SEED) - tf.compat.v1.set_random_seed(_RANDOM_SEED) - self._root_dir = "base" - super().setUp() - - def _save_model(self, model, saved_dir): - """Save the given model to the given saved_dir. - - This method needs to be implemented by the subclasses. - - Args: - model: a keras model object to save. - saved_dir: a string representing the path to save the keras model - """ - raise NotImplementedError("must be implemented in descendants") - - def _load_and_run_model( - self, distribution, saved_dir, predict_dataset, output_name="output_1" - ): - """Load the model and run 1 step of predict with it. - - This method must be implemented by the subclasses. - - Args: - distribution: the distribution strategy used to load the model. None - if no distribution strategy is used - saved_dir: the string representing the path where the model is saved. - predict_dataset: the data used to do the predict on the model for - cross_replica context. - output_name: the string representing the name of the output layer of - the model. - """ - - raise NotImplementedError("must be implemented in descendants") - - def _train_model(self, model, x_train, y_train, batch_size): - training_dataset = tf.data.Dataset.from_tensor_slices( - (x_train, y_train) - ) - training_dataset = training_dataset.repeat() - training_dataset = training_dataset.batch(batch_size) - - # Train the model for 1 epoch - model.fit(x=training_dataset, epochs=1, steps_per_epoch=100) - - def _predict_with_model(self, distribution, model, predict_dataset): - return model.predict(predict_dataset, steps=PREDICT_STEPS) - - def _get_predict_dataset(self, x_predict, batch_size): - predict_dataset = tf.data.Dataset.from_tensor_slices(x_predict) - predict_dataset = predict_dataset.repeat() - predict_dataset = predict_dataset.batch(batch_size) - return predict_dataset - - def run_test_save_no_strategy_restore_strategy( - self, model_and_input, distribution - ): - """Save a model without DS, and restore it with DS.""" - - saved_dir = os.path.join(self.get_temp_dir(), "0") - - model = model_and_input.get_model() - x_train, y_train, x_predict = model_and_input.get_data() - batch_size = model_and_input.get_batch_size() - predict_dataset = self._get_predict_dataset(x_predict, batch_size) - - self._train_model(model, x_train, y_train, batch_size) - result_before_save = self._predict_with_model( - None, model, predict_dataset - ) - - self._save_model(model, saved_dir) - - with distribution.scope(): - result_after_save = self._load_and_run_model( - distribution=distribution, - saved_dir=saved_dir, - predict_dataset=predict_dataset, - ) - - self.assertAllClose(result_before_save, result_after_save) - - def run_test_save_strategy_restore_no_strategy( - self, model_and_input, distribution, save_in_scope - ): - """Save a model with DS, and restore it without DS.""" - - saved_dir = os.path.join(self.get_temp_dir(), "1") - - with distribution.scope(): - model = model_and_input.get_model() - x_train, y_train, x_predict = model_and_input.get_data() - batch_size = model_and_input.get_batch_size() - - self._train_model(model, x_train, y_train, batch_size) - predict_dataset = self._get_predict_dataset(x_predict, batch_size) - result_before_save = self._predict_with_model( - distribution, model, predict_dataset - ) - - if save_in_scope: - with distribution.scope(): - self._save_model(model, saved_dir) - else: - self._save_model(model, saved_dir) - - load_result = self._load_and_run_model( - distribution=None, - saved_dir=saved_dir, - predict_dataset=predict_dataset, - ) - - self.assertAllClose(result_before_save, load_result) - - def run_test_save_strategy_restore_strategy( - self, - model_and_input, - distribution_for_saving, - distribution_for_restoring, - save_in_scope, - ): - """Save a model with DS, and restore it with potentially different - DS.""" - saved_dir = os.path.join(self.get_temp_dir(), "2") - - with distribution_for_saving.scope(): - model = model_and_input.get_model() - x_train, y_train, x_predict = model_and_input.get_data() - batch_size = model_and_input.get_batch_size() - - self._train_model(model, x_train, y_train, batch_size) - predict_dataset = self._get_predict_dataset(x_predict, batch_size) - result_before_save = self._predict_with_model( - distribution_for_saving, model, predict_dataset - ) - - if save_in_scope: - with distribution_for_saving.scope(): - self._save_model(model, saved_dir) - else: - self._save_model(model, saved_dir) - - with distribution_for_restoring.scope(): - - load_result = self._load_and_run_model( - distribution=distribution_for_restoring, - saved_dir=saved_dir, - predict_dataset=predict_dataset, - ) - - self.assertAllClose(result_before_save, load_result) - - def run_test_save_strategy( - self, model_and_input, distribution, save_in_scope - ): - """Save a model with DS.""" - saved_dir = os.path.join(self.get_temp_dir(), "3") - with distribution.scope(): - model = model_and_input.get_model() - x_train, y_train, _ = model_and_input.get_data() - batch_size = model_and_input.get_batch_size() - self._train_model(model, x_train, y_train, batch_size) - - if save_in_scope: - with distribution.scope(): - self._save_model(model, saved_dir) - else: - self._save_model(model, saved_dir) - return saved_dir diff --git a/keras/distribute/sharded_variable_test.py b/keras/distribute/sharded_variable_test.py deleted file mode 100644 index acd1e6fd3bf..00000000000 --- a/keras/distribute/sharded_variable_test.py +++ /dev/null @@ -1,471 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for ClusterCoordinator and Keras models.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.distribute import multi_worker_testing_utils -from keras.distribute import strategy_combinations -from keras.engine import base_layer - - -class ShardedVariableTest(tf.test.TestCase, parameterized.TestCase): - @classmethod - def setUpClass(cls): - super().setUpClass() - cls.strategy = tf.distribute.experimental.ParameterServerStrategy( - multi_worker_testing_utils.make_parameter_server_cluster(3, 2), - variable_partitioner=tf.distribute.experimental.partitioners.FixedShardsPartitioner( # noqa: E501 - 2 - ), - ) - - def assert_list_all_equal(self, list1, list2): - """Used in lieu of `assertAllEqual`. - - This is used to replace standard `assertAllEqual` for the cases where - `list1` and `list2` contain `AggregatingVariable`. Lists with - `AggregatingVariable` are not convertible to numpy array via `np.array` - calls as numpy would raise `ValueError: setting an array element with a - sequence.` - - Args: - list1: The first list to compare equality. - list2: The second list to compare equality. - """ - for lhs, rhs in zip(list1, list2): - self.assertEqual(lhs, rhs) - - def test_keras_layer_setattr(self): - class Layer(base_layer.Layer): - def __init__(self): - super().__init__() - self.w = tf.Variable([0, 1]) - self.b = tf.Variable([2, 3], trainable=False) - - with self.strategy.scope(): - layer = Layer() - - self.assertLen(layer.trainable_weights, 2) - self.assertEqual(layer.trainable_weights[0], [0]) - self.assertEqual(layer.trainable_weights[1], [1]) - self.assertLen(layer.non_trainable_weights, 2) - self.assertEqual(layer.non_trainable_weights[0], [2]) - self.assertEqual(layer.non_trainable_weights[1], [3]) - self.assert_list_all_equal( - layer.weights, layer.trainable_weights + layer.non_trainable_weights - ) - self.assert_list_all_equal( - layer.trainable_weights, layer.trainable_variables - ) - self.assert_list_all_equal(layer.weights, layer.variables) - - checkpoint_deps = set(layer._trackable_children().values()) - self.assertEqual(checkpoint_deps, set([layer.w, layer.b])) - - def test_keras_layer_add_weight(self): - class Layer(base_layer.Layer): - def __init__(self): - super().__init__() - self.w = self.add_weight( - shape=(2,), - initializer=lambda shape, dtype: tf.constant( - [0.0, 1.0], - ), - trainable=True, - ) - self.b = self.add_weight( - shape=(2,), - initializer=lambda shape, dtype: tf.constant([2.0, 3.0]), - trainable=False, - ) - - with self.strategy.scope(): - layer = Layer() - - self.assertLen(layer.trainable_weights, 2) - self.assertEqual(layer.trainable_weights[0], [0.0]) - self.assertEqual(layer.trainable_weights[1], [1.0]) - self.assertLen(layer.non_trainable_weights, 2) - self.assertEqual(layer.non_trainable_weights[0], [2.0]) - self.assertEqual(layer.non_trainable_weights[1], [3.0]) - self.assert_list_all_equal( - layer.weights, layer.trainable_weights + layer.non_trainable_weights - ) - self.assert_list_all_equal( - layer.trainable_weights, layer.trainable_variables - ) - self.assert_list_all_equal(layer.weights, layer.variables) - - checkpoint_deps = set(layer._trackable_children().values()) - self.assertEqual(checkpoint_deps, set([layer.w, layer.b])) - - def test_keras_metrics(self): - with self.strategy.scope(): - fp = keras.metrics.FalsePositives(thresholds=[0.2, 0.5, 0.7, 0.8]) - auc = keras.metrics.AUC(num_thresholds=10) - - @tf.function - def update(): - fp.update_state([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.3, 0.9]) - auc.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9]) - - @tf.function - def reset(): - fp.reset_state() - auc.reset_state() - - update() - self.assertEqual(auc.result(), 0.75) - self.assertAllEqual(fp.result(), [2.0, 1.0, 1.0, 1.0]) - reset() - self.assertEqual(auc.result(), 0.0) - self.assertAllEqual(fp.result(), [0.0, 0.0, 0.0, 0.0]) - - self.assertTrue(hasattr(auc.true_positives, "variables")) - self.assertTrue(hasattr(fp.accumulator, "variables")) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - shard_config=[ - [2, 2], - [2, 3], - [3, 2], - [2, 1], - [1, 1], - [1, 2], - [1, 3], - ], - model_type=["dense", "embedding"], - ) - ) - def test_saved_model_combined(self, shard_config, model_type): - """Test saving and loading models with various fixed numbers of shards. - - Args: - shard_config: The number of shards to use per variable before and - after loading. For example, [1, 3] means to create and save the - model with 1 shard (i.e., no variable partitioning), and load it - into 3 shards per variable. - model_type: Either 'dense' or 'embedding', which simple model to test. - """ - - def create_embedding_model(): - inputs = keras.layers.Input(shape=(6,)) - embedding = keras.layers.Embedding(output_dim=2, input_dim=6) - outputs = embedding(inputs) - model = keras.Model(inputs, outputs) - model.compile(optimizer="adam", loss="mean_squared_error") - return model - - def create_dense_model(): - inputs = keras.layers.Input(shape=(6,)) - outputs = keras.layers.Dense(6)(inputs) - model = keras.Model(inputs, outputs) - model.compile(optimizer="adam", loss="mean_squared_error") - return model - - # Maybe create new strategy with different number of shards - if shard_config[0] > 2: - strategy = tf.distribute.experimental.ParameterServerStrategy( - multi_worker_testing_utils.make_parameter_server_cluster(3, 3), - variable_partitioner=tf.distribute.experimental.partitioners.FixedShardsPartitioner( # noqa: E501 - shard_config[0] - ), - ) - elif shard_config[0] == 2: - strategy = self.strategy - else: - # Just one shard, so use default strategy - strategy = tf.distribute.get_strategy() - - x = tf.cast(tf.expand_dims(tf.range(6), 0), tf.float32) - with strategy.scope(): - model = ( - create_dense_model() - if model_type == "dense" - else create_embedding_model() - ) - expect = model(x) - - # Dense layers have two variables (kernel and bias), embedding layers - # have 1 - n_expected_variables = shard_config[0] * ( - 2 if model_type == "dense" else 1 - ) - self.assertLen(model.variables, n_expected_variables) - model_weights = [v.numpy() for v in model.variables] - - saved_dir = self.get_temp_dir() - model.save(saved_dir) - - if shard_config[1] > 2: - strategy2 = tf.distribute.experimental.ParameterServerStrategy( - multi_worker_testing_utils.make_parameter_server_cluster(3, 3), - variable_partitioner=tf.distribute.experimental.partitioners.FixedShardsPartitioner( # noqa: E501 - shard_config[1] - ), - ) - elif shard_config[1] == 2: - strategy2 = self.strategy - else: - # Just one shard, so use default strategy - strategy2 = tf.distribute.get_strategy() - - with strategy2.scope(): - loaded_model = keras.models.load_model(saved_dir) - got = loaded_model(x) - - self.assertAllClose(got, expect) - n_expected_variables = shard_config[1] * ( - 2 if model_type == "dense" else 1 - ) - self.assertLen(loaded_model.variables, n_expected_variables) - loaded_model_weights = [v.numpy() for v in loaded_model.variables] - self.assertAllClose( - np.concatenate([w.flatten() for w in model_weights]), - np.concatenate([w.flatten() for w in loaded_model_weights]), - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=strategy_combinations.strategies_minus_tpu, - model_type=["dense", "embedding"], - ) - ) - def test_saved_model_load_non_pss(self, model_type, distribution): - def create_embedding_model(): - inputs = keras.layers.Input(shape=(6,)) - embedding = keras.layers.Embedding(output_dim=2, input_dim=6) - outputs = embedding(inputs) - model = keras.Model(inputs, outputs) - model.compile(optimizer="adam", loss="mean_squared_error") - return model - - def create_dense_model(): - inputs = keras.layers.Input(shape=(6,)) - outputs = keras.layers.Dense(6)(inputs) - model = keras.Model(inputs, outputs) - model.compile(optimizer="adam", loss="mean_squared_error") - return model - - x = tf.cast(tf.expand_dims(tf.range(6), 0), tf.float32) - with self.strategy.scope(): - model = ( - create_dense_model() - if model_type == "dense" - else create_embedding_model() - ) - expect = model(x) - - model_weights = [v.numpy() for v in model.variables] - - saved_dir = self.get_temp_dir() - model.save(saved_dir) - - with distribution.scope(): - loaded_model = keras.models.load_model(saved_dir) - got = loaded_model(x) - - self.assertAllClose(got, expect) - n_expected_variables = 2 if model_type == "dense" else 1 - self.assertLen(loaded_model.variables, n_expected_variables) - loaded_model_weights = [v.numpy() for v in loaded_model.variables] - self.assertAllClose( - np.concatenate([w.flatten() for w in model_weights]), - np.concatenate([w.flatten() for w in loaded_model_weights]), - ) - - def test_slot_variable_checkpointing(self): - - with self.strategy.scope(): - # Set a name so the ShardedVariable is well-named for slot var - # keying - var = tf.Variable([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name="test") - - opt = keras.optimizers.legacy.adam.Adam() - - # Run once to trigger apply_gradients to populate optimizer slot - # variables. - def train_step(): - with tf.GradientTape() as tape: - loss = sum(var) - opt.minimize(loss, var.variables, tape=tape) - - self.strategy.run(train_step) - - # Check that we can call get_slot using each slot, before and after - # Checkpointing, and get the same results - pre_ckpt_slots = [] - for slot in opt.get_slot_names(): - pre_ckpt_slots.extend([v.numpy() for v in opt.get_slot(var, slot)]) - - ckpt = tf.train.Checkpoint(var=var, opt=opt) - - # Assert that checkpoint has slots for each shard and the - # ShardedVariable - self.assertLen(ckpt.opt._slots, 3) - for var_name in ckpt.opt._slots.keys(): - self.assertLen(ckpt.opt._slots[var_name], 2) - self.assertEqual(ckpt.opt._slots[var_name].keys(), {"m", "v"}) - if hasattr(ckpt.opt._slots[var_name]["m"], "variables"): - self.assertLen(ckpt.opt._slots[var_name]["m"].variables, 2) - self.assertLen(ckpt.opt._slots[var_name]["v"].variables, 2) - - saved_dir = self.get_temp_dir() - ckpt_prefix = f"{saved_dir}/ckpt" - ckpt.save(ckpt_prefix) - - # Run once more to alter slot variables and ensure checkpoint restores - # the earlier values. - self.strategy.run(train_step) - - changed_ckpt_slots = [] - for slot in opt.get_slot_names(): - changed_ckpt_slots.extend( - [v.numpy() for v in opt.get_slot(var, slot)] - ) - self.assertNotAllClose(pre_ckpt_slots, changed_ckpt_slots) - - ckpt.restore(tf.train.latest_checkpoint(saved_dir)) - - post_ckpt_slots = [] - for slot in opt.get_slot_names(): - post_ckpt_slots.extend([v.numpy() for v in opt.get_slot(var, slot)]) - - self.assertAllClose(pre_ckpt_slots, post_ckpt_slots) - - def test_slot_variable_checkpoint_load_with_diff_shards(self): - - with self.strategy.scope(): - # Set a name so the ShardedVariable is well-named for slot var - # keying - var = tf.Variable([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name="test") - - opt = keras.optimizers.legacy.adam.Adam() - - # Run once to trigger apply_gradients to populate optimizer slot - # variables. - def train_step(): - with tf.GradientTape() as tape: - loss = sum(var) - opt.minimize(loss, var.variables, tape=tape) - - self.strategy.run(train_step) - - # Check that we can call get_slot using each slot, before and after - # Checkpointing, and get the same results - pre_ckpt_slots = [] - for slot in opt.get_slot_names(): - pre_ckpt_slots.extend( - tf.concat(list(opt.get_slot(var, slot)), axis=0).numpy() - ) - - ckpt = tf.train.Checkpoint(var=var, opt=opt) - saved_dir = self.get_temp_dir() - ckpt_prefix = f"{saved_dir}/ckpt" - ckpt.save(ckpt_prefix) - - # Create new strategy with different number of shards - strategy2 = tf.distribute.experimental.ParameterServerStrategy( - multi_worker_testing_utils.make_parameter_server_cluster(3, 2), - variable_partitioner=tf.distribute.experimental.partitioners.FixedShardsPartitioner( # noqa: E501 - 3 - ), - ) - - # Create new variable with different values, to be overwritten by ckpt. - with strategy2.scope(): - var = tf.Variable([0.0, 1.0, 2.0, 3.0, 4.0, 5.0], name="test") - - opt = keras.optimizers.legacy.adam.Adam() - # Run once to trigger apply_gradients to populate optimizer slot - # variables. - strategy2.run(train_step) - - new_ckpt = tf.train.Checkpoint(var=var, opt=opt) - new_ckpt.restore(tf.train.latest_checkpoint(saved_dir)) - post_ckpt_slots = [] - for slot in new_ckpt.opt.get_slot_names(): - post_ckpt_slots.extend( - tf.concat( - list(new_ckpt.opt.get_slot(var, slot)), axis=0 - ).numpy() - ) - self.assertAllClose(pre_ckpt_slots, post_ckpt_slots) - - -class ShardedVariableMixedPartitioningTest(tf.test.TestCase): - def test_saved_model_min_size_partitioner(self): - - # set min_shard_bytes such that Dense kernel is split into 2 and bias - # into 1 - partitioner = ( - tf.distribute.experimental.partitioners.MinSizePartitioner( - min_shard_bytes=(6 * 6 * 4) // 2, max_shards=2 - ) - ) - - cluster_resolver = ( - multi_worker_testing_utils.make_parameter_server_cluster(3, 2) - ) - strategy = tf.distribute.experimental.ParameterServerStrategy( - cluster_resolver, variable_partitioner=partitioner - ) - - def create_dense_model(): - inputs = keras.layers.Input(shape=(6,)) - outputs = keras.layers.Dense(6)(inputs) - model = keras.Model(inputs, outputs) - model.compile(optimizer="adam", loss="mean_squared_error") - return model - - x = tf.cast(tf.expand_dims(tf.range(6), 0), tf.float32) - with strategy.scope(): - model = create_dense_model() - expect = model(x) - - # 2 kernel variables, 1 bias - self.assertLen(model.variables, 3) - - saved_dir = self.get_temp_dir() - model.save(saved_dir) - - # set min_shard_bytes such that Dense kernel is split into 3 and bias - # into 1 - partitioner2 = ( - tf.distribute.experimental.partitioners.MinSizePartitioner( - min_shard_bytes=(6 * 6 * 4) // 3, max_shards=3 - ) - ) - strategy2 = tf.distribute.experimental.ParameterServerStrategy( - cluster_resolver, variable_partitioner=partitioner2 - ) - - with strategy2.scope(): - loaded_model = keras.models.load_model(saved_dir) - got = loaded_model(x) - - self.assertAllClose(got, expect) - # 3 kernel variables, 1 bias - self.assertLen(loaded_model.variables, 4) - - -if __name__ == "__main__": - tf.compat.v1.enable_v2_behavior() - tf.test.main() diff --git a/keras/distribute/simple_models.py b/keras/distribute/simple_models.py deleted file mode 100644 index 0b5384e12f8..00000000000 --- a/keras/distribute/simple_models.py +++ /dev/null @@ -1,128 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""A simple functional keras model with one layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.distribute import model_collection_base -from keras.optimizers.legacy import gradient_descent - -_BATCH_SIZE = 10 - - -def _get_data_for_simple_models(): - x_train = tf.constant(np.random.rand(1000, 3), dtype=tf.float32) - y_train = tf.constant(np.random.rand(1000, 5), dtype=tf.float32) - x_predict = tf.constant(np.random.rand(1000, 3), dtype=tf.float32) - - return x_train, y_train, x_predict - - -class SimpleFunctionalModel(model_collection_base.ModelAndInput): - """A simple functional model and its inputs.""" - - def get_model(self, **kwargs): - output_name = "output_1" - - x = keras.layers.Input(shape=(3,), dtype=tf.float32) - y = keras.layers.Dense(5, dtype=tf.float32, name=output_name)(x) - - model = keras.Model(inputs=x, outputs=y) - optimizer = gradient_descent.SGD(learning_rate=0.001) - model.compile(loss="mse", metrics=["mae"], optimizer=optimizer) - - return model - - def get_data(self): - return _get_data_for_simple_models() - - def get_batch_size(self): - return _BATCH_SIZE - - -class SimpleSequentialModel(model_collection_base.ModelAndInput): - """A simple sequential model and its inputs.""" - - def get_model(self, **kwargs): - output_name = "output_1" - - model = keras.Sequential() - y = keras.layers.Dense( - 5, dtype=tf.float32, name=output_name, input_dim=3 - ) - model.add(y) - optimizer = gradient_descent.SGD(learning_rate=0.001) - model.compile(loss="mse", metrics=["mae"], optimizer=optimizer) - - return model - - def get_data(self): - return _get_data_for_simple_models() - - def get_batch_size(self): - return _BATCH_SIZE - - -class _SimpleModel(keras.Model): - def __init__(self): - super().__init__() - self._dense_layer = keras.layers.Dense(5, dtype=tf.float32) - - def call(self, inputs): - return self._dense_layer(inputs) - - -class SimpleSubclassModel(model_collection_base.ModelAndInput): - """A simple subclass model and its data.""" - - def get_model(self, **kwargs): - model = _SimpleModel() - optimizer = gradient_descent.SGD(learning_rate=0.001) - model.compile( - loss="mse", metrics=["mae"], cloning=False, optimizer=optimizer - ) - - return model - - def get_data(self): - return _get_data_for_simple_models() - - def get_batch_size(self): - return _BATCH_SIZE - - -class _SimpleModule(tf.Module): - def __init__(self): - self.v = tf.Variable(3.0) - - @tf.function - def __call__(self, x): - return self.v * x - - -class SimpleTFModuleModel(model_collection_base.ModelAndInput): - """A simple model based on tf.Module and its data.""" - - def get_model(self, **kwargs): - model = _SimpleModule() - return model - - def get_data(self): - return _get_data_for_simple_models() - - def get_batch_size(self): - return _BATCH_SIZE diff --git a/keras/distribute/strategy_combinations.py b/keras/distribute/strategy_combinations.py deleted file mode 100644 index 8261e2386ce..00000000000 --- a/keras/distribute/strategy_combinations.py +++ /dev/null @@ -1,68 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Strategy combinations for combinations.combine().""" - -import tensorflow.compat.v2 as tf - -multidevice_strategies = [ - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, - tf.__internal__.distribute.combinations.tpu_strategy, -] - -multiworker_strategies = [ - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_cpu, - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_gpu, - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x2_gpu, -] - -strategies_minus_default_minus_tpu = [ - tf.__internal__.distribute.combinations.one_device_strategy, - tf.__internal__.distribute.combinations.one_device_strategy_gpu, - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, - tf.__internal__.distribute.combinations.central_storage_strategy_with_gpu_and_cpu, # noqa: E501 -] - -strategies_minus_tpu = [ - tf.__internal__.distribute.combinations.default_strategy, - tf.__internal__.distribute.combinations.one_device_strategy, - tf.__internal__.distribute.combinations.one_device_strategy_gpu, - tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, - tf.__internal__.distribute.combinations.central_storage_strategy_with_gpu_and_cpu, # noqa: E501 -] - -multi_worker_mirrored_strategies = [ - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_cpu, - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_gpu, - tf.__internal__.distribute.combinations.multi_worker_mirrored_2x2_gpu, -] - -tpu_strategies = [ - tf.__internal__.distribute.combinations.tpu_strategy, -] - -parameter_server_strategies_single_worker = [ - tf.__internal__.distribute.combinations.parameter_server_strategy_1worker_2ps_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.parameter_server_strategy_1worker_2ps_1gpu, # noqa: E501 -] - -parameter_server_strategies_multi_worker = [ - tf.__internal__.distribute.combinations.parameter_server_strategy_3worker_2ps_cpu, # noqa: E501 - tf.__internal__.distribute.combinations.parameter_server_strategy_3worker_2ps_1gpu, # noqa: E501 -] - -all_strategies = strategies_minus_tpu + tpu_strategies diff --git a/keras/distribute/test_example.py b/keras/distribute/test_example.py deleted file mode 100644 index aa216592b78..00000000000 --- a/keras/distribute/test_example.py +++ /dev/null @@ -1,108 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""A simple network to use in tests and examples.""" - -import tensorflow.compat.v2 as tf - -from keras.legacy_tf_layers import core -from keras.legacy_tf_layers import normalization -from keras.optimizers.legacy import optimizer_v2 - - -def minimize_loss_example(optimizer, use_bias=False, use_callable_loss=True): - """Example of non-distribution-aware legacy code.""" - - def dataset_fn(): - dataset = tf.data.Dataset.from_tensors([[1.0]]).repeat() - # TODO(isaprykin): batch with drop_remainder causes shapes to be - # fully defined for TPU. Remove this when XLA supports dynamic shapes. - return dataset.batch(1, drop_remainder=True) - - layer = core.Dense(1, use_bias=use_bias) - - def model_fn(x): - """A very simple model written by the user.""" - - def loss_fn(): - y = tf.reshape(layer(x), []) - tf.constant(1.0) - return y * y - - if isinstance(optimizer, optimizer_v2.OptimizerV2): - return optimizer.minimize( - loss_fn, lambda: layer.trainable_variables - ) - elif use_callable_loss: - return optimizer.minimize(loss_fn) - else: - return optimizer.minimize(loss_fn()) - - return model_fn, dataset_fn, layer - - -def batchnorm_example( - optimizer_fn, - batch_per_epoch=1, - momentum=0.9, - renorm=False, - update_ops_in_replica_mode=False, -): - """Example of non-distribution-aware legacy code with batch - normalization.""" - - def dataset_fn(): - # input shape is [16, 8], input values are increasing in both - # dimensions. - return tf.data.Dataset.from_tensor_slices( - [ - [ - [float(x * 8 + y + z * 100) for y in range(8)] - for x in range(16) - ] - for z in range(batch_per_epoch) - ] - ).repeat() - - optimizer = optimizer_fn() - batchnorm = normalization.BatchNormalization( - renorm=renorm, momentum=momentum, fused=False - ) - layer = core.Dense(1, use_bias=False) - - def model_fn(x): - """A model that uses batchnorm.""" - - def loss_fn(): - y = batchnorm(x, training=True) - with tf.control_dependencies( - tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS) - if update_ops_in_replica_mode - else [] - ): - loss = tf.reduce_mean( - tf.reduce_sum(layer(y)) - tf.constant(1.0) - ) - # `x` and `y` will be fetched by the gradient computation, but not - # `loss`. - return loss - - if isinstance(optimizer, optimizer_v2.OptimizerV2): - return optimizer.minimize( - loss_fn, lambda: layer.trainable_variables - ) - - # Callable loss. - return optimizer.minimize(loss_fn) - - return model_fn, dataset_fn, batchnorm diff --git a/keras/distribute/tpu_strategy_test_utils.py b/keras/distribute/tpu_strategy_test_utils.py deleted file mode 100644 index f94c3d3cf2e..00000000000 --- a/keras/distribute/tpu_strategy_test_utils.py +++ /dev/null @@ -1,39 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utility functions for tests using TPUStrategy.""" - -import tensorflow.compat.v2 as tf -from absl import flags - -FLAGS = flags.FLAGS -flags.DEFINE_string("tpu", "", "Name of TPU to connect to.") -flags.DEFINE_string("project", None, "Name of GCP project with TPU.") -flags.DEFINE_string("zone", None, "Name of GCP zone with TPU.") - - -def get_tpu_cluster_resolver(): - resolver = tf.distribute.cluster_resolver.TPUClusterResolver( - tpu=FLAGS.tpu, - zone=FLAGS.zone, - project=FLAGS.project, - ) - return resolver - - -def get_tpu_strategy(): - resolver = get_tpu_cluster_resolver() - tf.config.experimental_connect_to_cluster(resolver) - tf.tpu.experimental.initialize_tpu_system(resolver) - return tf.distribute.experimental.TPUStrategy(resolver) diff --git a/keras/distribute/worker_training_state.py b/keras/distribute/worker_training_state.py deleted file mode 100644 index 335feedc817..00000000000 --- a/keras/distribute/worker_training_state.py +++ /dev/null @@ -1,225 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Training state management.""" - -import os - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.distribute import distributed_file_utils -from keras.utils import mode_keys - -# isort: off -from keras.distribute.distributed_file_utils import ( - support_on_demand_checkpoint_callback, -) # noqa: E501 - - -MAX_CHECKPOINT_TO_KEEP = 1 - - -class WorkerTrainingState: - """Training state management class. - - This class provides apis for backing up and restoring the training state. - This allows model and epoch and batch information to be saved periodically - and restore for fault-tolerance, also known as preemption-recovery purpose. - """ - - # Constant for `tf.keras.Model` attribute to store the epoch and batch - # at which the most recently saved checkpoint was saved. - CKPT_SAVED_EPOCH_UNUSED_VALUE = -1 - - CKPT_SAVED_BATCH_UNUSED_VALUE = -1 - - def __init__( - self, - model, - checkpoint_dir, - save_freq="epoch", - save_before_preemption_arg=None, - ): - self._enable_save_before_preemption = save_before_preemption_arg and ( - support_on_demand_checkpoint_callback(model.distribute_strategy) - ) - self._model = model - - self._save_freq = save_freq - # The batch and epoch at which the checkpoint is saved. Used for - # fault-tolerance. GPU device only has int64 dtype registered - # VarHandleOp. - self._ckpt_saved_epoch = tf.Variable( - initial_value=tf.constant( - self.CKPT_SAVED_EPOCH_UNUSED_VALUE, dtype=tf.int64 - ), - name="ckpt_saved_epoch", - ) - self._ckpt_saved_batch = tf.Variable( - initial_value=tf.constant( - self.CKPT_SAVED_BATCH_UNUSED_VALUE, dtype=tf.int64 - ), - name="ckpt_saved_batch", - ) - # Variable initialization. - backend.set_value( - self._ckpt_saved_epoch, self.CKPT_SAVED_EPOCH_UNUSED_VALUE - ) - backend.set_value( - self._ckpt_saved_batch, self.CKPT_SAVED_BATCH_UNUSED_VALUE - ) - # _ckpt_saved_epoch and _ckpt_saved_batch gets tracked and is included - # in the checkpoint file when backing up. - checkpoint = tf.train.Checkpoint( - model=self._model, - ckpt_saved_epoch=self._ckpt_saved_epoch, - ckpt_saved_batch=self._ckpt_saved_batch, - train_counter=self._model._train_counter, - ) - - # If this is single-worker training, checkpoint_dir are the same for - # write_checkpoint_manager and read_checkpoint_manager. - # - # If this is multi-worker training, and this worker should not save - # checkpoint, we replace the write_checkpoint_manager's checkpoint_dir - # with a temp filepath, so it writes to a file that will be removed at - # the end of back_up() call. This is necessary because the - # SyncOnReadVariable needs to be synced across all the workers in order - # to be read, and all workers need to perform `save()`. But all workers - # should restore from the same checkpoint_dir as passed in - # read_checkpoint_manager. - self.read_checkpoint_manager = tf.train.CheckpointManager( - checkpoint, - directory=os.path.join(checkpoint_dir, "chief"), - max_to_keep=MAX_CHECKPOINT_TO_KEEP, - ) - write_checkpoint_dir = distributed_file_utils.write_dirpath( - checkpoint_dir, self._model.distribute_strategy - ) - if self._model.distribute_strategy.extended.should_checkpoint: - self.write_checkpoint_manager = self.read_checkpoint_manager - else: - self.write_checkpoint_manager = tf.train.CheckpointManager( - checkpoint, - directory=write_checkpoint_dir, - max_to_keep=MAX_CHECKPOINT_TO_KEEP, - ) - - if self._enable_save_before_preemption: - self.preemption_handler = ( - tf.distribute.experimental.PreemptionCheckpointHandler( - self._model.distribute_strategy.cluster_resolver, - self.write_checkpoint_manager, - ) - ) - self.preemption_handler._read_checkpoint_manager = ( - self.read_checkpoint_manager - ) - self._model._preemption_handler = self.preemption_handler - - def back_up(self, epoch, batch=0): - """Back up the current state of training into a checkpoint file. - - Args: - epoch: The current epoch information to be saved. - batch: The current batch(step) information to be saved. - """ - # Save the model plus CKPT_SAVED_EPOCH and CKPT_SAVED_BATCH variable. - if self.write_checkpoint_manager.save(): - distributed_file_utils.remove_temp_dirpath( - self.write_checkpoint_manager.directory, - self._model.distribute_strategy, - ) - - def backup_if_preempted(self): - if self._enable_save_before_preemption: - self.preemption_handler._run_counter += 1 - self.preemption_handler._check_preemption_and_maybe_checkpoint() - - def restore(self): - """Restore the training state from the backed up checkpoint file. - - Returns: - True if the training state is successfully restored. False if the - training state doesn't need to be restored, or error occurred so it - can't. - """ - # When creating the PreemptionCheckpointHandler object, we have already - # restored the checkpoint. - if not self._enable_save_before_preemption: - self.read_checkpoint_manager.restore_or_initialize() - - def delete_backup(self): - """Delete the backup directories. - - Delete the backup directories which should not exist after `fit()` - successfully finishes. - """ - if self.write_checkpoint_manager is self.read_checkpoint_manager: - try: - tf.io.gfile.rmtree(self.write_checkpoint_manager.directory) - except tf.errors.NotFoundError: - pass - - def maybe_load_initial_counters_from_ckpt( - self, steps_per_epoch, initial_epoch, mode - ): - """Maybe load 1st epoch from checkpoint, considering worker recovery. - - When `_ckpt_saved_epoch` attribute exists and is not - `CKPT_SAVED_EPOCH_UNUSED_VALUE`, this is under multi-worker training - setting and indicates the worker is recovering from previous failure. In - this case, infer `initial_epoch` from `self._ckpt_saved_epoch` to - continue previous unfinished training from certain epoch. - - Args: - steps_per_epoch: The number of steps per epoch value. - initial_epoch: The original initial_epoch user passes in in `fit()`. - mode: The mode for running `model.fit()`. - - Returns: - If the training is recovering from previous failure under multi-worker - training setting, return the (epoch, step) the training is supposed to - continue at. Otherwise, return the `initial_epoch, initial_step` the - user passes in. - """ - - initial_step = 0 - epoch = backend.eval(self._ckpt_saved_epoch) - batch = backend.eval(self._ckpt_saved_batch) - if mode == mode_keys.ModeKeys.TRAIN: - # For batch-level saving - if self._enable_save_before_preemption or isinstance( - self._save_freq, int - ): - if batch >= 0: - # If the checkpoint was last saved at last batch of the - # epoch, return the next epoch number and batch=0 - if batch == steps_per_epoch - 1: - initial_epoch = epoch + 1 - initial_step = 0 - else: - # If the checkpoint was not last saved at last batch of - # the epoch, return the same epoch and next batch number - initial_epoch = epoch - initial_step = batch + 1 - else: - if epoch >= 0: - # The most recently saved epoch is one epoch prior to the - # epoch it failed at, so return the value of - # 'self._ckpt_saved_epoch' plus one. - initial_epoch = epoch + 1 - - return (initial_epoch, initial_step) diff --git a/keras/distribute/worker_training_state_test.py b/keras/distribute/worker_training_state_test.py deleted file mode 100644 index c6676a721f1..00000000000 --- a/keras/distribute/worker_training_state_test.py +++ /dev/null @@ -1,60 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests of `worker_training_state.py` utilities.""" - -import os -import sys - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import callbacks -from keras.distribute import multi_worker_testing_utils - - -class ModelCheckpointTest(tf.test.TestCase, parameterized.TestCase): - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], - file_format=["h5", "tf"], - save_weights_only=[True, False], - ) - ) - def testCheckpointExists(self, file_format, save_weights_only): - train_ds, _ = multi_worker_testing_utils.mnist_synthetic_dataset(64, 2) - model = multi_worker_testing_utils.get_mnist_model((28, 28, 1)) - saving_dir = self.get_temp_dir() - saving_filepath = os.path.join(saving_dir, "checkpoint." + file_format) - callbacks_list = [ - callbacks.ModelCheckpoint( - filepath=saving_filepath, save_weights_only=save_weights_only - ) - ] - self.assertFalse(tf.io.gfile.exists(saving_filepath)) - model.fit( - x=train_ds, epochs=2, steps_per_epoch=2, callbacks=callbacks_list - ) - tf_saved_model_exists = tf.io.gfile.exists(saving_filepath) - tf_weights_only_checkpoint_exists = tf.io.gfile.exists( - saving_filepath + ".index" - ) - self.assertTrue( - tf_saved_model_exists or tf_weights_only_checkpoint_exists - ) - - -if __name__ == "__main__": - with tf.compat.v1.test.mock.patch.object(sys, "exit", os._exit): - tf.test.main() diff --git a/keras/dtensor/BUILD b/keras/dtensor/BUILD deleted file mode 100644 index 6190b58dd85..00000000000 --- a/keras/dtensor/BUILD +++ /dev/null @@ -1,230 +0,0 @@ -# This package contains all the DTensor related Keras components. -# Since DTensor is not a public API yet, all the DTensor related change -# can't be exposed to public yet. - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -# copybara:uncomment_begin(google-only) -# load( -# "//third_party/tensorflow/dtensor:build_defs.bzl", -# "dtensor_test", -# ) -# copybara:uncomment_end - -package( - default_visibility = [ - "//keras:friends", - "//learning/brain/distribute/experimental/auto_distribute:__pkg__", - "//learning/brain/distribute/python:__subpackages__", - "//learning/brain/experimental/dtensor/models:__subpackages__", - ], - licenses = ["notice"], -) - -py_library( - name = "dtensor", - srcs = ["__init__.py"], -) - -tf_py_test( - name = "initializers_test", - srcs = ["initializers_test.py"], - shard_count = 4, - deps = [ - ":dtensor", - ":test_util", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/initializers", - "//keras/utils:tf_utils", - ], -) - -tf_py_test( - name = "layers_test", - srcs = ["layers_test.py"], - shard_count = 4, - tags = ["no_oss"], - deps = [ - ":dtensor", - ":test_util", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/layers", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "layout_map", - srcs = ["layout_map.py"], - deps = [ - ":dtensor", - ":lazy_variable", - ":utils", - "//keras/engine:base_layer", - ], -) - -tf_py_test( - name = "layout_map_test", - srcs = ["layout_map_test.py"], - tags = ["no_oss"], - deps = [ - ":dtensor", - ":layout_map", - ":test_util", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/layers", - "//keras/models", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "integration_test_utils", - srcs = ["integration_test_utils.py"], - deps = [ - ":dtensor", - ":layout_map", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:losses", - "//keras/datasets", - "//keras/layers", - "//keras/models", - "//keras/utils:np_utils", - ], -) - -tf_py_test( - name = "metrics_test", - srcs = ["metrics_test.py"], - shard_count = 4, - deps = [ - ":dtensor", - ":test_util", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/metrics", - "//keras/utils:tf_utils", - ], -) - -tf_py_test( - name = "mnist_model_test", - srcs = ["mnist_model_test.py"], - tags = [ - "requires-net:external", - ], - deps = [ - ":integration_test_utils", - ":test_util", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/optimizers", - "//keras/utils:tf_utils", - ], -) - -tf_py_test( - name = "optimizers_test", - srcs = ["optimizers_test.py"], - deps = [ - ":dtensor", - ":layout_map", - ":test_util", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:losses", - "//keras/layers", - "//keras/models", - "//keras/optimizers", - ], -) - -py_library( - name = "lazy_variable", - srcs = ["lazy_variable.py"], - deps = [ - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "utils", - srcs = ["utils.py"], - deps = [ - ":dtensor", - "//:expect_tensorflow_installed", - ], -) - -tf_py_test( - name = "utils_test", - srcs = ["utils_test.py"], - deps = [ - ":dtensor", - ":test_util", - ":utils", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/layers", - ], -) - -py_library( - name = "test_util", - srcs = ["test_util.py"], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - ], -) - -tf_py_test( - name = "save_load_test", - srcs = ["save_load_test.py"], - deps = [ - ":dtensor", - ":layout_map", - ":test_util", - "//keras", - "//keras:backend", - "//keras/layers", - "//keras/models", - "//keras/utils:tf_utils", - ], -) - -# copybara:uncomment_begin(google-only) -# dtensor_test( -# name = "strategy_integration_test", -# srcs = ["strategy_integration_test.py"], -# shard_count = { -# "CPU": 2, -# "GPU": 4, -# "TPU": 2, -# }, -# tags = ["no_oss"], -# deps = [ -# ":integration_test_utils", -# ":test_util", -# "//:expect_absl_installed", -# "//keras:backend", -# "//keras/mixed_precision:mixed_precision_experimental", -# "//keras/optimizers", -# "//keras/utils:tf_utils", -# "//:expect_numpy_installed", -# "//:expect_tensorflow_installed", -# "//third_party/tensorflow/dtensor/python/tests:test_util", -# "//third_party/tensorflow/python/distribute/experimental:mirrored_strategy", -# ], -# ) -# copybara:uncomment_end diff --git a/keras/dtensor/__init__.py b/keras/dtensor/__init__.py deleted file mode 100644 index f5c3f7b3ce0..00000000000 --- a/keras/dtensor/__init__.py +++ /dev/null @@ -1,26 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras' DTensor library.""" - -_DTENSOR_API_ENABLED = True - - -# Conditional import the dtensor API, since it is currently broken in OSS. -if _DTENSOR_API_ENABLED: - from tensorflow.compat.v2.experimental import dtensor as dtensor_api -else: - # Leave it with a placeholder, so that the import line from other python - # file will not break. - dtensor_api = None diff --git a/keras/dtensor/initializers_test.py b/keras/dtensor/initializers_test.py deleted file mode 100644 index 11d97fca289..00000000000 --- a/keras/dtensor/initializers_test.py +++ /dev/null @@ -1,162 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for initializers.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import backend -from keras import initializers -from keras.dtensor import dtensor_api as dtensor -from keras.dtensor import test_util -from keras.utils import tf_utils - - -class InitializersTest(test_util.DTensorBaseTest): - def setUp(self): - super().setUp() - global_ids = test_util.create_device_ids_array((2, 2)) - local_device_ids = np.ravel(global_ids).tolist() - mesh_dict = { - "CPU": dtensor.Mesh( - ["X", "Y"], - global_ids, - local_device_ids, - test_util.create_device_list((2, 2), "CPU"), - ) - } - self.mesh = self.configTestMesh(mesh_dict) - - @parameterized.named_parameters( - ("Zeros", initializers.Zeros, {}), - ("Ones", initializers.Ones, {}), - ("Constant", initializers.Constant, {"value": 3.0}), - # TODO(b/222160686): Add Identity after after we have SPMD support for - # tf.MatrixDiagV3 - # ('Identity', initializers.Identity, {}), - ) - def test_static_value_initializer(self, initializer_cls, init_args): - layout = dtensor.Layout( - [dtensor.UNSHARDED, dtensor.UNSHARDED], self.mesh - ) - shape = (4, 4) - initializer = initializer_cls(**init_args) - value = initializer(shape=shape, layout=layout) - normal_tensor_value = initializer(shape=shape) - - self.assertEqual(value.shape, shape) - fetched_layout = dtensor.fetch_layout(value) - self.assertEqual(layout, fetched_layout) - - self.assertAllClose(value, normal_tensor_value) - - @parameterized.named_parameters( - ("RandomUniform", initializers.RandomUniform, {}), - ("RandomUniform_seeded", initializers.RandomUniform, {"seed": 1}), - ("RandomNormal", initializers.RandomNormal, {}), - ("RandomNormal_seeded", initializers.RandomNormal, {"seed": 1}), - ("TruncatedNormal", initializers.TruncatedNormal, {}), - ("TruncatedNormal_seeded", initializers.TruncatedNormal, {"seed": 1}), - ("Orthogonal", initializers.Orthogonal, {}), - ("Orthogonal_seeded", initializers.Orthogonal, {"seed": 1}), - ("VarianceScaling", initializers.VarianceScaling, {}), - ("VarianceScaling_seeded", initializers.VarianceScaling, {"seed": 1}), - ("GlorotUniform", initializers.GlorotUniform, {}), - ("GlorotUniform_seeded", initializers.GlorotUniform, {"seed": 1}), - ("GlorotNormal", initializers.GlorotNormal, {}), - ("GlorotNormal_seeded", initializers.GlorotNormal, {"seed": 1}), - ("LecunNormal", initializers.LecunNormal, {}), - ("LecunNormal_seeded", initializers.LecunNormal, {"seed": 1}), - ("LecunUniform", initializers.LecunUniform, {}), - ("LecunUniform_seeded", initializers.LecunUniform, {"seed": 1}), - ("HeNormal", initializers.HeNormal, {}), - ("HeNormal_seeded", initializers.HeNormal, {"seed": 1}), - ("HeUniform", initializers.HeUniform, {}), - ("HeUniform_seeded", initializers.HeUniform, {"seed": 1}), - ) - def test_random_value_initializer(self, initializer_cls, init_args): - layout = dtensor.Layout( - [dtensor.UNSHARDED, dtensor.UNSHARDED], self.mesh - ) - shape = (4, 4) - initializer = initializer_cls(**init_args) - # Make sure to raise error when keras global seed is not set. - with self.assertRaisesRegex(ValueError, "set the global seed"): - initializer(shape=shape, layout=layout) - - try: - tf_utils.set_random_seed(1337) - value = initializer(shape=shape, layout=layout) - self.assertEqual(value.shape, shape) - fetched_layout = dtensor.fetch_layout(value) - self.assertEqual(layout, fetched_layout) - - # Make sure when same seed is set again, the new initializer should - # generate same result - tf_utils.set_random_seed(1337) - initializer = initializer_cls(**init_args) - new_value = initializer(shape=shape, layout=layout) - self.assertAllClose(value, new_value) - finally: - # Unset the keras global generator so that it doesn't affect other - # tests that need to verify the existence of global generator. - backend._SEED_GENERATOR.generator = None - - @parameterized.named_parameters( - ("zeros", "zeros", initializers.Zeros), - ("Zeros", "Zeros", initializers.Zeros), - ("ones", "ones", initializers.Ones), - ("Ones", "Ones", initializers.Ones), - ("constant", "constant", initializers.Constant), - ("Constant", "Constant", initializers.Constant), - ("random_uniform", "random_uniform", initializers.RandomUniform), - ("RandomUniform", "RandomUniform", initializers.RandomUniform), - ("random_normal", "random_normal", initializers.RandomNormal), - ("RandomNormal", "RandomNormal", initializers.RandomNormal), - ("truncated_normal", "truncated_normal", initializers.TruncatedNormal), - ("TruncatedNormal", "TruncatedNormal", initializers.TruncatedNormal), - ("Identity", "Identity", initializers.Identity), - ("identity", "identity", initializers.Identity), - ("Orthogonal", "Orthogonal", initializers.Orthogonal), - ("orthogonal", "orthogonal", initializers.Orthogonal), - ("variance_scaling", "variance_scaling", initializers.VarianceScaling), - ("VarianceScaling", "VarianceScaling", initializers.VarianceScaling), - ("glorot_uniform", "glorot_uniform", initializers.GlorotUniform), - ("GlorotUniform", "GlorotUniform", initializers.GlorotUniform), - ("glorot_normal", "glorot_normal", initializers.GlorotNormal), - ("GlorotNormal", "GlorotNormal", initializers.GlorotNormal), - ("lecun_normal", "lecun_normal", initializers.LecunNormal), - ("LecunNormal", "LecunNormal", initializers.LecunNormal), - ("lecun_uniform", "lecun_uniform", initializers.LecunUniform), - ("LecunUniform", "LecunUniform", initializers.LecunUniform), - ("he_normal", "he_normal", initializers.HeNormal), - ("HeNormal", "HeNormal", initializers.HeNormal), - ("he_uniform", "he_uniform", initializers.HeUniform), - ("HeUniform", "HeUniform", initializers.HeUniform), - ) - def test_serialization_deserialization(self, cls_name, expected_cls): - initializer = initializers.get(cls_name) - self.assertIsInstance(initializer, expected_cls) - - config = initializers.serialize(initializer) - recreated = initializers.deserialize(config) - - self.assertIsInstance(recreated, expected_cls) - self.assertEqual(config, initializers.serialize(recreated)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/dtensor/integration_test_utils.py b/keras/dtensor/integration_test_utils.py deleted file mode 100644 index 3db7cc00d42..00000000000 --- a/keras/dtensor/integration_test_utils.py +++ /dev/null @@ -1,177 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""E2E test for DTensor with Mnist model. - -Note that this is used as prototype and verification of current functionality, -and will be changed rapidly. Please don't reply on any of these methods as a -public API/contract. -""" - - -import numpy as np -import tensorflow.compat.v2 as tf -from absl import logging - -from keras import layers -from keras import losses -from keras import models -from keras.datasets import mnist -from keras.dtensor import dtensor_api as dtensor -from keras.dtensor import layout_map as layout_map_lib -from keras.utils import np_utils - -NUM_CLASS = 10 # MNIST has 10 digits - - -def get_model_with_layout_map(layout_map): - """Builds a Sequential CNN model to recognize MNIST digits. - - Args: - layout_map: dict of string name -> Layout, for weights creation. - - Returns: - a CNN Keras model used for MNIST - """ - - with layout_map_lib.layout_map_scope(layout_map): - # Define a CNN model to recognize MNIST digits. - return get_model() - - -def get_model(): - """Builds a Sequential CNN model to recognize MNIST digits.""" - model = models.Sequential() - model.add( - layers.Conv2D( - 32, - name="conv2d_1", - kernel_size=(3, 3), - activation="relu", - input_shape=(28, 28, 1), # channel last gray scale input - ) - ) - model.add( - layers.Conv2D( - 64, - name="conv2d_2", - kernel_size=(3, 3), - activation="relu", - ) - ) - model.add(layers.MaxPooling2D(pool_size=(2, 2))) - model.add(layers.Dropout(0.25)) - model.add(layers.Flatten()) - model.add( - layers.Dense( - 128, - name="dense_1", - activation="relu", - ) - ) - model.add(layers.Dropout(0.5)) - model.add( - layers.Dense( - NUM_CLASS, - name="dense_2", - activation="softmax", - ) - ) - return model - - -def get_all_replicated_layout_map(mesh): - layout_map = layout_map_lib.LayoutMap(mesh=mesh) - - layout_4d = dtensor.Layout.replicated(mesh, rank=4) - layout_2d = dtensor.Layout.replicated(mesh, rank=2) - layout_1d = dtensor.Layout.replicated(mesh, rank=1) - - layout_map["conv2d.*kernel"] = layout_4d - layout_map["conv2d.*bias"] = layout_1d - layout_map["dense.*kernel"] = layout_2d - layout_map["dense.*bias"] = layout_1d - - return layout_map - - -def get_mnist_datasets(num_class, batch_size): - (x_train, y_train), (x_test, y_test) = mnist.load_data() - - x_train = np.expand_dims(x_train, axis=-1).astype("float32") - x_test = np.expand_dims(x_test, axis=-1).astype("float32") - x_train /= 255 # normalize to 0~1 - x_test /= 255 - - y_train = np_utils.to_categorical(y_train, num_class) - y_test = np_utils.to_categorical(y_test, num_class) - - train_ds = ( - tf.data.Dataset.from_tensor_slices((x_train, y_train)) - .repeat() - .batch(batch_size, drop_remainder=True) - ) - eval_ds = ( - tf.data.Dataset.from_tensor_slices((x_test, y_test)) - .repeat() - .batch(batch_size, drop_remainder=True) - ) - - return train_ds, eval_ds - - -def train_mnist_model_batch_sharded( - model, optimizer, mesh, num_epochs, steps_per_epoch, global_batch_size -): - - dataset, _ = get_mnist_datasets(NUM_CLASS, global_batch_size) - - input_image_layout = dtensor.Layout.batch_sharded(mesh, "batch", rank=4) - input_label_layout = dtensor.Layout.batch_sharded(mesh, "batch", rank=2) - loss_obj = losses.CategoricalCrossentropy() - - num_local_devices = mesh.num_local_devices() - iterator = iter(dataset) - train_losses = [] - for epoch in range(num_epochs): - total_loss = 0.00 - for _ in range(steps_per_epoch): - images, labels = next(iterator) - images = tf.split(images, num_local_devices) - labels = tf.split(labels, num_local_devices) - d_images = dtensor.pack(images, input_image_layout) - d_labels = dtensor.pack(labels, input_label_layout) - total_loss += train_step( - model, d_images, d_labels, loss_obj, optimizer - ) - - train_loss = tf.reduce_mean(total_loss / steps_per_epoch) - - logging.info("Epoch %d, Loss: %f", epoch, train_loss) - train_losses.append(train_loss) - return train_losses - - -# Change to use model.fit when dataset has the correct layout info populated -# in the iterator, which is the long term solution -@tf.function -def train_step(model, feature, label, loss_obj, optimizer): - - with tf.GradientTape() as tape: - predict = model(feature, training=True) - loss = loss_obj(label, predict) - - gradients = tape.gradient(loss, model.trainable_variables) - optimizer.apply_gradients(zip(gradients, model.trainable_variables)) - return loss diff --git a/keras/dtensor/layers_test.py b/keras/dtensor/layers_test.py deleted file mode 100644 index 5efc2b7a8f2..00000000000 --- a/keras/dtensor/layers_test.py +++ /dev/null @@ -1,155 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for layers.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import backend -from keras import layers -from keras.dtensor import dtensor_api as dtensor -from keras.dtensor import test_util -from keras.utils import tf_utils - - -class LayersTest(test_util.DTensorBaseTest): - def setUp(self): - super().setUp() - backend.enable_tf_random_generator() - tf_utils.set_random_seed(1337) - global_ids = test_util.create_device_ids_array((2, 2)) - local_device_ids = np.ravel(global_ids).tolist() - mesh_dict = { - "CPU": dtensor.Mesh( - ["X", "Y"], - global_ids, - local_device_ids, - test_util.create_device_list((2, 2), "CPU"), - ) - } - self.mesh = self.configTestMesh(mesh_dict) - - @parameterized.named_parameters( - ( - "dense", - layers.Dense, - {"units": 4}, - {"kernel": 2, "bias": 1}, - [10, 8], - ), - # TODO(b/224861663): Enable this test. - # ('embedding', layers.Embedding, {'input_dim': 100, 'output_dim': 32}, - # {'embeddings': 2}, [10,], np.int32), - ( - "conv1d", - layers.Conv1D, - {"filters": 4, "kernel_size": 3}, - {"kernel": 3, "bias": 1}, - [10, 28, 3], - ), - ( - "conv1d_transpose", - layers.Conv1DTranspose, - {"filters": 4, "kernel_size": 3}, - {"kernel": 3, "bias": 1}, - [10, 28, 3], - ), - ( - "conv2d", - layers.Conv2D, - {"filters": 4, "kernel_size": (3, 3)}, - {"kernel": 4, "bias": 1}, - [10, 28, 28, 3], - ), - ( - "conv2d_transpose", - layers.Conv2DTranspose, - {"filters": 4, "kernel_size": (3, 3)}, - {"kernel": 4, "bias": 1}, - [10, 28, 28, 3], - ), - ( - "conv3d", - layers.Conv3D, - {"filters": 4, "kernel_size": (3, 3, 3)}, - {"kernel": 5, "bias": 1}, - [10, 28, 28, 28, 3], - ), - # TODO(b/224862394): Add support for tf.Conv3DBackpropInputV2 - # ('conv3dtranspose', layers.Conv3DTranspose, - # {'filters': 4, 'kernel_size': (3, 3, 3)}, - # {'kernel': 5, 'bias': 1}, [10, 28, 28, 28, 3]), - ( - "batch_norm", - layers.BatchNormalization, - {"fused": False}, - {"beta": 1, "gamma": 1, "moving_mean": 1, "moving_variance": 1}, - [10, 28, 28, 3], - ), - ( - "layer_norm", - layers.LayerNormalization, - {"dtype": tf.float64}, - {"beta": 1, "gamma": 1}, - [10, 28, 28, 3], - ), - ) - def test_layer( - self, - layer_cls, - init_args, - variable_settings, - input_shape, - input_dtype=np.float32, - ): - args_with_layout = init_args.copy() - for variable_name, variable_rank in variable_settings.items(): - args_with_layout[ - variable_name + "_layout" - ] = dtensor.Layout.replicated(self.mesh, variable_rank) - - layer = layer_cls(**args_with_layout) - # inputs = np.random.random(input_shape) - inputs = np.random.randn(*input_shape).astype(input_dtype) - d_inputs = dtensor.copy_to_mesh( - inputs, dtensor.Layout.replicated(self.mesh, len(input_shape)) - ) - d_output = layer(d_inputs) - - for variable_name, variable_rank in variable_settings.items(): - self.assertIsInstance( - getattr(layer, variable_name), dtensor.DVariable - ) - - expected_layout = dtensor.Layout.replicated( - self.mesh, d_output.shape.rank - ) - self.assertEqual(dtensor.fetch_layout(d_output), expected_layout) - - # Make sure to produce same output when layout is not used - tf_utils.set_random_seed(1337) - layer_2 = layer_cls(**init_args) - output = layer_2(inputs) - self.assertAllClose(d_output, output) - - for variable_name, variable_rank in variable_settings.items(): - self.assertNotIsInstance( - getattr(layer_2, variable_name), dtensor.DVariable - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/dtensor/layout_map.py b/keras/dtensor/layout_map.py deleted file mode 100644 index 49476c00f2a..00000000000 --- a/keras/dtensor/layout_map.py +++ /dev/null @@ -1,602 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Library for map layout and corresponding tf.Variable.""" - -import collections -import contextlib -import re -import threading - -import tensorflow.compat.v2 as tf - -from keras.dtensor import dtensor_api as dtensor -from keras.dtensor import lazy_variable -from keras.dtensor import utils -from keras.engine import base_layer - -# isort: off -from tensorflow.python.util.deprecation import deprecated -from tensorflow.python.util.tf_export import keras_export - - -# We will skip the path for certain attributes when mapping the layout, e.g. -# model._self_tracked_trackables, or layer._trainable_weights/ -# _non_trainable_weights, etc. Those attributes are usually served as a cache, -# and the actual variable should be in somewhere else. -_KERAS_ATTRIBUTES_TO_SKIP = [ - "_self_tracked_trackables", - "_trainable_weights", - "_non_trainable_weights", - "_captured_weight_regularizer", -] - - -_LAYOUT_MAP = threading.local() - - -def get_current_layout_map(): - return getattr(_LAYOUT_MAP, "layout_map", None) - - -@keras_export("keras.dtensor.experimental.LayoutMap", v1=[]) -class LayoutMap(collections.abc.MutableMapping): - """A dict-like object that maps string to `Layout` instances. - - `LayoutMap` uses a string as key and a `Layout` as value. There is a - behavior difference between a normal Python dict and this class. The string - key will be treated as a regex when retrieving the value. See the docstring - of `get` for more details. - - See below for a usage example. You can define the naming schema - of the `Layout`, and then retrieve the corresponding `Layout` instance. - - To use the `LayoutMap` with a `Model`, please see the docstring of - `tf.keras.dtensor.experimental.layout_map_scope`. - - ```python - map = LayoutMap(mesh=None) - map['.*dense.*kernel'] = layout_2d - map['.*dense.*bias'] = layout_1d - map['.*conv2d.*kernel'] = layout_4d - map['.*conv2d.*bias'] = layout_1d - - layout_1 = map['dense_1.kernel'] # layout_1 == layout_2d - layout_2 = map['dense_1.bias'] # layout_2 == layout_1d - layout_3 = map['dense_2.kernel'] # layout_3 == layout_2d - layout_4 = map['dense_2.bias'] # layout_4 == layout_1d - layout_5 = map['my_model/conv2d_123/kernel'] # layout_5 == layout_4d - layout_6 = map['my_model/conv2d_123/bias'] # layout_6 == layout_1d - ``` - - Args: - mesh: An optional `Mesh` that can be used to create all replicated - layout as default when there isn't a layout found based on the input - string query. - """ - - def __init__(self, mesh=None): - self._layout_map = collections.OrderedDict() - self._default_mesh = mesh - - def __getitem__(self, key): - """Retrieve the corresponding layout by the string key. - - When there isn't an exact match, all the existing keys in the layout map - will be treated as a regex and map against the input key again. The - first match will be returned, based on the key insertion order. Return - None if there isn't any match found. - - Args: - key: the string key as the query for the layout. - - Returns: - Corresponding layout based on the query. - """ - if key in self._layout_map: - return self._layout_map[key] - - for k in self._layout_map: - if re.match(k, key): - return self._layout_map[k] - return None - - def __setitem__(self, key, layout): - if key in self._layout_map: - raise ValueError( - f"{key} already exist in the LayoutMap with " - f"value {self._layout_map[key]}. Please make sure to " - "not use duplicated keys." - ) - if not isinstance(layout, dtensor.Layout): - raise ValueError( - f"{layout} should be a dtensor.Layout type, got {type(layout)}" - ) - - self._layout_map[key] = layout - - def __delitem__(self, key): - # let the dict to handle the key missing error - return self._layout_map.pop(key) - - def __len__(self): - return len(self._layout_map) - - def __iter__(self): - return iter(self._layout_map) - - def get_default_mesh(self): - """Return the default `Mesh` set at instance creation. - - The `Mesh` can be used to create default replicated `Layout` when there - isn't a match of the input string query. - """ - return self._default_mesh - - def scope(self): - """Apply layout to all `tf.Variable` instances created under the scope. - - All `tf.Variable` instances created under this scope - will be lazily initialized first. Once they are attached as the model - or layer attributes, and there is a stable layout mapping for it, the - variables will be reinitialized into a - `tf.experimental.dtensor.DVariable` with corresponding layout. - - Note that the layout mapping will use object/attribute names as the - keys to map the variable to the layout. - - For subclassed models, the full object/attribute name is used as the - key. For Functional/Sequential models, we use `layer.name` as - the key for the layer, followed by the attribute name. Keras ensures - name uniqueness among the layers within a Functional/Sequential model. - - See the following examples that show variable object names - for different Keras model types: - - ```python - layout_map = layout_map_lib.LayoutMap(mesh=self.mesh) - layout_map['d1.kernel'] = layout_1 - layout_map['d1.bias'] = layout_2 - layout_map['d2.kernel'] = layout_3 - layout_map['d2.bias'] = layout_4 - - ## Subclassed model - class SubclassModel(tf.keras.Model): - - def __init__(self, name=None): - super().__init__(name=name) - self.d1 = tf.keras.layers.Dense(1000) - self.d2 = tf.keras.layers.Dense(1000) - - def call(self, inputs): - x = self.d1(inputs) - return self.d2(x) - - with layout_map.scope(): - model = SubclassModel() - inputs = tf.zeros((10, 10)) - results = model(inputs) - - model.d1.kernel.layout == layout_1 - model.d1.bias.layout == layout_2 - model.d2.kernel.layout == layout_3 - model.d2.bias.layout == layout_4 - - ## Functional model - with layout_map.scope(): - inputs = tf.keras.Input((10,), batch_size=10) - x = tf.keras.layers.Dense(20, name='d1')(inputs) - output = tf.keras.layers.Dense(30, name='d2')(x) - - model = tf.keras.Model(inputs, output) - - d1 = model.layers[1] - d2 = model.layers[2] - - d1.kernel.layout == layout_1 - d1.bias.layout == layout_2 - d1.kernel.layout == layout_3 - d1.bias.layout == layout_4 - - ## Sequential model - with layout_map.scope(): - model = tf.keras.Sequential([ - tf.keras.layers.Dense(20, name='d1', input_shape=(10,)), - tf.keras.layers.Dense(30, name='d2') - ]) - - d1 = model.layers[0] - d2 = model.layers[1] - - d1.kernel.layout == layout_1 - d1.bias.layout == layout_2 - d1.kernel.layout == layout_3 - d1.bias.layout == layout_4 - ``` - - Returns: - A context that will lazily initialize all `tf.Variable` objects - within the model, with their attributed layouts. - """ - return layout_map_scope(self) - - -LayoutMap.get.__doc__ = LayoutMap.__getitem__.__doc__ - - -@keras_export("keras.dtensor.experimental.layout_map_scope", v1=[]) -@deprecated( - None, "use tf.keras.dtensor.experimental.LayoutMap.scope() instead." -) -@contextlib.contextmanager -def layout_map_scope(layout_map): - """Apply the layout to all the tf.Variables created under the scope. - - Create a scope that all the tf.Variable created under this scope - will be lazily inited, and initialized later on with proper layout when the - object path in the model is stable/finalized. - - Note that the layout mapping will use the object/attribute names as the key - to map the variable against the layout. - - For subclassed models, the full object/attribute name is used as the key. - For Functional/Sequential models, since the layers within the model do not - get assigned to a meaningful attribute, we use `layer.name` as the key for - the layer, followed by the attribute name. Keras ensures name uniqueness - among the layers in all Functional/Sequential models. - - See the following examples that show the variable object names - for different Keras model types: - - ```python - layout_map = layout_map_lib.LayoutMap(mesh=self.mesh) - layout_map['d1.kernel'] = layout_1 - layout_map['d1.bias'] = layout_2 - layout_map['d2.kernel'] = layout_3 - layout_map['d2.bias'] = layout_4 - - ## Subclassed model - class SubclassModel(tf.keras.Model): - - def __init__(self, name=None): - super().__init__(name=name) - self.d1 = tf.keras.layers.Dense(1000) - self.d2 = tf.keras.layers.Dense(1000) - - def call(self, inputs): - x = self.d1(inputs) - return self.d2(x) - - with layout_map_scope(layout_map): - model = SubclassModel() - # Triggering the creation of weights within or outside of the scope works - inputs = tf.zeros((10, 10)) - results = model(inputs) - - model.d1.kernel.layout == layout_1 - model.d1.bias.layout == layout_2 - model.d2.kernel.layout == layout_3 - model.d2.bias.layout == layout_4 - - ## Functional model - with layout_map_scope(layout_map): - inputs = tf.keras.Input((10,), batch_size=10) - x = tf.keras.layers.Dense(20, name='d1')(inputs) - output = tf.keras.layers.Dense(30, name='d2')(x) - - model = tf.keras.Model(inputs, output) - - d1 = model.layers[1] - d2 = model.layers[2] - - d1.kernel.layout == layout_1 - d1.bias.layout == layout_2 - d1.kernel.layout == layout_3 - d1.bias.layout == layout_4 - - ## Sequential model - with layout_map_scope(layout_map): - model = tf.keras.Sequential([ - tf.keras.layers.Dense(20, name='d1', input_shape=(10,)), - tf.keras.layers.Dense(30, name='d2') - ]) - - d1 = model.layers[0] - d2 = model.layers[1] - - d1.kernel.layout == layout_1 - d1.bias.layout == layout_2 - d1.kernel.layout == layout_3 - d1.bias.layout == layout_4 - ``` - - Args: - layout_map: a LayoutMap which contains the variable_object_path (string) - -> Layout. When a layout is not found for the variable, a default all - replicated layout will be created for the variable. - - Yields: - A context that will lazily initialize all `tf.Variable` objects - within the model, with their attributed layouts. - """ - previous_layout_map = get_current_layout_map() - global _LAYOUT_MAP - _LAYOUT_MAP.layout_map = layout_map - - with lazy_variable.lazy_init_scope(): - try: - yield - finally: - _LAYOUT_MAP.layout_map = previous_layout_map - - -def _map_subclass_model_variable(model, layout_map): - """Map/Replace LazyInitVariable for subclass model.""" - lazy_init_variable_to_tf_variable_map = {} - - # Note that the model._flatten is a method from tf.Module, and it returns - # duplicated items (since some of the items have different paths). - for path, variable in model._flatten( - predicate=_is_lazy_init_variable, - with_path=True, - ): - # Note that path is a tuple that contains string and ints, eg: - # ('d1', '_trainable_weights', 0) maps to model.d1._trainable_weights[0] - if [a for a in _KERAS_ATTRIBUTES_TO_SKIP if a in path]: - continue - # Convert all the ints to string and join with . - object_path = ".".join([str(item) for item in path]) - - new_variable = _create_dvariable(layout_map, object_path, variable) - _set_object_by_path(model, path, new_variable) - lazy_init_variable_to_tf_variable_map[id(variable)] = new_variable - - for layer in model._flatten( - predicate=lambda o: isinstance(o, base_layer.Layer) - ): - _config_dvariable_regularization( - layer, lazy_init_variable_to_tf_variable_map - ) - # After we replaced all the variables, we want to make sure all the cached - # attributes are having the new variable, rather than old LazyInitVariable. - for path, variable in model._flatten( - predicate=_is_lazy_init_variable, - with_path=True, - ): - tf_variable = lazy_init_variable_to_tf_variable_map[id(variable)] - _set_object_by_path(model, path, tf_variable) - - _init_state_variable_for_rng(model, layout_map) - _update_trackable_reference(model, lazy_init_variable_to_tf_variable_map) - return model - - -def _map_functional_model_variable(model, layout_map): - """Map/Replace LazyInitVariable for functional/sequential model.""" - lazy_init_variable_to_tf_variable_map = {} - - for layer in model.layers: - # Note that layer name is unique among the functional/sequential model - # when the layer name is not provided, Keras will auto generate a layer - # name based on the class name. - layer_name = layer.name - for path, variable in layer._flatten( - predicate=_is_lazy_init_variable, - with_path=True, - ): - # Note that path is a tuple that contains string and ints, eg: - # ('d1', '_trainable_weights', 0) maps to - # model.d1._trainable_weights[0] - if [a for a in _KERAS_ATTRIBUTES_TO_SKIP if a in path]: - continue - # Convert all the ints to string and join with . - object_path = ".".join([str(item) for item in path]) - # Also attach the layer name - object_path = layer_name + "." + object_path - - new_variable = _create_dvariable(layout_map, object_path, variable) - _set_object_by_path(layer, path, new_variable) - lazy_init_variable_to_tf_variable_map[id(variable)] = new_variable - - _config_dvariable_regularization( - layer, lazy_init_variable_to_tf_variable_map - ) - - # After we replaced all the variables, we want to make sure all the - # cached attributes are having the new variable, rather than old - # LazyInitVariable. - for path, variable in layer._flatten( - predicate=_is_lazy_init_variable, - with_path=True, - ): - tf_variable = lazy_init_variable_to_tf_variable_map[id(variable)] - _set_object_by_path(layer, path, tf_variable) - - _init_state_variable_for_rng(model, layout_map) - _update_trackable_reference(model, lazy_init_variable_to_tf_variable_map) - return model - - -def _init_state_variable_for_rng(model, layout_map): - """Init the state variable in tf.ranodm.Generator. - - Since the BaseRandomLayer in keras explicitly untrack the - tf.random.Generator, the variable in it will stay as LazyInitVariable, which - cause runtime error if we don't replace them with proper DVariable. Since - user usually are not aware the existence of those variable, we will just - give them replicated layout since they are tiny. - - Args: - model: the model whose layers will be checked to find the - BaseRandomLayers. - layout_map: used to get the default mesh information to create DVariable. - """ - - for l in model._flatten( - predicate=lambda o: isinstance(o, base_layer.BaseRandomLayer) - ): - keras_generator = l._random_generator - if keras_generator._built and keras_generator._generator is None: - raise ValueError( - "Keras is expected to use tf.random.Generator when using " - "DTensor API. Please call " - "`tf.keras.backend.experimental.enable_tf_random_generator` at " - "the beginning of your program." - ) - if hasattr(keras_generator, "_generator") and _is_lazy_init_variable( - keras_generator._generator._state_var - ): - # Replace it with DVariable - keras_generator._generator._state_var = _create_dvariable( - layout_map, "", keras_generator._generator._state_var - ) - else: - # When the keras_generator is not built yet. Call the init function - # with DTensor device to init all the variable with default - # replicated layout. - with dtensor.default_mesh(layout_map.get_default_mesh()): - keras_generator._maybe_init() - - -def _config_dvariable_regularization( - layer, lazy_init_variable_to_tf_variable_map -): - """Update the weights regularizer for newly created `DVariable`. - - The weight regularization usually happens when `layer.add_weight()` is - called, at which point the library will first create a `LazyInitVariable`, - and then replace it with a `DVariable`. We will defer the creation of those - losses, until the DVariable is created. - - See `layer._captured_weight_regularizer` for more details. - - Args: - layer: the layer instance for DVariable regularization config. - lazy_init_variable_to_tf_variable_map: the dict between LazyInitVariable - ID and newly created DVariable. - """ - - for name, variable, regualarizer in layer._captured_weight_regularizer: - if not _is_lazy_init_variable(variable): - raise ValueError( - "Expect the regularization loss are created from " - f"LazyInitVariable, got {variable}" - ) - d_variable = lazy_init_variable_to_tf_variable_map[id(variable)] - layer._handle_weight_regularization(name, d_variable, regualarizer) - # After that, we should cleanup `layer._captured_weight_regularizer` - layer._captured_weight_regularizer = [] - - -def _create_dvariable(layout_map, object_path, variable): - """Create a new variable instead of using the LazyInitVariable. - - We choose to do this since even the LazyInitVariable might behavior like - a normal tf.Variable/DVariable, it is not future proof for any new changes - to variable class. It will also fail the instance type check in python, - which could affect user's code when they do any filtering based on type to - find any variables. - - Args: - layout_map: a LayoutMap which contains the variable_object_path (string) - -> Layout. - object_path: string, the object attribute path for the variable. - variable: LazyInitVariable which will be replaced by the newly created - tf.Variable. - Returns: - A new tf.Variable with correct layout information. - """ - # TODO(b/228209108): Revisit this in future and see if we can just reuse the - # LazyInitVariable rather than creating a new tf.Variable instance. - layout = layout_map[object_path] - if layout is None: - variable_rank = variable.shape.rank - layout = dtensor.Layout.replicated( - mesh=layout_map.get_default_mesh(), rank=variable_rank - ) - init_val = variable._initial_value - if callable(init_val): - with lazy_variable.disable_init_variable_creator(): - init_val = utils.call_with_layout(init_val, layout) - else: - # The init value is probably already created as a tensor, we will just - # copy it to mesh and give it a proper layout. - init_val = dtensor.copy_to_mesh(init_val, layout) - # Use the original variable name for new DVariable creation. TF was adding - # ":0" suffix to it. - variable_name = variable.name - if variable_name.endswith(":0"): - variable_name = variable_name[:-2] - new_variable = dtensor.DVariable( - init_val, trainable=variable.trainable, name=variable_name - ) - return new_variable - - -def _set_object_by_path(object_to_set, path, value): - """Set the attribute of instance to the object. - - Args: - object_to_set: the instance whose attribute should be set. - path: the tuple/list of string and ints, representing the attribute names. - Int means that the attribute to set is a item a list. - value: the value of the attribute. - """ - - for i, attr_name in enumerate(path): - if i == len(path) - 1: - # We found the actual attribute to set - if isinstance(attr_name, int): - # This means we are trying to set an element in the array, make - # sure the instance is array like object. - object_to_set[attr_name] = value - else: - setattr(object_to_set, attr_name, value) - else: - if isinstance(attr_name, int): - object_to_set = object_to_set[attr_name] - else: - object_to_set = getattr(object_to_set, attr_name) - - -# TODO(b/228209108): Revisit this after we can reinit LazyInitVariable. -def _update_trackable_reference(model, lazy_init_variable_to_tf_variable_map): - """Update the trackable object references for the model. - - Note that this method is only needed because of a corner case for model - checkpoint, where it could accidently catch a LazyInitVariable in checkpoint - dependency and not visible to the model attribute graph itself. - - Args: - model: the keras model instance whose checkpoint dependency will be - examed. - lazy_init_variable_to_tf_variable_map: the dict between LazyInitVariable - ID and newly created DVariable. - """ - # See b/234621758 for more details. - object_graph = tf.__internal__.tracking.ObjectGraphView(model) - trackables, _ = object_graph.breadth_first_traversal() - for trackable in trackables: - for ref_name, ref in trackable._trackable_children().items(): - if _is_lazy_init_variable(ref): - # Replacing the LazyVariable with DVariable. - trackable._track_trackable( - lazy_init_variable_to_tf_variable_map[id(ref)], - ref_name, - overwrite=True, - ) - - -def _is_lazy_init_variable(obj): - return isinstance(obj, lazy_variable.LazyInitVariable) diff --git a/keras/dtensor/layout_map_test.py b/keras/dtensor/layout_map_test.py deleted file mode 100644 index 268180a14ce..00000000000 --- a/keras/dtensor/layout_map_test.py +++ /dev/null @@ -1,412 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for layout_map.""" - -import os -import shutil - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import layers -from keras import models -from keras.dtensor import dtensor_api as dtensor -from keras.dtensor import layout_map as layout_map_lib -from keras.dtensor import test_util -from keras.utils import tf_utils - - -class LayoutMapTest(test_util.DTensorBaseTest): - def setUp(self): - super().setUp() - backend.enable_tf_random_generator() - tf_utils.set_random_seed(1337) - global_ids = test_util.create_device_ids_array((2, 2)) - local_device_ids = np.ravel(global_ids).tolist() - mesh_dict = { - "CPU": dtensor.Mesh( - ["X", "Y"], - global_ids, - local_device_ids, - test_util.create_device_list((2, 2), "CPU"), - ) - } - self.mesh = self.configTestMesh(mesh_dict) - self.layout_2d = dtensor.Layout.replicated(self.mesh, rank=2) - self.layout_1d = dtensor.Layout.replicated(self.mesh, rank=1) - - self.sharded_2d = dtensor.Layout.batch_sharded(self.mesh, "X", rank=2) - self.sharded_1d = dtensor.Layout.batch_sharded(self.mesh, "X", rank=1) - - def test_add(self): - layout_map = layout_map_lib.LayoutMap() - - layout_map["dense/kernel"] = self.layout_2d - layout_map["dense/bias"] = self.layout_1d - - # Make there are two items in the map, and we access them via the - # underlying container at layout_map._layout_map - self.assertLen(layout_map._layout_map, 2) - self.assertEqual(layout_map._layout_map["dense/kernel"], self.layout_2d) - self.assertEqual(layout_map._layout_map["dense/bias"], self.layout_1d) - - with self.assertRaisesRegex(ValueError, "dense/kernel already exist"): - layout_map["dense/kernel"] = self.layout_1d - - with self.assertRaisesRegex(ValueError, "should be a dtensor.Layout"): - layout_map["conv.kernel"] = [1, 2, 3] - - def test_get(self): - layout_map = layout_map_lib.LayoutMap() - - layout_map["dense/kernel"] = self.sharded_2d - layout_map["dense/bias"] = self.sharded_1d - - layout_map["dense.*kernel"] = self.layout_2d - layout_map["dense.*bias"] = self.layout_1d - - layout_map[".*bias"] = self.sharded_1d - - self.assertEqual(layout_map["dense/kernel"], self.sharded_2d) - self.assertEqual(layout_map["dense/bias"], self.sharded_1d) - - # Map against the wildcard bias rule for dense, and based on the order - # of insertion, it will not use .*bias. - self.assertEqual(layout_map["dense_2/kernel"], self.layout_2d) - self.assertEqual(layout_map["dense_2/bias"], self.layout_1d) - - self.assertIsNone(layout_map["conv2d/kernel"]) - self.assertEqual(layout_map["conv2d/bias"], self.sharded_1d) - - def test_delete(self): - layout_map = layout_map_lib.LayoutMap() - - layout_map["dense/kernel"] = self.layout_2d - layout_map["dense/bias"] = self.layout_1d - - self.assertEqual(layout_map.pop("dense/kernel"), self.layout_2d) - # Make sure to match against the exact string, not the regex - with self.assertRaises(KeyError): - layout_map.pop(".*bias") - - # Make sure del also works - del layout_map["dense/bias"] - - self.assertEmpty(layout_map._layout_map) - - def test_len(self): - layout_map = layout_map_lib.LayoutMap() - self.assertEmpty(layout_map) - - layout_map["dense/kernel"] = self.layout_2d - layout_map["dense/bias"] = self.layout_1d - - self.assertLen(layout_map, 2) - - def test_iter(self): - layout_map = layout_map_lib.LayoutMap() - - layout_map["dense/kernel"] = self.layout_2d - layout_map["dense/bias"] = self.layout_1d - - # Make sure the items are ordered based on the insertion order. - self.assertEqual( - list(layout_map.keys()), ["dense/kernel", "dense/bias"] - ) - - keys = [] - values = [] - for k, v in layout_map.items(): - keys.append(k) - values.append(v) - - self.assertEqual(keys, ["dense/kernel", "dense/bias"]) - self.assertEqual(values, [self.layout_2d, self.layout_1d]) - - -# Class used for testing. -class SubclassModel(models.Model): - def __init__(self, name=None): - super().__init__(name=name) - self.d1 = layers.Dense(1000) - self.d2 = layers.Dense(1000) - self.dropout = layers.Dropout(0.1) - - def call(self, inputs, training=None): - x = self.d1(inputs) - x = self.dropout(x, training=training) - return self.d2(x) - - -class SubclassLayer(layers.Layer): - def __init__(self, unit): - super().__init__() - self.unit = unit - - def build(self, input_shape): - weight_shape = (input_shape[-1], self.unit) - # Note that the variable name is "kernel", but assigned to "_weight" - # This will cause the checkpoint to record 2 dependencies. - self._weight = self.add_weight(shape=weight_shape, name="kernel") - - def call(self, inputs): - return tf.matmul(inputs, self._weight) - - -class ObjectPathMappingTest(test_util.DTensorBaseTest): - def setUp(self): - super().setUp() - backend.enable_tf_random_generator() - tf_utils.set_random_seed(1337) - global_ids = test_util.create_device_ids_array((2, 2)) - local_device_ids = np.ravel(global_ids).tolist() - mesh_dict = { - "CPU": dtensor.Mesh( - ["X", "Y"], - global_ids, - local_device_ids, - test_util.create_device_list((2, 2), "CPU"), - ) - } - self.mesh = self.configTestMesh(mesh_dict) - self.layout_2d = dtensor.Layout.replicated(self.mesh, rank=2) - self.layout_1d = dtensor.Layout.replicated(self.mesh, rank=1) - - self.sharded_2d = dtensor.Layout.batch_sharded(self.mesh, "X", rank=2) - self.sharded_1d = dtensor.Layout.batch_sharded(self.mesh, "X", rank=1) - - def test_init_subclass_model_variable_with_layout(self): - layout_map = layout_map_lib.LayoutMap(mesh=self.mesh) - layout_map["d1.kernel"] = self.layout_2d - layout_map["d1.bias"] = self.layout_1d - layout_map["d2.kernel"] = self.layout_2d - layout_map["d2.bias"] = self.layout_1d - - with layout_map.scope(): - model = SubclassModel(name="model") - - # Init the model with eager tensor, make sure the model weights have - # correct layout, as well as produce correct result. - inputs = tf.zeros((10, 10)) - inputs = dtensor.copy_to_mesh(inputs, layout=self.layout_2d) - result = model(inputs) - self.assertAllClose(result, tf.zeros((10, 1000))) - d1 = model.d1 - d2 = model.d2 - self.assertEqual(d1.kernel.layout, self.layout_2d) - self.assertEqual(d1.bias.layout, self.layout_1d) - self.assertEqual(d2.kernel.layout, self.layout_2d) - self.assertEqual(d2.bias.layout, self.layout_1d) - - # Also make sure we repopulate the cached attributes like - # layer._trainable_weights - self.assertIs(d1.kernel, d1._trainable_weights[0]) - self.assertIs(d1.bias, d1._trainable_weights[1]) - self.assertIs(d2.kernel, d2._trainable_weights[0]) - self.assertIs(d2.bias, d2._trainable_weights[1]) - - result = model(inputs, training=True) - self.assertAllClose( - result, - tf.experimental.dtensor.copy_to_mesh( - tf.zeros((10, 1000)), self.layout_2d - ), - ) - - def test_init_functional_model_variable_with_layout(self): - # Note that the functional model is using layers name + attribute name - # the layer name are unique among the functional model, and when the - # layer doesn't have a name, keras will give it a unique name based on - # the layer class. - layout_map = layout_map_lib.LayoutMap(mesh=self.mesh) - layout_map["d1.kernel"] = self.layout_2d - layout_map["d1.bias"] = self.layout_1d - layout_map["d2.kernel"] = self.layout_2d - layout_map["d2.bias"] = self.layout_1d - - with layout_map.scope(): - inputs = layers.Input((10,), batch_size=10) - x = layers.Dense(20, name="d1")(inputs) - x = layers.Dropout(0.1)(x) - output = layers.Dense(30, name="d2")(x) - - model = models.Model(inputs, output) - - # It includes input layer as well. - self.assertLen(model.layers, 4) - d1 = model.layers[1] - d2 = model.layers[3] - - self.assertEqual(d1.kernel.layout, self.layout_2d) - self.assertEqual(d1.bias.layout, self.layout_1d) - self.assertEqual(d2.kernel.layout, self.layout_2d) - self.assertEqual(d2.bias.layout, self.layout_1d) - - # Also make sure we repopulate the cached attributes like - # layer._trainable_weights - self.assertIs(d1.kernel, d1._trainable_weights[0]) - self.assertIs(d1.bias, d1._trainable_weights[1]) - self.assertIs(d2.kernel, d2._trainable_weights[0]) - self.assertIs(d2.bias, d2._trainable_weights[1]) - - inputs = tf.zeros((10, 10)) - inputs = dtensor.copy_to_mesh(inputs, layout=self.layout_2d) - result = model(inputs, training=True) - expected_result = tf.zeros((10, 30)) - expected_result = dtensor.copy_to_mesh( - expected_result, layout=self.layout_2d - ) - self.assertAllClose(result, expected_result) - - def test_init_sequential_model_variable_with_layout(self): - # Note that the sequential model is using layers name + attribute name - # the layer name are unique among the functional model, and when the - # layer doesn't have a name, keras will give it a unique name based on - # the layer class. - layout_map = layout_map_lib.LayoutMap(mesh=self.mesh) - layout_map["d1.kernel"] = self.layout_2d - layout_map["d1.bias"] = self.layout_1d - layout_map["d2.kernel"] = self.layout_2d - layout_map["d2.bias"] = self.layout_1d - - with layout_map.scope(): - model = models.Sequential( - [ - layers.Dense(20, name="d1", input_shape=(10,)), - layers.Dropout(0.1), - layers.Dense(30, name="d2"), - ] - ) - - self.assertLen(model.layers, 3) - d1 = model.layers[0] - d2 = model.layers[2] - - self.assertEqual(d1.kernel.layout, self.layout_2d) - self.assertEqual(d1.bias.layout, self.layout_1d) - self.assertEqual(d2.kernel.layout, self.layout_2d) - self.assertEqual(d2.bias.layout, self.layout_1d) - - # Also make sure we repopulate the cached attributes like - # layer._trainable_weights - self.assertIs(d1.kernel, d1._trainable_weights[0]) - self.assertIs(d1.bias, d1._trainable_weights[1]) - self.assertIs(d2.kernel, d2._trainable_weights[0]) - self.assertIs(d2.bias, d2._trainable_weights[1]) - - inputs = tf.zeros((10, 10)) - inputs = dtensor.copy_to_mesh(inputs, layout=self.layout_2d) - result = model(inputs, training=True) - expected_result = tf.zeros((10, 30)) - expected_result = dtensor.copy_to_mesh( - expected_result, layout=self.layout_2d - ) - self.assertAllClose(result, expected_result) - - def test_init_model_with_empty_layout_map(self): - # Create empty layout map, which means all the weights just default to - # all replicated. - layout_map = layout_map_lib.LayoutMap(mesh=self.mesh) - with layout_map.scope(): - model = models.Sequential( - [ - layers.Dense(20, name="d1", input_shape=(10,)), - layers.Dropout(0.1), - layers.Dense(30, name="d2"), - ] - ) - - self.assertLen(model.layers, 3) - d1 = model.layers[0] - d2 = model.layers[2] - - self.assertEqual(d1.kernel.layout, self.layout_2d) - self.assertEqual(d1.bias.layout, self.layout_1d) - self.assertEqual(d2.kernel.layout, self.layout_2d) - self.assertEqual(d2.bias.layout, self.layout_1d) - - def test_weight_regularization(self): - layout_map = layout_map_lib.LayoutMap(mesh=self.mesh) - with layout_map_lib.layout_map_scope(layout_map): - model = models.Sequential( - [ - layers.Dense( - 20, - name="d1", - input_shape=(10,), - kernel_initializer="ones", - kernel_regularizer="l2", - ), - layers.Dropout(0.1), - layers.Dense( - 30, - name="d2", - kernel_initializer="ones", - kernel_regularizer="l2", - ), - ] - ) - - self.assertLen(model.losses, 2) - # kernel shape [10, 20] with all "1", timed by 0.01 from l2 - self.assertAllClose(model.losses[0], 2.0) - # kernel shape [20, 30] with all "1", timed by 0.01 from l2 - self.assertAllClose(model.losses[1], 6.0) - - def test_dvariable_name(self): - layout_map = layout_map_lib.LayoutMap(mesh=self.mesh) - with layout_map.scope(): - model = models.Sequential( - [ - layers.Dense(20, name="d1", input_shape=(10,)), - layers.Dropout(0.1), - layers.Dense(30, name="d2"), - ] - ) - - self.assertLen(model.layers, 3) - self.assertEqual(model.layers[0].kernel.name, "d1/kernel:0") - self.assertEqual(model.layers[0].bias.name, "d1/bias:0") - - @tf.compat.v1.test.mock.patch.dict( - "os.environ", {"DTENSOR_ENABLE_CHECKPOINT_V2": "True"} - ) - def test_checkpoint(self): - layout_map = layout_map_lib.LayoutMap(mesh=self.mesh) - with layout_map.scope(): - model = models.Sequential( - [ - layers.Dense(20, name="d1", input_shape=(10,)), - SubclassLayer(10), - ] - ) - cpt = tf.train.Checkpoint(root=model) - options = tf.train.CheckpointOptions( - experimental_io_device=dtensor.device_name() - ) - tmpdir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, tmpdir, ignore_errors=True) - - saved_path = cpt.save( - os.path.join(tmpdir, "checkpoint"), - options=options, - ) - - cpt.restore(saved_path, options=options) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/dtensor/lazy_variable.py b/keras/dtensor/lazy_variable.py deleted file mode 100644 index 3357f120849..00000000000 --- a/keras/dtensor/lazy_variable.py +++ /dev/null @@ -1,258 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Lazily initialized variables, useful for creating a symbolic Keras model.""" - -import threading - -# isort: off -from tensorflow.core.framework import attr_value_pb2 -from tensorflow.python.eager import context -from tensorflow.python.framework import ops -from tensorflow.python.ops import gen_resource_variable_ops -from tensorflow.python.ops import resource_variable_ops -from tensorflow.python.ops import variable_scope -from tensorflow.python.trackable import base as trackable -from tensorflow.python.util import compat -from tensorflow.python.util import tf_contextlib - -_DISABLE_LAZY_VARIABLE_INIT = threading.local() - - -def _infer_shape_dtype_and_create_handle(initial_value, shape, dtype, name): - """Infer shape and dtype from initial_value and create a variable handle.""" - with ops.name_scope(name, "Variable", skip_on_eager=False) as name: - handle_name = ops.name_from_scope_name(name) - unique_id = "%s_%d" % (handle_name, ops.uid()) - - # Use attr_scope and device(None) to simulate the behavior of - # colocate_with when the variable we want to colocate with doesn't - # yet exist. - device_context_manager = ops.NullContextmanager - attr = attr_value_pb2.AttrValue( - list=attr_value_pb2.AttrValue.ListValue( - s=[compat.as_bytes(f"loc:@{handle_name}")] - ) - ) - with ops.get_default_graph()._attr_scope({"_class": attr}): - with ops.name_scope("Initializer"), device_context_manager(None): - if not callable(initial_value): - if isinstance( - initial_value, trackable.CheckpointInitialValue - ): - raise NotImplementedError( - "CheckpointInitialValue is not supported to be the " - "initial value of a lazy variable." - ) - initial_value = ops.convert_to_tensor( - initial_value, name="initial_value", dtype=dtype - ) - assert not callable(initial_value) - - assert initial_value.shape.is_compatible_with(shape) - dtype = dtype or initial_value.dtype.base_dtype - shape = shape or initial_value.shape - - assert dtype - assert shape - handle = ( - resource_variable_ops._variable_handle_from_shape_and_dtype( - shape=shape, - dtype=dtype, - shared_name=None, # Never shared - name=name, - graph_mode=False, - initial_value=None, - ) - ) - # initial_value=initial_value if not callable(initial_value) else - # None) - return initial_value, shape, dtype, handle, handle_name, unique_id - - -class LazyInitVariable(resource_variable_ops.BaseResourceVariable): - """Lazily initialized variables. - - The major use case for this class is to serve as a memory efficient - alternative for tf.Variable. The resource handle of this class is point to - nothing, which mean it will raise error when its value is fetched in a eager - context. Having said that, it will perform like a normal tf.Variable when - using with graph tensor, like KerasTensor produced from tf.keras.Input. - """ - - def __init__( - self, - initial_value=None, - trainable=None, - collections=None, - validate_shape=True, - caching_device=None, - name=None, - dtype=None, - variable_def=None, - import_scope=None, - constraint=None, - distribute_strategy=None, - synchronization=None, - aggregation=None, - shape=None, - **kwargs, - ): - assert context.executing_eagerly() # To simplify the logic - assert variable_def is None # Not supported yet. - assert caching_device is None # Not supported yet - - if initial_value is None: - raise ValueError( - "The `initial_value` arg to `tf.Variable` must " - "be specified except when you are not providing a " - "`variable_def`. You provided neither." - ) - - if ( - isinstance(initial_value, ops.Tensor) - and hasattr(initial_value, "graph") - and initial_value.graph.building_function - ): - raise ValueError( - f"Argument `initial_value` ({initial_value}) could not " - "be lifted out of a `tf.function`. " - f"(Tried to create variable with name='{name}'). " - "To avoid this error, when constructing `tf.Variable`s " - "inside of `tf.function` you can create the " - "`initial_value` tensor in a " - "`tf.init_scope` or pass a callable `initial_value` " - "(e.g., `tf.Variable(lambda : " - "tf.truncated_normal([10, 40]))`). " - "Please file a feature request if this " - "restriction inconveniences you." - ) - - if constraint is not None and not callable(constraint): - raise ValueError( - "Argument `constraint` must be None or a callable. " - f"a callable. Got a {type(constraint)}: {constraint}" - ) - - self._name = name - ( - initial_value, - shape, - dtype, - handle, - handle_name, - unique_id, - ) = _infer_shape_dtype_and_create_handle( - initial_value, shape, dtype, name - ) - - super().__init__( - distribute_strategy=distribute_strategy, - initial_value=initial_value, - shape=shape, - dtype=dtype, - name=name, - unique_id=unique_id, - handle_name=handle_name, - constraint=constraint, - handle=handle, - graph_element=None, - trainable=trainable, - synchronization=synchronization, - aggregation=aggregation, - in_graph_mode=False, - ) - - # TODO(scottzhu): This method and create_and_initialize might be removed if - # we decide to just use the tf.Variable to replace this class. - def initialize(self): - with ops.name_scope(self._name, "Variable", skip_on_eager=False): - with ops.colocate_with(self._handle), ops.name_scope("Initializer"): - if callable(self._initial_value): - initial_value = self._initial_value() - else: - initial_value = self._initial_value - - if not initial_value.shape.is_compatible_with(self._shape): - raise ValueError( - "In this `tf.Variable` creation, the initial value's " - f"shape ({initial_value.shape}) is not compatible with " - "the explicitly supplied `shape` " - f"argument ({self._shape})." - ) - assert self._dtype is initial_value.dtype.base_dtype - gen_resource_variable_ops.assign_variable_op( - self._handle, initial_value - ) - - def create_and_initialize(self): - if callable(self._initial_value): - initial_value = self._initial_value() - - with ops.device(initial_value.device): - ( - initial_value, - shape, - dtype, - handle, - handle_name, - unique_id, - ) = _infer_shape_dtype_and_create_handle( - initial_value, self._shape, self._dtype, self._name - ) - self.initialize() - - super().__init__( - trainable=self._trainable, - shape=shape, - dtype=dtype, - handle=handle, - synchronization=self._synchronization, - constraint=self._constraint, - aggregation=self._aggregation, - distribute_strategy=self._distribute_strategy, - name=self._name, - unique_id=unique_id, - handle_name=handle_name, - graph_element=None, - initial_value=initial_value, - initializer_op=None, - is_initialized_op=None, - cached_value=None, - caching_device=None, - ) - - -def _lazy_init_variable_creator(next_creator, **kwargs): - if getattr(_DISABLE_LAZY_VARIABLE_INIT, "disabled", False): - return next_creator(**kwargs) - else: - return LazyInitVariable(**kwargs) - - -@tf_contextlib.contextmanager -def lazy_init_scope(): - with variable_scope.variable_creator_scope(_lazy_init_variable_creator): - yield - - -@tf_contextlib.contextmanager -def disable_init_variable_creator(): - try: - global _DISABLE_LAZY_VARIABLE_INIT - existing_value = getattr(_DISABLE_LAZY_VARIABLE_INIT, "disabled", False) - _DISABLE_LAZY_VARIABLE_INIT.disabled = True - yield - finally: - _DISABLE_LAZY_VARIABLE_INIT.disabled = existing_value diff --git a/keras/dtensor/metrics_test.py b/keras/dtensor/metrics_test.py deleted file mode 100644 index ddad4077ef9..00000000000 --- a/keras/dtensor/metrics_test.py +++ /dev/null @@ -1,94 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for metrics.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import metrics -from keras.dtensor import dtensor_api as dtensor -from keras.dtensor import test_util -from keras.utils import tf_utils - - -class MetricsTest(test_util.DTensorBaseTest): - def setUp(self): - super().setUp() - global_ids = test_util.create_device_ids_array((2, 2)) - local_device_ids = np.ravel(global_ids).tolist() - mesh_dict = { - "CPU": dtensor.Mesh( - ["X", "Y"], - global_ids, - local_device_ids, - test_util.create_device_list((2, 2), "CPU"), - ) - } - self.mesh = self.configTestMesh(mesh_dict) - tf_utils.set_random_seed(1337) - - @parameterized.parameters( - (metrics.Accuracy, {}), - (metrics.AUC, {}), - (metrics.BinaryAccuracy, {}), - (metrics.BinaryCrossentropy, {}), - (metrics.BinaryIoU, {}), - (metrics.CategoricalAccuracy, {}), - (metrics.CategoricalCrossentropy, {}), - (metrics.CategoricalHinge, {}), - (metrics.CosineSimilarity, {}), - (metrics.FalseNegatives, {}), - (metrics.FalsePositives, {}), - (metrics.Hinge, {}), - (metrics.IoU, {"num_classes": 3, "target_class_ids": [1]}), - (metrics.KLDivergence, {}), - (metrics.LogCoshError, {}), - (metrics.Mean, {}), - (metrics.MeanAbsoluteError, {}), - (metrics.MeanAbsolutePercentageError, {}), - (metrics.MeanIoU, {"num_classes": 3}), - (metrics.MeanRelativeError, {"normalizer": [1, 3, 2, 3]}), - (metrics.MeanSquaredError, {}), - (metrics.MeanSquaredLogarithmicError, {}), - (metrics.OneHotIoU, {"num_classes": 3, "target_class_ids": [1]}), - (metrics.OneHotMeanIoU, {"num_classes": 3}), - (metrics.Poisson, {}), - (metrics.Precision, {}), - (metrics.PrecisionAtRecall, {"recall": 0.5}), - (metrics.Recall, {}), - (metrics.RecallAtPrecision, {"precision": 0.5}), - (metrics.RootMeanSquaredError, {}), - (metrics.SensitivityAtSpecificity, {"specificity": 0.5}), - (metrics.SparseCategoricalAccuracy, {}), - (metrics.SparseCategoricalCrossentropy, {}), - (metrics.SparseTopKCategoricalAccuracy, {}), - (metrics.SpecificityAtSensitivity, {"sensitivity": 0.5}), - (metrics.SquaredHinge, {}), - (metrics.Sum, {}), - (metrics.TopKCategoricalAccuracy, {}), - (metrics.TrueNegatives, {}), - (metrics.TruePositives, {}), - ) - def test_metric_layout(self, metric_cls, init_args): - metric = metric_cls(**init_args, mesh=self.mesh) - - for weight in metric.non_trainable_weights: - self.assertIsInstance(weight, dtensor.DVariable) - self.assertTrue(weight.layout.is_fully_replicated()) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/dtensor/mnist_model_test.py b/keras/dtensor/mnist_model_test.py deleted file mode 100644 index 58ecf29da28..00000000000 --- a/keras/dtensor/mnist_model_test.py +++ /dev/null @@ -1,95 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""E2E Tests for mnist_model.""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.dtensor import dtensor_api as dtensor -from keras.dtensor import integration_test_utils -from keras.dtensor import test_util -from keras.optimizers import adam -from keras.utils import tf_utils - - -class MnistTest(test_util.DTensorBaseTest): - def test_mnist_training_cpu(self): - devices = tf.config.list_physical_devices("CPU") - tf.config.set_logical_device_configuration( - devices[0], - [ - tf.config.LogicalDeviceConfiguration(), - ] - * 8, - ) - - mesh = dtensor.create_mesh( - devices=["CPU:%d" % i for i in range(8)], mesh_dims=[("batch", 8)] - ) - - backend.enable_tf_random_generator() - # Needed by keras initializers. - tf_utils.set_random_seed(1337) - - model = integration_test_utils.get_model_with_layout_map( - integration_test_utils.get_all_replicated_layout_map(mesh) - ) - - optimizer = adam.Adam(learning_rate=0.001, mesh=mesh) - optimizer.build(model.trainable_variables) - - train_losses = integration_test_utils.train_mnist_model_batch_sharded( - model, - optimizer, - mesh, - num_epochs=3, - steps_per_epoch=100, - global_batch_size=64, - ) - # Make sure the losses are decreasing - self.assertEqual(train_losses, sorted(train_losses, reverse=True)) - - def DISABLED_test_mnist_training_tpu(self): - # TODO(scottzhu): Enable TPU test once the dtensor_test rule is migrated - # out of learning/brain - dtensor.initialize_accelerator_system() - total_tpu_device_count = dtensor.num_global_devices("TPU") - mesh_shape = [total_tpu_device_count] - mesh = dtensor.create_tpu_mesh(["batch"], mesh_shape, "tpu_mesh") - - # Needed by keras initializers. - tf_utils.set_random_seed(1337) - - model = integration_test_utils.get_model_with_layout_map( - integration_test_utils.get_all_replicated_layout_map(mesh) - ) - - optimizer = adam.Adam(learning_rate=0.001, mesh=mesh) - optimizer.build(model.trainable_variables) - - train_losses = integration_test_utils.train_mnist_model_batch_sharded( - model, - optimizer, - mesh, - num_epochs=3, - steps_per_epoch=100, - global_batch_size=64, - ) - # Make sure the losses are decreasing - self.assertEqual(train_losses, sorted(train_losses, reverse=True)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/dtensor/optimizers_test.py b/keras/dtensor/optimizers_test.py deleted file mode 100644 index f6df21cad41..00000000000 --- a/keras/dtensor/optimizers_test.py +++ /dev/null @@ -1,237 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for initializers.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import backend -from keras import layers -from keras import losses -from keras import models -from keras.dtensor import dtensor_api as dtensor -from keras.dtensor import layout_map -from keras.dtensor import test_util -from keras.optimizers import adadelta -from keras.optimizers import adagrad -from keras.optimizers import adam -from keras.optimizers import adamw -from keras.optimizers import rmsprop -from keras.optimizers import sgd - - -class OptimizersTest(test_util.DTensorBaseTest): - def setUp(self): - super().setUp() - - global_ids = test_util.create_device_ids_array((2, 2)) - local_device_ids = np.ravel(global_ids).tolist() - mesh_dict = { - "CPU": dtensor.Mesh( - ["X", "Y"], - global_ids, - local_device_ids, - test_util.create_device_list((2, 2), "CPU"), - ) - } - self.mesh = self.configTestMesh(mesh_dict) - - def test_add_variable_from_reference(self): - optimizer = adam.Adam(mesh=self.mesh) - variable_init_value = tf.ones([4, 4], dtype=tf.float32) - variable_init_value = dtensor.copy_to_mesh( - variable_init_value, - layout=dtensor.Layout.replicated(self.mesh, rank=2), - ) - model_variable = dtensor.DVariable( - variable_init_value, trainable=True, name="tmp" - ) - state_variable = optimizer.add_variable_from_reference( - model_variable, "test" - ) - self.assertEqual(state_variable._shared_name, "test/tmp") - self.assertAllClose(self.evaluate(state_variable), tf.zeros([4, 4])) - # Make sure the variable contains the correct layout info - self.assertEqual(state_variable.layout, model_variable.layout) - - def test_build_index_dict(self): - optimizer = adam.Adam(mesh=self.mesh) - variable_init_value = tf.ones(shape=(), dtype=tf.float32) - variable_init_value = dtensor.copy_to_mesh( - variable_init_value, - layout=dtensor.Layout.replicated(self.mesh, rank=0), - ) - var_list = [ - dtensor.DVariable(variable_init_value, name=f"var{i}") - for i in range(10) - ] - optimizer._build_index_dict(var_list) - self.assertEqual( - optimizer._index_dict[optimizer._var_key(var_list[7])], 7 - ) - - @parameterized.named_parameters( - ( - "Adadelta", - adadelta.Adadelta, - {}, - [ - "Adadelta/accumulated_grad/Variable", - "Adadelta/accumulated_delta_var/Variable", - "iteration", - ], - ), - ( - "Adam", - adam.Adam, - {"amsgrad": True}, - [ - "Adam/m/Variable", - "Adam/v/Variable", - "Adam/vhat/Variable", - "iteration", - ], - ), - ( - "AdamW", - adamw.AdamW, - {"amsgrad": True}, - [ - "AdamW/m/Variable", - "AdamW/v/Variable", - "AdamW/vhat/Variable", - "iteration", - ], - ), - ( - "Adagrad", - adagrad.Adagrad, - {}, - ["Adagrad/accumulator/Variable", "iteration"], - ), - ( - "RMSprop", - rmsprop.RMSprop, - {"momentum": 0.1, "centered": True}, - [ - "RMSprop/velocity/Variable", - "RMSprop/momentum/Variable", - "RMSprop/average_gradient/Variable", - "iteration", - ], - ), - ( - "SGD", - sgd.SGD, - {"momentum": 0.1}, - ["SGD/m/Variable", "iteration"], - ), - ) - def test_apply_gradients( - self, optimizer_cls, init_args, expect_variable_names - ): - optimizer = optimizer_cls(mesh=self.mesh, **init_args) - - self.assertEqual(self.evaluate(optimizer.iterations), 0) - self.assertEqual( - optimizer.iterations.layout, - dtensor.Layout.replicated(self.mesh, rank=0), - ) - - variable_init_value = tf.ones([4, 4], dtype=tf.float32) - variable_init_value = dtensor.copy_to_mesh( - variable_init_value, - layout=dtensor.Layout.replicated(self.mesh, rank=2), - ) - model_variable = dtensor.DVariable(variable_init_value, trainable=True) - - grads = tf.ones_like(variable_init_value) - optimizer.apply_gradients(zip([grads], [model_variable])) - optimizer_variables = optimizer.variables - - self.assertEqual(self.evaluate(optimizer.iterations), 1) - - all_names = [var._shared_name for var in optimizer_variables] - self.assertCountEqual(all_names, expect_variable_names) - - def test_embedding_lookup_backward_path(self): - # See b/265441685 for more context. - backend.enable_tf_random_generator() - os.environ[ - "DTENSOR_ENABLE_REPLICATED_SPMD_AS_DEFAULT_TF.RESOURCESCATTERADD" - ] = "1" - # Build a small functional model with embedding layer, it contains - # tf.gather ops which will trigger the _deduplicate_sparse_grad() code - # path. tf.unique op will have a shape mismatch issue for dtensor. - batch_size = 16 - seq_length = 10 - vocab_size = 100 - output_size = 8 - - def produce_data(): - inputs = tf.random.uniform( - maxval=vocab_size, - shape=(batch_size, seq_length), - dtype=tf.int32, - ) - label = tf.random.uniform( - maxval=output_size, shape=(batch_size,), dtype=tf.int32 - ) - inputs = dtensor.copy_to_mesh( - inputs, layout=dtensor.Layout.replicated(self.mesh, rank=2) - ) - inputs = dtensor.relayout( - inputs, dtensor.Layout.batch_sharded(self.mesh, "X", 2) - ) - label = dtensor.copy_to_mesh( - label, layout=dtensor.Layout.replicated(self.mesh, rank=1) - ) - label = dtensor.relayout( - label, dtensor.Layout.batch_sharded(self.mesh, "X", 1) - ) - return inputs, label - - with layout_map.LayoutMap(self.mesh).scope(): - inputs = layers.Input(shape=(seq_length,)) - x = layers.Embedding(vocab_size, 64)(inputs) - x = layers.GlobalAveragePooling1D()(x) - preds = layers.Dense(output_size, activation="softmax")(x) - model = models.Model(inputs, preds) - - optimizer = adam.Adam(mesh=self.mesh) - - @tf.function - def train_func(model, inputs, label, optimizer): - with tf.GradientTape() as tape: - output = model(inputs) - loss = losses.sparse_categorical_crossentropy(label, output) - optimizer.minimize(loss, model.variables, tape) - return loss - - # The error only happens across the batch, where the value of - # tf.unique are different. - input1, label1 = produce_data() - train_func(model, input1, label1, optimizer) - input2, label2 = produce_data() - train_func(model, input2, label2, optimizer) - # Assert nothing here, and expect the train_func can run properly with - # different inputs. - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/dtensor/save_load_test.py b/keras/dtensor/save_load_test.py deleted file mode 100644 index e188c9ee476..00000000000 --- a/keras/dtensor/save_load_test.py +++ /dev/null @@ -1,116 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for keras model save/load.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import layers -from keras import models -from keras.dtensor import dtensor_api as dtensor -from keras.dtensor import layout_map as layout_map_lib -from keras.dtensor import test_util -from keras.utils import tf_utils - - -def _create_test_model(): - model = models.Sequential() - model.add( - layers.Conv2D( - 32, - name="conv2d_1", - kernel_size=(3, 3), - activation="relu", - input_shape=(28, 28, 1), # channel last gray scale input - ) - ) - model.add( - layers.Conv2D( - 64, - name="conv2d_2", - kernel_size=(3, 3), - activation="relu", - ) - ) - return model - - -class SaveLoadTest(test_util.DTensorBaseTest): - def setUp(self): - super().setUp() - backend.enable_tf_random_generator() - tf_utils.set_random_seed(1337) - global_ids = test_util.create_device_ids_array((2, 2)) - local_device_ids = np.ravel(global_ids).tolist() - mesh_dict = { - "CPU": dtensor.Mesh( - ["X", "Y"], - global_ids, - local_device_ids, - test_util.create_device_list((2, 2), "CPU"), - ) - } - self.mesh = self.configTestMesh(mesh_dict) - - def test_save_h5_weights_for_dtensor_model(self): - layout_map = layout_map_lib.LayoutMap(mesh=self.mesh) - with layout_map_lib.layout_map_scope(layout_map): - dtensor_model = _create_test_model() - - self.assertNotEmpty(dtensor_model.weights) - for w in dtensor_model.weights: - # Make sure the weights are DVariable - self.assertIsNotNone(w.layout) - - save_file = self.create_tempfile("dtensor_model.h5") - dtensor_model.save_weights(save_file) - - # Make sure the weights can be load back to a normal keras model. - normal_model = _create_test_model() - normal_model.load_weights(save_file) - - for ( - w1, - w2, - ) in zip(normal_model.weights, dtensor_model.weights): - self.assertAllClose(w1.numpy(), w2.numpy()) - self.assertIsNone(getattr(w1, "layout", None)) - - def test_load_h5_weights_for_dtensor_model(self): - normal_model = _create_test_model() - - save_file = self.create_tempfile("normal_model.h5") - normal_model.save_weights(save_file) - - layout_map = layout_map_lib.LayoutMap(mesh=self.mesh) - with layout_map_lib.layout_map_scope(layout_map): - dtensor_model = _create_test_model() - - self.assertNotEmpty(dtensor_model.weights) - for w in dtensor_model.weights: - self.assertIsNotNone(w.layout) - - dtensor_model.load_weights(save_file) - - for ( - w1, - w2, - ) in zip(normal_model.weights, dtensor_model.weights): - self.assertAllClose(w1.numpy(), w2.numpy()) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/dtensor/strategy_integration_test.py b/keras/dtensor/strategy_integration_test.py deleted file mode 100644 index 0f5d660b4cd..00000000000 --- a/keras/dtensor/strategy_integration_test.py +++ /dev/null @@ -1,118 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for DTensor based strategy training.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import backend -from keras import mixed_precision -from keras.dtensor import integration_test_utils -from keras.optimizers import adam -from keras.utils import tf_utils - -# isort: off -# Import the MirroredStrategy that is backed by DTensor -# It is not a public API yet, so we do a private symbol import for now. -from tensorflow.python.distribute.experimental import ( - mirrored_strategy as dtensor_mirrored_strategy, -) -from tensorflow.dtensor.python.tests import test_util - - -class TrainingTest(test_util.DTensorBaseTest): - def setUp(self): - super().setUp() - backend.enable_tf_random_generator() - tf_utils.set_random_seed(1337) - global_ids = test_util.create_device_ids_array((2,)) - local_device_ids = np.ravel(global_ids).tolist() - mesh_dict = { - device: tf.experimental.dtensor.Mesh( - ["batch"], - global_ids, - local_device_ids, - test_util.create_device_list((2,), device), - ) - for device in ("CPU", "GPU", "TPU") - } - self.mesh = self.configTestMesh(mesh_dict) - - def tearDown(self): - super().tearDown() - # clean up the mixed precision setting if any. - mixed_precision.set_global_policy("float32") - - @parameterized.product( - run_eagerly=[True, False], - jit_compile=[True, False], - optimizer_creator=[lambda: adam.Adam(), lambda: "adam"], - enable_mixed_precision=[True, False], - ) - def test_model_fit( - self, - run_eagerly, - jit_compile, - optimizer_creator, - enable_mixed_precision, - ): - if run_eagerly and jit_compile: - self.skipTest("run_eagerly can't run with jit_compile") - if enable_mixed_precision and self.mesh.device_type() != "GPU": - self.skipTest("Only run mixed_precision on GPU for performance") - - if enable_mixed_precision: - mixed_precision.set_global_policy("mixed_float16") - dtensor_strategy = dtensor_mirrored_strategy.MirroredStrategy( - mesh=self.mesh - ) - # Make fake MNIST-like image data. - batch_size = 64 - dataset = tf.data.Dataset.from_tensor_slices( - ( - np.random.uniform(size=(batch_size, 28, 28, 1)).astype( - np.float32 - ), - np.random.randint(0, 10, size=(batch_size,)), - ) - ) - dataset = dataset.shuffle(64).repeat().batch(64, drop_remainder=True) - - with dtensor_strategy.scope(): - model = integration_test_utils.get_model() - optimizer = optimizer_creator() - - model.compile( - loss="SparseCategoricalCrossentropy", - optimizer=optimizer, - metrics="acc", - run_eagerly=run_eagerly, - jit_compile=jit_compile, - ) - model.fit(dataset, steps_per_epoch=10) - - prediction = model.predict( - np.random.uniform(size=(batch_size, 28, 28, 1)).astype(np.float32) - ) - self.assertEqual(prediction.shape, (batch_size, 10)) - if enable_mixed_precision: - self.assertEqual(prediction.dtype, tf.float16) - else: - self.assertEqual(prediction.dtype, tf.float32) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/dtensor/test_util.py b/keras/dtensor/test_util.py deleted file mode 100644 index 84ed3458b04..00000000000 --- a/keras/dtensor/test_util.py +++ /dev/null @@ -1,148 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras utilities for DTensor unit test.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -# isort: off -from tensorflow.dtensor.python import api as dtensor_api -from tensorflow.python.eager import context - -_DEFAULT_GPU_MEMORY_LIMIT = 200 # MB - - -class DTensorBaseTest(tf.test.TestCase, parameterized.TestCase): - """Provides comparison helper for dtensor vs local results.""" - - @classmethod - def setUpClass(cls): - super(DTensorBaseTest, cls).setUpClass() - - def tearDown(self): - super().tearDown() - # Make sure all async ops finish. - context.async_wait() - - # TODO(hthu): Remove the reset once we fixed the CopyToMesh with - # DefaultMesh placement issue. - reset_dtensor() - - @staticmethod - def configTestMesh(device_type_mesh_map): - """Configs corresponding mesh given test context. - - If runs on a CPU mesh, set virtual device on CPU. - If runs on a GPU mesh, sets virtual device on GPU with proper memory - limits. - if runs on a TPU mesh, initializes TPU system. - - Args: - device_type_mesh_map: A dictionary containing device_type -> mesh - mapping. - - Returns: - A properly configured mesh for use in test. - """ - reset_context() - - def get_mesh(device_type): - mesh = device_type_mesh_map.get(device_type, None) - if mesh is None: - dt = device_type - raise ValueError(f"Requires a {dt} mesh to run test on {dt}.") - return mesh - - mesh = None - if tf.config.list_physical_devices("GPU"): - mesh = get_mesh("GPU") - reset_logical_devices("GPU", np.prod(mesh.shape())) - else: - mesh = get_mesh("CPU") - reset_logical_devices("CPU", np.prod(mesh.shape())) - - context.ensure_initialized() - return mesh - - -def create_device_array(shape, device_type): - device_count = np.prod(shape) - return np.asarray( - [ - tf.DeviceSpec( - job="localhost/replica:0/task:0", - device_type=device_type, - device_index=i, - ) - for i in range(device_count) - ] - ).reshape(shape) - - -def create_device_list(shape, device_type): - devices = create_device_array(shape, device_type) - return np.ravel(devices).tolist() - - -def create_device_ids_array(shape): - device_count = np.prod(shape) - return np.arange(device_count).reshape(shape) - - -def reset_context(): - context._reset_context() - - -def reset_logical_devices(device_type, count): - """Resets logical devices for CPU/GPU. - - Logical devices can only be instantiated once on a particular context. For - now, context re-use is triggering some function duplication errors, so we - reset the context on each call. - - Args: - device_type: The device_type to reset. - count: numbers of virtual device to reset to. - """ - reset_context() - devices = tf.config.list_physical_devices(device_type) - if device_type.upper() == "CPU": - tf.config.set_logical_device_configuration( - devices[0], - [ - tf.config.LogicalDeviceConfiguration(), - ] - * count, - ) - elif device_type.upper() == "GPU": - tf.config.set_logical_device_configuration( - devices[0], - [ - tf.config.LogicalDeviceConfiguration( - memory_limit=_DEFAULT_GPU_MEMORY_LIMIT - ), - ] - * count, - ) - else: - dt = device_type - raise ValueError( - f"resetting logical device for non-supported device type: {dt}" - ) - - -def reset_dtensor(): - dtensor_api._reset() diff --git a/keras/dtensor/utils.py b/keras/dtensor/utils.py deleted file mode 100644 index 234ffe13cbf..00000000000 --- a/keras/dtensor/utils.py +++ /dev/null @@ -1,186 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras Utilities for DTensor related API.""" - -import inspect - -import tensorflow.compat.v2 as tf - -from keras.dtensor import dtensor_api as dtensor - -# All the variable names in the default keras layers. We will use those to map -# against the args in the __init__ method to find corresponding layout args. -# See allow_layout() for more details. -KERAS_VARIABLE_NAMES = [ - "alpha", - "beta", - "bias", - "depthwise", - "embeddings", - "gamma", - "kernel", - "moving_mean", - "moving_variance", - "pointwise", - "recurrent", -] - - -def allow_initializer_layout(init_method): - """A decorator for injecting layout information to layer.__init__. - - Layout will be a new param for any of the weights for all the keras layers. - Adding the param to all the __init__ method will be a big/duplicated work. - - This decorator is design to reduce and code duplication and make it easy to - add/remove the dtensor feature if needed. - - Sample usage: - ```python - class Dense(tf.keras.layer.Layer): - - @allow_initializer_layout - def __init__(self, units, - kernel_initializer='zeros', - bias_initializer='zeros', - **kwargs): - super().__init__(**kwargs) - - d = Dense(units=8, kernel_layout=layout1, bias_layout=layout2) - d.kernel_layout == layout1 - d.bias_layout == layout2 - ``` - - By adding this annotation, it will: - - 1. Filter out the kwargs based on some keywords, eg if the - 'kernel_initialzer' appears in method signature, then it will try to pop - the 'kernel_layout' if it presents. Same for "bias" and - "recurrent_kernel", etc. This will make sure the layout related param is - not passed to `BaseLayer.__init__`, which will raise error about unexpect - keyword args. - 2. Set the self.kernel/bias_layout attribute after the `__init__` method is - called. Keras framework will use those fields to create weights down the - stream. - - Args: - init_method: the `__init__` method of the Keras layer to annotate. - - Returns: - the annotated __init__ method. - """ - - def _wrap_function(layer_instance, *args, **kwargs): - signature = inspect.signature(init_method) - layout_args = {} - # Check args like 'kernel_initializer' and pop the 'kernel_layout' if it - # presents. - for variable_name in KERAS_VARIABLE_NAMES: - if variable_name + "_initializer" in signature.parameters: - layout = kwargs.pop(variable_name + "_layout", None) - if layout: - layout_args[variable_name + "_layout"] = layout - - init_method(layer_instance, *args, **kwargs) - - # Inject the layout parameter after the invocation of __init__() - for layout_param_name, layout in layout_args.items(): - setattr(layer_instance, layout_param_name, layout) - - # return decorated - return tf.__internal__.decorator.make_decorator( - target=init_method, decorator_func=_wrap_function - ) - - -def inject_mesh(init_method): - """Inject DTensor mesh information to an object. - - This is useful for keras object like `Metric` and `Optimizer` which need - DTensor mesh to create the weights, but doesn't want to change the current - public API interface. - - This is for temporary usage and eventually the mesh/layout information will - be public arguments in the `__init__` method. - - Sample usage: - ```python - class Accuracy(tf.keras.metrics.Metric): - - @inject_mesh - def __init__(self, name='accuracy', dtype=None): - super().__init__(**kwargs) - - acc = Accuracy(mesh=mesh) - assert acc._mesh == mesh - ``` - - Args: - init_method: the `__init__` method of the Keras class to annotate. - - Returns: - the annotated __init__ method. - """ - - def _wrap_function(instance, *args, **kwargs): - mesh = kwargs.pop("mesh", None) - # Note that the injection of _mesh need to happen before the invocation - # of __init__, since the class might need the mesh to create weights in - # the __init__. - if mesh is not None: - instance._mesh = mesh - init_method(instance, *args, **kwargs) - - return tf.__internal__.decorator.make_decorator( - target=init_method, decorator_func=_wrap_function - ) - - -def call_with_layout(fn, layout, *args, **kwargs): - """Invoke the function with inputs and relayout the result. - - Args: - fn: the function to invoke. - layout: if not None, the output of the fn will be relayout with this. - *args: positional arguments to be called with fn. - **kwargs: keyword arguments to be called with fn. - - Returns: - The output of fn, with potential relayout with the layout specified. - """ - if layout: - with dtensor.default_mesh(layout.mesh): - result = fn(*args, **kwargs) - return dtensor.relayout(result, layout) - return fn(*args, **kwargs) - - -def running_with_dtensor_strategy(): - """Check whether running with a `Strategy` that is backed by DTensor. - - In the DTensor based training, all the tensors are in global context, which - is different from the local context. Some keras components need to - behave differently, e.g. BatchNormalization and SyncBatchNormalization, as - well as optimizers. - - This check will help those layer to branch the logic and keep the correct - behavior between different context. - """ - if not tf.distribute.has_strategy(): - return False - strategy = tf.distribute.get_strategy() - # TODO(scottzhu): Finalize the strategy API to check if a strategy is backed - # by DTensor. - return getattr(strategy, "_mesh", None) is not None diff --git a/keras/dtensor/utils_test.py b/keras/dtensor/utils_test.py deleted file mode 100644 index 407ecf149ab..00000000000 --- a/keras/dtensor/utils_test.py +++ /dev/null @@ -1,96 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for utils.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import layers -from keras.dtensor import dtensor_api as dtensor -from keras.dtensor import test_util -from keras.dtensor import utils - - -class UtilsTest(test_util.DTensorBaseTest): - def setUp(self): - super().setUp() - global_ids = test_util.create_device_ids_array((2, 2)) - local_device_ids = np.ravel(global_ids).tolist() - mesh_dict = { - "CPU": dtensor.Mesh( - ["X", "Y"], - global_ids, - local_device_ids, - test_util.create_device_list((2, 2), "CPU"), - ) - } - self.mesh = self.configTestMesh(mesh_dict) - self.layout = dtensor.Layout.replicated(self.mesh, rank=1) - - @parameterized.named_parameters( - ("Dense", layers.Dense, {"units": 4}, ["kernel_layout", "bias_layout"]), - ( - "Conv2D", - layers.Conv2D, - {"filters": 2, "kernel_size": 3}, - ["kernel_layout", "bias_layout"], - ), - ( - "BatchNorm", - layers.BatchNormalization, - {}, - [ - "beta_layout", - "gamma_layout", - "moving_mean_layout", - "moving_variance_layout", - ], - ), - ( - "Embedding", - layers.Embedding, - {"input_dim": 100, "output_dim": 20}, - ["embeddings_layout"], - ), - (" PReLU", layers.PReLU, {}, ["alpha_layout"]), - ( - "SeparableConv2D", - layers.SeparableConv2D, - {"filters": 2, "kernel_size": 3}, - ["depthwise_layout", "pointwise_layout", "bias_layout"], - ), - # TODO(scottzhu): Probably add more coverage for all the layers. - ) - def test_all_layout_decorator(self, layer_cls, init_args, layout_args): - - layer_cls.__init__ = utils.allow_initializer_layout(layer_cls.__init__) - - # Make sure we don't set the layout attribute if the init kwargs is not - # provided. - layer = layer_cls(**init_args) - for layout_arg in layout_args: - self.assertFalse(hasattr(layer, layout_arg)) - - layout_kwargs = {k: self.layout for k in layout_args} - init_args.update(layout_kwargs) - layer = layer_cls(**init_args) - - for layout_arg in layout_args: - self.assertEqual(getattr(layer, layout_arg), self.layout) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/BUILD b/keras/engine/BUILD deleted file mode 100644 index 3c3827ecd98..00000000000 --- a/keras/engine/BUILD +++ /dev/null @@ -1,686 +0,0 @@ -# Description: -# Contains the Keras engine API (internal TensorFlow version). - -# buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "tf_py_test") - -# buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -package( - # TODO(scottzhu): Remove non-keras deps from TF. - default_visibility = ["//keras:friends"], - licenses = ["notice"], -) - -py_library( - name = "engine", - srcs = [ - "__init__.py", - "compile_utils.py", - "functional.py", - "partial_batch_padding_handler.py", - "saving.py", - "sequential.py", - "training.py", - "training_arrays_v1.py", - "training_distributed_v1.py", - "training_eager_v1.py", - "training_generator_v1.py", - "training_utils.py", - "training_utils_v1.py", - "training_v1.py", - ], - srcs_version = "PY3", - deps = [ - ":base_layer", - ":base_preprocessing_layer", - ":data_adapter", - ":functional_utils", - ":input_layer", - ":input_spec", - ":keras_tensor", - ":node", - "//:expect_h5py_installed", - "//:expect_tensorboard_installed", - "//:expect_tensorflow_installed", - "//:expect_yaml_installed", - "//keras:activations", - "//keras:backend", - "//keras:callbacks", - "//keras:callbacks_v1", - "//keras:constraints", - "//keras:losses", - "//keras:regularizers", - "//keras/distribute", - "//keras/distribute:distribute_coordinator_utils", - "//keras/dtensor:layout_map", - "//keras/export:export_lib", - "//keras/initializers", - "//keras/metrics", - "//keras/mixed_precision:autocast_variable", - "//keras/mixed_precision:loss_scale_optimizer", - "//keras/mixed_precision:policy", - "//keras/optimizers", - "//keras/saving", - "//keras/utils:engine_utils", - "//keras/utils:metrics_utils", - "//keras/utils:mode_keys", - "//keras/utils:tf_utils", - "//keras/utils:version_utils", - ], -) - -py_library( - name = "base_layer_utils", - srcs = ["base_layer_utils.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/dtensor", - "//keras/utils:tf_inspect", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "base_layer", - srcs = [ - "base_layer.py", - "base_layer_v1.py", - ], - srcs_version = "PY3", - deps = [ - ":base_layer_utils", - ":input_spec", - ":node", - "//:expect_numpy_installed", - "//keras:backend", - "//keras:constraints", - "//keras/initializers", - # TODO(keras-team): Fix the circular deps between layer and metrics. - # "//keras/metrics", - "//keras:regularizers", - "//keras/dtensor:lazy_variable", - "//keras/mixed_precision:autocast_variable", - "//keras/mixed_precision:loss_scale_optimizer", - "//keras/mixed_precision:policy", - "//keras/saving", - "//keras/utils:generic_utils", - "//keras/utils:layer_utils", - "//keras/utils:object_identity", - "//keras/utils:tf_utils", - "//keras/utils:traceback_utils", - "//keras/utils:version_utils", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "input_layer", - srcs = ["input_layer.py"], - deps = [ - ":base_layer", - ":keras_tensor", - ":node", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/distribute", - "//keras/saving", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "functional_utils", - srcs = ["functional_utils.py"], - deps = [ - ":input_layer", - ":keras_tensor", - ":node", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "data_adapter", - srcs = ["data_adapter.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/distribute", - "//keras/utils:dataset_creator", - "//keras/utils:engine_utils", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "input_spec", - srcs = ["input_spec.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - ], -) - -py_library( - name = "keras_tensor", - srcs = ["keras_tensor.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/utils:object_identity", - ], -) - -py_library( - name = "base_preprocessing_layer", - srcs = [ - "base_preprocessing_layer.py", - ], - srcs_version = "PY3", - deps = [ - ":base_layer", - "//:expect_tensorflow_installed", - "//keras:backend", - ], -) - -py_library( - name = "node", - srcs = ["node.py"], - srcs_version = "PY3", - deps = [ - ":base_layer_utils", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/utils:tf_utils", - ], -) - -tf_py_test( - name = "base_layer_utils_test", - srcs = ["base_layer_utils_test.py"], - python_version = "PY3", - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - ":base_layer_utils", - "//:expect_tensorflow_installed", - "//keras", - "//keras:backend", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "data_adapter_test", - size = "medium", - srcs = ["data_adapter_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "no_oss_py38", # TODO(b/150615192) - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - ":data_adapter", - "//:expect_numpy_installed", - "//:expect_pandas_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "base_preprocessing_layer_test", - size = "medium", - srcs = ["base_preprocessing_layer_test.py"], - python_version = "PY3", - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - ":base_preprocessing_layer", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "functional_utils_test", - size = "medium", - srcs = ["functional_utils_test.py"], - python_version = "PY3", - deps = [ - ":functional_utils", - ":input_layer", - "//:expect_tensorflow_installed", - "//keras", - "//keras/layers", - "//keras/models", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "training_gpu_test", - size = "small", - srcs = ["training_gpu_test.py"], - python_version = "PY3", - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - ":engine", - ":input_layer", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/layers/convolutional", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "correctness_test", - size = "medium", - srcs = ["correctness_test.py"], - python_version = "PY3", - shard_count = 2, - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - "notsan", - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "keras_tensor_test", - size = "small", - srcs = ["keras_tensor_test.py"], - python_version = "PY3", - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "ragged_keras_tensor_test", - size = "small", - srcs = ["ragged_keras_tensor_test.py"], - python_version = "PY3", - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "input_spec_test", - size = "small", - srcs = ["input_spec_test.py"], - python_version = "PY3", - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - ], -) - -tf_py_test( - name = "training_test", - size = "medium", - srcs = ["training_test.py"], - python_version = "PY3", - shard_count = 20, - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - "notsan", - ], - deps = [ - ":engine", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras:backend", - "//keras:callbacks", - "//keras:losses", - "//keras/layers", - "//keras/metrics", - "//keras/mixed_precision:policy", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:data_utils", - "//keras/utils:np_utils", - ], -) - -tf_py_test( - name = "compile_utils_test", - size = "medium", - srcs = ["compile_utils_test.py"], - tags = [ - "nomac", # TODO(b/146226927) - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "training_dataset_test", - size = "medium", - srcs = ["training_dataset_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "training_arrays_test", - size = "medium", - srcs = ["training_arrays_test.py"], - python_version = "PY3", - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/layers", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "training_generator_test", - size = "medium", - srcs = ["training_generator_test.py"], - python_version = "PY3", - shard_count = 6, - tags = [ - "noasan", # TODO(b/132183295): Re-enable this. - "nomac", # TODO(b/140193633): Re-enable this. - "notsan", - ], - deps = [ - ":engine", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras:losses", - "//keras/layers", - "//keras/metrics", - "//keras/optimizers/legacy:optimizers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:data_utils", - ], -) - -tf_py_test( - name = "training_integration_test", - size = "medium", - srcs = ["training_integration_test.py"], - python_version = "PY3", - shard_count = 30, - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "feature_columns_integration_test", - size = "medium", - srcs = ["feature_columns_integration_test.py"], - python_version = "PY3", - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - "notsan", - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "training_eager_test", - size = "medium", - srcs = ["training_eager_test.py"], - python_version = "PY3", - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - "notsan", - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "training_utils_v1_test", - size = "medium", - srcs = ["training_utils_v1_test.py"], - python_version = "PY3", - tags = [ - "no_oss", # TODO(b/135021748) re-enable - "notsan", - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "input_layer_test", - size = "medium", - srcs = ["input_layer_test.py"], - python_version = "PY3", - shard_count = 3, - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - ":base_layer", - ":engine", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:layer_utils", - ], -) - -tf_py_test( - name = "functional_test", - size = "medium", - srcs = ["functional_test.py"], - python_version = "PY3", - shard_count = 8, - tags = [ - "no-internal-py3", - "no_rocm", - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - ":base_layer", - ":engine", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras:backend", - "//keras/initializers", - "//keras/layers", - "//keras/models", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:layer_utils", - "//keras/utils:tf_utils", - ], -) - -tf_py_test( - name = "node_test", - size = "medium", - srcs = ["node_test.py"], - python_version = "PY3", - shard_count = 3, - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - ":base_layer", - ":engine", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:layer_utils", - ], -) - -tf_py_test( - name = "base_layer_test", - size = "medium", - srcs = ["base_layer_test.py"], - python_version = "PY3", - shard_count = 8, - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - ":base_layer", - ":engine", - "//:expect_numpy_installed", - "//:expect_tensorboard_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras:backend", - "//keras:regularizers", - "//keras/layers", - "//keras/legacy_tf_layers:core", - "//keras/mixed_precision:policy", - "//keras/optimizers/legacy:optimizers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:tf_utils", - ], -) - -tf_py_test( - name = "control_flow_test", - size = "medium", - srcs = ["control_flow_test.py"], - python_version = "PY3", - shard_count = 8, - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "sequential_test", - size = "medium", - srcs = ["sequential_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "deferred_sequential_test", - size = "medium", - srcs = ["deferred_sequential_test.py"], - python_version = "PY3", - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/engine/__init__.py b/keras/engine/__init__.py deleted file mode 100644 index e69de29bb2d..00000000000 diff --git a/keras/engine/base_layer.py b/keras/engine/base_layer.py deleted file mode 100644 index be723082ee8..00000000000 --- a/keras/engine/base_layer.py +++ /dev/null @@ -1,3841 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""Contains the base Layer class, from which all layers inherit.""" - -import collections -import contextlib -import functools -import itertools -import textwrap -import threading -import warnings -import weakref - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.dtensor import lazy_variable -from keras.engine import base_layer_utils -from keras.engine import input_spec -from keras.engine import keras_tensor -from keras.engine import node as node_module -from keras.mixed_precision import autocast_variable -from keras.mixed_precision import policy -from keras.saving import serialization_lib -from keras.saving.legacy.saved_model import layer_serialization -from keras.utils import generic_utils -from keras.utils import layer_utils -from keras.utils import object_identity -from keras.utils import tf_inspect -from keras.utils import tf_utils -from keras.utils import traceback_utils -from keras.utils import version_utils - -# A module that only depends on `keras.layers` import these from here. -from keras.utils.generic_utils import to_snake_case # noqa: F401 -from keras.utils.tf_utils import is_tensor_or_tensor_list # noqa: F401 - -# isort: off -from google.protobuf import json_format -from tensorflow.python.platform import tf_logging -from tensorflow.python.util.tf_export import ( - get_canonical_name_for_symbol, -) -from tensorflow.python.util.tf_export import keras_export -from tensorflow.tools.docs import doc_controls - - -metrics_mod = generic_utils.LazyLoader( - "metrics_mod", globals(), "keras.metrics" -) - - -# Prefix that is added to the TF op layer names. -_TF_OP_LAYER_NAME_PREFIX = "tf_op_layer_" - -# TODO(mdan): Should we have a single generic type for types that can be passed -# to tf.cast? -_AUTOCAST_TYPES = (tf.Tensor, tf.SparseTensor, tf.RaggedTensor) - -keras_layers_gauge = tf.__internal__.monitoring.BoolGauge( - "/tensorflow/api/keras/layers", "keras layers usage", "method" -) -keras_models_gauge = tf.__internal__.monitoring.BoolGauge( - "/tensorflow/api/keras/models", "keras model usage", "method" -) -keras_api_gauge = tf.__internal__.monitoring.BoolGauge( - "/tensorflow/api/keras", "keras api usage", "method" -) -keras_premade_model_gauge = tf.__internal__.monitoring.BoolGauge( - "/tensorflow/api/keras/premade_models", "premade keras model usage", "type" -) - -_is_name_scope_on_model_declaration_enabled = False - -_name_scope_unnester_stack = threading.local() - - -@contextlib.contextmanager -def _name_scope_unnester(full_name_scope): - """Helper to get relative name scope from fully-speced nested name scopes. - - Args: - full_name_scope: full(absolute) name scope path. - - Yields: - Relative name scope path from the parent `_name_scope_unnester` context - manager. - - Example: - ``` - with _name_scope_unnester('a') as name1: # name1 == 'a' - with _name_scope_unnester('a/b') as name2: # name2 == 'b' - with _name_scope_unnester('a/b/c') as name3: # name3 == 'c' - pass - ``` - """ - if not getattr(_name_scope_unnester_stack, "value", None): - _name_scope_unnester_stack.value = [""] - - _name_scope_unnester_stack.value.append(full_name_scope) - - try: - full_name_scope = _name_scope_unnester_stack.value[-1] - outer_name_scope = _name_scope_unnester_stack.value[-2] - relative_name_scope = full_name_scope.lstrip(outer_name_scope) - relative_name_scope = relative_name_scope.lstrip("/") - yield relative_name_scope - finally: - _name_scope_unnester_stack.value.pop() - - -@keras_export("keras.layers.Layer") -class Layer(tf.Module, version_utils.LayerVersionSelector): - """This is the class from which all layers inherit. - - A layer is a callable object that takes as input one or more tensors and - that outputs one or more tensors. It involves *computation*, defined - in the `call()` method, and a *state* (weight variables). State can be - created in various places, at the convenience of the subclass implementer: - - * in `__init__()`; - * in the optional `build()` method, which is invoked by the first - `__call__()` to the layer, and supplies the shape(s) of the input(s), - which may not have been known at initialization time; - * in the first invocation of `call()`, with some caveats discussed - below. - - Layers are recursively composable: If you assign a Layer instance as an - attribute of another Layer, the outer layer will start tracking the weights - created by the inner layer. Nested layers should be instantiated in the - `__init__()` method. - - Users will just instantiate a layer and then treat it as a callable. - - Args: - trainable: Boolean, whether the layer's variables should be trainable. - name: String name of the layer. - dtype: The dtype of the layer's computations and weights. Can also be a - `tf.keras.mixed_precision.Policy`, which allows the computation and - weight dtype to differ. Default of `None` means to use - `tf.keras.mixed_precision.global_policy()`, which is a float32 policy - unless set to different value. - dynamic: Set this to `True` if your layer should only be run eagerly, and - should not be used to generate a static computation graph. - This would be the case for a Tree-RNN or a recursive network, - for example, or generally for any layer that manipulates tensors - using Python control flow. If `False`, we assume that the layer can - safely be used to generate a static computation graph. - - Attributes: - name: The name of the layer (string). - dtype: The dtype of the layer's weights. - variable_dtype: Alias of `dtype`. - compute_dtype: The dtype of the layer's computations. Layers automatically - cast inputs to this dtype which causes the computations and output to - also be in this dtype. When mixed precision is used with a - `tf.keras.mixed_precision.Policy`, this will be different than - `variable_dtype`. - dtype_policy: The layer's dtype policy. See the - `tf.keras.mixed_precision.Policy` documentation for details. - trainable_weights: List of variables to be included in backprop. - non_trainable_weights: List of variables that should not be - included in backprop. - weights: The concatenation of the lists trainable_weights and - non_trainable_weights (in this order). - trainable: Whether the layer should be trained (boolean), i.e. whether - its potentially-trainable weights should be returned as part of - `layer.trainable_weights`. - input_spec: Optional (list of) `InputSpec` object(s) specifying the - constraints on inputs that can be accepted by the layer. - - We recommend that descendants of `Layer` implement the following methods: - - * `__init__()`: Defines custom layer attributes, and creates layer weights - that do not depend on input shapes, using `add_weight()`, or other state. - * `build(self, input_shape)`: This method can be used to create weights that - depend on the shape(s) of the input(s), using `add_weight()`, or other - state. `__call__()` will automatically build the layer (if it has not been - built yet) by calling `build()`. - * `call(self, inputs, *args, **kwargs)`: Called in `__call__` after making - sure `build()` has been called. `call()` performs the logic of applying - the layer to the `inputs`. The first invocation may additionally create - state that could not be conveniently created in `build()`; see its - docstring for details. - Two reserved keyword arguments you can optionally use in `call()` are: - - `training` (boolean, whether the call is in inference mode or training - mode). See more details in [the layer/model subclassing guide]( - https://www.tensorflow.org/guide/keras/custom_layers_and_models#privileged_training_argument_in_the_call_method) - - `mask` (boolean tensor encoding masked timesteps in the input, used - in RNN layers). See more details in - [the layer/model subclassing guide]( - https://www.tensorflow.org/guide/keras/custom_layers_and_models#privileged_mask_argument_in_the_call_method) - A typical signature for this method is `call(self, inputs)`, and user - could optionally add `training` and `mask` if the layer need them. `*args` - and `**kwargs` is only useful for future extension when more input - parameters are planned to be added. - * `get_config(self)`: Returns a dictionary containing the configuration used - to initialize this layer. If the keys differ from the arguments - in `__init__`, then override `from_config(self)` as well. - This method is used when saving - the layer or a model that contains this layer. - - Examples: - - Here's a basic example: a layer with two variables, `w` and `b`, - that returns `y = w . x + b`. - It shows how to implement `build()` and `call()`. - Variables set as attributes of a layer are tracked as weights - of the layers (in `layer.weights`). - - ```python - class SimpleDense(Layer): - - def __init__(self, units=32): - super(SimpleDense, self).__init__() - self.units = units - - def build(self, input_shape): # Create the state of the layer (weights) - w_init = tf.random_normal_initializer() - self.w = tf.Variable( - initial_value=w_init(shape=(input_shape[-1], self.units), - dtype='float32'), - trainable=True) - b_init = tf.zeros_initializer() - self.b = tf.Variable( - initial_value=b_init(shape=(self.units,), dtype='float32'), - trainable=True) - - def call(self, inputs): # Defines the computation from inputs to outputs - return tf.matmul(inputs, self.w) + self.b - - # Instantiates the layer. - linear_layer = SimpleDense(4) - - # This will also call `build(input_shape)` and create the weights. - y = linear_layer(tf.ones((2, 2))) - assert len(linear_layer.weights) == 2 - - # These weights are trainable, so they're listed in `trainable_weights`: - assert len(linear_layer.trainable_weights) == 2 - ``` - - Note that the method `add_weight()` offers a shortcut to create weights: - - ```python - class SimpleDense(Layer): - - def __init__(self, units=32): - super(SimpleDense, self).__init__() - self.units = units - - def build(self, input_shape): - self.w = self.add_weight(shape=(input_shape[-1], self.units), - initializer='random_normal', - trainable=True) - self.b = self.add_weight(shape=(self.units,), - initializer='random_normal', - trainable=True) - - def call(self, inputs): - return tf.matmul(inputs, self.w) + self.b - ``` - - Besides trainable weights, updated via backpropagation during training, - layers can also have non-trainable weights. These weights are meant to - be updated manually during `call()`. Here's a example layer that computes - the running sum of its inputs: - - ```python - class ComputeSum(Layer): - - def __init__(self, input_dim): - super(ComputeSum, self).__init__() - # Create a non-trainable weight. - self.total = tf.Variable(initial_value=tf.zeros((input_dim,)), - trainable=False) - - def call(self, inputs): - self.total.assign_add(tf.reduce_sum(inputs, axis=0)) - return self.total - - my_sum = ComputeSum(2) - x = tf.ones((2, 2)) - - y = my_sum(x) - print(y.numpy()) # [2. 2.] - - y = my_sum(x) - print(y.numpy()) # [4. 4.] - - assert my_sum.weights == [my_sum.total] - assert my_sum.non_trainable_weights == [my_sum.total] - assert my_sum.trainable_weights == [] - ``` - - For more information about creating layers, see the guide - [Making new Layers and Models via subclassing]( - https://www.tensorflow.org/guide/keras/custom_layers_and_models) - """ - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def __init__( - self, trainable=True, name=None, dtype=None, dynamic=False, **kwargs - ): - self._instrument_layer_creation() - - # These properties should be set by the user via keyword arguments. - # note that 'dtype', 'input_shape' and 'batch_input_shape' - # are only applicable to input layers: do not pass these keywords - # to non-input layers. - allowed_kwargs = { - "input_dim", - "input_shape", - "batch_input_shape", - "batch_size", - "weights", - "activity_regularizer", - "autocast", - "implementation", - } - # Validate optional keyword arguments. - generic_utils.validate_kwargs(kwargs, allowed_kwargs) - - # Mutable properties - # Indicates whether the layer's weights are updated during training - # and whether the layer's updates are run during training. - if not ( - isinstance(trainable, bool) - or ( - isinstance(trainable, (tf.Tensor, tf.Variable)) - and trainable.dtype is tf.bool - ) - ): - raise TypeError( - "Expected `trainable` argument to be a boolean, " - f"but got: {trainable}" - ) - self._trainable = trainable - # A stateful layer is a layer whose updates are run during inference - # too, for instance stateful RNNs. - self._stateful = False - # Indicates whether `build` needs to be called upon layer call, to - # create the layer's weights. (Note that the first call() may also - # create weights, independent of build().) - self.built = False - # Provides information about which inputs are compatible with the layer. - self._input_spec = None - - # SavedModel-related attributes. - # Record the build input shape for loading purposes. - # TODO(kathywu): Move this to Layer._set_save_spec once cl/290121460 is - # submitted. - self._build_input_shape = None - self._saved_model_inputs_spec = None - self._saved_model_arg_spec = None - - # `Layer.compute_mask` will be called at the end of `Layer.__call__` if - # `Layer.compute_mask` is overridden, or if the `Layer` subclass sets - # `self.supports_masking=True`. - self._supports_masking = not generic_utils.is_default(self.compute_mask) - - self._init_set_name(name) - self._activity_regularizer = regularizers.get( - kwargs.pop("activity_regularizer", None) - ) - self._maybe_create_attribute("_trainable_weights", []) - self._maybe_create_attribute("_non_trainable_weights", []) - self._updates = [] - # Object to store all thread local layer properties. - self._thread_local = threading.local() - # A list of zero-argument lambdas which return Tensors, used for - # variable regularizers. - self._callable_losses = [] - # A list of symbolic Tensors containing activity regularizers and losses - # manually added through `add_loss` in graph-building mode. - self._losses = [] - # A list of metric instances corresponding to the symbolic metric - # tensors added using the `add_metric` API. - self._metrics = [] - # Ensures the same metric is not added multiple times in - # `MirroredStrategy`. - self._metrics_lock = threading.Lock() - - # Note that models also have a dtype policy, as they are layers. For - # functional models, the policy is only used in Model.compile, which - # wraps the optimizer with a LossScaleOptimizer if the policy name is - # "mixed_float16". Subclassed models additionally use the policy's - # compute and variable dtypes, as like any ordinary layer. - self._set_dtype_policy(dtype) - # Boolean indicating whether the layer automatically casts its inputs to - # the layer's compute_dtype. - self._autocast = kwargs.get( - "autocast", base_layer_utils.v2_dtype_behavior_enabled() - ) - - # Tracks `TrackableDataStructure`s, `Module`s, and `Layer`s. - # Ordered by when the object was assigned as an attr. - # Entries are unique. - self._maybe_create_attribute("_self_tracked_trackables", []) - - # These lists will be filled via successive calls - # to self._add_inbound_node(). - # Used in symbolic mode only, only in conjunction with graph-networks - self._inbound_nodes_value = [] - self._outbound_nodes_value = [] - - self._init_call_fn_args() - - # Whether the `call` method can be used to build a TF graph without - # issues. This attribute has no effect if the model is created using - # the Functional API. Instead, `model.dynamic` is determined based on - # the internal layers. - if not isinstance(dynamic, bool): - raise TypeError( - "Expected `dynamic` argument to be a boolean, " - f"but got: {dynamic}" - ) - self._dynamic = dynamic - - # Manage input shape information if passed. - if "input_dim" in kwargs and "input_shape" not in kwargs: - # Backwards compatibility: alias 'input_dim' to 'input_shape'. - kwargs["input_shape"] = (kwargs["input_dim"],) - if "input_shape" in kwargs or "batch_input_shape" in kwargs: - # In this case we will later create an input layer - # to insert before the current layer - if "batch_input_shape" in kwargs: - batch_input_shape = tuple(kwargs["batch_input_shape"]) - elif "input_shape" in kwargs: - if "batch_size" in kwargs: - batch_size = kwargs["batch_size"] - else: - batch_size = None - batch_input_shape = (batch_size,) + tuple(kwargs["input_shape"]) - self._batch_input_shape = batch_input_shape - - # Manage initial weight values if passed. - self._initial_weights = kwargs.get("weights", None) - - # Whether the layer will track any layers that is set as attribute on - # itself as sub-layers, the weights from the sub-layers will be included - # in the parent layer's variables() as well. Defaults to `True`, which - # means auto tracking is turned on. Certain subclass might want to turn - # it off, like Sequential model. - self._auto_track_sub_layers = True - - # For backwards compat reasons, most built-in layers do not guarantee - # That they will 100% preserve the structure of input args when saving - # / loading configs. E.g. they may un-nest an arg that is - # a list with one element. - self._preserve_input_structure_in_config = False - - # Save outer name scope at layer declaration so that it is preserved at - # the actual layer construction. - self._name_scope_on_declaration = tf.get_current_name_scope() - - # Save the temp regularization losses created in the DTensor use case. - # When DTensor is enable, we will first create LazyInitVariable and then - # DVariable with proper layout afterward. For the weights regularization - # loss, we have to create against the DVariable as well. - self._captured_weight_regularizer = [] - - @tf.__internal__.tracking.no_automatic_dependency_tracking - @generic_utils.default - def build(self, input_shape): - """Creates the variables of the layer (for subclass implementers). - - This is a method that implementers of subclasses of `Layer` or `Model` - can override if they need a state-creation step in-between - layer instantiation and layer call. It is invoked automatically before - the first execution of `call()`. - - This is typically used to create the weights of `Layer` subclasses - (at the discretion of the subclass implementer). - - Args: - input_shape: Instance of `TensorShape`, or list of instances of - `TensorShape` if the layer expects a list of inputs - (one instance per input). - """ - self._build_input_shape = input_shape - self.built = True - - @doc_controls.for_subclass_implementers - def call(self, inputs, *args, **kwargs): - """This is where the layer's logic lives. - - The `call()` method may not create state (except in its first - invocation, wrapping the creation of variables or other resources in - `tf.init_scope()`). It is recommended to create state, including - `tf.Variable` instances and nested `Layer` instances, - in `__init__()`, or in the `build()` method that is - called automatically before `call()` executes for the first time. - - Args: - inputs: Input tensor, or dict/list/tuple of input tensors. - The first positional `inputs` argument is subject to special rules: - - `inputs` must be explicitly passed. A layer cannot have zero - arguments, and `inputs` cannot be provided via the default value - of a keyword argument. - - NumPy array or Python scalar values in `inputs` get cast as - tensors. - - Keras mask metadata is only collected from `inputs`. - - Layers are built (`build(input_shape)` method) - using shape info from `inputs` only. - - `input_spec` compatibility is only checked against `inputs`. - - Mixed precision input casting is only applied to `inputs`. - If a layer has tensor arguments in `*args` or `**kwargs`, their - casting behavior in mixed precision should be handled manually. - - The SavedModel input specification is generated using `inputs` - only. - - Integration with various ecosystem packages like TFMOT, TFLite, - TF.js, etc is only supported for `inputs` and not for tensors in - positional and keyword arguments. - *args: Additional positional arguments. May contain tensors, although - this is not recommended, for the reasons above. - **kwargs: Additional keyword arguments. May contain tensors, although - this is not recommended, for the reasons above. - The following optional keyword arguments are reserved: - - `training`: Boolean scalar tensor of Python boolean indicating - whether the `call` is meant for training or inference. - - `mask`: Boolean input mask. If the layer's `call()` method takes a - `mask` argument, its default value will be set to the mask - generated for `inputs` by the previous layer (if `input` did come - from a layer that generated a corresponding mask, i.e. if it came - from a Keras layer with masking support). - - Returns: - A tensor or list/tuple of tensors. - """ - return inputs - - @doc_controls.for_subclass_implementers - def add_weight( - self, - name=None, - shape=None, - dtype=None, - initializer=None, - regularizer=None, - trainable=None, - constraint=None, - use_resource=None, - synchronization=tf.VariableSynchronization.AUTO, - aggregation=tf.VariableAggregation.NONE, - **kwargs, - ): - """Adds a new variable to the layer. - - Args: - name: Variable name. - shape: Variable shape. Defaults to scalar if unspecified. - dtype: The type of the variable. Defaults to `self.dtype`. - initializer: Initializer instance (callable). - regularizer: Regularizer instance (callable). - trainable: Boolean, whether the variable should be part of the layer's - "trainable_variables" (e.g. variables, biases) - or "non_trainable_variables" (e.g. BatchNorm mean and variance). - Note that `trainable` cannot be `True` if `synchronization` - is set to `ON_READ`. - constraint: Constraint instance (callable). - use_resource: Whether to use a `ResourceVariable` or not. - See [this guide]( - https://www.tensorflow.org/guide/migrate/tf1_vs_tf2#resourcevariables_instead_of_referencevariables) - for more information. - synchronization: Indicates when a distributed a variable will be - aggregated. Accepted values are constants defined in the class - `tf.VariableSynchronization`. By default the synchronization is set - to `AUTO` and the current `DistributionStrategy` chooses when to - synchronize. If `synchronization` is set to `ON_READ`, `trainable` - must not be set to `True`. - aggregation: Indicates how a distributed variable will be aggregated. - Accepted values are constants defined in the class - `tf.VariableAggregation`. - **kwargs: Additional keyword arguments. Accepted values are `getter`, - `collections`, `experimental_autocast` and `caching_device`. - - Returns: - The variable created. - - Raises: - ValueError: When giving unsupported dtype and no initializer or when - trainable has been set to True with synchronization set as - `ON_READ`. - """ - if shape is None: - shape = () - kwargs.pop("partitioner", None) # Ignored. - # Validate optional keyword arguments. - for kwarg in kwargs: - if kwarg not in [ - "collections", - "experimental_autocast", - "caching_device", - "getter", - "layout", - "experimental_enable_variable_lifting", - ]: - raise TypeError("Unknown keyword argument:", kwarg) - collections_arg = kwargs.pop("collections", None) - # 'experimental_autocast' can be set to False by the caller to indicate - # an AutoCastVariable should never be created. - autocast = kwargs.pop("experimental_autocast", True) - # See the docstring for tf.Variable about the details for - # caching_device. - caching_device = kwargs.pop("caching_device", None) - - layout = kwargs.pop("layout", None) - # Specially handling of auto layout fetch, based on the variable name - # and attribute name. For built-in keras layers, usually the variable - # name, eg 'kernel', will match with a 'kernel_layout' attribute name on - # the instance. We will try to do this auto fetch if layout is not - # explicitly specified. This is mainly a quick workaround for not - # applying too many interface change to built-in layers, until DTensor - # is a public API. Also see dtensor.utils.allow_initializer_layout for - # more details. - # TODO(scottzhu): Remove this once dtensor is public to end user. - if not layout and name: - layout = getattr(self, name + "_layout", None) - - if dtype is None: - dtype = self.dtype or backend.floatx() - dtype = tf.as_dtype(dtype) - if self._dtype_policy.variable_dtype is None: - # The policy is "_infer", so we infer the policy from the variable - # dtype. - self._set_dtype_policy(policy.Policy(dtype.base_dtype.name)) - initializer = initializers.get(initializer) - regularizer = regularizers.get(regularizer) - constraint = constraints.get(constraint) - - if synchronization == tf.VariableSynchronization.ON_READ: - if trainable: - raise ValueError( - "Synchronization value can be set to " - "VariableSynchronization.ON_READ only for non-trainable " - "variables. You have specified trainable=True and " - "synchronization=VariableSynchronization.ON_READ." - ) - else: - # Set trainable to be false when variable is to be synced on - # read. - trainable = False - elif trainable is None: - trainable = True - - # Initialize variable when no initializer provided - if initializer is None: - # If dtype is DT_FLOAT, provide a uniform unit scaling initializer - if dtype.is_floating: - initializer = initializers.get("glorot_uniform") - # If dtype is DT_INT/DT_UINT, provide a default value `zero` - # If dtype is DT_BOOL, provide a default value `FALSE` - elif dtype.is_integer or dtype.is_unsigned or dtype.is_bool: - initializer = initializers.get("zeros") - # NOTES:Do we need to support for handling DT_STRING and DT_COMPLEX - # here? - elif "getter" not in kwargs: - # When `getter` is specified, it's possibly fine for - # `initializer` to be None since it's up to the custom `getter` - # to raise error in case it indeed needs `initializer`. - raise ValueError( - f"An initializer for variable {name} of type " - f"{dtype.base_dtype} is required for layer " - f"{self.name}. Received: {initializer}." - ) - - getter = kwargs.pop("getter", base_layer_utils.make_variable) - if ( - autocast - and self._dtype_policy.compute_dtype - != self._dtype_policy.variable_dtype - and dtype.is_floating - ): - old_getter = getter - - # Wrap variable constructor to return an AutoCastVariable. - def getter(*args, **kwargs): - variable = old_getter(*args, **kwargs) - return autocast_variable.create_autocast_variable(variable) - - # Also the caching_device does not work with the mixed precision - # API, disable it if it is specified. - # TODO(b/142020079): Re-enable it once the bug is fixed. - if caching_device is not None: - tf_logging.warning( - "`caching_device` does not work with mixed precision API. " - "Ignoring user specified `caching_device`." - ) - caching_device = None - if layout: - getter = functools.partial(getter, layout=layout) - - variable = self._add_variable_with_custom_getter( - name=name, - shape=shape, - # TODO(allenl): a `make_variable` equivalent should be added as a - # `Trackable` method. - getter=getter, - # Manage errors in Layer rather than Trackable. - overwrite=True, - initializer=initializer, - dtype=dtype, - constraint=constraint, - trainable=trainable, - use_resource=use_resource, - collections=collections_arg, - synchronization=synchronization, - aggregation=aggregation, - caching_device=caching_device, - ) - if regularizer is not None: - # TODO(fchollet): in the future, this should be handled at the - # level of variable creation, and weight regularization losses - # should be variable attributes. - name_in_scope = variable.name[: variable.name.find(":")] - self._handle_weight_regularization( - name_in_scope, variable, regularizer - ) - if base_layer_utils.is_split_variable(variable): - for v in variable: - backend.track_variable(v) - if trainable: - self._trainable_weights.append(v) - else: - self._non_trainable_weights.append(v) - else: - backend.track_variable(variable) - if trainable: - self._trainable_weights.append(variable) - else: - self._non_trainable_weights.append(variable) - return variable - - def __new__(cls, *args, **kwargs): - # Generate a config to be returned by default by `get_config()`. - arg_names = tf_inspect.getfullargspec(cls.__init__).args - kwargs.update(dict(zip(arg_names[1 : len(args) + 1], args))) - instance = super(Layer, cls).__new__(cls, *args, **kwargs) - # For safety, we only rely on auto-configs for a small set of - # serializable types. - supported_types = (str, int, float, bool, type(None)) - try: - flat_arg_values = tf.nest.flatten(kwargs) - auto_get_config = True - for value in flat_arg_values: - if not isinstance(value, supported_types): - auto_get_config = False - break - except TypeError: - auto_get_config = False - try: - instance._auto_get_config = auto_get_config - if auto_get_config: - instance._auto_config = serialization_lib.Config(**kwargs) - except RecursionError: - # Setting an instance attribute in __new__ has the potential - # to trigger an infinite recursion if a subclass overrides - # setattr in an unsafe way. - pass - return instance - - @generic_utils.default - def get_config(self): - """Returns the config of the layer. - - A layer config is a Python dictionary (serializable) - containing the configuration of a layer. - The same layer can be reinstantiated later - (without its trained weights) from this configuration. - - The config of a layer does not include connectivity - information, nor the layer class name. These are handled - by `Network` (one layer of abstraction above). - - Note that `get_config()` does not guarantee to return a fresh copy of - dict every time it is called. The callers should make a copy of the - returned dict if they want to modify it. - - Returns: - Python dictionary. - """ - config = { - "name": self.name, - "trainable": self.trainable, - } - config["dtype"] = policy.serialize(self._dtype_policy) - if hasattr(self, "_batch_input_shape"): - config["batch_input_shape"] = self._batch_input_shape - - if not generic_utils.is_default(self.get_config): - # In this case the subclass implements get_config() - return config - - # In this case the subclass doesn't implement get_config(): - # Let's see if we can autogenerate it. - if getattr(self, "_auto_get_config", False): - xtra_args = set(config.keys()) - config.update(self._auto_config.config) - # Remove args non explicitly supported - argspec = tf_inspect.getfullargspec(self.__init__) - if argspec.varkw != "kwargs": - for key in xtra_args - xtra_args.intersection(argspec.args[1:]): - config.pop(key, None) - return config - else: - raise NotImplementedError( - textwrap.dedent( - f""" - Layer {self.__class__.__name__} was created by passing - non-serializable argument values in `__init__()`, - and therefore the layer must override `get_config()` in - order to be serializable. Please implement `get_config()`. - - Example: - - class CustomLayer(keras.layers.Layer): - def __init__(self, arg1, arg2, **kwargs): - super().__init__(**kwargs) - self.arg1 = arg1 - self.arg2 = arg2 - - def get_config(self): - config = super().get_config() - config.update({{ - "arg1": self.arg1, - "arg2": self.arg2, - }}) - return config""" - ) - ) - - @classmethod - def from_config(cls, config): - """Creates a layer from its config. - - This method is the reverse of `get_config`, - capable of instantiating the same layer from the config - dictionary. It does not handle layer connectivity - (handled by Network), nor weights (handled by `set_weights`). - - Args: - config: A Python dictionary, typically the - output of get_config. - - Returns: - A layer instance. - """ - try: - return cls(**config) - except Exception as e: - raise TypeError( - f"Error when deserializing class '{cls.__name__}' using " - f"config={config}.\n\nException encountered: {e}" - ) - - def compute_output_shape(self, input_shape): - """Computes the output shape of the layer. - - This method will cause the layer's state to be built, if that has not - happened before. This requires that the layer will later be used with - inputs that match the input shape provided here. - - Args: - input_shape: Shape tuple (tuple of integers) or `tf.TensorShape`, - or structure of shape tuples / `tf.TensorShape` instances - (one per output tensor of the layer). - Shape tuples can include None for free dimensions, - instead of an integer. - - Returns: - A `tf.TensorShape` instance - or structure of `tf.TensorShape` instances. - """ - if tf.executing_eagerly(): - # In this case we build the model first in order to do shape - # inference. This is acceptable because the framework only calls - # `compute_output_shape` on shape values that the layer would later - # be built for. It would however cause issues in case a user - # attempts to use `compute_output_shape` manually with shapes that - # are incompatible with the shape the Layer will be called on (these - # users will have to implement `compute_output_shape` themselves). - self._maybe_build(input_shape) - graph_name = str(self.name) + "_scratch_graph" - with tf.__internal__.FuncGraph(graph_name).as_default(): - input_shape = tf_utils.convert_shapes( - input_shape, to_tuples=False - ) - - def _make_placeholder_like(shape): - ph = backend.placeholder(shape=shape, dtype=self.dtype) - ph._keras_mask = None - return ph - - inputs = tf.nest.map_structure( - _make_placeholder_like, input_shape - ) - try: - outputs = self(inputs, training=False) - except TypeError as e: - raise NotImplementedError( - "We could not automatically infer the static shape of " - "the layer's output. Please implement the " - "`compute_output_shape` method on your layer (%s)." - % self.__class__.__name__ - ) from e - return tf.nest.map_structure(lambda t: t.shape, outputs) - raise NotImplementedError( - "Please run in eager mode or implement the `compute_output_shape` " - "method on your layer (%s)." % self.__class__.__name__ - ) - - @doc_controls.for_subclass_implementers - def compute_output_signature(self, input_signature): - """Compute the output tensor signature of the layer based on the inputs. - - Unlike a TensorShape object, a TensorSpec object contains both shape - and dtype information for a tensor. This method allows layers to provide - output dtype information if it is different from the input dtype. - For any layer that doesn't implement this function, - the framework will fall back to use `compute_output_shape`, and will - assume that the output dtype matches the input dtype. - - Args: - input_signature: Single TensorSpec or nested structure of TensorSpec - objects, describing a candidate input for the layer. - - Returns: - Single TensorSpec or nested structure of TensorSpec objects, - describing how the layer would transform the provided input. - - Raises: - TypeError: If input_signature contains a non-TensorSpec object. - """ - - def check_type_return_shape(s): - if not isinstance(s, tf.TensorSpec): - raise TypeError( - "Only TensorSpec signature types are supported. " - f"Received: {s}." - ) - return s.shape - - input_shape = tf.nest.map_structure( - check_type_return_shape, input_signature - ) - output_shape = self.compute_output_shape(input_shape) - - try: - dtype = self.output.dtype - except AttributeError: - dtype = self._compute_dtype - - if dtype is None: - input_dtypes = [s.dtype for s in tf.nest.flatten(input_signature)] - # Default behavior when self.dtype is None, is to use the first - # input's dtype. - dtype = input_dtypes[0] - return tf.nest.map_structure( - lambda s: tf.TensorSpec(dtype=dtype, shape=s), output_shape - ) - - @generic_utils.default - def compute_mask(self, inputs, mask=None): - """Computes an output mask tensor. - - Args: - inputs: Tensor or list of tensors. - mask: Tensor or list of tensors. - - Returns: - None or a tensor (or list of tensors, - one per output tensor of the layer). - """ - if not self._supports_masking: - if any(m is not None for m in tf.nest.flatten(mask)): - raise TypeError( - "Layer " + self.name + " does not support masking, " - "but was passed an input_mask: " + str(mask) - ) - # masking not explicitly supported: return None as mask. - return None - # if masking is explicitly supported, by default - # carry over the input mask - return mask - - @traceback_utils.filter_traceback - def __call__(self, *args, **kwargs): - """Wraps `call`, applying pre- and post-processing steps. - - Args: - *args: Positional arguments to be passed to `self.call`. - **kwargs: Keyword arguments to be passed to `self.call`. - - Returns: - Output tensor(s). - - Note: - - The following optional keyword arguments are reserved for specific - uses: - * `training`: Boolean scalar tensor of Python boolean indicating - whether the `call` is meant for training or inference. - * `mask`: Boolean input mask. - - If the layer's `call` method takes a `mask` argument (as some Keras - layers do), its default value will be set to the mask generated - for `inputs` by the previous layer (if `input` did come from - a layer that generated a corresponding mask, i.e. if it came from - a Keras layer with masking support. - - If the layer is not built, the method will call `build`. - - Raises: - ValueError: if the layer's `call` method returns None (an invalid - value). - RuntimeError: if `super().__init__()` was not called in the - constructor. - """ - if not hasattr(self, "_thread_local"): - raise RuntimeError( - "You must call `super().__init__()` in the layer constructor." - ) - - # `inputs` (the first arg in the method spec) is special cased in - # layer call due to historical reasons. - # This special casing currently takes the form of: - # - 'inputs' must be explicitly passed. A layer cannot have zero - # arguments, and inputs cannot have been provided via the default - # value of a kwarg. - # - numpy/scalar values in `inputs` get converted to tensors - # - implicit masks / mask metadata are only collected from 'inputs` - # - Layers are built using shape info from 'inputs' only - # - input_spec compatibility is only checked against `inputs` - # - mixed precision casting (autocast) is only applied to `inputs`, - # not to any other argument. - inputs, args, kwargs = self._call_spec.split_out_first_arg(args, kwargs) - input_list = tf.nest.flatten(inputs) - - # Functional Model construction mode is invoked when `Layer`s are called - # on symbolic `KerasTensor`s, i.e.: - # >> inputs = tf.keras.Input(10) - # >> outputs = MyLayer()(inputs) # Functional construction mode. - # >> model = tf.keras.Model(inputs, outputs) - if _in_functional_construction_mode( - self, inputs, args, kwargs, input_list - ): - return self._functional_construction_call( - inputs, args, kwargs, input_list - ) - - # Maintains info about the `Layer.call` stack. - call_context = base_layer_utils.call_context() - - # Accept NumPy and scalar inputs by converting to Tensors. - if any( - isinstance(x, (tf.Tensor, np.ndarray, float, int)) - for x in input_list - ): - inputs = tf.nest.map_structure( - _convert_numpy_or_python_types, inputs - ) - input_list = tf.nest.flatten(inputs) - - # Handle `mask` propagation from previous layer to current layer. Masks - # can be propagated explicitly via the `mask` argument, or implicitly - # via setting the `_keras_mask` attribute on the inputs to a Layer. - # Masks passed explicitly take priority. - input_masks, mask_is_implicit = self._get_input_masks( - inputs, input_list, args, kwargs - ) - if self._expects_mask_arg and mask_is_implicit: - kwargs["mask"] = input_masks - - # Training mode for `Layer.call` is set via (in order of priority): - # (1) The `training` argument passed to this `Layer.call`, if it is not - # None - # (2) The training mode of an outer `Layer.call`. - # (3) The default mode set by `tf.keras.backend.set_learning_phase` (if - # set) - # (4) Any non-None default value for `training` specified in the call - # signature - # (5) False (treating the layer as if it's in inference) - args, kwargs, training_mode = self._set_training_mode( - args, kwargs, call_context - ) - - # Losses are cleared for all sublayers on the outermost `Layer.call`. - # Losses are not cleared on inner `Layer.call`s, because sublayers can - # be called multiple times. - if not call_context.in_call: - self._clear_losses() - - eager = tf.executing_eagerly() - with call_context.enter( - layer=self, - inputs=inputs, - build_graph=not eager, - training=training_mode, - ): - - input_spec.assert_input_compatibility( - self.input_spec, inputs, self.name - ) - - if eager: - call_fn = self.call - name_scope = self._name - else: - name_scope = self._get_unnested_name_scope() - call_fn = self._autographed_call() - - call_fn = traceback_utils.inject_argument_info_in_traceback( - call_fn, - object_name=( - f"layer '{self.name}' (type {self.__class__.__name__})" - ), - ) - with contextlib.ExitStack() as namescope_stack: - if _is_name_scope_on_model_declaration_enabled: - namescope_stack.enter_context( - _name_scope_unnester(self._name_scope_on_declaration) - ) - namescope_stack.enter_context(tf.name_scope(name_scope)) - - if not self.built: - self._maybe_build(inputs) - - if self._autocast: - inputs = self._maybe_cast_inputs(inputs, input_list) - - with autocast_variable.enable_auto_cast_variables( - self._compute_dtype_object - ): - outputs = call_fn(inputs, *args, **kwargs) - - if self._activity_regularizer: - self._handle_activity_regularization(inputs, outputs) - if self._supports_masking: - self._set_mask_metadata( - inputs, outputs, input_masks, not eager - ) - if self._saved_model_inputs_spec is None: - self._set_save_spec(inputs, args, kwargs) - - return outputs - - def _get_unnested_name_scope(self): - if _is_name_scope_on_model_declaration_enabled: - with _name_scope_unnester( - self._name_scope_on_declaration - ) as relative_name_scope_on_declaration: - # To avoid `tf.name_scope` autoincrement, use absolute path. - relative_name_scope = filter( - None, - [ - tf.get_current_name_scope(), - relative_name_scope_on_declaration, - ], - ) - current_name_scope = "/".join(relative_name_scope) + "/" - if current_name_scope == "/": - current_name_scope = self._name_scope_on_declaration - with tf.name_scope(current_name_scope): - name_scope = self._name_scope() # Avoid autoincrementing. - else: - name_scope = self._name_scope() - - return name_scope - - @property - def dtype(self): - """The dtype of the layer weights. - - This is equivalent to `Layer.dtype_policy.variable_dtype`. Unless - mixed precision is used, this is the same as `Layer.compute_dtype`, the - dtype of the layer's computations. - """ - return self._dtype_policy.variable_dtype - - @property - def name(self): - """Name of the layer (string), set in the constructor.""" - return self._name - - @property - def supports_masking(self): - """Whether this layer supports computing a mask using `compute_mask`.""" - return self._supports_masking - - @supports_masking.setter - def supports_masking(self, value): - self._supports_masking = value - - @property - def dynamic(self): - """Whether the layer is dynamic (eager-only); set in the constructor.""" - return any(layer._dynamic for layer in self._flatten_layers()) - - @property - @doc_controls.do_not_doc_inheritable - def stateful(self): - return any(layer._stateful for layer in self._flatten_layers()) - - @stateful.setter - def stateful(self, value): - self._stateful = value - - @property - def trainable(self): - return self._trainable - - @trainable.setter - def trainable(self, value): - """Sets trainable attribute for the layer and its sublayers. - - When this value is changed during training (e.g. with a - `tf.keras.callbacks.Callback`) you need to call the parent - `tf.keras.Model.make_train_function` with `force=True` in order to - recompile the training graph. - - Args: - value: Boolean with the desired state for the layer's trainable - attribute. - """ - for layer in self._flatten_layers(): - layer._trainable = value - - @property - def activity_regularizer(self): - """Optional regularizer function for the output of this layer.""" - return self._activity_regularizer - - @activity_regularizer.setter - def activity_regularizer(self, regularizer): - """Optional regularizer function for the output of this layer.""" - self._activity_regularizer = regularizer - - @property - def input_spec(self): - """`InputSpec` instance(s) describing the input format for this layer. - - When you create a layer subclass, you can set `self.input_spec` to - enable the layer to run input compatibility checks when it is called. - Consider a `Conv2D` layer: it can only be called on a single input - tensor of rank 4. As such, you can set, in `__init__()`: - - ```python - self.input_spec = tf.keras.layers.InputSpec(ndim=4) - ``` - - Now, if you try to call the layer on an input that isn't rank 4 - (for instance, an input of shape `(2,)`, it will raise a - nicely-formatted error: - - ``` - ValueError: Input 0 of layer conv2d is incompatible with the layer: - expected ndim=4, found ndim=1. Full shape received: [2] - ``` - - Input checks that can be specified via `input_spec` include: - - Structure (e.g. a single input, a list of 2 inputs, etc) - - Shape - - Rank (ndim) - - Dtype - - For more information, see `tf.keras.layers.InputSpec`. - - Returns: - A `tf.keras.layers.InputSpec` instance, or nested structure thereof. - """ - return self._input_spec - - @input_spec.setter - # Must be decorated to prevent tracking, since the input_spec can be nested - # InputSpec objects. - @tf.__internal__.tracking.no_automatic_dependency_tracking - def input_spec(self, value): - for v in tf.nest.flatten(value): - if v is not None and not isinstance(v, input_spec.InputSpec): - raise TypeError( - "Layer input_spec must be an instance of InputSpec. " - "Got: {}".format(v) - ) - self._input_spec = value - - @property - def trainable_weights(self): - """List of all trainable weights tracked by this layer. - - Trainable weights are updated via gradient descent during training. - - Returns: - A list of trainable variables. - """ - self._update_trackables() - if self.trainable: - children_weights = self._gather_children_attribute( - "trainable_variables" - ) - return self._dedup_weights( - self._trainable_weights + children_weights - ) - else: - return [] - - @property - def non_trainable_weights(self): - """List of all non-trainable weights tracked by this layer. - - Non-trainable weights are *not* updated during training. They are - expected to be updated manually in `call()`. - - Returns: - A list of non-trainable variables. - """ - self._update_trackables() - if self.trainable: - children_weights = self._gather_children_attribute( - "non_trainable_variables" - ) - non_trainable_weights = ( - self._non_trainable_weights + children_weights - ) - else: - children_weights = self._gather_children_attribute("variables") - non_trainable_weights = ( - self._trainable_weights - + self._non_trainable_weights - + children_weights - ) - return self._dedup_weights(non_trainable_weights) - - @property - def weights(self): - """Returns the list of all layer variables/weights. - - Returns: - A list of variables. - """ - return self.trainable_weights + self.non_trainable_weights - - @property - @doc_controls.do_not_generate_docs - def updates(self): - warnings.warn( - "`layer.updates` will be removed in a future version. " - "This property should not be used in TensorFlow 2.0, " - "as `updates` are applied automatically.", - stacklevel=2, - ) - return [] - - @property - def losses(self): - """List of losses added using the `add_loss()` API. - - Variable regularization tensors are created when this property is - accessed, so it is eager safe: accessing `losses` under a - `tf.GradientTape` will propagate gradients back to the corresponding - variables. - - Examples: - - >>> class MyLayer(tf.keras.layers.Layer): - ... def call(self, inputs): - ... self.add_loss(tf.abs(tf.reduce_mean(inputs))) - ... return inputs - >>> l = MyLayer() - >>> l(np.ones((10, 1))) - >>> l.losses - [1.0] - - >>> inputs = tf.keras.Input(shape=(10,)) - >>> x = tf.keras.layers.Dense(10)(inputs) - >>> outputs = tf.keras.layers.Dense(1)(x) - >>> model = tf.keras.Model(inputs, outputs) - >>> # Activity regularization. - >>> len(model.losses) - 0 - >>> model.add_loss(tf.abs(tf.reduce_mean(x))) - >>> len(model.losses) - 1 - - >>> inputs = tf.keras.Input(shape=(10,)) - >>> d = tf.keras.layers.Dense(10, kernel_initializer='ones') - >>> x = d(inputs) - >>> outputs = tf.keras.layers.Dense(1)(x) - >>> model = tf.keras.Model(inputs, outputs) - >>> # Weight regularization. - >>> model.add_loss(lambda: tf.reduce_mean(d.kernel)) - >>> model.losses - [] - - Returns: - A list of tensors. - """ - collected_losses = [] - for layer in self._flatten_layers(): - # If any eager losses are present, we assume the model to be part of - # an eager training loop (either a custom one or the one used when - # `run_eagerly=True`) and so we always return just the eager losses. - if layer._eager_losses: - # Filter placeholder losses that may have been added by revived - # layers. (see base_layer_utils for details). - if ( - layer._eager_losses[0] - is not base_layer_utils.REVIVED_LOSS_PLACEHOLDER - ): - collected_losses.extend(layer._eager_losses) - else: - collected_losses.extend(layer._losses) - for regularizer in layer._callable_losses: - loss_tensor = regularizer() - if loss_tensor is not None: - collected_losses.append(loss_tensor) - return collected_losses - - def add_loss(self, losses, **kwargs): - """Add loss tensor(s), potentially dependent on layer inputs. - - Some losses (for instance, activity regularization losses) may be - dependent on the inputs passed when calling a layer. Hence, when reusing - the same layer on different inputs `a` and `b`, some entries in - `layer.losses` may be dependent on `a` and some on `b`. This method - automatically keeps track of dependencies. - - This method can be used inside a subclassed layer or model's `call` - function, in which case `losses` should be a Tensor or list of Tensors. - - Example: - - ```python - class MyLayer(tf.keras.layers.Layer): - def call(self, inputs): - self.add_loss(tf.abs(tf.reduce_mean(inputs))) - return inputs - ``` - - The same code works in distributed training: the input to `add_loss()` - is treated like a regularization loss and averaged across replicas - by the training loop (both built-in `Model.fit()` and compliant custom - training loops). - - The `add_loss` method can also be called directly on a Functional Model - during construction. In this case, any loss Tensors passed to this Model - must be symbolic and be able to be traced back to the model's `Input`s. - These losses become part of the model's topology and are tracked in - `get_config`. - - Example: - - ```python - inputs = tf.keras.Input(shape=(10,)) - x = tf.keras.layers.Dense(10)(inputs) - outputs = tf.keras.layers.Dense(1)(x) - model = tf.keras.Model(inputs, outputs) - # Activity regularization. - model.add_loss(tf.abs(tf.reduce_mean(x))) - ``` - - If this is not the case for your loss (if, for example, your loss - references a `Variable` of one of the model's layers), you can wrap your - loss in a zero-argument lambda. These losses are not tracked as part of - the model's topology since they can't be serialized. - - Example: - - ```python - inputs = tf.keras.Input(shape=(10,)) - d = tf.keras.layers.Dense(10) - x = d(inputs) - outputs = tf.keras.layers.Dense(1)(x) - model = tf.keras.Model(inputs, outputs) - # Weight regularization. - model.add_loss(lambda: tf.reduce_mean(d.kernel)) - ``` - - Args: - losses: Loss tensor, or list/tuple of tensors. Rather than tensors, - losses may also be zero-argument callables which create a loss - tensor. - **kwargs: Used for backwards compatibility only. - """ - kwargs.pop("inputs", None) - if kwargs: - raise TypeError(f"Unknown keyword arguments: {kwargs.keys()}") - - def _tag_callable(loss): - """Tags callable loss tensor as `_unconditional_loss`.""" - if callable(loss): - # We run the loss without autocasting, as regularizers are often - # numerically unstable in float16. - with autocast_variable.enable_auto_cast_variables(None): - loss = loss() - if loss is None: - # Will be filtered out when computing the .losses property - return None - if not tf.is_tensor(loss): - loss = tf.convert_to_tensor(loss, dtype=backend.floatx()) - loss._unconditional_loss = True - return loss - - losses = tf.nest.flatten(losses) - - callable_losses = [] - eager_losses = [] - symbolic_losses = [] - for loss in losses: - if callable(loss): - callable_losses.append(functools.partial(_tag_callable, loss)) - continue - if loss is None: - continue - if not tf.is_tensor(loss) and not isinstance( - loss, keras_tensor.KerasTensor - ): - loss = tf.convert_to_tensor(loss, dtype=backend.floatx()) - # TF Functions should take the eager path. - if ( - tf_utils.is_symbolic_tensor(loss) - or isinstance(loss, keras_tensor.KerasTensor) - ) and not base_layer_utils.is_in_tf_function(): - symbolic_losses.append(loss) - elif tf.is_tensor(loss): - eager_losses.append(loss) - - self._callable_losses.extend(callable_losses) - - in_call_context = base_layer_utils.call_context().in_call - if eager_losses and not in_call_context: - raise ValueError( - "Expected a symbolic Tensors or a callable for the loss value. " - "Please wrap your loss computation in a zero argument `lambda`." - ) - - self._eager_losses.extend(eager_losses) - - for symbolic_loss in symbolic_losses: - if getattr(self, "_is_graph_network", False): - self._graph_network_add_loss(symbolic_loss) - else: - # Possible a loss was added in a Layer's `build`. - self._losses.append(symbolic_loss) - - @property - def metrics(self): - """List of metrics added using the `add_metric()` API. - - Example: - - >>> input = tf.keras.layers.Input(shape=(3,)) - >>> d = tf.keras.layers.Dense(2) - >>> output = d(input) - >>> d.add_metric(tf.reduce_max(output), name='max') - >>> d.add_metric(tf.reduce_min(output), name='min') - >>> [m.name for m in d.metrics] - ['max', 'min'] - - Returns: - A list of `Metric` objects. - """ - collected_metrics = [] - for layer in self._flatten_layers(): - if not hasattr(layer, "_metrics_lock"): - continue - with layer._metrics_lock: - collected_metrics.extend(layer._metrics) - return collected_metrics - - def add_metric(self, value, name=None, **kwargs): - """Adds metric tensor to the layer. - - This method can be used inside the `call()` method of a subclassed layer - or model. - - ```python - class MyMetricLayer(tf.keras.layers.Layer): - def __init__(self): - super(MyMetricLayer, self).__init__(name='my_metric_layer') - self.mean = tf.keras.metrics.Mean(name='metric_1') - - def call(self, inputs): - self.add_metric(self.mean(inputs)) - self.add_metric(tf.reduce_sum(inputs), name='metric_2') - return inputs - ``` - - This method can also be called directly on a Functional Model during - construction. In this case, any tensor passed to this Model must - be symbolic and be able to be traced back to the model's `Input`s. These - metrics become part of the model's topology and are tracked when you - save the model via `save()`. - - ```python - inputs = tf.keras.Input(shape=(10,)) - x = tf.keras.layers.Dense(10)(inputs) - outputs = tf.keras.layers.Dense(1)(x) - model = tf.keras.Model(inputs, outputs) - model.add_metric(math_ops.reduce_sum(x), name='metric_1') - ``` - - Note: Calling `add_metric()` with the result of a metric object on a - Functional Model, as shown in the example below, is not supported. This - is because we cannot trace the metric result tensor back to the model's - inputs. - - ```python - inputs = tf.keras.Input(shape=(10,)) - x = tf.keras.layers.Dense(10)(inputs) - outputs = tf.keras.layers.Dense(1)(x) - model = tf.keras.Model(inputs, outputs) - model.add_metric(tf.keras.metrics.Mean()(x), name='metric_1') - ``` - - Args: - value: Metric tensor. - name: String metric name. - **kwargs: Additional keyword arguments for backward compatibility. - Accepted values: - `aggregation` - When the `value` tensor provided is not the result - of calling a `keras.Metric` instance, it will be aggregated by - default using a `keras.Metric.Mean`. - """ - kwargs_keys = list(kwargs.keys()) - if len(kwargs_keys) > 1 or ( - len(kwargs_keys) == 1 and kwargs_keys[0] != "aggregation" - ): - raise TypeError( - f"Unknown keyword arguments: {kwargs.keys()}. " - "Expected `aggregation`." - ) - - from_metric_obj = hasattr(value, "_metric_obj") - is_symbolic = isinstance(value, keras_tensor.KerasTensor) - in_call_context = base_layer_utils.call_context().in_call - - if name is None and not from_metric_obj: - # Eg. `self.add_metric(math_ops.reduce_sum(x))` In eager mode, we - # use metric name to lookup a metric. Without a name, a new Mean - # metric wrapper will be created on every model/layer call. So, we - # raise an error when no name is provided. We will do the same for - # symbolic mode for consistency although a name will be generated if - # no name is provided. - - # We will not raise this error in the foll use case for the sake of - # consistency as name in provided in the metric constructor. - # mean = metrics.Mean(name='my_metric') - # model.add_metric(mean(outputs)) - raise ValueError( - "Please provide a name for your metric like " - "`self.add_metric(tf.reduce_sum(inputs), " - "name='mean_activation')`" - ) - elif from_metric_obj: - name = value._metric_obj.name - - if not in_call_context and not is_symbolic: - raise ValueError( - "Expected a symbolic Tensor for the metric value, received: " - + str(value) - ) - - # If a metric was added in a Layer's `call` or `build`. - if in_call_context or not getattr(self, "_is_graph_network", False): - # TF Function path should take the eager path. - - # If the given metric is available in `metrics` list we just update - # state on it, otherwise we create a new metric instance and - # add it to the `metrics` list. - metric_obj = getattr(value, "_metric_obj", None) - # Tensors that come from a Metric object already updated the Metric - # state. - should_update_state = not metric_obj - name = metric_obj.name if metric_obj else name - - with self._metrics_lock: - match = self._get_existing_metric(name) - if match: - metric_obj = match - elif metric_obj: - self._metrics.append(metric_obj) - else: - # Build the metric object with the value's dtype if it - # defines one - metric_obj = metrics_mod.Mean( - name=name, dtype=getattr(value, "dtype", None) - ) - self._metrics.append(metric_obj) - - if should_update_state: - metric_obj(value) - else: - if from_metric_obj: - raise ValueError( - "Using the result of calling a `Metric` object " - "when calling `add_metric` on a Functional " - "Model is not supported. Please pass the " - "Tensor to monitor directly." - ) - - # Insert layers into the Keras Graph Network. - aggregation = None if from_metric_obj else "mean" - self._graph_network_add_metric(value, aggregation, name) - - @doc_controls.do_not_doc_inheritable - def add_update(self, updates): - """Add update op(s), potentially dependent on layer inputs. - - Weight updates (for instance, the updates of the moving mean and - variance in a BatchNormalization layer) may be dependent on the inputs - passed when calling a layer. Hence, when reusing the same layer on - different inputs `a` and `b`, some entries in `layer.updates` may be - dependent on `a` and some on `b`. This method automatically keeps track - of dependencies. - - This call is ignored when eager execution is enabled (in that case, - variable updates are run on the fly and thus do not need to be tracked - for later execution). - - Args: - updates: Update op, or list/tuple of update ops, or zero-arg callable - that returns an update op. A zero-arg callable should be passed in - order to disable running the updates by setting `trainable=False` - on this Layer, when executing in Eager mode. - """ - call_context = base_layer_utils.call_context() - # No need to run updates during Functional API construction. - if call_context.in_keras_graph: - return - - # Callable updates are disabled by setting `trainable=False`. - if not call_context.frozen: - for update in tf.nest.flatten(updates): - if callable(update): - update() - - def set_weights(self, weights): - """Sets the weights of the layer, from NumPy arrays. - - The weights of a layer represent the state of the layer. This function - sets the weight values from numpy arrays. The weight values should be - passed in the order they are created by the layer. Note that the layer's - weights must be instantiated before calling this function, by calling - the layer. - - For example, a `Dense` layer returns a list of two values: the kernel - matrix and the bias vector. These can be used to set the weights of - another `Dense` layer: - - >>> layer_a = tf.keras.layers.Dense(1, - ... kernel_initializer=tf.constant_initializer(1.)) - >>> a_out = layer_a(tf.convert_to_tensor([[1., 2., 3.]])) - >>> layer_a.get_weights() - [array([[1.], - [1.], - [1.]], dtype=float32), array([0.], dtype=float32)] - >>> layer_b = tf.keras.layers.Dense(1, - ... kernel_initializer=tf.constant_initializer(2.)) - >>> b_out = layer_b(tf.convert_to_tensor([[10., 20., 30.]])) - >>> layer_b.get_weights() - [array([[2.], - [2.], - [2.]], dtype=float32), array([0.], dtype=float32)] - >>> layer_b.set_weights(layer_a.get_weights()) - >>> layer_b.get_weights() - [array([[1.], - [1.], - [1.]], dtype=float32), array([0.], dtype=float32)] - - Args: - weights: a list of NumPy arrays. The number - of arrays and their shape must match - number of the dimensions of the weights - of the layer (i.e. it should match the - output of `get_weights`). - - Raises: - ValueError: If the provided weights list does not match the - layer's specifications. - """ - params = self.weights - - expected_num_weights = 0 - for param in params: - if isinstance(param, base_layer_utils.TrackableWeightHandler): - expected_num_weights += param.num_tensors - else: - expected_num_weights += 1 - - if expected_num_weights != len(weights): - raise ValueError( - 'You called `set_weights(weights)` on layer "%s" ' - "with a weight list of length %s, but the layer was " - "expecting %s weights. Provided weights: %s..." - % ( - self.name, - len(weights), - expected_num_weights, - str(weights)[:50], - ) - ) - - weight_index = 0 - weight_value_tuples = [] - for param in params: - if isinstance(param, base_layer_utils.TrackableWeightHandler): - num_tensors = param.num_tensors - tensors = weights[weight_index : weight_index + num_tensors] - param.set_weights(tensors) - weight_index += num_tensors - else: - weight = weights[weight_index] - weight_shape = weight.shape if hasattr(weight, "shape") else () - ref_shape = param.shape - if not ref_shape.is_compatible_with(weight_shape): - raise ValueError( - f"Layer {self.name} weight shape {ref_shape} " - "is not compatible with provided weight " - f"shape {weight_shape}." - ) - weight_value_tuples.append((param, weight)) - weight_index += 1 - - backend.batch_set_value(weight_value_tuples) - - # Perform any layer defined finalization of the layer state. - for layer in self._flatten_layers(): - layer.finalize_state() - - def get_weights(self): - """Returns the current weights of the layer, as NumPy arrays. - - The weights of a layer represent the state of the layer. This function - returns both trainable and non-trainable weight values associated with - this layer as a list of NumPy arrays, which can in turn be used to load - state into similarly parameterized layers. - - For example, a `Dense` layer returns a list of two values: the kernel - matrix and the bias vector. These can be used to set the weights of - another `Dense` layer: - - >>> layer_a = tf.keras.layers.Dense(1, - ... kernel_initializer=tf.constant_initializer(1.)) - >>> a_out = layer_a(tf.convert_to_tensor([[1., 2., 3.]])) - >>> layer_a.get_weights() - [array([[1.], - [1.], - [1.]], dtype=float32), array([0.], dtype=float32)] - >>> layer_b = tf.keras.layers.Dense(1, - ... kernel_initializer=tf.constant_initializer(2.)) - >>> b_out = layer_b(tf.convert_to_tensor([[10., 20., 30.]])) - >>> layer_b.get_weights() - [array([[2.], - [2.], - [2.]], dtype=float32), array([0.], dtype=float32)] - >>> layer_b.set_weights(layer_a.get_weights()) - >>> layer_b.get_weights() - [array([[1.], - [1.], - [1.]], dtype=float32), array([0.], dtype=float32)] - - Returns: - Weights values as a list of NumPy arrays. - """ - weights = self.weights - output_weights = [] - for weight in weights: - if isinstance(weight, base_layer_utils.TrackableWeightHandler): - output_weights.extend(weight.get_tensors()) - else: - output_weights.append(weight) - return backend.batch_get_value(output_weights) - - @doc_controls.do_not_generate_docs - def finalize_state(self): - """Finalizes the layers state after updating layer weights. - - This function can be subclassed in a layer and will be called after - updating a layer weights. It can be overridden to finalize any - additional layer state after a weight update. - - This function will be called after weights of a layer have been restored - from a loaded model. - """ - pass - - @doc_controls.do_not_doc_inheritable - def get_input_mask_at(self, node_index): - """Retrieves the input mask tensor(s) of a layer at a given node. - - Args: - node_index: Integer, index of the node - from which to retrieve the attribute. - E.g. `node_index=0` will correspond to the - first time the layer was called. - - Returns: - A mask tensor - (or list of tensors if the layer has multiple inputs). - """ - inputs = self.get_input_at(node_index) - if isinstance(inputs, list): - return [getattr(x, "_keras_mask", None) for x in inputs] - else: - return getattr(inputs, "_keras_mask", None) - - @doc_controls.do_not_doc_inheritable - def get_output_mask_at(self, node_index): - """Retrieves the output mask tensor(s) of a layer at a given node. - - Args: - node_index: Integer, index of the node - from which to retrieve the attribute. - E.g. `node_index=0` will correspond to the - first time the layer was called. - - Returns: - A mask tensor - (or list of tensors if the layer has multiple outputs). - """ - output = self.get_output_at(node_index) - if isinstance(output, list): - return [getattr(x, "_keras_mask", None) for x in output] - else: - return getattr(output, "_keras_mask", None) - - @property - @doc_controls.do_not_doc_inheritable - def input_mask(self): - """Retrieves the input mask tensor(s) of a layer. - - Only applicable if the layer has exactly one inbound node, - i.e. if it is connected to one incoming layer. - - Returns: - Input mask tensor (potentially None) or list of input - mask tensors. - - Raises: - AttributeError: if the layer is connected to - more than one incoming layers. - """ - inputs = self.input - if isinstance(inputs, list): - return [getattr(x, "_keras_mask", None) for x in inputs] - else: - return getattr(inputs, "_keras_mask", None) - - @property - @doc_controls.do_not_doc_inheritable - def output_mask(self): - """Retrieves the output mask tensor(s) of a layer. - - Only applicable if the layer has exactly one inbound node, - i.e. if it is connected to one incoming layer. - - Returns: - Output mask tensor (potentially None) or list of output - mask tensors. - - Raises: - AttributeError: if the layer is connected to - more than one incoming layers. - """ - output = self.output - if isinstance(output, list): - return [getattr(x, "_keras_mask", None) for x in output] - else: - return getattr(output, "_keras_mask", None) - - @doc_controls.do_not_doc_inheritable - def get_input_shape_at(self, node_index): - """Retrieves the input shape(s) of a layer at a given node. - - Args: - node_index: Integer, index of the node - from which to retrieve the attribute. - E.g. `node_index=0` will correspond to the - first time the layer was called. - - Returns: - A shape tuple - (or list of shape tuples if the layer has multiple inputs). - - Raises: - RuntimeError: If called in Eager mode. - """ - return self._get_node_attribute_at_index( - node_index, "input_shapes", "input shape" - ) - - @doc_controls.do_not_doc_inheritable - def get_output_shape_at(self, node_index): - """Retrieves the output shape(s) of a layer at a given node. - - Args: - node_index: Integer, index of the node - from which to retrieve the attribute. - E.g. `node_index=0` will correspond to the - first time the layer was called. - - Returns: - A shape tuple - (or list of shape tuples if the layer has multiple outputs). - - Raises: - RuntimeError: If called in Eager mode. - """ - return self._get_node_attribute_at_index( - node_index, "output_shapes", "output shape" - ) - - @doc_controls.do_not_doc_inheritable - def get_input_at(self, node_index): - """Retrieves the input tensor(s) of a layer at a given node. - - Args: - node_index: Integer, index of the node - from which to retrieve the attribute. - E.g. `node_index=0` will correspond to the - first input node of the layer. - - Returns: - A tensor (or list of tensors if the layer has multiple inputs). - - Raises: - RuntimeError: If called in Eager mode. - """ - return self._get_node_attribute_at_index( - node_index, "input_tensors", "input" - ) - - @doc_controls.do_not_doc_inheritable - def get_output_at(self, node_index): - """Retrieves the output tensor(s) of a layer at a given node. - - Args: - node_index: Integer, index of the node - from which to retrieve the attribute. - E.g. `node_index=0` will correspond to the - first output node of the layer. - - Returns: - A tensor (or list of tensors if the layer has multiple outputs). - - Raises: - RuntimeError: If called in Eager mode. - """ - return self._get_node_attribute_at_index( - node_index, "output_tensors", "output" - ) - - @property - def input(self): - """Retrieves the input tensor(s) of a layer. - - Only applicable if the layer has exactly one input, - i.e. if it is connected to one incoming layer. - - Returns: - Input tensor or list of input tensors. - - Raises: - RuntimeError: If called in Eager mode. - AttributeError: If no inbound nodes are found. - """ - if not self._inbound_nodes: - raise AttributeError( - "Layer " + self.name + " is not connected, no input to return." - ) - return self._get_node_attribute_at_index(0, "input_tensors", "input") - - @property - def output(self): - """Retrieves the output tensor(s) of a layer. - - Only applicable if the layer has exactly one output, - i.e. if it is connected to one incoming layer. - - Returns: - Output tensor or list of output tensors. - - Raises: - AttributeError: if the layer is connected to more than one incoming - layers. - RuntimeError: if called in Eager mode. - """ - if not self._inbound_nodes: - raise AttributeError( - "Layer " + self.name + " has no inbound nodes." - ) - return self._get_node_attribute_at_index(0, "output_tensors", "output") - - @property - @doc_controls.do_not_doc_inheritable - def input_shape(self): - """Retrieves the input shape(s) of a layer. - - Only applicable if the layer has exactly one input, - i.e. if it is connected to one incoming layer, or if all inputs - have the same shape. - - Returns: - Input shape, as an integer shape tuple - (or list of shape tuples, one tuple per input tensor). - - Raises: - AttributeError: if the layer has no defined input_shape. - RuntimeError: if called in Eager mode. - """ - if not self._inbound_nodes: - raise AttributeError( - f'The layer "{self.name}" has never been called ' - "and thus has no defined input shape. Note that the " - "`input_shape` property is only available for " - "Functional and Sequential models." - ) - all_input_shapes = set( - [str(node.input_shapes) for node in self._inbound_nodes] - ) - if len(all_input_shapes) == 1: - return self._inbound_nodes[0].input_shapes - else: - raise AttributeError( - 'The layer "' - + str(self.name) - + '" has multiple inbound nodes, ' - "with different input shapes. Hence " - 'the notion of "input shape" is ' - "ill-defined for the layer. " - "Use `get_input_shape_at(node_index)` " - "instead." - ) - - def count_params(self): - """Count the total number of scalars composing the weights. - - Returns: - An integer count. - - Raises: - ValueError: if the layer isn't yet built - (in which case its weights aren't yet defined). - """ - if not self.built: - if getattr(self, "_is_graph_network", False): - with tf_utils.maybe_init_scope(self): - self._maybe_build(self.inputs) - else: - raise ValueError( - "You tried to call `count_params` " - f"on layer {self.name}" - ", but the layer isn't built. " - "You can build it manually via: " - f"`{self.name}.build(batch_input_shape)`." - ) - return layer_utils.count_params(self.weights) - - @property - @doc_controls.do_not_doc_inheritable - def output_shape(self): - """Retrieves the output shape(s) of a layer. - - Only applicable if the layer has one output, - or if all outputs have the same shape. - - Returns: - Output shape, as an integer shape tuple - (or list of shape tuples, one tuple per output tensor). - - Raises: - AttributeError: if the layer has no defined output shape. - RuntimeError: if called in Eager mode. - """ - if not self._inbound_nodes: - raise AttributeError( - f'The layer "{self.name}" has never been called ' - "and thus has no defined output shape." - ) - all_output_shapes = set( - [str(node.output_shapes) for node in self._inbound_nodes] - ) - if len(all_output_shapes) == 1: - return self._inbound_nodes[0].output_shapes - else: - raise AttributeError( - 'The layer "%s"' - " has multiple inbound nodes, " - "with different output shapes. Hence " - 'the notion of "output shape" is ' - "ill-defined for the layer. " - "Use `get_output_shape_at(node_index)` " - "instead." % self.name - ) - - @property - def dtype_policy(self): - """The dtype policy associated with this layer. - - This is an instance of a `tf.keras.mixed_precision.Policy`. - """ - return self._dtype_policy - - @property - def compute_dtype(self): - """The dtype of the layer's computations. - - This is equivalent to `Layer.dtype_policy.compute_dtype`. Unless - mixed precision is used, this is the same as `Layer.dtype`, the dtype of - the weights. - - Layers automatically cast their inputs to the compute dtype, which - causes computations and the output to be in the compute dtype as well. - This is done by the base Layer class in `Layer.__call__`, so you do not - have to insert these casts if implementing your own layer. - - Layers often perform certain internal computations in higher precision - when `compute_dtype` is float16 or bfloat16 for numeric stability. The - output will still typically be float16 or bfloat16 in such cases. - - Returns: - The layer's compute dtype. - """ - return self._dtype_policy.compute_dtype - - @property - def variable_dtype(self): - """Alias of `Layer.dtype`, the dtype of the weights.""" - return self.dtype - - @property - @doc_controls.do_not_doc_inheritable - def inbound_nodes(self): - """Return Functional API nodes upstream of this layer.""" - return self._inbound_nodes - - @property - @doc_controls.do_not_doc_inheritable - def outbound_nodes(self): - """Return Functional API nodes downstream of this layer.""" - return self._outbound_nodes - - ############################################################################ - # Methods & attributes below are public aliases of other methods. # - ############################################################################ - - @property - @doc_controls.do_not_generate_docs - def variables(self): - """Returns the list of all layer variables/weights. - - Alias of `self.weights`. - - Note: This will not track the weights of nested `tf.Modules` that are - not themselves Keras layers. - - Returns: - A list of variables. - """ - return self.weights - - @property - @doc_controls.do_not_generate_docs - def trainable_variables(self): - return self.trainable_weights - - @property - @doc_controls.do_not_generate_docs - def non_trainable_variables(self): - return self.non_trainable_weights - - @doc_controls.do_not_doc_inheritable - def add_variable(self, *args, **kwargs): - """Deprecated, do NOT use! Alias for `add_weight`.""" - warnings.warn( - "`layer.add_variable` is deprecated and " - "will be removed in a future version. " - "Please use the `layer.add_weight()` method instead.", - stacklevel=2, - ) - return self.add_weight(*args, **kwargs) - - def get_build_config(self): - """Returns a dictionary with the layer's input shape. - - This method returns a config dict that can be used by - `build_from_config(config)` to create all states (e.g. Variables and - Lookup tables) needed by the layer. - - By default, the config only contains the input shape that the layer - was built with. If you're writing a custom layer that creates state in - an unusual way, you should override this method to make sure this state - is already created when Keras attempts to load its value upon model - loading. - - Returns: - A dict containing the input shape associated with the layer. - """ - if self._build_input_shape is not None: - - def convert_tensorshapes(x): - if isinstance(x, tf.TensorShape) and x._dims: - return tuple(x.as_list()) - return x - - return { - "input_shape": tf.nest.map_structure( - convert_tensorshapes, self._build_input_shape - ) - } - - def build_from_config(self, config): - """Builds the layer's states with the supplied config dict. - - By default, this method calls the `build(config["input_shape"])` method, - which creates weights based on the layer's input shape in the supplied - config. If your config contains other information needed to load the - layer's state, you should override this method. - - Args: - config: Dict containing the input shape associated with this layer. - """ - input_shape = config["input_shape"] - if input_shape is not None: - self.build(input_shape) - - ############################################################################ - # Methods & attributes below are all private and only used by the framework. - ############################################################################ - - # See tf.Module for the usage of this property. - # The key for _obj_reference_counts_dict is a Trackable, which could be a - # variable or layer etc. tf.Module._flatten will fail to flatten the key - # since it is trying to convert Trackable to a string. This attribute can be - # ignored even after the fix of nest lib, since the trackable object should - # already been available as individual attributes. - # _obj_reference_counts_dict just contains a copy of them. - _TF_MODULE_IGNORED_PROPERTIES = frozenset( - itertools.chain( - ("_obj_reference_counts_dict",), - tf.Module._TF_MODULE_IGNORED_PROPERTIES, - ) - ) - - # When loading from a SavedModel, Layers typically can be revived into a - # generic Layer wrapper. Sometimes, however, layers may implement methods - # that go beyond this wrapper, as in the case of PreprocessingLayers' - # `adapt` method. When this is the case, layer implementers can override - # must_restore_from_config to return True; layers with this property must - # be restored into their actual objects (and will fail if the object is - # not available to the restoration code). - _must_restore_from_config = False - - def _get_cell_name(self): - canonical_name = get_canonical_name_for_symbol( - self.__class__, api_name="keras", add_prefix_to_v1_names=True - ) - if canonical_name is not None: - return f"tf.{canonical_name}" - return self.__class__.__module__ + "." + self.__class__.__name__ - - def _instrument_layer_creation(self): - self._instrumented_keras_api = False - self._instrumented_keras_layer_class = False - self._instrumented_keras_model_class = False - if not getattr(self, "_disable_keras_instrumentation", False): - keras_api_gauge.get_cell("layer").set(True) - self._instrumented_keras_api = True - if getattr(self, "_is_model_for_instrumentation", False): - keras_models_gauge.get_cell(self._get_cell_name()).set(True) - self._instrumented_keras_model_class = True - else: - keras_layers_gauge.get_cell(self._get_cell_name()).set(True) - self._instrumented_keras_layer_class = True - else: - # This is a legacy layer that has disabled instrumentation - # as a native keras object. We still instrument this as - # legacy usage. - keras_api_gauge.get_cell("legacy_layer").set(True) - - @doc_controls.for_subclass_implementers - def _add_trackable(self, trackable_object, trainable): - """Adds a Trackable object to this layer's state. - - Args: - trackable_object: The tf.tracking.Trackable object to add. - trainable: Boolean, whether the variable should be part of the layer's - "trainable_variables" (e.g. variables, biases) or - "non_trainable_variables" (e.g. BatchNorm mean and variance). - - Returns: - The TrackableWeightHandler used to track this object. - """ - if isinstance( - trackable_object, base_layer_utils.TrackableWeightHandler - ): - handler = trackable_object - else: - handler = base_layer_utils.TrackableWeightHandler(trackable_object) - if trainable: - self._trainable_weights.append(handler) - else: - self._non_trainable_weights.append(handler) - return handler - - def _clear_losses(self): - """Used every step in eager to reset losses.""" - # Set to thread local directly to avoid Layer.__setattr__ overhead. - if not getattr( - self, "_self_tracked_trackables", None - ): # Fast path for single Layer. - self._thread_local._eager_losses = [] - else: - for layer in self._flatten_layers(): - layer._thread_local._eager_losses = [] - - def _keras_tensor_symbolic_call(self, inputs, input_masks, args, kwargs): - if self.dynamic: - # We will use static shape inference to return symbolic tensors - # matching the specifications of the layer outputs. - # Since `self.dynamic` is True, we will never attempt to - # run the underlying TF graph (which is disconnected). - # TODO(fchollet): consider py_func as an alternative, which - # would enable us to run the underlying graph if needed. - input_signature = tf.nest.map_structure( - lambda x: tf.TensorSpec(shape=x.shape, dtype=x.dtype), inputs - ) - output_signature = self.compute_output_signature(input_signature) - return tf.nest.map_structure( - keras_tensor.KerasTensor, output_signature - ) - else: - return self._infer_output_signature( - inputs, args, kwargs, input_masks - ) - - def _infer_output_signature(self, inputs, args, kwargs, input_masks): - """Call the layer on input KerasTensors, returns output KerasTensors.""" - - keras_tensor_inputs = inputs - call_fn = self.call - # Wrapping `call` function in autograph to allow for dynamic control - # flow and control dependencies in call. We are limiting this to - # subclassed layers as autograph is strictly needed only for - # subclassed layers and models. - # tf_convert will respect the value of autograph setting in the - # enclosing tf.function, if any. - if base_layer_utils.is_subclassed( - self - ) and not base_layer_utils.from_saved_model(self): - call_fn = tf.__internal__.autograph.tf_convert( - self.call, tf.__internal__.autograph.control_status_ctx() - ) - - call_fn = traceback_utils.inject_argument_info_in_traceback( - call_fn, - object_name=f'layer "{self.name}" (type {self.__class__.__name__})', - ) - - # We enter a scratch graph and build placeholder inputs inside of it - # that match the input args. - # We then call the layer inside of the scratch graph to identify the - # output signatures, then we build KerasTensors corresponding to those - # outputs. - scratch_graph = tf.__internal__.FuncGraph( - str(self.name) + "_scratch_graph" - ) - with scratch_graph.as_default(): - inputs = tf.nest.map_structure( - keras_tensor.keras_tensor_to_placeholder, inputs - ) - args = tf.nest.map_structure( - keras_tensor.keras_tensor_to_placeholder, args - ) - kwargs = tf.nest.map_structure( - keras_tensor.keras_tensor_to_placeholder, kwargs - ) - input_masks = tf.nest.map_structure( - keras_tensor.keras_tensor_to_placeholder, input_masks - ) - - with backend.name_scope(self._name_scope()): - with autocast_variable.enable_auto_cast_variables( - self._compute_dtype_object - ): - # Build layer if applicable (if the `build` method has been - # overridden). - # TODO(kaftan): do we maybe_build here, or have we already - # done it? - self._maybe_build(inputs) - inputs = self._maybe_cast_inputs(inputs) - outputs = call_fn(inputs, *args, **kwargs) - - self._handle_activity_regularization(inputs, outputs) - self._set_mask_metadata( - inputs, outputs, input_masks, build_graph=False - ) - outputs = tf.nest.map_structure( - keras_tensor.keras_tensor_from_tensor, outputs - ) - - self._set_save_spec(keras_tensor_inputs, args, kwargs) - if hasattr(self, "_set_inputs") and not self.inputs: - # TODO(kaftan): figure out if we need to do this at all - # Subclassed network: explicitly set metadata normally set by - # a call to self._set_inputs(). - self._set_inputs(inputs, outputs) - del scratch_graph - return outputs - - def _functional_construction_call(self, inputs, args, kwargs, input_list): - call_context = base_layer_utils.call_context() - - # Accept NumPy and scalar inputs by converting to Tensors. - if any( - isinstance(x, (tf.Tensor, np.ndarray, float, int)) - for x in input_list - ): - - def _convert_non_tensor(x): - # Don't call `ops.convert_to_tensor` on all `inputs` because - # `SparseTensors` can't be converted to `Tensor`. - if isinstance(x, (tf.Tensor, np.ndarray, float, int)): - return tf.convert_to_tensor(x) - return x - - inputs = tf.nest.map_structure(_convert_non_tensor, inputs) - input_list = tf.nest.flatten(inputs) - - # Handle `mask` propagation from previous layer to current layer. Masks - # can be propagated explicitly via the `mask` argument, or implicitly - # via setting the `_keras_mask` attribute on the inputs to a Layer. - # Masks passed explicitly take priority. - mask_arg_passed_by_framework = False - input_masks, mask_is_implicit = self._get_input_masks( - inputs, input_list, args, kwargs - ) - if self._expects_mask_arg and mask_is_implicit: - kwargs["mask"] = input_masks - mask_arg_passed_by_framework = True - - # If `training` argument is None or not explicitly passed, - # propagate `training` value from this layer's calling layer. - training_value = None - training_arg_passed_by_framework = False - # Priority 1: `training` was explicitly passed a non-None value. - if self._call_spec.arg_was_passed("training", args, kwargs): - training_value = self._call_spec.get_arg_value( - "training", args, kwargs - ) - if not self._expects_training_arg: - kwargs.pop("training") - - if training_value is None: - # Priority 2: `training` was passed to a parent layer. - if call_context.training is not None: - training_value = call_context.training - # Priority 3: `learning_phase()` has been set. - elif backend.global_learning_phase_is_set(): - training_value = backend.learning_phase() - # Force the training_value to be bool type which matches to the - # contract for layer/model call args. - if tf.is_tensor(training_value): - training_value = tf.cast(training_value, tf.bool) - else: - training_value = bool(training_value) - # Priority 4: trace layer with the default training argument - # specified in the `call` signature (or in inference mode if the - # `call` signature specifies no non-None default). - else: - training_value = self._call_spec.default_training_arg - # In cases (2), (3), (4) the training argument is passed - # automatically by the framework, and will not be hard-coded into - # the model. - if self._expects_training_arg: - args, kwargs = self._call_spec.set_arg_value( - "training", training_value, args, kwargs - ) - training_arg_passed_by_framework = True - - with call_context.enter( - layer=self, inputs=inputs, build_graph=True, training=training_value - ): - # Check input assumptions set after layer building, e.g. input - # shape. - outputs = self._keras_tensor_symbolic_call( - inputs, input_masks, args, kwargs - ) - - if outputs is None: - raise ValueError( - "A layer's `call` method should return a " - "Tensor or a list of Tensors, not None " - "(layer: " + self.name + ")." - ) - if training_arg_passed_by_framework: - args, kwargs = self._call_spec.set_arg_value( - "training", None, args, kwargs, pop_kwarg_if_none=True - ) - if mask_arg_passed_by_framework: - kwargs.pop("mask") - # Node connectivity does not special-case the first argument. - outputs = self._set_connectivity_metadata( - (inputs,) + args, kwargs, outputs - ) - return outputs - - def _set_training_mode(self, args, kwargs, call_context): - training_mode = None - if self._expects_training_arg: - # (1) `training` was passed to this `Layer.call`. - if self._call_spec.arg_was_passed("training", args, kwargs): - training_mode = self._call_spec.get_arg_value( - "training", args, kwargs - ) - # If no `training` arg was passed, or `None` was explicitly passed, - # the framework will make a decision about the training mode is. - if training_mode is None: - call_ctx_training = call_context.training - # (2) `training` mode is inferred from an outer `Layer.call`. - if call_ctx_training is not None: - training_mode = call_ctx_training - # (3) User set `tf.keras.backend.set_learning_phase`. - elif backend.global_learning_phase_is_set(): - training_mode = backend.learning_phase() - # Ensure value is a `bool` or `tf.bool`. - if isinstance(training_mode, bool): - pass - elif tf.is_tensor(training_mode): - training_mode = tf.cast(training_mode, tf.bool) - else: - training_mode = bool(training_mode) - # (4) We default to using `call`'s default value for `training`, - # or treating the layer as if it is in inference if no non-None - # default is specified in the `call` signature. - else: - training_mode = self._call_spec.default_training_arg - - # For case (2), (3), (4) `training` arg is passed by framework. - args, kwargs = self._call_spec.set_arg_value( - "training", training_mode, args, kwargs - ) - else: - if "training" in kwargs: - # `training` was passed to this `Layer` but is not needed for - # `Layer.call`. It will set the default mode for inner - # `Layer.call`s. - training_mode = kwargs.pop("training") - else: - # Grab the current `training` mode from any outer `Layer.call`. - training_mode = call_context.training - - return args, kwargs, training_mode - - def _autographed_call(self): - # Wrapping `call` function in autograph to allow for dynamic control - # flow and control dependencies in call. We are limiting this to - # subclassed layers as autograph is strictly needed only for - # subclassed layers and models. - # tf_convert will respect the value of autograph setting in the - # enclosing tf.function, if any. - if base_layer_utils.is_subclassed( - self - ) and not base_layer_utils.from_saved_model(self): - return tf.__internal__.autograph.tf_convert( - self.call, tf.__internal__.autograph.control_status_ctx() - ) - else: - return self.call - - @property - def _inbound_nodes(self): - return self._inbound_nodes_value - - @_inbound_nodes.setter - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _inbound_nodes(self, value): - self._inbound_nodes_value = value - - @property - def _outbound_nodes(self): - return self._outbound_nodes_value - - @_outbound_nodes.setter - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _outbound_nodes(self, value): - self._outbound_nodes_value = value - - def _set_dtype_policy(self, dtype): - """Sets self._dtype_policy.""" - self._dtype_policy = policy.get_policy(dtype) - - # Performance optimization: cache the compute dtype as a Dtype object or - # None, so that str to Dtype conversion doesn't happen in - # Layer.__call__. - # TODO(b/157486353): Investigate returning DTypes in Policy. - if self._dtype_policy.compute_dtype: - self._compute_dtype_object = tf.as_dtype( - self._dtype_policy.compute_dtype - ) - else: - self._compute_dtype_object = None - - @property - def _compute_dtype(self): - """Deprecated alias of `compute_dtype`.""" - return self._dtype_policy.compute_dtype - - def _maybe_cast_inputs(self, inputs, input_list=None): - """Maybe casts the inputs to the compute dtype. - - If self._compute_dtype is floating-point, and self_autocast is True, - floating-point inputs are casted to self._compute_dtype. - - Args: - inputs: Input tensor, or structure of input tensors. - input_list: Flat list of input tensors. - - Returns: - `inputs`, but tensors may have been casted to self._compute_dtype - """ - if not input_list: - input_list = tf.nest.flatten(inputs) - - compute_dtype_object = self._compute_dtype_object - should_autocast = ( - self._autocast - and compute_dtype_object - and compute_dtype_object.is_floating - ) - - if should_autocast and any( - map(self._should_cast_single_input, input_list) - ): - # Only perform expensive `nest` operation when needed. - return tf.nest.map_structure(self._cast_single_input, inputs) - else: - return inputs - - def _should_cast_single_input(self, x): - if isinstance(x, _AUTOCAST_TYPES): - return ( - self._compute_dtype_object - and x.dtype != self._compute_dtype_object - and x.dtype.is_floating - ) - return False - - def _cast_single_input(self, x): - """Cast a single Tensor or TensorSpec to the compute dtype.""" - if self._should_cast_single_input(x): - return tf.cast(x, self._compute_dtype_object) - else: - return x - - # _dtype used to be an attribute set in the constructor. We still expose it - # because some clients still use it. - # TODO(reedwm): Deprecate, then remove the _dtype property. - @property - def _dtype(self): - # This is equivalent to returning self.dtype . We do not return - # self.dtype as it would cause infinite recursion in a few subclasses, - # which override "dtype" to return self._dtype. - return self._dtype_policy.variable_dtype - - @_dtype.setter - def _dtype(self, value): - value = tf.as_dtype(value).name - self._set_dtype_policy(policy.Policy(value)) - - def _name_scope(self): - if not tf.__internal__.tf2.enabled(): - return self.name - name_scope = self.name - current_name_scope = tf.__internal__.get_name_scope() - if current_name_scope: - name_scope = current_name_scope + "/" + name_scope - if name_scope: - # Note that the trailing `/` prevents autogenerated - # numerical suffixes to get appended. It will also fully reset - # nested name scope (i.e. the outer name scope has no effect). - name_scope += "/" - return name_scope - - def _init_set_name(self, name, zero_based=True): - if name is None: - self._name = backend.unique_object_name( - generic_utils.to_snake_case(self.__class__.__name__), - zero_based=zero_based, - ) - elif isinstance(name, str): - backend.observe_object_name(name) - self._name = name - else: - raise TypeError( - f"Expected `name` argument to be a string, but got: {name}" - ) - - def _get_existing_metric(self, name=None): - match = [m for m in self._metrics if m.name == name] - if not match: - return - if len(match) > 1: - raise ValueError( - "Please provide different names for the metrics you have " - 'added. We found {} metrics with the name: "{}"'.format( - len(match), name - ) - ) - return match[0] - - def _handle_weight_regularization(self, name, variable, regularizer): - """Create lambdas which compute regularization losses.""" - - def _loss_for_variable(v): - """Creates a regularization loss `Tensor` for variable `v`.""" - with backend.name_scope(name + "/Regularizer"): - regularization = regularizer(v) - return regularization - - if base_layer_utils.is_split_variable(variable): - for v in variable: - self.add_loss(functools.partial(_loss_for_variable, v)) - elif isinstance(variable, lazy_variable.LazyInitVariable): - self._captured_weight_regularizer.append( - (name, variable, regularizer) - ) - else: - self.add_loss(functools.partial(_loss_for_variable, variable)) - - def _handle_activity_regularization(self, inputs, outputs): - # Apply activity regularization. - # Note that it should be applied every time the layer creates a new - # output, since it is output-specific. - if self._activity_regularizer: - output_list = tf.nest.flatten(outputs) - with backend.name_scope("ActivityRegularizer"): - for output in output_list: - activity_loss = tf.convert_to_tensor( - self._activity_regularizer(output) - ) - batch_size = tf.cast( - tf.shape(output)[0], activity_loss.dtype - ) - # Make activity regularization strength batch-agnostic. - mean_activity_loss = activity_loss / batch_size - self.add_loss(mean_activity_loss) - - def _set_mask_metadata(self, inputs, outputs, previous_mask, build_graph): - # Many `Layer`s don't need to call `compute_mask`. - # This method is optimized to do as little work as needed for the common - # case. - if not self._supports_masking: - return - - flat_outputs = tf.nest.flatten(outputs) - - mask_already_computed = getattr( - self, "_compute_output_and_mask_jointly", False - ) or all( - getattr(x, "_keras_mask", None) is not None for x in flat_outputs - ) - if mask_already_computed: - if build_graph: - self._set_mask_keras_history_checked(flat_outputs) - return - - output_masks = self.compute_mask(inputs, previous_mask) - if output_masks is None: - return - - flat_masks = tf.nest.flatten(output_masks) - for tensor, mask in zip(flat_outputs, flat_masks): - try: - tensor._keras_mask = mask - except AttributeError: - # C Type such as np.ndarray. - pass - - if build_graph: - self._set_mask_keras_history_checked(flat_outputs) - - def _set_mask_keras_history_checked(self, flat_outputs): - for output in flat_outputs: - if getattr(output, "_keras_mask", None) is not None: - # Do not track masks for `TensorFlowOpLayer` construction. - output._keras_mask._keras_history_checked = True - - def _get_input_masks(self, inputs, input_list, args, kwargs): - if not self._supports_masking and not self._expects_mask_arg: - # Input masks only need to be retrieved if they are needed for - # `call` or `compute_mask`. - input_masks = None - implicit_mask = False - elif self._call_spec.arg_was_passed("mask", args, kwargs): - input_masks = self._call_spec.get_arg_value("mask", args, kwargs) - implicit_mask = False - else: - input_masks = [getattr(t, "_keras_mask", None) for t in input_list] - if all(mask is None for mask in input_masks): - input_masks = None - implicit_mask = False - else: - # Only do expensive `nest` op when masking is actually being - # used. - input_masks = tf.nest.pack_sequence_as(inputs, input_masks) - implicit_mask = True - return input_masks, implicit_mask - - def _set_connectivity_metadata(self, args, kwargs, outputs): - # If the layer returns tensors from its inputs unmodified, - # we copy them to avoid loss of KerasHistory metadata. - flat_outputs = tf.nest.flatten(outputs) - flat_inputs = tf.nest.flatten((args, kwargs)) - input_ids_set = {id(i) for i in flat_inputs} - outputs_copy = [] - for x in flat_outputs: - if id(x) in input_ids_set: - with backend.name_scope(self.name): - x = tf.identity(x) - outputs_copy.append(x) - outputs = tf.nest.pack_sequence_as(outputs, outputs_copy) - - # Create node, Node wires itself to inbound and outbound layers. The - # Node constructor actually updates this layer's self._inbound_nodes, - # sets _keras_history on the outputs, and adds itself to the - # `_outbound_nodes` of the layers that produced the inputs to this layer - # call. - node_module.Node( - self, call_args=args, call_kwargs=kwargs, outputs=outputs - ) - return outputs - - def _get_node_attribute_at_index(self, node_index, attr, attr_name): - """Private utility to retrieves an attribute (e.g. inputs) from a node. - - This is used to implement the methods: - - get_input_shape_at - - get_output_shape_at - - get_input_at - etc... - - Args: - node_index: Integer index of the node from which - to retrieve the attribute. - attr: Exact node attribute name. - attr_name: Human-readable attribute name, for error messages. - - Returns: - The layer's attribute `attr` at the node of index `node_index`. - - Raises: - RuntimeError: If the layer has no inbound nodes, or if called in - Eager mode. - ValueError: If the index provided does not match any node. - """ - if not self._inbound_nodes: - raise RuntimeError( - f"The layer {self.name} has never been called " - f"and thus has no defined {attr_name}." - ) - if not len(self._inbound_nodes) > node_index: - raise ValueError( - f"Asked to get {attr_name} at node " - f"{node_index}, but the layer has only " - f"{len(self._inbound_nodes)} inbound nodes." - ) - values = getattr(self._inbound_nodes[node_index], attr) - if isinstance(values, list) and len(values) == 1: - return values[0] - else: - return values - - def _maybe_build(self, inputs): - # Check input assumptions set before layer building, e.g. input rank. - if not self.built: - input_spec.assert_input_compatibility( - self.input_spec, inputs, self.name - ) - input_list = tf.nest.flatten(inputs) - if input_list and self._dtype_policy.compute_dtype is None: - try: - dtype = input_list[0].dtype.base_dtype.name - except AttributeError: - pass - else: - self._set_dtype_policy(policy.Policy(dtype)) - input_shapes = None - # Converts Tensors / CompositeTensors to TensorShapes. - if any(hasattr(x, "shape") for x in input_list): - input_shapes = tf_utils.get_shapes(inputs) - else: - # Converts input shape to TensorShapes. - try: - input_shapes = tf_utils.convert_shapes( - inputs, to_tuples=False - ) - except ValueError: - pass - # Only call `build` if the user has manually overridden the build - # method. - if not hasattr(self.build, "_is_default"): - # Any setup work performed only once should happen in an - # `init_scope` to avoid creating symbolic Tensors that will - # later pollute any eager operations. - with tf_utils.maybe_init_scope(self): - self.build(input_shapes) - # We must set also ensure that the layer is marked as built, and the - # build shape is stored since user defined build functions may not - # be calling `super.build()` - Layer.build(self, input_shapes) - - # Optionally load weight values specified at layer instantiation. - if self._initial_weights is not None: - with tf.init_scope(): - # Using `init_scope` since we want variable assignment in - # `set_weights` to be treated like variable initialization. - self.set_weights(self._initial_weights) - self._initial_weights = None - - def _get_trainable_state(self): - """Get the `trainable` state of each sublayer. - - Returns: - A dict mapping all sublayers to their `trainable` value. - """ - trainable_state = weakref.WeakKeyDictionary() - for layer in self._flatten_layers(): - trainable_state[layer] = layer.trainable - return trainable_state - - def _set_trainable_state(self, trainable_state): - """Set `trainable` state for each sublayer.""" - for layer in self._flatten_layers(): - if layer in trainable_state: - layer.trainable = trainable_state[layer] - - @property - def _obj_reference_counts(self): - """A dict counting the number of attributes referencing an object.""" - self._maybe_create_attribute( - "_obj_reference_counts_dict", - object_identity.ObjectIdentityDictionary(), - ) - return self._obj_reference_counts_dict - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _maybe_create_attribute(self, name, default_value): - """Create attribute (with the default value) if it hasn't been created. - - This is useful for fields that is used for tracking purpose, - _trainable_weights, or _layers. Note that user could create a layer - subclass and assign an internal field before invoking the - Layer.__init__(), the __setattr__() need to create the tracking fields - and __init__() need to not override them. - - Args: - name: String, the name of the attribute. - default_value: Object, the default value of the attribute. - """ - if not hasattr(self, name): - self.__setattr__(name, default_value) - - def __delattr__(self, name): - # For any super.__delattr__() call, we will directly use the - # implementation in Trackable and skip the behavior in AutoTrackable. - # The Layer was originally use Trackable as base class, the change of - # using Module as base class forced us to have AutoTrackable in the - # class hierarchy. - # - # TODO(b/180760306) Keeping the status quo of skipping _delattr__ and - # __setattr__ in AutoTrackable may be unsustainable. - existing_value = getattr(self, name, None) - - # If this value is replacing an existing object assigned to an - # attribute, we should clean it out to avoid leaking memory. First we - # check if there are other attributes referencing it. - reference_counts = self._obj_reference_counts - if existing_value not in reference_counts: - super(tf.__internal__.tracking.AutoTrackable, self).__delattr__( - name - ) - return - - reference_count = reference_counts[existing_value] - if reference_count > 1: - # There are other remaining references. We can't remove this object - # from _layers etc. - reference_counts[existing_value] = reference_count - 1 - super(tf.__internal__.tracking.AutoTrackable, self).__delattr__( - name - ) - return - else: - # This is the last remaining reference. - del reference_counts[existing_value] - - super(tf.__internal__.tracking.AutoTrackable, self).__delattr__(name) - - if isinstance(existing_value, Layer) or base_layer_utils.has_weights( - existing_value - ): - super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( - "_self_tracked_trackables", - [ - l - for l in self._self_tracked_trackables - if l is not existing_value - ], - ) - if isinstance(existing_value, tf.Variable): - super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( - "_trainable_weights", - [w for w in self._trainable_weights if w is not existing_value], - ) - super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( - "_non_trainable_weights", - [ - w - for w in self._non_trainable_weights - if w is not existing_value - ], - ) - - def __setattr__(self, name, value): - if ( - name == "_self_setattr_tracking" - or not getattr(self, "_self_setattr_tracking", True) - # Exclude @property.setters from tracking - or hasattr(self.__class__, name) - ): - try: - super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( - name, value - ) - except AttributeError: - raise AttributeError( - ( - 'Can\'t set the attribute "{}", likely because it ' - "conflicts with an existing read-only @property of the " - "object. Please choose a different name." - ).format(name) - ) - return - - # Wraps data structures in `Trackable`, unwraps `NoDependency` objects. - value = tf.__internal__.tracking.sticky_attribute_assignment( - trackable=self, value=value, name=name - ) - - reference_counts = self._obj_reference_counts - reference_counts[value] = reference_counts.get(value, 0) + 1 - - # When replacing an existing tf.Variable with a new one, we want to - # check its existing position in the - # self._trainable/non_trainable_variable, so that we can put it back to - # the original position. - if isinstance(value, tf.Variable) and isinstance( - getattr(self, name, None), tf.Variable - ): - existing_variable = getattr(self, name) - - def _get_variable_from_list(var_list, var): - # helper function to get the tf.variable from the list - # the default list.index() use == for comparison, which will - # cause issue for eager tensor. - for i in range(len(var_list)): - if var_list[i] is var: - return i - return None - - if existing_variable.trainable: - self._maybe_create_attribute("_trainable_weights", []) - position = _get_variable_from_list( - self._trainable_weights, existing_variable - ) - else: - self._maybe_create_attribute("_non_trainable_variable", []) - position = _get_variable_from_list( - self._non_trainable_variable, existing_variable - ) - else: - position = None - - # Clean out the old attribute, which clears _layers and - # _trainable_weights if necessary. - try: - self.__delattr__(name) - except AttributeError: - pass - - # Keep track of metric instance created in subclassed layer. - for val in tf.nest.flatten(value): - if isinstance(val, metrics_mod.Metric) and hasattr( - self, "_metrics" - ): - self._metrics.append(val) - - # Append value to self._self_tracked_trackables if relevant - if getattr(self, "_auto_track_sub_layers", True) and ( - isinstance(value, tf.Module) or base_layer_utils.has_weights(value) - ): - self._maybe_create_attribute("_self_tracked_trackables", []) - # We need to check object identity to avoid de-duplicating empty - # container types which compare equal. - if not any( - (layer is value for layer in self._self_tracked_trackables) - ): - self._self_tracked_trackables.append(value) - if hasattr(value, "_use_resource_variables"): - # Legacy layers (V1 tf.layers) must always use - # resource variables. - value._use_resource_variables = True - - # Append value to list of trainable / non-trainable weights if relevant - # TODO(b/125122625): This won't pick up on any variables added to a - # list/dict after creation. - self._track_variables(value, position=position) - - # TODO(b/180760306) Skip the auto trackable from tf.Module to keep - # status quo. See the comment at __delattr__. - super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( - name, value - ) - - def _update_trackables(self): - """Track variables added to lists/dicts after creation""" - for trackable_obj in self._self_tracked_trackables: - if isinstance( - trackable_obj, tf.__internal__.tracking.TrackableDataStructure - ): - self._track_variables(trackable_obj) - - def _track_variables(self, value, position=None): - """Tracks `Variable`s including `Variable`s in `CompositeTensor`s.""" - for val in tf.nest.flatten(value): - if isinstance(val, tf.Variable): - self._track_variable(val, position=position) - elif tf_utils.is_extension_type(val): - # Manually expand extension types to track resource variables. - nested_vals = tf_utils.type_spec_from_value(val)._to_components( - val - ) - self._track_variables(nested_vals, position=position) - - def _track_variable(self, val, position=None): - """Tracks the given `tf.Variable`.""" - # Users may add extra weights/variables simply by assigning them to - # attributes (invalid for graph networks) - self._maybe_create_attribute("_trainable_weights", []) - self._maybe_create_attribute("_non_trainable_weights", []) - if val.trainable: - if any(val is w for w in self._trainable_weights): - return - if position is None: - self._trainable_weights.append(val) - else: - self._trainable_weights.insert(position, val) - else: - if any(val is w for w in self._non_trainable_weights): - return - if position is None: - self._non_trainable_weights.append(val) - else: - self._non_trainable_weights.insert(position, val) - backend.track_variable(val) - - def _gather_children_attribute(self, attribute): - assert attribute in { - "variables", - "trainable_variables", - "non_trainable_variables", - } - if hasattr(self, "_self_tracked_trackables"): - nested_layers = self._flatten_modules( - include_self=False, recursive=False - ) - return list( - itertools.chain.from_iterable( - getattr(layer, attribute) for layer in nested_layers - ) - ) - return [] - - def _flatten_layers(self, recursive=True, include_self=True): - for m in self._flatten_modules( - recursive=recursive, include_self=include_self - ): - if isinstance(m, Layer): - yield m - - def _flatten_modules(self, recursive=True, include_self=True): - """Flattens `tf.Module` instances (excluding `Metrics`). - - Args: - recursive: Whether to recursively flatten through submodules. - include_self: Whether to include this `Layer` instance. - - Yields: - `tf.Module` instance tracked by this `Layer`. - """ - if include_self: - yield self - - # Only instantiate set and deque if needed. - trackables = getattr(self, "_self_tracked_trackables", None) - if trackables: - seen_object_ids = set() - deque = collections.deque(trackables) - while deque: - trackable_obj = deque.popleft() - trackable_id = id(trackable_obj) - if trackable_id in seen_object_ids: - continue - seen_object_ids.add(trackable_id) - - # Metrics are not considered part of the Layer's topology. - if isinstance(trackable_obj, tf.Module) and not isinstance( - trackable_obj, metrics_mod.Metric - ): - yield trackable_obj - # Introspect recursively through sublayers. - if recursive: - subtrackables = getattr( - trackable_obj, "_self_tracked_trackables", None - ) - if subtrackables: - deque.extendleft(reversed(subtrackables)) - elif isinstance( - trackable_obj, - tf.__internal__.tracking.TrackableDataStructure, - ): - # Data structures are introspected even with - # `recursive=False`. - tracked_values = trackable_obj._values - if tracked_values: - deque.extendleft(reversed(tracked_values)) - - # This is a hack so that the is_layer (within - # training/trackable/layer_utils.py) check doesn't get the weights attr. - # TODO(b/110718070): Remove when fixed. - def _is_layer(self): - return True - - def _init_call_fn_args(self, expects_training_arg=None): - self._call_spec = layer_utils.CallFunctionSpec( - tf_inspect.getfullargspec(self.call) - ) - if expects_training_arg is not None: - self._call_spec.expects_training_arg = expects_training_arg - - @property - def _expects_training_arg(self): - """Whether the call function uses 'training' as a parameter.""" - return self._call_spec.expects_training_arg - - @property - def _expects_mask_arg(self): - return self._call_spec.expects_mask_arg - - @property - def _eager_losses(self): - # A list of loss values containing activity regularizers and losses - # manually added through `add_loss` during eager execution. It is - # cleared after every batch. Because we plan on eventually allowing a - # same model instance to be trained in eager mode or graph mode - # alternatively, we need to keep track of eager losses and symbolic - # losses via separate attributes. - if not hasattr(self._thread_local, "_eager_losses"): - self._thread_local._eager_losses = [] - return self._thread_local._eager_losses - - @_eager_losses.setter - def _eager_losses(self, losses): - self._thread_local._eager_losses = losses - - def _dedup_weights(self, weights): - """Dedupe weights while maintaining order as much as possible.""" - output, seen_ids = [], set() - for w in weights: - if id(w) not in seen_ids: - output.append(w) - # Track the Variable's identity to avoid __eq__ issues. - seen_ids.add(id(w)) - return output - - # SavedModel properties. Please see keras/saving/saved_model for details. - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _set_save_spec(self, inputs, args=None, kwargs=None): - """Defines the save spec so that serialization can trace layer calls. - - The TensorSpecs of the call function `inputs`, `args`, and `kwargs` are - saved into a tuple of `([inputs] + args, kwargs)`. - - Args: - inputs: possibly nested inputs passed into the call function. - args: a list of positional arguments passed into call. - kwargs: a dictionary of keyword arguments passed into call. - """ - if self._saved_model_inputs_spec is not None: - return # Already set. - - inputs_spec = tf.nest.map_structure(tf_utils.get_tensor_spec, inputs) - args_spec = tf.nest.map_structure(tf_utils.get_tensor_spec, args or []) - kwargs_spec = {} - # Filter out non-tensor arguments from kwargs. - for key, kwarg in kwargs.items(): - flat_kwarg = tf.nest.flatten(kwarg) - flat_specs = [tf_utils.get_tensor_spec(x) for x in flat_kwarg] - if any(s is None for s in flat_specs): - continue - kwargs_spec[key] = tf.nest.pack_sequence_as(kwarg, flat_specs) - - self._saved_model_inputs_spec = inputs_spec - self._saved_model_arg_spec = ( - [inputs_spec] + list(args_spec), - kwargs_spec, - ) - - def _get_save_spec(self, dynamic_batch=True, inputs_only=True): - if self._saved_model_inputs_spec is None: - return None - - spec = tf.nest.map_structure( - lambda t: tf_utils.get_tensor_spec(t, dynamic_batch=dynamic_batch), - self._saved_model_arg_spec, - ) - return spec[0][0] if inputs_only else spec - - @property - def _trackable_saved_model_saver(self): - return layer_serialization.LayerSavedModelSaver(self) - - @property - def _object_identifier(self): - return self._trackable_saved_model_saver.object_identifier - - @property - def _tracking_metadata(self): - """Info about this layer to be saved into the SavedModel.""" - return self._trackable_saved_model_saver.tracking_metadata - - def _trackable_children(self, save_type="checkpoint", **kwargs): - if save_type == "savedmodel": - cache = kwargs["cache"] - # TODO(b/213628533): This must be called before super() to ensure - # that any input shape changes are applied before getting the config - # of the model. - children = self._trackable_saved_model_saver.trackable_children( - cache - ) - else: - children = {} - children.update(super()._trackable_children(save_type, **kwargs)) - return children - - @property - def _use_input_spec_as_call_signature(self): - # Whether input spec can be used as the call signature when tracing the - # Layer for SavedModel. By default, this is set to `True` for layers - # exported from the Keras library, because the layers more rigidly - # define the `input_specs` property (many custom layers only set the - # `ndims`) - return ( - get_canonical_name_for_symbol(type(self), api_name="keras") - is not None - ) - - def __getstate__(self): - # Override to support `copy.deepcopy` and pickling. - # Thread-local objects cannot be copied in Python 3, so pop these. - # Thread-local objects are used to cache losses in MirroredStrategy, and - # so shouldn't be copied. - state = self.__dict__.copy() - state.pop("_thread_local", None) - state.pop("_metrics_lock", None) - return state - - def __setstate__(self, state): - state["_thread_local"] = threading.local() - state["_metrics_lock"] = threading.Lock() - # Bypass Trackable logic as `__dict__` already contains this info. - object.__setattr__(self, "__dict__", state) - - def save_own_variables(self, store): - """Saves the state of the layer. - - You can override this method to take full control of how the state of - the layer is saved upon calling `model.save()`. - - Args: - store: Dict where the state of the model will be saved. - """ - all_vars = self._trainable_weights + self._non_trainable_weights - for i, v in enumerate(all_vars): - store[f"{i}"] = v.numpy() - - def load_own_variables(self, store): - """Loads the state of the layer. - - You can override this method to take full control of how the state of - the layer is loaded upon calling `keras.models.load_model()`. - - Args: - store: Dict from which the state of the model will be loaded. - """ - self._update_trackables() - all_vars = self._trainable_weights + self._non_trainable_weights - if len(store.keys()) != len(all_vars): - raise ValueError( - f"Layer '{self.name}' expected {len(all_vars)} variables, " - "but received " - f"{len(store.keys())} variables during loading. " - f"Expected: {[v.name for v in all_vars]}" - ) - for i, v in enumerate(all_vars): - # TODO(rchao): check shapes and raise errors. - v.assign(store[f"{i}"]) - - -class TensorFlowOpLayer(Layer): - """Wraps a TensorFlow Operation in a Layer. - - This class is used internally by the Functional API. When a user - uses a raw TensorFlow Operation on symbolic tensors originating - from an `Input` Layer, the resultant operation will be wrapped - with this Layer object in order to make the operation compatible - with the Keras API. - - This Layer will create a new, identical operation (except for inputs - and outputs) every time it is called. If `run_eagerly` is `True`, - the op creation and calculation will happen inside an Eager function. - - Instances of this Layer are created when `autolambda` is called, which - is whenever a Layer's `__call__` encounters symbolic inputs that do - not have Keras metadata, or when a Network's `__init__` encounters - outputs that do not have Keras metadata. - - Attributes: - node_def: String, the serialized NodeDef of the Op this layer will wrap. - name: String, the name of the Layer. - constants: Dict of NumPy arrays, the values of any Tensors needed for this - Operation that do not originate from a Keras `Input` Layer. Since all - placeholders must come from Keras `Input` Layers, these Tensors must be - treated as constant in the Functional API. - trainable: Bool, whether this Layer is trainable. Currently Variables are - not supported, and so this parameter has no effect. - dtype: The default dtype of this Layer. Inherited from `Layer` and has no - effect on this class, however is used in `get_config`. - """ - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def __init__( - self, node_def, name, constants=None, trainable=True, dtype=None - ): - # Pass autocast=False, as if inputs are cast, input types might not - # match Operation type. - super(TensorFlowOpLayer, self).__init__( - name=_TF_OP_LAYER_NAME_PREFIX + name, - trainable=trainable, - dtype=dtype, - autocast=False, - ) - if isinstance(node_def, dict): - self.node_def = json_format.ParseDict( - node_def, tf.compat.v1.NodeDef() - ) - else: - if not isinstance(node_def, bytes): - node_def = node_def.encode("utf-8") - self.node_def = tf.compat.v1.NodeDef.FromString(node_def) - # JSON serialization stringifies keys which are integer input indices. - self.constants = ( - {int(index): constant for index, constant in constants.items()} - if constants is not None - else {} - ) - # Layer uses original op unless it is called on new inputs. - # This means `built` is not set in `__call__`. - self.built = True - - # Do not individually trace TensorflowOpLayers in the SavedModel. - self._must_restore_from_config = True - - def call(self, inputs): - if tf.executing_eagerly(): - return self._defun_call(inputs) - return self._make_op(inputs) - - def _make_node_def(self, graph): - node_def = tf.compat.v1.NodeDef() - node_def.CopyFrom(self.node_def) - # Used in TPUReplicateContext to indicate whether this node has been - # cloned and to not add TPU attributes. - node_def.attr["_cloned"].b = True - node_def.name = graph.unique_name(node_def.name) - return node_def - - def _make_op(self, inputs): - inputs = tf.nest.flatten(inputs) - graph = inputs[0].graph - node_def = self._make_node_def(graph) - with graph.as_default(): - for index, constant in self.constants.items(): - # Recreate constant in graph to add distribution context. - value = tf.get_static_value(constant) - if value is not None: - if isinstance(value, dict): - value = serialization_lib.deserialize_keras_object( - value - ) - constant = tf.constant(value, name=node_def.input[index]) - inputs.insert(index, constant) - # TODO(b/183990973): We should drop or consolidate these private api - # calls for adding an op to the graph and recording its gradient. - c_op = tf.__internal__.create_c_op( - graph, node_def, inputs, control_inputs=[] - ) - op = graph._create_op_from_tf_operation(c_op) - op._control_flow_post_processing() - - # Record the gradient because custom-made ops don't go through the - # code-gen'd eager call path - op_type = tf.compat.as_str(op.op_def.name) - attr_names = [ - tf.compat.as_str(attr.name) for attr in op.op_def.attr - ] - attrs = [] - for attr_name in attr_names: - attrs.append(attr_name) - attrs.append(op.get_attr(attr_name)) - attrs = tuple(attrs) - tf.__internal__.record_gradient( - op_type, op.inputs, attrs, op.outputs - ) - - if len(op.outputs) == 1: - return op.outputs[0] - return op.outputs - - @tf.function - def _defun_call(self, inputs): - """Wraps op creation method in an Eager function for `run_eagerly`.""" - return self._make_op(inputs) - - def get_config(self): - config = super(TensorFlowOpLayer, self).get_config() - config.update( - { - # `__init__` prefixes the name. Revert to the constructor - # argument. - "name": config["name"][len(_TF_OP_LAYER_NAME_PREFIX) :], - "node_def": json_format.MessageToDict(self.node_def), - "constants": { - i: backend.get_value(c) for i, c in self.constants.items() - }, - } - ) - return config - - -class AddLoss(Layer): - """Adds its inputs as a loss. - - Attributes: - unconditional: Whether or not the loss should be conditioned on the - inputs. - """ - - def __init__(self, unconditional, **kwargs): - # Pass autocast=False, as there is no reason to cast loss to a different - # dtype. - kwargs["autocast"] = False - super(AddLoss, self).__init__(**kwargs) - self.unconditional = unconditional - - def call(self, inputs): - self.add_loss(inputs, inputs=(not self.unconditional)) - return inputs - - def get_config(self): - config = super(AddLoss, self).get_config() - config.update({"unconditional": self.unconditional}) - return config - - -class AddMetric(Layer): - """Adds its inputs as a metric. - - Attributes: - aggregation: 'mean' or None. How the inputs should be aggregated. - metric_name: The name to use for this metric. - """ - - def __init__(self, aggregation=None, metric_name=None, **kwargs): - super(AddMetric, self).__init__(**kwargs) - self.aggregation = aggregation - self.metric_name = metric_name - - def call(self, inputs): - self.add_metric( - inputs, aggregation=self.aggregation, name=self.metric_name - ) - return inputs - - def get_config(self): - config = super(AddMetric, self).get_config() - config.update( - {"aggregation": self.aggregation, "metric_name": self.metric_name} - ) - return config - - -def _in_functional_construction_mode(layer, inputs, args, kwargs, input_list): - """Check the arguments to see if we are constructing a functional model.""" - # We are constructing a functional model if any of the inputs - # are KerasTensors - return any( - isinstance(tensor, keras_tensor.KerasTensor) - for tensor in tf.nest.flatten([inputs, args, kwargs]) - ) - - -def _convert_numpy_or_python_types(x): - if isinstance(x, (tf.Tensor, np.ndarray, float, int)): - return tf.convert_to_tensor(x) - return x - - -@keras_export("keras.__internal__.apply_name_scope_on_model_declaration", v1=[]) -def _apply_name_scope_on_model_declaration(enable): - """Apply `with tf.name_scope(...)` on model declaration. - - ```python - tf.keras.__internal__.apply_name_scope_on_model_declaration(True) - - inputs = input_layer.Input((3,)) - with tf.name_scope('MyScope'): - outputs = layers.Dense(10, name='MyDense')(inputs) - model = tf.keras.Model(inputs, outputs) - - # with `tf.keras.__internal__.apply_name_scope_on_model_declaration(True)`, - # The name of the dense layer is "model/MyScope/MyDense/*", and without, - # "model/MyDense/*" - ``` - - Args: - enable: Enables if `True`, disables if `False`. - """ - if not isinstance(enable, bool): - raise TypeError( - f"`enable` argument must be `True` or `False`, got {enable}" - ) - - global _is_name_scope_on_model_declaration_enabled - _is_name_scope_on_model_declaration_enabled = enable - - -@keras_export("keras.__internal__.layers.BaseRandomLayer") -class BaseRandomLayer(Layer): - """A layer handle the random number creation and savemodel behavior.""" - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def __init__( - self, seed=None, force_generator=False, rng_type=None, **kwargs - ): - """Initialize the BaseRandomLayer. - - Note that the constructor is annotated with - @no_automatic_dependency_tracking. This is to skip the auto - tracking of self._random_generator instance, which is an AutoTrackable. - The backend.RandomGenerator could contain a tf.random.Generator instance - which will have tf.Variable as the internal state. We want to avoid - saving that state into model.weights and checkpoints for backward - compatibility reason. In the meantime, we still need to make them - visible to SavedModel when it is tracing the tf.function for the - `call()`. - See _list_extra_dependencies_for_serialization below for more details. - - Args: - seed: optional integer, used to create RandomGenerator. - force_generator: boolean, default to False, whether to force the - RandomGenerator to use the code branch of tf.random.Generator. - rng_type: string, the rng type that will be passed to backend - RandomGenerator. `None` will allow RandomGenerator to choose - types by itself. Valid values are "stateful", "stateless", - "legacy_stateful". Defaults to `None`. - **kwargs: other keyword arguments that will be passed to the parent - *class - """ - super().__init__(**kwargs) - self._random_generator = backend.RandomGenerator( - seed, force_generator=force_generator, rng_type=rng_type - ) - - def build(self, input_shape): - super().build(input_shape) - self._random_generator._maybe_init() - - def _trackable_children(self, save_type="checkpoint", **kwargs): - if save_type == "savedmodel": - cache = kwargs["cache"] - # TODO(b/213628533): This must be called before super() to ensure - # that any input shape changes are applied before getting the config - # of the model. - children = self._trackable_saved_model_saver.trackable_children( - cache - ) - # This method exposes the self._random_generator to SavedModel only - # (not layer.weights and checkpoint). - children["_random_generator"] = self._random_generator - else: - children = {} - children.update(super()._trackable_children(save_type, **kwargs)) - return children - - def _lookup_dependency(self, name): - # When loading from a Keras SavedModel load, make sure that the loader - # can find the random generator, otherwise the loader will assume that - # it does not exist, and will try to create a new generator. - if name == "_random_generator": - return self._random_generator - else: - return super()._lookup_dependency(name) diff --git a/keras/engine/base_layer_test.py b/keras/engine/base_layer_test.py deleted file mode 100644 index 0389ea5126c..00000000000 --- a/keras/engine/base_layer_test.py +++ /dev/null @@ -1,2083 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for TensorFlow 2.0 layer behavior.""" -import copy -import os - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import layers -from keras import regularizers -from keras.engine import base_layer -from keras.engine import input_layer -from keras.engine import sequential -from keras.engine import training as training_lib -from keras.legacy_tf_layers import core as legacy_core -from keras.optimizers.legacy import rmsprop -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import control_flow_util - - -class DynamicLayer(base_layer.Layer): - def __init__(self, dynamic=False, **kwargs): - super().__init__(dynamic=dynamic, **kwargs) - - def call(self, inputs): - samples = tf.TensorArray(dtype=tf.float32, size=tf.shape(inputs)[0]) - for idx, sample in enumerate(inputs): - samples = samples.write(idx, tf.square(sample)) - return samples.stack() - - def compute_output_shape(self, input_shape): - return input_shape - - -class InvalidLayer(base_layer.Layer): - def call(self, inputs): - raise ValueError("You did something wrong!") - - -@test_utils.run_v2_only -class BaseLayerTest(test_combinations.TestCase): - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_layer_instrumentation(self): - layer = layers.Add() - self.assertTrue(layer._instrumented_keras_api) - self.assertTrue(layer._instrumented_keras_layer_class) - self.assertFalse(layer._instrumented_keras_model_class) - self.assertTrue( - base_layer.keras_api_gauge.get_cell("tf.keras.layers.Add") - ) - - # Verify this was not instrumented as a legacy layer - self.assertFalse( - base_layer.keras_api_gauge.get_cell("legacy_layer").value() - ) - base_layer.keras_api_gauge.get_cell("tf.keras.layers.Add").set(False) - - @test_combinations.generate( - test_combinations.keras_model_type_combinations() - ) - def test_dynamic_layer(self): - model = test_utils.get_model_from_layers( - [DynamicLayer(dynamic=True)], input_shape=(3,) - ) - self.assertEqual(model.dynamic, True) - model.compile(rmsprop.RMSprop(0.001), loss="mse") - self.assertEqual(model.run_eagerly, True) - model.train_on_batch(np.random.random((2, 3)), np.random.random((2, 3))) - - @test_combinations.generate( - test_combinations.keras_model_type_combinations() - ) - def test_dynamic_layer_error(self): - # Functional Models hit the `dyanamic=True` error during construction. - # Subclass Models should just throw the original autograph error during - # execution. - raised_error = False - try: - model = test_utils.get_model_from_layers( - [DynamicLayer()], input_shape=(3,) - ) - model.compile(rmsprop.RMSprop(0.001), loss="mse") - model.train_on_batch( - np.random.random((2, 3)), np.random.random((2, 3)) - ) - except tf.errors.OperatorNotAllowedInGraphError as e: - if "iterating over `tf.Tensor`" in str(e): - raised_error = True - elif "Iterating over a symbolic `tf.Tensor`" in str(e): - raised_error = True - except TypeError as e: - if "attempting to use Python control flow" in str(e): - raised_error = True - elif "Attempting to use Python control flow" in str(e): - raised_error = True - self.assertTrue(raised_error) - - @test_combinations.generate( - test_combinations.keras_model_type_combinations() - ) - def test_dynamic_layer_error_running_in_graph_mode(self): - with tf.compat.v1.get_default_graph().as_default(): - model = test_utils.get_model_from_layers( - [DynamicLayer(dynamic=True)], input_shape=(3,) - ) - self.assertEqual(model.dynamic, True) - # But then you cannot run the model since you're in a graph scope. - with self.assertRaisesRegex( - ValueError, "You must enable eager execution" - ): - model.compile(rmsprop.RMSprop(0.001), loss="mse") - - def test_manual_compute_output_shape(self): - class BuildCounter(base_layer.Layer): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.build_counter = 0 - - def build(self, input_shape): - self.build_counter += 1 - self.build_shape = input_shape - - def call(self, inputs): - return inputs - - layer = BuildCounter(dtype=tf.float64) - output_shape = layer.compute_output_shape((None, 10)) - self.assertEqual(layer.build_counter, 1) - self.assertEqual(layer.build_shape.as_list(), [None, 10]) - self.assertEqual(output_shape.as_list(), [None, 10]) - output_signature = layer.compute_output_signature( - tf.TensorSpec(dtype=tf.float64, shape=[None, 10]) - ) - self.assertEqual(layer.build_counter, 1) - self.assertEqual(layer.build_shape.as_list(), [None, 10]) - self.assertEqual(output_signature.dtype, tf.float64) - self.assertEqual(output_signature.shape.as_list(), [None, 10]) - layer(np.ones((5, 10))) - self.assertEqual(layer.build_counter, 1) - self.assertEqual(layer.build_shape.as_list(), [None, 10]) - - def test_dynamic_layer_with_deferred_sequential_model(self): - model = sequential.Sequential( - [DynamicLayer(dynamic=True), layers.Dense(3)] - ) - self.assertEqual(model.dynamic, True) - model.compile(rmsprop.RMSprop(0.001), loss="mse") - self.assertEqual(model.run_eagerly, True) - model.train_on_batch(np.random.random((2, 3)), np.random.random((2, 3))) - - def test_nested_dynamic_layers_in_eager_mode(self): - inputs = input_layer.Input((3,)) - outputs = DynamicLayer(dynamic=True)(inputs) - inner_model = training_lib.Model(inputs, outputs) - self.assertEqual(inner_model.dynamic, True) - - inputs = input_layer.Input((3,)) - x = DynamicLayer(dynamic=True)(inputs) - outputs = inner_model(x) - - model = training_lib.Model(inputs, outputs) - self.assertEqual(model.dynamic, True) - model.compile(rmsprop.RMSprop(0.001), loss="mse") - self.assertEqual(model.run_eagerly, True) - model.train_on_batch(np.random.random((2, 3)), np.random.random((2, 3))) - - def test_dynamic_subclassed_model_no_shape_inference(self): - class MyModel(training_lib.Model): - def __init__(self): - super().__init__(dynamic=True) - self.layer1 = layers.Dense(3) - self.layer2 = layers.Dense(3) - - def call(self, inputs): - if tf.reduce_sum(inputs) > 0: - return self.layer1(inputs) - else: - return self.layer2(inputs) - - model = MyModel() - self.assertEqual(model.dynamic, True) - model.compile(rmsprop.RMSprop(0.001), loss="mse") - self.assertEqual(model.run_eagerly, True) - model.train_on_batch(np.random.random((2, 3)), np.random.random((2, 3))) - self.assertEqual(model.outputs, None) - - def test_dynamic_subclassed_model_with_shape_inference(self): - class MyModel(training_lib.Model): - def __init__(self): - super().__init__(dynamic=True) - self.layer1 = layers.Dense(3) - self.layer2 = layers.Dense(3) - - def call(self, inputs): - if tf.reduce_sum(inputs) > 0: - return self.layer1(inputs) - else: - return self.layer2(inputs) - - def compute_output_shape(self, input_shape): - return tuple(input_shape[:-1].as_list()) + (3,) - - model = MyModel() - self.assertEqual(model.dynamic, True) - model.compile(rmsprop.RMSprop(0.001), loss="mse") - x, y = np.random.random((2, 3)), np.random.random((2, 3)) - model.train_on_batch(x, y) - outputs = model(x) - self.assertEqual(outputs.shape.as_list(), [2, 3]) - - def test_deepcopy(self): - bias_reg = lambda x: 1e-3 * tf.reduce_sum(x) - layer = layers.Conv2D(32, (3, 3), bias_regularizer=bias_reg) - # Call the Layer on data to generate regularize losses. - layer(tf.ones((1, 10, 10, 3))) - self.assertLen(layer.losses, 1) - new_layer = copy.deepcopy(layer) - self.assertEqual(new_layer.bias_regularizer, bias_reg) - self.assertEqual(layer.get_config(), new_layer.get_config()) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_invalid_forward_pass(self): - inputs = input_layer.Input((3,)) - with self.assertRaisesRegex(ValueError, "You did something wrong!"): - _ = InvalidLayer()(inputs) - - def test_no_legacy_model(self): - inputs = input_layer.Input((1,)) - legacy_dense_0 = legacy_core.Dense(1, name="legacy_dense_0") - legacy_dense_1 = legacy_core.Dense(1, name="legacy_dense_1") - - layer = legacy_dense_0(inputs) - layer = layers.Dense(1)(layer) - layer = legacy_dense_1(layer) - - expected_regex = ( - r"The following are legacy tf\.layers\.Layers:\n " - "{}\n {}".format(legacy_dense_0, legacy_dense_1) - ) - - with self.assertRaisesRegex(TypeError, expected_regex): - _ = training_lib.Model(inputs=[inputs], outputs=[layer]) - - model = training_lib.Model(inputs=[inputs], outputs=[inputs]) - with self.assertRaisesRegex(TypeError, expected_regex): - model._insert_layers([legacy_dense_0, legacy_dense_1]) - - def test_no_legacy_sequential(self): - layer = [layers.Dense(1), legacy_core.Dense(1, name="legacy_dense_0")] - - expected_regex = r"legacy tf\.layers\.Layers:\n {}".format(layer[1]) - with self.assertRaisesRegex(TypeError, expected_regex): - _ = sequential.Sequential(layer) - - with self.assertRaisesRegex(TypeError, expected_regex): - _ = sequential.Sequential([input_layer.Input(shape=(4,))] + layer) - - model = sequential.Sequential() - with self.assertRaisesRegex(TypeError, expected_regex): - for l in layer: - model.add(l) - - @test_combinations.generate( - test_combinations.times( - test_combinations.keras_model_type_combinations(), - test_combinations.combine(mode=["graph", "eager"]), - ) - ) - def test_build_with_numpy_data(self): - model_layers = [ - layers.Dense(3, activation="relu", kernel_initializer="ones"), - layers.Dense(1, activation="sigmoid", kernel_initializer="ones"), - ] - model = test_utils.get_model_from_layers(model_layers, input_shape=(4,)) - model(np.zeros((2, 4), dtype="float32")) - self.assertTrue(model.built) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_default_add_weight(self): - class TestLayer(base_layer.Layer): - def __init__(self): - super().__init__() - self.default_weight = self.add_weight() - self.weight_without_name = self.add_weight(shape=(3, 4)) - self.regularized_weight_without_name = self.add_weight( - shape=(3, 4), regularizer="l2" - ) - - layer = TestLayer() - self.assertEqual(layer.default_weight.shape.as_list(), []) - self.assertEqual(layer.weight_without_name.shape.as_list(), [3, 4]) - self.assertEqual(layer.default_weight.dtype.name, "float32") - self.assertEqual(layer.weight_without_name.dtype.name, "float32") - self.assertEqual(len(layer.losses), 1) - if not tf.executing_eagerly(): - # Cannot access tensor.name in eager execution. - self.assertIn("Variable_2/Regularizer", layer.losses[0].name) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_add_weight_by_getter(self): - layer = base_layer.Layer() - variable = tf.Variable("abc") - added = layer.add_weight( - dtype=tf.string, getter=lambda *_, **__: variable - ) - self.assertIs(variable, added) - - def test_variable_resetting(self): - dense = layers.Dense(1) - dense.build([8, 2]) - - self.assertIs(dense.trainable_variables[0], dense.kernel) - self.assertIs(dense.trainable_variables[1], dense.bias) - - # when we reset the variable to another instance, make sure the ordering - # of the variable in the trainable_variables doesn't change. - # This is important for h5 saving/loading. - dense.bias = tf.Variable(initial_value=tf.zeros(shape=(1,))) - dense.kernel = tf.Variable(initial_value=tf.zeros(shape=(2, 1))) - - self.assertIs(dense.trainable_variables[0], dense.kernel) - self.assertIs(dense.trainable_variables[1], dense.bias) - - @test_combinations.generate( - test_combinations.keras_mode_combinations(mode=["eager"]) - ) - def test_learning_phase_freezing_for_layers(self): - class LearningPhaseLayer(base_layer.Layer): - def call(self, inputs): - return backend.in_train_phase( - lambda: tf.ones_like(inputs), lambda: tf.zeros_like(inputs) - ) - - def get_learning_phase_value(): - model = sequential.Sequential( - [LearningPhaseLayer(input_shape=(1,))] - ) - model._run_eagerly = test_utils.should_run_eagerly() - return np.sum(model(np.ones((1, 1)))) - - self.assertEqual(get_learning_phase_value(), 0) - - # Test scope. - with backend.learning_phase_scope(1): - self.assertEqual(get_learning_phase_value(), 1) - - # The effects of the scope end after exiting it. - self.assertEqual(get_learning_phase_value(), 0) - - # Test setting. - backend.set_learning_phase(1) - self.assertEqual(get_learning_phase_value(), 1) - backend.set_learning_phase(0) - self.assertEqual(get_learning_phase_value(), 0) - - # Cannot be enabled with `run_eagerly=True`, see b/123904578 - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_layer_can_return_variable(self): - class ComputeSum(base_layer.Layer): - def __init__(self): - super().__init__() - self.total = tf.Variable( - initial_value=tf.zeros((1, 1)), trainable=False - ) - if not tf.executing_eagerly(): - backend.get_session().run(self.total.initializer) - - def call(self, inputs): - self.total.assign_add(inputs) - return self.total - - inputs = input_layer.Input(shape=(1,)) - model = training_lib.Model(inputs, ComputeSum()(inputs)) - model.predict(np.ones((1, 1))) - - def _get_layer_with_training_arg(self): - class TrainingLayer(base_layer.Layer): - """A layer with a `training` argument in a defuned `call`.""" - - @tf.function - def call(self, inputs, training=None): - if training is None: - training = backend.learning_phase() - return control_flow_util.smart_cond( - training, - lambda: tf.ones_like(inputs), - lambda: tf.zeros_like(inputs), - ) - - return TrainingLayer() - - # b/124459427: can't test with `run_eagerly=True` for now. - @test_combinations.generate( - test_combinations.times( - test_combinations.keras_mode_combinations(), - test_combinations.keras_model_type_combinations(), - ) - ) - def test_training_arg_in_defun(self): - layer = self._get_layer_with_training_arg() - model = test_utils.get_model_from_layers([layer], input_shape=(1,)) - model.compile(rmsprop.RMSprop(0.0), loss="mae") - history = model.fit(np.zeros((1, 1)), np.zeros((1, 1))) - self.assertEqual(history.history["loss"][0], 1.0) - loss = model.evaluate(np.zeros((1, 1)), np.zeros((1, 1))) - self.assertEqual(loss, 0.0) - - # Test that the argument injection performed in `call` is not active - # when the argument is passed explicitly. - layer = self._get_layer_with_training_arg() - inputs = input_layer.Input(shape=(1,)) - # Pass `training` by name - outputs = layer(inputs, training=False) - model = training_lib.Model(inputs, outputs) - model.compile(rmsprop.RMSprop(0.0), loss="mae") - history = model.fit(np.zeros((1, 1)), np.zeros((1, 1))) - self.assertEqual(history.history["loss"][0], 0.0) - - @test_combinations.generate( - test_combinations.times( - test_combinations.keras_mode_combinations(), - test_combinations.keras_model_type_combinations(), - ) - ) - def test_raw_variable_assignment(self): - class RawVariableLayer(base_layer.Layer): - def __init__(self, **kwargs): - super().__init__(**kwargs) - # Test variables in nested structure. - self.var_list = [tf.Variable(1.0), {"a": tf.Variable(2.0)}] - - def call(self, inputs): - return inputs * self.var_list[0] * self.var_list[1]["a"] - - model = test_utils.get_model_from_layers( - [RawVariableLayer()], input_shape=(10,) - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - x, y = np.ones((10, 10)), np.ones((10, 10)) - # Checks that variables get initialized. - model.fit(x, y, batch_size=2, epochs=2) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_composite_variable_assignment(self): - class Spec(tf.TypeSpec): - - value_type = property(lambda self: CompositeVariable) - - def _component_specs(self): - pass - - def _serialize(self): - pass - - def _to_components(self, value): - return value._variables - - def _from_components(self, variable_list): - return CompositeVariable(variable_list) - - class CompositeVariable(tf.__internal__.CompositeTensor): - def __init__(self, variable_list): - self._variables = variable_list - - @property - def _type_spec(self): - return Spec() - - class CompositeVariableLayer(base_layer.Layer): - def __init__(self): - super().__init__() - self.composite_var = CompositeVariable( - [tf.Variable(1.0), tf.Variable(2.0)] - ) - - layer = CompositeVariableLayer() - self.assertLen(layer.weights, 2) - self.assertIsInstance(layer.weights[0], tf.Variable) - self.assertIsInstance(layer.weights[1], tf.Variable) - self.assertEqual(self.evaluate(layer.weights[0]), 1.0) - self.assertEqual(self.evaluate(layer.weights[1]), 2.0) - - def test_exception_if_trainable_not_boolean(self): - base_layer.Layer(trainable=True) - base_layer.Layer(trainable=tf.constant(True)) - base_layer.Layer(trainable=tf.Variable(tf.constant(True))) - with self.assertRaisesRegex( - TypeError, "Expected `trainable` argument to be a boolean" - ): - base_layer.Layer(trainable=0) - - def test_exception_if_dynamic_not_boolean(self): - base_layer.Layer(dynamic=True) - with self.assertRaisesRegex( - TypeError, "Expected `dynamic` argument to be a boolean" - ): - base_layer.Layer(dynamic=0) - - def test_exception_if_name_not_string_or_none(self): - base_layer.Layer(name=None) - base_layer.Layer(name="layer_name") - with self.assertRaisesRegex( - TypeError, "Expected `name` argument to be a string" - ): - base_layer.Layer(name=0) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_layer_names(self): - inputs = input_layer.Input(shape=[2]) - add1 = inputs + inputs - add2 = layers.Add()([inputs, inputs]) - add3 = inputs + inputs - add4 = layers.Add()([inputs, inputs]) - model = training_lib.Model( - inputs=[inputs], outputs=[add1, add2, add3, add4] - ) - actual_names = [l.name for l in model.layers] - graph_names = [ - "input_1", - "tf_op_layer_add", - "add", - "tf_op_layer_add_2", - "add_1", - ] - eager_names = [ - "input_1", - "tf.__operators__.add", - "add", - "tf.__operators__.add_1", - "add_1", - ] - for actual, eager, graph in zip(actual_names, graph_names, eager_names): - self.assertIn(actual, {eager, graph}) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_layer_names_after_loading(self): - backend.clear_session() - # Mimic loading a model that already contained add layers with - # name = 'add_1' and 'tf.__operators__.add' - layers.Add(name="add_1") - layers.Add(name="tf.__operators__.add") - - inputs = input_layer.Input(shape=[2]) - add1 = inputs + inputs - add2 = layers.Add()([inputs, inputs]) - add3 = inputs + inputs - add4 = layers.Add()([inputs, inputs]) - model = training_lib.Model( - inputs=[inputs], outputs=[add1, add2, add3, add4] - ) - actual_names = [l.name for l in model.layers] - # The generated op layer names should have avoided layer names seen in - # the loaded model. (This avoiance should not apply to non-op-layers) - expected_names = [ - "input_1", - "tf.__operators__.add_1", - "add", - "tf.__operators__.add_2", - "add_1", - ] - self.assertAllEqual(actual_names, expected_names) - - def test_add_trainable_weight_on_frozen_layer(self): - class TestLayer(base_layer.Layer): - def build(self, input_shape): - self.w = self.add_weight(shape=(), trainable=True) - - def call(self, inputs): - return self.w * inputs - - layer = TestLayer() - layer.trainable = False - layer.build(None) - layer.trainable = True - self.assertListEqual(layer.trainable_weights, [layer.w]) - - @test_combinations.generate( - test_combinations.times( - test_combinations.keras_mode_combinations(), - test_combinations.keras_model_type_combinations(), - ) - ) - def test_passing_initial_weights_values(self): - kernel_value = np.random.random((10, 2)) - layer_with_weights = layers.Dense( - 2, use_bias=False, weights=[kernel_value] - ) - - model = test_utils.get_model_from_layers( - [layer_with_weights], input_shape=(10,) - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - inputs = np.random.random((3, 10)) - out = model.predict(inputs) - self.assertAllClose(model.layers[-1].get_weights()[0], kernel_value) - self.assertAllClose(out, np.dot(inputs, kernel_value)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_set_weights_and_get_weights(self): - layer = layers.Dense(2) - layer.build((None, 10)) - kernel = np.random.random((10, 2)) - bias = np.random.random((2,)) - layer.set_weights([kernel, bias]) - weights = layer.get_weights() - self.assertEqual(len(weights), 2) - self.assertAllClose(weights[0], kernel) - self.assertAllClose(weights[1], bias) - with self.assertRaisesRegex( - ValueError, "but the layer was expecting 2 weights" - ): - layer.set_weights([1, 2, 3]) - with self.assertRaisesRegex( - ValueError, "not compatible with provided weight shape" - ): - layer.set_weights([kernel.T, bias]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_set_weights_accepts_output_of_get_weights(self): - layer = layers.Layer() - layer.add_weight(name="scalar_float", shape=(), dtype=tf.float32) - layer.add_weight( - name="scalar_string", - shape=(), - dtype=tf.string, - initializer=lambda *a, **k: "abc", - ) - layer.add_weight(name="vector_float", shape=(3,), dtype=tf.float32) - layer.add_weight( - name="vector_string", - shape=(2,), - dtype=tf.string, - initializer=lambda *a, **k: 2 * ["abc"], - ) - layer.set_weights(layer.get_weights()) - - def test_get_config_error(self): - class MyLayer(base_layer.Layer): - def __init__(self, my_kwarg="default", **kwargs): - super().__init__(**kwargs) - self.my_kwarg = my_kwarg - - # `__init__` includes kwargs but `get_config` is not overridden, so - # an error should be thrown: - with self.assertRaisesRegex( - NotImplementedError, "Layer MyLayer was created by" - ): - # We pass bytes because it's non-serializable and thus - # will not be handled by the auto-get_config - MyLayer(b"custom").get_config() - - class MyLayerNew(base_layer.Layer): - def __init__(self, my_kwarg="default", **kwargs): - super().__init__(**kwargs) - self.my_kwarg = my_kwarg - - def get_config(self): - config = super().get_config() - config["my_kwarg"] = self.my_kwarg - return config - - # Test to make sure that error is not raised if the method call is - # from an overridden `get_config`: - self.assertEqual( - MyLayerNew("custom").get_config()["my_kwarg"], "custom" - ) - - class MyLayerNew2(base_layer.Layer): - def __init__(self, name="MyLayerName", dtype=None, **kwargs): - super().__init__(name=name, dtype=dtype, **kwargs) - - # Check that if the kwargs in `__init__` are base layer constructor - # arguments, no error is thrown: - self.assertEqual(MyLayerNew2(name="New").get_config()["name"], "New") - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_count_params(self): - dense = layers.Dense(16) - dense.build((None, 4)) - self.assertEqual(dense.count_params(), 16 * 4 + 16) - - dense = layers.Dense(16) - with self.assertRaisesRegex(ValueError, "call `count_params`"): - dense.count_params() - - model = sequential.Sequential(layers.Dense(16)) - with self.assertRaisesRegex(ValueError, "call `count_params`"): - model.count_params() - - dense = layers.Dense(16, input_dim=4) - model = sequential.Sequential(dense) - self.assertEqual(model.count_params(), 16 * 4 + 16) - - def test_super_not_called(self): - class CustomLayerNotCallingSuper(base_layer.Layer): - def __init__(self): - pass - - layer = CustomLayerNotCallingSuper() - with self.assertRaisesRegex(RuntimeError, "You must call `super()"): - layer(np.random.random((10, 2))) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_first_arg_not_called_inputs(self): - x, y = tf.ones((10, 1)), tf.ones((10, 1)) - - class ArgLayer(base_layer.Layer): - def call(self, x, y): - return x + y - - layer = ArgLayer() - out = self.evaluate(layer(x=x, y=y)) - self.assertAllClose(out, 2 * np.ones((10, 1))) - - class KwargLayer(base_layer.Layer): - def call(self, x=None, y=None): - return x + y - - layer = KwargLayer() - out = self.evaluate(layer(x=x, y=y)) - self.assertAllClose(out, 2 * np.ones((10, 1))) - - with self.assertRaisesRegex(ValueError, "must always be passed"): - layer(y=y) - - class TFFunctionLayer(base_layer.Layer): - @tf.function - def call(self, x, y=None): - if y is None: - return x - return x + y - - layer = TFFunctionLayer() - out = self.evaluate(layer(x=x, y=y)) - self.assertAllClose(out, 2 * np.ones((10, 1))) - - def test_build_input_shape(self): - class CustomLayer(base_layer.Layer): - def build(self, input_shape): - self.add_weight("w", shape=input_shape[1:]) - super().build(input_shape) - - layer = CustomLayer() - self.assertFalse(layer.built) - - layer.build([None, 1, 2, 3]) - self.assertTrue(layer.built) - self.assertEqual([None, 1, 2, 3], layer._build_input_shape) - - layer = CustomLayer() - layer(input_layer.Input((3,))) - self.assertTrue(layer.built) - self.assertEqual([None, 3], layer._build_input_shape.as_list()) - - def test_build_input_shape_list_with_none(self): - class CustomLayer(base_layer.Layer): - def build(self, input_shape): - super().build(input_shape) - self.build_shape = input_shape - - def call(self, inputs): - return inputs[0] - - layer = CustomLayer() - layer([tf.constant([1.0]), None, tf.constant([2.0])]) - self.assertEqual(layer.build_shape, [[1], None, [1]]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_layer_input_shape_raises_error(self): - layer = layers.Dense(3) - with self.assertRaisesRegex(AttributeError, "no defined input shape"): - _ = layer.input_shape - - layer(tf.ones((10, 1))) - with self.assertRaisesRegex(AttributeError, "no defined input shape"): - _ = layer.input_shape - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_custom_layer_training_arg(self): - class CustomLayerNoTrainingArg(base_layer.Layer): - def __init__(self, nested_layer=None): - super().__init__() - self._nested_layer = nested_layer or tf.identity - - def call(self, inputs): - return self._nested_layer(inputs) - - class CustomLayerDefaultTrainingMissing(base_layer.Layer): - def __init__(self, nested_layer=None): - super().__init__() - self._nested_layer = nested_layer or tf.identity - - def call(self, inputs, training): - if training: - return self._nested_layer(inputs) - else: - return self._nested_layer(inputs) * 0.5 - - class CustomLayerDefaultTrainingNone(base_layer.Layer): - def __init__(self, nested_layer=None): - super().__init__() - self._nested_layer = nested_layer or tf.identity - - def call(self, inputs, training=None): - if training: - return self._nested_layer(inputs) - else: - return self._nested_layer(inputs) * 0.5 - - class CustomLayerDefaultTrainingFalse(base_layer.Layer): - def __init__(self, nested_layer=None): - super().__init__() - self._nested_layer = nested_layer or tf.identity - - def call(self, inputs, training=False): - if training: - return self._nested_layer(inputs) - else: - return self._nested_layer(inputs) * 0.5 - - class CustomLayerDefaultTrainingTrue(base_layer.Layer): - def __init__(self, nested_layer=None): - super().__init__() - self._nested_layer = nested_layer or tf.identity - - def call(self, inputs, training=True): - if training: - return self._nested_layer(inputs) - else: - return self._nested_layer(inputs) * 0.5 - - self._test_custom_layer_training_arg( - CustomLayerNoTrainingArg=CustomLayerNoTrainingArg, - CustomLayerDefaultTrainingMissing=CustomLayerDefaultTrainingMissing, - CustomLayerDefaultTrainingNone=CustomLayerDefaultTrainingNone, - CustomLayerDefaultTrainingFalse=CustomLayerDefaultTrainingFalse, - CustomLayerDefaultTrainingTrue=CustomLayerDefaultTrainingTrue, - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_custom_layer_training_arg_kwargonly(self): - class CustomLayerNoTrainingArg(base_layer.Layer): - def __init__(self, nested_layer=None): - super().__init__() - self._nested_layer = nested_layer or tf.identity - - def call(self, inputs): - return self._nested_layer(inputs) - - class CustomLayerDefaultTrainingMissing(base_layer.Layer): - def __init__(self, nested_layer=None): - super().__init__() - self._nested_layer = nested_layer or tf.identity - - def call(self, inputs, *, training): - if training: - return self._nested_layer(inputs) - else: - return self._nested_layer(inputs) * 0.5 - - class CustomLayerDefaultTrainingNone(base_layer.Layer): - def __init__(self, nested_layer=None): - super().__init__() - self._nested_layer = nested_layer or tf.identity - - def call(self, inputs, *, training=None): - if training: - return self._nested_layer(inputs) - else: - return self._nested_layer(inputs) * 0.5 - - class CustomLayerDefaultTrainingFalse(base_layer.Layer): - def __init__(self, nested_layer=None): - super().__init__() - self._nested_layer = nested_layer or tf.identity - - def call(self, inputs, *, training=False): - if training: - return self._nested_layer(inputs) - else: - return self._nested_layer(inputs) * 0.5 - - class CustomLayerDefaultTrainingTrue(base_layer.Layer): - def __init__(self, nested_layer=None): - super().__init__() - self._nested_layer = nested_layer or tf.identity - - def call(self, inputs, *, training=True): - if training: - return self._nested_layer(inputs) - else: - return self._nested_layer(inputs) * 0.5 - - self._test_custom_layer_training_arg( - CustomLayerNoTrainingArg=CustomLayerNoTrainingArg, - CustomLayerDefaultTrainingMissing=CustomLayerDefaultTrainingMissing, - CustomLayerDefaultTrainingNone=CustomLayerDefaultTrainingNone, - CustomLayerDefaultTrainingFalse=CustomLayerDefaultTrainingFalse, - CustomLayerDefaultTrainingTrue=CustomLayerDefaultTrainingTrue, - ) - - def _test_custom_layer_training_arg( - self, - CustomLayerNoTrainingArg, - CustomLayerDefaultTrainingMissing, - CustomLayerDefaultTrainingNone, - CustomLayerDefaultTrainingFalse, - CustomLayerDefaultTrainingTrue, - ): - x = tf.ones(shape=(1, 1)) - - # If the layer signature doesn't specify a default training arg, - # run it in inference mode when to training arg is passed - # to __call__ - layer = CustomLayerDefaultTrainingMissing() - self.assertAllEqual(layer(x), x * 0.5) - self.assertAllEqual(layer(x, training=False), x * 0.5) - self.assertAllEqual(layer(x, training=True), x) - - # If the layer signature specifies `False` as the default training arg, - # run it in inference mode when no training arg is passed - # to __call__ - layer = CustomLayerDefaultTrainingFalse() - self.assertAllEqual(layer(x), x * 0.5) - self.assertAllEqual(layer(x, training=False), x * 0.5) - self.assertAllEqual(layer(x, training=True), x) - - # If the layer signature specifies `True` as the default training arg, - # explicitly run it in training mode when no training arg is passed - # to __call__ - layer = CustomLayerDefaultTrainingTrue() - self.assertAllEqual(layer(x), x) - self.assertAllEqual(layer(x, training=False), x * 0.5) - self.assertAllEqual(layer(x, training=True), x) - - # Outer layers/models should set the training context implicitly for all - # nested layers, respecting whatever mode the outer layer was run with. - layer = CustomLayerDefaultTrainingTrue( - CustomLayerDefaultTrainingFalse() - ) - # No outer value passed: use local defaults - self.assertAllEqual(layer(x), x) # Use outer default True - # Outer value passed: override local defaults - self.assertAllEqual(layer(x, training=False), x * 0.25) - self.assertAllEqual(layer(x, training=True), x) - - layer = CustomLayerDefaultTrainingFalse( - CustomLayerDefaultTrainingTrue() - ) - # No outer value passed: use local defaults - self.assertAllEqual(layer(x), x * 0.25) # Use outer default False - # Outer value passed: override local defaults - self.assertAllEqual(layer(x, training=False), x * 0.25) - self.assertAllEqual(layer(x, training=True), x) - - # If the outer layer `call` doesn't take a training argument at all, - # it'll set the nested scope as None when no training arg is passed in. - # If a training arg is passed in it won't use it directly in `call`, but - # it will set the nested training mode. - layer = CustomLayerNoTrainingArg(CustomLayerDefaultTrainingTrue()) - self.assertAllEqual(layer(x), x) # Use local default True - self.assertAllEqual(layer(x, training=False), x * 0.5) - self.assertAllEqual(layer(x, training=True), x) - - layer = CustomLayerDefaultTrainingNone(CustomLayerDefaultTrainingTrue()) - self.assertAllEqual(layer(x), x * 0.5) # Nested use local default True - self.assertAllEqual(layer(x, training=False), x * 0.25) - self.assertAllEqual(layer(x, training=True), x) - - def test_activity_regularizer_string(self): - class MyLayer(base_layer.Layer): - pass - - layer = MyLayer(activity_regularizer="l2") - self.assertIsInstance(layer.activity_regularizer, regularizers.L2) - - def test_tf_module_tracking(self): - class MyModule(tf.Module): - def __init__(self): - super().__init__() - self.v1 = tf.Variable(1.0, trainable=True, name="v1") - self.v2 = tf.Variable(2.0, trainable=False, name="v2") - - def __call__(self, x): - return x * self.v1 * self.v2 - - class MyLayer(base_layer.Layer): - def __init__(self, **kwargs): - super().__init__(**kwargs) - self.my_modules = {} - self.my_modules["a"] = MyModule() - - def call(self, x): - return self.my_modules["a"](x) - - layer = MyLayer() - self.assertLen(layer.variables, 2) - self.assertLen(layer.trainable_variables, 1) - self.assertLen(layer.non_trainable_variables, 1) - - layer.trainable = False - self.assertLen(layer.variables, 2) - self.assertLen(layer.trainable_variables, 0) - self.assertLen(layer.non_trainable_variables, 2) - - class MyModel(training_lib.Model): - def __init__(self): - super().__init__() - self.my_modules = [] - self.my_modules.append(MyModule()) - - def call(self, x): - return self.my_modules[0](x) - - model = MyModel() - self.assertLen(model.variables, 2) - self.assertLen(model.trainable_variables, 1) - self.assertLen(model.non_trainable_variables, 1) - - model.trainable = False - self.assertLen(model.variables, 2) - self.assertLen(model.trainable_variables, 0) - self.assertLen(model.non_trainable_variables, 2) - - def test_tf_tracking_lists(self): - class MyLayer(base_layer.Layer): - def __init__(self, num_weights): - super().__init__() - self.num_weights = num_weights - - def build(self, input_shape): - super().build(input_shape) - self.my_weights = [] - w_init = tf.random_normal_initializer() - for i in range(self.num_weights): - self.my_weights.append( - tf.Variable( - name=f"w_{i}", - initial_value=w_init( - shape=(input_shape[1], input_shape[1]), - dtype="float32", - ), - trainable=True, - ) - ) - - def call(self, x): - for w in self.my_weights: - x = tf.matmul(x, w) - return x - - layer = MyLayer(3) - layer(tf.constant([[1.0, 1.0, 1.0, 1.0]])) - self.assertLen(layer.variables, 3) - self.assertLen(layer.trainable_variables, 3) - self.assertLen(layer.non_trainable_variables, 0) - - layer.trainable = False - self.assertLen(layer.variables, 3) - self.assertLen(layer.trainable_variables, 0) - self.assertLen(layer.non_trainable_variables, 3) - - def test_auto_get_config(self): - class MyLayer(base_layer.Layer): - def __init__(self, var1, var2, var3=None, **kwargs): - super().__init__(**kwargs) - - layer = MyLayer("a", 2, var3=True, name="mylayer") - config = layer.get_config() - self.assertLen(config, 6) - self.assertEqual(config["var1"], "a") - self.assertEqual(config["var2"], 2) - self.assertEqual(config["var3"], True) - self.assertEqual(config["name"], "mylayer") - self.assertEqual(config["trainable"], True) - self.assertEqual(config["dtype"], "float32") - layer = MyLayer.from_config(config) - self.assertDictEqual(layer.get_config(), config) - - layer = MyLayer("a", 2, var3=tf.nn.relu) - with self.assertRaises(NotImplementedError): - config = layer.get_config() - - -@test_utils.run_v2_only -class SymbolicSupportTest(test_combinations.TestCase): - def test_using_symbolic_tensors_with_tf_ops(self): - # Single-input. - x = input_layer.Input((3,)) - tf.square(x) - - # Multi-inputs. - x1, x2 = input_layer.Input((3,)), input_layer.Input((3,)) - tf.concat([x1, x2], axis=1) - - # Mixing Keras symbolic tensors and graph tensors from the same graph - # works. - with backend.get_graph().as_default(): - x1 = input_layer.Input((3,)) - x2 = input_layer.Input((3,)) - tf.matmul(x1, x2) - - # Creating same op type (matmul) multiple times in the Keras graph - # works. - x1 = input_layer.Input((3,)) - x2 = input_layer.Input((3,)) - tf.matmul(x1, x2) - - def test_mixing_eager_and_graph_tensors(self): - with tf.Graph().as_default(): - x1 = tf.ones((3, 3)) - x2 = tf.ones((3, 3)) - with self.assertRaises(TypeError): - tf.matmul(x1, x2) - - def test_mixing_numpy_arrays_and_graph_tensors(self): - with tf.Graph().as_default(): - x1 = tf.ones((3, 3)) - x2 = np.ones((3, 3), dtype="float32") - with self.assertRaises(TypeError): - tf.matmul(x1, x2) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_mixing_keras_symbolic_tensors_and_eager_tensors(self): - x1 = input_layer.Input((3,)) - x2 = tf.ones((3, 3)) - y = tf.matmul(x1, x2) - - fn = backend.function(inputs=[x1], outputs=[y]) - x_val = np.random.random((3, 3)) - y_val = np.ones((3, 3)) - self.assertAllClose(fn([x_val])[0], np.matmul(x_val, y_val), atol=1e-5) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_mixing_keras_symbolic_tensors_and_numpy_arrays(self): - x1 = input_layer.Input((3,)) - x2 = np.ones((3, 3), dtype="float32") - y = tf.matmul(x1, x2) - - fn = backend.function(inputs=[x1], outputs=[y]) - x_val = np.random.random((3, 3)) - y_val = np.ones((3, 3)) - self.assertAllClose(fn([x_val])[0], np.matmul(x_val, y_val), atol=1e-5) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_reraising_exception(self): - # When layer is not dynamic, we have some pattern matching during - # exception handling to detect when the user is trying to use python - # control flow. When an exception is thrown but the pattern doesn't - # match, we want to preserve the originating stack trace. An early - # implementation of this logic lost the stack trace. We test the correct - # behavior here. - - class TypeErrorLayer(base_layer.Layer): - def call(self, inputs): - def easily_identifiable_name(): - raise TypeError("Non-matching TypeError message.") - - easily_identifiable_name() - - inputs = input_layer.Input((3,)) - - try: - _ = TypeErrorLayer()(inputs) - except TypeError as e: - self.assertIn("easily_identifiable_name", str(e)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_summaries_in_tf_function(self): - if not tf.executing_eagerly(): - return - - class MyLayer(base_layer.Layer): - def call(self, inputs): - tf.summary.scalar("mean", tf.reduce_mean(inputs)) - return inputs - - tmp_dir = self.get_temp_dir() - writer = tf.summary.create_file_writer(tmp_dir) - with writer.as_default(step=1), tf.summary.record_if(True): - my_layer = MyLayer() - x = tf.ones((10, 10)) - - def my_fn(x): - return my_layer(x) - - _ = my_fn(x) - - event_file = tf.compat.v1.gfile.Glob(os.path.join(tmp_dir, "events*")) - self.assertLen(event_file, 1) - event_file = event_file[0] - tags = set() - for e in tf.compat.v1.train.summary_iterator(event_file): - for val in e.summary.value: - tags.add(val.tag) - self.assertEqual(set(["my_layer/mean"]), tags) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_error_when_passing_non_tensor(self): - # layers that have an `input_spec` will raise an error when called on - # non-tensors. This covers all built-in layers. - layer = layers.Dense(3) - x = object() - with self.assertRaisesRegex(TypeError, r"should be tensors"): - layer(x) - - -@test_utils.run_v2_only -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class NestedTrackingTest(tf.test.TestCase): - def test_nested_layer_variable_tracking(self): - # Test that variables from nested sublayers are - # being tracked by subclassed layers. - - class MyLayer(base_layer.Layer): - def __init__(self): - super().__init__() - self.dense1 = layers.Dense(1) - self.dense2 = layers.BatchNormalization() - - def build(self, input_shape): - self.v1 = self.add_weight("v1", shape=input_shape[1:].as_list()) - self.v2 = tf.Variable( - name="v2", - initial_value=np.zeros( - input_shape[1:].as_list(), dtype="float32" - ), - trainable=False, - ) - - def call(self, inputs): - x = self.dense1(inputs) + self.dense2(inputs) - return x + self.v1 + self.v2 - - layer = MyLayer() - inputs = input_layer.Input((1,)) - _ = layer(inputs) - - self.assertEqual(len(layer.weights), 8) - self.assertEqual(len(layer.trainable_weights), 5) - self.assertEqual(len(layer.non_trainable_weights), 3) - - layer.dense1.trainable = False - self.assertEqual(len(layer.weights), 8) - self.assertEqual(len(layer.trainable_weights), 3) - self.assertEqual(len(layer.non_trainable_weights), 5) - - layer.trainable = False - self.assertEqual(len(layer.weights), 8) - self.assertEqual(len(layer.trainable_weights), 0) - self.assertEqual(len(layer.non_trainable_weights), 8) - self.assertEqual( - {id(v) for v in [layer.dense1, layer.dense2, layer.v1, layer.v2]}, - {id(v) for v in layer._trackable_children().values()}, - ) - - def test_nested_layer_updates_losses_tracking(self): - # Test that updates and losses from nested sublayers are - # being tracked by subclassed layers. - - class UpdateAndLossLayer(base_layer.Layer): - def build(self, _): - self.v1 = self.add_weight("v1", shape=()) - - def call(self, inputs): - self.add_loss(tf.reduce_sum(inputs)) - self.add_update(tf.compat.v1.assign_add(self.v1, 1)) - return inputs + 1 - - class MyLayer(base_layer.Layer): - def build(self, _): - self.v1 = self.add_weight("v1", shape=()) - - def __init__(self): - super().__init__() - self.ul1 = UpdateAndLossLayer() - self.ul2 = UpdateAndLossLayer() - - def call(self, inputs): - self.add_loss(tf.reduce_sum(inputs)) - self.add_update(tf.compat.v1.assign_add(self.v1, 1)) - x = self.ul1(inputs) - return self.ul2(x) - - layer = MyLayer() - - if tf.executing_eagerly(): - inputs = tf.ones((3, 1)) - _ = layer(inputs) - self.assertEqual(len(layer.losses), 3) - else: - inputs = input_layer.Input((1,)) - _ = layer(inputs) - self.assertEqual(len(layer.losses), 3) - self.assertEqual(len(layer.updates), 3) - - def test_attribute_reassignment(self): - l = base_layer.Layer() - l.a = base_layer.Layer() - l.a = [] - l.a = tf.Variable(1.0) - l.a = base_layer.Layer() - last_assignment = base_layer.Layer() - l.a = last_assignment - l.b = tf.Variable(1.0) - del l.b - l.c = base_layer.Layer() - del l.c - l.d = last_assignment - del l.d - sublayers = list(l._flatten_layers(include_self=False, recursive=False)) - self.assertEqual([last_assignment], sublayers) - self.assertEqual([], l.trainable_weights) - self.assertEqual([], l.non_trainable_weights) - self.assertEqual([], l.weights) - del l.a - self.assertEqual([], l._self_tracked_trackables) - - def test_layer_class_not_tracked_as_sublayer(self): - # See https://github.com/tensorflow/tensorflow/issues/27431 for details. - - class LayerWithClassAttribute(base_layer.Layer): - def __init__(self): - super().__init__() - self.layer_fn = layers.Dense - - layer = LayerWithClassAttribute() - self.assertEmpty(layer.variables) - self.assertEmpty(layer.submodules) - - def test_layer_call_fn_args(self): - class NonDefunLayer(base_layer.Layer): - def call(self, inputs, a, mask, b=None, training=None): - return inputs - - class DefunLayer(base_layer.Layer): - @tf.function - def call(self, x, mask, a, training=None, b=None): - return x - - nondefun_layer = NonDefunLayer() - self.assertEqual( - nondefun_layer._call_spec.arg_names, - ["inputs", "a", "mask", "b", "training"], - ) - defun_layer = DefunLayer() - self.assertEqual( - defun_layer._call_spec.arg_names, - ["x", "mask", "a", "training", "b"], - ) - - def test_sequential_model(self): - model = sequential.Sequential( - [layers.Dense(10, input_shape=(10,)), layers.Dense(5)] - ) - self.assertLen(model.layers, 2) - self.assertLen(model.weights, 4) - - # Make sure a subclass model also works when it is called 'Sequential'. - class Sequential(training_lib.Model): - def __init__(self): - super().__init__() - self.dense_layers = [layers.Dense(10), layers.Dense(5)] - - def call(self, inputs): - x = inputs - for d in self.dense_layers: - x = d(x) - return x - - s = Sequential() - self.assertLen(s.layers, 2) - self.assertLen(s.weights, 0) - - s(input_layer.Input((10,))) - self.assertLen(s.weights, 4) - - -@test_utils.run_v2_only -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class NameScopingTest(test_combinations.TestCase): - def test_name_scope_layer(self): - x = backend.placeholder(shape=(10, 10)) - layer = layers.Dense(10, name="MyName") - layer(x) - self.assertEqual(layer.bias.name, "MyName/bias:0") - self.assertEqual(layer.kernel.name, "MyName/kernel:0") - - def test_name_scope_functional_api(self): - inputs = input_layer.Input((3,)) - layer = layers.Dense(10, name="MyName") - _ = layer(inputs) - self.assertEqual(layer.bias.name, "MyName/bias:0") - self.assertEqual(layer.kernel.name, "MyName/kernel:0") - - def test_name_scope_functional_api_nested(self): - class NestedLayer(base_layer.Layer): - def __init__(self, name="OuterName"): - super().__init__(name=name) - self.dense = layers.Dense(10, name="InnerName") - - def call(self, inputs): - return self.dense(inputs) - - inputs = input_layer.Input((3,)) - layer = NestedLayer() - _ = layer(inputs) - self.assertEqual(layer.dense.bias.name, "OuterName/InnerName/bias:0") - self.assertEqual( - layer.dense.kernel.name, "OuterName/InnerName/kernel:0" - ) - - def test_name_scope_sublayer(self): - class NameScopeTracker(base_layer.Layer): - def call(self, inputs): - self.active_name_scope = tf.__internal__.get_name_scope() - return inputs - - x = backend.placeholder(shape=(10, 10)) - sublayer = NameScopeTracker(name="Sublayer") - layer = layers.Dense(10, activation=sublayer, name="MyName2") - layer(x) - self.assertEqual(layer.bias.name, "MyName2/bias:0") - self.assertEqual(layer.kernel.name, "MyName2/kernel:0") - self.assertEqual(sublayer.active_name_scope, "MyName2/Sublayer") - - def test_name_scope_tf_tensor(self): - x = tf.convert_to_tensor(np.ones((10, 10))) - layer = layers.Dense( - 10, activation=layers.ReLU(name="MyAct"), name="MyName3" - ) - layer(x) - self.assertEqual(layer.bias.name, "MyName3/bias:0") - self.assertEqual(layer.kernel.name, "MyName3/kernel:0") - - @test_utils.run_v2_only - def test_apply_name_scope_on_model_declaration(self): - if not tf.executing_eagerly(): - self.skipTest( - "`apply_name_scope_on_model_declaration` API is supported" - " only for V2 eager" - ) - - base_layer._apply_name_scope_on_model_declaration(True) - - inputs = input_layer.Input((3,)) - x = layers.Dense(10, name="Dense1")(inputs) - with tf.name_scope("outer"): - x = layers.Dense(10, name="Dense2")(x) - with tf.name_scope("inner"): - x = layers.Dense(10, name="Dense3")(x) - x = layers.Dense(10, name="Dense4")(x) - outputs = layers.Dense(10, name="Dense5")(x) - - model = training_lib.Model(inputs, outputs) - node_names = self._get_model_node_names( - model, np.random.random((1, 3)), "call_scope" - ) - self.assertListEqual( - node_names, - [ - "call_scope/Const", - "call_scope/model/Cast", - "call_scope/model/Dense1/MatMul/ReadVariableOp/resource", - "call_scope/model/Dense1/MatMul/ReadVariableOp", - "call_scope/model/Dense1/MatMul", - "call_scope/model/Dense1/BiasAdd/ReadVariableOp/resource", - "call_scope/model/Dense1/BiasAdd/ReadVariableOp", - "call_scope/model/Dense1/BiasAdd", - "call_scope/model/outer/Dense2/MatMul/ReadVariableOp/resource", - "call_scope/model/outer/Dense2/MatMul/ReadVariableOp", - "call_scope/model/outer/Dense2/MatMul", - "call_scope/model/outer/Dense2/BiasAdd/ReadVariableOp/resource", - "call_scope/model/outer/Dense2/BiasAdd/ReadVariableOp", - "call_scope/model/outer/Dense2/BiasAdd", - "call_scope/model/outer/inner/Dense3/MatMul/ReadVariableOp/" - "resource", - "call_scope/model/outer/inner/Dense3/MatMul/ReadVariableOp", - "call_scope/model/outer/inner/Dense3/MatMul", - "call_scope/model/outer/inner/Dense3/BiasAdd/ReadVariableOp/" - "resource", - "call_scope/model/outer/inner/Dense3/BiasAdd/ReadVariableOp", - "call_scope/model/outer/inner/Dense3/BiasAdd", - "call_scope/model/outer/Dense4/MatMul/ReadVariableOp/resource", - "call_scope/model/outer/Dense4/MatMul/ReadVariableOp", - "call_scope/model/outer/Dense4/MatMul", - "call_scope/model/outer/Dense4/BiasAdd/ReadVariableOp/resource", - "call_scope/model/outer/Dense4/BiasAdd/ReadVariableOp", - "call_scope/model/outer/Dense4/BiasAdd", - "call_scope/model/Dense5/MatMul/ReadVariableOp/resource", - "call_scope/model/Dense5/MatMul/ReadVariableOp", - "call_scope/model/Dense5/MatMul", - "call_scope/model/Dense5/BiasAdd/ReadVariableOp/resource", - "call_scope/model/Dense5/BiasAdd/ReadVariableOp", - "call_scope/model/Dense5/BiasAdd", - "Identity", - "NoOp", - ], - ) - base_layer._apply_name_scope_on_model_declaration(False) - - @test_utils.run_v2_only - def test_apply_name_scope_on_nested_layer_model_declaration(self): - if not tf.executing_eagerly(): - self.skipTest( - "`apply_name_scope_on_model_declaration` API is supported" - " only for V2 eager" - ) - - base_layer._apply_name_scope_on_model_declaration(True) - - class ThreeDenses(layers.Layer): - def __init__(self, name="ThreeDenses", **kwargs): - super().__init__(name=name, **kwargs) - self.inner_dense_1 = layers.Dense(10, name="NestedDense1") - with tf.name_scope("inner1/inner2"): - self.inner_dense_2 = layers.Dense(20, name="NestedDense2") - self.inner_dense_3 = layers.Dense(30, name="NestedDense3") - - def call(self, x): - x = self.inner_dense_1(x) - x = self.inner_dense_2(x) - x = self.inner_dense_3(x) - return x - - inputs = input_layer.Input((3,)) - with tf.name_scope("outer"): - x = ThreeDenses()(inputs) - outputs = layers.Dense(10, name="OuterDense")(x) - - model = training_lib.Model(inputs, outputs) - node_names = self._get_model_node_names( - model, np.random.random((1, 3)), "call_scope" - ) - - self.assertListEqual( - node_names, - [ - "call_scope/Const", - "call_scope/model/Cast", - "call_scope/model/outer/ThreeDenses/NestedDense1/MatMul/" - "ReadVariableOp/resource", - "call_scope/model/outer/ThreeDenses/NestedDense1/MatMul/" - "ReadVariableOp", - "call_scope/model/outer/ThreeDenses/NestedDense1/MatMul", - "call_scope/model/outer/ThreeDenses/NestedDense1/BiasAdd/" - "ReadVariableOp/resource", - "call_scope/model/outer/ThreeDenses/NestedDense1/BiasAdd/" - "ReadVariableOp", - "call_scope/model/outer/ThreeDenses/NestedDense1/BiasAdd", - "call_scope/model/outer/ThreeDenses/inner1/inner2/" - "NestedDense2/MatMul/ReadVariableOp/resource", - "call_scope/model/outer/ThreeDenses/inner1/inner2/" - "NestedDense2/MatMul/ReadVariableOp", - "call_scope/model/outer/ThreeDenses/inner1/inner2/" - "NestedDense2/MatMul", - "call_scope/model/outer/ThreeDenses/inner1/inner2/" - "NestedDense2/BiasAdd/ReadVariableOp/resource", - "call_scope/model/outer/ThreeDenses/inner1/inner2/" - "NestedDense2/BiasAdd/ReadVariableOp", - "call_scope/model/outer/ThreeDenses/inner1/inner2/" - "NestedDense2/BiasAdd", - "call_scope/model/outer/ThreeDenses/NestedDense3/" - "MatMul/ReadVariableOp/resource", - "call_scope/model/outer/ThreeDenses/NestedDense3/" - "MatMul/ReadVariableOp", - "call_scope/model/outer/ThreeDenses/NestedDense3/MatMul", - "call_scope/model/outer/ThreeDenses/NestedDense3/" - "BiasAdd/ReadVariableOp/resource", - "call_scope/model/outer/ThreeDenses/NestedDense3/" - "BiasAdd/ReadVariableOp", - "call_scope/model/outer/ThreeDenses/NestedDense3/BiasAdd", - "call_scope/model/OuterDense/MatMul/ReadVariableOp/resource", - "call_scope/model/OuterDense/MatMul/ReadVariableOp", - "call_scope/model/OuterDense/MatMul", - "call_scope/model/OuterDense/BiasAdd/ReadVariableOp/resource", - "call_scope/model/OuterDense/BiasAdd/ReadVariableOp", - "call_scope/model/OuterDense/BiasAdd", - "Identity", - "NoOp", - ], - ) - base_layer._apply_name_scope_on_model_declaration(False) - - def _get_model_node_names(self, model, inputs, call_name_scope): - """Returns a list of model's node names.""" - - @tf.function() - def wrapper(): - with tf.name_scope(call_name_scope): - return model(inputs) - - return [ - node.name - for node in wrapper.get_concrete_function() - .graph.as_graph_def() - .node - ] - - -@test_utils.run_v2_only -@test_combinations.generate( - test_combinations.keras_mode_combinations(mode=["eager"]) -) -class AutographControlFlowTest(test_combinations.TestCase): - def test_disabling_in_context_is_matched(self): - - test_obj = self - - class MyLayer(base_layer.Layer): - def call(self, inputs, training=None): - with test_obj.assertRaisesRegex(TypeError, "Tensor.*as.*bool"): - if tf.constant(False): - return inputs * 1.0 - return inputs * 0.0 - - @tf.function(autograph=False) - def test_fn(): - return MyLayer()(tf.constant([[1.0, 2.0, 3.0]])) - - test_fn() - - def test_if_training_pattern_output(self): - class MyLayer(base_layer.Layer): - def call(self, inputs, training=None): - if training: - return inputs * 1.0 - return inputs * 0.0 - - inputs = input_layer.Input((3,)) - outputs = MyLayer()(inputs) - model = training_lib.Model(inputs, outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - train_loss = model.train_on_batch(np.ones((2, 3)), np.ones((2, 3))) - self.assertEqual(train_loss, 0.0) - test_loss = model.test_on_batch(np.ones((2, 3)), np.ones((2, 3))) - self.assertEqual(test_loss, 1.0) - - def test_if_training_pattern_loss(self): - class MyLayer(base_layer.Layer): - def call(self, inputs, training=None): - if training: - loss = tf.reduce_sum(inputs) - else: - loss = 0.0 - self.add_loss(loss) - return inputs - - inputs = input_layer.Input((3,)) - outputs = MyLayer()(inputs) - model = training_lib.Model(inputs, outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - train_loss = model.train_on_batch(np.ones((2, 3)), np.ones((2, 3))) - self.assertEqual(train_loss, 2 * 3) - test_loss = model.test_on_batch(np.ones((2, 3)), np.ones((2, 3))) - self.assertEqual(test_loss, 0) - - def test_if_training_pattern_metric(self): - class MyLayer(base_layer.Layer): - def call(self, inputs, training=None): - if training: - metric = tf.reduce_sum(inputs) - else: - metric = 0.0 - self.add_metric(metric, name="my_metric", aggregation="mean") - return inputs - - inputs = input_layer.Input((3,)) - outputs = MyLayer()(inputs) - model = training_lib.Model(inputs, outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - for _ in range(3): - _, train_metric = model.train_on_batch( - np.ones((2, 3)), np.ones((2, 3)) - ) - - self.assertEqual(train_metric, 2 * 3) - _, test_metric = model.test_on_batch( - np.ones((2, 3)), np.ones((2, 3)) - ) - self.assertEqual(test_metric, 0) - - def test_if_training_pattern_update(self): - class MyLayer(base_layer.Layer): - def build(self, input_shape): - self.counter = self.add_weight( - shape=(), trainable=False, initializer="zeros" - ) - - def call(self, inputs, training=None): - if training: - increment = 1.0 - else: - increment = 0.0 - self.counter.assign_add(increment) - return inputs - - inputs = input_layer.Input((3,)) - layer = MyLayer() - outputs = layer(inputs) - model = training_lib.Model(inputs, outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - model.train_on_batch(np.ones((2, 3)), np.ones((2, 3))) - self.assertEqual(backend.get_value(layer.counter), 1.0) - - def test_conditional_losses_in_call(self): - class MyLayer(base_layer.Layer): - def __init__(self): - super().__init__(dynamic=test_utils.should_run_eagerly()) - - def call(self, inputs, training=None): - if training: - self.add_loss(tf.reduce_sum(inputs)) - return inputs - - def compute_output_shape(self, input_shape): - return input_shape - - inputs = input_layer.Input((3,)) - layer = MyLayer() - outputs = layer(inputs) - model = training_lib.Model(inputs, outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - loss = model.train_on_batch(np.ones((2, 3)), np.ones((2, 3))) - self.assertEqual(loss, 2 * 3) - - def test_conditional_callable_losses(self): - model = sequential.Sequential( - [ - layers.Dense( - 1, - kernel_regularizer=regularizers.l2(1e-4), - input_shape=(1,), - ) - ] - ) - model._run_eagerly = test_utils.should_run_eagerly() - - def assert_graph(t): - if not tf.executing_eagerly(): - self.assertEqual(t.graph, tf.compat.v1.get_default_graph()) - - @tf.function - def get_losses(t): - if t < 0: - return tf.reduce_sum(model.losses) * t - else: - return tf.reduce_sum(model.losses) - - assert_graph(get_losses(tf.constant(2.0))) - assert_graph(get_losses(tf.constant(0.5))) - - def test_conditional_metrics_in_call(self): - class MyLayer(base_layer.Layer): - def __init__(self): - super().__init__(dynamic=test_utils.should_run_eagerly()) - - def call(self, inputs, training=None): - if training: - self.add_metric( - tf.reduce_sum(inputs), name="sum", aggregation="mean" - ) - return inputs - - def compute_output_shape(self, input_shape): - return input_shape - - inputs = input_layer.Input((3,)) - layer = MyLayer() - outputs = layer(inputs) - model = training_lib.Model(inputs, outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit(np.ones((2, 3)), np.ones((2, 3))) - self.assertEqual(history.history["sum"][-1], 2 * 3) - - def test_conditional_activity_regularizer_in_call(self): - class TestModel(training_lib.Model): - def __init__(self): - super().__init__( - name="test_model", dynamic=test_utils.should_run_eagerly() - ) - self.layer = layers.Dense(2, activity_regularizer="l2") - - def call(self, x, training=None): - if tf.greater(tf.reduce_sum(x), 0.0): - return self.layer(x) - else: - return self.layer(x) - - model = TestModel() - model.compile( - loss="mse", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones(shape=(10, 1)) - y = np.ones(shape=(10, 2)) - - if test_utils.should_run_eagerly(): - model.fit(x, y, epochs=2, batch_size=5) - else: - with self.assertRaisesRegex(ValueError, "ActivityRegularizer"): - model.fit(x, y, epochs=2, batch_size=5) - - def test_conditional_activity_regularizer_with_wrappers_in_call(self): - class TestModel(training_lib.Model): - def __init__(self): - super().__init__( - name="test_model", dynamic=test_utils.should_run_eagerly() - ) - self.layer = layers.TimeDistributed( - layers.Dense(2, activity_regularizer="l2"), - input_shape=(3, 4), - ) - - def call(self, x, training=None): - if tf.greater(tf.reduce_sum(x), 0.0): - return self.layer(x) - else: - return self.layer(x) - - model = TestModel() - model.compile( - loss="mse", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones(shape=(10, 3, 4)) - y = np.ones(shape=(10, 3, 2)) - - if test_utils.should_run_eagerly(): - model.fit(x, y, epochs=2, batch_size=5) - else: - with self.assertRaisesRegex(ValueError, "ActivityRegularizer"): - model.fit(x, y, epochs=2, batch_size=5) - - -class AddLayer(base_layer.Layer): - """A layer which adds its input to a variable. - - Useful for testing a layer with a variable - """ - - def build(self, _): - self.v = self.add_weight("v", (), initializer="ones") - self.built = True - - def call(self, inputs): - return inputs + self.v - - -class IdentityLayer(base_layer.Layer): - """A layer that returns its input. - - Useful for testing a layer without a variable. - """ - - def call(self, inputs): - return inputs - - -@test_utils.run_v2_only -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class DTypeTest(test_combinations.TestCase): - def _const(self, dtype): - return tf.constant(1, dtype=dtype) - - @test_utils.enable_v2_dtype_behavior - def test_dtype_defaults_to_floatx(self): - layer = AddLayer() - self.assertEqual(layer.dtype, "float32") - layer(self._const("float64")) - self.assertEqual(layer.dtype, "float32") # dtype should not change - - try: - backend.set_floatx("float64") - layer = AddLayer() - self.assertEqual(layer.dtype, "float64") - finally: - backend.set_floatx("float32") - - @test_utils.enable_v2_dtype_behavior - def test_passing_dtype_to_constructor(self): - layer = IdentityLayer(dtype="float64") - layer(self._const("float32")) - self.assertEqual(layer.dtype, "float64") - - layer = IdentityLayer(dtype="int32") - layer(self._const("float32")) - self.assertEqual(layer.dtype, "int32") - - layer = IdentityLayer(dtype=tf.float64) - layer(self._const("float32")) - self.assertEqual(layer.dtype, "float64") - - @test_utils.enable_v2_dtype_behavior - def input_cast_to_dtype(self): - layer = AddLayer() - - # Input should be cast to layer.dtype, so output should also be - # layer.dtype - self.assertEqual(layer(self._const("float64")).dtype, "float32") - - layer = AddLayer(dtype="float64") - self.assertEqual(layer(self._const("float32")).dtype, "float64") - - # Test inputs are not casted if layer.dtype is not floating-point - layer = IdentityLayer(dtype="int32") - self.assertEqual(layer(self._const("float64")).dtype, "float64") - - # Test inputs are not casted if the inputs are not floating-point - layer = IdentityLayer(dtype="float32") - self.assertEqual(layer(self._const("int32")).dtype, "int32") - - # Test Numpy arrays are casted - layer = IdentityLayer(dtype="float64") - self.assertEqual(layer(np.array(1, dtype="float32")).dtype, "float64") - - # Test Python floats are casted - layer = IdentityLayer(dtype="float64") - self.assertEqual(layer(1.0).dtype, "float64") - - @test_utils.enable_v2_dtype_behavior - def multiple_inputs_cast_to_dtype(self): - class MultiIdentityLayer(base_layer.Layer): - def call(self, inputs): - return [tf.identity(x) for x in inputs] - - # Testing layer with default dtype of float32 - layer = MultiIdentityLayer() - x, y = layer([self._const("float16"), self._const("float32")]) - self.assertEqual(x.dtype, "float32") - self.assertEqual(y.dtype, "float32") - - # Test passing dtype to the constructor - layer = MultiIdentityLayer(dtype="float64") - x, y = layer([self._const("float16"), self._const("float32")]) - self.assertEqual(x.dtype, "float64") - self.assertEqual(y.dtype, "float64") - - # Test several non-floating point types - layer = MultiIdentityLayer(dtype="float64") - x, y, z, w = layer( - [ - self._const("float16"), - self._const("bool"), - self._const("float64"), - self._constant("complex64"), - ] - ) - self.assertEqual(x.dtype, "float64") - self.assertEqual(y.dtype, "bool") - self.assertEqual(z.dtype, "float64") - self.assertEqual(w.dtype, "complex64") - - @test_utils.enable_v2_dtype_behavior - def test_extra_args_and_kwargs_not_casted(self): - class IdentityLayerWithArgs(base_layer.Layer): - def call(self, inputs, *args, **kwargs): - kwargs.pop("training", None) - return tf.nest.flatten([inputs, args, kwargs]) - - layer = IdentityLayerWithArgs(dtype="float64") - x, y, z = layer( - self._const("float16"), - self._const("float16"), - kwarg=self._const("float16"), - ) - self.assertEqual(x.dtype, "float64") - self.assertEqual(y.dtype, "float16") - self.assertEqual(z.dtype, "float16") - - @test_utils.enable_v2_dtype_behavior - def test_layer_without_autocast(self): - class IdentityLayerWithoutAutocast(IdentityLayer): - def __init__(self, *args, **kwargs): - kwargs["autocast"] = False - super().__init__(*args, **kwargs) - - layer = IdentityLayerWithoutAutocast(dtype="float64") - self.assertEqual(layer(self._const("float32")).dtype, "float32") - - @test_utils.enable_v2_dtype_behavior - def test_compute_output_signature(self): - class IdentityLayerWithOutputShape(IdentityLayer): - def compute_output_shape(self, input_shape): - return input_shape - - layer = IdentityLayerWithOutputShape(dtype="float64") - output_signature = layer.compute_output_signature( - tf.TensorSpec(shape=(), dtype="float32") - ) - self.assertEqual(output_signature.shape, ()) - self.assertEqual(output_signature.dtype, "float64") - - @test_utils.enable_v2_dtype_behavior - def test_composite_tensors_input_casting(self): - sparse = tf.SparseTensor( - indices=tf.constant([[0, 1], [2, 3]], dtype="int64"), - values=tf.constant([0.0, 1.0], dtype="float32"), - dense_shape=tf.constant([4, 4], dtype="int64"), - ) - ragged = tf.RaggedTensor.from_row_splits( - values=tf.constant([1.0, 2.0, 3.0], dtype="float32"), - row_splits=tf.constant([0, 2, 2, 3], dtype="int64"), - ) - - layer = IdentityLayer(dtype="float16") - - for x in sparse, ragged: - self.assertEqual(x.dtype, "float32") - y = layer(x) - self.assertEqual(y.dtype, "float16") - self.assertEqual(type(x), type(y)) - - @test_utils.enable_v2_dtype_behavior - def test_passing_non_tensor(self): - layer = IdentityLayer() - x = object() - y = layer(x) # Layer should not cast 'x', as it's not a tensor - self.assertIs(x, y) - - @test_utils.disable_v2_dtype_behavior - def test_v1_behavior(self): - # Test dtype defaults to None and inferred from input - layer = IdentityLayer() - self.assertIsNone(layer.dtype) - layer(self._const("float64")) - self.assertEqual(layer.dtype, "float64") - - # Test layer does not cast to dtype - self.assertEqual(layer(self._const("float32")).dtype, "float32") - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/base_layer_utils.py b/keras/engine/base_layer_utils.py deleted file mode 100644 index 8e3de3d4df2..00000000000 --- a/keras/engine/base_layer_utils.py +++ /dev/null @@ -1,959 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains private utilities used mainly by the base Layer class.""" - -import functools -import threading - -import tensorflow.compat.v1 as tf1 -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.dtensor import dtensor_api as dtensor -from keras.utils import control_flow_util -from keras.utils import tf_inspect -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -_call_context = threading.local() - - -def create_mean_metric(value, name=None): - # import keras will import base_layer and then this module, and metric - # relies on base_layer, which result into a cyclic dependency. - from keras import metrics as metrics_module - - metric_obj = metrics_module.Mean(name=name, dtype=value.dtype) - return metric_obj, metric_obj(value) - - -def infer_init_val_and_dtype(initializer, dtype, shape, layout=None): - if initializer is not None and not callable(initializer): - init_val = initializer - variable_dtype = None - else: - # Instantiate initializer if provided initializer is a type object. - if tf_inspect.isclass(initializer): - initializer = initializer() - if layout: - init_val = functools.partial( - initializer, shape, dtype=dtype, layout=layout - ) - else: - init_val = functools.partial(initializer, shape, dtype=dtype) - variable_dtype = dtype.base_dtype - return init_val, variable_dtype - - -def make_variable( - name, - shape=None, - dtype=tf.float32, - initializer=None, - trainable=None, - caching_device=None, - validate_shape=True, - constraint=None, - use_resource=None, - collections=None, - synchronization=tf.VariableSynchronization.AUTO, - aggregation=tf.VariableAggregation.NONE, - partitioner=None, - layout=None, - experimental_enable_variable_lifting=True, -): - """Util to create a variable (relies on `variable_scope.variable`). - - Some reuse-related technicalities prevent us from using - `variable_scope.get_variable()` directly, so we use a subcomponent - that has fewer constraints (`variable_scope.variable()`). - - In the longer term, it seems like a similar "default variable creator" - method should exist in `Trackable` instead. When this happens, we can get - rid of this temporary solution. - - TODO(fchollet): remove this method when no longer needed. - - Args: - name: Variable name. - shape: Variable shape. - dtype: The type of the variable. Defaults to `self.dtype` or `float32`. - initializer: Initializer instance (callable). - trainable: Whether the variable should be part of the layer's - "trainable_variables" (e.g. variables, biases) - or "non_trainable_variables" (e.g. BatchNorm mean, stddev). - Note, if the current variable scope is marked as non-trainable - then this parameter is ignored and any added variables are also - marked as non-trainable. `trainable` becomes `True` unless - `synchronization` is set to `ON_READ`. Defaults to `None`. - caching_device: Passed to `tf.Variable`. - validate_shape: Passed to `tf.Variable`. - constraint: Constraint instance (callable). - use_resource: Whether to use a `ResourceVariable`. - collections: List of graph collections keys. The new variable is added to - these collections. Defaults to `[GraphKeys.GLOBAL_VARIABLES]`. - synchronization: Indicates when a distributed a variable will be - aggregated. Accepted values are constants defined in the class - `tf.VariableSynchronization`. By default the synchronization is set to - `AUTO` and the current `DistributionStrategy` chooses - when to synchronize. If `synchronization` is set to `ON_READ`, - `trainable` must not be set to `True`. - aggregation: Indicates how a distributed variable will be aggregated. - Accepted values are constants defined in the class - `tf.VariableAggregation`. - partitioner: Not handled at this time. - layout: the optional DTensor layout, used for creating DVariable. - - Returns: - Variable instance. - """ - init_val, variable_dtype = infer_init_val_and_dtype( - initializer, dtype, shape, layout - ) - variable_shape = tf.TensorShape(shape) - - if use_resource is None: - use_resource = True - - if layout is None: - # In theory, in `use_resource` is True and `collections` is empty - # (that is to say, in TF2), we can use tf.Variable. - # However, this breaks legacy (Estimator) checkpoints because - # it changes variable names. Remove this when V1 is fully deprecated. - return tf1.Variable( - initial_value=init_val, - name=name, - trainable=trainable, - caching_device=caching_device, - dtype=variable_dtype, - validate_shape=validate_shape, - constraint=constraint, - use_resource=use_resource, - collections=collections, - synchronization=synchronization, - aggregation=aggregation, - shape=variable_shape if variable_shape else None, - experimental_enable_variable_lifting=experimental_enable_variable_lifting, # noqa: E501 - ) - else: - return dtensor.DVariable( - initial_value=init_val, - name=name, - trainable=trainable, - caching_device=caching_device, - dtype=variable_dtype, - validate_shape=validate_shape, - constraint=constraint, - collections=collections, - synchronization=synchronization, - aggregation=aggregation, - shape=variable_shape if variable_shape else None, - ) - - -def collect_previous_mask(input_tensors): - """Retrieves the output mask(s) of the previous node. - - Args: - input_tensors: An arbitrary structure of Tensors. - - Returns: - A mask tensor or list of mask tensors. - """ - - def _collect_previous_mask(x): - return getattr(x, "_keras_mask", None) - - return tf.nest.map_structure(_collect_previous_mask, input_tensors) - - -def have_all_keras_metadata(tensors): - return all(hasattr(x, "_keras_history") for x in tf.nest.flatten(tensors)) - - -def generate_placeholders_from_shape(shape): - return tf1.placeholder(shape=shape, dtype=backend.floatx()) - - -def create_keras_history(tensors): - """Wraps TensorFlow Operations for compatibility with the Functional API. - - This method checks to see if a Tensor in `tensors` is missing Keras metadata - and has its origin in a Keras `Input` Layer. If so, this method will replace - the raw TensorFlow Operations that created this tensor with - `TensorFlowOpLayer` instances that create identical operations. - - Any Tensors not originating from a Keras `Input` Layer will be treated as - constants when constructing `TensorFlowOpLayer` instances. - - Args: - tensors: A structure of Tensors, some of which come from raw TensorFlow - operations and need to have Keras metadata assigned to them. - - Returns: - created_layers: List. The `TensorFlowOpLayer` instances created to wrap - the raw Tensorflow operations. - """ - _, created_layers = _create_keras_history_helper(tensors, set(), []) - return created_layers - - -# Unsafe Internal attribute. -# If True, Keras will not evaluate the constant-foldable inputs to tf op -# layers in TF1 graphs. This *might* speed up model construction time in -# certain settings, but it means -# the models will not be serializable/deserializable via get_config -# (Only via Savedmodels). It may also change the semantics of whether -# generated random numbers are generated once and re-used, or recomputed -# each time. -# Note: This path triggers for TPUEstimators / xla compiled graphs regardless -# of this setting. -_UNSAFE_GRAPH_OP_LAYER_CREATION = False - - -def _create_keras_history_helper(tensors, processed_ops, created_layers): - """Helper method for `create_keras_history`. - - Args: - tensors: A structure of Tensors for which to create Keras metadata. - processed_ops: Set. TensorFlow operations that have already been wrapped - in `TensorFlowOpLayer` instances. - created_layers: List. The `TensorFlowOpLayer` instances created. - - Returns: - Tuple. First element is the updated set of TensorFlow Operations that - have been wrapped in `TensorFlowOpLayer` instances. Second element is - a list of the `TensorFlowOpLayer` instances created. - """ - if tf1.executing_eagerly_outside_functions(): - raise ValueError( - "`create_keras_history` should only be called if eager is disabled!" - ) - # Import of `base_layer` needed in order to create `TensorFlowOpLayer`. - # Cannot be imported at top because of circular dependencies. - # TODO(omalleyt): Resolve circular dependency. - from keras.engine import base_layer - - tensor_list = tf.nest.flatten(tensors) - sparse_ops = [] - ragged_tensors = [] - for tensor in tensor_list: - if getattr(tensor, "_keras_history", None) is not None: - continue - if isinstance(tensor, (tf.SparseTensor, tf1.SparseTensorValue)): - sparse_ops.append(tensor.op) - continue - if tf_utils.is_ragged(tensor): - # Ragged tensors don't have an op property - ragged_tensors.append(tensor) - continue - op = tensor.op # The Op that created this Tensor. - if op not in processed_ops: - # Recursively set `_keras_history`. - op_inputs = list(op.inputs) - constants = {} - layer_inputs = [] - for i, op_input in enumerate(op_inputs): - if uses_keras_history(op_input): - layer_inputs.append(op_input) - else: - # Treat any value not originating from a `keras.Input` as - # a constant. Variables cannot be supported. - ds_with_session = ( - tf.distribute.in_cross_replica_context() - and not tf1.executing_eagerly_outside_functions() - ) - using_xla = control_flow_util.GraphOrParentsInXlaContext( - tf1.get_default_graph() - ) - if ( - ds_with_session - or using_xla - or _UNSAFE_GRAPH_OP_LAYER_CREATION - ): - # In Legacy Graph mode, evaluating here makes Session be - # configured improperly. The downside of this is that - # saving via `get_config` breaks, but SavedModel still - # works. - constants[i] = op_input - else: - with tf.init_scope(): - constants[i] = backend.function([], op_input)([]) - layer_inputs = unnest_if_single_tensor(layer_inputs) - processed_ops, created_layers = _create_keras_history_helper( - layer_inputs, processed_ops, created_layers - ) - name = op.name - node_def = op.node_def.SerializeToString() - op_layer = base_layer.TensorFlowOpLayer( - node_def, constants=constants, name=name - ) - created_layers.append(op_layer) - op_layer._set_connectivity_metadata( - args=(layer_inputs,), kwargs={}, outputs=op.outputs - ) - processed_ops.update([op]) - if sparse_ops or ragged_tensors: - lambda_example = """ - weights_mult = lambda x: tf.sparse.sparse_dense_matmul(x, weights) - output = tf.keras.layers.Lambda(weights_mult)(input) - """ - raise ValueError( - "Tensorflow ops that generate ragged or sparse tensor " - "outputs are currently not supported by Keras automatic " - "op wrapping. Please wrap these ops in a Lambda layer: " - "\n\n```\n{example}\n```\n" - "Sparse ops encountered: {sparse_ops}\n" - "Ragged tensors encountered: {ragged_tensors}\n".format( - example=lambda_example, - sparse_ops=str(sparse_ops), - ragged_tensors=str(ragged_tensors), - ) - ) - return processed_ops, created_layers - - -def unnest_if_single_tensor(input_tensors): - # Preserve compatibility with older configs - flat_input_tensors = tf.nest.flatten(input_tensors) - # If this is a single element but not a dict, unwrap. If this is a dict, - # assume the first layer expects a dict (as is the case with a - # DenseFeatures layer); pass through. - if not isinstance(input_tensors, dict) and len(flat_input_tensors) == 1: - input_tensors = flat_input_tensors[0] - return input_tensors - - -def needs_keras_history(tensors, ignore_call_context=False): - """Check if any Tensors need to be wrapped in TensorFlowOpLayers. - - This will never return True inside a sublayer, because sublayers - do not need to create Keras History. Otherwise, this returns True - if one or more of `tensors` originates from a `keras.Input` and - does not have `_keras_history` set. - - Args: - tensors: An arbitrary nested structure of Tensors. - ignore_call_context: Whether to ignore the check of if currently - outside of a `call` context. This is `True` when creating - KerasHistory inside `Node`, where we always know that Tensors - are being used with the Functional API. - - Returns: - Bool, whether at least one Tensor needs to be wrapped. - """ - input_tensors = tf.nest.flatten(tensors) - if call_context().in_call and not ignore_call_context: - return False - if all( - getattr(tensor, "_keras_history", None) is not None - for tensor in input_tensors - ): - # KerasHistory already set. - return False - return uses_keras_history(tensors) - - -def is_in_keras_graph(): - """Returns if currently executing inside of a Keras graph.""" - return call_context().in_keras_graph - - -def is_in_eager_or_tf_function(): - """Returns if in eager mode or inside of a tf.function.""" - return tf.executing_eagerly() or is_in_tf_function() - - -def is_in_tf_function(): - """Returns if inside of a tf.function.""" - # Check if running in V1 graph mode. - if not tf1.executing_eagerly_outside_functions(): - return False - if not tf.inside_function(): - return False - # Check if inside Keras FuncGraph. - if is_in_keras_graph(): - return False - # Check for a v1 `wrap_function` FuncGraph. - graph = tf1.get_default_graph() - if getattr(graph, "name", False) and graph.name.startswith( - "wrapped_function" - ): - return False - return True - - -def uses_keras_history(tensors): - """Check if at least one Tensor originates from a `keras.Input`. - - This is `True` if at least one Tensor has its origin in a `keras.Input`. - Any Tensor that originates from a `keras.Input` will have a dependency - Tensor with a `_keras_history` attribute attached. Tensors that have - already been checked to not originate from a `keras.Input` - are marked as `_keras_history_checked`. - - Args: - tensors: An arbitrary nested structure of Tensors. - - Returns: - Bool, whether at least one Tensor originates from a `keras.Input`. - """ - checked_tensors = set() - tensors_to_check = tf.nest.flatten(tensors) - - while tensors_to_check: - new_tensors_to_check = [] - for tensor in tensors_to_check: - if id(tensor) in checked_tensors: - continue - - checked_tensors.add(id(tensor)) - - if getattr(tensor, "_keras_history_checked", None) is not None: - continue - if getattr(tensor, "_keras_history", None) is not None: - return True - - try: - new_tensors_to_check.extend(tensor.op.inputs) - except AttributeError: - # In case `tensor` is a Variable created in an Eager context. - pass - - tensors_to_check = new_tensors_to_check - - # Mark that these Tensors have been checked once for `_keras_history`, - # and should not be checked again for performance reasons. - mark_checked(tensors) - return False - - -def mark_checked(tensors): - """Marks that these Tensors should not be tracked. - - This prevents Layers from attempting to create TensorFlowOpLayers - for these Tensors. - - Args: - tensors: An arbitrary structure of Tensors. - """ - - def _mark_checked(tensor): - tensor._keras_history_checked = True - - tf.nest.map_structure(_mark_checked, tensors) - - -def call_context(): - """Returns currently active `CallContext`.""" - call_ctx = getattr(_call_context, "call_context", None) - if call_ctx is None: - call_ctx = CallContext() - _call_context.call_context = call_ctx - return call_ctx - - -# Inject the call_context function to keras_deps to remove the dependency -# from TFLite to Keras. -tf.__internal__.register_call_context_function(call_context) - - -class CallContext: - """Keeps track of properties currently inside a Layer/Model's `call`. - - Attributes: - in_call: Whether currently inside the `call` of a Layer. - layer: The `Layer` whose `call` is currently active. - inputs: The inputs to the currently active `Layer`. - build_graph: Whether currently inside a Graph or FuncGraph. - training: Whether currently executing in training or inference mode. - saving: Whether currently saving to SavedModel. - frozen: Whether currently executing inside a `Layer` with `trainable` set - to `False`. - in_keras_graph: Whether executing inside the Keras Graph. - """ - - def __init__(self): - # Handle `in_call` separately as it is the most-read attr and reading it - # is on the hot path. - self.in_call = False - self._state = { - "layer": None, - "inputs": None, - "build_graph": False, - "training": None, - "saving": None, - } - # TODO(b/150169018): This logic can be replaced after the Functional API - # refactor. - self._in_keras_graph = False - - def enter(self, layer, inputs, build_graph, training, saving=None): - """Push a Layer and its inputs and state onto the current call context. - - Args: - layer: The `Layer` whose `call` is currently active. - inputs: The inputs to the currently active `Layer`. - build_graph: Whether currently inside a Graph or FuncGraph. - training: Whether currently executing in training or inference mode. - saving: Whether currently saving to SavedModel. - - Returns: - Context manager. - """ - state = { - "layer": layer, - "inputs": inputs, - "build_graph": build_graph, - "training": training, - "saving": saving, - } - return CallContextManager(self, state) - - @property - def layer(self): - return self._state["layer"] - - @property - def inputs(self): - return self._state["inputs"] - - @property - def build_graph(self): - return self._state["build_graph"] - - @property - def training(self): - return self._state["training"] - - @property - def saving(self): - return self._state["saving"] - - @property - def frozen(self): - layer = self._state["layer"] - if not layer: - return False - return not layer.trainable - - @property - def in_keras_graph(self): - # Returns True even if in a subgraph of the Keras graph, such as those - # created by control flow ops. - if tf.executing_eagerly(): - return False - return ( - self._in_keras_graph - or getattr(backend.get_graph(), "name", None) == "keras_graph" - ) - - -class CallContextManager: - """Context manager for `CallContext`.""" - - def __init__(self, call_ctx, state): - self._call_ctx = call_ctx - self._state = state - self._build_graph = state["build_graph"] - - def __enter__(self): - call_ctx = self._call_ctx - self._prev_in_call = call_ctx.in_call - self._prev_state = call_ctx._state - - call_ctx.in_call = True - call_ctx._state = self._state - - # TODO(b/150169018): This logic can be removed after the Functional API - # refactor. - if self._build_graph: - self._prev_in_keras_graph = call_ctx._in_keras_graph - call_ctx._in_keras_graph = ( - call_ctx._in_keras_graph - or getattr(backend.get_graph(), "name", None) == "keras_graph" - ) - - def __exit__(self, *exc_info): - call_ctx = self._call_ctx - call_ctx.in_call = self._prev_in_call - call_ctx._state = self._prev_state - - if self._build_graph: - call_ctx._in_keras_graph = self._prev_in_keras_graph - - -def training_arg_passed_to_call(argspec, args, kwargs): - """Returns whether a user passed the `training` argument in `__call__`.""" - # `argspec.args` starts with ['self', 'inputs'] - full_args = dict(zip(argspec.args[2:], args)) - full_args.update(kwargs) - return "training" in full_args and full_args["training"] is not None - - -def is_subclassed(layer): - """Returns True if the object is a subclassed layer or subclassed model.""" - return ( - layer.__module__.find("keras.engine") == -1 - and layer.__module__.find("keras.layers") == -1 - ) - - -def from_saved_model(layer): - """Returns whether the layer is loaded from a SavedModel.""" - return layer.__module__.find("keras.saving.legacy.saved_model") != -1 - - -def check_graph_consistency(tensor=None, method="add_loss", force_raise=False): - """Checks that tensors passed to `add_*` method match the Keras graph. - - When one of the `add_*` method is called inside a V2 conditional branch, the - underlying tensor gets created in a FuncGraph managed by control_flow_v2. - We need to raise clear error messages in such cases. - - Args: - tensor: Tensor to check, or `False` if it is known that an error - should be raised. - method: Caller method, one of {'add_metric', 'add_loss', 'add_update'}. - force_raise: If an error should be raised regardless of `tensor`. - - Raises: - RuntimeError: In case of an out-of-graph tensor. - """ - if force_raise or ( - tf1.executing_eagerly_outside_functions() - and hasattr(tensor, "graph") - and tensor.graph.is_control_flow_graph - ): - if method == "activity_regularizer": - bad_example = """ - class TestModel(tf.keras.Model): - - def __init__(self): - super(TestModel, self).__init__(name='test_model') - self.dense = tf.keras.layers.Dense(2, activity_regularizer='l2') - - def call(self, x, training=None): - if training: - return self.dense(x) - else: - return self.dense(x) - """ - correct_example = """ - class TestModel(tf.keras.Model): - - def __init__(self): - super(TestModel, self).__init__(name='test_model') - self.dense = tf.keras.layers.Dense(2, activity_regularizer='l2') - - def call(self, x, training=None): - return self.dense(x) - """ - raise RuntimeError( - "You are using a layer with `activity_regularizer` in a " - f"control flow branch, e.g.:\n{bad_example}\nThis is currently " - "not supported. Please move your call to the layer with " - "`activity_regularizer` out of the control flow branch, " - f"e.g.:\n{correct_example}\nYou can also resolve this by " - "marking your outer model/layer dynamic (eager-only) by " - "passing `dynamic=True` to the layer constructor. Any kind of " - "control flow is supported with dynamic layers. Note that " - "using `dynamic=True` requires you to implement static shape " - "inference in the `compute_output_shape(input_shape)` " - "method." - ) - - if method == "add_metric": - bad_example = """ - def call(self, inputs, training=None): - if training: - metric = compute_metric(inputs) - self.add_metric(metric, name='my_metric', aggregation='mean') - return inputs - """ - correct_example = """ - def call(self, inputs, training=None): - if training: - metric = compute_metric(inputs) - else: - metric = 0. - self.add_metric(metric, name='my_metric', aggregation='mean') - return inputs - """ - elif method == "add_loss": - bad_example = """ - def call(self, inputs, training=None): - if training: - loss = compute_loss(inputs) - self.add_loss(loss) - return inputs - """ - correct_example = """ - def call(self, inputs, training=None): - if training: - loss = compute_loss(inputs) - else: - loss = 0. - self.add_loss(loss) - return inputs - """ - else: - bad_example = """ - def call(self, inputs, training=None): - if training: - self.add_update(self.w.assign_add(1)) - return inputs - """ - correct_example = """ - def call(self, inputs, training=None): - if training: - increment = 1 - else: - increment = 0 - self.add_update(self.w.assign_add(increment)) - return inputs - """ - raise RuntimeError( - "You are using the method `{method}` in a control flow branch " - "in your layer, e.g.:\n{bad_example}\n" - "This is not currently supported. " - "Please move your call to {method} out of the control flow branch, " - "e.g.:\n{correct_example}\n" - "You can also resolve this by marking your layer " - "as dynamic (eager-only) by passing " - "`dynamic=True` to the layer constructor. " - "Any kind of control flow is supported with dynamic layers. " - "Note that using `dynamic=True` requires you " - "to implement static shape inference " - "in the `compute_output_shape(input_shape)` method.".format( - method=method, - bad_example=bad_example, - correct_example=correct_example, - ) - ) - - -def mark_as_return(outputs, acd): - """Marks `outputs` as the return values for automatic control deps.""" - - def _mark_as_return(tensor): - """Marks `tensor` as the return value for automatic control deps.""" - if not tf.is_tensor(tensor): - return tensor - - return_tensor = acd.mark_as_return(tensor) - if getattr(tensor, "_keras_mask", None) is not None: - return_tensor._keras_mask = acd.mark_as_return(tensor._keras_mask) - else: - return_tensor._keras_mask = None - - # Handle TensorFlow Probability attached metadata. - # TODO(b/132076537): Remove this once TFP uses `CompositeTensor`. - if getattr(tensor, "_tfp_distribution", None) is not None: - return_tensor._tfp_distribution = tensor._tfp_distribution - - return return_tensor - - return tf.nest.map_structure(_mark_as_return, outputs) - - -V2_DTYPE_BEHAVIOR = None - - -@keras_export(v1=["keras.layers.enable_v2_dtype_behavior"]) -def enable_v2_dtype_behavior(): - """Enable the V2 dtype behavior for Keras layers. - - By default, the V2 dtype behavior is enabled in TensorFlow 2, so this - function is only useful if `tf.compat.v1.disable_v2_behavior` has been - called. Since mixed precision requires V2 dtype behavior to be enabled, this - function allows you to use mixed precision in Keras layers if - `disable_v2_behavior` has been called. - - When enabled, the dtype of Keras layers defaults to floatx (which is - typically float32) instead of None. In addition, layers will automatically - cast floating-point inputs to the layer's dtype. - - >>> x = tf.ones((4, 4, 4, 4), dtype='float64') - >>> layer = tf.keras.layers.Conv2D(filters=4, kernel_size=2) - >>> print(layer.dtype) # float32 since V2 dtype behavior is enabled - float32 - >>> y = layer(x) # Layer casts inputs since V2 dtype behavior is enabled - >>> print(y.dtype.name) - float32 - - A layer author can opt-out their layer from the automatic input casting by - passing `autocast=False` to the base Layer's constructor. This disables the - autocasting part of the V2 behavior for that layer, but not the defaulting - to floatx part of the V2 behavior. - - When a global `tf.keras.mixed_precision.Policy` is set, a Keras layer's - dtype will default to the global policy instead of floatx. Layers will - automatically cast inputs to the policy's compute_dtype. - """ - global V2_DTYPE_BEHAVIOR - V2_DTYPE_BEHAVIOR = True - - -@keras_export(v1=["keras.layers.disable_v2_dtype_behavior"]) -def disable_v2_dtype_behavior(): - """Disables the V2 dtype behavior for Keras layers. - - See `tf.compat.v1.keras.layers.enable_v2_dtype_behavior`. - """ - global V2_DTYPE_BEHAVIOR - V2_DTYPE_BEHAVIOR = False - - -def v2_dtype_behavior_enabled(): - """Returns True if the V2 dtype behavior is enabled.""" - if V2_DTYPE_BEHAVIOR is None: - return tf.__internal__.tf2.enabled() - return V2_DTYPE_BEHAVIOR - - -class TrackableWeightHandler: - """Keras wrapper for handling Trackable object saving and restoring. - - This class handles Trackables in both V1 and V2 modes, ensuring that they - can be saved and restored with the correct data and without adding - additional ops on every save. - - Attributes: - trackable: The trackable to wrap. - num_tensors: The number of tensors that this trackable requires for - saving. - """ - - def __init__(self, trackable): - if not isinstance(trackable, tf.__internal__.tracking.Trackable): - raise ValueError(f"{trackable} is not a Trackable object.") - self._trackable = trackable - self._distribute_strategy = tf.distribute.get_strategy() - - saveables = tf.__internal__.tracking.saveable_objects_from_trackable( - trackable - ).values() - # 'Saveables' won't exist when we're passed a legacy TF1 table like - # a StaticHashTable. - if not saveables: - self._num_tensors = 0 - self._setter = lambda weights: None - self._getter = lambda: [] - - elif len(saveables) == 1: - saveable = list(saveables)[0] - - if tf1.executing_eagerly_outside_functions(): - # If we're in eager mode, we need to defer calling the - # Trackable's saveable() callable until data export time. - # However, it is safe to call the saveable as many times as we - # want, so we will call it now to figure out how many tensors - # this Trackable will produce. - self._saveable = saveable - self._num_tensors = len(self._saveable().specs) - self._setter = lambda weights: self._saveable().restore( - weights, None - ) - self._getter = lambda: [ - spec.tensor for spec in self._saveable().specs - ] - else: - # If we're in Graph mode, we need to evaluate the Saveable only - # once and cache the resulting restore graph. Failing to do this - # will result in new assignment ops being added to the graph - # each time set_weights() is called. - self._placeholder_tensors = [] - self._saveable = saveable() - self._num_tensors = len(self._saveable.specs) - for spec in self._saveable.specs: - tensor = spec.tensor - self._placeholder_tensors.append( - tf1.placeholder(tensor.dtype, tensor.shape) - ) - self._assign_op = self._saveable.restore( - self._placeholder_tensors, None - ) - self._setter = self._set_weights_v1 - self._getter = lambda: [ - spec.tensor for spec in self._saveable.specs - ] - else: - raise ValueError( - "Only Trackables with one Saveable are supported. " - f"The Trackable {trackable} has {len(saveables)} Saveables." - ) - - @property - def num_tensors(self): - return self._num_tensors - - def set_weights(self, weights): - if len(weights) != self._num_tensors: - raise ValueError( - f"Weight handler for trackable {self._trackable} received " - "an incorrect number of weights: " - f"expected {self._num_tensors} weights, " - f"got {len(weights)} weights." - ) - self._setter(weights) - - def get_tensors(self): - return self._getter() - - def _set_weights_v1(self, weights): - feed_dict = {} - for idx, tensor in enumerate(weights): - feed_dict[self._placeholder_tensors[idx]] = tensor - backend.get_session().run(self._assign_op, feed_dict) - - -def no_ragged_support(inputs, layer_name): - input_list = tf.nest.flatten(inputs) - if any(isinstance(x, tf.RaggedTensor) for x in input_list): - raise ValueError( - f"Layer {layer_name} does not support RaggedTensors as input. " - f"Inputs received: {inputs}. You can try converting your " - "input to a dense (uniform) tensor." - ) - - -def is_split_variable(v): - """Returns True if `v` is a PartitionedVariable or a ShardedVariable.""" - return not {clz.__name__ for clz in v.__class__.__mro__}.isdisjoint( - {"PartitionedVariable", "ShardedVariable"} - ) - - -def has_weights(obj): - obj_type = type(obj) - return ( - hasattr(obj_type, "trainable_weights") - and hasattr(obj_type, "non_trainable_weights") - and not isinstance(obj, type) - ) - - -# TODO(kathywu): This is a temporary hack. When a network of layers is revived -# from SavedModel, only the top-level layer will have losses. This causes issues -# in eager mode because the child layers may have graph losses -# (thus model.losses returns a mix of Eager and graph tensors). To fix this, -# whenever eager losses are added to one layer, add eager losses to all -# child layers. This causes `.losses` to only return eager losses. -REVIVED_LOSS_PLACEHOLDER = ( - "This layer's losses have been added to the parent layer." -) diff --git a/keras/engine/base_layer_utils_test.py b/keras/engine/base_layer_utils_test.py deleted file mode 100644 index 67a4d2d5db2..00000000000 --- a/keras/engine/base_layer_utils_test.py +++ /dev/null @@ -1,108 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras import backend -from keras.engine import base_layer_utils -from keras.testing_infra import test_combinations - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class TrackableWeightHandlerTest(test_combinations.TestCase): - def get_table_handler(self): - # Note: There is some repetition in these tests' setup. However, - # Tensorflow does not play nicely with a separate setUp() call (causing - # errors related to graph building), so we have to use a called setup - # instead of a setUp() call. - table = tf.lookup.experimental.MutableHashTable( - key_dtype=tf.string, value_dtype=tf.int32, default_value=0 - ) - return base_layer_utils.TrackableWeightHandler(table) - - def test_get_num_tensors(self): - table_handler = self.get_table_handler() - self.assertEqual(2, table_handler.num_tensors) - - def test_get_and_set_weights(self): - table_handler = self.get_table_handler() - - table_data = {b"a": 1, b"b": 2, b"c": 3} - table_handler.set_weights( - [list(table_data.keys()), list(table_data.values())] - ) - weights = backend.batch_get_value(table_handler.get_tensors()) - weight_data = {key: value for key, value in zip(weights[0], weights[1])} - self.assertDictEqual(table_data, weight_data) - - def test_get_and_set_weights_does_not_add_ops(self): - table_handler = self.get_table_handler() - table_data = {b"a": 1, b"b": 2, b"c": 3} - table_handler.set_weights( - [list(table_data.keys()), list(table_data.values())] - ) - _ = backend.batch_get_value(table_handler.get_tensors()) - backend.get_session().graph.finalize() - table_handler.set_weights( - [list(table_data.keys()), list(table_data.values())] - ) - _ = backend.batch_get_value(table_handler.get_tensors()) - - -@test_combinations.generate(test_combinations.combine(mode=["eager"])) -class OpLayerTest(test_combinations.TestCase): - def test_tensor_op_layer(self): - int_values = keras.Input(shape=(2,), dtype=tf.int32) - float_values = tf.cast(int_values, tf.float32) - model = keras.Model(int_values, float_values) - model.compile(loss="mse") - - input_data = np.array([[1, 2], [3, 4]], dtype=np.int32) - expected = [[1.0, 2.0], [3.0, 4.0]] - output = model.predict(input_data) - self.assertAllClose(expected, output) - - def test_ragged_op_layer_keras_tensors(self): - int_values = keras.Input(shape=(None,), dtype=tf.int32, ragged=True) - float_values = tf.cast(int_values, tf.float32) - model = keras.Model(int_values, float_values) - model.compile(loss="mse") - - input_data = tf.ragged.constant([[1, 2], [3, 4]], dtype=np.int32) - expected = [[1.0, 2.0], [3.0, 4.0]] - output = model.predict(input_data) - self.assertIsInstance(output, tf.RaggedTensor) - self.assertAllClose(expected, output) - - def test_sparse_op_layer_keras_tensors(self): - int_values = keras.Input(shape=(None,), dtype=tf.int32, sparse=True) - float_values = tf.cast(int_values, tf.float32) - _ = keras.Model(int_values, float_values) - model = keras.Model(int_values, float_values) - model.compile(loss="mse") - - input_data = tf.sparse.from_dense( - np.array([[1, 2], [3, 4]], dtype=np.int32) - ) - expected = [[1.0, 2.0], [3.0, 4.0]] - output = model.predict(input_data) - self.assertIsInstance(output, tf.SparseTensor) - self.assertAllClose(expected, tf.sparse.to_dense(output)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/base_layer_v1.py b/keras/engine/base_layer_v1.py deleted file mode 100644 index 8baae694454..00000000000 --- a/keras/engine/base_layer_v1.py +++ /dev/null @@ -1,2469 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""Contains the base Layer class, from which all layers inherit.""" - -import functools -import itertools -import threading - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine import base_layer -from keras.engine import base_layer_utils -from keras.engine import input_spec -from keras.mixed_precision import autocast_variable -from keras.mixed_precision import loss_scale_optimizer -from keras.mixed_precision import policy -from keras.saving.legacy.saved_model import layer_serialization -from keras.utils import generic_utils -from keras.utils import layer_utils -from keras.utils import object_identity -from keras.utils import tf_inspect -from keras.utils import tf_utils - -# A module that only depends on `keras.layers` import these from here. -from keras.utils.generic_utils import to_snake_case # noqa: F401 -from keras.utils.tf_utils import is_tensor_or_tensor_list # noqa: F401 - -# isort: off -from tensorflow.python.platform import tf_logging -from tensorflow.tools.docs import doc_controls - - -class Layer(base_layer.Layer): - """Base layer class. - - This is the class from which all layers inherit. - - A layer is a class implementing common neural networks operations, such - as convolution, batch norm, etc. These operations require managing weights, - losses, updates, and inter-layer connectivity. - - Users will just instantiate a layer and then treat it as a callable. - - We recommend that descendants of `Layer` implement the following methods: - - * `__init__()`: Save configuration in member variables - * `build()`: Called once from `__call__`, when we know the shapes of inputs - and `dtype`. Should have the calls to `add_weight()`, and then - call the super's `build()` (which sets `self.built = True`, which is - nice in case the user wants to call `build()` manually before the - first `__call__`). - * `call()`: Called in `__call__` after making sure `build()` has been called - once. Should actually perform the logic of applying the layer to the - input tensors (which should be passed in as the first argument). - - Args: - trainable: Boolean, whether the layer's variables should be trainable. - name: String name of the layer. - dtype: The dtype of the layer's computations and weights (default of - `None` means use `tf.keras.backend.floatx` in TensorFlow 2, or the type - of the first input in TensorFlow 1). - dynamic: Set this to `True` if your layer should only be run eagerly, and - should not be used to generate a static computation graph. - This would be the case for a Tree-RNN or a recursive network, - for example, or generally for any layer that manipulates tensors - using Python control flow. If `False`, we assume that the layer can - safely be used to generate a static computation graph. - - Attributes: - name: The name of the layer (string). - dtype: The dtype of the layer's computations and weights. If mixed - precision is used with a `tf.keras.mixed_precision.Policy`, this is - instead just the dtype of the layer's weights, as the computations are - done in a different dtype. - updates: List of update ops of this layer. - losses: List of losses added by this layer. - trainable_weights: List of variables to be included in backprop. - non_trainable_weights: List of variables that should not be - included in backprop. - weights: The concatenation of the lists trainable_weights and - non_trainable_weights (in this order). - trainable: Whether the layer should be trained (boolean). - input_spec: Optional (list of) `InputSpec` object(s) specifying the - constraints on inputs that can be accepted by the layer. - - Each layer has a dtype, which is typically the dtype of the layer's - computations and variables. A layer's dtype can be queried via the - `Layer.dtype` property. The dtype is specified with the `dtype` constructor - argument. In TensorFlow 2, the dtype defaults to `tf.keras.backend.floatx()` - if no dtype is passed. `floatx()` itself defaults to "float32". - Additionally, layers will cast their inputs to the layer's dtype in - TensorFlow 2. When mixed precision is used, layers may have different - computation and variable dtypes. See `tf.keras.mixed_precision.Policy` for - details on layer dtypes. - """ - - # See tf.Module for the usage of this property. The key for - # _obj_reference_counts_dict is a Trackable, which could be a variable or - # layer etc. tf.Module._flatten will fail to flatten the key since it is - # trying to convert Trackable to a string. This attribute can be ignored - # even after the fix of nest lib, since the trackable object should already - # been available as individual attributes. _obj_reference_counts_dict just - # contains a copy of them. - _TF_MODULE_IGNORED_PROPERTIES = frozenset( - itertools.chain( - ("_obj_reference_counts_dict",), - tf.Module._TF_MODULE_IGNORED_PROPERTIES, - ) - ) - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def __init__( - self, trainable=True, name=None, dtype=None, dynamic=False, **kwargs - ): - self._instrument_layer_creation() - - # These properties should be set by the user via keyword arguments. - # note that 'dtype', 'input_shape' and 'batch_input_shape' - # are only applicable to input layers: do not pass these keywords - # to non-input layers. - allowed_kwargs = { - "input_dim", - "input_shape", - "batch_input_shape", - "batch_size", - "weights", - "activity_regularizer", - "autocast", - "implementation", - } - # Validate optional keyword arguments. - generic_utils.validate_kwargs(kwargs, allowed_kwargs) - - # Mutable properties - # Indicates whether the layer's weights are updated during training - # and whether the layer's updates are run during training. - self._trainable = trainable - # A stateful layer is a layer whose updates are run during inference - # too, for instance stateful RNNs. - self._stateful = False - # Indicates whether `build` needs to be called upon layer call, to - # create the layer's weights. - self.built = False - self._build_input_shape = None - # Provides information about which inputs are compatible with the layer. - self._input_spec = None - self.supports_masking = False - - self._init_set_name(name) - self._activity_regularizer = regularizers.get( - kwargs.pop("activity_regularizer", None) - ) - self._maybe_create_attribute("_trainable_weights", []) - self._maybe_create_attribute("_non_trainable_weights", []) - self._updates = [] - # Object to store all thread local layer properties. - self._thread_local = threading.local() - # A list of zero-argument lambdas which return Tensors, used for - # variable regularizers. - self._callable_losses = [] - # A list of symbolic Tensors containing activity regularizers and losses - # manually added through `add_loss` in graph-building mode. - self._losses = [] - # A list of metric instances corresponding to the symbolic metric - # tensors added using the `add_metric` API. - self._metrics = [] - - # Note that models also have a dtype policy, as they are layers. For - # functional models, the policy is only used in Model.compile, which - # wraps the optimizer with a LossScaleOptimizer if the policy name is - # "mixed_float16". Subclassed models additionally use the policy's - # compute and variable dtypes, as like any ordinary layer. - self._set_dtype_policy(dtype) - # Boolean indicating whether the layer automatically casts its inputs to - # the layer's compute_dtype. - self._autocast = kwargs.get( - "autocast", base_layer_utils.v2_dtype_behavior_enabled() - ) - - # Dependencies tracked via attribute assignment. - # All layers in order of horizontal graph traversal. - # Entries are unique. For models includes input and output layers. - self._maybe_create_attribute("_self_tracked_trackables", []) - - # These lists will be filled via successive calls - # to self._add_inbound_node(). - # Used in symbolic mode only, only in conjunction with graph-networks - self._inbound_nodes_value = [] - self._outbound_nodes_value = [] - - self._init_call_fn_args() - - # Whether the `call` method can be used to build a TF graph without - # issues. This attribute has no effect if the model is created using - # the Functional API. Instead, `model.dynamic` is determined based on - # the internal layers. - self._dynamic = dynamic - - # Manage input shape information if passed. - if "input_dim" in kwargs and "input_shape" not in kwargs: - # Backwards compatibility: alias 'input_dim' to 'input_shape'. - kwargs["input_shape"] = (kwargs["input_dim"],) - if "input_shape" in kwargs or "batch_input_shape" in kwargs: - # In this case we will later create an input layer - # to insert before the current layer - if "batch_input_shape" in kwargs: - batch_input_shape = tuple(kwargs["batch_input_shape"]) - elif "input_shape" in kwargs: - if "batch_size" in kwargs: - batch_size = kwargs["batch_size"] - else: - batch_size = None - batch_input_shape = (batch_size,) + tuple(kwargs["input_shape"]) - self._batch_input_shape = batch_input_shape - - # Manage initial weight values if passed. - self._initial_weights = kwargs.get("weights", None) - - # Whether the layer will track any layers that are set as attribute on - # itself as sub-layers, the weights from the sub-layers will be included - # in the parent layer's variables() as well. Default to True, which - # means auto tracking is turned on. Certain subclass might want to turn - # it off, like the Sequential model. - self._auto_track_sub_layers = True - - # Mark this layer as having been originally built as a tf1 layer/model - self._originally_built_as_v1 = True - - # For backward compat reasons, most built-in layers do not guarantee - # That they will 100% preserve the structure of input args when saving - # / loading configs. E.g. they may un-nest an arg that is - # a list with one element. - self._preserve_input_structure_in_config = False - - @tf.__internal__.tracking.no_automatic_dependency_tracking - @generic_utils.default - def build(self, input_shape): - """Creates the variables of the layer (for subclass implementers). - - This is a method that implementers of subclasses of `Layer` or `Model` - can override if they need a state-creation step in-between - layer instantiation and layer call. - - This is typically used to create the weights of `Layer` subclasses. - - Args: - input_shape: Instance of `TensorShape`, or list of instances of - `TensorShape` if the layer expects a list of inputs - (one instance per input). - """ - if not hasattr(self.build, "_is_default"): - self._build_input_shape = input_shape - self.built = True - - @doc_controls.for_subclass_implementers - def call(self, inputs, **kwargs): - """This is where the layer's logic lives. - - Args: - inputs: Input tensor, or list/tuple of input tensors. - **kwargs: Additional keyword arguments. - - Returns: - A tensor or list/tuple of tensors. - """ - return inputs - - @doc_controls.for_subclass_implementers - def _add_trackable(self, trackable_object, trainable): - """Adds a Trackable object to this layer's state. - - Args: - trackable_object: The tf.tracking.Trackable object to add. - trainable: Boolean, whether the variable should be part of the layer's - "trainable_variables" (e.g. variables, biases) or - "non_trainable_variables" (e.g. BatchNorm mean and variance). - - Returns: - The TrackableWeightHandler used to track this object. - """ - if isinstance( - trackable_object, base_layer_utils.TrackableWeightHandler - ): - handler = trackable_object - else: - handler = base_layer_utils.TrackableWeightHandler(trackable_object) - if trainable: - self._trainable_weights.append(handler) - else: - self._non_trainable_weights.append(handler) - return handler - - @doc_controls.for_subclass_implementers - def add_weight( - self, - name=None, - shape=None, - dtype=None, - initializer=None, - regularizer=None, - trainable=None, - constraint=None, - partitioner=None, - use_resource=None, - synchronization=tf.VariableSynchronization.AUTO, - aggregation=tf.compat.v1.VariableAggregation.NONE, - **kwargs, - ): - """Adds a new variable to the layer. - - Args: - name: Variable name. - shape: Variable shape. Defaults to scalar if unspecified. - dtype: The type of the variable. Defaults to `self.dtype` or - `float32`. - initializer: Initializer instance (callable). - regularizer: Regularizer instance (callable). - trainable: Boolean, whether the variable should be part of the layer's - "trainable_variables" (e.g. variables, biases) - or "non_trainable_variables" (e.g. BatchNorm mean and variance). - Note that `trainable` cannot be `True` if `synchronization` - is set to `ON_READ`. - constraint: Constraint instance (callable). - partitioner: Partitioner to be passed to the `Trackable` API. - use_resource: Whether to use `ResourceVariable`. - synchronization: Indicates when a distributed variable will be - aggregated. Accepted values are constants defined in the class - `tf.VariableSynchronization`. By default the synchronization is set - to `AUTO` and the current `DistributionStrategy` chooses when to - synchronize. If `synchronization` is set to `ON_READ`, `trainable` - must not be set to `True`. - aggregation: Indicates how a distributed variable will be aggregated. - Accepted values are constants defined in the class - `tf.VariableAggregation`. - **kwargs: Additional keyword arguments. Accepted values are `getter`, - `collections`, `experimental_autocast` and `caching_device`. - - Returns: - The created variable. Usually either a `Variable` or - `ResourceVariable` instance. If `partitioner` is not `None`, a - `PartitionedVariable` instance is returned. - - Raises: - RuntimeError: If called with partitioned variable regularization and - eager execution is enabled. - ValueError: When giving unsupported dtype and no initializer or when - trainable has been set to True with synchronization set as - `ON_READ`. - """ - if shape is None: - shape = () - # Validate optional keyword arguments. - for kwarg in kwargs: - if kwarg not in [ - "getter", - "collections", - "experimental_autocast", - "caching_device", - ]: - raise TypeError("Unknown keyword argument:", kwarg) - has_custom_getter = "getter" in kwargs - getter = kwargs.pop("getter", base_layer_utils.make_variable) - collections_arg = kwargs.pop("collections", None) - # 'experimental_autocast' can be set to False by the caller to indicate - # an AutoCastVariable should never be created. - autocast = kwargs.pop("experimental_autocast", True) - # See the docstring for tf.Variable about the details for - # caching_device. - caching_device = kwargs.pop("caching_device", None) - - if dtype is None: - dtype = self.dtype or backend.floatx() - dtype = tf.as_dtype(dtype) - if self._dtype_policy.variable_dtype is None: - # The policy is "_infer", so we infer the policy from the variable - # dtype. - self._set_dtype_policy(policy.Policy(dtype.base_dtype.name)) - initializer = initializers.get(initializer) - regularizer = regularizers.get(regularizer) - constraint = constraints.get(constraint) - - if synchronization == tf.VariableSynchronization.ON_READ: - if trainable: - raise ValueError( - "Synchronization value can be set to " - "VariableSynchronization.ON_READ only for non-trainable " - "variables. You have specified trainable=True and " - "synchronization=VariableSynchronization.ON_READ." - ) - else: - # Set trainable to be false when the variable is to be synced on - # read. - trainable = False - elif trainable is None: - trainable = True - - # Initialize variable when no initializer provided - if initializer is None: - # If dtype is DT_FLOAT, provide a uniform unit scaling initializer - if dtype.is_floating: - initializer = initializers.get("glorot_uniform") - # If dtype is DT_INT/DT_UINT, provide a default value `zero` - # If dtype is DT_BOOL, provide a default value `FALSE` - elif dtype.is_integer or dtype.is_unsigned or dtype.is_bool: - initializer = tf.compat.v1.zeros_initializer() - # NOTES:Do we need to support for handling DT_STRING and DT_COMPLEX - # here? - elif not has_custom_getter: - # When `getter` is specified, it's possibly fine for - # `initializer` to be None since it's up to the custom `getter` - # to raise error in case it indeed needs `initializer`. - raise ValueError( - "An initializer for variable %s of type %s is required" - " for layer %s" % (name, dtype.base_dtype, self.name) - ) - - if ( - autocast - and self._dtype_policy.compute_dtype - != self._dtype_policy.variable_dtype - and dtype.is_floating - ): - # Wrap 'getter' with a version that returns an AutoCastVariable. - old_getter = getter - - def getter(*args, **kwargs): - variable = old_getter(*args, **kwargs) - return autocast_variable.create_autocast_variable(variable) - - # Also the caching_device does not work with the mixed precision - # API, disable it if it is specified. - # TODO(b/142020079): Re-enable it once the bug is fixed. - if caching_device is not None: - tf_logging.warning( - "`caching_device` does not work with mixed precision API. " - "Ignoring user specified `caching_device`." - ) - caching_device = None - - variable = self._add_variable_with_custom_getter( - name=name, - shape=shape, - # TODO(allenl): a `make_variable` equivalent should be added as a - # `Trackable` method. - getter=getter, - # Manage errors in Layer rather than Trackable. - overwrite=True, - initializer=initializer, - dtype=dtype, - constraint=constraint, - trainable=trainable, - partitioner=partitioner, - use_resource=use_resource, - collections=collections_arg, - synchronization=synchronization, - aggregation=aggregation, - caching_device=caching_device, - ) - if regularizer is not None: - # TODO(fchollet): in the future, this should be handled at the - # level of variable creation, and weight regularization losses - # should be variable attributes. - name_in_scope = variable.name[: variable.name.find(":")] - self._handle_weight_regularization( - name_in_scope, variable, regularizer - ) - if base_layer_utils.is_split_variable(variable): - for v in variable: - backend.track_variable(v) - if trainable: - self._trainable_weights.append(v) - else: - self._non_trainable_weights.append(v) - else: - backend.track_variable(variable) - if trainable: - self._trainable_weights.append(variable) - else: - self._non_trainable_weights.append(variable) - return variable - - @generic_utils.default - def get_config(self): - """Returns the config of the layer. - - A layer config is a Python dictionary (serializable) - containing the configuration of a layer. - The same layer can be reinstantiated later - (without its trained weights) from this configuration. - - The config of a layer does not include connectivity - information, nor the layer class name. These are handled - by `Network` (one layer of abstraction above). - - Returns: - Python dictionary. - """ - all_args = tf_inspect.getfullargspec(self.__init__).args - config = {"name": self.name, "trainable": self.trainable} - if hasattr(self, "_batch_input_shape"): - config["batch_input_shape"] = self._batch_input_shape - config["dtype"] = policy.serialize(self._dtype_policy) - if hasattr(self, "dynamic"): - # Only include `dynamic` in the `config` if it is `True` - if self.dynamic: - config["dynamic"] = self.dynamic - elif "dynamic" in all_args: - all_args.remove("dynamic") - expected_args = config.keys() - # Finds all arguments in the `__init__` that are not in the config: - extra_args = [arg for arg in all_args if arg not in expected_args] - # Check that either the only argument in the `__init__` is `self`, - # or that `get_config` has been overridden: - if len(extra_args) > 1 and hasattr(self.get_config, "_is_default"): - raise NotImplementedError( - "Layers with arguments in `__init__` must " - "override `get_config`." - ) - return config - - @classmethod - def from_config(cls, config): - """Creates a layer from its config. - - This method is the reverse of `get_config`, - capable of instantiating the same layer from the config - dictionary. It does not handle layer connectivity - (handled by Network), nor weights (handled by `set_weights`). - - Args: - config: A Python dictionary, typically the - output of get_config. - - Returns: - A layer instance. - """ - return cls(**config) - - def compute_output_shape(self, input_shape): - """Computes the output shape of the layer. - - If the layer has not been built, this method will call `build` on the - layer. This assumes that the layer will later be used with inputs that - match the input shape provided here. - - Args: - input_shape: Shape tuple (tuple of integers) - or list of shape tuples (one per output tensor of the layer). - Shape tuples can include None for free dimensions, - instead of an integer. - - Returns: - An input shape tuple. - """ - if tf.executing_eagerly(): - # In this case we build the model first in order to do shape - # inference. This is acceptable because the framework only calls - # `compute_output_shape` on shape values that the layer would later - # be built for. It would however cause issues in case a user - # attempts to use `compute_output_shape` manually with shapes that - # are incompatible with the shape the Layer will be called on (these - # users will have to implement `compute_output_shape` themselves). - self._maybe_build(input_shape) - with tf.compat.v1.get_default_graph().as_default(): - graph = tf.__internal__.FuncGraph("graph") - with graph.as_default(): - input_shape = tf_utils.convert_shapes( - input_shape, to_tuples=False - ) - inputs = tf.nest.map_structure( - base_layer_utils.generate_placeholders_from_shape, - input_shape, - ) - try: - outputs = self(inputs, training=False) - except TypeError as e: - raise NotImplementedError( - "We could not automatically infer the static " - "shape of the layer's output. Please implement the " - "`compute_output_shape` method on your layer (%s)." - % self.__class__.__name__ - ) from e - return tf.nest.map_structure(lambda t: t.shape, outputs) - raise NotImplementedError - - @doc_controls.for_subclass_implementers - def compute_output_signature(self, input_signature): - """Compute the output tensor signature of the layer based on the inputs. - - Unlike a TensorShape object, a TensorSpec object contains both shape - and dtype information for a tensor. This method allows layers to provide - output dtype information if it is different from the input dtype. - For any layer that doesn't implement this function, - the framework will fall back to use `compute_output_shape`, and will - assume that the output dtype matches the input dtype. - - Args: - input_signature: Single TensorSpec or nested structure of TensorSpec - objects, describing a candidate input for the layer. - - Returns: - Single TensorSpec or nested structure of TensorSpec objects, - describing how the layer would transform the provided input. - - Raises: - TypeError: If input_signature contains a non-TensorSpec object. - """ - - def check_type_return_shape(s): - if not isinstance(s, tf.TensorSpec): - raise TypeError( - "Only TensorSpec signature types are supported, " - "but saw signature entry: {}.".format(s) - ) - return s.shape - - input_shape = tf.nest.map_structure( - check_type_return_shape, input_signature - ) - output_shape = self.compute_output_shape(input_shape) - dtype = self._compute_dtype - if dtype is None: - input_dtypes = [s.dtype for s in tf.nest.flatten(input_signature)] - # Default behavior when self.dtype is None, is to use the first - # input's dtype. - dtype = input_dtypes[0] - return tf.nest.map_structure( - lambda s: tf.TensorSpec(dtype=dtype, shape=s), output_shape - ) - - @generic_utils.default - def compute_mask(self, inputs, mask=None): - """Computes an output mask tensor. - - Args: - inputs: Tensor or list of tensors. - mask: Tensor or list of tensors. - - Returns: - None or a tensor (or list of tensors, - one per output tensor of the layer). - """ - if not self.supports_masking: - if any(m is not None for m in tf.nest.flatten(mask)): - raise TypeError( - "Layer " + self.name + " does not support masking, " - "but was passed an input_mask: " + str(mask) - ) - # masking not explicitly supported: return None as mask. - return None - # if masking is explicitly supported, by default - # carry over the input mask - return mask - - def __call__(self, *args, **kwargs): - """Wraps `call`, applying pre- and post-processing steps. - - Args: - *args: Positional arguments to be passed to `self.call`. - **kwargs: Keyword arguments to be passed to `self.call`. - - Returns: - Output tensor(s). - - Note: - - The following optional keyword arguments are reserved for specific - uses: - * `training`: Boolean scalar tensor of Python boolean indicating - whether the `call` is meant for training or inference. - * `mask`: Boolean input mask. - - If the layer's `call` method takes a `mask` argument (as some Keras - layers do), its default value will be set to the mask generated - for `inputs` by the previous layer (if `input` did come from - a layer that generated a corresponding mask, i.e. if it came from - a Keras layer with masking support. - - Raises: - ValueError: if the layer's `call` method returns None (an invalid - value). - RuntimeError: if `super().__init__()` was not called in the - constructor. - """ - self._assert_built_as_v1() - - if not hasattr(self, "_thread_local"): - raise RuntimeError( - "You must call `super().__init__()` in the layer constructor." - ) - - # Grab the first positional or keyword argument. - if args: - inputs = args[0] - args = args[1:] - elif self._call_spec.arg_names[0] in kwargs: - inputs = kwargs.pop(self._call_spec.arg_names[0]) - else: - raise ValueError( - "The first argument to `Layer.call` must always be passed." - ) - - call_context = base_layer_utils.call_context() - input_list = tf.nest.flatten(inputs) - - # We will attempt to build a TF graph if & only if all inputs are - # symbolic. This is always the case in graph mode. It can also be the - # case in eager mode when all inputs can be traced back to - # `keras.Input()` (when building models using the functional API). - build_graph = tf_utils.are_all_symbolic_tensors(input_list) - - # Accept NumPy and scalar inputs by converting to Tensors. - if any(isinstance(x, (np.ndarray, float, int)) for x in input_list): - - def _convert_non_tensor(x): - # Don't call `ops.convert_to_tensor` on all `inputs` because - # `SparseTensors` can't be converted to `Tensor`. - if isinstance(x, (np.ndarray, float, int)): - return tf.convert_to_tensor(x) - return x - - inputs = tf.nest.map_structure(_convert_non_tensor, inputs) - input_list = tf.nest.flatten(inputs) - - # Handle `mask` propagation from previous layer to current layer. Masks - # can be propagated explicitly via the `mask` argument, or implicitly - # via setting the `_keras_mask` attribute on the inputs to a Layer. - # Masks passed explicitly take priority. - mask_arg_passed_by_framework = False - input_masks = self._collect_input_masks(inputs, args, kwargs) - if ( - self._expects_mask_arg - and input_masks is not None - and not self._call_spec.arg_was_passed("mask", args, kwargs) - ): - mask_arg_passed_by_framework = True - kwargs["mask"] = input_masks - - # If `training` argument is None or not explicitly passed, - # propagate `training` value from this layer's calling layer. - training_value = None - training_arg_passed_by_framework = False - # Priority 1: `training` was explicitly passed. - if self._call_spec.arg_was_passed("training", args, kwargs): - training_value = self._call_spec.get_arg_value( - "training", args, kwargs - ) - if not self._expects_training_arg: - kwargs.pop("training") - - if training_value is None: - # Priority 2: `training` was passed to a parent layer. - if call_context.training is not None: - training_value = call_context.training - # Priority 3a: `learning_phase()` has been set. - elif backend.global_learning_phase_is_set(): - training_value = backend.learning_phase() - # Priority 3b: Pass the `learning_phase()` if in the Keras - # FuncGraph. - elif build_graph: - with backend.get_graph().as_default(): - if base_layer_utils.is_in_keras_graph(): - training_value = backend.learning_phase() - - if self._expects_training_arg and training_value is not None: - # Force the training_value to be bool type which matches to the - # contract for layer/model call args. - if tf.is_tensor(training_value): - training_value = tf.cast(training_value, tf.bool) - else: - training_value = bool(training_value) - args, kwargs = self._call_spec.set_arg_value( - "training", training_value, args, kwargs - ) - training_arg_passed_by_framework = True - - # Only create Keras history if at least one tensor originates from a - # `keras.Input`. Otherwise this Layer may be being used outside the - # Keras framework. - if build_graph and base_layer_utils.needs_keras_history(inputs): - base_layer_utils.create_keras_history(inputs) - - with call_context.enter(self, inputs, build_graph, training_value): - # Check input assumptions set after layer building, e.g. input - # shape. - if build_graph: - # Symbolic execution on symbolic tensors. We will attempt to - # build the corresponding TF subgraph inside - # `backend.get_graph()` - input_spec.assert_input_compatibility( - self.input_spec, inputs, self.name - ) - graph = backend.get_graph() - with graph.as_default(), backend.name_scope(self._name_scope()): - # Build layer if applicable (if the `build` method has been - # overridden). - self._maybe_build(inputs) - cast_inputs = self._maybe_cast_inputs(inputs) - - # Wrapping `call` function in autograph to allow for dynamic - # control flow and control dependencies in call. We are - # limiting this to subclassed layers as autograph is - # strictly needed only for subclassed layers and models. - # tf_convert will respect the value of autograph setting in - # the enclosing tf.function, if any. - if base_layer_utils.is_subclassed( - self - ) and not base_layer_utils.from_saved_model(self): - call_fn = tf.__internal__.autograph.tf_convert( - self.call, - tf.__internal__.autograph.control_status_ctx(), - ) - else: - call_fn = self.call - - if not self.dynamic: - try: - with autocast_variable.enable_auto_cast_variables( - self._compute_dtype_object - ): - outputs = call_fn(cast_inputs, *args, **kwargs) - - except tf.errors.OperatorNotAllowedInGraphError as e: - raise TypeError( - "You are attempting to use Python control " - "flow in a layer that was not declared to be " - "dynamic. Pass `dynamic=True` to the class " - 'constructor.\nEncountered error:\n"""\n' - + str(e) - + '\n"""' - ) - else: - # We will use static shape inference to return symbolic - # tensors matching the specifications of the layer - # outputs. Since `self.dynamic` is True, we will never - # attempt to run the underlying TF graph (which is - # disconnected). - # TODO(fchollet): consider py_func as an alternative, - # which would enable us to run the underlying graph if - # needed. - outputs = self._symbolic_call(inputs) - - if outputs is None: - raise ValueError( - "A layer's `call` method should return a " - "Tensor or a list of Tensors, not None " - "(layer: " + self.name + ")." - ) - if base_layer_utils.have_all_keras_metadata(inputs): - if training_arg_passed_by_framework: - args, kwargs = self._call_spec.set_arg_value( - "training", - None, - args, - kwargs, - pop_kwarg_if_none=True, - ) - if mask_arg_passed_by_framework: - kwargs.pop("mask") - outputs = self._set_connectivity_metadata( - (inputs,) + args, kwargs, outputs - ) - self._handle_activity_regularization(inputs, outputs) - self._set_mask_metadata(inputs, outputs, input_masks) - if hasattr(self, "_set_inputs") and not self.inputs: - # Subclassed network: explicitly set metadata normally - # set by a call to self._set_inputs(). - # TODO(b/120997007): This should be done in Eager as - # well, but causes garbage collection issues because of - # the placeholders created on the default Keras graph. - self._set_save_spec(inputs, args, kwargs) - self._set_inputs(inputs, outputs) - else: - # Eager execution on data tensors. - with backend.name_scope(self._name_scope()): - self._maybe_build(inputs) - cast_inputs = self._maybe_cast_inputs(inputs) - with autocast_variable.enable_auto_cast_variables( - self._compute_dtype_object - ): - outputs = self.call(cast_inputs, *args, **kwargs) - self._handle_activity_regularization(inputs, outputs) - self._set_mask_metadata(inputs, outputs, input_masks) - - return outputs - - def _assert_built_as_v1(self): - if not hasattr(self, "_originally_built_as_v1"): - raise ValueError( - "Your Layer or Model is in an invalid state. " - "This can happen for the following cases:\n " - "1. You might be interleaving estimator/non-estimator models " - "or interleaving models/layers made in " - "tf.compat.v1.Graph.as_default() with models/layers created " - "outside of it. " - "Converting a model to an estimator (via model_to_estimator) " - "invalidates all models/layers made before the conversion " - "(even if they were not the model converted to an estimator). " - "Similarly, making a layer or a model inside a " - "a tf.compat.v1.Graph invalidates all layers/models you " - "previously made outside of the graph.\n" - "2. You might be using a custom keras layer implementation " - "with custom __init__ which didn't call super().__init__. " - " Please check the implementation of %s and its bases." - % (type(self),) - ) - - @property - def dtype(self): - return self._dtype_policy.variable_dtype - - @property - def name(self): - return self._name - - @property - def dynamic(self): - return any(layer._dynamic for layer in self._flatten_layers()) - - @property - @doc_controls.do_not_generate_docs - def stateful(self): - return any(layer._stateful for layer in self._flatten_layers()) - - @stateful.setter - def stateful(self, value): - self._stateful = value - - @property - def trainable(self): - return self._trainable - - @trainable.setter - def trainable(self, value): - self._trainable = value - for layer in getattr(self, "_self_tracked_trackables", []): - layer.trainable = value - - @property - def activity_regularizer(self): - """Optional regularizer function for the output of this layer.""" - return self._activity_regularizer - - @activity_regularizer.setter - def activity_regularizer(self, regularizer): - """Optional regularizer function for the output of this layer.""" - self._activity_regularizer = regularizer - - @property - def input_spec(self): - return self._input_spec - - @input_spec.setter - # Must be decorated to prevent tracking, since the input_spec can be nested - # InputSpec objects. - @tf.__internal__.tracking.no_automatic_dependency_tracking - def input_spec(self, value): - for v in tf.nest.flatten(value): - if v is not None and not isinstance(v, input_spec.InputSpec): - raise TypeError( - "Layer input_spec must be an instance of InputSpec. " - "Got: {}".format(v) - ) - self._input_spec = value - - @property - def updates(self): - collected_updates = [] - all_layers = self._flatten_layers() - with backend.get_graph().as_default(): - for layer in all_layers: - if not layer.trainable and not layer.stateful: - continue - for u in layer._updates: - if callable(u): - try: - u = u() - except ValueError as e: - if "InaccessibleTensorError" in type(e).__name__: - # For one specific case of error we try to raise - # a more meaningful error message about the - # graph if we can. This error is an internal TF - # symbol that is not publicly exposed, so we - # check the name directly rather than using a - # direct import. - base_layer_utils.check_graph_consistency( - method="add_update", force_raise=True - ) - # check_graph_consistency may not always raise. - raise - base_layer_utils.check_graph_consistency( - u, method="add_update" - ) - collected_updates.append(u) - return collected_updates - - @property - def losses(self): - """Losses which are associated with this `Layer`. - - Variable regularization tensors are created when this property is - accessed, so it is eager safe: accessing `losses` under a - `tf.GradientTape` will propagate gradients back to the corresponding - variables. - - Returns: - A list of tensors. - """ - collected_losses = [] - all_layers = self._flatten_layers() - for layer in all_layers: - # If any eager losses are present, we assume the model to be part of - # an eager training loop (either a custom one or the one used when - # `run_eagerly=True`) and so we always return just the eager losses. - collected_losses.extend(layer._losses) - for regularizer in layer._callable_losses: - loss_tensor = regularizer() - if loss_tensor is not None: - collected_losses.append(loss_tensor) - return collected_losses - - @doc_controls.for_subclass_implementers - def add_loss(self, losses, inputs=None): - """Add loss tensor(s), potentially dependent on layer inputs. - - Some losses (for instance, activity regularization losses) may be - dependent on the inputs passed when calling a layer. Hence, when reusing - the same layer on different inputs `a` and `b`, some entries in - `layer.losses` may be dependent on `a` and some on `b`. This method - automatically keeps track of dependencies. - - This method can be used inside a subclassed layer or model's `call` - function, in which case `losses` should be a Tensor or list of Tensors. - - Example: - - ```python - class MyLayer(tf.keras.layers.Layer): - def call(inputs, self): - self.add_loss(tf.abs(tf.reduce_mean(inputs)), inputs=True) - return inputs - ``` - - This method can also be called directly on a Functional Model during - construction. In this case, any loss Tensors passed to this Model must - be symbolic and be able to be traced back to the model's `Input`s. These - losses become part of the model's topology and are tracked in - `get_config`. - - Example: - - ```python - inputs = tf.keras.Input(shape=(10,)) - x = tf.keras.layers.Dense(10)(inputs) - outputs = tf.keras.layers.Dense(1)(x) - model = tf.keras.Model(inputs, outputs) - # Activity regularization. - model.add_loss(tf.abs(tf.reduce_mean(x))) - ``` - - If this is not the case for your loss (if, for example, your loss - references a `Variable` of one of the model's layers), you can wrap your - loss in a zero-argument lambda. These losses are not tracked as part of - the model's topology since they can't be serialized. - - Example: - - ```python - inputs = tf.keras.Input(shape=(10,)) - x = tf.keras.layers.Dense(10)(inputs) - outputs = tf.keras.layers.Dense(1)(x) - model = tf.keras.Model(inputs, outputs) - # Weight regularization. - model.add_loss(lambda: tf.reduce_mean(x.kernel)) - ``` - - Args: - losses: Loss tensor, or list/tuple of tensors. Rather than tensors, - losses may also be zero-argument callables which create a loss - tensor. - inputs: Ignored when executing eagerly. If anything other than None is - passed, it signals the losses are conditional on some of the layer's - inputs, and thus they should only be run where these inputs are - available. This is the case for activity regularization losses, for - instance. If `None` is passed, the losses are assumed - to be unconditional, and will apply across all dataflows of the - layer (e.g. weight regularization losses). - """ - - def _tag_unconditional(loss): - """Process the loss and tag it by setting ._unconditional_loss.""" - if callable(loss): - # We run the loss without autocasting, as regularizers are often - # numerically unstable in float16. - with autocast_variable.enable_auto_cast_variables(None): - loss = loss() - if loss is None: - # Will be filtered out when computing the .losses property - return None - if not tf.is_tensor(loss): - loss = tf.convert_to_tensor(loss, dtype=backend.floatx()) - loss._unconditional_loss = inputs is None - return loss - - losses = tf.nest.flatten(losses) - - callable_losses = [] - symbolic_losses = [] - for loss in losses: - if callable(loss): - callable_losses.append( - functools.partial(_tag_unconditional, loss) - ) - continue - if loss is None: - continue - if not tf.is_tensor(loss): - loss = tf.convert_to_tensor(loss, dtype=backend.floatx()) - # TF Functions should take the eager path. - if ( - tf_utils.is_symbolic_tensor(loss) - and not base_layer_utils.is_in_tf_function() - ): - symbolic_losses.append(_tag_unconditional(loss)) - base_layer_utils.check_graph_consistency( - loss, method="add_loss" - ) - - self._callable_losses.extend(callable_losses) - - in_call_context = base_layer_utils.call_context().in_call - - if in_call_context: - for symbolic_loss in symbolic_losses: - self._losses.append(symbolic_loss) - else: - for symbolic_loss in symbolic_losses: - if getattr(self, "_is_graph_network", False): - self._graph_network_add_loss(symbolic_loss) - else: - # Possible a loss was added in a Layer's `build`. - self._losses.append(symbolic_loss) - - @property - def metrics(self): - collected_metrics = [] - for layer in self._flatten_layers(): - collected_metrics.extend(layer._metrics) - return collected_metrics - - @doc_controls.for_subclass_implementers - def add_metric(self, value, aggregation=None, name=None): - """Adds metric tensor to the layer. - - Args: - value: Metric tensor. - aggregation: Sample-wise metric reduction function. If - `aggregation=None`, it indicates that the metric tensor provided has - been aggregated already. eg, `bin_acc = BinaryAccuracy(name='acc')` - followed by `model.add_metric(bin_acc(y_true, y_pred))`. If - aggregation='mean', the given metric tensor will be sample-wise - reduced using `mean` function. eg, - `model.add_metric(tf.reduce_sum(outputs), name='output_mean', - aggregation='mean')`. - name: String metric name. - - Raises: - ValueError: If `aggregation` is anything other than None or `mean`. - """ - if aggregation is not None and aggregation != "mean": - raise ValueError( - "We currently support only `mean` sample-wise metric " - "aggregation. You provided aggregation=`%s`" % aggregation - ) - - from_metric_obj = hasattr(value, "_metric_obj") - is_symbolic = tf_utils.is_symbolic_tensor(value) - in_call_context = base_layer_utils.call_context().in_call - - if name is None and not from_metric_obj: - # Eg. `self.add_metric(math_ops.reduce_sum(x), aggregation='mean')` - # In eager mode, we use metric name to lookup a metric. Without a - # name, a new Mean metric wrapper will be created on every - # model/layer call. So, we raise an error when no name is provided. - # We will do the same for symbolic mode for consistency although a - # name will be generated if no name is provided. - - # We will not raise this error in the foll use case for the sake of - # consistency as name in provided in the metric constructor. - # mean = metrics.Mean(name='my_metric') - # model.add_metric(mean(outputs)) - raise ValueError( - "Please provide a name for your metric like " - "`self.add_metric(tf.reduce_sum(inputs), " - "name='mean_activation', aggregation='mean')`" - ) - elif from_metric_obj: - name = value._metric_obj.name - - if in_call_context: - # TF Function path should take the eager path. - self._symbolic_add_metric(value, aggregation, name) - else: - if not is_symbolic: - raise ValueError( - "Expected a symbolic Tensor for the metric value, " - "received: " + str(value) - ) - - # Possible a metric was added in a Layer's `build`. - if not getattr(self, "_is_graph_network", False): - with backend.get_graph().as_default(): - self._symbolic_add_metric(value, aggregation, name) - return - - if from_metric_obj: - raise ValueError( - "Using the result of calling a `Metric` object " - "when calling `add_metric` on a Functional " - "Model is not supported. Please pass the " - "Tensor to monitor directly." - ) - - # Insert layers into the Keras Graph Network. - self._graph_network_add_metric(value, aggregation, name) - - @doc_controls.for_subclass_implementers - def add_update(self, updates): - """Add update op(s), potentially dependent on layer inputs. - - Weight updates (for instance, the updates of the moving mean and - variance in a BatchNormalization layer) may be dependent on the inputs - passed when calling a layer. Hence, when reusing the same layer on - different inputs `a` and `b`, some entries in `layer.updates` may be - dependent on `a` and some on `b`. This method automatically keeps track - of dependencies. - - The `get_updates_for` method allows to retrieve the updates relevant to - a specific set of inputs. - - This call is ignored when eager execution is enabled (in that case, - variable updates are run on the fly and thus do not need to be tracked - for later execution). - - Args: - updates: Update op, or list/tuple of update ops, or zero-arg callable - that returns an update op. A zero-arg callable should be passed in - order to disable running the updates by setting `trainable=False` - on this Layer, when executing in Eager mode. - """ - call_context = base_layer_utils.call_context() - - if ( - tf.distribute.has_strategy() - and tf.distribute.in_cross_replica_context() - # When saving the model, the distribution strategy context should be - # ignored, following the default path for adding updates. - and not call_context.saving - ): - # Updates don't need to be run in a cross-replica context. - return - - updates = generic_utils.to_list(updates) - - if call_context.in_call: - relevant_inputs = call_context.inputs - else: - inbound_nodes = getattr(self, "_inbound_nodes", []) - relevant_inputs = [node.input_tensors for node in inbound_nodes] - - def process_update(x): - """Standardize update ops. - - Args: - x: Tensor, op, or callable. - - Returns: - An update op. - """ - if callable(x): - update = lambda: process_update(x()) - return update() - elif isinstance(x, tf.Operation): - update = x - elif hasattr(x, "op"): - update = x.op - else: - update = tf.convert_to_tensor(x) - - reachable = tf_utils.get_reachable_from_inputs( - relevant_inputs, [update] - ) - update._unconditional_update = update not in reachable - return update - - updates = [process_update(x) for x in updates] - self._updates.extend(updates) - - def set_weights(self, weights): - """Sets the weights of the layer, from Numpy arrays. - - The weights of a layer represent the state of the layer. This function - sets the weight values from numpy arrays. The weight values should be - passed in the order they are created by the layer. Note that the layer's - weights must be instantiated before calling this function by calling - the layer. - - For example, a Dense layer returns a list of two values-- per-output - weights and the bias value. These can be used to set the weights of - another Dense layer: - - >>> a = tf.keras.layers.Dense(1, - ... kernel_initializer=tf.constant_initializer(1.)) - >>> a_out = a(tf.convert_to_tensor([[1., 2., 3.]])) - >>> a.get_weights() - [array([[1.], - [1.], - [1.]], dtype=float32), array([0.], dtype=float32)] - >>> b = tf.keras.layers.Dense(1, - ... kernel_initializer=tf.constant_initializer(2.)) - >>> b_out = b(tf.convert_to_tensor([[10., 20., 30.]])) - >>> b.get_weights() - [array([[2.], - [2.], - [2.]], dtype=float32), array([0.], dtype=float32)] - >>> b.set_weights(a.get_weights()) - >>> b.get_weights() - [array([[1.], - [1.], - [1.]], dtype=float32), array([0.], dtype=float32)] - - Args: - weights: a list of Numpy arrays. The number - of arrays and their shape must match - number of the dimensions of the weights - of the layer (i.e. it should match the - output of `get_weights`). - - Raises: - ValueError: If the provided weights list does not match the - layer's specifications. - """ - params = self.weights - - expected_num_weights = 0 - for param in params: - if isinstance(param, base_layer_utils.TrackableWeightHandler): - expected_num_weights += param.num_tensors - else: - expected_num_weights += 1 - - if expected_num_weights != len(weights): - raise ValueError( - 'You called `set_weights(weights)` on layer "%s" ' - "with a weight list of length %s, but the layer was " - "expecting %s weights. Provided weights: %s..." - % ( - self.name, - len(weights), - expected_num_weights, - str(weights)[:50], - ) - ) - - weight_index = 0 - weight_value_tuples = [] - for param in params: - if isinstance(param, base_layer_utils.TrackableWeightHandler): - num_tensors = param.num_tensors - tensors = weights[weight_index : weight_index + num_tensors] - param.set_weights(tensors) - weight_index += num_tensors - else: - weight = weights[weight_index] - weight_shape = weight.shape if hasattr(weight, "shape") else () - ref_shape = param.shape - if not ref_shape.is_compatible_with(weight_shape): - raise ValueError( - "Layer weight shape %s not compatible with provided " - "weight shape %s" % (ref_shape, weight_shape) - ) - weight_value_tuples.append((param, weight)) - weight_index += 1 - - backend.batch_set_value(weight_value_tuples) - - def get_weights(self): - """Returns the current weights of the layer. - - The weights of a layer represent the state of the layer. This function - returns both trainable and non-trainable weight values associated with - this layer as a list of Numpy arrays, which can in turn be used to load - state into similarly parameterized layers. - - For example, a Dense layer returns a list of two values-- per-output - weights and the bias value. These can be used to set the weights of - another Dense layer: - - >>> a = tf.keras.layers.Dense(1, - ... kernel_initializer=tf.constant_initializer(1.)) - >>> a_out = a(tf.convert_to_tensor([[1., 2., 3.]])) - >>> a.get_weights() - [array([[1.], - [1.], - [1.]], dtype=float32), array([0.], dtype=float32)] - >>> b = tf.keras.layers.Dense(1, - ... kernel_initializer=tf.constant_initializer(2.)) - >>> b_out = b(tf.convert_to_tensor([[10., 20., 30.]])) - >>> b.get_weights() - [array([[2.], - [2.], - [2.]], dtype=float32), array([0.], dtype=float32)] - >>> b.set_weights(a.get_weights()) - >>> b.get_weights() - [array([[1.], - [1.], - [1.]], dtype=float32), array([0.], dtype=float32)] - - Returns: - Weights values as a list of numpy arrays. - """ - weights = self.weights - output_weights = [] - for weight in weights: - if isinstance(weight, base_layer_utils.TrackableWeightHandler): - output_weights.extend(weight.get_tensors()) - else: - output_weights.append(weight) - return backend.batch_get_value(output_weights) - - def get_updates_for(self, inputs): - """Retrieves updates relevant to a specific set of inputs. - - Args: - inputs: Input tensor or list/tuple of input tensors. - - Returns: - List of update ops of the layer that depend on `inputs`. - """ - if inputs is None: - # Requesting unconditional updates. - return [u for u in self.updates if u._unconditional_update] - - # Requesting input-conditional updates. - updates = [u for u in self.updates if not u._unconditional_update] - inputs = tf.nest.flatten(inputs) - reachable = tf_utils.get_reachable_from_inputs(inputs, updates) - return [u for u in updates if u in reachable] - - def get_losses_for(self, inputs): - """Retrieves losses relevant to a specific set of inputs. - - Args: - inputs: Input tensor or list/tuple of input tensors. - - Returns: - List of loss tensors of the layer that depend on `inputs`. - """ - if inputs is None: - # Requesting unconditional losses. - return [l for l in self.losses if l._unconditional_loss] - - # Requesting input-conditional losses. - losses = [l for l in self.losses if not l._unconditional_loss] - inputs = tf.nest.flatten(inputs) - reachable = tf_utils.get_reachable_from_inputs(inputs, losses) - return [l for l in losses if l in reachable] - - def get_input_mask_at(self, node_index): - """Retrieves the input mask tensor(s) of a layer at a given node. - - Args: - node_index: Integer, index of the node - from which to retrieve the attribute. - E.g. `node_index=0` will correspond to the - first time the layer was called. - - Returns: - A mask tensor - (or list of tensors if the layer has multiple inputs). - """ - inputs = self.get_input_at(node_index) - if isinstance(inputs, list): - return [getattr(x, "_keras_mask", None) for x in inputs] - else: - return getattr(inputs, "_keras_mask", None) - - def get_output_mask_at(self, node_index): - """Retrieves the output mask tensor(s) of a layer at a given node. - - Args: - node_index: Integer, index of the node - from which to retrieve the attribute. - E.g. `node_index=0` will correspond to the - first time the layer was called. - - Returns: - A mask tensor - (or list of tensors if the layer has multiple outputs). - """ - output = self.get_output_at(node_index) - if isinstance(output, list): - return [getattr(x, "_keras_mask", None) for x in output] - else: - return getattr(output, "_keras_mask", None) - - @property - def input_mask(self): - """Retrieves the input mask tensor(s) of a layer. - - Only applicable if the layer has exactly one inbound node, - i.e. if it is connected to one incoming layer. - - Returns: - Input mask tensor (potentially None) or list of input - mask tensors. - - Raises: - AttributeError: if the layer is connected to - more than one incoming layers. - """ - inputs = self.input - if isinstance(inputs, list): - return [getattr(x, "_keras_mask", None) for x in inputs] - else: - return getattr(inputs, "_keras_mask", None) - - @property - def output_mask(self): - """Retrieves the output mask tensor(s) of a layer. - - Only applicable if the layer has exactly one inbound node, - i.e. if it is connected to one incoming layer. - - Returns: - Output mask tensor (potentially None) or list of output - mask tensors. - - Raises: - AttributeError: if the layer is connected to - more than one incoming layers. - """ - output = self.output - if isinstance(output, list): - return [getattr(x, "_keras_mask", None) for x in output] - else: - return getattr(output, "_keras_mask", None) - - def get_input_shape_at(self, node_index): - """Retrieves the input shape(s) of a layer at a given node. - - Args: - node_index: Integer, index of the node - from which to retrieve the attribute. - E.g. `node_index=0` will correspond to the - first time the layer was called. - - Returns: - A shape tuple - (or list of shape tuples if the layer has multiple inputs). - - Raises: - RuntimeError: If called in Eager mode. - """ - return self._get_node_attribute_at_index( - node_index, "input_shapes", "input shape" - ) - - def get_output_shape_at(self, node_index): - """Retrieves the output shape(s) of a layer at a given node. - - Args: - node_index: Integer, index of the node - from which to retrieve the attribute. - E.g. `node_index=0` will correspond to the - first time the layer was called. - - Returns: - A shape tuple - (or list of shape tuples if the layer has multiple outputs). - - Raises: - RuntimeError: If called in Eager mode. - """ - return self._get_node_attribute_at_index( - node_index, "output_shapes", "output shape" - ) - - def get_input_at(self, node_index): - """Retrieves the input tensor(s) of a layer at a given node. - - Args: - node_index: Integer, index of the node - from which to retrieve the attribute. - E.g. `node_index=0` will correspond to the - first input node of the layer. - - Returns: - A tensor (or list of tensors if the layer has multiple inputs). - - Raises: - RuntimeError: If called in Eager mode. - """ - return self._get_node_attribute_at_index( - node_index, "input_tensors", "input" - ) - - def get_output_at(self, node_index): - """Retrieves the output tensor(s) of a layer at a given node. - - Args: - node_index: Integer, index of the node - from which to retrieve the attribute. - E.g. `node_index=0` will correspond to the - first output node of the layer. - - Returns: - A tensor (or list of tensors if the layer has multiple outputs). - - Raises: - RuntimeError: If called in Eager mode. - """ - return self._get_node_attribute_at_index( - node_index, "output_tensors", "output" - ) - - @property - def input(self): - """Retrieves the input tensor(s) of a layer. - - Only applicable if the layer has exactly one input, - i.e. if it is connected to one incoming layer. - - Returns: - Input tensor or list of input tensors. - - Raises: - RuntimeError: If called in Eager mode. - AttributeError: If no inbound nodes are found. - """ - if not self._inbound_nodes: - raise AttributeError( - "Layer " + self.name + " is not connected, no input to return." - ) - return self._get_node_attribute_at_index(0, "input_tensors", "input") - - @property - def output(self): - """Retrieves the output tensor(s) of a layer. - - Only applicable if the layer has exactly one output, - i.e. if it is connected to one incoming layer. - - Returns: - Output tensor or list of output tensors. - - Raises: - AttributeError: if the layer is connected to more than one incoming - layers. - RuntimeError: if called in Eager mode. - """ - if not self._inbound_nodes: - raise AttributeError( - "Layer " + self.name + " has no inbound nodes." - ) - return self._get_node_attribute_at_index(0, "output_tensors", "output") - - @property - def input_shape(self): - """Retrieves the input shape(s) of a layer. - - Only applicable if the layer has exactly one input, - i.e. if it is connected to one incoming layer, or if all inputs - have the same shape. - - Returns: - Input shape, as an integer shape tuple - (or list of shape tuples, one tuple per input tensor). - - Raises: - AttributeError: if the layer has no defined input_shape. - RuntimeError: if called in Eager mode. - """ - if not self._inbound_nodes: - raise AttributeError( - f'The layer "{self.name}" has never been called ' - "and thus has no defined input shape. Note that the " - "`input_shape` property is only available for " - "Functional and Sequential models." - ) - all_input_shapes = set( - [str(node.input_shapes) for node in self._inbound_nodes] - ) - if len(all_input_shapes) == 1: - return self._inbound_nodes[0].input_shapes - else: - raise AttributeError( - 'The layer "' + str(self.name) + " has multiple inbound nodes, " - "with different input shapes. Hence " - 'the notion of "input shape" is ' - "ill-defined for the layer. " - "Use `get_input_shape_at(node_index)` " - "instead." - ) - - def count_params(self): - """Count the total number of scalars composing the weights. - - Returns: - An integer count. - - Raises: - ValueError: if the layer isn't yet built - (in which case its weights aren't yet defined). - """ - if not self.built: - if getattr(self, "_is_graph_network", False): - with tf_utils.maybe_init_scope(self): - self._maybe_build(self.inputs) - else: - raise ValueError( - "You tried to call `count_params` on " - + self.name - + ", but the layer isn't built. " - "You can build it manually via: `" - + self.name - + ".build(batch_input_shape)`." - ) - return layer_utils.count_params(self.weights) - - @property - def output_shape(self): - """Retrieves the output shape(s) of a layer. - - Only applicable if the layer has one output, - or if all outputs have the same shape. - - Returns: - Output shape, as an integer shape tuple - (or list of shape tuples, one tuple per output tensor). - - Raises: - AttributeError: if the layer has no defined output shape. - RuntimeError: if called in Eager mode. - """ - if not self._inbound_nodes: - raise AttributeError( - "The layer has never been called " - "and thus has no defined output shape." - ) - all_output_shapes = set( - [str(node.output_shapes) for node in self._inbound_nodes] - ) - if len(all_output_shapes) == 1: - return self._inbound_nodes[0].output_shapes - else: - raise AttributeError( - 'The layer "%s"' - " has multiple inbound nodes, " - "with different output shapes. Hence " - 'the notion of "output shape" is ' - "ill-defined for the layer. " - "Use `get_output_shape_at(node_index)` " - "instead." % self.name - ) - - @property - @doc_controls.do_not_doc_inheritable - def inbound_nodes(self): - """Deprecated, do NOT use! Only for external Keras compatibility .""" - return self._inbound_nodes - - @property - @doc_controls.do_not_doc_inheritable - def outbound_nodes(self): - """Deprecated, do NOT use! Only for external Keras compatibility .""" - return self._outbound_nodes - - ########################################################################### - # Methods & attributes below are public aliases of other methods. # - ########################################################################### - - @property - def variables(self): - """Returns the list of all layer variables/weights. - - Alias of `self.weights`. - - Returns: - A list of variables. - """ - return self.weights - - @property - def trainable_variables(self): - return self.trainable_weights - - @property - def non_trainable_variables(self): - return self.non_trainable_weights - - ############################################################################ - # Methods & attributes below are all private and only used by the framework. - ############################################################################ - - @property - def _inbound_nodes(self): - return self._inbound_nodes_value - - @_inbound_nodes.setter - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _inbound_nodes(self, value): - self._inbound_nodes_value = value - - @property - def _outbound_nodes(self): - return self._outbound_nodes_value - - @_outbound_nodes.setter - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _outbound_nodes(self, value): - self._outbound_nodes_value = value - - def _set_dtype_policy(self, dtype): - """Sets self._dtype_policy.""" - if isinstance(dtype, policy.Policy): - self._dtype_policy = dtype - elif isinstance(dtype, dict): - self._dtype_policy = policy.deserialize(dtype) - elif isinstance(dtype, str) and dtype in ( - "mixed_float16", - "mixed_bfloat16", - ): - # The isinstance check is required since np.dtype raises an error if - # compared to a non-dtype string. - self._dtype_policy = policy.Policy(dtype) - elif dtype: - self._dtype_policy = policy.Policy(tf.as_dtype(dtype).name) - else: - self._dtype_policy = policy.global_policy() - if ( - self._dtype_policy.name == "mixed_float16" - and not loss_scale_optimizer.strategy_supports_loss_scaling() - ): - # Although only loss scaling doesn't support certain strategies, to - # avoid confusion, we disallow the 'mixed_float16' policy with - # unsupported strategies. This is because 'mixed_float16' requires - # loss scaling for numeric stability. - strategy = tf.distribute.get_strategy() - raise ValueError( - "Mixed precision is not supported with the " - "tf.distribute.Strategy: %s. Either stop using mixed " - 'precision by removing the use of the "%s" policy or ' - "use a different Strategy, e.g. a MirroredStrategy." - % (strategy.__class__.__name__, self._dtype_policy.name) - ) - - # Performance optimization: cache the compute dtype as a Dtype object or - # None, so that str to Dtype conversion doesn't happen in - # Layer.__call__. - if self._dtype_policy.compute_dtype: - self._compute_dtype_object = tf.as_dtype( - self._dtype_policy.compute_dtype - ) - else: - self._compute_dtype_object = None - - # TODO(reedwm): Expose this property? - @property - def _compute_dtype(self): - """The layer's compute dtype. - - Unless mixed-precision is used, this is the same as `Layer.dtype`. - - If self._autocast is True, layer's will cast floating-point inputs to - this. - - Returns: - The layer's compute dtype. - """ - return self._dtype_policy.compute_dtype - - def _maybe_cast_inputs(self, inputs): - """Maybe casts the inputs to the compute dtype. - - If self._compute_dtype is floating-point, and self_autocast is True, - floating-point inputs are casted to self._compute_dtype. - - Args: - inputs: Input tensor, or structure of input tensors. - - Returns: - `inputs`, but tensors may have been casted to self._compute_dtype - """ - compute_dtype = self._compute_dtype - if ( - self._autocast - and compute_dtype - and tf.as_dtype(compute_dtype).is_floating - ): - - def f(x): - """Cast a single Tensor or TensorSpec to the compute dtype.""" - cast_types = (tf.Tensor, tf.SparseTensor, tf.RaggedTensor) - if ( - isinstance(x, cast_types) - and x.dtype.is_floating - and x.dtype.base_dtype.name != compute_dtype - ): - return tf.cast(x, compute_dtype) - elif isinstance(x, tf.TensorSpec) and x.dtype.is_floating: - # Inputs may be TensorSpecs when this function is called - # from model._set_inputs. - return tf.TensorSpec(x.shape, compute_dtype, x.name) - else: - return x - - return tf.nest.map_structure(f, inputs) - else: - return inputs - - # _dtype used to be an attribute set in the constructor. We still expose it - # because some clients still use it. - # TODO(reedwm): Deprecate, then remove the _dtype property. - @property - def _dtype(self): - # This is equivalent to returning self.dtype . We do not return - # self.dtype as it would cause infinite recursion in a few subclasses, - # which override "dtype" to return self._dtype. - return self._dtype_policy.variable_dtype - - @_dtype.setter - def _dtype(self, value): - value = tf.as_dtype(value).name - self._set_dtype_policy(policy.Policy(value)) - - def _name_scope(self): - return self.name - - def _init_set_name(self, name, zero_based=True): - if not name: - self._name = backend.unique_object_name( - generic_utils.to_snake_case(self.__class__.__name__), - zero_based=zero_based, - ) - else: - self._name = name - - def _get_existing_metric(self, name=None): - match = [m for m in self._metrics if m.name == name] - if not match: - return - if len(match) > 1: - raise ValueError( - "Please provide different names for the metrics you have " - 'added. We found {} metrics with the name: "{}"'.format( - len(match), name - ) - ) - return match[0] - - def _symbolic_add_metric(self, value, aggregation=None, name=None): - base_layer_utils.check_graph_consistency(value, method="add_metric") - match = self._get_existing_metric(name) - if aggregation is None: - # Iterate over the metrics and check if the given metric exists - # already. This can happen when a metric instance is created in - # subclassed model layer `__init__` and we have tracked that - # instance already in model.__setattr__. - if match: - result_tensor = value - metric_obj = match - elif hasattr(value, "_metric_obj"): - # We track the instance using the metadata on the result tensor. - result_tensor = value - metric_obj = result_tensor._metric_obj - self._metrics.append(metric_obj) - else: - raise ValueError( - "We do not support adding an aggregated metric result " - "tensor that is not the output of a " - "`tf.keras.metrics.Metric` metric instance. Without " - "having access to the metric instance we cannot reset the " - "state of a metric after every epoch during training. You " - "can create a `tf.keras.metrics.Metric` instance and pass " - "the result here or pass an un-aggregated result with " - "`aggregation` parameter set as `mean`. For example: " - "`self.add_metric(tf.reduce_sum(inputs), " - "name='mean_activation', aggregation='mean')` " - ) - else: - # If a non-aggregated tensor is given as input (ie. `aggregation` is - # explicitly set to `mean`), we wrap the tensor in `Mean` metric. - if match: - result_tensor = match(value) - metric_obj = match - else: - metric_obj, result_tensor = base_layer_utils.create_mean_metric( - value, name - ) - self._metrics.append(metric_obj) - - def _handle_weight_regularization(self, name, variable, regularizer): - """Create lambdas which compute regularization losses.""" - - def _loss_for_variable(v): - """Creates a regularization loss `Tensor` for variable `v`.""" - with backend.name_scope(name + "/Regularizer"): - regularization = regularizer(v) - return regularization - - if base_layer_utils.is_split_variable(variable): - for v in variable: - self.add_loss(functools.partial(_loss_for_variable, v)) - else: - self.add_loss(functools.partial(_loss_for_variable, variable)) - - def _handle_activity_regularization(self, inputs, outputs): - # Apply activity regularization. - # Note that it should be applied every time the layer creates a new - # output, since it is output-specific. - if self._activity_regularizer: - output_list = tf.nest.flatten(outputs) - with backend.name_scope("ActivityRegularizer"): - for output in output_list: - activity_loss = tf.convert_to_tensor( - self._activity_regularizer(output) - ) - batch_size = tf.cast( - tf.compat.v1.shape(output)[0], activity_loss.dtype - ) - # Make activity regularization strength batch-agnostic. - mean_activity_loss = activity_loss / batch_size - base_layer_utils.check_graph_consistency( - mean_activity_loss, method="activity_regularizer" - ) - self.add_loss(mean_activity_loss, inputs=inputs) - - def _set_mask_metadata(self, inputs, outputs, previous_mask): - flat_outputs = tf.nest.flatten(outputs) - - mask_already_computed = getattr( - self, "_compute_output_and_mask_jointly", False - ) or all( - getattr(x, "_keras_mask", None) is not None for x in flat_outputs - ) - - # Only compute the mask if the Layer explicitly supports masking or has - # overridden `compute_mask`. - should_compute_mask = hasattr(self, "compute_mask") and ( - self.supports_masking - or not getattr(self.compute_mask, "_is_default", False) - ) - - if mask_already_computed: - flat_masks = [getattr(x, "_keras_mask", None) for x in flat_outputs] - elif not should_compute_mask: - flat_masks = [None for _ in flat_outputs] - else: - output_masks = self.compute_mask(inputs, previous_mask) - # `compute_mask` can return a single `None` even when a Layer - # has multiple outputs. - if output_masks is None: - flat_masks = [None for _ in flat_outputs] - else: - flat_masks = tf.nest.flatten(output_masks) - - for output, mask in zip(flat_outputs, flat_masks): - try: - output._keras_mask = mask - except AttributeError: - # C Type such as np.ndarray. - pass - - if tf_utils.are_all_symbolic_tensors(flat_outputs): - for output in flat_outputs: - if getattr(output, "_keras_mask", None) is not None: - # Do not track masks for `TensorFlowOpLayer` construction. - output._keras_mask._keras_history_checked = True - - def _collect_input_masks(self, inputs, args, kwargs): - """Checks if mask argument was passed, else gathers mask from inputs.""" - if self._call_spec.arg_was_passed("mask", args, kwargs): - return self._call_spec.get_arg_value("mask", args, kwargs) - - if not self._should_compute_mask: - return None - - input_masks = tf.nest.map_structure( - lambda t: getattr(t, "_keras_mask", None), inputs - ) - if generic_utils.is_all_none(input_masks): - return None - return input_masks - - def _get_node_attribute_at_index(self, node_index, attr, attr_name): - """Private utility to retrieves an attribute (e.g. inputs) from a node. - - This is used to implement the methods: - - get_input_shape_at - - get_output_shape_at - - get_input_at - etc... - - Args: - node_index: Integer index of the node from which - to retrieve the attribute. - attr: Exact node attribute name. - attr_name: Human-readable attribute name, for error messages. - - Returns: - The layer's attribute `attr` at the node of index `node_index`. - - Raises: - RuntimeError: If the layer has no inbound nodes, or if called in - Eager mode. - ValueError: If the index provided does not match any node. - """ - if not self._inbound_nodes: - raise RuntimeError( - "The layer has never been called and thus has no defined " - + attr_name - + "." - ) - if not len(self._inbound_nodes) > node_index: - raise ValueError( - "Asked to get " - + attr_name - + " at node " - + str(node_index) - + ", but the layer has only " - + str(len(self._inbound_nodes)) - + " inbound nodes." - ) - values = getattr(self._inbound_nodes[node_index], attr) - if isinstance(values, list) and len(values) == 1: - return values[0] - else: - return values - - def _maybe_build(self, inputs): - # Check input assumptions set before layer building, e.g. input rank. - if not self.built: - input_spec.assert_input_compatibility( - self.input_spec, inputs, self.name - ) - input_list = tf.nest.flatten(inputs) - if input_list and self._dtype_policy.compute_dtype is None: - try: - dtype = input_list[0].dtype.base_dtype.name - except AttributeError: - pass - else: - self._set_dtype_policy(policy.Policy(dtype)) - input_shapes = None - if all(hasattr(x, "shape") for x in input_list): - input_shapes = tf.nest.map_structure(lambda x: x.shape, inputs) - # Only call `build` if the user has manually overridden the build - # method. - if not hasattr(self.build, "_is_default"): - # Any setup work performed only once should happen in an - # `init_scope` to avoid creating symbolic Tensors that will - # later pollute any eager operations. - with tf_utils.maybe_init_scope(self): - self.build(input_shapes) - # We must set also ensure that the layer is marked as built, and the - # build shape is stored since user defined build functions may not - # be calling `super.build()` - Layer.build(self, input_shapes) - - # Optionally load weight values specified at layer instantiation. - if self._initial_weights is not None: - self.set_weights(self._initial_weights) - self._initial_weights = None - - def _symbolic_call(self, inputs): - input_shapes = tf.nest.map_structure(lambda x: x.shape, inputs) - output_shapes = self.compute_output_shape(input_shapes) - - def _make_placeholder_like(shape): - ph = backend.placeholder(shape=shape, dtype=self.dtype) - ph._keras_mask = None - return ph - - return tf.nest.map_structure(_make_placeholder_like, output_shapes) - - def _get_trainable_state(self): - """Get the `trainable` state of each sublayer. - - Returns: - A dict mapping all sublayers to their `trainable` value. - """ - layers = self._flatten_layers(include_self=False, recursive=False) - trainable_state = {self: self.trainable} - for l in layers: - trainable_state.update(l._get_trainable_state()) - return trainable_state - - def _set_trainable_state(self, trainable_state): - """Set `trainable` state for each sublayer.""" - if self in trainable_state: - self.trainable = trainable_state[self] - layers = self._flatten_layers(include_self=False, recursive=False) - for l in layers: - if l in trainable_state: - l._set_trainable_state(trainable_state) - - @property - def _obj_reference_counts(self): - """A dict counting the number of attributes referencing an object.""" - self._maybe_create_attribute( - "_obj_reference_counts_dict", - object_identity.ObjectIdentityDictionary(), - ) - return self._obj_reference_counts_dict - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _maybe_create_attribute(self, name, default_value): - """Create attribute (with the default value) if it hasn't been created. - - This is useful for fields that is used for tracking purpose, - _trainable_weights, or _layers. Note that user could create a layer - subclass and assign an internal field before invoking the - Layer.__init__(), the __setattr__() need to create the tracking fields - and __init__() need to not override them. - - Args: - name: String, the name of the attribute. - default_value: Object, the default value of the attribute. - """ - if not hasattr(self, name): - self.__setattr__(name, default_value) - - def __delattr__(self, name): - # For any super.__delattr__() call, we will directly use the - # implementation in Trackable and skip the behavior in AutoTrackable. - # The Layer was originally use Trackable as base class, the change of - # using Module as base class forced us to have AutoTrackable in the - # class hierarchy. - # - # TODO(b/180760306) Keeping the status quo of skipping _delattr__ and - # __setattr__ in AutoTrackable may be unsustainable. - existing_value = getattr(self, name, None) - - # If this value is replacing an existing object assigned to an - # attribute, we should clean it out to avoid leaking memory. First we - # check if there are other attributes referencing it. - reference_counts = self._obj_reference_counts - if existing_value not in reference_counts: - super(tf.__internal__.tracking.AutoTrackable, self).__delattr__( - name - ) - return - - reference_count = reference_counts[existing_value] - if reference_count > 1: - # There are other remaining references. We can't remove this object - # from _layers etc. - reference_counts[existing_value] = reference_count - 1 - super(tf.__internal__.tracking.AutoTrackable, self).__delattr__( - name - ) - return - else: - # This is the last remaining reference. - del reference_counts[existing_value] - - super(tf.__internal__.tracking.AutoTrackable, self).__delattr__(name) - - if isinstance(existing_value, Layer) or base_layer_utils.has_weights( - existing_value - ): - super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( - "_self_tracked_trackables", - [ - l - for l in self._self_tracked_trackables - if l is not existing_value - ], - ) - if isinstance(existing_value, tf.Variable): - super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( - "_trainable_weights", - [w for w in self._trainable_weights if w is not existing_value], - ) - super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( - "_non_trainable_weights", - [ - w - for w in self._non_trainable_weights - if w is not existing_value - ], - ) - - def __setattr__(self, name, value): - if ( - name == "_self_setattr_tracking" - or not getattr(self, "_self_setattr_tracking", True) - # Exclude @property.setters from tracking - or hasattr(self.__class__, name) - ): - try: - super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( - name, value - ) - except AttributeError: - raise AttributeError( - ( - 'Can\'t set the attribute "{}", likely because it ' - "conflicts with an existing read-only @property of the " - "object. Please choose a different name." - ).format(name) - ) - return - - # Keep track of trackable objects, for the needs of - # `Network.save_weights`. - value = tf.__internal__.tracking.sticky_attribute_assignment( - trackable=self, value=value, name=name - ) - - reference_counts = self._obj_reference_counts - reference_counts[value] = reference_counts.get(value, 0) + 1 - - # Clean out the old attribute, which clears _layers and - # _trainable_weights if necessary. - try: - self.__delattr__(name) - except AttributeError: - pass - - # Keep track of metric instance created in subclassed layer. - from keras import metrics as metrics_module - - for val in tf.nest.flatten(value): - if isinstance(val, metrics_module.Metric) and hasattr( - self, "_metrics" - ): - self._metrics.append(val) - - # TODO(scottzhu): Need to track Module object as well for weight - # tracking. Be careful about metric if it becomes a Module in future. - # Append value to self._layers if relevant - if getattr(self, "_auto_track_sub_layers", True) and ( - isinstance(value, Layer) or base_layer_utils.has_weights(value) - ): - self._maybe_create_attribute("_self_tracked_trackables", []) - # We need to check object identity to avoid de-duplicating empty - # container types which compare equal. - if not any( - (layer is value for layer in self._self_tracked_trackables) - ): - self._self_tracked_trackables.append(value) - if hasattr(value, "_use_resource_variables"): - # Legacy layers (V1 tf.layers) must always use - # resource variables. - value._use_resource_variables = True - - # Append value to list of trainable / non-trainable weights if relevant - # TODO(b/125122625): This won't pick up on any variables added to a - # list/dict after creation. - for val in tf.nest.flatten(value): - if not isinstance(val, tf.Variable): - continue - - # Users may add extra weights/variables simply by assigning them to - # attributes (invalid for graph networks) - self._maybe_create_attribute("_trainable_weights", []) - self._maybe_create_attribute("_non_trainable_weights", []) - if val.trainable: - if any(val is w for w in self._trainable_weights): - continue - self._trainable_weights.append(val) - else: - if any(val is w for w in self._non_trainable_weights): - continue - self._non_trainable_weights.append(val) - - backend.track_variable(val) - - # TODO(b/180760306) Skip the auto trackable from tf.Module to keep - # status quo. See the comment at __delattr__. - super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( - name, value - ) - - # This is a hack so that the is_layer (within - # training/trackable/layer_utils.py) check doesn't get the weights attr. - # TODO(b/110718070): Remove when fixed. - def _is_layer(self): - return True - - @property - @layer_utils.cached_per_instance - def _should_compute_mask(self): - return ( - "mask" in self._call_spec.arg_names - or getattr(self, "compute_mask", None) is not None - ) - - def _dedup_weights(self, weights): - """Dedupe weights while maintaining order as much as possible.""" - output, seen_ids = [], set() - for w in weights: - if id(w) not in seen_ids: - output.append(w) - # Track the Variable's identity to avoid __eq__ issues. - seen_ids.add(id(w)) - - return output - - # SavedModel properties. Please see keras/saving/saved_model for details. - - @property - def _trackable_saved_model_saver(self): - return layer_serialization.LayerSavedModelSaver(self) - - @property - def _object_identifier(self): - return self._trackable_saved_model_saver.object_identifier - - @property - def _tracking_metadata(self): - return self._trackable_saved_model_saver.tracking_metadata - - def _trackable_children(self, save_type="checkpoint", **kwargs): - if save_type == "savedmodel": - cache = kwargs["cache"] - # TODO(b/213628533): This must be called before super() to ensure - # that any input shape changes are applied before getting the config - # of the model. - children = self._trackable_saved_model_saver.trackable_children( - cache - ) - else: - children = {} - children.update(super()._trackable_children(save_type, **kwargs)) - return children - - def __getstate__(self): - # Override to support `copy.deepcopy` and pickling. - # Thread-local objects cannot be copied in Python 3, so pop these. - # Thread-local objects are used to cache losses in MirroredStrategy, and - # so shouldn't be copied. - state = self.__dict__.copy() - state.pop("_thread_local", None) - return state - - def __setstate__(self, state): - state["_thread_local"] = threading.local() - # Bypass Trackable logic as `__dict__` already contains this info. - object.__setattr__(self, "__dict__", state) diff --git a/keras/engine/base_preprocessing_layer.py b/keras/engine/base_preprocessing_layer.py deleted file mode 100644 index 56e648ef525..00000000000 --- a/keras/engine/base_preprocessing_layer.py +++ /dev/null @@ -1,311 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the base ProcessingLayer and a subclass that uses Combiners.""" - -import abc - -import tensorflow.compat.v2 as tf - -from keras.engine import data_adapter -from keras.engine.base_layer import Layer -from keras.utils import version_utils - -# isort: off -from tensorflow.python.eager import context -from tensorflow.python.util.tf_export import keras_export -from tensorflow.tools.docs import doc_controls - -keras_kpl_gauge = tf.__internal__.monitoring.BoolGauge( - "/tensorflow/api/keras/layers/preprocessing", - "keras preprocessing layers usage", - "method", -) - - -@keras_export("keras.layers.experimental.preprocessing.PreprocessingLayer") -class PreprocessingLayer(Layer, metaclass=abc.ABCMeta): - """Base class for Preprocessing Layers. - - **Don't use this class directly: it's an abstract base class!** You may - be looking for one of the many built-in - [preprocessing layers](https://keras.io/guides/preprocessing_layers/) - instead. - - Preprocessing layers are layers whose state gets computed before model - training starts. They do not get updated during training. Most - preprocessing layers implement an `adapt()` method for state computation. - - The `PreprocessingLayer` class is the base class you would subclass to - implement your own preprocessing layers. - """ - - _must_restore_from_config = True - - def __init__(self, **kwargs): - super().__init__(**kwargs) - self._is_compiled = False - self._is_adapted = False - - # Sets `is_adapted=False` when `reset_state` is called. - self._reset_state_impl = self.reset_state - self.reset_state = self._reset_state_wrapper - - self._adapt_function = None - - @property - def is_adapted(self): - """Whether the layer has been fit to data already.""" - return self._is_adapted - - @doc_controls.do_not_generate_docs - def update_state(self, data): - """Accumulates statistics for the preprocessing layer. - - Arguments: - data: A mini-batch of inputs to the layer. - """ - raise NotImplementedError - - @doc_controls.do_not_generate_docs - def reset_state(self): - """Resets the statistics of the preprocessing layer.""" - raise NotImplementedError - - @doc_controls.do_not_generate_docs - def finalize_state(self): - """Finalize the statistics for the preprocessing layer. - - This method is called at the end of `adapt` or after restoring a - serialized preprocessing layer's state. This method handles any one-time - operations that should occur on the layer's state before - `Layer.__call__`. - """ - pass - - @doc_controls.do_not_generate_docs - def make_adapt_function(self): - """Creates a function to execute one step of `adapt`. - - This method can be overridden to support custom adapt logic. - This method is called by `PreprocessingLayer.adapt`. - - Typically, this method directly controls `tf.function` settings, - and delegates the actual state update logic to - `PreprocessingLayer.update_state`. - - This function is cached the first time `PreprocessingLayer.adapt` - is called. The cache is cleared whenever `PreprocessingLayer.compile` - is called. - - Returns: - Function. The function created by this method should accept a - `tf.data.Iterator`, retrieve a batch, and update the state of the - layer. - """ - if self._adapt_function is not None: - return self._adapt_function - - def adapt_step(iterator): - data = next(iterator) - self._adapt_maybe_build(data) - self.update_state(data) - - if self._steps_per_execution.numpy().item() == 1: - adapt_fn = adapt_step - else: - - def adapt_fn(iterator): - for _ in tf.range(self._steps_per_execution): - adapt_step(iterator) - - if not self._run_eagerly: - adapt_fn = tf.function(adapt_fn) - - self._adapt_function = adapt_fn - return self._adapt_function - - def compile(self, run_eagerly=None, steps_per_execution=None): - """Configures the layer for `adapt`. - - Arguments: - run_eagerly: Bool. Defaults to `False`. If `True`, this `Model`'s - logic will not be wrapped in a `tf.function`. Recommended to leave - this as `None` unless your `Model` cannot be run inside a - `tf.function`. - steps_per_execution: Int. Defaults to 1. The number of batches to run - during each `tf.function` call. Running multiple batches inside a - single `tf.function` call can greatly improve performance on TPUs or - small models with a large Python overhead. - """ - if steps_per_execution is None: - steps_per_execution = 1 - self._configure_steps_per_execution(steps_per_execution) - - if run_eagerly is None: - run_eagerly = self.dynamic - self._run_eagerly = run_eagerly - - self._is_compiled = True - - def adapt(self, data, batch_size=None, steps=None): - """Fits the state of the preprocessing layer to the data being passed. - - After calling `adapt` on a layer, a preprocessing layer's state will not - update during training. In order to make preprocessing layers efficient - in any distribution context, they are kept constant with respect to any - compiled `tf.Graph`s that call the layer. This does not affect the layer - use when adapting each layer only once, but if you adapt a layer - multiple times you will need to take care to re-compile any compiled - functions as follows: - - * If you are adding a preprocessing layer to a `keras.Model`, you need - to call `model.compile` after each subsequent call to `adapt`. - * If you are calling a preprocessing layer inside - `tf.data.Dataset.map`, you should call `map` again on the input - `tf.data.Dataset` after each `adapt`. - * If you are using a `tf.function` directly which calls a preprocessing - layer, you need to call `tf.function` again on your callable after - each subsequent call to `adapt`. - - `tf.keras.Model` example with multiple adapts: - - >>> layer = tf.keras.layers.Normalization( - ... axis=None) - >>> layer.adapt([0, 2]) - >>> model = tf.keras.Sequential(layer) - >>> model.predict([0, 1, 2]) - array([-1., 0., 1.], dtype=float32) - >>> layer.adapt([-1, 1]) - >>> model.compile() # This is needed to re-compile model.predict! - >>> model.predict([0, 1, 2]) - array([0., 1., 2.], dtype=float32) - - `tf.data.Dataset` example with multiple adapts: - - >>> layer = tf.keras.layers.Normalization( - ... axis=None) - >>> layer.adapt([0, 2]) - >>> input_ds = tf.data.Dataset.range(3) - >>> normalized_ds = input_ds.map(layer) - >>> list(normalized_ds.as_numpy_iterator()) - [array([-1.], dtype=float32), - array([0.], dtype=float32), - array([1.], dtype=float32)] - >>> layer.adapt([-1, 1]) - >>> normalized_ds = input_ds.map(layer) # Re-map over the input dataset. - >>> list(normalized_ds.as_numpy_iterator()) - [array([0.], dtype=float32), - array([1.], dtype=float32), - array([2.], dtype=float32)] - - `adapt()` is meant only as a single machine utility to compute layer - state. To analyze a dataset that cannot fit on a single machine, see - [Tensorflow Transform]( - https://www.tensorflow.org/tfx/transform/get_started) - for a multi-machine, map-reduce solution. - - Arguments: - data: The data to train on. It can be passed either as a tf.data - Dataset, or as a numpy array. - batch_size: Integer or `None`. - Number of samples per state update. If unspecified, - `batch_size` will default to 32. Do not specify the - `batch_size` if your data is in the form of datasets, - generators, or `keras.utils.Sequence` instances (since they - generate batches). - steps: Integer or `None`. - Total number of steps (batches of samples) - When training with input tensors such as - TensorFlow data tensors, the default `None` is equal to - the number of samples in your dataset divided by - the batch size, or 1 if that cannot be determined. If x is a - `tf.data` dataset, and 'steps' is None, the epoch will run until - the input dataset is exhausted. When passing an infinitely - repeating dataset, you must specify the `steps` argument. This - argument is not supported with array inputs. - """ - _disallow_inside_tf_function("adapt") - if not version_utils.should_use_v2(): - raise RuntimeError("`adapt` is only supported in tensorflow v2.") - if not self._is_compiled: - self.compile() # Compile with defaults. - if self.built: - self.reset_state() - data_handler = data_adapter.DataHandler( - data, - batch_size=batch_size, - steps_per_epoch=steps, - epochs=1, - steps_per_execution=self._steps_per_execution, - distribute=False, - ) - self._adapt_function = self.make_adapt_function() - for _, iterator in data_handler.enumerate_epochs(): - with data_handler.catch_stop_iteration(): - for _ in data_handler.steps(): - self._adapt_function(iterator) - if data_handler.should_sync: - context.async_wait() - self.finalize_state() - self._is_adapted = True - - def _reset_state_wrapper(self): - """Calls `reset_state` and sets `adapted` to `False`.""" - self._reset_state_impl() - self._is_adapted = False - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _configure_steps_per_execution(self, steps_per_execution): - self._steps_per_execution = tf.Variable( - steps_per_execution, - dtype="int64", - aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, - ) - - # TODO(omalleyt): Unify this logic with `Layer._maybe_build`. - def _adapt_maybe_build(self, data): - if not self.built: - try: - # If this is a Numpy array or tensor, we can get shape from - # .shape. If not, an attribute error will be thrown. - data_shape = data.shape - data_shape_nones = tuple([None] * len(data.shape)) - except AttributeError: - # The input has an unknown number of dimensions. - data_shape = None - data_shape_nones = None - - # TODO (b/159261555): move this to base layer build. - batch_input_shape = getattr(self, "_batch_input_shape", None) - if batch_input_shape is None: - # Set the number of dimensions. - self._batch_input_shape = data_shape_nones - self.build(data_shape) - self.built = True - - -def _disallow_inside_tf_function(method_name): - """Disallow calling a method inside a `tf.function`.""" - if tf.inside_function(): - error_msg = ( - "Detected a call to `PreprocessingLayer.{method_name}` inside a " - "`tf.function`. `PreprocessingLayer.{method_name} is a high-level " - "endpoint that manages its own `tf.function`. Please move the call " - "to `PreprocessingLayer.{method_name}` outside of all enclosing " - "`tf.function`s. Note that you can call a `PreprocessingLayer` " - "directly on `Tensor`s inside a `tf.function` like: `layer(x)`, " - "or update its state like: `layer.update_state(x)`." - ).format(method_name=method_name) - raise RuntimeError(error_msg) diff --git a/keras/engine/base_preprocessing_layer_test.py b/keras/engine/base_preprocessing_layer_test.py deleted file mode 100644 index af4344fd5ea..00000000000 --- a/keras/engine/base_preprocessing_layer_test.py +++ /dev/null @@ -1,250 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras' base preprocessing layer.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.engine import base_preprocessing_layer -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -# Define a test-only implementation of BasePreprocessingLayer to validate -# its correctness directly. -class AddingPreprocessingLayer(base_preprocessing_layer.PreprocessingLayer): - def build(self, input_shape): - super().build(input_shape) - self.sum = tf.Variable(0.0, dtype=tf.float32) - - def update_state(self, data): - self.sum.assign_add(tf.reduce_sum(tf.cast(data, tf.float32))) - - def reset_state(self): - self.sum.assign(0.0) - - def set_total(self, sum_value): - """This is an example of how a subclass would implement a direct setter. - - Args: - sum_value: The total to set. - """ - self.sum.assign(sum_value) - - def call(self, inputs): - return inputs + self.sum - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class PreprocessingLayerTest(test_combinations.TestCase): - def test_adapt_bad_input_fails(self): - """Test that non-Dataset/Numpy inputs cause a reasonable error.""" - input_dataset = {"foo": 0} - - layer = AddingPreprocessingLayer() - if tf.executing_eagerly(): - with self.assertRaisesRegex( - ValueError, "Failed to find data adapter" - ): - layer.adapt(input_dataset) - else: - with self.assertRaisesRegex(ValueError, "requires a"): - layer.adapt(input_dataset) - - def test_adapt_infinite_dataset_fails(self): - """Test that preproc layers fail if an infinite dataset is passed.""" - input_dataset = tf.data.Dataset.from_tensor_slices( - np.array([[1], [2], [3], [4], [5], [0]]) - ).repeat() - - layer = AddingPreprocessingLayer() - if tf.executing_eagerly(): - with self.assertRaisesRegex(ValueError, "infinite dataset"): - layer.adapt(input_dataset) - else: - with self.assertRaisesRegex( - ValueError, ".*infinite number of elements.*" - ): - layer.adapt(input_dataset) - - def test_setter_update(self): - """Test the prototyped setter method.""" - input_data = keras.Input(shape=(1,)) - layer = AddingPreprocessingLayer() - output = layer(input_data) - model = keras.Model(input_data, output) - model._run_eagerly = test_utils.should_run_eagerly() - - layer.set_total(15) - - self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0])) - - def test_pre_build_adapt_update_numpy(self): - """Test that preproc layers can adapt() before build() is called.""" - input_dataset = np.array([1, 2, 3, 4, 5]) - - layer = AddingPreprocessingLayer() - layer.adapt(input_dataset) - - input_data = keras.Input(shape=(1,)) - output = layer(input_data) - model = keras.Model(input_data, output) - model._run_eagerly = test_utils.should_run_eagerly() - - self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0])) - - def test_post_build_adapt_update_numpy(self): - """Test that preproc layers can adapt() after build() is called.""" - input_dataset = np.array([1, 2, 3, 4, 5]) - - input_data = keras.Input(shape=(1,)) - layer = AddingPreprocessingLayer() - output = layer(input_data) - model = keras.Model(input_data, output) - model._run_eagerly = test_utils.should_run_eagerly() - - layer.adapt(input_dataset) - - self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0])) - - def test_pre_build_adapt_update_dataset(self): - """Test that preproc layers can adapt() before build() is called.""" - input_dataset = tf.data.Dataset.from_tensor_slices( - np.array([[1], [2], [3], [4], [5], [0]]) - ) - - layer = AddingPreprocessingLayer() - layer.adapt(input_dataset) - - input_data = keras.Input(shape=(1,)) - output = layer(input_data) - model = keras.Model(input_data, output) - model._run_eagerly = test_utils.should_run_eagerly() - - self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0])) - - def test_post_build_adapt_update_dataset(self): - """Test that preproc layers can adapt() after build() is called.""" - input_dataset = tf.data.Dataset.from_tensor_slices( - np.array([[1], [2], [3], [4], [5], [0]]) - ) - - input_data = keras.Input(shape=(1,)) - layer = AddingPreprocessingLayer() - output = layer(input_data) - model = keras.Model(input_data, output) - model._run_eagerly = test_utils.should_run_eagerly() - - layer.adapt(input_dataset) - - self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0])) - - def test_weight_based_state_transfer(self): - """Test that preproc layers can transfer state via get/set weights..""" - - def get_model(): - input_data = keras.Input(shape=(1,)) - layer = AddingPreprocessingLayer() - output = layer(input_data) - model = keras.Model(input_data, output) - model._run_eagerly = test_utils.should_run_eagerly() - return (model, layer) - - input_dataset = np.array([1, 2, 3, 4, 5]) - model, layer = get_model() - layer.adapt(input_dataset) - self.assertAllEqual([[16], [17], [18]], model.predict([1.0, 2.0, 3.0])) - - # Create a new model and verify it has no state carryover. - weights = model.get_weights() - model_2, _ = get_model() - self.assertAllEqual([[1], [2], [3]], model_2.predict([1.0, 2.0, 3.0])) - - # Transfer state from model to model_2 via get/set weights. - model_2.set_weights(weights) - self.assertAllEqual( - [[16], [17], [18]], model_2.predict([1.0, 2.0, 3.0]) - ) - - def test_loading_without_providing_class_fails(self): - input_data = keras.Input(shape=(1,)) - layer = AddingPreprocessingLayer() - output = layer(input_data) - model = keras.Model(input_data, output) - - if not tf.executing_eagerly(): - self.evaluate(tf.compat.v1.variables_initializer(model.variables)) - - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format="tf") - - with self.assertRaisesRegex( - ValueError, "Unknown layer: 'AddingPreprocessingLayer'" - ): - _ = keras.models.load_model(output_path) - - def test_adapt_sets_input_shape_rank(self): - """Check that `.adapt()` sets the `input_shape`'s rank.""" - # Shape: (3,1,2) - adapt_dataset = np.array( - [[[1.0, 2.0]], [[3.0, 4.0]], [[5.0, 6.0]]], dtype=np.float32 - ) - - layer = AddingPreprocessingLayer() - layer.adapt(adapt_dataset) - - input_dataset = np.array( - [[[1.0, 2.0], [3.0, 4.0]], [[3.0, 4.0], [5.0, 6.0]]], - dtype=np.float32, - ) - layer(input_dataset) - - model = keras.Sequential([layer]) - self.assertTrue(model.built) - self.assertEqual(model.input_shape, (None, None, None)) - - def test_adapt_doesnt_overwrite_input_shape(self): - """Check that `.adapt()` doesn't change the `input_shape`.""" - # Shape: (3, 1, 2) - adapt_dataset = np.array( - [[[1.0, 2.0]], [[3.0, 4.0]], [[5.0, 6.0]]], dtype=np.float32 - ) - - layer = AddingPreprocessingLayer(input_shape=[1, 2]) - layer.adapt(adapt_dataset) - - model = keras.Sequential([layer]) - self.assertTrue(model.built) - self.assertEqual(model.input_shape, (None, 1, 2)) - - -class PreprocessingLayerV1Test(test_combinations.TestCase): - def test_adapt_fails(self): - """Test that calling adapt leads to a runtime error.""" - input_dataset = {"foo": 0} - - with tf.Graph().as_default(): - layer = AddingPreprocessingLayer() - with self.assertRaisesRegex( - RuntimeError, "`adapt` is only supported in tensorflow v2" - ): - layer.adapt(input_dataset) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/compile_utils.py b/keras/engine/compile_utils.py deleted file mode 100644 index f5fc3b18ee3..00000000000 --- a/keras/engine/compile_utils.py +++ /dev/null @@ -1,866 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Utilities for `Model.compile`.""" - - -import copy - -import tensorflow.compat.v2 as tf - -from keras import losses as losses_mod -from keras import metrics as metrics_mod -from keras.saving import saving_lib -from keras.utils import generic_utils -from keras.utils import losses_utils -from keras.utils import tf_utils - - -class Container: - """Base Container class.""" - - def __init__(self, output_names=None): - self._output_names = output_names - - def build(self, y_pred): - if self._output_names is None: - # In Subclass API, output names like 'output_1' are used for - # `Metric` names. - self._output_names = create_pseudo_output_names(y_pred) - - def _conform_to_outputs(self, outputs, struct): - """Convenience method to conform `struct` to `outputs` structure. - - Mappings performed: - - (1) Map a dict to a list of outputs, using the output names. - (2) Fill missing keys in a dict w/ `None`s. - (3) Map a single item to all outputs. - - Args: - outputs: Model predictions. - struct: Arbitrary nested structure (e.g. of labels, sample_weights, - losses, or metrics). - - Returns: - Mapping of `struct` to `outputs` structure. - """ - struct = map_to_output_names(outputs, self._output_names, struct) - struct = map_missing_dict_keys(outputs, struct) - # Allow passing one object that applies to all outputs. - if not tf.nest.is_nested(struct) and tf.nest.is_nested(outputs): - struct = tf.nest.map_structure(lambda _: struct, outputs) - return struct - - def _maybe_broadcast_to_outputs(self, outputs, objects): - """Determines if losses / metrics should be applied to all outputs. - - NOTE: This method should only be called for Metrics / Losses, not for - y_true / sample_weight. - - Args: - outputs: Model predictions. - objects: Arbitrary nested structure (e.g. of losses or metrics) - - Returns: - Arbitrary nested structure of objects, maybe copied to each output. - - Applies a Loss / Metric to all outputs. - """ - if not self._should_broadcast(objects): - return objects - - # When there is more than one Model output, this is needed to keep - # each Metric / Loss separate. When there is only one Model output, - # the user-supplied object should be used. - should_copy_objects = len(tf.nest.flatten(outputs)) > 1 - - def _broadcast_fn(): - if should_copy_objects: - return tf.nest.map_structure(self._copy_object, objects) - return objects - - return tf.nest.map_structure(lambda _: _broadcast_fn(), outputs) - - def _should_broadcast(self, objects): - raise NotImplementedError - - def _copy_object(self, obj): - raise NotImplementedError - - -class LossesContainer(Container): - """A container class for losses passed to `Model.compile()`. - - Args: - losses: Struct of loss function(s). See `Model.compile()` doc for more - information. - loss_weights: Weights of the losses contributions of different model - outputs. See `Model.compile()` doc for more information. - output_names: List of string. Per-output metric names. - total_loss_mean: A `keras.metrics.Mean` instance that is used to track the - mean of all losses (including compiled and regularization losses). - """ - - def __init__( - self, losses, loss_weights=None, output_names=None, total_loss_mean=None - ): - super(LossesContainer, self).__init__(output_names=output_names) - - # Keep user-supplied values untouched for recompiling and serialization. - self._user_losses = losses - self._user_loss_weights = loss_weights - - self._losses = losses - self._loss_weights = loss_weights - self._per_output_metrics = None # Per-output losses become metrics. - - # Mean of the total loss. - self._total_loss_mean = total_loss_mean or metrics_mod.Mean(name="loss") - self._built = False - - def get_config(self): - # In case `self._losses` is a single string where we convert it to a - # list. - self._losses = tf.nest.flatten(self._losses) - return { - "losses": [ - saving_lib.serialize_keras_object(obj) - for obj in self._losses - if obj is not None - ], - "total_loss_mean": saving_lib.serialize_keras_object( - self._total_loss_mean - ), - } - - @classmethod - def from_config(cls, config): - """Returns the `LossesContainer` instance given the `config`.""" - deserialized_config = {} - for key, value in config.items(): - if isinstance(value, list): - deserialized_config[key] = [ - saving_lib.deserialize_keras_object(item) for item in value - ] - else: - deserialized_config[key] = saving_lib.deserialize_keras_object( - value - ) - return cls(**deserialized_config) - - @property - def metrics(self): - """Per-output loss metrics.""" - if not self._built: - return [] - per_output_metrics = [ - metric_obj - for metric_obj in tf.nest.flatten(self._per_output_metrics) - if metric_obj is not None - ] - return [self._total_loss_mean] + per_output_metrics - - def build(self, y_pred): - """One-time setup of loss objects.""" - super(LossesContainer, self).build(y_pred) - - self._losses = self._maybe_broadcast_to_outputs(y_pred, self._losses) - self._losses = self._conform_to_outputs(y_pred, self._losses) - self._losses = tf.nest.map_structure( - self._get_loss_object, self._losses - ) - self._losses = tf.nest.flatten(self._losses) - - self._loss_weights = self._maybe_broadcast_to_outputs( - y_pred, self._loss_weights - ) - self._loss_weights = self._conform_to_outputs( - y_pred, self._loss_weights - ) - self._loss_weights = tf.nest.flatten(self._loss_weights) - - self._create_metrics() - self._built = True - - @property - def built(self): - return self._built - - def _create_metrics(self): - """Creates per-output loss metrics, but only for multi-output Models.""" - if len(self._output_names) == 1: - self._per_output_metrics = [None] - else: - self._per_output_metrics = [] - for loss_obj, output_name in zip(self._losses, self._output_names): - if loss_obj is None: - self._per_output_metrics.append(None) - else: - self._per_output_metrics.append( - metrics_mod.Mean(output_name + "_loss") - ) - - def __call__( - self, y_true, y_pred, sample_weight=None, regularization_losses=None - ): - """Computes the overall loss. - - Args: - y_true: An arbitrary structure of Tensors representing the ground - truth. - y_pred: An arbitrary structure of Tensors representing a Model's - outputs. - sample_weight: An arbitrary structure of Tensors representing the - per-sample loss weights. If one Tensor is passed, it is used for all - losses. If multiple Tensors are passed, the structure should match - `y_pred`. - regularization_losses: Additional losses to be added to the total - loss. - - Returns: - The total loss as a `tf.Tensor`, or `None` if no loss results. - """ - y_true = self._conform_to_outputs(y_pred, y_true) - sample_weight = self._conform_to_outputs(y_pred, sample_weight) - - if not self._built: - self.build(y_pred) - - y_pred = tf.nest.flatten(y_pred) - y_true = tf.nest.flatten(y_true) - sample_weight = tf.nest.flatten(sample_weight) - - loss_values = [] # Used for gradient calculation. - total_loss_mean_values = [] # Used for loss metric calculation. - batch_dim = None - zip_args = ( - y_true, - y_pred, - sample_weight, - self._losses, - self._loss_weights, - self._per_output_metrics, - ) - for y_t, y_p, sw, loss_obj, loss_weight, metric_obj in zip(*zip_args): - if ( - y_t is None or loss_obj is None - ): # Ok to have no loss for an output. - continue - - y_t, y_p, sw = match_dtype_and_rank(y_t, y_p, sw) - sw = losses_utils.apply_mask(y_p, sw, losses_utils.get_mask(y_p)) - loss_value = loss_obj(y_t, y_p, sample_weight=sw) - - total_loss_mean_value = loss_value - # Correct for the `Mean` loss metrics counting each replica as a - # batch. - if loss_obj.reduction == losses_utils.ReductionV2.SUM: - total_loss_mean_value *= ( - tf.distribute.get_strategy().num_replicas_in_sync - ) - - if batch_dim is None: - if tf_utils.is_ragged(y_t): - batch_dim = y_t.nrows() - else: - batch_dim = tf.shape(y_t)[0] - - if metric_obj is not None: - metric_obj.update_state( - total_loss_mean_value, sample_weight=batch_dim - ) - - if loss_weight is not None: - loss_value *= loss_weight - total_loss_mean_value *= loss_weight - - if ( - loss_obj.reduction - == losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE - or loss_obj.reduction == losses_utils.ReductionV2.AUTO - ): - loss_value = losses_utils.scale_loss_for_distribution( - loss_value - ) - - loss_values.append(loss_value) - total_loss_mean_values.append(total_loss_mean_value) - - if regularization_losses: - regularization_losses = losses_utils.cast_losses_to_common_dtype( - regularization_losses - ) - reg_loss = tf.add_n(regularization_losses) - total_loss_mean_values.append(reg_loss) - loss_values.append( - losses_utils.scale_loss_for_distribution(reg_loss) - ) - - if loss_values: - total_loss_mean_values = losses_utils.cast_losses_to_common_dtype( - total_loss_mean_values - ) - total_total_loss_mean_value = tf.add_n(total_loss_mean_values) - self._total_loss_mean.update_state( - total_total_loss_mean_value, sample_weight=batch_dim - ) - - loss_values = losses_utils.cast_losses_to_common_dtype(loss_values) - total_loss = tf.add_n(loss_values) - return total_loss - else: - return None - - def reset_state(self): - """Resets the state of loss metrics.""" - if not self._built: - return - metrics = [self._total_loss_mean] + tf.nest.flatten( - self._per_output_metrics - ) - for metric_obj in metrics: - if metric_obj is not None: - metric_obj.reset_state() - - def _get_loss_object(self, loss): - """Returns a `Loss` object. - - Converts the user-supplied loss to a `Loss` object. Also allows - `SUM_OVER_BATCH_SIZE` reduction to be used for this loss. - - Args: - loss: A string, function, or `Loss` object. - - Returns: - A `Loss` object. - """ - if loss is None: - return None # Ok to have no loss for an output. - - loss = losses_mod.get(loss) - if not isinstance(loss, losses_mod.Loss): - loss_name = get_custom_object_name(loss) - if loss_name is None: - raise ValueError(f"Loss should be a callable, received: {loss}") - loss = losses_mod.LossFunctionWrapper(loss, name=loss_name) - loss._allow_sum_over_batch_size = True - return loss - - def _should_broadcast(self, obj): - return not tf.nest.is_nested(obj) - - def _copy_object(self, obj): - return obj # Losses don't need to be copied. - - -class MetricsContainer(Container): - """A container class for metrics passed to `Model.compile`.""" - - def __init__( - self, - metrics=None, - weighted_metrics=None, - output_names=None, - from_serialized=False, - ): - """Initializes a container for metrics. - - Arguments: - metrics: see the `metrics` argument from `tf.keras.Model.compile`. - weighted_metrics: see the `weighted_metrics` argument from - `tf.keras.Model.compile`. - output_names: A list of strings of names of outputs for the model. - from_serialized: Whether the model being compiled is from a serialized - model. Used to avoid redundantly applying pre-processing renaming - steps. - """ - super(MetricsContainer, self).__init__(output_names=output_names) - - self._check_duplicated_metrics(metrics, weighted_metrics) - # Keep user-supplied values untouched for recompiling and serialization. - self._user_metrics = metrics - self._user_weighted_metrics = weighted_metrics - - self._metrics = metrics - self._weighted_metrics = weighted_metrics - self._built = False - - self._from_serialized = from_serialized - - def _check_duplicated_metrics(self, metrics, weighted_metrics): - """Raise error when user provided metrics have any duplications. - - Note that metrics are stateful container, a shared metric instance - between model.metric and model.weighted_metric will make the same - intance to be udpated twice, and report wrong value. - - Args: - metrics: User provided metrics list. - weighted_metrics: User provided weighted metrics list. - - Raises: - ValueError, when duplicated metrics instance discovered in user - provided metrics and weighted metrics. - """ - seen = set() - duplicated = [] - for x in tf.nest.flatten(metrics) + tf.nest.flatten(weighted_metrics): - # We only check metrics object. The string and function objects - # will be converted to unique Metric instance. - if not isinstance(x, metrics_mod.Metric): - continue - if x in seen: - duplicated.append(x) - seen.add(x) - - if duplicated: - raise ValueError( - "Found duplicated metrics object in the user provided " - "metrics and weighted metrics. This will cause the same " - "metric object to be updated multiple times, and report " - "wrong results. \n" - f"Duplicated items: {duplicated}" - ) - - @property - def metrics(self): - """All metrics in this container.""" - if not self._built: - return [] - return self._metrics_in_order - - @property - def unweighted_metrics(self): - """Metrics in the container that should not be passed sample_weight.""" - if not self._built: - return None - return tf.nest.flatten(self._metrics) - - @property - def weighted_metrics(self): - """Metrics in this container that should be passed `sample_weight`.""" - if not self._built: - return None - return tf.nest.flatten(self._weighted_metrics) - - def build(self, y_pred, y_true): - """One-time setup of metric objects.""" - super(MetricsContainer, self).build(y_pred) - - self._metrics = self._maybe_broadcast_to_outputs(y_pred, self._metrics) - self._metrics = self._conform_to_outputs(y_pred, self._metrics) - - self._weighted_metrics = self._maybe_broadcast_to_outputs( - y_pred, self._weighted_metrics - ) - self._weighted_metrics = self._conform_to_outputs( - y_pred, self._weighted_metrics - ) - - # Standardize on tuple since `tf.data` turns lists into `Tensor`s. - y_pred = tf.__internal__.nest.list_to_tuple(y_pred) - y_true = tf.__internal__.nest.list_to_tuple(y_true) - self._metrics = tf.__internal__.nest.list_to_tuple(self._metrics) - self._weighted_metrics = tf.__internal__.nest.list_to_tuple( - self._weighted_metrics - ) - - # Convert to `Metric` objects, potentially disambiguating based on - # output properties. - self._metrics = tf.__internal__.nest.map_structure_up_to( - y_pred, self._get_metric_objects, self._metrics, y_true, y_pred - ) - self._weighted_metrics = tf.__internal__.nest.map_structure_up_to( - y_pred, - self._get_metric_objects, - self._weighted_metrics, - y_true, - y_pred, - ) - - self._metrics = tf.__internal__.nest.flatten_up_to( - y_pred, self._metrics, check_types=False - ) - self._weighted_metrics = tf.__internal__.nest.flatten_up_to( - y_pred, self._weighted_metrics, check_types=False - ) - - # Assumes metrics, weighted_metrics have been flattened up to outputs. - # - # If we are loading a model that has been already serialized, we do not - # want to re-apply any pre-processing metric renaming steps. - if not self._from_serialized: - self._set_metric_names() - self._create_ordered_metrics() - self._built = True - - @property - def built(self): - return self._built - - def _set_metric_names(self): - """Sets unique metric names.""" - # For multi-output models, prepend the output name to the metric name. - # For weighted metrics, prepend "weighted_" if the name would be - # non-unique. - - metric_names = set() - is_multi_output = len(self._output_names) > 1 - zip_args = (self._output_names, self._metrics, self._weighted_metrics) - for output_name, output_metrics, weighted_output_metrics in zip( - *zip_args - ): - for m in output_metrics: - if m is None: - continue - if is_multi_output: - m._name = output_name + "_" + m._name - if m._name in metric_names: - raise ValueError( - f"Found two metrics with the same name: {m._name}. " - "All the metrics added to the model need to have " - "unique names." - ) - metric_names.add(m._name) - - for wm in weighted_output_metrics: - if wm is None: - continue - if is_multi_output: - if output_name + "_" + wm._name in metric_names: - wm._name = output_name + "_weighted_" + wm._name - else: - wm._name = output_name + "_" + wm._name - elif wm._name in metric_names: - wm._name = "weighted_" + wm._name - - if wm._name in metric_names: - raise ValueError( - "Found two weighted metrics with the same name: " - f"{wm._name}.All the metrics added to the model need " - "to have unique names." - ) - metric_names.add(wm._name) - - def _create_ordered_metrics(self): - """Cache the flat order needed when return metrics, for backcompat.""" - self._metrics_in_order = [] - for output_metrics, output_weighted_metrics in zip( - self._metrics, self._weighted_metrics - ): - for m in tf.nest.flatten(output_metrics): - if m is not None: - self._metrics_in_order.append(m) - for wm in tf.nest.flatten(output_weighted_metrics): - if wm is not None: - self._metrics_in_order.append(wm) - - def update_state(self, y_true, y_pred, sample_weight=None): - """Updates the state of per-output metrics.""" - y_true = self._conform_to_outputs(y_pred, y_true) - sample_weight = self._conform_to_outputs(y_pred, sample_weight) - - if not self._built: - self.build(y_pred, y_true) - - y_pred = tf.nest.flatten(y_pred) - y_true = tf.nest.flatten(y_true) if y_true is not None else [] - sample_weight = tf.nest.flatten(sample_weight) - - zip_args = ( - y_true, - y_pred, - sample_weight, - self._metrics, - self._weighted_metrics, - ) - for y_t, y_p, sw, metric_objs, weighted_metric_objs in zip(*zip_args): - # Ok to have no metrics for an output. - if y_t is None or ( - all(m is None for m in metric_objs) - and all(wm is None for wm in weighted_metric_objs) - ): - continue - - y_t, y_p, sw = match_dtype_and_rank(y_t, y_p, sw) - mask = losses_utils.get_mask(y_p) - sw = losses_utils.apply_mask(y_p, sw, mask) - - for metric_obj in metric_objs: - if metric_obj is None: - continue - metric_obj.update_state(y_t, y_p, sample_weight=mask) - - for weighted_metric_obj in weighted_metric_objs: - if weighted_metric_obj is None: - continue - weighted_metric_obj.update_state(y_t, y_p, sample_weight=sw) - - def reset_state(self): - """Resets the state of all `Metric`s in this container.""" - if self._built: - metrics = self._metrics_in_order - else: - # If the user supplied `Metric` objects directly, we should - # reset those. This could also contain `str`s or `function`s - # though. - metrics = tf.nest.flatten(self._user_metrics) + tf.nest.flatten( - self._user_weighted_metrics - ) - - for metric_obj in metrics: - if isinstance(metric_obj, metrics_mod.Metric): - metric_obj.reset_state() - - def _get_metric_objects(self, metrics, y_t, y_p): - """Convert user-supplied metrics to `Metric` objects.""" - metrics = tf.nest.flatten(metrics) - return [self._get_metric_object(m, y_t, y_p) for m in metrics] - - def _get_metric_object(self, metric, y_t, y_p): - """Converts user-supplied metric to a `Metric` object. - - Args: - metric: A string, function, or `Metric` object. - y_t: Sample of label. - y_p: Sample of output. - - Returns: - A `Metric` object. - """ - if metric is None: - return None # Ok to have no metric for an output. - - # Convenience feature for selecting b/t binary, categorical, - # and sparse categorical. - if str(metric).lower() not in ["accuracy", "acc", "crossentropy", "ce"]: - metric_obj = metrics_mod.get(metric) - else: - y_t_rank = len(y_t.shape.as_list()) - y_p_rank = len(y_p.shape.as_list()) - y_t_last_dim = y_t.shape.as_list()[-1] - y_p_last_dim = y_p.shape.as_list()[-1] - - is_binary = y_p_last_dim == 1 - is_sparse_categorical = ( - y_t_rank < y_p_rank or y_t_last_dim == 1 and y_p_last_dim > 1 - ) - - if str(metric).lower() in ["accuracy", "acc"]: - if is_binary: - metric_obj = metrics_mod.binary_accuracy - elif is_sparse_categorical: - metric_obj = metrics_mod.sparse_categorical_accuracy - else: - metric_obj = metrics_mod.categorical_accuracy - else: - if is_binary: - metric_obj = metrics_mod.binary_crossentropy - elif is_sparse_categorical: - metric_obj = metrics_mod.sparse_categorical_crossentropy - else: - metric_obj = metrics_mod.categorical_crossentropy - - if isinstance(metric_obj, losses_mod.Loss): - metric_obj._allow_sum_over_batch_size = True - - if not isinstance(metric_obj, metrics_mod.Metric): - if isinstance(metric, str): - metric_name = metric - else: - metric_name = get_custom_object_name(metric) - if metric_name is None: - raise ValueError( - f"Metric should be a callable, received: {metric}" - ) - - metric_obj = metrics_mod.MeanMetricWrapper( - metric_obj, name=metric_name - ) - - return metric_obj - - def _should_broadcast(self, obj): - # e.g. 'mse'. - if not tf.nest.is_nested(obj): - return True - # e.g. ['mse'] or ['mse', 'mae']. - return isinstance(obj, (list, tuple)) and not any( - tf.nest.is_nested(o) for o in obj - ) - - def _copy_object(self, obj): - if isinstance(obj, metrics_mod.Metric): - return obj.__class__.from_config(obj.get_config()) - return obj # Can be a function or `None`. - - -def create_pseudo_output_names(outputs): - """Create pseudo output names for a subclassed Model.""" - return _create_pseudo_names(outputs, prefix="output_") - - -def create_pseudo_input_names(inputs): - """Create pseudo input names for a subclassed Model.""" - return _create_pseudo_names(inputs, prefix="input_") - - -def _create_pseudo_names(tensors, prefix): - """Creates pseudo {input | output} names for subclassed Models. - - Warning: this function should only be used to define default - names for `Metics` and `SavedModel`. No other use cases should - rely on a `Model`'s input or output names. - - Example with dict: - - `{'a': [x1, x2], 'b': x3}` becomes: - `['a_1', 'a_2', 'b']` - - Example with list: - - `[x, y]` becomes: - `['output_1', 'output_2']` - - Args: - tensors: `Model`'s outputs or inputs. - prefix: 'output_' for outputs, 'input_' for inputs. - - Returns: - Flattened list of pseudo names. - """ - - def one_index(ele): - # Start with "output_1" instead of "output_0". - if isinstance(ele, int): - return ele + 1 - return ele - - flat_paths = list(tf.__internal__.nest.yield_flat_paths(tensors)) - flat_paths = tf.nest.map_structure(one_index, flat_paths) - names = [] - for path in flat_paths: - if not path: - name = prefix + "1" # Single output. - else: - name = "_".join(str(p) for p in path) - if isinstance(path[0], int): - name = prefix + name - names.append(name) - return names - - -def map_to_output_names(y_pred, output_names, struct): - """Maps a dict to a list using `output_names` as keys. - - This is a convenience feature only. When a `Model`'s outputs - are a list, you can specify per-output losses and metrics as - a dict, where the keys are the output names. If you specify - per-output losses and metrics via the same structure as the - `Model`'s outputs (recommended), no mapping is performed. - - For the Functional API, the output names are the names of the - last layer of each output. For the Subclass API, the output names - are determined by `create_pseudo_output_names` (For example: - `['output_1', 'output_2']` for a list of outputs). - - This mapping preserves backwards compatibility for `compile` and - `fit`. - - Args: - y_pred: Sample outputs of the Model, to determine if this convenience - feature should be applied (`struct` is returned unmodified if `y_pred` - isn't a flat list). - output_names: List. The names of the outputs of the Model. - struct: The structure to map. - - Returns: - `struct` mapped to a list in same order as `output_names`. - """ - single_output = not tf.nest.is_nested(y_pred) - outputs_are_flat_list = ( - not single_output - and isinstance(y_pred, (list, tuple)) - and not any(tf.nest.is_nested(y_p) for y_p in y_pred) - ) - - if (single_output or outputs_are_flat_list) and isinstance(struct, dict): - output_names = output_names or create_pseudo_output_names(y_pred) - struct = copy.copy(struct) - new_struct = [struct.pop(name, None) for name in output_names] - if struct: - raise ValueError( - "Found unexpected losses or metrics that do not correspond " - f"to any Model output: {struct.keys()}. " - f"Valid mode output names: {output_names}. " - f"Received struct is: {struct}." - ) - if len(new_struct) == 1: - return new_struct[0] - return new_struct - else: - return struct - - -def map_missing_dict_keys(y_pred, struct): - """Replaces missing dict keys in `struct` with `None` placeholders.""" - if not isinstance(y_pred, dict) or not isinstance(struct, dict): - return struct - struct = copy.copy(struct) - for k in y_pred.keys(): - if k not in struct: - struct[k] = None - return struct - - -def match_dtype_and_rank(y_t, y_p, sw): - """Match dtype and rank of predictions.""" - if y_t.shape.rank == 1 and y_p.shape.rank == 2: - y_t = tf.expand_dims(y_t, axis=-1) - if sw is not None: - if sw.shape.rank == 1 and y_p.shape.rank == 2: - sw = tf.expand_dims(sw, axis=-1) - - # Dtype. - # This is required mainly for custom loss functions which do not take care - # casting dtypes. - if (y_t.dtype.is_floating and y_p.dtype.is_floating) or ( - y_t.dtype.is_integer and y_p.dtype.is_integer - ): - y_t = tf.cast(y_t, y_p.dtype) - - if sw is not None: - sw = tf.cast(sw, y_p.dtype) - return y_t, y_p, sw - - -def get_custom_object_name(obj): - """Returns the name to use for a custom loss or metric callable. - - Args: - obj: Custom loss of metric callable - - Returns: - Name to use, or `None` if the object was not recognized. - """ - if hasattr(obj, "name"): # Accept `Loss` instance as `Metric`. - return obj.name - elif hasattr(obj, "__name__"): # Function. - return obj.__name__ - elif hasattr(obj, "__class__"): # Class instance. - return generic_utils.to_snake_case(obj.__class__.__name__) - else: # Unrecognized object. - return None diff --git a/keras/engine/compile_utils_test.py b/keras/engine/compile_utils_test.py deleted file mode 100644 index 557d6e2b4e2..00000000000 --- a/keras/engine/compile_utils_test.py +++ /dev/null @@ -1,888 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for compile utitilies.""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import losses as losses_mod -from keras import metrics as metrics_mod -from keras.engine import compile_utils -from keras.testing_infra import test_combinations - - -class LossesContainerTest(test_combinations.TestCase): - def test_single_loss(self): - loss_container = compile_utils.LossesContainer("mse") - y_t, y_p = tf.ones((10, 5)), tf.zeros((10, 5)) - total_loss = loss_container(y_t, y_p) - - self.assertTrue(loss_container._built) - self.assertLen(loss_container._losses, 1) - self.assertIsInstance(total_loss, tf.Tensor) - self.assertEqual(total_loss.numpy(), 1.0) - self.assertLen(loss_container.metrics, 1) - - loss_metric = loss_container.metrics[0] - self.assertEqual(loss_metric.name, "loss") - self.assertEqual(loss_metric.result().numpy(), 1.0) - - loss_container.reset_state() - self.assertEqual(loss_metric.result().numpy(), 0.0) - - def test_loss_list(self): - loss_container = compile_utils.LossesContainer(["mse", "mae"], [1, 0.5]) - - y_t = [tf.ones((10, 1)), tf.zeros((10, 1))] - y_p = [tf.ones((10, 1)), tf.ones((10, 1))] - sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) - - total_loss = loss_container(y_t, y_p, sample_weight=sw) - - self.assertEqual(loss_container._output_names, ["output_1", "output_2"]) - - self.assertLen(loss_container._losses, 2) - self.assertEqual(total_loss.numpy(), 0.25) - - loss_metric = loss_container.metrics[0] - self.assertEqual(loss_metric.name, "loss") - self.assertEqual(loss_metric.result().numpy(), 0.25) - - output_1_metric = loss_container.metrics[1] - self.assertEqual(output_1_metric.name, "output_1_loss") - self.assertEqual(output_1_metric.result().numpy(), 0) - - output_2_metric = loss_container.metrics[2] - self.assertEqual(output_2_metric.name, "output_2_loss") - self.assertEqual(output_2_metric.result().numpy(), 0.5) - - loss_container.reset_state() - self.assertEqual(loss_metric.result().numpy(), 0) - self.assertEqual(output_1_metric.result().numpy(), 0) - self.assertEqual(output_2_metric.result().numpy(), 0) - - def test_loss_dict(self): - loss_container = compile_utils.LossesContainer( - {"out1": "mse", "out2": "mae"}, {"out1": 1, "out2": 0.5} - ) - - y_t = {"out1": tf.ones((10, 1)), "out2": tf.zeros((10, 1))} - y_p = {"out1": tf.ones((10, 1)), "out2": tf.ones((10, 1))} - sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) - - total_loss = loss_container(y_t, y_p, sample_weight=sw) - - self.assertLen(loss_container._losses, 2) - self.assertIsInstance(total_loss, tf.Tensor) - self.assertEqual(total_loss.numpy(), 0.25) - self.assertLen(loss_container.metrics, 3) - - loss_metric = loss_container.metrics[0] - self.assertEqual(loss_metric.name, "loss") - self.assertEqual(loss_metric.result().numpy(), 0.25) - - out1_metric = loss_container.metrics[1] - self.assertEqual(out1_metric.name, "out1_loss") - self.assertEqual(out1_metric.result().numpy(), 0) - - out2_metric = loss_container.metrics[2] - self.assertEqual(out2_metric.name, "out2_loss") - self.assertEqual(out2_metric.result().numpy(), 0.5) - - loss_container.reset_state() - self.assertEqual(loss_metric.result().numpy(), 0) - self.assertEqual(out1_metric.result().numpy(), 0) - self.assertEqual(out2_metric.result().numpy(), 0) - - def test_loss_partial_dict_with_output_names(self): - loss_container = compile_utils.LossesContainer( - {"out2": "mae"}, {"out2": 1.0}, output_names=["out1", "out2"] - ) - - y_t = [tf.ones((10, 1)), tf.zeros((10, 1))] - y_p = [tf.ones((10, 1)), tf.ones((10, 1))] - sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) - - total_loss = loss_container(y_t, y_p, sample_weight=sw) - - self.assertEqual(total_loss.numpy(), 0.5) - self.assertLen(loss_container.metrics, 2) - - loss_metric = loss_container.metrics[0] - self.assertEqual(loss_metric.name, "loss") - self.assertEqual(loss_metric.result().numpy(), 0.5) - - out2_metric = loss_container.metrics[1] - self.assertEqual(out2_metric.name, "out2_loss") - self.assertEqual(out2_metric.result().numpy(), 0.5) - - def test_loss_dict_with_nones(self): - loss_container = compile_utils.LossesContainer( - {"out1": None, "out2": "mae"} - ) - - y_t = {"out1": tf.ones((10, 1)), "out2": tf.zeros((10, 1))} - y_p = {"out1": tf.ones((10, 1)), "out2": tf.ones((10, 1))} - sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) - - total_loss = loss_container(y_t, y_p, sample_weight=sw) - - self.assertIsInstance(total_loss, tf.Tensor) - self.assertEqual(total_loss.numpy(), 0.5) - self.assertLen(loss_container.metrics, 2) - - loss_metric = loss_container.metrics[0] - self.assertEqual(loss_metric.name, "loss") - self.assertEqual(loss_metric.result().numpy(), 0.5) - - out2_metric = loss_container.metrics[1] - self.assertEqual(out2_metric.name, "out2_loss") - self.assertEqual(out2_metric.result().numpy(), 0.5) - - def test_nested_structure(self): - loss_container = compile_utils.LossesContainer( - {"b": ["mse", None], "a": "mae"}, - loss_weights={"b": [0.5, 0], "a": 1}, - ) - - y_t = { - "b": [tf.ones((10, 1)), tf.zeros((10, 1))], - "a": tf.zeros((10, 1)), - } - y_p = { - "b": [tf.zeros((10, 1)), tf.zeros((10, 1))], - "a": tf.ones((10, 1)), - } - sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) - - total_loss = loss_container(y_t, y_p, sample_weight=sw) - self.assertIsInstance(total_loss, tf.Tensor) - self.assertEqual(total_loss.numpy(), 0.75) - self.assertLen(loss_container.metrics, 3) - - loss_metric = loss_container.metrics[0] - self.assertEqual(loss_metric.name, "loss") - self.assertEqual(loss_metric.result().numpy(), 0.75) - - a_metric = loss_container.metrics[1] - self.assertEqual(a_metric.name, "a_loss") - self.assertEqual(a_metric.result().numpy(), 0.5) - - b_1_metric = loss_container.metrics[2] - self.assertEqual(b_1_metric.name, "b_1_loss") - self.assertEqual(b_1_metric.result().numpy(), 0.5) - - def test_no_input_mutation(self): - loss = {"a": "mae"} - loss_container = compile_utils.LossesContainer(loss) - - y_t = {"a": tf.zeros((10, 1))} - y_p = {"a": tf.ones((10, 1)), "b": tf.zeros((10, 1))} - sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) - - total_loss = loss_container(y_t, y_p, sample_weight=sw) - self.assertIsInstance(total_loss, tf.Tensor) - self.assertEqual(total_loss.numpy(), 0.5) - self.assertLen(loss, 1) - - def test_broadcast_single_loss(self): - loss_container = compile_utils.LossesContainer("mse") - - y_t = [tf.ones((10, 1)), tf.zeros((10, 1))] - y_p = [tf.ones((10, 1)), tf.ones((10, 1))] - sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) - - total_loss = loss_container(y_t, y_p, sample_weight=sw) - self.assertEqual(total_loss.numpy(), 0.5) - self.assertLen(loss_container.metrics, 3) - - loss_metric = loss_container.metrics[0] - self.assertEqual(loss_metric.name, "loss") - self.assertEqual(loss_metric.result().numpy(), 0.5) - - output_1_metric = loss_container.metrics[1] - self.assertEqual(output_1_metric.name, "output_1_loss") - self.assertEqual(output_1_metric.result().numpy(), 0.0) - - output_2_metric = loss_container.metrics[2] - self.assertEqual(output_2_metric.name, "output_2_loss") - self.assertEqual(output_2_metric.result().numpy(), 0.5) - - def test_missing_label_with_no_loss(self): - # It's ok to exclude a label if that label has no - # losses or metrics associated with it. - loss_container = compile_utils.LossesContainer( - {"output1": "mse", "output3": "mae"} - ) - - y_p = { - "output1": tf.convert_to_tensor([[0], [1], [2]]), - "output2": tf.convert_to_tensor([[3], [4], [5]]), - "output3": tf.convert_to_tensor([[6], [7], [8]]), - } - y_t = { - "output1": tf.convert_to_tensor([[1], [2], [3]]), - "output3": tf.convert_to_tensor([[4], [5], [6]]), - } - - total_loss = loss_container(y_t, y_p) - self.assertEqual(total_loss.numpy(), 3.0) - self.assertLen(loss_container.metrics, 3) - - loss_metric = loss_container.metrics[0] - self.assertEqual(loss_metric.name, "loss") - self.assertEqual(loss_metric.result().numpy(), 3.0) - - output_1_metric = loss_container.metrics[1] - self.assertEqual(output_1_metric.name, "output1_loss") - self.assertEqual(output_1_metric.result().numpy(), 1.0) - - output_3_metric = loss_container.metrics[2] - self.assertEqual(output_3_metric.name, "output3_loss") - self.assertEqual(output_3_metric.result().numpy(), 2.0) - - def test_mismatched_dtypes(self): - y_t = tf.constant([1, 9, 2, -5], shape=(2, 2)) - y_p = tf.constant([4, 8, 12, 8], shape=(2, 2), dtype=tf.float32) - - def my_mae(labels, preds): - self.assertEqual(labels.dtype, tf.int32) - self.assertEqual(preds.dtype, tf.float32) - labels = tf.cast(labels, preds.dtype) - return backend.mean(tf.abs(preds - labels), axis=-1) - - loss_container = compile_utils.LossesContainer(my_mae) - total_loss = loss_container(y_t, y_p) - self.assertEqual(total_loss.dtype, tf.float32) - - def test_integer_dtypes(self): - y_t = tf.constant([1, 9, 2, -5], shape=(2, 2)) - y_p = tf.constant([4, 8, 12, 8], shape=(2, 2), dtype=tf.int64) - - def my_mae(labels, preds): - self.assertEqual(labels.dtype, tf.int64) - self.assertEqual(preds.dtype, tf.int64) - return backend.mean(tf.abs(preds - labels), axis=-1) - - loss_container = compile_utils.LossesContainer(my_mae) - total_loss = loss_container(y_t, y_p) - self.assertEqual(total_loss.dtype, tf.int64) - - def test_float_dtypes(self): - y_t = tf.constant([1, 9, 2, -5], shape=(2, 2), dtype=tf.float32) - y_p = tf.constant([4, 8, 12, 8], shape=(2, 2), dtype=tf.float64) - - def my_mae(labels, preds): - self.assertEqual(labels.dtype, tf.float64) - self.assertEqual(preds.dtype, tf.float64) - return backend.mean(tf.abs(preds - labels), axis=-1) - - loss_container = compile_utils.LossesContainer(my_mae) - total_loss = loss_container(y_t, y_p) - self.assertIsInstance(total_loss, tf.Tensor) - self.assertEqual(total_loss.dtype, tf.float64) - - @test_combinations.generate( - test_combinations.combine( - input_type=["dense", "masked", "ragged"], - reduction=["auto", "sum"], - use_sample_weights=[True, False], - ), - ) - def test_loss_consistency(self, input_type, reduction, use_sample_weights): - y_p = tf.ragged.constant( - [[[1], [1], [1]], [[1], [1]]], dtype=tf.float32 - ) - y_t = tf.ragged.constant( - [[[1], [0], [0]], [[1], [1]]], dtype=tf.float32 - ) - - if input_type == "masked": - mask = tf.ones_like(y_p).to_tensor() - y_p = y_p.to_tensor() - y_t = y_t.to_tensor() - y_p._keras_mask = mask - elif input_type == "dense": - y_p = y_p.to_tensor() - y_t = y_t.to_tensor() - - if input_type == "dense": - count = 6 - else: - count = 5 - - if use_sample_weights: - wrong = 4 - maybe_sample_weight = { - "sample_weight": tf.constant([[2], [1]], dtype=tf.float32) - } - else: - wrong = 2 - maybe_sample_weight = {} - - expected = wrong - if reduction != "sum": - expected /= count - - loss_obj = losses_mod.MeanAbsoluteError(reduction=reduction) - - result = loss_obj(y_t, y_p, **maybe_sample_weight) - self.assertAlmostEqual(result.numpy(), expected) - - container = compile_utils.LossesContainer(loss_obj) - container_result = container(y_t, y_p, **maybe_sample_weight) - self.assertAlmostEqual(container_result.numpy(), expected) - - def test_loss_masking(self): - loss_container = compile_utils.LossesContainer("mae") - y_p = tf.constant([[[1], [1]], [[0], [0]]], dtype=tf.float32) - y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32) - # Reduction is "sum_over_batch_size" that's not the literal batch size, - # but the number of elements being summed: The number of valid - # emlements. So since the mask has two valid items, the number of - # elements is 2. - y_p._keras_mask = tf.constant([[1, 0], [1, 0]], dtype=tf.float32) - - total_loss = loss_container(y_t, y_p) - self.assertAlmostEqual(total_loss.numpy(), 0.5) # sum over num valid - - self.assertLen(loss_container.metrics, 1) - loss_metric = loss_container.metrics[0] - self.assertEqual(loss_metric.name, "loss") - self.assertAlmostEqual(loss_metric.result().numpy(), 0.5) - - def test_loss_sample_weight(self): - loss_container = compile_utils.LossesContainer("mae") - y_p = tf.constant([[[1], [1]], [[0], [0]]], dtype=tf.float32) - y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32) - sw = tf.constant([[0.2, 0.3], [0.5, 0]], dtype=tf.float32) - - total_loss = loss_container(y_t, y_p, sample_weight=sw) - # (0 * .2 + 0 * .3 + 1 * .5 + 1 * 0) / 4 - self.assertAlmostEqual(total_loss.numpy(), 0.125) - - self.assertLen(loss_container.metrics, 1) - loss_metric = loss_container.metrics[0] - self.assertEqual(loss_metric.name, "loss") - self.assertAlmostEqual(loss_metric.result().numpy(), 0.125) - - def test_loss_masking_sample_weight(self): - loss_container = compile_utils.LossesContainer("mae") - y_p = tf.constant([[[1], [1]], [[0], [0]]], dtype=tf.float32) - y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32) - sw = tf.constant([[0.2, 0.3], [0.5, 0]], dtype=tf.float32) - y_p._keras_mask = tf.constant([[1, 0], [1, 0]], dtype=tf.float32) - - total_loss = loss_container(y_t, y_p, sample_weight=sw) - # (0 * .2 + 1 * .5) / 2 - self.assertAlmostEqual(total_loss.numpy(), 0.25) # sum over num valid - - self.assertLen(loss_container.metrics, 1) - loss_metric = loss_container.metrics[0] - self.assertEqual(loss_metric.name, "loss") - self.assertAlmostEqual(loss_metric.result().numpy(), 0.25) - - def test_custom_loss_callables(self): - def custom_loss_fn(y_true, y_pred): - return tf.reduce_sum(y_true - y_pred) - - class CustomLossClass: - def __call__(self, y_true, y_pred): - return tf.reduce_sum(y_true - y_pred) - - loss_container = compile_utils.LossesContainer( - [custom_loss_fn, CustomLossClass()] - ) - y_t, y_p = tf.ones((10, 5)), tf.zeros((10, 5)) - loss_container(y_t, y_p) - - self.assertEqual(loss_container._losses[0].name, "custom_loss_fn") - self.assertEqual(loss_container._losses[1].name, "custom_loss_class") - - def test_ragged_tensor_output(self): - """Ensure ragged tensors can be passed as targets and predictions.""" - - def custom_loss_fn(y_true, y_pred): - """MSE supports RaggedTensors directly.""" - return losses_mod.mse(y_true, y_pred) - - class CustomLossClass(losses_mod.Loss): - """User defined loss func must implement RaggedTensor support.""" - - def call(self, y_true, y_pred): - losses = tf.ragged.map_flat_values( - tf.math.squared_difference, y_true, y_pred - ) - return tf.reduce_mean(losses) - - loss_container = compile_utils.LossesContainer( - [custom_loss_fn, CustomLossClass()] - ) - - v_t = tf.constant([[3.0, 4.0], [1.0, 2.0], [3.0, 5.0]]) - v_p = tf.constant([[3.1, 4.0], [1.0, 2.0], [3.0, 5.0]]) - - y_t = tf.expand_dims(tf.RaggedTensor.from_row_splits(v_t, [0, 2, 3]), 0) - y_p = tf.expand_dims(tf.RaggedTensor.from_row_splits(v_p, [0, 2, 3]), 0) - total_loss = loss_container(y_t, y_p) - - self.assertIsInstance(total_loss, tf.Tensor) - self.assertEqual(loss_container._losses[0].name, "custom_loss_fn") - - -class MetricsContainerTest(test_combinations.TestCase): - def test_single_metric(self): - metric_container = compile_utils.MetricsContainer("mse") - y_t, y_p = tf.ones((10, 5)), tf.zeros((10, 5)) - metric_container.update_state(y_t, y_p) - - self.assertLen(metric_container.metrics, 1) - metric = metric_container.metrics[0] - self.assertEqual(metric.name, "mse") - self.assertEqual(metric.result().numpy(), 1.0) - - metric_container.reset_state() - self.assertEqual(metric.result().numpy(), 0.0) - - def test_list_of_metrics_one_output(self): - metric_container = compile_utils.MetricsContainer(["mse", "mae"]) - y_t, y_p = 2 * tf.ones((10, 5)), tf.zeros((10, 5)) - metric_container.update_state(y_t, y_p) - self.assertLen(metric_container.metrics, 2) - - mse_metric = metric_container.metrics[0] - self.assertEqual(mse_metric.name, "mse") - self.assertEqual(mse_metric.result().numpy(), 4.0) - - mae_metric = metric_container.metrics[1] - self.assertEqual(mae_metric.name, "mae") - self.assertEqual(mae_metric.result().numpy(), 2.0) - - metric_container.reset_state() - self.assertEqual(mse_metric.result().numpy(), 0.0) - self.assertEqual(mae_metric.result().numpy(), 0.0) - - def test_list_of_metrics_list_of_outputs(self): - metric_container = compile_utils.MetricsContainer( - metrics=["mse", "mae"], # Should broadcast to both outputs. - weighted_metrics=["accuracy"], - ) # Should broadcast to both outputs. - - y_t = [tf.ones((10, 1)), tf.zeros((10, 1))] - y_p = [tf.ones((10, 1)), 2 * tf.ones((10, 1))] - sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) - metric_container.update_state(y_t, y_p, sample_weight=sw) - self.assertLen(metric_container.metrics, 6) - - mse_metric = metric_container.metrics[0] - self.assertEqual(mse_metric.name, "output_1_mse") - self.assertEqual(mse_metric.result().numpy(), 0.0) - - mse_metric = metric_container.metrics[1] - self.assertEqual(mse_metric.name, "output_1_mae") - self.assertEqual(mse_metric.result().numpy(), 0.0) - - acc_metric_1 = metric_container.metrics[2] - self.assertEqual(acc_metric_1.name, "output_1_accuracy") - self.assertEqual(acc_metric_1.result().numpy(), 1.0) - self.assertEqual(acc_metric_1._fn, metrics_mod.binary_accuracy) - - mae_metric = metric_container.metrics[3] - self.assertEqual(mae_metric.name, "output_2_mse") - self.assertEqual(mae_metric.result().numpy(), 4.0) - - mae_metric = metric_container.metrics[4] - self.assertEqual(mae_metric.name, "output_2_mae") - self.assertEqual(mae_metric.result().numpy(), 2.0) - - acc_metric_2 = metric_container.metrics[5] - self.assertEqual(acc_metric_2.name, "output_2_accuracy") - self.assertEqual(acc_metric_2.result().numpy(), 0.0) - self.assertEqual(acc_metric_2._fn, metrics_mod.binary_accuracy) - - weighted_metrics = metric_container.weighted_metrics - self.assertLen(weighted_metrics, 2) - self.assertEqual(weighted_metrics[0].name, "output_1_accuracy") - self.assertEqual(weighted_metrics[1].name, "output_2_accuracy") - - unweighted_metrics = metric_container.unweighted_metrics - self.assertLen(unweighted_metrics, 4) - self.assertEqual(unweighted_metrics[0].name, "output_1_mse") - self.assertEqual(unweighted_metrics[1].name, "output_1_mae") - self.assertEqual(unweighted_metrics[2].name, "output_2_mse") - self.assertEqual(unweighted_metrics[3].name, "output_2_mae") - - def test_metric_dict(self): - metric_container = compile_utils.MetricsContainer( - metrics={"out1": "mse", "out2": "mae"}, - weighted_metrics={"out1": "mse", "out2": "mae"}, - ) - - y_t = {"out1": tf.ones((10, 1)), "out2": tf.zeros((10, 1))} - y_p = {"out1": tf.ones((10, 1)), "out2": 2 * tf.ones((10, 1))} - sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) - metric_container.update_state(y_t, y_p, sample_weight=sw) - - mse_metric = metric_container.metrics[0] - self.assertEqual(mse_metric.name, "out1_mse") - self.assertEqual(mse_metric.result().numpy(), 0.0) - - weighted_mse_metric = metric_container.metrics[1] - self.assertEqual(weighted_mse_metric.name, "out1_weighted_mse") - self.assertEqual(weighted_mse_metric.result().numpy(), 0.0) - - mae_metric = metric_container.metrics[2] - self.assertEqual(mae_metric.name, "out2_mae") - self.assertEqual(mae_metric.result().numpy(), 2.0) - - weighted_mae_metric = metric_container.metrics[3] - self.assertEqual(weighted_mae_metric.name, "out2_weighted_mae") - self.assertEqual(weighted_mae_metric.result().numpy(), 2.0) - - metric_container.reset_state() - self.assertEqual(mse_metric.result().numpy(), 0.0) - self.assertEqual(weighted_mse_metric.result().numpy(), 0.0) - self.assertEqual(mae_metric.result().numpy(), 0.0) - self.assertEqual(weighted_mae_metric.result().numpy(), 0.0) - - def test_metric_partial_dict_with_output_names(self): - metric_container = compile_utils.MetricsContainer( - {"out2": "mae"}, output_names=["out1", "out2"] - ) - - y_t = [tf.ones((10, 1)), tf.zeros((10, 1))] - y_p = [tf.ones((10, 1)), tf.ones((10, 1))] - sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) - - metric_container.update_state(y_t, y_p, sample_weight=sw) - self.assertLen(metric_container.metrics, 1) - - mae_metric = metric_container.metrics[0] - self.assertEqual(mae_metric.name, "out2_mae") - self.assertEqual(mae_metric.result().numpy(), 1.0) - - def test_metric_partial_dict_with_nones(self): - metric_container = compile_utils.MetricsContainer( - {"out1": None, "out2": "mae"} - ) - - y_t = {"out1": tf.ones((10, 1)), "out2": tf.zeros((10, 1))} - y_p = {"out1": tf.ones((10, 1)), "out2": tf.ones((10, 1))} - sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) - - metric_container.update_state(y_t, y_p, sample_weight=sw) - self.assertLen(metric_container.metrics, 1) - - mae_metric = metric_container.metrics[0] - self.assertEqual(mae_metric.name, "out2_mae") - self.assertEqual(mae_metric.result().numpy(), 1.0) - - def test_nested_structure(self): - metric_container = compile_utils.MetricsContainer( - metrics={"b": ["mse", None], "a": "mae"}, - weighted_metrics={"b": [None, None], "a": "mse"}, - ) - - y_t = { - "b": [2 * tf.ones((10, 1)), tf.zeros((10, 1))], - "a": tf.zeros((10, 1)), - } - y_p = { - "b": [tf.zeros((10, 1)), tf.zeros((10, 1))], - "a": tf.ones((10, 1)), - } - sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) - - metric_container.update_state(y_t, y_p, sample_weight=sw) - self.assertLen(metric_container.metrics, 3) - - a_mae_metric = metric_container.metrics[0] - self.assertEqual(a_mae_metric.name, "a_mae") - self.assertEqual(a_mae_metric.result().numpy(), 1.0) - - weighted_a_mae_metric = metric_container.metrics[1] - self.assertEqual(weighted_a_mae_metric.name, "a_mse") - self.assertEqual(weighted_a_mae_metric.result().numpy(), 1.0) - - b_1_mse_metric = metric_container.metrics[2] - self.assertEqual(b_1_mse_metric.name, "b_1_mse") - self.assertEqual(b_1_mse_metric.result().numpy(), 4.0) - - def test_no_input_mutation(self): - metric = {"a": "mae"} - metric_container = compile_utils.MetricsContainer(metric) - - y_t = {"a": tf.zeros((10, 1))} - y_p = {"a": tf.ones((10, 1)), "b": tf.zeros((10, 1))} - - metric_container.update_state(y_t, y_p) - self.assertLen(metric, 1) - mae_metric = metric_container.metrics[0] - self.assertEqual(mae_metric.result().numpy(), 1.0) - - def test_crossentropy(self): - metric_container = compile_utils.MetricsContainer("crossentropy") - y_t, y_p = tf.ones((10, 1)), tf.ones((10, 1)) - metric_container.update_state(y_t, y_p) - self.assertEqual( - metric_container.metrics[0]._fn, metrics_mod.binary_crossentropy - ) - - metric_container = compile_utils.MetricsContainer("crossentropy") - y_t, y_p = tf.ones((10, 1)), tf.ones((10, 20)) - self.assertEqual(y_p.shape.as_list()[-1], 20) - metric_container.update_state(y_t, y_p) - self.assertEqual( - metric_container.metrics[0]._fn, - metrics_mod.sparse_categorical_crossentropy, - ) - - metric_container = compile_utils.MetricsContainer("crossentropy") - y_t, y_p = tf.ones((10, 20)), tf.ones((10, 20)) - metric_container.update_state(y_t, y_p) - self.assertEqual( - metric_container.metrics[0]._fn, - metrics_mod.categorical_crossentropy, - ) - - def test_accuracy(self): - metric_container = compile_utils.MetricsContainer("accuracy") - y_t, y_p = tf.ones((10, 1)), tf.ones((10, 1)) - metric_container.update_state(y_t, y_p) - self.assertEqual( - metric_container.metrics[0]._fn, metrics_mod.binary_accuracy - ) - - metric_container = compile_utils.MetricsContainer("Accuracy") - y_t, y_p = tf.ones((10, 1)), tf.ones((10, 1)) - metric_container.update_state(y_t, y_p) - self.assertEqual( - metric_container.metrics[0]._fn, metrics_mod.binary_accuracy - ) - - metric_container = compile_utils.MetricsContainer("accuracy") - y_t, y_p = tf.ones((10, 1)), tf.ones((10, 20)) - self.assertEqual(y_p.shape.as_list()[-1], 20) - metric_container.update_state(y_t, y_p) - self.assertEqual( - metric_container.metrics[0]._fn, - metrics_mod.sparse_categorical_accuracy, - ) - - metric_container = compile_utils.MetricsContainer("accuracy") - y_t, y_p = tf.ones((10, 20)), tf.ones((10, 20)) - metric_container.update_state(y_t, y_p) - self.assertEqual( - metric_container.metrics[0]._fn, metrics_mod.categorical_accuracy - ) - - def test_metric_weighting(self): - metric_container = compile_utils.MetricsContainer( - metrics=["mae"], weighted_metrics=["mae"] - ) - - y_t = tf.convert_to_tensor([[0], [3], [0]]) - y_p = tf.convert_to_tensor([[0], [0], [0]]) - sw = tf.convert_to_tensor([[1], [0], [1]]) - - metric_container.update_state(y_t, y_p, sample_weight=sw) - self.assertLen(metric_container.metrics, 2) - - mae_metric = metric_container.metrics[0] - self.assertEqual(mae_metric.name, "mae") - self.assertEqual(mae_metric.result().numpy(), 1.0) - - weighted_mae_metric = metric_container.metrics[1] - self.assertEqual(weighted_mae_metric.name, "weighted_mae") - self.assertEqual(weighted_mae_metric.result().numpy(), 0.0) - - def test_broadcast_metrics_to_dict(self): - metric_container = compile_utils.MetricsContainer(metrics=["mae"]) - - y_p = {"output": tf.convert_to_tensor([[0], [1], [2]])} - y_t = {"output": tf.convert_to_tensor([[1], [2], [3]])} - metric_container.update_state(y_t, y_p) - - mae_metric = metric_container.metrics[0] - self.assertEqual(mae_metric.name, "mae") - self.assertEqual(mae_metric.result().numpy(), 1.0) - - def test_broadcast_metrics_to_dict_with_output_names(self): - metric_container = compile_utils.MetricsContainer( - metrics=["mae"], output_names=["output"] - ) - - y_p = tf.convert_to_tensor([[0], [1], [2]]) - y_t = {"output": tf.convert_to_tensor([[1], [2], [3]])} - metric_container.update_state(y_t, y_p) - - mae_metric = metric_container.metrics[0] - self.assertEqual(mae_metric.name, "mae") - self.assertEqual(mae_metric.result().numpy(), 1.0) - - def test_missing_label_with_no_metrics(self): - # It's ok to exclude a label if that label has no - # losses or metrics associated with it. - metric_container = compile_utils.MetricsContainer( - metrics={"output1": "mae", "output3": "mse"} - ) - - y_p = { - "output1": tf.convert_to_tensor([[0], [1], [2]]), - "output2": tf.convert_to_tensor([[3], [4], [5]]), - "output3": tf.convert_to_tensor([[6], [7], [8]]), - } - y_t = { - "output1": tf.convert_to_tensor([[1], [2], [3]]), - "output3": tf.convert_to_tensor([[4], [5], [6]]), - } - - metric_container.update_state(y_t, y_p) - self.assertLen(metric_container.metrics, 2) - - mae_metric = metric_container.metrics[0] - self.assertEqual(mae_metric.name, "output1_mae") - self.assertEqual(mae_metric.result().numpy(), 1.0) - - mse_metric = metric_container.metrics[1] - self.assertEqual(mse_metric.name, "output3_mse") - self.assertEqual(mse_metric.result().numpy(), 4.0) - - def test_metrics_masking(self): - metrics_container = compile_utils.MetricsContainer( - metrics=["mae"], weighted_metrics=["mse"] - ) - y_p = tf.constant([[[1], [1]], [[0], [0]]], dtype=tf.float32) - y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32) - y_p._keras_mask = tf.constant([[1, 1], [0, 0]], dtype=tf.float32) - - metrics_container.update_state(y_t, y_p) - self.assertLen(metrics_container.metrics, 2) - - mae_metric = metrics_container.metrics[0] - self.assertEqual(mae_metric.name, "mae") - self.assertAlmostEqual(mae_metric.result().numpy(), 0) - - weighted_mae_metric = metrics_container.metrics[1] - self.assertEqual(weighted_mae_metric.name, "mse") - self.assertAlmostEqual(weighted_mae_metric.result().numpy(), 0) - - def test_metrics_sample_weight(self): - metrics_container = compile_utils.MetricsContainer( - metrics=["mae"], weighted_metrics=["mse"] - ) - y_p = tf.constant([[[1], [1]], [[0], [1]]], dtype=tf.float32) - y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32) - sw = tf.constant([[0.2, 0.3], [0.5, 0]], dtype=tf.float32) - - metrics_container.update_state(y_t, y_p, sample_weight=sw) - self.assertLen(metrics_container.metrics, 2) - - mae_metric = metrics_container.metrics[0] - self.assertEqual(mae_metric.name, "mae") - self.assertAlmostEqual(mae_metric.result().numpy(), 0.25) # 1 / 4 - - weighted_mae_metric = metrics_container.metrics[1] - self.assertEqual(weighted_mae_metric.name, "mse") - self.assertAlmostEqual( - weighted_mae_metric.result().numpy(), 0.5 - ) # .5 / 1 - - def test_metrics_masking_sample_weight(self): - metrics_container = compile_utils.MetricsContainer( - metrics=["mae"], weighted_metrics=["mse"] - ) - y_p = tf.constant([[[1], [1]], [[0], [1]]], dtype=tf.float32) - y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32) - sw = tf.constant([[0.3, 0.2], [0.2, 0.3]], dtype=tf.float32) - y_p._keras_mask = tf.constant([[1, 0], [1, 0]], dtype=tf.float32) - - metrics_container.update_state(y_t, y_p, sample_weight=sw) - self.assertLen(metrics_container.metrics, 2) - - mae_metric = metrics_container.metrics[0] - self.assertEqual(mae_metric.name, "mae") - self.assertAlmostEqual(mae_metric.result().numpy(), 0.5) # 1 / .5 - - weighted_mae_metric = metrics_container.metrics[1] - self.assertEqual(weighted_mae_metric.name, "mse") - self.assertAlmostEqual(weighted_mae_metric.result().numpy(), 0.2 / 0.5) - - def test_loss_class_as_metric_with_distribution(self): - distribution = tf.distribute.OneDeviceStrategy("/device:CPU:0") - with distribution.scope(): - metric_container = compile_utils.MetricsContainer( - losses_mod.MeanSquaredError() - ) - y_t, y_p = tf.ones((10, 5)), tf.zeros((10, 5)) - metric_container.update_state(y_t, y_p) - - self.assertLen(metric_container.metrics, 1) - metric = metric_container.metrics[0] - self.assertEqual(metric.name, "mean_squared_error") - self.assertEqual(metric.result().numpy(), 1.0) - - def test_custom_metric_callables(self): - def custom_metric_fn(y_true, y_pred): - return tf.reduce_sum(y_true - y_pred) - - class CustomMetricClass: - def __call__(self, y_true, y_pred): - return tf.reduce_sum(y_true - y_pred) - - metric_container = compile_utils.MetricsContainer( - [custom_metric_fn, CustomMetricClass()] - ) - y_t, y_p = tf.ones((10, 5)), tf.zeros((10, 5)) - metric_container.update_state(y_t, y_p) - - self.assertEqual(metric_container.metrics[0].name, "custom_metric_fn") - self.assertEqual( - metric_container.metrics[1].name, "custom_metric_class" - ) - - def test_reset_state_existing_metric_before_built(self): - metric = metrics_mod.Mean() - metric.update_state([2.0, 4.0]) - self.assertEqual(metric.result().numpy(), 3.0) - - metric_container = compile_utils.MetricsContainer(metric) - metric_container.reset_state() - self.assertEqual(metric.result().numpy(), 0.0) - - def test_duplicated_metric_instance(self): - mean_obj = metrics_mod.Mean() - metric = mean_obj - with self.assertRaisesRegex(ValueError, "Found duplicated metrics"): - compile_utils.MetricsContainer( - metrics=metric, weighted_metrics=metric - ) - - # duplicated string should be fine - metric = "acc" - compile_utils.MetricsContainer(metrics=metric, weighted_metrics=metric) - - # complicated structure - metric = [mean_obj, "acc"] - weighted_metric = {"output1": mean_obj, "output2": "acc"} - with self.assertRaisesRegex(ValueError, "Found duplicated metrics"): - compile_utils.MetricsContainer( - metrics=metric, weighted_metrics=weighted_metric - ) - - -if __name__ == "__main__": - tf.compat.v1.enable_eager_execution() - tf.test.main() diff --git a/keras/engine/control_flow_test.py b/keras/engine/control_flow_test.py deleted file mode 100644 index 161e05d2496..00000000000 --- a/keras/engine/control_flow_test.py +++ /dev/null @@ -1,131 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for dynamic control flow behavior with Keras.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.engine import base_layer -from keras.optimizers.legacy import rmsprop -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class ControlFlowLayer1(base_layer.Layer): - """Layer with an `if` condition in call.""" - - def call(self, inputs): - if tf.reduce_sum(inputs) > 0: - return tf.sqrt(inputs) - else: - return tf.square(inputs) - - -class ControlFlowLayer2(base_layer.Layer): - """Layer with a `for` loop in call.""" - - def call(self, inputs): - samples = tf.TensorArray(dtype=tf.float32, size=tf.shape(inputs)[0]) - i = 0 - for sample in inputs: - samples = samples.write(i, tf.square(sample)) - i += 1 - return samples.stack() - - -class NestedControlFlowLayer(base_layer.Layer): - """Layer nested with a control flow layer.""" - - def __init__(self, **kwargs): - super().__init__(**kwargs) - self.layer = ControlFlowLayer1() - - def call(self, inputs): - return self.layer(inputs) - - -class ControlFlowModel(keras.Model): - """Model with an `if` condition in call.""" - - def call(self, inputs): - if tf.reduce_sum(inputs) > 0: - return tf.sqrt(inputs) - else: - return tf.square(inputs) - - -class NestedControlFlowModel(keras.Model): - """Model with an `if` condition in call using a control flow layer.""" - - def __init__(self, **kwargs): - super().__init__(**kwargs) - self.layer = NestedControlFlowLayer() - - def call(self, inputs): - inputs = self.layer(inputs) - if tf.reduce_sum(inputs) > 0: - return tf.sqrt(inputs) - else: - return tf.square(inputs) - - -class FunctionControlFlowModel(keras.Model): - """Model with control flow where `call` is wrapped in function already.""" - - @tf.function - def call(self, inputs): - if tf.reduce_sum(inputs) > 0: - return tf.sqrt(inputs) - else: - return tf.square(inputs) - - -@test_combinations.run_all_keras_modes -class AutographWrapperTest(test_combinations.TestCase): - @test_combinations.run_with_all_model_types - @parameterized.named_parameters( - ("with_if", ControlFlowLayer1), - ("with_for", ControlFlowLayer2), - ("nested", NestedControlFlowLayer), - ) - def test_control_flow_layer(self, layer_class): - model = test_utils.get_model_from_layers( - [layer_class()], input_shape=(3,) - ) - model.compile(rmsprop.RMSprop(0.001), loss="mse") - model.train_on_batch(np.random.random((2, 3)), np.random.random((2, 3))) - - @parameterized.named_parameters( - ("with_if", ControlFlowModel), - ("nested", NestedControlFlowModel), - ("wrapped_in_function", FunctionControlFlowModel), - ) - def test_control_flow_model(self, model_class): - model = model_class() - model.compile(rmsprop.RMSprop(0.001), loss="mse") - model.train_on_batch(np.random.random((2, 3)), np.random.random((2, 3))) - - def test_control_flow_in_deferred_sequential_model(self): - model = keras.Sequential( - [ControlFlowLayer1(), keras.layers.Dense(3), ControlFlowLayer2()] - ) - model.compile(rmsprop.RMSprop(0.001), loss="mse") - model.train_on_batch(np.random.random((2, 3)), np.random.random((2, 3))) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/correctness_test.py b/keras/engine/correctness_test.py deleted file mode 100644 index 6b16e247cea..00000000000 --- a/keras/engine/correctness_test.py +++ /dev/null @@ -1,141 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for numerical correctness.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class MultiInputSubclassed(keras.Model): - """Subclassed Model that adds its inputs and then adds a bias.""" - - def __init__(self): - super().__init__() - self.add = keras.layers.Add() - self.bias = test_utils.Bias() - - def call(self, inputs): - added = self.add(inputs) - return self.bias(added) - - -def multi_input_functional(): - """Functional Model that adds its inputs and then adds a bias.""" - input_1 = keras.Input(shape=(1,)) - input_2 = keras.Input(shape=(1,)) - input_3 = keras.Input(shape=(1,)) - added = keras.layers.Add()([input_1, input_2, input_3]) - output = test_utils.Bias()(added) - return keras.Model([input_1, input_2, input_3], output) - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes -class SimpleBiasTest(test_combinations.TestCase): - def _get_simple_bias_model(self): - model = test_utils.get_model_from_layers( - [test_utils.Bias()], input_shape=(1,) - ) - model.compile( - keras.optimizers.legacy.gradient_descent.SGD(0.1), - "mae", - run_eagerly=test_utils.should_run_eagerly(), - ) - return model - - def test_simple_bias_fit(self): - x = np.array([[0.0], [1.0], [2.0]]) - y = np.array([[0.5], [2.0], [3.5]]) - model = self._get_simple_bias_model() - - history = model.fit(x, y, batch_size=3, epochs=5) - self.assertAllClose(history.history["loss"], [1.0, 0.9, 0.8, 0.7, 0.6]) - - def test_simple_bias_evaluate(self): - x = np.array([[0.0], [1.0], [2.0]]) - y = np.array([[1.0], [3.0], [5.0]]) - model = self._get_simple_bias_model() - - loss = model.evaluate(x, y, batch_size=1) - self.assertAlmostEqual(loss, 2.0) - - def test_simple_bias_predict(self): - x = np.array([[0.0], [1.0], [2.0]]) - model = self._get_simple_bias_model() - - pred = model.predict(x, batch_size=1) - self.assertAllClose(x, pred) - - -@test_combinations.run_all_keras_modes -class MultipleInputTest(test_combinations.TestCase): - def _get_multiple_input_model(self, subclassed=True): - if subclassed: - model = MultiInputSubclassed() - else: - model = multi_input_functional() - model.compile( - keras.optimizers.legacy.gradient_descent.SGD(0.1), - "mae", - run_eagerly=test_utils.should_run_eagerly(), - ) - return model - - @parameterized.named_parameters(("subclassed", True), ("functional", False)) - def test_multiple_input_fit(self, subclassed): - x = [ - np.array([[1.0], [2.0], [3.0]]), - np.array([[4.0], [5.0], [6.0]]), - np.array([[7.0], [8.0], [9.0]]), - ] - y = np.array([[12.5], [16.0], [19.5]]) - - model = self._get_multiple_input_model(subclassed) - history = model.fit(x, y, batch_size=3, epochs=5) - self.assertAllClose(history.history["loss"], [1.0, 0.9, 0.8, 0.7, 0.6]) - - @parameterized.named_parameters(("subclassed", True), ("functional", False)) - def test_multiple_input_evaluate(self, subclassed): - x = [ - np.array([[1.0], [2.0], [3.0]]), - np.array([[4.0], [5.0], [6.0]]), - np.array([[7.0], [8.0], [9.0]]), - ] - y = np.array([[13.0], [17.0], [21.0]]) - - model = self._get_multiple_input_model(subclassed) - loss = model.evaluate(x, y, batch_size=3) - self.assertAlmostEqual(loss, 2.0) - - @parameterized.named_parameters(("subclassed", True), ("functional", False)) - def test_multiple_input_predict(self, subclassed): - x = [ - np.array([[1.0], [2.0], [3.0]]), - np.array([[4.0], [5.0], [6.0]]), - np.array([[7.0], [8.0], [9.0]]), - ] - - model = self._get_multiple_input_model(subclassed) - pred = model.predict(x, batch_size=1) - self.assertAllClose(pred, [[12.0], [15.0], [18.0]]) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/data_adapter.py b/keras/engine/data_adapter.py deleted file mode 100644 index 9201bfe3be0..00000000000 --- a/keras/engine/data_adapter.py +++ /dev/null @@ -1,1996 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Adapter module that convert different input data objects into tf.dataset.""" - -import abc -import contextlib -import functools -import itertools -import math -import random - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.distribute import distributed_training_utils -from keras.engine import training_utils -from keras.utils import data_utils -from keras.utils import dataset_creator -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.distribute.input_lib import ( - DistributedDataset, -) -from tensorflow.python.eager import context -from tensorflow.python.framework import type_spec -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export -from tensorflow.python.data.ops import ( - from_sparse_tensor_slices_op, -) -from tensorflow.python.data.ops import from_generator_op -from tensorflow.python.data.ops import range_op -from tensorflow.python.data.ops import from_tensors_op -from tensorflow.python.data.ops import from_tensor_slices_op - -try: - import pandas as pd -except ImportError: - pd = None - -keras_data_adapter_gauge = tf.__internal__.monitoring.BoolGauge( - "/tensorflow/api/keras/data_adapters", "keras data adapter usage", "method" -) - - -class DataAdapter(object, metaclass=abc.ABCMeta): - """Base class for input data adapter. - - In TF 2.0, tf.data is the preferred API for user to feed in data. In order - to simplify the training code path, all the input data object will be - converted to `tf.data.Dataset` if possible. - - Note that since this class is mainly targeted for TF 2.0, it might have a - lot of assumptions under the hood, e.g. eager context by default, - distribution strategy, etc. In the meantime, some legacy feature support - might be dropped, eg, Iterator from dataset API in v1, etc. - - The sample usage of this class is like: - - ``` - x = tf.data.Dataset.range(100) - adapter_cls = [NumpyArrayDataAdapter, ..., DatasetAdapter] - applicable_adapters = [cls for cls in adapter_cls if cls.can_handle(x)] - if len(applicable_adapters) != 1: - raise ValueError("Expect only one adapter class to handle the input") - - dataset = applicable_adapters[0](x).get_dataset() - for data in dataset: - # training - ``` - """ - - @staticmethod - def can_handle(x, y=None): - """Whether the current DataAdapter could handle the input x and y. - - Structure wise, x and y can be single object, or list of objects if - there multiple input/output, or dictionary of objects when the - input/output are named. - - Args: - x: input features. - y: target labels. Note that y could be None in the case of prediction. - - Returns: - boolean - """ - raise NotImplementedError - - @abc.abstractmethod - def __init__(self, x, y=None, **kwargs): - """Create a DataAdapter based on data inputs. - - The caller must make sure to call `can_handle()` first before invoking - this method. Provide unsupported data type will result into unexpected - behavior. - - Args: - x: input features. - y: target labels. Note that y could be None in the case of prediction. - **kwargs: Other keyword arguments for DataAdapter during the - construction of the tf.dataset.Dataset. For example: - - Numpy data might have `sample_weights` which will be used for - weighting the loss function during training. - - Numpy data might need to have `batch_size` parameter when - constructing the dataset and iterator. - - Certain input might need to be distribution strategy aware. When - `distribution_strategy` is passed, the created dataset need to - respect the strategy. - DataAdapter might choose to ignore any keyword argument if it - doesn't use it, or raise exception if any required argument is not - provided. - """ - if not self.can_handle(x, y): - raise ValueError(f"{self.__class__} Cannot handle input {x}, {y}") - - @abc.abstractmethod - def get_dataset(self): - """Get a dataset instance for the current DataAdapter. - - Note that the dataset returned does not repeat for epoch, so caller - might need to create new iterator for the same dataset at the beginning - of the epoch. This behavior might change in the future. - - Returns: - A `tf.data.Dataset`. Caller might use the dataset in different - context, e.g. iter(dataset) in eager to get the value directly, or in - graph mode, provide the iterator tensor to Keras model function. - """ - raise NotImplementedError - - @abc.abstractmethod - def get_size(self): - """Return the size (number of batches) for the dataset created. - - For certain type of the data input, the number of batches is known, eg - for Numpy data, the size is same as (number_of_element / batch_size). - Whereas for dataset or python generator, the size is unknown since it - may or may not have an end state. - - Returns: - int, the number of batches for the dataset, or None if it is unknown. - The caller could use this to control the loop of training, show - progress bar, or handle unexpected StopIteration error. - """ - raise NotImplementedError - - @abc.abstractmethod - def batch_size(self): - """Return the batch size of the dataset created. - - For certain type of the data input, the batch size is known, and even - required, like numpy array. Whereas for dataset, the batch is unknown - unless we take a peek. - - Returns: - int, the batch size of the dataset, or None if it is unknown. - """ - raise NotImplementedError - - def representative_batch_size(self): - """Return a representative size for batches in the dataset. - - This is not guaranteed to be the batch size for all batches in the - dataset. It just needs to be a rough approximation for batch sizes in - the dataset. - - Returns: - int, a representative size for batches found in the dataset, - or None if it is unknown. - """ - return self.batch_size() - - @abc.abstractmethod - def has_partial_batch(self): - """Whether the dataset has partial batch at the end.""" - raise NotImplementedError - - @abc.abstractmethod - def partial_batch_size(self): - """The size of the final partial batch for dataset. - - Will return None if has_partial_batch is False or batch_size is None. - """ - raise NotImplementedError - - @abc.abstractmethod - def should_recreate_iterator(self): - """Returns whether a new iterator should be created every epoch.""" - raise NotImplementedError - - def get_samples(self): - """Returns number of samples in the data, or `None`.""" - if not self.get_size() or not self.batch_size(): - return None - total_sample = self.get_size() * self.batch_size() - if self.has_partial_batch(): - total_sample -= self.batch_size() - self.partial_batch_size() - return total_sample - - def on_epoch_end(self): - """A hook called after each epoch.""" - pass - - -class TensorLikeDataAdapter(DataAdapter): - """Adapter that handles Tensor-like objects, e.g. EagerTensor and NumPy.""" - - @staticmethod - def can_handle(x, y=None): - # TODO(kaftan): Check performance implications of using a flatten - # here for other types of inputs. - flat_inputs = tf.nest.flatten(x) - if y is not None: - flat_inputs += tf.nest.flatten(y) - - tensor_types = _get_tensor_types() - - def _is_tensor(v): - if isinstance(v, tensor_types): - return True - return False - - return all(_is_tensor(v) for v in flat_inputs) - - def __init__( - self, - x, - y=None, - sample_weights=None, - sample_weight_modes=None, - batch_size=None, - epochs=1, - steps=None, - shuffle=False, - **kwargs, - ): - super().__init__(x, y, **kwargs) - x, y, sample_weights = _process_tensorlike((x, y, sample_weights)) - sample_weight_modes = broadcast_sample_weight_modes( - sample_weights, sample_weight_modes - ) - - # If sample_weights are not specified for an output use 1.0 as weights. - (sample_weights, _, _) = training_utils.handle_partial_sample_weights( - y, sample_weights, sample_weight_modes, check_all_flat=True - ) - - inputs = pack_x_y_sample_weight(x, y, sample_weights) - - num_samples = set( - int(i.shape[0]) for i in tf.nest.flatten(inputs) - ).pop() - _check_data_cardinality(inputs) - - # If batch_size is not passed but steps is, calculate from the input - # data. Defaults to `32` for backwards compatibility. - if not batch_size: - batch_size = int(math.ceil(num_samples / steps)) if steps else 32 - - self._size = int(math.ceil(num_samples / batch_size)) - self._batch_size = batch_size - - num_full_batches = int(num_samples // batch_size) - self._partial_batch_size = num_samples % batch_size - - if isinstance(shuffle, str): - shuffle = shuffle.lower() - - self._shuffle = shuffle - # Vectorized version of shuffle. - # This is a performance improvement over using `from_tensor_slices`. - # The indices of the data are shuffled and batched, and these indices - # are then zipped with the data and used to extract a batch of the data - # at each step. The performance improvements here come from: - # 1. vectorized batch using gather - # 2. parallelized map - # 3. pipelined permutation generation - # 4. optimized permutation batching - # 5. disabled static optimizations - - indices_dataset = tf.data.Dataset.range(1) - if shuffle != "batch": - indices_dataset = indices_dataset.repeat(epochs) - - def permutation(_): - # It turns out to be more performant to make a new set of indices - # rather than reusing the same range Tensor. (presumably because of - # buffer forwarding.) - indices = tf.range(num_samples, dtype=tf.int64) - if shuffle and shuffle != "batch": - indices = tf.random.shuffle(indices) - return indices - - # We prefetch a single element. Computing large permutations can take - # quite a while so we don't want to wait for prefetching over an epoch - # boundary to trigger the next permutation. On the other hand, too many - # simultaneous shuffles can contend on a hardware level and degrade all - # performance. - indices_dataset = indices_dataset.map(permutation).prefetch(1) - - def slice_batch_indices(indices): - """Convert a Tensor of indices into a dataset of batched indices. - - This step can be accomplished in several ways. The most natural is - to slice the Tensor in a Dataset map. (With a condition on the upper - index to handle the partial batch.) However it turns out that - coercing the Tensor into a shape which is divisible by the batch - size (and handling the last partial batch separately) allows for a - much more favorable memory access pattern and improved performance. - - Args: - indices: Tensor which determines the data order for an entire - epoch. - - Returns: - A Dataset of batched indices. - """ - num_in_full_batch = num_full_batches * batch_size - first_k_indices = tf.slice(indices, [0], [num_in_full_batch]) - first_k_indices = tf.reshape( - first_k_indices, [num_full_batches, batch_size] - ) - - flat_dataset = tf.data.Dataset.from_tensor_slices(first_k_indices) - if self._partial_batch_size: - index_remainder = tf.data.Dataset.from_tensors( - tf.slice( - indices, [num_in_full_batch], [self._partial_batch_size] - ) - ) - flat_dataset = flat_dataset.concatenate(index_remainder) - - if shuffle == "batch": - # 1024 is a magic constant that has not been properly evaluated - flat_dataset = flat_dataset.shuffle(1024).repeat(epochs) - return flat_dataset - - indices_dataset = indices_dataset.flat_map(slice_batch_indices) - - dataset = self.slice_inputs(indices_dataset, inputs) - - if shuffle == "batch": - - def shuffle_batch(*batch): - return tf.nest.map_structure(tf.random.shuffle, batch) - - dataset = dataset.map(shuffle_batch) - - options = tf.data.Options() - options.experimental_distribute.auto_shard_policy = ( - tf.data.experimental.AutoShardPolicy.DATA - ) - dataset = dataset.with_options(options) - - self._dataset = dataset.prefetch(tf.data.AUTOTUNE) - - def slice_inputs(self, indices_dataset, inputs): - """Slice inputs into a Dataset of batches. - - Given a Dataset of batch indices and the unsliced inputs, - this step slices the inputs in a parallelized fashion - and produces a dataset of input batches. - - Args: - indices_dataset: A Dataset of batched indices - inputs: A python data structure that contains the inputs, targets, - and possibly sample weights. - - Returns: - A Dataset of input batches matching the batch indices. - """ - dataset = tf.data.Dataset.zip( - (indices_dataset, tf.data.Dataset.from_tensors(inputs).repeat()) - ) - - def grab_batch(i, data): - return tf.nest.map_structure( - lambda d: tf.gather(d, i, axis=0), data - ) - - dataset = dataset.map(grab_batch, num_parallel_calls=tf.data.AUTOTUNE) - - # Default optimizations are disabled to avoid the overhead of - # (unnecessary) input pipeline graph serialization and deserialization - options = tf.data.Options() - options.experimental_optimization.apply_default_optimizations = False - if self._shuffle: - # See b/141490660 for more details. - options.experimental_external_state_policy = ( - tf.data.experimental.ExternalStatePolicy.IGNORE - ) - dataset = dataset.with_options(options) - return dataset - - def get_dataset(self): - return self._dataset - - def get_size(self): - return self._size - - def batch_size(self): - return self._batch_size - - def has_partial_batch(self): - return self._partial_batch_size > 0 - - def partial_batch_size(self): - return self._partial_batch_size or None - - def should_recreate_iterator(self): - # An infinite dataset is always created here. - return False - - -class GenericArrayLikeDataAdapter(TensorLikeDataAdapter): - """Adapter that handles array-like data without forcing it into memory. - - This adapter handles array-like datasets that may be too big to fully - fit into memory. - - Specifically, this adapter handles any Python class which implements: - `__get_item__`, `__len__`, `shape`, and `dtype` with the same meanings - as Numpy, but it ignores any case where all the inputs are Tensors or Numpy - arrays (because that case is handled by the base TensorLikeDataAdapter). - - It ignores scipy sparse matrices and Composite Tensors because those are - handled by the CompositeTensorDataAdapter. - - It also does not handle lists/tuples of scalars, because those are handled - by the ListsOfScalarsDataAdapter. - """ - - @staticmethod - def can_handle(x, y=None): - flat_inputs = tf.nest.flatten(x) - if y is not None: - flat_inputs += tf.nest.flatten(y) - - def _is_array_like(v): - """Return True if v is a Tensor, array, or is array-like.""" - return ( - hasattr(v, "__getitem__") - and hasattr(v, "shape") - and hasattr(v, "dtype") - and hasattr(v, "__len__") - ) - - if not TensorLikeDataAdapter.can_handle( - x, y - ) and not CompositeTensorDataAdapter.can_handle(x, y): - return all(_is_array_like(v) for v in flat_inputs) - else: - return False - - def __init__(self, *args, **kwargs): - logging.warning( - "Keras is training/fitting/evaluating on array-like data. Keras " - "may not be optimized for this format, so if your input data " - "format is supported by TensorFlow I/O " - "(https://github.com/tensorflow/io) we recommend using that to " - "load a Dataset instead." - ) - - super().__init__(*args, **kwargs) - - def slice_inputs(self, indices_dataset, inputs): - """Slice inputs into a Dataset of batches. - - Given a Dataset of batch indices and the unsliced inputs, - this step slices the inputs in a parallelized fashion - and produces a dataset of input batches. - - Args: - indices_dataset: A Dataset of batched indices - inputs: A python data structure that contains the inputs, targets, - and possibly sample weights. - - Returns: - A Dataset of input batches matching the batch indices. - """ - flat_inputs = tf.nest.flatten(inputs) - - def dynamic_shape_like(t): - shape = list(t.shape) - shape[0] = None - return tuple(shape) - - flat_dtypes = [inp.dtype for inp in flat_inputs] - contiguous = True - if self._shuffle and self._shuffle != "batch": - contiguous = False - - def grab_batch(indices): - """Grab a batch of data from the inputs.""" - # This uses a py_function to avoid converting the array-like - # into a Tensor before slicing it, because converting the array-like - # to a Tensor may force it into memory.. - def py_method(ind): - def slice_array(data): - return training_utils.slice_arrays( - data, ind.numpy(), contiguous=contiguous - ) - - return [slice_array(inp) for inp in flat_inputs] - - flat_out = tf.py_function(py_method, [indices], flat_dtypes) - for v, original_inp in zip(flat_out, flat_inputs): - v.set_shape(dynamic_shape_like(original_inp)) - return tf.nest.pack_sequence_as(inputs, flat_out) - - dataset = indices_dataset.map( - grab_batch, num_parallel_calls=tf.data.AUTOTUNE - ) - - return dataset - - -class DatasetCreatorAdapter(DataAdapter): - """Adapter that handles dataset functions.""" - - def __init__(self, x, y, steps=None, distribution_strategy=None, **kwargs): - super().__init__(x, **kwargs) - - if not isinstance(x, dataset_creator.DatasetCreator): - raise TypeError( - "The input of a `DatasetCreatorAdapter` should be a " - "`DatasetCreator` but it received type {}.".format(type(x)) - ) - if steps is None: - if not kwargs.get("pss_evaluation_shards"): - raise ValueError( - "When using a " - "`tf.keras.utils.experimental.DatasetCreator`, " - "`steps_per_epoch`, `validation_steps`, `steps`, or " - "`pss_evaluation_shards` argument must be provided in " - "`Model.fit`, `Model.evaluate`, or `Model.predict`." - ) - self.dataset_creator = x - self.steps = steps - self.strategy = distribution_strategy - - @staticmethod - def can_handle(x, y=None): - if isinstance(x, dataset_creator.DatasetCreator): - assert y is None - return True - - def should_recreate_iterator(self): - # We expect users to shuffle the dataset in their `dataset_fn` supplied - # to `DatasetCreator`. Since that is a buffered shuffle, we intend to - # not reset the dataset so the batches that are not shuffled can still - # be pulled. - return False - - def get_size(self): - return None # To be inferred by `DataHandler`. - - def get_dataset(self): - return self.strategy.distribute_datasets_from_function( - self.dataset_creator, options=self.dataset_creator.input_options - ) - - def batch_size(self): - raise NotImplementedError() - - def has_partial_batch(self): - raise NotImplementedError() - - def partial_batch_size(self): - raise NotImplementedError() - - -class CompositeTensorDataAdapter(DataAdapter): - """Adapter that handles composite tensor.""" - - @staticmethod - def can_handle(x, y=None): - flat_inputs = tf.nest.flatten(x) - if y is not None: - flat_inputs += tf.nest.flatten(y) - - def _is_composite(v): - # Dataset/iterator/DistributedDataset inherits from CompositeTensor - # but should be handled by DatasetAdapter and GeneratorAdapter. - if ( - tf_utils.is_extension_type(v) - and not isinstance(v, (tf.data.Dataset, tf.data.Iterator)) - and not _is_distributed_dataset(v) - ): - return True - # Support Scipy sparse tensors if scipy is installed - return _is_scipy_sparse(v) - - def _is_tensor_or_composite(v): - if isinstance(v, (tf.Tensor, np.ndarray)): - return True - return _is_composite(v) - - return any(_is_composite(v) for v in flat_inputs) and all( - _is_tensor_or_composite(v) for v in flat_inputs - ) - - def __init__( - self, - x, - y=None, - sample_weights=None, - sample_weight_modes=None, - batch_size=None, - steps=None, - shuffle=False, - **kwargs, - ): - super().__init__(x, y, **kwargs) - x, y, sample_weights = _process_tensorlike((x, y, sample_weights)) - sample_weight_modes = broadcast_sample_weight_modes( - sample_weights, sample_weight_modes - ) - - # If sample_weights are not specified for an output use 1.0 as weights. - (sample_weights, _, _) = training_utils.handle_partial_sample_weights( - y, sample_weights, sample_weight_modes, check_all_flat=True - ) - - inputs = pack_x_y_sample_weight(x, y, sample_weights) - - dataset = tf.data.Dataset.from_tensor_slices(inputs) - num_samples = int(tf.nest.flatten(x)[0].shape[0]) - if shuffle: - dataset = dataset.shuffle(num_samples) - - # If batch_size is not passed but steps is, calculate from the input - # data. Defaults to `32` for backwards compatibility. - if not batch_size: - batch_size = int(math.ceil(num_samples / steps)) if steps else 32 - - dataset = dataset.batch(batch_size) - self._size = int(math.ceil(num_samples / batch_size)) - self._batch_size = batch_size - self._has_partial_batch = self._size != (num_samples // batch_size) - - self._partial_batch_size = None - if self._has_partial_batch: - self._partial_batch_size = ( - num_samples - (self._size - 1) * self._batch_size - ) - - self._dataset = dataset.prefetch(tf.data.AUTOTUNE) - - def get_dataset(self): - return self._dataset - - def get_size(self): - return self._size - - def batch_size(self): - return self._batch_size - - def has_partial_batch(self): - return self._has_partial_batch - - def partial_batch_size(self): - return self._partial_batch_size - - def should_recreate_iterator(self): - return True - - -class ListsOfScalarsDataAdapter(DataAdapter): - """Adapter that handles lists of scalars and lists of lists of scalars.""" - - @staticmethod - def can_handle(x, y=None): - handles_x = ListsOfScalarsDataAdapter._is_list_of_scalars(x) - handles_y = True - if y is not None: - handles_y = ListsOfScalarsDataAdapter._is_list_of_scalars(y) - return handles_x and handles_y - - @staticmethod - def _is_list_of_scalars(inp): - if isinstance(inp, (float, int, str, bytes, bytearray)): - return True - if isinstance(inp, (list, tuple)) and inp: - return ListsOfScalarsDataAdapter._is_list_of_scalars(inp[0]) - return False - - def __init__( - self, - x, - y=None, - sample_weights=None, - sample_weight_modes=None, - batch_size=None, - shuffle=False, - **kwargs, - ): - super().__init__(x, y, **kwargs) - x = np.asarray(x) - if y is not None: - y = np.asarray(y) - if sample_weights is not None: - sample_weights = np.asarray(sample_weights) - sample_weight_modes = broadcast_sample_weight_modes( - sample_weights, sample_weight_modes - ) - - self._internal_adapter = TensorLikeDataAdapter( - x, - y=y, - sample_weights=sample_weights, - sample_weight_modes=sample_weight_modes, - batch_size=batch_size, - shuffle=shuffle, - **kwargs, - ) - - def get_dataset(self): - return self._internal_adapter.get_dataset() - - def get_size(self): - return self._internal_adapter.get_size() - - def batch_size(self): - return self._internal_adapter.batch_size() - - def has_partial_batch(self): - return self._internal_adapter.has_partial_batch() - - def partial_batch_size(self): - return self._internal_adapter.partial_batch_size() - - def should_recreate_iterator(self): - return True - - -class DatasetAdapter(DataAdapter): - """Adapter that handles `tf.data.Dataset`.""" - - @staticmethod - def can_handle(x, y=None): - return isinstance( - x, (tf.compat.v1.data.Dataset, tf.data.Dataset) - ) or _is_distributed_dataset(x) - - def __init__(self, x, y=None, sample_weights=None, steps=None, **kwargs): - super().__init__(x, y, **kwargs) - # Note that the dataset instance is immutable, its fine to reuse the - # user provided dataset. - self._dataset = x - - # The user-provided steps. - self._user_steps = steps - - self._validate_args( - y, sample_weights, steps, kwargs.get("pss_evaluation_shards") - ) - - def get_dataset(self): - return self._dataset - - def get_size(self): - return # Inferred in `DataHandler`. - - def batch_size(self): - return None - - def has_partial_batch(self): - return False - - def partial_batch_size(self): - return None - - def should_recreate_iterator(self): - # Since DistributedDatasets have no cardinality, the user must provide - # all steps that need to be run, calling `.repeat()` as needed. - if _is_distributed_dataset(self._dataset): - return False - - # If user doesn't supply `steps`, or if they supply `steps` that - # exactly equals the size of the `Dataset`, create a new iterator - # each epoch. - return ( - self._user_steps is None - or tf.data.experimental.cardinality(self._dataset).numpy() - == self._user_steps - ) - - def _validate_args(self, y, sample_weights, steps, pss_evaluation_shards): - """Validates `__init__` arguments.""" - # Arguments that shouldn't be passed. - if not is_none_or_empty(y): - raise ValueError( - "`y` argument is not supported when using dataset as input." - ) - if not is_none_or_empty(sample_weights): - raise ValueError( - "`sample_weight` argument is not supported when using " - "dataset as input." - ) - - if steps is None: - if _is_distributed_dataset(self._dataset): - if not pss_evaluation_shards: - raise ValueError( - "When providing a distributed dataset, you must " - "specify the number of steps to run." - ) - else: - size = tf.data.experimental.cardinality(self._dataset).numpy() - if size == tf.data.experimental.INFINITE_CARDINALITY: - if pss_evaluation_shards: - raise ValueError( - "When performing exact evaluation, the dataset " - "must be finite. Make sure not to call `repeat()` " - "on your dataset." - ) - else: - raise ValueError( - "When providing an infinite dataset, you must " - "specify the number of steps to run (if you did " - "not intend to create an infinite dataset, make " - "sure to not call `repeat()` on the dataset)." - ) - - -class GeneratorDataAdapter(DataAdapter): - """Adapter that handles python generators and iterators.""" - - @staticmethod - def can_handle(x, y=None): - return ( - (hasattr(x, "__next__") or hasattr(x, "next")) - and hasattr(x, "__iter__") - and not isinstance(x, data_utils.Sequence) - ) - - def __init__( - self, - x, - y=None, - sample_weights=None, - workers=1, - use_multiprocessing=False, - max_queue_size=10, - model=None, - **kwargs, - ): - # Generators should never shuffle as exhausting the generator in order - # to shuffle the batches is inefficient. - kwargs.pop("shuffle", None) - - if not is_none_or_empty(y): - raise ValueError( - "`y` argument is not supported when using " - "python generator as input." - ) - if not is_none_or_empty(sample_weights): - raise ValueError( - "`sample_weight` argument is not supported when using " - "python generator as input." - ) - - super().__init__(x, y, **kwargs) - - # Since we have to know the dtype of the python generator when we build - # the dataset, we have to look at a batch to infer the structure. - peek, x = self._peek_and_restore(x) - peek = self._standardize_batch(peek) - peek = _process_tensorlike(peek) - - # Need to build the Model on concrete input shapes. - if model is not None and not model.built: - concrete_x, _, _ = unpack_x_y_sample_weight(peek) - try: - model.distribute_strategy.run( - lambda x: model(x, training=False), args=(concrete_x,) - ) - except NotImplementedError: - # The above call may fail if the model is a container-like class - # that does not implement its own forward pass (e.g. a GAN or - # VAE where the forward pass is handled by subcomponents). Such - # a model does not need to be built. - pass - - self._first_batch_size = int(tf.nest.flatten(peek)[0].shape[0]) - - def _get_tensor_spec(t): - # TODO(b/226395276): Remove _with_tensor_ranks_only usage. - return type_spec.type_spec_from_value(t)._with_tensor_ranks_only() - - output_signature = tf.nest.map_structure(_get_tensor_spec, peek) - - # Note that dataset API takes a callable that creates a generator - # object, rather than generator itself, which is why we define a - # function here. - generator_fn = self._handle_multiprocessing( - x, workers, use_multiprocessing, max_queue_size - ) - - def wrapped_generator(): - for data in generator_fn(): - yield self._standardize_batch(data) - - dataset = tf.data.Dataset.from_generator( - wrapped_generator, output_signature=output_signature - ) - - if workers == 1 and not use_multiprocessing: - dataset = dataset.prefetch(1) - - self._dataset = dataset.prefetch(tf.data.AUTOTUNE) - - def _standardize_batch(self, data): - """Standardizes a batch output by a generator.""" - # Removes `None`s. - x, y, sample_weight = unpack_x_y_sample_weight(data) - data = pack_x_y_sample_weight(x, y, sample_weight) - - data = tf.__internal__.nest.list_to_tuple(data) - - def _convert_dtype(t): - if isinstance(t, np.ndarray) and issubclass( - t.dtype.type, np.floating - ): - return np.array(t, dtype=backend.floatx()) - return t - - data = tf.nest.map_structure(_convert_dtype, data) - return data - - @staticmethod - def _peek_and_restore(x): - peek = next(x) - return peek, itertools.chain([peek], x) - - def _handle_multiprocessing( - self, x, workers, use_multiprocessing, max_queue_size - ): - """Create a callable, possibly including an Enqueuer.""" - if workers > 1 or (workers > 0 and use_multiprocessing): - - def generator_fn(): - enqueuer = data_utils.GeneratorEnqueuer( - x, use_multiprocessing=use_multiprocessing - ) - enqueuer.start(workers=workers, max_queue_size=max_queue_size) - return enqueuer.get() - - else: - generator_fn = lambda: x - return generator_fn - - def get_dataset(self): - return self._dataset - - def get_size(self): - return None - - def batch_size(self): - return None - - def representative_batch_size(self): - return self._first_batch_size - - def has_partial_batch(self): - return False - - def partial_batch_size(self): - return - - def should_recreate_iterator(self): - return False - - -class KerasSequenceAdapter(GeneratorDataAdapter): - """Adapter that handles `keras.utils.Sequence`.""" - - @staticmethod - def can_handle(x, y=None): - return isinstance(x, data_utils.Sequence) - - def __init__( - self, - x, - y=None, - sample_weights=None, - shuffle=False, - workers=1, - use_multiprocessing=False, - max_queue_size=10, - model=None, - **kwargs, - ): - if not is_none_or_empty(y): - raise ValueError( - "`y` argument is not supported when using " - "`keras.utils.Sequence` as input." - ) - if not is_none_or_empty(sample_weights): - raise ValueError( - "`sample_weight` argument is not supported when using " - "`keras.utils.Sequence` as input." - ) - - self._shuffle_sequence = shuffle - self._keras_sequence = x - self._enqueuer = None - super().__init__( - x, - shuffle=False, # Shuffle is handed in the _make_callable override. - workers=workers, - use_multiprocessing=use_multiprocessing, - max_queue_size=max_queue_size, - model=model, - **kwargs, - ) - - @staticmethod - def _peek_and_restore(x): - return x[0], x - - def _handle_multiprocessing( - self, x, workers, use_multiprocessing, max_queue_size - ): - if workers > 1 or (workers > 0 and use_multiprocessing): - - def generator_fn(): - self._enqueuer = data_utils.OrderedEnqueuer( - x, - use_multiprocessing=use_multiprocessing, - shuffle=self._shuffle_sequence, - ) - self._enqueuer.start( - workers=workers, max_queue_size=max_queue_size - ) - return self._enqueuer.get() - - else: - - def generator_fn(): - order = range(len(x)) - if self._shuffle_sequence: - # Match the shuffle convention in OrderedEnqueuer. - order = list(order) - random.shuffle(order) - - for i in order: - yield x[i] - - return generator_fn - - def get_size(self): - return len(self._keras_sequence) - - def should_recreate_iterator(self): - return True - - def on_epoch_end(self): - if self._enqueuer: - self._enqueuer.stop() - self._keras_sequence.on_epoch_end() - - -ALL_ADAPTER_CLS = [ - ListsOfScalarsDataAdapter, - TensorLikeDataAdapter, - GenericArrayLikeDataAdapter, - DatasetAdapter, - GeneratorDataAdapter, - KerasSequenceAdapter, - CompositeTensorDataAdapter, - DatasetCreatorAdapter, -] - -UNSHARDABLE_DATASET_TYPES = [ - from_generator_op._GeneratorDataset, - range_op._RangeDataset, - from_sparse_tensor_slices_op._SparseTensorSliceDataset, - from_tensors_op._TensorDataset, - from_tensor_slices_op._TensorSliceDataset, -] - - -def select_data_adapter(x, y): - """Selects a data adapter that can handle a given x and y.""" - adapter_cls = [cls for cls in ALL_ADAPTER_CLS if cls.can_handle(x, y)] - if not adapter_cls: - # TODO(scottzhu): This should be a less implementation-specific error. - raise ValueError( - "Failed to find data adapter that can handle input: {}, {}".format( - _type_name(x), _type_name(y) - ) - ) - elif len(adapter_cls) > 1: - raise RuntimeError( - "Data adapters should be mutually exclusive for " - "handling inputs. Found multiple adapters {} to handle " - "input: {}, {}".format(adapter_cls, _type_name(x), _type_name(y)) - ) - # Instrument the data adapter usage before returning it - keras_data_adapter_gauge.get_cell(adapter_cls[0].__name__).set(True) - return adapter_cls[0] - - -def _type_name(x): - """Generates a description of the type of an object.""" - if isinstance(x, dict): - key_types = set(_type_name(key) for key in x.keys()) - val_types = set(_type_name(key) for key in x.values()) - return f"({type(x)} containing {key_types} keys and {val_types} values)" - if isinstance(x, (list, tuple)): - types = set(_type_name(val) for val in x) - return f"({type(x)} containing values of types {types})" - return str(type(x)) - - -def _process_tensorlike(inputs): - """Process tensor-like inputs. - - This function: - - (1) Converts `Numpy` arrays to `Tensor`s. - (2) Converts `Scipy` sparse matrices to `SparseTensor`s. - (3) Converts `pandas.Series` to `Tensor`s - (4) Converts `list`s to `tuple`s (for `tf.data` support). - - Args: - inputs: Structure of `Tensor`s, `NumPy` arrays, or tensor-like. - - Returns: - Structure of `Tensor`s or tensor-like. - """ - - def _convert_single_tensor(x): - if _is_pandas_series(x): - x = np.expand_dims(x.to_numpy(), axis=-1) - - if isinstance(x, np.ndarray): - dtype = None - if issubclass(x.dtype.type, np.floating): - dtype = backend.floatx() - return tf.convert_to_tensor(x, dtype=dtype) - elif _is_scipy_sparse(x): - return _scipy_sparse_to_sparse_tensor(x) - return x - - inputs = tf.nest.map_structure(_convert_single_tensor, inputs) - return tf.__internal__.nest.list_to_tuple(inputs) - - -def is_none_or_empty(inputs): - # util method to check if the input is a None or a empty list. - # the python "not" check will raise an error like below if the input is a - # numpy array - # "The truth value of an array with more than one element is ambiguous. - # Use a.any() or a.all()" - return inputs is None or not tf.nest.flatten(inputs) - - -def broadcast_sample_weight_modes(target_structure, sample_weight_modes): - """Match sample_weight_modes structure with output structure.""" - if target_structure is None or not tf.nest.flatten(target_structure): - return sample_weight_modes - - if isinstance(sample_weight_modes, str): - if isinstance(target_structure, dict): - return {key: sample_weight_modes for key in target_structure.keys()} - return [sample_weight_modes for _ in target_structure] - - if sample_weight_modes: - try: - tf.nest.assert_same_structure( - training_utils.list_to_tuple(target_structure), - training_utils.list_to_tuple(sample_weight_modes), - ) - except (ValueError, TypeError): - target_str = str( - tf.nest.map_structure(lambda _: "...", target_structure) - ) - mode_str = str( - tf.nest.map_structure(lambda _: "...", sample_weight_modes) - ) - - # Attempt to coerce sample_weight_modes to the target structure. - # This implicitly depends on the fact that Model flattens outputs - # for its internal representation. - try: - sample_weight_modes = tf.nest.pack_sequence_as( - target_structure, tf.nest.flatten(sample_weight_modes) - ) - logging.warning( - "sample_weight modes were coerced from\n " - "{}\n to \n {}".format(target_str, mode_str) - ) - except (ValueError, TypeError): - raise ValueError( - "Unable to match target structure and sample_weight_modes " - "structure:\n {}\n to \n {}".format( - target_str, mode_str - ) - ) - - return sample_weight_modes - - -class DataHandler: - """Handles iterating over epoch-level `tf.data.Iterator` objects.""" - - def __init__( - self, - x, - y=None, - sample_weight=None, - batch_size=None, - steps_per_epoch=None, - initial_epoch=0, - epochs=1, - shuffle=False, - class_weight=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - model=None, - steps_per_execution=None, - distribute=True, - pss_evaluation_shards=0, - ): - """Initializes a `DataHandler`. - - Arguments: - x: See `Model.fit`. - y: See `Model.fit`. - sample_weight: See `Model.fit`. - batch_size: See `Model.fit`. - steps_per_epoch: See `Model.fit`. - initial_epoch: See `Model.fit`. - epochs: See `Model.fit`. - shuffle: See `Model.fit`. - class_weight: See `Model.fit`. - max_queue_size: See `Model.fit`. - workers: See `Model.fit`. - use_multiprocessing: See `Model.fit`. - model: The `Model` instance. Needed in order to correctly `build` the - `Model` using generator-like inputs (see `GeneratorDataAdapter`). - steps_per_execution: See `Model.compile`. - distribute: Whether to distribute the `tf.dataset`. - `PreprocessingLayer.adapt` does not support distributed datasets, - `Model` should always set this to `True`. - pss_evaluation_shards: See `Model.fit`. - """ - - self._initial_epoch = initial_epoch - self._initial_step = 0 - self._epochs = epochs - self._insufficient_data = False - self._model = model - - self._steps_per_epoch = steps_per_epoch - - # `steps_per_execution_value` is the cached initial value. - # `steps_per_execution` is mutable and may be changed by the DataAdapter - # to handle partial executions. - if steps_per_execution is None: - self._steps_per_execution = tf.Variable(1) - else: - self._steps_per_execution = steps_per_execution - - adapter_cls = select_data_adapter(x, y) - self._adapter = adapter_cls( - x, - y, - batch_size=batch_size, - steps=steps_per_epoch, - epochs=epochs - initial_epoch, - sample_weights=sample_weight, - shuffle=shuffle, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - distribution_strategy=tf.distribute.get_strategy(), - model=model, - pss_evaluation_shards=pss_evaluation_shards, - ) - - strategy = tf.distribute.get_strategy() - - self._current_step = 0 - self._step_increment = self._steps_per_execution.numpy().item() - 1 - self._insufficient_data = False - - self._configure_dataset_and_inferred_steps( - strategy, x, steps_per_epoch, class_weight, distribute - ) - - def _configure_dataset_and_inferred_steps( - self, strategy, x, steps_per_epoch, class_weight, distribute - ): - """Configure the `_dataset` and `_inferred_steps` attributes.""" - del x - dataset = self._adapter.get_dataset() - if class_weight: - dataset = dataset.map(_make_class_weight_map_fn(class_weight)) - self._inferred_steps = self._infer_steps(steps_per_epoch, dataset) - - # `PreprocessingLayer.adapt` does not currently support distributed - # datasets, so we pass `distribute=False` there. - if distribute and not _is_distributed_dataset(dataset): - dataset = strategy.experimental_distribute_dataset(dataset) - self._dataset = dataset - self._validate_data_handler() - - def enumerate_epochs(self): - """Yields `(epoch, tf.data.Iterator)`.""" - with self._truncate_execution_to_epoch(): - data_iterator = iter(self._dataset) - for epoch in range(self._initial_epoch, self._epochs): - if self._insufficient_data: # Set by `catch_stop_iteration`. - break - if self._adapter.should_recreate_iterator(): - data_iterator = iter(self._dataset) - if not isinstance(self._dataset, DistributedDataset): - steps = self._infer_steps( - self._steps_per_epoch, self._dataset - ) - if steps is not None: - self._inferred_steps = steps - yield epoch, data_iterator - self._adapter.on_epoch_end() - - @contextlib.contextmanager - def _truncate_execution_to_epoch(self): - """Truncates steps per execution to at most one epoch.""" - should_truncate = ( - self._inferred_steps is not None - and self._steps_per_execution.numpy().item() > self._inferred_steps - ) - original_value = self._steps_per_execution.numpy().item() - try: - if should_truncate: - self._steps_per_execution.assign(self._inferred_steps) - yield - finally: - if should_truncate: - self._steps_per_execution.assign(original_value) - - def sync(self): - context.async_wait() - - @contextlib.contextmanager - def catch_stop_iteration(self): - """Catches errors when an iterator runs out of data.""" - with distributed_training_utils.maybe_preemption_handler_scope( - self._model - ): - try: - yield - self.sync() - except (StopIteration, tf.errors.OutOfRangeError): - if self._inferred_steps is None: - self._inferred_steps = self._current_step - else: - self._insufficient_data = True - total_epochs = self._epochs - self._initial_epoch - logging.warning( - "Your input ran out of data; interrupting training. " - "Make sure that your dataset or generator can generate " - "at least `steps_per_epoch * epochs` batches (in this " - "case, {} batches). You may need to use the repeat() " - "function when building your dataset.".format( - total_epochs * self._inferred_steps - ) - ) - - def steps(self): - """Yields steps for the current epoch.""" - self._current_step = self._initial_step - self._initial_step = 0 - # `self._inferred_steps` can be changed by `catch_stop_iteration`. - while ( - self._inferred_steps is None - or self._current_step < self._inferred_steps - ): - if self._insufficient_data: # Set by `catch_stop_iteration`. - break - original_spe = self._steps_per_execution.numpy().item() - can_run_full_execution = ( - original_spe == 1 - or self._inferred_steps is None - or self._inferred_steps - self._current_step >= original_spe - ) - - if can_run_full_execution: - self._step_increment = original_spe - 1 - yield self._current_step - self._current_step += original_spe - else: - # Last partial execution. - steps_remaining = self._inferred_steps - self._current_step - self._steps_per_execution.assign(steps_remaining) - self._step_increment = steps_remaining - 1 - yield self._current_step - self._current_step += steps_remaining - self._steps_per_execution.assign(original_spe) - - @property - def step_increment(self): - """The number to increment the step for `on_batch_end` methods.""" - return self._step_increment - - @property - def inferred_steps(self): - """The inferred steps per epoch of the created `Dataset`. - - This will be `None` in the case where: - - (1) A `Dataset` of unknown cardinality was passed to the `DataHandler`, - (2) `steps_per_epoch` was not provided, and - (3) The first epoch of iteration has not yet completed. - - Returns: - The inferred steps per epoch of the created `Dataset`. - """ - return self._inferred_steps - - @property - def should_sync(self): - # Catch OutOfRangeError for Datasets of unknown size. - # This blocks until the batch has finished executing. - # TODO(b/150292341): Allow multiple async steps here. - return self._inferred_steps is None - - def _log_indefinite_training_warning(self): - logging.warning( - "The training loop will run indefinitely since you have " - "set `steps_per_epoch=-1`. Please use batch-level " - "callbacks to save checkpoints or log training progress, " - "etc" - ) - - def _infer_steps(self, steps, dataset): - """Infers steps_per_epoch needed to loop through a dataset.""" - if steps == -1: - self._log_indefinite_training_warning() - return None - - if steps is not None: - return steps - - adapter_steps = self._adapter.get_size() - if adapter_steps is not None: - return adapter_steps - - # tf.distribute's `PerWorkerDataset` does not inherit from - # `tf.data.Dataset` and in those cases we give up on inferring steps. - if not isinstance(dataset, tf.data.Dataset): - return None - - size = tf.data.experimental.cardinality(dataset) - if size == tf.data.experimental.INFINITE_CARDINALITY and steps is None: - raise ValueError( - "When passing an infinitely repeating dataset, please specify " - "a `steps_per_epoch` value so that epoch level " - "callbacks continue to work. The value can be arbitrary, or a " - "number that you think correctly defines the size of an epoch. " - "Epoch-level callbacks will then be called at this interval." - ) - if size >= 0: - return size.numpy().item() - return None - - @property - def _samples(self): - return self._adapter.get_samples() - - def _validate_data_handler(self): - # TODO(b/152094471): Support this with DistIter.get_next_as_optional. - if ( - self._steps_per_execution.numpy().item() > 1 - and self._inferred_steps is None - ): - raise ValueError( - "Could not infer the size of the data. With " - "`steps_per_execution > 1`, you must specify the number of " - "steps to run." - ) - - -class _ClusterCoordinatorDataHandler(DataHandler): - """A `DataHandler` that is compatible with `ClusterCoordinator`.""" - - def __init__(self, x, y=None, **kwargs): - if not _is_distributed_dataset(x) and not isinstance( - x, (dataset_creator.DatasetCreator, tf.data.Dataset) - ): - x = self._convert_to_dataset_creator(x, y, **kwargs) - - super().__init__(x=x, **kwargs) - - def _convert_to_dataset_creator(self, x, y, **kwargs): - """Converts non-tf.data.Dataset to `DatasetCreator` instances.""" - - def _dataset_fn(input_context): - del input_context - data_adapter_cls = select_data_adapter(x, y) - return data_adapter_cls(x=x, y=y, **kwargs).get_dataset() - - # This check is needed because types like `tf.data.Dataset` don't work - # with PSS yet. So only apply this logic to the types we can support. - if isinstance(x, _get_tensor_types()) and isinstance( - y, _get_tensor_types() - ): - return dataset_creator.DatasetCreator(_dataset_fn) - else: - raise NotImplementedError( - "Only `tf.keras.utils.experimental.DatasetCreator`, " - "`tf.Tensor`, numpy arrays and pandas dataframes are " - "supported types at this time." - ) - - def _configure_dataset_and_inferred_steps( - self, strategy, x, steps_per_epoch, class_weight, distribute - ): - if isinstance(x, dataset_creator.DatasetCreator): - - def per_worker_dataset_fn(): - - return strategy.distribute_datasets_from_function( - x, options=x.input_options - ) - - coordinator = self._model._cluster_coordinator - self._dataset = coordinator.create_per_worker_dataset( - per_worker_dataset_fn - ) - else: - assert distribute - if not _is_distributed_dataset(x): - x = strategy.experimental_distribute_dataset(x) - - coordinator = self._model._cluster_coordinator - self._dataset = coordinator.create_per_worker_dataset(x) - - if steps_per_epoch == -1: - self._inferred_steps = None - self._log_indefinite_training_warning() - else: - self._inferred_steps = steps_per_epoch - - def sync(self): - self._model._cluster_coordinator.join() - - -class _ClusterCoordinatorExactEvalDataHandler(_ClusterCoordinatorDataHandler): - def __init__(self, x, y=None, **kwargs): - super().__init__(x=x, **kwargs) - self._total_shards = kwargs.get("pss_evaluation_shards") - - def _warn_if_not_file_shardable(self, dataset): - # Traverse backwards to find source dataset and check if that is one of - # the unshardable types - # TODO(b/268521864): expand this to inspect dataset function graphs and - # use the auto-sharding logic rather than re-creating it here. - cur_dataset = dataset - while hasattr(cur_dataset, "_input_dataset"): - cur_dataset = cur_dataset._input_dataset - if type(cur_dataset) in UNSHARDABLE_DATASET_TYPES: - logging.warning( - "Found source dataset of type {}. This type is not " - "efficiently shardable, so exact evaluation may be " - "slower than inexact evaluation. Try converting to " - "a TFRecord or other file-based dataset if " - "performance is a concern.".format(type(cur_dataset)) - ) - - def _configure_dataset_and_inferred_steps( - self, strategy, x, steps_per_epoch, class_weight, distribute - ): - if isinstance(x, dataset_creator.DatasetCreator): - - def per_worker_dataset_fn(): - ddf = strategy.distribute_datasets_from_function( - x, options=x.input_options - ) - return ddf - - coordinator = self._model._cluster_coordinator - self._dataset = coordinator.create_per_worker_dataset( - per_worker_dataset_fn - ) - logging.info("dataset element spec: %r", self._dataset.element_spec) - self._dataset = self._dataset.build() - else: - # TODO(b/268226218): Support DistributedDataset input - if not _is_distributed_dataset(x): - self._warn_if_not_file_shardable(x) - x = strategy.experimental_distribute_dataset(x) - - coordinator = self._model._cluster_coordinator - self._dataset = coordinator.create_per_worker_dataset(x) - self._dataset = self._dataset.build() - - if steps_per_epoch == -1: - self._inferred_steps = None - self._log_indefinite_training_warning() - else: - self._inferred_steps = steps_per_epoch - - def enumerate_epochs(self): - """Yields `(epoch, dataset)`.""" - for epoch in range(self._initial_epoch, self._epochs): - yield epoch, self._dataset - self._adapter.on_epoch_end() - - def steps(self): - """Yields steps for the current epoch.""" - for step in range(self._total_shards): - yield step - - -@keras_export("keras.__internal__.utils.get_data_handler", v1=[]) -def get_data_handler(*args, **kwargs): - """Creates a `DataHandler`, providing standardized access to a `Dataset`. - - See `DataHandler` for the list and definition of the arguments. See the - implementation of `Model.fit()`, `evaluate()`, or `predict()` methods - for complete usage examples. As a rule of tumb, `get_data_handler()` accepts - the same inputs as the `x` argument of `Model.fit()`. - - Example: - - ```python - def step(iterator): - data = next(iterator) - # result <= Do something with data - return result - tf_step = tf.function(step, reduce_retracing=True) - - # Assume x is a tf.data Dataset. - data_handler = data_adapter.get_data_handler(x=x) - # Epoch iteration - for epo_idx, iterator in data_handler.enumerate_epochs(): - # Stop on dataset exhaustion. - with data_handler.catch_stop_iteration(): - for step in data_handler.steps(): # Step iteration - step_result = step(iterator) - ``` - - Args: - *args: Arguments passed to the `DataHandler` constructor. - **kwargs: Arguments passed to the `DataHandler` constructor. - - Returns: - A `DataHandler` object. If the model's cluster coordinate is set (e.g. the - model was defined under a parameter-server strategy), returns a - `_ClusterCoordinatorDataHandler`. - - """ - if getattr(kwargs["model"], "_cluster_coordinator", None): - if kwargs.get("pss_evaluation_shards"): - return _ClusterCoordinatorExactEvalDataHandler(*args, **kwargs) - return _ClusterCoordinatorDataHandler(*args, **kwargs) - return DataHandler(*args, **kwargs) - - -def _make_class_weight_map_fn(class_weight): - """Applies class weighting to a `Dataset`. - - The `Dataset` is assumed to be in format `(x, y)` or `(x, y, sw)`, where - `y` must be a single `Tensor`. - - Args: - class_weight: A map where the keys are integer class ids and values are - the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}` - - Returns: - A function that can be used with `tf.data.Dataset.map` to apply class - weighting. - """ - class_ids = list(sorted(class_weight.keys())) - expected_class_ids = list(range(len(class_ids))) - if class_ids != expected_class_ids: - error_msg = ( - "Expected `class_weight` to be a dict with keys from 0 to one less " - "than the number of classes, found {}" - ).format(class_weight) - raise ValueError(error_msg) - - class_weight_tensor = tf.convert_to_tensor( - [class_weight[int(c)] for c in class_ids] - ) - - def _class_weights_map_fn(*data): - """Convert `class_weight` to `sample_weight`.""" - x, y, sw = unpack_x_y_sample_weight(data) - - if tf.nest.is_nested(y): - raise ValueError( - "`class_weight` is only supported for Models with a single " - "output." - ) - - if y.shape.rank >= 2: - y_classes = tf.__internal__.smart_cond.smart_cond( - backend.shape(y)[-1] > 1, - lambda: backend.argmax(y, axis=-1), - lambda: tf.cast(tf.round(tf.squeeze(y, axis=-1)), tf.int64), - ) - else: - # Special casing for rank 1, where we can guarantee sparse encoding. - y_classes = tf.cast(tf.round(y), tf.int64) - - cw = tf.gather(class_weight_tensor, y_classes) - if sw is not None: - cw = tf.cast(cw, sw.dtype) - # `class_weight` and `sample_weight` are multiplicative. - # If class_weight has more than 2 dimensions, we need to reshape - # sample_weight to make broadcasting possible for multiplication. - rank_delta = cw.shape.rank - sw.shape.rank - sw = tf.reshape(sw, sw.shape + [1] * rank_delta) - sw = sw * cw - else: - sw = cw - return x, y, sw - - return _class_weights_map_fn - - -def train_validation_split(arrays, validation_split): - """Split arrays into train and validation subsets in deterministic order. - - The last part of data will become validation data. - - Args: - arrays: Tensors to split. Allowed inputs are arbitrarily nested structures - of Tensors and NumPy arrays. - validation_split: Float between 0 and 1. The proportion of the dataset to - include in the validation split. The rest of the dataset will be - included in the training split. - Returns: - `(train_arrays, validation_arrays)` - """ - - def _can_split(t): - tensor_types = _get_tensor_types() - return isinstance(t, tensor_types) or t is None - - flat_arrays = tf.nest.flatten(arrays) - unsplitable = [type(t) for t in flat_arrays if not _can_split(t)] - if unsplitable: - raise ValueError( - "`validation_split` is only supported for Tensors or NumPy " - "arrays, found following types in the input: {}".format(unsplitable) - ) - - if all(t is None for t in flat_arrays): - return arrays, arrays - - first_non_none = None - for t in flat_arrays: - if t is not None: - first_non_none = t - break - - # Assumes all arrays have the same batch shape or are `None`. - batch_dim = int(first_non_none.shape[0]) - split_at = int(math.floor(batch_dim * (1.0 - validation_split))) - - if split_at == 0 or split_at == batch_dim: - raise ValueError( - "Training data contains {batch_dim} samples, which is not " - "sufficient to split it into a validation and training set as " - "specified by `validation_split={validation_split}`. Either " - "provide more data, or a different value for the " - "`validation_split` argument.".format( - batch_dim=batch_dim, validation_split=validation_split - ) - ) - - def _split(t, start, end): - if t is None: - return t - return t[start:end] - - train_arrays = tf.nest.map_structure( - functools.partial(_split, start=0, end=split_at), arrays - ) - val_arrays = tf.nest.map_structure( - functools.partial(_split, start=split_at, end=batch_dim), arrays - ) - - return train_arrays, val_arrays - - -@keras_export("keras.utils.unpack_x_y_sample_weight", v1=[]) -def unpack_x_y_sample_weight(data): - """Unpacks user-provided data tuple. - - This is a convenience utility to be used when overriding - `Model.train_step`, `Model.test_step`, or `Model.predict_step`. - This utility makes it easy to support data of the form `(x,)`, - `(x, y)`, or `(x, y, sample_weight)`. - - Standalone usage: - - >>> features_batch = tf.ones((10, 5)) - >>> labels_batch = tf.zeros((10, 5)) - >>> data = (features_batch, labels_batch) - >>> # `y` and `sample_weight` will default to `None` if not provided. - >>> x, y, sample_weight = tf.keras.utils.unpack_x_y_sample_weight(data) - >>> sample_weight is None - True - - Example in overridden `Model.train_step`: - - ```python - class MyModel(tf.keras.Model): - - def train_step(self, data): - # If `sample_weight` is not provided, all samples will be weighted - # equally. - x, y, sample_weight = tf.keras.utils.unpack_x_y_sample_weight(data) - - with tf.GradientTape() as tape: - y_pred = self(x, training=True) - loss = self.compiled_loss( - y, y_pred, sample_weight, regularization_losses=self.losses) - trainable_variables = self.trainable_variables - gradients = tape.gradient(loss, trainable_variables) - self.optimizer.apply_gradients(zip(gradients, trainable_variables)) - - self.compiled_metrics.update_state(y, y_pred, sample_weight) - return {m.name: m.result() for m in self.metrics} - ``` - - Args: - data: A tuple of the form `(x,)`, `(x, y)`, or `(x, y, sample_weight)`. - - Returns: - The unpacked tuple, with `None`s for `y` and `sample_weight` if they are - not provided. - """ - if isinstance(data, list): - data = tuple(data) - if not isinstance(data, tuple): - return (data, None, None) - elif len(data) == 1: - return (data[0], None, None) - elif len(data) == 2: - return (data[0], data[1], None) - elif len(data) == 3: - return (data[0], data[1], data[2]) - else: - error_msg = ( - "Data is expected to be in format `x`, `(x,)`, `(x, y)`, " - "or `(x, y, sample_weight)`, found: {}" - ).format(data) - raise ValueError(error_msg) - - -@keras_export("keras.utils.pack_x_y_sample_weight", v1=[]) -def pack_x_y_sample_weight(x, y=None, sample_weight=None): - """Packs user-provided data into a tuple. - - This is a convenience utility for packing data into the tuple formats - that `Model.fit` uses. - - Standalone usage: - - >>> x = tf.ones((10, 1)) - >>> data = tf.keras.utils.pack_x_y_sample_weight(x) - >>> isinstance(data, tf.Tensor) - True - >>> y = tf.ones((10, 1)) - >>> data = tf.keras.utils.pack_x_y_sample_weight(x, y) - >>> isinstance(data, tuple) - True - >>> x, y = data - - Args: - x: Features to pass to `Model`. - y: Ground-truth targets to pass to `Model`. - sample_weight: Sample weight for each element. - - Returns: - Tuple in the format used in `Model.fit`. - """ - if y is None: - # For single x-input, we do no tuple wrapping since in this case - # there is no ambiguity. This also makes NumPy and Dataset - # consistent in that the user does not have to wrap their Dataset - # data in an unnecessary tuple. - if not isinstance(x, tuple or list): - return x - else: - return (x,) - elif sample_weight is None: - return (x, y) - else: - return (x, y, sample_weight) - - -def single_batch_iterator( - strategy, x, y=None, sample_weight=None, class_weight=None -): - """Creates a single-batch dataset.""" - x, y, sample_weight = _process_tensorlike((x, y, sample_weight)) - if y is None: - data = (x,) - elif sample_weight is None: - data = (x, y) - else: - data = (x, y, sample_weight) - - _check_data_cardinality(data) - dataset = tf.data.Dataset.from_tensors(data) - if class_weight: - dataset = dataset.map(_make_class_weight_map_fn(class_weight)) - dataset = strategy.experimental_distribute_dataset(dataset) - return iter(dataset) - - -def _check_data_cardinality(data): - num_samples = set(int(i.shape[0]) for i in tf.nest.flatten(data)) - if len(num_samples) > 1: - msg = "Data cardinality is ambiguous:\n" - for label, single_data in zip(["x", "y", "sample_weight"], data): - msg += " {} sizes: {}\n".format( - label, - ", ".join( - str(i.shape[0]) for i in tf.nest.flatten(single_data) - ), - ) - msg += "Make sure all arrays contain the same number of samples." - raise ValueError(msg) - - -def _get_tensor_types(): - if pd is None: - return (tf.Tensor, np.ndarray) - else: - return (tf.Tensor, np.ndarray, pd.Series, pd.DataFrame) - - -def _is_scipy_sparse(x): - try: - from scipy.sparse import issparse - - return issparse(x) - except ImportError: - return False - - -def _is_pandas_series(x): - if pd is None: - return False - else: - return isinstance(x, pd.Series) - - -def _scipy_sparse_to_sparse_tensor(t): - """Converts a SciPy sparse matrix to a SparseTensor.""" - sparse_coo = t.tocoo() - row, col = sparse_coo.row, sparse_coo.col - data, shape = sparse_coo.data, sparse_coo.shape - if issubclass(data.dtype.type, np.floating): - data = data.astype(backend.floatx()) - indices = np.concatenate( - (np.expand_dims(row, axis=1), np.expand_dims(col, axis=1)), axis=1 - ) - return tf.SparseTensor(indices, data, shape) - - -def _is_distributed_dataset(ds): - return isinstance( - ds, - ( - tf.distribute.DistributedDataset, - tf.experimental.dtensor.DTensorDataset, - ), - ) diff --git a/keras/engine/data_adapter_test.py b/keras/engine/data_adapter_test.py deleted file mode 100644 index 5878e887f9b..00000000000 --- a/keras/engine/data_adapter_test.py +++ /dev/null @@ -1,1548 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""DataAdapter tests.""" - -import math - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.engine import data_adapter -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import data_utils - -# isort: off -from tensorflow.python.eager import context - - -class DummyArrayLike: - """Dummy array-like object.""" - - def __init__(self, data): - self.data = data - - def __len__(self): - return len(self.data) - - def __getitem__(self, key): - return self.data[key] - - @property - def shape(self): - return self.data.shape - - @property - def dtype(self): - return self.data.dtype - - -def fail_on_convert(x, **kwargs): - _ = x - _ = kwargs - raise TypeError("Cannot convert DummyArrayLike to a tensor") - - -tf.register_tensor_conversion_function(DummyArrayLike, fail_on_convert) - - -class DataAdapterTestBase(test_combinations.TestCase): - def setUp(self): - super().setUp() - self.batch_size = 5 - self.numpy_input = np.zeros((50, 10)) - self.numpy_target = np.ones(50) - self.tensor_input = tf.constant(2.0, shape=(50, 10)) - self.tensor_target = tf.ones((50,)) - self.arraylike_input = DummyArrayLike(self.numpy_input) - self.arraylike_target = DummyArrayLike(self.numpy_target) - self.dataset_input = ( - tf.data.Dataset.from_tensor_slices( - (self.numpy_input, self.numpy_target) - ) - .shuffle(50) - .batch(self.batch_size) - ) - - def generator(): - while True: - yield ( - np.zeros((self.batch_size, 10)), - np.ones(self.batch_size), - ) - - self.generator_input = generator() - self.iterator_input = data_utils.threadsafe_generator(generator)() - self.sequence_input = TestSequence( - batch_size=self.batch_size, feature_shape=10 - ) - self.text_input = [["abc"]] - self.bytes_input = [[b"abc"]] - self.model = keras.models.Sequential( - [keras.layers.Dense(8, input_shape=(10,), activation="softmax")] - ) - - -class TestSequence(data_utils.Sequence): - def __init__(self, batch_size, feature_shape): - self.batch_size = batch_size - self.feature_shape = feature_shape - - def __getitem__(self, item): - return ( - np.zeros((self.batch_size, self.feature_shape)), - np.ones((self.batch_size,)), - ) - - def __len__(self): - return 10 - - -class TestSparseSequence(TestSequence): - def __getitem__(self, item): - indices = [ - [row, self.feature_shape - 1] for row in range(self.batch_size) - ] - values = [1 for row in range(self.batch_size)] - st = tf.SparseTensor( - indices, values, (self.batch_size, self.feature_shape) - ) - return (st, np.ones((self.batch_size,))) - - -class TestRaggedSequence(TestSequence): - def __getitem__(self, item): - values = np.random.randint( - 0, self.feature_shape, (self.batch_size, 2) - ).reshape(-1) - row_lengths = np.full(self.batch_size, 2) - rt = tf.RaggedTensor.from_row_lengths(values, row_lengths) - return (rt, np.ones((self.batch_size,))) - - -class TestBatchSequence(data_utils.Sequence): - def __init__(self, batch_size, feature_shape, epochs=2): - """Creates a keras.utils.Sequence with increasing batch_size. - - Args: - batch_size (Union[int, List[int]]): Can be a list containing two - values: start and end batch_size - feature_shape (int): Number of features in a sample - epochs (int, optional): Number of epochs - """ - self.batch_size = batch_size - self.feature_shape = feature_shape - - self._epochs = epochs - # we use `on_epoch_end` method to prepare data for the next epoch set - # current epoch to `-1`, so that `on_epoch_end` will increase it to `0` - self._current_epoch = -1 - # actual batch size will be set inside `on_epoch_end` - self._current_batch_size = 0 - - self.on_epoch_end() - - def __len__(self): - """Number of batches in the Sequence. - - Returns: int - The number of batches in the Sequence. - """ - # data was rebalanced, so need to recalculate number of examples - num_examples = 20 - batch_size = self._current_batch_size - return num_examples // batch_size + int( - num_examples % batch_size > 0 - ) # = math.ceil(num_examples / batch_size ) - - def __getitem__(self, index): - """Gets batch at position `index`. - - Arguments: - index (int): position of the batch in the Sequence. - Returns: Tuple[Any, Any] A batch (tuple of input data and target data). - """ - # return input and target data, as our target data is inside the input - # data return None for the target data - return ( - np.zeros((self._current_batch_size, self.feature_shape)), - np.ones((self._current_batch_size,)), - ) - - def on_epoch_end(self): - """Updates the data after every epoch.""" - self._current_epoch += 1 - if self._current_epoch < self._epochs: - self._current_batch_size = self._linearly_increasing_batch_size() - - def _linearly_increasing_batch_size(self): - """Linearly increase batch size with every epoch. - - The idea comes from https://arxiv.org/abs/1711.00489. - - Returns: int - The batch size to use in this epoch. - """ - if not isinstance(self.batch_size, list): - return int(self.batch_size) - - if self._epochs > 1: - return int( - self.batch_size[0] - + self._current_epoch - * (self.batch_size[1] - self.batch_size[0]) - / (self._epochs - 1) - ) - else: - return int(self.batch_size[0]) - - -class TensorLikeDataAdapterTest(DataAdapterTestBase): - def setUp(self): - super().setUp() - self.adapter_cls = data_adapter.TensorLikeDataAdapter - - def test_can_handle_numpy(self): - self.assertTrue(self.adapter_cls.can_handle(self.numpy_input)) - self.assertTrue( - self.adapter_cls.can_handle(self.numpy_input, self.numpy_target) - ) - - self.assertFalse(self.adapter_cls.can_handle(self.dataset_input)) - self.assertFalse(self.adapter_cls.can_handle(self.generator_input)) - self.assertFalse(self.adapter_cls.can_handle(self.sequence_input)) - self.assertFalse(self.adapter_cls.can_handle(self.text_input)) - self.assertFalse(self.adapter_cls.can_handle(self.bytes_input)) - - def test_size_numpy(self): - adapter = self.adapter_cls( - self.numpy_input, self.numpy_target, batch_size=5 - ) - self.assertEqual(adapter.get_size(), 10) - self.assertFalse(adapter.has_partial_batch()) - - def test_batch_size_numpy(self): - adapter = self.adapter_cls( - self.numpy_input, self.numpy_target, batch_size=5 - ) - self.assertEqual(adapter.batch_size(), 5) - - def test_partial_batch_numpy(self): - adapter = self.adapter_cls( - self.numpy_input, self.numpy_target, batch_size=4 - ) - self.assertEqual(adapter.get_size(), 13) # 50/4 - self.assertTrue(adapter.has_partial_batch()) - self.assertEqual(adapter.partial_batch_size(), 2) - - def test_epochs(self): - num_epochs = 3 - adapter = self.adapter_cls( - self.numpy_input, self.numpy_target, batch_size=5, epochs=num_epochs - ) - ds_iter = iter(adapter.get_dataset()) - num_batches_per_epoch = self.numpy_input.shape[0] // 5 - for _ in range(num_batches_per_epoch * num_epochs): - next(ds_iter) - with self.assertRaises(StopIteration): - next(ds_iter) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_training_numpy(self): - self.model.compile( - loss="sparse_categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.model.fit(self.numpy_input, self.numpy_target, batch_size=5) - - def test_can_handle_pandas(self): - try: - import pandas as pd - except ImportError: - self.skipTest("Skipping test because pandas is not installed.") - self.assertTrue( - self.adapter_cls.can_handle(pd.DataFrame(self.numpy_input)) - ) - self.assertTrue( - self.adapter_cls.can_handle(pd.DataFrame(self.numpy_input)[0]) - ) - self.assertTrue( - self.adapter_cls.can_handle( - pd.DataFrame(self.numpy_input), - pd.DataFrame(self.numpy_input)[0], - ) - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_training_pandas(self): - try: - import pandas as pd - except ImportError: - self.skipTest("Skipping test because pandas is not installed.") - input_a = keras.Input(shape=(3,), name="input_a") - input_b = keras.Input(shape=(3,), name="input_b") - input_c = keras.Input(shape=(1,), name="input_b") - - x = keras.layers.Dense(4, name="dense_1")(input_a) - y = keras.layers.Dense(3, name="dense_2")(input_b) - z = keras.layers.Dense(1, name="dense_3")(input_c) - - model_1 = keras.Model(inputs=input_a, outputs=x) - model_2 = keras.Model(inputs=[input_a, input_b], outputs=[x, y]) - model_3 = keras.Model(inputs=input_c, outputs=z) - - model_1.compile(optimizer="rmsprop", loss="mse") - model_2.compile(optimizer="rmsprop", loss="mse") - model_3.compile(optimizer="rmsprop", loss="mse") - - input_a_np = np.random.random((10, 3)) - input_b_np = np.random.random((10, 3)) - input_a_df = pd.DataFrame(input_a_np) - input_b_df = pd.DataFrame(input_b_np) - - output_a_df = pd.DataFrame(np.random.random((10, 4))) - output_b_df = pd.DataFrame(np.random.random((10, 3))) - output_c_series = pd.DataFrame(np.random.random((10, 4)))[0] - - model_1.fit(input_a_df, output_a_df) - model_2.fit([input_a_df, input_b_df], [output_a_df, output_b_df]) - model_3.fit(input_a_df[[0]], output_c_series) - model_1.fit([input_a_df], [output_a_df]) - model_1.fit({"input_a": input_a_df}, output_a_df) - model_2.fit( - {"input_a": input_a_df, "input_b": input_b_df}, - [output_a_df, output_b_df], - ) - - model_1.evaluate(input_a_df, output_a_df) - model_2.evaluate([input_a_df, input_b_df], [output_a_df, output_b_df]) - model_3.evaluate(input_a_df[[0]], output_c_series) - model_1.evaluate([input_a_df], [output_a_df]) - model_1.evaluate({"input_a": input_a_df}, output_a_df) - model_2.evaluate( - {"input_a": input_a_df, "input_b": input_b_df}, - [output_a_df, output_b_df], - ) - - # Verify predicting on pandas vs numpy returns the same result - predict_1_pandas = model_1.predict(input_a_df) - predict_2_pandas = model_2.predict([input_a_df, input_b_df]) - predict_3_pandas = model_3.predict(input_a_df[[0]]) - predict_3_pandas_batch = model_3.predict_on_batch(input_a_df[0]) - - predict_1_numpy = model_1.predict(input_a_np) - predict_2_numpy = model_2.predict([input_a_np, input_b_np]) - predict_3_numpy = model_3.predict(np.asarray(input_a_df[0])) - - self.assertAllClose(predict_1_numpy, predict_1_pandas) - self.assertAllClose(predict_2_numpy, predict_2_pandas) - self.assertAllClose(predict_3_numpy, predict_3_pandas_batch) - self.assertAllClose(predict_3_numpy, predict_3_pandas) - - # Extra ways to pass in dataframes - model_1.predict([input_a_df]) - model_1.predict({"input_a": input_a_df}) - model_2.predict({"input_a": input_a_df, "input_b": input_b_df}) - - def test_can_handle(self): - self.assertTrue(self.adapter_cls.can_handle(self.tensor_input)) - self.assertTrue( - self.adapter_cls.can_handle(self.tensor_input, self.tensor_target) - ) - - self.assertFalse(self.adapter_cls.can_handle(self.arraylike_input)) - self.assertFalse( - self.adapter_cls.can_handle( - self.arraylike_input, self.arraylike_target - ) - ) - self.assertFalse(self.adapter_cls.can_handle(self.dataset_input)) - self.assertFalse(self.adapter_cls.can_handle(self.generator_input)) - self.assertFalse(self.adapter_cls.can_handle(self.sequence_input)) - self.assertFalse(self.adapter_cls.can_handle(self.text_input)) - self.assertFalse(self.adapter_cls.can_handle(self.bytes_input)) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_training(self): - self.model.compile( - loss="sparse_categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.model.fit(self.tensor_input, self.tensor_target, batch_size=5) - - def test_size(self): - adapter = self.adapter_cls( - self.tensor_input, self.tensor_target, batch_size=5 - ) - self.assertEqual(adapter.get_size(), 10) - self.assertFalse(adapter.has_partial_batch()) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_shuffle_correctness(self): - num_samples = 100 - batch_size = 32 - x = np.arange(num_samples) - np.random.seed(99) - adapter = self.adapter_cls( - x, y=None, batch_size=batch_size, shuffle=True, epochs=2 - ) - - def _get_epoch(ds_iter): - ds_data = [] - for _ in range(int(math.ceil(num_samples / batch_size))): - ds_data.append(next(ds_iter).numpy()) - return np.concatenate(ds_data) - - ds_iter = iter(adapter.get_dataset()) - - # First epoch. - epoch_data = _get_epoch(ds_iter) - # Check that shuffling occurred. - self.assertNotAllClose(x, epoch_data) - # Check that each elements appears, and only once. - self.assertAllClose(x, np.sort(epoch_data)) - - # Second epoch. - second_epoch_data = _get_epoch(ds_iter) - # Check that shuffling occurred. - self.assertNotAllClose(x, second_epoch_data) - # Check that shuffling is different across epochs. - self.assertNotAllClose(epoch_data, second_epoch_data) - # Check that each elements appears, and only once. - self.assertAllClose(x, np.sort(second_epoch_data)) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_batch_shuffle_correctness(self): - num_samples = 100 - batch_size = 6 - x = np.arange(num_samples) - np.random.seed(99) - adapter = self.adapter_cls( - x, y=None, batch_size=batch_size, shuffle="batch", epochs=2 - ) - - def _get_epoch_batches(ds_iter): - ds_data = [] - for _ in range(int(math.ceil(num_samples / batch_size))): - ds_data.append(next(ds_iter)[0].numpy()) - return ds_data - - ds_iter = iter(adapter.get_dataset()) - - # First epoch. - epoch_batch_data = _get_epoch_batches(ds_iter) - epoch_data = np.concatenate(epoch_batch_data) - - def _verify_batch(batch): - # Verify that a batch contains only contiguous data, and that it has - # been shuffled. - shuffled_batch = np.sort(batch) - self.assertNotAllClose(batch, shuffled_batch) - for i in range(1, len(batch)): - self.assertEqual(shuffled_batch[i - 1] + 1, shuffled_batch[i]) - - # Assert that the data within each batch remains contiguous - for batch in epoch_batch_data: - _verify_batch(batch) - - # Check that individual batches are unshuffled - # Check that shuffling occurred. - self.assertNotAllClose(x, epoch_data) - # Check that each elements appears, and only once. - self.assertAllClose(x, np.sort(epoch_data)) - - # Second epoch. - second_epoch_batch_data = _get_epoch_batches(ds_iter) - second_epoch_data = np.concatenate(second_epoch_batch_data) - - # Assert that the data within each batch remains contiguous - for batch in second_epoch_batch_data: - _verify_batch(batch) - - # Check that shuffling occurred. - self.assertNotAllClose(x, second_epoch_data) - # Check that shuffling is different across epochs. - self.assertNotAllClose(epoch_data, second_epoch_data) - # Check that each elements appears, and only once. - self.assertAllClose(x, np.sort(second_epoch_data)) - - @parameterized.named_parameters( - ("batch_size_5", 5, None, 5), - ( - "batch_size_50", - 50, - 4, - 50, - ), # Sanity check: batch_size takes precedence - ("steps_1", None, 1, 50), - ("steps_4", None, 4, 13), - ) - def test_batch_size(self, batch_size_in, steps, batch_size_out): - adapter = self.adapter_cls( - self.tensor_input, - self.tensor_target, - batch_size=batch_size_in, - steps=steps, - ) - self.assertEqual(adapter.batch_size(), batch_size_out) - - @parameterized.named_parameters( - ("batch_size_5", 5, None, 10, 0), - ("batch_size_4", 4, None, 13, 2), - ("steps_1", None, 1, 1, 0), - ("steps_5", None, 5, 5, 0), - ("steps_4", None, 4, 4, 11), - ) - def test_partial_batch( - self, batch_size_in, steps, size, partial_batch_size - ): - adapter = self.adapter_cls( - self.tensor_input, - self.tensor_target, - batch_size=batch_size_in, - steps=steps, - ) - self.assertEqual(adapter.get_size(), size) # 50/steps - self.assertEqual(adapter.has_partial_batch(), bool(partial_batch_size)) - self.assertEqual( - adapter.partial_batch_size(), partial_batch_size or None - ) - - -class IncreasingBatchSizeAdapterTest(test_combinations.TestCase): - def setUp(self): - super(IncreasingBatchSizeAdapterTest, self).setUp() - self.adapter_cls = data_adapter.KerasSequenceAdapter - - self.epochs = 2 - self.increasing_batch_size = [5, 10] - self.sequence_input = TestBatchSequence( - batch_size=self.increasing_batch_size, - feature_shape=10, - epochs=self.epochs, - ) - self.model = keras.models.Sequential( - [keras.layers.Dense(8, input_shape=(10,), activation="softmax")] - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_training_with_test_batch_sequence(self): - """Ensures TestBatchSequence works as expected.""" - self.model.compile( - loss="sparse_categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - - # Check state before fit() - self.assertEqual(self.sequence_input._current_epoch, 0) - self.assertEqual(self.sequence_input._current_batch_size, 5) - - # Execute fit() - self.model.fit(self.sequence_input, epochs=self.epochs) - - # Check state after fit() - self.assertEqual(self.sequence_input._current_epoch, 2) - self.assertEqual(self.sequence_input._current_batch_size, 10) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_training_with_increasing_batch_size(self): - """Ensures data_adapters DataHandler & DataAdapter work as expected.""" - self.model.compile( - loss="sparse_categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.model.stop_training = False - self.model.train_function = self.model.make_train_function() - - # Check state before fit() - self.assertEqual(self.sequence_input._current_epoch, 0) - self.assertEqual(self.sequence_input._current_batch_size, 5) - data_handler = data_adapter.get_data_handler( - self.sequence_input, - epochs=self.epochs, - model=self.model, - ) - self.assertEqual( - data_handler.inferred_steps, 4 - ) # 20 samples / 5 bs = 4 - - # Execute fit()-loop - for epoch, iterator in data_handler.enumerate_epochs(): - self.model.reset_metrics() - with data_handler.catch_stop_iteration(): - for step in data_handler.steps(): - with tf.profiler.experimental.Trace( - "train", - epoch_num=epoch, - step_num=step, - batch_size=self.sequence_input._current_batch_size, - _r=1, - ): - if data_handler.should_sync: - context.async_wait() - if self.model.stop_training: - break - - # Check state after fit() - self.assertEqual( - data_handler.inferred_steps, 2 - ) # 20 samples / 10 bs = 2 - - -class GenericArrayLikeDataAdapterTest(DataAdapterTestBase): - def setUp(self): - super().setUp() - self.adapter_cls = data_adapter.GenericArrayLikeDataAdapter - - def test_can_handle_some_numpy(self): - self.assertTrue(self.adapter_cls.can_handle(self.arraylike_input)) - self.assertTrue( - self.adapter_cls.can_handle( - self.arraylike_input, self.arraylike_target - ) - ) - - # Because adapters are mutually exclusive, don't handle cases - # where all the data is numpy or an eagertensor - self.assertFalse(self.adapter_cls.can_handle(self.numpy_input)) - self.assertFalse( - self.adapter_cls.can_handle(self.numpy_input, self.numpy_target) - ) - self.assertFalse(self.adapter_cls.can_handle(self.tensor_input)) - self.assertFalse( - self.adapter_cls.can_handle(self.tensor_input, self.tensor_target) - ) - - # But do handle mixes that include generic arraylike data - self.assertTrue( - self.adapter_cls.can_handle(self.numpy_input, self.arraylike_target) - ) - self.assertTrue( - self.adapter_cls.can_handle(self.arraylike_input, self.numpy_target) - ) - self.assertTrue( - self.adapter_cls.can_handle( - self.arraylike_input, self.tensor_target - ) - ) - self.assertTrue( - self.adapter_cls.can_handle( - self.tensor_input, self.arraylike_target - ) - ) - - self.assertFalse(self.adapter_cls.can_handle(self.dataset_input)) - self.assertFalse(self.adapter_cls.can_handle(self.generator_input)) - self.assertFalse(self.adapter_cls.can_handle(self.sequence_input)) - self.assertFalse(self.adapter_cls.can_handle(self.text_input)) - self.assertFalse(self.adapter_cls.can_handle(self.bytes_input)) - - def test_size(self): - adapter = self.adapter_cls( - self.arraylike_input, self.arraylike_target, batch_size=5 - ) - self.assertEqual(adapter.get_size(), 10) - self.assertFalse(adapter.has_partial_batch()) - - def test_epochs(self): - num_epochs = 3 - adapter = self.adapter_cls( - self.arraylike_input, - self.numpy_target, - batch_size=5, - epochs=num_epochs, - ) - ds_iter = iter(adapter.get_dataset()) - num_batches_per_epoch = self.numpy_input.shape[0] // 5 - for _ in range(num_batches_per_epoch * num_epochs): - next(ds_iter) - with self.assertRaises(StopIteration): - next(ds_iter) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_training(self): - # First verify that DummyArrayLike can't be converted to a Tensor - with self.assertRaises(TypeError): - tf.convert_to_tensor(self.arraylike_input) - - # Then train on the array like. - # It should not be converted to a tensor directly (which would force it - # into memory), only the sliced data should be converted. - self.model.compile( - loss="sparse_categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.model.fit( - self.arraylike_input, self.arraylike_target, batch_size=5 - ) - self.model.fit( - self.arraylike_input, - self.arraylike_target, - shuffle=True, - batch_size=5, - ) - self.model.fit( - self.arraylike_input, - self.arraylike_target, - shuffle="batch", - batch_size=5, - ) - self.model.evaluate( - self.arraylike_input, self.arraylike_target, batch_size=5 - ) - self.model.predict(self.arraylike_input, batch_size=5) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_training_numpy_target(self): - self.model.compile( - loss="sparse_categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.model.fit(self.arraylike_input, self.numpy_target, batch_size=5) - self.model.fit( - self.arraylike_input, self.numpy_target, shuffle=True, batch_size=5 - ) - self.model.fit( - self.arraylike_input, - self.numpy_target, - shuffle="batch", - batch_size=5, - ) - self.model.evaluate( - self.arraylike_input, self.numpy_target, batch_size=5 - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_training_tensor_target(self): - self.model.compile( - loss="sparse_categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.model.fit(self.arraylike_input, self.tensor_target, batch_size=5) - self.model.fit( - self.arraylike_input, self.tensor_target, shuffle=True, batch_size=5 - ) - self.model.fit( - self.arraylike_input, - self.tensor_target, - shuffle="batch", - batch_size=5, - ) - self.model.evaluate( - self.arraylike_input, self.tensor_target, batch_size=5 - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_shuffle_correctness(self): - num_samples = 100 - batch_size = 32 - x = DummyArrayLike(np.arange(num_samples)) - np.random.seed(99) - adapter = self.adapter_cls( - x, y=None, batch_size=batch_size, shuffle=True, epochs=2 - ) - - def _get_epoch(ds_iter): - ds_data = [] - for _ in range(int(math.ceil(num_samples / batch_size))): - ds_data.append(next(ds_iter).numpy()) - return np.concatenate(ds_data) - - ds_iter = iter(adapter.get_dataset()) - - # First epoch. - epoch_data = _get_epoch(ds_iter) - # Check that shuffling occurred. - self.assertNotAllClose(x, epoch_data) - # Check that each elements appears, and only once. - self.assertAllClose(x, np.sort(epoch_data)) - - # Second epoch. - second_epoch_data = _get_epoch(ds_iter) - # Check that shuffling occurred. - self.assertNotAllClose(x, second_epoch_data) - # Check that shuffling is different across epochs. - self.assertNotAllClose(epoch_data, second_epoch_data) - # Check that each elements appears, and only once. - self.assertAllClose(x, np.sort(second_epoch_data)) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_batch_shuffle_correctness(self): - num_samples = 100 - batch_size = 6 - x = DummyArrayLike(np.arange(num_samples)) - np.random.seed(99) - adapter = self.adapter_cls( - x, y=None, batch_size=batch_size, shuffle="batch", epochs=2 - ) - - def _get_epoch_batches(ds_iter): - ds_data = [] - for _ in range(int(math.ceil(num_samples / batch_size))): - ds_data.append(next(ds_iter)[0].numpy()) - return ds_data - - ds_iter = iter(adapter.get_dataset()) - - # First epoch. - epoch_batch_data = _get_epoch_batches(ds_iter) - epoch_data = np.concatenate(epoch_batch_data) - - def _verify_batch(batch): - # Verify that a batch contains only contiguous data, but that it has - # been shuffled. - shuffled_batch = np.sort(batch) - self.assertNotAllClose(batch, shuffled_batch) - for i in range(1, len(batch)): - self.assertEqual(shuffled_batch[i - 1] + 1, shuffled_batch[i]) - - # Assert that the data within each batch is shuffled contiguous data - for batch in epoch_batch_data: - _verify_batch(batch) - - # Check that individual batches are unshuffled - # Check that shuffling occurred. - self.assertNotAllClose(x, epoch_data) - # Check that each elements appears, and only once. - self.assertAllClose(x, np.sort(epoch_data)) - - # Second epoch. - second_epoch_batch_data = _get_epoch_batches(ds_iter) - second_epoch_data = np.concatenate(second_epoch_batch_data) - - # Assert that the data within each batch remains contiguous - for batch in second_epoch_batch_data: - _verify_batch(batch) - - # Check that shuffling occurred. - self.assertNotAllClose(x, second_epoch_data) - # Check that shuffling is different across epochs. - self.assertNotAllClose(epoch_data, second_epoch_data) - # Check that each elements appears, and only once. - self.assertAllClose(x, np.sort(second_epoch_data)) - - @parameterized.named_parameters( - ("batch_size_5", 5, None, 5), - ( - "batch_size_50", - 50, - 4, - 50, - ), # Sanity check: batch_size takes precedence - ("steps_1", None, 1, 50), - ("steps_4", None, 4, 13), - ) - def test_batch_size(self, batch_size_in, steps, batch_size_out): - adapter = self.adapter_cls( - self.arraylike_input, - self.arraylike_target, - batch_size=batch_size_in, - steps=steps, - ) - self.assertEqual(adapter.batch_size(), batch_size_out) - - @parameterized.named_parameters( - ("batch_size_5", 5, None, 10, 0), - ("batch_size_4", 4, None, 13, 2), - ("steps_1", None, 1, 1, 0), - ("steps_5", None, 5, 5, 0), - ("steps_4", None, 4, 4, 11), - ) - def test_partial_batch( - self, batch_size_in, steps, size, partial_batch_size - ): - adapter = self.adapter_cls( - self.arraylike_input, - self.arraylike_target, - batch_size=batch_size_in, - steps=steps, - ) - self.assertEqual(adapter.get_size(), size) # 50/steps - self.assertEqual(adapter.has_partial_batch(), bool(partial_batch_size)) - self.assertEqual( - adapter.partial_batch_size(), partial_batch_size or None - ) - - -class DatasetAdapterTest(DataAdapterTestBase): - def setUp(self): - super().setUp() - self.adapter_cls = data_adapter.DatasetAdapter - - def test_can_handle(self): - self.assertFalse(self.adapter_cls.can_handle(self.numpy_input)) - self.assertFalse(self.adapter_cls.can_handle(self.tensor_input)) - self.assertTrue(self.adapter_cls.can_handle(self.dataset_input)) - self.assertFalse(self.adapter_cls.can_handle(self.generator_input)) - self.assertFalse(self.adapter_cls.can_handle(self.sequence_input)) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_training(self): - dataset = self.adapter_cls(self.dataset_input).get_dataset() - self.model.compile( - loss="sparse_categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.model.fit(dataset) - - def test_size(self): - adapter = self.adapter_cls(self.dataset_input) - self.assertIsNone(adapter.get_size()) - - def test_batch_size(self): - adapter = self.adapter_cls(self.dataset_input) - self.assertIsNone(adapter.batch_size()) - - def test_partial_batch(self): - adapter = self.adapter_cls(self.dataset_input) - self.assertFalse(adapter.has_partial_batch()) - self.assertIsNone(adapter.partial_batch_size()) - - def test_invalid_targets_argument(self): - with self.assertRaisesRegex( - ValueError, r"`y` argument is not supported" - ): - self.adapter_cls(self.dataset_input, y=self.dataset_input) - - def test_invalid_sample_weights_argument(self): - with self.assertRaisesRegex( - ValueError, r"`sample_weight` argument is not supported" - ): - self.adapter_cls( - self.dataset_input, sample_weights=self.dataset_input - ) - - -class GeneratorDataAdapterTest(DataAdapterTestBase): - def setUp(self): - super().setUp() - self.adapter_cls = data_adapter.GeneratorDataAdapter - - def test_can_handle(self): - self.assertFalse(self.adapter_cls.can_handle(self.numpy_input)) - self.assertFalse(self.adapter_cls.can_handle(self.tensor_input)) - self.assertFalse(self.adapter_cls.can_handle(self.dataset_input)) - self.assertTrue(self.adapter_cls.can_handle(self.generator_input)) - self.assertFalse(self.adapter_cls.can_handle(self.sequence_input)) - self.assertFalse(self.adapter_cls.can_handle(self.text_input)) - self.assertFalse(self.adapter_cls.can_handle(self.bytes_input)) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_training(self): - self.model.compile( - loss="sparse_categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.model.fit(self.generator_input, steps_per_epoch=10) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - @test_utils.run_v2_only - @data_utils.dont_use_multiprocessing_pool - def test_with_multiprocessing_training(self): - self.model.compile( - loss="sparse_categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.model.fit( - self.iterator_input, - workers=1, - use_multiprocessing=True, - max_queue_size=10, - steps_per_epoch=10, - ) - # Fit twice to ensure there isn't any duplication that prevent the - # worker from starting. - self.model.fit( - self.iterator_input, - workers=1, - use_multiprocessing=True, - max_queue_size=10, - steps_per_epoch=10, - ) - - def test_size(self): - adapter = self.adapter_cls(self.generator_input) - self.assertIsNone(adapter.get_size()) - - def test_batch_size(self): - adapter = self.adapter_cls(self.generator_input) - self.assertEqual(adapter.batch_size(), None) - self.assertEqual(adapter.representative_batch_size(), 5) - - def test_partial_batch(self): - adapter = self.adapter_cls(self.generator_input) - self.assertFalse(adapter.has_partial_batch()) - self.assertIsNone(adapter.partial_batch_size()) - - def test_invalid_targets_argument(self): - with self.assertRaisesRegex( - ValueError, r"`y` argument is not supported" - ): - self.adapter_cls(self.generator_input, y=self.generator_input) - - def test_invalid_sample_weights_argument(self): - with self.assertRaisesRegex( - ValueError, r"`sample_weight` argument is not supported" - ): - self.adapter_cls( - self.generator_input, sample_weights=self.generator_input - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_not_shuffled(self): - def generator(): - for i in range(10): - yield np.ones((1, 1)) * i - - adapter = self.adapter_cls(generator(), shuffle=True) - for i, data in enumerate(adapter.get_dataset()): - self.assertEqual(i, data[0].numpy().flatten()) - - def test_model_without_forward_pass(self): - class MyModel(keras.Model): - def train_step(self, data): - return {"loss": 0.0} - - def test_step(self, data): - return {"loss": 0.0} - - model = MyModel() - model.compile("rmsprop") - model.fit(self.generator_input, steps_per_epoch=5) - out = model.evaluate(self.generator_input, steps=5) - self.assertEqual(out, 0) - - -class KerasSequenceAdapterTest(DataAdapterTestBase): - def setUp(self): - super().setUp() - self.adapter_cls = data_adapter.KerasSequenceAdapter - - def test_can_handle(self): - self.assertFalse(self.adapter_cls.can_handle(self.numpy_input)) - self.assertFalse(self.adapter_cls.can_handle(self.tensor_input)) - self.assertFalse(self.adapter_cls.can_handle(self.dataset_input)) - self.assertFalse(self.adapter_cls.can_handle(self.generator_input)) - self.assertTrue(self.adapter_cls.can_handle(self.sequence_input)) - self.assertFalse(self.adapter_cls.can_handle(self.text_input)) - self.assertFalse(self.adapter_cls.can_handle(self.bytes_input)) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_training(self): - self.model.compile( - loss="sparse_categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.model.fit(self.sequence_input) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - @test_utils.run_v2_only - @data_utils.dont_use_multiprocessing_pool - def test_with_multiprocessing_training(self): - self.model.compile( - loss="sparse_categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.model.fit( - self.sequence_input, - workers=1, - use_multiprocessing=True, - max_queue_size=10, - steps_per_epoch=10, - ) - # Fit twice to ensure there isn't any duplication that prevent the - # worker from starting. - self.model.fit( - self.sequence_input, - workers=1, - use_multiprocessing=True, - max_queue_size=10, - steps_per_epoch=10, - ) - - def test_size(self): - adapter = self.adapter_cls(self.sequence_input) - self.assertEqual(adapter.get_size(), 10) - - def test_batch_size(self): - adapter = self.adapter_cls(self.sequence_input) - self.assertEqual(adapter.batch_size(), None) - self.assertEqual(adapter.representative_batch_size(), 5) - - def test_partial_batch(self): - adapter = self.adapter_cls(self.sequence_input) - self.assertFalse(adapter.has_partial_batch()) - self.assertIsNone(adapter.partial_batch_size()) - - def test_invalid_targets_argument(self): - with self.assertRaisesRegex( - ValueError, r"`y` argument is not supported" - ): - self.adapter_cls(self.sequence_input, y=self.sequence_input) - - def test_invalid_sample_weights_argument(self): - with self.assertRaisesRegex( - ValueError, r"`sample_weight` argument is not supported" - ): - self.adapter_cls( - self.sequence_input, sample_weights=self.sequence_input - ) - - -class KerasSequenceAdapterSparseTest(KerasSequenceAdapterTest): - def setUp(self): - super().setUp() - self.sequence_input = TestSparseSequence(self.batch_size, 10) - - -class KerasSequenceAdapterRaggedTest(KerasSequenceAdapterTest): - def setUp(self): - super().setUp() - self.sequence_input = TestRaggedSequence(self.batch_size, 10) - - self.model = keras.models.Sequential( - [ - keras.layers.Input(shape=(None,), ragged=True), - keras.layers.Embedding(10, 10), - keras.layers.Lambda(tf.reduce_mean, arguments=dict(axis=1)), - keras.layers.Dense(8, input_shape=(10,), activation="relu"), - ] - ) - - -class DataHandlerTest(test_combinations.TestCase): - def test_finite_dataset_with_steps_per_epoch(self): - data = tf.data.Dataset.from_tensor_slices([0, 1, 2, 3]).batch(1) - # User can choose to only partially consume `Dataset`. - data_handler = data_adapter.DataHandler( - data, initial_epoch=0, epochs=2, steps_per_epoch=2 - ) - self.assertEqual(data_handler.inferred_steps, 2) - self.assertFalse(data_handler._adapter.should_recreate_iterator()) - returned_data = [] - for _, iterator in data_handler.enumerate_epochs(): - epoch_data = [] - for _ in data_handler.steps(): - epoch_data.append(next(iterator).numpy()) - returned_data.append(epoch_data) - self.assertEqual(returned_data, [[0, 1], [2, 3]]) - - def test_finite_dataset_without_steps_per_epoch(self): - data = tf.data.Dataset.from_tensor_slices([0, 1, 2]).batch(1) - data_handler = data_adapter.DataHandler(data, initial_epoch=0, epochs=2) - self.assertEqual(data_handler.inferred_steps, 3) - returned_data = [] - for _, iterator in data_handler.enumerate_epochs(): - epoch_data = [] - for _ in data_handler.steps(): - epoch_data.append(next(iterator).numpy()) - returned_data.append(epoch_data) - self.assertEqual(returned_data, [[0, 1, 2], [0, 1, 2]]) - - def test_finite_dataset_with_steps_per_epoch_exact_size(self): - data = tf.data.Dataset.from_tensor_slices([0, 1, 2, 3]).batch(1) - # If user specifies exact size of `Dataset` as `steps_per_epoch`, - # create a new iterator each epoch. - data_handler = data_adapter.DataHandler( - data, initial_epoch=0, epochs=2, steps_per_epoch=4 - ) - self.assertTrue(data_handler._adapter.should_recreate_iterator()) - returned_data = [] - for _, iterator in data_handler.enumerate_epochs(): - epoch_data = [] - for _ in data_handler.steps(): - epoch_data.append(next(iterator).numpy()) - returned_data.append(epoch_data) - self.assertEqual(returned_data, [[0, 1, 2, 3], [0, 1, 2, 3]]) - - def test_infinite_dataset_with_steps_per_epoch(self): - data = tf.data.Dataset.from_tensor_slices([0, 1, 2]).batch(1).repeat() - data_handler = data_adapter.DataHandler( - data, initial_epoch=0, epochs=2, steps_per_epoch=3 - ) - returned_data = [] - for _, iterator in data_handler.enumerate_epochs(): - epoch_data = [] - for _ in data_handler.steps(): - epoch_data.append(next(iterator).numpy()) - returned_data.append(epoch_data) - self.assertEqual(returned_data, [[0, 1, 2], [0, 1, 2]]) - - def test_unknown_cardinality_dataset_with_steps_per_epoch(self): - ds = tf.data.Dataset.from_tensor_slices([0, 1, 2, 3, 4, 5, 6]) - filtered_ds = ds.filter(lambda x: x < 4) - self.assertEqual( - tf.data.experimental.cardinality(filtered_ds).numpy(), - tf.data.experimental.UNKNOWN_CARDINALITY, - ) - - # User can choose to only partially consume `Dataset`. - data_handler = data_adapter.DataHandler( - filtered_ds, initial_epoch=0, epochs=2, steps_per_epoch=2 - ) - self.assertFalse(data_handler._adapter.should_recreate_iterator()) - returned_data = [] - for _, iterator in data_handler.enumerate_epochs(): - epoch_data = [] - for _ in data_handler.steps(): - epoch_data.append(next(iterator)) - returned_data.append(epoch_data) - returned_data = self.evaluate(returned_data) - self.assertEqual(returned_data, [[0, 1], [2, 3]]) - self.assertEqual(data_handler.inferred_steps, 2) - - def test_unknown_cardinality_dataset_without_steps_per_epoch(self): - ds = tf.data.Dataset.from_tensor_slices([0, 1, 2, 3, 4, 5, 6]) - filtered_ds = ds.filter(lambda x: x < 4) - self.assertEqual( - tf.data.experimental.cardinality(filtered_ds).numpy(), - tf.data.experimental.UNKNOWN_CARDINALITY, - ) - - data_handler = data_adapter.DataHandler( - filtered_ds, initial_epoch=0, epochs=2 - ) - self.assertEqual(data_handler.inferred_steps, None) - self.assertTrue(data_handler._adapter.should_recreate_iterator()) - returned_data = [] - for _, iterator in data_handler.enumerate_epochs(): - epoch_data = [] - with data_handler.catch_stop_iteration(): - for _ in data_handler.steps(): - epoch_data.append(next(iterator)) - returned_data.append(epoch_data) - returned_data = self.evaluate(returned_data) - self.assertEqual(returned_data, [[0, 1, 2, 3], [0, 1, 2, 3]]) - self.assertEqual(data_handler.inferred_steps, 4) - - def test_insufficient_data(self): - ds = tf.data.Dataset.from_tensor_slices([0, 1]) - ds = ds.filter(lambda *args, **kwargs: True) - data_handler = data_adapter.DataHandler( - ds, initial_epoch=0, epochs=2, steps_per_epoch=3 - ) - returned_data = [] - for _, iterator in data_handler.enumerate_epochs(): - epoch_data = [] - for _ in data_handler.steps(): - with data_handler.catch_stop_iteration(): - epoch_data.append(next(iterator)) - returned_data.append(epoch_data) - returned_data = self.evaluate(returned_data) - self.assertTrue(data_handler._insufficient_data) - self.assertEqual(returned_data, [[0, 1]]) - - def test_numpy(self): - x = np.array([0, 1, 2]) - y = np.array([0, 2, 4]) - sw = np.array([0, 4, 8]) - data_handler = data_adapter.DataHandler( - x=x, y=y, sample_weight=sw, batch_size=1, epochs=2 - ) - returned_data = [] - for _, iterator in data_handler.enumerate_epochs(): - epoch_data = [] - for _ in data_handler.steps(): - epoch_data.append(next(iterator)) - returned_data.append(epoch_data) - returned_data = self.evaluate(returned_data) - self.assertEqual( - returned_data, - [ - [(0, 0, 0), (1, 2, 4), (2, 4, 8)], - [(0, 0, 0), (1, 2, 4), (2, 4, 8)], - ], - ) - - def test_generator(self): - def generator(): - for _ in range(2): - for step in range(3): - yield (tf.convert_to_tensor([step]),) - - data_handler = data_adapter.DataHandler( - generator(), epochs=2, steps_per_epoch=3 - ) - returned_data = [] - for _, iterator in data_handler.enumerate_epochs(): - epoch_data = [] - for _ in data_handler.steps(): - epoch_data.append(next(iterator)) - returned_data.append(epoch_data) - returned_data = self.evaluate(returned_data) - self.assertEqual( - returned_data, [[([0],), ([1],), ([2],)], [([0],), ([1],), ([2],)]] - ) - - def test_composite_tensor(self): - st = tf.SparseTensor( - indices=[[0, 0], [1, 0], [2, 0]], - values=[0, 1, 2], - dense_shape=[3, 1], - ) - data_handler = data_adapter.DataHandler(st, epochs=2, steps_per_epoch=3) - returned_data = [] - for _, iterator in data_handler.enumerate_epochs(): - epoch_data = [] - for _ in data_handler.steps(): - epoch_data.append(next(iterator)) - returned_data.append(epoch_data) - returned_data = self.evaluate( - tf.nest.map_structure(tf.sparse.to_dense, returned_data) - ) - self.assertEqual( - returned_data, [[([0],), ([1],), ([2],)], [([0],), ([1],), ([2],)]] - ) - - def test_iterator(self): - def generator(): - for _ in range(2): - for step in range(3): - yield (tf.convert_to_tensor([step]),) - - it = iter( - tf.data.Dataset.from_generator(generator, output_types=("float32",)) - ) - data_handler = data_adapter.DataHandler(it, epochs=2, steps_per_epoch=3) - returned_data = [] - for _, iterator in data_handler.enumerate_epochs(): - epoch_data = [] - for _ in data_handler.steps(): - epoch_data.append(next(iterator)) - returned_data.append(epoch_data) - returned_data = self.evaluate(returned_data) - self.assertEqual( - returned_data, [[([0],), ([1],), ([2],)], [([0],), ([1],), ([2],)]] - ) - - def test_list_of_scalars(self): - data_handler = data_adapter.DataHandler( - [[0], [1], [2]], epochs=2, steps_per_epoch=3 - ) - returned_data = [] - for _, iterator in data_handler.enumerate_epochs(): - epoch_data = [] - for _ in data_handler.steps(): - epoch_data.append(next(iterator)) - returned_data.append(epoch_data) - returned_data = self.evaluate(returned_data) - self.assertEqual( - returned_data, [[([0],), ([1],), ([2],)], [([0],), ([1],), ([2],)]] - ) - - def test_class_weight_user_errors(self): - with self.assertRaisesRegex(ValueError, "to be a dict with keys"): - data_adapter.DataHandler( - x=[[0], [1], [2]], - y=[[2], [1], [0]], - batch_size=1, - sample_weight=[[1.0], [2.0], [4.0]], - class_weight={0: 0.5, 1: 1.0, 3: 1.5}, # Skips class `2`. - ) - - with self.assertRaisesRegex(ValueError, "with a single output"): - data_adapter.DataHandler( - x=np.ones((10, 1)), - y=[np.ones((10, 1)), np.zeros((10, 1))], - batch_size=2, - class_weight={0: 0.5, 1: 1.0, 2: 1.5}, - ) - - @parameterized.named_parameters(("one_hot", True), ("sparse", False)) - def test_class_weights_applied(self, one_hot): - num_channels = 3 - num_classes = 5 - batch_size = 2 - image_width = 8 - - input_shape = (batch_size, image_width, image_width, num_channels) - output_shape = (batch_size, image_width, image_width) - - x = tf.random.uniform(input_shape) - sparse_y = tf.random.uniform( - output_shape, maxval=num_classes, dtype=tf.int32 - ) - - if one_hot: - y = tf.one_hot(sparse_y, num_classes) - else: - y = tf.expand_dims(sparse_y, axis=-1) - - # Class weight is equal to class number + 1 - class_weight = dict([(x, x + 1) for x in range(num_classes)]) - - sample_weight = np.array([1, 2]) - - data_handler = data_adapter.DataHandler( - x=x, - y=y, - class_weight=class_weight, - sample_weight=sample_weight, - batch_size=batch_size, - epochs=1, - ) - returned_data = [] - for _, iterator in data_handler.enumerate_epochs(): - epoch_data = [] - for _ in data_handler.steps(): - epoch_data.append(next(iterator)) - returned_data.append(epoch_data) - returned_data = self.evaluate(returned_data) - - # We had only 1 batch and 1 epoch, so we extract x, y, sample_weight - result_x, result_y, result_sample_weight = returned_data[0][0] - self.assertAllEqual(x, result_x) - self.assertAllEqual(y, result_y) - - # Because class weight = class + 1, resulting class weight = y + 1 - # Sample weight is 1 for the first sample, 2 for the second, - # so we double the expected sample weight for the second sample. - self.assertAllEqual(sparse_y[0] + 1, result_sample_weight[0]) - self.assertAllEqual(2 * (sparse_y[1] + 1), result_sample_weight[1]) - - @parameterized.named_parameters(("numpy", True), ("dataset", False)) - def test_single_x_input_no_tuple_wrapping(self, use_numpy): - x = np.ones((10, 1)) - - if use_numpy: - batch_size = 2 - else: - x = tf.data.Dataset.from_tensor_slices(x).batch(2) - batch_size = None - - data_handler = data_adapter.DataHandler(x, batch_size=batch_size) - for _, iterator in data_handler.enumerate_epochs(): - for _ in data_handler.steps(): - # Check that single x input is not wrapped in a tuple. - self.assertIsInstance(next(iterator), tf.Tensor) - - -class TestValidationSplit(test_combinations.TestCase): - @parameterized.named_parameters(("numpy_arrays", True), ("tensors", False)) - def test_validation_split_unshuffled(self, use_numpy): - if use_numpy: - x = np.array([0, 1, 2, 3, 4]) - y = np.array([0, 2, 4, 6, 8]) - sw = np.array([0, 4, 8, 12, 16]) - else: - x = tf.convert_to_tensor([0, 1, 2, 3, 4]) - y = tf.convert_to_tensor([0, 2, 4, 6, 8]) - sw = tf.convert_to_tensor([0, 4, 8, 12, 16]) - - (train_x, train_y, train_sw), ( - val_x, - val_y, - val_sw, - ) = data_adapter.train_validation_split( - (x, y, sw), validation_split=0.2 - ) - - if use_numpy: - train_x = tf.convert_to_tensor(train_x) - train_y = tf.convert_to_tensor(train_y) - train_sw = tf.convert_to_tensor(train_sw) - val_x = tf.convert_to_tensor(val_x) - val_y = tf.convert_to_tensor(val_y) - val_sw = tf.convert_to_tensor(val_sw) - - self.assertEqual(train_x.numpy().tolist(), [0, 1, 2, 3]) - self.assertEqual(train_y.numpy().tolist(), [0, 2, 4, 6]) - self.assertEqual(train_sw.numpy().tolist(), [0, 4, 8, 12]) - - self.assertEqual(val_x.numpy().tolist(), [4]) - self.assertEqual(val_y.numpy().tolist(), [8]) - self.assertEqual(val_sw.numpy().tolist(), [16]) - - def test_validation_split_user_error(self): - with self.assertRaisesRegex( - ValueError, "is only supported for Tensors" - ): - data_adapter.train_validation_split( - lambda: np.ones((10, 1)), validation_split=0.2 - ) - - def test_validation_split_examples_too_few(self): - with self.assertRaisesRegex(ValueError, "not sufficient to split it"): - data_adapter.train_validation_split( - np.ones((1, 10)), validation_split=0.2 - ) - - def test_validation_split_none(self): - train_sw, val_sw = data_adapter.train_validation_split( - None, validation_split=0.2 - ) - self.assertIsNone(train_sw) - self.assertIsNone(val_sw) - - (_, train_sw), (_, val_sw) = data_adapter.train_validation_split( - (np.ones((10, 1)), None), validation_split=0.2 - ) - self.assertIsNone(train_sw) - self.assertIsNone(val_sw) - - -class ListsOfScalarsDataAdapterTest(DataAdapterTestBase): - def setUp(self): - super().setUp() - self.adapter_cls = data_adapter.ListsOfScalarsDataAdapter - - def test_can_list_inputs(self): - self.assertTrue(self.adapter_cls.can_handle(self.text_input)) - self.assertTrue(self.adapter_cls.can_handle(self.bytes_input)) - - self.assertFalse(self.adapter_cls.can_handle(self.numpy_input)) - self.assertFalse(self.adapter_cls.can_handle(self.tensor_input)) - self.assertFalse(self.adapter_cls.can_handle(self.dataset_input)) - self.assertFalse(self.adapter_cls.can_handle(self.generator_input)) - self.assertFalse(self.adapter_cls.can_handle(self.sequence_input)) - self.assertFalse(self.adapter_cls.can_handle([])) - - -class TestDataAdapterUtils(DataAdapterTestBase): - def test_unpack_x_y_sample_weight_with_tuple_and_list(self): - tuple_version = data_adapter.unpack_x_y_sample_weight( - (self.tensor_input, self.tensor_target) - ) - list_version = data_adapter.unpack_x_y_sample_weight( - [self.tensor_input, self.tensor_target] - ) - self.assertEqual(tuple_version, list_version) - - def test_unpack_pack_dict(self): - # A dictionary can be unambiguously represented without a tuple. - x = {"key": self.tensor_input} - packed_x = data_adapter.pack_x_y_sample_weight(x) - self.assertEqual(packed_x, x) - unpacked_x, _, _ = data_adapter.unpack_x_y_sample_weight(x) - self.assertEqual(unpacked_x, x) - - -if __name__ == "__main__": - tf.compat.v1.enable_eager_execution() - tf.test.main() diff --git a/keras/engine/deferred_sequential_test.py b/keras/engine/deferred_sequential_test.py deleted file mode 100644 index 66e05d1a596..00000000000 --- a/keras/engine/deferred_sequential_test.py +++ /dev/null @@ -1,222 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests specific to deferred-build `Sequential` models.""" - -import os -import unittest - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -try: - import h5py -except ImportError: - h5py = None - - -@test_utils.run_v2_only -class TestDeferredSequential(test_combinations.TestCase): - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_build_behavior(self): - # Test graph network creation after __call__ - model = get_model() - model(np.random.random((2, 6))) - self.assertLen(model.weights, 4) - self.assertTrue(model._is_graph_network) - self.assertLen(model.inputs, 1) - self.assertLen(model.outputs, 1) - self.assertEqual(model.inputs[0].shape.as_list(), [2, 6]) - self.assertEqual(model.outputs[0].shape.as_list(), [2, 2]) - - # Test effect of new __call__ with a different shape - model(np.random.random((3, 6))) - self.assertLen(model.inputs, 1) - self.assertLen(model.outputs, 1) - self.assertEqual(model.inputs[0].shape.as_list(), [None, 6]) - self.assertEqual(model.outputs[0].shape.as_list(), [None, 2]) - model(np.random.random((4, 6))) - self.assertLen(model.inputs, 1) - self.assertLen(model.outputs, 1) - self.assertEqual(model.inputs[0].shape.as_list(), [None, 6]) - self.assertEqual(model.outputs[0].shape.as_list(), [None, 2]) - - # Test graph network creation after build - model = get_model() - model.build((None, 6)) - self.assertLen(model.weights, 4) - self.assertTrue(model._is_graph_network) - self.assertLen(model.inputs, 1) - self.assertLen(model.outputs, 1) - self.assertEqual(model.inputs[0].shape.as_list(), [None, 6]) - self.assertEqual(model.outputs[0].shape.as_list(), [None, 2]) - - # Test graph network creation after compile/fit - model = get_model() - model.compile( - loss="mse", - optimizer="rmsprop", - metrics=[keras.metrics.CategoricalAccuracy()], - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(np.zeros((2, 6)), np.zeros((2, 2))) - self.assertLen(model.weights, 4) - self.assertTrue(model._is_graph_network) - self.assertLen(model.inputs, 1) - self.assertLen(model.outputs, 1) - # Inconsistency here: with eager `fit`, the model is built with shape - # (2, 6), but with graph function `fit`, it is built with shape `(None, - # 6)`. This is likely due to our assumption "the batch size should be - # dynamic" at the level of `Model`. TODO(fchollet): investigate and - # resolve. - self.assertEqual(model.inputs[0].shape.as_list()[-1], 6) - self.assertEqual(model.outputs[0].shape.as_list()[-1], 2) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_add_and_pop(self): - model = get_model() - model.build((None, 6)) - self.assertTrue(model.built) - self.assertTrue(model._is_graph_network) - self.assertLen(model.layers, 3) - self.assertLen(model.weights, 4) - model.pop() - self.assertTrue(model.built) - self.assertTrue(model._is_graph_network) - self.assertLen(model.layers, 2) - self.assertLen(model.weights, 2) - model.add(keras.layers.Dense(2)) - self.assertTrue(model.built) - self.assertTrue(model._is_graph_network) - self.assertLen(model.layers, 3) - self.assertLen(model.weights, 4) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_feature_extraction(self): - # This tests layer connectivity reset when rebuilding - model = get_model() - model(np.random.random((3, 6))) # First build - model(np.random.random((4, 6))) # Triggers a rebuild - # Classic feature extractor pattern - extractor = keras.Model( - inputs=model.inputs, - outputs=[layer.output for layer in model.layers], - ) - # Check that inputs and outputs are connected - _ = extractor(np.random.random((4, 6))) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_saving_savedmodel(self): - model = get_model() - model(np.random.random((3, 6))) # Build model - - path = os.path.join(self.get_temp_dir(), "model_path") - model.save(path) - new_model = keras.models.load_model(path) - model_layers = model._flatten_layers(include_self=True, recursive=False) - new_model_layers = new_model._flatten_layers( - include_self=True, recursive=False - ) - for layer1, layer2 in zip(model_layers, new_model_layers): - self.assertEqual(layer1.name, layer2.name) - for w1, w2 in zip(layer1.weights, layer2.weights): - self.assertAllClose(w1, w2) - - @unittest.skipIf(h5py is None, "Test requires h5py") - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_saving_h5(self): - path = os.path.join(self.get_temp_dir(), "model_path.h5") - model = get_model() - model(np.random.random((3, 6))) # Build model - - path = os.path.join(self.get_temp_dir(), "model_path.h5") - model.save(path) - new_model = keras.models.load_model(path) - model_layers = model._flatten_layers(include_self=True, recursive=False) - new_model_layers = new_model._flatten_layers( - include_self=True, recursive=False - ) - for layer1, layer2 in zip(model_layers, new_model_layers): - self.assertEqual(layer1.name, layer2.name) - for w1, w2 in zip(layer1.weights, layer2.weights): - self.assertAllClose(w1, w2) - - @test_combinations.run_all_keras_modes - def test_shared_layer(self): - # This tests that preexisting layer connectivity is preserved - # when auto-building graph networks - shared_layer = keras.layers.Dense(2) - m1 = keras.Sequential([shared_layer]) - m1(np.random.random((3, 6))) - m2 = keras.Sequential([shared_layer]) - m2(np.random.random((3, 6))) - # Nesting case - shared_layer = keras.layers.Dense(2) - m1 = keras.Sequential([shared_layer]) - m2 = keras.Sequential([shared_layer, m1]) - m2(np.random.random((3, 2))) - - @test_combinations.run_all_keras_modes - def test_loss_layer(self): - class LossLayer(keras.layers.Layer): - def call(self, inputs): - self.add_loss(tf.reduce_sum(inputs)) - return inputs - - # Test loss layer alone - model = keras.Sequential([LossLayer()]) - model.compile("rmsprop", run_eagerly=test_utils.should_run_eagerly()) - loss = model.train_on_batch(np.ones((2, 2))) - self.assertAllClose(loss, 4.0) - model(np.random.random((4, 2))) # Triggers a rebuild - loss = model.train_on_batch(np.ones((1, 2))) - self.assertAllClose(loss, 2.0) - - # Test loss layer combined with another layer - model = keras.Sequential( - [keras.layers.Dense(1, kernel_initializer="ones"), LossLayer()] - ) - model.compile("rmsprop", run_eagerly=test_utils.should_run_eagerly()) - loss = model.train_on_batch(np.ones((2, 2))) - self.assertAllClose(loss, 4.0) - model(np.random.random((4, 2))) # Triggers a rebuild - loss = model.train_on_batch(np.ones((1, 2))) - self.assertLess(loss, 2.0) - - # Test loss layer combined with external loss - model = keras.Sequential( - [keras.layers.Dense(1, kernel_initializer="ones"), LossLayer()] - ) - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - loss = model.train_on_batch(np.ones((2, 2)), np.ones((2, 2))) - model(np.random.random((4, 2))) # Triggers a rebuild - loss = model.train_on_batch(np.ones((1, 2)), np.ones((1, 2))) - - -def get_model(): - model = keras.models.Sequential() - model.add(keras.layers.Dense(2, name="first_layer")) - model.add(keras.layers.Dropout(0.3, name="dp")) - model.add(keras.layers.Dense(2, name="last_layer")) - return model - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/feature_columns_integration_test.py b/keras/engine/feature_columns_integration_test.py deleted file mode 100644 index 427a8c70b69..00000000000 --- a/keras/engine/feature_columns_integration_test.py +++ /dev/null @@ -1,320 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests specific to Feature Columns integration.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras import metrics as metrics_module -from keras.feature_column import dense_features as df -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import np_utils - - -class TestDNNModel(keras.models.Model): - def __init__(self, feature_columns, units, name=None, **kwargs): - super().__init__(name=name, **kwargs) - self._input_layer = df.DenseFeatures( - feature_columns, name="input_layer" - ) - self._dense_layer = keras.layers.Dense(units, name="dense_layer") - - def call(self, features): - net = self._input_layer(features) - net = self._dense_layer(net) - return net - - -class FeatureColumnsIntegrationTest(test_combinations.TestCase): - """Most Sequential model API tests are covered in `training_test.py`.""" - - @test_combinations.run_all_keras_modes - def test_sequential_model(self): - columns = [tf.feature_column.numeric_column("a")] - model = keras.models.Sequential( - [ - df.DenseFeatures(columns), - keras.layers.Dense(64, activation="relu"), - keras.layers.Dense(20, activation="softmax"), - ] - ) - model.compile( - optimizer="rmsprop", - loss="categorical_crossentropy", - metrics=["accuracy"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = {"a": np.random.random((10, 1))} - y = np.random.randint(20, size=(10, 1)) - y = np_utils.to_categorical(y, num_classes=20) - model.fit(x, y, epochs=1, batch_size=5) - model.fit(x, y, epochs=1, batch_size=5) - model.evaluate(x, y, batch_size=5) - model.predict(x, batch_size=5) - - @test_combinations.run_all_keras_modes - def test_sequential_model_with_ds_input(self): - columns = [tf.feature_column.numeric_column("a")] - model = keras.models.Sequential( - [ - df.DenseFeatures(columns), - keras.layers.Dense(64, activation="relu"), - keras.layers.Dense(20, activation="softmax"), - ] - ) - model.compile( - optimizer="rmsprop", - loss="categorical_crossentropy", - metrics=["accuracy"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - y = np.random.randint(20, size=(100, 1)) - y = np_utils.to_categorical(y, num_classes=20) - x = {"a": np.random.random((100, 1))} - ds1 = tf.data.Dataset.from_tensor_slices(x) - ds2 = tf.data.Dataset.from_tensor_slices(y) - ds = tf.data.Dataset.zip((ds1, ds2)).batch(5) - model.fit(ds, steps_per_epoch=1) - model.fit(ds, steps_per_epoch=1) - model.evaluate(ds, steps=1) - model.predict(ds, steps=1) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_sequential_model_with_crossed_column(self): - feature_columns = [] - age_buckets = tf.feature_column.bucketized_column( - tf.feature_column.numeric_column("age"), - boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65], - ) - feature_columns.append(age_buckets) - - # indicator cols - thal = tf.feature_column.categorical_column_with_vocabulary_list( - "thal", ["fixed", "normal", "reversible"] - ) - - crossed_feature = tf.feature_column.crossed_column( - [age_buckets, thal], hash_bucket_size=1000 - ) - crossed_feature = tf.feature_column.indicator_column(crossed_feature) - feature_columns.append(crossed_feature) - - feature_layer = df.DenseFeatures(feature_columns) - - model = keras.models.Sequential( - [ - feature_layer, - keras.layers.Dense(128, activation="relu"), - keras.layers.Dense(128, activation="relu"), - keras.layers.Dense(1, activation="sigmoid"), - ] - ) - - age_data = np.random.randint(10, 100, size=100) - thal_data = np.random.choice( - ["fixed", "normal", "reversible"], size=100 - ) - inp_x = {"age": age_data, "thal": thal_data} - inp_y = np.random.randint(0, 1, size=100) - ds = tf.data.Dataset.from_tensor_slices((inp_x, inp_y)).batch(5) - model.compile( - optimizer="adam", - loss="binary_crossentropy", - metrics=["accuracy"], - ) - model.fit(ds, epochs=1) - model.fit(ds, epochs=1) - model.evaluate(ds) - model.predict(ds) - - @test_combinations.run_all_keras_modes - def test_subclassed_model_with_feature_columns(self): - col_a = tf.feature_column.numeric_column("a") - col_b = tf.feature_column.numeric_column("b") - - dnn_model = TestDNNModel([col_a, col_b], 20) - - dnn_model.compile( - optimizer="rmsprop", - loss="categorical_crossentropy", - metrics=["accuracy"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = {"a": np.random.random((10, 1)), "b": np.random.random((10, 1))} - y = np.random.randint(20, size=(10, 1)) - y = np_utils.to_categorical(y, num_classes=20) - dnn_model.fit(x=x, y=y, epochs=1, batch_size=5) - dnn_model.fit(x=x, y=y, epochs=1, batch_size=5) - dnn_model.evaluate(x=x, y=y, batch_size=5) - dnn_model.predict(x=x, batch_size=5) - - @test_combinations.run_all_keras_modes - def test_subclassed_model_with_feature_columns_with_ds_input(self): - col_a = tf.feature_column.numeric_column("a") - col_b = tf.feature_column.numeric_column("b") - - dnn_model = TestDNNModel([col_a, col_b], 20) - - dnn_model.compile( - optimizer="rmsprop", - loss="categorical_crossentropy", - metrics=["accuracy"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - y = np.random.randint(20, size=(100, 1)) - y = np_utils.to_categorical(y, num_classes=20) - x = {"a": np.random.random((100, 1)), "b": np.random.random((100, 1))} - ds1 = tf.data.Dataset.from_tensor_slices(x) - ds2 = tf.data.Dataset.from_tensor_slices(y) - ds = tf.data.Dataset.zip((ds1, ds2)).batch(5) - dnn_model.fit(ds, steps_per_epoch=1) - dnn_model.fit(ds, steps_per_epoch=1) - dnn_model.evaluate(ds, steps=1) - dnn_model.predict(ds, steps=1) - - # TODO(kaftan) seems to throw an error when enabled. - @test_combinations.run_all_keras_modes - def DISABLED_test_function_model_feature_layer_input(self): - col_a = tf.feature_column.numeric_column("a") - col_b = tf.feature_column.numeric_column("b") - - feature_layer = df.DenseFeatures([col_a, col_b], name="fc") - dense = keras.layers.Dense(4) - - # This seems problematic.... We probably need something for - # DenseFeatures the way Input is for InputLayer. - output = dense(feature_layer) - - model = keras.models.Model([feature_layer], [output]) - - optimizer = "rmsprop" - loss = "mse" - loss_weights = [1.0, 0.5] - model.compile( - optimizer, - loss, - metrics=[metrics_module.CategoricalAccuracy(), "mae"], - loss_weights=loss_weights, - ) - - data = ({"a": np.arange(10), "b": np.arange(10)}, np.arange(10, 20)) - model.fit(*data, epochs=1) - - # TODO(kaftan) seems to throw an error when enabled. - @test_combinations.run_all_keras_modes - def DISABLED_test_function_model_multiple_feature_layer_inputs(self): - col_a = tf.feature_column.numeric_column("a") - col_b = tf.feature_column.numeric_column("b") - col_c = tf.feature_column.numeric_column("c") - - fc1 = df.DenseFeatures([col_a, col_b], name="fc1") - fc2 = df.DenseFeatures([col_b, col_c], name="fc2") - dense = keras.layers.Dense(4) - - # This seems problematic.... We probably need something for - # DenseFeatures the way Input is for InputLayer. - output = dense(fc1) + dense(fc2) - - model = keras.models.Model([fc1, fc2], [output]) - - optimizer = "rmsprop" - loss = "mse" - loss_weights = [1.0, 0.5] - model.compile( - optimizer, - loss, - metrics=[metrics_module.CategoricalAccuracy(), "mae"], - loss_weights=loss_weights, - ) - - data_list = ( - [ - {"a": np.arange(10), "b": np.arange(10)}, - {"b": np.arange(10), "c": np.arange(10)}, - ], - np.arange(10, 100), - ) - model.fit(*data_list, epochs=1) - - data_bloated_list = ( - [ - {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)}, - {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)}, - ], - np.arange(10, 100), - ) - model.fit(*data_bloated_list, epochs=1) - - data_dict = ( - { - "fc1": {"a": np.arange(10), "b": np.arange(10)}, - "fc2": {"b": np.arange(10), "c": np.arange(10)}, - }, - np.arange(10, 100), - ) - model.fit(*data_dict, epochs=1) - - data_bloated_dict = ( - { - "fc1": { - "a": np.arange(10), - "b": np.arange(10), - "c": np.arange(10), - }, - "fc2": { - "a": np.arange(10), - "b": np.arange(10), - "c": np.arange(10), - }, - }, - np.arange(10, 100), - ) - model.fit(*data_bloated_dict, epochs=1) - - @test_combinations.run_all_keras_modes - def test_string_input(self): - x = { - "age": np.random.random((1024, 1)), - "cabin": np.array(["a"] * 1024), - } - y = np.random.randint(2, size=(1024, 1)) - ds1 = tf.data.Dataset.from_tensor_slices(x) - ds2 = tf.data.Dataset.from_tensor_slices(y) - dataset = tf.data.Dataset.zip((ds1, ds2)).batch(4) - categorical_cols = [ - tf.feature_column.categorical_column_with_hash_bucket("cabin", 10) - ] - feature_cols = [tf.feature_column.numeric_column("age")] + [ - tf.feature_column.indicator_column(cc) for cc in categorical_cols - ] - layers = [ - df.DenseFeatures(feature_cols), - keras.layers.Dense(128), - keras.layers.Dense(1), - ] - - model = keras.models.Sequential(layers) - model.compile(optimizer="sgd", loss=keras.losses.BinaryCrossentropy()) - model.fit(dataset) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/functional.py b/keras/engine/functional.py deleted file mode 100644 index d17d429f3fd..00000000000 --- a/keras/engine/functional.py +++ /dev/null @@ -1,1695 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""A `Network` is way to compose layers: the topological form of a `Model`.""" - -import collections -import copy -import itertools -import warnings - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.dtensor import layout_map as layout_map_lib -from keras.engine import base_layer -from keras.engine import base_layer_utils -from keras.engine import functional_utils -from keras.engine import input_layer as input_layer_module -from keras.engine import input_spec -from keras.engine import node as node_module -from keras.engine import training as training_lib -from keras.engine import training_utils -from keras.saving import serialization_lib -from keras.saving.legacy import serialization -from keras.saving.legacy.saved_model import json_utils -from keras.saving.legacy.saved_model import network_serialization -from keras.saving.legacy.saved_model import utils as saved_model_utils -from keras.utils import generic_utils -from keras.utils import tf_inspect -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.tools.docs import doc_controls - - -class Functional(training_lib.Model): - """A `Functional` model is a `Model` defined as a directed graph of layers. - - Three types of `Model` exist: subclassed `Model`, `Functional` model, - and `Sequential` (a special case of `Functional`). - In general, more Keras features are supported with `Functional` - than with subclassed `Model`s, specifically: - - - Model cloning (`keras.models.clone`) - - Serialization (`model.get_config()/from_config`, `model.to_json()` - - Whole-model saving (`model.save()`) - - A `Functional` model can be instantiated by passing two arguments to - `__init__`. The first argument is the `keras.Input` Tensors that represent - the inputs to the model. The second argument specifies the output - tensors that represent the outputs of this model. Both arguments can be a - nested structure of tensors. - - Example: - - ``` - inputs = {'x1': keras.Input(shape=(10,)), 'x2': keras.Input(shape=(1,))} - t = keras.layers.Dense(1, activation='relu')(inputs['x1']) - outputs = keras.layers.Add()([t, inputs['x2']) - model = keras.Model(inputs, outputs) - ``` - - A `Functional` model constructed using the Functional API can also include - raw TensorFlow functions, with the exception of functions that create - Variables or assign ops. - - Example: - - ```python - inputs = keras.Input(shape=(10,)) - x = keras.layers.Dense(1)(inputs) - outputs = tf.nn.relu(x) - model = keras.Model(inputs, outputs) - ``` - - A new `Functional` model can also be created by using the - intermediate tensors. This enables you to quickly extract sub-components - of the model. - - Example: - - ```python - inputs = keras.Input(shape=(None, None, 3)) - processed = keras.layers.RandomCrop(width=32, height=32)(inputs) - conv = keras.layers.Conv2D(filters=2, kernel_size=3)(processed) - pooling = keras.layers.GlobalAveragePooling2D()(conv) - feature = keras.layers.Dense(10)(pooling) - - full_model = keras.Model(inputs, feature) - backbone = keras.Model(processed, conv) - activations = keras.Model(conv, feature) - ``` - - Note that the `backbone` and `activations` models are not - created with `keras.Input` objects, but with the tensors that are originated - from `keras.Input` objects. Under the hood, the layers and weights will - be shared across these models, so that user can train the `full_model`, and - use `backbone` or `activations` to do feature extraction. - The inputs and outputs of the model can be nested structures of tensors as - well, and the created models are standard `Functional` model that support - all the existing API. - - Args: - inputs: List of input tensors (must be created via `tf.keras.Input()` or - originated from `tf.keras.Input()`). - outputs: List of output tensors. - name: String, optional. Name of the model. - trainable: Boolean, optional. If the model's variables should be - trainable. - """ - - # See tf.Module for the usage of this property. - # The key of _layer_call_argspecs is a layer. tf.Module._flatten will fail - # to flatten the key since it is trying to convert Trackable/Layer to a - # string. - _TF_MODULE_IGNORED_PROPERTIES = frozenset( - itertools.chain( - ( - "_layer_call_argspecs", - "_compiled_trainable_state", - "_output_mask_cache", - "_output_tensor_cache", - "_output_shape_cache", - ), - training_lib.Model._TF_MODULE_IGNORED_PROPERTIES, - ) - ) - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def __init__(self, inputs, outputs, name=None, trainable=True, **kwargs): - # This is used by the Model class, since we have some logic to swap the - # class in the __new__ method, which will lead to __init__ get invoked - # twice. Using the skip_init to skip one of the invocation of __init__ - # to avoid any side effects - skip_init = kwargs.pop("skip_init", False) - if skip_init: - return - generic_utils.validate_kwargs(kwargs, {}) - super().__init__(name=name, trainable=trainable) - # Check if the inputs contain any intermediate `KerasTensor` (not - # created by tf.keras.Input()). In this case we need to clone the `Node` - # and `KerasTensor` objects to mimic rebuilding a new model from new - # inputs. This feature is only enabled in TF2 not in v1 graph mode. - if tf.compat.v1.executing_eagerly_outside_functions(): - if not all( - [ - functional_utils.is_input_keras_tensor(t) - for t in tf.nest.flatten(inputs) - ] - ): - inputs, outputs = functional_utils.clone_graph_nodes( - inputs, outputs - ) - self._init_graph_network(inputs, outputs) - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _init_graph_network(self, inputs, outputs): - # This method is needed for Sequential to reinitialize graph network - # when layer is added or removed. - - base_layer.keras_api_gauge.get_cell("Functional").set(True) - self._is_graph_network = True - - # Normalize and set self.inputs, self.outputs. - if isinstance(inputs, list) and len(tf.nest.flatten(inputs)) == 1: - inputs = inputs[0] - if isinstance(outputs, list) and len(tf.nest.flatten(outputs)) == 1: - outputs = outputs[0] - self._nested_inputs = inputs - self._nested_outputs = outputs - self.inputs = tf.nest.flatten(inputs) - self.outputs = tf.nest.flatten(outputs) - - # Models constructed with a single Tensor or list of Tensors can - # be called with a dict, where the keys of the dict are the names - # of the `Input` objects. Extra keys are ignored with warning. - if not tf.nest.is_nested(self._nested_inputs): - self._enable_dict_to_input_mapping = True - elif isinstance(self._nested_inputs, (list, tuple)) and not any( - tf.nest.is_nested(t) for t in self._nested_inputs - ): - self._enable_dict_to_input_mapping = True - elif isinstance(self._nested_inputs, dict) and not any( - tf.nest.is_nested(t) for t in self._nested_inputs.values() - ): - self._enable_dict_to_input_mapping = True - else: - self._enable_dict_to_input_mapping = False - - if not tf.compat.v1.executing_eagerly_outside_functions(): - if any( - not hasattr(tensor, "_keras_history") for tensor in self.outputs - ): - base_layer_utils.create_keras_history(self._nested_outputs) - - self._validate_graph_inputs_and_outputs() - - # A Network does not create weights of its own, thus it is already - # built. - self.built = True - self._build_input_shape = tf.nest.map_structure( - lambda x: x.shape, inputs - ) - self._compute_output_and_mask_jointly = True - # `_expects_training_arg` is True since the `training` argument is - # always present in the signature of the `call` method of a graph - # network. - self._call_spec.expects_training_arg = True - self._call_spec.expects_mask_arg = True - # A graph network does not autocast inputs, as its layers will cast them - # instead. - self._autocast = False - - self._input_layers = [] - self._output_layers = [] - self._input_coordinates = [] - self._output_coordinates = [] - - # This is for performance optimization when calling the Network on new - # inputs. Every time the Network is called on a set on input tensors, we - # compute the output tensors, output masks and output shapes in one - # pass, then cache them here. When any of these outputs is queried - # later, we retrieve it from there instead of recomputing it. - self._output_mask_cache = {} - self._output_tensor_cache = {} - self._output_shape_cache = {} - - # Build self._output_layers: - for x in self.outputs: - ( - layer, - node_index, - tensor_index, - ) = x._keras_history - self._output_layers.append(layer) - self._output_coordinates.append((layer, node_index, tensor_index)) - - # Build self._input_layers: - for x in self.inputs: - ( - layer, - node_index, - tensor_index, - ) = x._keras_history - # It's supposed to be an input layer, so only one node - # and one tensor output. - assert node_index == 0 - assert tensor_index == 0 - self._input_layers.append(layer) - self._input_coordinates.append((layer, node_index, tensor_index)) - - # Keep track of the network's nodes and layers. - nodes, nodes_by_depth, layers, _ = _map_graph_network( - self.inputs, self.outputs - ) - self._network_nodes = nodes - self._nodes_by_depth = nodes_by_depth - self._self_tracked_trackables = layers - self._layer_call_argspecs = {} - for layer in self._self_tracked_trackables: - self._layer_call_argspecs[layer] = tf_inspect.getfullargspec( - layer.call - ) - - # Build self.input_names and self.output_names. - self._set_output_names() - self.input_names = [] - self._feed_input_names = [] - self._feed_inputs = [] - self._feed_input_shapes = [] - for layer in self._input_layers: - self.input_names.append(layer.name) - if layer.is_placeholder: - self._feed_input_names.append(layer.name) - # Use batch_input_shape here because non-eager composite tensors - # may not have a shape attribute that's meaningful (sparse, for - # instance, has a tensor that's non-constant and needs to be - # fed). This means that input layers that create placeholders - # will need to have the batch_input_shape attr to allow for - # input shape validation. - self._feed_input_shapes.append(layer._batch_input_shape) - self._feed_inputs.append(layer.input) - - self._compute_tensor_usage_count() - self._set_save_spec(self._nested_inputs) - tf_utils.assert_no_legacy_layers(self.layers) - - # Note that this method is used by both functional and sequential - # models, so we can't just have this method in functional.__init__, - # which will miss the coverage of sequential model. - if self._layout_map is not None: - layout_map_lib._map_functional_model_variable( - self, self._layout_map - ) - - @property - def input(self): - """Retrieves the input tensor(s) of a layer. - - Only applicable if the layer has exactly one input, - i.e. if it is connected to one incoming layer. - - Returns: - Input tensor or list of input tensors. - - Raises: - RuntimeError: If called in Eager mode. - AttributeError: If no inbound nodes are found. - """ - return self._nested_inputs - - @property - def input_shape(self): - """Retrieves the input shape(s) of a layer. - - Only applicable if the layer has exactly one input, - i.e. if it is connected to one incoming layer, or if all inputs - have the same shape. - - Returns: - Input shape, as an integer shape tuple - (or list of shape tuples, one tuple per input tensor). - - Raises: - AttributeError: if the layer has no defined input_shape. - RuntimeError: if called in Eager mode. - """ - return tf.nest.map_structure(backend.int_shape, self.input) - - @property - def input_spec(self): - if hasattr(self, "_manual_input_spec"): - return self._manual_input_spec - if isinstance(self._nested_inputs, (dict, list, tuple)) and len( - self._nested_inputs - ) != len(self.inputs): - # Case where we have a nested structure. - # In such a case we can't safely run any checks. - return None - if isinstance(self._nested_inputs, dict): - # Case where `_nested_inputs` is a plain dict of Inputs. - names = sorted(self._nested_inputs.keys()) - return [ - input_spec.InputSpec( - shape=shape_with_no_batch_size(self._nested_inputs[name]), - allow_last_axis_squeeze=True, - name=name, - ) - for name in names - ] - else: - # Single input, or list / tuple of inputs. - # The data may be passed as a dict keyed by input name. - return [ - input_spec.InputSpec( - shape=shape_with_no_batch_size(x), - allow_last_axis_squeeze=True, - name=x._keras_history.layer.name, - ) - for x in self.inputs - ] - - @input_spec.setter - def input_spec(self, value): - self._manual_input_spec = value - - @property - def output(self): - """Retrieves the output tensor(s) of a layer. - - Only applicable if the layer has exactly one output, - i.e. if it is connected to one incoming layer. - - Returns: - Output tensor or list of output tensors. - - Raises: - AttributeError: if the layer is connected to more than one incoming - layers. - RuntimeError: if called in Eager mode. - """ - return self._nested_outputs - - @property - def output_shape(self): - """Retrieves the output shape(s) of a layer. - - Only applicable if the layer has one output, - or if all outputs have the same shape. - - Returns: - Output shape, as an integer shape tuple - (or list of shape tuples, one tuple per output tensor). - - Raises: - AttributeError: if the layer has no defined output shape. - RuntimeError: if called in Eager mode. - """ - return tf.nest.map_structure(backend.int_shape, self.output) - - def _set_output_names(self): - """Assigns unique names to the Network's outputs. - - Output layers with multiple output tensors would otherwise lead to - duplicate names in self.output_names. - """ - uniquified = [] - output_names = set() - prefix_count = {} - for layer in self._output_layers: - proposal = layer.name - while proposal in output_names: - existing_count = prefix_count.get(layer.name, 1) - proposal = f"{layer.name}_{existing_count}" - prefix_count[layer.name] = existing_count + 1 - output_names.add(proposal) - uniquified.append(proposal) - self.output_names = uniquified - - @property - def _layer_checkpoint_dependencies(self): - """Dictionary of layer dependencies to be included in the checkpoint.""" - weight_layer_index = 0 - - dependencies = collections.OrderedDict() - for layer_index, layer in enumerate(self.layers): - try: - if layer.weights: - # Keep a separate index for layers which have weights. This - # allows users to insert Layers without weights anywhere in - # the network without breaking checkpoints. - dependencies[ - "layer_with_weights-%d" % weight_layer_index - ] = layer - weight_layer_index += 1 - except ValueError: - # The layer might have weights, but may not be built yet. We - # just treat it as layer without weight. - pass - - # Even if it doesn't have weights, we should still track everything - # in case it has/will have Trackable dependencies. - dependencies["layer-%d" % layer_index] = layer - return dependencies - - def _trackable_children(self, save_type="checkpoint", **kwargs): - dependencies = self._layer_checkpoint_dependencies - dependencies.update(super()._trackable_children(save_type, **kwargs)) - return dependencies - - def _lookup_dependency(self, name): - layer_dependencies = self._layer_checkpoint_dependencies - if name in layer_dependencies: - return layer_dependencies[name] - return super()._lookup_dependency(name) - - def _handle_deferred_layer_dependencies(self, layers): - """Handles layer checkpoint dependencies that are added after init.""" - layer_checkpoint_dependencies = self._layer_checkpoint_dependencies - layer_to_name = {v: k for k, v in layer_checkpoint_dependencies.items()} - for layer in layers: - if layer in layer_to_name: - self._handle_deferred_dependencies( - name=layer_to_name[layer], trackable=layer - ) - - @property - def _should_compute_mask(self): - return True - - def compute_mask(self, inputs, mask): - # TODO(omalleyt): b/123540974 This function is not really safe to call - # by itself because it will duplicate any updates and losses in graph - # mode by `call`ing the Layers again. - output_tensors = self._run_internal_graph(inputs, mask=mask) - return tf.nest.map_structure( - lambda t: getattr(t, "_keras_mask", None), output_tensors - ) - - @doc_controls.do_not_doc_inheritable - def call(self, inputs, training=None, mask=None): - """Calls the model on new inputs. - - In this case `call` just reapplies - all ops in the graph to the new inputs - (e.g. build a new computational graph from the provided inputs). - - Args: - inputs: A tensor or list of tensors. - training: Boolean or boolean scalar tensor, indicating whether to - run the `Network` in training mode or inference mode. - mask: A mask or list of masks. A mask can be - either a tensor or None (no mask). - - Returns: - A tensor if there is a single output, or - a list of tensors if there are more than one outputs. - """ - return self._run_internal_graph(inputs, training=training, mask=mask) - - def compute_output_shape(self, input_shape): - # Convert any shapes in tuple format to TensorShapes. - input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False) - - if len(tf.nest.flatten(input_shape)) != len( - tf.nest.flatten(self._input_layers) - ): - raise ValueError( - f"Invalid `input_shape` argument {input_shape}: " - f"the model expects {len(self._input_layers)} " - "input tensors." - ) - - # Use the tuple of TensorShape as the cache key, since tuple is hashable - # and can be used as hash key. - try: - cache_key = tuple( - tf_utils.convert_shapes(input_shape, to_tuples=True) - ) - if cache_key in self._output_shape_cache: - # Cache hit. Return shapes as TensorShapes. - return self._output_shape_cache[cache_key] - except ValueError: - # In case there are unknown TensorShape, eg for sparse tensor input, - # We skip the caching since the shape is unknown. - pass - - layers_to_output_shapes = {} - for layer, shape in zip( - self._input_layers, tf.nest.flatten(input_shape) - ): - # It's an input layer: then `compute_output_shape` is identity, - # and there is only one node and one tensor.. - shape_key = layer.name + "_0_0" - layers_to_output_shapes[shape_key] = shape - - depth_keys = list(self._nodes_by_depth.keys()) - depth_keys.sort(reverse=True) - # Iterate over nodes, by depth level. - if len(depth_keys) > 1: - for depth in depth_keys: - nodes = self._nodes_by_depth[depth] - for node in nodes: - layer = node.layer - if layer in self._input_layers: - # We've already covered the input layers - # a few lines above. - continue - # Get the input shapes for the first argument of the node - layer_input_shapes = [] - layer_inputs = node.call_args[0] - for layer_input in tf.nest.flatten(layer_inputs): - kh = layer_input._keras_history - input_layer_key = kh.layer.name + "_%s_%s" % ( - kh.node_index, - kh.tensor_index, - ) - layer_input_shapes.append( - layers_to_output_shapes[input_layer_key] - ) - layer_input_shapes = tf.nest.pack_sequence_as( - layer_inputs, layer_input_shapes - ) - # Layers expect shapes to be tuples for - # `compute_output_shape`. - layer_input_shapes = tf_utils.convert_shapes( - layer_input_shapes, to_tuples=True - ) - layer_output_shapes = layer.compute_output_shape( - layer_input_shapes - ) - # Convert back to TensorShapes. - layer_output_shapes = tf_utils.convert_shapes( - layer_output_shapes, to_tuples=False - ) - - node_index = layer._inbound_nodes.index(node) - for j, shape in enumerate( - tf.nest.flatten(layer_output_shapes) - ): - shape_key = layer.name + f"_{node_index}_{j}" - layers_to_output_shapes[shape_key] = shape - - # Read final output shapes from layers_to_output_shapes. - output_shapes = [] - for i in range(len(self._output_layers)): - layer, node_index, tensor_index = self._output_coordinates[i] - shape_key = layer.name + f"_{node_index}_{tensor_index}" - output_shapes.append(layers_to_output_shapes[shape_key]) - output_shapes = tf.nest.pack_sequence_as( - self._nested_outputs, output_shapes - ) - # Store in cache. - self._output_shape_cache[cache_key] = output_shapes - - # Return shapes as TensorShapes. - return output_shapes - - def _init_set_name(self, name, zero_based=True): - if not name: - cls_name = self.__class__.__name__ - if self.__class__ == Functional: - # Hide the functional class name from user, since its not a - # public visible class. Use "Model" instead, - cls_name = "Model" - self._name = backend.unique_object_name( - generic_utils.to_snake_case(cls_name), zero_based=zero_based - ) - else: - self._name = name - - def _run_internal_graph(self, inputs, training=None, mask=None): - """Computes output tensors for new inputs. - - # Note: - - Can be run on non-Keras tensors. - - Args: - inputs: Tensor or nested structure of Tensors. - training: Boolean learning phase. - mask: (Optional) Tensor or nested structure of Tensors. - - Returns: - output_tensors - """ - inputs = self._flatten_to_reference_inputs(inputs) - if mask is None: - masks = [None] * len(inputs) - else: - masks = self._flatten_to_reference_inputs(mask) - for input_t, mask in zip(inputs, masks): - input_t._keras_mask = mask - - # Dictionary mapping reference tensors to computed tensors. - tensor_dict = {} - tensor_usage_count = self._tensor_usage_count - for x, y in zip(self.inputs, inputs): - y = self._conform_to_reference_input(y, ref_input=x) - x_id = str(id(x)) - tensor_dict[x_id] = [y] * tensor_usage_count[x_id] - - nodes_by_depth = self._nodes_by_depth - depth_keys = list(nodes_by_depth.keys()) - depth_keys.sort(reverse=True) - - for depth in depth_keys: - nodes = nodes_by_depth[depth] - for node in nodes: - if node.is_input: - continue # Input tensors already exist. - - if any(t_id not in tensor_dict for t_id in node.flat_input_ids): - continue # Node is not computable, try skipping. - - args, kwargs = node.map_arguments(tensor_dict) - outputs = node.layer(*args, **kwargs) - - # Update tensor_dict. - for x_id, y in zip( - node.flat_output_ids, tf.nest.flatten(outputs) - ): - tensor_dict[x_id] = [y] * tensor_usage_count[x_id] - - output_tensors = [] - for x in self.outputs: - x_id = str(id(x)) - assert x_id in tensor_dict, "Could not compute output " + str(x) - output_tensors.append(tensor_dict[x_id].pop()) - - return tf.nest.pack_sequence_as(self._nested_outputs, output_tensors) - - def _flatten_to_reference_inputs(self, tensors): - """Maps `tensors` to their respective `keras.Input`.""" - if self._enable_dict_to_input_mapping and isinstance(tensors, dict): - ref_inputs = self._nested_inputs - if not tf.nest.is_nested(ref_inputs): - ref_inputs = [self._nested_inputs] - if isinstance(ref_inputs, dict): - # In the case that the graph is constructed with dict input - # tensors, We will use the original dict key to map with the - # keys in the input data. Note that the model.inputs is using - # nest.flatten to process the input tensors, which means the - # dict input tensors are ordered by their keys. - ref_input_names = sorted(ref_inputs.keys()) - else: - ref_input_names = [ - inp._keras_history.layer.name for inp in ref_inputs - ] - - # Raise an warning if there are more input data comparing to input - # tensor - if len(tensors) > len(ref_input_names): - warnings.warn( - "Input dict contained keys {} which did not match any " - "model input. They will be ignored by the model.".format( - [n for n in tensors.keys() if n not in ref_input_names] - ), - stacklevel=2, - ) - - try: - # Flatten in the order `Input`s were passed during Model - # construction. - return [tensors[n] for n in ref_input_names] - except KeyError: - # TODO(b/151582614) - return tf.nest.flatten(tensors) - - # Otherwise both self.inputs and tensors will already be in same order. - return tf.nest.flatten(tensors) - - def _conform_to_reference_input(self, tensor, ref_input): - """Set shape and dtype based on `keras.Input`s.""" - if isinstance(tensor, tf.Tensor): - # Allow (None,) and (None, 1) Tensors to be passed interchangeably. - # Use the shape specified by the `keras.Input`. - t_shape = tensor.shape - t_rank = t_shape.rank - ref_shape = ref_input.shape - ref_rank = ref_shape.rank - keras_history = getattr(tensor, "_keras_history", None) - if t_rank is not None and ref_rank is not None: - # Should squeeze last dimension. True if tensor is (BATCH, ..., - # 1) and reference is (BATCH, ...). - if t_rank == ref_rank + 1 and t_shape[-1] == 1: - tensor = tf.squeeze(tensor, axis=-1) - # Should expand last_dimension. True if tensor is (BATCH, ...) - # and reference is (BATCH, ..., 1). - elif t_rank == ref_rank - 1 and ref_shape[-1] == 1: - tensor = tf.expand_dims(tensor, axis=-1) - if keras_history is not None: # Restore keras history. - tensor._keras_history = keras_history - - # Dtype casting. - tensor = tf.cast(tensor, dtype=ref_input.dtype) - elif tf_utils.is_extension_type(tensor): - # Dtype casting (If the extension type has a non-variant dtype and - # supports being cast). Only cast if necessary (since some - # extension types may not implement tf.cast). - tensor_dtype = getattr(tensor, "dtype", None) - ref_input_dtype = getattr(ref_input, "dtype", None) - if ( - ref_input_dtype is not None - and tensor_dtype is not None - and tensor_dtype != ref_input_dtype - and ref_input_dtype != tf.variant - ): - tensor = tf.cast(tensor, dtype=ref_input_dtype) - - return tensor - - @generic_utils.default - def get_config(self): - # Prepare base arguments - config = { - "name": self.name, - "trainable": self.trainable, - } - - if saved_model_utils.in_tf_saved_model_scope(): - # SavedModel special case: need to preserve legacy (potentially - # incorrect) behavior. - return copy.deepcopy(get_network_config(self, config=config)) - - # Check whether the class has a constructor compatible with a Functional - # model or if it has a custom constructor. - if has_functional_like_constructor(self.__class__): - # Only return a Functional config if the constructor is the same - # as that of a Functional model. This excludes subclassed Functional - # models with a custom __init__. - config = copy.deepcopy(get_network_config(self, config=config)) - else: - # Try to autogenerate config - xtra_args = set(config.keys()) - if getattr(self, "_auto_get_config", False): - config.update(self._auto_config.config) - # Remove args non explicitly supported - argspec = tf_inspect.getfullargspec(self.__init__) - if argspec.varkw != "kwargs": - for key in xtra_args - xtra_args.intersection(argspec.args[1:]): - config.pop(key, None) - return config - - def get_weight_paths(self): - result = {} - for layer in self.layers: - ( - descendants, - object_paths_dict, - ) = tf.__internal__.tracking.ObjectGraphView( - layer - ).breadth_first_traversal() - for descendant in descendants: - if isinstance(descendant, tf.Variable): - trackable_references = object_paths_dict[descendant] - object_path = ".".join( - [t.name for t in trackable_references] - ) - result[layer.name + "." + object_path] = descendant - return result - - def _validate_graph_inputs_and_outputs(self): - """Validates the inputs and outputs of a Graph Network.""" - # Check for redundancy in inputs. - if len({id(i) for i in self.inputs}) != len(self.inputs): - raise ValueError( - "The list of inputs passed to the model " - "contains the same input multiple times. " - "All inputs should only appear once." - f"Received inputs={self.inputs}" - ) - - for x in self.inputs: - # Check that x has appropriate `_keras_history` metadata. - if not hasattr(x, "_keras_history"): - cls_name = self.__class__.__name__ - raise ValueError( - f"Input tensors to a {cls_name} model " - "must come from `tf.keras.Input`. " - f"Received inputs={x} (missing previous layer metadata)." - ) - # Check that x is an input tensor. - - layer = x._keras_history.layer - if len(layer._inbound_nodes) > 1 or ( - layer._inbound_nodes and not layer._inbound_nodes[0].is_input - ): - cls_name = self.__class__.__name__ - logging.warning( - f"{cls_name} model inputs must come from " - "`tf.keras.Input` (thus holding past layer metadata). " - "They cannot be the output of " - "a previous non-Input layer. " - "Here, a tensor specified as " - f'input to "{self.name}" was not an Input tensor, ' - f'it was generated by layer "{layer.name}".\n' - "Note that input tensors are " - "instantiated via `tensor = tf.keras.Input(shape)`.\n" - f"The tensor that caused the issue was: {x}" - ) - - # Check compatibility of batch sizes of Input Layers. - input_batch_sizes = set( - [ - training_utils.get_static_batch_size(x._keras_history.layer) - for x in self.inputs - ] - ) - input_batch_sizes.discard(None) - if len(input_batch_sizes) > 1: - logging.warning( - "Found incompatible static batch sizes among the " - f"inputs. Batch sizes: {sorted(input_batch_sizes)}" - ) - - for x in self.outputs: - if not hasattr(x, "_keras_history"): - cls_name = self.__class__.__name__ - raise ValueError( - f"Output tensors of a {cls_name} model must be " - "the output of a TensorFlow `Layer` " - f"(thus holding past layer metadata). Found: {x}" - ) - - def _insert_layers(self, layers, relevant_nodes=None): - """Inserts Layers into the Network after Network creation. - - This is only valid for Keras Graph Networks. Layers added via this - function will be included in the `call` computation and `get_config` of - this Network. They will not be added to the Network's outputs. - - Args: - layers: Arbitrary nested structure of Layers. Layers must be reachable - from one or more of the `keras.Input` Tensors that correspond to - this Network's inputs. - relevant_nodes: Nodes from the Layers that should be considered part - of this Network. If `None`, all Nodes will be considered part of - this Network. - - Raises: - ValueError: If the layers depend on `Input`s not found in this Model. - """ - layers = tf.nest.flatten(layers) - tf_utils.assert_no_legacy_layers(layers) - node_to_depth = {} - for depth, nodes in self._nodes_by_depth.items(): - node_to_depth.update({node: depth for node in nodes}) - # The nodes of these Layers that are relevant to this Network. If not - # provided, assume all Nodes are relevant - if not relevant_nodes: - relevant_nodes = tf.nest.flatten( - [layer._inbound_nodes for layer in layers] - ) - network_nodes = set(relevant_nodes + list(node_to_depth.keys())) - - def _get_min_depth(node): - """Gets the minimum depth at which node can be computed.""" - min_depth = 0 - for layer, node_id, _, _ in node.iterate_inbound(): - inbound_node = layer._inbound_nodes[node_id] - if inbound_node in node_to_depth: - min_depth = min(min_depth, node_to_depth[inbound_node]) - elif inbound_node not in network_nodes: - continue - else: - # Previous relevant nodes haven't been processed yet. - return None - # New node is one shallower than its shallowest input. - return min_depth - 1 - - # Insert nodes into `_nodes_by_depth` and other node attrs. - unprocessed_nodes = copy.copy(relevant_nodes) - i = 0 - while unprocessed_nodes: - i += 1 - # Do a sanity check. This can occur if `Input`s from outside this - # Model are being relied on. - if i > 10000: - raise ValueError( - "Layers could not be added due to missing dependencies." - ) - - node = unprocessed_nodes.pop(0) - depth = _get_min_depth(node) - if depth is None: # Defer until inbound nodes are processed. - unprocessed_nodes.append(node) - continue - node_key = _make_node_key( - node.layer.name, node.layer._inbound_nodes.index(node) - ) - if node_key not in self._network_nodes: - node_to_depth[node] = depth - self._network_nodes.add(node_key) - self._nodes_by_depth[depth].append(node) - - # Insert layers and update other layer attrs. - layer_set = set(self._self_tracked_trackables) - deferred_layers = [] - for layer in layers: - if layer not in layer_set: - self._self_tracked_trackables.append(layer) - deferred_layers.append(layer) - self._layer_call_argspecs[layer] = tf_inspect.getfullargspec( - layer.call - ) - layer_set.add(layer) - self._handle_deferred_layer_dependencies(deferred_layers) - - self._compute_tensor_usage_count() - - def _compute_tensor_usage_count(self): - """Compute the #. of tensor usages for all the output tensors of layers. - - The computed tensor usage count is saved as `self._tensor_usage_count`. - This is later used for saving memory in eager computation by releasing - no-longer-needed tensors as early as possible. - """ - tensor_usage_count = collections.Counter() - available_tensors = set(str(id(tensor)) for tensor in self.inputs) - - depth_keys = list(self._nodes_by_depth.keys()) - depth_keys.sort(reverse=True) - depth_keys = depth_keys[1:] - - for depth in depth_keys: - for node in self._nodes_by_depth[depth]: - input_tensors = { - str(id(tensor)) - for tensor in tf.nest.flatten(node.keras_inputs) - } - if input_tensors.issubset(available_tensors): - for tensor in tf.nest.flatten(node.keras_inputs): - tensor_usage_count[str(id(tensor))] += 1 - - for output_tensor in tf.nest.flatten(node.outputs): - available_tensors.add(str(id(output_tensor))) - - for tensor in self.outputs: - tensor_usage_count[str(id(tensor))] += 1 - - self._tensor_usage_count = tensor_usage_count - - def _assert_weights_created(self): - # Override the implementation in Model. - # The Functional model should always have weight created already. - return - - def _graph_network_add_loss(self, symbolic_loss): - new_nodes, new_layers = _map_subgraph_network( - self.inputs, [symbolic_loss] - ) - # Losses must be keyed on inputs no matter what in order to be supported - # in DistributionStrategy. - add_loss_layer = base_layer.AddLoss( - unconditional=False, dtype=symbolic_loss.dtype - ) - add_loss_layer(symbolic_loss) - new_nodes.extend(add_loss_layer.inbound_nodes) - new_layers.append(add_loss_layer) - self._insert_layers(new_layers, new_nodes) - - def _graph_network_add_metric(self, value, aggregation, name): - new_nodes, new_layers = _map_subgraph_network(self.inputs, [value]) - add_metric_layer = base_layer.AddMetric( - aggregation, name, dtype=value.dtype - ) - add_metric_layer(value) - new_nodes.extend(add_metric_layer.inbound_nodes) - new_layers.append(add_metric_layer) - self._insert_layers(new_layers, new_nodes) - - @property - def _trackable_saved_model_saver(self): - return network_serialization.NetworkSavedModelSaver(self) - - def _get_save_spec(self, dynamic_batch=True, inputs_only=True): - if getattr(self, "_has_explicit_input_shape", True): - # Functional models and Sequential models that have an explicit - # input shape should use the batch size set by the input layer. - dynamic_batch = False - return super()._get_save_spec(dynamic_batch, inputs_only) - - -def _make_node_key(layer_name, node_index): - return layer_name + "_ib-" + str(node_index) - - -def _map_graph_network(inputs, outputs): - """Validates a network's topology and gather its layers and nodes. - - Args: - inputs: List of input tensors. - outputs: List of outputs tensors. - - Returns: - A tuple `(nodes, nodes_by_depth, layers, layers_by_depth)`. - - nodes: list of Node instances. - - nodes_by_depth: dict mapping ints (depth) to lists of node instances. - - layers: list of Layer instances. - - layers_by_depth: dict mapping ints (depth) to lists of layer instances. - - Raises: - ValueError: In case the network is not valid (e.g. disconnected graph). - """ - # "depth" is number of layers between output Node and the Node. - # Nodes are ordered from inputs -> outputs. - nodes_in_decreasing_depth, layer_indices = _build_map(outputs) - network_nodes = { - _make_node_key(node.layer.name, node.layer._inbound_nodes.index(node)) - for node in nodes_in_decreasing_depth - } - - nodes_depths = {} # dict {node: depth value} - layers_depths = {} # dict {layer: depth value} - - for node in reversed(nodes_in_decreasing_depth): - # If the depth is not set, the node has no outbound nodes (depth 0). - depth = nodes_depths.setdefault(node, 0) - - # Update the depth of the corresponding layer - previous_depth = layers_depths.get(node.layer, 0) - # If we've seen this layer before at a higher depth, - # we should use that depth instead of the node depth. - # This is necessary for shared layers that have inputs at different - # depth levels in the graph. - depth = max(depth, previous_depth) - layers_depths[node.layer] = depth - nodes_depths[node] = depth - - # Update the depth of inbound nodes. - # The "depth" of a node is the max of the depths - # of all nodes it is connected to + 1. - for node_dep in node.parent_nodes: - previous_depth = nodes_depths.get(node_dep, 0) - nodes_depths[node_dep] = max(depth + 1, previous_depth) - - # Handle inputs that are not connected to outputs. - # We do not error out here because the inputs may be used to compute losses - # and metrics. - for input_t in inputs: - input_layer = input_t._keras_history[0] - if input_layer not in layers_depths: - layers_depths[input_layer] = 0 - layer_indices[input_layer] = -1 - nodes_depths[input_layer._inbound_nodes[0]] = 0 - network_nodes.add(_make_node_key(input_layer.name, 0)) - - # Build a dict {depth: list of nodes with this depth} - nodes_by_depth = collections.defaultdict(list) - for node, depth in nodes_depths.items(): - nodes_by_depth[depth].append(node) - - # Build a dict {depth: list of layers with this depth} - layers_by_depth = collections.defaultdict(list) - for layer, depth in layers_depths.items(): - layers_by_depth[depth].append(layer) - - # Get sorted list of layer depths. - depth_keys = list(layers_by_depth.keys()) - depth_keys.sort(reverse=True) - - # Set self.layers ordered by depth. - layers = [] - for depth in depth_keys: - layers_for_depth = layers_by_depth[depth] - # Network.layers needs to have a deterministic order: - # here we order them by traversal order. - layers_for_depth.sort(key=lambda x: layer_indices[x]) - layers.extend(layers_for_depth) - - # Get sorted list of node depths. - depth_keys = list(nodes_by_depth.keys()) - depth_keys.sort(reverse=True) - - # Check that all tensors required are computable. - # computable_tensors: all tensors in the graph - # that can be computed from the inputs provided. - computable_tensors = set() - for x in inputs: - computable_tensors.add(id(x)) - - layers_with_complete_input = [] # To provide a better error msg. - for depth in depth_keys: - for node in nodes_by_depth[depth]: - layer = node.layer - if layer and not node.is_input: - for x in tf.nest.flatten(node.keras_inputs): - if id(x) not in computable_tensors: - raise ValueError( - "Graph disconnected: cannot obtain value for " - f'tensor {x} at layer "{layer.name}". ' - "The following previous layers were accessed " - f"without issue: {layers_with_complete_input}" - ) - for x in tf.nest.flatten(node.outputs): - computable_tensors.add(id(x)) - layers_with_complete_input.append(layer.name) - - # Ensure name unicity, which will be crucial for serialization - # (since serialized nodes refer to layers by their name). - all_names = [layer.name for layer in layers] - for name in all_names: - if all_names.count(name) != 1: - raise ValueError( - f'The name "{name}" is used {all_names.count(name)} ' - "times in the model. All layer names should be unique." - ) - return network_nodes, nodes_by_depth, layers, layers_by_depth - - -def _build_map(outputs): - """This method topologically sorts nodes in order from inputs to outputs. - - It uses a depth-first search to topologically sort nodes that appear in the - _keras_history connectivity metadata of `outputs`. - - Args: - outputs: the output tensors whose _keras_history metadata should be - walked. This may be an arbitrary nested structure. - - Returns: - A tuple like (ordered_nodes, layer_to_first_traversal_index) - ordered_nodes: list of nodes appearing in the keras history, topologically - sorted from original inputs to the `outputs`. - (If outputs have different sets of ancestors, the inputs to one output - may appear after a different output). - layer_to_first_traversal_index: - A dict mapping layer to the traversal index in the DFS where it is - seen. Note: if a layer is shared by several nodes, the dict will only - store the index corresponding to the *first* time the layer seen. - """ - finished_nodes = set() - nodes_in_progress = set() - nodes_in_decreasing_depth = [] # nodes from inputs -> outputs. - layer_indices = {} # layer -> in traversal order. - for output in tf.nest.flatten(outputs): - _build_map_helper( - output, - finished_nodes, - nodes_in_progress, - nodes_in_decreasing_depth, - layer_indices, - ) - return nodes_in_decreasing_depth, layer_indices - - -def _build_map_helper( - tensor, - finished_nodes, - nodes_in_progress, - nodes_in_decreasing_depth, - layer_indices, -): - """Recursive helper for `_build_map`.""" - ( - layer, - node_index, - _, - ) = tensor._keras_history - node = layer._inbound_nodes[node_index] - - # Don't repeat work for shared subgraphs - if node in finished_nodes: - return - - # Prevent cycles. - if node in nodes_in_progress: - raise ValueError( - f'Tensor {tensor} from layer "{layer.name}" is part of a cycle.' - ) - - # Store the traversal order for layer sorting. - if layer not in layer_indices: - layer_indices[layer] = len(layer_indices) - - # Propagate to all previous tensors connected to this node. - nodes_in_progress.add(node) - if not node.is_input: - for tensor in node.keras_inputs: - _build_map_helper( - tensor, - finished_nodes, - nodes_in_progress, - nodes_in_decreasing_depth, - layer_indices, - ) - - finished_nodes.add(node) - nodes_in_progress.remove(node) - nodes_in_decreasing_depth.append(node) - - -def _map_subgraph_network(inputs, outputs): - """Returns the nodes and layers in the topology from `inputs` to `outputs`. - - Args: - inputs: List of input tensors. - outputs: List of output tensors. - - Returns: - A tuple of List{Node] and List[Layer]. - """ - if not tf.compat.v1.executing_eagerly_outside_functions(): - base_layer_utils.create_keras_history(outputs) - # Keep only nodes and layers in the topology between inputs and outputs. - _, nodes_by_depth, layers, _ = _map_graph_network(inputs, outputs) - return tf.nest.flatten([nodes for nodes in nodes_by_depth.values()]), layers - - -def _should_skip_first_node(layer): - """Returns True if the first layer node should not be saved or loaded.""" - # Networks that are constructed with an Input layer/shape start with a - # pre-existing node linking their input to output. This node is excluded - # from the network config. - if not hasattr(layer, "_self_tracked_trackables"): - # Special case for serialization of Functional models without - # defined input shape argument. - return isinstance(layer, Functional) - if layer._self_tracked_trackables: - return ( - isinstance(layer, Functional) - # Filter out Sequential models without an input shape. - and isinstance( - layer._self_tracked_trackables[0], input_layer_module.InputLayer - ) - ) - else: - return isinstance(layer, Functional) - - -def connect_ancillary_layers(model, created_layers): - """Adds layers that are not connected to the outputs to the model.""" - # Layers not connected to outputs, such as those added in `add_loss`. - ancillary_layers = [ - layer for layer in created_layers.values() if layer not in model.layers - ] - if ancillary_layers: - relevant_nodes = tf.nest.flatten( - [ - layer.inbound_nodes[1:] - if _should_skip_first_node(layer) - else layer.inbound_nodes - for layer in created_layers.values() - ] - ) - model._insert_layers(ancillary_layers, relevant_nodes) - return model - - -def reconstruct_from_config(config, custom_objects=None, created_layers=None): - """Reconstructs graph from config object. - - Args: - config: Dictionary returned from Network.get_config() - custom_objects: Optional dictionary mapping names (strings) to custom - classes or functions to be considered during deserialization. - created_layers: Optional dictionary mapping names to Layer objects. Any - layer not in this dictionary will be created and added to the dict. - This function will add new nodes to all layers (excluding InputLayers), - instead of re-using pre-existing nodes in the layers. - - Returns: - Tuple of (input tensors, output tensors, dictionary of created layers) - """ - # Layer instances created during the graph reconstruction process. - created_layers = created_layers or collections.OrderedDict() - - # Maps input data (tuple of inbound layer name, node index) from the config - # to node indices in the newly generated model. The node indices may be - # different if the layers have already been called previously. - node_index_map = {} - node_count_by_layer = {} - - # Dictionary mapping layer instances to - # node data that specifies a layer call. - # It acts as a queue that maintains any unprocessed - # layer call until it becomes possible to process it - # (i.e. until the input tensors to the call all exist). - unprocessed_nodes = collections.defaultdict(list) - - def get_node_index(layer, config_node_index): - """Returns node index in layer (might differ from config_node_index).""" - if isinstance(layer, input_layer_module.InputLayer): - return 0 - return node_index_map.get((layer.name, config_node_index), None) - - def _deserialize_keras_tensors(kwargs, layer_map): - """Deserializes Keras Tensors passed to `call`..""" - - def _deserialize_keras_tensor(t): - """Deserializes a single Keras Tensor passed to `call`.""" - if isinstance(t, tf_utils.ListWrapper): - t = t.as_list() - layer_name = t[0] - node_index = t[1] - tensor_index = t[2] - - layer = layer_map[layer_name] - new_node_index = get_node_index(layer, node_index) - if new_node_index is None: - # The inbound node may not have been processed yet, - # (This can happen e.g. if it depends on a different set - # of inputs than those that have been processed already). - # raise an IndexError so that the current node puts itself - # back on the unprocessed queue. - # Caution: This may lead to infinite loops for malformed - # network configurations! (or when there is a bug in - # the network config loading code). - raise IndexError - node = layer._inbound_nodes[new_node_index] - return tf.nest.flatten(node.outputs)[tensor_index] - return t - - kwargs = tf_utils.convert_inner_node_data(kwargs, wrap=True) - return tf.nest.map_structure(_deserialize_keras_tensor, kwargs) - - def process_node(layer, node_data): - """Deserialize a node. - - Args: - layer: layer instance. - node_data: Nested structure of `ListWrapper`. - - Returns: - Whether the node was processed (i.e. the layer was called on the - inputs specified by the node data) - - Raises: - ValueError: In case of improperly formatted `node_data`. - """ - input_tensors = [] - for input_data in tf.nest.flatten(node_data): - input_data = input_data.as_list() - if len(input_data) == 3: - kwargs = {} - elif len(input_data) == 4: - kwargs = input_data[3] - try: - kwargs = _deserialize_keras_tensors(kwargs, created_layers) - except IndexError: - # Happens if keras tensors in kwargs are still unprocessed - return False - else: - raise ValueError("Improperly formatted model config.") - - if input_data[0] != node_module._CONSTANT_VALUE: - inbound_layer_name = input_data[0] - inbound_node_index = input_data[1] - inbound_tensor_index = input_data[2] - inbound_layer = created_layers[inbound_layer_name] - inbound_node_index = get_node_index( - inbound_layer, inbound_node_index - ) - - if inbound_node_index is None: - return False - inbound_node = inbound_layer._inbound_nodes[inbound_node_index] - input_tensors.append( - tf.nest.flatten(inbound_node.outputs)[inbound_tensor_index] - ) - else: - # We received a constant w/ no Keras history attached, - # which means it is a constant tensor input. - # Input is a constant value. - # Format = [_CONSTANT_VALUE, -1, const_val, kwargs] - assert input_data[1] == -1 - assert len(input_data) >= 3 - const_val = input_data[2] - if ( - isinstance(const_val, tuple) - and len(const_val) == 2 - and const_val[0] == node_module._COMPOSITE_TYPE - ): - # It is a composite tensor. - input_tensors.append(json_utils.decode(const_val[1])) - else: - input_tensors.append(const_val) - input_tensors = tf.nest.pack_sequence_as(node_data, input_tensors) - # Call layer on its inputs, thus creating the node - # and building the layer if needed. - if input_tensors is not None: - if ( - not hasattr(layer, "_preserve_input_structure_in_config") - or not layer._preserve_input_structure_in_config - ): - input_tensors = base_layer_utils.unnest_if_single_tensor( - input_tensors - ) - output_tensors = layer(input_tensors, **kwargs) - - # Update node index map. - output_index = tf.nest.flatten(output_tensors)[ - 0 - ]._keras_history.node_index - node_index_map[ - (layer.name, node_count_by_layer[layer]) - ] = output_index - node_count_by_layer[layer] += 1 - return True - - def process_layer(layer_data): - """Deserializes a layer, then call it on appropriate inputs. - - Args: - layer_data: layer config dict. - - Raises: - ValueError: In case of improperly formatted `layer_data` dict. - """ - layer_name = layer_data["name"] - - if layer_name in created_layers: - layer = created_layers[layer_name] - else: - # Instantiate layer. - from keras.layers import deserialize as deserialize_layer - - layer = deserialize_layer(layer_data, custom_objects=custom_objects) - created_layers[layer_name] = layer - - node_count_by_layer[layer] = int(_should_skip_first_node(layer)) - - # Gather layer inputs and convert to `ListWrapper` objects. - inbound_nodes_data = layer_data["inbound_nodes"] - inbound_nodes_data = tf_utils.convert_inner_node_data( - inbound_nodes_data, wrap=True - ) - for node_data in inbound_nodes_data: - # We don't process nodes (i.e. make layer calls) - # on the fly because the inbound node may not yet exist, - # in case of layer shared at different topological depths - # (e.g. a model such as A(B(A(B(x))))) - unprocessed_nodes[layer].append(node_data) - - # First, we create all layers and enqueue nodes to be processed - for layer_data in config["layers"]: - process_layer(layer_data) - # Then we process nodes in order of layer depth. - # Nodes that cannot yet be processed (if the inbound node - # does not yet exist) are re-enqueued, and the process - # is repeated until all nodes are processed. - while unprocessed_nodes: - for layer_data in config["layers"]: - layer = created_layers[layer_data["name"]] - if layer in unprocessed_nodes: - layer_nodes = unprocessed_nodes.pop(layer) - while layer_nodes: - node_data = layer_nodes[0] - if process_node(layer, node_data): - layer_nodes.pop(0) - else: - # If a node can't be processed, stop processing the - # nodes of the current layer to maintain node ordering. - unprocessed_nodes[layer] = layer_nodes - break - - input_tensors = [] - output_tensors = [] - - input_layers = tf_utils.convert_inner_node_data( - config["input_layers"], wrap=True - ) - for layer_data in tf.nest.flatten(input_layers): - layer_name, node_index, tensor_index = layer_data.as_list() - assert layer_name in created_layers - layer = created_layers[layer_name] - node_index = get_node_index(layer, node_index) - layer_output_tensors = layer._inbound_nodes[node_index].output_tensors - input_tensors.append( - tf.nest.flatten(layer_output_tensors)[tensor_index] - ) - - output_layers = tf_utils.convert_inner_node_data( - config["output_layers"], wrap=True - ) - for layer_data in tf.nest.flatten(output_layers): - layer_name, node_index, tensor_index = layer_data.as_list() - assert layer_name in created_layers - layer = created_layers[layer_name] - node_index = get_node_index(layer, node_index) - layer_output_tensors = layer._inbound_nodes[node_index].output_tensors - output_tensors.append( - tf.nest.flatten(layer_output_tensors)[tensor_index] - ) - - input_tensors = tf.nest.pack_sequence_as(input_layers, input_tensors) - output_tensors = tf.nest.pack_sequence_as(output_layers, output_tensors) - return input_tensors, output_tensors, created_layers - - -def get_network_config(network, serialize_layer_fn=None, config=None): - """Build the config, which consists of the node graph and serialized layers. - - Args: - network: A Network object. - serialize_layer_fn: Function used to serialize layers. - config: A dict to append more config entries into. If None, start with a - new dict for the config. - - Returns: - Config dictionary. - """ - config = config or {} - serialize_obj_fn = serialization_lib.serialize_keras_object - if "module" not in config: - serialize_obj_fn = serialization.serialize_keras_object - serialize_layer_fn = serialize_layer_fn or serialize_obj_fn - config["name"] = network.name - node_conversion_map = {} - for layer in network.layers: - kept_nodes = 1 if _should_skip_first_node(layer) else 0 - for original_node_index, node in enumerate(layer._inbound_nodes): - node_key = _make_node_key(layer.name, original_node_index) - if node_key in network._network_nodes: - node_conversion_map[node_key] = kept_nodes - kept_nodes += 1 - layer_configs = [] - - with serialization.SharedObjectSavingScope(): - for layer in network.layers: # From the earliest layers on. - filtered_inbound_nodes = [] - for original_node_index, node in enumerate(layer._inbound_nodes): - node_key = _make_node_key(layer.name, original_node_index) - if node_key in network._network_nodes and not node.is_input: - # The node is relevant to the model: - # add to filtered_inbound_nodes. - node_data = node.serialize( - _make_node_key, node_conversion_map - ) - filtered_inbound_nodes.append(node_data) - - layer_config = serialize_layer_fn(layer) - layer_config["name"] = layer.name - layer_config["inbound_nodes"] = filtered_inbound_nodes - layer_configs.append(layer_config) - config["layers"] = layer_configs - - # Gather info about inputs and outputs. - model_inputs = [] - for i in range(len(network._input_layers)): - layer, node_index, tensor_index = network._input_coordinates[i] - node_key = _make_node_key(layer.name, node_index) - if node_key not in network._network_nodes: - continue - new_node_index = node_conversion_map[node_key] - model_inputs.append( - tf_utils.ListWrapper([layer.name, new_node_index, tensor_index]) - ) - model_inputs = tf.nest.pack_sequence_as( - network._nested_inputs, model_inputs - ) - # Preserve external Keras compat for Models with single input. - if not tf.nest.is_nested(model_inputs): - model_inputs = [model_inputs] - model_inputs = tf_utils.convert_inner_node_data(model_inputs) - config["input_layers"] = model_inputs - - model_outputs = [] - for i in range(len(network._output_layers)): - layer, node_index, tensor_index = network._output_coordinates[i] - node_key = _make_node_key(layer.name, node_index) - if node_key not in network._network_nodes: - continue - new_node_index = node_conversion_map[node_key] - model_outputs.append( - tf_utils.ListWrapper([layer.name, new_node_index, tensor_index]) - ) - model_outputs = tf.nest.pack_sequence_as( - network._nested_outputs, model_outputs - ) - # Preserve external Keras compat for Models with single output. - if not tf.nest.is_nested(model_outputs): - model_outputs = [model_outputs] - model_outputs = tf_utils.convert_inner_node_data(model_outputs) - config["output_layers"] = model_outputs - return config - - -def shape_with_no_batch_size(x): - if x.shape.rank is None: - return None - shape = x.shape.as_list() - if shape: - shape[0] = None - return shape - - -class ModuleWrapper(base_layer.Layer): - """Wrapper for `tf.Module`s to support the Functional and Sequential API.""" - - def __init__(self, module, method_name=None, **kwargs): - """Initializes the wrapper Layer for this module. - - Args: - module: The `tf.Module` instance to be wrapped. - method_name: (Optional) str. The name of the method to use as the - forward pass of the module. If not set, becomes '__call__' if - defined, or 'call'. Defaults to `None`. - **kwargs: Additional keywrod arguments. See `tf.keras.layers.Layer`. - - Raises: - ValueError: If `method` is not defined on `module`. - """ - super().__init__(**kwargs) - if method_name is None: - if hasattr(module, "__call__"): - method_name = "__call__" - elif hasattr(module, "call"): - method_name = "call" - if method_name is None or not hasattr(module, method_name): - raise ValueError(f"{method_name} is not defined on object {module}") - - self._module = module - self._method_name = method_name - - # Check if module.__call__ has a `training` arg or accepts `**kwargs`. - method = getattr(module, method_name) - method_arg_spec = tf_inspect.getfullargspec(method) - self._call_spec.expects_training_arg = ( - "training" in method_arg_spec.args - or method_arg_spec.varkw is not None - ) - self._call_spec.expects_mask_arg = ( - "mask" in method_arg_spec.args or method_arg_spec.varkw is not None - ) - - def call(self, *args, **kwargs): - if "training" in kwargs and not self._expects_training_arg: - kwargs.pop("training") - if "mask" in kwargs and not self._expects_mask_arg: - kwargs.pop("mask") - return getattr(self._module, self._method_name)(*args, **kwargs) - - -def has_functional_like_constructor(cls): - init_args = tf_inspect.getfullargspec(cls.__init__).args[1:] - functional_init_args = tf_inspect.getfullargspec(Functional.__init__).args[ - 1: - ] - if init_args == functional_init_args: - return True - return False diff --git a/keras/engine/functional_test.py b/keras/engine/functional_test.py deleted file mode 100644 index 747144cacee..00000000000 --- a/keras/engine/functional_test.py +++ /dev/null @@ -1,2703 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ,============================================================================ -"""Tests for layer graphs construction & handling.""" - -import warnings - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import layers -from keras import losses -from keras import models -from keras.engine import base_layer -from keras.engine import functional -from keras.engine import input_layer as input_layer_lib -from keras.engine import sequential -from keras.engine import training as training_lib -from keras.saving.legacy import save -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import layer_utils -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.checkpoint.checkpoint import ( - Checkpoint, -) -from tensorflow.python.framework import extension_type - - -class NetworkConstructionTest(test_combinations.TestCase): - def test_default_model_name(self): - inputs = input_layer_lib.Input(shape=(1,)) - outputs = layers.Dense(1, activation="relu")(inputs) - model = training_lib.Model(inputs=inputs, outputs=outputs) - self.assertEqual(model.name, "model") - - model_2 = training_lib.Model(inputs=inputs, outputs=outputs) - self.assertEqual(model_2.name, "model_1") - - model_3 = training_lib.Model(inputs=inputs, outputs=outputs) - self.assertEqual(model_3.name, "model_2") - - def test_get_updates(self): - class MyLayer(layers.Layer): - def build(self, input_shape): - self.a = self.add_weight( - "a", (1, 1), "float32", trainable=False - ) - self.b = self.add_weight( - "b", (1, 1), "float32", trainable=False - ) - self.add_update( - tf.compat.v1.assign_add( - self.a, [[1.0]], name="unconditional_update" - ) - ) - self.built = True - - def call(self, inputs): - self.add_update( - tf.compat.v1.assign_add( - self.b, inputs, name="conditional_update" - ) - ) - return inputs + 1 - - with tf.Graph().as_default(): - x1 = input_layer_lib.Input(shape=(1,)) - layer = MyLayer() - _ = layer(x1) - - self.assertEqual(len(layer.updates), 2) - - x2 = input_layer_lib.Input(shape=(1,)) - y2 = layer(x2) - - self.assertEqual(len(layer.updates), 3) - - network = functional.Functional(x2, y2) - self.assertEqual(len(network.updates), 3) - - x3 = input_layer_lib.Input(shape=(1,)) - _ = layer(x3) - self.assertEqual(len(network.updates), 4) - - x4 = input_layer_lib.Input(shape=(1,)) - _ = network(x4) - self.assertEqual(len(network.updates), 5) - - network.add_update(tf.compat.v1.assign_add(layer.a, [[1]])) - self.assertEqual(len(network.updates), 6) - - network.add_update(tf.compat.v1.assign_add(layer.b, x4)) - self.assertEqual(len(network.updates), 7) - - @test_combinations.generate(test_combinations.combine(mode=["graph"])) - def test_get_updates_bn(self): - x1 = input_layer_lib.Input(shape=(1,)) - layer = layers.BatchNormalization() - _ = layer(x1) - - self.assertEqual(len(layer.updates), 2) - - def test_get_layer(self): - # create a simple network - x = input_layer_lib.Input(shape=(32,)) - dense_a = layers.Dense(4, name="dense_a") - dense_b = layers.Dense(2, name="dense_b") - y = dense_b(dense_a(x)) - network = functional.Functional(x, y, name="dense_network") - - # test various get_layer by index - self.assertEqual(network.get_layer(index=1), dense_a) - - # test invalid get_layer by index - with self.assertRaisesRegex( - ValueError, - "Was asked to retrieve layer at index " - + str(3) - + " but model only has " - + str(len(network.layers)) - + " layers.", - ): - network.get_layer(index=3) - - # test that only one between name and index is requested - with self.assertRaisesRegex( - ValueError, "Provide only a layer name or a layer index" - ): - network.get_layer(index=1, name="dense_b") - - # test that a name or an index must be provided - with self.assertRaisesRegex( - ValueError, "Provide either a layer name or layer index." - ): - network.get_layer() - - # test various get_layer by name - self.assertEqual(network.get_layer(name="dense_a"), dense_a) - - # test invalid get_layer by name - with self.assertRaisesRegex(ValueError, "No such layer: dense_c."): - network.get_layer(name="dense_c") - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testTopologicalAttributes(self): - # test layer attributes / methods related to cross-layer connectivity. - a = input_layer_lib.Input(shape=(32,), name="input_a") - b = input_layer_lib.Input(shape=(32,), name="input_b") - - # test input, output, input_shape, output_shape - test_layer = layers.Dense(16, name="test_layer") - a_test = test_layer(a) - self.assertIs(test_layer.input, a) - self.assertIs(test_layer.output, a_test) - self.assertEqual(test_layer.input_shape, (None, 32)) - self.assertEqual(test_layer.output_shape, (None, 16)) - - # test `get_*_at` methods - dense = layers.Dense(16, name="dense_1") - a_2 = dense(a) - b_2 = dense(b) - - self.assertIs(dense.get_input_at(0), a) - self.assertIs(dense.get_input_at(1), b) - self.assertIs(dense.get_output_at(0), a_2) - self.assertIs(dense.get_output_at(1), b_2) - self.assertEqual(dense.get_input_shape_at(0), (None, 32)) - self.assertEqual(dense.get_input_shape_at(1), (None, 32)) - self.assertEqual(dense.get_output_shape_at(0), (None, 16)) - self.assertEqual(dense.get_output_shape_at(1), (None, 16)) - - # Test invalid value for attribute retrieval. - with self.assertRaises(ValueError): - dense.get_input_at(2) - with self.assertRaises(AttributeError): - new_dense = layers.Dense(16) - _ = new_dense.input - with self.assertRaises(AttributeError): - new_dense = layers.Dense(16) - _ = new_dense.output - with self.assertRaises(AttributeError): - new_dense = layers.Dense(16) - _ = new_dense.output_shape - with self.assertRaises(AttributeError): - new_dense = layers.Dense(16) - _ = new_dense.input_shape - with self.assertRaises(AttributeError): - new_dense = layers.Dense(16) - a = input_layer_lib.Input(shape=(3, 32)) - a = input_layer_lib.Input(shape=(5, 32)) - a_2 = dense(a) - b_2 = dense(b) - _ = new_dense.input_shape - with self.assertRaises(AttributeError): - new_dense = layers.Dense(16) - a = input_layer_lib.Input(shape=(3, 32)) - a = input_layer_lib.Input(shape=(5, 32)) - a_2 = dense(a) - b_2 = dense(b) - _ = new_dense.output_shape - - def _assertAllIs(self, a, b): - self.assertTrue(all(x is y for x, y in zip(a, b))) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testTopologicalAttributesMultiOutputLayer(self): - class PowersLayer(layers.Layer): - def call(self, inputs): - return [inputs**2, inputs**3] - - x = input_layer_lib.Input(shape=(32,)) - test_layer = PowersLayer() - p1, p2 = test_layer(x) - - self.assertIs(test_layer.input, x) - self._assertAllIs(test_layer.output, [p1, p2]) - self.assertEqual(test_layer.input_shape, (None, 32)) - self.assertEqual(test_layer.output_shape, [(None, 32), (None, 32)]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testTopologicalAttributesMultiInputLayer(self): - class AddLayer(layers.Layer): - def call(self, inputs): - assert len(inputs) == 2 - return inputs[0] + inputs[1] - - a = input_layer_lib.Input(shape=(32,)) - b = input_layer_lib.Input(shape=(32,)) - test_layer = AddLayer() - y = test_layer([a, b]) - - self._assertAllIs(test_layer.input, [a, b]) - self.assertIs(test_layer.output, y) - self.assertEqual(test_layer.input_shape, [(None, 32), (None, 32)]) - self.assertEqual(test_layer.output_shape, (None, 32)) - - def testBasicNetwork(self): - with tf.Graph().as_default(): - # minimum viable network - x = input_layer_lib.Input(shape=(32,)) - dense = layers.Dense(2) - y = dense(x) - network = functional.Functional(x, y, name="dense_network") - - # test basic attributes - self.assertEqual(network.name, "dense_network") - self.assertEqual(len(network.layers), 2) # InputLayer + Dense - self.assertEqual(network.layers[1], dense) - self._assertAllIs(network.weights, dense.weights) - self._assertAllIs( - network.trainable_weights, dense.trainable_weights - ) - self._assertAllIs( - network.non_trainable_weights, dense.non_trainable_weights - ) - - # test callability on Input - x_2 = input_layer_lib.Input(shape=(32,)) - y_2 = network(x_2) - self.assertEqual(y_2.shape.as_list(), [None, 2]) - - # test callability on regular tensor - x_2 = tf.compat.v1.placeholder(dtype="float32", shape=(None, 32)) - y_2 = network(x_2) - self.assertEqual(y_2.shape.as_list(), [None, 2]) - - # test network `trainable` attribute - network.trainable = False - self._assertAllIs(network.weights, dense.weights) - self.assertEqual(network.trainable_weights, []) - self._assertAllIs( - network.non_trainable_weights, - dense.trainable_weights + dense.non_trainable_weights, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_trainable_weights(self): - a = layers.Input(shape=(2,)) - b = layers.Dense(1)(a) - model = training_lib.Model(a, b) - - weights = model.weights - self._assertAllIs(model.trainable_weights, weights) - self.assertListEqual(model.non_trainable_weights, []) - - model.trainable = False - self.assertListEqual(model.trainable_weights, []) - self._assertAllIs(model.non_trainable_weights, weights) - - model.trainable = True - self._assertAllIs(model.trainable_weights, weights) - self.assertListEqual(model.non_trainable_weights, []) - - model.layers[1].trainable = False - self.assertListEqual(model.trainable_weights, []) - self._assertAllIs(model.non_trainable_weights, weights) - - # sequential model - model = sequential.Sequential() - model.add(layers.Dense(1, input_dim=2)) - weights = model.weights - - self._assertAllIs(model.trainable_weights, weights) - self.assertListEqual(model.non_trainable_weights, []) - - model.trainable = False - self.assertListEqual(model.trainable_weights, []) - self._assertAllIs(model.non_trainable_weights, weights) - - model.trainable = True - self._assertAllIs(model.trainable_weights, weights) - self.assertListEqual(model.non_trainable_weights, []) - - model.layers[0].trainable = False - self.assertListEqual(model.trainable_weights, []) - self._assertAllIs(model.non_trainable_weights, weights) - - def test_layer_call_arguments(self): - with tf.Graph().as_default(): - # Test the ability to pass and serialize arguments to `call`. - inp = layers.Input(shape=(2,)) - x = layers.Dense(3)(inp) - x = layers.Dropout(0.5)(x, training=True) - model = training_lib.Model(inp, x) - # Would be `dropout/cond/Merge` by default - self.assertIn("dropout", model.output.op.name) - - # Test that argument is kept when applying the model - inp2 = layers.Input(shape=(2,)) - out2 = model(inp2) - self.assertIn("dropout", out2.op.name) - - # Test that argument is kept after loading a model - config = model.get_config() - model = training_lib.Model.from_config(config) - self.assertIn("dropout", model.output.op.name) - - def test_node_construction(self): - # test basics - a = layers.Input(shape=(32,), name="input_a") - b = layers.Input(shape=(32,), name="input_b") - - with self.assertRaises(ValueError): - _ = layers.Input(shape=(32,), batch_shape=(10, 32)) - with self.assertRaises(ValueError): - _ = layers.Input(shape=(32,), unknown_kwarg=None) - - self.assertListEqual(a.shape.as_list(), [None, 32]) - a_layer, a_node_index, a_tensor_index = a._keras_history - b_layer, _, _ = b._keras_history - self.assertEqual(len(a_layer._inbound_nodes), 1) - self.assertEqual(a_tensor_index, 0) - node = a_layer._inbound_nodes[a_node_index] - self.assertEqual(node.outbound_layer, a_layer) - - self.assertListEqual(node.inbound_layers, []) - self.assertListEqual(node.input_tensors, [a]) - self.assertListEqual(node.input_shapes, [(None, 32)]) - self.assertListEqual(node.output_tensors, [a]) - self.assertListEqual(node.output_shapes, [(None, 32)]) - - dense = layers.Dense(16, name="dense_1") - a_2 = dense(a) - b_2 = dense(b) - - self.assertEqual(len(dense._inbound_nodes), 2) - self.assertEqual(len(dense._outbound_nodes), 0) - self.assertEqual(dense._inbound_nodes[0].inbound_layers, a_layer) - self.assertEqual(dense._inbound_nodes[0].outbound_layer, dense) - self.assertEqual(dense._inbound_nodes[1].inbound_layers, b_layer) - self.assertEqual(dense._inbound_nodes[1].outbound_layer, dense) - self.assertIs(dense._inbound_nodes[0].input_tensors, a) - self.assertIs(dense._inbound_nodes[1].input_tensors, b) - - # test layer properties - test_layer = layers.Dense(16, name="test_layer") - a_test = test_layer(a) - self.assertListEqual(test_layer.kernel.shape.as_list(), [32, 16]) - self.assertIs(test_layer.input, a) - self.assertIs(test_layer.output, a_test) - self.assertEqual(test_layer.input_shape, (None, 32)) - self.assertEqual(test_layer.output_shape, (None, 16)) - - self.assertIs(dense.get_input_at(0), a) - self.assertIs(dense.get_input_at(1), b) - self.assertIs(dense.get_output_at(0), a_2) - self.assertIs(dense.get_output_at(1), b_2) - self.assertEqual(dense.get_input_shape_at(0), (None, 32)) - self.assertEqual(dense.get_input_shape_at(1), (None, 32)) - self.assertEqual(dense.get_output_shape_at(0), (None, 16)) - self.assertEqual(dense.get_output_shape_at(1), (None, 16)) - self.assertEqual(dense.get_input_mask_at(0), None) - self.assertEqual(dense.get_input_mask_at(1), None) - self.assertEqual(dense.get_output_mask_at(0), None) - self.assertEqual(dense.get_output_mask_at(1), None) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_multi_input_layer(self): - with self.cached_session(): - # test multi-input layer - a = layers.Input(shape=(32,), name="input_a") - b = layers.Input(shape=(32,), name="input_b") - - dense = layers.Dense(16, name="dense_1") - a_2 = dense(a) - b_2 = dense(b) - - merged = layers.concatenate([a_2, b_2], name="merge") - self.assertListEqual(merged.shape.as_list(), [None, 16 * 2]) - ( - merge_layer, - merge_node_index, - merge_tensor_index, - ) = merged._keras_history - - self.assertEqual(merge_node_index, 0) - self.assertEqual(merge_tensor_index, 0) - - self.assertEqual(len(merge_layer._inbound_nodes), 1) - self.assertEqual(len(merge_layer._outbound_nodes), 0) - - self.assertEqual( - len(merge_layer._inbound_nodes[0].input_tensors), 2 - ) - self.assertEqual( - len(merge_layer._inbound_nodes[0].inbound_layers), 2 - ) - - c = layers.Dense(64, name="dense_2")(merged) - d = layers.Dense(5, name="dense_3")(c) - - model = training_lib.Model( - inputs=[a, b], outputs=[c, d], name="model" - ) - self.assertEqual(len(model.layers), 6) - output_shapes = model.compute_output_shape([(None, 32), (None, 32)]) - self.assertListEqual(output_shapes[0].as_list(), [None, 64]) - self.assertListEqual(output_shapes[1].as_list(), [None, 5]) - self.assertListEqual( - model.compute_mask([a, b], [None, None]), [None, None] - ) - - # we don't check names of first 2 layers (inputs) because - # ordering of same-level layers is not fixed - self.assertListEqual( - [l.name for l in model.layers][2:], - ["dense_1", "merge", "dense_2", "dense_3"], - ) - self.assertListEqual( - [l.name for l in model._input_layers], ["input_a", "input_b"] - ) - self.assertListEqual( - [l.name for l in model._output_layers], ["dense_2", "dense_3"] - ) - - # actually run model - fn = backend.function(model.inputs, model.outputs) - input_a_np = np.random.random((10, 32)) - input_b_np = np.random.random((10, 32)) - fn_outputs = fn([input_a_np, input_b_np]) - self.assertListEqual( - [x.shape for x in fn_outputs], [(10, 64), (10, 5)] - ) - - # test get_source_inputs - self._assertAllIs(layer_utils.get_source_inputs(c), [a, b]) - - # serialization / deserialization - json_config = model.to_json() - recreated_model = models.model_from_json(json_config) - recreated_model.compile("rmsprop", "mse") - - self.assertListEqual( - [l.name for l in recreated_model.layers][2:], - ["dense_1", "merge", "dense_2", "dense_3"], - ) - self.assertListEqual( - [l.name for l in recreated_model._input_layers], - ["input_a", "input_b"], - ) - self.assertListEqual( - [l.name for l in recreated_model._output_layers], - ["dense_2", "dense_3"], - ) - - fn = backend.function( - recreated_model.inputs, recreated_model.outputs - ) - input_a_np = np.random.random((10, 32)) - input_b_np = np.random.random((10, 32)) - fn_outputs = fn([input_a_np, input_b_np]) - self.assertListEqual( - [x.shape for x in fn_outputs], [(10, 64), (10, 5)] - ) - - def test_multi_output_layer_output_names(self): - inp = layers.Input(name="inp", shape=(None,), dtype=tf.float32) - - class _MultiOutput(layers.Layer): - def call(self, x): - return x + 1.0, x + 2.0 - - out = _MultiOutput(name="out")(inp) - model = training_lib.Model(inp, out) - self.assertEqual(["out", "out_1"], model.output_names) - self.assertAllClose([2.0, 3.0], model(1.0)) - - def test_recursion(self): - with tf.Graph().as_default(), self.cached_session(): - a = layers.Input(shape=(32,), name="input_a") - b = layers.Input(shape=(32,), name="input_b") - - dense = layers.Dense(16, name="dense_1") - a_2 = dense(a) - b_2 = dense(b) - merged = layers.concatenate([a_2, b_2], name="merge") - c = layers.Dense(64, name="dense_2")(merged) - d = layers.Dense(5, name="dense_3")(c) - - model = training_lib.Model( - inputs=[a, b], outputs=[c, d], name="model" - ) - - e = layers.Input(shape=(32,), name="input_e") - f = layers.Input(shape=(32,), name="input_f") - self.assertEqual(len(model.inputs), 2) - g, h = model([e, f]) - self.assertEqual(len(model.inputs), 2) - self.assertEqual(g.name, "model/dense_2/BiasAdd:0") - - self.assertListEqual(g.shape.as_list(), c.shape.as_list()) - self.assertListEqual(h.shape.as_list(), d.shape.as_list()) - - # test separate manipulation of different layer outputs - i = layers.Dense(7, name="dense_4")(h) - - final_model = training_lib.Model( - inputs=[e, f], outputs=[i, g], name="final" - ) - self.assertEqual(len(final_model.inputs), 2) - self.assertEqual(len(final_model.outputs), 2) - self.assertEqual(len(final_model.layers), 4) - - # we don't check names of first 2 layers (inputs) because - # ordering of same-level layers is not fixed - self.assertListEqual( - [layer.name for layer in final_model.layers][2:], - ["model", "dense_4"], - ) - self.assertListEqual( - model.compute_mask([e, f], [None, None]), [None, None] - ) - self.assertListEqual( - final_model.compute_output_shape([(10, 32), (10, 32)]), - [(10, 7), (10, 64)], - ) - - # run recursive model - fn = backend.function(final_model.inputs, final_model.outputs) - input_a_np = np.random.random((10, 32)) - input_b_np = np.random.random((10, 32)) - fn_outputs = fn([input_a_np, input_b_np]) - self.assertListEqual( - [x.shape for x in fn_outputs], [(10, 7), (10, 64)] - ) - - # test serialization - model_config = final_model.get_config() - recreated_model = models.Model.from_config(model_config) - - fn = backend.function( - recreated_model.inputs, recreated_model.outputs - ) - input_a_np = np.random.random((10, 32)) - input_b_np = np.random.random((10, 32)) - fn_outputs = fn([input_a_np, input_b_np]) - self.assertListEqual( - [x.shape for x in fn_outputs], [(10, 7), (10, 64)] - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_multi_input_multi_output_recursion(self): - with self.cached_session(): - # test multi-input multi-output - a = layers.Input(shape=(32,), name="input_a") - b = layers.Input(shape=(32,), name="input_b") - - dense = layers.Dense(16, name="dense_1") - a_2 = dense(a) - b_2 = dense(b) - merged = layers.concatenate([a_2, b_2], name="merge") - c = layers.Dense(64, name="dense_2")(merged) - d = layers.Dense(5, name="dense_3")(c) - - model = training_lib.Model( - inputs=[a, b], outputs=[c, d], name="model" - ) - - j = layers.Input(shape=(32,), name="input_j") - k = layers.Input(shape=(32,), name="input_k") - _, n = model([j, k]) - - o = layers.Input(shape=(32,), name="input_o") - p = layers.Input(shape=(32,), name="input_p") - q, _ = model([o, p]) - - self.assertListEqual(n.shape.as_list(), [None, 5]) - self.assertListEqual(q.shape.as_list(), [None, 64]) - s = layers.concatenate([n, q], name="merge_nq") - self.assertListEqual(s.shape.as_list(), [None, 64 + 5]) - - # test with single output as 1-elem list - multi_io_model = training_lib.Model([j, k, o, p], [s]) - - fn = backend.function(multi_io_model.inputs, multi_io_model.outputs) - fn_outputs = fn( - [ - np.random.random((10, 32)), - np.random.random((10, 32)), - np.random.random((10, 32)), - np.random.random((10, 32)), - ] - ) - self.assertListEqual([x.shape for x in fn_outputs], [(10, 69)]) - - # test with single output as tensor - multi_io_model = training_lib.Model([j, k, o, p], s) - - fn = backend.function(multi_io_model.inputs, multi_io_model.outputs) - fn_outputs = fn( - [ - np.random.random((10, 32)), - np.random.random((10, 32)), - np.random.random((10, 32)), - np.random.random((10, 32)), - ] - ) - # note that the output of the function will still be a 1-elem list - self.assertListEqual([x.shape for x in fn_outputs], [(10, 69)]) - - # test serialization - model_config = multi_io_model.get_config() - recreated_model = models.Model.from_config(model_config) - - fn = backend.function( - recreated_model.inputs, recreated_model.outputs - ) - fn_outputs = fn( - [ - np.random.random((10, 32)), - np.random.random((10, 32)), - np.random.random((10, 32)), - np.random.random((10, 32)), - ] - ) - # note that the output of the function will still be a 1-elem list - self.assertListEqual([x.shape for x in fn_outputs], [(10, 69)]) - - config = model.get_config() - models.Model.from_config(config) - - model.summary() - json_str = model.to_json() - models.model_from_json(json_str) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_invalid_graphs(self): - a = layers.Input(shape=(32,), name="input_a") - b = layers.Input(shape=(32,), name="input_b") - - dense = layers.Dense(16, name="dense_1") - a_2 = dense(a) - b_2 = dense(b) - merged = layers.concatenate([a_2, b_2], name="merge") - c = layers.Dense(64, name="dense_2")(merged) - d = layers.Dense(5, name="dense_3")(c) - - model = training_lib.Model(inputs=[a, b], outputs=[c, d], name="model") - - # disconnected graph - j = layers.Input(shape=(32,), name="input_j") - k = layers.Input(shape=(32,), name="input_k") - m, n = model([j, k]) - with self.assertRaises(Exception): - training_lib.Model([j], [m, n]) - - # redundant outputs - j = layers.Input(shape=(32,), name="input_j") - k = layers.Input(shape=(32,), name="input_k") - m, n = model([j, k]) - - training_lib.Model([j, k], [m, n, n]) - - # redundant inputs - j = layers.Input(shape=(32,), name="input_j") - k = layers.Input(shape=(32,), name="input_k") - m, n = model([j, k]) - with self.assertRaises(Exception): - training_lib.Model([j, k, j], [m, n]) - - # i have not idea what I'm doing: garbage as inputs/outputs - j = layers.Input(shape=(32,), name="input_j") - k = layers.Input(shape=(32,), name="input_k") - m, n = model([j, k]) - with self.assertRaises(Exception): - training_lib.Model([j, k], [m, n, 0]) - - def test_raw_tf_compatibility(self): - with tf.Graph().as_default(): - # test calling layers/models on TF tensors - a = layers.Input(shape=(32,), name="input_a") - b = layers.Input(shape=(32,), name="input_b") - - dense = layers.Dense(16, name="dense_1") - a_2 = dense(a) - b_2 = dense(b) - merged = layers.concatenate([a_2, b_2], name="merge") - c = layers.Dense(64, name="dense_2")(merged) - d = layers.Dense(5, name="dense_3")(c) - - model = training_lib.Model( - inputs=[a, b], outputs=[c, d], name="model" - ) - - j = layers.Input(shape=(32,), name="input_j") - k = layers.Input(shape=(32,), name="input_k") - self.assertEqual(len(model.inputs), 2) - m, n = model([j, k]) - self.assertEqual(len(model.inputs), 2) - tf_model = training_lib.Model([j, k], [m, n]) - - j_tf = tf.compat.v1.placeholder(dtype=tf.float32, shape=(None, 32)) - k_tf = tf.compat.v1.placeholder(dtype=tf.float32, shape=(None, 32)) - m_tf, n_tf = tf_model([j_tf, k_tf]) - self.assertListEqual(m_tf.shape.as_list(), [None, 64]) - self.assertListEqual(n_tf.shape.as_list(), [None, 5]) - - # test merge - layers.concatenate([j_tf, k_tf], axis=1) - layers.add([j_tf, k_tf]) - - # test tensor input - x = tf.compat.v1.placeholder(shape=(None, 2), dtype=tf.float32) - layers.InputLayer(input_tensor=x) - - x = layers.Input(tensor=x) - layers.Dense(2)(x) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_basic_masking(self): - a = layers.Input(shape=(10, 32), name="input_a") - b = layers.Masking()(a) - model = training_lib.Model(a, b) - self.assertEqual(model.output_mask.shape.as_list(), [None, 10]) - - def testMaskingSingleInput(self): - class MaskedLayer(layers.Layer): - def call(self, inputs, mask=None): - if mask is not None: - return inputs * mask - return inputs - - def compute_mask(self, inputs, mask=None): - return tf.ones_like(inputs) - - if tf.executing_eagerly(): - a = tf.constant([2] * 32) - mask = tf.constant([0, 1] * 16) - a._keras_mask = mask - b = MaskedLayer()(a) - self.assertTrue(hasattr(b, "_keras_mask")) - self.assertAllEqual( - self.evaluate(tf.ones_like(mask)), - self.evaluate(getattr(b, "_keras_mask")), - ) - self.assertAllEqual(self.evaluate(a * mask), self.evaluate(b)) - else: - x = input_layer_lib.Input(shape=(32,)) - y = MaskedLayer()(x) - network = functional.Functional(x, y) - - # test callability on Input - x_2 = input_layer_lib.Input(shape=(32,)) - y_2 = network(x_2) - self.assertEqual(y_2.shape.as_list(), [None, 32]) - - # test callability on regular tensor - x_2 = tf.compat.v1.placeholder(dtype="float32", shape=(None, 32)) - y_2 = network(x_2) - self.assertEqual(y_2.shape.as_list(), [None, 32]) - - def test_activity_regularization_with_model_composition(self): - def reg(x): - return tf.reduce_sum(x) - - net_a_input = input_layer_lib.Input((2,)) - net_a = net_a_input - net_a = layers.Dense( - 2, - kernel_initializer="ones", - use_bias=False, - activity_regularizer=reg, - )(net_a) - model_a = training_lib.Model([net_a_input], [net_a]) - - net_b_input = input_layer_lib.Input((2,)) - net_b = model_a(net_b_input) - model_b = training_lib.Model([net_b_input], [net_b]) - - model_b.compile(optimizer="sgd", loss=None) - x = np.ones((1, 2)) - loss = model_b.evaluate(x) - self.assertEqual(loss, 4.0) - - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_layer_sharing_at_heterogenous_depth(self): - x_val = np.random.random((10, 5)) - - x = input_layer_lib.Input(shape=(5,)) - a = layers.Dense(5, name="A") - b = layers.Dense(5, name="B") - output = a(b(a(b(x)))) - m = training_lib.Model(x, output) - m.run_eagerly = test_utils.should_run_eagerly() - - output_val = m.predict(x_val) - - config = m.get_config() - weights = m.get_weights() - - m2 = models.Model.from_config(config) - m2.set_weights(weights) - - output_val_2 = m2.predict(x_val) - self.assertAllClose(output_val, output_val_2, atol=1e-6) - - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_layer_sharing_at_heterogenous_depth_with_concat(self): - input_shape = (16, 9, 3) - input_layer = input_layer_lib.Input(shape=input_shape) - - a = layers.Dense(3, name="dense_A") - b = layers.Dense(3, name="dense_B") - c = layers.Dense(3, name="dense_C") - - x1 = b(a(input_layer)) - x2 = a(c(input_layer)) - output = layers.concatenate([x1, x2]) - - m = training_lib.Model(inputs=input_layer, outputs=output) - m.run_eagerly = test_utils.should_run_eagerly() - - x_val = np.random.random((10, 16, 9, 3)) - output_val = m.predict(x_val) - - config = m.get_config() - weights = m.get_weights() - - m2 = models.Model.from_config(config) - m2.set_weights(weights) - - output_val_2 = m2.predict(x_val) - self.assertAllClose(output_val, output_val_2, atol=1e-6) - - def test_layer_sharing_maintains_node_order(self): - # See https://github.com/keras-team/keras/issues/14838. - inp = input_layer_lib.Input(shape=[5], name="main_input") - - shared_layer = layers.Layer(name="shared") - - ones_result = shared_layer(tf.ones_like(inp)) - zeros_result = shared_layer(tf.zeros_like(inp)) - zeros_result = layers.Layer(name="blank")(zeros_result) - - m = training_lib.Model( - inputs=[inp], outputs=[zeros_result, ones_result] - ) - m2 = models.Model.from_config(m.get_config()) - self.assertAllClose( - m2.predict_on_batch(tf.zeros([1, 5])), - m.predict_on_batch(tf.zeros([1, 5])), - ) - - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_explicit_training_argument(self): - a = layers.Input(shape=(2,)) - b = layers.Dropout(0.5)(a) - base_model = training_lib.Model(a, b) - - a = layers.Input(shape=(2,)) - b = base_model(a, training=False) - model = training_lib.Model(a, b) - - x = np.ones((100, 2)) - y = np.ones((100, 2)) - model.compile( - optimizer="sgd", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - loss = model.train_on_batch(x, y) - self.assertEqual( - loss, 0 - ) # In inference mode, output is equal to input. - - a = layers.Input(shape=(2,)) - b = base_model(a, training=True) - model = training_lib.Model(a, b) - preds = model.predict(x) - self.assertEqual(np.min(preds), 0.0) # At least one unit was dropped. - - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_mask_derived_from_keras_layer(self): - inputs = input_layer_lib.Input((5, 10)) - mask = input_layer_lib.Input((5,)) - outputs = layers.RNN(layers.LSTMCell(100))(inputs, mask=mask) - model = training_lib.Model([inputs, mask], outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[np.ones((10, 5, 10)), np.zeros((10, 5))], - y=np.zeros((10, 100)), - batch_size=2, - ) - # All data is masked, returned values are 0's. - self.assertEqual(history.history["loss"][0], 0.0) - history = model.fit( - x=[np.ones((10, 5, 10)), np.ones((10, 5))], - y=np.zeros((10, 100)), - batch_size=2, - ) - # Data is not masked, returned values are random. - self.assertGreater(history.history["loss"][0], 0.0) - - model = training_lib.Model.from_config(model.get_config()) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[np.ones((10, 5, 10)), np.zeros((10, 5))], - y=np.zeros((10, 100)), - batch_size=2, - ) - # All data is masked, returned values are 0's. - self.assertEqual(history.history["loss"][0], 0.0) - history = model.fit( - x=[np.ones((10, 5, 10)), np.ones((10, 5))], - y=np.zeros((10, 100)), - batch_size=2, - ) - # Data is not masked, returned values are random. - self.assertGreater(history.history["loss"][0], 0.0) - - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_call_arg_derived_from_keras_layer(self): - class MyAdd(layers.Layer): - def call(self, x1, x2): - return x1 + x2 - - input1 = input_layer_lib.Input(10) - input2 = input_layer_lib.Input(10) - outputs = MyAdd()(input1, input2) - model = training_lib.Model([input1, input2], outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[3 * np.ones((10, 10)), 7 * np.ones((10, 10))], - y=10 * np.ones((10, 10)), - batch_size=2, - ) - # Check that second input was correctly added to first. - self.assertEqual(history.history["loss"][0], 0.0) - - # Check serialization. - model = training_lib.Model.from_config( - model.get_config(), custom_objects={"MyAdd": MyAdd} - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[3 * np.ones((10, 10)), 7 * np.ones((10, 10))], - y=10 * np.ones((10, 10)), - batch_size=2, - ) - # Check that second input was correctly added to first. - self.assertEqual(history.history["loss"][0], 0.0) - - @test_combinations.generate( - test_combinations.keras_mode_combinations(mode="eager"), - ) - def test_only_some_in_first_arg_derived_from_keras_layer_keras_tensors( - self, - ): - # This functionality is unsupported in v1 graphs - - class MyAddAll(layers.Layer): - def call(self, inputs): - x = inputs[0] - for inp in inputs[1:]: - if inp is not None: - x = x + inp - return x - - input1 = input_layer_lib.Input(10) - input2 = input_layer_lib.Input(10) - layer = MyAddAll() - outputs = layer([0.0, input1, None, input2, None]) - model = training_lib.Model([input1, input2], outputs) - self.assertIn(layer, model.layers) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[3 * np.ones((10, 10)), 7 * np.ones((10, 10))], - y=10 * np.ones((10, 10)), - batch_size=2, - ) - # Check that second input was correctly added to first. - self.assertEqual(history.history["loss"][0], 0.0) - - # Check serialization. - model = training_lib.Model.from_config( - model.get_config(), custom_objects={"MyAddAll": MyAddAll} - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[3 * np.ones((10, 10)), 7 * np.ones((10, 10))], - y=10 * np.ones((10, 10)), - batch_size=2, - ) - # Check that second input was correctly added to first. - self.assertEqual(history.history["loss"][0], 0.0) - - @test_combinations.generate( - test_combinations.times( - test_combinations.keras_mode_combinations(), - test_combinations.combine(share_already_used_layer=[True, False]), - ) - ) - def test_call_kwarg_derived_from_keras_layer( - self, share_already_used_layer - ): - class MaybeAdd(layers.Layer): - def call(self, x1, x2=None): - if x2 is not None: - return x1 + x2 - return x1 - - class IdentityLayer(layers.Layer): - def call(self, x): - return x - - input1 = input_layer_lib.Input(10) - input2 = input_layer_lib.Input(10) - identity_layer = IdentityLayer() - - if share_already_used_layer: - # We have had model serialization/deserialization break in the past: - # when a layer was previously used to construct other functional - # models and had a non-empty list of inbound nodes before being used - # to define the model being serialized/deserialized. (The - # serialization/deserialization was not correctly adjusting the - # node_index serialization/deserialization). So, we explicitly test - # this case. - training_lib.Model([input1], identity_layer(input1)) - - outputs = MaybeAdd()(input1, x2=identity_layer(input2)) - model = training_lib.Model([input1, input2], outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[3 * np.ones((10, 10)), 7 * np.ones((10, 10))], - y=10 * np.ones((10, 10)), - batch_size=2, - ) - # Check that second input was correctly added to first. - self.assertEqual(history.history["loss"][0], 0.0) - - model = training_lib.Model.from_config( - model.get_config(), - custom_objects={ - "MaybeAdd": MaybeAdd, - "IdentityLayer": IdentityLayer, - }, - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[3 * np.ones((10, 10)), 7 * np.ones((10, 10))], - y=10 * np.ones((10, 10)), - batch_size=2, - ) - # Check that second input was correctly added to first. - self.assertEqual(history.history["loss"][0], 0.0) - - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_call_kwarg_dtype_serialization(self): - class Double(layers.Layer): - def call(self, x1, dtype=None): - return tf.cast(x1 + x1, dtype=dtype) - - input1 = input_layer_lib.Input(10) - outputs = Double()(input1, dtype=tf.float16) - model = training_lib.Model([input1], outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[3 * np.ones((10, 10))], y=6 * np.ones((10, 10)), batch_size=2 - ) - # Check that input was correctly doubled. - self.assertEqual(history.history["loss"][0], 0.0) - - # Check the output dtype - self.assertEqual(model(tf.ones((3, 10))).dtype, tf.float16) - - model = training_lib.Model.from_config( - model.get_config(), custom_objects={"Double": Double} - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[3 * np.ones((10, 10))], y=6 * np.ones((10, 10)), batch_size=2 - ) - # Check that input was correctly doubled. - self.assertEqual(history.history["loss"][0], 0.0) - - # Check the output dtype - self.assertEqual(model(tf.ones((3, 10))).dtype, tf.float16) - - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_call_kwarg_nonserializable(self): - class Double(layers.Layer): - def call(self, x1, kwarg=None): - return x1 + x1 - - class NonSerializable: - def __init__(self, foo=None): - self.foo = foo - - input1 = input_layer_lib.Input(10) - outputs = Double()(input1, kwarg=NonSerializable()) - model = training_lib.Model([input1], outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[3 * np.ones((10, 10))], y=6 * np.ones((10, 10)), batch_size=2 - ) - # Check that input was correctly doubled. - self.assertEqual(history.history["loss"][0], 0.0) - with self.assertRaisesRegex( - TypeError, - "Layer double was passed non-JSON-serializable arguments.", - ): - model.get_config() - - @test_combinations.generate( - test_combinations.times( - test_combinations.keras_mode_combinations(), - test_combinations.combine(share_already_used_layer=[True, False]), - ) - ) - def test_call_kwarg_derived_from_keras_layer_and_first_arg_is_constant( - self, share_already_used_layer - ): - class IdentityLayer(layers.Layer): - def call(self, x): - return x - - class MaybeAdd(layers.Layer): - def call(self, x1, x2=None): - if x2 is not None: - return x1 + x2 - return x1 - - input2 = input_layer_lib.Input(10) - identity_layer = IdentityLayer() - if share_already_used_layer: - # We have had model serialization/deserialization break in the past: - # when a layer was previously used to construct other functional - # models and had a non-empty list of inbound nodes before being used - # to define the model being serialized/deserialized. (The - # serialization/deserialization was not correctly adjusting the - # node_index serialization/deserialization). So, we explicitly test - # this case. - training_lib.Model([input2], identity_layer(input2)) - - outputs = MaybeAdd()(3.0, x2=identity_layer(input2)) - model = training_lib.Model([input2], outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=7 * np.ones((10, 10)), y=10 * np.ones((10, 10)), batch_size=2 - ) - # Check that second input was correctly added to first. - self.assertEqual(history.history["loss"][0], 0.0) - - model = training_lib.Model.from_config( - model.get_config(), - custom_objects={ - "MaybeAdd": MaybeAdd, - "IdentityLayer": IdentityLayer, - }, - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=7 * np.ones((10, 10)), y=10 * np.ones((10, 10)), batch_size=2 - ) - # Check that second input was correctly added to first. - self.assertEqual(history.history["loss"][0], 0.0) - - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_dont_cast_composite_unless_necessary(self): - if not tf.executing_eagerly(): - # Creating Keras inputs from a type_spec only supported in eager. - return - - # TODO(edloper): Change this to tf.experimental.ExtensionTyep once - # it's been released. - class MyType(extension_type.ExtensionType): - # TODO(edloper) Remove _shape and _dtype once Keras has been - # switched to use .shape and .dtype instead. - value: tf.Tensor - _shape = property(lambda self: self.value.shape) - shape = property(lambda self: self.value.shape) - _dtype = property(lambda self: self.value.dtype) - dtype = property(lambda self: self.value.dtype) - - class Spec: - _shape = property(lambda self: self.value.shape) - shape = property(lambda self: self.value.shape) - _dtype = property(lambda self: self.value.dtype) - dtype = property(lambda self: self.value.dtype) - - my_spec = MyType.Spec(tf.TensorSpec([5], tf.float32)) - input1 = input_layer_lib.Input(type_spec=my_spec) - model = training_lib.Model([input1], input1) - model.compile(run_eagerly=test_utils.should_run_eagerly()) - model(MyType([1.0, 2.0, 3.0, 4.0, 5.0])) # Does not require cast. - with self.assertRaises((ValueError, TypeError)): - model(MyType([1, 2, 3, 4, 5])) - - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_composite_call_kwarg_derived_from_keras_layer(self): - - # Create a test layer that accepts composite tensor inputs. - class MaybeAdd(layers.Layer): - def call(self, x1, x2=None): - # We need to convert this to a tensor for loss calculations - - # losses don't play nicely with ragged tensors yet. - if x2 is not None: - return (x1 + x2).to_tensor(default_value=0) - return x1.to_tensor(default_value=0) - - input1 = input_layer_lib.Input((None,), ragged=True) - input2 = input_layer_lib.Input((None,), ragged=True) - outputs = MaybeAdd()(input1, x2=input2) - model = training_lib.Model([input1, input2], outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - input_data = [ - tf.ragged.constant([[3.0, 3.0], [3.0, 3.0], [3.0]]), - tf.ragged.constant([[7.0, 7.0], [7.0, 7.0], [7.0]]), - ] - expected_data = np.array([[10.0, 10.0], [10.0, 10.0], [10.0, 0.0]]) - - history = model.fit(x=input_data, y=expected_data) - # Check that second input was correctly added to first. - self.assertEqual(history.history["loss"][0], 0.0) - - model = training_lib.Model.from_config( - model.get_config(), custom_objects={"MaybeAdd": MaybeAdd} - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit(x=input_data, y=expected_data) - # Check that second input was correctly added to first. - self.assertEqual(history.history["loss"][0], 0.0) - - @test_combinations.generate( - test_combinations.keras_mode_combinations(mode="eager") - ) - def test_call_some_not_all_nested_in_first_arg_derived_from_keras_layer( - self, - ): - # This functionality is unsupported in v1 graphs - - class AddAll(layers.Layer): - def call(self, x1_x2, x3): - x1, x2 = x1_x2 - out = x1 + x2 - if x3 is not None: - for t in x3.values(): - out += t - return out - - input1 = input_layer_lib.Input(10) - input2 = input_layer_lib.Input(10) - input3 = input_layer_lib.Input(10) - - layer = AddAll() - outputs = layer( - [input1, 4 * tf.ones((1, 10))], - x3={"a": input2, "b": input3, "c": 5 * tf.ones((1, 10))}, - ) - model = training_lib.Model([input1, input2, input3], outputs) - self.assertIn(layer, model.layers) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[np.ones((10, 10)), 2 * np.ones((10, 10)), 3 * np.ones((10, 10))], - y=15 * np.ones((10, 10)), - batch_size=2, - ) - # Check that all inputs were correctly added. - self.assertEqual(history.history["loss"][0], 0.0) - - model = training_lib.Model.from_config( - model.get_config(), custom_objects={"AddAll": AddAll} - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[np.ones((10, 10)), 2 * np.ones((10, 10)), 3 * np.ones((10, 10))], - y=15 * np.ones((10, 10)), - batch_size=2, - ) - # Check that all inputs were correctly added. - self.assertEqual(history.history["loss"][0], 0.0) - - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_call_nested_arg_derived_from_keras_layer(self): - class AddAll(layers.Layer): - def call(self, x1, x2, x3=None): - out = x1 + x2 - if x3 is not None: - for t in x3.values(): - out += t - return out - - input1 = input_layer_lib.Input(10) - input2 = input_layer_lib.Input(10) - input3 = input_layer_lib.Input(10) - outputs = AddAll()( - input1, - 4 * tf.ones((1, 10)), - x3={"a": input2, "b": input3, "c": 5 * tf.ones((1, 10))}, - ) - model = training_lib.Model([input1, input2, input3], outputs) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[np.ones((10, 10)), 2 * np.ones((10, 10)), 3 * np.ones((10, 10))], - y=15 * np.ones((10, 10)), - batch_size=2, - ) - # Check that all inputs were correctly added. - self.assertEqual(history.history["loss"][0], 0.0) - - model = training_lib.Model.from_config( - model.get_config(), custom_objects={"AddAll": AddAll} - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - history = model.fit( - x=[np.ones((10, 10)), 2 * np.ones((10, 10)), 3 * np.ones((10, 10))], - y=15 * np.ones((10, 10)), - batch_size=2, - ) - # Check that all inputs were correctly added. - self.assertEqual(history.history["loss"][0], 0.0) - - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_multi_output_model_with_none_masking(self): - def func(x): - return [x * 0.2, x * 0.3] - - def output_shape(input_shape): - return [input_shape, input_shape] - - i = layers.Input(shape=(3, 2, 1)) - o = layers.Lambda(function=func, output_shape=output_shape)(i) - - self.assertEqual(backend.int_shape(o[0]), (None, 3, 2, 1)) - self.assertEqual(backend.int_shape(o[1]), (None, 3, 2, 1)) - - o = layers.add(o) - model = training_lib.Model(i, o) - model.run_eagerly = test_utils.should_run_eagerly() - - i2 = layers.Input(shape=(3, 2, 1)) - o2 = model(i2) - model2 = training_lib.Model(i2, o2) - model2.run_eagerly = test_utils.should_run_eagerly() - - x = np.random.random((4, 3, 2, 1)) - out = model2.predict(x) - assert out.shape == (4, 3, 2, 1) - self.assertAllClose(out, x * 0.2 + x * 0.3, atol=1e-4) - - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_constant_initializer_with_numpy(self): - initializer = tf.compat.v1.constant_initializer(np.ones((3, 2))) - model = sequential.Sequential() - model.add( - layers.Dense(2, input_shape=(3,), kernel_initializer=initializer) - ) - model.add(layers.Dense(3)) - model.compile( - loss="mse", - optimizer="sgd", - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - json_str = model.to_json() - models.model_from_json(json_str) - - def test_subclassed_error_if_init_not_called(self): - class MyNetwork(training_lib.Model): - def __init__(self): - self._foo = [layers.Dense(10), layers.Dense(10)] - - with self.assertRaisesRegex(RuntimeError, "forgot to call"): - MyNetwork() - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_int_input_shape(self): - inputs = input_layer_lib.Input(10) - self.assertEqual([None, 10], inputs.shape.as_list()) - - inputs_with_batch = input_layer_lib.Input(batch_size=20, shape=5) - self.assertEqual([20, 5], inputs_with_batch.shape.as_list()) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_model_initialization(self): - # Functional model - inputs = input_layer_lib.Input(shape=(32,)) - outputs = layers.Dense(4)(inputs) - - with self.assertRaisesRegex( - TypeError, "Keyword argument not understood" - ): - model = training_lib.Model( - inputs, outputs, name="m", trainable=False, dtype="int64" - ) - with self.assertRaisesRegex( - TypeError, "Keyword argument not understood" - ): - model = training_lib.Model( - inputs, outputs, name="m", trainable=False, dynamic=False - ) - - model = training_lib.Model(inputs, outputs, name="m", trainable=False) - self.assertEqual("m", model.name) - self.assertFalse(model.trainable) - self.assertFalse(model.dynamic) - - class SubclassModel(training_lib.Model): - pass - - # Subclassed model - model = SubclassModel( - name="subclassed", trainable=True, dtype="int64", dynamic=True - ) - self.assertEqual("subclassed", model.name) - self.assertTrue(model.dynamic) - self.assertTrue(model.trainable) - w = model.add_weight( - "w", [], initializer=tf.compat.v1.constant_initializer(1) - ) - self.assertEqual(tf.int64, w.dtype) - - def test_disconnected_inputs(self): - input_tensor1 = input_layer_lib.Input(shape=[200], name="a") - input_tensor2 = input_layer_lib.Input(shape=[10], name="b") - output_tensor1 = layers.Dense(units=10)(input_tensor1) - - net = functional.Functional( - inputs=[input_tensor1, input_tensor2], outputs=[output_tensor1] - ) - net2 = functional.Functional.from_config(net.get_config()) - self.assertLen(net2.inputs, 2) - self.assertEqual("a", net2.layers[0].name) - self.assertEqual("b", net2.layers[1].name) - - @test_combinations.generate( - test_combinations.keras_model_type_combinations() - ) - def test_dependency_tracking(self): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - model.trackable = Checkpoint() - self.assertIn("trackable", model._unconditional_dependency_names) - self.assertEqual(model.trackable, model._lookup_dependency("trackable")) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_model_construction_in_tf_function(self): - - d = {"model": None} - - @tf.function - def fn(x): - if d["model"] is None: - # Check that Functional can be built in a `tf.function`. - inputs = input_layer_lib.Input(10) - outputs = layers.Dense(1)(inputs) - model = functional.Functional(inputs, outputs) - d["model"] = model - else: - model = d["model"] - - return model(x) - - x = tf.ones((10, 10)) - y = fn(x) - self.assertEqual(y.shape.as_list(), [10, 1]) - - def test_save_spec(self): - """Tests that functional model generates the correct save spec.""" - - class MultiInputModel(training_lib.Model): - def call(self, x, y): - return x - - inp = input_layer_lib.Input(shape=(1,)) - inp2 = input_layer_lib.Input(shape=(1,), batch_size=5, dtype=tf.int32) - out = MultiInputModel()(inp, inp2) - m = training_lib.Model(inputs={"x": inp, "y": inp2}, outputs=out) - input_spec = m.save_spec(dynamic_batch=False)[0][0] - self.assertIn("x", input_spec) - self.assertIn("y", input_spec) - self.assertAllEqual([None, 1], input_spec["x"].shape.as_list()) - self.assertAllEqual(tf.float32, input_spec["x"].dtype) - self.assertAllEqual([5, 1], input_spec["y"].shape.as_list()) - self.assertAllEqual(tf.int32, input_spec["y"].dtype) - - def test_layer_ordering_checkpoint_compatibility(self): - class MLPKeras(layers.Layer): - def __init__(self, name: str) -> None: - super(MLPKeras, self).__init__(name=name) - self.layer_1 = layers.Dense( - 10, activation="relu", name=f"{name}_dense_1" - ) - self.layer_2 = layers.Dense( - 10, activation="relu", name=f"{name}_dense_2" - ) - - def call(self, inputs: tf.Tensor) -> tf.Tensor: - return self.layer_2(self.layer_1(inputs)) - - mlp_keras_1 = MLPKeras("mlp_1") - mlp_keras_2 = MLPKeras("mlp_2") - - inputs = input_layer_lib.Input((5,)) - - # Make model which is the sum of two MLPs. - outputs_1 = mlp_keras_1(inputs) + mlp_keras_2(inputs) - functional_model_1 = functional.Functional( - inputs=inputs, outputs=outputs_1 - ) - - ckpt_1 = Checkpoint(model=functional_model_1) - filepath = tf.io.gfile.join(self.get_temp_dir(), "model_1_ckpt") - ckpt_path = ckpt_1.save(filepath) - - # Swap order of MLPs. - outputs_2 = mlp_keras_2(inputs) + mlp_keras_1(inputs) - functional_model_2 = functional.Functional( - inputs=inputs, outputs=outputs_2 - ) - Checkpoint(model=functional_model_2).restore( - ckpt_path - ).assert_consumed() - - -class DeferredModeTest(test_combinations.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testSimpleNetworkBuilding(self): - inputs = input_layer_lib.Input(shape=(32,)) - if tf.executing_eagerly(): - self.assertEqual(inputs.dtype.name, "float32") - self.assertEqual(inputs.shape.as_list(), [None, 32]) - - x = layers.Dense(2)(inputs) - if tf.executing_eagerly(): - self.assertEqual(x.dtype.name, "float32") - self.assertEqual(x.shape.as_list(), [None, 2]) - - outputs = layers.Dense(4)(x) - network = functional.Functional(inputs, outputs) - self.assertIsInstance(network, functional.Functional) - - if tf.executing_eagerly(): - # It should be possible to call such a network on EagerTensors. - inputs = tf.constant(np.random.random((10, 32)).astype("float32")) - outputs = network(inputs) - self.assertEqual(outputs.shape.as_list(), [10, 4]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testMultiIONetworkBuilding(self): - input_a = input_layer_lib.Input(shape=(32,)) - input_b = input_layer_lib.Input(shape=(16,)) - a = layers.Dense(16)(input_a) - - class AddLayer(layers.Layer): - def call(self, inputs): - return inputs[0] + inputs[1] - - c = AddLayer()([a, input_b]) - c = layers.Dense(2)(c) - - network = functional.Functional([input_a, input_b], [a, c]) - if tf.executing_eagerly(): - a_val = tf.constant(np.random.random((10, 32)).astype("float32")) - b_val = tf.constant(np.random.random((10, 16)).astype("float32")) - outputs = network([a_val, b_val]) - self.assertEqual(len(outputs), 2) - self.assertEqual(outputs[0].shape.as_list(), [10, 16]) - self.assertEqual(outputs[1].shape.as_list(), [10, 2]) - - -class DefaultShapeInferenceBehaviorTest(test_combinations.TestCase): - def _testShapeInference(self, model, input_shape, expected_output_shape): - input_value = np.random.random(input_shape) - output_value = model.predict(input_value) - self.assertEqual(output_value.shape, expected_output_shape) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testSingleInputCase(self): - class LayerWithOneInput(layers.Layer): - def build(self, input_shape): - self.w = tf.ones(shape=(3, 4)) - - def call(self, inputs): - return backend.dot(inputs, self.w) - - inputs = input_layer_lib.Input(shape=(3,)) - layer = LayerWithOneInput() - - if tf.executing_eagerly(): - self.assertEqual( - layer.compute_output_shape((None, 3)).as_list(), [None, 4] - ) - # As a side-effect, compute_output_shape builds the layer. - self.assertTrue(layer.built) - # We can still query the layer's compute_output_shape with - # compatible input shapes. - self.assertEqual( - layer.compute_output_shape((6, 3)).as_list(), [6, 4] - ) - - outputs = layer(inputs) - model = training_lib.Model(inputs, outputs) - self._testShapeInference(model, (2, 3), (2, 4)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testMultiInputOutputCase(self): - class MultiInputOutputLayer(layers.Layer): - def build(self, input_shape): - self.w = tf.ones(shape=(3, 4)) - - def call(self, inputs): - a = backend.dot(inputs[0], self.w) - b = a + inputs[1] - return [a, b] - - input_a = input_layer_lib.Input(shape=(3,)) - input_b = input_layer_lib.Input(shape=(4,)) - output_a, output_b = MultiInputOutputLayer()([input_a, input_b]) - model = training_lib.Model([input_a, input_b], [output_a, output_b]) - output_a_val, output_b_val = model.predict( - [np.random.random((2, 3)), np.random.random((2, 4))] - ) - self.assertEqual(output_a_val.shape, (2, 4)) - self.assertEqual(output_b_val.shape, (2, 4)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testTrainingArgument(self): - class LayerWithTrainingArg(layers.Layer): - def build(self, input_shape): - self.w = tf.ones(shape=(3, 4)) - - def call(self, inputs, training): - return backend.dot(inputs, self.w) - - inputs = input_layer_lib.Input(shape=(3,)) - outputs = LayerWithTrainingArg()(inputs, training=False) - model = training_lib.Model(inputs, outputs) - self._testShapeInference(model, (2, 3), (2, 4)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testNoneInShape(self): - class Model(training_lib.Model): - def __init__(self): - super().__init__() - self.conv1 = layers.Conv2D(8, 3) - self.pool = layers.GlobalAveragePooling2D() - self.fc = layers.Dense(3) - - def call(self, x): - x = self.conv1(x) - x = self.pool(x) - x = self.fc(x) - return x - - model = Model() - model.build(tf.TensorShape((None, None, None, 1))) - self.assertTrue(model.built, "Model should be built") - self.assertTrue( - model.weights, - "Model should have its weights created as it has been built", - ) - sample_input = tf.ones((1, 10, 10, 1)) - output = model(sample_input) - self.assertEqual(output.shape, (1, 3)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testNoneInShapeWithCompoundModel(self): - class BasicBlock(training_lib.Model): - def __init__(self): - super().__init__() - self.conv1 = layers.Conv2D(8, 3) - self.pool = layers.GlobalAveragePooling2D() - self.dense = layers.Dense(3) - - def call(self, x): - x = self.conv1(x) - x = self.pool(x) - x = self.dense(x) - return x - - class CompoundModel(training_lib.Model): - def __init__(self): - super().__init__() - self.block = BasicBlock() - - def call(self, x): - x = self.block(x) - return x - - model = CompoundModel() - model.build(tf.TensorShape((None, None, None, 1))) - self.assertTrue(model.built, "Model should be built") - self.assertTrue( - model.weights, - "Model should have its weights created as it has been built", - ) - sample_input = tf.ones((1, 10, 10, 1)) - output = model(sample_input) - self.assertEqual(output.shape, (1, 3)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testNoneInShapeWithFunctionalAPI(self): - class BasicBlock(training_lib.Model): - # Inheriting from layers.Layer since we are calling this layer - # inside a model created using functional API. - - def __init__(self): - super().__init__() - self.conv1 = layers.Conv2D(8, 3) - - def call(self, x): - x = self.conv1(x) - return x - - input_layer = layers.Input(shape=(None, None, 1)) - x = BasicBlock()(input_layer) - x = layers.GlobalAveragePooling2D()(x) - output_layer = layers.Dense(3)(x) - - model = training_lib.Model(inputs=input_layer, outputs=output_layer) - - model.build(tf.TensorShape((None, None, None, 1))) - self.assertTrue(model.built, "Model should be built") - self.assertTrue( - model.weights, - "Model should have its weights created as it has been built", - ) - sample_input = tf.ones((1, 10, 10, 1)) - output = model(sample_input) - self.assertEqual(output.shape, (1, 3)) - - @test_combinations.generate(test_combinations.keras_mode_combinations()) - def test_sequential_as_downstream_of_masking_layer(self): - inputs = layers.Input(shape=(3, 4)) - x = layers.Masking(mask_value=0.0, input_shape=(3, 4))(inputs) - - s = sequential.Sequential() - s.add(layers.Dense(5, input_shape=(4,))) - - x = layers.TimeDistributed(s)(x) - model = training_lib.Model(inputs=inputs, outputs=x) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - - model_input = np.random.randint(low=1, high=5, size=(10, 3, 4)).astype( - "float32" - ) - for i in range(4): - model_input[i, i:, :] = 0.0 - model.fit( - model_input, np.random.random((10, 3, 5)), epochs=1, batch_size=6 - ) - - if not tf.executing_eagerly(): - # Note: this doesn't work in eager due to DeferredTensor/ops - # compatibility issue. - mask_outputs = [model.layers[1].compute_mask(model.layers[1].input)] - mask_outputs += [ - model.layers[2].compute_mask( - model.layers[2].input, mask_outputs[-1] - ) - ] - func = backend.function([model.input], mask_outputs) - mask_outputs_val = func([model_input]) - self.assertAllClose( - mask_outputs_val[0], np.any(model_input, axis=-1) - ) - self.assertAllClose( - mask_outputs_val[1], np.any(model_input, axis=-1) - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_external_keras_serialization_compat_input_layers(self): - inputs = input_layer_lib.Input(shape=(10,)) - outputs = layers.Dense(1)(inputs) - model = training_lib.Model(inputs, outputs) - config = model.get_config() - # Checks that single inputs and outputs are still saved as 1-element - # lists. Saving as 1-element lists or not is equivalent in TF Keras, - # but only the 1-element list format is supported in TF.js and - # keras-team/Keras. - self.assertLen(config["input_layers"], 1) - self.assertLen(config["output_layers"], 1) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - @test_utils.run_v2_only - def test_save_load_with_single_elem_list_inputs(self): - class MyLayer(layers.Layer): - def __init__(self): - super().__init__() - self._preserve_input_structure_in_config = True - - def call(self, inputs): - return inputs[0] - - inputs = input_layer_lib.Input(shape=(3,)) - layer = MyLayer() - outputs = layer([inputs]) - - model = training_lib.Model(inputs=inputs, outputs=outputs) - model.save("/tmp/km2") - - save.load_model("/tmp/km2") - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_external_keras_serialization_compat_inbound_nodes(self): - # Check single Tensor input. - inputs = input_layer_lib.Input(shape=(10,), name="in") - outputs = layers.Dense(1)(inputs) - model = training_lib.Model(inputs, outputs) - config = model.get_config() - self.assertEqual( - config["layers"][1]["inbound_nodes"], [[["in", 0, 0, {}]]] - ) - - # Check multiple Tensor input. - inputs1 = input_layer_lib.Input(shape=(10,), name="in1") - inputs2 = input_layer_lib.Input(shape=(10,), name="in2") - outputs = layers.Add()([inputs1, inputs2]) - model = training_lib.Model([inputs1, inputs2], outputs) - config = model.get_config() - self.assertEqual( - config["layers"][2]["inbound_nodes"], - [[["in1", 0, 0, {}], ["in2", 0, 0, {}]]], - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_dict_inputs_tensors(self): - # Note that this test is running with v2 eager only, since the v1 - # will behave differently wrt to dict input for training. - inputs = { - "sentence2": input_layer_lib.Input( - shape=(), name="a", dtype=tf.string - ), - "sentence1": input_layer_lib.Input( - shape=(), name="b", dtype=tf.string - ), - } - strlen = layers.Lambda(tf.strings.length) - diff = layers.Subtract()( - [strlen(inputs["sentence1"]), strlen(inputs["sentence2"])] - ) - diff = tf.cast(diff, tf.float32) - model = training_lib.Model(inputs, diff) - - extra_keys = { - "sentence1": tf.constant(["brown fox", "lazy dog"]), - "sentence2": tf.constant(["owl", "cheeky cat"]), - "label": tf.constant([0, 1]), - } - - with warnings.catch_warnings(record=True) as w: - warnings.simplefilter("always") - model(extra_keys) - self.assertIn("ignored by the model", str(w[-1].message)) - - model.compile("sgd", "mse") - with warnings.catch_warnings(record=True) as w: - warnings.simplefilter("always") - model.fit(extra_keys, y=tf.constant([0, 1]), steps_per_epoch=1) - self.assertIn("ignored by the model", str(w[-1].message)) - - with warnings.catch_warnings(record=True) as w: - warnings.simplefilter("always") - model.evaluate(extra_keys, tf.constant([0, 1])) - self.assertIn("ignored by the model", str(w[-1].message)) - - # Make sure the model inputs are sorted with the dict keys. - self.assertEqual(model.inputs[0]._keras_history.layer.name, "b") - self.assertEqual(model.inputs[1]._keras_history.layer.name, "a") - - -class GraphUtilsTest(tf.test.TestCase): - def testGetReachableFromInputs(self): - - with tf.Graph().as_default(), self.cached_session(): - pl_1 = tf.compat.v1.placeholder(shape=None, dtype="float32") - pl_2 = tf.compat.v1.placeholder(shape=None, dtype="float32") - pl_3 = tf.compat.v1.placeholder(shape=None, dtype="float32") - x_1 = pl_1 + pl_2 - x_2 = pl_2 * 2 - x_3 = pl_3 + 1 - x_4 = x_1 + x_2 - x_5 = x_3 * pl_1 - - self.assertEqual( - tf_utils.get_reachable_from_inputs([pl_1]), - {pl_1, x_1, x_4, x_5, x_1.op, x_4.op, x_5.op}, - ) - self.assertEqual( - tf_utils.get_reachable_from_inputs([pl_1, pl_2]), - { - pl_1, - pl_2, - x_1, - x_2, - x_4, - x_5, - x_1.op, - x_2.op, - x_4.op, - x_5.op, - }, - ) - self.assertEqual( - tf_utils.get_reachable_from_inputs([pl_3]), - {pl_3, x_3, x_5, x_3.op, x_5.op}, - ) - self.assertEqual( - tf_utils.get_reachable_from_inputs([x_3]), {x_3, x_5, x_5.op} - ) - - -class NestedNetworkTest(test_combinations.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_nested_inputs_network(self): - inputs = { - "x1": input_layer_lib.Input(shape=(1,)), - "x2": input_layer_lib.Input(shape=(1,)), - } - outputs = layers.Add()([inputs["x1"], inputs["x2"]]) - network = functional.Functional(inputs, outputs) - - network = functional.Functional.from_config(network.get_config()) - - result_tensor = network( - {"x1": tf.ones((1, 1), "float32"), "x2": tf.ones((1, 1), "float32")} - ) - result = self.evaluate(result_tensor) - self.assertAllEqual(result, [[2.0]]) - - # TODO(b/122726584): Investigate why concrete batch is flaky in some - # builds. - output_shape = network.compute_output_shape( - {"x1": (None, 1), "x2": (None, 1)} - ) - self.assertListEqual(output_shape.as_list(), [None, 1]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_nested_outputs_network(self): - inputs = input_layer_lib.Input(shape=(1,)) - outputs = { - "x+x": layers.Add()([inputs, inputs]), - "x*x": layers.Multiply()([inputs, inputs]), - } - - network = functional.Functional(inputs, outputs) - - network = functional.Functional.from_config(network.get_config()) - - result_tensor = network(tf.ones((1, 1), "float32")) - result = self.evaluate(result_tensor) - self.assertAllEqual(result["x+x"], [[2.0]]) - self.assertAllEqual(result["x*x"], [[1.0]]) - - output_shape = network.compute_output_shape((None, 1)) - self.assertListEqual(output_shape["x+x"].as_list(), [None, 1]) - self.assertListEqual(output_shape["x*x"].as_list(), [None, 1]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_nested_network_inside_network(self): - inner_inputs = { - "x1": input_layer_lib.Input(shape=(1,)), - "x2": input_layer_lib.Input(shape=(1,)), - } - inner_outputs = { - "x1+x2": layers.Add()([inner_inputs["x1"], inner_inputs["x2"]]), - "x1*x2": layers.Multiply()( - [inner_inputs["x1"], inner_inputs["x2"]] - ), - } - inner_network = functional.Functional(inner_inputs, inner_outputs) - - inputs = [ - input_layer_lib.Input(shape=(1,)), - input_layer_lib.Input(shape=(1,)), - ] - middle = inner_network({"x1": inputs[0], "x2": inputs[1]}) - outputs = layers.Add()([middle["x1+x2"], middle["x1*x2"]]) - network = functional.Functional(inputs, outputs) - - network = functional.Functional.from_config(network.get_config()) - - # Computes: `(x1+x2) + (x1*x2)` - result_tensor = network( - [tf.ones((1, 1), "float32"), tf.ones((1, 1), "float32")] - ) - result = self.evaluate(result_tensor) - self.assertAllEqual(result, [[3.0]]) - - output_shape = network.compute_output_shape([(None, 1), (None, 1)]) - self.assertListEqual(output_shape.as_list(), [None, 1]) - - @test_combinations.generate(test_combinations.combine(mode=["graph"])) - def test_updates_with_direct_call(self): - inputs = input_layer_lib.Input(shape=(10,)) - x = layers.BatchNormalization()(inputs) - x = layers.Dense(10)(x) - model = training_lib.Model(inputs, x) - - ph = backend.placeholder(shape=(10, 10)) - model(ph) - - self.assertLen(model.updates, 4) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_dict_mapping_input(self): - class ReturnFirst(layers.Layer): - def call(self, inputs): - b, _ = inputs - return b - - # Checks that inputs are put in same order as the - # Model was constructed with. - b = input_layer_lib.Input(shape=(10,), name="b") - a = input_layer_lib.Input(shape=(10,), name="a") - outputs = ReturnFirst()([b, a]) - - b_val = tf.ones((10, 10)) - a_val = tf.zeros((10, 10)) - - model = training_lib.Model([b, a], outputs) - res = model({"a": a_val, "b": b_val}) - self.assertAllClose(self.evaluate(res), self.evaluate(b_val)) - - reversed_model = training_lib.Model([a, b], outputs) - res = reversed_model({"a": a_val, "b": b_val}) - self.assertAllClose(self.evaluate(res), self.evaluate(b_val)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_dict_mapping_single_input(self): - b = input_layer_lib.Input(shape=(1,), name="b") - outputs = b * 2 - model = training_lib.Model(b, outputs) - - b_val = tf.ones((1, 1)) - extra_val = tf.ones((1, 10)) - - inputs = {"a": extra_val, "b": b_val} - res = model(inputs) - - # Check that 'b' was used and 'a' was ignored. - self.assertEqual(res.shape.as_list(), [1, 1]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_nested_dict_mapping(self): - a = input_layer_lib.Input(shape=(1,), dtype="int32", name="a") - b = input_layer_lib.Input(shape=(1,), dtype="int32", name="b") - c = input_layer_lib.Input(shape=(1,), dtype="int32", name="c") - d = input_layer_lib.Input(shape=(1,), dtype="int32", name="d") - inputs = {"a": (a, b), "c": (c, d)} - outputs = 1000 * a + 100 * b + 10 * c + d - model = training_lib.Model(inputs, outputs) - - a_val = tf.ones((1, 1), dtype="int32") - b_val = 2 * tf.ones((1, 1), dtype="int32") - c_val = 3 * tf.ones((1, 1), dtype="int32") - d_val = 4 * tf.ones((1, 1), dtype="int32") - - inputs_val = {"a": (a_val, b_val), "c": (c_val, d_val)} - res = model(inputs_val) - - # Check that inputs were flattened in the correct order. - self.assertFalse(model._enable_dict_to_input_mapping) - self.assertEqual(self.evaluate(res), [1234]) - - -@test_combinations.generate(test_combinations.keras_mode_combinations()) -class AddLossTest(test_combinations.TestCase): - def test_add_loss_outside_call_only_loss(self): - inputs = input_layer_lib.Input((10,)) - mid = layers.Dense(10)(inputs) - outputs = layers.Dense(1)(mid) - model = training_lib.Model(inputs, outputs) - model.add_loss(tf.reduce_mean(outputs)) - self.assertLen(model.losses, 1) - - initial_weights = model.get_weights() - - x = np.ones((10, 10)) - model.compile("sgd", run_eagerly=test_utils.should_run_eagerly()) - model.fit(x, batch_size=2, epochs=1) - - model2 = model.from_config(model.get_config()) - model2.compile("sgd", run_eagerly=test_utils.should_run_eagerly()) - model2.set_weights(initial_weights) - model2.fit(x, batch_size=2, epochs=1) - - # The TFOpLayer and the AddLoss layer are serialized. - self.assertLen(model2.layers, 5) - self.assertAllClose(model.get_weights(), model2.get_weights()) - - def test_add_loss_outside_call_multiple_losses(self): - inputs = input_layer_lib.Input((10,)) - x1 = layers.Dense(10)(inputs) - x2 = layers.Dense(10)(x1) - outputs = layers.Dense(1)(x2) - model = training_lib.Model(inputs, outputs) - model.add_loss(tf.reduce_sum(x1 * x2)) - model.add_loss(tf.reduce_mean(outputs)) - self.assertLen(model.losses, 2) - - initial_weights = model.get_weights() - - x, y = np.ones((10, 10)), np.ones((10, 1)) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - model.fit(x, y, batch_size=2, epochs=1) - - model2 = model.from_config(model.get_config()) - model2.compile( - "sgd", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - model2.set_weights(initial_weights) - model2.fit(x, y, batch_size=2, epochs=1) - - self.assertAllClose(model.get_weights(), model2.get_weights()) - - def test_add_loss_crossentropy_backtracking(self): - inputs = input_layer_lib.Input((2,)) - labels = input_layer_lib.Input((1,)) - outputs = layers.Dense(1, activation="sigmoid")(inputs) - model = functional.Functional([inputs, labels], outputs) - model.add_loss(losses.binary_crossentropy(labels, outputs)) - model.compile("adam") - x = np.random.random((2, 2)) - y = np.random.random((2, 1)) - model.fit([x, y]) - - inputs = input_layer_lib.Input((2,)) - labels = input_layer_lib.Input((2,)) - outputs = layers.Dense(2, activation="softmax")(inputs) - model = functional.Functional([inputs, labels], outputs) - model.add_loss(losses.categorical_crossentropy(labels, outputs)) - model.compile("adam") - x = np.random.random((2, 2)) - y = np.random.random((2, 2)) - model.fit([x, y]) - - inputs = input_layer_lib.Input((2,)) - labels = input_layer_lib.Input((1,), dtype="int32") - outputs = layers.Dense(2, activation="softmax")(inputs) - model = functional.Functional([inputs, labels], outputs) - model.add_loss(losses.sparse_categorical_crossentropy(labels, outputs)) - model.compile("adam") - x = np.random.random((2, 2)) - y = np.random.randint(0, 2, size=(2, 1)) - model.fit([x, y]) - - -@test_combinations.generate(test_combinations.keras_mode_combinations()) -class WeightAccessTest(test_combinations.TestCase): - def test_functional_model(self): - inputs = input_layer_lib.Input((10,)) - x1 = layers.Dense(10)(inputs) - x2 = layers.Dense(10)(x1) - outputs = layers.Dense(1)(x2) - model = training_lib.Model(inputs, outputs) - - self.assertEqual(len(model.weights), 6) - - def test_sequential_model_with_input_shape(self): - x1 = layers.Dense(10, input_shape=(10,)) - x2 = layers.Dense(10) - x3 = layers.Dense(1) - model = sequential.Sequential([x1, x2, x3]) - - self.assertEqual(len(model.weights), 6) - - def test_sequential_model_without_input_shape(self): - x1 = layers.Dense(10) - x2 = layers.Dense(10) - x3 = layers.Dense(1) - model = sequential.Sequential([x1, x2, x3]) - - with self.assertRaisesRegex( - ValueError, "Weights for model .* have not yet been created" - ): - _ = model.weights - - def test_subclass_model_with_build_method(self): - class SubclassModel(models.Model): - def build(self, input_shape): - self.w = self.add_weight( - shape=input_shape[-1], initializer="ones" - ) - - def call(self, inputs): - return inputs * self.w - - model = SubclassModel() - - with self.assertRaisesRegex( - ValueError, "Weights for model .* have not yet been created" - ): - _ = model.weights - - model(input_layer_lib.Input((10,))) - self.assertEqual(len(model.weights), 1) - - def test_subclass_model_without_build_method(self): - class SubclassModel(models.Model): - def __init__(self): - super().__init__() - self.w = self.add_weight(shape=(), initializer="ones") - - def call(self, inputs): - return inputs * self.w - - model = SubclassModel() - self.assertEqual(len(model.weights), 1) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class DTypeTest(test_combinations.TestCase): - @test_utils.enable_v2_dtype_behavior - def test_graph_network_dtype(self): - inputs = input_layer_lib.Input((10,)) - outputs = layers.Dense(10)(inputs) - network = functional.Functional(inputs, outputs) - self.assertEqual(network.dtype, "float32") - - @test_utils.enable_v2_dtype_behavior - def test_subclassed_network_dtype(self): - class IdentityNetwork(training_lib.Model): - def call(self, inputs): - return inputs - - network = IdentityNetwork() - self.assertEqual(network.dtype, "float32") - self.assertEqual(network(tf.constant(1, "float64")).dtype, "float32") - - network = IdentityNetwork(dtype="float16") - self.assertEqual(network.dtype, "float16") - self.assertEqual(network(tf.constant(1, "float64")).dtype, "float16") - - network = IdentityNetwork(autocast=False) - self.assertEqual(network.dtype, "float32") - self.assertEqual(network(tf.constant(1, "float64")).dtype, "float64") - - -class AttrTrackingLayer(base_layer.Layer): - """Count how many times `dynamic` and `stateful` are called. - - These counts are used to test that the attribute cache behaves as expected. - """ - - def __init__(self, *args, **kwargs): - self.stateful_count = 0 - self.dynamic_count = 0 - super().__init__(*args, **kwargs) - - @base_layer.Layer.stateful.getter - def stateful(self): - self.stateful_count += 1 - return super().stateful - - @property - def dynamic(self): - self.dynamic_count += 1 - return super().dynamic - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CacheCorrectnessTest(test_combinations.TestCase): - def layer_and_network_test(self): - # Top level layer - network = functional.Functional() - - layer_0 = AttrTrackingLayer() - - sub_network = functional.Functional() - layer_1 = AttrTrackingLayer(dynamic=True) - layer_2 = AttrTrackingLayer() - sub_network.sub_layers = [layer_1, layer_2] - - network.sub_layer = layer_0 - - for _ in range(2): - self.assertEqual(network.dynamic, False) - self.assertEqual(network.stateful, False) - - # The second pass should be a cache hit. - self.assertEqual(layer_0.dynamic_count, 1) - self.assertEqual(layer_0.stateful_count, 1) - - # Mutations of the sub-layer should force recalculation of the network's - # stateful attribute. (mutations bubble up.) - layer_0.stateful = True - self.assertEqual(network.stateful, True) - self.assertEqual(layer_0.stateful_count, 2) - - layer_0.stateful = False - self.assertEqual(network.stateful, False) - self.assertEqual(layer_0.stateful_count, 3) - - # But changing stateful should not affect dynamic. - self.assertEqual(network.dynamic, False) - self.assertEqual(layer_0.dynamic_count, 1) - - network.sub_network = sub_network - - # Adding to the topology should invalidate the cache and reflect in the - # top level network. - self.assertEqual(network.dynamic, True) - self.assertEqual(layer_0.dynamic_count, 2) - self.assertEqual(layer_1.dynamic_count, 1) - - # Still dynamic, but we need to recompute. - sub_network.sub_layers.pop() - self.assertEqual(network.dynamic, True) - self.assertEqual(layer_0.dynamic_count, 3) - self.assertEqual(layer_1.dynamic_count, 2) - - # Now that we've removed the dynamic layer deep in the layer hierarchy, - # we need to make sure that that bubbles up through all the levels. - sub_network.sub_layers.pop() - self.assertEqual(network.dynamic, False) - self.assertEqual(layer_0.dynamic_count, 4) - self.assertEqual(layer_1.dynamic_count, 2) - - # Now check with a tracked dict. - sub_network.sub_layers = { - "layer_1": layer_1, - "layer_2": layer_2, - } - - self.assertEqual(network.dynamic, True) - self.assertEqual(layer_0.dynamic_count, 5) - self.assertEqual(layer_1.dynamic_count, 3) - - # In-place assignment should still invalidate the cache. - sub_network.sub_layers["layer_1"] = layer_1 - self.assertEqual(network.dynamic, True) - self.assertEqual(layer_0.dynamic_count, 6) - self.assertEqual(layer_1.dynamic_count, 4) - - sub_network.sub_layers["layer_1"] = None - for _ in range(2): - self.assertEqual(network.dynamic, False) - self.assertEqual(layer_0.dynamic_count, 7) - self.assertEqual(layer_1.dynamic_count, 4) - - layer_3 = AttrTrackingLayer() - layer_3.stateful = True - - sub_network.sub_layers = None - self.assertEqual(network.dynamic, False) - self.assertEqual(network.stateful, False) - - # Test duplicate layers. - sub_network.sub_layers = [layer_1, layer_1, layer_1, layer_3] - self.assertEqual(network.dynamic, True) - self.assertEqual(network.stateful, True) - - for _ in range(3): - sub_network.sub_layers.pop() - self.assertEqual(network.dynamic, True) - self.assertEqual(network.stateful, False) - - sub_network.sub_layers.pop() - self.assertEqual(network.dynamic, False) - self.assertEqual(network.stateful, False) - - def test_compute_output_shape_cache(self): - # See https://github.com/tensorflow/tensorflow/issues/32029. - x = input_layer_lib.Input(shape=(None, 32)) - dense = layers.Dense(2) - y = dense(x) - network = functional.Functional(x, y, name="dense_network") - - for i in range(999, 1024): - self.assertEqual( - network.compute_output_shape((1, i, 32)), (1, i, 2) - ) - - def test_2d_inputs_squeezed_to_1d(self): - input_1d = input_layer_lib.Input(shape=()) - outputs = input_1d * 2.0 - net = functional.Functional(input_1d, outputs) - - x = np.ones((10, 1)) - y = net(x) - self.assertEqual(y.shape.rank, 1) - - def test_1d_inputs_expanded_to_2d(self): - input_1d = input_layer_lib.Input(shape=(1,)) - outputs = input_1d * 2.0 - net = functional.Functional(input_1d, outputs) - - x = np.ones((10,)) - y = net(x) - self.assertEqual(y.shape.rank, 2) - - def test_training_passed_during_construction(self): - def _call(inputs, training): - if training is None: - return inputs * -1.0 - elif training: - return inputs - else: - return inputs * 0.0 - - class MyLayer(base_layer.Layer): - def call(self, inputs, training=True): - return _call(inputs, training) - - my_layer = MyLayer() - x = np.ones((1, 10)) - - # Hard-coded `true` value passed during construction is respected. - inputs = input_layer_lib.Input(10) - outputs = my_layer(inputs, training=True) - network = functional.Functional(inputs, outputs) - self.assertAllEqual(network(x, training=True), _call(x, True)) - self.assertAllEqual(network(x, training=False), _call(x, True)) - self.assertAllEqual(network(x), _call(x, True)) - - # Hard-coded `false` value passed during construction is respected. - inputs = input_layer_lib.Input(10) - outputs = my_layer(inputs, training=False) - network = functional.Functional(inputs, outputs) - self.assertAllEqual(network(x, training=True), _call(x, False)) - self.assertAllEqual(network(x, training=False), _call(x, False)) - self.assertAllEqual(network(x), _call(x, False)) - - if tf.executing_eagerly(): - # In v2, construction still works when no `training` is specified - # When no value passed during construction, it uses the local - # default. - inputs = input_layer_lib.Input(10) - outputs = my_layer(inputs) - network = functional.Functional(inputs, outputs) - self.assertAllEqual(network(x, training=True), _call(x, True)) - self.assertAllEqual(network(x, training=False), _call(x, False)) - self.assertAllEqual(network(x), _call(x, True)) # Use local default - - # `None` value passed positionally during construction is ignored at - # runtime - inputs = input_layer_lib.Input(10) - outputs = my_layer(inputs, None) - network = functional.Functional(inputs, outputs) - self.assertAllEqual(network(x, training=True), _call(x, True)) - self.assertAllEqual(network(x, training=False), _call(x, False)) - if tf.executing_eagerly(): - self.assertAllEqual(network(x), _call(x, True)) # Use local default - else: - # in v1 training would have defaulted to using the `None` inside the - # layer if training is not passed at runtime - self.assertAllEqual(network(x), _call(x, None)) - - # `None` value passed as kwarg during construction is ignored at - # runtime. - inputs = input_layer_lib.Input(10) - outputs = my_layer(inputs, training=None) - network = functional.Functional(inputs, outputs) - self.assertAllEqual(network(x, training=True), _call(x, True)) - self.assertAllEqual(network(x, training=False), _call(x, False)) - if tf.executing_eagerly(): - self.assertAllEqual(network(x), _call(x, True)) # Use local default - else: - # in v1 training would have defaulted to using the `None` inside the - # layer if training is not passed at runtime - self.assertAllEqual(network(x), _call(x, None)) - - -class InputsOutputsErrorTest(test_combinations.TestCase): - @test_utils.enable_v2_dtype_behavior - def test_input_error(self): - inputs = input_layer_lib.Input((10,)) - outputs = layers.Dense(10)(inputs) - with self.assertRaisesRegex( - TypeError, "('Keyword argument not understood:', 'input')" - ): - models.Model(input=inputs, outputs=outputs) - - @test_utils.enable_v2_dtype_behavior - def test_output_error(self): - inputs = input_layer_lib.Input((10,)) - outputs = layers.Dense(10)(inputs) - with self.assertRaisesRegex( - TypeError, "('Keyword argument not understood:', 'output')" - ): - models.Model(inputs=inputs, output=outputs) - - def test_input_spec(self): - if not tf.executing_eagerly(): - return - inputs = input_layer_lib.Input((10,)) - outputs = layers.Dense(10)(inputs) - model = models.Model(inputs, outputs) - with self.assertRaisesRegex(ValueError, r".*expected shape=.*"): - model(np.zeros((3, 11))) - - def test_input_spec_list_of_inputs(self): - if not tf.executing_eagerly(): - return - input_1 = input_layer_lib.Input((10,), name="1") - input_2 = input_layer_lib.Input((5,), name="2") - x = layers.Concatenate()([input_1, input_2]) - outputs = layers.Dense(10)(x) - model = models.Model([input_1, input_2], outputs) - with self.assertRaisesRegex(ValueError, r".*expects 2 input.*"): - model(np.zeros((3, 10))) - with self.assertRaisesRegex(ValueError, r".*expects 2 input.*"): - model([np.zeros((3, 10)), np.zeros((3, 5)), np.zeros((3, 10))]) - with self.assertRaisesRegex(ValueError, r".*expected shape=.*"): - model([np.zeros((3, 10)), np.zeros((3, 6))]) - - # Test passing data via dict keyed by input name - with self.assertRaisesRegex(ValueError, r"Missing data for input.*"): - model({"1": np.zeros((3, 10))}) - with self.assertRaisesRegex(ValueError, r".*expected shape=.*"): - model({"1": np.zeros((3, 10)), "2": np.zeros((3, 6))}) - - def test_input_spec_dict(self): - if not tf.executing_eagerly(): - return - input_1 = input_layer_lib.Input((10,)) - input_2 = input_layer_lib.Input((5,)) - x = layers.Concatenate()([input_1, input_2]) - outputs = layers.Dense(10)(x) - model = models.Model({"1": input_1, "2": input_2}, outputs) - with self.assertRaisesRegex(ValueError, r"Missing data for input.*"): - model({"1": np.zeros((3, 10))}) - with self.assertRaisesRegex(ValueError, r".*expected shape=.*"): - model({"1": np.zeros((3, 10)), "2": np.zeros((3, 6))}) - - -class FunctionalSubclassModel(training_lib.Model): - def __init__(self, *args, **kwargs): - self.foo = {"foo": "bar"} # Make sure users can assign dict attributes - my_input = input_layer_lib.Input(shape=(16,)) - dense = layers.Dense(32, activation="relu") - output = dense(my_input) - outputs = {"output": output} - super().__init__(inputs=[my_input], outputs=outputs, *args, **kwargs) - - -class MixinClass: - def __init__(self, foo, **kwargs): - self._foo = foo - super().__init__(**kwargs) - - def get_foo(self): - return self._foo - - -class SubclassedModel(training_lib.Model): - def __init__(self, bar, **kwargs): - self._bar = bar - super().__init__(**kwargs) - - def get_bar(self): - return self._bar - - -class MultipleInheritanceModelTest(test_combinations.TestCase): - def testFunctionalSubclass(self): - m = FunctionalSubclassModel() - # Some smoke test for the weights and output shape of the model - self.assertLen(m.weights, 2) - self.assertEqual(m.outputs[0].shape.as_list(), [None, 32]) - - def testFunctionalSubclassPreMixin(self): - class MixedFunctionalSubclassModel(MixinClass, FunctionalSubclassModel): - pass - - m = MixedFunctionalSubclassModel(foo="123") - self.assertTrue(m._is_graph_network) - self.assertLen(m.weights, 2) - self.assertEqual(m.outputs[0].shape.as_list(), [None, 32]) - self.assertEqual(m.get_foo(), "123") - - def testFunctionalSubclassPostMixin(self): - # Make sure the the mixin class is also init correct when the order - # changed. - - class MixedFunctionalSubclassModel(FunctionalSubclassModel, MixinClass): - pass - - m = MixedFunctionalSubclassModel(foo="123") - self.assertTrue(m._is_graph_network) - self.assertLen(m.weights, 2) - self.assertEqual(m.outputs[0].shape.as_list(), [None, 32]) - self.assertEqual(m.get_foo(), "123") - - def testSubclassModelPreMixin(self): - class MixedSubclassModel(MixinClass, SubclassedModel): - pass - - m = MixedSubclassModel(foo="123", bar="456") - self.assertFalse(m._is_graph_network) - self.assertEqual(m.get_foo(), "123") - self.assertEqual(m.get_bar(), "456") - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/functional_utils.py b/keras/engine/functional_utils.py deleted file mode 100644 index bfc4acc4104..00000000000 --- a/keras/engine/functional_utils.py +++ /dev/null @@ -1,260 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities for keras functional model.""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import input_layer as input_layer_module -from keras.engine import keras_tensor -from keras.engine import node as node_module - -_KERAS_TENSOR_TYPE_CHECK_ERROR_MSG = ( - "Found unexpected instance while processing input tensors for keras " - "functional model. Expecting KerasTensor which is from tf.keras.Input() " - "or output from keras layer call(). Got: {}" -) - - -def is_input_keras_tensor(tensor): - """Check if tensor is directly generated from `tf.keras.Input`. - - This check is useful when constructing the functional model, since we will - need to clone Nodes and KerasTensors if the model is building from non input - tensor. - - Args: - tensor: A `KerasTensor` as inputs to the functional model. - - Returns: - bool. Whether the tensor is directly generated from `tf.keras.Input`. - - Raises: - ValueError: if the tensor is not a KerasTensor instance. - """ - if not node_module.is_keras_tensor(tensor): - raise ValueError(_KERAS_TENSOR_TYPE_CHECK_ERROR_MSG.format(tensor)) - return tensor.node.is_input - - -def find_nodes_by_inputs_and_outputs(inputs, outputs): - """Fetch all Nodes in the graph defined by "inputs" and "outputs". - - This method is used to find and then clone Nodes when creating a new - sub-model from an existing functional model. - - Args: - inputs: A nested structure of KerasTensor to use as model inputs. - outputs: A nested structure of KerasTensor to use as model outputs. - - Returns: - A list of Nodes that are connected to the inputs and outputs. - - Raises: - ValueError: when inputs and outputs are disconnected or in case of - unexpected objects in the inputs/outputs. - """ - # We walk the graph bottom up, starting from output nodes, and keep tracing - # the upstream node, until we find all the inputs nodes. We don't use top - # down search here since we don't know whether a certain node is in the - # graph between inputs and outputs, e.g. a functional graph could have - # multiple outputs, and the user could choose a subset of them to build the - # model. The bottom up approach will ensure all the nodes we visit are - # actually in use. If we reach the top and didn't find the nodes in the - # `inputs`, that's an error, since the user didn't specify the correct - # inputs. - start_keras_tensors = tf.nest.flatten(outputs) - end_keras_tensors = tf.nest.flatten(inputs) - - for t in start_keras_tensors + end_keras_tensors: - if not node_module.is_keras_tensor(t): - raise ValueError(_KERAS_TENSOR_TYPE_CHECK_ERROR_MSG.format(t)) - end_ids = set([id(kt) for kt in end_keras_tensors]) - # Track all the end tensors we found so far, if we didn't reach all the - # user-specified keras inputs after we finish the search, then that's an - # error since the inputs are disconnected from the outputs. - end_ids_found = set() - - nodes_to_visit = [] - nodes_in_graph = [] - node_id_visited = set() - for t in start_keras_tensors: - nodes_to_visit.append(t.node) - - while nodes_to_visit: - node = nodes_to_visit.pop(0) - if id(node) in node_id_visited: - continue - node_id_visited.add(id(node)) - nodes_in_graph.append(node) - # Any input keras_tensor that produce the current node. - for kt in node.keras_inputs: - if id(kt) in end_ids: - # We found the inputs of the model, stop tracing upstream nodes - end_ids_found.add(id(kt)) - continue - - inbound_node = kt.node - # In case this is the tf.keras.Input node, we have reached the end - # of the tracing of upstream nodes. Any further tracing will just be - # an infinite loop. we should raise an error here since we didn't - # find the input in the user-specified inputs. - if inbound_node.is_input: - raise ValueError( - "Found input tensor cannot be reached given provided " - "output tensors. Please make sure the tensor {} is " - "included in the model inputs when building " - "functional model.".format(kt) - ) - nodes_to_visit.append(inbound_node) - - # Do a final check and make sure we have reached all the user-specified - # inputs - if end_ids != end_ids_found: - unvisited_inputs = [ - kt for kt in end_keras_tensors if id(kt) not in end_ids_found - ] - raise ValueError( - "Found unvisited input tensors that are disconnected from " - "the outputs: {}".format(unvisited_inputs) - ) - return nodes_in_graph - - -def clone_graph_nodes(inputs, outputs): - """Clone the `Node` between the inputs and output tensors. - - This function is used to create a new functional model from any intermediate - keras tensors. The clone of the nodes mimic the behavior of reconstructing - the functional graph network by re-executing all the __call__ methods. The - cloned nodes will be appended to the layers. - - Note that a new tf.keras.Inputs will be created for any items in the - `inputs` - - Args: - inputs: A nested structure of keras_tensors. - outputs: A nested structure of keras_tensors. - - Returns: - A pair of inputs and outputs, with cloned keras_tensors. They can be used - to create a new functional model. - """ - nodes_to_clone = find_nodes_by_inputs_and_outputs(inputs, outputs) - cloned_inputs = [] - cloned_outputs = [] - # We not only need to create copies of Nodes (mimic the calls), also need to - # clone keras_tensors to avoid the override of _keras_history attached on - # the keras_tensor. The following dict is used to track any keras tensor we - # cloned The key is the string ID of the original keras tensor, and value is - # the cloned keras_tensor instance. - kt_id_mapping = {} - - for kt_input in tf.nest.flatten(inputs): - if kt_input.node.is_input: - # For any existing keras_tensor from tf.keras.Input, we leave them - # as is. - cloned_inputs.append(kt_input) - kt_id_mapping[id(kt_input)] = kt_input - else: - # We need to create a new tf.keras.Input for any intermediate - # keras_tensor - cpy = _clone_keras_tensor(kt_input) - cloned_input = input_layer_module.Input(tensor=cpy) - cloned_inputs.append(cloned_input) - kt_id_mapping[id(kt_input)] = cloned_input - cloned_inputs = tf.nest.pack_sequence_as(inputs, cloned_inputs) - - for kt_output in tf.nest.flatten(outputs): - cpy = _clone_keras_tensor(kt_output) - # We reuse the _keras_history here, which contains the old information. - # It is used in the Node constructor to check if the tensor - # "is_keras_tensor()" The history will be override by the Node - # constructor anyway for the corresponding layer output anyway. - cpy._keras_history = kt_output._keras_history - cloned_outputs.append(cpy) - kt_id_mapping[id(kt_output)] = cpy - cloned_outputs = tf.nest.pack_sequence_as(outputs, cloned_outputs) - - for node in nodes_to_clone: - # Clone any keras_tensors to avoid override of _keras_history - # Or reuse an existing keras_tensor if it has already been cloned. - output_copy = clone_keras_tensors(node.output_tensors, kt_id_mapping) - call_args_copy = clone_keras_tensors(node.call_args, kt_id_mapping) - call_kwargs_copy = clone_keras_tensors(node.call_kwargs, kt_id_mapping) - # Creating new nodes based on the existing node information. Node wires - # itself to inbound and outbound layers. The Node constructor actually - # updates this layer's self._inbound_nodes, sets _keras_history on the - # outputs, and adds itself to the `_outbound_nodes` of the layers that - # produced the inputs to this layer call. - node_module.Node( - node.layer, - call_args=call_args_copy, - call_kwargs=call_kwargs_copy, - outputs=output_copy, - ) - return cloned_inputs, cloned_outputs - - -def clone_keras_tensors(args, keras_tensor_mapping): - """Clone the keras tensors from the inputs. - - For any KerasTensor instance in the `args`, a new copy of KerasTensor will - be created if it has not been cloned yet (by checking the - `keras_tensor_mapping`). For any other types, the instance will be - unchanged. This function is useful for cloning the Nodes since KerasTensor - can't be reused across the models. - - Args: - args: A nested structure of objects, which could contain KerasTensor. - keras_tensor_mapping: A dict contains the ID of original KerasTensor, and - the cloned KerasTensor instance. The dict will be updated with newly - copied KerasTensor instances within this method. - Returns: - Same structure as inputs, with KerasTensor cloned. - """ - result = [] - for obj in tf.nest.flatten(args): - if node_module.is_keras_tensor(obj): - if id(obj) in keras_tensor_mapping: - cpy = keras_tensor_mapping[id(obj)] - else: - # Create copy of keras_tensor if we haven't done it before - cpy = _clone_keras_tensor(obj) - cpy._keras_history = obj._keras_history - keras_tensor_mapping[id(obj)] = cpy - result.append(cpy) - else: - result.append(obj) - return tf.nest.pack_sequence_as(args, result) - - -def _clone_keras_tensor(kt): - """Create an identical keras_tensor based on the input. - - We use keras_tensor_to_placeholder and keras_tensor_from_tensor to make sure - inferred shape are not lost during the copy. - - Args: - kt: the input KerasTensor. - - Returns: - An identical copy of the input KerasTensor. - """ - # Create a scratch graph since we don't intend to use the placeholders. - with backend._scratch_graph() as scratch_graph: - with scratch_graph.as_default(): - placeholder = keras_tensor.keras_tensor_to_placeholder(kt) - return keras_tensor.keras_tensor_from_tensor(placeholder) diff --git a/keras/engine/functional_utils_test.py b/keras/engine/functional_utils_test.py deleted file mode 100644 index cf771e39267..00000000000 --- a/keras/engine/functional_utils_test.py +++ /dev/null @@ -1,235 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ,============================================================================ -"""Tests for functional_utils.""" - -import collections -import os - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import layers -from keras import models -from keras.engine import functional_utils -from keras.engine import input_layer as input_layer_lib -from keras.testing_infra import test_combinations - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class FunctionalModelSlideTest(test_combinations.TestCase): - def test_find_nodes_by_inputs_and_outputs(self): - inputs = input_layer_lib.Input((10,)) - unconnected_inputs = input_layer_lib.Input((10,)) - x = layers.Dense(8)(inputs) - y = layers.Dense(6)(x) - output = layers.Dense(4)(y) - - nodes_in_graph = functional_utils.find_nodes_by_inputs_and_outputs( - x, output - ) - self.assertLen(nodes_in_graph, 2) - expected_nodes = [output.node, y.node] - self.assertCountEqual(nodes_in_graph, expected_nodes) - - # Make sure we raise error if we specify invalid input/output pair - with self.assertRaisesRegex( - ValueError, "Found input tensor cannot be reached" - ): - functional_utils.find_nodes_by_inputs_and_outputs(output, x) - - with self.assertRaisesRegex( - ValueError, "Found input tensor cannot be reached" - ): - functional_utils.find_nodes_by_inputs_and_outputs( - unconnected_inputs, output - ) - - with self.assertRaisesRegex( - ValueError, "Found unvisited input tensors that are disconnected" - ): - functional_utils.find_nodes_by_inputs_and_outputs( - [inputs, unconnected_inputs], output - ) - - def test_find_nodes_by_inputs_and_outputs_with_complicated_network(self): - input1 = input_layer_lib.Input((10,)) - input2 = input_layer_lib.Input((10,)) - input3 = input_layer_lib.Input((10,)) - unconnected_input = input_layer_lib.Input((10,)) - - dense1 = layers.Dense(4, name="dense1") - dense2 = layers.Dense(4, name="dense2") - # dense1 are shared between input1 and input2 - a = dense1(input1) - b = dense1(input2) - - c = layers.Add()([a, b]) - d = dense2(input3) - e = layers.Add()([c, d]) - # There are 5 nodes (invoke of __call__) in the graph. - - nodes = functional_utils.find_nodes_by_inputs_and_outputs(input1, a) - self.assertCountEqual(nodes, [a.node]) - - nodes = functional_utils.find_nodes_by_inputs_and_outputs(input2, b) - self.assertCountEqual(nodes, [b.node]) - - nodes = functional_utils.find_nodes_by_inputs_and_outputs( - [input2, input1], c - ) - # This should contains 2 dense call and 1 add - self.assertCountEqual(nodes, [a.node, b.node, c.node]) - - # Missing input3 - with self.assertRaisesRegex( - ValueError, "Found input tensor cannot be reached" - ): - functional_utils.find_nodes_by_inputs_and_outputs( - [input1, input2], e - ) - - nodes = functional_utils.find_nodes_by_inputs_and_outputs( - [input1, input2, input3], e - ) - self.assertCountEqual(nodes, [a.node, b.node, c.node, d.node, e.node]) - - # Make sure we can create from intermediate tensors - nodes = functional_utils.find_nodes_by_inputs_and_outputs( - [a, b, input3], e - ) - self.assertCountEqual(nodes, [c.node, d.node, e.node]) - # Also make sure we can add intermediate outputs - nodes = functional_utils.find_nodes_by_inputs_and_outputs( - [a, b, input3], [d, e] - ) - self.assertCountEqual(nodes, [c.node, d.node, e.node]) - - # input1 and 2 are not needed for computing d - with self.assertRaisesRegex( - ValueError, "Found unvisited input tensors that are disconnected" - ): - functional_utils.find_nodes_by_inputs_and_outputs( - [input1, input2, input3], d - ) - - with self.assertRaisesRegex( - ValueError, "Found unvisited input tensors that are disconnected" - ): - functional_utils.find_nodes_by_inputs_and_outputs( - [a, b, input3, unconnected_input], [e, d, c] - ) - - def test_build_model_from_intermediate_tensor(self): - batch_size = 4 - inputs = input_layer_lib.Input(shape=(8,)) - layer1 = layers.Dense(32) - layer2 = layers.Dense(16) - x = layer1(inputs) - y = layer2(x) - model = models.Model(x, y) - # Make sure a new node is attached to layer2, which mimic y = layer2(x) - self.assertLen(layer2.inbound_nodes, 2) - - self.assertIsInstance(model, models.Model) - # The model only contains 1 dense layer and 1 input layer. - self.assertLen(model.layers, 2) - self.assertIs(model.layers[1], layer2) - - model.compile("rmsprop", "mse") - model.fit( - np.random.randn(batch_size, 32), np.random.randn(batch_size, 16) - ) - # Test for model saving - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format="tf") - loaded_model = models.load_model(output_path) - self.assertEqual(model.summary(), loaded_model.summary()) - - # Also make sure the original inputs and y can still be used to build - # model - new_model = models.Model(inputs, y) - # Make sure no new node is attached to layer2 - self.assertLen(layer2.inbound_nodes, 2) - - self.assertLen(new_model.layers, 3) - self.assertIs(new_model.layers[1], layer1) - self.assertIs(new_model.layers[2], layer2) - - def test_build_model_from_intermediate_tensor_with_complicated_model(self): - # The topology is like below: - # input1 -> dense1 -> a - # + -> c - + --> d - + --> output - # input2 -> dense1 -> b -------^ ^ - # input3 -> dense2 -> e -----------------| - batch_size = 8 - input1 = input_layer_lib.Input((2,)) - input2 = input_layer_lib.Input((2,)) - input3 = input_layer_lib.Input((8,)) - - dense1 = layers.Dense(8, name="dense1") - dense2 = layers.Dense(8, name="dense2") - - # dense1 are shared between input1 and input2 - a = dense1(input1) - b = dense1(input2) - - c = layers.Add()([a, b]) - # d has a residual connection from b. - d = layers.Add()([b, c]) - e = dense2(input3) - output = layers.Add()([d, e]) - - # We skip the input2 here and use b instead. - model = models.Model([input1, b, input3], output) - # Make sure we have 8 layers, 3 for inputs, 2 for dense and 3 for Add. - # Note that dense1 is still in use by input1. - self.assertLen(model.layers, 8) - # Since the layers are not ordered, let's check class of the layers to - # make sure it match the expectation. - class_count = collections.Counter([l.__class__ for l in model.layers]) - self.assertEqual(class_count[input_layer_lib.InputLayer], 3) - self.assertEqual(class_count[layers.Dense], 2) - self.assertEqual(class_count[layers.Add], 3) - - model.compile("rmsprop", "mse") - model.fit( - [ - np.random.randn(batch_size, 2), - np.random.randn(batch_size, 8), # The shape of b is (batch, 8) - np.random.randn(batch_size, 8), - ], - np.random.randn(batch_size, 8), - ) - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format="tf") - loaded_model = models.load_model(output_path) - self.assertEqual(model.summary(), loaded_model.summary()) - - model2 = models.Model([a, b], d) - # 2 input layers and 2 Add layer. - self.assertLen(model2.layers, 4) - class_count = collections.Counter([l.__class__ for l in model2.layers]) - self.assertEqual(class_count[input_layer_lib.InputLayer], 2) - self.assertEqual(class_count[layers.Add], 2) - - model2.compile("rmsprop", "mse") - model2.fit( - [np.random.randn(batch_size, 8), np.random.randn(batch_size, 8)], - np.random.randn(batch_size, 8), - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/input_layer.py b/keras/engine/input_layer.py deleted file mode 100644 index b4f57818fb3..00000000000 --- a/keras/engine/input_layer.py +++ /dev/null @@ -1,463 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Input layer code (`Input` and `InputLayer`).""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.distribute import distributed_training_utils -from keras.engine import base_layer -from keras.engine import keras_tensor -from keras.engine import node as node_module -from keras.saving import serialization_lib -from keras.saving.legacy.saved_model import layer_serialization -from keras.utils import tf_utils -from keras.utils import traceback_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -def _assert_other_arg_none(arg_name, arg): - if arg is not None: - raise ValueError( - "When `type_spec` is not None, all other args " - "except `name` must be None, " - "but %s is not None." % arg_name - ) - - -@keras_export("keras.layers.InputLayer") -class InputLayer(base_layer.Layer): - """Layer to be used as an entry point into a Network (a graph of layers). - - It can either wrap an existing tensor (pass an `input_tensor` argument) - or create a placeholder tensor (pass arguments `input_shape`, and - optionally, `dtype`). - - It is generally recommend to use the Keras Functional model via `Input`, - (which creates an `InputLayer`) without directly using `InputLayer`. - - When using `InputLayer` with the Keras Sequential model, it can be skipped - by moving the `input_shape` parameter to the first layer after the - `InputLayer`. - - This class can create placeholders for `tf.Tensors`, `tf.SparseTensors`, and - `tf.RaggedTensors` by choosing `sparse=True` or `ragged=True`. Note that - `sparse` and `ragged` can't be configured to `True` at the same time. - Usage: - - ```python - # With explicit InputLayer. - model = tf.keras.Sequential([ - tf.keras.layers.InputLayer(input_shape=(4,)), - tf.keras.layers.Dense(8)]) - model.compile(tf.keras.optimizers.RMSprop(0.001), loss='mse') - model.fit(np.zeros((10, 4)), - np.ones((10, 8))) - - # Without InputLayer and let the first layer to have the input_shape. - # Keras will add a input for the model behind the scene. - model = tf.keras.Sequential([ - tf.keras.layers.Dense(8, input_shape=(4,))]) - model.compile(tf.keras.optimizers.RMSprop(0.001), loss='mse') - model.fit(np.zeros((10, 4)), - np.ones((10, 8))) - ``` - - Args: - input_shape: Shape tuple (not including the batch axis), or - `TensorShape` instance (not including the batch axis). - batch_size: Optional input batch size (integer or `None`). - dtype: Optional datatype of the input. When not provided, the Keras - default `float` type will be used. - input_tensor: Optional tensor to use as layer input. If set, the layer - will use the `tf.TypeSpec` of this tensor rather - than creating a new placeholder tensor. - sparse: Boolean, whether the placeholder created is meant to be sparse. - Defaults to `False`. - ragged: Boolean, whether the placeholder created is meant to be ragged. - In this case, values of `None` in the `shape` argument represent - ragged dimensions. For more information about `tf.RaggedTensor`, see - [this guide](https://www.tensorflow.org/guide/ragged_tensor). - Defaults to `False`. - type_spec: A `tf.TypeSpec` object to create Input from. This - `tf.TypeSpec` represents the entire batch. When provided, all other - args except name must be `None`. - name: Optional name of the layer (string). - """ - - @traceback_utils.filter_traceback - def __init__( - self, - input_shape=None, - batch_size=None, - dtype=None, - input_tensor=None, - sparse=None, - name=None, - ragged=None, - type_spec=None, - **kwargs, - ): - self._init_input_shape = input_shape - self._init_batch_size = batch_size - self._init_dtype = dtype - self._init_sparse = sparse - self._init_ragged = ragged - self._init_type_spec = type_spec - - strategy = tf.distribute.get_strategy() - if ( - strategy - and batch_size is not None - and distributed_training_utils.global_batch_size_supported(strategy) - ): - if batch_size % strategy.num_replicas_in_sync != 0: - raise ValueError( - "The `batch_size` argument ({}) must be divisible by " - "the number of replicas ({})".format( - batch_size, strategy.num_replicas_in_sync - ) - ) - batch_size = batch_size // strategy.num_replicas_in_sync - - if "batch_input_shape" in kwargs: - batch_input_shape = kwargs.pop("batch_input_shape") - if input_shape and batch_input_shape: - raise ValueError( - "Only provide the input_shape OR " - "batch_input_shape argument to " - "InputLayer, not both at the same time." - ) - # Set the input shape and batch size from the batch_input_shape. - # Note that batch_input_shape can be None (unknown rank) or [] - # (scalar), in which case the batch size must be None. - if batch_input_shape: - batch_size = batch_input_shape[0] - input_shape = batch_input_shape[1:] - if kwargs: - raise ValueError( - f"Unrecognized keyword arguments: {list(kwargs.keys())}" - ) - - if sparse and ragged: - raise ValueError( - "Cannot set both sparse and ragged to True in a Keras input." - ) - - if not name: - prefix = "input" - name = prefix + "_" + str(backend.get_uid(prefix)) - - if not dtype: - if input_tensor is None: - dtype = backend.floatx() - else: - dtype = backend.dtype(input_tensor) - elif input_tensor is not None and input_tensor.dtype != dtype: - raise ValueError( - "`input_tensor.dtype` differs from `dtype`. Received: " - f"input_tensor.dtype={input_tensor.dtype} " - f"but expected dtype={dtype}" - ) - super().__init__(dtype=dtype, name=name) - self.built = True - self.sparse = True if sparse else False - self.ragged = True if ragged else False - self.batch_size = batch_size - self.supports_masking = True - - if isinstance(input_shape, tf.TensorShape): - input_shape = tuple(input_shape.as_list()) - elif isinstance(input_shape, int): - input_shape = (input_shape,) - - if type_spec is not None: - args_that_must_be_none = [ - ("(input_)shape", self._init_input_shape), - ("batch_size", self._init_batch_size), - ("dtype", self._init_dtype), - ("input_tensor", input_tensor), - ("sparse", self._init_sparse), - ("ragged", self._init_ragged), - ] - for arg_name, arg in args_that_must_be_none: - _assert_other_arg_none(arg_name, arg) - if not tf.compat.v1.executing_eagerly_outside_functions(): - raise ValueError( - "Creating Keras inputs from a type_spec is only " - "supported when eager execution is enabled." - ) - # Needed for type_spec deserialization since TypeSpec objects - # are not Keras-native (not automatically deserialized). - if isinstance(type_spec, dict): - type_spec = serialization_lib.deserialize_keras_object( - type_spec - ) - input_tensor = keras_tensor.keras_tensor_from_type_spec(type_spec) - if isinstance(input_tensor, keras_tensor.SparseKerasTensor): - self.sparse = True - if isinstance(input_tensor, keras_tensor.RaggedKerasTensor): - self.ragged = True - self.is_placeholder = True - try: - self._batch_input_shape = tuple(input_tensor.shape.as_list()) - except ValueError: - # If the shape cannot be represented as a tuple (e.g. unknown - # rank) - self._batch_input_shape = None - elif input_tensor is None: - if input_shape is not None: - batch_input_shape = (batch_size,) + tuple(input_shape) - else: - batch_input_shape = None - graph = backend.get_graph() - with graph.as_default(): - input_tensor = backend.placeholder( - shape=batch_input_shape, - dtype=dtype, - name=self.name, - sparse=sparse, - ragged=ragged, - ) - - self.is_placeholder = True - self._batch_input_shape = batch_input_shape - else: - if tf.compat.v1.executing_eagerly_outside_functions(): - if not isinstance(input_tensor, keras_tensor.KerasTensor): - input_tensor = keras_tensor.keras_tensor_from_tensor( - input_tensor - ) - else: - if not tf_utils.is_symbolic_tensor(input_tensor): - raise ValueError( - "You should not pass an EagerTensor to `Input`. " - "For example, instead of creating an " - "`InputLayer`, you should instantiate your model " - "and directly call it on your input." - ) - self.is_placeholder = False - try: - self._batch_input_shape = tuple(input_tensor.shape.as_list()) - except ValueError: - # If the shape cannot be represented as a tuple (e.g. unknown - # rank) - self._batch_input_shape = None - # Create an input node. - input_tensor._keras_mask = None - node_module.Node(layer=self, outputs=input_tensor) - - # Store type spec - if isinstance(input_tensor, keras_tensor.KerasTensor) or ( - tf_utils.is_extension_type(input_tensor) - ): - self._type_spec = input_tensor._type_spec - else: - self._type_spec = tf.TensorSpec( - shape=input_tensor.shape, - dtype=input_tensor.dtype, - name=self.name, - ) - - def get_config(self): - if self._init_type_spec is not None: - config = {"name": self.name, "type_spec": self._init_type_spec} - else: - config = { - "batch_input_shape": self._batch_input_shape, - "dtype": self.dtype, - "sparse": self.sparse, - "ragged": self.ragged, - "name": self.name, - } - return config - - @property - def _trackable_saved_model_saver(self): - return layer_serialization.InputLayerSavedModelSaver(self) - - -@keras_export("keras.Input", "keras.layers.Input") -@traceback_utils.filter_traceback -def Input( - shape=None, - batch_size=None, - name=None, - dtype=None, - sparse=None, - tensor=None, - ragged=None, - type_spec=None, - **kwargs, -): - """`Input()` is used to instantiate a Keras tensor. - - A Keras tensor is a symbolic tensor-like object, which we augment with - certain attributes that allow us to build a Keras model just by knowing the - inputs and outputs of the model. - - For instance, if `a`, `b` and `c` are Keras tensors, - it becomes possible to do: - `model = Model(input=[a, b], output=c)` - - Args: - shape: A shape tuple (integers), not including the batch size. - For instance, `shape=(32,)` indicates that the expected input - will be batches of 32-dimensional vectors. Elements of this tuple - can be None; 'None' elements represent dimensions where the shape is - not known. - batch_size: optional static batch size (integer). - name: An optional name string for the layer. - Should be unique in a model (do not reuse the same name twice). - It will be autogenerated if it isn't provided. - dtype: The data type expected by the input, as a string - (`float32`, `float64`, `int32`...) - sparse: A boolean specifying whether the placeholder to be created is - sparse. Only one of 'ragged' and 'sparse' can be True. Note that, - if `sparse` is False, sparse tensors can still be passed into the - input - they will be densified with a default value of 0. - tensor: Optional existing tensor to wrap into the `Input` layer. - If set, the layer will use the `tf.TypeSpec` of this tensor rather - than creating a new placeholder tensor. - ragged: A boolean specifying whether the placeholder to be created is - ragged. Only one of 'ragged' and 'sparse' can be True. In this case, - values of 'None' in the 'shape' argument represent ragged - dimensions. For more information about RaggedTensors, see - [this guide](https://www.tensorflow.org/guide/ragged_tensor). - type_spec: A `tf.TypeSpec` object to create the input placeholder from. - When provided, all other args except name must be None. - **kwargs: deprecated arguments support. Supports `batch_shape` and - `batch_input_shape`. - - Returns: - A `tensor`. - - Example: - - ```python - # this is a logistic regression in Keras - x = Input(shape=(32,)) - y = Dense(16, activation='softmax')(x) - model = Model(x, y) - ``` - - Note that even if eager execution is enabled, - `Input` produces a symbolic tensor-like object (i.e. a placeholder). - This symbolic tensor-like object can be used with lower-level - TensorFlow ops that take tensors as inputs, as such: - - ```python - x = Input(shape=(32,)) - y = tf.square(x) # This op will be treated like a layer - model = Model(x, y) - ``` - - (This behavior does not work for higher-order TensorFlow APIs such as - control flow and being directly watched by a `tf.GradientTape`). - - However, the resulting model will not track any variables that were - used as inputs to TensorFlow ops. All variable usages must happen within - Keras layers to make sure they will be tracked by the model's weights. - - The Keras Input can also create a placeholder from an arbitrary - `tf.TypeSpec`, e.g: - - ```python - x = Input(type_spec=tf.RaggedTensorSpec(shape=[None, None], - dtype=tf.float32, ragged_rank=1)) - y = x.values - model = Model(x, y) - ``` - When passing an arbitrary `tf.TypeSpec`, it must represent the signature of - an entire batch instead of just one example. - - Raises: - ValueError: If both `sparse` and `ragged` are provided. - ValueError: If both `shape` and (`batch_input_shape` or `batch_shape`) are - provided. - ValueError: If `shape`, `tensor` and `type_spec` are None. - ValueError: If arguments besides `type_spec` are non-None while - `type_spec` is passed. - ValueError: if any unrecognized parameters are provided. - """ - if sparse and ragged: - raise ValueError( - "Cannot set both `sparse` and `ragged` to `True` in a " - "Keras `Input`." - ) - - has_spec_name = ( - name is None and type_spec is not None and hasattr(type_spec, "name") - ) - - if has_spec_name: - name = type_spec.name - - input_layer_config = { - "name": name, - "dtype": dtype, - "sparse": sparse, - "ragged": ragged, - "input_tensor": tensor, - "type_spec": type_spec, - } - - batch_input_shape = kwargs.pop( - "batch_input_shape", kwargs.pop("batch_shape", None) - ) - if shape is not None and batch_input_shape is not None: - raise ValueError( - "Only provide the `shape` OR `batch_input_shape` argument " - "to Input, not both at the same time." - ) - if ( - batch_input_shape is None - and shape is None - and tensor is None - and type_spec is None - ): - raise ValueError( - "Please provide to Input a `shape` " - "or a `tensor` or a `type_spec` argument. Note that " - "`shape` does not include the batch " - "dimension." - ) - if kwargs: - raise ValueError( - f"Unrecognized keyword arguments: {list(kwargs.keys())}" - ) - - if batch_input_shape: - shape = batch_input_shape[1:] - input_layer_config.update({"batch_input_shape": batch_input_shape}) - else: - input_layer_config.update( - {"batch_size": batch_size, "input_shape": shape} - ) - input_layer = InputLayer(**input_layer_config) - - # Return tensor including `_keras_history`. - # Note that in this case train_output and test_output are the same pointer. - outputs = input_layer._inbound_nodes[0].outputs - if isinstance(outputs, list) and len(outputs) == 1: - output = outputs[0] - else: - output = outputs - if has_spec_name and hasattr(output, "_name"): - output._name = input_layer.name - return output diff --git a/keras/engine/input_layer_test.py b/keras/engine/input_layer_test.py deleted file mode 100644 index 636d6aa4fae..00000000000 --- a/keras/engine/input_layer_test.py +++ /dev/null @@ -1,466 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ,============================================================================ -"""Tests for InputLayer construction.""" - - -import tensorflow.compat.v2 as tf - -from keras import Sequential -from keras import backend -from keras import models -from keras.engine import functional -from keras.engine import input_layer as input_layer_lib -from keras.layers import Dense -from keras.layers import core -from keras.saving.legacy import model_config -from keras.saving.serialization_lib import SafeModeScope -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.framework import type_spec -from tensorflow.python.framework import type_spec_registry - - -class TwoTensors(tf.__internal__.CompositeTensor): - """A simple value type to test TypeSpec. - - Contains two tensors (x, y) and a string (color). The color value is a - stand-in for any extra type metadata we might need to store. - - This value type contains no single dtype. - """ - - def __init__(self, x, y, color="red", assign_variant_dtype=False): - assert isinstance(color, str) - self.x = tf.convert_to_tensor(x) - self.y = tf.convert_to_tensor(y) - self.color = color - self.shape = tf.TensorShape(None) - self._shape = tf.TensorShape(None) - if assign_variant_dtype: - self.dtype = tf.variant - self._assign_variant_dtype = assign_variant_dtype - - def _type_spec(self): - return TwoTensorsSpecNoOneDtype( - self.x.shape, - self.x.dtype, - self.y.shape, - self.y.dtype, - color=self.color, - assign_variant_dtype=self._assign_variant_dtype, - ) - - -def as_shape(shape): - """Converts the given object to a TensorShape.""" - if isinstance(shape, tf.TensorShape): - return shape - else: - return tf.TensorShape(shape) - - -@type_spec_registry.register("tf.TwoTensorsSpec") -class TwoTensorsSpecNoOneDtype(tf.TypeSpec): - """A TypeSpec for the TwoTensors value type.""" - - def __init__( - self, - x_shape, - x_dtype, - y_shape, - y_dtype, - color="red", - assign_variant_dtype=False, - ): - self.x_shape = as_shape(x_shape) - self.x_dtype = tf.as_dtype(x_dtype) - self.y_shape = as_shape(y_shape) - self.y_dtype = tf.as_dtype(y_dtype) - self.color = color - self.shape = tf.TensorShape(None) - self._shape = tf.TensorShape(None) - if assign_variant_dtype: - self.dtype = tf.variant - self._assign_variant_dtype = assign_variant_dtype - - value_type = property(lambda self: TwoTensors) - - @property - def _component_specs(self): - return ( - tf.TensorSpec(self.x_shape, self.x_dtype), - tf.TensorSpec(self.y_shape, self.y_dtype), - ) - - def _to_components(self, value): - return (value.x, value.y) - - def _from_components(self, components): - x, y = components - return TwoTensors(x, y, self.color) - - def _serialize(self): - return ( - self.x_shape, - self.x_dtype, - self.y_shape, - self.y_dtype, - self.color, - ) - - @classmethod - def from_value(cls, value): - return cls( - value.x.shape, - value.x.dtype, - value.y.shape, - value.y.dtype, - value.color, - ) - - -type_spec.register_type_spec_from_value_converter( - TwoTensors, TwoTensorsSpecNoOneDtype.from_value -) - - -class InputLayerTest(test_combinations.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasicOutputShapeNoBatchSize(self): - # Create a Keras Input - x = input_layer_lib.Input(shape=(32,), name="input_a") - self.assertAllEqual(x.shape.as_list(), [None, 32]) - - # Verify you can construct and use a model w/ this input - model = functional.Functional(x, x * 2.0) - self.assertAllEqual(model(tf.ones((3, 32))), tf.ones((3, 32)) * 2.0) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasicOutputShapeWithBatchSize(self): - # Create a Keras Input - x = input_layer_lib.Input(batch_size=6, shape=(32,), name="input_b") - self.assertAllEqual(x.shape.as_list(), [6, 32]) - - # Verify you can construct and use a model w/ this input - model = functional.Functional(x, x * 2.0) - self.assertAllEqual(model(tf.ones(x.shape)), tf.ones(x.shape) * 2.0) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testBasicOutputShapeNoBatchSizeInTFFunction(self): - model = None - - @tf.function - def run_model(inp): - nonlocal model - if not model: - # Create a Keras Input - x = input_layer_lib.Input(shape=(8,), name="input_a") - self.assertAllEqual(x.shape.as_list(), [None, 8]) - - # Verify you can construct and use a model w/ this input - model = functional.Functional(x, x * 2.0) - return model(inp) - - self.assertAllEqual(run_model(tf.ones((10, 8))), tf.ones((10, 8)) * 2.0) - - @test_combinations.run_all_keras_modes - def testBasicOutputShapeWithBatchSizeAndNoneDimensionsPlaceholder(self): - x = input_layer_lib.Input((2, 3), batch_size=4, dtype=tf.float32) - model = functional.Functional(x, x * 2.0) - output = model(backend.placeholder(shape=[None, None, 3])) - # batch size and dimension defined in Input should not be applied - self.assertAllEqual(output.shape.as_list(), [None, None, 3]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testInputTensorArg(self): - # Create a Keras Input - x = input_layer_lib.Input(tensor=tf.zeros((7, 32))) - self.assertAllEqual(x.shape.as_list(), [7, 32]) - - # Verify you can construct and use a model w/ this input - model = functional.Functional(x, x * 2.0) - self.assertAllEqual(model(tf.ones(x.shape)), tf.ones(x.shape) * 2.0) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testInputTensorArgInTFFunction(self): - # We use a mutable model container instead of a model python variable, - # because python 2.7 does not have `nonlocal` - model_container = {} - - @tf.function - def run_model(inp): - if not model_container: - # Create a Keras Input - x = input_layer_lib.Input(tensor=tf.zeros((10, 16))) - self.assertAllEqual(x.shape.as_list(), [10, 16]) - - # Verify you can construct and use a model w/ this input - model_container["model"] = functional.Functional(x, x * 3.0) - return model_container["model"](inp) - - self.assertAllEqual( - run_model(tf.ones((10, 16))), tf.ones((10, 16)) * 3.0 - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testCompositeInputTensorArg(self): - # Create a Keras Input - rt = tf.RaggedTensor.from_row_splits( - values=[3, 1, 4, 1, 5, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8] - ) - x = input_layer_lib.Input(tensor=rt) - - # Verify you can construct and use a model w/ this input - model = functional.Functional(x, x * 2) - - # And that the model works - rt = tf.RaggedTensor.from_row_splits( - values=[3, 21, 4, 1, 53, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8] - ) - self.assertAllEqual(model(rt), rt * 2) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testCompositeInputTensorArgInTFFunction(self): - # We use a mutable model container instead of a model python variable, - # because python 2.7 does not have `nonlocal` - model_container = {} - - @tf.function - def run_model(inp): - if not model_container: - # Create a Keras Input - rt = tf.RaggedTensor.from_row_splits( - values=[3, 1, 4, 1, 5, 9, 2, 6], - row_splits=[0, 4, 4, 7, 8, 8], - ) - x = input_layer_lib.Input(tensor=rt) - - # Verify you can construct and use a model w/ this input - model_container["model"] = functional.Functional(x, x * 3) - return model_container["model"](inp) - - # And verify the model works - rt = tf.RaggedTensor.from_row_splits( - values=[3, 21, 4, 1, 53, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8] - ) - self.assertAllEqual(run_model(rt), rt * 3) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testNoMixingArgsWithTypeSpecArg(self): - with self.assertRaisesRegexp( - ValueError, "all other args except `name` must be None" - ): - input_layer_lib.Input( - shape=(4, 7), type_spec=tf.TensorSpec((2, 7, 32), tf.float32) - ) - with self.assertRaisesRegexp( - ValueError, "all other args except `name` must be None" - ): - input_layer_lib.Input( - batch_size=4, type_spec=tf.TensorSpec((7, 32), tf.float32) - ) - with self.assertRaisesRegexp( - ValueError, "all other args except `name` must be None" - ): - input_layer_lib.Input( - dtype=tf.int64, type_spec=tf.TensorSpec((7, 32), tf.float32) - ) - with self.assertRaisesRegexp( - ValueError, "all other args except `name` must be None" - ): - input_layer_lib.Input( - sparse=True, type_spec=tf.TensorSpec((7, 32), tf.float32) - ) - with self.assertRaisesRegexp( - ValueError, "all other args except `name` must be None" - ): - input_layer_lib.Input( - ragged=True, type_spec=tf.TensorSpec((7, 32), tf.float32) - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testTypeSpecArg(self): - # Create a Keras Input - x = input_layer_lib.Input(type_spec=tf.TensorSpec((7, 32), tf.float32)) - self.assertAllEqual(x.shape.as_list(), [7, 32]) - - # Verify you can construct and use a model w/ this input - model = functional.Functional(x, x * 2.0) - self.assertAllEqual(model(tf.ones(x.shape)), tf.ones(x.shape) * 2.0) - - # Test serialization / deserialization - model = functional.Functional.from_config(model.get_config()) - self.assertAllEqual(model(tf.ones(x.shape)), tf.ones(x.shape) * 2.0) - - model = model_config.model_from_json(model.to_json()) - self.assertAllEqual(model(tf.ones(x.shape)), tf.ones(x.shape) * 2.0) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testTypeSpecArgInTFFunction(self): - # We use a mutable model container instead of a model python variable, - # because python 2.7 does not have `nonlocal` - model_container = {} - - @tf.function - def run_model(inp): - if not model_container: - # Create a Keras Input - x = input_layer_lib.Input( - type_spec=tf.TensorSpec((10, 16), tf.float32) - ) - self.assertAllEqual(x.shape.as_list(), [10, 16]) - - # Verify you can construct and use a model w/ this input - model_container["model"] = functional.Functional(x, x * 3.0) - return model_container["model"](inp) - - self.assertAllEqual( - run_model(tf.ones((10, 16))), tf.ones((10, 16)) * 3.0 - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testCompositeTypeSpecArg(self): - # Create a Keras Input - rt = tf.RaggedTensor.from_row_splits( - values=[3, 1, 4, 1, 5, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8] - ) - x = input_layer_lib.Input(type_spec=rt._type_spec) - - # Verify you can construct and use a model w/ this input - model = functional.Functional(x, x * 2) - - # And that the model works - rt = tf.RaggedTensor.from_row_splits( - values=[3, 21, 4, 1, 53, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8] - ) - self.assertAllEqual(model(rt), rt * 2) - - # Test serialization / deserialization - model = functional.Functional.from_config(model.get_config()) - self.assertAllEqual(model(rt), rt * 2) - model = model_config.model_from_json(model.to_json()) - self.assertAllEqual(model(rt), rt * 2) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testCompositeTypeSpecArgInTFFunction(self): - # We use a mutable model container instead of a model pysthon variable, - # because python 2.7 does not have `nonlocal` - model_container = {} - - @tf.function - def run_model(inp): - if not model_container: - # Create a Keras Input - rt = tf.RaggedTensor.from_row_splits( - values=[3, 1, 4, 1, 5, 9, 2, 6], - row_splits=[0, 4, 4, 7, 8, 8], - ) - x = input_layer_lib.Input(type_spec=rt._type_spec) - - # Verify you can construct and use a model w/ this input - model_container["model"] = functional.Functional(x, x * 3) - return model_container["model"](inp) - - # And verify the model works - rt = tf.RaggedTensor.from_row_splits( - values=[3, 21, 4, 1, 53, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8] - ) - self.assertAllEqual(run_model(rt), rt * 3) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testCompositeTypeSpecArgWithoutDtype(self): - for assign_variant_dtype in [False, True]: - # Create a Keras Input - spec = TwoTensorsSpecNoOneDtype( - (1, 2, 3), - tf.float32, - (1, 2, 3), - tf.int64, - assign_variant_dtype=assign_variant_dtype, - ) - x = input_layer_lib.Input(type_spec=spec) - - def lambda_fn(tensors): - return tf.cast(tensors.x, tf.float64) + tf.cast( - tensors.y, tf.float64 - ) - - # Verify you can construct and use a model w/ this input - model = functional.Functional(x, core.Lambda(lambda_fn)(x)) - - # And that the model works - two_tensors = TwoTensors(tf.ones((1, 2, 3)) * 2.0, tf.ones(1, 2, 3)) - self.assertAllEqual(model(two_tensors), lambda_fn(two_tensors)) - - # Test serialization / deserialization - with SafeModeScope(safe_mode=False): - model = functional.Functional.from_config(model.get_config()) - self.assertAllEqual(model(two_tensors), lambda_fn(two_tensors)) - model = model_config.model_from_json(model.to_json()) - self.assertAllEqual(model(two_tensors), lambda_fn(two_tensors)) - - def test_serialize_with_unknown_rank(self): - inp = backend.placeholder(shape=None, dtype=tf.string) - x = input_layer_lib.InputLayer(input_tensor=inp, dtype=tf.string) - loaded = input_layer_lib.InputLayer.from_config(x.get_config()) - self.assertIsNone(loaded._batch_input_shape) - - @test_utils.run_v2_only - def test_typespec_naming_propagation(self): - type_spec = tf.TensorSpec(name="test", shape=(None, None, 2)) - input1 = input_layer_lib.Input(type_spec=type_spec) - self.assertEqual(input1.name, "test") - - @test_utils.run_v2_only - def test_save_input_naming(self): - x = input_layer_lib.Input(shape=(10,), name="features") - y = Dense(1)(x) - model = functional.Functional(x, y) - self.assertEqual(model.layers[0].name, "features") - save_path = self.get_temp_dir() + "/basic_model.keras" - model.save(save_path) - reloaded_model = models.load_model(save_path) - self.assertEqual(reloaded_model.layers[0].name, "features") - - @test_utils.run_v2_only - def test_export_input_naming(self): - model = Sequential( - layers=[ - input_layer_lib.Input(shape=(8,), name="features"), - Dense(1), - ] - ) - x = tf.random.normal((8, 8)) - model(x) - - export_path = self.get_temp_dir() + "test_model" - model.export(export_path) - reloaded_artifact = tf.saved_model.load(export_path) - self.assertEqual( - reloaded_artifact.signatures._signatures["serve"]._arg_keywords[-1], - "features", - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/input_spec.py b/keras/engine/input_spec.py deleted file mode 100644 index 1e18c83cd0d..00000000000 --- a/keras/engine/input_spec.py +++ /dev/null @@ -1,316 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""Contains the InputSpec class.""" - -import tensorflow.compat.v2 as tf - -from keras import backend - -# isort: off -from tensorflow.python.util.tf_export import keras_export -from tensorflow.python.util.tf_export import tf_export - - -@keras_export( - "keras.layers.InputSpec", - v1=["keras.layers.InputSpec", "keras.__internal__.legacy.layers.InputSpec"], -) -@tf_export(v1=["layers.InputSpec"]) -class InputSpec: - """Specifies the rank, dtype and shape of every input to a layer. - - Layers can expose (if appropriate) an `input_spec` attribute: - an instance of `InputSpec`, or a nested structure of `InputSpec` instances - (one per input tensor). These objects enable the layer to run input - compatibility checks for input structure, input rank, input shape, and - input dtype. - - A None entry in a shape is compatible with any dimension, - a None shape is compatible with any shape. - - Args: - dtype: Expected DataType of the input. - shape: Shape tuple, expected shape of the input - (may include None for unchecked axes). Includes the batch size. - ndim: Integer, expected rank of the input. - max_ndim: Integer, maximum rank of the input. - min_ndim: Integer, minimum rank of the input. - axes: Dictionary mapping integer axes to - a specific dimension value. - allow_last_axis_squeeze: If True, then allow inputs of rank N+1 as long - as the last axis of the input is 1, as well as inputs of rank N-1 - as long as the last axis of the spec is 1. - name: Expected key corresponding to this input when passing data as - a dictionary. - - Example: - - ```python - class MyLayer(Layer): - def __init__(self): - super(MyLayer, self).__init__() - # The layer will accept inputs with - # shape (?, 28, 28) & (?, 28, 28, 1) - # and raise an appropriate error message otherwise. - self.input_spec = InputSpec( - shape=(None, 28, 28, 1), - allow_last_axis_squeeze=True) - ``` - """ - - def __init__( - self, - dtype=None, - shape=None, - ndim=None, - max_ndim=None, - min_ndim=None, - axes=None, - allow_last_axis_squeeze=False, - name=None, - ): - self.dtype = tf.as_dtype(dtype).name if dtype is not None else None - shape = tf.TensorShape(shape) - if shape.rank is None: - shape = None - else: - shape = tuple(shape.as_list()) - if shape is not None: - self.ndim = len(shape) - self.shape = shape - else: - self.ndim = ndim - self.shape = None - self.max_ndim = max_ndim - self.min_ndim = min_ndim - self.name = name - self.allow_last_axis_squeeze = allow_last_axis_squeeze - try: - axes = axes or {} - self.axes = {int(k): axes[k] for k in axes} - except (ValueError, TypeError): - raise TypeError( - "Argument `axes` must be a dict with integer keys. " - f"Received: axes={axes}" - ) - - if self.axes and (self.ndim is not None or self.max_ndim is not None): - max_dim = (self.ndim if self.ndim else self.max_ndim) - 1 - max_axis = max(self.axes) - if max_axis > max_dim: - raise ValueError( - "Axis {} is greater than the maximum " - "allowed value: {}".format(max_axis, max_dim) - ) - - def __repr__(self): - spec = [ - ("dtype=" + str(self.dtype)) if self.dtype else "", - ("shape=" + str(self.shape)) if self.shape else "", - ("ndim=" + str(self.ndim)) if self.ndim else "", - ("max_ndim=" + str(self.max_ndim)) if self.max_ndim else "", - ("min_ndim=" + str(self.min_ndim)) if self.min_ndim else "", - ("axes=" + str(self.axes)) if self.axes else "", - ] - return f"InputSpec({', '.join(x for x in spec if x)})" - - def get_config(self): - return { - "dtype": self.dtype, - "shape": self.shape, - "ndim": self.ndim, - "max_ndim": self.max_ndim, - "min_ndim": self.min_ndim, - "axes": self.axes, - } - - @classmethod - def from_config(cls, config): - return cls(**config) - - -def to_tensor_shape(spec): - """Returns a tf.TensorShape object that matches the shape specifications. - - If the InputSpec's shape or ndim is defined, this method will return a fully - or partially-known shape. Otherwise, the returned TensorShape is None. - - Args: - spec: an InputSpec object. - - Returns: - a tf.TensorShape object - """ - if spec.ndim is None and spec.shape is None: - return tf.TensorShape(None) - elif spec.shape is not None: - return tf.TensorShape(spec.shape) - else: - shape = [None] * spec.ndim - for a in spec.axes: - shape[a] = spec.axes[a] # Assume that axes is defined - return tf.TensorShape(shape) - - -def assert_input_compatibility(input_spec, inputs, layer_name): - """Checks compatibility between the layer and provided inputs. - - This checks that the tensor(s) `inputs` verify the input assumptions - of a layer (if any). If not, a clear and actional exception gets raised. - - Args: - input_spec: An InputSpec instance, list of InputSpec instances, a nested - structure of InputSpec instances, or None. - inputs: Input tensor, list of input tensors, or a nested structure of - input tensors. - layer_name: String, name of the layer (for error message formatting). - - Raises: - ValueError: in case of mismatch between - the provided inputs and the expectations of the layer. - """ - if not input_spec: - return - - input_spec = tf.nest.flatten(input_spec) - if isinstance(inputs, dict): - # Flatten `inputs` by reference order if input spec names are provided - names = [spec.name for spec in input_spec] - if all(names): - list_inputs = [] - for name in names: - if name not in inputs: - raise ValueError( - f'Missing data for input "{name}". ' - "You passed a data dictionary with keys " - f"{list(inputs.keys())}. " - f"Expected the following keys: {names}" - ) - list_inputs.append(inputs[name]) - inputs = list_inputs - - inputs = tf.nest.flatten(inputs) - for x in inputs: - # Having a shape/dtype is the only commonality of the various - # tensor-like objects that may be passed. The most common kind of - # invalid type we are guarding for is a Layer instance (Functional API), - # which does not have a `shape` attribute. - if not hasattr(x, "shape"): - raise TypeError( - f"Inputs to a layer should be tensors. Got '{x}' " - f"(of type {type(x)}) as input for layer '{layer_name}'." - ) - - if len(inputs) != len(input_spec): - raise ValueError( - f'Layer "{layer_name}" expects {len(input_spec)} input(s),' - f" but it received {len(inputs)} input tensors. " - f"Inputs received: {inputs}" - ) - for input_index, (x, spec) in enumerate(zip(inputs, input_spec)): - if spec is None: - continue - - shape = tf.TensorShape(x.shape) - if shape.rank is None: - return - # Check ndim. - if spec.ndim is not None and not spec.allow_last_axis_squeeze: - ndim = shape.rank - if ndim != spec.ndim: - raise ValueError( - f'Input {input_index} of layer "{layer_name}" ' - "is incompatible with the layer: " - f"expected ndim={spec.ndim}, found ndim={ndim}. " - f"Full shape received: {tuple(shape)}" - ) - if spec.max_ndim is not None: - ndim = x.shape.rank - if ndim is not None and ndim > spec.max_ndim: - raise ValueError( - f'Input {input_index} of layer "{layer_name}" ' - "is incompatible with the layer: " - f"expected max_ndim={spec.max_ndim}, " - f"found ndim={ndim}" - ) - if spec.min_ndim is not None: - ndim = x.shape.rank - if ndim is not None and ndim < spec.min_ndim: - raise ValueError( - f'Input {input_index} of layer "{layer_name}" ' - "is incompatible with the layer: " - f"expected min_ndim={spec.min_ndim}, " - f"found ndim={ndim}. " - f"Full shape received: {tuple(shape)}" - ) - # Check dtype. - if spec.dtype is not None: - if x.dtype.name != spec.dtype: - raise ValueError( - f'Input {input_index} of layer "{layer_name}" ' - "is incompatible with the layer: " - f"expected dtype={spec.dtype}, " - f"found dtype={x.dtype}" - ) - - # Check specific shape axes. - shape_as_list = shape.as_list() - if spec.axes: - for axis, value in spec.axes.items(): - if hasattr(value, "value"): - value = value.value - if value is not None and shape_as_list[int(axis)] not in { - value, - None, - }: - raise ValueError( - f'Input {input_index} of layer "{layer_name}" is ' - f"incompatible with the layer: expected axis {axis} " - f"of input shape to have value {value}, " - "but received input with " - f"shape {display_shape(x.shape)}" - ) - # Check shape. - if spec.shape is not None and shape.rank is not None: - spec_shape = spec.shape - if spec.allow_last_axis_squeeze: - if shape_as_list and shape_as_list[-1] == 1: - shape_as_list = shape_as_list[:-1] - if spec_shape and spec_shape[-1] == 1: - spec_shape = spec_shape[:-1] - for spec_dim, dim in zip(spec_shape, shape_as_list): - if spec_dim is not None and dim is not None: - if spec_dim != dim: - raise ValueError( - f'Input {input_index} of layer "{layer_name}" is ' - "incompatible with the layer: " - f"expected shape={spec.shape}, " - f"found shape={display_shape(x.shape)}" - ) - - -def display_shape(shape): - return str(tuple(shape.as_list())) - - -def to_tensor_spec(input_spec, default_dtype=None): - """Converts a Keras InputSpec object to a TensorSpec.""" - default_dtype = default_dtype or backend.floatx() - if isinstance(input_spec, InputSpec): - dtype = input_spec.dtype or default_dtype - return tf.TensorSpec(to_tensor_shape(input_spec), dtype) - return tf.TensorSpec(None, default_dtype) diff --git a/keras/engine/input_spec_test.py b/keras/engine/input_spec_test.py deleted file mode 100644 index 95f295ff530..00000000000 --- a/keras/engine/input_spec_test.py +++ /dev/null @@ -1,69 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""InputSpec tests.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.engine import input_spec - - -class InputSpecTest(tf.test.TestCase): - def test_axes_initialization(self): - input_spec.InputSpec(shape=[1, None, 2, 3], axes={3: 5, "2": 2}) - with self.assertRaisesRegex(ValueError, "Axis 4 is greater than"): - input_spec.InputSpec(shape=[1, None, 2, 3], axes={4: 5}) - with self.assertRaisesRegex( - TypeError, "Argument `axes` must be a dict" - ): - input_spec.InputSpec(shape=[1, None, 2, 3], axes={"string": 5}) - - -class InputSpecToTensorShapeTest(tf.test.TestCase): - def test_defined_shape(self): - spec = input_spec.InputSpec(shape=[1, None, 2, 3]) - self.assertAllEqual( - [1, None, 2, 3], input_spec.to_tensor_shape(spec).as_list() - ) - - def test_defined_ndims(self): - spec = input_spec.InputSpec(ndim=5) - self.assertAllEqual( - [None] * 5, input_spec.to_tensor_shape(spec).as_list() - ) - - spec = input_spec.InputSpec(ndim=0) - self.assertAllEqual([], input_spec.to_tensor_shape(spec).as_list()) - - spec = input_spec.InputSpec(ndim=3, axes={1: 3, -1: 2}) - self.assertAllEqual( - [None, 3, 2], input_spec.to_tensor_shape(spec).as_list() - ) - - def test_undefined_shapes(self): - spec = input_spec.InputSpec(max_ndim=5) - with self.assertRaisesRegex(ValueError, "unknown TensorShape"): - input_spec.to_tensor_shape(spec).as_list() - - spec = input_spec.InputSpec(min_ndim=5, max_ndim=5) - with self.assertRaisesRegex(ValueError, "unknown TensorShape"): - input_spec.to_tensor_shape(spec).as_list() - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/keras_tensor.py b/keras/engine/keras_tensor.py deleted file mode 100644 index cc04cc26c25..00000000000 --- a/keras/engine/keras_tensor.py +++ /dev/null @@ -1,718 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras Input Tensor used to track functional API Topology.""" - -import tensorflow.compat.v2 as tf - -from keras.utils import object_identity - -# isort: off -from tensorflow.python.data.util import structure -from tensorflow.python.util.tf_export import keras_export - - -# Tensorflow tensors have a maximum rank of 254 -# (See `MaxDimensions()` in //tensorflow/core/framework/tensor_shape.h ) -# So we do not try to infer values for int32 tensors larger than this, -# As they cannot represent shapes. -_MAX_TENSOR_RANK = 254 - - -@keras_export("keras.__internal__.KerasTensor", v1=[]) -class KerasTensor: - """A representation of a Keras in/output during Functional API construction. - - `KerasTensor`s are tensor-like objects that represent the symbolic inputs - and outputs of Keras layers during Functional model construction. They are - comprised of the `tf.TypeSpec` of the (Composite)Tensor that will be - consumed/produced in the corresponding location of the Functional model. - - KerasTensors are intended as a private API, so users should never need to - directly instantiate `KerasTensor`s. - - **Building Functional Models with KerasTensors** - `tf.keras.Input` produces `KerasTensor`s that represent the symbolic inputs - to your model. - - Passing a `KerasTensor` to a `tf.keras.Layer` `__call__` lets the layer know - that you are building a Functional model. The layer __call__ will - infer the output signature and return `KerasTensor`s with `tf.TypeSpec`s - corresponding to the symbolic outputs of that layer call. These output - `KerasTensor`s will have all of the internal KerasHistory metadata attached - to them that Keras needs to construct a Functional Model. - - Currently, layers infer the output signature by: - * creating a scratch `FuncGraph` - * making placeholders in the scratch graph that match the input typespecs - * Calling `layer.call` on these placeholders - * extracting the signatures of the outputs before clearing the scratch - graph - - (Note: names assigned to KerasTensors by this process are not guaranteed to - be unique, and are subject to implementation details). - - `tf.nest` methods are used to insure all of the inputs/output data - structures get maintained, with elements swapped between KerasTensors and - placeholders. - - In rare cases (such as when directly manipulating shapes using Keras - layers), the layer may be able to partially infer the value of the output in - addition to just inferring the signature. - When this happens, the returned KerasTensor will also contain the inferred - value information. Follow-on layers can use this information. - during their own output signature inference. - E.g. if one layer produces a symbolic `KerasTensor` that the next layer uses - as the shape of its outputs, partially knowing the value helps infer the - output shape. - - **Automatically converting TF APIs to layers**: - If you passing a `KerasTensor` to a TF API that supports dispatching, - Keras will automatically turn that API call into a lambda - layer in the Functional model, and return KerasTensors representing the - symbolic outputs. - - Most TF APIs that take only tensors as input and produce output tensors - will support dispatching. - - Calling a `tf.function` does not support dispatching, so you cannot pass - `KerasTensor`s as inputs to a `tf.function`. - - Higher-order APIs that take methods which produce tensors (e.g. `tf.while`, - `tf.map_fn`, `tf.cond`) also do not currently support dispatching. So, you - cannot directly pass KerasTensors as inputs to these APIs either. If you - want to use these APIs inside of a Functional model, you must put them - inside of a custom layer. - - Args: - type_spec: The `tf.TypeSpec` for the symbolic input created by - `tf.keras.Input`, or symbolically inferred for the output - during a symbolic layer `__call__`. - inferred_value: (Optional) a non-symbolic static value, possibly partially - specified, that could be symbolically inferred for the outputs during - a symbolic layer `__call__`. This will generally only happen when - grabbing and manipulating `tf.int32` shapes directly as tensors. - Statically inferring values in this way and storing them in the - KerasTensor allows follow-on layers to infer output signatures - more effectively. (e.g. when using a symbolic shape tensor to later - construct a tensor with that shape). - name: (optional) string name for this KerasTensor. Names automatically - generated by symbolic layer `__call__`s are not guaranteed to be unique, - and are subject to implementation details. - """ - - def __init__(self, type_spec, inferred_value=None, name=None): - """Constructs a KerasTensor.""" - if not isinstance(type_spec, tf.TypeSpec): - raise ValueError( - "KerasTensors must be constructed with a `tf.TypeSpec`." - ) - - self._type_spec = type_spec - self._inferred_value = inferred_value - self._name = name - - if not isinstance(type_spec, structure.NoneTensorSpec): - if not hasattr(type_spec, "shape"): - raise ValueError( - "KerasTensor only supports TypeSpecs that have a shape " - f"field; got {type(type_spec).__qualname__}, " - "which does not have a shape." - ) - if not isinstance(type_spec.shape, tf.TensorShape): - raise TypeError( - "KerasTensor requires that wrapped TypeSpec's shape is a " - f"TensorShape; got TypeSpec {type(type_spec).__qualname__}" - ", whose shape field has unexpected type " - f"{type(type_spec.dtype).__qualname__}." - ) - - @property - def type_spec(self): - """Returns the `tf.TypeSpec` symbolically inferred for Keras output.""" - return self._type_spec - - @property - def shape(self): - """Returns the `TensorShape` symbolically inferred for Keras output.""" - return self._type_spec.shape - - @classmethod - def from_tensor(cls, tensor): - """Convert a traced (composite)tensor to a representative - KerasTensor.""" - if isinstance(tensor, tf.Tensor): - name = getattr(tensor, "name", None) - type_spec = tf.type_spec_from_value(tensor) - inferred_value = None - if ( - type_spec.dtype == tf.int32 - and type_spec.shape.rank is not None - and type_spec.shape.rank < 2 - ): - # If this tensor might be representing shape information, - # (dtype=int32, rank of 0 or 1, not too large to represent a - # shape) we attempt to capture any value information - # tensorflow's shape handling can extract from the current - # scratch graph. - # - # Even though keras layers each trace in their own scratch - # graph, this shape value info extraction allows us to capture a - # sizable and useful subset of the C++ shape value inference TF - # can do if all tf ops appear in the same graph when using shape - # ops. - # - # Examples of things this cannot infer concrete dimensions for - # that the full single-graph C++ shape inference sometimes can - # are: - # * cases where the shape tensor is cast out of int32 before - # being manipulated w/ floating point numbers then converted - # back - # * cases where int32 tensors w/ rank >= 2 are manipulated - # before being used as a shape tensor - # * cases where int32 tensors too large to represent shapes are - # manipulated to a smaller size before being used as a shape - # tensor - inferred_value = tf.ones(shape=tensor).shape - if inferred_value.dims: - inferred_value = inferred_value.as_list() - if len(inferred_value) > _MAX_TENSOR_RANK: - inferred_value = None - else: - inferred_value = None - - return KerasTensor( - type_spec, inferred_value=inferred_value, name=name - ) - else: - # Fallback to the generic arbitrary-typespec KerasTensor - name = getattr(tensor, "name", None) - type_spec = tf.type_spec_from_value(tensor) - return cls(type_spec, name=name) - - @classmethod - def from_type_spec(cls, type_spec, name=None): - return cls(type_spec=type_spec, name=name) - - def _to_placeholder(self): - """Convert this KerasTensor to a placeholder in a graph.""" - # If there is an inferred value for this tensor, inject the inferred - # value - if self._inferred_value is not None: - # If we suspect this KerasTensor might be representing a shape - # tensor, and we were able to extract value information with - # TensorFlow's shape handling when making the KerasTensor, we - # construct the placeholder by re-injecting the inferred value - # information into the graph. We do this injection through the shape - # of a placeholder, because that allows us to specify - # partially-unspecified shape values. - # - # See the comment on value extraction inside `from_tensor` for more - # info. - inferred_value = tf.shape( - tf.compat.v1.placeholder( - shape=self._inferred_value, dtype=tf.int32 - ) - ) - if self.type_spec.shape.rank == 0: - # `tf.shape` always returns a rank-1, we may need to turn it - # back to a scalar. - inferred_value = inferred_value[0] - return inferred_value - - # Use the generic conversion from typespec to a placeholder. - def component_to_placeholder(component): - return tf.compat.v1.placeholder(component.dtype, component.shape) - - return tf.nest.map_structure( - component_to_placeholder, self.type_spec, expand_composites=True - ) - - def get_shape(self): - return self.shape - - def __len__(self): - raise TypeError( - "Keras symbolic inputs/outputs do not " - "implement `__len__`. You may be " - "trying to pass Keras symbolic inputs/outputs " - "to a TF API that does not register dispatching, " - "preventing Keras from automatically " - "converting the API call to a lambda layer " - "in the Functional Model. This error will also get raised " - "if you try asserting a symbolic input/output directly." - ) - - @property - def op(self): - raise TypeError( - "Keras symbolic inputs/outputs do not " - "implement `op`. You may be " - "trying to pass Keras symbolic inputs/outputs " - "to a TF API that does not register dispatching, " - "preventing Keras from automatically " - "converting the API call to a lambda layer " - "in the Functional Model." - ) - - def __hash__(self): - raise TypeError( - f"Tensors are unhashable (this tensor: {self}). " - "Instead, use tensor.ref() as the key." - ) - - # Note: This enables the KerasTensor's overloaded "right" binary - # operators to run when the left operand is an ndarray, because it - # accords the Tensor class higher priority than an ndarray, or a - # numpy matrix. - # In the future explore changing this to using numpy's __numpy_ufunc__ - # mechanism, which allows more control over how Tensors interact - # with ndarrays. - __array_priority__ = 100 - - def __array__(self, dtype=None): - raise TypeError( - f"You are passing {self}, an intermediate Keras symbolic " - "input/output, to a TF API that does not allow registering custom " - "dispatchers, such as `tf.cond`, `tf.function`, gradient tapes, " - "or `tf.map_fn`. Keras Functional model construction only supports " - "TF API calls that *do* support dispatching, such as `tf.math.add` " - "or `tf.reshape`. " - "Other APIs cannot be called directly on symbolic Keras" - "inputs/outputs. You can work around " - "this limitation by putting the operation in a custom Keras layer " - "`call` and calling that layer " - "on this symbolic input/output." - ) - - @property - def is_tensor_like(self): - return True - - def set_shape(self, shape): - """Updates the shape of this KerasTensor. Mimics - `tf.Tensor.set_shape()`.""" - if not isinstance(shape, tf.TensorShape): - shape = tf.TensorShape(shape) - if not self.shape.is_compatible_with(shape): - raise ValueError( - f"Keras symbolic input/output's shape {self.shape} is not " - f"compatible with supplied shape {shape}." - ) - else: - shape = self.shape.merge_with(shape) - self._type_spec = type_spec_with_shape(self._type_spec, shape) - - def __str__(self): - symbolic_description = "" - inferred_value_string = "" - name_string = "" - - if hasattr(self, "_keras_history"): - layer = self._keras_history.layer - symbolic_description = ", description=\"created by layer '%s'\"" % ( - layer.name, - ) - if self._inferred_value is not None: - inferred_value_string = f", inferred_value={self._inferred_value}" - if self.name is not None: - name_string = f", name='{self._name}'" - return "KerasTensor(type_spec=%s%s%s%s)" % ( - self.type_spec, - inferred_value_string, - name_string, - symbolic_description, - ) - - def __repr__(self): - symbolic_description = "" - inferred_value_string = "" - if isinstance(self.type_spec, tf.TensorSpec): - type_spec_string = f"shape={self.shape} dtype={self.dtype.name}" - else: - type_spec_string = f"type_spec={self.type_spec}" - - if hasattr(self, "_keras_history"): - layer = self._keras_history.layer - symbolic_description = f" (created by layer '{layer.name}')" - if self._inferred_value is not None: - inferred_value_string = f" inferred_value={self._inferred_value}" - return "" % ( - type_spec_string, - inferred_value_string, - symbolic_description, - ) - - @property - def dtype(self): - """Returns the `dtype` symbolically inferred for this Keras output.""" - type_spec = self._type_spec - if not hasattr(type_spec, "dtype"): - raise AttributeError( - f"KerasTensor wraps TypeSpec {type(type_spec).__qualname__}, " - "which does not have a dtype." - ) - if not isinstance(type_spec.dtype, tf.DType): - raise TypeError( - "KerasTensor requires that wrapped TypeSpec's dtype is a " - f"DType; got TypeSpec {type(type_spec).__qualname__}, whose " - "dtype field has unexpected type " - f"{type(type_spec.dtype).__qualname__}." - ) - return type_spec.dtype - - def ref(self): - """Returns a hashable reference object to this KerasTensor. - - The primary use case for this API is to put KerasTensors in a - set/dictionary. We can't put tensors in a set/dictionary as - `tensor.__hash__()` is not available and tensor equality (`==`) is - supposed to produce a tensor representing if the two inputs are equal. - - See the documentation of `tf.Tensor.ref()` for more info. - """ - return object_identity.Reference(self) - - @property - def node(self): - """Find the corresponding `Node` that produce this keras_tensor. - - During functional model construction, Keras will attach `KerasHistory` - to keras tensor to track the connectivity between calls of layers. - Return None if there isn't any KerasHistory attached to this tensor. - """ - if hasattr(self, "_keras_history"): - layer, node_index, _ = self._keras_history - return layer.inbound_nodes[node_index] - return None - - def __iter__(self): - shape = None - if self.shape.ndims is not None: - shape = [dim.value for dim in self.shape.dims] - - if shape is None: - raise TypeError("Cannot iterate over a Tensor with unknown shape.") - if not shape: - raise TypeError("Cannot iterate over a scalar.") - if shape[0] is None: - raise TypeError( - "Cannot iterate over a Tensor with unknown first dimension." - ) - return _KerasTensorIterator(self, shape[0]) - - @property - def name(self): - """Returns the (non-unique, optional) name of this symbolic Keras - value.""" - return self._name - - @classmethod - def _overload_all_operators(cls, tensor_class): - """Register overloads for all operators.""" - for operator in tf.Tensor.OVERLOADABLE_OPERATORS: - cls._overload_operator(tensor_class, operator) - - # We include `experimental_ref` for versions of TensorFlow that - # still include the deprecated method in Tensors. - if hasattr(tensor_class, "experimental_ref"): - cls._overload_operator(tensor_class, "experimental_ref") - - @classmethod - def _overload_operator(cls, tensor_class, operator): - """Overload operator with the same implementation as the Tensor class. - - We pull the operator out of the class dynamically to avoid ordering - issues. - - Args: - tensor_class: The (Composite)Tensor to get the method from. - operator: string. The operator name. - """ - tensor_oper = getattr(tensor_class, operator) - - # Compatibility with Python 2: - # Python 2 unbound methods have type checks for the first arg, - # so we need to extract the underlying function - tensor_oper = getattr(tensor_oper, "__func__", tensor_oper) - - setattr(cls, operator, tensor_oper) - - -KerasTensor._overload_all_operators(tf.Tensor) - - -@keras_export("keras.__internal__.SparseKerasTensor", v1=[]) -class SparseKerasTensor(KerasTensor): - """A specialized KerasTensor representation for `tf.sparse.SparseTensor`s. - - Specifically, it specializes the conversion to a placeholder in order - to maintain dense shape information. - """ - - def _to_placeholder(self): - spec = self.type_spec - - # nest.map_structure loses dense shape information for sparse tensors. - # So, we special-case sparse placeholder creation. - # This only preserves shape information for top-level sparse tensors; - # not for sparse tensors that are nested inside another composite - # tensor. - return tf.compat.v1.sparse_placeholder( - dtype=spec.dtype, shape=spec.shape - ) - - -@keras_export("keras.__internal__.RaggedKerasTensor", v1=[]) -class RaggedKerasTensor(KerasTensor): - """A specialized KerasTensor representation for `tf.RaggedTensor`s. - - Specifically, it: - - 1. Specializes the conversion to a placeholder in order - to maintain shape information for non-ragged dimensions. - 2. Overloads the KerasTensor's operators with the RaggedTensor versions - when they don't match the `tf.Tensor` versions - 3. Exposes some of the instance method/attribute that are unique to - the RaggedTensor API (such as ragged_rank). - """ - - def _to_placeholder(self): - ragged_spec = self.type_spec - if ragged_spec.ragged_rank == 0 or ragged_spec.shape.rank is None: - return super()._to_placeholder() - - flat_shape = ragged_spec.shape[ragged_spec.ragged_rank :] - result = tf.compat.v1.placeholder(ragged_spec.dtype, flat_shape) - - known_num_splits = [] - prod = 1 - for axis_size in ragged_spec.shape: - if prod is not None: - if axis_size is None or ( - getattr(axis_size, "value", True) is None - ): - prod = None - else: - prod = prod * axis_size - known_num_splits.append(prod) - - for axis in range(ragged_spec.ragged_rank, 0, -1): - axis_size = ragged_spec.shape[axis] - if axis_size is None or (getattr(axis_size, "value", True) is None): - num_splits = known_num_splits[axis - 1] - if num_splits is not None: - num_splits = num_splits + 1 - splits = tf.compat.v1.placeholder( - ragged_spec.row_splits_dtype, [num_splits] - ) - result = tf.RaggedTensor.from_row_splits( - result, splits, validate=False - ) - else: - rowlen = tf.constant(axis_size, ragged_spec.row_splits_dtype) - result = tf.RaggedTensor.from_uniform_row_length( - result, rowlen, validate=False - ) - return result - - @property - def ragged_rank(self): - return self.type_spec.ragged_rank - - -# Overload slicing -RaggedKerasTensor._overload_operator(tf.RaggedTensor, "__getitem__") - -# Overload math ops -RaggedKerasTensor._overload_operator(tf.RaggedTensor, "__add__") -RaggedKerasTensor._overload_operator(tf.RaggedTensor, "__radd__") -RaggedKerasTensor._overload_operator(tf.RaggedTensor, "__mul__") -RaggedKerasTensor._overload_operator(tf.RaggedTensor, "__rmul__") - - -# TODO(b/161487382): -# Special-case user-registered symbolic objects (registered by the -# private `register_symbolic_tensor_type` method) by passing them between -# scratch graphs directly. -# This is needed to not break Tensorflow probability -# while they finish migrating to composite tensors. -class UserRegisteredSpec(tf.TypeSpec): - """TypeSpec to represent user-registered symbolic objects.""" - - def __init__(self, shape, dtype): - self.shape = shape - self._dtype = dtype - self.dtype = dtype - - def _component_specs(self): - raise NotImplementedError - - def _from_components(self, components): - raise NotImplementedError - - def _serialize(self): - raise NotImplementedError - - def _to_components(self, value): - raise NotImplementedError - - def value_type(self): - raise NotImplementedError - - -# TODO(b/161487382): -# Special-case user-registered symbolic objects (registered by the -# private `register_symbolic_tensor_type` method) by passing them between -# scratch graphs directly. -# This is needed to not break Tensorflow probability -# while they finish migrating to composite tensors. -class UserRegisteredTypeKerasTensor(KerasTensor): - """KerasTensor that represents legacy register_symbolic_tensor_type.""" - - def __init__(self, user_registered_symbolic_object): - x = user_registered_symbolic_object - self._user_registered_symbolic_object = x - type_spec = UserRegisteredSpec(x.shape, x.dtype) - name = getattr(x, "name", None) - - super().__init__(type_spec, name) - - @classmethod - def from_tensor(cls, tensor): - return cls(tensor) - - @classmethod - def from_type_spec(cls, type_spec, name=None): - raise NotImplementedError( - "You cannot instantiate a KerasTensor directly from TypeSpec: %s" - % type_spec - ) - - def _to_placeholder(self): - return self._user_registered_symbolic_object - - -class _KerasTensorIterator: - """Iterates over the leading dim of a KerasTensor. Performs 0 error - checks.""" - - def __init__(self, tensor, dim0): - self._tensor = tensor - self._index = 0 - self._limit = dim0 - - def __iter__(self): - return self - - def __next__(self): - if self._index == self._limit: - raise StopIteration - result = self._tensor[self._index] - self._index += 1 - return result - - -# Specify the mappings of tensor class to KerasTensor class. -# This is specifically a list instead of a dict for now because -# 1. we do a check w/ isinstance because a key lookup based on class -# would miss subclasses -# 2. a list allows us to control lookup ordering -# We include ops.Tensor -> KerasTensor in the first position as a fastpath, -# *and* include object -> KerasTensor at the end as a catch-all. -# We can re-visit these choices in the future as needed. -keras_tensor_classes = [ - (tf.Tensor, KerasTensor), - (tf.SparseTensor, SparseKerasTensor), - (tf.RaggedTensor, RaggedKerasTensor), - (object, KerasTensor), -] - - -def register_keras_tensor_specialization(cls, keras_tensor_subclass): - """Register a specialized KerasTensor subclass for a Tensor type.""" - # We always leave (object, KerasTensor) at the end as a generic fallback - keras_tensor_classes.insert(-1, (cls, keras_tensor_subclass)) - - -def keras_tensor_to_placeholder(x): - """Construct a graph placeholder to represent a KerasTensor when tracing.""" - if isinstance(x, KerasTensor): - return x._to_placeholder() - else: - return x - - -def keras_tensor_from_tensor(tensor): - """Convert a traced (composite)tensor to a representative KerasTensor.""" - # Create a specialized KerasTensor that supports instance methods, - # operators, and additional value inference if possible - keras_tensor_cls = None - for tensor_type, cls in keras_tensor_classes: - if isinstance(tensor, tensor_type): - keras_tensor_cls = cls - break - - out = keras_tensor_cls.from_tensor(tensor) - - if getattr(tensor, "_keras_mask", None) is not None: - out._keras_mask = keras_tensor_from_tensor(tensor._keras_mask) - return out - - -def keras_tensor_from_type_spec(type_spec, name=None): - """Convert a TypeSpec to a representative KerasTensor.""" - # Create a specialized KerasTensor that supports instance methods, - # operators, and additional value inference if possible - keras_tensor_cls = None - value_type = type_spec.value_type - for tensor_type, cls in keras_tensor_classes: - if issubclass(value_type, tensor_type): - keras_tensor_cls = cls - break - - return keras_tensor_cls.from_type_spec(type_spec, name=name) - - -def type_spec_with_shape(spec, shape): - """Returns a copy of TypeSpec `spec` with its shape set to `shape`.""" - if isinstance(spec, tf.TensorSpec): - - # TODO(b/203201161) Figure out why mutation is needed here, and remove - # it. (TensorSpec objects should be immutable; and we should not be - # modifying private fields.) - shape = tf.TensorShape(shape) - spec._shape = shape - return spec - elif isinstance(spec, tf.RaggedTensorSpec): - return tf.RaggedTensorSpec( - shape, - spec.dtype, - spec.ragged_rank, - spec.row_splits_dtype, - spec.flat_values_spec, - ) - elif isinstance(spec, tf.SparseTensorSpec): - return tf.SparseTensorSpec(shape, spec.dtype) - elif hasattr(spec, "with_shape"): - # TODO(edloper): Consider adding .with_shape method to TensorSpec, - # RaggedTensorSpec, and SparseTensorSpec. - return spec.with_shape(shape) - else: - # TODO(edloper): Consider moving this check to the KerasTensor - # constructor. - raise ValueError( - "Keras requires TypeSpec to have a `with_shape` method " - "that returns a copy of `self` with an updated shape." - ) diff --git a/keras/engine/keras_tensor_test.py b/keras/engine/keras_tensor_test.py deleted file mode 100644 index 6f08689c7eb..00000000000 --- a/keras/engine/keras_tensor_test.py +++ /dev/null @@ -1,277 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""InputSpec tests.""" - - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import layers -from keras.engine import keras_tensor -from keras.engine import training -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class CustomTypeSpec(tf.TypeSpec): - """Stubbed-out custom type spec, for testing.""" - - def __init__(self, shape, dtype): - self.shape = tf.TensorShape(shape) - self.dtype = tf.dtypes.as_dtype(dtype) - - # Stub implementations for all the TypeSpec methods: - value_type = None - _to_components = lambda self, value: None - _from_components = lambda self, components: None - _component_specs = property(lambda self: None) - _serialize = lambda self: (self.shape, self.dtype) - - -class CustomTypeSpec2(CustomTypeSpec): - """Adds a with_shape method to CustomTypeSpec.""" - - def with_shape(self, new_shape): - return CustomTypeSpec2(new_shape, self.dtype) - - -@test_utils.run_v2_only -class KerasTensorTest(test_combinations.TestCase): - def test_repr_and_string(self): - kt = keras_tensor.KerasTensor( - type_spec=tf.TensorSpec(shape=(1, 2, 3), dtype=tf.float32) - ) - expected_str = ( - "KerasTensor(type_spec=TensorSpec(shape=(1, 2, 3), " - "dtype=tf.float32, name=None))" - ) - expected_repr = "" - self.assertEqual(expected_str, str(kt)) - self.assertEqual(expected_repr, repr(kt)) - - kt = keras_tensor.KerasTensor( - type_spec=tf.TensorSpec(shape=(2,), dtype=tf.int32), - inferred_value=[2, 3], - ) - expected_str = ( - "KerasTensor(type_spec=TensorSpec(shape=(2,), " - "dtype=tf.int32, name=None), inferred_value=[2, 3])" - ) - expected_repr = ( - "" - ) - self.assertEqual(expected_str, str(kt)) - self.assertEqual(expected_repr, repr(kt)) - - kt = keras_tensor.KerasTensor( - type_spec=tf.SparseTensorSpec(shape=(1, 2, 3), dtype=tf.float32) - ) - expected_str = ( - "KerasTensor(type_spec=SparseTensorSpec(" - "TensorShape([1, 2, 3]), tf.float32))" - ) - expected_repr = ( - "" - ) - self.assertEqual(expected_str, str(kt)) - self.assertEqual(expected_repr, repr(kt)) - - inp = layers.Input(shape=(3, 5)) - kt = layers.Dense(10)(inp) - expected_str = ( - "KerasTensor(type_spec=TensorSpec(shape=(None, 3, 10), " - "dtype=tf.float32, name=None), name='dense/BiasAdd:0', " - "description=\"created by layer 'dense'\")" - ) - expected_repr = ( - "" - ) - self.assertEqual(expected_str, str(kt)) - self.assertEqual(expected_repr, repr(kt)) - - kt = tf.reshape(kt, shape=(3, 5, 2)) - expected_str = ( - "KerasTensor(type_spec=TensorSpec(shape=(3, 5, 2), " - "dtype=tf.float32, name=None), name='tf.reshape/Reshape:0', " - "description=\"created by layer 'tf.reshape'\")" - ) - expected_repr = ( - "" - ) - self.assertEqual(expected_str, str(kt)) - self.assertEqual(expected_repr, repr(kt)) - - kts = tf.unstack(kt) - for i in range(3): - expected_str = ( - "KerasTensor(type_spec=TensorSpec(shape=(5, 2), " - "dtype=tf.float32, name=None), name='tf.unstack/unstack:%s', " - "description=\"created by layer 'tf.unstack'\")" % (i,) - ) - expected_repr = ( - "" - ) - self.assertEqual(expected_str, str(kts[i])) - self.assertEqual(expected_repr, repr(kts[i])) - - @parameterized.parameters( - {"property_name": "values"}, - {"property_name": "indices"}, - {"property_name": "dense_shape"}, - ) - def test_sparse_instance_property(self, property_name): - inp = layers.Input(shape=[3], sparse=True) - out = getattr(inp, property_name) - model = training.Model(inp, out) - - x = tf.SparseTensor( - [[0, 0], [0, 1], [1, 1], [1, 2]], [1, 2, 3, 4], [2, 3] - ) - expected_property = getattr(x, property_name) - self.assertAllEqual(model(x), expected_property) - - # Test that it works with serialization and deserialization as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - self.assertAllEqual(model2(x), expected_property) - - @parameterized.parameters( - [ - (tf.TensorSpec([2, 3], tf.int32), [2, 3]), - (tf.RaggedTensorSpec([2, None]), [2, None]), - (tf.SparseTensorSpec([8]), [8]), - (CustomTypeSpec([3, 8], tf.int32), [3, 8]), - ] - ) - def test_shape(self, spec, expected_shape): - kt = keras_tensor.KerasTensor(spec) - self.assertEqual(kt.shape.as_list(), expected_shape) - - @parameterized.parameters( - [ - (tf.TensorSpec([8, 3], tf.int32), [8, 3], [8, 3]), - (tf.TensorSpec([None, 3], tf.int32), [8, 3], [8, 3]), - (tf.TensorSpec([8, 3], tf.int32), [None, 3], [8, 3]), - (tf.TensorSpec(None, tf.int32), [8, 3], [8, 3]), - (tf.TensorSpec(None, tf.int32), [8, None], [8, None]), - (tf.TensorSpec(None, tf.int32), None, None), - (tf.RaggedTensorSpec([2, None, None]), [2, None, 5], [2, None, 5]), - (tf.SparseTensorSpec([8]), [8], [8]), - (CustomTypeSpec2([3, None], tf.int32), [3, 8], [3, 8]), - ] - ) - def test_set_shape(self, spec, new_shape, expected_shape): - kt = keras_tensor.KerasTensor(spec) - kt.set_shape(new_shape) - if expected_shape is None: - self.assertIsNone(kt.type_spec.shape.rank) - else: - self.assertEqual(kt.type_spec.shape.as_list(), expected_shape) - self.assertTrue(kt.type_spec.is_compatible_with(spec)) - - @parameterized.parameters( - [ - (layers.Input(shape=[3, 4], batch_size=7), tf.reshape), - (layers.Input(shape=[3, 4], ragged=True, batch_size=7), tf.reshape), - ( - layers.Input(shape=[3, 4], sparse=True, batch_size=7), - tf.sparse.reshape, - ), - ] - ) - def test_reshape(self, inp, reshape_op): - out = reshape_op(inp, shape=[7, 4, 3]) - self.assertEqual(out.type_spec.shape.as_list(), [7, 4, 3]) - - def test_set_shape_error(self): - spec = CustomTypeSpec([3, None], tf.int32) - kt = keras_tensor.KerasTensor(spec) - with self.assertRaisesRegex( - ValueError, "Keras requires TypeSpec to have a `with_shape` method" - ): - kt.set_shape([3, 3]) - - def test_set_shape_equals_expected_shape(self): - # Tests b/203201161: DenseSpec has both a _shape and a _shape_tuple - # field, and we need to be sure both get updated. - kt = keras_tensor.KerasTensor(tf.TensorSpec([8, None], tf.int32)) - kt.set_shape([8, 3]) - self.assertEqual(kt.type_spec, tf.TensorSpec([8, 3], tf.int32)) - - def test_type_spec_with_shape_equals_expected_shape(self): - # Tests b/203201161: DenseSpec has both a _shape and a _shape_tuple - # field, and we need to be sure both get updated. - spec1 = tf.TensorSpec([8, None], tf.int32) - spec2 = keras_tensor.type_spec_with_shape(spec1, [8, 3]) - expected = tf.TensorSpec([8, 3], tf.int32) - self.assertEqual(spec2, expected) - - def test_missing_shape_error(self): - spec = CustomTypeSpec(None, tf.int32) - del spec.shape - with self.assertRaisesRegex( - ValueError, - "KerasTensor only supports TypeSpecs that have a shape field; .*", - ): - keras_tensor.KerasTensor(spec) - - def test_wrong_shape_type_error(self): - spec = CustomTypeSpec(None, tf.int32) - spec.shape = "foo" - with self.assertRaisesRegex( - TypeError, - "KerasTensor requires that wrapped TypeSpec's shape is a " - "TensorShape; .*", - ): - keras_tensor.KerasTensor(spec) - - def test_missing_dtype_error(self): - spec = CustomTypeSpec(None, tf.int32) - del spec.dtype - kt = keras_tensor.KerasTensor(spec) - with self.assertRaisesRegex( - AttributeError, - "KerasTensor wraps TypeSpec .* which does not have a dtype.", - ): - kt.dtype - - def test_wrong_dtype_type_error(self): - spec = CustomTypeSpec(None, tf.int32) - spec.dtype = "foo" - kt = keras_tensor.KerasTensor(spec) - with self.assertRaisesRegex( - TypeError, - "KerasTensor requires that wrapped TypeSpec's dtype is a DType; .*", - ): - kt.dtype - - def test_from_tensor_mask_tensor_is_none(self): - tensor = tf.constant([1.0]) - kt = keras_tensor.keras_tensor_from_tensor(tensor) - self.assertIsNone(getattr(kt, "_keras_mask", None)) - - def test_from_tensor_mask_tensor_is_not_none(self): - tensor = tf.constant([1.0]) - tensor._keras_mask = tf.constant([1.0]) - kt = keras_tensor.keras_tensor_from_tensor(tensor) - self.assertIsInstance(kt._keras_mask, keras_tensor.KerasTensor) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/node.py b/keras/engine/node.py deleted file mode 100644 index 946b9fce32b..00000000000 --- a/keras/engine/node.py +++ /dev/null @@ -1,344 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""Contains the `Node` class.""" - -import collections -import copy -import json - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer_utils -from keras.saving.legacy.saved_model import json_utils -from keras.utils import tf_utils - -_CONSTANT_VALUE = "_CONSTANT_VALUE" -# Using dict to avoid conflict with constant string tensor. -_COMPOSITE_TYPE = {"_TYPE": "COMPOSITE"} - - -class Node: - """A `Node` describes a layer `__call__()` event. - - A Functional model is a DAG with `Node` instances as nodes, and - `KerasTensor` instances as edges. Nodes aren't `Layer` instances, because a - single layer could be called multiple times, which would result in graph - cycles. - - A `__call__()` event involves input tensors (and other input arguments), - the layer that was called, and the resulting output tensors. - A `Node` will include all this information. - - Since a single `Layer` could be called multiple times, the `Node` instances - are stored on layers as a list. Each time a layer is called a node is added - to `layer._inbound_nodes`. Each time the output of a layer is used by - another layer, a node is added to `layer._outbound_nodes`. - - Every `KerasTensor` instance has a `KerasHistory` object attached, - which tracks the `Node` that records the `__call__()` event that created - the tensor. By recursively walking through `Node` instances - via the `KerasHistory` metadata of `KerasTensor` instances, once can - retrieve the entire DAG of a Functional model. - - Args: - layer: The layer that was called in the `Layer.__call__()` - event that this node represents. - call_args: The positional arguments the layer was called with. - call_kwargs: The keyword arguments the layer was called with. - outputs: The output tensors of the `Layer.__call__()` - """ - - def __init__(self, layer, call_args=None, call_kwargs=None, outputs=None): - call_args = [] if call_args is None else call_args - call_kwargs = {} if call_kwargs is None else call_kwargs - outputs = [] if outputs is None else outputs - - self.layer = layer - self.is_input = not call_args and not call_kwargs - - # These arguments are user-provided. Copy the structures here so that - # future user modifications do not affect the node's metadata. - # We copy using map_structure rather than python's shallow or deep copy, - # because the args can be data structures (so shallow copy is - # insufficient), but individual values might not support copy.copy - # or be too expensive to deep copy. - call_args = tf.nest.map_structure(lambda t: t, call_args) - call_kwargs = tf.nest.map_structure(lambda t: t, call_kwargs) - self.outputs = tf.nest.map_structure(lambda t: t, outputs) - self.call_args = call_args - self.call_kwargs = call_kwargs - - # Cached for performance. - self._flat_arguments = tf.nest.flatten( - (self.call_args, self.call_kwargs) - ) - # Used to avoid expensive `nest` operations in the most common case. - self._single_positional_tensor_passed = ( - not self.call_kwargs - and len(self.call_args) == 1 - and tf.is_tensor(self.call_args[0]) - ) - - if not tf.compat.v1.executing_eagerly_outside_functions(): - # Create TensorFlowOpLayers if needed (in TF1) - for obj in self._flat_arguments: - if isinstance( - obj, tf.Tensor - ) and base_layer_utils.needs_keras_history( - obj, ignore_call_context=True - ): - base_layer_utils.create_keras_history(obj) - - self._keras_inputs = [] - self._keras_inputs_ids_and_indices = [] - for i, ele in enumerate(self._flat_arguments): - if is_keras_tensor(ele): - self._keras_inputs.append(ele) - kt_id = str(id(ele)) - kt_index = i - self._keras_inputs_ids_and_indices.append((kt_id, kt_index)) - - # Wire up Node to Layers. - self.layer._inbound_nodes.append(self) - for kt in self.keras_inputs: - inbound_layer = kt._keras_history.layer - if inbound_layer is not None: # `None` for `Input` tensors. - inbound_layer._outbound_nodes.append(self) - - # Set metadata on outputs. - node_index = len(self.layer._inbound_nodes) - 1 - for i, tensor in enumerate(tf.nest.flatten(outputs)): - tensor._keras_history = KerasHistory( - layer=layer, node_index=node_index, tensor_index=i - ) - - # Cached for performance. - self.flat_input_ids = [str(id(t)) for t in self._keras_inputs] - self.flat_output_ids = [ - str(id(t)) for t in tf.nest.flatten(self.outputs) - ] - - @property - def keras_inputs(self): - """Tensors input to this node that can be traced back to a - `keras.Input`.""" - return self._keras_inputs - - @property - def parent_nodes(self): - """Returns all the `Node`s whose output this node immediately depends - on.""" - node_deps = [] - for kt in self.keras_inputs: - layer = kt._keras_history.layer - node_index = kt._keras_history.node_index - if layer is not None: # `None` for `Input` tensors. - node_deps.append(layer._inbound_nodes[node_index]) - return node_deps - - def iterate_inbound(self): - """Yields tuples representing the data inbound from other nodes. - - Yields: - tuples like: (inbound_layer, node_index, tensor_index, tensor). - """ - for kt in self.keras_inputs: - keras_history = kt._keras_history - layer = keras_history.layer - node_index = keras_history.node_index - tensor_index = keras_history.tensor_index - yield layer, node_index, tensor_index, kt - - def map_arguments(self, tensor_dict): - """Maps Keras Tensors to computed Tensors using `tensor_dict`.""" - if self._single_positional_tensor_passed: - # Performance optimization for most common case. - kt_id, _ = self._keras_inputs_ids_and_indices[0] - return (tensor_dict[kt_id].pop(),), {} - else: - flat_arguments = copy.copy(self._flat_arguments) - for kt_id, kt_index in self._keras_inputs_ids_and_indices: - flat_arguments[kt_index] = tensor_dict[kt_id].pop() - - args, kwargs = tf.nest.pack_sequence_as( - (self.call_args, self.call_kwargs), flat_arguments - ) - return args, kwargs - - def serialize(self, make_node_key, node_conversion_map): - """Serializes `Node` for Functional API's `get_config`.""" - # Serialization still special-cases first argument. - args, kwargs = self.call_args, self.call_kwargs - inputs, args, kwargs = self.layer._call_spec.split_out_first_arg( - args, kwargs - ) - - # Treat everything other than first argument as a kwarg. - arguments = dict(zip(self.layer._call_spec.arg_names[1:], args)) - arguments.update(kwargs) - kwargs = arguments - - def _serialize_keras_tensor(t): - """Serializes a single Tensor passed to `call`.""" - if hasattr(t, "_keras_history"): - kh = t._keras_history - node_index = kh.node_index - node_key = make_node_key(kh.layer.name, node_index) - new_node_index = node_conversion_map.get(node_key, 0) - return [kh.layer.name, new_node_index, kh.tensor_index] - - if isinstance(t, np.ndarray): - return t.tolist() - - if isinstance(t, tf.Tensor): - return backend.get_value(t).tolist() - - # Not using json_utils to serialize both constant Tensor and - # constant CompositeTensor for saving format backward compatibility. - if isinstance(t, tf.__internal__.CompositeTensor): - return (_COMPOSITE_TYPE, json_utils.Encoder().encode(t)) - - return t - - kwargs = tf.nest.map_structure(_serialize_keras_tensor, kwargs) - try: - json.dumps(kwargs, default=json_utils.get_json_type) - except TypeError: - kwarg_types = tf.nest.map_structure(type, kwargs) - raise TypeError( - "Layer " - + self.layer.name - + " was passed non-JSON-serializable arguments. " - + "Arguments had types: " - + str(kwarg_types) - + ". They cannot be serialized out when saving the model." - ) - - # `kwargs` is added to each Tensor in the first arg. This should be - # changed in a future version of the serialization format. - def serialize_first_arg_tensor(t): - if is_keras_tensor(t): - kh = t._keras_history - node_index = kh.node_index - node_key = make_node_key(kh.layer.name, node_index) - new_node_index = node_conversion_map.get(node_key, 0) - data = [kh.layer.name, new_node_index, kh.tensor_index, kwargs] - else: - # If an element in the first call argument did not originate as - # a keras tensor and is a constant value, we save it using the - # format ['_CONSTANT_VALUE', -1, - # serialized_tensor_or_python_constant] (potentially including - # serialized kwargs in an optional 4th argument). - data = [_CONSTANT_VALUE, -1, _serialize_keras_tensor(t), kwargs] - return tf_utils.ListWrapper(data) - - data = tf.nest.map_structure(serialize_first_arg_tensor, inputs) - if ( - not tf.nest.is_nested(data) - and not self.layer._preserve_input_structure_in_config - ): - data = [data] - data = tf_utils.convert_inner_node_data(data) - return data - - ############################################################# - # Properties for Backwards compatibility. - # These only check the first input argument - # As nodes are internal, they may be removed in the future. - ############################################################# - - @property - def input_tensors(self): - if self.is_input: - return [self.outputs] # Used in `Layer.input`. - return self.call_args[0] - - @property - def output_tensors(self): - if self.is_input: - return [self.outputs] # Used in `Layer.input`. - return self.outputs - - @property - def input_shapes(self): - input_shapes = tf.nest.map_structure( - backend.int_shape, self.input_tensors - ) - if len(input_shapes) == 1 and not self.is_input: - return input_shapes[0] - return input_shapes - - @property - def output_shapes(self): - return tf.nest.map_structure(backend.int_shape, self.output_tensors) - - @property - def outbound_layer(self): - return self.layer - - @property - def inbound_layers(self): - """Return all layers that feed into the current node.""" - if self.is_input: - return [] - tensor_call_args = [ - x - for x in self._flat_arguments - if tf.is_tensor(x) and hasattr(x, "_keras_history") - ] - inbound_layers = tf.nest.map_structure( - lambda t: t._keras_history.layer, tensor_call_args - ) - if len(inbound_layers) == 1: - return inbound_layers[0] - return inbound_layers - - -class KerasHistory( - collections.namedtuple( - "KerasHistory", ["layer", "node_index", "tensor_index"] - ) -): - """Tracks the Layer call that created a Tensor, for Keras Graph Networks. - - During construction of Keras Graph Networks, this metadata is added to - each Tensor produced as the output of a Layer, starting with an - `InputLayer`. This allows Keras to track how each Tensor was produced, and - this information is later retraced by the `keras.engine.Network` class to - reconstruct the Keras Graph Network. - - Attributes: - layer: The Layer that produced the Tensor. - node_index: The specific call to the Layer that produced this Tensor. - Layers can be called multiple times in order to share weights. A new - node is created every time a Layer is called. The corresponding node - that represents the call event that produced the Tensor can be found at - `layer._inbound_nodes[node_index]`. - tensor_index: The output index for this Tensor. Always zero if the Layer - that produced this Tensor only has one output. Nested structures of - Tensors are deterministically assigned an index via `nest.flatten`. - """ - - # Added to maintain memory and performance characteristics of `namedtuple` - # while subclassing. - __slots__ = () - - -def is_keras_tensor(obj): - return hasattr(obj, "_keras_history") diff --git a/keras/engine/node_test.py b/keras/engine/node_test.py deleted file mode 100644 index 5fa822e3013..00000000000 --- a/keras/engine/node_test.py +++ /dev/null @@ -1,172 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ,============================================================================ -"""Tests for layer graphs construction & handling.""" - -import tensorflow.compat.v2 as tf - -from keras.engine import base_layer -from keras.engine import node as node_module -from keras.testing_infra import test_combinations - - -class DummyTensor(tf.__internal__.types.Tensor): - def __init__(self, shape=None): - self._shape = shape - - @property - def shape(self): - return self._shape - - -class DummyLayer(base_layer.Layer): - pass - - -class NetworkConstructionTest(test_combinations.TestCase): - def test_chained_node_construction(self): - # test basics - a = DummyTensor(shape=(None, 32)) - b = DummyTensor(shape=(None, 32)) - - a_layer = DummyLayer() - node = node_module.Node(a_layer, outputs=a) - self.assertEqual(node.outbound_layer, a_layer) - - self.assertTrue(node.is_input) - self.assertListEqual(node.inbound_layers, []) - self.assertListEqual(node.input_tensors, [a]) - self.assertListEqual(node.input_shapes, [(None, 32)]) - self.assertListEqual(node.output_tensors, [a]) - self.assertListEqual(node.output_shapes, [(None, 32)]) - - b_layer = DummyLayer() - node_module.Node(b_layer, outputs=b) - - dense = DummyLayer() - a_2 = DummyTensor() - node_a = node_module.Node(layer=dense, call_args=(a,), outputs=a_2) - b_2 = DummyTensor() - node_b = node_module.Node(layer=dense, call_args=(b,), outputs=b_2) - - # test the node attributes - self.assertFalse(node_a.is_input) - self.assertFalse(node_b.is_input) - self.assertEqual(node_a.call_args, (a,)) - self.assertEqual(node_a.call_kwargs, {}) - self.assertEqual(node_a.outputs, a_2) - - # Test the layer wiring - self.assertLen(dense._inbound_nodes, 2) - self.assertLen(dense._outbound_nodes, 0) - self.assertEqual(dense._inbound_nodes, [node_a, node_b]) - self.assertEqual(dense._inbound_nodes[0].inbound_layers, a_layer) - self.assertEqual(dense._inbound_nodes[0].outbound_layer, dense) - self.assertEqual(dense._inbound_nodes[1].inbound_layers, b_layer) - self.assertEqual(dense._inbound_nodes[1].outbound_layer, dense) - self.assertIs(dense._inbound_nodes[0].input_tensors, a) - self.assertIs(dense._inbound_nodes[1].input_tensors, b) - - def test_multi_input_node(self): - # test multi-input layer - a = DummyTensor() - b = DummyTensor() - - dense = DummyLayer() - a_2 = DummyTensor() - node_module.Node(layer=dense, call_args=(a,), outputs=a_2) - b_2 = DummyTensor() - node_module.Node(layer=dense, call_args=(b,), outputs=b_2) - - concat_layer = DummyLayer() - merged = DummyTensor() - node_module.Node( - layer=concat_layer, call_args=([a_2, b_2],), outputs=merged - ) - - ( - merge_layer, - merge_node_index, - merge_tensor_index, - ) = merged._keras_history - - self.assertEqual(merge_node_index, 0) - self.assertEqual(merge_tensor_index, 0) - - self.assertLen(merge_layer._inbound_nodes, 1) - self.assertLen(merge_layer._outbound_nodes, 0) - - self.assertLen(merge_layer._inbound_nodes[0].input_tensors, 2) - self.assertEqual( - merge_layer._inbound_nodes[0].input_tensors, [a_2, b_2] - ) - self.assertLen(merge_layer._inbound_nodes[0].inbound_layers, 2) - - def test_arg_and_kwarg_mix(self): - input_layer = DummyLayer() - input_layer_2 = DummyLayer() - a = DummyTensor() - node_a = node_module.Node(layer=input_layer, outputs=a) - b = DummyTensor() - node_b = node_module.Node(layer=input_layer_2, outputs=b) - - arg_2 = DummyTensor() - arg_3 = DummyTensor() - node_c = node_module.Node(layer=input_layer, outputs=arg_3) - - kwarg_x = DummyTensor() - kwarg_y = DummyTensor() - node_d = node_module.Node(layer=input_layer, outputs=kwarg_y) - - merge_layer = DummyLayer() - merged = DummyTensor() - node = node_module.Node( - layer=merge_layer, - call_args=([a, b], arg_2, arg_3), - call_kwargs={"x": kwarg_x, "y": kwarg_y}, - outputs=merged, - ) - - ( - merge_layer, - merge_node_index, - merge_tensor_index, - ) = merged._keras_history - - # Check the saved call args/kwargs - self.assertEqual(([a, b], arg_2, arg_3), node.call_args) - self.assertEqual({"x": kwarg_x, "y": kwarg_y}, node.call_kwargs) - - # Only the inputs that were produced by input nodes should appear in - # keras_tensors - self.assertEqual({a, b, arg_3, kwarg_y}, set(node.keras_inputs)) - self.assertEqual( - set(node.parent_nodes), {node_a, node_b, node_c, node_d} - ) - - # Check the layer wirings - self.assertEqual(merge_node_index, 0) - self.assertEqual(merge_tensor_index, 0) - self.assertLen(merge_layer._inbound_nodes, 1) - self.assertLen(merge_layer._outbound_nodes, 0) - self.assertLen(input_layer._outbound_nodes, 3) - self.assertLen(input_layer_2._outbound_nodes, 1) - - self.assertLen(merge_layer._inbound_nodes[0].input_tensors, 2) - self.assertEqual(merge_layer._inbound_nodes[0].input_tensors, [a, b]) - self.assertLen(merge_layer._inbound_nodes[0].inbound_layers, 4) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/partial_batch_padding_handler.py b/keras/engine/partial_batch_padding_handler.py deleted file mode 100644 index a67fa70de6d..00000000000 --- a/keras/engine/partial_batch_padding_handler.py +++ /dev/null @@ -1,114 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utility object to handler partial batches for TPUStrategy.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend - - -class PartialBatchPaddingHandler: - """A container that holds info about partial batches for `predict()`.""" - - def __init__(self, output_shape): - self.padded_batch_size = 0 - self.padding_mask = tf.zeros(0) - self.output_shape = output_shape - - def get_real_batch_size(self, dataset_batch): - """Returns the number of elements in a potentially partial batch.""" - if isinstance(dataset_batch, (tuple, list)): - dataset_batch = dataset_batch[0] - - assert tf.nest.flatten(dataset_batch) - - def _find_any_tensor(batch_features): - tensors = [ - x for x in tf.nest.flatten(batch_features) if tf.is_tensor(x) - ] - if not tensors: - raise ValueError("Cannot find any Tensor in features dict.") - return tensors[0] - - return backend.cast( - backend.shape(_find_any_tensor(dataset_batch))[0], dtype="int64" - ) - - def update_mask(self, padding_mask, dataset_batch): - """Calculate and cache the amount of padding required for a batch.""" - original_batch_size = self.get_real_batch_size(dataset_batch) - missing_count = self.padded_batch_size - original_batch_size - mask = backend.concatenate( - [tf.ones(original_batch_size), tf.zeros(missing_count)], axis=0 - ) - return backend.concatenate([padding_mask, mask], axis=0) - - def pad_batch(self, *dataset_batch_elements): - """Pads the batch dimension of a tensor to the complete batch size.""" - - def _pad(batch): - """Helper function to pad nested data within each batch elements.""" - padded_dict_batch = {} - if isinstance(batch, dict): - for key, value in batch.items(): - padded_dict_batch[key] = _pad(value) - return padded_dict_batch - - rank = len(batch.shape) - assert rank > 0 - missing_count = self.padded_batch_size - self.get_real_batch_size( - batch - ) - padding = backend.stack( - [[0, missing_count]] + [[0, 0]] * (rank - 1) - ) - return tf.pad(batch, padding, "constant") - - if len(dataset_batch_elements) == 1: - return _pad(dataset_batch_elements[0]) - - batch_elements = [] - for batch_element in dataset_batch_elements: - batch_elements.append(_pad(batch_element)) - return tuple(batch_elements) - - def apply_mask(self, prediction_result): - """Removes prediction output that corresponds to padded input.""" - padding_mask = backend.get_value(self.padding_mask) - assert len(padding_mask.shape) == 1 - - if len(self.output_shape) == 1: - prediction = np.take( - prediction_result, - np.nonzero(padding_mask[: len(prediction_result)]), - axis=0, - ) - if prediction.shape[0] == 1: - prediction = np.squeeze(prediction, axis=0) - return prediction - - else: - predictions = [] - for i in range(len(self.output_shape)): - prediction = prediction_result[i] - prediction = np.take( - prediction, - np.nonzero(padding_mask[: len(prediction)]), - axis=0, - ) - predictions.append(np.squeeze(prediction)) - - return predictions diff --git a/keras/engine/ragged_keras_tensor_test.py b/keras/engine/ragged_keras_tensor_test.py deleted file mode 100644 index cad4e02e281..00000000000 --- a/keras/engine/ragged_keras_tensor_test.py +++ /dev/null @@ -1,370 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""RaggedKerasTensor tests.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import layers -from keras.engine import training -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_utils.run_v2_only -class RaggedKerasTensorTest(test_combinations.TestCase): - @parameterized.parameters( - {"batch_size": None, "shape": (None, 5), "ragged_rank": 1}, - {"batch_size": None, "shape": (None, 3, 5), "ragged_rank": 1}, - {"batch_size": None, "shape": (5, None), "ragged_rank": 2}, - {"batch_size": None, "shape": (3, 5, None), "ragged_rank": 3}, - {"batch_size": None, "shape": (None, 3, 5, None), "ragged_rank": 4}, - { - "batch_size": None, - "shape": (2, 3, None, 4, 5, None), - "ragged_rank": 6, - }, - {"batch_size": 8, "shape": (None, 5), "ragged_rank": 1}, - {"batch_size": 9, "shape": (None, 3, 5), "ragged_rank": 1}, - {"batch_size": 1, "shape": (5, None), "ragged_rank": 2}, - {"batch_size": 4, "shape": (3, 5, None), "ragged_rank": 3}, - {"batch_size": 7, "shape": (None, 3, 5, None), "ragged_rank": 4}, - {"batch_size": 12, "shape": (2, 3, None, 4, 5, None), "ragged_rank": 6}, - ) - def test_to_placeholder(self, shape, batch_size, ragged_rank): - inp = layers.Input(shape=shape, batch_size=batch_size, ragged=True) - self.assertEqual(inp.ragged_rank, ragged_rank) - self.assertAllEqual(inp.shape, [batch_size] + list(shape)) - with tf.__internal__.FuncGraph("test").as_default(): - placeholder = inp._to_placeholder() - self.assertEqual(placeholder.ragged_rank, ragged_rank) - self.assertAllEqual(placeholder.shape, [batch_size] + list(shape)) - - def test_add(self): - inp = layers.Input(shape=[None], ragged=True) - out = inp + inp - model = training.Model(inp, out) - - x = tf.ragged.constant([[3, 4], [1, 2], [3, 5]]) - self.assertAllEqual(model(x), x + x) - - def test_mul(self): - inp = layers.Input(shape=[None], ragged=True) - out = inp * inp - model = training.Model(inp, out) - - x = tf.ragged.constant([[3, 4], [1, 2], [3, 5]]) - self.assertAllEqual(model(x), x * x) - - def test_sub(self): - inp = layers.Input(shape=[None], ragged=True) - out = inp - inp - model = training.Model(inp, out) - - x = tf.ragged.constant([[3, 4], [1, 2], [3, 5]]) - self.assertAllEqual(model(x), x - x) - - def test_div(self): - inp = layers.Input(shape=[None], ragged=True) - out = inp / inp - model = training.Model(inp, out) - - x = tf.ragged.constant([[3, 4], [1, 2], [3, 5]]) - self.assertAllEqual(model(x), x / x) - - def test_getitem(self): - # Test slicing / getitem - inp = layers.Input(shape=(None, 2), ragged=True) - out = inp[:, :2] - model = training.Model(inp, out) - - x = tf.RaggedTensor.from_row_lengths( - tf.cast(np.random.randn(6, 2), dtype=tf.float32), [3, 1, 2] - ) - expected = x[:, :2] - - self.assertAllEqual(model(x), expected) - - # Test that models w/ slicing are correctly serialized/deserialized - config = model.get_config() - model = training.Model.from_config(config) - - self.assertAllEqual(model(x), expected) - - @parameterized.parameters( - {"property_name": "values"}, - {"property_name": "flat_values"}, - {"property_name": "row_splits"}, - {"property_name": "nested_row_splits"}, - ) - def test_instance_property(self, property_name): - inp = layers.Input(shape=[None], ragged=True) - out = getattr(inp, property_name) - model = training.Model(inp, out) - - x = tf.ragged.constant([[3, 4], [1, 2], [3, 5]]) - expected_property = getattr(x, property_name) - self.assertAllEqual(model(x), expected_property) - - # Test that it works with serialization and deserialization as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - self.assertAllEqual(model2(x), expected_property) - - @parameterized.parameters( - {"name": "value_rowids"}, - {"name": "nested_value_rowids"}, - {"name": "nrows"}, - {"name": "row_starts"}, - {"name": "row_limits"}, - {"name": "row_lengths"}, - {"name": "nested_row_lengths"}, - {"name": "bounding_shape"}, - {"name": "with_values", "args": [[1, 2, 3, 4, 5, 6]]}, - { - "name": "with_flat_values", - "kwargs": {"new_values": [1, 2, 3, 4, 5, 6]}, - }, - {"name": "with_row_splits_dtype", "kwargs": {"dtype": tf.int32}}, - {"name": "merge_dims", "args": [0], "kwargs": {"inner_axis": 1}}, - {"name": "to_tensor"}, - {"name": "to_sparse"}, - ) - def test_instance_method(self, name, args=None, kwargs=None): - if not args: - args = [] - if not kwargs: - kwargs = {} - - inp = layers.Input(shape=[None], ragged=True) - out = getattr(inp, name)(*args, **kwargs) - model = training.Model(inp, out) - - x = tf.ragged.constant([[3, 4], [1, 2], [3, 5]]) - expected_property = getattr(x, name)(*args, **kwargs) - # We expand composites before checking equality because - # assertAllEqual otherwise wouldn't work for SparseTensor outputs - for a, b in zip( - tf.nest.flatten(model(x), expand_composites=True), - tf.nest.flatten(expected_property, expand_composites=True), - ): - self.assertAllEqual(a, b) - - # Test that the model can serialize and deserialize as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - for a, b in zip( - tf.nest.flatten(model2(x), expand_composites=True), - tf.nest.flatten(expected_property, expand_composites=True), - ): - self.assertAllEqual(a, b) - - -@test_utils.run_v2_only -class RaggedTensorClassMethodAsLayerTest(test_combinations.TestCase): - def test_from_value_rowids(self): - inp = layers.Input(shape=[None]) - out = tf.RaggedTensor.from_value_rowids( - inp, value_rowids=[0, 0, 0, 0, 2, 2, 2, 3], nrows=5 - ) - model = training.Model(inp, out) - - x = tf.constant([3, 1, 4, 1, 5, 9, 2, 6]) - expected = tf.RaggedTensor.from_value_rowids( - x, value_rowids=[0, 0, 0, 0, 2, 2, 2, 3], nrows=5 - ) - self.assertAllEqual(model(x), expected) - - # Test that the model can serialize and deserialize as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - self.assertAllEqual(model2(x), expected) - - def test_from_row_splits(self): - inp = layers.Input(shape=[None]) - out = tf.RaggedTensor.from_row_splits( - inp, row_splits=[0, 4, 4, 7, 8, 8] - ) - model = training.Model(inp, out) - - x = tf.constant([3, 1, 4, 1, 5, 9, 2, 6]) - expected = tf.RaggedTensor.from_row_splits( - x, row_splits=[0, 4, 4, 7, 8, 8] - ) - self.assertAllEqual(model(x), expected) - - # Test that the model can serialize and deserialize as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - self.assertAllEqual(model2(x), expected) - - def test_from_row_lengths(self): - inp = layers.Input(shape=[None]) - out = tf.RaggedTensor.from_row_lengths(inp, row_lengths=[4, 0, 3, 1, 0]) - model = training.Model(inp, out) - - x = tf.constant([3, 1, 4, 1, 5, 9, 2, 6]) - expected = tf.RaggedTensor.from_row_lengths( - x, row_lengths=[4, 0, 3, 1, 0] - ) - self.assertAllEqual(model(x), expected) - - # Test that the model can serialize and deserialize as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - self.assertAllEqual(model2(x), expected) - - def test_from_row_starts(self): - inp = layers.Input(shape=[None]) - out = tf.RaggedTensor.from_row_starts(inp, row_starts=[0, 4, 4, 7, 8]) - model = training.Model(inp, out) - - x = tf.constant([3, 1, 4, 1, 5, 9, 2, 6]) - expected = tf.RaggedTensor.from_row_starts( - x, row_starts=[0, 4, 4, 7, 8] - ) - self.assertAllEqual(model(x), expected) - - # Test that the model can serialize and deserialize as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - self.assertAllEqual(model2(x), expected) - - def test_from_row_limits(self): - row_limits = tf.constant([2, 2, 5, 6, 7], tf.int64) - - inp = layers.Input(shape=[None], dtype=tf.string) - out = tf.RaggedTensor.from_row_limits(inp, row_limits, validate=False) - model = training.Model(inp, out) - - x = tf.constant(["a", "b", "c", "d", "e", "f", "g"]) - expected = tf.RaggedTensor.from_row_limits( - x, row_limits, validate=False - ) - self.assertAllEqual(model(x), expected) - - # Test that the model can serialize and deserialize as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - self.assertAllEqual(model2(x), expected) - - def test_from_uniform_row_length(self): - inp = layers.Input(shape=[None]) - out = tf.RaggedTensor.from_uniform_row_length(inp, 2, 8) - model = training.Model(inp, out) - - x = tf.constant([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]) - expected = tf.RaggedTensor.from_uniform_row_length(x, 2, 8) - self.assertAllEqual(model(x), expected) - - # Test that the model can serialize and deserialize as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - self.assertAllEqual(model2(x), expected) - - def test_from_nested_value_row_ids(self): - nested_value_rowids = [ - tf.constant([0, 0, 1, 3, 3], tf.int64), - tf.constant([0, 0, 2, 2, 2, 3, 4], tf.int64), - ] - inp = layers.Input(shape=[None], dtype=tf.string) - out = tf.RaggedTensor.from_nested_value_rowids(inp, nested_value_rowids) - model = training.Model(inp, out) - - x = tf.constant(["a", "b", "c", "d", "e", "f", "g"]) - expected = tf.RaggedTensor.from_nested_value_rowids( - x, nested_value_rowids - ) - self.assertAllEqual(model(x), expected) - - # Test that the model can serialize and deserialize as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - self.assertAllEqual(model2(x), expected) - - def test_from_nested_row_splits(self): - nested_row_splits = [ - tf.constant([0, 2, 3, 3, 5], tf.int64), - tf.constant([0, 2, 2, 5, 6, 7], tf.int64), - ] - inp = layers.Input(shape=[None], dtype=tf.string) - out = tf.RaggedTensor.from_nested_row_splits(inp, nested_row_splits) - model = training.Model(inp, out) - - x = tf.constant(["a", "b", "c", "d", "e", "f", "g"]) - expected = tf.RaggedTensor.from_nested_row_splits(x, nested_row_splits) - self.assertAllEqual(model(x), expected) - - # Test that the model can serialize and deserialize as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - self.assertAllEqual(model2(x), expected) - - def test_from_nested_row_lengths(self): - nested_row_lengths = [ - tf.constant([2, 1, 0, 2], tf.int64), - tf.constant([2, 0, 3, 1, 1], tf.int64), - ] - inp = layers.Input(shape=[None], dtype=tf.string) - out = tf.RaggedTensor.from_nested_row_lengths(inp, nested_row_lengths) - model = training.Model(inp, out) - - x = tf.constant(["a", "b", "c", "d", "e", "f", "g"]) - expected = tf.RaggedTensor.from_nested_row_lengths( - x, nested_row_lengths - ) - self.assertAllEqual(model(x), expected) - - # Test that the model can serialize and deserialize as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - self.assertAllEqual(model2(x), expected) - - def test_from_tensor(self): - inp = layers.Input(shape=[None], ragged=False) - out = tf.RaggedTensor.from_tensor(inp) - model = training.Model(inp, out) - - x = tf.constant([[3.0, 4.0], [1.0, 2.0], [3.0, 5.0]]) - expected = tf.RaggedTensor.from_tensor(x) - self.assertAllEqual(model(x), expected) - - # Test that the model can serialize and deserialize as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - self.assertAllEqual(model2(x), expected) - - def test_from_sparse(self): - inp = layers.Input(shape=[None], sparse=True, dtype=tf.string) - out = tf.RaggedTensor.from_sparse(inp) - model = training.Model(inp, out) - - indices = [[0, 0], [1, 0], [1, 1], [2, 0]] - values = [b"a", b"b", b"c", b"d"] - shape = [4, 5] - sp_value = tf.SparseTensor(indices, values, shape) - - expected = tf.RaggedTensor.from_sparse(sp_value) - self.assertAllEqual(model(sp_value), expected) - - # Test that the model can serialize and deserialize as well - model_config = model.get_config() - model2 = training.Model.from_config(model_config) - self.assertAllEqual(model2(sp_value), expected) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/saving.py b/keras/engine/saving.py deleted file mode 100644 index f72fe1c2216..00000000000 --- a/keras/engine/saving.py +++ /dev/null @@ -1,21 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Model saving utilities. - -Everything has been moved to keras/saving/. This file will be deleted soon. -""" - -from keras.saving import * # noqa: F401,F403 diff --git a/keras/engine/sequential.py b/keras/engine/sequential.py deleted file mode 100644 index a04bca2f223..00000000000 --- a/keras/engine/sequential.py +++ /dev/null @@ -1,557 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Home of the `Sequential` model.""" - -import copy - -import tensorflow.compat.v2 as tf - -from keras import layers as layer_module -from keras.engine import base_layer -from keras.engine import functional -from keras.engine import input_layer -from keras.engine import training -from keras.engine import training_utils -from keras.saving import serialization_lib -from keras.saving.legacy.saved_model import model_serialization -from keras.utils import generic_utils -from keras.utils import layer_utils -from keras.utils import tf_inspect -from keras.utils import tf_utils -from keras.utils import traceback_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -SINGLE_LAYER_OUTPUT_ERROR_MSG = ( - "All layers in a Sequential model should have " - "a single output tensor. For multi-output " - "layers, use the functional API." -) - - -@keras_export("keras.Sequential", "keras.models.Sequential") -class Sequential(functional.Functional): - """`Sequential` groups a linear stack of layers into a `tf.keras.Model`. - - `Sequential` provides training and inference features on this model. - - Examples: - - ```python - # Optionally, the first layer can receive an `input_shape` argument: - model = tf.keras.Sequential() - model.add(tf.keras.layers.Dense(8, input_shape=(16,))) - # Afterwards, we do automatic shape inference: - model.add(tf.keras.layers.Dense(4)) - - # This is identical to the following: - model = tf.keras.Sequential() - model.add(tf.keras.Input(shape=(16,))) - model.add(tf.keras.layers.Dense(8)) - - # Note that you can also omit the `input_shape` argument. - # In that case the model doesn't have any weights until the first call - # to a training/evaluation method (since it isn't yet built): - model = tf.keras.Sequential() - model.add(tf.keras.layers.Dense(8)) - model.add(tf.keras.layers.Dense(4)) - # model.weights not created yet - - # Whereas if you specify the input shape, the model gets built - # continuously as you are adding layers: - model = tf.keras.Sequential() - model.add(tf.keras.layers.Dense(8, input_shape=(16,))) - model.add(tf.keras.layers.Dense(4)) - len(model.weights) - # Returns "4" - - # When using the delayed-build pattern (no input shape specified), you can - # choose to manually build your model by calling - # `build(batch_input_shape)`: - model = tf.keras.Sequential() - model.add(tf.keras.layers.Dense(8)) - model.add(tf.keras.layers.Dense(4)) - model.build((None, 16)) - len(model.weights) - # Returns "4" - - # Note that when using the delayed-build pattern (no input shape specified), - # the model gets built the first time you call `fit`, `eval`, or `predict`, - # or the first time you call the model on some input data. - model = tf.keras.Sequential() - model.add(tf.keras.layers.Dense(8)) - model.add(tf.keras.layers.Dense(1)) - model.compile(optimizer='sgd', loss='mse') - # This builds the model for the first time: - model.fit(x, y, batch_size=32, epochs=10) - ``` - """ - - @tf.__internal__.tracking.no_automatic_dependency_tracking - @traceback_utils.filter_traceback - def __init__(self, layers=None, name=None): - """Creates a `Sequential` model instance. - - Args: - layers: Optional list of layers to add to the model. - name: Optional name for the model. - """ - # Skip the init in FunctionalModel since model doesn't have input/output - # yet - super(functional.Functional, self).__init__(name=name, autocast=False) - base_layer.keras_api_gauge.get_cell("Sequential").set(True) - self.supports_masking = True - self._compute_output_and_mask_jointly = True - self._auto_track_sub_layers = False - self._inferred_input_shape = None - self._has_explicit_input_shape = False - self._input_dtype = None - self._layer_call_argspecs = {} - self._created_nodes = set() - # Flag that indicate whether the sequential network topology has been - # created. It is false when there isn't any layer, or the layers don't - # have an input shape. - self._graph_initialized = False - - # Unfortunately some Sequential models using custom layers or - # FeatureColumn layers have multiple inputs. This is fundamentally - # incompatible with most of the Sequential API, and we have to disable a - # number of features for such models. - self._use_legacy_deferred_behavior = False - - # Add to the model any layers passed to the constructor. - if layers: - if not isinstance(layers, (list, tuple)): - layers = [layers] - for layer in layers: - self.add(layer) - - @property - def layers(self): - # Historically, `sequential.layers` only returns layers that were added - # via `add`, and omits the auto-generated `InputLayer` that comes at the - # bottom of the stack. - # `Trackable` manages the `_layers` attributes and does filtering - # over it. - layers = super().layers - if layers and isinstance(layers[0], input_layer.InputLayer): - return layers[1:] - return layers[:] - - @tf.__internal__.tracking.no_automatic_dependency_tracking - @traceback_utils.filter_traceback - def add(self, layer): - """Adds a layer instance on top of the layer stack. - - Args: - layer: layer instance. - - Raises: - TypeError: If `layer` is not a layer instance. - ValueError: In case the `layer` argument does not - know its input shape. - ValueError: In case the `layer` argument has - multiple output tensors, or is already connected - somewhere else (forbidden in `Sequential` models). - """ - # If we are passed a Keras tensor created by keras.Input(), we can - # extract the input layer from its keras history and use that without - # any loss of - # generality. - if hasattr(layer, "_keras_history"): - origin_layer = layer._keras_history[0] - if isinstance(origin_layer, input_layer.InputLayer): - layer = origin_layer - - if isinstance(layer, tf.Module): - if not isinstance(layer, base_layer.Layer): - layer = functional.ModuleWrapper(layer) - else: - raise TypeError( - "The added layer must be an instance of class Layer. " - f"Received: layer={layer} of type {type(layer)}." - ) - - tf_utils.assert_no_legacy_layers([layer]) - if not self._is_layer_name_unique(layer): - raise ValueError( - "All layers added to a Sequential model " - f'should have unique names. Name "{layer.name}" is already ' - "the name of a layer in this model. Update the `name` argument " - "to pass a unique name." - ) - - self.built = False - set_inputs = False - self._maybe_create_attribute("_self_tracked_trackables", []) - if not self._self_tracked_trackables: - if isinstance(layer, input_layer.InputLayer): - # Case where the user passes an Input or InputLayer layer via - # `add`. - set_inputs = True - else: - batch_shape, dtype = training_utils.get_input_shape_and_dtype( - layer - ) - if batch_shape: - # Instantiate an input layer. - x = input_layer.Input( - batch_shape=batch_shape, - dtype=dtype, - name=layer.name + "_input", - ) - # This will build the current layer - # and create the node connecting the current layer - # to the input layer we just created. - layer(x) - set_inputs = True - - if set_inputs: - outputs = tf.nest.flatten(layer._inbound_nodes[-1].outputs) - if len(outputs) != 1: - raise ValueError(SINGLE_LAYER_OUTPUT_ERROR_MSG) - self.outputs = outputs - self.inputs = layer_utils.get_source_inputs(self.outputs[0]) - self.built = True - self._has_explicit_input_shape = True - - elif self.outputs: - # If the model is being built continuously on top of an input layer: - # refresh its output. - output_tensor = layer(self.outputs[0]) - if len(tf.nest.flatten(output_tensor)) != 1: - raise ValueError(SINGLE_LAYER_OUTPUT_ERROR_MSG) - self.outputs = [output_tensor] - self.built = True - - if set_inputs or self._graph_initialized: - self._init_graph_network(self.inputs, self.outputs) - self._graph_initialized = True - else: - self._self_tracked_trackables.append(layer) - self._handle_deferred_layer_dependencies([layer]) - - self._layer_call_argspecs[layer] = tf_inspect.getfullargspec(layer.call) - - @tf.__internal__.tracking.no_automatic_dependency_tracking - @traceback_utils.filter_traceback - def pop(self): - """Removes the last layer in the model. - - Raises: - TypeError: if there are no layers in the model. - """ - if not self.layers: - raise TypeError("There are no layers in the model.") - - layer = self._self_tracked_trackables.pop() - self._layer_call_argspecs.pop(layer) - if not self.layers: - self.outputs = None - self.inputs = None - self.built = False - self._inferred_input_shape = None - self._has_explicit_input_shape = False - self._graph_initialized = False - elif self._graph_initialized: - self.layers[-1]._outbound_nodes = [] - self.outputs = [self.layers[-1].output] - self._init_graph_network(self.inputs, self.outputs) - self.built = True - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _build_graph_network_for_inferred_shape( - self, input_shape, input_dtype=None - ): - if input_shape is None or not self.layers: - return - if ( - not tf.__internal__.tf2.enabled() - or not tf.compat.v1.executing_eagerly_outside_functions() - ): - # This behavior is disabled in V1 or when eager execution is - # disabled. - return - if ( - not self._has_explicit_input_shape - and not self._use_legacy_deferred_behavior - ): - # Determine whether the input shape is novel, i.e. whether the model - # should be rebuilt. - input_shape = tuple(input_shape) - if self._inferred_input_shape is None: - new_shape = input_shape - else: - new_shape = relax_input_shape( - self._inferred_input_shape, input_shape - ) - if ( - new_shape is not None - and new_shape != self._inferred_input_shape - ): - # A novel shape has been received: we need to rebuild the model. - # In case we are inside a graph function, we step out of it. - with tf.init_scope(): - inputs = input_layer.Input( - batch_shape=new_shape, - dtype=input_dtype, - name=self.layers[0].name + "_input", - ) - layer_input = inputs - created_nodes = set() - for layer in self.layers: - # Clear nodes previously created via this method. This - # prevents node accumulation and ensures that e.g. - # `layer.output` is always connected to `model.inputs` - # (this is important e.g. for the feature extraction use - # case). We don't just do `layer._inbound_nodes = []` - # in order not to break shared layers added to - # Sequential models (which is technically illegal as per - # the `add()` docstring, but wasn't previously - # disabled). - clear_previously_created_nodes( - layer, self._created_nodes - ) - try: - # Create Functional API connection by calling the - # current layer - layer_output = layer(layer_input) - except: # noqa: E722 - # Functional API calls may fail for a number of - # reasons: 1) The layer may be buggy. In this case - # it will be easier for the user to debug if we fail - # on the first call on concrete data, instead of our - # own call on a symbolic input. 2) The layer is - # dynamic (graph-incompatible) and hasn't overridden - # `compute_output_shape`. In this case, it is - # impossible to build a graph network. 3) The layer - # is otherwise incompatible with the Functional API - # (e.g. this is the case for some probabilistic - # layers that rely on hacks and that do not return - # tensors). In all these cases, we should avoid - # creating a graph network (or we simply can't). - self._use_legacy_deferred_behavior = True - return - if len(tf.nest.flatten(layer_output)) != 1: - raise ValueError(SINGLE_LAYER_OUTPUT_ERROR_MSG) - # Keep track of nodes just created above - track_nodes_created_by_last_call(layer, created_nodes) - layer_input = layer_output - outputs = layer_output - self._created_nodes = created_nodes - try: - # Initialize a graph Network. This call will never fail - # for a stack of valid Keras layers. However some users - # have layers that are fundamentally incompatible with - # the Functional API, which do not return tensors. In - # this case, we fall back to the legacy deferred - # behavior. - # TODO(fchollet): consider raising here, as we should - # not be supporting such layers. - self._init_graph_network(inputs, outputs) - self._graph_initialized = True - except: # noqa: E722 - self._use_legacy_deferred_behavior = True - self._inferred_input_shape = new_shape - - @generic_utils.default - def build(self, input_shape=None): - if self._graph_initialized: - self._init_graph_network(self.inputs, self.outputs) - else: - if input_shape is None: - raise ValueError("You must provide an `input_shape` argument.") - self._build_graph_network_for_inferred_shape(input_shape) - if not self.built: - input_shape = tuple(input_shape) - self._build_input_shape = input_shape - super().build(input_shape) - self.built = True - - def call(self, inputs, training=None, mask=None): - # If applicable, update the static input shape of the model. - if not self._has_explicit_input_shape: - if not tf.is_tensor(inputs) and not isinstance(inputs, tf.Tensor): - # This is a Sequential with multiple inputs. This is technically - # an invalid use case of Sequential, but we tolerate it for - # backwards compatibility. - self._use_legacy_deferred_behavior = True - self._build_input_shape = tf.nest.map_structure( - _get_shape_tuple, inputs - ) - else: - self._build_graph_network_for_inferred_shape( - inputs.shape, inputs.dtype - ) - - if self._graph_initialized: - if not self.built: - self._init_graph_network(self.inputs, self.outputs) - return super().call(inputs, training=training, mask=mask) - - outputs = inputs # handle the corner case where self.layers is empty - for layer in self.layers: - # During each iteration, `inputs` are the inputs to `layer`, and - # `outputs` are the outputs of `layer` applied to `inputs`. At the - # end of each iteration `inputs` is set to `outputs` to prepare for - # the next layer. - kwargs = {} - argspec = self._layer_call_argspecs[layer].args - if "mask" in argspec: - kwargs["mask"] = mask - if "training" in argspec: - kwargs["training"] = training - - outputs = layer(inputs, **kwargs) - - inputs = outputs - - def _get_mask_from_keras_tensor(kt): - return getattr(kt, "_keras_mask", None) - - mask = tf.nest.map_structure(_get_mask_from_keras_tensor, outputs) - return outputs - - def compute_output_shape(self, input_shape): - shape = input_shape - for layer in self.layers: - shape = layer.compute_output_shape(shape) - return shape - - def compute_mask(self, inputs, mask): - # TODO(omalleyt): b/123540974 This function is not really safe to call - # by itself because it will duplicate any updates and losses in graph - # mode by `call`ing the Layers again. - outputs = self.call(inputs, mask=mask) - return getattr(outputs, "_keras_mask", None) - - def get_config(self): - layer_configs = [] - for layer in super().layers: - # `super().layers` include the InputLayer if available (it is - # filtered out of `self.layers`). Note that - # `self._self_tracked_trackables` is managed by the tracking - # infrastructure and should not be used. - layer_configs.append( - serialization_lib.serialize_keras_object(layer) - ) - config = training.Model.get_config(self) - config["name"] = self.name - config["layers"] = copy.deepcopy(layer_configs) - if not self._is_graph_network and self._build_input_shape is not None: - config["build_input_shape"] = self._build_input_shape - return config - - @classmethod - def from_config(cls, config, custom_objects=None): - if "name" in config: - name = config["name"] - build_input_shape = config.get("build_input_shape") - layer_configs = config["layers"] - else: - name = None - layer_configs = config - model = cls(name=name) - for layer_config in layer_configs: - use_legacy_format = "module" not in layer_config - layer = layer_module.deserialize( - layer_config, - custom_objects=custom_objects, - use_legacy_format=use_legacy_format, - ) - model.add(layer) - - if ( - not model.inputs - and build_input_shape - and isinstance(build_input_shape, (tuple, list)) - ): - model.build(build_input_shape) - - return model - - @property - def input_spec(self): - if hasattr(self, "_manual_input_spec"): - return self._manual_input_spec - if self._has_explicit_input_shape: - return super().input_spec - return None - - @input_spec.setter - def input_spec(self, value): - self._manual_input_spec = value - - @property - def _trackable_saved_model_saver(self): - return model_serialization.SequentialSavedModelSaver(self) - - def _is_layer_name_unique(self, layer): - for ref_layer in self.layers: - if layer.name == ref_layer.name and ref_layer is not layer: - return False - return True - - def _assert_weights_created(self): - if self._graph_initialized: - return - # When the graph has not been initialized, use the Model's - # implementation to to check if the weights has been created. - super(functional.Functional, self)._assert_weights_created() - - -def _get_shape_tuple(t): - if hasattr(t, "shape"): - shape = t.shape - if isinstance(shape, tuple): - return shape - if shape.rank is not None: - return tuple(shape.as_list()) - return None - return None - - -def relax_input_shape(shape_1, shape_2): - if shape_1 is None or shape_2 is None: - return None - if len(shape_1) != len(shape_2): - return None - return tuple(None if d1 != d2 else d1 for d1, d2 in zip(shape_1, shape_2)) - - -def clear_previously_created_nodes(layer, created_nodes): - """Remove nodes from `created_nodes` from the layer's inbound_nodes.""" - for node in layer._inbound_nodes: - prev_layers = node.inbound_layers - for prev_layer in tf.nest.flatten(prev_layers): - prev_layer._outbound_nodes = [ - n for n in prev_layer._outbound_nodes if n not in created_nodes - ] - layer._inbound_nodes = [ - n for n in layer._inbound_nodes if n not in created_nodes - ] - - -def track_nodes_created_by_last_call(layer, created_nodes): - """Adds to `created_nodes` the nodes created by the last call to `layer`.""" - if not layer._inbound_nodes: - return - created_nodes.add(layer._inbound_nodes[-1]) - prev_layers = layer._inbound_nodes[-1].inbound_layers - for prev_layer in tf.nest.flatten(prev_layers): - if prev_layer._outbound_nodes: - created_nodes.add(prev_layer._outbound_nodes[-1]) diff --git a/keras/engine/sequential_test.py b/keras/engine/sequential_test.py deleted file mode 100644 index 54097e71b42..00000000000 --- a/keras/engine/sequential_test.py +++ /dev/null @@ -1,651 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests specific to `Sequential` model.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -class TestSequential(test_combinations.TestCase): - """Most Sequential model API tests are covered in `training_test.py`.""" - - @test_combinations.run_all_keras_modes - def test_basic_methods(self): - model = keras.models.Sequential() - model.add(keras.layers.Dense(1, input_dim=2)) - model.add(keras.layers.Dropout(0.3, name="dp")) - model.add( - keras.layers.Dense( - 2, kernel_regularizer="l2", kernel_constraint="max_norm" - ) - ) - self.assertEqual(len(model.layers), 3) - self.assertEqual(len(model.weights), 2 * 2) - self.assertEqual(model.get_layer(name="dp").name, "dp") - - @test_combinations.run_all_keras_modes - def test_input_defined_first_layer(self): - model = keras.models.Sequential() - model.add(keras.Input(shape=(2,), name="input_layer")) - model.add(keras.layers.Dense(1)) - model.add(keras.layers.Dropout(0.3, name="dp")) - model.add( - keras.layers.Dense( - 2, kernel_regularizer="l2", kernel_constraint="max_norm" - ) - ) - self.assertLen(model.layers, 3) - self.assertLen(model.weights, 2 * 2) - self.assertEqual(model.get_layer(name="dp").name, "dp") - - @test_combinations.run_all_keras_modes - def test_single_layer_in_init(self): - model = keras.models.Sequential(keras.layers.Dense(1)) - self.assertLen(model.layers, 1) - - @test_combinations.run_all_keras_modes - def test_sequential_pop(self): - num_hidden = 5 - input_dim = 3 - batch_size = 5 - num_classes = 2 - - model = test_utils.get_small_sequential_mlp( - num_hidden, num_classes, input_dim - ) - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - x = np.random.random((batch_size, input_dim)) - y = np.random.random((batch_size, num_classes)) - model.fit(x, y, epochs=1) - model.pop() - self.assertEqual(len(model.layers), 1) - self.assertEqual(model.output_shape, (None, num_hidden)) - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - y = np.random.random((batch_size, num_hidden)) - model.fit(x, y, epochs=1) - - # Test popping single-layer model - model = keras.models.Sequential() - model.add(keras.layers.Dense(num_hidden, input_dim=input_dim)) - model.pop() - self.assertEqual(model.layers, []) - self.assertEqual(model.outputs, None) - - # Invalid use case - model = keras.models.Sequential() - with self.assertRaises(TypeError): - model.pop() - - @test_combinations.run_all_keras_modes - def test_sequential_deferred_build_with_np_arrays(self): - num_hidden = 5 - input_dim = 3 - batch_size = 5 - num_classes = 2 - - model = test_utils.get_small_sequential_mlp(num_hidden, num_classes) - model.compile( - loss="mse", - optimizer="rmsprop", - metrics=[keras.metrics.CategoricalAccuracy()], - run_eagerly=test_utils.should_run_eagerly(), - ) - self.assertEqual(len(model.layers), 2) - with self.assertRaisesRegex( - ValueError, "Weights for model .* have not yet been created" - ): - len(model.weights) - self.assertFalse(model.built) - - x = np.random.random((batch_size, input_dim)) - y = np.random.random((batch_size, num_classes)) - model.fit(x, y, epochs=1) - self.assertTrue(model.built) - self.assertEqual(len(model.weights), 2 * 2) - - @test_combinations.run_all_keras_modes - def test_sequential_deferred_build_with_dataset_iterators(self): - num_hidden = 5 - input_dim = 3 - num_classes = 2 - num_samples = 50 - steps_per_epoch = 10 - - model = test_utils.get_small_sequential_mlp(num_hidden, num_classes) - model.compile( - loss="mse", - optimizer="rmsprop", - metrics=[keras.metrics.CategoricalAccuracy()], - run_eagerly=test_utils.should_run_eagerly(), - ) - self.assertEqual(len(model.layers), 2) - with self.assertRaisesRegex( - ValueError, "Weights for model .* have not yet been created" - ): - len(model.weights) - self.assertFalse(model.built) - - x = tf.ones((num_samples, input_dim)) - y = tf.zeros((num_samples, num_classes)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - - model.fit(dataset, epochs=1, steps_per_epoch=steps_per_epoch) - self.assertTrue(model.built) - self.assertEqual(len(model.weights), 2 * 2) - - # TODO(kaftan) This test fails w/ run_with_all_keras_modes. File ticket - @parameterized.parameters((True,), (False,)) - def test_training_and_eval_methods_on_symbolic_tensors(self, deferred): - with tf.Graph().as_default(), self.cached_session(): - - def get_model(): - if deferred: - model = test_utils.get_small_sequential_mlp(10, 4) - else: - model = test_utils.get_small_sequential_mlp( - 10, 4, input_dim=3 - ) - model.compile( - optimizer="rmsprop", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - return model - - inputs = keras.backend.zeros(shape=(10, 3)) - targets = keras.backend.zeros(shape=(10, 4)) - - model = get_model() - model.fit(inputs, targets, epochs=10, steps_per_epoch=30) - - model = get_model() - model.evaluate(inputs, targets, steps=2, verbose=0) - - model = get_model() - model.predict(inputs, steps=2) - - model = get_model() - model.train_on_batch(inputs, targets) - - model = get_model() - model.test_on_batch(inputs, targets) - - model = get_model() - model.fit( - inputs, - targets, - epochs=1, - steps_per_epoch=2, - verbose=0, - validation_data=(inputs, targets), - validation_steps=2, - ) - - @test_combinations.run_all_keras_modes - def test_invalid_use_cases(self): - # Added objects must be layer instances - with self.assertRaises(TypeError): - model = keras.models.Sequential() - model.add(None) - - @test_combinations.run_all_keras_modes - def test_nested_sequential_trainability(self): - input_dim = 20 - num_units = 10 - num_classes = 2 - - inner_model = keras.models.Sequential() - inner_model.add(keras.layers.Dense(num_units, input_shape=(input_dim,))) - - model = keras.models.Sequential() - model.add(inner_model) - model.add(keras.layers.Dense(num_classes)) - - self.assertEqual(len(model.layers), 2) - - self.assertEqual(len(model.trainable_weights), 4) - inner_model.trainable = False - self.assertEqual(len(model.trainable_weights), 2) - inner_model.trainable = True - self.assertEqual(len(model.trainable_weights), 4) - - @test_combinations.run_all_keras_modes - def test_sequential_update_disabling(self): - val_a = np.random.random((10, 4)) - val_out = np.random.random((10, 4)) - - model = keras.models.Sequential() - model.add(keras.layers.BatchNormalization(input_shape=(4,))) - - model.trainable = False - model.compile("sgd", "mse") - - x1 = model.predict(val_a) - model.train_on_batch(val_a, val_out) - x2 = model.predict(val_a) - self.assertAllClose(x1, x2, atol=1e-7) - - model.trainable = True - model.compile("sgd", "mse") - - model.train_on_batch(val_a, val_out) - x2 = model.predict(val_a) - assert np.abs(np.sum(x1 - x2)) > 1e-5 - - @test_combinations.run_all_keras_modes - def test_sequential_deferred_build_serialization(self): - num_hidden = 5 - input_dim = 3 - batch_size = 5 - num_classes = 2 - - model = test_utils.get_small_sequential_mlp(num_hidden, num_classes) - model.compile( - loss="mse", - optimizer="rmsprop", - metrics=[keras.metrics.CategoricalAccuracy()], - run_eagerly=test_utils.should_run_eagerly(), - ) - self.assertFalse(model.built) - - x = np.random.random((batch_size, input_dim)) - y = np.random.random((batch_size, num_classes)) - model.train_on_batch(x, y) - self.assertTrue(model.built) - - config = model.get_config() - new_model = keras.models.Sequential.from_config(config) - new_model.compile( - loss="mse", - optimizer="rmsprop", - metrics=[keras.metrics.CategoricalAccuracy()], - run_eagerly=test_utils.should_run_eagerly(), - ) - x = np.random.random((batch_size, input_dim)) - y = np.random.random((batch_size, num_classes)) - new_model.train_on_batch(x, y) - self.assertEqual(len(new_model.layers), 2) - self.assertEqual(len(new_model.weights), 4) - - @test_combinations.run_all_keras_modes - def test_sequential_shape_inference_deferred(self): - model = test_utils.get_small_sequential_mlp(4, 5) - output_shape = model.compute_output_shape((None, 7)) - self.assertEqual(tuple(output_shape.as_list()), (None, 5)) - - @test_combinations.run_all_keras_modes - def test_sequential_build_deferred(self): - model = test_utils.get_small_sequential_mlp(4, 5) - - model.build((None, 10)) - self.assertTrue(model.built) - self.assertEqual(len(model.weights), 4) - - # Test with nested model - model = test_utils.get_small_sequential_mlp(4, 3) - inner_model = test_utils.get_small_sequential_mlp(4, 5) - model.add(inner_model) - - model.build((None, 10)) - self.assertTrue(model.built) - self.assertEqual(len(model.weights), 8) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_sequential_deferred_manual_build(self): - model = test_utils.get_small_sequential_mlp(4, 5) - self.assertFalse(model.built) - model(tf.zeros([1, 2])) - self.assertTrue(model.built) - model.compile( - "rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly() - ) - model.train_on_batch(np.zeros((1, 2)), np.zeros((1, 5))) - - @test_combinations.run_all_keras_modes - def test_sequential_nesting(self): - model = test_utils.get_small_sequential_mlp(4, 3) - inner_model = test_utils.get_small_sequential_mlp(4, 5) - model.add(inner_model) - - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - x = np.random.random((2, 6)) - y = np.random.random((2, 5)) - model.fit(x, y, epochs=1) - - @tf_test_utils.run_v1_only("Behavior changed in V2.") - def test_variable_names_deferred(self): - model = keras.models.Sequential([keras.layers.Dense(3)]) - model.add(keras.layers.Dense(2)) - model(tf.ones([2, 4])) - # Note that for regular sequential models (wrapping graph network), - # the layers' weights are built - # without the model name as prefix (because the Functional API __call__ - # reset the name scope). This is fixable, but it would be - # backwards incompatible. - self.assertEqual( - [ - "sequential/dense/kernel:0", - "sequential/dense/bias:0", - "sequential/dense_1/kernel:0", - "sequential/dense_1/bias:0", - ], - [v.name for v in model.variables], - ) - - @test_combinations.run_all_keras_modes - def test_input_assumptions_propagation(self): - model = keras.models.Sequential() - model.add(keras.layers.Dense(1)) - if tf.executing_eagerly(): - with self.assertRaisesRegex( - ValueError, "expected min_ndim=2, found ndim=0" - ): - model(1.0) - - @test_combinations.run_all_keras_modes - def test_string_input(self): - seq = keras.Sequential( - [ - keras.layers.InputLayer(input_shape=(1,), dtype=tf.string), - keras.layers.Lambda(lambda x: x[0]), - ] - ) - seq.run_eagerly = test_utils.should_run_eagerly() - preds = seq.predict([["tensorflow eager"]]) - self.assertEqual(preds.shape, (1,)) - - @test_combinations.run_all_keras_modes - def test_multi_output_layer_not_accepted(self): - class MultiOutputLayer(keras.layers.Layer): - def call(self, inputs): - return inputs, inputs - - with self.assertRaisesRegex( - ValueError, "should have a single output tensor" - ): - keras.Sequential([MultiOutputLayer(input_shape=(3,))]) - - with self.assertRaisesRegex( - ValueError, "should have a single output tensor" - ): - keras.Sequential( - [keras.layers.Dense(1, input_shape=(3,)), MultiOutputLayer()] - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_layer_add_after_compile_deferred(self): - model = keras.Sequential([keras.layers.Dense(3)]) - self.assertFalse(model.built) - - model.compile("adam", loss="mse") - model.fit(np.random.random((1, 3)), np.random.random((1, 3))) - self.assertTrue(model.built) - - model.add(keras.layers.Dense(3)) - - model.compile("adam", loss="mse") - model.fit(np.random.random((1, 3)), np.random.random((1, 3))) - self.assertTrue(model.built) - - def test_sequential_layer_tracking(self): - """Test that Sequential only tracks layers added in init or `.add`.""" - layer = keras.layers.Dense(1) - model = keras.Sequential([layer]) - self.assertEqual( - list(model._flatten_layers(include_self=False, recursive=False))[ - -1 - ], - layer, - ) - - model.a = [ - keras.layers.Dense(3) - ] # should not be added to the layers list. - self.assertEqual( - list(model._flatten_layers(include_self=False, recursive=False))[ - -1 - ], - layer, - ) - - layer2 = keras.layers.Dense(2) - model.add(layer2) - self.assertEqual( - list(model._flatten_layers(include_self=False, recursive=False))[ - -1 - ], - layer2, - ) - - model.a = [ - keras.layers.Dense(3) - ] # should not be added to the layers list. - self.assertEqual( - list(model._flatten_layers(include_self=False, recursive=False))[ - -1 - ], - layer2, - ) - - model.pop() - self.assertEqual( - list(model._flatten_layers(include_self=False, recursive=False))[ - -1 - ], - layer, - ) - - def test_config_preserves_input_layer(self): - model = keras.Sequential( - [ - keras.Input((None,), name="my_embedding_input", dtype="int32"), - keras.layers.Embedding(32, 32), - keras.layers.Dense(3), - ] - ) - config = model.get_config() - new_model = keras.Sequential.from_config(config) - self.assertTrue(new_model.built) - layers = list( - new_model._flatten_layers(include_self=False, recursive=False) - ) - self.assertEqual(layers[0].dtype, "int32") - self.assertEqual(layers[0].name, "my_embedding_input") - - def test_name_unicity(self): - model = keras.Sequential() - model.add(keras.layers.Dense(3, name="specific_name")) - with self.assertRaisesRegex(ValueError, "should have unique names"): - model.add(keras.layers.Dense(3, name="specific_name")) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_tf_module_call(self): - class MyModule(tf.Module): - def __init__(self): - self.v = tf.Variable(2.0) - - def __call__(self, x): - return self.v * x - - model = keras.Sequential() - model.add(MyModule()) - model.compile("sgd", "mse") - x, y = np.ones((10, 1)), np.ones((10, 1)) - model.fit(x, y, batch_size=2) - self.assertLen(model.trainable_variables, 1) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_tf_module_training(self): - class MyModule(tf.Module): - def __init__(self): - self.v = tf.Variable(2.0) - - def call(self, x, training=None): - # training should be set by Sequential. - assert training is not None - return self.v * x - - model = keras.Sequential() - model.add(MyModule()) - model.compile("sgd", "mse") - x, y = np.ones((10, 1)), np.ones((10, 1)) - model.fit(x, y, batch_size=2) - self.assertLen(model.trainable_variables, 1) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_tf_module_error(self): - class MyModule(tf.Module): - def __init__(self): - self.v = tf.Variable(2.0) - - model = keras.Sequential() - with self.assertRaisesRegex(ValueError, "is not defined"): - model.add(MyModule()) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_multi_inputs_outputs(self): - model = keras.Sequential( - [ - ImageAugmentLayer(), - ImageAugmentLayer(), - ] - ) - - image_inputs = tf.ones((2, 512, 512, 3)) - label_inputs = tf.ones((2, 2)) - - output = model({"images": image_inputs, "labels": label_inputs}) - self.assertAllClose(output["images"], image_inputs) - self.assertAllClose(output["labels"], label_inputs) - - model.compile(loss="mse") - model.fit( - x={"images": image_inputs, "labels": label_inputs}, - y={"images": image_inputs, "labels": label_inputs}, - steps_per_epoch=1, - ) - self.assertIsNone(model.inputs) - self.assertIsNone(model.outputs) - - # Use the same model with image input only - model({"images": image_inputs}) - model.fit( - x={"images": image_inputs}, - y={"images": image_inputs}, - steps_per_epoch=1, - ) - - model(image_inputs) - model.fit(x=image_inputs, y=image_inputs, steps_per_epoch=1) - - -class TestSequentialEagerIntegration(test_combinations.TestCase): - @test_combinations.run_all_keras_modes - def test_defun_on_call(self): - # Check that one can subclass Sequential and place the `call` in a - # `defun`. - - class MySequential(keras.Sequential): - def __init__(self, name=None): - super().__init__(name=name) - self.call = tf.function(self.call) - - model = MySequential() - model.add(keras.layers.Dense(4, activation="relu")) - model.add(keras.layers.Dense(5, activation="softmax")) - - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.random.random((2, 6)) - y = np.random.random((2, 5)) - model.fit(x, y, epochs=1) - - @test_combinations.run_all_keras_modes - def test_build_before_fit(self): - # Fix for b/112433577 - model = test_utils.get_small_sequential_mlp(4, 5) - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - - model.build((None, 6)) - - x = np.random.random((2, 6)) - y = np.random.random((2, 5)) - model.fit(x, y, epochs=1) - - @test_combinations.run_all_keras_modes - def test_build_empty_network(self): - x = np.random.random((2, 6)) - y = np.random.random((2, 5)) - model = keras.Sequential() - - # Make sure an empty sequential model can still work with build(). - model.build((None, 6)) - self.assertTrue(model.built) - - model.add(keras.layers.Dense(5, input_shape=(6,))) - - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, y) - - model.pop() - self.assertFalse(model.built) - - model.build((None, 6)) - self.assertTrue(model.built) - - -class ImageAugmentLayer(keras.layers.Layer): - def call(self, inputs): - return inputs - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/training.py b/keras/engine/training.py deleted file mode 100644 index 1f24bd85817..00000000000 --- a/keras/engine/training.py +++ /dev/null @@ -1,4367 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Training-related part of the Keras engine.""" - -import copy -import itertools -import json -import warnings -import weakref - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import callbacks as callbacks_module -from keras import optimizers -from keras.dtensor import layout_map as layout_map_lib -from keras.engine import base_layer -from keras.engine import base_layer_utils -from keras.engine import compile_utils -from keras.engine import data_adapter -from keras.engine import input_layer as input_layer_module -from keras.engine import training_utils -from keras.metrics import base_metric -from keras.mixed_precision import loss_scale_optimizer as lso -from keras.optimizers import optimizer -from keras.optimizers import optimizer_v1 -from keras.saving import pickle_utils -from keras.saving import saving_api -from keras.saving import saving_lib -from keras.saving import serialization_lib -from keras.saving.legacy import serialization -from keras.saving.legacy.saved_model import json_utils -from keras.saving.legacy.saved_model import model_serialization -from keras.utils import generic_utils -from keras.utils import io_utils -from keras.utils import layer_utils -from keras.utils import tf_inspect -from keras.utils import tf_utils -from keras.utils import traceback_utils -from keras.utils import version_utils -from keras.utils.mode_keys import ModeKeys - -# isort: off -from tensorflow.python.eager import context -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export -from tensorflow.python.distribute import distribute_utils -from tensorflow.python.distribute import input_ops -from tensorflow.tools.docs import doc_controls - -try: - import h5py -except ImportError: - h5py = None - - -@keras_export("keras.Model", "keras.models.Model") -class Model(base_layer.Layer, version_utils.ModelVersionSelector): - """A model grouping layers into an object with training/inference features. - - Args: - inputs: The input(s) of the model: a `keras.Input` object or a - combination of `keras.Input` objects in a dict, list or tuple. - outputs: The output(s) of the model: a tensor that originated from - `keras.Input` objects or a combination of such tensors in a dict, - list or tuple. See Functional API example below. - name: String, the name of the model. - - There are two ways to instantiate a `Model`: - - 1 - With the "Functional API", where you start from `Input`, - you chain layer calls to specify the model's forward pass, - and finally you create your model from inputs and outputs: - - ```python - import tensorflow as tf - - inputs = tf.keras.Input(shape=(3,)) - x = tf.keras.layers.Dense(4, activation=tf.nn.relu)(inputs) - outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(x) - model = tf.keras.Model(inputs=inputs, outputs=outputs) - ``` - - Note: Only dicts, lists, and tuples of input tensors are supported. Nested - inputs are not supported (e.g. lists of list or dicts of dict). - - A new Functional API model can also be created by using the - intermediate tensors. This enables you to quickly extract sub-components - of the model. - - Example: - - ```python - inputs = keras.Input(shape=(None, None, 3)) - processed = keras.layers.RandomCrop(width=32, height=32)(inputs) - conv = keras.layers.Conv2D(filters=2, kernel_size=3)(processed) - pooling = keras.layers.GlobalAveragePooling2D()(conv) - feature = keras.layers.Dense(10)(pooling) - - full_model = keras.Model(inputs, feature) - backbone = keras.Model(processed, conv) - activations = keras.Model(conv, feature) - ``` - - Note that the `backbone` and `activations` models are not - created with `keras.Input` objects, but with the tensors that are originated - from `keras.Input` objects. Under the hood, the layers and weights will - be shared across these models, so that user can train the `full_model`, and - use `backbone` or `activations` to do feature extraction. - The inputs and outputs of the model can be nested structures of tensors as - well, and the created models are standard Functional API models that support - all the existing APIs. - - 2 - By subclassing the `Model` class: in that case, you should define your - layers in `__init__()` and you should implement the model's forward pass - in `call()`. - - ```python - import tensorflow as tf - - class MyModel(tf.keras.Model): - - def __init__(self): - super().__init__() - self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu) - self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax) - - def call(self, inputs): - x = self.dense1(inputs) - return self.dense2(x) - - model = MyModel() - ``` - - If you subclass `Model`, you can optionally have - a `training` argument (boolean) in `call()`, which you can use to specify - a different behavior in training and inference: - - ```python - import tensorflow as tf - - class MyModel(tf.keras.Model): - - def __init__(self): - super().__init__() - self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu) - self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax) - self.dropout = tf.keras.layers.Dropout(0.5) - - def call(self, inputs, training=False): - x = self.dense1(inputs) - if training: - x = self.dropout(x, training=training) - return self.dense2(x) - - model = MyModel() - ``` - - Once the model is created, you can config the model with losses and metrics - with `model.compile()`, train the model with `model.fit()`, or use the model - to do prediction with `model.predict()`. - """ - - _TF_MODULE_IGNORED_PROPERTIES = frozenset( - itertools.chain( - ( - "_train_counter", - "_test_counter", - "_predict_counter", - "_steps_per_execution", - ), - base_layer.Layer._TF_MODULE_IGNORED_PROPERTIES, - ) - ) - _SCALAR_UPRANKING_ON = False - - def __new__(cls, *args, **kwargs): - # Signature detection - if is_functional_model_init_params(args, kwargs) and cls == Model: - # Functional model - from keras.engine import functional - - return functional.Functional(skip_init=True, *args, **kwargs) - else: - return super(Model, cls).__new__(cls, *args, **kwargs) - - @tf.__internal__.tracking.no_automatic_dependency_tracking - @traceback_utils.filter_traceback - def __init__(self, *args, **kwargs): - self._is_model_for_instrumentation = True - base_layer.keras_api_gauge.get_cell("model").set(True) - - # Special case for Subclassed Functional Model, which we couldn't detect - # when __new__ is called. We only realize it is a functional model when - # it calls super.__init__ with input and output tensor. - from keras.engine import functional - - if is_functional_model_init_params(args, kwargs) and not isinstance( - self, functional.Functional - ): - # Filter the kwargs for multiple inheritance. - supported_kwargs = [ - "inputs", - "outputs", - "name", - "trainable", - "skip_init", - ] - model_kwargs = { - k: kwargs[k] for k in kwargs if k in supported_kwargs - } - other_kwargs = { - k: kwargs[k] for k in kwargs if k not in supported_kwargs - } - inject_functional_model_class(self.__class__) - functional.Functional.__init__(self, *args, **model_kwargs) - - # In case there is any multiple inheritance here, we need to call - # the __init__ for any class that appears after the Functional - # class. - clz_to_init = [] - found_functional_class = False - for clz in self.__class__.__bases__: - if issubclass(clz, functional.Functional): - found_functional_class = True - continue - if found_functional_class: - clz_to_init.append(clz) - - if clz_to_init: - for clz in clz_to_init: - clz.__init__(self, *args, **other_kwargs) - elif other_kwargs: - # In case there are unused kwargs, we should raise an error to - # user, in case they have a typo in the param name. - raise TypeError( - "The following keyword arguments passed to `Model` aren't " - "supported: {}.".format(other_kwargs) - ) - return - - base_layer.keras_api_gauge.get_cell("Model subclass").set(True) - # The following are implemented as property functions: - # self.trainable_weights - # self.non_trainable_weights - # `inputs` / `outputs` will only appear in kwargs if either are - # misspelled. - generic_utils.validate_kwargs( - kwargs, - { - "trainable", - "dtype", - "dynamic", - "name", - "autocast", - "inputs", - "outputs", - }, - ) - super().__init__(**kwargs) - # By default, Model is a subclass model, which is not in graph network. - self._is_graph_network = False - - self.inputs = None - self.outputs = None - self.input_names = None - self.output_names = None - # stop_training is used by callback to stop training when error happens - self.stop_training = False - self.history = None - # These objects are used in the default `Model.compile`. They are not - # guaranteed to be set after `Model.compile` is called, as users can - # override compile with custom logic. - self.compiled_loss = None - self.compiled_metrics = None - - # This is True for Sequential networks and Functional networks. - self._compute_output_and_mask_jointly = False - - # Don't reset compilation if already done. This may occur if calling - # `__init__` (or `_init_graph_network`) on an already-compiled model - # such as a Sequential model. Sequential models may need to rebuild - # themselves after compilation. - self._maybe_create_attribute("_is_compiled", False) - self._maybe_create_attribute("optimizer", None) - - # Model must be created under scope of DistStrat it will be trained - # with. - if tf.distribute.has_strategy(): - self._distribution_strategy = tf.distribute.get_strategy() - else: - self._distribution_strategy = None - self._distribute_reduction_method = None - - self._cluster_coordinator = None - - # Defaults to value of `tf.config.experimental_functions_run_eagerly`. - self._run_eagerly = None - # Initialize cache attrs. - self._reset_compile_cache() - - # Fault-tolerance handler. Set in `ModelCheckpoint`. - self._training_state = None - self._saved_model_inputs_spec = None - self._saved_model_arg_spec = None - self._checkpoint = tf.train.Checkpoint(root=weakref.ref(self)) - - self._steps_per_execution = None - - self._init_batch_counters() - self._base_model_initialized = True - - # `jit_compile` starts off with None as default and gets overwritten by - # the value specified in `Model.compile`, and this is effective for - # `fit`, `evaluate`, and `predict`. - self._jit_compile = None - - self._layout_map = layout_map_lib.get_current_layout_map() - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _init_batch_counters(self): - # Untracked Variables, used to keep track of mini-batches seen in `fit`, - # `evaluate`, and `predict`. - agg = tf.VariableAggregation.ONLY_FIRST_REPLICA - self._train_counter = tf.Variable(0, dtype="int64", aggregation=agg) - self._test_counter = tf.Variable(0, dtype="int64", aggregation=agg) - self._predict_counter = tf.Variable(0, dtype="int64", aggregation=agg) - - def __setattr__(self, name, value): - if not getattr(self, "_self_setattr_tracking", True): - super().__setattr__(name, value) - return - - if all( - isinstance(v, (base_layer.Layer, tf.Variable)) - or base_layer_utils.has_weights(v) - for v in tf.nest.flatten(value) - ): - try: - self._base_model_initialized - except AttributeError: - raise RuntimeError( - "It looks like you are subclassing `Model` and you " - "forgot to call `super().__init__()`." - " Always start with this line." - ) - - super().__setattr__(name, value) - - def __reduce__(self): - if self.built: - return ( - pickle_utils.deserialize_model_from_bytecode, - (pickle_utils.serialize_model_as_bytecode(self),), - ) - else: - # SavedModel (and hence serialize_model_as_bytecode) only support - # built models, but if the model is not built, - # it may be possible to serialize as a plain Python object, - # as long as the constituent parts (layers, optimizers, losses, - # etc.) can be serialized as plain Python objects. Thus we call up - # the superclass hierarchy to get an implementation of __reduce__ - # that can pickle this Model as a plain Python object. - return super().__reduce__() - - def __deepcopy__(self, memo): - if self.built: - new = pickle_utils.deserialize_model_from_bytecode( - pickle_utils.serialize_model_as_bytecode(self) - ) - memo[id(self)] = new - else: - # See comment in __reduce__ for explanation - deserializer, serialized, *rest = super().__reduce__() - new = deserializer(*serialized) - memo[id(self)] = new - if rest: - state = copy.deepcopy(rest[0], memo=memo) - new.__setstate__(state) - return new - - def __copy__(self): - return self.__deepcopy__({}) - - @generic_utils.default - def build(self, input_shape): - """Builds the model based on input shapes received. - - This is to be used for subclassed models, which do not know at - instantiation time what their inputs look like. - - This method only exists for users who want to call `model.build()` in a - standalone way (as a substitute for calling the model on real data to - build it). It will never be called by the framework (and thus it will - never throw unexpected errors in an unrelated workflow). - - Args: - input_shape: Single tuple, `TensorShape` instance, or list/dict of - shapes, where shapes are tuples, integers, or `TensorShape` - instances. - - Raises: - ValueError: - 1. In case of invalid user-provided data (not of type tuple, - list, `TensorShape`, or dict). - 2. If the model requires call arguments that are agnostic - to the input shapes (positional or keyword arg in call - signature). - 3. If not all layers were properly built. - 4. If float type inputs are not supported within the layers. - - In each of these cases, the user should build their model by calling - it on real tensor data. - """ - if self._is_graph_network: - super().build(input_shape) - return - - if input_shape is None: - raise ValueError( - "Input shape must be defined when calling `build()` on " - "a `Model` subclass." - ) - valid_types = (tuple, list, tf.TensorShape, dict) - if not isinstance(input_shape, valid_types): - raise ValueError( - "Specified input shape is not one of the valid types. " - "Please specify a batch input shape of type tuple or " - "list of input shapes. User provided " - "input type: {}.".format(type(input_shape)) - ) - - if input_shape and not self.inputs: - # We create placeholders for the `None`s in the shape and build the - # model in a Graph. Since tf.Variable is compatible with both eager - # execution and graph building, the variables created after building - # the model in a Graph are still valid when executing eagerly. - if tf.executing_eagerly(): - graph = tf.__internal__.FuncGraph("build_graph") - else: - graph = backend.get_graph() - with graph.as_default(): - if isinstance(input_shape, list) and all( - d is None or isinstance(d, int) for d in input_shape - ): - input_shape = tuple(input_shape) - if isinstance(input_shape, list): - x = [ - base_layer_utils.generate_placeholders_from_shape(shape) - for shape in input_shape - ] - elif isinstance(input_shape, dict): - x = { - k: base_layer_utils.generate_placeholders_from_shape( - shape - ) - for k, shape in input_shape.items() - } - else: - x = base_layer_utils.generate_placeholders_from_shape( - input_shape - ) - - kwargs = {} - call_signature = self._call_spec.full_argspec - call_args = call_signature.args - # Exclude `self`, `inputs`, and any argument with a default - # value. - if len(call_args) > 2: - if call_signature.defaults: - call_args = call_args[2 : -len(call_signature.defaults)] - else: - call_args = call_args[2:] - for arg in call_args: - if arg == "training": - # Case where `training` is a positional arg with no - # default. - kwargs["training"] = False - else: - # Has invalid call signature with unknown positional - # arguments. - raise ValueError( - "Currently, you cannot build your model if it " - "has positional or keyword arguments that are " - "not inputs to the model, but are required for " - "its `call()` method. Instead, in order to " - "instantiate and build your model, `call()` " - "your model on real tensor data with all " - "expected call arguments. The argument " - "for `call()` can be a single list/tuple that " - "contains multiple inputs." - ) - elif len(call_args) < 2: - # Signature without `inputs`. - raise ValueError( - "You can only call `build()` on a model if its " - "`call()` method accepts an `inputs` argument." - ) - try: - self.call(x, **kwargs) - except (tf.errors.InvalidArgumentError, TypeError) as e: - raise ValueError( - "You cannot build your model by calling `build` " - "if your layers do not support float type inputs. " - "Instead, in order to instantiate and build your " - "model, call your model on real tensor data (of " - "the correct dtype).\n\nThe actual error from " - f"`call` is: {e}." - ) - super().build(input_shape) - - @traceback_utils.filter_traceback - def __call__(self, *args, **kwargs): - if self._layout_map is not None and not self.built: - # Note that this method is only overridden for DTensor and layout - # injection purpose. - # Capture the inputs and create graph input as replacement for model - # to initialize its weights first. - copied_args = copy.copy(args) - copied_kwargs = copy.copy(kwargs) - - ( - inputs, - copied_args, - copied_kwargs, - ) = self._call_spec.split_out_first_arg(copied_args, copied_kwargs) - - def _convert_to_graph_inputs(x): - if isinstance(x, (tf.Tensor, np.ndarray, float, int)): - x = tf.convert_to_tensor(x) - return input_layer_module.Input(x.shape) - - # TODO(scottzhu): maybe better handle mask and training flag. - inputs = tf.nest.map_structure(_convert_to_graph_inputs, inputs) - copied_args = tf.nest.map_structure( - _convert_to_graph_inputs, copied_args - ) - copied_kwargs = tf.nest.map_structure( - _convert_to_graph_inputs, copied_kwargs - ) - - with layout_map_lib.layout_map_scope(self._layout_map): - # We ignore the result here. - super().__call__(inputs, *copied_args, **copied_kwargs) - - layout_map_lib._map_subclass_model_variable(self, self._layout_map) - - return super().__call__(*args, **kwargs) - - @doc_controls.doc_in_current_and_subclasses - def call(self, inputs, training=None, mask=None): - """Calls the model on new inputs and returns the outputs as tensors. - - In this case `call()` just reapplies - all ops in the graph to the new inputs - (e.g. build a new computational graph from the provided inputs). - - Note: This method should not be called directly. It is only meant to be - overridden when subclassing `tf.keras.Model`. - To call a model on an input, always use the `__call__()` method, - i.e. `model(inputs)`, which relies on the underlying `call()` method. - - Args: - inputs: Input tensor, or dict/list/tuple of input tensors. - training: Boolean or boolean scalar tensor, indicating whether to - run the `Network` in training mode or inference mode. - mask: A mask or list of masks. A mask can be either a boolean tensor - or None (no mask). For more details, check the guide - [here](https://www.tensorflow.org/guide/keras/masking_and_padding). - - Returns: - A tensor if there is a single output, or - a list of tensors if there are more than one outputs. - """ - raise NotImplementedError( - "Unimplemented `tf.keras.Model.call()`: if you " - "intend to create a `Model` with the Functional " - "API, please provide `inputs` and `outputs` " - "arguments. Otherwise, subclass `Model` with an " - "overridden `call()` method." - ) - - @traceback_utils.filter_traceback - def compile( - self, - optimizer="rmsprop", - loss=None, - metrics=None, - loss_weights=None, - weighted_metrics=None, - run_eagerly=None, - steps_per_execution=None, - jit_compile=None, - pss_evaluation_shards=0, - **kwargs, - ): - """Configures the model for training. - - Example: - - ```python - model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3), - loss=tf.keras.losses.BinaryCrossentropy(), - metrics=[tf.keras.metrics.BinaryAccuracy(), - tf.keras.metrics.FalseNegatives()]) - ``` - - Args: - optimizer: String (name of optimizer) or optimizer instance. See - `tf.keras.optimizers`. - loss: Loss function. May be a string (name of loss function), or - a `tf.keras.losses.Loss` instance. See `tf.keras.losses`. A loss - function is any callable with the signature `loss = fn(y_true, - y_pred)`, where `y_true` are the ground truth values, and - `y_pred` are the model's predictions. - `y_true` should have shape - `(batch_size, d0, .. dN)` (except in the case of - sparse loss functions such as - sparse categorical crossentropy which expects integer arrays of - shape `(batch_size, d0, .. dN-1)`). - `y_pred` should have shape `(batch_size, d0, .. dN)`. - The loss function should return a float tensor. - If a custom `Loss` instance is - used and reduction is set to `None`, return value has shape - `(batch_size, d0, .. dN-1)` i.e. per-sample or per-timestep loss - values; otherwise, it is a scalar. If the model has multiple - outputs, you can use a different loss on each output by passing a - dictionary or a list of losses. The loss value that will be - minimized by the model will then be the sum of all individual - losses, unless `loss_weights` is specified. - metrics: List of metrics to be evaluated by the model during - training and testing. Each of this can be a string (name of a - built-in function), function or a `tf.keras.metrics.Metric` - instance. See `tf.keras.metrics`. Typically you will use - `metrics=['accuracy']`. - A function is any callable with the signature `result = fn(y_true, - y_pred)`. To specify different metrics for different outputs of a - multi-output model, you could also pass a dictionary, such as - `metrics={'output_a':'accuracy', 'output_b':['accuracy', 'mse']}`. - You can also pass a list to specify a metric or a list of metrics - for each output, such as - `metrics=[['accuracy'], ['accuracy', 'mse']]` - or `metrics=['accuracy', ['accuracy', 'mse']]`. When you pass the - strings 'accuracy' or 'acc', we convert this to one of - `tf.keras.metrics.BinaryAccuracy`, - `tf.keras.metrics.CategoricalAccuracy`, - `tf.keras.metrics.SparseCategoricalAccuracy` based on the shapes - of the targets and of the model output. We do a similar - conversion for the strings 'crossentropy' and 'ce' as well. - The metrics passed here are evaluated without sample weighting; if - you would like sample weighting to apply, you can specify your - metrics via the `weighted_metrics` argument instead. - loss_weights: Optional list or dictionary specifying scalar - coefficients (Python floats) to weight the loss contributions of - different model outputs. The loss value that will be minimized by - the model will then be the *weighted sum* of all individual - losses, weighted by the `loss_weights` coefficients. If a list, - it is expected to have a 1:1 mapping to the model's outputs. If a - dict, it is expected to map output names (strings) to scalar - coefficients. - weighted_metrics: List of metrics to be evaluated and weighted by - `sample_weight` or `class_weight` during training and testing. - run_eagerly: Bool. If `True`, this `Model`'s logic will not be - wrapped in a `tf.function`. Recommended to leave this as `None` - unless your `Model` cannot be run inside a `tf.function`. - `run_eagerly=True` is not supported when using - `tf.distribute.experimental.ParameterServerStrategy`. Defaults to - `False`. - steps_per_execution: Int. The number of batches to - run during each `tf.function` call. Running multiple batches - inside a single `tf.function` call can greatly improve performance - on TPUs or small models with a large Python overhead. At most, one - full epoch will be run each execution. If a number larger than the - size of the epoch is passed, the execution will be truncated to - the size of the epoch. Note that if `steps_per_execution` is set - to `N`, `Callback.on_batch_begin` and `Callback.on_batch_end` - methods will only be called every `N` batches (i.e. before/after - each `tf.function` execution). Defaults to `1`. - jit_compile: If `True`, compile the model training step with XLA. - [XLA](https://www.tensorflow.org/xla) is an optimizing compiler - for machine learning. - `jit_compile` is not enabled for by default. - Note that `jit_compile=True` - may not necessarily work for all models. - For more information on supported operations please refer to the - [XLA documentation](https://www.tensorflow.org/xla). - Also refer to - [known XLA issues](https://www.tensorflow.org/xla/known_issues) - for more details. - pss_evaluation_shards: Integer or 'auto'. Used for - `tf.distribute.ParameterServerStrategy` training only. This arg - sets the number of shards to split the dataset into, to enable an - exact visitation guarantee for evaluation, meaning the model will - be applied to each dataset element exactly once, even if workers - fail. The dataset must be sharded to ensure separate workers do - not process the same data. The number of shards should be at least - the number of workers for good performance. A value of 'auto' - turns on exact evaluation and uses a heuristic for the number of - shards based on the number of workers. 0, meaning no - visitation guarantee is provided. NOTE: Custom implementations of - `Model.test_step` will be ignored when doing exact evaluation. - Defaults to `0`. - **kwargs: Arguments supported for backwards compatibility only. - """ - if jit_compile and not tf_utils.can_jit_compile(warn=True): - jit_compile = False - base_layer.keras_api_gauge.get_cell("compile").set(True) - self._compile_config = serialization_lib.Config( - optimizer=optimizer, - loss=loss, - metrics=metrics, - loss_weights=loss_weights, - weighted_metrics=weighted_metrics, - run_eagerly=run_eagerly, - steps_per_execution=steps_per_execution, - jit_compile=jit_compile, - ) - with self.distribute_strategy.scope(): - if "experimental_steps_per_execution" in kwargs: - logging.warning( - "The argument `steps_per_execution` is no longer " - "experimental. Pass `steps_per_execution` instead of " - "`experimental_steps_per_execution`." - ) - if not steps_per_execution: - steps_per_execution = kwargs.pop( - "experimental_steps_per_execution" - ) - - # When compiling from an already-serialized model, we do not want to - # reapply some processing steps (e.g. metric renaming for - # multi-output models, which have prefixes added for each - # corresponding output name). - from_serialized = kwargs.pop("from_serialized", False) - - self._validate_compile(optimizer, metrics, **kwargs) - self._run_eagerly = run_eagerly - - self.optimizer = self._get_optimizer(optimizer) - if isinstance(loss, compile_utils.LossesContainer): - self.compiled_loss = loss - else: - self.compiled_loss = compile_utils.LossesContainer( - loss, loss_weights, output_names=self.output_names - ) - self.compiled_metrics = compile_utils.MetricsContainer( - metrics, - weighted_metrics, - output_names=self.output_names, - from_serialized=from_serialized, - ) - - self._configure_steps_per_execution(steps_per_execution or 1) - - self._pss_evaluation_shards = self._infer_exact_eval_shards( - pss_evaluation_shards - ) - - # Initializes attrs that are reset each time `compile` is called. - self._reset_compile_cache() - self._is_compiled = True - self.loss = loss or {} - if (self._run_eagerly or self.dynamic) and jit_compile: - raise ValueError( - "You cannot enable `run_eagerly` and `jit_compile` " - "at the same time." - ) - else: - self._jit_compile = jit_compile - - def _get_optimizer(self, optimizer): - """Wraps `optimizer` in `LossScaleOptimizer` if necessary.""" - - def _get_single_optimizer(opt): - opt = optimizers.get(opt) - if self.dtype_policy.name == "mixed_float16" and not isinstance( - opt, lso.BaseLossScaleOptimizer - ): - # Loss scaling is necessary with mixed_float16 for models to - # converge to the same accuracy as with float32. - opt = lso.BaseLossScaleOptimizer(opt) - return opt - - return tf.nest.map_structure(_get_single_optimizer, optimizer) - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _reset_compile_cache(self): - self.train_function = None - self.test_function = None - self.predict_function = None - # Used to cache the `tf.function`'ed `train_function` to be logged in - # TensorBoard, since the original `train_function` is not necessarily - # a `tf.function` (e.g., with ParameterServerStrategy, the - # `train_function` is a scheduling of the actual training function to a - # remote worker). - self.train_tf_function = None - - # Used to cache `trainable` attr of `Layer`s for `fit`. - self._compiled_trainable_state = self._get_trainable_state() - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _configure_steps_per_execution(self, steps_per_execution): - self._steps_per_execution = tf.Variable( - steps_per_execution, - dtype="int64", - aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, - ) - - @property - def _should_compute_mask(self): - return False - - @property - def metrics(self): - """Return metrics added using `compile()` or `add_metric()`. - - Note: Metrics passed to `compile()` are available only after a - `keras.Model` has been trained/evaluated on actual data. - - Examples: - - >>> inputs = tf.keras.layers.Input(shape=(3,)) - >>> outputs = tf.keras.layers.Dense(2)(inputs) - >>> model = tf.keras.models.Model(inputs=inputs, outputs=outputs) - >>> model.compile(optimizer="Adam", loss="mse", metrics=["mae"]) - >>> [m.name for m in model.metrics] - [] - - >>> x = np.random.random((2, 3)) - >>> y = np.random.randint(0, 2, (2, 2)) - >>> model.fit(x, y) - >>> [m.name for m in model.metrics] - ['loss', 'mae'] - - >>> inputs = tf.keras.layers.Input(shape=(3,)) - >>> d = tf.keras.layers.Dense(2, name='out') - >>> output_1 = d(inputs) - >>> output_2 = d(inputs) - >>> model = tf.keras.models.Model( - ... inputs=inputs, outputs=[output_1, output_2]) - >>> model.add_metric( - ... tf.reduce_sum(output_2), name='mean', aggregation='mean') - >>> model.compile(optimizer="Adam", loss="mse", metrics=["mae", "acc"]) - >>> model.fit(x, (y, y)) - >>> [m.name for m in model.metrics] - ['loss', 'out_loss', 'out_1_loss', 'out_mae', 'out_acc', 'out_1_mae', - 'out_1_acc', 'mean'] - - """ - metrics = [] - if self._is_compiled: - if self.compiled_loss is not None: - metrics += self.compiled_loss.metrics - if self.compiled_metrics is not None: - metrics += self.compiled_metrics.metrics - - for l in self._flatten_layers(): - metrics.extend(l._metrics) - return metrics - - @property - def metrics_names(self): - """Returns the model's display labels for all outputs. - - Note: `metrics_names` are available only after a `keras.Model` has been - trained/evaluated on actual data. - - Examples: - - >>> inputs = tf.keras.layers.Input(shape=(3,)) - >>> outputs = tf.keras.layers.Dense(2)(inputs) - >>> model = tf.keras.models.Model(inputs=inputs, outputs=outputs) - >>> model.compile(optimizer="Adam", loss="mse", metrics=["mae"]) - >>> model.metrics_names - [] - - >>> x = np.random.random((2, 3)) - >>> y = np.random.randint(0, 2, (2, 2)) - >>> model.fit(x, y) - >>> model.metrics_names - ['loss', 'mae'] - - >>> inputs = tf.keras.layers.Input(shape=(3,)) - >>> d = tf.keras.layers.Dense(2, name='out') - >>> output_1 = d(inputs) - >>> output_2 = d(inputs) - >>> model = tf.keras.models.Model( - ... inputs=inputs, outputs=[output_1, output_2]) - >>> model.compile(optimizer="Adam", loss="mse", metrics=["mae", "acc"]) - >>> model.fit(x, (y, y)) - >>> model.metrics_names - ['loss', 'out_loss', 'out_1_loss', 'out_mae', 'out_acc', 'out_1_mae', - 'out_1_acc'] - - """ - - # This property includes all output names including `loss` and - # per-output losses for backward compatibility. - return [m.name for m in self.metrics] - - @property - def distribute_strategy(self): - """The `tf.distribute.Strategy` this model was created under.""" - return self._distribution_strategy or tf.distribute.get_strategy() - - @property - def run_eagerly(self): - """Settable attribute indicating whether the model should run eagerly. - - Running eagerly means that your model will be run step by step, - like Python code. Your model might run slower, but it should become - easier for you to debug it by stepping into individual layer calls. - - By default, we will attempt to compile your model to a static graph to - deliver the best execution performance. - - Returns: - Boolean, whether the model should run eagerly. - """ - if self.dynamic and self._run_eagerly == False: - # TODO(fchollet): consider using py_func to enable this. - raise ValueError( - "Your model contains layers that can only be " - "successfully run in eager execution (layers " - "constructed with `dynamic=True`). " - "You cannot set `run_eagerly=False`." - ) - - if self._cluster_coordinator and self._run_eagerly: - raise ValueError( - "When using `Model` with `ParameterServerStrategy`, " - "`run_eagerly` is not supported." - ) - - # Run eagerly logic, by priority: - # (1) Dynamic models must be run eagerly. - # (2) Explicitly setting run_eagerly causes a Model to be run eagerly. - # (3) Not explicitly setting run_eagerly defaults to TF's global - # setting. - return ( - self.dynamic - or self._run_eagerly - or (tf.config.functions_run_eagerly() and self._run_eagerly is None) - ) - - @run_eagerly.setter - def run_eagerly(self, value): - self._run_eagerly = value - - @property - def jit_compile(self): - """Specify whether to compile the model with XLA. - - [XLA](https://www.tensorflow.org/xla) is an optimizing compiler - for machine learning. `jit_compile` is not enabled by default. - Note that `jit_compile=True` may not necessarily work for all models. - - For more information on supported operations please refer to the - [XLA documentation](https://www.tensorflow.org/xla). Also refer to - [known XLA issues](https://www.tensorflow.org/xla/known_issues) - for more details. - """ - return self._jit_compile - - @jit_compile.setter - def jit_compile(self, value): - # Function remains cached with previous jit_compile settings - if self._jit_compile == value: - # Avoid resetting compiler cache if possible if the value is the - # same - return - # Check if TensorFlow is compiled with XLA before setting the value - if value and not tf_utils.can_jit_compile(warn=True): - self._jit_compile = False - return - - self._jit_compile = value - # Setting `jit_compile` should invalidate previously cached functions. - self._reset_compile_cache() - - @property - def distribute_reduction_method(self): - """The method employed to reduce per-replica values during training. - - Unless specified, the value "auto" will be assumed, indicating that - the reduction strategy should be chosen based on the current - running environment. - See `reduce_per_replica` function for more details. - - """ - return self._distribute_reduction_method or "auto" - - @distribute_reduction_method.setter - def distribute_reduction_method(self, value): - self._distribute_reduction_method = value - - def _validate_target_and_loss(self, y, loss): - """Raises error if target or loss is not found. - - This method verifies that the target and loss are properly populated - when applicable, or raises errors. - - Args: - y: the target for training. - loss: the total loss tensor including loss added via `compile` and - `add_loss`. - """ - - # `self.loss` references the loss added via `compile` call. If users - # have provided such, the target must be provided; otherwise it's a user - # error. Note that `self.loss` does not include losses added via - # `add_loss`, and it is a valid use when such loss from `add_loss` - # exists and target does not. - if self.loss and y is None: - raise ValueError( - "Target data is missing. Your model was compiled with " - f"loss={self.loss}, " - "and therefore expects target data to be provided in `fit()`." - ) - - # For training, there must be compiled loss or regularization loss to - # exist in order to apply the gradients. If one is not found, it means - # no loss was supplied via `compile` or `add_loss`. - elif loss is None: - raise ValueError( - "No loss found. You may have forgotten to provide a `loss` " - "argument in the `compile()` method." - ) - - def train_step(self, data): - """The logic for one training step. - - This method can be overridden to support custom training logic. - For concrete examples of how to override this method see - [Customizing what happens in fit]( - https://www.tensorflow.org/guide/keras/customizing_what_happens_in_fit). - This method is called by `Model.make_train_function`. - - This method should contain the mathematical logic for one step of - training. This typically includes the forward pass, loss calculation, - backpropagation, and metric updates. - - Configuration details for *how* this logic is run (e.g. `tf.function` - and `tf.distribute.Strategy` settings), should be left to - `Model.make_train_function`, which can also be overridden. - - Args: - data: A nested structure of `Tensor`s. - - Returns: - A `dict` containing values that will be passed to - `tf.keras.callbacks.CallbackList.on_train_batch_end`. Typically, the - values of the `Model`'s metrics are returned. Example: - `{'loss': 0.2, 'accuracy': 0.7}`. - """ - x, y, sample_weight = data_adapter.unpack_x_y_sample_weight(data) - # Run forward pass. - with tf.GradientTape() as tape: - y_pred = self(x, training=True) - loss = self.compute_loss(x, y, y_pred, sample_weight) - self._validate_target_and_loss(y, loss) - # Run backwards pass. - self.optimizer.minimize(loss, self.trainable_variables, tape=tape) - return self.compute_metrics(x, y, y_pred, sample_weight) - - def compute_loss(self, x=None, y=None, y_pred=None, sample_weight=None): - """Compute the total loss, validate it, and return it. - - Subclasses can optionally override this method to provide custom loss - computation logic. - - Example: - ```python - class MyModel(tf.keras.Model): - - def __init__(self, *args, **kwargs): - super(MyModel, self).__init__(*args, **kwargs) - self.loss_tracker = tf.keras.metrics.Mean(name='loss') - - def compute_loss(self, x, y, y_pred, sample_weight): - loss = tf.reduce_mean(tf.math.squared_difference(y_pred, y)) - loss += tf.add_n(self.losses) - self.loss_tracker.update_state(loss) - return loss - - def reset_metrics(self): - self.loss_tracker.reset_states() - - @property - def metrics(self): - return [self.loss_tracker] - - tensors = tf.random.uniform((10, 10)), tf.random.uniform((10,)) - dataset = tf.data.Dataset.from_tensor_slices(tensors).repeat().batch(1) - - inputs = tf.keras.layers.Input(shape=(10,), name='my_input') - outputs = tf.keras.layers.Dense(10)(inputs) - model = MyModel(inputs, outputs) - model.add_loss(tf.reduce_sum(outputs)) - - optimizer = tf.keras.optimizers.SGD() - model.compile(optimizer, loss='mse', steps_per_execution=10) - model.fit(dataset, epochs=2, steps_per_epoch=10) - print('My custom loss: ', model.loss_tracker.result().numpy()) - ``` - - Args: - x: Input data. - y: Target data. - y_pred: Predictions returned by the model (output of `model(x)`) - sample_weight: Sample weights for weighting the loss function. - - Returns: - The total loss as a `tf.Tensor`, or `None` if no loss results (which - is the case when called by `Model.test_step`). - """ - del x # The default implementation does not use `x`. - return self.compiled_loss( - y, y_pred, sample_weight, regularization_losses=self.losses - ) - - def compute_metrics(self, x, y, y_pred, sample_weight): - """Update metric states and collect all metrics to be returned. - - Subclasses can optionally override this method to provide custom metric - updating and collection logic. - - Example: - ```python - class MyModel(tf.keras.Sequential): - - def compute_metrics(self, x, y, y_pred, sample_weight): - - # This super call updates `self.compiled_metrics` and returns - # results for all metrics listed in `self.metrics`. - metric_results = super(MyModel, self).compute_metrics( - x, y, y_pred, sample_weight) - - # Note that `self.custom_metric` is not listed in `self.metrics`. - self.custom_metric.update_state(x, y, y_pred, sample_weight) - metric_results['custom_metric_name'] = self.custom_metric.result() - return metric_results - ``` - - Args: - x: Input data. - y: Target data. - y_pred: Predictions returned by the model (output of `model.call(x)`) - sample_weight: Sample weights for weighting the loss function. - - Returns: - A `dict` containing values that will be passed to - `tf.keras.callbacks.CallbackList.on_train_batch_end()`. Typically, the - values of the metrics listed in `self.metrics` are returned. Example: - `{'loss': 0.2, 'accuracy': 0.7}`. - """ - del x # The default implementation does not use `x`. - self.compiled_metrics.update_state(y, y_pred, sample_weight) - return self.get_metrics_result() - - def get_metrics_result(self): - """Returns the model's metrics values as a dict. - - If any of the metric result is a dict (containing multiple metrics), - each of them gets added to the top level returned dict of this method. - - Returns: - A `dict` containing values of the metrics listed in `self.metrics`. - Example: - `{'loss': 0.2, 'accuracy': 0.7}`. - """ - # Collect metrics to return - return_metrics = {} - for metric in self.metrics: - result = metric.result() - if isinstance(result, dict): - return_metrics.update(result) - else: - return_metrics[metric.name] = result - return return_metrics - - def _validate_and_get_metrics_result(self, logs): - """Returns model metrics as a dict if the keys match with input logs. - - When the training / evalution is performed with asynchronous steps, such - as the case with `tf.distribute.ParameterServerStrategy`, the last - scheduled `train / test_step` may not give the latest metrics because it - is not guaranteed to be executed the last. This method gets metrics from - the model directly instead of relying on the return from last step - function. - - It logs a warning if the metric results could not be overridden when - used with `tf.distribute.ParameterServerStrategy`. - - When the user has custom train / test step functions, the metrics - returned may be different from `Model.metrics`. In those instances, - this function will be no-op and return the logs. - - Args: - logs: A `dict` of metrics returned by train / test step function. - - Returns: - A `dict` containing values of the metrics listed in `self.metrics` - when logs and model metrics keys match. Otherwise it returns input - `logs`. - """ - PSS_WARN_MSG = "Could not get Model metric results. \ - Using the results of last step function could lead to incorrect \ - results when used with ParameterServerStrategy" - try: - metric_logs = self.get_metrics_result() - except TypeError: - if self._cluster_coordinator: - logging.warning(PSS_WARN_MSG) - else: - # Verify that train / test step logs passed and metric logs have - # matching keys. Could be different when using custom step functions - if isinstance(logs, dict) and set(logs.keys()) == set( - metric_logs.keys() - ): - logs = tf_utils.sync_to_numpy_or_python_type(metric_logs) - elif self._cluster_coordinator: - logging.warning(PSS_WARN_MSG) - return logs - - def _aggregate_exact_metrics(self, logs): - # When doing exact evaluation, `logs` is a list of each data shard's - # metric variables, which will be used to update the metrics. - for shard_result in logs: - for metric in self.metrics: - if metric.name == "loss": - continue - if metric.name not in shard_result.keys(): - logging.log_first_n( - logging.WARN, - f"No matching result found for metric {metric.name}. " - "This metric's computed result may be incorrect.", - 3, - ) - continue - metric_result = shard_result[metric.name] - if len(metric_result) != len(metric.weights): - raise ValueError( - f"Expected {len(metric.weights)} variables in result " - f"for metric {metric.name}, but found " - f"{len(metric_result)}." - ) - for weight, val in zip(metric.weights, metric_result): - weight.assign_add(val) - return self.get_metrics_result() - - def make_train_function(self, force=False): - """Creates a function that executes one step of training. - - This method can be overridden to support custom training logic. - This method is called by `Model.fit` and `Model.train_on_batch`. - - Typically, this method directly controls `tf.function` and - `tf.distribute.Strategy` settings, and delegates the actual training - logic to `Model.train_step`. - - This function is cached the first time `Model.fit` or - `Model.train_on_batch` is called. The cache is cleared whenever - `Model.compile` is called. You can skip the cache and generate again the - function with `force=True`. - - Args: - force: Whether to regenerate the train function and skip the cached - function if available. - - Returns: - Function. The function created by this method should accept a - `tf.data.Iterator`, and return a `dict` containing values that will - be passed to `tf.keras.Callbacks.on_train_batch_end`, such as - `{'loss': 0.2, 'accuracy': 0.7}`. - """ - if self.train_function is not None and not force: - return self.train_function - - def step_function(model, iterator): - """Runs a single training step.""" - - def run_step(data): - outputs = model.train_step(data) - # Ensure counter is updated only if `train_step` succeeds. - with tf.control_dependencies(_minimum_control_deps(outputs)): - model._train_counter.assign_add(1) - return outputs - - if self.jit_compile and not isinstance( - model.distribute_strategy, - ( - tf.compat.v1.distribute.experimental.TPUStrategy, - tf.distribute.TPUStrategy, - ), - ): - # TODO(b/258249546): Explicit `jit_compile=True` on TPU causes - # unexpected behavior, so we skip TPU training now. - run_step = tf.function( - run_step, jit_compile=True, reduce_retracing=True - ) - data = next(iterator) - outputs = model.distribute_strategy.run(run_step, args=(data,)) - outputs = reduce_per_replica( - outputs, - self.distribute_strategy, - reduction=self.distribute_reduction_method, - ) - return outputs - - # Special case if steps_per_execution is one. - if ( - self._steps_per_execution is None - or self._steps_per_execution.numpy().item() == 1 - ): - - def train_function(iterator): - """Runs a training execution with a single step.""" - return step_function(self, iterator) - - if not self.run_eagerly: - train_function = tf.function( - train_function, reduce_retracing=True - ) - self.train_tf_function = train_function - - if self._cluster_coordinator: - self.train_function = ( - lambda it: self._cluster_coordinator.schedule( - train_function, args=(it,) - ) - ) - else: - self.train_function = train_function - - # If we're using a coordinator, use the value of - # self._steps_per_execution at the time the function is - # called/scheduled, and not when it is actually executed. - elif self._cluster_coordinator: - - def train_function(iterator, steps_per_execution): - """Runs a training execution with multiple steps.""" - for _ in tf.range(steps_per_execution): - outputs = step_function(self, iterator) - return outputs - - if not self.run_eagerly: - train_function = tf.function( - train_function, reduce_retracing=True - ) - self.train_tf_function = train_function - - self.train_function = lambda it: self._cluster_coordinator.schedule( - train_function, args=(it, self._steps_per_execution.value()) - ) - else: - - def train_function(iterator): - """Runs a training execution with multiple steps.""" - for _ in tf.range(self._steps_per_execution): - outputs = step_function(self, iterator) - return outputs - - if not self.run_eagerly: - train_function = tf.function( - train_function, reduce_retracing=True - ) - self.train_tf_function = train_function - self.train_function = train_function - - return self.train_function - - @traceback_utils.filter_traceback - def fit( - self, - x=None, - y=None, - batch_size=None, - epochs=1, - verbose="auto", - callbacks=None, - validation_split=0.0, - validation_data=None, - shuffle=True, - class_weight=None, - sample_weight=None, - initial_epoch=0, - steps_per_epoch=None, - validation_steps=None, - validation_batch_size=None, - validation_freq=1, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - ): - """Trains the model for a fixed number of epochs (dataset iterations). - - Args: - x: Input data. It could be: - - A Numpy array (or array-like), or a list of arrays - (in case the model has multiple inputs). - - A TensorFlow tensor, or a list of tensors - (in case the model has multiple inputs). - - A dict mapping input names to the corresponding array/tensors, - if the model has named inputs. - - A `tf.data` dataset. Should return a tuple - of either `(inputs, targets)` or - `(inputs, targets, sample_weights)`. - - A generator or `keras.utils.Sequence` returning `(inputs, - targets)` or `(inputs, targets, sample_weights)`. - - A `tf.keras.utils.experimental.DatasetCreator`, which wraps a - callable that takes a single argument of type - `tf.distribute.InputContext`, and returns a `tf.data.Dataset`. - `DatasetCreator` should be used when users prefer to specify the - per-replica batching and sharding logic for the `Dataset`. - See `tf.keras.utils.experimental.DatasetCreator` doc for more - information. - A more detailed description of unpacking behavior for iterator - types (Dataset, generator, Sequence) is given below. If these - include `sample_weights` as a third component, note that sample - weighting applies to the `weighted_metrics` argument but not the - `metrics` argument in `compile()`. If using - `tf.distribute.experimental.ParameterServerStrategy`, only - `DatasetCreator` type is supported for `x`. - y: Target data. Like the input data `x`, - it could be either Numpy array(s) or TensorFlow tensor(s). - It should be consistent with `x` (you cannot have Numpy inputs and - tensor targets, or inversely). If `x` is a dataset, generator, - or `keras.utils.Sequence` instance, `y` should - not be specified (since targets will be obtained from `x`). - batch_size: Integer or `None`. - Number of samples per gradient update. - If unspecified, `batch_size` will default to 32. - Do not specify the `batch_size` if your data is in the - form of datasets, generators, or `keras.utils.Sequence` - instances (since they generate batches). - epochs: Integer. Number of epochs to train the model. - An epoch is an iteration over the entire `x` and `y` - data provided - (unless the `steps_per_epoch` flag is set to - something other than None). - Note that in conjunction with `initial_epoch`, - `epochs` is to be understood as "final epoch". - The model is not trained for a number of iterations - given by `epochs`, but merely until the epoch - of index `epochs` is reached. - verbose: 'auto', 0, 1, or 2. Verbosity mode. - 0 = silent, 1 = progress bar, 2 = one line per epoch. - 'auto' becomes 1 for most cases, but 2 when used with - `ParameterServerStrategy`. Note that the progress bar is not - particularly useful when logged to a file, so verbose=2 is - recommended when not running interactively (eg, in a production - environment). Defaults to 'auto'. - callbacks: List of `keras.callbacks.Callback` instances. - List of callbacks to apply during training. - See `tf.keras.callbacks`. Note - `tf.keras.callbacks.ProgbarLogger` and - `tf.keras.callbacks.History` callbacks are created automatically - and need not be passed into `model.fit`. - `tf.keras.callbacks.ProgbarLogger` is created or not based on - `verbose` argument to `model.fit`. - Callbacks with batch-level calls are currently unsupported with - `tf.distribute.experimental.ParameterServerStrategy`, and users - are advised to implement epoch-level calls instead with an - appropriate `steps_per_epoch` value. - validation_split: Float between 0 and 1. - Fraction of the training data to be used as validation data. - The model will set apart this fraction of the training data, - will not train on it, and will evaluate - the loss and any model metrics - on this data at the end of each epoch. - The validation data is selected from the last samples - in the `x` and `y` data provided, before shuffling. This - argument is not supported when `x` is a dataset, generator or - `keras.utils.Sequence` instance. - If both `validation_data` and `validation_split` are provided, - `validation_data` will override `validation_split`. - `validation_split` is not yet supported with - `tf.distribute.experimental.ParameterServerStrategy`. - validation_data: Data on which to evaluate - the loss and any model metrics at the end of each epoch. - The model will not be trained on this data. Thus, note the fact - that the validation loss of data provided using - `validation_split` or `validation_data` is not affected by - regularization layers like noise and dropout. - `validation_data` will override `validation_split`. - `validation_data` could be: - - A tuple `(x_val, y_val)` of Numpy arrays or tensors. - - A tuple `(x_val, y_val, val_sample_weights)` of NumPy - arrays. - - A `tf.data.Dataset`. - - A Python generator or `keras.utils.Sequence` returning - `(inputs, targets)` or `(inputs, targets, sample_weights)`. - `validation_data` is not yet supported with - `tf.distribute.experimental.ParameterServerStrategy`. - shuffle: Boolean (whether to shuffle the training data - before each epoch) or str (for 'batch'). This argument is - ignored when `x` is a generator or an object of tf.data.Dataset. - 'batch' is a special option for dealing - with the limitations of HDF5 data; it shuffles in batch-sized - chunks. Has no effect when `steps_per_epoch` is not `None`. - class_weight: Optional dictionary mapping class indices (integers) - to a weight (float) value, used for weighting the loss function - (during training only). - This can be useful to tell the model to - "pay more attention" to samples from - an under-represented class. When `class_weight` is specified - and targets have a rank of 2 or greater, either `y` must be - one-hot encoded, or an explicit final dimension of `1` must - be included for sparse class labels. - sample_weight: Optional Numpy array of weights for - the training samples, used for weighting the loss function - (during training only). You can either pass a flat (1D) - Numpy array with the same length as the input samples - (1:1 mapping between weights and samples), - or in the case of temporal data, - you can pass a 2D array with shape - `(samples, sequence_length)`, - to apply a different weight to every timestep of every sample. - This argument is not supported when `x` is a dataset, generator, - or `keras.utils.Sequence` instance, instead provide the - sample_weights as the third element of `x`. - Note that sample weighting does not apply to metrics specified - via the `metrics` argument in `compile()`. To apply sample - weighting to your metrics, you can specify them via the - `weighted_metrics` in `compile()` instead. - initial_epoch: Integer. - Epoch at which to start training - (useful for resuming a previous training run). - steps_per_epoch: Integer or `None`. - Total number of steps (batches of samples) - before declaring one epoch finished and starting the - next epoch. When training with input tensors such as - TensorFlow data tensors, the default `None` is equal to - the number of samples in your dataset divided by - the batch size, or 1 if that cannot be determined. If x is a - `tf.data` dataset, and 'steps_per_epoch' - is None, the epoch will run until the input dataset is - exhausted. When passing an infinitely repeating dataset, you - must specify the `steps_per_epoch` argument. If - `steps_per_epoch=-1` the training will run indefinitely with an - infinitely repeating dataset. This argument is not supported - with array inputs. - When using `tf.distribute.experimental.ParameterServerStrategy`: - * `steps_per_epoch=None` is not supported. - validation_steps: Only relevant if `validation_data` is provided and - is a `tf.data` dataset. Total number of steps (batches of - samples) to draw before stopping when performing validation - at the end of every epoch. If 'validation_steps' is None, - validation will run until the `validation_data` dataset is - exhausted. In the case of an infinitely repeated dataset, it - will run into an infinite loop. If 'validation_steps' is - specified and only part of the dataset will be consumed, the - evaluation will start from the beginning of the dataset at each - epoch. This ensures that the same validation samples are used - every time. - validation_batch_size: Integer or `None`. - Number of samples per validation batch. - If unspecified, will default to `batch_size`. - Do not specify the `validation_batch_size` if your data is in - the form of datasets, generators, or `keras.utils.Sequence` - instances (since they generate batches). - validation_freq: Only relevant if validation data is provided. - Integer or `collections.abc.Container` instance (e.g. list, tuple, - etc.). If an integer, specifies how many training epochs to run - before a new validation run is performed, e.g. `validation_freq=2` - runs validation every 2 epochs. If a Container, specifies the - epochs on which to run validation, e.g. - `validation_freq=[1, 2, 10]` runs validation at the end of the - 1st, 2nd, and 10th epochs. - max_queue_size: Integer. Used for generator or - `keras.utils.Sequence` input only. Maximum size for the generator - queue. If unspecified, `max_queue_size` will default to 10. - workers: Integer. Used for generator or `keras.utils.Sequence` input - only. Maximum number of processes to spin up - when using process-based threading. If unspecified, `workers` - will default to 1. - use_multiprocessing: Boolean. Used for generator or - `keras.utils.Sequence` input only. If `True`, use process-based - threading. If unspecified, `use_multiprocessing` will default to - `False`. Note that because this implementation relies on - multiprocessing, you should not pass non-picklable arguments to - the generator as they can't be passed easily to children - processes. - - Unpacking behavior for iterator-like inputs: - A common pattern is to pass a tf.data.Dataset, generator, or - tf.keras.utils.Sequence to the `x` argument of fit, which will in fact - yield not only features (x) but optionally targets (y) and sample - weights. Keras requires that the output of such iterator-likes be - unambiguous. The iterator should return a tuple of length 1, 2, or 3, - where the optional second and third elements will be used for y and - sample_weight respectively. Any other type provided will be wrapped in - a length one tuple, effectively treating everything as 'x'. When - yielding dicts, they should still adhere to the top-level tuple - structure. - e.g. `({"x0": x0, "x1": x1}, y)`. Keras will not attempt to separate - features, targets, and weights from the keys of a single dict. - A notable unsupported data type is the namedtuple. The reason is - that it behaves like both an ordered datatype (tuple) and a mapping - datatype (dict). So given a namedtuple of the form: - `namedtuple("example_tuple", ["y", "x"])` - it is ambiguous whether to reverse the order of the elements when - interpreting the value. Even worse is a tuple of the form: - `namedtuple("other_tuple", ["x", "y", "z"])` - where it is unclear if the tuple was intended to be unpacked into x, - y, and sample_weight or passed through as a single element to `x`. As - a result the data processing code will simply raise a ValueError if it - encounters a namedtuple. (Along with instructions to remedy the - issue.) - - Returns: - A `History` object. Its `History.history` attribute is - a record of training loss values and metrics values - at successive epochs, as well as validation loss values - and validation metrics values (if applicable). - - Raises: - RuntimeError: 1. If the model was never compiled or, - 2. If `model.fit` is wrapped in `tf.function`. - - ValueError: In case of mismatch between the provided input data - and what the model expects or when the input data is empty. - """ - base_layer.keras_api_gauge.get_cell("fit").set(True) - # Legacy graph support is contained in `training_v1.Model`. - version_utils.disallow_legacy_graph("Model", "fit") - self._assert_compile_was_called() - self._check_call_args("fit") - _disallow_inside_tf_function("fit") - - verbose = _get_verbosity(verbose, self.distribute_strategy) - - if validation_split and validation_data is None: - # Create the validation data using the training data. Only supported - # for `Tensor` and `NumPy` input. - ( - x, - y, - sample_weight, - ), validation_data = data_adapter.train_validation_split( - (x, y, sample_weight), validation_split=validation_split - ) - - if validation_data: - ( - val_x, - val_y, - val_sample_weight, - ) = data_adapter.unpack_x_y_sample_weight(validation_data) - - if self.distribute_strategy._should_use_with_coordinator: - self._cluster_coordinator = ( - tf.distribute.experimental.coordinator.ClusterCoordinator( - self.distribute_strategy - ) - ) - - with self.distribute_strategy.scope(), training_utils.RespectCompiledTrainableState( # noqa: E501 - self - ): - # Creates a `tf.data.Dataset` and handles batch and epoch iteration. - data_handler = data_adapter.get_data_handler( - x=x, - y=y, - sample_weight=sample_weight, - batch_size=batch_size, - steps_per_epoch=steps_per_epoch, - initial_epoch=initial_epoch, - epochs=epochs, - shuffle=shuffle, - class_weight=class_weight, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - model=self, - steps_per_execution=self._steps_per_execution, - ) - - # Container that configures and calls `tf.keras.Callback`s. - if not isinstance(callbacks, callbacks_module.CallbackList): - callbacks = callbacks_module.CallbackList( - callbacks, - add_history=True, - add_progbar=verbose != 0, - model=self, - verbose=verbose, - epochs=epochs, - steps=data_handler.inferred_steps, - ) - - self.stop_training = False - self.train_function = self.make_train_function() - self._train_counter.assign(0) - callbacks.on_train_begin() - training_logs = None - # Handle fault-tolerance for multi-worker. - # TODO(omalleyt): Fix the ordering issues that mean this has to - # happen after `callbacks.on_train_begin`. - steps_per_epoch_inferred = ( - steps_per_epoch or data_handler.inferred_steps - ) - ( - data_handler._initial_epoch, - data_handler._initial_step, - ) = self._maybe_load_initial_counters_from_ckpt( - steps_per_epoch_inferred, initial_epoch - ) - logs = None - for epoch, iterator in data_handler.enumerate_epochs(): - self.reset_metrics() - callbacks.on_epoch_begin(epoch) - with data_handler.catch_stop_iteration(): - for step in data_handler.steps(): - with tf.profiler.experimental.Trace( - "train", - epoch_num=epoch, - step_num=step, - batch_size=batch_size, - _r=1, - ): - callbacks.on_train_batch_begin(step) - tmp_logs = self.train_function(iterator) - if data_handler.should_sync: - context.async_wait() - # No error, now safe to assign to logs. - logs = tmp_logs - end_step = step + data_handler.step_increment - callbacks.on_train_batch_end(end_step, logs) - if self.stop_training: - break - - logs = tf_utils.sync_to_numpy_or_python_type(logs) - if logs is None: - raise ValueError( - "Unexpected result of `train_function` " - "(Empty logs). This could be due to issues in input " - "pipeline that resulted in an empty dataset. " - "Otherwise, please use " - "`Model.compile(..., run_eagerly=True)`, or " - "`tf.config.run_functions_eagerly(True)` for more " - "information of where went wrong, or file a " - "issue/bug to `tf.keras`." - ) - # Override with model metrics instead of last step logs - logs = self._validate_and_get_metrics_result(logs) - epoch_logs = copy.copy(logs) - - # Run validation. - if validation_data and self._should_eval( - epoch, validation_freq - ): - if self._pss_evaluation_shards: - self._disallow_exact_eval_with_add_metrics() - # Create data_handler for evaluation and cache it. - if getattr(self, "_eval_data_handler", None) is None: - self._eval_data_handler = data_adapter.get_data_handler( - x=val_x, - y=val_y, - sample_weight=val_sample_weight, - batch_size=validation_batch_size or batch_size, - steps_per_epoch=validation_steps, - initial_epoch=0, - epochs=1, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - model=self, - steps_per_execution=self._steps_per_execution, - pss_evaluation_shards=self._pss_evaluation_shards, - ) - val_logs = self.evaluate( - x=val_x, - y=val_y, - sample_weight=val_sample_weight, - batch_size=validation_batch_size or batch_size, - steps=validation_steps, - callbacks=callbacks, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - return_dict=True, - _use_cached_eval_dataset=True, - ) - val_logs = { - "val_" + name: val for name, val in val_logs.items() - } - epoch_logs.update(val_logs) - - callbacks.on_epoch_end(epoch, epoch_logs) - training_logs = epoch_logs - if self.stop_training: - break - - if isinstance(self.optimizer, optimizer.Optimizer) and epochs > 0: - self.optimizer.finalize_variable_values( - self.trainable_variables - ) - - # If eval data_handler exists, delete it after all epochs are done. - if getattr(self, "_eval_data_handler", None) is not None: - del self._eval_data_handler - callbacks.on_train_end(logs=training_logs) - return self.history - - def test_step(self, data): - """The logic for one evaluation step. - - This method can be overridden to support custom evaluation logic. - This method is called by `Model.make_test_function`. - - This function should contain the mathematical logic for one step of - evaluation. - This typically includes the forward pass, loss calculation, and metrics - updates. - - Configuration details for *how* this logic is run (e.g. `tf.function` - and `tf.distribute.Strategy` settings), should be left to - `Model.make_test_function`, which can also be overridden. - - Args: - data: A nested structure of `Tensor`s. - - Returns: - A `dict` containing values that will be passed to - `tf.keras.callbacks.CallbackList.on_train_batch_end`. Typically, the - values of the `Model`'s metrics are returned. - """ - x, y, sample_weight = data_adapter.unpack_x_y_sample_weight(data) - - y_pred = self(x, training=False) - # Updates stateful loss metrics. - self.compute_loss(x, y, y_pred, sample_weight) - return self.compute_metrics(x, y, y_pred, sample_weight) - - def _make_test_function_exact(self): - if getattr(self, "_shard_test_function", None): - return self._shard_test_function - - def step_function(batch): - def run_step(data): - # TODO(b/272050910): Use sample_weight for weighted metrics. - x, y, _ = data_adapter.unpack_x_y_sample_weight(data) - y_pred = self(x, training=False) - return x, y, y_pred - - if self._jit_compile: - run_step = tf.function( - run_step, jit_compile=True, reduce_retracing=True - ) - - outputs = self.distribute_strategy.run(run_step, args=(batch,)) - outputs = reduce_per_replica( - outputs, - self.distribute_strategy, - reduction=self.distribute_reduction_method, - ) - return outputs - - def shard_test_function(dataset, total_shards, shard_idx): - local_metrics = [] - with tf_utils.with_metric_local_vars_scope(): - for metric in self.compiled_metrics.metrics: - local_metrics.append(base_metric.clone_metric(metric)) - dataset = input_ops.auto_shard_dataset( - dataset, total_shards, shard_idx - ) - iterator = iter(dataset) - with distribute_utils.cache_variable_reads(): - for batch in iterator: - x, y, y_pred = step_function(batch) - for local_metric in local_metrics: - local_metric.update_state(y, y_pred) - outputs = {metric.name: metric.weights for metric in local_metrics} - with tf.control_dependencies(_minimum_control_deps(outputs)): - self._test_counter.assign_add(1) - return outputs - - if not self.run_eagerly: - shard_test_function = tf.function( - shard_test_function, reduce_retracing=True - ) - - self._shard_test_function = ( - lambda *args: self._cluster_coordinator.schedule( - shard_test_function, - args=args, - ) - ) - return self._shard_test_function - - def make_test_function(self, force=False): - """Creates a function that executes one step of evaluation. - - This method can be overridden to support custom evaluation logic. - This method is called by `Model.evaluate` and `Model.test_on_batch`. - - Typically, this method directly controls `tf.function` and - `tf.distribute.Strategy` settings, and delegates the actual evaluation - logic to `Model.test_step`. - - This function is cached the first time `Model.evaluate` or - `Model.test_on_batch` is called. The cache is cleared whenever - `Model.compile` is called. You can skip the cache and generate again the - function with `force=True`. - - Args: - force: Whether to regenerate the test function and skip the cached - function if available. - - Returns: - Function. The function created by this method should accept a - `tf.data.Iterator`, and return a `dict` containing values that will - be passed to `tf.keras.Callbacks.on_test_batch_end`. - """ - if self.test_function is not None and not force: - return self.test_function - - def step_function(model, iterator): - """Runs a single evaluation step.""" - - def run_step(data): - outputs = model.test_step(data) - # Ensure counter is updated only if `test_step` succeeds. - with tf.control_dependencies(_minimum_control_deps(outputs)): - model._test_counter.assign_add(1) - return outputs - - if self.jit_compile: - run_step = tf.function( - run_step, jit_compile=True, reduce_retracing=True - ) - - data = next(iterator) - outputs = model.distribute_strategy.run(run_step, args=(data,)) - outputs = reduce_per_replica( - outputs, - self.distribute_strategy, - reduction=self.distribute_reduction_method, - ) - return outputs - - # Special case if steps_per_execution is one. - if ( - self._steps_per_execution is None - or self._steps_per_execution.numpy().item() == 1 - ): - - def test_function(iterator): - """Runs a test execution with a single step.""" - return step_function(self, iterator) - - if not self.run_eagerly: - test_function = tf.function( - test_function, reduce_retracing=True - ) - - if self._cluster_coordinator: - self.test_function = ( - lambda it: self._cluster_coordinator.schedule( - test_function, args=(it,) - ) - ) - else: - self.test_function = test_function - - # If we're using a coordinator, use the value of - # self._steps_per_execution at the time the function is - # called/scheduled, and not when it is actually executed. - elif self._cluster_coordinator: - - def test_function(iterator, steps_per_execution): - """Runs a test execution with multiple steps.""" - for _ in tf.range(steps_per_execution): - outputs = step_function(self, iterator) - return outputs - - if not self.run_eagerly: - test_function = tf.function( - test_function, reduce_retracing=True - ) - - self.test_function = lambda it: self._cluster_coordinator.schedule( - test_function, args=(it, self._steps_per_execution.value()) - ) - else: - - def test_function(iterator): - """Runs a test execution with multiple steps.""" - for _ in tf.range(self._steps_per_execution): - outputs = step_function(self, iterator) - return outputs - - if not self.run_eagerly: - test_function = tf.function( - test_function, reduce_retracing=True - ) - self.test_function = test_function - - return self.test_function - - @traceback_utils.filter_traceback - def evaluate( - self, - x=None, - y=None, - batch_size=None, - verbose="auto", - sample_weight=None, - steps=None, - callbacks=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - return_dict=False, - **kwargs, - ): - """Returns the loss value & metrics values for the model in test mode. - - Computation is done in batches (see the `batch_size` arg.) - - Args: - x: Input data. It could be: - - A Numpy array (or array-like), or a list of arrays - (in case the model has multiple inputs). - - A TensorFlow tensor, or a list of tensors - (in case the model has multiple inputs). - - A dict mapping input names to the corresponding array/tensors, - if the model has named inputs. - - A `tf.data` dataset. Should return a tuple - of either `(inputs, targets)` or - `(inputs, targets, sample_weights)`. - - A generator or `keras.utils.Sequence` returning `(inputs, - targets)` or `(inputs, targets, sample_weights)`. - A more detailed description of unpacking behavior for iterator - types (Dataset, generator, Sequence) is given in the `Unpacking - behavior for iterator-like inputs` section of `Model.fit`. - y: Target data. Like the input data `x`, it could be either Numpy - array(s) or TensorFlow tensor(s). It should be consistent with `x` - (you cannot have Numpy inputs and tensor targets, or inversely). - If `x` is a dataset, generator or `keras.utils.Sequence` instance, - `y` should not be specified (since targets will be obtained from - the iterator/dataset). - batch_size: Integer or `None`. Number of samples per batch of - computation. If unspecified, `batch_size` will default to 32. Do - not specify the `batch_size` if your data is in the form of a - dataset, generators, or `keras.utils.Sequence` instances (since - they generate batches). - verbose: `"auto"`, 0, 1, or 2. Verbosity mode. - 0 = silent, 1 = progress bar, 2 = single line. - `"auto"` becomes 1 for most cases, and to 2 when used with - `ParameterServerStrategy`. Note that the progress bar is not - particularly useful when logged to a file, so `verbose=2` is - recommended when not running interactively (e.g. in a production - environment). Defaults to 'auto'. - sample_weight: Optional Numpy array of weights for the test samples, - used for weighting the loss function. You can either pass a flat - (1D) Numpy array with the same length as the input samples - (1:1 mapping between weights and samples), or in the case of - temporal data, you can pass a 2D array with shape `(samples, - sequence_length)`, to apply a different weight to every - timestep of every sample. This argument is not supported when - `x` is a dataset, instead pass sample weights as the third - element of `x`. - steps: Integer or `None`. Total number of steps (batches of samples) - before declaring the evaluation round finished. Ignored with the - default value of `None`. If x is a `tf.data` dataset and `steps` - is None, 'evaluate' will run until the dataset is exhausted. This - argument is not supported with array inputs. - callbacks: List of `keras.callbacks.Callback` instances. List of - callbacks to apply during evaluation. See - [callbacks](https://www.tensorflow.org/api_docs/python/tf/keras/callbacks). - max_queue_size: Integer. Used for generator or - `keras.utils.Sequence` input only. Maximum size for the generator - queue. If unspecified, `max_queue_size` will default to 10. - workers: Integer. Used for generator or `keras.utils.Sequence` input - only. Maximum number of processes to spin up when using - process-based threading. If unspecified, `workers` will default to - 1. - use_multiprocessing: Boolean. Used for generator or - `keras.utils.Sequence` input only. If `True`, use process-based - threading. If unspecified, `use_multiprocessing` will default to - `False`. Note that because this implementation relies on - multiprocessing, you should not pass non-picklable arguments to - the generator as they can't be passed easily to children - processes. - return_dict: If `True`, loss and metric results are returned as a - dict, with each key being the name of the metric. If `False`, they - are returned as a list. - **kwargs: Unused at this time. - - See the discussion of `Unpacking behavior for iterator-like inputs` for - `Model.fit`. - - Returns: - Scalar test loss (if the model has a single output and no metrics) - or list of scalars (if the model has multiple outputs - and/or metrics). The attribute `model.metrics_names` will give you - the display labels for the scalar outputs. - - Raises: - RuntimeError: If `model.evaluate` is wrapped in a `tf.function`. - """ - base_layer.keras_api_gauge.get_cell("evaluate").set(True) - version_utils.disallow_legacy_graph("Model", "evaluate") - self._assert_compile_was_called() - self._check_call_args("evaluate") - self._check_sample_weight_warning(x, sample_weight) - _disallow_inside_tf_function("evaluate") - use_cached_eval_dataset = kwargs.pop("_use_cached_eval_dataset", False) - if kwargs: - raise TypeError(f"Invalid keyword arguments: {list(kwargs.keys())}") - - if self.distribute_strategy._should_use_with_coordinator: - self._cluster_coordinator = ( - tf.distribute.experimental.coordinator.ClusterCoordinator( - self.distribute_strategy - ) - ) - - verbose = _get_verbosity(verbose, self.distribute_strategy) - if self._pss_evaluation_shards: - self._disallow_exact_eval_with_add_metrics() - with self.distribute_strategy.scope(): - # Use cached evaluation data only when it's called in `Model.fit` - if ( - use_cached_eval_dataset - and getattr(self, "_eval_data_handler", None) is not None - ): - data_handler = self._eval_data_handler - else: - # Creates a `tf.data.Dataset` and handles batch and epoch - # iteration. - data_handler = data_adapter.get_data_handler( - x=x, - y=y, - sample_weight=sample_weight, - batch_size=batch_size, - steps_per_epoch=steps, - initial_epoch=0, - epochs=1, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - model=self, - steps_per_execution=self._steps_per_execution, - pss_evaluation_shards=self._pss_evaluation_shards, - ) - - # Container that configures and calls `tf.keras.Callback`s. - if not isinstance(callbacks, callbacks_module.CallbackList): - callbacks = callbacks_module.CallbackList( - callbacks, - add_history=True, - add_progbar=verbose != 0, - model=self, - verbose=verbose, - epochs=1, - steps=data_handler.inferred_steps, - ) - - # Initialize to prevent errors if 0 epochs are evaluated. - logs = {} - - test_function_runner = self._get_test_function_runner(callbacks) - self._test_counter.assign(0) - callbacks.on_test_begin() - for ( - _, - dataset_or_iterator, - ) in data_handler.enumerate_epochs(): # Single epoch. - self.reset_metrics() - with data_handler.catch_stop_iteration(): - for step in data_handler.steps(): - with tf.profiler.experimental.Trace( - "test", step_num=step, _r=1 - ): - callbacks.on_test_batch_begin(step) - logs = test_function_runner.run_step( - dataset_or_iterator, - data_handler, - step, - self._pss_evaluation_shards, - ) - - logs = tf_utils.sync_to_numpy_or_python_type(logs) - # Override with model metrics instead of last step logs - if self._pss_evaluation_shards: - logs = self._aggregate_exact_metrics(logs) - else: - logs = self._validate_and_get_metrics_result(logs) - callbacks.on_test_end(logs=logs) - - if return_dict: - return logs - else: - return flatten_metrics_in_order(logs, self.metrics_names) - - def _disallow_exact_eval_with_add_metrics(self): - metrics_from_add_metric = [ - metric - for layer in self._flatten_layers() - for metric in layer._metrics - ] - compiled_metrics = self.compiled_metrics.metrics - if any( - [ - metric not in compiled_metrics - for metric in metrics_from_add_metric - ] - ): - raise ValueError( - "Detected that a metric was added to this model " - "via `Model.add_metric`. This is not currently " - "supported when using exact evaluation with " - "`tf.distribute.ParameterServerStrategy`." - ) - - def _infer_exact_eval_shards(self, pss_evaluation_shards): - if not self.distribute_strategy._should_use_with_coordinator: - return 0 - if pss_evaluation_shards == "auto": - # TODO(b/264265138) evaluate and improve this heuristic - return self.distribute_strategy._num_workers * 5 - return pss_evaluation_shards - - def _get_test_function_runner(self, callbacks): - if ( - self._pss_evaluation_shards - and self.distribute_strategy._should_use_with_coordinator - ): - self.test_function = self._make_test_function_exact() - test_function_runner = _ExactTestFunction( - self.test_function, callbacks - ) - else: - self.test_function = self.make_test_function() - test_function_runner = _TestFunction(self.test_function, callbacks) - return test_function_runner - - def predict_step(self, data): - """The logic for one inference step. - - This method can be overridden to support custom inference logic. - This method is called by `Model.make_predict_function`. - - This method should contain the mathematical logic for one step of - inference. This typically includes the forward pass. - - Configuration details for *how* this logic is run (e.g. `tf.function` - and `tf.distribute.Strategy` settings), should be left to - `Model.make_predict_function`, which can also be overridden. - - Args: - data: A nested structure of `Tensor`s. - - Returns: - The result of one inference step, typically the output of calling the - `Model` on data. - """ - x, _, _ = data_adapter.unpack_x_y_sample_weight(data) - return self(x, training=False) - - def make_predict_function(self, force=False): - """Creates a function that executes one step of inference. - - This method can be overridden to support custom inference logic. - This method is called by `Model.predict` and `Model.predict_on_batch`. - - Typically, this method directly controls `tf.function` and - `tf.distribute.Strategy` settings, and delegates the actual evaluation - logic to `Model.predict_step`. - - This function is cached the first time `Model.predict` or - `Model.predict_on_batch` is called. The cache is cleared whenever - `Model.compile` is called. You can skip the cache and generate again the - function with `force=True`. - - Args: - force: Whether to regenerate the predict function and skip the cached - function if available. - - Returns: - Function. The function created by this method should accept a - `tf.data.Iterator`, and return the outputs of the `Model`. - """ - if self.predict_function is not None and not force: - return self.predict_function - - def step_function(model, iterator): - """Runs a single evaluation step.""" - - def run_step(data): - outputs = model.predict_step(data) - # Ensure counter is updated only if `test_step` succeeds. - with tf.control_dependencies(_minimum_control_deps(outputs)): - model._predict_counter.assign_add(1) - return outputs - - if self.jit_compile: - run_step = tf.function( - run_step, jit_compile=True, reduce_retracing=True - ) - - data = next(iterator) - outputs = model.distribute_strategy.run(run_step, args=(data,)) - outputs = reduce_per_replica( - outputs, self.distribute_strategy, reduction="concat" - ) - return outputs - - # Special case if steps_per_execution is one. - if ( - self._steps_per_execution is None - or self._steps_per_execution.numpy().item() == 1 - ): - - def predict_function(iterator): - """Runs an evaluation execution with a single step.""" - return step_function(self, iterator) - - else: - - def predict_function(iterator): - """Runs an evaluation execution with multiple steps.""" - outputs = step_function(self, iterator) - for _ in tf.range(self._steps_per_execution - 1): - tf.autograph.experimental.set_loop_options( - shape_invariants=[ - ( - outputs, - tf.nest.map_structure( - lambda t: tf_utils.get_tensor_spec( - t, dynamic_batch=True - ).shape, - outputs, - ), - ) - ] - ) - step_outputs = step_function(self, iterator) - outputs = tf.nest.map_structure( - lambda t1, t2: concat([t1, t2]), outputs, step_outputs - ) - return outputs - - if not self.run_eagerly: - predict_function = tf.function( - predict_function, reduce_retracing=True - ) - self.predict_function = predict_function - - return self.predict_function - - @traceback_utils.filter_traceback - def predict( - self, - x, - batch_size=None, - verbose="auto", - steps=None, - callbacks=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - ): - """Generates output predictions for the input samples. - - Computation is done in batches. This method is designed for batch - processing of large numbers of inputs. It is not intended for use inside - of loops that iterate over your data and process small numbers of inputs - at a time. - - For small numbers of inputs that fit in one batch, - directly use `__call__()` for faster execution, e.g., - `model(x)`, or `model(x, training=False)` if you have layers such as - `tf.keras.layers.BatchNormalization` that behave differently during - inference. You may pair the individual model call with a `tf.function` - for additional performance inside your inner loop. - If you need access to numpy array values instead of tensors after your - model call, you can use `tensor.numpy()` to get the numpy array value of - an eager tensor. - - Also, note the fact that test loss is not affected by - regularization layers like noise and dropout. - - Note: See [this FAQ entry]( - https://keras.io/getting_started/faq/#whats-the-difference-between-model-methods-predict-and-call) - for more details about the difference between `Model` methods - `predict()` and `__call__()`. - - Args: - x: Input samples. It could be: - - A Numpy array (or array-like), or a list of arrays - (in case the model has multiple inputs). - - A TensorFlow tensor, or a list of tensors - (in case the model has multiple inputs). - - A `tf.data` dataset. - - A generator or `keras.utils.Sequence` instance. - A more detailed description of unpacking behavior for iterator - types (Dataset, generator, Sequence) is given in the `Unpacking - behavior for iterator-like inputs` section of `Model.fit`. - batch_size: Integer or `None`. - Number of samples per batch. - If unspecified, `batch_size` will default to 32. - Do not specify the `batch_size` if your data is in the - form of dataset, generators, or `keras.utils.Sequence` instances - (since they generate batches). - verbose: `"auto"`, 0, 1, or 2. Verbosity mode. - 0 = silent, 1 = progress bar, 2 = single line. - `"auto"` becomes 1 for most cases, and to 2 when used with - `ParameterServerStrategy`. Note that the progress bar is not - particularly useful when logged to a file, so `verbose=2` is - recommended when not running interactively (e.g. in a production - environment). Defaults to 'auto'. - steps: Total number of steps (batches of samples) - before declaring the prediction round finished. - Ignored with the default value of `None`. If x is a `tf.data` - dataset and `steps` is None, `predict()` will - run until the input dataset is exhausted. - callbacks: List of `keras.callbacks.Callback` instances. - List of callbacks to apply during prediction. - See [callbacks]( - https://www.tensorflow.org/api_docs/python/tf/keras/callbacks). - max_queue_size: Integer. Used for generator or - `keras.utils.Sequence` input only. Maximum size for the - generator queue. If unspecified, `max_queue_size` will default - to 10. - workers: Integer. Used for generator or `keras.utils.Sequence` input - only. Maximum number of processes to spin up when using - process-based threading. If unspecified, `workers` will default - to 1. - use_multiprocessing: Boolean. Used for generator or - `keras.utils.Sequence` input only. If `True`, use process-based - threading. If unspecified, `use_multiprocessing` will default to - `False`. Note that because this implementation relies on - multiprocessing, you should not pass non-picklable arguments to - the generator as they can't be passed easily to children - processes. - - See the discussion of `Unpacking behavior for iterator-like inputs` for - `Model.fit`. Note that Model.predict uses the same interpretation rules - as `Model.fit` and `Model.evaluate`, so inputs must be unambiguous for - all three methods. - - Returns: - Numpy array(s) of predictions. - - Raises: - RuntimeError: If `model.predict` is wrapped in a `tf.function`. - ValueError: In case of mismatch between the provided - input data and the model's expectations, - or in case a stateful model receives a number of samples - that is not a multiple of the batch size. - """ - base_layer.keras_api_gauge.get_cell("predict").set(True) - version_utils.disallow_legacy_graph("Model", "predict") - self._check_call_args("predict") - _disallow_inside_tf_function("predict") - - # TODO(yashkatariya): Cache model on the coordinator for faster - # prediction. If running under PSS, then swap it with OneDeviceStrategy - # so that execution will run on the coordinator. - original_pss_strategy = None - if self.distribute_strategy._should_use_with_coordinator: - original_pss_strategy = self.distribute_strategy - self._distribution_strategy = None - - # Cluster coordinator is set by `.fit()` and `.evaluate()` which is not - # needed in `.predict()` because all the predictions happen on the - # coordinator/locally. - if self._cluster_coordinator: - self._cluster_coordinator = None - - verbose = _get_verbosity(verbose, self.distribute_strategy) - outputs = None - with self.distribute_strategy.scope(): - # Creates a `tf.data.Dataset` and handles batch and epoch iteration. - dataset_types = (tf.compat.v1.data.Dataset, tf.data.Dataset) - if ( - self._in_multi_worker_mode() - or _is_tpu_multi_host(self.distribute_strategy) - ) and isinstance(x, dataset_types): - try: - options = tf.data.Options() - data_option = tf.data.experimental.AutoShardPolicy.DATA - options.experimental_distribute.auto_shard_policy = ( - data_option - ) - x = x.with_options(options) - except ValueError: - warnings.warn( - "Using Model.predict with MultiWorkerMirroredStrategy " - "or TPUStrategy and AutoShardPolicy.FILE might lead to " - "out-of-order result. Consider setting it to " - "AutoShardPolicy.DATA.", - stacklevel=2, - ) - - data_handler = data_adapter.get_data_handler( - x=x, - batch_size=batch_size, - steps_per_epoch=steps, - initial_epoch=0, - epochs=1, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - model=self, - steps_per_execution=self._steps_per_execution, - ) - - # Container that configures and calls `tf.keras.Callback`s. - if not isinstance(callbacks, callbacks_module.CallbackList): - callbacks = callbacks_module.CallbackList( - callbacks, - add_history=True, - add_progbar=verbose != 0, - model=self, - verbose=verbose, - epochs=1, - steps=data_handler.inferred_steps, - ) - - self.predict_function = self.make_predict_function() - self._predict_counter.assign(0) - callbacks.on_predict_begin() - batch_outputs = None - for _, iterator in data_handler.enumerate_epochs(): # Single epoch. - with data_handler.catch_stop_iteration(): - for step in data_handler.steps(): - callbacks.on_predict_batch_begin(step) - tmp_batch_outputs = self.predict_function(iterator) - if data_handler.should_sync: - context.async_wait() - batch_outputs = ( - tmp_batch_outputs # No error, now safe to assign. - ) - if outputs is None: - outputs = tf.nest.map_structure( - lambda batch_output: [batch_output], - batch_outputs, - ) - else: - tf.__internal__.nest.map_structure_up_to( - batch_outputs, - lambda output, batch_output: output.append( - batch_output - ), - outputs, - batch_outputs, - ) - end_step = step + data_handler.step_increment - callbacks.on_predict_batch_end( - end_step, {"outputs": batch_outputs} - ) - if batch_outputs is None: - raise ValueError( - "Unexpected result of `predict_function` " - "(Empty batch_outputs). Please use " - "`Model.compile(..., run_eagerly=True)`, or " - "`tf.config.run_functions_eagerly(True)` for more " - "information of where went wrong, or file a " - "issue/bug to `tf.keras`." - ) - callbacks.on_predict_end() - all_outputs = tf.__internal__.nest.map_structure_up_to( - batch_outputs, potentially_ragged_concat, outputs - ) - - # If originally PSS strategy was used, then replace it back since - # predict is running under `OneDeviceStrategy` after the swap and once - # its done we need to replace it back to PSS again. - if original_pss_strategy is not None: - self._distribution_strategy = original_pss_strategy - - return tf_utils.sync_to_numpy_or_python_type(all_outputs) - - def reset_metrics(self): - """Resets the state of all the metrics in the model. - - Examples: - - >>> inputs = tf.keras.layers.Input(shape=(3,)) - >>> outputs = tf.keras.layers.Dense(2)(inputs) - >>> model = tf.keras.models.Model(inputs=inputs, outputs=outputs) - >>> model.compile(optimizer="Adam", loss="mse", metrics=["mae"]) - - >>> x = np.random.random((2, 3)) - >>> y = np.random.randint(0, 2, (2, 2)) - >>> _ = model.fit(x, y, verbose=0) - >>> assert all(float(m.result()) for m in model.metrics) - - >>> model.reset_metrics() - >>> assert all(float(m.result()) == 0 for m in model.metrics) - - """ - for m in self.metrics: - m.reset_state() - - def train_on_batch( - self, - x, - y=None, - sample_weight=None, - class_weight=None, - reset_metrics=True, - return_dict=False, - ): - """Runs a single gradient update on a single batch of data. - - Args: - x: Input data. It could be: - - A Numpy array (or array-like), or a list of arrays - (in case the model has multiple inputs). - - A TensorFlow tensor, or a list of tensors - (in case the model has multiple inputs). - - A dict mapping input names to the corresponding array/tensors, - if the model has named inputs. - y: Target data. Like the input data `x`, it could be either Numpy - array(s) or TensorFlow tensor(s). - sample_weight: Optional array of the same length as x, containing - weights to apply to the model's loss for each sample. In the case - of temporal data, you can pass a 2D array with shape (samples, - sequence_length), to apply a different weight to every timestep of - every sample. - class_weight: Optional dictionary mapping class indices (integers) - to a weight (float) to apply to the model's loss for the samples - from this class during training. This can be useful to tell the - model to "pay more attention" to samples from an under-represented - class. When `class_weight` is specified and targets have a rank of - 2 or greater, either `y` must be one-hot encoded, or an explicit - final dimension of `1` must be included for sparse class labels. - reset_metrics: If `True`, the metrics returned will be only for this - batch. If `False`, the metrics will be statefully accumulated - across batches. - return_dict: If `True`, loss and metric results are returned as a - dict, with each key being the name of the metric. If `False`, they - are returned as a list. - - Returns: - Scalar training loss - (if the model has a single output and no metrics) - or list of scalars (if the model has multiple outputs - and/or metrics). The attribute `model.metrics_names` will give you - the display labels for the scalar outputs. - - Raises: - RuntimeError: If `model.train_on_batch` is wrapped in a `tf.function`. - """ - self._assert_compile_was_called() - self._check_call_args("train_on_batch") - _disallow_inside_tf_function("train_on_batch") - if reset_metrics: - self.reset_metrics() - with self.distribute_strategy.scope(), training_utils.RespectCompiledTrainableState( # noqa: E501 - self - ): - iterator = data_adapter.single_batch_iterator( - self.distribute_strategy, x, y, sample_weight, class_weight - ) - self.train_function = self.make_train_function() - logs = self.train_function(iterator) - - logs = tf_utils.sync_to_numpy_or_python_type(logs) - if return_dict: - return logs - else: - return flatten_metrics_in_order(logs, self.metrics_names) - - def test_on_batch( - self, - x, - y=None, - sample_weight=None, - reset_metrics=True, - return_dict=False, - ): - """Test the model on a single batch of samples. - - Args: - x: Input data. It could be: - - A Numpy array (or array-like), or a list of arrays (in case the - model has multiple inputs). - - A TensorFlow tensor, or a list of tensors (in case the model has - multiple inputs). - - A dict mapping input names to the corresponding array/tensors, - if the model has named inputs. - y: Target data. Like the input data `x`, it could be either Numpy - array(s) or TensorFlow tensor(s). It should be consistent with `x` - (you cannot have Numpy inputs and tensor targets, or inversely). - sample_weight: Optional array of the same length as x, containing - weights to apply to the model's loss for each sample. In the case - of temporal data, you can pass a 2D array with shape (samples, - sequence_length), to apply a different weight to every timestep of - every sample. - reset_metrics: If `True`, the metrics returned will be only for this - batch. If `False`, the metrics will be statefully accumulated - across batches. - return_dict: If `True`, loss and metric results are returned as a - dict, with each key being the name of the metric. If `False`, they - are returned as a list. - - Returns: - Scalar test loss (if the model has a single output and no metrics) - or list of scalars (if the model has multiple outputs - and/or metrics). The attribute `model.metrics_names` will give you - the display labels for the scalar outputs. - - Raises: - RuntimeError: If `model.test_on_batch` is wrapped in a - `tf.function`. - """ - self._assert_compile_was_called() - self._check_call_args("test_on_batch") - _disallow_inside_tf_function("test_on_batch") - if reset_metrics: - self.reset_metrics() - with self.distribute_strategy.scope(): - iterator = data_adapter.single_batch_iterator( - self.distribute_strategy, x, y, sample_weight - ) - self.test_function = self.make_test_function() - logs = self.test_function(iterator) - - logs = tf_utils.sync_to_numpy_or_python_type(logs) - if return_dict: - return logs - else: - return flatten_metrics_in_order(logs, self.metrics_names) - - def predict_on_batch(self, x): - """Returns predictions for a single batch of samples. - - Args: - x: Input data. It could be: - - A Numpy array (or array-like), or a list of arrays (in case the - model has multiple inputs). - - A TensorFlow tensor, or a list of tensors (in case the model has - multiple inputs). - - Returns: - Numpy array(s) of predictions. - - Raises: - RuntimeError: If `model.predict_on_batch` is wrapped in a - `tf.function`. - """ - self._check_call_args("predict_on_batch") - _disallow_inside_tf_function("predict_on_batch") - with self.distribute_strategy.scope(): - iterator = data_adapter.single_batch_iterator( - self.distribute_strategy, x - ) - self.predict_function = self.make_predict_function() - outputs = self.predict_function(iterator) - return tf_utils.sync_to_numpy_or_python_type(outputs) - - @doc_controls.do_not_generate_docs - def fit_generator( - self, - generator, - steps_per_epoch=None, - epochs=1, - verbose=1, - callbacks=None, - validation_data=None, - validation_steps=None, - validation_freq=1, - class_weight=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - shuffle=True, - initial_epoch=0, - ): - """Fits the model on data yielded batch-by-batch by a Python generator. - - DEPRECATED: - `Model.fit` now supports generators, so there is no longer any need to - use this endpoint. - """ - warnings.warn( - "`Model.fit_generator` is deprecated and " - "will be removed in a future version. " - "Please use `Model.fit`, which supports generators.", - stacklevel=2, - ) - return self.fit( - generator, - steps_per_epoch=steps_per_epoch, - epochs=epochs, - verbose=verbose, - callbacks=callbacks, - validation_data=validation_data, - validation_steps=validation_steps, - validation_freq=validation_freq, - class_weight=class_weight, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - shuffle=shuffle, - initial_epoch=initial_epoch, - ) - - @doc_controls.do_not_generate_docs - def evaluate_generator( - self, - generator, - steps=None, - callbacks=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - verbose=0, - ): - """Evaluates the model on a data generator. - - DEPRECATED: - `Model.evaluate` now supports generators, so there is no longer any - need to use this endpoint. - """ - warnings.warn( - "`Model.evaluate_generator` is deprecated and " - "will be removed in a future version. " - "Please use `Model.evaluate`, which supports generators.", - stacklevel=2, - ) - self._check_call_args("evaluate_generator") - - return self.evaluate( - generator, - steps=steps, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - verbose=verbose, - callbacks=callbacks, - ) - - @doc_controls.do_not_generate_docs - def predict_generator( - self, - generator, - steps=None, - callbacks=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - verbose=0, - ): - """Generates predictions for the input samples from a data generator. - - DEPRECATED: - `Model.predict` now supports generators, so there is no longer any - need to use this endpoint. - """ - warnings.warn( - "`Model.predict_generator` is deprecated and " - "will be removed in a future version. " - "Please use `Model.predict`, which supports generators.", - stacklevel=2, - ) - return self.predict( - generator, - steps=steps, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - verbose=verbose, - callbacks=callbacks, - ) - - ###################################################################### - # Functions below are not training related. They are for model weights - # tracking, save/load, serialization, etc. - ###################################################################### - - @property - def trainable_weights(self): - self._assert_weights_created() - if not self._trainable: - return [] - trainable_variables = [] - for trackable_obj in self._self_tracked_trackables: - trainable_variables += trackable_obj.trainable_variables - trainable_variables += self._trainable_weights - return self._dedup_weights(trainable_variables) - - @property - def non_trainable_weights(self): - self._assert_weights_created() - non_trainable_variables = [] - for trackable_obj in self._self_tracked_trackables: - non_trainable_variables += trackable_obj.non_trainable_variables - - if not self._trainable: - # Return order is all trainable vars, then all non-trainable vars. - trainable_variables = [] - for trackable_obj in self._self_tracked_trackables: - trainable_variables += trackable_obj.trainable_variables - - non_trainable_variables = ( - trainable_variables - + self._trainable_weights - + non_trainable_variables - + self._non_trainable_weights - ) - else: - non_trainable_variables = ( - non_trainable_variables + self._non_trainable_weights - ) - - return self._dedup_weights(non_trainable_variables) - - def get_weights(self): - """Retrieves the weights of the model. - - Returns: - A flat list of Numpy arrays. - """ - with self.distribute_strategy.scope(): - return super().get_weights() - - @traceback_utils.filter_traceback - def save(self, filepath, overwrite=True, save_format=None, **kwargs): - """Saves a model as a TensorFlow SavedModel or HDF5 file. - - See the [Serialization and Saving guide]( - https://keras.io/guides/serialization_and_saving/) for details. - - Args: - model: Keras model instance to be saved. - filepath: `str` or `pathlib.Path` object. Path where to save the - model. - overwrite: Whether we should overwrite any existing model at the - target location, or instead ask the user via an interactive - prompt. - save_format: Either `"keras"`, `"tf"`, `"h5"`, - indicating whether to save the model - in the native Keras format (`.keras`), - in the TensorFlow SavedModel format - (referred to as "SavedModel" below), - or in the legacy HDF5 format (`.h5`). - Defaults to `"tf"` in TF 2.X, and `"h5"` in TF 1.X. - - SavedModel format arguments: - include_optimizer: Only applied to SavedModel and legacy HDF5 - formats. If False, do not save the optimizer state. - Defaults to `True`. - signatures: Only applies to SavedModel format. Signatures to save - with the SavedModel. See the `signatures` argument in - `tf.saved_model.save` for details. - options: Only applies to SavedModel format. - `tf.saved_model.SaveOptions` object that specifies SavedModel - saving options. - save_traces: Only applies to SavedModel format. When enabled, the - SavedModel will store the function traces for each layer. This - can be disabled, so that only the configs of each layer are - stored. Defaults to `True`. - Disabling this will decrease serialization time - and reduce file size, but it requires that all custom - layers/models implement a `get_config()` method. - - Example: - - ```python - model = tf.keras.Sequential([ - tf.keras.layers.Dense(5, input_shape=(3,)), - tf.keras.layers.Softmax()]) - model.save("model.keras") - loaded_model = tf.keras.models.load_model("model.keras") - x = tf.random.uniform((10, 3)) - assert np.allclose(model.predict(x), loaded_model.predict(x)) - ``` - - Note that `model.save()` is an alias for `tf.keras.models.save_model()`. - """ - saving_api.save_model( - self, - filepath=filepath, - overwrite=overwrite, - save_format=save_format, - **kwargs, - ) - - @traceback_utils.filter_traceback - def save_weights( - self, filepath, overwrite=True, save_format=None, options=None - ): - """Saves all layer weights. - - Either saves in HDF5 or in TensorFlow format based on the `save_format` - argument. - - When saving in HDF5 format, the weight file has: - - `layer_names` (attribute), a list of strings - (ordered names of model layers). - - For every layer, a `group` named `layer.name` - - For every such layer group, a group attribute `weight_names`, - a list of strings - (ordered names of weights tensor of the layer). - - For every weight in the layer, a dataset - storing the weight value, named after the weight tensor. - - When saving in TensorFlow format, all objects referenced by the network - are saved in the same format as `tf.train.Checkpoint`, including any - `Layer` instances or `Optimizer` instances assigned to object - attributes. For networks constructed from inputs and outputs using - `tf.keras.Model(inputs, outputs)`, `Layer` instances used by the network - are tracked/saved automatically. For user-defined classes which inherit - from `tf.keras.Model`, `Layer` instances must be assigned to object - attributes, typically in the constructor. See the documentation of - `tf.train.Checkpoint` and `tf.keras.Model` for details. - - While the formats are the same, do not mix `save_weights` and - `tf.train.Checkpoint`. Checkpoints saved by `Model.save_weights` should - be loaded using `Model.load_weights`. Checkpoints saved using - `tf.train.Checkpoint.save` should be restored using the corresponding - `tf.train.Checkpoint.restore`. Prefer `tf.train.Checkpoint` over - `save_weights` for training checkpoints. - - The TensorFlow format matches objects and variables by starting at a - root object, `self` for `save_weights`, and greedily matching attribute - names. For `Model.save` this is the `Model`, and for `Checkpoint.save` - this is the `Checkpoint` even if the `Checkpoint` has a model attached. - This means saving a `tf.keras.Model` using `save_weights` and loading - into a `tf.train.Checkpoint` with a `Model` attached (or vice versa) - will not match the `Model`'s variables. See the - [guide to training checkpoints]( - https://www.tensorflow.org/guide/checkpoint) for details on - the TensorFlow format. - - Args: - filepath: String or PathLike, path to the file to save the weights - to. When saving in TensorFlow format, this is the prefix used - for checkpoint files (multiple files are generated). Note that - the '.h5' suffix causes weights to be saved in HDF5 format. - overwrite: Whether to silently overwrite any existing file at the - target location, or provide the user with a manual prompt. - save_format: Either 'tf' or 'h5'. A `filepath` ending in '.h5' or - '.keras' will default to HDF5 if `save_format` is `None`. - Otherwise, `None` becomes 'tf'. Defaults to `None`. - options: Optional `tf.train.CheckpointOptions` object that specifies - options for saving weights. - - Raises: - ImportError: If `h5py` is not available when attempting to save in - HDF5 format. - """ - saving_api.save_weights( - self, - filepath=filepath, - overwrite=overwrite, - save_format=save_format, - options=options, - ) - - @traceback_utils.filter_traceback - def load_weights( - self, filepath, skip_mismatch=False, by_name=False, options=None - ): - """Loads all layer weights from a saved files. - - The saved file could be a SavedModel file, a `.keras` file (v3 saving - format), or a file created via `model.save_weights()`. - - By default, weights are loaded based on the network's - topology. This means the architecture should be the same as when the - weights were saved. Note that layers that don't have weights are not - taken into account in the topological ordering, so adding or removing - layers is fine as long as they don't have weights. - - **Partial weight loading** - - If you have modified your model, for instance by adding a new layer - (with weights) or by changing the shape of the weights of a layer, - you can choose to ignore errors and continue loading - by setting `skip_mismatch=True`. In this case any layer with - mismatching weights will be skipped. A warning will be displayed - for each skipped layer. - - **Weight loading by name** - - If your weights are saved as a `.h5` file created - via `model.save_weights()`, you can use the argument `by_name=True`. - - In this case, weights are loaded into layers only if they share - the same name. This is useful for fine-tuning or transfer-learning - models where some of the layers have changed. - - Note that only topological loading (`by_name=False`) is supported when - loading weights from the `.keras` v3 format or from the TensorFlow - SavedModel format. - - Args: - filepath: String, path to the weights file to load. For weight files - in TensorFlow format, this is the file prefix (the same as was - passed to `save_weights()`). This can also be a path to a - SavedModel or a `.keras` file (v3 saving format) saved - via `model.save()`. - skip_mismatch: Boolean, whether to skip loading of layers where - there is a mismatch in the number of weights, or a mismatch in - the shape of the weights. - by_name: Boolean, whether to load weights by name or by topological - order. Only topological loading is supported for weight files in - the `.keras` v3 format or in the TensorFlow SavedModel format. - options: Optional `tf.train.CheckpointOptions` object that specifies - options for loading weights (only valid for a SavedModel file). - """ - return saving_api.load_weights( - self, - filepath=filepath, - by_name=by_name, - skip_mismatch=skip_mismatch, - options=options, - ) - - def _updated_config(self): - """Util shared between different serialization methods. - - Returns: - Model config with Keras version information added. - """ - from keras import __version__ as keras_version - - config = self.get_config() - model_config = { - "class_name": self.__class__.__name__, - "config": config, - "keras_version": keras_version, - "backend": backend.backend(), - } - return model_config - - @generic_utils.default - def get_config(self): - """Returns the config of the `Model`. - - Config is a Python dictionary (serializable) containing the - configuration of an object, which in this case is a `Model`. This allows - the `Model` to be be reinstantiated later (without its trained weights) - from this configuration. - - Note that `get_config()` does not guarantee to return a fresh copy of - dict every time it is called. The callers should make a copy of the - returned dict if they want to modify it. - - Developers of subclassed `Model` are advised to override this method, - and continue to update the dict from `super(MyModel, self).get_config()` - to provide the proper configuration of this `Model`. The default config - will return config dict for init parameters if they are basic types. - Raises `NotImplementedError` when in cases where a custom - `get_config()` implementation is required for the subclassed model. - - Returns: - Python dictionary containing the configuration of this `Model`. - """ - # If sublcass doesn't implement `get_config()` parse from init args - # otherwise default to empty dict - if generic_utils.is_default(self.get_config): - try: - config = base_layer.Layer.get_config(self) - except NotImplementedError: - config = {} - logging.warning( - "Model's `__init__()` arguments contain non-serializable " - "objects. Please implement a `get_config()` method in the " - "subclassed Model for proper saving and loading. " - "Defaulting to empty config." - ) - else: - config = {} - return config - - @classmethod - def from_config(cls, config, custom_objects=None): - # `from_config` assumes `cls` is either `Functional` or a child class of - # `Functional`. In the case that `cls` is meant to behave like a child - # class of `Functional` but only inherits from the `Model` class, we - # have to call `cls(...)` instead of `Functional.from_config`. - from keras.engine import functional - - with serialization.SharedObjectLoadingScope(): - functional_config_keys = [ - "name", - "layers", - "input_layers", - "output_layers", - ] - is_functional_config = all( - key in config for key in functional_config_keys - ) - argspec = tf_inspect.getfullargspec(cls.__init__) - functional_init_args = tf_inspect.getfullargspec( - functional.Functional.__init__ - ).args[1:] - revivable_as_functional = ( - cls in {functional.Functional, Model} - or argspec.args[1:] == functional_init_args - or (argspec.varargs == "args" and argspec.varkw == "kwargs") - ) - if is_functional_config and revivable_as_functional: - # Revive Functional model - # (but not Functional subclasses with a custom __init__) - inputs, outputs, layers = functional.reconstruct_from_config( - config, custom_objects - ) - model = cls( - inputs=inputs, outputs=outputs, name=config.get("name") - ) - functional.connect_ancillary_layers(model, layers) - - else: - # Either the model has a custom __init__, or the config - # does not contain all the information necessary to - # revive a Functional model. This happens when the user creates - # subclassed models where `get_config()` is returning - # insufficient information to be considered a Functional model. - # In this case, we fall back to provide all config into the - # constructor of the class. - try: - model = cls(**config) - except TypeError as e: - raise TypeError( - "Unable to revive model from config. When overriding " - "the `get_config()` method, make sure that the " - "returned config contains all items used as arguments " - f"in the constructor to {cls}, " - "which is the default behavior. " - "You can override this default behavior by defining a " - "`from_config(cls, config)` class method to specify " - "how to create an " - f"instance of {cls.__name__} from its config.\n\n" - f"Received config={config}\n\n" - f"Error encountered during deserialization: {e}" - ) - return model - - def to_json(self, **kwargs): - """Returns a JSON string containing the network configuration. - - To load a network from a JSON save file, use - `keras.models.model_from_json(json_string, custom_objects={})`. - - Args: - **kwargs: Additional keyword arguments to be passed to - *`json.dumps()`. - - Returns: - A JSON string. - """ - model_config = self._updated_config() - return json.dumps( - model_config, default=json_utils.get_json_type, **kwargs - ) - - def to_yaml(self, **kwargs): - """Returns a yaml string containing the network configuration. - - Note: Since TF 2.6, this method is no longer supported and will raise a - RuntimeError. - - To load a network from a yaml save file, use - `keras.models.model_from_yaml(yaml_string, custom_objects={})`. - - `custom_objects` should be a dictionary mapping - the names of custom losses / layers / etc to the corresponding - functions / classes. - - Args: - **kwargs: Additional keyword arguments - to be passed to `yaml.dump()`. - - Returns: - A YAML string. - - Raises: - RuntimeError: announces that the method poses a security risk - """ - raise RuntimeError( - "Method `model.to_yaml()` has been removed due to security risk of " - "arbitrary code execution. Please use `model.to_json()` instead." - ) - - def reset_states(self): - for layer in self.layers: - if hasattr(layer, "reset_states") and getattr( - layer, "stateful", False - ): - layer.reset_states() - - @property - @doc_controls.do_not_generate_docs - def state_updates(self): - """Deprecated, do NOT use! - - Returns the `updates` from all layers that are stateful. - - This is useful for separating training updates and - state updates, e.g. when we need to update a layer's internal state - during prediction. - - Returns: - A list of update ops. - """ - warnings.warn( - "`Model.state_updates` will be removed in a future version. " - "This property should not be used in TensorFlow 2.0, " - "as `updates` are applied automatically.", - stacklevel=2, - ) - state_updates = [] - for layer in self.layers: - if getattr(layer, "stateful", False): - if hasattr(layer, "updates"): - state_updates += layer.updates - return state_updates - - @property - def weights(self): - """Returns the list of all layer variables/weights. - - Note: This will not track the weights of nested `tf.Modules` that are - not themselves Keras layers. - - Returns: - A list of variables. - """ - return self._dedup_weights(self._undeduplicated_weights) - - @property - def _undeduplicated_weights(self): - """Returns the undeduplicated list of all layer variables/weights.""" - self._assert_weights_created() - weights = [] - for layer in self._self_tracked_trackables: - weights += layer.variables - weights += self._trainable_weights + self._non_trainable_weights - return weights - - def summary( - self, - line_length=None, - positions=None, - print_fn=None, - expand_nested=False, - show_trainable=False, - layer_range=None, - ): - """Prints a string summary of the network. - - Args: - line_length: Total length of printed lines - (e.g. set this to adapt the display to different - terminal window sizes). - positions: Relative or absolute positions of log elements - in each line. If not provided, becomes - `[0.3, 0.6, 0.70, 1.]`. Defaults to `None`. - print_fn: Print function to use. By default, prints to `stdout`. - If `stdout` doesn't work in your environment, change to `print`. - It will be called on each line of the summary. - You can set it to a custom function - in order to capture the string summary. - expand_nested: Whether to expand the nested models. - Defaults to `False`. - show_trainable: Whether to show if a layer is trainable. - Defaults to `False`. - layer_range: a list or tuple of 2 strings, - which is the starting layer name and ending layer name - (both inclusive) indicating the range of layers to be printed - in summary. It also accepts regex patterns instead of exact - name. In such case, start predicate will be the first element - it matches to `layer_range[0]` and the end predicate will be - the last element it matches to `layer_range[1]`. - By default `None` which considers all layers of model. - - Raises: - ValueError: if `summary()` is called before the model is built. - """ - if not self.built: - raise ValueError( - "This model has not yet been built. " - "Build the model first by calling `build()` or by calling " - "the model on a batch of data." - ) - layer_utils.print_summary( - self, - line_length=line_length, - positions=positions, - print_fn=print_fn, - expand_nested=expand_nested, - show_trainable=show_trainable, - layer_range=layer_range, - ) - - @property - def layers(self): - return list(self._flatten_layers(include_self=False, recursive=False)) - - @layers.setter - def layers(self, _): - raise AttributeError( - "`Model.layers` attribute is reserved and should not be used. " - "Please use another name." - ) - - def get_layer(self, name=None, index=None): - """Retrieves a layer based on either its name (unique) or index. - - If `name` and `index` are both provided, `index` will take precedence. - Indices are based on order of horizontal graph traversal (bottom-up). - - Args: - name: String, name of layer. - index: Integer, index of layer. - - Returns: - A layer instance. - """ - # TODO(fchollet): We could build a dictionary based on layer names - # since they are constant, but we have not done that yet. - if index is not None and name is not None: - raise ValueError( - "Provide only a layer name or a layer index. Received: " - f"index={index}, name={name}." - ) - - if index is not None: - if len(self.layers) <= index: - raise ValueError( - f"Was asked to retrieve layer at index {index}" - f" but model only has {len(self.layers)}" - " layers." - ) - else: - return self.layers[index] - - if name is not None: - for layer in self.layers: - if layer.name == name: - return layer - raise ValueError( - f"No such layer: {name}. Existing layers are: " - f"{list(layer.name for layer in self.layers)}." - ) - raise ValueError( - "Provide either a layer name or layer index at `get_layer`." - ) - - def get_weight_paths(self): - """Retrieve all the variables and their paths for the model. - - The variable path (string) is a stable key to identify a `tf.Variable` - instance owned by the model. It can be used to specify variable-specific - configurations (e.g. DTensor, quantization) from a global view. - - This method returns a dict with weight object paths as keys - and the corresponding `tf.Variable` instances as values. - - Note that if the model is a subclassed model and the weights haven't - been initialized, an empty dict will be returned. - - Returns: - A dict where keys are variable paths and values are `tf.Variable` - instances. - - Example: - - ```python - class SubclassModel(tf.keras.Model): - - def __init__(self, name=None): - super().__init__(name=name) - self.d1 = tf.keras.layers.Dense(10) - self.d2 = tf.keras.layers.Dense(20) - - def call(self, inputs): - x = self.d1(inputs) - return self.d2(x) - - model = SubclassModel() - model(tf.zeros((10, 10))) - weight_paths = model.get_weight_paths() - # weight_paths: - # { - # 'd1.kernel': model.d1.kernel, - # 'd1.bias': model.d1.bias, - # 'd2.kernel': model.d2.kernel, - # 'd2.bias': model.d2.bias, - # } - - # Functional model - inputs = tf.keras.Input((10,), batch_size=10) - x = tf.keras.layers.Dense(20, name='d1')(inputs) - output = tf.keras.layers.Dense(30, name='d2')(x) - model = tf.keras.Model(inputs, output) - d1 = model.layers[1] - d2 = model.layers[2] - weight_paths = model.get_weight_paths() - # weight_paths: - # { - # 'd1.kernel': d1.kernel, - # 'd1.bias': d1.bias, - # 'd2.kernel': d2.kernel, - # 'd2.bias': d2.bias, - # } - ``` - """ - result = {} - ( - descendants, - object_paths_dict, - ) = tf.__internal__.tracking.ObjectGraphView( - self - ).breadth_first_traversal() - for descendant in descendants: - if isinstance(descendant, tf.Variable): - trackable_references = object_paths_dict[descendant] - object_path = ".".join([t.name for t in trackable_references]) - result[object_path] = descendant - return result - - def get_compile_config(self): - """Returns a serialized config with information for compiling the model. - - This method returns a config dictionary containing all the information - (optimizer, loss, metrics, etc.) with which the model was compiled. - - Returns: - A dict containing information for compiling the model. - """ - if self._is_compiled and hasattr(self, "_compile_config"): - return self._compile_config.serialize() - - def compile_from_config(self, config): - """Compiles the model with the information given in config. - - This method uses the information in the config (optimizer, loss, - metrics, etc.) to compile the model. - - Args: - config: Dict containing information for compiling the model. - """ - has_overridden_compile = self.__class__.compile != Model.compile - if has_overridden_compile: - logging.warning( - "`compile()` was not called as part of model loading " - "because the model's `compile()` method is custom. " - "All subclassed Models that have `compile()` " - "overridden should also override " - "`get_compile_config()` and `compile_from_config(config)`. " - "Alternatively, you can " - "call `compile()` manually after loading." - ) - return - config = saving_lib.deserialize_keras_object(config) - self.compile(**config) - if hasattr(self, "optimizer") and self.built: - # Create optimizer variables. - self.optimizer.build(self.trainable_variables) - - def export(self, filepath): - """Create a SavedModel artifact for inference (e.g. via TF-Serving). - - This method lets you export a model to a lightweight SavedModel artifact - that contains the model's forward pass only (its `call()` method) - and can be served via e.g. TF-Serving. The forward pass is registered - under the name `serve()` (see example below). - - The original code of the model (including any custom layers you may - have used) is *no longer* necessary to reload the artifact -- it is - entirely standalone. - - Args: - filepath: `str` or `pathlib.Path` object. Path where to save - the artifact. - - Example: - - ```python - # Create the artifact - model.export("path/to/location") - - # Later, in a different process / environment... - reloaded_artifact = tf.saved_model.load("path/to/location") - predictions = reloaded_artifact.serve(input_data) - ``` - - If you would like to customize your serving endpoints, you can - use the lower-level `keras.export.ExportArchive` class. The `export()` - method relies on `ExportArchive` internally. - """ - from keras.export import export_lib - - export_lib.export_model(self, filepath) - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _set_save_spec(self, inputs, args=None, kwargs=None): - """Defines the save spec so that serialization can trace `call()`. - - The TensorSpecs of the call function `inputs`, `args`, and `kwargs` are - saved into a tuple of `([inputs] + args, kwargs)`. The input - `TensorSpec` names are updated to match the built `input_names`. - - The specs can be retrieved with the `save_spec` property. - - Args: - inputs: possibly nested inputs passed into the call function. - args: a list of positional arguments passed into call. - kwargs: a dictionary of keyword arguments passed into call. - """ - if self._saved_model_inputs_spec is not None: - return # Already set. - args = args or [] - kwargs = kwargs or {} - - input_names = self.input_names - if not input_names: - input_names = compile_utils.create_pseudo_input_names(inputs) - - flat_inputs = tf.nest.flatten(inputs) - inputs_spec = [] - for name, tensor in zip(input_names, flat_inputs): - inputs_spec.append( - tf_utils.get_tensor_spec(tensor, dynamic_batch=False, name=name) - ) - inputs_spec = tf.nest.pack_sequence_as(inputs, inputs_spec) - super()._set_save_spec(inputs_spec, args, kwargs) - - # Store the input shapes - if ( - self.__class__.__name__ == "Sequential" - and self._build_input_shape is None - ): - self._build_input_shape = tf.nest.map_structure( - lambda x: None if x is None else x.shape, inputs_spec - ) - - def save_spec(self, dynamic_batch=True): - """Returns the `tf.TensorSpec` of call args as a tuple `(args, kwargs)`. - - This value is automatically defined after calling the model for the - first time. Afterwards, you can use it when exporting the model for - serving: - - ```python - model = tf.keras.Model(...) - - @tf.function - def serve(*args, **kwargs): - outputs = model(*args, **kwargs) - # Apply postprocessing steps, or add additional outputs. - ... - return outputs - - # arg_specs is `[tf.TensorSpec(...), ...]`. kwarg_specs, in this - # example, is an empty dict since functional models do not use keyword - # arguments. - arg_specs, kwarg_specs = model.save_spec() - - model.save(path, signatures={ - 'serving_default': serve.get_concrete_function(*arg_specs, - **kwarg_specs) - }) - ``` - - Args: - dynamic_batch: Whether to set the batch sizes of all the returned - `tf.TensorSpec` to `None`. (Note that when defining functional or - Sequential models with `tf.keras.Input([...], batch_size=X)`, the - batch size will always be preserved). Defaults to `True`. - Returns: - If the model inputs are defined, returns a tuple `(args, kwargs)`. All - elements in `args` and `kwargs` are `tf.TensorSpec`. - If the model inputs are not defined, returns `None`. - The model inputs are automatically set when calling the model, - `model.fit`, `model.evaluate` or `model.predict`. - """ - return self._get_save_spec(dynamic_batch, inputs_only=False) - - def _assert_weights_created(self): - """Asserts that all the weights for the model have been created. - - For a non-dynamic model, the weights must already be created after the - layer has been called. For a dynamic model, the exact list of weights - can never be known for certain since it may change at any time during - execution. - - We run this check right before accessing weights or getting the Numpy - value for the current weights. Otherwise, if the layer has never been - called, the user would just get an empty list, which is misleading. - - Raises: - ValueError: if the weights of the network have not yet been created. - """ - if self.dynamic: - return - - if ( - "build" in self.__class__.__dict__ - and self.__class__ != Model - and not self.built - ): - # For any model that has customized build() method but hasn't been - # invoked yet, this will cover both sequential and subclass model. - # Also make sure to exclude Model class itself which has build() - # defined. - raise ValueError( - f"Weights for model '{self.name}' have not yet been " - "created. " - "Weights are created when the model is first called on " - "inputs or `build()` is called with an `input_shape`." - ) - - def _check_call_args(self, method_name): - """Check that `call()` has only one positional arg.""" - # Always allow first arg, regardless of arg name. - fullargspec = self._call_spec.full_argspec - if fullargspec.defaults: - positional_args = fullargspec.args[: -len(fullargspec.defaults)] - else: - positional_args = fullargspec.args - if "training" in positional_args: - positional_args.remove("training") - - # self and first arg can be positional. - if len(positional_args) > 2: - extra_args = positional_args[2:] - raise ValueError( - f"Models passed to `{method_name}` can only have `training` " - "and the first argument in `call()` as positional arguments, " - f"found: {extra_args}." - ) - - def _validate_compile(self, optimizer, metrics, **kwargs): - """Performs validation checks for the default `compile()`.""" - if any( - isinstance(opt, optimizer_v1.Optimizer) - for opt in tf.nest.flatten(optimizer) - ): - raise ValueError( - f"`tf.compat.v1.keras` Optimizer ({optimizer}) is " - "not supported when eager execution is enabled. Use a " - "`tf.keras` Optimizer instead, or disable eager " - "execution." - ) - - kwargs.pop("cloning", None) # Legacy DistStrat argument, never used. - kwargs.pop("experimental_run_tf_function", None) # Always `True`. - distribute_arg = kwargs.pop("distribute", None) - if distribute_arg is not None: - raise ValueError( - "`distribute` argument in compile is not available in TF 2.0. " - "Please create the model under the `strategy.scope()`. " - f"Received: {distribute_arg}." - ) - target_tensor_arg = kwargs.pop("target_tensors", None) - if target_tensor_arg is not None: - raise ValueError( - "`target_tensors` argument is not supported when executing " - f"eagerly. Received: {target_tensor_arg}." - ) - invalid_kwargs = set(kwargs) - {"sample_weight_mode"} - if invalid_kwargs: - raise TypeError( - "Invalid keyword argument(s) in `compile()`: " - f"{(invalid_kwargs,)}. Valid keyword arguments include " - '"cloning", "experimental_run_tf_function", "distribute",' - ' "target_tensors", or "sample_weight_mode".' - ) - - # Model must be created and compiled with the same DistStrat. - if self.built and tf.distribute.has_strategy(): - strategy = tf.distribute.get_strategy() - for v in self.variables: - if not strategy.extended.variable_created_in_scope(v): - raise ValueError( - f"Variable ({v}) was not created in the distribution " - f"strategy scope of ({strategy}). It is most likely " - "because some layers, model, or optimizer was being " - "created outside the distribution strategy scope. Try " - "to make sure your code looks similar " - "to the following.\nwith strategy.scope():\n" - " model=_create_model()\n" - " model.compile(...)" - ) - - # Model metrics must be created in the same distribution strategy scope - # as the model. - strategy = self.distribute_strategy - for metric in tf.nest.flatten(metrics): - for v in getattr(metric, "variables", []): - if not strategy.extended.variable_created_in_scope(v): - raise ValueError( - f"Metric ({metric}) passed to `model.compile` was " - "created inside a different distribution strategy " - "scope than the model. All metrics must be created " - "in the same distribution strategy " - f"scope as the model (in this case {strategy}). " - "If you pass in a string identifier for a metric to " - "compile, the metric will automatically be created " - "in the correct distribution strategy scope." - ) - - # Model metrics must be created in the same distribution strategy scope - # as the model. - for opt in tf.nest.flatten(optimizer): - for v in getattr(opt, "_weights", []): - if not strategy.extended.variable_created_in_scope(v): - raise ValueError( - f"Optimizer ({optimizer}) passed to `model.compile` " - "was created inside a different distribution strategy " - "scope than the model. All optimizers must be created " - "in the same distribution strategy scope as the model " - f"(in this case {strategy}). If you pass in a string " - "identifier for an optimizer to compile, the optimizer " - "will automatically be created in the correct " - "distribution strategy scope." - ) - - def _maybe_load_initial_counters_from_ckpt( - self, steps_per_epoch, initial_epoch - ): - """Maybe load initial epoch from ckpt, considering worker recovery. - - Refer to tensorflow/python/keras/distribute/worker_training_state.py - for more information. - - Args: - steps_per_epoch: The number of step per epoch. - initial_epoch: The original initial_epoch user passes in `fit()`. - mode: The mode for running `model.fit()`. - - Returns: - If the training is recovering from previous failure under multi-worker - training setting, return the (epoch, step) the training is supposed to - continue at. Otherwise, return the `initial_epoch, initial_step` the - user passes in. - """ - initial_step = 0 - if self._training_state is not None: - return self._training_state.maybe_load_initial_counters_from_ckpt( - steps_per_epoch, initial_epoch, mode=ModeKeys.TRAIN - ) - return (initial_epoch, initial_step) - - def _assert_compile_was_called(self): - # Checks whether `compile` has been called. If it has been called, - # then the optimizer is set. This is different from whether the - # model is compiled - # (i.e. whether the model is built and its inputs/outputs are set). - if not self._is_compiled: - raise RuntimeError( - "You must compile your model before " - "training/testing. " - "Use `model.compile(optimizer, loss)`." - ) - - def _check_sample_weight_warning(self, x, sample_weight): - # Datasets can include sample weight, by returning a tuple with the - # structure of `(x, y, sample_weight)`. - sample_weight_present = sample_weight is not None or ( - isinstance(x, tf.data.Dataset) - and isinstance(x.element_spec, tuple) - and len(x.element_spec) == 3 - ) - - if ( - sample_weight_present - and self.compiled_metrics._user_weighted_metrics is None - ): - logging.warning( - "`evaluate()` received a value for `sample_weight`, but " - "`weighted_metrics` were not provided. Did you mean to pass " - "metrics to `weighted_metrics` in `compile()`? If this is " - "intentional you can pass `weighted_metrics=[]` to `compile()` " - "in order to silence this warning." - ) - - def _set_inputs(self, inputs, outputs=None, training=None): - """This method is for compat with Modelv1. Only inputs are needed - here.""" - self._set_save_spec(inputs) - - @property - def _trackable_saved_model_saver(self): - return model_serialization.ModelSavedModelSaver(self) - - def _trackable_children(self, save_type="checkpoint", **kwargs): - if save_type == "savedmodel": - # SavedModel needs to ignore the execution functions. - train_function = self.train_function - test_function = self.test_function - predict_function = self.predict_function - train_tf_function = self.train_tf_function - self.train_function = None - self.test_function = None - self.predict_function = None - self.train_tf_function = None - - children = super()._trackable_children(save_type, **kwargs) - - if save_type == "savedmodel": - self.train_function = train_function - self.test_function = test_function - self.predict_function = predict_function - self.train_tf_function = train_tf_function - - return children - - def _should_eval(self, epoch, validation_freq): - epoch = epoch + 1 # one-index the user-facing epoch. - if isinstance(validation_freq, int): - return epoch % validation_freq == 0 - elif isinstance(validation_freq, list): - return epoch in validation_freq - else: - raise ValueError( - "Expected `validation_freq` to be a list or int. " - f"Received: validation_freq={validation_freq} of the " - f"type {type(validation_freq)}." - ) - - ###################################################################### - # Functions below exist only as v1 / v2 compatibility shims. - ###################################################################### - - def _get_compile_args(self, user_metrics=True): - """Used for saving or cloning a Model. - - Args: - user_metrics: Whether to return user-supplied metrics or `Metric` - objects. If True, returns the user-supplied metrics. - Defaults to `True`. - - Returns: - Dictionary of arguments that were used when compiling the model. - """ - self._assert_compile_was_called() - saved_metrics = self.compiled_metrics._user_metrics - saved_weighted_metrics = self.compiled_metrics._user_weighted_metrics - - if not user_metrics: - if saved_metrics is not None: - saved_metrics = self.compiled_metrics._metrics - if saved_weighted_metrics is not None: - saved_weighted_metrics = self.compiled_metrics._weighted_metrics - - compile_args = { - "optimizer": self.optimizer, - "loss": self.compiled_loss._user_losses, - "metrics": saved_metrics, - "weighted_metrics": saved_weighted_metrics, - "loss_weights": self.compiled_loss._user_loss_weights, - } - return compile_args - - def _get_callback_model(self): - return self - - def _in_multi_worker_mode(self): - return self.distribute_strategy.extended._in_multi_worker_mode() - - @property - def _compile_was_called(self): - return self._is_compiled - - def _save_experimental(self, filepath): - return saving_lib.save_model(self, filepath) - - -class _TestFunction: - def __init__(self, function, callbacks): - self._function = function - self._callbacks = callbacks - - def run_step(self, dataset_or_iterator, data_handler, step, unused_shards): - tmp_logs = self._function(dataset_or_iterator) - if data_handler.should_sync: - context.async_wait() - logs = tmp_logs - end_step = step + data_handler.step_increment - self._callbacks.on_test_batch_end(end_step, logs) - return logs - - -class _ExactTestFunction(_TestFunction): - def __init__(self, function, callbacks): - super().__init__(function, callbacks) - self._logs = [] - - def run_step(self, dataset_or_iterator, data_handler, step, shards): - tmp_logs = self._function( - dataset_or_iterator, - tf.constant(shards, dtype=tf.int64), - tf.constant(step, dtype=tf.int64), - ) - if data_handler.should_sync: - context.async_wait() - self._logs.append(tmp_logs) - return self._logs - - -def reduce_per_replica(values, strategy, reduction): - """Attempt to reduce the structure `values` to single values. - - Given `values` (a `tf.Tensor` or a `PerReplica` structure), - which represents the values across all the replicas, `reduce_per_replica` - attempts to "reduce" those values and returns the corresponding structure - that represents only single values. - - Currently, `reduce_per_replica` is only used for reducing the metric results - from `tf.distribute.Strategy.run()`. Depending on the underlying - `Strategy` implementation, `values` may be a `PerReplica` object, - which can be thought of as a collection of values across the replicas, - or a `tf.Tensor`, if the strategy has already conducted the reduction - for the downstream library. - - There are five possible outcomes of reduction: - - 1) if the `values` is a structure of simple `tf.Tensor`s, meaning that - reduction is not actually needed, `reduce_per_replica` returns the - structure as-is. - 2) else, if `reduction="auto"`, then the best reduction strategy is - chosen based on the current environment. This should only be used - for training cases (`fit()`). - 3) else, if `reduction="first"`, then `reduce_per_replica` - returns the values of the first replica. This is used in the case of - training and evaluation, where `values` is expected to hold the same - value across the replicas as a result of `Strategy`'s synchronization - across the replicas. - `reduce_per_replica` does not synchronize the values. - 4) else, if `reduction="sum"`, then `reduce_per_replica` returns the sum - of values for all replicas. This may be used in the custom training loop - case, where each replica contain different values which are not - synchronized. - 5) else, if `reduction="concat"`, then `reduce_per_replica` - returns the concatenation of the values across the replicas, along the - axis of dimension 0. This is used in the inference case (`predict()`). - - Args: - values: Structure of `PerReplica` objects or `tf.Tensor`s. `tf.Tensor`s - are returned as-is. - strategy: `tf.distribute.Strategy` object. - reduction: One of `"auto"`, `"first"`, `"concat"`, or `"sum"`. - `"auto"` will select `"first"` when used under a TPUStrategy, or - `"sum"` otherwise. - - Returns: - Structure of `Tensor`s, representing the result of reduction. - - Raises: - ValueError: if the reduction method is not supported. - """ - - if reduction == "auto": - reduction = "first" if backend.is_tpu_strategy(strategy) else "sum" - - def _reduce(v): - """Reduce a single `PerReplica` object.""" - if _collective_all_reduce_multi_worker(strategy): - if reduction == "concat": - return _multi_worker_concat(v, strategy) - elif reduction == "sum": - return strategy.reduce("SUM", v, axis=None) - - if _is_dtensor_per_replica_instance(v): - return _reduce_dtensor_per_replica(v, strategy, reduction) - elif not _is_per_replica_instance(v): - return v - elif reduction == "first": - return strategy.experimental_local_results(v)[0] - elif reduction == "concat": - if _is_tpu_multi_host(strategy): - return _tpu_multi_host_concat(v, strategy) - else: - return concat(strategy.experimental_local_results(v)) - elif reduction == "sum": - return tf.reduce_sum(strategy.experimental_local_results(v)) - else: - raise ValueError( - '`reduction` must be "first", "concat", "sum", or "auto". ' - f"Received: reduction={reduction}." - ) - - return tf.nest.map_structure(_reduce, values) - - -def concat(tensors, axis=0): - """Concats `tensor`s along `axis`.""" - if isinstance(tensors[0], tf.SparseTensor): - return tf.sparse.concat(axis=axis, sp_inputs=tensors) - elif _is_scalar(tensors[0]): - return tf.stack(tensors, axis=axis) - else: - return tf.concat(tensors, axis=axis) - - -def potentially_ragged_concat(tensors): - """Concats `Tensor`s along their first dimension. - - Args: - tensors: List of `Tensor`s. - - Returns: - Concatenation of the inputs along the first dimension -- of type `Tensor` - if all input shapes are compatible, or `RaggedTensor` if not. - """ - if len(tensors) == 1: - return tensors[0] - if isinstance(tensors[0], tf.SparseTensor): - return tf.sparse.concat(axis=0, sp_inputs=tensors) - elif isinstance(tensors[0], tf.RaggedTensor): - return tf.concat(tensors, axis=0) - elif not tf.__internal__.tf2.enabled(): - return tf.concat(tensors, axis=0) - - non_batch_shapes = tf.stack([tf.shape(tensor)[1:] for tensor in tensors]) - constant_dims = tf.math.reduce_all( - non_batch_shapes == non_batch_shapes[:1], axis=0 - ) - if tf.math.reduce_all(constant_dims).numpy().item(): - # All non-batch dims are constant - if _is_scalar(tensors[0]): - return tf.stack(tensors, axis=0) - else: - return tf.concat(tensors, axis=0) - - # First, identify constant inner dimensions by finding the - # rightmost dimension that is not constant - constant_inner_dimensions = ( - constant_dims.numpy().tolist()[::-1].index(False) - ) - # If there are constant inner dimensions, define a constant inner shape - if constant_inner_dimensions == 0: - constant_inner_shape = None - else: - constant_inner_shape = tensors[0].shape[-constant_inner_dimensions:] - return tf.ragged.constant( - [tensor.numpy() for tensor in tensors], inner_shape=constant_inner_shape - ).merge_dims(0, 1) - - -def _reduce_dtensor_per_replica(value, strategy, reduction): - # Note that this function could happen in graph, so we can't just access - # the per-replica.values(), which will trigger unpack in graph and result - # into error. - # For now we will perform ops on dtensor instance directly on a global - # context. - dtensor = value._dtensor - if reduction == "first": - num_replica = strategy.num_replicas_in_sync - return tf.split(dtensor, num_replica, axis=0)[0] - elif reduction == "concat": - # Since dtensor is already in global context, the concat is a no-op - return dtensor - elif reduction == "sum": - return tf.reduce_sum(dtensor) - else: - raise ValueError( - '`reduction` must be one of "first", "concat", "sum", or "auto". ' - f"Received: reduction={reduction}." - ) - - -def _get_verbosity(verbose, distribute_strategy): - """Find the right verbosity value for 'auto'.""" - if verbose == 1 and distribute_strategy._should_use_with_coordinator: - raise ValueError( - "`verbose=1` is not allowed with `ParameterServerStrategy` for " - f"performance reasons. Received: verbose={verbose}" - ) - if verbose == "auto": - if ( - distribute_strategy._should_use_with_coordinator - or not io_utils.is_interactive_logging_enabled() - ): - # Defaults to epoch-level logging for PSStrategy or using absl - # logging. - return 2 - else: - return 1 # Defaults to batch-level logging otherwise. - return verbose - - -def _is_tpu_multi_host(strategy): - return backend.is_tpu_strategy(strategy) and strategy.extended.num_hosts > 1 - - -def _tpu_multi_host_concat(v, strategy): - """Correctly order TPU PerReplica objects.""" - replicas = strategy.experimental_local_results(v) - # When distributed datasets are created from Tensors / NumPy, - # TPUStrategy.experimental_distribute_dataset shards data in - # (Replica, Host) order, and TPUStrategy.experimental_local_results returns - # it in (Host, Replica) order. - # TODO(b/150317897): Figure out long-term plan here. - num_replicas_per_host = strategy.extended.num_replicas_per_host - ordered_replicas = [] - for replica_id in range(num_replicas_per_host): - ordered_replicas += replicas[replica_id::num_replicas_per_host] - return concat(ordered_replicas) - - -def _collective_all_reduce_multi_worker(strategy): - return ( - isinstance(strategy, tf.distribute.MultiWorkerMirroredStrategy) - ) and strategy.extended._in_multi_worker_mode() - - -# TODO(wxinyi): merge this with _tpu_multi_host_concat once we have all_gather -# for all strategies -def _multi_worker_concat(v, strategy): - """Order PerReplica objects for CollectiveAllReduceStrategy and concat.""" - replicas = strategy.gather(v, axis=0) - # v might not have the same shape on different replicas - if _is_per_replica_instance(v): - shapes = tf.concat( - [ - tf.expand_dims(tf.shape(single_value)[0], axis=0) - for single_value in v.values - ], - axis=0, - ) - all_shapes = strategy.gather(shapes, axis=0) - else: - # v is a tensor. This may happen when, say, we have 2x1 multi-worker. - all_shapes = strategy.gather( - tf.expand_dims(tf.shape(v)[0], axis=0), axis=0 - ) - - replicas = tf.split( - replicas, - num_or_size_splits=all_shapes, - num=strategy.num_replicas_in_sync, - ) - ordered_replicas = [] - num_replicas_per_worker = len(strategy.extended.worker_devices) - for replica_id in range(num_replicas_per_worker): - ordered_replicas += replicas[replica_id::num_replicas_per_worker] - return concat(ordered_replicas) - - -def _is_scalar(x): - return isinstance(x, (tf.Tensor, tf.Variable)) and x.shape.rank == 0 - - -def _minimum_control_deps(outputs): - """Returns the minimum control dependencies to ensure step succeeded.""" - if tf.executing_eagerly(): - return [] # Control dependencies not needed. - outputs = tf.nest.flatten(outputs, expand_composites=True) - for out in outputs: - # Variables can't be control dependencies. - if not isinstance(out, tf.Variable): - return [out] # Return first Tensor or Op from outputs. - return [] # No viable Tensor or Op to use for control deps. - - -def _disallow_inside_tf_function(method_name): - if tf.inside_function(): - error_msg = ( - "Detected a call to `Model.{method_name}` inside a `tf.function`. " - "`Model.{method_name} is a high-level endpoint that manages its " - "own `tf.function`. Please move the call to `Model.{method_name}` " - "outside of all enclosing `tf.function`s. Note that you can call a " - "`Model` directly on `Tensor`s inside a `tf.function` like: " - "`model(x)`." - ).format(method_name=method_name) - raise RuntimeError(error_msg) - - -def flatten_metrics_in_order(logs, metrics_names): - """Turns the `logs` dict into a list as per key order of `metrics_names`.""" - results = [] - for name in metrics_names: - if name in logs: - results.append(logs[name]) - for key in sorted(logs.keys()): - if key not in metrics_names: - results.append(logs[key]) - if len(results) == 1: - return results[0] - return results - - -def _is_per_replica_instance(obj): - return isinstance(obj, tf.distribute.DistributedValues) and isinstance( - obj, tf.__internal__.CompositeTensor - ) - - -def _is_dtensor_per_replica_instance(obj): - # This is a temp check for DTensorDistributedValue, which is not public API - # yet. - # TODO(scottzhu): Move to more stable API when dtensor based strategy is - # ready. - return isinstance(obj, tf.distribute.DistributedValues) and hasattr( - obj, "_dtensor" - ) - - -def disable_multi_worker(method): - """Decorator that disallows multi-worker use of `method`.""" - - def _method_wrapper(self, *args, **kwargs): - if self._in_multi_worker_mode(): - raise ValueError( - f"{method.__name__} is not supported in multi-worker " - "mode. Please use a non-multi-worker " - "`tf.distribute.Strategy` such as " - "`tf.distribute.MirroredStrategy`." - ) - return method(self, *args, **kwargs) - - return tf.__internal__.decorator.make_decorator( - target=method, decorator_func=_method_wrapper - ) - - -def inject_functional_model_class(cls): - """Inject `Functional` into the hierarchy of this class if needed.""" - from keras.engine import functional - from keras.engine import training_v1 - - if cls == Model or cls == training_v1.Model: - return functional.Functional - # In case there is any multiple inheritance, we stop injecting the - # class if keras model is not in its class hierarchy. - if cls == object: - return object - - cls.__bases__ = tuple( - inject_functional_model_class(base) for base in cls.__bases__ - ) - # Trigger any `__new__` class swapping that needed to happen on `Functional` - # but did not because functional was not in the class hierarchy. - cls.__new__(cls) - - return cls - - -def is_functional_model_init_params(args, kwargs): - # Both inputs and outputs in args - if len(args) == 2: - return True - # Both inputs in args, outputs in kwargs - if len(args) == 1 and "outputs" in kwargs: - return True - # Both in kwargs - if "inputs" in kwargs and "outputs" in kwargs: - return True - return False diff --git a/keras/engine/training_arrays_test.py b/keras/engine/training_arrays_test.py deleted file mode 100644 index cf85bafc3a2..00000000000 --- a/keras/engine/training_arrays_test.py +++ /dev/null @@ -1,268 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for model.fit calls with a Dataset object passed as validation_data.""" - -import io -import sys -from unittest import mock - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.engine import data_adapter -from keras.layers import core -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import io_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -def _create_dataset(num_samples, batch_size): - input_data = np.random.rand(num_samples, 1) - expected_data = input_data * 3 - dataset = tf.data.Dataset.from_tensor_slices((input_data, expected_data)) - return dataset.shuffle(10 * batch_size).batch(batch_size) - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class ValidationDatasetAndValidationSplit( - test_combinations.TestCase, parameterized.TestCase -): - """Verifies when validation_data is provided validation_split is ignored. - - The validation_split arg can't be passed in v1 mode because - training_utils_v1.py:validate_dataset_input will raise a ValueError that - validation_split is not supported when input x is a dataset or a dataset - iterator. - """ - - @parameterized.named_parameters( - ("with_default_falsey_validation_split", 0.0), - ("with_non_falsey_validation_split", 0.1), - ) - def test_ignore_validation_split_when_validation_dataset_is_present( - self, validation_split - ): - # Create a model that learns y=Mx. - layers = [core.Dense(1)] - model = test_utils.get_model_from_layers(layers, input_shape=(1,)) - model.compile( - loss="mse", optimizer="adam", metrics=["mean_absolute_error"] - ) - - train_dataset = _create_dataset(num_samples=200, batch_size=10) - eval_dataset = _create_dataset(num_samples=50, batch_size=25) - - # Make sure model.fit doesn't raise an error because of the mocking - # alone. - mock_train_validation_split_return = ( - (train_dataset, None, None), - eval_dataset, - ) - - with mock.patch.object( - data_adapter, - "train_validation_split", - return_value=mock_train_validation_split_return, - ) as mock_train_validation_split: - model.fit( - x=train_dataset, - validation_split=validation_split, - validation_data=eval_dataset, - epochs=2, - ) - mock_train_validation_split.assert_not_called() - - history = model.fit( - x=train_dataset, validation_data=eval_dataset, epochs=2 - ) - evaluation = model.evaluate(x=eval_dataset) - - # See test_validation_dataset_with_no_step_arg for details. - self.assertAlmostEqual( - history.history["val_mean_absolute_error"][-1], - evaluation[-1], - places=5, - ) - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes -class ValidationDatasetNoLimitTest(test_combinations.TestCase): - def test_validation_dataset_with_no_step_arg(self): - # Create a model that learns y=Mx. - layers = [core.Dense(1)] - model = test_utils.get_model_from_layers(layers, input_shape=(1,)) - model.compile( - loss="mse", optimizer="adam", metrics=["mean_absolute_error"] - ) - - train_dataset = _create_dataset(num_samples=200, batch_size=10) - eval_dataset = _create_dataset(num_samples=50, batch_size=25) - - history = model.fit( - x=train_dataset, validation_data=eval_dataset, epochs=2 - ) - evaluation = model.evaluate(x=eval_dataset) - - # If the fit call used the entire dataset, then the final val MAE error - # from the fit history should be equal to the final element in the - # output of evaluating the model on the same eval dataset. - self.assertAlmostEqual( - history.history["val_mean_absolute_error"][-1], - evaluation[-1], - places=5, - ) - - -class PrintTrainingInfoTest(test_combinations.TestCase, parameterized.TestCase): - @tf_test_utils.run_v1_only("Only relevant in graph mode.") - def test_print_info_with_datasets(self): - """Print training info should work with val datasets (b/133391839).""" - - model = keras.models.Sequential( - [keras.layers.Dense(1, input_shape=(1,))] - ) - model.compile(loss="mse", optimizer="sgd") - - dataset = ( - tf.data.Dataset.from_tensors(([1.0], [1.0])).repeat(100).batch(10) - ) - - val_dataset = ( - tf.data.Dataset.from_tensors(([1.0], [1.0])).repeat(50).batch(10) - ) - - mock_stdout = io.StringIO() - io_utils.enable_interactive_logging() - with tf.compat.v1.test.mock.patch.object(sys, "stdout", mock_stdout): - model.fit(dataset, epochs=2, validation_data=val_dataset) - - self.assertIn( - "Train on 10 steps, validate on 5 steps", mock_stdout.getvalue() - ) - - @parameterized.named_parameters( - ("with_validation", True), ("without_validation", False) - ) - @tf_test_utils.run_v1_only("Only relevant in graph mode.") - def test_print_info_with_numpy(self, do_validation): - """Print training info should work with val datasets (b/133391839).""" - - model = keras.models.Sequential( - [keras.layers.Dense(1, input_shape=(2,))] - ) - model.compile(loss="mse", optimizer="sgd") - - dataset = np.arange(200).reshape(100, 2) - - if do_validation: - val_data = ( - np.arange(100).reshape(50, 2), - np.arange(50).reshape(50, 1), - ) - else: - val_data = None - - mock_stdout = io.StringIO() - with tf.compat.v1.test.mock.patch.object(sys, "stdout", mock_stdout): - model.fit( - dataset, batch_size=10, epochs=2, validation_data=val_data - ) - - self.assertIn("Train on 100 samples", mock_stdout.getvalue()) - - if do_validation: - self.assertIn(", validate on 50 samples", mock_stdout.getvalue()) - - @test_combinations.run_all_keras_modes - def test_dict_float64_input(self): - class MyModel(keras.Model): - def __init__(self): - super().__init__(self) - self.dense1 = keras.layers.Dense(10, activation="relu") - self.dense2 = keras.layers.Dense(10, activation="relu") - self.concat = keras.layers.Concatenate() - self.dense3 = keras.layers.Dense(1, activation="sigmoid") - - def call(self, inputs): - d1 = self.dense1(inputs["one"]) - d2 = self.dense2(inputs["two"]) - concat = self.concat([d1, d2]) - return self.dense3(concat) - - model = MyModel() - model.compile( - loss="mae", - optimizer="adam", - run_eagerly=test_utils.should_run_eagerly(), - ) - - model.fit( - x={ - "one": np.random.rand(100, 10, 1), - "two": np.random.rand(100, 10, 1), - }, - y=np.random.rand(100, 10, 1), - ) - - def test_dict_validation_input(self): - """Test case for GitHub issue 30122.""" - train_input_0 = np.random.rand(1000, 1) - train_input_1 = np.random.rand(1000, 1) - train_labels = np.random.rand(1000, 1) - val_input_0 = np.random.rand(1000, 1) - val_input_1 = np.random.rand(1000, 1) - val_labels = np.random.rand(1000, 1) - - input_0 = keras.Input(shape=(None,), name="input_0") - input_1 = keras.Input(shape=(None,), name="input_1") - - class my_model(keras.Model): - def __init__(self): - super().__init__(self) - self.hidden_layer_0 = keras.layers.Dense(100, activation="relu") - self.hidden_layer_1 = keras.layers.Dense(100, activation="relu") - self.concat = keras.layers.Concatenate() - self.out_layer = keras.layers.Dense(1, activation="sigmoid") - - def call(self, inputs=[input_0, input_1]): - activation_0 = self.hidden_layer_0(inputs["input_0"]) - activation_1 = self.hidden_layer_1(inputs["input_1"]) - concat = self.concat([activation_0, activation_1]) - return self.out_layer(concat) - - model = my_model() - model.compile(loss="mae", optimizer="adam") - - model.fit( - x={"input_0": train_input_0, "input_1": train_input_1}, - y=train_labels, - validation_data=( - {"input_0": val_input_0, "input_1": val_input_1}, - val_labels, - ), - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/training_arrays_v1.py b/keras/engine/training_arrays_v1.py deleted file mode 100644 index a3920e2a1a6..00000000000 --- a/keras/engine/training_arrays_v1.py +++ /dev/null @@ -1,808 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Part of the Keras training engine related to plain array data.""" - -import functools - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import callbacks as cbks -from keras.distribute import distributed_training_utils_v1 -from keras.engine import training_utils_v1 -from keras.utils import io_utils -from keras.utils.generic_utils import make_batches -from keras.utils.generic_utils import slice_arrays -from keras.utils.mode_keys import ModeKeys - -# isort: off -from tensorflow.python.platform import tf_logging as logging - - -try: - from scipy.sparse import issparse -except ImportError: - issparse = None - - -def model_iteration( - model, - inputs, - targets=None, - sample_weights=None, - batch_size=None, - epochs=1, - verbose=1, - callbacks=None, - val_inputs=None, - val_targets=None, - val_sample_weights=None, - shuffle=True, - initial_epoch=0, - steps_per_epoch=None, - validation_steps=None, - validation_freq=1, - mode=ModeKeys.TRAIN, - validation_in_fit=False, - prepared_feed_values_from_dataset=False, - steps_name="steps", - **kwargs, -): - """Loop function for arrays of data with modes TRAIN/TEST/PREDICT. - - Args: - model: Keras Model instance. - inputs: Either a list or dictionary of arrays, or a dataset instance. - targets: List/dictionary of input arrays. - sample_weights: Optional list of sample weight arrays. - batch_size: Integer batch size or None if unknown. - epochs: Number of times to iterate over the data - verbose: 0, 1, or 2. Verbosity mode. - 0 = silent, 1 = progress bar, 2 = one line per epoch. - Note that the progress bar is not particularly useful when - logged to a file, so verbose=2 is recommended when not running - interactively (eg, in a production environment). - callbacks: List of callbacks to be called during training - val_inputs: Either a list or dictionary of arrays, or a dataset - instance. - val_targets: List/dictionary of target arrays. - val_sample_weights: Optional list of sample weight arrays. - shuffle: Whether to shuffle the data at the beginning of each epoch - concatenation of list the display names of the outputs of `f` and the - list of display names of the outputs of `f_val`. - initial_epoch: Epoch at which to start training (useful for resuming a - previous training run) - steps_per_epoch: Total number of steps (batches of samples) before - declaring one epoch finished and starting the next epoch. Ignored with - the default value of `None`. - validation_steps: Number of steps to run validation for (only if doing - validation from data tensors). Ignored with the default value of - `None`. - validation_freq: Only relevant if validation data is provided. Integer - or `collections.abc.Container` instance (e.g. list, tuple, etc.). If - an integer, specifies how many training epochs to run before a new - validation run is performed, e.g. `validation_freq=2` runs validation - every 2 epochs. If a Container, specifies the epochs on which to run - validation, e.g. `validation_freq=[1, 2, 10]` runs validation at the - end of the 1st, 2nd, and 10th epochs. - mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. - validation_in_fit: if true, then this method is invoked from within - training iteration (for validation). In the case where `val_inputs` is - a dataset, this flag indicates that its iterator and feed values are - already created so should properly reuse resources. - prepared_feed_values_from_dataset: if True, `inputs` is a list of feed - tensors returned from `_prepare_feed_values` call on the validation - dataset, so do not call it again on `inputs`. Should only be used for - inline validation (i.e., only if `validation_in_fit` is also True). - steps_name: The string name of the steps argument, either `steps`, - `validation_steps`, or `steps_per_epoch`. Only used for error message - formatting. - **kwargs: Additional arguments for backwards compatibility. - - Returns: - - In TRAIN mode: `History` object. - - In TEST mode: Evaluation metrics. - - In PREDICT mode: Outputs of the Model called on inputs. - - Raises: - ValueError: in case of invalid arguments. - """ - # Backwards compatibility. - if "steps" in kwargs: - steps_per_epoch = kwargs.pop("steps") - if kwargs: - raise TypeError(f"Unknown arguments: {kwargs}") - - # In case we were passed a dataset, we extract symbolic tensors from it. - reset_dataset_after_each_epoch = False - input_iterator = None - is_dataset = isinstance( - inputs, (tf.compat.v1.data.Dataset, tf.data.Dataset) - ) - # TODO(fchollet): consider moving `steps_per_epoch` inference to - # _standardize_user_data and set reset_dataset_after_each_epoch as an - # attribute on the dataset instance. - if is_dataset: - if steps_per_epoch is None: - reset_dataset_after_each_epoch = True - steps_per_epoch = training_utils_v1.infer_steps_for_dataset( - model, - inputs, - steps_per_epoch, - epochs=epochs, - steps_name=steps_name, - ) - input_iterator = _get_iterator(inputs, model._distribution_strategy) - - # Enter tf.distribute.Strategy scope. - if model._distribution_strategy: - scope = distributed_training_utils_v1.distributed_scope( - strategy=model._distribution_strategy, - learning_phase=(1 if mode == ModeKeys.TRAIN else 0), - ) - scope.__enter__() - - use_steps = is_dataset or steps_per_epoch is not None - do_validation = val_inputs is not None - - # Prepare input data. - inputs = input_iterator or inputs - if validation_in_fit and prepared_feed_values_from_dataset: - # When invoking validation in training loop, avoid creating iterator and - # list of feed values for the same validation dataset multiple times - # (which essentially would call `iterator.get_next()` that slows down - # execution and leads to OOM errors eventually. - ins = inputs - else: - ins = _prepare_feed_values(model, inputs, targets, sample_weights, mode) - # `ins` is a function when a distribute strategy is used in Eager mode. - # In that case `is_dataset` is True. The code branches that have - # requirements about the type of `ins` do not trigger in the distributed - # case. - - if not is_dataset: - num_samples_or_steps = _get_num_samples_or_steps( - ins, batch_size, steps_per_epoch - ) - else: - num_samples_or_steps = steps_per_epoch - - # Update sample_weight_mode of the model if sample_weights is specified by - # the user. We need to call this function after we have a handle on the - # inputs (both numpy arrays and datasets) in order to determine if the user - # has specified sample_weights. - _update_sample_weight_mode(model, mode, ins) - - # Get step function and loop type. As part of building the execution - # function we recompile the metrics based on the updated - # sample_weight_mode value. - f = _make_execution_function(model, mode) - - # Prepare validation data. Hold references to the iterator and the input - # list to properly reinitialize and reuse in multiple validation passes. - val_iterator = None - if isinstance(val_inputs, (tf.compat.v1.data.Dataset, tf.data.Dataset)): - if validation_steps is None: - # Because we pass an iterator feed instead of a Dataset to the eval - # model_iteration() call, it will not trigger the dataset-input path - # that determines the number of steps required. To avoid this issue, - # set validation_steps here if validation_steps is None. - validation_steps = training_utils_v1.infer_steps_for_dataset( - model, - val_inputs, - validation_steps, - epochs=epochs, - steps_name="validation_steps", - ) - val_iterator = _get_iterator(val_inputs, model._distribution_strategy) - val_inputs = _prepare_feed_values( - model, val_iterator, val_targets, val_sample_weights, ModeKeys.TEST - ) - # Get num steps for printing. - val_samples_or_steps = validation_steps - else: - # Get num samples for printing. - val_samples_or_steps = ( - val_inputs and tf.nest.flatten(val_inputs)[0].shape[0] or None - ) - - if mode == ModeKeys.TRAIN and verbose: - _print_train_info( - num_samples_or_steps, val_samples_or_steps, is_dataset - ) - - # Configure callbacks. - count_mode = "steps" if use_steps else "samples" - callbacks = cbks.configure_callbacks( - callbacks, - model, - do_validation=do_validation, - batch_size=batch_size, - epochs=epochs, - steps_per_epoch=steps_per_epoch, - samples=num_samples_or_steps, - count_mode=count_mode, - verbose=verbose, - mode=mode, - ) - - # Find beforehand arrays that need sparse-to-dense conversion. - if issparse is not None and not use_steps: - indices_for_conversion_to_dense = [] - feed = _get_model_feed(model, mode) - for i, (input_data, feed_tensor) in enumerate(zip(ins, feed)): - if issparse(input_data) and not backend.is_sparse(feed_tensor): - indices_for_conversion_to_dense.append(i) - - # Select aggregation method. - if mode == ModeKeys.PREDICT: - aggregator = training_utils_v1.OutputsAggregator( - use_steps, - num_samples=None if steps_per_epoch else num_samples_or_steps, - steps=steps_per_epoch, - ) - else: - aggregator = training_utils_v1.MetricsAggregator( - use_steps, - num_samples=None if steps_per_epoch else num_samples_or_steps, - steps=steps_per_epoch, - ) - - if model._compile_distribution: - distributed_training_utils_v1._copy_weights_to_distributed_model( - model, mode - ) - - callbacks.model.stop_training = False - callbacks._call_begin_hook(mode) - - initial_epoch = model._maybe_load_initial_epoch_from_ckpt( - initial_epoch, mode - ) - - for epoch in range(initial_epoch, epochs): - if callbacks.model.stop_training: - break - - # Setup work for each epoch - epoch_logs = {} - if mode != ModeKeys.PREDICT: - # Collecting and resetting metrics has non-zero cost and will - # needlessly slow down model.predict. - model.reset_metrics() - if mode == ModeKeys.TRAIN: - callbacks.on_epoch_begin(epoch, epoch_logs) - - if use_steps: - # Step-wise loop. - if steps_per_epoch is None: - # Loop over dataset until `OutOfRangeError` is raised. - target_steps = np.inf - else: - # Loop over dataset for the specified number of steps. - target_steps = steps_per_epoch - - step = 0 - while step < target_steps: - batch_logs = {"batch": step, "size": 1} - callbacks._call_batch_hook(mode, "begin", step, batch_logs) - - # Get outputs. - try: - # `ins` can be callable in tf.distribute.Strategy + eager - # case. - if not callable(ins) or ( - model._distribution_strategy - and not distributed_training_utils_v1.is_distributing_by_cloning( # noqa: E501 - model - ) - ): - actual_inputs = ins - else: - actual_inputs = ins() - batch_outs = f(actual_inputs) - except tf.errors.OutOfRangeError: - if is_dataset: - # The dataset passed by the user ran out of batches. - # Now we know the cardinality of the dataset. If - # steps_per_epoch was specified, then running out of - # data is unexpected, so we stop training and inform the - # user. - if steps_per_epoch: - callbacks.model.stop_training = True - logging.warning( - "Your dataset ran out of data; interrupting " - "training. Make sure that your dataset can " - "generate at least `%s * epochs` batches (in " - "this case, %d batches). You may need to use " - "the repeat() function when building your " - "dataset." - % (steps_name, steps_per_epoch * epochs) - ) - elif step > 0: - steps_per_epoch = step - aggregator.steps = steps_per_epoch - else: - # We ran out of batches while the user passed an - # iterator (legacy). - callbacks.model.stop_training = True - logging.warning( - "Your dataset iterator ran out of data; " - "interrupting training. Make sure that your " - "iterator can generate at least `%s * epochs` " - "batches (in this case, %d batches). You may need " - "to use the repeat() function when building your " - "dataset." % (steps_name, steps_per_epoch * epochs) - ) - break - - if not isinstance(batch_outs, list): - batch_outs = [batch_outs] - - if model._distribution_strategy: - batch_outs = distributed_training_utils_v1._per_replica_aggregate_batch( # noqa: E501 - model._distribution_strategy, batch_outs, model, mode - ) - - # Aggregate results. - if step == 0: - aggregator.create(batch_outs) - aggregator.aggregate(batch_outs) - - # Callbacks batch end. - batch_logs = callbacks.make_logs( - model, batch_logs, batch_outs, mode - ) - callbacks._call_batch_hook(mode, "end", step, batch_logs) - step += 1 - - if callbacks.model.stop_training: - break - else: - # Sample-wise loop. - index_array = np.arange(num_samples_or_steps) - if shuffle == "batch": - index_array = training_utils_v1.batch_shuffle( - index_array, batch_size - ) - elif shuffle: - np.random.shuffle(index_array) - batches = make_batches(num_samples_or_steps, batch_size) - for batch_index, (batch_start, batch_end) in enumerate(batches): - batch_ids = index_array[batch_start:batch_end] - # Slice into a batch. - if len(batches) == 1: - # If we only have one batch, do not slice. This takes care - # of composite tensors in non-Dataset modes; we currently - # don't support slicing them. - # TODO(b/133517906): Add slicing support. - ins_batch = ins - else: - try: - if ins and isinstance(ins[-1], int): - # Do not slice the training phase flag. - ins_batch = slice_arrays(ins[:-1], batch_ids) + [ - ins[-1] - ] - else: - ins_batch = slice_arrays(ins, batch_ids) - except TypeError: - raise TypeError( - "TypeError while preparing batch. " - "If using HDF5 input data, " - 'pass shuffle="batch".' - ) - - # Sparse to dense conversion. - if issparse is not None: - for i in indices_for_conversion_to_dense: - ins_batch[i] = ins_batch[i].toarray() - - # Callbacks batch_begin. - batch_logs = {"batch": batch_index, "size": len(batch_ids)} - callbacks._call_batch_hook( - mode, "begin", batch_index, batch_logs - ) - - # Get outputs. - batch_outs = f(ins_batch) - if not isinstance(batch_outs, list): - batch_outs = [batch_outs] - - # Aggregate results. - if batch_index == 0: - aggregator.create(batch_outs) - aggregator.aggregate(batch_outs, batch_start, batch_end) - - # Callbacks batch end. - batch_logs = callbacks.make_logs( - model, batch_logs, batch_outs, mode - ) - callbacks._call_batch_hook(mode, "end", batch_index, batch_logs) - - if callbacks.model.stop_training: - break - - aggregator.finalize() - results = aggregator.results - epoch_logs = callbacks.make_logs(model, epoch_logs, results, mode) - if len(results) == 1: - results = results[0] - - # Run the test loop every `validation_freq` epochs during training. - if ( - do_validation - and training_utils_v1.should_run_validation(validation_freq, epoch) - and not callbacks.model.stop_training - ): - - if model._compile_distribution: - # Since we create a new clone from the original model we need to - # copy the weights back to the original model before we can run - # validation. - distributed_training_utils_v1._copy_weights_to_original_model( - model, ModeKeys.TRAIN - ) - - val_results = model_iteration( - model, - val_inputs, - targets=val_targets, - sample_weights=val_sample_weights, - batch_size=batch_size, - steps_per_epoch=validation_steps, - callbacks=callbacks, - verbose=0, - mode=ModeKeys.TEST, - validation_in_fit=True, - prepared_feed_values_from_dataset=(val_iterator is not None), - steps_name="validation_steps", - ) - if not isinstance(val_results, list): - val_results = [val_results] - epoch_logs = callbacks.make_logs( - model, epoch_logs, val_results, mode, prefix="val_" - ) - if val_iterator and epoch < epochs - 1: - _reinitialize_iterator( - val_iterator, model._distribution_strategy - ) - - if mode == ModeKeys.TRAIN: - # Epochs only apply to `fit`. - callbacks.on_epoch_end(epoch, epoch_logs) - - # Reinitialize dataset iterator for the next epoch. - if reset_dataset_after_each_epoch and epoch < epochs - 1: - _reinitialize_iterator(input_iterator, model._distribution_strategy) - - model._successful_loop_finish = True - callbacks._call_end_hook(mode) - - if model._distribution_strategy: - if model._compile_distribution: - # TODO(priyag, psv): Copy back metrics to the original model as - # well? - distributed_training_utils_v1._copy_weights_to_original_model( - model, mode - ) - scope.__exit__(None, None, None) - - if mode == ModeKeys.TRAIN: - return model.history - return results - - -def _get_model_feed(model, mode): - if mode == ModeKeys.PREDICT: - feed = model._feed_inputs - else: - feed = ( - model._feed_inputs - + model._feed_targets - + model._feed_sample_weights - ) - return feed - - -def _print_train_info(num_samples_or_steps, val_samples_or_steps, is_dataset): - increment = "steps" if is_dataset else "samples" - msg = f"Train on {num_samples_or_steps} {increment}" - if val_samples_or_steps: - msg += f", validate on {val_samples_or_steps} {increment}" - io_utils.print_msg(msg) - - -def _get_num_samples_or_steps(ins, batch_size, steps_per_epoch): - """Returns total number of samples when training in batch mode or steps.""" - if steps_per_epoch: - return steps_per_epoch - return training_utils_v1.check_num_samples( - ins, batch_size, steps_per_epoch, "steps_per_epoch" - ) - - -def _prepare_feed_values(model, inputs, targets, sample_weights, mode): - """Prepare feed values to the model execution function. - - Args: - model: Model to prepare feed values for. - inputs: List or dict of model inputs. - targets: Optional list of model targets. - sample_weights: Optional list of sample weight arrays. - mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. - - Returns: - Feed values for the model in the given mode. - """ - if model._distribution_strategy: - if isinstance(inputs, (tf.compat.v1.data.Dataset, tf.data.Dataset)): - inputs = distributed_training_utils_v1.get_iterator( - inputs, model._distribution_strategy - ) - - def get_distributed_inputs(): - return distributed_training_utils_v1._prepare_feed_values( - model, inputs, targets, sample_weights, mode - ) - - # In the eager case, we want to call the input method per step, so - # return a lambda from here that can be called. Note that this is - # applicable only in Distribution Strategy case as it follows the same - # code path for both eager and graph modes. - # TODO(priyag,omalleyt): Either we should move the training DS with - # IteratorBase to use training_generator code path, or figure out how to - # set a symbolic Iterator out of a Dataset when in eager mode. - if tf.executing_eagerly(): - return get_distributed_inputs - else: - return get_distributed_inputs() - - if isinstance( - inputs, - ( - tf.compat.v1.data.Dataset, - tf.data.Dataset, - tf.compat.v1.data.Iterator, - ), - ): - inputs, targets, sample_weights = model._standardize_user_data( - inputs, extract_tensors_from_dataset=True - ) - - inputs = training_utils_v1.ModelInputs(inputs).as_list() - targets = list(targets or []) - sample_weights = list(sample_weights or []) - ins = inputs + targets + sample_weights - if mode == ModeKeys.TRAIN and not isinstance( - backend.symbolic_learning_phase(), int - ): - ins += [True] # Add learning phase value. - return ins - - -def _get_iterator(inputs, distribution_strategy=None): - if distribution_strategy: - return distributed_training_utils_v1.get_iterator( - inputs, distribution_strategy - ) - return training_utils_v1.get_iterator(inputs) - - -def _reinitialize_iterator(iterator, distribution_strategy=None): - if distribution_strategy: - distributed_training_utils_v1.initialize_iterator( - iterator, distribution_strategy - ) - else: - training_utils_v1.initialize_iterator(iterator) - - -def _make_execution_function(model, mode): - """Makes function to run one step of model execution.""" - if model._distribution_strategy: - return distributed_training_utils_v1._make_execution_function( - model, mode - ) - return model._make_execution_function(mode) - - -def _update_sample_weight_mode(model, mode, inputs): - """Updates the sample_weight_mode of a given model.""" - # Add a quick return to prevent us from calling model._feed_targets that - # accesses certain model properties that may not be set in the `PREDICT` - # mode. - if mode == ModeKeys.PREDICT: - return - - sample_weights = None - # `inputs` is the model's inputs + targets + sample_weights + - # learning phase placeholder if specified. To update the sample_weight_mode - # we need to determine if the user has passed sample weights as part of the - # input. - if not callable(inputs): - sample_weights = inputs[ - len(model._feed_inputs) + len(model._feed_targets) : - ] - has_learning_phase_pl = mode == ModeKeys.TRAIN and not isinstance( - backend.symbolic_learning_phase(), int - ) - if has_learning_phase_pl: - sample_weights = sample_weights[:-1] - model._update_sample_weight_modes(sample_weights=sample_weights) - - # Call the DistributionStrategy specific function to update the - # sample_weight_mode on the model. - if model._distribution_strategy: - distributed_training_utils_v1._update_sample_weight_modes( - model, mode, sample_weights - ) - - -# For backwards compatibility for internal users of these loops. -fit_loop = functools.partial(model_iteration, mode=ModeKeys.TRAIN) -test_loop = functools.partial( - model_iteration, mode=ModeKeys.TEST, shuffle=False -) -predict_loop = functools.partial( - model_iteration, mode=ModeKeys.PREDICT, shuffle=False -) - - -class ArrayLikeTrainingLoop(training_utils_v1.TrainingLoop): - """TrainingLoop that handle inputs like array. - - This is the default handler for most of the input data types, includes - symbolic tensors or Numpy array-like, Datasets and iterators in graph mode - (since they generate symbolic tensors). This Function is used to handle - model with `run_eagerly` = False. - """ - - def fit( - self, - model, - x=None, - y=None, - batch_size=None, - epochs=1, - verbose=1, - callbacks=None, - validation_split=0.0, - validation_data=None, - shuffle=True, - class_weight=None, - sample_weight=None, - initial_epoch=0, - steps_per_epoch=None, - validation_steps=None, - validation_freq=1, - **kwargs, - ): - batch_size = model._validate_or_infer_batch_size( - batch_size, steps_per_epoch, x - ) - - x, y, sample_weights = model._standardize_user_data( - x, - y, - sample_weight=sample_weight, - class_weight=class_weight, - batch_size=batch_size, - check_steps=True, - steps_name="steps_per_epoch", - steps=steps_per_epoch, - validation_split=validation_split, - shuffle=shuffle, - ) - - if validation_data: - val_x, val_y, val_sample_weights = model._prepare_validation_data( - validation_data, batch_size, validation_steps - ) - elif validation_split and 0.0 < validation_split < 1.0: - ( - x, - y, - sample_weights, - val_x, - val_y, - val_sample_weights, - ) = training_utils_v1.split_training_and_validation_data( - x, y, sample_weights, validation_split - ) - else: - if validation_steps: - raise ValueError( - "`validation_steps` should not be specified if " - "`validation_data` is None." - ) - val_x, val_y, val_sample_weights = None, None, None - - return fit_loop( - model, - inputs=x, - targets=y, - sample_weights=sample_weights, - batch_size=batch_size, - epochs=epochs, - verbose=verbose, - callbacks=callbacks, - val_inputs=val_x, - val_targets=val_y, - val_sample_weights=val_sample_weights, - shuffle=shuffle, - initial_epoch=initial_epoch, - steps_per_epoch=steps_per_epoch, - validation_steps=validation_steps, - validation_freq=validation_freq, - steps_name="steps_per_epoch", - ) - - def evaluate( - self, - model, - x=None, - y=None, - batch_size=None, - verbose=1, - sample_weight=None, - steps=None, - callbacks=None, - **kwargs, - ): - batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) - x, y, sample_weights = model._standardize_user_data( - x, - y, - sample_weight=sample_weight, - batch_size=batch_size, - check_steps=True, - steps_name="steps", - steps=steps, - ) - return test_loop( - model, - inputs=x, - targets=y, - sample_weights=sample_weights, - batch_size=batch_size, - verbose=verbose, - steps=steps, - callbacks=callbacks, - ) - - def predict( - self, - model, - x, - batch_size=None, - verbose=0, - steps=None, - callbacks=None, - **kwargs, - ): - batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) - x, _, _ = model._standardize_user_data( - x, check_steps=True, steps_name="steps", steps=steps - ) - return predict_loop( - model, - x, - batch_size=batch_size, - verbose=verbose, - steps=steps, - callbacks=callbacks, - ) diff --git a/keras/engine/training_dataset_test.py b/keras/engine/training_dataset_test.py deleted file mode 100644 index 07d5d839c72..00000000000 --- a/keras/engine/training_dataset_test.py +++ /dev/null @@ -1,634 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for training routines.""" - -import io -import sys - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras import callbacks -from keras import metrics as metrics_module -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import io_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging - - -class BatchCounterCallback(callbacks.Callback): - def __init__(self): - self.batch_begin_count = 0 - self.batch_end_count = 0 - - def on_batch_begin(self, *args, **kwargs): - self.batch_begin_count += 1 - - def on_batch_end(self, *args, **kwargs): - self.batch_end_count += 1 - - -class TestTrainingWithDataset(test_combinations.TestCase): - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_calling_model_on_same_dataset(self): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - optimizer = "rmsprop" - loss = "mse" - metrics = ["mae"] - model.compile( - optimizer, - loss, - metrics=metrics, - run_eagerly=test_utils.should_run_eagerly(), - ) - - inputs = np.zeros((10, 3), np.float32) - targets = np.zeros((10, 4), np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - - # Call fit with validation data - model.fit( - dataset, - epochs=1, - steps_per_epoch=2, - verbose=0, - validation_data=dataset, - validation_steps=2, - ) - model.fit( - dataset, - epochs=1, - steps_per_epoch=2, - verbose=0, - validation_data=dataset, - validation_steps=2, - ) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_training_and_eval_methods_on_dataset(self): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - optimizer = "rmsprop" - loss = "mse" - metrics = ["mae", metrics_module.CategoricalAccuracy()] - model.compile( - optimizer, - loss, - metrics=metrics, - run_eagerly=test_utils.should_run_eagerly(), - ) - - inputs = np.zeros((10, 3), np.float32) - targets = np.zeros((10, 4), np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat() # Infinite dataset. - dataset = dataset.batch(10) - - model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) - model.evaluate(dataset, steps=2, verbose=1) - model.predict(dataset, steps=2) - - # Test with validation data - model.fit( - dataset, - epochs=1, - steps_per_epoch=2, - verbose=0, - validation_data=dataset, - validation_steps=2, - ) - - # Test with validation split - with self.assertRaises(ValueError): - model.fit( - dataset, - epochs=1, - steps_per_epoch=2, - verbose=0, - validation_split=0.5, - validation_steps=2, - ) - - # Test with sample weight. - sample_weight = np.random.random((10,)) - with self.assertRaisesRegex( - ValueError, r"`sample_weight` argument is not supported .+dataset" - ): - model.fit( - dataset, - epochs=1, - steps_per_epoch=2, - verbose=0, - sample_weight=sample_weight, - ) - - with self.assertRaisesRegex( - ValueError, - "(you should not specify a target)|" - "(`y` argument is not supported when using dataset as input.)", - ): - model.fit(dataset, dataset, epochs=1, steps_per_epoch=2, verbose=0) - - # With an infinite dataset, `steps_per_epoch`/`steps` argument is - # required. - with self.assertRaises(ValueError): - model.fit(dataset, epochs=1, verbose=0) - with self.assertRaises(ValueError): - model.evaluate(dataset, verbose=0) - with self.assertRaises(ValueError): - model.predict(dataset, verbose=0) - - @test_combinations.run_with_all_model_types(exclude_models="sequential") - @test_combinations.run_all_keras_modes - def test_training_and_eval_methods_on_multi_input_output_dataset(self): - input_a = keras.layers.Input(shape=(3,), name="input_1") - input_b = keras.layers.Input(shape=(3,), name="input_2") - dense = keras.layers.Dense(4, name="dense") - dropout = keras.layers.Dropout(0.5, name="dropout") - branch_a = [input_a, dense] - branch_b = [input_b, dense, dropout] - - model = test_utils.get_multi_io_model(branch_a, branch_b) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - - input_a_np = np.random.random((10, 3)).astype(dtype=np.float32) - input_b_np = np.random.random((10, 3)).astype(dtype=np.float32) - output_d_np = np.random.random((10, 4)).astype(dtype=np.float32) - output_e_np = np.random.random((10, 4)).astype(dtype=np.float32) - - # Test with tuples - dataset_tuple = tf.data.Dataset.from_tensor_slices( - ((input_a_np, input_b_np), (output_d_np, output_e_np)) - ) - dataset_tuple = dataset_tuple.repeat(100) - dataset_tuple = dataset_tuple.batch(10) - - model.fit(dataset_tuple, epochs=1, steps_per_epoch=2, verbose=1) - model.evaluate(dataset_tuple, steps=2, verbose=1) - - # Test with dict - input_dict = {"input_1": input_a_np, "input_2": input_b_np} - if test_utils.get_model_type() == "subclass": - output_dict = {"output_1": output_d_np, "output_2": output_e_np} - else: - output_dict = {"dense": output_d_np, "dropout": output_e_np} - - dataset_dict = tf.data.Dataset.from_tensor_slices( - (input_dict, output_dict) - ) - dataset_dict = dataset_dict.repeat(100) - dataset_dict = dataset_dict.batch(10) - - model.fit(dataset_dict, epochs=1, steps_per_epoch=2, verbose=1) - model.evaluate(dataset_dict, steps=2, verbose=1) - - predict_dataset_dict = tf.data.Dataset.from_tensor_slices(input_dict) - predict_dataset_dict = predict_dataset_dict.repeat(100) - predict_dataset_dict = predict_dataset_dict.batch(10) - model.predict(predict_dataset_dict, steps=1) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_dataset_with_sample_weights(self): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - optimizer = "rmsprop" - loss = "mse" - metrics = ["mae", metrics_module.CategoricalAccuracy()] - model.compile( - optimizer, - loss, - metrics=metrics, - run_eagerly=test_utils.should_run_eagerly(), - ) - - inputs = np.zeros((10, 3), np.float32) - targets = np.zeros((10, 4), np.float32) - sample_weights = np.ones((10), np.float32) - dataset = tf.data.Dataset.from_tensor_slices( - (inputs, targets, sample_weights) - ) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - - model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) - model.evaluate(dataset, steps=2, verbose=1) - model.predict(dataset, steps=2) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_dataset_with_sample_weights_correctness(self): - x = keras.layers.Input(shape=(1,), name="input") - y = keras.layers.Dense( - 1, kernel_initializer="ones", bias_initializer="zeros", name="dense" - )(x) - model = keras.Model(x, y) - optimizer = "rmsprop" - loss = "mse" - model.compile(optimizer, loss) - inputs = np.array([[0], [1], [2], [3]], np.float32) - targets = np.array([[2], [4], [6], [8]], np.float32) - sample_weights = np.array([0.25, 0.5, 0.75, 1], np.float32) - ds = tf.data.Dataset.from_tensor_slices( - (inputs, targets, sample_weights) - ).batch(2) - result = model.evaluate(ds, verbose=1) - # The per sample loss is multiplied by the corresponding sample weight. - # The average of these weighted losses is the return value of the - # `evaluate` call. For example, in the test above the average weighted - # loss is calculated in the following manner: - # ((2-0)^2) * 0.25 + ((4-1)^2) * 0.5 + ((6-2)^2 * 0.75) + ((8-3)^2 * 1) - # equals 42.5 / 4 = 10.625 - self.assertEqual(result, 10.625) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_dataset_with_sparse_labels(self): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - optimizer = "rmsprop" - model.compile( - optimizer, - loss="sparse_categorical_crossentropy", - run_eagerly=test_utils.should_run_eagerly(), - ) - - inputs = np.zeros((10, 3), dtype=np.float32) - targets = np.random.randint(0, 4, size=10, dtype=np.int32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - - model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) - - @test_combinations.run_all_keras_modes - def test_dataset_fit_correctness(self): - class SumLayer(keras.layers.Layer): - def build(self, _): - self.w = self.add_weight("w", ()) - - def call(self, inputs): - return ( - keras.backend.sum(inputs, axis=1, keepdims=True) - + self.w * 0 - ) - - model = keras.Sequential([SumLayer(input_shape=(2,))]) - model.compile( - "rmsprop", loss="mae", run_eagerly=test_utils.should_run_eagerly() - ) - - inputs = np.zeros((40, 2), dtype=np.float32) - inputs[10:20, :] = 2 - inputs[20:30, :] = 1 - inputs[30:, :] = 4 - targets = np.zeros((40, 1), dtype=np.float32) - - # Test correctness with `steps_per_epoch`. - train_dataset = tf.data.Dataset.from_tensor_slices( - (inputs, targets) - ).batch(10) - val_dataset = tf.data.Dataset.from_tensor_slices( - (inputs, targets) - ).batch(10) - history = model.fit( - train_dataset, - epochs=2, - steps_per_epoch=2, - verbose=1, - validation_data=val_dataset, - validation_steps=2, - ) - self.assertAllClose( - history.history["loss"], - [inputs[:20].sum() / 20, inputs[20:].sum() / 20], - ) - # The validation dataset will be reset at the end of each validation - # run. - self.assertAllClose( - history.history["val_loss"], - [inputs[:20].sum() / 20, inputs[:20].sum() / 20], - ) - - # Test correctness with dataset reset. - train_dataset = tf.data.Dataset.from_tensor_slices( - (inputs, targets) - ).batch(10) - val_dataset = tf.data.Dataset.from_tensor_slices( - (inputs, targets) - ).batch(10) - history = model.fit( - train_dataset, epochs=2, verbose=1, validation_data=val_dataset - ) - self.assertAllClose( - history.history["loss"], [inputs.sum() / 40, inputs.sum() / 40] - ) - self.assertAllClose( - history.history["val_loss"], [inputs.sum() / 40, inputs.sum() / 40] - ) - - def test_dataset_input_shape_validation(self): - with tf.compat.v1.get_default_graph().as_default(), self.cached_session(): # noqa: E501 - model = test_utils.get_small_functional_mlp(1, 4, input_dim=3) - model.compile(optimizer="rmsprop", loss="mse") - - # User forgets to batch the dataset - inputs = np.zeros((10, 3)) - targets = np.zeros((10, 4)) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat(100) - - with self.assertRaisesRegex( - ValueError, - r"expected (.*?) to have shape \(3,\) " - r"but got array with shape \(1,\)", - ): - model.train_on_batch(dataset) - - # Wrong input shape - inputs = np.zeros((10, 5)) - targets = np.zeros((10, 4)) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - - with self.assertRaisesRegex( - ValueError, r"expected (.*?) to have shape \(3,\)" - ): - model.train_on_batch(dataset) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_finite_dataset_known_cardinality_no_steps_arg(self): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - inputs = np.zeros((100, 3), dtype=np.float32) - targets = np.random.randint(0, 4, size=100, dtype=np.int32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.batch(10) - - batch_counter = BatchCounterCallback() - history = model.fit( - dataset, epochs=2, verbose=1, callbacks=[batch_counter] - ) - - self.assertLen(history.history["loss"], 2) - self.assertEqual(batch_counter.batch_end_count, 20) - model.evaluate(dataset) - out = model.predict(dataset) - self.assertEqual(out.shape[0], 100) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_finite_dataset_unknown_cardinality_no_steps_arg(self): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - inputs = np.zeros((100, 3), dtype=np.float32) - targets = np.random.randint(0, 4, size=100, dtype=np.int32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.filter(lambda x, y: True).batch(10) - self.assertEqual( - keras.backend.get_value(tf.data.experimental.cardinality(dataset)), - tf.data.experimental.UNKNOWN_CARDINALITY, - ) - - batch_counter = BatchCounterCallback() - history = model.fit( - dataset, epochs=2, verbose=1, callbacks=[batch_counter] - ) - - self.assertLen(history.history["loss"], 2) - self.assertEqual(batch_counter.batch_end_count, 20) - model.evaluate(dataset) - out = model.predict(dataset) - self.assertEqual(out.shape[0], 100) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_finite_dataset_unknown_cardinality_no_step_with_train_and_val( - self, - ): - class CaptureStdout: - def __enter__(self): - self._stdout = sys.stdout - string_io = io.StringIO() - sys.stdout = string_io - self._stringio = string_io - return self - - def __exit__(self, *args): - self.output = self._stringio.getvalue() - sys.stdout = self._stdout - - model = test_utils.get_small_mlp(1, 4, input_dim=3) - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - inputs = np.zeros((100, 3), dtype=np.float32) - targets = np.random.randint(0, 4, size=100, dtype=np.int32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.filter(lambda x, y: True).batch(10) - self.assertEqual( - keras.backend.get_value(tf.data.experimental.cardinality(dataset)), - tf.data.experimental.UNKNOWN_CARDINALITY, - ) - - batch_counter = BatchCounterCallback() - io_utils.enable_interactive_logging() - with CaptureStdout() as capture: - history = model.fit( - dataset, - epochs=2, - callbacks=[batch_counter], - validation_data=dataset.take(3), - ) - - lines = capture.output.splitlines() - - self.assertIn("10/10", lines[-1]) - - self.assertLen(history.history["loss"], 2) - self.assertEqual(batch_counter.batch_begin_count, 21) - self.assertEqual(batch_counter.batch_end_count, 20) - model.evaluate(dataset) - out = model.predict(dataset) - self.assertEqual(out.shape[0], 100) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_finite_dataset_unknown_cardinality_out_of_data(self): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - inputs = np.zeros((100, 3), dtype=np.float32) - targets = np.random.randint(0, 4, size=100, dtype=np.int32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.filter(lambda x, y: True).batch(10) - self.assertEqual( - keras.backend.get_value(tf.data.experimental.cardinality(dataset)), - tf.data.experimental.UNKNOWN_CARDINALITY, - ) - - batch_counter = BatchCounterCallback() - with tf.compat.v1.test.mock.patch.object( - logging, "warning" - ) as mock_log: - # steps_per_epoch (200) is greater than the dataset size (100). As - # this is unexpected, training will stop and not make it to the - # second epoch. - history = model.fit( - dataset, - epochs=2, - verbose=1, - callbacks=[batch_counter], - steps_per_epoch=200, - ) - self.assertIn( - "ran out of data; interrupting training.", - str(mock_log.call_args), - ) - self.assertIn( - "can generate at least " - "`steps_per_epoch * epochs` batches (in this case, " - "400 batches). You may need to use the repeat() function when " - "building your dataset.", - str(mock_log.call_args), - ) - - self.assertLen(history.history["loss"], 1) - self.assertEqual(batch_counter.batch_end_count, 10) - model.evaluate(dataset) - out = model.predict(dataset) - self.assertEqual(out.shape[0], 100) - - @test_combinations.run_all_keras_modes - def test_with_external_loss(self): - inp = keras.Input(shape=(4,), name="inp1") - out = keras.layers.Dense(2)(inp) - model = keras.Model(inp, out) - model.add_loss(tf.reduce_mean(out)) - model.compile("rmsprop") - x = np.ones((10, 4)) - - # dataset contains only features, no labels. - dataset = tf.data.Dataset.from_tensor_slices(x).repeat(10).batch(10) - model.fit(dataset) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_train_eval_with_steps(self): - # See b/142880049 for more details. - inp = keras.Input(shape=(4,), name="inp1") - out = keras.layers.Dense(2)(inp) - model = keras.Model(inp, out) - model.compile( - "rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly() - ) - - inputs = np.zeros((100, 4), dtype=np.float32) - targets = np.random.randint(0, 2, size=100, dtype=np.int32) - training_ds = ( - tf.data.Dataset.from_tensor_slices((inputs, targets)) - .repeat() - .batch(10) - ) - - # Create eval dataset with generator, so that dataset won't contain the - # overall size metadata. Without eval_steps, we expect to run through - # all the data in this dataset every epoch. - def gen(): - for _ in range(100): - yield ( - np.zeros(4, dtype=np.float32), - np.random.randint(0, 2, size=1, dtype=np.int32), - ) - - eval_ds = tf.data.Dataset.from_generator( - generator=gen, - output_types=("float64", "int32"), - output_shapes=([4], [1]), - ).batch(100) - batch_counter = BatchCounterCallback() - - model.fit( - training_ds, - steps_per_epoch=10, - epochs=10, - validation_data=eval_ds, - callbacks=[batch_counter], - ) - - # Expect 10 batch from training per epoch. - self.assertEqual(batch_counter.batch_end_count, 100) - - -class TestMetricsWithDatasets(test_combinations.TestCase): - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_metrics_correctness_with_dataset(self): - layers = [ - keras.layers.Dense( - 8, activation="relu", input_dim=4, kernel_initializer="ones" - ), - keras.layers.Dense( - 1, activation="sigmoid", kernel_initializer="ones" - ), - ] - - model = test_utils.get_model_from_layers(layers, (4,)) - - model.compile( - loss="binary_crossentropy", - metrics=["accuracy", metrics_module.BinaryAccuracy()], - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - - np.random.seed(123) - x = np.random.randint(10, size=(100, 4)).astype(np.float32) - y = np.random.randint(2, size=(100, 1)).astype(np.float32) - dataset = tf.data.Dataset.from_tensor_slices((x, y)) - dataset = dataset.batch(10) - outs = model.evaluate(dataset, steps=10) - self.assertEqual(np.around(outs[1], decimals=1), 0.5) - self.assertEqual(np.around(outs[2], decimals=1), 0.5) - - y = np.zeros((100, 1), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((x, y)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - outs = model.evaluate(dataset, steps=10) - self.assertEqual(outs[1], 0.0) - self.assertEqual(outs[2], 0.0) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/training_distributed_v1.py b/keras/engine/training_distributed_v1.py deleted file mode 100644 index dc600160d65..00000000000 --- a/keras/engine/training_distributed_v1.py +++ /dev/null @@ -1,923 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Part of the Keras training engine related to distributed training.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import callbacks as cbks -from keras.distribute import distribute_coordinator_utils as dc -from keras.distribute import distributed_training_utils_v1 as dist_utils -from keras.engine import partial_batch_padding_handler as padding_util -from keras.engine import training_arrays_v1 -from keras.engine import training_utils_v1 -from keras.utils.generic_utils import Progbar -from keras.utils.mode_keys import ModeKeys - -# isort: off -from tensorflow.python.distribute import input_lib -from tensorflow.python.platform import tf_logging as logging - - -def _per_replica_execution_function(model, mode): - exec_func = model._make_execution_function(mode) - return ( - exec_func.inputs, - exec_func.outputs, - exec_func.updates_op, - exec_func.session_kwargs, - ) - - -def _build_model(strategy, model, mode, inputs, targets=None): - if model._compile_distribution: - dist_utils.clone_model_on_replicas( - model, strategy, mode, inputs=inputs, targets=targets - ) - else: - dist_utils._build_distributed_network( - model, strategy, mode, inputs, targets - ) - - -def _make_train_step_fn(model, mode, strategy, output_labels): - """Create step fn. - - Args: - model: a Keras Model instance. - mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. - strategy: a `tf.distribute.Strategy` instance. - output_labels: the output labels for the step function. - - Returns: - A step function to run by `tf.distribute.Strategy`. - """ - - def _step_fn(ctx, inputs): - """A step fn that returns update ops.""" - if isinstance(inputs, (tuple, list)) and len(inputs) == 2: - inputs, targets = inputs - else: - targets = None - - # When input feature is a dictionary of tensors, dictionary is - # flattended to an array and passed as a model input. This results in - # input mismatch when model input layer names are not sorted in - # alphabetical order as `nest.flatten()`sorts dictionary elements by - # keys. As so, transform input tensors into an array and order it along - # `model._feed_input_names`. - if isinstance(inputs, dict): - inputs = [ - inputs[input_name] for input_name in model._feed_input_names - ] - - _build_model(strategy, model, mode, inputs, targets) - - ( - grouped_inputs, - grouped_outputs, - grouped_updates, - grouped_session_args, - ) = strategy.extended.call_for_each_replica( - _per_replica_execution_function, - args=(dist_utils.get_distributed_model(model, mode), mode), - ) - ( - all_inputs, - all_outputs, - all_updates, - all_session_args, - ) = dist_utils.unwrap_values( - strategy, - grouped_inputs, - grouped_outputs, - grouped_updates, - grouped_session_args, - ) - combined_fn = backend.function( - all_inputs, - all_outputs, - updates=all_updates, - name="distributed_" + str(mode) + "_function", - **all_session_args - ) - - for label, output in zip(output_labels, combined_fn.outputs): - if label == "loss": - reduce_op = tf.distribute.ReduceOp.SUM - else: - # We reduce all other metrics using mean for now. This is - # temporary workaround until new metrics are in place. - reduce_op = tf.distribute.ReduceOp.MEAN - ctx.set_last_step_output(label, output, reduce_op) - - # TODO(priyag, sourabhbajaj): Ignoring these things from the - # combined_fn: feed_dict, session kwargs, run options, run_metadata for - # now. These should be handled appropriately - return combined_fn.updates_op - - return _step_fn - - -def experimental_tpu_fit_loop( - model, - dataset, - epochs=100, - verbose=1, - callbacks=None, - initial_epoch=0, - steps_per_epoch=None, - val_dataset=None, - validation_steps=None, - validation_freq=1, -): - """Fit loop for training with TPU tf.distribute.Strategy. - - Args: - model: Keras Model instance. - dataset: Dataset that returns inputs and targets - epochs: Number of times to iterate over the data - verbose: Integer, Verbosity mode, 0, 1 or 2 - callbacks: List of callbacks to be called during training - initial_epoch: Epoch at which to start training - (useful for resuming a previous training run) - steps_per_epoch: Total number of steps (batches of samples) - before declaring one epoch finished and starting the - next epoch. Ignored with the default value of `None`. - val_dataset: Dataset for validation data. - validation_steps: Number of steps to run validation for - (only if doing validation from data tensors). - Ignored with the default value of `None`. - validation_freq: Only relevant if validation data is provided. Integer - or `collections.abc.Container` instance (e.g. list, tuple, etc.). If - an integer, specifies how many training epochs to run before a new - validation run is performed, e.g. `validation_freq=2` runs - validation every 2 epochs. If a Container, specifies the epochs on - which to run validation, e.g. `validation_freq=[1, 2, 10]` runs - validation at the end of the 1st, 2nd, and 10th epochs. - - Returns: - Returns `None`. - - Raises: - ValueError: in case of invalid arguments. - """ - mode = ModeKeys.TRAIN - - current_strategy = model._distribution_strategy - iteration_value = min( - steps_per_epoch, current_strategy.extended.steps_per_run - ) - steps_per_run = backend.variable( - value=iteration_value, dtype="int32", name="steps_per_run" - ) - - # TODO(fchollet): add support for `steps_per_epoch=None` in TPU loops. - iterator = dist_utils.get_iterator(dataset, current_strategy) - - scope = dist_utils.distributed_scope( - strategy=current_strategy, learning_phase=1 - ) - scope.__enter__() - - out_labels = model.metrics_names or [] - - step_fn = _make_train_step_fn( - model, ModeKeys.TRAIN, current_strategy, out_labels - ) - - # Add initial dummy values for loss and other metric tensors. - initial_loop_values = {} - initial_loop_values["loss"] = tf.constant(1e7) - for m in model._get_training_eval_metrics(): - tensor = m.result() - initial_loop_values[m.name] = tf.zeros(tensor.shape, tensor.dtype) - - ctx = current_strategy.extended.experimental_run_steps_on_iterator( - step_fn, - iterator, - iterations=steps_per_run, - initial_loop_values=initial_loop_values, - ) - train_op = ctx.run_op - output_tensors = ctx.last_step_outputs - - do_validation = bool(validation_steps) - - if model._compile_distribution: - dist_utils._copy_weights_to_distributed_model(model, mode) - - callbacks = cbks.configure_callbacks( - callbacks, - model, - do_validation=do_validation, - epochs=epochs, - steps_per_epoch=steps_per_epoch, - verbose=verbose, - count_mode="steps", - mode=mode, - ) - - # Calculate the steps each time on the device. - steps_to_run = [current_strategy.extended.steps_per_run] * ( - steps_per_epoch // current_strategy.extended.steps_per_run - ) - if steps_per_epoch % current_strategy.extended.steps_per_run: - steps_to_run.append( - steps_per_epoch % current_strategy.extended.steps_per_run - ) - target_steps = len(steps_to_run) - - callbacks._call_begin_hook(mode) - - initial_epoch = model._maybe_load_initial_epoch_from_ckpt( - initial_epoch, mode - ) - - for epoch in range(initial_epoch, epochs): - dist_utils._reset_metrics(model) - callbacks.on_epoch_begin(epoch) - epoch_logs = {} - step_index = 0 - prev_step_count = None - current_step = 0 - while current_step < target_steps: - step_count = steps_to_run[current_step] - batch_logs = { - "batch": step_index, - "size": 1, - "num_steps": step_count, - } - callbacks._call_batch_hook(mode, "begin", step_index, batch_logs) - if prev_step_count is None or step_count != prev_step_count: - backend.get_session().run(steps_per_run.assign(step_count)) - prev_step_count = step_count - try: - _, outputs = backend.batch_get_value([train_op, output_tensors]) - except tf.errors.OutOfRangeError: - logging.warning( - "Your dataset iterator ran out of data; " - "interrupting training. Make sure that your dataset " - "can generate at least `steps_per_epoch * epochs` " - "batches (in this case, %d batches)." - % steps_per_epoch - * epochs - ) - break - - batch_logs.update(outputs) - callbacks._call_batch_hook(mode, "end", step_index, batch_logs) - step_index = step_index + step_count - current_step += 1 - - if callbacks.model.stop_training: - break - - if do_validation and training_utils_v1.should_run_validation( - validation_freq, epoch - ): - logging.info("Running validation at fit epoch: %s", epoch) - - if model._compile_distribution: - # Since we create a new clone from the original model we need to - # copy the weights back to the original model before we can run - # validation. - dist_utils._copy_weights_to_original_model( - model, ModeKeys.TRAIN - ) - - val_outs = experimental_tpu_test_loop( - model, - val_dataset, - steps=validation_steps, - verbose=verbose, - callbacks=callbacks, - ) - if not isinstance(val_outs, list): - val_outs = [val_outs] - # Same labels assumed. - for label, val_out in zip(out_labels, val_outs): - epoch_logs["val_" + label] = val_out - - callbacks.on_epoch_end(epoch, epoch_logs) - if callbacks.model.stop_training: - break - model._successful_loop_finish = True - callbacks._call_end_hook(mode) - - if model._compile_distribution: - # Copy the weights back from the replicated model to the original model. - dist_utils._copy_weights_to_original_model(model, ModeKeys.TRAIN) - scope.__exit__(None, None, None) - return model.history - - -def experimental_tpu_test_loop( - model, dataset, verbose=0, steps=None, callbacks=None -): - """Test loop for evaluating with TPU tf.distribute.Strategy. - - Args: - model: Keras Model instance. - dataset: Dataset for input data. - verbose: Integer, Verbosity mode 0 or 1. - steps: Total number of steps (batches of samples) - before declaring predictions finished. - Ignored with the default value of `None`. - callbacks: List of callbacks to be called during training - - Returns: - Scalar loss (if the model has a single output and no metrics) - or list of scalars (if the model has multiple outputs - and/or metrics). The attribute `model.metrics_names` will give you - the display labels for the outputs. - """ - mode = ModeKeys.TEST - current_strategy = model._distribution_strategy - iterator = dist_utils.get_iterator(dataset, current_strategy) - - scope = dist_utils.distributed_scope( - strategy=current_strategy, learning_phase=0 - ) - scope.__enter__() - - out_labels = model.metrics_names - - def _test_step_fn(inputs): - """A fn that returns output of single test step.""" - if isinstance(inputs, (tuple, list)) and len(inputs) == 2: - inputs, targets = inputs - else: - targets = None - - ( - tf.distribute.get_replica_context().merge_call( - _build_model, args=(model, mode, inputs, targets) - ) - ) - - (_, outputs, updates, _) = _per_replica_execution_function( - dist_utils.get_distributed_model(model, mode), mode - ) - with tf.control_dependencies([updates]): - return [tf.identity(out) for out in outputs] - - test_input_data = iterator.get_next() - per_replica_outputs = current_strategy.run( - _test_step_fn, args=(test_input_data,) - ) - output_tensors = {} - for label, output in zip(out_labels, per_replica_outputs): - if label == "loss": - reduce_op = tf.distribute.ReduceOp.SUM - else: - # We reduce all other metrics using mean for now. This is temporary - # workaround until new metrics are in place. - reduce_op = tf.distribute.ReduceOp.MEAN - output_tensors[label] = current_strategy.reduce( - reduce_op, output, axis=None - ) - test_op = tf.group(list(output_tensors.values())) - - if verbose >= 1: - progbar = Progbar(target=steps) - - if model._compile_distribution: - dist_utils._copy_weights_to_distributed_model(model, mode) - - dist_utils._reset_metrics(model) - - callbacks = cbks.configure_callbacks( - callbacks, - model, - do_validation=False, - epochs=1, - steps_per_epoch=steps, - verbose=verbose, - count_mode="steps", - mode=ModeKeys.TEST, - ) - callbacks._call_begin_hook(mode) - - outs = [0.0] * len(model.metrics_names) - if steps is not None: - target_steps = steps - else: - raise ValueError( - "Number of steps could not be inferred from the data, " - "please pass the steps argument." - ) - - current_step = 0 - while current_step < target_steps: - batch_logs = {"batch": current_step, "size": 1} - callbacks._call_batch_hook(mode, "begin", current_step, batch_logs) - try: - _, batch_outs = backend.batch_get_value([test_op, output_tensors]) - except tf.errors.OutOfRangeError: - warning_msg = ( - "Make sure that your dataset can generate at least " - "`steps` batches (in this case, {} batches).".format(steps) - ) - - logging.warning( - "Your dataset iterator ran out of data; " - "interrupting evaluation. " + warning_msg - ) - target_steps = current_step - break - for i, label in enumerate(model.metrics_names): - if i == 0: - # Loss is stateless metrics. - outs[i] += batch_outs[label] - else: - # For all stateful metrics, the aggregation is handled by - # mirrored vars. - outs[i] = batch_outs[label] - - batch_logs = callbacks.make_logs(model, batch_logs, outs, mode) - callbacks._call_batch_hook(mode, "end", current_step, batch_logs) - if verbose == 1: - progbar.update(current_step + 1) - current_step += 1 - - if verbose >= 1: - # Progress bar finishes at the end. - progbar.update(target_steps) - callbacks._call_end_hook(mode) - - scope.__exit__(None, None, None) - if len(outs) > 0: - outs[0] /= target_steps - - if len(outs) == 1: - return outs[0] - return outs - - -def experimental_tpu_predict_loop( - model, dataset, verbose=0, steps=None, callbacks=None -): - """Predict loop for predicting with TPU tf.distribute.Strategy. - - Args: - model: Keras Model instance. - dataset: Dataset for input data. - verbose: Integer, Verbosity mode 0 or 1. - steps: Total number of steps (batches of samples) - before declaring `_predict_loop` finished. - Ignored with the default value of `None`. - callbacks: List of callbacks to be called during training - - Returns: - Array of predictions (if the model has a single output) - or list of arrays of predictions - (if the model has multiple outputs). - """ - mode = ModeKeys.PREDICT - dataset_fully_shaped = dist_utils.is_dataset_shape_fully_defined(dataset) - padding_handler = None - if not dataset_fully_shaped: - # TODO(hongjunchoi): Investigate whether operations from - # PartialBatchPaddingHandler are unnecessarily pruned out - # during graph optimization. - padding_handler = padding_util.PartialBatchPaddingHandler( - model._feed_output_shapes - ) - batch_size, _, prefetch_buffer = input_lib._get_dataset_attributes( - dataset - ) - padding_handler.padded_batch_size = batch_size - padding_handler.padding_mask = dataset.reduce( - padding_handler.padding_mask, padding_handler.update_mask - ) - - dataset = dataset.map(padding_handler.pad_batch) - dataset = dataset.unbatch() - # Upon this point, it is guaranteed that the dataset does not - # have partial batches. Thus, we set `drop_remainder=True` to - # get static shape information about the elements in the dataset. - dataset = dataset.batch(batch_size, drop_remainder=True) - - if prefetch_buffer is not None: - dataset = dataset.prefetch(prefetch_buffer) - - current_strategy = model._distribution_strategy - iterator = dist_utils.get_iterator(dataset, current_strategy) - - scope = dist_utils.distributed_scope( - strategy=current_strategy, learning_phase=0 - ) - scope.__enter__() - - def _predict_step_fn(inputs): - """A fn that returns output of single prediction step.""" - - ( - tf.distribute.get_replica_context().merge_call( - _build_model, args=(model, mode, inputs) - ) - ) - - (_, outputs, updates, _) = _per_replica_execution_function( - dist_utils.get_distributed_model(model, mode), mode - ) - - with tf.control_dependencies([updates]): - return [tf.identity(out) for out in outputs] - - # TODO(hongjunchoi): When numpy array is passed as an input to `predict()` - # use numpy arrays directly to avoid cumulating unnecessary input pipeline - # ops. - predict_input_data = iterator.get_next() - per_replica_outputs = current_strategy.run( - _predict_step_fn, args=(predict_input_data,) - ) - output_tensors = dist_utils.flatten_per_replica_values( - current_strategy, per_replica_outputs - ) - - if verbose >= 1: - progbar = Progbar(target=steps) - - if model._compile_distribution: - dist_utils._copy_weights_to_distributed_model(model, mode) - - dist_utils._reset_metrics(model) - - callbacks = cbks.configure_callbacks( - callbacks, - model, - do_validation=False, - epochs=1, - steps_per_epoch=steps, - verbose=verbose, - count_mode="steps", - mode=mode, - ) - callbacks._call_begin_hook(mode) - - # Since we do not know how many samples we will see, we cannot pre-allocate - # the returned Numpy arrays. Instead, we store one array per batch seen - # and concatenate them upon returning. - num_model_outputs = len(model.output_names) - unconcatenated_outs = [[] for _ in range(num_model_outputs)] - if steps is not None: - target_steps = steps - else: - raise ValueError( - "Number of steps could not be inferred from the data, " - "please pass the steps argument." - ) - - current_step = 0 - while current_step < target_steps: - batch_logs = {"batch": current_step, "size": 1} - callbacks._call_batch_hook(mode, "begin", current_step, batch_logs) - try: - predict_ops = tf.group(output_tensors) - _, batch_outs = backend.batch_get_value( - [predict_ops, output_tensors] - ) - - except tf.errors.OutOfRangeError: - warning_msg = ( - "Make sure that your dataset can generate at least " - "`steps` batches (in this case, {} batches).".format(steps) - ) - - logging.warning( - "Your dataset iterator ran out of data; " - "interrupting evaluation. " + warning_msg - ) - break - - # TODO(priyag): maybe need to unwrap the outputs first for - # MirroredStrategy. - for i in range(num_model_outputs): - output_start_index = i * current_strategy.num_replicas_in_sync - output_end_index = ( - output_start_index + current_strategy.num_replicas_in_sync - ) - single_model_output = batch_outs[ - output_start_index:output_end_index - ] - unconcatenated_outs[i].extend(single_model_output) - - batch_logs = callbacks.make_logs(model, batch_logs, batch_outs, mode) - callbacks._call_batch_hook(mode, "end", current_step, batch_logs) - if verbose == 1: - progbar.update(current_step + 1) - current_step += 1 - - if verbose >= 1: - # Progress bar finishes at the end. - progbar.update(current_step) - - callbacks._call_end_hook(mode) - - scope.__exit__(None, None, None) - - if len(unconcatenated_outs) == 1: - prediction_result = np.concatenate(unconcatenated_outs[0], axis=0) - else: - prediction_result = [ - np.concatenate(out, axis=0) for out in unconcatenated_outs - ] - - if padding_handler: - prediction_result = padding_handler.apply_mask(prediction_result) - - return prediction_result - - -class DistributionSingleWorkerTrainingLoop(training_utils_v1.TrainingLoop): - """Training loop for distribution strategy with single worker.""" - - def fit( - self, - model, - x=None, - y=None, - batch_size=None, - epochs=1, - verbose=1, - callbacks=None, - validation_split=0.0, - validation_data=None, - shuffle=True, - class_weight=None, - sample_weight=None, - initial_epoch=0, - steps_per_epoch=None, - validation_steps=None, - validation_freq=1, - **kwargs - ): - """Fit loop for Distribution Strategies.""" - dist_utils.validate_callbacks( - input_callbacks=callbacks, optimizer=model.optimizer - ) - dist_utils.validate_inputs(x, y) - - batch_size, steps_per_epoch = dist_utils.process_batch_and_step_size( - model._distribution_strategy, - x, - batch_size, - steps_per_epoch, - ModeKeys.TRAIN, - validation_split=validation_split, - ) - batch_size = model._validate_or_infer_batch_size( - batch_size, steps_per_epoch, x - ) - dataset = model._distribution_standardize_user_data( - x, - y, - sample_weight=sample_weight, - class_weight=class_weight, - batch_size=batch_size, - validation_split=validation_split, - shuffle=shuffle, - epochs=epochs, - ) - if not dist_utils.is_distributing_by_cloning(model): - with model._distribution_strategy.scope(): - (dataset, _, _) = model._standardize_user_data( - dataset, - sample_weight=sample_weight, - class_weight=class_weight, - batch_size=batch_size, - validation_split=validation_split, - shuffle=shuffle, - ) - - val_dataset = None - if validation_data: - ( - val_x, - val_y, - val_sample_weights, - ) = training_utils_v1.unpack_validation_data(validation_data) - dist_utils.validate_inputs(val_x, val_y) - _, validation_steps = dist_utils.process_batch_and_step_size( - model._distribution_strategy, - val_x, - batch_size, - validation_steps, - ModeKeys.TEST, - ) - - val_dataset = model._distribution_standardize_user_data( - val_x, - val_y, - sample_weight=val_sample_weights, - class_weight=None, - batch_size=batch_size, - validation_split=validation_split, - shuffle=shuffle, - allow_partial_batch=True, - ) - elif validation_split: - raise ValueError( - "validation_split argument is not supported with " - "distribution strategies." - ) - - if backend.is_tpu_strategy(model._distribution_strategy): - steps_per_epoch = training_utils_v1.infer_steps_for_dataset( - model, - dataset, - steps_per_epoch, - epochs, - steps_name="steps_per_epoch", - ) - if steps_per_epoch is None: - raise ValueError( - "Number of steps could not be inferred from the data, " - "please pass the steps_per_epoch argument." - ) - - if not tf.executing_eagerly(): - # Run TPU training in a custom loop in graph mode. - return experimental_tpu_fit_loop( - model, - dataset, - epochs=epochs, - verbose=verbose, - callbacks=callbacks, - val_dataset=val_dataset, - initial_epoch=initial_epoch, - steps_per_epoch=steps_per_epoch, - validation_steps=validation_steps, - validation_freq=validation_freq, - ) - - return training_arrays_v1.fit_loop( - model, - dataset, - batch_size=batch_size, - epochs=epochs, - verbose=verbose, - callbacks=callbacks, - val_inputs=val_dataset, - shuffle=shuffle, - initial_epoch=initial_epoch, - steps_per_epoch=steps_per_epoch, - validation_steps=validation_steps, - validation_freq=validation_freq, - steps_name="steps_per_epoch", - ) - - def evaluate( - self, - model, - x=None, - y=None, - batch_size=None, - verbose=1, - sample_weight=None, - steps=None, - callbacks=None, - **kwargs - ): - """Evaluate loop for Distribution Strategies.""" - dist_utils.validate_inputs(x, y) - batch_size, steps = dist_utils.process_batch_and_step_size( - model._distribution_strategy, x, batch_size, steps, ModeKeys.TEST - ) - batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) - dataset = model._distribution_standardize_user_data( - x, - y, - sample_weight=sample_weight, - batch_size=batch_size, - allow_partial_batch=True, - ) - - if backend.is_tpu_strategy(model._distribution_strategy): - steps = training_utils_v1.infer_steps_for_dataset( - model, dataset, steps, steps_name="steps" - ) - if steps is None: - raise ValueError( - "Number of steps could not be inferred from the data, " - "please pass the steps argument." - ) - - if not tf.executing_eagerly(): - # Run TPU evaluation in a custom loop in graph mode. - return experimental_tpu_test_loop( - model, - dataset, - verbose=verbose, - steps=steps, - callbacks=callbacks, - ) - - return training_arrays_v1.test_loop( - model, - inputs=dataset, - batch_size=batch_size, - verbose=verbose, - steps=steps, - callbacks=callbacks, - ) - - def predict( - self, - model, - x, - batch_size=None, - verbose=0, - steps=None, - callbacks=None, - **kwargs - ): - """Predict loop for Distribution Strategies.""" - dist_utils.validate_inputs(x=x, y=None) - batch_size, steps = dist_utils.process_batch_and_step_size( - model._distribution_strategy, x, batch_size, steps, ModeKeys.PREDICT - ) - batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) - dataset = model._distribution_standardize_user_data( - x, batch_size=batch_size, allow_partial_batch=True - ) - if backend.is_tpu_strategy(model._distribution_strategy): - steps = training_utils_v1.infer_steps_for_dataset( - model, dataset, steps, steps_name="steps" - ) - if steps is None: - raise ValueError( - "Number of steps could not be inferred from the data, " - "please pass the steps argument." - ) - if not tf.executing_eagerly(): - return experimental_tpu_predict_loop( - model, - dataset, - verbose=verbose, - steps=steps, - callbacks=callbacks, - ) - return training_arrays_v1.predict_loop( - model, - dataset, - batch_size=batch_size, - verbose=verbose, - steps=steps, - callbacks=callbacks, - ) - - -def _train_with_multi_worker(method): - """Decorator handles multi worker training with distribution strategy.""" - - def wrapper(model, **kwargs): - def _worker_fn(_): - callbacks = kwargs.pop("callbacks", None) - filtered_callbacks = dist_utils.filter_distributed_callbacks( - callbacks, model - ) - kwargs["callbacks"] = filtered_callbacks - return method(model, **kwargs) - - return dc.run_distribute_coordinator( - _worker_fn, model._distribution_strategy - ) - - return wrapper - - -class DistributionMultiWorkerTrainingLoop(training_utils_v1.TrainingLoop): - """Training loop for distribution strategy with multiple worker.""" - - def __init__(self, single_worker_loop): - self._single_worker_loop = single_worker_loop - - def fit(self, *args, **kwargs): - return _train_with_multi_worker(self._single_worker_loop.fit)( - *args, **kwargs - ) - - def evaluate(self, *args, **kwargs): - return _train_with_multi_worker(self._single_worker_loop.evaluate)( - *args, **kwargs - ) - - def predict(self, *args, **kwargs): - # Currently predict is still using the single worker implementation. - return self._single_worker_loop.predict(*args, **kwargs) diff --git a/keras/engine/training_eager_test.py b/keras/engine/training_eager_test.py deleted file mode 100644 index 317ca1f790d..00000000000 --- a/keras/engine/training_eager_test.py +++ /dev/null @@ -1,417 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for training routines.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import metrics as metrics_module -from keras.optimizers.legacy import rmsprop -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class TrainingTest(test_combinations.TestCase): - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_dynamic_model_has_trainable_weights(self): - if not tf.executing_eagerly(): - # Only test Eager modes, as Graph mode is not relevant for dynamic - # models. - return - - class DynamicModel(keras.Model): - def __init__(self): - super().__init__(dynamic=True) - self.dense = keras.layers.Dense( - 1, kernel_initializer="zeros", bias_initializer="ones" - ) - - def call(self, inputs): - return self.dense(inputs) - - model = DynamicModel() - model.compile("rmsprop", "mae", run_eagerly=True) - hist = model.fit(np.zeros((1, 1)), np.zeros((1, 1))) - self.assertEqual(hist.history["loss"][-1], 1) - self.assertEqual(len(model.trainable_weights), 2) - loss = model.train_on_batch(np.zeros((1, 1)), np.zeros((1, 1))) - # The loss must have been updated if the trainable weights are taken - # into account during tracking. - self.assertLess(loss, 1) - - @test_combinations.run_with_all_model_types(exclude_models="sequential") - @test_combinations.run_all_keras_modes - def test_model_methods_with_eager_tensors_multi_io(self): - if not tf.executing_eagerly(): - # Only test V2 Function and V2 Eager modes, as V1 Graph mode with - # symbolic tensors has different requirements. - return - - input_a = keras.layers.Input(shape=(3,), name="input_a") - input_b = keras.layers.Input(shape=(3,), name="input_b") - - dense = keras.layers.Dense(4, name="dense") - dropout = keras.layers.Dropout(0.5, name="dropout") - - model = test_utils.get_multi_io_model( - [input_a, dense], [input_b, dense, dropout] - ) - - optimizer = rmsprop.RMSprop(learning_rate=0.001) - loss = "mse" - loss_weights = [1.0, 0.5] - metrics = ["mae", metrics_module.CategoricalAccuracy()] - model.compile( - optimizer, - loss, - metrics=metrics, - loss_weights=loss_weights, - run_eagerly=test_utils.should_run_eagerly(), - sample_weight_mode=None, - ) - - input_a = tf.zeros(shape=(10, 3)) - input_b = tf.zeros(shape=(10, 3)) - target_a = tf.zeros(shape=(10, 4)) - target_b = tf.zeros(shape=(10, 4)) - - model.fit( - [input_a, input_b], - [target_a, target_b], - epochs=1, - batch_size=5, - verbose=0, - ) - # Test: no shuffle. - model.fit( - [input_a, input_b], - [target_a, target_b], - epochs=1, - batch_size=5, - verbose=0, - shuffle=False, - ) - # Test: validation data. - model.fit( - [input_a, input_b], - [target_a, target_b], - epochs=1, - batch_size=2, - verbose=0, - validation_data=([input_a, input_b], [target_a, target_b]), - ) - model.train_on_batch([input_a, input_b], [target_a, target_b]) - model.predict([input_a, input_b], batch_size=5) - model.evaluate( - [input_a, input_b], [target_a, target_b], batch_size=2, verbose=0 - ) - model.test_on_batch([input_a, input_b], [target_a, target_b]) - - # Test: mix np and tensors. - input_b = np.zeros(shape=(10, 3)).astype("float32") - target_b = np.zeros(shape=(10, 4)).astype("float32") - model.fit( - [input_a, input_b], - [target_a, target_b], - epochs=1, - batch_size=5, - verbose=0, - ) - model.fit( - [input_a, input_b], - [target_a, target_b], - epochs=1, - batch_size=2, - verbose=0, - validation_data=([input_a, input_b], [target_a, target_b]), - ) - model.fit( - [input_a, input_b], - [target_a, target_b], - epochs=1, - batch_size=5, - verbose=0, - shuffle=False, - ) - model.train_on_batch([input_a, input_b], [target_a, target_b]) - model.predict([input_a, input_b], batch_size=5) - model.evaluate( - [input_a, input_b], [target_a, target_b], batch_size=2, verbose=0 - ) - model.test_on_batch([input_a, input_b], [target_a, target_b]) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_model_methods_with_eager_tensors_single_io(self): - if not tf.executing_eagerly(): - # Only test V2 Function and V2 Eager modes, as V1 Graph mode with - # symbolic tensors has different requirements. - return - - model = test_utils.get_small_mlp(10, 4, 3) - - optimizer = rmsprop.RMSprop(learning_rate=0.001) - loss = "mse" - metrics = ["mae", metrics_module.CategoricalAccuracy()] - model.compile( - optimizer, - loss, - metrics=metrics, - run_eagerly=test_utils.should_run_eagerly(), - ) - - inputs = tf.zeros(shape=(10, 3)) - targets = tf.zeros(shape=(10, 4)) - - model.fit(inputs, targets, epochs=1, batch_size=2, verbose=0) - model.fit( - inputs, targets, epochs=1, batch_size=3, verbose=0, shuffle=False - ) - model.fit( - inputs, - targets, - epochs=1, - batch_size=4, - verbose=0, - validation_data=(inputs, targets), - ) - model.evaluate(inputs, targets, batch_size=2, verbose=0) - model.predict(inputs, batch_size=2) - model.train_on_batch(inputs, targets) - model.test_on_batch(inputs, targets) - - @test_combinations.run_with_all_model_types - def test_model_fit_and_validation_with_missing_arg_errors(self): - model = test_utils.get_small_mlp(10, 4, 3) - model.compile( - optimizer=rmsprop.RMSprop(learning_rate=0.001), - loss="mse", - run_eagerly=True, - ) - - x = tf.zeros(shape=(10, 3)) - y = tf.zeros(shape=(10, 4)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)).repeat(10).batch(5) - validation_dataset = ( - tf.data.Dataset.from_tensor_slices((x, y)).repeat().batch(5) - ) # Infinite dataset. - - model.fit(dataset, epochs=1, verbose=0) - - # Step argument is required for infinite datasets. - with self.assertRaises(ValueError): - model.fit( - dataset, - steps_per_epoch=2, - epochs=1, - verbose=0, - validation_data=validation_dataset, - ) - with self.assertRaises(ValueError): - model.fit( - dataset, - steps_per_epoch=2, - epochs=1, - verbose=0, - validation_data=validation_dataset, - ) - - # TODO(b/120931266): Enable test on subclassed models after bug causing an - # extra dimension to be added to predict outputs is fixed. - @test_combinations.run_with_all_model_types(exclude_models="subclass") - def test_generator_methods(self): - model = test_utils.get_small_mlp(10, 4, 3) - optimizer = rmsprop.RMSprop(learning_rate=0.001) - model.compile( - optimizer, - loss="mse", - metrics=["mae", metrics_module.CategoricalAccuracy()], - run_eagerly=True, - ) - - x = np.random.random((10, 3)) - y = np.random.random((10, 4)) - - def numpy_iterator(): - while True: - yield x, y - - model.fit_generator(numpy_iterator(), steps_per_epoch=3, epochs=1) - model.evaluate_generator(numpy_iterator(), steps=3) - - def inference_numpy_iterator(): - while True: - yield x - - out = model.predict_generator(inference_numpy_iterator(), steps=3) - self.assertEqual(out.shape, (30, 4)) - - -class CorrectnessTest(test_combinations.TestCase): - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - [ - ("", dict()), - ("_clipvalue_inf", {"clipvalue": 999999}), - ("_clipnorm_inf", {"clipnorm": 999999}), - ] - ) - def test_loss_correctness(self, optimizer_kwargs): - # Test that training loss is the same in eager and graph - # (by comparing it to a reference value in a deterministic case) - layers = [ - keras.layers.Dense(3, activation="relu", kernel_initializer="ones"), - keras.layers.Dense( - 2, activation="softmax", kernel_initializer="ones" - ), - ] - model = test_utils.get_model_from_layers(layers, input_shape=(4,)) - model.compile( - loss="sparse_categorical_crossentropy", - optimizer=rmsprop.RMSprop(learning_rate=0.001, **optimizer_kwargs), - run_eagerly=test_utils.should_run_eagerly(), - ) - x = np.ones((100, 4)) - np.random.seed(123) - y = np.random.randint(0, 1, size=(100, 1)) - history = model.fit(x, y, epochs=1, batch_size=10) - self.assertAlmostEqual(history.history["loss"][-1], 0.5836, 4) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_loss_correctness_clipvalue_zero(self): - # Test that training loss is the same in eager and graph - # (by comparing it to a reference value in a deterministic case) - # And confirm that setting clipvalue to zero stops all training - layers = [ - keras.layers.Dense(3, activation="relu", kernel_initializer="ones"), - keras.layers.Dense( - 2, activation="softmax", kernel_initializer="ones" - ), - ] - model = test_utils.get_model_from_layers(layers, input_shape=(4,)) - model.compile( - loss="sparse_categorical_crossentropy", - optimizer=rmsprop.RMSprop(learning_rate=0.001, clipvalue=0.0), - run_eagerly=test_utils.should_run_eagerly(), - ) - x = np.ones((100, 4)) - np.random.seed(123) - y = np.random.randint(0, 1, size=(100, 1)) - history = model.fit(x, y, epochs=3, batch_size=10) - self.assertAlmostEqual(history.history["loss"][-3], 0.6931, 4) - self.assertAlmostEqual(history.history["loss"][-2], 0.6931, 4) - self.assertAlmostEqual(history.history["loss"][-1], 0.6931, 4) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_loss_correctness_with_iterator(self): - # Test that training loss is the same in eager and graph - # (by comparing it to a reference value in a deterministic case) - layers = [ - keras.layers.Dense(3, activation="relu", kernel_initializer="ones"), - keras.layers.Dense( - 2, activation="softmax", kernel_initializer="ones" - ), - ] - model = test_utils.get_model_from_layers(layers, input_shape=(4,)) - model.compile( - loss="sparse_categorical_crossentropy", - optimizer=rmsprop.RMSprop(learning_rate=0.001), - run_eagerly=test_utils.should_run_eagerly(), - ) - x = np.ones((100, 4), dtype=np.float32) - np.random.seed(123) - y = np.random.randint(0, 1, size=(100, 1)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - history = model.fit(dataset, epochs=1, steps_per_epoch=10) - self.assertAlmostEqual(history.history["loss"][-1], 0.5836, 4) - - @parameterized.named_parameters( - [ - ("_None", None, 0.0, 4.0), - ("_False", False, 4.0, 4.0), - ("_True", True, 0.0, 0.0), - ] - ) - def test_nested_model_learning_phase( - self, training, expected_training_loss, expected_validation_loss - ): - """Tests learning phase is correctly set in an intermediate layer.""" - - def _make_unregularized_model(): - inputs = keras.Input((4,)) - # Zero out activations when `training=True`. - x = keras.layers.Dropout(1.0 - 1.0 / (1 << 24))(inputs) - x = keras.layers.Dense( - 10, - activation="relu", - trainable=False, - bias_initializer="zeros", - kernel_initializer="ones", - )( - x - ) # Just sum together all the activations. - outputs = keras.layers.Dense(3)(x) - return keras.Model(inputs, outputs) - - def _regularize_model(unregularized_model): - # Regularize the most recent activations of a post-dropout layer. - sample_activations = unregularized_model.get_layer( - index=-2 - ).get_output_at(-1) - regularization_loss = keras.backend.mean(sample_activations) - unregularized_model.add_loss(regularization_loss) - unregularized_model.add_metric( - regularization_loss, - aggregation="mean", - name="regularization_loss", - ) - inputs = keras.Input(unregularized_model.inputs[0].shape[1:]) - logits = unregularized_model(inputs, training=training) - outputs = keras.activations.softmax(logits) - model = keras.Model(inputs, outputs) - return model - - # Make and compile models. - model = _regularize_model(_make_unregularized_model()) - model.compile("sgd", "sparse_categorical_crossentropy") - # Prepare fake data. - x = np.ones((20, 4)).astype(np.float32) - y = np.random.randint(0, 3, size=(20,)).astype(np.int64) - dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(2) - results = model.evaluate(dataset) - evaluation_results = dict(zip(model.metrics_names, results)) - # Rate of dropout depends on the learning phase. - self.assertEqual( - evaluation_results["regularization_loss"], expected_validation_loss - ) - history = model.fit(dataset, epochs=2, validation_data=dataset).history - self.assertAllEqual( - history["regularization_loss"], [expected_training_loss] * 2 - ) - self.assertAllEqual( - history["val_regularization_loss"], [expected_validation_loss] * 2 - ) - - -if __name__ == "__main__": - tf.compat.v1.enable_eager_execution() - tf.test.main() diff --git a/keras/engine/training_eager_v1.py b/keras/engine/training_eager_v1.py deleted file mode 100644 index 427b816f847..00000000000 --- a/keras/engine/training_eager_v1.py +++ /dev/null @@ -1,405 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras training and evaluation routines for eager execution.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import training_utils -from keras.engine import training_utils_v1 -from keras.mixed_precision import loss_scale_optimizer -from keras.utils import losses_utils - -# isort: off -from tensorflow.python.eager.backprop import GradientTape -from tensorflow.python.platform import tf_logging as logging - - -def _eager_loss_fn(outputs, targets, loss_fn, output_name): - with backend.name_scope(output_name + "_loss"): - loss = loss_fn(targets, outputs) - return loss - - -def _eager_metrics_fn(model, outputs, targets, sample_weights=None, masks=None): - """Calculates the metrics for each output of the given model. - - Args: - model: The model on which metrics are being calculated. - outputs: The outputs of the given model. - targets: The predictions or targets of the given model. - sample_weights: Optional list of sample weights for each output. - masks: Optional list of masks for each output. - - Returns: - Returns the metric results for each output of the model. - """ - outputs = tf.nest.flatten(outputs) - targets = tf.nest.flatten(targets) - # Invoke all(weighted and unweighted) metrics. - metric_results = [] - if targets: - # Insert None values corresponding to the targets that need to be - # skipped on the model. - if len(model._targets) != len(targets): - new_targets = [ - None if t is None else targets.pop(0) for t in model._targets - ] - targets = new_targets - - metric_results = model._handle_metrics( - outputs, - targets=targets, - sample_weights=sample_weights, - masks=masks, - return_weighted_and_unweighted_metrics=True, - skip_target_masks=model._prepare_skip_target_masks(), - ) - - # Add metric results from the `add_metric` metrics. - metric_results.extend( - [ - m.result() - for m in model.metrics - if m not in model._compile_metric_functions - ] - ) - return metric_results - - -def _model_loss( - model, - inputs, - targets, - output_loss_metrics=None, - sample_weights=None, - training=False, -): - """Calculates the loss for a given model. - - Args: - model: The model on which metrics are being calculated. - inputs: Either a dictionary of inputs to the model or a list of input - arrays. - targets: List of target arrays. - output_loss_metrics: List of metrics that are used to aggregated output - loss values. - sample_weights: Optional list of sample weight arrays. - training: Whether the model should be run in inference or training mode. - - Returns: - Returns the model output, total loss, loss value calculated using the - specified loss function and masks for each output. The total loss - includes regularization losses and applies masking and sample weighting - to the loss value. - """ - # TODO(psv): Dedup code here with graph mode prepare_total_loss() fn. - # Used to keep track of the total loss value (stateless). - # eg., total_loss = loss_weight_1 * output_1_loss_fn(...) + - # loss_weight_2 * output_2_loss_fn(...) + - # layer losses. - total_loss = 0 - kwargs = {} - if model._expects_training_arg: - kwargs["training"] = training - if len(inputs) == 1 and not isinstance(inputs, dict): - inputs = inputs[0] - - # Allow mixed `NumPy` and `EagerTensor` input here. - if any( - isinstance(input_t, (np.ndarray, float, int)) - for input_t in tf.nest.flatten(inputs) - ): - inputs = tf.nest.map_structure(tf.convert_to_tensor, inputs) - - outs = model(inputs, **kwargs) - outs = tf.nest.flatten(outs) - - if targets: - targets = training_utils_v1.cast_if_floating_dtype_and_mismatch( - targets, outs - ) - # TODO(sallymatson/psv): check if we should do same mismatch fix for weights - if sample_weights: - sample_weights = [ - training_utils_v1.cast_if_floating_dtype(tf.convert_to_tensor(val)) - if val is not None - else None - for val in sample_weights - ] - - masks = [getattr(t, "_keras_mask", None) for t in outs] - targets = tf.nest.flatten(targets) - - # Used to keep track of individual output losses. - output_losses = [] - - with backend.name_scope("loss"): - loss_fns = [ - loss_fn for loss_fn in model.loss_functions if loss_fn is not None - ] - custom_losses = model.losses # Regularization losses - - if not loss_fns and not custom_losses: - if training: - raise ValueError( - "The model cannot be trained " - "because it has no loss to optimize." - ) - else: - raise ValueError( - "The model cannot be evaluated " - "because it has no loss to compute." - ) - - for i, loss_fn in enumerate(loss_fns): - weights = sample_weights[i] if sample_weights else None - mask = masks[i] - with backend.name_scope(model.output_names[i] + "_loss"): - if mask is not None: - mask = tf.cast(mask, outs[i].dtype) - # Update weights with mask. - if weights is None: - weights = mask - else: - # Update dimensions of weights to match with mask if - # possible. - weights = tf.cast(weights, outs[i].dtype) - ( - mask, - _, - weights, - ) = losses_utils.squeeze_or_expand_dimensions( - mask, sample_weight=weights - ) - weights *= mask - - if hasattr(loss_fn, "reduction"): - per_sample_losses = loss_fn.call(targets[i], outs[i]) - weighted_losses = losses_utils.compute_weighted_loss( - per_sample_losses, - sample_weight=weights, - reduction=losses_utils.ReductionV2.NONE, - ) - loss_reduction = loss_fn.reduction - - # `AUTO` loss reduction defaults to `SUM_OVER_BATCH_SIZE` - # for all compile use cases. - if loss_reduction == losses_utils.ReductionV2.AUTO: - loss_reduction = ( - losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE - ) - - # Compute the stateless loss value. - output_loss = losses_utils.reduce_weighted_loss( - weighted_losses, reduction=loss_reduction - ) - else: - # Compute the stateless loss value for a custom loss class. - # Here we assume that the class takes care of loss reduction - # because if this class returns a vector value we cannot - # differentiate between use case where a custom optimizer - # expects a vector loss value vs unreduced per-sample loss - # value. - output_loss = loss_fn( - targets[i], outs[i], sample_weight=weights - ) - loss_reduction = ( - losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE - ) - - # If the number of outputs is 1 then we don't append the loss metric - # associated with each model output. When there are multiple outputs - # associated with a model, each output's loss is calculated and - # returned as part of the loss_metrics. - if len(model.outputs) > 1: - # Keep track of the stateful output loss result. - output_losses.append(output_loss_metrics[i](output_loss)) - - # Scale output loss for distribution. For custom losses we assume - # reduction was mean. - if loss_reduction == losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE: - output_loss = losses_utils.scale_loss_for_distribution( - output_loss - ) - total_loss += model._loss_weights_list[i] * output_loss - - # Add regularization losses - if custom_losses: - total_loss += losses_utils.scale_loss_for_distribution( - tf.add_n(custom_losses) - ) - return outs, total_loss, output_losses, masks - - -def _process_single_batch( - model, - inputs, - targets, - output_loss_metrics=None, - sample_weights=None, - training=False, -): - """Calculate the loss and gradient for one input batch. - - The model weights are updated if training is set to True. - - Args: - model: Model whose loss has to be calculated. - inputs: List of input arrays. - targets: List of target arrays. - output_loss_metrics: List of metrics that are used to aggregated output - loss values. - sample_weights: Optional list of sample weight arrays. - training: The boolean represents if the weights of the model are - updated. 'fit' methods will set this to True while 'evaluate' methods - will set this to False. - - Returns: - output of the model, total loss, the loss and the mask - associated with each output. - - Raises: - ValueError: If the model has no loss to optimize. - """ - with backend.eager_learning_phase_scope( - 1 if training else 0 - ), training_utils.RespectCompiledTrainableState(model): - with GradientTape() as tape: - outs, total_loss, output_losses, masks = _model_loss( - model, - inputs, - targets, - output_loss_metrics=output_loss_metrics, - sample_weights=sample_weights, - training=training, - ) - if isinstance( - model.optimizer, loss_scale_optimizer.LossScaleOptimizer - ): - scaled_total_loss = model.optimizer.get_scaled_loss(total_loss) - else: - scaled_total_loss = total_loss - if training: - trainable_weights = model.trainable_weights - if trainable_weights: - # TODO(tanzheny) b/132690565: Provide mechanism for user to - # override model.train_on_batch. - if hasattr(model, "_backwards"): - model._backwards(tape, scaled_total_loss) - else: - grads = tape.gradient(scaled_total_loss, trainable_weights) - if isinstance( - model.optimizer, loss_scale_optimizer.LossScaleOptimizer - ): - grads = model.optimizer.get_unscaled_gradients(grads) - model.optimizer.apply_gradients( - zip(grads, trainable_weights) - ) - else: - logging.warning( - "The list of trainable weights is empty. Make sure that" - " you are not setting model.trainable to False before " - "compiling the model." - ) - return outs, total_loss, output_losses, masks - - -def train_on_batch( - model, inputs, targets, sample_weights=None, output_loss_metrics=None -): - """Calculates the loss and gradient updates for one input batch. - - Args: - model: Model whose loss has to be calculated. - inputs: Input batch data. - targets: Target batch data. - sample_weights: Sample weight batch data. - output_loss_metrics: List of metrics that are used to aggregated output - loss values. - - Returns: - Dict with three items: - 'total_loss': list with a single tensor for overall loss, - 'output_losses': list of tensors for loss corresponding to each of the - model output. Could be a empty list when model has only one output. - 'metrics': list of tensors for metric specified. - """ - inputs = training_utils_v1.cast_to_model_input_dtypes(inputs, model) - outs, total_loss, output_losses, masks = _process_single_batch( - model, - inputs, - targets, - sample_weights=sample_weights, - training=True, - output_loss_metrics=output_loss_metrics, - ) - if not isinstance(outs, list): - outs = [outs] - metrics_results = _eager_metrics_fn( - model, outs, targets, sample_weights=sample_weights, masks=masks - ) - total_loss = tf.nest.flatten(total_loss) - return { - "total_loss": total_loss, - "output_losses": output_losses, - "metrics": metrics_results, - } - - -def test_on_batch( - model, inputs, targets, sample_weights=None, output_loss_metrics=None -): - """Calculates the loss for one input batch. - - Args: - model: Model whose loss has to be calculated. - inputs: Input batch data. - targets: Target batch data. - sample_weights: Sample weight batch data. - output_loss_metrics: List of metrics that are used to aggregated output - loss values. - - Returns: - Dict with three items: - 'total_loss': single tensor for overall loss, - 'output_losses': list of tensors for loss corresponding to each of the - model output. Could be a empty list when model has only one output. - 'metrics': list of tensors for metric specified. - """ - inputs = training_utils_v1.cast_to_model_input_dtypes(inputs, model) - - with backend.eager_learning_phase_scope(0): - outs, total_loss, output_losses, masks = _model_loss( - model, - inputs, - targets, - sample_weights=sample_weights, - training=False, - output_loss_metrics=output_loss_metrics, - ) - if not isinstance(outs, list): - outs = [outs] - metrics_results = _eager_metrics_fn( - model, outs, targets, sample_weights=sample_weights, masks=masks - ) - total_loss = tf.nest.flatten(total_loss) - - return { - "total_loss": total_loss, - "output_losses": output_losses, - "metrics": metrics_results, - } diff --git a/keras/engine/training_generator_test.py b/keras/engine/training_generator_test.py deleted file mode 100644 index 70c32ca78d6..00000000000 --- a/keras/engine/training_generator_test.py +++ /dev/null @@ -1,607 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for training routines.""" - -import itertools - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import layers as layers_module -from keras import losses -from keras import metrics as metrics_module -from keras.engine import input_layer -from keras.engine import training -from keras.engine import training_generator_v1 -from keras.optimizers.legacy import rmsprop -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import data_utils - - -def custom_generator(mode=2): - batch_size = 10 - num_samples = 50 - arr_data = np.random.random((num_samples, 2)) - arr_labels = np.random.random((num_samples, 4)) - arr_weights = np.random.random((num_samples,)) - i = 0 - while True: - batch_index = i * batch_size % num_samples - i += 1 - start = batch_index - end = start + batch_size - x = arr_data[start:end] - y = arr_labels[start:end] - w = arr_weights[start:end] - if mode == 1: - yield x - elif mode == 2: - yield x, y - else: - yield x, y, w - - -def custom_generator_changing_batch_size(mode=2): - batch_size = 10 - cur_batch_size = 11 - num_samples = 50 - arr_data = np.random.random((num_samples, 2)) - arr_labels = np.random.random((num_samples, 4)) - arr_weights = np.random.random((num_samples,)) - i = 0 - while True: - if cur_batch_size > 1: - cur_batch_size -= 1 - batch_index = i * batch_size % num_samples - i += 1 - start = batch_index - end = start + cur_batch_size - x = arr_data[start:end] - y = arr_labels[start:end] - w = arr_weights[start:end] - if mode == 1: - yield x - elif mode == 2: - yield x, y - else: - yield x, y, w - - -custom_generator_threads = data_utils.threadsafe_generator(custom_generator) - - -class TestGeneratorMethods(test_combinations.TestCase): - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - @data_utils.dont_use_multiprocessing_pool - def test_fit_generator_method(self): - model = test_utils.get_small_mlp( - num_hidden=3, num_classes=4, input_dim=2 - ) - model.compile( - loss="mse", - optimizer=rmsprop.RMSprop(1e-3), - metrics=["mae", metrics_module.CategoricalAccuracy()], - ) - - model.fit_generator( - custom_generator_threads(), - steps_per_epoch=5, - epochs=1, - verbose=1, - max_queue_size=10, - workers=4, - use_multiprocessing=True, - ) - model.fit_generator( - custom_generator(), - steps_per_epoch=5, - epochs=1, - verbose=1, - max_queue_size=10, - use_multiprocessing=False, - ) - model.fit_generator( - custom_generator(), - steps_per_epoch=5, - epochs=1, - verbose=1, - max_queue_size=10, - use_multiprocessing=False, - validation_data=custom_generator(), - validation_steps=10, - ) - model.fit_generator( - custom_generator(), - steps_per_epoch=5, - validation_data=custom_generator(), - validation_steps=1, - workers=0, - ) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - @data_utils.dont_use_multiprocessing_pool - def test_evaluate_generator_method(self): - model = test_utils.get_small_mlp( - num_hidden=3, num_classes=4, input_dim=2 - ) - model.compile( - loss="mse", - optimizer=rmsprop.RMSprop(1e-3), - metrics=["mae", metrics_module.CategoricalAccuracy()], - run_eagerly=test_utils.should_run_eagerly(), - ) - - model.evaluate_generator( - custom_generator_threads(), - steps=5, - max_queue_size=10, - workers=2, - verbose=1, - use_multiprocessing=True, - ) - model.evaluate_generator( - custom_generator(), - steps=5, - max_queue_size=10, - use_multiprocessing=False, - ) - model.evaluate_generator( - custom_generator(), - steps=5, - max_queue_size=10, - use_multiprocessing=False, - workers=0, - ) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - @data_utils.dont_use_multiprocessing_pool - def test_predict_generator_method(self): - model = test_utils.get_small_mlp( - num_hidden=3, num_classes=4, input_dim=2 - ) - model.run_eagerly = test_utils.should_run_eagerly() - - model.predict_generator( - custom_generator_threads(), - steps=5, - max_queue_size=10, - workers=2, - use_multiprocessing=True, - ) - model.predict_generator( - custom_generator(), - steps=5, - max_queue_size=10, - use_multiprocessing=False, - ) - model.predict_generator( - custom_generator(), steps=5, max_queue_size=10, workers=0 - ) - # Test generator with just inputs (no targets) - model.predict_generator( - custom_generator_threads(mode=1), - steps=5, - max_queue_size=10, - workers=2, - use_multiprocessing=True, - ) - model.predict_generator( - custom_generator(mode=1), - steps=5, - max_queue_size=10, - use_multiprocessing=False, - ) - model.predict_generator( - custom_generator(mode=1), steps=5, max_queue_size=10, workers=0 - ) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_generator_methods_with_sample_weights(self): - model = test_utils.get_small_mlp( - num_hidden=3, num_classes=4, input_dim=2 - ) - model.compile( - loss="mse", - optimizer=rmsprop.RMSprop(1e-3), - metrics=["mae", metrics_module.CategoricalAccuracy()], - run_eagerly=test_utils.should_run_eagerly(), - ) - - model.fit_generator( - custom_generator(mode=3), - steps_per_epoch=5, - epochs=1, - verbose=1, - max_queue_size=10, - use_multiprocessing=False, - ) - model.fit_generator( - custom_generator(mode=3), - steps_per_epoch=5, - epochs=1, - verbose=1, - max_queue_size=10, - use_multiprocessing=False, - validation_data=custom_generator(mode=3), - validation_steps=10, - ) - model.predict_generator( - custom_generator(mode=3), - steps=5, - max_queue_size=10, - use_multiprocessing=False, - ) - model.evaluate_generator( - custom_generator(mode=3), - steps=5, - max_queue_size=10, - use_multiprocessing=False, - ) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_generator_methods_invalid_use_case(self): - def invalid_generator(): - while 1: - yield (0, 0, 0, 0) - - model = test_utils.get_small_mlp( - num_hidden=3, num_classes=4, input_dim=2 - ) - model.compile( - loss="mse", - optimizer=rmsprop.RMSprop(1e-3), - run_eagerly=test_utils.should_run_eagerly(), - ) - - with self.assertRaises(ValueError): - model.fit_generator( - invalid_generator(), - steps_per_epoch=5, - epochs=1, - verbose=1, - max_queue_size=10, - use_multiprocessing=False, - ) - with self.assertRaises(ValueError): - model.fit_generator( - custom_generator(), - steps_per_epoch=5, - epochs=1, - verbose=1, - max_queue_size=10, - use_multiprocessing=False, - validation_data=invalid_generator(), - validation_steps=10, - ) - with self.assertRaises(ValueError): - model.predict_generator( - invalid_generator(), - steps=5, - max_queue_size=10, - use_multiprocessing=False, - ) - with self.assertRaises(ValueError): - model.evaluate_generator( - invalid_generator(), - steps=5, - max_queue_size=10, - use_multiprocessing=False, - ) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_generator_input_to_fit_eval_predict(self): - val_data = np.ones([10, 10], np.float32), np.ones([10, 1], np.float32) - - def ones_generator(): - while True: - yield np.ones([10, 10], np.float32), np.ones( - [10, 1], np.float32 - ) - - model = test_utils.get_small_mlp( - num_hidden=10, num_classes=1, input_dim=10 - ) - - model.compile( - rmsprop.RMSprop(0.001), - "binary_crossentropy", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit( - ones_generator(), - steps_per_epoch=2, - validation_data=val_data, - epochs=2, - ) - model.evaluate(ones_generator(), steps=2) - model.predict(ones_generator(), steps=2) - - # Test with a changing batch size - model = test_utils.get_small_mlp( - num_hidden=3, num_classes=4, input_dim=2 - ) - model.compile( - loss="mse", - optimizer=rmsprop.RMSprop(1e-3), - metrics=["mae", metrics_module.CategoricalAccuracy()], - ) - model.fit_generator( - custom_generator_changing_batch_size(), - steps_per_epoch=5, - epochs=1, - verbose=1, - max_queue_size=10, - use_multiprocessing=False, - ) - model.fit_generator( - custom_generator_changing_batch_size(), - steps_per_epoch=5, - epochs=1, - verbose=1, - max_queue_size=10, - use_multiprocessing=False, - validation_data=custom_generator_changing_batch_size(), - validation_steps=10, - ) - - model.fit( - custom_generator_changing_batch_size(), - steps_per_epoch=5, - validation_data=custom_generator_changing_batch_size(), - validation_steps=10, - epochs=2, - ) - model.evaluate(custom_generator_changing_batch_size(), steps=5) - model.predict(custom_generator_changing_batch_size(), steps=5) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - @data_utils.dont_use_multiprocessing_pool - def test_generator_dynamic_shapes(self): - - x = [ - "I think juice is great", - "unknown is the best language since slicedbread", - "a a a a a a a", - "matmul", - "Yaks are also quite nice", - ] - y = [1, 0, 0, 1, 1] - - vocab = { - word: i + 1 - for i, word in enumerate( - sorted(set(itertools.chain(*[i.split() for i in x]))) - ) - } - - def data_gen(batch_size=2): - np.random.seed(0) - data = list(zip(x, y)) * 10 - np.random.shuffle(data) - - def pack_and_pad(queue): - x = [[vocab[j] for j in i[0].split()] for i in queue] - pad_len = max(len(i) for i in x) - x = np.array([i + [0] * (pad_len - len(i)) for i in x]) - y = np.array([i[1] for i in queue]) - del queue[:] - return x, y[:, np.newaxis] - - queue = [] - for i, element in enumerate(data): - queue.append(element) - if not (i + 1) % batch_size: - yield pack_and_pad(queue) - - if queue: - # Last partial batch - yield pack_and_pad(queue) - - model = test_utils.get_model_from_layers( - [ - layers_module.Embedding(input_dim=len(vocab) + 1, output_dim=4), - layers_module.SimpleRNN(units=1), - layers_module.Activation("sigmoid"), - ], - input_shape=(None,), - ) - - model.compile(loss=losses.binary_crossentropy, optimizer="sgd") - model.fit(data_gen(), epochs=1, steps_per_epoch=5) - - -class TestGeneratorMethodsWithSequences(test_combinations.TestCase): - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - @data_utils.dont_use_multiprocessing_pool - def test_training_with_sequences(self): - class DummySequence(data_utils.Sequence): - def __getitem__(self, idx): - return np.zeros([10, 2]), np.ones([10, 4]) - - def __len__(self): - return 10 - - model = test_utils.get_small_mlp( - num_hidden=3, num_classes=4, input_dim=2 - ) - model.compile(loss="mse", optimizer=rmsprop.RMSprop(1e-3)) - - model.fit_generator( - DummySequence(), - steps_per_epoch=10, - validation_data=custom_generator(), - validation_steps=1, - max_queue_size=10, - workers=0, - use_multiprocessing=True, - ) - model.fit_generator( - DummySequence(), - steps_per_epoch=10, - validation_data=custom_generator(), - validation_steps=1, - max_queue_size=10, - workers=0, - use_multiprocessing=False, - ) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - @data_utils.dont_use_multiprocessing_pool - def test_sequence_input_to_fit_eval_predict(self): - val_data = np.ones([10, 10], np.float32), np.ones([10, 1], np.float32) - - class CustomSequence(data_utils.Sequence): - def __getitem__(self, idx): - return np.ones([10, 10], np.float32), np.ones( - [10, 1], np.float32 - ) - - def __len__(self): - return 2 - - class CustomSequenceChangingBatchSize(data_utils.Sequence): - def __getitem__(self, idx): - batch_size = 10 - idx - return ( - np.ones([batch_size, 10], np.float32), - np.ones([batch_size, 1], np.float32), - ) - - def __len__(self): - return 2 - - model = test_utils.get_small_mlp( - num_hidden=10, num_classes=1, input_dim=10 - ) - - model.compile(rmsprop.RMSprop(0.001), "binary_crossentropy") - model.fit(CustomSequence(), validation_data=val_data, epochs=2) - model.evaluate(CustomSequence()) - model.predict(CustomSequence()) - - with self.assertRaisesRegex( - ValueError, "`y` argument is not supported" - ): - model.fit(CustomSequence(), y=np.ones([10, 1])) - - with self.assertRaisesRegex( - ValueError, "`sample_weight` argument is not supported" - ): - model.fit(CustomSequence(), sample_weight=np.ones([10, 1])) - - model.compile(rmsprop.RMSprop(0.001), "binary_crossentropy") - model.fit( - CustomSequenceChangingBatchSize(), - validation_data=val_data, - epochs=2, - ) - model.evaluate(CustomSequenceChangingBatchSize()) - model.predict(CustomSequenceChangingBatchSize()) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_sequence_on_epoch_end(self): - class MySequence(data_utils.Sequence): - def __init__(self): - self.epochs = 0 - - def __getitem__(self, idx): - return np.ones([10, 10], np.float32), np.ones( - [10, 1], np.float32 - ) - - def __len__(self): - return 2 - - def on_epoch_end(self): - self.epochs += 1 - - inputs = input_layer.Input(10) - outputs = layers_module.Dense(1)(inputs) - model = training.Model(inputs, outputs) - model.compile("sgd", "mse") - my_seq = MySequence() - model.fit(my_seq, epochs=2) - self.assertEqual(my_seq.epochs, 2) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class TestConvertToGeneratorLike(tf.test.TestCase, parameterized.TestCase): - simple_inputs = (np.ones((10, 10)), np.ones((10, 1))) - nested_inputs = ( - (np.ones((10, 10)), np.ones((10, 20))), - (np.ones((10, 1)), np.ones((10, 3))), - ) - - def _make_dataset(self, inputs, batches): - return tf.data.Dataset.from_tensors(inputs).repeat(batches) - - def _make_iterator(self, inputs, batches): - return tf.compat.v1.data.make_one_shot_iterator( - self._make_dataset(inputs, batches) - ) - - def _make_generator(self, inputs, batches): - def _gen(): - for _ in range(batches): - yield inputs - - return _gen() - - def _make_numpy(self, inputs, _): - return inputs - - @parameterized.named_parameters( - ("simple_dataset", _make_dataset, simple_inputs), - ("simple_iterator", _make_iterator, simple_inputs), - ("simple_generator", _make_generator, simple_inputs), - ("simple_numpy", _make_numpy, simple_inputs), - ("nested_dataset", _make_dataset, nested_inputs), - ("nested_iterator", _make_iterator, nested_inputs), - ("nested_generator", _make_generator, nested_inputs), - ("nested_numpy", _make_numpy, nested_inputs), - ) - def test_convert_to_generator_like(self, input_fn, inputs): - expected_batches = 5 - data = input_fn(self, inputs, expected_batches) - - # Dataset and Iterator not supported in Legacy Graph mode. - if not tf.executing_eagerly() and isinstance( - data, (tf.data.Dataset, tf.compat.v1.data.Iterator) - ): - return - - generator, steps = training_generator_v1.convert_to_generator_like( - data, batch_size=2, steps_per_epoch=expected_batches - ) - self.assertEqual(steps, expected_batches) - - for _ in range(expected_batches): - outputs = next(generator) - tf.nest.assert_same_structure(outputs, inputs) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/training_generator_v1.py b/keras/engine/training_generator_v1.py deleted file mode 100644 index f59fdf0e026..00000000000 --- a/keras/engine/training_generator_v1.py +++ /dev/null @@ -1,953 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Part of the Keras training engine related to Python generators of array data. -""" - -import functools -import math - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import callbacks as cbks -from keras.engine import training_utils -from keras.engine import training_utils_v1 -from keras.utils import data_utils -from keras.utils import generic_utils -from keras.utils.mode_keys import ModeKeys - -# isort: off -from tensorflow.python.platform import tf_logging as logging - - -def model_iteration( - model, - data, - steps_per_epoch=None, - epochs=1, - verbose=1, - callbacks=None, - validation_data=None, - validation_steps=None, - validation_freq=1, - class_weight=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - shuffle=False, - initial_epoch=0, - mode=ModeKeys.TRAIN, - batch_size=None, - steps_name="steps", - **kwargs, -): - """Loop function for arrays of data with modes TRAIN/TEST/PREDICT. - - Args: - model: Keras Model instance. - data: Either a tuple of NumPy/Tensor inputs (i.e. `(x,)` or `(x, y)` or - `(x, y, sample_weights)`) or a generator or - `keras.utils.data_utils.Sequence` object or Eager Iterator or Dataset. - steps_per_epoch: Total number of steps (batches of samples) before - declaring one epoch finished and starting the next epoch. Ignored with - the default value of `None`. - epochs: Number of times to iterate over the data. - verbose: 0, 1, or 2. Verbosity mode. - 0 = silent, 1 = progress bar, 2 = one line per epoch. - Note that the progress bar is not particularly useful when - logged to a file, so verbose=2 is recommended when not running - interactively (eg, in a production environment). - callbacks: List of callbacks to be called during training. - validation_data: Either a tuple of NumPy/Tensor inputs (i.e. `(x,)` or - `(x, y)` or `(x, y, sample_weights)`) or a generator or - `keras.utils.data_utils.Sequence` object or Eager Iterator or Dataset. - validation_steps: Total number of steps (batches of samples) before - declaring validation finished. - validation_freq: Only relevant if validation data is provided. Integer - or `collections.abc.Container` instance (e.g. list, tuple, etc.). If - an integer, specifies how many training epochs to run before a new - validation run is performed, e.g. `validation_freq=2` runs validation - every 2 epochs. If a Container, specifies the epochs on which to run - validation, e.g. `validation_freq=[1, 2, 10]` runs validation at the - end of the 1st, 2nd, and 10th epochs. - class_weight: Dictionary mapping class indices to a weight for the - class. - max_queue_size: Integer. Maximum size for the generator queue. If - unspecified, `max_queue_size` will default to 10. - workers: Integer. Maximum number of processes to spin up when using - process-based threading. If unspecified, `workers` will default to 1. - If 0, will execute the generator on the main thread. - use_multiprocessing: Boolean. If `True`, use process-based threading. If - unspecified, `use_multiprocessing` will default to `False`. Note that - because this implementation relies on multiprocessing, you should not - pass non-picklable arguments to the generator as they can't be passed - easily to children processes. - shuffle: Boolean. Whether to shuffle the order of the batches at the - beginning of each epoch. Only used with instances of `Sequence` - (`keras.utils.Sequence`). Has no effect when `steps_per_epoch` is not - `None`. - initial_epoch: Epoch at which to start training (useful for resuming a - previous training run). - mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. - batch_size: Integer batch size or None if unknown. Will only be used if - `data` is in NumPy/Tensor format. - steps_name: The string name of the steps argument, either `steps`, - `validation_steps`, or `steps_per_epoch`. Only used for error message - formatting. - **kwargs: Additional arguments for backwards compatibility. `steps` is - accepted as an alias for `steps_per_epoch`. - - Returns: - - In TRAIN mode: `History` object. - - In TEST mode: Evaluation metrics. - - In PREDICT mode: Outputs of the Model called on inputs. - - Raises: - ValueError: in case of invalid arguments. - """ - if "steps" in kwargs: - steps_per_epoch = kwargs["steps"] - - # Determine the number of steps per epoch and whether we should reset the - # dataset at the end of each epoch. - reset_dataset_after_each_epoch = False - original_dataset = None - is_dataset = isinstance(data, (tf.data.Dataset, tf.compat.v1.data.Dataset)) - if is_dataset: - original_dataset = data - if steps_per_epoch is None: - reset_dataset_after_each_epoch = True - steps_per_epoch = training_utils_v1.infer_steps_for_dataset( - model, - data, - steps_per_epoch, - epochs=epochs, - steps_name=steps_name, - ) - - # Convert to a format that supports `next(generator)`. - generator, steps_per_epoch = convert_to_generator_like( - data, - steps_per_epoch=steps_per_epoch, - batch_size=batch_size, - epochs=epochs - initial_epoch, - shuffle=shuffle, - ) - - do_validation = validation_data is not None - is_sequence = isinstance(generator, data_utils.Sequence) - _validate_arguments( - is_sequence, - is_dataset, - use_multiprocessing, - workers, - steps_per_epoch, - validation_data, - validation_steps, - mode, - kwargs, - ) - - batch_function = _make_execution_function( - model, mode, class_weight=class_weight - ) - - # Create the queue for the generator. - enqueuer = None - if not is_dataset: - generator, enqueuer = _make_enqueued_generator( - generator, - workers=workers, - use_multiprocessing=use_multiprocessing, - max_queue_size=max_queue_size, - shuffle=shuffle, - ) - - num_samples_or_steps, use_steps = _get_num_samples_or_steps( - data, steps_per_epoch - ) - - count_mode = "steps" if use_steps else "samples" - callbacks = cbks.configure_callbacks( - callbacks, - model, - do_validation=do_validation, - epochs=epochs, - steps_per_epoch=steps_per_epoch, - batch_size=batch_size, - samples=num_samples_or_steps, - count_mode=count_mode, - verbose=verbose, - mode=mode, - ) - - if mode == ModeKeys.PREDICT: - aggregator = training_utils_v1.OutputsAggregator( - True, steps=steps_per_epoch - ) - else: - aggregator = training_utils_v1.MetricsAggregator( - True, steps=steps_per_epoch - ) - - should_set_learning_phase = tf.executing_eagerly() and model.run_eagerly - if should_set_learning_phase: - learning_phase_scope = backend.eager_learning_phase_scope( - 1 if mode == ModeKeys.TRAIN else 0 - ) - learning_phase_scope.__enter__() - - callbacks.model.stop_training = False - callbacks._call_begin_hook(mode) - - initial_epoch = model._maybe_load_initial_epoch_from_ckpt( - initial_epoch, mode - ) - - for epoch in range(initial_epoch, epochs): - if callbacks.model.stop_training: - break - - # Setup work for each epoch. - model.reset_metrics() - epoch_logs = {} - if mode == ModeKeys.TRAIN: - callbacks.on_epoch_begin(epoch, epoch_logs) - - if steps_per_epoch is None: - # Loop over dataset until `OutOfRangeError` is raised. - target_steps = np.inf - else: - # Loop over dataset for the specified number of steps. - target_steps = steps_per_epoch - - step = 0 - while step < target_steps: - batch_data = _get_next_batch(generator) - if batch_data is None: - if is_dataset: - # The dataset passed by the user ran out of batches. Now we - # know the cardinality of the dataset. If steps_per_epoch - # was specified, then running out of data is unexpected, so - # we stop training and inform the user. - if steps_per_epoch: - callbacks.model.stop_training = True - logging.warning( - "Your dataset ran out of data; interrupting " - "training. Make sure that your dataset can " - "generate at least `%s * epochs` batches (in " - "this case, %d batches). You may need to use " - "the repeat() function when building your dataset." - % (steps_name, steps_per_epoch * epochs) - ) - elif step > 0: - steps_per_epoch = step - aggregator.steps = steps_per_epoch - else: - # We ran out of batches while the user passed an iterator - # (legacy). - callbacks.model.stop_training = True - logging.warning( - "Your dataset iterator ran out of data; " - "interrupting training. Make sure that your iterator " - "can generate at least `%s * epochs` " - "batches (in this case, %d batches). You may need to" - "use the repeat() function when building your " - "dataset." % (steps_name, steps_per_epoch * epochs) - ) - break - - # `batch_size` used for validation data if validation - # data is NumPy/EagerTensors. - batch_size = int(tf.nest.flatten(batch_data)[0].shape[0]) - - # Callbacks batch begin. - batch_logs = {"batch": step, "size": batch_size} - callbacks._call_batch_hook(mode, "begin", step, batch_logs) - - is_deferred = not model._is_compiled - batch_outs = batch_function(*batch_data) - if not isinstance(batch_outs, list): - batch_outs = [batch_outs] - - if step == 0: - aggregator.create(batch_outs) - - if is_deferred: - # Set callbacks params. We do this here when model is - # compiled only in the first iteration of this loop - # (deferred build scenario). - cbks.set_callback_parameters( - callbacks, - model, - do_validation=do_validation, - batch_size=batch_size, - epochs=epochs, - steps_per_epoch=steps_per_epoch, - samples=num_samples_or_steps, - verbose=verbose, - mode=mode, - ) - - # Aggregate results. - aggregator.aggregate(batch_outs) - - # Callbacks batch end. - batch_logs = callbacks.make_logs( - model, batch_logs, batch_outs, mode - ) - callbacks._call_batch_hook(mode, "end", step, batch_logs) - step += 1 - - if callbacks.model.stop_training: - break - - aggregator.finalize() - results = aggregator.results - epoch_logs = callbacks.make_logs(model, epoch_logs, results, mode) - if len(results) == 1: - results = results[0] - - # Run the test loop every epoch during training. - if ( - do_validation - and training_utils_v1.should_run_validation(validation_freq, epoch) - and not callbacks.model.stop_training - ): - val_results = model_iteration( - model, - validation_data, - steps_per_epoch=validation_steps, - batch_size=batch_size, - class_weight=class_weight, - workers=workers, - use_multiprocessing=use_multiprocessing, - max_queue_size=max_queue_size, - callbacks=callbacks, - verbose=verbose, - mode=ModeKeys.TEST, - steps_name="validation_steps", - ) - - if not isinstance(val_results, list): - val_results = [val_results] - epoch_logs = callbacks.make_logs( - model, epoch_logs, val_results, mode, prefix="val_" - ) - - if mode == ModeKeys.TRAIN: - # Epochs only apply to `fit`. - callbacks.on_epoch_end(epoch, epoch_logs) - - # Recreate dataset iterator for the next epoch. - if reset_dataset_after_each_epoch and epoch < epochs - 1: - generator = tf.compat.v1.data.make_one_shot_iterator( - original_dataset - ) - - model._successful_loop_finish = True - callbacks._call_end_hook(mode) - - if enqueuer is not None: - enqueuer.stop() - - if should_set_learning_phase: - learning_phase_scope.__exit__(None, None, None) - - if mode == ModeKeys.TRAIN: - return model.history - return results - - -# Maintain compatibility with the existing names. -fit_generator = functools.partial(model_iteration, mode=ModeKeys.TRAIN) -evaluate_generator = functools.partial( - model_iteration, mode=ModeKeys.TEST, shuffle=False -) -predict_generator = functools.partial( - model_iteration, mode=ModeKeys.PREDICT, shuffle=False -) - - -def _get_next_batch(generator): - """Retrieves the next batch of input data.""" - try: - generator_output = next(generator) - except (StopIteration, tf.errors.OutOfRangeError): - return None - - if not isinstance(generator_output, tuple): - # Always wrap in a tuple. - generator_output = (generator_output,) - if len(generator_output) not in [1, 2, 3]: - raise ValueError( - "Output of generator should be a tuple of 1 or 2 or 3 " - "elements: (input,) or (input, target) or " - "(input, target, sample_weights). Received {}".format( - generator_output - ) - ) - return generator_output - - -def _validate_arguments( - is_sequence, - is_dataset, - use_multiprocessing, - workers, - steps_per_epoch, - validation_data, - validation_steps, - mode, - kwargs, -): - """Raises errors if arguments are invalid. - - Args: - is_sequence: Boolean, whether data is a `keras.utils.data_utils.Sequence` - instance. - is_dataset: Boolean, whether data is a dataset instance. - use_multiprocessing: Boolean. If `True`, use process-based threading. If - unspecified, `use_multiprocessing` will default to `False`. Note that - because this implementation relies on multiprocessing, you should not - pass non-picklable arguments to the generator as they can't be passed - easily to children processes. - workers: Integer. Maximum number of processes to spin up when using - process-based threading. If unspecified, `workers` will default to 1. If - 0, will execute the generator on the main thread. - steps_per_epoch: Total number of steps (batches of samples) before - declaring one epoch finished and starting the next epoch. Ignored with - the default value of `None`. - validation_data: Either a tuple of NumPy/Tensor inputs (i.e. `(x,)` or - `(x, y)` or `(x, y, sample_weights)`) or a generator or - `keras.utils.data_utils.Sequence` object or Eager Iterator or Dataset. - validation_steps: Total number of steps (batches of samples) before - declaring validation finished. - mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. - kwargs: Additional arguments for backwards compatibility. - - Raises: - ValueError: If `steps_per_epoch` or `validation_steps` are not passed - for data types that require them, or if unrecognized keyword - arguments are passed. - """ - if not is_sequence and use_multiprocessing and workers > 1: - logging.warning( - UserWarning( - "Using a generator with `use_multiprocessing=True`" - " and multiple workers may duplicate your data." - " Please consider using the `keras.utils.Sequence`" - " class." - ) - ) - - if steps_per_epoch is None and not is_dataset: - arg_name = "steps_per_epoch" if mode == ModeKeys.TRAIN else "steps" - raise ValueError( - f"Please specify the number of steps via the `{arg_name}` argument." - ) - - val_gen = data_utils.is_generator_or_sequence( - validation_data - ) or isinstance(validation_data, tf.data.Iterator) - if ( - val_gen - and not isinstance(validation_data, data_utils.Sequence) - and not validation_steps - ): - raise ValueError("Please specify the `validation_steps` argument.") - - if any(k != "steps" for k in kwargs): - raise ValueError( - f"Invalid arguments passed: {[k for k in kwargs if k != 'steps']}" - ) - - -def convert_to_generator_like( - data, batch_size=None, steps_per_epoch=None, epochs=1, shuffle=False -): - """Make a generator out of NumPy or EagerTensor inputs. - - Args: - data: Either a generator or `keras.utils.data_utils.Sequence` object or - `Dataset`, `Iterator`, or a {1,2,3}-tuple of NumPy arrays or - EagerTensors. If a tuple, the elements represent `(x, y, - sample_weights)` and may be `None` or `[None]`. - batch_size: Used when creating a generator out of tuples of NumPy arrays - or EagerTensors. - steps_per_epoch: Steps of the generator to run each epoch. If `None` the - number of steps will be read from the data (for - `keras.utils.data_utils.Sequence` types). - epochs: Total number of epochs to run. - shuffle: Whether the data should be shuffled. - - Returns: - - Generator, `keras.utils.data_utils.Sequence`, or `Iterator`. - - Raises: - - ValueError: If `batch_size` is not provided for NumPy or EagerTensor - inputs. - """ - if isinstance(data, tuple): - # Scrub `Nones` that might have been passed for `targets`, - # `sample_weights`. - data = tuple( - ele - for ele in data - if not all(e is None for e in tf.nest.flatten(ele)) - ) - - if data_utils.is_generator_or_sequence(data) or isinstance( - data, tf.data.Iterator - ): - if isinstance(data, data_utils.Sequence): - if steps_per_epoch is None: - steps_per_epoch = len(data) - return data, steps_per_epoch - if isinstance(data, tf.data.Dataset): - return tf.compat.v1.data.make_one_shot_iterator(data), steps_per_epoch - - # Create generator from NumPy or EagerTensor Input. - num_samples = int(tf.nest.flatten(data)[0].shape[0]) - if batch_size is None: - raise ValueError( - "When passing input data as arrays, do not specify " - "`steps_per_epoch`/`steps` argument. " - "Please use `batch_size` instead." - ) - steps_per_epoch = int(math.ceil(num_samples / batch_size)) - - def _gen(data): - """Makes a generator out of a structure of NumPy/EagerTensors.""" - index_array = np.arange(num_samples) - for _ in range(epochs): - if shuffle: - np.random.shuffle(index_array) - batches = generic_utils.make_batches(num_samples, batch_size) - for batch_start, batch_end in batches: - batch_ids = index_array[batch_start:batch_end] - flat_batch_data = training_utils.slice_arrays( - tf.nest.flatten(data), batch_ids, contiguous=(not shuffle) - ) - yield tf.nest.pack_sequence_as(data, flat_batch_data) - - return _gen(data), steps_per_epoch - - -def _make_enqueued_generator( - generator, - workers=1, - use_multiprocessing=False, - max_queue_size=10, - shuffle=False, -): - """Create a buffered queue of next elements of the generator.""" - is_sequence = isinstance(generator, data_utils.Sequence) - enqueuer = None - if workers > 0: - if is_sequence: - enqueuer = data_utils.OrderedEnqueuer( - generator, - use_multiprocessing=use_multiprocessing, - shuffle=shuffle, - ) - else: - enqueuer = data_utils.GeneratorEnqueuer( - generator, use_multiprocessing=use_multiprocessing - ) - enqueuer.start(workers=workers, max_queue_size=max_queue_size) - output_generator = enqueuer.get() - else: - if is_sequence: - output_generator = data_utils.iter_sequence_infinite(generator) - else: - output_generator = generator - return output_generator, enqueuer - - -def _make_execution_function(model, mode, class_weight=None): - """Makes function to run one step of model execution.""" - if mode == ModeKeys.TRAIN: - f = functools.partial(model.train_on_batch, class_weight=class_weight) - elif mode == ModeKeys.TEST: - f = model.test_on_batch - else: - # Match signature of other modes to allow - # 1, 2, or 3-tuples from generator - def predict_on_batch(x, y=None, sample_weights=None): - return model.predict_on_batch(x) - - f = predict_on_batch - - # Maintain stateful metrics across batch-level calls. - if mode != ModeKeys.PREDICT: - f = functools.partial(f, reset_metrics=False) - - return f - - -def _get_num_samples_or_steps(data, steps_per_epoch): - """Returns number of samples or steps, and whether to use steps count - mode.""" - flat_inputs = tf.nest.flatten(data) - if hasattr(flat_inputs[0], "shape"): - return int(flat_inputs[0].shape[0]), False - return steps_per_epoch, True - - -class GeneratorOrSequenceTrainingLoop(training_utils_v1.TrainingLoop): - """Generator-like. - - Input is Python generator, or Sequence object. - - The difference between this class and `GeneratorLikeTrainingFunction` is - that this class only handles inputs that with x, y and sample_weight fused - into one param. - """ - - def fit( - self, - model, - x=None, - y=None, - batch_size=None, - epochs=1, - verbose=1, - callbacks=None, - validation_split=0.0, - validation_data=None, - shuffle=True, - class_weight=None, - sample_weight=None, - initial_epoch=0, - steps_per_epoch=None, - validation_steps=None, - validation_freq=1, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - ): - model._validate_or_infer_batch_size(batch_size, steps_per_epoch, x) - training_utils_v1.check_generator_arguments( - y, sample_weight, validation_split=validation_split - ) - return fit_generator( - model, - x, - steps_per_epoch=steps_per_epoch, - epochs=epochs, - verbose=verbose, - callbacks=callbacks, - validation_data=validation_data, - validation_steps=validation_steps, - validation_freq=validation_freq, - class_weight=class_weight, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - shuffle=shuffle, - initial_epoch=initial_epoch, - steps_name="steps_per_epoch", - ) - - def evaluate( - self, - model, - x=None, - y=None, - batch_size=None, - verbose=1, - sample_weight=None, - steps=None, - callbacks=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - ): - model._validate_or_infer_batch_size(batch_size, steps, x) - training_utils_v1.check_generator_arguments(y, sample_weight) - return evaluate_generator( - model, - x, - steps=steps, - verbose=verbose, - callbacks=callbacks, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - ) - - def predict( - self, - model, - x, - batch_size=None, - verbose=0, - steps=None, - callbacks=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - ): - model._validate_or_infer_batch_size(batch_size, steps, x) - return predict_generator( - model, - x, - steps=steps, - verbose=verbose, - callbacks=callbacks, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - ) - - -class EagerDatasetOrIteratorTrainingLoop(training_utils_v1.TrainingLoop): - """A non-distributed Dataset or iterator in eager execution.""" - - def fit( - self, - model, - x=None, - y=None, - batch_size=None, - epochs=1, - verbose=1, - callbacks=None, - validation_split=0.0, - validation_data=None, - shuffle=True, - class_weight=None, - sample_weight=None, - initial_epoch=0, - steps_per_epoch=None, - validation_steps=None, - validation_freq=1, - **kwargs, - ): - model._validate_or_infer_batch_size(batch_size, steps_per_epoch, x) - # Make sure that y, sample_weights, validation_split are not passed. - training_utils_v1.validate_dataset_input( - x, y, sample_weight, validation_split - ) - if ( - isinstance(x, (tf.compat.v1.data.Dataset, tf.data.Dataset)) - and shuffle - ): - training_utils_v1.verify_dataset_shuffled(x) - - return fit_generator( - model, - x, - steps_per_epoch=steps_per_epoch, - epochs=epochs, - verbose=verbose, - callbacks=callbacks, - validation_data=validation_data, - validation_steps=validation_steps, - validation_freq=validation_freq, - class_weight=class_weight, - workers=0, - shuffle=shuffle, - initial_epoch=initial_epoch, - steps_name="steps_per_epoch", - ) - - def evaluate( - self, - model, - x=None, - y=None, - batch_size=None, - verbose=1, - sample_weight=None, - steps=None, - callbacks=None, - **kwargs, - ): - model._validate_or_infer_batch_size(batch_size, steps, x) - # Make sure that y, sample_weights, validation_split are not passed. - training_utils_v1.validate_dataset_input(x, y, sample_weight) - return evaluate_generator( - model, - x, - steps=steps, - verbose=verbose, - workers=0, - callbacks=callbacks, - ) - - def predict( - self, - model, - x, - batch_size=None, - verbose=0, - steps=None, - callbacks=None, - **kwargs, - ): - model._validate_or_infer_batch_size(batch_size, steps, x) - return predict_generator( - model, - x, - steps=steps, - verbose=verbose, - workers=0, - callbacks=callbacks, - ) - - -class GeneratorLikeTrainingLoop(training_utils_v1.TrainingLoop): - """TrainingLoop that handle inputs like python generator. - - This is the default handler for most of the input data types, includes - symbolic tensors or Numpy array-like, Datasets and iterators in graph mode - (since they generate symbolic tensors). This Function is used to handle - model with `run_eagerly` = True. - """ - - def fit( - self, - model, - x=None, - y=None, - batch_size=None, - epochs=1, - verbose=1, - callbacks=None, - validation_split=0.0, - validation_data=None, - shuffle=True, - class_weight=None, - sample_weight=None, - initial_epoch=0, - steps_per_epoch=None, - validation_steps=None, - validation_freq=1, - **kwargs, - ): - batch_size = model._validate_or_infer_batch_size( - batch_size, steps_per_epoch, x - ) - x, y, sample_weights = model._standardize_user_data( - x, - y, - sample_weight=sample_weight, - class_weight=class_weight, - batch_size=batch_size, - check_steps=True, - steps_name="steps_per_epoch", - steps=steps_per_epoch, - validation_split=validation_split, - shuffle=shuffle, - ) - - if validation_data: - validation_data = model._prepare_validation_data( - validation_data, batch_size, validation_steps - ) - elif validation_split and 0.0 < validation_split < 1.0: - ( - x, - y, - sample_weights, - val_x, - val_y, - val_sample_weights, - ) = training_utils_v1.split_training_and_validation_data( - x, y, sample_weights, validation_split - ) - validation_data = (val_x, val_y, val_sample_weights) - else: - if validation_steps: - raise ValueError( - "`validation_steps` should not be specified if " - "`validation_data` is None." - ) - - return fit_generator( - model, - (x, y, sample_weights), - steps_per_epoch=steps_per_epoch, - batch_size=batch_size, - epochs=epochs, - verbose=verbose, - callbacks=callbacks, - validation_data=validation_data, - validation_steps=validation_steps, - validation_freq=validation_freq, - workers=0, - shuffle=shuffle, - initial_epoch=initial_epoch, - steps_name="steps_per_epoch", - ) - - def evaluate( - self, - model, - x=None, - y=None, - batch_size=None, - verbose=1, - sample_weight=None, - steps=None, - callbacks=None, - **kwargs, - ): - batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) - x, y, sample_weights = model._standardize_user_data( - x, - y, - sample_weight=sample_weight, - batch_size=batch_size, - check_steps=True, - steps_name="steps", - steps=steps, - ) - return evaluate_generator( - model, - (x, y, sample_weights), - steps=steps, - batch_size=batch_size, - verbose=verbose, - workers=0, - callbacks=callbacks, - ) - - def predict( - self, - model, - x, - batch_size=None, - verbose=0, - steps=None, - callbacks=None, - **kwargs, - ): - batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) - x, _, _ = model._standardize_user_data( - x, check_steps=True, steps_name="steps", steps=steps - ) - return predict_generator( - model, - x, - steps=steps, - batch_size=batch_size, - verbose=verbose, - workers=0, - callbacks=callbacks, - ) diff --git a/keras/engine/training_gpu_test.py b/keras/engine/training_gpu_test.py deleted file mode 100644 index cfa3eb5b394..00000000000 --- a/keras/engine/training_gpu_test.py +++ /dev/null @@ -1,164 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for training routines.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import backend -from keras.engine import input_layer -from keras.engine import training -from keras.layers.convolutional import Conv2D -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class TrainingGPUTest(tf.test.TestCase, parameterized.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_model_with_crossentropy_losses_channels_first(self): - """Tests use of all crossentropy losses with `channels_first`. - - Tests `sparse_categorical_crossentropy`, `categorical_crossentropy`, - and `binary_crossentropy`. - Verifies that evaluate gives the same result with either - `channels_first` or `channels_last` image_data_format. - """ - - def prepare_simple_model(input_tensor, loss_name, target): - axis = 1 if backend.image_data_format() == "channels_first" else -1 - loss = None - num_channels = None - activation = None - if loss_name == "sparse_categorical_crossentropy": - loss = lambda y_true, y_pred: backend.sparse_categorical_crossentropy( # noqa: E501 - y_true, y_pred, axis=axis - ) - num_channels = int(np.amax(target) + 1) - activation = "softmax" - elif loss_name == "categorical_crossentropy": - loss = lambda y_true, y_pred: backend.categorical_crossentropy( - y_true, y_pred, axis=axis - ) - num_channels = target.shape[axis] - activation = "softmax" - elif loss_name == "binary_crossentropy": - loss = lambda y_true, y_pred: backend.binary_crossentropy( - y_true, y_pred - ) - num_channels = target.shape[axis] - activation = "sigmoid" - - predictions = Conv2D( - num_channels, - 1, - activation=activation, - kernel_initializer="ones", - bias_initializer="ones", - )(input_tensor) - simple_model = training.Model( - inputs=input_tensor, outputs=predictions - ) - simple_model.compile(optimizer="rmsprop", loss=loss) - return simple_model - - if tf.test.is_gpu_available(cuda_only=True): - with test_utils.use_gpu(): - losses_to_test = [ - "sparse_categorical_crossentropy", - "categorical_crossentropy", - "binary_crossentropy", - ] - - data_channels_first = np.array( - [[[[8.0, 7.1, 0.0], [4.5, 2.6, 0.55], [0.9, 4.2, 11.2]]]], - dtype=np.float32, - ) - # Labels for testing 4-class sparse_categorical_crossentropy, - # 4-class categorical_crossentropy, and 2-class - # binary_crossentropy: - labels_channels_first = [ - np.array( - [[[[0, 1, 3], [2, 1, 0], [2, 2, 1]]]], dtype=np.float32 - ), - np.array( - [ - [ - [[0, 1, 0], [0, 1, 0], [0, 0, 0]], - [[1, 0, 0], [0, 0, 1], [0, 1, 0]], - [[0, 0, 0], [1, 0, 0], [0, 0, 1]], - [[0, 0, 1], [0, 0, 0], [1, 0, 0]], - ] - ], - dtype=np.float32, - ), - np.array( - [ - [ - [[0, 1, 0], [0, 1, 0], [0, 0, 1]], - [[1, 0, 1], [1, 0, 1], [1, 1, 0]], - ] - ], - dtype=np.float32, - ), - ] - # Compute one loss for each loss function in the list - # `losses_to_test`: - loss_channels_last = [0.0, 0.0, 0.0] - loss_channels_first = [0.0, 0.0, 0.0] - - old_data_format = backend.image_data_format() - - # Evaluate a simple network with channels last, with all three - # loss functions: - backend.set_image_data_format("channels_last") - data = np.moveaxis(data_channels_first, 1, -1) - for index, loss_function in enumerate(losses_to_test): - labels = np.moveaxis(labels_channels_first[index], 1, -1) - inputs = input_layer.Input(shape=(3, 3, 1)) - model = prepare_simple_model(inputs, loss_function, labels) - loss_channels_last[index] = model.evaluate( - x=data, y=labels, batch_size=1, verbose=0 - ) - - # Evaluate the same network with channels first, with all three - # loss functions: - backend.set_image_data_format("channels_first") - data = data_channels_first - for index, loss_function in enumerate(losses_to_test): - labels = labels_channels_first[index] - inputs = input_layer.Input(shape=(1, 3, 3)) - model = prepare_simple_model(inputs, loss_function, labels) - loss_channels_first[index] = model.evaluate( - x=data, y=labels, batch_size=1, verbose=0 - ) - - backend.set_image_data_format(old_data_format) - - np.testing.assert_allclose( - loss_channels_first, - loss_channels_last, - rtol=1e-06, - err_msg="{}{}".format( - "Computed different losses for ", - "channels_first and channels_last", - ), - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/training_integration_test.py b/keras/engine/training_integration_test.py deleted file mode 100644 index 8b6050c396b..00000000000 --- a/keras/engine/training_integration_test.py +++ /dev/null @@ -1,260 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""End-to-end tests for a variety of small models.""" - -import collections -import itertools - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -def _conv2d_filter(**kwargs): - """Conv with non-default strides and dilation rate is not supported.""" - return kwargs["strides"] <= 1 or kwargs["dilation_rate"] <= 1 - - -# Scheme: (layer_class, data_shape, fuzz_dims, constructor_args, filter_fn) -# layer_class: -# A keras Layer class to be tested. -# data_shape: -# The shape of the input data. (not including batch dim) -# fuzz_dims: -# Dimensions which can be unspecified during model construction. For -# instance, if data_shape is (2, 5) and fuzz_dims is (False, True), a pass -# with model input shape of (2, None) will also be performed. -# constructor_args: -# An OrderedDict (to ensure consistent test names) with a key and a list -# of values to test. Test cases will be generated for the Cartesian product -# of all constructor args, so adding more fields can cause the drastically -# increase the testing load. -# filter_fn: -# If not None, this function will be called on each set of generated -# constructor args, and prevents generation of contradictory combinations. -# A True return value indicates a valid test. -_LAYERS_TO_TEST = [ - ( - keras.layers.Dense, - (1,), - (False,), - collections.OrderedDict([("units", [1])]), - None, - ), - ( - keras.layers.Activation, - (2, 2), - (True, True), - collections.OrderedDict([("activation", ["relu"])]), - None, - ), - ( - keras.layers.Dropout, - (16,), - (False,), - collections.OrderedDict([("rate", [0.25])]), - None, - ), - ( - keras.layers.BatchNormalization, - (8, 8, 3), - (True, True, False), - collections.OrderedDict( - [("axis", [3]), ("center", [True, False]), ("scale", [True, False])] - ), - None, - ), - ( - keras.layers.Conv1D, - (8, 8), - (False, False), - collections.OrderedDict( - [ - ("filters", [1]), - ("kernel_size", [1, 3]), - ("strides", [1, 2]), - ("padding", ["valid", "same"]), - ("use_bias", [True]), - ("kernel_regularizer", ["l2"]), - ("data_format", ["channels_last"]), - ] - ), - None, - ), - ( - keras.layers.Conv2D, - (8, 8, 3), - (True, True, False), - collections.OrderedDict( - [ - ("filters", [1]), - ("kernel_size", [1, 3]), - ("strides", [1, 2]), - ("padding", ["valid", "same"]), - ("use_bias", [True, False]), - ("kernel_regularizer", ["l2"]), - ("dilation_rate", [1, 2]), - ("data_format", ["channels_last"]), - ] - ), - _conv2d_filter, - ), - ( - keras.layers.LSTM, - (4, 4), - (False, False), - collections.OrderedDict( - [ - ("units", [1]), - ("kernel_regularizer", ["l2"]), - ("dropout", [0, 0.5]), - ("stateful", [True, False]), - ("unroll", [True, False]), - ("return_sequences", [True, False]), - ] - ), - None, - ), -] - - -def _gather_test_cases(): - cases = [] - for ( - layer_type, - inp_shape, - fuzz_dims, - arg_dict, - filter_fn, - ) in _LAYERS_TO_TEST: - arg_combinations = [[(k, i) for i in v] for k, v in arg_dict.items()] - for arguments in itertools.product(*arg_combinations): - layer_kwargs = {k: v for k, v in arguments} - if filter_fn is not None and not filter_fn(**layer_kwargs): - continue - - name = "_{}_{}".format( - layer_type.__name__, - "_".join("{}_{}".format(*i) for i in arguments), - ) - cases.append((name, layer_type, inp_shape, fuzz_dims, layer_kwargs)) - return cases - - -OUTPUT_TEST_CASES = _gather_test_cases() - - -class CoreLayerIntegrationTest(test_combinations.TestCase): - """Test that layers and models produce the correct tensor types.""" - - # In v1 graph there are only symbolic tensors. - @test_combinations.run_all_keras_modes(always_skip_v1=True) - @parameterized.named_parameters(*OUTPUT_TEST_CASES) - def test_layer_output_type( - self, layer_to_test, input_shape, _, layer_kwargs - ): - layer = layer_to_test(**layer_kwargs) - - input_data = np.ones(shape=(2,) + input_shape, dtype=np.float32) - layer_result = layer(input_data) - - inp = keras.layers.Input(shape=input_shape, batch_size=2) - model = keras.models.Model(inp, layer_to_test(**layer_kwargs)(inp)) - model_result = model(input_data) - - for x in [layer_result, model_result]: - if not isinstance(x, tf.Tensor): - raise ValueError( - f"Tensor or EagerTensor expected, got type {type(x)}" - ) - - if ( - isinstance(x, tf.__internal__.EagerTensor) - != tf.executing_eagerly() - ): - expected_type = ( - tf.__internal__.EagerTensor - if tf.executing_eagerly() - else tf.Tensor - ) - raise ValueError( - f"Expected type {expected_type}, got type {type(x)}" - ) - - def _run_fit_eval_predict( - self, layer_to_test, input_shape, data_shape, layer_kwargs - ): - batch_size = 2 - run_eagerly = test_utils.should_run_eagerly() - - def map_fn(_): - x = keras.backend.random_uniform(shape=data_shape) - y = keras.backend.random_uniform(shape=(1,)) - return x, y - - dataset = tf.data.Dataset.range(4).map(map_fn).batch(batch_size) - - inp = keras.layers.Input(shape=input_shape, batch_size=batch_size) - layer = layer_to_test(**layer_kwargs)(inp) - - # Condense the output down to a single scalar. - layer = keras.layers.Flatten()(layer) - layer = keras.layers.Lambda(lambda x: tf.reduce_mean(x, keepdims=True))( - layer - ) - layer = keras.layers.Dense(1, activation=None)(layer) - model = keras.models.Model(inp, layer) - - model.compile(loss="mse", optimizer="sgd", run_eagerly=run_eagerly) - model.fit(dataset, verbose=2, epochs=2) - - model.compile(loss="mse", optimizer="sgd", run_eagerly=run_eagerly) - model.fit(dataset.repeat(2), verbose=2, epochs=2, steps_per_epoch=2) - - eval_dataset = tf.data.Dataset.range(4).map(map_fn).batch(batch_size) - model.evaluate(eval_dataset, verbose=2) - - def pred_map_fn(_): - return keras.backend.random_uniform(shape=data_shape) - - pred_dataset = tf.data.Dataset.range(4) - pred_dataset = pred_dataset.map(pred_map_fn).batch(batch_size) - model.predict(pred_dataset, verbose=2) - - @test_combinations.run_all_keras_modes(always_skip_v1=False) - @parameterized.named_parameters(*OUTPUT_TEST_CASES) - def test_model_loops( - self, layer_to_test, input_shape, fuzz_dims, layer_kwargs - ): - self._run_fit_eval_predict( - layer_to_test, input_shape, input_shape, layer_kwargs - ) - - if any(fuzz_dims): - fuzzed_shape = [] - for dim, should_fuzz in zip(input_shape, fuzz_dims): - fuzzed_shape.append(None if should_fuzz else dim) - - self._run_fit_eval_predict( - layer_to_test, fuzzed_shape, input_shape, layer_kwargs - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/training_test.py b/keras/engine/training_test.py deleted file mode 100644 index 7836c49ef1a..00000000000 --- a/keras/engine/training_test.py +++ /dev/null @@ -1,5009 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for training routines.""" - - -import collections -import io -import sys -import tempfile - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import backend -from keras import layers as layers_module -from keras import losses -from keras import metrics as metrics_module -from keras.callbacks import Callback -from keras.engine import input_layer -from keras.engine import sequential -from keras.engine import training as training_module -from keras.engine import training_utils_v1 -from keras.layers.preprocessing import string_lookup -from keras.mixed_precision import policy -from keras.optimizers import legacy as optimizer_legacy -from keras.optimizers import rmsprop -from keras.optimizers import sgd as sgd_experimental -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import data_utils -from keras.utils import io_utils -from keras.utils import np_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.training.rmsprop import ( - RMSPropOptimizer, -) - -try: - import scipy.sparse as scipy_sparse -except ImportError: - scipy_sparse = None - - -class TrainingTest(test_combinations.TestCase): - @test_combinations.run_all_keras_modes - @test_combinations.run_with_all_model_types - def test_model_instrumentation(self): - layers = [ - layers_module.Dense(10, dtype=np.float64), - layers_module.Dense(10, dtype=np.float64), - ] - model = test_utils.get_model_from_layers(layers, input_shape=(1,)) - - self.assertTrue(model._instrumented_keras_api) - self.assertTrue(model._instrumented_keras_model_class) - self.assertFalse(model._instrumented_keras_layer_class) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_fit_training_arg(self): - class ReturnTraining(layers_module.Layer): - def call(self, inputs, training): - if training: - return inputs + tf.constant([100], "float32") - else: - return inputs + tf.constant([0], "float32") - - model = sequential.Sequential([ReturnTraining()]) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - hist = model.fit(x=np.array([0.0]), y=np.array([0.0])) - self.assertAllClose(hist.history["loss"][0], 10000) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_fit_on_empty(self): - model = sequential.Sequential([layers_module.Dense(1)]) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - with self.assertRaisesRegex( - ValueError, "Unexpected result of `train_function`.*" - ): - model.fit(x=np.array([]), y=np.array([])) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_compile_fit_with_jit_compile(self): - # Test with jit_compile = True - model = sequential.Sequential([layers_module.Dense(1)]) - model.compile("sgd", loss="mse", run_eagerly=False, jit_compile=True) - x, y = np.ones((10, 1)), np.ones((10, 1)) - model.fit(x, y, epochs=2) - # Test fcompile fit for a RNN model - model = sequential.Sequential() - model.add( - layers_module.TimeDistributed( - layers_module.Embedding(5, 6, mask_zero=True), - input_shape=(None, None), - ) - ) # N by t_1 by t_2 by 6 - model.add( - layers_module.TimeDistributed( - layers_module.SimpleRNN(7, return_sequences=True) - ) - ) - model.add( - layers_module.TimeDistributed( - layers_module.SimpleRNN(8, return_sequences=False) - ) - ) - model.add(layers_module.SimpleRNN(1, return_sequences=False)) - model.compile(optimizer="sgd", loss="mse", jit_compile=True) - model_input = np.random.randint( - low=1, high=5, size=(10, 3, 4), dtype="int32" - ) - for i in range(4): - model_input[i, i:, i:] = 0 - model.fit( - model_input, np.random.random((10, 1)), epochs=1, batch_size=10 - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_compile_fit_evaluate_predict_with_mirrored_strategy(self): - # Test with jit_compile = True - strategy = tf.distribute.MirroredStrategy() - with strategy.scope(): - model = sequential.Sequential([layers_module.Dense(1)]) - model.compile("sgd", loss="mse", run_eagerly=False, jit_compile=True) - x, y = np.ones((10, 1)), np.ones((10, 1)) - model.fit(x, y, epochs=2) - model.evaluate(x, y) - model.predict(x) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_distribution_reduction_method_sum_default_train_step(self): - - strategy = tf.distribute.MirroredStrategy( - ["/cpu:1", "/cpu:2", "/cpu:3", "/cpu:4"] - ) - BATCH_SIZE = 10 - - # A model that always outputs `1`: - with strategy.scope(): - inputs = layers_module.Input(shape=(1,), name="my_input") - outputs = layers_module.Dense( - units=1, kernel_initializer="zeros", bias_initializer="ones" - )(inputs) - model = training_module.Model(inputs, outputs) - - model.trainable = False - model.compile(optimizer="sgd", loss="mean_absolute_error") - - # Data points are always equal to `2`: - x, y = 2 * np.ones((40, 1)), 2 * np.ones((40, 1)) - - # For every output x_i = 1, every target y_i = 2, - # loss_i = |1-2| = 1; and - # loss_total = sum([1, 1, ..., 1]) / BATCH_SIZE = 1.0 - history = model.fit(x, y, epochs=1, batch_size=BATCH_SIZE) - self.assertAllClose(history.history["loss"][-1], 1.0) - - eval_output = model.evaluate(x, y, batch_size=BATCH_SIZE) - self.assertAllClose(eval_output, 1.0) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_distribution_reduction_method_sum_custom_train_step(self): - - strategy = tf.distribute.MirroredStrategy( - ["/cpu:1", "/cpu:2", "/cpu:3", "/cpu:4"] - ) - BATCH_SIZE = 10 - - class MyModel(training_module.Model): - @staticmethod - def reduce_loss(loss_value, global_batch_size): - REDUCTION_AXES = range(1, backend.ndim(loss_value)) - loss_value = tf.reduce_mean(loss_value, axis=REDUCTION_AXES) - return tf.nn.compute_average_loss( - loss_value, global_batch_size=global_batch_size - ) - - def train_step(self, data): - loss_value = tf.ones_like(data[0]) - return { - "loss": MyModel.reduce_loss( - loss_value, global_batch_size=BATCH_SIZE - ) - } - - def test_step(self, data): - loss_value = tf.ones_like(data[0]) - return { - "metric": MyModel.reduce_loss( - loss_value, global_batch_size=BATCH_SIZE - ) - } - - with strategy.scope(): - inputs = layers_module.Input(shape=(1,), name="my_input") - outputs = layers_module.Dense(1)(inputs) - model = MyModel(inputs, outputs) - - model.compile() - - x, y = np.ones((40, 1)), np.ones((40, 1)) - history = model.fit(x, y, epochs=2, batch_size=BATCH_SIZE) - self.assertAllClose(history.history["loss"][-1], 1.0) - - eval_output = model.evaluate(x, y, batch_size=BATCH_SIZE) - self.assertAllClose(eval_output, 1.0) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_verify_xla_compile_with_jit_compile(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = np.array([[1, 2, 3, 4], [4, 3, 1, 0]]) - strategy = tf.distribute.MirroredStrategy() - with strategy.scope(): - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup(vocabulary=vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - model.compile( - "sgd", loss="mse", run_eagerly=False, jit_compile=True - ) - # Added a string op unsupported by XLA compiler to make sure that an - # error is thrown, This ensures that the graph is indeed being - # compiled using XLA - with self.assertRaisesRegex( - tf.errors.InvalidArgumentError, "Graph execution error" - ): - model.fit(input_array, expected_output, epochs=1) - model.predict(input_array) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_jit_compile_for_compile_evaluate_predict(self): - # Test with jit_compile = True for model.compile(), model.evaluate(), - # model.predict() - model = sequential.Sequential([layers_module.Dense(1)]) - self.assertIsNone(model._jit_compile) - model.compile("sgd", loss="mse", run_eagerly=False, jit_compile=True) - self.assertTrue(model._jit_compile) - x, y = np.ones((10, 1)), np.ones((10, 1)) - model.fit(x, y, epochs=2) - model.evaluate(x, y) - model.predict(x) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_jit_compile_true_for_evaluate_predict_but_false_for_compile(self): - # Test with jit_compile = True for model.compile(), model.evaluate(), - # model.predict() - model = sequential.Sequential([layers_module.Dense(1)]) - self.assertIsNone(model._jit_compile) - self.assertIsNone(model.jit_compile) - model.compile("sgd", loss="mse") - model.jit_compile = True - self.assertTrue(model._jit_compile) - self.assertTrue(model.jit_compile) - x, y = np.ones((10, 1)), np.ones((10, 1)) - model.fit(x, y, epochs=2) - model.evaluate(x, y) - model.predict(x) - self.assertTrue(model._jit_compile) - self.assertTrue(model.jit_compile) - model.compile("sgd", loss="mse", jit_compile=False) - self.assertFalse(model._jit_compile) - self.assertFalse(model.jit_compile) - model.compile("sgd", loss="mse", jit_compile=True) - self.assertTrue(model._jit_compile) - self.assertTrue(model.jit_compile) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_predict_xla_compile_with_jit_compile_setter_false_then_true(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - strategy = tf.distribute.MirroredStrategy() - with strategy.scope(): - input_data = keras.Input(shape=(None,), dtype=tf.string) - # Added a string op unsupported by XLA compiler to make sure that an - # error is thrown, This ensures that the graph is indeed being - # compiled using XLA - layer = string_lookup.StringLookup(vocabulary=vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - # Compiled without jit_compile - model.predict(input_array) - model.jit_compile = True - with self.assertRaisesRegex( - tf.errors.InvalidArgumentError, "Graph execution error" - ): - model.predict(input_array) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_fit_without_loss_at_compile(self): - model = sequential.Sequential([layers_module.Dense(1)]) - model.compile("sgd", run_eagerly=test_utils.should_run_eagerly()) - x, y = np.ones((10, 1)), np.ones((10, 1)) - with self.assertRaisesRegex(ValueError, "No loss found..*"): - model.fit(x, y, epochs=2) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_fit_without_loss_at_compile_but_with_add_loss(self): - class MyModel(sequential.Sequential): - def call(self, x): - self.add_loss(tf.reduce_sum(x)) - return x - - model = MyModel([layers_module.Dense(1)]) - model.compile("sgd", run_eagerly=test_utils.should_run_eagerly()) - x, y = np.ones((10, 1)), np.ones((10, 1)) - model.fit(x, y, epochs=2) - - @test_combinations.run_all_keras_modes - def test_run_eagerly_setting(self): - model = sequential.Sequential([layers_module.Dense(1)]) - run_eagerly = test_utils.should_run_eagerly() - model.compile("sgd", "mse", run_eagerly=run_eagerly) - self.assertEqual(model.run_eagerly, run_eagerly) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - @parameterized.named_parameters( - ("train_on_batch", "train_on_batch"), - ("test_on_batch", "test_on_batch"), - ("predict_on_batch", "predict_on_batch"), - ("fit", "fit"), - ("evaluate", "evaluate"), - ("predict", "predict"), - ) - def test_disallow_methods_inside_tf_function(self, method_name): - model = sequential.Sequential([layers_module.Dense(1)]) - run_eagerly = test_utils.should_run_eagerly() - model.compile("sgd", "mse", run_eagerly=run_eagerly) - - @tf.function - def my_fn(): - getattr(model, method_name)(1) - - error_msg = "inside a `tf.function`" - with self.assertRaisesRegex(RuntimeError, error_msg): - my_fn() - - @test_combinations.run_all_keras_modes - def test_fit_and_validate_learning_phase(self): - class ReturnTraining(layers_module.Layer): - def call(self, inputs): - return backend.in_train_phase( - lambda: tf.ones_like(inputs), lambda: tf.zeros_like(inputs) - ) - - model = sequential.Sequential([ReturnTraining(input_shape=(2,))]) - model.compile( - "sgd", loss="mae", run_eagerly=test_utils.should_run_eagerly() - ) - - inputs = np.ones((40, 2), dtype=np.float32) - targets = np.ones((40, 1), dtype=np.float32) - - # Test correctness with `steps_per_epoch`. - train_dataset = tf.data.Dataset.from_tensor_slices( - (inputs, targets) - ).batch(10) - val_dataset = tf.data.Dataset.from_tensor_slices( - (inputs, targets) - ).batch(10) - history = model.fit( - train_dataset, epochs=2, verbose=1, validation_data=val_dataset - ) - - # The training loss should be 0.0 - self.assertAllClose(history.history["loss"][0], 0.0) - # The validation loss should be 1.0. - self.assertAllClose(history.history["val_loss"][0], 1.0) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_warn_on_evaluate(self): - i = layers_module.Input((1,)) - x = np.ones((100, 1)) - y = np.ones((100, 1)) - sample_weight = np.ones((100,)) - model = training_module.Model(i, i) - model.compile(loss="mse", metrics=["mse"]) - - logging.set_verbosity(2) - with self.assertLogs(level=2) as logs: - model.evaluate(x, y, sample_weight=sample_weight) - self.assertTrue( - any( - "`evaluate()` received a value for `sample_weight`" in log - for log in logs.output - ) - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_sample_weight_warning_disable(self): - i = layers_module.Input((1,)) - x = np.ones((100, 1)) - y = np.ones((100, 1)) - sample_weight = np.ones((100,)) - model = training_module.Model(i, i) - model.compile(loss="mse", metrics=["mse"], weighted_metrics=[]) - - logging.set_verbosity(2) - with self.assertLogs(level=2) as logs: - model.evaluate(x, y, sample_weight=sample_weight) - self.assertFalse( - any( - "`evaluate()` received a value for `sample_weight`" in log - for log in logs.output - ) - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_warn_on_evaluate_with_tf_dataset(self): - i = layers_module.Input((1,)) - - x = tf.ones((100, 1), tf.float32) - y = tf.ones((100, 1), tf.float32) - sample_weight = tf.ones((100,), dtype=tf.float32) - val_dataset = tf.data.Dataset.from_tensor_slices( - (x, y, sample_weight) - ).batch(10) - model = training_module.Model(i, i) - model.compile(loss="mse", metrics=["mse"]) - - logging.set_verbosity(2) - with self.assertLogs(level=2) as logs: - model.evaluate(val_dataset) - self.assertTrue( - any( - "`evaluate()` received a value for `sample_weight`" in log - for log in logs.output - ) - ) - - @test_combinations.run_all_keras_modes - def test_fit_and_validate_training_arg(self): - class ReturnTraining(layers_module.Layer): - def call(self, inputs, training=None): - return backend.in_train_phase( - lambda: tf.ones_like(inputs), - lambda: tf.zeros_like(inputs), - training=training, - ) - - model = sequential.Sequential([ReturnTraining(input_shape=(2,))]) - model.compile( - "sgd", loss="mae", run_eagerly=test_utils.should_run_eagerly() - ) - - inputs = np.ones((40, 2), dtype=np.float32) - targets = np.ones((40, 1), dtype=np.float32) - - # Test correctness with `steps_per_epoch`. - train_dataset = tf.data.Dataset.from_tensor_slices( - (inputs, targets) - ).batch(10) - val_dataset = tf.data.Dataset.from_tensor_slices( - (inputs, targets) - ).batch(10) - history = model.fit( - train_dataset, epochs=2, verbose=1, validation_data=val_dataset - ) - - # The training loss should be 0.0 - self.assertAllClose(history.history["loss"][0], 0.0) - # The validation loss should be 1.0. - self.assertAllClose(history.history["val_loss"][0], 1.0) - - @test_combinations.run_all_keras_modes - @test_combinations.run_with_all_model_types - def test_target_dtype_matches_output(self): - def loss_fn(labels, preds): - self.assertEqual(labels.dtype, preds.dtype) - return labels - preds - - layers = [ - layers_module.Dense(10, dtype=np.float64), - layers_module.Dense(10, dtype=np.float64), - ] - model = test_utils.get_model_from_layers(layers, input_shape=(1,)) - inputs = np.ones(shape=(10, 1), dtype=np.float64) - targets = np.ones(shape=(10, 1), dtype=np.float64) - model.compile( - "sgd", loss=loss_fn, run_eagerly=test_utils.should_run_eagerly() - ) - model.train_on_batch(inputs, targets) - model.test_on_batch(inputs, targets) - self.assertEqual(model.predict(inputs).dtype, np.float64) - - @test_combinations.run_all_keras_modes - def test_fit_and_validate_nested_training_arg(self): - class NestedReturnTraining(layers_module.Layer): - def call(self, inputs, training=None): - return backend.in_train_phase( - lambda: tf.ones_like(inputs), - lambda: tf.zeros_like(inputs), - training=training, - ) - - class ReturnTraining(layers_module.Layer): - def __init__(self, input_shape=None, **kwargs): - super().__init__(input_shape=input_shape, **kwargs) - self._nested_layer = None - - def build(self, input_shape): - self._nested_layer = NestedReturnTraining() - self.built = True - - def call(self, inputs): - return self._nested_layer(inputs) - - model = sequential.Sequential([ReturnTraining(input_shape=(2,))]) - model.compile( - "sgd", loss="mae", run_eagerly=test_utils.should_run_eagerly() - ) - - inputs = np.ones((40, 2), dtype=np.float32) - targets = np.ones((40, 1), dtype=np.float32) - - # Test correctness with `steps_per_epoch`. - train_dataset = tf.data.Dataset.from_tensor_slices( - (inputs, targets) - ).batch(10) - val_dataset = tf.data.Dataset.from_tensor_slices( - (inputs, targets) - ).batch(10) - history = model.fit( - train_dataset, epochs=2, verbose=1, validation_data=val_dataset - ) - - # The training loss should be 0.0 - self.assertAllClose(history.history["loss"][0], 0.0) - # The validation loss should be 1.0. - self.assertAllClose(history.history["val_loss"][0], 1.0) - - @test_combinations.run_with_all_model_types(exclude_models="sequential") - @test_combinations.run_all_keras_modes - def test_fit_on_arrays(self): - input_a = layers_module.Input(shape=(3,), name="input_a") - input_b = layers_module.Input(shape=(3,), name="input_b") - - dense = layers_module.Dense(4, name="dense") - dropout = layers_module.Dropout(0.5, name="dropout") - branch_a = [input_a, dense] - branch_b = [input_b, dense, dropout] - - model = test_utils.get_multi_io_model(branch_a, branch_b) - - optimizer = RMSPropOptimizer(learning_rate=0.001) - loss = "mse" - loss_weights = [1.0, 0.5] - model.compile( - optimizer, - loss, - metrics=[metrics_module.CategoricalAccuracy(), "mae"], - loss_weights=loss_weights, - run_eagerly=test_utils.should_run_eagerly(), - ) - - input_a_np = np.random.random((10, 3)) - input_b_np = np.random.random((10, 3)) - - output_d_np = np.random.random((10, 4)) - output_e_np = np.random.random((10, 4)) - - # Test fit at different verbosity - model.fit( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - epochs=1, - batch_size=5, - verbose=0, - ) - model.fit( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - epochs=1, - batch_size=5, - verbose=1, - ) - model.fit( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - epochs=2, - batch_size=5, - verbose=2, - ) - model.train_on_batch( - [input_a_np, input_b_np], [output_d_np, output_e_np] - ) - - # Test with validation data - model.fit( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - validation_data=( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - ), - epochs=1, - batch_size=5, - verbose=0, - ) - model.fit( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - validation_data=( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - ), - epochs=2, - batch_size=5, - verbose=1, - ) - model.fit( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - validation_data=( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - ), - epochs=2, - batch_size=5, - verbose=2, - ) - model.fit( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - validation_data=[ - [input_a_np, input_b_np], - [output_d_np, output_e_np], - ], - epochs=2, - batch_size=5, - verbose=2, - ) - # Test with validation split - model.fit( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - epochs=2, - batch_size=5, - verbose=0, - validation_split=0.2, - ) - - if test_utils.get_model_type() == "functional": - # Test with dictionary inputs - model.fit( - {"input_a": input_a_np, "input_b": input_b_np}, - {"dense": output_d_np, "dropout": output_e_np}, - epochs=1, - batch_size=5, - verbose=0, - ) - model.fit( - {"input_a": input_a_np, "input_b": input_b_np}, - {"dense": output_d_np, "dropout": output_e_np}, - epochs=1, - batch_size=5, - verbose=1, - ) - model.fit( - {"input_a": input_a_np, "input_b": input_b_np}, - {"dense": output_d_np, "dropout": output_e_np}, - validation_data=( - {"input_a": input_a_np, "input_b": input_b_np}, - {"dense": output_d_np, "dropout": output_e_np}, - ), - epochs=1, - batch_size=5, - verbose=0, - ) - model.train_on_batch( - {"input_a": input_a_np, "input_b": input_b_np}, - {"dense": output_d_np, "dropout": output_e_np}, - ) - - # Test with lists for loss, metrics - loss = ["mae", "mse"] - model.compile( - optimizer, - loss, - metrics=[metrics_module.CategoricalAccuracy(), "mae"], - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - epochs=1, - batch_size=5, - verbose=0, - ) - - # Test with dictionaries for loss, metrics, loss weights - if test_utils.get_model_type() == "functional": - loss = {"dense": "mse", "dropout": "mae"} - loss_weights = {"dense": 1.0, "dropout": 0.5} - metrics = { - "dense": "mse", - "dropout": metrics_module.CategoricalAccuracy(), - } - model.compile( - optimizer, - loss, - metrics=metrics, - loss_weights=loss_weights, - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - epochs=1, - batch_size=5, - verbose=0, - ) - - # Build single-input model - x = layers_module.Input(shape=(3,), name="input_a") - y = layers_module.Dense(4)(x) - model = training_module.Model(x, y) - model.compile( - optimizer, loss="mse", run_eagerly=test_utils.should_run_eagerly() - ) - # This will work - model.fit([input_a_np], output_d_np, epochs=1) - - # Test model on a list of floats - input_a_np = np.random.random((10, 3)) - input_b_np = np.random.random((10, 4)) - - # Test execution on inputs that are lists of scalars. - # TF2 and TF1 have slightly different semantics: - if tf.executing_eagerly(): - # In TF2 to avoid any ambiguity when there are nested lists - # the entire input gets converted to a - # single numpy array (& it only works in the case of a single io - # model) - model.fit( - np.ndarray.tolist(input_a_np), - np.ndarray.tolist(input_b_np), - epochs=2, - batch_size=5, - verbose=2, - ) - else: - # In TF1 there was logic to try disambiguating between the - # individual inputs when lists are nested. This allowed multi-io - # functional models to support lists of scalars as input, but it - # caused ambiguity issues for subclass models & made it trickier to - # pass multi-dimensional inputs as lists of scalars to single io - # models. This was an excessive amount of complexity for what boiled - # down to a convenience method we were mainly just using for writing - # tests. - model.fit( - [np.ndarray.tolist(input_a_np)], - [np.ndarray.tolist(input_b_np)], - epochs=2, - batch_size=5, - verbose=2, - ) - - @test_combinations.run_all_keras_modes - def test_evaluate_predict_on_arrays(self): - a = layers_module.Input(shape=(3,), name="input_a") - b = layers_module.Input(shape=(3,), name="input_b") - - dense = layers_module.Dense(4, name="dense") - c = dense(a) - d = dense(b) - e = layers_module.Dropout(0.5, name="dropout")(c) - - model = training_module.Model([a, b], [d, e]) - - optimizer = RMSPropOptimizer(learning_rate=0.001) - loss = "mse" - loss_weights = [1.0, 0.5] - model.compile( - optimizer, - loss, - metrics=["mae", metrics_module.CategoricalAccuracy()], - loss_weights=loss_weights, - sample_weight_mode=None, - run_eagerly=test_utils.should_run_eagerly(), - ) - - input_a_np = np.random.random((10, 3)) - input_b_np = np.random.random((10, 3)) - - output_d_np = np.random.random((10, 4)) - output_e_np = np.random.random((10, 4)) - - # Test evaluate at different verbosity - out = model.evaluate( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - batch_size=5, - verbose=0, - ) - self.assertEqual(len(out), 7) - out = model.evaluate( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - batch_size=5, - verbose=1, - ) - self.assertEqual(len(out), 7) - out = model.evaluate( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - batch_size=5, - verbose=2, - ) - self.assertEqual(len(out), 7) - out = model.test_on_batch( - [input_a_np, input_b_np], [output_d_np, output_e_np] - ) - self.assertEqual(len(out), 7) - - # Test evaluate with dictionary inputs - model.evaluate( - {"input_a": input_a_np, "input_b": input_b_np}, - {"dense": output_d_np, "dropout": output_e_np}, - batch_size=5, - verbose=0, - ) - model.evaluate( - {"input_a": input_a_np, "input_b": input_b_np}, - {"dense": output_d_np, "dropout": output_e_np}, - batch_size=5, - verbose=1, - ) - - # Test predict - out = model.predict([input_a_np, input_b_np], batch_size=5) - self.assertEqual(len(out), 2) - out = model.predict({"input_a": input_a_np, "input_b": input_b_np}) - self.assertEqual(len(out), 2) - out = model.predict_on_batch( - {"input_a": input_a_np, "input_b": input_b_np} - ) - self.assertEqual(len(out), 2) - - def _make_sequence_input_functions(self, input_type): - # train and test - xy_namedtuple = collections.namedtuple("xy_namedtuple", ["x", "y"]) - - # predict - x_namedtuple = collections.namedtuple("x_namedtuple", ["x"]) - - if input_type == "dataset": - dataset = tf.data.Dataset.range(16).map( - lambda _: tf.ones(shape=(1,)) - ) - - xy_dataset = tf.data.Dataset.zip((dataset, dataset)).batch(4) - x_dataset = dataset.batch(4) - - def xy_function(use_namedtuple): - return ( - xy_dataset.map(xy_namedtuple) - if use_namedtuple - else xy_dataset - ) - - def x_function(use_namedtuple): - return ( - x_dataset.map(x_namedtuple) if use_namedtuple else x_dataset - ) - - return xy_function, x_function - - elif input_type == "generator": - - def xy_generator(use_namedtuple): - x, y = np.ones((4, 1)), np.ones((4, 1)) - for _ in range(4): - if use_namedtuple: - yield xy_namedtuple(x, y) - else: - yield x, y - - def x_generator(use_namedtuple): - x = np.ones((4, 1)) - for _ in range(4): - if use_namedtuple: - yield x_namedtuple(x) - else: - yield x - - return xy_generator, x_generator - - elif input_type == "sequence": - - class XYSequence(data_utils.Sequence): - def __init__(self, use_namedtuple): - self._use_namedtuple = use_namedtuple - super().__init__() - - def __getitem__(self, idx): - x, y = np.ones((4, 1)), np.ones((4, 1)) - if self._use_namedtuple: - return xy_namedtuple(x, y) - return x, y - - def __len__(self): - return 4 - - class XSequence(data_utils.Sequence): - def __init__(self, use_namedtuple): - self._use_namedtuple = use_namedtuple - super().__init__() - - def __getitem__(self, idx): - x = np.ones((4, 1)) - if self._use_namedtuple: - return x_namedtuple(x) - return x - - def __len__(self): - return 4 - - return XYSequence, XSequence - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - @test_combinations.run_with_all_model_types - @parameterized.named_parameters( - ("dataset", "dataset"), - ("generator", "generator"), - ("sequence", "sequence"), - ) - def test_sequence_input_types(self, input_type): - """Ensure that namedtuples and tuples are plumbed identically.""" - if not tf.executing_eagerly(): - self.skipTest("Improved checking is only present in data_adapter.") - - xy_function, x_function = self._make_sequence_input_functions( - input_type - ) - fit_kwargs, evaluate_kwargs, predict_kwargs = {}, {}, {} - if input_type == "generator": - fit_kwargs["steps_per_epoch"] = 4 - evaluate_kwargs["steps"] = 4 - predict_kwargs["steps"] = 4 - - model = test_utils.get_small_mlp(1, 1, 1) - model.compile( - loss="mse", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - - model.fit(xy_function(use_namedtuple=False), **fit_kwargs) - model.evaluate(xy_function(use_namedtuple=False), **evaluate_kwargs) - model.predict(x_function(use_namedtuple=False), **predict_kwargs) - - @test_combinations.run_all_keras_modes - def test_custom_mapping_in_config(self): - class MyModel(training_module.Model): - def call(self, inputs): - return inputs - - def get_config(self): - self.a = {} - return {"a": self.a} - - model = MyModel() - self.assertIn('{"a": {}}', model.to_json()) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_get_config_default(self): - class MyModel(training_module.Model): - def __init__(self, units): - super().__init__() - self.units = units - - def call(self, inputs): - return inputs - - # Test default config with named args - model = MyModel(units=10) - config = model.get_config() - self.assertLen(config, 1) - self.assertEqual(config["units"], 10) - model = model.from_config(config) - self.assertDictEqual(model.get_config(), config) - - # Test default config with positinal args - model = MyModel(10) - config = model.get_config() - self.assertLen(config, 1) - self.assertEqual(config["units"], 10) - model = model.from_config(config) - self.assertDictEqual(model.get_config(), config) - - # Test non-serializable - model = MyModel(units=np.int32(10)) - config = model.get_config() - self.assertNotIn("units", config) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_get_config_kwargs(self): - class MyModel(training_module.Model): - def __init__(self, units, **kwargs): - super().__init__() - self.units = units - - def call(self, inputs): - return inputs - - model = MyModel(10, extra=1) - config = model.get_config() - # config = {'name': 'my_model', 'trainable': True, 'dtype': 'float32', - # 'extra': 1, 'units': 10} - self.assertLen(config, 5) - self.assertEqual(config["units"], 10) - self.assertEqual(config["extra"], 1) - model = model.from_config(config) - self.assertDictEqual(model.get_config(), config) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_get_config_override(self): - class MyModel(training_module.Model): - def __init__(self, units): - super().__init__() - self.units = units - - def call(self, inputs): - return inputs - - def get_config(self): - config = {"units": int(self.units)} - config.update(super().get_config()) - return config - - model = MyModel(units=np.int32(10)) - config = model.get_config() - self.assertLen(config, 1) - self.assertEqual(config["units"], 10) - model = model.from_config(config) - self.assertDictEqual(model.get_config(), config) - - def test_training_on_sparse_data_with_dense_placeholders_v1(self): - with tf.Graph().as_default(): - if scipy_sparse is None: - return - - test_inputs = [ - scipy_sparse.random(6, 3, density=0.25).tocsr() - for _ in range(2) - ] - test_outputs = [ - scipy_sparse.random(6, i, density=0.25).tocsr() - for i in range(3, 5) - ] - in1 = layers_module.Input(shape=(3,)) - in2 = layers_module.Input(shape=(3,)) - out1 = layers_module.Dropout(0.5, name="dropout")(in1) - out2 = layers_module.Dense(4, name="dense_1")(in2) - model = training_module.Model([in1, in2], [out1, out2]) - model.predict(test_inputs, batch_size=2) - optimizer = "rmsprop" - model.compile( - optimizer, - "mse", - metrics=["mae", metrics_module.CategoricalAccuracy()], - ) - model.fit( - test_inputs, - test_outputs, - epochs=1, - batch_size=2, - validation_split=0.5, - ) - model.evaluate(test_inputs, test_outputs, batch_size=2) - - @test_combinations.run_all_keras_modes - def test_compile_with_sparse_placeholders(self): - inputs = layers_module.Input(shape=(10,), sparse=True) - weights = tf.Variable( - np.ones((10, 1)).astype(np.float32), name="weights" - ) - weights_mult = lambda x: tf.sparse.sparse_dense_matmul(x, weights) - output_layer = layers_module.Lambda(weights_mult)(inputs) - model = training_module.Model([inputs], output_layer) - model.compile( - loss="binary_crossentropy", - optimizer="adam", - metrics=["accuracy"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - @test_combinations.run_all_keras_modes - def test_that_trainable_disables_updates(self): - val_a = np.random.random((10, 4)) - val_out = np.random.random((10, 4)) - - a = layers_module.Input(shape=(4,)) - layer = layers_module.BatchNormalization(input_shape=(4,)) - b = layer(a) - model = training_module.Model(a, b) - - model.trainable = False - if not tf.compat.v1.executing_eagerly_outside_functions(): - self.assertEmpty(model.updates) - - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - if not tf.compat.v1.executing_eagerly_outside_functions(): - self.assertEmpty(model.updates) - - x1 = model.predict(val_a) - model.train_on_batch(val_a, val_out) - x2 = model.predict(val_a) - self.assertAllClose(x1, x2, atol=1e-7) - - model.trainable = True - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - if not tf.compat.v1.executing_eagerly_outside_functions(): - self.assertAllGreater(len(model.updates), 0) - - model.train_on_batch(val_a, val_out) - x2 = model.predict(val_a) - assert np.abs(np.sum(x1 - x2)) > 1e-5 - - layer.trainable = False - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - if not tf.compat.v1.executing_eagerly_outside_functions(): - self.assertEmpty(model.updates) - - x1 = model.predict(val_a) - model.train_on_batch(val_a, val_out) - x2 = model.predict(val_a) - self.assertAllClose(x1, x2, atol=1e-7) - - def test_weight_deduplication_in_methods(self): - inp = layers_module.Input(shape=(1,)) - bn = layers_module.BatchNormalization() - d = layers_module.Dense(1) - - m0 = training_module.Model(inp, d(bn(inp))) - m1 = training_module.Model(inp, d(bn(inp))) - - x0 = m0(inp) - x1 = m1(inp) - x = layers_module.Add()([x0, x1]) - - model = training_module.Model(inp, x) - self.assertLen(model.trainable_weights, 4) - self.assertLen(model.non_trainable_weights, 2) - self.assertLen(model.weights, 6) - - @test_combinations.run_all_keras_modes - def test_weight_deduplication(self): - class WatchingLayer(layers_module.Layer): - def __init__(self, dense_to_track): - # This will cause the kernel and bias to be double counted, - # effectively doubling the learning rate if weights are not - # deduped. - self._kernel = dense_to_track.kernel - self._bias = dense_to_track.bias - super().__init__() - - inp = layers_module.Input(shape=(1,)) - dense_layer = layers_module.Dense(1) - dense_output = dense_layer(inp) # This will build the dense kernel - - # Deterministically set weights to make the test repeatable. - dense_layer.set_weights([np.ones((1, 1)), np.zeros((1,))]) - output = WatchingLayer(dense_layer)(dense_output) - - model = training_module.Model(inp, output) - - # 0.25 is the edge of the radius of convergence for the double apply - # case. At lr=0.24, the double apply case will very slowly descend - # while the correct case will drop very quickly. - model.compile( - loss="mse", - optimizer=optimizer_legacy.gradient_descent.SGD(0.24), - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones((64 * 2,)) - y = 4.5 * x - 3.0 - - history = model.fit(x, y, batch_size=64, epochs=2, verbose=2) - - # If the gradient apply is duplicated then the loss after 2 epochs will - # be ~0.15, compared to the correct answer of O(1e-7). - self.assertLess(history.history["loss"][-1], 1e-6) - - @test_combinations.run_all_keras_modes - def test_weight_shared_across_layers(self): - class AddWeightLayer(layers_module.Layer): - def __init__(self, trainable_var, non_trainable_var): - self.trainable_var = trainable_var - self.non_trainable_var = non_trainable_var - super().__init__() - - def call(self, inputs): - return inputs + self.trainable_var - - class LayerWithWeightSharedLayers(layers_module.Layer): - def __init__(self): - super().__init__() - shared_trainable_var = tf.Variable(1.0) - shared_non_trainable_var = tf.Variable(1.0, trainable=False) - self.layer1 = AddWeightLayer( - shared_trainable_var, shared_non_trainable_var - ) - self.layer2 = AddWeightLayer( - shared_trainable_var, shared_non_trainable_var - ) - - def call(self, inputs): - return self.layer2(self.layer1(inputs)) - - l = LayerWithWeightSharedLayers() - layers = list(l._flatten_layers(include_self=False, recursive=False)) - self.assertEqual(layers, [l.layer1, l.layer2]) - self.assertEqual( - l.variables, [l.layer1.trainable_var, l.layer1.non_trainable_var] - ) - self.assertEqual(l.trainable_variables, [l.layer1.trainable_var]) - self.assertEqual( - l.non_trainable_variables, [l.layer1.non_trainable_var] - ) - self.assertLen(l.get_weights(), 2) - - @test_combinations.run_all_keras_modes - def test_weight_tracking_for_template(self): - def variable_scoped_function(trainable=True): - return tf.compat.v1.get_variable( - "dummy", - shape=[1], - trainable=trainable, - initializer=tf.compat.v1.zeros_initializer(), - ) - - def nested_template(): - nested1 = tf.compat.v1.make_template( - "nested", variable_scoped_function - ) - nested2 = tf.compat.v1.make_template( - "nested", variable_scoped_function - ) - v1 = nested1() - v2 = nested2() - - # nested1 and nested2 should not share variables - self.assertIsNot(v1, v2) - - # Variables created by nested1 should be isolated from variables - # created by nested2. - self.assertEqual(1, len(nested1.variables)) - self.assertEqual(1, len(nested2.variables)) - self.assertIs(nested1.variables[0], v1) - self.assertIs(nested2.variables[0], v2) - self.assertEqual(1, len(nested1.trainable_variables)) - self.assertEqual(1, len(nested2.trainable_variables)) - self.assertIs(nested1.trainable_variables[0], v1) - self.assertIs(nested2.trainable_variables[0], v2) - self.assertEqual(len(nested1.non_trainable_variables), 0) - self.assertEqual(len(nested2.non_trainable_variables), 0) - return v1, v2 - - tmpl1 = tf.compat.v1.make_template("s1", nested_template) - tmpl2 = tf.compat.v1.make_template("s1", nested_template) - - v1, v2 = tmpl1() - v5, v6 = tmpl2() - - model = training_module.Model() - model.template = tmpl1 - self.assertEqual(2, len(model.variables)) - self.assertIs(model.variables[0], v1) - self.assertIs(model.variables[1], v2) - self.assertEqual(2, len(model.variables)) - self.assertIs(model.trainable_variables[0], v1) - self.assertIs(model.trainable_variables[1], v2) - self.assertEqual(len(model.non_trainable_variables), 0) - model.templates = [tmpl2] - for v, w in zip(model.variables, [v1, v2, v5, v6]): - self.assertIs(v, w) - for v, w in zip(model.trainable_variables, [v1, v2, v5, v6]): - self.assertIs(v, w) - self.assertEqual(len(model.non_trainable_variables), 0) - # Make sure losses, layers, and updates aren't broken by having a - # Template in the mix, which does not expose any updates or losses. - self.assertEqual([], model.layers) - self.assertEqual([], model.updates) - self.assertEqual([], model.losses) - self.assertEqual([], model.templates.layers) - self.assertEqual([], model.templates.updates) - self.assertEqual([], model.templates.losses) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_logs_passed_to_callbacks(self): - input_dim = 5 - num_classes = 1 - - class TestCallback(Callback): - def __init__(self): - super().__init__() - self.epoch_end_logs = None - self.batch_end_logs = None - self.epoch_end_call_count = 0 - self.batch_end_call_count = 0 - - def on_epoch_end(self, epoch, logs=None): - self.epoch_end_logs = logs - self.epoch_end_call_count += 1 - - def on_batch_end(self, batch, logs=None): - self.batch_end_logs = logs - self.batch_end_call_count += 1 - - model = test_utils.get_small_sequential_mlp( - num_hidden=10, num_classes=num_classes, input_dim=input_dim - ) - model.compile( - loss="binary_crossentropy", - metrics=["acc"], - weighted_metrics=["mae"], - optimizer=RMSPropOptimizer(learning_rate=0.01), - run_eagerly=test_utils.should_run_eagerly(), - ) - - np.random.seed(1337) - (x_train, y_train), (_, _) = test_utils.get_test_data( - train_samples=10, - test_samples=10, - input_shape=(input_dim,), - num_classes=num_classes, - ) - - test_callback = TestCallback() - model.fit( - x_train, - y_train, - batch_size=2, - epochs=2, - verbose=0, - callbacks=[test_callback], - validation_data=(x_train, y_train), - ) - self.assertEqual(test_callback.batch_end_call_count, 10) - self.assertEqual(test_callback.epoch_end_call_count, 2) - - self.assertSetEqual( - set(test_callback.batch_end_logs.keys()), - set(["acc", "loss", "mae"]), - ) - self.assertSetEqual( - set(test_callback.epoch_end_logs.keys()), - set(["acc", "loss", "mae", "val_acc", "val_loss", "val_mae"]), - ) - - @test_combinations.run_all_keras_modes - def test_mismatched_output_shape_and_target_shape(self): - model = sequential.Sequential( - [ - layers_module.Dense(2, input_shape=(3, 4)), - layers_module.Dense(5), - ] - ) - model.compile( - RMSPropOptimizer(learning_rate=0.001), - loss="sparse_categorical_crossentropy", - run_eagerly=test_utils.should_run_eagerly(), - ) - # Test with Numpy data - x_train = np.random.random((10, 3, 4)).astype(np.float32) - y_train = np.random.randint(0, 5, size=(10, 3)).astype(np.float32) - model.fit(x_train, y_train, batch_size=5, epochs=1) - - # Test with iterator - dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) - dataset = dataset.repeat(10) - dataset = dataset.batch(10) - model.fit(dataset, epochs=1, steps_per_epoch=2) - - if tf.executing_eagerly(): - # Test with eager execution - model.compile( - RMSPropOptimizer(learning_rate=0.001), - loss="sparse_categorical_crossentropy", - run_eagerly=True, - ) - model.fit(x_train, y_train, batch_size=5, epochs=1) - - # Test with eager execution and iterator - model.fit(dataset, epochs=1, steps_per_epoch=2) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_losses_in_defun(self): - layer = layers_module.Dense(1, kernel_regularizer="l1") - layer(tf.ones([1, 10])) - - @tf.function - def get_losses(): - return layer.losses - - self.assertAllEqual( - self.evaluate(layer.losses), self.evaluate(get_losses()) - ) - - @test_combinations.run_all_keras_modes - def test_logging(self): - mock_stdout = io.StringIO() - model = sequential.Sequential() - model.add(layers_module.Dense(10, activation="relu")) - model.add(layers_module.Dense(1, activation="sigmoid")) - model.compile( - RMSPropOptimizer(learning_rate=0.001), - loss="binary_crossentropy", - run_eagerly=test_utils.should_run_eagerly(), - ) - io_utils.enable_interactive_logging() - with tf.compat.v1.test.mock.patch.object(sys, "stdout", mock_stdout): - model.fit( - np.ones((10, 10), "float32"), - np.ones((10, 1), "float32"), - epochs=10, - ) - self.assertTrue("Epoch 5/10" in mock_stdout.getvalue()) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_training_with_loss_instance(self): - a = layers_module.Input(shape=(3,), name="input_a") - b = layers_module.Input(shape=(3,), name="input_b") - - dense = layers_module.Dense(4, name="dense") - c = dense(a) - d = dense(b) - e = layers_module.Dropout(0.5, name="dropout")(c) - - model = training_module.Model([a, b], [d, e]) - loss_weights = [1.0, 0.5] - model.compile( - RMSPropOptimizer(learning_rate=0.001), - loss=losses.MeanSquaredError(), - metrics=[metrics_module.CategoricalAccuracy(), "mae"], - loss_weights=loss_weights, - ) - - input_a_np = np.random.random((10, 3)) - input_b_np = np.random.random((10, 3)) - - output_d_np = np.random.random((10, 4)) - output_e_np = np.random.random((10, 4)) - - model.fit( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - epochs=1, - batch_size=5, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_static_batch_in_input_layer(self): - if tf.executing_eagerly(): - self.skipTest("Not inferred in eager.") - - class Counter(Callback): - def __init__(self): - self.batches = 0 - - def on_batch_end(self, batch, logs=None): - self.batches += 1 - - x, y = np.ones((64, 10), "float32"), np.ones((64, 1), "float32") - - for batch_size, expected_batches in [(None, 2), (4, 16)]: - inputs = input_layer.Input(batch_size=batch_size, shape=(10,)) - outputs = layers_module.Dense(1, activation="sigmoid")(inputs) - model = training_module.Model(inputs, outputs) - - model.compile( - optimizer_legacy.adam.Adam(0.001), "binary_crossentropy" - ) - counter = Counter() - model.fit(x, y, callbacks=[counter]) - self.assertEqual(counter.batches, expected_batches) - - model = sequential.Sequential( - [layers_module.Dense(1, batch_input_shape=(batch_size, 10))] - ) - model.compile( - optimizer_legacy.adam.Adam(0.001), "binary_crossentropy" - ) - counter = Counter() - model.fit(x, y, callbacks=[counter]) - self.assertEqual(counter.batches, expected_batches) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_static_batch_in_input_layer_consistency_checks(self): - if tf.executing_eagerly(): - self.skipTest("Not inferred in eager.") - x, y = np.ones((64, 10), "float32"), np.ones((64, 1), "float32") - - inputs = input_layer.Input(batch_size=2, shape=(10,)) - outputs = layers_module.Dense(1, activation="sigmoid")(inputs) - model = training_module.Model(inputs, outputs) - model.compile(optimizer_legacy.adam.Adam(0.001), "binary_crossentropy") - with self.assertRaisesRegex( - ValueError, "incompatible with the specified batch size" - ): - model.fit(x, y, batch_size=4) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_compatible_batch_size_functional_model(self): - class MyLayer(layers_module.Layer): - def call(self, inputs): - return tf.concat(inputs, axis=0) - - input1 = input_layer.Input(batch_size=2, shape=(10,)) - input2 = input_layer.Input(batch_size=3, shape=(10,)) - outputs = MyLayer()([input1, input2]) - with tf.compat.v1.test.mock.patch.object( - logging, "warning" - ) as mock_warn: - training_module.Model([input1, input2], outputs) - self.assertEqual( - mock_warn.call_args_list[0][0][0], - "Found incompatible static batch sizes among the inputs. " - "Batch sizes: [2, 3]", - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_calling_subclass_model_on_different_datasets(self): - class SubclassedModel(training_module.Model): - def call(self, inputs): - return inputs * 2 - - model = SubclassedModel() - dataset_one = tf.data.Dataset.from_tensor_slices([[0], [1]]).batch(2) - dataset_two = tf.data.Dataset.from_tensor_slices( - [[3], [4], [5], [6], [7], [8]] - ).batch(2) - self.assertAllEqual([[0], [2]], model.predict(dataset_one, steps=1)) - self.assertAllEqual( - [[6], [8], [10], [12]], model.predict(dataset_two, steps=2) - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_training_on_sparse_categorical_crossentropy_loss_with_softmax( - self, - ): - np.random.seed(1337) - train_x = np.ones((100, 4)) - train_y = np.random.randint(0, 1, size=(100, 1)) - - reference_model = test_utils.get_small_sequential_mlp( - 16, 2, input_dim=4 - ) - reference_model.compile( - loss="sparse_categorical_crossentropy", - optimizer=RMSPropOptimizer(learning_rate=0.001), - run_eagerly=True, - ) - fixed_weights = reference_model.get_weights() - reference_model_loss = reference_model.train_on_batch(train_x, train_y) - - test_model = test_utils.get_small_sequential_mlp(16, 2, input_dim=4) - test_model.compile( - loss="sparse_categorical_crossentropy", - optimizer=RMSPropOptimizer(learning_rate=0.001), - run_eagerly=False, - ) - test_model.set_weights(fixed_weights) - test_model_loss = test_model.train_on_batch(train_x, train_y) - self.assertAlmostEqual(test_model_loss, reference_model_loss, places=4) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_training_on_categorical_crossentropy_loss_with_softmax(self): - np.random.seed(1337) - train_x = np.ones((100, 4)) - train_y = np_utils.to_categorical( - np.random.randint(0, 1, size=(100, 1)), 2 - ) - - reference_model = test_utils.get_small_sequential_mlp( - 16, 2, input_dim=4 - ) - reference_model.compile( - loss="categorical_crossentropy", - optimizer=rmsprop.RMSprop(learning_rate=0.001), - run_eagerly=True, - ) - fixed_weights = reference_model.get_weights() - reference_model_loss = reference_model.train_on_batch(train_x, train_y) - - test_model = test_utils.get_small_sequential_mlp(16, 2, input_dim=4) - test_model.compile( - loss="categorical_crossentropy", - optimizer=RMSPropOptimizer(learning_rate=0.001), - run_eagerly=False, - ) - test_model.set_weights(fixed_weights) - test_model_loss = test_model.train_on_batch(train_x, train_y) - self.assertAlmostEqual(test_model_loss, reference_model_loss, places=4) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_training_on_binary_crossentropy_loss(self): - train_x = np.ones((100, 4), dtype=np.float32) - train_y = np.ones((100, 1), dtype=np.float32) - reference_model = test_utils.get_small_sequential_mlp( - 16, 1, input_dim=4 - ) - reference_model.compile( - loss="binary_crossentropy", - optimizer=RMSPropOptimizer(learning_rate=0.001), - run_eagerly=True, - ) - fixed_weights = reference_model.get_weights() - reference_model_loss = reference_model.train_on_batch(train_x, train_y) - - test_model = test_utils.get_small_sequential_mlp(16, 1, input_dim=4) - test_model.compile( - loss="binary_crossentropy", - optimizer=RMSPropOptimizer(learning_rate=0.001), - run_eagerly=False, - ) - test_model.set_weights(fixed_weights) - test_model_loss = test_model.train_on_batch(train_x, train_y) - self.assertAlmostEqual(test_model_loss, reference_model_loss, places=4) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - ("default", 1, 4), - ("integer_two", 2, 2), - ("integer_four", 4, 1), - ("simple_list", [1, 3, 4], 3), - ("duplicated_list", [4, 2, 2], 2), - ) - def test_validation_freq(self, validation_freq, expected_runs): - x, y = np.ones((10, 10)), np.ones((10, 1)) - model = test_utils.get_small_mlp(2, 1, 10) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - - class ValCounter(Callback): - def __init__(self): - self.val_runs = 0 - - def on_test_begin(self, logs=None): - self.val_runs += 1 - - val_counter = ValCounter() - model.fit( - x, - y, - epochs=4, - validation_data=(x, y), - validation_freq=validation_freq, - callbacks=[val_counter], - ) - self.assertEqual(val_counter.val_runs, expected_runs) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_validation_steps_without_data(self): - if tf.executing_eagerly(): - self.skipTest("Check removed in new `fit`") - x, y = np.ones((10, 10)), np.ones((10, 1)) - model = test_utils.get_small_mlp(2, 1, 10) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - - with self.assertRaisesRegex( - ValueError, - "`validation_steps` should not be specified if " - "`validation_data` is None.", - ): - model.fit(x, y, epochs=4, validation_data=None, validation_steps=3) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_layer_with_variable_output(self): - class VariableOutputLayer(layers_module.Layer): - def build(self, input_shape): - self.v = self.add_weight( - "output_var", shape=(2, 5), initializer="ones" - ) - - def call(self, inputs): - return self.v - - model = test_utils.get_model_from_layers( - [VariableOutputLayer(), layers_module.Dense(1)], input_shape=(10,) - ) - # TODO(omalleyt): Make this work with `run_eagerly=True`. - model.compile("sgd", "mse", run_eagerly=False) - model.fit(np.ones((10, 10)), np.ones((10, 1)), batch_size=2, epochs=5) - - self.assertLen(model.trainable_variables, 3) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - @test_utils.enable_v2_dtype_behavior - def test_model_dtype(self): - class AssertTypeLayer(layers_module.Layer): - def call(self, inputs): - assert inputs.dtype.name == self.dtype, ( - "Input tensor has type %s which does not match assert " - "type %s" % (inputs.dtype.name, self.assert_type) - ) - return inputs + 1.0 - - for dtype in ("float16", "float32", "float64"): - model = test_utils.get_model_from_layers( - [AssertTypeLayer(dtype=dtype)], input_shape=(10,) - ) - model.compile( - "sgd", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - x = np.ones((10, 10)) - y = np.ones((10, 10)) - model.fit(x, y) - model.test_on_batch(x, y) - model(x) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - @test_utils.enable_v2_dtype_behavior - def test_model_input_dtype(self): - model = test_utils.get_small_mlp(1, 10, 10) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - x = np.ones((10, 10)).astype(np.float64) - y = np.ones((10, 10)).astype(np.float64) - dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(2) - model.fit(dataset) - self.assertEqual(model._compute_dtype, "float32") - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_subclassed_model_with_training_arg(self): - class LayerWithTrainingArg(layers_module.Layer): - def call(self, inputs, training=None): - self.training = training - return inputs - - class ModelWithTrainingArg(training_module.Model): - def __init__(self): - super().__init__() - self.l1 = LayerWithTrainingArg() - - def call(self, inputs, training=None): - self.training = training - inputs = self.l1(inputs, training=training) - return inputs - - x = np.zeros((1, 2)) - model = ModelWithTrainingArg() - model.compile( - loss="mse", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, x, epochs=1) - - if tf.executing_eagerly(): - expected_training_arg = True - else: - expected_training_arg = backend.symbolic_learning_phase() - - self.assertIs(model.training, expected_training_arg) - self.assertIs(model.l1.training, expected_training_arg) - - @test_combinations.run_all_keras_modes - def test_error_when_model_is_not_compiled(self): - inputs = input_layer.Input(shape=(1,)) - outputs = layers_module.Dense(1)(inputs) - model = training_module.Model(inputs, outputs) - with self.assertRaisesRegex(RuntimeError, "must compile your model"): - model.fit(np.ones((1, 1)), np.ones((1, 1))) - - class MyModel(training_module.Model): - def call(self, x): - self.add_loss(tf.reduce_sum(x)) - return x - - model = MyModel() - with self.assertRaisesRegex(RuntimeError, "must compile your model"): - model.fit(np.random.random((32, 1)), epochs=2) - - @test_combinations.run_all_keras_modes - @test_utils.enable_v2_dtype_behavior - def test_losses_of_different_dtypes(self): - inp = input_layer.Input(shape=(2,)) - out_1 = layers_module.Dense( - 2, dtype="float32", kernel_regularizer="l2" - )(inp) - out_2 = layers_module.Dense( - 2, dtype="float16", kernel_regularizer="l2" - )(inp) - model = training_module.Model(inp, [out_1, out_2]) - extra_loss = tf.reduce_sum(tf.cast(out_2, "float64")) - model.add_loss(extra_loss) - model.compile( - "sgd", ["mse", "mse"], run_eagerly=test_utils.should_run_eagerly() - ) - x, y = np.ones((10, 2)), np.ones((10, 2)) - model.fit(x, [y, y]) - - @test_combinations.run_all_keras_modes - @test_utils.enable_v2_dtype_behavior - def test_losses_of_different_dtypes_with_subclassed_model(self): - class MyModel(training_module.Model): - def build(self, _): - self.dense = layers_module.Dense(2) - - def call(self, inputs): - self.add_loss(tf.cast(tf.nn.l2_loss(inputs), "float64")) - return self.dense(inputs) - - model = MyModel(dtype="float32") - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - x, y = np.ones((10, 2)), np.ones((10, 2)) - model.fit(x, y) - - @test_combinations.run_all_keras_modes - @test_utils.enable_v2_dtype_behavior - def test_regularizer_of_different_dtype(self): - inp = input_layer.Input(shape=(2,)) - - def regularizer(weight): - return tf.cast(tf.nn.l2_loss(weight), "float64") - - out = layers_module.Dense( - 2, dtype="float32", kernel_regularizer=regularizer - )(inp) - model = training_module.Model(inp, out) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - x, y = np.ones((10, 2)), np.ones((10, 2)) - model.fit(x, y) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_outputs_are_floats(self): - x, y = np.ones((10, 1)), np.ones((10, 1)) - model = sequential.Sequential([layers_module.Dense(1)]) - model.compile( - "sgd", - "mse", - metrics=["accuracy"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - history = model.fit(x, y, epochs=2) - self.assertIsInstance(history.history["loss"][0], float) - self.assertIsInstance(history.history["accuracy"][0], float) - - loss, accuracy = model.train_on_batch(x, y) - self.assertIsInstance(loss, float) - self.assertIsInstance(accuracy, float) - - loss, accuracy = model.evaluate(x, y) - self.assertIsInstance(loss, float) - self.assertIsInstance(accuracy, float) - - loss, accuracy = model.test_on_batch(x, y) - self.assertIsInstance(loss, float) - self.assertIsInstance(accuracy, float) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_int_output(self): - x, y = np.ones((10, 1)), np.ones((10, 1)) - model = sequential.Sequential([layers_module.Dense(1)]) - - class MyMetric(metrics_module.Metric): - def update_state(self, y_true, y_pred, sample_weight=None): - del y_true, y_pred, sample_weight - - def result(self): - return tf.constant(1, dtype="int64") - - model.compile( - "sgd", - "mse", - metrics=[MyMetric()], - run_eagerly=test_utils.should_run_eagerly(), - ) - history = model.fit(x, y, epochs=2) - self.assertIsInstance(history.history["my_metric"][0], int) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - @test_utils.enable_v2_dtype_behavior - def test_mixed_precision(self): - x, y = np.ones((10, 1)), np.ones((10, 1)) - policy.set_global_policy("mixed_float16") - model = sequential.Sequential([layers_module.Dense(1)]) - optimizer = sgd_experimental.SGD() - model.compile( - optimizer, - "mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, y, epochs=2) - policy.set_global_policy("float32") - - @test_combinations.run_all_keras_modes - def test_calling_aggregate_gradient(self): - class _Optimizer(optimizer_legacy.gradient_descent.SGD): - """Mock optimizer to check if _aggregate_gradient is called.""" - - _HAS_AGGREGATE_GRAD = True - - def __init__(self): - self.aggregate_gradients_called = False - super().__init__(name="MyOptimizer") - - def _aggregate_gradients(self, grads): - self.aggregate_gradients_called = True - return super()._aggregate_gradients(grads) - - mock_optimizer = _Optimizer() - - model = sequential.Sequential() - model.add(layers_module.Dense(10, activation="relu")) - - model.compile( - mock_optimizer, "mse", run_eagerly=test_utils.should_run_eagerly() - ) - x, y = np.ones((10, 10)), np.ones((10, 10)) - model.fit(x, y) - self.assertEqual(model.optimizer.aggregate_gradients_called, True) - - class _OptimizerOverrideApplyGradients(_Optimizer): - """Override apply_gradients. - - To test the case where the optimizer does not define the - experimental_aggregate_gradients parameter. - """ - - _HAS_AGGREGATE_GRAD = False - - def apply_gradients(self, grads_and_vars, name=None): - return super().apply_gradients(grads_and_vars, name) - - mock_optimizer = _OptimizerOverrideApplyGradients() - model.compile( - mock_optimizer, "mse", run_eagerly=test_utils.should_run_eagerly() - ) - x, y = np.ones((10, 10)), np.ones((10, 10)) - model.fit(x, y) - self.assertEqual(model.optimizer.aggregate_gradients_called, True) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_gradients_are_none(self): - class DenseWithExtraWeight(layers_module.Dense): - def build(self, input_shape): - # Gradients w.r.t. extra_weights are None - self.extra_weight_1 = self.add_weight( - "extra_weight_1", shape=(), initializer="ones" - ) - super().build(input_shape) - self.extra_weight_2 = self.add_weight( - "extra_weight_2", shape=(), initializer="ones" - ) - - model = sequential.Sequential( - [DenseWithExtraWeight(4, input_shape=(4,))] - ) - # Test clipping can handle None gradients - opt = optimizer_legacy.adam.Adam(clipnorm=1.0, clipvalue=1.0) - model.compile(opt, "mse", run_eagerly=test_utils.should_run_eagerly()) - inputs = np.random.normal(size=(64, 4)) - targets = np.random.normal(size=(64, 4)) - old_kernel = model.get_weights()[1] - model.fit(inputs, targets) - new_kernel = model.get_weights()[1] - self.assertNotAllEqual(old_kernel, new_kernel) - - @test_combinations.run_all_keras_modes - def test_layer_ordering(self): - class MyLayer(layers_module.Layer): - pass - - class MyModel(training_module.Model): - def __init__(self, name): - super().__init__(name=name) - - self.weight = tf.Variable(0, name=name) - - self.direct_sublayer = MyLayer(name="direct") - self.direct_sublayer.d = {"d": MyLayer(name="direct/dict")} - - self.dict_sublayer = {"d": MyLayer(name="dict")} - self.dict_sublayer["d"].direct = MyLayer(name="dict/direct") - - model = MyModel("model") - # All sublayers, including self and recursive sublayers. - self.assertEqual( - ["model", "direct", "direct/dict", "dict", "dict/direct"], - [l.name for l in model._flatten_layers()], - ) - # Only direct sublayers, including those in data structures. - self.assertEqual(["direct", "dict"], [l.name for l in model.layers]) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_trainable_state_setting(self): - class UpdateLayer(layers_module.Layer): - def __init__(self): - super().__init__() - self.v = tf.Variable(0.0, trainable=False) - - def call(self, x): - self.add_update(lambda: self.v.assign_add(1.0)) - return x * self.v - - layer = UpdateLayer() - model_with_updates = sequential.Sequential([layer]) - model_with_updates.compile( - "sgd", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - layer.trainable = False - model_without_updates = sequential.Sequential([layer]) - model_without_updates.compile( - "sgd", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - x, y = np.ones((10, 1)), np.ones((10, 1)) - - self.assertEqual(self.evaluate(layer.v), 0.0) - model_with_updates.fit(x, y, batch_size=10) - # assign_add called. - self.assertEqual(self.evaluate(layer.v), 1.0) - model_without_updates.fit(x, y, batch_size=10) - # assign_add not called. - self.assertEqual(self.evaluate(layer.v), 1.0) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - @parameterized.named_parameters( - ("numpy_array", "numpy_array"), - ("dataset_array", "dataset_array"), - ("dataset_dict", "dataset_dict"), - ) - def test_single_input_no_tuple_wrapping(self, input_type): - x = np.ones((10, 1)) - - if input_type == "numpy_array": - batch_size = 3 - expected_data_type = tf.Tensor - elif input_type == "dataset_array": - x = tf.data.Dataset.from_tensor_slices(x).batch(3) - batch_size = None - expected_data_type = tf.Tensor - else: - x = {"my_input": x} - x = tf.data.Dataset.from_tensor_slices(x).batch(3) - batch_size = None - expected_data_type = dict - - test_case = self - - class MyModel(training_module.Model): - def train_step(self, data): - # No tuple wrapping for single x input and no targets. - test_case.assertIsInstance(data, expected_data_type) - return super().train_step(data) - - def test_step(self, data): - test_case.assertIsInstance(data, expected_data_type) - return super().test_step(data) - - def predict_step(self, data): - test_case.assertIsInstance(data, expected_data_type) - return super().predict_step(data) - - inputs = layers_module.Input(shape=(1,), name="my_input") - outputs = layers_module.Dense(1)(inputs) - model = MyModel(inputs, outputs) - model.add_loss(tf.reduce_sum(outputs)) - model.compile("sgd") - model.fit(x, batch_size=batch_size) - model.evaluate(x, batch_size=batch_size) - model.predict(x, batch_size=batch_size) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - @parameterized.named_parameters( - ("custom_metrics", False, True), - ("compiled_metrics", True, False), - ("both_compiled_and_custom_metrics", True, True), - ) - def test_evaluate_with_custom_test_step( - self, use_compiled_metrics, use_custom_metrics - ): - class MyModel(training_module.Model): - def test_step(self, data): - x, y = data - pred = self(x) - metrics = {} - if use_compiled_metrics: - self.compiled_metrics.update_state(y, pred) - self.compiled_loss(y, pred) - for metric in self.metrics: - metrics[metric.name] = metric.result() - if use_custom_metrics: - custom_metrics = { - "mean": tf.reduce_mean(pred), - "sum": tf.reduce_sum(pred), - } - metrics.update(custom_metrics) - return metrics - - inputs = layers_module.Input((2,)) - outputs = layers_module.Dense(3)(inputs) - model = MyModel(inputs, outputs) - if use_compiled_metrics: - model.compile( - "adam", - "mse", - metrics=["mae", "mape"], - run_eagerly=test_utils.should_run_eagerly(), - ) - else: - model.compile( - "adam", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - x = np.random.random((4, 2)) - y = np.random.random((4, 3)) - results_list = model.evaluate(x, y) - results_dict = model.evaluate(x, y, return_dict=True) - self.assertLen(results_list, len(results_dict)) - if use_compiled_metrics and use_custom_metrics: - self.assertLen(results_list, 5) - self.assertEqual( - results_list, - [ - results_dict["loss"], - results_dict["mae"], - results_dict["mape"], - results_dict["mean"], - results_dict["sum"], - ], - ) - if use_compiled_metrics and not use_custom_metrics: - self.assertLen(results_list, 3) - self.assertEqual( - results_list, - [ - results_dict["loss"], - results_dict["mae"], - results_dict["mape"], - ], - ) - if not use_compiled_metrics and use_custom_metrics: - self.assertLen(results_list, 2) - self.assertEqual( - results_list, [results_dict["mean"], results_dict["sum"]] - ) - - @test_combinations.run_all_keras_modes - @test_combinations.run_with_all_model_types - def test_model_make_function(self): - layers = [ - layers_module.Dense(10, dtype=np.float64), - layers_module.Dense(10, dtype=np.float64), - ] - model = test_utils.get_model_from_layers(layers, input_shape=(1,)) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - - original_train_function = model.make_train_function() - self.assertIsNotNone(original_train_function) - self.assertEqual(model.make_train_function(), original_train_function) - # Check that we regenerate it without reusing the cached version. - self.assertNotEqual( - model.make_train_function(force=True), original_train_function - ) - - original_test_function = model.make_test_function() - self.assertIsNotNone(original_test_function) - self.assertEqual(model.make_test_function(), original_test_function) - # Check that we regenerate it without reusing the cached version. - self.assertNotEqual( - model.make_test_function(force=True), original_test_function - ) - - original_predict_function = model.make_predict_function() - self.assertIsNotNone(original_predict_function) - self.assertEqual( - model.make_predict_function(), original_predict_function - ) - # Check that we regenerate it without reusing the cached version. - self.assertNotEqual( - model.make_predict_function(force=True), original_predict_function - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_custom_compute_metrics(self): - class CustomMetric(metrics_module.Mean): - def sq_diff_plus_x(self, x, y_true, y_pred): - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - sq_diff_plus_x = tf.add( - x, tf.math.squared_difference(y_pred, y_true) - ) - return backend.mean(sq_diff_plus_x, axis=-1) - - def update_state(self, x, y_true, y_pred, sample_weight=None): - matches = self.sq_diff_plus_x(x, y_true, y_pred) - return super().update_state(matches) - - class MyModel(sequential.Sequential): - def compute_metrics(self, x, y, y_pred, sample_weight): - metric_results = super().compute_metrics( - x, y, y_pred, sample_weight - ) - self.custom_metric.update_state(x, y, y_pred, sample_weight) - metric_results[ - "custom_metric_name" - ] = self.custom_metric.result() - return metric_results - - tensors = tf.random.uniform((10, 10)), tf.random.uniform((10,)) - dataset = tf.data.Dataset.from_tensor_slices(tensors).repeat().batch(1) - model = MyModel([layers_module.Dense(10)]) - model.custom_metric = CustomMetric("my_metric") - initial_result = model.custom_metric.result() - optimizer = optimizer_legacy.gradient_descent.SGD() - model.compile(optimizer, loss="mse", steps_per_execution=10) - model.fit(dataset, epochs=2, steps_per_epoch=10, verbose=2) - after_fit_result = model.custom_metric.result() - - self.assertEqual(self.evaluate(initial_result), 0.0) - self.assertNotEqual( - self.evaluate(initial_result), self.evaluate(after_fit_result) - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_custom_compute_loss(self): - class MyModel(training_module.Model): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.loss_metric = metrics_module.Mean(name="loss") - - def compute_loss(self, x, y, y_pred, sample_weight): - loss = tf.reduce_mean(tf.math.squared_difference(y_pred, y)) - loss += tf.add_n(self.losses) - self.loss_metric.update_state(loss) - return loss - - def reset_metrics(self): - self.loss_metric.reset_states() - - @property - def metrics(self): - return [self.loss_metric] - - tensors = tf.random.uniform((10, 10)), tf.random.uniform((10,)) - dataset = tf.data.Dataset.from_tensor_slices(tensors).repeat().batch(1) - - inputs = layers_module.Input(shape=(10,), name="my_input") - outputs = layers_module.Dense(10)(inputs) - model = MyModel(inputs, outputs) - model.add_loss(tf.reduce_sum(outputs)) - - optimizer = optimizer_legacy.gradient_descent.SGD() - model.compile(optimizer, loss="mse", steps_per_execution=10) - history = model.fit(dataset, epochs=2, steps_per_epoch=10) - self.assertLen(history.history["loss"], 2) - self.assertAllClose( - history.history["loss"][1], model.loss_metric.result() - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - @parameterized.named_parameters( - ("mixed_float16", "mixed_float16"), ("float32", "float32") - ) - def test_ema_overwrite(self, test_policy): - if not tf.__internal__.tf2.enabled(): - self.skipTest("EMA optimizer is only available in TF2.") - policy.set_global_policy(test_policy) - model = sequential.Sequential() - model.add(input_layer.Input(shape=(4,))) - model.add(layers_module.Dense(1, activation="relu")) - - tensors = tf.random.uniform((4, 4)), tf.random.uniform((4,)) - dataset = tf.data.Dataset.from_tensor_slices(tensors).repeat().batch(1) - - optimizer = sgd_experimental.SGD(use_ema=True, ema_momentum=1) - model.compile(optimizer, loss="mse", steps_per_execution=10) - initial_value = tf.Variable(model.trainable_variables[0]) - history = model.fit(dataset, epochs=2, steps_per_epoch=10) - self.assertLen(history.history["loss"], 2) - self.assertAllClose(initial_value, model.trainable_variables[0]) - policy.set_global_policy("float32") - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_get_verbosity(self): - class MyStrategy(tf.distribute.Strategy): - def __init__(self): - self._should_use_with_coordinator = True - - with self.assertRaisesRegex(ValueError, "`verbose=1` is not allowed"): - training_module._get_verbosity(1, MyStrategy()) - - io_utils.enable_interactive_logging() - self.assertEqual( - training_module._get_verbosity("auto", MyStrategy()), 2 - ) - self.assertEqual( - training_module._get_verbosity( - "auto", tf.distribute.MirroredStrategy() - ), - 1, - ) - self.assertEqual( - training_module._get_verbosity(2, tf.distribute.MirroredStrategy()), - 2, - ) - - io_utils.disable_interactive_logging() - self.assertEqual( - training_module._get_verbosity( - "auto", tf.distribute.MirroredStrategy() - ), - 2, - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_save_spec(self): - class Model(training_module.Model): - def call( - self, arg_input_1, arg_input_2, keyword_input, training=None - ): - return 0 - - # Test subclassed model save specs. - model = Model() - model( - tf.ones([1, 1]), - tf.ones([2, 2]), - keyword_input=tf.ones([3, 3]), - training=False, - ) - spec = model.save_spec(dynamic_batch=False) - self.assertEqual(spec[0][0].shape.as_list(), [1, 1]) - self.assertEqual(spec[0][1].shape.as_list(), [2, 2]) - self.assertEqual(spec[1]["keyword_input"].shape.as_list(), [3, 3]) - spec = model.save_spec(dynamic_batch=True) - self.assertEqual(spec[0][0].shape.as_list(), [None, 1]) - - # Test functional model save specs. - input_1 = layers_module.Input((1,), batch_size=1) - input_2 = layers_module.Input((2,), batch_size=2) - input_3 = layers_module.Input((3,), batch_size=3) - output = model(input_1, input_2, keyword_input=input_3, training=True) - functional = training_module.Model([input_1, input_2, input_3], output) - # Functional models should ignore dynamic_batch if the input layers have - # a known batch size. - spec = functional.save_spec(dynamic_batch=True) - input_specs = spec[0][0] - self.assertEqual(input_specs[0].shape.as_list(), [1, 1]) - self.assertEqual(input_specs[1].shape.as_list(), [2, 2]) - self.assertEqual(input_specs[2].shape.as_list(), [3, 3]) - - -class TestExceptionsAndWarnings(test_combinations.TestCase): - @test_combinations.run_all_keras_modes(always_skip_v1=True) - @test_combinations.run_with_all_model_types - def test_fit_on_no_output(self): - inputs = layers_module.Input((3,)) - outputs = layers_module.Dense(2)(inputs) - model = training_module.Model(inputs, outputs) - model.compile("rmsprop", "mse") - x = np.zeros((32, 3)) - with self.assertRaisesRegex(ValueError, "Target data is missing..*"): - model.fit(x) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - @test_combinations.run_with_all_model_types - def test_fit_on_wrong_output_type(self): - inputs1 = layers_module.Input((3,), name="a") - inputs2 = layers_module.Input((3,), name="b") - x = layers_module.Concatenate()([inputs1, inputs2]) - outputs = layers_module.Dense(2, name="c")(x) - model = training_module.Model([inputs1, inputs2], outputs) - model.compile("rmsprop", "mse") - x = np.zeros((32, 3)) - y = np.zeros((32, 2)) - with self.assertRaisesRegex(ValueError, "Target data is missing..*"): - model.fit({"a": x, "b": x, "c": y}) - - @test_combinations.run_all_keras_modes - def test_compile_warning_for_loss_missing_output(self): - with self.cached_session(): - inp = layers_module.Input(shape=(16,), name="input_a") - out_1 = layers_module.Dense(8, name="dense_1")(inp) - out_2 = layers_module.Dense( - 3, activation="softmax", name="dense_2" - )(out_1) - model = training_module.Model(inputs=[inp], outputs=[out_1, out_2]) - optimizer = RMSPropOptimizer(learning_rate=0.001) - - model.compile( - optimizer, - loss={ - "dense_2": "categorical_crossentropy", - }, - metrics={ - "dense_2": "categorical_accuracy", - "dense_1": metrics_module.CategoricalAccuracy(), - }, - run_eagerly=test_utils.should_run_eagerly(), - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_predict_error_with_empty_x(self): - inputs = layers_module.Input(shape=(2,)) - outputs = layers_module.Dense(4)(inputs) - model = training_module.Model(inputs=inputs, outputs=outputs) - model.compile(loss="mse") - - with self.assertRaisesRegex( - ValueError, "Unexpected result of `predict_function`.*" - ): - model.predict(np.array([])) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - @parameterized.named_parameters( - ("dynamic", 0, False), - ("dynamic_multistep", 10, False), - ("static", 0, True), - ("static_multistep", 10, True), - ) - def test_predict_structured(self, spe, static_batch): - inputs = layers_module.Input(shape=(2,)) - outputs = layers_module.Dense(2)(inputs) - model = training_module.Model( - inputs=inputs, - outputs={"out": outputs}, - ) - model.compile( - loss="mse", - steps_per_execution=spe, - run_eagerly=test_utils.should_run_eagerly(), - ) - xdata = np.random.uniform(size=(8, 2)).astype(np.float32) - dataset = tf.data.Dataset.from_tensor_slices((xdata, xdata)) - dataset = dataset.batch(8, drop_remainder=static_batch) - ret = model.predict(dataset, steps=1) - tf.nest.assert_same_structure(ret, {"out": ""}) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_on_batch_error_inconsistent_batch_size(self): - input_node1 = layers_module.Input(shape=(5,)) - input_node2 = layers_module.Input(shape=(5,)) - output_node = layers_module.Concatenate()([input_node1, input_node2]) - output_node = layers_module.Dense(4)(output_node) - model = training_module.Model([input_node1, input_node2], output_node) - model.compile(loss="mse") - - with self.assertRaisesRegex( - ValueError, "Data cardinality is ambiguous" - ): - model.train_on_batch( - [np.ones((10, 5)), np.ones((10, 5))], np.ones((11, 4)) - ) - - with self.assertRaisesRegex( - ValueError, "Data cardinality is ambiguous" - ): - model.test_on_batch( - [np.ones((10, 5)), np.ones((10, 5))], np.ones((11, 4)) - ) - - with self.assertRaisesRegex( - ValueError, "Data cardinality is ambiguous" - ): - model.predict_on_batch([np.ones((10, 5)), np.ones((11, 5))]) - - -class LossWeightingTest(test_combinations.TestCase): - @test_combinations.run_all_keras_modes - def test_class_weights(self): - num_classes = 5 - batch_size = 5 - epochs = 10 - weighted_class = 3 - weight = 0.5 - train_samples = 1000 - test_samples = 1000 - input_dim = 5 - learning_rate = 0.001 - - model = test_utils.get_small_sequential_mlp( - num_hidden=10, num_classes=num_classes, input_dim=input_dim - ) - model.compile( - loss="categorical_crossentropy", - metrics=["acc", metrics_module.CategoricalAccuracy()], - weighted_metrics=["mae", metrics_module.CategoricalAccuracy()], - optimizer=RMSPropOptimizer(learning_rate=learning_rate), - run_eagerly=test_utils.should_run_eagerly(), - ) - - np.random.seed(1337) - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=train_samples, - test_samples=test_samples, - input_shape=(input_dim,), - num_classes=num_classes, - ) - int_y_test = y_test.copy() - # convert class vectors to binary class matrices - y_train = np_utils.to_categorical(y_train, num_classes) - y_test = np_utils.to_categorical(y_test, num_classes) - test_ids = np.where(int_y_test == np.array(weighted_class))[0] - - class_weight = dict([(i, 1.0) for i in range(num_classes)]) - class_weight[weighted_class] = weight - - model.fit( - x_train, - y_train, - batch_size=batch_size, - epochs=epochs // 3, - verbose=0, - class_weight=class_weight, - validation_data=(x_train, y_train), - ) - model.fit( - x_train, - y_train, - batch_size=batch_size, - epochs=epochs // 2, - verbose=0, - class_weight=class_weight, - ) - model.fit( - x_train, - y_train, - batch_size=batch_size, - epochs=epochs // 2, - verbose=0, - class_weight=class_weight, - validation_split=0.1, - ) - - model.train_on_batch( - x_train[:batch_size], - y_train[:batch_size], - class_weight=class_weight, - ) - ref_score = model.evaluate(x_test, y_test, verbose=0) # noqa: F841 - score = model.evaluate( # noqa: F841 - x_test[test_ids, :], y_test[test_ids, :], verbose=0 - ) - # TODO(b/152990697): Fix the class weights test here. - # self.assertLess(score[0], ref_score[0]) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_segmentation_class_weights(self): - num_channels = 3 - num_classes = 5 - batch_size = 2 - image_width = 8 - - input_shape = (batch_size, image_width, image_width, num_channels) - output_shape = (batch_size, image_width, image_width, num_classes) - - model = sequential.Sequential([layers_module.Conv2D(num_classes, 1)]) - - model.compile( - loss="categorical_crossentropy", - metrics=["acc", metrics_module.CategoricalAccuracy()], - weighted_metrics=["mae", metrics_module.CategoricalAccuracy()], - optimizer="adam", - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = tf.random.uniform(input_shape) - y = tf.random.uniform(output_shape, dtype=tf.int32, maxval=num_classes) - - # Class weights are just the class value + 1 - class_weight = dict([(i, i + 1) for i in range(num_classes)]) - - # This test simply asserts that the model can be compiled and fit - # can run without error. Verification that the class weights are - # applied correctly is performed in data_adapter_test. - model.fit(x, y, class_weight=class_weight, steps_per_epoch=1) - - sample_weight = np.array([x + 1 for x in range(batch_size)]) - model.fit( - x, - y, - class_weight=class_weight, - sample_weight=sample_weight, - steps_per_epoch=1, - ) - - @test_combinations.run_all_keras_modes - def test_temporal_sample_weights(self): - num_classes = 5 - batch_size = 5 - epochs = 10 - weighted_class = 3 - weight = 10.0 - train_samples = 1000 - test_samples = 1000 - input_dim = 5 - timesteps = 3 - learning_rate = 0.001 - - with self.cached_session(): - model = sequential.Sequential() - model.add( - layers_module.TimeDistributed( - layers_module.Dense(num_classes), - input_shape=(timesteps, input_dim), - ) - ) - model.add(layers_module.Activation("softmax")) - - np.random.seed(1337) - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=train_samples, - test_samples=test_samples, - input_shape=(input_dim,), - num_classes=num_classes, - ) - int_y_test = y_test.copy() - int_y_train = y_train.copy() - # convert class vectors to binary class matrices - y_train = np_utils.to_categorical(y_train, num_classes) - y_test = np_utils.to_categorical(y_test, num_classes) - test_ids = np.where(int_y_test == np.array(weighted_class))[0] - - sample_weight = np.ones((y_train.shape[0])) - sample_weight[int_y_train == weighted_class] = weight - - temporal_x_train = np.reshape( - x_train, (len(x_train), 1, x_train.shape[1]) - ) - temporal_x_train = np.repeat(temporal_x_train, timesteps, axis=1) - temporal_x_test = np.reshape( - x_test, (len(x_test), 1, x_test.shape[1]) - ) - temporal_x_test = np.repeat(temporal_x_test, timesteps, axis=1) - - temporal_y_train = np.reshape( - y_train, (len(y_train), 1, y_train.shape[1]) - ) - temporal_y_train = np.repeat(temporal_y_train, timesteps, axis=1) - temporal_y_test = np.reshape( - y_test, (len(y_test), 1, y_test.shape[1]) - ) - temporal_y_test = np.repeat(temporal_y_test, timesteps, axis=1) - - temporal_sample_weight = np.reshape( - sample_weight, (len(sample_weight), 1) - ) - temporal_sample_weight = np.repeat( - temporal_sample_weight, timesteps, axis=1 - ) - - model.compile( - RMSPropOptimizer(learning_rate=learning_rate), - loss="categorical_crossentropy", - metrics=["acc", metrics_module.CategoricalAccuracy()], - weighted_metrics=["mae", metrics_module.CategoricalAccuracy()], - sample_weight_mode="temporal", - run_eagerly=test_utils.should_run_eagerly(), - ) - - model.fit( - temporal_x_train, - temporal_y_train, - batch_size=batch_size, - epochs=epochs // 3, - verbose=0, - sample_weight=temporal_sample_weight, - ) - model.fit( - temporal_x_train, - temporal_y_train, - batch_size=batch_size, - epochs=epochs // 3, - verbose=0, - sample_weight=temporal_sample_weight, - validation_split=0.1, - ) - - model.train_on_batch( - temporal_x_train[:batch_size], - temporal_y_train[:batch_size], - sample_weight=temporal_sample_weight[:batch_size], - ) - model.test_on_batch( - temporal_x_train[:batch_size], - temporal_y_train[:batch_size], - sample_weight=temporal_sample_weight[:batch_size], - ) - ref_score = model.evaluate( - temporal_x_test, temporal_y_test, verbose=0 - ) - if not tf.executing_eagerly(): - score = model.evaluate( - temporal_x_test[test_ids], - temporal_y_test[test_ids], - verbose=0, - ) - self.assertLess(score[0], ref_score[0]) - - @test_combinations.run_all_keras_modes - @test_combinations.run_with_all_model_types(exclude_models="sequential") - def test_fit_with_incorrect_weights(self): - input_a = layers_module.Input(shape=(3,), name="input_a") - input_b = layers_module.Input(shape=(3,), name="input_b") - - dense = layers_module.Dense(2, name="output_1") - dropout = layers_module.Dropout(0.5, name="output_2") - branch_a = [input_a, dense] - branch_b = [input_b, dense, dropout] - - model = test_utils.get_multi_io_model(branch_a, branch_b) - model.compile( - optimizer="adam", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - x = np.random.random((10, 3)) - y = np.random.random((10, 2)) - - with self.assertRaises(ValueError): - model.fit([x, x], [y, y], epochs=1, sample_weight={"unknown": x}) - - with self.assertRaises(ValueError): - model.fit([x, x], [y, y], epochs=1, class_weight={"unknown": 1}) - - @test_combinations.run_all_keras_modes - def test_default_sample_weight(self): - """Verifies that fit works without having to set sample_weight.""" - num_classes = 5 - input_dim = 5 - timesteps = 3 - learning_rate = 0.001 - - with self.cached_session(): - model = sequential.Sequential() - model.add( - layers_module.TimeDistributed( - layers_module.Dense(num_classes), - input_shape=(timesteps, input_dim), - ) - ) - - x = np.random.random((10, timesteps, input_dim)) - y = np.random.random((10, timesteps, num_classes)) - optimizer = RMSPropOptimizer(learning_rate=learning_rate) - - # sample_weight_mode is a list and mode value is None - model.compile( - optimizer, - loss="mse", - sample_weight_mode=[None], - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, y, epochs=1, batch_size=10) - - # sample_weight_mode is a list and mode value is `temporal` - model.compile( - optimizer, - loss="mse", - sample_weight_mode=["temporal"], - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, y, epochs=1, batch_size=10) - - # sample_weight_mode is a dict and mode value is None - model.compile( - optimizer, - loss="mse", - sample_weight_mode={"time_distributed": None}, - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, y, epochs=1, batch_size=10) - - # sample_weight_mode is a dict and mode value is `temporal` - model.compile( - optimizer, - loss="mse", - sample_weight_mode={"time_distributed": "temporal"}, - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, y, epochs=1, batch_size=10) - - # sample_weight_mode is a not a list/dict and mode value is None - model.compile( - optimizer, - loss="mse", - sample_weight_mode=None, - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, y, epochs=1, batch_size=10) - - # sample_weight_mode is a not a list/dict and mode value is - # `temporal` - model.compile( - optimizer, - loss="mse", - sample_weight_mode="temporal", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, y, epochs=1, batch_size=10) - - def test_sample_weight_tensor(self): - """Tests that sample weight may be defined as a tensor in the graph.""" - with tf.compat.v1.get_default_graph().as_default(): - # Create a simple pass-through model - inputs = layers_module.Input(shape=1, name="input_layer") - model = training_module.Model(inputs=inputs, outputs=inputs) - model.compile(loss="mean_absolute_error", optimizer="adam") - - # Prepare sample weights iterator tensor - sample_weights = tf.constant([[0, 0.4, 1, 1], [2, 0.4, 0.3, 1]]) - dataset = tf.data.Dataset.from_tensor_slices(sample_weights) - sample_weights = tf.compat.v1.data.make_one_shot_iterator( - dataset - ).get_next() - sample_weights = training_utils_v1.standardize_sample_weights( - sample_weights, model.output_names - ) - - # Update model loss with sample weight tensor. - model._compile_weights_loss_and_weighted_metrics(sample_weights) - - feeds = { - "input_layer:0": [[0], [0], [0], [0]], - "input_layer_target:0": [[1], [1], [1], [1]], - } - with self.cached_session() as sess: - self.assertAllClose( - (0.4 + 1 + 1) / 4, - sess.run(model.total_loss, feed_dict=feeds), - ) - self.assertAllClose( - (2 + 0.4 + 0.3 + 1) / 4, - sess.run(model.total_loss, feed_dict=feeds), - ) - - -@test_combinations.run_all_keras_modes -class MaskingTest(test_combinations.TestCase): - def _get_model(self, input_shape=None): - layers = [ - layers_module.Masking(mask_value=0), - layers_module.TimeDistributed( - layers_module.Dense(1, kernel_initializer="one") - ), - ] - model = test_utils.get_model_from_layers(layers, input_shape) - model.compile( - loss="mse", - optimizer=RMSPropOptimizer(learning_rate=0.001), - run_eagerly=test_utils.should_run_eagerly(), - ) - return model - - @test_combinations.run_with_all_model_types - def test_masking(self): - model = self._get_model(input_shape=(2, 1)) - x = np.array([[[1], [1]], [[0], [0]]]) - y = np.array([[[1], [1]], [[1], [1]]]) - loss = model.train_on_batch(x, y) - self.assertEqual(loss, 0) - - @test_combinations.run_with_all_model_types(exclude_models="functional") - def test_masking_deferred(self): - model = self._get_model() - x = np.array([[[1], [1]], [[0], [0]]]) - y = np.array([[[1], [1]], [[1], [1]]]) - loss = model.train_on_batch(x, y) - self.assertEqual(loss, 0) - - def test_mask_argument_in_layer(self): - # Test that the mask argument gets correctly passed to a layer in the - # functional API. - - class CustomMaskedLayer(layers_module.Layer): - def __init__(self): - super().__init__() - self.supports_masking = True - - def call(self, inputs, mask=None): - assert mask is not None - return inputs - - def compute_output_shape(self, input_shape): - return input_shape - - x = np.random.random((5, 3)) - inputs = layers_module.Input((3,)) - masked = layers_module.Masking(mask_value=0)(inputs) - outputs = CustomMaskedLayer()(masked) - - model = training_module.Model(inputs, outputs) - model.compile( - loss="mse", - optimizer=RMSPropOptimizer(learning_rate=0.001), - run_eagerly=test_utils.should_run_eagerly(), - ) - y = np.random.random((5, 3)) - model.train_on_batch(x, y) - - -@test_combinations.run_all_keras_modes -class TestDynamicTrainability(test_combinations.TestCase): - def test_trainable_warning(self): - x = np.random.random((5, 3)) - y = np.random.random((5, 2)) - - model = sequential.Sequential() - model.add(layers_module.Dense(2, input_dim=3)) - model.trainable = False - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - model.trainable = True - model.train_on_batch(x, y) - self.assertRaises(Warning) - - def test_trainable_argument(self): - with self.cached_session(): - x = np.random.random((5, 3)) - y = np.random.random((5, 2)) - - model = sequential.Sequential() - model.add(layers_module.Dense(2, input_dim=3, trainable=False)) - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - out = model.predict(x) - model.train_on_batch(x, y) - out_2 = model.predict(x) - self.assertAllClose(out, out_2) - - # test with nesting - inputs = layers_module.Input(shape=(3,)) - output = model(inputs) - model = training_module.Model(inputs, output) - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - out = model.predict(x) - model.train_on_batch(x, y) - out_2 = model.predict(x) - self.assertAllClose(out, out_2) - - def test_layer_trainability_switch(self): - # with constructor argument, in Sequential - model = sequential.Sequential() - model.add(layers_module.Dense(2, trainable=False, input_dim=1)) - self.assertListEqual(model.trainable_weights, []) - - # by setting the `trainable` argument, in Sequential - model = sequential.Sequential() - layer = layers_module.Dense(2, input_dim=1) - model.add(layer) - self.assertListEqual(model.trainable_weights, layer.trainable_weights) - layer.trainable = False - self.assertListEqual(model.trainable_weights, []) - - # with constructor argument, in Model - x = layers_module.Input(shape=(1,)) - y = layers_module.Dense(2, trainable=False)(x) - model = training_module.Model(x, y) - self.assertListEqual(model.trainable_weights, []) - - # by setting the `trainable` argument, in Model - x = layers_module.Input(shape=(1,)) - layer = layers_module.Dense(2) - y = layer(x) - model = training_module.Model(x, y) - self.assertListEqual(model.trainable_weights, layer.trainable_weights) - layer.trainable = False - self.assertListEqual(model.trainable_weights, []) - - def test_model_trainability_switch(self): - # a non-trainable model has no trainable weights - x = layers_module.Input(shape=(1,)) - y = layers_module.Dense(2)(x) - model = training_module.Model(x, y) - model.trainable = False - self.assertListEqual(model.trainable_weights, []) - - # same for Sequential - model = sequential.Sequential() - model.add(layers_module.Dense(2, input_dim=1)) - model.trainable = False - self.assertListEqual(model.trainable_weights, []) - - def test_nested_model_trainability(self): - # a Sequential inside a Model - inner_model = sequential.Sequential() - inner_model.add(layers_module.Dense(2, input_dim=1)) - - x = layers_module.Input(shape=(1,)) - y = inner_model(x) - outer_model = training_module.Model(x, y) - self.assertListEqual( - outer_model.trainable_weights, inner_model.trainable_weights - ) - inner_model.trainable = False - self.assertListEqual(outer_model.trainable_weights, []) - inner_model.trainable = True - inner_model.layers[-1].trainable = False - self.assertListEqual(outer_model.trainable_weights, []) - - # a Sequential inside a Sequential - inner_model = sequential.Sequential() - inner_model.add(layers_module.Dense(2, input_dim=1)) - outer_model = sequential.Sequential() - outer_model.add(inner_model) - self.assertListEqual( - outer_model.trainable_weights, inner_model.trainable_weights - ) - inner_model.trainable = False - self.assertListEqual(outer_model.trainable_weights, []) - inner_model.trainable = True - inner_model.layers[-1].trainable = False - self.assertListEqual(outer_model.trainable_weights, []) - - # a Model inside a Model - x = layers_module.Input(shape=(1,)) - y = layers_module.Dense(2)(x) - inner_model = training_module.Model(x, y) - x = layers_module.Input(shape=(1,)) - y = inner_model(x) - outer_model = training_module.Model(x, y) - self.assertListEqual( - outer_model.trainable_weights, inner_model.trainable_weights - ) - inner_model.trainable = False - self.assertListEqual(outer_model.trainable_weights, []) - inner_model.trainable = True - inner_model.layers[-1].trainable = False - self.assertListEqual(outer_model.trainable_weights, []) - - # a Model inside a Sequential - x = layers_module.Input(shape=(1,)) - y = layers_module.Dense(2)(x) - inner_model = training_module.Model(x, y) - outer_model = sequential.Sequential() - outer_model.add(inner_model) - self.assertListEqual( - outer_model.trainable_weights, inner_model.trainable_weights - ) - inner_model.trainable = False - self.assertListEqual(outer_model.trainable_weights, []) - inner_model.trainable = True - inner_model.layers[-1].trainable = False - self.assertListEqual(outer_model.trainable_weights, []) - - def test_gan_workflow(self): - shared_layer = layers_module.BatchNormalization() - - inputs1 = input_layer.Input(10) - outputs1 = shared_layer(inputs1) - model1 = training_module.Model(inputs1, outputs1) - shared_layer.trainable = False - model1.compile( - "sgd", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - inputs2 = input_layer.Input(10) - outputs2 = shared_layer(inputs2) - model2 = training_module.Model(inputs2, outputs2) - shared_layer.trainable = True - model2.compile( - "sgd", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - x, y = np.ones((10, 10)), np.ones((10, 10)) - - out1_0 = model1.predict_on_batch(x) - model1.train_on_batch(x, y) - out1_1 = model1.predict_on_batch(x) - self.assertAllClose(out1_0, out1_1) - - out2_0 = model2.predict_on_batch(x) - model2.train_on_batch(x, y) - out2_1 = model2.predict_on_batch(x) - self.assertNotAllClose(out2_0, out2_1) - - def test_toggle_value(self): - input_0 = layers_module.Input(shape=(1,)) - dense_0 = layers_module.Dense( - 1, kernel_initializer="ones", bias_initializer="ones" - ) - dense_1 = layers_module.Dense( - 1, kernel_initializer="ones", bias_initializer="ones" - ) - result = layers_module.Add()([dense_0(input_0), dense_1(input_0)]) - model = training_module.Model(input_0, result) - dense_0.trainable = False - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - - x = np.ones((10, 1)) - y = 5 * x + 2 - model.train_on_batch(x, y) - dense_0.trainable = True - model.train_on_batch(x, y) - kernel, bias = dense_0.get_weights() - self.assertAllEqual([kernel[0, 0], bias[0]], [1.0, 1.0]) - - kernel, bias = dense_1.get_weights() - self.assertAllClose([kernel[0, 0], bias[0]], [1.1176, 1.1176]) - - -class TestTrainingWithDataTensors(test_combinations.TestCase): - def test_training_and_eval_methods_on_symbolic_tensors_single_io(self): - with tf.Graph().as_default(): - x = layers_module.Input(shape=(3,), name="input") - y = layers_module.Dense(4, name="dense")(x) - model = training_module.Model(x, y) - - optimizer = RMSPropOptimizer(learning_rate=0.001) - loss = "mse" - model.compile( - optimizer, - loss, - metrics=["mae", metrics_module.CategoricalAccuracy()], - ) - - inputs = backend.zeros(shape=(10, 3)) - targets = backend.zeros(shape=(10, 4)) - - model.fit(inputs, targets, epochs=1, steps_per_epoch=2, verbose=0) - model.evaluate(inputs, targets, steps=2, verbose=0) - model.predict(inputs, steps=2) - model.train_on_batch(inputs, targets) - model.test_on_batch(inputs, targets) - model.fit( - inputs, - targets, - epochs=1, - steps_per_epoch=2, - verbose=0, - validation_data=(inputs, targets), - validation_steps=2, - ) - - # Test with dynamic shape - inputs = tf.compat.v1.placeholder_with_default( - np.zeros((2, 3)), shape=tf.TensorShape([None, 3]) - ) - targets = tf.compat.v1.placeholder_with_default( - np.zeros((2, 4)), shape=tf.TensorShape([None, 4]) - ) - self.assertEqual(inputs.shape.dims[0].value, None) - model.fit(inputs, targets, epochs=1, steps_per_epoch=2, verbose=0) - model.evaluate(inputs, targets, steps=2, verbose=0) - model.predict(inputs, steps=2) - model.train_on_batch(inputs, targets) - model.test_on_batch(inputs, targets) - model.fit( - inputs, - targets, - epochs=1, - steps_per_epoch=2, - verbose=0, - validation_data=(inputs, targets), - validation_steps=2, - ) - - def test_training_and_eval_methods_on_symbolic_tensors_multi_io(self): - a = layers_module.Input(shape=(3,), name="input_a") - b = layers_module.Input(shape=(3,), name="input_b") - - dense = layers_module.Dense(4, name="dense") - c = dense(a) - d = dense(b) - e = layers_module.Dropout(0.5, name="dropout")(c) - - model = training_module.Model([a, b], [d, e]) - - optimizer = "rmsprop" - loss = "mse" - loss_weights = [1.0, 0.5] - model.compile( - optimizer, - loss, - metrics=["mae", metrics_module.CategoricalAccuracy()], - loss_weights=loss_weights, - ) - - input_a_tf = tf.zeros(shape=(10, 3)) - input_b_tf = tf.zeros(shape=(10, 3)) - - output_d_tf = tf.zeros(shape=(10, 4)) - output_e_tf = tf.zeros(shape=(10, 4)) - - model.fit( - [input_a_tf, input_b_tf], - [output_d_tf, output_e_tf], - epochs=1, - steps_per_epoch=2, - verbose=0, - ) - model.train_on_batch( - [input_a_tf, input_b_tf], [output_d_tf, output_e_tf] - ) - - # Test with dictionary inputs - model.fit( - {"input_a": input_a_tf, "input_b": input_b_tf}, - {"dense": output_d_tf, "dropout": output_e_tf}, - epochs=1, - steps_per_epoch=2, - verbose=0, - ) - model.fit( - {"input_a": input_a_tf, "input_b": input_b_tf}, - {"dense": output_d_tf, "dropout": output_e_tf}, - validation_data=( - {"input_a": input_a_tf, "input_b": input_b_tf}, - {"dense": output_d_tf, "dropout": output_e_tf}, - ), - epochs=1, - steps_per_epoch=2, - validation_steps=2, - verbose=0, - ) - model.train_on_batch( - {"input_a": input_a_tf, "input_b": input_b_tf}, - {"dense": output_d_tf, "dropout": output_e_tf}, - ) - - # Test with validation data - model.fit( - [input_a_tf, input_b_tf], - [output_d_tf, output_e_tf], - validation_data=( - [input_a_tf, input_b_tf], - [output_d_tf, output_e_tf], - ), - epochs=1, - steps_per_epoch=2, - validation_steps=2, - verbose=0, - ) - # Test evaluation / prediction methods - model.evaluate( - [input_a_tf, input_b_tf], - [output_d_tf, output_e_tf], - steps=2, - verbose=0, - ) - model.predict([input_a_tf, input_b_tf], steps=2) - model.test_on_batch( - [input_a_tf, input_b_tf], [output_d_tf, output_e_tf] - ) - - @tf_test_utils.run_deprecated_v1 - def test_model_with_input_feed_tensor(self): - """We test building a model with a TF variable as input. - - We should be able to call fit, evaluate, predict, - by only passing them data for the placeholder inputs - in the model. - """ - with tf.Graph().as_default(), self.cached_session(): - input_a_np = np.random.random((10, 3)) - input_b_np = np.random.random((10, 3)) - - output_a_np = np.random.random((10, 4)) - output_b_np = np.random.random((10, 3)) - - input_v = tf.Variable(input_a_np, dtype="float32") - self.evaluate(tf.compat.v1.variables_initializer([input_v])) - a = input_layer.Input(tensor=input_v) - b = input_layer.Input(shape=(3,), name="input_b") - - a_2 = layers_module.Dense(4, name="dense_1")(a) - dp = layers_module.Dropout(0.5, name="dropout") - b_2 = dp(b) - - model = training_module.Model([a, b], [a_2, b_2]) - model.summary() - - optimizer = "rmsprop" - loss = "mse" - loss_weights = [1.0, 0.5] - model.compile( - optimizer, - loss, - metrics=["mean_squared_error"], - loss_weights=loss_weights, - sample_weight_mode=None, - ) - - # test train_on_batch - out = model.train_on_batch(input_b_np, [output_a_np, output_b_np]) - out = model.train_on_batch( - {"input_b": input_b_np}, [output_a_np, output_b_np] - ) - out = model.test_on_batch( - {"input_b": input_b_np}, [output_a_np, output_b_np] - ) - out = model.predict_on_batch({"input_b": input_b_np}) - - # test fit - out = model.fit( - {"input_b": input_b_np}, - [output_a_np, output_b_np], - epochs=1, - batch_size=10, - ) - out = model.fit( - input_b_np, [output_a_np, output_b_np], epochs=1, batch_size=10 - ) - - # test evaluate - out = model.evaluate( - {"input_b": input_b_np}, - [output_a_np, output_b_np], - batch_size=10, - ) - out = model.evaluate( - input_b_np, [output_a_np, output_b_np], batch_size=10 - ) - - # test predict - out = model.predict({"input_b": input_b_np}, batch_size=10) - out = model.predict(input_b_np, batch_size=10) - self.assertEqual(len(out), 2) - - # Now test a model with a single input - # i.e. we don't pass any data to fit the model. - self.evaluate(tf.compat.v1.variables_initializer([input_v])) - a = input_layer.Input(tensor=input_v) - a_2 = layers_module.Dense(4, name="dense_1")(a) - a_2 = layers_module.Dropout(0.5, name="dropout")(a_2) - model = training_module.Model(a, a_2) - model.summary() - - optimizer = "rmsprop" - loss = "mse" - model.compile(optimizer, loss, metrics=["mean_squared_error"]) - - # test train_on_batch - out = model.train_on_batch(None, output_a_np) - out = model.train_on_batch(None, output_a_np) - out = model.test_on_batch(None, output_a_np) - out = model.predict_on_batch(None) - out = model.train_on_batch([], output_a_np) - out = model.train_on_batch({}, output_a_np) - - # test fit - _ = model.fit(None, output_a_np, epochs=1, steps_per_epoch=3) - _ = model.fit(None, output_a_np, epochs=1, steps_per_epoch=3) - - # test evaluate - _ = model.evaluate(None, output_a_np, steps=3) - _ = model.evaluate(None, output_a_np, steps=3) - - # test predict - out = model.predict(None, steps=3) - out = model.predict(None, steps=3) - self.assertEqual(out.shape, (10 * 3, 4)) - - # Same, without learning phase - # i.e. we don't pass any data to fit the model. - self.evaluate(tf.compat.v1.variables_initializer([input_v])) - a = input_layer.Input(tensor=input_v) - a_2 = layers_module.Dense(4, name="dense_1")(a) - model = training_module.Model(a, a_2) - model.summary() - - optimizer = "rmsprop" - loss = "mse" - model.compile(optimizer, loss, metrics=["mean_squared_error"]) - - # test train_on_batch - out = model.train_on_batch(None, output_a_np) - out = model.train_on_batch(None, output_a_np) - out = model.test_on_batch(None, output_a_np) - out = model.predict_on_batch(None) - out = model.train_on_batch([], output_a_np) - out = model.train_on_batch({}, output_a_np) - - # test fit - _ = model.fit(None, output_a_np, epochs=1, steps_per_epoch=10) - _ = model.fit(None, output_a_np, epochs=1, steps_per_epoch=10) - - # test evaluate - _ = model.evaluate(None, output_a_np, steps=10) - _ = model.evaluate(None, output_a_np, steps=10) - - # test predict - out = model.predict(None, steps=3) - out = model.predict(None, steps=3) - self.assertEqual(out.shape, (10 * 3, 4)) - - @test_combinations.run_all_keras_modes - def test_model_with_partial_loss(self): - with self.cached_session(): - a = input_layer.Input(shape=(3,), name="input_a") - a_2 = layers_module.Dense(4, name="dense_1")(a) - dp = layers_module.Dropout(0.5, name="dropout") - a_3 = dp(a_2) - model = training_module.Model(a, [a_2, a_3]) - - optimizer = "rmsprop" - loss = {"dropout": "mse"} - model.compile(optimizer, loss, metrics=["mae"]) - - input_a_np = np.random.random((10, 3)) - output_a_np = np.random.random((10, 4)) - - # test train_on_batch - _ = model.train_on_batch(input_a_np, output_a_np) - _ = model.test_on_batch(input_a_np, output_a_np) - # fit - _ = model.fit(input_a_np, output_a_np) - # evaluate - _ = model.evaluate(input_a_np, output_a_np) - - # Same without dropout. - a = input_layer.Input(shape=(3,), name="input_a") - a_2 = layers_module.Dense(4, name="dense_1")(a) - a_3 = layers_module.Dense(4, name="dense_2")(a_2) - model = training_module.Model(a, [a_2, a_3]) - - optimizer = "rmsprop" - loss = {"dense_2": "mse"} - model.compile(optimizer, loss, metrics={"dense_1": "mae"}) - - # test train_on_batch - _ = model.train_on_batch(input_a_np, output_a_np) - _ = model.test_on_batch(input_a_np, output_a_np) - # fit - _ = model.fit(input_a_np, output_a_np) - # evaluate - _ = model.evaluate(input_a_np, output_a_np) - - def test_model_with_external_loss(self): - with tf.Graph().as_default(), self.cached_session(): - # None loss, only regularization loss. - a = input_layer.Input(shape=(3,), name="input_a") - a_2 = layers_module.Dense( - 4, - name="dense_1", - kernel_regularizer="l1", - bias_regularizer="l2", - )(a) - dp = layers_module.Dropout(0.5, name="dropout") - a_3 = dp(a_2) - - model = training_module.Model(a, [a_2, a_3]) - - optimizer = "rmsprop" - loss = None - model.compile(optimizer, loss, metrics=["mae"]) - - input_a_np = np.random.random((10, 3)) - - # test train_on_batch - out = model.train_on_batch(input_a_np, None) - out = model.test_on_batch(input_a_np, None) - # fit - out = model.fit(input_a_np, None) - # evaluate - out = model.evaluate(input_a_np, None) - - # No dropout, external loss. - a = input_layer.Input(shape=(3,), name="input_a") - a_2 = layers_module.Dense(4, name="dense_1")(a) - a_3 = layers_module.Dense(4, name="dense_2")(a) - - model = training_module.Model(a, [a_2, a_3]) - model.add_loss(backend.mean(a_3 + a_2)) - - optimizer = "rmsprop" - loss = None - model.compile(optimizer, loss, metrics=["mae"]) - - # test train_on_batch - out = model.train_on_batch(input_a_np, None) - out = model.test_on_batch(input_a_np, None) - # fit - out = model.fit(input_a_np, None) - # evaluate - out = model.evaluate(input_a_np, None) - - # Test model with no external data at all. - input_v = tf.Variable(input_a_np, dtype="float32") - self.evaluate(tf.compat.v1.variables_initializer([input_v])) - a = input_layer.Input(tensor=input_v) - a_2 = layers_module.Dense(4, name="dense_1")(a) - a_2 = layers_module.Dropout(0.5, name="dropout")(a_2) - model = training_module.Model(a, a_2) - model.add_loss(backend.mean(a_2)) - - model.compile( - optimizer="rmsprop", loss=None, metrics=["mean_squared_error"] - ) - - # test train_on_batch - out = model.train_on_batch(None, None) - out = model.test_on_batch(None, None) - out = model.predict_on_batch(None) - - # Test multi-output model with no external data at all. - self.evaluate(tf.compat.v1.variables_initializer([input_v])) - a = input_layer.Input(tensor=input_v) - a_1 = layers_module.Dense(4, name="dense_1")(a) - a_2 = layers_module.Dropout(0.5, name="dropout")(a_1) - model = training_module.Model(a, [a_1, a_2]) - model.add_loss(backend.mean(a_2)) - - model.compile( - optimizer="rmsprop", loss=None, metrics=["mean_squared_error"] - ) - - # test train_on_batch - out = model.train_on_batch(None, None) - out = model.test_on_batch(None, None) - out = model.predict_on_batch(None) - - out = model.predict(None, steps=3) - self.assertEqual(len(out), 2) - self.assertEqual(out[0].shape, (10 * 3, 4)) - self.assertEqual(out[1].shape, (10 * 3, 4)) - - def test_target_tensors(self): - with tf.Graph().as_default(), self.cached_session(): - # single-output, as list - model = sequential.Sequential() - model.add(layers_module.Dense(4, input_shape=(4,), name="dense")) - input_val = np.random.random((10, 4)) - target_val = np.random.random((10, 4)) - target = backend.variable(target_val) - model.compile( - optimizer="rmsprop", loss="mse", target_tensors=[target] - ) - model.train_on_batch(input_val, None) - - # single-output, as single tensor - model.compile( - optimizer="rmsprop", loss="mse", target_tensors=target - ) - model.train_on_batch(input_val, None) - - # single-output, as dict - model.compile( - optimizer="rmsprop", - loss="mse", - target_tensors={"dense": target}, - ) - model.train_on_batch(input_val, None) - - # test invalid arguments - with self.assertRaises(TypeError): - model.compile( - optimizer="rmsprop", loss="mse", target_tensors=set() - ) - with self.assertRaises(ValueError): - model.compile( - optimizer="rmsprop", - loss="mse", - target_tensors=[target, target], - ) - with self.assertRaises(ValueError): - model.compile( - optimizer="rmsprop", - loss="mse", - target_tensors={"dense2": None}, - ) - with self.assertRaises(ValueError): - model.compile( - optimizer="rmsprop", loss="mse", target_tensors=[target] - ) - model.train_on_batch(input_val, target_val) - - # multi-output, as list - input_val = np.random.random((10, 4)) - target_val_a = np.random.random((10, 4)) - target_val_b = np.random.random((10, 4)) - target_a = backend.variable(target_val_a) - target_b = backend.variable(target_val_b) - - inputs = layers_module.Input(shape=(4,)) - output_a = layers_module.Dense(4, name="dense_a")(inputs) - output_b = layers_module.Dense(4, name="dense_b")(inputs) - model = training_module.Model(inputs, [output_a, output_b]) - model.compile( - optimizer="rmsprop", - loss="mse", - target_tensors=[target_a, target_b], - ) - model.train_on_batch(input_val, None) - - # multi-output, as dict - model.compile( - optimizer="rmsprop", - loss="mse", - target_tensors={"dense_a": target_a, "dense_b": target_b}, - ) - model.train_on_batch(input_val, None) - - # test with sample weights - model.compile( - optimizer="rmsprop", - loss="mse", - metrics=["mae", metrics_module.CategoricalAccuracy()], - target_tensors=[target_a, target_b], - ) - model.train_on_batch( - input_val, - None, - sample_weight={"dense_a": np.random.random((10,))}, - ) - - def test_model_custom_target_tensors(self): - with tf.Graph().as_default(), self.cached_session(): - a = input_layer.Input(shape=(3,), name="input_a") - b = input_layer.Input(shape=(3,), name="input_b") - - a_2 = layers_module.Dense(4, name="dense_1")(a) - dp = layers_module.Dropout(0.5, name="dropout") - b_2 = dp(b) - - y = backend.placeholder([10, 4], name="y") - y1 = backend.placeholder([10, 3], name="y1") - y2 = backend.placeholder([7, 5], name="y2") - model = training_module.Model([a, b], [a_2, b_2]) - - optimizer = "rmsprop" - loss = "mse" - loss_weights = [1.0, 0.5] - - # test list of target tensors - with self.assertRaises(ValueError): - model.compile( - optimizer, - loss, - metrics=[], - loss_weights=loss_weights, - sample_weight_mode=None, - target_tensors=[y, y1, y2], - ) - model.compile( - optimizer, - loss, - metrics=[], - loss_weights=loss_weights, - sample_weight_mode=None, - target_tensors=[y, y1], - ) - input_a_np = np.random.random((10, 3)) - input_b_np = np.random.random((10, 3)) - - output_a_np = np.random.random((10, 4)) - output_b_np = np.random.random((10, 3)) - - _ = model.train_on_batch( - [input_a_np, input_b_np], - [output_a_np, output_b_np], - { - "dense_1": np.random.random((10,)), - "dropout": np.random.random((10,)), - }, - ) - # test dictionary of target_tensors - with self.assertRaises(ValueError): - model.compile( - optimizer, - loss, - metrics=[], - loss_weights=loss_weights, - sample_weight_mode=None, - target_tensors={"does_not_exist": y2}, - ) - # test dictionary of target_tensors - model.compile( - optimizer, - loss, - metrics=[], - loss_weights=loss_weights, - sample_weight_mode=None, - target_tensors={"dense_1": y, "dropout": y1}, - ) - _ = model.train_on_batch( - [input_a_np, input_b_np], - [output_a_np, output_b_np], - { - "dense_1": np.random.random((10,)), - "dropout": np.random.random((10,)), - }, - ) - - # test with custom TF placeholder as target - pl_target_a = tf.compat.v1.placeholder("float32", shape=(None, 4)) - model.compile( - optimizer="rmsprop", - loss="mse", - target_tensors={"dense_1": pl_target_a}, - ) - model.train_on_batch( - [input_a_np, input_b_np], [output_a_np, output_b_np] - ) - - -class TestTrainingWithMetrics(test_combinations.TestCase): - """Training tests related to metrics.""" - - @test_combinations.run_all_keras_modes - def test_metrics_names(self): - a = layers_module.Input(shape=(3,), name="input_a") - b = layers_module.Input(shape=(3,), name="input_b") - - dense = layers_module.Dense(4, name="dense") - c = dense(a) - d = dense(b) - e = layers_module.Dropout(0.5, name="dropout")(c) - - model = training_module.Model([a, b], [d, e]) - - optimizer = RMSPropOptimizer(learning_rate=0.001) - metrics = ["mse", metrics_module.BinaryAccuracy()] - model.compile( - optimizer, - loss="mae", - metrics=metrics, - run_eagerly=test_utils.should_run_eagerly(), - ) - - mse_metric = "mse" if tf.executing_eagerly() else "mean_squared_error" - reference_metric_names = [ - "loss", - "dense_loss", - "dropout_loss", - "dense_" + mse_metric, - "dense_binary_accuracy", - "dropout_" + mse_metric, - "dropout_binary_accuracy", - ] - - input_a_np = np.random.random((10, 3)) - input_b_np = np.random.random((10, 3)) - - output_d_np = np.random.random((10, 4)) - output_e_np = np.random.random((10, 4)) - - model.fit( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - epochs=1, - batch_size=5, - ) - self.assertEqual(reference_metric_names, model.metrics_names) - - @test_combinations.run_all_keras_modes - def test_metric_state_reset_between_fit_and_evaluate(self): - model = sequential.Sequential() - model.add(layers_module.Dense(3, activation="relu", input_dim=4)) - model.add(layers_module.Dense(1, activation="sigmoid")) - acc_obj = metrics_module.BinaryAccuracy() - model.compile( - loss="mae", - metrics=[acc_obj], - optimizer=RMSPropOptimizer(learning_rate=0.001), - run_eagerly=test_utils.should_run_eagerly(), - ) - - x_train = np.random.random((100, 4)) - y_train = np.random.random((100, 1)) - model.fit(x_train, y_train, batch_size=5, epochs=2) - self.assertEqual(self.evaluate(acc_obj.count), 100) - - x_test = np.random.random((10, 4)) - y_test = np.random.random((10, 1)) - model.evaluate(x_test, y_test, batch_size=5) - self.assertEqual(self.evaluate(acc_obj.count), 10) - - @test_combinations.run_all_keras_modes - def test_metric_state_reset_between_test_on_batch_and_evaluate(self): - model = sequential.Sequential() - model.add(layers_module.Dense(3, activation="relu", input_dim=4)) - model.add(layers_module.Dense(1, activation="sigmoid")) - acc_obj = metrics_module.BinaryAccuracy() - model.compile( - loss="mae", - metrics=[acc_obj], - optimizer=RMSPropOptimizer(learning_rate=0.001), - run_eagerly=test_utils.should_run_eagerly(), - ) - - x_test = np.random.random((10, 4)) - y_test = np.random.random((10, 1)) - loss, acc = model.test_on_batch(x_test[:2], y_test[:2]) - loss_eval, acc_eval = model.evaluate(x_test, y_test) - loss_1, acc_1 = model.test_on_batch(x_test[:2], y_test[:2]) - loss_eval_1, acc_eval_1 = model.evaluate(x_test, y_test) - self.assertEqual(loss, loss_1) - self.assertEqual(acc, acc_1) - self.assertEqual(loss_eval, loss_eval_1) - self.assertEqual(acc_eval, acc_eval_1) - - @test_combinations.run_with_all_model_types(exclude_models=["sequential"]) - @test_combinations.run_all_keras_modes - def test_metrics_valid_compile_input_formats(self): - inp_1 = layers_module.Input(shape=(1,), name="input_1") - inp_2 = layers_module.Input(shape=(1,), name="input_2") - x = layers_module.Dense(3, kernel_initializer="ones", trainable=False) - out_1 = layers_module.Dense( - 1, kernel_initializer="ones", name="output_1", trainable=False - ) - out_2 = layers_module.Dense( - 1, kernel_initializer="ones", name="output_2", trainable=False - ) - - branch_a = [inp_1, x, out_1] - branch_b = [inp_2, x, out_2] - model = test_utils.get_multi_io_model(branch_a, branch_b) - - # list of metrics. - model.compile( - optimizer="rmsprop", - loss="mse", - metrics=[metrics_module.MeanSquaredError()], - weighted_metrics=[metrics_module.MeanSquaredError()], - run_eagerly=test_utils.should_run_eagerly(), - ) - - # list of list of metrics. - model.compile( - optimizer="rmsprop", - loss="mse", - metrics=[ - metrics_module.MeanSquaredError(), - [metrics_module.MeanSquaredError(), metrics_module.Accuracy()], - ], - weighted_metrics=[ - metrics_module.MeanSquaredError(), - [metrics_module.MeanSquaredError(), metrics_module.Accuracy()], - ], - run_eagerly=test_utils.should_run_eagerly(), - ) - - # dict of metrics. - model.compile( - optimizer="rmsprop", - loss="mse", - metrics={ - "output_1": metrics_module.MeanSquaredError(), - "output_2": [ - metrics_module.MeanSquaredError(), - metrics_module.Accuracy(), - ], - }, - weighted_metrics={ - "output_1": metrics_module.MeanSquaredError(), - "output_2": [ - metrics_module.MeanSquaredError(), - metrics_module.Accuracy(), - ], - }, - run_eagerly=test_utils.should_run_eagerly(), - ) - - @test_combinations.run_all_keras_modes - def test_metrics_masking(self): - np.random.seed(1337) - model = sequential.Sequential() - model.add(layers_module.Masking(mask_value=0, input_shape=(2, 1))) - model.add( - layers_module.TimeDistributed( - layers_module.Dense(1, kernel_initializer="ones") - ) - ) - model.compile( - RMSPropOptimizer(learning_rate=0.001), - loss="mse", - weighted_metrics=["accuracy"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - # verify that masking is applied. - x = np.array( - # third row is masked - [[[1], [1]], [[1], [1]], [[0], [0]]] - ) - y = np.array([[[1], [1]], [[0], [1]], [[1], [1]]]) - - scores = model.test_on_batch(x, y) - self.assertArrayNear(scores, [0.25, 0.75], 0.0001) - - # verify that masking is combined with sample weights. - w = np.array([3, 2, 4]) - scores = model.test_on_batch(x, y, sample_weight=w) - self.assertArrayNear(scores, [0.5, 0.8], 0.0001) - - scores = model.train_on_batch(x, y) - self.assertArrayNear(scores, [0.25, 0.75], 0.0001) - - scores = model.train_on_batch(x, y, sample_weight=w) - self.assertArrayNear(scores, [0.5 - 0.001037, 0.8], 0.0001) - - @test_combinations.run_all_keras_modes - def test_add_metric_with_tensor_on_model(self): - x = layers_module.Input(shape=(1,)) - y = layers_module.Dense(1, kernel_initializer="ones")(x) - model = training_module.Model(x, y) - model.add_metric(tf.reduce_sum(y), name="metric_1", aggregation="mean") - - if tf.executing_eagerly(): - # This is not a use case in v1 graph mode. - mean_result = metrics_module.Mean()(y) - with self.assertRaisesRegex( - ValueError, "Expected a symbolic Tensor for the metric value" - ): - model.add_metric(mean_result, name="metric_2") - else: - with self.assertRaisesRegex( - ValueError, "Using the result of calling a `Metric` object " - ): - with backend.get_graph().as_default(): - model.add_metric(metrics_module.Mean(name="metric_2")(y)) - - model.compile( - "sgd", loss="mse", run_eagerly=test_utils.should_run_eagerly() - ) - - inputs = np.ones(shape=(10, 1)) - targets = np.ones(shape=(10, 1)) - history = model.fit( - inputs, - targets, - epochs=2, - batch_size=5, - validation_data=(inputs, targets), - ) - self.assertEqual(history.history["metric_1"][-1], 5) - self.assertEqual(history.history["val_metric_1"][-1], 5) - - eval_results = model.evaluate(inputs, targets, batch_size=5) - self.assertEqual(eval_results[-1], 5) - - model.predict(inputs, batch_size=5) - model.train_on_batch(inputs, targets) - model.test_on_batch(inputs, targets) - - @test_combinations.run_all_keras_modes - def test_add_metric_in_model_call(self): - class TestModel(training_module.Model): - def __init__(self): - super().__init__(name="test_model") - self.dense1 = layers_module.Dense(2, kernel_initializer="ones") - self.mean = metrics_module.Mean(name="metric_1") - - def call(self, x): - self.add_metric( - tf.reduce_sum(x), name="metric_2", aggregation="mean" - ) - # Provide same name as in the instance created in __init__ - # for eager mode - self.add_metric(self.mean(x), name="metric_1") - return self.dense1(x) - - model = TestModel() - model.compile( - loss="mse", - optimizer=RMSPropOptimizer(0.01), - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones(shape=(10, 1)) - y = np.ones(shape=(10, 2)) - history = model.fit( - x, y, epochs=2, batch_size=5, validation_data=(x, y) - ) - self.assertAlmostEqual(history.history["metric_1"][-1], 1, 0) - self.assertAlmostEqual(history.history["val_metric_1"][-1], 1, 0) - self.assertAlmostEqual(history.history["metric_2"][-1], 5, 0) - self.assertAlmostEqual(history.history["val_metric_2"][-1], 5, 0) - - eval_results = model.evaluate(x, y, batch_size=5) - self.assertAlmostEqual(eval_results[1], 1, 0) - self.assertAlmostEqual(eval_results[2], 5, 0) - - model.predict(x, batch_size=5) - model.train_on_batch(x, y) - model.test_on_batch(x, y) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_add_metric_in_layer_call(self): - class TestLayer(layers_module.Layer): - def build(self, input_shape): - self.a = self.add_weight( - "a", (1, 1), initializer="ones", trainable=False - ) - self.built = True - - def call(self, inputs): - self.add_metric( - tf.reduce_sum(inputs), name="metric_1", aggregation="mean" - ) - return inputs + 1 - - layers = [ - TestLayer(input_shape=(1,)), - layers_module.Dense(2, kernel_initializer="ones"), - ] - model = test_utils.get_model_from_layers(layers, input_shape=(1,)) - model.compile( - loss="mse", - optimizer=RMSPropOptimizer(0.01), - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones(shape=(10, 1)) - y = np.ones(shape=(10, 2)) - history = model.fit( - x, y, epochs=2, batch_size=5, validation_data=(x, y) - ) - self.assertEqual(history.history["metric_1"][-1], 5) - self.assertAlmostEqual(history.history["val_metric_1"][-1], 5, 0) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_model_metrics_list(self): - class LayerWithAddMetric(layers_module.Layer): - def __init__(self): - super().__init__() - self.dense = layers_module.Dense(1, kernel_initializer="ones") - - def __call__(self, inputs): - outputs = self.dense(inputs) - self.add_metric( - tf.reduce_sum(outputs), name="metric_1", aggregation="mean" - ) - return outputs - - class LayerWithNestedAddMetricLayer(layers_module.Layer): - def __init__(self): - super().__init__() - self.layer = LayerWithAddMetric() - - def call(self, inputs): - outputs = self.layer(inputs) - self.add_metric( - tf.reduce_sum(outputs), name="metric_2", aggregation="mean" - ) - return outputs - - x = layers_module.Input(shape=(1,)) - y = LayerWithNestedAddMetricLayer()(x) - - model = training_module.Model(x, y) - model.add_metric(tf.reduce_sum(y), name="metric_3", aggregation="mean") - - if tf.executing_eagerly(): - # This is not a use case in v1 graph mode. - mean_result = metrics_module.Mean()(y) - with self.assertRaisesRegex( - ValueError, "Expected a symbolic Tensor for the metric value" - ): - model.add_metric(mean_result, name="metric_4") - - else: - with self.assertRaisesRegex( - ValueError, "Using the result of calling a `Metric` object " - ): - with backend.get_graph().as_default(): - model.add_metric(metrics_module.Mean(name="metric_4")(y)) - - model.compile( - "sgd", - loss="mse", - metrics=[metrics_module.Accuracy("metric_4")], - run_eagerly=test_utils.should_run_eagerly(), - ) - - model.fit(np.ones((10, 1)), np.ones((10, 1)), batch_size=10) - - # Verify that the metrics added using `compile` and `add_metric` API are - # included - self.assertEqual( - [m.name for m in model.metrics], - ["loss", "metric_4", "metric_2", "metric_1", "metric_3"], - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_model_metrics_list_in_call(self): - class TestModel(training_module.Model): - def __init__(self): - super().__init__(name="test_model") - self.dense1 = layers_module.Dense(2, kernel_initializer="ones") - - def call(self, x): - self.add_metric( - tf.reduce_sum(x), name="metric_1", aggregation="mean" - ) - return self.dense1(x) - - model = TestModel() - model.compile( - loss="mse", - optimizer=RMSPropOptimizer(0.01), - metrics=[metrics_module.Accuracy("acc")], - run_eagerly=test_utils.should_run_eagerly(), - ) - x = np.ones(shape=(10, 1)) - y = np.ones(shape=(10, 2)) - model.fit(x, y, epochs=2, batch_size=5, validation_data=(x, y)) - - self.assertEqual( - [m.name for m in model.metrics], ["loss", "acc", "metric_1"] - ) - - @test_combinations.run_all_keras_modes - def test_multiple_add_metric_calls(self): - class TestModel(training_module.Model): - def __init__(self): - super().__init__(name="test_model") - self.dense1 = layers_module.Dense(2, kernel_initializer="ones") - self.mean1 = metrics_module.Mean(name="metric_1") - self.mean2 = metrics_module.Mean(name="metric_2") - - def call(self, x): - self.add_metric(self.mean2(x), name="metric_2") - self.add_metric(self.mean1(x), name="metric_1") - self.add_metric( - tf.reduce_sum(x), name="metric_3", aggregation="mean" - ) - return self.dense1(x) - - model = TestModel() - self.assertListEqual( - [m.name for m in model.metrics], ["metric_1", "metric_2"] - ) - model.compile( - loss="mse", - optimizer=RMSPropOptimizer(0.01), - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones(shape=(10, 1)) - y = np.ones(shape=(10, 2)) - history = model.fit( - x, y, epochs=2, batch_size=5, validation_data=(x, y) - ) - self.assertAlmostEqual(history.history["metric_1"][-1], 1, 0) - self.assertAlmostEqual(history.history["metric_2"][-1], 1, 0) - self.assertAlmostEqual(history.history["metric_3"][-1], 5, 0) - - eval_results = model.evaluate(x, y, batch_size=5) - self.assertArrayNear(eval_results[1:4], [1, 1, 5], 0.1) - - model.predict(x, batch_size=5) - model.train_on_batch(x, y) - model.test_on_batch(x, y) - - @test_combinations.run_all_keras_modes - def test_multiple_add_metric_calls_layer(self): - class TestLayer(layers_module.Layer): - def __init__(self): - super().__init__(name="test_layer") - self.dense1 = layers_module.Dense(2, kernel_initializer="ones") - self.m1 = metrics_module.Mean(name="m_1") - self.m2 = [ - metrics_module.Mean(name="m_2"), - metrics_module.Mean(name="m_3"), - ] - self.m3 = { - "mean4": metrics_module.Mean(name="m_4"), - "mean5": metrics_module.Mean(name="m_5"), - } - - def call(self, x): - self.add_metric(self.m2[0](x)) - self.add_metric(self.m2[1](x)) - self.add_metric(self.m1(x)) - self.add_metric(self.m3["mean4"](x)) - self.add_metric(self.m3["mean5"](x)) - self.add_metric( - tf.reduce_sum(x), name="m_6", aggregation="mean" - ) - return self.dense1(x) - - layer = TestLayer() - self.assertListEqual( - [m.name for m in layer.metrics], ["m_1", "m_2", "m_3", "m_4", "m_5"] - ) - - layer(np.ones((10, 10))) - self.assertListEqual( - [m.name for m in layer.metrics], - ["m_1", "m_2", "m_3", "m_4", "m_5", "m_6"], - ) - - @test_combinations.run_all_keras_modes - def test_duplicate_metric_name_in_add_metric(self): - class TestModel(training_module.Model): - def __init__(self): - super().__init__(name="test_model") - self.dense1 = layers_module.Dense(2, kernel_initializer="ones") - self.mean = metrics_module.Mean(name="metric_1") - self.mean2 = metrics_module.Mean(name="metric_1") - - def call(self, x): - self.add_metric(self.mean(x), name="metric_1") - return self.dense1(x) - - model = TestModel() - model.compile( - loss="mse", - optimizer=RMSPropOptimizer(0.01), - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones(shape=(10, 1)) - y = np.ones(shape=(10, 2)) - with self.assertRaisesRegex( - ValueError, - "Please provide different names for the metrics you have added. " - 'We found 2 metrics with the name: "metric_1"', - ): - model.fit(x, y, epochs=2, batch_size=5, validation_data=(x, y)) - - @test_combinations.run_all_keras_modes - def test_add_metric_without_name(self): - class TestModel(training_module.Model): - def __init__(self): - super().__init__(name="test_model") - self.dense1 = layers_module.Dense(2, kernel_initializer="ones") - - def call(self, x): - self.add_metric(tf.reduce_sum(x), aggregation="mean") - return self.dense1(x) - - model = TestModel() - model.compile( - loss="mse", - optimizer=RMSPropOptimizer(0.01), - run_eagerly=test_utils.should_run_eagerly(), - ) - x = np.ones(shape=(10, 1)) - y = np.ones(shape=(10, 2)) - - with self.assertRaisesRegex( - ValueError, "Please provide a name for your metric like" - ): - model.fit(x, y, epochs=2, batch_size=5, validation_data=(x, y)) - - @test_combinations.run_all_keras_modes - def test_add_metric_correctness(self): - inputs = input_layer.Input(shape=(1,)) - targets = input_layer.Input(shape=(1,)) - - class Bias(layers_module.Layer): - def build(self, input_shape): - self.bias = self.add_weight("bias", (1,), initializer="zeros") - self.mae = metrics_module.MeanAbsoluteError(name="mae_1") - - def call(self, inputs): - inputs, targets = inputs - outputs = inputs + self.bias - self.add_metric(self.mae(targets, outputs), name="mae_1") - return outputs - - outputs = Bias()([inputs, targets]) - model = training_module.Model([inputs, targets], outputs) - - model.add_metric( - metrics_module.mean_absolute_error(targets, outputs), - name="mae_2", - aggregation="mean", - ) - - model.compile( - loss="mae", - optimizer=optimizer_legacy.gradient_descent.SGD(0.1), - metrics=[metrics_module.MeanAbsoluteError(name="mae_3")], - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.array([[0.0], [1.0], [2.0]]) - y = np.array([[0.5], [2.0], [3.5]]) - history = model.fit([x, y], y, batch_size=3, epochs=5) - - expected_val = [1.0, 0.9, 0.8, 0.7, 0.6] - for key in ["loss", "mae_1", "mae_2", "mae_3"]: - self.assertAllClose(history.history[key], expected_val, 1e-3) - - @test_combinations.run_all_keras_modes - def test_add_metric_order(self): - class MyLayer(layers_module.Layer): - def call(self, inputs, training=None, mask=None): - self.add_metric( - tf.ones([32]) * 2.0, name="two", aggregation="mean" - ) - return inputs - - class MyModel(training_module.Model): - def __init__(self, **kwargs): - super().__init__(**kwargs) - self._sampler = MyLayer(name="sampler") - - def call(self, inputs, training=None, mask=None): - z = self._sampler(inputs) - self.add_metric( - tf.ones([32]) * 1.0, name="one", aggregation="mean" - ) - self.add_metric( - tf.ones([32]) * 3.0, name="three", aggregation="mean" - ) - return z - - xdata = np.random.uniform(size=[32, 16]).astype(np.float32) - dataset_train = tf.data.Dataset.from_tensor_slices((xdata, xdata)) - dataset_train = dataset_train.batch(32, drop_remainder=True) - - model = MyModel() - model.compile( - optimizer="sgd", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - history = model.fit(dataset_train, epochs=3) - self.assertDictEqual( - history.history, - { - "loss": [0.0, 0.0, 0.0], - "three": [3.0, 3.0, 3.0], - "two": [2.0, 2.0, 2.0], - "one": [1.0, 1.0, 1.0], - }, - ) - - @test_combinations.run_all_keras_modes - def test_add_metric_aggregation_mean(self): - class TestModel(training_module.Model): - def __init__(self): - super().__init__(name="test_model") - self.dense1 = layers_module.Dense(2, kernel_initializer="ones") - - def call(self, x): - self.add_metric( - tf.reduce_sum(x), name="metric_1", aggregation="mean" - ) - return self.dense1(x) - - model = TestModel() - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - model.fit(np.ones(shape=(10, 1)), np.ones(shape=(10, 2)), batch_size=5) - - @test_combinations.run_all_keras_modes - def test_add_metric_aggregation_none(self): - class TestModel(training_module.Model): - def __init__(self): - super().__init__(name="test_model") - self.dense1 = layers_module.Dense(2, kernel_initializer="ones") - self.mean = metrics_module.Mean(name="metric_1") - - def call(self, x): - self.add_metric(self.mean(x), name="metric_1", aggregation=None) - return self.dense1(x) - - model = TestModel() - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - model.fit(np.ones(shape=(10, 1)), np.ones(shape=(10, 2)), batch_size=5) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def DISABLED_test_add_metric_invalid_aggregation(self): - # TODO(psv): Re-enable test once it is fixed. - x = layers_module.Input(shape=(1,)) - y = layers_module.Dense(1, kernel_initializer="ones")(x) - model = training_module.Model(x, y) - with self.assertRaisesRegex( - ValueError, "only `mean` sample-wise metric aggregation" - ): - model.add_metric( - tf.reduce_sum(y), name="metric_1", aggregation="sum" - ) - - with self.assertRaisesRegex( - ValueError, "only `mean` sample-wise metric aggregation" - ): - model.add_metric( - tf.reduce_sum(y), name="metric_1", aggregation=None - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_calling_evaluate_in_callback_during_fit(self): - # Check fix for a bug that caused `evaluate` to hit a cached dataset - # when run from inside a fit callback. - x = layers_module.Input(shape=(2,)) - y = layers_module.Dense(2, kernel_initializer="ones", use_bias=False)(x) - model = training_module.Model(x, y) - - ones = np.ones((10, 2), dtype=np.float32) - zeros = np.zeros((10, 2), dtype=np.float32) - train_ds = tf.data.Dataset.from_tensor_slices((ones, ones)).batch(5) - val_ds_1 = tf.data.Dataset.from_tensor_slices((ones, ones)).batch(5) - val_ds_2 = tf.data.Dataset.from_tensor_slices((zeros, zeros)).batch(5) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - - class MyCallback(Callback): - def on_epoch_end(self, *args, **kwargs): - eval_result = self.model.evaluate(val_ds_2) - if abs(eval_result) > 1e-7: - raise AssertionError( - "Expected to hit the zeros dataset but got high loss " - "value of %s" % eval_result - ) - - history = model.fit( - train_ds, validation_data=val_ds_1, callbacks=[MyCallback()] - ) - # Evaluate at the end of fit should hit the ones dataset (cached) - self.assertGreater(abs(history.history["val_loss"][-1]), 0.1) - # Standalone call to evaluate should not hit the cached dataset - eval_result = model.evaluate(val_ds_2) - self.assertLess(abs(eval_result), 1e-7) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_model_with_nested_compiled_model(self): - class LayerWithAddMetric(layers_module.Layer): - def __init__(self): - super().__init__() - self.dense = layers_module.Dense(1, kernel_initializer="ones") - - def call(self, inputs): - outputs = self.dense(inputs) - self.add_metric( - tf.reduce_sum(outputs), name="mean", aggregation="mean" - ) - return outputs - - x = layers_module.Input(shape=(1,)) - y = LayerWithAddMetric()(x) - - inner_model = training_module.Model(x, y) - inner_model.add_metric( - tf.reduce_sum(y), name="mean1", aggregation="mean" - ) - - inner_model.compile( - "sgd", - loss="mse", - metrics=[metrics_module.Accuracy("acc")], - run_eagerly=test_utils.should_run_eagerly(), - ) - inner_model.fit(np.ones((10, 1)), np.ones((10, 1)), batch_size=10) - - self.assertEqual( - [m.name for m in inner_model.metrics], - ["loss", "acc", "mean", "mean1"], - ) - - x = layers_module.Input(shape=[1]) - y = inner_model(x) - outer_model = training_module.Model(x, y) - outer_model.add_metric( - tf.reduce_sum(y), name="mean2", aggregation="mean" - ) - - outer_model.compile( - "sgd", - loss="mse", - metrics=[metrics_module.Accuracy("acc2")], - run_eagerly=test_utils.should_run_eagerly(), - ) - outer_model.fit(np.ones((10, 1)), np.ones((10, 1)), batch_size=10) - self.assertEqual( - [m.name for m in outer_model.metrics], - ["loss", "acc2", "mean", "mean1", "mean2"], - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_model_with_metric_class_that_returns_dict(self): - x = layers_module.Input(shape=(2,)) - y = layers_module.Dense(3)(x) - model = training_module.Model(x, y) - - class DictMetric(metrics_module.Metric): - def __init__(self): - super().__init__() - self.sample_count = tf.Variable(0) - self.l2_sum = tf.Variable(0.0) - - def update_state(self, y_true, y_pred, sample_weight=None): - self.l2_sum.assign_add( - tf.reduce_sum(tf.square(y_true - y_pred)) - ) - self.sample_count.assign_add(tf.shape(y_true)[0]) - - def reset_state(self): - self.sample_count.assign(0) - self.l2_sum.assign(0.0) - - def result(self): - mse = self.l2_sum / tf.cast(self.sample_count, "float32") - rmse = tf.sqrt(mse) - return {"my_mse": mse, "my_rmse": rmse} - - model.compile( - "sgd", - "mse", - metrics=["mae", DictMetric()], - run_eagerly=test_utils.should_run_eagerly(), - ) - - history = model.fit(np.ones((10, 2)), np.ones((10, 3))) - self.assertEqual( - list(history.history.keys()), ["loss", "mae", "my_mse", "my_rmse"] - ) - list_evaluate_res = model.evaluate(np.ones((10, 2)), np.ones((10, 3))) - self.assertEqual(len(list_evaluate_res), 4) - dict_evaluate_res = model.evaluate( - np.ones((10, 2)), np.ones((10, 3)), return_dict=True - ) - self.assertEqual( - list(dict_evaluate_res.keys()), ["loss", "mae", "my_mse", "my_rmse"] - ) - list_train_on_batch_res = model.train_on_batch( - np.ones((10, 2)), np.ones((10, 3)) - ) - self.assertEqual(len(list_train_on_batch_res), 4) - dict_train_on_batch_res = model.train_on_batch( - np.ones((10, 2)), np.ones((10, 3)), return_dict=True - ) - self.assertEqual( - list(dict_train_on_batch_res.keys()), - ["loss", "mae", "my_mse", "my_rmse"], - ) - list_test_on_batch_res = model.test_on_batch( - np.ones((10, 2)), np.ones((10, 3)) - ) - self.assertEqual(len(list_test_on_batch_res), 4) - dict_test_on_batch_res = model.test_on_batch( - np.ones((10, 2)), np.ones((10, 3)), return_dict=True - ) - self.assertEqual( - list(dict_test_on_batch_res.keys()), - ["loss", "mae", "my_mse", "my_rmse"], - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_add_metric_in_model_call_that_returns_dict(self): - class DictMetric(metrics_module.Metric): - def __init__(self): - super().__init__() - self.sample_count = tf.Variable(0) - self.l2_sum = tf.Variable(0.0) - - def update_state(self, y_true, y_pred, sample_weight=None): - self.l2_sum.assign_add( - tf.reduce_sum(tf.square(y_true - y_pred)) - ) - self.sample_count.assign_add(tf.shape(y_true)[0]) - - def reset_state(self): - self.sample_count.assign(0) - self.l2_sum.assign(0.0) - - def result(self): - mse = self.l2_sum / tf.cast(self.sample_count, "float32") - rmse = tf.sqrt(mse) - return {"my_mse": mse, "my_rmse": rmse} - - class TestModel(training_module.Model): - def __init__(self): - super().__init__(name="test_model") - self.dense1 = layers_module.Dense(2, kernel_initializer="ones") - self.dict_metric = DictMetric() - - def call(self, x): - self.add_metric( - tf.reduce_sum(x), name="metric_2", aggregation="mean" - ) - # Provide same name as in the instance created in __init__ - # for eager mode - self.add_metric(self.dict_metric(x, 1 - x), name="metric_1") - return self.dense1(x) - - model = TestModel() - model.compile( - loss="mse", - optimizer=RMSPropOptimizer(0.01), - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones(shape=(10, 1)) - y = np.ones(shape=(10, 2)) - history = model.fit( - x, y, epochs=2, batch_size=5, validation_data=(x, y) - ) - self.assertAlmostEqual(history.history["metric_2"][-1], 5, 0) - self.assertAlmostEqual(history.history["val_metric_2"][-1], 5, 0) - self.assertAlmostEqual(history.history["my_mse"][-1], 1, 0) - self.assertAlmostEqual(history.history["val_my_mse"][-1], 1, 0) - self.assertAlmostEqual(history.history["my_rmse"][-1], 1, 0) - self.assertAlmostEqual(history.history["val_my_rmse"][-1], 1, 0) - - eval_results = model.evaluate(x, y, batch_size=5, return_dict=True) - self.assertAlmostEqual(eval_results["metric_2"], 5, 0) - self.assertAlmostEqual(eval_results["my_mse"], 1, 0) - self.assertAlmostEqual(eval_results["my_rmse"], 1, 0) - - model.predict(x, batch_size=5) - model.train_on_batch(x, y) - model.test_on_batch(x, y) - - -class BareUpdateLayer(layers_module.Layer): - def build(self, input_shape): - self.counter = self.add_weight( - "counter", - dtype="int32", - shape=(), - initializer="zeros", - trainable=False, - ) - - def call(self, inputs): - tf.compat.v1.assign_add(self.counter, 1) - return tf.cast(self.counter, inputs.dtype) * inputs - - -class LambdaUpdateLayer(layers_module.Layer): - def build(self, input_shape): - self.counter = self.add_weight( - "counter", - dtype="int32", - shape=(), - initializer="zeros", - trainable=False, - ) - - def call(self, inputs): - # Make sure update isn't run twice. - self.add_update(lambda: tf.compat.v1.assign_add(self.counter, 1)) - return tf.cast(self.counter, inputs.dtype) * inputs - - -class NestedUpdateLayer(layers_module.Layer): - def build(self, input_shape): - self.layer = BareUpdateLayer() - self.layer.build(input_shape) - - @property - def counter(self): - return self.layer.counter - - def call(self, inputs): - return self.layer(inputs) - - -class SubgraphUpdateLayer(layers_module.Layer): - def build(self, input_shape): - self.counter = self.add_weight( - "counter", - dtype="int32", - shape=(), - initializer="zeros", - trainable=False, - ) - - def call(self, inputs, training=None): - if training is None: - training = backend.learning_phase() - - if training: - self.counter.assign(self.counter + 1) - return inputs - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TestAutoUpdates(test_combinations.TestCase): - @test_combinations.run_with_all_model_types - @parameterized.named_parameters( - ("bare_update", BareUpdateLayer), - ("lambda_update", LambdaUpdateLayer), - ("nested_update", NestedUpdateLayer), - ) - def test_updates_in_model(self, layer_builder): - layer = layer_builder() - x, y = np.ones((10, 10)), np.ones((10, 1)) - model = test_utils.get_model_from_layers( - [layer, layers_module.Dense(1)], input_shape=(10,) - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - model.fit(x, y, batch_size=2, epochs=1) - self.assertEqual(self.evaluate(layer.counter), 5) - - @test_combinations.run_with_all_model_types - def test_lambda_updates_trainable_false(self): - x, y = np.ones((10, 10)), np.ones((10, 1)) - layer = LambdaUpdateLayer() - model = test_utils.get_model_from_layers( - [layer, layers_module.Dense(1)], input_shape=(10,) - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - model.fit(x, y, batch_size=2, epochs=1) - self.assertEqual(self.evaluate(layer.counter), 5) - layer.trainable = False - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - model.fit(x, y, batch_size=2, epochs=1) - self.assertEqual(self.evaluate(layer.counter), 5) - - @test_combinations.run_with_all_model_types - def test_subgraph_updates_in_model(self): - layer = SubgraphUpdateLayer() - x, y = np.ones((10, 10)), np.ones((10, 1)) - model = test_utils.get_model_from_layers( - [layer, layers_module.Dense(1)], input_shape=(10,) - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - model.fit(x, y, batch_size=2, epochs=1) - self.assertEqual(self.evaluate(layer.counter), 5) - - @parameterized.named_parameters( - ("bare_update", BareUpdateLayer), - ("lambda_update", LambdaUpdateLayer), - ("nested_update", NestedUpdateLayer), - ) - def test_updates_standalone_layer(self, layer_builder): - layer = layer_builder() - y = layer(np.ones((10, 10))) - self.evaluate(layer.counter.initializer) - self.evaluate(y) - self.assertEqual(self.evaluate(layer.counter), 1) - - def test_trainable_false_standalone_layer(self): - layer = LambdaUpdateLayer() - y = layer(np.ones((10, 10))) - self.evaluate(layer.counter.initializer) - self.evaluate(y) - self.assertEqual(self.evaluate(layer.counter), 1) - layer.trainable = False - y = layer(np.ones((10, 10))) - self.evaluate(y) - self.assertEqual(self.evaluate(layer.counter), 1) - - @test_combinations.run_with_all_model_types - def test_batchnorm_trainable_false(self): - bn = layers_module.BatchNormalization() - model = test_utils.get_model_from_layers( - [bn, layers_module.Dense(1)], input_shape=(10,) - ) - bn.trainable = False - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - x, y = np.ones((10, 10)), np.ones((10, 1)) - model.fit(x, y, batch_size=2, epochs=1) - self.assertAllEqual(self.evaluate(bn.moving_mean), np.zeros((10,))) - self.assertAllEqual(self.evaluate(bn.moving_variance), np.ones((10,))) - - -class TestFunctionTracing(test_combinations.TestCase): - def _seq_model_and_data(self): - model = sequential.Sequential( - [layers_module.Dense(4, activation="relu")] - ) - model.compile(loss="mse", optimizer="rmsprop") - x = np.random.random((10, 6)) - y = np.random.random((10, 4)) - return model, x, y - - @test_combinations.run_all_keras_modes( - always_skip_v1=True, always_skip_eager=True - ) - def test_no_tracing_between_epoch(self): - if _is_oss(): - self.skipTest("b/198729465") - - model, x, y = self._seq_model_and_data() - - logging.set_verbosity(1) - with self.assertLogs(level=1) as logs: - model.fit(x, y, epochs=10, batch_size=5, validation_data=(x, y)) - - new_func_graph = "INFO:absl:Creating new FuncGraph for Python function" - self.assertEqual(sum(new_func_graph in log for log in logs.output), 9) - - @test_combinations.run_all_keras_modes( - always_skip_v1=True, always_skip_eager=True - ) - def test_evaluate_no_cached_data(self): - if _is_oss(): - self.skipTest("b/198729465") - - model, x, y = self._seq_model_and_data() - - new_func_graph = "INFO:absl:Creating new FuncGraph for Python function" - logging.set_verbosity(1) - with self.assertLogs(level=1) as eval_logs: - for _ in range(6): - model.evaluate(x, y, batch_size=5) - self.assertEqual( - sum(new_func_graph in log for log in eval_logs.output), 20 - ) - - -class TestBuildCustomModel(test_combinations.TestCase): - @test_combinations.run_all_keras_modes - def test_build_list_of_inputs(self): - class MyModel(training_module.Model): - def __init__(self): - super().__init__() - self.l1 = layers_module.Dense(1) - self.l2 = layers_module.Dense(2) - - def call(self, x): - a, b = x - return self.l1(a) + self.l2(b) - - # List of tuples - model = MyModel() - model.build([(None, 1), (None, 2)]) - self.assertEqual(model.l1.kernel.shape.as_list(), [1, 1]) - self.assertEqual(model.l2.kernel.shape.as_list(), [2, 2]) - # List of lists - model = MyModel() - model.build([[None, 1], [None, 2]]) - self.assertEqual(model.l1.kernel.shape.as_list(), [1, 1]) - self.assertEqual(model.l2.kernel.shape.as_list(), [2, 2]) - - @test_combinations.run_all_keras_modes - def test_build_single_inputs(self): - class MyModel(training_module.Model): - def __init__(self): - super().__init__() - self.l1 = layers_module.Dense(1) - - def call(self, x): - return self.l1(x) - - model = MyModel() - model.build((None, 1)) - self.assertEqual(model.l1.kernel.shape.as_list(), [1, 1]) - model = MyModel() - model.build([None, 1]) - self.assertEqual(model.l1.kernel.shape.as_list(), [1, 1]) - - @test_combinations.run_all_keras_modes - def test_build_dict_inputs(self): - class MyModel(training_module.Model): - def __init__(self): - super().__init__() - self.l1 = layers_module.Dense(1) - - def call(self, inputs): - return self.l1(inputs["x"]) - - model = MyModel() - model.build({"x": [None, 16]}) - self.assertEqual(model.l1.kernel.shape.as_list(), [16, 1]) - - def test_save_top_level_model_weights_h5(self): - class MyModel(training_module.Model): - def __init__(self): - super().__init__() - self.class_token = self.add_weight( - shape=(1,), name="class_token" - ) - self.inner_layer = layers_module.Dense(1) - - def call(self, inputs): - return self.inner_layer(inputs) * self.class_token - - h5_file = tempfile.mktemp(".h5") - m1 = MyModel() - m1.build((1, 1)) - m1.save_weights(h5_file) - - m2 = MyModel() - m2.build((1, 1)) - m2.load_weights(h5_file) - self.assertAllEqual(m1.get_weights(), m2.get_weights()) - m2.load_weights(h5_file, by_name=True) - self.assertAllEqual(m1.get_weights(), m2.get_weights()) - - -class ScalarDataModelTest(test_combinations.TestCase): - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_scalar_loss_reduction(self): - class MyModel(training_module.Model): - def __init__(self): - super().__init__() - self.w = self.add_weight(initializer="ones", name="kernel") - self.b = self.add_weight(initializer="zeros", name="bias") - - def call(self, inputs): - return inputs * self.w + self.b - - model = MyModel() - model.compile( - optimizer_legacy.gradient_descent.SGD(1e-2), - loss="mse", - metrics=["binary_accuracy"], - ) - # learn y = x * 2 + 0.5 - x = np.array([3, 5, 5, 3, 5], dtype="float32") - y = x * 2 + 0.5 - x2d = np.expand_dims(x, axis=-1) - y2d = np.expand_dims(y, axis=-1) - loss, acc = model.evaluate(x, y) - loss2d, acc2d = model.evaluate(x2d, y2d) - self.assertAllClose([loss, acc], [loss2d, acc2d], atol=1e-6) - model.fit(x, y, epochs=20) - preds = model.predict(x) - self.assertEqual(preds.shape, (5,)) - self.assertAllClose(preds, y, atol=2e-1) - - -# Class used for testing. -class SubclassModel(training_module.Model): - def __init__(self, name=None): - super().__init__(name=name) - self.d1 = layers_module.Dense(1000) - self.d2 = layers_module.Dense(1000) - self.dropout = layers_module.Dropout(0.1) - - def call(self, inputs, training=None): - x = self.d1(inputs) - x = self.dropout(x, training=training) - return self.d2(x) - - -class TestVariableObjectPathMapping(test_combinations.TestCase): - def test_subclass_model_get_weight_paths(self): - model = SubclassModel() - # Make sure the object path produce nothing when weights are not - # initialized - self.assertEmpty(model.get_weight_paths()) - - model(tf.zeros((10, 10))) - mapping = model.get_weight_paths() - self.assertEqual( - mapping.keys(), {"d1.kernel", "d1.bias", "d2.kernel", "d2.bias"} - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_functional_model_get_weight_paths(self): - inputs = input_layer.Input(shape=(10,)) - x = layers_module.Dense(100, name="d1")(inputs) - output = layers_module.Dense(200, name="d2", activation="softmax")(x) - model = training_module.Model(inputs, output) - mapping = model.get_weight_paths() - self.assertEqual( - mapping.keys(), {"d1.kernel", "d1.bias", "d2.kernel", "d2.bias"} - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_sequential_model_get_weight_paths(self): - model = sequential.Sequential( - [ - layers_module.Dense(100, name="d1", input_shape=(10,)), - layers_module.Dense(200, name="d2", activation="softmax"), - ] - ) - mapping = model.get_weight_paths() - self.assertEqual( - mapping.keys(), {"d1.kernel", "d1.bias", "d2.kernel", "d2.bias"} - ) - - -def _is_oss(): - """Returns whether the test is run under OSS.""" - return len(sys.argv) >= 1 and "bazel" in sys.argv[0] - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/training_utils.py b/keras/engine/training_utils.py deleted file mode 100644 index 4e298157378..00000000000 --- a/keras/engine/training_utils.py +++ /dev/null @@ -1,238 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Training-related utilities.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.utils import generic_utils - - -def slice_arrays(arrays, indices, contiguous=True): - """Slices batches out of provided arrays (workaround for eager tensors). - - Unfortunately eager tensors don't have the same slicing behavior as - Numpy arrays (they follow the same slicing behavior as symbolic TF tensors), - hence we cannot use `generic_utils.slice_arrays` directly - and we have to implement this workaround based on `concat`. This has a - performance cost. - - Args: - arrays: Single array or list of arrays. - indices: List of indices in the array that should be included in the - output batch. - contiguous: Boolean flag indicating whether the indices are contiguous. - - Returns: - Slice of data (either single array or list of arrays). - """ - converted_to_list = False - if not isinstance(arrays, list): - converted_to_list = True - arrays = [arrays] - if any(tf.is_tensor(x) for x in arrays): - if not contiguous: - entries = [[x[i : i + 1] for i in indices] for x in arrays] - slices = [tf.concat(x, axis=0) for x in entries] - else: - slices = [x[indices[0] : indices[-1] + 1] for x in arrays] - else: - slices = generic_utils.slice_arrays(arrays, indices) - - if converted_to_list: - slices = slices[0] - return slices - - -def handle_partial_sample_weights( - outputs, sample_weights, sample_weight_modes, check_all_flat=False -): - """Adds 1.0 as sample weights for the outputs for which there is no weight. - - Args: - outputs: List of model outputs. - sample_weights: List of sample weight inputs. - sample_weight_modes: List of sample weight modes or None. - check_all_flat: Ensure that inputs are not nested structures. This is not - a free check, so we may not want to run it eagerly every iteration. - - Returns: - Tuple of sample weights, one sample weight for every output, and booleans - describing the raw sample weights. - """ - if not isinstance(sample_weights, (list, tuple)): - any_sample_weight = sample_weights is not None - partial_sample_weight = any_sample_weight and sample_weights is None - else: - any_sample_weight = sample_weights is not None and any( - w is not None for w in sample_weights - ) - partial_sample_weight = any_sample_weight and any( - w is None for w in sample_weights - ) - - if not any_sample_weight: - return None, any_sample_weight, partial_sample_weight - - if not partial_sample_weight: - return sample_weights, any_sample_weight, partial_sample_weight - - if check_all_flat: - tf.nest.assert_same_structure( - list_to_tuple(sample_weights), - list_to_tuple(tf.nest.flatten(sample_weights)), - ) - tf.nest.assert_same_structure( - list_to_tuple(outputs), list_to_tuple(tf.nest.flatten(outputs)) - ) - if sample_weight_modes is not None: - tf.nest.assert_same_structure( - sample_weight_modes, tf.nest.flatten(sample_weight_modes) - ) - - new_sample_weights = [] - for i, sw in enumerate(sample_weights): - if sw is None: - as_numpy = isinstance(outputs[i], np.ndarray) - output = outputs[i] - output_shape = output.shape if as_numpy else tf.shape(output) - - is_temporal = ( - sample_weight_modes is not None - and sample_weight_modes[i] == "temporal" - ) - sw_shape = ( - (output_shape[0], output_shape[1]) - if is_temporal - else (output_shape[0],) - ) - - new_sample_weights.append( - np.ones(sw_shape) if as_numpy else tf.ones(sw_shape) - ) - - else: - new_sample_weights.append(sw) - return ( - list_to_tuple(new_sample_weights), - any_sample_weight, - partial_sample_weight, - ) - - -class RespectCompiledTrainableState: - """Set and restore trainable state if it has changed since compile. - - The keras API guarantees that the value of each Layer's `trainable` property - at `Model.compile` time will be used when training that model. In order to - respect this requirement, it may be necessary to set the trainable value of - layers to their compile time values before beginning a training endpoint and - restore the values before returning from said endpoint. This scope checks if - any layer's trainable state has changed since Model compile, and performs - this set and un-set bookkeeping. - - However, the trainable state of a layer changes quite infrequently, if ever, - for many kinds of workflows. Moreover, updating every layer in a model is an - expensive operation. As a result, we will only explicitly set and unset the - trainable state of a model if a trainable value has changed since compile. - """ - - def __init__(self, model): - self._model = model - self._current_trainable_state = None - self._compiled_trainable_state = None - self._should_set_trainable = False - - def __enter__(self): - self._current_trainable_state = self._model._get_trainable_state() - self._compiled_trainable_state = self._model._compiled_trainable_state - - # Check to see if any layer's trainable state has changed since - # `compile`. - for layer, trainable in self._compiled_trainable_state.items(): - if ( - layer in self._current_trainable_state - and trainable != self._current_trainable_state[layer] - ): - self._should_set_trainable = True - break - - # If so, restore the model to its compiled state. - if self._should_set_trainable: - self._model._set_trainable_state(self._compiled_trainable_state) - - def __exit__(self, type_arg, value_arg, traceback_arg): - # If we set the values to their compiled state in __enter__, we need to - # restore the original values before leaving the scope. - if self._should_set_trainable: - self._model._set_trainable_state(self._current_trainable_state) - return False # False values do not suppress exceptions - - -# Allow use of methods not exposed to the user. - - -def get_input_shape_and_dtype(layer): - """Retrieves input shape and input dtype of layer if applicable. - - Args: - layer: Layer (or model) instance. - - Returns: - Tuple (input_shape, input_dtype). Both could be None if the layer - does not have a defined input shape. - - Raises: - ValueError: in case an empty Sequential or Functional model is passed. - """ - - def _is_graph_model(layer): - return ( - hasattr(layer, "_is_graph_network") and layer._is_graph_network - ) or layer.__class__.__name__ == "Sequential" - - # In case of nested models: recover the first layer - # of the deepest model to infer input shape and dtype. - # Subclassed Models may not have been built so can't be checked. - while _is_graph_model(layer): - if not layer.layers: - raise ValueError("An empty Model cannot be used as a Layer.") - layer = layer.layers[0] - - if getattr(layer, "_batch_input_shape", None): - return layer._batch_input_shape, layer.dtype - return None, None - - -def get_static_batch_size(layer): - """Gets the static batch size of a Layer. - - Args: - layer: a `Layer` instance. - - Returns: - The static batch size of a Layer. - """ - batch_input_shape, _ = get_input_shape_and_dtype(layer) - if batch_input_shape is not None: - return tf.compat.v1.Dimension(batch_input_shape[0]).value - return None - - -def list_to_tuple(maybe_list): - """Datasets will stack the list of tensor, so switch them to tuples.""" - if isinstance(maybe_list, list): - return tuple(maybe_list) - return maybe_list diff --git a/keras/engine/training_utils_v1.py b/keras/engine/training_utils_v1.py deleted file mode 100644 index 48cfdd4c02f..00000000000 --- a/keras/engine/training_utils_v1.py +++ /dev/null @@ -1,2226 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Training-related utilities.""" - -import abc -import atexit -import collections -import functools -import multiprocessing.pool -import threading -import time - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import callbacks as cbks -from keras import losses -from keras import metrics as metrics_module -from keras.utils import data_utils -from keras.utils import generic_utils -from keras.utils import losses_utils -from keras.utils import tf_inspect - -# isort: off -from tensorflow.python.platform import tf_logging as logging - - -def is_composite_or_composite_value(tensor): - """Returns true if 'tensor' is a CompositeTensor or a CT Value object.""" - # TODO(b/125094323): This should be isinstance(CompositeTensor) or - # isinstance(CompositeTensorValue) once we support that. - return isinstance( - tensor, - ( - tf.__internal__.CompositeTensor, - tf.compat.v1.SparseTensorValue, - tf.compat.v1.ragged.RaggedTensorValue, - ), - ) - - -class Aggregator(object, metaclass=abc.ABCMeta): - """Abstract base class used to aggregate batch-level outputs of a loop. - - Attributes: - use_steps: Whether the loop is using `step` or `batch_size`. - num_samples: Total number of samples: `batch_size * num_batches`. - steps: Total number of steps. - batch_size: Batch size. It is used for validation checks between inputs - and outputs. - results: What to return at the end of the aggregation loop. - """ - - def __init__( - self, use_steps, num_samples=None, steps=None, batch_size=None - ): - self.use_steps = use_steps - self.num_samples = num_samples - self.steps = steps - self.batch_size = batch_size - self.results = [] - - @abc.abstractmethod - def create(self, batch_outs): - """Creates the initial results from the first batch outputs. - - Args: - batch_outs: A list of batch-level outputs. - """ - raise NotImplementedError("Must be implemented in subclasses.") - - @abc.abstractmethod - def aggregate(self, batch_outs, batch_start=None, batch_end=None): - """Aggregates batch-level results into total results. - - Args: - batch_outs: A list of batch-level outputs. - batch_start: The start index of this batch. Always `None` if - `use_steps` is `True`. - batch_end: The end index of this batch. Always `None` if `use_steps` - is `True`. - """ - raise NotImplementedError("Must be implemented in subclasses.") - - @abc.abstractmethod - def finalize(self): - """Prepares the total results to be returned.""" - raise NotImplementedError("Must be implemented in subclasses.") - - -class MetricsAggregator(Aggregator): - """Aggregator that calculates loss and metrics info. - - Attributes: - use_steps: Whether the loop is using `step` or `batch_size`. - num_samples: Total number of samples: `batch_size*num_batches`. - steps: Total number of steps, ie number of times to iterate over a dataset - to cover all samples. - """ - - def __init__(self, use_steps, num_samples=None, steps=None): - super().__init__( - use_steps=use_steps, - num_samples=num_samples, - steps=steps, - batch_size=None, - ) - - def create(self, batch_outs): - self.results = [0.0] * len(batch_outs) - - def aggregate(self, batch_outs, batch_start=None, batch_end=None): - # Loss. - if self.use_steps: - self.results[0] += batch_outs[0] - else: - self.results[0] += batch_outs[0] * (batch_end - batch_start) - # Metrics (always stateful, just grab current values.) - self.results[1:] = batch_outs[1:] - - def finalize(self): - if not self.results: - raise ValueError("Empty training data.") - self.results[0] /= self.num_samples or self.steps - - -def _append_sparse_tensor_value(target, to_append): - """Append sparse tensor value objects.""" - # Make sure the sparse tensors are of the same size (except for the 0th - # dim). - if len(target.dense_shape) != len(to_append.dense_shape): - raise RuntimeError( - "Unable to concatenate %s and %s. The inner dense shapes do not " - "have the same number of dimensions (%s vs %s)" - % (target, to_append, target.dense_shape, to_append.dense_shape) - ) - - if target.dense_shape[1:] != to_append.dense_shape[1:]: - raise RuntimeError( - "Unable to concatenate %s and %s. The inner dense shapes do not " - "match inner dimensions (%s vs %s)" - % ( - target, - to_append, - target.dense_shape[1:], - to_append.dense_shape[1:], - ) - ) - - # Add the to_append indices to target, updating the 0th value, and keeping - # track of the maximum so we know the final dense_shape of this tensor. - base_dim0_value = target.dense_shape[0] - max_dim0_value = target.dense_shape[0] - new_indices = target.indices - for index in to_append.indices: - # Here, we iterate through the sparse indices of the tensor to append. - # For each index, we update its zeroth value (the batch index) by adding - # the number of batch items in the tensor we are appending to (so an - # index of [0, 0, 1] for a value that is being appended to a tensor with - # 0th dim size 3 would become [3, 0, 1].) - index[0] += base_dim0_value - max_dim0_value = max(max_dim0_value, index[0]) - new_indices = np.append(new_indices, [index], axis=0) - - # Extend the values array to contain all of the appended values. These will - # be in the same order as the indices added above. - new_values = np.concatenate((target.values, to_append.values), axis=0) - - # Create a new dense shape by replacing the value for the 0th dimension - # with the new max dim0 value. - new_dense_shape = list(target.dense_shape) - new_dense_shape[0] = max_dim0_value + 1 - new_dense_shape = tuple(new_dense_shape) - - return tf.compat.v1.SparseTensorValue( - indices=new_indices, values=new_values, dense_shape=new_dense_shape - ) - - -def _append_ragged_tensor_value(target, to_append): - """Append ragged tensor value objects.""" - # Make sure the ragged tensors are of the same size (save for the 0th dim). - if len(target.shape) != len(to_append.shape): - raise RuntimeError(f"Unable to concatenate {target} and {to_append}") - - if target.shape[1:] != to_append.shape[1:]: - raise RuntimeError(f"Unable to concatenate {target} and {to_append}") - - adjusted_row_splits = to_append.row_splits[1:] + target.row_splits[-1] - new_row_splits = np.append(target.row_splits, adjusted_row_splits) - if isinstance(target.values, tf.compat.v1.ragged.RaggedTensorValue): - new_values = _append_ragged_tensor_value( - target.values, to_append.values - ) - else: - new_values = np.concatenate((target.values, to_append.values), axis=0) - - return tf.compat.v1.ragged.RaggedTensorValue(new_values, new_row_splits) - - -def _append_composite_tensor(target, to_append): - """Helper function to append composite tensors to each other in the 0 axis. - - In order to support batching within a fit/evaluate/predict call, we need - to be able to aggregate within a CompositeTensor. Unfortunately, the CT - API currently does not make this easy - especially in V1 mode, where we're - working with CompositeTensor Value objects that have no connection with the - CompositeTensors that created them. - - Args: - target: CompositeTensor or CompositeTensor value object that will be - appended to. - to_append: CompositeTensor or CompositeTensor value object to append to. - 'target'. - - Returns: - A CompositeTensor or CompositeTensor value object. - - Raises: - RuntimeError: if concatenation is not possible. - """ - if type(target) is not type(to_append): - raise RuntimeError( - f"Unable to concatenate {type(target)} and {type(to_append)}" - ) - - # Perform type-specific concatenation. - # TODO(b/125094323): This should be replaced by a simple call to - # target.append() that should work on all of the below classes. - - # If we're seeing a CompositeTensor here, we know it's because we're in - # Eager mode (or else we'd have evaluated the CT to a CT Value object - # already). Therefore, it's safe to call concat() on it without evaluating - # the result any further. If not - that is, if we're seeing a - # SparseTensorValue or a RaggedTensorValue - we need to hand-update it - # since we're outside of the graph anyways. - if isinstance(target, tf.SparseTensor): - # We need to invoke the sparse version of concatenate here - tf.concat - # won't work. - return tf.compat.v1.sparse_concat(sp_inputs=[target, to_append], axis=0) - elif isinstance(target, tf.RaggedTensor): - return tf.concat([target, to_append], axis=0) - elif isinstance(target, tf.compat.v1.SparseTensorValue): - return _append_sparse_tensor_value(target, to_append) - elif isinstance(target, tf.compat.v1.ragged.RaggedTensorValue): - return _append_ragged_tensor_value(target, to_append) - else: - raise RuntimeError( - f"Attempted to concatenate unsupported object {type(target)}." - ) - - -class ConcatAggregator(Aggregator): - """Combine tensor-likes which cannot be merged on the fly. - - This class expects to aggregate a single tensor-like rather than a nested - structure of tensor-likes. - """ - - def __init__(self, batch_size): - self.composite = None - super().__init__( - use_steps=True, num_samples=None, steps=None, batch_size=batch_size - ) - - def create(self, batch_element): - self.composite = is_composite_or_composite_value(batch_element) - - def aggregate(self, batch_element, batch_start=None, batch_end=None): - - # TODO(psv): Add num_samples check here to detect when output batch - # #samples is < batch size and != input batch #samples. - if self.batch_size and self.batch_size < batch_element.shape[0]: - raise ValueError( - "Mismatch between expected batch size and model output batch " - "size. Output shape = {}, " - "expected output shape = shape {}".format( - batch_element.shape, - (self.batch_size,) + batch_element.shape[1:], - ) - ) - self.results.append(batch_element) - - def finalize(self): - # Special case of single batch inference which skips a copy. - if len(self.results) == 1: - self.results = self.results[0] - - elif self.composite: - # TODO(taylorrobie): efficiently concatenate. - results = self.results[0] - for r in self.results[1:]: - results = _append_composite_tensor(results, r) - self.results = results - - else: - self.results = np.concatenate(self.results, axis=0) - - -_COPY_THREADS = 4 -_COPY_POOL = None - - -def get_copy_pool(): - """Shared threadpool for copying arrays. - - Pool instantiation takes ~ 2ms, so a singleton pool is used rather than - creating a pool per SliceAggregator. - - Returns: - The global copy threadpool. - """ - global _COPY_POOL - if _COPY_POOL is None: - _COPY_POOL = multiprocessing.pool.ThreadPool(_COPY_THREADS) - atexit.register(_COPY_POOL.close) - return _COPY_POOL - - -class SliceAggregator(Aggregator): - """Combine arrays where the final size is known. - - This class expects to aggregate a single tensor-like rather than a nested - structure of tensor-likes. - - NumPy copies are an operation that threads handle quite well because all of - the heavy lifting is in c and does not need the GIL. Moreover, we can - perform lock-free writes to the same buffer in multiple threads because the - nature of result aggregation guarantees that either the indices are disjoint - or the aggregator will throw an exception in finalize. Moreover, because - aggregation is performed on the slowest varying dimension, assignments for a - given batch will write to contiguous blocks of memory, further minimizing - contention. - - There is, however, some scheduling and context switching overhead which will - offset the gains from pipelining the slice assignment. Below a given - threshold it is faster to simply assign in the main thread rather than - enqueue the assignment in a side thread. The exact threshold will vary from - system to system, but the time is not very sensitive to the exact transition - so a value of 2 ** 14 was chosen which should be reasonable on most systems. - """ - - _BINARY_SIZE_THRESHOLD = 2**14 - _MAX_COPY_SECONDS = 300 - - def __init__(self, num_samples, batch_size): - self._async_copies = [] - self._pool = get_copy_pool() - self._errors = [] - super().__init__( - use_steps=False, - num_samples=num_samples, - steps=None, - batch_size=batch_size, - ) - - def create(self, batch_element): - # This step does not need to be pipelined because NumPy empty array - # initialization is effectively instantaneous. - shape = (self.num_samples,) + batch_element.shape[1:] - dtype = batch_element.dtype - - self.results = np.empty(shape=shape, dtype=dtype) - - def aggregate(self, batch_element, batch_start, batch_end): - # Fail early. - if self._errors: - raise self._errors[0] - - # In the special case of single batch inference, no copy is needed. - if batch_end - batch_start == self.num_samples: - if self.num_samples != batch_element.shape[0]: - raise ValueError( - "Mismatch between expected batch size and model " - "output batch size. Output shape = {}, " - "expected output shape = shape {}".format( - batch_element.shape, self.results.shape - ) - ) - - self.results = batch_element - return - - # This is an approximate threshold, so we don't need to consider the - # number of bytes per element. - num_elements = np.prod(batch_element.shape) - if num_elements < self._BINARY_SIZE_THRESHOLD: - self.results[batch_start:batch_end] = batch_element - else: - is_finished = threading.Event() - self._pool.apply_async( - self._slice_assign, - args=(batch_element, batch_start, batch_end, is_finished), - ) - self._async_copies.append(is_finished) - - def _slice_assign(self, batch_element, batch_start, batch_end, is_finished): - """Legacy utility method to slice input arrays.""" - try: - self.results[batch_start:batch_end] = batch_element - - except Exception as e: - # `_slice_assign` should only be called in threads and exceptions - # raised in threads do not carry over to the main thread. So instead - # we perform a a broad catch in the thread and then store the - # exception to be re-raised in the main thread. - self._errors.append(e) - - finally: - is_finished.set() - - def finalize(self): - start_time = time.time() - for is_finished in self._async_copies: - timeout = max( - [0.0, self._MAX_COPY_SECONDS - (time.time() - start_time)] - ) - if not is_finished.wait(timeout): - raise ValueError("Timed out waiting for copy to complete.") - - if self._errors: - raise self._errors[0] - - -class OutputsAggregator(Aggregator): - """Aggregator that concatenates outputs.""" - - _structure = None - - def create(self, batch_outs): - # SparseTensorValue is a named tuple which nest will flatten, so we need - # to guard it to properly handle the structure. - self._structure = tf.__internal__.nest.get_traverse_shallow_structure( - lambda x: not is_composite_or_composite_value(x), batch_outs - ) - batch_outs = tf.__internal__.nest.flatten_up_to( - self._structure, batch_outs - ) - - for batch_element in batch_outs: - if is_composite_or_composite_value(batch_element): - # If the output is not a ndarray, it will be either a composite - # tensor or a composite tensor's Value object. In either case, - # we can't allocate an array to hold the object - we'll handle - # it later. - self.results.append(ConcatAggregator(self.batch_size)) - elif isinstance(batch_element, np.ndarray): - self.results.append( - ( - ConcatAggregator(self.batch_size) - if self.use_steps - else SliceAggregator(self.num_samples, self.batch_size) - ) - ) - else: - # This is not a ndarray, a CompositeTensor, or a - # CompositeTensorValue. Fail fast rather than trying to - # concatenate it. - raise RuntimeError( - "Attempted to aggregate unsupported object {}.".format( - batch_element - ) - ) - - self.results[-1].create(batch_element) - - def aggregate(self, batch_outs, batch_start=None, batch_end=None): - batch_outs = tf.__internal__.nest.flatten_up_to( - self._structure, batch_outs - ) - for batch_element, result in zip(batch_outs, self.results): - result.aggregate(batch_element, batch_start, batch_end) - - def finalize(self): - for result in self.results: - result.finalize() - self.results = [i.results for i in self.results] - self.results = tf.nest.pack_sequence_as(self._structure, self.results) - - -def get_progbar(model, count_mode, include_metrics=True): - """Get Progbar.""" - if include_metrics: - stateful_metric_names = getattr(model, "metrics_names", None) - if stateful_metric_names: - stateful_metric_names = stateful_metric_names[1:] # Exclude `loss` - else: - stateful_metric_names = None - return cbks.ProgbarLogger( - count_mode, stateful_metrics=stateful_metric_names - ) - - -def check_num_samples(ins, batch_size=None, steps=None, steps_name="steps"): - """Determine the number of samples provided for training and evaluation. - - The number of samples is not defined when running with `steps`, - in which case the number of samples is set to `None`. - - Args: - ins: List of tensors to be fed to the Keras function. - batch_size: Integer batch size or `None` if not defined. - steps: Total number of steps (batches of samples) before declaring - `_predict_loop` finished. Ignored with the default value of `None`. - steps_name: The public API's parameter name for `steps`. - - Raises: - ValueError: when `steps` is `None` and the attribute `ins.shape` - does not exist. Also raises ValueError when `steps` is not `None` - and `batch_size` is not `None` because they are mutually - exclusive. - - Returns: - When steps is `None`, returns the number of samples to be - processed based on the size of the first dimension of the - first input numpy array. When steps is not `None` and - `batch_size` is `None`, returns `None`. - """ - if steps is not None and batch_size is not None: - raise ValueError( - "If " + steps_name + " is set, the `batch_size` must be None." - ) - if check_steps_argument(ins, steps, steps_name): - return None - - if hasattr(ins[0], "shape"): - return int(ins[0].shape[0]) - return None # Edge case where ins == [static_learning_phase] - - -def standardize_single_array(x, expected_shape=None): - """Expand data of shape (x,) to (x, 1), unless len(expected_shape)==1.""" - if x is None: - return None - - if is_composite_or_composite_value(x): - return x - - if isinstance(x, int): - raise ValueError( - f"Expected an array data type but received an integer: {x}" - ) - - if ( - x.shape is not None - and len(x.shape) == 1 - and (expected_shape is None or len(expected_shape) != 1) - ): - if tf.is_tensor(x): - x = tf.compat.v1.expand_dims(x, axis=1) - else: - x = np.expand_dims(x, 1) - return x - - -def get_composite_shape(tensor): - """Returns the shape of the passed composite tensor.""" - if isinstance(tensor, tf.compat.v1.SparseTensorValue): - # SparseTensorValues use a 'dense_shape' attribute - return tensor.dense_shape - else: - return tensor.shape - - -def standardize_input_data( - data, names, shapes=None, check_batch_axis=True, exception_prefix="" -): - """Normalizes inputs and targets provided by users. - - Users may pass data as a list of arrays, dictionary of arrays, - or as a single array. We normalize this to an ordered list of - arrays (same order as `names`), while checking that the provided - arrays have shapes that match the network's expectations. - - Args: - data: User-provided input data (polymorphic). - names: List of expected array names. - shapes: Optional list of expected array shapes. - check_batch_axis: Boolean; whether to check that the batch axis of the - arrays matches the expected value found in `shapes`. - exception_prefix: String prefix used for exception formatting. - - Returns: - List of standardized input arrays (one array per model input). - - Raises: - ValueError: in case of improperly formatted user-provided data. - """ - try: - data_len = len(data) - except TypeError: - # For instance if data is `None` or a symbolic Tensor. - data_len = None - - if not names: - if data_len and not isinstance(data, dict): - raise ValueError( - "Error when checking model " - + exception_prefix - + ": expected no data, but got:", - data, - ) - return [] - if data is None: - return [None for _ in range(len(names))] - - if isinstance(data, dict): - try: - data = [ - data[x].values - if data[x].__class__.__name__ == "DataFrame" - else data[x] - for x in names - ] - except KeyError as e: - raise ValueError( - 'No data provided for "' - + e.args[0] - + '". Need data for each key in: ' - + str(names) - ) - elif isinstance(data, (list, tuple)): - if isinstance(data[0], (list, tuple)): - data = [np.asarray(d) for d in data] - elif len(names) == 1 and isinstance(data[0], (float, int)): - data = [np.asarray(data)] - else: - data = [ - x.values if x.__class__.__name__ == "DataFrame" else x - for x in data - ] - else: - data = data.values if data.__class__.__name__ == "DataFrame" else data - data = [data] - - if shapes is not None: - data = [ - standardize_single_array(x, shape) - for (x, shape) in zip(data, shapes) - ] - else: - data = [standardize_single_array(x) for x in data] - - if len(data) != len(names): - if data and hasattr(data[0], "shape"): - raise ValueError( - "Error when checking model " - + exception_prefix - + ": the list of Numpy arrays that you are passing to " - "your model is not the size the model expected. " - "Expected to see " - + str(len(names)) - + " array(s), " - + "for inputs " - + str(names) - + " but instead got the following list of " - + str(len(data)) - + " arrays: " - + str(data)[:200] - + "..." - ) - elif len(names) > 1: - raise ValueError( - "Error when checking model " - + exception_prefix - + ": you are passing a list as input to your model, " - "but the model expects a list of " - + str(len(names)) - + " Numpy arrays instead. The list you passed was: " - + str(data)[:200] - ) - elif len(data) == 1 and not hasattr(data[0], "shape"): - raise TypeError( - "Error when checking model " - + exception_prefix - + ": data should be a Numpy array, or list/dict of " - "Numpy arrays. Found: " + str(data)[:200] + "..." - ) - elif len(names) == 1: - data = [np.asarray(data)] - - # Check shapes compatibility. - if shapes: - for i in range(len(names)): - if shapes[i] is not None: - if tf.is_tensor(data[i]): - tensorshape = data[i].shape - if not tensorshape: - continue - data_shape = tuple(tensorshape.as_list()) - elif is_composite_or_composite_value(data[i]): - tensorshape = get_composite_shape(data[i]) - data_shape = tuple(tensorshape.as_list()) - else: - data_shape = data[i].shape - - shape = shapes[i] - if len(data_shape) != len(shape): - raise ValueError( - "Error when checking " - + exception_prefix - + ": expected " - + names[i] - + " to have " - + str(len(shape)) - + " dimensions, but got array with shape " - + str(data_shape) - ) - if not check_batch_axis: - data_shape = data_shape[1:] - shape = shape[1:] - for dim, ref_dim in zip(data_shape, shape): - if ( - ref_dim != dim - and ref_dim is not None - and dim is not None - ): - raise ValueError( - "Error when checking " - + exception_prefix - + ": expected " - + names[i] - + " to have shape " - + str(shape) - + " but got array with shape " - + str(data_shape) - ) - return data - - -def standardize_sample_or_class_weights(x_weight, output_names, weight_type): - """Maps `sample_weight` or `class_weight` to model outputs. - - Args: - x_weight: User-provided `sample_weight` or `class_weight` argument. - output_names: List of output names (strings) in the model. - weight_type: A string used purely for exception printing. - - Returns: - A list of `sample_weight` or `class_weight` where there are exactly - one element per model output. - - Raises: - ValueError: In case of invalid user-provided argument. - """ - if x_weight is None or ( - isinstance(x_weight, (list, tuple)) and len(x_weight) == 0 - ): - return [None for _ in output_names] - if len(output_names) == 1: - if isinstance(x_weight, (list, tuple)) and len(x_weight) == 1: - return x_weight - if isinstance(x_weight, dict) and output_names[0] in x_weight: - return [x_weight[output_names[0]]] - else: - return [x_weight] - if isinstance(x_weight, (list, tuple)): - if len(x_weight) != len(output_names): - raise ValueError( - "Provided `" - + weight_type - + "` was a list of " - + str(len(x_weight)) - + " elements, but the model has " - + str(len(output_names)) - + " outputs. You should provide one `" - + weight_type - + "`array per model output." - ) - return x_weight - if isinstance(x_weight, collections.abc.Mapping): - generic_utils.check_for_unexpected_keys( - weight_type, x_weight, output_names - ) - x_weights = [] - for name in output_names: - x_weights.append(x_weight.get(name)) - return x_weights - else: - raise TypeError( - "The model has multiple outputs, so `" - + weight_type - + "` should be either a list or a dict. Provided `" - + weight_type - + "` type not understood: " - + str(x_weight) - ) - - -def standardize_class_weights(class_weight, output_names): - return standardize_sample_or_class_weights( - class_weight, output_names, "class_weight" - ) - - -def standardize_sample_weights(sample_weight, output_names): - return standardize_sample_or_class_weights( - sample_weight, output_names, "sample_weight" - ) - - -def check_array_lengths(inputs, targets, weights=None): - """Does user input validation for numpy arrays. - - Args: - inputs: list of Numpy arrays of inputs. - targets: list of Numpy arrays of targets. - weights: list of Numpy arrays of sample weights. - - Raises: - ValueError: in case of incorrectly formatted data. - """ - - def is_tensor_or_composite_tensor(x): - return tf.is_tensor(x) or is_composite_or_composite_value(x) - - def set_of_lengths(x): - # Returns a set with the variation between - # different shapes, with None => 0 - if x is None: - return {} - else: - return set( - [ - y.shape[0] - for y in x - if y is not None and not is_tensor_or_composite_tensor(y) - ] - ) - - set_x = set_of_lengths(inputs) - set_y = set_of_lengths(targets) - set_w = set_of_lengths(weights) - if len(set_x) > 1: - raise ValueError( - "All input arrays (x) should have " - "the same number of samples. Got array shapes: " - + str([x.shape for x in inputs]) - ) - if len(set_y) > 1: - raise ValueError( - "All target arrays (y) should have " - "the same number of samples. Got array shapes: " - + str([y.shape for y in targets]) - ) - if set_x and set_y and list(set_x)[0] != list(set_y)[0]: - raise ValueError( - "Input arrays should have " - "the same number of samples as target arrays. " - "Found " - + str(list(set_x)[0]) - + " input samples and " - + str(list(set_y)[0]) - + " target samples." - ) - if len(set_w) > 1: - raise ValueError( - "All sample_weight arrays should have " - "the same number of samples. Got array shapes: " - + str([w.shape for w in weights]) - ) - if set_y and set_w and list(set_y)[0] != list(set_w)[0]: - raise ValueError( - "Sample_weight arrays should have " - "the same number of samples as target arrays. Got " - + str(list(set_y)[0]) - + " input samples and " - + str(list(set_w)[0]) - + " target samples." - ) - - -def check_loss_and_target_compatibility(targets, loss_fns, output_shapes): - """Does validation on the compatibility of targets and loss functions. - - This helps prevent users from using loss functions incorrectly. This check - is purely for UX purposes. - - Args: - targets: list of Numpy arrays of targets. - loss_fns: list of loss functions. - output_shapes: list of shapes of model outputs. - - Raises: - ValueError: if a loss function or target array - is incompatible with an output. - """ - key_loss_fns = { - losses.mean_squared_error, - losses.binary_crossentropy, - losses.categorical_crossentropy, - } - key_loss_classes = ( - losses.MeanSquaredError, - losses.BinaryCrossentropy, - losses.CategoricalCrossentropy, - ) - for y, loss, shape in zip(targets, loss_fns, output_shapes): - if y is None or loss is None or tf.is_tensor(y): - continue - if losses.is_categorical_crossentropy(loss): - if y.shape[-1] == 1: - raise ValueError( - "You are passing a target array of shape " - + str(y.shape) - + " while using as loss `categorical_crossentropy`. " - "`categorical_crossentropy` expects " - "targets to be binary matrices (1s and 0s) " - "of shape (samples, classes). " - "If your targets are integer classes, " - "you can convert them to the expected format via:\n" - "```\n" - "from keras.utils import to_categorical\n" - "y_binary = to_categorical(y_int)\n" - "```\n" - "\n" - "Alternatively, you can use the loss function " - "`sparse_categorical_crossentropy` instead, " - "which does expect integer targets." - ) - - is_loss_wrapper = isinstance(loss, losses.LossFunctionWrapper) - if isinstance(loss, key_loss_classes) or ( - is_loss_wrapper and (loss.fn in key_loss_fns) - ): - for target_dim, out_dim in zip(y.shape[1:], shape[1:]): - if out_dim is not None and target_dim != out_dim: - loss_name = loss.name - if loss_name is None: - loss_type = loss.fn if is_loss_wrapper else type(loss) - loss_name = loss_type.__name__ - raise ValueError( - "A target array with shape " - + str(y.shape) - + " was passed for an output of shape " - + str(shape) - + " while using as loss `" - + loss_name - + "`. " - "This loss expects targets to have the same shape " - "as the output." - ) - - -def collect_per_output_metric_info( - metrics, - output_names, - output_shapes, - loss_fns, - from_serialized=False, - is_weighted=False, -): - """Maps metric names and functions to model outputs. - - Args: - metrics: a list or a list of lists or a dict of metric functions. - output_names: a list of the names (strings) of model outputs. - output_shapes: a list of the shapes (strings) of model outputs. - loss_fns: a list of the loss functions corresponding to the model - outputs. - from_serialized: whether the model the metrics are being sourced from is - being initialized from a serialized format. - is_weighted: Boolean indicating whether the given metrics are weighted. - - Returns: - A list (one entry per model output) of dicts. - For instance, if the model has 2 outputs, and for the first output - we want to compute "binary_accuracy" and "binary_crossentropy", - and just "binary_accuracy" for the second output, - the list would look like: `[{ - 'acc': binary_accuracy(), - 'ce': binary_crossentropy(), - }, { - 'acc': binary_accuracy(), - }]` - - Raises: - TypeError: if an incorrect type is passed for the `metrics` argument. - """ - if not metrics: - return [{} for _ in output_names] - - if isinstance(metrics, list): - any_sub_list = any(isinstance(m, list) for m in metrics) - if any_sub_list: - if len(metrics) != len(output_names): - raise ValueError( - "When passing a list of lists as `metrics`, " - "it should have one entry per model output. " - "The model has " - + str(len(output_names)) - + " outputs, but you passed metrics=" - + str(metrics) - ) - # User has provided a list of len = len(outputs). - nested_metrics = [generic_utils.to_list(m) for m in metrics] - else: - # If it is a single list we then apply all metrics to all outputs. - if len(output_names) > 1: - nested_metrics = [] - for _ in output_names: - nested_metrics.append( - [metrics_module.clone_metric(m) for m in metrics] - ) - else: - nested_metrics = [metrics] - elif isinstance(metrics, collections.abc.Mapping): - generic_utils.check_for_unexpected_keys( - "metrics", metrics, output_names - ) - nested_metrics = [] - for name in output_names: - output_metrics = generic_utils.to_list(metrics.get(name, [])) - nested_metrics.append(output_metrics) - else: - raise TypeError( - "Type of `metrics` argument not understood. " - "Expected a list or dictionary, found: " + str(metrics) - ) - - per_output_metrics = [] - for i, metrics in enumerate(nested_metrics): - metrics_dict = collections.OrderedDict() - for metric in metrics: - metric_name = get_metric_name(metric, is_weighted) - metric_fn = get_metric_function( - metric, output_shape=output_shapes[i], loss_fn=loss_fns[i] - ) - metric_fn._from_serialized = from_serialized - - # If the metric function is not stateful, we create a stateful - # version. - if not isinstance(metric_fn, metrics_module.Metric): - metric_fn = metrics_module.MeanMetricWrapper( - metric_fn, name=metric_name - ) - # If the metric is being revived from something stateless, such - # as a string (e.g. "accuracy"), we may need to later reapply - # transformations such as renaming. - metric_fn._from_serialized = False - metrics_dict[metric_name] = metric_fn - per_output_metrics.append(metrics_dict) - - return per_output_metrics - - -def batch_shuffle(index_array, batch_size): - """Shuffles an array in a batch-wise fashion. - - Useful for shuffling HDF5 arrays - (where one cannot access arbitrary indices). - - Args: - index_array: array of indices to be shuffled. - batch_size: integer. - - Returns: - The `index_array` array, shuffled in a batch-wise fashion. - """ - batch_count = int(len(index_array) / batch_size) - # to reshape we need to be cleanly divisible by batch size - # we stash extra items and reappend them after shuffling - last_batch = index_array[batch_count * batch_size :] - index_array = index_array[: batch_count * batch_size] - index_array = index_array.reshape((batch_count, batch_size)) - np.random.shuffle(index_array) - index_array = index_array.flatten() - return np.append(index_array, last_batch) - - -def standardize_weights( - y, sample_weight=None, class_weight=None, sample_weight_mode=None -): - """Performs sample weight validation and standardization. - - Everything gets normalized to a single sample-wise (or timestep-wise) - weight array. If both `sample_weight` and `class_weight` are provided, - the weights are multiplied. - - Args: - y: Numpy array or Tensor of model targets to be weighted. - sample_weight: User-provided `sample_weight` argument. - class_weight: User-provided `class_weight` argument. - sample_weight_mode: One of `None` or `"temporal"`. `"temporal"` - indicated that we expect 2D weight data that will be applied to the - last 2 dimensions of the targets (i.e. we are weighting timesteps, not - samples). - - Returns: - A numpy array of target weights, one entry per sample to weight. - - Raises: - ValueError: In case of invalid user-provided arguments. - """ - # Iterator may return sample_weight as 1-tuple - if isinstance(sample_weight, tuple): - sample_weight = sample_weight[0] - if sample_weight_mode is not None and sample_weight_mode != "samplewise": - if sample_weight_mode != "temporal": - raise ValueError( - '"sample_weight_mode should be None or "temporal". Found: ' - + str(sample_weight_mode) - ) - if len(y.shape) < 3: - raise ValueError( - "Found a sample_weight array for an input with shape " - + str(y.shape) - + ". " - "Timestep-wise sample weighting (use of " - 'sample_weight_mode="temporal") is restricted to ' - "outputs that are at least 3D, i.e. that have " - "a time dimension." - ) - if sample_weight is not None and len(sample_weight.shape) != 2: - raise ValueError( - "Found a sample_weight array with shape " - + str(sample_weight.shape) - + ". " - "In order to use timestep-wise sample weighting, " - "you should pass a 2D sample_weight array." - ) - else: - if sample_weight is not None and len(sample_weight.shape) != 1: - raise ValueError( - "Found a sample_weight array with shape {}. In order to " - "use timestep-wise sample weights, you should specify " - 'sample_weight_mode="temporal" in compile(); founssd "{}" ' - "instead. If you just mean to use sample-wise weights, " - "make sure your sample_weight array is 1D.".format( - sample_weight.shape, sample_weight_mode - ) - ) - - if sample_weight is not None: - if len(sample_weight.shape) > len(y.shape): - raise ValueError( - "Found a sample_weight with shape" - + str(sample_weight.shape) - + ".Expected sample_weight with rank less than or equal to " - + str(len(y.shape)) - ) - - if ( - not tf.is_tensor(sample_weight) - and y.shape[: sample_weight.ndim] != sample_weight.shape - ): - raise ValueError( - "Found a sample_weight array with shape " - + str(sample_weight.shape) - + " for an input with shape " - + str(y.shape) - + ". sample_weight cannot be broadcast." - ) - - # Class weights applied per-sample. - class_sample_weight = None - if isinstance(class_weight, dict): - if len(y.shape) > 2: - raise ValueError( - "`class_weight` not supported for 3+ dimensional targets." - ) - - if tf.is_tensor(y): - # Few classes are expected, so densifying is reasonable. - keys = np.array(sorted(class_weight.keys())) - values = np.array([class_weight[i] for i in keys]) - weight_vector = np.zeros(np.max(keys) + 1) - weight_vector[:] = np.nan - weight_vector[keys] = values - - y_classes = tf.__internal__.smart_cond.smart_cond( - len(y.shape.as_list()) == 2 and backend.shape(y)[1] > 1, - lambda: backend.argmax(y, axis=1), - lambda: tf.cast(backend.reshape(y, (-1,)), tf.int64), - ) - class_sample_weight = tf.compat.v1.gather(weight_vector, y_classes) - tf.debugging.check_numerics( - class_sample_weight, - "Invalid classes or class weights detected. NaN values " - "indicate that an appropriate class weight could not be " - "determined.", - ) - class_sample_weight = tf.cast(class_sample_weight, backend.floatx()) - if sample_weight is not None: - sample_weight = tf.cast( - tf.convert_to_tensor(sample_weight), backend.floatx() - ) - else: - y_classes = y - if len(y.shape) == 2: - if y.shape[1] > 1: - y_classes = np.argmax(y, axis=1) - elif y.shape[1] == 1: - y_classes = np.reshape(y, y.shape[0]) - - class_sample_weight = np.asarray( - [class_weight[cls] for cls in y_classes if cls in class_weight] - ) - - if len(class_sample_weight) != len(y_classes): - # subtract the sets to pick all missing classes - existing_classes = set(y_classes) - existing_class_weight = set(class_weight.keys()) - raise ValueError( - "`class_weight` must contain all classes in the data." - " The classes %s exist in the data but not in " - "`class_weight`." - % (existing_classes - existing_class_weight) - ) - - if class_sample_weight is not None and sample_weight is not None: - # Multiply weights if both are provided. - return class_sample_weight * sample_weight - if sample_weight is not None: - return sample_weight - if class_sample_weight is not None: - return class_sample_weight - return None - - -def has_symbolic_tensors(ls): - if tf.executing_eagerly(): - return False - return has_tensors(ls) - - -def has_tensors(ls): - """Returns true if `ls` contains tensors.""" - # Note: at some point in time ragged tensors didn't count as tensors, so - # this returned false for ragged tensors. Making this return true fails some - # tests which would then require a steps_per_epoch argument. - if isinstance(ls, (list, tuple)): - return any( - tf.is_tensor(v) and not isinstance(v, tf.RaggedTensor) for v in ls - ) - if isinstance(ls, dict): - return any( - tf.is_tensor(v) and not isinstance(v, tf.RaggedTensor) - for _, v in ls.items() - ) - return tf.is_tensor(ls) and not isinstance(ls, tf.RaggedTensor) - - -def get_metric_name(metric, weighted=False): - """Returns the name corresponding to the given metric input. - - Args: - metric: Metric function name or reference. - weighted: Boolean indicating if the given metric is weighted. - - Returns: - The metric name. - """ - if tf.__internal__.tf2.enabled(): - # We keep the string that the user has set in compile as the metric - # name. - if isinstance(metric, str): - return metric - - metric = metrics_module.get(metric) - return metric.name if hasattr(metric, "name") else metric.__name__ - else: - metric_name_prefix = "weighted_" if weighted else "" - if metric in ("accuracy", "acc", "crossentropy", "ce"): - if metric in ("accuracy", "acc"): - suffix = "acc" - elif metric in ("crossentropy", "ce"): - suffix = "ce" - else: - metric_fn = metrics_module.get(metric) - # Get metric name as string - if hasattr(metric_fn, "name"): - suffix = metric_fn.name - else: - suffix = metric_fn.__name__ - metric_name = metric_name_prefix + suffix - return metric_name - - -def get_metric_function(metric, output_shape=None, loss_fn=None): - """Returns the metric function corresponding to the given metric input. - - Args: - metric: Metric function name or reference. - output_shape: The shape of the output that this metric will be - calculated for. - loss_fn: The loss function used. - - Returns: - The metric function. - """ - if metric not in ["accuracy", "acc", "crossentropy", "ce"]: - return metrics_module.get(metric) - - is_sparse_categorical_crossentropy = isinstance( - loss_fn, losses.SparseCategoricalCrossentropy - ) or ( - isinstance(loss_fn, losses.LossFunctionWrapper) - and loss_fn.fn == losses.sparse_categorical_crossentropy - ) - - is_binary_crossentropy = isinstance(loss_fn, losses.BinaryCrossentropy) or ( - isinstance(loss_fn, losses.LossFunctionWrapper) - and loss_fn.fn == losses.binary_crossentropy - ) - - if metric in ["accuracy", "acc"]: - if output_shape[-1] == 1 or is_binary_crossentropy: - return metrics_module.binary_accuracy - elif is_sparse_categorical_crossentropy: - return metrics_module.sparse_categorical_accuracy - # If the output_shape[-1] is not 1, then we know output is - # `categorical`. We assume it is sparse categorical only if loss is - # explicitly given as sparse categorical crossentropy loss. - return metrics_module.categorical_accuracy - else: - if output_shape[-1] == 1 or is_binary_crossentropy: - return metrics_module.binary_crossentropy - elif is_sparse_categorical_crossentropy: - return metrics_module.sparse_categorical_crossentropy - return metrics_module.categorical_crossentropy - - -def call_metric_function( - metric_fn, y_true, y_pred=None, weights=None, mask=None -): - """Invokes metric function and returns the metric result tensor.""" - if mask is not None: - mask = tf.cast(mask, y_pred.dtype) - if weights is None: - # Use mask as sample weight. - weights = mask - else: - # Update dimensions of weights to match with mask. - weights = tf.cast(weights, dtype=y_pred.dtype) - mask, _, weights = losses_utils.squeeze_or_expand_dimensions( - mask, sample_weight=weights - ) - weights *= mask - - if y_pred is not None: - return metric_fn(y_true, y_pred, sample_weight=weights) - # `Mean` metric only takes a single value. - return metric_fn(y_true, sample_weight=weights) - - -def get_loss_function(loss): - """Returns the loss corresponding to the loss input in `compile` API.""" - if loss is None or isinstance(loss, losses.Loss): - return loss - - if tf_inspect.isclass(loss) and issubclass(loss, losses.Loss): - # It is not safe to assume that the loss takes no constructor arguments. - raise ValueError( - "Received uninstantiated Loss class: {}\n" - "Please call loss classes " - "before passing them to Model.compile.".format(loss) - ) - - # Deserialize loss configuration, if needed. - if isinstance(loss, collections.abc.Mapping): - loss = losses.get(loss) - - # Custom callable class. - if callable(loss) and not hasattr(loss, "__name__"): - return loss - - # Wrap loss function with signature `(y_true, y_pred, **kwargs)` - # in `LossFunctionWrapper` class. - loss_fn = losses.get(loss) - - # For losses which are given as strings/functions in the compile API, - # we always set the loss reduction type to be `SUM_OVER_BATCH_SIZE` - # (both in distribution strategy context and otherwise). - return losses.LossFunctionWrapper( - loss_fn, - name=loss_fn.__name__, - reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, - ) - - -def validate_dataset_input(x, y, sample_weight, validation_split=None): - """Validates user input arguments when a dataset iterator is passed. - - Args: - x: Input data. A `tf.data` dataset or iterator. - y: Target data. It could be either Numpy array(s) or TensorFlow tensor(s). - Expected to be `None` when `x` is a dataset iterator. - sample_weight: An optional sample-weight array passed by the user to - weight the importance of each sample in `x`. Expected to be `None` when - `x` is a dataset iterator - validation_split: Float between 0 and 1. Fraction of the training data to - be used as validation data. Expected to be `None` when `x` is a dataset - iterator. - - Raises: - ValueError: if argument `y` or `sample_weight` or `validation_split` are - provided by user. - """ - if y is not None: - raise ValueError( - "You passed a dataset or dataset iterator (%s) as " - "input `x` to your model. In that case, you should " - "not specify a target (`y`) argument, since the dataset " - "or dataset iterator generates both input data and " - "target data. " - "Received: %s" % (x, y) - ) - if sample_weight is not None: - raise ValueError( - "`sample_weight` argument is not supported when input " - "`x` is a dataset or a dataset iterator. Instead, you" - "can provide sample_weight as the third element of your" - "dataset, i.e. (inputs, targets, sample_weight). " - "Received: x=%s, sample_weight=%s" % (x, sample_weight) - ) - if validation_split is not None and validation_split != 0.0: - raise ValueError( - "`validation_split` argument is not supported when " - "input `x` is a dataset or a dataset iterator. " - "Received: x=%s, validation_split=%f" % (x, validation_split) - ) - - -def validate_input_types(inp, orig_inp, allow_dict=True, field_name="inputs"): - """Helper function to validate either inputs or targets.""" - if isinstance(inp, (list, tuple)): - if not all(isinstance(v, np.ndarray) or tf.is_tensor(v) for v in inp): - raise ValueError( - "Please provide as model inputs either a single array or a " - f"list of arrays. You passed: {field_name}={str(orig_inp)}" - ) - elif isinstance(inp, dict): - if not allow_dict: - raise ValueError( - f"You cannot pass a dictionary as model {field_name}." - ) - elif not isinstance(inp, np.ndarray) and not tf.is_tensor(inp): - raise ValueError( - "Please provide as model inputs either a single array or a list of " - "arrays. You passed: {}={}".format(field_name, orig_inp) - ) - - -def check_generator_arguments( - y=None, sample_weight=None, validation_split=None -): - """Validates arguments passed when using a generator.""" - if y is not None: - raise ValueError( - "`y` argument is not supported when data is" - "a generator or Sequence instance. Instead pass targets" - " as the second element of the generator." - ) - if sample_weight is not None: - raise ValueError( - "`sample_weight` argument is not supported when data is" - "a generator or Sequence instance. Instead pass sample" - " weights as the third element of the generator." - ) - if validation_split: - raise ValueError( - "If your data is in the form of a Python generator, " - "you cannot use `validation_split`." - ) - - -def check_steps_argument(input_data, steps, steps_name): - """Validates `steps` argument based on input data's type. - - The cases when `steps` value must be provided are when - 1. input data passed is an iterator. - 2. model was built on top of symbolic tensors, input data is not - required and is `None`. - 3. input data passed is a symbolic tensor. - - Args: - input_data: Input data. Can be Numpy array(s) or TensorFlow tensor(s) or - tf.data.Dataset iterator or `None`. - steps: Integer or `None`. Total number of steps (batches of samples) to - execute. - steps_name: The public API's parameter name for `steps`. - - Returns: - boolean, True if `steps` argument is required, else False. - - Raises: - ValueError: if `steps` argument is required for given input data type - but not provided. - """ - is_x_iterator = isinstance( - input_data, (tf.compat.v1.data.Iterator, tf.data.Iterator) - ) - if ( - input_data is None - or is_x_iterator - or has_symbolic_tensors(input_data) - or (isinstance(input_data, list) and not input_data) - ): - if steps is None: - input_type_str = ( - "a Dataset iterator" if is_x_iterator else "data tensors" - ) - raise ValueError( - "When using {input_type} as input to a model, you should" - " specify the `{steps_name}` argument.".format( - input_type=input_type_str, steps_name=steps_name - ) - ) - return True - - if isinstance(input_data, (tf.compat.v1.data.Dataset, tf.data.Dataset)): - return True - - if steps is not None: - list_types = (np.ndarray, list, tuple) - if isinstance(input_data, list_types) or ( - isinstance(input_data, dict) - and any(isinstance(v, list_types) for v in input_data.values()) - ): - logging.warning( - "When passing input data as arrays, do not specify " - "`steps_per_epoch`/`steps` argument. " - "Please use `batch_size` instead." - ) - return False - - -def cast_single_tensor(x, dtype=None): - if isinstance(x, np.ndarray): - x = tf.convert_to_tensor(x) - dtype = dtype or backend.floatx() - if x.dtype.is_floating: - return tf.cast(x, dtype=dtype) - return x - - -def cast_if_floating_dtype_and_mismatch(targets, outputs): - """Returns target data tensors using correct datatype. - - Checks that each target and output pair are the same datatype. If not, casts - the target to the output's datatype. - - Args: - targets: tensor or list of targets. - outputs: tensor or list of outputs. - - Returns: - Targets in appropriate datatype. - """ - if tf.is_tensor(targets): - # There is one target, so output[0] should be the only output. - return cast_single_tensor(targets, dtype=outputs[0].dtype) - new_targets = [] - for target, out in zip(targets, outputs): - if isinstance(target, np.ndarray): - target = tf.convert_to_tensor(target) - if target.dtype != out.dtype: - new_targets.append(cast_single_tensor(target, dtype=out.dtype)) - else: - new_targets.append(target) - return new_targets - - -def cast_if_floating_dtype(x, dtype=None): - """Casts the given data tensors to the default floating point type. - - Casts only if the input is already a floating point type. - Args: - x: tensor or list/tuple of tensors. - dtype: The dtype to which Tensors should be cast. - - Returns: - Converted input. - """ - return tf.nest.map_structure( - functools.partial(cast_single_tensor, dtype=dtype), x - ) - - -def cast_to_model_input_dtypes(x, model): - """Casts the given data tensors to the dtypes of the model inputs. - - Args: - x: tensor or list/tuple of tensors. - model: The model. - - Returns: - Converted input. Each tensor is casted to the corresponding input in - `model.inputs`. - """ - input_dtypes = tf.nest.map_structure(lambda t: t.dtype, model.inputs) - return tf.nest.map_structure(tf.cast, x, input_dtypes) - - -def prepare_sample_weight_modes(training_endpoints, sample_weight_mode): - """Prepares sample weight modes for the model. - - Args: - training_endpoints: List of model _TrainingEndpoints. - sample_weight_mode: sample weight mode user input passed from compile API. - - Raises: - ValueError: In case of invalid `sample_weight_mode` input. - """ - - if isinstance(sample_weight_mode, collections.abc.Mapping): - generic_utils.check_for_unexpected_keys( - "sample_weight_mode", - sample_weight_mode, - [e.output_name for e in training_endpoints], - ) - - for end_point in training_endpoints: - if not end_point.should_skip_target_weights(): - if end_point.output_name not in sample_weight_mode: - raise ValueError( - "Output " - + end_point.output_name - + "missing from `_sample_weight_modes` dictionary" - ) - else: - end_point.sample_weight_mode = sample_weight_mode.get( - end_point.output_name - ) - elif isinstance(sample_weight_mode, (list, tuple)): - if len(sample_weight_mode) != len(training_endpoints): - raise ValueError( - "When passing a list as sample_weight_mode, " - "it should have one entry per model output. " - "The model has " - + str(len(training_endpoints)) - + " outputs, but you passed " - + str(len(sample_weight_mode)) - + "_sample_weight_modes." - ) - for mode, endpoint in zip(sample_weight_mode, training_endpoints): - if not endpoint.should_skip_target_weights(): - endpoint.sample_weight_mode = mode - else: - for endpoint in training_endpoints: - if not endpoint.should_skip_target_weights(): - endpoint.sample_weight_mode = sample_weight_mode - - -def prepare_loss_functions(loss, output_names): - """Converts loss to a list of loss functions. - - Args: - loss: String (name of objective function), objective function or - `tf.keras.losses.Loss` instance. See `tf.keras.losses`. - If the model has multiple - outputs, you can use a different loss on each output by passing a - dictionary or a list of losses. The loss value that will be minimized - by the model will then be the sum of all individual losses. - output_names: List of model output names. - - Returns: - A list of loss objective functions. - - Raises: - ValueError: If loss is a dict with keys not in model output names, - or if loss is a list with len not equal to model outputs. - """ - if isinstance(loss, collections.abc.Mapping): - generic_utils.check_for_unexpected_keys("loss", loss, output_names) - loss_functions = [] - for name in output_names: - if name not in loss: - logging.warning( - "Output {0} missing from loss dictionary. We assume " - "this was done on purpose. The fit and evaluate APIs will " - f"not be expecting any data to be passed to {name}." - ) - loss_functions.append(get_loss_function(loss.get(name, None))) - elif isinstance(loss, str): - loss_functions = [get_loss_function(loss) for _ in output_names] - elif isinstance(loss, collections.abc.Sequence): - if len(loss) != len(output_names): - raise ValueError( - "When passing a list as loss, it should have one entry " - "per model outputs. The model has {} outputs, but you " - "passed loss={}".format(len(output_names), loss) - ) - loss_functions = tf.nest.map_structure(get_loss_function, loss) - else: - loss_functions = [ - get_loss_function(loss) for _ in range(len(output_names)) - ] - - return loss_functions - - -def prepare_loss_weights(training_endpoints, loss_weights=None): - """Converts loss weights to a list of loss weights. - - The result loss weights will be populated on the training endpoint. - - Args: - training_endpoints: List of model training endpoints. - loss_weights: Optional list or dictionary specifying scalar coefficients - (Python floats) to weight the loss contributions of different model - outputs. The loss value that will be minimized by the model will then - be the *weighted sum* of all individual losses, weighted by the - `loss_weights` coefficients. If a list, it is expected to have a 1:1 - mapping to the model's outputs. If a dict, it is expected to map - output names (strings) to scalar coefficients. - - Raises: - ValueError: If loss weight is a dict with key not in model output names, - or if loss is a list with len not equal to model outputs. - """ - if loss_weights is None: - for e in training_endpoints: - e.loss_weight = 1.0 - elif isinstance(loss_weights, collections.abc.Mapping): - generic_utils.check_for_unexpected_keys( - "loss_weights", - loss_weights, - [e.output_name for e in training_endpoints], - ) - for e in training_endpoints: - e.loss_weight = loss_weights.get(e.output_name, 1.0) - elif isinstance(loss_weights, list): - if len(loss_weights) != len(training_endpoints): - raise ValueError( - "When passing a list as loss_weights, " - "it should have one entry per model output. " - "The model has " - + str(len(training_endpoints)) - + " outputs, but you passed loss_weights=" - + str(loss_weights) - ) - for w, e in zip(loss_weights, training_endpoints): - e.loss_weight = w - else: - raise TypeError( - "Could not interpret loss_weights argument: " - + str(loss_weights) - + " - expected a list of dicts." - ) - - -# TODO(rohanj): This is a hack to get around not depending on feature_column and -# create a cyclical dependency. Figure out a cleaner solution -def is_feature_layer(layer): - """Returns whether `layer` is a FeatureLayer or not.""" - return getattr(layer, "_is_feature_layer", False) - - -def is_eager_dataset_or_iterator(data): - return tf.executing_eagerly() and isinstance( - data, (tf.compat.v1.data.Dataset, tf.data.Dataset, tf.data.Iterator) - ) - - -def get_dataset_graph_def(dataset): - if tf.executing_eagerly(): - graph_def_str = dataset._as_serialized_graph().numpy() - else: - graph_def_str = backend.get_value(dataset._as_serialized_graph()) - return tf.compat.v1.GraphDef().FromString(graph_def_str) - - -def verify_dataset_shuffled(x): - """Verifies that the dataset is shuffled. - - Args: - x: Dataset passed as an input to the model. - - Returns: - boolean, whether the input dataset is shuffled or not. - """ - assert isinstance(x, tf.data.Dataset) - graph_def = get_dataset_graph_def(x) - for node in graph_def.node: - if node.op.startswith("ShuffleDataset"): - return True - # Also check graph_def.library.function for ds.interleave or ds.flat_map - for function in graph_def.library.function: - for node in function.node_def: - if node.op.startswith("ShuffleDataset"): - return True - logging.warning( - "Expected a shuffled dataset but input dataset `x` is " - "not shuffled. Please invoke `shuffle()` on input dataset." - ) - return False - - -def is_dataset_or_iterator(data): - return isinstance( - data, - ( - tf.compat.v1.data.Dataset, - tf.data.Dataset, - tf.compat.v1.data.Iterator, - tf.data.Iterator, - ), - ) - - -def get_iterator(dataset): - """Create and initialize an iterator from a dataset.""" - if tf.executing_eagerly(): - iterator = tf.compat.v1.data.make_one_shot_iterator(dataset) - else: - iterator = tf.compat.v1.data.make_initializable_iterator(dataset) - initialize_iterator(iterator) - return iterator - - -def initialize_iterator(iterator): - if not tf.executing_eagerly(): - init_op = iterator.initializer - backend.get_session((init_op,)).run(init_op) - - -def extract_tensors_from_dataset(dataset): - """Extract tuple of tensors `inputs, targets, sample_weight` from a dataset. - - Args: - dataset: Dataset instance. - - Returns: - Tuple of tensors `x, y, weights`. `y` and `weights` entry may be None. - """ - iterator = get_iterator(dataset) - inputs, targets, sample_weight = unpack_iterator_input(iterator) - return inputs, targets, sample_weight - - -def unpack_iterator_input(iterator): - """Convert a dataset iterator to a tuple of tensors `x, y, sample_weights`. - - Args: - iterator: Instance of a dataset iterator. - - Returns: - Tuple of tensors `x, y, weights`. `y` and `weights` entry may be None. - """ - try: - next_element = iterator.get_next() - except tf.errors.OutOfRangeError: - raise RuntimeError( - "Your dataset iterator ran out of data; " - "Make sure that your dataset can generate " - "required number of samples." - ) - - if isinstance(next_element, (list, tuple)): - if len(next_element) not in [2, 3]: - raise ValueError( - "Please provide model inputs as a list or tuple of 2 or 3 " - "elements: (input, target) or (input, target, sample_weights) " - "Received %s" % next_element - ) - if len(next_element) == 2: - x, y = next_element - weights = None - else: - x, y, weights = next_element - else: - x = next_element - y = None - weights = None - return x, y, weights - - -def infer_steps_for_dataset( - model, dataset, steps, epochs=1, steps_name="steps" -): - """Infers steps_per_epoch needed to loop through a dataset. - - Args: - model: Keras model instance. - dataset: Input data of type tf.data.Dataset. - steps: Number of steps to draw from the dataset (may be None if - unknown). - epochs: Number of times to iterate over the dataset. - steps_name: The string name of the steps argument, either `steps`, - `validation_steps`, or `steps_per_epoch`. Only used for error message - formatting. - - Returns: - Integer or `None`. Inferred number of steps to loop through the dataset. - `None` is returned if 1) the size of the dataset is unknown and `steps` - was not specified, or 2) this is multi-worker training and auto sharding - is enabled. - - Raises: - ValueError: In case of invalid argument values. - """ - assert isinstance(dataset, tf.data.Dataset) - if model._in_multi_worker_mode() and ( - dataset.options().experimental_distribute.auto_shard_policy - != tf.data.experimental.AutoShardPolicy.OFF - ): - # If the dataset would be auto-sharded, we should not infer a local - # steps_per_epoch due to the possible imbalanced sharding between - # workers. - return None - - size = backend.get_value(tf.data.experimental.cardinality(dataset)) - if size == tf.data.experimental.INFINITE_CARDINALITY and steps is None: - raise ValueError( - "When passing an infinitely repeating dataset, you " - "must specify the `%s` argument." % (steps_name,) - ) - if size >= 0: - if steps is not None and steps * epochs > size: - if epochs > 1: - raise ValueError( - "The dataset you passed contains %s batches, but you " - "passed `epochs=%s` and `%s=%s`, which is a total of " - "%s steps. We cannot draw that many steps from this " - "dataset. We suggest to set `%s=%s`." - % ( - size, - epochs, - steps_name, - steps, - steps * epochs, - steps_name, - size // epochs, - ) - ) - else: - raise ValueError( - "The dataset you passed contains %s batches, but you " - "passed `%s=%s`. We cannot draw that many steps from " - "this dataset. We suggest to set `%s=%s`." - % (size, steps_name, steps, steps_name, size) - ) - if steps is None: - if size >= 0: - return size - return None - return steps - - -class ModelInputs: - """Encapsulates model inputs. - - Allows for transforming model inputs while keeping the same structure. - """ - - def __init__(self, inputs): - self._inputs = inputs - self._is_dict = isinstance(self._inputs, dict) - self._is_single_input = not isinstance( - self._inputs, (list, tuple, dict) - ) - - self._flattened_inputs = [] - self._input_names = [] - - if self._is_dict: - for k in sorted(self._inputs.keys()): - self._flattened_inputs.append(self._inputs[k]) - self._input_names.append(k) - else: - self._flattened_inputs = tf.nest.flatten(self._inputs) - self._input_names = [ - "input_%d" % (i + 1) for i in range(len(self._flattened_inputs)) - ] - - def get_input_names(self): - """Returns keys to name inputs by. - - In case inputs provided were a list, tuple or single entry, we make up a - key 'input_%d'. For dictionary case, we return a sorted list of keys. - """ - return self._input_names - - def get_symbolic_inputs(self, return_single_as_list=False): - """Returns inputs to be set as self.inputs for a model.""" - # TODO(karmel): There is a side-effect here where what you get - # with as_list and as_dict depends on whether you have called this - # method first, since it modifies in place. - for i, (k, v) in enumerate( - zip(self._input_names, self._flattened_inputs) - ): - if isinstance(v, (list, float, int)): - v = np.asarray(v) - if v.ndim == 1: - v = np.expand_dims(v, 1) - - if isinstance(v, np.ndarray): - # We fix the placeholder shape except the batch size. - # This is suboptimal, but it is the best we can do with the info - # we have. The user should call - # `model._set_inputs(placeholders)` to specify custom - # placeholders if the need arises. - shape = (None,) + tuple(v.shape[1:]) - if shape == (None,): - shape = (None, 1) - dtype = tf.as_dtype(v.dtype) - if dtype.is_floating: - dtype = backend.floatx() - v = backend.placeholder(shape=shape, name=k, dtype=dtype) - elif isinstance(v, tf.TensorSpec): - shape = (None,) + tuple(v.shape.as_list()[1:]) - if shape == (None,): - shape = (None, 1) - v = backend.placeholder(shape=shape, name=k, dtype=v.dtype) - - self._flattened_inputs[i] = v - - if self._is_dict: - return dict(zip(self._input_names, self._flattened_inputs)) - if self._is_single_input and not return_single_as_list: - return self._flattened_inputs[0] - return self._flattened_inputs - - def as_dict(self): - """An iterable over a dictionary version of inputs.""" - for k, v in zip(self._input_names, self._flattened_inputs): - yield k, v - - def as_list(self): - """Returning the inputs as a list.""" - return self._flattened_inputs - - -# Allow use of methods not exposed to the user. - - -def generic_output_names(outputs_list): - return ["output_%d" % (i + 1) for i in range(len(outputs_list))] - - -def should_run_validation(validation_freq, epoch): - """Checks if validation should be run this epoch. - - Args: - validation_freq: Integer or list. If an integer, specifies how many - training epochs to run before a new validation run is performed. If a - list, specifies the epochs on which to run validation. - epoch: Integer, the number of the training epoch just completed. - - Returns: - Bool, True if validation should be run. - - Raises: - ValueError: if `validation_freq` is an Integer and less than 1, or if - it is neither an Integer nor a Sequence. - """ - # `epoch` is 0-indexed internally but 1-indexed in the public API. - one_indexed_epoch = epoch + 1 - - if isinstance(validation_freq, int): - if validation_freq < 1: - raise ValueError("`validation_freq` can not be less than 1.") - return one_indexed_epoch % validation_freq == 0 - - if not isinstance(validation_freq, collections.abc.Container): - raise ValueError( - "`validation_freq` must be an Integer or " - "`collections.abc.Container` (e.g. list, tuple, etc.)" - ) - return one_indexed_epoch in validation_freq - - -def split_training_and_validation_data(x, y, sample_weights, validation_split): - """Split input data into train/eval section based on validation_split.""" - if has_symbolic_tensors(x): - raise ValueError( - "If your data is in the form of symbolic tensors, " - "you cannot use `validation_split`." - ) - if hasattr(x[0], "shape"): - split_at = int(x[0].shape[0] * (1.0 - validation_split)) - else: - split_at = int(len(x[0]) * (1.0 - validation_split)) - x, val_x = ( - generic_utils.slice_arrays(x, 0, split_at), - generic_utils.slice_arrays(x, split_at), - ) - y, val_y = ( - generic_utils.slice_arrays(y, 0, split_at), - generic_utils.slice_arrays(y, split_at), - ) - if sample_weights: - sample_weights, val_sample_weights = ( - generic_utils.slice_arrays(sample_weights, 0, split_at), - generic_utils.slice_arrays(sample_weights, split_at), - ) - else: - val_sample_weights = None - return x, y, sample_weights, val_x, val_y, val_sample_weights - - -def unpack_validation_data(validation_data, raise_if_ambiguous=True): - """Unpack validation data based input type. - - The validation data is not touched if its dataset or dataset iterator. - For other type of input (Numpy or tensor), it will be unpacked into tuple of - 3 which is x, y and sample weights. - - Args: - validation_data: dataset, dataset iterator, or numpy, tensor tuple. - raise_if_ambiguous: boolean on whether to fail if validation_data cannot - be parsed. Otherwise simply return validation_data, None, None and defer - the decision to the caller. - - Returns: - tuple of 3, (x, y, sample_weights) for numpy and tensor input. - """ - if isinstance( - validation_data, - ( - tf.compat.v1.data.Iterator, - tf.data.Iterator, - tf.data.Dataset, - data_utils.Sequence, - ), - ) or not hasattr(validation_data, "__len__"): - val_x = validation_data - val_y = None - val_sample_weight = None - elif len(validation_data) == 2: - try: - ( - val_x, - val_y, - ) = validation_data - val_sample_weight = None - except ValueError: - val_x, val_y, val_sample_weight = validation_data, None, None - elif len(validation_data) == 3: - try: - ( - val_x, - val_y, - val_sample_weight, - ) = validation_data - except ValueError: - val_x, val_y, val_sample_weight = validation_data, None, None - else: - if raise_if_ambiguous: - raise ValueError( - "When passing a `validation_data` argument, " - "it must contain either 2 items (x_val, y_val), " - "or 3 items (x_val, y_val, val_sample_weights), " - "or alternatively it could be a dataset or a " - "dataset or a dataset iterator. " - "However we received `validation_data=%s`" % validation_data - ) - val_x, val_y, val_sample_weight = validation_data, None, None - return val_x, val_y, val_sample_weight - - -class TrainingLoop: - """TrainingLoop is a wrapper class around the training logic. - - This class is trying to encapsulate the different logic of fit/eval/predict - with regard to different data input and model condition. - - Note that TrainingLoop is stateless, which means it doesn't contain any - internal field and can be reused with different model and inputs. - """ - - def fit( - self, - model, - x=None, - y=None, - batch_size=None, - epochs=1, - verbose=1, - callbacks=None, - validation_split=0.0, - validation_data=None, - shuffle=True, - class_weight=None, - sample_weight=None, - initial_epoch=0, - steps_per_epoch=None, - validation_steps=None, - validation_freq=1, - **kwargs, - ): - """Train the model with the inputs and targets.""" - raise NotImplementedError() - - def evaluate( - self, - model, - x=None, - y=None, - batch_size=None, - verbose=1, - sample_weight=None, - steps=None, - callbacks=None, - **kwargs, - ): - """Returns the loss value & metrics values for the model in test - mode.""" - raise NotImplementedError() - - def predict( - self, - model, - x, - batch_size=None, - verbose=0, - steps=None, - callbacks=None, - **kwargs, - ): - raise NotImplementedError() diff --git a/keras/engine/training_utils_v1_test.py b/keras/engine/training_utils_v1_test.py deleted file mode 100644 index d4cfb802765..00000000000 --- a/keras/engine/training_utils_v1_test.py +++ /dev/null @@ -1,505 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for training utility functions.""" - -import functools -import multiprocessing.pool -import time - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import backend -from keras.engine import keras_tensor -from keras.engine import training_utils_v1 -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging - - -class ModelInputsTest(tf.test.TestCase): - def test_single_thing(self): - a = np.ones(10) - model_inputs = training_utils_v1.ModelInputs(a) - self.assertEqual(["input_1"], model_inputs.get_input_names()) - vals = model_inputs.get_symbolic_inputs() - self.assertTrue(tf.is_tensor(vals)) - vals = model_inputs.get_symbolic_inputs(return_single_as_list=True) - self.assertEqual(1, len(vals)) - self.assertTrue(tf.is_tensor(vals[0])) - self.assertEqual(backend.floatx(), vals[0].dtype) - - def test_single_thing_eager(self): - if not tf.executing_eagerly(): - self.skipTest("Run in eager mode only.") - a = np.ones(10, dtype=np.int32) - model_inputs = training_utils_v1.ModelInputs(a) - self.assertEqual(["input_1"], model_inputs.get_input_names()) - val = model_inputs.get_symbolic_inputs() - self.assertIsInstance(val, keras_tensor.KerasTensor) - vals = model_inputs.get_symbolic_inputs(return_single_as_list=True) - self.assertEqual(1, len(vals)) - self.assertIsInstance(vals[0], keras_tensor.KerasTensor) - self.assertEqual(tf.int32, vals[0].dtype) - - def test_list(self): - a = [np.ones(10), np.ones(20)] - model_inputs = training_utils_v1.ModelInputs(a) - self.assertEqual(["input_1", "input_2"], model_inputs.get_input_names()) - vals = model_inputs.get_symbolic_inputs() - self.assertTrue(tf.is_tensor(vals[0])) - self.assertTrue(tf.is_tensor(vals[1])) - - def test_list_eager(self): - if not tf.executing_eagerly(): - self.skipTest("Run in eager mode only.") - a = [np.ones(10), np.ones(20)] - model_inputs = training_utils_v1.ModelInputs(a) - self.assertEqual(["input_1", "input_2"], model_inputs.get_input_names()) - vals = model_inputs.get_symbolic_inputs() - self.assertIsInstance(vals[0], keras_tensor.KerasTensor) - self.assertIsInstance(vals[1], keras_tensor.KerasTensor) - - def test_dict(self): - a = {"b": np.ones(10), "a": np.ones(20)} - model_inputs = training_utils_v1.ModelInputs(a) - self.assertEqual(["a", "b"], model_inputs.get_input_names()) - vals = model_inputs.get_symbolic_inputs() - self.assertTrue(tf.is_tensor(vals["a"])) - self.assertTrue(tf.is_tensor(vals["b"])) - - def test_dict_eager(self): - if not tf.executing_eagerly(): - self.skipTest("Run in eager mode only.") - a = {"b": np.ones(10), "a": np.ones(20)} - model_inputs = training_utils_v1.ModelInputs(a) - self.assertEqual(["a", "b"], model_inputs.get_input_names()) - vals = model_inputs.get_symbolic_inputs() - self.assertIsInstance(vals["a"], keras_tensor.KerasTensor) - self.assertIsInstance(vals["b"], keras_tensor.KerasTensor) - - -class DatasetUtilsTest(tf.test.TestCase, parameterized.TestCase): - @parameterized.named_parameters( - ("Batch", lambda: tf.data.Dataset.range(5).batch(2)), - ("Cache", lambda: tf.data.Dataset.range(5).cache()), - ( - "Concatenate", - lambda: tf.data.Dataset.range(5).concatenate( - tf.data.Dataset.range(5) - ), - ), - ( - "FlatMap", - lambda: tf.data.Dataset.range(5).flat_map( - lambda _: tf.data.Dataset.from_tensors(0) - ), - ), - ( - "FlatMap_Shuffle", - lambda: tf.data.Dataset.range(5).flat_map( - lambda _: tf.data.Dataset.from_tensors(0).shuffle(1) - ), - True, - ), - ("Filter", lambda: tf.data.Dataset.range(5).filter(lambda _: True)), - ( - "FixedLengthRecordDatasetV2", - lambda: tf.data.FixedLengthRecordDataset([], 42), - ), - ("FromTensors", lambda: tf.data.Dataset.from_tensors(0)), - ( - "FromTensorSlices", - lambda: tf.data.Dataset.from_tensor_slices([0, 0, 0]), - ), - ( - "Interleave", - lambda: tf.data.Dataset.range(5).interleave( - lambda _: tf.data.Dataset.from_tensors(0), cycle_length=1 - ), - ), - ( - "Interleave_Shuffle", - lambda: tf.data.Dataset.range(5).interleave( - lambda _: tf.data.Dataset.from_tensors(0).shuffle(1), - cycle_length=1, - ), - True, - ), - ("Map", lambda: tf.data.Dataset.range(5).map(lambda x: x)), - ( - "Options", - lambda: tf.data.Dataset.range(5).with_options(tf.data.Options()), - ), - ("PaddedBatch", lambda: tf.data.Dataset.range(5).padded_batch(2, [])), - ( - "ParallelInterleave", - lambda: tf.data.Dataset.range(5).interleave( - lambda _: tf.data.Dataset.from_tensors(0), - cycle_length=1, - num_parallel_calls=1, - ), - ), - ( - "ParallelMap", - lambda: tf.data.Dataset.range(5).map( - lambda x: x, num_parallel_calls=1 - ), - ), - ("Prefetch", lambda: tf.data.Dataset.range(5).prefetch(1)), - ("Range", lambda: tf.data.Dataset.range(0)), - ("Repeat", lambda: tf.data.Dataset.range(0).repeat(0)), - ("Shuffle", lambda: tf.data.Dataset.range(5).shuffle(1), True), - ("Skip", lambda: tf.data.Dataset.range(5).skip(2)), - ("Take", lambda: tf.data.Dataset.range(5).take(2)), - ("TextLineDataset", lambda: tf.data.TextLineDataset([])), - ("TFRecordDataset", lambda: tf.data.TFRecordDataset([])), - ("Window", lambda: tf.data.Dataset.range(5).window(2)), - ("Zip", lambda: tf.data.Dataset.zip(tf.data.Dataset.range(5))), - ) - def test_verify_dataset_shuffled(self, dataset_fn, expect_shuffled=False): - dataset = dataset_fn() - - if not expect_shuffled: - with tf.compat.v1.test.mock.patch.object( - logging, "warning" - ) as mock_log: - shuffled = training_utils_v1.verify_dataset_shuffled(dataset) - self.assertRegex( - str(mock_log.call_args), - "input dataset `x` is not shuffled.", - ) - self.assertFalse(shuffled) - else: - self.assertTrue(training_utils_v1.verify_dataset_shuffled(dataset)) - - -class StandardizeWeightsTest(test_combinations.TestCase): - def test_sample_weights(self): - y = np.array([0, 1, 0, 0, 2]) - sample_weights = np.array([0.5, 1.0, 1.0, 0.0, 2.0]) - weights = training_utils_v1.standardize_weights(y, sample_weights) - self.assertAllClose(weights, sample_weights) - - def test_class_weights(self): - y = np.array([0, 1, 0, 0, 2]) - class_weights = {0: 0.5, 1: 1.0, 2: 1.5} - weights = training_utils_v1.standardize_weights( - y, class_weight=class_weights - ) - self.assertAllClose(weights, np.array([0.5, 1.0, 0.5, 0.5, 1.5])) - - def test_sample_weights_and_class_weights(self): - y = np.array([0, 1, 0, 0, 2]) - sample_weights = np.array([0.5, 1.0, 1.0, 0.0, 2.0]) - class_weights = {0: 0.5, 1: 1.0, 2: 1.5} - weights = training_utils_v1.standardize_weights( - y, sample_weights, class_weights - ) - expected = sample_weights * np.array([0.5, 1.0, 0.5, 0.5, 1.5]) - self.assertAllClose(weights, expected) - - def test_dataset_with_class_weight(self): - model = test_utils.get_small_functional_mlp(1, 4, input_dim=3) - model.compile("rmsprop", "mse") - - inputs = np.zeros((10, 3), np.float32) - targets = np.zeros((10, 4), np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - class_weight_np = np.array([0.25, 0.25, 0.25, 0.25]) - class_weight = dict(enumerate(class_weight_np)) - - model.fit( - dataset, - epochs=1, - steps_per_epoch=2, - verbose=1, - class_weight=class_weight, - ) - - -class MonitoredPool(multiprocessing.pool.ThreadPool): - def __init__(self, *args, **kwargs): - self._apply_counter = 0 - self._func_wrapper = None - super().__init__(*args, **kwargs) - - def apply_async(self, func, *args, **kwargs): - self._apply_counter += 1 - if self._func_wrapper: - func = self._func_wrapper(func) - return super().apply_async(func, *args, **kwargs) - - -def add_sleep(f): - @functools.wraps(f) - def wrapped(*args, **kwargs): - time.sleep(1.0) - return f(*args, **kwargs) - - return wrapped - - -def cause_error(f): - @functools.wraps(f) - def wrapped(batch_element, batch_start, batch_end, is_finished): - # Induce a TypeError during assignment. - return f(None, None, None, is_finished) - - return wrapped - - -_TEST_DATA = np.array( - ( - (3, 1, 3, 1, 2, 0, 3, 3, 1, 2), - (0, 1, 2, 1, 3, 0, 0, 1, 3, 0), - (3, 2, 1, 1, 1, 1, 1, 3, 2, 3), - (2, 2, 0, 1, 0, 3, 3, 2, 1, 1), - (3, 0, 3, 3, 3, 2, 1, 0, 0, 1), - (1, 0, 3, 3, 3, 2, 1, 2, 3, 1), - ) -) - - -class AggregationTest(test_combinations.TestCase): - def setUp(self): - super().setUp() - self._old_pool = training_utils_v1._COPY_POOL - self._old_threshold = ( - training_utils_v1.SliceAggregator._BINARY_SIZE_THRESHOLD - ) - self._old_timeout = training_utils_v1.SliceAggregator._MAX_COPY_SECONDS - training_utils_v1._COPY_POOL = MonitoredPool( - training_utils_v1._COPY_THREADS - ) - - def tearDown(self): - super().tearDown() - training_utils_v1._COPY_POOL = self._old_pool - training_utils_v1.SliceAggregator._BINARY_SIZE_THRESHOLD = ( - self._old_threshold - ) - training_utils_v1.SliceAggregator._MAX_COPY_SECONDS = self._old_timeout - - def _run_with_steps(self): - aggregator = training_utils_v1.OutputsAggregator(use_steps=True) - for i, batch in enumerate(np.array_split(_TEST_DATA, 4)): - if i == 0: - aggregator.create(batch) - aggregator.aggregate(batch) - - assert len(aggregator.results) == 1 - assert isinstance( - aggregator.results[0], training_utils_v1.ConcatAggregator - ) - - aggregator.finalize() - return aggregator.results - - def _run_without_steps(self): - aggregator = training_utils_v1.OutputsAggregator( - use_steps=False, num_samples=6 - ) - - batch_start = 0 - for i, batch in enumerate(np.array_split(_TEST_DATA, 4)): - if i == 0: - aggregator.create(batch) - - batch_end = batch_start + batch.shape[0] - aggregator.aggregate(batch, batch_start, batch_end) - batch_start = batch_end - - assert len(aggregator.results) == 1 - assert isinstance( - aggregator.results[0], training_utils_v1.SliceAggregator - ) - - aggregator.finalize() - return aggregator.results - - def test_with_steps(self): - self.assertAllEqual(self._run_with_steps(), _TEST_DATA) - - def test_without_steps(self): - self.assertAllEqual(self._run_without_steps(), _TEST_DATA) - - def test_nested_aggregation(self): - aggregator = training_utils_v1.OutputsAggregator( - use_steps=False, num_samples=6 - ) - - batches = np.array_split(_TEST_DATA, 4) - batch_start = 0 - for i, batch in enumerate(zip(batches, batches)): - if i == 0: - aggregator.create(batch) - - batch_end = batch_start + batch[0].shape[0] - aggregator.aggregate(batch, batch_start, batch_end) - batch_start = batch_end - - assert len(aggregator.results) == 2 - aggregator.finalize() - self.assertAllEqual(aggregator.results, (_TEST_DATA, _TEST_DATA)) - - def test_concat_single_batch(self): - aggregator = training_utils_v1.OutputsAggregator(use_steps=True) - data = _TEST_DATA.copy() - aggregator.create(data) - assert len(aggregator.results) == 1 - assert isinstance( - aggregator.results[0], training_utils_v1.ConcatAggregator - ) - - aggregator.aggregate(data) - aggregator.finalize() - assert aggregator.results is data # No copy. - - def test_slice_single_batch(self): - aggregator = training_utils_v1.OutputsAggregator( - use_steps=False, num_samples=6 - ) - data = _TEST_DATA.copy() - aggregator.create(data) - assert len(aggregator.results) == 1 - assert isinstance( - aggregator.results[0], training_utils_v1.SliceAggregator - ) - - aggregator.aggregate(data, 0, 6) - aggregator.finalize() - assert aggregator.results is data # No copy. - - def test_async_copy(self): - training_utils_v1.SliceAggregator._BINARY_SIZE_THRESHOLD = 15 - self.assertAllEqual(self._run_without_steps(), _TEST_DATA) - - # Two of the four batches will have 20 elements and two will have 10. - self.assertEqual(training_utils_v1._COPY_POOL._apply_counter, 2) - - def test_async_copy_timeout(self): - training_utils_v1.SliceAggregator._BINARY_SIZE_THRESHOLD = 15 - training_utils_v1.SliceAggregator._MAX_COPY_SECONDS = 0.1 - training_utils_v1._COPY_POOL._func_wrapper = add_sleep - with self.assertRaisesRegex(ValueError, "Timed out waiting for copy"): - self._run_without_steps() - - def test_async_copy_reraise(self): - training_utils_v1.SliceAggregator._BINARY_SIZE_THRESHOLD = 15 - training_utils_v1.SliceAggregator._MAX_COPY_SECONDS = 1.0 - training_utils_v1._COPY_POOL._func_wrapper = cause_error - with self.assertRaisesRegex(TypeError, "NoneType"): - self._run_without_steps() - - -class CompositeTensorTestUtils(test_combinations.TestCase): - def test_is_composite(self): - # Validate that all composite tensor and value types return true. - self.assertTrue( - training_utils_v1.is_composite_or_composite_value( - tf.SparseTensor([[0, 0]], [1], [1, 1]) - ) - ) - self.assertTrue( - training_utils_v1.is_composite_or_composite_value( - tf.compat.v1.SparseTensorValue([[0, 0]], [1], [1, 1]) - ) - ) - self.assertTrue( - training_utils_v1.is_composite_or_composite_value( - tf.RaggedTensor.from_row_splits( - np.array([0, 1, 2]), np.array([0, 1, 3], dtype=np.int64) - ) - ) - ) - self.assertTrue( - training_utils_v1.is_composite_or_composite_value( - tf.compat.v1.ragged.RaggedTensorValue( - np.array([0, 1, 2]), np.array([0, 1, 3], dtype=np.int64) - ) - ) - ) - - # Test that numpy arrays and tensors return false. - self.assertFalse( - training_utils_v1.is_composite_or_composite_value( - np.ndarray([0, 1]) - ) - ) - self.assertFalse( - training_utils_v1.is_composite_or_composite_value( - tf.convert_to_tensor([3, 1]) - ) - ) - - def test_sparse_concatenation(self): - tensor_1 = tf.SparseTensor([[0, 0]], [1], [1, 1]) - tensor_2 = tf.SparseTensor([[0, 0]], [2], [1, 1]) - concatenated_tensor = training_utils_v1._append_composite_tensor( - tensor_1, tensor_2 - ) - evaluated_tensor = self.evaluate(concatenated_tensor) - self.assertAllEqual(evaluated_tensor.indices, [[0, 0], [1, 0]]) - self.assertAllEqual(evaluated_tensor.values, [1, 2]) - self.assertAllEqual(evaluated_tensor.dense_shape, [2, 1]) - - def test_sparse_value_concatenation(self): - tensor_1 = tf.compat.v1.SparseTensorValue([[0, 0]], [1], [1, 1]) - tensor_2 = tf.compat.v1.SparseTensorValue([[0, 0]], [2], [1, 1]) - concatenated_tensor = training_utils_v1._append_composite_tensor( - tensor_1, tensor_2 - ) - self.assertAllEqual(concatenated_tensor.indices, [[0, 0], [1, 0]]) - self.assertAllEqual(concatenated_tensor.values, [1, 2]) - self.assertAllEqual(concatenated_tensor.dense_shape, [2, 1]) - - def test_ragged_concatenation(self): - tensor_1 = tf.RaggedTensor.from_row_splits( - np.array([0, 1, 2]), np.array([0, 1, 3], dtype=np.int64) - ) - tensor_2 = tf.RaggedTensor.from_row_splits( - np.array([3, 4, 5]), np.array([0, 2, 3], dtype=np.int64) - ) - concatenated_tensor = training_utils_v1._append_composite_tensor( - tensor_1, tensor_2 - ) - evaluated_tensor = self.evaluate(concatenated_tensor) - - self.assertAllEqual(evaluated_tensor.values, [0, 1, 2, 3, 4, 5]) - self.assertAllEqual(evaluated_tensor.row_splits, [0, 1, 3, 5, 6]) - - def test_ragged_value_concatenation(self): - tensor_1 = tf.compat.v1.ragged.RaggedTensorValue( - np.array([0, 1, 2]), np.array([0, 1, 3], dtype=np.int64) - ) - tensor_2 = tf.compat.v1.ragged.RaggedTensorValue( - np.array([3, 4, 5]), np.array([0, 2, 3], dtype=np.int64) - ) - concatenated_tensor = training_utils_v1._append_composite_tensor( - tensor_1, tensor_2 - ) - - self.assertAllEqual(concatenated_tensor.values, [0, 1, 2, 3, 4, 5]) - self.assertAllEqual(concatenated_tensor.row_splits, [0, 1, 3, 5, 6]) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/engine/training_v1.py b/keras/engine/training_v1.py deleted file mode 100644 index a5ef55a4fc2..00000000000 --- a/keras/engine/training_v1.py +++ /dev/null @@ -1,3632 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""V1 Training-related part of the Keras engine.""" -import collections -import warnings - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import losses -from keras import metrics as metrics_module -from keras import optimizers -from keras.distribute import distributed_training_utils -from keras.distribute import distributed_training_utils_v1 -from keras.engine import base_layer -from keras.engine import training as training_lib -from keras.engine import training_arrays_v1 -from keras.engine import training_distributed_v1 -from keras.engine import training_eager_v1 -from keras.engine import training_generator_v1 -from keras.engine import training_utils -from keras.engine import training_utils_v1 -from keras.mixed_precision import loss_scale_optimizer -from keras.optimizers import optimizer_v1 -from keras.optimizers.legacy import optimizer_v2 -from keras.saving.legacy import saving_utils -from keras.saving.legacy.saved_model import model_serialization -from keras.utils import data_utils -from keras.utils import layer_utils -from keras.utils import losses_utils -from keras.utils import tf_inspect -from keras.utils import tf_utils -from keras.utils.mode_keys import ModeKeys - -# isort: off -from tensorflow.python.platform import tf_logging as logging - -try: - from scipy.sparse import issparse -except ImportError: - issparse = None - - -class Model(training_lib.Model): - """A model groups layers into an object with training & inference features. - - There are two ways to instantiate a `Model`: - - 1 - With the "functional API", where you start from `Input`, - you chain layer calls to specify the model's forward pass, - and finally you create your model from inputs and outputs: - - ```python - import tensorflow as tf - - inputs = tf.keras.Input(shape=(3,)) - x = tf.keras.layers.Dense(4, activation=tf.nn.relu)(inputs) - outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(x) - model = tf.keras.Model(inputs=inputs, outputs=outputs) - ``` - - 2 - By subclassing the `Model` class: in that case, you should define your - layers in `__init__` and you should implement the model's forward pass - in `call`. - - ```python - import tensorflow as tf - - class MyModel(tf.keras.Model): - - def __init__(self): - super().__init__() - self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu) - self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax) - - def call(self, inputs): - x = self.dense1(inputs) - return self.dense2(x) - - model = MyModel() - ``` - - If you subclass `Model`, you can optionally have - a `training` argument (boolean) in `call`, which you can use to specify - a different behavior in training and inference: - - ```python - import tensorflow as tf - - class MyModel(tf.keras.Model): - - def __init__(self): - super().__init__() - self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu) - self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax) - self.dropout = tf.keras.layers.Dropout(0.5) - - def call(self, inputs, training=False): - x = self.dense1(inputs) - if training: - x = self.dropout(x, training=training) - return self.dense2(x) - - model = MyModel() - ``` - """ - - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - # initializing _distribution_strategy here since it is possible to call - # predict on a model without compiling it. - self._distribution_strategy = None - self._compile_time_distribution_strategy = None - if ( - tf.compat.v1.executing_eagerly_outside_functions() - and tf.distribute.has_strategy() - ): - self._set_strategy(tf.distribute.get_strategy()) - - # This flag is used to track if the user is using the deprecated path of - # passing distribution strategy to compile rather than creating the - # model under distribution strategy scope. - self._compile_distribution = False - - self._run_eagerly = None - self._experimental_run_tf_function = ( - tf.compat.v1.executing_eagerly_outside_functions() - ) - - self._v1_compile_was_called = False - - def _init_batch_counters(self): - pass # Batch counters should not be created in legacy graph mode. - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _set_strategy(self, strategy): - self._compile_time_distribution_strategy = strategy - - def get_weights(self): - """Retrieves the weights of the model. - - Returns: - A flat list of Numpy arrays. - """ - strategy = ( - self._distribution_strategy - or self._compile_time_distribution_strategy - ) - if strategy: - with strategy.scope(): - return base_layer.Layer.get_weights(self) - return base_layer.Layer.get_weights(self) - - def load_weights(self, filepath, by_name=False, skip_mismatch=False): - """Loads all layer weights, either from a TensorFlow or an HDF5 file. - - If `by_name` is False weights are loaded based on the network's - topology. This means the architecture should be the same as when the - weights were saved. Note that layers that don't have weights are not - taken into account in the topological ordering, so adding or removing - layers is fine as long as they don't have weights. - - If `by_name` is True, weights are loaded into layers only if they share - the same name. This is useful for fine-tuning or transfer-learning - models where some of the layers have changed. - - Only topological loading (`by_name=False`) is supported when loading - weights from the TensorFlow format. Note that topological loading - differs slightly between TensorFlow and HDF5 formats for user-defined - classes inheriting from `tf.keras.Model`: HDF5 loads based on a - flattened list of weights, while the TensorFlow format loads based on - the object-local names of attributes to which layers are assigned in the - `Model`'s constructor. - - Args: - filepath: String, path to the weights file to load. For weight files - in TensorFlow format, this is the file prefix (the same as was - passed to `save_weights`). - by_name: Boolean, whether to load weights by name or by topological - order. Only topological loading is supported for weight files in - TensorFlow format. - skip_mismatch: Boolean, whether to skip loading of layers where - there is a mismatch in the number of weights, or a mismatch in - the shape of the weight (only valid when `by_name=True`). - - Returns: - When loading a weight file in TensorFlow format, returns the same - status object as `tf.train.Checkpoint.restore`. When graph building, - restore ops are run automatically as soon as the network is built - (on first call for user-defined classes inheriting from `Model`, - immediately if it is already built). - - When loading weights in HDF5 format, returns `None`. - - Raises: - ImportError: If h5py is not available and the weight file is in HDF5 - format. - ValueError: If `skip_mismatch` is set to `True` when `by_name` is - `False`. - """ - if backend.is_tpu_strategy(self._distribution_strategy): - if self._distribution_strategy.extended.steps_per_run > 1 and ( - not saving_utils.is_hdf5_filepath(filepath) - ): - raise ValueError( - "Load weights is not yet supported with TPUStrategy " - "with steps_per_run greater than 1." - ) - return super().load_weights( - filepath, by_name=by_name, skip_mismatch=skip_mismatch - ) - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def compile( - self, - optimizer="rmsprop", - loss=None, - metrics=None, - loss_weights=None, - sample_weight_mode=None, - weighted_metrics=None, - target_tensors=None, - distribute=None, - **kwargs, - ): - """Configures the model for training. - - Args: - optimizer: String (name of optimizer) or optimizer instance. - See `tf.keras.optimizers`. - loss: String (name of objective function), objective function or - `tf.keras.losses.Loss` instance. See `tf.keras.losses`. An - objective function is any callable with the signature - `scalar_loss = fn(y_true, y_pred)`. If the model has multiple - outputs, you can use a different loss on each output by passing - a dictionary or a list of losses. The loss value that will be - minimized by the model will then be the sum of all individual - losses. - metrics: List of metrics to be evaluated by the model during - training and testing. Typically you will use - `metrics=['accuracy']`. To specify different metrics for - different outputs of a multi-output model, you could also pass a - dictionary, such as `metrics={'output_a': 'accuracy', - 'output_b': ['accuracy', 'mse']}`. You can also pass a list - (len = len(outputs)) of lists of metrics such as - `metrics=[['accuracy'], ['accuracy', 'mse']]` or - `metrics=['accuracy', ['accuracy', 'mse']]`. - loss_weights: Optional list or dictionary specifying scalar - coefficients (Python floats) to weight the loss contributions - of different model outputs. - The loss value that will be minimized by the model - will then be the *weighted sum* of all individual losses, - weighted by the `loss_weights` coefficients. - If a list, it is expected to have a 1:1 mapping - to the model's outputs. If a tensor, it is expected to map - output names (strings) to scalar coefficients. - sample_weight_mode: If you need to do timestep-wise - sample weighting (2D weights), set this to `"temporal"`. - `None` becomes sample-wise weights (1D). - If the model has multiple outputs, you can use a different - `sample_weight_mode` on each output by passing a - dictionary or a list of modes. Defaults to `None`. - weighted_metrics: List of metrics to be evaluated and weighted - by sample_weight or class_weight during training and testing. - target_tensors: By default, Keras will create placeholders for the - model's target, which will be fed with the target data during - training. If instead you would like to use your own - target tensors (in turn, Keras will not expect external - Numpy data for these targets at training time), you - can specify them via the `target_tensors` argument. It can be - a single tensor (for a single-output model), a list of tensors, - or a dict mapping output names to target tensors. - distribute: NOT SUPPORTED IN TF 2.0, please create and compile the - model under distribution strategy scope instead of passing it to - compile. - **kwargs: Any additional arguments. - - Raises: - ValueError: In case of invalid arguments for - `optimizer`, `loss`, `metrics` or `sample_weight_mode`. - """ - self._assert_built_as_v1() - self._run_eagerly = kwargs.pop("run_eagerly", None) - self._experimental_run_tf_function = kwargs.pop( - "experimental_run_tf_function", True - ) - self._v1_compile_was_called = True - - # Prepare Session arguments (legacy). - kwargs.pop("cloning", None) # Legacy DistStrat argument, never used. - self._from_serialized = kwargs.pop("from_serialized", False) - allowed_kwargs = {"feed_dict", "fetches", "options", "run_metadata"} - unknown_kwargs = set(kwargs.keys()) - allowed_kwargs - if unknown_kwargs: - raise TypeError( - f"Invalid keyword argument(s) in `compile`: {unknown_kwargs}" - ) - self._function_kwargs = kwargs - if self._function_kwargs: - self._experimental_run_tf_function = False - if self.run_eagerly: - raise ValueError( - "Session keyword arguments are not supported " - "when `run_eagerly=True`. You passed the following " - "Session arguments: %s" % (self._function_kwargs,) - ) - - self._set_optimizer(optimizer) - is_any_keras_optimizer_v1 = any( - ( - isinstance(opt, optimizer_v1.Optimizer) - and not isinstance(opt, optimizer_v1.TFOptimizer) - ) - for opt in tf.nest.flatten(self.optimizer) - ) - - if ( - is_any_keras_optimizer_v1 - and tf.compat.v1.executing_eagerly_outside_functions() - ): - raise ValueError( - "`tf.compat.v1.keras` Optimizer (", - optimizer, - ") is " - "not supported when eager execution is enabled. Use a " - "`tf.keras` Optimizer instead, or disable eager " - "execution.", - ) - - if ( - target_tensors is not None - ) or not tf.compat.v1.executing_eagerly_outside_functions(): - # Fallback out of things that aren't supported with v2 loops - self._experimental_run_tf_function = False - - if distribute is not None: - if ( - tf.__internal__.tf2.enabled() - or self._experimental_run_tf_function - ): - raise ValueError( - "Distribute argument in compile is not available in TF 2.0 " - "please create the model under the distribution strategy " - "scope." - ) - logging.warning( - "Distribute argument in compile is deprecated please " - "create the model under the distribution strategy scope." - ) - self._distribution_strategy = distribute - self._compile_distribution = True - else: - if tf.distribute.has_strategy(): - # When the user builds the model in the DS scope and cross - # replica context we want distribution strategy to be set but - # when building the replica copies of the models internally we - # should not be compiling with distribution strategy and use the - # default compilation path. - if tf.distribute.in_cross_replica_context(): - self._distribution_strategy = tf.distribute.get_strategy() - - if isinstance( - self._distribution_strategy, - tf.compat.v1.distribute.experimental.ParameterServerStrategy, - ): - raise NotImplementedError( - "`tf.compat.v1.distribute.experimental.ParameterServerStrategy`" - " currently only works with the tf.Estimator API" - ) - - if isinstance( - self._distribution_strategy, - tf.distribute.experimental.ParameterServerStrategy, - ): - raise NotImplementedError( - "`tf.distribute.experimental.ParameterServerStrategy` is only " - "supported in TF2." - ) - - if not self._experimental_run_tf_function: - self._validate_compile_param_for_distribution_strategy( - self.run_eagerly, - sample_weight_mode, - target_tensors, - weighted_metrics, - ) - # We've disabled automatic dependency tracking for this method, but do - # want to add a checkpoint dependency on the optimizer if it's - # trackable. - if isinstance(self.optimizer, tf.__internal__.tracking.Trackable): - self._track_trackable( - self.optimizer, name="optimizer", overwrite=True - ) - self.loss = loss or {} - self.loss_weights = loss_weights - self.sample_weight_mode = sample_weight_mode - self._compile_metrics = metrics or [] - self._compile_weighted_metrics = weighted_metrics - if self.run_eagerly and target_tensors is not None: - raise ValueError( - "target_tensors argument is not supported when " - "running a model eagerly." - ) - - # _training_endpoints contains a list of _TrainingEndpoint object, which - # has all the model output/target/loss and related metadata. - self._training_endpoints = [] - - # Used to freeze the behavior of the Model once `compile` has been - # called. - self._compiled_trainable_state = self._get_trainable_state() - - # Set tf.distribute.Strategy specific parameters. - self._distributed_model_cache = {} - self._distributed_function_cache = {} - - # Clear any `_eager_losses` that was added. - self._clear_losses() - - if ( - not tf.executing_eagerly() - and self._distribution_strategy is not None - ): - # Ensures a Session is created and configured correctly for - # Distribution Strategy. - backend.configure_and_create_distributed_session( - self._distribution_strategy - ) - # Initialize model metric attributes. - self._init_metric_attributes() - if not self.built or not self.inputs or not self.outputs: - # Model is not compilable because it does not know its number of - # inputs and outputs, nor their shapes and names. We will compile - # after the first time the model gets called on training data. - return - self._is_compiled = True - base_layer.keras_api_gauge.get_cell("compile").set(True) - - # Prepare list of loss functions, same size of model outputs. - self.loss_functions = training_utils_v1.prepare_loss_functions( - self.loss, self.output_names - ) - - target_tensors = self._process_target_tensor_for_compile(target_tensors) - - for o, n, l, t in zip( - self.outputs, self.output_names, self.loss_functions, target_tensors - ): - endpoint = _TrainingEndpoint(o, n, l) - endpoint.create_training_target(t, run_eagerly=self.run_eagerly) - self._training_endpoints.append(endpoint) - - # Prepare list loss weights, same size of model outputs. - training_utils_v1.prepare_loss_weights( - self._training_endpoints, loss_weights - ) - - # Initialization for Eager mode execution. - if self.run_eagerly: - self._compile_eagerly(metrics, weighted_metrics, sample_weight_mode) - return - - with backend.get_graph().as_default(): - # Save all metric attributes per output of the model. - self._cache_output_metric_attributes(metrics, weighted_metrics) - - # Set metric attributes on model. - self._set_metric_attributes() - - # Invoke metric functions (unweighted) for all the outputs. - self._handle_metrics( - self.outputs, - targets=self._targets, - skip_target_masks=self._prepare_skip_target_masks(), - masks=self._prepare_output_masks(), - ) - - # Prepare sample weight modes. List with the same length as model - # outputs. - training_utils_v1.prepare_sample_weight_modes( - self._training_endpoints, sample_weight_mode - ) - - # Creates the model loss and weighted metrics sub-graphs. - self._compile_weights_loss_and_weighted_metrics() - - # Functions for train, test and predict will - # be compiled lazily when required. - # This saves time when the user is not using all functions. - self.train_function = None - self.test_function = None - self.predict_function = None - - # Collected trainable weights, sorted in topological order. - self._collected_trainable_weights = self.trainable_weights - - # Validate all variables were correctly created in distribution - # scope. - if self._distribution_strategy and not self._compile_distribution: - for v in self.variables: - strategy = self._distribution_strategy - if not strategy.extended.variable_created_in_scope(v): - raise ValueError( - "Variable (%s) was not created in the distribution " - "strategy scope of (%s). It is most likely due to " - "not all layers or the model or optimizer being " - "created outside the distribution strategy scope. " - "Try to make sure your code looks similar " - "to the following.\n" - "with strategy.scope():\n" - " model=_create_model()\n" - " model.compile(...)" % (v, strategy) - ) - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _init_distributed_function_cache_if_not_compiled(self): - if not hasattr(self, "_distributed_function_cache"): - self._distributed_function_cache = {} - - @property - def metrics(self): - """Returns the model's metrics added using `compile`, `add_metric` - APIs.""" - metrics = [] - if self._is_compiled: - if not hasattr(self, "_v1_compile_was_called"): - # See b/155687393 for more details, the model is created as a v2 - # instance but converted to v1. Fallback to use base Model to - # retrieve the metrics. - return super().metrics - metrics += self._compile_metric_functions - metrics.extend(self._metrics) - metrics.extend( - _get_metrics_from_layers( - list(self._flatten_layers(include_self=False, recursive=False)) - ) - ) - return metrics - - @property - def metrics_names(self): - """Returns the model's display labels for all outputs.""" - - # This property includes all output names including `loss` and - # per-output losses for backward compatibility. - metrics_names = ["loss"] - if self._is_compiled: - if not hasattr(self, "_v1_compile_was_called"): - # See b/155687393 for more details, the model is created as a v2 - # instance but converted to v1. Fallback to use base Model to - # retrieve the metrics name - return super().metrics_names - - # Add output loss metric names to the metric names list. - if len(self._training_endpoints) > 1: - metrics_names.extend( - [ - e.loss_name() - for e in self._training_endpoints - if not e.should_skip_target() - ] - ) - - # Add all metric names. - metrics_names += [m.name for m in self.metrics] - return metrics_names - - @property - def run_eagerly(self): - """Settable attribute indicating whether the model should run eagerly. - - Running eagerly means that your model will be run step by step, - like Python code. Your model might run slower, but it should become - easier for you to debug it by stepping into individual layer calls. - - By default, we will attempt to compile your model to a static graph to - deliver the best execution performance. - - Returns: - Boolean, whether the model should run eagerly. - """ - if self._run_eagerly is True and not tf.executing_eagerly(): - raise ValueError( - "You can only set `run_eagerly=True` if eager execution " - "is enabled." - ) - if not self.dynamic: - if self._run_eagerly is None: - # Respect `tf.config.run_functions_eagerly` unless - # `run_eagerly` was explicitly passed to `compile`. - return tf.config.functions_run_eagerly() - else: - return self._run_eagerly - else: - if not tf.executing_eagerly(): - raise ValueError( - "Your model contains layers that can only be " - "successfully run in eager execution (layers " - "constructed with `dynamic=True`). " - "You must enable eager execution with " - "`tf.enable_eager_execution()`." - ) - if self._run_eagerly is False: - # TODO(fchollet): consider using py_func to enable this. - raise ValueError( - "Your model contains layers that can only be " - "successfully run in eager execution (layers " - "constructed with `dynamic=True`). " - "You cannot set `run_eagerly=False`." - ) - return tf.executing_eagerly() - - @run_eagerly.setter - def run_eagerly(self, value): - self._run_eagerly = value - - def _select_training_loop(self, inputs): - """Select training loop for fit/eval/predict based on the inputs.""" - # TODO(kaftan) or TODO(scottzhu): This check should eventually be nicely - # integrated into the data adapters in the v2 loop. We can't do this yet - # because we currently have to fall back for unhandled data types. - if isinstance(inputs, (tf.compat.v1.data.Iterator, tf.data.Iterator)): - raise ValueError( - "For performance reasons Keras `fit`, `evaluate` and" - "`predict` accept tf.data `Datasets` as input but not " - "iterators that have been manually generated from " - "Datasets by users. Please directly pass in the " - "original `Dataset` object instead of passing in " - "`iter(dataset)`." - ) - - # Case 1: distribution strategy. - if self._distribution_strategy: - if self._in_multi_worker_mode(): - return training_distributed_v1.DistributionMultiWorkerTrainingLoop( # noqa: E501 - training_distributed_v1.DistributionSingleWorkerTrainingLoop() # noqa: E501 - ) - else: - return ( - training_distributed_v1.DistributionSingleWorkerTrainingLoop() # noqa: E501 - ) - - # Case 2: generator-like. Input is Python generator, or Sequence object, - # or a non-distributed Dataset or iterator in eager execution. - if data_utils.is_generator_or_sequence(inputs): - return training_generator_v1.GeneratorOrSequenceTrainingLoop() - if training_utils_v1.is_eager_dataset_or_iterator(inputs): - return training_generator_v1.EagerDatasetOrIteratorTrainingLoop() - - # Case 3: Symbolic tensors or Numpy array-like. - # This includes Datasets and iterators in graph mode (since they - # generate symbolic tensors). - if self.run_eagerly: - return training_generator_v1.GeneratorLikeTrainingLoop() - else: - return training_arrays_v1.ArrayLikeTrainingLoop() - - def fit( - self, - x=None, - y=None, - batch_size=None, - epochs=1, - verbose=1, - callbacks=None, - validation_split=0.0, - validation_data=None, - shuffle=True, - class_weight=None, - sample_weight=None, - initial_epoch=0, - steps_per_epoch=None, - validation_steps=None, - validation_freq=1, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - **kwargs, - ): - """Trains the model for a fixed number of epochs (dataset iterations). - - Args: - x: Input data. It could be: - - A Numpy array (or array-like), or a list of arrays - (in case the model has multiple inputs). - - A TensorFlow tensor, or a list of tensors - (in case the model has multiple inputs). - - A dict mapping input names to the corresponding array/tensors, - if the model has named inputs. - - A `tf.data` dataset. Should return a tuple - of either `(inputs, targets)` or - `(inputs, targets, sample_weights)`. - - A generator or `keras.utils.Sequence` returning `(inputs, - targets)` or `(inputs, targets, sample weights)`. - y: Target data. Like the input data `x`, - it could be either Numpy array(s) or TensorFlow tensor(s). - It should be consistent with `x` (you cannot have Numpy inputs and - tensor targets, or inversely). If `x` is a dataset, generator, - or `keras.utils.Sequence` instance, `y` should - not be specified (since targets will be obtained from `x`). - batch_size: Integer or `None`. - Number of samples per gradient update. - If unspecified, `batch_size` will default to 32. - Do not specify the `batch_size` if your data is in the - form of symbolic tensors, datasets, - generators, or `keras.utils.Sequence` instances (since they - generate batches). - epochs: Integer. Number of epochs to train the model. - An epoch is an iteration over the entire `x` and `y` - data provided. - Note that in conjunction with `initial_epoch`, - `epochs` is to be understood as "final epoch". - The model is not trained for a number of iterations - given by `epochs`, but merely until the epoch - of index `epochs` is reached. - verbose: 0, 1, or 2. Verbosity mode. - 0 = silent, 1 = progress bar, 2 = one line per epoch. - Note that the progress bar is not particularly useful when - logged to a file, so verbose=2 is recommended when not running - interactively (eg, in a production environment). - callbacks: List of `keras.callbacks.Callback` instances. - List of callbacks to apply during training. - See `tf.keras.callbacks`. - validation_split: Float between 0 and 1. - Fraction of the training data to be used as validation data. - The model will set apart this fraction of the training data, - will not train on it, and will evaluate - the loss and any model metrics - on this data at the end of each epoch. - The validation data is selected from the last samples - in the `x` and `y` data provided, before shuffling. This - argument is not supported when `x` is a dataset, generator or - `keras.utils.Sequence` instance. - validation_data: Data on which to evaluate - the loss and any model metrics at the end of each epoch. - The model will not be trained on this data. - `validation_data` will override `validation_split`. - `validation_data` could be: - - tuple `(x_val, y_val)` of Numpy arrays or tensors - - tuple `(x_val, y_val, val_sample_weights)` of Numpy arrays - - dataset - For the first two cases, `batch_size` must be provided. - For the last case, `validation_steps` could be provided. - shuffle: Boolean (whether to shuffle the training data - before each epoch) or str (for 'batch'). - 'batch' is a special option for dealing with the - limitations of HDF5 data; it shuffles in batch-sized chunks. - Has no effect when `steps_per_epoch` is not `None`. - class_weight: Optional dictionary mapping class indices (integers) - to a weight (float) value, used for weighting the loss function - (during training only). - This can be useful to tell the model to - "pay more attention" to samples from - an under-represented class. - sample_weight: Optional Numpy array of weights for - the training samples, used for weighting the loss function - (during training only). You can either pass a flat (1D) - Numpy array with the same length as the input samples - (1:1 mapping between weights and samples), - or in the case of temporal data, - you can pass a 2D array with shape - `(samples, sequence_length)`, - to apply a different weight to every timestep of every sample. - In this case you should make sure to specify - `sample_weight_mode="temporal"` in `compile()`. This argument is - not supported when `x` is a dataset, generator, or - `keras.utils.Sequence` instance, instead provide the - sample_weights as the third element of `x`. - initial_epoch: Integer. - Epoch at which to start training - (useful for resuming a previous training run). - steps_per_epoch: Integer or `None`. - Total number of steps (batches of samples) - before declaring one epoch finished and starting the - next epoch. When training with input tensors such as - TensorFlow data tensors, the default `None` is equal to - the number of samples in your dataset divided by - the batch size, or 1 if that cannot be determined. If x is a - `tf.data` dataset, and 'steps_per_epoch' - is None, the epoch will run until the input dataset is - exhausted. This argument is not supported with array inputs. - validation_steps: Only relevant if `validation_data` is provided and - is a `tf.data` dataset. Total number of steps (batches of - samples) to draw before stopping when performing validation at - the end of every epoch. If 'validation_steps' is None, - validation will run until the `validation_data` dataset is - exhausted. In the case of a infinite dataset, it will run into a - infinite loop. If 'validation_steps' is specified and only part - of the dataset will be consumed, the evaluation will start from - the beginning of the dataset at each epoch. This ensures that - the same validation samples are used every time. - validation_freq: Only relevant if validation data is provided. - Integer or `collections.abc.Container` instance (e.g. list, - tuple, etc.). If an integer, specifies how many training epochs - to run before a new validation run is performed, e.g. - `validation_freq=2` runs validation every 2 epochs. If a - Container, specifies the epochs on which to run validation, e.g. - `validation_freq=[1, 2, 10]` runs validation at the end of the - 1st, 2nd, and 10th epochs. - max_queue_size: Integer. Used for generator or - `keras.utils.Sequence` input only. Maximum size for the - generator queue. If unspecified, `max_queue_size` will default - to 10. - workers: Integer. Used for generator or `keras.utils.Sequence` input - only. Maximum number of processes to spin up - when using process-based threading. If unspecified, `workers` - will default to 1. If 0, will execute the generator on the main - thread. - use_multiprocessing: Boolean. Used for generator or - `keras.utils.Sequence` input only. If `True`, use process-based - threading. If unspecified, `use_multiprocessing` will default to - `False`. Note that because this implementation relies on - multiprocessing, you should not pass non-picklable arguments to - the generator as they can't be passed easily to children - processes. - **kwargs: Used for backwards compatibility. - - Returns: - A `History` object. Its `History.history` attribute is - a record of training loss values and metrics values - at successive epochs, as well as validation loss values - and validation metrics values (if applicable). - - Raises: - RuntimeError: If the model was never compiled. - ValueError: In case of mismatch between the provided input data - and what the model expects. - """ - self._assert_built_as_v1() - base_layer.keras_api_gauge.get_cell("fit").set(True) - # Legacy support - if "nb_epoch" in kwargs: - logging.warning( - "The `nb_epoch` argument in `fit` has been renamed `epochs`." - ) - epochs = kwargs.pop("nb_epoch") - if kwargs: - raise TypeError("Unrecognized keyword arguments: " + str(kwargs)) - self._assert_compile_was_called() - self._check_call_args("fit") - - func = self._select_training_loop(x) - return func.fit( - self, - x=x, - y=y, - batch_size=batch_size, - epochs=epochs, - verbose=verbose, - callbacks=callbacks, - validation_split=validation_split, - validation_data=validation_data, - shuffle=shuffle, - class_weight=class_weight, - sample_weight=sample_weight, - initial_epoch=initial_epoch, - steps_per_epoch=steps_per_epoch, - validation_steps=validation_steps, - validation_freq=validation_freq, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - ) - - def evaluate( - self, - x=None, - y=None, - batch_size=None, - verbose=1, - sample_weight=None, - steps=None, - callbacks=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - ): - """Returns the loss value & metrics values for the model in test mode. - - Computation is done in batches (see the `batch_size` arg.) - - Args: - x: Input data. It could be: - - A Numpy array (or array-like), or a list of arrays - (in case the model has multiple inputs). - - A TensorFlow tensor, or a list of tensors - (in case the model has multiple inputs). - - A dict mapping input names to the corresponding array/tensors, - if the model has named inputs. - - A `tf.data` dataset. - - A generator or `keras.utils.Sequence` instance. - y: Target data. Like the input data `x`, - it could be either Numpy array(s) or TensorFlow tensor(s). - It should be consistent with `x` (you cannot have Numpy inputs and - tensor targets, or inversely). - If `x` is a dataset, generator or - `keras.utils.Sequence` instance, `y` should not be specified - (since targets will be obtained from the iterator/dataset). - batch_size: Integer or `None`. - Number of samples per batch of computation. - If unspecified, `batch_size` will default to 32. - Do not specify the `batch_size` if your data is in the - form of symbolic tensors, dataset, - generators, or `keras.utils.Sequence` instances (since they - generate batches). - verbose: 0 or 1. Verbosity mode. - 0 = silent, 1 = progress bar. - sample_weight: Optional Numpy array of weights for - the test samples, used for weighting the loss function. - You can either pass a flat (1D) - Numpy array with the same length as the input samples - (1:1 mapping between weights and samples), - or in the case of temporal data, - you can pass a 2D array with shape - `(samples, sequence_length)`, - to apply a different weight to every timestep of every sample. - In this case you should make sure to specify - `sample_weight_mode="temporal"` in `compile()`. This argument is - not supported when `x` is a dataset, instead pass sample weights - as the third element of `x`. - steps: Integer or `None`. - Total number of steps (batches of samples) - before declaring the evaluation round finished. - Ignored with the default value of `None`. - If x is a `tf.data` dataset and `steps` is - None, 'evaluate' will run until the dataset is exhausted. - This argument is not supported with array inputs. - callbacks: List of `keras.callbacks.Callback` instances. - List of callbacks to apply during evaluation. - See [callbacks](/api_docs/python/tf/keras/callbacks). - max_queue_size: Integer. Used for generator or - `keras.utils.Sequence` input only. Maximum size for the - generator queue. If unspecified, `max_queue_size` will default - to 10. - workers: Integer. Used for generator or `keras.utils.Sequence` input - only. Maximum number of processes to spin up when using - process-based threading. If unspecified, `workers` will default - to 1. If 0, will execute the generator on the main thread. - use_multiprocessing: Boolean. Used for generator or - `keras.utils.Sequence` input only. If `True`, use process-based - threading. If unspecified, `use_multiprocessing` will default to - `False`. Note that because this implementation relies on - multiprocessing, you should not pass non-picklable arguments to - the generator as they can't be passed easily to children - processes. - - Returns: - Scalar test loss (if the model has a single output and no metrics) - or list of scalars (if the model has multiple outputs - and/or metrics). The attribute `model.metrics_names` will give you - the display labels for the scalar outputs. - - Raises: - ValueError: in case of invalid arguments. - """ - self._assert_built_as_v1() - base_layer.keras_api_gauge.get_cell("evaluate").set(True) - self._assert_compile_was_called() - self._check_call_args("evaluate") - - func = self._select_training_loop(x) - return func.evaluate( - self, - x=x, - y=y, - batch_size=batch_size, - verbose=verbose, - sample_weight=sample_weight, - steps=steps, - callbacks=callbacks, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - ) - - def predict( - self, - x, - batch_size=None, - verbose=0, - steps=None, - callbacks=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - ): - """Generates output predictions for the input samples. - - Computation is done in batches (see the `batch_size` arg.) - - Args: - x: Input samples. It could be: - - A Numpy array (or array-like), or a list of arrays - (in case the model has multiple inputs). - - A TensorFlow tensor, or a list of tensors - (in case the model has multiple inputs). - - A `tf.data` dataset. - - A generator or `keras.utils.Sequence` instance. - batch_size: Integer or `None`. - Number of samples per batch of computation. - If unspecified, `batch_size` will default to 32. - Do not specify the `batch_size` if your data is in the - form of symbolic tensors, dataset, - generators, or `keras.utils.Sequence` instances (since they - generate batches). - verbose: Verbosity mode, 0 or 1. - steps: Total number of steps (batches of samples) - before declaring the prediction round finished. - Ignored with the default value of `None`. If x is a `tf.data` - dataset and `steps` is None, `predict` will - run until the input dataset is exhausted. - callbacks: List of `keras.callbacks.Callback` instances. - List of callbacks to apply during prediction. - See [callbacks](/api_docs/python/tf/keras/callbacks). - max_queue_size: Integer. Used for generator or - `keras.utils.Sequence` input only. Maximum size for the - generator queue. If unspecified, `max_queue_size` will default - to 10. - workers: Integer. Used for generator or `keras.utils.Sequence` input - only. Maximum number of processes to spin up when using - process-based threading. If unspecified, `workers` will default - to 1. If 0, will execute the generator on the main thread. - use_multiprocessing: Boolean. Used for generator or - `keras.utils.Sequence` input only. If `True`, use process-based - threading. If unspecified, `use_multiprocessing` will default to - `False`. Note that because this implementation relies on - multiprocessing, you should not pass non-picklable arguments to - the generator as they can't be passed easily to children - processes. - - - Returns: - Numpy array(s) of predictions. - - Raises: - ValueError: In case of mismatch between the provided - input data and the model's expectations, - or in case a stateful model receives a number of samples - that is not a multiple of the batch size. - """ - self._assert_built_as_v1() - base_layer.keras_api_gauge.get_cell("predict").set(True) - self._check_call_args("predict") - - func = self._select_training_loop(x) - return func.predict( - self, - x=x, - batch_size=batch_size, - verbose=verbose, - steps=steps, - callbacks=callbacks, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - ) - - def reset_metrics(self): - """Resets the state of metrics.""" - metrics = self._get_training_eval_metrics() - for m in metrics: - m.reset_state() - - # Reset metrics on all the distributed (cloned) models. - if self._distribution_strategy: - distributed_training_utils_v1._reset_metrics(self) - - def train_on_batch( - self, - x, - y=None, - sample_weight=None, - class_weight=None, - reset_metrics=True, - ): - """Runs a single gradient update on a single batch of data. - - Args: - x: Input data. It could be: - - A Numpy array (or array-like), or a list of arrays - (in case the model has multiple inputs). - - A TensorFlow tensor, or a list of tensors - (in case the model has multiple inputs). - - A dict mapping input names to the corresponding array/tensors, - if the model has named inputs. - - A `tf.data` dataset. - y: Target data. Like the input data `x`, it could be either Numpy - array(s) or TensorFlow tensor(s). It should be consistent with `x` - (you cannot have Numpy inputs and tensor targets, or inversely). - If `x` is a dataset, `y` should not be specified - (since targets will be obtained from the iterator). - sample_weight: Optional array of the same length as x, containing - weights to apply to the model's loss for each sample. In the case - of temporal data, you can pass a 2D array with shape (samples, - sequence_length), to apply a different weight to every timestep of - every sample. In this case you should make sure to specify - sample_weight_mode="temporal" in compile(). This argument is not - supported when `x` is a dataset. - class_weight: Optional dictionary mapping class indices (integers) - to a weight (float) to apply to the model's loss for the samples - from this class during training. This can be useful to tell the - model to "pay more attention" to samples from an under-represented - class. - reset_metrics: If `True`, the metrics returned will be only for this - batch. If `False`, the metrics will be statefully accumulated - across batches. - - Returns: - Scalar training loss - (if the model has a single output and no metrics) - or list of scalars (if the model has multiple outputs - and/or metrics). The attribute `model.metrics_names` will give you - the display labels for the scalar outputs. - - Raises: - ValueError: In case of invalid user-provided arguments. - """ - self._assert_compile_was_called() - self._check_call_args("train_on_batch") - - # If at this point we are in the replica context, then it is okay to - # execute the Eager code path. The expected way to get here is to call - # `fit` that calls `train_on_batch` on each replica. - if ( - self._distribution_strategy - and tf.distribute.in_cross_replica_context() - ): - raise NotImplementedError( - "`train_on_batch` is not supported for models " - "distributed with tf.distribute.Strategy." - ) - # Validate and standardize user data. - x, y, sample_weights = self._standardize_user_data( - x, - y, - sample_weight=sample_weight, - class_weight=class_weight, - extract_tensors_from_dataset=True, - ) - - # If `self._distribution_strategy` is True, then we are in a replica - # context at this point because of the check above. `train_on_batch` is - # being run for each replica by `self._distribution_strategy` and the - # same code path as Eager is expected to be taken. - if self.run_eagerly or self._distribution_strategy: - output_dict = training_eager_v1.train_on_batch( - self, - x, - y, - sample_weights=sample_weights, - output_loss_metrics=self._output_loss_metrics, - ) - outputs = ( - output_dict["total_loss"] - + output_dict["output_losses"] - + output_dict["metrics"] - ) - outputs = [_non_none_constant_value(v) for v in outputs] - else: - x = training_utils_v1.ModelInputs(x).as_list() - ins = x + list(y or []) + list(sample_weights or []) - - if not isinstance(backend.symbolic_learning_phase(), int): - ins += [True] # Add learning phase value. - - self._update_sample_weight_modes(sample_weights=sample_weights) - self._make_train_function() - outputs = self.train_function(ins) - - if reset_metrics: - self.reset_metrics() - - if len(outputs) == 1: - return outputs[0] - return outputs - - def test_on_batch(self, x, y=None, sample_weight=None, reset_metrics=True): - """Test the model on a single batch of samples. - - Args: - x: Input data. It could be: - - A Numpy array (or array-like), or a list of arrays - (in case the model has multiple inputs). - - A TensorFlow tensor, or a list of tensors - (in case the model has multiple inputs). - - A dict mapping input names to the corresponding array/tensors, - if the model has named inputs. - - A `tf.data` dataset. - y: Target data. Like the input data `x`, - it could be either Numpy array(s) or TensorFlow tensor(s). - It should be consistent with `x` (you cannot have Numpy inputs and - tensor targets, or inversely). If `x` is a dataset `y` should - not be specified (since targets will be obtained from the - iterator). - sample_weight: Optional array of the same length as x, containing - weights to apply to the model's loss for each sample. - In the case of temporal data, you can pass a 2D array - with shape (samples, sequence_length), - to apply a different weight to every timestep of every sample. - In this case you should make sure to specify - sample_weight_mode="temporal" in compile(). This argument is not - supported when `x` is a dataset. - reset_metrics: If `True`, the metrics returned will be only for this - batch. If `False`, the metrics will be statefully accumulated - across batches. - - Returns: - Scalar test loss (if the model has a single output and no metrics) - or list of scalars (if the model has multiple outputs - and/or metrics). The attribute `model.metrics_names` will give you - the display labels for the scalar outputs. - - Raises: - ValueError: In case of invalid user-provided arguments. - """ - self._assert_compile_was_called() - self._check_call_args("test_on_batch") - - if ( - self._distribution_strategy - and tf.distribute.in_cross_replica_context() - ): - raise NotImplementedError( - "`test_on_batch` is not supported for models " - "distributed with tf.distribute.Strategy." - ) - # Validate and standardize user data. - x, y, sample_weights = self._standardize_user_data( - x, y, sample_weight=sample_weight, extract_tensors_from_dataset=True - ) - - # If `self._distribution_strategy` is True, then we are in a replica - # context at this point. - if self.run_eagerly or self._distribution_strategy: - output_dict = training_eager_v1.test_on_batch( - self, - x, - y, - sample_weights=sample_weights, - output_loss_metrics=self._output_loss_metrics, - ) - outputs = ( - output_dict["total_loss"] - + output_dict["output_losses"] - + output_dict["metrics"] - ) - outputs = [_non_none_constant_value(v) for v in outputs] - else: - x = training_utils_v1.ModelInputs(x).as_list() - inputs = x + list(y or []) + list(sample_weights or []) - - self._update_sample_weight_modes(sample_weights=sample_weights) - self._make_test_function() - outputs = self.test_function(inputs) - - if reset_metrics: - self.reset_metrics() - - if len(outputs) == 1: - return outputs[0] - return outputs - - def predict_on_batch(self, x): - """Returns predictions for a single batch of samples. - - Args: - x: Input data. It could be: - - A Numpy array (or array-like), or a list of arrays - (in case the model has multiple inputs). - - A TensorFlow tensor, or a list of tensors - (in case the model has multiple inputs). - - A `tf.data` dataset. - - Returns: - Numpy array(s) of predictions. - - Raises: - ValueError: In case of mismatch between given number of inputs and - expectations of the model. - """ - self._check_call_args("predict_on_batch") - - if ( - self._distribution_strategy - and tf.distribute.in_cross_replica_context() - ): - raise NotImplementedError( - "`predict_on_batch` is not supported for models distributed " - "with tf.distribute.Strategy." - ) - # Validate and standardize user data. - inputs, _, _ = self._standardize_user_data( - x, extract_tensors_from_dataset=True - ) - # If `self._distribution_strategy` is True, then we are in a replica - # context at this point. - if self.run_eagerly or self._distribution_strategy: - inputs = training_utils_v1.cast_if_floating_dtype(inputs) - if isinstance(inputs, collections.abc.Sequence): - # Unwrap lists with only one input, as we do when training on - # batch - if len(inputs) == 1: - inputs = inputs[0] - - return self(inputs) - - self._make_predict_function() - outputs = self.predict_function(inputs) - - if len(outputs) == 1: - return outputs[0] - return outputs - - def fit_generator( - self, - generator, - steps_per_epoch=None, - epochs=1, - verbose=1, - callbacks=None, - validation_data=None, - validation_steps=None, - validation_freq=1, - class_weight=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - shuffle=True, - initial_epoch=0, - ): - """Fits the model on data yielded batch-by-batch by a Python generator. - - DEPRECATED: - `Model.fit` now supports generators, so there is no longer any need to - use this endpoint. - """ - warnings.warn( - "`model.fit_generator` is deprecated and " - "will be removed in a future version. " - "Please use `Model.fit`, which supports generators.", - stacklevel=2, - ) - return self.fit( - generator, - steps_per_epoch=steps_per_epoch, - epochs=epochs, - verbose=verbose, - callbacks=callbacks, - validation_data=validation_data, - validation_steps=validation_steps, - validation_freq=validation_freq, - class_weight=class_weight, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - shuffle=shuffle, - initial_epoch=initial_epoch, - ) - - def evaluate_generator( - self, - generator, - steps=None, - callbacks=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - verbose=0, - ): - """Evaluates the model on a data generator. - - DEPRECATED: - `Model.evaluate` now supports generators, so there is no longer any - need to use this endpoint. - """ - warnings.warn( - "`Model.evaluate_generator` is deprecated and " - "will be removed in a future version. " - "Please use `Model.evaluate`, which supports generators.", - stacklevel=2, - ) - self._check_call_args("evaluate_generator") - - return self.evaluate( - generator, - steps=steps, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - verbose=verbose, - callbacks=callbacks, - ) - - def predict_generator( - self, - generator, - steps=None, - callbacks=None, - max_queue_size=10, - workers=1, - use_multiprocessing=False, - verbose=0, - ): - """Generates predictions for the input samples from a data generator. - - DEPRECATED: - `Model.predict` now supports generators, so there is no longer any - need to use this endpoint. - """ - warnings.warn( - "`Model.predict_generator` is deprecated and " - "will be removed in a future version. " - "Please use `Model.predict`, which supports generators.", - stacklevel=2, - ) - return self.predict( - generator, - steps=steps, - max_queue_size=max_queue_size, - workers=workers, - use_multiprocessing=use_multiprocessing, - verbose=verbose, - callbacks=callbacks, - ) - - def _check_call_args(self, method_name): - """Check that `call` has only one positional arg.""" - # Always allow first arg, regardless of arg name. - fullargspec = self._call_spec.full_argspec - if fullargspec.defaults: - positional_args = fullargspec.args[: -len(fullargspec.defaults)] - else: - positional_args = fullargspec.args - if "training" in positional_args: - positional_args.remove("training") - - # self and first arg can be positional. - if len(positional_args) > 2: - extra_args = positional_args[2:] - raise ValueError( - "Models passed to `" - + method_name - + "` can only have `training` " - "and the first argument in `call` as positional arguments, " - "found: " + str(extra_args) + "." - ) - - def _set_optimizer(self, optimizer): - """Sets self.optimizer. - - Sets self.optimizer to `optimizer`, potentially wrapping it with a - LossScaleOptimizer. - - Args: - optimizer: The optimizer(s) to assign to self.optimizer. - """ - if isinstance(optimizer, (list, tuple)): - self.optimizer = [optimizers.get(opt) for opt in optimizer] - else: - self.optimizer = optimizers.get(optimizer) - - if self._dtype_policy.name == "mixed_float16" and not isinstance( - self.optimizer, loss_scale_optimizer.LossScaleOptimizer - ): - if isinstance(self.optimizer, list): - raise ValueError( - 'When the "mixed_float16" dtype policy is used, you ' - "can only pass a single optimizer. Using policy %s " - "and got optimizers: %s" % self._dtype_policy, - self.optimizer, - ) - if not isinstance(self.optimizer, optimizer_v2.OptimizerV2): - raise ValueError( - '"optimizer" must be an instance of ' - "tf.keras.optimizers.legacy.Optimizer when a dype policy " - "with a loss scale is used, but got: %s. Using policy: " - "%s" % (self.optimizer, self._dtype_policy) - ) - self.optimizer = loss_scale_optimizer.LossScaleOptimizer( - self.optimizer - ) - - def _prepare_validation_data( - self, validation_data, batch_size, validation_steps - ): - """Unpack and check the validation data.""" - ( - val_x, - val_y, - val_sample_weights, - ) = training_utils_v1.unpack_validation_data(validation_data) - return self._standardize_user_data( - val_x, - val_y, - sample_weight=val_sample_weights, - batch_size=batch_size, - steps=validation_steps, - steps_name="validation_steps", - ) - - def _validate_compile_param_for_distribution_strategy( - self, run_eagerly, sample_weight_mode, target_tensors, weighted_metrics - ): - # Validate that arguments passed by the user to `compile` are supported - # by tf.distribute.Strategy. - if self._distribution_strategy: - if sample_weight_mode: - raise NotImplementedError( - "sample_weight_mode is not supported with " - "tf.distribute.Strategy." - ) - if weighted_metrics: - raise NotImplementedError( - "weighted_metrics is not supported with " - "tf.distribute.Strategy." - ) - if target_tensors: - raise ValueError( - "target_tensors is not supported with " - "tf.distribute.Strategy." - ) - - if run_eagerly: - raise ValueError( - "We currently do not support enabling `run_eagerly` with " - "distribution strategy." - ) - - if distributed_training_utils_v1.is_distributing_by_cloning( - self - ) and (not self.built or not self.inputs or not self.outputs): - raise ValueError( - "We currently do not support distribution strategy with a " - "`Sequential` model that is created without `input_shape`/" - "`input_dim` set in its first layer or a subclassed model." - ) - - def _process_target_tensor_for_compile(self, target_tensors): - if self.run_eagerly: - # target tensor is not supported with run_eagerly. Create a list - # with None as placeholder for each output. - return [None for _ in self.output_names] - - if target_tensors is not None and not ( - isinstance(target_tensors, list) and target_tensors == [] - ): - if isinstance(target_tensors, list): - if len(target_tensors) != len(self.outputs): - raise ValueError( - "When passing a list as `target_tensors`, " - "it should have one entry per model output. " - "The model has %s outputs, " - "but you passed target_tensors=%s" - % (len(self.outputs), target_tensors) - ) - elif isinstance(target_tensors, dict): - unexpected_target_tensor_names = set( - target_tensors.keys() - ).difference(self.output_names) - if unexpected_target_tensor_names: - raise ValueError( - "Unknown entry in `target_tensors` dictionary: " - '"{name}". ' - "Only expected the following keys: {keys}".format( - name=unexpected_target_tensor_names, - keys=str(self.output_names), - ) - ) - tmp_target_tensors = [] - for name in self.output_names: - tmp_target_tensors.append(target_tensors.get(name, None)) - target_tensors = tmp_target_tensors - elif tf.is_tensor(target_tensors): - target_tensors = [target_tensors] - else: - raise TypeError( - "Expected `target_tensors` to be a list or tuple or " - "dict or a single tensor, but got:", - target_tensors, - ) - else: - # In case target tensor is empty or None, create a list with Nones - # that has same length as self.output_names. With that, the None - # check of target tensor can be skipped downstream. - target_tensors = [None for _ in self.output_names] - return target_tensors - - def _compile_eagerly(self, metrics, weighted_metrics, sample_weight_mode): - # Prepare sample weight modes. List with the same length as model - # outputs. - training_utils_v1.prepare_sample_weight_modes( - self._training_endpoints, sample_weight_mode - ) - # Prepare sample weights. - self._prepare_sample_weights() - # Save all metric attributes per output of the model. - self._cache_output_metric_attributes(metrics, weighted_metrics) - self.total_loss = None - # Set metric attributes on model. - self._set_metric_attributes() - - self._collected_trainable_weights = self.trainable_weights - - def _update_sample_weight_modes(self, sample_weights=None): - """Updates sample weight modes based on training/eval inputs. - - Sample weight placeholders will be created for all or no outputs - based on whether sample_weight is provided for any output. - - If model contains `_sample_weight_modes` we check if the input - `sample_weights` corresponds to the sample weight modes. - 1. Set sample weight mode to be 'temporal' for output i, if `compile` - sample_weight_mode was set to `temporal` and sample weight inputs - are given for one or more outputs. - 2. Set sample weight mode to be 'samplewise' for output i, if - `compile` sample_weight_mode was not set and sample weight inputs - are given for one or more outputs. - 3. Reset sample weight mode to None for output i if sample weight mode - was set but there is no sample weight input. - - Args: - sample_weights: List of sample weights of the same length as model - outputs or None. - """ - if not self._is_compiled: - return - if sample_weights and any(s is not None for s in sample_weights): - for endpoint in self._training_endpoints: - endpoint.sample_weight_mode = ( - endpoint.sample_weight_mode or "samplewise" - ) - else: - for endpoint in self._training_endpoints: - endpoint.sample_weight_mode = None - - def _recompile_weights_loss_and_weighted_metrics(self): - if not self._is_compiled: - return False - recompile = any( - e.sample_weights_mismatch() for e in self._training_endpoints - ) - - if recompile: - self._compile_weights_loss_and_weighted_metrics() - return recompile - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _compile_weights_loss_and_weighted_metrics(self, sample_weights=None): - """Compiles the model loss and weighted metric sub-graphs. - - This may be used to set graph tensors as sample weights (instead of - creating placeholders). This functionality is necessary for - `tf.keras.estimator.model_to_estimator`, which calls Keras models in a - v1 graph, and creates iterator tensors for inputs, targets, and sample - weights. - - Args: - sample_weights: List of tensors to use as the sample weights. Must be - the same length as the number of outputs. If left as `None`, - placeholders are used instead. - """ - with backend.get_graph().as_default(): - if sample_weights is not None: - self._update_sample_weight_modes(sample_weights) - self._prepare_sample_weights(sample_weights) - - masks = self._prepare_output_masks() - - # Compute weighted metrics. - self._handle_metrics( - self.outputs, - targets=self._targets, - skip_target_masks=self._prepare_skip_target_masks(), - sample_weights=self.sample_weights, - masks=masks, - return_weighted_metrics=True, - ) - - # Compute total loss. - # Used to keep track of the total loss value (stateless). - # eg., total_loss = loss_weight_1 * output_1_loss_fn(...) + - # loss_weight_2 * output_2_loss_fn(...) + - # layer losses. - self.total_loss = self._prepare_total_loss(masks) - - def _prepare_skip_target_masks(self): - """Boolean mask for whether target in output list should be skipped. - - If the loss function corresponding to a model output is None, then this - output will be skipped during total loss calculation and feed targets - preparation. - - Returns: - A boolean list for whether the corresponding target in the output list - should be skipped during loss calculation. - """ - return [l is None for l in self.loss_functions] - - def _prepare_output_masks(self): - """Returns masks corresponding to model outputs.""" - return [getattr(x, "_keras_mask", None) for x in self.outputs] - - def _prepare_total_loss(self, masks): - """Computes total loss from loss functions. - - Args: - masks: List of mask values corresponding to each model output. - - Returns: - A list of loss weights of python floats. - - Raises: - TypeError: If model run_eagerly is True. - """ - if self.run_eagerly: - raise TypeError( - "total loss can not be computed when compiled with " - "run_eagerly = True." - ) - loss_list = [] - with backend.name_scope("loss"): - for endpoint, mask in zip(self._training_endpoints, masks): - if endpoint.should_skip_target(): - continue - y_true = endpoint.training_target.target - y_pred = endpoint.output - loss_fn = endpoint.loss_fn - loss_weight = endpoint.loss_weight - loss_name = endpoint.loss_name() - sample_weight = endpoint.sample_weight - - with backend.name_scope(loss_name): - if mask is not None: - mask = tf.cast(mask, y_pred.dtype) - # Update weights with mask. - if sample_weight is None: - sample_weight = mask - else: - # Update dimensions of weights to match with mask if - # possible. - ( - mask, - _, - sample_weight, - ) = losses_utils.squeeze_or_expand_dimensions( - mask, sample_weight=sample_weight - ) - - if hasattr(loss_fn, "reduction"): - per_sample_losses = loss_fn.call(y_true, y_pred) - sample_weight = losses_utils.apply_valid_mask( - per_sample_losses, - sample_weight, - mask, - loss_fn.reduction, - ) - weighted_losses = losses_utils.compute_weighted_loss( - per_sample_losses, - sample_weight=sample_weight, - reduction=losses_utils.ReductionV2.NONE, - ) - loss_reduction = loss_fn.reduction - - # `AUTO` loss reduction defaults to - # `SUM_OVER_BATCH_SIZE` for all compile use cases. - if loss_reduction == losses_utils.ReductionV2.AUTO: - loss_reduction = ( - losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE - ) - - # Compute the stateless loss value. - output_loss = losses_utils.reduce_weighted_loss( - weighted_losses, reduction=loss_reduction - ) - else: - # Compute the stateless loss value for a custom loss - # class. Here we assume that the class takes care of - # loss reduction because if this class returns a vector - # value we cannot differentiate between use case where a - # custom optimizer expects a vector loss value vs - # unreduced per-sample loss value. - output_loss = loss_fn( - y_true, y_pred, sample_weight=sample_weight - ) - loss_reduction = ( - losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE - ) - - if len(self.outputs) > 1: - # Keep track of stateful result tensor for the loss. - endpoint.output_loss_metric(output_loss) - - # Scale output loss for distribution. For custom losses we - # assume reduction was mean. - if ( - loss_reduction - == losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE - ): - output_loss = losses_utils.scale_loss_for_distribution( - output_loss - ) - - loss_list.append(loss_weight * output_loss) - if not loss_list and not self.losses: - raise ValueError( - "The model cannot be compiled " - "because it has no loss to optimize." - ) - - # Add regularization penalties and other layer-specific losses. - custom_losses = self.get_losses_for(None) + self.get_losses_for( - self.inputs - ) - if custom_losses: - total_custom_loss = tf.add_n( - losses_utils.cast_losses_to_common_dtype(custom_losses) - ) - loss_list.append( - losses_utils.scale_loss_for_distribution(total_custom_loss) - ) - - loss_list = losses_utils.cast_losses_to_common_dtype(loss_list) - if loss_list: - total_loss = tf.add_n(loss_list) - else: - total_loss = 0.0 - return total_loss - - def _get_callback_model(self): - """Returns the Callback Model for this Model.""" - - if hasattr(self, "_replicated_model") and self._replicated_model: - # When using training_distributed, we set the callback model - # to an instance of the `DistributedModel` that we create in - # the `compile` call. The `DistributedModel` is initialized - # with the first replicated model. We need to set the callback - # model to a DistributedModel to allow us to override saving - # and loading weights when we checkpoint the model during training. - return self._replicated_model - if hasattr(self, "callback_model") and self.callback_model: - return self.callback_model - return self - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _make_callback_model(self, grouped_model): - first_replicated_model = self._distribution_strategy.unwrap( - grouped_model - )[0] - # We initialize the callback model with the first replicated model. - self._replicated_model = DistributedCallbackModel( - first_replicated_model - ) - self._replicated_model.set_original_model(self) - - def _validate_or_infer_batch_size(self, batch_size, steps, x): - """Validates that `batch_size` provided is consistent with InputLayer. - - It's possible that the user specified a static batch size in their - InputLayer. If so, this method checks the provided `batch_size` and `x` - arguments are consistent with this static batch size. Also, if - `batch_size` is `None`, this method will attempt to infer the batch size - from the static batch size of the InputLayer. Lastly, ValueError will be - raised if `x` is a tf.data.Dataset and `batch_size` is specified as we - expect users to provide batched datasets. - - Args: - batch_size: The batch_size provided as an argument to - fit/evaluate/predict. - steps: The steps provided as an argument to fit/evaluate/predict. - x: The data passed as `x` to fit/evaluate/predict. - - Returns: - The validated batch_size, auto-inferred from the first layer if not - provided. - """ - if isinstance( - x, (tf.compat.v1.data.Dataset, tf.data.Dataset, data_utils.Sequence) - ) or tf_inspect.isgenerator(x): - if batch_size is not None: - raise ValueError( - "The `batch_size` argument must not be specified for the " - "given input type. Received input: " - "{}, batch_size: {}".format(x, batch_size) - ) - return - - # Avoids the override in Sequential.layers which filters Input layers. - # (Which are often the very layers that we're after.) - layers = self._flatten_layers(include_self=False, recursive=False) - first_layer = next(layers, None) - if first_layer: - # The per-replica static batch size. - static_batch_size = training_utils.get_static_batch_size( - first_layer - ) - if static_batch_size is not None: - - # Determine number of times the user-supplied batch size will be - # split. - if ( - self._distribution_strategy - and distributed_training_utils.global_batch_size_supported( - self._distribution_strategy - ) - ): - num_splits_for_ds = ( - self._distribution_strategy.num_replicas_in_sync - ) - else: - num_splits_for_ds = 1 - - # Check `batch_size` argument is consistent with InputLayer. - if batch_size is not None: - if batch_size % num_splits_for_ds != 0: - raise ValueError( - "The `batch_size` argument ({}) must be divisible " - "the by number of replicas ({})".format( - batch_size, num_splits_for_ds - ) - ) - per_replica_batch_size = batch_size // num_splits_for_ds - - if per_replica_batch_size != static_batch_size: - raise ValueError( - "The `batch_size` argument value {} is " - "incompatible with the specified batch size of " - "your Input Layer: {}".format( - per_replica_batch_size, static_batch_size - ) - ) - - # Check Dataset/Iterator batch size is consistent with - # InputLayer. - if isinstance( - x, - ( - tf.data.Dataset, - tf.compat.v1.data.Iterator, - tf.data.Iterator, - ), - ): - ds_batch_size = tf.compat.v1.Dimension( - tf.nest.flatten(tf.compat.v1.data.get_output_shapes(x))[ - 0 - ][0] - ).value - if ds_batch_size is not None: - if ds_batch_size % num_splits_for_ds != 0: - raise ValueError( - "The batch output shape of your `Dataset` {} " - "cannot be divisible by number of " - "replicas {}".format( - ds_batch_size, num_splits_for_ds - ) - ) - - ds_per_replica_batch_size = ( - ds_batch_size // num_splits_for_ds - ) - if ds_per_replica_batch_size != static_batch_size: - raise ValueError( - "The batch output shape of your `Dataset` is " - "{}, which is incompatible with the specified " - "batch size of your Input Layer: {}".format( - ds_per_replica_batch_size, static_batch_size - ) - ) - - # Set inferred batch size from the InputLayer. - if steps is None: - batch_size = static_batch_size * num_splits_for_ds - - if batch_size is None and steps is None: - # Backwards compatibility - batch_size = 32 - return batch_size - - def _prepare_sample_weights(self, sample_weights=None): - """Sets sample weight attribute on the model.""" - # List with the same length as model outputs. - if sample_weights is not None: - if len(sample_weights) != len(self._training_endpoints): - raise ValueError( - "Provided sample weights must have same length as the " - "number of outputs. Expected: {}, got: {}.".format( - len(self._training_endpoints), len(sample_weights) - ) - ) - else: - sample_weights = [None] * len(self._training_endpoints) - for endpoint, weight in zip(self._training_endpoints, sample_weights): - endpoint.populate_sample_weight(weight, endpoint.sample_weight_mode) - - def _cache_output_metric_attributes(self, metrics, weighted_metrics): - """Caches metric name and function attributes for every model output.""" - output_shapes = [] - for output in self.outputs: - if output is None or output.shape.rank is None: - output_shapes.append(None) - else: - output_shapes.append(output.shape.as_list()) - self._per_output_metrics = ( - training_utils_v1.collect_per_output_metric_info( - metrics, - self.output_names, - output_shapes, - self.loss_functions, - from_serialized=self._from_serialized, - ) - ) - self._per_output_weighted_metrics = ( - training_utils_v1.collect_per_output_metric_info( - weighted_metrics, - self.output_names, - output_shapes, - self.loss_functions, - from_serialized=self._from_serialized, - is_weighted=True, - ) - ) - - def _add_unique_metric_name(self, metric_name, metric_fn, output_index): - """Makes the metric name unique. - - If there are multiple outputs for which the metrics are calculated, - the metric names have to be made unique by appending an integer. - - Args: - metric_name: Metric name that corresponds to the metric specified by - the user. For example: 'acc'. - metric_fn: The Metric object. - output_index: The index of the model output for which the metric name - is being added. - - Returns: - string, name of the model's unique metric name - """ - # For multi-output models, prepend the output names to the metric name. - if len(self.output_names) > 1: - # If we're loading from an already-serialized model, we've already - # prepended the output name, and we don't want to do it again. - # - # Alternatively, we may be receiving a stateless metric (e.g. the - # string "accuracy") rather than a `Metric` object, in which case we - # want to prepend the output name even if we are loading a - # serialized model. - if not getattr(metric_fn, "_from_serialized", False): - metric_name = f"{self.output_names[output_index]}_{metric_name}" - - j = 1 - base_metric_name = metric_name - while metric_name in self.metrics_names: - metric_name = "%s_%d" % (base_metric_name, j) - j += 1 - - return metric_name - - def _init_metric_attributes(self): - """Initialized model metric attributes.""" - # List of stateful metric functions. Used for resetting metric state - # during training/eval. - self._compile_metric_functions = [] - - def _set_per_output_metric_attributes(self, metrics_dict, output_index): - """Sets the metric attributes on the model for the given output. - - Args: - metrics_dict: A dict with metric names as keys and metric fns as - values. - output_index: The index of the model output for which the metric - attributes are added. - - Returns: - Metrics dict updated with unique metric names as keys. - """ - updated_metrics_dict = collections.OrderedDict() - for metric_name, metric_fn in metrics_dict.items(): - metric_name = self._add_unique_metric_name( - metric_name, metric_fn, output_index - ) - - # Update the name on the metric class to be the unique generated - # name. - metric_fn._name = metric_name - updated_metrics_dict[metric_name] = metric_fn - # Keep track of metric name and function. - self._compile_metric_functions.append(metric_fn) - return updated_metrics_dict - - def _set_metric_attributes(self): - """Sets the metric attributes on the model for all the model outputs.""" - updated_per_output_metrics = [] - updated_per_output_weighted_metrics = [] - for i, endpoint in enumerate(self._training_endpoints): - if endpoint.should_skip_target(): - updated_per_output_metrics.append(self._per_output_metrics[i]) - updated_per_output_weighted_metrics.append( - self._per_output_weighted_metrics[i] - ) - continue - updated_per_output_metrics.append( - self._set_per_output_metric_attributes( - self._per_output_metrics[i], i - ) - ) - updated_per_output_weighted_metrics.append( - self._set_per_output_metric_attributes( - self._per_output_weighted_metrics[i], i - ) - ) - - # Create a metric wrapper for each output loss. This computes mean of an - # output loss across mini-batches (irrespective of how we reduce within - # a batch). - if len(self._training_endpoints) > 1: - for endpoint in self._training_endpoints: - if not endpoint.should_skip_target(): - endpoint.output_loss_metric = metrics_module.Mean( - name=endpoint.loss_name() - ) - - self._per_output_metrics = updated_per_output_metrics - self._per_output_weighted_metrics = updated_per_output_weighted_metrics - - def _handle_per_output_metrics( - self, metrics_dict, y_true, y_pred, mask, weights=None - ): - """Calls metric functions for a single output. - - Args: - metrics_dict: A dict with metric names as keys and metric fns as - values. - y_true: Target output. - y_pred: Predicted output. - mask: Computed mask value for the current output. - weights: Weights to be applied on the current output. - - Returns: - A list of metric result tensors. - """ - metric_results = [] - for metric_name, metric_fn in metrics_dict.items(): - with backend.name_scope(metric_name): - metric_result = training_utils_v1.call_metric_function( - metric_fn, y_true, y_pred, weights=weights, mask=mask - ) - metric_results.append(metric_result) - return metric_results - - def _handle_metrics( - self, - outputs, - targets=None, - skip_target_masks=None, - sample_weights=None, - masks=None, - return_weighted_metrics=False, - return_weighted_and_unweighted_metrics=False, - ): - """Handles calling metric functions. - - Args: - outputs: List of outputs (predictions). - targets: List of targets. - skip_target_masks: Optional. List of boolean for whether the - corresponding target should be ignored or not. - sample_weights: Optional list of sample weight arrays. - masks: List of computed output mask values. - return_weighted_metrics: Flag that indicates whether weighted metrics - should be computed instead of unweighted metrics. This flag is - ignored when `return_weighted_and_unweighted_metrics` is enabled. - return_weighted_and_unweighted_metrics: Flag that is used to indicate - whether both weighted and unweighted metrics should be computed. - When this is not enabled, we use `return_weighted_metrics` param to - indicate whether weighted or unweighted metrics should be returned. - - Returns: - A list of metric result tensors. - """ - # TODO(scottzhu): Update this to use the new training_endpoints. - # Currently the eager and graph logic is bit different. - skip_target_masks = skip_target_masks or [False] * len(outputs) - metric_results = [] - with backend.name_scope("metrics"): - # Invoke all metrics added using `compile`. - for i in range(len(outputs)): - if skip_target_masks[i]: - continue - output = outputs[i] if outputs else None - target = targets[i] if targets else None - output_mask = masks[i] if masks else None - - if ( - return_weighted_and_unweighted_metrics - or not return_weighted_metrics - ): - metric_results.extend( - self._handle_per_output_metrics( - self._per_output_metrics[i], - target, - output, - output_mask, - ) - ) - if ( - return_weighted_and_unweighted_metrics - or return_weighted_metrics - ): - metric_results.extend( - self._handle_per_output_metrics( - self._per_output_weighted_metrics[i], - target, - output, - output_mask, - weights=sample_weights[i] - if sample_weights - else None, - ) - ) - return metric_results - - def _check_trainable_weights_consistency(self): - """Check trainable weights count consistency. - - This will raise a warning if `trainable_weights` and - `_collected_trainable_weights` are inconsistent (i.e. have different - number of parameters). - Inconsistency will typically arise when one modifies `model.trainable` - without calling `model.compile` again. - """ - if not hasattr(self, "_collected_trainable_weights"): - return - - if len(self.trainable_weights) != len( - self._collected_trainable_weights - ): - logging.log_first_n( - logging.WARN, - "Discrepancy between trainable weights and collected" - " trainable weights, did you set `model.trainable`" - " without calling `model.compile` after ?", - 1, - ) - - def _make_train_function(self): - has_recompiled = self._recompile_weights_loss_and_weighted_metrics() - self._check_trainable_weights_consistency() - if isinstance(self.optimizer, list): - raise ValueError( - "The `optimizer` in `compile` should be a single optimizer." - ) - # If we have re-compiled the loss/weighted metric sub-graphs then create - # train function even if one exists already. This is because - # `_feed_sample_weights` list has been updated on re-compile. - if getattr(self, "train_function", None) is None or has_recompiled: - # Restore the compiled trainable state. - current_trainable_state = self._get_trainable_state() - self._set_trainable_state(self._compiled_trainable_state) - - inputs = ( - self._feed_inputs - + self._feed_targets - + self._feed_sample_weights - ) - if not isinstance(backend.symbolic_learning_phase(), int): - inputs += [backend.symbolic_learning_phase()] - - with backend.get_graph().as_default(): - with backend.name_scope("training"): - # Training updates - updates = self.optimizer.get_updates( - params=self._collected_trainable_weights, - loss=self.total_loss, - ) - # Unconditional updates - updates += self.get_updates_for(None) - # Conditional updates relevant to this model - updates += self.get_updates_for(self.inputs) - - metrics = self._get_training_eval_metrics() - metrics_tensors = [ - m._call_result - for m in metrics - if hasattr(m, "_call_result") - ] - - with backend.name_scope("training"): - # Gets loss and metrics. Updates weights at each call. - fn = backend.function( - inputs, - [self.total_loss] + metrics_tensors, - updates=updates, - name="train_function", - **self._function_kwargs, - ) - setattr(self, "train_function", fn) - - # Restore the current trainable state - self._set_trainable_state(current_trainable_state) - - def _make_test_function(self): - has_recompiled = self._recompile_weights_loss_and_weighted_metrics() - # If we have re-compiled the loss/weighted metric sub-graphs then create - # test function even if one exists already. This is because - # `_feed_sample_weights` list has been updated on re-compile. - if getattr(self, "test_function", None) is None or has_recompiled: - inputs = ( - self._feed_inputs - + self._feed_targets - + self._feed_sample_weights - ) - - with backend.get_graph().as_default(): - metrics = self._get_training_eval_metrics() - metrics_tensors = [ - m._call_result - for m in metrics - if hasattr(m, "_call_result") - ] - - with backend.name_scope("evaluation"): - updates = self.state_updates - # Return loss and metrics, no gradient updates. - # Does update the network states. - fn = backend.function( - inputs, - [self.total_loss] + metrics_tensors, - updates=updates, - name="test_function", - **self._function_kwargs, - ) - setattr(self, "test_function", fn) - - def _make_predict_function(self): - if not hasattr(self, "predict_function"): - self.predict_function = None - if self.predict_function is None: - inputs = self._feed_inputs - # Gets network outputs. Does not update weights. - # Does update the network states. - kwargs = getattr(self, "_function_kwargs", {}) - with backend.name_scope(ModeKeys.PREDICT): - self.predict_function = backend.function( - inputs, - self.outputs, - updates=self.state_updates, - name="predict_function", - **kwargs, - ) - - def _make_execution_function(self, mode): - if mode == ModeKeys.TRAIN: - self._make_train_function() - return self.train_function - if mode == ModeKeys.TEST: - self._make_test_function() - return self.test_function - if mode == ModeKeys.PREDICT: - self._make_predict_function() - return self.predict_function - - def _distribution_standardize_user_data( - self, - x, - y=None, - sample_weight=None, - class_weight=None, - batch_size=None, - validation_split=0.0, - shuffle=False, - epochs=1, - allow_partial_batch=False, - ): - """Runs validation checks on input and target data passed by the user. - - This is called when using tf.distribute.Strategy to train, evaluate or - serve the model. - - Args: - x: Input data. A numpy array or `tf.data` dataset. - y: Target data. A numpy array or None if x is a `tf.data` dataset. - sample_weight: An optional sample-weight array passed by the user to - weight the importance of each sample in `x`. - class_weight: An optional class-weight array by the user to - weight the importance of samples in `x` based on the class they - belong to, as conveyed by `y`. - batch_size: Integer batch size. If provided, it is used to run - additional validation checks on stateful models. - validation_split: Float between 0 and 1. - Fraction of the training data to be used as validation data. - shuffle: Boolean whether to shuffle the training data before each - epoch. - epochs: Integer epochs. If > 1, repeat the numpy training data epochs - times when converting to training dataset. - allow_partial_batch: Boolean whether to enforce that all batches have - the same size. - - Returns: - Dataset instance. - - Raises: - ValueError: In case of invalid user-provided data. - RuntimeError: If the model was never compiled. - """ - if class_weight: - raise NotImplementedError( - "`class_weight` is currently not supported " - "when using tf.distribute.Strategy." - ) - - if ( - sample_weight is not None - and sample_weight.all() - and backend.is_tpu_strategy(self._distribution_strategy) - ): - raise NotImplementedError( - "`sample_weight` is currently not supported " - "when using TPUStrategy." - ) - - # Validates `steps` and `shuffle` arguments right at the beginning - # since we use it to construct the dataset object. - # TODO(anjalisridhar): Remove this check once we refactor the - # _standardize_user_data code path. This check is already present - # elsewhere in the codebase. - if isinstance(x, tf.data.Dataset): - if shuffle: - training_utils_v1.verify_dataset_shuffled(x) - - strategy = self._distribution_strategy - with strategy.scope(): - # We should be sure to call get_session() inside the - # strategy.scope() so the strategy can affect the session options. - if tf.compat.v1.executing_eagerly_outside_functions(): - session = None - else: - session = backend.get_session() - - first_x_value = tf.nest.flatten(x)[0] - if isinstance(first_x_value, np.ndarray): - x = training_utils.list_to_tuple(x) - if y is not None: - y = training_utils.list_to_tuple(y) - if sample_weight is not None: - sample_weight = training_utils.list_to_tuple( - sample_weight - ) - in_tuple = (x, y, sample_weight) - else: - in_tuple = (x, y) - else: - in_tuple = x - - ds = strategy.extended.experimental_make_numpy_dataset( - in_tuple, session=session - ) - if shuffle: - # We want a buffer size that is larger than the batch size - # provided by the user and provides sufficient randomness. - # Note that larger numbers introduce more memory usage based - # on the size of each sample. - ds = ds.shuffle(max(1024, batch_size * 8)) - if epochs > 1: - ds = ds.repeat(epochs) - - # We need to use the drop_remainder argument to get a known - # static input shape which is required for TPUs. - drop_remainder = ( - not allow_partial_batch - and strategy.extended.experimental_require_static_shapes - ) - - # TODO(b/131720208): We still drop remainder here if number of - # examples is divisible by batch size, as sometimes dynamic - # padder will time out with keras.metrics.CategoricalAccuracy() - # metric. - if backend.is_tpu_strategy(strategy) and not drop_remainder: - dataset_size = first_x_value.shape[0] - if dataset_size % batch_size == 0: - drop_remainder = True - - x = ds.batch(batch_size, drop_remainder=drop_remainder) - else: - assert isinstance(x, tf.data.Dataset) - training_utils_v1.validate_dataset_input( - x, y, sample_weight, validation_split - ) - return x - - def _standardize_user_data( - self, - x, - y=None, - sample_weight=None, - class_weight=None, - batch_size=None, - check_steps=False, - steps_name="steps", - steps=None, - validation_split=0.0, - shuffle=False, - extract_tensors_from_dataset=False, - ): - """Runs validation checks on input and target data passed by the user. - - Also standardizes the data to lists of arrays, in order. - - Also builds and compiles the model on the fly if it is a subclassed - model that has never been called before (and thus has no - inputs/outputs). - - This is a purely internal method, subject to refactoring at any time. - - Args: - x: Input data. It could be: - - A Numpy array (or array-like), or a list of arrays - (in case the model has multiple inputs). - - A TensorFlow tensor, or a list of tensors - (in case the model has multiple inputs). - - A dict mapping input names to the corresponding array/tensors, - if the model has named inputs. - - A `tf.data` dataset. - y: Target data. Like the input data `x`, - it could be either Numpy array(s) or TensorFlow tensor(s). - It should be consistent with `x` (you cannot have Numpy inputs and - tensor targets, or inversely). If `x` is a dataset, `y` should not - be specified (since targets will be obtained from the iterator). - sample_weight: An optional sample-weight array passed by the user to - weight the importance of each sample in `x`. - class_weight: An optional class-weight array by the user to - weight the importance of samples in `x` based on the class they - belong to, as conveyed by `y`. If both `sample_weight` and - `class_weight` are provided, the weights are multiplied. - batch_size: Integer batch size. If provided, it is used to run - additional validation checks on stateful models. - check_steps: boolean, True if we want to check for validity of `steps` - and False, otherwise. For example, when we are standardizing one - batch of data for train_on_batch/predict_on_batch/test_on_batch - APIs, `steps` value is not required and we should not check for its - validity in these cases. - steps_name: The public API's parameter name for `steps`. - steps: Integer or `None`. Total number of steps (batches of samples) - to execute. - validation_split: Float between 0 and 1. - Fraction of the training data to be used as validation data. - shuffle: Boolean whether to shuffle the training data before each - epoch. - extract_tensors_from_dataset: Boolean. When `x` is a dataset instance, - this indicates whether to extract actual tensors from the dataset or - instead output the dataset instance itself. - Set to True when calling from `train_on_batch`/etc. - - Returns: - A tuple of 3: inputs (arrays or dicts, depending on whether `x` was a - dict or not), target arrays, sample-weight arrays. If the model's - input and targets are symbolic, these lists are empty (since the model - takes no user-provided data, instead the data comes from the symbolic - inputs/targets). - - Raises: - ValueError: In case of invalid user-provided data. - RuntimeError: If the model was never compiled. - """ - if isinstance(x, (tf.compat.v1.data.Dataset, tf.data.Dataset)): - # Graph mode dataset. We'll pass the dataset as-is (unless - # `extract_tensors_from_dataset` is True, in which case we extract - # the tensors from the dataset and we output them. - training_utils_v1.validate_dataset_input( - x, y, sample_weight, validation_split - ) - if shuffle: - training_utils_v1.verify_dataset_shuffled(x) - - is_dataset = True - if extract_tensors_from_dataset: - # We do this for `train_on_batch`/etc. - ( - x, - y, - sample_weight, - ) = training_utils_v1.extract_tensors_from_dataset(x) - elif isinstance(x, tf.compat.v1.data.Iterator): - # Graph mode iterator. We extract the symbolic tensors. - training_utils_v1.validate_dataset_input( - x, y, sample_weight, validation_split - ) - iterator = x - x, y, sample_weight = training_utils_v1.unpack_iterator_input( - iterator - ) - is_dataset = True - else: - is_dataset = False - - # Validates `steps` argument based on x's type. - if check_steps: - training_utils_v1.check_steps_argument(x, steps, steps_name) - - # First, we build the model on the fly if necessary. - if not self.inputs: - all_inputs, y_input, dict_inputs = self._build_model_with_inputs( - x, y - ) - is_build_called = True - else: - all_inputs = [] - # Whether this is a subclassed model that expects dictionary inputs - # rather than list inputs (e.g. FeatureColumn-based models). - dict_inputs = isinstance(self.inputs, dict) - is_build_called = False - y_input = y - - # Second, we compile the model on the fly if necessary, mostly for - # subclass models. - is_compile_called = False - if not self._is_compiled and self.optimizer: - self._compile_from_inputs(all_inputs, y_input, x, y) - is_compile_called = True - - # In graph mode, if we had just set inputs and targets as symbolic - # tensors by invoking build and compile on the model respectively, we do - # not have to feed anything to the model. Model already has input and - # target data as part of the graph. Note: in this case, `any` and `all` - # are equivalent since we disallow mixed symbolic/value inputs. - - # self.run_eagerly is not free to compute, so we want to reuse the - # value. - run_eagerly = self.run_eagerly - - if ( - not run_eagerly - and is_build_called - and is_compile_called - and not is_dataset - and any(_is_symbolic_tensor(v) for v in all_inputs) - ): - return [], [], None - - return self._standardize_tensors( - x, - y, - sample_weight, - run_eagerly=run_eagerly, - dict_inputs=dict_inputs, - is_dataset=is_dataset, - class_weight=class_weight, - batch_size=batch_size, - ) - - def _standardize_tensors( - self, - x, - y, - sample_weight, - run_eagerly, - dict_inputs, - is_dataset, - class_weight=None, - batch_size=None, - ): - if run_eagerly: - # In eager mode, do not do shape validation - # since the network has no input nodes (placeholders) to be fed. - feed_input_names = self.input_names - feed_input_shapes = None - elif not self._is_graph_network: - # Case: symbolic-mode subclassed network. Do not do shape - # validation. - feed_input_names = self._feed_input_names - feed_input_shapes = None - else: - # Case: symbolic-mode graph network. - # In this case, we run extensive shape validation checks. - feed_input_names = self._feed_input_names - feed_input_shapes = self._feed_input_shapes - - # Standardize the inputs. - if not isinstance(x, (tf.compat.v1.data.Dataset, tf.data.Dataset)): - # TODO(fchollet): run static checks with dataset output shape(s). - x = training_utils_v1.standardize_input_data( - x, - feed_input_names, - feed_input_shapes, - check_batch_axis=False, # Don't enforce the batch size. - exception_prefix="input", - ) - - # Get typespecs for the input data and sanitize it if necessary. - # TODO(momernick): This should be capable of doing full input validation - # at all times - validate that this is so and refactor the - # standardization code. - if isinstance(x, tf.data.Dataset): - x_shapes = tf.data.experimental.get_structure(x) - if isinstance(x_shapes, tuple): - # If the output of a Dataset is a tuple, we assume it's either - # of the form (x_data, y_data) or (x_data, y_data, - # sample_weights). In either case, we only care about x_data - # here. - x_shapes = x_shapes[0] - else: - flat_inputs = tf.nest.flatten(x) - flat_expected_inputs = tf.nest.flatten(self.inputs) - converted_x = [] - for a, b in zip(flat_inputs, flat_expected_inputs): - converted_x.append(_convert_scipy_sparse_tensor(a, b)) - x = tf.nest.pack_sequence_as(x, converted_x) - - # Convert ResourceVariables to tensors so nest.assert_same_structure - # below won't fail with Variable and Tensor. - x_tensors = tf_utils.convert_variables_to_tensors(x) - x_shapes = tf.nest.map_structure( - tf_utils.type_spec_from_value, x_tensors - ) - - flat_inputs = tf.nest.flatten(x_shapes) - # Convert ResourceVariables to tensors so nest.assert_same_structure - # below won't fail with Variable and Tensor. - flat_expected_inputs = tf.nest.flatten( - tf_utils.convert_variables_to_tensors(self.inputs) - ) - for a, b in zip(flat_inputs, flat_expected_inputs): - tf.nest.assert_same_structure(a, b, expand_composites=True) - - if y is not None: - # Prepare self._sample_weight_modes. List with the same length as - # model outputs. - training_utils_v1.prepare_sample_weight_modes( - self._training_endpoints, self.sample_weight_mode - ) - feed_output_names = self._feed_output_names - feed_sample_weight_modes = self._sample_weight_modes - if not self._is_graph_network: - feed_output_shapes = None - else: - feed_output_shapes = self._feed_output_shapes - - # Standardize the outputs. - y = training_utils_v1.standardize_input_data( - y, - feed_output_names, - # Don't enforce target shapes to match output shapes. - # Precise checks will be run in - # `check_loss_and_target_compatibility`. - shapes=None, - check_batch_axis=False, # Don't enforce the batch size. - exception_prefix="target", - ) - - # Generate sample-wise weight values given the `sample_weight` and - # `class_weight` arguments. - sample_weights = training_utils_v1.standardize_sample_weights( - sample_weight, feed_output_names - ) - class_weights = training_utils_v1.standardize_class_weights( - class_weight, feed_output_names - ) - - sample_weights = [ - training_utils_v1.standardize_weights(ref, sw, cw, mode) - for (ref, sw, cw, mode) in zip( - y, sample_weights, class_weights, feed_sample_weight_modes - ) - ] - # Check that all arrays have the same length. - if not self._distribution_strategy: - training_utils_v1.check_array_lengths(x, y, sample_weights) - if self._is_graph_network and not run_eagerly: - # Additional checks to avoid users mistakenly using improper - # loss fns. - training_utils_v1.check_loss_and_target_compatibility( - y, self._feed_loss_fns, feed_output_shapes - ) - - sample_weights, _, _ = training_utils.handle_partial_sample_weights( - y, sample_weights, feed_sample_weight_modes, check_all_flat=True - ) - else: - y = [] - sample_weights = None - - if self.stateful and batch_size and not is_dataset: - # Check that for stateful networks, number of samples is a multiple - # of the static batch size. - if x[0].shape[0] % batch_size != 0: - raise ValueError( - "In a stateful network, " - "you should only pass inputs with " - "a number of samples that can be " - "divided by the batch size. Found: " - + str(x[0].shape[0]) - + " samples" - ) - - # If dictionary inputs were provided, we return a dictionary as well. - if dict_inputs and not isinstance( - x, (tf.compat.v1.data.Dataset, tf.data.Dataset) - ): - x = dict(zip(feed_input_names, x)) - return x, y, sample_weights - - def _build_model_with_inputs(self, inputs, targets): - """Build the model (set model inputs/outputs), mainly for subclass - model.""" - processed_inputs = [] - is_dict_inputs = False - orig_inputs = inputs - # We need to use `inputs` to set the model inputs. - # If input data is a dataset iterator in graph mode or if it is an eager - # iterator and only one batch of samples is required, we fetch the data - # tensors from the iterator and then standardize them. - if isinstance(inputs, (tf.compat.v1.data.Dataset, tf.data.Dataset)): - inputs, targets, _ = training_utils_v1.extract_tensors_from_dataset( - inputs - ) - # We type-check that `inputs` and `targets` are either single arrays - # or lists of arrays, and extract a flat list of inputs from the passed - # structure. - training_utils_v1.validate_input_types(inputs, orig_inputs) - - if isinstance(inputs, (list, tuple)): - processed_inputs += list(inputs) - elif isinstance(inputs, dict): - is_dict_inputs = True - keys = sorted(inputs.keys()) - processed_inputs = [inputs[k] for k in keys] - else: - processed_inputs.append(inputs) - # Now that we have a flat set of inputs, we make sure that none of them - # are CompositeTensors or CompositeTensorValues of any type (or scipy - # sparse arrays, which we treat as SparseTensor values). We cannot - # safely infer input data from an arbitrary composite tensor, so we - # don't try - users should explicitly add composite tensor inputs to - # their subclassed models. - for input_tensor in processed_inputs: - if training_utils_v1.is_composite_or_composite_value( - input_tensor - ) and not isinstance(input_tensor, tf.Variable): - # TODO(b/132691975): Document subclass-model CT input handling. - raise ValueError( - "All SparseTensor and RaggedTensor inputs must be " - "explicitly declared using a keras.Input() with " - "sparse=True or ragged=True. We found an undeclared " - "input %s. For Sequential models, please add a " - "keras.Input() as your first Layer. For subclassed models, " - "please call self._set_inputs() on your input set, which " - "you can create using keras.Input() for each input to your " - "model." % (input_tensor,) - ) - # Build the model using the retrieved inputs (value or symbolic). - # If values are generated from a dataset, then in symbolic-mode - # placeholders will be created to match the value shapes. - if isinstance( - orig_inputs, - ( - tf.compat.v1.data.Dataset, - tf.data.Dataset, - tf.compat.v1.data.Iterator, - ), - ): - if not self.inputs: - # For subclassed models, a robust input spec is not available so - # we must cast to the model dtype. - inputs = training_utils_v1.cast_if_floating_dtype( - inputs, self.dtype - ) - - def create_tensor_spec(t): - return tf.TensorSpec(t.shape, t.dtype) - - cast_inputs = tf.nest.map_structure(create_tensor_spec, inputs) - elif training_utils_v1.has_tensors(inputs): - cast_inputs = training_utils_v1.cast_if_floating_dtype(inputs) - else: - cast_inputs = inputs - self._set_inputs(cast_inputs) - return processed_inputs, targets, is_dict_inputs - - def _compile_from_inputs( - self, all_inputs, target, orig_inputs, orig_target - ): - if target is not None: - # We need to use `y` to set the model targets. - if training_utils_v1.has_tensors(target): - target = training_utils_v1.cast_if_floating_dtype_and_mismatch( - target, self.outputs - ) - training_utils_v1.validate_input_types( - target, orig_target, allow_dict=False, field_name="target" - ) - if isinstance(target, (list, tuple)): - all_inputs += list(target) - else: - all_inputs.append(target) - # Type check that all inputs are *either* value *or* symbolic. - # TODO(fchollet): this check could be removed in Eager mode? - if any(tf.is_tensor(v) for v in all_inputs): - if not all(tf.is_tensor(v) for v in all_inputs): - raise ValueError( - "Do not pass inputs that mix Numpy arrays and " - "TensorFlow tensors. " - "You passed: x=" - + str(orig_inputs) - + "; y=" - + str(orig_target) - ) - is_dataset = isinstance( - orig_inputs, - ( - tf.compat.v1.data.Dataset, - tf.data.Dataset, - tf.compat.v1.data.Iterator, - ), - ) - if is_dataset or tf.executing_eagerly(): - target_tensors = None - else: - # Handle target tensors if any passed. - if target is not None: - if not isinstance(target, (list, tuple)): - target = [target] - target_tensors = [v for v in target if _is_symbolic_tensor(v)] - else: - target_tensors = None - - self.compile( - optimizer=self.optimizer, - loss=self.loss, - metrics=self._compile_metrics, - weighted_metrics=self._compile_weighted_metrics, - loss_weights=self.loss_weights, - target_tensors=target_tensors, - sample_weight_mode=self.sample_weight_mode, - run_eagerly=self.run_eagerly, - experimental_run_tf_function=self._experimental_run_tf_function, - ) - - # TODO(omalleyt): Consider changing to a more descriptive function name. - def _set_inputs(self, inputs, outputs=None, training=None): - """Set model's input and output specs based on the input data received. - - This is to be used for Model subclasses, which do not know at - instantiation time what their inputs look like. - - Args: - inputs: Single array, or list of arrays. The arrays could be - placeholders, Numpy arrays, data tensors, or TensorSpecs. - - if placeholders: the model is built on top of these placeholders, - and we expect Numpy data to be fed for them when calling - `fit`/etc. - - if Numpy data or TensorShapes: we create placeholders matching the - TensorShapes or shapes of the Numpy arrays. We expect Numpy data - to be fed for these placeholders when calling `fit`/etc. - - if data tensors: the model is built on top of these tensors. - We do not expect any Numpy data to be provided when calling - `fit`/etc. - outputs: None, a data tensor, or a list of tensors. If None, the - outputs will be determined by invoking `self.call()`, otherwise the - provided value will be used. - training: Boolean or None. Only relevant in symbolic mode. Specifies - whether to build the model's graph in inference mode (False), - training mode (True), or using the Keras learning phase (None). - Raises: - ValueError: If dict inputs are passed to a Sequential Model where the - first layer isn't FeatureLayer. - """ - self._set_save_spec(inputs) - inputs = self._set_input_attrs(inputs) - - if outputs is None: - kwargs = {} - if self._expects_training_arg: - # In V2 mode, feeding `training=None` is not allowed because any - # value explicitly passed by the user is respected, even - # `None`.` - if ( - training is None - and not tf.compat.v1.executing_eagerly_outside_functions() - ): - training = backend.learning_phase() - if training is not None: - kwargs["training"] = training - try: - outputs = self(inputs, **kwargs) - except NotImplementedError: - # This Model or a submodel is dynamic and hasn't overridden - # `compute_output_shape`. - outputs = None - - self._set_output_attrs(outputs) - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _set_input_attrs(self, inputs): - """Sets attributes related to the inputs of the Model.""" - if self.inputs: - raise ValueError("Model inputs are already set.") - - if self.__class__.__name__ == "Sequential" and not self.built: - if tf.is_tensor(inputs): - input_shape = (None,) + tuple(inputs.shape.as_list()[1:]) - elif isinstance(inputs, tf.TensorShape): - input_shape = (None,) + tuple(inputs.as_list()[1:]) - elif isinstance(inputs, dict): - # We assert that the first layer is a FeatureLayer. - if not training_utils_v1.is_feature_layer(self.layers[0]): - raise ValueError( - "Passing a dictionary input to a Sequential Model " - "which doesn't have FeatureLayer as the first layer" - " is an error." - ) - input_shape = (None,) - else: - input_shape = (None,) + tuple(inputs.shape[1:]) - self._build_input_shape = input_shape - - # Cast inputs to the compute dtype. This is primarily used - # when saving to determine the correct dtype in the input signature. - inputs = self._maybe_cast_inputs(inputs) - - # On-the-fly setting of symbolic model inputs (either by using the - # tensor provided, or by creating a placeholder if Numpy data was - # provided). - model_inputs = training_utils_v1.ModelInputs(inputs) - inputs = model_inputs.get_symbolic_inputs() - self.inputs = model_inputs.get_symbolic_inputs( - return_single_as_list=True - ) - self.input_names = model_inputs.get_input_names() - - self._feed_inputs = [] - self._feed_input_names = [] - self._feed_input_shapes = [] - - for k, v in model_inputs.as_dict(): - if backend.is_placeholder(v): - self._feed_input_names.append(k) - self._feed_inputs.append(v) - self._feed_input_shapes.append(backend.int_shape(v)) - - return inputs - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _set_output_attrs(self, outputs): - """Sets attributes related to the outputs of the Model.""" - # NOTE(taylorrobie): This convention cannot be changed without updating - # the data adapter since it assumes nest.flatten ordering. - outputs = tf.nest.flatten(outputs) - self.outputs = outputs - self.output_names = training_utils_v1.generic_output_names(outputs) - # TODO(scottzhu): Should we cleanup the self._training_endpoints here? - self.built = True - - @property - def _targets(self): - """The output target tensors for the model.""" - return [ - e.training_target.target - for e in self._training_endpoints - if e.has_training_target() - ] - - @property - def _feed_targets(self): - return [ - e.training_target.target - for e in self._training_endpoints - if e.has_feedable_training_target() - ] - - @property - def _feed_output_names(self): - return [ - e.output_name - for e in self._training_endpoints - if e.has_feedable_training_target() - ] - - @property - def _feed_output_shapes(self): - return [ - e.feed_output_shape - for e in self._training_endpoints - if e.has_feedable_training_target() - ] - - @property - def _feed_loss_fns(self): - return [ - e.loss_fn - for e in self._training_endpoints - if e.has_feedable_training_target() - ] - - @property - def _loss_weights_list(self): - return [e.loss_weight for e in self._training_endpoints] - - @property - def _output_loss_metrics(self): - if hasattr(self, "_training_endpoints"): - return [ - e.output_loss_metric - for e in self._training_endpoints - if e.output_loss_metric is not None - ] - return None - - @property - def sample_weights(self): - return [e.sample_weight for e in self._training_endpoints] - - @property - def _sample_weight_modes(self): - return [e.sample_weight_mode for e in self._training_endpoints] - - @property - def _feed_sample_weights(self): - return [ - e.sample_weight - for e in self._training_endpoints - if e.sample_weight is not None - ] - - def _maybe_load_initial_epoch_from_ckpt(self, initial_epoch, mode): - """Maybe load 1st epoch from checkpoint, considering worker recovery. - - Refer to tensorflow/python/keras/distribute/worker_training_state.py - for more information. - - Args: - initial_epoch: The original initial_epoch user passes in in `fit()`. - mode: The mode for running `model.fit()`. - - Returns: - If the training is recovering from previous failure under multi-worker - training setting, return the epoch the training is supposed to - continue at. Otherwise, return the `initial_epoch` the user passes in. - """ - if self._training_state is not None: - return self._training_state.maybe_load_initial_epoch_from_ckpt( - initial_epoch, mode - ) - return initial_epoch - - def _get_training_eval_metrics(self): - """Returns all the metrics that are to be reported. - - This includes the output loss metrics, compile metrics/weighted metrics, - add_metric metrics. - """ - metrics = [] - metrics.extend(getattr(self, "_output_loss_metrics", None) or []) - metrics.extend(getattr(self, "metrics", None) or []) - return metrics - - def _assert_compile_was_called(self): - # Checks whether `compile` has been called. If it has been called, - # then the optimizer is set. This is different from whether the - # model is compiled - # (i.e. whether the model is built and its inputs/outputs are set). - if not self._compile_was_called: - raise RuntimeError( - "You must compile your model before " - "training/testing. " - "Use `model.compile(optimizer, loss)`." - ) - - def _in_multi_worker_mode(self): - """Method to infer if this `Model` is working in multi-worker settings. - - Multi-worker training refers to the setup where the training is - distributed across multiple workers, as opposed to the case where - only a local process performs the training. This function is - used to infer for example whether or not a distribute coordinator - should be run, and thus TensorFlow servers should be started for - communication with other servers in the cluster, or whether or not - saving/restoring checkpoints is relevant for preemption fault tolerance. - - Experimental. Signature and implementation are subject to change. - - Returns: - Whether this model indicates it's working in multi-worker settings. - """ - strategy = self._distribution_strategy - - # Otherwise, use the strategy whose scope this is in. - if not strategy and tf.distribute.has_strategy(): - strategy = tf.distribute.get_strategy() - return strategy and strategy.extended._in_multi_worker_mode() - - @property - def _trackable_saved_model_saver(self): - return model_serialization.ModelSavedModelSaver(self) - - def _get_compile_args(self, user_metrics=True): - del user_metrics - self._assert_compile_was_called() - kwargs = { - "loss": self.loss, - "metrics": self._compile_metrics, - "loss_weights": self.loss_weights, - "sample_weight_mode": self.sample_weight_mode, - "weighted_metrics": self._compile_weighted_metrics, - } - return kwargs - - @property - def _compile_was_called(self): - return self._v1_compile_was_called - - -class DistributedCallbackModel(Model): - """Model that is used for callbacks with tf.distribute.Strategy.""" - - def __init__(self, model): - super().__init__() - self.optimizer = model.optimizer - - def set_original_model(self, orig_model): - self._original_model = orig_model - - def save_weights(self, filepath, overwrite=True, save_format=None): - self._replicated_model.save_weights( - filepath, overwrite=overwrite, save_format=save_format - ) - - def save(self, filepath, overwrite=True, include_optimizer=True): - # save weights from the distributed model to the original model - distributed_model_weights = self.get_weights() - self._original_model.set_weights(distributed_model_weights) - # TODO(anjalisridhar): Do we need to save the original model here? - # Saving the first replicated model works as well. - self._original_model.save( - filepath, overwrite=True, include_optimizer=False - ) - - def load_weights(self, filepath, by_name=False): - self._original_model.load_weights(filepath, by_name=False) - # Copy the weights from the original model to each of the replicated - # models. - orig_model_weights = self._original_model.get_weights() - distributed_training_utils_v1.set_weights( - self._original_model._distribution_strategy, - self, - orig_model_weights, - ) - - def __getattr__(self, item): - # Allowed attributes of the model that can be accessed by the user - # during a callback. - if item not in ("_setattr_tracking", "_layers"): - logging.warning( - "You are accessing attribute " + item + " of the " - "DistributedCallbackModel that may not have been set " - "correctly." - ) - return super().__getattr__(item) - - -class _TrainingEndpoint: - """A container for the training output/target and related entities. - - In the case of model with multiple outputs, there is a one-to-one mapping - between model output (y_pred), model target (y_true), loss, metrics etc. - By unifying these entities into one class, different entity can access - information between each other, rather than currently access different list - of attributes of the model. - """ - - def __init__( - self, - output, - output_name, - loss_fn, - loss_weight=None, - training_target=None, - output_loss_metric=None, - sample_weight=None, - sample_weight_mode=None, - ): - """Initialize the _TrainingEndpoint. - - Note that the output and output_name should be stable as long as the - model structure doesn't change. The training_target suppose to be - mutable since the information is provided via `compile()` - - Args: - output: the output tensor of the model. - output_name: the unique name of the output tensor. - loss_fn: the loss function for the output tensor. - loss_weight: float, the weights for the loss. - training_target: the _TrainingTarget for the model. - output_loss_metric: the metric object for the loss function. - sample_weight: the weights for how a sample is weighted during metric - and loss calculation. Could be None. - sample_weight_mode: string, 'temporal', 'samplewise' or None. The mode - for how the sample_weight is populated. - """ - self._output = output - self._output_name = output_name - self._loss_fn = loss_fn - self._loss_weight = loss_weight - self._training_target = training_target - self._output_loss_metric = output_loss_metric - self._sample_weight = sample_weight - self._sample_weight_mode = sample_weight_mode - - @property - def output(self): - return self._output - - @property - def output_name(self): - return self._output_name - - @property - def shape(self): - return backend.int_shape(self.output) - - @property - def loss_fn(self): - return self._loss_fn - - @property - def loss_weight(self): - return self._loss_weight - - @loss_weight.setter - def loss_weight(self, value): - self._loss_weight = value - - @property - def training_target(self): - return self._training_target - - @training_target.setter - def training_target(self, value): - self._training_target = value - - def create_training_target(self, target, run_eagerly=False): - """Create training_target instance and update the self.training_target. - - Note that the input target should just be a tensor or None, and - corresponding training target will be created based on the output and - loss_fn. - - Args: - target: the target tensor for the current output. Could be None. - run_eagerly: boolean, whether the model is in run_eagerly mode. - - Raises: - ValueError if the training_target field for the current instance has - already been populated. - """ - if self.has_training_target(): - raise ValueError( - "The training_target field for the _TrainingEndpoint " - "instance has already been populated" - ) - if run_eagerly: - # When run_eagerly, the target tensor is ignored, and the None - # placeholder is created instead. - self.training_target = _TrainingTarget( - None, feedable=True, skip_target_weights=False - ) - return - - if self.should_skip_target(): - self.training_target = _TrainingTarget(None) - else: - if target is not None and not backend.is_placeholder(target): - feedable = False - skip_target_weights = True - else: - feedable = True - skip_target_weights = False - - if target is None: - target_dtype = losses.LABEL_DTYPES_FOR_LOSSES.get( - self.loss_fn, backend.dtype(self.output) - ) - - target = backend.placeholder( - ndim=len(self.shape), - name=self.output_name + "_target", - sparse=backend.is_sparse(self.output), - dtype=target_dtype, - ) - - self.training_target = _TrainingTarget( - target, - feedable=feedable, - skip_target_weights=skip_target_weights, - ) - - @property - def output_loss_metric(self): - return self._output_loss_metric - - @output_loss_metric.setter - def output_loss_metric(self, value): - self._output_loss_metric = value - - @property - def sample_weight(self): - return self._sample_weight - - @sample_weight.setter - def sample_weight(self, value): - self._sample_weight = value - - @property - def sample_weight_mode(self): - return self._sample_weight_mode - - @sample_weight_mode.setter - def sample_weight_mode(self, value): - self._sample_weight_mode = value - - def should_skip_target(self): - return self._loss_fn is None - - def should_skip_target_weights(self): - return ( - self.should_skip_target() - or self.training_target is None - or self.training_target.skip_target_weights - ) - - def has_training_target(self): - return self.training_target is not None - - def has_feedable_training_target(self): - return ( - not self.should_skip_target() - and self.training_target is not None - and self.training_target.feedable - ) - - def loss_name(self): - if self._loss_fn is not None: - return self._output_name + "_loss" - return None - - @property - def feed_output_shape(self): - """The output shape for the feedable target.""" - if not self.has_feedable_training_target(): - return None - - if ( - ( - isinstance(self.loss_fn, losses.LossFunctionWrapper) - and self.loss_fn.fn == losses.sparse_categorical_crossentropy - ) - ) or (isinstance(self.loss_fn, losses.SparseCategoricalCrossentropy)): - if backend.image_data_format() == "channels_first": - return (self.shape[0], 1) + self.shape[2:] - else: - return self.shape[:-1] + (1,) - elif not isinstance(self.loss_fn, losses.Loss) or ( - isinstance(self.loss_fn, losses.LossFunctionWrapper) - and (getattr(losses, self.loss_fn.fn.__name__, None) is None) - ): - # If the given loss is not an instance of the `Loss` class (custom - # class) or if the loss function that is wrapped is not in the - # `losses` module, then it is a user-defined loss and we make no - # assumptions about it. - return None - else: - return self.shape - - def sample_weights_mismatch(self): - """Check if the sample weight and the mode match or not.""" - # If there is a mismatch between sample weight mode and the placeholders - # created, then recompile the sub-graphs that depend on sample weights. - return ( - self.sample_weight_mode is not None and self.sample_weight is None - ) or ( - self.sample_weight_mode is None and self.sample_weight is not None - ) - - def populate_sample_weight(self, sample_weight, sample_weight_mode): - """Populate the sample weight and based on the sample weight mode.""" - if sample_weight is None and ( - self.should_skip_target_weights() - or sample_weight_mode is None - or tf.executing_eagerly() - ): - self._sample_weight = None - return - - assert sample_weight_mode in ["temporal", "samplewise"] - if sample_weight_mode == "temporal": - default_value = [[1.0]] - shape = [None, None] - else: - # sample_weight_mode == 'samplewise' - default_value = [1.0] - shape = [None] - - if sample_weight is not None: - if not sample_weight.shape.is_compatible_with(shape): - raise ValueError( - "Received sample weight with shape {}. Expected shape " - "{}.".format(sample_weight.shape, shape) - ) - self._sample_weight = sample_weight - else: - self._sample_weight = tf.compat.v1.placeholder_with_default( - tf.constant(default_value, dtype=backend.floatx()), - shape=shape, - name=self.output_name + "_sample_weights", - ) - - -class _TrainingTarget: - """Container for a target tensor (y_true) and its metadata (shape, loss...). - - Args: - target: A target tensor for the model. It may be `None` if the - output is excluded from loss computation. It is still kept as None - since each output of the model should have a corresponding target. If - the target is None, the rest of the attributes will be None as well. - feedable: Boolean, whether the target is feedable (requires data to be - passed in `fit` or `train_on_batch`), or not (model compiled with - `target_tensors` argument). - skip_target_weights: Boolean, whether the target should be skipped during - weights calculation. - """ - - def __init__(self, target, feedable=False, skip_target_weights=True): - self._target = target - self._feedable = feedable - self._skip_target_weights = skip_target_weights - - @property - def target(self): - return self._target - - @property - def feedable(self): - return self._feedable - - @property - def skip_target_weights(self): - return self._skip_target_weights - - -def _is_symbolic_tensor(x): - return tf.is_tensor(x) - - -def _convert_scipy_sparse_tensor(value, expected_input): - """Handle scipy sparse tensor conversions. - - This method takes a value 'value' and returns the proper conversion. If - value is a scipy sparse tensor and the expected input is a dense tensor, - we densify 'value'. If value is a scipy sparse tensor and the expected input - is a TF SparseTensor, we convert 'value' to a SparseTensor. If 'value' is - not a scipy sparse tensor, or scipy is not imported, we pass it through - unchanged. - - Args: - value: An object that may be a scipy sparse tensor - expected_input: The expected input placeholder. - - Returns: - The possibly-converted 'value'. - """ - if issparse is not None and issparse(value): - if backend.is_sparse(expected_input): - sparse_coo = value.tocoo() - row, col = sparse_coo.row, sparse_coo.col - data, shape = sparse_coo.data, sparse_coo.shape - indices = np.concatenate( - (np.expand_dims(row, 1), np.expand_dims(col, 1)), 1 - ) - return tf.SparseTensor(indices, data, shape) - else: - if tf.compat.v1.executing_eagerly_outside_functions(): - # In TF2 we do not silently densify sparse matrices. - raise ValueError( - "A SciPy sparse matrix was passed to a model " - "that expects dense inputs. Please densify your " - "inputs first, such as by calling `x.toarray()." - ) - return value.toarray() - else: - return value - - -def _get_metrics_from_layers(layers): - """Returns list of metrics from the given layers. - - This will not include the `compile` metrics of a model layer. - - Args: - layers: List of layers. - - Returns: - List of metrics. - """ - metrics = [] - layers = layer_utils.filter_empty_layer_containers(layers) - for layer in layers: - if isinstance(layer, Model): - # We cannot call 'metrics' on the model because we do not want to - # include the metrics that were added in compile API of a nested - # model. - metrics.extend(layer._metrics) - metrics.extend(_get_metrics_from_layers(layer.layers)) - else: - metrics.extend(layer.metrics) - return metrics - - -def _non_none_constant_value(v): - constant_value = tf.get_static_value(v) - return constant_value if constant_value is not None else v diff --git a/keras/estimator/BUILD b/keras/estimator/BUILD deleted file mode 100644 index 6d6ffd44168..00000000000 --- a/keras/estimator/BUILD +++ /dev/null @@ -1,20 +0,0 @@ -# Description: -# Contains Keras models to Estimator converter - -package( - default_visibility = [ - "//keras:friends", - ], - licenses = ["notice"], -) - -py_library( - name = "estimator", - srcs = [ - "__init__.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) diff --git a/keras/estimator/__init__.py b/keras/estimator/__init__.py deleted file mode 100644 index a48cb6df2aa..00000000000 --- a/keras/estimator/__init__.py +++ /dev/null @@ -1,389 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras estimator API.""" - -import tensorflow.compat.v2 as tf - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -# Keras has undeclared dependency on tensorflow/estimator:estimator_py. -# As long as you depend //third_party/py/tensorflow:tensorflow target -# everything will work as normal. - -_model_to_estimator_usage_gauge = tf.__internal__.monitoring.BoolGauge( - "/tensorflow/api/keras/model_to_estimator", - "Whether tf.keras.estimator.model_to_estimator() is called.", - "version", -) - - -# LINT.IfChange -@keras_export(v1=["keras.estimator.model_to_estimator"]) -def model_to_estimator( - keras_model=None, - keras_model_path=None, - custom_objects=None, - model_dir=None, - config=None, - checkpoint_format="saver", - metric_names_map=None, - export_outputs=None, -): - """Constructs an `Estimator` instance from given keras model. - - If you use infrastructure or other tooling that relies on Estimators, you - can still build a Keras model and use model_to_estimator to convert the - Keras model to an Estimator for use with downstream systems. - - For usage example, please see: - [Creating estimators from Keras Models]( - https://www.tensorflow.org/guide/estimator#create_an_estimator_from_a_keras_model). - - Sample Weights: - Estimators returned by `model_to_estimator` are configured so that they can - handle sample weights (similar to `keras_model.fit(x, y, sample_weights)`). - - To pass sample weights when training or evaluating the Estimator, the first - item returned by the input function should be a dictionary with keys - `features` and `sample_weights`. Example below: - - ```python - keras_model = tf.keras.Model(...) - keras_model.compile(...) - - estimator = tf.keras.estimator.model_to_estimator(keras_model) - - def input_fn(): - return dataset_ops.Dataset.from_tensors( - ({'features': features, 'sample_weights': sample_weights}, - targets)) - - estimator.train(input_fn, steps=1) - ``` - - Example with customized export signature: - ```python - inputs = {'a': tf.keras.Input(..., name='a'), - 'b': tf.keras.Input(..., name='b')} - outputs = {'c': tf.keras.layers.Dense(..., name='c')(inputs['a']), - 'd': tf.keras.layers.Dense(..., name='d')(inputs['b'])} - keras_model = tf.keras.Model(inputs, outputs) - keras_model.compile(...) - export_outputs = {'c': tf.estimator.export.RegressionOutput, - 'd': tf.estimator.export.ClassificationOutput} - - estimator = tf.keras.estimator.model_to_estimator( - keras_model, export_outputs=export_outputs) - - def input_fn(): - return dataset_ops.Dataset.from_tensors( - ({'features': features, 'sample_weights': sample_weights}, - targets)) - - estimator.train(input_fn, steps=1) - ``` - - Args: - keras_model: A compiled Keras model object. This argument is mutually - exclusive with `keras_model_path`. Estimator's `model_fn` uses the - structure of the model to clone the model. Defaults to `None`. - keras_model_path: Path to a compiled Keras model saved on disk, in HDF5 - format, which can be generated with the `save()` method of a Keras - model. This argument is mutually exclusive with `keras_model`. - Defaults to `None`. - custom_objects: Dictionary for cloning customized objects. This is - used with classes that is not part of this pip package. For example, if - user maintains a `relu6` class that inherits from - `tf.keras.layers.Layer`, then pass `custom_objects={'relu6': relu6}`. - Defaults to `None`. - model_dir: Directory to save `Estimator` model parameters, graph, summary - files for TensorBoard, etc. If unset a directory will be created with - `tempfile.mkdtemp` - config: `RunConfig` to config `Estimator`. Allows setting up things in - `model_fn` based on configuration such as `num_ps_replicas`, or - `model_dir`. Defaults to `None`. If both `config.model_dir` and the - `model_dir` argument (above) are specified the `model_dir` **argument** - takes precedence. - checkpoint_format: Sets the format of the checkpoint saved by the - estimator when training. May be `saver` or `checkpoint`, depending on - whether to save checkpoints from `tf.train.Saver` or - `tf.train.Checkpoint`. This argument currently defaults to `saver`. When - 2.0 is released, the default will be `checkpoint`. Estimators use - name-based `tf.train.Saver` checkpoints, while Keras models use - object-based checkpoints from `tf.train.Checkpoint`. Currently, saving - object-based checkpoints from `model_to_estimator` is only supported by - Functional and Sequential models. Defaults to 'saver'. - metric_names_map: Optional dictionary mapping Keras model output metric - names to custom names. This can be used to override the default Keras - model output metrics names in a multi IO model use case and provide - custom names for the `eval_metric_ops` in Estimator. - The Keras model metric names can be obtained using `model.metrics_names` - excluding any loss metrics such as total loss and output losses. - For example, if your Keras model has two outputs `out_1` and `out_2`, - with `mse` loss and `acc` metric, then `model.metrics_names` will be - `['loss', 'out_1_loss', 'out_2_loss', 'out_1_acc', 'out_2_acc']`. - The model metric names excluding the loss metrics will be - `['out_1_acc', 'out_2_acc']`. - export_outputs: Optional dictionary. This can be used to override the - default Keras model output exports in a multi IO model use case and - provide custom names for the `export_outputs` in - `tf.estimator.EstimatorSpec`. Default is None, which is equivalent to - {'serving_default': `tf.estimator.export.PredictOutput`}. If not None, - the keys must match the keys of `model.output_names`. - A dict `{name: output}` where: - * name: An arbitrary name for this output. - * output: an `ExportOutput` class such as `ClassificationOutput`, - `RegressionOutput`, or `PredictOutput`. Single-headed models only - need to specify one entry in this dictionary. Multi-headed models - should specify one entry for each head, one of which must be named - using - `tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY` - If no entry is provided, a default `PredictOutput` mapping to - `predictions` will be created. - - Returns: - An Estimator from given keras model. - - Raises: - ValueError: If neither keras_model nor keras_model_path was given. - ValueError: If both keras_model and keras_model_path was given. - ValueError: If the keras_model_path is a GCS URI. - ValueError: If keras_model has not been compiled. - ValueError: If an invalid checkpoint_format was given. - """ - - try: - # isort: off - from tensorflow_estimator.python.estimator import ( - keras_lib, - ) - except ImportError: - raise NotImplementedError( - "tf.keras.estimator.model_to_estimator function not available in " - "your installation." - ) - _model_to_estimator_usage_gauge.get_cell("v1").set(True) - return keras_lib.model_to_estimator( - keras_model=keras_model, - keras_model_path=keras_model_path, - custom_objects=custom_objects, - model_dir=model_dir, - config=config, - checkpoint_format=checkpoint_format, - use_v2_estimator=False, - metric_names_map=metric_names_map, - export_outputs=export_outputs, - ) - - -@keras_export("keras.estimator.model_to_estimator", v1=[]) -def model_to_estimator_v2( - keras_model=None, - keras_model_path=None, - custom_objects=None, - model_dir=None, - config=None, - checkpoint_format="checkpoint", - metric_names_map=None, - export_outputs=None, -): - """Constructs an `Estimator` instance from given keras model. - - If you use infrastructure or other tooling that relies on Estimators, you - can still build a Keras model and use model_to_estimator to convert the - Keras model to an Estimator for use with downstream systems. - - For usage example, please see: - [Creating estimators from Keras Models]( - https://www.tensorflow.org/guide/estimators#creating_estimators_from_keras_models). - - Sample Weights: - Estimators returned by `model_to_estimator` are configured so that they can - handle sample weights (similar to `keras_model.fit(x, y, sample_weights)`). - - To pass sample weights when training or evaluating the Estimator, the first - item returned by the input function should be a dictionary with keys - `features` and `sample_weights`. Example below: - - ```python - keras_model = tf.keras.Model(...) - keras_model.compile(...) - - estimator = tf.keras.estimator.model_to_estimator(keras_model) - - def input_fn(): - return dataset_ops.Dataset.from_tensors( - ({'features': features, 'sample_weights': sample_weights}, - targets)) - - estimator.train(input_fn, steps=1) - ``` - - Example with customized export signature: - ```python - inputs = {'a': tf.keras.Input(..., name='a'), - 'b': tf.keras.Input(..., name='b')} - outputs = {'c': tf.keras.layers.Dense(..., name='c')(inputs['a']), - 'd': tf.keras.layers.Dense(..., name='d')(inputs['b'])} - keras_model = tf.keras.Model(inputs, outputs) - keras_model.compile(...) - export_outputs = {'c': tf.estimator.export.RegressionOutput, - 'd': tf.estimator.export.ClassificationOutput} - - estimator = tf.keras.estimator.model_to_estimator( - keras_model, export_outputs=export_outputs) - - def input_fn(): - return dataset_ops.Dataset.from_tensors( - ({'features': features, 'sample_weights': sample_weights}, - targets)) - - estimator.train(input_fn, steps=1) - ``` - - Note: We do not support creating weighted metrics in Keras and converting - them to weighted metrics in the Estimator API using `model_to_estimator`. - You will have to create these metrics directly on the estimator spec using - the `add_metrics` function. - - To customize the estimator `eval_metric_ops` names, you can pass in the - `metric_names_map` dictionary mapping the keras model output metric names - to the custom names as follows: - - ```python - input_a = tf.keras.layers.Input(shape=(16,), name='input_a') - input_b = tf.keras.layers.Input(shape=(16,), name='input_b') - dense = tf.keras.layers.Dense(8, name='dense_1') - interm_a = dense(input_a) - interm_b = dense(input_b) - merged = tf.keras.layers.concatenate([interm_a, interm_b], name='merge') - output_a = tf.keras.layers.Dense(3, activation='softmax', name='dense_2')( - merged) - output_b = tf.keras.layers.Dense(2, activation='softmax', name='dense_3')( - merged) - keras_model = tf.keras.models.Model( - inputs=[input_a, input_b], outputs=[output_a, output_b]) - keras_model.compile( - loss='categorical_crossentropy', - optimizer='rmsprop', - metrics={ - 'dense_2': 'categorical_accuracy', - 'dense_3': 'categorical_accuracy' - }) - - metric_names_map = { - 'dense_2_categorical_accuracy': 'acc_1', - 'dense_3_categorical_accuracy': 'acc_2', - } - keras_est = tf.keras.estimator.model_to_estimator( - keras_model=keras_model, - config=config, - metric_names_map=metric_names_map) - ``` - - Args: - keras_model: A compiled Keras model object. This argument is mutually - exclusive with `keras_model_path`. Estimator's `model_fn` uses the - structure of the model to clone the model. Defaults to `None`. - keras_model_path: Path to a compiled Keras model saved on disk, in HDF5 - format, which can be generated with the `save()` method of a Keras - model. This argument is mutually exclusive with `keras_model`. - Defaults to `None`. - custom_objects: Dictionary for cloning customized objects. This is - used with classes that is not part of this pip package. For example, if - user maintains a `relu6` class that inherits from - `tf.keras.layers.Layer`, then pass `custom_objects={'relu6': relu6}`. - Defaults to `None`. - model_dir: Directory to save `Estimator` model parameters, graph, summary - files for TensorBoard, etc. If unset a directory will be created with - `tempfile.mkdtemp` - config: `RunConfig` to config `Estimator`. Allows setting up things in - `model_fn` based on configuration such as `num_ps_replicas`, or - `model_dir`. Defaults to `None`. If both `config.model_dir` and the - `model_dir` argument (above) are specified the `model_dir` **argument** - takes precedence. - checkpoint_format: Sets the format of the checkpoint saved by the - estimator when training. May be `saver` or `checkpoint`, depending on - whether to save checkpoints from `tf.compat.v1.train.Saver` or - `tf.train.Checkpoint`. The default is `checkpoint`. Estimators use - name-based `tf.train.Saver` checkpoints, while Keras models use - object-based checkpoints from `tf.train.Checkpoint`. Currently, saving - object-based checkpoints from `model_to_estimator` is only supported by - Functional and Sequential models. Defaults to 'checkpoint'. - metric_names_map: Optional dictionary mapping Keras model output metric - names to custom names. This can be used to override the default Keras - model output metrics names in a multi IO model use case and provide - custom names for the `eval_metric_ops` in Estimator. - The Keras model metric names can be obtained using `model.metrics_names` - excluding any loss metrics such as total loss and output losses. - For example, if your Keras model has two outputs `out_1` and `out_2`, - with `mse` loss and `acc` metric, then `model.metrics_names` will be - `['loss', 'out_1_loss', 'out_2_loss', 'out_1_acc', 'out_2_acc']`. - The model metric names excluding the loss metrics will be - `['out_1_acc', 'out_2_acc']`. - export_outputs: Optional dictionary. This can be used to override the - default Keras model output exports in a multi IO model use case and - provide custom names for the `export_outputs` in - `tf.estimator.EstimatorSpec`. Default is None, which is equivalent to - {'serving_default': `tf.estimator.export.PredictOutput`}. If not None, - the keys must match the keys of `model.output_names`. - A dict `{name: output}` where: - * name: An arbitrary name for this output. - * output: an `ExportOutput` class such as `ClassificationOutput`, - `RegressionOutput`, or `PredictOutput`. Single-headed models only - need to specify one entry in this dictionary. Multi-headed models - should specify one entry for each head, one of which must be named - using - `tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY` - If no entry is provided, a default `PredictOutput` mapping to - `predictions` will be created. - - Returns: - An Estimator from given keras model. - - Raises: - ValueError: If neither keras_model nor keras_model_path was given. - ValueError: If both keras_model and keras_model_path was given. - ValueError: If the keras_model_path is a GCS URI. - ValueError: If keras_model has not been compiled. - ValueError: If an invalid checkpoint_format was given. - """ - - try: - # isort: off - from tensorflow_estimator.python.estimator import ( - keras_lib, - ) - except ImportError: - raise NotImplementedError( - "tf.keras.estimator.model_to_estimator function not available in " - "your installation." - ) - _model_to_estimator_usage_gauge.get_cell("v2").set(True) - return keras_lib.model_to_estimator( - keras_model=keras_model, - keras_model_path=keras_model_path, - custom_objects=custom_objects, - model_dir=model_dir, - config=config, - checkpoint_format=checkpoint_format, - use_v2_estimator=True, - metric_names_map=metric_names_map, - export_outputs=export_outputs, - ) - - -# LINT.ThenChange(//tensorflow_estimator/python/estimator/keras_lib.py) diff --git a/keras/export/BUILD b/keras/export/BUILD deleted file mode 100644 index c74f5e11819..00000000000 --- a/keras/export/BUILD +++ /dev/null @@ -1,37 +0,0 @@ -# Description: -# Contains the Keras save model API (internal TensorFlow version). - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - # TODO(scottzhu): Remove non-keras deps from TF. - default_visibility = [ - "//keras:friends", - ], - licenses = ["notice"], -) - -py_library( - name = "export_lib", - srcs = [ - "export_lib.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -tf_py_test( - name = "export_lib_test", - size = "medium", - srcs = ["export_lib_test.py"], - python_version = "PY3", - deps = [ - ":export_lib", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/export/__init__.py b/keras/export/__init__.py deleted file mode 100644 index a82948d1341..00000000000 --- a/keras/export/__init__.py +++ /dev/null @@ -1,16 +0,0 @@ -# Copyright 2023 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -from keras.export.export_lib import ExportArchive diff --git a/keras/export/export_lib.py b/keras/export/export_lib.py deleted file mode 100644 index b2b8d1ee3d9..00000000000 --- a/keras/export/export_lib.py +++ /dev/null @@ -1,577 +0,0 @@ -# Copyright 2023 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Library for exporting inference-only Keras models/layers.""" - -import tensorflow.compat.v2 as tf -from tensorflow.python.util.tf_export import keras_export - -from keras.engine import base_layer -from keras.engine import functional -from keras.engine import sequential -from keras.utils import io_utils - - -@keras_export("keras.export.ExportArchive") -class ExportArchive(tf.__internal__.tracking.AutoTrackable): - """ExportArchive is used to write SavedModel artifacts (e.g. for inference). - - If you have a Keras model or layer that you want to export as SavedModel for - serving (e.g. via TensorFlow-Serving), you can use `ExportArchive` - to configure the different serving endpoints you need to make available, - as well as their signatures. Simply instantiate an `ExportArchive`, - use `track()` to register the layer(s) or model(s) to be used, - then use the `add_endpoint()` method to register a new serving endpoint. - When done, use the `write_out()` method to save the artifact. - - The resulting artifact is a SavedModel and can be reloaded via - `tf.saved_model.load`. - - Examples: - - Here's how to export a model for inference. - - ```python - export_archive = ExportArchive() - export_archive.track(model) - export_archive.add_endpoint( - name="serve", - fn=model.call, - input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)], - ) - export_archive.write_out("path/to/location") - - # Elsewhere, we can reload the artifact and serve it. - # The endpoint we added is available as a method: - serving_model = tf.saved_model.load("path/to/location") - outputs = serving_model.serve(inputs) - ``` - - Here's how to export a model with one endpoint for inference and one - endpoint for a training-mode forward pass (e.g. with dropout on). - - ```python - export_archive = ExportArchive() - export_archive.track(model) - export_archive.add_endpoint( - name="call_inference", - fn=lambda x: model.call(x, training=False), - input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)], - ) - export_archive.add_endpoint( - name="call_training", - fn=lambda x: model.call(x, training=True), - input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)], - ) - export_archive.write_out("path/to/location") - ``` - - **Note on resource tracking:** - - `ExportArchive` is able to automatically track all `tf.Variables` used - by its endpoints, so most of the time calling `.track(model)` - is not strictly required. However, if your model uses lookup layers such - as `IntegerLookup`, `StringLookup`, or `TextVectorization`, - it will need to be tracked explicitly via `.track(model)`. - - Explicit tracking is also required if you need to be able to access - the properties `variables`, `trainable_variables`, or - `non_trainable_variables` on the revived archive. - """ - - def __init__(self): - self._endpoint_names = [] - self._endpoint_signatures = {} - self.tensorflow_version = tf.__version__ - self.variables = [] - self.trainable_variables = [] - self.non_trainable_variables = [] - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def track(self, layer): - """Track the variables (and other resources) of a layer or model.""" - if not isinstance(layer, base_layer.Layer): - raise ValueError( - "Invalid layer type. Expected an instance of " - "`keras.layers.Layer` or `keras.Model`. " - f"Received instead an object of type '{type(layer)}'. " - f"Object received: {layer}" - ) - if not layer.built: - raise ValueError( - "The layer provided has not yet been built. " - "It must be built before export." - ) - - # Layers in `_tracked` are not part of the trackables that get saved, - # because we're creating the attribute in a - # no_automatic_dependency_tracking scope. - if not hasattr(self, "_tracked"): - self._tracked = [] - self._tracked.append(layer) - - # Variables in the lists below are actually part of the trackables - # that get saved, because the lists are created in __init__. - self.variables += layer.variables - self.trainable_variables += layer.trainable_variables - self.non_trainable_variables += layer.non_trainable_variables - - def add_endpoint(self, name, fn, input_signature=None): - """Register a new serving endpoint. - - Arguments: - name: Str, name of the endpoint. - fn: A function. It should only leverage resources - (e.g. `tf.Variable` objects or `tf.lookup.StaticHashTable` - objects) that are available on the models/layers - tracked by the `ExportArchive` (you can call `.track(model)` - to track a new model). - The shape and dtype of the inputs to the function must be - known. For that purpose, you can either 1) make sure that - `fn` is a `tf.function` that has been called at least once, or - 2) provide an `input_signature` argument that specifies the - shape and dtype of the inputs (see below). - input_signature: Used to specify the shape and dtype of the - inputs to `fn`. List of `tf.TensorSpec` objects (one - per positional input argument of `fn`). Nested arguments are - allowed (see below for an example showing a Functional model - with 2 input arguments). - - Example: - - Adding an endpoint using the `input_signature` argument when the - model has a single input argument: - - ```python - export_archive = ExportArchive() - export_archive.track(model) - export_archive.add_endpoint( - name="serve", - fn=model.call, - input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)], - ) - ``` - - Adding an endpoint using the `input_signature` argument when the - model has two positional input arguments: - - ```python - export_archive = ExportArchive() - export_archive.track(model) - export_archive.add_endpoint( - name="serve", - fn=model.call, - input_signature=[ - tf.TensorSpec(shape=(None, 3), dtype=tf.float32), - tf.TensorSpec(shape=(None, 4), dtype=tf.float32), - ], - ) - ``` - - Adding an endpoint using the `input_signature` argument when the - model has one input argument that is a list of 2 tensors (e.g. - a Functional model with 2 inputs): - - ```python - model = keras.Model(inputs=[x1, x2], outputs=outputs) - - export_archive = ExportArchive() - export_archive.track(model) - export_archive.add_endpoint( - name="serve", - fn=model.call, - input_signature=[ - [ - tf.TensorSpec(shape=(None, 3), dtype=tf.float32), - tf.TensorSpec(shape=(None, 4), dtype=tf.float32), - ], - ], - ) - ``` - - This also works with dictionary inputs: - - ```python - model = keras.Model(inputs={"x1": x1, "x2": x2}, outputs=outputs) - - export_archive = ExportArchive() - export_archive.track(model) - export_archive.add_endpoint( - name="serve", - fn=model.call, - input_signature=[ - { - "x1": tf.TensorSpec(shape=(None, 3), dtype=tf.float32), - "x2": tf.TensorSpec(shape=(None, 4), dtype=tf.float32), - }, - ], - ) - ``` - - Adding an endpoint that is a `tf.function`: - - ```python - @tf.function() - def serving_fn(x): - return model(x) - - # The function must be traced, i.e. it must be called at least once. - serving_fn(tf.random.normal(shape=(2, 3))) - - export_archive = ExportArchive() - export_archive.track(model) - export_archive.add_endpoint(name="serve", fn=serving_fn) - ``` - """ - if name in self._endpoint_names: - raise ValueError(f"Endpoint name '{name}' is already taken.") - - if input_signature: - decorated_fn = tf.function(fn, input_signature=input_signature) - self._endpoint_signatures[name] = input_signature - else: - if isinstance(fn, tf.types.experimental.GenericFunction): - if not fn._list_all_concrete_functions(): - raise ValueError( - f"The provided tf.function '{fn}' " - "has never been called. " - "To specify the expected shape and dtype " - "of the function's arguments, " - "you must either provide a function that " - "has been called at least once, or alternatively pass " - "an `input_signature` argument in `add_endpoint()`." - ) - decorated_fn = fn - else: - raise ValueError( - "If the `fn` argument provided is not a `tf.function`, " - "you must provide an `input_signature` argument to " - "specify the shape and dtype of the function arguments. " - "Example:\n\n" - "export_archive.add_endpoint(\n" - " name='call',\n" - " fn=model.call,\n" - " input_signature=[\n" - " tf.TensorSpec(\n" - " shape=(None, 224, 224, 3),\n" - " dtype=tf.float32,\n" - " )\n" - " ],\n" - ")" - ) - setattr(self, name, decorated_fn) - self._endpoint_names.append(name) - - def add_variable_collection(self, name, variables): - """Register a set of variables to be retrieved after reloading. - - Arguments: - name: The string name for the collection. - variables: A tuple/list/set of `tf.Variable` instances. - - Example: - - ```python - export_archive = ExportArchive() - export_archive.track(model) - # Register an endpoint - export_archive.add_endpoint( - name="serve", - fn=model.call, - input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)], - ) - # Save a variable collection - export_archive.add_variable_collection( - name="optimizer_variables", variables=model.optimizer.variables) - export_archive.write_out("path/to/location") - - # Reload the object - revived_object = tf.saved_model.load("path/to/location") - # Retrieve the variables - optimizer_variables = revived_object.optimizer_variables - ``` - """ - if not isinstance(variables, (list, tuple, set)): - raise ValueError( - "Expected `variables` to be a list/tuple/set. " - f"Received instead object of type '{type(variables)}'." - ) - if not all(isinstance(v, tf.Variable) for v in variables): - raise ValueError( - "Expected all elements in `variables` to be " - "`tf.Variable` instances. Found instead the following types: " - f"{list(set(type(v) for v in variables))}" - ) - setattr(self, name, list(variables)) - - def write_out(self, filepath, options=None): - """Write the corresponding SavedModel to disk. - - Arguments: - filepath: `str` or `pathlib.Path` object. - Path where to save the artifact. - options: `tf.saved_model.SaveOptions` object that specifies - SavedModel saving options. - - **Note on TF-Serving**: all endpoints registered via `add_endpoint()` - are made visible for TF-Serving in the SavedModel artifact. In addition, - the first endpoint registered is made visible under the alias - `"serving_default"` (unless an endpoint with the name - `"serving_default"` was already registered manually), - since TF-Serving requires this endpoint to be set. - """ - if not self._endpoint_names: - raise ValueError( - "No endpoints have been set yet. Call add_endpoint()." - ) - self._filter_and_track_resources() - - signatures = {} - for name in self._endpoint_names: - signatures[name] = self._get_concrete_fn(name) - # Add "serving_default" signature key for TFServing - if "serving_default" not in self._endpoint_names: - signatures["serving_default"] = self._get_concrete_fn( - self._endpoint_names[0] - ) - tf.saved_model.save( - self, filepath, options=options, signatures=signatures - ) - # Print out available endpoints - endpoints = "\n\n".join( - _print_signature(getattr(self, name), name) - for name in self._endpoint_names - ) - io_utils.print_msg( - f"Saved artifact at '{filepath}'. " - "The following endpoints are available:\n\n" - f"{endpoints}" - ) - - def _get_concrete_fn(self, endpoint): - """Workaround for some SavedModel quirks.""" - if endpoint in self._endpoint_signatures: - return getattr(self, endpoint) - else: - traces = getattr(self, endpoint)._trackable_children("saved_model") - return list(traces.values())[0] - - def _get_variables_used_by_endpoints(self): - fns = [self._get_concrete_fn(name) for name in self._endpoint_names] - return _list_variables_used_by_fns(fns) - - def _filter_and_track_resources(self): - """Track resources used by endpoints / referenced in `track()` calls.""" - # Start by extracting variables from endpoints. - fns = [self._get_concrete_fn(name) for name in self._endpoint_names] - tvs, ntvs = _list_variables_used_by_fns(fns) - self._all_variables = list(tvs + ntvs) - - # Next, track lookup tables. - # Hopefully, one day this will be automated at the tf.function level. - self._misc_assets = [] - from keras.layers.preprocessing.index_lookup import IndexLookup - - if hasattr(self, "_tracked"): - for root in self._tracked: - descendants = tf.train.TrackableView(root).descendants() - for trackable in descendants: - if isinstance(trackable, IndexLookup): - self._misc_assets.append(trackable) - - -def export_model(model, filepath): - export_archive = ExportArchive() - export_archive.track(model) - if isinstance(model, (functional.Functional, sequential.Sequential)): - input_signature = tf.nest.map_structure(_make_tensor_spec, model.inputs) - export_archive.add_endpoint("serve", model.__call__, input_signature) - else: - save_spec = model._get_save_spec() - if not save_spec: - raise ValueError( - "The model provided has never called. " - "It must be called at least once before export." - ) - input_signature = [save_spec] - export_archive.add_endpoint("serve", model.__call__, input_signature) - export_archive.write_out(filepath) - - -class ReloadedLayer(base_layer.Layer): - """Reload a Keras model/layer that was saved via SavedModel / ExportArchive. - - Arguments: - filepath: `str` or `pathlib.Path` object. The path to the SavedModel. - call_endpoint: Name of the endpoint to use as the `call()` method - of the reloaded layer. If the SavedModel was created - via `model.export()`, - then the default endpoint name is `'serve'`. In other cases - it may be named `'serving_default'`. - - Example: - - ```python - model.export("path/to/artifact") - reloaded_layer = ReloadedLayer("path/to/artifact") - outputs = reloaded_layer(inputs) - ``` - - The reloaded object can be used like a regular Keras layer, and supports - training/fine-tuning of its trainable weights. Note that the reloaded - object retains none of the internal structure or custom methods of the - original object -- it's a brand new layer created around the saved - function. - - **Limitations:** - - * Only call endpoints with a single `inputs` tensor argument - (which may optionally be a dict/tuple/list of tensors) are supported. - For endpoints with multiple separate input tensor arguments, consider - subclassing `ReloadedLayer` and implementing a `call()` method with a - custom signature. - * If you need training-time behavior to differ from inference-time behavior - (i.e. if you need the reloaded object to support a `training=True` argument - in `__call__()`), make sure that the training-time call function is - saved as a standalone endpoint in the artifact, and provide its name - to the `ReloadedLayer` via the `call_training_endpoint` argument. - """ - - def __init__( - self, - filepath, - call_endpoint="serve", - call_training_endpoint=None, - trainable=True, - name=None, - dtype=None, - ): - # Initialize an empty layer, then add_weight() etc. as needed. - super().__init__(trainable=trainable, name=name, dtype=dtype) - - self._reloaded_obj = tf.saved_model.load(filepath) - - self.filepath = filepath - self.call_endpoint = call_endpoint - self.call_training_endpoint = call_training_endpoint - - # Resolve the call function. - if hasattr(self._reloaded_obj, call_endpoint): - # Case 1: it's set as an attribute. - self.call_endpoint_fn = getattr(self._reloaded_obj, call_endpoint) - elif call_endpoint in self._reloaded_obj.signatures: - # Case 2: it's listed in the `signatures` field. - self.call_endpoint_fn = self._reloaded_obj.signatures[call_endpoint] - else: - raise ValueError( - f"The endpoint '{call_endpoint}' is neither an " - "attribute of the reloaded SavedModel, nor an entry " - "in the `signatures` field of the reloaded SavedModel. " - ) - - # Resolving the training function. - if call_training_endpoint: - if hasattr(self._reloaded_obj, call_training_endpoint): - self.call_training_endpoint_fn = getattr( - self._reloaded_obj, call_training_endpoint - ) - elif call_training_endpoint in self._reloaded_obj.signatures: - self.call_training_endpoint_fn = self._reloaded_obj.signatures[ - call_training_endpoint - ] - else: - raise ValueError( - f"The endpoint '{call_training_endpoint}' is " - "neither an attribute of the reloaded SavedModel, " - "nor an entry in the `signatures` field of " - "the reloaded SavedModel. " - ) - - # Add trainable and non-trainable weights from the call_endpoint_fn. - all_fns = [self.call_endpoint_fn] - if call_training_endpoint: - all_fns.append(self.call_training_endpoint_fn) - tvs, ntvs = _list_variables_used_by_fns(all_fns) - for v in tvs: - self._add_existing_weight(v, trainable=True) - for v in ntvs: - self._add_existing_weight(v, trainable=False) - self.built = True - - def _add_existing_weight(self, weight, trainable): - """Calls add_weight() to register but not create an existing weight.""" - self.add_weight( - name=weight.name, - shape=weight.shape, - dtype=weight.dtype, - trainable=trainable, - getter=lambda *_, **__: weight, - ) - - def call(self, inputs, training=False, **kwargs): - if training: - if self.call_training_endpoint: - return self.call_training_endpoint_fn(inputs, **kwargs) - return self.call_endpoint_fn(inputs, **kwargs) - - def get_config(self): - base_config = super().get_config() - config = { - # Note: this is not intended to be portable. - "filepath": self.filepath, - "call_endpoint": self.call_endpoint, - "call_training_endpoint": self.call_training_endpoint, - } - return {**base_config, **config} - - -def _make_tensor_spec(x): - return tf.TensorSpec(x.shape, dtype=x.dtype, name=x.name) - - -def _print_signature(fn, name): - concrete_fn = fn._list_all_concrete_functions()[0] - pprinted_signature = concrete_fn.pretty_printed_signature(verbose=True) - lines = pprinted_signature.split("\n") - lines = [f"* Endpoint '{name}'"] + lines[1:] - endpoint = "\n".join(lines) - return endpoint - - -def _list_variables_used_by_fns(fns): - trainable_variables = [] - non_trainable_variables = [] - trainable_variables_ids = set() - non_trainable_variables_ids = set() - for fn in fns: - if hasattr(fn, "concrete_functions"): - concrete_functions = fn.concrete_functions - elif hasattr(fn, "get_concrete_function"): - concrete_functions = [fn.get_concrete_function()] - else: - concrete_functions = [fn] - for concrete_fn in concrete_functions: - for v in concrete_fn.trainable_variables: - if id(v) not in trainable_variables_ids: - trainable_variables.append(v) - trainable_variables_ids.add(id(v)) - - for v in concrete_fn.variables: - if ( - id(v) not in trainable_variables_ids - and id(v) not in non_trainable_variables_ids - ): - non_trainable_variables.append(v) - non_trainable_variables_ids.add(id(v)) - return trainable_variables, non_trainable_variables diff --git a/keras/export/export_lib_test.py b/keras/export/export_lib_test.py deleted file mode 100644 index 7c9e828e568..00000000000 --- a/keras/export/export_lib_test.py +++ /dev/null @@ -1,625 +0,0 @@ -# Copyright 2023 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for inference-only model/layer exporting utilities.""" -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.export import export_lib -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -def get_model(): - layers = [ - keras.layers.Dense(10, activation="relu"), - keras.layers.BatchNormalization(), - keras.layers.Dense(1, activation="sigmoid"), - ] - model = test_utils.get_model_from_layers(layers, input_shape=(10,)) - return model - - -@test_utils.run_v2_only -class ExportArchiveTest(tf.test.TestCase, parameterized.TestCase): - @test_combinations.run_with_all_model_types - def test_standard_model_export(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - model = get_model() - ref_input = tf.random.normal((3, 10)) - ref_output = model(ref_input).numpy() - - export_lib.export_model(model, temp_filepath) - revived_model = tf.saved_model.load(temp_filepath) - self.assertAllClose( - ref_output, revived_model.serve(ref_input).numpy(), atol=1e-6 - ) - - @test_combinations.run_with_all_model_types - def test_low_level_model_export(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - - model = get_model() - ref_input = tf.random.normal((3, 10)) - ref_output = model(ref_input).numpy() - - # Test variable tracking - export_archive = export_lib.ExportArchive() - export_archive.track(model) - self.assertLen(export_archive.variables, 8) - self.assertLen(export_archive.trainable_variables, 6) - self.assertLen(export_archive.non_trainable_variables, 2) - - @tf.function() - def my_endpoint(x): - return model(x) - - # Test registering an endpoint that is a tf.function (called) - my_endpoint(ref_input) # Trace fn - - export_archive.add_endpoint( - "call", - my_endpoint, - ) - export_archive.write_out(temp_filepath) - - revived_model = tf.saved_model.load(temp_filepath) - self.assertFalse(hasattr(revived_model, "_tracked")) - self.assertAllClose( - ref_output, revived_model.call(ref_input).numpy(), atol=1e-6 - ) - self.assertLen(revived_model.variables, 8) - self.assertLen(revived_model.trainable_variables, 6) - self.assertLen(revived_model.non_trainable_variables, 2) - - # Test registering an endpoint that is NOT a tf.function - export_archive = export_lib.ExportArchive() - export_archive.track(model) - export_archive.add_endpoint( - "call", - model.call, - input_signature=[ - tf.TensorSpec( - shape=(None, 10), - dtype=tf.float32, - ) - ], - ) - export_archive.write_out(temp_filepath) - revived_model = tf.saved_model.load(temp_filepath) - self.assertAllClose( - ref_output, revived_model.call(ref_input).numpy(), atol=1e-6 - ) - - def test_layer_export(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_layer") - - layer = keras.layers.BatchNormalization() - ref_input = tf.random.normal((3, 10)) - ref_output = layer(ref_input).numpy() # Build layer (important) - - export_archive = export_lib.ExportArchive() - export_archive.track(layer) - export_archive.add_endpoint( - "call", - layer.call, - input_signature=[ - tf.TensorSpec( - shape=(None, 10), - dtype=tf.float32, - ) - ], - ) - export_archive.write_out(temp_filepath) - revived_layer = tf.saved_model.load(temp_filepath) - self.assertAllClose( - ref_output, revived_layer.call(ref_input).numpy(), atol=1e-6 - ) - - def test_multi_input_output_functional_model(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - x1 = keras.Input((2,)) - x2 = keras.Input((2,)) - y1 = keras.layers.Dense(3)(x1) - y2 = keras.layers.Dense(3)(x2) - model = keras.Model([x1, x2], [y1, y2]) - - ref_inputs = [tf.random.normal((3, 2)), tf.random.normal((3, 2))] - ref_outputs = model(ref_inputs) - - export_archive = export_lib.ExportArchive() - export_archive.track(model) - export_archive.add_endpoint( - "serve", - model.call, - input_signature=[ - [ - tf.TensorSpec( - shape=(None, 2), - dtype=tf.float32, - ), - tf.TensorSpec( - shape=(None, 2), - dtype=tf.float32, - ), - ] - ], - ) - export_archive.write_out(temp_filepath) - revived_model = tf.saved_model.load(temp_filepath) - self.assertAllClose( - ref_outputs[0].numpy(), - revived_model.serve(ref_inputs)[0].numpy(), - atol=1e-6, - ) - self.assertAllClose( - ref_outputs[1].numpy(), - revived_model.serve(ref_inputs)[1].numpy(), - atol=1e-6, - ) - - # Now test dict inputs - model = keras.Model({"x1": x1, "x2": x2}, [y1, y2]) - - ref_inputs = { - "x1": tf.random.normal((3, 2)), - "x2": tf.random.normal((3, 2)), - } - ref_outputs = model(ref_inputs) - - export_archive = export_lib.ExportArchive() - export_archive.track(model) - export_archive.add_endpoint( - "serve", - model.call, - input_signature=[ - { - "x1": tf.TensorSpec( - shape=(None, 2), - dtype=tf.float32, - ), - "x2": tf.TensorSpec( - shape=(None, 2), - dtype=tf.float32, - ), - } - ], - ) - export_archive.write_out(temp_filepath) - revived_model = tf.saved_model.load(temp_filepath) - self.assertAllClose( - ref_outputs[0].numpy(), - revived_model.serve(ref_inputs)[0].numpy(), - atol=1e-6, - ) - self.assertAllClose( - ref_outputs[1].numpy(), - revived_model.serve(ref_inputs)[1].numpy(), - atol=1e-6, - ) - - def test_model_with_lookup_table(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - text_vectorization = keras.layers.TextVectorization() - text_vectorization.adapt(["one two", "three four", "five six"]) - model = keras.Sequential( - [ - text_vectorization, - keras.layers.Embedding(10, 32), - keras.layers.Dense(1), - ] - ) - ref_input = tf.convert_to_tensor(["one two three four"]) - ref_output = model(ref_input).numpy() - - export_lib.export_model(model, temp_filepath) - revived_model = tf.saved_model.load(temp_filepath) - self.assertAllClose( - ref_output, revived_model.serve(ref_input).numpy(), atol=1e-6 - ) - - def test_track_multiple_layers(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - layer_1 = keras.layers.Dense(2) - ref_input_1 = tf.random.normal((3, 4)) - ref_output_1 = layer_1(ref_input_1).numpy() - layer_2 = keras.layers.Dense(3) - ref_input_2 = tf.random.normal((3, 5)) - ref_output_2 = layer_2(ref_input_2).numpy() - - export_archive = export_lib.ExportArchive() - export_archive.add_endpoint( - "call_1", - layer_1.call, - input_signature=[ - tf.TensorSpec( - shape=(None, 4), - dtype=tf.float32, - ), - ], - ) - export_archive.add_endpoint( - "call_2", - layer_2.call, - input_signature=[ - tf.TensorSpec( - shape=(None, 5), - dtype=tf.float32, - ), - ], - ) - export_archive.write_out(temp_filepath) - revived_layer = tf.saved_model.load(temp_filepath) - self.assertAllClose( - ref_output_1, - revived_layer.call_1(ref_input_1).numpy(), - atol=1e-6, - ) - self.assertAllClose( - ref_output_2, - revived_layer.call_2(ref_input_2).numpy(), - atol=1e-6, - ) - - def test_non_standard_layer_signature(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_layer") - - layer = keras.layers.MultiHeadAttention(2, 2) - x1 = tf.random.normal((3, 2, 2)) - x2 = tf.random.normal((3, 2, 2)) - ref_output = layer(x1, x2).numpy() # Build layer (important) - export_archive = export_lib.ExportArchive() - export_archive.track(layer) - export_archive.add_endpoint( - "call", - layer.call, - input_signature=[ - tf.TensorSpec( - shape=(None, 2, 2), - dtype=tf.float32, - ), - tf.TensorSpec( - shape=(None, 2, 2), - dtype=tf.float32, - ), - ], - ) - export_archive.write_out(temp_filepath) - revived_layer = tf.saved_model.load(temp_filepath) - self.assertAllClose( - ref_output, - revived_layer.call(query=x1, value=x2).numpy(), - atol=1e-6, - ) - - def test_variable_collection(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - - model = keras.Sequential( - [ - keras.Input((10,)), - keras.layers.Dense(2), - keras.layers.Dense(2), - ] - ) - - # Test variable tracking - export_archive = export_lib.ExportArchive() - export_archive.track(model) - export_archive.add_endpoint( - "call", - model.call, - input_signature=[ - tf.TensorSpec( - shape=(None, 10), - dtype=tf.float32, - ) - ], - ) - export_archive.add_variable_collection( - "my_vars", model.layers[1].weights - ) - self.assertLen(export_archive.my_vars, 2) - export_archive.write_out(temp_filepath) - revived_model = tf.saved_model.load(temp_filepath) - self.assertLen(revived_model.my_vars, 2) - - def test_export_model_errors(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - - # Model has not been built - model = keras.Sequential([keras.layers.Dense(2)]) - with self.assertRaisesRegex(ValueError, "It must be built"): - export_lib.export_model(model, temp_filepath) - - # Subclassed model has not been called - class MyModel(keras.Model): - def __init__(self, **kwargs): - super().__init__(**kwargs) - self.dense = keras.layers.Dense(2) - - def build(self, input_shape): - self.dense.build(input_shape) - self.built = True - - def call(self, x): - return self.dense(x) - - model = MyModel() - model.build((2, 3)) - with self.assertRaisesRegex(ValueError, "It must be called"): - export_lib.export_model(model, temp_filepath) - - def test_export_archive_errors(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - model = keras.Sequential([keras.layers.Dense(2)]) - model(tf.random.normal((2, 3))) - - # Endpoint name reuse - export_archive = export_lib.ExportArchive() - export_archive.track(model) - export_archive.add_endpoint( - "call", - model.call, - input_signature=[ - tf.TensorSpec( - shape=(None, 3), - dtype=tf.float32, - ) - ], - ) - with self.assertRaisesRegex(ValueError, "already taken"): - export_archive.add_endpoint( - "call", - model.call, - input_signature=[ - tf.TensorSpec( - shape=(None, 3), - dtype=tf.float32, - ) - ], - ) - - # Write out with no endpoints - export_archive = export_lib.ExportArchive() - export_archive.track(model) - with self.assertRaisesRegex(ValueError, "No endpoints have been set"): - export_archive.write_out(temp_filepath) - - # Invalid object type - with self.assertRaisesRegex(ValueError, "Invalid layer type"): - export_archive = export_lib.ExportArchive() - export_archive.track("model") - - # Set endpoint with no input signature - export_archive = export_lib.ExportArchive() - export_archive.track(model) - with self.assertRaisesRegex( - ValueError, "you must provide an `input_signature`" - ): - export_archive.add_endpoint( - "call", - model.call, - ) - - # Set endpoint that has never been called - export_archive = export_lib.ExportArchive() - export_archive.track(model) - - @tf.function() - def my_endpoint(x): - return model(x) - - export_archive = export_lib.ExportArchive() - export_archive.track(model) - with self.assertRaisesRegex( - ValueError, "you must either provide a function" - ): - export_archive.add_endpoint( - "call", - my_endpoint, - ) - - def test_export_no_assets(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - - # Case where there are legitimately no assets. - model = keras.Sequential([keras.layers.Flatten()]) - model(tf.random.normal((2, 3))) - export_archive = export_lib.ExportArchive() - export_archive.add_endpoint( - "call", - model.call, - input_signature=[ - tf.TensorSpec( - shape=(None, 3), - dtype=tf.float32, - ) - ], - ) - export_archive.write_out(temp_filepath) - - @test_combinations.run_with_all_model_types - def test_model_export_method(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - model = get_model() - ref_input = tf.random.normal((3, 10)) - ref_output = model(ref_input).numpy() - - model.export(temp_filepath) - revived_model = tf.saved_model.load(temp_filepath) - self.assertAllClose( - ref_output, revived_model.serve(ref_input).numpy(), atol=1e-6 - ) - - -@test_utils.run_v2_only -class TestReloadedLayer(tf.test.TestCase, parameterized.TestCase): - @test_combinations.run_with_all_model_types - def test_reloading_export_archive(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - model = get_model() - ref_input = tf.random.normal((3, 10)) - ref_output = model(ref_input).numpy() - - export_lib.export_model(model, temp_filepath) - reloaded_layer = export_lib.ReloadedLayer(temp_filepath) - self.assertAllClose( - reloaded_layer(ref_input).numpy(), ref_output, atol=1e-7 - ) - self.assertLen(reloaded_layer.weights, len(model.weights)) - self.assertLen( - reloaded_layer.trainable_weights, len(model.trainable_weights) - ) - self.assertLen( - reloaded_layer.non_trainable_weights, - len(model.non_trainable_weights), - ) - - # Test fine-tuning - new_model = keras.Sequential([reloaded_layer]) - new_model.compile(optimizer="rmsprop", loss="mse") - x = tf.random.normal((32, 10)) - y = tf.random.normal((32, 1)) - new_model.train_on_batch(x, y) - new_output = reloaded_layer(ref_input).numpy() - self.assertNotAllClose(new_output, ref_output, atol=1e-5) - - # Test that trainable can be set to False - reloaded_layer.trainable = False - new_model.compile(optimizer="rmsprop", loss="mse") - x = tf.random.normal((32, 10)) - y = tf.random.normal((32, 1)) - new_model.train_on_batch(x, y) - # The output must not have changed - self.assertAllClose( - reloaded_layer(ref_input).numpy(), new_output, atol=1e-7 - ) - - @test_combinations.run_with_all_model_types - def test_reloading_default_saved_model(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - model = get_model() - ref_input = tf.random.normal((3, 10)) - ref_output = model(ref_input).numpy() - - tf.saved_model.save(model, temp_filepath) - reloaded_layer = export_lib.ReloadedLayer( - temp_filepath, call_endpoint="serving_default" - ) - # The output is a dict, due to the nature of SavedModel saving. - new_output = reloaded_layer(ref_input) - self.assertAllClose( - new_output[list(new_output.keys())[0]].numpy(), - ref_output, - atol=1e-7, - ) - self.assertLen(reloaded_layer.weights, len(model.weights)) - self.assertLen( - reloaded_layer.trainable_weights, len(model.trainable_weights) - ) - self.assertLen( - reloaded_layer.non_trainable_weights, - len(model.non_trainable_weights), - ) - - def test_call_training(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - keras.utils.set_random_seed(1337) - model = keras.Sequential( - [ - keras.Input((10,)), - keras.layers.Dense(10), - keras.layers.Dropout(0.99999), - ] - ) - export_archive = export_lib.ExportArchive() - export_archive.track(model) - export_archive.add_endpoint( - name="call_inference", - fn=lambda x: model(x, training=False), - input_signature=[tf.TensorSpec(shape=(None, 10), dtype=tf.float32)], - ) - export_archive.add_endpoint( - name="call_training", - fn=lambda x: model(x, training=True), - input_signature=[tf.TensorSpec(shape=(None, 10), dtype=tf.float32)], - ) - export_archive.write_out(temp_filepath) - reloaded_layer = export_lib.ReloadedLayer( - temp_filepath, - call_endpoint="call_inference", - call_training_endpoint="call_training", - ) - inference_output = reloaded_layer( - tf.random.normal((1, 10)), training=False - ) - training_output = reloaded_layer( - tf.random.normal((1, 10)), training=True - ) - self.assertAllClose(np.mean(training_output), 0.0, atol=1e-7) - self.assertNotAllClose(np.mean(inference_output), 0.0, atol=1e-7) - - @test_combinations.run_with_all_model_types - def test_serialization(self): - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - model = get_model() - ref_input = tf.random.normal((3, 10)) - ref_output = model(ref_input).numpy() - - export_lib.export_model(model, temp_filepath) - reloaded_layer = export_lib.ReloadedLayer(temp_filepath) - - # Test reinstantiation from config - config = reloaded_layer.get_config() - rereloaded_layer = export_lib.ReloadedLayer.from_config(config) - self.assertAllClose( - rereloaded_layer(ref_input).numpy(), ref_output, atol=1e-7 - ) - - # Test whole model saving with reloaded layer inside - model = keras.Sequential([reloaded_layer]) - temp_model_filepath = os.path.join(self.get_temp_dir(), "m.keras") - model.save(temp_model_filepath, save_format="keras_v3") - reloaded_model = keras.models.load_model( - temp_model_filepath, - custom_objects={"ReloadedLayer": export_lib.ReloadedLayer}, - ) - self.assertAllClose( - reloaded_model(ref_input).numpy(), ref_output, atol=1e-7 - ) - - def test_errors(self): - # Test missing call endpoint - temp_filepath = os.path.join(self.get_temp_dir(), "exported_model") - model = keras.Sequential([keras.Input((2,)), keras.layers.Dense(3)]) - export_lib.export_model(model, temp_filepath) - with self.assertRaisesRegex(ValueError, "The endpoint 'wrong'"): - export_lib.ReloadedLayer(temp_filepath, call_endpoint="wrong") - - # Test missing call training endpoint - with self.assertRaisesRegex(ValueError, "The endpoint 'wrong'"): - export_lib.ReloadedLayer( - temp_filepath, - call_endpoint="serve", - call_training_endpoint="wrong", - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/feature_column/BUILD b/keras/feature_column/BUILD deleted file mode 100644 index e9eb317b72b..00000000000 --- a/keras/feature_column/BUILD +++ /dev/null @@ -1,124 +0,0 @@ -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/tensorflow/python/feature_column:__subpackages__", # For unit testing - "//third_party/tensorflow/python/tpu:__subpackages__", # For unit testing - ], - licenses = ["notice"], -) - -py_library( - name = "feature_column", - srcs = ["__init__.py"], - srcs_version = "PY3", - deps = [ - ":base_feature_layer", - ":dense_features", - ":dense_features_v2", - ":sequence_feature_column", - ], -) - -py_library( - name = "base_feature_layer", - srcs = ["base_feature_layer.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - "//keras/utils:generic_utils", - ], -) - -py_library( - name = "dense_features", - srcs = [ - "dense_features.py", - ], - srcs_version = "PY3", - deps = [ - ":base_feature_layer", - "//:expect_tensorflow_installed", - "//keras:backend", - ], -) - -py_library( - name = "dense_features_v2", - srcs = [ - "dense_features_v2.py", - ], - srcs_version = "PY3", - deps = [ - ":base_feature_layer", - ":dense_features", - "//:expect_tensorflow_installed", - "//keras/utils:tf_contextlib", - ], -) - -tf_py_test( - name = "dense_features_test", - srcs = ["dense_features_test.py"], - tags = ["no_pip"], - deps = [ - ":dense_features", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "dense_features_v2_test", - srcs = ["dense_features_v2_test.py"], - tags = ["no_pip"], - deps = [ - ":dense_features_v2", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -py_library( - name = "sequence_feature_column", - srcs = ["sequence_feature_column.py"], - srcs_version = "PY3", - deps = [ - ":base_feature_layer", - "//:expect_tensorflow_installed", - "//keras:backend", - ], -) - -tf_py_test( - name = "sequence_feature_column_test", - srcs = ["sequence_feature_column_test.py"], - deps = [ - ":sequence_feature_column", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "sequence_feature_column_integration_test", - srcs = ["sequence_feature_column_integration_test.py"], - python_version = "PY3", - srcs_version = "PY3", - tags = ["no_pip"], - deps = [ - ":dense_features", - ":sequence_feature_column", - "//:expect_tensorflow_installed", - "//keras/layers/core", - "//keras/layers/merging", - "//keras/layers/rnn", - "//keras/metrics", # Import it here since base_layer didn't import it due to circular dependency. - ], -) diff --git a/keras/feature_column/__init__.py b/keras/feature_column/__init__.py deleted file mode 100644 index e69de29bb2d..00000000000 diff --git a/keras/feature_column/base_feature_layer.py b/keras/feature_column/base_feature_layer.py deleted file mode 100644 index 085ccc6c3b5..00000000000 --- a/keras/feature_column/base_feature_layer.py +++ /dev/null @@ -1,242 +0,0 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""This API defines FeatureColumn abstraction.""" - -# This file was originally under tf/python/feature_column, and was moved to -# Keras package in order to remove the reverse dependency from TF to Keras. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import collections -import re - -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer -from keras.saving import serialization_lib - - -class _BaseFeaturesLayer(Layer): - """Base class for DenseFeatures and SequenceFeatures. - - Defines common methods and helpers. - - Args: - feature_columns: An iterable containing the FeatureColumns to use as - inputs to your model. - expected_column_type: Expected class for provided feature columns. - trainable: Boolean, whether the layer's variables will be updated via - gradient descent during training. - name: Name to give to the DenseFeatures. - **kwargs: Keyword arguments to construct a layer. - - Raises: - ValueError: if an item in `feature_columns` doesn't match - `expected_column_type`. - """ - - def __init__( - self, - feature_columns, - expected_column_type, - trainable, - name, - partitioner=None, - **kwargs - ): - super().__init__(name=name, trainable=trainable, **kwargs) - self._feature_columns = _normalize_feature_columns(feature_columns) - self._state_manager = tf.__internal__.feature_column.StateManager( - self, self.trainable - ) - self._partitioner = partitioner - for column in self._feature_columns: - if not isinstance(column, expected_column_type): - raise ValueError( - "Items of feature_columns must be a {}. " - "You can wrap a categorical column with an " - "embedding_column or indicator_column. Given: {}".format( - expected_column_type, column - ) - ) - - def build(self, _): - for column in self._feature_columns: - with tf.compat.v1.variable_scope( - self.name, partitioner=self._partitioner - ): - with tf.compat.v1.variable_scope( - _sanitize_column_name_for_variable_scope(column.name) - ): - column.create_state(self._state_manager) - super().build(None) - - def _output_shape(self, input_shape, num_elements): - """Computes expected output shape of the dense tensor of the layer. - - Args: - input_shape: Tensor or array with batch shape. - num_elements: Size of the last dimension of the output. - - Returns: - Tuple with output shape. - """ - raise NotImplementedError("Calling an abstract method.") - - def compute_output_shape(self, input_shape): - total_elements = 0 - for column in self._feature_columns: - total_elements += column.variable_shape.num_elements() - return self._target_shape(input_shape, total_elements) - - def _process_dense_tensor(self, column, tensor): - """Reshapes the dense tensor output of a column based on expected shape. - - Args: - column: A DenseColumn or SequenceDenseColumn object. - tensor: A dense tensor obtained from the same column. - - Returns: - Reshaped dense tensor. - """ - num_elements = column.variable_shape.num_elements() - target_shape = self._target_shape(tf.shape(tensor), num_elements) - return tf.reshape(tensor, shape=target_shape) - - def _verify_and_concat_tensors(self, output_tensors): - """Verifies and concatenates the dense output of several columns.""" - _verify_static_batch_size_equality( - output_tensors, self._feature_columns - ) - return tf.concat(output_tensors, -1) - - def get_config(self): - column_configs = [ - tf.__internal__.feature_column.serialize_feature_column(fc) - for fc in self._feature_columns - ] - config = {"feature_columns": column_configs} - config["partitioner"] = serialization_lib.serialize_keras_object( - self._partitioner - ) - - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - config_cp = config.copy() - columns_by_name = {} - config_cp["feature_columns"] = [ - tf.__internal__.feature_column.deserialize_feature_column( - c, custom_objects, columns_by_name - ) - for c in config["feature_columns"] - ] - config_cp["partitioner"] = serialization_lib.deserialize_keras_object( - config["partitioner"], custom_objects - ) - - return cls(**config_cp) - - -def _sanitize_column_name_for_variable_scope(name): - """Sanitizes user-provided feature names for use as variable scopes.""" - invalid_char = re.compile("[^A-Za-z0-9_.\\-]") - return invalid_char.sub("_", name) - - -def _verify_static_batch_size_equality(tensors, columns): - """Verify equality between static batch sizes. - - Args: - tensors: iterable of input tensors. - columns: Corresponding feature columns. - - Raises: - ValueError: in case of mismatched batch sizes. - """ - expected_batch_size = None - for i in range(0, len(tensors)): - # bath_size is a Dimension object. - batch_size = tf.compat.v1.Dimension( - tf.compat.dimension_value(tensors[i].shape[0]) - ) - if batch_size.value is not None: - if expected_batch_size is None: - bath_size_column_index = i - expected_batch_size = batch_size - elif not expected_batch_size.is_compatible_with(batch_size): - raise ValueError( - "Batch size (first dimension) of each feature must be " - "same. Batch size of columns ({}, {}): ({}, {})".format( - columns[bath_size_column_index].name, - columns[i].name, - expected_batch_size, - batch_size, - ) - ) - - -def _normalize_feature_columns(feature_columns): - """Normalizes the `feature_columns` input. - - This method converts the `feature_columns` to list type as best as it can. - In addition, verifies the type and other parts of feature_columns, required - by downstream library. - - Args: - feature_columns: The raw feature columns, usually passed by users. - - Returns: - The normalized feature column list. - - Raises: - ValueError: for any invalid inputs, such as empty, duplicated names, etc. - """ - if isinstance( - feature_columns, tf.__internal__.feature_column.FeatureColumn - ): - feature_columns = [feature_columns] - - if isinstance(feature_columns, collections.abc.Iterator): - feature_columns = list(feature_columns) - - if isinstance(feature_columns, dict): - raise ValueError("Expected feature_columns to be iterable, found dict.") - - for column in feature_columns: - if not isinstance(column, tf.__internal__.feature_column.FeatureColumn): - raise ValueError( - "Items of feature_columns must be a FeatureColumn. " - "Given (type {}): {}.".format(type(column), column) - ) - if not feature_columns: - raise ValueError("feature_columns must not be empty.") - name_to_column = {} - for column in feature_columns: - if column.name in name_to_column: - raise ValueError( - "Duplicate feature column name found for columns: {} " - "and {}. This usually means that these columns refer to " - "same base feature. Either one must be discarded or a " - "duplicated but renamed item must be inserted in " - "features dict.".format(column, name_to_column[column.name]) - ) - name_to_column[column.name] = column - - return sorted(feature_columns, key=lambda x: x.name) diff --git a/keras/feature_column/dense_features.py b/keras/feature_column/dense_features.py deleted file mode 100644 index f5ae664581c..00000000000 --- a/keras/feature_column/dense_features.py +++ /dev/null @@ -1,191 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""A layer that produces a dense `Tensor` based on given `feature_columns`.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import json - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.feature_column import base_feature_layer as kfc -from keras.saving.legacy.saved_model import json_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export(v1=["keras.layers.DenseFeatures"]) -class DenseFeatures(kfc._BaseFeaturesLayer): - """A layer that produces a dense `Tensor` based on given `feature_columns`. - - Generally a single example in training data is described with - FeatureColumns. At the first layer of the model, this column-oriented data - should be converted to a single `Tensor`. - - This layer can be called multiple times with different features. - - This is the V1 version of this layer that uses variable_scope's or - partitioner to create variables which works well with PartitionedVariables. - Variable scopes are deprecated in V2, so the V2 version uses name_scopes - instead. But currently that lacks support for partitioned variables. Use - this if you need partitioned variables. Use the partitioner argument if you - have a Keras model and uses - `tf.compat.v1.keras.estimator.model_to_estimator` for training. - - Example: - - ```python - price = tf.feature_column.numeric_column('price') - keywords_embedded = tf.feature_column.embedding_column( - tf.feature_column.categorical_column_with_hash_bucket("keywords", 10K), - dimension=16) - columns = [price, keywords_embedded, ...] - partitioner = tf.compat.v1.fixed_size_partitioner(num_shards=4) - feature_layer = tf.compat.v1.keras.layers.DenseFeatures( - feature_columns=columns, partitioner=partitioner) - - features = tf.io.parse_example( - ..., features=tf.feature_column.make_parse_example_spec(columns)) - dense_tensor = feature_layer(features) - for units in [128, 64, 32]: - dense_tensor = tf.compat.v1.keras.layers.Dense( - units, activation='relu')(dense_tensor) - prediction = tf.compat.v1.keras.layers.Dense(1)(dense_tensor) - ``` - """ - - def __init__( - self, - feature_columns, - trainable=True, - name=None, - partitioner=None, - **kwargs - ): - """Constructs a DenseFeatures layer. - - Args: - feature_columns: An iterable containing the FeatureColumns to use as - inputs to your model. All items should be instances of classes - derived from `DenseColumn` such as `numeric_column`, - `embedding_column`, `bucketized_column`, `indicator_column`. If you - have categorical features, you can wrap them with an - `embedding_column` or `indicator_column`. - trainable: Boolean, whether the layer's variables will be updated via - gradient descent during training. - name: Name to give to the DenseFeatures. - partitioner: Partitioner for input layer. Defaults to `None`. - **kwargs: Keyword arguments to construct a layer. - - Raises: - ValueError: if an item in `feature_columns` is not a `DenseColumn`. - """ - super().__init__( - feature_columns=feature_columns, - trainable=trainable, - name=name, - partitioner=partitioner, - expected_column_type=tf.__internal__.feature_column.DenseColumn, - **kwargs - ) - - @property - def _is_feature_layer(self): - return True - - @property - def _tracking_metadata(self): - """String stored in metadata field in the SavedModel proto. - - Returns: - A serialized JSON storing information necessary for recreating this - layer. - """ - metadata = json.loads(super()._tracking_metadata) - metadata["_is_feature_layer"] = True - return json.dumps(metadata, default=json_utils.get_json_type) - - def _target_shape(self, input_shape, total_elements): - return (input_shape[0], total_elements) - - def call(self, features, cols_to_output_tensors=None, training=None): - """Returns a dense tensor corresponding to the `feature_columns`. - - Example usage: - - >>> t1 = tf.feature_column.embedding_column( - ... tf.feature_column.categorical_column_with_hash_bucket("t1", 2), - ... dimension=8) - >>> t2 = tf.feature_column.numeric_column('t2') - >>> feature_layer = tf.compat.v1.keras.layers.DenseFeatures([t1, t2]) - >>> features = {"t1": tf.constant(["a", "b"]), - ... "t2": tf.constant([1, 2])} - >>> dense_tensor = feature_layer(features, training=True) - - Args: - features: A mapping from key to tensors. `FeatureColumn`s look up via - these keys. For example `numeric_column('price')` will look at - 'price' key in this dict. Values can be a `SparseTensor` or a - `Tensor` depends on corresponding `FeatureColumn`. - cols_to_output_tensors: If not `None`, this will be filled with a dict - mapping feature columns to output tensors created. - training: Python boolean or None, indicating whether to the layer is - being run in training mode. This argument is passed to the call - method of any `FeatureColumn` that takes a `training` argument. For - example, if a `FeatureColumn` performed dropout, the column could - expose a `training` argument to control whether the dropout should - be applied. If `None`, becomes `tf.keras.backend.learning_phase()`. - Defaults to `None`. - - - Returns: - A `Tensor` which represents input layer of a model. Its shape - is (batch_size, first_layer_dimension) and its dtype is `float32`. - first_layer_dimension is determined based on given `feature_columns`. - - Raises: - ValueError: If features are not a dictionary. - """ - if training is None: - training = backend.learning_phase() - if not isinstance(features, dict): - raise ValueError( - "We expected a dictionary here. Instead we got: ", features - ) - transformation_cache = ( - tf.__internal__.feature_column.FeatureTransformationCache(features) - ) - output_tensors = [] - for column in self._feature_columns: - with backend.name_scope(column.name): - try: - tensor = column.get_dense_tensor( - transformation_cache, - self._state_manager, - training=training, - ) - except TypeError: - tensor = column.get_dense_tensor( - transformation_cache, self._state_manager - ) - processed_tensors = self._process_dense_tensor(column, tensor) - if cols_to_output_tensors is not None: - cols_to_output_tensors[column] = processed_tensors - output_tensors.append(processed_tensors) - return self._verify_and_concat_tensors(output_tensors) diff --git a/keras/feature_column/dense_features_test.py b/keras/feature_column/dense_features_test.py deleted file mode 100644 index a89c0f2566b..00000000000 --- a/keras/feature_column/dense_features_test.py +++ /dev/null @@ -1,1374 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for dense_features.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.feature_column import dense_features as df -from keras.testing_infra import test_combinations - -# isort: off -from tensorflow.python.eager import backprop -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -def _initialized_session(config=None): - sess = tf.compat.v1.Session(config=config) - sess.run(tf.compat.v1.global_variables_initializer()) - sess.run(tf.compat.v1.tables_initializer()) - return sess - - -class DenseFeaturesTest(test_combinations.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_retrieving_input(self): - features = {"a": [0.0]} - dense_features = df.DenseFeatures(tf.feature_column.numeric_column("a")) - inputs = self.evaluate(dense_features(features)) - self.assertAllClose([[0.0]], inputs) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_reuses_variables(self): - sparse_input = tf.SparseTensor( - indices=((0, 0), (1, 0), (2, 0)), - values=(0, 1, 2), - dense_shape=(3, 3), - ) - - # Create feature columns (categorical and embedding). - categorical_column = tf.feature_column.categorical_column_with_identity( - key="a", num_buckets=3 - ) - embedding_dimension = 2 - - def _embedding_column_initializer(shape, dtype, partition_info=None): - del shape # unused - del dtype # unused - del partition_info # unused - embedding_values = ((1, 0), (0, 1), (1, 1)) # id 0 # id 1 # id 2 - return embedding_values - - embedding_column = tf.feature_column.embedding_column( - categorical_column, - dimension=embedding_dimension, - initializer=_embedding_column_initializer, - ) - - dense_features = df.DenseFeatures([embedding_column]) - features = {"a": sparse_input} - - inputs = dense_features(features) - variables = dense_features.variables - - # Sanity check: test that the inputs are correct. - self.assertAllEqual([[1, 0], [0, 1], [1, 1]], inputs) - - # Check that only one variable was created. - self.assertEqual(1, len(variables)) - - # Check that invoking dense_features on the same features does not - # create additional variables - _ = dense_features(features) - self.assertEqual(1, len(variables)) - self.assertIs(variables[0], dense_features.variables[0]) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_dense_feature_with_partitioner(self): - sparse_input = tf.SparseTensor( - indices=((0, 0), (1, 0), (2, 0), (3, 0)), - values=(0, 1, 3, 2), - dense_shape=(4, 4), - ) - - # Create feature columns (categorical and embedding). - categorical_column = tf.feature_column.categorical_column_with_identity( - key="a", num_buckets=4 - ) - embedding_dimension = 2 - - def _embedding_column_initializer(shape, dtype, partition_info=None): - offset = partition_info._var_offset[0] - del shape # unused - del dtype # unused - if offset == 0: - embedding_values = ((1, 0), (0, 1)) # id 0 # id 1 - else: - embedding_values = ((1, 1), (2, 2)) # id 2 # id 3 - return embedding_values - - embedding_column = tf.feature_column.embedding_column( - categorical_column, - dimension=embedding_dimension, - initializer=_embedding_column_initializer, - ) - - dense_features = df.DenseFeatures( - [embedding_column], - partitioner=tf.compat.v1.fixed_size_partitioner(2), - ) - features = {"a": sparse_input} - - inputs = dense_features(features) - variables = dense_features.variables - - # Sanity check: test that the inputs are correct. - self.assertAllEqual([[1, 0], [0, 1], [2, 2], [1, 1]], inputs) - - # Check that only one variable was created. - self.assertEqual(2, len(variables)) - - # Check that invoking dense_features on the same features does not - # create additional variables - _ = dense_features(features) - self.assertEqual(2, len(variables)) - self.assertIs(variables[0], dense_features.variables[0]) - self.assertIs(variables[1], dense_features.variables[1]) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_feature_column_dense_features_gradient(self): - sparse_input = tf.SparseTensor( - indices=((0, 0), (1, 0), (2, 0)), - values=(0, 1, 2), - dense_shape=(3, 3), - ) - - # Create feature columns (categorical and embedding). - categorical_column = tf.feature_column.categorical_column_with_identity( - key="a", num_buckets=3 - ) - embedding_dimension = 2 - - def _embedding_column_initializer(shape, dtype, partition_info=None): - del shape # unused - del dtype # unused - del partition_info # unused - embedding_values = ((1, 0), (0, 1), (1, 1)) # id 0 # id 1 # id 2 - return embedding_values - - embedding_column = tf.feature_column.embedding_column( - categorical_column, - dimension=embedding_dimension, - initializer=_embedding_column_initializer, - ) - - dense_features = df.DenseFeatures([embedding_column]) - features = {"a": sparse_input} - - def scale_matrix(): - matrix = dense_features(features) - return 2 * matrix - - # Sanity check: Verify that scale_matrix returns the correct output. - self.assertAllEqual([[2, 0], [0, 2], [2, 2]], scale_matrix()) - - # Check that the returned gradient is correct. - grad_function = backprop.implicit_grad(scale_matrix) - grads_and_vars = grad_function() - indexed_slice = grads_and_vars[0][0] - gradient = grads_and_vars[0][0].values - - self.assertAllEqual([0, 1, 2], indexed_slice.indices) - self.assertAllEqual([[2, 2], [2, 2], [2, 2]], gradient) - - def test_raises_if_empty_feature_columns(self): - with self.assertRaisesRegex( - ValueError, "feature_columns must not be empty" - ): - df.DenseFeatures(feature_columns=[])(features={}) - - def test_should_be_dense_column(self): - with self.assertRaisesRegex(ValueError, "must be a .*DenseColumn"): - df.DenseFeatures( - feature_columns=[ - tf.feature_column.categorical_column_with_hash_bucket( - "wire_cast", 4 - ) - ] - )(features={"a": [[0]]}) - - def test_does_not_support_dict_columns(self): - with self.assertRaisesRegex( - ValueError, "Expected feature_columns to be iterable, found dict." - ): - df.DenseFeatures( - feature_columns={"a": tf.feature_column.numeric_column("a")} - )(features={"a": [[0]]}) - - def test_bare_column(self): - with tf.Graph().as_default(): - features = features = {"a": [0.0]} - net = df.DenseFeatures(tf.feature_column.numeric_column("a"))( - features - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose([[0.0]], self.evaluate(net)) - - def test_column_generator(self): - with tf.Graph().as_default(): - features = features = {"a": [0.0], "b": [1.0]} - columns = ( - tf.feature_column.numeric_column(key) for key in features - ) - net = df.DenseFeatures(columns)(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose([[0.0, 1.0]], self.evaluate(net)) - - def test_raises_if_duplicate_name(self): - with self.assertRaisesRegex( - ValueError, "Duplicate feature column name found for columns" - ): - df.DenseFeatures( - feature_columns=[ - tf.feature_column.numeric_column("a"), - tf.feature_column.numeric_column("a"), - ] - )(features={"a": [[0]]}) - - def test_one_column(self): - price = tf.feature_column.numeric_column("price") - with tf.Graph().as_default(): - features = {"price": [[1.0], [5.0]]} - net = df.DenseFeatures([price])(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose([[1.0], [5.0]], self.evaluate(net)) - - def test_multi_dimension(self): - price = tf.feature_column.numeric_column("price", shape=2) - with tf.Graph().as_default(): - features = {"price": [[1.0, 2.0], [5.0, 6.0]]} - net = df.DenseFeatures([price])(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose([[1.0, 2.0], [5.0, 6.0]], self.evaluate(net)) - - def test_compute_output_shape(self): - price1 = tf.feature_column.numeric_column("price1", shape=2) - price2 = tf.feature_column.numeric_column("price2", shape=4) - with tf.Graph().as_default(): - features = { - "price1": [[1.0, 2.0], [5.0, 6.0]], - "price2": [[3.0, 4.0, 5.0, 6.0], [7.0, 8.0, 9.0, 10.0]], - } - dense_features = df.DenseFeatures([price1, price2]) - self.assertEqual( - (None, 6), dense_features.compute_output_shape((None,)) - ) - net = dense_features(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose( - [ - [1.0, 2.0, 3.0, 4.0, 5.0, 6.0], - [5.0, 6.0, 7.0, 8.0, 9.0, 10.0], - ], - self.evaluate(net), - ) - - def test_raises_if_shape_mismatch(self): - price = tf.feature_column.numeric_column("price", shape=2) - with tf.Graph().as_default(): - features = {"price": [[1.0], [5.0]]} - with self.assertRaisesRegex( - Exception, - r"Cannot reshape a tensor with 2 elements to shape \[2,2\]", - ): - df.DenseFeatures([price])(features) - - def test_reshaping(self): - price = tf.feature_column.numeric_column("price", shape=[1, 2]) - with tf.Graph().as_default(): - features = {"price": [[[1.0, 2.0]], [[5.0, 6.0]]]} - net = df.DenseFeatures([price])(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose([[1.0, 2.0], [5.0, 6.0]], self.evaluate(net)) - - def test_multi_column(self): - price1 = tf.feature_column.numeric_column("price1", shape=2) - price2 = tf.feature_column.numeric_column("price2") - with tf.Graph().as_default(): - features = { - "price1": [[1.0, 2.0], [5.0, 6.0]], - "price2": [[3.0], [4.0]], - } - net = df.DenseFeatures([price1, price2])(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose( - [[1.0, 2.0, 3.0], [5.0, 6.0, 4.0]], self.evaluate(net) - ) - - def test_cols_to_output_tensors(self): - price1 = tf.feature_column.numeric_column("price1", shape=2) - price2 = tf.feature_column.numeric_column("price2") - with tf.Graph().as_default(): - cols_dict = {} - features = { - "price1": [[1.0, 2.0], [5.0, 6.0]], - "price2": [[3.0], [4.0]], - } - dense_features = df.DenseFeatures([price1, price2]) - net = dense_features(features, cols_dict) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose( - [[1.0, 2.0], [5.0, 6.0]], self.evaluate(cols_dict[price1]) - ) - self.assertAllClose( - [[3.0], [4.0]], self.evaluate(cols_dict[price2]) - ) - self.assertAllClose( - [[1.0, 2.0, 3.0], [5.0, 6.0, 4.0]], self.evaluate(net) - ) - - def test_column_order(self): - price_a = tf.feature_column.numeric_column("price_a") - price_b = tf.feature_column.numeric_column("price_b") - with tf.Graph().as_default(): - features = { - "price_a": [[1.0]], - "price_b": [[3.0]], - } - net1 = df.DenseFeatures([price_a, price_b])(features) - net2 = df.DenseFeatures([price_b, price_a])(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose([[1.0, 3.0]], self.evaluate(net1)) - self.assertAllClose([[1.0, 3.0]], self.evaluate(net2)) - - def test_fails_for_categorical_column(self): - animal = tf.feature_column.categorical_column_with_identity( - "animal", num_buckets=4 - ) - with tf.Graph().as_default(): - features = { - "animal": tf.SparseTensor( - indices=[[0, 0], [0, 1]], values=[1, 2], dense_shape=[1, 2] - ) - } - with self.assertRaisesRegex(Exception, "must be a .*DenseColumn"): - df.DenseFeatures([animal])(features) - - def test_static_batch_size_mismatch(self): - price1 = tf.feature_column.numeric_column("price1") - price2 = tf.feature_column.numeric_column("price2") - with tf.Graph().as_default(): - features = { - "price1": [[1.0], [5.0], [7.0]], # batchsize = 3 - "price2": [[3.0], [4.0]], # batchsize = 2 - } - with self.assertRaisesRegex( - ValueError, - r"Batch size \(first dimension\) of each feature must be same.", - ): - df.DenseFeatures([price1, price2])(features) - - def test_subset_of_static_batch_size_mismatch(self): - price1 = tf.feature_column.numeric_column("price1") - price2 = tf.feature_column.numeric_column("price2") - price3 = tf.feature_column.numeric_column("price3") - with tf.Graph().as_default(): - features = { - "price1": tf.compat.v1.placeholder( - dtype=tf.int64 - ), # batchsize = 3 - "price2": [[3.0], [4.0]], # batchsize = 2 - "price3": [[3.0], [4.0], [5.0]], # batchsize = 3 - } - with self.assertRaisesRegex( - ValueError, - r"Batch size \(first dimension\) of each feature must be same.", - ): - df.DenseFeatures([price1, price2, price3])(features) - - def test_runtime_batch_size_mismatch(self): - price1 = tf.feature_column.numeric_column("price1") - price2 = tf.feature_column.numeric_column("price2") - with tf.Graph().as_default(): - features = { - "price1": tf.compat.v1.placeholder( - dtype=tf.int64 - ), # batchsize = 3 - "price2": [[3.0], [4.0]], # batchsize = 2 - } - net = df.DenseFeatures([price1, price2])(features) - with _initialized_session() as sess: - with self.assertRaisesRegex( - tf.errors.OpError, - "Dimension 0 in both shapes must be equal|" - "Dimensions of inputs should match", - ): - sess.run( - net, - feed_dict={features["price1"]: [[1.0], [5.0], [7.0]]}, - ) - - def test_runtime_batch_size_matches(self): - price1 = tf.feature_column.numeric_column("price1") - price2 = tf.feature_column.numeric_column("price2") - with tf.Graph().as_default(): - features = { - "price1": tf.compat.v1.placeholder( - dtype=tf.int64 - ), # batchsize = 2 - "price2": tf.compat.v1.placeholder( - dtype=tf.int64 - ), # batchsize = 2 - } - net = df.DenseFeatures([price1, price2])(features) - with _initialized_session() as sess: - sess.run( - net, - feed_dict={ - features["price1"]: [[1.0], [5.0]], - features["price2"]: [[1.0], [5.0]], - }, - ) - - def test_multiple_layers_with_same_embedding_column(self): - some_sparse_column = ( - tf.feature_column.categorical_column_with_hash_bucket( - "sparse_feature", hash_bucket_size=5 - ) - ) - some_embedding_column = tf.feature_column.embedding_column( - some_sparse_column, dimension=10 - ) - - with tf.Graph().as_default(): - features = { - "sparse_feature": [["a"], ["x"]], - } - all_cols = [some_embedding_column] - df.DenseFeatures(all_cols)(features) - df.DenseFeatures(all_cols)(features) - # Make sure that 2 variables get created in this case. - self.assertEqual( - 2, - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ), - ) - expected_var_names = [ - "dense_features/sparse_feature_embedding/embedding_weights:0", - "dense_features_1/sparse_feature_embedding/embedding_weights:0", - ] - self.assertCountEqual( - expected_var_names, - [ - v.name - for v in tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ], - ) - - @tf_test_utils.run_deprecated_v1 - def test_multiple_layers_with_same_shared_embedding_column(self): - categorical_column_a = ( - tf.feature_column.categorical_column_with_identity( - key="aaa", num_buckets=3 - ) - ) - categorical_column_b = ( - tf.feature_column.categorical_column_with_identity( - key="bbb", num_buckets=3 - ) - ) - embedding_dimension = 2 - ( - embedding_column_b, - embedding_column_a, - ) = tf.feature_column.shared_embeddings( - [categorical_column_b, categorical_column_a], - dimension=embedding_dimension, - ) - - with tf.Graph().as_default(): - features = { - "aaa": tf.SparseTensor( - indices=((0, 0), (1, 0), (1, 1)), - values=(0, 1, 0), - dense_shape=(2, 2), - ), - "bbb": tf.SparseTensor( - indices=((0, 0), (1, 0), (1, 1)), - values=(1, 2, 1), - dense_shape=(2, 2), - ), - } - all_cols = [embedding_column_a, embedding_column_b] - df.DenseFeatures(all_cols)(features) - df.DenseFeatures(all_cols)(features) - # Make sure that only 1 variable gets created in this case. - self.assertEqual( - 1, - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ), - ) - self.assertCountEqual( - ["aaa_bbb_shared_embedding:0"], - [ - v.name - for v in tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ], - ) - - @tf_test_utils.run_deprecated_v1 - def test_multiple_layers_with_same_shared_embedding_column_diff_graphs( - self, - ): - categorical_column_a = ( - tf.feature_column.categorical_column_with_identity( - key="aaa", num_buckets=3 - ) - ) - categorical_column_b = ( - tf.feature_column.categorical_column_with_identity( - key="bbb", num_buckets=3 - ) - ) - embedding_dimension = 2 - ( - embedding_column_b, - embedding_column_a, - ) = tf.feature_column.shared_embeddings( - [categorical_column_b, categorical_column_a], - dimension=embedding_dimension, - ) - all_cols = [embedding_column_a, embedding_column_b] - - with tf.Graph().as_default(): - features = { - "aaa": tf.SparseTensor( - indices=((0, 0), (1, 0), (1, 1)), - values=(0, 1, 0), - dense_shape=(2, 2), - ), - "bbb": tf.SparseTensor( - indices=((0, 0), (1, 0), (1, 1)), - values=(1, 2, 1), - dense_shape=(2, 2), - ), - } - df.DenseFeatures(all_cols)(features) - # Make sure that only 1 variable gets created in this case. - self.assertEqual( - 1, - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ), - ) - - with tf.Graph().as_default(): - features1 = { - "aaa": tf.SparseTensor( - indices=((0, 0), (1, 0), (1, 1)), - values=(0, 1, 0), - dense_shape=(2, 2), - ), - "bbb": tf.SparseTensor( - indices=((0, 0), (1, 0), (1, 1)), - values=(1, 2, 1), - dense_shape=(2, 2), - ), - } - - df.DenseFeatures(all_cols)(features1) - # Make sure that only 1 variable gets created in this case. - self.assertEqual( - 1, - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ), - ) - self.assertCountEqual( - ["aaa_bbb_shared_embedding:0"], - [ - v.name - for v in tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ], - ) - - @tf_test_utils.run_deprecated_v1 - def test_with_1d_sparse_tensor(self): - embedding_values = ( - (1.0, 2.0, 3.0, 4.0, 5.0), # id 0 - (6.0, 7.0, 8.0, 9.0, 10.0), # id 1 - (11.0, 12.0, 13.0, 14.0, 15.0), # id 2 - ) - - def _initializer(shape, dtype, partition_info=None): - del shape, dtype, partition_info - return embedding_values - - # price has 1 dimension in dense_features - price = tf.feature_column.numeric_column("price") - - # one_hot_body_style has 3 dims in dense_features. - body_style = tf.feature_column.categorical_column_with_vocabulary_list( - "body-style", vocabulary_list=["hardtop", "wagon", "sedan"] - ) - one_hot_body_style = tf.feature_column.indicator_column(body_style) - - # embedded_body_style has 5 dims in dense_features. - country = tf.feature_column.categorical_column_with_vocabulary_list( - "country", vocabulary_list=["US", "JP", "CA"] - ) - embedded_country = tf.feature_column.embedding_column( - country, dimension=5, initializer=_initializer - ) - - # Provides 1-dim tensor and dense tensor. - features = { - "price": tf.constant( - [ - 11.0, - 12.0, - ] - ), - "body-style": tf.SparseTensor( - indices=((0,), (1,)), - values=("sedan", "hardtop"), - dense_shape=(2,), - ), - # This is dense tensor for the categorical_column. - "country": tf.constant(["CA", "US"]), - } - self.assertEqual(1, features["price"].shape.ndims) - self.assertEqual(1, features["body-style"].dense_shape.get_shape()[0]) - self.assertEqual(1, features["country"].shape.ndims) - - net = df.DenseFeatures([price, one_hot_body_style, embedded_country])( - features - ) - self.assertEqual(1 + 3 + 5, net.shape[1]) - with _initialized_session() as sess: - - # Each row is formed by concatenating `embedded_body_style`, - # `one_hot_body_style`, and `price` in order. - self.assertAllEqual( - [ - [0.0, 0.0, 1.0, 11.0, 12.0, 13.0, 14.0, 15.0, 11.0], - [1.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 12.0], - ], - sess.run(net), - ) - - @tf_test_utils.run_deprecated_v1 - def test_with_1d_unknown_shape_sparse_tensor(self): - embedding_values = ( - (1.0, 2.0), # id 0 - (6.0, 7.0), # id 1 - (11.0, 12.0), # id 2 - ) - - def _initializer(shape, dtype, partition_info=None): - del shape, dtype, partition_info - return embedding_values - - # price has 1 dimension in dense_features - price = tf.feature_column.numeric_column("price") - - # one_hot_body_style has 3 dims in dense_features. - body_style = tf.feature_column.categorical_column_with_vocabulary_list( - "body-style", vocabulary_list=["hardtop", "wagon", "sedan"] - ) - one_hot_body_style = tf.feature_column.indicator_column(body_style) - - # embedded_body_style has 5 dims in dense_features. - country = tf.feature_column.categorical_column_with_vocabulary_list( - "country", vocabulary_list=["US", "JP", "CA"] - ) - embedded_country = tf.feature_column.embedding_column( - country, dimension=2, initializer=_initializer - ) - - # Provides 1-dim tensor and dense tensor. - features = { - "price": tf.compat.v1.placeholder(tf.float32), - "body-style": tf.compat.v1.sparse_placeholder(tf.string), - # This is dense tensor for the categorical_column. - "country": tf.compat.v1.placeholder(tf.string), - } - self.assertIsNone(features["price"].shape.ndims) - self.assertIsNone(features["body-style"].get_shape().ndims) - self.assertIsNone(features["country"].shape.ndims) - - price_data = np.array([11.0, 12.0]) - body_style_data = tf.compat.v1.SparseTensorValue( - indices=((0,), (1,)), values=("sedan", "hardtop"), dense_shape=(2,) - ) - country_data = np.array([["US"], ["CA"]]) - - net = df.DenseFeatures([price, one_hot_body_style, embedded_country])( - features - ) - self.assertEqual(1 + 3 + 2, net.shape[1]) - with _initialized_session() as sess: - - # Each row is formed by concatenating `embedded_body_style`, - # `one_hot_body_style`, and `price` in order. - self.assertAllEqual( - [ - [0.0, 0.0, 1.0, 1.0, 2.0, 11.0], - [1.0, 0.0, 0.0, 11.0, 12.0, 12.0], - ], - sess.run( - net, - feed_dict={ - features["price"]: price_data, - features["body-style"]: body_style_data, - features["country"]: country_data, - }, - ), - ) - - @tf_test_utils.run_deprecated_v1 - def test_with_rank_0_feature(self): - # price has 1 dimension in dense_features - price = tf.feature_column.numeric_column("price") - features = { - "price": tf.constant(0), - } - self.assertEqual(0, features["price"].shape.ndims) - - # Static rank 0 should fail - with self.assertRaisesRegex( - ValueError, "Feature .* cannot have rank 0" - ): - df.DenseFeatures([price])(features) - - # Dynamic rank 0 should fail - features = { - "price": tf.compat.v1.placeholder(tf.float32), - } - net = df.DenseFeatures([price])(features) - self.assertEqual(1, net.shape[1]) - with _initialized_session() as sess: - with self.assertRaisesOpError("Feature .* cannot have rank 0"): - sess.run(net, feed_dict={features["price"]: np.array(1)}) - - -class IndicatorColumnTest(tf.test.TestCase): - @tf_test_utils.run_deprecated_v1 - def test_dense_features(self): - animal = tf.feature_column.indicator_column( - tf.feature_column.categorical_column_with_identity( - "animal", num_buckets=4 - ) - ) - with tf.Graph().as_default(): - features = { - "animal": tf.SparseTensor( - indices=[[0, 0], [0, 1]], values=[1, 2], dense_shape=[1, 2] - ) - } - net = df.DenseFeatures([animal])(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose([[0.0, 1.0, 1.0, 0.0]], self.evaluate(net)) - - -class EmbeddingColumnTest(tf.test.TestCase, parameterized.TestCase): - @parameterized.named_parameters( - { - "testcase_name": "use_safe_embedding_lookup", - "use_safe_embedding_lookup": True, - "partition_variables": False, - }, - { - "testcase_name": "dont_use_safe_embedding_lookup", - "use_safe_embedding_lookup": False, - "partition_variables": False, - }, - { - "testcase_name": "use_safe_embedding_lookup_partitioned", - "use_safe_embedding_lookup": True, - "partition_variables": True, - }, - { - "testcase_name": "dont_use_safe_embedding_lookup_partitioned", - "use_safe_embedding_lookup": False, - "partition_variables": True, - }, - ) - @tf_test_utils.run_deprecated_v1 - def test_dense_features( - self, use_safe_embedding_lookup, partition_variables - ): - # Inputs. - vocabulary_size = 4 - sparse_input = tf.compat.v1.SparseTensorValue( - # example 0, ids [2] - # example 1, ids [0, 1] - # example 2, ids [] - # example 3, ids [1] - indices=((0, 0), (1, 0), (1, 4), (3, 0)), - values=(2, 0, 1, 1), - dense_shape=(4, 5), - ) - - # Embedding variable. - embedding_dimension = 2 - embedding_values = ( - (1.0, 2.0), # id 0 - (3.0, 5.0), # id 1 - (7.0, 11.0), # id 2 - (9.0, 13.0), # id 3 - ) - - def _initializer(shape, dtype, partition_info=None): - if partition_variables: - self.assertEqual( - [vocabulary_size, embedding_dimension], - partition_info.full_shape, - ) - self.assertAllEqual((2, embedding_dimension), shape) - else: - self.assertAllEqual( - (vocabulary_size, embedding_dimension), shape - ) - self.assertIsNone(partition_info) - - self.assertEqual(tf.float32, dtype) - return embedding_values - - # Expected lookup result, using combiner='mean'. - expected_lookups = ( - # example 0, ids [2], embedding = [7, 11] - (7.0, 11.0), - # example 1, ids [0, 1], embedding = mean([1, 2] + [3, 5]) = [2, - # 3.5] - (2.0, 3.5), - # example 2, ids [], embedding = [0, 0] - (0.0, 0.0), - # example 3, ids [1], embedding = [3, 5] - (3.0, 5.0), - ) - - # Build columns. - categorical_column = tf.feature_column.categorical_column_with_identity( - key="aaa", num_buckets=vocabulary_size - ) - partitioner = None - if partition_variables: - partitioner = tf.compat.v1.fixed_size_partitioner(2, axis=0) - with tf.compat.v1.variable_scope("vars", partitioner=partitioner): - embedding_column = tf.feature_column.embedding_column( - categorical_column, - dimension=embedding_dimension, - initializer=_initializer, - use_safe_embedding_lookup=use_safe_embedding_lookup, - ) - - # Provide sparse input and get dense result. - l = df.DenseFeatures((embedding_column,)) - dense_features = l({"aaa": sparse_input}) - - # Assert expected embedding variable and lookups. - global_vars = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - if partition_variables: - self.assertCountEqual( - ( - "vars/dense_features/aaa_embedding/embedding_weights/" - "part_0:0", - "vars/dense_features/aaa_embedding/embedding_weights/" - "part_1:0", - ), - tuple([v.name for v in global_vars]), - ) - else: - self.assertCountEqual( - ("vars/dense_features/aaa_embedding/embedding_weights:0",), - tuple([v.name for v in global_vars]), - ) - for v in global_vars: - self.assertIsInstance(v, tf.Variable) - trainable_vars = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES - ) - if partition_variables: - self.assertCountEqual( - ( - "vars/dense_features/aaa_embedding/embedding_weights/" - "part_0:0", - "vars/dense_features/aaa_embedding/embedding_weights/" - "part_1:0", - ), - tuple([v.name for v in trainable_vars]), - ) - else: - self.assertCountEqual( - ("vars/dense_features/aaa_embedding/embedding_weights:0",), - tuple([v.name for v in trainable_vars]), - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllEqual(embedding_values, self.evaluate(trainable_vars[0])) - self.assertAllEqual(expected_lookups, self.evaluate(dense_features)) - - if use_safe_embedding_lookup: - self.assertIn( - "SparseFillEmptyRows", - [ - x.type - for x in tf.compat.v1.get_default_graph().get_operations() - ], - ) - else: - self.assertNotIn( - "SparseFillEmptyRows", - [ - x.type - for x in tf.compat.v1.get_default_graph().get_operations() - ], - ) - - @tf_test_utils.run_deprecated_v1 - def test_dense_features_not_trainable(self): - # Inputs. - vocabulary_size = 3 - sparse_input = tf.compat.v1.SparseTensorValue( - # example 0, ids [2] - # example 1, ids [0, 1] - # example 2, ids [] - # example 3, ids [1] - indices=((0, 0), (1, 0), (1, 4), (3, 0)), - values=(2, 0, 1, 1), - dense_shape=(4, 5), - ) - - # Embedding variable. - embedding_dimension = 2 - embedding_values = ( - (1.0, 2.0), # id 0 - (3.0, 5.0), # id 1 - (7.0, 11.0), # id 2 - ) - - def _initializer(shape, dtype, partition_info=None): - self.assertAllEqual((vocabulary_size, embedding_dimension), shape) - self.assertEqual(tf.float32, dtype) - self.assertIsNone(partition_info) - return embedding_values - - # Expected lookup result, using combiner='mean'. - expected_lookups = ( - # example 0, ids [2], embedding = [7, 11] - (7.0, 11.0), - # example 1, ids [0, 1], embedding = mean([1, 2] + [3, 5]) = [2, - # 3.5] - (2.0, 3.5), - # example 2, ids [], embedding = [0, 0] - (0.0, 0.0), - # example 3, ids [1], embedding = [3, 5] - (3.0, 5.0), - ) - - # Build columns. - categorical_column = tf.feature_column.categorical_column_with_identity( - key="aaa", num_buckets=vocabulary_size - ) - embedding_column = tf.feature_column.embedding_column( - categorical_column, - dimension=embedding_dimension, - initializer=_initializer, - trainable=False, - ) - - # Provide sparse input and get dense result. - dense_features = df.DenseFeatures((embedding_column,))( - {"aaa": sparse_input} - ) - - # Assert expected embedding variable and lookups. - global_vars = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - self.assertCountEqual( - ("dense_features/aaa_embedding/embedding_weights:0",), - tuple([v.name for v in global_vars]), - ) - self.assertCountEqual( - [], - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES - ), - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllEqual(embedding_values, self.evaluate(global_vars[0])) - self.assertAllEqual(expected_lookups, self.evaluate(dense_features)) - - -class SharedEmbeddingColumnTest(tf.test.TestCase, parameterized.TestCase): - def _test_dense_features(self, trainable=True): - # Inputs. - vocabulary_size = 3 - sparse_input_a = tf.compat.v1.SparseTensorValue( - # example 0, ids [2] - # example 1, ids [0, 1] - indices=((0, 0), (1, 0), (1, 4)), - values=(2, 0, 1), - dense_shape=(2, 5), - ) - sparse_input_b = tf.compat.v1.SparseTensorValue( - # example 0, ids [0] - # example 1, ids [] - indices=((0, 0),), - values=(0,), - dense_shape=(2, 5), - ) - sparse_input_c = tf.compat.v1.SparseTensorValue( - # example 0, ids [2] - # example 1, ids [0, 1] - indices=((0, 1), (1, 1), (1, 3)), - values=(2, 0, 1), - dense_shape=(2, 5), - ) - sparse_input_d = tf.compat.v1.SparseTensorValue( - # example 0, ids [2] - # example 1, ids [] - indices=((0, 1),), - values=(2,), - dense_shape=(2, 5), - ) - - # Embedding variable. - embedding_dimension = 2 - embedding_values = ( - (1.0, 2.0), # id 0 - (3.0, 5.0), # id 1 - (7.0, 11.0), # id 2 - ) - - def _initializer(shape, dtype, partition_info=None): - self.assertAllEqual((vocabulary_size, embedding_dimension), shape) - self.assertEqual(tf.float32, dtype) - self.assertIsNone(partition_info) - return embedding_values - - # Expected lookup result, using combiner='mean'. - expected_lookups = ( - # example 0: - # A ids [2], embedding = [7, 11] - # B ids [0], embedding = [1, 2] - # C ids [2], embedding = [7, 11] - # D ids [2], embedding = [7, 11] - (7.0, 11.0, 1.0, 2.0, 7.0, 11.0, 7.0, 11.0), - # example 1: - # A ids [0, 1], embedding = mean([1, 2] + [3, 5]) = [2, 3.5] - # B ids [], embedding = [0, 0] - # C ids [0, 1], embedding = mean([1, 2] + [3, 5]) = [2, 3.5] - # D ids [], embedding = [0, 0] - (2.0, 3.5, 0.0, 0.0, 2.0, 3.5, 0.0, 0.0), - ) - - # Build columns. - categorical_column_a = ( - tf.feature_column.categorical_column_with_identity( - key="aaa", num_buckets=vocabulary_size - ) - ) - categorical_column_b = ( - tf.feature_column.categorical_column_with_identity( - key="bbb", num_buckets=vocabulary_size - ) - ) - categorical_column_c = ( - tf.feature_column.categorical_column_with_identity( - key="ccc", num_buckets=vocabulary_size - ) - ) - categorical_column_d = ( - tf.feature_column.categorical_column_with_identity( - key="ddd", num_buckets=vocabulary_size - ) - ) - - ( - embedding_column_a, - embedding_column_b, - ) = tf.feature_column.shared_embeddings( - [categorical_column_a, categorical_column_b], - dimension=embedding_dimension, - initializer=_initializer, - trainable=trainable, - ) - ( - embedding_column_c, - embedding_column_d, - ) = tf.feature_column.shared_embeddings( - [categorical_column_c, categorical_column_d], - dimension=embedding_dimension, - initializer=_initializer, - trainable=trainable, - ) - - features = { - "aaa": sparse_input_a, - "bbb": sparse_input_b, - "ccc": sparse_input_c, - "ddd": sparse_input_d, - } - - # Provide sparse input and get dense result. - dense_features = df.DenseFeatures( - feature_columns=( - embedding_column_b, - embedding_column_a, - embedding_column_c, - embedding_column_d, - ) - )(features) - - # Assert expected embedding variable and lookups. - global_vars = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - self.assertCountEqual( - ["aaa_bbb_shared_embedding:0", "ccc_ddd_shared_embedding:0"], - tuple([v.name for v in global_vars]), - ) - for v in global_vars: - self.assertIsInstance(v, tf.Variable) - trainable_vars = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES - ) - if trainable: - self.assertCountEqual( - ["aaa_bbb_shared_embedding:0", "ccc_ddd_shared_embedding:0"], - tuple([v.name for v in trainable_vars]), - ) - else: - self.assertCountEqual([], tuple([v.name for v in trainable_vars])) - shared_embedding_vars = global_vars - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllEqual( - embedding_values, self.evaluate(shared_embedding_vars[0]) - ) - self.assertAllEqual(expected_lookups, self.evaluate(dense_features)) - - @tf_test_utils.run_deprecated_v1 - def test_dense_features(self): - self._test_dense_features() - - @tf_test_utils.run_deprecated_v1 - def test_dense_features_no_trainable(self): - self._test_dense_features(trainable=False) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class DenseFeaturesSerializationTest(tf.test.TestCase, parameterized.TestCase): - @parameterized.named_parameters( - ("trainable", True, "trainable"), ("not_trainable", False, "frozen") - ) - def test_get_config(self, trainable, name): - cols = [ - tf.feature_column.numeric_column("a"), - tf.feature_column.embedding_column( - tf.feature_column.categorical_column_with_identity( - key="b", num_buckets=3 - ), - dimension=2, - ), - ] - orig_layer = df.DenseFeatures(cols, trainable=trainable, name=name) - config = orig_layer.get_config() - - self.assertEqual(config["name"], orig_layer.name) - self.assertEqual(config["trainable"], trainable) - self.assertLen(config["feature_columns"], 2) - self.assertEqual( - config["feature_columns"][0]["class_name"], "NumericColumn" - ) - self.assertEqual(config["feature_columns"][0]["config"]["shape"], (1,)) - self.assertEqual( - config["feature_columns"][1]["class_name"], "EmbeddingColumn" - ) - - @parameterized.named_parameters( - ("trainable", True, "trainable"), ("not_trainable", False, "frozen") - ) - def test_from_config(self, trainable, name): - cols = [ - tf.feature_column.numeric_column("a"), - tf.feature_column.embedding_column( - tf.feature_column.categorical_column_with_vocabulary_list( - "b", vocabulary_list=["1", "2", "3"] - ), - dimension=2, - ), - tf.feature_column.indicator_column( - tf.feature_column.categorical_column_with_hash_bucket( - key="c", hash_bucket_size=3 - ) - ), - ] - orig_layer = df.DenseFeatures(cols, trainable=trainable, name=name) - config = orig_layer.get_config() - - new_layer = df.DenseFeatures.from_config(config) - - self.assertEqual(new_layer.name, orig_layer.name) - self.assertEqual(new_layer.trainable, trainable) - self.assertLen(new_layer._feature_columns, 3) - self.assertEqual(new_layer._feature_columns[0].name, "a") - self.assertEqual(new_layer._feature_columns[1].initializer.mean, 0.0) - self.assertEqual( - new_layer._feature_columns[1].categorical_column.name, "b" - ) - self.assertIsInstance(new_layer._feature_columns[0], cols[0].__class__) - self.assertIsInstance(new_layer._feature_columns[1], cols[1].__class__) - self.assertIsInstance(new_layer._feature_columns[2], cols[2].__class__) - - def test_crossed_column(self): - a = tf.feature_column.categorical_column_with_vocabulary_list( - "a", vocabulary_list=["1", "2", "3"] - ) - b = tf.feature_column.categorical_column_with_vocabulary_list( - "b", vocabulary_list=["1", "2", "3"] - ) - ab = tf.feature_column.crossed_column([a, b], hash_bucket_size=2) - cols = [tf.feature_column.indicator_column(ab)] - - orig_layer = df.DenseFeatures(cols) - config = orig_layer.get_config() - - new_layer = df.DenseFeatures.from_config(config) - - self.assertLen(new_layer._feature_columns, 1) - self.assertEqual(new_layer._feature_columns[0].name, "a_X_b_indicator") - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class SequenceFeatureColumnsTest(tf.test.TestCase): - """Tests DenseFeatures with sequence feature columns.""" - - def test_embedding_column(self): - """Tests that error is raised for sequence embedding column.""" - vocabulary_size = 3 - sparse_input = tf.compat.v1.SparseTensorValue( - # example 0, ids [2] - # example 1, ids [0, 1] - indices=((0, 0), (1, 0), (1, 1)), - values=(2, 0, 1), - dense_shape=(2, 2), - ) - - categorical_column_a = ( - tf.feature_column.sequence_categorical_column_with_identity( - key="aaa", num_buckets=vocabulary_size - ) - ) - embedding_column_a = tf.feature_column.embedding_column( - categorical_column_a, dimension=2 - ) - - input_layer = df.DenseFeatures([embedding_column_a]) - with self.assertRaisesRegex( - ValueError, - r"In embedding_column: aaa_embedding\. categorical_column must not " - r"be of type SequenceCategoricalColumn\.", - ): - _ = input_layer({"aaa": sparse_input}) - - def test_indicator_column(self): - """Tests that error is raised for sequence indicator column.""" - vocabulary_size = 3 - sparse_input = tf.compat.v1.SparseTensorValue( - # example 0, ids [2] - # example 1, ids [0, 1] - indices=((0, 0), (1, 0), (1, 1)), - values=(2, 0, 1), - dense_shape=(2, 2), - ) - - categorical_column_a = ( - tf.feature_column.sequence_categorical_column_with_identity( - key="aaa", num_buckets=vocabulary_size - ) - ) - indicator_column_a = tf.feature_column.indicator_column( - categorical_column_a - ) - - input_layer = df.DenseFeatures([indicator_column_a]) - with self.assertRaisesRegex( - ValueError, - r"In indicator_column: aaa_indicator\. categorical_column must not " - r"be of type SequenceCategoricalColumn\.", - ): - _ = input_layer({"aaa": sparse_input}) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/feature_column/dense_features_v2.py b/keras/feature_column/dense_features_v2.py deleted file mode 100644 index f731d7163a9..00000000000 --- a/keras/feature_column/dense_features_v2.py +++ /dev/null @@ -1,164 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""A layer that produces a dense `Tensor` based on given `feature_columns`.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.feature_column import base_feature_layer as kfc -from keras.feature_column import dense_features -from keras.utils import tf_contextlib - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.DenseFeatures", v1=[]) -class DenseFeatures(dense_features.DenseFeatures): - """A layer that produces a dense `Tensor` based on given `feature_columns`. - - Generally a single example in training data is described with - FeatureColumns. At the first layer of the model, this column oriented data - should be converted to a single `Tensor`. - - This layer can be called multiple times with different features. - - This is the V2 version of this layer that uses name_scopes to create - variables instead of variable_scopes. But this approach currently lacks - support for partitioned variables. In that case, use the V1 version instead. - - Example: - - ```python - price = tf.feature_column.numeric_column('price') - keywords_embedded = tf.feature_column.embedding_column( - tf.feature_column.categorical_column_with_hash_bucket("keywords", - 10000), - dimensions=16) - columns = [price, keywords_embedded, ...] - feature_layer = tf.keras.layers.DenseFeatures(columns) - - features = tf.io.parse_example( - ..., features=tf.feature_column.make_parse_example_spec(columns)) - dense_tensor = feature_layer(features) - for units in [128, 64, 32]: - dense_tensor = tf.keras.layers.Dense(units, activation='relu')( - dense_tensor) - prediction = tf.keras.layers.Dense(1)(dense_tensor) - ``` - """ - - def __init__(self, feature_columns, trainable=True, name=None, **kwargs): - """Creates a DenseFeatures object. - - Args: - feature_columns: An iterable containing the FeatureColumns to use as - inputs to your model. All items should be instances of classes - derived from `DenseColumn` such as `numeric_column`, - `embedding_column`, `bucketized_column`, `indicator_column`. If you - have categorical features, you can wrap them with an - `embedding_column` or `indicator_column`. - trainable: Boolean, whether the layer's variables will be updated via - gradient descent during training. - name: Name to give to the DenseFeatures. - **kwargs: Keyword arguments to construct a layer. - - Raises: - ValueError: if an item in `feature_columns` is not a `DenseColumn`. - """ - super().__init__( - feature_columns=feature_columns, - trainable=trainable, - name=name, - **kwargs - ) - self._state_manager = _StateManagerImplV2(self, self.trainable) - - def build(self, _): - for column in self._feature_columns: - with tf.name_scope(column.name): - column.create_state(self._state_manager) - # We would like to call Layer.build and not _DenseFeaturesHelper.build. - - super(kfc._BaseFeaturesLayer, self).build(None) - - -class _StateManagerImplV2(tf.__internal__.feature_column.StateManager): - """Manages the state of DenseFeatures.""" - - def create_variable( - self, - feature_column, - name, - shape, - dtype=None, - trainable=True, - use_resource=True, - initializer=None, - ): - if name in self._cols_to_vars_map[feature_column]: - raise ValueError("Variable already exists.") - - # We explicitly track these variables since `name` is not guaranteed to - # be unique and disable manual tracking that the add_weight call does. - with no_manual_dependency_tracking_scope(self._layer): - var = self._layer.add_weight( - name=name, - shape=shape, - dtype=dtype, - initializer=initializer, - trainable=self._trainable and trainable, - use_resource=use_resource, - ) - if isinstance(var, tf.__internal__.tracking.Trackable): - self._layer._track_trackable(var, feature_column.name + "/" + name) - self._cols_to_vars_map[feature_column][name] = var - return var - - -@tf_contextlib.contextmanager -def no_manual_dependency_tracking_scope(obj): - """A context that disables manual dependency tracking for the given `obj`. - - Sometimes library methods might track objects on their own and we might want - to disable that and do the tracking on our own. One can then use this - context manager to disable the tracking the library method does and do your - own tracking. - - For example: - - class TestLayer(tf.keras.Layer): - def build(): - with no_manual_dependency_tracking_scope(self): - var = self.add_weight("name1") # Creates a var and doesn't track it - # We track variable with name `name2` - self._track_trackable("name2", var) - - Args: - obj: A trackable object. - - Yields: - a scope in which the object doesn't track dependencies manually. - """ - - previous_value = getattr(obj, "_manual_tracking", True) - obj._manual_tracking = False - try: - yield - finally: - obj._manual_tracking = previous_value diff --git a/keras/feature_column/dense_features_v2_test.py b/keras/feature_column/dense_features_v2_test.py deleted file mode 100644 index d984fced6ba..00000000000 --- a/keras/feature_column/dense_features_v2_test.py +++ /dev/null @@ -1,807 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for dense_features_v2.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.feature_column import dense_features_v2 as df -from keras.testing_infra import test_combinations - -# isort: off -from tensorflow.python.eager import backprop - - -def _initialized_session(config=None): - sess = tf.compat.v1.Session(config=config) - sess.run(tf.compat.v1.global_variables_initializer()) - sess.run(tf.compat.v1.tables_initializer()) - return sess - - -class DenseFeaturesTest(test_combinations.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_retrieving_input(self): - features = {"a": [0.0]} - dense_features = df.DenseFeatures(tf.feature_column.numeric_column("a")) - inputs = self.evaluate(dense_features(features)) - self.assertAllClose([[0.0]], inputs) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_reuses_variables(self): - sparse_input = tf.SparseTensor( - indices=((0, 0), (1, 0), (2, 0)), - values=(0, 1, 2), - dense_shape=(3, 3), - ) - - # Create feature columns (categorical and embedding). - categorical_column = tf.feature_column.categorical_column_with_identity( - key="a", num_buckets=3 - ) - embedding_dimension = 2 - - def _embedding_column_initializer(shape, dtype, partition_info=None): - del shape # unused - del dtype # unused - del partition_info # unused - embedding_values = ((1, 0), (0, 1), (1, 1)) # id 0 # id 1 # id 2 - return embedding_values - - embedding_column = tf.feature_column.embedding_column( - categorical_column, - dimension=embedding_dimension, - initializer=_embedding_column_initializer, - ) - - dense_features = df.DenseFeatures([embedding_column]) - features = {"a": sparse_input} - - inputs = dense_features(features) - variables = dense_features.variables - - # Sanity check: test that the inputs are correct. - self.assertAllEqual([[1, 0], [0, 1], [1, 1]], inputs) - - # Check that only one variable was created. - self.assertEqual(1, len(variables)) - - # Check that invoking dense_features on the same features does not - # create additional variables - _ = dense_features(features) - self.assertEqual(1, len(variables)) - self.assertIs(variables[0], dense_features.variables[0]) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_feature_column_dense_features_gradient(self): - sparse_input = tf.SparseTensor( - indices=((0, 0), (1, 0), (2, 0)), - values=(0, 1, 2), - dense_shape=(3, 3), - ) - - # Create feature columns (categorical and embedding). - categorical_column = tf.feature_column.categorical_column_with_identity( - key="a", num_buckets=3 - ) - embedding_dimension = 2 - - def _embedding_column_initializer(shape, dtype, partition_info=None): - del shape # unused - del dtype # unused - del partition_info # unused - embedding_values = ((1, 0), (0, 1), (1, 1)) # id 0 # id 1 # id 2 - return embedding_values - - embedding_column = tf.feature_column.embedding_column( - categorical_column, - dimension=embedding_dimension, - initializer=_embedding_column_initializer, - ) - - dense_features = df.DenseFeatures([embedding_column]) - features = {"a": sparse_input} - - def scale_matrix(): - matrix = dense_features(features) - return 2 * matrix - - # Sanity check: Verify that scale_matrix returns the correct output. - self.assertAllEqual([[2, 0], [0, 2], [2, 2]], scale_matrix()) - - # Check that the returned gradient is correct. - grad_function = backprop.implicit_grad(scale_matrix) - grads_and_vars = grad_function() - indexed_slice = grads_and_vars[0][0] - gradient = grads_and_vars[0][0].values - - self.assertAllEqual([0, 1, 2], indexed_slice.indices) - self.assertAllEqual([[2, 2], [2, 2], [2, 2]], gradient) - - def test_dense_feature_with_training_arg(self): - price1 = tf.feature_column.numeric_column("price1", shape=2) - price2 = tf.feature_column.numeric_column("price2") - - # Monkey patch the second numeric column to simulate a column that has - # different behavior by mode. - def training_aware_get_dense_tensor( - transformation_cache, state_manager, training=None - ): - return transformation_cache.get( - price2, state_manager, training=training - ) - - def training_aware_transform_feature( - transformation_cache, state_manager, training=None - ): - input_tensor = transformation_cache.get( - price2.key, state_manager, training=training - ) - if training: - return input_tensor * 10.0 - else: - return input_tensor * 20.0 - - price2.get_dense_tensor = training_aware_get_dense_tensor - price2.transform_feature = training_aware_transform_feature - with tf.Graph().as_default(): - features = { - "price1": [[1.0, 2.0], [5.0, 6.0]], - "price2": [[3.0], [4.0]], - } - train_mode = df.DenseFeatures([price1, price2])( - features, training=True - ) - predict_mode = df.DenseFeatures([price1, price2])( - features, training=False - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose( - [[1.0, 2.0, 30.0], [5.0, 6.0, 40.0]], self.evaluate(train_mode) - ) - self.assertAllClose( - [[1.0, 2.0, 60.0], [5.0, 6.0, 80.0]], - self.evaluate(predict_mode), - ) - - def test_raises_if_empty_feature_columns(self): - with self.assertRaisesRegex( - ValueError, "feature_columns must not be empty" - ): - df.DenseFeatures(feature_columns=[])(features={}) - - def test_should_be_dense_column(self): - with self.assertRaisesRegex(ValueError, "must be a .*DenseColumn"): - df.DenseFeatures( - feature_columns=[ - tf.feature_column.categorical_column_with_hash_bucket( - "wire_cast", 4 - ) - ] - )(features={"a": [[0]]}) - - def test_does_not_support_dict_columns(self): - with self.assertRaisesRegex( - ValueError, "Expected feature_columns to be iterable, found dict." - ): - df.DenseFeatures( - feature_columns={"a": tf.feature_column.numeric_column("a")} - )(features={"a": [[0]]}) - - def test_bare_column(self): - with tf.Graph().as_default(): - features = features = {"a": [0.0]} - net = df.DenseFeatures(tf.feature_column.numeric_column("a"))( - features - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose([[0.0]], self.evaluate(net)) - - def test_column_generator(self): - with tf.Graph().as_default(): - features = features = {"a": [0.0], "b": [1.0]} - columns = ( - tf.feature_column.numeric_column(key) for key in features - ) - net = df.DenseFeatures(columns)(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose([[0.0, 1.0]], self.evaluate(net)) - - def test_raises_if_duplicate_name(self): - with self.assertRaisesRegex( - ValueError, "Duplicate feature column name found for columns" - ): - df.DenseFeatures( - feature_columns=[ - tf.feature_column.numeric_column("a"), - tf.feature_column.numeric_column("a"), - ] - )(features={"a": [[0]]}) - - def test_one_column(self): - price = tf.feature_column.numeric_column("price") - with tf.Graph().as_default(): - features = {"price": [[1.0], [5.0]]} - net = df.DenseFeatures([price])(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose([[1.0], [5.0]], self.evaluate(net)) - - def test_multi_dimension(self): - price = tf.feature_column.numeric_column("price", shape=2) - with tf.Graph().as_default(): - features = {"price": [[1.0, 2.0], [5.0, 6.0]]} - net = df.DenseFeatures([price])(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose([[1.0, 2.0], [5.0, 6.0]], self.evaluate(net)) - - def test_compute_output_shape(self): - price1 = tf.feature_column.numeric_column("price1", shape=2) - price2 = tf.feature_column.numeric_column("price2", shape=4) - with tf.Graph().as_default(): - features = { - "price1": [[1.0, 2.0], [5.0, 6.0]], - "price2": [[3.0, 4.0, 5.0, 6.0], [7.0, 8.0, 9.0, 10.0]], - } - dense_features = df.DenseFeatures([price1, price2]) - self.assertEqual( - (None, 6), dense_features.compute_output_shape((None,)) - ) - net = dense_features(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose( - [ - [1.0, 2.0, 3.0, 4.0, 5.0, 6.0], - [5.0, 6.0, 7.0, 8.0, 9.0, 10.0], - ], - self.evaluate(net), - ) - - def test_raises_if_shape_mismatch(self): - price = tf.feature_column.numeric_column("price", shape=2) - with tf.Graph().as_default(): - features = {"price": [[1.0], [5.0]]} - with self.assertRaisesRegex( - Exception, - r"Cannot reshape a tensor with 2 elements to shape \[2,2\]", - ): - df.DenseFeatures([price])(features) - - def test_reshaping(self): - price = tf.feature_column.numeric_column("price", shape=[1, 2]) - with tf.Graph().as_default(): - features = {"price": [[[1.0, 2.0]], [[5.0, 6.0]]]} - net = df.DenseFeatures([price])(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose([[1.0, 2.0], [5.0, 6.0]], self.evaluate(net)) - - def test_multi_column(self): - price1 = tf.feature_column.numeric_column("price1", shape=2) - price2 = tf.feature_column.numeric_column("price2") - with tf.Graph().as_default(): - features = { - "price1": [[1.0, 2.0], [5.0, 6.0]], - "price2": [[3.0], [4.0]], - } - net = df.DenseFeatures([price1, price2])(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose( - [[1.0, 2.0, 3.0], [5.0, 6.0, 4.0]], self.evaluate(net) - ) - - def test_cols_to_output_tensors(self): - price1 = tf.feature_column.numeric_column("price1", shape=2) - price2 = tf.feature_column.numeric_column("price2") - with tf.Graph().as_default(): - cols_dict = {} - features = { - "price1": [[1.0, 2.0], [5.0, 6.0]], - "price2": [[3.0], [4.0]], - } - dense_features = df.DenseFeatures([price1, price2]) - net = dense_features(features, cols_dict) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose( - [[1.0, 2.0], [5.0, 6.0]], self.evaluate(cols_dict[price1]) - ) - self.assertAllClose( - [[3.0], [4.0]], self.evaluate(cols_dict[price2]) - ) - self.assertAllClose( - [[1.0, 2.0, 3.0], [5.0, 6.0, 4.0]], self.evaluate(net) - ) - - def test_column_order(self): - price_a = tf.feature_column.numeric_column("price_a") - price_b = tf.feature_column.numeric_column("price_b") - with tf.Graph().as_default(): - features = { - "price_a": [[1.0]], - "price_b": [[3.0]], - } - net1 = df.DenseFeatures([price_a, price_b])(features) - net2 = df.DenseFeatures([price_b, price_a])(features) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose([[1.0, 3.0]], self.evaluate(net1)) - self.assertAllClose([[1.0, 3.0]], self.evaluate(net2)) - - def test_fails_for_categorical_column(self): - animal = tf.feature_column.categorical_column_with_identity( - "animal", num_buckets=4 - ) - with tf.Graph().as_default(): - features = { - "animal": tf.SparseTensor( - indices=[[0, 0], [0, 1]], values=[1, 2], dense_shape=[1, 2] - ) - } - with self.assertRaisesRegex(Exception, "must be a .*DenseColumn"): - df.DenseFeatures([animal])(features) - - def test_static_batch_size_mismatch(self): - price1 = tf.feature_column.numeric_column("price1") - price2 = tf.feature_column.numeric_column("price2") - with tf.Graph().as_default(): - features = { - "price1": [[1.0], [5.0], [7.0]], # batchsize = 3 - "price2": [[3.0], [4.0]], # batchsize = 2 - } - with self.assertRaisesRegex( - ValueError, - r"Batch size \(first dimension\) of each feature must be same.", - ): - df.DenseFeatures([price1, price2])(features) - - def test_subset_of_static_batch_size_mismatch(self): - price1 = tf.feature_column.numeric_column("price1") - price2 = tf.feature_column.numeric_column("price2") - price3 = tf.feature_column.numeric_column("price3") - with tf.Graph().as_default(): - features = { - "price1": tf.compat.v1.placeholder( - dtype=tf.int64 - ), # batchsize = 3 - "price2": [[3.0], [4.0]], # batchsize = 2 - "price3": [[3.0], [4.0], [5.0]], # batchsize = 3 - } - with self.assertRaisesRegex( - ValueError, - r"Batch size \(first dimension\) of each feature must be same.", - ): - df.DenseFeatures([price1, price2, price3])(features) - - def test_runtime_batch_size_mismatch(self): - price1 = tf.feature_column.numeric_column("price1") - price2 = tf.feature_column.numeric_column("price2") - with tf.Graph().as_default(): - features = { - "price1": tf.compat.v1.placeholder( - dtype=tf.int64 - ), # batchsize = 3 - "price2": [[3.0], [4.0]], # batchsize = 2 - } - net = df.DenseFeatures([price1, price2])(features) - with _initialized_session() as sess: - with self.assertRaisesRegex( - tf.errors.OpError, - "Dimension 0 in both shapes must be equal|" - "Dimensions of inputs should match", - ): - sess.run( - net, - feed_dict={features["price1"]: [[1.0], [5.0], [7.0]]}, - ) - - def test_runtime_batch_size_matches(self): - price1 = tf.feature_column.numeric_column("price1") - price2 = tf.feature_column.numeric_column("price2") - with tf.Graph().as_default(): - features = { - "price1": tf.compat.v1.placeholder( - dtype=tf.int64 - ), # batchsize = 2 - "price2": tf.compat.v1.placeholder( - dtype=tf.int64 - ), # batchsize = 2 - } - net = df.DenseFeatures([price1, price2])(features) - with _initialized_session() as sess: - sess.run( - net, - feed_dict={ - features["price1"]: [[1.0], [5.0]], - features["price2"]: [[1.0], [5.0]], - }, - ) - - def test_multiple_layers_with_same_embedding_column(self): - some_sparse_column = ( - tf.feature_column.categorical_column_with_hash_bucket( - "sparse_feature", hash_bucket_size=5 - ) - ) - some_embedding_column = tf.feature_column.embedding_column( - some_sparse_column, dimension=10 - ) - - with tf.Graph().as_default(): - features = { - "sparse_feature": [["a"], ["x"]], - } - all_cols = [some_embedding_column] - df.DenseFeatures(all_cols)(features) - df.DenseFeatures(all_cols)(features) - # Make sure that 2 variables get created in this case. - self.assertEqual( - 2, - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ), - ) - expected_var_names = [ - "dense_features/sparse_feature_embedding/embedding_weights:0", - "dense_features_1/sparse_feature_embedding/embedding_weights:0", - ] - self.assertItemsEqual( - expected_var_names, - [ - v.name - for v in tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ], - ) - - def test_multiple_layers_with_same_shared_embedding_column(self): - categorical_column_a = ( - tf.feature_column.categorical_column_with_identity( - key="aaa", num_buckets=3 - ) - ) - categorical_column_b = ( - tf.feature_column.categorical_column_with_identity( - key="bbb", num_buckets=3 - ) - ) - embedding_dimension = 2 - - # feature_column.shared_embeddings is not supported in eager. - with tf.Graph().as_default(): - ( - embedding_column_b, - embedding_column_a, - ) = tf.feature_column.shared_embeddings( - [categorical_column_b, categorical_column_a], - dimension=embedding_dimension, - ) - features = { - "aaa": tf.SparseTensor( - indices=((0, 0), (1, 0), (1, 1)), - values=(0, 1, 0), - dense_shape=(2, 2), - ), - "bbb": tf.SparseTensor( - indices=((0, 0), (1, 0), (1, 1)), - values=(1, 2, 1), - dense_shape=(2, 2), - ), - } - all_cols = [embedding_column_a, embedding_column_b] - df.DenseFeatures(all_cols)(features) - df.DenseFeatures(all_cols)(features) - # Make sure that only 1 variable gets created in this case. - self.assertEqual( - 1, - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ), - ) - self.assertItemsEqual( - ["aaa_bbb_shared_embedding:0"], - [ - v.name - for v in tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ], - ) - - def test_multiple_layers_with_same_shared_embedding_column_diff_graphs( - self, - ): - categorical_column_a = ( - tf.feature_column.categorical_column_with_identity( - key="aaa", num_buckets=3 - ) - ) - categorical_column_b = ( - tf.feature_column.categorical_column_with_identity( - key="bbb", num_buckets=3 - ) - ) - embedding_dimension = 2 - - # feature_column.shared_embeddings is not supported in eager. - with tf.Graph().as_default(): - ( - embedding_column_b, - embedding_column_a, - ) = tf.feature_column.shared_embeddings( - [categorical_column_b, categorical_column_a], - dimension=embedding_dimension, - ) - all_cols = [embedding_column_a, embedding_column_b] - features = { - "aaa": tf.SparseTensor( - indices=((0, 0), (1, 0), (1, 1)), - values=(0, 1, 0), - dense_shape=(2, 2), - ), - "bbb": tf.SparseTensor( - indices=((0, 0), (1, 0), (1, 1)), - values=(1, 2, 1), - dense_shape=(2, 2), - ), - } - df.DenseFeatures(all_cols)(features) - # Make sure that only 1 variable gets created in this case. - self.assertEqual( - 1, - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ), - ) - - with tf.Graph().as_default(): - features1 = { - "aaa": tf.SparseTensor( - indices=((0, 0), (1, 0), (1, 1)), - values=(0, 1, 0), - dense_shape=(2, 2), - ), - "bbb": tf.SparseTensor( - indices=((0, 0), (1, 0), (1, 1)), - values=(1, 2, 1), - dense_shape=(2, 2), - ), - } - - df.DenseFeatures(all_cols)(features1) - # Make sure that only 1 variable gets created in this case. - self.assertEqual( - 1, - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ), - ) - self.assertItemsEqual( - ["aaa_bbb_shared_embedding:0"], - [ - v.name - for v in tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - ], - ) - - def test_with_1d_sparse_tensor(self): - embedding_values = ( - (1.0, 2.0, 3.0, 4.0, 5.0), # id 0 - (6.0, 7.0, 8.0, 9.0, 10.0), # id 1 - (11.0, 12.0, 13.0, 14.0, 15.0), # id 2 - ) - - def _initializer(shape, dtype, partition_info=None): - del shape, dtype, partition_info - return embedding_values - - # price has 1 dimension in dense_features - price = tf.feature_column.numeric_column("price") - - # one_hot_body_style has 3 dims in dense_features. - body_style = tf.feature_column.categorical_column_with_vocabulary_list( - "body-style", vocabulary_list=["hardtop", "wagon", "sedan"] - ) - one_hot_body_style = tf.feature_column.indicator_column(body_style) - - # embedded_body_style has 5 dims in dense_features. - country = tf.feature_column.categorical_column_with_vocabulary_list( - "country", vocabulary_list=["US", "JP", "CA"] - ) - embedded_country = tf.feature_column.embedding_column( - country, dimension=5, initializer=_initializer - ) - - with tf.Graph().as_default(): - # Provides 1-dim tensor and dense tensor. - features = { - "price": tf.constant( - [ - 11.0, - 12.0, - ] - ), - "body-style": tf.SparseTensor( - indices=((0,), (1,)), - values=("sedan", "hardtop"), - dense_shape=(2,), - ), - # This is dense tensor for the categorical_column. - "country": tf.constant(["CA", "US"]), - } - self.assertEqual(1, features["price"].shape.ndims) - self.assertEqual( - 1, features["body-style"].dense_shape.get_shape()[0] - ) - self.assertEqual(1, features["country"].shape.ndims) - - net = df.DenseFeatures( - [price, one_hot_body_style, embedded_country] - )(features) - self.assertEqual(1 + 3 + 5, net.shape[1]) - with _initialized_session() as sess: - - # Each row is formed by concatenating `embedded_body_style`, - # `one_hot_body_style`, and `price` in order. - self.assertAllEqual( - [ - [0.0, 0.0, 1.0, 11.0, 12.0, 13.0, 14.0, 15.0, 11.0], - [1.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 12.0], - ], - sess.run(net), - ) - - def test_with_1d_unknown_shape_sparse_tensor(self): - embedding_values = ( - (1.0, 2.0), # id 0 - (6.0, 7.0), # id 1 - (11.0, 12.0), # id 2 - ) - - def _initializer(shape, dtype, partition_info=None): - del shape, dtype, partition_info - return embedding_values - - # price has 1 dimension in dense_features - price = tf.feature_column.numeric_column("price") - - # one_hot_body_style has 3 dims in dense_features. - body_style = tf.feature_column.categorical_column_with_vocabulary_list( - "body-style", vocabulary_list=["hardtop", "wagon", "sedan"] - ) - one_hot_body_style = tf.feature_column.indicator_column(body_style) - - # embedded_body_style has 5 dims in dense_features. - country = tf.feature_column.categorical_column_with_vocabulary_list( - "country", vocabulary_list=["US", "JP", "CA"] - ) - embedded_country = tf.feature_column.embedding_column( - country, dimension=2, initializer=_initializer - ) - - # Provides 1-dim tensor and dense tensor. - with tf.Graph().as_default(): - features = { - "price": tf.compat.v1.placeholder(tf.float32), - "body-style": tf.compat.v1.sparse_placeholder(tf.string), - # This is dense tensor for the categorical_column. - "country": tf.compat.v1.placeholder(tf.string), - } - self.assertIsNone(features["price"].shape.ndims) - self.assertIsNone(features["body-style"].get_shape().ndims) - self.assertIsNone(features["country"].shape.ndims) - - price_data = np.array([11.0, 12.0]) - body_style_data = tf.compat.v1.SparseTensorValue( - indices=((0,), (1,)), - values=("sedan", "hardtop"), - dense_shape=(2,), - ) - country_data = np.array([["US"], ["CA"]]) - - net = df.DenseFeatures( - [price, one_hot_body_style, embedded_country] - )(features) - self.assertEqual(1 + 3 + 2, net.shape[1]) - with _initialized_session() as sess: - - # Each row is formed by concatenating `embedded_body_style`, - # `one_hot_body_style`, and `price` in order. - self.assertAllEqual( - [ - [0.0, 0.0, 1.0, 1.0, 2.0, 11.0], - [1.0, 0.0, 0.0, 11.0, 12.0, 12.0], - ], - sess.run( - net, - feed_dict={ - features["price"]: price_data, - features["body-style"]: body_style_data, - features["country"]: country_data, - }, - ), - ) - - def test_with_rank_0_feature(self): - # price has 1 dimension in dense_features - price = tf.feature_column.numeric_column("price") - features = { - "price": tf.constant(0), - } - self.assertEqual(0, features["price"].shape.ndims) - - # Static rank 0 should fail - with self.assertRaisesRegex( - ValueError, "Feature .* cannot have rank 0" - ): - df.DenseFeatures([price])(features) - - with tf.Graph().as_default(): - # Dynamic rank 0 should fail - features = { - "price": tf.compat.v1.placeholder(tf.float32), - } - net = df.DenseFeatures([price])(features) - self.assertEqual(1, net.shape[1]) - with _initialized_session() as sess: - with self.assertRaisesOpError("Feature .* cannot have rank 0"): - sess.run(net, feed_dict={features["price"]: np.array(1)}) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/feature_column/sequence_feature_column.py b/keras/feature_column/sequence_feature_column.py deleted file mode 100644 index 5fd05fdd665..00000000000 --- a/keras/feature_column/sequence_feature_column.py +++ /dev/null @@ -1,195 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""This API defines FeatureColumn for sequential input. - -NOTE: This API is a work in progress and will likely be changing frequently. -""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.feature_column import base_feature_layer as kfc - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.experimental.SequenceFeatures") -class SequenceFeatures(kfc._BaseFeaturesLayer): - """A layer for sequence input. - - All `feature_columns` must be sequence dense columns with the same - `sequence_length`. The output of this method can be fed into sequence - networks, such as RNN. - - The output of this method is a 3D `Tensor` of shape `[batch_size, T, D]`. - `T` is the maximum sequence length for this batch, which could differ from - batch to batch. - - If multiple `feature_columns` are given with `Di` `num_elements` each, their - outputs are concatenated. So, the final `Tensor` has shape - `[batch_size, T, D0 + D1 + ... + Dn]`. - - Example: - - ```python - - import tensorflow as tf - - # Behavior of some cells or feature columns may depend on whether we are in - # training or inference mode, e.g. applying dropout. - training = True - rating = tf.feature_column.sequence_numeric_column('rating') - watches = tf.feature_column.sequence_categorical_column_with_identity( - 'watches', num_buckets=1000) - watches_embedding = tf.feature_column.embedding_column(watches, - dimension=10) - columns = [rating, watches_embedding] - - features = { - 'rating': tf.sparse.from_dense([[1.0,1.1, 0, 0, 0], - [2.0,2.1,2.2, 2.3, 2.5]]), - 'watches': tf.sparse.from_dense([[2, 85, 0, 0, 0],[33,78, 2, 73, 1]]) - } - - sequence_input_layer = tf.keras.experimental.SequenceFeatures(columns) - sequence_input, sequence_length = sequence_input_layer( - features, training=training) - sequence_length_mask = tf.sequence_mask(sequence_length) - hidden_size = 32 - rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) - rnn_layer = tf.keras.layers.RNN(rnn_cell) - outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask) - ``` - """ - - def __init__(self, feature_columns, trainable=True, name=None, **kwargs): - """ "Constructs a SequenceFeatures layer. - - Args: - feature_columns: An iterable of dense sequence columns. Valid columns - are - - `embedding_column` that wraps a - `sequence_categorical_column_with_*` - - `sequence_numeric_column`. - trainable: Boolean, whether the layer's variables will be updated via - gradient descent during training. - name: Name to give to the SequenceFeatures. - **kwargs: Keyword arguments to construct a layer. - - Raises: - ValueError: If any of the `feature_columns` is not a - `SequenceDenseColumn`. - """ - super().__init__( - feature_columns=feature_columns, - trainable=trainable, - name=name, - expected_column_type=tf.__internal__.feature_column.SequenceDenseColumn, # noqa: E501 - **kwargs - ) - - @property - def _is_feature_layer(self): - return True - - def _target_shape(self, input_shape, total_elements): - return (input_shape[0], input_shape[1], total_elements) - - def call(self, features, training=None): - """Returns sequence input corresponding to the `feature_columns`. - - Args: - features: A dict mapping keys to tensors. - training: Python boolean or None, indicating whether to the layer is - being run in training mode. This argument is passed to the call - method of any `FeatureColumn` that takes a `training` argument. For - example, if a `FeatureColumn` performed dropout, the column could - expose a `training` argument to control whether the dropout should - be applied. If `None`, defaults to - `tf.keras.backend.learning_phase()`. - - - Returns: - An `(input_layer, sequence_length)` tuple where: - - input_layer: A float `Tensor` of shape `[batch_size, T, D]`. - `T` is the maximum sequence length for this batch, which could - differ from batch to batch. `D` is the sum of `num_elements` for - all `feature_columns`. - - sequence_length: An int `Tensor` of shape `[batch_size]`. The - sequence length for each example. - - Raises: - ValueError: If features are not a dictionary. - """ - if not isinstance(features, dict): - raise ValueError( - "We expected a dictionary here. Instead we got: ", features - ) - if training is None: - training = backend.learning_phase() - transformation_cache = ( - tf.__internal__.feature_column.FeatureTransformationCache(features) - ) - output_tensors = [] - sequence_lengths = [] - - for column in self._feature_columns: - with backend.name_scope(column.name): - try: - ( - dense_tensor, - sequence_length, - ) = column.get_sequence_dense_tensor( - transformation_cache, - self._state_manager, - training=training, - ) - except TypeError: - ( - dense_tensor, - sequence_length, - ) = column.get_sequence_dense_tensor( - transformation_cache, self._state_manager - ) - # Flattens the final dimension to produce a 3D Tensor. - output_tensors.append( - self._process_dense_tensor(column, dense_tensor) - ) - sequence_lengths.append(sequence_length) - - # Check and process sequence lengths. - kfc._verify_static_batch_size_equality( - sequence_lengths, self._feature_columns - ) - sequence_length = _assert_all_equal_and_return(sequence_lengths) - - return self._verify_and_concat_tensors(output_tensors), sequence_length - - -def _assert_all_equal_and_return(tensors, name=None): - """Asserts that all tensors are equal and returns the first one.""" - with backend.name_scope(name or "assert_all_equal"): - if len(tensors) == 1: - return tensors[0] - assert_equal_ops = [] - for t in tensors[1:]: - assert_equal_ops.append(tf.compat.v1.assert_equal(tensors[0], t)) - with tf.control_dependencies(assert_equal_ops): - return tf.identity(tensors[0]) diff --git a/keras/feature_column/sequence_feature_column_integration_test.py b/keras/feature_column/sequence_feature_column_integration_test.py deleted file mode 100644 index b76c04d1fac..00000000000 --- a/keras/feature_column/sequence_feature_column_integration_test.py +++ /dev/null @@ -1,282 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Integration test for sequence feature columns with SequenceExamples.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.feature_column import dense_features -from keras.feature_column import sequence_feature_column as ksfc -from keras.layers import merging -from keras.layers.rnn import base_rnn -from keras.layers.rnn import simple_rnn - -# isort: off -from google.protobuf import text_format -from tensorflow.core.example import example_pb2 -from tensorflow.core.example import feature_pb2 -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -class SequenceFeatureColumnIntegrationTest(tf.test.TestCase): - def _make_sequence_example(self): - example = example_pb2.SequenceExample() - example.context.feature["int_ctx"].int64_list.value.extend([5]) - example.context.feature["float_ctx"].float_list.value.extend([123.6]) - for val in range(0, 10, 2): - feat = feature_pb2.Feature() - feat.int64_list.value.extend([val] * val) - example.feature_lists.feature_list["int_list"].feature.extend( - [feat] - ) - for val in range(1, 11, 2): - feat = feature_pb2.Feature() - feat.bytes_list.value.extend([tf.compat.as_bytes(str(val))] * val) - example.feature_lists.feature_list["str_list"].feature.extend( - [feat] - ) - - return example - - def _build_feature_columns(self): - col = tf.feature_column.categorical_column_with_identity( - "int_ctx", num_buckets=100 - ) - ctx_cols = [ - tf.feature_column.embedding_column(col, dimension=10), - tf.feature_column.numeric_column("float_ctx"), - ] - - identity_col = ( - tf.feature_column.sequence_categorical_column_with_identity( - "int_list", num_buckets=10 - ) - ) - bucket_col = ( - tf.feature_column.sequence_categorical_column_with_hash_bucket( - "bytes_list", hash_bucket_size=100 - ) - ) - seq_cols = [ - tf.feature_column.embedding_column(identity_col, dimension=10), - tf.feature_column.embedding_column(bucket_col, dimension=20), - ] - - return ctx_cols, seq_cols - - def test_sequence_example_into_input_layer(self): - examples = [_make_sequence_example().SerializeToString()] * 100 - ctx_cols, seq_cols = self._build_feature_columns() - - def _parse_example(example): - ctx, seq = tf.io.parse_single_sequence_example( - example, - context_features=tf.feature_column.make_parse_example_spec( - ctx_cols - ), - sequence_features=tf.feature_column.make_parse_example_spec( - seq_cols - ), - ) - ctx.update(seq) - return ctx - - ds = tf.data.Dataset.from_tensor_slices(examples) - ds = ds.map(_parse_example) - ds = ds.batch(20) - - # Test on a single batch - features = tf.compat.v1.data.make_one_shot_iterator(ds).get_next() - - # Tile the context features across the sequence features - sequence_input_layer = ksfc.SequenceFeatures(seq_cols) - seq_input, _ = sequence_input_layer(features) - dense_input_layer = dense_features.DenseFeatures(ctx_cols) - ctx_input = dense_input_layer(features) - ctx_input = backend.repeat(ctx_input, tf.shape(seq_input)[1]) - concatenated_input = merging.concatenate([seq_input, ctx_input]) - - rnn_layer = base_rnn.RNN(simple_rnn.SimpleRNNCell(10)) - output = rnn_layer(concatenated_input) - - with self.cached_session() as sess: - sess.run(tf.compat.v1.global_variables_initializer()) - features_r = sess.run(features) - self.assertAllEqual(features_r["int_list"].dense_shape, [20, 3, 6]) - - output_r = sess.run(output) - self.assertAllEqual(output_r.shape, [20, 10]) - - @tf_test_utils.run_deprecated_v1 - def test_shared_sequence_non_sequence_into_input_layer(self): - non_seq = tf.feature_column.categorical_column_with_identity( - "non_seq", num_buckets=10 - ) - seq = tf.feature_column.sequence_categorical_column_with_identity( - "seq", num_buckets=10 - ) - shared_non_seq, shared_seq = tf.feature_column.shared_embeddings( - [non_seq, seq], - dimension=4, - combiner="sum", - initializer=tf.ones_initializer(), - shared_embedding_collection_name="shared", - ) - - seq = tf.SparseTensor( - indices=[[0, 0], [0, 1], [1, 0]], - values=[0, 1, 2], - dense_shape=[2, 2], - ) - non_seq = tf.SparseTensor( - indices=[[0, 0], [0, 1], [1, 0]], - values=[0, 1, 2], - dense_shape=[2, 2], - ) - features = {"seq": seq, "non_seq": non_seq} - - # Tile the context features across the sequence features - seq_input, seq_length = ksfc.SequenceFeatures([shared_seq])(features) - non_seq_input = dense_features.DenseFeatures([shared_non_seq])(features) - - with self.cached_session() as sess: - sess.run(tf.compat.v1.global_variables_initializer()) - output_seq, output_seq_length, output_non_seq = sess.run( - [seq_input, seq_length, non_seq_input] - ) - self.assertAllEqual( - output_seq, - [[[1, 1, 1, 1], [1, 1, 1, 1]], [[1, 1, 1, 1], [0, 0, 0, 0]]], - ) - self.assertAllEqual(output_seq_length, [2, 1]) - self.assertAllEqual(output_non_seq, [[2, 2, 2, 2], [1, 1, 1, 1]]) - - -_SEQ_EX_PROTO = """ -context { - feature { - key: "float_ctx" - value { - float_list { - value: 123.6 - } - } - } - feature { - key: "int_ctx" - value { - int64_list { - value: 5 - } - } - } -} -feature_lists { - feature_list { - key: "bytes_list" - value { - feature { - bytes_list { - value: "a" - } - } - feature { - bytes_list { - value: "b" - value: "c" - } - } - feature { - bytes_list { - value: "d" - value: "e" - value: "f" - value: "g" - } - } - } - } - feature_list { - key: "float_list" - value { - feature { - float_list { - value: 1.0 - } - } - feature { - float_list { - value: 3.0 - value: 3.0 - value: 3.0 - } - } - feature { - float_list { - value: 5.0 - value: 5.0 - value: 5.0 - value: 5.0 - value: 5.0 - } - } - } - } - feature_list { - key: "int_list" - value { - feature { - int64_list { - value: 2 - value: 2 - } - } - feature { - int64_list { - value: 4 - value: 4 - value: 4 - value: 4 - } - } - feature { - int64_list { - value: 6 - value: 6 - value: 6 - value: 6 - value: 6 - value: 6 - } - } - } - } -} -""" - - -def _make_sequence_example(): - example = example_pb2.SequenceExample() - return text_format.Parse(_SEQ_EX_PROTO, example) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/feature_column/sequence_feature_column_test.py b/keras/feature_column/sequence_feature_column_test.py deleted file mode 100644 index 3e5b9ef1878..00000000000 --- a/keras/feature_column/sequence_feature_column_test.py +++ /dev/null @@ -1,988 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for sequential_feature_column.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.feature_column import sequence_feature_column as ksfc -from keras.saving.legacy import model_config -from keras.testing_infra import test_combinations - - -def _initialized_session(config=None): - sess = tf.compat.v1.Session(config=config) - sess.run(tf.compat.v1.global_variables_initializer()) - sess.run(tf.compat.v1.tables_initializer()) - return sess - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class SequenceFeaturesTest(tf.test.TestCase, parameterized.TestCase): - @parameterized.named_parameters( - { - "testcase_name": "2D", - "sparse_input_args_a": { - # example 0, ids [2] - # example 1, ids [0, 1] - "indices": ((0, 0), (1, 0), (1, 1)), - "values": (2, 0, 1), - "dense_shape": (2, 2), - }, - "sparse_input_args_b": { - # example 0, ids [1] - # example 1, ids [2, 0] - "indices": ((0, 0), (1, 0), (1, 1)), - "values": (1, 2, 0), - "dense_shape": (2, 2), - }, - "expected_input_layer": [ - # example 0, ids_a [2], ids_b [1] - [[5.0, 6.0, 14.0, 15.0, 16.0], [0.0, 0.0, 0.0, 0.0, 0.0]], - # example 1, ids_a [0, 1], ids_b [2, 0] - [[1.0, 2.0, 17.0, 18.0, 19.0], [3.0, 4.0, 11.0, 12.0, 13.0]], - ], - "expected_sequence_length": [1, 2], - }, - { - "testcase_name": "3D", - "sparse_input_args_a": { - # feature 0, ids [[2], [0, 1]] - # feature 1, ids [[0, 0], [1]] - "indices": ( - (0, 0, 0), - (0, 1, 0), - (0, 1, 1), - (1, 0, 0), - (1, 0, 1), - (1, 1, 0), - ), - "values": (2, 0, 1, 0, 0, 1), - "dense_shape": (2, 2, 2), - }, - "sparse_input_args_b": { - # feature 0, ids [[1, 1], [1]] - # feature 1, ids [[2], [0]] - "indices": ( - (0, 0, 0), - (0, 0, 1), - (0, 1, 0), - (1, 0, 0), - (1, 1, 0), - ), - "values": (1, 1, 1, 2, 0), - "dense_shape": (2, 2, 2), - }, - "expected_input_layer": [ - # feature 0, [a: 2, -, b: 1, 1], [a: 0, 1, b: 1, -] - [[5.0, 6.0, 14.0, 15.0, 16.0], [2.0, 3.0, 14.0, 15.0, 16.0]], - # feature 1, [a: 0, 0, b: 2, -], [a: 1, -, b: 0, -] - [[1.0, 2.0, 17.0, 18.0, 19.0], [3.0, 4.0, 11.0, 12.0, 13.0]], - ], - "expected_sequence_length": [2, 2], - }, - ) - def test_embedding_column( - self, - sparse_input_args_a, - sparse_input_args_b, - expected_input_layer, - expected_sequence_length, - ): - - sparse_input_a = tf.compat.v1.SparseTensorValue(**sparse_input_args_a) - sparse_input_b = tf.compat.v1.SparseTensorValue(**sparse_input_args_b) - vocabulary_size = 3 - embedding_dimension_a = 2 - embedding_values_a = ( - (1.0, 2.0), # id 0 - (3.0, 4.0), # id 1 - (5.0, 6.0), # id 2 - ) - embedding_dimension_b = 3 - embedding_values_b = ( - (11.0, 12.0, 13.0), # id 0 - (14.0, 15.0, 16.0), # id 1 - (17.0, 18.0, 19.0), # id 2 - ) - - def _get_initializer(embedding_dimension, embedding_values): - def _initializer(shape, dtype, partition_info=None): - self.assertAllEqual( - (vocabulary_size, embedding_dimension), shape - ) - self.assertEqual(tf.float32, dtype) - self.assertIsNone(partition_info) - return embedding_values - - return _initializer - - categorical_column_a = ( - tf.feature_column.sequence_categorical_column_with_identity( - key="aaa", num_buckets=vocabulary_size - ) - ) - embedding_column_a = tf.feature_column.embedding_column( - categorical_column_a, - dimension=embedding_dimension_a, - initializer=_get_initializer( - embedding_dimension_a, embedding_values_a - ), - ) - categorical_column_b = ( - tf.feature_column.sequence_categorical_column_with_identity( - key="bbb", num_buckets=vocabulary_size - ) - ) - embedding_column_b = tf.feature_column.embedding_column( - categorical_column_b, - dimension=embedding_dimension_b, - initializer=_get_initializer( - embedding_dimension_b, embedding_values_b - ), - ) - - # Test that columns are reordered alphabetically. - sequence_input_layer = ksfc.SequenceFeatures( - [embedding_column_b, embedding_column_a] - ) - input_layer, sequence_length = sequence_input_layer( - { - "aaa": sparse_input_a, - "bbb": sparse_input_b, - } - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - weights = sequence_input_layer.weights - self.assertCountEqual( - ( - "sequence_features/aaa_embedding/embedding_weights:0", - "sequence_features/bbb_embedding/embedding_weights:0", - ), - tuple([v.name for v in weights]), - ) - self.assertAllEqual(embedding_values_a, self.evaluate(weights[0])) - self.assertAllEqual(embedding_values_b, self.evaluate(weights[1])) - self.assertAllEqual(expected_input_layer, self.evaluate(input_layer)) - self.assertAllEqual( - expected_sequence_length, self.evaluate(sequence_length) - ) - - def test_embedding_column_with_non_sequence_categorical(self): - """Tests that error is raised for non-sequence embedding column.""" - vocabulary_size = 3 - sparse_input = tf.compat.v1.SparseTensorValue( - # example 0, ids [2] - # example 1, ids [0, 1] - indices=((0, 0), (1, 0), (1, 1)), - values=(2, 0, 1), - dense_shape=(2, 2), - ) - - categorical_column_a = ( - tf.feature_column.categorical_column_with_identity( - key="aaa", num_buckets=vocabulary_size - ) - ) - embedding_column_a = tf.feature_column.embedding_column( - categorical_column_a, dimension=2 - ) - sequence_input_layer = ksfc.SequenceFeatures([embedding_column_a]) - with self.assertRaisesRegex( - ValueError, - r"In embedding_column: aaa_embedding\. categorical_column must be " - r"of type SequenceCategoricalColumn to use SequenceFeatures\.", - ): - _, _ = sequence_input_layer({"aaa": sparse_input}) - - def test_shared_embedding_column(self): - with tf.Graph().as_default(): - vocabulary_size = 3 - sparse_input_a = tf.compat.v1.SparseTensorValue( - # example 0, ids [2] - # example 1, ids [0, 1] - indices=((0, 0), (1, 0), (1, 1)), - values=(2, 0, 1), - dense_shape=(2, 2), - ) - sparse_input_b = tf.compat.v1.SparseTensorValue( - # example 0, ids [1] - # example 1, ids [2, 0] - indices=((0, 0), (1, 0), (1, 1)), - values=(1, 2, 0), - dense_shape=(2, 2), - ) - - embedding_dimension = 2 - embedding_values = ( - (1.0, 2.0), # id 0 - (3.0, 4.0), # id 1 - (5.0, 6.0), # id 2 - ) - - def _get_initializer(embedding_dimension, embedding_values): - def _initializer(shape, dtype, partition_info=None): - self.assertAllEqual( - (vocabulary_size, embedding_dimension), shape - ) - self.assertEqual(tf.float32, dtype) - self.assertIsNone(partition_info) - return embedding_values - - return _initializer - - expected_input_layer = [ - # example 0, ids_a [2], ids_b [1] - [[5.0, 6.0, 3.0, 4.0], [0.0, 0.0, 0.0, 0.0]], - # example 1, ids_a [0, 1], ids_b [2, 0] - [[1.0, 2.0, 5.0, 6.0], [3.0, 4.0, 1.0, 2.0]], - ] - expected_sequence_length = [1, 2] - - categorical_column_a = ( - tf.feature_column.sequence_categorical_column_with_identity( - key="aaa", num_buckets=vocabulary_size - ) - ) - categorical_column_b = ( - tf.feature_column.sequence_categorical_column_with_identity( - key="bbb", num_buckets=vocabulary_size - ) - ) - # Test that columns are reordered alphabetically. - shared_embedding_columns = tf.feature_column.shared_embeddings( - [categorical_column_b, categorical_column_a], - dimension=embedding_dimension, - initializer=_get_initializer( - embedding_dimension, embedding_values - ), - ) - - sequence_input_layer = ksfc.SequenceFeatures( - shared_embedding_columns - ) - input_layer, sequence_length = sequence_input_layer( - {"aaa": sparse_input_a, "bbb": sparse_input_b} - ) - - global_vars = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - self.assertCountEqual( - ("aaa_bbb_shared_embedding:0",), - tuple([v.name for v in global_vars]), - ) - with _initialized_session() as sess: - self.assertAllEqual( - embedding_values, global_vars[0].eval(session=sess) - ) - self.assertAllEqual( - expected_input_layer, input_layer.eval(session=sess) - ) - self.assertAllEqual( - expected_sequence_length, sequence_length.eval(session=sess) - ) - - def test_shared_embedding_column_with_non_sequence_categorical(self): - """Tests that error is raised for non-sequence shared embedding - column.""" - with tf.Graph().as_default(): - vocabulary_size = 3 - sparse_input_a = tf.compat.v1.SparseTensorValue( - # example 0, ids [2] - # example 1, ids [0, 1] - indices=((0, 0), (1, 0), (1, 1)), - values=(2, 0, 1), - dense_shape=(2, 2), - ) - sparse_input_b = tf.compat.v1.SparseTensorValue( - # example 0, ids [2] - # example 1, ids [0, 1] - indices=((0, 0), (1, 0), (1, 1)), - values=(2, 0, 1), - dense_shape=(2, 2), - ) - - categorical_column_a = ( - tf.feature_column.categorical_column_with_identity( - key="aaa", num_buckets=vocabulary_size - ) - ) - categorical_column_b = ( - tf.feature_column.categorical_column_with_identity( - key="bbb", num_buckets=vocabulary_size - ) - ) - shared_embedding_columns = tf.feature_column.shared_embeddings( - [categorical_column_a, categorical_column_b], dimension=2 - ) - - sequence_input_layer = ksfc.SequenceFeatures( - shared_embedding_columns - ) - with self.assertRaisesRegex( - ValueError, - r"In embedding_column: aaa_shared_embedding\. " - r"categorical_column must " - r"be of type SequenceCategoricalColumn to use " - r"SequenceFeatures\.", - ): - _, _ = sequence_input_layer( - {"aaa": sparse_input_a, "bbb": sparse_input_b} - ) - - @parameterized.named_parameters( - { - "testcase_name": "2D", - "sparse_input_args_a": { - # example 0, ids [2] - # example 1, ids [0, 1] - "indices": ((0, 0), (1, 0), (1, 1)), - "values": (2, 0, 1), - "dense_shape": (2, 2), - }, - "sparse_input_args_b": { - # example 0, ids [1] - # example 1, ids [1, 0] - "indices": ((0, 0), (1, 0), (1, 1)), - "values": (1, 1, 0), - "dense_shape": (2, 2), - }, - "expected_input_layer": [ - # example 0, ids_a [2], ids_b [1] - [[0.0, 0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0]], - # example 1, ids_a [0, 1], ids_b [1, 0] - [[1.0, 0.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 1.0, 0.0]], - ], - "expected_sequence_length": [1, 2], - }, - { - "testcase_name": "3D", - "sparse_input_args_a": { - # feature 0, ids [[2], [0, 1]] - # feature 1, ids [[0, 0], [1]] - "indices": ( - (0, 0, 0), - (0, 1, 0), - (0, 1, 1), - (1, 0, 0), - (1, 0, 1), - (1, 1, 0), - ), - "values": (2, 0, 1, 0, 0, 1), - "dense_shape": (2, 2, 2), - }, - "sparse_input_args_b": { - # feature 0, ids [[1, 1], [1]] - # feature 1, ids [[1], [0]] - "indices": ( - (0, 0, 0), - (0, 0, 1), - (0, 1, 0), - (1, 0, 0), - (1, 1, 0), - ), - "values": (1, 1, 1, 1, 0), - "dense_shape": (2, 2, 2), - }, - "expected_input_layer": [ - # feature 0, [a: 2, -, b: 1, 1], [a: 0, 1, b: 1, -] - [[0.0, 0.0, 1.0, 0.0, 2.0], [1.0, 1.0, 0.0, 0.0, 1.0]], - # feature 1, [a: 0, 0, b: 1, -], [a: 1, -, b: 0, -] - [[2.0, 0.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 1.0, 0.0]], - ], - "expected_sequence_length": [2, 2], - }, - ) - def test_indicator_column( - self, - sparse_input_args_a, - sparse_input_args_b, - expected_input_layer, - expected_sequence_length, - ): - sparse_input_a = tf.compat.v1.SparseTensorValue(**sparse_input_args_a) - sparse_input_b = tf.compat.v1.SparseTensorValue(**sparse_input_args_b) - - vocabulary_size_a = 3 - vocabulary_size_b = 2 - - categorical_column_a = ( - tf.feature_column.sequence_categorical_column_with_identity( - key="aaa", num_buckets=vocabulary_size_a - ) - ) - indicator_column_a = tf.feature_column.indicator_column( - categorical_column_a - ) - categorical_column_b = ( - tf.feature_column.sequence_categorical_column_with_identity( - key="bbb", num_buckets=vocabulary_size_b - ) - ) - indicator_column_b = tf.feature_column.indicator_column( - categorical_column_b - ) - # Test that columns are reordered alphabetically. - sequence_input_layer = ksfc.SequenceFeatures( - [indicator_column_b, indicator_column_a] - ) - input_layer, sequence_length = sequence_input_layer( - {"aaa": sparse_input_a, "bbb": sparse_input_b} - ) - - self.assertAllEqual(expected_input_layer, self.evaluate(input_layer)) - self.assertAllEqual( - expected_sequence_length, self.evaluate(sequence_length) - ) - - def test_indicator_column_with_non_sequence_categorical(self): - """Tests that error is raised for non-sequence categorical column.""" - vocabulary_size = 3 - sparse_input = tf.compat.v1.SparseTensorValue( - # example 0, ids [2] - # example 1, ids [0, 1] - indices=((0, 0), (1, 0), (1, 1)), - values=(2, 0, 1), - dense_shape=(2, 2), - ) - - categorical_column_a = ( - tf.feature_column.categorical_column_with_identity( - key="aaa", num_buckets=vocabulary_size - ) - ) - indicator_column_a = tf.feature_column.indicator_column( - categorical_column_a - ) - - sequence_input_layer = ksfc.SequenceFeatures([indicator_column_a]) - with self.assertRaisesRegex( - ValueError, - r"In indicator_column: aaa_indicator\. categorical_column must be " - r"of type SequenceCategoricalColumn to use SequenceFeatures\.", - ): - _, _ = sequence_input_layer({"aaa": sparse_input}) - - @parameterized.named_parameters( - { - "testcase_name": "2D", - "sparse_input_args": { - # example 0, values [0., 1] - # example 1, [10.] - "indices": ((0, 0), (0, 1), (1, 0)), - "values": (0.0, 1.0, 10.0), - "dense_shape": (2, 2), - }, - "expected_input_layer": [[[0.0], [1.0]], [[10.0], [0.0]]], - "expected_sequence_length": [2, 1], - }, - { - "testcase_name": "3D", - "sparse_input_args": { - # feature 0, ids [[20, 3], [5]] - # feature 1, ids [[3], [8]] - "indices": ( - (0, 0, 0), - (0, 0, 1), - (0, 1, 0), - (1, 0, 0), - (1, 1, 0), - ), - "values": (20.0, 3.0, 5.0, 3.0, 8.0), - "dense_shape": (2, 2, 2), - }, - "expected_input_layer": [ - [[20.0], [3.0], [5.0], [0.0]], - [[3.0], [0.0], [8.0], [0.0]], - ], - "expected_sequence_length": [2, 2], - }, - ) - def test_numeric_column( - self, sparse_input_args, expected_input_layer, expected_sequence_length - ): - sparse_input = tf.compat.v1.SparseTensorValue(**sparse_input_args) - - numeric_column = tf.feature_column.sequence_numeric_column("aaa") - - sequence_input_layer = ksfc.SequenceFeatures([numeric_column]) - input_layer, sequence_length = sequence_input_layer( - {"aaa": sparse_input} - ) - - self.assertAllEqual(expected_input_layer, self.evaluate(input_layer)) - self.assertAllEqual( - expected_sequence_length, self.evaluate(sequence_length) - ) - - @parameterized.named_parameters( - { - "testcase_name": "2D", - "sparse_input_args": { - # example 0, values [0., 1., 2., 3., 4., 5., 6., 7.] - # example 1, [10., 11., 12., 13.] - "indices": ( - (0, 0), - (0, 1), - (0, 2), - (0, 3), - (0, 4), - (0, 5), - (0, 6), - (0, 7), - (1, 0), - (1, 1), - (1, 2), - (1, 3), - ), - "values": ( - 0.0, - 1.0, - 2.0, - 3.0, - 4.0, - 5.0, - 6.0, - 7.0, - 10.0, - 11.0, - 12.0, - 13.0, - ), - "dense_shape": (2, 8), - }, - "expected_input_layer": [ - # The output of numeric_column._get_dense_tensor should be - # flattened. - [[0.0, 1.0, 2.0, 3.0], [4.0, 5.0, 6.0, 7.0]], - [[10.0, 11.0, 12.0, 13.0], [0.0, 0.0, 0.0, 0.0]], - ], - "expected_sequence_length": [2, 1], - }, - { - "testcase_name": "3D", - "sparse_input_args": { - # example 0, values [[0., 1., 2., 3.]], [[4., 5., 6., 7.]] - # example 1, [[10., 11., 12., 13.], []] - "indices": ( - (0, 0, 0), - (0, 0, 1), - (0, 0, 2), - (0, 0, 3), - (0, 1, 0), - (0, 1, 1), - (0, 1, 2), - (0, 1, 3), - (1, 0, 0), - (1, 0, 1), - (1, 0, 2), - (1, 0, 3), - ), - "values": ( - 0.0, - 1.0, - 2.0, - 3.0, - 4.0, - 5.0, - 6.0, - 7.0, - 10.0, - 11.0, - 12.0, - 13.0, - ), - "dense_shape": (2, 2, 4), - }, - "expected_input_layer": [ - # The output of numeric_column._get_dense_tensor should be - # flattened. - [[0.0, 1.0, 2.0, 3.0], [4.0, 5.0, 6.0, 7.0]], - [[10.0, 11.0, 12.0, 13.0], [0.0, 0.0, 0.0, 0.0]], - ], - "expected_sequence_length": [2, 1], - }, - ) - def test_numeric_column_multi_dim( - self, sparse_input_args, expected_input_layer, expected_sequence_length - ): - """Tests SequenceFeatures for multi-dimensional numeric_column.""" - sparse_input = tf.compat.v1.SparseTensorValue(**sparse_input_args) - - numeric_column = tf.feature_column.sequence_numeric_column( - "aaa", shape=(2, 2) - ) - - sequence_input_layer = ksfc.SequenceFeatures([numeric_column]) - input_layer, sequence_length = sequence_input_layer( - {"aaa": sparse_input} - ) - - self.assertAllEqual(expected_input_layer, self.evaluate(input_layer)) - self.assertAllEqual( - expected_sequence_length, self.evaluate(sequence_length) - ) - - def test_sequence_length_not_equal(self): - """Tests that an error is raised when sequence lengths are not equal.""" - # Input a with sequence_length = [2, 1] - sparse_input_a = tf.compat.v1.SparseTensorValue( - indices=((0, 0), (0, 1), (1, 0)), - values=(0.0, 1.0, 10.0), - dense_shape=(2, 2), - ) - # Input b with sequence_length = [1, 1] - sparse_input_b = tf.compat.v1.SparseTensorValue( - indices=((0, 0), (1, 0)), values=(1.0, 10.0), dense_shape=(2, 2) - ) - numeric_column_a = tf.feature_column.sequence_numeric_column("aaa") - numeric_column_b = tf.feature_column.sequence_numeric_column("bbb") - - sequence_input_layer = ksfc.SequenceFeatures( - [numeric_column_a, numeric_column_b] - ) - - with self.assertRaisesRegex( - tf.errors.InvalidArgumentError, r"Condition x == y did not hold.*" - ): - _, sequence_length = sequence_input_layer( - {"aaa": sparse_input_a, "bbb": sparse_input_b} - ) - self.evaluate(sequence_length) - - @parameterized.named_parameters( - { - "testcase_name": "2D", - "sparse_input_args": { - # example 0, values [[[0., 1.], [2., 3.]], [[4., 5.], [6., - # 7.]]] - # example 1, [[[10., 11.], [12., 13.]]] - "indices": ( - (0, 0), - (0, 1), - (0, 2), - (0, 3), - (0, 4), - (0, 5), - (0, 6), - (0, 7), - (1, 0), - (1, 1), - (1, 2), - (1, 3), - ), - "values": ( - 0.0, - 1.0, - 2.0, - 3.0, - 4.0, - 5.0, - 6.0, - 7.0, - 10.0, - 11.0, - 12.0, - 13.0, - ), - "dense_shape": (2, 8), - }, - "expected_shape": [2, 2, 4], - }, - { - "testcase_name": "3D", - "sparse_input_args": { - # example 0, values [[0., 1., 2., 3.]], [[4., 5., 6., 7.]] - # example 1, [[10., 11., 12., 13.], []] - "indices": ( - (0, 0, 0), - (0, 0, 1), - (0, 0, 2), - (0, 0, 3), - (0, 1, 0), - (0, 1, 1), - (0, 1, 2), - (0, 1, 3), - (1, 0, 0), - (1, 0, 1), - (1, 0, 2), - (1, 0, 3), - ), - "values": ( - 0.0, - 1.0, - 2.0, - 3.0, - 4.0, - 5.0, - 6.0, - 7.0, - 10.0, - 11.0, - 12.0, - 13.0, - ), - "dense_shape": (2, 2, 4), - }, - "expected_shape": [2, 2, 4], - }, - ) - def test_static_shape_from_tensors_numeric( - self, sparse_input_args, expected_shape - ): - """Tests that we return a known static shape when we have one.""" - sparse_input = tf.compat.v1.SparseTensorValue(**sparse_input_args) - numeric_column = tf.feature_column.sequence_numeric_column( - "aaa", shape=(2, 2) - ) - - sequence_input_layer = ksfc.SequenceFeatures([numeric_column]) - input_layer, _ = sequence_input_layer({"aaa": sparse_input}) - shape = input_layer.get_shape() - self.assertEqual(shape, expected_shape) - - @parameterized.named_parameters( - { - "testcase_name": "2D", - "sparse_input_args": { - # example 0, ids [2] - # example 1, ids [0, 1] - # example 2, ids [] - # example 3, ids [1] - "indices": ((0, 0), (1, 0), (1, 1), (3, 0)), - "values": (2, 0, 1, 1), - "dense_shape": (4, 2), - }, - "expected_shape": [4, 2, 3], - }, - { - "testcase_name": "3D", - "sparse_input_args": { - # example 0, ids [[2]] - # example 1, ids [[0, 1], [2]] - # example 2, ids [] - # example 3, ids [[1], [0, 2]] - "indices": ( - (0, 0, 0), - (1, 0, 0), - (1, 0, 1), - (1, 1, 0), - (3, 0, 0), - (3, 1, 0), - (3, 1, 1), - ), - "values": (2, 0, 1, 2, 1, 0, 2), - "dense_shape": (4, 2, 2), - }, - "expected_shape": [4, 2, 3], - }, - ) - def test_static_shape_from_tensors_indicator( - self, sparse_input_args, expected_shape - ): - """Tests that we return a known static shape when we have one.""" - sparse_input = tf.compat.v1.SparseTensorValue(**sparse_input_args) - categorical_column = ( - tf.feature_column.sequence_categorical_column_with_identity( - key="aaa", num_buckets=3 - ) - ) - indicator_column = tf.feature_column.indicator_column( - categorical_column - ) - - sequence_input_layer = ksfc.SequenceFeatures([indicator_column]) - input_layer, _ = sequence_input_layer({"aaa": sparse_input}) - shape = input_layer.get_shape() - self.assertEqual(shape, expected_shape) - - def test_compute_output_shape(self): - price1 = tf.feature_column.sequence_numeric_column("price1", shape=2) - price2 = tf.feature_column.sequence_numeric_column("price2") - features = { - "price1": tf.SparseTensor( - indices=[ - [0, 0, 0], - [0, 0, 1], - [0, 1, 0], - [0, 1, 1], - [1, 0, 0], - [1, 0, 1], - [2, 0, 0], - [2, 0, 1], - [3, 0, 0], - [3, 0, 1], - ], - values=[ - 0.0, - 1.0, - 10.0, - 11.0, - 100.0, - 101.0, - 200.0, - 201.0, - 300.0, - 301.0, - ], - dense_shape=(4, 3, 2), - ), - "price2": tf.SparseTensor( - indices=[[0, 0], [0, 1], [1, 0], [2, 0], [3, 0]], - values=[10.0, 11.0, 20.0, 30.0, 40.0], - dense_shape=(4, 3), - ), - } - sequence_features = ksfc.SequenceFeatures([price1, price2]) - seq_input, seq_len = sequence_features(features) - self.assertEqual( - sequence_features.compute_output_shape((None, None)), - (None, None, 3), - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertAllClose( - [ - [[0.0, 1.0, 10.0], [10.0, 11.0, 11.0], [0.0, 0.0, 0.0]], - [[100.0, 101.0, 20.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], - [[200.0, 201.0, 30.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], - [[300.0, 301.0, 40.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], - ], - self.evaluate(seq_input), - ) - self.assertAllClose([2, 1, 1, 1], self.evaluate(seq_len)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class SequenceFeaturesSerializationTest( - tf.test.TestCase, parameterized.TestCase -): - @parameterized.named_parameters( - ("trainable", True, "trainable"), ("not_trainable", False, "frozen") - ) - def test_get_config(self, trainable, name): - cols = [tf.feature_column.sequence_numeric_column("a")] - orig_layer = ksfc.SequenceFeatures(cols, trainable=trainable, name=name) - config = orig_layer.get_config() - - self.assertEqual(config["name"], orig_layer.name) - self.assertEqual(config["trainable"], trainable) - self.assertLen(config["feature_columns"], 1) - self.assertEqual( - config["feature_columns"][0]["class_name"], "SequenceNumericColumn" - ) - self.assertEqual(config["feature_columns"][0]["config"]["shape"], (1,)) - - @parameterized.named_parameters( - ("trainable", True, "trainable"), ("not_trainable", False, "frozen") - ) - def test_from_config(self, trainable, name): - cols = [tf.feature_column.sequence_numeric_column("a")] - orig_layer = ksfc.SequenceFeatures(cols, trainable=trainable, name=name) - config = orig_layer.get_config() - - new_layer = ksfc.SequenceFeatures.from_config(config) - - self.assertEqual(new_layer.name, orig_layer.name) - self.assertEqual(new_layer.trainable, trainable) - self.assertLen(new_layer._feature_columns, 1) - self.assertEqual(new_layer._feature_columns[0].name, "a") - - def test_serialization_sequence_features(self): - rating = tf.feature_column.sequence_numeric_column("rating") - sequence_feature = ksfc.SequenceFeatures([rating]) - config = keras.layers.serialize(sequence_feature) - - revived = keras.layers.deserialize(config) - self.assertIsInstance(revived, ksfc.SequenceFeatures) - - -class SequenceFeaturesSavingTest(tf.test.TestCase, parameterized.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_saving_with_sequence_features(self): - cols = [ - tf.feature_column.sequence_numeric_column("a"), - tf.feature_column.indicator_column( - tf.feature_column.sequence_categorical_column_with_vocabulary_list( # noqa: E501 - "b", ["one", "two"] - ) - ), - ] - input_layers = { - "a": keras.layers.Input(shape=(None, 1), sparse=True, name="a"), - "b": keras.layers.Input( - shape=(None, 1), sparse=True, name="b", dtype="string" - ), - } - - fc_layer, _ = ksfc.SequenceFeatures(cols)(input_layers) - # TODO(tibell): Figure out the right dtype and apply masking. - # sequence_length_mask = array_ops.sequence_mask(sequence_length) - # x = keras.layers.GRU(32)(fc_layer, mask=sequence_length_mask) - x = keras.layers.GRU(32)(fc_layer) - output = keras.layers.Dense(10)(x) - - model = keras.models.Model(input_layers, output) - - model.compile( - loss=keras.losses.MSE, - optimizer="rmsprop", - metrics=[keras.metrics.categorical_accuracy], - ) - - config = model.to_json() - loaded_model = model_config.model_from_json(config) - - batch_size = 10 - timesteps = 1 - - values_a = np.arange(10, dtype=np.float32) - indices_a = np.zeros((10, 3), dtype=np.int64) - indices_a[:, 0] = np.arange(10) - inputs_a = tf.SparseTensor( - indices_a, values_a, (batch_size, timesteps, 1) - ) - - values_b = np.zeros(10, dtype=str) - indices_b = np.zeros((10, 3), dtype=np.int64) - indices_b[:, 0] = np.arange(10) - inputs_b = tf.SparseTensor( - indices_b, values_b, (batch_size, timesteps, 1) - ) - - with self.cached_session(): - # Initialize tables for V1 lookup. - if not tf.executing_eagerly(): - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertLen( - loaded_model.predict({"a": inputs_a, "b": inputs_b}, steps=1), - batch_size, - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/initializers/BUILD b/keras/initializers/BUILD deleted file mode 100644 index e879ee1e438..00000000000 --- a/keras/initializers/BUILD +++ /dev/null @@ -1,45 +0,0 @@ -# Description: -# Contains the Keras initializer API (internal TensorFlow version). - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:friends", - ], - licenses = ["notice"], -) - -py_library( - name = "initializers", - srcs = [ - "__init__.py", - "initializers.py", - "initializers_v1.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/dtensor:utils", - "//keras/saving:serialization_lib", - "//keras/utils:generic_utils", - "//keras/utils:tf_inspect", - ], -) - -tf_py_test( - name = "initializers_test", - size = "small", - srcs = ["initializers_test.py"], - python_version = "PY3", - deps = [ - ":initializers", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine", - "//keras/models", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/initializers/__init__.py b/keras/initializers/__init__.py deleted file mode 100644 index f89514750ad..00000000000 --- a/keras/initializers/__init__.py +++ /dev/null @@ -1,214 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras initializer serialization / deserialization.""" - -import threading - -import tensorflow.compat.v2 as tf - -from keras.initializers import initializers -from keras.initializers import initializers_v1 -from keras.saving import serialization_lib -from keras.saving.legacy import serialization as legacy_serialization -from keras.utils import generic_utils -from keras.utils import tf_inspect as inspect - -# isort: off -from tensorflow.python import tf2 -from tensorflow.python.ops import init_ops -from tensorflow.python.util.tf_export import keras_export - -# LOCAL.ALL_OBJECTS is meant to be a global mutable. Hence we need to make it -# thread-local to avoid concurrent mutations. -LOCAL = threading.local() - - -def populate_deserializable_objects(): - """Populates dict ALL_OBJECTS with every built-in initializer.""" - global LOCAL - if not hasattr(LOCAL, "ALL_OBJECTS"): - LOCAL.ALL_OBJECTS = {} - LOCAL.GENERATED_WITH_V2 = None - - if ( - LOCAL.ALL_OBJECTS - and LOCAL.GENERATED_WITH_V2 == tf.__internal__.tf2.enabled() - ): - # Objects dict is already generated for the proper TF version: - # do nothing. - return - - LOCAL.ALL_OBJECTS = {} - LOCAL.GENERATED_WITH_V2 = tf.__internal__.tf2.enabled() - - # Compatibility aliases (need to exist in both V1 and V2). - LOCAL.ALL_OBJECTS["ConstantV2"] = initializers.Constant - LOCAL.ALL_OBJECTS["GlorotNormalV2"] = initializers.GlorotNormal - LOCAL.ALL_OBJECTS["GlorotUniformV2"] = initializers.GlorotUniform - LOCAL.ALL_OBJECTS["HeNormalV2"] = initializers.HeNormal - LOCAL.ALL_OBJECTS["HeUniformV2"] = initializers.HeUniform - LOCAL.ALL_OBJECTS["IdentityV2"] = initializers.Identity - LOCAL.ALL_OBJECTS["LecunNormalV2"] = initializers.LecunNormal - LOCAL.ALL_OBJECTS["LecunUniformV2"] = initializers.LecunUniform - LOCAL.ALL_OBJECTS["OnesV2"] = initializers.Ones - LOCAL.ALL_OBJECTS["OrthogonalV2"] = initializers.Orthogonal - LOCAL.ALL_OBJECTS["RandomNormalV2"] = initializers.RandomNormal - LOCAL.ALL_OBJECTS["RandomUniformV2"] = initializers.RandomUniform - LOCAL.ALL_OBJECTS["TruncatedNormalV2"] = initializers.TruncatedNormal - LOCAL.ALL_OBJECTS["VarianceScalingV2"] = initializers.VarianceScaling - LOCAL.ALL_OBJECTS["ZerosV2"] = initializers.Zeros - - # Out of an abundance of caution we also include these aliases that have - # a non-zero probability of having been included in saved configs in the - # past. - LOCAL.ALL_OBJECTS["glorot_normalV2"] = initializers.GlorotNormal - LOCAL.ALL_OBJECTS["glorot_uniformV2"] = initializers.GlorotUniform - LOCAL.ALL_OBJECTS["he_normalV2"] = initializers.HeNormal - LOCAL.ALL_OBJECTS["he_uniformV2"] = initializers.HeUniform - LOCAL.ALL_OBJECTS["lecun_normalV2"] = initializers.LecunNormal - LOCAL.ALL_OBJECTS["lecun_uniformV2"] = initializers.LecunUniform - - if tf.__internal__.tf2.enabled(): - # For V2, entries are generated automatically based on the content of - # initializers.py. - v2_objs = {} - base_cls = initializers.Initializer - generic_utils.populate_dict_with_module_objects( - v2_objs, - [initializers], - obj_filter=lambda x: inspect.isclass(x) and issubclass(x, base_cls), - ) - for key, value in v2_objs.items(): - LOCAL.ALL_OBJECTS[key] = value - # Functional aliases. - LOCAL.ALL_OBJECTS[generic_utils.to_snake_case(key)] = value - else: - # V1 initializers. - v1_objs = { - "Constant": tf.compat.v1.constant_initializer, - "GlorotNormal": tf.compat.v1.glorot_normal_initializer, - "GlorotUniform": tf.compat.v1.glorot_uniform_initializer, - "Identity": tf.compat.v1.initializers.identity, - "Ones": tf.compat.v1.ones_initializer, - "Orthogonal": tf.compat.v1.orthogonal_initializer, - "VarianceScaling": tf.compat.v1.variance_scaling_initializer, - "Zeros": tf.compat.v1.zeros_initializer, - "HeNormal": initializers_v1.HeNormal, - "HeUniform": initializers_v1.HeUniform, - "LecunNormal": initializers_v1.LecunNormal, - "LecunUniform": initializers_v1.LecunUniform, - "RandomNormal": initializers_v1.RandomNormal, - "RandomUniform": initializers_v1.RandomUniform, - "TruncatedNormal": initializers_v1.TruncatedNormal, - } - for key, value in v1_objs.items(): - LOCAL.ALL_OBJECTS[key] = value - # Functional aliases. - LOCAL.ALL_OBJECTS[generic_utils.to_snake_case(key)] = value - - # More compatibility aliases. - LOCAL.ALL_OBJECTS["normal"] = LOCAL.ALL_OBJECTS["random_normal"] - LOCAL.ALL_OBJECTS["uniform"] = LOCAL.ALL_OBJECTS["random_uniform"] - LOCAL.ALL_OBJECTS["one"] = LOCAL.ALL_OBJECTS["ones"] - LOCAL.ALL_OBJECTS["zero"] = LOCAL.ALL_OBJECTS["zeros"] - - -# For backwards compatibility, we populate this file with the objects -# from ALL_OBJECTS. We make no guarantees as to whether these objects will -# using their correct version. -populate_deserializable_objects() -globals().update(LOCAL.ALL_OBJECTS) - -# Utility functions - - -@keras_export("keras.initializers.serialize") -def serialize(initializer, use_legacy_format=False): - if use_legacy_format: - return legacy_serialization.serialize_keras_object(initializer) - - return serialization_lib.serialize_keras_object(initializer) - - -@keras_export("keras.initializers.deserialize") -def deserialize(config, custom_objects=None, use_legacy_format=False): - """Return an `Initializer` object from its config.""" - populate_deserializable_objects() - if use_legacy_format: - return legacy_serialization.deserialize_keras_object( - config, - module_objects=LOCAL.ALL_OBJECTS, - custom_objects=custom_objects, - printable_module_name="initializer", - ) - - return serialization_lib.deserialize_keras_object( - config, - module_objects=LOCAL.ALL_OBJECTS, - custom_objects=custom_objects, - printable_module_name="initializer", - ) - - -@keras_export("keras.initializers.get") -def get(identifier): - """Retrieve a Keras initializer by the identifier. - - The `identifier` may be the string name of a initializers function or class - (case-sensitively). - - >>> identifier = 'Ones' - >>> tf.keras.initializers.deserialize(identifier) - <...keras.initializers.initializers.Ones...> - - You can also specify `config` of the initializer to this function by passing - dict containing `class_name` and `config` as an identifier. Also note that - the `class_name` must map to a `Initializer` class. - - >>> cfg = {'class_name': 'Ones', 'config': {}} - >>> tf.keras.initializers.deserialize(cfg) - <...keras.initializers.initializers.Ones...> - - In the case that the `identifier` is a class, this method will return a new - instance of the class by its constructor. - - Args: - identifier: String or dict that contains the initializer name or - configurations. - - Returns: - Initializer instance base on the input identifier. - - Raises: - ValueError: If the input identifier is not a supported type or in a bad - format. - """ - - if identifier is None: - return None - if isinstance(identifier, dict): - use_legacy_format = "module" not in identifier - return deserialize(identifier, use_legacy_format=use_legacy_format) - elif isinstance(identifier, str): - config = {"class_name": str(identifier), "config": {}} - return get(config) - elif callable(identifier): - if inspect.isclass(identifier): - identifier = identifier() - return identifier - else: - raise ValueError( - "Could not interpret initializer identifier: " + str(identifier) - ) diff --git a/keras/initializers/initializers.py b/keras/initializers/initializers.py deleted file mode 100644 index 8fc3da65594..00000000000 --- a/keras/initializers/initializers.py +++ /dev/null @@ -1,1191 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras initializers.""" - -import math -import warnings - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.dtensor import utils -from keras.saving import serialization_lib - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -_PARTITION_SHAPE = "partition_shape" -_PARTITION_OFFSET = "partition_offset" -_LAYOUT = "layout" -_ALLOWED_INITIALIZER_KWARGS = [_PARTITION_SHAPE, _PARTITION_OFFSET, _LAYOUT] - - -@keras_export("keras.initializers.Initializer") -class Initializer: - """Initializer base class: all Keras initializers inherit from this class. - - Initializers should implement a `__call__()` method with the following - signature: - - ```python - def __call__(self, shape, dtype=None, **kwargs): - # returns a tensor of shape `shape` and dtype `dtype` - # containing values drawn from a distribution of your choice. - return tf.random.uniform(shape=shape, dtype=dtype) - ``` - - Optionally, you an also implement the method `get_config()` and the class - method `from_config()` in order to support serialization -- just like with - any Keras object. - - Here's a simple example: a random normal initializer. - - ```python - class ExampleRandomNormal(Initializer): - def __init__(self, mean, stddev): - self.mean = mean - self.stddev = stddev - - def __call__(self, shape, dtype=None, **kwargs): - return tf.random.normal( - shape, mean=self.mean, stddev=self.stddev, dtype=dtype - ) - - def get_config(self): # To support serialization - return {"mean": self.mean, "stddev": self.stddev} - ``` - - Note that we don't have to implement `from_config()` in the example above - since the constructor arguments of the class the keys in the config returned - by `get_config` are the same. In this case, the default `from_config()` - works fine. - """ - - def __call__(self, shape, dtype=None, **kwargs): - """Returns a tensor object initialized as specified by the initializer. - - Args: - shape: Shape of the tensor. - dtype: Optional dtype of the tensor. - **kwargs: Additional keyword arguments. - """ - raise NotImplementedError( - "Initializer subclasses must implement the `__call__()` method." - ) - - def get_config(self): - """Returns the initializer's configuration as a JSON-serializable dict. - - Returns: - A JSON-serializable Python dict. - """ - return {} - - @classmethod - def from_config(cls, config): - """Instantiates an initializer from a configuration dictionary. - - Example: - - ```python - initializer = RandomUniform(-1, 1) - config = initializer.get_config() - initializer = RandomUniform.from_config(config) - ``` - - Args: - config: A Python dictionary, the output of `get_config()`. - - Returns: - An `Initializer` instance. - """ - config.pop("dtype", None) - return cls(**config) - - def _warn_reuse(self): - if getattr(self, "_used", False): - if getattr(self, "seed", None) is None: - warnings.warn( - f"The initializer {self.__class__.__name__} is unseeded " - "and being called multiple times, which will return " - "identical values each time (even if the initializer is " - "unseeded). Please update your code to provide a seed to " - "the initializer, or avoid using the same initializer " - "instance more than once." - ) - else: - self._used = True - - -@keras_export("keras.initializers.Zeros", "keras.initializers.zeros", v1=[]) -class Zeros(Initializer): - """Initializer that generates tensors initialized to 0. - - Also available via the shortcut function `tf.keras.initializers.zeros`. - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.Zeros() - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.Zeros() - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - """ - - def __call__(self, shape, dtype=None, **kwargs): - """Returns a tensor object initialized as specified by the initializer. - - Args: - shape: Shape of the tensor. - dtype: Optional dtype of the tensor. Only numeric or boolean dtypes - are supported. If not specified, `keras.backend.floatx()` is - used, which defaults to `float32` unless you configured it - otherwise (via `keras.backend.set_floatx(float_dtype)`). - **kwargs: Additional keyword arguments. - """ - _validate_kwargs(self.__class__.__name__, kwargs) - dtype = _get_dtype(dtype) - if not dtype.is_numpy_compatible or dtype == tf.string: - raise ValueError(f"Expected numeric or boolean dtype, got {dtype}.") - if _PARTITION_SHAPE in kwargs: - shape = kwargs[_PARTITION_SHAPE] - layout = kwargs.pop("layout", None) - if layout: - return utils.call_with_layout( - tf.zeros, layout, shape=shape, dtype=dtype - ) - return tf.zeros(shape, dtype) - - -@keras_export("keras.initializers.Ones", "keras.initializers.ones", v1=[]) -class Ones(Initializer): - """Initializer that generates tensors initialized to 1. - - Also available via the shortcut function `tf.keras.initializers.ones`. - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.Ones() - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.Ones() - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - """ - - def __call__(self, shape, dtype=None, **kwargs): - """Returns a tensor object initialized as specified by the initializer. - - Args: - shape: Shape of the tensor. - dtype: Optional dtype of the tensor. Only numeric or boolean dtypes - are supported. If not specified, `keras.backend.floatx()` is - used, which defaults to `float32` unless you configured it - otherwise (via `keras.backend.set_floatx(float_dtype)`). - **kwargs: Additional keyword arguments. - """ - _validate_kwargs(self.__class__.__name__, kwargs) - dtype = _get_dtype(dtype) - if not dtype.is_numpy_compatible or dtype == tf.string: - raise ValueError(f"Expected numeric or boolean dtype, got {dtype}.") - if _PARTITION_SHAPE in kwargs: - shape = kwargs[_PARTITION_SHAPE] - layout = kwargs.pop("layout", None) - if layout: - return utils.call_with_layout( - tf.ones, layout, shape=shape, dtype=dtype - ) - return tf.ones(shape, dtype) - - -@keras_export( - "keras.initializers.Constant", "keras.initializers.constant", v1=[] -) -class Constant(Initializer): - """Initializer that generates tensors with constant values. - - Also available via the shortcut function `tf.keras.initializers.constant`. - - Only scalar values are allowed. - The constant value provided must be convertible to the dtype requested - when calling the initializer. - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.Constant(3.) - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.Constant(3.) - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - - Args: - value: A Python scalar. - """ - - def __init__(self, value=0): - self.value = value - - def __call__(self, shape, dtype=None, **kwargs): - """Returns a tensor object initialized to `self.value`. - - Args: - shape: Shape of the tensor. - dtype: Optional dtype of the tensor. If not specified, - `keras.backend.floatx()` is used, - which defaults to `float32` unless you configured it - otherwise (via `keras.backend.set_floatx(float_dtype)`). - **kwargs: Additional keyword arguments. - """ - _validate_kwargs(self.__class__.__name__, kwargs) - dtype = _get_dtype(dtype) - if _PARTITION_SHAPE in kwargs: - shape = kwargs[_PARTITION_SHAPE] - layout = kwargs.pop("layout", None) - if layout: - return utils.call_with_layout( - tf.constant, layout, self.value, shape=shape, dtype=dtype - ) - return tf.constant(self.value, dtype=_get_dtype(dtype), shape=shape) - - def get_config(self): - return {"value": self.value} - - @classmethod - def from_config(cls, config): - config.pop("dtype", None) - if "value" in config: - if isinstance(config["value"], dict): - config["value"] = serialization_lib.deserialize_keras_object( - config["value"] - ) - return cls(**config) - - -@keras_export( - "keras.initializers.RandomUniform", - "keras.initializers.random_uniform", - v1=[], -) -class RandomUniform(Initializer): - """Initializer that generates tensors with a uniform distribution. - - Also available via the shortcut function - `tf.keras.initializers.random_uniform`. - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.) - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.) - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - - Args: - minval: A python scalar or a scalar tensor. Lower bound of the range of - random values to generate (inclusive). - maxval: A python scalar or a scalar tensor. Upper bound of the range of - random values to generate (exclusive). - seed: A Python integer. Used to make the behavior of the initializer - deterministic. Note that a seeded initializer will produce the same - random values across multiple calls. - """ - - def __init__(self, minval=-0.05, maxval=0.05, seed=None): - self.minval = minval - self.maxval = maxval - self.seed = seed - self._random_generator = backend.RandomGenerator( - seed, rng_type="stateless" - ) - - def __call__(self, shape, dtype=None, **kwargs): - """Returns a tensor object initialized as specified by the initializer. - - Args: - shape: Shape of the tensor. - dtype: Optional dtype of the tensor. Only floating point and integer - types are supported. If not specified, - `tf.keras.backend.floatx()` is used, - which default to `float32` unless you configured it otherwise - (via `tf.keras.backend.set_floatx(float_dtype)`). - **kwargs: Additional keyword arguments. - """ - _validate_kwargs(self.__class__.__name__, kwargs) - dtype = _get_dtype(dtype) - if not dtype.is_floating and not dtype.is_integer: - raise ValueError(f"Expected float or integer dtype, got {dtype}.") - if _PARTITION_SHAPE in kwargs: - shape = kwargs[_PARTITION_SHAPE] - partition_offset = kwargs.get(_PARTITION_OFFSET, None) - if partition_offset is None: - # We skip the reuse warning for partitioned variable, since the same - # initializer will be called multiple times for each partition. - self._warn_reuse() - nonce = hash(partition_offset) if partition_offset else None - layout = kwargs.pop("layout", None) - if layout: - _ensure_keras_seeded() - return utils.call_with_layout( - self._random_generator.random_uniform, - layout, - shape, - self.minval, - self.maxval, - dtype, - nonce, - ) - return self._random_generator.random_uniform( - shape, self.minval, self.maxval, dtype, nonce - ) - - def get_config(self): - return {"minval": self.minval, "maxval": self.maxval, "seed": self.seed} - - -@keras_export( - "keras.initializers.RandomNormal", "keras.initializers.random_normal", v1=[] -) -class RandomNormal(Initializer): - """Initializer that generates tensors with a normal distribution. - - Also available via the shortcut function - `tf.keras.initializers.random_normal`. - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.) - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.) - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - - Args: - mean: a python scalar or a scalar tensor. Mean of the random values to - generate. - stddev: a python scalar or a scalar tensor. Standard deviation of the - random values to generate. - seed: A Python integer. Used to make the behavior of the initializer - deterministic. Note that a seeded initializer will produce the same - random values across multiple calls. - """ - - def __init__(self, mean=0.0, stddev=0.05, seed=None): - self.mean = mean - self.stddev = stddev - self.seed = seed - self._random_generator = backend.RandomGenerator( - seed, rng_type="stateless" - ) - - def __call__(self, shape, dtype=None, **kwargs): - """Returns a tensor object initialized to random normal values. - - Args: - shape: Shape of the tensor. - dtype: Optional dtype of the tensor. Only floating point types are - supported. If not specified, `tf.keras.backend.floatx()` is used, - which default to `float32` unless you configured it otherwise (via - `tf.keras.backend.set_floatx(float_dtype)`) - **kwargs: Additional keyword arguments. - """ - _validate_kwargs(self.__class__.__name__, kwargs) - dtype = _assert_float_dtype(_get_dtype(dtype)) - if _PARTITION_SHAPE in kwargs: - shape = kwargs[_PARTITION_SHAPE] - partition_offset = kwargs.get(_PARTITION_OFFSET, None) - if partition_offset is None: - # We skip the reuse warning for partitioned variable, since the same - # initializer will be called multiple times for each partition. - self._warn_reuse() - nonce = hash(partition_offset) if partition_offset else None - layout = kwargs.pop("layout", None) - if layout: - _ensure_keras_seeded() - return utils.call_with_layout( - self._random_generator.random_normal, - layout, - shape, - self.mean, - self.stddev, - dtype, - nonce, - ) - return self._random_generator.random_normal( - shape, self.mean, self.stddev, dtype, nonce - ) - - def get_config(self): - return {"mean": self.mean, "stddev": self.stddev, "seed": self.seed} - - -@keras_export( - "keras.initializers.TruncatedNormal", - "keras.initializers.truncated_normal", - v1=[], -) -class TruncatedNormal(Initializer): - """Initializer that generates a truncated normal distribution. - - Also available via the shortcut function - `tf.keras.initializers.truncated_normal`. - - The values generated are similar to values from a - `tf.keras.initializers.RandomNormal` initializer except that values more - than two standard deviations from the mean are - discarded and re-drawn. - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.TruncatedNormal(mean=0., stddev=1.) - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.TruncatedNormal(mean=0., stddev=1.) - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - - Args: - mean: a python scalar or a scalar tensor. Mean of the random values - to generate. - stddev: a python scalar or a scalar tensor. Standard deviation of the - random values to generate before truncation. - seed: A Python integer. Used to make the behavior of the initializer - deterministic. Note that a seeded initializer will produce the same - random values across multiple calls. - """ - - def __init__(self, mean=0.0, stddev=0.05, seed=None): - self.mean = mean - self.stddev = stddev - self.seed = seed - self._random_generator = backend.RandomGenerator( - seed, rng_type="stateless" - ) - - def __call__(self, shape, dtype=None, **kwargs): - """Returns a tensor initialized to random normal values (truncated). - - Args: - shape: Shape of the tensor. - dtype: Optional dtype of the tensor. Only floating point types are - supported. If not specified, `tf.keras.backend.floatx()` is used, - which default to `float32` unless you configured it otherwise (via - `tf.keras.backend.set_floatx(float_dtype)`) - **kwargs: Additional keyword arguments. - """ - _validate_kwargs(self.__class__.__name__, kwargs) - dtype = _assert_float_dtype(_get_dtype(dtype)) - if _PARTITION_SHAPE in kwargs: - shape = kwargs[_PARTITION_SHAPE] - partition_offset = kwargs.get(_PARTITION_OFFSET, None) - if partition_offset is None: - # We skip the reuse warning for partitioned variable, since the same - # initializer will be called multiple times for each partition. - self._warn_reuse() - nonce = hash(partition_offset) if partition_offset else None - layout = kwargs.pop("layout", None) - if layout: - # TODO(scottzhu): Remove this once the forward compat period above - # is expired. - self._random_generator._rng_type = ( - self._random_generator.RNG_STATEFUL - ) - _ensure_keras_seeded() - return utils.call_with_layout( - self._random_generator.truncated_normal, - layout, - shape, - self.mean, - self.stddev, - dtype, - nonce, - ) - return self._random_generator.truncated_normal( - shape, self.mean, self.stddev, dtype, nonce - ) - - def get_config(self): - return {"mean": self.mean, "stddev": self.stddev, "seed": self.seed} - - -@keras_export( - "keras.initializers.VarianceScaling", - "keras.initializers.variance_scaling", - v1=[], -) -class VarianceScaling(Initializer): - """Initializer that adapts its scale to the shape of its input tensors. - - Also available via the shortcut function - `tf.keras.initializers.variance_scaling`. - - With `distribution="truncated_normal" or "untruncated_normal"`, samples are - drawn from a truncated/untruncated normal distribution with a mean of zero - and a standard deviation (after truncation, if used) `stddev = sqrt(scale / - n)`, where `n` is: - - - number of input units in the weight tensor, if `mode="fan_in"` - - number of output units, if `mode="fan_out"` - - average of the numbers of input and output units, if `mode="fan_avg"` - - With `distribution="uniform"`, samples are drawn from a uniform distribution - within `[-limit, limit]`, where `limit = sqrt(3 * scale / n)`. - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.VarianceScaling( - ... scale=0.1, mode='fan_in', distribution='uniform') - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.VarianceScaling( - ... scale=0.1, mode='fan_in', distribution='uniform') - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - - Args: - scale: Scaling factor (positive float). - mode: One of `"fan_in"`, `"fan_out"`, `"fan_avg"`. - distribution: Random distribution to use. One of `"truncated_normal"`, - `"untruncated_normal"`, or `"uniform"`. - seed: A Python integer. Used to make the behavior of the initializer - deterministic. Note that a seeded initializer will produce the same - random values across multiple calls. - """ - - def __init__( - self, - scale=1.0, - mode="fan_in", - distribution="truncated_normal", - seed=None, - ): - if scale <= 0.0: - raise ValueError( - f"`scale` must be positive float. Received: scale={scale}." - ) - allowed_modes = {"fan_in", "fan_out", "fan_avg"} - if mode not in allowed_modes: - raise ValueError( - f"Invalid `mode` argument: {mode}. " - f"Please use one of the {allowed_modes}." - ) - distribution = distribution.lower() - # Compatibility with keras-team/keras. - if distribution == "normal": - distribution = "truncated_normal" - allowed_distributions = { - "uniform", - "truncated_normal", - "untruncated_normal", - } - if distribution not in allowed_distributions: - raise ValueError( - f"Invalid `distribution` argument: {distribution}." - f"Allowed distributions: {allowed_distributions}." - ) - self.scale = scale - self.mode = mode - self.distribution = distribution - self.seed = seed - self._random_generator = backend.RandomGenerator( - seed, rng_type="stateless" - ) - - def __call__(self, shape, dtype=None, **kwargs): - """Returns a tensor object initialized as specified by the initializer. - - Args: - shape: Shape of the tensor. - dtype: Optional dtype of the tensor. Only floating point types are - supported. If not specified, `tf.keras.backend.floatx()` is used, - which default to `float32` unless you configured it otherwise (via - `tf.keras.backend.set_floatx(float_dtype)`) - **kwargs: Additional keyword arguments. - """ - _validate_kwargs(self.__class__.__name__, kwargs) - dtype = _assert_float_dtype(_get_dtype(dtype)) - if _PARTITION_SHAPE in kwargs: - shape = kwargs[_PARTITION_SHAPE] - partition_offset = kwargs.get(_PARTITION_OFFSET, None) - if partition_offset is None: - # We skip the reuse warning for partitioned variable, since the same - # initializer will be called multiple times for each partition. - self._warn_reuse() - nonce = hash(partition_offset) if partition_offset else None - layout = kwargs.pop("layout", None) - if layout: - _ensure_keras_seeded() - return utils.call_with_layout( - self._generate_init_val, - layout, - shape=shape, - dtype=dtype, - nonce=nonce, - ) - return self._generate_init_val(shape=shape, dtype=dtype, nonce=nonce) - - def _generate_init_val(self, shape, dtype, nonce): - scale = self.scale - fan_in, fan_out = _compute_fans(shape) - if self.mode == "fan_in": - scale /= max(1.0, fan_in) - elif self.mode == "fan_out": - scale /= max(1.0, fan_out) - else: - scale /= max(1.0, (fan_in + fan_out) / 2.0) - if self.distribution == "truncated_normal": - # constant from scipy.stats.truncnorm.std(a=-2, b=2, loc=0., - # scale=1.) - stddev = math.sqrt(scale) / 0.87962566103423978 - return self._random_generator.truncated_normal( - shape, 0.0, stddev, dtype, nonce - ) - elif self.distribution == "untruncated_normal": - stddev = math.sqrt(scale) - return self._random_generator.random_normal( - shape, 0.0, stddev, dtype, nonce - ) - else: - limit = math.sqrt(3.0 * scale) - return self._random_generator.random_uniform( - shape, -limit, limit, dtype, nonce - ) - - def get_config(self): - return { - "scale": self.scale, - "mode": self.mode, - "distribution": self.distribution, - "seed": self.seed, - } - - -@keras_export( - "keras.initializers.Orthogonal", "keras.initializers.orthogonal", v1=[] -) -class Orthogonal(Initializer): - """Initializer that generates an orthogonal matrix. - - Also available via the shortcut function `tf.keras.initializers.orthogonal`. - - If the shape of the tensor to initialize is two-dimensional, it is - initialized with an orthogonal matrix obtained from the QR decomposition of - a matrix of random numbers drawn from a normal distribution. If the matrix - has fewer rows than columns then the output will have orthogonal rows. - Otherwise, the output will have orthogonal columns. - - If the shape of the tensor to initialize is more than two-dimensional, - a matrix of shape `(shape[0] * ... * shape[n - 2], shape[n - 1])` - is initialized, where `n` is the length of the shape vector. - The matrix is subsequently reshaped to give a tensor of the desired shape. - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.Orthogonal() - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.Orthogonal() - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - - Args: - gain: multiplicative factor to apply to the orthogonal matrix - seed: A Python integer. Used to make the behavior of the initializer - deterministic. Note that a seeded initializer will produce the same - random values across multiple calls. - - References: - - [Saxe et al., 2014](https://openreview.net/forum?id=_wzZwKpTDF_9C) - """ - - def __init__(self, gain=1.0, seed=None): - self.gain = gain - self.seed = seed - self._random_generator = backend.RandomGenerator( - seed, rng_type="stateless" - ) - - def __call__(self, shape, dtype=None, **kwargs): - """Returns a tensor object initialized to an orthogonal matrix. - - Args: - shape: Shape of the tensor. - dtype: Optional dtype of the tensor. Only floating point types are - supported. If not specified, `tf.keras.backend.floatx()` is used, - which default to `float32` unless you configured it otherwise - (via `tf.keras.backend.set_floatx(float_dtype)`) - **kwargs: Additional keyword arguments. - """ - _validate_kwargs( - self.__class__.__name__, kwargs, support_partition=False - ) - dtype = _assert_float_dtype(_get_dtype(dtype)) - # Check the shape - if len(shape) < 2: - raise ValueError( - "The tensor to initialize must be " - "at least two-dimensional. Received: " - f"shape={shape} of rank {len(shape)}." - ) - self._warn_reuse() - layout = kwargs.pop("layout", None) - if layout: - _ensure_keras_seeded() - return utils.call_with_layout( - self._generate_init_val, layout, shape=shape, dtype=dtype - ) - return self._generate_init_val(shape, dtype) - - def _generate_init_val(self, shape, dtype): - # Flatten the input shape with the last dimension remaining - # its original shape so it works for conv2d - num_rows = 1 - for dim in shape[:-1]: - num_rows *= dim - num_cols = shape[-1] - flat_shape = (max(num_cols, num_rows), min(num_cols, num_rows)) - - # Generate a random matrix - a = self._random_generator.random_normal(flat_shape, dtype=dtype) - # Compute the qr factorization - q, r = tf.linalg.qr(a, full_matrices=False) - # Make Q uniform - d = tf.linalg.tensor_diag_part(r) - q *= tf.sign(d) - if num_rows < num_cols: - q = tf.linalg.matrix_transpose(q) - return self.gain * tf.reshape(q, shape) - - def get_config(self): - return {"gain": self.gain, "seed": self.seed} - - -@keras_export( - "keras.initializers.Identity", "keras.initializers.identity", v1=[] -) -class Identity(Initializer): - """Initializer that generates the identity matrix. - - Also available via the shortcut function `tf.keras.initializers.identity`. - - Only usable for generating 2D matrices. - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.Identity() - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.Identity() - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - - Args: - gain: Multiplicative factor to apply to the identity matrix. - """ - - def __init__(self, gain=1.0): - self.gain = gain - - def __call__(self, shape, dtype=None, **kwargs): - """Returns a tensor object initialized to a 2D identity matrix. - - Args: - shape: Shape of the tensor. It should have exactly rank 2. - dtype: Optional dtype of the tensor. Only floating point types are - supported. If not specified, `tf.keras.backend.floatx()` is used, - which default to `float32` unless you configured it otherwise - (via `tf.keras.backend.set_floatx(float_dtype)`) - **kwargs: Additional keyword arguments. - """ - _validate_kwargs( - self.__class__.__name__, kwargs, support_partition=False - ) - dtype = _assert_float_dtype(_get_dtype(dtype)) - if len(shape) != 2: - raise ValueError( - "Identity matrix initializer can only be used for 2D matrices. " - f"Received: shape={shape} of rank {len(shape)}." - ) - layout = kwargs.pop("layout", None) - if layout: - return utils.call_with_layout( - self._generate_init_val, layout, shape=shape, dtype=dtype - ) - return self._generate_init_val(shape, dtype) - - def _generate_init_val(self, shape, dtype): - initializer = tf.eye(*shape, dtype=dtype) - return self.gain * initializer - - def get_config(self): - return {"gain": self.gain} - - -@keras_export( - "keras.initializers.GlorotUniform", - "keras.initializers.glorot_uniform", - v1=[], -) -class GlorotUniform(VarianceScaling): - """The Glorot uniform initializer, also called Xavier uniform initializer. - - Also available via the shortcut function - `tf.keras.initializers.glorot_uniform`. - - Draws samples from a uniform distribution within `[-limit, limit]`, where - `limit = sqrt(6 / (fan_in + fan_out))` (`fan_in` is the number of input - units in the weight tensor and `fan_out` is the number of output units). - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.GlorotUniform() - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.GlorotUniform() - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - - Args: - seed: A Python integer. Used to make the behavior of the initializer - deterministic. Note that a seeded initializer will not produce the same - random values across multiple calls, but multiple initializers will - produce the same sequence when constructed with the same seed value. - - References: - - [Glorot et al., 2010](http://proceedings.mlr.press/v9/glorot10a.html) - """ - - def __init__(self, seed=None): - super().__init__( - scale=1.0, mode="fan_avg", distribution="uniform", seed=seed - ) - - def get_config(self): - return {"seed": self.seed} - - -@keras_export( - "keras.initializers.GlorotNormal", "keras.initializers.glorot_normal", v1=[] -) -class GlorotNormal(VarianceScaling): - """The Glorot normal initializer, also called Xavier normal initializer. - - Also available via the shortcut function - `tf.keras.initializers.glorot_normal`. - - Draws samples from a truncated normal distribution centered on 0 with - `stddev = sqrt(2 / (fan_in + fan_out))` where `fan_in` is the number of - input units in the weight tensor and `fan_out` is the number of output units - in the weight tensor. - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.GlorotNormal() - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.GlorotNormal() - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - - Args: - seed: A Python integer. Used to make the behavior of the initializer - deterministic. Note that a seeded initializer will not produce the same - random values across multiple calls, but multiple initializers will - produce the same sequence when constructed with the same seed value. - - References: - - [Glorot et al., 2010](http://proceedings.mlr.press/v9/glorot10a.html) - """ - - def __init__(self, seed=None): - super().__init__( - scale=1.0, - mode="fan_avg", - distribution="truncated_normal", - seed=seed, - ) - - def get_config(self): - return {"seed": self.seed} - - -@keras_export( - "keras.initializers.LecunNormal", "keras.initializers.lecun_normal", v1=[] -) -class LecunNormal(VarianceScaling): - """Lecun normal initializer. - - Also available via the shortcut function - `tf.keras.initializers.lecun_normal`. - - Initializers allow you to pre-specify an initialization strategy, encoded in - the Initializer object, without knowing the shape and dtype of the variable - being initialized. - - Draws samples from a truncated normal distribution centered on 0 with - `stddev = sqrt(1 / fan_in)` where `fan_in` is the number of input units in - the weight tensor. - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.LecunNormal() - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.LecunNormal() - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - - Args: - seed: A Python integer. Used to make the behavior of the initializer - deterministic. Note that a seeded initializer will not produce the same - random values across multiple calls, but multiple initializers will - produce the same sequence when constructed with the same seed value. - - References: - - [Klambauer et al., 2017](https://arxiv.org/abs/1706.02515) - """ - - def __init__(self, seed=None): - super().__init__( - scale=1.0, mode="fan_in", distribution="truncated_normal", seed=seed - ) - - def get_config(self): - return {"seed": self.seed} - - -@keras_export( - "keras.initializers.LecunUniform", "keras.initializers.lecun_uniform", v1=[] -) -class LecunUniform(VarianceScaling): - """Lecun uniform initializer. - - Also available via the shortcut function - `tf.keras.initializers.lecun_uniform`. - - Draws samples from a uniform distribution within `[-limit, limit]`, where - `limit = sqrt(3 / fan_in)` (`fan_in` is the number of input units in the - weight tensor). - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.LecunUniform() - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.LecunUniform() - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - - Args: - seed: A Python integer. Used to make the behavior of the initializer - deterministic. Note that a seeded initializer will not produce the same - random values across multiple calls, but multiple initializers will - produce the same sequence when constructed with the same seed value. - - References: - - [Klambauer et al., 2017](https://arxiv.org/abs/1706.02515) - """ - - def __init__(self, seed=None): - super().__init__( - scale=1.0, mode="fan_in", distribution="uniform", seed=seed - ) - - def get_config(self): - return {"seed": self.seed} - - -@keras_export( - "keras.initializers.HeNormal", "keras.initializers.he_normal", v1=[] -) -class HeNormal(VarianceScaling): - """He normal initializer. - - Also available via the shortcut function - `tf.keras.initializers.he_normal`. - - It draws samples from a truncated normal distribution centered on 0 with - `stddev = sqrt(2 / fan_in)` where `fan_in` is the number of input units in - the weight tensor. - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.HeNormal() - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.HeNormal() - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - - Args: - seed: A Python integer. Used to make the behavior of the initializer - deterministic. Note that a seeded initializer will not produce the same - random values across multiple calls, but multiple initializers will - produce the same sequence when constructed with the same seed value. - - References: - - [He et al., 2015](https://arxiv.org/abs/1502.01852) - """ - - def __init__(self, seed=None): - super().__init__( - scale=2.0, mode="fan_in", distribution="truncated_normal", seed=seed - ) - - def get_config(self): - return {"seed": self.seed} - - -@keras_export( - "keras.initializers.HeUniform", "keras.initializers.he_uniform", v1=[] -) -class HeUniform(VarianceScaling): - """He uniform variance scaling initializer. - - Also available via the shortcut function - `tf.keras.initializers.he_uniform`. - - Draws samples from a uniform distribution within `[-limit, limit]`, where - `limit = sqrt(6 / fan_in)` (`fan_in` is the number of input units in the - weight tensor). - - Examples: - - >>> # Standalone usage: - >>> initializer = tf.keras.initializers.HeUniform() - >>> values = initializer(shape=(2, 2)) - - >>> # Usage in a Keras layer: - >>> initializer = tf.keras.initializers.HeUniform() - >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) - - Args: - seed: A Python integer. Used to make the behavior of the initializer - deterministic. Note that a seeded initializer will not produce the same - random values across multiple calls, but multiple initializers will - produce the same sequence when constructed with the same seed value. - - References: - - [He et al., 2015](https://arxiv.org/abs/1502.01852) - """ - - def __init__(self, seed=None): - super().__init__( - scale=2.0, mode="fan_in", distribution="uniform", seed=seed - ) - - def get_config(self): - return {"seed": self.seed} - - -def _get_dtype(dtype): - if dtype is None: - dtype = backend.floatx() - return tf.as_dtype(dtype) - - -def _assert_float_dtype(dtype): - """Validate and return floating point type based on `dtype`. - - `dtype` must be a floating point type. - - Args: - dtype: The data type to validate. - - Returns: - Validated type. - - Raises: - ValueError: if `dtype` is not a floating point type. - """ - dtype = tf.as_dtype(dtype) - if not dtype.is_floating: - raise ValueError(f"Expected floating point type, got {dtype}.") - return dtype - - -def _compute_fans(shape): - """Computes the number of input and output units for a weight shape. - - Args: - shape: Integer shape tuple or TF tensor shape. - - Returns: - A tuple of integer scalars (fan_in, fan_out). - """ - if len(shape) < 1: # Just to avoid errors for constants. - fan_in = fan_out = 1 - elif len(shape) == 1: - fan_in = fan_out = shape[0] - elif len(shape) == 2: - fan_in = shape[0] - fan_out = shape[1] - else: - # Assuming convolution kernels (2D, 3D, or more). - # kernel shape: (..., input_depth, depth) - receptive_field_size = 1 - for dim in shape[:-2]: - receptive_field_size *= dim - fan_in = shape[-2] * receptive_field_size - fan_out = shape[-1] * receptive_field_size - return int(fan_in), int(fan_out) - - -def _validate_kwargs(cls_name, kwargs, support_partition=True): - invalid_kwargs = [k for k in kwargs if k not in _ALLOWED_INITIALIZER_KWARGS] - if invalid_kwargs: - raise TypeError( - f"Unknown keyword arguments: {invalid_kwargs}. Allowed " - f"keyword arguments: {_ALLOWED_INITIALIZER_KWARGS}." - ) - if not support_partition and ( - _PARTITION_SHAPE in kwargs or _PARTITION_OFFSET in kwargs - ): - raise ValueError( - f"{cls_name} initializer doesn't support " - "partition-related arguments." - ) - - -def _ensure_keras_seeded(): - """Make sure the keras.backend global seed generator is set. - - This is important for DTensor use case to ensure that each client are - initialized with same seed for tf.random.Generator, so that the value - created are in sync among all the clients. - """ - if not getattr(backend._SEED_GENERATOR, "generator", None): - raise ValueError( - "When using DTensor APIs, you need to set the global seed " - "before using any Keras initializers. Please make sure " - "to call `tf.keras.utils.set_random_seed()` in your code." - ) diff --git a/keras/initializers/initializers_test.py b/keras/initializers/initializers_test.py deleted file mode 100644 index a45f54f6d0d..00000000000 --- a/keras/initializers/initializers_test.py +++ /dev/null @@ -1,325 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras initializers.""" - -import warnings - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import backend -from keras import initializers -from keras import models -from keras.engine import input_layer -from keras.layers import core -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -RANDOM_INITIALIZERS = [ - initializers.RandomUniformV2, - initializers.RandomNormalV2, - initializers.OrthogonalV2, - # TODO(scottzhu): Enable this after the forward compat period expires for - # TruncatedNormalV2 - # initializers.TruncatedNormalV2, - initializers.VarianceScalingV2, - initializers.LecunUniformV2, - initializers.LecunNormalV2, - initializers.GlorotUniformV2, - initializers.GlorotNormalV2, - initializers.HeNormalV2, - initializers.HeUniformV2, -] - - -def _compute_fans(shape): - """Computes the number of input and output units for a weight shape. - - Args: - shape: Integer shape tuple or TF tensor shape. - - Returns: - A tuple of integer scalars (fan_in, fan_out). - """ - if len(shape) < 1: # Just to avoid errors for constants. - fan_in = fan_out = 1 - elif len(shape) == 1: - fan_in = fan_out = shape[0] - elif len(shape) == 2: - fan_in = shape[0] - fan_out = shape[1] - else: - # Assuming convolution kernels (2D, 3D, or more). - # kernel shape: (..., input_depth, depth) - receptive_field_size = 1 - for dim in shape[:-2]: - receptive_field_size *= dim - fan_in = shape[-2] * receptive_field_size - fan_out = shape[-1] * receptive_field_size - return int(fan_in), int(fan_out) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class KerasInitializersTest(tf.test.TestCase, parameterized.TestCase): - def _runner( - self, - init, - shape, - ): - # The global seed is set so that we can get the same random streams - # between eager and graph mode when stateful op is used. - tf.random.set_seed(1337) - variable = backend.variable(init(shape)) - output = backend.get_value(variable) - # Test serialization (assumes deterministic behavior). - config = init.get_config() - reconstructed_init = init.__class__.from_config(config) - - tf.random.set_seed(1337) - variable = backend.variable(reconstructed_init(shape)) - output_2 = backend.get_value(variable) - self.assertAllClose(output, output_2, atol=1e-4) - - def test_uniform(self): - tensor_shape = (3, 2, 3) - with self.cached_session(): - self._runner( - initializers.RandomUniformV2(minval=-1, maxval=1, seed=124), - tensor_shape, - ) - - def test_normal(self): - tensor_shape = (8, 12, 99) - with self.cached_session(): - self._runner( - initializers.RandomNormalV2(mean=0, stddev=1, seed=153), - tensor_shape, - ) - - def test_truncated_normal(self): - tensor_shape = (12, 99, 7) - with self.cached_session(): - self._runner( - initializers.TruncatedNormalV2(mean=0, stddev=1, seed=126), - tensor_shape, - ) - - def test_constant(self): - tensor_shape = (5, 6, 4) - with self.cached_session(): - self._runner(initializers.ConstantV2(2.0), tensor_shape) - - def test_lecun_uniform(self): - tensor_shape = (5, 6, 4, 2) - with self.cached_session(): - self._runner(initializers.LecunUniformV2(seed=123), tensor_shape) - - def test_glorot_uniform(self): - tensor_shape = (5, 6, 4, 2) - with self.cached_session(): - self._runner(initializers.GlorotUniformV2(seed=123), tensor_shape) - - def test_he_uniform(self): - tensor_shape = (5, 6, 4, 2) - with self.cached_session(): - self._runner(initializers.HeUniformV2(seed=123), tensor_shape) - - def test_lecun_normal(self): - tensor_shape = (5, 6, 4, 2) - with self.cached_session(): - self._runner(initializers.LecunNormalV2(seed=123), tensor_shape) - - def test_glorot_normal(self): - tensor_shape = (5, 6, 4, 2) - with self.cached_session(): - self._runner(initializers.GlorotNormalV2(seed=123), tensor_shape) - - def test_he_normal(self): - tensor_shape = (5, 6, 4, 2) - with self.cached_session(): - self._runner(initializers.HeNormalV2(seed=123), tensor_shape) - - def test_orthogonal(self): - tensor_shape = (20, 20) - with self.cached_session(): - self._runner(initializers.OrthogonalV2(seed=123), tensor_shape) - - def test_identity(self): - with self.cached_session(): - tensor_shape = (3, 4, 5) - with self.assertRaises(ValueError): - self._runner(initializers.IdentityV2(), tensor_shape) - - tensor_shape = (3, 3) - self._runner(initializers.IdentityV2(), tensor_shape) - - def test_zero(self): - tensor_shape = (4, 5) - with self.cached_session(): - self._runner(initializers.ZerosV2(), tensor_shape) - - def test_one(self): - tensor_shape = (4, 5) - with self.cached_session(): - self._runner(initializers.OnesV2(), tensor_shape) - - def test_default_random_uniform(self): - ru = initializers.get("uniform") - self.assertEqual(ru.minval, -0.05) - self.assertEqual(ru.maxval, 0.05) - - def test_default_random_normal(self): - rn = initializers.get("normal") - self.assertEqual(rn.mean, 0.0) - self.assertEqual(rn.stddev, 0.05) - - def test_default_truncated_normal(self): - tn = initializers.get("truncated_normal") - self.assertEqual(tn.mean, 0.0) - self.assertEqual(tn.stddev, 0.05) - - def test_custom_initializer_saving(self): - def my_initializer(shape, dtype=None): - return tf.ones(shape, dtype=dtype) - - inputs = input_layer.Input((10,)) - outputs = core.Dense(1, kernel_initializer=my_initializer)(inputs) - model = models.Model(inputs, outputs) - model2 = model.from_config( - model.get_config(), - custom_objects={"my_initializer": my_initializer}, - ) - self.assertEqual(model2.layers[1].kernel_initializer, my_initializer) - - @test_utils.run_v2_only - def test_load_external_variance_scaling_v2(self): - external_serialized_json = { - "class_name": "VarianceScaling", - "config": { - "distribution": "normal", - "mode": "fan_avg", - "scale": 1.0, - "seed": None, - }, - } - initializer = initializers.deserialize(external_serialized_json) - self.assertEqual(initializer.distribution, "truncated_normal") - - @parameterized.named_parameters( - ("Zeros", initializers.ZerosV2, {}), - ("Ones", initializers.OnesV2, {}), - ("Constant", initializers.ConstantV2, {}), - ("RandomUniform", initializers.RandomUniformV2, {}), - ("RandomUniform_seeded", initializers.RandomUniformV2, {"seed": 123}), - ("RandomNormal", initializers.RandomNormalV2, {}), - ("RandomNormal_seeded", initializers.RandomNormalV2, {"seed": 123}), - # TODO(scottzhu): Enable these tests after the forward compat period - # expires for TruncatedNormalV2. - # ("TruncatedNormal", initializers.TruncatedNormalV2, {}), - # ( - # "TruncatedNormal_seeded", - # initializers.TruncatedNormalV2, - # {"seed": 123}, - # ), - ("LecunUniform", initializers.LecunUniformV2, {}), - ("LecunUniform_seeded", initializers.LecunUniformV2, {"seed": 123}), - ("GlorotUniform", initializers.GlorotUniformV2, {}), - ("GlorotUniform_seeded", initializers.GlorotUniformV2, {"seed": 123}), - ("HeUniform", initializers.HeUniformV2, {}), - ("HeUniform_seeded", initializers.HeUniformV2, {"seed": 123}), - ) - def test_partition(self, initializer_cls, kwargs): - with self.cached_session(): - initializer = initializer_cls(**kwargs) - result = initializer( - shape=(4, 2), partition_shape=(2, 2), partition_offset=(0, 0) - ) - self.assertEqual(result.shape, (2, 2)) - - if hasattr(initializer, "seed"): - # Make sure the result are different when the partition_shape is - # same, but partition_offset is different, for random related - # initializers. - result_2 = initializer( - shape=(4, 2), - partition_shape=(2, 2), - partition_offset=(1, 0), - ) - self.assertNotAllClose(result, result_2) - - # Make sure initializer produce same result when provide same - # partition offset. - result_3 = initializer( - shape=(4, 2), - partition_shape=(2, 2), - partition_offset=(1, 0), - ) - self.assertAllClose(result_2, result_3) - - @parameterized.named_parameters( - ("Orthogonal", initializers.OrthogonalV2), - ("Identity", initializers.IdentityV2), - ) - def test_partition_unsupported(self, initializer_cls): - with self.assertRaisesRegex( - ValueError, - "initializer doesn't support partition-related arguments", - ): - initializer_cls()( - shape=(4, 2), partition_shape=(2, 2), partition_offset=(0, 0) - ) - - @parameterized.parameters(RANDOM_INITIALIZERS) - def test_stateless(self, initializer_cl): - with self.cached_session(): - initializer = initializer_cl() - output1 = initializer(shape=[2, 3]) - output2 = initializer(shape=[2, 3]) - initializer2 = initializer_cl() - output3 = initializer2(shape=[2, 3]) - output4 = initializer2(shape=[2, 3]) - - self.assertAllClose(output1, output2) - self.assertAllClose(output3, output4) - self.assertNotAllClose(output1, output3) - - with warnings.catch_warnings(record=True) as w: - initializer(shape=[2, 3]) - self.assertLen(w, 1) - self.assertIn("being called multiple times", str(w[0].message)) - - @parameterized.parameters(RANDOM_INITIALIZERS) - def test_seed_stateless(self, initializer_cl): - with self.cached_session(): - seed = 1337 - initializer = initializer_cl(seed=seed) - output1 = initializer(shape=[2, 3]) - output2 = initializer(shape=[2, 3]) - initializer2 = initializer_cl(seed=seed) - output3 = initializer2(shape=[2, 3]) - output4 = initializer2(shape=[2, 3]) - - self.assertAllClose(output1, output2) - self.assertAllClose(output3, output4) - self.assertAllClose(output1, output3) - - # We don't raise warning for seeded initializer. - with warnings.catch_warnings(record=True) as w: - initializer(shape=[2, 3]) - self.assertEmpty(w) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/initializers/initializers_v1.py b/keras/initializers/initializers_v1.py deleted file mode 100644 index 62d0e2b4f3c..00000000000 --- a/keras/initializers/initializers_v1.py +++ /dev/null @@ -1,475 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras initializers for TF 1.""" - - -import tensorflow.compat.v2 as tf - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -_v1_zeros_initializer = tf.compat.v1.zeros_initializer -_v1_ones_initializer = tf.compat.v1.ones_initializer -_v1_constant_initializer = tf.compat.v1.constant_initializer -_v1_variance_scaling_initializer = tf.compat.v1.variance_scaling_initializer -_v1_orthogonal_initializer = tf.compat.v1.orthogonal_initializer -_v1_identity = tf.compat.v1.initializers.identity -_v1_glorot_uniform_initializer = tf.compat.v1.glorot_uniform_initializer -_v1_glorot_normal_initializer = tf.compat.v1.glorot_normal_initializer - -keras_export( - v1=["keras.initializers.Zeros", "keras.initializers.zeros"], - allow_multiple_exports=True, -)(_v1_zeros_initializer) -keras_export( - v1=["keras.initializers.Ones", "keras.initializers.ones"], - allow_multiple_exports=True, -)(_v1_ones_initializer) -keras_export( - v1=["keras.initializers.Constant", "keras.initializers.constant"], - allow_multiple_exports=True, -)(_v1_constant_initializer) -keras_export( - v1=["keras.initializers.VarianceScaling"], allow_multiple_exports=True -)(_v1_variance_scaling_initializer) -keras_export( - v1=["keras.initializers.Orthogonal", "keras.initializers.orthogonal"], - allow_multiple_exports=True, -)(_v1_orthogonal_initializer) -keras_export( - v1=["keras.initializers.Identity", "keras.initializers.identity"], - allow_multiple_exports=True, -)(_v1_identity) -keras_export( - v1=["keras.initializers.glorot_uniform"], allow_multiple_exports=True -)(_v1_glorot_uniform_initializer) -keras_export( - v1=["keras.initializers.glorot_normal"], allow_multiple_exports=True -)(_v1_glorot_normal_initializer) - - -@keras_export( - v1=[ - "keras.initializers.RandomNormal", - "keras.initializers.random_normal", - "keras.initializers.normal", - ] -) -class RandomNormal(tf.compat.v1.random_normal_initializer): - """Initializer that generates a normal distribution. - - Args: - mean: a python scalar or a scalar tensor. Mean of the random values to - generate. - stddev: a python scalar or a scalar tensor. Standard deviation of the - random values to generate. - seed: A Python integer. Used to create random seeds. See - `tf.compat.v1.set_random_seed` for behavior. - dtype: Default data type, used if no `dtype` argument is provided when - calling the initializer. Only floating point types are supported. - - @compatibility(TF2) - Although it is a legacy compat.v1 api, - `tf.compat.v1.keras.initializers.RandomNormal` is compatible with eager - execution and `tf.function`. - - To switch to native TF2, switch to using - `tf.keras.initializers.RandomNormal` (not from `compat.v1`) and - if you need to change the default dtype use - `tf.keras.backend.set_floatx(float_dtype)` - or pass the dtype when calling the initializer, rather than passing it - when constructing the initializer. - - Random seed behavior: - Also be aware that if you pass a seed to the TF2 initializer - API it will reuse that same seed for every single initialization - (unlike the TF1 initializer) - - #### Structural Mapping to Native TF2 - - Before: - - ```python - initializer = tf.compat.v1.keras.initializers.RandomNormal( - mean=mean, - stddev=stddev, - seed=seed, - dtype=dtype) - - weight_one = tf.Variable(initializer(shape_one)) - weight_two = tf.Variable(initializer(shape_two)) - ``` - - After: - - ```python - initializer = tf.keras.initializers.RandomNormal( - mean=mean, - # seed=seed, # Setting a seed in the native TF2 API - # causes it to produce the same initializations - # across multiple calls of the same initializer. - stddev=stddev) - - weight_one = tf.Variable(initializer(shape_one, dtype=dtype)) - weight_two = tf.Variable(initializer(shape_two, dtype=dtype)) - ``` - - #### How to Map Arguments - - | TF1 Arg Name | TF2 Arg Name | Note | - | :---------------- | :-------------- | :------------------------- | - | `mean` | `mean` | No change to defaults | - | `stddev` | `stddev` | No change to defaults | - | `seed` | `seed` | Different random number generation | - : : : semantics (to change in a : - : : : future version). If set, the TF2 version : - : : : will use stateless random number : - : : : generation which will produce the exact : - : : : same initialization even across multiple : - : : : calls of the initializer instance. the : - : : : `compat.v1` version will generate new : - : : : initializations each time. Do not set : - : : : a seed if you need different : - : : : initializations each time. Instead : - : : : either set a global tf seed with : - : : : `tf.random.set_seed` if you need : - : : : determinism, or initialize each weight: - : : : with a separate initializer instance : - : : : and a different seed. : - | `dtype` | `dtype` | The TF2 native api only takes it | - : : : as a `__call__` arg, not a constructor arg. : - | `partition_info` | - | (`__call__` arg in TF1) Not supported | - - #### Example of fixed-seed behavior differences - - `compat.v1` Fixed seed behavior: - - >>> initializer = tf.compat.v1.keras.initializers.RandomNormal(seed=10) - >>> a = initializer(shape=(2, 2)) - >>> b = initializer(shape=(2, 2)) - >>> tf.reduce_sum(a - b) == 0 - - - After: - - >>> initializer = tf.keras.initializers.RandomNormal(seed=10) - >>> a = initializer(shape=(2, 2)) - >>> b = initializer(shape=(2, 2)) - >>> tf.reduce_sum(a - b) == 0 - - - @end_compatibility - """ - - def __init__(self, mean=0.0, stddev=0.05, seed=None, dtype=tf.float32): - super().__init__(mean=mean, stddev=stddev, seed=seed, dtype=dtype) - - -@keras_export( - v1=[ - "keras.initializers.RandomUniform", - "keras.initializers.random_uniform", - "keras.initializers.uniform", - ] -) -class RandomUniform(tf.compat.v1.random_uniform_initializer): - """Initializer that generates tensors with a uniform distribution. - - Args: - minval: A python scalar or a scalar tensor. Lower bound of the range of - random values to generate. Defaults to `-0.05`. - maxval: A python scalar or a scalar tensor. Upper bound of the range of - random values to generate. Defaults to `0.05`. - seed: A Python integer. Used to create random seeds. See - `tf.compat.v1.set_random_seed` for behavior. - dtype: Default data type, used if no `dtype` argument is provided when - calling the initializer. - - @compatibility(TF2) - Although it is a legacy `compat.v1` api, - `tf.compat.v1.keras.initializers.RandomUniform` is compatible with eager - execution and `tf.function`. - - To switch to native TF2, switch to using - `tf.keras.initializers.RandomUniform` (not from `compat.v1`) and - if you need to change the default dtype use - `tf.keras.backend.set_floatx(float_dtype)` - or pass the dtype when calling the initializer, rather than passing it - when constructing the initializer. - - Random seed behavior: - - Also be aware that if you pass a seed to the TF2 initializer - API it will reuse that same seed for every single initialization - (unlike the TF1 initializer) - - #### Structural Mapping to Native TF2 - - Before: - - ```python - - initializer = tf.compat.v1.keras.initializers.RandomUniform( - minval=minval, - maxval=maxval, - seed=seed, - dtype=dtype) - - weight_one = tf.Variable(initializer(shape_one)) - weight_two = tf.Variable(initializer(shape_two)) - ``` - - After: - - ```python - initializer = tf.keras.initializers.RandomUniform( - minval=minval, - maxval=maxval, - # seed=seed, # Setting a seed in the native TF2 API - # causes it to produce the same initializations - # across multiple calls of the same initializer. - ) - - weight_one = tf.Variable(initializer(shape_one, dtype=dtype)) - weight_two = tf.Variable(initializer(shape_two, dtype=dtype)) - ``` - - #### How to Map Arguments - - | TF1 Arg Name | TF2 Arg Name | Note | - | :---------------- | :-------------- | :------------------------- | - | `minval` | `minval` | No change to defaults | - | `maxval` | `maxval` | No change to defaults | - | `seed` | `seed` | Different random number generation | - : : : semantics (to change in a : - : : : future version). If set, the TF2 version : - : : : will use stateless random number : - : : : generation which will produce the exact : - : : : same initialization even across multiple : - : : : calls of the initializer instance. the : - : : : `compat.v1` version will generate new : - : : : initializations each time. Do not set : - : : : a seed if you need different : - : : : initializations each time. Instead : - : : : either set a global tf seed with - : : : `tf.random.set_seed` if you need : - : : : determinism, or initialize each weight : - : : : with a separate initializer instance : - : : : and a different seed. : - | `dtype` | `dtype` | The TF2 native api only takes it | - : : : as a `__call__` arg, not a constructor arg. : - | `partition_info` | - | (`__call__` arg in TF1) Not supported | - - #### Example of fixed-seed behavior differences - - `compat.v1` Fixed seed behavior: - - >>> initializer = tf.compat.v1.keras.initializers.RandomUniform(seed=10) - >>> a = initializer(shape=(2, 2)) - >>> b = initializer(shape=(2, 2)) - >>> tf.reduce_sum(a - b) == 0 - - - After: - - >>> initializer = tf.keras.initializers.RandomUniform(seed=10) - >>> a = initializer(shape=(2, 2)) - >>> b = initializer(shape=(2, 2)) - >>> tf.reduce_sum(a - b) == 0 - - - @end_compatibility - """ - - def __init__(self, minval=-0.05, maxval=0.05, seed=None, dtype=tf.float32): - super().__init__(minval=minval, maxval=maxval, seed=seed, dtype=dtype) - - -@keras_export( - v1=[ - "keras.initializers.TruncatedNormal", - "keras.initializers.truncated_normal", - ] -) -class TruncatedNormal(tf.compat.v1.truncated_normal_initializer): - """Initializer that generates a truncated normal distribution. - - These values are similar to values from a `random_normal_initializer` - except that values more than two standard deviations from the mean - are discarded and re-drawn. This is the recommended initializer for - neural network weights and filters. - - Args: - mean: a python scalar or a scalar tensor. Mean of the random values to - generate. - stddev: a python scalar or a scalar tensor. Standard deviation of the - random values to generate. - seed: A Python integer. Used to create random seeds. See - `tf.compat.v1.set_random_seed` for behavior. - dtype: Default data type, used if no `dtype` argument is provided when - calling the initializer. Only floating point types are supported. - - @compatibility(TF2) - Although it is a legacy compat.v1 api, - `tf.compat.v1.keras.initializers.TruncatedNormal` is compatible with eager - execution and `tf.function`. - - To switch to native TF2, switch to using - `tf.keras.initializers.TruncatedNormal` (not from `compat.v1`) and - if you need to change the default dtype use - `tf.keras.backend.set_floatx(float_dtype)` - or pass the dtype when calling the initializer, rather than passing it - when constructing the initializer. - - Random seed behavior: - Also be aware that if you pass a seed to the TF2 initializer - API it will reuse that same seed for every single initialization - (unlike the TF1 initializer) - - #### Structural Mapping to Native TF2 - - Before: - - ```python - initializer = tf.compat.v1.keras.initializers.TruncatedNormal( - mean=mean, - stddev=stddev, - seed=seed, - dtype=dtype) - - weight_one = tf.Variable(initializer(shape_one)) - weight_two = tf.Variable(initializer(shape_two)) - ``` - - After: - - ```python - initializer = tf.keras.initializers.TruncatedNormal( - mean=mean, - # seed=seed, # Setting a seed in the native TF2 API - # causes it to produce the same initializations - # across multiple calls of the same initializer. - stddev=stddev) - - weight_one = tf.Variable(initializer(shape_one, dtype=dtype)) - weight_two = tf.Variable(initializer(shape_two, dtype=dtype)) - ``` - - #### How to Map Arguments - - | TF1 Arg Name | TF2 Arg Name | Note | - | :---------------- | :-------------- | :------------------------- | - | `mean` | `mean` | No change to defaults | - | `stddev` | `stddev` | No change to defaults | - | `seed` | `seed` | Different random number generation | - : : : semantics (to change in a : - : : : future version). If set, the TF2 version : - : : : will use stateless random number : - : : : generation which will produce the exact : - : : : same initialization even across multiple : - : : : calls of the initializer instance. the : - : : : `compat.v1` version will generate new : - : : : initializations each time. Do not set : - : : : a seed if you need different : - : : : initializations each time. Instead : - : : : either set a global tf seed with - : : : `tf.random.set_seed` if you need : - : : : determinism, or initialize each weight : - : : : with a separate initializer instance : - : : : and a different seed. : - | `dtype` | `dtype` | The TF2 native api only takes it | - : : : as a `__call__` arg, not a constructor arg. : - | `partition_info` | - | (`__call__` arg in TF1) Not supported | - - #### Example of fixed-seed behavior differences - - `compat.v1` Fixed seed behavior: - - >>> initializer = tf.compat.v1.keras.initializers.TruncatedNormal(seed=10) - >>> a = initializer(shape=(2, 2)) - >>> b = initializer(shape=(2, 2)) - >>> tf.reduce_sum(a - b) == 0 - - - After: - - >>> initializer = tf.keras.initializers.TruncatedNormal(seed=10) - >>> a = initializer(shape=(2, 2)) - >>> b = initializer(shape=(2, 2)) - >>> tf.reduce_sum(a - b) == 0 - - - @end_compatibility - """ - - def __init__(self, mean=0.0, stddev=0.05, seed=None, dtype=tf.float32): - """Initializer that generates a truncated normal distribution. - - - Args: - mean: a python scalar or a scalar tensor. Mean of the random values to - generate. - stddev: a python scalar or a scalar tensor. Standard deviation of the - random values to generate. - seed: A Python integer. Used to create random seeds. See - `tf.compat.v1.set_random_seed` for behavior. - dtype: Default data type, used if no `dtype` argument is provided when - calling the initializer. Only floating point types are supported. - """ - super().__init__(mean=mean, stddev=stddev, seed=seed, dtype=dtype) - - -@keras_export(v1=["keras.initializers.lecun_normal"]) -class LecunNormal(tf.compat.v1.variance_scaling_initializer): - def __init__(self, seed=None): - super().__init__( - scale=1.0, mode="fan_in", distribution="truncated_normal", seed=seed - ) - - def get_config(self): - return {"seed": self.seed} - - -@keras_export(v1=["keras.initializers.lecun_uniform"]) -class LecunUniform(tf.compat.v1.variance_scaling_initializer): - def __init__(self, seed=None): - super().__init__( - scale=1.0, mode="fan_in", distribution="uniform", seed=seed - ) - - def get_config(self): - return {"seed": self.seed} - - -@keras_export(v1=["keras.initializers.he_normal"]) -class HeNormal(tf.compat.v1.variance_scaling_initializer): - def __init__(self, seed=None): - super().__init__( - scale=2.0, mode="fan_in", distribution="truncated_normal", seed=seed - ) - - def get_config(self): - return {"seed": self.seed} - - -@keras_export(v1=["keras.initializers.he_uniform"]) -class HeUniform(tf.compat.v1.variance_scaling_initializer): - def __init__(self, seed=None): - super().__init__( - scale=2.0, mode="fan_in", distribution="uniform", seed=seed - ) - - def get_config(self): - return {"seed": self.seed} diff --git a/keras/integration_test/BUILD b/keras/integration_test/BUILD deleted file mode 100644 index 03df34fa9a2..00000000000 --- a/keras/integration_test/BUILD +++ /dev/null @@ -1,380 +0,0 @@ -# Description: -# Contains Keras integration tests that verify with other TF high level APIs. - -load("@org_keras//keras:keras.bzl", "cuda_py_test") -load("@org_keras//keras:keras.bzl", "tf_py_test") # buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "tpu_py_test") -load("@org_keras//keras:keras.bzl", "distribute_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/tensorflow/tools/pip_package:__pkg__", - ], - licenses = ["notice"], -) - -tf_py_test( - name = "forwardprop_test", - srcs = ["forwardprop_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "function_test", - srcs = ["function_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "gradients_test", - srcs = ["gradients_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -cuda_py_test( - name = "saved_model_test", - srcs = ["saved_model_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "legacy_rnn_test", # Remove this target in when TF 1 is deprecated. - srcs = ["legacy_rnn_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "module_test", - srcs = ["module_test.py"], - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "vectorized_map_test", - srcs = ["vectorized_map_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -cuda_py_test( - name = "gradient_checkpoint_test", - srcs = ["gradient_checkpoint_test.py"], - python_version = "PY3", - tags = ["no_oss"], # TODO(b/249526796) - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -cuda_py_test( - name = "central_storage_strategy_test", - srcs = ["central_storage_strategy_test.py"], - python_version = "PY3", - tags = [ - "multi_and_single_gpu", - "no_windows_gpu", # TODO(b/130551176) - ], - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/utils:kpl_test_utils", - ], -) - -tpu_py_test( - name = "tpu_strategy_test", - srcs = ["tpu_strategy_test.py"], - disable_experimental = True, - disable_mlir_bridge = False, - python_version = "PY3", - tags = ["no_oss"], - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - ], -) - -tf_py_test( - name = "multi_worker_tutorial_test", - srcs = ["multi_worker_tutorial_test.py"], - python_version = "PY3", - shard_count = 6, - tags = [ - "no_windows", # TODO(b/183102726) - "noasan", # TODO(b/156029134) - "nomac", # TODO(b/182567880) - "nomsan", # TODO(b/156029134) - "notsan", # TODO(b/156029134) - ], - deps = [ - "//:expect_absl_installed", - "//:expect_portpicker_installed", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -distribute_py_test( - name = "parameter_server_keras_preprocessing_test", - srcs = ["parameter_server_keras_preprocessing_test.py"], - python_version = "PY3", - shard_count = 6, # TODO(b/184290570): Investigate why only 1 shard times out. - tags = [ - "multi_and_single_gpu", - "no_oss", # TODO(b/194935930): Flaky test - "nomultivm", # TODO(b/170502145) - "notap", # b/216629693 - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_portpicker_installed", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/testing_infra:test_utils", - ], -) - -distribute_py_test( - name = "distributed_training_test", - srcs = ["distributed_training_test.py"], - python_version = "PY3", - shard_count = 50, - tags = [ - "multi_gpu", - "no_oss", # TODO(b/183640564): Re-enable - "no_rocm", - "noasan", # TODO(b/184542721) - "nomsan", # TODO(b/184542721) - "nomultivm", # TODO(b/170502145) - "notsan", # TODO(b/184542721) - ], - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -distribute_py_test( - name = "mwms_multi_process_runner_test", - srcs = ["mwms_multi_process_runner_test.py"], - python_version = "PY3", - tags = [ - "multi_gpu", - "no_rocm", - "noasan", # TODO(b/184542721) - "nomsan", # TODO(b/184542721) - "nomultivm", # TODO(b/170502145) - "notpu", - "notsan", # TODO(b/184542721) - ], - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -py_library( - name = "preprocessing_test_utils", - srcs = ["preprocessing_test_utils.py"], - srcs_version = "PY3", - deps = ["//:expect_tensorflow_installed"], -) - -distribute_py_test( - name = "preprocessing_applied_in_dataset_creator_test", - srcs = ["preprocessing_applied_in_dataset_creator_test.py"], - python_version = "PY3", - shard_count = 50, - tags = [ - "multi_gpu", - "no_oss", # TODO(b/183640564): Re-enable - "no_rocm", - "noasan", # TODO(b/184542721) - "nomsan", # TODO(b/184542721) - "nomultivm", # TODO(b/170502145) - "notsan", # TODO(b/184542721) - ], - deps = [ - ":preprocessing_test_utils", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -distribute_py_test( - name = "preprocessing_applied_in_dataset_test", - srcs = ["preprocessing_applied_in_dataset_test.py"], - python_version = "PY3", - shard_count = 50, - tags = [ - "multi_gpu", - "no_oss", # TODO(b/183640564): Re-enable - "no_rocm", - "noasan", # TODO(b/184542721) - "nomsan", # TODO(b/184542721) - "nomultivm", # TODO(b/170502145) - "notsan", # TODO(b/184542721) - ], - deps = [ - ":preprocessing_test_utils", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -distribute_py_test( - name = "preprocessing_applied_in_model_test", - srcs = ["preprocessing_applied_in_model_test.py"], - python_version = "PY3", - shard_count = 50, - tags = [ - "multi_gpu", - "no_oss", # TODO(b/183640564): Re-enable - "no_rocm", - "noasan", # TODO(b/184542721) - "nomsan", # TODO(b/184542721) - "nomultivm", # TODO(b/170502145) - "notsan", # TODO(b/184542721) - ], - deps = [ - ":preprocessing_test_utils", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -distribute_py_test( - name = "parameter_server_custom_training_loop_test", - srcs = ["parameter_server_custom_training_loop_test.py"], - python_version = "PY3", - tags = [ - "multi_gpu", - "no_oss", # TODO(b/183640564): Re-enable - "no_rocm", - "noasan", # TODO(b/184542721) - "nomsan", # TODO(b/184542721) - "nomultivm", # TODO(b/170502145) - "notsan", # TODO(b/184542721) - ], - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "custom_object_saving_test", - srcs = ["custom_object_saving_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "parameter_server_training_metric_test", - srcs = ["parameter_server_training_metric_test.py"], - python_version = "PY3", - tags = [ - "nomac", # TODO(mihaimaruseac): b/127695564 - "notsan", # TODO(b/156029134) - ], - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "fit_test", - size = "medium", - srcs = ["fit_test.py"], - python_version = "PY3", - shard_count = 28, - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/integration_test/models", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "saving_v3_test", - size = "medium", - srcs = ["saving_v3_test.py"], - python_version = "PY3", - shard_count = 12, - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/integration_test/models", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "py_metric_test", - size = "medium", - srcs = ["py_metric_test.py"], - python_version = "PY3", - shard_count = 2, - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/metrics", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "extension_type_test", - size = "medium", - srcs = ["extension_type_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/engine", - "//keras/engine:input_layer", - "//keras/saving", - ], -) diff --git a/keras/integration_test/README.md b/keras/integration_test/README.md deleted file mode 100644 index 4d40893f686..00000000000 --- a/keras/integration_test/README.md +++ /dev/null @@ -1,12 +0,0 @@ -# Keras Integration Test - -This package contains integration tests that ensure the correct interaction -between Keras and other Tensorflow high level APIs, like dataset, TF function -and distribution strategy, etc. - -There are a few guidelines for the tests under this package. - -*. Only use the public TF API. -*. Test should focus on the end to end use case between Keras and other TF high - level API. Unit test will be a better place for behavior testing for the - individual APIs. diff --git a/keras/integration_test/central_storage_strategy_test.py b/keras/integration_test/central_storage_strategy_test.py deleted file mode 100644 index 5c1a670853c..00000000000 --- a/keras/integration_test/central_storage_strategy_test.py +++ /dev/null @@ -1,94 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for KPL + CentralStorageStrategy.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -# isort: off -from tensorflow.compat.v2.__internal__.distribute import combinations -from keras.utils import kpl_test_utils - - -# TODO(b/182278926): Combine this test with other strategies. -@combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[combinations.central_storage_strategy_with_gpu_and_cpu], - mode=["eager"], - ) -) -class CentralStorageStrategyTest(tf.test.TestCase, parameterized.TestCase): - def testTrainAndServeWithKPL(self, distribution): - use_adapt = False - test_utils_obj = kpl_test_utils.DistributeKplTestUtils() - with distribution.scope(): - ( - feature_mapper, - label_mapper, - ) = test_utils_obj.define_kpls_for_training(use_adapt) - model = test_utils_obj.define_model() - optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.1) - accuracy = tf.keras.metrics.Accuracy() - - def dataset_fn(_): - return test_utils_obj.dataset_fn(feature_mapper, label_mapper) - - @tf.function - def train_step(iterator): - """The step function for one training step.""" - - def step_fn(inputs): - """The computation to run on each replica.""" - features, labels = inputs - with tf.GradientTape() as tape: - pred = model(features, training=True) - loss = tf.keras.losses.binary_crossentropy(labels, pred) - loss = tf.nn.compute_average_loss(loss) - grads = tape.gradient(loss, model.trainable_variables) - optimizer.apply_gradients( - list(zip(grads, model.trainable_variables)) - ) - - actual_pred = tf.cast( - tf.math.greater(pred, 0.5), tf.dtypes.int64 - ) - accuracy.update_state(labels, actual_pred) - - distribution.run(step_fn, args=(next(iterator),)) - - distributed_dataset = ( - distribution.distribute_datasets_from_function(dataset_fn) - ) - distributed_iterator = iter(distributed_dataset) - num_epochs = 4 - num_steps = 7 - for _ in range(num_epochs): - accuracy.reset_state() - for _ in range(num_steps): - train_step(distributed_iterator) - - self.assertGreater(accuracy.result().numpy(), 0.5) - self.assertEqual( - optimizer.iterations.numpy(), num_epochs * num_steps - ) - - # Test save/load/serving the trained model. - test_utils_obj.test_save_load_serving_model( - model, feature_mapper, test_utils_obj.define_reverse_lookup_layer() - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/integration_test/custom_object_saving_test.py b/keras/integration_test/custom_object_saving_test.py deleted file mode 100644 index 3c20d80d42a..00000000000 --- a/keras/integration_test/custom_object_saving_test.py +++ /dev/null @@ -1,151 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Test for custom Keras object saving with `register_keras_serializable`.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import sys - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.testing_infra import test_utils -from keras.utils import get_custom_objects - - -# `tf.print` message is only available in stderr in TF2, which this test checks. -@test_utils.run_v2_only -class CustomObjectSavingTest(tf.test.TestCase, parameterized.TestCase): - """Test for custom Keras object saving with - `register_keras_serializable`.""" - - def setUp(self): - super().setUp() - get_custom_objects().clear() - - def test_register_keras_serializable_correct_class(self): - train_step_message = "This is my training step" - temp_dir = os.path.join(self.get_temp_dir(), "my_model") - - @tf.keras.utils.register_keras_serializable("CustomModelX") - class CustomModelX(tf.keras.Model): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.dense1 = MyDense( - 1, - kernel_regularizer=MyRegularizer(0.01), - activity_regularizer=MyRegularizer(0.01), - ) - - def call(self, inputs): - return self.dense1(inputs) - - def train_step(self, data): - tf.print(train_step_message) - x, y = data - with tf.GradientTape() as tape: - y_pred = self(x) - loss = self.compiled_loss(y, y_pred) - - gradients = tape.gradient(loss, self.trainable_variables) - self.optimizer.apply_gradients( - zip(gradients, self.trainable_variables) - ) - return {} - - def one(self): - return 1 - - @tf.keras.utils.register_keras_serializable("MyDense") - class MyDense(tf.keras.layers.Dense): - def two(self): - return 2 - - @tf.keras.utils.register_keras_serializable("MyAdam") - class MyAdam(tf.keras.optimizers.Adam): - def three(self): - return 3 - - @tf.keras.utils.register_keras_serializable("MyLoss") - class MyLoss(tf.keras.losses.MeanSquaredError): - def four(self): - return 4 - - @tf.keras.utils.register_keras_serializable("MyMetric") - class MyMetric(tf.keras.metrics.MeanAbsoluteError): - def five(self): - return 5 - - @tf.keras.utils.register_keras_serializable("MyRegularizer") - class MyRegularizer(tf.keras.regularizers.L2): - def six(self): - return 6 - - @tf.keras.utils.register_keras_serializable("my_sq_diff") - def my_sq_diff(y_true, y_pred): - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - sq_diff_plus_x = tf.math.squared_difference(y_pred, y_true) - return tf.reduce_mean(sq_diff_plus_x, axis=-1) - - subclassed_model = CustomModelX() - subclassed_model.compile( - optimizer=MyAdam(), loss=MyLoss(), metrics=[MyMetric(), my_sq_diff] - ) - - x = np.random.random((100, 32)) - y = np.random.random((100, 1)) - subclassed_model.fit(x, y, epochs=1) - subclassed_model.save(temp_dir, save_format="tf") - - loaded_model = tf.keras.models.load_model(temp_dir) - - # `tf.print` writes to stderr. - with self.captureWritesToStream(sys.stderr) as printed: - loaded_model.fit(x, y, epochs=1) - self.assertRegex(printed.contents(), train_step_message) - - # Check that the custom classes do get used. - self.assertIs(loaded_model.__class__, CustomModelX) - self.assertIs(loaded_model.optimizer.__class__, MyAdam) - self.assertIs(loaded_model.compiled_loss._losses[0].__class__, MyLoss) - self.assertIs( - loaded_model.compiled_metrics._metrics[0].__class__, MyMetric - ) - self.assertIs(loaded_model.compiled_metrics._metrics[1], my_sq_diff) - self.assertIs(loaded_model.layers[0].__class__, MyDense) - self.assertIs( - loaded_model.layers[0].activity_regularizer.__class__, MyRegularizer - ) - self.assertIs( - loaded_model.layers[0].kernel_regularizer.__class__, MyRegularizer - ) - - # Check that the custom methods are available. - self.assertEqual(loaded_model.one(), 1) - self.assertEqual(loaded_model.layers[0].two(), 2) - self.assertEqual(loaded_model.optimizer.three(), 3) - self.assertEqual(loaded_model.compiled_loss._losses[0].four(), 4) - self.assertEqual(loaded_model.compiled_metrics._metrics[0].five(), 5) - self.assertEqual(loaded_model.layers[0].activity_regularizer.six(), 6) - self.assertEqual(loaded_model.layers[0].kernel_regularizer.six(), 6) - self.assertEqual(loaded_model.compiled_metrics._metrics[1]([1], [3]), 4) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/integration_test/data/sentencepiece.pb b/keras/integration_test/data/sentencepiece.pb deleted file mode 100644 index 20c1a06db1f..00000000000 Binary files a/keras/integration_test/data/sentencepiece.pb and /dev/null differ diff --git a/keras/integration_test/distributed_training_test.py b/keras/integration_test/distributed_training_test.py deleted file mode 100644 index a0aa112d998..00000000000 --- a/keras/integration_test/distributed_training_test.py +++ /dev/null @@ -1,129 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Test to demonstrate basic Keras training with a variety of strategies.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import glob -import os - -import tensorflow.compat.v2 as tf - -ds_combinations = tf.__internal__.distribute.combinations - -# Note: Strategy combinations are not (yet) public APIs, so they are subject -# to API changes and backward-compatibility is not guaranteed. -# TODO(b/188763034): Proceed to export the strategy combinations as public APIs. -STRATEGIES = [ - ds_combinations.default_strategy, - ds_combinations.mirrored_strategy_with_two_cpus, - ds_combinations.mirrored_strategy_with_two_gpus, - ds_combinations.tpu_strategy, - ds_combinations.cloud_tpu_strategy, - ds_combinations.parameter_server_strategy_3worker_2ps_cpu, - ds_combinations.parameter_server_strategy_3worker_2ps_1gpu, - ds_combinations.multi_worker_mirrored_2x1_cpu, - ds_combinations.multi_worker_mirrored_2x2_gpu, - ds_combinations.central_storage_strategy_with_two_gpus, -] - - -@ds_combinations.generate( - tf.__internal__.test.combinations.combine(strategy=STRATEGIES, mode="eager") -) -class DistributedTrainingTest(tf.test.TestCase): - """Test to demonstrate basic Keras training with a variety of strategies.""" - - def testKerasTrainingAPI(self, strategy): - if not tf.__internal__.tf2.enabled() and isinstance( - strategy, tf.distribute.experimental.ParameterServerStrategy - ): - self.skipTest( - "Parameter Server strategy with dataset creator need to be run " - "when eager execution is enabled." - ) - - # A `dataset_fn` is required for `Model.fit` to work across all - # strategies. - def dataset_fn(input_context): - batch_size = input_context.get_per_replica_batch_size( - global_batch_size=64 - ) - x = tf.random.uniform((10, 10)) - y = tf.random.uniform((10,)) - dataset = ( - tf.data.Dataset.from_tensor_slices((x, y)).shuffle(10).repeat() - ) - dataset = dataset.shard( - input_context.num_input_pipelines, - input_context.input_pipeline_id, - ) - return dataset.batch(batch_size).prefetch(2) - - with strategy.scope(): - model = tf.keras.Sequential([tf.keras.layers.Dense(10)]) - optimizer = tf.keras.optimizers.SGD() - model.compile(optimizer, loss="mse", steps_per_execution=5) - - x = tf.keras.utils.experimental.DatasetCreator(dataset_fn) - - logdir = os.path.join(self.get_temp_dir(), "logdir") - model.fit( - x, - epochs=2, - steps_per_epoch=20, - callbacks=[ - tf.keras.callbacks.TensorBoard( - logdir, - update_freq=5, - write_steps_per_second=True, - ) - ], - ) - - events_got = [] - for event_file in glob.glob(logdir + "/train/events.out.*"): - for event in tf.compat.v1.train.summary_iterator(event_file): - if not event.summary: - continue - for value in event.summary.value: - if value.tag != "batch_loss": - continue - events_got += [event.step] - - # total steps = epochs * steps_per_epoch - events_expected = [5, 10, 15, 20, 25, 30, 35, 40] - - if isinstance( - strategy, tf.distribute.experimental.ParameterServerStrategy - ): - # Metrics are not logged with this strategy as they are not - # immediately available on batch end - events_expected = [] - if ( - strategy.cluster_resolver - and strategy.cluster_resolver.task_type == "worker" - ): - # The below assertion is run by both chief and workers when using - # `tf.distribute.MultiWorkerMirroredStrategy`, but only the chief - # will log events. - events_expected = [] - - self.assertEqual(events_got, events_expected) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/integration_test/extension_type_test.py b/keras/integration_test/extension_type_test.py deleted file mode 100644 index 97d55f5b6c7..00000000000 --- a/keras/integration_test/extension_type_test.py +++ /dev/null @@ -1,94 +0,0 @@ -"""Test Model inference and save/load with an ExtensionType.""" - -import typing - -import tensorflow.compat.v2 as tf - -import keras -from keras.engine.input_layer import Input -from keras.engine.training import Model -from keras.saving.saving_api import load_model -from keras.testing_infra import test_utils - - -class MaskedTensor(tf.experimental.BatchableExtensionType): - """Example subclass of ExtensionType, used for testing. - - This version adds Keras required properties to MaskedTensor and its Spec - class, to test Keras integration. - """ - - __name__ = "tf.test.MaskedTensor.Spec" - - values: typing.Union[tf.Tensor, tf.RaggedTensor] - mask: typing.Union[tf.Tensor, tf.RaggedTensor] - - def __init__(self, values, mask): - if isinstance(values, tf.RaggedTensor): - assert isinstance(mask, tf.RaggedTensor) - assert mask.dtype == tf.dtypes.bool - else: - values = tf.convert_to_tensor(values) - mask = tf.convert_to_tensor(mask, tf.dtypes.bool) - self.values = values - self.mask = mask - - # Required by assert_input_compatibility in keras/engine/input_spec.py - @property - def shape(self): - return self.values.shape - - @property - def dtype(self): - return self.values.dtype - - class Spec: - - # Required by KerasTensor.shape in keras/engine/keras_tensor.py - @property - def shape(self): - return self.values._shape - - -class ExtensionTypeTest(tf.test.TestCase): - @test_utils.run_v2_only - def testKerasModel(self): - mt_spec = MaskedTensor.Spec( - tf.TensorSpec(shape=[None, 1], dtype=tf.dtypes.int32), - tf.TensorSpec(shape=[None, 1], dtype=tf.dtypes.bool), - ) - model_input = Input(type_spec=mt_spec) - model_output = keras.layers.Lambda( - lambda x: tf.identity(x, name="output") - )(model_input) - model = Model(inputs=model_input, outputs=model_output) - mt = MaskedTensor([[1], [2], [3]], [[True], [False], [True]]) - self.assertEqual(model(mt), mt) - ds = tf.data.Dataset.from_tensors(mt) - self.assertEqual(model.predict(ds), mt) - - with self.subTest("keras save"): - path = self.create_tempdir().full_path - model.save(path) - loaded_model = load_model(path) - self.assertEqual(loaded_model.input.type_spec, mt_spec) - self.assertEqual(loaded_model(mt), mt) - - loaded_fn = tf.saved_model.load(path) - self.assertEqual(loaded_fn(mt), mt) - with self.assertRaisesRegex( - ValueError, - "Could not find matching concrete function to call " - "loaded from the SavedModel", - ): - loaded_fn(MaskedTensor([1, 2, 3], [True, False, True])) - - # The serving_fn use flatten signature - serving_fn = loaded_fn.signatures["serving_default"] - self.assertEqual( - serving_fn(args_0=mt.values, args_0_1=mt.mask)["lambda"], mt - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/integration_test/fit_test.py b/keras/integration_test/fit_test.py deleted file mode 100644 index bbd0134d4cb..00000000000 --- a/keras/integration_test/fit_test.py +++ /dev/null @@ -1,101 +0,0 @@ -"""Test Model.fit across a diverse range of models.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.integration_test.models import bert -from keras.integration_test.models import dcgan -from keras.integration_test.models import edge_case_model -from keras.integration_test.models import efficientnet_v2 -from keras.integration_test.models import input_spec -from keras.integration_test.models import low_level_model -from keras.integration_test.models import mini_unet -from keras.integration_test.models import mini_xception -from keras.integration_test.models import retinanet -from keras.integration_test.models import structured_data_classification -from keras.integration_test.models import text_classification -from keras.integration_test.models import timeseries_forecasting -from keras.integration_test.models import vae -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# from keras.integration_test.models import ctc_speech_rnn -# from keras.integration_test.models import translation - - -def get_dataset(data_specs, batch_size): - values = tf.nest.map_structure(input_spec.spec_to_value, data_specs) - dataset = ( - tf.data.Dataset.from_tensor_slices(values) - .prefetch(batch_size * 2) - .batch(batch_size) - ) - return dataset - - -@test_utils.run_v2_only -class FitTest(test_combinations.TestCase): - @parameterized.named_parameters( - ("bert", bert), - # ("ctc_speech_rnn", ctc_speech_rnn), # Buggy? - ("dcgan", dcgan), - ("edge_case_model", edge_case_model), - ("efficientnet_v2", efficientnet_v2), - ("low_level_model", low_level_model), - ("mini_unet", mini_unet), - ("mini_xception", mini_xception), - ("retinanet", retinanet), - ("structured_data_classification", structured_data_classification), - ("text_classification", text_classification), - ("timeseries_forecasting", timeseries_forecasting), - # ("translation", translation), # Buggy? - ("vae", vae), - ) - def test_fit_on_all_models_with_sync_preprocessing(self, module): - batch_size = 4 - data_specs = module.get_data_spec(batch_size * 3) - dataset = get_dataset(data_specs, batch_size) - - model = module.get_model( - build=True, - compile=True, - jit_compile=False, - include_preprocessing=True, - ) - model.fit(dataset, epochs=1) - - @parameterized.named_parameters( - ("bert", bert), - # ("ctc_speech_rnn", ctc_speech_rnn), # Buggy? - ("dcgan", dcgan), - ("edge_case_model", edge_case_model), - ("efficientnet_v2", efficientnet_v2), - ("low_level_model", low_level_model), - # ("mini_unet", mini_unet), # Not XLA compatible b/c of UpSampling2D - ("mini_xception", mini_xception), - # ("retinanet", retinanet), # Not XLA compatible b/c of UpSampling2D - ("structured_data_classification", structured_data_classification), - ("text_classification", text_classification), - ("timeseries_forecasting", timeseries_forecasting), - # ("translation", translation), # Buggy? - ("vae", vae), - ) - def test_fit_on_all_models_with_async_preprocessing_and_xla(self, module): - batch_size = 4 - data_specs = module.get_data_spec(batch_size * 3) - dataset = get_dataset(data_specs, batch_size) - preprocessor = module.get_input_preprocessor() - if preprocessor is not None: - dataset = dataset.map(lambda x, y: (preprocessor(x), y)) - - model = module.get_model( - build=True, - compile=True, - jit_compile=True, - include_preprocessing=False, - ) - model.fit(dataset, epochs=1) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/integration_test/forwardprop_test.py b/keras/integration_test/forwardprop_test.py deleted file mode 100644 index 5ef71e59145..00000000000 --- a/keras/integration_test/forwardprop_test.py +++ /dev/null @@ -1,362 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import functools - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - - -def _jvp(f, primals, tangents): - """Compute the jacobian of `f` at `primals` multiplied by `tangents`.""" - with tf.autodiff.ForwardAccumulator(primals, tangents) as acc: - primals_out = f(*primals) - return primals_out, acc.jvp( - primals_out, unconnected_gradients=tf.UnconnectedGradients.ZERO - ) - - -def _jacfwd(f, primals): - """Compute the jacobian of `f` at `primals` using forward-mode autodiff.""" - jac_flat = [] - flat_primals = tf.nest.flatten(primals) - tangent_mask = [tf.zeros_like(primal) for primal in flat_primals] - for primal_index, primal in enumerate(flat_primals): - primal_vector = tf.reshape(primal, [-1]) - primal_vector_length = tf.size(primal_vector) - jac_columns = [] - for element_index in tf.range(primal_vector_length): - mask = tf.one_hot(element_index, primal_vector_length) - tangent_mask[primal_index] = tf.reshape(mask, tf.shape(primal)) - jac_columns.append( - tf.nest.map_structure( - functools.partial(tf.reshape, shape=[-1]), - _jvp( - f, - primals, - tf.nest.pack_sequence_as(primals, tangent_mask), - )[1], - ) - ) - jac_flat.append(tf.stack(jac_columns, axis=1)) - tangent_mask[primal_index] = tf.zeros_like(primal) - return tf.nest.pack_sequence_as(primals, jac_flat) - - -def _grad(f, argnums=0): - """Return a function which computes the gradient of `f`.""" - - def _f(*params): - with tf.GradientTape() as tape: - tape.watch(params) - primals_out = f(*params) - return tape.gradient( - primals_out, - params[argnums], - unconnected_gradients=tf.UnconnectedGradients.ZERO, - ) - - return _f - - -def _hvp(f, primals, tangents): - """Compute a forward-over-back Hessian-vector product.""" - with tf.autodiff.ForwardAccumulator(primals, tangents) as acc: - with tf.GradientTape() as tape: - tape.watch(primals) - f_out = f(*primals) - f_out.shape.assert_is_compatible_with([]) - return acc.jvp(tape.gradient(f_out, primals)) - - -def _vectorize_parameters(f, params, use_pfor, dtype): - """Loop over `params`, providing a one-hot mask to `f` for each.""" - parameter_sizes = [tf.size(param) for param in params] - total_size = tf.math.add_n(parameter_sizes) - - def _wrapper(index): - full_onehot = tf.one_hot(index, total_size) - split_onehot = tf.split(full_onehot, parameter_sizes) - tangents = [ - tf.reshape(v, tf.shape(param)) - for param, v in zip(params, split_onehot) - ] - return f(tangents) - - if use_pfor: - return tf.vectorized_map(_wrapper, tf.range(total_size)) - else: - return tf.map_fn(_wrapper, tf.range(total_size), dtype) - - -def _forward_over_back_hessian(f, params, use_pfor, dtype=None): - """Computes the full Hessian matrix for the scalar-valued f(*params). - - Args: - f: A function taking `params` and returning a scalar. - params: A possibly nested structure of tensors. - use_pfor: If true, uses `tf.vectorized_map` calls instead of looping. - dtype: Required if `use_pfor=False`. A possibly nested structure of dtypes - (e.g. `tf.float32`) matching the structure of `f`'s returns. - - Returns: - A possibly nested structure of matrix slices corresponding to `params`. - Each slice has shape [P, p_s] where `p_s` is the number of parameters - (`tf.size`) in the corresponding element of `params` and `P` is the total - number of parameters (`sum_s(p_s)`). The full matrix can be obtained by - concatenating along the second axis. - """ - return _vectorize_parameters( - functools.partial(_hvp, f, params), - params, - use_pfor=use_pfor, - dtype=dtype, - ) - - -def _test_gradients( - testcase, f, primals, order, delta=1e-3, rtol=1e-2, atol=1e-6 -): - """Tests forward/backward jacobians of `f`'s [0, `order`)-order - gradients.""" - if order < 1: - raise ValueError( - f"`order` should be a positive integer, got '{order}'." - ) - if order > 1: - _test_gradients( - testcase=testcase, - f=_grad(f), - primals=primals, - order=order - 1, - delta=delta, - rtol=rtol, - atol=atol, - ) - sym_jac_back, num_jac = tf.test.compute_gradient(f, primals, delta=delta) - testcase.assertAllClose(num_jac, sym_jac_back, rtol=rtol, atol=atol) - sym_jac_fwd = _jacfwd(f, primals) - testcase.assertAllClose(num_jac, sym_jac_fwd, rtol=rtol, atol=atol) - # And the symbolic computations should be much closer. - testcase.assertAllClose(sym_jac_back, sym_jac_fwd) - - -class ForwardpropTest(tf.test.TestCase, parameterized.TestCase): - @parameterized.named_parameters( - [ - ("Dense", [[0.1]], functools.partial(tf.keras.layers.Dense, 5)), - ( - "Conv2D", - np.reshape( - np.arange(start=-1.0, stop=1.0, step=2.0 / (1 * 2 * 4 * 4)), - [1, 2, 4, 4], - ), - functools.partial(tf.keras.layers.Conv2D, 2, 2), - 1e-3, - ), - ] - ) - def testKerasLayers(self, value, op_fn, atol=1e-6): - layer = op_fn() - input_value = tf.constant(value, dtype=tf.float32) - layer.build(input_value.shape) - # Make sure the test is deterministic by avoiding random variable - # initialization. - for v in layer.trainable_variables: - v.assign( - tf.reshape( - tf.range( - -1.0, - 1.0, - 2.0 / tf.size(v, out_type=tf.float32), - dtype=tf.float32, - ), - v.shape, - ) - ) - _test_gradients( - self, - layer, - [input_value], - atol=atol, - # These are linear, so second-order is pretty boring. - order=2, - ) - - @parameterized.named_parameters( - [ - ( - "NonFused", - [[0.1], [0.2], [-0.3]], - functools.partial( - tf.keras.layers.BatchNormalization, fused=False - ), - ), - ( - "Fused", - [[[[0.1, 2.0]]], [[[0.2, -3.0]]], [[[-0.3, 4.0]]]], - functools.partial( - tf.keras.layers.BatchNormalization, fused=True - ), - ), - ] - ) - def testBatchNorm(self, value, op_fn): - for training in [True, False]: - layer = op_fn() - input_value = tf.constant(value, dtype=tf.float32) - layer.build(input_value.shape) - _test_gradients( - self, - functools.partial(layer, training=training), - [input_value], - order=2, - atol=1e-3, - ) - - @parameterized.named_parameters( - [ - ( - "NonFused", - [[0.1], [0.2], [-0.3]], - functools.partial( - tf.keras.layers.BatchNormalization, fused=False - ), - ), - ( - "Fused", - [[[[0.1, 2.0]]], [[[0.2, -3.0]]], [[[-0.3, 4.0]]]], - functools.partial( - tf.keras.layers.BatchNormalization, fused=True - ), - ), - ] - ) - def testBatchNormLayerParamGrads(self, value, op_fn): - for training in [True, False]: - layer = op_fn() - with tf.GradientTape() as tape: - input_value = tf.constant(value, dtype=tf.float32) - tape.watch(input_value) - output = layer(input_value, training=training) - jac_back = tape.jacobian( - output, [input_value] + layer.trainable_variables - ) - jac_forward = _jacfwd( - lambda *args: layer(args[0], training=training), - [input_value] + layer.trainable_variables, - ) - for backward, forward in zip(jac_back, jac_forward): - forward = tf.reshape(forward, tf.shape(backward)) - self.assertAllClose(backward, forward) - - @parameterized.named_parameters( - [("Function", tf.function), ("NoFunction", lambda f: f)] - ) - def testVariablesHVP(self, decorator): - class _Model(tf.Module): - def __init__(self): - self._first_dense = tf.keras.layers.Dense(18) - self._conv = tf.keras.layers.Conv2D(2, 2) - self._norm = tf.keras.layers.BatchNormalization() - self._second_dense = tf.keras.layers.Dense(1) - - def __call__(self, x): - x = self._first_dense(x) - x = tf.nn.relu(x) - x = self._norm(x) - x = tf.nn.relu(self._conv(tf.reshape(x, [-1, 2, 3, 3]))) - return self._second_dense(x) - - model = _Model() - - def _loss(): - input_value = tf.constant([[-0.5, 1.0], [0.5, -1.0]]) - target = tf.constant([[-1.0], [2.0]]) - return tf.math.reduce_sum((model(input_value) - target) ** 2.0) - - @decorator - def _compute_hvps(): - with tf.GradientTape() as tape: - loss = _loss() - vector = tape.gradient(loss, model.trainable_variables) - variable_input_fn = lambda unused_variables: _loss() - (forward_over_back_hvp,) = _hvp( - variable_input_fn, [model.trainable_variables], [vector] - ) - with tf.GradientTape(persistent=True) as tape: - tape.watch(model.trainable_variables) - loss = _loss() - first_grads = tape.gradient(loss, model.trainable_variables) - back_over_back_hvp = tape.gradient( - first_grads, model.trainable_variables, output_gradients=vector - ) - return forward_over_back_hvp, back_over_back_hvp - - self.assertAllClose(*_compute_hvps(), rtol=1e-5, atol=1e-5) - - def testEmbeddingLayerInFunction(self): - class M(tf.keras.Model): - def __init__(self): - super().__init__() - self.embed = tf.keras.layers.Embedding(5, 1) - self.proj = tf.keras.layers.Dense(1) - - @tf.function - def call(self, x): - return self.proj(self.embed(x)) - - model = M() - model(tf.zeros([3, 3], dtype=tf.int32)) - parameters = model.embed.variables - tangents = [tf.ones_like(v) for v in parameters] - with tf.autodiff.ForwardAccumulator(parameters, tangents): - # Note that forwardprop runs alongside the original computation. - # This test is just checking that it doesn't crash; correctness is - # tested in core TF. - model(tf.zeros([3, 3], dtype=tf.int32)) - - -class HessianTests(tf.test.TestCase, parameterized.TestCase): - @parameterized.named_parameters([("PFor", True), ("MapFn", False)]) - def testHessianOfVariables(self, use_pfor): - model = tf.keras.layers.Dense(1) - model.build([None, 2]) - - def _loss(*unused_args): - input_value = tf.constant([[-0.5, 1.0], [0.5, -1.0]]) - target = tf.constant([[-1.0], [2.0]]) - return tf.math.reduce_sum((model(input_value) - target) ** 2.0) - - kernel_hess, bias_hess = _forward_over_back_hessian( - _loss, - [model.kernel, model.bias], - use_pfor=use_pfor, - dtype=[tf.float32, tf.float32], - ) - # 3 total parameters, the whole hessian is the 3x3 concatenation - self.assertEqual([3, 2, 1], kernel_hess.shape) - self.assertEqual([3, 1], bias_hess.shape) - full_hessian = tf.concat( - [tf.reshape(kernel_hess, [3, 2]), bias_hess], axis=1 - ) - # The full Hessian should be symmetric. - self.assertAllClose(full_hessian, tf.transpose(full_hessian)) - - -if __name__ == "__main__": - if tf.__internal__.tf2.enabled(): - tf.test.main() diff --git a/keras/integration_test/function_test.py b/keras/integration_test/function_test.py deleted file mode 100644 index ba89f0424e8..00000000000 --- a/keras/integration_test/function_test.py +++ /dev/null @@ -1,258 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import sys - -import tensorflow.compat.v2 as tf - - -class MiniModel(tf.keras.Model): - """Minimal model for mnist. - - Useful for testing and debugging on slow TPU simulators. - """ - - def __init__(self): - super().__init__(name="") - self.fc = tf.keras.layers.Dense( - 1, name="fc", kernel_initializer="ones", bias_initializer="ones" - ) - - def call(self, inputs, training=True): - return self.fc(inputs) - - -class DefunnedMiniModel(MiniModel): - @tf.function - def call(self, inputs, training=True): - return super(DefunnedMiniModel, self).call(inputs, training=training) - - -class ModelWithOptimizer(tf.keras.Model): - def __init__(self): - super().__init__() - self.dense = tf.keras.layers.Dense(1) - self.optimizer = tf.keras.optimizers.Adam(0.01) - - @tf.function( - input_signature=( - tf.TensorSpec([None, 2], tf.float32), - tf.TensorSpec([None], tf.float32), - ) - ) - def call(self, x, y): - with tf.GradientTape() as tape: - loss = tf.math.reduce_mean((self.dense(x) - y) ** 2.0) - trainable_variables = self.trainable_variables - gradients = tape.gradient(loss, trainable_variables) - self.optimizer.apply_gradients(zip(gradients, trainable_variables)) - return {"loss": loss} - - -class FunctionTest(tf.test.TestCase): - def testFunctionRelaxationLosesInnerDimWithKerasLayer(self): - layer = tf.keras.layers.Dense(1) - fn = tf.function(reduce_retracing=True)(layer) - - with self.captureWritesToStream(sys.stderr) as printed: - fn(tf.ones((3, 2))) - self.assertNotIn("ValueError", printed.contents()) - with self.captureWritesToStream(sys.stderr) as printed: - # Use batch size 2 to trigger a second cache miss on the shape. - fn(tf.ones((2, 2))) - self.assertNotIn("ValueError", printed.contents()) - - # Shape relaxation passes TensorShape([None, None]), which causes layer - # matmul to fail, due to incompatible dims. What would have been a - # graph build time error (layer would complain about the inner dim being - # 4). - with self.captureWritesToStream(sys.stderr) as printed: - with self.assertRaisesRegex( - tf.errors.InvalidArgumentError, r"Matrix size-incompatible" - ): - fn(tf.ones((3, 4))) - - def testDefunKerasModelCall(self): - model = MiniModel() - model.call = tf.function(model.call) - - x = tf.ones([1, 2]) - y = model(x) - - self.assertAllEqual([[3.0]], self.evaluate(y)) - - # Break the reference cycle between the MiniModel and the defun: - # `MiniModel` --(through its `call` method)--> `Function` - # `Function` --(instancemethod on `MiniModel`)--> `MiniModel` - del model.call - - def testDecoratedMethod(self): - m = DefunnedMiniModel() - instance_call_one = m.call(tf.ones([1, 2]), training=True) - instance_call_two = m.call(inputs=tf.ones([1, 2]), training=True) - class_call = DefunnedMiniModel.call(m, tf.ones([1, 2]), training=True) - self.assertAllEqual(instance_call_one, instance_call_two) - self.assertAllEqual(instance_call_one, class_call) - - def testDecoratedMethodUniqueFunctionPerInstance(self): - m = DefunnedMiniModel() - n = DefunnedMiniModel() - - class_method_one = DefunnedMiniModel.call - class_method_two = DefunnedMiniModel.call - - m_method_one = m.call - m_method_two = m.call - - n_method_one = n.call - n_method_two = n.call - - self.assertEqual(class_method_one, class_method_two) - self.assertEqual(m_method_one, m_method_two) - self.assertEqual(n_method_one, n_method_two) - self.assertNotEqual(m.call, n.call) - - def testDecoratedMethodGetConcreteFunction(self): - m = DefunnedMiniModel() - instance_call_one = m.call.get_concrete_function( - tf.ones([1, 2]), training=False - ) - instance_call_two = m.call.get_concrete_function( - inputs=tf.ones([1, 2]), training=False - ) - self.assertAllEqual( - instance_call_one(tf.ones([1, 2])), - instance_call_two(tf.ones([1, 2])), - ) - - # Also make sure get_concrete_function works on the class method - DefunnedMiniModel.call.get_concrete_function( - m, tf.ones([1, 2]), training=False - ) - DefunnedMiniModel.call.get_concrete_function( - m, inputs=tf.ones([1, 2]), training=True - ) - - def testDecoratedMethodVariableCleanup(self): - m = DefunnedMiniModel() - m(tf.ones([1, 2])) - variable_refs = list({v.ref() for v in m.variables}) - self.assertLen(variable_refs, 2) - del m - - # Verifying if the variables are only referenced from variable_refs. - # We expect the reference counter to be 1, but `sys.getrefcount` reports - # one higher reference counter because a temporary is created when we - # call sys.getrefcount(). Hence check if the number returned is 2. - # https://docs.python.org/3/library/sys.html#sys.getrefcount - self.assertEqual(sys.getrefcount(variable_refs[0].deref()), 2) - self.assertEqual(sys.getrefcount(variable_refs[1].deref()), 2) - - def testStandardTrainingLoopInFunction(self): - layer = tf.keras.layers.Dense(2) - dataset = ( - tf.data.Dataset.from_tensors( - (tf.ones([784]), tf.ones([], tf.int32)) - ) - .map(lambda x, y: (x, y)) - .repeat(10) - .batch(32) - ) - optimizer = tf.keras.optimizers.Adam() - - @tf.function - def train(): - for x, y in dataset: - with tf.GradientTape() as tape: - out = layer(x) - loss = tf.reduce_mean( - tf.nn.sparse_softmax_cross_entropy_with_logits( - logits=out, labels=y - ) - ) - layer_variables = layer.trainable_variables - gradients = tape.gradient(loss, layer_variables) - optimizer.apply_gradients(zip(gradients, layer_variables)) - - train() - - def testEarlyStoppingTrainingLoopInFunction(self): - layer = tf.keras.layers.Dense(2) - dataset = ( - tf.data.Dataset.from_tensors( - (tf.ones([784]), tf.ones([], tf.int32)) - ) - .map(lambda x, y: (x, y)) - .repeat(10) - .batch(32) - ) - optimizer = tf.keras.optimizers.Adam() - - @tf.function - def train(): - for x, y in dataset: - with tf.GradientTape() as tape: - out = layer(x) - loss = tf.math.reduce_mean( - tf.nn.sparse_softmax_cross_entropy_with_logits( - logits=out, labels=y - ) - ) - layer_variables = layer.trainable_variables - gradients = tape.gradient(loss, layer_variables) - optimizer.apply_gradients(zip(gradients, layer_variables)) - if optimizer.iterations > 3: - break - - train() - - def test_optimizer(self): - x = tf.constant([[3.0, 4.0]]) - y = tf.constant([2.0]) - model = ModelWithOptimizer() - model(x, y) - - -class AutomaticControlDependenciesTest(tf.test.TestCase): - def testVariableInitializersCanBeLifted(self): - # The initializer is a stateful op, but using it inside a function - # should *not* create additional dependencies. That's what we're - # testing. - layer = tf.keras.layers.Dense(1, kernel_initializer="glorot_uniform") - - @tf.function - def fn(x): - # Stateful operation - tf.debugging.Assert(x, ["Error"]) - # Variable initialization should be lifted. Prior to the change - # that added this test, the lifting would crash because of an auto - # control dep added on `x`. Note, the error did not happen if we - # manually created a tf.Variable outside of function and used it - # here. Alternatively, creating a tf.Variable inside fn() causes a - # different sort of error that is out of scope for this test. - return layer(tf.convert_to_tensor([[1.0, 1.0]])) - - true = tf.convert_to_tensor(True) - - concrete = fn.get_concrete_function( - tf.TensorSpec(shape=(), dtype=tf.bool) - ) - self.evaluate(concrete(true)) - self.evaluate(fn(True)) - - -if __name__ == "__main__": - if tf.__internal__.tf2.enabled(): - tf.test.main() diff --git a/keras/integration_test/gradient_checkpoint_test.py b/keras/integration_test/gradient_checkpoint_test.py deleted file mode 100644 index 50efbbd9892..00000000000 --- a/keras/integration_test/gradient_checkpoint_test.py +++ /dev/null @@ -1,210 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import gc - -import tensorflow.compat.v2 as tf - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) -from tensorflow.python.platform import test as test_lib - -layers = tf.keras.layers -optimizers = tf.keras.optimizers - - -def _get_big_cnn_model( - img_dim, n_channels, num_partitions, blocks_per_partition -): - """Creates a test model whose activations are significantly larger than - model size.""" - model = tf.keras.Sequential() - model.add(layers.Input(shape=(img_dim, img_dim, n_channels))) - for _ in range(num_partitions): - for _ in range(blocks_per_partition): - model.add( - layers.Conv2D(10, 5, padding="same", activation=tf.nn.relu) - ) - model.add(layers.MaxPooling2D((1, 1), padding="same")) - model.add( - layers.Conv2D(40, 5, padding="same", activation=tf.nn.relu) - ) - model.add(layers.MaxPooling2D((1, 1), padding="same")) - model.add( - layers.Conv2D(20, 5, padding="same", activation=tf.nn.relu) - ) - model.add(layers.MaxPooling2D((1, 1), padding="same")) - model.add(layers.Flatten()) - model.add(layers.Dense(32, activation=tf.nn.relu)) - model.add(layers.Dense(10)) - return model - - -def _get_split_cnn_model( - img_dim, n_channels, num_partitions, blocks_per_partition -): - """Creates a test model that is split into `num_partitions` smaller - models.""" - models = [tf.keras.Sequential() for _ in range(num_partitions)] - models[0].add(layers.Input(shape=(img_dim, img_dim, n_channels))) - for i in range(num_partitions): - model = models[i] - if i > 0: - last_shape = models[i - 1].layers[-1].output_shape - model.add(layers.Input(shape=last_shape[1:])) - for _ in range(blocks_per_partition): - model.add( - layers.Conv2D(10, 5, padding="same", activation=tf.nn.relu) - ) - model.add(layers.MaxPooling2D((1, 1), padding="same")) - model.add( - layers.Conv2D(40, 5, padding="same", activation=tf.nn.relu) - ) - model.add(layers.MaxPooling2D((1, 1), padding="same")) - model.add( - layers.Conv2D(20, 5, padding="same", activation=tf.nn.relu) - ) - model.add(layers.MaxPooling2D((1, 1), padding="same")) - models[-1].add(layers.Flatten()) - models[-1].add(layers.Dense(32, activation=tf.nn.relu)) - models[-1].add(layers.Dense(10)) - return models - - -def _compute_loss(logits, labels): - return tf.reduce_mean( - tf.nn.sparse_softmax_cross_entropy_with_logits( - logits=logits, labels=labels - ) - ) - - -def _limit_gpu_memory(): - """Helper function to limit GPU memory for testing.""" - gpus = tf.config.experimental.list_physical_devices("GPU") - if gpus: - tf.config.experimental.set_virtual_device_configuration( - gpus[0], - [ - tf.config.experimental.VirtualDeviceConfiguration( - memory_limit=2048 - ) - ], - ) - return True - return False - - -def _get_dummy_data(img_dim, n_channels, batch_size): - inputs = tf.ones([batch_size, img_dim, img_dim, n_channels]) - labels = tf.ones([batch_size], dtype=tf.int64) - return inputs, labels - - -def _train_no_recompute(n_steps): - """Trains a single large model without gradient checkpointing.""" - img_dim, n_channels, batch_size = 256, 1, 4 - x, y = _get_dummy_data(img_dim, n_channels, batch_size) - model = _get_big_cnn_model( - img_dim, n_channels, num_partitions=3, blocks_per_partition=2 - ) - optimizer = optimizers.SGD() - losses = [] - tr_vars = model.trainable_variables - for _ in range(n_steps): - with tf.GradientTape() as tape: - logits = model(x) - loss = _compute_loss(logits, y) - losses.append(loss) - grads = tape.gradient(loss, tr_vars) # tr_vars - optimizer.apply_gradients(zip(grads, tr_vars)) - del grads - return losses - - -def _train_with_recompute(n_steps): - """Trains a single large model with gradient checkpointing using - tf.recompute_grad.""" - img_dim, n_channels, batch_size = 256, 1, 4 - x, y = _get_dummy_data(img_dim, n_channels, batch_size) - # This model is the same model as _get_big_cnn_model but split into 3 parts. - models = _get_split_cnn_model( - img_dim, n_channels, num_partitions=3, blocks_per_partition=2 - ) - model1, model2, model3 = models - # Apply gradient checkpointing to the submodels using tf.recompute_grad. - model1_re = tf.recompute_grad(model1) - model2_re = tf.recompute_grad(model2) - model3_re = tf.recompute_grad(model3) - optimizer = optimizers.SGD() - tr_vars = ( - model1.trainable_variables - + model2.trainable_variables - + model3.trainable_variables - ) - losses = [] - for _ in range(n_steps): - with tf.GradientTape() as tape: - logits1 = model1_re(x) - logits2 = model2_re(logits1) - logits3 = model3_re(logits2) - loss = _compute_loss(logits3, y) - losses.append(loss) - grads = tape.gradient(loss, tr_vars) # tr_vars - optimizer.apply_gradients(zip(grads, tr_vars)) - del grads - return losses - - -@tf_test_utils.with_eager_op_as_function -class GradientCheckpointTest(tf.test.TestCase): - def test_raises_oom_exception(self): - self.skipTest("b/232015009: flaky test") - if not _limit_gpu_memory(): - self.skipTest("No virtual GPUs found") - with self.assertRaises(Exception) as context: - _train_no_recompute(1) - self.assertIsInstance( - context.exception, tf.errors.ResourceExhaustedError - ) - - @tf_test_utils.disable_xla( - "xla does not support searching for memory-limited solvers." - ) - def test_does_not_raise_oom_exception(self): - if not _limit_gpu_memory(): - self.skipTest("No virtual GPUs found") - if test_lib.is_built_with_rocm(): - self.skipTest( - "ROCm MIOpen does not support searching for memory-limited" - "solvers yet so skip the subtest which would result in OOM." - ) - n_step = 2 - losses = _train_with_recompute(n_step) - self.assertLen(losses, n_step) - - def tearDown(self): - super().tearDown() - # Make sure all the models created in keras has been deleted and cleared - # from the global keras grpah, also do a force GC to recycle the GPU - # memory. - tf.keras.backend.clear_session() - gc.collect() - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/integration_test/gradients_test.py b/keras/integration_test/gradients_test.py deleted file mode 100644 index dd24e9c8d7d..00000000000 --- a/keras/integration_test/gradients_test.py +++ /dev/null @@ -1,139 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import numpy as np -import tensorflow.compat.v2 as tf - - -class TestKerasModelClass(tf.keras.Model): - """A simple tensorflow keras Model class definition.""" - - def __init__(self, width): - super().__init__() - self.width = width - - def build(self, input_shape): - self.weight = self.add_weight( - name="test_keras_var", - shape=(self.width,), - dtype=tf.float32, - trainable=True, - ) - - def call(self, inputs): - return self.weight * inputs - - -class GradientsTest(tf.test.TestCase): - def _TestVariablesGradient(self, inputs, test_model, vars_to_grad): - """Returns gradients of `test_model` with respect to `vars_to_grad`.""" - - test_model_re = tf.recompute_grad(test_model) - - with tf.GradientTape(persistent=True) as tape: - tape.watch(vars_to_grad) - out_re = test_model_re(inputs) - out = test_model(inputs) - - grads_re = tape.gradient(out_re, vars_to_grad) - grads = tape.gradient(out, vars_to_grad) - - return grads_re, grads - - def testKerasRecompute(self): - """Checks that recompute_grad works for a simple Keras Model.""" - - test_model = TestKerasModelClass(10) - test_input = tf.constant(tf.zeros((10, 10), dtype=np.float32)) - # Ensures keras model is initialized. - test_model(test_input) - grads_re, grads = self._TestVariablesGradient( - test_input, test_model, test_input - ) - - grads_re = self.evaluate(grads_re) - grads = self.evaluate(grads) - for g, g_re in zip(grads, grads_re): - self.assertAllClose(g, g_re) - - grads_re, grads = self._TestVariablesGradient( - test_input, test_model, test_model.variables - ) - - grads_re = self.evaluate(grads_re) - grads = self.evaluate(grads) - for g, g_re in zip(grads, grads_re): - self.assertAllClose(g, g_re) - - def testLSTMBatchJacobian(self): - class HasLSTM(tf.keras.Model): - def __init__(self): - super().__init__() - self.lstm = tf.keras.layers.LSTM(units=5) - self.dense = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid) - - def call(self, x): - return self.dense(self.lstm(x)) - - m = HasLSTM() - - def jacobian(x): - with tf.GradientTape() as tape: - tape.watch(x) - y = m(x) - return tape.batch_jacobian(y, x) - - inp = tf.nn.l2_normalize(tf.ones([1, 2, 3]), axis=[1, 2]) - eager_result = jacobian(inp) - function_result = tf.function(jacobian)(inp) - self.assertAllClose(eager_result, function_result) - backprop_result, numeric_result = tf.test.compute_gradient( - m, [inp], delta=1e-3 - ) - self.assertAllClose(numeric_result, backprop_result, atol=1e-3) - self.assertAllClose( - tf.reshape(numeric_result, [-1]), - tf.reshape(eager_result, [-1]), - atol=1e-3, - ) - - def testEmbeddingLookupGradientsHaveKnownShape(self): - class MyLayer(tf.keras.layers.Layer): - def __init__(self, **kwargs): - super().__init__(**kwargs) - self.embedding = None - - def build(self, input_shape): - self.embedding = tf.Variable(tf.random.uniform([50, 16])) - - def call(self, x): - return tf.nn.embedding_lookup(self.embedding, x) - - layer = MyLayer() - - @tf.function - def _run(x): - with tf.GradientTape() as tape: - y = layer(x) - loss = tf.math.reduce_sum(y) - gradients = tape.gradient(loss, layer.weights) - self.assertListEqual(gradients[0].shape.as_list(), [50, 16]) - - _run(tf.random.uniform([4, 16], minval=0, maxval=50, dtype=tf.int64)) - - -if __name__ == "__main__": - if tf.__internal__.tf2.enabled(): - tf.test.main() diff --git a/keras/integration_test/legacy_rnn_test.py b/keras/integration_test/legacy_rnn_test.py deleted file mode 100644 index 0b85d364337..00000000000 --- a/keras/integration_test/legacy_rnn_test.py +++ /dev/null @@ -1,410 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import numpy as np -import tensorflow.compat.v1 as tf - -tf.disable_eager_execution() - - -class KerasNetworkTFRNNs(tf.keras.Model): - def __init__(self, name=None): - super().__init__(name=name) - self._cell = tf.nn.rnn_cell.MultiRNNCell( - [tf.nn.rnn_cell.LSTMCell(1) for _ in range(2)] - ) - - def call(self, inputs): - return self._cell(inputs, self._cell.get_initial_state(inputs)) - - -class KerasNetworkKerasRNNs(tf.keras.Model): - def __init__(self, name=None): - super().__init__(name=name) - self._cell = tf.keras.layers.StackedRNNCells( - [tf.keras.layers.LSTMCell(1) for _ in range(2)] - ) - - def call(self, inputs): - return self._cell(inputs, self._cell.get_initial_state(inputs)) - - -class LegacyRNNTest(tf.test.TestCase): - def setUp(self): - super().setUp() - self._seed = 23489 - np.random.seed(self._seed) - - def testRNNWithKerasSimpleRNNCell(self): - with self.cached_session() as sess: - input_shape = 10 - output_shape = 5 - timestep = 4 - batch = 100 - (x_train, y_train), _ = get_test_data( - train_samples=batch, - test_samples=0, - input_shape=(timestep, input_shape), - num_classes=output_shape, - ) - y_train = tf.keras.utils.to_categorical(y_train) - cell = tf.keras.layers.SimpleRNNCell(output_shape) - - inputs = tf.placeholder( - tf.float32, shape=(None, timestep, input_shape) - ) - predict = tf.placeholder(tf.float32, shape=(None, output_shape)) - - outputs, state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) - self.assertEqual( - outputs.shape.as_list(), [None, timestep, output_shape] - ) - self.assertEqual(state.shape.as_list(), [None, output_shape]) - loss = tf.keras.losses.categorical_crossentropy(predict, state) - train_op = tf.train.GradientDescentOptimizer(0.001).minimize(loss) - - sess.run([tf.global_variables_initializer()]) - _, outputs, state = sess.run( - [train_op, outputs, state], {inputs: x_train, predict: y_train} - ) - - self.assertEqual(len(outputs), batch) - self.assertEqual(len(state), batch) - - def testRNNWithKerasGRUCell(self): - with self.cached_session() as sess: - input_shape = 10 - output_shape = 5 - timestep = 4 - batch = 100 - (x_train, y_train), _ = get_test_data( - train_samples=batch, - test_samples=0, - input_shape=(timestep, input_shape), - num_classes=output_shape, - ) - y_train = tf.keras.utils.to_categorical(y_train) - cell = tf.keras.layers.GRUCell(output_shape) - - inputs = tf.placeholder( - tf.float32, shape=(None, timestep, input_shape) - ) - predict = tf.placeholder(tf.float32, shape=(None, output_shape)) - - outputs, state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) - self.assertEqual( - outputs.shape.as_list(), [None, timestep, output_shape] - ) - self.assertEqual(state.shape.as_list(), [None, output_shape]) - loss = tf.keras.losses.categorical_crossentropy(predict, state) - train_op = tf.train.GradientDescentOptimizer(0.001).minimize(loss) - - sess.run([tf.global_variables_initializer()]) - _, outputs, state = sess.run( - [train_op, outputs, state], {inputs: x_train, predict: y_train} - ) - - self.assertEqual(len(outputs), batch) - self.assertEqual(len(state), batch) - - def testRNNWithKerasLSTMCell(self): - with self.cached_session() as sess: - input_shape = 10 - output_shape = 5 - timestep = 4 - batch = 100 - (x_train, y_train), _ = get_test_data( - train_samples=batch, - test_samples=0, - input_shape=(timestep, input_shape), - num_classes=output_shape, - ) - y_train = tf.keras.utils.to_categorical(y_train) - cell = tf.keras.layers.LSTMCell(output_shape) - - inputs = tf.placeholder( - tf.float32, shape=(None, timestep, input_shape) - ) - predict = tf.placeholder(tf.float32, shape=(None, output_shape)) - - outputs, state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) - self.assertEqual( - outputs.shape.as_list(), [None, timestep, output_shape] - ) - self.assertEqual(len(state), 2) - self.assertEqual(state[0].shape.as_list(), [None, output_shape]) - self.assertEqual(state[1].shape.as_list(), [None, output_shape]) - loss = tf.keras.losses.categorical_crossentropy(predict, state[0]) - train_op = tf.train.GradientDescentOptimizer(0.001).minimize(loss) - - sess.run([tf.global_variables_initializer()]) - _, outputs, state = sess.run( - [train_op, outputs, state], {inputs: x_train, predict: y_train} - ) - - self.assertEqual(len(outputs), batch) - self.assertEqual(len(state), 2) - self.assertEqual(len(state[0]), batch) - self.assertEqual(len(state[1]), batch) - - def testRNNWithStackKerasCell(self): - with self.cached_session() as sess: - input_shape = 10 - output_shape = 5 - timestep = 4 - batch = 100 - (x_train, y_train), _ = get_test_data( - train_samples=batch, - test_samples=0, - input_shape=(timestep, input_shape), - num_classes=output_shape, - ) - y_train = tf.keras.utils.to_categorical(y_train) - cell = tf.keras.layers.StackedRNNCells( - [ - tf.keras.layers.LSTMCell(2 * output_shape), - tf.keras.layers.LSTMCell(output_shape), - ] - ) - - inputs = tf.placeholder( - tf.float32, shape=(None, timestep, input_shape) - ) - predict = tf.placeholder(tf.float32, shape=(None, output_shape)) - - outputs, state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) - self.assertEqual( - outputs.shape.as_list(), [None, timestep, output_shape] - ) - self.assertEqual(len(state), 2) - state = tf.nest.flatten(state) - self.assertEqual(len(state), 4) - self.assertEqual(state[0].shape.as_list(), [None, 2 * output_shape]) - self.assertEqual(state[1].shape.as_list(), [None, 2 * output_shape]) - self.assertEqual(state[2].shape.as_list(), [None, output_shape]) - self.assertEqual(state[3].shape.as_list(), [None, output_shape]) - loss = tf.keras.losses.categorical_crossentropy(predict, state[2]) - train_op = tf.train.GradientDescentOptimizer(0.001).minimize(loss) - - sess.run([tf.global_variables_initializer()]) - _, outputs, state = sess.run( - [train_op, outputs, state], {inputs: x_train, predict: y_train} - ) - - self.assertEqual(len(outputs), batch) - self.assertEqual(len(state), 4) - for s in state: - self.assertEqual(len(s), batch) - - def testStaticRNNWithKerasSimpleRNNCell(self): - with self.cached_session() as sess: - input_shape = 10 - output_shape = 5 - timestep = 4 - batch = 100 - (x_train, y_train), _ = get_test_data( - train_samples=batch, - test_samples=0, - input_shape=(timestep, input_shape), - num_classes=output_shape, - ) - x_train = np.transpose(x_train, (1, 0, 2)) - y_train = tf.keras.utils.to_categorical(y_train) - cell = tf.keras.layers.SimpleRNNCell(output_shape) - - inputs = [ - tf.placeholder(tf.float32, shape=(None, input_shape)) - ] * timestep - predict = tf.placeholder(tf.float32, shape=(None, output_shape)) - - outputs, state = tf.nn.static_rnn(cell, inputs, dtype=tf.float32) - self.assertEqual(len(outputs), timestep) - self.assertEqual(outputs[0].shape.as_list(), [None, output_shape]) - self.assertEqual(state.shape.as_list(), [None, output_shape]) - loss = tf.keras.losses.categorical_crossentropy(predict, state) - train_op = tf.train.GradientDescentOptimizer(0.001).minimize(loss) - - sess.run([tf.global_variables_initializer()]) - feed_dict = {i: d for i, d in zip(inputs, x_train)} - feed_dict[predict] = y_train - _, outputs, state = sess.run([train_op, outputs, state], feed_dict) - - self.assertEqual(len(outputs), timestep) - self.assertEqual(len(outputs[0]), batch) - self.assertEqual(len(state), batch) - - def testKerasAndTFRNNLayerOutputComparison(self): - input_shape = 10 - output_shape = 5 - timestep = 4 - batch = 20 - (x_train, _), _ = get_test_data( - train_samples=batch, - test_samples=0, - input_shape=(timestep, input_shape), - num_classes=output_shape, - ) - fix_weights_generator = tf.keras.layers.SimpleRNNCell(output_shape) - fix_weights_generator.build((None, input_shape)) - weights = fix_weights_generator.get_weights() - - with self.session(graph=tf.Graph()) as sess: - inputs = tf.placeholder( - tf.float32, shape=(None, timestep, input_shape) - ) - cell = tf.keras.layers.SimpleRNNCell(output_shape) - tf_out, tf_state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) - cell.set_weights(weights) - [tf_out, tf_state] = sess.run([tf_out, tf_state], {inputs: x_train}) - with self.session(graph=tf.Graph()) as sess: - k_input = tf.keras.Input( - shape=(timestep, input_shape), dtype=tf.float32 - ) - cell = tf.keras.layers.SimpleRNNCell(output_shape) - layer = tf.keras.layers.RNN( - cell, return_sequences=True, return_state=True - ) - keras_out = layer(k_input) - cell.set_weights(weights) - k_out, k_state = sess.run(keras_out, {k_input: x_train}) - self.assertAllClose(tf_out, k_out) - self.assertAllClose(tf_state, k_state) - - def testSimpleRNNCellAndBasicRNNCellComparison(self): - input_shape = 10 - output_shape = 5 - timestep = 4 - batch = 20 - (x_train, _), _ = get_test_data( - train_samples=batch, - test_samples=0, - input_shape=(timestep, input_shape), - num_classes=output_shape, - ) - fix_weights_generator = tf.keras.layers.SimpleRNNCell(output_shape) - fix_weights_generator.build((None, input_shape)) - # The SimpleRNNCell contains 3 weights: kernel, recurrent_kernel, and - # bias The BasicRNNCell contains 2 weight: kernel and bias, where kernel - # is zipped [kernel, recurrent_kernel] in SimpleRNNCell. - keras_weights = fix_weights_generator.get_weights() - kernel, recurrent_kernel, bias = keras_weights - tf_weights = [np.concatenate((kernel, recurrent_kernel)), bias] - - with self.session(graph=tf.Graph()) as sess: - inputs = tf.placeholder( - tf.float32, shape=(None, timestep, input_shape) - ) - cell = tf.keras.layers.SimpleRNNCell(output_shape) - k_out, k_state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) - cell.set_weights(keras_weights) - [k_out, k_state] = sess.run([k_out, k_state], {inputs: x_train}) - with self.session(graph=tf.Graph()) as sess: - inputs = tf.placeholder( - tf.float32, shape=(None, timestep, input_shape) - ) - cell = tf.nn.rnn_cell.BasicRNNCell(output_shape) - tf_out, tf_state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) - cell.set_weights(tf_weights) - [tf_out, tf_state] = sess.run([tf_out, tf_state], {inputs: x_train}) - - self.assertAllClose(tf_out, k_out, atol=1e-5) - self.assertAllClose(tf_state, k_state, atol=1e-5) - - def testRNNCellSerialization(self): - for cell in [ - tf.nn.rnn_cell.LSTMCell(32, use_peepholes=True, cell_clip=True), - tf.nn.rnn_cell.BasicLSTMCell(32, dtype=tf.float32), - tf.nn.rnn_cell.BasicRNNCell( - 32, activation="relu", dtype=tf.float32 - ), - tf.nn.rnn_cell.GRUCell(32, dtype=tf.float32), - ]: - with self.cached_session(): - x = tf.keras.Input((None, 5)) - layer = tf.keras.layers.RNN(cell) - y = layer(x) - model = tf.keras.models.Model(x, y) - model.compile(optimizer="rmsprop", loss="mse") - - # Test basic case serialization. - x_np = np.random.random((6, 5, 5)) - y_np = model.predict(x_np) - weights = model.get_weights() - config = layer.get_config() - # The custom_objects is important here since rnn_cell_impl is - # not visible as a Keras layer, and also has a name conflict - # with keras.LSTMCell and GRUCell. - layer = tf.keras.layers.RNN.from_config( - config, - custom_objects={ - "BasicRNNCell": tf.nn.rnn_cell.BasicRNNCell, - "GRUCell": tf.nn.rnn_cell.GRUCell, - "LSTMCell": tf.nn.rnn_cell.LSTMCell, - "BasicLSTMCell": tf.nn.rnn_cell.BasicLSTMCell, - }, - ) - y = layer(x) - model = tf.keras.models.Model(x, y) - model.set_weights(weights) - y_np_2 = model.predict(x_np) - self.assertAllClose(y_np, y_np_2, atol=1e-4) - - def testRNNCellActsLikeKerasRNNCellInProperScope(self): - with tf.layers.experimental.keras_style_scope(): - kn1 = KerasNetworkTFRNNs(name="kn1") - kn2 = KerasNetworkKerasRNNs(name="kn2") - - z = tf.zeros((2, 3)) - - kn1(z) - kn2(z) - - self.assertTrue(all("kn1" in v.name for v in kn1._cell.variables)) - self.assertTrue(all("kn2" in v.name for v in kn2._cell.variables)) - - with tf.layers.experimental.keras_style_scope(): - kn1_new = KerasNetworkTFRNNs(name="kn1_new") - kn2_new = KerasNetworkKerasRNNs(name="kn2_new") - - kn2_new(z) - # Most importantly, this doesn't fail due to variable scope reuse - # issues. - kn1_new(z) - - self.assertTrue( - all("kn1_new" in v.name for v in kn1_new._cell.variables) - ) - self.assertTrue( - all("kn2_new" in v.name for v in kn2_new._cell.variables) - ) - - -def get_test_data(train_samples, test_samples, input_shape, num_classes): - num_sample = train_samples + test_samples - templates = 2 * num_classes * np.random.random((num_classes,) + input_shape) - y = np.random.randint(0, num_classes, size=(num_sample,)) - x = np.zeros((num_sample,) + input_shape, dtype=np.float32) - for i in range(num_sample): - x[i] = templates[y[i]] + np.random.normal( - loc=0, scale=1.0, size=input_shape - ) - return ( - (x[:train_samples], y[:train_samples]), - (x[train_samples:], y[train_samples:]), - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/integration_test/models/BUILD b/keras/integration_test/models/BUILD deleted file mode 100644 index 28b29c80013..00000000000 --- a/keras/integration_test/models/BUILD +++ /dev/null @@ -1,33 +0,0 @@ -# Description: -# Contains a collection of diverse Keras models to be used for integration tests. - -package( - default_visibility = [ - "//keras:friends", - ], - licenses = ["notice"], -) - -py_library( - name = "models", - srcs = [ - "__init__.py", - "bert.py", - "ctc_speech_rnn.py", - "dcgan.py", - "edge_case_model.py", - "efficientnet_v2.py", - "input_spec.py", - "low_level_model.py", - "mini_unet.py", - "mini_xception.py", - "retinanet.py", - "structured_data_classification.py", - "text_classification.py", - "timeseries_forecasting.py", - "translation.py", - "vae.py", - ], - srcs_version = "PY3", - deps = ["//:expect_tensorflow_installed"], -) diff --git a/keras/integration_test/models/__init__.py b/keras/integration_test/models/__init__.py deleted file mode 100644 index e69de29bb2d..00000000000 diff --git a/keras/integration_test/models/bert.py b/keras/integration_test/models/bert.py deleted file mode 100644 index ea20aa041db..00000000000 --- a/keras/integration_test/models/bert.py +++ /dev/null @@ -1,150 +0,0 @@ -"""Bert model. - -Adapted from https://keras.io/examples/nlp/masked_language_modeling/ -""" -import numpy as np -import tensorflow as tf -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec - -SEQUENCE_LENGTH = 16 -VOCAB_SIZE = 1000 -EMBED_DIM = 64 -NUM_HEAD = 2 -FF_DIM = 32 -NUM_LAYERS = 2 - - -def get_data_spec(batch_size): - return ( - InputSpec((batch_size,), dtype="string"), - InputSpec((batch_size, SEQUENCE_LENGTH, VOCAB_SIZE)), - ) - - -def get_input_preprocessor(): - input_vectorizer = keras.layers.TextVectorization( - max_tokens=VOCAB_SIZE, - output_mode="int", - output_sequence_length=SEQUENCE_LENGTH, - ) - text_ds = tf.data.Dataset.from_tensor_slices( - [ - "Lorem ipsum dolor sit amet", - "consectetur adipiscing elit", - "sed do eiusmod tempor incididunt ut", - "labore et dolore magna aliqua.", - "Ut enim ad minim veniam", - "quis nostrud exercitation ullamco", - "laboris nisi ut aliquip ex ea commodo consequat.", - ] - ) - input_vectorizer.adapt(text_ds) - return input_vectorizer - - -def bert_module(query, key, value, i): - attention_output = keras.layers.MultiHeadAttention( - num_heads=NUM_HEAD, - key_dim=EMBED_DIM // NUM_HEAD, - )(query, key, value) - attention_output = keras.layers.Dropout(0.1)(attention_output) - attention_output = keras.layers.LayerNormalization(epsilon=1e-6)( - query + attention_output - ) - - ffn = keras.Sequential( - [ - keras.layers.Dense(FF_DIM, activation="relu"), - keras.layers.Dense(EMBED_DIM), - ], - ) - ffn_output = ffn(attention_output) - ffn_output = keras.layers.Dropout(0.1)(ffn_output) - sequence_output = keras.layers.LayerNormalization(epsilon=1e-6)( - attention_output + ffn_output - ) - return sequence_output - - -def get_pos_encoding_matrix(max_len, d_emb): - pos_enc = np.array( - [ - [pos / np.power(10000, 2 * (j // 2) / d_emb) for j in range(d_emb)] - if pos != 0 - else np.zeros(d_emb) - for pos in range(max_len) - ] - ) - pos_enc[1:, 0::2] = np.sin(pos_enc[1:, 0::2]) - pos_enc[1:, 1::2] = np.cos(pos_enc[1:, 1::2]) - return pos_enc - - -loss_fn = keras.losses.CategoricalCrossentropy() -loss_tracker = keras.metrics.Mean(name="loss") - - -class MaskedLanguageModel(keras.Model): - def train_step(self, inputs): - if len(inputs) == 3: - features, labels, sample_weight = inputs - else: - features, labels = inputs - sample_weight = None - - with tf.GradientTape() as tape: - predictions = self(features, training=True) - loss = loss_fn(labels, predictions, sample_weight=sample_weight) - - trainable_vars = self.trainable_variables - gradients = tape.gradient(loss, trainable_vars) - self.optimizer.apply_gradients(zip(gradients, trainable_vars)) - loss_tracker.update_state(loss, sample_weight=sample_weight) - return {"loss": loss_tracker.result()} - - @property - def metrics(self): - return [loss_tracker] - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - if include_preprocessing: - inputs = keras.layers.Input((), dtype="string") - x = get_input_preprocessor()(inputs) - else: - inputs = keras.layers.Input((SEQUENCE_LENGTH,), dtype=tf.int64) - x = inputs - word_embeddings = keras.layers.Embedding(VOCAB_SIZE, EMBED_DIM)(x) - position_embeddings = keras.layers.Embedding( - input_dim=SEQUENCE_LENGTH, - output_dim=EMBED_DIM, - weights=[get_pos_encoding_matrix(SEQUENCE_LENGTH, EMBED_DIM)], - trainable=False, - )(tf.range(start=0, limit=SEQUENCE_LENGTH, delta=1)) - embeddings = word_embeddings + position_embeddings - - encoder_output = embeddings - for i in range(NUM_LAYERS): - encoder_output = bert_module( - encoder_output, encoder_output, encoder_output, i - ) - - mlm_output = keras.layers.Dense( - VOCAB_SIZE, name="mlm_cls", activation="softmax" - )(encoder_output) - model = MaskedLanguageModel(inputs, mlm_output) - - if compile: - optimizer = keras.optimizers.Adam() - model.compile(optimizer=optimizer, jit_compile=jit_compile) - return model - - -def get_custom_objects(): - return { - "MaskedLanguageModel": MaskedLanguageModel, - } diff --git a/keras/integration_test/models/ctc_speech_rnn.py b/keras/integration_test/models/ctc_speech_rnn.py deleted file mode 100644 index 1324581b8ed..00000000000 --- a/keras/integration_test/models/ctc_speech_rnn.py +++ /dev/null @@ -1,100 +0,0 @@ -import tensorflow as tf -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec - -TIMESTEPS = 64 -INPUT_DIM = 50 -OUTPUT_DIM = 40 -NUM_RNN_LAYERS = 2 -RNN_UNITS = 32 - - -def get_input_preprocessor(): - return None - - -def get_data_spec(batch_size): - return ( - InputSpec((batch_size, TIMESTEPS, INPUT_DIM)), - InputSpec((batch_size, 1), dtype="int64", range=[0, OUTPUT_DIM]), - ) - - -def ctc_loss(y_true, y_pred): - batch_length = tf.cast(tf.shape(y_true)[0], dtype="int64") - input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64") - label_length = tf.cast(tf.shape(y_true)[1], dtype="int64") - - input_length = input_length * tf.ones( - shape=(batch_length, 1), dtype="int64" - ) - label_length = label_length * tf.ones( - shape=(batch_length, 1), dtype="int64" - ) - - return keras.backend.ctc_batch_cost( - y_true, y_pred, input_length, label_length - ) - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - input_spectrogram = keras.layers.Input((None, INPUT_DIM), name="input") - x = keras.layers.Reshape((-1, INPUT_DIM, 1), name="expand_dim")( - input_spectrogram - ) - x = keras.layers.Conv2D( - filters=32, - kernel_size=[11, 41], - strides=[2, 2], - padding="same", - use_bias=False, - name="conv_1", - )(x) - x = keras.layers.BatchNormalization(name="conv_1_bn")(x) - x = keras.layers.ReLU(name="conv_1_relu")(x) - x = keras.layers.Conv2D( - filters=32, - kernel_size=[11, 21], - strides=[1, 2], - padding="same", - use_bias=False, - name="conv_2", - )(x) - x = keras.layers.BatchNormalization(name="conv_2_bn")(x) - x = keras.layers.ReLU(name="conv_2_relu")(x) - x = keras.layers.Reshape((-1, x.shape[-2] * x.shape[-1]))(x) - for i in range(1, NUM_RNN_LAYERS + 1): - recurrent = keras.layers.GRU( - units=RNN_UNITS, - activation="tanh", - recurrent_activation="sigmoid", - use_bias=True, - return_sequences=True, - reset_after=True, - name=f"gru_{i}", - ) - x = keras.layers.Bidirectional( - recurrent, name=f"bidirectional_{i}", merge_mode="concat" - )(x) - if i < NUM_RNN_LAYERS: - x = keras.layers.Dropout(rate=0.5)(x) - x = keras.layers.Dense(units=RNN_UNITS * 2, name="dense_1")(x) - x = keras.layers.ReLU(name="dense_1_relu")(x) - x = keras.layers.Dropout(rate=0.5)(x) - output = keras.layers.Dense(units=OUTPUT_DIM + 1, activation="softmax")(x) - model = keras.Model(input_spectrogram, output, name="DeepSpeech_2") - - if compile: - model.compile( - optimizer=keras.optimizers.Adam(learning_rate=1e-4), - loss=ctc_loss, - jit_compile=jit_compile, - ) - return model - - -def get_custom_objects(): - return {"ctc_loss": ctc_loss} diff --git a/keras/integration_test/models/dcgan.py b/keras/integration_test/models/dcgan.py deleted file mode 100644 index ec23da91b33..00000000000 --- a/keras/integration_test/models/dcgan.py +++ /dev/null @@ -1,179 +0,0 @@ -import tensorflow as tf -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec -from keras.saving import serialization_lib - -IMG_SIZE = (64, 64) -LATENT_DIM = 128 - - -def get_data_spec(batch_size): - return InputSpec((batch_size,) + IMG_SIZE + (3,)) - - -def get_input_preprocessor(): - return None - - -class GAN(keras.Model): - def __init__(self, discriminator, generator, latent_dim): - super(GAN, self).__init__() - self.discriminator = discriminator - self.generator = generator - self.latent_dim = latent_dim - - def compile(self, d_optimizer, g_optimizer, loss_fn, jit_compile=False): - super(GAN, self).compile(jit_compile=jit_compile) - self.d_optimizer = d_optimizer - self.g_optimizer = g_optimizer - self.loss_fn = loss_fn - self.d_loss_metric = keras.metrics.Mean(name="d_loss") - self.g_loss_metric = keras.metrics.Mean(name="g_loss") - - @property - def metrics(self): - return [self.d_loss_metric, self.g_loss_metric] - - def train_step(self, real_images): - batch_size = tf.shape(real_images)[0] - random_latent_vectors = tf.random.normal( - shape=(batch_size, self.latent_dim) - ) - generated_images = self.generator(random_latent_vectors) - combined_images = tf.concat([generated_images, real_images], axis=0) - labels = tf.concat( - [tf.ones((batch_size, 1)), tf.zeros((batch_size, 1))], axis=0 - ) - labels += 0.05 * tf.random.uniform(tf.shape(labels)) - - with tf.GradientTape() as tape: - predictions = self.discriminator(combined_images) - d_loss = self.loss_fn(labels, predictions) - grads = tape.gradient(d_loss, self.discriminator.trainable_weights) - self.d_optimizer.apply_gradients( - zip(grads, self.discriminator.trainable_weights) - ) - - random_latent_vectors = tf.random.normal( - shape=(batch_size, self.latent_dim) - ) - misleading_labels = tf.zeros((batch_size, 1)) - - with tf.GradientTape() as tape: - predictions = self.discriminator( - self.generator(random_latent_vectors) - ) - g_loss = self.loss_fn(misleading_labels, predictions) - grads = tape.gradient(g_loss, self.generator.trainable_weights) - self.g_optimizer.apply_gradients( - zip(grads, self.generator.trainable_weights) - ) - self.d_loss_metric.update_state(d_loss) - self.g_loss_metric.update_state(g_loss) - return { - "d_loss": self.d_loss_metric.result(), - "g_loss": self.g_loss_metric.result(), - } - - def get_config(self): - return { - "discriminator": self.discriminator, - "generator": self.generator, - "latent_dim": self.latent_dim, - } - - @classmethod - def from_config(cls, config): - discriminator = serialization_lib.deserialize_keras_object( - config["discriminator"] - ) - generator = serialization_lib.deserialize_keras_object( - config["generator"] - ) - latent_dim = config["latent_dim"] - return cls(discriminator, generator, latent_dim) - - def get_compile_config(self): - return { - "loss_fn": self.loss_fn, - "d_optimizer": self.d_optimizer, - "g_optimizer": self.g_optimizer, - "jit_compile": self.jit_compile, - } - - def compile_from_config(self, config): - loss_fn = serialization_lib.deserialize_keras_object(config["loss_fn"]) - d_optimizer = serialization_lib.deserialize_keras_object( - config["d_optimizer"] - ) - g_optimizer = serialization_lib.deserialize_keras_object( - config["g_optimizer"] - ) - jit_compile = config["jit_compile"] - self.compile( - loss_fn=loss_fn, - d_optimizer=d_optimizer, - g_optimizer=g_optimizer, - jit_compile=jit_compile, - ) - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - discriminator = keras.Sequential( - [ - keras.Input(shape=IMG_SIZE + (3,)), - keras.layers.Conv2D(64, kernel_size=4, strides=2, padding="same"), - keras.layers.LeakyReLU(alpha=0.2), - keras.layers.Conv2D(128, kernel_size=4, strides=2, padding="same"), - keras.layers.LeakyReLU(alpha=0.2), - keras.layers.Conv2D(128, kernel_size=4, strides=2, padding="same"), - keras.layers.LeakyReLU(alpha=0.2), - keras.layers.Flatten(), - keras.layers.Dropout(0.2), - keras.layers.Dense(1, activation="sigmoid"), - ], - name="discriminator", - ) - - generator = keras.Sequential( - [ - keras.Input(shape=(LATENT_DIM,)), - keras.layers.Dense(8 * 8 * 128), - keras.layers.Reshape((8, 8, 128)), - keras.layers.Conv2DTranspose( - 128, kernel_size=4, strides=2, padding="same" - ), - keras.layers.LeakyReLU(alpha=0.2), - keras.layers.Conv2DTranspose( - 256, kernel_size=4, strides=2, padding="same" - ), - keras.layers.LeakyReLU(alpha=0.2), - keras.layers.Conv2DTranspose( - 512, kernel_size=4, strides=2, padding="same" - ), - keras.layers.LeakyReLU(alpha=0.2), - keras.layers.Conv2D( - 3, kernel_size=5, padding="same", activation="sigmoid" - ), - ], - name="generator", - ) - - gan = GAN( - discriminator=discriminator, generator=generator, latent_dim=LATENT_DIM - ) - if compile: - gan.compile( - d_optimizer=keras.optimizers.Adam(learning_rate=0.0001), - g_optimizer=keras.optimizers.Adam(learning_rate=0.0001), - loss_fn=keras.losses.BinaryCrossentropy(), - jit_compile=jit_compile, - ) - return gan - - -def get_custom_objects(): - return {"GAN": GAN} diff --git a/keras/integration_test/models/edge_case_model.py b/keras/integration_test/models/edge_case_model.py deleted file mode 100644 index 0fd8d167042..00000000000 --- a/keras/integration_test/models/edge_case_model.py +++ /dev/null @@ -1,155 +0,0 @@ -"""Model that incorporates a set of edge case development patterns. -""" - -import tensorflow as tf -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec - -INPUT_DIM = 32 -NUM_CLASSES = 5 - - -def get_data_spec(batch_size): - return ( - InputSpec((batch_size, INPUT_DIM)), - InputSpec((batch_size, NUM_CLASSES)), - ) - - -def get_input_preprocessor(): - return None - - -class LinearA(keras.layers.Layer): - """Standard custom layer with 2 call() inputs.""" - - def __init__(self, units=32, input_dim=32): - super().__init__() - self.w = self.add_weight( - shape=(input_dim, units), - initializer="random_normal", - trainable=True, - ) - self.b = self.add_weight( - shape=(units,), initializer="zeros", trainable=True - ) - - def call(self, inputs_1, inputs_2): - return ( - tf.matmul(inputs_1, self.w) + tf.matmul(inputs_2, self.w) + self.b - ) - - -class LinearB(keras.layers.Layer): - """Layer that tracks weights in a dict attribute that gets updated later.""" - - def __init__(self, units=32, input_dim=32, **kwargs): - super().__init__(**kwargs) - w_init = tf.random_normal_initializer() - b_init = tf.zeros_initializer() - self.state = { - "kernel": tf.Variable( - initial_value=w_init(shape=(input_dim, units), dtype="float32"), - trainable=True, - name="kernel", - ) - } - self.state["bias"] = tf.Variable( - initial_value=b_init(shape=(units,), dtype="float32"), - trainable=True, - name="bias", - ) - - def call(self, inputs): - return tf.matmul(inputs, self.state["kernel"]) + self.state["bias"] - - -class LinearC(keras.layers.Layer): - """Layer that creates weights in call().""" - - def __init__(self, units=32, input_dim=32, **kwargs): - super().__init__(**kwargs) - self._custom_built = False - self.units = units - self.input_dim = input_dim - - def call(self, inputs): - if not self._custom_built: - self.w = self.add_weight( - shape=(self.input_dim, self.units), - initializer="random_normal", - trainable=True, - ) - self.b = self.add_weight( - shape=(self.units,), initializer="zeros", trainable=True - ) - self._custom_built = True - return tf.matmul(inputs, self.w) + self.b - - -class BatchNorm(keras.layers.Layer): - """Layer with different training/test behavior and non-trainable updates.""" - - def __init__( - self, scale=True, center=True, epsilon=1e-6, momentum=0.9, **kwargs - ): - super().__init__(**kwargs) - self.scale = scale - self.center = center - self.epsilon = epsilon - self.momentum = momentum - - def build(self, input_shape): - self.var = self.add_weight( - shape=[input_shape[1]], initializer="ones", trainable=False - ) - self.mean = self.add_weight( - shape=[input_shape[1]], initializer="zeros", trainable=False - ) - self.gamma = self.add_weight(shape=[input_shape[1]], initializer="ones") - self.beta = self.add_weight(shape=[input_shape[1]], initializer="zeros") - - def call(self, inputs, training=False): - if training: - mean, var = tf.nn.moments(inputs, axes=[0]) - outputs = (inputs - mean) / (var + self.epsilon) - self.var.assign(self.var * self.momentum + var * 0.1) - self.mean.assign(self.mean * self.momentum + mean * 0.1) - else: - outputs = (inputs - self.mean) / (self.var + self.epsilon) - if self.scale: - outputs *= self.gamma - if self.center: - outputs += self.beta - return outputs - - -class FunctionalSubclassModel(keras.Model): - def __init__(self, **kwargs): - inputs = keras.Input((INPUT_DIM,)) - x = inputs - x = LinearA(32, INPUT_DIM)(x, x) - x = LinearB(32, 32)(x) - x = LinearC(32, 32)(x) - x = BatchNorm()(x) - outputs = keras.layers.Dense(NUM_CLASSES, activation="softmax")(x) - super().__init__(inputs, outputs, **kwargs) - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - model = FunctionalSubclassModel() - if compile: - model.compile("rmsprop", "mse", jit_compile=jit_compile) - return model - - -def get_custom_objects(): - return { - "LinearA": LinearA, - "LinearB": LinearB, - "LinearC": LinearC, - "BatchNorm": BatchNorm, - } diff --git a/keras/integration_test/models/efficientnet_v2.py b/keras/integration_test/models/efficientnet_v2.py deleted file mode 100644 index 68e39267190..00000000000 --- a/keras/integration_test/models/efficientnet_v2.py +++ /dev/null @@ -1,315 +0,0 @@ -"""Image classification with EfficientNetV2 architecture. - -Adapted from the EfficientNetV2 Keras Application. -""" -import math - -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec - -IMG_SIZE = (96, 96) -NUM_CLASSES = 5 - - -def get_data_spec(batch_size): - return ( - InputSpec((batch_size,) + IMG_SIZE + (3,)), - InputSpec((batch_size, NUM_CLASSES)), - ) - - -def get_input_preprocessor(): - return keras.layers.Rescaling(scale=1.0 / 128.0, offset=-1) - - -def round_filters(filters, width_coefficient, min_depth, depth_divisor): - filters *= width_coefficient - minimum_depth = min_depth or depth_divisor - new_filters = max( - minimum_depth, - int(filters + depth_divisor / 2) // depth_divisor * depth_divisor, - ) - return int(new_filters) - - -def MBConvBlock( - input_filters: int, - output_filters: int, - expand_ratio=1, - kernel_size=3, - strides=1, - se_ratio=0.0, - activation="swish", - survival_probability: float = 0.8, -): - def apply(inputs): - filters = input_filters * expand_ratio - if expand_ratio != 1: - x = keras.layers.Conv2D( - filters=filters, - kernel_size=1, - strides=1, - padding="same", - data_format="channels_last", - use_bias=False, - )(inputs) - x = keras.layers.BatchNormalization()(x) - x = keras.layers.Activation(activation)(x) - else: - x = inputs - - x = keras.layers.DepthwiseConv2D( - kernel_size=kernel_size, - strides=strides, - padding="same", - data_format="channels_last", - use_bias=False, - )(x) - x = keras.layers.BatchNormalization()(x) - x = keras.layers.Activation(activation)(x) - - if 0 < se_ratio <= 1: - filters_se = max(1, int(input_filters * se_ratio)) - se = keras.layers.GlobalAveragePooling2D()(x) - se = keras.layers.Reshape((1, 1, filters))(se) - se = keras.layers.Conv2D( - filters_se, - 1, - padding="same", - activation=activation, - )(se) - se = keras.layers.Conv2D( - filters, - 1, - padding="same", - activation="sigmoid", - )(se) - x = keras.layers.multiply([x, se]) - x = keras.layers.Conv2D( - filters=output_filters, - kernel_size=1, - strides=1, - padding="same", - data_format="channels_last", - use_bias=False, - )(x) - x = keras.layers.BatchNormalization()(x) - - if strides == 1 and input_filters == output_filters: - if survival_probability: - x = keras.layers.Dropout( - survival_probability, - noise_shape=(None, 1, 1, 1), - )(x) - x = keras.layers.add([x, inputs]) - return x - - return apply - - -def FusedMBConvBlock( - input_filters: int, - output_filters: int, - expand_ratio=1, - kernel_size=3, - strides=1, - se_ratio=0.0, - activation="swish", - survival_probability: float = 0.8, -): - def apply(inputs): - filters = input_filters * expand_ratio - if expand_ratio != 1: - x = keras.layers.Conv2D( - filters, - kernel_size=kernel_size, - strides=strides, - data_format="channels_last", - padding="same", - use_bias=False, - )(inputs) - x = keras.layers.BatchNormalization()(x) - x = keras.layers.Activation(activation)(x) - else: - x = inputs - - if 0 < se_ratio <= 1: - filters_se = max(1, int(input_filters * se_ratio)) - se = keras.layers.GlobalAveragePooling2D()(x) - se = keras.layers.Reshape((1, 1, filters))(se) - se = keras.layers.Conv2D( - filters_se, - 1, - padding="same", - activation=activation, - )(se) - se = keras.layers.Conv2D( - filters, - 1, - padding="same", - activation="sigmoid", - )(se) - x = keras.layers.multiply([x, se]) - - x = keras.layers.Conv2D( - output_filters, - kernel_size=1 if expand_ratio != 1 else kernel_size, - strides=1 if expand_ratio != 1 else strides, - padding="same", - use_bias=False, - )(x) - x = keras.layers.BatchNormalization()(x) - - if expand_ratio == 1: - x = keras.layers.Activation(activation)(x) - - if strides == 1 and input_filters == output_filters: - if survival_probability: - x = keras.layers.Dropout( - survival_probability, - noise_shape=(None, 1, 1, 1), - )(x) - x = keras.layers.add([x, inputs]) - - return x - - return apply - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - width_coefficient = 1.0 - depth_coefficient = 1.0 - dropout_rate = 0.2 - drop_connect_rate = 0.2 - depth_divisor = 8 - min_depth = 8 - activation = "swish" - blocks_args = [ - { - "kernel_size": 3, - "num_repeat": 2, - "input_filters": 24, - "output_filters": 24, - "expand_ratio": 1, - "se_ratio": 0.0, - "strides": 1, - "conv_type": 1, - }, - { - "kernel_size": 3, - "num_repeat": 4, - "input_filters": 24, - "output_filters": 48, - "expand_ratio": 4, - "se_ratio": 0.0, - "strides": 2, - "conv_type": 1, - }, - { - "conv_type": 1, - "expand_ratio": 4, - "input_filters": 48, - "kernel_size": 3, - "num_repeat": 4, - "output_filters": 64, - "se_ratio": 0, - "strides": 2, - }, - { - "conv_type": 0, - "expand_ratio": 4, - "input_filters": 64, - "kernel_size": 3, - "num_repeat": 6, - "output_filters": 128, - "se_ratio": 0.25, - "strides": 2, - }, - ] - - inputs = keras.layers.Input(shape=IMG_SIZE + (3,)) - if include_preprocessing: - x = get_input_preprocessor()(inputs) - else: - x = inputs - - stem_filters = round_filters( - filters=blocks_args[0]["input_filters"], - width_coefficient=width_coefficient, - min_depth=min_depth, - depth_divisor=depth_divisor, - ) - x = keras.layers.Conv2D( - filters=stem_filters, - kernel_size=3, - strides=2, - padding="same", - use_bias=False, - )(x) - x = keras.layers.BatchNormalization()(x) - x = keras.layers.Activation(activation, name="stem_activation")(x) - - b = 0 - blocks = float(sum(args["num_repeat"] for args in blocks_args)) - for _, args in enumerate(blocks_args): - args["input_filters"] = round_filters( - filters=args["input_filters"], - width_coefficient=width_coefficient, - min_depth=min_depth, - depth_divisor=depth_divisor, - ) - args["output_filters"] = round_filters( - filters=args["output_filters"], - width_coefficient=width_coefficient, - min_depth=min_depth, - depth_divisor=depth_divisor, - ) - block = {0: MBConvBlock, 1: FusedMBConvBlock}[args.pop("conv_type")] - repeats = int(math.ceil(depth_coefficient * args.pop("num_repeat"))) - for j in range(repeats): - if j > 0: - args["strides"] = 1 - args["input_filters"] = args["output_filters"] - - x = block( - activation=activation, - survival_probability=drop_connect_rate * b / blocks, - **args, - )(x) - b += 1 - - top_filters = round_filters( - filters=1280, - width_coefficient=width_coefficient, - min_depth=min_depth, - depth_divisor=depth_divisor, - ) - x = keras.layers.Conv2D( - filters=top_filters, - kernel_size=1, - strides=1, - padding="same", - data_format="channels_last", - use_bias=False, - )(x) - x = keras.layers.BatchNormalization()(x) - x = keras.layers.Activation(activation=activation, name="top_activation")(x) - x = keras.layers.GlobalAveragePooling2D(name="avg_pool")(x) - x = keras.layers.Dropout(dropout_rate, name="top_dropout")(x) - x = keras.layers.Dense( - NUM_CLASSES, - activation="softmax", - )(x) - model = keras.Model(inputs, x) - if compile: - model.compile( - "adam", loss="categorical_crossentropy", jit_compile=jit_compile - ) - return model - - -def get_custom_objects(): - return {} diff --git a/keras/integration_test/models/input_spec.py b/keras/integration_test/models/input_spec.py deleted file mode 100644 index 5805fcbbc10..00000000000 --- a/keras/integration_test/models/input_spec.py +++ /dev/null @@ -1,24 +0,0 @@ -"""Class to specify an input's shape/dtype/value range. -""" - -import tensorflow as tf - - -class InputSpec: - def __init__(self, shape, dtype="float32", range=None): - self.shape = shape - self.dtype = dtype - self.range = range - - -def spec_to_value(spec): - shape = spec.shape - dtype = spec.dtype - rg = spec.range or [0, 1] - if dtype == "string": - return tf.constant( - ["some string" for _ in range(shape[0])], dtype="string" - ) - return tf.random.stateless_uniform( - shape, seed=[123, 1], minval=rg[0], maxval=rg[1], dtype=dtype - ) diff --git a/keras/integration_test/models/low_level_model.py b/keras/integration_test/models/low_level_model.py deleted file mode 100644 index 1bf03bbab4e..00000000000 --- a/keras/integration_test/models/low_level_model.py +++ /dev/null @@ -1,162 +0,0 @@ -"""Model where almost everything is implemented from scratch. - -- Custom layers -- Custom model subclass -- Custom train_step and test_step -- Custom compile() -- Custom learning rate schedule -- Custom metrics -""" - -import tensorflow as tf -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec - -INPUT_DIM = 32 -NUM_CLASSES = 5 - - -def get_data_spec(batch_size): - return ( - InputSpec((batch_size, INPUT_DIM)), - InputSpec((batch_size, NUM_CLASSES)), - ) - - -def get_input_preprocessor(): - return None - - -class Linear(keras.layers.Layer): - def __init__(self, units=32, name=None): - super().__init__(name=name) - self.units = units - - def build(self, input_shape): - self.w = self.add_weight( - shape=(input_shape[-1], self.units), - initializer="random_normal", - trainable=True, - name="w", - ) - self.b = self.add_weight( - shape=(self.units,), - initializer="random_normal", - trainable=True, - name="b", - ) - - def call(self, inputs): - return tf.matmul(inputs, self.w) + self.b - - -class BinaryTruePositives(tf.keras.metrics.Metric): - def __init__(self, name="binary_true_positives", **kwargs): - super().__init__(name=name, **kwargs) - self.true_positives = self.add_weight(name="tp", initializer="zeros") - - def update_state(self, y_true, y_pred, sample_weight=None): - y_true = tf.cast(y_true, tf.bool) - y_pred = tf.cast(y_pred, tf.bool) - - values = tf.logical_and(tf.equal(y_true, True), tf.equal(y_pred, True)) - values = tf.cast(values, self.dtype) - if sample_weight is not None: - sample_weight = tf.cast(sample_weight, self.dtype) - values = tf.multiply(values, sample_weight) - self.true_positives.assign_add(tf.reduce_sum(values)) - - def result(self): - return self.true_positives - - def reset_state(self): - self.true_positives.assign(0) - - -class CustomModel(keras.Model): - def __init__(self): - super().__init__() - self.loss_tracker = keras.metrics.Mean(name="loss") - self.btp_metric = BinaryTruePositives(name="mae") - - self.linear_1 = Linear(32, name="linear_1") - self.linear_2 = Linear(NUM_CLASSES, name="linear_2") - - def call(self, inputs, training=False): - x = self.linear_1(inputs) - x = self.linear_2(x) - return x - - def train_step(self, data): - x, y = data - with tf.GradientTape() as tape: - y_pred = self(x, training=True) - loss = keras.losses.mean_squared_error(y, y_pred) - - trainable_vars = self.trainable_variables - gradients = tape.gradient(loss, trainable_vars) - self.optimizer.apply_gradients(zip(gradients, trainable_vars)) - self.loss_tracker.update_state(loss) - self.btp_metric.update_state(y, y_pred) - return { - "loss": self.loss_tracker.result(), - "btp": self.btp_metric.result(), - } - - def test_step(self, data): - x, y = data - y_pred = self(x, training=True) - loss = keras.losses.mean_squared_error(y, y_pred) - self.loss_tracker.update_state(loss) - self.btp_metric.update_state(y, y_pred) - return { - "loss": self.loss_tracker.result(), - "btp": self.btp_metric.result(), - } - - @property - def metrics(self): - return [self.loss_tracker, self.btp_metric] - - -class CustomLRSchedule(keras.optimizers.schedules.LearningRateSchedule): - def __init__(self, initial_learning_rate): - self.initial_learning_rate = initial_learning_rate - - def __call__(self, step): - return self.initial_learning_rate / tf.cast(step + 1, "float32") - - def get_config(self): - return { - "initial_learning_rate": self.initial_learning_rate, - } - - -def custom_loss(y_true, y_pred): - return keras.losses.mse(y_true, y_pred) - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - model = CustomModel() - if build: - model(tf.zeros((1, INPUT_DIM))) - if compile: - model.compile( - optimizer=keras.optimizers.Adam(CustomLRSchedule(0.1)), - loss=custom_loss, - jit_compile=jit_compile, - ) - return model - - -def get_custom_objects(): - return { - "Linear": Linear, - "CustomLRSchedule": CustomLRSchedule, - "CustomModel": CustomModel, - "BinaryTruePositives": BinaryTruePositives, - "custom_loss": custom_loss, - } diff --git a/keras/integration_test/models/mini_unet.py b/keras/integration_test/models/mini_unet.py deleted file mode 100644 index c44662b3f1a..00000000000 --- a/keras/integration_test/models/mini_unet.py +++ /dev/null @@ -1,80 +0,0 @@ -"""Segmentation model. - -Adapted from https://keras.io/examples/vision/oxford_pets_image_segmentation/ -""" -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec - -IMG_SIZE = (224, 224) -NUM_CLASSES = 5 - - -def get_data_spec(batch_size): - return ( - InputSpec((batch_size,) + IMG_SIZE + (3,)), - InputSpec((batch_size,) + IMG_SIZE + (NUM_CLASSES,)), - ) - - -def get_input_preprocessor(): - return None - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - inputs = keras.Input(shape=IMG_SIZE + (3,)) - x = keras.layers.Conv2D(32, 3, strides=2, padding="same")(inputs) - x = keras.layers.BatchNormalization()(x) - x = keras.layers.Activation("relu")(x) - - previous_block_activation = x - for filters in [64, 128, 256]: - x = keras.layers.Activation("relu")(x) - x = keras.layers.SeparableConv2D(filters, 3, padding="same")(x) - x = keras.layers.BatchNormalization()(x) - - x = keras.layers.Activation("relu")(x) - x = keras.layers.SeparableConv2D(filters, 3, padding="same")(x) - x = keras.layers.BatchNormalization()(x) - - x = keras.layers.MaxPooling2D(3, strides=2, padding="same")(x) - - residual = keras.layers.Conv2D(filters, 1, strides=2, padding="same")( - previous_block_activation - ) - x = keras.layers.add([x, residual]) - previous_block_activation = x - - for filters in [256, 128, 64, 32]: - x = keras.layers.Activation("relu")(x) - x = keras.layers.Conv2DTranspose(filters, 3, padding="same")(x) - x = keras.layers.BatchNormalization()(x) - - x = keras.layers.Activation("relu")(x) - x = keras.layers.Conv2DTranspose(filters, 3, padding="same")(x) - x = keras.layers.BatchNormalization()(x) - - x = keras.layers.UpSampling2D(2)(x) - - residual = keras.layers.UpSampling2D(2)(previous_block_activation) - residual = keras.layers.Conv2D(filters, 1, padding="same")(residual) - x = keras.layers.add([x, residual]) - previous_block_activation = x - - outputs = keras.layers.Conv2D( - NUM_CLASSES, 3, activation="softmax", padding="same" - )(x) - model = keras.Model(inputs, outputs) - if compile: - model.compile( - optimizer="rmsprop", - loss="categorical_crossentropy", - jit_compile=jit_compile, - ) - return model - - -def get_custom_objects(): - return {} diff --git a/keras/integration_test/models/mini_xception.py b/keras/integration_test/models/mini_xception.py deleted file mode 100644 index 456e53390c5..00000000000 --- a/keras/integration_test/models/mini_xception.py +++ /dev/null @@ -1,84 +0,0 @@ -"""Mini-Xception classification model. - -Adapted from https://keras.io/examples/vision/image_classification_from_scratch/ -""" -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec - -IMG_SIZE = (120, 120) - - -def get_data_spec(batch_size): - return ( - InputSpec((batch_size,) + IMG_SIZE + (3,)), - InputSpec((batch_size, 1), dtype="int32", range=[0, 2]), - ) - - -def get_input_preprocessor(): - return keras.Sequential( - [ - keras.layers.RandomFlip(), - keras.layers.RandomRotation(0.2), - keras.layers.RandomZoom(0.2), - keras.layers.Rescaling(1.0 / 255), - ] - ) - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - inputs = keras.Input(shape=IMG_SIZE + (3,)) - - if include_preprocessing: - x = get_input_preprocessor()(inputs) - else: - x = inputs - - x = keras.layers.Conv2D(32, 3, strides=2, padding="same")(x) - x = keras.layers.BatchNormalization()(x) - x = keras.layers.Activation("relu")(x) - - x = keras.layers.Conv2D(64, 3, padding="same")(x) - x = keras.layers.BatchNormalization()(x) - x = keras.layers.Activation("relu")(x) - - previous_block_activation = x - - for size in [128, 256, 512, 728]: - x = keras.layers.Activation("relu")(x) - x = keras.layers.SeparableConv2D(size, 3, padding="same")(x) - x = keras.layers.BatchNormalization()(x) - x = keras.layers.Activation("relu")(x) - x = keras.layers.SeparableConv2D(size, 3, padding="same")(x) - x = keras.layers.BatchNormalization()(x) - x = keras.layers.MaxPooling2D(3, strides=2, padding="same")(x) - - residual = keras.layers.Conv2D(size, 1, strides=2, padding="same")( - previous_block_activation - ) - x = keras.layers.add([x, residual]) - previous_block_activation = x - - x = keras.layers.SeparableConv2D(1024, 3, padding="same")(x) - x = keras.layers.BatchNormalization()(x) - x = keras.layers.Activation("relu")(x) - - x = keras.layers.GlobalAveragePooling2D()(x) - x = keras.layers.Dropout(0.5)(x) - outputs = keras.layers.Dense(1, activation="sigmoid")(x) - model = keras.Model(inputs, outputs) - if compile: - model.compile( - optimizer="adam", - loss="binary_crossentropy", - metrics=["accuracy"], - jit_compile=jit_compile, - ) - return model - - -def get_custom_objects(): - return {} diff --git a/keras/integration_test/models/retinanet.py b/keras/integration_test/models/retinanet.py deleted file mode 100644 index 188fc3e9947..00000000000 --- a/keras/integration_test/models/retinanet.py +++ /dev/null @@ -1,260 +0,0 @@ -"""RetinaNet object detection model. - -Adapted from https://keras.io/examples/vision/retinanet/ -""" -import tensorflow as tf -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec -from keras.saving import serialization_lib - -NUM_CLASSES = 10 -IMG_SIZE = (224, 224) - - -def get_data_spec(batch_size): - return ( - InputSpec((batch_size,) + IMG_SIZE + (3,)), - InputSpec((batch_size, 9441, 5)), - ) - - -def get_input_preprocessor(): - return None - - -def get_backbone(): - backbone = keras.applications.ResNet50( - include_top=False, - input_shape=[None, None, 3], - weights=None, - ) - c3_output, c4_output, c5_output = [ - backbone.get_layer(layer_name).output - for layer_name in [ - "conv3_block4_out", - "conv4_block6_out", - "conv5_block3_out", - ] - ] - return keras.Model( - inputs=[backbone.inputs], outputs=[c3_output, c4_output, c5_output] - ) - - -class FeaturePyramid(keras.layers.Layer): - def __init__(self, backbone=None, **kwargs): - super().__init__(name="FeaturePyramid", **kwargs) - self.backbone = backbone if backbone else get_backbone() - self.conv_c3_1x1 = keras.layers.Conv2D(256, 1, 1, "same") - self.conv_c4_1x1 = keras.layers.Conv2D(256, 1, 1, "same") - self.conv_c5_1x1 = keras.layers.Conv2D(256, 1, 1, "same") - self.conv_c3_3x3 = keras.layers.Conv2D(256, 3, 1, "same") - self.conv_c4_3x3 = keras.layers.Conv2D(256, 3, 1, "same") - self.conv_c5_3x3 = keras.layers.Conv2D(256, 3, 1, "same") - self.conv_c6_3x3 = keras.layers.Conv2D(256, 3, 2, "same") - self.conv_c7_3x3 = keras.layers.Conv2D(256, 3, 2, "same") - self.upsample_2x = keras.layers.UpSampling2D(2) - - def call(self, images, training=False): - c3_output, c4_output, c5_output = self.backbone( - images, training=training - ) - p3_output = self.conv_c3_1x1(c3_output) - p4_output = self.conv_c4_1x1(c4_output) - p5_output = self.conv_c5_1x1(c5_output) - p4_output = p4_output + self.upsample_2x(p5_output) - p3_output = p3_output + self.upsample_2x(p4_output) - p3_output = self.conv_c3_3x3(p3_output) - p4_output = self.conv_c4_3x3(p4_output) - p5_output = self.conv_c5_3x3(p5_output) - p6_output = self.conv_c6_3x3(c5_output) - p7_output = self.conv_c7_3x3(tf.nn.relu(p6_output)) - return p3_output, p4_output, p5_output, p6_output, p7_output - - -def build_head(output_filters, bias_init): - head = keras.Sequential([keras.Input(shape=[None, None, 256])]) - kernel_init = tf.initializers.RandomNormal(0.0, 0.01) - for _ in range(4): - head.add( - keras.layers.Conv2D( - 256, 3, padding="same", kernel_initializer=kernel_init - ) - ) - head.add(keras.layers.ReLU()) - head.add( - keras.layers.Conv2D( - output_filters, - 3, - 1, - padding="same", - kernel_initializer=kernel_init, - bias_initializer=bias_init, - ) - ) - return head - - -class RetinaNet(keras.Model): - def __init__(self, num_classes, backbone=None, **kwargs): - super().__init__(name="RetinaNet", **kwargs) - self.fpn = FeaturePyramid(backbone) - self.num_classes = num_classes - - prior_probability = keras.initializers.Constant( - -tf.math.log((1 - 0.01) / 0.01) - ) - self.cls_head = build_head(9 * num_classes, prior_probability) - self.box_head = build_head(9 * 4, "zeros") - - def call(self, image, training=False): - features = self.fpn(image, training=training) - N = tf.shape(image)[0] - cls_outputs = [] - box_outputs = [] - for feature in features: - box_outputs.append(tf.reshape(self.box_head(feature), [N, -1, 4])) - cls_outputs.append( - tf.reshape(self.cls_head(feature), [N, -1, self.num_classes]) - ) - cls_outputs = tf.concat(cls_outputs, axis=1) - box_outputs = tf.concat(box_outputs, axis=1) - return tf.concat([box_outputs, cls_outputs], axis=-1) - - def get_config(self): - return { - "num_classes": self.num_classes, - "backbone": self.fpn.backbone, - } - - @classmethod - def from_config(cls, config): - backbone = serialization_lib.deserialize_keras_object( - config.pop("backbone") - ) - num_classes = config["num_classes"] - retinanet = cls(num_classes=num_classes, backbone=backbone) - retinanet(tf.zeros((1, 32, 32, 3))) # Build model - return retinanet - - -class RetinaNetBoxLoss(keras.losses.Loss): - def __init__(self, delta): - super().__init__(reduction="none", name="RetinaNetBoxLoss") - self._delta = delta - - def call(self, y_true, y_pred): - difference = y_true - y_pred - absolute_difference = tf.abs(difference) - squared_difference = difference**2 - loss = tf.where( - tf.less(absolute_difference, self._delta), - 0.5 * squared_difference, - absolute_difference - 0.5, - ) - return tf.reduce_sum(loss, axis=-1) - - def get_config(self): - return {"delta": self._delta} - - -class RetinaNetClassificationLoss(keras.losses.Loss): - def __init__(self, alpha, gamma): - super().__init__(reduction="none", name="RetinaNetClassificationLoss") - self._alpha = alpha - self._gamma = gamma - - def call(self, y_true, y_pred): - cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits( - labels=y_true, logits=y_pred - ) - probs = tf.nn.sigmoid(y_pred) - alpha = tf.where( - tf.equal(y_true, 1.0), self._alpha, (1.0 - self._alpha) - ) - pt = tf.where(tf.equal(y_true, 1.0), probs, 1 - probs) - loss = alpha * tf.pow(1.0 - pt, self._gamma) * cross_entropy - return tf.reduce_sum(loss, axis=-1) - - def get_config(self): - return {"alpha": self._alpha, "gamma": self._gamma} - - -class RetinaNetLoss(keras.losses.Loss): - def __init__(self, num_classes=80, alpha=0.25, gamma=2.0, delta=1.0): - super().__init__(reduction="auto", name="RetinaNetLoss") - self._clf_loss = RetinaNetClassificationLoss(alpha, gamma) - self._box_loss = RetinaNetBoxLoss(delta) - self._num_classes = num_classes - self._alpha = alpha - self._gamma = gamma - self._delta = delta - - def call(self, y_true, y_pred): - y_pred = tf.cast(y_pred, dtype=tf.float32) - box_labels = y_true[:, :, :4] - box_predictions = y_pred[:, :, :4] - cls_labels = tf.one_hot( - tf.cast(y_true[:, :, 4], dtype=tf.int32), - depth=self._num_classes, - dtype=tf.float32, - ) - cls_predictions = y_pred[:, :, 4:] - positive_mask = tf.cast( - tf.greater(y_true[:, :, 4], -1.0), dtype=tf.float32 - ) - ignore_mask = tf.cast(tf.equal(y_true[:, :, 4], -2.0), dtype=tf.float32) - clf_loss = self._clf_loss(cls_labels, cls_predictions) - box_loss = self._box_loss(box_labels, box_predictions) - clf_loss = tf.where(tf.equal(ignore_mask, 1.0), 0.0, clf_loss) - box_loss = tf.where(tf.equal(positive_mask, 1.0), box_loss, 0.0) - normalizer = tf.reduce_sum(positive_mask, axis=-1) - clf_loss = tf.math.divide_no_nan( - tf.reduce_sum(clf_loss, axis=-1), normalizer - ) - box_loss = tf.math.divide_no_nan( - tf.reduce_sum(box_loss, axis=-1), normalizer - ) - loss = clf_loss + box_loss - return loss - - def get_config(self): - return { - "num_classes": self._num_classes, - "alpha": self._alpha, - "gamma": self._gamma, - "delta": self._delta, - } - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - resnet50_backbone = get_backbone() - loss_fn = RetinaNetLoss(NUM_CLASSES) - model = RetinaNet(NUM_CLASSES, resnet50_backbone) - - if compile: - learning_rates = [2.5e-06, 0.000625, 0.00125, 0.0025, 0.00025, 2.5e-05] - learning_rate_boundaries = [125, 250, 500, 240000, 360000] - learning_rate_fn = keras.optimizers.schedules.PiecewiseConstantDecay( - boundaries=learning_rate_boundaries, values=learning_rates - ) - optimizer = keras.optimizers.SGD( - learning_rate=learning_rate_fn, momentum=0.9 - ) - model.compile( - loss=loss_fn, optimizer=optimizer, jit_compile=jit_compile - ) - return model - - -def get_custom_objects(): - return { - "RetinaNetLoss": RetinaNetLoss, - "RetinaNetClassificationLoss": RetinaNetClassificationLoss, - "RetinaNetBoxLoss": RetinaNetBoxLoss, - "RetinaNet": RetinaNet, - "FeaturePyramid": FeaturePyramid, - } diff --git a/keras/integration_test/models/structured_data_classification.py b/keras/integration_test/models/structured_data_classification.py deleted file mode 100644 index e53bfb06369..00000000000 --- a/keras/integration_test/models/structured_data_classification.py +++ /dev/null @@ -1,100 +0,0 @@ -import tensorflow as tf -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec - - -def get_data_spec(batch_size): - return ( - { - "num_cat_feat": InputSpec( - (batch_size,), dtype="int32", range=[0, 5] - ), - "string_cat_feat": InputSpec((batch_size,), dtype="string"), - "num_feat": InputSpec((batch_size,)), - }, - InputSpec((batch_size, 1), dtype="int32", range=[0, 2]), - ) - - -def get_input_preprocessor(): - dataset = tf.data.Dataset.from_tensor_slices( - { - "num_cat_feat": [0, 1, 2, 3, 4, 5], - "string_cat_feat": ["zero", "one", "two", "three", "four", "five"], - "num_feat": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5], - } - ).batch(3) - - num_cat_feat = keras.Input(shape=(1,), name="num_cat_feat", dtype="int64") - string_cat_feat = keras.Input( - shape=(1,), name="string_cat_feat", dtype="string" - ) - num_feat = keras.Input(shape=(1,), name="num_feat", dtype="float32") - - all_inputs = [ - num_cat_feat, - string_cat_feat, - num_feat, - ] - - all_features = keras.layers.concatenate( - [ - encode_categorical_feature( - num_cat_feat, "num_cat_feat", dataset, False - ), - encode_categorical_feature( - string_cat_feat, "string_cat_feat", dataset, True - ), - encode_numerical_feature(num_feat, "num_feat", dataset), - ] - ) - preprocessor = keras.Model(all_inputs, all_features) - return preprocessor - - -def encode_numerical_feature(feature, name, dataset): - normalizer = keras.layers.Normalization(mean=[1.0], variance=[2.0]) - encoded_feature = normalizer(feature) - return encoded_feature - - -def encode_categorical_feature(feature, name, dataset, is_string): - lookup_class = ( - keras.layers.StringLookup if is_string else keras.layers.IntegerLookup - ) - lookup = lookup_class(output_mode="binary") - feature_ds = dataset.map(lambda x: x[name]) - feature_ds = feature_ds.map(lambda x: tf.expand_dims(x, -1)) - lookup.adapt(feature_ds) - encoded_feature = lookup(feature) - return encoded_feature - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - preprocessor = get_input_preprocessor() - if include_preprocessing: - all_inputs = preprocessor.inputs - all_features = preprocessor.outputs[0] - else: - all_inputs = keras.Input(shape=preprocessor.outputs[0].shape) - all_features = all_inputs - x = keras.layers.Dense(32, activation="relu")(all_features) - x = keras.layers.Dropout(0.5)(x) - output = keras.layers.Dense(1, activation="sigmoid")(x) - model = keras.Model(all_inputs, output) - - if compile: - model.compile( - "adam", - "binary_crossentropy", - metrics=["accuracy"], - jit_compile=jit_compile, - ) - return model - - -def get_custom_objects(): - return {} diff --git a/keras/integration_test/models/text_classification.py b/keras/integration_test/models/text_classification.py deleted file mode 100644 index 6da5a2a741d..00000000000 --- a/keras/integration_test/models/text_classification.py +++ /dev/null @@ -1,91 +0,0 @@ -"""Text classification model. - -Adapted from https://keras.io/examples/nlp/text_classification_from_scratch/ -""" -import re -import string - -import tensorflow as tf -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec - -MAX_FEATURES = 1000 -EMBEDDING_DIM = 64 -SEQUENCE_LENGTH = 32 - - -def get_data_spec(batch_size): - return ( - InputSpec((batch_size,), dtype="string"), - InputSpec((batch_size, 1), dtype="int32", range=[0, 2]), - ) - - -def custom_standardization(input_data): - lowercase = tf.strings.lower(input_data) - stripped_html = tf.strings.regex_replace(lowercase, "
", " ") - return tf.strings.regex_replace( - stripped_html, f"[{re.escape(string.punctuation)}]", "" - ) - - -def get_input_preprocessor(): - input_vectorizer = keras.layers.TextVectorization( - standardize=custom_standardization, - max_tokens=MAX_FEATURES, - output_mode="int", - output_sequence_length=SEQUENCE_LENGTH, - ) - text_ds = tf.data.Dataset.from_tensor_slices( - [ - "Lorem ipsum dolor sit amet", - "consectetur adipiscing elit", - "sed do eiusmod tempor incididunt ut", - "labore et dolore magna aliqua.", - "Ut enim ad minim veniam", - "quis nostrud exercitation ullamco", - "laboris nisi ut aliquip ex ea commodo consequat.", - ] - ) - input_vectorizer.adapt(text_ds) - return input_vectorizer - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - if include_preprocessing: - inputs = keras.Input(shape=(), dtype="string") - x = get_input_preprocessor()(inputs) - else: - inputs = keras.Input(shape=(None,), dtype="int64") - x = inputs - x = keras.layers.Embedding(MAX_FEATURES, EMBEDDING_DIM)(x) - x = keras.layers.Dropout(0.5)(x) - x = keras.layers.Conv1D( - 128, 7, padding="valid", activation="relu", strides=3 - )(x) - x = keras.layers.Conv1D( - 128, 7, padding="valid", activation="relu", strides=3 - )(x) - x = keras.layers.GlobalMaxPooling1D()(x) - x = keras.layers.Dense(128, activation="relu")(x) - x = keras.layers.Dropout(0.5)(x) - predictions = keras.layers.Dense( - 1, activation="sigmoid", name="predictions" - )(x) - model = keras.Model(inputs, predictions) - - if compile: - model.compile( - loss="binary_crossentropy", - optimizer="adam", - metrics=["accuracy"], - jit_compile=jit_compile, - ) - return model - - -def get_custom_objects(): - return {"custom_standardization": custom_standardization} diff --git a/keras/integration_test/models/timeseries_forecasting.py b/keras/integration_test/models/timeseries_forecasting.py deleted file mode 100644 index 7f38f082137..00000000000 --- a/keras/integration_test/models/timeseries_forecasting.py +++ /dev/null @@ -1,41 +0,0 @@ -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec - -TIMESTEPS = 32 - - -def get_data_spec(batch_size): - return ( - InputSpec((batch_size, TIMESTEPS, 1)), - InputSpec((batch_size, 1)), - ) - - -def get_input_preprocessor(): - return None - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - model = keras.Sequential( - [ - keras.layers.LSTM(32, return_sequences=True), - keras.layers.LSTM(32), - keras.layers.Dense(1), - ] - ) - if build: - model.build((None, TIMESTEPS, 1)) - if compile: - model.compile( - optimizer=keras.optimizers.Adam(), - loss="mse", - jit_compile=jit_compile, - ) - return model - - -def get_custom_objects(): - return {} diff --git a/keras/integration_test/models/translation.py b/keras/integration_test/models/translation.py deleted file mode 100644 index b8488600ba7..00000000000 --- a/keras/integration_test/models/translation.py +++ /dev/null @@ -1,225 +0,0 @@ -"""Machine translation model. - -Adapted from -https://keras.io/examples/nlp/neural_machine_translation_with_transformer/ -""" -import tensorflow as tf -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec - -VOCAB_SIZE = 1500 -SEQUENCE_LENGTH = 20 - - -def get_data_spec(batch_size): - return ( - ( - InputSpec((batch_size,), dtype="string"), - InputSpec((batch_size,), dtype="string"), - ), - InputSpec( - (batch_size, SEQUENCE_LENGTH), dtype="int64", range=[0, VOCAB_SIZE] - ), - ) - - -def get_input_preprocessor(): - encoder_input_vectorizer = keras.layers.TextVectorization( - max_tokens=VOCAB_SIZE, - output_mode="int", - output_sequence_length=SEQUENCE_LENGTH, - ) - decoder_input_vectorizer = keras.layers.TextVectorization( - max_tokens=VOCAB_SIZE, - output_mode="int", - output_sequence_length=SEQUENCE_LENGTH, - ) - text_ds = tf.data.Dataset.from_tensor_slices( - [ - "Lorem ipsum dolor sit amet", - "consectetur adipiscing elit", - "sed do eiusmod tempor incididunt ut", - "labore et dolore magna aliqua.", - "Ut enim ad minim veniam", - "quis nostrud exercitation ullamco", - "laboris nisi ut aliquip ex ea commodo consequat.", - ] - ) - encoder_input_vectorizer.adapt(text_ds) - decoder_input_vectorizer.adapt(text_ds) - return lambda x: ( - encoder_input_vectorizer(x[0]), - decoder_input_vectorizer(x[1]), - ) - - -class TransformerEncoder(keras.layers.Layer): - def __init__(self, embed_dim, dense_dim, num_heads, **kwargs): - super().__init__(**kwargs) - self.embed_dim = embed_dim - self.dense_dim = dense_dim - self.num_heads = num_heads - self.attention = keras.layers.MultiHeadAttention( - num_heads=num_heads, key_dim=embed_dim - ) - self.dense_proj = keras.Sequential( - [ - keras.layers.Dense(dense_dim, activation="relu"), - keras.layers.Dense(embed_dim), - ] - ) - self.layernorm_1 = keras.layers.LayerNormalization() - self.layernorm_2 = keras.layers.LayerNormalization() - self.supports_masking = True - - def call(self, inputs, mask=None): - if mask is not None: - padding_mask = tf.cast( - mask[:, tf.newaxis, tf.newaxis, :], dtype="int32" - ) - attention_output = self.attention( - query=inputs, value=inputs, key=inputs, attention_mask=padding_mask - ) - proj_input = self.layernorm_1(inputs + attention_output) - proj_output = self.dense_proj(proj_input) - return self.layernorm_2(proj_input + proj_output) - - -class PositionalEmbedding(keras.layers.Layer): - def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs): - super().__init__(**kwargs) - self.token_embeddings = keras.layers.Embedding( - input_dim=vocab_size, output_dim=embed_dim - ) - self.position_embeddings = keras.layers.Embedding( - input_dim=sequence_length, output_dim=embed_dim - ) - self.sequence_length = sequence_length - self.vocab_size = vocab_size - self.embed_dim = embed_dim - - def call(self, inputs): - length = tf.shape(inputs)[-1] - positions = tf.range(start=0, limit=length, delta=1) - embedded_tokens = self.token_embeddings(inputs) - embedded_positions = self.position_embeddings(positions) - return embedded_tokens + embedded_positions - - def compute_mask(self, inputs, mask=None): - return tf.math.not_equal(inputs, 0) - - -class TransformerDecoder(keras.layers.Layer): - def __init__(self, embed_dim, latent_dim, num_heads, **kwargs): - super().__init__(**kwargs) - self.embed_dim = embed_dim - self.latent_dim = latent_dim - self.num_heads = num_heads - self.attention_1 = keras.layers.MultiHeadAttention( - num_heads=num_heads, key_dim=embed_dim - ) - self.attention_2 = keras.layers.MultiHeadAttention( - num_heads=num_heads, key_dim=embed_dim - ) - self.dense_proj = keras.Sequential( - [ - keras.layers.Dense(latent_dim, activation="relu"), - keras.layers.Dense(embed_dim), - ] - ) - self.layernorm_1 = keras.layers.LayerNormalization() - self.layernorm_2 = keras.layers.LayerNormalization() - self.layernorm_3 = keras.layers.LayerNormalization() - self.supports_masking = True - - def call(self, inputs, encoder_outputs, mask=None): - causal_mask = self.get_causal_attention_mask(inputs) - if mask is not None: - padding_mask = tf.cast(mask[:, tf.newaxis, :], dtype="int32") - padding_mask = tf.minimum(padding_mask, causal_mask) - - attention_output_1 = self.attention_1( - query=inputs, value=inputs, key=inputs, attention_mask=causal_mask - ) - out_1 = self.layernorm_1(inputs + attention_output_1) - - attention_output_2 = self.attention_2( - query=out_1, - value=encoder_outputs, - key=encoder_outputs, - attention_mask=padding_mask, - ) - out_2 = self.layernorm_2(out_1 + attention_output_2) - - proj_output = self.dense_proj(out_2) - return self.layernorm_3(out_2 + proj_output) - - def get_causal_attention_mask(self, inputs): - input_shape = tf.shape(inputs) - batch_size, sequence_length = input_shape[0], input_shape[1] - i = tf.range(sequence_length)[:, tf.newaxis] - j = tf.range(sequence_length) - mask = tf.cast(i >= j, dtype="int32") - mask = tf.reshape(mask, (1, input_shape[1], input_shape[1])) - mult = tf.concat( - [ - tf.expand_dims(batch_size, -1), - tf.constant([1, 1], dtype=tf.int32), - ], - axis=0, - ) - return tf.tile(mask, mult) - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - embed_dim = 256 - latent_dim = 256 - num_heads = 2 - - if include_preprocessing: - encoder_inputs = keras.Input(shape=(), dtype="string") - decoder_inputs = keras.Input(shape=(), dtype="string") - encoder_x, decoder_x = get_input_preprocessor()( - (encoder_inputs, decoder_inputs) - ) - else: - encoder_inputs = keras.Input(shape=(None,), dtype="int64") - decoder_inputs = keras.Input(shape=(None,), dtype="int64") - encoder_x = encoder_inputs - decoder_x = decoder_inputs - - x = PositionalEmbedding(SEQUENCE_LENGTH, VOCAB_SIZE, embed_dim)(encoder_x) - encoder_outputs = TransformerEncoder(embed_dim, latent_dim, num_heads)(x) - - encoded_seq_inputs = keras.Input(shape=(None, embed_dim)) - x = PositionalEmbedding(SEQUENCE_LENGTH, VOCAB_SIZE, embed_dim)(decoder_x) - x = TransformerDecoder(embed_dim, latent_dim, num_heads)( - x, encoded_seq_inputs - ) - x = keras.layers.Dropout(0.5)(x) - decoder_outputs = keras.layers.Dense(VOCAB_SIZE, activation="softmax")(x) - decoder = keras.Model([decoder_inputs, encoded_seq_inputs], decoder_outputs) - - decoder_outputs = decoder([decoder_inputs, encoder_outputs]) - model = keras.Model( - [encoder_inputs, decoder_inputs], decoder_outputs, name="transformer" - ) - if compile: - model.compile( - "rmsprop", - loss="sparse_categorical_crossentropy", - metrics=["accuracy"], - jit_compile=jit_compile, - ) - return model - - -def get_custom_objects(): - return { - "TransformerEncoder": TransformerEncoder, - "TransformerDecoder": TransformerDecoder, - "PositionalEmbedding": PositionalEmbedding, - } diff --git a/keras/integration_test/models/vae.py b/keras/integration_test/models/vae.py deleted file mode 100644 index f9f08e1420f..00000000000 --- a/keras/integration_test/models/vae.py +++ /dev/null @@ -1,137 +0,0 @@ -"""Variable autoencoder. - -Adapted from https://keras.io/examples/generative/vae/ -""" - -import tensorflow as tf -from tensorflow import keras - -from keras.integration_test.models.input_spec import InputSpec -from keras.saving import serialization_lib - -IMG_SIZE = (28, 28) -LATENT_DIM = 64 - - -def get_input_preprocessor(): - return None - - -class Sampling(keras.layers.Layer): - def call(self, inputs): - z_mean, z_log_var = inputs - batch = tf.shape(z_mean)[0] - dim = tf.shape(z_mean)[1] - epsilon = tf.keras.backend.random_normal(shape=(batch, dim)) - return z_mean + tf.exp(0.5 * z_log_var) * epsilon - - -class VAE(keras.Model): - def __init__(self, encoder, decoder, **kwargs): - super(VAE, self).__init__(**kwargs) - self.encoder = encoder - self.decoder = decoder - self.total_loss_tracker = keras.metrics.Mean(name="total_loss") - self.reconstruction_loss_tracker = keras.metrics.Mean( - name="reconstruction_loss" - ) - self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss") - - @property - def metrics(self): - return [ - self.total_loss_tracker, - self.reconstruction_loss_tracker, - self.kl_loss_tracker, - ] - - def train_step(self, data): - with tf.GradientTape() as tape: - z_mean, z_log_var, z = self.encoder(data) - reconstruction = self.decoder(z) - reconstruction_loss = tf.reduce_mean( - tf.reduce_sum( - keras.losses.binary_crossentropy(data, reconstruction), - axis=(1, 2), - ) - ) - kl_loss = -0.5 * ( - 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var) - ) - kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1)) - total_loss = reconstruction_loss + kl_loss - grads = tape.gradient(total_loss, self.trainable_weights) - self.optimizer.apply_gradients(zip(grads, self.trainable_weights)) - self.total_loss_tracker.update_state(total_loss) - self.reconstruction_loss_tracker.update_state(reconstruction_loss) - self.kl_loss_tracker.update_state(kl_loss) - return { - "loss": self.total_loss_tracker.result(), - "reconstruction_loss": self.reconstruction_loss_tracker.result(), - "kl_loss": self.kl_loss_tracker.result(), - } - - def get_config(self): - base_config = super().get_config() - return { - "encoder": self.encoder, - "decoder": self.decoder, - **base_config, - } - - @classmethod - def from_config(cls, config): - encoder = serialization_lib.deserialize_keras_object( - config.pop("encoder") - ) - decoder = serialization_lib.deserialize_keras_object( - config.pop("decoder") - ) - return cls(encoder, decoder, **config) - - -def get_data_spec(batch_size): - return InputSpec((batch_size,) + IMG_SIZE + (1,)) - - -def get_model( - build=False, compile=False, jit_compile=False, include_preprocessing=True -): - encoder_inputs = keras.Input(shape=IMG_SIZE + (1,)) - x = keras.layers.Conv2D( - 32, 3, activation="relu", strides=2, padding="same" - )(encoder_inputs) - x = keras.layers.Conv2D( - 64, 3, activation="relu", strides=2, padding="same" - )(x) - x = keras.layers.Flatten()(x) - x = keras.layers.Dense(16, activation="relu")(x) - z_mean = keras.layers.Dense(LATENT_DIM, name="z_mean")(x) - z_log_var = keras.layers.Dense(LATENT_DIM, name="z_log_var")(x) - z = Sampling()([z_mean, z_log_var]) - encoder = keras.Model( - encoder_inputs, [z_mean, z_log_var, z], name="encoder" - ) - - latent_inputs = keras.Input(shape=(LATENT_DIM,)) - x = keras.layers.Dense(7 * 7 * 64, activation="relu")(latent_inputs) - x = keras.layers.Reshape((7, 7, 64))(x) - x = keras.layers.Conv2DTranspose( - 64, 3, activation="relu", strides=2, padding="same" - )(x) - x = keras.layers.Conv2DTranspose( - 32, 3, activation="relu", strides=2, padding="same" - )(x) - decoder_outputs = keras.layers.Conv2DTranspose( - 1, 3, activation="sigmoid", padding="same" - )(x) - decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder") - - vae = VAE(encoder, decoder) - if compile: - vae.compile(optimizer=keras.optimizers.Adam(), jit_compile=jit_compile) - return vae - - -def get_custom_objects(): - return {"VAE": VAE, "Sampling": Sampling} diff --git a/keras/integration_test/module_test.py b/keras/integration_test/module_test.py deleted file mode 100644 index 91a3f9652dc..00000000000 --- a/keras/integration_test/module_test.py +++ /dev/null @@ -1,61 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import tensorflow.compat.v2 as tf - - -class ModuleTest(tf.test.TestCase): - def test_module_discover_layer_variable(self): - m = tf.Module() - m.a = tf.keras.layers.Dense(1) - m.b = tf.keras.layers.Dense(2) - - # The weights of the layer has not been created yet. - self.assertEmpty(m.variables) - self.assertLen(m.submodules, 2) - - inputs = tf.keras.layers.Input((1,)) - m.a(inputs) - m.b(inputs) - - variable_list = m.variables - self.assertLen(variable_list, 4) - self.assertIs(variable_list[0], m.a.kernel) - self.assertIs(variable_list[1], m.a.bias) - self.assertIs(variable_list[2], m.b.kernel) - self.assertIs(variable_list[3], m.b.bias) - - def test_model_discover_submodule(self): - m = tf.keras.models.Sequential( - layers=[tf.keras.layers.Dense(1), tf.keras.layers.Dense(2)] - ) - - self.assertEqual(m.submodules, (m.layers[0], m.layers[1])) - m(tf.keras.layers.Input((1,))) - self.assertLen(m.variables, 4) - - def test_model_wrapped_in_module_discovers_submodules(self): - linear = tf.keras.models.Sequential( - [tf.keras.layers.Dense(units=1, input_shape=[1])] - ) - linear.compile(optimizer="sgd", loss="mean_squared_error") - m = tf.Module() - m.l = linear - self.assertNotEmpty(m.submodules) - self.assertLen(m.variables, 2) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/integration_test/multi_worker_tutorial_test.py b/keras/integration_test/multi_worker_tutorial_test.py deleted file mode 100644 index 31a605efbf1..00000000000 --- a/keras/integration_test/multi_worker_tutorial_test.py +++ /dev/null @@ -1,433 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Test for multi-worker training tutorial.""" - -import contextlib -import os -import re -import unittest -import uuid -import zipfile - -import numpy as np -import tensorflow.compat.v2 as tf -from absl import logging -from absl.testing import parameterized - -PER_WORKER_BATCH_SIZE = 64 -NUM_WORKERS = 2 -NUM_EPOCHS = 2 -NUM_STEPS_PER_EPOCH = 50 - - -def _is_chief(task_type, task_id): - # Note: there are two possible `TF_CONFIG` configuration. - # 1) In addition to `worker` tasks, a `chief` task type is use; - # in this case, this function should be modified to - # `return task_type == 'chief'`. - # 2) Only `worker` task type is used; in this case, worker 0 is - # regarded as the chief. The implementation demonstrated here - # is for this case. - return task_type == "worker" and task_id == 0 - - -def _get_temp_dir(dirpath, task_id): - base_dirpath = "workertemp_" + str(task_id) - temp_dir = os.path.join(dirpath, base_dirpath) - tf.io.gfile.makedirs(temp_dir) - return temp_dir - - -def write_filepath(filepath, task_type, task_id): - dirpath = os.path.dirname(filepath) - base = os.path.basename(filepath) - if not _is_chief(task_type, task_id): - dirpath = _get_temp_dir(dirpath, task_id) - return os.path.join(dirpath, base) - - -class MultiWorkerTutorialTest(parameterized.TestCase, tf.test.TestCase): - """Test of multi-worker training flow in tutorials on tensorflow.org. - - Please see below test method docs for what actual tutorial is being covered. - """ - - # TODO(rchao): Add a test to demonstrate gather with MWMS. - - @contextlib.contextmanager - def skip_fetch_failure_exception(self): - try: - yield - except zipfile.BadZipfile: - # There can be a race when multiple processes are downloading the - # data. Skip the test if that results in loading errors. - self.skipTest( - "Data loading error: Bad magic number for file header." - ) - except Exception as e: - if "URL fetch failure" in str(e): - self.skipTest( - "URL fetch error not considered failure of the test." - ) - else: - raise - - def mnist_dataset(self): - path_to_use = f"mnist_{str(uuid.uuid4())}.npz" - with self.skip_fetch_failure_exception(): - (x_train, y_train), _ = tf.keras.datasets.mnist.load_data( - path=path_to_use - ) - # The `x` arrays are in uint8 and have values in the range [0, 255]. - # We need to convert them to float32 with values in the range [0, 1] - x_train = x_train / np.float32(255) - y_train = y_train.astype(np.int64) - train_dataset = tf.data.Dataset.from_tensor_slices( - (x_train, y_train) - ).shuffle(60000) - return train_dataset - - def dataset_fn(self, global_batch_size, input_context): - batch_size = input_context.get_per_replica_batch_size(global_batch_size) - dataset = self.mnist_dataset() - dataset = dataset.shard( - input_context.num_input_pipelines, input_context.input_pipeline_id - ) - dataset = dataset.batch(batch_size) - return dataset - - def build_cnn_model(self): - return tf.keras.Sequential( - [ - tf.keras.layers.Input(shape=(28, 28)), - tf.keras.layers.Reshape(target_shape=(28, 28, 1)), - tf.keras.layers.Conv2D(32, 3, activation="relu"), - tf.keras.layers.Flatten(), - tf.keras.layers.Dense(128, activation="relu"), - tf.keras.layers.Dense(10), - ] - ) - - def build_and_compile_cnn_model(self): - model = self.build_cnn_model() - model.compile( - loss=tf.keras.losses.SparseCategoricalCrossentropy( - from_logits=True - ), - optimizer=tf.keras.optimizers.SGD(learning_rate=0.001), - metrics=["accuracy"], - ) - return model - - @tf.__internal__.test.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], tf_api_version=2 - ) - ) - def testSingleWorkerModelFit(self): - single_worker_dataset = self.mnist_dataset().batch( - PER_WORKER_BATCH_SIZE - ) - single_worker_model = self.build_and_compile_cnn_model() - single_worker_model.fit(single_worker_dataset, epochs=NUM_EPOCHS) - - @tf.__internal__.test.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], tf_api_version=2 - ) - ) - def testMwmsWithModelFit(self, mode): - """Test multi-worker training flow demoed in go/multi-worker-with-keras. - - This test should be kept in sync with the code samples in - go/multi-worker-with-keras. - - Args: - mode: Runtime mode. - """ - - def fn(model_path, checkpoint_dir): - global_batch_size = PER_WORKER_BATCH_SIZE * NUM_WORKERS - strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() - with strategy.scope(): - multi_worker_model = self.build_and_compile_cnn_model() - - callbacks = [ - tf.keras.callbacks.ModelCheckpoint( - filepath=os.path.join(self.get_temp_dir(), "checkpoint") - ) - ] - - multi_worker_dataset = strategy.distribute_datasets_from_function( - lambda input_context: self.dataset_fn( - global_batch_size, input_context - ) - ) - - multi_worker_model.fit( - multi_worker_dataset, - epochs=NUM_EPOCHS, - steps_per_epoch=50, - callbacks=callbacks, - ) - - task_type, task_id = ( - strategy.cluster_resolver.task_type, - strategy.cluster_resolver.task_id, - ) - write_model_path = write_filepath(model_path, task_type, task_id) - - multi_worker_model.save(write_model_path) - if not _is_chief(task_type, task_id): - tf.io.gfile.rmtree(os.path.dirname(write_model_path)) - - # Make sure chief finishes saving before non-chief's assertions. - tf.__internal__.distribute.multi_process_runner.get_barrier().wait() - - if not tf.io.gfile.exists(model_path): - raise RuntimeError() - if tf.io.gfile.exists(write_model_path) != _is_chief( - task_type, task_id - ): - raise RuntimeError() - - with strategy.scope(): - loaded_model = tf.keras.models.load_model(model_path) - loaded_model.fit(multi_worker_dataset, epochs=1, steps_per_epoch=1) - - checkpoint = tf.train.Checkpoint(model=multi_worker_model) - write_checkpoint_dir = write_filepath( - checkpoint_dir, task_type, task_id - ) - checkpoint_manager = tf.train.CheckpointManager( - checkpoint, directory=write_checkpoint_dir, max_to_keep=1 - ) - - checkpoint_manager.save() - if not _is_chief(task_type, task_id): - tf.io.gfile.rmtree(write_checkpoint_dir) - - # Make sure chief finishes saving before non-chief's assertions. - tf.__internal__.distribute.multi_process_runner.get_barrier().wait() - - if not tf.io.gfile.exists(checkpoint_dir): - raise RuntimeError() - if tf.io.gfile.exists(write_checkpoint_dir) != _is_chief( - task_type, task_id - ): - raise RuntimeError() - - latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir) - checkpoint.restore(latest_checkpoint) - multi_worker_model.fit( - multi_worker_dataset, epochs=1, steps_per_epoch=1 - ) - - logging.info("testMwmsWithModelFit successfully ends") - - model_path = os.path.join(self.get_temp_dir(), "model.tf") - checkpoint_dir = os.path.join(self.get_temp_dir(), "ckpt") - try: - mpr_result = tf.__internal__.distribute.multi_process_runner.run( - fn, - tf.__internal__.distribute.multi_process_runner.create_cluster_spec( # noqa: E501 - num_workers=NUM_WORKERS - ), - args=(model_path, checkpoint_dir), - return_output=True, - ) - except tf.errors.UnavailableError: - self.skipTest("Skipping rare disconnection among the workers.") - - self.assertTrue( - any( - [ - "testMwmsWithModelFit successfully ends" in msg - for msg in mpr_result.stdout - ] - ) - ) - - def extract_accuracy(worker_id, input_string): - match = re.match( - r"\[worker\-{}\].*accuracy: (\d+\.\d+).*".format(worker_id), - input_string, - ) - return None if match is None else float(match.group(1)) - - for worker_id in range(NUM_WORKERS): - accu_result = tf.nest.map_structure( - lambda x: extract_accuracy(worker_id, x), - mpr_result.stdout, - ) - self.assertTrue( - any(accu_result), - "Every worker is supposed to have accuracy result.", - ) - - @tf.__internal__.test.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], tf_api_version=2 - ) - ) - def testMwmsWithCtl(self, mode): - """Test multi-worker CTL training flow demo'ed in a to-be-added - tutorial.""" - - def proc_func(checkpoint_dir): - global_batch_size = PER_WORKER_BATCH_SIZE * NUM_WORKERS - strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() - try: - - with strategy.scope(): - multi_worker_model = self.build_cnn_model() - - multi_worker_dataset = ( - strategy.distribute_datasets_from_function( - lambda input_context: self.dataset_fn( - global_batch_size, - input_context, - ) - ) - ) - optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.001) - train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy( - name="train_accuracy" - ) - - @tf.function - def train_step(iterator): - """Training step function.""" - - def step_fn(inputs): - """Per-Replica step function.""" - x, y = inputs - with tf.GradientTape() as tape: - predictions = multi_worker_model(x, training=True) - per_batch_loss = ( - tf.keras.losses.SparseCategoricalCrossentropy( - from_logits=True, - reduction=tf.keras.losses.Reduction.NONE, - )(y, predictions) - ) - loss = tf.nn.compute_average_loss( - per_batch_loss, - global_batch_size=global_batch_size, - ) - - grads = tape.gradient( - loss, multi_worker_model.trainable_variables - ) - optimizer.apply_gradients( - zip(grads, multi_worker_model.trainable_variables) - ) - train_accuracy.update_state(y, predictions) - - return loss - - per_replica_losses = strategy.run( - step_fn, args=(next(iterator),) - ) - return strategy.reduce( - tf.distribute.ReduceOp.SUM, - per_replica_losses, - axis=None, - ) - - epoch = tf.Variable( - initial_value=tf.constant(0, dtype=tf.dtypes.int64), - name="epoch", - ) - step_in_epoch = tf.Variable( - initial_value=tf.constant(0, dtype=tf.dtypes.int64), - name="step_in_epoch", - ) - - task_type, task_id = ( - strategy.cluster_resolver.task_type, - strategy.cluster_resolver.task_id, - ) - checkpoint = tf.train.Checkpoint( - model=multi_worker_model, - epoch=epoch, - step_in_epoch=step_in_epoch, - ) - write_checkpoint_dir = write_filepath( - checkpoint_dir, task_type, task_id - ) - checkpoint_manager = tf.train.CheckpointManager( - checkpoint, directory=write_checkpoint_dir, max_to_keep=1 - ) - - latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir) - if latest_checkpoint: - checkpoint.restore(latest_checkpoint) - - while epoch.numpy() < NUM_EPOCHS: - iterator = iter(multi_worker_dataset) - total_loss = 0.0 - num_batches = 0 - - while step_in_epoch.numpy() < NUM_STEPS_PER_EPOCH: - total_loss += train_step(iterator) - num_batches += 1 - step_in_epoch.assign_add(1) - - train_loss = total_loss / num_batches - logging.info( - "Epoch: %d, accuracy: %f, train_loss: %f.", - epoch.numpy(), - train_accuracy.result(), - train_loss, - ) - - train_accuracy.reset_state() - - checkpoint_manager.save() - if not _is_chief(task_type, task_id): - tf.io.gfile.rmtree(write_checkpoint_dir) - - epoch.assign_add(1) - step_in_epoch.assign(0) - - except tf.errors.UnavailableError as e: - logging.info("UnavailableError occurred: %r", e) - raise unittest.SkipTest("Skipping test due to UnavailableError") - - logging.info("testMwmsWithCtl successfully ends") - - checkpoint_dir = os.path.join(self.get_temp_dir(), "ckpt") - - mpr_result = tf.__internal__.distribute.multi_process_runner.run( - proc_func, - tf.__internal__.distribute.multi_process_runner.create_cluster_spec( - num_workers=NUM_WORKERS - ), - return_output=True, - args=(checkpoint_dir,), - ) - - self.assertTrue( - any( - [ - "testMwmsWithCtl successfully ends" in msg - for msg in mpr_result.stdout - ] - ) - ) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/integration_test/mwms_multi_process_runner_test.py b/keras/integration_test/mwms_multi_process_runner_test.py deleted file mode 100644 index 178b843af8d..00000000000 --- a/keras/integration_test/mwms_multi_process_runner_test.py +++ /dev/null @@ -1,86 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Test to demonstrate Keras training with MultiWorkerMirroredStrategy.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os - -import tensorflow.compat.v2 as tf -from absl import logging - -NUM_WORKERS = 2 -NUM_EPOCHS = 2 -NUM_STEPS_PER_EPOCH = 50 - - -class MwmsMultiProcessRunnerTest(tf.test.TestCase): - """Test to demonstrate Keras training with MultiWorkerMirroredStrategy.""" - - def testMwmsWithModelFit(self): - def worker_fn(): - def dataset_fn(input_context): - # User should shard data accordingly. Omitted here. - del input_context - return tf.data.Dataset.from_tensor_slices( - (tf.random.uniform((6, 10)), tf.random.uniform((6, 10))) - ).batch(2) - - strategy = tf.distribute.MultiWorkerMirroredStrategy() - with strategy.scope(): - model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)]) - model.compile( - loss=tf.keras.losses.CategoricalCrossentropy(), - optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.001), - metrics=["accuracy"], - ) - - callbacks = [ - tf.keras.callbacks.ModelCheckpoint( - filepath=os.path.join(self.get_temp_dir(), "checkpoint") - ) - ] - dataset = strategy.distribute_datasets_from_function(dataset_fn) - model.fit( - dataset, - epochs=NUM_EPOCHS, - steps_per_epoch=NUM_STEPS_PER_EPOCH, - callbacks=callbacks, - ) - - logging.info("testMwmsWithModelFit successfully ends") - - mpr_result = tf.__internal__.distribute.multi_process_runner.run( - worker_fn, - tf.__internal__.distribute.multi_process_runner.create_cluster_spec( - num_workers=NUM_WORKERS - ), - return_output=True, - ) - - # Verifying the worker functions ended successfully. - self.assertTrue( - any( - [ - "testMwmsWithModelFit successfully ends" in msg - for msg in mpr_result.stdout - ] - ) - ) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/integration_test/parameter_server_custom_training_loop_test.py b/keras/integration_test/parameter_server_custom_training_loop_test.py deleted file mode 100644 index b35393b5bba..00000000000 --- a/keras/integration_test/parameter_server_custom_training_loop_test.py +++ /dev/null @@ -1,157 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Test to demonstrate custom training loop with ParameterServerStrategy.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import multiprocessing - -import portpicker -import tensorflow.compat.v2 as tf -from absl import logging - -NUM_EPOCHS = 10 -NUM_STEPS = 100 -STEPS_PER_EXECUTION = 10 - - -class ParameterServerCustomTrainingLoopTest(tf.test.TestCase): - """Test to demonstrate custom training loop with ParameterServerStrategy.""" - - def create_in_process_cluster(self, num_workers, num_ps): - """Creates and starts local servers and returns the cluster_resolver.""" - worker_ports = [ - portpicker.pick_unused_port() for _ in range(num_workers) - ] - ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)] - - cluster_dict = {} - cluster_dict["worker"] = [f"localhost:{port}" for port in worker_ports] - if num_ps > 0: - cluster_dict["ps"] = [f"localhost:{port}" for port in ps_ports] - - cluster_spec = tf.train.ClusterSpec(cluster_dict) - - # Workers need some inter_ops threads to work properly. - worker_config = tf.compat.v1.ConfigProto() - if multiprocessing.cpu_count() < num_workers + 1: - worker_config.inter_op_parallelism_threads = num_workers + 1 - - for i in range(num_workers): - tf.distribute.Server( - cluster_spec, - job_name="worker", - task_index=i, - config=worker_config, - protocol="grpc", - ) - - for i in range(num_ps): - tf.distribute.Server( - cluster_spec, job_name="ps", task_index=i, protocol="grpc" - ) - - return cluster_spec - - def setUp(self): - super().setUp() - - cluster_spec = self.create_in_process_cluster(num_workers=3, num_ps=2) - cluster_resolver = tf.distribute.cluster_resolver.SimpleClusterResolver( - cluster_spec, rpc_layer="grpc" - ) - self.strategy = tf.distribute.experimental.ParameterServerStrategy( - cluster_resolver - ) - self.coordinator = ( - tf.distribute.experimental.coordinator.ClusterCoordinator( - self.strategy - ) - ) - - def testCustomTrainingLoop(self): - - coordinator, strategy = self.coordinator, self.strategy - - def per_worker_dataset_fn(): - def dataset_fn(_): - return ( - tf.data.Dataset.from_tensor_slices( - (tf.random.uniform((6, 10)), tf.random.uniform((6, 10))) - ) - .batch(2) - .repeat() - ) - - return strategy.distribute_datasets_from_function(dataset_fn) - - per_worker_dataset = coordinator.create_per_worker_dataset( - per_worker_dataset_fn - ) - with strategy.scope(): - model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)]) - optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.001) - train_accuracy = tf.keras.metrics.CategoricalAccuracy( - name="train_accuracy" - ) - - @tf.function - def worker_train_fn(iterator): - def replica_fn(inputs): - """Training loop function.""" - batch_data, labels = inputs - with tf.GradientTape() as tape: - predictions = model(batch_data, training=True) - loss = tf.keras.losses.CategoricalCrossentropy( - reduction=tf.keras.losses.Reduction.NONE - )(labels, predictions) - gradients = tape.gradient(loss, model.trainable_variables) - - optimizer.apply_gradients( - zip(gradients, model.trainable_variables) - ) - train_accuracy.update_state(labels, predictions) - - for _ in tf.range(STEPS_PER_EXECUTION): - strategy.run(replica_fn, args=(next(iterator),)) - - for epoch in range(NUM_EPOCHS): - - distributed_iterator = iter(per_worker_dataset) - - for step in range(0, NUM_STEPS, STEPS_PER_EXECUTION): - coordinator.schedule( - worker_train_fn, args=(distributed_iterator,) - ) - logging.info("Epoch %d, step %d scheduled.", epoch, step) - - logging.info("Now joining at epoch %d.", epoch) - coordinator.join() - logging.info( - "Finished joining at epoch %d. Training accuracy: %f. " - "Total iterations: %d", - epoch, - train_accuracy.result(), - optimizer.iterations.value(), - ) - - if epoch < NUM_EPOCHS - 1: - train_accuracy.reset_states() - - -if __name__ == "__main__": - if tf.__internal__.tf2.enabled(): - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/integration_test/parameter_server_keras_preprocessing_test.py b/keras/integration_test/parameter_server_keras_preprocessing_test.py deleted file mode 100644 index 5dcda78fe12..00000000000 --- a/keras/integration_test/parameter_server_keras_preprocessing_test.py +++ /dev/null @@ -1,410 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for ClusterCoordinator and Keras models.""" - -import multiprocessing -import os -import random -import tempfile - -import numpy as np -import portpicker -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.testing_infra import test_utils - -# These vocabularies usually come from TFT or a Beam pipeline. -FEATURE_VOCAB = [ - "avenger", - "ironman", - "batman", - "hulk", - "spiderman", - "kingkong", - "wonder_woman", -] -LABEL_VOCAB = ["yes", "no"] - - -def create_in_process_cluster(num_workers, num_ps): - """Creates and starts local servers and returns the cluster_resolver.""" - - worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)] - ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)] - - cluster_dict = {} - cluster_dict["worker"] = [f"localhost:{port}" for port in worker_ports] - if num_ps > 0: - cluster_dict["ps"] = [f"localhost:{port}" for port in ps_ports] - - cluster_spec = tf.train.ClusterSpec(cluster_dict) - - # Workers need some inter_ops threads to work properly. - worker_config = tf.compat.v1.ConfigProto() - if multiprocessing.cpu_count() < num_workers + 1: - worker_config.inter_op_parallelism_threads = num_workers + 1 - - for i in range(num_workers): - tf.distribute.Server( - cluster_spec, - job_name="worker", - task_index=i, - config=worker_config, - protocol="grpc", - ) - - for i in range(num_ps): - tf.distribute.Server( - cluster_spec, job_name="ps", task_index=i, protocol="grpc" - ) - - return cluster_spec - - -@test_utils.run_v2_only -class KPLTest(tf.test.TestCase, parameterized.TestCase): - def setUp(self): - super().setUp() - - cluster_spec = create_in_process_cluster(num_workers=3, num_ps=2) - cluster_resolver = tf.distribute.cluster_resolver.SimpleClusterResolver( - cluster_spec, rpc_layer="grpc" - ) - self.strategy = tf.distribute.experimental.ParameterServerStrategy( - cluster_resolver - ) - self.coordinator = ( - tf.distribute.experimental.coordinator.ClusterCoordinator( - self.strategy - ) - ) - - def define_kpls_for_training(self, use_adapt): - # Define KPLs under strategy's scope. Right now, if they have look up - # tables, they will be created on the client. Their variables will be - # created on PS. Ideally they should be cached on each worker since they - # will not be changed in a training step. - if use_adapt: - feature_lookup_layer = tf.keras.layers.StringLookup( - num_oov_indices=1 - ) - feature_lookup_layer.adapt(FEATURE_VOCAB) - label_lookup_layer = tf.keras.layers.StringLookup( - num_oov_indices=0, mask_token=None - ) - label_lookup_layer.adapt(LABEL_VOCAB) - else: - # Do vocab shuffling. - shuffled_vocab = FEATURE_VOCAB.copy() - random.shuffle(shuffled_vocab) - feature_lookup_layer = tf.keras.layers.StringLookup( - vocabulary=shuffled_vocab, num_oov_indices=1 - ) - label_lookup_layer = tf.keras.layers.StringLookup( - vocabulary=LABEL_VOCAB, num_oov_indices=0, mask_token=None - ) - - raw_feature_input = tf.keras.Input( - shape=(3,), dtype=tf.string, name="feature", ragged=True - ) - feature_id_input = feature_lookup_layer(raw_feature_input) - - # Model creates variables as well. - feature_ps = tf.keras.Model( - {"features": raw_feature_input}, feature_id_input - ) - - raw_label_input = tf.keras.Input( - shape=(1,), dtype=tf.string, name="label" - ) - label_id_input = label_lookup_layer(raw_label_input) - label_ps = tf.keras.Model({"label": raw_label_input}, label_id_input) - - return feature_ps, label_ps - - def define_reverse_lookup_layer(self): - # Only needed for serving. - label_inverse_lookup_layer = tf.keras.layers.StringLookup( - num_oov_indices=0, - mask_token=None, - vocabulary=LABEL_VOCAB, - invert=True, - ) - return label_inverse_lookup_layer - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], - use_adapt=[True, False], - test_training_with_loaded=[True, False], - # TODO(b/1949359300): `load_for_serving_under_strategy=True` flakily - # times out. - load_for_serving_under_strategy=[False], - ) - ) - def testTrainAndLoadAndServe( - self, - use_adapt, - test_training_with_loaded, - load_for_serving_under_strategy, - ): - - # test_training_with_loaded=False tests distributed training with newly - # constructed KPL, while test_training_with_loaded=True tests - # distributed training with a loaded KPL which was created under - # strategy scope as well. - # - # load_for_serving_under_strategy test serving with a model loaded - # under distribution strategy or not. - - with self.coordinator.strategy.scope(): - - feature_ps, label_ps = self.define_kpls_for_training(use_adapt) - - if test_training_with_loaded: - saved_kpl_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) - feature_ps_dir = os.path.join(saved_kpl_dir, "feature") - label_ps_dir = os.path.join(saved_kpl_dir, "label") - - feature_ps.save(feature_ps_dir) - label_ps.save(label_ps_dir) - - del feature_ps, label_ps - - feature_ps = tf.keras.models.load_model(feature_ps_dir) - label_ps = tf.keras.models.load_model(label_ps_dir) - - def dataset_fn(): - def feature_and_label_gen(): - while True: - features = random.sample(FEATURE_VOCAB, 3) - label = ["yes"] if "avenger" in features else ["no"] - yield {"features": features, "label": label} - - # The dataset will be created on the coordinator. - raw_dataset = ( - tf.data.Dataset.from_generator( - feature_and_label_gen, - output_signature={ - "features": tf.TensorSpec([3], tf.string), - "label": tf.TensorSpec([1], tf.string), - }, - ) - .shuffle(100) - .batch(32) - ) - - train_dataset = raw_dataset.map( - lambda x: ( - {"features": feature_ps(x["features"])}, - label_ps(x["label"]), - ) - ) - return train_dataset - - # Create the model. The input needs to be compatible with KPLs. - model_input = tf.keras.Input( - shape=(3,), dtype=tf.int64, name="model_input" - ) - - # input_dim includes a mask token and an oov token. - emb_output = tf.keras.layers.Embedding( - input_dim=len(FEATURE_VOCAB) + 2, output_dim=20 - )(model_input) - emb_output = tf.reduce_mean(emb_output, axis=1) - dense_output = tf.keras.layers.Dense(units=1, activation="sigmoid")( - emb_output - ) - model = tf.keras.Model({"features": model_input}, dense_output) - - optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.1) - accuracy = tf.keras.metrics.Accuracy() - - @tf.function - def worker_fn(iterator): - def replica_fn(iterator): - batch_data, labels = next(iterator) - with tf.GradientTape() as tape: - pred = model(batch_data, training=True) - loss = tf.nn.compute_average_loss( - tf.keras.losses.BinaryCrossentropy( - reduction=tf.keras.losses.Reduction.NONE - )(labels, pred) - ) - gradients = tape.gradient(loss, model.trainable_variables) - - optimizer.apply_gradients( - zip(gradients, model.trainable_variables) - ) - - actual_pred = tf.cast(tf.greater(pred, 0.5), tf.int64) - accuracy.update_state(labels, actual_pred) - - self.coordinator.strategy.run(replica_fn, args=(iterator,)) - - distributed_dataset = self.coordinator.create_per_worker_dataset( - dataset_fn - ) - distributed_iterator = iter(distributed_dataset) - for _ in range(4): - accuracy.reset_state() - for _ in range(7): - self.coordinator.schedule( - worker_fn, args=(distributed_iterator,) - ) - self.coordinator.join() - self.assertGreater(accuracy.result().numpy(), 0.5) - - # Create a saved model. - model.feature_ps = feature_ps - model.label_ps = label_ps - model.label_inverse_lookup_layer = self.define_reverse_lookup_layer() - - def create_serving_signature(model): - @tf.function - def serve_fn(raw_features): - raw_features = tf.expand_dims(raw_features, axis=0) - transformed_features = model.feature_ps(raw_features) - outputs = model(transformed_features) - outputs = tf.squeeze(outputs, axis=0) - outputs = tf.cast(tf.greater(outputs, 0.5), tf.int64) - decoded_outputs = model.label_inverse_lookup_layer(outputs) - return tf.squeeze(decoded_outputs, axis=0) - - # serving does NOT have batch dimension - return serve_fn.get_concrete_function( - tf.TensorSpec(shape=(3), dtype=tf.string, name="example") - ) - - serving_fn = create_serving_signature(model) - - saved_model_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) - model.save(saved_model_dir, signatures={"serving_default": serving_fn}) - - if load_for_serving_under_strategy: - with self.coordinator.strategy.scope(): - - loaded_serving_fn = tf.keras.models.load_model( - saved_model_dir - ).signatures["serving_default"] - - outputs = [] - for _ in range(7): - outputs.append( - self.coordinator.schedule( - loaded_serving_fn, - args=(tf.constant(["avenger", "ironman", "avenger"]),), - ) - ) - self.coordinator.join() - for prediction0 in outputs: - self.assertIn( - prediction0._get_values()["output_0"], ("yes", "no") - ) - else: - loaded_serving_fn = tf.keras.models.load_model( - saved_model_dir - ).signatures["serving_default"] - - # check the result w/ and w/o avenger. - prediction0 = loaded_serving_fn( - tf.constant(["avenger", "ironman", "avenger"]) - )["output_0"] - self.assertIn(prediction0, ("yes", "no")) - - prediction1 = loaded_serving_fn( - tf.constant(["ironman", "ironman", "unknown"]) - )["output_0"] - self.assertIn(prediction1, ("yes", "no")) - - -@test_utils.run_v2_only -class KPLCreatedInDatasetsFromFunctionTest( - tf.test.TestCase, parameterized.TestCase -): - def setUp(self): - super().setUp() - - cluster_spec = create_in_process_cluster(num_workers=3, num_ps=2) - cluster_resolver = tf.distribute.cluster_resolver.SimpleClusterResolver( - cluster_spec, rpc_layer="grpc" - ) - self.strategy = tf.distribute.experimental.ParameterServerStrategy( - cluster_resolver - ) - self.coordinator = ( - tf.distribute.experimental.coordinator.ClusterCoordinator( - self.strategy - ) - ) - - def testKPLCreatedInDatasetsFromFunction(self): - - filepath = os.path.join(self.get_temp_dir(), "vocab") - with open(filepath, "w") as f: - f.write("\n".join(["earth", "wind", "and", "fire"])) - - def per_worker_dataset_fn(): - def dataset_fn(input_context): - del input_context - lookup_layer = tf.keras.layers.StringLookup( - num_oov_indices=1, vocabulary=filepath - ) - x = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - y = np.array([0, 1]) - map_fn = lambda x, y: (lookup_layer(x), y) - return ( - tf.data.Dataset.from_tensor_slices((x, y)) - .shuffle(10) - .repeat() - .batch(2) - .map(map_fn) - ) - - return self.coordinator.strategy.distribute_datasets_from_function( - dataset_fn - ) - - per_worker_distribute_dataset = ( - self.coordinator.create_per_worker_dataset(per_worker_dataset_fn) - ) - per_worker_iter = iter(per_worker_distribute_dataset) - - @tf.function - def worker_fn(iterator): - def replica_fn(data): - return data - - return self.coordinator.strategy.run( - replica_fn, args=(next(iterator),) - ) - - result = [] - for _ in range(10): - result.append( - self.coordinator.schedule(worker_fn, args=(per_worker_iter,)) - ) - - self.coordinator.join() - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/integration_test/parameter_server_training_metric_test.py b/keras/integration_test/parameter_server_training_metric_test.py deleted file mode 100644 index adae4796073..00000000000 --- a/keras/integration_test/parameter_server_training_metric_test.py +++ /dev/null @@ -1,134 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests training metrics with PSS distribution strategy.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import layers as layers_module -from keras import metrics as metrics_module -from keras.engine import training as training_module -from keras.testing_infra import test_combinations - -# isort: off -from tensorflow.python.distribute import ( - multi_process_runner, - multi_worker_test_base, -) - - -class ParameterServerTrainingMetricTest(test_combinations.TestCase): - """Test Parameter Server Distribution strategy with Keras Model Training""" - - @classmethod - def setUpClass(cls): - super().setUpClass() - cls.cluster = multi_worker_test_base.create_multi_process_cluster( - num_workers=2, num_ps=3, rpc_layer="grpc" - ) - cls.cluster_resolver = cls.cluster.cluster_resolver - - @classmethod - def tearDownClass(cls): - super().tearDownClass() - cls.cluster.stop() - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_pss_fit_metric_batch_counter(self): - """Verify that metric data is complete during fit when using - ParameterServerStrategy - """ - strategy = tf.distribute.ParameterServerStrategy( - self.cluster_resolver, - variable_partitioner=None, - ) - - class BatchCount(metrics_module.Sum): - def __init__(self, name="batch_count", dtype=tf.int64): - super().__init__(name=name, dtype=dtype) - - def update_state(self, y_true, y_pred, sample_weight=None): - return super().update_state(1, sample_weight) - - # Build and compile model within strategy scope. - with strategy.scope(): - inputs = layers_module.Input((1,)) - outputs = layers_module.Dense(1)(inputs) - model = training_module.Model(inputs, outputs) - model.compile( - loss="mse", metrics=[BatchCount()], steps_per_execution=2 - ) - - BATCH_SIZE = 10 - x, y = np.ones((400, 1)), np.ones((400, 1)) - val_x, val_y = np.ones((100, 1)), np.ones((100, 1)) - train_dataset = tf.data.Dataset.from_tensor_slices((x, y)) - train_dataset = train_dataset.batch(BATCH_SIZE) - val_dataset = tf.data.Dataset.from_tensor_slices((val_x, val_y)) - val_dataset = val_dataset.batch(BATCH_SIZE) - train_batch_count = x.shape[0] // BATCH_SIZE - val_batch_count = val_x.shape[0] // BATCH_SIZE - # Verify that Model fit doesn't drop any batches - hist = model.fit( - train_dataset, - steps_per_epoch=train_batch_count, - validation_data=val_dataset, - validation_steps=val_batch_count, - epochs=5, - ) - # Verify that min and max value of batch count metric is accurate - self.assertEqual(max(hist.history["batch_count"]), train_batch_count) - self.assertEqual(min(hist.history["batch_count"]), train_batch_count) - self.assertEqual(max(hist.history["val_batch_count"]), val_batch_count) - self.assertEqual(min(hist.history["val_batch_count"]), val_batch_count) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_pss_evaluate_metric_batch_counter(self): - """Verify that metric data is complete during evaluate when using - ParameterServerStrategy - """ - strategy = tf.distribute.ParameterServerStrategy( - self.cluster_resolver, - variable_partitioner=None, - ) - - class BatchCount(metrics_module.Sum): - def __init__(self, name="batch_count", dtype=tf.int64): - super().__init__(name=name, dtype=dtype) - - def update_state(self, y_true, y_pred, sample_weight=None): - return super().update_state(1, sample_weight) - - # Build and compile model within strategy scope. - with strategy.scope(): - inputs = layers_module.Input((1,)) - outputs = layers_module.Dense(1)(inputs) - model = training_module.Model(inputs, outputs) - model.compile( - loss="mse", metrics=[BatchCount()], steps_per_execution=2 - ) - - BATCH_SIZE = 10 - x, y = np.ones((400, 1)), np.ones((400, 1)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)) - batch_count = x.shape[0] // BATCH_SIZE - # Verify that Model Eval batch counter metric is accurate. - eval_results = model.evaluate(dataset, steps=batch_count) - self.assertEqual(eval_results[-1], batch_count) - - -if __name__ == "__main__": - tf.enable_v2_behavior() - multi_process_runner.test_main() diff --git a/keras/integration_test/preprocessing_applied_in_dataset_creator_test.py b/keras/integration_test/preprocessing_applied_in_dataset_creator_test.py deleted file mode 100644 index 3c490a1f580..00000000000 --- a/keras/integration_test/preprocessing_applied_in_dataset_creator_test.py +++ /dev/null @@ -1,84 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Demonstrate Keras preprocessing layers applied in tf.data.Dataset.map.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.integration_test import preprocessing_test_utils as utils - -ds_combinations = tf.__internal__.distribute.combinations -multi_process_runner = tf.__internal__.distribute.multi_process_runner -test_combinations = tf.__internal__.test.combinations - -# Note: Strategy combinations are not (yet) public APIs, so they are subject -# to API changes and backward-compatibility is not guaranteed. -STRATEGIES = [ - ds_combinations.default_strategy, - ds_combinations.mirrored_strategy_with_two_cpus, - ds_combinations.mirrored_strategy_with_two_gpus, - ds_combinations.tpu_strategy, - ds_combinations.cloud_tpu_strategy, - ds_combinations.parameter_server_strategy_3worker_2ps_cpu, - ds_combinations.parameter_server_strategy_3worker_2ps_1gpu, - ds_combinations.multi_worker_mirrored_2x1_cpu, - ds_combinations.multi_worker_mirrored_2x2_gpu, - ds_combinations.central_storage_strategy_with_two_gpus, -] - - -@ds_combinations.generate( - test_combinations.combine(strategy=STRATEGIES, mode="eager") -) -class PreprocessingAppliedInDatasetCreatorTest(tf.test.TestCase): - """Demonstrate Keras preprocessing layers applied in tf.data.Dataset.map.""" - - def testDistributedModelFit(self, strategy): - if not tf.__internal__.tf2.enabled() and isinstance( - strategy, tf.distribute.experimental.ParameterServerStrategy - ): - self.skipTest( - "Parameter Server strategy with dataset creator need to be run " - "when eager execution is enabled." - ) - with strategy.scope(): - preprocessing_model = utils.make_preprocessing_model( - self.get_temp_dir() - ) - training_model = utils.make_training_model() - training_model.compile(optimizer="sgd", loss="binary_crossentropy") - - def dataset_fn(input_context): - dataset = utils.make_dataset() - dataset = dataset.shard( - input_context.num_input_pipelines, - input_context.input_pipeline_id, - ) - batch_size = input_context.get_per_replica_batch_size( - global_batch_size=utils.BATCH_SIZE - ) - dataset = dataset.batch(batch_size).repeat().prefetch(2) - return dataset.map(lambda x, y: (preprocessing_model(x), y)) - - dataset_creator = tf.keras.utils.experimental.DatasetCreator(dataset_fn) - training_model.fit( - dataset_creator, epochs=2, steps_per_epoch=utils.STEPS - ) - - -if __name__ == "__main__": - multi_process_runner.test_main() diff --git a/keras/integration_test/preprocessing_applied_in_dataset_test.py b/keras/integration_test/preprocessing_applied_in_dataset_test.py deleted file mode 100644 index d54f9fdefaf..00000000000 --- a/keras/integration_test/preprocessing_applied_in_dataset_test.py +++ /dev/null @@ -1,65 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Demonstrate Keras preprocessing layers applied in tf.data.Dataset.map.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.integration_test import preprocessing_test_utils as utils - -ds_combinations = tf.__internal__.distribute.combinations -multi_process_runner = tf.__internal__.distribute.multi_process_runner -test_combinations = tf.__internal__.test.combinations - -# Note: Strategy combinations are not (yet) public APIs, so they are subject -# to API changes and backward-compatibility is not guaranteed. Note that we -# skip parameter server strategy here, as parameter server strategy requires -# a DatasetCreator when training on a tf.data.Dataset. -STRATEGIES = [ - ds_combinations.default_strategy, - ds_combinations.mirrored_strategy_with_two_cpus, - ds_combinations.mirrored_strategy_with_two_gpus, - ds_combinations.tpu_strategy, - ds_combinations.cloud_tpu_strategy, - ds_combinations.multi_worker_mirrored_2x1_cpu, - ds_combinations.multi_worker_mirrored_2x2_gpu, - ds_combinations.central_storage_strategy_with_two_gpus, -] - - -@ds_combinations.generate( - test_combinations.combine(strategy=STRATEGIES, mode="eager") -) -class PreprocessingAppliedInDatasetTest(tf.test.TestCase): - """Demonstrate Keras preprocessing layers applied in tf.data.Dataset.map.""" - - def testDistributedModelFit(self, strategy): - with strategy.scope(): - preprocessing_model = utils.make_preprocessing_model( - self.get_temp_dir() - ) - training_model = utils.make_training_model() - training_model.compile(optimizer="sgd", loss="binary_crossentropy") - - dataset = utils.make_dataset() - dataset = dataset.batch(utils.BATCH_SIZE) - dataset = dataset.map(lambda x, y: (preprocessing_model(x), y)) - training_model.fit(dataset, epochs=2) - - -if __name__ == "__main__": - multi_process_runner.test_main() diff --git a/keras/integration_test/preprocessing_applied_in_model_test.py b/keras/integration_test/preprocessing_applied_in_model_test.py deleted file mode 100644 index 4b1a2070695..00000000000 --- a/keras/integration_test/preprocessing_applied_in_model_test.py +++ /dev/null @@ -1,86 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Demonstrate Keras preprocessing layers applied inside a Model.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.integration_test import preprocessing_test_utils as utils - -ds_combinations = tf.__internal__.distribute.combinations -multi_process_runner = tf.__internal__.distribute.multi_process_runner -test_combinations = tf.__internal__.test.combinations - -# Note: Strategy combinations are not (yet) public APIs, so they are subject -# to API changes and backward-compatibility is not guaranteed. -STRATEGIES = [ - ds_combinations.default_strategy, - ds_combinations.mirrored_strategy_with_two_cpus, - ds_combinations.mirrored_strategy_with_two_gpus, - # TODO(b/183044870) TPU strategies with soft placement do not yet work. - # ds_combinations.tpu_strategy, - # ds_combinations.cloud_tpu_strategy, - ds_combinations.parameter_server_strategy_3worker_2ps_cpu, - ds_combinations.parameter_server_strategy_3worker_2ps_1gpu, - ds_combinations.multi_worker_mirrored_2x1_cpu, - ds_combinations.multi_worker_mirrored_2x2_gpu, - ds_combinations.central_storage_strategy_with_two_gpus, -] - - -@ds_combinations.generate( - test_combinations.combine(strategy=STRATEGIES, mode="eager") -) -class PreprocessingAppliedInModelTest(tf.test.TestCase): - """Demonstrate Keras preprocessing layers applied inside a Model.""" - - def testDistributedModelFit(self, strategy): - if not tf.__internal__.tf2.enabled() and isinstance( - strategy, tf.distribute.experimental.ParameterServerStrategy - ): - self.skipTest( - "Parameter Server strategy with dataset creator need to be run " - "when eager execution is enabled." - ) - with strategy.scope(): - preprocessing_model = utils.make_preprocessing_model( - self.get_temp_dir() - ) - training_model = utils.make_training_model() - # Merge the two separate models into a single model for training. - inputs = preprocessing_model.inputs - outputs = training_model(preprocessing_model(inputs)) - merged_model = tf.keras.Model(inputs, outputs) - merged_model.compile(optimizer="sgd", loss="binary_crossentropy") - - def dataset_fn(input_context): - dataset = utils.make_dataset() - dataset = dataset.shard( - input_context.num_input_pipelines, - input_context.input_pipeline_id, - ) - batch_size = input_context.get_per_replica_batch_size( - global_batch_size=utils.BATCH_SIZE - ) - return dataset.batch(batch_size).repeat().prefetch(2) - - dataset_creator = tf.keras.utils.experimental.DatasetCreator(dataset_fn) - merged_model.fit(dataset_creator, epochs=2, steps_per_epoch=utils.STEPS) - - -if __name__ == "__main__": - multi_process_runner.test_main() diff --git a/keras/integration_test/preprocessing_test_utils.py b/keras/integration_test/preprocessing_test_utils.py deleted file mode 100644 index 8287dc83a34..00000000000 --- a/keras/integration_test/preprocessing_test_utils.py +++ /dev/null @@ -1,113 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Common utilities for our Keras preprocessing integration tests.""" - -import os - -import tensorflow.compat.v2 as tf - -preprocessing = tf.keras.layers - -BATCH_SIZE = 64 -DS_SIZE = BATCH_SIZE * 16 -STEPS = DS_SIZE / BATCH_SIZE -VOCAB_SIZE = 100 - - -def make_dataset(): - """Make a simple structured dataset. - - The dataset contains three feature columns. - - float_col: an unnormalized numeric column. - - int_col: an column of integer IDs. - - string_col: a column of fixed vocabulary terms. - - Returns: - The dataset. - """ - tf.random.set_seed(197011) - floats = tf.random.uniform((DS_SIZE, 1), maxval=10, dtype="float32") - # Generate a 100 unique integer values, but over a wide range to showcase a - # common use case for IntegerLookup. - ints = tf.random.uniform((DS_SIZE, 1), maxval=VOCAB_SIZE, dtype="int64") - ints = ints * 1000 - # Use a fixed vocabulary of strings from 0 to 99, to showcase loading a - # vocabulary from a file. - strings = tf.random.uniform((DS_SIZE, 1), maxval=VOCAB_SIZE, dtype="int64") - strings = tf.strings.as_string(strings) - features = {"float_col": floats, "int_col": ints, "string_col": strings} - # Random binary label. - labels = tf.random.uniform((DS_SIZE, 1), maxval=2, dtype="int64") - ds = tf.data.Dataset.from_tensor_slices((features, labels)) - return ds - - -def make_preprocessing_model(file_dir): - """Make a standalone preprocessing model.""" - # The name of our keras.Input should match the column name in the dataset. - float_in = tf.keras.Input(shape=(1,), dtype="float32", name="float_col") - int_in = tf.keras.Input(shape=(1,), dtype="int64", name="int_col") - string_in = tf.keras.Input(shape=(1,), dtype="string", name="string_col") - - # We need to batch a dataset before adapting. - ds = make_dataset().batch(BATCH_SIZE) - # Normalize floats by adapting the mean and variance of the input. - normalization = preprocessing.Normalization() - normalization.adapt(ds.map(lambda features, labels: features["float_col"])) - float_out = normalization(float_in) - # Lookup ints by adapting a vocab of integer IDs. - int_lookup = preprocessing.IntegerLookup() - int_lookup.adapt(ds.map(lambda features, labels: features["int_col"])) - int_out = int_lookup(int_in) - # Lookup strings from a fixed file based vocabulary. - string_vocab = list(str(i) for i in range(VOCAB_SIZE)) - vocab_file = os.path.join(file_dir, "vocab_file.txt") - with open(vocab_file, "w") as f: - f.write("\n".join(string_vocab)) - string_lookup = preprocessing.StringLookup(vocabulary=vocab_file) - string_out = string_lookup(string_in) - - return tf.keras.Model( - inputs=(float_in, int_in, string_in), - outputs=(float_out, int_out, string_out), - ) - - -def make_training_model(): - """Make a trainable model for the preprocessed inputs.""" - float_in = tf.keras.Input(shape=(1,), dtype="float32", name="float_col") - # After preprocessing, both the string and int column are integer ready for - # embedding. - int_in = tf.keras.Input(shape=(1,), dtype="int64", name="int_col") - string_in = tf.keras.Input(shape=(1,), dtype="int64", name="string_col") - - # Feed the lookup layers into an embedding. - int_embedding = tf.keras.layers.Embedding(VOCAB_SIZE + 1, 8, input_length=1) - int_out = int_embedding(int_in) - int_out = tf.keras.layers.Flatten()(int_out) - string_embedding = tf.keras.layers.Embedding( - VOCAB_SIZE + 1, 8, input_length=1 - ) - string_out = string_embedding(string_in) - string_out = tf.keras.layers.Flatten()(string_out) - - # Concatenate outputs. - concatate = tf.keras.layers.Concatenate() - # Feed our preprocessed inputs into a simple MLP. - x = concatate((float_in, int_out, string_out)) - x = tf.keras.layers.Dense(32, activation="relu")(x) - x = tf.keras.layers.Dense(32, activation="relu")(x) - outputs = tf.keras.layers.Dense(1, activation="softmax")(x) - return tf.keras.Model(inputs=(float_in, int_in, string_in), outputs=outputs) diff --git a/keras/integration_test/py_metric_test.py b/keras/integration_test/py_metric_test.py deleted file mode 100644 index f07f019ab12..00000000000 --- a/keras/integration_test/py_metric_test.py +++ /dev/null @@ -1,72 +0,0 @@ -"""Test Model.fit with a PyMetric.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import Sequential -from keras import layers -from keras import losses -from keras import metrics -from keras.testing_infra import test_combinations - - -def get_dataset(num_batches=5, batch_size=2): - x = tf.random.uniform((num_batches * batch_size, 100)) - y = tf.random.uniform((num_batches * batch_size, 2)) - dataset = ( - tf.data.Dataset.from_tensor_slices((x, y)) - .prefetch(batch_size * 2) - .batch(batch_size) - ) - return dataset - - -class CountingPyMetric(metrics.PyMetric): - """A test-only PyMetric which simply counts how many results it's seen.""" - - def update_state(self, y_true, y_pred, sample_weight=None): - self.y_pred.append(y_pred) - - def reset_state(self): - self.y_pred = [] - - def result(self): - return len(self.y_pred) - - -class PyMetricTest(test_combinations.TestCase): - @parameterized.named_parameters(("eager", True), ("graph", False)) - def test_fit(self, run_eagerly): - num_batches = 5 - dataset = get_dataset(num_batches=num_batches) - - counting_metric = CountingPyMetric() - - model = Sequential(layers.Dense(2)) - model.compile( - loss=losses.BinaryCrossentropy(), - metrics=[counting_metric], - run_eagerly=run_eagerly, - ) - model.fit(dataset, epochs=1) - - self.assertEqual(counting_metric.result(), num_batches) - - @parameterized.named_parameters(("eager", True), ("graph", False)) - def test_evaluate(self, run_eagerly): - num_batches = 5 - dataset = get_dataset(num_batches=num_batches) - - model = Sequential(layers.Dense(2)) - model.compile( - loss=losses.BinaryCrossentropy(), - metrics=[CountingPyMetric()], - run_eagerly=run_eagerly, - ) - loss, count = model.evaluate(dataset) - - self.assertEqual(count, num_batches) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/integration_test/saved_model_test.py b/keras/integration_test/saved_model_test.py deleted file mode 100644 index 63cbf28fc84..00000000000 --- a/keras/integration_test/saved_model_test.py +++ /dev/null @@ -1,251 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import os -import tempfile - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - - -def cycle(obj, cycles, signatures=None): - to_save = obj - # TODO(vbardiovsky): It would be nice if exported protos reached a fixed - # point w.r.t. saving/restoring, ideally after 2nd saving. - for _ in range(cycles): - path = tempfile.mkdtemp(prefix=tf.compat.v1.test.get_temp_dir()) - # If available, we'll run the save and restore preferring the GPU. This - # just makes sure we aren't throwing errors and have enough - # device("CPU") blocks to satisfy the placer. - device = ( - "/device:GPU:0" if tf.test.is_gpu_available() else "/device:CPU:0" - ) - with tf.device(device): - tf.saved_model.save(to_save, path, signatures) - loaded = tf.saved_model.load(path) - to_save = loaded - return loaded - - -class _ModelWithOptimizer(tf.train.Checkpoint): - def __init__(self): - self.dense = tf.keras.layers.Dense(1) - self.optimizer = tf.keras.optimizers.Adam(0.01) - - @tf.function( - input_signature=( - tf.TensorSpec([None, 2], tf.float32), - tf.TensorSpec([None], tf.float32), - ) - ) - def call(self, x, y): - with tf.GradientTape() as tape: - loss = tf.math.reduce_mean((self.dense(x) - y) ** 2.0) - trainable_variables = self.dense.trainable_variables - gradients = tape.gradient(loss, trainable_variables) - self.optimizer.apply_gradients(zip(gradients, trainable_variables)) - return {"loss": loss} - - -def _import_and_infer(save_dir, inputs, signature_key="serving_default"): - """Import a SavedModel into a TF 1.x-style graph and run `signature_key`.""" - graph = tf.Graph() - with graph.as_default(), tf.compat.v1.Session() as session: - model = tf.compat.v1.saved_model.load(session, ["serve"], save_dir) - return _run_signature(session, model, inputs, signature_key) - - -def _run_signature(session, meta_graph_def, inputs, signature_key): - signature = meta_graph_def.signature_def[signature_key] - assert set(inputs.keys()) == set(signature.inputs.keys()) - feed_dict = {} - for arg_name in inputs.keys(): - input_tensor = session.graph.get_tensor_by_name( - signature.inputs[arg_name].name - ) - feed_dict[input_tensor] = inputs[arg_name] - output_dict = {} - for output_name, output_tensor_info in signature.outputs.items(): - output_dict[output_name] = session.graph.get_tensor_by_name( - output_tensor_info.name - ) - return session.run(output_dict, feed_dict=feed_dict) - - -class SaveTest(tf.test.TestCase): - def test_unbuilt_model_does_not_prevent_saving(self): - root = tf.train.Checkpoint( - model=tf.keras.Sequential([tf.keras.layers.Dense(2)]) - ) - tf.saved_model.save( - root, os.path.join(self.get_temp_dir(), "saved_model") - ) - - def test_optimizer(self): - x = tf.constant([[3.0, 4.0]]) - y = tf.constant([2.0]) - model = _ModelWithOptimizer() - first_loss = model.call(x, y) - save_dir = os.path.join(self.get_temp_dir(), "saved_model") - tf.saved_model.save(model, save_dir, model.call) - second_loss = model.call(x, y) - self.assertNotEqual(first_loss, second_loss) - self.assertAllClose( - second_loss, - _import_and_infer(save_dir, {"x": [[3.0, 4.0]], "y": [2.0]}), - ) - - def test_single_method_default_signature(self): - model = _ModelWithOptimizer() - x = tf.constant([[3.0, 4.0]]) - y = tf.constant([2.0]) - model.call(x, y) - save_dir = os.path.join(self.get_temp_dir(), "saved_model") - tf.saved_model.save(model, save_dir) - self.assertIn( - "loss", _import_and_infer(save_dir, {"x": [[3.0, 4.0]], "y": [2.0]}) - ) - - -@parameterized.named_parameters( - dict(testcase_name="ReloadOnce", cycles=1), - dict(testcase_name="ReloadTwice", cycles=2), - dict(testcase_name="ReloadThrice", cycles=3), -) -class LoadTest(tf.test.TestCase, parameterized.TestCase): - def test_optimizer(self, cycles): - class _HasOptimizer(tf.Module): - def __init__(self): - super().__init__() - self.layer = tf.keras.layers.Dense(1) - self.optimizer = tf.keras.optimizers.Adam(0.01) - - @tf.function - def __call__(self, x): - return self.layer(x) - - @tf.function - def train(self, x, y): - with tf.GradientTape() as tape: - predicted = self(x) - loss = tf.math.reduce_sum(tf.math.abs(y - predicted)) - train_vars = self.layer.trainable_variables - grads = tape.gradient(loss, train_vars) - self.optimizer.apply_gradients(zip(grads, train_vars)) - - root = _HasOptimizer() - train_input = dict(x=tf.constant([[1.0]]), y=tf.constant([[2.0]])) - root.train(**train_input) - imported = cycle(root, cycles) - self.assertAllClose( - root.optimizer.learning_rate.numpy(), - imported.optimizer.learning_rate.numpy(), - ) - self.assertAllClose( - root(tf.constant([[-0.5]])), imported(tf.constant([[-0.5]])) - ) - root.train(**train_input) - imported.train(**train_input) - self.assertAllClose( - root(tf.constant([[-0.5]])), imported(tf.constant([[-0.5]])) - ) - - def test_model_with_custom_function_attached(self, cycles): - root = tf.train.Checkpoint( - model=tf.keras.Sequential([tf.keras.layers.Dense(2)]) - ) - - @tf.function - def _use_sequential(x): - return root.model.call(x) - - root.model.traced_call = _use_sequential - - original = root.model.traced_call(tf.zeros([1, 1])).numpy() - root = cycle(root, cycles) - self.assertAllEqual( - original, root.model.traced_call(tf.zeros([1, 1])).numpy() - ) - - -@parameterized.named_parameters( - dict(testcase_name="ReloadOnce", cycles=1), - dict(testcase_name="ReloadTwice", cycles=2), - dict(testcase_name="ReloadThrice", cycles=3), -) -class KerasLoadTest(tf.test.TestCase, parameterized.TestCase): - def test_dense_features_layer(self, cycles): - columns = [ - tf.feature_column.numeric_column("x"), - tf.feature_column.numeric_column("y"), - ] - layer = tf.keras.layers.DenseFeatures(columns) - model = tf.keras.Sequential([layer]) - model_input = {"x": tf.constant([[1.0]]), "y": tf.constant([[2.0]])} - self.assertAllClose([[1.0, 2.0]], model.predict(model_input, steps=1)) - loaded = cycle(model, cycles) - (output,) = loaded._default_save_signature(model_input).values() - self.assertAllClose([[1.0, 2.0]], output) - (signature_output,) = loaded.signatures["serving_default"]( - **model_input - ).values() - self.assertAllClose([[1.0, 2.0]], signature_output) - - def test_dense_features_layer_fit(self, cycles): - columns = [tf.feature_column.numeric_column("x")] - model = tf.keras.Sequential( - [tf.keras.layers.DenseFeatures(columns), tf.keras.layers.Dense(1)] - ) - model_input = {"x": tf.constant([[1.0]])} - model.compile(optimizer="adam", loss="mse", run_eagerly=True) - model.fit(model_input, tf.constant([[3.0]])) - loaded = cycle(model, cycles) - loaded._default_save_signature(model_input) - loaded.signatures["serving_default"](**model_input) - - def test_multi_output_layer(self, cycles): - - inp = tf.keras.Input(name="inp", shape=(None,), dtype=tf.float32) - - class _MultiOutput(tf.keras.layers.Layer): - def call(self, x): - return x + 1.0, x + 2.0 - - out = _MultiOutput(name="out")(inp) - model = tf.keras.Model(inp, out) - loaded = cycle(model, cycles) - self.assertAllClose( - dict(out=2.0, out_1=3.0), - loaded.signatures["serving_default"](tf.constant(1.0)), - ) - - def test_functional_model_with_conv(self, cycles): - x = tf.keras.Input(name="x", shape=(None, None, 3), dtype=tf.float32) - conved = tf.keras.layers.Conv2D( - filters=3, kernel_size=3, dilation_rate=2 - )(x) - model = tf.keras.Model([x], conved) - model_input = tf.ones((1, 10, 10, 3)) - initial_output = model.predict([model_input]) - model = cycle(model, cycles) - self.assertAllClose( - [initial_output], - list(model.signatures["serving_default"](model_input).values()), - ) - - -if __name__ == "__main__": - if tf.__internal__.tf2.enabled(): - tf.test.main() diff --git a/keras/integration_test/saving_v3_test.py b/keras/integration_test/saving_v3_test.py deleted file mode 100644 index de4906cbabb..00000000000 --- a/keras/integration_test/saving_v3_test.py +++ /dev/null @@ -1,130 +0,0 @@ -"""Test Model.fit across a diverse range of models.""" - -import os - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.integration_test.models import bert -from keras.integration_test.models import dcgan -from keras.integration_test.models import edge_case_model -from keras.integration_test.models import input_spec -from keras.integration_test.models import low_level_model -from keras.integration_test.models import mini_unet -from keras.integration_test.models import mini_xception -from keras.integration_test.models import retinanet -from keras.integration_test.models import structured_data_classification -from keras.integration_test.models import text_classification -from keras.integration_test.models import timeseries_forecasting -from keras.integration_test.models import vae -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -def get_dataset(data_specs, batch_size): - values = tf.nest.map_structure(input_spec.spec_to_value, data_specs) - dataset = ( - tf.data.Dataset.from_tensor_slices(values) - .prefetch(batch_size * 2) - .batch(batch_size) - ) - return dataset - - -@test_utils.run_v2_only -class SavingV3Test(test_combinations.TestCase): - @parameterized.named_parameters( - ("bert", bert), - ("edge_case_model", edge_case_model), - # ("efficientnet_v2", efficientnet_v2), # Too expensive to run on CI - ("low_level_model", low_level_model), - ("mini_unet", mini_unet), - ("mini_xception", mini_xception), - ("retinanet", retinanet), - ("structured_data_classification", structured_data_classification), - ("text_classification", text_classification), - ("timeseries_forecasting", timeseries_forecasting), - ) - def test_saving_v3(self, module): - batch_size = 2 - data_specs = module.get_data_spec(batch_size * 2) - dataset = get_dataset(data_specs, batch_size) - for batch in dataset.take(1): - pass - if isinstance(batch, tuple): - batch = batch[0] - - model = module.get_model( - build=True, - compile=True, - jit_compile=False, - include_preprocessing=True, - ) - model.fit(dataset, epochs=1, steps_per_epoch=1) - temp_filepath = os.path.join( - self.get_temp_dir(), f"{module.__name__}.keras" - ) - model.save(temp_filepath, save_format="keras_v3") - with tf.keras.utils.custom_object_scope(module.get_custom_objects()): - new_model = tf.keras.models.load_model(temp_filepath) - - # Test model weights - self.assertIs(new_model.__class__, model.__class__) - self.assertEqual(len(model.get_weights()), len(new_model.get_weights())) - for w1, w2 in zip(model.get_weights(), new_model.get_weights()): - if w1.dtype == "object": - self.assertEqual(str(w1), str(w2)) - else: - self.assertAllClose(w1, w2, atol=1e-6) - - # Test forward pass - self.assertAllClose(new_model(batch), model(batch), atol=1e-6) - - # Test optimizer state - if hasattr(model, "optimizer"): - self.assertEqual( - len(model.optimizer.variables()), - len(new_model.optimizer.variables()), - ) - for v1, v2 in zip( - model.optimizer.variables(), new_model.optimizer.variables() - ): - self.assertAllClose(v1.numpy(), v2.numpy(), atol=1e-6) - - # Test training still works - new_model.fit(dataset, epochs=1, steps_per_epoch=1) - - @parameterized.named_parameters(("dcgan", dcgan), ("vae", vae)) - def test_saving_v3_no_call(self, module): - batch_size = 2 - data_specs = module.get_data_spec(batch_size * 2) - dataset = get_dataset(data_specs, batch_size) - - model = module.get_model( - build=True, - compile=True, - jit_compile=False, - include_preprocessing=True, - ) - temp_filepath = os.path.join( - self.get_temp_dir(), f"{module.__name__}.keras" - ) - model.save(temp_filepath, save_format="keras_v3") - with tf.keras.utils.custom_object_scope(module.get_custom_objects()): - new_model = tf.keras.models.load_model(temp_filepath) - - # Test model weights - self.assertIs(new_model.__class__, model.__class__) - self.assertEqual(len(model.get_weights()), len(new_model.get_weights())) - for w1, w2 in zip(model.get_weights(), new_model.get_weights()): - if w1.dtype == "object": - self.assertEqual(str(w1), str(w2)) - else: - self.assertAllClose(w1, w2, atol=1e-6) - - # Test training still works - new_model.fit(dataset, epochs=1, steps_per_epoch=1) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/integration_test/tf_trt_test.py b/keras/integration_test/tf_trt_test.py deleted file mode 100644 index 93f18013ed9..00000000000 --- a/keras/integration_test/tf_trt_test.py +++ /dev/null @@ -1,71 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import os -import tempfile - -import tensorflow.compat.v2 as tf -import tensorflow_text as tf_text -from absl import flags - - -class ConvertResource(tf.test.TestCase): - def testConvertResource(self): - """Test general resource inputs don't crash the converter.""" - if not tf.test.is_built_with_cuda(): - self.skipTest("test is only applicable with CUDA") - - class TokenizeLayer(tf.keras.layers.Layer): - def __init__(self, vocab_file): - super().__init__() - serialized_proto = tf.compat.v1.gfile.GFile( - vocab_file, "rb" - ).read() - self.tokenizer = tf_text.SentencepieceTokenizer( - model=serialized_proto, add_bos=True, add_eos=True - ) - - def call(self, inputs): - word_ids = self.tokenizer.tokenize(inputs) - word_ids = word_ids.to_tensor( - default_value=1, shape=(None, 192) - ) - return word_ids - - vocab_file = os.path.join( - flags.FLAGS["test_srcdir"].value, - "org_keras/keras", - "integration_test/data/sentencepiece.pb", - ) - # vocab_file = tf.compat.v1.test.test_src_dir_path( - # "python/keras/integration_test/data/sentencepiece.pb") - output_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) - - # Create and save a Tokenizer - tokenizer = TokenizeLayer(vocab_file) - inputs = tf.keras.layers.Input(shape=(), dtype=tf.dtypes.string) - tokens = tokenizer(inputs) - model = tf.keras.models.Model(inputs=inputs, outputs=tokens) - model.save(output_dir) - - converter = tf.experimental.tensorrt.Converter( - input_saved_model_dir=output_dir, - conversion_params=tf.experimental.tensorrt.ConversionParams(), - ) - converter.convert() - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/integration_test/tpu_strategy_test.py b/keras/integration_test/tpu_strategy_test.py deleted file mode 100644 index de02d1e2746..00000000000 --- a/keras/integration_test/tpu_strategy_test.py +++ /dev/null @@ -1,289 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for TPUStrategy.""" - -import random -import tempfile - -import tensorflow.compat.v2 as tf -from absl import flags - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - -FLAGS = flags.FLAGS -flags.DEFINE_string("tpu", "", "Name of TPU to connect to.") -flags.DEFINE_string("project", None, "Name of GCP project with TPU.") -flags.DEFINE_string("zone", None, "Name of GCP zone with TPU.") - -# These vocabularies usually come from TFT or a Beam pipeline. -FEATURE_VOCAB = [ - "avenger", - "ironman", - "batman", - "hulk", - "spiderman", - "kingkong", - "wonder_woman", -] -LABEL_VOCAB = ["yes", "no"] - - -def get_tpu_cluster_resolver(): - resolver = tf.distribute.cluster_resolver.TPUClusterResolver( - tpu=FLAGS.tpu, - zone=FLAGS.zone, - project=FLAGS.project, - ) - return resolver - - -def get_tpu_strategy(): - resolver = get_tpu_cluster_resolver() - tf.config.experimental_connect_to_cluster(resolver) - tf.tpu.experimental.initialize_tpu_system(resolver) - return tf.distribute.experimental.TPUStrategy(resolver) - - -class TpuStrategyTest(tf.test.TestCase): - def define_kpls_for_training(self, use_adapt): - if use_adapt: - feature_lookup_layer = tf.keras.layers.StringLookup( - num_oov_indices=1 - ) - feature_lookup_layer.adapt(FEATURE_VOCAB) - label_lookup_layer = tf.keras.layers.StringLookup( - num_oov_indices=0, mask_token=None - ) - label_lookup_layer.adapt(LABEL_VOCAB) - else: - feature_lookup_layer = tf.keras.layers.StringLookup( - vocabulary=FEATURE_VOCAB, num_oov_indices=1 - ) - label_lookup_layer = tf.keras.layers.StringLookup( - vocabulary=LABEL_VOCAB, num_oov_indices=0, mask_token=None - ) - - raw_feature_input = tf.keras.layers.Input( - shape=(3,), dtype=tf.dtypes.string, name="feature", ragged=True - ) - feature_id_input = feature_lookup_layer(raw_feature_input) - feature_mapper = tf.keras.Model( - {"features": raw_feature_input}, feature_id_input - ) - - raw_label_input = tf.keras.layers.Input( - shape=(1,), dtype=tf.dtypes.string, name="label" - ) - label_id_input = label_lookup_layer(raw_label_input) - label_mapper = tf.keras.Model( - {"label": raw_label_input}, label_id_input - ) - - return feature_mapper, label_mapper - - def define_inverse_lookup_layer(self): - # Only needed for serving. - label_inverse_lookup_layer = tf.keras.layers.StringLookup( - num_oov_indices=0, - mask_token=None, - vocabulary=LABEL_VOCAB, - invert=True, - ) - return label_inverse_lookup_layer - - def test_keras_metric_outside_strategy_scope_per_replica(self): - if not tf.compat.v1.executing_eagerly(): - self.skipTest( - "connect_to_cluster() can only be called in eager mode" - ) - strategy = get_tpu_strategy() - metric = tf.keras.metrics.Mean("test_metric", dtype=tf.float32) - - dataset = tf.data.Dataset.range( - strategy.num_replicas_in_sync * 2 - ).batch(2) - dataset = strategy.experimental_distribute_dataset(dataset) - - @tf.function - def step_fn(i): - metric.update_state(i) - - with self.assertRaisesRegex( - ValueError, - "Trying to run metric.update_state in replica context", - ): - with strategy.scope(): - for i in dataset: - strategy.run(step_fn, args=(i,)) - - @tf_test_utils.disable_mlir_bridge( - "TODO(b/168036682): Support dynamic padder" - ) - def test_train_and_serve(self): - if not tf.compat.v1.executing_eagerly(): - self.skipTest( - "connect_to_cluster() can only be called in eager mode" - ) - strategy = get_tpu_strategy() - use_adapt = False - - with strategy.scope(): - feature_mapper, label_mapper = self.define_kpls_for_training( - use_adapt - ) - - def dataset_fn(_): - def feature_and_label_gen(): - # Generator of dataset. - while True: - features = random.sample(FEATURE_VOCAB, 3) - label = ["yes"] if "avenger" in features else ["no"] - yield {"features": features, "label": label} - - raw_dataset = ( - tf.data.Dataset.from_generator( - feature_and_label_gen, - output_signature={ - "features": tf.TensorSpec([3], tf.dtypes.string), - "label": tf.TensorSpec([1], tf.dtypes.string), - }, - ) - .shuffle(100) - .batch(32) - ) - - train_dataset = raw_dataset.map( - lambda x: ( - {"features": feature_mapper(x["features"])}, - label_mapper(x["label"]), - ) - ) - return train_dataset - - # Create the model. The input needs to be compatible with KPLs. - model_input = tf.keras.layers.Input( - shape=(3,), dtype=tf.dtypes.int64, name="model_input" - ) - - # input_dim includes a mask token and an oov token. - emb_output = tf.keras.layers.Embedding( - input_dim=len(FEATURE_VOCAB) + 2, output_dim=20 - )(model_input) - emb_output = tf.math.reduce_mean(emb_output, axis=1) - dense_output = tf.keras.layers.Dense(units=1, activation="sigmoid")( - emb_output - ) - model = tf.keras.Model({"features": model_input}, dense_output) - - optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.1) - accuracy = tf.keras.metrics.Accuracy() - - @tf.function - def train_step(iterator): - """The step function for one training step.""" - - def step_fn(inputs): - """The computation to run on each TPU device.""" - features, labels = inputs - with tf.GradientTape() as tape: - pred = model(features, training=True) - loss = tf.keras.losses.binary_crossentropy(labels, pred) - loss = tf.nn.compute_average_loss(loss) - grads = tape.gradient(loss, model.trainable_variables) - optimizer.apply_gradients( - list(zip(grads, model.trainable_variables)) - ) - - actual_pred = tf.cast( - tf.math.greater(pred, 0.5), tf.dtypes.int64 - ) - accuracy.update_state(labels, actual_pred) - - strategy.run(step_fn, args=(next(iterator),)) - - distributed_dataset = strategy.distribute_datasets_from_function( - dataset_fn - ) - distributed_iterator = iter(distributed_dataset) - num_epochs = 4 - num_steps = 7 - for _ in range(num_epochs): - accuracy.reset_state() - for _ in range(num_steps): - train_step(distributed_iterator) - - self.assertGreater(accuracy.result().numpy(), 0.5) - self.assertEqual( - optimizer.iterations.numpy(), num_epochs * num_steps - ) - - # Create a saved model. - model.feature_mapper = feature_mapper - model.label_mapper = label_mapper - model.label_inverse_lookup_layer = ( - self.define_inverse_lookup_layer() - ) - - def create_serving_signature(model): - @tf.function - def serve_fn(raw_features): - raw_features = tf.expand_dims(raw_features, axis=0) - transformed_features = model.feature_mapper(raw_features) - outputs = model(transformed_features) - outputs = tf.squeeze(outputs, axis=0) - outputs = tf.cast( - tf.math.greater(outputs, 0.5), tf.dtypes.int64 - ) - decoded_outputs = model.label_inverse_lookup_layer(outputs) - return tf.squeeze(decoded_outputs, axis=0) - - # Serving does NOT have batch dimension - return serve_fn.get_concrete_function( - tf.TensorSpec( - shape=(3), dtype=tf.dtypes.string, name="example" - ) - ) - - serving_fn = create_serving_signature(model) - - saved_model_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) - model.save( - saved_model_dir, - save_format="tf", - signatures={"serving_default": serving_fn}, - ) - - # Test the saved_model. - loaded_serving_fn = tf.keras.models.load_model( - saved_model_dir - ).signatures["serving_default"] - - # Check model calling with serving signature. - prediction1 = loaded_serving_fn( - tf.constant(["avenger", "ironman", "avenger"]) - )["output_0"] - self.assertIn(prediction1, ("yes", "no")) - - prediction2 = loaded_serving_fn( - tf.constant(["ironman", "ironman", "unknown"]) - )["output_0"] - self.assertIn(prediction2, ("yes", "no")) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/integration_test/vectorized_map_test.py b/keras/integration_test/vectorized_map_test.py deleted file mode 100644 index 5b215280b22..00000000000 --- a/keras/integration_test/vectorized_map_test.py +++ /dev/null @@ -1,44 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import tensorflow.compat.v2 as tf - - -class VectorizedMapTest(tf.test.TestCase): - def test_vectorized_map(self): - batch_size = 10 - num_features = 32 - layer = tf.keras.layers.Dense(1) - - def model_fn(arg): - with tf.GradientTape() as g: - inp, label = arg - inp = tf.expand_dims(inp, 0) - label = tf.expand_dims(label, 0) - prediction = layer(inp) - loss = tf.nn.l2_loss(label - prediction) - return g.gradient(loss, (layer.kernel, layer.bias)) - - inputs = tf.random.uniform([batch_size, num_features]) - labels = tf.random.uniform([batch_size, 1]) - per_example_gradients = tf.vectorized_map(model_fn, (inputs, labels)) - self.assertEqual( - per_example_gradients[0].shape, (batch_size, num_features, 1) - ) - self.assertEqual(per_example_gradients[1].shape, (batch_size, 1)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/keras.bzl b/keras/keras.bzl deleted file mode 100644 index 42448896983..00000000000 --- a/keras/keras.bzl +++ /dev/null @@ -1,164 +0,0 @@ -"""Keras common starlark macros.""" - -# Macro to run Keras py_tests against pip installation. -def py_test(deps = [], data = [], kernels = [], **kwargs): - native.py_test( - deps = select({ - "//conditions:default": deps, - "//keras:no_keras_py_deps": [], - }), - data = data + kernels, - **kwargs - ) - -# This is a trimmed down version of tf_py_test since a lot of internal -# features are just not available to OSS build, and also not applicable to Keras. -# So far xla, grpc and tfrt are ignored. -def tf_py_test( - name, - srcs, - size = "medium", - data = [], - deps = [], - main = None, - args = [], - tags = [], - shard_count = 1, - additional_visibility = [], - kernels = [], - flaky = 0, - xla_enable_strict_auto_jit = False, - xla_enabled = False, - grpc_enabled = False, - tfrt_enabled = False, - tfrt_enabled_internal = False, - **kwargs): - kwargs.setdefault("python_version", "PY3") - kwargs.setdefault("srcs_version", "PY3") - py_test( - name = name, - size = size, - srcs = srcs, - args = args, - data = data, - flaky = flaky, - kernels = kernels, - main = main, - shard_count = shard_count, - tags = tags, - deps = deps, - **kwargs - ) - -# This is a trimmed down version of cuda_py_test since a lot of internal -# features are just not available to OSS build, and also not applicable to Keras. -# So far xla, grpc and tfrt are ignored. -def cuda_py_test( - name, - srcs, - size = "medium", - data = [], - main = None, - args = [], - shard_count = 1, - kernels = [], - tags = [], - flaky = 0, - xla_enable_strict_auto_jit = False, - xla_enabled = False, - grpc_enabled = False, - xla_tags = [], # additional tags for xla_gpu tests - **kwargs): - if main == None: - main = name + ".py" - for config in ["cpu", "gpu"]: - test_name = name - test_tags = tags - if config == "gpu": - test_tags = test_tags + ["requires-gpu-nvidia", "gpu"] - if xla_enable_strict_auto_jit: - tf_py_test( - name = test_name + "_xla_" + config, - size = size, - srcs = srcs, - args = args, - data = data, - flaky = flaky, - grpc_enabled = grpc_enabled, - kernels = kernels, - main = main, - shard_count = shard_count, - tags = test_tags + xla_tags + ["xla", "manual"], - xla_enabled = xla_enabled, - xla_enable_strict_auto_jit = True, - **kwargs - ) - if config == "gpu": - test_name += "_gpu" - tf_py_test( - name = test_name, - size = size, - srcs = srcs, - args = args, - data = data, - flaky = flaky, - grpc_enabled = grpc_enabled, - kernels = kernels, - main = main, - shard_count = shard_count, - tags = test_tags, - xla_enabled = xla_enabled, - xla_enable_strict_auto_jit = False, - **kwargs - ) - -def tpu_py_test(**kwargs): - # Skip the tpu test for Keras oss. - pass - -# This is a trimmed down version of distribute_py_test since a lot of internal -# features are just not available to OSS build, and also not applicable to Keras. -# Especially the TPU tests branches are removed. -def distribute_py_test( - name, - srcs = [], - size = "medium", - deps = [], - tags = [], - data = [], - main = None, - args = [], - tpu_args = [], - tpu_tags = None, - shard_count = 1, - full_precision = False, - xla_enable_strict_auto_jit = True, - disable_mlir_bridge = True, - disable_tpu_use_tfrt = None, - **kwargs): - # Default to PY3 since multi worker tests require PY3. - kwargs.setdefault("python_version", "PY3") - main = main if main else "%s.py" % name - - cuda_py_test( - name = name, - srcs = srcs, - data = data, - main = main, - size = size, - deps = deps, - shard_count = shard_count, - tags = tags, - args = args, - **kwargs - ) - -# We are never indexing generated code in the OSS build, but still -# return a select() for consistency. -def if_indexing_source_code( - if_true, # @unused - if_false): - """Return a select() on whether or not we are building for source code indexing.""" - return select({ - "//conditions:default": if_false, - }) diff --git a/keras/kokoro/github/ubuntu/cpu/build.sh b/keras/kokoro/github/ubuntu/cpu/build.sh deleted file mode 100644 index a826667f2eb..00000000000 --- a/keras/kokoro/github/ubuntu/cpu/build.sh +++ /dev/null @@ -1,48 +0,0 @@ -#!/bin/bash -# Copyright 2020 Google Inc. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -set -e -set -x - -cd "${KOKORO_ROOT}/" - -sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1 - -PYTHON_BINARY="/usr/bin/python3.9" - -"${PYTHON_BINARY}" -m venv venv -source venv/bin/activate - -# Check the python version -python --version -python3 --version - -cd "src/github/keras" - -# Keep pip version at 20.1.1 to avoid the slow resolver issue. -pip install -U pip==20.1.1 setuptools -pip install -r requirements.txt -# Uninstall the keras-nightly package so that we will only test the version of -# keras code from local workspace. -pip uninstall -y keras-nightly - -# TODO(scottzhu): Using --define=use_fast_cpp_protos=false to suppress the -# protobuf build issue for now. We should have a proper solution for this. -bazel test --test_timeout 300,450,1200,3600 --test_output=errors --keep_going \ - --define=use_fast_cpp_protos=false \ - --build_tests_only \ - --build_tag_filters="-no_oss,-oss_excluded" \ - --test_tag_filters="-no_oss,-oss_excluded" \ - -- //keras/... diff --git a/keras/kokoro/github/ubuntu/cpu/continuous.cfg b/keras/kokoro/github/ubuntu/cpu/continuous.cfg deleted file mode 100644 index 2737070a30a..00000000000 --- a/keras/kokoro/github/ubuntu/cpu/continuous.cfg +++ /dev/null @@ -1,8 +0,0 @@ -build_file: "keras/keras/kokoro/github/ubuntu/cpu/build.sh" - -action { - define_artifacts { - regex: "**/sponge_log.log" - regex: "**/sponge_log.xml" - } -} diff --git a/keras/kokoro/github/ubuntu/cpu/presubmit.cfg b/keras/kokoro/github/ubuntu/cpu/presubmit.cfg deleted file mode 100644 index 2737070a30a..00000000000 --- a/keras/kokoro/github/ubuntu/cpu/presubmit.cfg +++ /dev/null @@ -1,8 +0,0 @@ -build_file: "keras/keras/kokoro/github/ubuntu/cpu/build.sh" - -action { - define_artifacts { - regex: "**/sponge_log.log" - regex: "**/sponge_log.xml" - } -} diff --git a/keras/kokoro/github/ubuntu/gpu/build.sh b/keras/kokoro/github/ubuntu/gpu/build.sh deleted file mode 100644 index d00ab034e32..00000000000 --- a/keras/kokoro/github/ubuntu/gpu/build.sh +++ /dev/null @@ -1,68 +0,0 @@ -#!/bin/bash -# Copyright 2020 Google Inc. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -set -e -set -x - -cd "${KOKORO_ROOT}/" - -sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1 - -PYTHON_BINARY="/usr/bin/python3.9" - -"${PYTHON_BINARY}" -m venv venv -source venv/bin/activate - -# Check the python version -python --version -python3 --version - -cd "src/github/keras" - -# Keep pip version at 20.1.1 to avoid the slow resolver issue. -pip install -U pip==20.1.1 setuptools -pip install -r requirements.txt -# Uninstall the keras-nightly package so that we will only test the version of -# keras code from local workspace. -pip uninstall -y keras-nightly - -# LD Library Path needs to be same as TensorFlow Ubuntu Docker build - -# https://github.com/tensorflow/build/blob/master/tf_sig_build_dockerfiles/Dockerfile -export LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda-11.1/lib64" -export TF_CUDA_COMPUTE_CAPABILITIES=6.0 -TF_CUDA_CONFIG_REPO="@ubuntu16.04-py3-gcc7_manylinux2010-cuda10.1-cudnn7-tensorrt6.0_config_cuda" - -tag_filters="gpu,-no_gpu,-nogpu,-benchmark-test,-no_oss,-oss_excluded,-oss_serial,-no_gpu_presubmit" -# There are only 4 GPU available on the local test machine. -TF_GPU_COUNT=4 -TF_TESTS_PER_GPU=8 -LOCAL_TEST_JOBS=32 # TF_GPU_COUNT * TF_TESTS_PER_GPU - -# TODO(scottzhu): Using --define=use_fast_cpp_protos=false to suppress the -# protobuf build issue for now. We should have a proper solution for this. -bazel test --test_timeout 300,600,1200,3600 --test_output=errors --keep_going \ - --define=use_fast_cpp_protos=false \ - --build_tests_only \ - --action_env=TF_CUDA_COMPUTE_CAPABILITIES="${TF_CUDA_COMPUTE_CAPABILITIES}" \ - --action_env=TF_CUDA_CONFIG_REPO="${TF_CUDA_CONFIG_REPO}" \ - --action_env=TF_CUDA_VERSION=10 \ - --action_env=TF_CUDNN_VERSION=7 \ - --test_env=TF_GPU_COUNT=${TF_GPU_COUNT} \ - --test_env=TF_TESTS_PER_GPU=${TF_TESTS_PER_GPU} \ - --build_tag_filters="${tag_filters}" \ - --test_tag_filters="${tag_filters}" \ - --run_under=@org_keras//keras/tools/gpu_build:parallel_gpu_execute \ - --local_test_jobs=${LOCAL_TEST_JOBS} \ - -- //keras/... diff --git a/keras/kokoro/github/ubuntu/gpu/continuous.cfg b/keras/kokoro/github/ubuntu/gpu/continuous.cfg deleted file mode 100644 index a414d8e7248..00000000000 --- a/keras/kokoro/github/ubuntu/gpu/continuous.cfg +++ /dev/null @@ -1,8 +0,0 @@ -build_file: "keras/keras/kokoro/github/ubuntu/gpu/build.sh" - -action { - define_artifacts { - regex: "**/sponge_log.log" - regex: "**/sponge_log.xml" - } -} diff --git a/keras/kokoro/github/ubuntu/gpu/presubmit.cfg b/keras/kokoro/github/ubuntu/gpu/presubmit.cfg deleted file mode 100644 index a414d8e7248..00000000000 --- a/keras/kokoro/github/ubuntu/gpu/presubmit.cfg +++ /dev/null @@ -1,8 +0,0 @@ -build_file: "keras/keras/kokoro/github/ubuntu/gpu/build.sh" - -action { - define_artifacts { - regex: "**/sponge_log.log" - regex: "**/sponge_log.xml" - } -} diff --git a/keras/layers/BUILD b/keras/layers/BUILD deleted file mode 100644 index 9d37404575d..00000000000 --- a/keras/layers/BUILD +++ /dev/null @@ -1,141 +0,0 @@ -# Description: -# Contains the Keras layers (internal TensorFlow version). - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - # TODO(scottzhu): Remove non-keras deps from TF. - default_visibility = [ - "//keras:friends", - "//third_party/tensorflow/python/distribute:__pkg__", - "//third_party/tensorflow/python/feature_column:__pkg__", - "//third_party/tensorflow/python/training/tracking:__pkg__", - "//third_party/tensorflow/tools/pip_package:__pkg__", - ], - licenses = ["notice"], -) - -# A separate build for layers without serialization to avoid circular deps -# with feature column. -py_library( - name = "layers", - srcs = [ - "__init__.py", - "serialization.py", - ], - srcs_version = "PY3", - deps = [ - ":kernelized", - ":noise", - "//keras/feature_column", - "//keras/layers/activation", - "//keras/layers/attention", - "//keras/layers/convolutional", - "//keras/layers/core", - "//keras/layers/locally_connected", - "//keras/layers/merging", - "//keras/layers/normalization", - "//keras/layers/pooling", - "//keras/layers/preprocessing", - "//keras/layers/regularization", - "//keras/layers/reshaping", - "//keras/layers/rnn", - "//keras/premade_models", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "kernelized", - srcs = ["kernelized.py"], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:base_layer", - "//keras/engine:input_spec", - "//keras/initializers", - ], -) - -py_library( - name = "noise", - srcs = ["noise.py"], - srcs_version = "PY3", - deps = [ - "//keras/layers/regularization:alpha_dropout", - "//keras/layers/regularization:gaussian_dropout", - "//keras/layers/regularization:gaussian_noise", - ], -) - -tf_py_test( - name = "tensorflow_op_layer_test", - size = "medium", - srcs = ["tensorflow_op_layer_test.py"], - python_version = "PY3", - shard_count = 3, - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/saving", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "subclassed_layers_test", - size = "medium", - srcs = ["subclassed_layers_test.py"], - python_version = "PY3", - shard_count = 3, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "serialization_test", - size = "small", - srcs = ["serialization_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "kernelized_test", - size = "small", - srcs = ["kernelized_test.py"], - python_version = "PY3", - deps = [ - ":layers", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras:backend", - "//keras/initializers", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "layers_test", - size = "small", - srcs = ["layers_test.py"], - python_version = "PY3", - deps = [ - ":layers", - "//:expect_tensorflow_installed", - ], -) diff --git a/keras/layers/__init__.py b/keras/layers/__init__.py deleted file mode 100644 index 6812e92aa4e..00000000000 --- a/keras/layers/__init__.py +++ /dev/null @@ -1,292 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras layers API.""" - -# isort: off -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer -from keras.engine.base_preprocessing_layer import PreprocessingLayer - -# Generic layers. -from keras.engine.input_layer import Input -from keras.engine.input_layer import InputLayer -from keras.engine.input_spec import InputSpec -from keras.layers.activation.elu import ELU -from keras.layers.activation.leaky_relu import LeakyReLU -from keras.layers.activation.prelu import PReLU - -# Activations layers. -from keras.layers.activation.relu import ReLU -from keras.layers.activation.softmax import Softmax -from keras.layers.activation.thresholded_relu import ThresholdedReLU -from keras.layers.attention.additive_attention import AdditiveAttention -from keras.layers.attention.attention import Attention - -# Attention layers. -from keras.layers.attention.multi_head_attention import MultiHeadAttention - -# Convolution layer aliases. -# Convolution layers. -from keras.layers.convolutional.conv1d import Conv1D -from keras.layers.convolutional.conv1d import Convolution1D -from keras.layers.convolutional.conv1d_transpose import Conv1DTranspose -from keras.layers.convolutional.conv1d_transpose import Convolution1DTranspose -from keras.layers.convolutional.conv2d import Conv2D -from keras.layers.convolutional.conv2d import Convolution2D -from keras.layers.convolutional.conv2d_transpose import Conv2DTranspose -from keras.layers.convolutional.conv2d_transpose import Convolution2DTranspose -from keras.layers.convolutional.conv3d import Conv3D -from keras.layers.convolutional.conv3d import Convolution3D -from keras.layers.convolutional.conv3d_transpose import Conv3DTranspose -from keras.layers.convolutional.conv3d_transpose import Convolution3DTranspose -from keras.layers.convolutional.depthwise_conv1d import DepthwiseConv1D -from keras.layers.convolutional.depthwise_conv2d import DepthwiseConv2D -from keras.layers.convolutional.separable_conv1d import SeparableConv1D -from keras.layers.convolutional.separable_conv1d import SeparableConvolution1D -from keras.layers.convolutional.separable_conv2d import SeparableConv2D -from keras.layers.convolutional.separable_conv2d import SeparableConvolution2D - -# Core layers. -from keras.layers.core.activation import Activation -from keras.layers.core.dense import Dense -from keras.layers.core.einsum_dense import EinsumDense -from keras.layers.core.embedding import Embedding -from keras.layers.core.identity import Identity -from keras.layers.core.lambda_layer import Lambda -from keras.layers.core.masking import Masking -from keras.layers.core.tf_op_layer import ClassMethod -from keras.layers.core.tf_op_layer import InstanceMethod -from keras.layers.core.tf_op_layer import InstanceProperty -from keras.layers.core.tf_op_layer import SlicingOpLambda -from keras.layers.core.tf_op_layer import TFOpLambda - -# Locally-connected layers. -from keras.layers.locally_connected.locally_connected1d import ( - LocallyConnected1D, -) -from keras.layers.locally_connected.locally_connected2d import ( - LocallyConnected2D, -) - -# Merging functions. -# Merging layers. -from keras.layers.merging.add import Add -from keras.layers.merging.add import add -from keras.layers.merging.average import Average -from keras.layers.merging.average import average -from keras.layers.merging.concatenate import Concatenate -from keras.layers.merging.concatenate import concatenate -from keras.layers.merging.dot import Dot -from keras.layers.merging.dot import dot -from keras.layers.merging.maximum import Maximum -from keras.layers.merging.maximum import maximum -from keras.layers.merging.minimum import Minimum -from keras.layers.merging.minimum import minimum -from keras.layers.merging.multiply import Multiply -from keras.layers.merging.multiply import multiply -from keras.layers.merging.subtract import Subtract -from keras.layers.merging.subtract import subtract -from keras.layers.normalization.batch_normalization import ( - SyncBatchNormalization, -) - -# Normalization layers. -from keras.layers.normalization.group_normalization import GroupNormalization -from keras.layers.normalization.layer_normalization import LayerNormalization -from keras.layers.normalization.unit_normalization import UnitNormalization -from keras.layers.normalization.spectral_normalization import ( - SpectralNormalization, -) # noqa: E501 - -# Preprocessing layers. -from keras.layers.preprocessing.category_encoding import CategoryEncoding -from keras.layers.preprocessing.discretization import Discretization -from keras.layers.preprocessing.hashed_crossing import HashedCrossing -from keras.layers.preprocessing.hashing import Hashing - -# Image preprocessing layers. -from keras.layers.preprocessing.image_preprocessing import CenterCrop -from keras.layers.preprocessing.image_preprocessing import RandomBrightness -from keras.layers.preprocessing.image_preprocessing import RandomContrast -from keras.layers.preprocessing.image_preprocessing import RandomCrop -from keras.layers.preprocessing.image_preprocessing import RandomFlip -from keras.layers.preprocessing.image_preprocessing import RandomHeight -from keras.layers.preprocessing.image_preprocessing import RandomRotation -from keras.layers.preprocessing.image_preprocessing import RandomTranslation -from keras.layers.preprocessing.image_preprocessing import RandomWidth -from keras.layers.preprocessing.image_preprocessing import RandomZoom -from keras.layers.preprocessing.image_preprocessing import Rescaling -from keras.layers.preprocessing.image_preprocessing import Resizing -from keras.layers.preprocessing.integer_lookup import IntegerLookup -from keras.layers.preprocessing.normalization import Normalization -from keras.layers.preprocessing.string_lookup import StringLookup -from keras.layers.preprocessing.text_vectorization import TextVectorization -from keras.layers.regularization.activity_regularization import ( - ActivityRegularization, -) -from keras.layers.regularization.alpha_dropout import AlphaDropout - -# Regularization layers. -from keras.layers.regularization.dropout import Dropout -from keras.layers.regularization.gaussian_dropout import GaussianDropout -from keras.layers.regularization.gaussian_noise import GaussianNoise -from keras.layers.regularization.spatial_dropout1d import SpatialDropout1D -from keras.layers.regularization.spatial_dropout2d import SpatialDropout2D -from keras.layers.regularization.spatial_dropout3d import SpatialDropout3D - -# Reshaping layers. -from keras.layers.reshaping.cropping1d import Cropping1D -from keras.layers.reshaping.cropping2d import Cropping2D -from keras.layers.reshaping.cropping3d import Cropping3D -from keras.layers.reshaping.flatten import Flatten -from keras.layers.reshaping.permute import Permute -from keras.layers.reshaping.repeat_vector import RepeatVector -from keras.layers.reshaping.reshape import Reshape -from keras.layers.reshaping.up_sampling1d import UpSampling1D -from keras.layers.reshaping.up_sampling2d import UpSampling2D -from keras.layers.reshaping.up_sampling3d import UpSampling3D -from keras.layers.reshaping.zero_padding1d import ZeroPadding1D -from keras.layers.reshaping.zero_padding2d import ZeroPadding2D -from keras.layers.reshaping.zero_padding3d import ZeroPadding3D - -if tf.__internal__.tf2.enabled(): - from keras.layers.normalization.batch_normalization import ( - BatchNormalization, - ) - from keras.layers.normalization.batch_normalization_v1 import ( - BatchNormalization as BatchNormalizationV1, - ) - - BatchNormalizationV2 = BatchNormalization -else: - from keras.layers.normalization.batch_normalization import ( - BatchNormalization as BatchNormalizationV2, - ) - from keras.layers.normalization.batch_normalization_v1 import ( - BatchNormalization, - ) - - BatchNormalizationV1 = BatchNormalization - -# Kernelized layers. -from keras.layers.kernelized import RandomFourierFeatures - -# Pooling layer aliases. -# Pooling layers. -from keras.layers.pooling.average_pooling1d import AveragePooling1D -from keras.layers.pooling.average_pooling1d import AvgPool1D -from keras.layers.pooling.average_pooling2d import AveragePooling2D -from keras.layers.pooling.average_pooling2d import AvgPool2D -from keras.layers.pooling.average_pooling3d import AveragePooling3D -from keras.layers.pooling.average_pooling3d import AvgPool3D -from keras.layers.pooling.global_average_pooling1d import GlobalAveragePooling1D -from keras.layers.pooling.global_average_pooling1d import GlobalAvgPool1D -from keras.layers.pooling.global_average_pooling2d import GlobalAveragePooling2D -from keras.layers.pooling.global_average_pooling2d import GlobalAvgPool2D -from keras.layers.pooling.global_average_pooling3d import GlobalAveragePooling3D -from keras.layers.pooling.global_average_pooling3d import GlobalAvgPool3D -from keras.layers.pooling.global_max_pooling1d import GlobalMaxPool1D -from keras.layers.pooling.global_max_pooling1d import GlobalMaxPooling1D -from keras.layers.pooling.global_max_pooling2d import GlobalMaxPool2D -from keras.layers.pooling.global_max_pooling2d import GlobalMaxPooling2D -from keras.layers.pooling.global_max_pooling3d import GlobalMaxPool3D -from keras.layers.pooling.global_max_pooling3d import GlobalMaxPooling3D -from keras.layers.pooling.max_pooling1d import MaxPool1D -from keras.layers.pooling.max_pooling1d import MaxPooling1D -from keras.layers.pooling.max_pooling2d import MaxPool2D -from keras.layers.pooling.max_pooling2d import MaxPooling2D -from keras.layers.pooling.max_pooling3d import MaxPool3D -from keras.layers.pooling.max_pooling3d import MaxPooling3D -from keras.layers.rnn.abstract_rnn_cell import AbstractRNNCell - -# Recurrent layers. -from keras.layers.rnn.base_rnn import RNN -from keras.layers.rnn.simple_rnn import SimpleRNN -from keras.layers.rnn.simple_rnn import SimpleRNNCell -from keras.layers.rnn.stacked_rnn_cells import StackedRNNCells - -if tf.__internal__.tf2.enabled(): - from keras.layers.rnn.gru import GRU - from keras.layers.rnn.gru import GRUCell - from keras.layers.rnn.gru_v1 import GRU as GRUV1 - from keras.layers.rnn.gru_v1 import GRUCell as GRUCellV1 - from keras.layers.rnn.lstm import LSTM - from keras.layers.rnn.lstm import LSTMCell - from keras.layers.rnn.lstm_v1 import LSTM as LSTMV1 - from keras.layers.rnn.lstm_v1 import LSTMCell as LSTMCellV1 - - GRUV2 = GRU - GRUCellV2 = GRUCell - LSTMV2 = LSTM - LSTMCellV2 = LSTMCell -else: - from keras.layers.rnn.gru import GRU as GRUV2 - from keras.layers.rnn.gru import GRUCell as GRUCellV2 - from keras.layers.rnn.gru_v1 import GRU - from keras.layers.rnn.gru_v1 import GRUCell - from keras.layers.rnn.lstm import LSTM as LSTMV2 - from keras.layers.rnn.lstm import LSTMCell as LSTMCellV2 - from keras.layers.rnn.lstm_v1 import LSTM - from keras.layers.rnn.lstm_v1 import LSTMCell - - GRUV1 = GRU - GRUCellV1 = GRUCell - LSTMV1 = LSTM - LSTMCellV1 = LSTMCell - -# Serialization functions. -from keras.layers import serialization - -# Wrapper functions. -from keras.layers.rnn.base_wrapper import Wrapper -from keras.layers.rnn.bidirectional import Bidirectional - -# RNN Cell wrappers. -from keras.layers.rnn.cell_wrappers import DeviceWrapper -from keras.layers.rnn.cell_wrappers import DropoutWrapper -from keras.layers.rnn.cell_wrappers import ResidualWrapper - -# Convolutional-recurrent layers. -from keras.layers.rnn.conv_lstm1d import ConvLSTM1D -from keras.layers.rnn.conv_lstm2d import ConvLSTM2D -from keras.layers.rnn.conv_lstm3d import ConvLSTM3D -from keras.layers.rnn.cudnn_gru import CuDNNGRU - -# cuDNN recurrent layers. -from keras.layers.rnn.cudnn_lstm import CuDNNLSTM -from keras.layers.rnn.time_distributed import TimeDistributed -from keras.layers.serialization import deserialize -from keras.layers.serialization import deserialize_from_json -from keras.layers.serialization import get_builtin_layer -from keras.layers.serialization import serialize - - -class VersionAwareLayers: - """Utility to be used internally to access layers in a V1/V2-aware fashion. - - When using layers within the Keras codebase, under the constraint that - e.g. `layers.BatchNormalization` should be the `BatchNormalization` version - corresponding to the current runtime (TF1 or TF2), do not simply access - `layers.BatchNormalization` since it would ignore e.g. an early - `compat.v2.disable_v2_behavior()` call. Instead, use an instance - of `VersionAwareLayers` (which you can use just like the `layers` module). - """ - - def __getattr__(self, name): - serialization.populate_deserializable_objects() - if name in serialization.LOCAL.ALL_OBJECTS: - return serialization.LOCAL.ALL_OBJECTS[name] - return super().__getattr__(name) diff --git a/keras/layers/activation/BUILD b/keras/layers/activation/BUILD deleted file mode 100644 index 8ca482de722..00000000000 --- a/keras/layers/activation/BUILD +++ /dev/null @@ -1,178 +0,0 @@ -# Description: -# Contains the Keras activation layers. - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:friends", - ], - licenses = ["notice"], -) - -py_library( - name = "activation", - srcs = [ - "__init__.py", - ], - srcs_version = "PY3", - deps = [ - ":elu", - ":leaky_relu", - ":prelu", - ":relu", - ":softmax", - ":thresholded_relu", - ], -) - -py_library( - name = "relu", - srcs = ["relu.py"], - srcs_version = "PY3", - deps = [ - "//keras:backend", - "//keras/engine:base_layer", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "softmax", - srcs = ["softmax.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "leaky_relu", - srcs = ["leaky_relu.py"], - srcs_version = "PY3", - deps = [ - "//keras:backend", - "//keras/engine:base_layer", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "prelu", - srcs = ["prelu.py"], - srcs_version = "PY3", - deps = [ - "//keras:backend", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/initializers", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "elu", - srcs = ["elu.py"], - srcs_version = "PY3", - deps = [ - "//keras:backend", - "//keras/engine:base_layer", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "thresholded_relu", - srcs = ["thresholded_relu.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/utils:tf_utils", - ], -) - -tf_py_test( - name = "relu_test", - size = "medium", - srcs = ["relu_test.py"], - python_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "softmax_test", - size = "medium", - srcs = ["softmax_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "leaky_relu_test", - size = "medium", - srcs = ["leaky_relu_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "prelu_test", - size = "medium", - srcs = ["prelu_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "elu_test", - size = "medium", - srcs = ["elu_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "thresholded_relu_test", - size = "medium", - srcs = ["thresholded_relu_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) diff --git a/keras/layers/activation/__init__.py b/keras/layers/activation/__init__.py deleted file mode 100644 index f571762759e..00000000000 --- a/keras/layers/activation/__init__.py +++ /dev/null @@ -1,23 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Layers that act as activation functions.""" - - -from keras.layers.activation.elu import ELU -from keras.layers.activation.leaky_relu import LeakyReLU -from keras.layers.activation.prelu import PReLU -from keras.layers.activation.relu import ReLU -from keras.layers.activation.softmax import Softmax -from keras.layers.activation.thresholded_relu import ThresholdedReLU diff --git a/keras/layers/activation/elu.py b/keras/layers/activation/elu.py deleted file mode 100644 index 503b47473e7..00000000000 --- a/keras/layers/activation/elu.py +++ /dev/null @@ -1,69 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Exponential Linear Unit activation layer.""" - - -from keras import backend -from keras.engine.base_layer import Layer -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.ELU") -class ELU(Layer): - """Exponential Linear Unit. - - It follows: - - ``` - f(x) = alpha * (exp(x) - 1.) for x < 0 - f(x) = x for x >= 0 - ``` - - Input shape: - Arbitrary. Use the keyword argument `input_shape` - (tuple of integers, does not include the samples axis) - when using this layer as the first layer in a model. - - Output shape: - Same shape as the input. - - Args: - alpha: Scale for the negative factor. - """ - - def __init__(self, alpha=1.0, **kwargs): - super().__init__(**kwargs) - if alpha is None: - raise ValueError( - "Alpha of an ELU layer cannot be None, expecting a float. " - f"Received: {alpha}" - ) - self.supports_masking = True - self.alpha = backend.cast_to_floatx(alpha) - - def call(self, inputs): - return backend.elu(inputs, self.alpha) - - def get_config(self): - config = {"alpha": float(self.alpha)} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - return input_shape diff --git a/keras/layers/activation/elu_test.py b/keras/layers/activation/elu_test.py deleted file mode 100644 index 63f20d12b8e..00000000000 --- a/keras/layers/activation/elu_test.py +++ /dev/null @@ -1,51 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for ELU layer.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class ELUTest(test_combinations.TestCase): - def test_elu(self): - for alpha in [0.0, 0.5, -1.0]: - test_utils.layer_test( - keras.layers.ELU, - kwargs={"alpha": alpha}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - def test_elu_with_invalid_alpha(self): - # Test case for GitHub issue 46993. - with self.assertRaisesRegex( - ValueError, - "Alpha of an ELU layer cannot be None, " - "expecting a float. Received: None", - ): - test_utils.layer_test( - keras.layers.ELU, - kwargs={"alpha": None}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/activation/leaky_relu.py b/keras/layers/activation/leaky_relu.py deleted file mode 100644 index bc82ed5edc4..00000000000 --- a/keras/layers/activation/leaky_relu.py +++ /dev/null @@ -1,81 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Leaky version of a Rectified Linear Unit activation layer.""" - - -from keras import backend -from keras.engine.base_layer import Layer -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.LeakyReLU") -class LeakyReLU(Layer): - """Leaky version of a Rectified Linear Unit. - - It allows a small gradient when the unit is not active: - - ``` - f(x) = alpha * x if x < 0 - f(x) = x if x >= 0 - ``` - - Usage: - - >>> layer = tf.keras.layers.LeakyReLU() - >>> output = layer([-3.0, -1.0, 0.0, 2.0]) - >>> list(output.numpy()) - [-0.9, -0.3, 0.0, 2.0] - >>> layer = tf.keras.layers.LeakyReLU(alpha=0.1) - >>> output = layer([-3.0, -1.0, 0.0, 2.0]) - >>> list(output.numpy()) - [-0.3, -0.1, 0.0, 2.0] - - Input shape: - Arbitrary. Use the keyword argument `input_shape` - (tuple of integers, does not include the batch axis) - when using this layer as the first layer in a model. - - Output shape: - Same shape as the input. - - Args: - alpha: Float >= 0. Negative slope coefficient. Defaults to `0.3`. - - """ - - def __init__(self, alpha=0.3, **kwargs): - super().__init__(**kwargs) - if alpha is None: - raise ValueError( - "The alpha value of a Leaky ReLU layer cannot be None, " - f"Expecting a float. Received: {alpha}" - ) - self.supports_masking = True - self.alpha = backend.cast_to_floatx(alpha) - - def call(self, inputs): - return backend.relu(inputs, alpha=self.alpha) - - def get_config(self): - config = {"alpha": float(self.alpha)} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - return input_shape diff --git a/keras/layers/activation/leaky_relu_test.py b/keras/layers/activation/leaky_relu_test.py deleted file mode 100644 index 13d25699b3c..00000000000 --- a/keras/layers/activation/leaky_relu_test.py +++ /dev/null @@ -1,51 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for LeakyReLU layer.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class LeakyReLUTest(test_combinations.TestCase): - def test_leaky_relu(self): - for alpha in [0.0, 0.5]: - test_utils.layer_test( - keras.layers.LeakyReLU, - kwargs={"alpha": alpha}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - def test_leaky_relu_with_invalid_alpha(self): - # Test case for GitHub issue 46993. - with self.assertRaisesRegex( - ValueError, - "The alpha value of a Leaky ReLU layer " - "cannot be None. Expecting a float. Received: None", - ): - test_utils.layer_test( - keras.layers.LeakyReLU, - kwargs={"alpha": None}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/activation/prelu.py b/keras/layers/activation/prelu.py deleted file mode 100644 index 67ef4d336b7..00000000000 --- a/keras/layers/activation/prelu.py +++ /dev/null @@ -1,124 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Parametric Rectified Linear Unit activation layer.""" - - -from keras import backend -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.PReLU") -class PReLU(Layer): - """Parametric Rectified Linear Unit. - - It follows: - - ``` - f(x) = alpha * x for x < 0 - f(x) = x for x >= 0 - ``` - - where `alpha` is a learned array with the same shape as x. - - Input shape: - Arbitrary. Use the keyword argument `input_shape` - (tuple of integers, does not include the samples axis) - when using this layer as the first layer in a model. - - Output shape: - Same shape as the input. - - Args: - alpha_initializer: Initializer function for the weights. - alpha_regularizer: Regularizer for the weights. - alpha_constraint: Constraint for the weights. - shared_axes: The axes along which to share learnable - parameters for the activation function. - For example, if the incoming feature maps - are from a 2D convolution - with output shape `(batch, height, width, channels)`, - and you wish to share parameters across space - so that each filter only has one set of parameters, - set `shared_axes=[1, 2]`. - """ - - def __init__( - self, - alpha_initializer="zeros", - alpha_regularizer=None, - alpha_constraint=None, - shared_axes=None, - **kwargs - ): - super().__init__(**kwargs) - self.supports_masking = True - self.alpha_initializer = initializers.get(alpha_initializer) - self.alpha_regularizer = regularizers.get(alpha_regularizer) - self.alpha_constraint = constraints.get(alpha_constraint) - if shared_axes is None: - self.shared_axes = None - elif not isinstance(shared_axes, (list, tuple)): - self.shared_axes = [shared_axes] - else: - self.shared_axes = list(shared_axes) - - @tf_utils.shape_type_conversion - def build(self, input_shape): - param_shape = list(input_shape[1:]) - if self.shared_axes is not None: - for i in self.shared_axes: - param_shape[i - 1] = 1 - self.alpha = self.add_weight( - shape=param_shape, - name="alpha", - initializer=self.alpha_initializer, - regularizer=self.alpha_regularizer, - constraint=self.alpha_constraint, - ) - # Set input spec - axes = {} - if self.shared_axes: - for i in range(1, len(input_shape)): - if i not in self.shared_axes: - axes[i] = input_shape[i] - self.input_spec = InputSpec(ndim=len(input_shape), axes=axes) - self.built = True - - def call(self, inputs): - pos = backend.relu(inputs) - neg = -self.alpha * backend.relu(-inputs) - return pos + neg - - def get_config(self): - config = { - "alpha_initializer": initializers.serialize(self.alpha_initializer), - "alpha_regularizer": regularizers.serialize(self.alpha_regularizer), - "alpha_constraint": constraints.serialize(self.alpha_constraint), - "shared_axes": self.shared_axes, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - return input_shape diff --git a/keras/layers/activation/prelu_test.py b/keras/layers/activation/prelu_test.py deleted file mode 100644 index 0d07f3aa9c5..00000000000 --- a/keras/layers/activation/prelu_test.py +++ /dev/null @@ -1,44 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for PReLU layer.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class PReLUTest(test_combinations.TestCase): - def test_prelu(self): - test_utils.layer_test( - keras.layers.PReLU, - kwargs={}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - def test_prelu_share(self): - test_utils.layer_test( - keras.layers.PReLU, - kwargs={"shared_axes": 1}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/activation/relu.py b/keras/layers/activation/relu.py deleted file mode 100644 index 58bb09d113b..00000000000 --- a/keras/layers/activation/relu.py +++ /dev/null @@ -1,123 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Rectified Linear Unit activation layer.""" - - -from keras import backend -from keras.engine.base_layer import Layer -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.ReLU") -class ReLU(Layer): - """Rectified Linear Unit activation function. - - With default values, it returns element-wise `max(x, 0)`. - - Otherwise, it follows: - - ``` - f(x) = max_value if x >= max_value - f(x) = x if threshold <= x < max_value - f(x) = negative_slope * (x - threshold) otherwise - ``` - - Usage: - - >>> layer = tf.keras.layers.ReLU() - >>> output = layer([-3.0, -1.0, 0.0, 2.0]) - >>> list(output.numpy()) - [0.0, 0.0, 0.0, 2.0] - >>> layer = tf.keras.layers.ReLU(max_value=1.0) - >>> output = layer([-3.0, -1.0, 0.0, 2.0]) - >>> list(output.numpy()) - [0.0, 0.0, 0.0, 1.0] - >>> layer = tf.keras.layers.ReLU(negative_slope=1.0) - >>> output = layer([-3.0, -1.0, 0.0, 2.0]) - >>> list(output.numpy()) - [-3.0, -1.0, 0.0, 2.0] - >>> layer = tf.keras.layers.ReLU(threshold=1.5) - >>> output = layer([-3.0, -1.0, 1.0, 2.0]) - >>> list(output.numpy()) - [0.0, 0.0, 0.0, 2.0] - - Input shape: - Arbitrary. Use the keyword argument `input_shape` - (tuple of integers, does not include the batch axis) - when using this layer as the first layer in a model. - - Output shape: - Same shape as the input. - - Args: - max_value: Float >= 0. Maximum activation value. None means unlimited. - Defaults to `None`. - negative_slope: Float >= 0. Negative slope coefficient. Defaults to `0.`. - threshold: Float >= 0. Threshold value for thresholded activation. - Defaults to `0.`. - """ - - def __init__( - self, max_value=None, negative_slope=0.0, threshold=0.0, **kwargs - ): - super().__init__(**kwargs) - if max_value is not None and max_value < 0.0: - raise ValueError( - "max_value of a ReLU layer cannot be a negative " - f"value. Received: {max_value}" - ) - if negative_slope is None or negative_slope < 0.0: - raise ValueError( - "negative_slope of a ReLU layer cannot be a negative " - f"value. Received: {negative_slope}" - ) - if threshold is None or threshold < 0.0: - raise ValueError( - "threshold of a ReLU layer cannot be a negative " - f"value. Received: {threshold}" - ) - - self.supports_masking = True - if max_value is not None: - max_value = backend.cast_to_floatx(max_value) - self.max_value = max_value - self.negative_slope = backend.cast_to_floatx(negative_slope) - self.threshold = backend.cast_to_floatx(threshold) - - def call(self, inputs): - # alpha is used for leaky relu slope in activations instead of - # negative_slope. - return backend.relu( - inputs, - alpha=self.negative_slope, - max_value=self.max_value, - threshold=self.threshold, - ) - - def get_config(self): - config = { - "max_value": self.max_value, - "negative_slope": self.negative_slope, - "threshold": self.threshold, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - return input_shape diff --git a/keras/layers/activation/relu_test.py b/keras/layers/activation/relu_test.py deleted file mode 100644 index 70ded16275d..00000000000 --- a/keras/layers/activation/relu_test.py +++ /dev/null @@ -1,117 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for ReLU layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class ReLUTest(test_combinations.TestCase): - def test_relu(self): - test_utils.layer_test( - keras.layers.ReLU, - kwargs={"max_value": 10}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - x = keras.backend.ones((3, 4)) - if not tf.executing_eagerly(): - # Test that we use `leaky_relu` when appropriate in graph mode. - self.assertIn( - "LeakyRelu", keras.layers.ReLU(negative_slope=0.2)(x).name - ) - # Test that we use `relu` when appropriate in graph mode. - self.assertIn("Relu", keras.layers.ReLU()(x).name) - # Test that we use `relu6` when appropriate in graph mode. - self.assertIn("Relu6", keras.layers.ReLU(max_value=6)(x).name) - - def test_relu_with_invalid_max_value(self): - with self.assertRaisesRegex( - ValueError, - "max_value of a ReLU layer cannot be a negative " - "value. Received: -10", - ): - test_utils.layer_test( - keras.layers.ReLU, - kwargs={"max_value": -10}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - def test_relu_with_invalid_negative_slope(self): - with self.assertRaisesRegex( - ValueError, - "negative_slope of a ReLU layer cannot be a negative " - "value. Received: None", - ): - test_utils.layer_test( - keras.layers.ReLU, - kwargs={"negative_slope": None}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - with self.assertRaisesRegex( - ValueError, - "negative_slope of a ReLU layer cannot be a negative " - "value. Received: -10", - ): - test_utils.layer_test( - keras.layers.ReLU, - kwargs={"negative_slope": -10}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - def test_relu_with_invalid_threshold(self): - with self.assertRaisesRegex( - ValueError, - "threshold of a ReLU layer cannot be a negative " - "value. Received: None", - ): - test_utils.layer_test( - keras.layers.ReLU, - kwargs={"threshold": None}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - with self.assertRaisesRegex( - ValueError, - "threshold of a ReLU layer cannot be a negative " - "value. Received: -10", - ): - test_utils.layer_test( - keras.layers.ReLU, - kwargs={"threshold": -10}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - @test_combinations.run_with_all_model_types - def test_relu_layer_as_activation(self): - layer = keras.layers.Dense(1, activation=keras.layers.ReLU()) - model = test_utils.get_model_from_layers([layer], input_shape=(10,)) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - model.fit(np.ones((10, 10)), np.ones((10, 1)), batch_size=2) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/activation/softmax.py b/keras/layers/activation/softmax.py deleted file mode 100644 index cc9e86e544a..00000000000 --- a/keras/layers/activation/softmax.py +++ /dev/null @@ -1,117 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Softmax activation layer.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -def _large_compatible_negative(tensor_type): - """Large negative number as Tensor. - - This function is necessary because the standard value for epsilon - in this module (-1e9) cannot be represented using tf.float16 - - Args: - tensor_type: a dtype to determine the type. - - Returns: - a large negative number. - """ - # In case of dtype=float16 (e.g., for mixed-precision), the largest - # negative number (dtypes.float16.min) is divided by 2, in order to - # avoid overflows when summing negative inputs. - if tensor_type == tf.float16: - return tf.float16.min / 2.0 - return -1e9 - - -@keras_export("keras.layers.Softmax") -class Softmax(Layer): - """Softmax activation function. - - Example without mask: - - >>> inp = np.asarray([1., 2., 1.]) - >>> layer = tf.keras.layers.Softmax() - >>> layer(inp).numpy() - array([0.21194157, 0.5761169 , 0.21194157], dtype=float32) - >>> mask = np.asarray([True, False, True], dtype=bool) - >>> layer(inp, mask).numpy() - array([0.5, 0. , 0.5], dtype=float32) - - Input shape: - Arbitrary. Use the keyword argument `input_shape` - (tuple of integers, does not include the samples axis) - when using this layer as the first layer in a model. - - Output shape: - Same shape as the input. - - Args: - axis: Integer, or list of Integers, axis along which the softmax - normalization is applied. - Call arguments: - inputs: The inputs, or logits to the softmax layer. - mask: A boolean mask of the same shape as `inputs`. The mask - specifies 1 to keep and 0 to mask. Defaults to `None`. - - - Returns: - softmaxed output with the same shape as `inputs`. - """ - - def __init__(self, axis=-1, **kwargs): - super().__init__(**kwargs) - self.supports_masking = True - self.axis = axis - - def call(self, inputs, mask=None): - if mask is not None: - # Since mask is 1.0 for positions we want to keep and 0.0 for masked - # positions, this operation will create a tensor which is 0.0 for - # positions we want to attend and -1e.9 for masked positions. - adder = (1.0 - tf.cast(mask, inputs.dtype)) * ( - _large_compatible_negative(inputs.dtype) - ) - - # Since we are adding it to the raw scores before the softmax, this - # is effectively the same as removing these entirely. - inputs += adder - if isinstance(self.axis, (tuple, list)): - if len(self.axis) > 1: - return tf.exp( - inputs - - tf.reduce_logsumexp(inputs, axis=self.axis, keepdims=True) - ) - else: - return backend.softmax(inputs, axis=self.axis[0]) - return backend.softmax(inputs, axis=self.axis) - - def get_config(self): - config = {"axis": self.axis} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - return input_shape diff --git a/keras/layers/activation/softmax_test.py b/keras/layers/activation/softmax_test.py deleted file mode 100644 index 86562425d45..00000000000 --- a/keras/layers/activation/softmax_test.py +++ /dev/null @@ -1,36 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Softmax layer.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class SoftmaxTest(test_combinations.TestCase): - def test_softmax(self): - test_utils.layer_test( - keras.layers.Softmax, - kwargs={"axis": 1}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/activation/thresholded_relu.py b/keras/layers/activation/thresholded_relu.py deleted file mode 100644 index c2b87108efa..00000000000 --- a/keras/layers/activation/thresholded_relu.py +++ /dev/null @@ -1,77 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Thresholded Rectified Linear Unit activation layer.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.ThresholdedReLU") -class ThresholdedReLU(Layer): - """Thresholded Rectified Linear Unit. - - It follows: - - ``` - f(x) = x for x > theta - f(x) = 0 otherwise` - ``` - - Input shape: - Arbitrary. Use the keyword argument `input_shape` - (tuple of integers, does not include the samples axis) - when using this layer as the first layer in a model. - - Output shape: - Same shape as the input. - - Args: - theta: Float >= 0. Threshold location of activation. - """ - - def __init__(self, theta=1.0, **kwargs): - super().__init__(**kwargs) - if theta is None: - raise ValueError( - "Theta of a Thresholded ReLU layer cannot be None, expecting a " - f"float. Received: {theta}" - ) - if theta < 0: - raise ValueError( - "The theta value of a Thresholded ReLU layer " - f"should be >=0. Received: {theta}" - ) - self.supports_masking = True - self.theta = backend.cast_to_floatx(theta) - - def call(self, inputs): - dtype = self.compute_dtype - return inputs * tf.cast(tf.greater(inputs, self.theta), dtype) - - def get_config(self): - config = {"theta": float(self.theta)} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - return input_shape diff --git a/keras/layers/activation/thresholded_relu_test.py b/keras/layers/activation/thresholded_relu_test.py deleted file mode 100644 index f7f4170a498..00000000000 --- a/keras/layers/activation/thresholded_relu_test.py +++ /dev/null @@ -1,61 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for ThresholdedReLU layer.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class ThresholdedReLUTest(test_combinations.TestCase): - def test_thresholded_relu(self): - test_utils.layer_test( - keras.layers.ThresholdedReLU, - kwargs={"theta": 0.5}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - def test_threshold_relu_with_invalid_theta(self): - with self.assertRaisesRegex( - ValueError, - "Theta of a Thresholded ReLU layer cannot " - "be None, expecting a float. Received: None", - ): - test_utils.layer_test( - keras.layers.ThresholdedReLU, - kwargs={"theta": None}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - with self.assertRaisesRegex( - ValueError, - "The theta value of a Thresholded ReLU " - "layer should be >=0. Received: -10", - ): - test_utils.layer_test( - keras.layers.ThresholdedReLU, - kwargs={"theta": -10}, - input_shape=(2, 3, 4), - supports_masking=True, - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/attention/BUILD b/keras/layers/attention/BUILD deleted file mode 100644 index 14f6b63f5fe..00000000000 --- a/keras/layers/attention/BUILD +++ /dev/null @@ -1,139 +0,0 @@ -# Description: -# Contains the Keras attention layers. - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/py/tensorflow_gnn:__subpackages__", - "//third_party/tensorflow/python/distribute:__pkg__", - "//third_party/tensorflow/python/feature_column:__pkg__", - "//third_party/tensorflow/python/training/tracking:__pkg__", - "//third_party/tensorflow/tools/pip_package:__pkg__", - "//third_party/tensorflow_models/official/projects/residual_mobilenet/modeling/backbones:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "attention", - srcs = [ - "__init__.py", - ], - srcs_version = "PY3", - deps = [ - ":additive_attention", - ":attention_layer", - ":multi_head_attention", - ], -) - -py_library( - name = "multi_head_attention", - srcs = ["multi_head_attention.py"], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:base_layer", - "//keras/initializers", - "//keras/layers/activation", - "//keras/layers/core", - "//keras/layers/regularization", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "base_dense_attention", - srcs = ["base_dense_attention.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras:base_layer", - "//keras/utils:control_flow_util", - ], -) - -py_library( - name = "attention_layer", - srcs = ["attention.py"], - srcs_version = "PY3", - deps = [ - ":base_dense_attention", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "additive_attention", - srcs = ["additive_attention.py"], - srcs_version = "PY3", - deps = [ - ":base_dense_attention", - "//:expect_tensorflow_installed", - ], -) - -tf_py_test( - name = "multi_head_attention_test", - srcs = ["multi_head_attention_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "base_dense_attention_test", - size = "medium", - srcs = ["base_dense_attention_test.py"], - python_version = "PY3", - deps = [ - ":base_dense_attention", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "attention_test", - size = "medium", - srcs = ["attention_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/layers/core", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "additive_attention_test", - size = "medium", - srcs = ["additive_attention_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/mixed_precision:policy", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) diff --git a/keras/layers/attention/__init__.py b/keras/layers/attention/__init__.py deleted file mode 100644 index e285718b4f0..00000000000 --- a/keras/layers/attention/__init__.py +++ /dev/null @@ -1,20 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras attention layers.""" - - -from keras.layers.attention.additive_attention import AdditiveAttention -from keras.layers.attention.attention import Attention -from keras.layers.attention.multi_head_attention import MultiHeadAttention diff --git a/keras/layers/attention/additive_attention.py b/keras/layers/attention/additive_attention.py deleted file mode 100644 index 15423688277..00000000000 --- a/keras/layers/attention/additive_attention.py +++ /dev/null @@ -1,178 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Additive attention layer that can be used in sequence DNN/CNN models. - -This file follows the terminology of https://arxiv.org/abs/1706.03762 Figure 2. -Attention is formed by three tensors: Query, Key and Value. -""" - - -import tensorflow.compat.v2 as tf - -from keras.layers.attention.base_dense_attention import BaseDenseAttention - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.AdditiveAttention") -class AdditiveAttention(BaseDenseAttention): - """Additive attention layer, a.k.a. Bahdanau-style attention. - - Inputs are `query` tensor of shape `[batch_size, Tq, dim]`, `value` tensor - of shape `[batch_size, Tv, dim]` and `key` tensor of shape - `[batch_size, Tv, dim]`. The calculation follows the steps: - - 1. Reshape `query` and `key` into shapes `[batch_size, Tq, 1, dim]` - and `[batch_size, 1, Tv, dim]` respectively. - 2. Calculate scores with shape `[batch_size, Tq, Tv]` as a non-linear - sum: `scores = tf.reduce_sum(tf.tanh(query + key), axis=-1)` - 3. Use scores to calculate a distribution with shape - `[batch_size, Tq, Tv]`: `distribution = tf.nn.softmax(scores)`. - 4. Use `distribution` to create a linear combination of `value` with - shape `[batch_size, Tq, dim]`: - `return tf.matmul(distribution, value)`. - - Args: - use_scale: If `True`, will create a variable to scale the attention - scores. - dropout: Float between 0 and 1. Fraction of the units to drop for the - attention scores. Defaults to `0.0`. - - Call Args: - - inputs: List of the following tensors: - * query: Query `Tensor` of shape `[batch_size, Tq, dim]`. - * value: Value `Tensor` of shape `[batch_size, Tv, dim]`. - * key: Optional key `Tensor` of shape `[batch_size, Tv, dim]`. If not - given, will use `value` for both `key` and `value`, which is the - most common case. - mask: List of the following tensors: - * query_mask: A boolean mask `Tensor` of shape `[batch_size, Tq]`. - If given, the output will be zero at the positions where - `mask==False`. - * value_mask: A boolean mask `Tensor` of shape `[batch_size, Tv]`. - If given, will apply the mask such that values at positions where - `mask==False` do not contribute to the result. - training: Python boolean indicating whether the layer should behave in - training mode (adding dropout) or in inference mode (no dropout). - return_attention_scores: bool, it `True`, returns the attention scores - (after masking and softmax) as an additional output argument. - use_causal_mask: Boolean. Set to `True` for decoder self-attention. Adds a - mask such that position `i` cannot attend to positions `j > i`. This - prevents the flow of information from the future towards the past. - Defaults to `False`. - - Output: - - Attention outputs of shape `[batch_size, Tq, dim]`. - [Optional] Attention scores after masking and softmax with shape - `[batch_size, Tq, Tv]`. - - The meaning of `query`, `value` and `key` depend on the application. In the - case of text similarity, for example, `query` is the sequence embeddings of - the first piece of text and `value` is the sequence embeddings of the second - piece of text. `key` is usually the same tensor as `value`. - - Here is a code example for using `AdditiveAttention` in a CNN+Attention - network: - - ```python - # Variable-length int sequences. - query_input = tf.keras.Input(shape=(None,), dtype='int32') - value_input = tf.keras.Input(shape=(None,), dtype='int32') - - # Embedding lookup. - token_embedding = tf.keras.layers.Embedding(max_tokens, dimension) - # Query embeddings of shape [batch_size, Tq, dimension]. - query_embeddings = token_embedding(query_input) - # Value embeddings of shape [batch_size, Tv, dimension]. - value_embeddings = token_embedding(value_input) - - # CNN layer. - cnn_layer = tf.keras.layers.Conv1D( - filters=100, - kernel_size=4, - # Use 'same' padding so outputs have the same shape as inputs. - padding='same') - # Query encoding of shape [batch_size, Tq, filters]. - query_seq_encoding = cnn_layer(query_embeddings) - # Value encoding of shape [batch_size, Tv, filters]. - value_seq_encoding = cnn_layer(value_embeddings) - - # Query-value attention of shape [batch_size, Tq, filters]. - query_value_attention_seq = tf.keras.layers.AdditiveAttention()( - [query_seq_encoding, value_seq_encoding]) - - # Reduce over the sequence axis to produce encodings of shape - # [batch_size, filters]. - query_encoding = tf.keras.layers.GlobalAveragePooling1D()( - query_seq_encoding) - query_value_attention = tf.keras.layers.GlobalAveragePooling1D()( - query_value_attention_seq) - - # Concatenate query and document encodings to produce a DNN input layer. - input_layer = tf.keras.layers.Concatenate()( - [query_encoding, query_value_attention]) - - # Add DNN layers, and create Model. - # ... - ``` - """ - - def __init__(self, use_scale=True, **kwargs): - super().__init__(**kwargs) - self.use_scale = use_scale - - def build(self, input_shape): - v_shape = tf.TensorShape(input_shape[1]) - dim = v_shape[-1] - dim = tf.compat.dimension_value(dim) - if self.use_scale: - self.scale = self.add_weight( - name="scale", - shape=[dim], - initializer="glorot_uniform", - dtype=self.dtype, - trainable=True, - ) - else: - self.scale = None - super().build(input_shape) - - def _calculate_scores(self, query, key): - """Calculates attention scores as a nonlinear sum of query and key. - - Args: - query: Query tensor of shape `[batch_size, Tq, dim]`. - key: Key tensor of shape `[batch_size, Tv, dim]`. - Returns: - Tensor of shape `[batch_size, Tq, Tv]`. - """ - # Reshape tensors to enable broadcasting. - # Reshape into [batch_size, Tq, 1, dim]. - q_reshaped = tf.expand_dims(query, axis=-2) - # Reshape into [batch_size, 1, Tv, dim]. - k_reshaped = tf.expand_dims(key, axis=-3) - if self.use_scale: - scale = self.scale - else: - scale = 1.0 - return tf.reduce_sum(scale * tf.tanh(q_reshaped + k_reshaped), axis=-1) - - def get_config(self): - config = {"use_scale": self.use_scale} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/attention/additive_attention_test.py b/keras/layers/attention/additive_attention_test.py deleted file mode 100644 index 690053bcf06..00000000000 --- a/keras/layers/attention/additive_attention_test.py +++ /dev/null @@ -1,337 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests AdditiveAttention layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.mixed_precision import policy -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class AdditiveAttentionTest(tf.test.TestCase, parameterized.TestCase): - def test_calculate_scores_one_dim(self): - # Query tensor of shape [1, 1, 1] - q = np.array([[[1.1]]], dtype=np.float32) - # Key tensor of shape [1, 1, 1] - k = np.array([[[1.6]]], dtype=np.float32) - attention_layer = keras.layers.AdditiveAttention() - attention_layer.build(input_shape=([1, 1, 1], [1, 1, 1])) - # Scale tensor of shape [1] - attention_layer.scale = np.array([[[0.5]]], dtype=np.float32) - actual = attention_layer._calculate_scores(query=q, key=k) - - # Expected tensor of shape [1, 1, 1]. - # expected000 = 0.5 * tanh(1.1 + 1.6) = 0.49550372683 - expected = np.array([[[0.49550372683]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_calculate_scores_multi_dim(self): - # Query tensor of shape [1, 2, 4] - q = np.array( - [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 - ) - # Key tensor of shape [1, 3, 4] - k = np.array( - [ - [ - [1.5, 1.6, 1.7, 1.8], - [2.5, 2.6, 2.7, 2.8], - [3.5, 3.6, 3.7, 3.8], - ] - ], - dtype=np.float32, - ) - attention_layer = keras.layers.AdditiveAttention() - attention_layer.build(input_shape=([1, 2, 4], [1, 3, 4])) - # Scale tensor of shape [4] - attention_layer.scale = np.array( - [[[0.5, 0.6, 0.7, 0.8]]], dtype=np.float32 - ) - actual = attention_layer._calculate_scores(query=q, key=k) - - # expected000 = 0.5*tanh(1.+1.5) + 0.6*tanh(1.1+1.6) + \ - # 0.7*tanh(1.2+1.7) + 0.8*tanh(1.3+1.8) = 2.58044532581 - # expected001 = 0.5*tanh(1.+2.5) + 0.6*tanh(1.1+2.6) + \ - # 0.7*tanh(1.2+2.7) + 0.8*tanh(1.3+2.8) = 2.59734317449 - # expected002 = 0.5*tanh(1.+3.5) + 0.6*tanh(1.1+3.6) + \ - # 0.7*tanh(1.2+3.7) + 0.8*tanh(1.3+3.8) = 2.59964024652 - # expected010 = 0.5*tanh(2.+1.5) + 0.6*tanh(2.1+1.6) + \ - # 0.7*tanh(2.2+1.7) + 0.8*tanh(2.3+1.8) = 2.59734317449 - # expected011 = 0.5*tanh(2.+2.5) + 0.6*tanh(2.1+2.6) + \ - # 0.7*tanh(2.2+2.7) + 0.8*tanh(2.3+2.8) = 2.59964024652 - # expected012 = 0.5*tanh(2.+3.5) + 0.6*tanh(2.1+3.6) + \ - # 0.7*tanh(2.2+3.7) + 0.8*tanh(2.3+3.8) = 2.59995130916 - expected = np.array( - [ - [ - [2.58044532581, 2.59734317449, 2.59964024652], - [2.59734317449, 2.59964024652, 2.59995130916], - ] - ], - dtype=np.float32, - ) - self.assertAllClose(expected, actual) - - def test_calculate_scores_one_dim_batch_size_two(self): - # Query tensor of shape [2, 1, 1] - q = np.array([[[1.1]], [[2.1]]], dtype=np.float32) - # Key tensor of shape [2, 1, 1] - k = np.array([[[1.6]], [[2.6]]], dtype=np.float32) - attention_layer = keras.layers.AdditiveAttention() - attention_layer.build(input_shape=([2, 1, 1], [2, 1, 1])) - # Scale tensor of shape [1] - attention_layer.scale = np.array([[[0.5]]], dtype=np.float32) - actual = attention_layer._calculate_scores(query=q, key=k) - - # Expected tensor of shape [2, 1, 1]. - # expected000 = 0.5 * tanh(1.1 + 1.6) = 0.49550372683 - # expected100 = 0.5 * tanh(2.1 + 2.6) = 0.49991728277 - expected = np.array( - [[[0.49550372683]], [[0.49991728277]]], dtype=np.float32 - ) - self.assertAllClose(expected, actual) - - def test_shape(self): - # Query tensor of shape [1, 2, 4] - q = np.array( - [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 - ) - # Value tensor of shape [1, 3, 4] - v = np.array( - [ - [ - [1.5, 1.6, 1.7, 1.8], - [2.5, 2.6, 2.7, 2.8], - [3.5, 3.6, 3.7, 3.8], - ] - ], - dtype=np.float32, - ) - # Value mask tensor of shape [1, 3] - v_mask = np.array([[True, True, False]], dtype=np.bool_) - attention_layer = keras.layers.AdditiveAttention() - actual = attention_layer([q, v], mask=[None, v_mask]) - - expected_shape = [1, 2, 4] - self.assertAllEqual(expected_shape, tf.shape(actual)) - - def test_shape_no_scale(self): - # Query tensor of shape [1, 2, 4] - q = np.array( - [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 - ) - # Value tensor of shape [1, 3, 4] - v = np.array( - [ - [ - [1.5, 1.6, 1.7, 1.8], - [2.5, 2.6, 2.7, 2.8], - [3.5, 3.6, 3.7, 3.8], - ] - ], - dtype=np.float32, - ) - # Value mask tensor of shape [1, 3] - v_mask = np.array([[True, True, False]], dtype=np.bool_) - attention_layer = keras.layers.AdditiveAttention(use_scale=False) - actual = attention_layer([q, v], mask=[None, v_mask]) - - expected_shape = [1, 2, 4] - self.assertAllEqual(expected_shape, tf.shape(actual)) - - def test_shape_with_key(self): - # Query tensor of shape [1, 2, 4] - q = np.array( - [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 - ) - # Value tensor of shape [1, 3, 4] - v = np.array( - [ - [ - [1.5, 1.6, 1.7, 1.8], - [2.5, 2.6, 2.7, 2.8], - [3.5, 3.6, 3.7, 3.8], - ] - ], - dtype=np.float32, - ) - # Key tensor of shape [1, 3, 4] - k = np.array( - [ - [ - [1.5, 1.6, 1.7, 1.8], - [2.5, 2.6, 2.7, 2.8], - [3.5, 3.6, 3.7, 3.8], - ] - ], - dtype=np.float32, - ) - # Value mask tensor of shape [1, 3] - v_mask = np.array([[True, True, False]], dtype=np.bool_) - attention_layer = keras.layers.AdditiveAttention() - actual = attention_layer([q, v, k], mask=[None, v_mask]) - - expected_shape = [1, 2, 4] - self.assertAllEqual(expected_shape, tf.shape(actual)) - - def test_multi_dim(self): - # Query tensor of shape [1, 1, 1] - q = np.array([[[1.1]]], dtype=np.float32) - # Value tensor of shape [1, 3, 1] - v = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) - # Value mask tensor of shape [1, 3] - v_mask = np.array([[True, True, False]], dtype=np.bool_) - attention_layer = keras.layers.AdditiveAttention() - attention_layer.build(input_shape=([1, 1, 1], [1, 3, 1])) - # Scale tensor of shape [1] - attention_layer.scale = np.array([[[0.5]]], dtype=np.float32) - actual = attention_layer([q, v], mask=[None, v_mask]) - - # Expected scores of shape [1, 1, 3] - # scores = [[[0.5 * tanh(1.1 + 1.6), - # 0.5 * tanh(1.1 + 0.7), - # 0.5 * tanh(1.1 - 0.8)]]] - # = [[[0.49550372683, 0.47340300642, 0.14565630622]]] - # Expected attention distribution = softmax(scores) with zeros in - # positions where v_mask == False. - # => attention_distribution000 - # = exp(0.49550372683)/(exp(0.49550372683) + exp(0.47340300642)) - # = 0.50552495521 - # attention_distribution001 - # = exp(0.47340300642)/(exp(0.49550372683) + exp(0.47340300642)) - # = 0.49447504478 - # attention_distribution002 = 0 - # - # Expected tensor of shape [1, 1, 1]. - # expected000 = 0.50552495521 * 1.6 + 0.49447504478 * 0.7 - 0 * 0.8 - # = 1.15497245968 - expected = np.array([[[1.15497245968]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_multi_dim_with_key(self): - # Query tensor of shape [1, 1, 1] - q = np.array([[[1.1]]], dtype=np.float32) - # Value tensor of shape [1, 3, 1] - v = np.array([[[0.5], [0.8], [-0.3]]], dtype=np.float32) - # Key tensor of shape [1, 3, 1] - k = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) - # Value mask tensor of shape [1, 3] - v_mask = np.array([[True, True, False]], dtype=np.bool_) - attention_layer = keras.layers.AdditiveAttention() - attention_layer.build(input_shape=([1, 1, 1], [1, 3, 1])) - # Scale tensor of shape [1] - attention_layer.scale = np.array([[[0.5]]], dtype=np.float32) - actual = attention_layer([q, v, k], mask=[None, v_mask]) - - # Expected scores of shape [1, 1, 3] - # scores = [[[0.5 * tanh(1.1 + 1.6), - # 0.5 * tanh(1.1 + 0.7), - # 0.5 * tanh(1.1 - 0.8)]]] - # = [[[0.49550372683, 0.47340300642, 0.14565630622]]] - # Expected attention distribution = softmax(scores) with zeros in - # positions where v_mask == False. - # => attention_distribution000 - # = exp(0.49550372683)/(exp(0.49550372683) + exp(0.47340300642)) - # = 0.50552495521 - # attention_distribution001 - # = exp(0.47340300642)/(exp(0.49550372683) + exp(0.47340300642)) - # = 0.49447504478 - # attention_distribution002 = 0 - # - # Expected tensor of shape [1, 1, 1]. - # expected000 = 0.50552495521 * 0.5 + 0.49447504478 * 0.8 - 0 * 0.3 - # = 0.64834251342 - expected = np.array([[[0.64834251342]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_multi_dim_with_query_mask(self): - # Query tensor of shape [1, 2, 1] - q = np.array([[[1.1], [-0.5]]], dtype=np.float32) - # Value tensor of shape [1, 3, 1] - v = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) - # Query mask tensor of shape [1, 2] - q_mask = np.array([[True, False]], dtype=np.bool_) - # Value mask tensor of shape [1, 3] - v_mask = np.array([[True, True, False]], dtype=np.bool_) - attention_layer = keras.layers.AdditiveAttention() - attention_layer.build(input_shape=([1, 1, 1], [1, 3, 1])) - # Scale tensor of shape [1] - attention_layer.scale = np.array([[[0.5]]], dtype=np.float32) - actual = attention_layer([q, v], mask=[q_mask, v_mask]) - - # Expected scores of shape [1, 2, 3] - # scores = [[[0.5 * tanh(1.1 + 1.6), - # 0.5 * tanh(1.1 + 0.7), - # 0.5 * tanh(1.1 - 0.8)], - # [0.5 * tanh(-0.5 + 1.6), - # 0.5 * tanh(-0.5 + 0.7), - # 0.5 * tanh(-0.5 - 0.8)]]] - # = [[[0.49550372683, 0.47340300642, 0.14565630622], - # [0.40024951088, 0.09868766011, -0.43086157965]]] - # Expected attention distribution = softmax(scores) with zeros in - # positions where v_mask == False. - # => attention_distribution000 - # = exp(0.49550372683)/(exp(0.49550372683) + exp(0.47340300642)) - # = 0.50552495521 - # attention_distribution001 - # = exp(0.47340300642)/(exp(0.49550372683) + exp(0.47340300642)) - # = 0.49447504478 - # attention_distribution002 = 0 - # => attention_distribution010 - # = exp(0.40024951088)/(exp(0.40024951088) + exp(0.09868766011)) - # = 0.57482427975 - # attention_distribution011 - # = exp(0.09868766011)/(exp(0.40024951088) + exp(0.09868766011)) - # = 0.42517572025 - # attention_distribution012 = 0 - # - # Expected tensor of shape [1, 2, 1] with zeros where q_mask == False. - # expected000 = 0.50552495521 * 1.6 + 0.49447504478 * 0.7 - 0 * 0.8 - # = 1.15497245968 - # expected000 = 0 - expected = np.array([[[1.15497245968], [0.0]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_serialization(self): - # Test serialization with use_scale - layer = keras.layers.AdditiveAttention(use_scale=True) - - config = keras.layers.serialize(layer) - new_layer = keras.layers.deserialize(config) - self.assertEqual(new_layer.use_scale, True) - - config = layer.get_config() - new_layer = keras.layers.AdditiveAttention.from_config(config) - self.assertEqual(new_layer.use_scale, True) - - @test_utils.enable_v2_dtype_behavior - def test_mixed_float16_policy(self): - # Test case for GitHub issue: - # https://github.com/tensorflow/tensorflow/issues/46064 - with policy.policy_scope("mixed_float16"): - q = tf.cast(tf.random.uniform((2, 3, 4), seed=1), "float16") - v = tf.cast(tf.random.uniform((2, 3, 4), seed=2), "float16") - k = tf.cast(tf.random.uniform((2, 3, 4), seed=3), "float16") - layer = keras.layers.AdditiveAttention() - _ = layer([q, v, k], use_causal_mask=True) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/attention/attention.py b/keras/layers/attention/attention.py deleted file mode 100644 index d84eac9cb41..00000000000 --- a/keras/layers/attention/attention.py +++ /dev/null @@ -1,204 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Attention layer that can be used in sequence DNN/CNN models. - -This file follows the terminology of https://arxiv.org/abs/1706.03762 Figure 2. -Attention is formed by three tensors: Query, Key and Value. -""" - - -import tensorflow.compat.v2 as tf - -from keras.layers.attention.base_dense_attention import BaseDenseAttention - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Attention") -class Attention(BaseDenseAttention): - """Dot-product attention layer, a.k.a. Luong-style attention. - - Inputs are `query` tensor of shape `[batch_size, Tq, dim]`, `value` tensor - of shape `[batch_size, Tv, dim]` and `key` tensor of shape - `[batch_size, Tv, dim]`. The calculation follows the steps: - - 1. Calculate scores with shape `[batch_size, Tq, Tv]` as a `query`-`key` dot - product: `scores = tf.matmul(query, key, transpose_b=True)`. - 2. Use scores to calculate a distribution with shape - `[batch_size, Tq, Tv]`: `distribution = tf.nn.softmax(scores)`. - 3. Use `distribution` to create a linear combination of `value` with - shape `[batch_size, Tq, dim]`: - `return tf.matmul(distribution, value)`. - - Args: - use_scale: If `True`, will create a scalar variable to scale the attention - scores. - dropout: Float between 0 and 1. Fraction of the units to drop for the - attention scores. Defaults to 0.0. - score_mode: Function to use to compute attention scores, one of - `{"dot", "concat"}`. `"dot"` refers to the dot product between the query - and key vectors. `"concat"` refers to the hyperbolic tangent of the - concatenation of the query and key vectors. - - Call Args: - - inputs: List of the following tensors: - * query: Query `Tensor` of shape `[batch_size, Tq, dim]`. - * value: Value `Tensor` of shape `[batch_size, Tv, dim]`. - * key: Optional key `Tensor` of shape `[batch_size, Tv, dim]`. If not - given, will use `value` for both `key` and `value`, which is the - most common case. - mask: List of the following tensors: - * query_mask: A boolean mask `Tensor` of shape `[batch_size, Tq]`. - If given, the output will be zero at the positions where - `mask==False`. - * value_mask: A boolean mask `Tensor` of shape `[batch_size, Tv]`. - If given, will apply the mask such that values at positions where - `mask==False` do not contribute to the result. - return_attention_scores: bool, it `True`, returns the attention scores - (after masking and softmax) as an additional output argument. - training: Python boolean indicating whether the layer should behave in - training mode (adding dropout) or in inference mode (no dropout). - use_causal_mask: Boolean. Set to `True` for decoder self-attention. Adds a - mask such that position `i` cannot attend to positions `j > i`. This - prevents the flow of information from the future towards the past. - Defaults to `False`. - - Output: - - Attention outputs of shape `[batch_size, Tq, dim]`. - [Optional] Attention scores after masking and softmax with shape - `[batch_size, Tq, Tv]`. - - The meaning of `query`, `value` and `key` depend on the application. In the - case of text similarity, for example, `query` is the sequence embeddings of - the first piece of text and `value` is the sequence embeddings of the second - piece of text. `key` is usually the same tensor as `value`. - - Here is a code example for using `Attention` in a CNN+Attention network: - - ```python - # Variable-length int sequences. - query_input = tf.keras.Input(shape=(None,), dtype='int32') - value_input = tf.keras.Input(shape=(None,), dtype='int32') - - # Embedding lookup. - token_embedding = tf.keras.layers.Embedding(input_dim=1000, output_dim=64) - # Query embeddings of shape [batch_size, Tq, dimension]. - query_embeddings = token_embedding(query_input) - # Value embeddings of shape [batch_size, Tv, dimension]. - value_embeddings = token_embedding(value_input) - - # CNN layer. - cnn_layer = tf.keras.layers.Conv1D( - filters=100, - kernel_size=4, - # Use 'same' padding so outputs have the same shape as inputs. - padding='same') - # Query encoding of shape [batch_size, Tq, filters]. - query_seq_encoding = cnn_layer(query_embeddings) - # Value encoding of shape [batch_size, Tv, filters]. - value_seq_encoding = cnn_layer(value_embeddings) - - # Query-value attention of shape [batch_size, Tq, filters]. - query_value_attention_seq = tf.keras.layers.Attention()( - [query_seq_encoding, value_seq_encoding]) - - # Reduce over the sequence axis to produce encodings of shape - # [batch_size, filters]. - query_encoding = tf.keras.layers.GlobalAveragePooling1D()( - query_seq_encoding) - query_value_attention = tf.keras.layers.GlobalAveragePooling1D()( - query_value_attention_seq) - - # Concatenate query and document encodings to produce a DNN input layer. - input_layer = tf.keras.layers.Concatenate()( - [query_encoding, query_value_attention]) - - # Add DNN layers, and create Model. - # ... - ``` - """ - - def __init__(self, use_scale=False, score_mode="dot", **kwargs): - super().__init__(**kwargs) - self.use_scale = use_scale - self.score_mode = score_mode - if self.score_mode not in ["dot", "concat"]: - raise ValueError( - f"Received: score_mode={score_mode}. Acceptable values " - 'are: ["dot", "concat"]' - ) - - def build(self, input_shape): - """Creates variable when `use_scale` is True or `score_mode` is - `concat`.""" - if self.use_scale: - self.scale = self.add_weight( - name="scale", - shape=(), - initializer="ones", - dtype=self.dtype, - trainable=True, - ) - else: - self.scale = None - if self.score_mode == "concat": - self.concat_score_weight = self.add_weight( - name="concat_score_weight", - shape=(), - initializer="ones", - dtype=self.dtype, - trainable=True, - ) - else: - self.concat_score_weight = None - super().build(input_shape) - - def _calculate_scores(self, query, key): - """Calculates attention scores as a query-key dot product. - - Args: - query: Query tensor of shape `[batch_size, Tq, dim]`. - key: Key tensor of shape `[batch_size, Tv, dim]`. - Returns: - Tensor of shape `[batch_size, Tq, Tv]`. - """ - if self.score_mode == "dot": - scores = tf.matmul(query, key, transpose_b=True) - if self.scale is not None: - scores *= self.scale - elif self.score_mode == "concat": - # Reshape tensors to enable broadcasting. - # Reshape into [batch_size, Tq, 1, dim]. - q_reshaped = tf.expand_dims(query, axis=-2) - # Reshape into [batch_size, 1, Tv, dim]. - k_reshaped = tf.expand_dims(key, axis=-3) - if self.scale is not None: - scores = self.concat_score_weight * tf.reduce_sum( - tf.tanh(self.scale * (q_reshaped + k_reshaped)), axis=-1 - ) - else: - scores = self.concat_score_weight * tf.reduce_sum( - tf.tanh(q_reshaped + k_reshaped), axis=-1 - ) - - return scores - - def get_config(self): - config = {"use_scale": self.use_scale, "score_mode": self.score_mode} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/attention/attention_test.py b/keras/layers/attention/attention_test.py deleted file mode 100644 index 43debfb2655..00000000000 --- a/keras/layers/attention/attention_test.py +++ /dev/null @@ -1,585 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests Attention layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers import core -from keras.testing_infra import test_combinations - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class AttentionTest(tf.test.TestCase, parameterized.TestCase): - def test_calculate_scores_one_dim(self): - # Query tensor of shape [1, 1, 1] - q = np.array([[[1.1]]], dtype=np.float32) - # Key tensor of shape [1, 1, 1] - k = np.array([[[1.6]]], dtype=np.float32) - attention_layer = keras.layers.Attention() - attention_layer.build(input_shape=([1, 1, 1], [1, 1, 1])) - actual = attention_layer._calculate_scores(query=q, key=k) - - # Expected tensor of shape [1, 1, 1]. - # expected000 = 1.1*1.6 = 1.76 - expected = np.array([[[1.76]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_calculate_scores_multi_dim(self): - # Query tensor of shape [1, 2, 4] - q = np.array( - [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 - ) - # Key tensor of shape [1, 3, 4] - k = np.array( - [ - [ - [1.5, 1.6, 1.7, 1.8], - [2.5, 2.6, 2.7, 2.8], - [3.5, 3.6, 3.7, 3.8], - ] - ], - dtype=np.float32, - ) - attention_layer = keras.layers.Attention() - attention_layer.build(input_shape=([1, 2, 4], [1, 3, 4])) - actual = attention_layer._calculate_scores(query=q, key=k) - - # Expected tensor of shape [1, 2, 3]. - # expected000 = 1.*1.5+1.1*1.6+1.2*1.7+1.3*1.8 = 7.64 - # expected001 = 1.*2.5+1.1*2.6+1.2*2.7+1.3*2.8 = 12.24 - # expected002 = 1.*3.5+1.1*3.6+1.2*3.7+1.3*3.8 = 16.84 - # expected010 = 2.*1.5+2.1*1.6+2.2*1.7+2.3*1.8 = 14.24 - # expected011 = 2.*2.5+2.1*2.6+2.2*2.7+2.3*2.8 = 22.84 - # expected012 = 2.*3.5+2.1*3.6+2.2*3.7+2.3*3.8 = 31.44 - expected = np.array( - [[[7.64, 12.24, 16.84], [14.24, 22.84, 31.44]]], dtype=np.float32 - ) - self.assertAllClose(expected, actual) - - def test_calculate_scores_multi_dim_concat(self): - # Query tensor of shape [1, 2, 4] - q = np.array( - [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 - ) - # Key tensor of shape [1, 3, 4] - k = np.array( - [ - [ - [1.5, 1.6, 1.7, 1.8], - [2.5, 2.6, 2.7, 2.8], - [3.5, 3.6, 3.7, 3.8], - ] - ], - dtype=np.float32, - ) - attention_layer = keras.layers.Attention(score_mode="concat") - attention_layer.concat_score_weight = 1 - attention_layer.build(input_shape=([1, 2, 4], [1, 3, 4])) - actual = keras.backend.get_value( - attention_layer._calculate_scores(query=q, key=k) - ) - - # expected000 = tanh(1.+1.5) + tanh(1.1+1.6) + \ - # tanh(1.2+1.7) + tanh(1.3+1.8) = 3.96753427840 - # expected001 = tanh(1.+2.5) + tanh(1.1+2.6) + \ - # tanh(1.2+2.7) + tanh(1.3+2.8) = 3.99558784825 - # expected002 = tanh(1.+3.5) + tanh(1.1+3.6) + \ - # tanh(1.2+3.7) + tanh(1.3+3.8) = 3.99940254147 - # expected010 = tanh(2.+1.5) + tanh(2.1+1.6) + \ - # tanh(2.2+1.7) + tanh(2.3+1.8) = 3.99558784825 - # expected011 = tanh(2.+2.5) + tanh(2.1+2.6) + \ - # tanh(2.2+2.7) + tanh(2.3+2.8) = 3.99940254147 - # expected012 = tanh(2.+3.5) + tanh(2.1+3.6) + \ - # tanh(2.2+3.7) + tanh(2.3+3.8) = 3.99991913657 - expected = np.array( - [ - [ - [3.96753427840, 3.99558784825, 3.99940254147], - [3.99558784825, 3.99940254147, 3.99991913657], - ] - ], - dtype=np.float32, - ) - self.assertAllClose(expected, actual) - - def test_calculate_scores_one_dim_batch_size_two(self): - # Query tensor of shape [2, 1, 1] - q = np.array([[[1.1]], [[2.1]]], dtype=np.float32) - # Key tensor of shape [2, 1, 1] - k = np.array([[[1.6]], [[2.6]]], dtype=np.float32) - attention_layer = keras.layers.Attention() - attention_layer.build(input_shape=([2, 1, 1], [2, 1, 1])) - actual = attention_layer._calculate_scores(query=q, key=k) - - # Expected tensor of shape [2, 1, 1]. - # expected000 = 1.1*1.6 = 1.76 - # expected100 = 2.1*2.6 = 5.46 - expected = np.array([[[1.76]], [[5.46]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_calculate_scores_one_dim_with_scale(self): - """Tests that scores are multiplied by scale.""" - # Query tensor of shape [1, 1, 1] - q = np.array([[[1.1]]], dtype=np.float32) - # Key tensor of shape [1, 1, 1] - k = np.array([[[1.6]]], dtype=np.float32) - attention_layer = keras.layers.Attention(use_scale=True) - attention_layer.build(input_shape=([1, 1, 1], [1, 1, 1])) - attention_layer.scale = -2.0 - actual = attention_layer._calculate_scores(query=q, key=k) - - # Expected tensor of shape [1, 1, 1]. - # expected000 = -2*1.1*1.6 = -3.52 - expected = np.array([[[-3.52]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_calculate_scores_one_dim_with_scale_concat(self): - """Tests that scores are multiplied by scale.""" - # Query tensor of shape [1, 1, 1] - q = np.array([[[1.1]]], dtype=np.float32) - # Key tensor of shape [1, 1, 1] - k = np.array([[[1.6]]], dtype=np.float32) - attention_layer = keras.layers.Attention( - use_scale=True, score_mode="concat" - ) - attention_layer.concat_score_weight = 1 - attention_layer.build(input_shape=([1, 1, 1], [1, 1, 1])) - attention_layer.scale = 2.0 - actual = keras.backend.get_value( - attention_layer._calculate_scores(query=q, key=k) - ) - - # Expected tensor of shape [1, 1, 1]. - # expected000 = tanh(2*(1.1+1.6)) = 0.9999592018254402 - expected = np.array([[[0.999959202]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_shape(self): - # Query tensor of shape [1, 2, 4] - q = np.array( - [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 - ) - # Value tensor of shape [1, 3, 4] - v = np.array( - [ - [ - [1.5, 1.6, 1.7, 1.8], - [2.5, 2.6, 2.7, 2.8], - [3.5, 3.6, 3.7, 3.8], - ] - ], - dtype=np.float32, - ) - # Value mask tensor of shape [1, 3] - v_mask = np.array([[True, True, False]], dtype=np.bool_) - attention_layer = keras.layers.Attention() - actual = attention_layer([q, v], mask=[None, v_mask]) - - expected_shape = [1, 2, 4] - self.assertAllEqual(expected_shape, tf.shape(actual)) - - def test_shape_concat(self): - # Query tensor of shape [1, 2, 4] - q = np.array( - [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 - ) - # Value tensor of shape [1, 3, 4] - v = np.array( - [ - [ - [1.5, 1.6, 1.7, 1.8], - [2.5, 2.6, 2.7, 2.8], - [3.5, 3.6, 3.7, 3.8], - ] - ], - dtype=np.float32, - ) - # Value mask tensor of shape [1, 3] - v_mask = np.array([[True, True, False]], dtype=np.bool_) - attention_layer = keras.layers.Attention(score_mode="concat") - attention_layer.concat_score_weight = 1 - actual = attention_layer([q, v], mask=[None, v_mask]) - - expected_shape = [1, 2, 4] - self.assertAllEqual(expected_shape, tf.shape(actual)) - - def test_shape_with_key(self): - # Query tensor of shape [1, 2, 4] - q = np.array( - [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 - ) - # Value tensor of shape [1, 3, 4] - v = np.array( - [ - [ - [1.5, 1.6, 1.7, 1.8], - [2.5, 2.6, 2.7, 2.8], - [3.5, 3.6, 3.7, 3.8], - ] - ], - dtype=np.float32, - ) - # Key tensor of shape [1, 3, 4] - k = np.array( - [ - [ - [1.5, 1.6, 1.7, 1.8], - [2.5, 2.6, 2.7, 2.8], - [3.5, 3.6, 3.7, 3.8], - ] - ], - dtype=np.float32, - ) - # Value mask tensor of shape [1, 3] - v_mask = np.array([[True, True, False]], dtype=np.bool_) - attention_layer = keras.layers.Attention() - actual = attention_layer([q, v, k], mask=[None, v_mask]) - - expected_shape = [1, 2, 4] - self.assertAllEqual(expected_shape, tf.shape(actual)) - - def test_shape_with_key_concat(self): - # Query tensor of shape [1, 2, 4] - q = np.array( - [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 - ) - # Value tensor of shape [1, 3, 4] - v = np.array( - [ - [ - [1.5, 1.6, 1.7, 1.8], - [2.5, 2.6, 2.7, 2.8], - [3.5, 3.6, 3.7, 3.8], - ] - ], - dtype=np.float32, - ) - # Key tensor of shape [1, 3, 4] - k = np.array( - [ - [ - [1.5, 1.6, 1.7, 1.8], - [2.5, 2.6, 2.7, 2.8], - [3.5, 3.6, 3.7, 3.8], - ] - ], - dtype=np.float32, - ) - # Value mask tensor of shape [1, 3] - v_mask = np.array([[True, True, False]], dtype=np.bool_) - attention_layer = keras.layers.Attention(score_mode="concat") - attention_layer.concat_score_weight = 1 - actual = attention_layer([q, v, k], mask=[None, v_mask]) - - expected_shape = [1, 2, 4] - self.assertAllEqual(expected_shape, tf.shape(actual)) - - def test_multi_dim(self): - # Query tensor of shape [1, 1, 1] - q = np.array([[[1.1]]], dtype=np.float32) - # Value tensor of shape [1, 3, 1] - v = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) - # Value mask tensor of shape [1, 3] - v_mask = np.array([[True, True, False]], dtype=np.bool_) - attention_layer = keras.layers.Attention() - actual = attention_layer([q, v], mask=[None, v_mask]) - - # Expected scores of shape [1, 1, 3] - # scores = [[[1.1*1.6, 1.1*0.7, -1.1*0.8]]] = [[[1.76, 0.77, -0.88]]] - # Expected attention distribution = softmax(scores) with zeros in - # positions where v_mask == False. - # => attention_distribution000 = exp(1.76)/(exp(1.76) + exp(0.77)) - # = 0.72908792234 - # attention_distribution001 = exp(0.77)/(exp(1.76) + exp(0.77)) - # = 0.27091207765 - # attention_distribution002 = 0 - # - # Expected tensor of shape [1, 1, 1]. - # expected000 = 0.72908792234 * 1.6 + 0.27091207765 * 0.7 - 0 * 0.8 - # = 1.3561791301 - expected = np.array([[[1.3561791301]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_multi_dim_with_key(self): - # Query tensor of shape [1, 1, 1] - q = np.array([[[1.1]]], dtype=np.float32) - # Value tensor of shape [1, 3, 1] - v = np.array([[[0.5], [0.8], [-0.3]]], dtype=np.float32) - # Key tensor of shape [1, 3, 1] - k = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) - # Value mask tensor of shape [1, 3] - v_mask = np.array([[True, True, False]], dtype=np.bool_) - attention_layer = keras.layers.Attention() - actual = attention_layer([q, v, k], mask=[None, v_mask]) - - # Expected scores of shape [1, 1, 3] - # scores = [[[1.1*1.6, 1.1*0.7, -1.1*0.8]]] = [[[1.76, 0.77, -0.88]]] - # Expected attention distribution = softmax(scores) with zeros in - # positions where v_mask == False. - # => attention_distribution000 = exp(1.76)/(exp(1.76) + exp(0.77)) - # = 0.72908792234 - # attention_distribution001 = exp(0.77)/(exp(1.76) + exp(0.77)) - # = 0.27091207765 - # attention_distribution002 = 0 - # - # Expected tensor of shape [1, 1, 1]. - # expected000 = 0.72908792234 * 0.5 + 0.27091207765 * 0.8 - 0 * 0.3 - # = 0.58127362329 - expected = np.array([[[0.58127362329]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - @parameterized.named_parameters( - ("", False), - ("return_attention_scores", True), - ) - def test_multi_dim_with_query_mask(self, return_attention_scores): - # Query tensor of shape [1, 2, 1] - q = np.array([[[1.1], [-0.5]]], dtype=np.float32) - # Value tensor of shape [1, 3, 1] - v = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) - # Query mask tensor of shape [1, 2] - q_mask = np.array([[True, False]], dtype=np.bool_) - # Value mask tensor of shape [1, 3] - v_mask = np.array([[True, True, False]], dtype=np.bool_) - attention_layer = keras.layers.Attention() - if return_attention_scores: - actual, actual_scores = attention_layer( - [q, v], - mask=[q_mask, v_mask], - return_attention_scores=return_attention_scores, - ) - else: - actual = attention_layer( - [q, v], - mask=[q_mask, v_mask], - return_attention_scores=return_attention_scores, - ) - - # Expected scores of shape [1, 2, 3] - # scores = [[[1.1*1.6, 1.1*0.7, -1.1*0.8], - # [-0.5*1.6, -0.5*0.7, 0.5*0.8]]] - # = [[[1.76, 0.77, -0.88], [-0.8, -0.35, 0.4]]] - # Expected attention distribution = softmax(scores) with zeros in - # positions where v_mask == False. - # => attention_distribution000 = exp(1.76)/(exp(1.76) + exp(0.77)) - # = 0.72908792234 - # attention_distribution001 = exp(0.77)/(exp(1.76) + exp(0.77)) - # = 0.27091207765 - # attention_distribution002 = 0 - # => attention_distribution010 = exp(-0.8)/(exp(-0.8) + exp(-0.35)) - # = 0.38936076605 - # attention_distribution011 = exp(-0.35)/(exp(-0.8) + exp(-0.35)) - # = 0.61063923394 - # attention_distribution012 = 0 - if return_attention_scores: - expected_scores = np.array( - [ - [ - [0.72908792234, 0.27091207765, 0.0], - [0.38936076605, 0.61063923394, 0.0], - ] - ], - dtype=np.float32, - ) - self.assertAllClose(expected_scores, actual_scores) - # Expected tensor of shape [1, 2, 1] with zeros where q_mask == False. - # expected000 = 0.72908792234 * 1.6 + 0.27091207765 * 0.7 - 0 * 0.8 - # = 1.3561791301 - # expected000 = 0 - expected = np.array([[[1.3561791301], [0.0]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_scale_none(self): - """Tests that scale is None by default.""" - attention_layer = keras.layers.Attention() - attention_layer.build(input_shape=([1, 1, 1], [1, 1, 1])) - self.assertIsNone(attention_layer.scale) - - def test_scale_init_eager(self): - """Tests that scale initializes to 1 when use_scale=True.""" - if not tf.executing_eagerly(): - self.skipTest("Only run in eager mode") - attention_layer = keras.layers.Attention(use_scale=True) - attention_layer.build(input_shape=([1, 1, 1], [1, 1, 1])) - self.assertAllClose(1.0, attention_layer.scale.value()) - - def test_scale_init_graph(self): - """Tests that scale initializes to 1 when use_scale=True.""" - with self.cached_session() as sess: - attention_layer = keras.layers.Attention(use_scale=True) - attention_layer.build(input_shape=([1, 1, 1], [1, 1, 1])) - sess.run(attention_layer.scale.initializer) - self.assertAllClose(1.0, attention_layer.scale.value()) - - @parameterized.named_parameters( - ("", False), - ("return_attention_scores", True), - ) - def test_self_attention_causal(self, return_attention_scores): - # Query-value tensor of shape [1, 3, 1] - q = np.array([[[0.5], [0.8], [-0.3]]], dtype=np.float32) - attention_layer = keras.layers.Attention() - if return_attention_scores: - actual, actual_scores = attention_layer( - [q, q], - return_attention_scores=return_attention_scores, - use_causal_mask=True, - ) - else: - actual = attention_layer( - [q, q], - return_attention_scores=return_attention_scores, - use_causal_mask=True, - ) - - # Expected scores of shape [1, 3, 3] - # scores = [[0.25, 0.4, -0.15], - # [0.4, 0.64, -0.24], - # [-0.15, -0.24, 0.09]] - # Expected attention distribution = softmax(scores) lower triangular - # => attention_distribution00 = [1., 0., 0.] - # attention_distribution01 - # = [exp(0.4), exp(0.64), 0.] / (exp(0.4) + exp(0.64)) - # = [0.44028635073, 0.55971364926, 0.] - # attention_distribution02 - # = [exp(-0.15), exp(-0.24), exp(0.09)] - # / (exp(-0.15) + exp(-0.24) + exp(0.09)) - # = [0.31395396638, 0.28693232061, 0.399113713] - if return_attention_scores: - expected_scores = np.array( - [ - [ - [1.0, 0.0, 0.0], - [0.44028635073, 0.55971364926, 0.0], - [0.31395396638, 0.28693232061, 0.399113713], - ] - ], - dtype=np.float32, - ) - self.assertAllClose(expected_scores, actual_scores) - # Expected tensor of shape [1, 3, 1]. - # expected000 = 0.5 - # expected010 = 0.44028635073 * 0.5 + 0.55971364926 * 0.8 - # = 0.66791409477 - # expected020 = 0.31395396638 * 0.5 + \ - # 0.28693232061 * 0.8 -0.399113713 * 0.3 - # = 0.26678872577 - expected = np.array( - [[[0.5], [0.66791409477], [0.26678872577]]], dtype=np.float32 - ) - self.assertAllClose(expected, actual) - - def test_self_attention_causal_deprecated(self): - """Verify deprecated specification of causal masking still works.""" - # Query-value tensor of shape [1, 3, 1] - q = np.array([[[0.5], [0.8], [-0.3]]], dtype=np.float32) - attention_layer_new = keras.layers.Attention() - new_scores = attention_layer_new( - [q, q], - use_causal_mask=True, - ) - attention_layer_old = keras.layers.Attention(causal=True) - old_scores = attention_layer_old( - [q, q], - ) - self.assertAllClose(new_scores, old_scores) - - def test_inputs_not_list(self): - attention_layer = keras.layers.Attention() - q = np.array([[[1.1]]], dtype=np.float32) - with self.assertRaisesRegex( - ValueError, "Attention layer must be called on a list of inputs" - ): - attention_layer(q) - - def test_inputs_too_short(self): - attention_layer = keras.layers.Attention() - q = np.array([[[1.1]]], dtype=np.float32) - with self.assertRaisesRegex( - ValueError, "Attention layer accepts inputs list of length 2 or 3" - ): - attention_layer([q]) - - def test_inputs_too_long(self): - attention_layer = keras.layers.Attention() - q = np.array([[[1.1]]], dtype=np.float32) - with self.assertRaisesRegex( - ValueError, "Attention layer accepts inputs list of length 2 or 3" - ): - attention_layer([q, q, q, q]) - - def test_mask_not_list(self): - attention_layer = keras.layers.Attention() - q = np.array([[[1.1]]], dtype=np.float32) - mask = np.array([[True]], dtype=np.bool_) - with self.assertRaisesRegex( - ValueError, "Attention layer mask must be a list" - ): - attention_layer([q, q], mask=mask) - - def test_mask_too_short(self): - attention_layer = keras.layers.Attention() - q = np.array([[[1.1]]], dtype=np.float32) - mask = np.array([[True]], dtype=np.bool_) - with self.assertRaisesRegex( - ValueError, "Attention layer mask must be a list of length 2" - ): - attention_layer([q, q], mask=[mask]) - - def test_mask_too_long(self): - attention_layer = keras.layers.Attention() - q = np.array([[[1.1]]], dtype=np.float32) - mask = np.array([[True]], dtype=np.bool_) - with self.assertRaisesRegex( - ValueError, "Attention layer mask must be a list of length 2" - ): - attention_layer([q, q], mask=[mask, mask, mask]) - - def test_override_mask(self): - attention_layer = keras.layers.Attention() - q = core.Masking()(np.array([[[1.1]]], dtype=np.float32)) - mask = np.array([[False]], dtype=np.bool_) - actual = attention_layer([q, q], mask=[mask, mask]) - self.assertAllClose([[[0]]], actual) - - def test_implicit_mask(self): - attention_layer = keras.layers.Attention() - q = core.Masking(1.1)(np.array([[[1.1], [1]]], dtype=np.float32)) - v = core.Masking(1.2)(np.array([[[1.2], [1]]], dtype=np.float32)) - actual = attention_layer([q, v]) - self.assertAllClose([[[0], [1]]], actual) - - @parameterized.named_parameters( - ("", False), - ("use_scale", True), - ) - def test_serialization(self, use_scale): - # Test serialization with use_scale - layer = keras.layers.Attention(use_scale=use_scale) - - config = keras.layers.serialize(layer) - new_layer = keras.layers.deserialize(config) - self.assertEqual(new_layer.use_scale, use_scale) - - config = layer.get_config() - new_layer = keras.layers.Attention.from_config(config) - self.assertEqual(new_layer.use_scale, use_scale) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/attention/base_dense_attention.py b/keras/layers/attention/base_dense_attention.py deleted file mode 100644 index 2ad5e924385..00000000000 --- a/keras/layers/attention/base_dense_attention.py +++ /dev/null @@ -1,259 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Base class for attention layers that can be used in sequence DNN/CNN models. - -This file follows the terminology of https://arxiv.org/abs/1706.03762 Figure 2. -Attention is formed by three tensors: Query, Key and Value. -""" - -import tensorflow.compat.v2 as tf -from absl import logging - -from keras import backend -from keras.engine import base_layer -from keras.utils import control_flow_util - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.__internal__.layers.BaseDenseAttention", v1=[]) -class BaseDenseAttention(base_layer.BaseRandomLayer): - """Base Attention class for Dense networks. - - This class is suitable for Dense or CNN networks, and not for RNN networks. - - Implementations of attention mechanisms should inherit from this class, and - reuse the `apply_attention_scores()` method. - - Args: - dropout: Float between 0 and 1. Fraction of the units to drop for the - attention scores. - - Call Args: - inputs: List of the following tensors: - * query: Query `Tensor` of shape `[batch_size, Tq, dim]`. - * value: Value `Tensor` of shape `[batch_size, Tv, dim]`. - * key: Optional key `Tensor` of shape `[batch_size, Tv, dim]`. If not - given, will use `value` for both `key` and `value`, which is the most - common case. - mask: List of the following tensors: - * query_mask: A boolean mask `Tensor` of shape `[batch_size, Tq]`. If - given, the output will be zero at the positions where `mask==False`. - * value_mask: A boolean mask `Tensor` of shape `[batch_size, Tv]`. If - given, will apply the mask such that values at positions where - `mask==False` do not contribute to the result. - training: Python boolean indicating whether the layer should behave in - training mode (adding dropout) or in inference mode (no dropout). - return_attention_scores: bool, if `True`, returns the attention scores - (after masking and softmax) as an additional output argument. - - Output: - - Attention outputs of shape `[batch_size, Tq, dim]`. - [Optional] Attention scores after masking and softmax with shape - `[batch_size, Tq, Tv]`. - """ - - def __init__(self, dropout=0.0, **kwargs): - # Deprecated field `causal` determines whether to using causal masking. - # Use `use_causal_mask` in call() method instead. - if "causal" in kwargs: - logging.warning( - "`causal` argument is deprecated. Please use `use_causal_mask` " - "in call() method to specify causal masking." - ) - self.causal = kwargs.pop("causal", False) - super().__init__(**kwargs) - self.dropout = dropout - self.supports_masking = True - - def build(self, input_shape): - # Skip RNG initialization if dropout rate is 0. This will let the layer - # be purely stateless, with no reference to any variable. - if self.dropout > 0: - super().build(input_shape) - self.built = True - - def _calculate_scores(self, query, key): - """Calculates attention scores. - - Args: - query: Query tensor of shape `[batch_size, Tq, dim]`. - key: Key tensor of shape `[batch_size, Tv, dim]`. - - Returns: - Tensor of shape `[batch_size, Tq, Tv]`. - """ - return NotImplementedError - - def _apply_scores(self, scores, value, scores_mask=None, training=None): - """Applies attention scores to the given value tensor. - - To use this method in your attention layer, follow the steps: - - * Use `query` tensor of shape `[batch_size, Tq]` and `key` tensor of - shape `[batch_size, Tv]` to calculate the attention `scores`. - * Pass `scores` and `value` tensors to this method. The method applies - `scores_mask`, calculates `attention_distribution = softmax(scores)`, - then returns `matmul(attention_distribution, value). - * Apply `query_mask` and return the result. - - Args: - scores: Scores float tensor of shape `[batch_size, Tq, Tv]`. - value: Value tensor of shape `[batch_size, Tv, dim]`. - scores_mask: A boolean mask `Tensor` of shape `[batch_size, 1, Tv]` or - `[batch_size, Tq, Tv]`. If given, scores at positions where - `scores_mask==False` do not contribute to the result. It must - contain at least one `True` value in each line along the last - dimension. - training: Python boolean indicating whether the layer should behave in - training mode (adding dropout) or in inference mode (no dropout). - - Returns: - Tensor of shape `[batch_size, Tq, dim]`. - Attention scores after masking and softmax with shape - `[batch_size, Tq, Tv]`. - """ - if scores_mask is not None: - padding_mask = tf.logical_not(scores_mask) - # Bias so padding positions do not contribute to attention - # distribution. Note 65504. is the max float16 value. - if scores.dtype is tf.float16: - scores -= 65504.0 * tf.cast(padding_mask, dtype=scores.dtype) - else: - scores -= 1.0e9 * tf.cast(padding_mask, dtype=scores.dtype) - if training is None: - training = backend.learning_phase() - weights = tf.nn.softmax(scores) - - if self.dropout > 0: - - def dropped_weights(): - return self._random_generator.dropout( - weights, rate=self.dropout - ) - - weights = control_flow_util.smart_cond( - training, dropped_weights, lambda: tf.identity(weights) - ) - return tf.matmul(weights, value), weights - - # TODO(b/125916026): Consider exposing a __call__ method with named args. - def call( - self, - inputs, - mask=None, - training=None, - return_attention_scores=False, - use_causal_mask=False, - ): - self._validate_call_args(inputs=inputs, mask=mask) - q = inputs[0] - v = inputs[1] - k = inputs[2] if len(inputs) > 2 else v - q_mask = mask[0] if mask else None - v_mask = mask[1] if mask else None - scores = self._calculate_scores(query=q, key=k) - if v_mask is not None: - # Mask of shape [batch_size, 1, Tv]. - v_mask = tf.expand_dims(v_mask, axis=-2) - if self.causal or use_causal_mask: - # Creates a lower triangular mask, so position i cannot attend to - # positions j>i. This prevents the flow of information from the - # future into the past. - scores_shape = tf.shape(scores) - # causal_mask_shape = [1, Tq, Tv]. - causal_mask_shape = tf.concat( - [tf.ones_like(scores_shape[:-2]), scores_shape[-2:]], axis=0 - ) - causal_mask = _lower_triangular_mask(causal_mask_shape) - else: - causal_mask = None - scores_mask = _merge_masks(v_mask, causal_mask) - result, attention_scores = self._apply_scores( - scores=scores, value=v, scores_mask=scores_mask, training=training - ) - if q_mask is not None: - # Mask of shape [batch_size, Tq, 1]. - q_mask = tf.expand_dims(q_mask, axis=-1) - result *= tf.cast(q_mask, dtype=result.dtype) - if return_attention_scores: - return result, attention_scores - return result - - def compute_mask(self, inputs, mask=None): - self._validate_call_args(inputs=inputs, mask=mask) - if mask: - q_mask = mask[0] - if q_mask is None: - return None - return tf.convert_to_tensor(q_mask) - return None - - def compute_output_shape(self, input_shape): - # return_attention_scores argument of BaseDenseAttention.call method - # is ignored. Output shape of attention_scores cannot be returned. - return tf.TensorShape(input_shape[0]) - - def _validate_call_args(self, inputs, mask): - """Validates arguments of the call method.""" - class_name = self.__class__.__name__ - if not isinstance(inputs, list): - raise ValueError( - f"{class_name} layer must be called on a list of inputs, " - "namely [query, value] or [query, value, key]. " - f"Received: {inputs}." - ) - if len(inputs) < 2 or len(inputs) > 3: - raise ValueError( - f"{class_name} layer accepts inputs list of length 2 or 3, " - "namely [query, value] or [query, value, key]. " - f"Received length: {len(inputs)}." - ) - if mask: - if not isinstance(mask, list): - raise ValueError( - f"{class_name} layer mask must be a list, " - f"namely [query_mask, value_mask]. Received: {mask}." - ) - if len(mask) < 2 or len(mask) > len(inputs): - raise ValueError( - f"{class_name} layer mask must be a list of length 2, " - "namely [query_mask, value_mask]. " - f"Received length: {len(mask)}." - ) - - def get_config(self): - config = { - "dropout": self.dropout, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -def _lower_triangular_mask(shape): - """Creates a lower-triangular boolean mask over the last 2 dimensions.""" - row_index = tf.cumsum(tf.ones(shape=shape, dtype=tf.int32), axis=-2) - col_index = tf.cumsum(tf.ones(shape=shape, dtype=tf.int32), axis=-1) - return tf.greater_equal(row_index, col_index) - - -def _merge_masks(x, y): - if x is None: - return y - if y is None: - return x - return tf.logical_and(x, y) diff --git a/keras/layers/attention/base_dense_attention_test.py b/keras/layers/attention/base_dense_attention_test.py deleted file mode 100644 index 86b9f4b05a7..00000000000 --- a/keras/layers/attention/base_dense_attention_test.py +++ /dev/null @@ -1,199 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests BaseDenseAttention layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.layers.attention.base_dense_attention import BaseDenseAttention -from keras.layers.attention.base_dense_attention import _lower_triangular_mask -from keras.testing_infra import test_combinations - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class BaseDenseAttentionTest(tf.test.TestCase, parameterized.TestCase): - def test_one_dim_with_mask(self): - # Scores tensor of shape [1, 1, 1] - scores = np.array([[[1.1]]], dtype=np.float32) - # Value tensor of shape [1, 1, 1] - v = np.array([[[1.6]]], dtype=np.float32) - # Scores mask tensor of shape [1, 1, 1] - scores_mask = np.array([[[True]]], dtype=np.bool_) - actual, actual_scores = BaseDenseAttention()._apply_scores( - scores=scores, value=v, scores_mask=scores_mask - ) - - # Expected softmax_scores = [[[1]]] - expected_scores = np.array([[[1.0]]], dtype=np.float32) - self.assertAllClose(expected_scores, actual_scores) - # Expected tensor of shape [1, 1, 1]. - # expected000 = softmax_scores[0, 0] * 1.6 = 1.6 - expected = np.array([[[1.6]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_one_dim_no_mask(self): - # Scores tensor of shape [1, 1, 1] - scores = np.array([[[1.1]]], dtype=np.float32) - # Value tensor of shape [1, 1, 1] - v = np.array([[[1.6]]], dtype=np.float32) - actual, actual_scores = BaseDenseAttention()._apply_scores( - scores=scores, value=v - ) - - # Expected softmax_scores = [[[1]]] - expected_scores = np.array([[[1.0]]], dtype=np.float32) - self.assertAllClose(expected_scores, actual_scores) - # Expected tensor of shape [1, 1, 1]. - # expected000 = softmax_scores[0, 0] * 1.6 = 1.6 - expected = np.array([[[1.6]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_multi_dim_with_mask(self): - # Scores tensor of shape [1, 1, 3] - scores = np.array([[[1.0, 0.0, 1.0]]], dtype=np.float32) - # Value tensor of shape [1, 3, 1] - v = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) - # Scores mask tensor of shape [1, 1, 3] - scores_mask = np.array([[[True, True, False]]], dtype=np.bool_) - actual, actual_scores = BaseDenseAttention()._apply_scores( - scores=scores, value=v, scores_mask=scores_mask - ) - - # Expected softmax scores = softmax(scores) with zeros in positions - # where v_mask == False. - # => softmax_scores000 = exp(1)/(exp(1) + exp(0)) = 0.73105857863 - # softmax_scores001 = exp(0)/(exp(1) + exp(0)) = 0.26894142137 - # softmax_scores002 = 0 - expected_scores = np.array( - [[[0.73105857863, 0.26894142137, 0.0]]], dtype=np.float32 - ) - self.assertAllClose(expected_scores, actual_scores) - # Expected tensor of shape [1, 1, 1]. - # expected000 = 0.73105857863 * 1.6 + 0.26894142137 * 0.7 - 0 * 0.8 - # = 1.35795272077 - expected = np.array([[[1.35795272077]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_multi_dim_no_mask(self): - # Scores tensor of shape [1, 1, 3] - scores = np.array([[[1.0, 0.0, 1.0]]], dtype=np.float32) - # Value tensor of shape [1, 3, 1] - v = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) - actual, actual_scores = BaseDenseAttention()._apply_scores( - scores=scores, value=v - ) - - # Expected softmax_scores = softmax(scores). - # => softmax_scores000 = exp(1)/(exp(1) + exp(0) + exp(1)) - # = 0.42231879825 - # softmax_scores001 = exp(0)/(exp(1) + exp(0) + exp(1)) - # = 0.15536240349 - # softmax_scores002 = exp(1)/(exp(1) + exp(0) + exp(1)) - # = 0.42231879825 - expected_scores = np.array( - [[[0.42231879825, 0.15536240349, 0.42231879825]]], dtype=np.float32 - ) - self.assertAllClose(expected_scores, actual_scores) - # Expected tensor of shape [1, 1, 1]. - # expected000 = 0.42231879825 * 1.6 + 0.15536240349 * 0.7 - # - 0.42231879825 * 0.8 - # = 0.44660872104 - expected = np.array([[[0.44660872104]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_one_dim_batch_size_two(self): - # Scores tensor of shape [2, 1, 1] - scores = np.array([[[1.1]], [[2.1]]], dtype=np.float32) - # Value tensor of shape [2, 1, 1] - v = np.array([[[1.6]], [[2.6]]], dtype=np.float32) - # Scpres mask tensor of shape [2, 1, 1] - scores_mask = np.array([[[True]], [[True]]], dtype=np.bool_) - actual, actual_scores = BaseDenseAttention()._apply_scores( - scores=scores, value=v, scores_mask=scores_mask - ) - - # Expected softmax_scores = [[[1]], [[1]]] - expected_scores = np.array([[[1.0]], [[1.0]]], dtype=np.float32) - self.assertAllClose(expected_scores, actual_scores) - # Expected tensor of shape [2, 1, 1]. - # expected000 = softmax_scores[0, 0] * 1.6 = 1.6 - # expected100 = softmax_scores[1, 0] * 2.6 = 2.6 - expected = np.array([[[1.6]], [[2.6]]], dtype=np.float32) - self.assertAllClose(expected, actual) - - def test_shape_with_dropout(self): - # scores: Scores float tensor of shape `[batch_size, tq, tv]`. - # value: Value tensor of shape `[batch_size, tv, dim]`. - batch_size = 4 - tq = 5 - tv = 6 - dim = 7 - scores = np.ones((batch_size, tq, tv)) - value = np.ones((batch_size, tv, dim)) - actual, actual_scores = BaseDenseAttention(dropout=0.1)._apply_scores( - scores=scores, value=value, training=False - ) - - # Expected Tensor of shape `[batch_size, tq, tv]`. - expected_scores_shape = [batch_size, tq, tv] - self.assertAllEqual(expected_scores_shape, tf.shape(actual_scores)) - # Expected Tensor of shape `[batch_size, tq, dim]`. - expected_shape = [batch_size, tq, dim] - self.assertAllEqual(expected_shape, tf.shape(actual)) - - def test_skip_rng_init_when_no_dropout(self): - batch_size = 4 - tq = 5 - tv = 6 - dim = 7 - scores = np.ones((batch_size, tq, tv)) - value = np.ones((batch_size, tv, dim)) - layer = BaseDenseAttention() - layer.build(None) # The input shape is not used by this layer - _, _ = layer._apply_scores(scores=scores, value=value, training=True) - # Make sure the rng is not built and no tf.random.Generator created. - self.assertFalse(layer._random_generator._built) - self.assertIsNone(getattr(layer._random_generator, "_generator", None)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class LowerTriangularMaskTest(tf.test.TestCase, parameterized.TestCase): - def test_square_shape(self): - actual = _lower_triangular_mask([3, 3]) - expected = np.array( - [[True, False, False], [True, True, False], [True, True, True]], - dtype=np.bool_, - ) - self.assertAllEqual(expected, actual) - - def test_orthogonal_shape(self): - actual = _lower_triangular_mask([3, 2]) - expected = np.array( - [[True, False], [True, True], [True, True]], dtype=np.bool_ - ) - self.assertAllEqual(expected, actual) - - def test_three_dim(self): - actual = _lower_triangular_mask([1, 3, 3]) - expected = np.array( - [[[True, False, False], [True, True, False], [True, True, True]]], - dtype=np.bool_, - ) - self.assertAllEqual(expected, actual) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/attention/multi_head_attention.py b/keras/layers/attention/multi_head_attention.py deleted file mode 100644 index e11538c7b78..00000000000 --- a/keras/layers/attention/multi_head_attention.py +++ /dev/null @@ -1,730 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras-based multi-head attention layer.""" - - -import collections -import math -import string - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine.base_layer import Layer -from keras.layers import activation -from keras.layers import core -from keras.layers import regularization -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - -_CHR_IDX = string.ascii_lowercase - - -def _build_attention_equation(rank, attn_axes): - """Builds einsum equations for the attention computation. - - Query, key, value inputs after projection are expected to have the shape as: - `(bs, , , num_heads, channels)`. - `bs` and `` are treated as ``. - - The attention operations can be generalized: - (1) Query-key dot product: - `(, , num_heads, channels), (, - , num_heads, channels) -> (, - num_heads, , )` - (2) Combination: - `(, num_heads, , ), - (, , num_heads, channels) -> (, , num_heads, channels)` - - Args: - rank: Rank of query, key, value tensors. - attn_axes: List/tuple of axes, `[-1, rank)`, - that attention will be applied to. - - Returns: - Einsum equations. - """ - target_notation = _CHR_IDX[:rank] - # `batch_dims` includes the head dim. - batch_dims = tuple(np.delete(range(rank), attn_axes + (rank - 1,))) - letter_offset = rank - source_notation = "" - for i in range(rank): - if i in batch_dims or i == rank - 1: - source_notation += target_notation[i] - else: - source_notation += _CHR_IDX[letter_offset] - letter_offset += 1 - - product_notation = "".join( - [target_notation[i] for i in batch_dims] - + [target_notation[i] for i in attn_axes] - + [source_notation[i] for i in attn_axes] - ) - dot_product_equation = "%s,%s->%s" % ( - source_notation, - target_notation, - product_notation, - ) - attn_scores_rank = len(product_notation) - combine_equation = "%s,%s->%s" % ( - product_notation, - source_notation, - target_notation, - ) - return dot_product_equation, combine_equation, attn_scores_rank - - -def _build_proj_equation(free_dims, bound_dims, output_dims): - """Builds an einsum equation for projections inside multi-head attention.""" - input_str = "" - kernel_str = "" - output_str = "" - bias_axes = "" - letter_offset = 0 - for i in range(free_dims): - char = _CHR_IDX[i + letter_offset] - input_str += char - output_str += char - - letter_offset += free_dims - for i in range(bound_dims): - char = _CHR_IDX[i + letter_offset] - input_str += char - kernel_str += char - - letter_offset += bound_dims - for i in range(output_dims): - char = _CHR_IDX[i + letter_offset] - kernel_str += char - output_str += char - bias_axes += char - equation = f"{input_str},{kernel_str}->{output_str}" - - return equation, bias_axes, len(output_str) - - -def _get_output_shape(output_rank, known_last_dims): - return [None] * (output_rank - len(known_last_dims)) + list(known_last_dims) - - -@keras_export("keras.layers.MultiHeadAttention") -class MultiHeadAttention(Layer): - """MultiHeadAttention layer. - - This is an implementation of multi-headed attention as described in the - paper "Attention is all you Need" (Vaswani et al., 2017). - If `query`, `key,` `value` are the same, then - this is self-attention. Each timestep in `query` attends to the - corresponding sequence in `key`, and returns a fixed-width vector. - - This layer first projects `query`, `key` and `value`. These are - (effectively) a list of tensors of length `num_attention_heads`, where the - corresponding shapes are `(batch_size, , key_dim)`, - `(batch_size, , key_dim)`, - `(batch_size, , value_dim)`. - - Then, the query and key tensors are dot-producted and scaled. These are - softmaxed to obtain attention probabilities. The value tensors are then - interpolated by these probabilities, then concatenated back to a single - tensor. - - Finally, the result tensor with the last dimension as value_dim can take an - linear projection and return. - - When using `MultiHeadAttention` inside a custom layer, the custom layer must - implement its own `build()` method and call `MultiHeadAttention`'s - `_build_from_signature()` there. - This enables weights to be restored correctly when the model is loaded. - - Examples: - - Performs 1D cross-attention over two sequence inputs with an attention mask. - Returns the additional attention weights over heads. - - >>> layer = MultiHeadAttention(num_heads=2, key_dim=2) - >>> target = tf.keras.Input(shape=[8, 16]) - >>> source = tf.keras.Input(shape=[4, 16]) - >>> output_tensor, weights = layer(target, source, - ... return_attention_scores=True) - >>> print(output_tensor.shape) - (None, 8, 16) - >>> print(weights.shape) - (None, 2, 8, 4) - - Performs 2D self-attention over a 5D input tensor on axes 2 and 3. - - >>> layer = MultiHeadAttention( - ... num_heads=2, key_dim=2, attention_axes=(2, 3)) - >>> input_tensor = tf.keras.Input(shape=[5, 3, 4, 16]) - >>> output_tensor = layer(input_tensor, input_tensor) - >>> print(output_tensor.shape) - (None, 5, 3, 4, 16) - - Args: - num_heads: Number of attention heads. - key_dim: Size of each attention head for query and key. - value_dim: Size of each attention head for value. - dropout: Dropout probability. - use_bias: Boolean, whether the dense layers use bias vectors/matrices. - output_shape: The expected shape of an output tensor, besides the batch - and sequence dims. If not specified, projects back to the query - feature dim (the query input's last dimension). - attention_axes: axes over which the attention is applied. `None` means - attention over all axes, but batch, heads, and features. - kernel_initializer: Initializer for dense layer kernels. - bias_initializer: Initializer for dense layer biases. - kernel_regularizer: Regularizer for dense layer kernels. - bias_regularizer: Regularizer for dense layer biases. - activity_regularizer: Regularizer for dense layer activity. - kernel_constraint: Constraint for dense layer kernels. - bias_constraint: Constraint for dense layer kernels. - - Call arguments: - query: Query `Tensor` of shape `(B, T, dim)`. - value: Value `Tensor` of shape `(B, S, dim)`. - key: Optional key `Tensor` of shape `(B, S, dim)`. If not given, will - use `value` for both `key` and `value`, which is the most common - case. - attention_mask: a boolean mask of shape `(B, T, S)`, that prevents - attention to certain positions. The boolean mask specifies which - query elements can attend to which key elements, 1 indicates - attention and 0 indicates no attention. Broadcasting can happen for - the missing batch dimensions and the head dimension. - return_attention_scores: A boolean to indicate whether the output should - be `(attention_output, attention_scores)` if `True`, or - `attention_output` if `False`. Defaults to `False`. - training: Python boolean indicating whether the layer should behave in - training mode (adding dropout) or in inference mode (no dropout). - Will go with either using the training mode of the parent - layer/model, or False (inference) if there is no parent layer. - use_causal_mask: A boolean to indicate whether to apply a causal mask to - prevent tokens from attending to future tokens (e.g., used in a - decoder Transformer). - - Returns: - attention_output: The result of the computation, of shape `(B, T, E)`, - where `T` is for target sequence shapes and `E` is the query input - last dimension if `output_shape` is `None`. Otherwise, the - multi-head outputs are projected to the shape specified by - `output_shape`. - attention_scores: [Optional] multi-head attention coefficients over - attention axes. - """ - - def __init__( - self, - num_heads, - key_dim, - value_dim=None, - dropout=0.0, - use_bias=True, - output_shape=None, - attention_axes=None, - kernel_initializer="glorot_uniform", - bias_initializer="zeros", - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - **kwargs, - ): - super().__init__(**kwargs) - self.supports_masking = True - self._num_heads = num_heads - self._key_dim = key_dim - self._value_dim = value_dim if value_dim else key_dim - self._dropout = dropout - self._use_bias = use_bias - self._output_shape = output_shape - self._kernel_initializer = initializers.get(kernel_initializer) - self._bias_initializer = initializers.get(bias_initializer) - self._kernel_regularizer = regularizers.get(kernel_regularizer) - self._bias_regularizer = regularizers.get(bias_regularizer) - self._activity_regularizer = regularizers.get(activity_regularizer) - self._kernel_constraint = constraints.get(kernel_constraint) - self._bias_constraint = constraints.get(bias_constraint) - if attention_axes is not None and not isinstance( - attention_axes, collections.abc.Sized - ): - self._attention_axes = (attention_axes,) - else: - self._attention_axes = attention_axes - self._built_from_signature = False - self._query_shape, self._key_shape, self._value_shape = None, None, None - - def get_config(self): - config = { - "num_heads": self._num_heads, - "key_dim": self._key_dim, - "value_dim": self._value_dim, - "dropout": self._dropout, - "use_bias": self._use_bias, - "output_shape": self._output_shape, - "attention_axes": self._attention_axes, - "kernel_initializer": initializers.serialize( - self._kernel_initializer - ), - "bias_initializer": initializers.serialize(self._bias_initializer), - "kernel_regularizer": regularizers.serialize( - self._kernel_regularizer - ), - "bias_regularizer": regularizers.serialize(self._bias_regularizer), - "activity_regularizer": regularizers.serialize( - self._activity_regularizer - ), - "kernel_constraint": constraints.serialize(self._kernel_constraint), - "bias_constraint": constraints.serialize(self._bias_constraint), - "query_shape": self._query_shape, - "key_shape": self._key_shape, - "value_shape": self._value_shape, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config): - # If the layer has a different build() function from the Keras default, - # we need to trigger the customized build to create weights. - query_shape = config.pop("query_shape") - key_shape = config.pop("key_shape") - value_shape = config.pop("value_shape") - layer = cls(**config) - if None in [query_shape, key_shape, value_shape]: - logging.warning( - "One of dimensions of the input shape is missing. It " - "should have been memorized when the layer was serialized. " - "%s is created without weights.", - str(cls), - ) - else: - layer._build_from_signature(query_shape, value_shape, key_shape) - return layer - - def _build_from_signature(self, query, value, key=None): - """Builds layers and variables. - - Once the method is called, self._built_from_signature will be set to - True. - - Args: - query: Query tensor or TensorShape. - value: Value tensor or TensorShape. - key: Key tensor or TensorShape. - """ - self._built_from_signature = True - if hasattr(query, "shape"): - self._query_shape = tf.TensorShape(query.shape) - else: - self._query_shape = tf.TensorShape(query) - if hasattr(value, "shape"): - self._value_shape = tf.TensorShape(value.shape) - else: - self._value_shape = tf.TensorShape(value) - if key is None: - self._key_shape = self._value_shape - elif hasattr(key, "shape"): - self._key_shape = tf.TensorShape(key.shape) - else: - self._key_shape = tf.TensorShape(key) - - # Any setup work performed only once should happen in an `init_scope` - # to avoid creating symbolic Tensors that will later pollute any eager - # operations. - with tf_utils.maybe_init_scope(self): - free_dims = self._query_shape.rank - 1 - einsum_equation, bias_axes, output_rank = _build_proj_equation( - free_dims, bound_dims=1, output_dims=2 - ) - self._query_dense = core.EinsumDense( - einsum_equation, - output_shape=_get_output_shape( - output_rank - 1, [self._num_heads, self._key_dim] - ), - bias_axes=bias_axes if self._use_bias else None, - name="query", - **self._get_common_kwargs_for_sublayer(), - ) - einsum_equation, bias_axes, output_rank = _build_proj_equation( - self._key_shape.rank - 1, bound_dims=1, output_dims=2 - ) - self._key_dense = core.EinsumDense( - einsum_equation, - output_shape=_get_output_shape( - output_rank - 1, [self._num_heads, self._key_dim] - ), - bias_axes=bias_axes if self._use_bias else None, - name="key", - **self._get_common_kwargs_for_sublayer(), - ) - einsum_equation, bias_axes, output_rank = _build_proj_equation( - self._value_shape.rank - 1, bound_dims=1, output_dims=2 - ) - self._value_dense = core.EinsumDense( - einsum_equation, - output_shape=_get_output_shape( - output_rank - 1, [self._num_heads, self._value_dim] - ), - bias_axes=bias_axes if self._use_bias else None, - name="value", - **self._get_common_kwargs_for_sublayer(), - ) - - # Builds the attention computations for multi-head dot product - # attention. These computations could be wrapped into the keras - # attention layer once it supports mult-head einsum computations. - self._build_attention(output_rank) - self._output_dense = self._make_output_dense( - free_dims, - self._get_common_kwargs_for_sublayer(), - "attention_output", - ) - - def _get_common_kwargs_for_sublayer(self): - common_kwargs = dict( - kernel_regularizer=self._kernel_regularizer, - bias_regularizer=self._bias_regularizer, - activity_regularizer=self._activity_regularizer, - kernel_constraint=self._kernel_constraint, - bias_constraint=self._bias_constraint, - ) - # Create new clone of kernel/bias initializer, so that we don't reuse - # the initializer instance, which could lead to same init value since - # initializer is stateless. - kernel_initializer = self._kernel_initializer.__class__.from_config( - self._kernel_initializer.get_config() - ) - bias_initializer = self._bias_initializer.__class__.from_config( - self._bias_initializer.get_config() - ) - common_kwargs["kernel_initializer"] = kernel_initializer - common_kwargs["bias_initializer"] = bias_initializer - return common_kwargs - - def _make_output_dense(self, free_dims, common_kwargs, name=None): - """Builds the output projection matrix. - - Args: - free_dims: Number of free dimensions for einsum equation building. - common_kwargs: Common keyword arguments for einsum layer. - name: Name for the projection layer. - - Returns: - Projection layer. - """ - if self._output_shape: - if not isinstance(self._output_shape, collections.abc.Sized): - output_shape = [self._output_shape] - else: - output_shape = self._output_shape - else: - output_shape = [self._query_shape[-1]] - einsum_equation, bias_axes, output_rank = _build_proj_equation( - free_dims, bound_dims=2, output_dims=len(output_shape) - ) - return core.EinsumDense( - einsum_equation, - output_shape=_get_output_shape(output_rank - 1, output_shape), - bias_axes=bias_axes if self._use_bias else None, - name=name, - **common_kwargs, - ) - - def _build_attention(self, rank): - """Builds multi-head dot-product attention computations. - - This function builds attributes necessary for `_compute_attention` to - customize attention computation to replace the default dot-product - attention. - - Args: - rank: the rank of query, key, value tensors. - """ - if self._attention_axes is None: - self._attention_axes = tuple(range(1, rank - 2)) - else: - self._attention_axes = tuple(self._attention_axes) - ( - self._dot_product_equation, - self._combine_equation, - attn_scores_rank, - ) = _build_attention_equation(rank, attn_axes=self._attention_axes) - norm_axes = tuple( - range( - attn_scores_rank - len(self._attention_axes), attn_scores_rank - ) - ) - self._softmax = activation.Softmax(axis=norm_axes) - self._dropout_layer = regularization.Dropout(rate=self._dropout) - - def _masked_softmax(self, attention_scores, attention_mask=None): - # Normalize the attention scores to probabilities. - # `attention_scores` = [B, N, T, S] - if attention_mask is not None: - # The expand dim happens starting from the `num_heads` dimension, - # (, num_heads, ) - mask_expansion_axis = -len(self._attention_axes) * 2 - 1 - for _ in range( - len(attention_scores.shape) - len(attention_mask.shape) - ): - attention_mask = tf.expand_dims( - attention_mask, axis=mask_expansion_axis - ) - return self._softmax(attention_scores, attention_mask) - - def _compute_attention( - self, query, key, value, attention_mask=None, training=None - ): - """Applies Dot-product attention with query, key, value tensors. - - This function defines the computation inside `call` with projected - multi-head Q, K, V inputs. Users can override this function for - customized attention implementation. - - Args: - query: Projected query `Tensor` of shape `(B, T, N, key_dim)`. - key: Projected key `Tensor` of shape `(B, S, N, key_dim)`. - value: Projected value `Tensor` of shape `(B, S, N, value_dim)`. - attention_mask: a boolean mask of shape `(B, T, S)`, that prevents - attention to certain positions. It is generally not needed if - the `query` and `value` (and/or `key`) are masked. - training: Python boolean indicating whether the layer should behave - in training mode (adding dropout) or in inference mode (doing - nothing). - - Returns: - attention_output: Multi-headed outputs of attention computation. - attention_scores: Multi-headed attention weights. - """ - # Note: Applying scalar multiply at the smaller end of einsum improves - # XLA performance, but may introduce slight numeric differences in - # the Transformer attention head. - query = tf.multiply(query, 1.0 / math.sqrt(float(self._key_dim))) - - # Take the dot product between "query" and "key" to get the raw - # attention scores. - attention_scores = tf.einsum(self._dot_product_equation, key, query) - - attention_scores = self._masked_softmax( - attention_scores, attention_mask - ) - - # This is actually dropping out entire tokens to attend to, which might - # seem a bit unusual, but is taken from the original Transformer paper. - attention_scores_dropout = self._dropout_layer( - attention_scores, training=training - ) - - # `context_layer` = [B, T, N, H] - attention_output = tf.einsum( - self._combine_equation, attention_scores_dropout, value - ) - return attention_output, attention_scores - - def call( - self, - query, - value, - key=None, - attention_mask=None, - return_attention_scores=False, - training=None, - use_causal_mask=False, - ): - if not self._built_from_signature: - self._build_from_signature(query=query, value=value, key=key) - if key is None: - key = value - - # Convert RaggedTensor to Tensor. - query_is_ragged = isinstance(query, tf.RaggedTensor) - if query_is_ragged: - query_lengths = query.nested_row_lengths() - query = query.to_tensor() - key_is_ragged = isinstance(key, tf.RaggedTensor) - value_is_ragged = isinstance(value, tf.RaggedTensor) - if key_is_ragged and value_is_ragged: - # Ensure they have the same shape. - bounding_shape = tf.math.maximum( - key.bounding_shape(), value.bounding_shape() - ) - key = key.to_tensor(shape=bounding_shape) - value = value.to_tensor(shape=bounding_shape) - elif key_is_ragged: - key = key.to_tensor(shape=tf.shape(value)) - elif value_is_ragged: - value = value.to_tensor(shape=tf.shape(key)) - - attention_mask = self._compute_attention_mask( - query, - value, - key=key, - attention_mask=attention_mask, - use_causal_mask=use_causal_mask, - ) - - # N = `num_attention_heads` - # H = `size_per_head` - # `query` = [B, T, N ,H] - query = self._query_dense(query) - - # `key` = [B, S, N, H] - key = self._key_dense(key) - - # `value` = [B, S, N, H] - value = self._value_dense(value) - - attention_output, attention_scores = self._compute_attention( - query, key, value, attention_mask, training - ) - attention_output = self._output_dense(attention_output) - - if query_is_ragged: - attention_output = tf.RaggedTensor.from_tensor( - attention_output, lengths=query_lengths - ) - - if return_attention_scores: - return attention_output, attention_scores - return attention_output - - def _compute_attention_mask( - self, query, value, key=None, attention_mask=None, use_causal_mask=False - ): - """Computes the attention mask, using the Keras masks of the inputs. - - * The `query`'s mask is reshaped from [B, T] to [B, T, 1]. - * The `value`'s mask is reshaped from [B, S] to [B, 1, S]. - * The `key`'s mask is reshaped from [B, S] to [B, 1, S]. The `key`'s - mask is ignored if `key` is `None` or if `key is value`. - * If `use_causal_mask=True`, then the causal mask is computed. Its shape - is [1, T, S]. - - All defined masks are merged using a logical AND operation (`&`). - - In general, if the `query` and `value` are masked, then there is no need - to define the `attention_mask`. - - Args: - query: Projected query `Tensor` of shape `(B, T, N, key_dim)`. - key: Projected key `Tensor` of shape `(B, T, N, key_dim)`. - value: Projected value `Tensor` of shape `(B, T, N, value_dim)`. - attention_mask: a boolean mask of shape `(B, T, S)`, that prevents - attention to certain positions. - use_causal_mask: A boolean to indicate whether to apply a causal - mask to prevent tokens from attending to future tokens (e.g., - used in a decoder Transformer). - - Returns: - attention_mask: a boolean mask of shape `(B, T, S)`, that prevents - attention to certain positions, based on the Keras masks of the - `query`, `key`, `value`, and `attention_mask` tensors, and the - causal mask if `use_causal_mask=True`. - """ - query_mask = getattr(query, "_keras_mask", None) - value_mask = getattr(value, "_keras_mask", None) - key_mask = getattr(key, "_keras_mask", None) - auto_mask = None - if query_mask is not None: - query_mask = tf.cast(query_mask, tf.bool) # defensive casting - # B = batch size, T = max query length - auto_mask = query_mask[:, :, tf.newaxis] # shape is [B, T, 1] - if value_mask is not None: - value_mask = tf.cast(value_mask, tf.bool) # defensive casting - # B = batch size, S == max value length - mask = value_mask[:, tf.newaxis, :] # shape is [B, 1, S] - auto_mask = mask if auto_mask is None else auto_mask & mask - if key_mask is not None: - key_mask = tf.cast(key_mask, tf.bool) # defensive casting - # B == batch size, S == max key length == max value length - mask = key_mask[:, tf.newaxis, :] # shape is [B, 1, S] - auto_mask = mask if auto_mask is None else auto_mask & mask - if use_causal_mask: - # the shape of the causal mask is [1, T, S] - mask = self._compute_causal_mask(query, value) - auto_mask = mask if auto_mask is None else auto_mask & mask - if auto_mask is not None: - # merge attention_mask & automatic mask, to shape [B, T, S] - attention_mask = ( - auto_mask - if attention_mask is None - else tf.cast(attention_mask, bool) & auto_mask - ) - return attention_mask - - def _compute_causal_mask(self, query, value=None): - """Computes a causal mask (e.g., for masked self-attention layers). - - For example, if query and value both contain sequences of length 4, - this function returns a boolean `Tensor` equal to: - - ``` - [[[True, False, False, False], - [True, True, False, False], - [True, True, True, False], - [True, True, True, True]]] - ``` - - Args: - query: query `Tensor` of shape `(B, T, ...)`. - value: value `Tensor` of shape `(B, S, ...)` (optional, defaults to - query). - - Returns: - mask: a boolean `Tensor` of shape [1, T, S] containing a lower - triangular matrix of shape [T, S]. - """ - q_seq_length = tf.shape(query)[1] - v_seq_length = q_seq_length if value is None else tf.shape(value)[1] - return tf.linalg.band_part( # creates a lower triangular matrix - tf.ones((1, q_seq_length, v_seq_length), tf.bool), -1, 0 - ) - - def compute_output_shape(self, query_shape, value_shape, key_shape=None): - - if key_shape is None: - key_shape = value_shape - - query_shape = tf.TensorShape(query_shape) - value_shape = tf.TensorShape(value_shape) - key_shape = tf.TensorShape(key_shape) - - if query_shape[-1] != value_shape[-1]: - raise ValueError( - "The last dimension of `query_shape` and `value_shape` " - f"must be equal, but are {query_shape[-1]}, {value_shape[-1]}. " - "Received: query_shape={query_shape}, value_shape={value_shape}" - ) - - if value_shape[1:-1] != key_shape[1:-1]: - raise ValueError( - "All dimensions of `value` and `key`, except the last one, " - f"must be equal. Received {value_shape} and " - f"{key_shape}" - ) - - if self._output_shape: - return query_shape[:-1].concatenate(self._output_shape) - - return query_shape diff --git a/keras/layers/attention/multi_head_attention_test.py b/keras/layers/attention/multi_head_attention_test.py deleted file mode 100644 index 96b939ccd24..00000000000 --- a/keras/layers/attention/multi_head_attention_test.py +++ /dev/null @@ -1,589 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for the MultiHeadAttention layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It -# guarantees forward compatibility of this code for the V2 switchover. -@test_combinations.run_all_keras_modes -class MultiHeadAttentionTest(test_combinations.TestCase): - @parameterized.named_parameters( - ("key_value_same_proj", None, None, [40, 80]), - ("key_value_different_proj", 32, 60, [40, 60]), - ) - def test_non_masked_attention(self, value_dim, output_shape, output_dims): - """Test that the attention layer can be created without a mask - tensor.""" - test_layer = keras.layers.MultiHeadAttention( - num_heads=12, - key_dim=64, - value_dim=value_dim, - output_shape=output_shape, - ) - # Create a 3-dimensional input (the first dimension is implicit). - query = keras.Input(shape=(40, 80)) - value = keras.Input(shape=(20, 80)) - output = test_layer(query=query, value=value) - self.assertEqual(output.shape.as_list(), [None] + output_dims) - - def test_non_masked_self_attention(self): - """Test with one input (self-attenntion) and no mask tensor.""" - test_layer = keras.layers.MultiHeadAttention(num_heads=12, key_dim=64) - # Create a 3-dimensional input (the first dimension is implicit). - query = keras.Input(shape=(40, 80)) - output = test_layer(query, query) - self.assertEqual(output.shape.as_list(), [None, 40, 80]) - - def test_attention_scores(self): - """Test attention outputs with coefficients.""" - test_layer = keras.layers.MultiHeadAttention(num_heads=12, key_dim=64) - # Create a 3-dimensional input (the first dimension is implicit). - query = keras.Input(shape=(40, 80)) - output, coef = test_layer(query, query, return_attention_scores=True) - self.assertEqual(output.shape.as_list(), [None, 40, 80]) - self.assertEqual(coef.shape.as_list(), [None, 12, 40, 40]) - - def test_attention_scores_with_values(self): - """Test attention outputs with coefficients.""" - test_layer = keras.layers.MultiHeadAttention(num_heads=12, key_dim=64) - # Create a 3-dimensional input (the first dimension is implicit). - query = keras.Input(shape=(40, 80)) - value = keras.Input(shape=(60, 80)) - output, coef = test_layer(query, value, return_attention_scores=True) - self.assertEqual(output.shape.as_list(), [None, 40, 80]) - self.assertEqual(coef.shape.as_list(), [None, 12, 40, 60]) - - @parameterized.named_parameters(("with_bias", True), ("no_bias", False)) - def test_masked_attention(self, use_bias): - """Test with a mask tensor.""" - test_layer = keras.layers.MultiHeadAttention( - num_heads=2, key_dim=2, use_bias=use_bias - ) - # Create a 3-dimensional input (the first dimension is implicit). - batch_size = 3 - query = keras.Input(shape=(4, 8)) - value = keras.Input(shape=(2, 8)) - mask_tensor = keras.Input(shape=(4, 2)) - output = test_layer( - query=query, value=value, attention_mask=mask_tensor - ) - - # Create a model containing the test layer. - model = keras.Model([query, value, mask_tensor], output) - - # Generate data for the input (non-mask) tensors. - from_data = 10 * np.random.random_sample((batch_size, 4, 8)) - to_data = 10 * np.random.random_sample((batch_size, 2, 8)) - - # Invoke the data with a random set of mask data. This should mask at - # least one element. - mask_data = np.random.randint(2, size=(batch_size, 4, 2)) - masked_output_data = model.predict([from_data, to_data, mask_data]) - - # Invoke the same data, but with a null mask (where no elements are - # masked). - null_mask_data = np.ones((batch_size, 4, 2)) - unmasked_output_data = model.predict( - [from_data, to_data, null_mask_data] - ) - - # Because one data is masked and one is not, the outputs should not be - # the same. - self.assertNotAllClose(masked_output_data, unmasked_output_data) - - # Tests the layer with three inputs: Q, K, V. - key = keras.Input(shape=(2, 8)) - output = test_layer( - query, value=value, key=key, attention_mask=mask_tensor - ) - model = keras.Model([query, value, key, mask_tensor], output) - - masked_output_data = model.predict( - [from_data, to_data, to_data, mask_data] - ) - unmasked_output_data = model.predict( - [from_data, to_data, to_data, null_mask_data] - ) - # Because one data is masked and one is not, the outputs should not be - # the same. - self.assertNotAllClose(masked_output_data, unmasked_output_data) - - if use_bias: - self.assertLen(test_layer._query_dense.trainable_variables, 2) - self.assertLen(test_layer._output_dense.trainable_variables, 2) - else: - self.assertLen(test_layer._query_dense.trainable_variables, 1) - self.assertLen(test_layer._output_dense.trainable_variables, 1) - - def test_initializer(self): - """Test with a specified initializer.""" - test_layer = keras.layers.MultiHeadAttention( - num_heads=12, - key_dim=64, - kernel_initializer=keras.initializers.TruncatedNormal(stddev=0.02), - ) - # Create a 3-dimensional input (the first dimension is implicit). - query = keras.Input(shape=(40, 80)) - output = test_layer(query, query) - self.assertEqual(output.shape.as_list(), [None, 40, 80]) - - # Make sure the sub layers have different kernel init value, and not - # reusing the initializers. - self.assertNotAllClose( - keras.backend.eval(test_layer._query_dense.kernel), - keras.backend.eval(test_layer._key_dense.kernel), - ) - self.assertNotAllClose( - keras.backend.eval(test_layer._query_dense.kernel), - keras.backend.eval(test_layer._value_dense.kernel), - ) - self.assertNotAllClose( - keras.backend.eval(test_layer._query_dense.kernel), - keras.backend.eval(test_layer._output_dense.kernel), - ) - - def test_masked_attention_with_scores(self): - """Test with a mask tensor.""" - test_layer = keras.layers.MultiHeadAttention(num_heads=2, key_dim=2) - # Create a 3-dimensional input (the first dimension is implicit). - batch_size = 3 - query = keras.Input(shape=(4, 8)) - value = keras.Input(shape=(2, 8)) - mask_tensor = keras.Input(shape=(4, 2)) - output = test_layer( - query=query, value=value, attention_mask=mask_tensor - ) - - # Create a model containing the test layer. - model = keras.Model([query, value, mask_tensor], output) - - # Generate data for the input (non-mask) tensors. - from_data = 10 * np.random.random_sample((batch_size, 4, 8)) - to_data = 10 * np.random.random_sample((batch_size, 2, 8)) - - # Invoke the data with a random set of mask data. This should mask at - # least one element. - mask_data = np.random.randint(2, size=(batch_size, 4, 2)) - masked_output_data = model.predict([from_data, to_data, mask_data]) - - # Invoke the same data, but with a null mask (where no elements are - # masked). - null_mask_data = np.ones((batch_size, 4, 2)) - unmasked_output_data = model.predict( - [from_data, to_data, null_mask_data] - ) - - # Because one data is masked and one is not, the outputs should not be - # the same. - self.assertNotAllClose(masked_output_data, unmasked_output_data) - - # Create a model containing attention scores. - output, scores = test_layer( - query=query, - value=value, - attention_mask=mask_tensor, - return_attention_scores=True, - ) - model = keras.Model([query, value, mask_tensor], [output, scores]) - masked_output_data_score, masked_score = model.predict( - [from_data, to_data, mask_data] - ) - unmasked_output_data_score, unmasked_score = model.predict( - [from_data, to_data, null_mask_data] - ) - self.assertNotAllClose( - masked_output_data_score, unmasked_output_data_score - ) - self.assertAllClose(masked_output_data, masked_output_data_score) - self.assertAllClose(unmasked_output_data, unmasked_output_data_score) - self.assertNotAllClose(masked_score, unmasked_score) - - @parameterized.named_parameters( - ("4d_inputs_1freebatch_mask2", [3, 4], [3, 2], [4, 2], (2,)), - ("4d_inputs_1freebatch_mask3", [3, 4], [3, 2], [3, 4, 2], (2,)), - ("4d_inputs_1freebatch_mask4", [3, 4], [3, 2], [3, 2, 4, 2], (2,)), - ("4D_inputs_2D_attention", [3, 4], [3, 2], [3, 4, 3, 2], (1, 2)), - ("5D_inputs_2D_attention", [5, 3, 4], [5, 3, 2], [3, 4, 3, 2], (2, 3)), - ( - "5D_inputs_2D_attention_fullmask", - [5, 3, 4], - [5, 3, 2], - [5, 3, 4, 3, 2], - (2, 3), - ), - ) - def test_high_dim_attention( - self, q_dims, v_dims, mask_dims, attention_axes - ): - """Test with a mask tensor.""" - test_layer = keras.layers.MultiHeadAttention( - num_heads=2, key_dim=2, attention_axes=attention_axes - ) - batch_size, hidden_size = 3, 8 - # Generate data for the input (non-mask) tensors. - query_shape = [batch_size] + q_dims + [hidden_size] - value_shape = [batch_size] + v_dims + [hidden_size] - mask_shape = [batch_size] + mask_dims - query = 10 * np.random.random_sample(query_shape) - value = 10 * np.random.random_sample(value_shape) - - # Invoke the data with a random set of mask data. This should mask at - # least one element. - mask_data = np.random.randint(2, size=mask_shape).astype("bool") - # Invoke the same data, but with a null mask (where no elements are - # masked). - null_mask_data = np.ones(mask_shape) - # Because one data is masked and one is not, the outputs should not be - # the same. - query_tensor = keras.Input(query_shape[1:], name="query") - value_tensor = keras.Input(value_shape[1:], name="value") - mask_tensor = keras.Input(mask_shape[1:], name="mask") - output = test_layer( - query=query_tensor, value=value_tensor, attention_mask=mask_tensor - ) - model = keras.Model([query_tensor, value_tensor, mask_tensor], output) - - self.assertNotAllClose( - model.predict([query, value, mask_data]), - model.predict([query, value, null_mask_data]), - ) - - def test_dropout(self): - test_layer = keras.layers.MultiHeadAttention( - num_heads=2, key_dim=2, dropout=0.5 - ) - - # Generate data for the input (non-mask) tensors. - from_data = keras.backend.ones(shape=(32, 4, 8)) - to_data = keras.backend.ones(shape=(32, 2, 8)) - train_out = test_layer(from_data, to_data, None, None, None, True) - test_out = test_layer(from_data, to_data, None, None, None, False) - - # Output should be close when not in training mode, - # and should not be close when enabling dropout in training mode. - self.assertNotAllClose( - keras.backend.eval(train_out), keras.backend.eval(test_out) - ) - - @test_combinations.generate( - test_combinations.combine( - ragged_query=[True, False], - ragged_value=[True, False], - ragged_key=[True, False], - ) - ) - def test_ragged_tensor(self, ragged_query, ragged_value, ragged_key): - if ragged_query: - query = tf.ragged.constant( - [ - [[3.0, 1.0], [4.0, 1.0]], - [[5.0, 9.0], [2.0, 6.0], [3.0, 1.0]], - [[1.0, 2.0]], - ], - inner_shape=(2,), - ) - else: - query = keras.backend.ones(shape=(3, 2, 2)) - - if ragged_value: - value = tf.ragged.constant( - [[[3.0, 1.0], [4.0, 1.0]], [[5.0, 9.0]], [[1.0, 2.0]]], - inner_shape=(2,), - ) - else: - value = keras.backend.ones(shape=(3, 4, 2)) - - if ragged_key: - key = tf.ragged.constant( - [ - [[3.0, 1.0], [4.0, 1.0]], - [[5.0, 9.0], [2.0, 6.0], [3.0, 1.0], [1.0, 5.0]], - [[1.0, 2.0]], - ], - inner_shape=(2,), - ) - else: - key = keras.backend.ones(shape=(3, 4, 2)) - - test_layer = keras.layers.MultiHeadAttention(num_heads=5, key_dim=2) - results = test_layer(query, value, key) - self.assertAllEqual(results.shape.as_list(), query.shape.as_list()) - - def test_ragged_tensor_with_causal_mask_no_error(self): - ragged_tensor = tf.ragged.constant( - [ - [[3.0, 1.0], [4.0, 1.0]], - [[5.0, 9.0], [2.0, 6.0], [3.0, 1.0]], - [[1.0, 2.0]], - ], - inner_shape=(2,), - ) - test_layer = keras.layers.MultiHeadAttention(num_heads=5, key_dim=2) - results = test_layer( - ragged_tensor, ragged_tensor, ragged_tensor, use_causal_mask=True - ) - self.assertAllEqual( - results.shape.as_list(), ragged_tensor.shape.as_list() - ) - - def test_query_mask_progagation(self): - """Test automatic propagation of the query's mask.""" - test_layer = keras.layers.MultiHeadAttention(num_heads=2, key_dim=2) - self.assertTrue(test_layer.supports_masking) - query = tf.constant([[1, 2, 3, 0, 0], [3, 3, 1, 1, 2], [1, 0, 0, 0, 0]]) - masked_query = keras.layers.Embedding(4, 8, mask_zero=True)(query) - value = tf.random.normal((3, 3, 8)) - output = test_layer(query=masked_query, value=value) - self.assertTrue(hasattr(output, "_keras_mask")) - self.assertAllEqual(masked_query._keras_mask, output._keras_mask) - - @parameterized.named_parameters(("causal", True), ("not_causal", False)) - @test_utils.run_v2_only - def test_value_mask(self, use_causal_mask): - """Test that the value and causal masks are taken into account.""" - test_layer = keras.layers.MultiHeadAttention(num_heads=2, key_dim=2) - query = tf.constant([[1, 2, 3, 0, 0], [3, 3, 1, 1, 2], [1, 0, 0, 0, 0]]) - masked_query = keras.layers.Embedding(4, 8, mask_zero=True)(query) - value = tf.constant([[5, 4, 0], [3, 0, 0], [2, 1, 1]]) - masked_value = keras.layers.Embedding(6, 8, mask_zero=True)(value) - output = test_layer( - query=masked_query, - value=masked_value, - use_causal_mask=use_causal_mask, - ) - mask = tf.constant( - [[[True, True, False]] * 3 + [[False, False, False]] * 2] - + [[[True, False, False]] * 5] - + [[[True, True, True]] + [[False, False, False]] * 4] - ) - if use_causal_mask: - mask = mask & tf.constant( - [ - [[True, False, False], [True, True, False]] - + [[True, True, True]] * 3 - ] - ) - del masked_query._keras_mask - del masked_value._keras_mask - output_with_manual_mask = test_layer( - query=masked_query, value=masked_value, attention_mask=mask - ) - self.assertAllClose(output, output_with_manual_mask) - - def test_masks_are_cast_to_bool(self): - """Test that the implicit and explicit masks are cast to bool.""" - test_layer = keras.layers.MultiHeadAttention(num_heads=2, key_dim=2) - query = np.array([[1, 2, 3, 0, 0], [3, 3, 1, 1, 2], [1, 0, 0, 0, 0]]) - masked_query = keras.layers.Embedding(4, 8, mask_zero=True)(query) - masked_query._keras_mask = tf.cast(masked_query._keras_mask, tf.float32) - value = np.array([[5, 4, 0], [3, 0, 0], [2, 1, 1]]) - masked_value = keras.layers.Embedding(6, 8, mask_zero=True)(value) - masked_value._keras_mask = tf.cast(masked_value._keras_mask, tf.float32) - float_mask = tf.constant([[[1.0]]]) - # if all works well, the following should not raise any exception: - _ = test_layer( - query=masked_query, - value=masked_value, - use_causal_mask=True, - attention_mask=float_mask, - ) - - @parameterized.named_parameters( - ("without_key_same_proj", [40, 80], [20, 80], None, None), - ("with_key_same_proj", [40, 80], [20, 80], [20, 30], None), - ("wihtout_key_different_proj", [40, 80], [20, 80], None, [30, 40]), - ("with_key_different_proj", [40, 80], [20, 80], [20, 30], [15, 50]), - ( - "high_dim_same_proj", - [40, 20, 30, 80], - [10, 10, 50, 80], - [10, 10, 50, 20], - None, - ), - ( - "high_dim_different_proj", - [40, 20, 30, 80], - [10, 10, 50, 80], - [10, 10, 50, 20], - [30, 20], - ), - ) - def test_compute_output_shape( - self, query_dims, value_dims, key_dims, output_shape - ): - """Test computed shape is equal to the layer output's shape.""" - test_layer = keras.layers.MultiHeadAttention( - num_heads=2, - key_dim=2, - value_dim=2, - output_shape=output_shape, - ) - batch_size = None - query_shape = [batch_size] + query_dims - value_shape = [batch_size] + value_dims - - if key_dims: - key_shape = [batch_size] + key_dims - else: - key_shape = None - - query = keras.Input(query_shape[1:]) - value = keras.Input(value_shape[1:]) - if key_shape: - key = keras.Input(key_shape[1:]) - else: - key = None - output = test_layer(query=query, value=value, key=key) - comp_output_shape = test_layer.compute_output_shape( - query_shape, value_shape, key_shape - ) - self.assertListEqual( - output.shape.as_list(), comp_output_shape.as_list() - ) - - @parameterized.named_parameters( - ("query_value_dim_mismatch", (None, 40, 80), (None, 20, 70), None), - ( - "key_value_dim_mismatch", - (None, 40, 80), - (None, 20, 80), - (None, 10, 70), - ), - ( - "key_value_dim_mismatch_high_dim", - (None, 40, 20, 30, 80), - (None, 10, 10, 50, 80), - (None, 10, 15, 50, 20), - ), - ) - def test_compute_output_shape_raises_error( - self, query_shape, value_shape, key_shape - ): - """Test dimension mismatches""" - test_layer = keras.layers.MultiHeadAttention( - num_heads=4, - key_dim=2, - value_dim=2, - ) - with self.assertRaisesRegex(ValueError, r"must be equal"): - test_layer.compute_output_shape(query_shape, value_shape, key_shape) - - -class SubclassAttention(keras.layers.MultiHeadAttention): - def _build_attention(self, qkv_rank): - pass - - def _compute_attention( - self, - query_tensor, - key_tensor, - value_tensor, - attention_mask=None, - training=None, - ): - return value_tensor, None - - -@test_combinations.run_all_keras_modes -class AttentionSubclassTest(test_combinations.TestCase): - def test_initializer(self): - """Test with a specified initializer.""" - test_layer = SubclassAttention(num_heads=12, key_dim=64) - # Create a 3-dimensional input (the first dimension is implicit). - query = keras.Input(shape=(40, 80)) - output = test_layer(query, query) - self.assertEqual(output.shape.as_list(), [None, 40, 80]) - - -class TestModel(keras.Model): - def __init__(self): - super().__init__() - self.attention = keras.layers.MultiHeadAttention( - num_heads=3, - key_dim=4, - value_dim=4, - use_bias=True, - dropout=0.0, - output_shape=[12], - ) - - @classmethod - def from_config(cls, config): - return cls(**config) - - def get_config(self): - return {} - - def call(self, x, training=False): - return self.attention(x, x, training=training) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class KerasModelSavingTest(test_combinations.TestCase): - def test_keras_saving_subclass(self): - model = TestModel() - query = keras.Input(shape=(40, 80)) - _ = model(query) - model_path = self.get_temp_dir() + "/tmp_model" - keras.models.save_model(model, model_path, save_format="tf") - reloaded_model = keras.models.load_model(model_path) - self.assertEqual( - len(model.trainable_variables), - len(reloaded_model.trainable_variables), - ) - for src_v, loaded_v in zip( - model.trainable_variables, reloaded_model.trainable_variables - ): - self.assertAllEqual(src_v, loaded_v) - - @parameterized.parameters("h5", "tf") - def test_keras_saving_functional(self, save_format): - model = TestModel() - query = keras.Input(shape=(40, 80)) - output = keras.layers.MultiHeadAttention( - num_heads=3, key_dim=4, value_dim=4, use_bias=True, dropout=0.0 - )(query, query) - model = keras.Model(inputs=query, outputs=output) - model_path = self.get_temp_dir() + "/tmp_model" - keras.models.save_model(model, model_path, save_format=save_format) - reloaded_model = keras.models.load_model(model_path) - self.assertEqual( - len(model.trainable_variables), - len(reloaded_model.trainable_variables), - ) - for src_v, loaded_v in zip( - model.trainable_variables, reloaded_model.trainable_variables - ): - self.assertAllEqual(src_v, loaded_v) - - def test_create_without_build(self): - not_initialized_layer = keras.layers.MultiHeadAttention( - num_heads=3, key_dim=4, value_dim=4 - ) - keras.layers.MultiHeadAttention.from_config( - not_initialized_layer.get_config() - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/convolutional/BUILD b/keras/layers/convolutional/BUILD deleted file mode 100644 index 974ff915462..00000000000 --- a/keras/layers/convolutional/BUILD +++ /dev/null @@ -1,306 +0,0 @@ -# Description: -# Contains the Keras convolution layers. - -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -package( - default_visibility = [ - "//keras:__subpackages__", - "//third_party/tensorflow/python/distribute:__pkg__", - "//third_party/tensorflow/python/feature_column:__pkg__", - "//third_party/tensorflow/python/keras:__subpackages__", - "//third_party/tensorflow/python/training/tracking:__pkg__", - "//third_party/tensorflow/tools/pip_package:__pkg__", - "//third_party/tensorflow_models/official/projects/residual_mobilenet/modeling/backbones:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "convolutional", - srcs = [ - "__init__.py", - ], - srcs_version = "PY3", - deps = [ - ":conv1d", - ":conv1d_transpose", - ":conv2d", - ":conv2d_transpose", - ":conv3d", - ":conv3d_transpose", - ":depthwise_conv1d", - ":depthwise_conv2d", - ":separable_conv1d", - ":separable_conv2d", - "//keras/layers/pooling:average_pooling1d", - "//keras/layers/pooling:average_pooling2d", - "//keras/layers/pooling:average_pooling3d", - "//keras/layers/pooling:max_pooling1d", - "//keras/layers/pooling:max_pooling2d", - "//keras/layers/pooling:max_pooling3d", - "//keras/layers/reshaping:cropping1d", - "//keras/layers/reshaping:cropping2d", - "//keras/layers/reshaping:cropping3d", - "//keras/layers/reshaping:up_sampling1d", - "//keras/layers/reshaping:up_sampling2d", - "//keras/layers/reshaping:up_sampling3d", - "//keras/layers/reshaping:zero_padding1d", - "//keras/layers/reshaping:zero_padding2d", - "//keras/layers/reshaping:zero_padding3d", - ], -) - -py_library( - name = "base_conv", - srcs = ["base_conv.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/initializers", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "conv1d", - srcs = ["conv1d.py"], - srcs_version = "PY3", - deps = [ - ":base_conv", - "//keras:activations", - "//keras:constraints", - "//keras:regularizers", - "//keras/dtensor:utils", - "//keras/initializers", - ], -) - -py_library( - name = "conv2d", - srcs = ["conv2d.py"], - srcs_version = "PY3", - deps = [ - ":base_conv", - "//keras:activations", - "//keras:constraints", - "//keras:regularizers", - "//keras/dtensor:utils", - "//keras/initializers", - ], -) - -py_library( - name = "conv3d", - srcs = ["conv3d.py"], - srcs_version = "PY3", - deps = [ - ":base_conv", - "//keras:activations", - "//keras:constraints", - "//keras:regularizers", - "//keras/dtensor:utils", - "//keras/initializers", - ], -) - -py_library( - name = "conv1d_transpose", - srcs = ["conv1d_transpose.py"], - srcs_version = "PY3", - deps = [ - ":conv1d", - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:constraints", - "//keras:regularizers", - "//keras/dtensor:utils", - "//keras/engine:input_spec", - "//keras/initializers", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "conv2d_transpose", - srcs = ["conv2d_transpose.py"], - srcs_version = "PY3", - deps = [ - ":conv2d", - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:backend", - "//keras:constraints", - "//keras:regularizers", - "//keras/dtensor:utils", - "//keras/engine:input_spec", - "//keras/initializers", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "conv3d_transpose", - srcs = ["conv3d_transpose.py"], - srcs_version = "PY3", - deps = [ - ":conv3d", - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:constraints", - "//keras:regularizers", - "//keras/dtensor:utils", - "//keras/engine:input_spec", - "//keras/initializers", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "base_separable_conv", - srcs = ["base_separable_conv.py"], - srcs_version = "PY3", - deps = [ - ":base_conv", - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:input_spec", - "//keras/initializers", - ], -) - -py_library( - name = "separable_conv1d", - srcs = ["separable_conv1d.py"], - srcs_version = "PY3", - deps = [ - ":base_separable_conv", - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:constraints", - "//keras:regularizers", - "//keras/initializers", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "separable_conv2d", - srcs = ["separable_conv2d.py"], - srcs_version = "PY3", - deps = [ - ":base_separable_conv", - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:constraints", - "//keras:regularizers", - "//keras/initializers", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "base_depthwise_conv", - srcs = ["base_depthwise_conv.py"], - srcs_version = "PY3", - deps = [ - ":base_conv", - "//:expect_tensorflow_installed", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:input_spec", - "//keras/initializers", - ], -) - -py_library( - name = "depthwise_conv1d", - srcs = ["depthwise_conv1d.py"], - srcs_version = "PY3", - deps = [ - ":base_depthwise_conv", - "//:expect_tensorflow_installed", - "//keras/utils:engine_utils", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "depthwise_conv2d", - srcs = ["depthwise_conv2d.py"], - srcs_version = "PY3", - deps = [ - ":base_depthwise_conv", - "//keras:backend", - "//keras/utils:engine_utils", - "//keras/utils:tf_utils", - ], -) - -cuda_py_test( - name = "conv_test", - size = "medium", - srcs = ["conv_test.py"], - python_version = "PY3", - shard_count = 8, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -cuda_py_test( - name = "conv_transpose_test", - size = "medium", - srcs = ["conv_transpose_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -cuda_py_test( - name = "depthwise_conv_test", - size = "medium", - srcs = ["depthwise_conv_test.py"], - python_version = "PY3", - shard_count = 8, - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -cuda_py_test( - name = "separable_conv_test", - size = "medium", - srcs = ["separable_conv_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) diff --git a/keras/layers/convolutional/__init__.py b/keras/layers/convolutional/__init__.py deleted file mode 100644 index 6b3d3d14cad..00000000000 --- a/keras/layers/convolutional/__init__.py +++ /dev/null @@ -1,56 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras convolution layers.""" - - -# Convolution layer aliases. -# Convolution layers. -from keras.layers.convolutional.conv1d import Conv1D -from keras.layers.convolutional.conv1d import Convolution1D -from keras.layers.convolutional.conv1d_transpose import Conv1DTranspose -from keras.layers.convolutional.conv1d_transpose import Convolution1DTranspose -from keras.layers.convolutional.conv2d import Conv2D -from keras.layers.convolutional.conv2d import Convolution2D -from keras.layers.convolutional.conv2d_transpose import Conv2DTranspose -from keras.layers.convolutional.conv2d_transpose import Convolution2DTranspose -from keras.layers.convolutional.conv3d import Conv3D -from keras.layers.convolutional.conv3d import Convolution3D -from keras.layers.convolutional.conv3d_transpose import Conv3DTranspose -from keras.layers.convolutional.conv3d_transpose import Convolution3DTranspose -from keras.layers.convolutional.depthwise_conv1d import DepthwiseConv1D -from keras.layers.convolutional.depthwise_conv2d import DepthwiseConv2D -from keras.layers.convolutional.separable_conv1d import SeparableConv1D -from keras.layers.convolutional.separable_conv1d import SeparableConvolution1D -from keras.layers.convolutional.separable_conv2d import SeparableConv2D -from keras.layers.convolutional.separable_conv2d import SeparableConvolution2D - -# Pooling layers imported for backwards namespace compatibility. -from keras.layers.pooling.average_pooling1d import AveragePooling1D -from keras.layers.pooling.average_pooling2d import AveragePooling2D -from keras.layers.pooling.average_pooling3d import AveragePooling3D -from keras.layers.pooling.max_pooling1d import MaxPooling1D -from keras.layers.pooling.max_pooling2d import MaxPooling2D -from keras.layers.pooling.max_pooling3d import MaxPooling3D - -# Reshaping layers imported for backwards namespace compatibility -from keras.layers.reshaping.cropping1d import Cropping1D -from keras.layers.reshaping.cropping2d import Cropping2D -from keras.layers.reshaping.cropping3d import Cropping3D -from keras.layers.reshaping.up_sampling1d import UpSampling1D -from keras.layers.reshaping.up_sampling2d import UpSampling2D -from keras.layers.reshaping.up_sampling3d import UpSampling3D -from keras.layers.reshaping.zero_padding1d import ZeroPadding1D -from keras.layers.reshaping.zero_padding2d import ZeroPadding2D -from keras.layers.reshaping.zero_padding3d import ZeroPadding3D diff --git a/keras/layers/convolutional/base_conv.py b/keras/layers/convolutional/base_conv.py deleted file mode 100644 index da5613cd650..00000000000 --- a/keras/layers/convolutional/base_conv.py +++ /dev/null @@ -1,431 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras base class for convolution layers.""" - - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - - -class Conv(Layer): - """Abstract N-D convolution layer (private, used as implementation base). - - This layer creates a convolution kernel that is convolved - (actually cross-correlated) with the layer input to produce a tensor of - outputs. If `use_bias` is True (and a `bias_initializer` is provided), - a bias vector is created and added to the outputs. Finally, if - `activation` is not `None`, it is applied to the outputs as well. - - Note: layer attributes cannot be modified after the layer has been called - once (except the `trainable` attribute). - - Args: - rank: An integer, the rank of the convolution, e.g. "2" for 2D - convolution. - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). Could be "None", eg in the case of - depth wise convolution. - kernel_size: An integer or tuple/list of n integers, specifying the - length of the convolution window. - strides: An integer or tuple/list of n integers, - specifying the stride length of the convolution. - Specifying any stride value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"`, `"same"`, or `"causal"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding with zeros - evenly to the left/right or up/down of the input such that output has - the same height/width dimension as the input. `"causal"` results in - causal (dilated) convolutions, e.g. `output[t]` does not depend on - `input[t+1:]`. - data_format: A string, one of `channels_last` (default) or - `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch_size, ..., channels)` while `channels_first` corresponds to - inputs with shape `(batch_size, channels, ...)`. - dilation_rate: An integer or tuple/list of n integers, specifying - the dilation rate to use for dilated convolution. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any `strides` value != 1. - groups: A positive integer specifying the number of groups in which the - input is split along the channel axis. Each group is convolved - separately with `filters / groups` filters. The output is the - concatenation of all the `groups` results along the channel axis. - Input channels and `filters` must both be divisible by `groups`. - activation: Activation function to use. - If you don't specify anything, no activation is applied. - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: An initializer for the convolution kernel. If None, - the default initializer (glorot_uniform) will be used. - bias_initializer: An initializer for the bias vector. If None, the default - initializer (zeros) will be used. - kernel_regularizer: Optional regularizer for the convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - kernel_constraint: Optional projection function to be applied to the - kernel after being updated by an `Optimizer` (e.g. used to implement - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - """ - - def __init__( - self, - rank, - filters, - kernel_size, - strides=1, - padding="valid", - data_format=None, - dilation_rate=1, - groups=1, - activation=None, - use_bias=True, - kernel_initializer="glorot_uniform", - bias_initializer="zeros", - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - conv_op=None, - **kwargs, - ): - super().__init__( - trainable=trainable, - name=name, - activity_regularizer=regularizers.get(activity_regularizer), - **kwargs, - ) - self.rank = rank - - if isinstance(filters, float): - filters = int(filters) - if filters is not None and filters <= 0: - raise ValueError( - "Invalid value for argument `filters`. " - "Expected a strictly positive value. " - f"Received filters={filters}." - ) - self.filters = filters - self.groups = groups or 1 - self.kernel_size = conv_utils.normalize_tuple( - kernel_size, rank, "kernel_size" - ) - self.strides = conv_utils.normalize_tuple( - strides, rank, "strides", allow_zero=True - ) - self.padding = conv_utils.normalize_padding(padding) - self.data_format = conv_utils.normalize_data_format(data_format) - self.dilation_rate = conv_utils.normalize_tuple( - dilation_rate, rank, "dilation_rate" - ) - - self.activation = activations.get(activation) - self.use_bias = use_bias - - self.kernel_initializer = initializers.get(kernel_initializer) - self.bias_initializer = initializers.get(bias_initializer) - self.kernel_regularizer = regularizers.get(kernel_regularizer) - self.bias_regularizer = regularizers.get(bias_regularizer) - self.kernel_constraint = constraints.get(kernel_constraint) - self.bias_constraint = constraints.get(bias_constraint) - self.input_spec = InputSpec(min_ndim=self.rank + 2) - - self._validate_init() - self._is_causal = self.padding == "causal" - self._channels_first = self.data_format == "channels_first" - self._tf_data_format = conv_utils.convert_data_format( - self.data_format, self.rank + 2 - ) - - def _validate_init(self): - if self.filters is not None and self.filters % self.groups != 0: - raise ValueError( - "The number of filters must be evenly divisible by the " - "number of groups. Received: groups={}, filters={}".format( - self.groups, self.filters - ) - ) - - if not all(self.kernel_size): - raise ValueError( - "The argument `kernel_size` cannot contain 0(s). Received: %s" - % (self.kernel_size,) - ) - - if not all(self.strides): - raise ValueError( - "The argument `strides` cannot contains 0(s). Received: %s" - % (self.strides,) - ) - - if self.padding == "causal": - - from keras.layers.convolutional.conv1d import Conv1D - from keras.layers.convolutional.separable_conv1d import ( - SeparableConv1D, - ) - - if not isinstance(self, (Conv1D, SeparableConv1D)): - raise ValueError( - "Causal padding is only supported for `Conv1D`" - "and `SeparableConv1D`." - ) - - if max(self.strides) > 1 and max(self.dilation_rate) > 1: - raise ValueError( - "`strides > 1` not supported in conjunction with " - f"`dilation_rate > 1`. Received: strides={self.strides} and " - f"dilation_rate={self.dilation_rate}" - ) - - def build(self, input_shape): - input_shape = tf.TensorShape(input_shape) - input_channel = self._get_input_channel(input_shape) - if input_channel % self.groups != 0: - raise ValueError( - "The number of input channels must be evenly divisible by " - "the number of groups. Received groups={}, but the input " - "has {} channels (full input shape is {}).".format( - self.groups, input_channel, input_shape - ) - ) - kernel_shape = self.kernel_size + ( - input_channel // self.groups, - self.filters, - ) - - # compute_output_shape contains some validation logic for the input - # shape, and make sure the output shape has all positive dimensions. - self.compute_output_shape(input_shape) - - self.kernel = self.add_weight( - name="kernel", - shape=kernel_shape, - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - trainable=True, - dtype=self.dtype, - ) - if self.use_bias: - self.bias = self.add_weight( - name="bias", - shape=(self.filters,), - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - trainable=True, - dtype=self.dtype, - ) - else: - self.bias = None - channel_axis = self._get_channel_axis() - self.input_spec = InputSpec( - min_ndim=self.rank + 2, axes={channel_axis: input_channel} - ) - self.built = True - - def convolution_op(self, inputs, kernel): - if self.padding == "causal": - tf_padding = "VALID" # Causal padding handled in `call`. - elif isinstance(self.padding, str): - tf_padding = self.padding.upper() - else: - tf_padding = self.padding - - return tf.nn.convolution( - inputs, - kernel, - strides=list(self.strides), - padding=tf_padding, - dilations=list(self.dilation_rate), - data_format=self._tf_data_format, - name=self.__class__.__name__, - ) - - # TODO(b/213173659): remove this when grouped convolutions are fully - # supported on the CPU for compiled functions. For now, we need this as a - # workaround for CPU support. - @tf.function(jit_compile=True) - def _jit_compiled_convolution_op(self, inputs, kernel): - return self.convolution_op(inputs, kernel) - - def call(self, inputs): - input_shape = inputs.shape - - if self._is_causal: # Apply causal padding to inputs for Conv1D. - inputs = tf.pad(inputs, self._compute_causal_padding(inputs)) - - if self.groups > 1: - outputs = self._jit_compiled_convolution_op( - inputs, tf.convert_to_tensor(self.kernel) - ) - else: - outputs = self.convolution_op(inputs, self.kernel) - - if self.use_bias: - output_rank = outputs.shape.rank - if self.rank == 1 and self._channels_first: - # nn.bias_add does not accept a 1D input tensor. - bias = tf.reshape(self.bias, (1, self.filters, 1)) - outputs += bias - else: - # Handle multiple batch dimensions. - if output_rank is not None and output_rank > 2 + self.rank: - - def _apply_fn(o): - return tf.nn.bias_add( - o, self.bias, data_format=self._tf_data_format - ) - - outputs = conv_utils.squeeze_batch_dims( - outputs, _apply_fn, inner_rank=self.rank + 1 - ) - else: - outputs = tf.nn.bias_add( - outputs, self.bias, data_format=self._tf_data_format - ) - - if not tf.executing_eagerly() and input_shape.rank: - # Infer the static output shape: - out_shape = self.compute_output_shape(input_shape) - outputs.set_shape(out_shape) - - if self.activation is not None: - return self.activation(outputs) - return outputs - - def _spatial_output_shape(self, spatial_input_shape): - return [ - conv_utils.conv_output_length( - length, - self.kernel_size[i], - padding=self.padding, - stride=self.strides[i], - dilation=self.dilation_rate[i], - ) - for i, length in enumerate(spatial_input_shape) - ] - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - batch_rank = len(input_shape) - self.rank - 1 - try: - if self.data_format == "channels_last": - return tf.TensorShape( - input_shape[:batch_rank] - + self._spatial_output_shape(input_shape[batch_rank:-1]) - + [self.filters] - ) - else: - return tf.TensorShape( - input_shape[:batch_rank] - + [self.filters] - + self._spatial_output_shape(input_shape[batch_rank + 1 :]) - ) - - except ValueError: - raise ValueError( - "One of the dimensions in the output is <= 0 " - f"due to downsampling in {self.name}. Consider " - "increasing the input size. " - f"Received input shape {input_shape} which would produce " - "output shape with a zero or negative value in a " - "dimension." - ) - - def _recreate_conv_op(self, inputs): - return False - - def get_config(self): - config = { - "filters": self.filters, - "kernel_size": self.kernel_size, - "strides": self.strides, - "padding": self.padding, - "data_format": self.data_format, - "dilation_rate": self.dilation_rate, - "groups": self.groups, - "activation": activations.serialize(self.activation), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "bias_constraint": constraints.serialize(self.bias_constraint), - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - def _compute_causal_padding(self, inputs): - """Calculates padding for 'causal' option for 1-d conv layers.""" - left_pad = self.dilation_rate[0] * (self.kernel_size[0] - 1) - if getattr(inputs.shape, "ndims", None) is None: - batch_rank = 1 - else: - batch_rank = len(inputs.shape) - 2 - if self.data_format == "channels_last": - causal_padding = [[0, 0]] * batch_rank + [[left_pad, 0], [0, 0]] - else: - causal_padding = [[0, 0]] * batch_rank + [[0, 0], [left_pad, 0]] - return causal_padding - - def _get_channel_axis(self): - if self.data_format == "channels_first": - return -1 - self.rank - else: - return -1 - - def _get_input_channel(self, input_shape): - channel_axis = self._get_channel_axis() - if input_shape.dims[channel_axis].value is None: - raise ValueError( - "The channel dimension of the inputs should be defined. " - f"The input_shape received is {input_shape}, " - f"where axis {channel_axis} (0-based) " - "is the channel dimension, which found to be `None`." - ) - return int(input_shape[channel_axis]) - - def _get_padding_op(self): - if self.padding == "causal": - op_padding = "valid" - else: - op_padding = self.padding - if not isinstance(op_padding, (list, tuple)): - op_padding = op_padding.upper() - return op_padding diff --git a/keras/layers/convolutional/base_depthwise_conv.py b/keras/layers/convolutional/base_depthwise_conv.py deleted file mode 100644 index 425586dc04b..00000000000 --- a/keras/layers/convolutional/base_depthwise_conv.py +++ /dev/null @@ -1,226 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras abstract base for depthwise convolutions.""" - - -import tensorflow.compat.v2 as tf - -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine.input_spec import InputSpec -from keras.layers.convolutional.base_conv import Conv - - -class DepthwiseConv(Conv): - """Depthwise convolution. - - Depthwise convolution is a type of convolution in which each input channel - is convolved with a different kernel (called a depthwise kernel). You can - understand depthwise convolution as the first step in a depthwise separable - convolution. - - It is implemented via the following steps: - - - Split the input into individual channels. - - Convolve each channel with an individual depthwise kernel with - `depth_multiplier` output channels. - - Concatenate the convolved outputs along the channels axis. - - Unlike a regular convolution, depthwise convolution does not mix - information across different input channels. - - The `depth_multiplier` argument determines how many filter are applied to - one input channel. As such, it controls the amount of output channels that - are generated per input channel in the depthwise step. - - Args: - kernel_size: A tuple or list of integers specifying the spatial dimensions - of the filters. Can be a single integer to specify the same value for - all spatial dimensions. - strides: A tuple or list of integers specifying the strides of the - convolution. Can be a single integer to specify the same value for all - spatial dimensions. Specifying any `stride` value != 1 is incompatible - with specifying any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). `"valid"` means - no padding. `"same"` results in padding with zeros evenly to the - left/right or up/down of the input such that output has the same - height/width dimension as the input. - depth_multiplier: The number of depthwise convolution output channels for - each input channel. The total number of depthwise convolution output - channels will be equal to `filters_in * depth_multiplier`. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape `(batch_size, height, - width, channels)` while `channels_first` corresponds to inputs with - shape `(batch_size, channels, height, width)`. It defaults to the - `image_data_format` value found in your Keras config file at - `~/.keras/keras.json`. If you never set it, then it will be - 'channels_last'. - dilation_rate: An integer or tuple/list of 2 integers, specifying the - dilation rate to use for dilated convolution. Currently, specifying any - `dilation_rate` value != 1 is incompatible with specifying any `strides` - value != 1. - activation: Activation function to use. If you don't specify anything, no - activation is applied (see `keras.activations`). - use_bias: Boolean, whether the layer uses a bias vector. - depthwise_initializer: Initializer for the depthwise kernel matrix (see - `keras.initializers`). If None, the default initializer - ('glorot_uniform') will be used. - bias_initializer: Initializer for the bias vector (see - `keras.initializers`). If None, the default initializer ('zeros') will - be used. - depthwise_regularizer: Regularizer function applied to the depthwise - kernel matrix (see `keras.regularizers`). - bias_regularizer: Regularizer function applied to the bias vector (see - `keras.regularizers`). - activity_regularizer: Regularizer function applied to the output of the - layer (its 'activation') (see `keras.regularizers`). - depthwise_constraint: Constraint function applied to the depthwise kernel - matrix (see `keras.constraints`). - bias_constraint: Constraint function applied to the bias vector (see - `keras.constraints`). - - Input shape: - 4D tensor with shape: `[batch_size, channels, rows, cols]` if - data_format='channels_first' - or 4D tensor with shape: `[batch_size, rows, cols, channels]` if - data_format='channels_last'. - - Output shape: - 4D tensor with shape: `[batch_size, channels * depth_multiplier, new_rows, - new_cols]` if `data_format='channels_first'` - or 4D tensor with shape: `[batch_size, - new_rows, new_cols, channels * depth_multiplier]` if - `data_format='channels_last'`. `rows` and `cols` values might have - changed due to padding. - - Returns: - A tensor of rank 4 representing - `activation(depthwiseconv2d(inputs, kernel) + bias)`. - - Raises: - ValueError: if `padding` is "causal". - ValueError: when both `strides` > 1 and `dilation_rate` > 1. - """ - - def __init__( - self, - rank, - kernel_size, - strides=1, - padding="valid", - depth_multiplier=1, - data_format=None, - dilation_rate=1, - activation=None, - use_bias=True, - depthwise_initializer="glorot_uniform", - bias_initializer="zeros", - depthwise_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - depthwise_constraint=None, - bias_constraint=None, - **kwargs, - ): - super().__init__( - rank, - filters=None, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - use_bias=use_bias, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - bias_constraint=bias_constraint, - **kwargs, - ) - self.depth_multiplier = depth_multiplier - self.depthwise_initializer = initializers.get(depthwise_initializer) - self.depthwise_regularizer = regularizers.get(depthwise_regularizer) - self.depthwise_constraint = constraints.get(depthwise_constraint) - self.bias_initializer = initializers.get(bias_initializer) - - def build(self, input_shape): - if len(input_shape) != self.rank + 2: - raise ValueError( - "Inputs to `DepthwiseConv` should have " - f"rank {self.rank + 2}. " - f"Received input_shape={input_shape}." - ) - input_shape = tf.TensorShape(input_shape) - channel_axis = self._get_channel_axis() - if input_shape.dims[channel_axis].value is None: - raise ValueError( - "The channel dimension of the inputs to `DepthwiseConv` " - "should be defined. " - f"The input_shape received is {input_shape}, " - f"where axis {channel_axis} (0-based) " - "is the channel dimension, which found to be `None`." - ) - input_dim = int(input_shape[channel_axis]) - depthwise_kernel_shape = self.kernel_size + ( - input_dim, - self.depth_multiplier, - ) - - self.depthwise_kernel = self.add_weight( - shape=depthwise_kernel_shape, - initializer=self.depthwise_initializer, - name="depthwise_kernel", - regularizer=self.depthwise_regularizer, - constraint=self.depthwise_constraint, - ) - - if self.use_bias: - self.bias = self.add_weight( - shape=(input_dim * self.depth_multiplier,), - initializer=self.bias_initializer, - name="bias", - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - ) - else: - self.bias = None - # Set input spec. - self.input_spec = InputSpec( - min_ndim=self.rank + 2, axes={channel_axis: input_dim} - ) - self.built = True - - def call(self, inputs): - raise NotImplementedError - - def get_config(self): - config = super().get_config() - config.pop("filters") - config.pop("kernel_initializer") - config.pop("kernel_regularizer") - config.pop("kernel_constraint") - config["depth_multiplier"] = self.depth_multiplier - config["depthwise_initializer"] = initializers.serialize( - self.depthwise_initializer - ) - config["depthwise_regularizer"] = regularizers.serialize( - self.depthwise_regularizer - ) - config["depthwise_constraint"] = constraints.serialize( - self.depthwise_constraint - ) - return config diff --git a/keras/layers/convolutional/base_separable_conv.py b/keras/layers/convolutional/base_separable_conv.py deleted file mode 100644 index 6afb161039c..00000000000 --- a/keras/layers/convolutional/base_separable_conv.py +++ /dev/null @@ -1,248 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras abstract base layer for separable nD convolution.""" - - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine.input_spec import InputSpec -from keras.layers.convolutional.base_conv import Conv - - -class SeparableConv(Conv): - """Abstract base layer for separable nD convolution. - - This layer performs a depthwise convolution that acts separately on - channels, followed by a pointwise convolution that mixes channels. - If `use_bias` is True and a bias initializer is provided, - it adds a bias vector to the output. - It then optionally applies an activation function to produce the final - output. - - Args: - rank: An integer, the rank of the convolution, e.g. "2" for 2D - convolution. - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: A tuple or list of integers specifying the spatial - dimensions of the filters. Can be a single integer to specify the same - value for all spatial dimensions. - strides: A tuple or list of integers specifying the strides - of the convolution. Can be a single integer to specify the same value - for all spatial dimensions. - Specifying any `stride` value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding with zeros - evenly to the left/right or up/down of the input such that output has - the same height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch_size, ..., channels)` while `channels_first` corresponds to - inputs with shape `(batch_size, channels, ...)`. - dilation_rate: An integer or tuple/list of 2 integers, specifying - the dilation rate to use for dilated convolution. - Can be a single integer to specify the same value for - all spatial dimensions. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any stride value != 1. - depth_multiplier: The number of depthwise convolution output channels for - each input channel. The total number of depthwise convolution output - channels will be equal to `num_filters_in * depth_multiplier`. - activation: Activation function to use. - If you don't specify anything, no activation is applied - (see `keras.activations`). - use_bias: Boolean, whether the layer uses a bias. - depthwise_initializer: An initializer for the depthwise convolution kernel - (see `keras.initializers`). If None, then the default initializer - ('glorot_uniform') will be used. - pointwise_initializer: An initializer for the pointwise convolution kernel - (see `keras.initializers`). If None, then the default initializer - ('glorot_uniform') will be used. - bias_initializer: An initializer for the bias vector. If None, the default - initializer ('zeros') will be used (see `keras.initializers`). - depthwise_regularizer: Optional regularizer for the depthwise - convolution kernel. - pointwise_regularizer: Optional regularizer for the pointwise - convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - depthwise_constraint: Optional projection function to be applied to the - depthwise kernel after being updated by an `Optimizer` (e.g. used for - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - pointwise_constraint: Optional projection function to be applied to the - pointwise kernel after being updated by an `Optimizer`. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` the weights of this layer will be marked as - trainable (and listed in `layer.trainable_weights`). - """ - - def __init__( - self, - rank, - filters, - kernel_size, - strides=1, - padding="valid", - data_format=None, - dilation_rate=1, - depth_multiplier=1, - activation=None, - use_bias=True, - depthwise_initializer="glorot_uniform", - pointwise_initializer="glorot_uniform", - bias_initializer="zeros", - depthwise_regularizer=None, - pointwise_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - depthwise_constraint=None, - pointwise_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - **kwargs, - ): - super().__init__( - rank=rank, - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activations.get(activation), - use_bias=use_bias, - bias_initializer=initializers.get(bias_initializer), - bias_regularizer=regularizers.get(bias_regularizer), - activity_regularizer=regularizers.get(activity_regularizer), - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - **kwargs, - ) - self.depth_multiplier = depth_multiplier - self.depthwise_initializer = initializers.get(depthwise_initializer) - self.pointwise_initializer = initializers.get(pointwise_initializer) - self.depthwise_regularizer = regularizers.get(depthwise_regularizer) - self.pointwise_regularizer = regularizers.get(pointwise_regularizer) - self.depthwise_constraint = constraints.get(depthwise_constraint) - self.pointwise_constraint = constraints.get(pointwise_constraint) - - def build(self, input_shape): - input_shape = tf.TensorShape(input_shape) - channel_axis = self._get_channel_axis() - if input_shape.dims[channel_axis].value is None: - raise ValueError( - "The channel dimension of the inputs should be defined. " - f"The input_shape received is {input_shape}, " - f"where axis {channel_axis} (0-based) " - "is the channel dimension, which found to be `None`." - ) - input_dim = int(input_shape[channel_axis]) - self.input_spec = InputSpec( - ndim=self.rank + 2, axes={channel_axis: input_dim} - ) - depthwise_kernel_shape = self.kernel_size + ( - input_dim, - self.depth_multiplier, - ) - pointwise_kernel_shape = (1,) * self.rank + ( - self.depth_multiplier * input_dim, - self.filters, - ) - - self.depthwise_kernel = self.add_weight( - name="depthwise_kernel", - shape=depthwise_kernel_shape, - initializer=self.depthwise_initializer, - regularizer=self.depthwise_regularizer, - constraint=self.depthwise_constraint, - trainable=True, - dtype=self.dtype, - ) - self.pointwise_kernel = self.add_weight( - name="pointwise_kernel", - shape=pointwise_kernel_shape, - initializer=self.pointwise_initializer, - regularizer=self.pointwise_regularizer, - constraint=self.pointwise_constraint, - trainable=True, - dtype=self.dtype, - ) - if self.use_bias: - self.bias = self.add_weight( - name="bias", - shape=(self.filters,), - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - trainable=True, - dtype=self.dtype, - ) - else: - self.bias = None - self.built = True - - def call(self, inputs): - raise NotImplementedError - - def get_config(self): - config = { - "filters": self.filters, - "kernel_size": self.kernel_size, - "strides": self.strides, - "padding": self.padding, - "data_format": self.data_format, - "depth_multiplier": self.depth_multiplier, - "dilation_rate": self.dilation_rate, - "activation": activations.serialize(self.activation), - "use_bias": self.use_bias, - "depthwise_initializer": initializers.serialize( - self.depthwise_initializer - ), - "pointwise_initializer": initializers.serialize( - self.pointwise_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "depthwise_regularizer": regularizers.serialize( - self.depthwise_regularizer - ), - "pointwise_regularizer": regularizers.serialize( - self.pointwise_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "depthwise_constraint": constraints.serialize( - self.depthwise_constraint - ), - "pointwise_constraint": constraints.serialize( - self.pointwise_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/convolutional/conv1d.py b/keras/layers/convolutional/conv1d.py deleted file mode 100644 index 5577fca943d..00000000000 --- a/keras/layers/convolutional/conv1d.py +++ /dev/null @@ -1,180 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras 1D convolution layer.""" - - -from keras import activations -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.dtensor import utils -from keras.layers.convolutional.base_conv import Conv - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Conv1D", "keras.layers.Convolution1D") -class Conv1D(Conv): - """1D convolution layer (e.g. temporal convolution). - - This layer creates a convolution kernel that is convolved - with the layer input over a single spatial (or temporal) dimension - to produce a tensor of outputs. - If `use_bias` is True, a bias vector is created and added to the outputs. - Finally, if `activation` is not `None`, - it is applied to the outputs as well. - - When using this layer as the first layer in a model, - provide an `input_shape` argument - (tuple of integers or `None`, e.g. - `(10, 128)` for sequences of 10 vectors of 128-dimensional vectors, - or `(None, 128)` for variable-length sequences of 128-dimensional vectors. - - Examples: - - >>> # The inputs are 128-length vectors with 10 timesteps, and the - >>> # batch size is 4. - >>> input_shape = (4, 10, 128) - >>> x = tf.random.normal(input_shape) - >>> y = tf.keras.layers.Conv1D( - ... 32, 3, activation='relu',input_shape=input_shape[1:])(x) - >>> print(y.shape) - (4, 8, 32) - - >>> # With extended batch shape [4, 7] (e.g. weather data where batch - >>> # dimensions correspond to spatial location and the third dimension - >>> # corresponds to time.) - >>> input_shape = (4, 7, 10, 128) - >>> x = tf.random.normal(input_shape) - >>> y = tf.keras.layers.Conv1D( - ... 32, 3, activation='relu', input_shape=input_shape[2:])(x) - >>> print(y.shape) - (4, 7, 8, 32) - - Args: - filters: Integer, the dimensionality of the output space - (i.e. the number of output filters in the convolution). - kernel_size: An integer or tuple/list of a single integer, - specifying the length of the 1D convolution window. - strides: An integer or tuple/list of a single integer, - specifying the stride length of the convolution. - Specifying any stride value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"`, `"same"` or `"causal"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding with zeros - evenly to the left/right or up/down of the input such that output has - the same height/width dimension as the input. - `"causal"` results in causal (dilated) convolutions, e.g. `output[t]` - does not depend on `input[t+1:]`. Useful when modeling temporal data - where the model should not violate the temporal order. - See [WaveNet: A Generative Model for Raw Audio, section - 2.1](https://arxiv.org/abs/1609.03499). - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape `(batch_size, width, - channels)` while `channels_first` corresponds to inputs with shape - `(batch_size, channels, width)`. Note that the `channels_first` format - is currently not supported by TensorFlow on CPU. - dilation_rate: an integer or tuple/list of a single integer, specifying - the dilation rate to use for dilated convolution. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any `strides` value != 1. - groups: A positive integer specifying the number of groups in which the - input is split along the channel axis. Each group is convolved - separately with `filters / groups` filters. The output is the - concatenation of all the `groups` results along the channel axis. - Input channels and `filters` must both be divisible by `groups`. - activation: Activation function to use. - If you don't specify anything, no activation is applied - (see `keras.activations`). - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix - (see `keras.initializers`). Defaults to 'glorot_uniform'. - bias_initializer: Initializer for the bias vector - (see `keras.initializers`). Defaults to 'zeros'. - kernel_regularizer: Regularizer function applied to - the `kernel` weights matrix (see `keras.regularizers`). - bias_regularizer: Regularizer function applied to the bias vector - (see `keras.regularizers`). - activity_regularizer: Regularizer function applied to - the output of the layer (its "activation") - (see `keras.regularizers`). - kernel_constraint: Constraint function applied to the kernel matrix - (see `keras.constraints`). - bias_constraint: Constraint function applied to the bias vector - (see `keras.constraints`). - - Input shape: - 3+D tensor with shape: `batch_shape + (steps, input_dim)` - - Output shape: - 3+D tensor with shape: `batch_shape + (new_steps, filters)` - `steps` value might have changed due to padding or strides. - - Returns: - A tensor of rank 3 representing - `activation(conv1d(inputs, kernel) + bias)`. - - Raises: - ValueError: when both `strides > 1` and `dilation_rate > 1`. - """ - - @utils.allow_initializer_layout - def __init__( - self, - filters, - kernel_size, - strides=1, - padding="valid", - data_format="channels_last", - dilation_rate=1, - groups=1, - activation=None, - use_bias=True, - kernel_initializer="glorot_uniform", - bias_initializer="zeros", - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - **kwargs - ): - super().__init__( - rank=1, - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - groups=groups, - activation=activations.get(activation), - use_bias=use_bias, - kernel_initializer=initializers.get(kernel_initializer), - bias_initializer=initializers.get(bias_initializer), - kernel_regularizer=regularizers.get(kernel_regularizer), - bias_regularizer=regularizers.get(bias_regularizer), - activity_regularizer=regularizers.get(activity_regularizer), - kernel_constraint=constraints.get(kernel_constraint), - bias_constraint=constraints.get(bias_constraint), - **kwargs - ) - - -# Alias - -Convolution1D = Conv1D diff --git a/keras/layers/convolutional/conv1d_transpose.py b/keras/layers/convolutional/conv1d_transpose.py deleted file mode 100644 index 026ae1d6bc6..00000000000 --- a/keras/layers/convolutional/conv1d_transpose.py +++ /dev/null @@ -1,304 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras 1D transposed convolution layer (sometimes called deconvolution).""" - - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.dtensor import utils -from keras.engine.input_spec import InputSpec -from keras.layers.convolutional.conv1d import Conv1D -from keras.utils import conv_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.layers.Conv1DTranspose", "keras.layers.Convolution1DTranspose" -) -class Conv1DTranspose(Conv1D): - """Transposed convolution layer (sometimes called Deconvolution). - - The need for transposed convolutions generally arises - from the desire to use a transformation going in the opposite direction - of a normal convolution, i.e., from something that has the shape of the - output of some convolution to something that has the shape of its input - while maintaining a connectivity pattern that is compatible with - said convolution. - - When using this layer as the first layer in a model, - provide the keyword argument `input_shape` - (tuple of integers or `None`, does not include the sample axis), - e.g. `input_shape=(128, 3)` for data with 128 time steps and 3 channels. - - Args: - filters: Integer, the dimensionality of the output space - (i.e. the number of output filters in the convolution). - kernel_size: An integer length of the 1D convolution window. - strides: An integer specifying the stride of the convolution along the - time dimension. Specifying a stride value != 1 is incompatible with - specifying a `dilation_rate` value != 1. Defaults to 1. - padding: one of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding with zeros - evenly to the left/right or up/down of the input such that output has - the same height/width dimension as the input. - output_padding: An integer specifying the amount of padding along - the time dimension of the output tensor. - The amount of output padding must be lower than the stride. - If set to `None` (default), the output shape is inferred. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch_size, length, channels)` while `channels_first` corresponds to - inputs with shape `(batch_size, channels, length)`. - dilation_rate: an integer, specifying - the dilation rate to use for dilated convolution. - Currently, specifying a `dilation_rate` value != 1 is - incompatible with specifying a stride value != 1. - Also dilation rate larger than 1 is not currently supported. - activation: Activation function to use. - If you don't specify anything, no activation is applied - (see `keras.activations`). - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix - (see `keras.initializers`). Defaults to 'glorot_uniform'. - bias_initializer: Initializer for the bias vector - (see `keras.initializers`). Defaults to 'zeros'. - kernel_regularizer: Regularizer function applied to - the `kernel` weights matrix (see `keras.regularizers`). - bias_regularizer: Regularizer function applied to the bias vector - (see `keras.regularizers`). - activity_regularizer: Regularizer function applied to - the output of the layer (its "activation") (see `keras.regularizers`). - kernel_constraint: Constraint function applied to the kernel matrix - (see `keras.constraints`). - bias_constraint: Constraint function applied to the bias vector - (see `keras.constraints`). - - Input shape: - 3D tensor with shape: - `(batch_size, steps, channels)` - - Output shape: - 3D tensor with shape: - `(batch_size, new_steps, filters)` - If `output_padding` is specified: - ``` - new_timesteps = ((timesteps - 1) * strides + kernel_size - - 2 * padding + output_padding) - ``` - - Returns: - A tensor of rank 3 representing - `activation(conv1dtranspose(inputs, kernel) + bias)`. - - Raises: - ValueError: if `padding` is "causal". - ValueError: when both `strides` > 1 and `dilation_rate` > 1. - - References: - - [A guide to convolution arithmetic for deep learning]( - https://arxiv.org/abs/1603.07285v1) - - [Deconvolutional Networks]( - https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf) - """ - - @utils.allow_initializer_layout - def __init__( - self, - filters, - kernel_size, - strides=1, - padding="valid", - output_padding=None, - data_format=None, - dilation_rate=1, - activation=None, - use_bias=True, - kernel_initializer="glorot_uniform", - bias_initializer="zeros", - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - **kwargs, - ): - super().__init__( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activations.get(activation), - use_bias=use_bias, - kernel_initializer=initializers.get(kernel_initializer), - bias_initializer=initializers.get(bias_initializer), - kernel_regularizer=regularizers.get(kernel_regularizer), - bias_regularizer=regularizers.get(bias_regularizer), - activity_regularizer=regularizers.get(activity_regularizer), - kernel_constraint=constraints.get(kernel_constraint), - bias_constraint=constraints.get(bias_constraint), - **kwargs, - ) - - self.output_padding = output_padding - if self.output_padding is not None: - self.output_padding = conv_utils.normalize_tuple( - self.output_padding, 1, "output_padding", allow_zero=True - ) - for stride, out_pad in zip(self.strides, self.output_padding): - if out_pad >= stride: - raise ValueError( - "Strides must be greater than output padding. " - f"Received strides={self.strides}, " - f"output_padding={self.output_padding}." - ) - - def build(self, input_shape): - input_shape = tf.TensorShape(input_shape) - if len(input_shape) != 3: - raise ValueError( - "Inputs should have rank 3. " - f"Received input_shape={input_shape}." - ) - channel_axis = self._get_channel_axis() - if input_shape.dims[channel_axis].value is None: - raise ValueError( - "The channel dimension of the inputs " - "to `Conv1DTranspose` should be defined. " - f"The input_shape received is {input_shape}, " - f"where axis {channel_axis} (0-based) " - "is the channel dimension, which found to be `None`." - ) - input_dim = int(input_shape[channel_axis]) - self.input_spec = InputSpec(ndim=3, axes={channel_axis: input_dim}) - kernel_shape = self.kernel_size + (self.filters, input_dim) - - self.kernel = self.add_weight( - name="kernel", - shape=kernel_shape, - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - trainable=True, - dtype=self.dtype, - ) - if self.use_bias: - self.bias = self.add_weight( - name="bias", - shape=(self.filters,), - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - trainable=True, - dtype=self.dtype, - ) - else: - self.bias = None - self.built = True - - def call(self, inputs): - inputs_shape = tf.shape(inputs) - batch_size = inputs_shape[0] - if self.data_format == "channels_first": - t_axis = 2 - else: - t_axis = 1 - - length = inputs_shape[t_axis] - if self.output_padding is None: - output_padding = None - else: - output_padding = self.output_padding[0] - - # Infer the dynamic output shape: - out_length = conv_utils.deconv_output_length( - length, - self.kernel_size[0], - padding=self.padding, - output_padding=output_padding, - stride=self.strides[0], - dilation=self.dilation_rate[0], - ) - if self.data_format == "channels_first": - output_shape = (batch_size, self.filters, out_length) - else: - output_shape = (batch_size, out_length, self.filters) - data_format = conv_utils.convert_data_format(self.data_format, ndim=3) - - output_shape_tensor = tf.stack(output_shape) - outputs = tf.nn.conv1d_transpose( - inputs, - self.kernel, - output_shape_tensor, - strides=self.strides, - padding=self.padding.upper(), - data_format=data_format, - dilations=self.dilation_rate, - ) - - if not tf.executing_eagerly() and inputs.shape.rank: - # Infer the static output shape: - out_shape = self.compute_output_shape(inputs.shape) - outputs.set_shape(out_shape) - - if self.use_bias: - outputs = tf.nn.bias_add( - outputs, self.bias, data_format=data_format - ) - - if self.activation is not None: - return self.activation(outputs) - return outputs - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - output_shape = list(input_shape) - if self.data_format == "channels_first": - c_axis, t_axis = 1, 2 - else: - c_axis, t_axis = 2, 1 - - if self.output_padding is None: - output_padding = None - else: - output_padding = self.output_padding[0] - output_shape[c_axis] = self.filters - output_shape[t_axis] = conv_utils.deconv_output_length( - output_shape[t_axis], - self.kernel_size[0], - padding=self.padding, - output_padding=output_padding, - stride=self.strides[0], - dilation=self.dilation_rate[0], - ) - return tf.TensorShape(output_shape) - - def get_config(self): - config = super().get_config() - config["output_padding"] = self.output_padding - return config - - -# Alias - -Convolution1DTranspose = Conv1DTranspose diff --git a/keras/layers/convolutional/conv2d.py b/keras/layers/convolutional/conv2d.py deleted file mode 100644 index 2c44cad555d..00000000000 --- a/keras/layers/convolutional/conv2d.py +++ /dev/null @@ -1,203 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras 2D convolution layer.""" - - -from keras import activations -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.dtensor import utils -from keras.layers.convolutional.base_conv import Conv - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Conv2D", "keras.layers.Convolution2D") -class Conv2D(Conv): - """2D convolution layer (e.g. spatial convolution over images). - - This layer creates a convolution kernel that is convolved - with the layer input to produce a tensor of - outputs. If `use_bias` is True, - a bias vector is created and added to the outputs. Finally, if - `activation` is not `None`, it is applied to the outputs as well. - - When using this layer as the first layer in a model, - provide the keyword argument `input_shape` - (tuple of integers or `None`, does not include the sample axis), - e.g. `input_shape=(128, 128, 3)` for 128x128 RGB pictures - in `data_format="channels_last"`. You can use `None` when - a dimension has variable size. - - Examples: - - >>> # The inputs are 28x28 RGB images with `channels_last` and the batch - >>> # size is 4. - >>> input_shape = (4, 28, 28, 3) - >>> x = tf.random.normal(input_shape) - >>> y = tf.keras.layers.Conv2D( - ... 2, 3, activation='relu', input_shape=input_shape[1:])(x) - >>> print(y.shape) - (4, 26, 26, 2) - - >>> # With `dilation_rate` as 2. - >>> input_shape = (4, 28, 28, 3) - >>> x = tf.random.normal(input_shape) - >>> y = tf.keras.layers.Conv2D( - ... 2, 3, - ... activation='relu', - ... dilation_rate=2, - ... input_shape=input_shape[1:])(x) - >>> print(y.shape) - (4, 24, 24, 2) - - >>> # With `padding` as "same". - >>> input_shape = (4, 28, 28, 3) - >>> x = tf.random.normal(input_shape) - >>> y = tf.keras.layers.Conv2D( - ... 2, 3, activation='relu', padding="same", input_shape=input_shape[1:])(x) - >>> print(y.shape) - (4, 28, 28, 2) - - >>> # With extended batch shape [4, 7]: - >>> input_shape = (4, 7, 28, 28, 3) - >>> x = tf.random.normal(input_shape) - >>> y = tf.keras.layers.Conv2D( - ... 2, 3, activation='relu', input_shape=input_shape[2:])(x) - >>> print(y.shape) - (4, 7, 26, 26, 2) - - - Args: - filters: Integer, the dimensionality of the output space (i.e. the number - of output filters in the convolution). - kernel_size: An integer or tuple/list of 2 integers, specifying the height - and width of the 2D convolution window. Can be a single integer to - specify the same value for all spatial dimensions. - strides: An integer or tuple/list of 2 integers, specifying the strides of - the convolution along the height and width. Can be a single integer to - specify the same value for all spatial dimensions. Specifying any stride - value != 1 is incompatible with specifying any `dilation_rate` value != - 1. - padding: one of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding with zeros - evenly to the left/right or up/down of the input. When `padding="same"` - and `strides=1`, the output has the same size as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape `(batch_size, height, - width, channels)` while `channels_first` corresponds to inputs with - shape `(batch_size, channels, height, width)`. It defaults to the - `image_data_format` value found in your Keras config file at - `~/.keras/keras.json`. If you never set it, then it will be - `channels_last`. Note that the `channels_first` format is currently not - supported by TensorFlow on CPU. - dilation_rate: an integer or tuple/list of 2 integers, specifying the - dilation rate to use for dilated convolution. Can be a single integer to - specify the same value for all spatial dimensions. Currently, specifying - any `dilation_rate` value != 1 is incompatible with specifying any - stride value != 1. - groups: A positive integer specifying the number of groups in which the - input is split along the channel axis. Each group is convolved - separately with `filters / groups` filters. The output is the - concatenation of all the `groups` results along the channel axis. Input - channels and `filters` must both be divisible by `groups`. - activation: Activation function to use. If you don't specify anything, no - activation is applied (see `keras.activations`). - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix (see - `keras.initializers`). Defaults to 'glorot_uniform'. - bias_initializer: Initializer for the bias vector (see - `keras.initializers`). Defaults to 'zeros'. - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix (see `keras.regularizers`). - bias_regularizer: Regularizer function applied to the bias vector (see - `keras.regularizers`). - activity_regularizer: Regularizer function applied to the output of the - layer (its "activation") (see `keras.regularizers`). - kernel_constraint: Constraint function applied to the kernel matrix (see - `keras.constraints`). - bias_constraint: Constraint function applied to the bias vector (see - `keras.constraints`). - - Input shape: - 4+D tensor with shape: `batch_shape + (channels, rows, cols)` if - `data_format='channels_first'` - or 4+D tensor with shape: `batch_shape + (rows, cols, channels)` if - `data_format='channels_last'`. - - Output shape: - 4+D tensor with shape: `batch_shape + (filters, new_rows, new_cols)` if - `data_format='channels_first'` or 4+D tensor with shape: `batch_shape + - (new_rows, new_cols, filters)` if `data_format='channels_last'`. `rows` - and `cols` values might have changed due to padding. - - Returns: - A tensor of rank 4+ representing - `activation(conv2d(inputs, kernel) + bias)`. - - Raises: - ValueError: if `padding` is `"causal"`. - ValueError: when both `strides > 1` and `dilation_rate > 1`. - """ - - @utils.allow_initializer_layout - def __init__( - self, - filters, - kernel_size, - strides=(1, 1), - padding="valid", - data_format=None, - dilation_rate=(1, 1), - groups=1, - activation=None, - use_bias=True, - kernel_initializer="glorot_uniform", - bias_initializer="zeros", - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - **kwargs - ): - super().__init__( - rank=2, - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - groups=groups, - activation=activations.get(activation), - use_bias=use_bias, - kernel_initializer=initializers.get(kernel_initializer), - bias_initializer=initializers.get(bias_initializer), - kernel_regularizer=regularizers.get(kernel_regularizer), - bias_regularizer=regularizers.get(bias_regularizer), - activity_regularizer=regularizers.get(activity_regularizer), - kernel_constraint=constraints.get(kernel_constraint), - bias_constraint=constraints.get(bias_constraint), - **kwargs - ) - - -# Alias - -Convolution2D = Conv2D diff --git a/keras/layers/convolutional/conv2d_transpose.py b/keras/layers/convolutional/conv2d_transpose.py deleted file mode 100644 index 772b761e95d..00000000000 --- a/keras/layers/convolutional/conv2d_transpose.py +++ /dev/null @@ -1,367 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras 2D transposed convolution layer (sometimes called deconvolution).""" - - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import backend -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.dtensor import utils -from keras.engine.input_spec import InputSpec -from keras.layers.convolutional.conv2d import Conv2D -from keras.utils import conv_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.layers.Conv2DTranspose", "keras.layers.Convolution2DTranspose" -) -class Conv2DTranspose(Conv2D): - """Transposed convolution layer (sometimes called Deconvolution). - - The need for transposed convolutions generally arises - from the desire to use a transformation going in the opposite direction - of a normal convolution, i.e., from something that has the shape of the - output of some convolution to something that has the shape of its input - while maintaining a connectivity pattern that is compatible with - said convolution. - - When using this layer as the first layer in a model, - provide the keyword argument `input_shape` - (tuple of integers or `None`, does not include the sample axis), - e.g. `input_shape=(128, 128, 3)` for 128x128 RGB pictures - in `data_format="channels_last"`. - - Args: - filters: Integer, the dimensionality of the output space - (i.e. the number of output filters in the convolution). - kernel_size: An integer or tuple/list of 2 integers, specifying the - height and width of the 2D convolution window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 2 integers, - specifying the strides of the convolution along the height and width. - Can be a single integer to specify the same value for - all spatial dimensions. - Specifying any stride value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: one of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding with zeros - evenly to the left/right or up/down of the input such that output has - the same height/width dimension as the input. - output_padding: An integer or tuple/list of 2 integers, - specifying the amount of padding along the height and width - of the output tensor. - Can be a single integer to specify the same value for all - spatial dimensions. - The amount of output padding along a given dimension must be - lower than the stride along that same dimension. - If set to `None` (default), the output shape is inferred. - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch_size, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch_size, channels, height, width)`. - When unspecified, uses `image_data_format` value found in your Keras - config file at `~/.keras/keras.json` (if exists) else 'channels_last'. - Defaults to "channels_last". - dilation_rate: an integer, specifying the dilation rate for all spatial - dimensions for dilated convolution. Specifying different dilation rates - for different dimensions is not supported. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any stride value != 1. - activation: Activation function to use. - If you don't specify anything, no activation is applied - (see `keras.activations`). - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix - (see `keras.initializers`). Defaults to 'glorot_uniform'. - bias_initializer: Initializer for the bias vector - (see `keras.initializers`). Defaults to 'zeros'. - kernel_regularizer: Regularizer function applied to - the `kernel` weights matrix (see `keras.regularizers`). - bias_regularizer: Regularizer function applied to the bias vector - (see `keras.regularizers`). - activity_regularizer: Regularizer function applied to - the output of the layer (its "activation") (see `keras.regularizers`). - kernel_constraint: Constraint function applied to the kernel matrix - (see `keras.constraints`). - bias_constraint: Constraint function applied to the bias vector - (see `keras.constraints`). - - Input shape: - 4D tensor with shape: - `(batch_size, channels, rows, cols)` if data_format='channels_first' - or 4D tensor with shape: - `(batch_size, rows, cols, channels)` if data_format='channels_last'. - - Output shape: - 4D tensor with shape: - `(batch_size, filters, new_rows, new_cols)` if - data_format='channels_first' - or 4D tensor with shape: - `(batch_size, new_rows, new_cols, filters)` if - data_format='channels_last'. `rows` and `cols` values might have changed - due to padding. - If `output_padding` is specified: - ``` - new_rows = ((rows - 1) * strides[0] + kernel_size[0] - 2 * padding[0] + - output_padding[0]) - new_cols = ((cols - 1) * strides[1] + kernel_size[1] - 2 * padding[1] + - output_padding[1]) - ``` - - Returns: - A tensor of rank 4 representing - `activation(conv2dtranspose(inputs, kernel) + bias)`. - - Raises: - ValueError: if `padding` is "causal". - ValueError: when both `strides` > 1 and `dilation_rate` > 1. - - References: - - [A guide to convolution arithmetic for deep - learning](https://arxiv.org/abs/1603.07285v1) - - [Deconvolutional - Networks](https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf) - """ - - @utils.allow_initializer_layout - def __init__( - self, - filters, - kernel_size, - strides=(1, 1), - padding="valid", - output_padding=None, - data_format=None, - dilation_rate=(1, 1), - activation=None, - use_bias=True, - kernel_initializer="glorot_uniform", - bias_initializer="zeros", - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - **kwargs, - ): - super().__init__( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activations.get(activation), - use_bias=use_bias, - kernel_initializer=initializers.get(kernel_initializer), - bias_initializer=initializers.get(bias_initializer), - kernel_regularizer=regularizers.get(kernel_regularizer), - bias_regularizer=regularizers.get(bias_regularizer), - activity_regularizer=regularizers.get(activity_regularizer), - kernel_constraint=constraints.get(kernel_constraint), - bias_constraint=constraints.get(bias_constraint), - **kwargs, - ) - - self.output_padding = output_padding - if self.output_padding is not None: - self.output_padding = conv_utils.normalize_tuple( - self.output_padding, 2, "output_padding", allow_zero=True - ) - for stride, out_pad in zip(self.strides, self.output_padding): - if out_pad >= stride: - raise ValueError( - "Strides must be greater than output padding. " - f"Received strides={self.strides}, " - f"output_padding={self.output_padding}." - ) - - def build(self, input_shape): - input_shape = tf.TensorShape(input_shape) - if len(input_shape) != 4: - raise ValueError( - "Inputs should have rank 4. " - f"Received input_shape={input_shape}." - ) - channel_axis = self._get_channel_axis() - if input_shape.dims[channel_axis].value is None: - raise ValueError( - "The channel dimension of the inputs " - "to `Conv2DTranspose` should be defined. " - f"The input_shape received is {input_shape}, " - f"where axis {channel_axis} (0-based) " - "is the channel dimension, which found to be `None`." - ) - input_dim = int(input_shape[channel_axis]) - self.input_spec = InputSpec(ndim=4, axes={channel_axis: input_dim}) - kernel_shape = self.kernel_size + (self.filters, input_dim) - - self.kernel = self.add_weight( - name="kernel", - shape=kernel_shape, - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - trainable=True, - dtype=self.dtype, - ) - if self.use_bias: - self.bias = self.add_weight( - name="bias", - shape=(self.filters,), - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - trainable=True, - dtype=self.dtype, - ) - else: - self.bias = None - self.built = True - - def call(self, inputs): - inputs_shape = tf.shape(inputs) - batch_size = inputs_shape[0] - if self.data_format == "channels_first": - h_axis, w_axis = 2, 3 - else: - h_axis, w_axis = 1, 2 - - # Use the constant height and weight when possible. - # TODO(scottzhu): Extract this into a utility function that can be - # applied to all convolutional layers, which currently lost the static - # shape information due to tf.shape(). - height, width = None, None - if inputs.shape.rank is not None: - dims = inputs.shape.as_list() - height = dims[h_axis] - width = dims[w_axis] - height = height if height is not None else inputs_shape[h_axis] - width = width if width is not None else inputs_shape[w_axis] - - kernel_h, kernel_w = self.kernel_size - stride_h, stride_w = self.strides - - if self.output_padding is None: - out_pad_h = out_pad_w = None - else: - out_pad_h, out_pad_w = self.output_padding - - # Infer the dynamic output shape: - out_height = conv_utils.deconv_output_length( - height, - kernel_h, - padding=self.padding, - output_padding=out_pad_h, - stride=stride_h, - dilation=self.dilation_rate[0], - ) - out_width = conv_utils.deconv_output_length( - width, - kernel_w, - padding=self.padding, - output_padding=out_pad_w, - stride=stride_w, - dilation=self.dilation_rate[1], - ) - if self.data_format == "channels_first": - output_shape = (batch_size, self.filters, out_height, out_width) - else: - output_shape = (batch_size, out_height, out_width, self.filters) - - output_shape_tensor = tf.stack(output_shape) - outputs = backend.conv2d_transpose( - inputs, - self.kernel, - output_shape_tensor, - strides=self.strides, - padding=self.padding, - data_format=self.data_format, - dilation_rate=self.dilation_rate, - ) - - if not tf.executing_eagerly() and inputs.shape.rank: - # Infer the static output shape: - out_shape = self.compute_output_shape(inputs.shape) - outputs.set_shape(out_shape) - - if self.use_bias: - outputs = tf.nn.bias_add( - outputs, - self.bias, - data_format=conv_utils.convert_data_format( - self.data_format, ndim=4 - ), - ) - - if self.activation is not None: - return self.activation(outputs) - return outputs - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - output_shape = list(input_shape) - if self.data_format == "channels_first": - c_axis, h_axis, w_axis = 1, 2, 3 - else: - c_axis, h_axis, w_axis = 3, 1, 2 - - kernel_h, kernel_w = self.kernel_size - stride_h, stride_w = self.strides - - if self.output_padding is None: - out_pad_h = out_pad_w = None - else: - out_pad_h, out_pad_w = self.output_padding - - output_shape[c_axis] = self.filters - output_shape[h_axis] = conv_utils.deconv_output_length( - output_shape[h_axis], - kernel_h, - padding=self.padding, - output_padding=out_pad_h, - stride=stride_h, - dilation=self.dilation_rate[0], - ) - output_shape[w_axis] = conv_utils.deconv_output_length( - output_shape[w_axis], - kernel_w, - padding=self.padding, - output_padding=out_pad_w, - stride=stride_w, - dilation=self.dilation_rate[1], - ) - return tf.TensorShape(output_shape) - - def get_config(self): - config = super().get_config() - config["output_padding"] = self.output_padding - return config - - -# Alias - -Convolution2DTranspose = Conv2DTranspose diff --git a/keras/layers/convolutional/conv3d.py b/keras/layers/convolutional/conv3d.py deleted file mode 100644 index bfcfcf5012e..00000000000 --- a/keras/layers/convolutional/conv3d.py +++ /dev/null @@ -1,187 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras 3D convolution layer.""" - - -from keras import activations -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.dtensor import utils -from keras.layers.convolutional.base_conv import Conv - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Conv3D", "keras.layers.Convolution3D") -class Conv3D(Conv): - """3D convolution layer (e.g. spatial convolution over volumes). - - This layer creates a convolution kernel that is convolved - with the layer input to produce a tensor of - outputs. If `use_bias` is True, - a bias vector is created and added to the outputs. Finally, if - `activation` is not `None`, it is applied to the outputs as well. - - When using this layer as the first layer in a model, - provide the keyword argument `input_shape` - (tuple of integers or `None`, does not include the sample axis), - e.g. `input_shape=(128, 128, 128, 1)` for 128x128x128 volumes - with a single channel, - in `data_format="channels_last"`. - - Examples: - - >>> # The inputs are 28x28x28 volumes with a single channel, and the - >>> # batch size is 4 - >>> input_shape =(4, 28, 28, 28, 1) - >>> x = tf.random.normal(input_shape) - >>> y = tf.keras.layers.Conv3D( - ... 2, 3, activation='relu', input_shape=input_shape[1:])(x) - >>> print(y.shape) - (4, 26, 26, 26, 2) - - >>> # With extended batch shape [4, 7], e.g. a batch of 4 videos of - >>> # 3D frames, with 7 frames per video. - >>> input_shape = (4, 7, 28, 28, 28, 1) - >>> x = tf.random.normal(input_shape) - >>> y = tf.keras.layers.Conv3D( - ... 2, 3, activation='relu', input_shape=input_shape[2:])(x) - >>> print(y.shape) - (4, 7, 26, 26, 26, 2) - - Args: - filters: Integer, the dimensionality of the output space (i.e. the number - of output filters in the convolution). - kernel_size: An integer or tuple/list of 3 integers, specifying the depth, - height and width of the 3D convolution window. Can be a single integer - to specify the same value for all spatial dimensions. - strides: An integer or tuple/list of 3 integers, specifying the strides of - the convolution along each spatial dimension. Can be a single integer to - specify the same value for all spatial dimensions. Specifying any stride - value != 1 is incompatible with specifying any `dilation_rate` value != - 1. - padding: one of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding with zeros - evenly to the left/right or up/down of the input such that output has - the same height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape `batch_shape + - (spatial_dim1, spatial_dim2, spatial_dim3, channels)` while - `channels_first` corresponds to inputs with shape `batch_shape + - (channels, spatial_dim1, spatial_dim2, spatial_dim3)`. When unspecified, - uses `image_data_format` value found in your Keras config file at - `~/.keras/keras.json` (if exists) else 'channels_last'. Note that the - `channels_first` format is currently not supported by TensorFlow on CPU. - Defaults to 'channels_last'. - dilation_rate: an integer or tuple/list of 3 integers, specifying the - dilation rate to use for dilated convolution. Can be a single integer to - specify the same value for all spatial dimensions. Currently, specifying - any `dilation_rate` value != 1 is incompatible with specifying any - stride value != 1. - groups: A positive integer specifying the number of groups in which the - input is split along the channel axis. Each group is convolved - separately with `filters / groups` filters. The output is the - concatenation of all the `groups` results along the channel axis. Input - channels and `filters` must both be divisible by `groups`. - activation: Activation function to use. If you don't specify anything, no - activation is applied (see `keras.activations`). - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix (see - `keras.initializers`). Defaults to 'glorot_uniform'. - bias_initializer: Initializer for the bias vector (see - `keras.initializers`). Defaults to 'zeros'. - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix (see `keras.regularizers`). - bias_regularizer: Regularizer function applied to the bias vector (see - `keras.regularizers`). - activity_regularizer: Regularizer function applied to the output of the - layer (its "activation") (see `keras.regularizers`). - kernel_constraint: Constraint function applied to the kernel matrix (see - `keras.constraints`). - bias_constraint: Constraint function applied to the bias vector (see - `keras.constraints`). - - Input shape: - 5+D tensor with shape: `batch_shape + (channels, conv_dim1, conv_dim2, - conv_dim3)` if data_format='channels_first' - or 5+D tensor with shape: `batch_shape + (conv_dim1, conv_dim2, conv_dim3, - channels)` if data_format='channels_last'. - - Output shape: - 5+D tensor with shape: `batch_shape + (filters, new_conv_dim1, - new_conv_dim2, new_conv_dim3)` if data_format='channels_first' - or 5+D tensor with shape: `batch_shape + (new_conv_dim1, new_conv_dim2, - new_conv_dim3, filters)` if data_format='channels_last'. - `new_conv_dim1`, `new_conv_dim2` and `new_conv_dim3` values might have - changed due to padding. - - Returns: - A tensor of rank 5+ representing - `activation(conv3d(inputs, kernel) + bias)`. - - Raises: - ValueError: if `padding` is "causal". - ValueError: when both `strides > 1` and `dilation_rate > 1`. - """ - - @utils.allow_initializer_layout - def __init__( - self, - filters, - kernel_size, - strides=(1, 1, 1), - padding="valid", - data_format=None, - dilation_rate=(1, 1, 1), - groups=1, - activation=None, - use_bias=True, - kernel_initializer="glorot_uniform", - bias_initializer="zeros", - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - **kwargs - ): - super().__init__( - rank=3, - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - groups=groups, - activation=activations.get(activation), - use_bias=use_bias, - kernel_initializer=initializers.get(kernel_initializer), - bias_initializer=initializers.get(bias_initializer), - kernel_regularizer=regularizers.get(kernel_regularizer), - bias_regularizer=regularizers.get(bias_regularizer), - activity_regularizer=regularizers.get(activity_regularizer), - kernel_constraint=constraints.get(kernel_constraint), - bias_constraint=constraints.get(bias_constraint), - **kwargs - ) - - -# Alias - -Convolution3D = Conv3D diff --git a/keras/layers/convolutional/conv3d_transpose.py b/keras/layers/convolutional/conv3d_transpose.py deleted file mode 100644 index dcb9b54a666..00000000000 --- a/keras/layers/convolutional/conv3d_transpose.py +++ /dev/null @@ -1,392 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras 3D transposed convolution layer (sometimes called deconvolution).""" - - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.dtensor import utils -from keras.engine.input_spec import InputSpec -from keras.layers.convolutional.conv3d import Conv3D -from keras.utils import conv_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.layers.Conv3DTranspose", "keras.layers.Convolution3DTranspose" -) -class Conv3DTranspose(Conv3D): - """Transposed convolution layer (sometimes called Deconvolution). - - The need for transposed convolutions generally arises - from the desire to use a transformation going in the opposite direction - of a normal convolution, i.e., from something that has the shape of the - output of some convolution to something that has the shape of its input - while maintaining a connectivity pattern that is compatible with - said convolution. - - When using this layer as the first layer in a model, - provide the keyword argument `input_shape` - (tuple of integers or `None`, does not include the sample axis), - e.g. `input_shape=(128, 128, 128, 3)` for a 128x128x128 volume with 3 - channels if `data_format="channels_last"`. - - Args: - filters: Integer, the dimensionality of the output space - (i.e. the number of output filters in the convolution). - kernel_size: An integer or tuple/list of 3 integers, specifying the - depth, height and width of the 3D convolution window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 3 integers, - specifying the strides of the convolution along the depth, height - and width. - Can be a single integer to specify the same value for - all spatial dimensions. - Specifying any stride value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: one of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding with zeros - evenly to the left/right or up/down of the input such that output has - the same height/width dimension as the input. - output_padding: An integer or tuple/list of 3 integers, - specifying the amount of padding along the depth, height, and - width. - Can be a single integer to specify the same value for all - spatial dimensions. - The amount of output padding along a given dimension must be - lower than the stride along that same dimension. - If set to `None` (default), the output shape is inferred. - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch_size, depth, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch_size, channels, depth, height, width)`. - When unspecified, uses `image_data_format` value found in your Keras - config file at `~/.keras/keras.json` (if exists) else 'channels_last'. - Defaults to 'channels_last'. - dilation_rate: an integer or tuple/list of 3 integers, specifying - the dilation rate to use for dilated convolution. - Can be a single integer to specify the same value for - all spatial dimensions. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any stride value != 1. - activation: Activation function to use. - If you don't specify anything, no activation is applied - (see `keras.activations`). - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix - (see `keras.initializers`). Defaults to 'glorot_uniform'. - bias_initializer: Initializer for the bias vector - (see `keras.initializers`). Defaults to 'zeros'. - kernel_regularizer: Regularizer function applied to - the `kernel` weights matrix - (see `keras.regularizers`). - bias_regularizer: Regularizer function applied to the bias vector - (see `keras.regularizers`). - activity_regularizer: Regularizer function applied to - the output of the layer (its "activation") - (see `keras.regularizers`). - kernel_constraint: Constraint function applied to the kernel matrix - (see `keras.constraints`). - bias_constraint: Constraint function applied to the bias vector - (see `keras.constraints`). - - Input shape: - 5D tensor with shape: - `(batch_size, channels, depth, rows, cols)` if - data_format='channels_first' - or 5D tensor with shape: - `(batch_size, depth, rows, cols, channels)` if - data_format='channels_last'. - - Output shape: - 5D tensor with shape: - `(batch_size, filters, new_depth, new_rows, new_cols)` if - data_format='channels_first' - or 5D tensor with shape: - `(batch_size, new_depth, new_rows, new_cols, filters)` if - data_format='channels_last'. - `depth` and `rows` and `cols` values might have changed due to padding. - If `output_padding` is specified:: - ``` - new_depth = ((depth - 1) * strides[0] + kernel_size[0] - 2 * padding[0] + - output_padding[0]) - new_rows = ((rows - 1) * strides[1] + kernel_size[1] - 2 * padding[1] + - output_padding[1]) - new_cols = ((cols - 1) * strides[2] + kernel_size[2] - 2 * padding[2] + - output_padding[2]) - ``` - - Returns: - A tensor of rank 5 representing - `activation(conv3dtranspose(inputs, kernel) + bias)`. - - Raises: - ValueError: if `padding` is "causal". - ValueError: when both `strides` > 1 and `dilation_rate` > 1. - - References: - - [A guide to convolution arithmetic for deep - learning](https://arxiv.org/abs/1603.07285v1) - - [Deconvolutional - Networks](https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf) - """ - - @utils.allow_initializer_layout - def __init__( - self, - filters, - kernel_size, - strides=(1, 1, 1), - padding="valid", - output_padding=None, - data_format=None, - dilation_rate=(1, 1, 1), - activation=None, - use_bias=True, - kernel_initializer="glorot_uniform", - bias_initializer="zeros", - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - **kwargs, - ): - super().__init__( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activations.get(activation), - use_bias=use_bias, - kernel_initializer=initializers.get(kernel_initializer), - bias_initializer=initializers.get(bias_initializer), - kernel_regularizer=regularizers.get(kernel_regularizer), - bias_regularizer=regularizers.get(bias_regularizer), - activity_regularizer=regularizers.get(activity_regularizer), - kernel_constraint=constraints.get(kernel_constraint), - bias_constraint=constraints.get(bias_constraint), - **kwargs, - ) - - self.output_padding = output_padding - if self.output_padding is not None: - self.output_padding = conv_utils.normalize_tuple( - self.output_padding, 3, "output_padding", allow_zero=True - ) - for stride, out_pad in zip(self.strides, self.output_padding): - if out_pad >= stride: - raise ValueError( - "Strides must be greater than output padding. " - f"Received strides={self.strides}, " - f"output_padding={self.output_padding}." - ) - - def build(self, input_shape): - input_shape = tf.TensorShape(input_shape) - if len(input_shape) != 5: - raise ValueError( - "Inputs should have rank 5. " - f"Received input_shape={input_shape}." - ) - channel_axis = self._get_channel_axis() - if input_shape.dims[channel_axis].value is None: - raise ValueError( - "The channel dimension of the inputs " - "to `Conv3DTranspose` should be defined. " - f"The input_shape received is {input_shape}, " - f"where axis {channel_axis} (0-based) " - "is the channel dimension, which found to be `None`." - ) - input_dim = int(input_shape[channel_axis]) - kernel_shape = self.kernel_size + (self.filters, input_dim) - self.input_spec = InputSpec(ndim=5, axes={channel_axis: input_dim}) - - self.kernel = self.add_weight( - "kernel", - shape=kernel_shape, - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - trainable=True, - dtype=self.dtype, - ) - if self.use_bias: - self.bias = self.add_weight( - "bias", - shape=(self.filters,), - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - trainable=True, - dtype=self.dtype, - ) - else: - self.bias = None - self.built = True - - def call(self, inputs): - inputs_shape = tf.shape(inputs) - batch_size = inputs_shape[0] - if self.data_format == "channels_first": - d_axis, h_axis, w_axis = 2, 3, 4 - else: - d_axis, h_axis, w_axis = 1, 2, 3 - - depth = inputs_shape[d_axis] - height = inputs_shape[h_axis] - width = inputs_shape[w_axis] - - kernel_d, kernel_h, kernel_w = self.kernel_size - stride_d, stride_h, stride_w = self.strides - - if self.output_padding is None: - out_pad_d = out_pad_h = out_pad_w = None - else: - out_pad_d, out_pad_h, out_pad_w = self.output_padding - - # Infer the dynamic output shape: - out_depth = conv_utils.deconv_output_length( - depth, - kernel_d, - padding=self.padding, - output_padding=out_pad_d, - stride=stride_d, - ) - out_height = conv_utils.deconv_output_length( - height, - kernel_h, - padding=self.padding, - output_padding=out_pad_h, - stride=stride_h, - ) - out_width = conv_utils.deconv_output_length( - width, - kernel_w, - padding=self.padding, - output_padding=out_pad_w, - stride=stride_w, - ) - if self.data_format == "channels_first": - output_shape = ( - batch_size, - self.filters, - out_depth, - out_height, - out_width, - ) - strides = (1, 1, stride_d, stride_h, stride_w) - else: - output_shape = ( - batch_size, - out_depth, - out_height, - out_width, - self.filters, - ) - strides = (1, stride_d, stride_h, stride_w, 1) - - output_shape_tensor = tf.stack(output_shape) - outputs = tf.nn.conv3d_transpose( - inputs, - self.kernel, - output_shape_tensor, - strides, - data_format=conv_utils.convert_data_format( - self.data_format, ndim=5 - ), - padding=self.padding.upper(), - ) - - if not tf.executing_eagerly() and inputs.shape.rank: - # Infer the static output shape: - out_shape = self.compute_output_shape(inputs.shape) - outputs.set_shape(out_shape) - - if self.use_bias: - outputs = tf.nn.bias_add( - outputs, - self.bias, - data_format=conv_utils.convert_data_format( - self.data_format, ndim=4 - ), - ) - - if self.activation is not None: - return self.activation(outputs) - return outputs - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - output_shape = list(input_shape) - if self.data_format == "channels_first": - c_axis, d_axis, h_axis, w_axis = 1, 2, 3, 4 - else: - c_axis, d_axis, h_axis, w_axis = 4, 1, 2, 3 - - kernel_d, kernel_h, kernel_w = self.kernel_size - stride_d, stride_h, stride_w = self.strides - - if self.output_padding is None: - out_pad_d = out_pad_h = out_pad_w = None - else: - out_pad_d, out_pad_h, out_pad_w = self.output_padding - - output_shape[c_axis] = self.filters - output_shape[d_axis] = conv_utils.deconv_output_length( - output_shape[d_axis], - kernel_d, - padding=self.padding, - output_padding=out_pad_d, - stride=stride_d, - ) - output_shape[h_axis] = conv_utils.deconv_output_length( - output_shape[h_axis], - kernel_h, - padding=self.padding, - output_padding=out_pad_h, - stride=stride_h, - ) - output_shape[w_axis] = conv_utils.deconv_output_length( - output_shape[w_axis], - kernel_w, - padding=self.padding, - output_padding=out_pad_w, - stride=stride_w, - ) - return tf.TensorShape(output_shape) - - def get_config(self): - config = super().get_config() - config.pop("dilation_rate") - config["output_padding"] = self.output_padding - return config - - -# Alias - -Convolution3DTranspose = Conv3DTranspose diff --git a/keras/layers/convolutional/conv_test.py b/keras/layers/convolutional/conv_test.py deleted file mode 100644 index 859a45cfbeb..00000000000 --- a/keras/layers/convolutional/conv_test.py +++ /dev/null @@ -1,680 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for convolutional layers.""" - - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -@test_combinations.run_all_keras_modes -class Conv1DTest(test_combinations.TestCase): - def _run_test(self, kwargs, expected_output_shape): - num_samples = 2 - stack_size = 3 - length = 7 - - with self.cached_session(): - test_utils.layer_test( - keras.layers.Conv1D, - kwargs=kwargs, - input_shape=(num_samples, length, stack_size), - expected_output_shape=expected_output_shape, - ) - - def _run_test_extra_batch_dim(self, kwargs, expected_output_shape): - batch_shape = (2, 11) - stack_size = 3 - length = 7 - - with self.cached_session(): - if expected_output_shape is not None: - expected_output_shape = (None,) + expected_output_shape - - test_utils.layer_test( - keras.layers.Conv1D, - kwargs=kwargs, - input_shape=batch_shape + (length, stack_size), - expected_output_shape=expected_output_shape, - ) - - @parameterized.named_parameters( - ("padding_valid", {"padding": "valid"}, (None, 5, 2)), - ("padding_same", {"padding": "same"}, (None, 7, 2)), - ( - "padding_same_dilation_2", - {"padding": "same", "dilation_rate": 2}, - (None, 7, 2), - ), - ( - "padding_same_dilation_3", - {"padding": "same", "dilation_rate": 3}, - (None, 7, 2), - ), - ("padding_causal", {"padding": "causal"}, (None, 7, 2)), - ("strides", {"strides": 2}, (None, 3, 2)), - ("dilation_rate", {"dilation_rate": 2}, (None, 3, 2)), - ("group", {"groups": 3, "filters": 6}, (None, 5, 6)), - ) - def test_conv1d(self, kwargs, expected_output_shape): - kwargs["filters"] = kwargs.get("filters", 2) - kwargs["kernel_size"] = 3 - self._run_test(kwargs, expected_output_shape) - self._run_test_extra_batch_dim(kwargs, expected_output_shape) - - def test_conv1d_regularizers(self): - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "kernel_regularizer": "l2", - "bias_regularizer": "l2", - "activity_regularizer": "l2", - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.Conv1D(**kwargs) - layer.build((None, 5, 2)) - self.assertEqual(len(layer.losses), 2) - layer(keras.backend.variable(np.ones((1, 5, 2)))) - self.assertEqual(len(layer.losses), 3) - - def test_conv1d_constraints(self): - k_constraint = lambda x: x - b_constraint = lambda x: x - - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "kernel_constraint": k_constraint, - "bias_constraint": b_constraint, - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.Conv1D(**kwargs) - layer.build((None, 5, 2)) - self.assertEqual(layer.kernel.constraint, k_constraint) - self.assertEqual(layer.bias.constraint, b_constraint) - - def test_conv1d_recreate_conv(self): - with self.cached_session(): - layer = keras.layers.Conv1D( - filters=1, - kernel_size=3, - strides=1, - dilation_rate=2, - padding="causal", - ) - inpt1 = np.random.normal(size=[1, 2, 1]) - inpt2 = np.random.normal(size=[1, 1, 1]) - outp1_shape = layer(inpt1).shape - _ = layer(inpt2).shape - self.assertEqual(outp1_shape, layer(inpt1).shape) - - def test_conv1d_recreate_conv_unknown_dims(self): - with self.cached_session(): - layer = keras.layers.Conv1D( - filters=1, - kernel_size=3, - strides=1, - dilation_rate=2, - padding="causal", - ) - - inpt1 = np.random.normal(size=[1, 9, 1]).astype(np.float32) - inpt2 = np.random.normal(size=[1, 2, 1]).astype(np.float32) - outp1_shape = layer(inpt1).shape - - @tf.function(input_signature=[tf.TensorSpec([1, None, 1])]) - def fn(inpt): - return layer(inpt) - - fn(inpt2) - self.assertEqual(outp1_shape, layer(inpt1).shape) - - def test_conv1d_invalid_output_shapes(self): - kwargs = {"filters": 2, "kernel_size": 20} - with self.assertRaisesRegex( - ValueError, r"""One of the dimensions in the output is <= 0""" - ): - layer = keras.layers.Conv1D(**kwargs) - layer.build((None, 5, 2)) - - def test_conv1d_invalid_strides_and_dilation_rate(self): - kwargs = {"strides": 2, "dilation_rate": 2} - with self.assertRaisesRegex( - ValueError, r"""`strides > 1` not supported in conjunction""" - ): - keras.layers.Conv1D(filters=1, kernel_size=2, **kwargs) - - -@test_combinations.run_all_keras_modes -class Conv2DTest(test_combinations.TestCase): - def _run_test(self, kwargs, expected_output_shape, spatial_shape=(7, 6)): - num_samples = 2 - stack_size = 3 - num_row, num_col = spatial_shape - input_data = None - # Generate valid input data. - if None in spatial_shape: - input_data_shape = ( - num_samples, - num_row or 7, - num_col or 6, - stack_size, - ) - input_data = 10 * np.random.random(input_data_shape).astype( - np.float32 - ) - - with self.cached_session(): - test_utils.layer_test( - keras.layers.Conv2D, - kwargs=kwargs, - input_shape=(num_samples, num_row, num_col, stack_size), - input_data=input_data, - expected_output_shape=expected_output_shape, - ) - - def _run_test_extra_batch_dim( - self, kwargs, expected_output_shape, spatial_shape=(7, 6) - ): - batch_shape = (2, 11) - stack_size = 3 - num_row, num_col = spatial_shape - input_data = None - # Generate valid input data. - if None in spatial_shape: - input_data_shape = batch_shape + ( - num_row or 7, - num_col or 6, - stack_size, - ) - input_data = 10 * np.random.random(input_data_shape).astype( - np.float32 - ) - - with self.cached_session(): - if expected_output_shape is not None: - expected_output_shape = (None,) + expected_output_shape - test_utils.layer_test( - keras.layers.Conv2D, - kwargs=kwargs, - input_shape=batch_shape + (num_row, num_col, stack_size), - input_data=input_data, - expected_output_shape=expected_output_shape, - ) - - @parameterized.named_parameters( - ("padding_valid", {"padding": "valid"}, (None, 5, 4, 2)), - ("padding_same", {"padding": "same"}, (None, 7, 6, 2)), - ( - "padding_same_dilation_2", - {"padding": "same", "dilation_rate": 2}, - (None, 7, 6, 2), - ), - ("strides", {"strides": (2, 2)}, (None, 3, 2, 2)), - ("dilation_rate", {"dilation_rate": (2, 2)}, (None, 3, 2, 2)), - # Only runs on GPU with CUDA, channels_first is not supported on CPU. - # TODO(b/62340061): Support channels_first on CPU. - ("data_format", {"data_format": "channels_first"}, None, True), - ("group", {"groups": 3, "filters": 6}, (None, 5, 4, 6), False), - ( - "dilation_2_unknown_width", - {"dilation_rate": (2, 2)}, - (None, None, 2, 2), - False, - (None, 6), - ), - ( - "dilation_2_unknown_height", - {"dilation_rate": (2, 2)}, - (None, 3, None, 2), - False, - (7, None), - ), - ) - def test_conv2d( - self, - kwargs, - expected_output_shape=None, - requires_gpu=False, - spatial_shape=(7, 6), - ): - kwargs["filters"] = kwargs.get("filters", 2) - kwargs["kernel_size"] = (3, 3) - if not requires_gpu or tf.test.is_gpu_available(cuda_only=True): - self._run_test(kwargs, expected_output_shape, spatial_shape) - self._run_test_extra_batch_dim( - kwargs, expected_output_shape, spatial_shape - ) - - def test_conv2d_regularizers(self): - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "kernel_regularizer": "l2", - "bias_regularizer": "l2", - "activity_regularizer": "l2", - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.Conv2D(**kwargs) - layer.build((None, 5, 5, 2)) - self.assertEqual(len(layer.losses), 2) - layer(keras.backend.variable(np.ones((1, 5, 5, 2)))) - self.assertEqual(len(layer.losses), 3) - - def test_conv2d_constraints(self): - k_constraint = lambda x: x - b_constraint = lambda x: x - - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "kernel_constraint": k_constraint, - "bias_constraint": b_constraint, - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.Conv2D(**kwargs) - layer.build((None, 5, 5, 2)) - self.assertEqual(layer.kernel.constraint, k_constraint) - self.assertEqual(layer.bias.constraint, b_constraint) - - def test_conv2d_zero_kernel_size(self): - kwargs = {"filters": 2, "kernel_size": 0} - with self.assertRaises(ValueError): - keras.layers.Conv2D(**kwargs) - - def test_conv2d_invalid_output_shapes(self): - kwargs = {"filters": 2, "kernel_size": 20} - with self.assertRaisesRegex( - ValueError, r"""One of the dimensions in the output is <= 0""" - ): - layer = keras.layers.Conv2D(**kwargs) - layer.build((None, 5, 5, 2)) - - def test_conv2d_invalid_strides_and_dilation_rate(self): - kwargs = {"strides": [1, 2], "dilation_rate": [2, 1]} - with self.assertRaisesRegex( - ValueError, r"""`strides > 1` not supported in conjunction""" - ): - keras.layers.Conv2D(filters=1, kernel_size=2, **kwargs) - - -@test_combinations.run_all_keras_modes -class Conv3DTest(test_combinations.TestCase): - def _run_test(self, kwargs, expected_output_shape, validate_training=True): - num_samples = 2 - stack_size = 3 - num_row = 7 - num_col = 6 - depth = 5 - - with self.cached_session(): - test_utils.layer_test( - keras.layers.Conv3D, - kwargs=kwargs, - input_shape=(num_samples, depth, num_row, num_col, stack_size), - expected_output_shape=expected_output_shape, - validate_training=validate_training, - ) - - def _run_test_extra_batch_dim( - self, kwargs, expected_output_shape, validate_training=True - ): - batch_shape = (2, 11) - stack_size = 3 - num_row = 7 - num_col = 6 - depth = 5 - - with self.cached_session(): - if expected_output_shape is not None: - expected_output_shape = (None,) + expected_output_shape - - test_utils.layer_test( - keras.layers.Conv3D, - kwargs=kwargs, - input_shape=batch_shape + (depth, num_row, num_col, stack_size), - expected_output_shape=expected_output_shape, - validate_training=validate_training, - ) - - @parameterized.named_parameters( - ("padding_valid", {"padding": "valid"}, (None, 3, 5, 4, 2)), - ("padding_same", {"padding": "same"}, (None, 5, 7, 6, 2)), - ("strides", {"strides": (2, 2, 2)}, (None, 2, 3, 2, 2)), - ("dilation_rate", {"dilation_rate": (2, 2, 2)}, (None, 1, 3, 2, 2)), - # Only runs on GPU with CUDA, channels_first is not supported on CPU. - # TODO(b/62340061): Support channels_first on CPU. - ("data_format", {"data_format": "channels_first"}, None, True), - ("group", {"groups": 3, "filters": 6}, (None, 3, 5, 4, 6)), - ) - def test_conv3d( - self, kwargs, expected_output_shape=None, requires_gpu=False - ): - kwargs["filters"] = kwargs.get("filters", 2) - kwargs["kernel_size"] = (3, 3, 3) - # train_on_batch currently fails with XLA enabled on GPUs - test_training = ( - "groups" not in kwargs or not tf_test_utils.is_xla_enabled() - ) - if not requires_gpu or tf.test.is_gpu_available(cuda_only=True): - self._run_test(kwargs, expected_output_shape, test_training) - self._run_test_extra_batch_dim( - kwargs, expected_output_shape, test_training - ) - - def test_conv3d_regularizers(self): - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "kernel_regularizer": "l2", - "bias_regularizer": "l2", - "activity_regularizer": "l2", - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.Conv3D(**kwargs) - layer.build((None, 5, 5, 5, 2)) - self.assertEqual(len(layer.losses), 2) - self.assertEqual(len(layer.losses), 2) - layer(keras.backend.variable(np.ones((1, 5, 5, 5, 2)))) - self.assertEqual(len(layer.losses), 3) - - def test_conv3d_constraints(self): - k_constraint = lambda x: x - b_constraint = lambda x: x - - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "kernel_constraint": k_constraint, - "bias_constraint": b_constraint, - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.Conv3D(**kwargs) - layer.build((None, 5, 5, 5, 2)) - self.assertEqual(layer.kernel.constraint, k_constraint) - self.assertEqual(layer.bias.constraint, b_constraint) - - def test_conv3d_dynamic_shape(self): - input_data = np.random.random((1, 3, 3, 3, 3)).astype(np.float32) - with self.cached_session(): - # Won't raise error here. - test_utils.layer_test( - keras.layers.Conv3D, - kwargs={ - "data_format": "channels_last", - "filters": 3, - "kernel_size": 3, - }, - input_shape=(None, None, None, None, 3), - input_data=input_data, - ) - if tf.test.is_gpu_available(cuda_only=True): - test_utils.layer_test( - keras.layers.Conv3D, - kwargs={ - "data_format": "channels_first", - "filters": 3, - "kernel_size": 3, - }, - input_shape=(None, 3, None, None, None), - input_data=input_data, - ) - - def test_conv3d_invalid_output_shapes(self): - kwargs = {"filters": 2, "kernel_size": 20} - with self.assertRaisesRegex( - ValueError, r"""One of the dimensions in the output is <= 0""" - ): - layer = keras.layers.Conv3D(**kwargs) - layer.build((None, 5, 5, 5, 2)) - - def test_conv3d_zero_dim_output(self): - conv = keras.layers.Convolution3DTranspose(2, [3, 3, 3], padding="same") - x = tf.random.uniform([1, 32, 32, 0, 3], dtype=tf.float32) - # The layer doesn't crash with 0 dim input - _ = conv(x) - - def test_conv3d_invalid_strides_and_dilation_rate(self): - kwargs = {"strides": [1, 1, 2], "dilation_rate": [1, 2, 1]} - with self.assertRaisesRegex( - ValueError, r"""`strides > 1` not supported in conjunction""" - ): - keras.layers.Conv3D(filters=1, kernel_size=2, **kwargs) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class GroupedConvTest(test_combinations.TestCase): - @parameterized.named_parameters( - ("Conv1D", keras.layers.Conv1D), - ("Conv2D", keras.layers.Conv2D), - ("Conv3D", keras.layers.Conv3D), - ) - def test_group_conv_incorrect_use(self, layer): - with self.assertRaisesRegex(ValueError, "The number of filters"): - layer(16, 3, groups=3) - with self.assertRaisesRegex(ValueError, "The number of input channels"): - layer(16, 3, groups=4).build((32, 12, 12, 3)) - - @parameterized.named_parameters( - ("Conv1D", keras.layers.Conv1D, (32, 12, 32)), - ("Conv2D", keras.layers.Conv2D, (32, 12, 12, 32)), - ("Conv3D", keras.layers.Conv3D, (32, 12, 12, 12, 32)), - ) - def test_group_conv(self, layer_cls, input_shape): - if tf.test.is_gpu_available(cuda_only=True): - with test_utils.use_gpu(): - inputs = tf.random.uniform(shape=input_shape) - - layer = layer_cls(16, 3, groups=4, use_bias=False) - layer.build(input_shape) - - input_slices = tf.split(inputs, 4, axis=-1) - weight_slices = tf.split(layer.kernel, 4, axis=-1) - expected_outputs = tf.concat( - [ - tf.nn.convolution(inputs, weights) - for inputs, weights in zip(input_slices, weight_slices) - ], - axis=-1, - ) - self.assertAllClose( - layer(inputs), expected_outputs, rtol=3e-5, atol=3e-5 - ) - - def test_group_conv_depthwise(self): - if tf.test.is_gpu_available(cuda_only=True): - with test_utils.use_gpu(): - inputs = tf.random.uniform(shape=(3, 27, 27, 32)) - - layer = keras.layers.Conv2D(32, 3, groups=32, use_bias=False) - layer.build((3, 27, 27, 32)) - - weights_dw = tf.reshape(layer.kernel, [3, 3, 32, 1]) - expected_outputs = tf.compat.v1.nn.depthwise_conv2d( - inputs, weights_dw, strides=[1, 1, 1, 1], padding="VALID" - ) - - self.assertAllClose(layer(inputs), expected_outputs, rtol=1e-5) - - -@test_combinations.run_all_keras_modes -class ConvSequentialTest(test_combinations.TestCase): - def _run_test( - self, - conv_layer_cls, - kwargs, - input_shape1, - input_shape2, - expected_output_shape1, - expected_output_shape2, - ): - kwargs["filters"] = 1 - kwargs["kernel_size"] = 3 - kwargs["dilation_rate"] = 2 - with self.cached_session(): - layer = conv_layer_cls(**kwargs) - output1 = layer(np.zeros(input_shape1)) - self.assertEqual(output1.shape, expected_output_shape1) - output2 = layer(np.zeros(input_shape2)) - self.assertEqual(output2.shape, expected_output_shape2) - - @parameterized.named_parameters( - ( - "padding_valid", - {"padding": "valid"}, - (1, 8, 2), - (1, 5, 2), - (1, 4, 1), - (1, 1, 1), - ), - ( - "padding_same", - {"padding": "same"}, - (1, 8, 2), - (1, 5, 2), - (1, 8, 1), - (1, 5, 1), - ), - ( - "padding_causal", - {"padding": "causal"}, - (1, 8, 2), - (1, 5, 2), - (1, 8, 1), - (1, 5, 1), - ), - ) - def test_conv1d( - self, - kwargs, - input_shape1, - input_shape2, - expected_output_shape1, - expected_output_shape2, - ): - self._run_test( - keras.layers.Conv1D, - kwargs, - input_shape1, - input_shape2, - expected_output_shape1, - expected_output_shape2, - ) - - @parameterized.named_parameters( - ( - "padding_valid", - {"padding": "valid"}, - (1, 7, 6, 2), - (1, 6, 5, 2), - (1, 3, 2, 1), - (1, 2, 1, 1), - ), - ( - "padding_same", - {"padding": "same"}, - (1, 7, 6, 2), - (1, 6, 5, 2), - (1, 7, 6, 1), - (1, 6, 5, 1), - ), - ) - def test_conv2d( - self, - kwargs, - input_shape1, - input_shape2, - expected_output_shape1, - expected_output_shape2, - ): - self._run_test( - keras.layers.Conv2D, - kwargs, - input_shape1, - input_shape2, - expected_output_shape1, - expected_output_shape2, - ) - - @parameterized.named_parameters( - ( - "padding_valid", - {"padding": "valid"}, - (1, 5, 7, 6, 2), - (1, 8, 6, 5, 2), - (1, 1, 3, 2, 1), - (1, 4, 2, 1, 1), - ), - ( - "padding_same", - {"padding": "same"}, - (1, 5, 7, 6, 2), - (1, 8, 6, 5, 2), - (1, 5, 7, 6, 1), - (1, 8, 6, 5, 1), - ), - ) - def test_conv3d( - self, - kwargs, - input_shape1, - input_shape2, - expected_output_shape1, - expected_output_shape2, - ): - self._run_test( - keras.layers.Conv3D, - kwargs, - input_shape1, - input_shape2, - expected_output_shape1, - expected_output_shape2, - ) - - def test_dynamic_shape(self): - with self.cached_session(): - layer = keras.layers.Conv3D(2, 3) - input_shape = (5, None, None, 2) - inputs = keras.Input(shape=input_shape) - x = layer(inputs) - # Won't raise error here with None values in input shape - # (b/144282043). - layer(x) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/convolutional/conv_transpose_test.py b/keras/layers/convolutional/conv_transpose_test.py deleted file mode 100644 index 6747773371e..00000000000 --- a/keras/layers/convolutional/conv_transpose_test.py +++ /dev/null @@ -1,291 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for convolutional transpose layers.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class Conv1DTransposeTest(test_combinations.TestCase): - def _run_test(self, kwargs, expected_output_shape): - num_samples = 2 - stack_size = 3 - num_col = 6 - - with test_utils.use_gpu(): - test_utils.layer_test( - keras.layers.Conv1DTranspose, - kwargs=kwargs, - input_shape=(num_samples, num_col, stack_size), - expected_output_shape=expected_output_shape, - ) - - @parameterized.named_parameters( - ("padding_valid", {"padding": "valid"}, (None, 8, 2)), - ("padding_same", {"padding": "same"}, (None, 6, 2)), - ("strides", {"strides": 2}, (None, 13, 2)), - # Only runs on GPU with CUDA, dilation_rate>1 is not supported on CPU. - ("dilation_rate", {"dilation_rate": 2}, (None, 10, 2)), - # Only runs on GPU with CUDA, channels_first is not supported on CPU. - # TODO(b/62340061): Support channels_first on CPU. - ("data_format", {"data_format": "channels_first"}), - ) - def test_conv1d_transpose(self, kwargs, expected_output_shape=None): - kwargs["filters"] = 2 - kwargs["kernel_size"] = 3 - if ( - "data_format" not in kwargs and "dilation_rate" not in kwargs - ) or tf.test.is_gpu_available(cuda_only=True): - self._run_test(kwargs, expected_output_shape) - - def test_conv1d_transpose_invalid_strides_and_dilation_rate(self): - kwargs = {"strides": 2, "dilation_rate": 2} - with self.assertRaisesRegex( - ValueError, r"""`strides > 1` not supported in conjunction""" - ): - keras.layers.Conv1DTranspose(filters=1, kernel_size=2, **kwargs) - - -@test_combinations.run_all_keras_modes -class Conv2DTransposeTest(test_combinations.TestCase): - def _run_test(self, kwargs): - num_samples = 2 - stack_size = 3 - num_row = 7 - num_col = 6 - - with self.cached_session(): - test_utils.layer_test( - keras.layers.Conv2DTranspose, - kwargs=kwargs, - input_shape=(num_samples, num_row, num_col, stack_size), - ) - - @parameterized.named_parameters( - ("padding_valid", {"padding": "valid"}), - ("padding_same", {"padding": "same"}), - ("strides", {"strides": (2, 2)}), - # Only runs on GPU with CUDA, channels_first is not supported on CPU. - # TODO(b/62340061): Support channels_first on CPU. - ("data_format", {"data_format": "channels_first"}), - ( - "strides_output_padding", - {"strides": (2, 2), "output_padding": (1, 1)}, - ), - ) - def test_conv2d_transpose(self, kwargs): - kwargs["filters"] = 2 - kwargs["kernel_size"] = (3, 3) - if "data_format" not in kwargs or tf.test.is_gpu_available( - cuda_only=True - ): - self._run_test(kwargs) - - def test_conv2d_transpose_regularizers(self): - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "kernel_regularizer": "l2", - "bias_regularizer": "l2", - "activity_regularizer": "l2", - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.Conv2DTranspose(**kwargs) - layer.build((None, 5, 5, 2)) - self.assertEqual(len(layer.losses), 2) - layer(keras.backend.variable(np.ones((1, 5, 5, 2)))) - self.assertEqual(len(layer.losses), 3) - - def test_conv2d_transpose_constraints(self): - k_constraint = lambda x: x - b_constraint = lambda x: x - - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "kernel_constraint": k_constraint, - "bias_constraint": b_constraint, - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.Conv2DTranspose(**kwargs) - layer.build((None, 5, 5, 2)) - self.assertEqual(layer.kernel.constraint, k_constraint) - self.assertEqual(layer.bias.constraint, b_constraint) - - def test_conv2d_transpose_dilation(self): - test_utils.layer_test( - keras.layers.Conv2DTranspose, - kwargs={ - "filters": 2, - "kernel_size": 3, - "padding": "same", - "data_format": "channels_last", - "dilation_rate": (2, 2), - }, - input_shape=(2, 5, 6, 3), - ) - - input_data = np.arange(48).reshape((1, 4, 4, 3)).astype(np.float32) - - expected_output = np.float32( - [ - [192, 228, 192, 228], - [336, 372, 336, 372], - [192, 228, 192, 228], - [336, 372, 336, 372], - ] - ).reshape((1, 4, 4, 1)) - test_utils.layer_test( - keras.layers.Conv2DTranspose, - input_data=input_data, - kwargs={ - "filters": 1, - "kernel_size": 3, - "padding": "same", - "data_format": "channels_last", - "dilation_rate": (2, 2), - "kernel_initializer": "ones", - }, - expected_output=expected_output, - ) - - def test_conv2d_transpose_invalid_strides_and_dilation_rate(self): - kwargs = {"strides": [2, 1], "dilation_rate": [2, 1]} - with self.assertRaisesRegex( - ValueError, r"""`strides > 1` not supported in conjunction""" - ): - keras.layers.Conv2DTranspose(filters=1, kernel_size=2, **kwargs) - - -@test_combinations.run_all_keras_modes -class Conv3DTransposeTest(test_combinations.TestCase): - def _run_test(self, kwargs, expected_output_shape): - num_samples = 2 - stack_size = 3 - num_row = 7 - num_col = 6 - depth = 5 - - with test_utils.use_gpu(): - test_utils.layer_test( - keras.layers.Conv3DTranspose, - kwargs=kwargs, - input_shape=(num_samples, depth, num_row, num_col, stack_size), - expected_output_shape=expected_output_shape, - ) - - @parameterized.named_parameters( - ("padding_valid", {"padding": "valid"}, (None, 7, 9, 8, 2)), - ("padding_same", {"padding": "same"}, (None, 5, 7, 6, 2)), - ("strides", {"strides": (2, 2, 2)}, (None, 11, 15, 13, 2)), - ("dilation_rate", {"dilation_rate": (2, 2, 2)}, (None, 7, 9, 8, 2)), - # Only runs on GPU with CUDA, channels_first is not supported on CPU. - # TODO(b/62340061): Support channels_first on CPU. - ("data_format", {"data_format": "channels_first"}), - ( - "strides_output_padding", - {"strides": (2, 2, 2), "output_padding": (1, 1, 1)}, - (None, 12, 16, 14, 2), - ), - ) - def test_conv3d_transpose(self, kwargs, expected_output_shape=None): - kwargs["filters"] = 2 - kwargs["kernel_size"] = (3, 3, 3) - if "data_format" not in kwargs or tf.test.is_gpu_available( - cuda_only=True - ): - self._run_test(kwargs, expected_output_shape) - - def test_conv3d_transpose_regularizers(self): - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "kernel_regularizer": "l2", - "bias_regularizer": "l2", - "activity_regularizer": "l2", - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.Conv3DTranspose(**kwargs) - layer.build((None, 5, 5, 5, 2)) - self.assertEqual(len(layer.losses), 2) - layer(keras.backend.variable(np.ones((1, 5, 5, 5, 2)))) - self.assertEqual(len(layer.losses), 3) - - def test_conv3d_transpose_constraints(self): - k_constraint = lambda x: x - b_constraint = lambda x: x - - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "kernel_constraint": k_constraint, - "bias_constraint": b_constraint, - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.Conv3DTranspose(**kwargs) - layer.build((None, 5, 5, 5, 2)) - self.assertEqual(layer.kernel.constraint, k_constraint) - self.assertEqual(layer.bias.constraint, b_constraint) - - def test_conv3d_transpose_dynamic_shape(self): - input_data = np.random.random((1, 3, 3, 3, 3)).astype(np.float32) - with self.cached_session(): - # Won't raise error here. - test_utils.layer_test( - keras.layers.Conv3DTranspose, - kwargs={ - "data_format": "channels_last", - "filters": 3, - "kernel_size": 3, - }, - input_shape=(None, None, None, None, 3), - input_data=input_data, - ) - if tf.test.is_gpu_available(cuda_only=True): - test_utils.layer_test( - keras.layers.Conv3DTranspose, - kwargs={ - "data_format": "channels_first", - "filters": 3, - "kernel_size": 3, - }, - input_shape=(None, 3, None, None, None), - input_data=input_data, - ) - - def test_conv3d_transpose_invalid_strides_and_dilation_rate(self): - kwargs = {"strides": [2, 2, 1], "dilation_rate": [2, 2, 1]} - with self.assertRaisesRegex( - ValueError, r"""`strides > 1` not supported in conjunction""" - ): - keras.layers.Conv3DTranspose(filters=1, kernel_size=2, **kwargs) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/convolutional/depthwise_conv1d.py b/keras/layers/convolutional/depthwise_conv1d.py deleted file mode 100644 index 49de8d3a426..00000000000 --- a/keras/layers/convolutional/depthwise_conv1d.py +++ /dev/null @@ -1,217 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras depthwise 1D convolution.""" - - -import tensorflow.compat.v2 as tf - -from keras.layers.convolutional.base_depthwise_conv import DepthwiseConv -from keras.utils import conv_utils -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.DepthwiseConv1D") -class DepthwiseConv1D(DepthwiseConv): - """Depthwise 1D convolution. - - Depthwise convolution is a type of convolution in which each input channel - is convolved with a different kernel (called a depthwise kernel). You can - understand depthwise convolution as the first step in a depthwise separable - convolution. - - It is implemented via the following steps: - - - Split the input into individual channels. - - Convolve each channel with an individual depthwise kernel with - `depth_multiplier` output channels. - - Concatenate the convolved outputs along the channels axis. - - Unlike a regular 1D convolution, depthwise convolution does not mix - information across different input channels. - - The `depth_multiplier` argument determines how many filter are applied to - one input channel. As such, it controls the amount of output channels that - are generated per input channel in the depthwise step. - - Args: - kernel_size: An integer, specifying the height and width of the 1D - convolution window. Can be a single integer to specify the same value - for all spatial dimensions. - strides: An integer, specifying the strides of the convolution along the - height and width. Can be a single integer to specify the same value for - all spatial dimensions. Specifying any stride value != 1 is incompatible - with specifying any `dilation_rate` value != 1. - padding: one of `'valid'` or `'same'` (case-insensitive). `"valid"` means - no padding. `"same"` results in padding with zeros evenly to the - left/right or up/down of the input such that output has the same - height/width dimension as the input. - depth_multiplier: The number of depthwise convolution output channels for - each input channel. The total number of depthwise convolution output - channels will be equal to `filters_in * depth_multiplier`. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape `(batch_size, height, - width, channels)` while `channels_first` corresponds to inputs with - shape `(batch_size, channels, height, width)`. It defaults to the - `image_data_format` value found in your Keras config file at - `~/.keras/keras.json`. If you never set it, then it will be - 'channels_last'. - dilation_rate: A single integer, specifying the dilation rate to use for - dilated convolution. Currently, specifying any `dilation_rate` - value != 1 is incompatible with specifying any stride value != 1. - activation: Activation function to use. If you don't specify anything, no - activation is applied (see `keras.activations`). - use_bias: Boolean, whether the layer uses a bias vector. - depthwise_initializer: Initializer for the depthwise kernel matrix (see - `keras.initializers`). If None, the default initializer - ('glorot_uniform') will be used. - bias_initializer: Initializer for the bias vector (see - `keras.initializers`). If None, the default initializer ('zeros') will - be used. - depthwise_regularizer: Regularizer function applied to the depthwise - kernel matrix (see `keras.regularizers`). - bias_regularizer: Regularizer function applied to the bias vector (see - `keras.regularizers`). - activity_regularizer: Regularizer function applied to the output of the - layer (its 'activation') (see `keras.regularizers`). - depthwise_constraint: Constraint function applied to the depthwise kernel - matrix (see `keras.constraints`). - bias_constraint: Constraint function applied to the bias vector (see - `keras.constraints`). - - Input shape: - 3D tensor with shape: `[batch_size, channels, input_dim]` if - data_format='channels_first' - or 3D tensor with shape: `[batch_size, input_dim, channels]` if - data_format='channels_last'. - - Output shape: - 3D tensor with shape: - `[batch_size, channels * depth_multiplier, new_dims]` - if `data_format='channels_first'` - or 3D tensor with shape: `[batch_size, - new_dims, channels * depth_multiplier]` if - `data_format='channels_last'`. `new_dims` values might have - changed due to padding. - - Returns: - A tensor of rank 3 representing - `activation(depthwiseconv1d(inputs, kernel) + bias)`. - - Raises: - ValueError: if `padding` is "causal". - ValueError: when both `strides` > 1 and `dilation_rate` > 1. - """ - - def __init__( - self, - kernel_size, - strides=1, - padding="valid", - depth_multiplier=1, - data_format=None, - dilation_rate=1, - activation=None, - use_bias=True, - depthwise_initializer="glorot_uniform", - bias_initializer="zeros", - depthwise_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - depthwise_constraint=None, - bias_constraint=None, - **kwargs - ): - super().__init__( - 1, - kernel_size=kernel_size, - strides=strides, - padding=padding, - depth_multiplier=depth_multiplier, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - use_bias=use_bias, - depthwise_initializer=depthwise_initializer, - bias_initializer=bias_initializer, - depthwise_regularizer=depthwise_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - depthwise_constraint=depthwise_constraint, - bias_constraint=bias_constraint, - **kwargs - ) - - def call(self, inputs): - if self.data_format == "channels_last": - strides = (1,) + self.strides * 2 + (1,) - spatial_start_dim = 1 - else: - strides = (1, 1) + self.strides * 2 - spatial_start_dim = 2 - inputs = tf.expand_dims(inputs, spatial_start_dim) - depthwise_kernel = tf.expand_dims(self.depthwise_kernel, axis=0) - dilation_rate = (1,) + self.dilation_rate - - outputs = tf.nn.depthwise_conv2d( - inputs, - depthwise_kernel, - strides=strides, - padding=self.padding.upper(), - dilations=dilation_rate, - data_format=conv_utils.convert_data_format( - self.data_format, ndim=4 - ), - ) - - if self.use_bias: - outputs = tf.nn.bias_add( - outputs, - self.bias, - data_format=conv_utils.convert_data_format( - self.data_format, ndim=4 - ), - ) - - outputs = tf.squeeze(outputs, [spatial_start_dim]) - - if self.activation is not None: - return self.activation(outputs) - - return outputs - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - if self.data_format == "channels_first": - input_dim = input_shape[2] - out_filters = input_shape[1] * self.depth_multiplier - elif self.data_format == "channels_last": - input_dim = input_shape[1] - out_filters = input_shape[2] * self.depth_multiplier - - input_dim = conv_utils.conv_output_length( - input_dim, - self.kernel_size[0], - self.padding, - self.strides[0], - self.dilation_rate[0], - ) - if self.data_format == "channels_first": - return (input_shape[0], out_filters, input_dim) - elif self.data_format == "channels_last": - return (input_shape[0], input_dim, out_filters) diff --git a/keras/layers/convolutional/depthwise_conv2d.py b/keras/layers/convolutional/depthwise_conv2d.py deleted file mode 100644 index 24edea72966..00000000000 --- a/keras/layers/convolutional/depthwise_conv2d.py +++ /dev/null @@ -1,209 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras depthwise 2D convolution.""" - - -from keras import backend -from keras.layers.convolutional.base_depthwise_conv import DepthwiseConv -from keras.utils import conv_utils -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.DepthwiseConv2D") -class DepthwiseConv2D(DepthwiseConv): - """Depthwise 2D convolution. - - Depthwise convolution is a type of convolution in which each input channel - is convolved with a different kernel (called a depthwise kernel). You can - understand depthwise convolution as the first step in a depthwise separable - convolution. - - It is implemented via the following steps: - - - Split the input into individual channels. - - Convolve each channel with an individual depthwise kernel with - `depth_multiplier` output channels. - - Concatenate the convolved outputs along the channels axis. - - Unlike a regular 2D convolution, depthwise convolution does not mix - information across different input channels. - - The `depth_multiplier` argument determines how many filter are applied to - one input channel. As such, it controls the amount of output channels that - are generated per input channel in the depthwise step. - - Args: - kernel_size: An integer or tuple/list of 2 integers, specifying the height - and width of the 2D convolution window. Can be a single integer to - specify the same value for all spatial dimensions. - strides: An integer or tuple/list of 2 integers, specifying the strides of - the convolution along the height and width. Can be a single integer to - specify the same value for all spatial dimensions. Current - implementation only supports equal length strides in row and - column dimensions. Specifying any stride value != 1 is incompatible - with specifying any `dilation_rate` value !=1. - padding: one of `'valid'` or `'same'` (case-insensitive). `"valid"` means - no padding. `"same"` results in padding with zeros evenly to the - left/right or up/down of the input such that output has the same - height/width dimension as the input. - depth_multiplier: The number of depthwise convolution output channels for - each input channel. The total number of depthwise convolution output - channels will be equal to `filters_in * depth_multiplier`. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape `(batch_size, height, - width, channels)` while `channels_first` corresponds to inputs with - shape `(batch_size, channels, height, width)`. When unspecified, uses - `image_data_format` value found in your Keras config file at - `~/.keras/keras.json` (if exists) else 'channels_last'. - Defaults to 'channels_last'. - dilation_rate: An integer or tuple/list of 2 integers, specifying the - dilation rate to use for dilated convolution. Currently, specifying any - `dilation_rate` value != 1 is incompatible with specifying any `strides` - value != 1. - activation: Activation function to use. If you don't specify anything, no - activation is applied (see `keras.activations`). - use_bias: Boolean, whether the layer uses a bias vector. - depthwise_initializer: Initializer for the depthwise kernel matrix (see - `keras.initializers`). If None, the default initializer - ('glorot_uniform') will be used. - bias_initializer: Initializer for the bias vector (see - `keras.initializers`). If None, the default initializer ('zeros') will - be used. - depthwise_regularizer: Regularizer function applied to the depthwise - kernel matrix (see `keras.regularizers`). - bias_regularizer: Regularizer function applied to the bias vector (see - `keras.regularizers`). - activity_regularizer: Regularizer function applied to the output of the - layer (its 'activation') (see `keras.regularizers`). - depthwise_constraint: Constraint function applied to the depthwise kernel - matrix (see `keras.constraints`). - bias_constraint: Constraint function applied to the bias vector (see - `keras.constraints`). - - Input shape: - 4D tensor with shape: `[batch_size, channels, rows, cols]` if - data_format='channels_first' - or 4D tensor with shape: `[batch_size, rows, cols, channels]` if - data_format='channels_last'. - - Output shape: - 4D tensor with shape: `[batch_size, channels * depth_multiplier, new_rows, - new_cols]` if `data_format='channels_first'` - or 4D tensor with shape: `[batch_size, - new_rows, new_cols, channels * depth_multiplier]` if - `data_format='channels_last'`. `rows` and `cols` values might have - changed due to padding. - - Returns: - A tensor of rank 4 representing - `activation(depthwiseconv2d(inputs, kernel) + bias)`. - - Raises: - ValueError: if `padding` is "causal". - ValueError: when both `strides` > 1 and `dilation_rate` > 1. - """ - - def __init__( - self, - kernel_size, - strides=(1, 1), - padding="valid", - depth_multiplier=1, - data_format=None, - dilation_rate=(1, 1), - activation=None, - use_bias=True, - depthwise_initializer="glorot_uniform", - bias_initializer="zeros", - depthwise_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - depthwise_constraint=None, - bias_constraint=None, - **kwargs - ): - super().__init__( - 2, - kernel_size=kernel_size, - strides=strides, - padding=padding, - depth_multiplier=depth_multiplier, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - use_bias=use_bias, - depthwise_initializer=depthwise_initializer, - bias_initializer=bias_initializer, - depthwise_regularizer=depthwise_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - depthwise_constraint=depthwise_constraint, - bias_constraint=bias_constraint, - **kwargs - ) - - def call(self, inputs): - outputs = backend.depthwise_conv2d( - inputs, - self.depthwise_kernel, - strides=self.strides, - padding=self.padding, - dilation_rate=self.dilation_rate, - data_format=self.data_format, - ) - - if self.use_bias: - outputs = backend.bias_add( - outputs, self.bias, data_format=self.data_format - ) - - if self.activation is not None: - return self.activation(outputs) - - return outputs - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - if self.data_format == "channels_first": - rows = input_shape[2] - cols = input_shape[3] - out_filters = input_shape[1] * self.depth_multiplier - elif self.data_format == "channels_last": - rows = input_shape[1] - cols = input_shape[2] - out_filters = input_shape[3] * self.depth_multiplier - - rows = conv_utils.conv_output_length( - rows, - self.kernel_size[0], - self.padding, - self.strides[0], - self.dilation_rate[0], - ) - cols = conv_utils.conv_output_length( - cols, - self.kernel_size[1], - self.padding, - self.strides[1], - self.dilation_rate[1], - ) - if self.data_format == "channels_first": - return (input_shape[0], out_filters, rows, cols) - elif self.data_format == "channels_last": - return (input_shape[0], rows, cols, out_filters) diff --git a/keras/layers/convolutional/depthwise_conv_test.py b/keras/layers/convolutional/depthwise_conv_test.py deleted file mode 100644 index dd8e5858497..00000000000 --- a/keras/layers/convolutional/depthwise_conv_test.py +++ /dev/null @@ -1,143 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for depthwise convolutional layers.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class DepthwiseConv1DTest(test_combinations.TestCase): - def _run_test(self, kwargs, expected_output_shape=None): - num_samples = 2 - stack_size = 3 - num_row = 7 - - with self.cached_session(): - test_utils.layer_test( - keras.layers.DepthwiseConv1D, - kwargs=kwargs, - input_shape=(num_samples, num_row, stack_size), - expected_output_shape=expected_output_shape, - ) - - @parameterized.named_parameters( - ("padding_valid", {"padding": "valid"}), - ("padding_same", {"padding": "same"}), - ("strides", {"strides": 2}), - # Only runs on GPU with CUDA, channels_first is not supported on CPU. - # TODO(b/62340061): Support channels_first on CPU. - ("data_format", {"data_format": "channels_first"}), - ("depth_multiplier_1", {"depth_multiplier": 1}), - ("depth_multiplier_2", {"depth_multiplier": 2}), - ("dilation_rate", {"dilation_rate": 2}, (None, 3, 3)), - ) - def test_depthwise_conv1d(self, kwargs, expected_output_shape=None): - kwargs["kernel_size"] = 3 - if "data_format" not in kwargs or tf.test.is_gpu_available( - cuda_only=True - ): - self._run_test(kwargs, expected_output_shape) - - def test_depthwise_conv1d_full(self): - kwargs = { - "kernel_size": 3, - "padding": "valid", - "data_format": "channels_last", - "dilation_rate": 1, - "activation": None, - "depthwise_regularizer": "l2", - "bias_regularizer": "l2", - "activity_regularizer": "l2", - "depthwise_constraint": "unit_norm", - "use_bias": True, - "strides": 2, - "depth_multiplier": 1, - } - self._run_test(kwargs) - - def test_depthwise_conv1d_invalid_strides_and_dilation_rate(self): - kwargs = {"strides": 2, "dilation_rate": 2} - with self.assertRaisesRegex( - ValueError, r"""`strides > 1` not supported in conjunction""" - ): - keras.layers.DepthwiseConv1D(kernel_size=2, **kwargs) - - -@test_combinations.run_all_keras_modes -class DepthwiseConv2DTest(test_combinations.TestCase): - def _run_test(self, kwargs, expected_output_shape=None): - num_samples = 2 - stack_size = 3 - num_row = 7 - num_col = 6 - - with self.cached_session(): - test_utils.layer_test( - keras.layers.DepthwiseConv2D, - kwargs=kwargs, - input_shape=(num_samples, num_row, num_col, stack_size), - expected_output_shape=expected_output_shape, - ) - - @parameterized.named_parameters( - ("padding_valid", {"padding": "valid"}), - ("padding_same", {"padding": "same"}), - ("strides", {"strides": (2, 2)}), - # Only runs on GPU with CUDA, channels_first is not supported on CPU. - # TODO(b/62340061): Support channels_first on CPU. - ("data_format", {"data_format": "channels_first"}), - ("depth_multiplier_1", {"depth_multiplier": 1}), - ("depth_multiplier_2", {"depth_multiplier": 2}), - ("dilation_rate", {"dilation_rate": (2, 2)}, (None, 3, 2, 3)), - ) - def test_depthwise_conv2d(self, kwargs, expected_output_shape=None): - kwargs["kernel_size"] = (3, 3) - if "data_format" not in kwargs or tf.test.is_gpu_available( - cuda_only=True - ): - self._run_test(kwargs, expected_output_shape) - - def test_depthwise_conv2d_full(self): - kwargs = { - "kernel_size": 3, - "padding": "valid", - "data_format": "channels_last", - "dilation_rate": (1, 1), - "activation": None, - "depthwise_regularizer": "l2", - "bias_regularizer": "l2", - "activity_regularizer": "l2", - "depthwise_constraint": "unit_norm", - "use_bias": True, - "strides": (2, 2), - "depth_multiplier": 1, - } - self._run_test(kwargs) - - def test_depthwise_conv2d_invalid_strides_and_dilation_rate(self): - kwargs = {"strides": [2, 1], "dilation_rate": [2, 1]} - with self.assertRaisesRegex( - ValueError, r"""`strides > 1` not supported in conjunction""" - ): - keras.layers.DepthwiseConv2D(kernel_size=2, **kwargs) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/convolutional/separable_conv1d.py b/keras/layers/convolutional/separable_conv1d.py deleted file mode 100644 index 46ade298d0f..00000000000 --- a/keras/layers/convolutional/separable_conv1d.py +++ /dev/null @@ -1,222 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras depthwise separable 1D convolution.""" - - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.layers.convolutional.base_separable_conv import SeparableConv -from keras.utils import conv_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.layers.SeparableConv1D", "keras.layers.SeparableConvolution1D" -) -class SeparableConv1D(SeparableConv): - """Depthwise separable 1D convolution. - - This layer performs a depthwise convolution that acts separately on - channels, followed by a pointwise convolution that mixes channels. - If `use_bias` is True and a bias initializer is provided, - it adds a bias vector to the output. - It then optionally applies an activation function to produce the final - output. - - Args: - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: A single integer specifying the spatial - dimensions of the filters. - strides: A single integer specifying the strides - of the convolution. - Specifying any `stride` value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"`, `"same"`, or `"causal"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding with zeros - evenly to the left/right or up/down of the input such that output has - the same height/width dimension as the input. `"causal"` results in - causal (dilated) convolutions, e.g. `output[t]` does not depend on - `input[t+1:]`. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch_size, length, channels)` while `channels_first` corresponds to - inputs with shape `(batch_size, channels, length)`. - dilation_rate: A single integer, specifying - the dilation rate to use for dilated convolution. - depth_multiplier: The number of depthwise convolution output channels for - each input channel. The total number of depthwise convolution output - channels will be equal to `num_filters_in * depth_multiplier`. - activation: Activation function to use. - If you don't specify anything, no activation is applied - (see `keras.activations`). - use_bias: Boolean, whether the layer uses a bias. - depthwise_initializer: An initializer for the depthwise convolution kernel - (see `keras.initializers`). If None, then the default initializer - ('glorot_uniform') will be used. - pointwise_initializer: An initializer for the pointwise convolution kernel - (see `keras.initializers`). If None, then the default initializer - ('glorot_uniform') will be used. - bias_initializer: An initializer for the bias vector. If None, the default - initializer ('zeros') will be used (see `keras.initializers`). - depthwise_regularizer: Optional regularizer for the depthwise - convolution kernel (see `keras.regularizers`). - pointwise_regularizer: Optional regularizer for the pointwise - convolution kernel (see `keras.regularizers`). - bias_regularizer: Optional regularizer for the bias vector - (see `keras.regularizers`). - activity_regularizer: Optional regularizer function for the output - (see `keras.regularizers`). - depthwise_constraint: Optional projection function to be applied to the - depthwise kernel after being updated by an `Optimizer` (e.g. used for - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training - (see `keras.constraints`). - pointwise_constraint: Optional projection function to be applied to the - pointwise kernel after being updated by an `Optimizer` - (see `keras.constraints`). - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer` - (see `keras.constraints`). - trainable: Boolean, if `True` the weights of this layer will be marked as - trainable (and listed in `layer.trainable_weights`). - - Input shape: - 3D tensor with shape: - `(batch_size, channels, steps)` if data_format='channels_first' - or 3D tensor with shape: - `(batch_size, steps, channels)` if data_format='channels_last'. - - Output shape: - 3D tensor with shape: - `(batch_size, filters, new_steps)` if data_format='channels_first' - or 3D tensor with shape: - `(batch_size, new_steps, filters)` if data_format='channels_last'. - `new_steps` value might have changed due to padding or strides. - - Returns: - A tensor of rank 3 representing - `activation(separableconv1d(inputs, kernel) + bias)`. - """ - - def __init__( - self, - filters, - kernel_size, - strides=1, - padding="valid", - data_format=None, - dilation_rate=1, - depth_multiplier=1, - activation=None, - use_bias=True, - depthwise_initializer="glorot_uniform", - pointwise_initializer="glorot_uniform", - bias_initializer="zeros", - depthwise_regularizer=None, - pointwise_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - depthwise_constraint=None, - pointwise_constraint=None, - bias_constraint=None, - **kwargs - ): - super().__init__( - rank=1, - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - depth_multiplier=depth_multiplier, - activation=activations.get(activation), - use_bias=use_bias, - depthwise_initializer=initializers.get(depthwise_initializer), - pointwise_initializer=initializers.get(pointwise_initializer), - bias_initializer=initializers.get(bias_initializer), - depthwise_regularizer=regularizers.get(depthwise_regularizer), - pointwise_regularizer=regularizers.get(pointwise_regularizer), - bias_regularizer=regularizers.get(bias_regularizer), - activity_regularizer=regularizers.get(activity_regularizer), - depthwise_constraint=constraints.get(depthwise_constraint), - pointwise_constraint=constraints.get(pointwise_constraint), - bias_constraint=constraints.get(bias_constraint), - **kwargs - ) - - def call(self, inputs): - if self.padding == "causal": - inputs = tf.pad(inputs, self._compute_causal_padding(inputs)) - if self.data_format == "channels_last": - strides = (1,) + self.strides * 2 + (1,) - spatial_start_dim = 1 - else: - strides = (1, 1) + self.strides * 2 - spatial_start_dim = 2 - - # Explicitly broadcast inputs and kernels to 4D. - # TODO(fchollet): refactor when a native separable_conv1d op is - # available. - inputs = tf.expand_dims(inputs, spatial_start_dim) - depthwise_kernel = tf.expand_dims(self.depthwise_kernel, 0) - pointwise_kernel = tf.expand_dims(self.pointwise_kernel, 0) - dilation_rate = (1,) + self.dilation_rate - - if self.padding == "causal": - op_padding = "valid" - else: - op_padding = self.padding - outputs = tf.compat.v1.nn.separable_conv2d( - inputs, - depthwise_kernel, - pointwise_kernel, - strides=strides, - padding=op_padding.upper(), - rate=dilation_rate, - data_format=conv_utils.convert_data_format( - self.data_format, ndim=4 - ), - ) - - if self.use_bias: - outputs = tf.nn.bias_add( - outputs, - self.bias, - data_format=conv_utils.convert_data_format( - self.data_format, ndim=4 - ), - ) - - outputs = tf.squeeze(outputs, [spatial_start_dim]) - - if self.activation is not None: - return self.activation(outputs) - return outputs - - -# Alias - -SeparableConvolution1D = SeparableConv1D diff --git a/keras/layers/convolutional/separable_conv2d.py b/keras/layers/convolutional/separable_conv2d.py deleted file mode 100644 index 8290758b48c..00000000000 --- a/keras/layers/convolutional/separable_conv2d.py +++ /dev/null @@ -1,216 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras depthwise separable 2D convolution.""" - - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.layers.convolutional.base_separable_conv import SeparableConv -from keras.utils import conv_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.layers.SeparableConv2D", "keras.layers.SeparableConvolution2D" -) -class SeparableConv2D(SeparableConv): - """Depthwise separable 2D convolution. - - Separable convolutions consist of first performing - a depthwise spatial convolution - (which acts on each input channel separately) - followed by a pointwise convolution which mixes the resulting - output channels. The `depth_multiplier` argument controls how many - output channels are generated per input channel in the depthwise step. - - Intuitively, separable convolutions can be understood as - a way to factorize a convolution kernel into two smaller kernels, - or as an extreme version of an Inception block. - - Args: - filters: Integer, the dimensionality of the output space - (i.e. the number of output filters in the convolution). - kernel_size: An integer or tuple/list of 2 integers, specifying the - height and width of the 2D convolution window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 2 integers, - specifying the strides of the convolution along the height and width. - Can be a single integer to specify the same value for - all spatial dimensions. Current implementation only supports equal - length strides in the row and column dimensions. - Specifying any stride value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: one of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding with zeros - evenly to the left/right or up/down of the input such that output has - the same height/width dimension as the input. - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch_size, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch_size, channels, height, width)`. - When unspecified, uses `image_data_format` value found in your Keras - config file at `~/.keras/keras.json` (if exists) else 'channels_last'. - Defaults to 'channels_last'. - dilation_rate: An integer or tuple/list of 2 integers, specifying - the dilation rate to use for dilated convolution. - depth_multiplier: The number of depthwise convolution output channels - for each input channel. - The total number of depthwise convolution output - channels will be equal to `filters_in * depth_multiplier`. - activation: Activation function to use. - If you don't specify anything, no activation is applied - (see `keras.activations`). - use_bias: Boolean, whether the layer uses a bias vector. - depthwise_initializer: An initializer for the depthwise convolution kernel - (see `keras.initializers`). If None, then the default initializer - ('glorot_uniform') will be used. - pointwise_initializer: An initializer for the pointwise convolution kernel - (see `keras.initializers`). If None, then the default initializer - ('glorot_uniform') will be used. - bias_initializer: An initializer for the bias vector. If None, the default - initializer ('zeros') will be used (see `keras.initializers`). - depthwise_regularizer: Regularizer function applied to - the depthwise kernel matrix (see `keras.regularizers`). - pointwise_regularizer: Regularizer function applied to - the pointwise kernel matrix (see `keras.regularizers`). - bias_regularizer: Regularizer function applied to the bias vector - (see `keras.regularizers`). - activity_regularizer: Regularizer function applied to - the output of the layer (its "activation") - (see `keras.regularizers`). - depthwise_constraint: Constraint function applied to - the depthwise kernel matrix - (see `keras.constraints`). - pointwise_constraint: Constraint function applied to - the pointwise kernel matrix - (see `keras.constraints`). - bias_constraint: Constraint function applied to the bias vector - (see `keras.constraints`). - - Input shape: - 4D tensor with shape: - `(batch_size, channels, rows, cols)` if data_format='channels_first' - or 4D tensor with shape: - `(batch_size, rows, cols, channels)` if data_format='channels_last'. - - Output shape: - 4D tensor with shape: - `(batch_size, filters, new_rows, new_cols)` if - data_format='channels_first' - or 4D tensor with shape: - `(batch_size, new_rows, new_cols, filters)` if - data_format='channels_last'. `rows` and `cols` values might have changed - due to padding. - - Returns: - A tensor of rank 4 representing - `activation(separableconv2d(inputs, kernel) + bias)`. - - Raises: - ValueError: if `padding` is "causal". - """ - - def __init__( - self, - filters, - kernel_size, - strides=(1, 1), - padding="valid", - data_format=None, - dilation_rate=(1, 1), - depth_multiplier=1, - activation=None, - use_bias=True, - depthwise_initializer="glorot_uniform", - pointwise_initializer="glorot_uniform", - bias_initializer="zeros", - depthwise_regularizer=None, - pointwise_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - depthwise_constraint=None, - pointwise_constraint=None, - bias_constraint=None, - **kwargs - ): - super().__init__( - rank=2, - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - depth_multiplier=depth_multiplier, - activation=activations.get(activation), - use_bias=use_bias, - depthwise_initializer=initializers.get(depthwise_initializer), - pointwise_initializer=initializers.get(pointwise_initializer), - bias_initializer=initializers.get(bias_initializer), - depthwise_regularizer=regularizers.get(depthwise_regularizer), - pointwise_regularizer=regularizers.get(pointwise_regularizer), - bias_regularizer=regularizers.get(bias_regularizer), - activity_regularizer=regularizers.get(activity_regularizer), - depthwise_constraint=constraints.get(depthwise_constraint), - pointwise_constraint=constraints.get(pointwise_constraint), - bias_constraint=constraints.get(bias_constraint), - **kwargs - ) - - def call(self, inputs): - # Apply the actual ops. - if self.data_format == "channels_last": - strides = (1,) + self.strides + (1,) - else: - strides = (1, 1) + self.strides - outputs = tf.compat.v1.nn.separable_conv2d( - inputs, - self.depthwise_kernel, - self.pointwise_kernel, - strides=strides, - padding=self.padding.upper(), - rate=self.dilation_rate, - data_format=conv_utils.convert_data_format( - self.data_format, ndim=4 - ), - ) - - if self.use_bias: - outputs = tf.nn.bias_add( - outputs, - self.bias, - data_format=conv_utils.convert_data_format( - self.data_format, ndim=4 - ), - ) - - if self.activation is not None: - return self.activation(outputs) - return outputs - - -# Alias - -SeparableConvolution2D = SeparableConv2D diff --git a/keras/layers/convolutional/separable_conv_test.py b/keras/layers/convolutional/separable_conv_test.py deleted file mode 100644 index b4abfc1016b..00000000000 --- a/keras/layers/convolutional/separable_conv_test.py +++ /dev/null @@ -1,183 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for separable convolutional layers.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class SeparableConv1DTest(test_combinations.TestCase): - def _run_test(self, kwargs): - num_samples = 2 - stack_size = 3 - length = 7 - - with self.cached_session(): - test_utils.layer_test( - keras.layers.SeparableConv1D, - kwargs=kwargs, - input_shape=(num_samples, length, stack_size), - ) - - @parameterized.named_parameters( - ("padding_valid", {"padding": "valid"}), - ("padding_same", {"padding": "same"}), - ("padding_same_dilation_2", {"padding": "same", "dilation_rate": 2}), - ("padding_causal", {"padding": "causal"}), - ("strides", {"strides": 2}), - ("dilation_rate", {"dilation_rate": 2}), - ("depth_multiplier", {"depth_multiplier": 2}), - ) - def test_separable_conv1d(self, kwargs): - kwargs["filters"] = 2 - kwargs["kernel_size"] = 3 - self._run_test(kwargs) - - def test_separable_conv1d_regularizers(self): - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "depthwise_regularizer": "l2", - "pointwise_regularizer": "l2", - "bias_regularizer": "l2", - "activity_regularizer": "l2", - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.SeparableConv1D(**kwargs) - layer.build((None, 5, 2)) - self.assertEqual(len(layer.losses), 3) - layer(keras.backend.variable(np.ones((1, 5, 2)))) - self.assertEqual(len(layer.losses), 4) - - def test_separable_conv1d_constraints(self): - d_constraint = lambda x: x - p_constraint = lambda x: x - b_constraint = lambda x: x - - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "pointwise_constraint": p_constraint, - "depthwise_constraint": d_constraint, - "bias_constraint": b_constraint, - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.SeparableConv1D(**kwargs) - layer.build((None, 5, 2)) - self.assertEqual(layer.depthwise_kernel.constraint, d_constraint) - self.assertEqual(layer.pointwise_kernel.constraint, p_constraint) - self.assertEqual(layer.bias.constraint, b_constraint) - - def test_separable_conv1d_invalid_strides_and_dilation_rate(self): - kwargs = {"strides": 2, "dilation_rate": 2} - with self.assertRaisesRegex( - ValueError, r"""`strides > 1` not supported in conjunction""" - ): - keras.layers.SeparableConv1D(filters=1, kernel_size=2, **kwargs) - - -@test_combinations.run_all_keras_modes -class SeparableConv2DTest(test_combinations.TestCase): - def _run_test(self, kwargs): - num_samples = 2 - stack_size = 3 - num_row = 7 - num_col = 6 - - with self.cached_session(): - test_utils.layer_test( - keras.layers.SeparableConv2D, - kwargs=kwargs, - input_shape=(num_samples, num_row, num_col, stack_size), - ) - - @parameterized.named_parameters( - ("padding_valid", {"padding": "valid"}), - ("padding_same", {"padding": "same"}), - ("padding_same_dilation_2", {"padding": "same", "dilation_rate": 2}), - ("strides", {"strides": 2}), - # Only runs on GPU with CUDA, channels_first is not supported on CPU. - # TODO(b/62340061): Support channels_first on CPU. - ("data_format", {"data_format": "channels_first"}), - ("dilation_rate", {"dilation_rate": 2}), - ("depth_multiplier", {"depth_multiplier": 2}), - ) - def test_separable_conv2d(self, kwargs): - kwargs["filters"] = 2 - kwargs["kernel_size"] = 3 - if "data_format" not in kwargs or tf.test.is_gpu_available( - cuda_only=True - ): - self._run_test(kwargs) - - def test_separable_conv2d_regularizers(self): - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "depthwise_regularizer": "l2", - "pointwise_regularizer": "l2", - "bias_regularizer": "l2", - "activity_regularizer": "l2", - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.SeparableConv2D(**kwargs) - layer.build((None, 5, 5, 2)) - self.assertEqual(len(layer.losses), 3) - layer(keras.backend.variable(np.ones((1, 5, 5, 2)))) - self.assertEqual(len(layer.losses), 4) - - def test_separable_conv2d_constraints(self): - d_constraint = lambda x: x - p_constraint = lambda x: x - b_constraint = lambda x: x - - kwargs = { - "filters": 3, - "kernel_size": 3, - "padding": "valid", - "pointwise_constraint": p_constraint, - "depthwise_constraint": d_constraint, - "bias_constraint": b_constraint, - "strides": 1, - } - with self.cached_session(): - layer = keras.layers.SeparableConv2D(**kwargs) - layer.build((None, 5, 5, 2)) - self.assertEqual(layer.depthwise_kernel.constraint, d_constraint) - self.assertEqual(layer.pointwise_kernel.constraint, p_constraint) - self.assertEqual(layer.bias.constraint, b_constraint) - - def test_separable_conv2d_invalid_strides_and_dilation_rate(self): - kwargs = {"strides": [2, 1], "dilation_rate": [2, 1]} - with self.assertRaisesRegex( - ValueError, r"""`strides > 1` not supported in conjunction""" - ): - keras.layers.SeparableConv2D(filters=1, kernel_size=2, **kwargs) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/core/BUILD b/keras/layers/core/BUILD deleted file mode 100644 index c44ec895884..00000000000 --- a/keras/layers/core/BUILD +++ /dev/null @@ -1,185 +0,0 @@ -# Description: -# Contains the Keras core layers. -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -# buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/py/tensorflow_gnn:__subpackages__", - "//third_party/tensorflow/python/distribute:__pkg__", - "//third_party/tensorflow/python/feature_column:__pkg__", - "//third_party/tensorflow/python/keras:__subpackages__", - "//third_party/tensorflow/python/training/tracking:__pkg__", - "//third_party/tensorflow/tools/pip_package:__pkg__", - "//third_party/tensorflow_models/official/projects/residual_mobilenet/modeling/backbones:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "core", - srcs = [ - "__init__.py", - ], - srcs_version = "PY3", - deps = [ - ":activation", - ":dense", - ":einsum_dense", - ":embedding", - ":identity", - ":lambda", - ":masking", - ":tf_op_layer", - "//keras/layers/regularization:activity_regularization", - "//keras/layers/regularization:dropout", - "//keras/layers/regularization:spatial_dropout1d", - "//keras/layers/regularization:spatial_dropout2d", - "//keras/layers/regularization:spatial_dropout3d", - "//keras/layers/reshaping:flatten", - "//keras/layers/reshaping:permute", - "//keras/layers/reshaping:repeat_vector", - "//keras/layers/reshaping:reshape", - ], -) - -py_library( - name = "activation", - srcs = ["activation.py"], - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - ], -) - -py_library( - name = "dense", - srcs = ["dense.py"], - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/dtensor:utils", - ], -) - -py_library( - name = "einsum_dense", - srcs = ["einsum_dense.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:base_layer", - "//keras/initializers", - ], -) - -py_library( - name = "embedding", - srcs = ["embedding.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras:constraints", - "//keras:regularizers", - "//keras/dtensor:utils", - "//keras/engine:base_layer", - "//keras/engine:base_layer_utils", - "//keras/initializers", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "lambda", - srcs = ["lambda_layer.py"], - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - ], -) - -py_library( - name = "masking", - srcs = ["masking.py"], - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - ], -) - -py_library( - name = "tf_op_layer", - srcs = ["tf_op_layer.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:base_layer", - "//keras/initializers", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "identity", - srcs = ["identity.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - ], -) - -tf_py_test( - name = "core_test", - size = "medium", - srcs = ["core_test.py"], - python_version = "PY3", - shard_count = 3, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "einsum_dense_test", - srcs = ["einsum_dense_test.py"], - python_version = "PY3", - deps = [ - ":einsum_dense", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -cuda_py_test( - name = "embedding_test", - size = "medium", - srcs = ["embedding_test.py"], - python_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/mixed_precision:policy", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) diff --git a/keras/layers/core/__init__.py b/keras/layers/core/__init__.py deleted file mode 100644 index 21d3c6ab52d..00000000000 --- a/keras/layers/core/__init__.py +++ /dev/null @@ -1,47 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Core Keras layers.""" - -from keras.layers.core.activation import Activation -from keras.layers.core.dense import Dense -from keras.layers.core.einsum_dense import EinsumDense -from keras.layers.core.embedding import Embedding -from keras.layers.core.identity import Identity -from keras.layers.core.lambda_layer import Lambda -from keras.layers.core.masking import Masking - -# Required by third_party/py/tensorflow_gnn/keras/keras_tensors.py -from keras.layers.core.tf_op_layer import ClassMethod -from keras.layers.core.tf_op_layer import InstanceMethod -from keras.layers.core.tf_op_layer import InstanceProperty -from keras.layers.core.tf_op_layer import SlicingOpLambda -from keras.layers.core.tf_op_layer import TFOpLambda -from keras.layers.core.tf_op_layer import _delegate_method -from keras.layers.core.tf_op_layer import _delegate_property - -# Regularization layers imported for backwards namespace compatibility -from keras.layers.regularization.activity_regularization import ( - ActivityRegularization, -) -from keras.layers.regularization.dropout import Dropout -from keras.layers.regularization.spatial_dropout1d import SpatialDropout1D -from keras.layers.regularization.spatial_dropout2d import SpatialDropout2D -from keras.layers.regularization.spatial_dropout3d import SpatialDropout3D - -# Reshaping layers imported for backwards namespace compatibility -from keras.layers.reshaping.flatten import Flatten -from keras.layers.reshaping.permute import Permute -from keras.layers.reshaping.repeat_vector import RepeatVector -from keras.layers.reshaping.reshape import Reshape diff --git a/keras/layers/core/activation.py b/keras/layers/core/activation.py deleted file mode 100644 index 9cfaade39a3..00000000000 --- a/keras/layers/core/activation.py +++ /dev/null @@ -1,67 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the Activation layer.""" - - -from keras import activations -from keras.engine.base_layer import Layer - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Activation") -class Activation(Layer): - """Applies an activation function to an output. - - Args: - activation: Activation function, such as `tf.nn.relu`, or string name of - built-in activation function, such as "relu". - - Usage: - - >>> layer = tf.keras.layers.Activation('relu') - >>> output = layer([-3.0, -1.0, 0.0, 2.0]) - >>> list(output.numpy()) - [0.0, 0.0, 0.0, 2.0] - >>> layer = tf.keras.layers.Activation(tf.nn.relu) - >>> output = layer([-3.0, -1.0, 0.0, 2.0]) - >>> list(output.numpy()) - [0.0, 0.0, 0.0, 2.0] - - Input shape: - Arbitrary. Use the keyword argument `input_shape` - (tuple of integers, does not include the batch axis) - when using this layer as the first layer in a model. - - Output shape: - Same shape as input. - """ - - def __init__(self, activation, **kwargs): - super().__init__(**kwargs) - self.supports_masking = True - self.activation = activations.get(activation) - - def call(self, inputs): - return self.activation(inputs) - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = {"activation": activations.serialize(self.activation)} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/core/core_test.py b/keras/layers/core/core_test.py deleted file mode 100644 index 7a869a367fc..00000000000 --- a/keras/layers/core/core_test.py +++ /dev/null @@ -1,693 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras core layers.""" - -import os -import textwrap - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras import initializers -from keras.layers import core -from keras.mixed_precision import policy -from keras.saving.serialization_lib import SafeModeScope -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class DropoutLayersTest(test_combinations.TestCase): - def test_dropout(self): - test_utils.layer_test( - keras.layers.Dropout, kwargs={"rate": 0.5}, input_shape=(3, 2) - ) - - test_utils.layer_test( - keras.layers.Dropout, - kwargs={"rate": 0.5, "noise_shape": [3, 1]}, - input_shape=(3, 2), - ) - - def test_dropout_supports_masking(self): - dropout = keras.layers.Dropout(0.5) - self.assertEqual(True, dropout.supports_masking) - - def test_spatial_dropout_1d(self): - test_utils.layer_test( - keras.layers.SpatialDropout1D, - kwargs={"rate": 0.5}, - input_shape=(2, 3, 4), - ) - - def test_spatial_dropout_2d(self): - test_utils.layer_test( - keras.layers.SpatialDropout2D, - kwargs={"rate": 0.5}, - input_shape=(2, 3, 4, 5), - ) - - test_utils.layer_test( - keras.layers.SpatialDropout2D, - kwargs={"rate": 0.5, "data_format": "channels_first"}, - input_shape=(2, 3, 4, 5), - ) - - def test_spatial_dropout_3d(self): - test_utils.layer_test( - keras.layers.SpatialDropout3D, - kwargs={"rate": 0.5}, - input_shape=(2, 3, 4, 4, 5), - ) - - test_utils.layer_test( - keras.layers.SpatialDropout3D, - kwargs={"rate": 0.5, "data_format": "channels_first"}, - input_shape=(2, 3, 4, 4, 5), - ) - - def test_dropout_partial_noise_shape(self): - inputs = keras.Input(shape=(5, 10)) - layer = keras.layers.Dropout(0.5, noise_shape=(None, 1, None)) - outputs = layer(inputs) - model = keras.Model(inputs, outputs) - out = model(np.ones((20, 5, 10)), training=True) - out_np = keras.backend.get_value(out) - # Test that dropout mask is shared across second dim. - self.assertAllClose(out_np[:, 0, :], out_np[:, 1, :]) - - def test_dropout_with_savemodel(self): - inputs = keras.Input(shape=(5, 10)) - layer = keras.layers.Dropout(0.5, force_generator=True) - outputs = layer(inputs) - model = keras.Model(inputs, outputs) - train = model(np.ones((20, 5, 10)), training=True) - predict = model(np.ones((20, 5, 10))) - # Make sure the weights from tf.random.Generator is not present in the - # model which will cause weight loading issue for existing application - # models if it contains dropout layer. - self.assertEmpty(layer.get_weights()) - self.assertEmpty(model.get_weights()) - - # Make sure the layer does dropout value when training - self.assertNotAllClose(train, predict) - - model.save( - os.path.join(self.get_temp_dir(), "savedmodel"), save_format="tf" - ) - loaded_model = keras.models.load_model( - os.path.join(self.get_temp_dir(), "savedmodel") - ) - predict2 = loaded_model(np.ones((20, 5, 10))) - - self.assertAllClose(predict, predict2) - # Make sure the model dropout different value after loading - train2 = loaded_model(np.ones((20, 5, 10)), training=True) - self.assertNotAllClose(train, train2) - self.assertIsNotNone(loaded_model.layers[1]._random_generator) - - # Also make sure the checkpoint doesn't contain any variable from the - # dropout layer, to keep the backward compatibility. - checkpoint = tf.train.Checkpoint(model) - save_path = checkpoint.save( - os.path.join(self.get_temp_dir(), "checkpoint") - ) - checkpoint_var_names = [ - name_value_tuple[0] - for name_value_tuple in tf.train.list_variables(save_path) - ] - for name in checkpoint_var_names: - self.assertNotIn("dropout", name) - - -@test_combinations.run_all_keras_modes -class LambdaLayerTest(test_combinations.TestCase): - def test_lambda(self): - with SafeModeScope(safe_mode=False): - test_utils.layer_test( - keras.layers.Lambda, - kwargs={"function": lambda x: x + 1}, - input_shape=(3, 2), - ) - - test_utils.layer_test( - keras.layers.Lambda, - kwargs={ - "function": lambda x, a, b: x * a + b, - "arguments": {"a": 0.6, "b": 0.4}, - }, - input_shape=(3, 2), - ) - - # test serialization with function - def f(x): - return x + 1 - - ld = keras.layers.Lambda(f) - config = ld.get_config() - with SafeModeScope(safe_mode=False): - ld = keras.layers.deserialize( - {"class_name": "Lambda", "config": config} - ) - self.assertEqual(ld.function(3), 4) - - # test with lambda - ld = keras.layers.Lambda( - lambda x: keras.backend.concatenate([tf.square(x), x]) - ) - config = ld.get_config() - ld = keras.layers.Lambda.from_config(config) - self.assertAllEqual(self.evaluate(ld.function([3])), [9, 3]) - - def test_lambda_multiple_inputs(self): - ld = keras.layers.Lambda(lambda x: x[0], output_shape=lambda x: x[0]) - x1 = np.ones([3, 2], np.float32) - x2 = np.ones([3, 5], np.float32) - out = ld([x1, x2]) - self.assertAllEqual(out.shape, [3, 2]) - - def test_lambda_output_shape(self): - l = keras.layers.Lambda(lambda x: x + 1, output_shape=(1, 1)) - l(keras.backend.variable(np.ones((1, 1)))) - self.assertEqual((1, 1), l.get_config()["output_shape"]) - - def test_lambda_output_shape_function(self): - def get_output_shape(input_shape): - return 1 * input_shape - - l = keras.layers.Lambda(lambda x: x + 1, output_shape=get_output_shape) - l(keras.backend.variable(np.ones((1, 1)))) - self.assertEqual("lambda", l.get_config()["output_shape_type"]) - - def test_lambda_output_shape_autocalculate_multiple_inputs(self): - def lambda_fn(x): - return tf.matmul(x[0], x[1]) - - l = keras.layers.Lambda(lambda_fn, dtype=tf.float64) - output_shape = l.compute_output_shape([(10, 10), (10, 20)]) - self.assertAllEqual((10, 20), output_shape) - output_signature = l.compute_output_signature( - [ - tf.TensorSpec(dtype=tf.float64, shape=(10, 10)), - tf.TensorSpec(dtype=tf.float64, shape=(10, 20)), - ] - ) - self.assertAllEqual((10, 20), output_signature.shape) - self.assertAllEqual(tf.float64, output_signature.dtype) - - def test_lambda_output_shape_list_multiple_outputs(self): - def lambda_fn(x): - return x - - l = keras.layers.Lambda(lambda_fn, output_shape=[(10,), (20,)]) - output_shape = l.compute_output_shape([(10, 10), (10, 20)]) - self.assertAllEqual([(10, 10), (10, 20)], output_shape) - - def test_lambda_output_shape_tuple_with_none(self): - def lambda_fn(x): - return x - - l = keras.layers.Lambda(lambda_fn, output_shape=(None, 10)) - output_shape = l.compute_output_shape((5, 10, 20)) - self.assertAllEqual([5, None, 10], output_shape.as_list()) - - def test_lambda_output_shape_function_multiple_outputs(self): - def lambda_fn(x): - return x - - def output_shape_fn(input_shape): - return input_shape - - l = keras.layers.Lambda(lambda_fn, output_shape=output_shape_fn) - output_shape = l.compute_output_shape([(10, 10), (10, 20)]) - self.assertAllEqual([(10, 10), (10, 20)], output_shape) - - def test_lambda_output_shape_nested(self): - def lambda_fn(inputs): - return (inputs[1]["a"], {"b": inputs[0]}) - - l = keras.layers.Lambda(lambda_fn) - output_shape = l.compute_output_shape(((10, 20), {"a": (10, 5)})) - self.assertAllEqual(((10, 5), {"b": (10, 20)}), output_shape) - - def test_lambda_config_serialization(self): - # Test serialization with output_shape and output_shape_type - layer = keras.layers.Lambda( - lambda x: x + 1, output_shape=(1, 1), mask=lambda i, m: m - ) - layer(keras.backend.variable(np.ones((1, 1)))) - config = layer.get_config() - - with SafeModeScope(safe_mode=False): - layer = keras.layers.deserialize( - {"class_name": "Lambda", "config": config} - ) - self.assertAllEqual(layer.function(1), 2) - self.assertAllEqual(layer._output_shape, (1, 1)) - self.assertAllEqual(layer.mask(1, True), True) - - layer = keras.layers.Lambda.from_config(config) - self.assertAllEqual(layer.function(1), 2) - self.assertAllEqual(layer._output_shape, (1, 1)) - self.assertAllEqual(layer.mask(1, True), True) - - def test_lambda_with_training_arg(self): - def fn(x, training=True): - return keras.backend.in_train_phase(x, 2 * x, training=training) - - layer = keras.layers.Lambda(fn) - x = keras.backend.ones(()) - train_out = layer(x, training=True) - eval_out = layer(x, training=False) - - self.assertEqual(keras.backend.get_value(train_out), 1.0) - self.assertEqual(keras.backend.get_value(eval_out), 2.0) - - def test_lambda_with_mask(self): - def add_one(inputs): - return inputs + 1.0 - - def mask(unused_inputs, previous_mask): - return previous_mask - - layer = keras.layers.Lambda(add_one, mask=mask) - x = np.ones([5, 4, 3]) - x[:, -1, :] = 0 - masking = keras.layers.Masking() - out = layer(masking(x)) - - expected_out = np.full([5, 4, 3], 2.0) - expected_out[:, -1, :] = 1.0 - expected_mask = np.ones([5, 4]) - expected_mask[:, -1] = 0.0 - - self.assertAllClose(self.evaluate(out), expected_out) - self.assertIsNotNone(out._keras_mask) - self.assertAllClose(self.evaluate(out._keras_mask), expected_mask) - - def test_lambda_with_ragged_input(self): - def add_one(inputs): - return inputs + 1.0 - - layer = keras.layers.Lambda(add_one) - - ragged_input = tf.ragged.constant([[1.0], [2.0, 3.0]]) - out = layer(ragged_input) - expected_out = tf.ragged.constant([[2.0], [3.0, 4.0]]) - self.assertAllClose(out, expected_out) - - def test_lambda_deserialization_does_not_pollute_core(self): - layer = keras.layers.Lambda(lambda x: x + 1) - config = layer.get_config() - keras.layers.Lambda.from_config(config) - self.assertNotIn(self.__class__.__name__, dir(core)) - - -class TestStatefulLambda(test_combinations.TestCase): - @test_combinations.run_all_keras_modes - @test_combinations.run_with_all_model_types - def test_lambda_with_variable_in_model(self): - v = tf.Variable(1.0, trainable=True) - - def lambda_fn(x, v): - return x * v - - # While it is generally not advised to mix Variables with Lambda layers, - # if the variables are explicitly set as attributes then they are still - # tracked. This is consistent with the base Layer behavior. - layer = keras.layers.Lambda(lambda_fn, arguments={"v": v}) - self.assertLen(layer.trainable_weights, 0) - layer.v = v - self.assertLen(layer.trainable_weights, 1) - - model = test_utils.get_model_from_layers([layer], input_shape=(10,)) - model.compile( - keras.optimizers.legacy.gradient_descent.SGD(0.1), - "mae", - run_eagerly=test_utils.should_run_eagerly(), - ) - x, y = np.ones((10, 10), "float32"), 2 * np.ones((10, 10), "float32") - model.fit(x, y, batch_size=2, epochs=2, validation_data=(x, y)) - self.assertLen(model.trainable_weights, 1) - self.assertAllClose( - keras.backend.get_value(model.trainable_weights[0]), 2.0 - ) - - @test_combinations.run_all_keras_modes - @test_combinations.run_with_all_model_types - def test_creation_inside_lambda(self): - def lambda_fn(x): - scale = tf.Variable(1.0, trainable=True, name="scale") - shift = tf.Variable(1.0, trainable=True, name="shift") - return x * scale + shift - - expected_error = textwrap.dedent( - r""" -( )?The following Variables were created within a Lambda layer \(shift_and_scale\)""" # noqa: E501 - r""" -( )?but are not tracked by said layer: -( )? >> # Create a `Sequential` model and add a Dense layer as the first layer. - >>> model = tf.keras.models.Sequential() - >>> model.add(tf.keras.Input(shape=(16,))) - >>> model.add(tf.keras.layers.Dense(32, activation='relu')) - >>> # Now the model will take as input arrays of shape (None, 16) - >>> # and output arrays of shape (None, 32). - >>> # Note that after the first layer, you don't need to specify - >>> # the size of the input anymore: - >>> model.add(tf.keras.layers.Dense(32)) - >>> model.output_shape - (None, 32) - - Args: - units: Positive integer, dimensionality of the output space. - activation: Activation function to use. - If you don't specify anything, no activation is applied - (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix. - bias_initializer: Initializer for the bias vector. - kernel_regularizer: Regularizer function applied to - the `kernel` weights matrix. - bias_regularizer: Regularizer function applied to the bias vector. - activity_regularizer: Regularizer function applied to - the output of the layer (its "activation"). - kernel_constraint: Constraint function applied to - the `kernel` weights matrix. - bias_constraint: Constraint function applied to the bias vector. - - Input shape: - N-D tensor with shape: `(batch_size, ..., input_dim)`. - The most common situation would be - a 2D input with shape `(batch_size, input_dim)`. - - Output shape: - N-D tensor with shape: `(batch_size, ..., units)`. - For instance, for a 2D input with shape `(batch_size, input_dim)`, - the output would have shape `(batch_size, units)`. - """ - - @utils.allow_initializer_layout - def __init__( - self, - units, - activation=None, - use_bias=True, - kernel_initializer="glorot_uniform", - bias_initializer="zeros", - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - **kwargs, - ): - super().__init__(activity_regularizer=activity_regularizer, **kwargs) - - self.units = int(units) if not isinstance(units, int) else units - if self.units < 0: - raise ValueError( - "Received an invalid value for `units`, expected " - f"a positive integer. Received: units={units}" - ) - self.activation = activations.get(activation) - self.use_bias = use_bias - self.kernel_initializer = initializers.get(kernel_initializer) - self.bias_initializer = initializers.get(bias_initializer) - self.kernel_regularizer = regularizers.get(kernel_regularizer) - self.bias_regularizer = regularizers.get(bias_regularizer) - self.kernel_constraint = constraints.get(kernel_constraint) - self.bias_constraint = constraints.get(bias_constraint) - - self.input_spec = InputSpec(min_ndim=2) - self.supports_masking = True - - def build(self, input_shape): - dtype = tf.as_dtype(self.dtype or backend.floatx()) - if not (dtype.is_floating or dtype.is_complex): - raise TypeError( - "A Dense layer can only be built with a floating-point " - f"dtype. Received: dtype={dtype}" - ) - - input_shape = tf.TensorShape(input_shape) - last_dim = tf.compat.dimension_value(input_shape[-1]) - if last_dim is None: - raise ValueError( - "The last dimension of the inputs to a Dense layer " - "should be defined. Found None. " - f"Full input shape received: {input_shape}" - ) - self.input_spec = InputSpec(min_ndim=2, axes={-1: last_dim}) - self.kernel = self.add_weight( - "kernel", - shape=[last_dim, self.units], - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - dtype=self.dtype, - trainable=True, - ) - if self.use_bias: - self.bias = self.add_weight( - "bias", - shape=[ - self.units, - ], - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - dtype=self.dtype, - trainable=True, - ) - else: - self.bias = None - self.built = True - - def call(self, inputs): - if inputs.dtype.base_dtype != self._compute_dtype_object.base_dtype: - inputs = tf.cast(inputs, dtype=self._compute_dtype_object) - - is_ragged = isinstance(inputs, tf.RaggedTensor) - if is_ragged: - # In case we encounter a RaggedTensor with a fixed last dimension - # (last dimension not ragged), we can flatten the input and restore - # the ragged dimensions at the end. - if tf.compat.dimension_value(inputs.shape[-1]) is None: - raise ValueError( - "Dense layer only supports RaggedTensors when the " - "innermost dimension is non-ragged. Received: " - f"inputs.shape={inputs.shape}." - ) - original_inputs = inputs - if inputs.flat_values.shape.rank > 1: - inputs = inputs.flat_values - else: - # Innermost partition is encoded using uniform_row_length. - # (This is unusual, but we can handle it.) - if inputs.shape.rank == 2: - inputs = inputs.to_tensor() - is_ragged = False - else: - for _ in range(original_inputs.ragged_rank - 1): - inputs = inputs.values - inputs = inputs.to_tensor() - original_inputs = tf.RaggedTensor.from_nested_row_splits( - inputs, original_inputs.nested_row_splits[:-1] - ) - - rank = inputs.shape.rank - if rank == 2 or rank is None: - # We use embedding_lookup_sparse as a more efficient matmul - # operation for large sparse input tensors. The op will result in a - # sparse gradient, as opposed to - # sparse_ops.sparse_tensor_dense_matmul which results in dense - # gradients. This can lead to sigfinicant speedups, see b/171762937. - if isinstance(inputs, tf.SparseTensor): - # We need to fill empty rows, as the op assumes at least one id - # per row. - inputs, _ = tf.sparse.fill_empty_rows(inputs, 0) - # We need to do some munging of our input to use the embedding - # lookup as a matrix multiply. We split our input matrix into - # separate ids and weights tensors. The values of the ids tensor - # should be the column indices of our input matrix and the - # values of the weights tensor can continue to the actual matrix - # weights. The column arrangement of ids and weights will be - # summed over and does not matter. See the documentation for - # sparse_ops.sparse_tensor_dense_matmul a more detailed - # explanation of the inputs to both ops. - ids = tf.SparseTensor( - indices=inputs.indices, - values=inputs.indices[:, 1], - dense_shape=inputs.dense_shape, - ) - weights = inputs - outputs = tf.nn.embedding_lookup_sparse( - self.kernel, ids, weights, combiner="sum" - ) - else: - outputs = tf.matmul(a=inputs, b=self.kernel) - # Broadcast kernel to inputs. - else: - outputs = tf.tensordot(inputs, self.kernel, [[rank - 1], [0]]) - # Reshape the output back to the original ndim of the input. - if not tf.executing_eagerly(): - shape = inputs.shape.as_list() - output_shape = shape[:-1] + [self.kernel.shape[-1]] - outputs.set_shape(output_shape) - - if self.use_bias: - outputs = tf.nn.bias_add(outputs, self.bias) - - if self.activation is not None: - outputs = self.activation(outputs) - - if is_ragged: - outputs = original_inputs.with_flat_values(outputs) - - return outputs - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape) - input_shape = input_shape.with_rank_at_least(2) - if tf.compat.dimension_value(input_shape[-1]) is None: - raise ValueError( - "The last dimension of the input shape of a Dense layer " - "should be defined. Found None. " - f"Received: input_shape={input_shape}" - ) - return input_shape[:-1].concatenate(self.units) - - def get_config(self): - config = super().get_config() - config.update( - { - "units": self.units, - "activation": activations.serialize(self.activation), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "bias_initializer": initializers.serialize( - self.bias_initializer - ), - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "bias_regularizer": regularizers.serialize( - self.bias_regularizer - ), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "kernel_constraint": constraints.serialize( - self.kernel_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - } - ) - return config diff --git a/keras/layers/core/einsum_dense.py b/keras/layers/core/einsum_dense.py deleted file mode 100644 index e1d3ca334c0..00000000000 --- a/keras/layers/core/einsum_dense.py +++ /dev/null @@ -1,361 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras-based einsum dense layer.""" - - -import re - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine.base_layer import Layer - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.layers.EinsumDense", "keras.layers.experimental.EinsumDense" -) -class EinsumDense(Layer): - """A layer that uses `tf.einsum` as the backing computation. - - This layer can perform einsum calculations of arbitrary dimensionality. - - Args: - equation: An equation describing the einsum to perform. This equation must - be a valid einsum string of the form `ab,bc->ac`, `...ab,bc->...ac`, or - `ab...,bc->ac...` where 'ab', 'bc', and 'ac' can be any valid einsum - axis expression sequence. - output_shape: The expected shape of the output tensor (excluding the batch - dimension and any dimensions represented by ellipses). You can specify - None for any dimension that is unknown or can be inferred from the input - shape. - activation: Activation function to use. If you don't specify anything, no - activation is applied (that is, a "linear" activation: `a(x) = x`). - bias_axes: A string containing the output dimension(s) to apply a bias to. - Each character in the `bias_axes` string should correspond to a - character in the output portion of the `equation` string. - kernel_initializer: Initializer for the `kernel` weights matrix. - bias_initializer: Initializer for the bias vector. - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. - bias_regularizer: Regularizer function applied to the bias vector. - activity_regularizer: Regularizer function applied to the output of the - layer (its "activation"). - kernel_constraint: Constraint function applied to the `kernel` weights - matrix. - bias_constraint: Constraint function applied to the bias vector. - - Examples: - - **Biased dense layer with einsums** - - This example shows how to instantiate a standard Keras dense layer using - einsum operations. This example is equivalent to - `tf.keras.layers.Dense(64, use_bias=True)`. - - >>> layer = tf.keras.layers.EinsumDense("ab,bc->ac", - ... output_shape=64, - ... bias_axes="c") - >>> input_tensor = tf.keras.Input(shape=[32]) - >>> output_tensor = layer(input_tensor) - >>> output_tensor - <... shape=(None, 64) dtype=...> - - **Applying a dense layer to a sequence** - - This example shows how to instantiate a layer that applies the same dense - operation to every element in a sequence. Here, the `output_shape` has two - values (since there are two non-batch dimensions in the output); the first - dimension in the `output_shape` is `None`, because the sequence dimension - `b` has an unknown shape. - - >>> layer = tf.keras.layers.EinsumDense("abc,cd->abd", - ... output_shape=(None, 64), - ... bias_axes="d") - >>> input_tensor = tf.keras.Input(shape=[32, 128]) - >>> output_tensor = layer(input_tensor) - >>> output_tensor - <... shape=(None, 32, 64) dtype=...> - - **Applying a dense layer to a sequence using ellipses** - - This example shows how to instantiate a layer that applies the same dense - operation to every element in a sequence, but uses the ellipsis notation - instead of specifying the batch and sequence dimensions. - - Because we are using ellipsis notation and have specified only one axis, the - `output_shape` arg is a single value. When instantiated in this way, the - layer can handle any number of sequence dimensions - including the case - where no sequence dimension exists. - - >>> layer = tf.keras.layers.EinsumDense("...x,xy->...y", - ... output_shape=64, - ... bias_axes="y") - >>> input_tensor = tf.keras.Input(shape=[32, 128]) - >>> output_tensor = layer(input_tensor) - >>> output_tensor - <... shape=(None, 32, 64) dtype=...> - """ - - def __init__( - self, - equation, - output_shape, - activation=None, - bias_axes=None, - kernel_initializer="glorot_uniform", - bias_initializer="zeros", - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - **kwargs, - ): - super().__init__(**kwargs) - self.equation = equation - if isinstance(output_shape, int): - self.partial_output_shape = [output_shape] - else: - self.partial_output_shape = list(output_shape) - self.bias_axes = bias_axes - self.activation = activations.get(activation) - self.kernel_initializer = initializers.get(kernel_initializer) - self.bias_initializer = initializers.get(bias_initializer) - self.kernel_regularizer = regularizers.get(kernel_regularizer) - self.bias_regularizer = regularizers.get(bias_regularizer) - self.kernel_constraint = constraints.get(kernel_constraint) - self.bias_constraint = constraints.get(bias_constraint) - - def build(self, input_shape): - input_shape = tf.TensorShape(input_shape) - shape_data = _analyze_einsum_string( - self.equation, - self.bias_axes, - input_shape, - self.partial_output_shape, - ) - kernel_shape, bias_shape, self.full_output_shape = shape_data - self.kernel = self.add_weight( - "kernel", - shape=kernel_shape, - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - dtype=self.dtype, - trainable=True, - ) - - if bias_shape is not None: - self.bias = self.add_weight( - "bias", - shape=bias_shape, - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - dtype=self.dtype, - trainable=True, - ) - else: - self.bias = None - super().build(input_shape) - - def compute_output_shape(self, _): - return tf.TensorShape(self.full_output_shape) - - def get_config(self): - config = { - "output_shape": self.partial_output_shape, - "equation": self.equation, - "activation": activations.serialize(self.activation), - "bias_axes": self.bias_axes, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "bias_constraint": constraints.serialize(self.bias_constraint), - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - def call(self, inputs): - ret = tf.einsum(self.equation, inputs, self.kernel) - if self.bias is not None: - ret += self.bias - if self.activation is not None: - ret = self.activation(ret) - return ret - - -def _analyze_einsum_string(equation, bias_axes, input_shape, output_shape): - """Analyzes an einsum string to determine the required weight shape.""" - - dot_replaced_string = re.sub(r"\.\.\.", "0", equation) - - # This is the case where no ellipses are present in the string. - split_string = re.match( - "([a-zA-Z]+),([a-zA-Z]+)->([a-zA-Z]+)", dot_replaced_string - ) - if split_string: - return _analyze_split_string( - split_string, bias_axes, input_shape, output_shape - ) - - # This is the case where ellipses are present on the left. - split_string = re.match( - "0([a-zA-Z]+),([a-zA-Z]+)->0([a-zA-Z]+)", dot_replaced_string - ) - if split_string: - return _analyze_split_string( - split_string, bias_axes, input_shape, output_shape, left_elided=True - ) - - # This is the case where ellipses are present on the right. - split_string = re.match( - "([a-zA-Z]{2,})0,([a-zA-Z]+)->([a-zA-Z]+)0", dot_replaced_string - ) - if split_string: - return _analyze_split_string( - split_string, bias_axes, input_shape, output_shape - ) - - raise ValueError( - f"Invalid einsum equation '{equation}'. Equations must be in the form " - "[X],[Y]->[Z], ...[X],[Y]->...[Z], or [X]...,[Y]->[Z]...." - ) - - -def _analyze_split_string( - split_string, bias_axes, input_shape, output_shape, left_elided=False -): - """Analyze an pre-split einsum string to find the weight shape.""" - input_spec = split_string.group(1) - weight_spec = split_string.group(2) - output_spec = split_string.group(3) - elided = len(input_shape) - len(input_spec) - - if isinstance(output_shape, int): - output_shape = [output_shape] - else: - output_shape = list(output_shape) - - output_shape.insert(0, input_shape[0]) - - if elided > 0 and left_elided: - for i in range(1, elided): - # We already inserted the 0th input dimension at dim 0, so we need - # to start at location 1 here. - output_shape.insert(1, input_shape[i]) - elif elided > 0 and not left_elided: - for i in range(len(input_shape) - elided, len(input_shape)): - output_shape.append(input_shape[i]) - - if left_elided: - # If we have beginning dimensions elided, we need to use negative - # indexing to determine where in the input dimension our values are. - input_dim_map = { - dim: (i + elided) - len(input_shape) - for i, dim in enumerate(input_spec) - } - # Because we've constructed the full output shape already, we don't need - # to do negative indexing. - output_dim_map = { - dim: (i + elided) for i, dim in enumerate(output_spec) - } - else: - input_dim_map = {dim: i for i, dim in enumerate(input_spec)} - output_dim_map = {dim: i for i, dim in enumerate(output_spec)} - - for dim in input_spec: - input_shape_at_dim = input_shape[input_dim_map[dim]] - if dim in output_dim_map: - output_shape_at_dim = output_shape[output_dim_map[dim]] - if ( - output_shape_at_dim is not None - and output_shape_at_dim != input_shape_at_dim - ): - raise ValueError( - "Input shape and output shape do not match at shared " - f"dimension '{dim}'. Input shape is {input_shape_at_dim}, " - "and output shape " - f"is {output_shape[output_dim_map[dim]]}." - ) - - for dim in output_spec: - if dim not in input_spec and dim not in weight_spec: - raise ValueError( - f"Dimension '{dim}' was specified in the output " - f"'{output_spec}' but has no corresponding dim in the input " - f"spec '{input_spec}' or weight spec '{output_spec}'" - ) - - weight_shape = [] - for dim in weight_spec: - if dim in input_dim_map: - weight_shape.append(input_shape[input_dim_map[dim]]) - elif dim in output_dim_map: - weight_shape.append(output_shape[output_dim_map[dim]]) - else: - raise ValueError( - f"Weight dimension '{dim}' did not have a match in either " - f"the input spec '{input_spec}' or the output " - f"spec '{output_spec}'. For this layer, the weight must " - "be fully specified." - ) - - if bias_axes is not None: - num_left_elided = elided if left_elided else 0 - idx_map = { - char: output_shape[i + num_left_elided] - for i, char in enumerate(output_spec) - } - - for char in bias_axes: - if char not in output_spec: - raise ValueError( - f"Bias dimension '{char}' was requested, but is not part " - f"of the output spec '{output_spec}'" - ) - - first_bias_location = min( - [output_spec.find(char) for char in bias_axes] - ) - bias_output_spec = output_spec[first_bias_location:] - - bias_shape = [ - idx_map[char] if char in bias_axes else 1 - for char in bias_output_spec - ] - - if not left_elided: - for _ in range(elided): - bias_shape.append(1) - else: - bias_shape = None - - return weight_shape, bias_shape, output_shape diff --git a/keras/layers/core/einsum_dense_test.py b/keras/layers/core/einsum_dense_test.py deleted file mode 100644 index f2cb24457df..00000000000 --- a/keras/layers/core/einsum_dense_test.py +++ /dev/null @@ -1,368 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras-based einsum dense layer.""" - - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.core import einsum_dense -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -@parameterized.named_parameters( - { - "testcase_name": "_1d_end_weight", - "equation": "ab,b->a", - "bias_axes": None, - "input_shape": (None, 32), - "output_shape": [], - "expected_weight_shape": [32], - "expected_bias_shape": None, - "expected_output_shape": (None,), - }, - { - "testcase_name": "_2d_middle_weight", - "equation": "ab,bc->ac", - "bias_axes": None, - "input_shape": (None, 32), - "output_shape": (64), - "expected_weight_shape": [32, 64], - "expected_bias_shape": None, - "expected_output_shape": (None, 64), - }, - { - "testcase_name": "_3d_bert", - "equation": "abc,cde->abde", - "bias_axes": None, - "input_shape": (None, 1, 2), - "output_shape": (1, 3, 4), - "expected_weight_shape": [2, 3, 4], - "expected_bias_shape": None, - "expected_output_shape": (None, 1, 3, 4), - }, - { - "testcase_name": "_3d_3_bias", - "equation": "abc,cde->abde", - "bias_axes": "e", - "input_shape": (None, 1, 2), - "output_shape": (1, 3, 4), - "expected_weight_shape": [2, 3, 4], - "expected_bias_shape": [4], - "expected_output_shape": (None, 1, 3, 4), - }, - { - "testcase_name": "_3d_2_bias", - "equation": "abc,cde->abde", - "bias_axes": "d", - "input_shape": (None, 1, 2), - "output_shape": (1, 3, 4), - "expected_weight_shape": [2, 3, 4], - "expected_bias_shape": [3, 1], - "expected_output_shape": (None, 1, 3, 4), - }, - { - "testcase_name": "_3d_1_3_bias", - "equation": "abc,cde->abde", - "bias_axes": "be", - "input_shape": (None, 7, 2), - "output_shape": (7, 3, 4), - "expected_weight_shape": [2, 3, 4], - "expected_bias_shape": [7, 1, 4], - "expected_output_shape": (None, 7, 3, 4), - }, - { - "testcase_name": "_3d_bert_projection", - "equation": "BFNH,NHD->BFD", - "bias_axes": None, - "input_shape": (None, 1, 2, 3), - "output_shape": (1, 4), - "expected_weight_shape": [2, 3, 4], - "expected_bias_shape": None, - "expected_output_shape": (None, 1, 4), - }, - { - "testcase_name": "_2d_bert", - "equation": "abc,cd->abd", - "bias_axes": None, - "input_shape": (None, 1, 2), - "output_shape": (1, 4), - "expected_weight_shape": [2, 4], - "expected_bias_shape": None, - "expected_output_shape": (None, 1, 4), - }, - { - "testcase_name": "_embedding_1d", - "equation": "i,d->id", - "bias_axes": None, - "input_shape": (None,), - "output_shape": (2), - "expected_weight_shape": [2], - "expected_bias_shape": None, - "expected_output_shape": (None, 2), - }, - { - "testcase_name": "_xlnet_lm", - "equation": "ibd,nd->ibn", - "bias_axes": None, - "input_shape": (None, None, 1), - "output_shape": (None, 2), - "expected_weight_shape": [2, 1], - "expected_bias_shape": None, - "expected_output_shape": (None, None, 2), - }, - { - "testcase_name": "_2d_precast", - "equation": "...b,bc->...c", - "bias_axes": None, - "input_shape": (None, 32), - "output_shape": (64), - "expected_weight_shape": [32, 64], - "expected_bias_shape": None, - "expected_output_shape": (None, 64), - }, - { - "testcase_name": "_2d_precast_elided_input_used_in_output", - "equation": "...bc,bc->...b", - "bias_axes": None, - "input_shape": (None, 32, 64), - "output_shape": (32), - "expected_weight_shape": [32, 64], - "expected_bias_shape": None, - "expected_output_shape": (None, 32), - }, - { - "testcase_name": "_2d_precast_multiple_elided_dims", - "equation": "...b,bc->...c", - "bias_axes": None, - "input_shape": (None, None, 32), - "output_shape": (64), - "expected_weight_shape": [32, 64], - "expected_bias_shape": None, - "expected_output_shape": (None, None, 64), - }, - { - "testcase_name": "_3d_precast", - "equation": "...c,cde->...de", - "bias_axes": None, - "input_shape": (None, 1, 2), - "output_shape": (3, 4), - "expected_weight_shape": [2, 3, 4], - "expected_bias_shape": None, - "expected_output_shape": (None, 1, 3, 4), - }, - { - "testcase_name": "_3d_precast_3_bias", - "equation": "...c,cde->...de", - "bias_axes": "e", - "input_shape": (None, 1, 2), - "output_shape": (3, 4), - "expected_weight_shape": [2, 3, 4], - "expected_bias_shape": [4], - "expected_output_shape": (None, 1, 3, 4), - }, - { - "testcase_name": "_3d_precast_2_bias", - "equation": "...c,cde->...de", - "bias_axes": "d", - "input_shape": (None, 1, 2), - "output_shape": (3, 4), - "expected_weight_shape": [2, 3, 4], - "expected_bias_shape": [3, 1], - "expected_output_shape": (None, 1, 3, 4), - }, - { - "testcase_name": "_3d_precast_2_3_bias", - "equation": "...c,cde->...de", - "bias_axes": "de", - "input_shape": (None, 1, 2), - "output_shape": (3, 4), - "expected_weight_shape": [2, 3, 4], - "expected_bias_shape": [3, 4], - "expected_output_shape": (None, 1, 3, 4), - }, - { - "testcase_name": "_2d_postcast", - "equation": "bc...,cd->bd...", - "bias_axes": None, - "input_shape": (None, 1, 2, 3), - "output_shape": (4), - "expected_weight_shape": [1, 4], - "expected_bias_shape": None, - "expected_output_shape": (None, 4, 2, 3), - }, - { - "testcase_name": "_3d_postcast", - "equation": "bc...,cde->bde...", - "bias_axes": None, - "input_shape": (None, 1, 2), - "output_shape": (3, 4), - "expected_weight_shape": [1, 3, 4], - "expected_bias_shape": None, - "expected_output_shape": (None, 3, 4, 2), - }, - { - "testcase_name": "_3d_postcast_1_bias", - "equation": "bc...,cde->bde...", - "bias_axes": "d", - "input_shape": (None, 1, 2), - "output_shape": (3, 4), - "expected_weight_shape": [1, 3, 4], - "expected_bias_shape": [3, 1, 1], - "expected_output_shape": (None, 3, 4, 2), - }, - { - "testcase_name": "_3d_postcast_2_bias", - "equation": "bc...,cde->bde...", - "bias_axes": "e", - "input_shape": (None, 1, 2), - "output_shape": (3, 4), - "expected_weight_shape": [1, 3, 4], - "expected_bias_shape": [4, 1], - "expected_output_shape": (None, 3, 4, 2), - }, - { - "testcase_name": "_3d_postcast_1_2_bias", - "equation": "bc...,cde->bde...", - "bias_axes": "de", - "input_shape": (None, 1, 2), - "output_shape": (3, 4), - "expected_weight_shape": [1, 3, 4], - "expected_bias_shape": [3, 4, 1], - "expected_output_shape": (None, 3, 4, 2), - }, -) -class TestEinsumDenseLayer(test_combinations.TestCase): - def test_weight_shapes( - self, - equation, - bias_axes, - input_shape, - output_shape, - expected_weight_shape, - expected_bias_shape, - expected_output_shape, - ): - del expected_output_shape # Not used in this test. - - weight_shape, bias_shape, _ = einsum_dense._analyze_einsum_string( - equation, bias_axes, input_shape, output_shape - ) - - self.assertAllEqual(expected_weight_shape, weight_shape) - self.assertAllEqual(expected_bias_shape, bias_shape) - - def test_layer_creation( - self, - equation, - bias_axes, - input_shape, - output_shape, - expected_weight_shape, - expected_bias_shape, - expected_output_shape, - ): - # Keras elides the 0-dimension of the input shape when constructing - # inputs. - non_batch_input_shape = list(input_shape)[1:] - - input_tensor = keras.Input(shape=non_batch_input_shape) - layer = einsum_dense.EinsumDense( - equation=equation, output_shape=output_shape, bias_axes=bias_axes - ) - output_tensor = layer(input_tensor) - - self.assertAllEqual(expected_weight_shape, layer.kernel.shape.as_list()) - if expected_bias_shape is None: - self.assertIsNone(layer.bias) - else: - self.assertAllEqual(expected_bias_shape, layer.bias.shape.as_list()) - self.assertAllEqual( - expected_output_shape, output_tensor.shape.as_list() - ) - - -@test_combinations.run_all_keras_modes -class TestEinsumLayerAPI(test_combinations.TestCase): - def test_layer_api(self): - input_data = np.array([[1.0, 2.0], [3.0, 4.0]]) - kwargs = { - "equation": "...b,bc->...c", - "bias_axes": "c", - "output_shape": 4, - "bias_initializer": keras.initializers.constant(0.03), - "kernel_initializer": keras.initializers.constant(0.5), - "dtype": input_data.dtype, - } - expected_output = np.array( - [[1.53, 1.53, 1.53, 1.53], [3.53, 3.53, 3.53, 3.53]] - ) - - output_data = test_utils.layer_test( - einsum_dense.EinsumDense, - kwargs=kwargs, - input_shape=(None, 2), - input_data=input_data, - ) - - self.assertAllClose(expected_output, output_data) - - def test_unspecified_bias_dim_fails(self): - input_tensor = keras.Input(shape=(32,)) - layer = einsum_dense.EinsumDense( - equation="ab,bc->ac", output_shape=64, bias_axes="y" - ) - with self.assertRaisesRegex( - ValueError, ".*is not part of the output spec.*" - ): - _ = layer(input_tensor) - - def test_incompatible_input_output_shape_fails(self): - input_tensor = keras.Input(shape=(32, 64)) - layer = einsum_dense.EinsumDense( - equation="abc,cd->abd", output_shape=(10, 96) - ) - with self.assertRaisesRegex( - ValueError, - ".*Input shape and output shape do not match at shared " - "dimension 'b'.*", - ): - _ = layer(input_tensor) - - def test_unspecified_output_dim_fails(self): - input_tensor = keras.Input(shape=(32,)) - layer = einsum_dense.EinsumDense(equation="ab,bc->cd", output_shape=64) - with self.assertRaisesRegex( - ValueError, - ".*Dimension 'd' was specified in the output 'cd' but has " - "no corresponding dim.*", - ): - _ = layer(input_tensor) - - def test_unspecified_weight_dim_fails(self): - input_tensor = keras.Input(shape=(32,)) - layer = einsum_dense.EinsumDense(equation="ab,zd->ad", output_shape=64) - with self.assertRaisesRegex( - ValueError, ".*Weight dimension 'z' did not have a match " - ): - _ = layer(input_tensor) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/core/embedding.py b/keras/layers/core/embedding.py deleted file mode 100644 index cd75001b124..00000000000 --- a/keras/layers/core/embedding.py +++ /dev/null @@ -1,306 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Embedding layer.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.dtensor import utils -from keras.engine import base_layer_utils -from keras.engine.base_layer import Layer -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Embedding") -class Embedding(Layer): - """Turns positive integers (indexes) into dense vectors of fixed size. - - e.g. `[[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]` - - This layer can only be used on positive integer inputs of a fixed range. The - `tf.keras.layers.TextVectorization`, `tf.keras.layers.StringLookup`, - and `tf.keras.layers.IntegerLookup` preprocessing layers can help prepare - inputs for an `Embedding` layer. - - This layer accepts `tf.Tensor`, `tf.RaggedTensor` and `tf.SparseTensor` - input. - - Example: - - >>> model = tf.keras.Sequential() - >>> model.add(tf.keras.layers.Embedding(1000, 64, input_length=10)) - >>> # The model will take as input an integer matrix of size (batch, - >>> # input_length), and the largest integer (i.e. word index) in the input - >>> # should be no larger than 999 (vocabulary size). - >>> # Now model.output_shape is (None, 10, 64), where `None` is the batch - >>> # dimension. - >>> input_array = np.random.randint(1000, size=(32, 10)) - >>> model.compile('rmsprop', 'mse') - >>> output_array = model.predict(input_array) - >>> print(output_array.shape) - (32, 10, 64) - - Args: - input_dim: Integer. Size of the vocabulary, - i.e. maximum integer index + 1. - output_dim: Integer. Dimension of the dense embedding. - embeddings_initializer: Initializer for the `embeddings` - matrix (see `keras.initializers`). - embeddings_regularizer: Regularizer function applied to - the `embeddings` matrix (see `keras.regularizers`). - embeddings_constraint: Constraint function applied to - the `embeddings` matrix (see `keras.constraints`). - mask_zero: Boolean, whether or not the input value 0 is a special - "padding" value that should be masked out. This is useful when using - recurrent layers which may take variable length input. If this is - `True`, then all subsequent layers in the model need to support masking - or an exception will be raised. If mask_zero is set to True, as a - consequence, index 0 cannot be used in the vocabulary (input_dim should - equal size of vocabulary + 1). - input_length: Length of input sequences, when it is constant. - This argument is required if you are going to connect - `Flatten` then `Dense` layers upstream - (without it, the shape of the dense outputs cannot be computed). - sparse: If True, calling this layer returns a `tf.SparseTensor`. If False, - the layer returns a dense `tf.Tensor`. For an entry with no features in - a sparse tensor (entry with value 0), the embedding vector of index 0 is - returned by default. - - Input shape: - 2D tensor with shape: `(batch_size, input_length)`. - - Output shape: - 3D tensor with shape: `(batch_size, input_length, output_dim)`. - - **Note on variable placement:** - By default, if a GPU is available, the embedding matrix will be placed on - the GPU. This achieves the best performance, but it might cause issues: - - - You may be using an optimizer that does not support sparse GPU kernels. - In this case you will see an error upon training your model. - - Your embedding matrix may be too large to fit on your GPU. In this case - you will see an Out Of Memory (OOM) error. - - In such cases, you should place the embedding matrix on the CPU memory. - You can do so with a device scope, as such: - - ```python - with tf.device('cpu:0'): - embedding_layer = Embedding(...) - embedding_layer.build() - ``` - - The pre-built `embedding_layer` instance can then be added to a `Sequential` - model (e.g. `model.add(embedding_layer)`), called in a Functional model - (e.g. `x = embedding_layer(x)`), or used in a subclassed model. - """ - - @utils.allow_initializer_layout - def __init__( - self, - input_dim, - output_dim, - embeddings_initializer="uniform", - embeddings_regularizer=None, - activity_regularizer=None, - embeddings_constraint=None, - mask_zero=False, - input_length=None, - sparse=False, - **kwargs, - ): - if "input_shape" not in kwargs: - if input_length: - kwargs["input_shape"] = (input_length,) - else: - kwargs["input_shape"] = (None,) - if input_dim <= 0 or output_dim <= 0: - raise ValueError( - "Both `input_dim` and `output_dim` should be positive, " - f"Received input_dim = {input_dim} " - f"and output_dim = {output_dim}" - ) - if ( - not base_layer_utils.v2_dtype_behavior_enabled() - and "dtype" not in kwargs - ): - # In TF1, the dtype defaults to the input dtype which is typically - # int32, so explicitly set it to floatx - kwargs["dtype"] = backend.floatx() - # We set autocast to False, as we do not want to cast floating- point - # inputs to self.dtype. In call(), we cast to int32, and casting to - # self.dtype before casting to int32 might cause the int32 values to be - # different due to a loss of precision. - kwargs["autocast"] = False - use_one_hot_matmul = kwargs.pop("use_one_hot_matmul", False) - super().__init__(**kwargs) - - self.input_dim = input_dim - self.output_dim = output_dim - self.embeddings_initializer = initializers.get(embeddings_initializer) - self.embeddings_regularizer = regularizers.get(embeddings_regularizer) - self.activity_regularizer = regularizers.get(activity_regularizer) - self.embeddings_constraint = constraints.get(embeddings_constraint) - self.mask_zero = mask_zero - self.supports_masking = mask_zero - self.input_length = input_length - self.sparse = sparse - if self.sparse and self.mask_zero: - raise ValueError( - "`mask_zero` cannot be enabled when " - "`tf.keras.layers.Embedding` is used with `tf.SparseTensor` " - "input." - ) - # Make this flag private and do not serialize it for now. - # It will be part of the public API after further testing. - self._use_one_hot_matmul = use_one_hot_matmul - - @tf_utils.shape_type_conversion - def build(self, input_shape=None): - self.embeddings = self.add_weight( - shape=(self.input_dim, self.output_dim), - initializer=self.embeddings_initializer, - name="embeddings", - regularizer=self.embeddings_regularizer, - constraint=self.embeddings_constraint, - experimental_autocast=False, - ) - self.built = True - - def compute_mask(self, inputs, mask=None): - if not self.mask_zero: - return None - return tf.not_equal(inputs, 0) - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - if self.input_length is None: - return input_shape + (self.output_dim,) - else: - # input_length can be tuple if input is 3D or higher - if isinstance(self.input_length, (list, tuple)): - in_lens = list(self.input_length) - else: - in_lens = [self.input_length] - if len(in_lens) != len(input_shape) - 1: - raise ValueError( - f'"input_length" is {self.input_length}, but received ' - f"input has shape {input_shape}" - ) - else: - for i, (s1, s2) in enumerate(zip(in_lens, input_shape[1:])): - if s1 is not None and s2 is not None and s1 != s2: - raise ValueError( - f'"input_length" is {self.input_length}, but ' - f"received input has shape {input_shape}" - ) - elif s1 is None: - in_lens[i] = s2 - return (input_shape[0],) + tuple(in_lens) + (self.output_dim,) - - def call(self, inputs): - dtype = backend.dtype(inputs) - if dtype != "int32" and dtype != "int64": - inputs = tf.cast(inputs, "int32") - if isinstance(inputs, tf.sparse.SparseTensor): - if self.sparse: - # get sparse embedding values - embedding_values = tf.nn.embedding_lookup( - params=self.embeddings, ids=inputs.values - ) - embedding_values = tf.reshape(embedding_values, [-1]) - # get sparse embedding indices - indices_values_embed_axis = tf.range(self.output_dim) - repeat_times = [inputs.indices.shape[0]] - indices_values_embed_axis = tf.expand_dims( - tf.tile(indices_values_embed_axis, repeat_times), -1 - ) - indices_values_embed_axis = tf.cast( - indices_values_embed_axis, dtype=tf.int64 - ) - current_indices = tf.repeat( - inputs.indices, [self.output_dim], axis=0 - ) - new_indices = tf.concat( - [current_indices, indices_values_embed_axis], 1 - ) - new_shape = tf.concat( - [tf.cast(inputs.shape, dtype=tf.int64), [self.output_dim]], - axis=-1, - ) - out = tf.SparseTensor( - indices=new_indices, - values=embedding_values, - dense_shape=new_shape, - ) - else: - sparse_inputs_expanded = tf.sparse.expand_dims(inputs, axis=-1) - out = tf.nn.safe_embedding_lookup_sparse( - embedding_weights=self.embeddings, - sparse_ids=sparse_inputs_expanded, - default_id=0, - ) - elif self._use_one_hot_matmul: - # Note that we change the dtype of the one_hot to be same as the - # weight tensor, since the input data are usually ints, and weights - # are floats. The nn.embedding_lookup support ids as ints, but - # the one_hot matmul need both inputs and weights to be same dtype. - one_hot_data = tf.one_hot( - inputs, depth=self.input_dim, dtype=self.dtype - ) - out = tf.matmul(one_hot_data, self.embeddings) - else: - out = tf.nn.embedding_lookup(self.embeddings, inputs) - - if self.sparse and not isinstance(out, tf.SparseTensor): - out = tf.sparse.from_dense(out) - - if ( - self._dtype_policy.compute_dtype - != self._dtype_policy.variable_dtype - ): - # Instead of casting the variable as in most layers, cast the - # output, as this is mathematically equivalent but is faster. - out = tf.cast(out, self._dtype_policy.compute_dtype) - return out - - def get_config(self): - config = { - "input_dim": self.input_dim, - "output_dim": self.output_dim, - "embeddings_initializer": initializers.serialize( - self.embeddings_initializer - ), - "embeddings_regularizer": regularizers.serialize( - self.embeddings_regularizer - ), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "embeddings_constraint": constraints.serialize( - self.embeddings_constraint - ), - "mask_zero": self.mask_zero, - "input_length": self.input_length, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/core/embedding_test.py b/keras/layers/core/embedding_test.py deleted file mode 100644 index 0994f208f87..00000000000 --- a/keras/layers/core/embedding_test.py +++ /dev/null @@ -1,258 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for embedding layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.mixed_precision import policy -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class EmbeddingTest(test_combinations.TestCase): - @test_combinations.run_all_keras_modes - def test_embedding(self): - if tf.test.is_gpu_available(): - self.skipTest("Only test embedding on CPU.") - - test_utils.layer_test( - keras.layers.Embedding, - kwargs={"output_dim": 4, "input_dim": 10, "input_length": 2}, - input_shape=(3, 2), - input_dtype="int32", - expected_output_dtype="float32", - ) - - test_utils.layer_test( - keras.layers.Embedding, - kwargs={"output_dim": 4, "input_dim": 10, "mask_zero": True}, - input_shape=(3, 2), - input_dtype="int32", - expected_output_dtype="float32", - ) - - test_utils.layer_test( - keras.layers.Embedding, - kwargs={"output_dim": 4, "input_dim": 10, "mask_zero": True}, - input_shape=(3, 4, 2), - input_dtype="int32", - expected_output_dtype="float32", - ) - - test_utils.layer_test( - keras.layers.Embedding, - kwargs={ - "output_dim": 4, - "input_dim": 10, - "mask_zero": True, - "input_length": (None, 2), - }, - input_shape=(3, 4, 2), - input_dtype="int32", - expected_output_dtype="float32", - ) - - @test_combinations.run_all_keras_modes - def test_embedding_correctness(self): - layer = keras.layers.Embedding(output_dim=2, input_dim=2) - model = keras.models.Sequential([layer]) - - layer.set_weights([np.array([[1, 1], [2, 2]])]) - model.run_eagerly = test_utils.should_run_eagerly() - outputs = model.predict(np.array([[0, 1, 0]], dtype="int32")) - self.assertAllClose(outputs, [[[1, 1], [2, 2], [1, 1]]]) - - def test_embedding_incorrect_dimension(self): - with self.assertRaises(ValueError): - keras.layers.Embedding(input_dim=0, output_dim=1) - - with self.assertRaises(ValueError): - keras.layers.Embedding(input_dim=1, output_dim=0) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_eager_gpu_cpu(self): - l = keras.layers.Embedding(output_dim=2, input_dim=2) - l.build((None, 2)) - inputs = keras.backend.constant([[0, 1, 0]], dtype="int32") - with tf.GradientTape() as tape: - output = l(inputs) - gs = tape.gradient(output, l.weights) - opt = tf.compat.v1.train.AdagradOptimizer(0.1) - opt.apply_gradients(zip(gs, l.weights)) - self.assertAllEqual(len(gs), 1) - - @test_combinations.run_all_keras_modes - def test_embedding_with_ragged_input(self): - layer = keras.layers.Embedding( - input_dim=3, - output_dim=2, - weights=[np.array([[0.0, 0.0], [1.0, 1.0], [2.0, 2.0]])], - ) - inputs = keras.layers.Input( - shape=(None,), dtype=tf.float32, ragged=True - ) - - outputs = keras.layers.Lambda( - lambda args: keras.backend.identity(args) - )(inputs) - - outputs = layer(outputs) - - model = keras.Model(inputs, outputs) - model.run_eagerly = test_utils.should_run_eagerly() - outputs = model.predict( - tf.ragged.constant( - [[1.0, 2.0, 2.0], [0.0], [1.0, 2.0]], ragged_rank=1 - ) - ) - self.assertAllClose( - outputs, - tf.ragged.constant( - [ - [[1.0, 1.0], [2.0, 2.0], [2.0, 2.0]], - [[0.0, 0.0]], - [[1.0, 1.0], [2.0, 2.0]], - ], - ragged_rank=1, - ), - ) - - @test_utils.enable_v2_dtype_behavior - def test_mixed_precision_embedding(self): - try: - policy.set_global_policy("mixed_float16") - layer = keras.layers.Embedding(input_dim=5, output_dim=2) - self.assertEqual(layer._dtype_policy.name, "mixed_float16") - outputs = layer(np.array([0, 1, 2])) - self.assertEqual(outputs.dtype, "float16") - finally: - policy.set_global_policy("float32") - - @test_combinations.run_all_keras_modes - def test_embedding_with_sparse_input_sparse_output(self): - layer = keras.layers.Embedding( - input_dim=3, - output_dim=2, - weights=[np.array([[0.0, 0.0], [1.0, 1.0], [2.0, 2.0]])], - sparse=True, - ) - input = tf.SparseTensor( - indices=[[0, 1], [1, 2]], values=[1, 2], dense_shape=[3, 3] - ) - output = layer(input) - expected_output = tf.SparseTensor( - indices=[[0, 1, 0], [0, 1, 1], [1, 2, 0], [1, 2, 1]], - values=[1.0, 1.0, 2.0, 2.0], - dense_shape=[3, 3, 2], - ) - self.assertAllClose(output.indices, expected_output.indices) - self.assertAllClose(output.values, expected_output.values) - self.assertAllClose(output.dense_shape, expected_output.dense_shape) - - @test_combinations.run_all_keras_modes - def test_embedding_with_sparse_input_dense_output(self): - layer = keras.layers.Embedding( - input_dim=3, - output_dim=2, - weights=[np.array([[0.1, 0.1], [1.0, 1.0], [2.0, 2.0]])], - sparse=False, - ) - input = tf.SparseTensor( - indices=[[0, 1], [1, 2]], values=[1, 2], dense_shape=[3, 3] - ) - output = layer(input) - expected_output = tf.constant( - [ - [[0.1, 0.1], [1.0, 1.0], [0.1, 0.1]], - [[0.1, 0.1], [0.1, 0.1], [2.0, 2.0]], - [[0.1, 0.1], [0.1, 0.1], [0.1, 0.1]], - ] - ) - self.assertAllClose(output, expected_output) - - @test_combinations.run_all_keras_modes - def test_error_message_for_mask_zero_enabled_with_sparse_tensor(self): - with self.assertRaisesRegex( - ValueError, - "`mask_zero` cannot be enabled when " - "`tf.keras.layers.Embedding` is used with `tf.SparseTensor` " - "input.", - ): - layer = keras.layers.Embedding( - input_dim=3, - output_dim=2, - weights=[np.array([[0.1, 0.1], [1.0, 1.0], [2.0, 2.0]])], - sparse=True, - mask_zero=True, - ) - inputs = tf.SparseTensor( - indices=[[0, 1], [1, 2]], values=[1, 2], dense_shape=[3, 3] - ) - layer(inputs) - - @test_combinations.run_all_keras_modes - def test_embedding_with_dense_input_sprase_output(self): - layer = keras.layers.Embedding( - input_dim=3, - output_dim=2, - weights=[np.array([[0, 0], [1.0, 1.0], [2.0, 2.0]])], - sparse=True, - mask_zero=False, - ) - inputs = tf.constant([0, 0, 0, 2, 1]) - output = layer(inputs) - expected_output = tf.SparseTensor( - indices=[[3, 0], [3, 1], [4, 0], [4, 1]], - values=[2.0, 2.0, 1.0, 1.0], - dense_shape=[5, 2], - ) - self.assertAllClose(output.indices, expected_output.indices) - self.assertAllClose(output.values, expected_output.values) - self.assertAllClose(output.dense_shape, expected_output.dense_shape) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_use_one_hot(self): - batch = 8 - input_length = 10 - layer = keras.layers.Embedding(input_dim=100, output_dim=16) - self.assertFalse(layer._use_one_hot_matmul) - - inputs = tf.random.uniform( - shape=[batch, input_length], minval=0, maxval=9, dtype=tf.int64 - ) - output_1 = layer(inputs) - - layer._use_one_hot_matmul = True - output_2 = layer(inputs) - - self.assertAllClose(output_1, output_2) - self.assertEqual(output_1.dtype, output_2.dtype) - - # Make sure the layer can be created with hidden kwargs, and not - # serialize it into config (for now). - layer = keras.layers.Embedding( - input_dim=100, output_dim=16, use_one_hot_matmul=True - ) - self.assertTrue(layer._use_one_hot_matmul) - - self.assertNotIn("use_one_hot_matmul", layer.get_config()) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/core/identity.py b/keras/layers/core/identity.py deleted file mode 100644 index 2b5c0cff76e..00000000000 --- a/keras/layers/core/identity.py +++ /dev/null @@ -1,38 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the Identity layer.""" - -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Identity") -class Identity(Layer): - """Identity layer. - - This layer should be used as a placeholder when no operation is to be - performed. The layer is argument insensitive, and returns its `inputs` - argument as output. - - Args: - name: Optional name for the layer instance. - """ - - def call(self, inputs): - return tf.nest.map_structure(tf.identity, inputs) diff --git a/keras/layers/core/lambda_layer.py b/keras/layers/core/lambda_layer.py deleted file mode 100644 index 1a8c2142d34..00000000000 --- a/keras/layers/core/lambda_layer.py +++ /dev/null @@ -1,416 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the Lambda layer.""" - -import sys -import textwrap -import types as python_types -import warnings - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer -from keras.saving import serialization_lib -from keras.utils import generic_utils -from keras.utils import tf_inspect -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.platform import tf_logging -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Lambda") -class Lambda(Layer): - """Wraps arbitrary expressions as a `Layer` object. - - The `Lambda` layer exists so that arbitrary expressions can be used - as a `Layer` when constructing Sequential - and Functional API models. `Lambda` layers are best suited for simple - operations or quick experimentation. For more advanced use cases, follow - [this guide]( - https://www.tensorflow.org/guide/keras/custom_layers_and_models) - for subclassing `tf.keras.layers.Layer`. - - WARNING: `tf.keras.layers.Lambda` layers have (de)serialization limitations! - - The main reason to subclass `tf.keras.layers.Layer` instead of using a - `Lambda` layer is saving and inspecting a Model. `Lambda` layers - are saved by serializing the Python bytecode, which is fundamentally - non-portable. They should only be loaded in the same environment where - they were saved. Subclassed layers can be saved in a more portable way - by overriding their `get_config()` method. Models that rely on - subclassed Layers are also often easier to visualize and reason about. - - Examples: - - ```python - # add a x -> x^2 layer - model.add(Lambda(lambda x: x ** 2)) - ``` - - ```python - # add a layer that returns the concatenation - # of the positive part of the input and - # the opposite of the negative part - - def antirectifier(x): - x -= K.mean(x, axis=1, keepdims=True) - x = K.l2_normalize(x, axis=1) - pos = K.relu(x) - neg = K.relu(-x) - return K.concatenate([pos, neg], axis=1) - - model.add(Lambda(antirectifier)) - ``` - - **Note on Variables:** - - While it is possible to use Variables with Lambda layers, - this practice is discouraged as it can easily lead to bugs. - For instance, consider the following layer: - - ```python - scale = tf.Variable(1.) - scale_layer = tf.keras.layers.Lambda(lambda x: x * scale) - ``` - - Because `scale_layer` does not directly track the `scale` variable, it will - not appear in `scale_layer.trainable_weights` and will therefore not be - trained if `scale_layer` is used in a Model. - - A better pattern is to write a subclassed Layer: - - ```python - class ScaleLayer(tf.keras.layers.Layer): - def __init__(self, **kwargs): - super().__init__(**kwargs) - self.scale = tf.Variable(1.) - - def call(self, inputs): - return inputs * self.scale - ``` - - In general, `Lambda` layers can be convenient for simple stateless - computation, but anything more complex should use a subclass Layer instead. - - Args: - function: The function to be evaluated. Takes input tensor as first - argument. - output_shape: Expected output shape from function. This argument can be - inferred if not explicitly provided. Can be a tuple or function. If a - tuple, it only specifies the first dimension onward; - sample dimension is assumed either the same as the input: - `output_shape = (input_shape[0], ) + output_shape` or, the input is - `None` and the sample dimension is also `None`: - `output_shape = (None, ) + output_shape` If a function, it specifies the - entire shape as a function of the input shape: - `output_shape = f(input_shape)` - mask: Either None (indicating no masking) or a callable with the same - signature as the `compute_mask` layer method, or a tensor that will be - returned as output mask regardless of what the input is. - arguments: Optional dictionary of keyword arguments to be passed to the - function. - - Input shape: Arbitrary. Use the keyword argument input_shape (tuple of - integers, does not include the samples axis) when using this layer as the - first layer in a model. - - Output shape: Specified by `output_shape` argument - """ - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def __init__( - self, function, output_shape=None, mask=None, arguments=None, **kwargs - ): - super().__init__(**kwargs) - - self.arguments = arguments or {} - self.function = function - - if mask is not None: - self.supports_masking = True - self.mask = mask - self._output_shape = output_shape - - # Warning on every invocation will be quite irksome in Eager mode. - self._already_warned = False - - function_args = tf_inspect.getfullargspec(function).args - self._fn_expects_training_arg = "training" in function_args - self._fn_expects_mask_arg = "mask" in function_args - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - if self._output_shape is None: - # Make use of existing autocomputation but provide Lambda-specific - # error message. This is always safe to run even when the outer - # context is Graph mode because Lambda layers don't have side - # effects such as `add_loss`. - with tf.__internal__.eager_context.eager_mode(): - try: - return super().compute_output_shape(input_shape) - except NotImplementedError: - raise NotImplementedError( - "We could not automatically infer the shape of " - "the Lambda's output. Please specify `output_shape` " - "for this Lambda." - ) - - if callable(self._output_shape): - output_shapes = self._output_shape(input_shape) - return tf_utils.convert_shapes(output_shapes, to_tuples=False) - - # Output shapes are passed directly and don't include batch dimension. - input_tensor_shape = tf_utils.convert_shapes( - input_shape, to_tuples=False - ) - batch_size = ( - tf.nest.flatten(input_tensor_shape)[0][0] if input_shape else None - ) - - def _add_batch(shape): - return tf.TensorShape([batch_size] + shape.as_list()) - - output_shapes = tf_utils.convert_shapes( - self._output_shape, to_tuples=False - ) - return tf.nest.map_structure(_add_batch, output_shapes) - - def call(self, inputs, mask=None, training=None): - # We must copy for thread safety, but it only needs to be a shallow - # copy. - kwargs = {k: v for k, v in self.arguments.items()} - if self._fn_expects_mask_arg: - kwargs["mask"] = mask - if self._fn_expects_training_arg: - kwargs["training"] = training - - created_variables = [] - - def _variable_creator(next_creator, **kwargs): - var = next_creator(**kwargs) - created_variables.append(var) - return var - - with tf.GradientTape( - watch_accessed_variables=True - ) as tape, tf.variable_creator_scope(_variable_creator): - result = self.function(inputs, **kwargs) - self._check_variables(created_variables, tape.watched_variables()) - return result - - def _check_variables(self, created_variables, accessed_variables): - if not created_variables and not accessed_variables: - # In the common case that a Lambda layer does not touch a Variable, - # we don't want to incur the runtime cost of assembling any state - # used for checking only to immediately discard it. - return - - # Filter out the state variable in the tf.random.Generator, which is - # commonly used for initializer or droput. The variable is intentionally - # not tracked and it is not a trainable variable. - created_variables = [ - v for v in created_variables if "StateVar" not in v.name - ] - - tracked_weights = set(v.ref() for v in self.weights) - untracked_new_vars = [ - v for v in created_variables if v.ref() not in tracked_weights - ] - if untracked_new_vars: - variable_str = "\n".join(f" {i}" for i in untracked_new_vars) - error_str = textwrap.dedent( - """ - The following Variables were created within a Lambda layer ({name}) - but are not tracked by said layer: - {variable_str} - The layer cannot safely ensure proper Variable reuse across multiple - calls, and consequently this behavior is disallowed for safety. Lambda - layers are not well suited to stateful computation; instead, writing a - subclassed Layer is the recommend way to define layers with - Variables.""" - ).format(name=self.name, variable_str=variable_str) - raise ValueError(error_str) - - untracked_used_vars = [ - v for v in accessed_variables if v.ref() not in tracked_weights - ] - if untracked_used_vars and not self._already_warned: - variable_str = "\n".join(f" {i}" for i in untracked_used_vars) - self._warn( - textwrap.dedent( - """ - The following Variables were used a Lambda layer's call ({name}), but - are not present in its tracked objects: - {variable_str} - It is possible that this is intended behavior, but it is more likely - an omission. This is a strong indication that this layer should be - formulated as a subclassed Layer rather than a Lambda layer.""" - ).format(name=self.name, variable_str=variable_str) - ) - self._already_warned = True - - def _warn(self, msg): - # This method will be overridden in a unit test to raise an error, - # because self.assertWarns is not universally implemented. - return tf_logging.warning(msg) - - def compute_mask(self, inputs, mask=None): - if callable(self.mask): - return self.mask(inputs, mask) - return self.mask - - def get_config(self): - function_config = self._serialize_function_to_config(self.function) - output_shape_config = self._serialize_function_to_config( - self._output_shape, allow_raw=True - ) - config = { - "function": function_config[0], - "function_type": function_config[1], - "module": function_config[2], - "output_shape": output_shape_config[0], - "output_shape_type": output_shape_config[1], - "output_shape_module": output_shape_config[2], - } - if self.mask is not None: - mask_config = self._serialize_function_to_config(self.mask) - config.update( - { - "mask": mask_config[0], - "mask_type": mask_config[1], - "mask_module": mask_config[2], - } - ) - config["arguments"] = self.arguments - - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - def _serialize_function_to_config(self, inputs, allow_raw=False): - if isinstance(inputs, python_types.LambdaType): - output = generic_utils.func_dump(inputs) - output_type = "lambda" - module = inputs.__module__ - elif callable(inputs): - output = inputs.__name__ - output_type = "function" - module = inputs.__module__ - elif allow_raw: - output = inputs - output_type = "raw" - module = None - else: - raise ValueError( - f"Invalid input for serialization, type: {type(inputs)} " - ) - - return output, output_type, module - - @classmethod - def from_config(cls, config, custom_objects=None): - config = config.copy() - function = cls._parse_function_from_config( - config, custom_objects, "function", "module", "function_type" - ) - - output_shape = cls._parse_function_from_config( - config, - custom_objects, - "output_shape", - "output_shape_module", - "output_shape_type", - ) - if "mask" in config: - mask = cls._parse_function_from_config( - config, custom_objects, "mask", "mask_module", "mask_type" - ) - else: - mask = None - - config["function"] = function - config["output_shape"] = output_shape - config["mask"] = mask - - # If arguments were numpy array, they have been saved as - # list. We need to recover the ndarray - if "arguments" in config: - for key in config["arguments"]: - if isinstance(config["arguments"][key], dict): - arg_dict = config["arguments"][key] - if "type" in arg_dict and arg_dict["type"] == "ndarray": - # Overwrite the argument with its numpy translation - config["arguments"][key] = np.array(arg_dict["value"]) - - return cls(**config) - - @classmethod - def _parse_function_from_config( - cls, - config, - custom_objects, - func_attr_name, - module_attr_name, - func_type_attr_name, - ): - globs = globals().copy() - module = config.pop(module_attr_name, None) - if module in sys.modules: - globs.update(sys.modules[module].__dict__) - elif module is not None: - # Note: we don't know the name of the function if it's a lambda. - warnings.warn( - "{} is not loaded, but a Lambda layer uses it. " - "It may cause errors.".format(module), - UserWarning, - stacklevel=2, - ) - if custom_objects: - globs.update(custom_objects) - function_type = config.pop(func_type_attr_name) - if function_type == "function": - # Simple lookup in custom objects - function = serialization_lib.deserialize_keras_object( - config[func_attr_name], - custom_objects=custom_objects, - printable_module_name="function in Lambda layer", - ) - elif function_type == "lambda": - if serialization_lib.in_safe_mode(): - raise ValueError( - "Requested the deserialization of a Lambda layer with a " - "Python `lambda` inside it. " - "This carries a potential risk of arbitrary code execution " - "and thus it is disallowed by default. If you trust the " - "source of the saved model, you can pass `safe_mode=False` " - "to the loading function in order to allow " - "Lambda layer loading." - ) - # /!\ Unsafe deserialization from bytecode! Danger! /!\ - function = generic_utils.func_load( - config[func_attr_name], globs=globs - ) - elif function_type == "raw": - function = config[func_attr_name] - else: - supported_types = ["function", "lambda", "raw"] - raise TypeError( - "Unsupported value for `function_type` argument. Received: " - f"function_type={function_type}. " - f"Expected one of {supported_types}" - ) - return function diff --git a/keras/layers/core/masking.py b/keras/layers/core/masking.py deleted file mode 100644 index c710bf34731..00000000000 --- a/keras/layers/core/masking.py +++ /dev/null @@ -1,91 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the Masking layer.""" - - -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Masking") -class Masking(Layer): - """Masks a sequence by using a mask value to skip timesteps. - - For each timestep in the input tensor (dimension #1 in the tensor), - if all values in the input tensor at that timestep - are equal to `mask_value`, then the timestep will be masked (skipped) - in all downstream layers (as long as they support masking). - - If any downstream layer does not support masking yet receives such - an input mask, an exception will be raised. - - Example: - - Consider a Numpy data array `x` of shape `(samples, timesteps, features)`, - to be fed to an LSTM layer. You want to mask timestep #3 and #5 because you - lack data for these timesteps. You can: - - - Set `x[:, 3, :] = 0.` and `x[:, 5, :] = 0.` - - Insert a `Masking` layer with `mask_value=0.` before the LSTM layer: - - ```python - samples, timesteps, features = 32, 10, 8 - inputs = np.random.random([samples, timesteps, features]).astype(np.float32) - inputs[:, 3, :] = 0. - inputs[:, 5, :] = 0. - - model = tf.keras.models.Sequential() - model.add(tf.keras.layers.Masking(mask_value=0., - input_shape=(timesteps, features))) - model.add(tf.keras.layers.LSTM(32)) - - output = model(inputs) - # The time step 3 and 5 will be skipped from LSTM calculation. - ``` - - See [the masking and padding guide]( - https://www.tensorflow.org/guide/keras/masking_and_padding) - for more details. - """ - - def __init__(self, mask_value=0.0, **kwargs): - super().__init__(**kwargs) - self.supports_masking = True - self.mask_value = mask_value - self._compute_output_and_mask_jointly = True - - def compute_mask(self, inputs, mask=None): - return tf.reduce_any(tf.not_equal(inputs, self.mask_value), axis=-1) - - def call(self, inputs): - boolean_mask = tf.reduce_any( - tf.not_equal(inputs, self.mask_value), axis=-1, keepdims=True - ) - outputs = inputs * tf.cast(boolean_mask, inputs.dtype) - # Compute the mask and outputs simultaneously. - outputs._keras_mask = tf.squeeze(boolean_mask, axis=-1) - return outputs - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = {"mask_value": self.mask_value} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/core/tf_op_layer.py b/keras/layers/core/tf_op_layer.py deleted file mode 100644 index 41f3ae93b79..00000000000 --- a/keras/layers/core/tf_op_layer.py +++ /dev/null @@ -1,581 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the TFOpLambda layer.""" -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import keras_tensor -from keras.engine.base_layer import Layer - -# isort: off -from tensorflow.python.platform import tf_logging -from tensorflow.python.util.tf_export import ( - get_canonical_name_for_symbol, -) -from tensorflow.python.util.tf_export import ( - get_symbol_from_name, -) - - -class ClassMethod(Layer): - """Wraps a TF API Class's class method in a `Layer` object. - - It is inserted by the Functional API construction whenever users call - a supported TF Class's class method on KerasTensors. - - This is useful in the case where users do something like: - x = keras.Input(...) - y = keras.Input(...) - out = tf.RaggedTensor.from_row_splits(x, y) - """ - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def __init__(self, cls_ref, method_name, **kwargs): - self.cls_ref = cls_ref - self.method_name = method_name - self.cls_symbol = get_canonical_name_for_symbol( - self.cls_ref, add_prefix_to_v1_names=True - ) or get_canonical_name_for_symbol( - self.cls_ref, api_name="keras", add_prefix_to_v1_names=True - ) - if "name" not in kwargs: - kwargs["name"] = backend.unique_object_name( - "tf." + self.cls_symbol + "." + self.method_name, - zero_based=True, - avoid_observed_names=True, - ) - kwargs["autocast"] = False - - # Do not individually trace op layers in the SavedModel. - self._must_restore_from_config = True - - super().__init__(**kwargs) - - # Preserve all argument data structures when saving/loading a config - # (e.g., don't unnest lists that contain one element) - self._preserve_input_structure_in_config = True - - self._call_spec.expects_training_arg = False - self._call_spec.expects_mask_arg = False - - def call(self, args, kwargs): - return getattr(self.cls_ref, self.method_name)(*args, **kwargs) - - def get_config(self): - if not self.cls_symbol: - raise ValueError( - "This Keras class method conversion tried to convert " - f"a method belonging to class {self.cls_symbol}, a class " - "that is not publicly exposed in the TensorFlow API. " - "To ensure cross-version compatibility of Keras models " - "that use op layers, only op layers produced from " - "public TensorFlow API symbols can be serialized." - ) - - config = { - "cls_symbol": self.cls_symbol, - "method_name": self.method_name, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - config = config.copy() - symbol_name = config.pop("cls_symbol") - cls_ref = get_symbol_from_name(symbol_name) - if not cls_ref: - raise ValueError( - f"TensorFlow symbol `{symbol_name}` could not be found." - ) - - config["cls_ref"] = cls_ref - - return cls(**config) - - -class KerasOpDispatcher(tf.__internal__.dispatch.GlobalOpDispatcher): - """A global dispatcher that allows building a functional model with TF - Ops.""" - - def handle(self, op, args, kwargs): - """Handle the specified operation with the specified arguments.""" - if any( - isinstance(x, keras_tensor.KerasTensor) - for x in tf.nest.flatten([args, kwargs]) - ): - return TFOpLambda(op)(*args, **kwargs) - else: - return self.NOT_SUPPORTED - - -KerasOpDispatcher().register() - - -class InstanceProperty(Layer): - """Wraps an instance property access (e.g. - - `x.foo`) in a Keras Layer. - - This layer takes an attribute name `attr_name` in the constructor and, - when called on input tensor `obj` returns `obj.attr_name`. - - KerasTensors specialized for specific extension types use it to - represent instance property accesses on the represented object in the - case where the property needs to be dynamically accessed as opposed to - being statically computed from the typespec, e.g. - - x = keras.Input(..., ragged=True) - out = x.flat_values - """ - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def __init__(self, attr_name, **kwargs): - self.attr_name = attr_name - - if "name" not in kwargs: - kwargs["name"] = backend.unique_object_name( - "input." + self.attr_name, - zero_based=True, - avoid_observed_names=True, - ) - kwargs["autocast"] = False - - # Do not individually trace op layers in the SavedModel. - self._must_restore_from_config = True - - super().__init__(**kwargs) - - # Preserve all argument data structures when saving/loading a config - # (e.g., don't unnest lists that contain one element) - self._preserve_input_structure_in_config = True - - def call(self, obj): - return getattr(obj, self.attr_name) - - def get_config(self): - config = {"attr_name": self.attr_name} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - return cls(**config) - - -class InstanceMethod(InstanceProperty): - """Wraps an instance method access (e.g. `x.foo(arg)` in a Keras Layer. - - This layer takes an attribute name `attr_name` in the constructor and, - when called on input tensor `obj` with additional arguments `args` and - `kwargs` returns `obj.attr_name(*args, **kwargs)`. - - KerasTensors specialized for specific extension types use it to - represent dynamic instance method calls on the represented object, e.g. - - x = keras.Input(..., ragged=True) - new_values = keras.Input(...) - out = x.with_values(new_values) - """ - - def call(self, obj, args, kwargs): - method = getattr(obj, self.attr_name) - return method(*args, **kwargs) - - -class TFOpLambda(Layer): - """Wraps TF API symbols in a `Layer` object. - - It is inserted by the Functional API construction whenever users call - a supported TF symbol on KerasTensors. - - Like Lambda layers, this layer tries to raise warnings when it detects users - explicitly use variables in the call. (To let them know - that the layer will not capture the variables). - - This is useful in the case where users do something like: - x = keras.Input(...) - y = tf.Variable(...) - out = x * tf_variable - """ - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def __init__(self, function, **kwargs): - self.function = function - self.symbol = get_canonical_name_for_symbol( - self.function, add_prefix_to_v1_names=True - ) or get_canonical_name_for_symbol( - self.function, api_name="keras", add_prefix_to_v1_names=True - ) - if "name" not in kwargs: - # Generate a name. - # TFOpLambda layers avoid already-observed names, - # because users cannot easily control the generated names. - # Without this avoidance, users would be more likely to run - # into unavoidable duplicate layer name collisions. - # (For standard layers users could just set `name` when creating the - # layer to work around a collision, but they can't do that for - # auto-generated layers) - if self.symbol: - name = "tf." + self.symbol - else: - name = self.function.__name__ - kwargs["name"] = backend.unique_object_name( - name, zero_based=True, avoid_observed_names=True - ) - kwargs["autocast"] = False - - # Decorate the function to produce this layer's call method - def _call_wrapper(*args, **kwargs): - return self._call_wrapper(*args, **kwargs) - - self.call = tf.__internal__.decorator.make_decorator( - function, _call_wrapper - ) - - # Do not individually trace op layers in the SavedModel. - self._must_restore_from_config = True - - super().__init__(**kwargs) - - # Preserve all argument data structures when saving/loading a config - # (e.g., don't unnest lists that contain one element) - self._preserve_input_structure_in_config = True - - # Warning on every invocation will be quite irksome in Eager mode. - self._already_warned = False - - self._call_spec.expects_training_arg = False - self._call_spec.expects_mask_arg = False - - def _call_wrapper(self, *args, **kwargs): - created_variables = [] - - def _variable_creator(next_creator, **creator_kwargs): - var = next_creator(**creator_kwargs) - created_variables.append(var) - return var - - with tf.GradientTape( - watch_accessed_variables=True - ) as tape, tf.variable_creator_scope(_variable_creator): - # We explicitly drop `name` arguments here, - # to guard against the case where an op explicitly has a - # `name` passed (which is susceptible to producing - # multiple ops w/ the same name when the layer is reused) - kwargs.pop("name", None) - result = self.function(*args, **kwargs) - self._check_variables(created_variables, tape.watched_variables()) - return result - - def _check_variables(self, created_variables, accessed_variables): - if not created_variables and not accessed_variables: - # In the common case that a Lambda layer does not touch a Variable, - # we don't want to incur the runtime cost of assembling any state - # used for checking only to immediately discard it. - return - - tracked_weights = set(v.ref() for v in self.weights) - untracked_new_vars = [ - v for v in created_variables if v.ref() not in tracked_weights - ] - if untracked_new_vars: - variable_str = "\n".join(f" {i}" for i in untracked_new_vars) - raise ValueError( - "The following Variables were created within a Lambda layer " - f"({self.name}) but are not tracked by said layer: " - f"{variable_str}\n" - "The layer cannot safely ensure proper Variable reuse " - "across multiple calls, and consequently this behavior " - "is disallowed for safety reasons. Lambda layers are " - "not well suited for stateful computation; instead, " - "writing a subclassed Layer is the recommend " - "way to define layers with Variables." - ) - - untracked_used_vars = [ - v for v in accessed_variables if v.ref() not in tracked_weights - ] - if untracked_used_vars and not self._already_warned: - variable_str = "\n".join(f" {i}" for i in untracked_used_vars) - self._warn( - "The following Variables were used in a Lambda layer's call " - f"({self.name}), but are not present in its tracked objects: " - f"{variable_str}. This is a strong indication that the Lambda " - "layer should be rewritten as a subclassed Layer." - ) - self._already_warned = True - - def _warn(self, msg): - # This method will be overridden in a unit test to raise an error, - # because self.assertWarns is not universally implemented. - return tf_logging.warning(msg) - - def get_config(self): - if not self.symbol: - raise ValueError( - f"This Keras op layer was generated from {self.function}, a " - "method that is not publicly exposed in the TensorFlow API. " - "This may have happened if the method was explicitly " - "decorated to add dispatching support, and it was used " - "during Functional model construction. " - "To ensure cross-version compatibility of Keras models " - "that use op layers, only op layers produced from " - "public TensorFlow API symbols can be serialized." - ) - config = {"function": self.symbol} - - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - config = config.copy() - symbol_name = config["function"] - function = get_symbol_from_name(symbol_name) - if not function: - raise ValueError(f"TF symbol `{symbol_name}` could not be found.") - - config["function"] = function - - return cls(**config) - - -def _delegate_property(keras_tensor_cls, property_name): - """Register property on a KerasTensor class. - - Calling this multiple times with the same arguments should be a no-op. - - This method exposes a property on the KerasTensor class that will use an - `InstanceProperty` layer to access the property on the represented - intermediate values in the model. - - Args: - keras_tensor_cls: The KerasTensor subclass that should expose the - property. - property_name: The name of the property to expose and delegate to the - represented (Composite)Tensor. - """ - # We use a lambda because we can't create a Keras layer at import time - # due to dynamic layer class versioning. - property_access = property( - lambda self: InstanceProperty(property_name)(self) - ) - setattr(keras_tensor_cls, property_name, property_access) - - -def _delegate_method(keras_tensor_cls, method_name): - """Register method on a KerasTensor class. - - Calling this function times with the same arguments should be a no-op. - - This method exposes an instance method on the KerasTensor class that will - use an `InstanceMethod` layer to run the desired method on the represented - intermediate values in the model. - - Args: - keras_tensor_cls: The KerasTensor subclass that should expose the - property. - method_name: The name of the method to expose and delegate to the - represented (Composite)Tensor. - """ - - def delegate(self, *args, **kwargs): - return InstanceMethod(method_name)(self, args, kwargs) - - setattr(keras_tensor_cls, method_name, delegate) - - -# We do not support the `uniform_row_length` property because it -# returns either `None` or an int tensor, and code that relies on it tends -# to check `is None` directly. Delegating it here would always return a -# `KerasTensor`, regardless of what can be statically inferred. This would -# never equal `None`, breaking code that expects it to be partially-static -# in unpredictable ways. -for ragged_property in [ - "values", - "flat_values", - "row_splits", - "nested_row_splits", -]: - _delegate_property(keras_tensor.RaggedKerasTensor, ragged_property) - -for ragged_method_name in [ - "value_rowids", - "nested_value_rowids", - "nrows", - "row_starts", - "row_limits", - "row_lengths", - "nested_row_lengths", - "bounding_shape", - "with_values", - "with_flat_values", - "with_row_splits_dtype", - "merge_dims", - "to_tensor", - "to_sparse", -]: - _delegate_method(keras_tensor.RaggedKerasTensor, ragged_method_name) - -for sparse_property in [ - "indices", - "values", - "dense_shape", -]: - _delegate_property(keras_tensor.SparseKerasTensor, sparse_property) - -for sparse_method in [ - "with_values", -]: - _delegate_method(keras_tensor.SparseKerasTensor, sparse_method) - - -class TFClassMethodDispatcher(tf.__internal__.dispatch.OpDispatcher): - """A class method dispatcher that allows building a functional model with TF - class methods.""" - - def __init__(self, cls, method_name): - self.cls = cls - self.method_name = method_name - - def handle(self, args, kwargs): - """Handle the specified operation with the specified arguments.""" - if any( - isinstance(x, keras_tensor.KerasTensor) - for x in tf.nest.flatten([args, kwargs]) - ): - return ClassMethod(self.cls, self.method_name)(args[1:], kwargs) - else: - return self.NOT_SUPPORTED - - -for ragged_class_method in [ - "from_value_rowids", - "from_row_splits", - "from_row_lengths", - "from_row_starts", - "from_row_limits", - "from_uniform_row_length", - "from_nested_value_rowids", - "from_nested_row_splits", - "from_nested_row_lengths", - "from_tensor", - "from_sparse", -]: - TFClassMethodDispatcher(tf.RaggedTensor, ragged_class_method).register( - getattr(tf.RaggedTensor, ragged_class_method) - ) - - -class SlicingOpLambda(TFOpLambda): - """Wraps TF API symbols in a `Layer` object. - - It is inserted by the Functional API construction whenever users call - a supported TF symbol on KerasTensors. - - Like Lambda layers, this layer tries to raise warnings when it detects users - explicitly use variables in the call. (To let them know - that the layer will not capture the variables). - - This is useful in the case where users do something like: - x = keras.Input(...) - y = tf.Variable(...) - out = x * tf_variable - """ - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def __init__(self, function, **kwargs): - super().__init__(function, **kwargs) - - original_call = self.call - - # Decorate the function to produce this layer's call method - def _call_wrapper(*args, **kwargs): - # Turn any slice dicts in the args back into `slice` objects. - # This conversion cannot use nest.flatten/map_structure, - # because dicts are flattened by nest while slices aren't. - # So, map_structure would only see the individual elements in the - # dict. - # This can't use map_structure_up_to either because the - # 'shallowness' of the shallow tree would have to vary depending on - # if only one dim or multiple are being sliced. - new_args = [] - for arg in args: - arg = _dict_to_slice(arg) - if isinstance(arg, (list, tuple)): - new_arg = [] - for sub_arg in arg: - new_arg.append(_dict_to_slice(sub_arg)) - arg = new_arg - new_args.append(arg) - - # Handle the kwargs too. - new_kwargs = {} - for key, value in kwargs.items(): - value = _dict_to_slice(value) - if isinstance(value, (list, tuple)): - new_value = [] - for v in value: - new_value.append(_dict_to_slice(v)) - value = new_value - new_kwargs[key] = value - - return original_call(*new_args, **new_kwargs) - - self.call = tf.__internal__.decorator.make_decorator( - original_call, _call_wrapper - ) - - -def _slice_to_dict(x): - if isinstance(x, slice): - return {"start": x.start, "stop": x.stop, "step": x.step} - return x - - -def _dict_to_slice(x): - if isinstance(x, dict): - return slice(x["start"], x["stop"], x["step"]) - return x - - -class TFSlicingOpDispatcher(tf.__internal__.dispatch.OpDispatcher): - """A global dispatcher that allows building a functional model with TF - Ops.""" - - def __init__(self, op): - self.op = op - - def handle(self, args, kwargs): - """Handle the specified operation with the specified arguments.""" - args = tf.nest.map_structure(_slice_to_dict, args) - kwargs = tf.nest.map_structure(_slice_to_dict, kwargs) - if any( - isinstance(x, keras_tensor.KerasTensor) - for x in tf.nest.flatten([args, kwargs]) - ): - return SlicingOpLambda(self.op)(*args, **kwargs) - else: - return self.NOT_SUPPORTED - - -for slicing_op in [ - tf.__operators__.getitem, - tf.compat.v1.boolean_mask, - tf.boolean_mask, - tf.__operators__.ragged_getitem, -]: - TFSlicingOpDispatcher(slicing_op).register(slicing_op) diff --git a/keras/layers/kernelized.py b/keras/layers/kernelized.py deleted file mode 100644 index f8114bbb7c7..00000000000 --- a/keras/layers/kernelized.py +++ /dev/null @@ -1,286 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Keras layers that implement explicit (approximate) kernel feature maps.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import initializers -from keras.engine import base_layer -from keras.engine import input_spec - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -_SUPPORTED_RBF_KERNEL_TYPES = ["gaussian", "laplacian"] - - -@keras_export("keras.layers.experimental.RandomFourierFeatures") -class RandomFourierFeatures(base_layer.Layer): - r"""Layer that projects its inputs into a random feature space. - - This layer implements a mapping from input space to a space with - `output_dim` dimensions, which approximates shift-invariant kernels. A - kernel function `K(x, y)` is shift-invariant if `K(x, y) == k(x - y)` for - some function `k`. Many popular Radial Basis Functions (RBF), including - Gaussian and Laplacian kernels, are shift-invariant. - - The implementation of this layer is based on the following paper: - ["Random Features for Large-Scale Kernel Machines"]( - https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf) - by Ali Rahimi and Ben Recht. - - The distribution from which the parameters of the random features map - (layer) are sampled determines which shift-invariant kernel the layer - approximates (see paper for more details). You can use the distribution of - your choice. The layer supports out-of-the-box approximations of the - following two RBF kernels: - - - Gaussian: `K(x, y) == exp(- square(x - y) / (2 * square(scale)))` - - Laplacian: `K(x, y) = exp(-abs(x - y) / scale))` - - **Note:** Unlike what is described in the paper and unlike what is used in - the Scikit-Learn implementation, the output of this layer does not apply - the `sqrt(2 / D)` normalization factor. - - **Usage:** Typically, this layer is used to "kernelize" linear models by - applying a non-linear transformation (this layer) to the input features and - then training a linear model on top of the transformed features. Depending - on the loss function of the linear model, the composition of this layer and - the linear model results to models that are equivalent (up to approximation) - to kernel SVMs (for hinge loss), kernel logistic regression (for logistic - loss), kernel linear regression (for squared loss), etc. - - Examples: - - A kernel multinomial logistic regression model with Gaussian kernel for - MNIST: - - ```python - model = keras.Sequential([ - keras.Input(shape=(784,)), - RandomFourierFeatures( - output_dim=4096, - scale=10., - kernel_initializer='gaussian'), - layers.Dense(units=10, activation='softmax'), - ]) - model.compile( - optimizer='adam', - loss='categorical_crossentropy', - metrics=['categorical_accuracy'] - ) - ``` - - A quasi-SVM classifier for MNIST: - - ```python - model = keras.Sequential([ - keras.Input(shape=(784,)), - RandomFourierFeatures( - output_dim=4096, - scale=10., - kernel_initializer='gaussian'), - layers.Dense(units=10), - ]) - model.compile( - optimizer='adam', - loss='hinge', - metrics=['categorical_accuracy'] - ) - ``` - - To use another kernel, just replace the layer creation line with: - - ```python - random_features_layer = RandomFourierFeatures( - output_dim=500, - kernel_initializer=, - scale=..., - ...) - ``` - - Args: - output_dim: Positive integer, the dimension of the layer's output, i.e., - the number of random features used to approximate the kernel. - kernel_initializer: Determines the distribution of the parameters of the - random features map (and therefore the kernel approximated by the - layer). It can be either a string identifier or a Keras `Initializer` - instance. Currently only 'gaussian' and 'laplacian' are supported - string identifiers (case insensitive). Note that the kernel matrix is - not trainable. - scale: For Gaussian and Laplacian kernels, this corresponds to a scaling - factor of the corresponding kernel approximated by the layer (see - concrete definitions above). When provided, it should be a positive - float. If None, a default value is used: if the kernel initializer is - set to "gaussian", `scale` becomes `sqrt(input_dim / 2)`, otherwise, - it becomes 1.0. Both the approximation error of the kernel and the - classification quality are sensitive to this parameter. If `trainable` - is set to `True`, this parameter is learned end-to-end during training - and the provided value serves as the initial value. - **Note:** When features from this layer are fed to a linear model, - by making `scale` trainable, the resulting optimization problem is - no longer convex (even if the loss function used by the linear model - is convex). - Defaults to `None`. - trainable: Whether the scaling parameter of the layer should be trainable. - Defaults to `False`. - name: String, name to use for this layer. - """ - - def __init__( - self, - output_dim, - kernel_initializer="gaussian", - scale=None, - trainable=False, - name=None, - **kwargs, - ): - if output_dim <= 0: - raise ValueError( - "`output_dim` should be a positive integer. " - f"Received: {output_dim}" - ) - if isinstance(kernel_initializer, str): - if kernel_initializer.lower() not in _SUPPORTED_RBF_KERNEL_TYPES: - raise ValueError( - f"Unsupported `kernel_initializer`: {kernel_initializer} " - f"Expected one of: {_SUPPORTED_RBF_KERNEL_TYPES}" - ) - if scale is not None and scale <= 0.0: - raise ValueError( - "When provided, `scale` should be a positive float. " - f"Received: {scale}" - ) - super().__init__(trainable=trainable, name=name, **kwargs) - self.output_dim = output_dim - self.kernel_initializer = kernel_initializer - self.scale = scale - - def build(self, input_shape): - input_shape = tf.TensorShape(input_shape) - # TODO(pmol): Allow higher dimension inputs. Currently the input is - # expected to have shape [batch_size, dimension]. - if input_shape.rank != 2: - raise ValueError( - "The rank of the input tensor should be 2. " - f"Received input with rank {input_shape.ndims} instead. " - f"Full input shape received: {input_shape}" - ) - if input_shape.dims[1].value is None: - raise ValueError( - "The last dimension of the input tensor should be defined. " - f"Found `None`. Full input shape received: {input_shape}" - ) - self.input_spec = input_spec.InputSpec( - ndim=2, axes={1: input_shape.dims[1].value} - ) - input_dim = input_shape.dims[1].value - - kernel_initializer = _get_random_features_initializer( - self.kernel_initializer, shape=(input_dim, self.output_dim) - ) - - self.unscaled_kernel = self.add_weight( - name="unscaled_kernel", - shape=(input_dim, self.output_dim), - dtype=tf.float32, - initializer=kernel_initializer, - trainable=False, - ) - - self.bias = self.add_weight( - name="bias", - shape=(self.output_dim,), - dtype=tf.float32, - initializer=initializers.RandomUniform( - minval=0.0, maxval=2 * np.pi - ), - trainable=False, - ) - - if self.scale is None: - self.scale = _get_default_scale(self.kernel_initializer, input_dim) - self.kernel_scale = self.add_weight( - name="kernel_scale", - shape=(1,), - dtype=tf.float32, - initializer=tf.compat.v1.constant_initializer(self.scale), - trainable=True, - constraint="NonNeg", - ) - super().build(input_shape) - - def call(self, inputs): - inputs = tf.convert_to_tensor(inputs, dtype=self.dtype) - inputs = tf.cast(inputs, tf.float32) - kernel = (1.0 / self.kernel_scale) * self.unscaled_kernel - outputs = tf.matmul(a=inputs, b=kernel) - outputs = tf.nn.bias_add(outputs, self.bias) - return tf.cos(outputs) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape) - input_shape = input_shape.with_rank(2) - if input_shape.dims[-1].value is None: - raise ValueError( - "The last dimension of the input tensor should be defined. " - f"Found `None`. Full input shape received: {input_shape}" - ) - return input_shape[:-1].concatenate(self.output_dim) - - def get_config(self): - kernel_initializer = self.kernel_initializer - if not isinstance(kernel_initializer, str): - kernel_initializer = initializers.serialize(kernel_initializer) - config = { - "output_dim": self.output_dim, - "kernel_initializer": kernel_initializer, - "scale": self.scale, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -def _get_random_features_initializer(initializer, shape): - """Returns Initializer object for random features.""" - - def _get_cauchy_samples(loc, scale, shape): - probs = np.random.uniform(low=0.0, high=1.0, size=shape) - return loc + scale * np.tan(np.pi * (probs - 0.5)) - - random_features_initializer = initializer - if isinstance(initializer, str): - if initializer.lower() == "gaussian": - random_features_initializer = initializers.RandomNormal(stddev=1.0) - elif initializer.lower() == "laplacian": - random_features_initializer = initializers.Constant( - _get_cauchy_samples(loc=0.0, scale=1.0, shape=shape) - ) - - else: - raise ValueError( - f'Unsupported `kernel_initializer`: "{initializer}" ' - f"Expected one of: {_SUPPORTED_RBF_KERNEL_TYPES}" - ) - return random_features_initializer - - -def _get_default_scale(initializer, input_dim): - if isinstance(initializer, str) and initializer.lower() == "gaussian": - return np.sqrt(input_dim / 2.0) - return 1.0 diff --git a/keras/layers/kernelized_test.py b/keras/layers/kernelized_test.py deleted file mode 100644 index 33835ccd5fa..00000000000 --- a/keras/layers/kernelized_test.py +++ /dev/null @@ -1,453 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for kernelized.py.""" - -import functools -import math -import os -import shutil - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import backend as keras_backend -from keras import initializers -from keras.engine import base_layer_utils -from keras.engine import input_layer -from keras.engine import training -from keras.layers import kernelized as kernel_layers -from keras.saving.legacy import save -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import kernelized_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -def _exact_gaussian(stddev): - return functools.partial( - kernelized_utils.exact_gaussian_kernel, stddev=stddev - ) - - -def _exact_laplacian(stddev): - return functools.partial( - kernelized_utils.exact_laplacian_kernel, stddev=stddev - ) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class RandomFourierFeaturesTest(tf.test.TestCase, parameterized.TestCase): - def _assert_all_close(self, expected, actual, atol=0.001): - if not tf.executing_eagerly(): - with self.cached_session() as sess: - keras_backend._initialize_variables(sess) - self.assertAllClose(expected, actual, atol=atol) - else: - self.assertAllClose(expected, actual, atol=atol) - - @test_utils.run_v2_only - def test_state_saving_and_loading(self): - with self.cached_session(): - input_data = np.random.random((1, 2)) - rff_layer = kernel_layers.RandomFourierFeatures( - output_dim=10, scale=3.0 - ) - inputs = input_layer.Input((2,)) - outputs = rff_layer(inputs) - model = training.Model(inputs, outputs) - output_data = model.predict(input_data) - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir) - saved_model_dir = os.path.join(temp_dir, "rff_model") - model.save(saved_model_dir) - new_model = save.load_model(saved_model_dir) - new_output_data = new_model.predict(input_data) - self.assertAllClose(output_data, new_output_data, atol=1e-4) - - def test_invalid_output_dim(self): - with self.assertRaisesRegex( - ValueError, "`output_dim` should be a positive integer" - ): - _ = kernel_layers.RandomFourierFeatures(output_dim=-3, scale=2.0) - - def test_unsupported_kernel_type(self): - with self.assertRaisesRegex( - ValueError, "Unsupported `kernel_initializer`" - ): - _ = kernel_layers.RandomFourierFeatures( - 3, "unsupported_kernel", stddev=2.0 - ) - - def test_invalid_scale(self): - with self.assertRaisesRegex( - ValueError, "When provided, `scale` should be a positive float" - ): - _ = kernel_layers.RandomFourierFeatures(output_dim=10, scale=0.0) - - def test_invalid_input_shape(self): - inputs = tf.random.uniform((3, 2, 4), seed=1) - rff_layer = kernel_layers.RandomFourierFeatures( - output_dim=10, scale=3.0 - ) - with self.assertRaisesRegex( - ValueError, "The rank of the input tensor should be 2" - ): - _ = rff_layer(inputs) - - @parameterized.named_parameters( - ("gaussian", "gaussian", 10.0, False), - ("random", tf.compat.v1.random_uniform_initializer, 1.0, True), - ) - def test_random_features_properties(self, initializer, scale, trainable): - rff_layer = kernel_layers.RandomFourierFeatures( - output_dim=10, - kernel_initializer=initializer, - scale=scale, - trainable=trainable, - ) - self.assertEqual(rff_layer.output_dim, 10) - self.assertEqual(rff_layer.kernel_initializer, initializer) - self.assertEqual(rff_layer.scale, scale) - self.assertEqual(rff_layer.trainable, trainable) - - @parameterized.named_parameters( - ("gaussian", "gaussian", False), - ("laplacian", "laplacian", True), - ("other", tf.compat.v1.ones_initializer, True), - ) - def test_call(self, initializer, trainable): - rff_layer = kernel_layers.RandomFourierFeatures( - output_dim=10, - kernel_initializer=initializer, - scale=1.0, - trainable=trainable, - name="random_fourier_features", - ) - inputs = tf.random.uniform((3, 2), seed=1) - outputs = rff_layer(inputs) - self.assertListEqual([3, 10], outputs.shape.as_list()) - num_trainable_vars = 1 if trainable else 0 - self.assertLen( - rff_layer.non_trainable_variables, 3 - num_trainable_vars - ) - - @tf_test_utils.assert_no_new_pyobjects_executing_eagerly - def test_no_eager_Leak(self): - # Tests that repeatedly constructing and building a Layer does not leak - # Python objects. - inputs = tf.random.uniform((5, 4), seed=1) - kernel_layers.RandomFourierFeatures(output_dim=4, name="rff")(inputs) - kernel_layers.RandomFourierFeatures(output_dim=10, scale=2.0)(inputs) - - def test_output_shape(self): - inputs = tf.random.uniform((3, 2), seed=1) - rff_layer = kernel_layers.RandomFourierFeatures( - output_dim=7, name="random_fourier_features", trainable=True - ) - outputs = rff_layer(inputs) - self.assertEqual([3, 7], outputs.shape.as_list()) - - @parameterized.named_parameters( - ("gaussian", "gaussian"), - ("laplacian", "laplacian"), - ("other", tf.compat.v1.random_uniform_initializer), - ) - def test_call_on_placeholder(self, initializer): - with tf.Graph().as_default(): - inputs = tf.compat.v1.placeholder( - dtype=tf.float32, shape=[None, None] - ) - rff_layer = kernel_layers.RandomFourierFeatures( - output_dim=5, - kernel_initializer=initializer, - name="random_fourier_features", - ) - with self.assertRaisesRegex( - ValueError, - "The last dimension of the input tensor should be defined", - ): - rff_layer(inputs) - - inputs = tf.compat.v1.placeholder(dtype=tf.float32, shape=[2, None]) - rff_layer = kernel_layers.RandomFourierFeatures( - output_dim=5, - kernel_initializer=initializer, - name="random_fourier_features", - ) - with self.assertRaisesRegex( - ValueError, - "The last dimension of the input tensor should be defined", - ): - rff_layer(inputs) - - inputs = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, 3]) - rff_layer = kernel_layers.RandomFourierFeatures( - output_dim=5, name="random_fourier_features" - ) - rff_layer(inputs) - - @parameterized.named_parameters( - ("gaussian", 10, "gaussian", 2.0), - ("laplacian", 5, "laplacian", None), - ("other", 10, tf.compat.v1.ones_initializer, 1.0), - ) - def test_compute_output_shape(self, output_dim, initializer, scale): - rff_layer = kernel_layers.RandomFourierFeatures( - output_dim, initializer, scale=scale, name="rff" - ) - with self.assertRaises(ValueError): - rff_layer.compute_output_shape(tf.TensorShape(None)) - with self.assertRaises(ValueError): - rff_layer.compute_output_shape(tf.TensorShape([])) - with self.assertRaises(ValueError): - rff_layer.compute_output_shape(tf.TensorShape([3])) - with self.assertRaises(ValueError): - rff_layer.compute_output_shape(tf.TensorShape([3, 2, 3])) - - with self.assertRaisesRegex( - ValueError, - "The last dimension of the input tensor should be defined", - ): - rff_layer.compute_output_shape(tf.TensorShape([3, None])) - - self.assertEqual( - [None, output_dim], - rff_layer.compute_output_shape((None, 3)).as_list(), - ) - self.assertEqual( - [None, output_dim], - rff_layer.compute_output_shape(tf.TensorShape([None, 2])).as_list(), - ) - self.assertEqual( - [4, output_dim], rff_layer.compute_output_shape((4, 1)).as_list() - ) - - @parameterized.named_parameters( - ("gaussian", 10, "gaussian", 3.0, False), - ("laplacian", 5, "laplacian", 5.5, True), - ("other", 7, tf.compat.v1.random_uniform_initializer(), None, True), - ) - def test_get_config(self, output_dim, initializer, scale, trainable): - rff_layer = kernel_layers.RandomFourierFeatures( - output_dim, - initializer, - scale=scale, - trainable=trainable, - name="random_fourier_features", - ) - expected_initializer = initializer - if not isinstance(initializer, str): - expected_initializer = initializers.serialize(initializer) - - expected_dtype = ( - "float32" if base_layer_utils.v2_dtype_behavior_enabled() else None - ) - expected_config = { - "output_dim": output_dim, - "kernel_initializer": expected_initializer, - "scale": scale, - "name": "random_fourier_features", - "trainable": trainable, - "dtype": expected_dtype, - } - self.assertLen(expected_config, len(rff_layer.get_config())) - self.assertSameElements( - list(expected_config.items()), list(rff_layer.get_config().items()) - ) - - @parameterized.named_parameters( - ("gaussian", 5, "gaussian", None, True), - ("laplacian", 5, "laplacian", 5.5, False), - ("other", 7, tf.compat.v1.ones_initializer(), 2.0, True), - ) - def test_from_config(self, output_dim, initializer, scale, trainable): - model_config = { - "output_dim": output_dim, - "kernel_initializer": initializer, - "scale": scale, - "trainable": trainable, - "name": "random_fourier_features", - } - rff_layer = kernel_layers.RandomFourierFeatures.from_config( - model_config - ) - self.assertEqual(rff_layer.output_dim, output_dim) - self.assertEqual(rff_layer.kernel_initializer, initializer) - self.assertEqual(rff_layer.scale, scale) - self.assertEqual(rff_layer.trainable, trainable) - - inputs = tf.random.uniform((3, 2), seed=1) - outputs = rff_layer(inputs) - self.assertListEqual([3, output_dim], outputs.shape.as_list()) - num_trainable_vars = 1 if trainable else 0 - self.assertLen(rff_layer.trainable_variables, num_trainable_vars) - if trainable: - self.assertEqual( - "random_fourier_features/kernel_scale:0", - rff_layer.trainable_variables[0].name, - ) - self.assertLen( - rff_layer.non_trainable_variables, 3 - num_trainable_vars - ) - - @parameterized.named_parameters( - ("gaussian", 10, "gaussian", 3.0, True), - ("laplacian", 5, "laplacian", 5.5, False), - ("other", 10, tf.compat.v1.random_uniform_initializer(), None, True), - ) - def test_same_random_features_params_reused( - self, output_dim, initializer, scale, trainable - ): - """Applying the layer on the same input twice gives the same output.""" - rff_layer = kernel_layers.RandomFourierFeatures( - output_dim=output_dim, - kernel_initializer=initializer, - scale=scale, - trainable=trainable, - name="random_fourier_features", - ) - inputs = tf.constant(np.random.uniform(low=-1.0, high=1.0, size=(2, 4))) - output1 = rff_layer(inputs) - output2 = rff_layer(inputs) - self._assert_all_close(output1, output2) - - @parameterized.named_parameters( - ("gaussian", "gaussian", 5.0), - ("laplacian", "laplacian", 3.0), - ("other", tf.compat.v1.random_uniform_initializer(), 5.0), - ) - def test_different_params_similar_approximation(self, initializer, scale): - tf.compat.v1.set_random_seed(12345) - rff_layer1 = kernel_layers.RandomFourierFeatures( - output_dim=3000, - kernel_initializer=initializer, - scale=scale, - name="rff1", - ) - rff_layer2 = kernel_layers.RandomFourierFeatures( - output_dim=2000, - kernel_initializer=initializer, - scale=scale, - name="rff2", - ) - # Two distinct inputs. - x = tf.constant([[1.0, -1.0, 0.5]]) - y = tf.constant([[-1.0, 1.0, 1.0]]) - - # Apply both layers to both inputs. - output_x1 = math.sqrt(2.0 / 3000.0) * rff_layer1(x) - output_y1 = math.sqrt(2.0 / 3000.0) * rff_layer1(y) - output_x2 = math.sqrt(2.0 / 2000.0) * rff_layer2(x) - output_y2 = math.sqrt(2.0 / 2000.0) * rff_layer2(y) - - # Compute the inner products of the outputs (on inputs x and y) for both - # layers. For any fixed random features layer rff_layer, and inputs x, - # y, rff_layer(x)^T * rff_layer(y) ~= K(x,y) up to a normalization - # factor. - approx_kernel1 = kernelized_utils.inner_product(output_x1, output_y1) - approx_kernel2 = kernelized_utils.inner_product(output_x2, output_y2) - self._assert_all_close(approx_kernel1, approx_kernel2, atol=0.08) - - @parameterized.named_parameters( - ("gaussian", "gaussian", 5.0, _exact_gaussian(stddev=5.0)), - ("laplacian", "laplacian", 20.0, _exact_laplacian(stddev=20.0)), - ) - def test_bad_kernel_approximation( - self, initializer, scale, exact_kernel_fn - ): - """Approximation is bad when output dimension is small.""" - # Two distinct inputs. - x = tf.constant([[1.0, -1.0, 0.5]]) - y = tf.constant([[-1.0, 1.0, 1.0]]) - - small_output_dim = 10 - tf.compat.v1.set_random_seed(1234) - # Initialize layer. - rff_layer = kernel_layers.RandomFourierFeatures( - output_dim=small_output_dim, - kernel_initializer=initializer, - scale=scale, - name="random_fourier_features", - ) - - # Apply layer to both inputs. - output_x = math.sqrt(2.0 / small_output_dim) * rff_layer(x) - output_y = math.sqrt(2.0 / small_output_dim) * rff_layer(y) - - # The inner products of the outputs (on inputs x and y) approximates the - # real value of the RBF kernel but poorly since the output dimension of - # the layer is small. - exact_kernel_value = exact_kernel_fn(x, y) - approx_kernel_value = kernelized_utils.inner_product(output_x, output_y) - abs_error = tf.abs(exact_kernel_value - approx_kernel_value) - if not tf.executing_eagerly(): - with self.cached_session() as sess: - keras_backend._initialize_variables(sess) - abs_error_eval = sess.run([abs_error]) - self.assertGreater(abs_error_eval[0][0], 0.01) - self.assertLess(abs_error_eval[0][0], 0.5) - else: - self.assertGreater(abs_error, 0.01) - self.assertLess(abs_error, 0.5) - - @parameterized.named_parameters( - ("gaussian", "gaussian", 5.0, _exact_gaussian(stddev=5.0)), - ("laplacian", "laplacian", 10.0, _exact_laplacian(stddev=10.0)), - ) - def test_good_kernel_approximation_multiple_inputs( - self, initializer, scale, exact_kernel_fn - ): - # Parameters. - input_dim = 5 - output_dim = 2000 - x_rows = 20 - y_rows = 30 - - x = tf.constant( - np.random.uniform(size=(x_rows, input_dim)), dtype=tf.float32 - ) - y = tf.constant( - np.random.uniform(size=(y_rows, input_dim)), dtype=tf.float32 - ) - - tf.compat.v1.set_random_seed(1234) - rff_layer = kernel_layers.RandomFourierFeatures( - output_dim=output_dim, - kernel_initializer=initializer, - scale=scale, - name="random_fourier_features", - ) - - # The shapes of output_x and output_y are (x_rows, output_dim) and - # (y_rows, output_dim) respectively. - output_x = math.sqrt(2.0 / output_dim) * rff_layer(x) - output_y = math.sqrt(2.0 / output_dim) * rff_layer(y) - - approx_kernel_matrix = kernelized_utils.inner_product( - output_x, output_y - ) - exact_kernel_matrix = exact_kernel_fn(x, y) - self._assert_all_close( - approx_kernel_matrix, exact_kernel_matrix, atol=0.05 - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/layers_test.py b/keras/layers/layers_test.py deleted file mode 100644 index 1072f594899..00000000000 --- a/keras/layers/layers_test.py +++ /dev/null @@ -1,37 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Tests for layers.__init__.""" - -import tensorflow.compat.v2 as tf - -from keras import layers - - -class LayersTest(tf.test.TestCase): - def test_keras_private_symbol(self): - normalization_parent = layers.BatchNormalization.__module__.split(".")[ - -1 - ] - if tf.__internal__.tf2.enabled(): - self.assertEqual("batch_normalization", normalization_parent) - self.assertTrue(layers.BatchNormalization._USE_V2_BEHAVIOR) - else: - self.assertEqual("batch_normalization_v1", normalization_parent) - self.assertFalse(layers.BatchNormalization._USE_V2_BEHAVIOR) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/locally_connected/BUILD b/keras/layers/locally_connected/BUILD deleted file mode 100644 index 68faa7b21c6..00000000000 --- a/keras/layers/locally_connected/BUILD +++ /dev/null @@ -1,89 +0,0 @@ -# Description: -# Contains the Keras locally-connected layers. - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:friends", - ], - licenses = ["notice"], -) - -py_library( - name = "locally_connected", - srcs = [ - "__init__.py", - ], - srcs_version = "PY3", - deps = [ - ":locally_connected1d", - ":locally_connected2d", - ], -) - -py_library( - name = "locally_connected_utils", - srcs = ["locally_connected_utils.py"], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "locally_connected1d", - srcs = ["locally_connected1d.py"], - srcs_version = "PY3", - deps = [ - ":locally_connected_utils", - "//keras:activations", - "//keras:backend", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/initializers", - "//keras/utils:engine_utils", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "locally_connected2d", - srcs = ["locally_connected2d.py"], - srcs_version = "PY3", - deps = [ - ":locally_connected_utils", - "//keras:activations", - "//keras:backend", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/initializers", - "//keras/utils:engine_utils", - "//keras/utils:tf_utils", - ], -) - -tf_py_test( - name = "locally_connected_test", - size = "medium", - srcs = ["locally_connected_test.py"], - python_version = "PY3", - shard_count = 4, - tags = ["no_windows"], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/optimizers/legacy:optimizers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) diff --git a/keras/layers/locally_connected/__init__.py b/keras/layers/locally_connected/__init__.py deleted file mode 100644 index 9dbd20b3522..00000000000 --- a/keras/layers/locally_connected/__init__.py +++ /dev/null @@ -1,22 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras locally-connected layers.""" - -from keras.layers.locally_connected.locally_connected1d import ( - LocallyConnected1D, -) -from keras.layers.locally_connected.locally_connected2d import ( - LocallyConnected2D, -) diff --git a/keras/layers/locally_connected/locally_connected1d.py b/keras/layers/locally_connected/locally_connected1d.py deleted file mode 100644 index 32fe80fee56..00000000000 --- a/keras/layers/locally_connected/locally_connected1d.py +++ /dev/null @@ -1,371 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Locally-connected layer for 1D input.""" - -from keras import activations -from keras import backend -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.layers.locally_connected import locally_connected_utils -from keras.utils import conv_utils -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.LocallyConnected1D") -class LocallyConnected1D(Layer): - """Locally-connected layer for 1D inputs. - - The `LocallyConnected1D` layer works similarly to - the `Conv1D` layer, except that weights are unshared, - that is, a different set of filters is applied at each different patch - of the input. - - Note: layer attributes cannot be modified after the layer has been called - once (except the `trainable` attribute). - - Example: - ```python - # apply a unshared weight convolution 1d of length 3 to a sequence with - # 10 timesteps, with 64 output filters - model = Sequential() - model.add(LocallyConnected1D(64, 3, input_shape=(10, 32))) - # now model.output_shape == (None, 8, 64) - # add a new conv1d on top - model.add(LocallyConnected1D(32, 3)) - # now model.output_shape == (None, 6, 32) - ``` - - Args: - filters: Integer, the dimensionality of the output space (i.e. the - number of output filters in the convolution). - kernel_size: An integer or tuple/list of a single integer, specifying - the length of the 1D convolution window. - strides: An integer or tuple/list of a single integer, specifying the - stride length of the convolution. - padding: Currently only supports `"valid"` (case-insensitive). `"same"` - may be supported in the future. `"valid"` means no padding. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape `(batch, length, - channels)` while `channels_first` corresponds to inputs with shape - `(batch, channels, length)`. When unspecified, uses - `image_data_format` value found in your Keras config file at - `~/.keras/keras.json` (if exists) else 'channels_last'. - Defaults to 'channels_last'. - activation: Activation function to use. If you don't specify anything, - no activation is applied (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix. - bias_initializer: Initializer for the bias vector. - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. - bias_regularizer: Regularizer function applied to the bias vector. - activity_regularizer: Regularizer function applied to the output of the - layer (its "activation").. - kernel_constraint: Constraint function applied to the kernel matrix. - bias_constraint: Constraint function applied to the bias vector. - implementation: implementation mode, either `1`, `2`, or `3`. `1` loops - over input spatial locations to perform the forward pass. It is - memory-efficient but performs a lot of (small) ops. `2` stores layer - weights in a dense but sparsely-populated 2D matrix and implements the - forward pass as a single matrix-multiply. It uses a lot of RAM but - performs few (large) ops. `3` stores layer weights in a sparse tensor - and implements the forward pass as a single sparse matrix-multiply. - How to choose: - `1`: large, dense models, - `2`: small models, - `3`: large, sparse models, where "large" stands for large - input/output activations (i.e. many `filters`, `input_filters`, - large `input_size`, `output_size`), and "sparse" stands for few - connections between inputs and outputs, i.e. small ratio - `filters * input_filters * kernel_size / (input_size * strides)`, - where inputs to and outputs of the layer are assumed to have - shapes `(input_size, input_filters)`, `(output_size, filters)` - respectively. It is recommended to benchmark each in the setting - of interest to pick the most efficient one (in terms of speed and - memory usage). Correct choice of implementation can lead to - dramatic speed improvements (e.g. 50X), potentially at the expense - of RAM. Also, only `padding="valid"` is supported by - `implementation=1`. - Input shape: - 3D tensor with shape: `(batch_size, steps, input_dim)` - Output shape: - 3D tensor with shape: `(batch_size, new_steps, filters)` `steps` value - might have changed due to padding or strides. - """ - - def __init__( - self, - filters, - kernel_size, - strides=1, - padding="valid", - data_format=None, - activation=None, - use_bias=True, - kernel_initializer="glorot_uniform", - bias_initializer="zeros", - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - implementation=1, - **kwargs, - ): - super().__init__(**kwargs) - self.filters = filters - self.kernel_size = conv_utils.normalize_tuple( - kernel_size, 1, "kernel_size" - ) - self.strides = conv_utils.normalize_tuple( - strides, 1, "strides", allow_zero=True - ) - self.padding = conv_utils.normalize_padding(padding) - if self.padding != "valid" and implementation == 1: - raise ValueError( - "Invalid border mode for LocallyConnected1D " - '(only "valid" is supported if implementation is 1): ' + padding - ) - self.data_format = conv_utils.normalize_data_format(data_format) - self.activation = activations.get(activation) - self.use_bias = use_bias - self.kernel_initializer = initializers.get(kernel_initializer) - self.bias_initializer = initializers.get(bias_initializer) - self.kernel_regularizer = regularizers.get(kernel_regularizer) - self.bias_regularizer = regularizers.get(bias_regularizer) - self.activity_regularizer = regularizers.get(activity_regularizer) - self.kernel_constraint = constraints.get(kernel_constraint) - self.bias_constraint = constraints.get(bias_constraint) - self.implementation = implementation - self.input_spec = InputSpec(ndim=3) - - @property - def _use_input_spec_as_call_signature(self): - return False - - @tf_utils.shape_type_conversion - def build(self, input_shape): - if self.data_format == "channels_first": - input_dim, input_length = input_shape[1], input_shape[2] - else: - input_dim, input_length = input_shape[2], input_shape[1] - - if input_dim is None: - raise ValueError( - "Axis 2 of input should be fully-defined. Found shape:", - input_shape, - ) - self.output_length = conv_utils.conv_output_length( - input_length, self.kernel_size[0], self.padding, self.strides[0] - ) - - if self.output_length <= 0: - raise ValueError( - "One of the dimensions in the output is <= 0 " - f"due to downsampling in {self.name}. Consider " - "increasing the input size. " - f"Received input shape {input_shape} which would produce " - "output shape with a zero or negative value in a " - "dimension." - ) - - if self.implementation == 1: - self.kernel_shape = ( - self.output_length, - self.kernel_size[0] * input_dim, - self.filters, - ) - - self.kernel = self.add_weight( - shape=self.kernel_shape, - initializer=self.kernel_initializer, - name="kernel", - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - ) - - elif self.implementation == 2: - if self.data_format == "channels_first": - self.kernel_shape = ( - input_dim, - input_length, - self.filters, - self.output_length, - ) - else: - self.kernel_shape = ( - input_length, - input_dim, - self.output_length, - self.filters, - ) - - self.kernel = self.add_weight( - shape=self.kernel_shape, - initializer=self.kernel_initializer, - name="kernel", - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - ) - - self.kernel_mask = ( - locally_connected_utils.get_locallyconnected_mask( - input_shape=(input_length,), - kernel_shape=self.kernel_size, - strides=self.strides, - padding=self.padding, - data_format=self.data_format, - ) - ) - - elif self.implementation == 3: - self.kernel_shape = ( - self.output_length * self.filters, - input_length * input_dim, - ) - - self.kernel_idxs = sorted( - conv_utils.conv_kernel_idxs( - input_shape=(input_length,), - kernel_shape=self.kernel_size, - strides=self.strides, - padding=self.padding, - filters_in=input_dim, - filters_out=self.filters, - data_format=self.data_format, - ) - ) - - self.kernel = self.add_weight( - shape=(len(self.kernel_idxs),), - initializer=self.kernel_initializer, - name="kernel", - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - ) - - else: - raise ValueError( - "Unrecognized implementation mode: %d." % self.implementation - ) - - if self.use_bias: - self.bias = self.add_weight( - shape=(self.output_length, self.filters), - initializer=self.bias_initializer, - name="bias", - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - ) - else: - self.bias = None - - if self.data_format == "channels_first": - self.input_spec = InputSpec(ndim=3, axes={1: input_dim}) - else: - self.input_spec = InputSpec(ndim=3, axes={-1: input_dim}) - self.built = True - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - if self.data_format == "channels_first": - input_length = input_shape[2] - else: - input_length = input_shape[1] - - length = conv_utils.conv_output_length( - input_length, self.kernel_size[0], self.padding, self.strides[0] - ) - - if self.data_format == "channels_first": - return (input_shape[0], self.filters, length) - elif self.data_format == "channels_last": - return (input_shape[0], length, self.filters) - - def call(self, inputs): - if self.implementation == 1: - output = backend.local_conv( - inputs, - self.kernel, - self.kernel_size, - self.strides, - (self.output_length,), - self.data_format, - ) - - elif self.implementation == 2: - output = locally_connected_utils.local_conv_matmul( - inputs, - self.kernel, - self.kernel_mask, - self.compute_output_shape(inputs.shape), - ) - - elif self.implementation == 3: - output = locally_connected_utils.local_conv_sparse_matmul( - inputs, - self.kernel, - self.kernel_idxs, - self.kernel_shape, - self.compute_output_shape(inputs.shape), - ) - - else: - raise ValueError( - "Unrecognized implementation mode: %d." % self.implementation - ) - - if self.use_bias: - output = backend.bias_add( - output, self.bias, data_format=self.data_format - ) - - output = self.activation(output) - return output - - def get_config(self): - config = { - "filters": self.filters, - "kernel_size": self.kernel_size, - "strides": self.strides, - "padding": self.padding, - "data_format": self.data_format, - "activation": activations.serialize(self.activation), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "bias_constraint": constraints.serialize(self.bias_constraint), - "implementation": self.implementation, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/locally_connected/locally_connected2d.py b/keras/layers/locally_connected/locally_connected2d.py deleted file mode 100644 index fce8c32e2ce..00000000000 --- a/keras/layers/locally_connected/locally_connected2d.py +++ /dev/null @@ -1,400 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Locally-connected layer for 2D input.""" - -from keras import activations -from keras import backend -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.layers.locally_connected import locally_connected_utils -from keras.utils import conv_utils -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.LocallyConnected2D") -class LocallyConnected2D(Layer): - """Locally-connected layer for 2D inputs. - - The `LocallyConnected2D` layer works similarly - to the `Conv2D` layer, except that weights are unshared, - that is, a different set of filters is applied at each - different patch of the input. - - Note: layer attributes cannot be modified after the layer has been called - once (except the `trainable` attribute). - - Examples: - ```python - # apply a 3x3 unshared weights convolution with 64 output filters on a - 32x32 image - # with `data_format="channels_last"`: - model = Sequential() - model.add(LocallyConnected2D(64, (3, 3), input_shape=(32, 32, 3))) - # now model.output_shape == (None, 30, 30, 64) - # notice that this layer will consume (30*30)*(3*3*3*64) + (30*30)*64 - parameters - - # add a 3x3 unshared weights convolution on top, with 32 output filters: - model.add(LocallyConnected2D(32, (3, 3))) - # now model.output_shape == (None, 28, 28, 32) - ``` - - Args: - filters: Integer, the dimensionality of the output space (i.e. the - number of output filters in the convolution). - kernel_size: An integer or tuple/list of 2 integers, specifying the - width and height of the 2D convolution window. Can be a single integer - to specify the same value for all spatial dimensions. - strides: An integer or tuple/list of 2 integers, specifying the strides - of the convolution along the width and height. Can be a single integer - to specify the same value for all spatial dimensions. - padding: Currently only support `"valid"` (case-insensitive). `"same"` - will be supported in future. `"valid"` means no padding. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape `(batch, height, - width, channels)` while `channels_first` corresponds to inputs with - shape - `(batch, channels, height, width)`. When unspecified, uses - `image_data_format` value found in your Keras config file at - `~/.keras/keras.json` (if exists) else 'channels_last'. - Defaults to 'channels_last'. - activation: Activation function to use. If you don't specify anything, - no activation is applied (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix. - bias_initializer: Initializer for the bias vector. - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. - bias_regularizer: Regularizer function applied to the bias vector. - activity_regularizer: Regularizer function applied to the output of the - layer (its "activation"). - kernel_constraint: Constraint function applied to the kernel matrix. - bias_constraint: Constraint function applied to the bias vector. - implementation: implementation mode, either `1`, `2`, or `3`. `1` loops - over input spatial locations to perform the forward pass. It is - memory-efficient but performs a lot of (small) ops. `2` stores layer - weights in a dense but sparsely-populated 2D matrix and implements the - forward pass as a single matrix-multiply. It uses a lot of RAM but - performs few (large) ops. `3` stores layer weights in a sparse tensor - and implements the forward pass as a single sparse matrix-multiply. - How to choose: - `1`: large, dense models, - `2`: small models, - `3`: large, sparse models, where "large" stands for large - input/output activations (i.e. many `filters`, `input_filters`, - large `np.prod(input_size)`, `np.prod(output_size)`), and "sparse" - stands for few connections between inputs and outputs, i.e. small - ratio `filters * input_filters * np.prod(kernel_size) / - (np.prod(input_size) * np.prod(strides))`, where inputs to and - outputs of the layer are assumed to have shapes `input_size + - (input_filters,)`, `output_size + (filters,)` respectively. It is - recommended to benchmark each in the setting of interest to pick - the most efficient one (in terms of speed and memory usage). - Correct choice of implementation can lead to dramatic speed - improvements (e.g. 50X), potentially at the expense of RAM. Also, - only `padding="valid"` is supported by `implementation=1`. - Input shape: - 4D tensor with shape: `(samples, channels, rows, cols)` if - data_format='channels_first' - or 4D tensor with shape: `(samples, rows, cols, channels)` if - data_format='channels_last'. - Output shape: - 4D tensor with shape: `(samples, filters, new_rows, new_cols)` if - data_format='channels_first' - or 4D tensor with shape: `(samples, new_rows, new_cols, filters)` if - data_format='channels_last'. `rows` and `cols` values might have - changed due to padding. - """ - - def __init__( - self, - filters, - kernel_size, - strides=(1, 1), - padding="valid", - data_format=None, - activation=None, - use_bias=True, - kernel_initializer="glorot_uniform", - bias_initializer="zeros", - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - implementation=1, - **kwargs, - ): - super().__init__(**kwargs) - self.filters = filters - self.kernel_size = conv_utils.normalize_tuple( - kernel_size, 2, "kernel_size" - ) - self.strides = conv_utils.normalize_tuple( - strides, 2, "strides", allow_zero=True - ) - self.padding = conv_utils.normalize_padding(padding) - if self.padding != "valid" and implementation == 1: - raise ValueError( - "Invalid border mode for LocallyConnected2D " - '(only "valid" is supported if implementation is 1): ' + padding - ) - self.data_format = conv_utils.normalize_data_format(data_format) - self.activation = activations.get(activation) - self.use_bias = use_bias - self.kernel_initializer = initializers.get(kernel_initializer) - self.bias_initializer = initializers.get(bias_initializer) - self.kernel_regularizer = regularizers.get(kernel_regularizer) - self.bias_regularizer = regularizers.get(bias_regularizer) - self.activity_regularizer = regularizers.get(activity_regularizer) - self.kernel_constraint = constraints.get(kernel_constraint) - self.bias_constraint = constraints.get(bias_constraint) - self.implementation = implementation - self.input_spec = InputSpec(ndim=4) - - @property - def _use_input_spec_as_call_signature(self): - return False - - @tf_utils.shape_type_conversion - def build(self, input_shape): - if self.data_format == "channels_last": - input_row, input_col = input_shape[1:-1] - input_filter = input_shape[3] - else: - input_row, input_col = input_shape[2:] - input_filter = input_shape[1] - if input_row is None or input_col is None: - raise ValueError( - "The spatial dimensions of the inputs to " - " a LocallyConnected2D layer " - "should be fully-defined, but layer received " - "the inputs shape " + str(input_shape) - ) - output_row = conv_utils.conv_output_length( - input_row, self.kernel_size[0], self.padding, self.strides[0] - ) - output_col = conv_utils.conv_output_length( - input_col, self.kernel_size[1], self.padding, self.strides[1] - ) - self.output_row = output_row - self.output_col = output_col - - if self.output_row <= 0 or self.output_col <= 0: - raise ValueError( - "One of the dimensions in the output is <= 0 " - f"due to downsampling in {self.name}. Consider " - "increasing the input size. " - f"Received input shape {input_shape} which would produce " - "output shape with a zero or negative value in a " - "dimension." - ) - - if self.implementation == 1: - self.kernel_shape = ( - output_row * output_col, - self.kernel_size[0] * self.kernel_size[1] * input_filter, - self.filters, - ) - - self.kernel = self.add_weight( - shape=self.kernel_shape, - initializer=self.kernel_initializer, - name="kernel", - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - ) - - elif self.implementation == 2: - if self.data_format == "channels_first": - self.kernel_shape = ( - input_filter, - input_row, - input_col, - self.filters, - self.output_row, - self.output_col, - ) - else: - self.kernel_shape = ( - input_row, - input_col, - input_filter, - self.output_row, - self.output_col, - self.filters, - ) - - self.kernel = self.add_weight( - shape=self.kernel_shape, - initializer=self.kernel_initializer, - name="kernel", - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - ) - - self.kernel_mask = ( - locally_connected_utils.get_locallyconnected_mask( - input_shape=(input_row, input_col), - kernel_shape=self.kernel_size, - strides=self.strides, - padding=self.padding, - data_format=self.data_format, - ) - ) - - elif self.implementation == 3: - self.kernel_shape = ( - self.output_row * self.output_col * self.filters, - input_row * input_col * input_filter, - ) - - self.kernel_idxs = sorted( - conv_utils.conv_kernel_idxs( - input_shape=(input_row, input_col), - kernel_shape=self.kernel_size, - strides=self.strides, - padding=self.padding, - filters_in=input_filter, - filters_out=self.filters, - data_format=self.data_format, - ) - ) - - self.kernel = self.add_weight( - shape=(len(self.kernel_idxs),), - initializer=self.kernel_initializer, - name="kernel", - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - ) - - else: - raise ValueError( - "Unrecognized implementation mode: %d." % self.implementation - ) - - if self.use_bias: - self.bias = self.add_weight( - shape=(output_row, output_col, self.filters), - initializer=self.bias_initializer, - name="bias", - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - ) - else: - self.bias = None - if self.data_format == "channels_first": - self.input_spec = InputSpec(ndim=4, axes={1: input_filter}) - else: - self.input_spec = InputSpec(ndim=4, axes={-1: input_filter}) - self.built = True - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - if self.data_format == "channels_first": - rows = input_shape[2] - cols = input_shape[3] - elif self.data_format == "channels_last": - rows = input_shape[1] - cols = input_shape[2] - - rows = conv_utils.conv_output_length( - rows, self.kernel_size[0], self.padding, self.strides[0] - ) - cols = conv_utils.conv_output_length( - cols, self.kernel_size[1], self.padding, self.strides[1] - ) - - if self.data_format == "channels_first": - return (input_shape[0], self.filters, rows, cols) - elif self.data_format == "channels_last": - return (input_shape[0], rows, cols, self.filters) - - def call(self, inputs): - if self.implementation == 1: - output = backend.local_conv( - inputs, - self.kernel, - self.kernel_size, - self.strides, - (self.output_row, self.output_col), - self.data_format, - ) - - elif self.implementation == 2: - output = locally_connected_utils.local_conv_matmul( - inputs, - self.kernel, - self.kernel_mask, - self.compute_output_shape(inputs.shape), - ) - - elif self.implementation == 3: - output = locally_connected_utils.local_conv_sparse_matmul( - inputs, - self.kernel, - self.kernel_idxs, - self.kernel_shape, - self.compute_output_shape(inputs.shape), - ) - - else: - raise ValueError( - "Unrecognized implementation mode: %d." % self.implementation - ) - - if self.use_bias: - output = backend.bias_add( - output, self.bias, data_format=self.data_format - ) - - output = self.activation(output) - return output - - def get_config(self): - config = { - "filters": self.filters, - "kernel_size": self.kernel_size, - "strides": self.strides, - "padding": self.padding, - "data_format": self.data_format, - "activation": activations.serialize(self.activation), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "bias_constraint": constraints.serialize(self.bias_constraint), - "implementation": self.implementation, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/locally_connected/locally_connected_test.py b/keras/layers/locally_connected/locally_connected_test.py deleted file mode 100644 index bb85dee7410..00000000000 --- a/keras/layers/locally_connected/locally_connected_test.py +++ /dev/null @@ -1,750 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for locally-connected layers.""" - - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.locally_connected import locally_connected_utils -from keras.optimizers.legacy import rmsprop -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_util, -) -from tensorflow.python.training.rmsprop import ( - RMSPropOptimizer, -) - -_DATA_FORMAT_PADDING_IMPLEMENTATION = [ - {"data_format": "channels_first", "padding": "valid", "implementation": 1}, - {"data_format": "channels_first", "padding": "same", "implementation": 1}, - {"data_format": "channels_last", "padding": "valid", "implementation": 1}, - {"data_format": "channels_last", "padding": "same", "implementation": 1}, - {"data_format": "channels_first", "padding": "valid", "implementation": 2}, - {"data_format": "channels_first", "padding": "same", "implementation": 2}, - {"data_format": "channels_last", "padding": "valid", "implementation": 2}, - {"data_format": "channels_last", "padding": "same", "implementation": 2}, - {"data_format": "channels_first", "padding": "valid", "implementation": 3}, - {"data_format": "channels_first", "padding": "same", "implementation": 3}, - {"data_format": "channels_last", "padding": "valid", "implementation": 3}, - {"data_format": "channels_last", "padding": "same", "implementation": 3}, -] - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class LocallyConnected1DLayersTest(tf.test.TestCase, parameterized.TestCase): - @parameterized.parameters(_DATA_FORMAT_PADDING_IMPLEMENTATION) - def test_locallyconnected_1d(self, data_format, padding, implementation): - with self.cached_session(): - num_samples = 2 - num_steps = 8 - input_dim = 5 - filter_length = 3 - filters = 4 - - for strides in [1]: - if padding == "same" and strides != 1: - continue - kwargs = { - "filters": filters, - "kernel_size": filter_length, - "padding": padding, - "strides": strides, - "data_format": data_format, - "implementation": implementation, - } - - if padding == "same" and implementation == 1: - self.assertRaises( - ValueError, keras.layers.LocallyConnected1D, **kwargs - ) - else: - test_utils.layer_test( - keras.layers.LocallyConnected1D, - kwargs=kwargs, - input_shape=(num_samples, num_steps, input_dim), - ) - - @parameterized.parameters(_DATA_FORMAT_PADDING_IMPLEMENTATION) - def test_locallyconnected_1d_regularization( - self, data_format, padding, implementation - ): - num_samples = 2 - num_steps = 8 - input_dim = 5 - filter_length = 3 - filters = 4 - kwargs = { - "filters": filters, - "kernel_size": filter_length, - "kernel_regularizer": "l2", - "bias_regularizer": "l2", - "activity_regularizer": "l2", - "data_format": data_format, - "implementation": implementation, - "padding": padding, - } - - if padding == "same" and implementation == 1: - self.assertRaises( - ValueError, keras.layers.LocallyConnected1D, **kwargs - ) - else: - with self.cached_session(): - layer = keras.layers.LocallyConnected1D(**kwargs) - layer.build((num_samples, num_steps, input_dim)) - self.assertLen(layer.losses, 2) - layer( - keras.backend.variable( - np.ones((num_samples, num_steps, input_dim)) - ) - ) - self.assertLen(layer.losses, 3) - - k_constraint = keras.constraints.max_norm(0.01) - b_constraint = keras.constraints.max_norm(0.01) - kwargs = { - "filters": filters, - "kernel_size": filter_length, - "kernel_constraint": k_constraint, - "bias_constraint": b_constraint, - } - with self.cached_session(): - layer = keras.layers.LocallyConnected1D(**kwargs) - layer.build((num_samples, num_steps, input_dim)) - self.assertEqual(layer.kernel.constraint, k_constraint) - self.assertEqual(layer.bias.constraint, b_constraint) - - def test_locallyconnected1d_invalid_output_shapes(self): - kwargs = {"filters": 2, "kernel_size": 10} - with self.assertRaisesRegex( - ValueError, r"""One of the dimensions in the output is <= 0 """ - ): - layer = keras.layers.LocallyConnected1D(**kwargs) - layer.build((None, 5, 2)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class LocallyConnected2DLayersTest(tf.test.TestCase, parameterized.TestCase): - @parameterized.parameters(_DATA_FORMAT_PADDING_IMPLEMENTATION) - def test_locallyconnected_2d(self, data_format, padding, implementation): - with self.cached_session(): - num_samples = 8 - filters = 3 - stack_size = 4 - num_row = 6 - num_col = 10 - - for strides in [(1, 1), (2, 2)]: - if padding == "same" and strides != (1, 1): - continue - - kwargs = { - "filters": filters, - "kernel_size": 3, - "padding": padding, - "kernel_regularizer": "l2", - "bias_regularizer": "l2", - "strides": strides, - "data_format": data_format, - "implementation": implementation, - } - - if padding == "same" and implementation == 1: - self.assertRaises( - ValueError, keras.layers.LocallyConnected2D, **kwargs - ) - else: - test_utils.layer_test( - keras.layers.LocallyConnected2D, - kwargs=kwargs, - input_shape=(num_samples, num_row, num_col, stack_size), - ) - - @parameterized.parameters(_DATA_FORMAT_PADDING_IMPLEMENTATION) - def test_locallyconnected_2d_channels_first( - self, data_format, padding, implementation - ): - with self.cached_session(): - num_samples = 8 - filters = 3 - stack_size = 4 - num_row = 6 - num_col = 10 - kwargs = { - "filters": filters, - "kernel_size": 3, - "data_format": data_format, - "implementation": implementation, - "padding": padding, - } - - if padding == "same" and implementation == 1: - self.assertRaises( - ValueError, keras.layers.LocallyConnected2D, **kwargs - ) - else: - test_utils.layer_test( - keras.layers.LocallyConnected2D, - kwargs=kwargs, - input_shape=(num_samples, num_row, num_col, stack_size), - ) - - @parameterized.parameters(_DATA_FORMAT_PADDING_IMPLEMENTATION) - def test_locallyconnected_2d_regularization( - self, data_format, padding, implementation - ): - num_samples = 2 - filters = 3 - stack_size = 4 - num_row = 6 - num_col = 7 - kwargs = { - "filters": filters, - "kernel_size": 3, - "kernel_regularizer": "l2", - "bias_regularizer": "l2", - "activity_regularizer": "l2", - "implementation": implementation, - "padding": padding, - "data_format": data_format, - } - - if padding == "same" and implementation == 1: - self.assertRaises( - ValueError, keras.layers.LocallyConnected2D, **kwargs - ) - else: - with self.cached_session(): - layer = keras.layers.LocallyConnected2D(**kwargs) - layer.build((num_samples, num_row, num_col, stack_size)) - self.assertLen(layer.losses, 2) - layer( - keras.backend.variable( - np.ones((num_samples, num_row, num_col, stack_size)) - ) - ) - self.assertLen(layer.losses, 3) - - k_constraint = keras.constraints.max_norm(0.01) - b_constraint = keras.constraints.max_norm(0.01) - kwargs = { - "filters": filters, - "kernel_size": 3, - "kernel_constraint": k_constraint, - "bias_constraint": b_constraint, - } - with self.cached_session(): - layer = keras.layers.LocallyConnected2D(**kwargs) - layer.build((num_samples, num_row, num_col, stack_size)) - self.assertEqual(layer.kernel.constraint, k_constraint) - self.assertEqual(layer.bias.constraint, b_constraint) - - def test_locallyconnected2d_invalid_output_shapes(self): - kwargs = {"filters": 2, "kernel_size": 10} - with self.assertRaisesRegex( - ValueError, r"""One of the dimensions in the output is <= 0 """ - ): - layer = keras.layers.LocallyConnected2D(**kwargs) - layer.build((None, 5, 5, 2)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class LocallyConnectedImplementationModeTest( - tf.test.TestCase, parameterized.TestCase -): - @parameterized.parameters( - [ - {"width": 1, "data_format": "channels_first"}, - {"width": 1, "data_format": "channels_last"}, - {"width": 6, "data_format": "channels_first"}, - {"width": 6, "data_format": "channels_last"}, - ] - ) - def test_locallyconnected_implementation(self, width, data_format): - with self.cached_session(): - num_samples = 4 - num_classes = 3 - num_epochs = 2 - - np.random.seed(1) - tf_test_util.random_seed.set_seed(1) - # Following code generates sparse targets and converts them - # to one-hot encoded vectors - # Create sparse targets eg. [0,1,2] - sparse_targets = np.random.randint(0, num_classes, (num_samples,)) - - # Convert to one-hot encoding - # Final targets: - # [[ 1. 0. 0. ] - # [ 0. 1. 0. ] - # [ 0. 0. 1. ]] - - targets = np.zeros((sparse_targets.size, num_classes)) - targets[np.arange(sparse_targets.size), sparse_targets] = 1 - height = 7 - filters = 2 - inputs = get_inputs( - data_format, filters, height, num_samples, width - ) - - kernel_x = (3,) - kernel_y = () if width == 1 else (2,) - stride_x = (1,) - stride_y = () if width == 1 else (3,) - layers = 2 - - kwargs = { - "layers": layers, - "filters": filters, - "kernel_size": kernel_x + kernel_y, - "strides": stride_x + stride_y, - "data_format": data_format, - "num_classes": num_classes, - } - - model_1 = get_model(implementation=1, **kwargs) - model_2 = get_model(implementation=2, **kwargs) - model_3 = get_model(implementation=3, **kwargs) - - # Build models. - model_1.train_on_batch(inputs, targets) - model_2.train_on_batch(inputs, targets) - model_3.train_on_batch(inputs, targets) - - # Copy weights. - copy_model_weights(model_from=model_2, model_to=model_1) - copy_model_weights(model_from=model_2, model_to=model_3) - - # Compare outputs at initialization. - out_1 = model_1(inputs) - out_2 = model_2(inputs) - out_3 = model_3(inputs) - - self.assertAllCloseAccordingToType( - out_2, out_1, rtol=1e-5, atol=1e-5 - ) - self.assertAllCloseAccordingToType( - out_2, out_3, rtol=1e-5, atol=1e-5 - ) - self.assertAllCloseAccordingToType( - out_1, out_3, rtol=1e-5, atol=1e-5 - ) - - # Train. - model_1.fit( - x=inputs, - y=targets, - epochs=num_epochs, - batch_size=num_samples, - shuffle=False, - ) - model_2.fit( - x=inputs, - y=targets, - epochs=num_epochs, - batch_size=num_samples, - shuffle=False, - ) - model_3.fit( - x=inputs, - y=targets, - epochs=num_epochs, - batch_size=num_samples, - shuffle=False, - ) - - # Compare outputs after a few training steps. - out_1 = model_1(inputs) - out_2 = model_2(inputs) - out_3 = model_3(inputs) - - self.assertAllCloseAccordingToType(out_2, out_1, atol=2e-4) - self.assertAllCloseAccordingToType(out_2, out_3, atol=2e-4) - self.assertAllCloseAccordingToType(out_1, out_3, atol=2e-4) - - @parameterized.parameters( - [ - {"width": 1, "data_format": "channels_first"}, - {"width": 1, "data_format": "channels_last"}, - {"width": 6, "data_format": "channels_first"}, - {"width": 6, "data_format": "channels_last"}, - ] - ) - def test_locallyconnected_save(self, width, data_format): - with self.cached_session(): - num_samples = 4 - num_classes = 3 - num_epochs = 2 - - np.random.seed(1) - tf_test_util.random_seed.set_seed(1) - # Following code generates sparse targets and converts them - # to one-hot encoded vectors - # Create sparse targets eg. [0,1,2] - sparse_targets = np.random.randint(0, num_classes, (num_samples,)) - - # Convert to one-hot encoding - # Final targets: - # [[ 1. 0. 0. ] - # [ 0. 1. 0. ] - # [ 0. 0. 1. ]] - - targets = np.zeros((sparse_targets.size, num_classes)) - targets[np.arange(sparse_targets.size), sparse_targets] = 1 - - height = 7 - filters = 2 - inputs = get_inputs( - data_format, filters, height, num_samples, width - ) - - kernel_x = (3,) - kernel_y = () if width == 1 else (2,) - stride_x = (1,) - stride_y = () if width == 1 else (3,) - layers = 2 - - kwargs = { - "layers": layers, - "filters": filters, - "kernel_size": kernel_x + kernel_y, - "strides": stride_x + stride_y, - "data_format": data_format, - "num_classes": num_classes, - } - - model_1 = get_model_saveable(implementation=1, **kwargs) - model_2 = get_model_saveable(implementation=2, **kwargs) - model_3 = get_model_saveable(implementation=3, **kwargs) - - # Train. - model_1.fit( - x=inputs, - y=targets, - epochs=num_epochs, - batch_size=num_samples, - shuffle=False, - ) - model_2.fit( - x=inputs, - y=targets, - epochs=num_epochs, - batch_size=num_samples, - shuffle=False, - ) - model_3.fit( - x=inputs, - y=targets, - epochs=num_epochs, - batch_size=num_samples, - shuffle=False, - ) - - out_1_before = model_1(inputs) - out_2_before = model_2(inputs) - out_3_before = model_3(inputs) - - path_1 = os.path.join(self.get_temp_dir(), "model_1_path") - model_1.save(path_1) - model_1 = keras.models.load_model( - path_1, custom_objects={"xent": xent} - ) - path_2 = os.path.join(self.get_temp_dir(), "model_2_path") - model_2.save(path_2) - model_2 = keras.models.load_model( - path_2, custom_objects={"xent": xent} - ) - path_3 = os.path.join(self.get_temp_dir(), "model_3_path") - model_3.save(path_3) - model_3 = keras.models.load_model( - path_3, custom_objects={"xent": xent} - ) - - out_1_after = model_1(inputs) - out_2_after = model_2(inputs) - out_3_after = model_3(inputs) - - self.assertAllCloseAccordingToType( - out_1_before, out_1_after, atol=2e-4 - ) - self.assertAllCloseAccordingToType( - out_2_before, out_2_after, atol=2e-4 - ) - self.assertAllCloseAccordingToType( - out_3_before, out_3_after, atol=2e-4 - ) - - def test_make_2d(self): - input_shapes = [ - (0,), - (0, 0), - (1,), - (2,), - (3,), - (1, 0), - (0, 3), - (1, 1), - (1, 2), - (3, 1), - (2, 2), - (3, 3), - (1, 0, 1), - (5, 2, 3), - (3, 5, 6, 7, 0), - (3, 2, 2, 4, 4), - (1, 2, 3, 4, 7, 2), - ] - np.random.seed(1) - - for input_shape in input_shapes: - inputs = np.random.normal(0, 1, input_shape) - inputs_tf = keras.backend.variable(inputs) - - split_dim = np.random.randint(0, inputs.ndim + 1) - shape_2d = ( - int(np.prod(inputs.shape[:split_dim])), - int(np.prod(inputs.shape[split_dim:])), - ) - inputs_2d = np.reshape(inputs, shape_2d) - - inputs_2d_tf = locally_connected_utils.make_2d(inputs_tf, split_dim) - inputs_2d_tf = keras.backend.get_value(inputs_2d_tf) - - self.assertAllCloseAccordingToType(inputs_2d, inputs_2d_tf) - - -def get_inputs(data_format, filters, height, num_samples, width): - if data_format == "channels_first": - if width == 1: - input_shape = (filters, height) - else: - input_shape = (filters, height, width) - - elif data_format == "channels_last": - if width == 1: - input_shape = (height, filters) - else: - input_shape = (height, width, filters) - - else: - raise NotImplementedError(data_format) - - inputs = np.random.normal(0, 1, (num_samples,) + input_shape).astype( - np.float32 - ) - return inputs - - -def xent(y_true, y_pred): - y_true = keras.backend.cast(keras.backend.reshape(y_true, (-1,)), tf.int32) - - return tf.compat.v1.nn.sparse_softmax_cross_entropy_with_logits( - labels=y_true, logits=y_pred - ) - - -def get_model( - implementation, - filters, - kernel_size, - strides, - layers, - num_classes, - data_format, -): - model = keras.Sequential() - - if len(kernel_size) == 1: - lc_layer = keras.layers.LocallyConnected1D - elif len(kernel_size) == 2: - lc_layer = keras.layers.LocallyConnected2D - else: - raise NotImplementedError(kernel_size) - - for _ in range(layers): - model.add( - lc_layer( - padding="valid", - kernel_initializer=keras.initializers.random_normal(), - bias_initializer=keras.initializers.random_normal(), - filters=filters, - strides=strides, - kernel_size=kernel_size, - activation=keras.activations.relu, - data_format=data_format, - implementation=implementation, - ) - ) - - model.add(keras.layers.Flatten()) - model.add(keras.layers.Dense(num_classes)) - model.compile( - optimizer=RMSPropOptimizer(0.01), - metrics=[keras.metrics.categorical_accuracy], - loss=keras.losses.CategoricalCrossentropy(from_logits=True), - ) - return model - - -def get_model_saveable( - implementation, - filters, - kernel_size, - strides, - layers, - num_classes, - data_format, -): - model = keras.Sequential() - - if len(kernel_size) == 1: - lc_layer = keras.layers.LocallyConnected1D - elif len(kernel_size) == 2: - lc_layer = keras.layers.LocallyConnected2D - else: - raise NotImplementedError(kernel_size) - - for _ in range(layers): - model.add( - lc_layer( - padding="valid", - kernel_initializer=keras.initializers.random_normal(), - bias_initializer=keras.initializers.random_normal(), - filters=filters, - strides=strides, - kernel_size=kernel_size, - activation=keras.activations.relu, - data_format=data_format, - implementation=implementation, - ) - ) - - model.add(keras.layers.Flatten()) - model.add(keras.layers.Dense(num_classes)) - model.compile( - optimizer=rmsprop.RMSProp(learning_rate=0.01), - metrics=[keras.metrics.categorical_accuracy], - loss=keras.losses.CategoricalCrossentropy(from_logits=True), - ) - return model - - -def copy_lc_weights_2_to_1(lc_layer_2_from, lc_layer_1_to): - lc_2_kernel, lc_2_bias = lc_layer_2_from.weights - lc_2_kernel_masked = lc_2_kernel * lc_layer_2_from.kernel_mask - - data_format = lc_layer_2_from.data_format - - if data_format == "channels_first": - if isinstance(lc_layer_2_from, keras.layers.LocallyConnected1D): - permutation = (3, 0, 1, 2) - elif isinstance(lc_layer_2_from, keras.layers.LocallyConnected2D): - permutation = (4, 5, 0, 1, 2, 3) - else: - raise NotImplementedError(lc_layer_2_from) - - elif data_format == "channels_last": - if isinstance(lc_layer_2_from, keras.layers.LocallyConnected1D): - permutation = (2, 0, 1, 3) - elif isinstance(lc_layer_2_from, keras.layers.LocallyConnected2D): - permutation = (3, 4, 0, 1, 2, 5) - else: - raise NotImplementedError(lc_layer_2_from) - - else: - raise NotImplementedError(data_format) - - lc_2_kernel_masked = keras.backend.permute_dimensions( - lc_2_kernel_masked, permutation - ) - - lc_2_kernel_mask = tf.not_equal(lc_2_kernel_masked, 0) - lc_2_kernel_flat = tf.compat.v1.boolean_mask( - lc_2_kernel_masked, lc_2_kernel_mask - ) - lc_2_kernel_reshaped = keras.backend.reshape( - lc_2_kernel_flat, lc_layer_1_to.kernel.shape - ) - - lc_2_kernel_reshaped = keras.backend.get_value(lc_2_kernel_reshaped) - lc_2_bias = keras.backend.get_value(lc_2_bias) - - lc_layer_1_to.set_weights([lc_2_kernel_reshaped, lc_2_bias]) - - -def copy_lc_weights_2_to_3(lc_layer_2_from, lc_layer_3_to): - lc_2_kernel, lc_2_bias = lc_layer_2_from.weights - lc_2_kernel_masked = lc_2_kernel * lc_layer_2_from.kernel_mask - - lc_2_kernel_masked = locally_connected_utils.make_2d( - lc_2_kernel_masked, - split_dim=keras.backend.ndim(lc_2_kernel_masked) // 2, - ) - lc_2_kernel_masked = keras.backend.transpose(lc_2_kernel_masked) - lc_2_kernel_mask = tf.not_equal(lc_2_kernel_masked, 0) - lc_2_kernel_flat = tf.compat.v1.boolean_mask( - lc_2_kernel_masked, lc_2_kernel_mask - ) - - lc_2_kernel_flat = keras.backend.get_value(lc_2_kernel_flat) - lc_2_bias = keras.backend.get_value(lc_2_bias) - - lc_layer_3_to.set_weights([lc_2_kernel_flat, lc_2_bias]) - - -def copy_model_weights(model_from, model_to): - for l in range(len(model_from.layers)): - layer_from = model_from.layers[l] - layer_to = model_to.layers[l] - - if isinstance( - layer_from, - (keras.layers.LocallyConnected2D, keras.layers.LocallyConnected1D), - ) and isinstance( - layer_to, - (keras.layers.LocallyConnected2D, keras.layers.LocallyConnected1D), - ): - if layer_from.implementation == 2: - if layer_to.implementation == 1: - copy_lc_weights_2_to_1(layer_from, layer_to) - elif layer_to.implementation == 3: - copy_lc_weights_2_to_3(layer_from, layer_to) - else: - raise NotImplementedError - - else: - raise NotImplementedError - - elif isinstance(layer_from, keras.layers.Dense): - weights_2, bias_2 = layer_from.weights - weights_2 = keras.backend.get_value(weights_2) - bias_2 = keras.backend.get_value(bias_2) - layer_to.set_weights([weights_2, bias_2]) - - else: - continue - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/locally_connected/locally_connected_utils.py b/keras/layers/locally_connected/locally_connected_utils.py deleted file mode 100644 index 26695a50675..00000000000 --- a/keras/layers/locally_connected/locally_connected_utils.py +++ /dev/null @@ -1,206 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Private utilities for locally-connected layers.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.utils import conv_utils - - -def get_locallyconnected_mask( - input_shape, kernel_shape, strides, padding, data_format -): - """Return a mask representing connectivity of a locally-connected operation. - - This method returns a masking numpy array of 0s and 1s (of type - `np.float32`) that, when element-wise multiplied with a fully-connected - weight tensor, masks out the weights between disconnected input-output pairs - and thus implements local connectivity through a sparse fully-connected - weight tensor. - - Assume an unshared convolution with given parameters is applied to an input - having N spatial dimensions with `input_shape = (d_in1, ..., d_inN)` - to produce an output with spatial shape `(d_out1, ..., d_outN)` (determined - by layer parameters such as `strides`). - - This method returns a mask which can be broadcast-multiplied (element-wise) - with a 2*(N+1)-D weight matrix (equivalent to a fully-connected layer - between (N+1)-D activations (N spatial + 1 channel dimensions for input and - output) to make it perform an unshared convolution with given - `kernel_shape`, `strides`, `padding` and `data_format`. - - Args: - input_shape: tuple of size N: `(d_in1, ..., d_inN)` spatial shape of the - input. - kernel_shape: tuple of size N, spatial shape of the convolutional kernel / - receptive field. - strides: tuple of size N, strides along each spatial dimension. - padding: type of padding, string `"same"` or `"valid"`. - data_format: a string, `"channels_first"` or `"channels_last"`. - - Returns: - a `np.float32`-type `np.ndarray` of shape - `(1, d_in1, ..., d_inN, 1, d_out1, ..., d_outN)` - if `data_format == `"channels_first"`, or - `(d_in1, ..., d_inN, 1, d_out1, ..., d_outN, 1)` - if `data_format == "channels_last"`. - - Raises: - ValueError: if `data_format` is neither `"channels_first"` nor - `"channels_last"`. - """ - mask = conv_utils.conv_kernel_mask( - input_shape=input_shape, - kernel_shape=kernel_shape, - strides=strides, - padding=padding, - ) - - ndims = int(mask.ndim / 2) - - if data_format == "channels_first": - mask = np.expand_dims(mask, 0) - mask = np.expand_dims(mask, -ndims - 1) - - elif data_format == "channels_last": - mask = np.expand_dims(mask, ndims) - mask = np.expand_dims(mask, -1) - - else: - raise ValueError("Unrecognized data_format: " + str(data_format)) - - return mask - - -def local_conv_matmul(inputs, kernel, kernel_mask, output_shape): - """Apply N-D convolution with un-shared weights using a single matmul call. - - This method outputs `inputs . (kernel * kernel_mask)` - (with `.` standing for matrix-multiply and `*` for element-wise multiply) - and requires a precomputed `kernel_mask` to zero-out weights in `kernel` and - hence perform the same operation as a convolution with un-shared - (the remaining entries in `kernel`) weights. It also does the necessary - reshapes to make `inputs` and `kernel` 2-D and `output` (N+2)-D. - - Args: - inputs: (N+2)-D tensor with shape `(batch_size, channels_in, d_in1, ..., - d_inN)` or `(batch_size, d_in1, ..., d_inN, channels_in)`. - kernel: the unshared weights for N-D convolution, - an (N+2)-D tensor of shape: `(d_in1, ..., d_inN, channels_in, - d_out2, ..., d_outN, channels_out)` or `(channels_in, d_in1, ..., - d_inN, channels_out, d_out2, ..., d_outN)`, with the ordering of - channels and spatial dimensions matching that of the input. Each - entry is the weight between a particular input and output location, - similarly to a fully-connected weight matrix. - kernel_mask: a float 0/1 mask tensor of shape: `(d_in1, ..., d_inN, 1, - d_out2, ..., d_outN, 1)` or `(1, d_in1, ..., d_inN, 1, d_out2, ..., - d_outN)`, with the ordering of singleton and spatial dimensions - matching that of the input. Mask represents the connectivity pattern - of the layer and is precomputed elsewhere based on layer parameters: - stride, padding, and the receptive field shape. - output_shape: a tuple of (N+2) elements representing the output shape: - `(batch_size, channels_out, d_out1, ..., d_outN)` or `(batch_size, - d_out1, ..., d_outN, channels_out)`, with the ordering of channels and - spatial dimensions matching that of the input. - - Returns: - Output (N+2)-D tensor with shape `output_shape`. - """ - inputs_flat = backend.reshape(inputs, (backend.shape(inputs)[0], -1)) - - kernel = kernel_mask * kernel - kernel = make_2d(kernel, split_dim=backend.ndim(kernel) // 2) - - output_flat = tf.matmul(inputs_flat, kernel, b_is_sparse=True) - output = backend.reshape( - output_flat, - [ - backend.shape(output_flat)[0], - ] - + output_shape.as_list()[1:], - ) - return output - - -def local_conv_sparse_matmul( - inputs, kernel, kernel_idxs, kernel_shape, output_shape -): - """Apply N-D convolution with unshared weights using a single sparse matmul. - - This method outputs `inputs . tf.sparse.SparseTensor(indices=kernel_idxs, - values=kernel, dense_shape=kernel_shape)`, with `.` standing for - matrix-multiply. It also reshapes `inputs` to 2-D and `output` to (N+2)-D. - - Args: - inputs: (N+2)-D tensor with shape `(batch_size, channels_in, d_in1, ..., - d_inN)` or `(batch_size, d_in1, ..., d_inN, channels_in)`. - kernel: a 1-D tensor with shape `(len(kernel_idxs),)` containing all the - weights of the layer. - kernel_idxs: a list of integer tuples representing indices in a sparse - matrix performing the un-shared convolution as a matrix-multiply. - kernel_shape: a tuple `(input_size, output_size)`, where `input_size = - channels_in * d_in1 * ... * d_inN` and `output_size = channels_out * - d_out1 * ... * d_outN`. - output_shape: a tuple of (N+2) elements representing the output shape: - `(batch_size, channels_out, d_out1, ..., d_outN)` or `(batch_size, - d_out1, ..., d_outN, channels_out)`, with the ordering of channels and - spatial dimensions matching that of the input. - - Returns: - Output (N+2)-D dense tensor with shape `output_shape`. - """ - inputs_flat = backend.reshape(inputs, (backend.shape(inputs)[0], -1)) - output_flat = tf.sparse.sparse_dense_matmul( - sp_a=tf.SparseTensor(kernel_idxs, kernel, kernel_shape), - b=inputs_flat, - adjoint_b=True, - ) - output_flat_transpose = backend.transpose(output_flat) - - output_reshaped = backend.reshape( - output_flat_transpose, - [ - backend.shape(output_flat_transpose)[0], - ] - + output_shape.as_list()[1:], - ) - return output_reshaped - - -def make_2d(tensor, split_dim): - """Reshapes an N-dimensional tensor into a 2D tensor. - - Dimensions before (excluding) and after (including) `split_dim` are grouped - together. - - Args: - tensor: a tensor of shape `(d0, ..., d(N-1))`. - split_dim: an integer from 1 to N-1, index of the dimension to group - dimensions before (excluding) and after (including). - - Returns: - Tensor of shape - `(d0 * ... * d(split_dim-1), d(split_dim) * ... * d(N-1))`. - """ - shape = tf.shape(tensor) - in_dims = shape[:split_dim] - out_dims = shape[split_dim:] - - in_size = tf.reduce_prod(in_dims) - out_size = tf.reduce_prod(out_dims) - - return tf.reshape(tensor, (in_size, out_size)) diff --git a/keras/layers/merging/BUILD b/keras/layers/merging/BUILD deleted file mode 100644 index 357606ec0f9..00000000000 --- a/keras/layers/merging/BUILD +++ /dev/null @@ -1,142 +0,0 @@ -# Description: -# Contains the Keras merging layers. - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/py/tensorflow_gnn:__subpackages__", - "//third_party/tensorflow/python/distribute:__pkg__", - "//third_party/tensorflow/python/feature_column:__pkg__", - "//third_party/tensorflow/python/training/tracking:__pkg__", - "//third_party/tensorflow/tools/pip_package:__pkg__", - "//third_party/tensorflow_models/official/projects/residual_mobilenet/modeling/backbones:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "merging", - srcs = ["__init__.py"], - srcs_version = "PY3", - deps = [ - ":add", - ":average", - ":concatenate", - ":dot", - ":maximum", - ":minimum", - ":multiply", - ":subtract", - ], -) - -py_library( - name = "base_merge", - srcs = ["base_merge.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "add", - srcs = ["add.py"], - srcs_version = "PY3", - deps = [ - ":base_merge", - ], -) - -py_library( - name = "subtract", - srcs = ["subtract.py"], - srcs_version = "PY3", - deps = [ - ":base_merge", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "multiply", - srcs = ["multiply.py"], - srcs_version = "PY3", - deps = [ - ":base_merge", - ], -) - -py_library( - name = "average", - srcs = ["average.py"], - srcs_version = "PY3", - deps = [ - ":base_merge", - ], -) - -py_library( - name = "maximum", - srcs = ["maximum.py"], - srcs_version = "PY3", - deps = [ - ":base_merge", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "minimum", - srcs = ["minimum.py"], - srcs_version = "PY3", - deps = [ - ":base_merge", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "concatenate", - srcs = ["concatenate.py"], - srcs_version = "PY3", - deps = [ - ":base_merge", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "dot", - srcs = ["dot.py"], - srcs_version = "PY3", - deps = [ - ":base_merge", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer_utils", - "//keras/utils:tf_utils", - ], -) - -tf_py_test( - name = "merging_test", - size = "medium", - srcs = ["merging_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/layers/merging/__init__.py b/keras/layers/merging/__init__.py deleted file mode 100644 index beb834f31c7..00000000000 --- a/keras/layers/merging/__init__.py +++ /dev/null @@ -1,35 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras merging layers.""" - - -# Merging functions. -# Merging layers. -from keras.layers.merging.add import Add -from keras.layers.merging.add import add -from keras.layers.merging.average import Average -from keras.layers.merging.average import average -from keras.layers.merging.concatenate import Concatenate -from keras.layers.merging.concatenate import concatenate -from keras.layers.merging.dot import Dot -from keras.layers.merging.dot import dot -from keras.layers.merging.maximum import Maximum -from keras.layers.merging.maximum import maximum -from keras.layers.merging.minimum import Minimum -from keras.layers.merging.minimum import minimum -from keras.layers.merging.multiply import Multiply -from keras.layers.merging.multiply import multiply -from keras.layers.merging.subtract import Subtract -from keras.layers.merging.subtract import subtract diff --git a/keras/layers/merging/add.py b/keras/layers/merging/add.py deleted file mode 100644 index 3df77c3efc9..00000000000 --- a/keras/layers/merging/add.py +++ /dev/null @@ -1,92 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Layer that adds several inputs.""" - - -from keras.layers.merging.base_merge import _Merge - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Add") -class Add(_Merge): - """Layer that adds a list of inputs. - - It takes as input a list of tensors, - all of the same shape, and returns - a single tensor (also of the same shape). - - Examples: - - >>> input_shape = (2, 3, 4) - >>> x1 = tf.random.normal(input_shape) - >>> x2 = tf.random.normal(input_shape) - >>> y = tf.keras.layers.Add()([x1, x2]) - >>> print(y.shape) - (2, 3, 4) - - Used in a functional model: - - >>> input1 = tf.keras.layers.Input(shape=(16,)) - >>> x1 = tf.keras.layers.Dense(8, activation='relu')(input1) - >>> input2 = tf.keras.layers.Input(shape=(32,)) - >>> x2 = tf.keras.layers.Dense(8, activation='relu')(input2) - >>> # equivalent to `added = tf.keras.layers.add([x1, x2])` - >>> added = tf.keras.layers.Add()([x1, x2]) - >>> out = tf.keras.layers.Dense(4)(added) - >>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out) - - """ - - def _merge_function(self, inputs): - output = inputs[0] - for i in range(1, len(inputs)): - output += inputs[i] - return output - - -@keras_export("keras.layers.add") -def add(inputs, **kwargs): - """Functional interface to the `tf.keras.layers.Add` layer. - - Args: - inputs: A list of input tensors with the same shape. - **kwargs: Standard layer keyword arguments. - - Returns: - A tensor as the sum of the inputs. It has the same shape as the inputs. - - Examples: - - >>> input_shape = (2, 3, 4) - >>> x1 = tf.random.normal(input_shape) - >>> x2 = tf.random.normal(input_shape) - >>> y = tf.keras.layers.add([x1, x2]) - >>> print(y.shape) - (2, 3, 4) - - Used in a functional model: - - >>> input1 = tf.keras.layers.Input(shape=(16,)) - >>> x1 = tf.keras.layers.Dense(8, activation='relu')(input1) - >>> input2 = tf.keras.layers.Input(shape=(32,)) - >>> x2 = tf.keras.layers.Dense(8, activation='relu')(input2) - >>> added = tf.keras.layers.add([x1, x2]) - >>> out = tf.keras.layers.Dense(4)(added) - >>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out) - - """ - return Add(**kwargs)(inputs) diff --git a/keras/layers/merging/average.py b/keras/layers/merging/average.py deleted file mode 100644 index 87261c16709..00000000000 --- a/keras/layers/merging/average.py +++ /dev/null @@ -1,94 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Layer that averages several inputs.""" - - -from keras.layers.merging.base_merge import _Merge - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Average") -class Average(_Merge): - """Layer that averages a list of inputs element-wise. - - It takes as input a list of tensors, all of the same shape, and returns - a single tensor (also of the same shape). - - Example: - - >>> x1 = np.ones((2, 2)) - >>> x2 = np.zeros((2, 2)) - >>> y = tf.keras.layers.Average()([x1, x2]) - >>> y.numpy().tolist() - [[0.5, 0.5], [0.5, 0.5]] - - Usage in a functional model: - - >>> input1 = tf.keras.layers.Input(shape=(16,)) - >>> x1 = tf.keras.layers.Dense(8, activation='relu')(input1) - >>> input2 = tf.keras.layers.Input(shape=(32,)) - >>> x2 = tf.keras.layers.Dense(8, activation='relu')(input2) - >>> avg = tf.keras.layers.Average()([x1, x2]) - >>> out = tf.keras.layers.Dense(4)(avg) - >>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out) - - Raises: - ValueError: If there is a shape mismatch between the inputs and the shapes - cannot be broadcasted to match. - """ - - def _merge_function(self, inputs): - output = inputs[0] - for i in range(1, len(inputs)): - output += inputs[i] - return output / len(inputs) - - -@keras_export("keras.layers.average") -def average(inputs, **kwargs): - """Functional interface to the `tf.keras.layers.Average` layer. - - Example: - - >>> x1 = np.ones((2, 2)) - >>> x2 = np.zeros((2, 2)) - >>> y = tf.keras.layers.Average()([x1, x2]) - >>> y.numpy().tolist() - [[0.5, 0.5], [0.5, 0.5]] - - Usage in a functional model: - - >>> input1 = tf.keras.layers.Input(shape=(16,)) - >>> x1 = tf.keras.layers.Dense(8, activation='relu')(input1) - >>> input2 = tf.keras.layers.Input(shape=(32,)) - >>> x2 = tf.keras.layers.Dense(8, activation='relu')(input2) - >>> avg = tf.keras.layers.Average()([x1, x2]) - >>> out = tf.keras.layers.Dense(4)(avg) - >>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out) - - Args: - inputs: A list of input tensors. - **kwargs: Standard layer keyword arguments. - - Returns: - A tensor, the average of the inputs. - - Raises: - ValueError: If there is a shape mismatch between the inputs and the shapes - cannot be broadcasted to match. - """ - return Average(**kwargs)(inputs) diff --git a/keras/layers/merging/base_merge.py b/keras/layers/merging/base_merge.py deleted file mode 100644 index 058de0a0eb2..00000000000 --- a/keras/layers/merging/base_merge.py +++ /dev/null @@ -1,242 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Private base class for layers that can merge several inputs into one.""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.utils import tf_utils - - -class _Merge(Layer): - """Generic merge layer for elementwise merge functions. - - Used to implement `Sum`, `Average`, etc. - """ - - def __init__(self, **kwargs): - """Initializes a Merge layer. - - Args: - **kwargs: standard layer keyword arguments. - """ - super().__init__(**kwargs) - self.supports_masking = True - - def _merge_function(self, inputs): - raise NotImplementedError - - def _compute_elemwise_op_output_shape(self, shape1, shape2): - """Computes the shape of the resultant of an elementwise operation. - - Args: - shape1: tuple or None. Shape of the first tensor - shape2: tuple or None. Shape of the second tensor - - Returns: - expected output shape when an element-wise operation is - carried out on 2 tensors with shapes shape1 and shape2. - tuple or None. - - Raises: - ValueError: if shape1 and shape2 are not compatible for - element-wise operations. - """ - if None in [shape1, shape2]: - return None - elif len(shape1) < len(shape2): - return self._compute_elemwise_op_output_shape(shape2, shape1) - elif not shape2: - return shape1 - output_shape = list(shape1[: -len(shape2)]) - for i, j in zip(shape1[-len(shape2) :], shape2): - if i is None or j is None: - output_shape.append(None) - elif i == 1: - output_shape.append(j) - elif j == 1: - output_shape.append(i) - else: - if i != j: - raise ValueError( - "Inputs have incompatible shapes. " - f"Received shapes {shape1} and {shape2}" - ) - output_shape.append(i) - return tuple(output_shape) - - @tf_utils.shape_type_conversion - def build(self, input_shape): - # Used purely for shape validation. - if not isinstance(input_shape[0], tuple): - raise ValueError( - "A merge layer should be called on a list of inputs. " - f"Received: input_shape={input_shape} (not a list of shapes)" - ) - if len(input_shape) < 1: - raise ValueError( - "A merge layer should be called " - "on a list of at least 1 input. " - f"Got {len(input_shape)} inputs. " - f"Full input_shape received: {input_shape}" - ) - batch_sizes = {s[0] for s in input_shape if s} - {None} - if len(batch_sizes) > 1: - raise ValueError( - "Cannot merge tensors with different batch sizes. " - f"Got tensors with shapes {input_shape}" - ) - if input_shape[0] is None: - output_shape = None - else: - output_shape = input_shape[0][1:] - for i in range(1, len(input_shape)): - if input_shape[i] is None: - shape = None - else: - shape = input_shape[i][1:] - output_shape = self._compute_elemwise_op_output_shape( - output_shape, shape - ) - # If the inputs have different ranks, we have to reshape them - # to make them broadcastable. - if None not in input_shape and len(set(map(len, input_shape))) == 1: - self._reshape_required = False - else: - self._reshape_required = True - - def call(self, inputs): - if not isinstance(inputs, (list, tuple)): - raise ValueError( - "A merge layer should be called on a list of inputs. " - f"Received: inputs={inputs} (not a list of tensors)" - ) - if self._reshape_required: - reshaped_inputs = [] - input_ndims = list(map(backend.ndim, inputs)) - if None not in input_ndims: - # If ranks of all inputs are available, - # we simply expand each of them at axis=1 - # until all of them have the same rank. - max_ndim = max(input_ndims) - for x in inputs: - x_ndim = backend.ndim(x) - for _ in range(max_ndim - x_ndim): - x = tf.expand_dims(x, axis=1) - reshaped_inputs.append(x) - return self._merge_function(reshaped_inputs) - else: - # Transpose all inputs so that batch size is the last dimension. - # (batch_size, dim1, dim2, ... ) -> (dim1, dim2, ... , - # batch_size) - transposed = False - for x in inputs: - x_ndim = backend.ndim(x) - if x_ndim is None: - x_shape = tf.shape(x) - batch_size = x_shape[0] - new_shape = backend.concatenate( - [x_shape[1:], tf.expand_dims(batch_size, axis=-1)] - ) - x_transposed = tf.reshape( - x, - tf.stack( - [batch_size, tf.reduce_prod(x_shape[1:])], - axis=0, - ), - ) - x_transposed = tf.transpose(x_transposed, perm=(1, 0)) - x_transposed = tf.reshape(x_transposed, new_shape) - reshaped_inputs.append(x_transposed) - transposed = True - elif x_ndim > 1: - dims = list(range(1, x_ndim)) + [0] - reshaped_inputs.append(tf.transpose(x, perm=dims)) - transposed = True - else: - # We don't transpose inputs if they are 1D vectors or - # scalars. - reshaped_inputs.append(x) - y = self._merge_function(reshaped_inputs) - y_ndim = backend.ndim(y) - if transposed: - # If inputs have been transposed, we have to transpose the - # output too. - if y_ndim is None: - y_shape = tf.shape(y) - y_ndim = tf.shape(y_shape)[0] - batch_size = y_shape[y_ndim - 1] - new_shape = backend.concatenate( - [ - tf.expand_dims(batch_size, axis=-1), - y_shape[: y_ndim - 1], - ] - ) - y = tf.reshape(y, (-1, batch_size)) - y = tf.transpose(y, perm=(1, 0)) - y = tf.reshape(y, new_shape) - elif y_ndim > 1: - dims = [y_ndim - 1] + list(range(y_ndim - 1)) - y = tf.transpose(y, perm=dims) - return y - else: - return self._merge_function(inputs) - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - if input_shape[0] is None: - output_shape = None - else: - output_shape = input_shape[0][1:] - for i in range(1, len(input_shape)): - if input_shape[i] is None: - shape = None - else: - shape = input_shape[i][1:] - output_shape = self._compute_elemwise_op_output_shape( - output_shape, shape - ) - batch_sizes = {s[0] for s in input_shape if s is not None} - {None} - if len(batch_sizes) == 1: - output_shape = (list(batch_sizes)[0],) + output_shape - else: - output_shape = (None,) + output_shape - return output_shape - - def compute_mask(self, inputs, mask=None): - if mask is None: - return None - if not isinstance(mask, (tuple, list)): - raise ValueError(f"`mask` should be a list. Received: mask={mask}") - if not isinstance(inputs, (tuple, list)): - raise ValueError( - f"`inputs` should be a list. Received: inputs={inputs}" - ) - if len(mask) != len(inputs): - raise ValueError( - "The lists `inputs` and `mask` should have the same length. " - f"Received: inputs={inputs} of length {len(inputs)}, and " - f"mask={mask} of length {len(mask)}" - ) - if all(m is None for m in mask): - return None - masks = [tf.expand_dims(m, axis=0) for m in mask if m is not None] - return backend.all( - backend.concatenate(masks, axis=0), axis=0, keepdims=False - ) - - def get_config(self): - return super().get_config() diff --git a/keras/layers/merging/concatenate.py b/keras/layers/merging/concatenate.py deleted file mode 100644 index 3818e332d60..00000000000 --- a/keras/layers/merging/concatenate.py +++ /dev/null @@ -1,231 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Layer that concatenates several inputs.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.layers.merging.base_merge import _Merge -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Concatenate") -class Concatenate(_Merge): - """Layer that concatenates a list of inputs. - - It takes as input a list of tensors, all of the same shape except - for the concatenation axis, and returns a single tensor that is the - concatenation of all inputs. - - >>> x = np.arange(20).reshape(2, 2, 5) - >>> print(x) - [[[ 0 1 2 3 4] - [ 5 6 7 8 9]] - [[10 11 12 13 14] - [15 16 17 18 19]]] - >>> y = np.arange(20, 30).reshape(2, 1, 5) - >>> print(y) - [[[20 21 22 23 24]] - [[25 26 27 28 29]]] - >>> tf.keras.layers.Concatenate(axis=1)([x, y]) - - - >>> x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2)) - >>> x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2)) - >>> concatted = tf.keras.layers.Concatenate()([x1, x2]) - >>> concatted.shape - TensorShape([5, 16]) - - """ - - def __init__(self, axis=-1, **kwargs): - """Instantiates a Concatenate layer. - - >>> x = np.arange(20).reshape(2, 2, 5) - >>> print(x) - [[[ 0 1 2 3 4] - [ 5 6 7 8 9]] - [[10 11 12 13 14] - [15 16 17 18 19]]] - >>> y = np.arange(20, 30).reshape(2, 1, 5) - >>> print(y) - [[[20 21 22 23 24]] - [[25 26 27 28 29]]] - >>> tf.keras.layers.Concatenate(axis=1)([x, y]) - - - Args: - axis: Axis along which to concatenate. - **kwargs: standard layer keyword arguments. - """ - super().__init__(**kwargs) - self.axis = axis - self.supports_masking = True - self._reshape_required = False - - @tf_utils.shape_type_conversion - def build(self, input_shape): - # Used purely for shape validation. - if len(input_shape) < 1 or not isinstance(input_shape[0], tuple): - raise ValueError( - "A `Concatenate` layer should be called on a list of " - f"at least 1 input. Received: input_shape={input_shape}" - ) - if all(shape is None for shape in input_shape): - return - reduced_inputs_shapes = [list(shape) for shape in input_shape] - shape_set = set() - for i in range(len(reduced_inputs_shapes)): - del reduced_inputs_shapes[i][self.axis] - shape_set.add(tuple(reduced_inputs_shapes[i])) - - if len(shape_set) != 1: - err_msg = ( - "A `Concatenate` layer requires inputs with matching shapes " - "except for the concatenation axis. " - f"Received: input_shape={input_shape}" - ) - # Make sure all the shapes have same ranks. - ranks = set(len(shape) for shape in shape_set) - if len(ranks) != 1: - raise ValueError(err_msg) - # Get the only rank for the set. - (rank,) = ranks - for axis in range(rank): - # Skip the Nones in the shape since they are dynamic, also the - # axis for concat has been removed above. - unique_dims = set( - shape[axis] - for shape in shape_set - if shape[axis] is not None - ) - if len(unique_dims) > 1: - raise ValueError(err_msg) - - def _merge_function(self, inputs): - return backend.concatenate(inputs, axis=self.axis) - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - if (not isinstance(input_shape, (tuple, list))) or ( - not isinstance(input_shape[0], (tuple, list)) - ): - # The tf_utils.shape_type_conversion decorator turns tensorshapes - # into tuples, so we need to verify that `input_shape` is a - # list/tuple, *and* that the individual elements are themselves - # shape tuples. - raise ValueError( - "A `Concatenate` layer should be called on a list of inputs. " - f"Received: input_shape={input_shape}" - ) - input_shapes = input_shape - output_shape = list(input_shapes[0]) - for shape in input_shapes[1:]: - if output_shape[self.axis] is None or shape[self.axis] is None: - output_shape[self.axis] = None - break - output_shape[self.axis] += shape[self.axis] - return tuple(output_shape) - - def compute_mask(self, inputs, mask=None): - if mask is None: - return None - if not isinstance(mask, (tuple, list)): - raise ValueError(f"`mask` should be a list. Received mask={mask}") - if not isinstance(inputs, (tuple, list)): - raise ValueError( - f"`inputs` should be a list. Received: inputs={inputs}" - ) - if len(mask) != len(inputs): - raise ValueError( - "The lists `inputs` and `mask` should have the same length. " - f"Received: inputs={inputs} of length {len(inputs)}, and " - f"mask={mask} of length {len(mask)}" - ) - if all(m is None for m in mask): - return None - # Make a list of masks while making sure - # the dimensionality of each mask - # is the same as the corresponding input. - masks = [] - for input_i, mask_i in zip(inputs, mask): - if mask_i is None: - # Input is unmasked. Append all 1s to masks, - masks.append(tf.ones_like(input_i, dtype="bool")) - elif backend.ndim(mask_i) < backend.ndim(input_i): - # Mask is smaller than the input, expand it - masks.append(tf.expand_dims(mask_i, axis=-1)) - else: - masks.append(mask_i) - concatenated = backend.concatenate(masks, axis=self.axis) - return backend.all(concatenated, axis=-1, keepdims=False) - - def get_config(self): - config = { - "axis": self.axis, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.layers.concatenate") -def concatenate(inputs, axis=-1, **kwargs): - """Functional interface to the `Concatenate` layer. - - >>> x = np.arange(20).reshape(2, 2, 5) - >>> print(x) - [[[ 0 1 2 3 4] - [ 5 6 7 8 9]] - [[10 11 12 13 14] - [15 16 17 18 19]]] - >>> y = np.arange(20, 30).reshape(2, 1, 5) - >>> print(y) - [[[20 21 22 23 24]] - [[25 26 27 28 29]]] - >>> tf.keras.layers.concatenate([x, y], - ... axis=1) - - - Args: - inputs: A list of input tensors. - axis: Concatenation axis. - **kwargs: Standard layer keyword arguments. - - Returns: - A tensor, the concatenation of the inputs alongside axis `axis`. - """ - return Concatenate(axis=axis, **kwargs)(inputs) diff --git a/keras/layers/merging/dot.py b/keras/layers/merging/dot.py deleted file mode 100644 index 27fb4835092..00000000000 --- a/keras/layers/merging/dot.py +++ /dev/null @@ -1,226 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Layer that computes the dot product between two inputs.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer_utils -from keras.layers.merging.base_merge import _Merge -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Dot") -class Dot(_Merge): - """Layer that computes a dot product between samples in two tensors. - - E.g. if applied to a list of two tensors `a` and `b` of shape - `(batch_size, n)`, the output will be a tensor of shape `(batch_size, 1)` - where each entry `i` will be the dot product between - `a[i]` and `b[i]`. - - >>> x = np.arange(10).reshape(1, 5, 2) - >>> print(x) - [[[0 1] - [2 3] - [4 5] - [6 7] - [8 9]]] - >>> y = np.arange(10, 20).reshape(1, 2, 5) - >>> print(y) - [[[10 11 12 13 14] - [15 16 17 18 19]]] - >>> tf.keras.layers.Dot(axes=(1, 2))([x, y]) - - - >>> x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2)) - >>> x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2)) - >>> dotted = tf.keras.layers.Dot(axes=1)([x1, x2]) - >>> dotted.shape - TensorShape([5, 1]) - - - """ - - def __init__(self, axes, normalize=False, **kwargs): - """Initializes a layer that computes the element-wise dot product. - - >>> x = np.arange(10).reshape(1, 5, 2) - >>> print(x) - [[[0 1] - [2 3] - [4 5] - [6 7] - [8 9]]] - >>> y = np.arange(10, 20).reshape(1, 2, 5) - >>> print(y) - [[[10 11 12 13 14] - [15 16 17 18 19]]] - >>> tf.keras.layers.Dot(axes=(1, 2))([x, y]) - - - Args: - axes: Integer or tuple of integers, - axis or axes along which to take the dot product. If a tuple, should - be two integers corresponding to the desired axis from the first - input and the desired axis from the second input, respectively. Note - that the size of the two selected axes must match. - normalize: Whether to L2-normalize samples along the - dot product axis before taking the dot product. - If set to True, then the output of the dot product - is the cosine proximity between the two samples. - **kwargs: Standard layer keyword arguments. - """ - super().__init__(**kwargs) - if not isinstance(axes, int): - if not isinstance(axes, (list, tuple)): - raise TypeError( - "Invalid type for argument `axes`: it should be " - f"a list or an int. Received: axes={axes}" - ) - if len(axes) != 2: - raise ValueError( - "Invalid format for argument `axes`: it should contain two " - f"elements. Received: axes={axes}" - ) - if not isinstance(axes[0], int) or not isinstance(axes[1], int): - raise ValueError( - "Invalid format for argument `axes`: list elements should " - f"be integers. Received: axes={axes}" - ) - self.axes = axes - self.normalize = normalize - self.supports_masking = True - self._reshape_required = False - - @tf_utils.shape_type_conversion - def build(self, input_shape): - # Used purely for shape validation. - if not isinstance(input_shape[0], tuple) or len(input_shape) != 2: - raise ValueError( - "A `Dot` layer should be called on a list of 2 inputs. " - f"Received: input_shape={input_shape}" - ) - shape1 = input_shape[0] - shape2 = input_shape[1] - if shape1 is None or shape2 is None: - return - if isinstance(self.axes, int): - if self.axes < 0: - axes = [self.axes % len(shape1), self.axes % len(shape2)] - else: - axes = [self.axes] * 2 - else: - axes = self.axes - if shape1[axes[0]] != shape2[axes[1]]: - raise ValueError( - "Incompatible input shapes: " - f"axis values {shape1[axes[0]]} (at axis {axes[0]}) != " - f"{shape2[axes[1]]} (at axis {axes[1]}). " - f"Full input shapes: {shape1}, {shape2}" - ) - - def _merge_function(self, inputs): - base_layer_utils.no_ragged_support(inputs, self.name) - if len(inputs) != 2: - raise ValueError( - "A `Dot` layer should be called on exactly 2 inputs. " - f"Received: inputs={inputs}" - ) - x1 = inputs[0] - x2 = inputs[1] - if isinstance(self.axes, int): - if self.axes < 0: - axes = [ - self.axes % backend.ndim(x1), - self.axes % backend.ndim(x2), - ] - else: - axes = [self.axes] * 2 - else: - axes = [] - for i in range(len(self.axes)): - if self.axes[i] < 0: - axes.append(self.axes[i] % backend.ndim(inputs[i])) - else: - axes.append(self.axes[i]) - if self.normalize: - x1 = tf.linalg.l2_normalize(x1, axis=axes[0]) - x2 = tf.linalg.l2_normalize(x2, axis=axes[1]) - output = backend.batch_dot(x1, x2, axes) - return output - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - if not isinstance(input_shape, (tuple, list)) or len(input_shape) != 2: - raise ValueError( - "A `Dot` layer should be called on a list of 2 inputs. " - f"Received: input_shape={input_shape}" - ) - shape1 = list(input_shape[0]) - shape2 = list(input_shape[1]) - if isinstance(self.axes, int): - if self.axes < 0: - axes = [self.axes % len(shape1), self.axes % len(shape2)] - else: - axes = [self.axes] * 2 - else: - axes = self.axes - shape1.pop(axes[0]) - shape2.pop(axes[1]) - shape2.pop(0) - output_shape = shape1 + shape2 - if len(output_shape) == 1: - output_shape += [1] - return tuple(output_shape) - - def compute_mask(self, inputs, mask=None): - return None - - def get_config(self): - config = { - "axes": self.axes, - "normalize": self.normalize, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.layers.dot") -def dot(inputs, axes, normalize=False, **kwargs): - """Functional interface to the `Dot` layer. - - Args: - inputs: A list of input tensors (at least 2). - axes: Integer or tuple of integers, - axis or axes along which to take the dot product. - normalize: Whether to L2-normalize samples along the - dot product axis before taking the dot product. - If set to True, then the output of the dot product - is the cosine proximity between the two samples. - **kwargs: Standard layer keyword arguments. - - Returns: - A tensor, the dot product of the samples from the inputs. - """ - return Dot(axes=axes, normalize=normalize, **kwargs)(inputs) diff --git a/keras/layers/merging/maximum.py b/keras/layers/merging/maximum.py deleted file mode 100644 index de939d2856c..00000000000 --- a/keras/layers/merging/maximum.py +++ /dev/null @@ -1,85 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Layer that computes the maximum (element-wise) of several inputs.""" - - -import tensorflow.compat.v2 as tf - -from keras.layers.merging.base_merge import _Merge - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Maximum") -class Maximum(_Merge): - """Layer that computes the maximum (element-wise) a list of inputs. - - It takes as input a list of tensors, all of the same shape, and returns - a single tensor (also of the same shape). - - >>> tf.keras.layers.Maximum()([np.arange(5).reshape(5, 1), - ... np.arange(5, 10).reshape(5, 1)]) - - - >>> x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2)) - >>> x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2)) - >>> maxed = tf.keras.layers.Maximum()([x1, x2]) - >>> maxed.shape - TensorShape([5, 8]) - """ - - def _merge_function(self, inputs): - output = inputs[0] - for i in range(1, len(inputs)): - output = tf.maximum(output, inputs[i]) - return output - - -@keras_export("keras.layers.maximum") -def maximum(inputs, **kwargs): - """Functional interface to compute maximum (element-wise) list of `inputs`. - - This is equivalent to the `tf.keras.layers.Maximum` layer. - - For example: - - ```python - input1 = tf.keras.layers.Input(shape=(16,)) - x1 = tf.keras.layers.Dense(8, activation='relu')(input1) #shape=(None, 8) - input2 = tf.keras.layers.Input(shape=(32,)) - x2 = tf.keras.layers.Dense(8, activation='relu')(input2) #shape=(None, 8) - max_inp=tf.keras.layers.maximum([x1,x2]) #shape=(None, 8) - out = tf.keras.layers.Dense(4)(max_inp) - model = tf.keras.models.Model(inputs=[input1, input2], outputs=out) - ``` - - Args: - inputs: A list of input tensors of same shape. - **kwargs: Standard layer keyword arguments. - - Returns: - A tensor (of same shape as input tensor) with the element-wise - maximum of the inputs. - - Raises: - ValueError: If input tensors are of different shape. - """ - return Maximum(**kwargs)(inputs) diff --git a/keras/layers/merging/merging_test.py b/keras/layers/merging/merging_test.py deleted file mode 100644 index 1f3b597467e..00000000000 --- a/keras/layers/merging/merging_test.py +++ /dev/null @@ -1,501 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for merging layers.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import backend -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import tf_inspect - - -@test_combinations.run_all_keras_modes -class MergingLayersTest(test_combinations.TestCase): - def test_add(self): - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(4, 5)) - i3 = keras.layers.Input(shape=(4, 5)) - - add_layer = keras.layers.Add() - o = add_layer([i1, i2, i3]) - self.assertListEqual(o.shape.as_list(), [None, 4, 5]) - model = keras.models.Model([i1, i2, i3], o) - model.run_eagerly = test_utils.should_run_eagerly() - - x1 = np.random.random((2, 4, 5)) - x2 = np.random.random((2, 4, 5)) - x3 = np.random.random((2, 4, 5)) - out = model.predict([x1, x2, x3]) - self.assertEqual(out.shape, (2, 4, 5)) - self.assertAllClose(out, x1 + x2 + x3, atol=1e-4) - - self.assertIsNone( - add_layer.compute_mask([i1, i2, i3], [None, None, None]) - ) - self.assertTrue( - np.all( - backend.eval( - add_layer.compute_mask( - [i1, i2], [backend.variable(x1), backend.variable(x2)] - ) - ) - ) - ) - - with self.assertRaisesRegex(ValueError, "`mask` should be a list."): - add_layer.compute_mask([i1, i2, i3], x1) - with self.assertRaisesRegex(ValueError, "`inputs` should be a list."): - add_layer.compute_mask(i1, [None, None, None]) - with self.assertRaisesRegex( - ValueError, " should have the same length." - ): - add_layer.compute_mask([i1, i2, i3], [None, None]) - - def test_subtract(self): - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(4, 5)) - i3 = keras.layers.Input(shape=(4, 5)) - - subtract_layer = keras.layers.Subtract() - o = subtract_layer([i1, i2]) - self.assertListEqual(o.shape.as_list(), [None, 4, 5]) - model = keras.models.Model([i1, i2], o) - model.run_eagerly = test_utils.should_run_eagerly() - - x1 = np.random.random((2, 4, 5)) - x2 = np.random.random((2, 4, 5)) - out = model.predict([x1, x2]) - self.assertEqual(out.shape, (2, 4, 5)) - self.assertAllClose(out, x1 - x2, atol=1e-4) - - self.assertIsNone(subtract_layer.compute_mask([i1, i2], [None, None])) - self.assertTrue( - np.all( - backend.eval( - subtract_layer.compute_mask( - [i1, i2], [backend.variable(x1), backend.variable(x2)] - ) - ) - ) - ) - - with self.assertRaisesRegex(ValueError, "`mask` should be a list."): - subtract_layer.compute_mask([i1, i2], x1) - with self.assertRaisesRegex(ValueError, "`inputs` should be a list."): - subtract_layer.compute_mask(i1, [None, None]) - with self.assertRaisesRegex( - ValueError, "layer should be called on exactly 2 inputs" - ): - subtract_layer([i1, i2, i3]) - with self.assertRaisesRegex( - ValueError, "layer should be called on exactly 2 inputs" - ): - subtract_layer([i1]) - - def test_multiply(self): - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(4, 5)) - i3 = keras.layers.Input(shape=(4, 5)) - o = keras.layers.multiply([i1, i2, i3]) - self.assertListEqual(o.shape.as_list(), [None, 4, 5]) - model = keras.models.Model([i1, i2, i3], o) - model.run_eagerly = test_utils.should_run_eagerly() - - x1 = np.random.random((2, 4, 5)) - x2 = np.random.random((2, 4, 5)) - x3 = np.random.random((2, 4, 5)) - out = model.predict([x1, x2, x3]) - self.assertEqual(out.shape, (2, 4, 5)) - self.assertAllClose(out, x1 * x2 * x3, atol=1e-4) - - def test_average(self): - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(4, 5)) - o = keras.layers.average([i1, i2]) - self.assertListEqual(o.shape.as_list(), [None, 4, 5]) - model = keras.models.Model([i1, i2], o) - model.run_eagerly = test_utils.should_run_eagerly() - - x1 = np.random.random((2, 4, 5)) - x2 = np.random.random((2, 4, 5)) - out = model.predict([x1, x2]) - self.assertEqual(out.shape, (2, 4, 5)) - self.assertAllClose(out, 0.5 * (x1 + x2), atol=1e-4) - - def test_maximum(self): - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(4, 5)) - o = keras.layers.maximum([i1, i2]) - self.assertListEqual(o.shape.as_list(), [None, 4, 5]) - model = keras.models.Model([i1, i2], o) - model.run_eagerly = test_utils.should_run_eagerly() - - x1 = np.random.random((2, 4, 5)) - x2 = np.random.random((2, 4, 5)) - out = model.predict([x1, x2]) - self.assertEqual(out.shape, (2, 4, 5)) - self.assertAllClose(out, np.maximum(x1, x2), atol=1e-4) - - def test_minimum(self): - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(4, 5)) - o = keras.layers.minimum([i1, i2]) - self.assertListEqual(o.shape.as_list(), [None, 4, 5]) - model = keras.models.Model([i1, i2], o) - model.run_eagerly = test_utils.should_run_eagerly() - - x1 = np.random.random((2, 4, 5)) - x2 = np.random.random((2, 4, 5)) - out = model.predict([x1, x2]) - self.assertEqual(out.shape, (2, 4, 5)) - self.assertAllClose(out, np.minimum(x1, x2), atol=1e-4) - - def test_concatenate(self): - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(4, 5)) - concat_layer = keras.layers.Concatenate(axis=1) - o = concat_layer([i1, i2]) - self.assertListEqual(o.shape.as_list(), [None, 8, 5]) - model = keras.models.Model([i1, i2], o) - model.run_eagerly = test_utils.should_run_eagerly() - - x1 = np.random.random((2, 4, 5)) - x2 = np.random.random((2, 4, 5)) - out = model.predict([x1, x2]) - self.assertEqual(out.shape, (2, 8, 5)) - self.assertAllClose(out, np.concatenate([x1, x2], axis=1), atol=1e-4) - - self.assertIsNone(concat_layer.compute_mask([i1, i2], [None, None])) - self.assertTrue( - np.all( - backend.eval( - concat_layer.compute_mask( - [i1, i2], [backend.variable(x1), backend.variable(x2)] - ) - ) - ) - ) - - # Should work with unit-length input. - unit_length_o = concat_layer([i1]) - self.assertListEqual(unit_length_o.shape.as_list(), i1.shape.as_list()) - - with self.assertRaisesRegex(ValueError, "`mask` should be a list."): - concat_layer.compute_mask([i1, i2], x1) - with self.assertRaisesRegex(ValueError, "`inputs` should be a list."): - concat_layer.compute_mask(i1, [None, None]) - with self.assertRaisesRegex(ValueError, "should have the same length"): - concat_layer.compute_mask([i1, i2], [None]) - with self.assertRaisesRegex( - ValueError, "layer should be called on a list of inputs" - ): - concat_layer(i1) - - def test_concatenate_numpy_inputs(self): - if tf.executing_eagerly(): - layer = keras.layers.Concatenate() - x, y = np.ones((10, 10)), np.ones((10, 10)) - self.assertAllEqual(np.ones((10, 20)), layer([x, y])) - - def test_dot(self): - i1 = keras.layers.Input(shape=(4,)) - i2 = keras.layers.Input(shape=(4,)) - o = keras.layers.dot([i1, i2], axes=1) - self.assertListEqual(o.shape.as_list(), [None, 1]) - model = keras.models.Model([i1, i2], o) - model.run_eagerly = test_utils.should_run_eagerly() - _ = keras.layers.Dot(axes=1).get_config() - - x1 = np.random.random((2, 4)) - x2 = np.random.random((2, 4)) - out = model.predict([x1, x2]) - self.assertEqual(out.shape, (2, 1)) - expected = np.zeros((2, 1)) - expected[0, 0] = np.dot(x1[0], x2[0]) - expected[1, 0] = np.dot(x1[1], x2[1]) - self.assertAllClose(out, expected, atol=1e-4) - - # Test with negative tuple of axes. - o = keras.layers.dot([i1, i2], axes=(-1, -1)) - self.assertListEqual(o.shape.as_list(), [None, 1]) - model = keras.models.Model([i1, i2], o) - model.run_eagerly = test_utils.should_run_eagerly() - out = model.predict([x1, x2]) - self.assertEqual(out.shape, (2, 1)) - self.assertAllClose(out, expected, atol=1e-4) - - # test compute_output_shape - layer = keras.layers.Dot(axes=-1) - self.assertEqual(layer.compute_output_shape([(4, 5), (4, 5)]), (4, 1)) - - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - layer=[ - keras.layers.Add, - keras.layers.Subtract, - keras.layers.Multiply, - keras.layers.Minimum, - keras.layers.Maximum, - keras.layers.Average, - ] - ) - ) - def test_merging_with_ragged_input(self, layer): - ragged_data = tf.ragged.constant( - [[1.0, 1.0, 1.0], [1.0, 1.0], [1.0, 1.0, 1.0, 1.0]], ragged_rank=1 - ) - dense_data = ragged_data.to_tensor() - input1 = keras.Input(shape=(None,), ragged=True) - input2 = keras.Input(shape=(None,), ragged=True) - out = layer()([input1, input2]) - model = keras.models.Model(inputs=[input1, input2], outputs=out) - out_ragged = model.predict([ragged_data, ragged_data], steps=1) - out_ragged = convert_ragged_tensor_value(out_ragged).to_tensor() - - input1 = keras.Input(shape=(None,)) - input2 = keras.Input(shape=(None,)) - out = layer()([input1, input2]) - model = keras.models.Model(inputs=[input1, input2], outputs=out) - out_dense = model.predict([dense_data, dense_data], steps=1) - - self.assertAllEqual(out_dense, out_ragged) - - def test_concatenate_with_ragged_input(self): - ragged1 = tf.ragged.constant( - [[1.0, 1.0], [1.0], [1.0, 1.0, 1.0]], ragged_rank=1 - ) - ragged2 = tf.ragged.constant( - [[2.0, 2.0, 2.0], [2.0], [2.0, 2.0]], ragged_rank=1 - ) - expected_concatenated_ragged = tf.ragged.constant( - [[1.0, 1.0, 2.0, 2.0, 2.0], [1.0, 2.0], [1.0, 1.0, 1.0, 2.0, 2.0]], - ragged_rank=1, - ) - input1 = keras.Input(shape=(None,), ragged=True) - input2 = keras.Input(shape=(None,), ragged=True) - out = keras.layers.Concatenate(axis=1)([input1, input2]) - model = keras.models.Model(inputs=[input1, input2], outputs=out) - out_ragged = model.predict([ragged1, ragged2], steps=1) - self.assertAllEqual(out_ragged, expected_concatenated_ragged) - - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - layer=[ - keras.layers.Add, - keras.layers.Subtract, - keras.layers.Multiply, - keras.layers.Minimum, - keras.layers.Maximum, - keras.layers.Average, - ] - ) - ) - def test_merging_with_scalar_input(self, layer): - x1 = np.array((1)) - x2 = np.array((2)) - out = layer()([x1, x2]) - self.assertEqual(out.shape, ()) - - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - layer=[ - keras.layers.Add, - keras.layers.add, - keras.layers.Average, - keras.layers.average, - keras.layers.Concatenate, - keras.layers.concatenate, - keras.layers.Maximum, - keras.layers.maximum, - keras.layers.Minimum, - keras.layers.minimum, - keras.layers.Multiply, - keras.layers.multiply, - ] - ) - ) - def test_single_element(self, layer): - # Instantiate the Layer subclasses - if tf_inspect.isclass(layer) and issubclass(layer, keras.layers.Layer): - layer = layer() - - # Processing a single element list should behave as identity. - i1 = keras.layers.Input(shape=(4, 5)) - o = layer([i1]) - self.assertListEqual(o.shape.as_list(), [None, 4, 5]) - model = keras.models.Model(i1, o) - model.run_eagerly = test_utils.should_run_eagerly() - - x1 = np.random.random((2, 4, 5)) - out = model.predict(x1) - self.assertEqual(out.shape, (2, 4, 5)) - self.assertAllClose(out, x1) - - # A single element must be passed as a list, not by itself. - with self.assertRaisesRegex(ValueError, "called on a list"): - layer(i1) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MergingLayersTestNoExecution(tf.test.TestCase): - def test_add_elementwise_errors(self): - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(4, 6)) - with self.assertRaises(ValueError): - keras.layers.add([i1, i2]) - with self.assertRaises(ValueError): - keras.layers.add(i1) - - def test_concatenate_errors(self): - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(3, 5)) - with self.assertRaisesRegex(ValueError, "inputs with matching shapes"): - keras.layers.concatenate([i1, i2], axis=-1) - with self.assertRaisesRegex(ValueError, "called on a list"): - keras.layers.concatenate(i1, axis=-1) - - def test_concatenate_with_partial_shape(self): - i1 = keras.layers.Input(shape=(5,), batch_size=32) - i2 = keras.layers.Input(shape=(5,)) - i3 = keras.layers.Input(shape=(4, 5), batch_size=32) - i4 = keras.layers.Input(shape=(None,), batch_size=64) - i5 = keras.layers.Input(shape=(7,)) - - # Valid case since the i2 has a dynamic batch size. - keras.layers.concatenate([i1, i2], axis=-1) - - # Different rank - with self.assertRaisesRegex(ValueError, "inputs with matching shapes"): - keras.layers.concatenate([i1, i3], axis=-1) - - # Valid case with partial dimension information - keras.layers.concatenate([i1, i4], axis=0) - keras.layers.concatenate([i2, i4], axis=0) - keras.layers.concatenate([i2, i4], axis=1) - keras.layers.concatenate([i1, i2, i4], axis=0) - keras.layers.concatenate([i1, i5], axis=1) - - # Mismatch in batch dimension. - with self.assertRaisesRegex(ValueError, "inputs with matching shapes"): - keras.layers.concatenate([i1, i4], axis=-1) - - with self.assertRaisesRegex(ValueError, "inputs with matching shapes"): - keras.layers.concatenate([i1, i2, i4], axis=-1) - - def test_dot_errors(self): - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(4, 6)) - i3 = keras.layers.Input(shape=(4, 6)) - with self.assertRaises(ValueError): - keras.layers.dot([i1, i2], axes=-1) - with self.assertRaises(ValueError): - keras.layers.dot(i1, axes=-1) - with self.assertRaises(ValueError): - keras.layers.dot([i1], axes=-1) - with self.assertRaises(ValueError): - keras.layers.dot([i1, i2, i3], axes=-1) - with self.assertRaises(ValueError): - dot = keras.layers.Dot(1) - dot.compute_output_shape(1) - - def test_subtract(self): - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(4, 5)) - y = keras.layers.subtract([i1, i2]) - self.assertEqual(y.shape.as_list(), [None, 4, 5]) - - # Test invalid use cases - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(3, 5)) - with self.assertRaises(ValueError): - keras.layers.subtract([i1, i2]) - with self.assertRaises(ValueError): - keras.layers.subtract([i1, i1, i1]) - - def test_add_masking(self): - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(4, 5)) - m1 = keras.layers.Masking()(i1) - layer = keras.layers.Add() - o = layer([m1, i2]) - self.assertListEqual(o.shape.as_list(), [None, 4, 5]) - mask = layer.output_mask - self.assertListEqual(mask.shape.as_list(), [None, 4]) - - def test_add_dynamic_shape(self): - i1 = keras.Input(batch_shape=(4, None), dtype="float32") - i2 = keras.Input(batch_shape=(4, 5), dtype="float32") - layer = keras.layers.Add() - o = layer([i1, i2]) - self.assertListEqual(o.shape.as_list(), [4, 5]) - - def test_concatenate_masking(self): - i1 = keras.layers.Input(shape=(4, 5)) - i2 = keras.layers.Input(shape=(4, 5)) - m1 = keras.layers.Masking()(i1) - layer = keras.layers.Concatenate() - o = layer([m1, i2]) - self.assertListEqual(o.shape.as_list(), [None, 4, 10]) - mask = layer.output_mask - self.assertListEqual(mask.shape.as_list(), [None, 4]) - - def test_concatenate_sparse_shape(self): - i1 = keras.layers.Input(shape=(1,), batch_size=2, sparse=True) - i2 = keras.layers.Input(shape=(2,), batch_size=2, sparse=True) - layer = keras.layers.Concatenate(axis=1) - o = layer([i1, i2]) - self.assertListEqual(o.shape.as_list(), [2, 3]) - - # Make sure it also respect None as the batch size - i1 = keras.layers.Input(shape=(1,), sparse=True) - i2 = keras.layers.Input(shape=(2,), sparse=True) - layer = keras.layers.Concatenate(axis=1) - o = layer([i1, i2]) - self.assertListEqual(o.shape.as_list(), [None, 3]) - - def test_concatenate_user_changes_to_input_structure(self): - a = keras.layers.Input(shape=(4, 5)) - struct = [a, a] - concat1 = keras.layers.Concatenate(1) - b = concat1(struct) - struct.append(b) - concat2 = keras.layers.Concatenate(1) - c = concat2(struct) - - # Checks that the append to `struct` doesn't affect `concat1`s - # node data. - self.assertLen(concat1.inbound_nodes[0].input_tensors, 2) - self.assertLen(concat2.inbound_nodes[0].input_tensors, 3) - - keras.Model(a, c) # Ensure model can be built. - - -def convert_ragged_tensor_value(inputs): - if isinstance(inputs, tf.compat.v1.ragged.RaggedTensorValue): - flat_values = tf.convert_to_tensor( - value=inputs.flat_values, name="flat_values" - ) - return tf.RaggedTensor.from_nested_row_splits( - flat_values, inputs.nested_row_splits, validate=False - ) - return inputs - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/merging/minimum.py b/keras/layers/merging/minimum.py deleted file mode 100644 index 4bfbd784e77..00000000000 --- a/keras/layers/merging/minimum.py +++ /dev/null @@ -1,67 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Layer that computes the minimum (element-wise) of several inputs.""" - - -import tensorflow.compat.v2 as tf - -from keras.layers.merging.base_merge import _Merge - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Minimum") -class Minimum(_Merge): - """Layer that computes the minimum (element-wise) a list of inputs. - - It takes as input a list of tensors, all of the same shape, and returns - a single tensor (also of the same shape). - - >>> tf.keras.layers.Minimum()([np.arange(5).reshape(5, 1), - ... np.arange(5, 10).reshape(5, 1)]) - - - >>> x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2)) - >>> x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2)) - >>> minned = tf.keras.layers.Minimum()([x1, x2]) - >>> minned.shape - TensorShape([5, 8]) - """ - - def _merge_function(self, inputs): - output = inputs[0] - for i in range(1, len(inputs)): - output = tf.minimum(output, inputs[i]) - return output - - -@keras_export("keras.layers.minimum") -def minimum(inputs, **kwargs): - """Functional interface to the `Minimum` layer. - - Args: - inputs: A list of input tensors. - **kwargs: Standard layer keyword arguments. - - Returns: - A tensor, the element-wise minimum of the inputs. - """ - return Minimum(**kwargs)(inputs) diff --git a/keras/layers/merging/multiply.py b/keras/layers/merging/multiply.py deleted file mode 100644 index caae29c7907..00000000000 --- a/keras/layers/merging/multiply.py +++ /dev/null @@ -1,84 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Layer that multiplies (element-wise) several inputs.""" - - -from keras.layers.merging.base_merge import _Merge - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Multiply") -class Multiply(_Merge): - """Layer that multiplies (element-wise) a list of inputs. - - It takes as input a list of tensors, all of the same shape, and returns - a single tensor (also of the same shape). - - >>> tf.keras.layers.Multiply()([np.arange(5).reshape(5, 1), - ... np.arange(5, 10).reshape(5, 1)]) - - - >>> x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2)) - >>> x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2)) - >>> multiplied = tf.keras.layers.Multiply()([x1, x2]) - >>> multiplied.shape - TensorShape([5, 8]) - """ - - def _merge_function(self, inputs): - output = inputs[0] - for i in range(1, len(inputs)): - output = output * inputs[i] - return output - - -@keras_export("keras.layers.multiply") -def multiply(inputs, **kwargs): - """Functional interface to the `Multiply` layer. - - Example: - - >>> x1 = np.arange(3.0) - >>> x2 = np.arange(3.0) - >>> tf.keras.layers.multiply([x1, x2]) - - - Usage in a functional model: - - >>> input1 = tf.keras.layers.Input(shape=(16,)) - >>> x1 = tf.keras.layers.Dense( - ... 8, activation='relu')(input1) #shape=(None, 8) - >>> input2 = tf.keras.layers.Input(shape=(32,)) - >>> x2 = tf.keras.layers.Dense( - ... 8, activation='relu')(input2) #shape=(None, 8) - >>> out = tf.keras.layers.multiply([x1,x2]) #shape=(None, 8) - >>> out = tf.keras.layers.Dense(4)(out) - >>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out) - - Args: - inputs: A list of input tensors. - **kwargs: Standard layer keyword arguments. - - Returns: - A tensor, the element-wise product of the inputs. - """ - return Multiply(**kwargs)(inputs) diff --git a/keras/layers/merging/subtract.py b/keras/layers/merging/subtract.py deleted file mode 100644 index de55fa516ea..00000000000 --- a/keras/layers/merging/subtract.py +++ /dev/null @@ -1,93 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Layer that subtracts two inputs.""" - - -from keras.layers.merging.base_merge import _Merge -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Subtract") -class Subtract(_Merge): - """Layer that subtracts two inputs. - - It takes as input a list of tensors of size 2, both of the same shape, and - returns a single tensor, (inputs[0] - inputs[1]), also of the same shape. - - Examples: - - ```python - import keras - - input1 = keras.layers.Input(shape=(16,)) - x1 = keras.layers.Dense(8, activation='relu')(input1) - input2 = keras.layers.Input(shape=(32,)) - x2 = keras.layers.Dense(8, activation='relu')(input2) - # Equivalent to subtracted = keras.layers.subtract([x1, x2]) - subtracted = keras.layers.Subtract()([x1, x2]) - - out = keras.layers.Dense(4)(subtracted) - model = keras.models.Model(inputs=[input1, input2], outputs=out) - ``` - """ - - @tf_utils.shape_type_conversion - def build(self, input_shape): - super().build(input_shape) - if len(input_shape) != 2: - raise ValueError( - "A `Subtract` layer should be called on exactly 2 inputs. " - f"Received: input_shape={input_shape}" - ) - - def _merge_function(self, inputs): - if len(inputs) != 2: - raise ValueError( - "A `Subtract` layer should be called on exactly 2 inputs. " - f"Received: inputs={inputs}" - ) - return inputs[0] - inputs[1] - - -@keras_export("keras.layers.subtract") -def subtract(inputs, **kwargs): - """Functional interface to the `Subtract` layer. - - Args: - inputs: A list of input tensors (exactly 2). - **kwargs: Standard layer keyword arguments. - - Returns: - A tensor, the difference of the inputs. - - Examples: - - ```python - import keras - - input1 = keras.layers.Input(shape=(16,)) - x1 = keras.layers.Dense(8, activation='relu')(input1) - input2 = keras.layers.Input(shape=(32,)) - x2 = keras.layers.Dense(8, activation='relu')(input2) - subtracted = keras.layers.subtract([x1, x2]) - - out = keras.layers.Dense(4)(subtracted) - model = keras.models.Model(inputs=[input1, input2], outputs=out) - ``` - """ - return Subtract(**kwargs)(inputs) diff --git a/keras/layers/noise.py b/keras/layers/noise.py deleted file mode 100644 index 7e479a435fd..00000000000 --- a/keras/layers/noise.py +++ /dev/null @@ -1,26 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Layers that operate regularization via the addition of noise.""" - - -from keras.layers.regularization.alpha_dropout import AlphaDropout # noqa: F401 - -# Regularization layers imported for backwards namespace compatibility -from keras.layers.regularization.gaussian_dropout import ( # noqa: F401,E501 - GaussianDropout, -) -from keras.layers.regularization.gaussian_noise import ( # noqa: F401,E501 - GaussianNoise, -) diff --git a/keras/layers/normalization/BUILD b/keras/layers/normalization/BUILD deleted file mode 100644 index 4ec8dc5f101..00000000000 --- a/keras/layers/normalization/BUILD +++ /dev/null @@ -1,211 +0,0 @@ -# Description: -# Contains the Keras normalization layers (internal TensorFlow version). - -# buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -# buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - # TODO(scottzhu): Remove non-keras deps from TF. - default_visibility = ["//keras:friends"], - licenses = ["notice"], -) - -py_library( - name = "normalization", - srcs = [ - "__init__.py", - ], - srcs_version = "PY3", - deps = [ - ":batch_normalization", - ":batch_normalization_v1", - ":group_normalization", - ":layer_normalization", - ":spectral_normalization", - ":unit_normalization", - ], -) - -py_library( - name = "batch_normalization", - srcs = ["batch_normalization.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras:constraints", - "//keras:regularizers", - "//keras/dtensor:utils", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/initializers", - "//keras/utils:control_flow_util", - ], -) - -py_library( - name = "batch_normalization_v1", - srcs = ["batch_normalization_v1.py"], - srcs_version = "PY3", - deps = [ - ":batch_normalization", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "group_normalization", - srcs = ["group_normalization.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:constraints", - "//keras:regularizers", - "//keras/dtensor:utils", - "//keras/engine:base_layer", - "//keras/initializers", - ], -) - -py_library( - name = "layer_normalization", - srcs = ["layer_normalization.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:constraints", - "//keras:regularizers", - "//keras/dtensor:utils", - "//keras/engine:base_layer", - "//keras/initializers", - ], -) - -py_library( - name = "unit_normalization", - srcs = ["unit_normalization.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - ], -) - -py_library( - name = "spectral_normalization", - srcs = ["spectral_normalization.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - ], -) - -cuda_py_test( - name = "group_normalization_test", - size = "medium", - srcs = ["group_normalization_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "notsan", - ], - xla_tags = [ - "no_cuda_asan", # times out - ], - deps = [ - ":group_normalization", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/layers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -cuda_py_test( - name = "batch_normalization_test", - size = "medium", - srcs = ["batch_normalization_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "notsan", - ], - deps = [ - ":batch_normalization", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/layers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "batch_normalization_dtensor_test", - srcs = ["batch_normalization_dtensor_test.py"], - tags = ["no_oss"], - deps = [ - ":batch_normalization", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/dtensor:test_util", - "//keras/testing_infra:test_utils", - "//third_party/tensorflow/python/distribute/experimental:mirrored_strategy", - ], -) - -cuda_py_test( - name = "layer_normalization_test", - size = "medium", - srcs = ["layer_normalization_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "notsan", - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "unit_normalization_test", - size = "small", - srcs = ["unit_normalization_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "spectral_normalization_test", - size = "small", - srcs = ["spectral_normalization_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/layers/normalization/__init__.py b/keras/layers/normalization/__init__.py deleted file mode 100644 index e69de29bb2d..00000000000 diff --git a/keras/layers/normalization/batch_normalization.py b/keras/layers/normalization/batch_normalization.py deleted file mode 100644 index 442ce8af2bc..00000000000 --- a/keras/layers/normalization/batch_normalization.py +++ /dev/null @@ -1,1590 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""The V2 implementation of Normalization layers.""" - -import warnings - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.dtensor import utils -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import control_flow_util -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.ops.control_flow_ops import ( - get_enclosing_xla_context, -) -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util import deprecation -from tensorflow.python.util.tf_export import keras_export - - -class BatchNormalizationBase(Layer): - r"""Layer that normalizes its inputs. - - Batch normalization applies a transformation that maintains the mean output - close to 0 and the output standard deviation close to 1. - - Importantly, batch normalization works differently during training and - during inference. - - **During training** (i.e. when using `fit()` or when calling the layer/model - with the argument `training=True`), the layer normalizes its output using - the mean and standard deviation of the current batch of inputs. That is to - say, for each channel being normalized, the layer returns - `gamma * (batch - mean(batch)) / sqrt(var(batch) + epsilon) + beta`, where: - - - `epsilon` is small constant (configurable as part of the constructor - arguments) - - `gamma` is a learned scaling factor (initialized as 1), which - can be disabled by passing `scale=False` to the constructor. - - `beta` is a learned offset factor (initialized as 0), which - can be disabled by passing `center=False` to the constructor. - - **During inference** (i.e. when using `evaluate()` or `predict()`) or when - calling the layer/model with the argument `training=False` (which is the - default), the layer normalizes its output using a moving average of the - mean and standard deviation of the batches it has seen during training. That - is to say, it returns - `gamma * (batch - self.moving_mean) / sqrt(self.moving_var+epsilon) + beta`. - - `self.moving_mean` and `self.moving_var` are non-trainable variables that - are updated each time the layer in called in training mode, as such: - - - `moving_mean = moving_mean * momentum + mean(batch) * (1 - momentum)` - - `moving_var = moving_var * momentum + var(batch) * (1 - momentum)` - - As such, the layer will only normalize its inputs during inference - *after having been trained on data that has similar statistics as the - inference data*. - - Args: - axis: Integer or a list of integers, the axis that should be normalized - (typically the features axis). For instance, after a `Conv2D` layer with - `data_format="channels_first"`, set `axis=1` in `BatchNormalization`. - momentum: Momentum for the moving average. - epsilon: Small float added to variance to avoid dividing by zero. - center: If True, add offset of `beta` to normalized tensor. If False, - `beta` is ignored. - scale: If True, multiply by `gamma`. If False, `gamma` is not used. When - the next layer is linear (also e.g. `nn.relu`), this can be disabled - since the scaling will be done by the next layer. - beta_initializer: Initializer for the beta weight. - gamma_initializer: Initializer for the gamma weight. - moving_mean_initializer: Initializer for the moving mean. - moving_variance_initializer: Initializer for the moving variance. - beta_regularizer: Optional regularizer for the beta weight. - gamma_regularizer: Optional regularizer for the gamma weight. - beta_constraint: Optional constraint for the beta weight. - gamma_constraint: Optional constraint for the gamma weight. - renorm: Whether to use [Batch Renormalization]( - https://arxiv.org/abs/1702.03275). This adds extra variables during - training. The inference is the same for either value of this - parameter. - renorm_clipping: A dictionary that may map keys 'rmax', 'rmin', 'dmax' to - scalar `Tensors` used to clip the renorm correction. The correction `(r, - d)` is used as `corrected_value = normalized_value * r + d`, with `r` - clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, - dmax are set to inf, 0, inf, respectively. - renorm_momentum: Momentum used to update the moving means and standard - deviations with renorm. Unlike `momentum`, this affects training and - should be neither too small (which would add noise) nor too large (which - would give stale estimates). Note that `momentum` is still applied to - get the means and variances for inference. - fused: if `True`, use a faster, fused implementation, or raise a - ValueError if the fused implementation cannot be used. If `None`, use - the faster implementation if possible. If False, do not used the fused - implementation. Note that in TensorFlow 1.x, the meaning of - `fused=True` is different: if `False`, the layer uses the - system-recommended implementation. You cannot use `fused=True` if a - mask is passed in the `call()` method. - trainable: Boolean, if `True` the variables will be marked as trainable. - virtual_batch_size: An `int`. By default, `virtual_batch_size` is `None`, - which means batch normalization is performed across the whole batch. - When `virtual_batch_size` is not `None`, instead perform "Ghost Batch - Normalization", which creates virtual sub-batches which are each - normalized separately (with shared gamma, beta, and moving statistics). - Must divide the actual batch size during execution. - adjustment: A function taking the `Tensor` containing the (dynamic) shape - of the input tensor and returning a pair (scale, bias) to apply to the - normalized values (before gamma and beta), only during training. For - example, if `axis=-1`, - `adjustment = lambda shape: ( - tf.random.uniform(shape[-1:], 0.93, 1.07), - tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized - value by up to 7% up or down, then shift the result by up to 0.1 - (with independent scaling and bias for each feature but shared - across all examples), and finally apply gamma and/or beta. If - `None`, no adjustment is applied. Cannot be specified if - virtual_batch_size is specified. - synchronized: If True, synchronizes the global batch statistics (mean and - variance) for the layer across all devices at each training step in a - distributed training strategy. If False, each replica uses its own - local batch statistics. Only relevant when used inside a - `tf.distribute` strategy. - - Call arguments: - inputs: Input tensor (of any rank). - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. - - `training=True`: The layer will normalize its inputs using the mean - and variance of the current batch of inputs. - - `training=False`: The layer will normalize its inputs using the mean - and variance of its moving statistics, learned during training. - mask: Binary tensor of shape broadcastable to `inputs` tensor, indicating - the positions for which the mean and variance should be computed. - - Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of - integers, does not include the samples axis) when using this layer as the - first layer in a model. - - Output shape: Same shape as input. - - Reference: - - [Ioffe and Szegedy, 2015](https://arxiv.org/abs/1502.03167). - """ - - # By default, the base class uses V2 behavior. The BatchNormalization V1 - # subclass sets this to False to use the V1 behavior. - _USE_V2_BEHAVIOR = True - - def __init__( - self, - axis=-1, - momentum=0.99, - epsilon=1e-3, - center=True, - scale=True, - beta_initializer="zeros", - gamma_initializer="ones", - moving_mean_initializer="zeros", - moving_variance_initializer="ones", - beta_regularizer=None, - gamma_regularizer=None, - beta_constraint=None, - gamma_constraint=None, - renorm=False, - renorm_clipping=None, - renorm_momentum=0.99, - fused=None, - trainable=True, - virtual_batch_size=None, - adjustment=None, - name=None, - synchronized=False, - **kwargs, - ): - super().__init__(name=name, **kwargs) - if isinstance(axis, (list, tuple)): - self.axis = axis[:] - elif isinstance(axis, int): - self.axis = axis - else: - raise TypeError( - "Expected an int or a list/tuple of ints for the " - "argument 'axis', but received: %r" % axis - ) - if synchronized and fused: - raise ValueError( - "`fused=True` is not supported when `synchronized=True`." - ) - self.synchronized = synchronized - if self.synchronized: - fused = False - - self.momentum = momentum - self.epsilon = epsilon - self.center = center - self.scale = scale - self.beta_initializer = initializers.get(beta_initializer) - self.gamma_initializer = initializers.get(gamma_initializer) - self.moving_mean_initializer = initializers.get(moving_mean_initializer) - self.moving_variance_initializer = initializers.get( - moving_variance_initializer - ) - self.beta_regularizer = regularizers.get(beta_regularizer) - self.gamma_regularizer = regularizers.get(gamma_regularizer) - self.beta_constraint = constraints.get(beta_constraint) - self.gamma_constraint = constraints.get(gamma_constraint) - self.renorm = renorm - self.virtual_batch_size = virtual_batch_size - self.adjustment = adjustment - if self._USE_V2_BEHAVIOR: - if fused: - self._raise_if_fused_cannot_be_used() - # We leave fused as None if self._fused_can_be_used()==True, since - # we still may set it to False in self.build() if the input rank is - # not 4. - elif fused is None and not self._fused_can_be_used(): - fused = False - elif fused is None: - fused = True - self.supports_masking = True - - self.fused = fused - self._bessels_correction_test_only = True - self.trainable = trainable - - if renorm: - renorm_clipping = renorm_clipping or {} - keys = ["rmax", "rmin", "dmax"] - if set(renorm_clipping) - set(keys): - raise ValueError( - "Received invalid keys for `renorm_clipping` argument: " - f"{renorm_clipping}. Supported values: {keys}." - ) - self.renorm_clipping = renorm_clipping - self.renorm_momentum = renorm_momentum - - def _raise_if_fused_cannot_be_used(self): - """Raises a ValueError if fused implementation cannot be used. - - In addition to the checks done in this function, the input tensors rank - must be 4 or 5. The input rank check can only be done once the input - shape is known. - """ - # Note the ValueErrors in this function are caught and not reraised in - # _fused_can_be_used(). No other exception besides ValueError should be - # raised here. - - # Currently fused batch norm doesn't support renorm. It also only - # supports a channel dimension on axis 1 or 3 (rank=4) / 1 or 4 (rank5), - # when no virtual batch size or adjustment is used. - if self.renorm: - raise ValueError( - "Passing both `fused=True` and `renorm=True` is not supported" - ) - axis = [self.axis] if isinstance(self.axis, int) else self.axis - # Axis -3 is equivalent to 1, and axis -1 is equivalent to 3, when the - # input rank is 4. Similarly, the valid axis is -4, -1, 1, 4 when the - # rank is 5. The combination of ranks and axes will be checked later. - if len(axis) > 1 or axis[0] not in (-4, -3, -1, 1, 3, 4): - raise ValueError( - "Passing `fused=True` is only supported when axis is 1 " - "or 3 for input rank = 4 or 1 or 4 for input rank = 5. " - "Got axis %s" % (axis,) - ) - if self.virtual_batch_size is not None: - raise ValueError( - "Passing `fused=True` is not supported when " - "`virtual_batch_size` is specified." - ) - if self.adjustment is not None: - raise ValueError( - "Passing `fused=True` is not supported when " - "`adjustment` is specified." - ) - # TODO(reedwm): Support fp64 in FusedBatchNorm then remove this check. - if self._compute_dtype not in ("float16", "bfloat16", "float32", None): - raise ValueError( - "Passing `fused=True` is only supported when the compute " - "dtype is float16, bfloat16, or float32. Got dtype: %s" - % (self._compute_dtype,) - ) - - def _fused_can_be_used(self): - try: - self._raise_if_fused_cannot_be_used() - return True - except ValueError: - return False - - @property - def trainable(self): - return self._trainable - - @trainable.setter - def trainable(self, value): - self._trainable = value - - @property - def _param_dtype(self): - # Raise parameters of fp16 batch norm to fp32 - if self.dtype == tf.float16 or self.dtype == tf.bfloat16: - return tf.float32 - else: - return self.dtype or tf.float32 - - def build(self, input_shape): - self.axis = tf_utils.validate_axis(self.axis, input_shape) - input_shape = tf.TensorShape(input_shape) - rank = input_shape.rank - - if self.virtual_batch_size is not None: - if self.virtual_batch_size <= 0: - raise ValueError( - "`virtual_batch_size` must be a positive integer that " - "divides the true batch size of the input tensor. " - f"Received: virtual_batch_size={self.virtual_batch_size}" - ) - # If using virtual batches, the first dimension must be the batch - # dimension and cannot be the batch norm axis - if 0 in self.axis: - raise ValueError( - "When using `virtual_batch_size`, the batch dimension " - "must be 0 and thus axis cannot include 0. " - f"Received axis={self.axis}" - ) - if self.adjustment is not None: - raise ValueError( - "When using `virtual_batch_size`, adjustment cannot " - "be specified" - ) - - if self.fused in (None, True): - # TODO(yaozhang): if input is not 4D, reshape it to 4D and reshape - # the output back to its original shape accordingly. - if self._USE_V2_BEHAVIOR: - if self.fused is None: - self.fused = rank in (4, 5) - elif self.fused and rank not in (4, 5): - raise ValueError( - "Batch normalization layers with `fused=True` only " - "support 4D or 5D input tensors. " - f"Received tensor with shape: {tuple(input_shape)}" - ) - else: - assert self.fused is not None - self.fused = rank in (4, 5) and self._fused_can_be_used() - # TODO(chrisying): fused batch norm is currently not supported for - # multi-axis batch norm and by extension virtual batches. In some - # cases, it might be possible to use fused batch norm but would - # require reshaping the Tensor to 4D with the axis in 1 or 3 - # (preferred 1) which is particularly tricky. A compromise might be - # to just support the most common use case (turning 5D w/ virtual - # batch to NCHW) - - if self.fused: - if self.axis == [1] and rank == 4: - self._data_format = "NCHW" - elif self.axis == [1] and rank == 5: - self._data_format = "NCDHW" - elif self.axis == [3] and rank == 4: - self._data_format = "NHWC" - elif self.axis == [4] and rank == 5: - self._data_format = "NDHWC" - elif rank == 5: - # 5D tensors that can be passed in but should not use fused - # batch norm due to unsupported axis. - self.fused = False - else: - if rank == 4: - raise ValueError( - "Unsupported axis. The use of `fused=True` is only " - "possible with `axis=1` or `axis=3` for 4D input " - f"tensors. Received: axis={tuple(self.axis)}" - ) - else: - raise ValueError( - "Unsupported axis. The use of `fused=True` is only " - "possible with `axis=1` or `axis=4` for 5D input " - f"tensors. Received: axis={tuple(self.axis)}" - ) - - axis_to_dim = {x: input_shape.dims[x].value for x in self.axis} - for x in axis_to_dim: - if axis_to_dim[x] is None: - raise ValueError( - "Input has undefined `axis` dimension. Received input " - f"with shape {tuple(input_shape)} " - f"and axis={tuple(self.axis)}" - ) - self.input_spec = InputSpec(ndim=rank, axes=axis_to_dim) - - if len(axis_to_dim) == 1 and self.virtual_batch_size is None: - # Single axis batch norm (most common/default use-case) - param_shape = (list(axis_to_dim.values())[0],) - else: - # Parameter shape is the original shape but with 1 in all non-axis - # dims - param_shape = [ - axis_to_dim[i] if i in axis_to_dim else 1 for i in range(rank) - ] - if self.virtual_batch_size is not None: - # When using virtual batches, add an extra dim at index 1 - param_shape.insert(1, 1) - for idx, x in enumerate(self.axis): - self.axis[idx] = x + 1 # Account for added dimension - self._param_shape = param_shape - if self.scale: - self.gamma = self.add_weight( - name="gamma", - shape=param_shape, - dtype=self._param_dtype, - initializer=self.gamma_initializer, - regularizer=self.gamma_regularizer, - constraint=self.gamma_constraint, - trainable=True, - experimental_autocast=False, - ) - else: - self.gamma = None - - if self.center: - self.beta = self.add_weight( - name="beta", - shape=param_shape, - dtype=self._param_dtype, - initializer=self.beta_initializer, - regularizer=self.beta_regularizer, - constraint=self.beta_constraint, - trainable=True, - experimental_autocast=False, - ) - else: - self.beta = None - - try: - # Disable variable partitioning when creating the moving mean and - # variance - if hasattr(self, "_scope") and self._scope: - partitioner = self._scope.partitioner - self._scope.set_partitioner(None) - else: - partitioner = None - self.moving_mean = self.add_weight( - name="moving_mean", - shape=param_shape, - dtype=self._param_dtype, - initializer=self.moving_mean_initializer, - synchronization=tf.VariableSynchronization.ON_READ, - trainable=False, - aggregation=tf.VariableAggregation.MEAN, - experimental_autocast=False, - ) - - self.moving_variance = self.add_weight( - name="moving_variance", - shape=param_shape, - dtype=self._param_dtype, - initializer=self.moving_variance_initializer, - synchronization=tf.VariableSynchronization.ON_READ, - trainable=False, - aggregation=tf.VariableAggregation.MEAN, - experimental_autocast=False, - ) - - if self.renorm: - # In batch renormalization we track the inference moving stddev - # instead of the moving variance to more closely align with the - # paper. - def moving_stddev_initializer(*args, **kwargs): - return tf.sqrt( - self.moving_variance_initializer(*args, **kwargs) - ) - - with tf.distribute.get_strategy().extended.colocate_vars_with( - self.moving_variance - ): - self.moving_stddev = self.add_weight( - name="moving_stddev", - shape=param_shape, - dtype=self._param_dtype, - initializer=moving_stddev_initializer, - synchronization=tf.VariableSynchronization.ON_READ, - trainable=False, - aggregation=tf.VariableAggregation.MEAN, - experimental_autocast=False, - ) - - # Create variables to maintain the moving mean and standard - # deviation. These are used in training and thus are different - # from the moving averages above. The renorm variables are - # colocated with moving_mean and moving_stddev. - # NOTE: below, the outer `with device` block causes the current - # device stack to be cleared. The nested ones use a `lambda` to - # set the desired device and ignore any devices that may be set - # by the custom getter. - def _renorm_variable(name, shape, initializer="zeros"): - """Create a renorm variable.""" - var = self.add_weight( - name=name, - shape=shape, - dtype=self._param_dtype, - initializer=initializer, - synchronization=tf.VariableSynchronization.ON_READ, - trainable=False, - aggregation=tf.VariableAggregation.MEAN, - experimental_autocast=False, - ) - return var - - with tf.distribute.get_strategy().extended.colocate_vars_with( - self.moving_mean - ): - self.renorm_mean = _renorm_variable( - "renorm_mean", param_shape, self.moving_mean_initializer - ) - with tf.distribute.get_strategy().extended.colocate_vars_with( - self.moving_stddev - ): - self.renorm_stddev = _renorm_variable( - "renorm_stddev", param_shape, moving_stddev_initializer - ) - finally: - if partitioner: - self._scope.set_partitioner(partitioner) - self.built = True - - def call(self, inputs, training=None, mask=None): - inputs = tf.cast(inputs, self.compute_dtype) - training = self._get_training_value(training) - # Determine a boolean value for `training`: could be True, False, or - # None. - training_value = control_flow_util.constant_value(training) - _raise_for_non_sync_bn_with_renorm_and_dtensor_strategy( - synchronized=self.synchronized, - training=training, - renorm=self.renorm, - ) - - if self.virtual_batch_size is not None: - # Virtual batches (aka ghost batches) can be simulated by reshaping - # the Tensor and reusing the existing batch norm implementation - original_shape = tf.shape(inputs) - original_shape = tf.concat( - [tf.constant([-1]), original_shape[1:]], axis=0 - ) - - if tf.__internal__.tf2.enabled(): - expanded_shape = ( - [self.virtual_batch_size, -1] if training_value else [-1, 1] - ) - expanded_shape = tf.concat( - [ - tf.constant(expanded_shape), - original_shape[1:], - ], - axis=0, - ) - else: - # Preserve incorrect legacy behavior for backwards compatibility - expanded_shape = tf.concat( - [ - tf.constant([self.virtual_batch_size, -1]), - original_shape[1:], - ], - axis=0, - ) - - # Will cause errors if virtual_batch_size does not divide the batch - # size - inputs = tf.reshape(inputs, expanded_shape) - - def undo_virtual_batching(outputs): - outputs = tf.reshape(outputs, original_shape) - return outputs - - if self.fused: - outputs = self._fused_batch_norm( - inputs, mask=mask, training=training - ) - if self.virtual_batch_size is not None: - # Currently never reaches here since fused_batch_norm does not - # support virtual batching - outputs = undo_virtual_batching(outputs) - return outputs - - inputs_dtype = inputs.dtype.base_dtype - if inputs_dtype in (tf.float16, tf.bfloat16): - # Do all math in float32 if given 16-bit inputs for numeric - # stability. In particular, it's very easy for variance to overflow - # in float16 and for safety we also choose to cast bfloat16 to - # float32. - inputs = tf.cast(inputs, tf.float32) - - # Compute the axes along which to reduce the mean / variance - input_shape = inputs.shape - ndims = len(input_shape) - reduction_axes = [i for i in range(ndims) if i not in self.axis] - if self.virtual_batch_size is not None: - del reduction_axes[1] # Do not reduce along virtual batch dim - - # Broadcasting only necessary for single-axis batch norm where the axis - # is not the last dimension - broadcast_shape = [1] * ndims - broadcast_shape[self.axis[0]] = input_shape.dims[self.axis[0]].value - - def _broadcast(v): - if ( - v is not None - and len(v.shape) != ndims - and reduction_axes != list(range(ndims - 1)) - ): - return tf.reshape(v, broadcast_shape) - return v - - scale, offset = _broadcast(self.gamma), _broadcast(self.beta) - - def _compose_transforms(scale, offset, then_scale, then_offset): - if then_scale is not None: - scale *= then_scale - offset *= then_scale - if then_offset is not None: - offset += then_offset - return (scale, offset) - - if training_value == False: # noqa: E712 - mean, variance = self.moving_mean, self.moving_variance - else: - # The following long block are handling mean/variance update during - # the training stage in various of different settings. - if self.adjustment: - adj_scale, adj_bias = self.adjustment(tf.shape(inputs)) - # Adjust only during training. - adj_scale = control_flow_util.smart_cond( - training, lambda: adj_scale, lambda: tf.ones_like(adj_scale) - ) - adj_bias = control_flow_util.smart_cond( - training, lambda: adj_bias, lambda: tf.zeros_like(adj_bias) - ) - scale, offset = _compose_transforms( - adj_scale, adj_bias, scale, offset - ) - - # Some of the computations here are not necessary when - # training==False but not a constant. However, this makes the code - # simpler. - keep_dims = ( - self.virtual_batch_size is not None or len(self.axis) > 1 - ) - mean, variance = self._moments( - tf.cast(inputs, self._param_dtype), - reduction_axes, - keep_dims=keep_dims, - mask=mask, - ) - - moving_mean = self.moving_mean - moving_variance = self.moving_variance - - mean = control_flow_util.smart_cond( - training, - lambda: mean, - lambda: tf.convert_to_tensor(moving_mean), - ) - variance = control_flow_util.smart_cond( - training, - lambda: variance, - lambda: tf.convert_to_tensor(moving_variance), - ) - - if self.virtual_batch_size is not None: - # This isn't strictly correct since in ghost batch norm, you are - # supposed to sequentially update the moving_mean and - # moving_variance with each sub-batch. However, since the moving - # statistics are only used during evaluation, it is more - # efficient to just update in one step and should not make a - # significant difference in the result. - new_mean = tf.reduce_mean(mean, axis=1, keepdims=True) - new_variance = tf.reduce_mean(variance, axis=1, keepdims=True) - else: - if ( - utils.running_with_dtensor_strategy() - and not self.synchronized - ): - new_mean = tf.math.reduce_mean(mean, axis=reduction_axes) - new_variance = tf.math.reduce_mean( - variance, axis=reduction_axes - ) - else: - new_mean, new_variance = mean, variance - - if self._support_zero_size_input(): - # Keras assumes that batch dimension is the first dimension for - # Batch Normalization. - input_batch_size = tf.shape(inputs)[0] - else: - input_batch_size = None - - if self.renorm: - ( - r, - d, - new_mean, - new_variance, - ) = self._renorm_correction_and_moments( - new_mean, new_variance, training, input_batch_size - ) - # When training, the normalized values (say, x) will be - # transformed as x * gamma + beta without renorm, and (x * r + - # d) * gamma + beta = x * (r * gamma) + (d * gamma + beta) with - # renorm. - r = _broadcast(tf.stop_gradient(r, name="renorm_r")) - d = _broadcast(tf.stop_gradient(d, name="renorm_d")) - scale, offset = _compose_transforms(r, d, scale, offset) - - def _do_update(var, value): - """Compute the updates for mean and variance.""" - return self._assign_moving_average( - var, value, self.momentum, input_batch_size - ) - - def mean_update(): - true_branch = lambda: _do_update(self.moving_mean, new_mean) - false_branch = lambda: self.moving_mean - return control_flow_util.smart_cond( - training, true_branch, false_branch - ) - - def variance_update(): - """Update the moving variance.""" - - def true_branch_renorm(): - # We apply epsilon as part of the moving_stddev to mirror - # the training code path. - moving_stddev = _do_update( - self.moving_stddev, tf.sqrt(new_variance + self.epsilon) - ) - return self._assign_new_value( - self.moving_variance, - # Apply relu in case floating point rounding causes it - # to go negative. - backend.relu( - moving_stddev * moving_stddev - self.epsilon - ), - ) - - if self.renorm: - true_branch = true_branch_renorm - else: - true_branch = lambda: _do_update( - self.moving_variance, new_variance - ) - - false_branch = lambda: self.moving_variance - return control_flow_util.smart_cond( - training, true_branch, false_branch - ) - - self.add_update(mean_update) - self.add_update(variance_update) - # End of handling mean/variance calculation and update. - - mean = tf.cast(mean, inputs.dtype) - variance = tf.cast(variance, inputs.dtype) - if offset is not None: - offset = tf.cast(offset, inputs.dtype) - if scale is not None: - scale = tf.cast(scale, inputs.dtype) - outputs = tf.nn.batch_normalization( - inputs, - _broadcast(mean), - _broadcast(variance), - offset, - scale, - self.epsilon, - ) - if inputs_dtype in (tf.float16, tf.bfloat16): - outputs = tf.cast(outputs, inputs_dtype) - - # If some components of the shape got lost due to adjustments, fix that. - outputs.set_shape(input_shape) - - if self.virtual_batch_size is not None: - outputs = undo_virtual_batching(outputs) - return outputs - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = { - "axis": self.axis, - "momentum": self.momentum, - "epsilon": self.epsilon, - "center": self.center, - "scale": self.scale, - "beta_initializer": initializers.serialize(self.beta_initializer), - "gamma_initializer": initializers.serialize(self.gamma_initializer), - "moving_mean_initializer": initializers.serialize( - self.moving_mean_initializer - ), - "moving_variance_initializer": initializers.serialize( - self.moving_variance_initializer - ), - "beta_regularizer": regularizers.serialize(self.beta_regularizer), - "gamma_regularizer": regularizers.serialize(self.gamma_regularizer), - "beta_constraint": constraints.serialize(self.beta_constraint), - "gamma_constraint": constraints.serialize(self.gamma_constraint), - } - # Only add TensorFlow-specific parameters if they are set, so as to - # preserve model compatibility with external Keras. - if self.renorm: - config["renorm"] = True - config["renorm_clipping"] = self.renorm_clipping - config["renorm_momentum"] = self.renorm_momentum - if self.virtual_batch_size is not None: - config["virtual_batch_size"] = self.virtual_batch_size - # Note: adjustment is not serializable. - if self.adjustment is not None: - logging.warning( - "The `adjustment` function of this `BatchNormalization` " - "layer cannot be serialized and has been omitted from " - "the layer config. It will not be included when " - "re-creating the layer from the saved config." - ) - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - ######################## Start of private methods ########################## - def _support_zero_size_input(self): - if not tf.distribute.has_strategy(): - return False - strategy = tf.distribute.get_strategy() - # TODO(b/195085185): remove experimental_enable_get_next_as_optional - # after migrating all users. - return getattr( - strategy.extended, - "enable_partial_batch_handling", - getattr( - strategy.extended, - "experimental_enable_get_next_as_optional", - False, - ), - ) - - def _assign_moving_average(self, variable, value, momentum, inputs_size): - def calculate_update_delta(): - decay = tf.convert_to_tensor(1.0 - momentum, name="decay") - if decay.dtype != variable.dtype.base_dtype: - decay = tf.cast(decay, variable.dtype.base_dtype) - update_delta = (variable - tf.cast(value, variable.dtype)) * decay - if inputs_size is not None: - update_delta = tf.where( - inputs_size > 0, - update_delta, - backend.zeros_like(update_delta), - ) - return update_delta - - with backend.name_scope("AssignMovingAvg") as scope: - if tf.compat.v1.executing_eagerly_outside_functions(): - return variable.assign_sub(calculate_update_delta(), name=scope) - else: - with tf.compat.v1.colocate_with(variable): - return tf.compat.v1.assign_sub( - variable, calculate_update_delta(), name=scope - ) - - def _assign_new_value(self, variable, value): - with backend.name_scope("AssignNewValue") as scope: - if tf.compat.v1.executing_eagerly_outside_functions(): - return variable.assign(value, name=scope) - else: - with tf.compat.v1.colocate_with(variable): - return tf.compat.v1.assign(variable, value, name=scope) - - def _fused_batch_norm(self, inputs, mask, training): - """Returns the output of fused batch norm.""" - if mask is not None: - warnings.warn( - "Masking is not supported with `fused=True`. " - "You should either turn off fusing " - "(`fused=False`) or you should not pass a `mask` " - "argument when calling the layer. " - "For the moment `mask` will be ignored for the " - "normalization." - ) - if self.center: - beta = self.beta - else: - beta = backend.constant( - 0.0, dtype=self._param_dtype, shape=self._param_shape - ) - if self.scale: - gamma = self.gamma - else: - gamma = backend.constant( - 1.0, dtype=self._param_dtype, shape=self._param_shape - ) - - # TODO(b/129279393): Support zero batch input in non - # DistributionStrategy code as well. - if self._support_zero_size_input(): - # Keras assumes that batch dimension is the first dimension for - # Batch Normalization. - input_batch_size = tf.shape(inputs)[0] - else: - input_batch_size = None - - # TODO(rmlarsen): Support using fused avg updates for non-eager - # execution after fixing graph pattern matching and enabling - # fused_batch_norm to take exponential_avg_factor as a tensor input. - use_fused_avg_updates = ( - tf.compat.v1.executing_eagerly_outside_functions() - and isinstance(self.momentum, (float, int)) - and get_enclosing_xla_context() is None - ) - if use_fused_avg_updates: - exponential_avg_factor = 1.0 - self.momentum - else: - exponential_avg_factor = None - - def _maybe_add_or_remove_bessels_correction(variance, remove=True): - r"""Add or remove Bessel's correction.""" - # Removes Bessel's correction if remove == True, adds it otherwise. - # This is to be consistent with non-fused batch norm. Note that the - # variance computed by fused batch norm is with Bessel's correction. - # This is only used in legacy V1 batch norm tests. - if self._bessels_correction_test_only: - return variance - sample_size = tf.cast( - tf.size(inputs) / tf.size(variance), variance.dtype - ) - if remove: - factor = ( - sample_size - tf.cast(1.0, variance.dtype) - ) / sample_size - else: - factor = sample_size / ( - sample_size - tf.cast(1.0, variance.dtype) - ) - return variance * factor - - def _fused_batch_norm_training(): - return tf.compat.v1.nn.fused_batch_norm( - inputs, - gamma, - beta, - mean=self.moving_mean, - variance=_maybe_add_or_remove_bessels_correction( - self.moving_variance, remove=False - ), - epsilon=self.epsilon, - is_training=True, - data_format=self._data_format, - exponential_avg_factor=exponential_avg_factor, - ) - - def _fused_batch_norm_inference(): - return tf.compat.v1.nn.fused_batch_norm( - inputs, - gamma, - beta, - mean=self.moving_mean, - variance=self.moving_variance, - epsilon=self.epsilon, - is_training=False, - data_format=self._data_format, - ) - - output, mean, variance = control_flow_util.smart_cond( - training, _fused_batch_norm_training, _fused_batch_norm_inference - ) - variance = _maybe_add_or_remove_bessels_correction( - variance, remove=True - ) - - training_value = control_flow_util.constant_value(training) - if training_value or training_value is None: - if not use_fused_avg_updates: - if training_value is None: - momentum = control_flow_util.smart_cond( - training, lambda: self.momentum, lambda: 1.0 - ) - else: - momentum = tf.convert_to_tensor(self.momentum) - - def mean_update(): - """Update self.moving_mean with the most recent data point.""" - if use_fused_avg_updates: - if input_batch_size is not None: - new_mean = control_flow_util.smart_cond( - input_batch_size > 0, - lambda: mean, - lambda: self.moving_mean, - ) - else: - new_mean = mean - return self._assign_new_value(self.moving_mean, new_mean) - else: - return self._assign_moving_average( - self.moving_mean, mean, momentum, input_batch_size - ) - - def variance_update(): - """Update self.moving_variance with the most recent data - point.""" - if use_fused_avg_updates: - if input_batch_size is not None: - new_variance = control_flow_util.smart_cond( - input_batch_size > 0, - lambda: variance, - lambda: self.moving_variance, - ) - else: - new_variance = variance - return self._assign_new_value( - self.moving_variance, new_variance - ) - else: - return self._assign_moving_average( - self.moving_variance, - variance, - momentum, - input_batch_size, - ) - - self.add_update(mean_update) - self.add_update(variance_update) - - return output - - def _renorm_correction_and_moments( - self, mean, variance, training, inputs_size - ): - """Returns the correction and update values for renorm.""" - stddev = tf.sqrt(variance + self.epsilon) - # Compute the average mean and standard deviation, as if they were - # initialized with this batch's moments. - renorm_mean = self.renorm_mean - # Avoid divide by zero early on in training. - renorm_stddev = tf.maximum(self.renorm_stddev, tf.sqrt(self.epsilon)) - # Compute the corrections for batch renorm. - r = stddev / renorm_stddev - d = (mean - renorm_mean) / renorm_stddev - # Ensure the corrections use pre-update moving averages. - with tf.control_dependencies([r, d]): - mean = tf.identity(mean) - stddev = tf.identity(stddev) - rmin, rmax, dmax = [ - self.renorm_clipping.get(key) for key in ["rmin", "rmax", "dmax"] - ] - if rmin is not None: - r = tf.maximum(r, rmin) - if rmax is not None: - r = tf.minimum(r, rmax) - if dmax is not None: - d = tf.maximum(d, -dmax) - d = tf.minimum(d, dmax) - # When not training, use r=1, d=0. - r = control_flow_util.smart_cond( - training, lambda: r, lambda: tf.ones_like(r) - ) - d = control_flow_util.smart_cond( - training, lambda: d, lambda: tf.zeros_like(d) - ) - - def _update_renorm_variable(var, value, inputs_size): - """Updates a moving average and weight, returns the unbiased - value.""" - value = tf.identity(value) - - def _do_update(): - """Updates the var, returns the updated value.""" - new_var = self._assign_moving_average( - var, value, self.renorm_momentum, inputs_size - ) - return new_var - - def _fake_update(): - return tf.identity(var) - - return control_flow_util.smart_cond( - training, _do_update, _fake_update - ) - - # TODO(yuefengz): colocate the operations - update_new_mean = _update_renorm_variable( - self.renorm_mean, mean, inputs_size - ) - update_new_stddev = _update_renorm_variable( - self.renorm_stddev, stddev, inputs_size - ) - - # Update the inference mode moving averages with the batch value. - with tf.control_dependencies([update_new_mean, update_new_stddev]): - out_mean = tf.identity(mean) - out_variance = tf.identity(variance) - - return (r, d, out_mean, out_variance) - - def _calculate_mean_and_var( - self, inputs, reduction_axes, keep_dims, mask=None - ): - if self.synchronized: - return self._sync_calculate_mean_and_var( - inputs, reduction_axes, keep_dims, mask=mask - ) - return self._no_sync_calculate_mean_and_var( - inputs, reduction_axes, keep_dims, mask=mask - ) - - def _no_sync_calculate_mean_and_var( - self, inputs, reduction_axes, keep_dims, mask=None - ): - if mask is None: - return tf.nn.moments(inputs, reduction_axes, keepdims=keep_dims) - else: - mask_weights = tf.cast( - mask, self.compute_dtype, name="mask_weights" - ) - mask_weights = tf.expand_dims( - mask_weights, axis=-1, name="mask_weights_broadcasted" - ) - return tf.nn.weighted_moments( - inputs, - axes=reduction_axes, - frequency_weights=mask_weights, - keepdims=keep_dims, - ) - - def _sync_calculate_mean_and_var(self, x, axes, keep_dims, mask=None): - with backend.name_scope("moments"): - # The dynamic range of fp16 is too limited to support the collection - # of sufficient statistics. As a workaround we simply perform the - # operations on 32-bit floats before converting the mean and - # variance back to fp16 - y = tf.cast(x, tf.float32) if x.dtype == tf.float16 else x - replica_ctx = tf.distribute.get_replica_context() - - if not replica_ctx: - return self._no_sync_calculate_mean_and_var( - x, axes, keep_dims, mask=mask - ) - - if mask is not None: - mask_weights = tf.cast(mask, tf.float32, name="mask_weights") - mask_weights = tf.expand_dims( - mask_weights, axis=-1, name="mask_weights_broadcasted" - ) - y *= mask_weights - - local_sum = tf.reduce_sum(y, axis=axes, keepdims=True) - local_squared_sum = tf.reduce_sum( - tf.square(y), axis=axes, keepdims=True - ) - - batch_size = tf.cast(tf.shape(y)[axes[0]], tf.float32) - # TODO(b/163099951): batch the all-reduces once we sort out the - # ordering issue for NCCL. We don't have a mechanism to launch - # NCCL in the same order in each replica nowadays, so we limit - # NCCL to batch all-reduces. - y_sum = replica_ctx.all_reduce( - tf.distribute.ReduceOp.SUM, local_sum - ) - y_squared_sum = replica_ctx.all_reduce( - tf.distribute.ReduceOp.SUM, local_squared_sum - ) - global_batch_size = replica_ctx.all_reduce( - tf.distribute.ReduceOp.SUM, batch_size - ) - - axes_vals = [(tf.shape(y))[axes[i]] for i in range(1, len(axes))] - multiplier = tf.cast(tf.reduce_prod(axes_vals), tf.float32) - multiplier = multiplier * global_batch_size - - mean = y_sum / multiplier - y_squared_mean = y_squared_sum / multiplier - # var = E(x^2) - E(x)^2 - variance = y_squared_mean - tf.square(mean) - if not keep_dims: - mean = tf.squeeze(mean, axes) - variance = tf.squeeze(variance, axes) - if x.dtype == tf.float16: - return ( - tf.cast(mean, tf.float16), - tf.cast(variance, tf.float16), - ) - else: - return (mean, variance) - - def _dtensor_calculate_mean_and_var( - self, inputs, reduction_axes, keep_dims, mask=None - ): - if self.synchronized: - return self._dtensor_sync_calculate_mean_and_var( - inputs, reduction_axes, keep_dims, mask=mask - ) - return self._dtensor_no_sync_calculate_mean_and_var( - inputs, reduction_axes, keep_dims, mask=mask - ) - - def _dtensor_no_sync_calculate_mean_and_var( - self, inputs, reduction_axes, keep_dims, mask=None - ): - replica_tensor = _expand_tensor_with_local_replica_group(inputs) - local_batch_size = tf.shape(replica_tensor)[1] - - # Since we added a new axis in the beginning, all the value in - # reduction_axes need to be incremented by 1. - updated_reduction_axes = [n + 1 for n in reduction_axes] - - if mask is None: - mean, var = tf.nn.moments( - replica_tensor, updated_reduction_axes, keepdims=keep_dims - ) - else: - mask_weights = tf.cast( - mask, self.compute_dtype, name="mask_weights" - ) - mask_weights = tf.expand_dims( - mask_weights, axis=-1, name="mask_weights_broadcasted" - ) - mean, var = tf.nn.weighted_moments( - replica_tensor, - axes=updated_reduction_axes, - frequency_weights=mask_weights, - keepdims=keep_dims, - ) - # Also note that the mean/var we have here will have an extra dim in - # axis 0, which is represented for num local replica. Down the - # stream, the mean/var will be used to update the moving_mean/var - # and also normalize the inputs. To make the shape match, we will - # expand the tensor shape from [num_replica, x, y] to - # [batch_size, x, y] so that it can be properly used for - # normalization. When it reaches the mean/var update, a separate - # logic will be there to reduce_mean the value based on the batch - # dim. - mean = tf.repeat(mean, local_batch_size, axis=0) - var = tf.repeat(var, local_batch_size, axis=0) - if not keep_dims: - # We need to fill the reduced dims so that the mean/var can be - # properly broadcast to the input shapes. In the example above, - # the original reduction_axes is [0, 1]. We ignore the first 0 - # (batch dim) here since we already expand and use it as num_replica - for dim in reduction_axes[1:]: - mean = tf.expand_dims(mean, axis=dim) - var = tf.expand_dims(var, axis=dim) - return mean, var - - def _dtensor_sync_calculate_mean_and_var( - self, inputs, reduction_axes, keep_dims, mask=None - ): - # In the DTensor sync BN, since the input tensor is already in global - # context, we just need to use the normal moments/weighted_moments - # to calculate mean/var, which is same as the non-sync BN in the normal - # mode. - return self._no_sync_calculate_mean_and_var( - inputs, reduction_axes, keep_dims, mask - ) - - def _moments(self, inputs, reduction_axes, keep_dims, mask=None): - if utils.running_with_dtensor_strategy(): - mean, variance = self._dtensor_calculate_mean_and_var( - inputs, reduction_axes, keep_dims, mask=mask - ) - else: - mean, variance = self._calculate_mean_and_var( - inputs, reduction_axes, keep_dims, mask=mask - ) - # TODO(b/129279393): Support zero batch input in non - # DistributionStrategy code as well. - if self._support_zero_size_input(): - input_batch_size = tf.shape(inputs)[0] - mean = tf.where( - input_batch_size > 0, mean, backend.zeros_like(mean) - ) - variance = tf.where( - input_batch_size > 0, variance, backend.zeros_like(variance) - ) - return mean, variance - - def _get_training_value(self, training=None): - if training is None: - training = backend.learning_phase() - if self._USE_V2_BEHAVIOR: - if isinstance(training, int): - training = bool(training) - if not self.trainable: - # When the layer is not trainable, it overrides the value passed - # from model. - training = False - return training - - -@keras_export("keras.layers.BatchNormalization", v1=[]) -class BatchNormalization(BatchNormalizationBase): - """Layer that normalizes its inputs. - - Batch normalization applies a transformation that maintains the mean output - close to 0 and the output standard deviation close to 1. - - Importantly, batch normalization works differently during training and - during inference. - - **During training** (i.e. when using `fit()` or when calling the layer/model - with the argument `training=True`), the layer normalizes its output using - the mean and standard deviation of the current batch of inputs. That is to - say, for each channel being normalized, the layer returns - `gamma * (batch - mean(batch)) / sqrt(var(batch) + epsilon) + beta`, where: - - - `epsilon` is small constant (configurable as part of the constructor - arguments) - - `gamma` is a learned scaling factor (initialized as 1), which - can be disabled by passing `scale=False` to the constructor. - - `beta` is a learned offset factor (initialized as 0), which - can be disabled by passing `center=False` to the constructor. - - **During inference** (i.e. when using `evaluate()` or `predict()` or when - calling the layer/model with the argument `training=False` (which is the - default), the layer normalizes its output using a moving average of the - mean and standard deviation of the batches it has seen during training. That - is to say, it returns - `gamma * (batch - self.moving_mean) / sqrt(self.moving_var+epsilon) + beta`. - - `self.moving_mean` and `self.moving_var` are non-trainable variables that - are updated each time the layer in called in training mode, as such: - - - `moving_mean = moving_mean * momentum + mean(batch) * (1 - momentum)` - - `moving_var = moving_var * momentum + var(batch) * (1 - momentum)` - - As such, the layer will only normalize its inputs during inference - *after having been trained on data that has similar statistics as the - inference data*. - - When `synchronized=True` is set and if this layer is used within a - `tf.distribute` strategy, there will be an `allreduce` call - to aggregate batch statistics across all replicas at every - training step. Setting `synchronized` has no impact when the model is - trained without specifying any distribution strategy. - - Example usage: - - ```python - strategy = tf.distribute.MirroredStrategy() - - with strategy.scope(): - model = tf.keras.Sequential() - model.add(tf.keras.layers.Dense(16)) - model.add(tf.keras.layers.BatchNormalization(synchronized=True)) - ``` - - Args: - axis: Integer, the axis that should be normalized (typically the features - axis). For instance, after a `Conv2D` layer with - `data_format="channels_first"`, set `axis=1` in `BatchNormalization`. - momentum: Momentum for the moving average. - epsilon: Small float added to variance to avoid dividing by zero. - center: If True, add offset of `beta` to normalized tensor. If False, - `beta` is ignored. - scale: If True, multiply by `gamma`. If False, `gamma` is not used. When - the next layer is linear (also e.g. `nn.relu`), this can be disabled - since the scaling will be done by the next layer. - beta_initializer: Initializer for the beta weight. - gamma_initializer: Initializer for the gamma weight. - moving_mean_initializer: Initializer for the moving mean. - moving_variance_initializer: Initializer for the moving variance. - beta_regularizer: Optional regularizer for the beta weight. - gamma_regularizer: Optional regularizer for the gamma weight. - beta_constraint: Optional constraint for the beta weight. - gamma_constraint: Optional constraint for the gamma weight. - synchronized: If True, synchronizes the global batch statistics (mean and - variance) for the layer across all devices at each training step in a - distributed training strategy. If False, each replica uses its own - local batch statistics. Only relevant when used inside a - `tf.distribute` strategy. - - Call arguments: - inputs: Input tensor (of any rank). - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. - - `training=True`: The layer will normalize its inputs using the mean - and variance of the current batch of inputs. - - `training=False`: The layer will normalize its inputs using the mean - and variance of its moving statistics, learned during training. - - Input shape: - Arbitrary. Use the keyword argument `input_shape` (tuple of - integers, does not include the samples axis) when using this layer as the - first layer in a model. - - Output shape: - Same shape as input. - - Reference: - - [Ioffe and Szegedy, 2015](https://arxiv.org/abs/1502.03167). - - **About setting `layer.trainable = False` on a `BatchNormalization` layer:** - - The meaning of setting `layer.trainable = False` is to freeze the layer, - i.e. its internal state will not change during training: - its trainable weights will not be updated - during `fit()` or `train_on_batch()`, and its state updates will not be run. - - Usually, this does not necessarily mean that the layer is run in inference - mode (which is normally controlled by the `training` argument that can - be passed when calling a layer). "Frozen state" and "inference mode" - are two separate concepts. - - However, in the case of the `BatchNormalization` layer, **setting - `trainable = False` on the layer means that the layer will be - subsequently run in inference mode** (meaning that it will use - the moving mean and the moving variance to normalize the current batch, - rather than using the mean and variance of the current batch). - - This behavior has been introduced in TensorFlow 2.0, in order - to enable `layer.trainable = False` to produce the most commonly - expected behavior in the convnet fine-tuning use case. - - Note that: - - Setting `trainable` on an model containing other layers will - recursively set the `trainable` value of all inner layers. - - If the value of the `trainable` - attribute is changed after calling `compile()` on a model, - the new value doesn't take effect for this model - until `compile()` is called again. - """ - - _USE_V2_BEHAVIOR = True - - @utils.allow_initializer_layout - def __init__( - self, - axis=-1, - momentum=0.99, - epsilon=1e-3, - center=True, - scale=True, - beta_initializer="zeros", - gamma_initializer="ones", - moving_mean_initializer="zeros", - moving_variance_initializer="ones", - beta_regularizer=None, - gamma_regularizer=None, - beta_constraint=None, - gamma_constraint=None, - synchronized=False, - **kwargs, - ): - # Currently we only support aggregating over the global batch size. - super().__init__( - axis=axis, - momentum=momentum, - epsilon=epsilon, - center=center, - scale=scale, - beta_initializer=beta_initializer, - gamma_initializer=gamma_initializer, - moving_mean_initializer=moving_mean_initializer, - moving_variance_initializer=moving_variance_initializer, - beta_regularizer=beta_regularizer, - gamma_regularizer=gamma_regularizer, - beta_constraint=beta_constraint, - gamma_constraint=gamma_constraint, - synchronized=synchronized, - **kwargs, - ) - - -@keras_export("keras.layers.experimental.SyncBatchNormalization", v1=[]) -@deprecation.deprecated_endpoints( - "keras.layers.experimental.SyncBatchNormalization" -) -class SyncBatchNormalization(BatchNormalizationBase): - """Deprecated. Please use `tf.keras.layers.BatchNormalization` instead. - - Caution: `tf.keras.layers.experimental.SyncBatchNormalization` endpoint is - deprecated and will be removed in a future release. Please use - `tf.keras.layers.BatchNormalization` with parameter `synchronized` - set to True - """ - - def __init__( - self, - axis=-1, - momentum=0.99, - epsilon=1e-3, - center=True, - scale=True, - beta_initializer="zeros", - gamma_initializer="ones", - moving_mean_initializer="zeros", - moving_variance_initializer="ones", - beta_regularizer=None, - gamma_regularizer=None, - beta_constraint=None, - gamma_constraint=None, - **kwargs, - ): - warning = ( - "`tf.keras.layers.experimental.SyncBatchNormalization` endpoint is " - "deprecated and will be removed in a future release. Please use " - "`tf.keras.layers.BatchNormalization` with parameter " - "`synchronized` set to True." - ) - logging.log_first_n(logging.WARN, warning, 1) - super().__init__( - axis=axis, - momentum=momentum, - epsilon=epsilon, - center=center, - scale=scale, - beta_initializer=beta_initializer, - gamma_initializer=gamma_initializer, - moving_mean_initializer=moving_mean_initializer, - moving_variance_initializer=moving_variance_initializer, - beta_regularizer=beta_regularizer, - gamma_regularizer=gamma_regularizer, - beta_constraint=beta_constraint, - gamma_constraint=gamma_constraint, - synchronized=True, - **kwargs, - ) - - -def _expand_tensor_with_local_replica_group(inputs): - """Reshape the input tensor to have an extra dimension of replica group. - - Under the DTensor usage, the normal batch norm still need to perform on - a local batch size, which mean we can't directly do mean/var on a global - tensor. In order to do a local mean/var, we have to add a new dimention to - the tensor, so that the ops will not cross the replica boundary. E.g, - a global tensor with shape [8, x, y] and has 2 local replica, the output of - this will be [2, 4, x, y], where the first dim is for num of replica, and - the second dim is for the local batch size. The follow ops can do reduces - among the local batch dimension. - - Note that this function should only be used under DTensor based strategy, - and it will use the current strategy in the context to get the number of - replica. - - Args: - inputs: Tensor with shape [global_batch_size, ...] - - Returns: - Tensor with shape [num_replica, local_batch_size, ...] - """ - # TODO(b/272382109): Implement this an an Op. - input_shape = tf.shape(inputs) - global_batch_size = input_shape[0] - num_replica = tf.distribute.get_strategy().num_replicas_in_sync - local_batch_size = global_batch_size // num_replica - replica_shape = tf.stack([num_replica, local_batch_size]) - replica_shape = tf.concat([replica_shape, input_shape[1:]], axis=0) - return tf.reshape(inputs, replica_shape) - - -def _raise_for_non_sync_bn_with_renorm_and_dtensor_strategy( - synchronized, training, renorm -): - if ( - utils.running_with_dtensor_strategy() - and not synchronized - and training == True - and renorm - ): - raise NotImplementedError( - "Renorm for BatchNormalization under DTensor based distribution " - "strategy is not supported at the moment. Please file a feature " - "request if this is blocking your adoption." - ) diff --git a/keras/layers/normalization/batch_normalization_dtensor_test.py b/keras/layers/normalization/batch_normalization_dtensor_test.py deleted file mode 100644 index b4f916e947f..00000000000 --- a/keras/layers/normalization/batch_normalization_dtensor_test.py +++ /dev/null @@ -1,134 +0,0 @@ -# Copyright 2023 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for normalization layers under DTensor context.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.dtensor import test_util -from keras.dtensor import utils -from keras.layers.normalization import batch_normalization -from keras.testing_infra import test_utils - -# isort: off -# Import the MirroredStrategy that is backed by DTensor -# It is not a public API yet, so we do a private symbol import for now. -from tensorflow.python.distribute.experimental import ( - mirrored_strategy as dtensor_mirrored_strategy, -) - - -@test_utils.run_v2_only -class BatchNormalizationDTensorTest(test_util.DTensorBaseTest): - def setUp(self): - super().setUp() - - global_ids = test_util.create_device_ids_array((2,)) - local_device_ids = np.ravel(global_ids).tolist() - mesh_dict = { - "CPU": tf.experimental.dtensor.Mesh( - ["batch"], - global_ids, - local_device_ids, - test_util.create_device_list((2,), "CPU"), - ) - } - self.mesh = self.configTestMesh(mesh_dict) - - def test_strategy_backed_by_dtensor(self): - strategy = dtensor_mirrored_strategy.MirroredStrategy(self.mesh) - - with strategy.scope(): - self.assertTrue(utils.running_with_dtensor_strategy()) - - self.assertFalse(utils.running_with_dtensor_strategy()) - - normal_mirrored_strategy = tf.distribute.MirroredStrategy( - ["CPU:0", "CPU:1"] - ) - self.assertFalse(utils.running_with_dtensor_strategy()) - with normal_mirrored_strategy.scope(): - self.assertFalse(utils.running_with_dtensor_strategy()) - - @parameterized.product( - training=[True, False], - synchronized=[True, False], - renorm=[True, False], - ) - def test_batch_normalization_with_dtensor_strategy( - self, training, synchronized, renorm - ): - num_replica = 2 - local_batch_size = 4 - global_batch_size = num_replica * local_batch_size - feature_shape = [3, 5] - global_inputs = tf.random.uniform( - shape=[global_batch_size, *feature_shape], dtype=tf.float32 - ) - replica_inputs = tf.reshape( - global_inputs, [num_replica, local_batch_size, *feature_shape] - ) - - def value_fn(value_context): - return replica_inputs[value_context.replica_id_in_sync_group] - - normal_strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) - dtensor_strategy = dtensor_mirrored_strategy.MirroredStrategy( - mesh=self.mesh - ) - init_kwargs = {"synchronized": synchronized, "renorm": renorm} - bn_layer_0 = batch_normalization.BatchNormalization(**init_kwargs) - bn_layer_1 = batch_normalization.BatchNormalization(**init_kwargs) - run_kwargs = {"training": training} - - normal_strategy_result = self._run_bn_training_with_strategy( - normal_strategy, value_fn, bn_layer_0, run_kwargs - ) - if training and not synchronized and renorm: - # This is an unsupported case at the moment. - with self.assertRaisesRegexp(NotImplementedError, "not supported"): - self._run_bn_training_with_strategy( - dtensor_strategy, value_fn, bn_layer_1, run_kwargs - ) - return - else: - dtensor_strategy_result = self._run_bn_training_with_strategy( - dtensor_strategy, value_fn, bn_layer_1, run_kwargs - ) - self.assertAllClose( - normal_strategy_result.values, dtensor_strategy_result.values - ) - self.assertAllClose(bn_layer_0.moving_mean, bn_layer_1.moving_mean) - self.assertAllClose( - bn_layer_0.moving_variance, bn_layer_1.moving_variance - ) - - def _run_bn_training_with_strategy( - self, strategy, value_fn, bn_layer, run_kwargs - ): - @tf.function - def run_fn(inputs): - return bn_layer(inputs, **run_kwargs) - - distributed_inputs = ( - strategy.experimental_distribute_values_from_function(value_fn) - ) - - return strategy.run(run_fn, args=(distributed_inputs,)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/normalization/batch_normalization_test.py b/keras/layers/normalization/batch_normalization_test.py deleted file mode 100644 index 875418e286d..00000000000 --- a/keras/layers/normalization/batch_normalization_test.py +++ /dev/null @@ -1,646 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for normalization layers.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.normalization import batch_normalization -from keras.layers.normalization import batch_normalization_v1 -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class BatchNormalizationTest(test_combinations.TestCase): - @test_combinations.run_all_keras_modes - def test_basic_batchnorm(self): - test_utils.layer_test( - keras.layers.BatchNormalization, - kwargs={ - "momentum": 0.9, - "epsilon": 0.1, - "gamma_regularizer": keras.regularizers.l2(0.01), - "beta_regularizer": keras.regularizers.l2(0.01), - }, - input_shape=(3, 4, 2), - ) - test_utils.layer_test( - keras.layers.BatchNormalization, - kwargs={ - "gamma_initializer": "ones", - "beta_initializer": "ones", - "moving_mean_initializer": "zeros", - "moving_variance_initializer": "ones", - }, - input_shape=(3, 4, 2), - ) - test_utils.layer_test( - keras.layers.BatchNormalization, - kwargs={"scale": False, "center": False}, - input_shape=(3, 3), - ) - test_utils.layer_test( - keras.layers.BatchNormalization, - kwargs={ - "gamma_initializer": "ones", - "beta_initializer": "ones", - "moving_mean_initializer": "zeros", - "moving_variance_initializer": "ones", - }, - input_shape=(3, 2, 4, 2), - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_batchnorm_weights(self): - layer = keras.layers.BatchNormalization(scale=False, center=False) - layer.build((None, 3, 4)) - self.assertEqual(len(layer.trainable_weights), 0) - self.assertEqual(len(layer.weights), 2) - - layer = keras.layers.BatchNormalization() - layer.build((None, 3, 4)) - self.assertEqual(len(layer.trainable_weights), 2) - self.assertEqual(len(layer.weights), 4) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_batchnorm_regularization(self): - layer = keras.layers.BatchNormalization( - gamma_regularizer="l1", beta_regularizer="l1" - ) - layer.build((None, 3, 4)) - self.assertEqual(len(layer.losses), 2) - max_norm = keras.constraints.max_norm - layer = keras.layers.BatchNormalization( - gamma_constraint=max_norm, beta_constraint=max_norm - ) - layer.build((None, 3, 4)) - self.assertEqual(layer.gamma.constraint, max_norm) - self.assertEqual(layer.beta.constraint, max_norm) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_batchnorm_sync_fused_error(self): - with self.assertRaises(ValueError): - _ = batch_normalization.BatchNormalization( - synchronized=True, fused=True - ) - - def _test_batchnorm_convnet(self, synchronized=False): - if tf.test.is_gpu_available(cuda_only=True): - with self.session(): - model = keras.models.Sequential() - norm = keras.layers.BatchNormalization( - axis=1, - input_shape=(3, 4, 4), - momentum=0.8, - synchronized=synchronized, - ) - model.add(norm) - model.compile( - loss="mse", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - run_eagerly=test_utils.should_run_eagerly(), - ) - - # centered on 5.0, variance 10.0 - x = np.random.normal(loc=5.0, scale=10.0, size=(1000, 3, 4, 4)) - model.fit(x, x, epochs=4, verbose=0) - out = model.predict(x) - out -= np.reshape(keras.backend.eval(norm.beta), (1, 3, 1, 1)) - out /= np.reshape(keras.backend.eval(norm.gamma), (1, 3, 1, 1)) - - np.testing.assert_allclose( - np.mean(out, axis=(0, 2, 3)), 0.0, atol=1e-1 - ) - np.testing.assert_allclose( - np.std(out, axis=(0, 2, 3)), 1.0, atol=1e-1 - ) - - @test_combinations.run_all_keras_modes - def test_batchnorm_convnet(self): - self._test_batchnorm_convnet(synchronized=False) - - @test_combinations.run_all_keras_modes - def test_batchnorm_convnet_synchronized(self): - self._test_batchnorm_convnet(synchronized=True) - - @test_combinations.run_all_keras_modes - def test_batchnorm_convnet_channel_last(self): - model = keras.models.Sequential() - norm = keras.layers.BatchNormalization( - axis=-1, input_shape=(4, 4, 3), momentum=0.8 - ) - model.add(norm) - model.compile( - loss="mse", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - run_eagerly=test_utils.should_run_eagerly(), - ) - - # centered on 5.0, variance 10.0 - x = np.random.normal(loc=5.0, scale=10.0, size=(1000, 4, 4, 3)) - model.fit(x, x, epochs=4, verbose=0) - out = model.predict(x) - out -= np.reshape(keras.backend.eval(norm.beta), (1, 1, 1, 3)) - out /= np.reshape(keras.backend.eval(norm.gamma), (1, 1, 1, 3)) - - np.testing.assert_allclose(np.mean(out, axis=(0, 1, 2)), 0.0, atol=1e-1) - np.testing.assert_allclose(np.std(out, axis=(0, 1, 2)), 1.0, atol=1e-1) - - @test_combinations.run_all_keras_modes - def test_batchnorm_correctness(self): - _run_batchnorm_correctness_test( - batch_normalization_v1.BatchNormalization, dtype="float32" - ) - _run_batchnorm_correctness_test( - batch_normalization.BatchNormalization, dtype="float32" - ) - _run_batchnorm_correctness_test( - batch_normalization.BatchNormalization, - dtype="float32", - synchronized=True, - ) - - @test_combinations.run_all_keras_modes - def test_batchnorm_float16(self): - _run_batchnorm_correctness_test( - batch_normalization_v1.BatchNormalization, dtype="float16" - ) - _run_batchnorm_correctness_test( - batch_normalization.BatchNormalization, dtype="float16" - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - @test_utils.enable_v2_dtype_behavior - def test_batchnorm_mixed_precision(self): - norm = keras.layers.BatchNormalization( - axis=-1, momentum=0.8, dtype="mixed_float16" - ) - x = np.random.normal(size=(10, 4, 4, 3)) - y = norm(x) - self.assertEqual(y.dtype, "float16") - self.assertEqual(norm.beta.dtype.base_dtype, "float32") - self.assertEqual(norm.gamma.dtype.base_dtype, "float32") - - x = np.arange(10 * 4 * 4 * 3).reshape((10, 4, 4, 3)) - y = norm(x) - self.assertEqual(y.dtype, "float16") - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"], fused=[True, False]) - ) - @test_utils.enable_v2_dtype_behavior - def test_batchnorm_mixed_precision_does_not_overflow(self, fused): - norm = keras.layers.BatchNormalization( - axis=-1, input_shape=(1, 1, 1), fused=fused, dtype="mixed_float16" - ) - x = np.array([-1000.0, 1000.0]).reshape((2, 1, 1, 1)) - y = norm(x, training=True) - expected_y = np.array([-1.0, 1.0]).reshape((2, 1, 1, 1)) - self.assertAllClose(keras.backend.eval(y), expected_y) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_batchnorm_non_trainable_with_fit(self): - # We use the same data shape for all the data we use in this test. - # This will prevent any used tf.functions from retracing. - # This helps us verify that changing trainable and recompiling really - # does update the training loop, rather than a different data shape - # triggering a retrace. - data_shape = (100, 3) - - inputs = keras.Input((3,)) - bn = batch_normalization.BatchNormalization() - outputs = bn(inputs) - model = keras.Model(inputs, outputs) - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - model.fit(np.random.random(data_shape), np.random.random(data_shape)) - - test_data = np.random.random(data_shape) - test_targets = np.random.random(data_shape) - test_loss = model.evaluate(test_data, test_targets) - - bn.trainable = False - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - train_loss = model.train_on_batch(test_data, test_targets) - self.assertAlmostEqual(test_loss, train_loss) - - @test_combinations.run_all_keras_modes - def test_batchnorm_ignore_masked_values(self): - padded_data = np.array( - [[[1, 5], [2, 5], [0, 0], [0, 0]] for _ in range(10)], - dtype="float32", - ) # Pad value of 0 - - inputs = keras.layers.Input((None, 2)) - masked = keras.layers.Masking()(inputs) - normed = keras.layers.BatchNormalization(momentum=0.0)(masked) - model = keras.models.Model(inputs, normed) - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - model.fit(x=padded_data, y=padded_data, batch_size=10, epochs=5) - - self.assertAllEqual(model.layers[2].moving_mean, [1.5, 5.0]) - self.assertAllEqual(model.layers[2].moving_variance, [0.25, 0.0]) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_eager_batchnorm_in_custom_model_call_with_tf_function(self): - class MyModel(keras.Model): - def __init__(self): - super().__init__() - self.bn = keras.layers.BatchNormalization() - - @tf.function() - def call(self, x, training): - return self.bn(x, training=training) - - model = MyModel() - - for _ in range(10): - x = tf.constant(0.5, shape=[1, 1]) - model(x, training=True) - - # Make sure the moving mean and variance have been updated - self.assertAllClose(model.bn.moving_mean.numpy(), [0.047], atol=3e-3) - self.assertAllClose(model.bn.moving_variance.numpy(), [0.9], atol=3e-2) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_bessels_correction(self): - # Bessel's correction is currently only used in the fused case. In the - # future, it may be used in the nonfused case as well. - - x = tf.constant([0.0, 2.0], shape=[2, 1, 1, 1]) - layer = batch_normalization.BatchNormalization( - momentum=0.5, moving_variance_initializer="zeros" - ) - layer(x, training=True) - self.assertTrue(layer.fused) - # Since fused is used, Bessel's correction is used. The variance of [0, - # 2] is 2 with Bessel's correction. Since the momentum is 0.5, the - # variance is 2 * 0.5 == 1. - self.assertAllEqual(self.evaluate(layer.moving_variance), [1.0]) - - x = tf.constant([0.0, 2.0], shape=[2, 1, 1, 1, 1]) - layer = batch_normalization.BatchNormalization( - momentum=0.5, moving_variance_initializer="zeros" - ) - layer(x, training=True) - self.assertTrue(layer.fused) - # Since fused is used, Bessel's correction is used. The variance of [0, - # 2] is 2 with Bessel's correction. Since the momentum is 0.5, the - # variance is 2 * 0.5 == 1. - self.assertAllEqual(self.evaluate(layer.moving_variance), [1.0]) - - @test_combinations.run_all_keras_modes - def test_can_be_used_in_multiple_graphs(self): - norm = keras.layers.BatchNormalization( - scale=False, center=False, fused=True - ) - - @tf.function - def fn1(x): - return norm(x, training=True) - - @tf.function - def fn2(x): - return norm(x, training=True) - - x = np.array([-1000.0, 1000.0]).reshape((2, 1, 1, 1)) - y = norm(fn2(fn1(x)), training=True) - expected_y = np.array([-0.9995, 0.9995]).reshape((2, 1, 1, 1)) - self.assertAllClose(keras.backend.eval(y), expected_y) - - -class BatchNormalizationV1Test(test_combinations.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_v1_fused_attribute(self): - norm = batch_normalization_v1.BatchNormalization() - inp = keras.layers.Input((4, 4, 4)) - norm(inp) - self.assertEqual(norm.fused, True) - - norm = batch_normalization_v1.BatchNormalization(fused=False) - self.assertEqual(norm.fused, False) - inp = keras.layers.Input(shape=(4, 4, 4)) - norm(inp) - self.assertEqual(norm.fused, False) - - norm = batch_normalization_v1.BatchNormalization(virtual_batch_size=2) - self.assertEqual(norm.fused, True) - inp = keras.layers.Input(shape=(2, 2, 2)) - norm(inp) - self.assertEqual(norm.fused, False) - - -class BatchNormalizationV2Test(test_combinations.TestCase): - @test_combinations.run_all_keras_modes - def test_basic_batchnorm_v2(self): - test_utils.layer_test( - batch_normalization.BatchNormalization, - kwargs={"fused": True}, - input_shape=(3, 3, 3, 3), - ) - test_utils.layer_test( - batch_normalization.BatchNormalization, - kwargs={"fused": None}, - input_shape=(3, 3, 3), - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_v2_fused_attribute(self): - norm = batch_normalization.BatchNormalization() - self.assertIsNone(norm.fused) - inp = keras.layers.Input(shape=(4, 4, 4)) - norm(inp) - self.assertEqual(norm.fused, True) - - norm = batch_normalization.BatchNormalization() - self.assertIsNone(norm.fused) - inp = keras.layers.Input(shape=(4, 4)) - norm(inp) - self.assertEqual(norm.fused, False) - - norm = batch_normalization.BatchNormalization() - self.assertIsNone(norm.fused) - inp = keras.layers.Input(shape=(4, 4, 4, 4)) - norm(inp) - self.assertEqual(norm.fused, True) - - norm = batch_normalization.BatchNormalization(virtual_batch_size=2) - self.assertEqual(norm.fused, False) - inp = keras.layers.Input(shape=(4, 4, 4)) - norm(inp) - self.assertEqual(norm.fused, False) - - norm = batch_normalization.BatchNormalization(fused=False) - self.assertEqual(norm.fused, False) - inp = keras.layers.Input(shape=(4, 4, 4)) - norm(inp) - self.assertEqual(norm.fused, False) - - norm = batch_normalization.BatchNormalization(fused=True, axis=[3]) - self.assertEqual(norm.fused, True) - inp = keras.layers.Input(shape=(4, 4, 4)) - norm(inp) - self.assertEqual(norm.fused, True) - - with self.assertRaisesRegex(ValueError, "fused.*renorm"): - batch_normalization.BatchNormalization(fused=True, renorm=True) - - with self.assertRaisesRegex(ValueError, "fused.*when axis is 1 or 3"): - batch_normalization.BatchNormalization(fused=True, axis=2) - - with self.assertRaisesRegex(ValueError, "fused.*when axis is 1 or 3"): - batch_normalization.BatchNormalization(fused=True, axis=[1, 3]) - - with self.assertRaisesRegex(ValueError, "fused.*virtual_batch_size"): - batch_normalization.BatchNormalization( - fused=True, virtual_batch_size=2 - ) - - with self.assertRaisesRegex(ValueError, "fused.*adjustment"): - batch_normalization.BatchNormalization( - fused=True, adjustment=lambda _: (1, 0) - ) - - norm = batch_normalization.BatchNormalization(fused=True) - self.assertEqual(norm.fused, True) - inp = keras.layers.Input(shape=(4, 4)) - with self.assertRaisesRegex(ValueError, "4D or 5D input tensors"): - norm(inp) - - def test_updates_in_wrap_function(self): - def my_func(): - layer = batch_normalization_v1.BatchNormalization() - x = tf.ones((10, 1)) - y = layer(x, training=True) - # Updates should be tracked in a `wrap_function`. - self.assertLen(layer.updates, 2) - return y - - wrapped_fn = tf.compat.v1.wrap_function(my_func, []) - wrapped_fn() - - @test_combinations.run_all_keras_modes - @test_utils.run_v2_only - def test_basic_batchnorm_v2_input_shape_and_virtual_batch_size(self): - # Test case for GitHub issue for 32380 - norm = batch_normalization.BatchNormalization(virtual_batch_size=8) - inp = keras.layers.Input(shape=(None, None, 3)) - _ = norm(inp) - - # Test case for https://github.com/tensorflow/tensorflow/issues/23050 - norm = batch_normalization.BatchNormalization(virtual_batch_size=8) - _ = norm(np.ones((1, 28, 28))) - - with self.assertRaisesRegex(Exception, "Reshape"): - norm = batch_normalization.BatchNormalization(virtual_batch_size=8) - _ = norm(np.ones((1, 28, 28)), training=True) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_fused_batchnorm_empty_batch(self): - # Test case for https://github.com/tensorflow/tensorflow/issues/52986 - # create a simple strategy with the enable_partial_batch_handling flag - # turned on, to trigger the empty batch code path in fused batchnorm - strategy = tf.distribute.OneDeviceStrategy("/cpu:0") - strategy.extended.enable_partial_batch_handling = True - with strategy.scope(): - layer = batch_normalization.BatchNormalization() - - def fn(): - with tf.GradientTape() as tape: - x = tf.ones((0, 2, 2, 2)) - layer(x, training=True) - return tape - - tape = strategy.run(fn) - - self.assertTrue(layer.fused) - - self.assertIsNotNone(layer.moving_mean) - self.assertIsNotNone(layer.moving_variance) - - tape_vars = tape.watched_variables() - self.assertAllEqual(layer.gamma, tape_vars[0]) - self.assertAllEqual(layer.beta, tape_vars[1]) - - -def _run_batchnorm_correctness_test( - layer, dtype="float32", fused=False, synchronized=False -): - model = keras.models.Sequential() - model.add(keras.Input(shape=(2, 2, 2), dtype=dtype)) - norm = layer(momentum=0.8, fused=fused, synchronized=synchronized) - model.add(norm) - if dtype == "float16": - # Keras models require float32 losses. - model.add( - keras.layers.Lambda(lambda x: keras.backend.cast(x, "float32")) - ) - model.compile( - loss="mse", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - run_eagerly=test_utils.should_run_eagerly(), - ) - - # centered on 5.0, variance 10.0 - x = np.random.normal(loc=5.0, scale=10.0, size=(1000, 2, 2, 2)).astype( - dtype - ) - model.fit(x, x, epochs=4, verbose=0) - out = model.predict(x) - out -= keras.backend.eval(norm.beta) - out /= keras.backend.eval(norm.gamma) - - np.testing.assert_allclose(out.mean(), 0.0, atol=2e-1) - np.testing.assert_allclose(out.std(), 1.0, atol=2e-1) - - -@parameterized.parameters( - [ - batch_normalization_v1.BatchNormalization, - batch_normalization.BatchNormalization, - ] -) -class NormalizationLayersGraphModeOnlyTest( - tf.test.TestCase, parameterized.TestCase -): - def test_shared_batchnorm(self, layer): - """Test that a BN layer can be shared across different data streams.""" - with self.cached_session(): - # Test single layer reuse - bn = layer() - x1 = keras.layers.Input(shape=(10,)) - _ = bn(x1) - - x2 = keras.layers.Input(shape=(10,)) - y2 = bn(x2) - - x = np.random.normal(loc=5.0, scale=10.0, size=(2, 10)) - model = keras.models.Model(x2, y2) - - model.compile( - tf.compat.v1.train.GradientDescentOptimizer(0.01), "mse" - ) - model.train_on_batch(x, x) - - # Test model-level reuse - x3 = keras.layers.Input(shape=(10,)) - y3 = model(x3) - new_model = keras.models.Model(x3, y3, name="new_model") - - new_model.compile( - tf.compat.v1.train.GradientDescentOptimizer(0.01), "mse" - ) - new_model.train_on_batch(x, x) - - def test_that_trainable_disables_updates(self, layer): - with self.cached_session(): - val_a = np.random.random((10, 4)) - val_out = np.random.random((10, 4)) - - a = keras.layers.Input(shape=(4,)) - layer = layer(input_shape=(4,)) - b = layer(a) - model = keras.models.Model(a, b) - - model.trainable = False - model.compile( - tf.compat.v1.train.GradientDescentOptimizer(0.01), "mse" - ) - - x1 = model.predict(val_a) - model.train_on_batch(val_a, val_out) - x2 = model.predict(val_a) - self.assertAllClose(x1, x2, atol=1e-7) - - model.trainable = True - model.compile( - tf.compat.v1.train.GradientDescentOptimizer(0.01), "mse" - ) - - model.train_on_batch(val_a, val_out) - x2 = model.predict(val_a) - assert np.abs(np.sum(x1 - x2)) > 1e-5 - - layer.trainable = False - model.compile( - tf.compat.v1.train.GradientDescentOptimizer(0.01), "mse" - ) - - x1 = model.predict(val_a) - model.train_on_batch(val_a, val_out) - x2 = model.predict(val_a) - self.assertAllClose(x1, x2, atol=1e-7) - - def test_batchnorm_trainable(self, layer): - """Tests that batchnorm layer is trainable when learning phase enabled. - - Computes mean and std for current inputs then - applies batch normalization using them. - - Args: - layer: Either V1 or V2 of BatchNormalization layer. - """ - # TODO(fchollet): enable in all execution modes when issue with - # learning phase setting is resolved. - with tf.Graph().as_default(), self.cached_session(): - bn_mean = 0.5 - bn_std = 10.0 - val_a = np.expand_dims(np.arange(10.0), axis=1) - - def get_model(bn_mean, bn_std): - inp = keras.layers.Input(shape=(1,)) - x = layer()(inp) - model1 = keras.models.Model(inp, x) - model1.set_weights( - [ - np.array([1.0]), - np.array([0.0]), - np.array([bn_mean]), - np.array([bn_std**2]), - ] - ) - return model1 - - # Simulates training-mode with trainable layer. - # Should use mini-batch statistics. - with keras.backend.learning_phase_scope(1): - model = get_model(bn_mean, bn_std) - model.compile(loss="mse", optimizer="rmsprop") - out = model.predict(val_a) - self.assertAllClose( - (val_a - np.mean(val_a)) / np.std(val_a), out, atol=1e-3 - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/normalization/batch_normalization_v1.py b/keras/layers/normalization/batch_normalization_v1.py deleted file mode 100644 index 4d9feb311da..00000000000 --- a/keras/layers/normalization/batch_normalization_v1.py +++ /dev/null @@ -1,31 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Batch Normalization V1 layer.""" - - -from keras.layers.normalization import batch_normalization - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export(v1=["keras.layers.BatchNormalization"]) -class BatchNormalization(batch_normalization.BatchNormalizationBase): - _USE_V2_BEHAVIOR = False - - def __init__(self, *args, **kwargs): - # synchronized not implemented in V1 - kwargs.pop("synchronized", None) - super().__init__(*args, **kwargs) diff --git a/keras/layers/normalization/group_normalization.py b/keras/layers/normalization/group_normalization.py deleted file mode 100644 index 0a4c0cdde2e..00000000000 --- a/keras/layers/normalization/group_normalization.py +++ /dev/null @@ -1,241 +0,0 @@ -# Copyright 2022 The Keras Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Group normalization layer""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.layers import InputSpec -from keras.layers import Layer -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.GroupNormalization", v1=[]) -class GroupNormalization(Layer): - """Group normalization layer. - - Group Normalization divides the channels into groups and computes - within each group the mean and variance for normalization. - Empirically, its accuracy is more stable than batch norm in a wide - range of small batch sizes, if learning rate is adjusted linearly - with batch sizes. - - Relation to Layer Normalization: - If the number of groups is set to 1, then this operation becomes nearly - identical to Layer Normalization (see Layer Normalization docs for details). - - Relation to Instance Normalization: - If the number of groups is set to the input dimension (number of groups is - equal to number of channels), then this operation becomes identical to - Instance Normalization. - - Args: - groups: Integer, the number of groups for Group Normalization. Can be in - the range [1, N] where N is the input dimension. The input dimension - must be divisible by the number of groups. Defaults to 32. - axis: Integer or List/Tuple. The axis or axes to normalize across. - Typically this is the features axis/axes. The left-out axes are - typically the batch axis/axes. This argument defaults to `-1`, the last - dimension in the input. - epsilon: Small float added to variance to avoid dividing by zero. Defaults - to 1e-3 - center: If True, add offset of `beta` to normalized tensor. If False, - `beta` is ignored. Defaults to True. - scale: If True, multiply by `gamma`. If False, `gamma` is not used. - Defaults to True. When the next layer is linear (also e.g. `nn.relu`), - this can be disabled since the scaling will be done by the next layer. - beta_initializer: Initializer for the beta weight. Defaults to zeros. - gamma_initializer: Initializer for the gamma weight. Defaults to ones. - beta_regularizer: Optional regularizer for the beta weight. None by - default. - gamma_regularizer: Optional regularizer for the gamma weight. None by - default. - beta_constraint: Optional constraint for the beta weight. None by default. - gamma_constraint: Optional constraint for the gamma weight. None by - default. Input shape: Arbitrary. Use the keyword argument `input_shape` - (tuple of integers, does not include the samples axis) when using this - layer as the first layer in a model. Output shape: Same shape as input. - Reference: - [Yuxin Wu & Kaiming He, 2018](https://arxiv.org/abs/1803.08494) - """ - - def __init__( - self, - groups=32, - axis=-1, - epsilon=1e-3, - center=True, - scale=True, - beta_initializer="zeros", - gamma_initializer="ones", - beta_regularizer=None, - gamma_regularizer=None, - beta_constraint=None, - gamma_constraint=None, - **kwargs, - ): - super().__init__(**kwargs) - self.supports_masking = True - self.groups = groups - self.axis = axis - self.epsilon = epsilon - self.center = center - self.scale = scale - self.beta_initializer = initializers.get(beta_initializer) - self.gamma_initializer = initializers.get(gamma_initializer) - self.beta_regularizer = regularizers.get(beta_regularizer) - self.gamma_regularizer = regularizers.get(gamma_regularizer) - self.beta_constraint = constraints.get(beta_constraint) - self.gamma_constraint = constraints.get(gamma_constraint) - - def build(self, input_shape): - tf_utils.validate_axis(self.axis, input_shape) - - dim = input_shape[self.axis] - if dim is None: - raise ValueError( - f"Axis {self.axis} of input tensor should have a defined " - "dimension but the layer received an input with shape " - f"{input_shape}." - ) - - if self.groups == -1: - self.groups = dim - - if dim < self.groups: - raise ValueError( - f"Number of groups ({self.groups}) cannot be more than the " - f"number of channels ({dim})." - ) - - if dim % self.groups != 0: - raise ValueError( - f"Number of groups ({self.groups}) must be a multiple " - f"of the number of channels ({dim})." - ) - - self.input_spec = InputSpec( - ndim=len(input_shape), axes={self.axis: dim} - ) - - if self.scale: - self.gamma = self.add_weight( - shape=(dim,), - name="gamma", - initializer=self.gamma_initializer, - regularizer=self.gamma_regularizer, - constraint=self.gamma_constraint, - ) - else: - self.gamma = None - - if self.center: - self.beta = self.add_weight( - shape=(dim,), - name="beta", - initializer=self.beta_initializer, - regularizer=self.beta_regularizer, - constraint=self.beta_constraint, - ) - else: - self.beta = None - - super().build(input_shape) - - def call(self, inputs): - input_shape = tf.shape(inputs) - - reshaped_inputs = self._reshape_into_groups(inputs) - - normalized_inputs = self._apply_normalization( - reshaped_inputs, input_shape - ) - - return tf.reshape(normalized_inputs, input_shape) - - def _reshape_into_groups(self, inputs): - input_shape = tf.shape(inputs) - group_shape = [input_shape[i] for i in range(inputs.shape.rank)] - - group_shape[self.axis] = input_shape[self.axis] // self.groups - group_shape.insert(self.axis, self.groups) - group_shape = tf.stack(group_shape) - reshaped_inputs = tf.reshape(inputs, group_shape) - return reshaped_inputs - - def _apply_normalization(self, reshaped_inputs, input_shape): - group_reduction_axes = list(range(1, reshaped_inputs.shape.rank)) - - axis = -2 if self.axis == -1 else self.axis - 1 - group_reduction_axes.pop(axis) - - mean, variance = tf.nn.moments( - reshaped_inputs, group_reduction_axes, keepdims=True - ) - - gamma, beta = self._get_reshaped_weights(input_shape) - normalized_inputs = tf.nn.batch_normalization( - reshaped_inputs, - mean=mean, - variance=variance, - scale=gamma, - offset=beta, - variance_epsilon=self.epsilon, - ) - return normalized_inputs - - def _get_reshaped_weights(self, input_shape): - broadcast_shape = self._create_broadcast_shape(input_shape) - gamma = None - beta = None - if self.scale: - gamma = tf.reshape(self.gamma, broadcast_shape) - - if self.center: - beta = tf.reshape(self.beta, broadcast_shape) - return gamma, beta - - def _create_broadcast_shape(self, input_shape): - broadcast_shape = [1] * backend.int_shape(input_shape)[0] - - broadcast_shape[self.axis] = input_shape[self.axis] // self.groups - broadcast_shape.insert(self.axis, self.groups) - - return broadcast_shape - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = { - "groups": self.groups, - "axis": self.axis, - "epsilon": self.epsilon, - "center": self.center, - "scale": self.scale, - "beta_initializer": initializers.serialize(self.beta_initializer), - "gamma_initializer": initializers.serialize(self.gamma_initializer), - "beta_regularizer": regularizers.serialize(self.beta_regularizer), - "gamma_regularizer": regularizers.serialize(self.gamma_regularizer), - "beta_constraint": constraints.serialize(self.beta_constraint), - "gamma_constraint": constraints.serialize(self.gamma_constraint), - } - base_config = super().get_config() - return {**base_config, **config} diff --git a/keras/layers/normalization/group_normalization_test.py b/keras/layers/normalization/group_normalization_test.py deleted file mode 100644 index 82a6acc853d..00000000000 --- a/keras/layers/normalization/group_normalization_test.py +++ /dev/null @@ -1,242 +0,0 @@ -# Copyright 2022 The Keras Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -import tensorflow.compat.v2 as tf - -import keras -from keras.initializers import Constant -from keras.layers import GroupNormalization -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -def _build_group_normalization_model(norm): - model = keras.models.Sequential() - model.add(norm) - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - - return model - - -@test_utils.run_v2_only -class GroupNormalizationTest(test_combinations.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_trainable_weights(self): - # Check if weights get initialized correctly - layer = GroupNormalization(groups=1, scale=False, center=False) - layer.build((None, 3, 4)) - self.assertEqual(len(layer.trainable_weights), 0) - self.assertEqual(len(layer.weights), 0) - - # Check if weights get initialized correctly - layer = GroupNormalization(groups=1, scale=True, center=True) - layer.build((None, 3, 4)) - self.assertEqual(len(layer.trainable_weights), 2) - self.assertEqual(len(layer.weights), 2) - - @test_combinations.run_all_keras_modes - def test_groupnorm(self): - test_utils.layer_test( - GroupNormalization, - kwargs={ - "gamma_regularizer": keras.regularizers.l2(0.01), - "beta_regularizer": keras.regularizers.l2(0.01), - }, - input_shape=(3, 4, 32), - ) - - test_utils.layer_test( - GroupNormalization, - kwargs={ - "groups": 4, - "gamma_constraint": keras.constraints.UnitNorm(), - "beta_constraint": keras.constraints.UnitNorm(), - }, - input_shape=(3, 4, 4), - ) - - @test_combinations.run_all_keras_modes - def test_correctness_1d(self): - layer_with_1_group = GroupNormalization( - groups=1, axis=-1, input_shape=(8,), scale=False, center=False - ) - layer_with_2_groups = GroupNormalization( - groups=2, axis=1, input_shape=(8,), scale=False, center=False - ) - - inputs = tf.constant( - [-1.0, -1.0, 1.0, 1.0, 2.0, 2.0, 0, -2.0], shape=(1, 8) - ) - - expected_output_1_group = tf.constant( - [-0.898, -0.898, 0.539, 0.539, 1.257, 1.257, -0.180, -1.616], - shape=(1, 8), - ) - self.assertAllClose( - _build_group_normalization_model(layer_with_1_group)(inputs), - expected_output_1_group, - atol=1e-3, - ) - - expected_output_2_groups = tf.constant( - [-1.0, -1.0, 1.0, 1.0, 0.904, 0.904, -0.301, -1.507], shape=(1, 8) - ) - self.assertAllClose( - _build_group_normalization_model(layer_with_2_groups)(inputs), - expected_output_2_groups, - atol=1e-3, - ) - - @test_combinations.run_all_keras_modes - def test_correctness_2d(self): - layer_with_1_group = GroupNormalization( - groups=1, axis=-1, input_shape=(2, 4), scale=False, center=False - ) - layer_with_2_groups = GroupNormalization( - groups=2, axis=2, input_shape=(2, 4), scale=False, center=False - ) - - inputs = tf.constant( - [[-1.0, -1.0, 2.0, 2.0], [1.0, 1.0, 0, -2.0]], shape=(1, 2, 4) - ) - - expected_output_1_group = tf.constant( - [[-0.898, -0.898, 1.257, 1.257], [0.539, 0.539, -0.180, -1.616]], - shape=(1, 2, 4), - ) - self.assertAllClose( - _build_group_normalization_model(layer_with_1_group)(inputs), - expected_output_1_group, - atol=1e-3, - ) - - expected_output_2_groups = tf.constant( - [[-1.0, -1.0, 0.904, 0.904], [1.0, 1.0, -0.301, -1.507]], - shape=(1, 2, 4), - ) - self.assertAllClose( - _build_group_normalization_model(layer_with_2_groups)(inputs), - expected_output_2_groups, - atol=1e-3, - ) - - @test_combinations.run_all_keras_modes - def test_correctness_instance_norm(self): - instance_norm_layer = GroupNormalization( - groups=4, axis=-1, input_shape=(2, 4), scale=False, center=False - ) - - inputs = tf.constant( - [[-1.0, 1.0, 0, 2.0], [1.0, 3.0, -4, -2.0]], shape=(1, 2, 4) - ) - - expected_instance_norm_output = tf.constant( - [[-1.0, -1.0, 1.0, 1.0], [1.0, 1.0, -1.0, -1.0]], shape=(1, 2, 4) - ) - self.assertAllClose( - _build_group_normalization_model(instance_norm_layer)(inputs), - expected_instance_norm_output, - atol=1e-3, - ) - - @test_combinations.run_all_keras_modes - def test_correctness_with_centering(self): - normalization_layer = GroupNormalization( - groups=2, - axis=-1, - input_shape=(8,), - scale=False, - center=True, - beta_initializer=Constant(10), - ) - - inputs = tf.constant( - [-1.0, -1.0, 1.0, 1.0, 2.0, 2.0, 0, -2.0], shape=(1, 8) - ) - - expected_output = tf.constant( - [9.0, 9.0, 11.0, 11.0, 10.904, 10.904, 9.699, 8.493], shape=(1, 8) - ) - self.assertAllClose( - _build_group_normalization_model(normalization_layer)(inputs), - expected_output, - atol=1e-3, - ) - - @test_combinations.run_all_keras_modes - def test_correctness_with_scaling(self): - normalization_layer = GroupNormalization( - groups=2, - axis=-1, - input_shape=(8,), - scale=True, - center=False, - gamma_initializer=Constant(2), - ) - - inputs = tf.constant( - [-1.0, -1.0, 1.0, 1.0, 2.0, 2.0, 0, -2.0], shape=(1, 8) - ) - - expected_output = tf.constant( - [-2.0, -2.0, 2.0, 2.0, 1.809, 1.808, -0.602, -3.014], shape=(1, 8) - ) - self.assertAllClose( - _build_group_normalization_model(normalization_layer)(inputs), - expected_output, - atol=1e-3, - ) - - def test_validates_groups_against_channels(self): - with self.assertRaisesRegex( - ValueError, r"must be a multiple of the number of channels" - ): - norm = GroupNormalization(groups=3, axis=-1) - norm.build(input_shape=(2, 10)) - - with self.assertRaisesRegex( - ValueError, r"cannot be more than the number of channels" - ): - norm = GroupNormalization(groups=32, axis=-1) - norm.build(input_shape=(2, 8)) - - def test_validates_known_number_of_channels(self): - with self.assertRaisesRegex( - ValueError, r"tensor should have a defined dimension" - ): - norm = GroupNormalization(axis=-1) - norm.build(input_shape=(1, 32, None)) - - def test_rejects_invalid_axis(self): - with self.assertRaisesRegex( - ValueError, r"Invalid value for `axis` argument" - ): - norm = GroupNormalization(axis=-4) - norm.build(input_shape=(64, 32, 32)) - with self.assertRaisesRegex( - ValueError, r"Invalid value for `axis` argument" - ): - norm = GroupNormalization(axis=3) - norm.build(input_shape=(64, 32, 32)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/normalization/layer_normalization.py b/keras/layers/normalization/layer_normalization.py deleted file mode 100644 index 9a07c65b7bf..00000000000 --- a/keras/layers/normalization/layer_normalization.py +++ /dev/null @@ -1,374 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Layer Normalization layer.""" - -import tensorflow.compat.v2 as tf - -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.dtensor import utils -from keras.engine.base_layer import Layer -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.LayerNormalization") -class LayerNormalization(Layer): - """Layer normalization layer (Ba et al., 2016). - - Normalize the activations of the previous layer for each given example in a - batch independently, rather than across a batch like Batch Normalization. - i.e. applies a transformation that maintains the mean activation within each - example close to 0 and the activation standard deviation close to 1. - - Given a tensor `inputs`, moments are calculated and normalization - is performed across the axes specified in `axis`. - - Example: - - >>> data = tf.constant(np.arange(10).reshape(5, 2) * 10, dtype=tf.float32) - >>> print(data) - tf.Tensor( - [[ 0. 10.] - [20. 30.] - [40. 50.] - [60. 70.] - [80. 90.]], shape=(5, 2), dtype=float32) - - >>> layer = tf.keras.layers.LayerNormalization(axis=1) - >>> output = layer(data) - >>> print(output) - tf.Tensor( - [[-1. 1.] - [-1. 1.] - [-1. 1.] - [-1. 1.] - [-1. 1.]], shape=(5, 2), dtype=float32) - - Notice that with Layer Normalization the normalization happens across the - axes *within* each example, rather than across different examples in the - batch. - - If `scale` or `center` are enabled, the layer will scale the normalized - outputs by broadcasting them with a trainable variable `gamma`, and center - the outputs by broadcasting with a trainable variable `beta`. `gamma` will - default to a ones tensor and `beta` will default to a zeros tensor, so that - centering and scaling are no-ops before training has begun. - - So, with scaling and centering enabled the normalization equations - are as follows: - - Let the intermediate activations for a mini-batch to be the `inputs`. - - For each sample `x_i` in `inputs` with `k` features, we compute the mean and - variance of the sample: - - ```python - mean_i = sum(x_i[j] for j in range(k)) / k - var_i = sum((x_i[j] - mean_i) ** 2 for j in range(k)) / k - ``` - - and then compute a normalized `x_i_normalized`, including a small factor - `epsilon` for numerical stability. - - ```python - x_i_normalized = (x_i - mean_i) / sqrt(var_i + epsilon) - ``` - - And finally `x_i_normalized ` is linearly transformed by `gamma` and `beta`, - which are learned parameters: - - ```python - output_i = x_i_normalized * gamma + beta - ``` - - `gamma` and `beta` will span the axes of `inputs` specified in `axis`, and - this part of the inputs' shape must be fully defined. - - For example: - - >>> layer = tf.keras.layers.LayerNormalization(axis=[1, 2, 3]) - >>> layer.build([5, 20, 30, 40]) - >>> print(layer.beta.shape) - (20, 30, 40) - >>> print(layer.gamma.shape) - (20, 30, 40) - - Note that other implementations of layer normalization may choose to define - `gamma` and `beta` over a separate set of axes from the axes being - normalized across. For example, Group Normalization - ([Wu et al. 2018](https://arxiv.org/abs/1803.08494)) with group size of 1 - corresponds to a Layer Normalization that normalizes across height, width, - and channel and has `gamma` and `beta` span only the channel dimension. - So, this Layer Normalization implementation will not match a Group - Normalization layer with group size set to 1. - - Args: - axis: Integer or List/Tuple. The axis or axes to normalize across. - Typically this is the features axis/axes. The left-out axes are - typically the batch axis/axes. This argument defaults to `-1`, the last - dimension in the input. - epsilon: Small float added to variance to avoid dividing by zero. Defaults - to 1e-3 - center: If True, add offset of `beta` to normalized tensor. If False, - `beta` is ignored. Defaults to True. - scale: If True, multiply by `gamma`. If False, `gamma` is not used. - Defaults to True. When the next layer is linear (also e.g. `nn.relu`), - this can be disabled since the scaling will be done by the next layer. - beta_initializer: Initializer for the beta weight. Defaults to zeros. - gamma_initializer: Initializer for the gamma weight. Defaults to ones. - beta_regularizer: Optional regularizer for the beta weight. None by - default. - gamma_regularizer: Optional regularizer for the gamma weight. None by - default. - beta_constraint: Optional constraint for the beta weight. None by default. - gamma_constraint: Optional constraint for the gamma weight. None by - default. - - Input shape: - Arbitrary. Use the keyword argument `input_shape` (tuple of - integers, does not include the samples axis) when using this layer as the - first layer in a model. - - Output shape: - Same shape as input. - - Reference: - - [Lei Ba et al., 2016](https://arxiv.org/abs/1607.06450). - """ - - @utils.allow_initializer_layout - def __init__( - self, - axis=-1, - epsilon=1e-3, - center=True, - scale=True, - beta_initializer="zeros", - gamma_initializer="ones", - beta_regularizer=None, - gamma_regularizer=None, - beta_constraint=None, - gamma_constraint=None, - **kwargs - ): - super().__init__(**kwargs) - if isinstance(axis, (list, tuple)): - self.axis = list(axis) - elif isinstance(axis, int): - self.axis = axis - else: - raise TypeError( - "Expected an int or a list/tuple of ints for the " - "argument 'axis', but received: %r" % axis - ) - - self.epsilon = epsilon - self.center = center - self.scale = scale - self.beta_initializer = initializers.get(beta_initializer) - self.gamma_initializer = initializers.get(gamma_initializer) - self.beta_regularizer = regularizers.get(beta_regularizer) - self.gamma_regularizer = regularizers.get(gamma_regularizer) - self.beta_constraint = constraints.get(beta_constraint) - self.gamma_constraint = constraints.get(gamma_constraint) - - self.supports_masking = True - - # Indicates whether a faster fused implementation can be used. This will - # be set to True or False in build()" - self._fused = None - - def _fused_can_be_used(self, ndims): - """Returns false if fused implementation cannot be used. - - Check if the axis is contiguous and can be collapsed into the last axis. - The self.axis is assumed to have no duplicates. - """ - axis = sorted(self.axis) - can_use_fused = False - - if axis[-1] == ndims - 1 and axis[-1] - axis[0] == len(axis) - 1: - can_use_fused = True - - # fused_batch_norm will silently raise epsilon to be at least 1.001e-5, - # so we cannot used the fused version if epsilon is below that value. - # Also, the variable dtype must be float32, as fused_batch_norm only - # supports float32 variables. - if self.epsilon < 1.001e-5 or self.dtype != "float32": - can_use_fused = False - - return can_use_fused - - def build(self, input_shape): - self.axis = tf_utils.validate_axis(self.axis, input_shape) - input_shape = tf.TensorShape(input_shape) - rank = input_shape.rank - - param_shape = [input_shape[dim] for dim in self.axis] - if self.scale: - self.gamma = self.add_weight( - name="gamma", - shape=param_shape, - initializer=self.gamma_initializer, - regularizer=self.gamma_regularizer, - constraint=self.gamma_constraint, - trainable=True, - experimental_autocast=False, - ) - else: - self.gamma = None - - if self.center: - self.beta = self.add_weight( - name="beta", - shape=param_shape, - initializer=self.beta_initializer, - regularizer=self.beta_regularizer, - constraint=self.beta_constraint, - trainable=True, - experimental_autocast=False, - ) - else: - self.beta = None - - self._fused = self._fused_can_be_used(rank) - self.built = True - - def call(self, inputs): - # TODO(b/229545225): Remove the RaggedTensor check. - is_ragged = isinstance(inputs, tf.RaggedTensor) - if is_ragged: - inputs_lengths = inputs.nested_row_lengths() - inputs = inputs.to_tensor() - inputs = tf.cast(inputs, self.compute_dtype) - # Compute the axes along which to reduce the mean / variance - input_shape = inputs.shape - ndims = len(input_shape) - - # Broadcasting only necessary for norm when the axis is not just - # the last dimension - broadcast_shape = [1] * ndims - for dim in self.axis: - broadcast_shape[dim] = input_shape.dims[dim].value - - def _broadcast(v): - if ( - v is not None - and len(v.shape) != ndims - and self.axis != [ndims - 1] - ): - return tf.reshape(v, broadcast_shape) - return v - - if not self._fused: - input_dtype = inputs.dtype - if ( - input_dtype in ("float16", "bfloat16") - and self.dtype == "float32" - ): - # If mixed precision is used, cast inputs to float32 so that - # this is at least as numerically stable as the fused version. - inputs = tf.cast(inputs, "float32") - - # Calculate the moments on the last axis (layer activations). - mean, variance = tf.nn.moments(inputs, self.axis, keepdims=True) - - scale, offset = _broadcast(self.gamma), _broadcast(self.beta) - - # Compute layer normalization using the batch_normalization - # function. - outputs = tf.nn.batch_normalization( - inputs, - mean, - variance, - offset=offset, - scale=scale, - variance_epsilon=self.epsilon, - ) - outputs = tf.cast(outputs, input_dtype) - else: - # Collapse dims before self.axis, and dims in self.axis - pre_dim, in_dim = (1, 1) - axis = sorted(self.axis) - tensor_shape = tf.shape(inputs) - for dim in range(0, ndims): - dim_tensor = tensor_shape[dim] - if dim < axis[0]: - pre_dim = pre_dim * dim_tensor - else: - assert dim in axis - in_dim = in_dim * dim_tensor - - squeezed_shape = [1, pre_dim, in_dim, 1] - # This fused operation requires reshaped inputs to be NCHW. - data_format = "NCHW" - - inputs = tf.reshape(inputs, squeezed_shape) - - # self.gamma and self.beta have the wrong shape for - # fused_batch_norm, so we cannot pass them as the scale and offset - # parameters. Therefore, we create two constant tensors in correct - # shapes for fused_batch_norm and later construct a separate - # calculation on the scale and offset. - scale = tf.ones([pre_dim], dtype=self.dtype) - offset = tf.zeros([pre_dim], dtype=self.dtype) - - # Compute layer normalization using the fused_batch_norm function. - outputs, _, _ = tf.compat.v1.nn.fused_batch_norm( - inputs, - scale=scale, - offset=offset, - epsilon=self.epsilon, - data_format=data_format, - ) - - outputs = tf.reshape(outputs, tensor_shape) - - scale, offset = _broadcast(self.gamma), _broadcast(self.beta) - - if scale is not None: - outputs = outputs * tf.cast(scale, outputs.dtype) - if offset is not None: - outputs = outputs + tf.cast(offset, outputs.dtype) - - # If some components of the shape got lost due to adjustments, fix that. - outputs.set_shape(input_shape) - - if is_ragged: - outputs = tf.RaggedTensor.from_tensor(outputs, inputs_lengths) - return outputs - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = { - "axis": self.axis, - "epsilon": self.epsilon, - "center": self.center, - "scale": self.scale, - "beta_initializer": initializers.serialize(self.beta_initializer), - "gamma_initializer": initializers.serialize(self.gamma_initializer), - "beta_regularizer": regularizers.serialize(self.beta_regularizer), - "gamma_regularizer": regularizers.serialize(self.gamma_regularizer), - "beta_constraint": constraints.serialize(self.beta_constraint), - "gamma_constraint": constraints.serialize(self.gamma_constraint), - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/normalization/layer_normalization_test.py b/keras/layers/normalization/layer_normalization_test.py deleted file mode 100644 index c3531d83fdb..00000000000 --- a/keras/layers/normalization/layer_normalization_test.py +++ /dev/null @@ -1,415 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for normalization layers.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.normalization import layer_normalization -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -def _run_layernorm_correctness_test(layer, dtype="float32"): - model = keras.models.Sequential() - model.add(keras.layers.Lambda(lambda x: tf.cast(x, dtype="float16"))) - norm = layer(input_shape=(2, 2, 2), dtype=dtype) - model.add(norm) - model.compile( - loss="mse", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - run_eagerly=test_utils.should_run_eagerly(), - ) - - # centered on 5.0, variance 10.0 - x = np.random.normal(loc=5.0, scale=10.0, size=(1000, 2, 2, 2)).astype( - dtype - ) - model.fit(x, x, epochs=4, verbose=0) - out = model.predict(x) - out -= keras.backend.eval(norm.beta) - out /= keras.backend.eval(norm.gamma) - - np.testing.assert_allclose(out.mean(), 0.0, atol=1e-1) - np.testing.assert_allclose(out.std(), 1.0, atol=1e-1) - - -class LayerNormalizationTest(test_combinations.TestCase): - @test_combinations.run_all_keras_modes - def test_basic_layernorm(self): - test_utils.layer_test( - keras.layers.LayerNormalization, - kwargs={ - "gamma_regularizer": keras.regularizers.l2(0.01), - "beta_regularizer": keras.regularizers.l2(0.01), - }, - input_shape=(3, 4, 2), - ) - test_utils.layer_test( - keras.layers.LayerNormalization, - kwargs={ - "gamma_initializer": "ones", - "beta_initializer": "ones", - }, - input_shape=(3, 4, 2), - ) - test_utils.layer_test( - keras.layers.LayerNormalization, - kwargs={"scale": False, "center": False}, - input_shape=(3, 3), - ) - test_utils.layer_test( - keras.layers.LayerNormalization, - kwargs={"axis": (-3, -2, -1)}, - input_shape=(2, 8, 8, 3), - ) - test_utils.layer_test( - keras.layers.LayerNormalization, input_shape=(1, 0, 10) - ) - - @test_combinations.run_all_keras_modes - def test_non_fused_layernorm(self): - test_utils.layer_test( - keras.layers.LayerNormalization, - kwargs={"axis": -2}, - input_shape=(3, 4, 2), - ) - test_utils.layer_test( - keras.layers.LayerNormalization, - kwargs={"axis": (-3, -2)}, - input_shape=(2, 8, 8, 3), - ) - test_utils.layer_test( - keras.layers.LayerNormalization, - kwargs={"axis": (-3, -1)}, - input_shape=(2, 8, 8, 3), - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_layernorm_weights(self): - layer = keras.layers.LayerNormalization(scale=False, center=False) - layer.build((None, 3, 4)) - self.assertEqual(len(layer.trainable_weights), 0) - self.assertEqual(len(layer.weights), 0) - - layer = keras.layers.LayerNormalization() - layer.build((None, 3, 4)) - self.assertEqual(len(layer.trainable_weights), 2) - self.assertEqual(len(layer.weights), 2) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_layernorm_regularization(self): - layer = keras.layers.LayerNormalization( - gamma_regularizer="l1", beta_regularizer="l1" - ) - layer.build((None, 3, 4)) - self.assertEqual(len(layer.losses), 2) - max_norm = keras.constraints.max_norm - layer = keras.layers.LayerNormalization( - gamma_constraint=max_norm, beta_constraint=max_norm - ) - layer.build((None, 3, 4)) - self.assertEqual(layer.gamma.constraint, max_norm) - self.assertEqual(layer.beta.constraint, max_norm) - - @test_combinations.run_all_keras_modes - def test_layernorm_convnet_channel_last(self): - model = keras.models.Sequential() - norm = keras.layers.LayerNormalization(input_shape=(4, 4, 3)) - model.add(norm) - model.compile( - loss="mse", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - run_eagerly=test_utils.should_run_eagerly(), - ) - - # centered on 5.0, variance 10.0 - x = np.random.normal(loc=5.0, scale=10.0, size=(1000, 4, 4, 3)) - model.fit(x, x, epochs=4, verbose=0) - out = model.predict(x) - out -= np.reshape(keras.backend.eval(norm.beta), (1, 1, 1, 3)) - out /= np.reshape(keras.backend.eval(norm.gamma), (1, 1, 1, 3)) - - np.testing.assert_allclose(np.mean(out, axis=(0, 1, 2)), 0.0, atol=1e-1) - np.testing.assert_allclose(np.std(out, axis=(0, 1, 2)), 1.0, atol=1e-1) - - @test_combinations.run_all_keras_modes - def test_layernorm_ragged_tensor(self): - x = tf.ragged.constant( - [ - [[3.0, 1.0, 1.0], [4.0, 1.0, 1.0]], - [[5.0, 9.0, 1.0]], - [[1.0, 2.0, 1.0]], - ], - inner_shape=(3,), - ) - layer = keras.layers.LayerNormalization() - self.assertEqual(layer(x).shape, (3, None, 3)) - - @test_combinations.run_all_keras_modes - def test_layernorm_correctness(self): - _run_layernorm_correctness_test( - layer_normalization.LayerNormalization, dtype="float32" - ) - - @test_combinations.run_all_keras_modes - def test_layernorm_mixed_precision(self): - _run_layernorm_correctness_test( - layer_normalization.LayerNormalization, dtype="float16" - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testIncorrectAxisType(self): - with self.assertRaisesRegex( - TypeError, r"Expected an int or a list/tuple of ints" - ): - _ = layer_normalization.LayerNormalization(axis={"axis": -1}) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testInvalidAxis(self): - with self.assertRaisesRegex( - ValueError, - r"Invalid value for `axis` argument. " - r"Expected 0 <= axis < inputs.rank", - ): - layer_norm = layer_normalization.LayerNormalization(axis=3) - layer_norm.build(input_shape=(2, 2, 2)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testDuplicateAxis(self): - with self.assertRaisesRegex(ValueError, r"Duplicate axis:"): - layer_norm = layer_normalization.LayerNormalization(axis=[-1, -1]) - layer_norm.build(input_shape=(2, 2, 2)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testFusedAttr(self): - layer_norm = layer_normalization.LayerNormalization(axis=[-2, -1]) - layer_norm.build(input_shape=(2, 2, 2)) - self.assertEqual(layer_norm._fused, True) - - -class LayerNormalizationNumericsTest(test_combinations.TestCase): - """Tests LayerNormalization has correct and numerically stable outputs.""" - - def _expected_layer_norm( - self, x, beta, gamma, batch_input_shape, axis, epsilon - ): - """Returns the layer norm, which is computed using NumPy.""" - broadcast_shape = [ - batch_input_shape[i] if i in axis else 1 - for i in range(len(batch_input_shape)) - ] - mean = np.mean(x, axis=axis, keepdims=True) - var = np.var(x, axis=axis, keepdims=True) - expected = (x - mean) / np.sqrt(var + epsilon) - expected *= np.reshape(gamma, broadcast_shape) - expected += np.reshape(beta, broadcast_shape) - return expected - - def _test_forward_pass( - self, - batch_input_shape, - axis, - fp64_tol=1e-14, - fp32_tol=1e-6, - fp16_tol=1e-2, - ): - """Tests the forward pass of layer layer_normalization. - - Args: - batch_input_shape: The input shape that will be used to test, - including the batch dimension. - axis: A list of axes to normalize. Will be passed to the `axis` - argument of Layerlayer_normalization. - fp64_tol: The relative and absolute tolerance for float64. - fp32_tol: The relative and absolute tolerance for float32. - fp16_tol: The relative and absolute tolerance for float16. - """ - param_shape = [batch_input_shape[i] for i in axis] - param_elems = 1 - for dim in param_shape: - param_elems *= dim - beta = np.arange(param_elems, dtype="float64").reshape(param_shape) - gamma = np.arange(1, param_elems + 1, dtype="float64").reshape( - param_shape - ) - x = np.random.normal(size=batch_input_shape) - - for epsilon in 1e-12, 1e-3: - expected = self._expected_layer_norm( - x, beta, gamma, batch_input_shape, axis, epsilon - ) - for dtype in "float64", "float32", "float16": - norm = layer_normalization.LayerNormalization( - axis=axis, - dtype=dtype, - batch_input_shape=batch_input_shape, - epsilon=epsilon, - beta_initializer=keras.initializers.constant(beta), - gamma_initializer=keras.initializers.constant(gamma), - ) - y = norm(keras.backend.cast(x, dtype)) - actual = keras.backend.eval(y) - - if dtype == "float64": - tol = fp64_tol - elif dtype == "float32": - tol = fp32_tol - else: - assert dtype == "float16" - tol = fp16_tol - - # We use absolute tolerances in addition to relative tolerances, - # because some of the values are very close to zero. - self.assertAllClose(expected, actual, rtol=tol, atol=tol) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_forward(self): - # For numeric stability, we ensure the axis's dimension(s) have at least - # 4 elements. - self._test_forward_pass((4, 3), (0,)) - self._test_forward_pass((3, 4), (1,)) - self._test_forward_pass((4, 3, 2), (0,)) - self._test_forward_pass((2, 4, 2), (1,)) - self._test_forward_pass((2, 3, 4), (2,), fp16_tol=5e-2) - self._test_forward_pass((2, 3, 2), (0, 2)) - self._test_forward_pass((2, 2, 2, 2), (1, 3)) - self._test_forward_pass((2, 2, 2, 2), (2, 3)) - self._test_forward_pass((2, 3, 4, 5), (3,)) - - def _test_backward_pass( - self, - batch_input_shape, - axis, - fp64_tol=1e-5, - fp32_tol=1e-5, - fp16_tol=2e-2, - ): - """Tests the backwards pass of layer layer_normalization. - - Args: - batch_input_shape: The input shape that will be used to test, - including the batch dimension. - axis: A list of axes to normalize. Will be passed to the `axis` - argument of Layerlayer_normalization. - fp64_tol: The relative and absolute tolerance for float64. - fp32_tol: The relative and absolute tolerance for float32. - fp16_tol: The relative and absolute tolerance for float16. - """ - param_shape = [batch_input_shape[i] for i in axis] - param_elems = 1 - for dim in param_shape: - param_elems *= dim - beta = np.arange(param_elems, dtype="float64").reshape(param_shape) - gamma = np.arange(1, param_elems + 1, dtype="float64").reshape( - param_shape - ) - x = np.random.normal(size=batch_input_shape) - - for epsilon in 1e-12, 1e-3: - # Float64 must come first in this list, as we use the float64 - # numerical gradients to compare to the float32 and float16 symbolic - # gradients as well. Computing float32/float16 numerical gradients - # is too numerically unstable. - for dtype in "float64", "float32", "float16": - norm = layer_normalization.LayerNormalization( - axis=axis, - dtype=dtype, - batch_input_shape=batch_input_shape, - epsilon=epsilon, - beta_initializer=keras.initializers.constant(beta), - gamma_initializer=keras.initializers.constant(gamma), - ) - norm.build(x.shape) - - def forward_fn(x, beta, gamma): - # We must monkey-patch the attributes of `norm` with the - # function arguments, so that the gradient checker will - # properly compute their gradients. The gradient checker - # computes gradients with respect to the input arguments of - # `f`. - with tf.compat.v1.test.mock.patch.object( - norm, "beta", beta - ): - with tf.compat.v1.test.mock.patch.object( - norm, "gamma", gamma - ): - return norm(x) - - results = tf.test.compute_gradient( - forward_fn, - [keras.backend.cast(x, dtype), norm.beta, norm.gamma], - ) - ( - [x_grad_t, beta_grad_t, gamma_grad_t], - [x_grad_n, beta_grad_n, gamma_grad_n], - ) = results - - if dtype == "float64": - # We use the float64 numeric gradients as the reference, to - # compare against the symbolic gradients for all dtypes. - x_grad_ref = x_grad_n - beta_grad_ref = beta_grad_n - gamma_grad_ref = gamma_grad_n - tol = fp64_tol - elif dtype == "float32": - tol = fp32_tol - else: - assert dtype == "float16" - tol = fp16_tol - - # We use absolute tolerances in addition to relative tolerances, - # because some of the values are very close to zero. - self.assertAllClose(x_grad_t, x_grad_ref, rtol=tol, atol=tol) - self.assertAllClose( - beta_grad_t, beta_grad_ref, rtol=tol, atol=tol - ) - self.assertAllClose( - gamma_grad_t, gamma_grad_ref, rtol=tol, atol=tol - ) - - # The gradient_checker_v2 does not work properly with LayerNorm in graph - # mode. - @test_utils.run_v2_only - def test_backward(self): - # For numeric stability, we ensure the axis's dimension(s) have at least - # 4 elements. - self._test_backward_pass((4, 3), (0,)) - self._test_backward_pass((2, 4, 2), (1,)) - self._test_backward_pass((2, 3, 4), (2,)) - self._test_backward_pass( - (2, 3, 2), (0, 2), fp64_tol=5e-4, fp32_tol=5e-4 - ) - self._test_backward_pass((2, 2, 2, 2), (1, 3)) - self._test_backward_pass((2, 2, 2, 2), (2, 3)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/normalization/spectral_normalization.py b/keras/layers/normalization/spectral_normalization.py deleted file mode 100644 index c958cd4a79a..00000000000 --- a/keras/layers/normalization/spectral_normalization.py +++ /dev/null @@ -1,141 +0,0 @@ -# Copyright 2023 The Keras Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import tensorflow.compat.v2 as tf - -from keras.initializers import TruncatedNormal -from keras.layers.rnn import Wrapper - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -# Adapted from TF-Addons implementation -@keras_export("keras.layers.SpectralNormalization", v1=[]) -class SpectralNormalization(Wrapper): - """Performs spectral normalization on the weights of a target layer. - - This wrapper controls the Lipschitz constant of the weights of a layer by - constraining their spectral norm, which can stabilize the training of GANs. - - Args: - layer: A `keras.layers.Layer` instance that - has either a `kernel` (e.g. `Conv2D`, `Dense`...) - or an `embeddings` attribute (`Embedding` layer). - power_iterations: int, the number of iterations during normalization. - - Examples: - - Wrap `keras.layers.Conv2D`: - >>> x = np.random.rand(1, 10, 10, 1) - >>> conv2d = SpectralNormalization(tf.keras.layers.Conv2D(2, 2)) - >>> y = conv2d(x) - >>> y.shape - TensorShape([1, 9, 9, 2]) - - Wrap `keras.layers.Dense`: - >>> x = np.random.rand(1, 10, 10, 1) - >>> dense = SpectralNormalization(tf.keras.layers.Dense(10)) - >>> y = dense(x) - >>> y.shape - TensorShape([1, 10, 10, 10]) - - Reference: - - - [Spectral Normalization for GAN](https://arxiv.org/abs/1802.05957). - """ - - def __init__(self, layer, power_iterations=1, **kwargs): - super().__init__(layer, **kwargs) - if power_iterations <= 0: - raise ValueError( - "`power_iterations` should be greater than zero. Received: " - f"`power_iterations={power_iterations}`" - ) - self.power_iterations = power_iterations - - def build(self, input_shape): - super().build(input_shape) - input_shape = tf.TensorShape(input_shape) - self.input_spec = tf.keras.layers.InputSpec( - shape=[None] + input_shape[1:] - ) - - if hasattr(self.layer, "kernel"): - self.kernel = self.layer.kernel - elif hasattr(self.layer, "embeddings"): - self.kernel = self.layer.embeddings - else: - raise ValueError( - f"{type(self.layer).__name__} object has no attribute 'kernel' " - "nor 'embeddings'" - ) - - self.kernel_shape = self.kernel.shape.as_list() - - self.vector_u = self.add_weight( - shape=(1, self.kernel_shape[-1]), - initializer=TruncatedNormal(stddev=0.02), - trainable=False, - name="vector_u", - dtype=self.kernel.dtype, - ) - - def call(self, inputs, training=False): - if training: - self.normalize_weights() - - output = self.layer(inputs) - return output - - def compute_output_shape(self, input_shape): - return tf.TensorShape( - self.layer.compute_output_shape(input_shape).as_list() - ) - - def normalize_weights(self): - """Generate spectral normalized weights. - - This method will update the value of `self.kernel` with the - spectral normalized value, so that the layer is ready for `call()`. - """ - - weights = tf.reshape(self.kernel, [-1, self.kernel_shape[-1]]) - vector_u = self.vector_u - - # check for zeroes weights - if not tf.reduce_all(tf.equal(weights, 0.0)): - for _ in range(self.power_iterations): - vector_v = tf.math.l2_normalize( - tf.matmul(vector_u, weights, transpose_b=True) - ) - vector_u = tf.math.l2_normalize(tf.matmul(vector_v, weights)) - vector_u = tf.stop_gradient(vector_u) - vector_v = tf.stop_gradient(vector_v) - sigma = tf.matmul( - tf.matmul(vector_v, weights), vector_u, transpose_b=True - ) - self.vector_u.assign(tf.cast(vector_u, self.vector_u.dtype)) - self.kernel.assign( - tf.cast( - tf.reshape(self.kernel / sigma, self.kernel_shape), - self.kernel.dtype, - ) - ) - - def get_config(self): - config = {"power_iterations": self.power_iterations} - base_config = super().get_config() - return {**base_config, **config} diff --git a/keras/layers/normalization/spectral_normalization_test.py b/keras/layers/normalization/spectral_normalization_test.py deleted file mode 100644 index 8d673879cd6..00000000000 --- a/keras/layers/normalization/spectral_normalization_test.py +++ /dev/null @@ -1,169 +0,0 @@ -# Copyright 2023 The Keras Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import tensorflow as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class SpectralNormalizationTest(test_combinations.TestCase): - @test_combinations.run_all_keras_modes - def test_basic_spectralnorm(self): - test_utils.layer_test( - keras.layers.SpectralNormalization, - kwargs={"layer": keras.layers.Dense(2), "input_shape": (3, 4)}, - input_data=tf.random.uniform((10, 3, 4)), - ) - - @test_combinations.run_all_keras_modes - def test_from_to_config(self): - base_layer = keras.layers.Dense(1) - sn = keras.layers.SpectralNormalization(base_layer) - config = sn.get_config() - - new_sn = keras.layers.SpectralNormalization.from_config(config) - self.assertEqual(sn.power_iterations, new_sn.power_iterations) - - @test_combinations.run_all_keras_modes - def test_save_load_model(self): - base_layer = keras.layers.Dense(1) - input_shape = [1] - - inputs = keras.layers.Input(shape=input_shape) - sn_layer = keras.layers.SpectralNormalization(base_layer) - model = keras.models.Sequential(layers=[inputs, sn_layer]) - - # initialize model - model.predict(tf.random.uniform((2, 1))) - - model.save("test.h5") - new_model = keras.models.load_model("test.h5") - - self.assertEqual( - model.layers[0].get_config(), new_model.layers[0].get_config() - ) - - @test_combinations.run_all_keras_modes - def test_normalization(self): - inputs = keras.layers.Input(shape=[2, 2, 1]) - - base_layer = keras.layers.Conv2D( - 1, (2, 2), kernel_initializer=tf.constant_initializer(value=2) - ) - sn_layer = keras.layers.SpectralNormalization(base_layer) - model = keras.models.Sequential(layers=[inputs, sn_layer]) - - weights = tf.squeeze(model.layers[0].w.numpy()) - # This wrapper normalizes weights by the maximum eigen value - eigen_val, _ = tf.linalg.eig(weights) - weights_normalized = weights / tf.reduce_max(eigen_val) - - for training in [False, True]: - _ = model( - tf.constant(tf.ones((1, 2, 2, 1), dtype=tf.float32)), - training=training, - ) - if training: - w = weights_normalized - else: - w = weights - self.assertAllClose(w, tf.squeeze(model.layers[0].w.numpy())) - - @test_combinations.run_all_keras_modes - def test_apply_layer(self): - images = tf.ones((1, 2, 2, 1)) - sn_wrapper = keras.layers.SpectralNormalization( - keras.layers.Conv2D( - 1, [2, 2], kernel_initializer=tf.constant_initializer(value=1) - ), - input_shape=(2, 2, 1), - ) - - result = sn_wrapper(images, training=False) - result_train = sn_wrapper(images, training=True) - expected_output = tf.constant([[[[4.0]]]], dtype=tf.float32) - - self.assertAllClose(result, expected_output) - # max eigen value of 2x2 matrix of ones is 2 - self.assertAllClose(result_train, expected_output / 2) - self.assertTrue(hasattr(sn_wrapper, "u")) - - @test_combinations.run_all_keras_modes - def test_no_layer(self): - images = tf.random.uniform((2, 4, 43)) - with self.assertRaises(AssertionError): - keras.layers.SpectralNormalization(images) - - @test_combinations.run_all_keras_modes - def test_no_kernel(self): - with self.assertRaises(AttributeError): - keras.layers.SpectralNormalization( - keras.layers.MaxPooling2D(2, 2) - ).build((2, 2)) - - @parameterized.parameters( - [ - (lambda: keras.layers.Dense(2), [3, 2]), - ( - lambda: keras.layers.Conv2D(3, (2, 2), padding="same"), - [4, 4, 3], - ), - (lambda: keras.layers.Embedding(2, 10), [2]), - ], - ) - @test_combinations.run_all_keras_modes - def test_model_build(self, base_layer_fn, input_shape): - inputs = keras.layers.Input(shape=input_shape) - base_layer = base_layer_fn() - sn_layer = keras.layers.SpectralNormalization(base_layer) - model = keras.models.Sequential(layers=[inputs, sn_layer]) - model.build() - self.assertTrue(hasattr(model.layers[0], "vector_u")) - - @parameterized.parameters( - [ - (lambda: keras.layers.Dense(2), [3, 2], [3, 2]), - ( - lambda: keras.layers.Conv2D(3, (2, 2), padding="same"), - [4, 4, 3], - [4, 4, 3], - ), - (lambda: keras.layers.Embedding(2, 10), [2], [2, 10]), - ], - ) - @test_combinations.run_all_keras_modes - def test_model_fit(self, base_layer_fn, input_shape, output_shape): - inputs = keras.layers.Input(shape=input_shape) - base_layer = base_layer_fn() - - sn_layer = keras.layers.SpectralNormalization(base_layer) - model = keras.models.Sequential(layers=[inputs, sn_layer]) - model.add(keras.layers.Activation("relu")) - - model.compile( - optimizer=keras.optimizers.RMSprop(learning_rate=0.001), - loss="mse", - ) - model.fit( - tf.random.uniform((2, *input_shape)), - tf.random.uniform((2, *output_shape)), - epochs=3, - batch_size=10, - verbose=0, - ) - self.assertTrue(hasattr(model.layers[0], "vector_u")) diff --git a/keras/layers/normalization/unit_normalization.py b/keras/layers/normalization/unit_normalization.py deleted file mode 100644 index 843ecb88c4b..00000000000 --- a/keras/layers/normalization/unit_normalization.py +++ /dev/null @@ -1,75 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Unit Normalization layer.""" - - -import tensorflow.compat.v2 as tf - -from keras.engine import base_layer -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.UnitNormalization", v1=[]) -class UnitNormalization(base_layer.Layer): - """Unit normalization layer. - - Normalize a batch of inputs so that each input in the batch has a L2 norm - equal to 1 (across the axes specified in `axis`). - - Example: - - >>> data = tf.constant(np.arange(6).reshape(2, 3), dtype=tf.float32) - >>> normalized_data = tf.keras.layers.UnitNormalization()(data) - >>> print(tf.reduce_sum(normalized_data[0, :] ** 2).numpy()) - 1.0 - - Args: - axis: Integer or list/tuple. The axis or axes to normalize across. - Typically this is the features axis or axes. The left-out axes are - typically the batch axis or axes. Defaults to `-1`, the last dimension - in the input. - """ - - def __init__(self, axis=-1, **kwargs): - super().__init__(**kwargs) - if isinstance(axis, (list, tuple)): - self.axis = list(axis) - elif isinstance(axis, int): - self.axis = axis - else: - raise TypeError( - "Invalid value for `axis` argument: " - "expected an int or a list/tuple of ints. " - f"Received: axis={axis}" - ) - self.supports_masking = True - - def build(self, input_shape): - self.axis = tf_utils.validate_axis(self.axis, input_shape) - - def call(self, inputs): - inputs = tf.cast(inputs, self.compute_dtype) - return tf.linalg.l2_normalize(inputs, axis=self.axis) - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = super().get_config() - config.update({"axis": self.axis}) - return config diff --git a/keras/layers/normalization/unit_normalization_test.py b/keras/layers/normalization/unit_normalization_test.py deleted file mode 100644 index 386d5a043d0..00000000000 --- a/keras/layers/normalization/unit_normalization_test.py +++ /dev/null @@ -1,79 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Unit Normalization layer.""" - - -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -def squared_l2_norm(x): - return tf.reduce_sum(x**2) - - -@test_utils.run_v2_only -class UnitNormalizationTest(test_combinations.TestCase): - @test_combinations.run_all_keras_modes - def test_basics(self): - test_utils.layer_test( - keras.layers.UnitNormalization, - kwargs={"axis": -1}, - input_shape=(2, 3), - ) - test_utils.layer_test( - keras.layers.UnitNormalization, - kwargs={"axis": (1, 2)}, - input_shape=(1, 3, 3), - ) - - def test_correctness(self): - layer = keras.layers.UnitNormalization(axis=-1) - inputs = tf.random.normal(shape=(2, 3)) - outputs = layer(inputs).numpy() - self.assertAllClose(squared_l2_norm(outputs[0, :]), 1.0) - self.assertAllClose(squared_l2_norm(outputs[1, :]), 1.0) - - layer = keras.layers.UnitNormalization(axis=(1, 2)) - inputs = tf.random.normal(shape=(2, 3, 3)) - outputs = layer(inputs).numpy() - self.assertAllClose(squared_l2_norm(outputs[0, :, :]), 1.0) - self.assertAllClose(squared_l2_norm(outputs[1, :, :]), 1.0) - - layer = keras.layers.UnitNormalization(axis=1) - inputs = tf.random.normal(shape=(2, 3, 2)) - outputs = layer(inputs).numpy() - self.assertAllClose(squared_l2_norm(outputs[0, :, 0]), 1.0) - self.assertAllClose(squared_l2_norm(outputs[1, :, 0]), 1.0) - self.assertAllClose(squared_l2_norm(outputs[0, :, 1]), 1.0) - self.assertAllClose(squared_l2_norm(outputs[1, :, 1]), 1.0) - - def testInvalidAxis(self): - with self.assertRaisesRegex( - TypeError, r"Invalid value for `axis` argument" - ): - layer = keras.layers.UnitNormalization(axis=None) - - with self.assertRaisesRegex( - ValueError, r"Invalid value for `axis` argument" - ): - layer = keras.layers.UnitNormalization(axis=3) - layer.build(input_shape=(2, 2, 2)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/pooling/BUILD b/keras/layers/pooling/BUILD deleted file mode 100644 index 7aac954fe71..00000000000 --- a/keras/layers/pooling/BUILD +++ /dev/null @@ -1,305 +0,0 @@ -# Description: -# Contains the Keras pooling layers. - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/py/tensorflow_gnn:__subpackages__", - "//third_party/tensorflow/python/distribute:__pkg__", - "//third_party/tensorflow/python/feature_column:__pkg__", - "//third_party/tensorflow/python/training/tracking:__pkg__", - "//third_party/tensorflow/tools/pip_package:__pkg__", - "//third_party/tensorflow_models/official/projects/residual_mobilenet/modeling/backbones:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "pooling", - srcs = ["__init__.py"], - srcs_version = "PY3", - deps = [ - ":average_pooling1d", - ":average_pooling2d", - ":average_pooling3d", - ":global_average_pooling1d", - ":global_average_pooling2d", - ":global_average_pooling3d", - ":global_max_pooling1d", - ":global_max_pooling2d", - ":global_max_pooling3d", - ":max_pooling1d", - ":max_pooling2d", - ":max_pooling3d", - ], -) - -py_library( - name = "base_pooling1d", - srcs = ["base_pooling1d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "base_pooling2d", - srcs = ["base_pooling2d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "base_pooling3d", - srcs = ["base_pooling3d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "base_global_pooling1d", - srcs = ["base_global_pooling1d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "base_global_pooling2d", - srcs = ["base_global_pooling2d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "base_global_pooling3d", - srcs = ["base_global_pooling3d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "max_pooling1d", - srcs = ["max_pooling1d.py"], - srcs_version = "PY3", - deps = [ - ":base_pooling1d", - "//keras:backend", - ], -) - -py_library( - name = "max_pooling2d", - srcs = ["max_pooling2d.py"], - srcs_version = "PY3", - deps = [ - ":base_pooling2d", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "max_pooling3d", - srcs = ["max_pooling3d.py"], - srcs_version = "PY3", - deps = [ - ":base_pooling3d", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "average_pooling1d", - srcs = ["average_pooling1d.py"], - srcs_version = "PY3", - deps = [ - ":base_pooling1d", - "//keras:backend", - ], -) - -py_library( - name = "average_pooling2d", - srcs = ["average_pooling2d.py"], - srcs_version = "PY3", - deps = [ - ":base_pooling2d", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "average_pooling3d", - srcs = ["average_pooling3d.py"], - srcs_version = "PY3", - deps = [ - ":base_pooling3d", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "global_max_pooling1d", - srcs = ["global_max_pooling1d.py"], - srcs_version = "PY3", - deps = [ - ":base_global_pooling1d", - "//keras:backend", - ], -) - -py_library( - name = "global_max_pooling2d", - srcs = ["global_max_pooling2d.py"], - srcs_version = "PY3", - deps = [ - ":base_global_pooling2d", - "//keras:backend", - ], -) - -py_library( - name = "global_max_pooling3d", - srcs = ["global_max_pooling3d.py"], - srcs_version = "PY3", - deps = [ - ":base_global_pooling3d", - "//keras:backend", - ], -) - -py_library( - name = "global_average_pooling1d", - srcs = ["global_average_pooling1d.py"], - srcs_version = "PY3", - deps = [ - ":base_global_pooling1d", - "//:expect_tensorflow_installed", - "//keras:backend", - ], -) - -py_library( - name = "global_average_pooling2d", - srcs = ["global_average_pooling2d.py"], - srcs_version = "PY3", - deps = [ - ":base_global_pooling2d", - "//keras:backend", - ], -) - -py_library( - name = "global_average_pooling3d", - srcs = ["global_average_pooling3d.py"], - srcs_version = "PY3", - deps = [ - ":base_global_pooling3d", - "//keras:backend", - ], -) - -tf_py_test( - name = "average_pooling_test", - size = "medium", - srcs = ["average_pooling_test.py"], - python_version = "PY3", - shard_count = 8, - tags = [ - "notsan", # TODO(b/183962355) - ], - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "max_pooling_test", - size = "medium", - srcs = ["max_pooling_test.py"], - python_version = "PY3", - shard_count = 8, - tags = [ - "notsan", # TODO(b/183962355) - ], - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "global_average_pooling_test", - size = "medium", - srcs = ["global_average_pooling_test.py"], - python_version = "PY3", - shard_count = 8, - tags = [ - "notsan", # TODO(b/183962355) - ], - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "global_max_pooling_test", - size = "medium", - srcs = ["global_max_pooling_test.py"], - python_version = "PY3", - shard_count = 8, - tags = [ - "notsan", # TODO(b/183962355) - ], - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) diff --git a/keras/layers/pooling/__init__.py b/keras/layers/pooling/__init__.py deleted file mode 100644 index d70383f39eb..00000000000 --- a/keras/layers/pooling/__init__.py +++ /dev/null @@ -1,43 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras Pooling layers.""" - - -# Pooling layer aliases. -# Pooling layers. -from keras.layers.pooling.average_pooling1d import AveragePooling1D -from keras.layers.pooling.average_pooling1d import AvgPool1D -from keras.layers.pooling.average_pooling2d import AveragePooling2D -from keras.layers.pooling.average_pooling2d import AvgPool2D -from keras.layers.pooling.average_pooling3d import AveragePooling3D -from keras.layers.pooling.average_pooling3d import AvgPool3D -from keras.layers.pooling.global_average_pooling1d import GlobalAveragePooling1D -from keras.layers.pooling.global_average_pooling1d import GlobalAvgPool1D -from keras.layers.pooling.global_average_pooling2d import GlobalAveragePooling2D -from keras.layers.pooling.global_average_pooling2d import GlobalAvgPool2D -from keras.layers.pooling.global_average_pooling3d import GlobalAveragePooling3D -from keras.layers.pooling.global_average_pooling3d import GlobalAvgPool3D -from keras.layers.pooling.global_max_pooling1d import GlobalMaxPool1D -from keras.layers.pooling.global_max_pooling1d import GlobalMaxPooling1D -from keras.layers.pooling.global_max_pooling2d import GlobalMaxPool2D -from keras.layers.pooling.global_max_pooling2d import GlobalMaxPooling2D -from keras.layers.pooling.global_max_pooling3d import GlobalMaxPool3D -from keras.layers.pooling.global_max_pooling3d import GlobalMaxPooling3D -from keras.layers.pooling.max_pooling1d import MaxPool1D -from keras.layers.pooling.max_pooling1d import MaxPooling1D -from keras.layers.pooling.max_pooling2d import MaxPool2D -from keras.layers.pooling.max_pooling2d import MaxPooling2D -from keras.layers.pooling.max_pooling3d import MaxPool3D -from keras.layers.pooling.max_pooling3d import MaxPooling3D diff --git a/keras/layers/pooling/average_pooling1d.py b/keras/layers/pooling/average_pooling1d.py deleted file mode 100644 index a4b3a9c6d22..00000000000 --- a/keras/layers/pooling/average_pooling1d.py +++ /dev/null @@ -1,148 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Average pooling 1D layer.""" - - -import functools - -from keras import backend -from keras.layers.pooling.base_pooling1d import Pooling1D - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.AveragePooling1D", "keras.layers.AvgPool1D") -class AveragePooling1D(Pooling1D): - """Average pooling for temporal data. - - Downsamples the input representation by taking the average value over the - window defined by `pool_size`. The window is shifted by `strides`. The - resulting output when using "valid" padding option has a shape of: - `output_shape = (input_shape - pool_size + 1) / strides)` - - The resulting output shape when using the "same" padding option is: - `output_shape = input_shape / strides` - - For example, for strides=1 and padding="valid": - - >>> x = tf.constant([1., 2., 3., 4., 5.]) - >>> x = tf.reshape(x, [1, 5, 1]) - >>> x - - >>> avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2, - ... strides=1, padding='valid') - >>> avg_pool_1d(x) - - - For example, for strides=2 and padding="valid": - - >>> x = tf.constant([1., 2., 3., 4., 5.]) - >>> x = tf.reshape(x, [1, 5, 1]) - >>> x - - >>> avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2, - ... strides=2, padding='valid') - >>> avg_pool_1d(x) - - - For example, for strides=1 and padding="same": - - >>> x = tf.constant([1., 2., 3., 4., 5.]) - >>> x = tf.reshape(x, [1, 5, 1]) - >>> x - - >>> avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2, - ... strides=1, padding='same') - >>> avg_pool_1d(x) - - - Args: - pool_size: Integer, size of the average pooling windows. - strides: Integer, or None. Factor by which to downscale. - E.g. 2 will halve the input. - If None, it will default to `pool_size`. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, steps, features)` while `channels_first` - corresponds to inputs with shape - `(batch, features, steps)`. - - Input shape: - - If `data_format='channels_last'`: - 3D tensor with shape `(batch_size, steps, features)`. - - If `data_format='channels_first'`: - 3D tensor with shape `(batch_size, features, steps)`. - - Output shape: - - If `data_format='channels_last'`: - 3D tensor with shape `(batch_size, downsampled_steps, features)`. - - If `data_format='channels_first'`: - 3D tensor with shape `(batch_size, features, downsampled_steps)`. - """ - - def __init__( - self, - pool_size=2, - strides=None, - padding="valid", - data_format="channels_last", - **kwargs - ): - super().__init__( - functools.partial(backend.pool2d, pool_mode="avg"), - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - **kwargs - ) - - -# Alias - -AvgPool1D = AveragePooling1D diff --git a/keras/layers/pooling/average_pooling2d.py b/keras/layers/pooling/average_pooling2d.py deleted file mode 100644 index b818ed7e3a8..00000000000 --- a/keras/layers/pooling/average_pooling2d.py +++ /dev/null @@ -1,148 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Average pooling 2D layer.""" - - -import tensorflow.compat.v2 as tf - -from keras.layers.pooling.base_pooling2d import Pooling2D - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.AveragePooling2D", "keras.layers.AvgPool2D") -class AveragePooling2D(Pooling2D): - """Average pooling operation for spatial data. - - Downsamples the input along its spatial dimensions (height and width) - by taking the average value over an input window - (of size defined by `pool_size`) for each channel of the input. - The window is shifted by `strides` along each dimension. - - The resulting output when using `"valid"` padding option has a shape - (number of rows or columns) of: - `output_shape = math.floor((input_shape - pool_size) / strides) + 1` - (when `input_shape >= pool_size`) - - The resulting output shape when using the `"same"` padding option is: - `output_shape = math.floor((input_shape - 1) / strides) + 1` - - For example, for `strides=(1, 1)` and `padding="valid"`: - - >>> x = tf.constant([[1., 2., 3.], - ... [4., 5., 6.], - ... [7., 8., 9.]]) - >>> x = tf.reshape(x, [1, 3, 3, 1]) - >>> avg_pool_2d = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), - ... strides=(1, 1), padding='valid') - >>> avg_pool_2d(x) - - - For example, for `stride=(2, 2)` and `padding="valid"`: - - >>> x = tf.constant([[1., 2., 3., 4.], - ... [5., 6., 7., 8.], - ... [9., 10., 11., 12.]]) - >>> x = tf.reshape(x, [1, 3, 4, 1]) - >>> avg_pool_2d = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), - ... strides=(2, 2), padding='valid') - >>> avg_pool_2d(x) - - - For example, for `strides=(1, 1)` and `padding="same"`: - - >>> x = tf.constant([[1., 2., 3.], - ... [4., 5., 6.], - ... [7., 8., 9.]]) - >>> x = tf.reshape(x, [1, 3, 3, 1]) - >>> avg_pool_2d = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), - ... strides=(1, 1), padding='same') - >>> avg_pool_2d(x) - - - Args: - pool_size: integer or tuple of 2 integers, - factors by which to downscale (vertical, horizontal). - `(2, 2)` will halve the input in both spatial dimension. - If only one integer is specified, the same window length - will be used for both dimensions. - strides: Integer, tuple of 2 integers, or None. - Strides values. - If None, it will default to `pool_size`. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch, channels, height, width)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - - Input shape: - - If `data_format='channels_last'`: - 4D tensor with shape `(batch_size, rows, cols, channels)`. - - If `data_format='channels_first'`: - 4D tensor with shape `(batch_size, channels, rows, cols)`. - - Output shape: - - If `data_format='channels_last'`: - 4D tensor with shape `(batch_size, pooled_rows, pooled_cols, channels)`. - - If `data_format='channels_first'`: - 4D tensor with shape `(batch_size, channels, pooled_rows, pooled_cols)`. - """ - - def __init__( - self, - pool_size=(2, 2), - strides=None, - padding="valid", - data_format=None, - **kwargs - ): - super().__init__( - tf.nn.avg_pool, - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - **kwargs - ) - - -# Alias - -AvgPool2D = AveragePooling2D diff --git a/keras/layers/pooling/average_pooling3d.py b/keras/layers/pooling/average_pooling3d.py deleted file mode 100644 index 41faa234aeb..00000000000 --- a/keras/layers/pooling/average_pooling3d.py +++ /dev/null @@ -1,105 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Average pooling 3D layer.""" - - -import tensorflow.compat.v2 as tf - -from keras.layers.pooling.base_pooling3d import Pooling3D - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.AveragePooling3D", "keras.layers.AvgPool3D") -class AveragePooling3D(Pooling3D): - """Average pooling operation for 3D data (spatial or spatio-temporal). - - Downsamples the input along its spatial dimensions (depth, height, and - width) by taking the average value over an input window - (of size defined by `pool_size`) for each channel of the input. - The window is shifted by `strides` along each dimension. - - Args: - pool_size: tuple of 3 integers, - factors by which to downscale (dim1, dim2, dim3). - `(2, 2, 2)` will halve the size of the 3D input in each dimension. - strides: tuple of 3 integers, or None. Strides values. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - while `channels_first` corresponds to inputs with shape - `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - - Input shape: - - If `data_format='channels_last'`: - 5D tensor with shape: - `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - - If `data_format='channels_first'`: - 5D tensor with shape: - `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` - - Output shape: - - If `data_format='channels_last'`: - 5D tensor with shape: - `(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)` - - If `data_format='channels_first'`: - 5D tensor with shape: - `(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)` - - Example: - - ```python - depth = 30 - height = 30 - width = 30 - input_channels = 3 - - inputs = tf.keras.Input(shape=(depth, height, width, input_channels)) - layer = tf.keras.layers.AveragePooling3D(pool_size=3) - outputs = layer(inputs) # Shape: (batch_size, 10, 10, 10, 3) - ``` - """ - - def __init__( - self, - pool_size=(2, 2, 2), - strides=None, - padding="valid", - data_format=None, - **kwargs - ): - super().__init__( - tf.nn.avg_pool3d, - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - **kwargs - ) - - -# Alias - -AvgPool3D = AveragePooling3D diff --git a/keras/layers/pooling/average_pooling_test.py b/keras/layers/pooling/average_pooling_test.py deleted file mode 100644 index cd7f5ffed9a..00000000000 --- a/keras/layers/pooling/average_pooling_test.py +++ /dev/null @@ -1,92 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for average pooling layers.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class AveragePoolingTest(tf.test.TestCase, parameterized.TestCase): - def test_average_pooling_1d(self): - for padding in ["valid", "same"]: - for stride in [1, 2]: - test_utils.layer_test( - keras.layers.AveragePooling1D, - kwargs={"strides": stride, "padding": padding}, - input_shape=(3, 5, 4), - ) - - test_utils.layer_test( - keras.layers.AveragePooling1D, - kwargs={"data_format": "channels_first"}, - input_shape=(3, 2, 6), - ) - - def test_average_pooling_2d(self): - test_utils.layer_test( - keras.layers.AveragePooling2D, - kwargs={"strides": (2, 2), "padding": "same", "pool_size": (2, 2)}, - input_shape=(3, 5, 6, 4), - ) - test_utils.layer_test( - keras.layers.AveragePooling2D, - kwargs={"strides": (2, 2), "padding": "valid", "pool_size": (3, 3)}, - input_shape=(3, 5, 6, 4), - ) - - # This part of the test can only run on GPU but doesn't appear - # to be properly assigned to a GPU when running in eager mode. - if not tf.executing_eagerly(): - # Only runs on GPU with CUDA, channels_first is not supported on - # CPU. - # TODO(b/62340061): Support channels_first on CPU. - if tf.test.is_gpu_available(cuda_only=True): - test_utils.layer_test( - keras.layers.AveragePooling2D, - kwargs={ - "strides": (1, 1), - "padding": "valid", - "pool_size": (2, 2), - "data_format": "channels_first", - }, - input_shape=(3, 4, 5, 6), - ) - - def test_average_pooling_3d(self): - pool_size = (3, 3, 3) - test_utils.layer_test( - keras.layers.AveragePooling3D, - kwargs={"strides": 2, "padding": "valid", "pool_size": pool_size}, - input_shape=(3, 11, 12, 10, 4), - ) - test_utils.layer_test( - keras.layers.AveragePooling3D, - kwargs={ - "strides": 3, - "padding": "valid", - "data_format": "channels_first", - "pool_size": pool_size, - }, - input_shape=(3, 4, 11, 12, 10), - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/pooling/base_global_pooling1d.py b/keras/layers/pooling/base_global_pooling1d.py deleted file mode 100644 index fbf2465109b..00000000000 --- a/keras/layers/pooling/base_global_pooling1d.py +++ /dev/null @@ -1,68 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Private base class for global pooling 1D layers.""" - - -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - - -class GlobalPooling1D(Layer): - """Abstract class for different global pooling 1D layers.""" - - def __init__(self, data_format="channels_last", keepdims=False, **kwargs): - super().__init__(**kwargs) - self.input_spec = InputSpec(ndim=3) - self.data_format = conv_utils.normalize_data_format(data_format) - self.keepdims = keepdims - - def _validate_reduction_axis(self, input_shape, axes): - for axis in axes: - if input_shape[axis] == 0: - raise ValueError( - f"Incorrect input shape {input_shape} " - f"with dimension 0 at reduction axis {axis}." - ) - - def build(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if self.data_format == "channels_last": - self._validate_reduction_axis(input_shape, [1]) - else: - self._validate_reduction_axis(input_shape, [2]) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if self.data_format == "channels_first": - if self.keepdims: - return tf.TensorShape([input_shape[0], input_shape[1], 1]) - else: - return tf.TensorShape([input_shape[0], input_shape[1]]) - else: - if self.keepdims: - return tf.TensorShape([input_shape[0], 1, input_shape[2]]) - else: - return tf.TensorShape([input_shape[0], input_shape[2]]) - - def call(self, inputs): - raise NotImplementedError - - def get_config(self): - config = {"data_format": self.data_format, "keepdims": self.keepdims} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/pooling/base_global_pooling2d.py b/keras/layers/pooling/base_global_pooling2d.py deleted file mode 100644 index 7fe7a28e890..00000000000 --- a/keras/layers/pooling/base_global_pooling2d.py +++ /dev/null @@ -1,68 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Private base class for global pooling 2D layers.""" - - -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - - -class GlobalPooling2D(Layer): - """Abstract class for different global pooling 2D layers.""" - - def __init__(self, data_format=None, keepdims=False, **kwargs): - super().__init__(**kwargs) - self.data_format = conv_utils.normalize_data_format(data_format) - self.input_spec = InputSpec(ndim=4) - self.keepdims = keepdims - - def _validate_reduction_axis(self, input_shape, axes): - for axis in axes: - if input_shape[axis] == 0: - raise ValueError( - f"Incorrect input shape {input_shape} " - f"with dimension 0 at reduction axis {axis}." - ) - - def build(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if self.data_format == "channels_last": - self._validate_reduction_axis(input_shape, [1, 2]) - else: - self._validate_reduction_axis(input_shape, [2, 3]) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if self.data_format == "channels_last": - if self.keepdims: - return tf.TensorShape([input_shape[0], 1, 1, input_shape[3]]) - else: - return tf.TensorShape([input_shape[0], input_shape[3]]) - else: - if self.keepdims: - return tf.TensorShape([input_shape[0], input_shape[1], 1, 1]) - else: - return tf.TensorShape([input_shape[0], input_shape[1]]) - - def call(self, inputs): - raise NotImplementedError - - def get_config(self): - config = {"data_format": self.data_format, "keepdims": self.keepdims} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/pooling/base_global_pooling3d.py b/keras/layers/pooling/base_global_pooling3d.py deleted file mode 100644 index 749475ac857..00000000000 --- a/keras/layers/pooling/base_global_pooling3d.py +++ /dev/null @@ -1,68 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Private base class for global pooling 3D layers.""" - - -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - - -class GlobalPooling3D(Layer): - """Abstract class for different global pooling 3D layers.""" - - def __init__(self, data_format=None, keepdims=False, **kwargs): - super().__init__(**kwargs) - self.data_format = conv_utils.normalize_data_format(data_format) - self.input_spec = InputSpec(ndim=5) - self.keepdims = keepdims - - def _validate_reduction_axis(self, input_shape, axes): - for axis in axes: - if input_shape[axis] == 0: - raise ValueError( - f"Incorrect input shape {input_shape} " - f"with dimension 0 at reduction axis {axis}." - ) - - def build(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if self.data_format == "channels_last": - self._validate_reduction_axis(input_shape, [1, 2, 3]) - else: - self._validate_reduction_axis(input_shape, [2, 3, 4]) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if self.data_format == "channels_last": - if self.keepdims: - return tf.TensorShape([input_shape[0], 1, 1, 1, input_shape[4]]) - else: - return tf.TensorShape([input_shape[0], input_shape[4]]) - else: - if self.keepdims: - return tf.TensorShape([input_shape[0], input_shape[1], 1, 1, 1]) - else: - return tf.TensorShape([input_shape[0], input_shape[1]]) - - def call(self, inputs): - raise NotImplementedError - - def get_config(self): - config = {"data_format": self.data_format, "keepdims": self.keepdims} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/pooling/base_pooling1d.py b/keras/layers/pooling/base_pooling1d.py deleted file mode 100644 index 397196d51e5..00000000000 --- a/keras/layers/pooling/base_pooling1d.py +++ /dev/null @@ -1,109 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Private base class for pooling 1D layers.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - - -class Pooling1D(Layer): - """Pooling layer for arbitrary pooling functions, for 1D inputs. - - This class only exists for code reuse. It will never be an exposed API. - - Args: - pool_function: The pooling function to apply, e.g. `tf.nn.max_pool2d`. - pool_size: An integer or tuple/list of a single integer, - representing the size of the pooling window. - strides: An integer or tuple/list of a single integer, specifying the - strides of the pooling operation. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, steps, features)` while `channels_first` - corresponds to inputs with shape - `(batch, features, steps)`. - name: A string, the name of the layer. - """ - - def __init__( - self, - pool_function, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, - **kwargs - ): - super().__init__(name=name, **kwargs) - if data_format is None: - data_format = backend.image_data_format() - if strides is None: - strides = pool_size - self.pool_function = pool_function - self.pool_size = conv_utils.normalize_tuple(pool_size, 1, "pool_size") - self.strides = conv_utils.normalize_tuple( - strides, 1, "strides", allow_zero=True - ) - self.padding = conv_utils.normalize_padding(padding) - self.data_format = conv_utils.normalize_data_format(data_format) - self.input_spec = InputSpec(ndim=3) - - def call(self, inputs): - pad_axis = 2 if self.data_format == "channels_last" else 3 - inputs = tf.expand_dims(inputs, pad_axis) - outputs = self.pool_function( - inputs, - self.pool_size + (1,), - strides=self.strides + (1,), - padding=self.padding, - data_format=self.data_format, - ) - return tf.squeeze(outputs, pad_axis) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if self.data_format == "channels_first": - steps = input_shape[2] - features = input_shape[1] - else: - steps = input_shape[1] - features = input_shape[2] - length = conv_utils.conv_output_length( - steps, self.pool_size[0], self.padding, self.strides[0] - ) - if self.data_format == "channels_first": - return tf.TensorShape([input_shape[0], features, length]) - else: - return tf.TensorShape([input_shape[0], length, features]) - - def get_config(self): - config = { - "strides": self.strides, - "pool_size": self.pool_size, - "padding": self.padding, - "data_format": self.data_format, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/pooling/base_pooling2d.py b/keras/layers/pooling/base_pooling2d.py deleted file mode 100644 index 3aaa080700b..00000000000 --- a/keras/layers/pooling/base_pooling2d.py +++ /dev/null @@ -1,120 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Private base class for pooling 2D layers.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - - -class Pooling2D(Layer): - """Pooling layer for arbitrary pooling functions, for 2D data (e.g. images). - - This class only exists for code reuse. It will never be an exposed API. - - Args: - pool_function: The pooling function to apply, e.g. `tf.nn.max_pool2d`. - pool_size: An integer or tuple/list of 2 integers: - (pool_height, pool_width) - specifying the size of the pooling window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 2 integers, - specifying the strides of the pooling operation. - Can be a single integer to specify the same value for - all spatial dimensions. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string, one of `channels_last` (default) or - `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, height, width)`. - name: A string, the name of the layer. - """ - - def __init__( - self, - pool_function, - pool_size, - strides, - padding="valid", - data_format=None, - name=None, - **kwargs - ): - super().__init__(name=name, **kwargs) - if data_format is None: - data_format = backend.image_data_format() - if strides is None: - strides = pool_size - self.pool_function = pool_function - self.pool_size = conv_utils.normalize_tuple(pool_size, 2, "pool_size") - self.strides = conv_utils.normalize_tuple( - strides, 2, "strides", allow_zero=True - ) - self.padding = conv_utils.normalize_padding(padding) - self.data_format = conv_utils.normalize_data_format(data_format) - self.input_spec = InputSpec(ndim=4) - - def call(self, inputs): - if self.data_format == "channels_last": - pool_shape = (1,) + self.pool_size + (1,) - strides = (1,) + self.strides + (1,) - else: - pool_shape = (1, 1) + self.pool_size - strides = (1, 1) + self.strides - outputs = self.pool_function( - inputs, - ksize=pool_shape, - strides=strides, - padding=self.padding.upper(), - data_format=conv_utils.convert_data_format(self.data_format, 4), - ) - return outputs - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if self.data_format == "channels_first": - rows = input_shape[2] - cols = input_shape[3] - else: - rows = input_shape[1] - cols = input_shape[2] - rows = conv_utils.conv_output_length( - rows, self.pool_size[0], self.padding, self.strides[0] - ) - cols = conv_utils.conv_output_length( - cols, self.pool_size[1], self.padding, self.strides[1] - ) - if self.data_format == "channels_first": - return tf.TensorShape([input_shape[0], input_shape[1], rows, cols]) - else: - return tf.TensorShape([input_shape[0], rows, cols, input_shape[3]]) - - def get_config(self): - config = { - "pool_size": self.pool_size, - "padding": self.padding, - "strides": self.strides, - "data_format": self.data_format, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/pooling/base_pooling3d.py b/keras/layers/pooling/base_pooling3d.py deleted file mode 100644 index bc4d5b7bde1..00000000000 --- a/keras/layers/pooling/base_pooling3d.py +++ /dev/null @@ -1,135 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Private base class for pooling 3D layers.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - - -class Pooling3D(Layer): - """Pooling layer for arbitrary pooling functions, for 3D inputs. - - This class only exists for code reuse. It will never be an exposed API. - - Args: - pool_function: The pooling function to apply, e.g. `tf.nn.max_pool2d`. - pool_size: An integer or tuple/list of 3 integers: - (pool_depth, pool_height, pool_width) - specifying the size of the pooling window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 3 integers, - specifying the strides of the pooling operation. - Can be a single integer to specify the same value for - all spatial dimensions. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string, one of `channels_last` (default) or - `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, depth, height, width, channels)` - while `channels_first` corresponds to - inputs with shape `(batch, channels, depth, height, width)`. - name: A string, the name of the layer. - """ - - def __init__( - self, - pool_function, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, - **kwargs - ): - super().__init__(name=name, **kwargs) - if data_format is None: - data_format = backend.image_data_format() - if strides is None: - strides = pool_size - self.pool_function = pool_function - self.pool_size = conv_utils.normalize_tuple(pool_size, 3, "pool_size") - self.strides = conv_utils.normalize_tuple( - strides, 3, "strides", allow_zero=True - ) - self.padding = conv_utils.normalize_padding(padding) - self.data_format = conv_utils.normalize_data_format(data_format) - self.input_spec = InputSpec(ndim=5) - - def call(self, inputs): - pool_shape = (1,) + self.pool_size + (1,) - strides = (1,) + self.strides + (1,) - - if self.data_format == "channels_first": - # TF does not support `channels_first` with 3D pooling operations, - # so we must handle this case manually. - # TODO(fchollet): remove this when TF pooling is feature-complete. - inputs = tf.transpose(inputs, (0, 2, 3, 4, 1)) - - outputs = self.pool_function( - inputs, - ksize=pool_shape, - strides=strides, - padding=self.padding.upper(), - ) - - if self.data_format == "channels_first": - outputs = tf.transpose(outputs, (0, 4, 1, 2, 3)) - return outputs - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if self.data_format == "channels_first": - len_dim1 = input_shape[2] - len_dim2 = input_shape[3] - len_dim3 = input_shape[4] - else: - len_dim1 = input_shape[1] - len_dim2 = input_shape[2] - len_dim3 = input_shape[3] - len_dim1 = conv_utils.conv_output_length( - len_dim1, self.pool_size[0], self.padding, self.strides[0] - ) - len_dim2 = conv_utils.conv_output_length( - len_dim2, self.pool_size[1], self.padding, self.strides[1] - ) - len_dim3 = conv_utils.conv_output_length( - len_dim3, self.pool_size[2], self.padding, self.strides[2] - ) - if self.data_format == "channels_first": - return tf.TensorShape( - [input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3] - ) - else: - return tf.TensorShape( - [input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]] - ) - - def get_config(self): - config = { - "pool_size": self.pool_size, - "padding": self.padding, - "strides": self.strides, - "data_format": self.data_format, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/pooling/global_average_pooling1d.py b/keras/layers/pooling/global_average_pooling1d.py deleted file mode 100644 index 0a81e9f98b1..00000000000 --- a/keras/layers/pooling/global_average_pooling1d.py +++ /dev/null @@ -1,103 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Global average pooling 1D layer.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.layers.pooling.base_global_pooling1d import GlobalPooling1D - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.layers.GlobalAveragePooling1D", "keras.layers.GlobalAvgPool1D" -) -class GlobalAveragePooling1D(GlobalPooling1D): - """Global average pooling operation for temporal data. - - Examples: - - >>> input_shape = (2, 3, 4) - >>> x = tf.random.normal(input_shape) - >>> y = tf.keras.layers.GlobalAveragePooling1D()(x) - >>> print(y.shape) - (2, 4) - - Args: - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, steps, features)` while `channels_first` - corresponds to inputs with shape - `(batch, features, steps)`. - keepdims: A boolean, whether to keep the temporal dimension or not. - If `keepdims` is `False` (default), the rank of the tensor is reduced - for spatial dimensions. - If `keepdims` is `True`, the temporal dimension are retained with - length 1. - The behavior is the same as for `tf.reduce_mean` or `np.mean`. - - Call arguments: - inputs: A 3D tensor. - mask: Binary tensor of shape `(batch_size, steps)` indicating whether - a given step should be masked (excluded from the average). - - Input shape: - - If `data_format='channels_last'`: - 3D tensor with shape: - `(batch_size, steps, features)` - - If `data_format='channels_first'`: - 3D tensor with shape: - `(batch_size, features, steps)` - - Output shape: - - If `keepdims`=False: - 2D tensor with shape `(batch_size, features)`. - - If `keepdims`=True: - - If `data_format='channels_last'`: - 3D tensor with shape `(batch_size, 1, features)` - - If `data_format='channels_first'`: - 3D tensor with shape `(batch_size, features, 1)` - """ - - def __init__(self, data_format="channels_last", **kwargs): - super().__init__(data_format=data_format, **kwargs) - self.supports_masking = True - - def call(self, inputs, mask=None): - steps_axis = 1 if self.data_format == "channels_last" else 2 - if mask is not None: - mask = tf.cast(mask, inputs[0].dtype) - mask = tf.expand_dims( - mask, 2 if self.data_format == "channels_last" else 1 - ) - inputs *= mask - return backend.sum( - inputs, axis=steps_axis, keepdims=self.keepdims - ) / tf.reduce_sum(mask, axis=steps_axis, keepdims=self.keepdims) - else: - return backend.mean(inputs, axis=steps_axis, keepdims=self.keepdims) - - def compute_mask(self, inputs, mask=None): - return None - - -# Alias - -GlobalAvgPool1D = GlobalAveragePooling1D diff --git a/keras/layers/pooling/global_average_pooling2d.py b/keras/layers/pooling/global_average_pooling2d.py deleted file mode 100644 index beb7038122c..00000000000 --- a/keras/layers/pooling/global_average_pooling2d.py +++ /dev/null @@ -1,82 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Global average pooling 2D layer.""" - - -from keras import backend -from keras.layers.pooling.base_global_pooling2d import GlobalPooling2D - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.layers.GlobalAveragePooling2D", "keras.layers.GlobalAvgPool2D" -) -class GlobalAveragePooling2D(GlobalPooling2D): - """Global average pooling operation for spatial data. - - Examples: - - >>> input_shape = (2, 4, 5, 3) - >>> x = tf.random.normal(input_shape) - >>> y = tf.keras.layers.GlobalAveragePooling2D()(x) - >>> print(y.shape) - (2, 3) - - Args: - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch, channels, height, width)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - keepdims: A boolean, whether to keep the spatial dimensions or not. - If `keepdims` is `False` (default), the rank of the tensor is reduced - for spatial dimensions. - If `keepdims` is `True`, the spatial dimensions are retained with - length 1. - The behavior is the same as for `tf.reduce_mean` or `np.mean`. - - Input shape: - - If `data_format='channels_last'`: - 4D tensor with shape `(batch_size, rows, cols, channels)`. - - If `data_format='channels_first'`: - 4D tensor with shape `(batch_size, channels, rows, cols)`. - - Output shape: - - If `keepdims`=False: - 2D tensor with shape `(batch_size, channels)`. - - If `keepdims`=True: - - If `data_format='channels_last'`: - 4D tensor with shape `(batch_size, 1, 1, channels)` - - If `data_format='channels_first'`: - 4D tensor with shape `(batch_size, channels, 1, 1)` - """ - - def call(self, inputs): - if self.data_format == "channels_last": - return backend.mean(inputs, axis=[1, 2], keepdims=self.keepdims) - else: - return backend.mean(inputs, axis=[2, 3], keepdims=self.keepdims) - - -# Alias - -GlobalAvgPool2D = GlobalAveragePooling2D diff --git a/keras/layers/pooling/global_average_pooling3d.py b/keras/layers/pooling/global_average_pooling3d.py deleted file mode 100644 index b2819c55164..00000000000 --- a/keras/layers/pooling/global_average_pooling3d.py +++ /dev/null @@ -1,76 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Global average pooling 3D layer.""" - - -from keras import backend -from keras.layers.pooling.base_global_pooling3d import GlobalPooling3D - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.layers.GlobalAveragePooling3D", "keras.layers.GlobalAvgPool3D" -) -class GlobalAveragePooling3D(GlobalPooling3D): - """Global Average pooling operation for 3D data. - - Args: - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - while `channels_first` corresponds to inputs with shape - `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - keepdims: A boolean, whether to keep the spatial dimensions or not. - If `keepdims` is `False` (default), the rank of the tensor is reduced - for spatial dimensions. - If `keepdims` is `True`, the spatial dimensions are retained with - length 1. - The behavior is the same as for `tf.reduce_mean` or `np.mean`. - - Input shape: - - If `data_format='channels_last'`: - 5D tensor with shape: - `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - - If `data_format='channels_first'`: - 5D tensor with shape: - `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` - - Output shape: - - If `keepdims`=False: - 2D tensor with shape `(batch_size, channels)`. - - If `keepdims`=True: - - If `data_format='channels_last'`: - 5D tensor with shape `(batch_size, 1, 1, 1, channels)` - - If `data_format='channels_first'`: - 5D tensor with shape `(batch_size, channels, 1, 1, 1)` - """ - - def call(self, inputs): - if self.data_format == "channels_last": - return backend.mean(inputs, axis=[1, 2, 3], keepdims=self.keepdims) - else: - return backend.mean(inputs, axis=[2, 3, 4], keepdims=self.keepdims) - - -# Alias - -GlobalAvgPool3D = GlobalAveragePooling3D diff --git a/keras/layers/pooling/global_average_pooling_test.py b/keras/layers/pooling/global_average_pooling_test.py deleted file mode 100644 index ed33f7c4476..00000000000 --- a/keras/layers/pooling/global_average_pooling_test.py +++ /dev/null @@ -1,170 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for global average pooling layers.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.mixed_precision import policy -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class GlobalAveragePoolingTest(tf.test.TestCase, parameterized.TestCase): - @test_utils.enable_v2_dtype_behavior - def test_mixed_float16_policy(self): - with policy.policy_scope("mixed_float16"): - inputs1 = keras.Input(shape=(36, 512), dtype="float16") - inputs2 = keras.Input(shape=(36,), dtype="bool") - average_layer = keras.layers.GlobalAveragePooling1D() - _ = average_layer(inputs1, inputs2) - - def test_global_average_pooling_1d(self): - test_utils.layer_test( - keras.layers.GlobalAveragePooling1D, input_shape=(3, 4, 5) - ) - test_utils.layer_test( - keras.layers.GlobalAveragePooling1D, - kwargs={"data_format": "channels_first"}, - input_shape=(3, 4, 5), - ) - - def test_global_average_pooling_1d_masking_support(self): - model = keras.Sequential() - model.add(keras.layers.Masking(mask_value=0.0, input_shape=(None, 4))) - model.add(keras.layers.GlobalAveragePooling1D()) - model.compile(loss="mae", optimizer="rmsprop") - - model_input = np.random.random((2, 3, 4)) - model_input[0, 1:, :] = 0 - output = model.predict(model_input) - self.assertAllClose(output[0], model_input[0, 0, :]) - - def test_global_average_pooling_1d_with_ragged(self): - ragged_data = tf.ragged.constant( - [[[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]], [[1.0, 1.0], [2.0, 2.0]]], - ragged_rank=1, - ) - dense_data = ragged_data.to_tensor() - - inputs = keras.Input(shape=(None, 2), dtype="float32", ragged=True) - out = keras.layers.GlobalAveragePooling1D()(inputs) - model = keras.models.Model(inputs=inputs, outputs=out) - output_ragged = model.predict(ragged_data, steps=1) - - inputs = keras.Input(shape=(None, 2), dtype="float32") - masking = keras.layers.Masking(mask_value=0.0, input_shape=(3, 2))( - inputs - ) - out = keras.layers.GlobalAveragePooling1D()(masking) - model = keras.models.Model(inputs=inputs, outputs=out) - output_dense = model.predict(dense_data, steps=1) - - self.assertAllEqual(output_ragged, output_dense) - - def test_global_average_pooling_2d(self): - test_utils.layer_test( - keras.layers.GlobalAveragePooling2D, - kwargs={"data_format": "channels_first"}, - input_shape=(3, 4, 5, 6), - ) - test_utils.layer_test( - keras.layers.GlobalAveragePooling2D, - kwargs={"data_format": "channels_last"}, - input_shape=(3, 5, 6, 4), - ) - - def test_global_average_pooling_3d(self): - test_utils.layer_test( - keras.layers.GlobalAveragePooling3D, - kwargs={"data_format": "channels_first"}, - input_shape=(3, 4, 3, 4, 3), - ) - test_utils.layer_test( - keras.layers.GlobalAveragePooling3D, - kwargs={"data_format": "channels_last"}, - input_shape=(3, 4, 3, 4, 3), - ) - - def test_global_average_pooling_1d_keepdims(self): - test_utils.layer_test( - keras.layers.GlobalAveragePooling1D, - kwargs={"keepdims": True}, - input_shape=(3, 4, 5), - expected_output_shape=(None, 1, 5), - ) - test_utils.layer_test( - keras.layers.GlobalAveragePooling1D, - kwargs={"data_format": "channels_first", "keepdims": True}, - input_shape=(3, 4, 5), - expected_output_shape=(None, 4, 1), - ) - - def test_global_average_pooling_2d_keepdims(self): - test_utils.layer_test( - keras.layers.GlobalAveragePooling2D, - kwargs={"data_format": "channels_first", "keepdims": True}, - input_shape=(3, 4, 5, 6), - expected_output_shape=(None, 4, 1, 1), - ) - test_utils.layer_test( - keras.layers.GlobalAveragePooling2D, - kwargs={"data_format": "channels_last", "keepdims": True}, - input_shape=(3, 4, 5, 6), - expected_output_shape=(None, 1, 1, 6), - ) - - def test_global_average_pooling_3d_keepdims(self): - test_utils.layer_test( - keras.layers.GlobalAveragePooling3D, - kwargs={"data_format": "channels_first", "keepdims": True}, - input_shape=(3, 4, 3, 4, 3), - expected_output_shape=(None, 4, 1, 1, 1), - ) - test_utils.layer_test( - keras.layers.GlobalAveragePooling3D, - kwargs={"data_format": "channels_last", "keepdims": True}, - input_shape=(3, 4, 3, 4, 3), - expected_output_shape=(None, 1, 1, 1, 3), - ) - - def test_global_average_pooling_1d_keepdims_masking_support(self): - model = keras.Sequential() - model.add(keras.layers.Masking(mask_value=0.0, input_shape=(None, 4))) - model.add(keras.layers.GlobalAveragePooling1D(keepdims=True)) - model.compile(loss="mae", optimizer="rmsprop") - - model_input = np.random.random((2, 3, 4)) - model_input[0, 1:, :] = 0 - output = model.predict(model_input) - self.assertAllEqual((2, 1, 4), output.shape) - self.assertAllClose(output[0, 0], model_input[0, 0, :]) - - def test_global_average_pooling_1d_invalid_input_dimension(self): - with self.assertRaisesRegex(ValueError, r"""Incorrect input shape"""): - layer = keras.layers.GlobalAveragePooling1D() - layer.build((None, 0, 2)) - - def test_global_average_pooling_3d_invalid_input_dimension(self): - with self.assertRaisesRegex(ValueError, r"""Incorrect input shape"""): - layer = keras.layers.GlobalAveragePooling3D(keepdims=True) - layer.build((None, 0, 16, 16, 3)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/pooling/global_max_pooling1d.py b/keras/layers/pooling/global_max_pooling1d.py deleted file mode 100644 index db84f22eb53..00000000000 --- a/keras/layers/pooling/global_max_pooling1d.py +++ /dev/null @@ -1,88 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Global max pooling 1D layer.""" - - -from keras import backend -from keras.layers.pooling.base_global_pooling1d import GlobalPooling1D - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.GlobalMaxPooling1D", "keras.layers.GlobalMaxPool1D") -class GlobalMaxPooling1D(GlobalPooling1D): - """Global max pooling operation for 1D temporal data. - - Downsamples the input representation by taking the maximum value over - the time dimension. - - For example: - - >>> x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) - >>> x = tf.reshape(x, [3, 3, 1]) - >>> x - - >>> max_pool_1d = tf.keras.layers.GlobalMaxPooling1D() - >>> max_pool_1d(x) - - - Args: - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, steps, features)` while `channels_first` - corresponds to inputs with shape - `(batch, features, steps)`. - keepdims: A boolean, whether to keep the temporal dimension or not. - If `keepdims` is `False` (default), the rank of the tensor is reduced - for spatial dimensions. - If `keepdims` is `True`, the temporal dimension are retained with - length 1. - The behavior is the same as for `tf.reduce_max` or `np.max`. - - Input shape: - - If `data_format='channels_last'`: - 3D tensor with shape: - `(batch_size, steps, features)` - - If `data_format='channels_first'`: - 3D tensor with shape: - `(batch_size, features, steps)` - - Output shape: - - If `keepdims`=False: - 2D tensor with shape `(batch_size, features)`. - - If `keepdims`=True: - - If `data_format='channels_last'`: - 3D tensor with shape `(batch_size, 1, features)` - - If `data_format='channels_first'`: - 3D tensor with shape `(batch_size, features, 1)` - """ - - def call(self, inputs): - steps_axis = 1 if self.data_format == "channels_last" else 2 - return backend.max(inputs, axis=steps_axis, keepdims=self.keepdims) - - -# Alias - -GlobalMaxPool1D = GlobalMaxPooling1D diff --git a/keras/layers/pooling/global_max_pooling2d.py b/keras/layers/pooling/global_max_pooling2d.py deleted file mode 100644 index 3ef2ee74a54..00000000000 --- a/keras/layers/pooling/global_max_pooling2d.py +++ /dev/null @@ -1,80 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Global max pooling 2D layer.""" - - -from keras import backend -from keras.layers.pooling.base_global_pooling2d import GlobalPooling2D - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.GlobalMaxPooling2D", "keras.layers.GlobalMaxPool2D") -class GlobalMaxPooling2D(GlobalPooling2D): - """Global max pooling operation for spatial data. - - Examples: - - >>> input_shape = (2, 4, 5, 3) - >>> x = tf.random.normal(input_shape) - >>> y = tf.keras.layers.GlobalMaxPooling2D()(x) - >>> print(y.shape) - (2, 3) - - Args: - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch, channels, height, width)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - keepdims: A boolean, whether to keep the spatial dimensions or not. - If `keepdims` is `False` (default), the rank of the tensor is reduced - for spatial dimensions. - If `keepdims` is `True`, the spatial dimensions are retained with - length 1. - The behavior is the same as for `tf.reduce_max` or `np.max`. - - Input shape: - - If `data_format='channels_last'`: - 4D tensor with shape `(batch_size, rows, cols, channels)`. - - If `data_format='channels_first'`: - 4D tensor with shape `(batch_size, channels, rows, cols)`. - - Output shape: - - If `keepdims`=False: - 2D tensor with shape `(batch_size, channels)`. - - If `keepdims`=True: - - If `data_format='channels_last'`: - 4D tensor with shape `(batch_size, 1, 1, channels)` - - If `data_format='channels_first'`: - 4D tensor with shape `(batch_size, channels, 1, 1)` - """ - - def call(self, inputs): - if self.data_format == "channels_last": - return backend.max(inputs, axis=[1, 2], keepdims=self.keepdims) - else: - return backend.max(inputs, axis=[2, 3], keepdims=self.keepdims) - - -# Alias - -GlobalMaxPool2D = GlobalMaxPooling2D diff --git a/keras/layers/pooling/global_max_pooling3d.py b/keras/layers/pooling/global_max_pooling3d.py deleted file mode 100644 index ee153d9c3cd..00000000000 --- a/keras/layers/pooling/global_max_pooling3d.py +++ /dev/null @@ -1,74 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Global max pooling 3D layer.""" - - -from keras import backend -from keras.layers.pooling.base_global_pooling3d import GlobalPooling3D - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.GlobalMaxPooling3D", "keras.layers.GlobalMaxPool3D") -class GlobalMaxPooling3D(GlobalPooling3D): - """Global Max pooling operation for 3D data. - - Args: - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - while `channels_first` corresponds to inputs with shape - `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - keepdims: A boolean, whether to keep the spatial dimensions or not. - If `keepdims` is `False` (default), the rank of the tensor is reduced - for spatial dimensions. - If `keepdims` is `True`, the spatial dimensions are retained with - length 1. - The behavior is the same as for `tf.reduce_max` or `np.max`. - - Input shape: - - If `data_format='channels_last'`: - 5D tensor with shape: - `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - - If `data_format='channels_first'`: - 5D tensor with shape: - `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` - - Output shape: - - If `keepdims`=False: - 2D tensor with shape `(batch_size, channels)`. - - If `keepdims`=True: - - If `data_format='channels_last'`: - 5D tensor with shape `(batch_size, 1, 1, 1, channels)` - - If `data_format='channels_first'`: - 5D tensor with shape `(batch_size, channels, 1, 1, 1)` - """ - - def call(self, inputs): - if self.data_format == "channels_last": - return backend.max(inputs, axis=[1, 2, 3], keepdims=self.keepdims) - else: - return backend.max(inputs, axis=[2, 3, 4], keepdims=self.keepdims) - - -# Alias - -GlobalMaxPool3D = GlobalMaxPooling3D diff --git a/keras/layers/pooling/global_max_pooling_test.py b/keras/layers/pooling/global_max_pooling_test.py deleted file mode 100644 index ccb59703a3c..00000000000 --- a/keras/layers/pooling/global_max_pooling_test.py +++ /dev/null @@ -1,137 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for global max pooling layers.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class GlobalMaxPoolingTest(tf.test.TestCase, parameterized.TestCase): - def test_global_max_pooling_1d(self): - test_utils.layer_test( - keras.layers.GlobalMaxPooling1D, input_shape=(3, 4, 5) - ) - test_utils.layer_test( - keras.layers.GlobalMaxPooling1D, - kwargs={"data_format": "channels_first"}, - input_shape=(3, 4, 5), - ) - - def test_global_max_pooling_2d_with_ragged(self): - ragged_data = tf.ragged.constant( - [ - [[[1.0], [1.0]], [[2.0], [2.0]], [[3.0], [3.0]]], - [[[1.0], [1.0]], [[2.0], [2.0]]], - ], - ragged_rank=1, - ) - dense_data = ragged_data.to_tensor() - - inputs = keras.Input(shape=(None, 2, 1), dtype="float32", ragged=True) - out = keras.layers.GlobalMaxPooling2D()(inputs) - model = keras.models.Model(inputs=inputs, outputs=out) - output_ragged = model.predict(ragged_data, steps=1) - - inputs = keras.Input(shape=(None, 2, 1), dtype="float32") - out = keras.layers.GlobalMaxPooling2D()(inputs) - model = keras.models.Model(inputs=inputs, outputs=out) - output_dense = model.predict(dense_data, steps=1) - - self.assertAllEqual(output_ragged, output_dense) - - def test_global_max_pooling_2d(self): - test_utils.layer_test( - keras.layers.GlobalMaxPooling2D, - kwargs={"data_format": "channels_first"}, - input_shape=(3, 4, 5, 6), - ) - test_utils.layer_test( - keras.layers.GlobalMaxPooling2D, - kwargs={"data_format": "channels_last"}, - input_shape=(3, 5, 6, 4), - ) - - def test_global_maxpooling_3d(self): - test_utils.layer_test( - keras.layers.GlobalMaxPooling3D, - kwargs={"data_format": "channels_first"}, - input_shape=(3, 4, 3, 4, 3), - ) - test_utils.layer_test( - keras.layers.GlobalMaxPooling3D, - kwargs={"data_format": "channels_last"}, - input_shape=(3, 4, 3, 4, 3), - ) - - def test_global_max_pooling_1d_keepdims(self): - test_utils.layer_test( - keras.layers.GlobalMaxPooling1D, - kwargs={"keepdims": True}, - input_shape=(3, 4, 5), - expected_output_shape=(None, 1, 5), - ) - test_utils.layer_test( - keras.layers.GlobalMaxPooling1D, - kwargs={"data_format": "channels_first", "keepdims": True}, - input_shape=(3, 4, 5), - expected_output_shape=(None, 4, 1), - ) - - def test_global_max_pooling_2d_keepdims(self): - test_utils.layer_test( - keras.layers.GlobalMaxPooling2D, - kwargs={"data_format": "channels_first", "keepdims": True}, - input_shape=(3, 4, 5, 6), - expected_output_shape=(None, 4, 1, 1), - ) - test_utils.layer_test( - keras.layers.GlobalMaxPooling2D, - kwargs={"data_format": "channels_last", "keepdims": True}, - input_shape=(3, 4, 5, 6), - expected_output_shape=(None, 1, 1, 6), - ) - - def test_global_max_pooling_3d_keepdims(self): - test_utils.layer_test( - keras.layers.GlobalMaxPooling3D, - kwargs={"data_format": "channels_first", "keepdims": True}, - input_shape=(3, 4, 3, 4, 3), - expected_output_shape=(None, 4, 1, 1, 1), - ) - test_utils.layer_test( - keras.layers.GlobalMaxPooling3D, - kwargs={"data_format": "channels_last", "keepdims": True}, - input_shape=(3, 4, 3, 4, 3), - expected_output_shape=(None, 1, 1, 1, 3), - ) - - def test_global_max_pooling_1d_invalid_input_dimension(self): - with self.assertRaisesRegex(ValueError, r"""Incorrect input shape"""): - layer = keras.layers.GlobalMaxPooling1D() - layer.build((None, 0, 2)) - - def test_global_max_pooling_3d_invalid_input_dimension(self): - with self.assertRaisesRegex(ValueError, r"""Incorrect input shape"""): - layer = keras.layers.GlobalMaxPooling3D(keepdims=True) - layer.build((None, 0, 16, 16, 3)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/pooling/max_pooling1d.py b/keras/layers/pooling/max_pooling1d.py deleted file mode 100644 index 67e915d4b79..00000000000 --- a/keras/layers/pooling/max_pooling1d.py +++ /dev/null @@ -1,128 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Max pooling 1D layer.""" - - -import functools - -from keras import backend -from keras.layers.pooling.base_pooling1d import Pooling1D - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.MaxPooling1D", "keras.layers.MaxPool1D") -class MaxPooling1D(Pooling1D): - """Max pooling operation for 1D temporal data. - - Downsamples the input representation by taking the maximum value over a - spatial window of size `pool_size`. The window is shifted by `strides`. The - resulting output, when using the `"valid"` padding option, has a shape of: - `output_shape = (input_shape - pool_size + 1) / strides)` - - The resulting output shape when using the `"same"` padding option is: - `output_shape = input_shape / strides` - - For example, for `strides=1` and `padding="valid"`: - - >>> x = tf.constant([1., 2., 3., 4., 5.]) - >>> x = tf.reshape(x, [1, 5, 1]) - >>> max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2, - ... strides=1, padding='valid') - >>> max_pool_1d(x) - - - For example, for `strides=2` and `padding="valid"`: - - >>> x = tf.constant([1., 2., 3., 4., 5.]) - >>> x = tf.reshape(x, [1, 5, 1]) - >>> max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2, - ... strides=2, padding='valid') - >>> max_pool_1d(x) - - - For example, for `strides=1` and `padding="same"`: - - >>> x = tf.constant([1., 2., 3., 4., 5.]) - >>> x = tf.reshape(x, [1, 5, 1]) - >>> max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2, - ... strides=1, padding='same') - >>> max_pool_1d(x) - - - Args: - pool_size: Integer, size of the max pooling window. - strides: Integer, or None. Specifies how much the pooling window moves - for each pooling step. - If None, it will default to `pool_size`. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, steps, features)` while `channels_first` - corresponds to inputs with shape - `(batch, features, steps)`. - - Input shape: - - If `data_format='channels_last'`: - 3D tensor with shape `(batch_size, steps, features)`. - - If `data_format='channels_first'`: - 3D tensor with shape `(batch_size, features, steps)`. - - Output shape: - - If `data_format='channels_last'`: - 3D tensor with shape `(batch_size, downsampled_steps, features)`. - - If `data_format='channels_first'`: - 3D tensor with shape `(batch_size, features, downsampled_steps)`. - """ - - def __init__( - self, - pool_size=2, - strides=None, - padding="valid", - data_format="channels_last", - **kwargs - ): - - super().__init__( - functools.partial(backend.pool2d, pool_mode="max"), - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - **kwargs - ) - - -# Alias - -MaxPool1D = MaxPooling1D diff --git a/keras/layers/pooling/max_pooling2d.py b/keras/layers/pooling/max_pooling2d.py deleted file mode 100644 index 7378d3d91a9..00000000000 --- a/keras/layers/pooling/max_pooling2d.py +++ /dev/null @@ -1,171 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Max pooling 2D layer.""" - - -import tensorflow.compat.v2 as tf - -from keras.layers.pooling.base_pooling2d import Pooling2D - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.MaxPooling2D", "keras.layers.MaxPool2D") -class MaxPooling2D(Pooling2D): - """Max pooling operation for 2D spatial data. - - Downsamples the input along its spatial dimensions (height and width) - by taking the maximum value over an input window - (of size defined by `pool_size`) for each channel of the input. - The window is shifted by `strides` along each dimension. - - The resulting output, - when using the `"valid"` padding option, has a spatial shape - (number of rows or columns) of: - `output_shape = math.floor((input_shape - pool_size) / strides) + 1` - (when `input_shape >= pool_size`) - - The resulting output shape when using the `"same"` padding option is: - `output_shape = math.floor((input_shape - 1) / strides) + 1` - - For example, for `strides=(1, 1)` and `padding="valid"`: - - >>> x = tf.constant([[1., 2., 3.], - ... [4., 5., 6.], - ... [7., 8., 9.]]) - >>> x = tf.reshape(x, [1, 3, 3, 1]) - >>> max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), - ... strides=(1, 1), padding='valid') - >>> max_pool_2d(x) - - - For example, for `strides=(2, 2)` and `padding="valid"`: - - >>> x = tf.constant([[1., 2., 3., 4.], - ... [5., 6., 7., 8.], - ... [9., 10., 11., 12.]]) - >>> x = tf.reshape(x, [1, 3, 4, 1]) - >>> max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), - ... strides=(2, 2), padding='valid') - >>> max_pool_2d(x) - - - Usage Example: - - >>> input_image = tf.constant([[[[1.], [1.], [2.], [4.]], - ... [[2.], [2.], [3.], [2.]], - ... [[4.], [1.], [1.], [1.]], - ... [[2.], [2.], [1.], [4.]]]]) - >>> output = tf.constant([[[[1], [0]], - ... [[0], [1]]]]) - >>> model = tf.keras.models.Sequential() - >>> model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), - ... input_shape=(4, 4, 1))) - >>> model.compile('adam', 'mean_squared_error') - >>> model.predict(input_image, steps=1) - array([[[[2.], - [4.]], - [[4.], - [4.]]]], dtype=float32) - - For example, for stride=(1, 1) and padding="same": - - >>> x = tf.constant([[1., 2., 3.], - ... [4., 5., 6.], - ... [7., 8., 9.]]) - >>> x = tf.reshape(x, [1, 3, 3, 1]) - >>> max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), - ... strides=(1, 1), padding='same') - >>> max_pool_2d(x) - - - Args: - pool_size: integer or tuple of 2 integers, - window size over which to take the maximum. - `(2, 2)` will take the max value over a 2x2 pooling window. - If only one integer is specified, the same window length - will be used for both dimensions. - strides: Integer, tuple of 2 integers, or None. - Strides values. Specifies how far the pooling window moves - for each pooling step. If None, it will default to `pool_size`. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch, channels, height, width)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - - Input shape: - - If `data_format='channels_last'`: - 4D tensor with shape `(batch_size, rows, cols, channels)`. - - If `data_format='channels_first'`: - 4D tensor with shape `(batch_size, channels, rows, cols)`. - - Output shape: - - If `data_format='channels_last'`: - 4D tensor with shape `(batch_size, pooled_rows, pooled_cols, channels)`. - - If `data_format='channels_first'`: - 4D tensor with shape `(batch_size, channels, pooled_rows, pooled_cols)`. - - Returns: - A tensor of rank 4 representing the maximum pooled values. See above for - output shape. - """ - - def __init__( - self, - pool_size=(2, 2), - strides=None, - padding="valid", - data_format=None, - **kwargs - ): - super().__init__( - tf.compat.v1.nn.max_pool, - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - **kwargs - ) - - -# Alias - -MaxPool2D = MaxPooling2D diff --git a/keras/layers/pooling/max_pooling3d.py b/keras/layers/pooling/max_pooling3d.py deleted file mode 100644 index b0455dbf4d4..00000000000 --- a/keras/layers/pooling/max_pooling3d.py +++ /dev/null @@ -1,105 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Max pooling 3D layer.""" - - -import tensorflow.compat.v2 as tf - -from keras.layers.pooling.base_pooling3d import Pooling3D - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.MaxPooling3D", "keras.layers.MaxPool3D") -class MaxPooling3D(Pooling3D): - """Max pooling operation for 3D data (spatial or spatio-temporal). - - Downsamples the input along its spatial dimensions (depth, height, and - width) by taking the maximum value over an input window (of size defined by - `pool_size`) for each channel of the input. The window is shifted by - `strides` along each dimension. - - Args: - pool_size: Tuple of 3 integers, - factors by which to downscale (dim1, dim2, dim3). - `(2, 2, 2)` will halve the size of the 3D input in each dimension. - strides: tuple of 3 integers, or None. Strides values. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - while `channels_first` corresponds to inputs with shape - `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - - Input shape: - - If `data_format='channels_last'`: - 5D tensor with shape: - `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - - If `data_format='channels_first'`: - 5D tensor with shape: - `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` - - Output shape: - - If `data_format='channels_last'`: - 5D tensor with shape: - `(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)` - - If `data_format='channels_first'`: - 5D tensor with shape: - `(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)` - - Example: - - ```python - depth = 30 - height = 30 - width = 30 - input_channels = 3 - - inputs = tf.keras.Input(shape=(depth, height, width, input_channels)) - layer = tf.keras.layers.MaxPooling3D(pool_size=3) - outputs = layer(inputs) # Shape: (batch_size, 10, 10, 10, 3) - ``` - """ - - def __init__( - self, - pool_size=(2, 2, 2), - strides=None, - padding="valid", - data_format=None, - **kwargs - ): - super().__init__( - tf.nn.max_pool3d, - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - **kwargs - ) - - -# Alias - -MaxPool3D = MaxPooling3D diff --git a/keras/layers/pooling/max_pooling_test.py b/keras/layers/pooling/max_pooling_test.py deleted file mode 100644 index e1e0bc568ba..00000000000 --- a/keras/layers/pooling/max_pooling_test.py +++ /dev/null @@ -1,74 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for max pooling layers.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MaxPoolingTest(tf.test.TestCase, parameterized.TestCase): - def test_max_pooling_1d(self): - for padding in ["valid", "same"]: - for stride in [1, 2]: - test_utils.layer_test( - keras.layers.MaxPooling1D, - kwargs={"strides": stride, "padding": padding}, - input_shape=(3, 5, 4), - ) - test_utils.layer_test( - keras.layers.MaxPooling1D, - kwargs={"data_format": "channels_first"}, - input_shape=(3, 2, 6), - ) - - def test_max_pooling_2d(self): - pool_size = (3, 3) - for strides in [(1, 1), (2, 2)]: - test_utils.layer_test( - keras.layers.MaxPooling2D, - kwargs={ - "strides": strides, - "padding": "valid", - "pool_size": pool_size, - }, - input_shape=(3, 5, 6, 4), - ) - - def test_max_pooling_3d(self): - pool_size = (3, 3, 3) - test_utils.layer_test( - keras.layers.MaxPooling3D, - kwargs={"strides": 2, "padding": "valid", "pool_size": pool_size}, - input_shape=(3, 11, 12, 10, 4), - ) - test_utils.layer_test( - keras.layers.MaxPooling3D, - kwargs={ - "strides": 3, - "padding": "valid", - "data_format": "channels_first", - "pool_size": pool_size, - }, - input_shape=(3, 4, 11, 12, 10), - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/BUILD b/keras/layers/preprocessing/BUILD deleted file mode 100644 index ca9cd75ca4a..00000000000 --- a/keras/layers/preprocessing/BUILD +++ /dev/null @@ -1,581 +0,0 @@ -# Description: -# Contains the Keras preprocess layers (internal TensorFlow version). - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -# buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "cuda_py_test") -load("@org_keras//keras:keras.bzl", "distribute_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/tensorflow/tools/pip_package:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "preprocessing", - srcs = [ - "__init__.py", - ], - srcs_version = "PY3", - deps = [ - ":discretization", - ":hashed_crossing", - ":hashing", - ":image_preprocessing", - ":integer_lookup", - ":normalization", - ":preprocessing_stage", - ":preprocessing_test_utils", - ":string_lookup", - ":text_vectorization", - ], -) - -py_library( - name = "discretization", - srcs = [ - "discretization.py", - ], - srcs_version = "PY3", - deps = [ - ":preprocessing_utils", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/engine", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "hashing", - srcs = [ - "hashing.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/engine", - ], -) - -py_library( - name = "hashed_crossing", - srcs = [ - "hashed_crossing.py", - ], - srcs_version = "PY3", - deps = [ - ":preprocessing_utils", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:base_preprocessing_layer", - "//keras/utils:layer_utils", - ], -) - -py_library( - name = "image_preprocessing", - srcs = [ - "image_preprocessing.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine", - "//keras/engine:input_spec", - "//keras/preprocessing:image", - "//keras/utils:image_utils", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "index_lookup", - srcs = [ - "index_lookup.py", - ], - srcs_version = "PY3", - deps = [ - ":category_encoding", - ":preprocessing_utils", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine", - ], -) - -py_library( - name = "normalization", - srcs = [ - "normalization.py", - ], - srcs_version = "PY3", - deps = [ - ":preprocessing_utils", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine", - ], -) - -py_library( - name = "integer_lookup", - srcs = [ - "integer_lookup.py", - ], - srcs_version = "PY3", - deps = [ - ":index_lookup", - "//:expect_tensorflow_installed", - "//keras/engine", - ], -) - -py_library( - name = "text_vectorization", - srcs = [ - "text_vectorization.py", - ], - srcs_version = "PY3", - deps = [ - ":category_encoding", - ":preprocessing_utils", - ":string_lookup", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine", - "//keras/utils:layer_utils", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "category_encoding", - srcs = [ - "category_encoding.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine", - "//keras/engine:input_spec", - "//keras/utils:layer_utils", - ], -) - -py_library( - name = "string_lookup", - srcs = [ - "string_lookup.py", - ], - srcs_version = "PY3", - deps = [ - ":index_lookup", - "//:expect_tensorflow_installed", - "//keras/engine", - ], -) - -py_library( - name = "preprocessing_stage", - srcs = [ - "preprocessing_stage.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/engine", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "preprocessing_test_utils", - srcs = ["preprocessing_test_utils.py"], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "preprocessing_utils", - srcs = ["preprocessing_utils.py"], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - ], -) - -tf_py_test( - name = "preprocessing_utils_test", - srcs = ["preprocessing_utils_test.py"], - python_version = "PY3", - deps = [ - ":preprocessing_utils", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/utils:generic_utils", - ], -) - -tf_py_test( - name = "category_encoding_test", - srcs = ["category_encoding_test.py"], - python_version = "PY3", - deps = [ - ":category_encoding", - ":preprocessing_test_utils", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/utils:generic_utils", - ], -) - -distribute_py_test( - name = "category_encoding_distribution_test", - srcs = ["category_encoding_distribution_test.py"], - disable_mlir_bridge = False, - main = "category_encoding_distribution_test.py", - python_version = "PY3", - shard_count = 4, - tags = [ - "multi_and_single_gpu", - "no_oss", # b/189866692 - "noguitar", # b/190034522 - "nomultivm", # TODO(b/170502145) - ], - tpu_tags = [ - "no_oss", # b/155502591 - ], - deps = [ - ":category_encoding", - ":preprocessing_test_utils", - "//:expect_tensorflow_installed", - "//keras", - "//keras:backend", - "//keras/distribute:strategy_combinations", - "//keras/testing_infra:test_combinations", - ], -) - -distribute_py_test( - name = "image_preprocessing_distribution_test", - srcs = ["image_preprocessing_distribution_test.py"], - main = "image_preprocessing_distribution_test.py", - python_version = "PY3", - shard_count = 4, - tags = [ - "multi_and_single_gpu", - "nomultivm", # TODO(b/170502145) - "notpu", # TODO(b/210148622) - ], - tpu_tags = [ - "no_oss", - "noguitar", # TODO(b/183957207) - ], - deps = [ - ":image_preprocessing", - ":preprocessing_test_utils", - "//:expect_tensorflow_installed", - "//keras", - "//keras/distribute:strategy_combinations", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "discretization_test", - srcs = ["discretization_test.py"], - python_version = "PY3", - shard_count = 4, - tags = ["no_rocm"], - deps = [ - ":discretization", - ":preprocessing_test_utils", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -distribute_py_test( - name = "discretization_distribution_test", - srcs = ["discretization_distribution_test.py"], - main = "discretization_distribution_test.py", - python_version = "PY3", - shard_count = 4, - tags = [ - "multi_and_single_gpu", - "no_oss", # TODO(b/189956080) - "noguitar", # b/190034522 - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":discretization", - ":preprocessing_test_utils", - "//:expect_tensorflow_installed", - "//keras", - "//keras/distribute:strategy_combinations", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "hashing_test", - srcs = ["hashing_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":hashing", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/engine", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -distribute_py_test( - name = "hashing_distribution_test", - srcs = ["hashing_distribution_test.py"], - disable_mlir_bridge = False, - main = "hashing_distribution_test.py", - python_version = "PY3", - shard_count = 4, - tags = [ - "multi_and_single_gpu", - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":hashing", - "//:expect_tensorflow_installed", - "//keras", - "//keras/distribute:strategy_combinations", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "hashed_crossing_test", - srcs = ["hashed_crossing_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":hashing", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/engine", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "index_lookup_test", - srcs = ["index_lookup_test.py"], - python_version = "PY3", - shard_count = 4, - tags = ["noasan"], # TODO(b/183961255) - deps = [ - ":index_lookup", - ":preprocessing_test_utils", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/utils:generic_utils", - ], -) - -distribute_py_test( - name = "index_lookup_distribution_test", - srcs = ["index_lookup_distribution_test.py"], - disable_mlir_bridge = False, - main = "index_lookup_distribution_test.py", - python_version = "PY3", - shard_count = 4, - tags = [ - "multi_and_single_gpu", - "nomultivm", # TODO(b/170502145) - ], - tpu_tags = ["no_oss"], - deps = [ - ":index_lookup", - "//:expect_tensorflow_installed", - "//keras", - "//keras/distribute:strategy_combinations", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "image_preprocessing_test", - srcs = ["image_preprocessing_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "no_windows", # TODO(b/184424727): Re-enable this. - ], - deps = [ - ":image_preprocessing", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/engine", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:generic_utils", - ], -) - -tf_py_test( - name = "normalization_test", - srcs = ["normalization_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "noasan", # TODO(b/337374867) fails with -fsanitize=null - ], - deps = [ - ":normalization", - ":preprocessing_test_utils", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "integer_lookup_test", - srcs = ["integer_lookup_test.py"], - python_version = "PY3", - tags = ["noasan"], # TODO(b/183961255) - deps = [ - ":integer_lookup", - ":preprocessing_test_utils", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/utils:generic_utils", - ], -) - -distribute_py_test( - name = "normalization_distribution_test", - srcs = ["normalization_distribution_test.py"], - main = "normalization_distribution_test.py", - python_version = "PY3", - shard_count = 8, - tags = [ - "no_oss", - "nomultivm", # TODO(b/170502145) - ], - deps = [ - ":normalization", - ":preprocessing_test_utils", - "//:expect_tensorflow_installed", - "//keras", - "//keras/distribute:strategy_combinations", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "text_vectorization_test", - srcs = ["text_vectorization_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":preprocessing_test_utils", - ":text_vectorization", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/utils:generic_utils", - ], -) - -distribute_py_test( - name = "text_vectorization_distribution_test", - srcs = ["text_vectorization_distribution_test.py"], - disable_mlir_bridge = False, - main = "text_vectorization_distribution_test.py", - python_version = "PY3", - shard_count = 4, - tags = [ - "multi_and_single_gpu", - "nomultivm", # TODO(b/170502145) - ], - tpu_tags = [ - "no_oss", # b/155502591 - ], - deps = [ - ":preprocessing_test_utils", - ":text_vectorization", - "//:expect_tensorflow_installed", - "//keras", - "//keras/distribute:strategy_combinations", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "string_lookup_test", - srcs = ["string_lookup_test.py"], - python_version = "PY3", - tags = [ - "notsan", #b/168758821 - ], - deps = [ - ":preprocessing_test_utils", - ":string_lookup", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/utils:generic_utils", - ], -) - -tf_py_test( - name = "preprocessing_stage_test", - srcs = ["preprocessing_stage_test.py"], - python_version = "PY3", - tags = ["no_windows"], # TODO(b/152991402) - deps = [ - ":preprocessing_stage", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/layers/preprocessing/__init__.py b/keras/layers/preprocessing/__init__.py deleted file mode 100644 index e69de29bb2d..00000000000 diff --git a/keras/layers/preprocessing/benchmarks/BUILD b/keras/layers/preprocessing/benchmarks/BUILD deleted file mode 100644 index 4a6a4d15109..00000000000 --- a/keras/layers/preprocessing/benchmarks/BUILD +++ /dev/null @@ -1,247 +0,0 @@ -# Benchmarks for Keras preprocessing layers. -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -# buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/tensorflow/tools/pip_package:__pkg__", - ], - licenses = ["notice"], -) - -tf_py_test( - name = "category_encoding_benchmark", - srcs = ["category_encoding_benchmark.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/layers/preprocessing:category_encoding", - ], -) - -tf_py_test( - name = "hashing_benchmark", - srcs = ["hashing_benchmark.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/layers/preprocessing:hashing", - ], -) - -tf_py_test( - name = "index_lookup_adapt_benchmark", - srcs = ["index_lookup_adapt_benchmark.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/layers/preprocessing:index_lookup", - ], -) - -tf_py_test( - name = "index_lookup_forward_benchmark", - srcs = ["index_lookup_forward_benchmark.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/layers/preprocessing:index_lookup", - ], -) - -tf_py_test( - name = "normalization_adapt_benchmark", - srcs = ["normalization_adapt_benchmark.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/layers/preprocessing:normalization", - ], -) - -tf_py_test( - name = "discretization_adapt_benchmark", - srcs = ["discretization_adapt_benchmark.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/layers/preprocessing:discretization", - ], -) - -cuda_py_test( - name = "image_preproc_benchmark", - srcs = ["image_preproc_benchmark.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/layers/preprocessing:image_preprocessing", - ], -) - -tf_py_test( - name = "bucketized_column_dense_benchmark", - srcs = ["bucketized_column_dense_benchmark.py"], - python_version = "PY3", - deps = [ - ":feature_column_benchmark", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "hashed_crossing_benchmark", - srcs = ["hashed_crossing_benchmark.py"], - python_version = "PY3", - deps = [ - ":feature_column_benchmark", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "category_hash_dense_benchmark", - srcs = ["category_hash_dense_benchmark.py"], - python_version = "PY3", - deps = [ - ":feature_column_benchmark", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "category_hash_varlen_benchmark", - srcs = ["category_hash_varlen_benchmark.py"], - python_version = "PY3", - deps = [ - ":feature_column_benchmark", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "category_vocab_file_dense_benchmark", - srcs = ["category_vocab_file_dense_benchmark.py"], - python_version = "PY3", - tags = ["no_windows"], - deps = [ - ":feature_column_benchmark", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "category_vocab_file_varlen_benchmark", - srcs = ["category_vocab_file_varlen_benchmark.py"], - python_version = "PY3", - tags = ["no_windows"], - deps = [ - ":feature_column_benchmark", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "category_vocab_list_dense_benchmark", - srcs = ["category_vocab_list_dense_benchmark.py"], - python_version = "PY3", - tags = ["no_windows"], - deps = [ - ":feature_column_benchmark", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "category_vocab_list_indicator_dense_benchmark", - srcs = ["category_vocab_list_indicator_dense_benchmark.py"], - python_version = "PY3", - tags = ["no_windows"], - deps = [ - ":feature_column_benchmark", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "category_vocab_list_indicator_varlen_benchmark", - srcs = ["category_vocab_list_indicator_varlen_benchmark.py"], - python_version = "PY3", - tags = ["no_windows"], - deps = [ - ":feature_column_benchmark", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "category_vocab_list_varlen_benchmark", - srcs = ["category_vocab_list_varlen_benchmark.py"], - python_version = "PY3", - tags = ["no_windows"], - deps = [ - ":feature_column_benchmark", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "embedding_dense_benchmark", - srcs = ["embedding_dense_benchmark.py"], - python_version = "PY3", - deps = [ - ":feature_column_benchmark", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "embedding_varlen_benchmark", - srcs = ["embedding_varlen_benchmark.py"], - python_version = "PY3", - deps = [ - ":feature_column_benchmark", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -py_library( - name = "feature_column_benchmark", - srcs = ["feature_column_benchmark.py"], - deps = [ - "//:expect_tensorflow_installed", - ], -) - -tf_py_test( - name = "weighted_embedding_varlen_benchmark", - srcs = ["weighted_embedding_varlen_benchmark.py"], - python_version = "PY3", - deps = [ - ":feature_column_benchmark", - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) diff --git a/keras/layers/preprocessing/benchmarks/__init__.py b/keras/layers/preprocessing/benchmarks/__init__.py deleted file mode 100644 index e69de29bb2d..00000000000 diff --git a/keras/layers/preprocessing/benchmarks/bucketized_column_dense_benchmark.py b/keras/layers/preprocessing/benchmarks/bucketized_column_dense_benchmark.py deleted file mode 100644 index e12ec7ae801..00000000000 --- a/keras/layers/preprocessing/benchmarks/bucketized_column_dense_benchmark.py +++ /dev/null @@ -1,84 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for KPL implementation of bucketized columns with dense inputs.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import discretization -from keras.layers.preprocessing.benchmarks import ( - feature_column_benchmark as fc_bm, -) - -# isort: off -from tensorflow.python.eager.def_function import ( - function as tf_function, -) - -NUM_REPEATS = 10 # The number of times to run each benchmark. -BATCH_SIZES = [32, 256] - - -### KPL AND FC IMPLEMENTATION BENCHMARKS ### -def embedding_varlen(batch_size, max_length): - """Benchmark a variable-length embedding.""" - # Data and constants. - max_value = 25.0 - bins = np.arange(1.0, max_value) - data = fc_bm.create_data( - max_length, batch_size * NUM_REPEATS, 100000, dtype=float - ) - - # Keras implementation - model = keras.Sequential() - model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.float32)) - model.add(discretization.Discretization(bins)) - - # FC implementation - fc = tf.feature_column.bucketized_column( - tf.feature_column.numeric_column("data"), boundaries=list(bins) - ) - - # Wrap the FC implementation in a tf.function for a fair comparison - @tf_function() - def fc_fn(tensors): - fc.transform_feature( - tf.__internal__.feature_column.FeatureTransformationCache(tensors), - None, - ) - - # Benchmark runs - keras_data = {"data": data.to_tensor(default_value=0.0)} - k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS) - - fc_data = {"data": data.to_tensor(default_value=0.0)} - fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS) - - return k_avg_time, fc_avg_time - - -class BenchmarkLayer(fc_bm.LayerBenchmark): - """Benchmark the layer forward pass.""" - - def benchmark_layer(self): - for batch in BATCH_SIZES: - name = f"bucketized|dense|batch_{batch}" - k_time, f_time = embedding_varlen(batch_size=batch, max_length=256) - self.report(name, k_time, f_time, NUM_REPEATS) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/category_encoding_benchmark.py b/keras/layers/preprocessing/benchmarks/category_encoding_benchmark.py deleted file mode 100644 index 15e2545c779..00000000000 --- a/keras/layers/preprocessing/benchmarks/category_encoding_benchmark.py +++ /dev/null @@ -1,83 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for Keras category_encoding preprocessing layer.""" - -import time - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import category_encoding - - -class BenchmarkLayer(tf.test.Benchmark): - """Benchmark the layer forward pass.""" - - def run_dataset_implementation( - self, output_mode, batch_size, sequence_length, max_tokens - ): - input_t = keras.Input(shape=(sequence_length,), dtype=tf.int32) - layer = category_encoding.CategoryEncoding( - max_tokens=max_tokens, output_mode=output_mode - ) - _ = layer(input_t) - - num_repeats = 5 - starts = [] - ends = [] - for _ in range(num_repeats): - ds = tf.data.Dataset.from_tensor_slices( - tf.random.uniform( - [batch_size * 10, sequence_length], - minval=0, - maxval=max_tokens - 1, - dtype=tf.int32, - ) - ) - ds = ds.shuffle(batch_size * 100) - ds = ds.batch(batch_size) - num_batches = 5 - ds = ds.take(num_batches) - ds = ds.prefetch(num_batches) - starts.append(time.time()) - # Benchmarked code begins here. - for i in ds: - _ = layer(i) - # Benchmarked code ends here. - ends.append(time.time()) - - avg_time = np.mean(np.array(ends) - np.array(starts)) / num_batches - name = "category_encoding|batch_%s|seq_length_%s|%s_max_tokens" % ( - batch_size, - sequence_length, - max_tokens, - ) - self.report_benchmark(iters=num_repeats, wall_time=avg_time, name=name) - - def benchmark_vocab_size_by_batch(self): - for batch in [32, 256, 2048]: - for sequence_length in [10, 1000]: - for num_tokens in [100, 1000, 20000]: - self.run_dataset_implementation( - output_mode="count", - batch_size=batch, - sequence_length=sequence_length, - max_tokens=num_tokens, - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/category_hash_dense_benchmark.py b/keras/layers/preprocessing/benchmarks/category_hash_dense_benchmark.py deleted file mode 100644 index f4953cc1842..00000000000 --- a/keras/layers/preprocessing/benchmarks/category_hash_dense_benchmark.py +++ /dev/null @@ -1,88 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for KPL implementation of categorical hash columns with dense -inputs.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import hashing -from keras.layers.preprocessing.benchmarks import ( - feature_column_benchmark as fc_bm, -) - -# isort: off -from tensorflow.python.eager.def_function import ( - function as tf_function, -) - -NUM_REPEATS = 10 -BATCH_SIZES = [32, 256] - - -def embedding_varlen(batch_size, max_length): - """Benchmark a variable-length embedding.""" - # Data and constants. - - num_buckets = 10000 - vocab = fc_bm.create_vocabulary(32768) - data = fc_bm.create_string_data( - max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0 - ) - - # Keras implementation - model = keras.Sequential() - model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.string)) - model.add(hashing.Hashing(num_buckets)) - - # FC implementation - fc = tf.feature_column.sequence_categorical_column_with_hash_bucket( - "data", num_buckets - ) - - # Wrap the FC implementation in a tf.function for a fair comparison - @tf_function() - def fc_fn(tensors): - fc.transform_feature( - tf.__internal__.feature_column.FeatureTransformationCache(tensors), - None, - ) - - # Benchmark runs - keras_data = { - "data": data.to_tensor(default_value="", shape=(batch_size, max_length)) - } - k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS) - - fc_data = { - "data": data.to_tensor(default_value="", shape=(batch_size, max_length)) - } - fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS) - - return k_avg_time, fc_avg_time - - -class BenchmarkLayer(fc_bm.LayerBenchmark): - """Benchmark the layer forward pass.""" - - def benchmark_layer(self): - for batch in BATCH_SIZES: - name = f"hash|dense|batch_{batch}" - k_time, f_time = embedding_varlen(batch_size=batch, max_length=256) - self.report(name, k_time, f_time, NUM_REPEATS) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/category_hash_varlen_benchmark.py b/keras/layers/preprocessing/benchmarks/category_hash_varlen_benchmark.py deleted file mode 100644 index a43f42a2c01..00000000000 --- a/keras/layers/preprocessing/benchmarks/category_hash_varlen_benchmark.py +++ /dev/null @@ -1,88 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for KPL implementation of categorical hash columns with -varying-length inputs.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import hashing -from keras.layers.preprocessing.benchmarks import ( - feature_column_benchmark as fc_bm, -) - -# isort: off -from tensorflow.python.eager.def_function import ( - function as tf_function, -) - -NUM_REPEATS = 10 -BATCH_SIZES = [32, 256] - - -def embedding_varlen(batch_size, max_length): - """Benchmark a variable-length embedding.""" - # Data and constants. - - num_buckets = 10000 - vocab = fc_bm.create_vocabulary(32768) - data = fc_bm.create_string_data( - max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.0 - ) - - # Keras implementation - model = keras.Sequential() - model.add( - keras.Input( - shape=(max_length,), name="data", ragged=True, dtype=tf.string - ) - ) - model.add(hashing.Hashing(num_buckets)) - - # FC implementation - fc = tf.feature_column.categorical_column_with_hash_bucket( - "data", num_buckets - ) - - # Wrap the FC implementation in a tf.function for a fair comparison - @tf_function() - def fc_fn(tensors): - fc.transform_feature( - tf.__internal__.feature_column.FeatureTransformationCache(tensors), - None, - ) - - # Benchmark runs - keras_data = {"data": data} - k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS) - - fc_data = {"data": data.to_sparse()} - fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS) - - return k_avg_time, fc_avg_time - - -class BenchmarkLayer(fc_bm.LayerBenchmark): - """Benchmark the layer forward pass.""" - - def benchmark_layer(self): - for batch in BATCH_SIZES: - name = f"hash|varlen|batch_{batch}" - k_time, f_time = embedding_varlen(batch_size=batch, max_length=256) - self.report(name, k_time, f_time, NUM_REPEATS) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/category_vocab_file_dense_benchmark.py b/keras/layers/preprocessing/benchmarks/category_vocab_file_dense_benchmark.py deleted file mode 100644 index ae43734f569..00000000000 --- a/keras/layers/preprocessing/benchmarks/category_vocab_file_dense_benchmark.py +++ /dev/null @@ -1,109 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for KPL implementation of vocabulary columns from files with dense -inputs.""" - -import os - -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import string_lookup -from keras.layers.preprocessing.benchmarks import ( - feature_column_benchmark as fc_bm, -) - -# isort: off -from tensorflow.python.eager.def_function import ( - function as tf_function, -) - -NUM_REPEATS = 10 -BATCH_SIZES = [32, 256] - - -class BenchmarkLayer(tf.test.TestCase, fc_bm.LayerBenchmark): - """Benchmark the layer forward pass.""" - - def _write_to_temp_file(self, file_name, vocab_list): - vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt") - with tf.io.gfile.GFile(vocab_path, "w") as writer: - for vocab in vocab_list: - writer.write(vocab + "\n") - writer.flush() - writer.close() - return vocab_path - - def embedding_varlen(self, batch_size, max_length): - """Benchmark a variable-length embedding.""" - # Data and constants. - vocab = fc_bm.create_vocabulary(32768) - - path = self._write_to_temp_file("tmp", vocab) - - data = fc_bm.create_string_data( - max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15 - ) - - # Keras implementation - model = keras.Sequential() - model.add( - keras.Input(shape=(max_length,), name="data", dtype=tf.string) - ) - model.add(string_lookup.StringLookup(vocabulary=path, mask_token=None)) - - # FC implementation - fc = tf.feature_column.categorical_column_with_vocabulary_list( - key="data", vocabulary_list=vocab, num_oov_buckets=1 - ) - - # Wrap the FC implementation in a tf.function for a fair comparison - @tf_function() - def fc_fn(tensors): - fc.transform_feature( - tf.__internal__.feature_column.FeatureTransformationCache( - tensors - ), - None, - ) - - # Benchmark runs - keras_data = { - "data": data.to_tensor( - default_value="", shape=(batch_size, max_length) - ) - } - k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS) - - fc_data = { - "data": data.to_tensor( - default_value="", shape=(batch_size, max_length) - ) - } - fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS) - - return k_avg_time, fc_avg_time - - def benchmark_layer(self): - for batch in BATCH_SIZES: - name = f"vocab_list|dense|batch_{batch}" - k_time, f_time = self.embedding_varlen( - batch_size=batch, max_length=256 - ) - self.report(name, k_time, f_time, NUM_REPEATS) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/category_vocab_file_varlen_benchmark.py b/keras/layers/preprocessing/benchmarks/category_vocab_file_varlen_benchmark.py deleted file mode 100644 index 26c6f4861ed..00000000000 --- a/keras/layers/preprocessing/benchmarks/category_vocab_file_varlen_benchmark.py +++ /dev/null @@ -1,102 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for KPL implementation of vocabulary columns from files with -varying-length inputs.""" - -import os - -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import string_lookup -from keras.layers.preprocessing.benchmarks import ( - feature_column_benchmark as fc_bm, -) - -# isort: off -from tensorflow.python.eager.def_function import ( - function as tf_function, -) - -NUM_REPEATS = 10 -BATCH_SIZES = [32, 256] - - -class BenchmarkLayer(tf.test.TestCase, fc_bm.LayerBenchmark): - """Benchmark the layer forward pass.""" - - def _write_to_temp_file(self, file_name, vocab_list): - vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt") - with tf.io.gfile.GFile(vocab_path, "w") as writer: - for vocab in vocab_list: - writer.write(vocab + "\n") - writer.flush() - writer.close() - return vocab_path - - def embedding_varlen(self, batch_size, max_length): - """Benchmark a variable-length embedding.""" - # Data and constants. - vocab = fc_bm.create_vocabulary(32768) - path = self._write_to_temp_file("tmp", vocab) - - data = fc_bm.create_string_data( - max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15 - ) - - # Keras implementation - model = keras.Sequential() - model.add( - keras.Input( - shape=(max_length,), name="data", ragged=True, dtype=tf.string - ) - ) - model.add(string_lookup.StringLookup(vocabulary=path, mask_token=None)) - - # FC implementation - fc = tf.feature_column.sequence_categorical_column_with_vocabulary_list( - key="data", vocabulary_list=vocab, num_oov_buckets=1 - ) - - # Wrap the FC implementation in a tf.function for a fair comparison - @tf_function() - def fc_fn(tensors): - fc.transform_feature( - tf.__internal__.feature_column.FeatureTransformationCache( - tensors - ), - None, - ) - - # Benchmark runs - keras_data = {"data": data} - k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS) - - fc_data = {"data": data.to_sparse()} - fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS) - - return k_avg_time, fc_avg_time - - def benchmark_layer(self): - for batch in BATCH_SIZES: - name = f"vocab_list|varlen|batch_{batch}" - k_time, f_time = self.embedding_varlen( - batch_size=batch, max_length=256 - ) - self.report(name, k_time, f_time, NUM_REPEATS) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/category_vocab_list_dense_benchmark.py b/keras/layers/preprocessing/benchmarks/category_vocab_list_dense_benchmark.py deleted file mode 100644 index eb455a8e52b..00000000000 --- a/keras/layers/preprocessing/benchmarks/category_vocab_list_dense_benchmark.py +++ /dev/null @@ -1,86 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for KPL implementation of vocabulary columns from lists with dense -inputs.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import string_lookup -from keras.layers.preprocessing.benchmarks import ( - feature_column_benchmark as fc_bm, -) - -# isort: off -from tensorflow.python.eager.def_function import ( - function as tf_function, -) - -NUM_REPEATS = 10 -BATCH_SIZES = [32, 256] - - -def embedding_varlen(batch_size, max_length): - """Benchmark a variable-length embedding.""" - # Data and constants. - vocab = fc_bm.create_vocabulary(32768) - data = fc_bm.create_string_data( - max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15 - ) - - # Keras implementation - model = keras.Sequential() - model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.string)) - model.add(string_lookup.StringLookup(vocabulary=vocab, mask_token=None)) - - # FC implementation - fc = tf.feature_column.categorical_column_with_vocabulary_list( - key="data", vocabulary_list=vocab, num_oov_buckets=1 - ) - - # Wrap the FC implementation in a tf.function for a fair comparison - @tf_function() - def fc_fn(tensors): - fc.transform_feature( - tf.__internal__.feature_column.FeatureTransformationCache(tensors), - None, - ) - - # Benchmark runs - keras_data = { - "data": data.to_tensor(default_value="", shape=(batch_size, max_length)) - } - k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS) - - fc_data = { - "data": data.to_tensor(default_value="", shape=(batch_size, max_length)) - } - fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS) - - return k_avg_time, fc_avg_time - - -class BenchmarkLayer(fc_bm.LayerBenchmark): - """Benchmark the layer forward pass.""" - - def benchmark_layer(self): - for batch in BATCH_SIZES: - name = f"vocab_list|dense|batch_{batch}" - k_time, f_time = embedding_varlen(batch_size=batch, max_length=256) - self.report(name, k_time, f_time, NUM_REPEATS) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/category_vocab_list_indicator_dense_benchmark.py b/keras/layers/preprocessing/benchmarks/category_vocab_list_indicator_dense_benchmark.py deleted file mode 100644 index b2aa0d687a0..00000000000 --- a/keras/layers/preprocessing/benchmarks/category_vocab_list_indicator_dense_benchmark.py +++ /dev/null @@ -1,95 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for KPL implementation of vocabulary columns + indicator from lists -with dense inputs.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import category_encoding -from keras.layers.preprocessing import string_lookup -from keras.layers.preprocessing.benchmarks import ( - feature_column_benchmark as fc_bm, -) - -# isort: off -from tensorflow.python.eager.def_function import ( - function as tf_function, -) - -NUM_REPEATS = 10 -BATCH_SIZES = [32, 256] - - -def embedding_varlen(batch_size, max_length): - """Benchmark a variable-length embedding.""" - # Data and constants. - vocab_size = 32768 - vocab = fc_bm.create_vocabulary(vocab_size) - data = fc_bm.create_string_data( - max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15 - ) - - # Keras implementation - model = keras.Sequential() - model.add(keras.Input(shape=(max_length,), name="data", dtype=tf.string)) - model.add(string_lookup.StringLookup(vocabulary=vocab, mask_token=None)) - model.add( - category_encoding.CategoryEncoding( - num_tokens=vocab_size + 1, output_mode="count" - ) - ) - - # FC implementation - fc = tf.feature_column.indicator_column( - tf.feature_column.categorical_column_with_vocabulary_list( - key="data", vocabulary_list=vocab, num_oov_buckets=1 - ) - ) - - # Wrap the FC implementation in a tf.function for a fair comparison - @tf_function() - def fc_fn(tensors): - fc.transform_feature( - tf.__internal__.feature_column.FeatureTransformationCache(tensors), - None, - ) - - # Benchmark runs - keras_data = { - "data": data.to_tensor(default_value="", shape=(batch_size, max_length)) - } - k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS) - - fc_data = { - "data": data.to_tensor(default_value="", shape=(batch_size, max_length)) - } - fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS) - - return k_avg_time, fc_avg_time - - -class BenchmarkLayer(fc_bm.LayerBenchmark): - """Benchmark the layer forward pass.""" - - def benchmark_layer(self): - for batch in BATCH_SIZES: - name = f"vocab_list_indicator|dense|batch_{batch}" - k_time, f_time = embedding_varlen(batch_size=batch, max_length=256) - self.report(name, k_time, f_time, NUM_REPEATS) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/category_vocab_list_indicator_varlen_benchmark.py b/keras/layers/preprocessing/benchmarks/category_vocab_list_indicator_varlen_benchmark.py deleted file mode 100644 index b46b01ebbb1..00000000000 --- a/keras/layers/preprocessing/benchmarks/category_vocab_list_indicator_varlen_benchmark.py +++ /dev/null @@ -1,95 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for KPL implementation of vocabulary columns + indicator from lists -with varying-length inputs.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import category_encoding -from keras.layers.preprocessing import string_lookup -from keras.layers.preprocessing.benchmarks import ( - feature_column_benchmark as fc_bm, -) - -# isort: off -from tensorflow.python.eager.def_function import ( - function as tf_function, -) - -NUM_REPEATS = 10 -BATCH_SIZES = [32, 256] - - -def embedding_varlen(batch_size, max_length): - """Benchmark a variable-length embedding.""" - # Data and constants. - vocab_size = 32768 - vocab = fc_bm.create_vocabulary(vocab_size) - data = fc_bm.create_string_data( - max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15 - ) - - # Keras implementation - model = keras.Sequential() - model.add( - keras.Input( - shape=(max_length,), name="data", ragged=True, dtype=tf.string - ) - ) - model.add(string_lookup.StringLookup(vocabulary=vocab, mask_token=None)) - model.add( - category_encoding.CategoryEncoding( - num_tokens=vocab_size + 1, output_mode="count" - ) - ) - - # FC implementation - fc = tf.feature_column.indicator_column( - tf.feature_column.sequence_categorical_column_with_vocabulary_list( - key="data", vocabulary_list=vocab, num_oov_buckets=1 - ) - ) - - # Wrap the FC implementation in a tf.function for a fair comparison - @tf_function() - def fc_fn(tensors): - fc.transform_feature( - tf.__internal__.feature_column.FeatureTransformationCache(tensors), - None, - ) - - # Benchmark runs - keras_data = {"data": data} - k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS) - - fc_data = {"data": data.to_sparse()} - fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS) - - return k_avg_time, fc_avg_time - - -class BenchmarkLayer(fc_bm.LayerBenchmark): - """Benchmark the layer forward pass.""" - - def benchmark_layer(self): - for batch in BATCH_SIZES: - name = f"vocab_list_indicator|varlen|batch_{batch}" - k_time, f_time = embedding_varlen(batch_size=batch, max_length=256) - self.report(name, k_time, f_time, NUM_REPEATS) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/category_vocab_list_varlen_benchmark.py b/keras/layers/preprocessing/benchmarks/category_vocab_list_varlen_benchmark.py deleted file mode 100644 index 6b1455c5ec4..00000000000 --- a/keras/layers/preprocessing/benchmarks/category_vocab_list_varlen_benchmark.py +++ /dev/null @@ -1,86 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for KPL implementation of vocabulary columns from lists with -varying-length inputs.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import string_lookup -from keras.layers.preprocessing.benchmarks import ( - feature_column_benchmark as fc_bm, -) - -# isort: off -from tensorflow.python.eager.def_function import ( - function as tf_function, -) - -NUM_REPEATS = 10 -BATCH_SIZES = [32, 256] - - -def embedding_varlen(batch_size, max_length): - """Benchmark a variable-length embedding.""" - # Data and constants. - vocab = fc_bm.create_vocabulary(32768) - data = fc_bm.create_string_data( - max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15 - ) - - # Keras implementation - model = keras.Sequential() - model.add( - keras.Input( - shape=(max_length,), name="data", ragged=True, dtype=tf.string - ) - ) - model.add(string_lookup.StringLookup(vocabulary=vocab, mask_token=None)) - - # FC implementation - fc = tf.feature_column.sequence_categorical_column_with_vocabulary_list( - key="data", vocabulary_list=vocab, num_oov_buckets=1 - ) - - # Wrap the FC implementation in a tf.function for a fair comparison - @tf_function() - def fc_fn(tensors): - fc.transform_feature( - tf.__internal__.feature_column.FeatureTransformationCache(tensors), - None, - ) - - # Benchmark runs - keras_data = {"data": data} - k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS) - - fc_data = {"data": data.to_sparse()} - fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS) - - return k_avg_time, fc_avg_time - - -class BenchmarkLayer(fc_bm.LayerBenchmark): - """Benchmark the layer forward pass.""" - - def benchmark_layer(self): - for batch in BATCH_SIZES: - name = f"vocab_list|varlen|batch_{batch}" - k_time, f_time = embedding_varlen(batch_size=batch, max_length=256) - self.report(name, k_time, f_time, NUM_REPEATS) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/discretization_adapt_benchmark.py b/keras/layers/preprocessing/benchmarks/discretization_adapt_benchmark.py deleted file mode 100644 index 86af3a6583e..00000000000 --- a/keras/layers/preprocessing/benchmarks/discretization_adapt_benchmark.py +++ /dev/null @@ -1,108 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for Keras discretization preprocessing layer's adapt method.""" - -import time - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import discretization - -EPSILON = 0.1 - - -def reduce_fn(state, values, epsilon=EPSILON): - """tf.data.Dataset-friendly implementation of mean and variance.""" - - (state_,) = state - summary = discretization.summarize(values, epsilon) - if np.sum(state_[:, 0]) == 0: - return (summary,) - return (discretization.merge_summaries(state_, summary, epsilon),) - - -class BenchmarkAdapt(tf.test.Benchmark): - """Benchmark adapt.""" - - def run_dataset_implementation(self, num_elements, batch_size): - input_t = keras.Input(shape=(1,)) - layer = discretization.Discretization() - _ = layer(input_t) - - num_repeats = 5 - starts = [] - ends = [] - for _ in range(num_repeats): - ds = tf.data.Dataset.range(num_elements) - ds = ds.map(lambda x: tf.expand_dims(tf.cast(x, tf.float32), -1)) - ds = ds.batch(batch_size) - - starts.append(time.time()) - # Benchmarked code begins here. - state = ds.reduce((np.zeros((1, 2)),), reduce_fn) - - bins = discretization.get_bucket_boundaries(state, 100) - layer.set_weights([bins]) - # Benchmarked code ends here. - ends.append(time.time()) - - avg_time = np.mean(np.array(ends) - np.array(starts)) - return avg_time - - def bm_adapt_implementation(self, num_elements, batch_size): - """Test the KPL adapt implementation.""" - input_t = keras.Input(shape=(1,), dtype=tf.float32) - layer = discretization.Discretization() - _ = layer(input_t) - - num_repeats = 5 - starts = [] - ends = [] - for _ in range(num_repeats): - ds = tf.data.Dataset.range(num_elements) - ds = ds.map(lambda x: tf.expand_dims(tf.cast(x, tf.float32), -1)) - ds = ds.batch(batch_size) - - starts.append(time.time()) - # Benchmarked code begins here. - layer.adapt(ds) - # Benchmarked code ends here. - ends.append(time.time()) - - avg_time = np.mean(np.array(ends) - np.array(starts)) - name = "discretization_adapt|%s_elements|batch_%s" % ( - num_elements, - batch_size, - ) - baseline = self.run_dataset_implementation(num_elements, batch_size) - extras = { - "tf.data implementation baseline": baseline, - "delta seconds": (baseline - avg_time), - "delta percent": ((baseline - avg_time) / baseline) * 100, - } - self.report_benchmark( - iters=num_repeats, wall_time=avg_time, extras=extras, name=name - ) - - def benchmark_vocab_size_by_batch(self): - for vocab_size in [100, 1000, 10000, 100000, 1000000]: - for batch in [64 * 2048]: - self.bm_adapt_implementation(vocab_size, batch) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/embedding_dense_benchmark.py b/keras/layers/preprocessing/benchmarks/embedding_dense_benchmark.py deleted file mode 100644 index bbe64c2c8d8..00000000000 --- a/keras/layers/preprocessing/benchmarks/embedding_dense_benchmark.py +++ /dev/null @@ -1,85 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for KPL implementation of embedding column with dense inputs.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing.benchmarks import ( - feature_column_benchmark as fc_bm, -) - -# isort: off -from tensorflow.python.eager.def_function import ( - function as tf_function, -) - -NUM_REPEATS = 10 -BATCH_SIZES = [32, 256] - - -### KPL AND FC IMPLEMENTATION BENCHMARKS ### -def embedding_varlen(batch_size, max_length): - """Benchmark a variable-length embedding.""" - # Data and constants. - embedding_size = 32768 - data = fc_bm.create_data( - max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int - ) - - # Keras implementation - model = keras.Sequential() - model.add(keras.Input(shape=(None,), name="data", dtype=tf.int64)) - model.add(keras.layers.Embedding(embedding_size, 256)) - model.add(keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=-1))) - - # FC implementation - fc = tf.feature_column.embedding_column( - tf.feature_column.categorical_column_with_identity( - "data", num_buckets=embedding_size - 1 - ), - dimension=256, - ) - - # Wrap the FC implementation in a tf.function for a fair comparison - @tf_function() - def fc_fn(tensors): - fc.transform_feature( - tf.__internal__.feature_column.FeatureTransformationCache(tensors), - None, - ) - - # Benchmark runs - keras_data = {"data": data.to_tensor(default_value=0)} - k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS) - - fc_data = {"data": data.to_tensor(default_value=0)} - fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS) - - return k_avg_time, fc_avg_time - - -class BenchmarkLayer(fc_bm.LayerBenchmark): - """Benchmark the layer forward pass.""" - - def benchmark_layer(self): - for batch in BATCH_SIZES: - name = f"embedding|dense|batch_{batch}" - k_time, f_time = embedding_varlen(batch_size=batch, max_length=256) - self.report(name, k_time, f_time, NUM_REPEATS) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/embedding_varlen_benchmark.py b/keras/layers/preprocessing/benchmarks/embedding_varlen_benchmark.py deleted file mode 100644 index f7ddbcc3a57..00000000000 --- a/keras/layers/preprocessing/benchmarks/embedding_varlen_benchmark.py +++ /dev/null @@ -1,88 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for KPL implementation of embedding column with varying-length -inputs.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing.benchmarks import ( - feature_column_benchmark as fc_bm, -) - -# isort: off -from tensorflow.python.eager.def_function import ( - function as tf_function, -) - -NUM_REPEATS = 10 -BATCH_SIZES = [32, 256] - - -### KPL AND FC IMPLEMENTATION BENCHMARKS ### -def embedding_varlen(batch_size, max_length): - """Benchmark a variable-length embedding.""" - # Data and constants. - embedding_size = 32768 - data = fc_bm.create_data( - max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int - ) - - # Keras implementation - model = keras.Sequential() - model.add( - keras.Input(shape=(None,), ragged=True, name="data", dtype=tf.int64) - ) - model.add(keras.layers.Embedding(embedding_size, 256)) - model.add(keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=-1))) - - # FC implementation - fc = tf.feature_column.embedding_column( - tf.feature_column.categorical_column_with_identity( - "data", num_buckets=embedding_size - 1 - ), - dimension=256, - ) - - # Wrap the FC implementation in a tf.function for a fair comparison - @tf_function() - def fc_fn(tensors): - fc.transform_feature( - tf.__internal__.feature_column.FeatureTransformationCache(tensors), - None, - ) - - # Benchmark runs - keras_data = {"data": data} - k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS) - - fc_data = {"data": data.to_sparse()} - fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS) - - return k_avg_time, fc_avg_time - - -class BenchmarkLayer(fc_bm.LayerBenchmark): - """Benchmark the layer forward pass.""" - - def benchmark_layer(self): - for batch in BATCH_SIZES: - name = f"embedding|varlen|batch_{batch}" - k_time, f_time = embedding_varlen(batch_size=batch, max_length=256) - self.report(name, k_time, f_time, NUM_REPEATS) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/feature_column_benchmark.py b/keras/layers/preprocessing/benchmarks/feature_column_benchmark.py deleted file mode 100644 index cb14279fc2d..00000000000 --- a/keras/layers/preprocessing/benchmarks/feature_column_benchmark.py +++ /dev/null @@ -1,154 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark suite for KPL and feature column implementations.""" - -import itertools -import math -import random -import string -import time - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras - - -class LayerBenchmark(tf.test.Benchmark): - """Benchmark the layer forward pass.""" - - def report(self, name, keras_time, fc_time, iters): - """Calculate and report benchmark statistics.""" - extras = { - "fc_avg_time": fc_time, - "fc_vs_keras_sec": fc_time - keras_time, - "fc_vs_keras_pct": ((fc_time - keras_time) / fc_time) * 100, - "keras_faster_ratio": fc_time / keras_time, - } - self.report_benchmark( - iters=iters, wall_time=keras_time, extras=extras, name=name - ) - - -class StepTimingCallback(keras.callbacks.Callback): - """A callback that times non-warmup steps of a Keras predict call.""" - - def __init__(self): - self.t0 = None - self.steps = 0 - - def on_predict_batch_begin(self, batch_index, _): - if batch_index == 2: - self.t0 = time.time() - elif batch_index > 2: - self.steps += 1 - - def on_predict_end(self, _): - self.tn = time.time() - self.t_avg = (self.tn - self.t0) / self.steps - - -def create_data(length, num_entries, max_value, dtype): - """Create a ragged tensor with random data entries.""" - lengths = (np.random.random(size=num_entries) * length).astype(int) - total_length = np.sum(lengths) - values = (np.random.random(size=total_length) * max_value).astype(dtype) - return tf.RaggedTensor.from_row_lengths(values, lengths) - - -def create_string_data( - length, num_entries, vocabulary, pct_oov, oov_string="__OOV__" -): - """Create a ragged tensor with random data entries.""" - lengths = (np.random.random(size=num_entries) * length).astype(int) - total_length = np.sum(lengths) - num_oovs = int(pct_oov * total_length) - values = [] - for _ in range(total_length): - values.append(random.choice(vocabulary)) - - if pct_oov > 0: - oov_cadence = int(total_length / num_oovs) - idx = 0 - for _ in range(num_oovs): - if idx < total_length: - values[idx] = oov_string - idx += oov_cadence - - return tf.RaggedTensor.from_row_lengths(values, lengths) - - -def create_vocabulary(vocab_size): - base = len(string.ascii_letters) - n = math.ceil(math.log(vocab_size, base)) - vocab = [] - for i in range(1, n + 1): - for item in itertools.product(string.ascii_letters, repeat=i): - if len(vocab) >= vocab_size: - break - vocab.append("".join(item)) - return vocab - - -def run_keras(data, model, batch_size, num_runs, steps_per_repeat=100): - """Benchmark a Keras model.""" - ds = ( - tf.data.Dataset.from_tensor_slices(data) - .repeat() - .prefetch(tf.data.AUTOTUNE) - .batch(batch_size) - .cache() - ) - steps = 0 - times = [] - for _ in range(num_runs): - steps += steps_per_repeat - timer = StepTimingCallback() - # Benchmarked code begins here. - model.predict(ds, steps=steps, callbacks=[timer]) - # Benchmarked code ends here. - times.append(timer.t_avg) - avg_time = np.mean(times) - return avg_time - - -def run_fc(data, fc_fn, batch_size, num_runs, steps_per_repeat=100): - """Benchmark a Feature Column.""" - - ds = ( - tf.data.Dataset.from_tensor_slices(data) - .repeat() - .prefetch(tf.data.AUTOTUNE) - .batch(batch_size) - .cache() - ) - - # Trace the fc_fn - ds_iter = ds.__iter__() - fc_fn(next(ds_iter)) - fc_starts = [] - fc_ends = [] - for _ in range(num_runs): - fc_starts.append(time.time()) - # Benchmarked code begins here. - for _ in range(steps_per_repeat): - _ = fc_fn(next(ds_iter)) - # Benchmarked code ends here. - fc_ends.append(time.time()) - avg_per_step_time = ( - np.array(fc_ends) - np.array(fc_starts) - ) / steps_per_repeat - avg_time = np.mean(avg_per_step_time) - return avg_time diff --git a/keras/layers/preprocessing/benchmarks/hashed_crossing_benchmark.py b/keras/layers/preprocessing/benchmarks/hashed_crossing_benchmark.py deleted file mode 100644 index 9b0fad90f2c..00000000000 --- a/keras/layers/preprocessing/benchmarks/hashed_crossing_benchmark.py +++ /dev/null @@ -1,89 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for KPL implementation of categorical cross hash columns with dense -inputs.""" - - -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import hashed_crossing -from keras.layers.preprocessing.benchmarks import ( - feature_column_benchmark as fc_bm, -) - -# isort: off -from tensorflow.python.eager.def_function import ( - function as tf_function, -) - -NUM_REPEATS = 10 -BATCH_SIZES = [32, 256] - - -def embedding_varlen(batch_size): - """Benchmark a variable-length embedding.""" - # Data and constants. - num_buckets = 10000 - data_a = tf.random.uniform( - shape=(batch_size * NUM_REPEATS, 1), maxval=32768, dtype=tf.int64 - ) - data_b = tf.strings.as_string(data_a) - - # Keras implementation - input_1 = keras.Input(shape=(1,), name="data_a", dtype=tf.int64) - input_2 = keras.Input(shape=(1,), name="data_b", dtype=tf.string) - outputs = hashed_crossing.HashedCrossing(num_buckets)([input_1, input_2]) - model = keras.Model([input_1, input_2], outputs) - - # FC implementation - fc = tf.feature_column.crossed_column(["data_a", "data_b"], num_buckets) - - # Wrap the FC implementation in a tf.function for a fair comparison - @tf_function() - def fc_fn(tensors): - fc.transform_feature( - tf.__internal__.feature_column.FeatureTransformationCache(tensors), - None, - ) - - # Benchmark runs - keras_data = { - "data_a": data_a, - "data_b": data_b, - } - k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS) - - fc_data = { - "data_a": data_a, - "data_b": data_b, - } - fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS) - - return k_avg_time, fc_avg_time - - -class BenchmarkLayer(fc_bm.LayerBenchmark): - """Benchmark the layer forward pass.""" - - def benchmark_layer(self): - for batch in BATCH_SIZES: - name = f"hashed_cross|dense|batch_{batch}" - k_time, f_time = embedding_varlen(batch_size=batch) - self.report(name, k_time, f_time, NUM_REPEATS) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/hashing_benchmark.py b/keras/layers/preprocessing/benchmarks/hashing_benchmark.py deleted file mode 100644 index 0d0d5b0f8a8..00000000000 --- a/keras/layers/preprocessing/benchmarks/hashing_benchmark.py +++ /dev/null @@ -1,104 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for Keras hashing preprocessing layer.""" - -import itertools -import random -import string -import time - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import hashing - - -# word_gen creates random sequences of ASCII letters (both lowercase and upper). -# The number of unique strings is ~2,700. -def word_gen(): - for _ in itertools.count(1): - yield "".join(random.choice(string.ascii_letters) for i in range(2)) - - -class BenchmarkLayer(tf.test.Benchmark): - """Benchmark the layer forward pass.""" - - def run_dataset_implementation(self, batch_size): - num_repeats = 5 - starts = [] - ends = [] - for _ in range(num_repeats): - ds = tf.data.Dataset.from_generator( - word_gen, tf.string, tf.TensorShape([]) - ) - ds = ds.shuffle(batch_size * 100) - ds = ds.batch(batch_size) - num_batches = 5 - ds = ds.take(num_batches) - ds = ds.prefetch(num_batches) - starts.append(time.time()) - # Benchmarked code begins here. - for i in ds: - _ = tf.strings.to_hash_bucket(i, num_buckets=2) - # Benchmarked code ends here. - ends.append(time.time()) - - avg_time = np.mean(np.array(ends) - np.array(starts)) / num_batches - return avg_time - - def bm_layer_implementation(self, batch_size): - input_1 = keras.Input(shape=(None,), dtype=tf.string, name="word") - layer = hashing.Hashing(num_bins=2) - _ = layer(input_1) - - num_repeats = 5 - starts = [] - ends = [] - for _ in range(num_repeats): - ds = tf.data.Dataset.from_generator( - word_gen, tf.string, tf.TensorShape([]) - ) - ds = ds.shuffle(batch_size * 100) - ds = ds.batch(batch_size) - num_batches = 5 - ds = ds.take(num_batches) - ds = ds.prefetch(num_batches) - starts.append(time.time()) - # Benchmarked code begins here. - for i in ds: - _ = layer(i) - # Benchmarked code ends here. - ends.append(time.time()) - - avg_time = np.mean(np.array(ends) - np.array(starts)) / num_batches - name = f"hashing|batch_{batch_size}" - baseline = self.run_dataset_implementation(batch_size) - extras = { - "dataset implementation baseline": baseline, - "delta seconds": (baseline - avg_time), - "delta percent": ((baseline - avg_time) / baseline) * 100, - } - self.report_benchmark( - iters=num_repeats, wall_time=avg_time, extras=extras, name=name - ) - - def benchmark_vocab_size_by_batch(self): - for batch in [32, 64, 256]: - self.bm_layer_implementation(batch_size=batch) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/image_preproc_benchmark.py b/keras/layers/preprocessing/benchmarks/image_preproc_benchmark.py deleted file mode 100644 index 895232f22a8..00000000000 --- a/keras/layers/preprocessing/benchmarks/image_preproc_benchmark.py +++ /dev/null @@ -1,158 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for Keras image preprocessing layer.""" - -import functools -import time - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import image_preprocessing - -LOWER = 0.2 -UPPER = 0.4 -BATCH_SIZE = 32 - - -def rotate(inputs): - """rotate image.""" - inputs_shape = tf.shape(inputs) - batch_size = inputs_shape[0] - img_hd = tf.cast(inputs_shape[1], tf.float32) - img_wd = tf.cast(inputs_shape[2], tf.float32) - min_angle = LOWER * 2.0 * np.pi - max_angle = UPPER * 2.0 * np.pi - angles = tf.random.uniform( - shape=[batch_size], minval=min_angle, maxval=max_angle - ) - return image_preprocessing.transform( - inputs, image_preprocessing.get_rotation_matrix(angles, img_hd, img_wd) - ) - - -def zoom(inputs): - """zoom image.""" - inputs_shape = tf.shape(inputs) - batch_size = inputs_shape[0] - img_hd = tf.cast(inputs_shape[1], tf.float32) - img_wd = tf.cast(inputs_shape[2], tf.float32) - height_zoom = tf.random.uniform( - shape=[batch_size, 1], minval=1.0 + LOWER, maxval=1.0 + UPPER - ) - width_zoom = tf.random.uniform( - shape=[batch_size, 1], minval=1.0 + LOWER, maxval=1.0 + UPPER - ) - zooms = tf.cast( - tf.concat([width_zoom, height_zoom], axis=1), dtype=tf.float32 - ) - return image_preprocessing.transform( - inputs, image_preprocessing.get_zoom_matrix(zooms, img_hd, img_wd) - ) - - -def image_augmentation(inputs, batch_size): - """image augmentation.""" - img = inputs - img = tf.image.resize(img, size=[224, 224]) - img = tf.image.random_crop(img, size=[batch_size, 224, 224, 3]) - img = rotate(img) - img = zoom(img) - return img - - -class BenchmarkLayer(tf.test.Benchmark): - """Benchmark the layer forward pass.""" - - def run_dataset_implementation(self, batch_size): - num_repeats = 5 - starts = [] - ends = [] - for _ in range(num_repeats): - ds = tf.data.Dataset.from_tensor_slices( - np.random.random((batch_size, 256, 256, 3)) - ) - ds = ds.shuffle(batch_size * 100) - ds = ds.batch(batch_size) - ds = ds.prefetch(batch_size) - img_augmentation = functools.partial( - image_augmentation, batch_size=batch_size - ) - ds = ds.map(img_augmentation, num_parallel_calls=8) - starts.append(time.time()) - count = 0 - # Benchmarked code begins here. - for i in ds: - _ = i - count += 1 - # Benchmarked code ends here. - ends.append(time.time()) - - avg_time = np.mean(np.array(ends) - np.array(starts)) / count - return avg_time - - def bm_layer_implementation(self, batch_size): - with tf.device("/gpu:0"): - img = keras.Input(shape=(256, 256, 3), dtype=tf.float32) - preprocessor = keras.Sequential( - [ - image_preprocessing.Resizing(224, 224), - image_preprocessing.RandomCrop(height=224, width=224), - image_preprocessing.RandomRotation(factor=(0.2, 0.4)), - image_preprocessing.RandomFlip(mode="horizontal"), - image_preprocessing.RandomZoom(0.2, 0.2), - ] - ) - _ = preprocessor(img) - - num_repeats = 5 - starts = [] - ends = [] - for _ in range(num_repeats): - ds = tf.data.Dataset.from_tensor_slices( - np.random.random((batch_size, 256, 256, 3)) - ) - ds = ds.shuffle(batch_size * 100) - ds = ds.batch(batch_size) - ds = ds.prefetch(batch_size) - starts.append(time.time()) - count = 0 - # Benchmarked code begins here. - for i in ds: - _ = preprocessor(i) - count += 1 - # Benchmarked code ends here. - ends.append(time.time()) - - avg_time = np.mean(np.array(ends) - np.array(starts)) / count - name = f"image_preprocessing|batch_{batch_size}" - baseline = self.run_dataset_implementation(batch_size) - extras = { - "dataset implementation baseline": baseline, - "delta seconds": (baseline - avg_time), - "delta percent": ((baseline - avg_time) / baseline) * 100, - } - self.report_benchmark( - iters=num_repeats, wall_time=avg_time, extras=extras, name=name - ) - - def benchmark_vocab_size_by_batch(self): - for batch in [32, 64, 256]: - self.bm_layer_implementation(batch_size=batch) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/index_lookup_adapt_benchmark.py b/keras/layers/preprocessing/benchmarks/index_lookup_adapt_benchmark.py deleted file mode 100644 index 589f9ab2dea..00000000000 --- a/keras/layers/preprocessing/benchmarks/index_lookup_adapt_benchmark.py +++ /dev/null @@ -1,133 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for Keras text vectorization preprocessing layer's adapt method.""" - -import collections -import itertools -import random -import string -import time - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import index_lookup - -tf.compat.v1.enable_v2_behavior() - - -# word_gen creates random sequences of ASCII letters (both lowercase and upper). -# The number of unique strings is ~2,700. -def word_gen(): - for _ in itertools.count(1): - yield "".join(random.choice(string.ascii_letters) for i in range(2)) - - -def get_top_k(dataset, k): - """Python implementation of vocabulary building using a defaultdict.""" - counts = collections.defaultdict(int) - for tensor in dataset: - data = tensor.numpy() - for element in data: - counts[element] += 1 - sorted_vocab = [ - k - for k, _ in sorted( - counts.items(), key=lambda item: item[1], reverse=True - ) - ] - if len(sorted_vocab) > k: - sorted_vocab = sorted_vocab[:k] - return sorted_vocab - - -class BenchmarkAdapt(tf.test.Benchmark): - """Benchmark adapt.""" - - def run_numpy_implementation(self, num_elements, batch_size, k): - """Test the python implementation.""" - ds = tf.data.Dataset.from_generator( - word_gen, tf.string, tf.TensorShape([]) - ) - batched_ds = ds.take(num_elements).batch(batch_size) - input_t = keras.Input(shape=(), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=k, - num_oov_indices=0, - mask_token=None, - oov_token="OOV", - dtype=tf.string, - ) - _ = layer(input_t) - num_repeats = 5 - starts = [] - ends = [] - for _ in range(num_repeats): - starts.append(time.time()) - vocab = get_top_k(batched_ds, k) - layer.set_vocabulary(vocab) - ends.append(time.time()) - avg_time = np.mean(np.array(ends) - np.array(starts)) - return avg_time - - def bm_adapt_implementation(self, num_elements, batch_size, k): - """Test the KPL adapt implementation.""" - ds = tf.data.Dataset.from_generator( - word_gen, tf.string, tf.TensorShape([]) - ) - batched_ds = ds.take(num_elements).batch(batch_size) - input_t = keras.Input(shape=(), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=k, - num_oov_indices=0, - mask_token=None, - oov_token="OOV", - dtype=tf.string, - ) - _ = layer(input_t) - num_repeats = 5 - starts = [] - ends = [] - for _ in range(num_repeats): - starts.append(time.time()) - layer.adapt(batched_ds) - ends.append(time.time()) - avg_time = np.mean(np.array(ends) - np.array(starts)) - name = "index_lookup_adapt|%s_elements|vocab_size_%s|batch_%s" % ( - num_elements, - k, - batch_size, - ) - baseline = self.run_numpy_implementation(num_elements, batch_size, k) - extras = { - "numpy implementation baseline": baseline, - "delta seconds": (baseline - avg_time), - "delta percent": ((baseline - avg_time) / baseline) * 100, - } - self.report_benchmark( - iters=num_repeats, wall_time=avg_time, extras=extras, name=name - ) - - def benchmark_vocab_size_by_batch(self): - for vocab_size in [100, 1000, 10000, 100000, 1000000]: - for batch in [1, 16, 2048]: - self.bm_adapt_implementation( - vocab_size, batch, int(vocab_size / 10) - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/index_lookup_forward_benchmark.py b/keras/layers/preprocessing/benchmarks/index_lookup_forward_benchmark.py deleted file mode 100644 index 659d6556940..00000000000 --- a/keras/layers/preprocessing/benchmarks/index_lookup_forward_benchmark.py +++ /dev/null @@ -1,142 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for Keras text vectorization preprocessing layer's adapt method.""" - -import os -import random -import string -import time - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import index_lookup - - -# word_gen creates random sequences of ASCII letters (both lowercase and upper). -# The number of unique strings is ~2,700. -def tensor_gen(batch, num_elements): - data = [] - for _ in range(batch): - batch_element = [] - for _ in range(num_elements - 1): - tok = "".join(random.choice(string.ascii_letters) for i in range(2)) - batch_element.append(tok) - batch_element.append("") # Explicitly test the empty string. - data.append(batch_element) - return tf.constant(data) - - -def get_vocab(): - vocab = list( - set([a + b for a in string.ascii_letters for b in string.ascii_letters]) - ) - vocab.sort() - return vocab - - -# This class uses TestCase for get_temp_dir(). -class BenchmarkLookup(tf.test.Benchmark): - """Benchmark the index lookup layer's forward pass.""" - - def _write_to_temp_file(self, file_name, vocab_list): - vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt") - with tf.io.gfile.GFile(vocab_path, "w") as writer: - for vocab in vocab_list: - writer.write(vocab + "\n") - writer.flush() - writer.close() - return vocab_path - - def run_numpy_implementation(self, data, vocab): - """Test the python implementation.""" - input_t = keras.Input(shape=(), dtype=tf.string) - layer = index_lookup.IndexLookup( - vocabulary=vocab, - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="OOV", - dtype=tf.string, - ) - out_t = layer(input_t) - model = keras.Model(input_t, out_t) - num_repeats = 5 - starts = [] - ends = [] - _ = model(data) - for _ in range(num_repeats): - starts.append(time.time()) - out = model(data) - ends.append(time.time()) - avg_time = np.mean(np.array(ends) - np.array(starts)) - return avg_time, out - - def bm_adapt_implementation(self, num_elements, batch_size): - """Test the KPL adapt implementation.""" - vocab = get_vocab() - vocab_file = self._write_to_temp_file("vocab", vocab) - vocabulary_initializer = tf.lookup.TextFileInitializer( - filename=vocab_file, - key_dtype=tf.string, - key_index=tf.lookup.TextFileIndex.WHOLE_LINE, - value_dtype=tf.int64, - value_index=tf.lookup.TextFileIndex.LINE_NUMBER, - value_index_offset=2, - ) - input_t = keras.Input(shape=(), dtype=tf.string) - layer = index_lookup.IndexLookup( - vocabulary=vocabulary_initializer, - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="OOV", - dtype=tf.string, - ) - out_t = layer(input_t) - model = keras.Model(input_t, out_t) - num_repeats = 5 - starts = [] - ends = [] - data = tensor_gen(batch_size, num_elements) - _ = model(data) - for _ in range(num_repeats): - starts.append(time.time()) - _ = model(data) - ends.append(time.time()) - avg_time = np.mean(np.array(ends) - np.array(starts)) - baseline, _ = self.run_numpy_implementation(data, vocab) - extras = { - "numpy implementation baseline": baseline, - "delta seconds": (baseline - avg_time), - "delta percent": ((baseline - avg_time) / baseline) * 100, - } - name = "index_lookup_forward|%s_elements|batch_%s" % ( - num_elements, - batch_size, - ) - self.report_benchmark( - iters=num_repeats, wall_time=avg_time, extras=extras, name=name - ) - - def benchmark_vocab_size_by_batch(self): - for tensor_size in [100, 1000, 10000]: - for batch in [1, 16, 2048]: - self.bm_adapt_implementation(tensor_size, batch) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/normalization_adapt_benchmark.py b/keras/layers/preprocessing/benchmarks/normalization_adapt_benchmark.py deleted file mode 100644 index 6d8c50b1a12..00000000000 --- a/keras/layers/preprocessing/benchmarks/normalization_adapt_benchmark.py +++ /dev/null @@ -1,122 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for Keras text vectorization preprocessing layer's adapt method.""" - -import time - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import normalization - - -def reduce_fn(state, values): - """tf.data.Dataset-friendly implementation of mean and variance.""" - k, n, ex, ex2 = state - # If this is the first iteration, we pick the first value to be 'k', - # which helps with precision - we assume that k is close to an average - # value and calculate mean and variance with respect to that. - k = tf.cond(tf.equal(n, 0), lambda: values[0], lambda: k) - - sum_v = tf.reduce_sum(values, axis=0) - sum_v2 = tf.reduce_sum(tf.square(values), axis=0) - ones = tf.ones_like(values, dtype=tf.int32) - batch_size = tf.reduce_sum(ones, axis=0) - batch_size_f = tf.cast(batch_size, tf.float32) - - ex = 0 + sum_v - tf.multiply(batch_size_f, k) - ex2 = ( - 0 - + sum_v2 - + tf.multiply( - batch_size_f, - (tf.square(k) - tf.multiply(tf.multiply(2.0, k), sum_v)), - ) - ) - - return (k, n + batch_size, ex, ex2) - - -class BenchmarkAdapt(tf.test.Benchmark): - """Benchmark adapt.""" - - def run_dataset_implementation(self, num_elements, batch_size): - input_t = keras.Input(shape=(1,)) - layer = normalization.Normalization() - _ = layer(input_t) - - num_repeats = 5 - starts = [] - ends = [] - for _ in range(num_repeats): - ds = tf.data.Dataset.range(num_elements) - ds = ds.map(lambda x: tf.expand_dims(tf.cast(x, tf.float32), -1)) - ds = ds.batch(batch_size) - - starts.append(time.time()) - # Benchmarked code begins here. - k, n, ex, ex2 = ds.reduce((0.0, 0, 0.0, 0.0), reduce_fn) - mean = k.numpy() + ex.numpy() / n.numpy() - var = (ex2.numpy() - (ex.numpy() * ex.numpy()) / n.numpy()) / ( - n.numpy() - 1 - ) - layer.set_weights([mean, var]) - # Benchmarked code ends here. - ends.append(time.time()) - - avg_time = np.mean(np.array(ends) - np.array(starts)) - return avg_time - - def bm_adapt_implementation(self, num_elements, batch_size): - """Test the KPL adapt implementation.""" - input_t = keras.Input(shape=(1,), dtype=tf.float32) - layer = normalization.Normalization() - _ = layer(input_t) - - num_repeats = 5 - starts = [] - ends = [] - for _ in range(num_repeats): - ds = tf.data.Dataset.range(num_elements) - ds = ds.map(lambda x: tf.expand_dims(tf.cast(x, tf.float32), -1)) - ds = ds.batch(batch_size) - - starts.append(time.time()) - # Benchmarked code begins here. - layer.adapt(ds) - # Benchmarked code ends here. - ends.append(time.time()) - - avg_time = np.mean(np.array(ends) - np.array(starts)) - name = f"normalization_adapt|{num_elements}_elements|batch_{batch_size}" - baseline = self.run_dataset_implementation(num_elements, batch_size) - extras = { - "tf.data implementation baseline": baseline, - "delta seconds": (baseline - avg_time), - "delta percent": ((baseline - avg_time) / baseline) * 100, - } - self.report_benchmark( - iters=num_repeats, wall_time=avg_time, extras=extras, name=name - ) - - def benchmark_vocab_size_by_batch(self): - for vocab_size in [100, 1000, 10000, 100000, 1000000]: - for batch in [1, 16, 2048]: - self.bm_adapt_implementation(vocab_size, batch) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/benchmarks/weighted_embedding_varlen_benchmark.py b/keras/layers/preprocessing/benchmarks/weighted_embedding_varlen_benchmark.py deleted file mode 100644 index 6213761e34d..00000000000 --- a/keras/layers/preprocessing/benchmarks/weighted_embedding_varlen_benchmark.py +++ /dev/null @@ -1,98 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Benchmark for KPL implementation of weighted embedding column with -varying-length inputs.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing.benchmarks import ( - feature_column_benchmark as fc_bm, -) - -# isort: off -from tensorflow.python.eager.def_function import ( - function as tf_function, -) - -NUM_REPEATS = 10 -BATCH_SIZES = [32, 256] - - -### KPL AND FC IMPLEMENTATION BENCHMARKS ### -def embedding_varlen(batch_size, max_length): - """Benchmark a variable-length embedding.""" - # Data and constants. - embedding_size = 32768 - data = fc_bm.create_data( - max_length, batch_size * NUM_REPEATS, embedding_size - 1, dtype=int - ) - weight = tf.ones_like(data, dtype=tf.float32) - - # Keras implementation - data_input = keras.Input( - shape=(None,), ragged=True, name="data", dtype=tf.int64 - ) - weight_input = keras.Input( - shape=(None,), ragged=True, name="weight", dtype=tf.float32 - ) - embedded_data = keras.layers.Embedding(embedding_size, 256)(data_input) - weighted_embedding = tf.multiply( - embedded_data, tf.expand_dims(weight_input, -1) - ) - reduced_embedding = tf.reduce_sum(weighted_embedding, axis=1) - model = keras.Model([data_input, weight_input], reduced_embedding) - - # FC implementation - fc = tf.feature_column.embedding_column( - tf.feature_column.weighted_categorical_column( - tf.feature_column.categorical_column_with_identity( - "data", num_buckets=embedding_size - 1 - ), - weight_feature_key="weight", - ), - dimension=256, - ) - - # Wrap the FC implementation in a tf.function for a fair comparison - @tf_function() - def fc_fn(tensors): - fc.transform_feature( - tf.__internal__.feature_column.FeatureTransformationCache(tensors), - None, - ) - - # Benchmark runs - keras_data = {"data": data, "weight": weight} - k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS) - - fc_data = {"data": data.to_sparse(), "weight": weight.to_sparse()} - fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS) - - return k_avg_time, fc_avg_time - - -class BenchmarkLayer(fc_bm.LayerBenchmark): - """Benchmark the layer forward pass.""" - - def benchmark_layer(self): - for batch in BATCH_SIZES: - name = f"weighted_embedding|varlen|batch_{batch}" - k_time, f_time = embedding_varlen(batch_size=batch, max_length=256) - self.report(name, k_time, f_time, NUM_REPEATS) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/category_encoding.py b/keras/layers/preprocessing/category_encoding.py deleted file mode 100644 index 305caa0da42..00000000000 --- a/keras/layers/preprocessing/category_encoding.py +++ /dev/null @@ -1,230 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras CategoryEncoding preprocessing layer.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer -from keras.engine import base_preprocessing_layer -from keras.layers.preprocessing import preprocessing_utils as utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - -INT = utils.INT -ONE_HOT = utils.ONE_HOT -MULTI_HOT = utils.MULTI_HOT -COUNT = utils.COUNT - - -@keras_export( - "keras.layers.CategoryEncoding", - "keras.layers.experimental.preprocessing.CategoryEncoding", -) -class CategoryEncoding(base_layer.Layer): - """A preprocessing layer which encodes integer features. - - This layer provides options for condensing data into a categorical encoding - when the total number of tokens are known in advance. It accepts integer - values as inputs, and it outputs a dense or sparse representation of those - inputs. For integer inputs where the total number of tokens is not known, - use `tf.keras.layers.IntegerLookup` instead. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Examples: - - **One-hot encoding data** - - >>> layer = tf.keras.layers.CategoryEncoding( - ... num_tokens=4, output_mode="one_hot") - >>> layer([3, 2, 0, 1]) - - - **Multi-hot encoding data** - - >>> layer = tf.keras.layers.CategoryEncoding( - ... num_tokens=4, output_mode="multi_hot") - >>> layer([[0, 1], [0, 0], [1, 2], [3, 1]]) - - - **Using weighted inputs in `"count"` mode** - - >>> layer = tf.keras.layers.CategoryEncoding( - ... num_tokens=4, output_mode="count") - >>> count_weights = np.array([[.1, .2], [.1, .1], [.2, .3], [.4, .2]]) - >>> layer([[0, 1], [0, 0], [1, 2], [3, 1]], count_weights=count_weights) - - - Args: - num_tokens: The total number of tokens the layer should support. All - inputs to the layer must integers in the range `0 <= value < - num_tokens`, or an error will be thrown. - output_mode: Specification for the output of the layer. - Defaults to `"multi_hot"`. Values can be `"one_hot"`, `"multi_hot"` or - `"count"`, configuring the layer as follows: - - `"one_hot"`: Encodes each individual element in the input into an - array of `num_tokens` size, containing a 1 at the element index. If - the last dimension is size 1, will encode on that dimension. If the - last dimension is not size 1, will append a new dimension for the - encoded output. - - `"multi_hot"`: Encodes each sample in the input into a single array - of `num_tokens` size, containing a 1 for each vocabulary term - present in the sample. Treats the last dimension as the sample - dimension, if input shape is `(..., sample_length)`, output shape - will be `(..., num_tokens)`. - - `"count"`: Like `"multi_hot"`, but the int array contains a count of - the number of times the token at that index appeared in the sample. - For all output modes, currently only output up to rank 2 is supported. - sparse: Boolean. If true, returns a `SparseTensor` instead of a dense - `Tensor`. Defaults to `False`. - - Call arguments: - inputs: A 1D or 2D tensor of integer inputs. - count_weights: A tensor in the same shape as `inputs` indicating the - weight for each sample value when summing up in `count` mode. Not used - in `"multi_hot"` or `"one_hot"` modes. - """ - - def __init__( - self, num_tokens=None, output_mode="multi_hot", sparse=False, **kwargs - ): - # max_tokens is an old name for the num_tokens arg we continue to - # support because of usage. - if "max_tokens" in kwargs: - logging.warning( - "max_tokens is deprecated, please use num_tokens instead." - ) - num_tokens = kwargs["max_tokens"] - del kwargs["max_tokens"] - - # By default, output floats. This is already default for TF2, but in TF1 - # dtype is inferred from inputs, and would default to int. - if "dtype" not in kwargs: - kwargs["dtype"] = backend.floatx() - - super().__init__(**kwargs) - base_preprocessing_layer.keras_kpl_gauge.get_cell( - "CategoryEncoding" - ).set(True) - - # Support deprecated names for output_modes. - if output_mode == "binary": - output_mode = MULTI_HOT - # 'output_mode' must be one of (COUNT, ONE_HOT, MULTI_HOT) - layer_utils.validate_string_arg( - output_mode, - allowable_strings=(COUNT, ONE_HOT, MULTI_HOT), - layer_name="CategoryEncoding", - arg_name="output_mode", - ) - - if num_tokens is None: - raise ValueError( - "num_tokens must be set to use this layer. If the " - "number of tokens is not known beforehand, use the " - "IntegerLookup layer instead." - ) - if num_tokens < 1: - raise ValueError( - f"`num_tokens` must be >= 1. Received: num_tokens={num_tokens}." - ) - - self.num_tokens = num_tokens - self.output_mode = output_mode - self.sparse = sparse - - def compute_output_shape(self, input_shape): - input_shape = list(input_shape) - if not input_shape: - return tf.TensorShape([self.num_tokens]) - if self.output_mode == ONE_HOT and input_shape[-1] != 1: - return tf.TensorShape(input_shape + [self.num_tokens]) - else: - return tf.TensorShape(input_shape[:-1] + [self.num_tokens]) - - def compute_output_signature(self, input_spec): - output_shape = self.compute_output_shape(input_spec.shape.as_list()) - if self.sparse: - return tf.SparseTensorSpec(shape=output_shape, dtype=tf.int64) - else: - return tf.TensorSpec(shape=output_shape, dtype=tf.int64) - - def get_config(self): - config = { - "num_tokens": self.num_tokens, - "output_mode": self.output_mode, - "sparse": self.sparse, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - def call(self, inputs, count_weights=None): - inputs = utils.ensure_tensor(inputs) - - if count_weights is not None: - if self.output_mode != COUNT: - raise ValueError( - "`count_weights` is not used when `output_mode` is not " - "`'count'`. Received `count_weights={count_weights}`." - ) - count_weights = utils.ensure_tensor( - count_weights, self.compute_dtype - ) - - depth = self.num_tokens - if isinstance(inputs, tf.SparseTensor): - max_value = tf.reduce_max(inputs.values) - min_value = tf.reduce_min(inputs.values) - else: - max_value = tf.reduce_max(inputs) - min_value = tf.reduce_min(inputs) - condition = tf.logical_and( - tf.greater(tf.cast(depth, max_value.dtype), max_value), - tf.greater_equal(min_value, tf.cast(0, min_value.dtype)), - ) - assertion = tf.Assert( - condition, - [ - "Input values must be in the range 0 <= values < num_tokens" - " with num_tokens={}".format(depth) - ], - ) - with tf.control_dependencies([assertion]): - return utils.encode_categorical_inputs( - inputs, - output_mode=self.output_mode, - depth=depth, - dtype=self.compute_dtype, - sparse=self.sparse, - count_weights=count_weights, - ) diff --git a/keras/layers/preprocessing/category_encoding_distribution_test.py b/keras/layers/preprocessing/category_encoding_distribution_test.py deleted file mode 100644 index 8be4b5cc5ab..00000000000 --- a/keras/layers/preprocessing/category_encoding_distribution_test.py +++ /dev/null @@ -1,88 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Distribution tests for keras.layers.preprocessing.category_encoding.""" - - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras import backend -from keras.distribute import strategy_combinations -from keras.layers.preprocessing import category_encoding -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -def batch_wrapper(dataset, batch_size, strategy, repeat=None): - if repeat: - dataset = dataset.repeat(repeat) - # TPUs currently require fully defined input shapes, drop_remainder ensures - # the input will have fully defined shapes. - if backend.is_tpu_strategy(strategy): - return dataset.batch(batch_size, drop_remainder=True) - else: - return dataset.batch(batch_size) - - -@test_utils.run_v2_only -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=strategy_combinations.all_strategies - + strategy_combinations.multi_worker_mirrored_strategies - + strategy_combinations.parameter_server_strategies_single_worker - + strategy_combinations.parameter_server_strategies_multi_worker, - mode=["eager"], - ) -) -class CategoryEncodingDistributionTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_strategy(self, strategy): - if ( - backend.is_tpu_strategy(strategy) - and not tf_test_utils.is_mlir_bridge_enabled() - ): - self.skipTest("TPU tests require MLIR bridge") - - input_array = np.array([[1, 2, 3, 1], [0, 3, 1, 0]]) - inp_dataset = tf.data.Dataset.from_tensor_slices(input_array) - inp_dataset = batch_wrapper(inp_dataset, 2, strategy) - - # pyformat: disable - expected_output = [[0, 1, 1, 1, 0, 0], [1, 1, 0, 1, 0, 0]] - # pyformat: enable - num_tokens = 6 - tf.config.set_soft_device_placement(True) - - with strategy.scope(): - input_data = keras.Input(shape=(4,), dtype=tf.int32) - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, output_mode=category_encoding.MULTI_HOT - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(inp_dataset) - self.assertAllEqual(expected_output, output_dataset) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/layers/preprocessing/category_encoding_test.py b/keras/layers/preprocessing/category_encoding_test.py deleted file mode 100644 index ed02ecc7652..00000000000 --- a/keras/layers/preprocessing/category_encoding_test.py +++ /dev/null @@ -1,591 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras text category_encoding preprocessing layer.""" - - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import backend -from keras.layers import core -from keras.layers.preprocessing import category_encoding -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class CategoryEncodingInputTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - @parameterized.named_parameters( - ("list", list), - ("tuple", tuple), - ("numpy", np.array), - ("array_like", preprocessing_test_utils.ArrayLike), - ) - def test_tensor_like_inputs(self, data_fn): - category_data = data_fn([1, 2, 3, 3, 0]) - weight_data = data_fn([1, 2, 3, 1, 7]) - expected_output = [7, 1, 2, 4, 0, 0] - - layer = category_encoding.CategoryEncoding( - num_tokens=6, output_mode=category_encoding.COUNT - ) - output_data = layer(category_data, count_weights=weight_data) - self.assertAllEqual(output_data, expected_output) - - def test_compute_output_shape(self): - layer = category_encoding.CategoryEncoding(5) - output_shape = layer.compute_output_shape((None, 1)) - self.assertListEqual(output_shape.as_list(), [None, 5]) - output_shape = layer.compute_output_shape([None, 1]) - self.assertListEqual(output_shape.as_list(), [None, 5]) - - def test_dense_input_sparse_output(self): - input_array = tf.constant([[1, 2, 3], [3, 3, 0]]) - - # The expected output should be (X for missing value): - # [[X, 1, 1, 1, X, X] - # [1, X, X, 2, X, X]] - expected_indices = [[0, 1], [0, 2], [0, 3], [1, 0], [1, 3]] - expected_values = [1, 1, 1, 1, 2] - num_tokens = 6 - - input_data = keras.Input(shape=(None,), dtype=tf.int32) - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, - output_mode=category_encoding.COUNT, - sparse=True, - ) - int_data = layer(input_data) - - model = keras.Model(inputs=input_data, outputs=int_data) - sp_output_dataset = model.predict(input_array, steps=1) - self.assertAllEqual(expected_values, sp_output_dataset.values) - self.assertAllEqual(expected_indices, sp_output_dataset.indices) - - # Assert sparse output is same as dense output. - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, - output_mode=category_encoding.COUNT, - sparse=False, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array, steps=1) - self.assertAllEqual( - tf.sparse.to_dense(sp_output_dataset, default_value=0), - output_dataset, - ) - - def test_sparse_input(self): - input_array = np.array([[1, 2, 3, 0], [0, 3, 1, 0]], dtype=np.int64) - sparse_tensor_data = tf.sparse.from_dense(input_array) - - # pyformat: disable - expected_output = [[0, 1, 1, 1, 0, 0], [0, 1, 0, 1, 0, 0]] - # pyformat: enable - num_tokens = 6 - expected_output_shape = [None, num_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.int64, sparse=True) - - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, output_mode=category_encoding.MULTI_HOT - ) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(sparse_tensor_data, steps=1) - self.assertAllEqual(expected_output, output_dataset) - - def test_sparse_input_with_weights(self): - input_array = np.array([[1, 2, 3, 4], [4, 3, 1, 4]], dtype=np.int64) - weights_array = np.array([[0.1, 0.2, 0.3, 0.4], [0.2, 0.1, 0.4, 0.3]]) - sparse_tensor_data = tf.sparse.from_dense(input_array) - sparse_weight_data = tf.sparse.from_dense(weights_array) - - # pyformat: disable - expected_output = [[0, 0.1, 0.2, 0.3, 0.4, 0], [0, 0.4, 0, 0.1, 0.5, 0]] - # pyformat: enable - num_tokens = 6 - expected_output_shape = [None, num_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.int64, sparse=True) - weight_data = keras.Input(shape=(None,), dtype=tf.float32, sparse=True) - - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, output_mode=category_encoding.COUNT - ) - int_data = layer(input_data, count_weights=weight_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=[input_data, weight_data], outputs=int_data) - output_dataset = model.predict( - [sparse_tensor_data, sparse_weight_data], steps=1 - ) - self.assertAllClose(expected_output, output_dataset) - - def test_sparse_input_sparse_output(self): - sp_inp = tf.SparseTensor( - indices=[[0, 0], [1, 1], [2, 0], [2, 1], [3, 1]], - values=[0, 2, 1, 1, 0], - dense_shape=[4, 2], - ) - input_data = keras.Input(shape=(None,), dtype=tf.int64, sparse=True) - - # The expected output should be (X for missing value): - # [[1, X, X, X] - # [X, X, 1, X] - # [X, 2, X, X] - # [1, X, X, X]] - expected_indices = [[0, 0], [1, 2], [2, 1], [3, 0]] - expected_values = [1, 1, 2, 1] - num_tokens = 6 - - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, - output_mode=category_encoding.COUNT, - sparse=True, - ) - int_data = layer(input_data) - - model = keras.Model(inputs=input_data, outputs=int_data) - sp_output_dataset = model.predict(sp_inp, steps=1) - self.assertAllEqual(expected_values, sp_output_dataset.values) - self.assertAllEqual(expected_indices, sp_output_dataset.indices) - - # Assert sparse output is same as dense output. - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, - output_mode=category_encoding.COUNT, - sparse=False, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(sp_inp, steps=1) - self.assertAllEqual( - tf.sparse.to_dense(sp_output_dataset, default_value=0), - output_dataset, - ) - - def test_sparse_input_sparse_output_with_weights(self): - indices = [[0, 0], [1, 1], [2, 0], [2, 1], [3, 1]] - sp_inp = tf.SparseTensor( - indices=indices, values=[0, 2, 1, 1, 0], dense_shape=[4, 2] - ) - input_data = keras.Input(shape=(None,), dtype=tf.int64, sparse=True) - sp_weight = tf.SparseTensor( - indices=indices, - values=[0.1, 0.2, 0.4, 0.3, 0.2], - dense_shape=[4, 2], - ) - weight_data = keras.Input(shape=(None,), dtype=tf.float32, sparse=True) - - # The expected output should be (X for missing value): - # [[1, X, X, X] - # [X, X, 1, X] - # [X, 2, X, X] - # [1, X, X, X]] - expected_indices = [[0, 0], [1, 2], [2, 1], [3, 0]] - expected_values = [0.1, 0.2, 0.7, 0.2] - num_tokens = 6 - - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, - output_mode=category_encoding.COUNT, - sparse=True, - ) - int_data = layer(input_data, count_weights=weight_data) - - model = keras.Model(inputs=[input_data, weight_data], outputs=int_data) - sp_output_dataset = model.predict([sp_inp, sp_weight], steps=1) - self.assertAllClose(expected_values, sp_output_dataset.values) - self.assertAllEqual(expected_indices, sp_output_dataset.indices) - - def test_ragged_input(self): - input_array = tf.ragged.constant([[1, 2, 3], [3, 1]]) - - # pyformat: disable - expected_output = [[0, 1, 1, 1, 0, 0], [0, 1, 0, 1, 0, 0]] - # pyformat: enable - num_tokens = 6 - expected_output_shape = [None, num_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.int32, ragged=True) - - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, output_mode=category_encoding.MULTI_HOT - ) - int_data = layer(input_data) - - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array, steps=1) - self.assertAllEqual(expected_output, output_dataset) - - def test_ragged_input_sparse_output(self): - input_array = tf.ragged.constant([[1, 2, 3], [3, 3]]) - - # The expected output should be (X for missing value): - # [[X, 1, 1, 1] - # [X, X, X, 2]] - expected_indices = [[0, 1], [0, 2], [0, 3], [1, 3]] - expected_values = [1, 1, 1, 2] - num_tokens = 6 - - input_data = keras.Input(shape=(None,), dtype=tf.int32, ragged=True) - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, - output_mode=category_encoding.COUNT, - sparse=True, - ) - int_data = layer(input_data) - - model = keras.Model(inputs=input_data, outputs=int_data) - sp_output_dataset = model.predict(input_array, steps=1) - self.assertAllEqual(expected_values, sp_output_dataset.values) - self.assertAllEqual(expected_indices, sp_output_dataset.indices) - - # Assert sparse output is same as dense output. - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, - output_mode=category_encoding.COUNT, - sparse=False, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array, steps=1) - self.assertAllEqual( - tf.sparse.to_dense(sp_output_dataset, default_value=0), - output_dataset, - ) - - def test_sparse_output_and_dense_layer(self): - input_array = tf.constant([[1, 2, 3], [3, 3, 0]]) - - num_tokens = 4 - - input_data = keras.Input(shape=(None,), dtype=tf.int32) - encoding_layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, - output_mode=category_encoding.COUNT, - sparse=True, - ) - int_data = encoding_layer(input_data) - dense_layer = keras.layers.Dense(units=1) - output_data = dense_layer(int_data) - - model = keras.Model(inputs=input_data, outputs=output_data) - _ = model.predict(input_array, steps=1) - - def test_dense_oov_input(self): - valid_array = tf.constant([[0, 1, 2], [0, 1, 2]]) - invalid_array = tf.constant([[0, 1, 2], [2, 3, 1]]) - num_tokens = 3 - expected_output_shape = [None, num_tokens] - encoder_layer = category_encoding.CategoryEncoding(num_tokens) - input_data = keras.Input(shape=(3,), dtype=tf.int32) - int_data = encoder_layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - model = keras.Model(inputs=input_data, outputs=int_data) - # Call predict once on valid input to compile a graph and test control - # flow. - _ = model.predict(valid_array, steps=1) - with self.assertRaisesRegex( - tf.errors.InvalidArgumentError, - ".*must be in the range 0 <= values < num_tokens.*", - ): - _ = model.predict(invalid_array, steps=1) - - def test_dense_negative(self): - valid_array = tf.constant([[0, 1, 2], [0, 1, 2]]) - invalid_array = tf.constant([[1, 2, 0], [2, 2, -1]]) - num_tokens = 3 - expected_output_shape = [None, num_tokens] - encoder_layer = category_encoding.CategoryEncoding(num_tokens) - input_data = keras.Input(shape=(3,), dtype=tf.int32) - int_data = encoder_layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - model = keras.Model(inputs=input_data, outputs=int_data) - # Call predict once on valid input to compile a graph and test control - # flow. - _ = model.predict(valid_array, steps=1) - with self.assertRaisesRegex( - tf.errors.InvalidArgumentError, - ".*must be in the range 0 <= values < num_tokens.*", - ): - _ = model.predict(invalid_array, steps=1) - - def test_legacy_max_tokens_arg(self): - input_array = np.array([[1, 2, 3, 1]]) - expected_output = [[0, 1, 1, 1, 0, 0]] - num_tokens = 6 - expected_output_shape = [None, num_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.int32) - layer = category_encoding.CategoryEncoding( - max_tokens=num_tokens, output_mode=category_encoding.MULTI_HOT - ) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - -@test_combinations.run_all_keras_modes -class CategoryEncodingOutputTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - @parameterized.named_parameters( - ("float32", tf.float32), - ("float64", tf.float64), - ) - def test_output_dtype(self, dtype): - inputs = keras.Input(shape=(1,), dtype=tf.int32) - layer = category_encoding.CategoryEncoding( - num_tokens=4, output_mode=category_encoding.ONE_HOT, dtype=dtype - ) - outputs = layer(inputs) - self.assertAllEqual(outputs.dtype, dtype) - - def test_one_hot_output(self): - input_data = np.array([[3], [2], [0], [1]]) - expected_output = [ - [0, 0, 0, 1], - [0, 0, 1, 0], - [1, 0, 0, 0], - [0, 1, 0, 0], - ] - num_tokens = 4 - expected_output_shape = [None, num_tokens] - - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, output_mode=category_encoding.ONE_HOT - ) - inputs = keras.Input(shape=(1,), dtype=tf.int32) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - output_dataset = model(input_data) - self.assertAllEqual(expected_output_shape, outputs.shape.as_list()) - self.assertAllEqual(expected_output, output_dataset) - - def test_one_hot_output_rank_one_input(self): - input_data = np.array([3, 2, 0, 1]) - expected_output = [ - [0, 0, 0, 1], - [0, 0, 1, 0], - [1, 0, 0, 0], - [0, 1, 0, 0], - ] - num_tokens = 4 - expected_output_shape = [None, num_tokens] - - # Test call on layer directly. - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, output_mode=category_encoding.ONE_HOT - ) - output_data = layer(input_data) - self.assertAllEqual(expected_output, output_data) - - # Test call on model. - inputs = keras.Input(shape=(1,), dtype=tf.int32) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - output_data = model(input_data) - self.assertAllEqual(expected_output_shape, outputs.shape.as_list()) - self.assertAllEqual(expected_output, output_data) - - def test_one_hot_output_rank_zero_input(self): - input_data = np.array(3) - expected_output = [0, 0, 0, 1] - num_tokens = 4 - expected_output_shape = [None, num_tokens] - - # Test call on layer directly. - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, output_mode=category_encoding.ONE_HOT - ) - output_data = layer(input_data) - self.assertAllEqual(expected_output, output_data) - - # Test call on model. - inputs = keras.Input(shape=(1,), dtype=tf.int32) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - output_data = model(input_data) - - self.assertAllEqual(expected_output_shape, outputs.shape.as_list()) - self.assertAllEqual(expected_output, output_data) - - def test_one_hot_rank_3_output_fails(self): - layer = category_encoding.CategoryEncoding( - num_tokens=4, output_mode=category_encoding.ONE_HOT - ) - with self.assertRaisesRegex( - ValueError, "maximum supported output rank" - ): - _ = layer(keras.Input(shape=(4,), dtype=tf.int32)) - with self.assertRaisesRegex( - ValueError, "maximum supported output rank" - ): - _ = layer(np.array([[3, 2, 0, 1], [3, 2, 0, 1]])) - - def test_multi_hot_output(self): - input_data = np.array([[1, 2, 3, 1], [0, 3, 1, 0]]) - expected_output = [ - [0, 1, 1, 1, 0, 0], - [1, 1, 0, 1, 0, 0], - ] - num_tokens = 6 - expected_output_shape = [None, num_tokens] - - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, output_mode=category_encoding.MULTI_HOT - ) - inputs = keras.Input(shape=(None,), dtype=tf.int32) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - output_data = model.predict(input_data) - self.assertAllEqual(expected_output_shape, outputs.shape.as_list()) - self.assertAllEqual(expected_output, output_data) - - def test_multi_hot_output_rank_one_input(self): - input_data = np.array([3, 2, 0, 1]) - expected_output = [1, 1, 1, 1, 0, 0] - num_tokens = 6 - expected_output_shape = [None, num_tokens] - - # Test call on layer directly. - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, output_mode=category_encoding.MULTI_HOT - ) - output_data = layer(input_data) - self.assertAllEqual(expected_output, output_data) - - # Test call on model. - inputs = keras.Input(shape=(4,), dtype=tf.int32) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - output_data = model(input_data) - self.assertAllEqual(expected_output_shape, outputs.shape.as_list()) - self.assertAllEqual(expected_output, output_data) - - def test_multi_hot_output_rank_zero_input(self): - input_data = np.array(3) - expected_output = [0, 0, 0, 1, 0, 0] - num_tokens = 6 - expected_output_shape = [None, num_tokens] - - # Test call on layer directly. - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, output_mode=category_encoding.MULTI_HOT - ) - output_data = layer(input_data) - self.assertAllEqual(expected_output, output_data) - - # Test call on model. - inputs = keras.Input(shape=(4,), dtype=tf.int32) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - output_data = model(input_data) - self.assertAllEqual(expected_output_shape, outputs.shape.as_list()) - self.assertAllEqual(expected_output, output_data) - - def test_multi_hot_rank_3_output_fails(self): - layer = category_encoding.CategoryEncoding( - num_tokens=4, output_mode=category_encoding.ONE_HOT - ) - with self.assertRaisesRegex( - ValueError, "maximum supported output rank" - ): - _ = layer( - keras.Input( - shape=( - 3, - 4, - ), - dtype=tf.int32, - ) - ) - with self.assertRaisesRegex( - ValueError, "maximum supported output rank" - ): - _ = layer(np.array([[[3, 2, 0, 1], [3, 2, 0, 1]]])) - - def test_count_output(self): - input_array = np.array([[1, 2, 3, 1], [0, 3, 1, 0]]) - - # pyformat: disable - expected_output = [[0, 2, 1, 1, 0, 0], [2, 1, 0, 1, 0, 0]] - # pyformat: enable - num_tokens = 6 - expected_output_shape = [None, num_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.int32) - layer = category_encoding.CategoryEncoding( - num_tokens=6, output_mode=category_encoding.COUNT - ) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - -class CategoryEncodingModelBuildingTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - @parameterized.named_parameters( - { - "testcase_name": "count_output", - "num_tokens": 5, - "output_mode": category_encoding.COUNT, - }, - { - "testcase_name": "multi_hot_output", - "num_tokens": 5, - "output_mode": category_encoding.MULTI_HOT, - }, - ) - def test_end_to_end_bagged_modeling(self, output_mode, num_tokens): - input_array = np.array([[1, 2, 3, 1], [0, 3, 1, 0]]) - - input_data = keras.Input(shape=(None,), dtype=tf.int32) - layer = category_encoding.CategoryEncoding( - num_tokens=num_tokens, output_mode=output_mode - ) - - weights = [] - if num_tokens is None: - layer.set_num_elements(5) - layer.set_weights(weights) - - int_data = layer(input_data) - float_data = backend.cast(int_data, dtype="float32") - output_data = core.Dense(64)(float_data) - model = keras.Model(inputs=input_data, outputs=output_data) - _ = model.predict(input_array) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/discretization.py b/keras/layers/preprocessing/discretization.py deleted file mode 100644 index a9693b99e70..00000000000 --- a/keras/layers/preprocessing/discretization.py +++ /dev/null @@ -1,443 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras discretization preprocessing layer.""" - - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_preprocessing_layer -from keras.layers.preprocessing import preprocessing_utils as utils -from keras.utils import layer_utils -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - -INT = utils.INT -MULTI_HOT = utils.MULTI_HOT -ONE_HOT = utils.ONE_HOT -COUNT = utils.COUNT - - -def summarize(values, epsilon): - """Reduce a 1D sequence of values to a summary. - - This algorithm is based on numpy.quantiles but modified to allow for - intermediate steps between multiple data sets. It first finds the target - number of bins as the reciprocal of epsilon and then takes the individual - values spaced at appropriate intervals to arrive at that target. - The final step is to return the corresponding counts between those values - If the target num_bins is larger than the size of values, the whole array is - returned (with weights of 1). - - Args: - values: 1D `np.ndarray` to be summarized. - epsilon: A `'float32'` that determines the approximate desired - precision. - - Returns: - A 2D `np.ndarray` that is a summary of the inputs. First column is the - interpolated partition values, the second is the weights (counts). - """ - - values = tf.reshape(values, [-1]) - values = tf.sort(values) - elements = tf.cast(tf.size(values), tf.float32) - num_buckets = 1.0 / epsilon - increment = tf.cast(elements / num_buckets, tf.int32) - start = increment - step = tf.maximum(increment, 1) - boundaries = values[start::step] - weights = tf.ones_like(boundaries) - weights = weights * tf.cast(step, tf.float32) - return tf.stack([boundaries, weights]) - - -def compress(summary, epsilon): - """Compress a summary to within `epsilon` accuracy. - - The compression step is needed to keep the summary sizes small after - merging, and also used to return the final target boundaries. It finds the - new bins based on interpolating cumulative weight percentages from the large - summary. Taking the difference of the cumulative weights from the previous - bin's cumulative weight will give the new weight for that bin. - - Args: - summary: 2D `np.ndarray` summary to be compressed. - epsilon: A `'float32'` that determines the approxmiate desired - precision. - - Returns: - A 2D `np.ndarray` that is a compressed summary. First column is the - interpolated partition values, the second is the weights (counts). - """ - # TODO(b/184863356): remove the numpy escape hatch here. - return tf.numpy_function( - lambda s: _compress_summary_numpy(s, epsilon), [summary], tf.float32 - ) - - -def _compress_summary_numpy(summary, epsilon): - """Compress a summary with numpy.""" - if summary.shape[1] * epsilon < 1: - return summary - - percents = epsilon + np.arange(0.0, 1.0, epsilon) - cum_weights = summary[1].cumsum() - cum_weight_percents = cum_weights / cum_weights[-1] - new_bins = np.interp(percents, cum_weight_percents, summary[0]) - cum_weights = np.interp(percents, cum_weight_percents, cum_weights) - new_weights = cum_weights - np.concatenate( - (np.array([0]), cum_weights[:-1]) - ) - summary = np.stack((new_bins, new_weights)) - return summary.astype(np.float32) - - -def merge_summaries(prev_summary, next_summary, epsilon): - """Weighted merge sort of summaries. - - Given two summaries of distinct data, this function merges (and compresses) - them to stay within `epsilon` error tolerance. - - Args: - prev_summary: 2D `np.ndarray` summary to be merged with `next_summary`. - next_summary: 2D `np.ndarray` summary to be merged with `prev_summary`. - epsilon: A float that determines the approxmiate desired precision. - - Returns: - A 2-D `np.ndarray` that is a merged summary. First column is the - interpolated partition values, the second is the weights (counts). - """ - merged = tf.concat((prev_summary, next_summary), axis=1) - merged = tf.gather(merged, tf.argsort(merged[0]), axis=1) - return compress(merged, epsilon) - - -def get_bin_boundaries(summary, num_bins): - return compress(summary, 1.0 / num_bins)[0, :-1] - - -@keras_export( - "keras.layers.Discretization", - "keras.layers.experimental.preprocessing.Discretization", -) -class Discretization(base_preprocessing_layer.PreprocessingLayer): - """A preprocessing layer which buckets continuous features by ranges. - - This layer will place each element of its input data into one of several - contiguous ranges and output an integer index indicating which range each - element was placed in. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Input shape: - Any `tf.Tensor` or `tf.RaggedTensor` of dimension 2 or higher. - - Output shape: - Same as input shape. - - Arguments: - bin_boundaries: A list of bin boundaries. The leftmost and rightmost bins - will always extend to `-inf` and `inf`, so `bin_boundaries=[0., 1., 2.]` - generates bins `(-inf, 0.)`, `[0., 1.)`, `[1., 2.)`, and `[2., +inf)`. - If this option is set, `adapt()` should not be called. - num_bins: The integer number of bins to compute. If this option is set, - `adapt()` should be called to learn the bin boundaries. - epsilon: Error tolerance, typically a small fraction close to zero (e.g. - 0.01). Higher values of epsilon increase the quantile approximation, and - hence result in more unequal buckets, but could improve performance - and resource consumption. - output_mode: Specification for the output of the layer. Defaults to - `"int"`. Values can be `"int"`, `"one_hot"`, `"multi_hot"`, or - `"count"` configuring the layer as follows: - - `"int"`: Return the discretized bin indices directly. - - `"one_hot"`: Encodes each individual element in the input into an - array the same size as `num_bins`, containing a 1 at the input's bin - index. If the last dimension is size 1, will encode on that - dimension. If the last dimension is not size 1, will append a new - dimension for the encoded output. - - `"multi_hot"`: Encodes each sample in the input into a single array - the same size as `num_bins`, containing a 1 for each bin index - index present in the sample. Treats the last dimension as the sample - dimension, if input shape is `(..., sample_length)`, output shape - will be `(..., num_tokens)`. - - `"count"`: As `"multi_hot"`, but the int array contains a count of - the number of times the bin index appeared in the sample. - sparse: Boolean. Only applicable to `"one_hot"`, `"multi_hot"`, - and `"count"` output modes. If True, returns a `SparseTensor` instead of - a dense `Tensor`. Defaults to False. - - Examples: - - Bucketize float values based on provided buckets. - >>> input = np.array([[-1.5, 1.0, 3.4, .5], [0.0, 3.0, 1.3, 0.0]]) - >>> layer = tf.keras.layers.Discretization(bin_boundaries=[0., 1., 2.]) - >>> layer(input) - - - Bucketize float values based on a number of buckets to compute. - >>> input = np.array([[-1.5, 1.0, 3.4, .5], [0.0, 3.0, 1.3, 0.0]]) - >>> layer = tf.keras.layers.Discretization(num_bins=4, epsilon=0.01) - >>> layer.adapt(input) - >>> layer(input) - - """ - - def __init__( - self, - bin_boundaries=None, - num_bins=None, - epsilon=0.01, - output_mode="int", - sparse=False, - **kwargs, - ): - # bins is a deprecated arg for setting bin_boundaries or num_bins that - # still has some usage. - if "bins" in kwargs: - logging.warning( - "bins is deprecated, " - "please use bin_boundaries or num_bins instead." - ) - if isinstance(kwargs["bins"], int) and num_bins is None: - num_bins = kwargs["bins"] - elif bin_boundaries is None: - bin_boundaries = kwargs["bins"] - del kwargs["bins"] - - # By default, output int64 when output_mode='int' and floats otherwise. - if "dtype" not in kwargs or kwargs["dtype"] is None: - kwargs["dtype"] = ( - tf.int64 if output_mode == INT else backend.floatx() - ) - elif ( - output_mode == "int" and not tf.as_dtype(kwargs["dtype"]).is_integer - ): - # Compat for when dtype was always floating and ignored by the - # layer. - kwargs["dtype"] = tf.int64 - - super().__init__(**kwargs) - base_preprocessing_layer.keras_kpl_gauge.get_cell("Discretization").set( - True - ) - - # Check dtype only after base layer parses it; dtype parsing is complex. - if ( - output_mode == INT - and not tf.as_dtype(self.compute_dtype).is_integer - ): - input_dtype = kwargs["dtype"] - raise ValueError( - "When `output_mode='int'`, `dtype` should be an integer " - f"type. Received: dtype={input_dtype}" - ) - - # 'output_mode' must be one of (INT, ONE_HOT, MULTI_HOT, COUNT) - layer_utils.validate_string_arg( - output_mode, - allowable_strings=(INT, ONE_HOT, MULTI_HOT, COUNT), - layer_name=self.__class__.__name__, - arg_name="output_mode", - ) - - if sparse and output_mode == INT: - raise ValueError( - "`sparse` may only be true if `output_mode` is " - "`'one_hot'`, `'multi_hot'`, or `'count'`. " - f"Received: sparse={sparse} and " - f"output_mode={output_mode}" - ) - - if num_bins is not None and num_bins < 0: - raise ValueError( - "`num_bins` must be greater than or equal to 0. " - "You passed `num_bins={}`".format(num_bins) - ) - if num_bins is not None and bin_boundaries is not None: - raise ValueError( - "Both `num_bins` and `bin_boundaries` should not be " - "set. You passed `num_bins={}` and " - "`bin_boundaries={}`".format(num_bins, bin_boundaries) - ) - bin_boundaries = utils.listify_tensors(bin_boundaries) - self.input_bin_boundaries = bin_boundaries - self.bin_boundaries = ( - bin_boundaries if bin_boundaries is not None else [] - ) - self.num_bins = num_bins - self.epsilon = epsilon - self.output_mode = output_mode - self.sparse = sparse - - def build(self, input_shape): - super().build(input_shape) - - if self.input_bin_boundaries is not None: - return - - # Summary contains two equal length vectors of bins at index 0 and - # weights at index 1. - self.summary = self.add_weight( - name="summary", - shape=(2, None), - dtype=tf.float32, - initializer=lambda shape, dtype: [ - [], - [], - ], - trainable=False, - ) - - # We override this method solely to generate a docstring. - def adapt(self, data, batch_size=None, steps=None): - """Computes bin boundaries from quantiles in a input dataset. - - Calling `adapt()` on a `Discretization` layer is an alternative to - passing in a `bin_boundaries` argument during construction. A - `Discretization` layer should always be either adapted over a dataset or - passed `bin_boundaries`. - - During `adapt()`, the layer will estimate the quantile boundaries of the - input dataset. The number of quantiles can be controlled via the - `num_bins` argument, and the error tolerance for quantile boundaries can - be controlled via the `epsilon` argument. - - In order to make `Discretization` efficient in any distribution context, - the computed boundaries are kept static with respect to any compiled - `tf.Graph`s that call the layer. As a consequence, if the layer is - adapted a second time, any models using the layer should be re-compiled. - For more information see - `tf.keras.layers.experimental.preprocessing.PreprocessingLayer.adapt`. - - `adapt()` is meant only as a single machine utility to compute layer - state. To analyze a dataset that cannot fit on a single machine, see - [Tensorflow Transform]( - https://www.tensorflow.org/tfx/transform/get_started) for a - multi-machine, map-reduce solution. - - Arguments: - data: The data to train on. It can be passed either as a - `tf.data.Dataset`, or as a numpy array. - batch_size: Integer or `None`. - Number of samples per state update. - If unspecified, `batch_size` will default to 32. - Do not specify the `batch_size` if your data is in the - form of datasets, generators, or `keras.utils.Sequence` instances - (since they generate batches). - steps: Integer or `None`. - Total number of steps (batches of samples) - When training with input tensors such as - TensorFlow data tensors, the default `None` is equal to - the number of samples in your dataset divided by - the batch size, or 1 if that cannot be determined. If x is a - `tf.data` dataset, and 'steps' is None, the epoch will run until - the input dataset is exhausted. When passing an infinitely - repeating dataset, you must specify the `steps` argument. This - argument is not supported with array inputs. - """ - super().adapt(data, batch_size=batch_size, steps=steps) - - def update_state(self, data): - if self.input_bin_boundaries is not None: - raise ValueError( - "Cannot adapt a Discretization layer that has been initialized " - "with `bin_boundaries`, use `num_bins` instead. You passed " - "`bin_boundaries={}`.".format(self.input_bin_boundaries) - ) - - if not self.built: - raise RuntimeError("`build` must be called before `update_state`.") - - data = tf.convert_to_tensor(data) - if data.dtype != tf.float32: - data = tf.cast(data, tf.float32) - summary = summarize(data, self.epsilon) - self.summary.assign( - merge_summaries(summary, self.summary, self.epsilon) - ) - - def finalize_state(self): - if self.input_bin_boundaries is not None or not self.built: - return - - # The bucketize op only support list boundaries. - self.bin_boundaries = utils.listify_tensors( - get_bin_boundaries(self.summary, self.num_bins) - ) - - def reset_state(self): - if self.input_bin_boundaries is not None or not self.built: - return - - self.summary.assign([[], []]) - - def get_config(self): - config = super().get_config() - config.update( - { - "bin_boundaries": self.input_bin_boundaries, - "num_bins": self.num_bins, - "epsilon": self.epsilon, - "output_mode": self.output_mode, - "sparse": self.sparse, - } - ) - return config - - def compute_output_shape(self, input_shape): - return input_shape - - def compute_output_signature(self, input_spec): - output_shape = self.compute_output_shape(input_spec.shape.as_list()) - if isinstance(input_spec, tf.SparseTensorSpec): - return tf.SparseTensorSpec( - shape=output_shape, dtype=self.compute_dtype - ) - return tf.TensorSpec(shape=output_shape, dtype=self.compute_dtype) - - def call(self, inputs): - def bucketize(inputs): - return tf.raw_ops.Bucketize( - input=inputs, boundaries=self.bin_boundaries - ) - - if tf_utils.is_ragged(inputs): - indices = tf.ragged.map_flat_values(bucketize, inputs) - elif tf_utils.is_sparse(inputs): - indices = tf.SparseTensor( - indices=tf.identity(inputs.indices), - values=bucketize(inputs.values), - dense_shape=tf.identity(inputs.dense_shape), - ) - else: - indices = bucketize(inputs) - - return utils.encode_categorical_inputs( - indices, - output_mode=self.output_mode, - depth=len(self.bin_boundaries) + 1, - sparse=self.sparse, - dtype=self.compute_dtype, - ) diff --git a/keras/layers/preprocessing/discretization_distribution_test.py b/keras/layers/preprocessing/discretization_distribution_test.py deleted file mode 100644 index ff2d962fe71..00000000000 --- a/keras/layers/preprocessing/discretization_distribution_test.py +++ /dev/null @@ -1,66 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Distribution tests for keras.layers.preprocessing.discretization.""" - - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.distribute import strategy_combinations -from keras.layers.preprocessing import discretization -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_utils.run_v2_only -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=strategy_combinations.all_strategies - + strategy_combinations.multi_worker_mirrored_strategies - + strategy_combinations.parameter_server_strategies_single_worker - + strategy_combinations.parameter_server_strategies_multi_worker, - mode=["eager"], - ) -) -class DiscretizationDistributionTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_strategy(self, strategy): - input_array = np.array([[-1.5, 1.0, 3.4, 0.5], [0.0, 3.0, 1.3, 0.0]]) - - expected_output = [[0, 2, 3, 1], [1, 3, 2, 1]] - expected_output_shape = [None, 4] - - tf.config.set_soft_device_placement(True) - - with strategy.scope(): - input_data = keras.Input(shape=(4,)) - layer = discretization.Discretization( - bin_boundaries=[0.0, 1.0, 2.0] - ) - bucket_data = layer(input_data) - self.assertAllEqual( - expected_output_shape, bucket_data.shape.as_list() - ) - - model = keras.Model(inputs=input_data, outputs=bucket_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/layers/preprocessing/discretization_test.py b/keras/layers/preprocessing/discretization_test.py deleted file mode 100644 index 0b4b5e78b1d..00000000000 --- a/keras/layers/preprocessing/discretization_test.py +++ /dev/null @@ -1,466 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras discretization preprocessing layer.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.preprocessing import discretization -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class DiscretizationTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_bucketize_with_explicit_buckets_integer(self): - input_array = np.array([[-1.5, 1.0, 3.4, 0.5], [0.0, 3.0, 1.3, 0.0]]) - - expected_output = [[0, 2, 3, 1], [1, 3, 2, 1]] - expected_output_shape = [None, 4] - - input_data = keras.Input(shape=(4,)) - layer = discretization.Discretization(bin_boundaries=[0.0, 1.0, 2.0]) - bucket_data = layer(input_data) - self.assertAllEqual(expected_output_shape, bucket_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=bucket_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_bucketize_with_explicit_buckets_int_input(self): - input_array = np.array([[-1, 1, 3, 0], [0, 3, 1, 0]], dtype=np.int64) - - expected_output = [[0, 2, 3, 1], [1, 3, 2, 1]] - expected_output_shape = [None, 4] - - input_data = keras.Input(shape=(4,), dtype=tf.int64) - layer = discretization.Discretization(bin_boundaries=[-0.5, 0.5, 1.5]) - bucket_data = layer(input_data) - self.assertAllEqual(expected_output_shape, bucket_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=bucket_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_bucketize_with_explicit_buckets_sparse_float_input(self): - indices = [[0, 1], [0, 2], [1, 1]] - input_array = tf.SparseTensor( - indices=indices, values=[-1.5, 1.0, 3.4], dense_shape=[2, 3] - ) - expected_output = [0, 2, 3] - input_data = keras.Input(shape=(3,), dtype=tf.float32, sparse=True) - layer = discretization.Discretization(bin_boundaries=[-0.5, 0.5, 1.5]) - bucket_data = layer(input_data) - - model = keras.Model(inputs=input_data, outputs=bucket_data) - output_dataset = model.predict(input_array, steps=1) - self.assertAllEqual(indices, output_dataset.indices) - self.assertAllEqual(expected_output, output_dataset.values) - - def test_bucketize_with_explicit_buckets_ragged_float_input(self): - input_array = tf.ragged.constant( - [[-1.5, 1.0, 3.4, 0.5], [0.0, 3.0, 1.3]] - ) - - expected_output = [[0, 2, 3, 1], [1, 3, 2]] - expected_output_shape = [None, None] - - input_data = keras.Input(shape=(None,), ragged=True) - layer = discretization.Discretization(bin_boundaries=[0.0, 1.0, 2.0]) - bucket_data = layer(input_data) - self.assertAllEqual(expected_output_shape, bucket_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=bucket_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_bucketize_with_explicit_buckets_ragged_int_input(self): - input_array = tf.ragged.constant( - [[-1, 1, 3, 0], [0, 3, 1]], dtype=tf.int64 - ) - - expected_output = [[0, 2, 3, 1], [1, 3, 2]] - expected_output_shape = [None, None] - - input_data = keras.Input(shape=(None,), ragged=True, dtype=tf.int64) - layer = discretization.Discretization(bin_boundaries=[-0.5, 0.5, 1.5]) - bucket_data = layer(input_data) - self.assertAllEqual(expected_output_shape, bucket_data.shape.as_list()) - model = keras.Model(inputs=input_data, outputs=bucket_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_bucketize_with_explicit_buckets_sparse_int_input(self): - indices = [[0, 1], [0, 2], [1, 1]] - input_array = tf.SparseTensor( - indices=indices, values=[-1, 1, 3], dense_shape=[2, 3] - ) - expected_output = [0, 2, 3] - input_data = keras.Input(shape=(3,), dtype=tf.int32, sparse=True) - layer = discretization.Discretization(bin_boundaries=[-0.5, 0.5, 1.5]) - bucket_data = layer(input_data) - - model = keras.Model(inputs=input_data, outputs=bucket_data) - output_dataset = model.predict(input_array, steps=1) - self.assertAllEqual(indices, output_dataset.indices) - self.assertAllEqual(expected_output, output_dataset.values) - - def test_one_hot_output(self): - input_data = np.array([-1.5, 1.0, 3.4, 3.5]) - - expected_output = [ - [1.0, 0.0, 0.0, 0.0], - [0.0, 0.0, 1.0, 0.0], - [0.0, 0.0, 0.0, 1.0], - [0.0, 0.0, 0.0, 1.0], - ] - expected_output_shape = [None, 4] - - inputs = keras.Input(shape=(1,)) - layer = discretization.Discretization( - bin_boundaries=[0.0, 1.0, 2.0], output_mode="one_hot" - ) - outputs = layer(inputs) - self.assertAllEqual(expected_output_shape, outputs.shape.as_list()) - - model = keras.Model(inputs, outputs) - output_data = model(input_data) - self.assertAllEqual(expected_output, output_data) - - def test_multi_hot_output(self): - input_data = np.array([-1.5, 1.0, 3.4, 3.5]) - - expected_output = [1.0, 0.0, 1.0, 1.0] - expected_output_shape = [None, 4] - - inputs = keras.Input(shape=(4,)) - layer = discretization.Discretization( - bin_boundaries=[0.0, 1.0, 2.0], output_mode="multi_hot" - ) - outputs = layer(inputs) - self.assertAllEqual(expected_output_shape, outputs.shape.as_list()) - - model = keras.Model(inputs, outputs) - output_data = model(input_data) - self.assertAllEqual(expected_output, output_data) - - def test_count_output(self): - input_data = np.array([-1.5, 1.0, 3.4, 3.5]) - - expected_output = [1.0, 0.0, 1.0, 2.0] - expected_output_shape = [None, 4] - - inputs = keras.Input(shape=(4,)) - layer = discretization.Discretization( - bin_boundaries=[0.0, 1.0, 2.0], output_mode="count" - ) - outputs = layer(inputs) - self.assertAllEqual(expected_output_shape, outputs.shape.as_list()) - - model = keras.Model(inputs, outputs) - output_data = model(input_data) - self.assertAllEqual(expected_output, output_data) - - def test_output_shape(self): - inputs = keras.Input(batch_size=16, shape=(4,), dtype=tf.int64) - layer = discretization.Discretization(bin_boundaries=[-0.5, 0.5, 1.5]) - outputs = layer(inputs) - self.assertAllEqual(outputs.shape.as_list(), [16, 4]) - - @parameterized.named_parameters( - ("int32", tf.int32), - ("int64", tf.int64), - ) - def test_output_dtype(self, dtype): - inputs = keras.Input(batch_size=16, shape=(4,), dtype="float32") - layer = discretization.Discretization( - bin_boundaries=[-0.5, 0.5, 1.5], dtype=dtype - ) - outputs = layer(inputs) - self.assertAllEqual(outputs.dtype, dtype) - - def test_legacy_dtype_compat(self): - inputs = keras.Input(batch_size=16, shape=(4,), dtype="float32") - layer = discretization.Discretization( - bin_boundaries=[-0.5, 0.5, 1.5], dtype="float32" - ) - outputs = layer(inputs) - self.assertAllEqual(outputs.dtype, tf.int64) - # In TF1 we sometimes face an explicit dtype=None in the config. - layer = discretization.Discretization( - bin_boundaries=[-0.5, 0.5, 1.5], dtype=None - ) - outputs = layer(inputs) - self.assertAllEqual(outputs.dtype, tf.int64) - - @parameterized.named_parameters( - ("float32", tf.float32), - ("float64", tf.float64), - ) - def test_one_hot_output_dtype(self, dtype): - inputs = keras.Input(batch_size=16, shape=(1,), dtype="float32") - layer = discretization.Discretization( - bin_boundaries=[-0.5, 0.5, 1.5], output_mode="one_hot", dtype=dtype - ) - outputs = layer(inputs) - self.assertAllEqual(outputs.dtype, dtype) - - def test_num_bins_negative_fails(self): - with self.assertRaisesRegex( - ValueError, "`num_bins` must be.*num_bins=-7" - ): - _ = discretization.Discretization(num_bins=-7) - - def test_num_bins_and_bins_set_fails(self): - with self.assertRaisesRegex( - ValueError, - r"`num_bins` and `bin_boundaries` should not be set.*5.*\[1, 2\]", - ): - _ = discretization.Discretization(num_bins=5, bins=[1, 2]) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class DiscretizationAdaptTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - @parameterized.named_parameters( - [ - { - "testcase_name": "2d_single_element", - "adapt_data": np.array([[1.0], [2.0], [3.0], [4.0], [5.0]]), - "test_data": np.array([[1.0], [2.0], [3.0]]), - "use_dataset": True, - "expected": np.array([[1], [2], [3]]), - "num_bins": 5, - "epsilon": 0.01, - }, - { - "testcase_name": "2d_multi_element", - "adapt_data": np.array( - [ - [1.0, 6.0], - [2.0, 7.0], - [3.0, 8.0], - [4.0, 9.0], - [5.0, 10.0], - ] - ), - "test_data": np.array([[1.0, 10.0], [2.0, 6.0], [3.0, 8.0]]), - "use_dataset": True, - "expected": np.array([[0, 4], [1, 3], [1, 4]]), - "num_bins": 5, - "epsilon": 0.01, - }, - { - "testcase_name": "1d_single_element", - "adapt_data": np.array([3.0, 2.0, 1.0, 5.0, 4.0]), - "test_data": np.array([1.0, 2.0, 3.0]), - "use_dataset": True, - "expected": np.array([1, 2, 3]), - "num_bins": 5, - "epsilon": 0.01, - }, - { - "testcase_name": "300_batch_1d_single_element_1", - "adapt_data": np.arange(300), - "test_data": np.arange(300), - "use_dataset": True, - "expected": np.concatenate( - [np.zeros(101), np.ones(99), 2 * np.ones(100)] - ), - "num_bins": 3, - "epsilon": 0.01, - }, - { - "testcase_name": "300_batch_1d_single_element_2", - "adapt_data": np.arange(300) ** 2, - "test_data": np.arange(300) ** 2, - "use_dataset": True, - "expected": np.concatenate( - [np.zeros(101), np.ones(99), 2 * np.ones(100)] - ), - "num_bins": 3, - "epsilon": 0.01, - }, - { - "testcase_name": "300_batch_1d_single_element_large_epsilon", - "adapt_data": np.arange(300), - "test_data": np.arange(300), - "use_dataset": True, - "expected": np.concatenate([np.zeros(136), np.ones(164)]), - "num_bins": 2, - "epsilon": 0.1, - }, - ] - ) - def test_layer_computation( - self, - adapt_data, - test_data, - use_dataset, - expected, - num_bins=5, - epsilon=0.01, - ): - - input_shape = tuple(list(test_data.shape)[1:]) - np.random.shuffle(adapt_data) - if use_dataset: - # Keras APIs expect batched datasets - adapt_data = tf.data.Dataset.from_tensor_slices(adapt_data).batch( - test_data.shape[0] // 2 - ) - test_data = tf.data.Dataset.from_tensor_slices(test_data).batch( - test_data.shape[0] // 2 - ) - - layer = discretization.Discretization( - epsilon=epsilon, num_bins=num_bins - ) - layer.adapt(adapt_data) - - input_data = keras.Input(shape=input_shape) - output = layer(input_data) - model = keras.Model(input_data, output) - model._run_eagerly = test_utils.should_run_eagerly() - output_data = model.predict(test_data) - self.assertAllClose(expected, output_data) - - def test_multiple_adapts(self): - first_adapt = [[1], [2], [3]] - second_adapt = [[4], [5], [6]] - predict_input = [[2], [2]] - expected_first_output = [[2], [2]] - expected_second_output = [[0], [0]] - - inputs = keras.Input(shape=(1,), dtype=tf.int32) - layer = discretization.Discretization(num_bins=3) - layer.adapt(first_adapt) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - - actual_output = model.predict(predict_input) - self.assertAllClose(actual_output, expected_first_output) - - # Re-adapt the layer on new inputs. - layer.adapt(second_adapt) - # Re-compile the model. - model.compile() - # `predict` should now use the new model state. - actual_output = model.predict(predict_input) - self.assertAllClose(actual_output, expected_second_output) - - def test_saved_model_tf(self): - input_data = [[1], [2], [3]] - predict_data = [[0.5], [1.5], [2.5]] - expected_output = [[0], [1], [2]] - - inputs = keras.Input(shape=(1,), dtype=tf.float32) - layer = discretization.Discretization(num_bins=3) - layer.adapt(input_data) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - - output_data = model.predict(predict_data) - self.assertAllClose(output_data, expected_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_saved_model") - tf.saved_model.save(model, output_path) - loaded_model = tf.saved_model.load(output_path) - f = loaded_model.signatures["serving_default"] - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_data = f(tf.constant(predict_data))["discretization"] - self.assertAllClose(new_output_data, expected_output) - - @parameterized.product( - save_format=["tf", "h5"], - adapt=[True, False], - ) - def test_saved_model_keras(self, save_format, adapt): - input_data = [[1], [2], [3]] - predict_data = [[0.5], [1.5], [2.5]] - expected_output = [[0], [1], [2]] - - cls = discretization.Discretization - inputs = keras.Input(shape=(1,), dtype=tf.float32) - if adapt: - layer = cls(num_bins=3) - layer.adapt(input_data) - else: - layer = cls(bin_boundaries=[1.0, 2.0]) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - - output_data = model.predict(predict_data) - self.assertAllClose(output_data, expected_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format=save_format) - loaded_model = keras.models.load_model( - output_path, custom_objects={"Discretization": cls} - ) - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_data = loaded_model.predict(predict_data) - self.assertAllClose(new_output_data, expected_output) - - def test_saved_weights_keras(self): - input_data = [[1], [2], [3]] - predict_data = [[0.5], [1.5], [2.5]] - expected_output = [[0], [1], [2]] - - cls = discretization.Discretization - inputs = keras.Input(shape=(1,), dtype=tf.float32) - layer = cls(num_bins=3) - layer.adapt(input_data) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - - output_data = model.predict(predict_data) - self.assertAllClose(output_data, expected_output) - - # Save the model to disk. - output_path = os.path.join( - self.get_temp_dir(), "tf_keras_saved_weights" - ) - model.save_weights(output_path, save_format="tf") - new_model = keras.Model.from_config( - model.get_config(), custom_objects={"Discretization": cls} - ) - new_model.load_weights(output_path) - - # Validate correctness of the new model. - new_output_data = new_model.predict(predict_data) - self.assertAllClose(new_output_data, expected_output) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/hashed_crossing.py b/keras/layers/preprocessing/hashed_crossing.py deleted file mode 100644 index b64e0313261..00000000000 --- a/keras/layers/preprocessing/hashed_crossing.py +++ /dev/null @@ -1,227 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras hashed crossing preprocessing layer.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer -from keras.engine import base_preprocessing_layer -from keras.layers.preprocessing import preprocessing_utils as utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -INT = utils.INT -ONE_HOT = utils.ONE_HOT - - -@keras_export( - "keras.layers.HashedCrossing", - "keras.layers.experimental.preprocessing.HashedCrossing", - v1=[], -) -class HashedCrossing(base_layer.Layer): - """A preprocessing layer which crosses features using the "hashing trick". - - This layer performs crosses of categorical features using the "hasing - trick". Conceptually, the transformation can be thought of as: - hash(concatenation of features) % `num_bins`. - - This layer currently only performs crosses of scalar inputs and batches of - scalar inputs. Valid input shapes are `(batch_size, 1)`, `(batch_size,)` and - `()`. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - num_bins: Number of hash bins. - output_mode: Specification for the output of the layer. Defaults to - `"int"`. Values can be `"int"`, or `"one_hot"` configuring the layer as - follows: - - `"int"`: Return the integer bin indices directly. - - `"one_hot"`: Encodes each individual element in the input into an - array the same size as `num_bins`, containing a 1 at the input's bin - index. - sparse: Boolean. Only applicable to `"one_hot"` mode. If True, returns a - `SparseTensor` instead of a dense `Tensor`. Defaults to False. - **kwargs: Keyword arguments to construct a layer. - - Examples: - - **Crossing two scalar features.** - - >>> layer = tf.keras.layers.HashedCrossing( - ... num_bins=5) - >>> feat1 = tf.constant(['A', 'B', 'A', 'B', 'A']) - >>> feat2 = tf.constant([101, 101, 101, 102, 102]) - >>> layer((feat1, feat2)) - - - **Crossing and one-hotting two scalar features.** - - >>> layer = tf.keras.layers.HashedCrossing( - ... num_bins=5, output_mode='one_hot') - >>> feat1 = tf.constant(['A', 'B', 'A', 'B', 'A']) - >>> feat2 = tf.constant([101, 101, 101, 102, 102]) - >>> layer((feat1, feat2)) - - """ - - def __init__(self, num_bins, output_mode="int", sparse=False, **kwargs): - # By default, output int64 when output_mode="int" and floats otherwise. - if "dtype" not in kwargs or kwargs["dtype"] is None: - kwargs["dtype"] = ( - tf.int64 if output_mode == INT else backend.floatx() - ) - - super().__init__(**kwargs) - base_preprocessing_layer.keras_kpl_gauge.get_cell("HashedCrossing").set( - True - ) - - # Check dtype only after base layer parses it; dtype parsing is complex. - if ( - output_mode == INT - and not tf.as_dtype(self.compute_dtype).is_integer - ): - input_dtype = kwargs["dtype"] - raise ValueError( - "When `output_mode='int'`, `dtype` should be an integer " - f"type. Received: dtype={input_dtype}" - ) - - # "output_mode" must be one of (INT, ONE_HOT) - layer_utils.validate_string_arg( - output_mode, - allowable_strings=(INT, ONE_HOT), - layer_name=self.__class__.__name__, - arg_name="output_mode", - ) - - self.num_bins = num_bins - self.output_mode = output_mode - self.sparse = sparse - - def call(self, inputs): - # Convert all inputs to tensors and check shape. This layer only - # supports sclars and batches of scalars for the initial version. - self._check_at_least_two_inputs(inputs) - inputs = [utils.ensure_tensor(x) for x in inputs] - self._check_input_shape_and_type(inputs) - - # Uprank to rank 2 for the cross_hashed op. - rank = inputs[0].shape.rank - if rank < 2: - inputs = [utils.expand_dims(x, -1) for x in inputs] - if rank < 1: - inputs = [utils.expand_dims(x, -1) for x in inputs] - - # Perform the cross and convert to dense - outputs = tf.sparse.cross_hashed(inputs, self.num_bins) - outputs = tf.sparse.to_dense(outputs) - - # Fix output shape and downrank to match input rank. - if rank == 2: - # tf.sparse.cross_hashed output shape will always be None on the - # last dimension. Given our input shape restrictions, we want to - # force shape 1 instead. - outputs = tf.reshape(outputs, [-1, 1]) - elif rank == 1: - outputs = tf.reshape(outputs, [-1]) - elif rank == 0: - outputs = tf.reshape(outputs, []) - - # Encode outputs. - return utils.encode_categorical_inputs( - outputs, - output_mode=self.output_mode, - depth=self.num_bins, - sparse=self.sparse, - dtype=self.compute_dtype, - ) - - def compute_output_shape(self, input_shapes): - self._check_at_least_two_inputs(input_shapes) - return utils.compute_shape_for_encode_categorical(input_shapes[0]) - - def compute_output_signature(self, input_specs): - input_shapes = [x.shape.as_list() for x in input_specs] - output_shape = self.compute_output_shape(input_shapes) - if self.sparse or any( - isinstance(x, tf.SparseTensorSpec) for x in input_specs - ): - return tf.SparseTensorSpec( - shape=output_shape, dtype=self.compute_dtype - ) - return tf.TensorSpec(shape=output_shape, dtype=self.compute_dtype) - - def get_config(self): - config = super().get_config() - config.update( - { - "num_bins": self.num_bins, - "output_mode": self.output_mode, - "sparse": self.sparse, - } - ) - return config - - def _check_at_least_two_inputs(self, inputs): - if not isinstance(inputs, (list, tuple)): - raise ValueError( - "`HashedCrossing` should be called on a list or tuple of " - f"inputs. Received: inputs={inputs}" - ) - if len(inputs) < 2: - raise ValueError( - "`HashedCrossing` should be called on at least two inputs. " - f"Received: inputs={inputs}" - ) - - def _check_input_shape_and_type(self, inputs): - first_shape = inputs[0].shape.as_list() - rank = len(first_shape) - if rank > 2 or (rank == 2 and first_shape[-1] != 1): - raise ValueError( - "All `HashedCrossing` inputs should have shape `[]`, " - "`[batch_size]` or `[batch_size, 1]`. " - f"Received: inputs={inputs}" - ) - if not all(x.shape.as_list() == first_shape for x in inputs[1:]): - raise ValueError( - "All `HashedCrossing` inputs should have equal shape. " - f"Received: inputs={inputs}" - ) - if any( - isinstance(x, (tf.RaggedTensor, tf.SparseTensor)) for x in inputs - ): - raise ValueError( - "All `HashedCrossing` inputs should be dense tensors. " - f"Received: inputs={inputs}" - ) - if not all(x.dtype.is_integer or x.dtype == tf.string for x in inputs): - raise ValueError( - "All `HashedCrossing` inputs should have an integer or " - f"string dtype. Received: inputs={inputs}" - ) diff --git a/keras/layers/preprocessing/hashed_crossing_test.py b/keras/layers/preprocessing/hashed_crossing_test.py deleted file mode 100644 index 948dda50c32..00000000000 --- a/keras/layers/preprocessing/hashed_crossing_test.py +++ /dev/null @@ -1,184 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for hashed crossing layer.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.preprocessing import hashed_crossing -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class HashedCrossingTest(test_combinations.TestCase): - @parameterized.named_parameters( - ("python_value", lambda x: x), - ("dense", tf.constant), - ) - def test_cross_scalars(self, data_fn): - layer = hashed_crossing.HashedCrossing(num_bins=10) - feat1 = data_fn("A") - feat2 = data_fn(101) - outputs = layer((feat1, feat2)) - self.assertAllClose(outputs, 1) - self.assertAllEqual(outputs.shape.as_list(), []) - - @parameterized.named_parameters( - ("tuple", tuple), - ("list", list), - ("numpy", np.array), - ("array_like", preprocessing_test_utils.ArrayLike), - ("dense", tf.constant), - ) - def test_cross_batch_of_scalars_1d(self, data_fn): - layer = hashed_crossing.HashedCrossing(num_bins=10) - feat1 = data_fn(["A", "B", "A", "B", "A"]) - feat2 = data_fn([101, 101, 101, 102, 102]) - outputs = layer((feat1, feat2)) - self.assertAllClose(outputs, [1, 4, 1, 6, 3]) - self.assertAllEqual(outputs.shape.as_list(), [5]) - - @parameterized.named_parameters( - ("tuple", tuple), - ("list", list), - ("numpy", np.array), - ("array_like", preprocessing_test_utils.ArrayLike), - ("dense", tf.constant), - ) - def test_cross_batch_of_scalars_2d(self, data_fn): - layer = hashed_crossing.HashedCrossing(num_bins=10) - feat1 = data_fn([["A"], ["B"], ["A"], ["B"], ["A"]]) - feat2 = data_fn([[101], [101], [101], [102], [102]]) - outputs = layer((feat1, feat2)) - self.assertAllClose(outputs, [[1], [4], [1], [6], [3]]) - self.assertAllEqual(outputs.shape.as_list(), [5, 1]) - - @parameterized.named_parameters( - ("sparse", True), - ("dense", False), - ) - def test_cross_one_hot_output(self, sparse): - layer = hashed_crossing.HashedCrossing( - num_bins=5, output_mode="one_hot", sparse=sparse - ) - feat1 = tf.constant([["A"], ["B"], ["A"], ["B"], ["A"]]) - feat2 = tf.constant([[101], [101], [101], [102], [102]]) - outputs = layer((feat1, feat2)) - if sparse: - outputs = tf.sparse.to_dense(outputs) - self.assertAllClose( - outputs, - [ - [0, 1, 0, 0, 0], - [0, 0, 0, 0, 1], - [0, 1, 0, 0, 0], - [0, 1, 0, 0, 0], - [0, 0, 0, 1, 0], - ], - ) - self.assertAllEqual(outputs.shape.as_list(), [5, 5]) - - def test_cross_output_dtype(self): - layer = hashed_crossing.HashedCrossing(num_bins=2) - self.assertAllEqual(layer(([1], [1])).dtype, tf.int64) - layer = hashed_crossing.HashedCrossing(num_bins=2, dtype=tf.int32) - self.assertAllEqual(layer(([1], [1])).dtype, tf.int32) - layer = hashed_crossing.HashedCrossing( - num_bins=2, output_mode="one_hot" - ) - self.assertAllEqual(layer(([1], [1])).dtype, tf.float32) - layer = hashed_crossing.HashedCrossing( - num_bins=2, output_mode="one_hot", dtype=tf.float64 - ) - self.assertAllEqual(layer(([1], [1])).dtype, tf.float64) - - def test_non_list_input_fails(self): - with self.assertRaisesRegex(ValueError, "should be called on a list"): - hashed_crossing.HashedCrossing(num_bins=10)(tf.constant(1)) - - def test_single_input_fails(self): - with self.assertRaisesRegex(ValueError, "at least two inputs"): - hashed_crossing.HashedCrossing(num_bins=10)([tf.constant(1)]) - - def test_sparse_input_fails(self): - with self.assertRaisesRegex( - ValueError, "inputs should be dense tensors" - ): - sparse_in = tf.sparse.from_dense(tf.constant([1])) - hashed_crossing.HashedCrossing(num_bins=10)((sparse_in, sparse_in)) - - def test_float_input_fails(self): - with self.assertRaisesRegex( - ValueError, "should have an integer or string" - ): - hashed_crossing.HashedCrossing(num_bins=10)( - (tf.constant([1.0]), tf.constant([1.0])) - ) - - def test_upsupported_shape_input_fails(self): - with self.assertRaisesRegex(ValueError, "inputs should have shape"): - hashed_crossing.HashedCrossing(num_bins=10)( - (tf.constant([[[1.0]]]), tf.constant([[[1.0]]])) - ) - - def test_from_config(self): - layer = hashed_crossing.HashedCrossing( - num_bins=5, output_mode="one_hot", sparse=True - ) - cloned_layer = hashed_crossing.HashedCrossing.from_config( - layer.get_config() - ) - feat1 = tf.constant([["A"], ["B"], ["A"], ["B"], ["A"]]) - feat2 = tf.constant([[101], [101], [101], [102], [102]]) - original_outputs = layer((feat1, feat2)) - cloned_outputs = cloned_layer((feat1, feat2)) - self.assertAllEqual( - tf.sparse.to_dense(cloned_outputs), - tf.sparse.to_dense(original_outputs), - ) - - def test_saved_model_keras(self): - string_in = keras.Input(shape=(1,), dtype=tf.string) - int_in = keras.Input(shape=(1,), dtype=tf.int64) - out = hashed_crossing.HashedCrossing(num_bins=10)((string_in, int_in)) - model = keras.Model(inputs=(string_in, int_in), outputs=out) - - string_data = tf.constant([["A"], ["B"], ["A"], ["B"], ["A"]]) - int_data = tf.constant([[101], [101], [101], [102], [102]]) - expected_output = [[1], [4], [1], [6], [3]] - - output_data = model((string_data, int_data)) - self.assertAllClose(output_data, expected_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "saved_model") - model.save(output_path, save_format="tf") - loaded_model = keras.models.load_model( - output_path, - custom_objects={"HashedCrossing": hashed_crossing.HashedCrossing}, - ) - - # Validate correctness of the new model. - new_output_data = loaded_model((string_data, int_data)) - self.assertAllClose(new_output_data, expected_output) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/hashing.py b/keras/layers/preprocessing/hashing.py deleted file mode 100644 index 84755929dd5..00000000000 --- a/keras/layers/preprocessing/hashing.py +++ /dev/null @@ -1,298 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras hashing preprocessing layer.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer -from keras.engine import base_preprocessing_layer -from keras.layers.preprocessing import preprocessing_utils as utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -INT = utils.INT -MULTI_HOT = utils.MULTI_HOT -ONE_HOT = utils.ONE_HOT -COUNT = utils.COUNT - - -@keras_export( - "keras.layers.Hashing", "keras.layers.experimental.preprocessing.Hashing" -) -class Hashing(base_layer.Layer): - """A preprocessing layer which hashes and bins categorical features. - - This layer transforms categorical inputs to hashed output. It element-wise - converts a ints or strings to ints in a fixed range. The stable hash - function uses `tensorflow::ops::Fingerprint` to produce the same output - consistently across all platforms. - - This layer uses [FarmHash64](https://github.com/google/farmhash) by default, - which provides a consistent hashed output across different platforms and is - stable across invocations, regardless of device and context, by mixing the - input bits thoroughly. - - If you want to obfuscate the hashed output, you can also pass a random - `salt` argument in the constructor. In that case, the layer will use the - [SipHash64](https://github.com/google/highwayhash) hash function, with - the `salt` value serving as additional input to the hash function. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - **Example (FarmHash64)** - - >>> layer = tf.keras.layers.Hashing(num_bins=3) - >>> inp = [['A'], ['B'], ['C'], ['D'], ['E']] - >>> layer(inp) - - - **Example (FarmHash64) with a mask value** - - >>> layer = tf.keras.layers.Hashing(num_bins=3, mask_value='') - >>> inp = [['A'], ['B'], [''], ['C'], ['D']] - >>> layer(inp) - - - **Example (SipHash64)** - - >>> layer = tf.keras.layers.Hashing(num_bins=3, salt=[133, 137]) - >>> inp = [['A'], ['B'], ['C'], ['D'], ['E']] - >>> layer(inp) - - - **Example (Siphash64 with a single integer, same as `salt=[133, 133]`)** - - >>> layer = tf.keras.layers.Hashing(num_bins=3, salt=133) - >>> inp = [['A'], ['B'], ['C'], ['D'], ['E']] - >>> layer(inp) - - - Args: - num_bins: Number of hash bins. Note that this includes the `mask_value` - bin, so the effective number of bins is `(num_bins - 1)` if `mask_value` - is set. - mask_value: A value that represents masked inputs, which are mapped to - index 0. Defaults to None, meaning no mask term will be added and the - hashing will start at index 0. - salt: A single unsigned integer or None. - If passed, the hash function used will be SipHash64, with these values - used as an additional input (known as a "salt" in cryptography). - These should be non-zero. Defaults to `None` (in that - case, the FarmHash64 hash function is used). It also supports - tuple/list of 2 unsigned integer numbers, see reference paper for - details. - output_mode: Specification for the output of the layer. Defaults to - `"int"`. Values can be `"int"`, `"one_hot"`, `"multi_hot"`, or - `"count"` configuring the layer as follows: - - `"int"`: Return the integer bin indices directly. - - `"one_hot"`: Encodes each individual element in the input into an - array the same size as `num_bins`, containing a 1 at the input's bin - index. If the last dimension is size 1, will encode on that - dimension. If the last dimension is not size 1, will append a new - dimension for the encoded output. - - `"multi_hot"`: Encodes each sample in the input into a single array - the same size as `num_bins`, containing a 1 for each bin index - index present in the sample. Treats the last dimension as the sample - dimension, if input shape is `(..., sample_length)`, output shape - will be `(..., num_tokens)`. - - `"count"`: As `"multi_hot"`, but the int array contains a count of - the number of times the bin index appeared in the sample. - sparse: Boolean. Only applicable to `"one_hot"`, `"multi_hot"`, - and `"count"` output modes. If True, returns a `SparseTensor` instead of - a dense `Tensor`. Defaults to False. - **kwargs: Keyword arguments to construct a layer. - - Input shape: - A single or list of string, int32 or int64 `Tensor`, - `SparseTensor` or `RaggedTensor` of shape `(batch_size, ...,)` - - Output shape: - An int64 `Tensor`, `SparseTensor` or `RaggedTensor` of shape - `(batch_size, ...)`. If any input is `RaggedTensor` then output is - `RaggedTensor`, otherwise if any input is `SparseTensor` then output is - `SparseTensor`, otherwise the output is `Tensor`. - - Reference: - - [SipHash with salt](https://www.131002.net/siphash/siphash.pdf) - - """ - - def __init__( - self, - num_bins, - mask_value=None, - salt=None, - output_mode="int", - sparse=False, - **kwargs, - ): - if num_bins is None or num_bins <= 0: - raise ValueError( - "The `num_bins` for `Hashing` cannot be `None` or " - f"non-positive values. Received: num_bins={num_bins}." - ) - - # By default, output int64 when output_mode='int' and floats otherwise. - if "dtype" not in kwargs or kwargs["dtype"] is None: - kwargs["dtype"] = ( - tf.int64 if output_mode == INT else backend.floatx() - ) - elif ( - output_mode == "int" and not tf.as_dtype(kwargs["dtype"]).is_integer - ): - # Compat for when dtype was always floating and ignored by the - # layer. - kwargs["dtype"] = tf.int64 - - super().__init__(**kwargs) - base_preprocessing_layer.keras_kpl_gauge.get_cell("Hashing").set(True) - - # Check dtype only after base layer parses it; dtype parsing is complex. - if ( - output_mode == INT - and not tf.as_dtype(self.compute_dtype).is_integer - ): - input_dtype = kwargs["dtype"] - raise ValueError( - 'When `output_mode="int"`, `dtype` should be an integer ' - f"type. Received: dtype={input_dtype}" - ) - - # 'output_mode' must be one of (INT, ONE_HOT, MULTI_HOT, COUNT) - layer_utils.validate_string_arg( - output_mode, - allowable_strings=(INT, ONE_HOT, MULTI_HOT, COUNT), - layer_name=self.__class__.__name__, - arg_name="output_mode", - ) - - if sparse and output_mode == INT: - raise ValueError( - "`sparse` may only be true if `output_mode` is " - '`"one_hot"`, `"multi_hot"`, or `"count"`. ' - f"Received: sparse={sparse} and " - f"output_mode={output_mode}" - ) - - self.num_bins = num_bins - self.mask_value = mask_value - self.strong_hash = True if salt is not None else False - self.output_mode = output_mode - self.sparse = sparse - self.salt = None - if salt is not None: - if isinstance(salt, (tuple, list)) and len(salt) == 2: - self.salt = salt - elif isinstance(salt, int): - self.salt = [salt, salt] - else: - raise ValueError( - "The `salt` argument for `Hashing` can only be a tuple of " - "size 2 integers, or a single integer. " - f"Received: salt={salt}." - ) - - def call(self, inputs): - inputs = utils.ensure_tensor(inputs) - if isinstance(inputs, tf.SparseTensor): - indices = tf.SparseTensor( - indices=inputs.indices, - values=self._hash_values_to_bins(inputs.values), - dense_shape=inputs.dense_shape, - ) - else: - indices = self._hash_values_to_bins(inputs) - return utils.encode_categorical_inputs( - indices, - output_mode=self.output_mode, - depth=self.num_bins, - sparse=self.sparse, - dtype=self.compute_dtype, - ) - - def _hash_values_to_bins(self, values): - """Converts a non-sparse tensor of values to bin indices.""" - hash_bins = self.num_bins - mask = None - # If mask_value is set, the zeroth bin is reserved for it. - if self.mask_value is not None and hash_bins > 1: - hash_bins -= 1 - mask = tf.equal(values, self.mask_value) - # Convert all values to strings before hashing. - if values.dtype.is_integer: - values = tf.as_string(values) - # Hash the strings. - if self.strong_hash: - values = tf.strings.to_hash_bucket_strong( - values, hash_bins, name="hash", key=self.salt - ) - else: - values = tf.strings.to_hash_bucket_fast( - values, hash_bins, name="hash" - ) - if mask is not None: - values = tf.add(values, tf.ones_like(values)) - values = tf.where(mask, tf.zeros_like(values), values) - return values - - def compute_output_shape(self, input_shape): - return input_shape - - def compute_output_signature(self, input_spec): - output_shape = self.compute_output_shape(input_spec.shape) - if isinstance(input_spec, tf.SparseTensorSpec): - return tf.SparseTensorSpec( - shape=output_shape, dtype=self.compute_dtype - ) - else: - return tf.TensorSpec(shape=output_shape, dtype=self.compute_dtype) - - def get_config(self): - config = super().get_config() - config.update( - { - "num_bins": self.num_bins, - "salt": self.salt, - "mask_value": self.mask_value, - "output_mode": self.output_mode, - "sparse": self.sparse, - } - ) - return config diff --git a/keras/layers/preprocessing/hashing_distribution_test.py b/keras/layers/preprocessing/hashing_distribution_test.py deleted file mode 100644 index af6a1fab4c2..00000000000 --- a/keras/layers/preprocessing/hashing_distribution_test.py +++ /dev/null @@ -1,73 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for keras.layers.preprocessing.hashing.""" - - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras import backend -from keras.distribute import strategy_combinations -from keras.layers.preprocessing import hashing -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -@test_utils.run_v2_only -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=strategy_combinations.all_strategies - + strategy_combinations.multi_worker_mirrored_strategies - + strategy_combinations.parameter_server_strategies_single_worker - + strategy_combinations.parameter_server_strategies_multi_worker, - mode=["eager"], - ) -) -class HashingDistributionTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_strategy(self, strategy): - if ( - backend.is_tpu_strategy(strategy) - and not tf_test_utils.is_mlir_bridge_enabled() - ): - self.skipTest("TPU tests require MLIR bridge") - - input_data = np.asarray([["omar"], ["stringer"], ["marlo"], ["wire"]]) - input_dataset = tf.data.Dataset.from_tensor_slices(input_data).batch( - 2, drop_remainder=True - ) - expected_output = [[0], [0], [1], [0]] - - tf.config.set_soft_device_placement(True) - - with strategy.scope(): - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = hashing.Hashing(num_bins=2) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_dataset) - self.assertAllEqual(expected_output, output_dataset) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/layers/preprocessing/hashing_test.py b/keras/layers/preprocessing/hashing_test.py deleted file mode 100644 index 76f20719f6e..00000000000 --- a/keras/layers/preprocessing/hashing_test.py +++ /dev/null @@ -1,446 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for hashing layer.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.engine import input_layer -from keras.engine import training -from keras.layers.preprocessing import hashing -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class HashingTest(test_combinations.TestCase): - @parameterized.named_parameters( - ("list", list), - ("tuple", tuple), - ("numpy", np.array), - ("array_like", preprocessing_test_utils.ArrayLike), - ) - def test_tensor_like_inputs(self, data_fn): - input_data = data_fn([0, 1, 2, 3, 4]) - expected_output = [1, 0, 1, 0, 2] - - layer = hashing.Hashing(num_bins=3) - output_data = layer(input_data) - self.assertAllEqual(output_data, expected_output) - - def test_hash_single_bin(self): - layer = hashing.Hashing(num_bins=1) - inp = np.asarray([["A"], ["B"], ["C"], ["D"], ["E"]]) - output = layer(inp) - self.assertAllClose([[0], [0], [0], [0], [0]], output) - - def test_hash_dense_input_farmhash(self): - layer = hashing.Hashing(num_bins=2) - inp = np.asarray( - [["omar"], ["stringer"], ["marlo"], ["wire"], ["skywalker"]] - ) - output = layer(inp) - # Assert equal for hashed output that should be true on all platforms. - self.assertAllClose([[0], [0], [1], [0], [0]], output) - - def test_hash_dense_input_mask_value_farmhash(self): - empty_mask_layer = hashing.Hashing(num_bins=3, mask_value="") - omar_mask_layer = hashing.Hashing(num_bins=3, mask_value="omar") - inp = np.asarray( - [["omar"], ["stringer"], ["marlo"], ["wire"], ["skywalker"]] - ) - empty_mask_output = empty_mask_layer(inp) - omar_mask_output = omar_mask_layer(inp) - # Outputs should be one more than test_hash_dense_input_farmhash (the - # zeroth bin is now reserved for masks). - self.assertAllClose([[1], [1], [2], [1], [1]], empty_mask_output) - # 'omar' should map to 0. - self.assertAllClose([[0], [1], [2], [1], [1]], omar_mask_output) - - def test_hash_dense_list_input_farmhash(self): - layer = hashing.Hashing(num_bins=2) - inp = [["omar"], ["stringer"], ["marlo"], ["wire"], ["skywalker"]] - output = layer(inp) - # Assert equal for hashed output that should be true on all platforms. - self.assertAllClose([[0], [0], [1], [0], [0]], output) - - inp = ["omar", "stringer", "marlo", "wire", "skywalker"] - output = layer(inp) - # Assert equal for hashed output that should be true on all platforms. - self.assertAllClose([0, 0, 1, 0, 0], output) - - def test_hash_dense_int_input_farmhash(self): - layer = hashing.Hashing(num_bins=3) - inp = np.asarray([[0], [1], [2], [3], [4]]) - output = layer(inp) - # Assert equal for hashed output that should be true on all platforms. - self.assertAllClose([[1], [0], [1], [0], [2]], output) - - def test_hash_dense_input_siphash(self): - layer = hashing.Hashing(num_bins=2, salt=[133, 137]) - inp = np.asarray( - [["omar"], ["stringer"], ["marlo"], ["wire"], ["skywalker"]] - ) - output = layer(inp) - # Assert equal for hashed output that should be true on all platforms. - # Note the result is different from FarmHash. - self.assertAllClose([[0], [1], [0], [1], [0]], output) - - layer_2 = hashing.Hashing(num_bins=2, salt=[211, 137]) - output_2 = layer_2(inp) - # Note the result is different from (133, 137). - self.assertAllClose([[1], [0], [1], [0], [1]], output_2) - - def test_hash_dense_int_input_siphash(self): - layer = hashing.Hashing(num_bins=3, salt=[133, 137]) - inp = np.asarray([[0], [1], [2], [3], [4]]) - output = layer(inp) - # Assert equal for hashed output that should be true on all platforms. - self.assertAllClose([[1], [1], [2], [0], [1]], output) - - def test_hash_sparse_input_farmhash(self): - layer = hashing.Hashing(num_bins=2) - indices = [[0, 0], [1, 0], [1, 1], [2, 0], [2, 1]] - inp = tf.SparseTensor( - indices=indices, - values=["omar", "stringer", "marlo", "wire", "skywalker"], - dense_shape=[3, 2], - ) - output = layer(inp) - self.assertAllClose(indices, output.indices) - self.assertAllClose([0, 0, 1, 0, 0], output.values) - - def test_hash_sparse_input_mask_value_farmhash(self): - empty_mask_layer = hashing.Hashing(num_bins=3, mask_value="") - omar_mask_layer = hashing.Hashing(num_bins=3, mask_value="omar") - indices = [[0, 0], [1, 0], [1, 1], [2, 0], [2, 1]] - inp = tf.SparseTensor( - indices=indices, - values=["omar", "stringer", "marlo", "wire", "skywalker"], - dense_shape=[3, 2], - ) - empty_mask_output = empty_mask_layer(inp) - omar_mask_output = omar_mask_layer(inp) - self.assertAllClose(indices, omar_mask_output.indices) - self.assertAllClose(indices, empty_mask_output.indices) - # Outputs should be one more than test_hash_sparse_input_farmhash (the - # zeroth bin is now reserved for masks). - self.assertAllClose([1, 1, 2, 1, 1], empty_mask_output.values) - # 'omar' should map to 0. - self.assertAllClose([0, 1, 2, 1, 1], omar_mask_output.values) - - def test_hash_sparse_int_input_farmhash(self): - layer = hashing.Hashing(num_bins=3) - indices = [[0, 0], [1, 0], [1, 1], [2, 0], [2, 1]] - inp = tf.SparseTensor( - indices=indices, values=[0, 1, 2, 3, 4], dense_shape=[3, 2] - ) - output = layer(inp) - self.assertAllClose(indices, output.indices) - self.assertAllClose([1, 0, 1, 0, 2], output.values) - - def test_hash_sparse_input_siphash(self): - layer = hashing.Hashing(num_bins=2, salt=[133, 137]) - indices = [[0, 0], [1, 0], [1, 1], [2, 0], [2, 1]] - inp = tf.SparseTensor( - indices=indices, - values=["omar", "stringer", "marlo", "wire", "skywalker"], - dense_shape=[3, 2], - ) - output = layer(inp) - self.assertAllClose(output.indices, indices) - # The result should be same with test_hash_dense_input_siphash. - self.assertAllClose([0, 1, 0, 1, 0], output.values) - - layer_2 = hashing.Hashing(num_bins=2, salt=[211, 137]) - output = layer_2(inp) - # The result should be same with test_hash_dense_input_siphash. - self.assertAllClose([1, 0, 1, 0, 1], output.values) - - def test_hash_sparse_int_input_siphash(self): - layer = hashing.Hashing(num_bins=3, salt=[133, 137]) - indices = [[0, 0], [1, 0], [1, 1], [2, 0], [2, 1]] - inp = tf.SparseTensor( - indices=indices, values=[0, 1, 2, 3, 4], dense_shape=[3, 2] - ) - output = layer(inp) - self.assertAllClose(indices, output.indices) - self.assertAllClose([1, 1, 2, 0, 1], output.values) - - def test_hash_ragged_string_input_farmhash(self): - layer = hashing.Hashing(num_bins=2) - inp_data = tf.ragged.constant( - [ - ["omar", "stringer", "marlo", "wire"], - ["marlo", "skywalker", "wire"], - ], - dtype=tf.string, - ) - out_data = layer(inp_data) - # Same hashed output as test_hash_sparse_input_farmhash - expected_output = [[0, 0, 1, 0], [1, 0, 0]] - self.assertAllEqual(expected_output, out_data) - - inp_t = input_layer.Input(shape=(None,), ragged=True, dtype=tf.string) - out_t = layer(inp_t) - model = training.Model(inputs=inp_t, outputs=out_t) - self.assertAllClose(out_data, model.predict(inp_data)) - - def test_hash_ragged_input_mask_value(self): - empty_mask_layer = hashing.Hashing(num_bins=3, mask_value="") - omar_mask_layer = hashing.Hashing(num_bins=3, mask_value="omar") - inp_data = tf.ragged.constant( - [ - ["omar", "stringer", "marlo", "wire"], - ["marlo", "skywalker", "wire"], - ], - dtype=tf.string, - ) - empty_mask_output = empty_mask_layer(inp_data) - omar_mask_output = omar_mask_layer(inp_data) - # Outputs should be one more than test_hash_ragged_string_input_farmhash - # (the zeroth bin is now reserved for masks). - expected_output = [[1, 1, 2, 1], [2, 1, 1]] - self.assertAllClose(expected_output, empty_mask_output) - # 'omar' should map to 0. - expected_output = [[0, 1, 2, 1], [2, 1, 1]] - self.assertAllClose(expected_output, omar_mask_output) - - def test_hash_ragged_int_input_farmhash(self): - layer = hashing.Hashing(num_bins=3) - inp_data = tf.ragged.constant([[0, 1, 3, 4], [2, 1, 0]], dtype=tf.int64) - out_data = layer(inp_data) - # Same hashed output as test_hash_sparse_input_farmhash - expected_output = [[1, 0, 0, 2], [1, 0, 1]] - self.assertAllEqual(expected_output, out_data) - - inp_t = input_layer.Input(shape=(None,), ragged=True, dtype=tf.int64) - out_t = layer(inp_t) - model = training.Model(inputs=inp_t, outputs=out_t) - self.assertAllClose(out_data, model.predict(inp_data)) - - def test_hash_ragged_string_input_siphash(self): - layer = hashing.Hashing(num_bins=2, salt=[133, 137]) - inp_data = tf.ragged.constant( - [ - ["omar", "stringer", "marlo", "wire"], - ["marlo", "skywalker", "wire"], - ], - dtype=tf.string, - ) - out_data = layer(inp_data) - # Same hashed output as test_hash_dense_input_siphash - expected_output = [[0, 1, 0, 1], [0, 0, 1]] - self.assertAllEqual(expected_output, out_data) - - inp_t = input_layer.Input(shape=(None,), ragged=True, dtype=tf.string) - out_t = layer(inp_t) - model = training.Model(inputs=inp_t, outputs=out_t) - self.assertAllClose(out_data, model.predict(inp_data)) - - layer_2 = hashing.Hashing(num_bins=2, salt=[211, 137]) - out_data = layer_2(inp_data) - expected_output = [[1, 0, 1, 0], [1, 1, 0]] - self.assertAllEqual(expected_output, out_data) - - out_t = layer_2(inp_t) - model = training.Model(inputs=inp_t, outputs=out_t) - self.assertAllClose(out_data, model.predict(inp_data)) - - def test_hash_ragged_int_input_siphash(self): - layer = hashing.Hashing(num_bins=3, salt=[133, 137]) - inp_data = tf.ragged.constant([[0, 1, 3, 4], [2, 1, 0]], dtype=tf.int64) - out_data = layer(inp_data) - # Same hashed output as test_hash_sparse_input_farmhash - expected_output = [[1, 1, 0, 1], [2, 1, 1]] - self.assertAllEqual(expected_output, out_data) - - inp_t = input_layer.Input(shape=(None,), ragged=True, dtype=tf.int64) - out_t = layer(inp_t) - model = training.Model(inputs=inp_t, outputs=out_t) - self.assertAllClose(out_data, model.predict(inp_data)) - - def test_invalid_inputs(self): - with self.assertRaisesRegex(ValueError, "cannot be `None`"): - _ = hashing.Hashing(num_bins=None) - with self.assertRaisesRegex(ValueError, "cannot be `None`"): - _ = hashing.Hashing(num_bins=-1) - with self.assertRaisesRegex( - ValueError, "can only be a tuple of size 2" - ): - _ = hashing.Hashing(num_bins=2, salt="string") - with self.assertRaisesRegex( - ValueError, "can only be a tuple of size 2" - ): - _ = hashing.Hashing(num_bins=2, salt=[1]) - with self.assertRaisesRegex( - ValueError, "can only be a tuple of size 2" - ): - _ = hashing.Hashing(num_bins=1, salt=tf.constant([133, 137])) - - def test_one_hot_output(self): - input_array = np.array([0, 1, 2, 3, 4]) - - expected_output = [ - [0.0, 1.0, 0.0], - [1.0, 0.0, 0.0], - [0.0, 1.0, 0.0], - [1.0, 0.0, 0.0], - [0.0, 0.0, 1.0], - ] - expected_output_shape = [None, 3] - - inputs = keras.Input(shape=(1,), dtype="int32") - layer = hashing.Hashing(num_bins=3, output_mode="one_hot") - outputs = layer(inputs) - self.assertAllEqual(expected_output_shape, outputs.shape.as_list()) - - model = keras.Model(inputs, outputs) - output_data = model(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_multi_hot_output(self): - input_array = np.array([0, 1, 2, 3, 4]) - - expected_output = [1.0, 1.0, 1.0] - expected_output_shape = [None, 3] - - inputs = keras.Input(shape=(3,), dtype="int32") - layer = hashing.Hashing(num_bins=3, output_mode="multi_hot") - outputs = layer(inputs) - self.assertAllEqual(expected_output_shape, outputs.shape.as_list()) - - model = keras.Model(inputs, outputs) - output_data = model(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_count_output(self): - input_array = np.array([0, 1, 2, 3, 4]) - - expected_output = [2.0, 2.0, 1.0] - expected_output_shape = [None, 3] - - inputs = keras.Input(shape=(3,), dtype="int32") - layer = hashing.Hashing(num_bins=3, output_mode="count") - outputs = layer(inputs) - self.assertAllEqual(expected_output_shape, outputs.shape.as_list()) - - model = keras.Model(inputs, outputs) - output_data = model(input_array) - self.assertAllEqual(expected_output, output_data) - - @parameterized.named_parameters( - ("int32", tf.int32), - ("int64", tf.int64), - ) - def test_output_dtype(self, dtype): - input_data = keras.Input(batch_size=16, shape=(4,), dtype="string") - layer = hashing.Hashing(num_bins=3, dtype=dtype) - output = layer(input_data) - self.assertAllEqual(output.dtype, dtype) - - def test_legacy_dtype_compat(self): - inputs = keras.Input(batch_size=16, shape=(4,), dtype="string") - layer = hashing.Hashing(num_bins=3, dtype="float32") - outputs = layer(inputs) - self.assertAllEqual(outputs.dtype, tf.int64) - # In TF1 we sometimes face an explicit dtype=None in the config. - layer = hashing.Hashing(num_bins=3, dtype=None) - outputs = layer(inputs) - self.assertAllEqual(outputs.dtype, tf.int64) - - @parameterized.named_parameters( - ("float32", tf.float32), - ("float64", tf.float64), - ) - def test_one_hot_output_dtype(self, dtype): - input_data = keras.Input(batch_size=16, shape=(1,), dtype="string") - layer = hashing.Hashing(num_bins=3, output_mode="one_hot", dtype=dtype) - output = layer(input_data) - self.assertAllEqual(output.dtype, dtype) - - def test_hash_compute_output_signature(self): - input_shape = tf.TensorShape([2, 3]) - input_spec = tf.TensorSpec(input_shape, tf.string) - layer = hashing.Hashing(num_bins=2) - output_spec = layer.compute_output_signature(input_spec) - self.assertEqual(output_spec.shape.dims, input_shape.dims) - self.assertEqual(output_spec.dtype, tf.int64) - - @test_utils.run_v2_only - def test_config_with_custom_name(self): - layer = hashing.Hashing(num_bins=2, name="hashing") - config = layer.get_config() - layer_1 = hashing.Hashing.from_config(config) - self.assertEqual(layer_1.name, layer.name) - - def test_saved_model(self): - input_data = np.array( - ["omar", "stringer", "marlo", "wire", "skywalker"] - ) - - inputs = keras.Input(shape=(None,), dtype=tf.string) - outputs = hashing.Hashing(num_bins=100)(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - - original_output_data = model(input_data) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format="tf") - loaded_model = keras.models.load_model(output_path) - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_data = loaded_model(input_data) - self.assertAllClose(new_output_data, original_output_data) - - @parameterized.named_parameters( - ( - "list_input", - [1, 2, 3], - [1, 1, 1], - ), - ( - "list_input_2d", - [[1], [2], [3]], - [[1], [1], [1]], - ), - ( - "list_input_2d_multiple", - [[1, 2], [2, 3], [3, 4]], - [[1, 1], [1, 1], [1, 1]], - ), - ( - "list_input_3d", - [[[1], [2]], [[2], [3]], [[3], [4]]], - [[[1], [1]], [[1], [1]], [[1], [1]]], - ), - ) - def test_hash_list_input(self, input_data, expected): - layer = hashing.Hashing(num_bins=2) - out_data = layer(input_data) - self.assertAllEqual(expected, out_data.numpy().tolist()) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/image_preprocessing.py b/keras/layers/preprocessing/image_preprocessing.py deleted file mode 100644 index c81b3f6e3ae..00000000000 --- a/keras/layers/preprocessing/image_preprocessing.py +++ /dev/null @@ -1,1765 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras image preprocessing layers.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from tensorflow.python.util.tf_export import keras_export - -from keras import backend -from keras.engine import base_layer -from keras.engine import base_preprocessing_layer -from keras.layers.preprocessing import preprocessing_utils as utils -from keras.utils import image_utils -from keras.utils import tf_utils - -H_AXIS = -3 -W_AXIS = -2 - - -def check_fill_mode_and_interpolation(fill_mode, interpolation): - if fill_mode not in {"reflect", "wrap", "constant", "nearest"}: - raise NotImplementedError( - f"Unknown `fill_mode` {fill_mode}. Only `reflect`, `wrap`, " - "`constant` and `nearest` are supported." - ) - if interpolation not in {"nearest", "bilinear"}: - raise NotImplementedError( - f"Unknown `interpolation` {interpolation}. Only `nearest` and " - "`bilinear` are supported." - ) - - -@keras_export( - "keras.layers.Resizing", "keras.layers.experimental.preprocessing.Resizing" -) -class Resizing(base_layer.Layer): - """A preprocessing layer which resizes images. - - This layer resizes an image input to a target height and width. The input - should be a 4D (batched) or 3D (unbatched) tensor in `"channels_last"` - format. Input pixel values can be of any range - (e.g. `[0., 1.)` or `[0, 255]`) and of integer or floating point dtype. - By default, the layer will output floats. - - This layer can be called on tf.RaggedTensor batches of input images of - distinct sizes, and will resize the outputs to dense tensors of uniform - size. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - height: Integer, the height of the output shape. - width: Integer, the width of the output shape. - interpolation: String, the interpolation method. - Defaults to `"bilinear"`. - Supports `"bilinear"`, `"nearest"`, `"bicubic"`, `"area"`, - `"lanczos3"`, `"lanczos5"`, `"gaussian"`, `"mitchellcubic"`. - crop_to_aspect_ratio: If True, resize the images without aspect - ratio distortion. When the original aspect ratio differs - from the target aspect ratio, the output image will be - cropped so as to return the - largest possible window in the image (of size `(height, width)`) - that matches the target aspect ratio. By default - (`crop_to_aspect_ratio=False`), aspect ratio may not be preserved. - """ - - def __init__( - self, - height, - width, - interpolation="bilinear", - crop_to_aspect_ratio=False, - **kwargs, - ): - self.height = height - self.width = width - self.interpolation = interpolation - self.crop_to_aspect_ratio = crop_to_aspect_ratio - self._interpolation_method = image_utils.get_interpolation( - interpolation - ) - super().__init__(**kwargs) - base_preprocessing_layer.keras_kpl_gauge.get_cell("Resizing").set(True) - - def call(self, inputs): - # tf.image.resize will always output float32 - # and operate more efficiently on float32 - # unless interpolation is nearest, in which case ouput type matches - # input type. - if self.interpolation == "nearest": - input_dtype = self.compute_dtype - else: - input_dtype = tf.float32 - inputs = convert_inputs(inputs, dtype=input_dtype) - size = [self.height, self.width] - if self.crop_to_aspect_ratio: - - def resize_to_aspect(x): - if tf_utils.is_ragged(inputs): - x = x.to_tensor() - return image_utils.smart_resize( - x, size=size, interpolation=self._interpolation_method - ) - - if tf_utils.is_ragged(inputs): - size_as_shape = tf.TensorShape(size) - shape = size_as_shape + inputs.shape[-1:] - spec = tf.TensorSpec(shape, input_dtype) - outputs = tf.map_fn( - resize_to_aspect, inputs, fn_output_signature=spec - ) - else: - outputs = resize_to_aspect(inputs) - else: - outputs = tf.image.resize( - inputs, size=size, method=self._interpolation_method - ) - return tf.cast(outputs, self.compute_dtype) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - input_shape[H_AXIS] = self.height - input_shape[W_AXIS] = self.width - return tf.TensorShape(input_shape) - - def get_config(self): - config = { - "height": self.height, - "width": self.width, - "interpolation": self.interpolation, - "crop_to_aspect_ratio": self.crop_to_aspect_ratio, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export( - "keras.layers.CenterCrop", - "keras.layers.experimental.preprocessing.CenterCrop", -) -class CenterCrop(base_layer.Layer): - """A preprocessing layer which crops images. - - This layers crops the central portion of the images to a target size. If an - image is smaller than the target size, it will be resized and cropped - so as to return the largest possible window in the image that matches - the target aspect ratio. - - Input pixel values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and - of integer or floating point dtype. - By default, the layer will output floats. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Input shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format. - - Output shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., target_height, target_width, channels)`. - - If the input height/width is even and the target height/width is odd (or - inversely), the input image is left-padded by 1 pixel. - - Args: - height: Integer, the height of the output shape. - width: Integer, the width of the output shape. - """ - - def __init__(self, height, width, **kwargs): - self.height = height - self.width = width - super().__init__(**kwargs, autocast=False) - base_preprocessing_layer.keras_kpl_gauge.get_cell("CenterCrop").set( - True - ) - - def call(self, inputs): - inputs = convert_inputs(inputs, self.compute_dtype) - input_shape = tf.shape(inputs) - h_diff = input_shape[H_AXIS] - self.height - w_diff = input_shape[W_AXIS] - self.width - - def center_crop(): - h_start = tf.cast(h_diff / 2, tf.int32) - w_start = tf.cast(w_diff / 2, tf.int32) - return tf.image.crop_to_bounding_box( - inputs, h_start, w_start, self.height, self.width - ) - - def upsize(): - outputs = image_utils.smart_resize( - inputs, [self.height, self.width] - ) - # smart_resize will always output float32, so we need to re-cast. - return tf.cast(outputs, self.compute_dtype) - - return tf.cond( - tf.reduce_all((h_diff >= 0, w_diff >= 0)), center_crop, upsize - ) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - input_shape[H_AXIS] = self.height - input_shape[W_AXIS] = self.width - return tf.TensorShape(input_shape) - - def get_config(self): - config = { - "height": self.height, - "width": self.width, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export( - "keras.layers.RandomCrop", - "keras.layers.experimental.preprocessing.RandomCrop", - v1=[], -) -class RandomCrop(base_layer.BaseRandomLayer): - """A preprocessing layer which randomly crops images during training. - - During training, this layer will randomly choose a location to crop images - down to a target size. The layer will crop all the images in the same batch - to the same cropping location. - - At inference time, and during training if an input image is smaller than the - target size, the input will be resized and cropped so as to return the - largest possible window in the image that matches the target aspect ratio. - If you need to apply random cropping at inference time, set `training` to - True when calling the layer. - - Input pixel values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and - of integer or floating point dtype. By default, the layer will output - floats. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Input shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format. - - Output shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., target_height, target_width, channels)`. - - Args: - height: Integer, the height of the output shape. - width: Integer, the width of the output shape. - seed: Integer. Used to create a random seed. - """ - - def __init__(self, height, width, seed=None, **kwargs): - base_preprocessing_layer.keras_kpl_gauge.get_cell("RandomCrop").set( - True - ) - super().__init__( - **kwargs, autocast=False, seed=seed, force_generator=True - ) - self.height = height - self.width = width - self.seed = seed - - def call(self, inputs, training=True): - inputs = convert_inputs(inputs, dtype=self.compute_dtype) - input_shape = tf.shape(inputs) - h_diff = input_shape[H_AXIS] - self.height - w_diff = input_shape[W_AXIS] - self.width - - def random_crop(): - dtype = input_shape.dtype - rands = self._random_generator.random_uniform( - [2], 0, dtype.max, dtype - ) - h_start = rands[0] % (h_diff + 1) - w_start = rands[1] % (w_diff + 1) - return tf.image.crop_to_bounding_box( - inputs, h_start, w_start, self.height, self.width - ) - - def resize(): - outputs = image_utils.smart_resize( - inputs, [self.height, self.width] - ) - # smart_resize will always output float32, so we need to re-cast. - return tf.cast(outputs, self.compute_dtype) - - return tf.cond( - tf.reduce_all((training, h_diff >= 0, w_diff >= 0)), - random_crop, - resize, - ) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - input_shape[H_AXIS] = self.height - input_shape[W_AXIS] = self.width - return tf.TensorShape(input_shape) - - def get_config(self): - config = { - "height": self.height, - "width": self.width, - "seed": self.seed, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export( - "keras.layers.Rescaling", - "keras.layers.experimental.preprocessing.Rescaling", -) -class Rescaling(base_layer.Layer): - """A preprocessing layer which rescales input values to a new range. - - This layer rescales every value of an input (often an image) by multiplying - by `scale` and adding `offset`. - - For instance: - - 1. To rescale an input in the `[0, 255]` range - to be in the `[0, 1]` range, you would pass `scale=1./255`. - - 2. To rescale an input in the `[0, 255]` range to be in the `[-1, 1]` range, - you would pass `scale=1./127.5, offset=-1`. - - The rescaling is applied both during training and inference. Inputs can be - of integer or floating point dtype, and by default the layer will output - floats. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Input shape: - Arbitrary. - - Output shape: - Same as input. - - Args: - scale: Float, the scale to apply to the inputs. - offset: Float, the offset to apply to the inputs. - """ - - def __init__(self, scale, offset=0.0, **kwargs): - self.scale = scale - self.offset = offset - super().__init__(**kwargs) - base_preprocessing_layer.keras_kpl_gauge.get_cell("Rescaling").set(True) - - def call(self, inputs): - dtype = self.compute_dtype - inputs = convert_inputs(inputs, dtype=dtype) - scale = tf.cast(self.scale, dtype) - offset = tf.cast(self.offset, dtype) - return tf.cast(inputs, dtype) * scale + offset - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = { - "scale": self.scale, - "offset": self.offset, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -HORIZONTAL = "horizontal" -VERTICAL = "vertical" -HORIZONTAL_AND_VERTICAL = "horizontal_and_vertical" - - -@keras_export( - "keras.layers.RandomFlip", - "keras.layers.experimental.preprocessing.RandomFlip", - v1=[], -) -class RandomFlip(base_layer.BaseRandomLayer): - """A preprocessing layer which randomly flips images during training. - - This layer will flip the images horizontally and or vertically based on the - `mode` attribute. During inference time, the output will be identical to - input. Call the layer with `training=True` to flip the input. - - Input pixel values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and - of integer or floating point dtype. - By default, the layer will output floats. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Input shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format. - - Output shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format. - - Args: - mode: String indicating which flip mode to use. Can be `"horizontal"`, - `"vertical"`, or `"horizontal_and_vertical"`. Defaults to - `"horizontal_and_vertical"`. `"horizontal"` is a left-right flip and - `"vertical"` is a top-bottom flip. - seed: Integer. Used to create a random seed. - """ - - def __init__(self, mode=HORIZONTAL_AND_VERTICAL, seed=None, **kwargs): - super().__init__(seed=seed, force_generator=True, **kwargs) - base_preprocessing_layer.keras_kpl_gauge.get_cell("RandomFlip").set( - True - ) - self.mode = mode - if mode == HORIZONTAL: - self.horizontal = True - self.vertical = False - elif mode == VERTICAL: - self.horizontal = False - self.vertical = True - elif mode == HORIZONTAL_AND_VERTICAL: - self.horizontal = True - self.vertical = True - else: - raise ValueError( - f"RandomFlip layer {self.name} received an unknown mode " - f"argument {mode}" - ) - self.seed = seed - - def call(self, inputs, training=True): - inputs = convert_inputs(inputs, self.compute_dtype) - - def random_flipped_inputs(inputs): - flipped_outputs = inputs - if self.horizontal: - seed = self._random_generator.make_seed_for_stateless_op() - if seed is not None: - flipped_outputs = tf.image.stateless_random_flip_left_right( - flipped_outputs, seed=seed - ) - else: - flipped_outputs = tf.image.random_flip_left_right( - flipped_outputs, - self._random_generator.make_legacy_seed(), - ) - if self.vertical: - seed = self._random_generator.make_seed_for_stateless_op() - if seed is not None: - flipped_outputs = tf.image.stateless_random_flip_up_down( - flipped_outputs, seed=seed - ) - else: - flipped_outputs = tf.image.random_flip_up_down( - flipped_outputs, - self._random_generator.make_legacy_seed(), - ) - flipped_outputs.set_shape(inputs.shape) - return flipped_outputs - - if training: - return random_flipped_inputs(inputs) - else: - return inputs - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = { - "mode": self.mode, - "seed": self.seed, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -# TODO(tanzheny): Add examples, here and everywhere. -@keras_export( - "keras.layers.RandomTranslation", - "keras.layers.experimental.preprocessing.RandomTranslation", - v1=[], -) -class RandomTranslation(base_layer.BaseRandomLayer): - """A preprocessing layer which randomly translates images during training. - - This layer will apply random translations to each image during training, - filling empty space according to `fill_mode`. - - Input pixel values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and - of integer or floating point dtype. By default, the layer will output - floats. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - height_factor: a float represented as fraction of value, or a tuple of - size 2 representing lower and upper bound for shifting vertically. A - negative value means shifting image up, while a positive value means - shifting image down. When represented as a single positive float, this - value is used for both the upper and lower bound. For instance, - `height_factor=(-0.2, 0.3)` results in an output shifted by a random - amount in the range `[-20%, +30%]`. `height_factor=0.2` results in an - output height shifted by a random amount in the range `[-20%, +20%]`. - width_factor: a float represented as fraction of value, or a tuple of size - 2 representing lower and upper bound for shifting horizontally. A - negative value means shifting image left, while a positive value means - shifting image right. When represented as a single positive float, - this value is used for both the upper and lower bound. For instance, - `width_factor=(-0.2, 0.3)` results in an output shifted left by 20%, - and shifted right by 30%. `width_factor=0.2` results - in an output height shifted left or right by 20%. - fill_mode: Points outside the boundaries of the input are filled according - to the given mode - (one of `{"constant", "reflect", "wrap", "nearest"}`). - - *reflect*: `(d c b a | a b c d | d c b a)` The input is extended by - reflecting about the edge of the last pixel. - - *constant*: `(k k k k | a b c d | k k k k)` The input is extended by - filling all values beyond the edge with the same constant value - k = 0. - - *wrap*: `(a b c d | a b c d | a b c d)` The input is extended by - wrapping around to the opposite edge. - - *nearest*: `(a a a a | a b c d | d d d d)` The input is extended by - the nearest pixel. - interpolation: Interpolation mode. Supported values: `"nearest"`, - `"bilinear"`. - seed: Integer. Used to create a random seed. - fill_value: a float represents the value to be filled outside the - boundaries when `fill_mode="constant"`. - - Input shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format. - - Output shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format. - """ - - def __init__( - self, - height_factor, - width_factor, - fill_mode="reflect", - interpolation="bilinear", - seed=None, - fill_value=0.0, - **kwargs, - ): - base_preprocessing_layer.keras_kpl_gauge.get_cell( - "RandomTranslation" - ).set(True) - super().__init__(seed=seed, force_generator=True, **kwargs) - self.height_factor = height_factor - if isinstance(height_factor, (tuple, list)): - self.height_lower = height_factor[0] - self.height_upper = height_factor[1] - else: - self.height_lower = -height_factor - self.height_upper = height_factor - if self.height_upper < self.height_lower: - raise ValueError( - "`height_factor` cannot have upper bound less than " - f"lower bound, got {height_factor}" - ) - if abs(self.height_lower) > 1.0 or abs(self.height_upper) > 1.0: - raise ValueError( - "`height_factor` argument must have values between [-1, 1]. " - f"Received: height_factor={height_factor}" - ) - - self.width_factor = width_factor - if isinstance(width_factor, (tuple, list)): - self.width_lower = width_factor[0] - self.width_upper = width_factor[1] - else: - self.width_lower = -width_factor - self.width_upper = width_factor - if self.width_upper < self.width_lower: - raise ValueError( - "`width_factor` cannot have upper bound less than " - f"lower bound, got {width_factor}" - ) - if abs(self.width_lower) > 1.0 or abs(self.width_upper) > 1.0: - raise ValueError( - "`width_factor` must have values between [-1, 1], " - f"got {width_factor}" - ) - - check_fill_mode_and_interpolation(fill_mode, interpolation) - - self.fill_mode = fill_mode - self.fill_value = fill_value - self.interpolation = interpolation - self.seed = seed - - def call(self, inputs, training=True): - inputs = convert_inputs(inputs, self.compute_dtype) - - def random_translated_inputs(inputs): - """Translated inputs with random ops.""" - # The transform op only accepts rank 4 inputs, - # so if we have an unbatched image, - # we need to temporarily expand dims to a batch. - original_shape = inputs.shape - unbatched = inputs.shape.rank == 3 - if unbatched: - inputs = tf.expand_dims(inputs, 0) - - inputs_shape = tf.shape(inputs) - batch_size = inputs_shape[0] - img_hd = tf.cast(inputs_shape[H_AXIS], tf.float32) - img_wd = tf.cast(inputs_shape[W_AXIS], tf.float32) - height_translate = self._random_generator.random_uniform( - shape=[batch_size, 1], - minval=self.height_lower, - maxval=self.height_upper, - dtype=tf.float32, - ) - height_translate = height_translate * img_hd - width_translate = self._random_generator.random_uniform( - shape=[batch_size, 1], - minval=self.width_lower, - maxval=self.width_upper, - dtype=tf.float32, - ) - width_translate = width_translate * img_wd - translations = tf.cast( - tf.concat([width_translate, height_translate], axis=1), - dtype=tf.float32, - ) - output = transform( - inputs, - get_translation_matrix(translations), - interpolation=self.interpolation, - fill_mode=self.fill_mode, - fill_value=self.fill_value, - ) - if unbatched: - output = tf.squeeze(output, 0) - output.set_shape(original_shape) - return output - - if training: - return random_translated_inputs(inputs) - else: - return inputs - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = { - "height_factor": self.height_factor, - "width_factor": self.width_factor, - "fill_mode": self.fill_mode, - "fill_value": self.fill_value, - "interpolation": self.interpolation, - "seed": self.seed, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -def get_translation_matrix(translations, name=None): - """Returns projective transform(s) for the given translation(s). - - Args: - translations: A matrix of 2-element lists representing `[dx, dy]` - to translate for each image (for a batch of images). - name: The name of the op. - - Returns: - A tensor of shape `(num_images, 8)` projective transforms - which can be given to `transform`. - """ - with backend.name_scope(name or "translation_matrix"): - num_translations = tf.shape(translations)[0] - # The translation matrix looks like: - # [[1 0 -dx] - # [0 1 -dy] - # [0 0 1]] - # where the last entry is implicit. - # Translation matrices are always float32. - return tf.concat( - values=[ - tf.ones((num_translations, 1), tf.float32), - tf.zeros((num_translations, 1), tf.float32), - -translations[:, 0, None], - tf.zeros((num_translations, 1), tf.float32), - tf.ones((num_translations, 1), tf.float32), - -translations[:, 1, None], - tf.zeros((num_translations, 2), tf.float32), - ], - axis=1, - ) - - -def transform( - images, - transforms, - fill_mode="reflect", - fill_value=0.0, - interpolation="bilinear", - output_shape=None, - name=None, -): - """Applies the given transform(s) to the image(s). - - Args: - images: A tensor of shape - `(num_images, num_rows, num_columns, num_channels)` (NHWC). - The rank must be statically known - (the shape is not `TensorShape(None)`). - transforms: Projective transform matrix/matrices. - A vector of length 8 or tensor of size N x 8. - If one row of transforms is [a0, a1, a2, b0, b1, b2, - c0, c1], then it maps the *output* point `(x, y)` - to a transformed *input* point - `(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k)`, where - `k = c0 x + c1 y + 1`. The transforms are *inverted* compared to the - transform mapping input points to output points. - Note that gradients are not backpropagated - into transformation parameters. - fill_mode: Points outside the boundaries of the input are filled - according to the given mode - (one of `{"constant", "reflect", "wrap", "nearest"}`). - fill_value: a float represents the value to be filled outside - the boundaries when `fill_mode="constant"`. - interpolation: Interpolation mode. Supported values: `"nearest"`, - `"bilinear"`. - output_shape: Output dimension after the transform, `[height, width]`. - If `None`, output is the same size as input image. - name: The name of the op. - - Fill mode behavior for each valid value is as follows: - - - `"reflect"`: `(d c b a | a b c d | d c b a)` - The input is extended by reflecting about the edge of the last pixel. - - - `"constant"`: `(k k k k | a b c d | k k k k)` - The input is extended by filling all - values beyond the edge with the same constant value k = 0. - - - `"wrap"`: `(a b c d | a b c d | a b c d)` - The input is extended by wrapping around to the opposite edge. - - - `"nearest"`: `(a a a a | a b c d | d d d d)` - The input is extended by the nearest pixel. - - Input shape: - 4D tensor with shape: `(samples, height, width, channels)`, - in `"channels_last"` format. - - Output shape: - 4D tensor with shape: `(samples, height, width, channels)`, - in `"channels_last"` format. - - Returns: - Image(s) with the same type and shape as `images`, with the given - transform(s) applied. Transformed coordinates outside of the input image - will be filled with zeros. - """ - with backend.name_scope(name or "transform"): - if output_shape is None: - output_shape = tf.shape(images)[1:3] - if not tf.executing_eagerly(): - output_shape_value = tf.get_static_value(output_shape) - if output_shape_value is not None: - output_shape = output_shape_value - - output_shape = tf.convert_to_tensor( - output_shape, tf.int32, name="output_shape" - ) - - if not output_shape.get_shape().is_compatible_with([2]): - raise ValueError( - "output_shape must be a 1-D Tensor of 2 elements: " - "new_height, new_width, instead got " - f"output_shape={output_shape}" - ) - - fill_value = tf.convert_to_tensor( - fill_value, tf.float32, name="fill_value" - ) - - return tf.raw_ops.ImageProjectiveTransformV3( - images=images, - output_shape=output_shape, - fill_value=fill_value, - transforms=transforms, - fill_mode=fill_mode.upper(), - interpolation=interpolation.upper(), - ) - - -def get_rotation_matrix(angles, image_height, image_width, name=None): - """Returns projective transform(s) for the given angle(s). - - Args: - angles: A scalar angle to rotate all images by, - or (for batches of images) a vector with an angle to - rotate each image in the batch. The rank must be - statically known (the shape is not `TensorShape(None)`). - image_height: Height of the image(s) to be transformed. - image_width: Width of the image(s) to be transformed. - name: The name of the op. - - Returns: - A tensor of shape (num_images, 8). - Projective transforms which can be given - to operation `image_projective_transform_v2`. - If one row of transforms is - [a0, a1, a2, b0, b1, b2, c0, c1], then it maps the *output* point - `(x, y)` to a transformed *input* point - `(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k)`, - where `k = c0 x + c1 y + 1`. - """ - with backend.name_scope(name or "rotation_matrix"): - x_offset = ( - (image_width - 1) - - ( - tf.cos(angles) * (image_width - 1) - - tf.sin(angles) * (image_height - 1) - ) - ) / 2.0 - y_offset = ( - (image_height - 1) - - ( - tf.sin(angles) * (image_width - 1) - + tf.cos(angles) * (image_height - 1) - ) - ) / 2.0 - num_angles = tf.shape(angles)[0] - return tf.concat( - values=[ - tf.cos(angles)[:, None], - -tf.sin(angles)[:, None], - x_offset[:, None], - tf.sin(angles)[:, None], - tf.cos(angles)[:, None], - y_offset[:, None], - tf.zeros((num_angles, 2), tf.float32), - ], - axis=1, - ) - - -@keras_export( - "keras.layers.RandomRotation", - "keras.layers.experimental.preprocessing.RandomRotation", - v1=[], -) -class RandomRotation(base_layer.BaseRandomLayer): - """A preprocessing layer which randomly rotates images during training. - - This layer will apply random rotations to each image, filling empty space - according to `fill_mode`. - - By default, random rotations are only applied during training. - At inference time, the layer does nothing. If you need to apply random - rotations at inference time, set `training` to True when calling the layer. - - Input pixel values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and - of integer or floating point dtype. - By default, the layer will output floats. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Input shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format - - Output shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format - - Args: - factor: a float represented as fraction of 2 Pi, or a tuple of size 2 - representing lower and upper bound for rotating clockwise and - counter-clockwise. A positive values means rotating - counter clock-wise, - while a negative value means clock-wise. - When represented as a single - float, this value is used for both the upper and lower bound. - For instance, `factor=(-0.2, 0.3)` - results in an output rotation by a random - amount in the range `[-20% * 2pi, 30% * 2pi]`. - `factor=0.2` results in an - output rotating by a random amount - in the range `[-20% * 2pi, 20% * 2pi]`. - fill_mode: Points outside the boundaries of the input are filled - according to the given mode - (one of `{"constant", "reflect", "wrap", "nearest"}`). - - *reflect*: `(d c b a | a b c d | d c b a)` - The input is extended by reflecting about - the edge of the last pixel. - - *constant*: `(k k k k | a b c d | k k k k)` - The input is extended by - filling all values beyond the edge with - the same constant value k = 0. - - *wrap*: `(a b c d | a b c d | a b c d)` The input is extended by - wrapping around to the opposite edge. - - *nearest*: `(a a a a | a b c d | d d d d)` - The input is extended by the nearest pixel. - interpolation: Interpolation mode. Supported values: `"nearest"`, - `"bilinear"`. - seed: Integer. Used to create a random seed. - fill_value: a float represents the value to be filled outside - the boundaries when `fill_mode="constant"`. - """ - - def __init__( - self, - factor, - fill_mode="reflect", - interpolation="bilinear", - seed=None, - fill_value=0.0, - **kwargs, - ): - base_preprocessing_layer.keras_kpl_gauge.get_cell("RandomRotation").set( - True - ) - super().__init__(seed=seed, force_generator=True, **kwargs) - self.factor = factor - if isinstance(factor, (tuple, list)): - self.lower = factor[0] - self.upper = factor[1] - else: - self.lower = -factor - self.upper = factor - if self.upper < self.lower: - raise ValueError( - "`factor` argument cannot have a negative value. " - f"Received: factor={factor}" - ) - check_fill_mode_and_interpolation(fill_mode, interpolation) - self.fill_mode = fill_mode - self.fill_value = fill_value - self.interpolation = interpolation - self.seed = seed - - def call(self, inputs, training=True): - inputs = convert_inputs(inputs, self.compute_dtype) - - def random_rotated_inputs(inputs): - """Rotated inputs with random ops.""" - original_shape = inputs.shape - unbatched = inputs.shape.rank == 3 - # The transform op only accepts rank 4 inputs, - # so if we have an unbatched image, - # we need to temporarily expand dims to a batch. - if unbatched: - inputs = tf.expand_dims(inputs, 0) - inputs_shape = tf.shape(inputs) - batch_size = inputs_shape[0] - img_hd = tf.cast(inputs_shape[H_AXIS], tf.float32) - img_wd = tf.cast(inputs_shape[W_AXIS], tf.float32) - min_angle = self.lower * 2.0 * np.pi - max_angle = self.upper * 2.0 * np.pi - angles = self._random_generator.random_uniform( - shape=[batch_size], minval=min_angle, maxval=max_angle - ) - output = transform( - inputs, - get_rotation_matrix(angles, img_hd, img_wd), - fill_mode=self.fill_mode, - fill_value=self.fill_value, - interpolation=self.interpolation, - ) - if unbatched: - output = tf.squeeze(output, 0) - output.set_shape(original_shape) - return output - - if training: - return random_rotated_inputs(inputs) - else: - return inputs - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = { - "factor": self.factor, - "fill_mode": self.fill_mode, - "fill_value": self.fill_value, - "interpolation": self.interpolation, - "seed": self.seed, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export( - "keras.layers.RandomZoom", - "keras.layers.experimental.preprocessing.RandomZoom", - v1=[], -) -class RandomZoom(base_layer.BaseRandomLayer): - """A preprocessing layer which randomly zooms images during training. - - This layer will randomly zoom in or out on each axis of an image - independently, filling empty space according to `fill_mode`. - - Input pixel values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and - of integer or floating point dtype. - By default, the layer will output floats. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - height_factor: a float represented as fraction of value, - or a tuple of size 2 representing lower and upper bound - for zooming vertically. When represented as a single float, - this value is used for both the upper and - lower bound. A positive value means zooming out, - while a negative value - means zooming in. For instance, `height_factor=(0.2, 0.3)` - result in an output zoomed out by a random amount - in the range `[+20%, +30%]`. - `height_factor=(-0.3, -0.2)` result in an output zoomed - in by a random amount in the range `[+20%, +30%]`. - width_factor: a float represented as fraction of value, - or a tuple of size 2 representing lower and upper bound - for zooming horizontally. When - represented as a single float, this value is used - for both the upper and - lower bound. For instance, `width_factor=(0.2, 0.3)` - result in an output - zooming out between 20% to 30%. - `width_factor=(-0.3, -0.2)` result in an - output zooming in between 20% to 30%. Defaults to `None`, - i.e., zooming vertical and horizontal directions - by preserving the aspect ratio. - fill_mode: Points outside the boundaries of the input are - filled according to the given mode - (one of `{"constant", "reflect", "wrap", "nearest"}`). - - *reflect*: `(d c b a | a b c d | d c b a)` - The input is extended by reflecting about - the edge of the last pixel. - - *constant*: `(k k k k | a b c d | k k k k)` - The input is extended by filling all values beyond - the edge with the same constant value k = 0. - - *wrap*: `(a b c d | a b c d | a b c d)` The input is extended by - wrapping around to the opposite edge. - - *nearest*: `(a a a a | a b c d | d d d d)` - The input is extended by the nearest pixel. - interpolation: Interpolation mode. Supported values: `"nearest"`, - `"bilinear"`. - seed: Integer. Used to create a random seed. - fill_value: a float represents the value to be filled outside - the boundaries when `fill_mode="constant"`. - - Example: - - >>> input_img = np.random.random((32, 224, 224, 3)) - >>> layer = tf.keras.layers.RandomZoom(.5, .2) - >>> out_img = layer(input_img) - >>> out_img.shape - TensorShape([32, 224, 224, 3]) - - Input shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format. - - Output shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format. - """ - - def __init__( - self, - height_factor, - width_factor=None, - fill_mode="reflect", - interpolation="bilinear", - seed=None, - fill_value=0.0, - **kwargs, - ): - base_preprocessing_layer.keras_kpl_gauge.get_cell("RandomZoom").set( - True - ) - super().__init__(seed=seed, force_generator=True, **kwargs) - self.height_factor = height_factor - if isinstance(height_factor, (tuple, list)): - self.height_lower = height_factor[0] - self.height_upper = height_factor[1] - else: - self.height_lower = -height_factor - self.height_upper = height_factor - - if abs(self.height_lower) > 1.0 or abs(self.height_upper) > 1.0: - raise ValueError( - "`height_factor` argument must have values between [-1, 1]. " - f"Received: height_factor={height_factor}" - ) - - self.width_factor = width_factor - if width_factor is not None: - if isinstance(width_factor, (tuple, list)): - self.width_lower = width_factor[0] - self.width_upper = width_factor[1] - else: - self.width_lower = -width_factor - self.width_upper = width_factor - - if self.width_lower < -1.0 or self.width_upper < -1.0: - raise ValueError( - "`width_factor` argument must have values larger than -1. " - f"Received: width_factor={width_factor}" - ) - - check_fill_mode_and_interpolation(fill_mode, interpolation) - - self.fill_mode = fill_mode - self.fill_value = fill_value - self.interpolation = interpolation - self.seed = seed - - def call(self, inputs, training=True): - inputs = convert_inputs(inputs, self.compute_dtype) - - def random_zoomed_inputs(inputs): - """Zoomed inputs with random ops.""" - original_shape = inputs.shape - unbatched = inputs.shape.rank == 3 - # The transform op only accepts rank 4 inputs, - # so if we have an unbatched image, - # we need to temporarily expand dims to a batch. - if unbatched: - inputs = tf.expand_dims(inputs, 0) - inputs_shape = tf.shape(inputs) - batch_size = inputs_shape[0] - img_hd = tf.cast(inputs_shape[H_AXIS], tf.float32) - img_wd = tf.cast(inputs_shape[W_AXIS], tf.float32) - height_zoom = self._random_generator.random_uniform( - shape=[batch_size, 1], - minval=1.0 + self.height_lower, - maxval=1.0 + self.height_upper, - ) - if self.width_factor is not None: - width_zoom = self._random_generator.random_uniform( - shape=[batch_size, 1], - minval=1.0 + self.width_lower, - maxval=1.0 + self.width_upper, - ) - else: - width_zoom = height_zoom - zooms = tf.cast( - tf.concat([width_zoom, height_zoom], axis=1), dtype=tf.float32 - ) - output = transform( - inputs, - get_zoom_matrix(zooms, img_hd, img_wd), - fill_mode=self.fill_mode, - fill_value=self.fill_value, - interpolation=self.interpolation, - ) - if unbatched: - output = tf.squeeze(output, 0) - output.set_shape(original_shape) - return output - - if training: - return random_zoomed_inputs(inputs) - else: - return inputs - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = { - "height_factor": self.height_factor, - "width_factor": self.width_factor, - "fill_mode": self.fill_mode, - "fill_value": self.fill_value, - "interpolation": self.interpolation, - "seed": self.seed, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -def get_zoom_matrix(zooms, image_height, image_width, name=None): - """Returns projective transform(s) for the given zoom(s). - - Args: - zooms: A matrix of 2-element lists representing `[zx, zy]` - to zoom for each image (for a batch of images). - image_height: Height of the image(s) to be transformed. - image_width: Width of the image(s) to be transformed. - name: The name of the op. - - Returns: - A tensor of shape `(num_images, 8)`. Projective transforms which can be - given to operation `image_projective_transform_v2`. - If one row of transforms is - `[a0, a1, a2, b0, b1, b2, c0, c1]`, then it maps the *output* point - `(x, y)` to a transformed *input* point - `(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k)`, - where `k = c0 x + c1 y + 1`. - """ - with backend.name_scope(name or "zoom_matrix"): - num_zooms = tf.shape(zooms)[0] - # The zoom matrix looks like: - # [[zx 0 0] - # [0 zy 0] - # [0 0 1]] - # where the last entry is implicit. - # Zoom matrices are always float32. - x_offset = ((image_width - 1.0) / 2.0) * (1.0 - zooms[:, 0, None]) - y_offset = ((image_height - 1.0) / 2.0) * (1.0 - zooms[:, 1, None]) - return tf.concat( - values=[ - zooms[:, 0, None], - tf.zeros((num_zooms, 1), tf.float32), - x_offset, - tf.zeros((num_zooms, 1), tf.float32), - zooms[:, 1, None], - y_offset, - tf.zeros((num_zooms, 2), tf.float32), - ], - axis=1, - ) - - -@keras_export( - "keras.layers.RandomContrast", - "keras.layers.experimental.preprocessing.RandomContrast", - v1=[], -) -class RandomContrast(base_layer.BaseRandomLayer): - """A preprocessing layer which randomly adjusts contrast during training. - - This layer will randomly adjust the contrast of an image or images - by a random factor. Contrast is adjusted independently - for each channel of each image during training. - - For each channel, this layer computes the mean of the image pixels in the - channel and then adjusts each component `x` of each pixel to - `(x - mean) * contrast_factor + mean`. - - Input pixel values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and - in integer or floating point dtype. - By default, the layer will output floats. - The output value will be clipped to the range `[0, 255]`, the valid - range of RGB colors. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Input shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format. - - Output shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format. - - Args: - factor: a positive float represented as fraction of value, or a tuple of - size 2 representing lower and upper bound. - When represented as a single float, lower = upper. - The contrast factor will be randomly picked between - `[1.0 - lower, 1.0 + upper]`. For any pixel x in the channel, - the output will be `(x - mean) * factor + mean` - where `mean` is the mean value of the channel. - seed: Integer. Used to create a random seed. - """ - - def __init__(self, factor, seed=None, **kwargs): - base_preprocessing_layer.keras_kpl_gauge.get_cell("RandomContrast").set( - True - ) - super().__init__(seed=seed, force_generator=True, **kwargs) - self.factor = factor - if isinstance(factor, (tuple, list)): - self.lower = factor[0] - self.upper = factor[1] - else: - self.lower = self.upper = factor - if self.lower < 0.0 or self.upper < 0.0 or self.lower > 1.0: - raise ValueError( - "`factor` argument cannot have negative values or values " - "greater than 1." - f"Received: factor={factor}" - ) - self.seed = seed - - def call(self, inputs, training=True): - inputs = convert_inputs(inputs, self.compute_dtype) - - def random_contrasted_inputs(inputs): - seed = self._random_generator.make_seed_for_stateless_op() - if seed is not None: - output = tf.image.stateless_random_contrast( - inputs, 1.0 - self.lower, 1.0 + self.upper, seed=seed - ) - else: - output = tf.image.random_contrast( - inputs, - 1.0 - self.lower, - 1.0 + self.upper, - seed=self._random_generator.make_legacy_seed(), - ) - output = tf.clip_by_value(output, 0, 255) - output.set_shape(inputs.shape) - return output - - if training: - return random_contrasted_inputs(inputs) - else: - return inputs - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = { - "factor": self.factor, - "seed": self.seed, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.layers.RandomBrightness", v1=[]) -class RandomBrightness(base_layer.BaseRandomLayer): - """A preprocessing layer which randomly adjusts brightness during training. - - This layer will randomly increase/reduce the brightness for the input RGB - images. At inference time, the output will be identical to the input. - Call the layer with `training=True` to adjust the brightness of the input. - - Note that different brightness adjustment factors - will be apply to each the images in the batch. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - factor: Float or a list/tuple of 2 floats between -1.0 and 1.0. The - factor is used to determine the lower bound and upper bound of the - brightness adjustment. A float value will be chosen randomly between - the limits. When -1.0 is chosen, the output image will be black, and - when 1.0 is chosen, the image will be fully white. - When only one float is provided, eg, 0.2, - then -0.2 will be used for lower bound and 0.2 - will be used for upper bound. - value_range: Optional list/tuple of 2 floats - for the lower and upper limit - of the values of the input data. Defaults to [0.0, 255.0]. - Can be changed to e.g. [0.0, 1.0] if the image input - has been scaled before this layer. - The brightness adjustment will be scaled to this range, and the - output values will be clipped to this range. - seed: optional integer, for fixed RNG behavior. - - Inputs: 3D (HWC) or 4D (NHWC) tensor, with float or int dtype. Input pixel - values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) - - Output: 3D (HWC) or 4D (NHWC) tensor with brightness adjusted based on the - `factor`. By default, the layer will output floats. - The output value will be clipped to the range `[0, 255]`, - the valid range of RGB colors, and - rescaled based on the `value_range` if needed. - - Sample usage: - - ```python - random_bright = tf.keras.layers.RandomBrightness(factor=0.2) - - # An image with shape [2, 2, 3] - image = [[[1, 2, 3], [4 ,5 ,6]], [[7, 8, 9], [10, 11, 12]]] - - # Assume we randomly select the factor to be 0.1, then it will apply - # 0.1 * 255 to all the channel - output = random_bright(image, training=True) - - # output will be int64 with 25.5 added to each channel and round down. - tf.Tensor([[[26.5, 27.5, 28.5] - [29.5, 30.5, 31.5]] - [[32.5, 33.5, 34.5] - [35.5, 36.5, 37.5]]], - shape=(2, 2, 3), dtype=int64) - ``` - """ - - _FACTOR_VALIDATION_ERROR = ( - "The `factor` argument should be a number (or a list of two numbers) " - "in the range [-1.0, 1.0]. " - ) - _VALUE_RANGE_VALIDATION_ERROR = ( - "The `value_range` argument should be a list of two numbers. " - ) - - def __init__(self, factor, value_range=(0, 255), seed=None, **kwargs): - base_preprocessing_layer.keras_kpl_gauge.get_cell( - "RandomBrightness" - ).set(True) - super().__init__(seed=seed, force_generator=True, **kwargs) - self._set_factor(factor) - self._set_value_range(value_range) - self._seed = seed - - def _set_value_range(self, value_range): - if not isinstance(value_range, (tuple, list)): - raise ValueError( - self._VALUE_RANGE_VALIDATION_ERROR + f"Got {value_range}" - ) - if len(value_range) != 2: - raise ValueError( - self._VALUE_RANGE_VALIDATION_ERROR + f"Got {value_range}" - ) - self._value_range = sorted(value_range) - - def _set_factor(self, factor): - if isinstance(factor, (tuple, list)): - if len(factor) != 2: - raise ValueError( - self._FACTOR_VALIDATION_ERROR + f"Got {factor}" - ) - self._check_factor_range(factor[0]) - self._check_factor_range(factor[1]) - self._factor = sorted(factor) - elif isinstance(factor, (int, float)): - self._check_factor_range(factor) - factor = abs(factor) - self._factor = [-factor, factor] - else: - raise ValueError(self._FACTOR_VALIDATION_ERROR + f"Got {factor}") - - def _check_factor_range(self, input_number): - if input_number > 1.0 or input_number < -1.0: - raise ValueError( - self._FACTOR_VALIDATION_ERROR + f"Got {input_number}" - ) - - def call(self, inputs, training=True): - inputs = convert_inputs(inputs, dtype=self.compute_dtype) - if training: - return self._brightness_adjust(inputs) - else: - return inputs - - def _brightness_adjust(self, images): - rank = images.shape.rank - if rank == 3: - rgb_delta_shape = (1, 1, 1) - elif rank == 4: - # Keep only the batch dim. This will ensure to have same adjustment - # with in one image, but different across the images. - rgb_delta_shape = [tf.shape(images)[0], 1, 1, 1] - else: - raise ValueError( - "Expected the input image to be rank 3 or 4. Got " - f"inputs.shape = {images.shape}" - ) - rgb_delta = self._random_generator.random_uniform( - shape=rgb_delta_shape, - minval=self._factor[0], - maxval=self._factor[1], - ) - rgb_delta = rgb_delta * (self._value_range[1] - self._value_range[0]) - rgb_delta = tf.cast(rgb_delta, images.dtype) - images += rgb_delta - return tf.clip_by_value( - images, self._value_range[0], self._value_range[1] - ) - - def get_config(self): - config = { - "factor": self._factor, - "value_range": self._value_range, - "seed": self._seed, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export( - "keras.layers.RandomHeight", - "keras.layers.experimental.preprocessing.RandomHeight", - v1=[], -) -class RandomHeight(base_layer.BaseRandomLayer): - """A preprocessing layer which randomly varies image height during training. - - This layer adjusts the height of a batch of images by a random factor. - The input should be a 3D (unbatched) or 4D (batched) tensor in the - `"channels_last"` image data format. Input pixel values can be of any range - (e.g. `[0., 1.)` or `[0, 255]`) and of integer or floating point dtype. By - default, the layer will output floats. - - - By default, this layer is inactive during inference. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - factor: A positive float (fraction of original height), - or a tuple of size 2 representing lower and upper bound - for resizing vertically. When represented as a single float, - this value is used for both the upper and - lower bound. For instance, `factor=(0.2, 0.3)` results - in an output with - height changed by a random amount in the range `[20%, 30%]`. - `factor=(-0.2, 0.3)` results in an output with height - changed by a random amount in the range `[-20%, +30%]`. - `factor=0.2` results in an output with - height changed by a random amount in the range `[-20%, +20%]`. - interpolation: String, the interpolation method. - Defaults to `"bilinear"`. - Supports `"bilinear"`, `"nearest"`, `"bicubic"`, `"area"`, - `"lanczos3"`, `"lanczos5"`, `"gaussian"`, `"mitchellcubic"`. - seed: Integer. Used to create a random seed. - - Input shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format. - - Output shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., random_height, width, channels)`. - """ - - def __init__(self, factor, interpolation="bilinear", seed=None, **kwargs): - base_preprocessing_layer.keras_kpl_gauge.get_cell("RandomHeight").set( - True - ) - super().__init__(seed=seed, force_generator=True, **kwargs) - self.factor = factor - if isinstance(factor, (tuple, list)): - self.height_lower = factor[0] - self.height_upper = factor[1] - else: - self.height_lower = -factor - self.height_upper = factor - - if self.height_upper < self.height_lower: - raise ValueError( - "`factor` argument cannot have an upper bound lesser than the " - f"lower bound. Received: factor={factor}" - ) - if self.height_lower < -1.0 or self.height_upper < -1.0: - raise ValueError( - "`factor` argument must have values larger than -1. " - f"Received: factor={factor}" - ) - self.interpolation = interpolation - self._interpolation_method = image_utils.get_interpolation( - interpolation - ) - self.seed = seed - - def call(self, inputs, training=True): - inputs = convert_inputs(inputs) - - def random_height_inputs(inputs): - """Inputs height-adjusted with random ops.""" - inputs_shape = tf.shape(inputs) - img_hd = tf.cast(inputs_shape[H_AXIS], tf.float32) - img_wd = inputs_shape[W_AXIS] - height_factor = self._random_generator.random_uniform( - shape=[], - minval=(1.0 + self.height_lower), - maxval=(1.0 + self.height_upper), - ) - adjusted_height = tf.cast(height_factor * img_hd, tf.int32) - adjusted_size = tf.stack([adjusted_height, img_wd]) - output = tf.image.resize( - images=inputs, - size=adjusted_size, - method=self._interpolation_method, - ) - # tf.resize will output float32 regardless of input type. - output = tf.cast(output, self.compute_dtype) - output_shape = inputs.shape.as_list() - output_shape[H_AXIS] = None - output.set_shape(output_shape) - return output - - if training: - return random_height_inputs(inputs) - else: - return inputs - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - input_shape[H_AXIS] = None - return tf.TensorShape(input_shape) - - def get_config(self): - config = { - "factor": self.factor, - "interpolation": self.interpolation, - "seed": self.seed, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export( - "keras.layers.RandomWidth", - "keras.layers.experimental.preprocessing.RandomWidth", - v1=[], -) -class RandomWidth(base_layer.BaseRandomLayer): - """A preprocessing layer which randomly varies image width during training. - - This layer will randomly adjusts the width of a batch of images of a - batch of images by a random factor. The input should be a 3D (unbatched) or - 4D (batched) tensor in the `"channels_last"` image data format. Input pixel - values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and of integer or - floating point dtype. By default, the layer will output floats. - - By default, this layer is inactive during inference. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - factor: A positive float (fraction of original width), - or a tuple of size 2 representing lower and upper bound - for resizing vertically. When represented as a single float, - this value is used for both the upper and - lower bound. For instance, `factor=(0.2, 0.3)` - results in an output with - width changed by a random amount in the range `[20%, 30%]`. - `factor=(-0.2, 0.3)` results in an output with width changed - by a random amount in the range `[-20%, +30%]`. - `factor=0.2` results in an output with width changed - by a random amount in the range `[-20%, +20%]`. - interpolation: String, the interpolation method. - Defaults to `bilinear`. - Supports `"bilinear"`, `"nearest"`, `"bicubic"`, `"area"`, - `"lanczos3"`, `"lanczos5"`, `"gaussian"`, `"mitchellcubic"`. - seed: Integer. Used to create a random seed. - - Input shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, width, channels)`, in `"channels_last"` format. - - Output shape: - 3D (unbatched) or 4D (batched) tensor with shape: - `(..., height, random_width, channels)`. - """ - - def __init__(self, factor, interpolation="bilinear", seed=None, **kwargs): - base_preprocessing_layer.keras_kpl_gauge.get_cell("RandomWidth").set( - True - ) - super().__init__(seed=seed, force_generator=True, **kwargs) - self.factor = factor - if isinstance(factor, (tuple, list)): - self.width_lower = factor[0] - self.width_upper = factor[1] - else: - self.width_lower = -factor - self.width_upper = factor - if self.width_upper < self.width_lower: - raise ValueError( - "`factor` argument cannot have an upper bound less than the " - f"lower bound. Received: factor={factor}" - ) - if self.width_lower < -1.0 or self.width_upper < -1.0: - raise ValueError( - "`factor` argument must have values larger than -1. " - f"Received: factor={factor}" - ) - self.interpolation = interpolation - self._interpolation_method = image_utils.get_interpolation( - interpolation - ) - self.seed = seed - - def call(self, inputs, training=True): - inputs = convert_inputs(inputs) - - def random_width_inputs(inputs): - """Inputs width-adjusted with random ops.""" - inputs_shape = tf.shape(inputs) - img_hd = inputs_shape[H_AXIS] - img_wd = tf.cast(inputs_shape[W_AXIS], tf.float32) - width_factor = self._random_generator.random_uniform( - shape=[], - minval=(1.0 + self.width_lower), - maxval=(1.0 + self.width_upper), - ) - adjusted_width = tf.cast(width_factor * img_wd, tf.int32) - adjusted_size = tf.stack([img_hd, adjusted_width]) - output = tf.image.resize( - images=inputs, - size=adjusted_size, - method=self._interpolation_method, - ) - # tf.resize will output float32 regardless of input type. - output = tf.cast(output, self.compute_dtype) - output_shape = inputs.shape.as_list() - output_shape[W_AXIS] = None - output.set_shape(output_shape) - return output - - if training: - return random_width_inputs(inputs) - else: - return inputs - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - input_shape[W_AXIS] = None - return tf.TensorShape(input_shape) - - def get_config(self): - config = { - "factor": self.factor, - "interpolation": self.interpolation, - "seed": self.seed, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -def convert_inputs(inputs, dtype=None): - if isinstance(inputs, dict): - raise ValueError( - "This layer can only process a tensor representing an image or " - f"a batch of images. Received: type(inputs)={type(inputs)}." - "If you need to pass a dict containing " - "images, labels, and bounding boxes, you should " - "instead use the preprocessing and augmentation layers " - "from `keras_cv.layers`. See docs at " - "https://keras.io/api/keras_cv/layers/" - ) - inputs = utils.ensure_tensor(inputs, dtype=dtype) - return inputs diff --git a/keras/layers/preprocessing/image_preprocessing_distribution_test.py b/keras/layers/preprocessing/image_preprocessing_distribution_test.py deleted file mode 100644 index 9383de95e0e..00000000000 --- a/keras/layers/preprocessing/image_preprocessing_distribution_test.py +++ /dev/null @@ -1,73 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Distribution tests for keras.layers.preprocessing.image_preprocessing.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.distribute import strategy_combinations -from keras.layers.preprocessing import image_preprocessing -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_utils.run_v2_only -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=strategy_combinations.all_strategies - + strategy_combinations.multi_worker_mirrored_strategies, - mode=["eager"], - ) -) -class ImagePreprocessingDistributionTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_distribution(self, strategy): - if "CentralStorage" in type(strategy).__name__: - self.skipTest("Does not work with CentralStorageStrategy yet.") - # TODO(b/159738418): large image input causes OOM in ubuntu multi gpu. - np_images = np.random.random((32, 32, 32, 3)).astype(np.float32) - image_dataset = tf.data.Dataset.from_tensor_slices(np_images).batch( - 16, drop_remainder=True - ) - - with strategy.scope(): - input_data = keras.Input(shape=(32, 32, 3), dtype=tf.float32) - image_preprocessor = keras.Sequential( - [ - image_preprocessing.Resizing(height=256, width=256), - image_preprocessing.RandomCrop(height=224, width=224), - image_preprocessing.RandomTranslation(0.1, 0.1), - image_preprocessing.RandomBrightness( - 0.1, value_range=(0, 1) - ), - image_preprocessing.RandomRotation(0.2), - image_preprocessing.RandomFlip(), - image_preprocessing.RandomZoom(0.2, 0.2), - ] - ) - preprocessed_image = image_preprocessor(input_data) - flatten_layer = keras.layers.Flatten(data_format="channels_last") - output = flatten_layer(preprocessed_image) - cls_layer = keras.layers.Dense(units=1, activation="sigmoid") - output = cls_layer(output) - model = keras.Model(inputs=input_data, outputs=output) - _ = model.predict(image_dataset) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/layers/preprocessing/image_preprocessing_test.py b/keras/layers/preprocessing/image_preprocessing_test.py deleted file mode 100644 index 8c07ab131f5..00000000000 --- a/keras/layers/preprocessing/image_preprocessing_test.py +++ /dev/null @@ -1,2308 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for image preprocessing layers.""" - -import functools - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.engine import sequential -from keras.layers.preprocessing import image_preprocessing -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.ops import stateless_random_ops - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class ResizingTest(test_combinations.TestCase): - def _run_test(self, kwargs, expected_height, expected_width): - np.random.seed(1337) - num_samples = 2 - orig_height = 5 - orig_width = 8 - channels = 3 - kwargs.update({"height": expected_height, "width": expected_width}) - with test_utils.use_gpu(): - test_utils.layer_test( - image_preprocessing.Resizing, - kwargs=kwargs, - input_shape=(num_samples, orig_height, orig_width, channels), - expected_output_shape=( - None, - expected_height, - expected_width, - channels, - ), - ) - - @parameterized.named_parameters( - ("down_sample_bilinear_2_by_2", {"interpolation": "bilinear"}, 2, 2), - ("down_sample_bilinear_3_by_2", {"interpolation": "bilinear"}, 3, 2), - ("down_sample_nearest_2_by_2", {"interpolation": "nearest"}, 2, 2), - ("down_sample_nearest_3_by_2", {"interpolation": "nearest"}, 3, 2), - ("down_sample_area_2_by_2", {"interpolation": "area"}, 2, 2), - ("down_sample_area_3_by_2", {"interpolation": "area"}, 3, 2), - ( - "down_sample_crop_to_aspect_ratio_3_by_2", - { - "interpolation": "bilinear", - "crop_to_aspect_ratio": True, - }, - 3, - 2, - ), - ) - def test_down_sampling(self, kwargs, expected_height, expected_width): - self._run_test(kwargs, expected_height, expected_width) - - @parameterized.named_parameters( - ("up_sample_bilinear_10_by_12", {"interpolation": "bilinear"}, 10, 12), - ("up_sample_bilinear_12_by_12", {"interpolation": "bilinear"}, 12, 12), - ("up_sample_nearest_10_by_12", {"interpolation": "nearest"}, 10, 12), - ("up_sample_nearest_12_by_12", {"interpolation": "nearest"}, 12, 12), - ("up_sample_area_10_by_12", {"interpolation": "area"}, 10, 12), - ("up_sample_area_12_by_12", {"interpolation": "area"}, 12, 12), - ( - "up_sample_crop_to_aspect_ratio_12_by_14", - { - "interpolation": "bilinear", - "crop_to_aspect_ratio": True, - }, - 12, - 14, - ), - ) - def test_up_sampling(self, kwargs, expected_height, expected_width): - self._run_test(kwargs, expected_height, expected_width) - - def test_down_sampling_numeric(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 16), (1, 4, 4, 1)).astype( - dtype - ) - layer = image_preprocessing.Resizing( - height=2, width=2, interpolation="nearest" - ) - output_image = layer(input_image) - # pyformat: disable - expected_output = np.asarray([[5, 7], [13, 15]]).astype(dtype) - # pyformat: enable - expected_output = np.reshape(expected_output, (1, 2, 2, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_up_sampling_numeric(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 4), (1, 2, 2, 1)).astype( - dtype - ) - layer = image_preprocessing.Resizing( - height=4, width=4, interpolation="nearest" - ) - output_image = layer(input_image) - # pyformat: disable - expected_output = np.asarray( - [[0, 0, 1, 1], [0, 0, 1, 1], [2, 2, 3, 3], [2, 2, 3, 3]] - ).astype(dtype) - # pyformat: enable - expected_output = np.reshape(expected_output, (1, 4, 4, 1)) - self.assertAllEqual(expected_output, output_image) - - @parameterized.named_parameters( - ("reshape_bilinear_10_by_4", {"interpolation": "bilinear"}, 10, 4) - ) - def test_reshaping(self, kwargs, expected_height, expected_width): - self._run_test(kwargs, expected_height, expected_width) - - def test_invalid_interpolation(self): - with self.assertRaises(NotImplementedError): - image_preprocessing.Resizing(5, 5, "invalid_interpolation") - - def test_config_with_custom_name(self): - layer = image_preprocessing.Resizing(5, 5, name="image_preproc") - config = layer.get_config() - layer_1 = image_preprocessing.Resizing.from_config(config) - self.assertEqual(layer_1.name, layer.name) - - def test_crop_to_aspect_ratio(self): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 16), (1, 4, 4, 1)).astype( - "float32" - ) - layer = image_preprocessing.Resizing( - 4, 2, crop_to_aspect_ratio=True - ) - output_image = layer(input_image) - expected_output = np.asarray( - [ - [1, 2], - [5, 6], - [9, 10], - [13, 14], - ] - ).astype("float32") - expected_output = np.reshape(expected_output, (1, 4, 2, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_unbatched_image(self): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 16), (4, 4, 1)).astype( - "float32" - ) - layer = image_preprocessing.Resizing(2, 2, interpolation="nearest") - output_image = layer(input_image) - expected_output = np.asarray( - [ - [5, 7], - [13, 15], - ] - ).astype("float32") - expected_output = np.reshape(expected_output, (2, 2, 1)) - self.assertAllEqual(expected_output, output_image) - - @parameterized.named_parameters( - ("crop_to_aspect_ratio_false", False), - ("crop_to_aspect_ratio_true", True), - ) - def test_ragged_image(self, crop_to_aspect_ratio): - with test_utils.use_gpu(): - inputs = tf.ragged.constant( - [ - np.ones((8, 8, 1)), - np.ones((8, 4, 1)), - np.ones((4, 8, 1)), - np.ones((2, 2, 1)), - ], - dtype="float32", - ) - layer = image_preprocessing.Resizing( - 2, - 2, - interpolation="nearest", - crop_to_aspect_ratio=crop_to_aspect_ratio, - ) - outputs = layer(inputs) - expected_output = [ - [[[1.0], [1.0]], [[1.0], [1.0]]], - [[[1.0], [1.0]], [[1.0], [1.0]]], - [[[1.0], [1.0]], [[1.0], [1.0]]], - [[[1.0], [1.0]], [[1.0], [1.0]]], - ] - self.assertIsInstance(outputs, tf.Tensor) - self.assertNotIsInstance(outputs, tf.RaggedTensor) - self.assertAllEqual(expected_output, outputs) - - @test_utils.run_v2_only - def test_output_dtypes(self): - inputs = np.array([[[1], [2]], [[3], [4]]], dtype="float64") - layer = image_preprocessing.Resizing(2, 2) - self.assertAllEqual(layer(inputs).dtype, "float32") - layer = image_preprocessing.Resizing(2, 2, dtype="uint8") - self.assertAllEqual(layer(inputs).dtype, "uint8") - - @parameterized.named_parameters( - ("batch_crop_to_aspect_ratio", True, True), - ("batch_dont_crop_to_aspect_ratio", False, True), - ("single_sample_crop_to_aspect_ratio", True, False), - ("single_sample_dont_crop_to_aspect_ratio", False, False), - ) - def test_static_shape_inference(self, crop_to_aspect_ratio, batch): - channels = 3 - input_height = 8 - input_width = 8 - target_height = 4 - target_width = 6 - layer = image_preprocessing.Resizing( - target_height, - target_width, - crop_to_aspect_ratio=crop_to_aspect_ratio, - ) - unit_test = self - - @tf.function - def tf_function(img): - unit_test.assertListEqual( - [input_height, input_width, channels], img.shape.as_list()[-3:] - ) - img = layer(img) - unit_test.assertListEqual( - [target_height, target_width, channels], - img.shape.as_list()[-3:], - ) - return img - - with test_utils.use_gpu(): - if batch: - input_shape = (2, input_height, input_width, channels) - else: - input_shape = (input_height, input_width, channels) - img_data = np.random.random(size=input_shape).astype("float32") - tf_function(img_data) - - -def get_numpy_center_crop(images, expected_height, expected_width): - orig_height = images.shape[1] - orig_width = images.shape[2] - height_start = int((orig_height - expected_height) / 2) - width_start = int((orig_width - expected_width) / 2) - height_end = height_start + expected_height - width_end = width_start + expected_width - return images[:, height_start:height_end, width_start:width_end, :] - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class CenterCropTest(test_combinations.TestCase): - def _run_test(self, expected_height, expected_width): - np.random.seed(1337) - num_samples = 2 - orig_height = 5 - orig_width = 8 - channels = 3 - kwargs = {"height": expected_height, "width": expected_width} - input_images = np.random.random( - (num_samples, orig_height, orig_width, channels) - ).astype(np.float32) - expected_output = get_numpy_center_crop( - input_images, expected_height, expected_width - ) - with test_utils.use_gpu(): - test_utils.layer_test( - image_preprocessing.CenterCrop, - kwargs=kwargs, - input_shape=(num_samples, orig_height, orig_width, channels), - input_data=input_images, - expected_output=expected_output, - expected_output_shape=( - None, - expected_height, - expected_width, - channels, - ), - ) - - @parameterized.named_parameters( - ("center_crop_3_by_4", 3, 4), ("center_crop_3_by_2", 3, 2) - ) - def test_center_crop_aligned(self, expected_height, expected_width): - self._run_test(expected_height, expected_width) - - @parameterized.named_parameters( - ("center_crop_4_by_5", 4, 5), ("center_crop_4_by_3", 4, 3) - ) - def test_center_crop_mis_aligned(self, expected_height, expected_width): - self._run_test(expected_height, expected_width) - - @parameterized.named_parameters( - ("center_crop_4_by_6", 4, 6), ("center_crop_3_by_2", 3, 2) - ) - def test_center_crop_half_mis_aligned( - self, expected_height, expected_width - ): - self._run_test(expected_height, expected_width) - - def test_input_smaller_than_crop_box(self): - np.random.seed(1337) - height, width = 10, 8 - inp = np.random.random((12, 3, 3, 3)) - with test_utils.use_gpu(): - layer = image_preprocessing.CenterCrop(height, width) - actual_output = layer(inp) - # In this case, output should equal resizing - # with crop_to_aspect ratio. - resize_layer = image_preprocessing.Resizing( - height, width, crop_to_aspect_ratio=True - ) - expected_output = resize_layer(inp) - self.assertAllEqual(expected_output, actual_output) - - def test_config_with_custom_name(self): - layer = image_preprocessing.CenterCrop(5, 5, name="image_preproc") - config = layer.get_config() - layer_1 = image_preprocessing.CenterCrop.from_config(config) - self.assertEqual(layer_1.name, layer.name) - - def test_unbatched_image(self): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 16), (4, 4, 1)).astype( - "float32" - ) - layer = image_preprocessing.CenterCrop(2, 2) - output_image = layer(input_image) - expected_output = np.asarray( - [ - [5, 6], - [9, 10], - ] - ).astype("float32") - expected_output = np.reshape(expected_output, (2, 2, 1)) - self.assertAllEqual(expected_output, output_image) - - @test_utils.run_v2_only - def test_output_dtypes(self): - inputs = np.array([[[1], [2]], [[3], [4]]], dtype="float64") - layer = image_preprocessing.CenterCrop(2, 2) - self.assertAllEqual(layer(inputs).dtype, "float32") - layer = image_preprocessing.CenterCrop(2, 2, dtype="uint8") - self.assertAllEqual(layer(inputs).dtype, "uint8") - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class RandomCropTest(test_combinations.TestCase): - def _run_test(self, expected_height, expected_width): - np.random.seed(1337) - num_samples = 2 - orig_height = 5 - orig_width = 8 - channels = 3 - kwargs = {"height": expected_height, "width": expected_width} - with test_utils.use_gpu(): - test_utils.layer_test( - image_preprocessing.RandomCrop, - kwargs=kwargs, - input_shape=(num_samples, orig_height, orig_width, channels), - expected_output_shape=( - None, - expected_height, - expected_width, - channels, - ), - ) - - def test_input_smaller_than_crop_box(self): - np.random.seed(1337) - height, width = 10, 8 - inp = np.random.random((12, 3, 3, 3)) - with test_utils.use_gpu(): - layer = image_preprocessing.RandomCrop(height, width) - actual_output = layer(inp) - # In this case, output should equal resizing - # with crop_to_aspect ratio. - resize_layer = image_preprocessing.Resizing( - height, width, crop_to_aspect_ratio=True - ) - expected_output = resize_layer(inp) - self.assertAllEqual(expected_output, actual_output) - - def test_training_with_mock(self): - np.random.seed(1337) - height, width = 3, 4 - height_offset = np.random.randint(low=0, high=3) - width_offset = np.random.randint(low=0, high=5) - mock_offset = [height_offset, width_offset] - with test_utils.use_gpu(): - layer = image_preprocessing.RandomCrop(height, width) - with tf.compat.v1.test.mock.patch.object( - layer._random_generator, - "random_uniform", - return_value=mock_offset, - ): - inp = np.random.random((12, 5, 8, 3)) - actual_output = layer(inp, training=True) - expected_output = inp[ - :, - height_offset : (height_offset + height), - width_offset : (width_offset + width), - :, - ] - self.assertAllClose(expected_output, actual_output) - - @parameterized.named_parameters( - ("random_crop_4_by_6", 4, 6), ("random_crop_3_by_2", 3, 2) - ) - def test_random_crop_output_shape(self, expected_height, expected_width): - self._run_test(expected_height, expected_width) - - def test_random_crop_full_height(self): - self._run_test(5, 2) - - def test_random_crop_full_width(self): - self._run_test(3, 8) - - def test_random_crop_full(self): - np.random.seed(1337) - height, width = 8, 16 - inp = np.random.random((12, 8, 16, 3)) - with test_utils.use_gpu(): - layer = image_preprocessing.RandomCrop(height, width) - actual_output = layer(inp, training=False) - self.assertAllClose(inp, actual_output) - - def test_predicting_with_mock_longer_height(self): - np.random.seed(1337) - height, width = 3, 3 - inp = np.random.random((12, 10, 6, 3)) - with test_utils.use_gpu(): - layer = image_preprocessing.RandomCrop(height, width) - actual_output = layer(inp, training=False) - resized_inp = tf.image.resize(inp, size=[5, 3]) - expected_output = resized_inp[:, 1:4, :, :] - self.assertAllClose(expected_output, actual_output) - - def test_predicting_with_mock_longer_width(self): - np.random.seed(1337) - height, width = 4, 6 - inp = np.random.random((12, 8, 16, 3)) - with test_utils.use_gpu(): - layer = image_preprocessing.RandomCrop(height, width) - actual_output = layer(inp, training=False) - resized_inp = tf.image.resize(inp, size=[4, 8]) - expected_output = resized_inp[:, :, 1:7, :] - self.assertAllClose(expected_output, actual_output) - - def test_config_with_custom_name(self): - layer = image_preprocessing.RandomCrop(5, 5, name="image_preproc") - config = layer.get_config() - layer_1 = image_preprocessing.RandomCrop.from_config(config) - self.assertEqual(layer_1.name, layer.name) - - def test_unbatched_image(self): - np.random.seed(1337) - inp = np.random.random((16, 16, 3)) - mock_offset = [2, 2] - with test_utils.use_gpu(): - layer = image_preprocessing.RandomCrop(8, 8) - with tf.compat.v1.test.mock.patch.object( - layer._random_generator, - "random_uniform", - return_value=mock_offset, - ): - actual_output = layer(inp, training=True) - self.assertAllClose(inp[2:10, 2:10, :], actual_output) - - @test_utils.run_v2_only - def test_uint8_input(self): - inputs = keras.Input((128, 128, 3), batch_size=2, dtype=tf.uint8) - layer = image_preprocessing.RandomCrop(64, 64) - self.assertAllEqual(layer(inputs).dtype, "float32") - - @test_utils.run_v2_only - def test_output_dtypes(self): - inputs = np.array([[[1], [2]], [[3], [4]]], dtype="float64") - layer = image_preprocessing.RandomCrop(2, 2) - self.assertAllEqual(layer(inputs).dtype, "float32") - layer = image_preprocessing.RandomCrop(2, 2, dtype="uint8") - self.assertAllEqual(layer(inputs).dtype, "uint8") - - -class RescalingTest(test_combinations.TestCase): - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_rescaling_base(self): - kwargs = {"scale": 1.0 / 127.5, "offset": -1.0} - test_utils.layer_test( - image_preprocessing.Rescaling, - kwargs=kwargs, - input_shape=(2, 5, 6, 3), - expected_output_shape=(None, 5, 6, 3), - ) - - @test_utils.run_v2_only - def test_rescaling_correctness_float(self): - layer = image_preprocessing.Rescaling(scale=1.0 / 127.5, offset=-1.0) - inputs = tf.random.uniform((2, 4, 5, 3)) - outputs = layer(inputs) - self.assertAllClose(outputs.numpy(), inputs.numpy() * (1.0 / 127.5) - 1) - - @test_utils.run_v2_only - def test_rescaling_correctness_int(self): - layer = image_preprocessing.Rescaling(scale=1.0 / 127.5, offset=-1) - inputs = tf.random.uniform((2, 4, 5, 3), 0, 100, dtype="int32") - outputs = layer(inputs) - self.assertEqual(outputs.dtype.name, "float32") - self.assertAllClose(outputs.numpy(), inputs.numpy() * (1.0 / 127.5) - 1) - - def test_config_with_custom_name(self): - layer = image_preprocessing.Rescaling(0.5, name="rescaling") - config = layer.get_config() - layer_1 = image_preprocessing.Rescaling.from_config(config) - self.assertEqual(layer_1.name, layer.name) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_unbatched_image(self): - layer = image_preprocessing.Rescaling(scale=1.0 / 127.5, offset=-1) - inputs = tf.random.uniform((4, 5, 3)) - outputs = layer(inputs) - self.assertAllClose(outputs.numpy(), inputs.numpy() * (1.0 / 127.5) - 1) - - @test_utils.run_v2_only - def test_output_dtypes(self): - inputs = np.array([[[1], [2]], [[3], [4]]], dtype="float64") - layer = image_preprocessing.Rescaling(0.5) - self.assertAllEqual(layer(inputs).dtype, "float32") - layer = image_preprocessing.Rescaling(0.5, dtype="uint8") - self.assertAllEqual(layer(inputs).dtype, "uint8") - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class RandomFlipTest(test_combinations.TestCase): - def _run_test(self, mode, expected_output=None, mock_random=None): - np.random.seed(1337) - num_samples = 2 - orig_height = 5 - orig_width = 8 - channels = 3 - if mock_random is None: - mock_random = [1 for _ in range(num_samples)] - mock_random = np.reshape(mock_random, [2, 1, 1, 1]) - inp = np.random.random((num_samples, orig_height, orig_width, channels)) - if expected_output is None: - expected_output = inp - if mode == "horizontal" or mode == "horizontal_and_vertical": - expected_output = np.flip(expected_output, axis=2) - if mode == "vertical" or mode == "horizontal_and_vertical": - expected_output = np.flip(expected_output, axis=1) - with tf.compat.v1.test.mock.patch.object( - stateless_random_ops, - "stateless_random_uniform", - return_value=mock_random, - ): - with test_utils.use_gpu(): - layer = image_preprocessing.RandomFlip(mode) - actual_output = layer(inp, training=True) - self.assertAllClose(expected_output, actual_output) - - @parameterized.named_parameters( - ("random_flip_horizontal", "horizontal"), - ("random_flip_vertical", "vertical"), - ("random_flip_both", "horizontal_and_vertical"), - ) - def test_random_flip(self, mode): - self._run_test(mode) - - def test_random_flip_horizontal_half(self): - np.random.seed(1337) - mock_random = [1, 0] - mock_random = np.reshape(mock_random, [2, 1, 1, 1]) - input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) - expected_output = input_images.copy() - expected_output[0, :, :, :] = np.flip(input_images[0, :, :, :], axis=1) - self._run_test("horizontal", expected_output, mock_random) - - def test_random_flip_vertical_half(self): - np.random.seed(1337) - mock_random = [1, 0] - mock_random = np.reshape(mock_random, [2, 1, 1, 1]) - input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) - expected_output = input_images.copy() - expected_output[0, :, :, :] = np.flip(input_images[0, :, :, :], axis=0) - self._run_test("vertical", expected_output, mock_random) - - def test_random_flip_inference(self): - input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) - expected_output = input_images - with test_utils.use_gpu(): - layer = image_preprocessing.RandomFlip() - actual_output = layer(input_images, training=False) - self.assertAllClose(expected_output, actual_output) - - def test_random_flip_default(self): - input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) - expected_output = np.flip(np.flip(input_images, axis=1), axis=2) - mock_random = [1, 1] - mock_random = np.reshape(mock_random, [2, 1, 1, 1]) - with tf.compat.v1.test.mock.patch.object( - stateless_random_ops, - "stateless_random_uniform", - return_value=mock_random, - ): - with self.cached_session(): - layer = image_preprocessing.RandomFlip() - actual_output = layer(input_images, training=True) - self.assertAllClose(expected_output, actual_output) - - @test_utils.run_v2_only - def test_config_with_custom_name(self): - layer = image_preprocessing.RandomFlip(name="image_preproc") - config = layer.get_config() - layer_1 = image_preprocessing.RandomFlip.from_config(config) - self.assertEqual(layer_1.name, layer.name) - - def test_random_flip_unbatched_image(self): - input_image = np.random.random((4, 4, 1)).astype(np.float32) - expected_output = np.flip(input_image, axis=0) - # mock_random = np.reshape([0.], [1, 1, 1]) - with tf.compat.v1.test.mock.patch.object( - stateless_random_ops, - "stateless_random_uniform", - return_value=0.0, - ): - with self.cached_session(): - layer = image_preprocessing.RandomFlip("vertical") - actual_output = layer(input_image, training=True) - self.assertAllClose(expected_output, actual_output) - - @test_utils.run_v2_only - def test_output_dtypes(self): - inputs = np.array([[[1], [2]], [[3], [4]]], dtype="float64") - layer = image_preprocessing.RandomFlip() - self.assertAllEqual(layer(inputs).dtype, "float32") - layer = image_preprocessing.RandomFlip(dtype="uint8") - self.assertAllEqual(layer(inputs).dtype, "uint8") - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class RandomContrastTest(test_combinations.TestCase): - def _run_test(self, lower, upper, expected_output=None, mock_random=None): - np.random.seed(1337) - num_samples = 2 - orig_height = 5 - orig_width = 8 - channels = 3 - if mock_random is None: - mock_random = 0.2 - inp = np.random.random((num_samples, orig_height, orig_width, channels)) - if expected_output is None: - # reduce mean on height. - inp_mean = np.mean(inp, axis=1, keepdims=True) - # reduce mean on width. - inp_mean = np.mean(inp_mean, axis=2, keepdims=True) - expected_output = (inp - inp_mean) * mock_random + inp_mean - with tf.compat.v1.test.mock.patch.object( - stateless_random_ops, - "stateless_random_uniform", - return_value=mock_random, - ): - with test_utils.use_gpu(): - layer = image_preprocessing.RandomContrast((lower, upper)) - actual_output = layer(inp, training=True) - self.assertAllClose(expected_output, actual_output) - - @parameterized.named_parameters( - ("random_contrast_2_by_5", 0.2, 0.5), - ("random_contrast_2_by_13", 0.2, 1.3), - ("random_contrast_5_by_2", 0.5, 0.2), - ("random_contrast_10_by_10", 1.0, 1.0), - ) - def test_random_contrast(self, lower, upper): - self._run_test(lower, upper) - - @parameterized.named_parameters( - ("random_contrast_amplitude_2", 0.2), - ("random_contrast_amplitude_5", 0.5), - ) - def test_random_contrast_amplitude(self, amplitude): - input_images = np.random.random((2, 5, 8, 3)) - with test_utils.use_gpu(): - layer = image_preprocessing.RandomContrast(amplitude) - layer(input_images) - - def test_random_contrast_inference(self): - input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) - expected_output = input_images - with test_utils.use_gpu(): - layer = image_preprocessing.RandomContrast((0.1, 0.2)) - actual_output = layer(input_images, training=False) - self.assertAllClose(expected_output, actual_output) - - def test_random_contrast_int_dtype(self): - input_images = np.random.randint(low=0, high=255, size=(2, 5, 8, 3)) - with test_utils.use_gpu(): - layer = image_preprocessing.RandomContrast((0.1, 0.2)) - layer(input_images) - - def test_random_contrast_invalid_bounds(self): - with self.assertRaises(ValueError): - image_preprocessing.RandomContrast((-0.1, 0.5)) - - with self.assertRaises(ValueError): - image_preprocessing.RandomContrast((1.1, 0.5)) - - with self.assertRaises(ValueError): - image_preprocessing.RandomContrast((0.1, -0.2)) - - @test_utils.run_v2_only - def test_config_with_custom_name(self): - layer = image_preprocessing.RandomContrast( - (0.5, 0.6), name="image_preproc" - ) - config = layer.get_config() - layer_1 = image_preprocessing.RandomContrast.from_config(config) - self.assertEqual(layer_1.name, layer.name) - - def test_output_value_clip(self): - input_images = np.random.random((5, 8, 3)).astype(np.float32) * 255.0 - # Give a factor range [1.0, 11.0] so that - # it will produce large contrast. - layer = image_preprocessing.RandomContrast((0.0, 10.0)) - output = layer(input_images) - self.assertLessEqual(tf.reduce_max(output), 255.0) - self.assertGreaterEqual(tf.reduce_min(output), 0.0) - - def test_unbatched_image(self): - np.random.seed(1337) - mock_random = 0.2 - inp = np.random.random((4, 4, 1)) - inp_mean = np.mean(inp, axis=0, keepdims=True) - inp_mean = np.mean(inp_mean, axis=1, keepdims=True) - expected_output = (inp - inp_mean) * mock_random + inp_mean - with tf.compat.v1.test.mock.patch.object( - stateless_random_ops, - "stateless_random_uniform", - return_value=mock_random, - ): - with test_utils.use_gpu(): - layer = image_preprocessing.RandomContrast((0.2, 0.5)) - actual_output = layer(inp, training=True) - self.assertAllClose(expected_output, actual_output) - - @test_utils.run_v2_only - def test_output_dtypes(self): - inputs = np.array([[[1], [2]], [[3], [4]]], dtype="float64") - layer = image_preprocessing.RandomContrast((0.5, 0.6)) - self.assertAllEqual(layer(inputs).dtype, "float32") - layer = image_preprocessing.RandomContrast((0.5, 0.6), dtype="uint8") - self.assertAllEqual(layer(inputs).dtype, "uint8") - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class RandomBrightnessTest(test_combinations.TestCase): - def test_factor_input_validation(self): - with self.assertRaisesRegex(ValueError, r"in the range \[-1.0, 1.0\]"): - image_preprocessing.RandomBrightness(2.0) - - with self.assertRaisesRegex(ValueError, "list of two numbers"): - image_preprocessing.RandomBrightness([1.0]) - - with self.assertRaisesRegex(ValueError, "should be a number"): - image_preprocessing.RandomBrightness("one") - - def test_factor_normalize(self): - layer = image_preprocessing.RandomBrightness(1.0) - self.assertEqual(layer._factor, [-1.0, 1.0]) - - layer = image_preprocessing.RandomBrightness((0.5, 0.3)) - self.assertEqual(layer._factor, [0.3, 0.5]) - - layer = image_preprocessing.RandomBrightness(-0.2) - self.assertEqual(layer._factor, [-0.2, 0.2]) - - @test_utils.run_v2_only - def test_output_value_range(self): - # Always scale up to 255 - layer = image_preprocessing.RandomBrightness([1.0, 1.0]) - inputs = np.random.randint(0, 255, size=(224, 224, 3)) - output = layer(inputs) - output_min = tf.math.reduce_min(output) - output_max = tf.math.reduce_max(output) - self.assertEqual(output_min, 255) - self.assertEqual(output_max, 255) - - # Always scale down to 0 - layer = image_preprocessing.RandomBrightness([-1.0, -1.0]) - inputs = np.random.randint(0, 255, size=(224, 224, 3)) - output = layer(inputs) - output_min = tf.math.reduce_min(output) - output_max = tf.math.reduce_max(output) - self.assertEqual(output_min, 0) - self.assertEqual(output_max, 0) - - def test_output(self): - # Always scale up, but randomly between 0 ~ 255 - layer = image_preprocessing.RandomBrightness([0, 1.0]) - inputs = np.random.randint(0, 255, size=(224, 224, 3)) - output = layer(inputs) - diff = output - inputs - self.assertGreaterEqual(tf.math.reduce_min(diff), 0) - self.assertGreater(tf.math.reduce_mean(diff), 0) - - # Always scale down, but randomly between 0 ~ 255 - layer = image_preprocessing.RandomBrightness([-1.0, 0.0]) - inputs = np.random.randint(0, 255, size=(224, 224, 3)) - output = layer(inputs) - diff = output - inputs - self.assertLessEqual(tf.math.reduce_max(diff), 0) - self.assertLess(tf.math.reduce_mean(diff), 0) - - @test_utils.run_v2_only - def test_scale_output(self): - layer = image_preprocessing.RandomBrightness([0, 1.0], seed=1337) - inputs = np.random.randint(0, 255, size=(224, 224, 3)) - output = layer(inputs) - - # Create a new layer with same seed but different value range - layer2 = image_preprocessing.RandomBrightness( - [0, 1.0], value_range=[0, 1], seed=1337 - ) - inputs2 = inputs / 255.0 - output2 = layer2(inputs2) - # Make sure the outputs are the same, but just scaled with 255 - self.assertAllClose(output, output2 * 255.0) - - def test_different_adjustment_within_batch(self): - layer = image_preprocessing.RandomBrightness([0.2, 0.3]) - inputs = np.zeros(shape=(2, 10, 10, 3)) # 2 images with all zeros - output = layer(inputs) - diff = output - inputs - # Make sure two images gets the different adjustment - self.assertNotAllClose(diff[0], diff[1]) - # Make sure all the pixel are the same with the same image - image1 = output[0] - # The reduced mean pixel value among width and height are the same as - # any of the pixel in the image. - self.assertAllClose( - tf.reduce_mean(image1), image1[0, 0, 0], rtol=1e-5, atol=1e-5 - ) - - def test_inference(self): - layer = image_preprocessing.RandomBrightness([0, 1.0]) - inputs = np.random.randint(0, 255, size=(224, 224, 3)) - output = layer(inputs, training=False) - self.assertAllClose(inputs, output) - - @test_utils.run_v2_only - def test_dtype(self): - layer = image_preprocessing.RandomBrightness([0, 1.0]) - inputs = np.random.randint(0, 255, size=(224, 224, 3)) - output = layer(inputs) - self.assertEqual(output.dtype, tf.float32) - - layer = image_preprocessing.RandomBrightness([0, 1.0], dtype="uint8") - output = layer(inputs) - self.assertEqual(output.dtype, tf.uint8) - - def test_seed(self): - layer = image_preprocessing.RandomBrightness([0, 1.0], seed=1337) - inputs = np.random.randint(0, 255, size=(224, 224, 3)) - output_1 = layer(inputs) - - layer2 = image_preprocessing.RandomBrightness([0, 1.0], seed=1337) - output_2 = layer2(inputs) - - self.assertAllClose(output_1, output_2) - - def test_config(self): - layer = image_preprocessing.RandomBrightness( - [0, 1.0], value_range=[0.0, 1.0], seed=1337 - ) - config = layer.get_config() - self.assertEqual(config["factor"], [0.0, 1.0]) - self.assertEqual(config["value_range"], [0.0, 1.0]) - self.assertEqual(config["seed"], 1337) - - reconstructed_layer = image_preprocessing.RandomBrightness.from_config( - config - ) - self.assertEqual(reconstructed_layer._factor, layer._factor) - self.assertEqual(reconstructed_layer._value_range, layer._value_range) - self.assertEqual(reconstructed_layer._seed, layer._seed) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class RandomTranslationTest(test_combinations.TestCase): - def _run_test(self, height_factor, width_factor): - np.random.seed(1337) - num_samples = 2 - orig_height = 5 - orig_width = 8 - channels = 3 - kwargs = {"height_factor": height_factor, "width_factor": width_factor} - with test_utils.use_gpu(): - test_utils.layer_test( - image_preprocessing.RandomTranslation, - kwargs=kwargs, - input_shape=(num_samples, orig_height, orig_width, channels), - expected_output_shape=(None, orig_height, orig_width, channels), - ) - - @parameterized.named_parameters( - ("random_translate_4_by_6", 0.4, 0.6), - ("random_translate_3_by_2", 0.3, 0.2), - ("random_translate_tuple_factor", (-0.5, 0.4), (0.2, 0.3)), - ) - def test_random_translation(self, height_factor, width_factor): - self._run_test(height_factor, width_factor) - - def test_random_translation_up_numeric_reflect(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)).astype( - dtype - ) - # Shifting by -.2 * 5 = 1 pixel. - layer = image_preprocessing.RandomTranslation( - height_factor=(-0.2, -0.2), width_factor=0.0 - ) - output_image = layer(input_image) - expected_output = np.asarray( - [ - [5, 6, 7, 8, 9], - [10, 11, 12, 13, 14], - [15, 16, 17, 18, 19], - [20, 21, 22, 23, 24], - [20, 21, 22, 23, 24], - ] - ).astype(dtype) - expected_output = np.reshape(expected_output, (1, 5, 5, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_translation_up_numeric_constant(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)).astype( - dtype - ) - # Shifting by -.2 * 5 = 1 pixel. - layer = image_preprocessing.RandomTranslation( - height_factor=(-0.2, -0.2), - width_factor=0.0, - fill_mode="constant", - ) - output_image = layer(input_image) - expected_output = np.asarray( - [ - [5, 6, 7, 8, 9], - [10, 11, 12, 13, 14], - [15, 16, 17, 18, 19], - [20, 21, 22, 23, 24], - [0, 0, 0, 0, 0], - ] - ).astype(dtype) - expected_output = np.reshape(expected_output, (1, 5, 5, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_translation_down_numeric_reflect(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)).astype( - dtype - ) - # Shifting by .2 * 5 = 1 pixel. - layer = image_preprocessing.RandomTranslation( - height_factor=(0.2, 0.2), width_factor=0.0 - ) - output_image = layer(input_image) - expected_output = np.asarray( - [ - [0, 1, 2, 3, 4], - [0, 1, 2, 3, 4], - [5, 6, 7, 8, 9], - [10, 11, 12, 13, 14], - [15, 16, 17, 18, 19], - ] - ).astype(dtype) - expected_output = np.reshape(expected_output, (1, 5, 5, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_translation_asymmetric_size_numeric_reflect(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 16), (1, 8, 2, 1)).astype( - dtype - ) - # Shifting by .5 * 8 = 1 pixel. - layer = image_preprocessing.RandomTranslation( - height_factor=(0.5, 0.5), width_factor=0.0 - ) - output_image = layer(input_image) - # pyformat: disable - expected_output = np.asarray( - [ - [6, 7], - [4, 5], - [2, 3], - [0, 1], - [0, 1], - [2, 3], - [4, 5], - [6, 7], - ] - ).astype(dtype) - # pyformat: enable - expected_output = np.reshape(expected_output, (1, 8, 2, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_translation_down_numeric_constant(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)).astype( - dtype - ) - # Shifting by -.2 * 5 = 1 pixel. - layer = image_preprocessing.RandomTranslation( - height_factor=(0.2, 0.2), - width_factor=0.0, - fill_mode="constant", - ) - output_image = layer(input_image) - expected_output = np.asarray( - [ - [0, 0, 0, 0, 0], - [0, 1, 2, 3, 4], - [5, 6, 7, 8, 9], - [10, 11, 12, 13, 14], - [15, 16, 17, 18, 19], - ] - ).astype(dtype) - expected_output = np.reshape(expected_output, (1, 5, 5, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_translation_left_numeric_reflect(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)).astype( - dtype - ) - # Shifting by .2 * 5 = 1 pixel. - layer = image_preprocessing.RandomTranslation( - height_factor=0.0, width_factor=(-0.2, -0.2) - ) - output_image = layer(input_image) - expected_output = np.asarray( - [ - [1, 2, 3, 4, 4], - [6, 7, 8, 9, 9], - [11, 12, 13, 14, 14], - [16, 17, 18, 19, 19], - [21, 22, 23, 24, 24], - ] - ).astype(dtype) - expected_output = np.reshape(expected_output, (1, 5, 5, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_translation_left_numeric_constant(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)).astype( - dtype - ) - # Shifting by -.2 * 5 = 1 pixel. - layer = image_preprocessing.RandomTranslation( - height_factor=0.0, - width_factor=(-0.2, -0.2), - fill_mode="constant", - ) - output_image = layer(input_image) - expected_output = np.asarray( - [ - [1, 2, 3, 4, 0], - [6, 7, 8, 9, 0], - [11, 12, 13, 14, 0], - [16, 17, 18, 19, 0], - [21, 22, 23, 24, 0], - ] - ).astype(dtype) - expected_output = np.reshape(expected_output, (1, 5, 5, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_translation_inference(self): - input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) - expected_output = input_images - with test_utils.use_gpu(): - layer = image_preprocessing.RandomTranslation(0.5, 0.5) - actual_output = layer(input_images, training=False) - self.assertAllClose(expected_output, actual_output) - - @test_utils.run_v2_only - def test_config_with_custom_name(self): - layer = image_preprocessing.RandomTranslation( - 0.5, 0.6, name="image_preproc" - ) - config = layer.get_config() - layer_1 = image_preprocessing.RandomTranslation.from_config(config) - self.assertEqual(layer_1.name, layer.name) - - def test_unbatched_image(self): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype( - np.int64 - ) - # Shifting by -.2 * 5 = 1 pixel. - layer = image_preprocessing.RandomTranslation( - height_factor=(-0.2, -0.2), width_factor=0.0 - ) - output_image = layer(input_image) - expected_output = np.asarray( - [ - [5, 6, 7, 8, 9], - [10, 11, 12, 13, 14], - [15, 16, 17, 18, 19], - [20, 21, 22, 23, 24], - [20, 21, 22, 23, 24], - ] - ).astype(np.int64) - expected_output = np.reshape(expected_output, (5, 5, 1)) - self.assertAllEqual(expected_output, output_image) - - @test_utils.run_v2_only - def test_output_dtypes(self): - inputs = np.array([[[1], [2]], [[3], [4]]], dtype="float64") - layer = image_preprocessing.RandomTranslation(0.5, 0.6) - self.assertAllEqual(layer(inputs).dtype, "float32") - layer = image_preprocessing.RandomTranslation(0.5, 0.6, dtype="uint8") - self.assertAllEqual(layer(inputs).dtype, "uint8") - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class RandomTransformTest(test_combinations.TestCase): - def _run_random_transform_with_mock( - self, - transform_matrix, - expected_output, - mode, - fill_value=0.0, - interpolation="bilinear", - ): - inp = np.arange(15).reshape((1, 5, 3, 1)).astype(np.float32) - with self.cached_session(): - output = image_preprocessing.transform( - inp, - transform_matrix, - fill_mode=mode, - fill_value=fill_value, - interpolation=interpolation, - ) - self.assertAllClose(expected_output, output) - - def test_random_translation_reflect(self): - # reflected output is (dcba|abcd|dcba) - - # Test down shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [0.0, 1.0, 2.0], - [0.0, 1.0, 2.0], - [3.0, 4.0, 5.0], - [6.0, 7.0, 8], - [9.0, 10.0, 11], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "reflect" - ) - - # Test up shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [3.0, 4.0, 5.0], - [6.0, 7.0, 8], - [9.0, 10.0, 11.0], - [12.0, 13.0, 14.0], - [12.0, 13.0, 14.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "reflect" - ) - - # Test left shift by 1. - # reflected output is (dcba|abcd|dcba) - # pyformat: disable - expected_output = ( - np.asarray( - [ - [1.0, 2.0, 2.0], - [4.0, 5.0, 5.0], - [7.0, 8.0, 8.0], - [10.0, 11.0, 11.0], - [13.0, 14.0, 14.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "reflect" - ) - - # Test right shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [0.0, 0.0, 1.0], - [3.0, 3.0, 4], - [6.0, 6.0, 7.0], - [9.0, 9.0, 10.0], - [12.0, 12.0, 13.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "reflect" - ) - - def test_random_translation_wrap(self): - # warpped output is (abcd|abcd|abcd) - - # Test down shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [12.0, 13.0, 14.0], - [0.0, 1.0, 2.0], - [3.0, 4.0, 5.0], - [6.0, 7.0, 8], - [9.0, 10.0, 11], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "wrap" - ) - - # Test up shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [3.0, 4.0, 5.0], - [6.0, 7.0, 8], - [9.0, 10.0, 11.0], - [12.0, 13.0, 14.0], - [0.0, 1.0, 2.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "wrap" - ) - - # Test left shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [1.0, 2.0, 0.0], - [4.0, 5.0, 3.0], - [7.0, 8.0, 6.0], - [10.0, 11.0, 9.0], - [13.0, 14.0, 12.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "wrap" - ) - - # Test right shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [2.0, 0.0, 1.0], - [5.0, 3.0, 4], - [8.0, 6.0, 7.0], - [11.0, 9.0, 10.0], - [14.0, 12.0, 13.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "wrap" - ) - - def test_random_translation_nearest(self): - # nearest output is (aaaa|abcd|dddd) - - # Test down shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [0.0, 1.0, 2.0], - [0.0, 1.0, 2.0], - [3.0, 4.0, 5.0], - [6.0, 7.0, 8], - [9.0, 10.0, 11], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "nearest" - ) - - # Test up shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [3.0, 4.0, 5.0], - [6.0, 7.0, 8], - [9.0, 10.0, 11.0], - [12.0, 13.0, 14.0], - [12.0, 13.0, 14.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "nearest" - ) - - # Test left shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [1.0, 2.0, 2.0], - [4.0, 5.0, 5.0], - [7.0, 8.0, 8.0], - [10.0, 11.0, 11.0], - [13.0, 14.0, 14.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "nearest" - ) - - # Test right shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [0.0, 0.0, 1.0], - [3.0, 3.0, 4], - [6.0, 6.0, 7.0], - [9.0, 9.0, 10.0], - [12.0, 12.0, 13.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "nearest" - ) - - def test_random_translation_constant_0(self): - # constant output is (0000|abcd|0000) - - # Test down shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [0.0, 0.0, 0.0], - [0.0, 1.0, 2.0], - [3.0, 4.0, 5.0], - [6.0, 7.0, 8], - [9.0, 10.0, 11], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "constant" - ) - - # Test up shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [3.0, 4.0, 5.0], - [6.0, 7.0, 8], - [9.0, 10.0, 11.0], - [12.0, 13.0, 14.0], - [0.0, 0.0, 0.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "constant" - ) - - # Test left shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [1.0, 2.0, 0.0], - [4.0, 5.0, 0.0], - [7.0, 8.0, 0.0], - [10.0, 11.0, 0.0], - [13.0, 14.0, 0.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "constant" - ) - - # Test right shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [0.0, 0.0, 1.0], - [0.0, 3.0, 4], - [0.0, 6.0, 7.0], - [0.0, 9.0, 10.0], - [0.0, 12.0, 13.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "constant" - ) - - def test_random_translation_constant_1(self): - with tf.compat.forward_compatibility_horizon(2020, 8, 6): - # constant output is (1111|abcd|1111) - - # Test down shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [1.0, 1.0, 1.0], - [0.0, 1.0, 2.0], - [3.0, 4.0, 5.0], - [6.0, 7.0, 8], - [9.0, 10.0, 11], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "constant", fill_value=1.0 - ) - - # Test up shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [3.0, 4.0, 5.0], - [6.0, 7.0, 8], - [9.0, 10.0, 11.0], - [12.0, 13.0, 14.0], - [1.0, 1.0, 1.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "constant", fill_value=1.0 - ) - - # Test left shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [1.0, 2.0, 1.0], - [4.0, 5.0, 1.0], - [7.0, 8.0, 1.0], - [10.0, 11.0, 1.0], - [13.0, 14.0, 1.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "constant", fill_value=1.0 - ) - - # Test right shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [1.0, 0.0, 1.0], - [1.0, 3.0, 4], - [1.0, 6.0, 7.0], - [1.0, 9.0, 10.0], - [1.0, 12.0, 13.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, expected_output, "constant", fill_value=1.0 - ) - - def test_random_translation_nearest_interpolation(self): - # nearest output is (aaaa|abcd|dddd) - - # Test down shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [0.0, 0.0, 0.0], - [0.0, 1.0, 2.0], - [3.0, 4.0, 5.0], - [6.0, 7.0, 8], - [9.0, 10.0, 11], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, - expected_output, - mode="constant", - interpolation="nearest", - ) - - # Test up shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [3.0, 4.0, 5.0], - [6.0, 7.0, 8], - [9.0, 10.0, 11.0], - [12.0, 13.0, 14.0], - [0.0, 0.0, 0.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, - expected_output, - mode="constant", - interpolation="nearest", - ) - - # Test left shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [1.0, 2.0, 0.0], - [4.0, 5.0, 0.0], - [7.0, 8.0, 0.0], - [10.0, 11.0, 0.0], - [13.0, 14.0, 0.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, - expected_output, - mode="constant", - interpolation="nearest", - ) - - # Test right shift by 1. - # pyformat: disable - expected_output = ( - np.asarray( - [ - [0.0, 0.0, 1.0], - [0.0, 3.0, 4], - [0.0, 6.0, 7.0], - [0.0, 9.0, 10.0], - [0.0, 12.0, 13.0], - ] - ) - .reshape((1, 5, 3, 1)) - .astype(np.float32) - ) - # pyformat: enable - transform_matrix = np.asarray( - [[1.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0]] - ) - self._run_random_transform_with_mock( - transform_matrix, - expected_output, - mode="constant", - interpolation="nearest", - ) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class RandomRotationTest(test_combinations.TestCase): - def _run_test(self, factor): - np.random.seed(1337) - num_samples = 2 - orig_height = 5 - orig_width = 8 - channels = 3 - kwargs = {"factor": factor} - with test_utils.use_gpu(): - test_utils.layer_test( - image_preprocessing.RandomRotation, - kwargs=kwargs, - input_shape=(num_samples, orig_height, orig_width, channels), - expected_output_shape=(None, orig_height, orig_width, channels), - ) - - @parameterized.named_parameters( - ("random_rotate_4", 0.4), - ("random_rotate_3", 0.3), - ("random_rotate_tuple_factor", (-0.5, 0.4)), - ) - def test_random_rotation(self, factor): - self._run_test(factor) - - def test_random_rotation_inference(self): - input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) - expected_output = input_images - with test_utils.use_gpu(): - layer = image_preprocessing.RandomRotation(0.5) - actual_output = layer(input_images, training=False) - self.assertAllClose(expected_output, actual_output) - - def test_distribution_strategy(self): - """Tests that RandomRotation can be created within DistStrats.""" - input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) - with test_utils.use_gpu(): - strat = tf.distribute.MirroredStrategy(devices=["cpu", "gpu"]) - with strat.scope(): - layer = image_preprocessing.RandomRotation(0.5) - output = strat.run(lambda: layer(input_images, training=True)) - values = output.values - self.assertAllEqual(2, len(values)) - - @test_utils.run_v2_only - def test_config_with_custom_name(self): - layer = image_preprocessing.RandomRotation(0.5, name="image_preproc") - config = layer.get_config() - layer_1 = image_preprocessing.RandomRotation.from_config(config) - self.assertEqual(layer_1.name, layer.name) - - def test_unbatched_image(self): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype( - np.float32 - ) - # 180 rotation. - layer = image_preprocessing.RandomRotation(factor=(0.5, 0.5)) - output_image = layer(input_image) - expected_output = np.asarray( - [ - [24, 23, 22, 21, 20], - [19, 18, 17, 16, 15], - [14, 13, 12, 11, 10], - [9, 8, 7, 6, 5], - [4, 3, 2, 1, 0], - ] - ).astype(np.float32) - expected_output = np.reshape(expected_output, (5, 5, 1)) - self.assertAllClose(expected_output, output_image) - - @test_utils.run_v2_only - def test_output_dtypes(self): - inputs = np.array([[[1], [2]], [[3], [4]]], dtype="float64") - layer = image_preprocessing.RandomRotation(0.5) - self.assertAllEqual(layer(inputs).dtype, "float32") - layer = image_preprocessing.RandomRotation(0.5, dtype="uint8") - self.assertAllEqual(layer(inputs).dtype, "uint8") - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class RandomZoomTest(test_combinations.TestCase): - def _run_test(self, height_factor, width_factor): - np.random.seed(1337) - num_samples = 2 - orig_height = 5 - orig_width = 8 - channels = 3 - kwargs = {"height_factor": height_factor, "width_factor": width_factor} - with test_utils.use_gpu(): - test_utils.layer_test( - image_preprocessing.RandomZoom, - kwargs=kwargs, - input_shape=(num_samples, orig_height, orig_width, channels), - expected_output_shape=(None, orig_height, orig_width, channels), - ) - - @parameterized.named_parameters( - ("random_zoom_4_by_6", -0.4, -0.6), - ("random_zoom_2_by_3", -0.2, -0.3), - ("random_zoom_tuple_factor", (-0.4, -0.5), (-0.2, -0.3)), - ) - def test_random_zoom_in(self, height_factor, width_factor): - self._run_test(height_factor, width_factor) - - @parameterized.named_parameters( - ("random_zoom_4_by_6", 0.4, 0.6), - ("random_zoom_2_by_3", 0.2, 0.3), - ("random_zoom_tuple_factor", (0.4, 0.5), (0.2, 0.3)), - ) - def test_random_zoom_out(self, height_factor, width_factor): - self._run_test(height_factor, width_factor) - - def test_random_zoom_in_numeric(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype( - dtype - ) - layer = image_preprocessing.RandomZoom( - (-0.5, -0.5), (-0.5, -0.5), interpolation="nearest" - ) - output_image = layer(np.expand_dims(input_image, axis=0)) - expected_output = np.asarray( - [ - [6, 7, 7, 8, 8], - [11, 12, 12, 13, 13], - [11, 12, 12, 13, 13], - [16, 17, 17, 18, 18], - [16, 17, 17, 18, 18], - ] - ).astype(dtype) - expected_output = np.reshape(expected_output, (1, 5, 5, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_zoom_out_numeric(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype( - dtype - ) - layer = image_preprocessing.RandomZoom( - (0.5, 0.5), - (0.8, 0.8), - fill_mode="constant", - interpolation="nearest", - ) - output_image = layer(np.expand_dims(input_image, axis=0)) - expected_output = np.asarray( - [ - [0, 0, 0, 0, 0], - [0, 5, 7, 9, 0], - [0, 10, 12, 14, 0], - [0, 20, 22, 24, 0], - [0, 0, 0, 0, 0], - ] - ).astype(dtype) - expected_output = np.reshape(expected_output, (1, 5, 5, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_zoom_out_numeric_preserve_aspect_ratio(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype( - dtype - ) - layer = image_preprocessing.RandomZoom( - (0.5, 0.5), fill_mode="constant", interpolation="nearest" - ) - output_image = layer(np.expand_dims(input_image, axis=0)) - expected_output = np.asarray( - [ - [0, 0, 0, 0, 0], - [0, 6, 7, 9, 0], - [0, 11, 12, 14, 0], - [0, 21, 22, 24, 0], - [0, 0, 0, 0, 0], - ] - ).astype(dtype) - expected_output = np.reshape(expected_output, (1, 5, 5, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_zoom_inference(self): - input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) - expected_output = input_images - with test_utils.use_gpu(): - layer = image_preprocessing.RandomZoom(0.5, 0.5) - actual_output = layer(input_images, training=False) - self.assertAllClose(expected_output, actual_output) - - @test_utils.run_v2_only - def test_config_with_custom_name(self): - layer = image_preprocessing.RandomZoom(0.5, 0.6, name="image_preproc") - config = layer.get_config() - layer_1 = image_preprocessing.RandomZoom.from_config(config) - self.assertEqual(layer_1.name, layer.name) - - def test_unbatched_image(self): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype( - np.int64 - ) - layer = image_preprocessing.RandomZoom( - (-0.5, -0.5), (-0.5, -0.5), interpolation="nearest" - ) - output_image = layer(input_image) - expected_output = np.asarray( - [ - [6, 7, 7, 8, 8], - [11, 12, 12, 13, 13], - [11, 12, 12, 13, 13], - [16, 17, 17, 18, 18], - [16, 17, 17, 18, 18], - ] - ).astype(np.int64) - expected_output = np.reshape(expected_output, (5, 5, 1)) - self.assertAllEqual(expected_output, output_image) - - @test_utils.run_v2_only - def test_output_dtypes(self): - inputs = np.array([[[1], [2]], [[3], [4]]], dtype="float64") - layer = image_preprocessing.RandomZoom(0.5, 0.5) - self.assertAllEqual(layer(inputs).dtype, "float32") - layer = image_preprocessing.RandomZoom(0.5, 0.5, dtype="uint8") - self.assertAllEqual(layer(inputs).dtype, "uint8") - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class RandomHeightTest(test_combinations.TestCase): - def _run_test(self, factor): - np.random.seed(1337) - num_samples = 2 - orig_height = 5 - orig_width = 8 - channels = 3 - with test_utils.use_gpu(): - img = np.random.random( - (num_samples, orig_height, orig_width, channels) - ) - layer = image_preprocessing.RandomHeight(factor) - img_out = layer(img, training=True) - self.assertEqual(img_out.shape[0], 2) - self.assertEqual(img_out.shape[2], 8) - self.assertEqual(img_out.shape[3], 3) - - @parameterized.named_parameters( - ("random_height_4_by_6", (0.4, 0.6)), - ("random_height_3_by_2", (-0.3, 0.2)), - ("random_height_3", 0.3), - ) - def test_random_height_basic(self, factor): - self._run_test(factor) - - def test_valid_random_height(self): - # need (maxval - minval) * rnd + minval = 0.6 - mock_factor = 0.6 - with test_utils.use_gpu(): - img = np.random.random((12, 5, 8, 3)) - layer = image_preprocessing.RandomHeight(0.4) - with tf.compat.v1.test.mock.patch.object( - layer._random_generator, - "random_uniform", - return_value=mock_factor, - ): - img_out = layer(img, training=True) - self.assertEqual(img_out.shape[1], 3) - - def test_random_height_longer_numeric(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 6), (2, 3, 1)).astype( - dtype - ) - layer = image_preprocessing.RandomHeight(factor=(1.0, 1.0)) - # Return type of RandomHeight() is float32 - # if `interpolation` is not - # set to `ResizeMethod.NEAREST_NEIGHBOR`; - # cast `layer` to desired dtype. - output_image = tf.cast( - layer(np.expand_dims(input_image, axis=0)), dtype=dtype - ) - # pyformat: disable - expected_output = np.asarray( - [ - [0, 1, 2], - [0.75, 1.75, 2.75], - [2.25, 3.25, 4.25], - [3, 4, 5], - ] - ).astype(dtype) - # pyformat: enable - expected_output = np.reshape(expected_output, (1, 4, 3, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_height_shorter_numeric(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 8), (4, 2, 1)).astype( - dtype - ) - layer = image_preprocessing.RandomHeight( - factor=(-0.5, -0.5), interpolation="nearest" - ) - output_image = layer(np.expand_dims(input_image, axis=0)) - # pyformat: disable - expected_output = np.asarray([[2, 3], [6, 7]]).astype(dtype) - # pyformat: enable - expected_output = np.reshape(expected_output, (1, 2, 2, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_height_invalid_factor(self): - with self.assertRaises(ValueError): - image_preprocessing.RandomHeight((-1.5, 0.4)) - - def test_random_height_inference(self): - input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) - expected_output = input_images - with test_utils.use_gpu(): - layer = image_preprocessing.RandomHeight(0.5) - actual_output = layer(input_images, training=False) - self.assertAllClose(expected_output, actual_output) - - @test_utils.run_v2_only - def test_config_with_custom_name(self): - layer = image_preprocessing.RandomHeight(0.5, name="image_preproc") - config = layer.get_config() - layer_1 = image_preprocessing.RandomHeight.from_config(config) - self.assertEqual(layer_1.name, layer.name) - - def test_unbatched_image(self): - # need (maxval - minval) * rnd + minval = 0.6 - mock_factor = 0.6 - with test_utils.use_gpu(): - img = np.random.random((5, 8, 3)) - layer = image_preprocessing.RandomHeight(0.4) - with tf.compat.v1.test.mock.patch.object( - layer._random_generator, - "random_uniform", - return_value=mock_factor, - ): - img_out = layer(img, training=True) - self.assertEqual(img_out.shape[0], 3) - - @test_utils.run_v2_only - def test_output_dtypes(self): - inputs = np.array([[[1], [2]], [[3], [4]]], dtype="float64") - layer = image_preprocessing.RandomHeight(0.2) - self.assertAllEqual(layer(inputs).dtype, "float32") - layer = image_preprocessing.RandomHeight(0.2, dtype="uint8") - self.assertAllEqual(layer(inputs).dtype, "uint8") - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class RandomWidthTest(test_combinations.TestCase): - def _run_test(self, factor): - np.random.seed(1337) - num_samples = 2 - orig_height = 5 - orig_width = 8 - channels = 3 - with test_utils.use_gpu(): - img = np.random.random( - (num_samples, orig_height, orig_width, channels) - ) - layer = image_preprocessing.RandomWidth(factor) - img_out = layer(img, training=True) - self.assertEqual(img_out.shape[0], 2) - self.assertEqual(img_out.shape[1], 5) - self.assertEqual(img_out.shape[3], 3) - - @parameterized.named_parameters( - ("random_width_4_by_6", (0.4, 0.6)), - ("random_width_3_by_2", (-0.3, 0.2)), - ("random_width_3", 0.3), - ) - def test_random_width_basic(self, factor): - self._run_test(factor) - - def test_valid_random_width(self): - # need (maxval - minval) * rnd + minval = 0.6 - mock_factor = 0.6 - with test_utils.use_gpu(): - img = np.random.random((12, 8, 5, 3)) - layer = image_preprocessing.RandomWidth(0.4) - with tf.compat.v1.test.mock.patch.object( - layer._random_generator, - "random_uniform", - return_value=mock_factor, - ): - img_out = layer(img, training=True) - self.assertEqual(img_out.shape[2], 3) - - def test_random_width_longer_numeric(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 6), (3, 2, 1)).astype( - dtype - ) - layer = image_preprocessing.RandomWidth(factor=(1.0, 1.0)) - # Return type of RandomWidth() is float32 - # if `interpolation` is not - # set to `ResizeMethod.NEAREST_NEIGHBOR`; - # cast `layer` to desired dtype. - output_image = tf.cast( - layer(np.expand_dims(input_image, axis=0)), dtype=dtype - ) - # pyformat: disable - expected_output = np.asarray( - [[0, 0.25, 0.75, 1], [2, 2.25, 2.75, 3], [4, 4.25, 4.75, 5]] - ).astype(dtype) - # pyformat: enable - expected_output = np.reshape(expected_output, (1, 3, 4, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_width_shorter_numeric(self): - for dtype in (np.int64, np.float32): - with test_utils.use_gpu(): - input_image = np.reshape(np.arange(0, 8), (2, 4, 1)).astype( - dtype - ) - layer = image_preprocessing.RandomWidth( - factor=(-0.5, -0.5), interpolation="nearest" - ) - output_image = layer(np.expand_dims(input_image, axis=0)) - # pyformat: disable - expected_output = np.asarray([[1, 3], [5, 7]]).astype(dtype) - # pyformat: enable - expected_output = np.reshape(expected_output, (1, 2, 2, 1)) - self.assertAllEqual(expected_output, output_image) - - def test_random_width_invalid_factor(self): - with self.assertRaises(ValueError): - image_preprocessing.RandomWidth((-1.5, 0.4)) - - def test_random_width_inference(self): - input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) - expected_output = input_images - with test_utils.use_gpu(): - layer = image_preprocessing.RandomWidth(0.5) - actual_output = layer(input_images, training=False) - self.assertAllClose(expected_output, actual_output) - - @test_utils.run_v2_only - def test_config_with_custom_name(self): - layer = image_preprocessing.RandomWidth(0.5, name="image_preproc") - config = layer.get_config() - layer_1 = image_preprocessing.RandomWidth.from_config(config) - self.assertEqual(layer_1.name, layer.name) - - def test_unbatched_image(self): - # need (maxval - minval) * rnd + minval = 0.6 - mock_factor = 0.6 - with test_utils.use_gpu(): - img = np.random.random((8, 5, 3)) - layer = image_preprocessing.RandomWidth(0.4) - with tf.compat.v1.test.mock.patch.object( - layer._random_generator, - "random_uniform", - return_value=mock_factor, - ): - img_out = layer(img, training=True) - self.assertEqual(img_out.shape[1], 3) - - @test_utils.run_v2_only - def test_output_dtypes(self): - inputs = np.array([[[1], [2]], [[3], [4]]], dtype="float64") - layer = image_preprocessing.RandomWidth(0.2) - self.assertAllEqual(layer(inputs).dtype, "float32") - layer = image_preprocessing.RandomWidth(0.2, dtype="uint8") - self.assertAllEqual(layer(inputs).dtype, "uint8") - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class LearningPhaseTest(test_combinations.TestCase): - def test_plain_call(self): - layer = image_preprocessing.RandomWidth(0.5, seed=123) - shape = (12, 12, 3) - img = np.random.random((12,) + shape) - out = layer(img) # Default to training=True - self.assertNotEqual(tuple(int(i) for i in out.shape[1:]), shape) - - out = layer(img, training=True) - self.assertNotEqual(tuple(int(i) for i in out.shape[1:]), shape) - - out = layer(img, training=False) - self.assertEqual(tuple(int(i) for i in out.shape[1:]), shape) - - def test_call_in_container(self): - layer1 = image_preprocessing.RandomWidth(0.5, seed=123) - layer2 = image_preprocessing.RandomHeight(0.5, seed=123) - seq = sequential.Sequential([layer1, layer2]) - - shape = (12, 12, 3) - img = np.random.random((12,) + shape) - out = seq(img) # Default to training=True - self.assertNotEqual(tuple(int(i) for i in out.shape[1:]), shape) - - out = seq(img, training=True) - self.assertNotEqual(tuple(int(i) for i in out.shape[1:]), shape) - - out = seq(img, training=False) - self.assertEqual(tuple(int(i) for i in out.shape[1:]), shape) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class DeterminismTest(test_combinations.TestCase): - @parameterized.named_parameters( - ("random_flip", image_preprocessing.RandomFlip), - ( - "random_contrast", - functools.partial(image_preprocessing.RandomContrast, factor=1.0), - ), - ( - "random_crop", - functools.partial( - image_preprocessing.RandomCrop, height=2, width=2 - ), - ), - ( - "random_translation", - functools.partial(image_preprocessing.RandomTranslation, 0.3, 0.2), - ), - ( - "random_rotation", - functools.partial(image_preprocessing.RandomRotation, 0.5), - ), - ("random_zoom", functools.partial(image_preprocessing.RandomZoom, 0.2)), - ( - "random_height", - functools.partial(image_preprocessing.RandomHeight, 0.4), - ), - ( - "random_width", - functools.partial(image_preprocessing.RandomWidth, 0.3), - ), - ) - def test_seed_constructor_arg(self, layer_cls): - input_image = np.random.random((2, 5, 8, 3)).astype(np.float32) - - layer1 = layer_cls(seed=0.0) - layer2 = layer_cls(seed=0.0) - layer1_output = layer1(input_image) - layer2_output = layer2(input_image) - - self.assertAllClose( - layer1_output.numpy().tolist(), layer2_output.numpy().tolist() - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/index_lookup.py b/keras/layers/preprocessing/index_lookup.py deleted file mode 100644 index c1c68ecf66a..00000000000 --- a/keras/layers/preprocessing/index_lookup.py +++ /dev/null @@ -1,998 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras index lookup preprocessing layer.""" - - -import collections - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer_utils -from keras.engine import base_preprocessing_layer -from keras.layers.preprocessing import preprocessing_utils as utils -from keras.saving.legacy.saved_model import layer_serialization -from keras.utils import layer_utils -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging - -INT = utils.INT -MULTI_HOT = utils.MULTI_HOT -ONE_HOT = utils.ONE_HOT -COUNT = utils.COUNT -TF_IDF = utils.TF_IDF - -_VOCAB_NAME = "vocab" -_IDF_WEIGHTS_NAME = "idf_weights" - - -class NullInitializer(tf.lookup.KeyValueTensorInitializer): - """A placeholder initializer for restoring this layer from a SavedModel.""" - - def __init__(self, key_dtype, value_dtype): - """Construct a table initializer object. - - Args: - key_dtype: Type of the table keys. - value_dtype: Type of the table values. - """ - self._key_dtype = key_dtype - self._value_dtype = value_dtype - - @property - def key_dtype(self): - """The expected table key dtype.""" - return self._key_dtype - - @property - def value_dtype(self): - """The expected table value dtype.""" - return self._value_dtype - - def initialize(self, table): - """Returns the table initialization op.""" - pass - - -class VocabWeightHandler(base_layer_utils.TrackableWeightHandler): - """Adds the vocabulary as a layer weight during serialization.""" - - def __init__(self, lookup_layer): - # Note that this class doesn't call super().__init__() in order to - # have customized behavior. The fileds like '_dtype' and - # '_distribute_strategy' are required by the parent class, as well as - # tf.distribute. See `strategy.extended.variable_created_in_scope` - self._layer = lookup_layer - self._dtype = lookup_layer.vocabulary_dtype - self._distribute_strategy = tf.distribute.get_strategy() - - @property - def num_tensors(self): - return 1 - - def set_weights(self, weights): - tokens = tf.convert_to_tensor(weights[0], self._dtype) - self._layer.lookup_table = self._layer._lookup_table_from_tokens(tokens) - - def get_tensors(self): - # Just save the non-config part of the vocab (no special tokens). - tokens = self._layer.get_vocabulary(include_special_tokens=False) - tokens = tf.convert_to_tensor(tokens, self._dtype) - return [tokens] - - -class IndexLookup(base_preprocessing_layer.PreprocessingLayer): - """Maps values from a vocabulary to integer indices. - - This layer translates a set of arbitrary hashables into an integer output - via a table-based lookup, with optional out-of-vocabulary handling. This is - the basis layer for both IntegerLookup and StringLookup; it holds the common - logic but is not intended to be exported as part of the Keras API. - - Args: - max_tokens: The maximum size of the vocabulary for this layer. If None, - there is no cap on the size of the vocabulary. Note that this size - includes the OOV and mask tokens. - num_oov_indices: The number of out-of-vocabulary tokens to use. If this - value is more than 1, OOV inputs are hashed to determine their OOV - value. If this value is 0, OOV inputs will cause an error when calling - the layer. - mask_token: A token that represents masked inputs. When `output_mode` is - `"int"`, the token is included in vocabulary and mapped to index 0. In - other output modes, the token will not appear in the vocabulary and - instances of the mask token in the input will be dropped. If set to - None, no mask term will be added. - oov_token: Only used when `invert` is True. The token to return for OOV - indices. - vocabulary: Optional. Either an array or a string path to a text file. If - passing an array, can pass a tuple, list, 1D numpy array, or 1D tensor - containing the vocbulary terms. If passing a file path, the file should - contain one line per term in the vocabulary. If this argument is set, - there is no need to `adapt` the layer. - vocabulary_dtype: The dtype of the vocabulary terms. For example, - `"int64"` or `"string"`. - idf_weights: Only valid when `output_mode` is `"tf_idf"`. A tuple, list, - 1D numpy array, or 1D tensor or the same length as the vocabulary, - containing the floating point inverse document frequency weights, which - will be multiplied by per sample term counts for the final `tf_idf` - weight. If the `vocabulary` argument is set, and `output_mode` is - `"tf_idf"`, this argument must be supplied. - invert: Only valid when `output_mode` is `"int"`. If True, this layer will - map indices to vocabulary items instead of mapping vocabulary items to - indices. Default to False. - output_mode: Specification for the output of the layer. Defaults to - `"int"`. Values can be `"int"`, `"one_hot"`, `"multi_hot"`, `"count"`, - or `"tf_idf"` configuring the layer as follows: - - `"int"`: Return the raw integer indices of the input tokens. - - `"one_hot"`: Encodes each individual element in the input into an - array the same size as the vocabulary, containing a 1 at the element - index. If the last dimension is size 1, will encode on that - dimension. If the last dimension is not size 1, will append a new - dimension for the encoded output. - - `"multi_hot"`: Encodes each sample in the input into a single array - the same size as the vocabulary, containing a 1 for each vocabulary - term present in the sample. Treats the last dimension as the sample - dimension, if input shape is (..., sample_length), output shape will - be (..., num_tokens). - - `"count"`: As `"multi_hot"`, but the int array contains a count of - the number of times the token at that index appeared in the sample. - - `"tf_idf"`: As `"multi_hot"`, but the TF-IDF algorithm is applied to - find the value in each token slot. - pad_to_max_tokens: Only valid when `output_mode` is `"multi_hot"`, - `"count"`, or `"tf_idf"`. If True, the output will have its feature axis - padded to `max_tokens` even if the number of unique tokens in the - vocabulary is less than max_tokens, resulting in a tensor of shape - [batch_size, max_tokens] regardless of vocabulary size. Defaults to - False. - sparse: Boolean. Only applicable to `"one_hot"`, `"multi_hot"`, `"count"` - and `"tf-idf"` output modes. If True, returns a `SparseTensor` instead - of a dense `Tensor`. Defaults to False. - """ - - def __init__( - self, - max_tokens, - num_oov_indices, - mask_token, - oov_token, - vocabulary_dtype, - vocabulary=None, - idf_weights=None, - invert=False, - output_mode="int", - sparse=False, - pad_to_max_tokens=False, - **kwargs, - ): - # If max_tokens is set, the value must be greater than 1 - otherwise we - # are creating a 0-element vocab, which doesn't make sense. - if max_tokens is not None and max_tokens <= 1: - raise ValueError( - "If set, `max_tokens` must be greater than 1. " - f"Received: max_tokens={max_tokens}" - ) - - if pad_to_max_tokens and max_tokens is None: - raise ValueError( - "If pad_to_max_tokens is True, must set `max_tokens`. " - f"Received: max_tokens={max_tokens}" - ) - - if num_oov_indices < 0: - raise ValueError( - "`num_oov_indices` must be greater than or equal to 0. " - f"Received: num_oov_indices={num_oov_indices}" - ) - - # Support deprecated names for output_modes. - if output_mode == "binary": - output_mode = MULTI_HOT - if output_mode == "tf-idf": - output_mode = TF_IDF - # 'output_mode' must be one of (INT, ONE_HOT, MULTI_HOT, COUNT, TF_IDF) - layer_utils.validate_string_arg( - output_mode, - allowable_strings=(INT, ONE_HOT, MULTI_HOT, COUNT, TF_IDF), - layer_name=self.__class__.__name__, - arg_name="output_mode", - ) - - if invert and output_mode != INT: - raise ValueError( - "`output_mode` must be `'int'` when `invert` is true. " - f"Received: output_mode={output_mode}" - ) - - if sparse and output_mode == INT: - raise ValueError( - "`sparse` may only be true if `output_mode` is " - "`'one_hot'`, `'multi_hot'`, `'count'` or `'tf_idf'`. " - f"Received: sparse={sparse} and " - f"output_mode={output_mode}" - ) - - if idf_weights is not None and output_mode != TF_IDF: - raise ValueError( - "`idf_weights` should only be set if `output_mode` is " - f"`'tf_idf'`. Received: idf_weights={idf_weights} and " - f"output_mode={output_mode}" - ) - - self.invert = invert - self.max_tokens = max_tokens - self.num_oov_indices = num_oov_indices - self.mask_token = mask_token - self.oov_token = oov_token - self.output_mode = output_mode - self.sparse = sparse - self.pad_to_max_tokens = pad_to_max_tokens - self.vocabulary_dtype = vocabulary_dtype - self._frozen_vocab_size = kwargs.pop("vocabulary_size", None) - - self.input_vocabulary = vocabulary - self.input_idf_weights = idf_weights - # VocabularySavedModelSaver will clear the config vocabulary to restore - # the lookup table ops directly. We persist this hidden option to - # persist the fact that we have have a non-adaptable layer with a - # manually set vocab. - self._has_input_vocabulary = kwargs.pop( - "has_input_vocabulary", (vocabulary is not None) - ) - - # Drop deprecated config options. - kwargs.pop("has_static_table", None) - - # By default, output int64 when output_mode='int' and floats otherwise. - if "dtype" not in kwargs: - kwargs["dtype"] = ( - tf.int64 if output_mode == INT else backend.floatx() - ) - - super().__init__(**kwargs) - - # Check dtype only after base layer parses it; dtype parsing is complex. - if ( - output_mode == INT - and not tf.as_dtype(self.compute_dtype).is_integer - ): - input_dtype = kwargs["dtype"] - raise ValueError( - "When `output_mode='int'`, `dtype` should be an integer " - f"type. Received: dtype={input_dtype}" - ) - - if invert: - self._key_dtype = self.dtype if output_mode == INT else tf.int64 - self._value_dtype = tf.as_dtype(self.vocabulary_dtype) - mask_key = 0 - mask_value = mask_token - self._default_value = self.oov_token - else: - self._key_dtype = tf.as_dtype(self.vocabulary_dtype) - self._value_dtype = self.dtype if output_mode == INT else tf.int64 - mask_key = mask_token - # Masks should map to 0 for int output and be dropped otherwise. Max - # ints will be dropped from the bincount op. - mask_value = 0 if self.output_mode == INT else self._value_dtype.max - if self.num_oov_indices == 0: - # If there are no OOV indices, we map OOV tokens to -1 and error - # out during call if we find a negative index. - self._default_value = -1 - elif self.num_oov_indices == 1: - # If there is only one OOV index, we can set that index as the - # default value of the index_lookup table. - self._default_value = self._oov_start_index() - else: - # If we have multiple OOV values, we need to do a further - # hashing step; to make this easier, we set the OOV value to -1. - # (This lets us do a vectorized add and cast to boolean to - # determine locations where we need to do extra hashing.) - self._default_value = -1 - if self.mask_token is not None: - self._mask_key = tf.convert_to_tensor(mask_key, self._key_dtype) - self._mask_value = tf.convert_to_tensor( - mask_value, self._value_dtype - ) - - if self.output_mode == TF_IDF: - self.idf_weights = tf.Variable( - [0] * self._token_start_index(), - shape=(None,), - dtype=self.compute_dtype, - trainable=False, - ) - self.idf_weights_const = self.idf_weights.value() - - if vocabulary is not None: - self.set_vocabulary(vocabulary, idf_weights) - else: - # When restoring from a keras SavedModel, the loading code will - # expect to find and restore a lookup_table attribute on the layer. - # This table needs to be uninitialized as a StaticHashTable cannot - # be initialized twice. - self.lookup_table = self._uninitialized_lookup_table() - - # Only set up adapt state if we did not receive a vocab on construction. - if not self._has_input_vocabulary: - # Add custom weight handler to return the layer's vocab as a weight. - self._add_trackable(VocabWeightHandler(self), False) - # Set adapt state. - self.token_counts = tf.lookup.experimental.MutableHashTable( - key_dtype=vocabulary_dtype, - value_dtype=tf.int64, - default_value=0, - ) - if self.output_mode == TF_IDF: - self.token_document_counts = ( - tf.lookup.experimental.MutableHashTable( - key_dtype=vocabulary_dtype, - value_dtype=tf.int64, - default_value=0, - ) - ) - self.num_documents = tf.Variable( - 0, dtype=tf.int64, trainable=False - ) - - def compute_output_shape(self, input_shape): - if self.output_mode == INT: - return input_shape - depth = ( - self.max_tokens - if self.pad_to_max_tokens - else self._frozen_vocab_size - ) - return tf.TensorShape([input_shape[0], depth]) - - def compute_output_signature(self, input_spec): - output_shape = self.compute_output_shape(input_spec.shape.as_list()) - output_dtype = ( - self.vocabulary_dtype if self.invert else self.compute_dtype - ) - return tf.TensorSpec(shape=output_shape, dtype=output_dtype) - - def get_vocabulary(self, include_special_tokens=True): - """Returns the current vocabulary of the layer. - - Args: - include_special_tokens: If True, the returned vocabulary will include - mask and OOV tokens, and a term's index in the vocabulary will equal - the term's index when calling the layer. If False, the returned - vocabulary will not include any mask or OOV tokens. - """ - # The lookup table data will not be sorted, so we will create a inverted - # lookup here, and use that to lookup a range of indices [0, - # vocab_size). - if self.lookup_table.size() == 0: - vocab, indices = [], [] - else: - keys, values = self.lookup_table.export() - vocab, indices = (values, keys) if self.invert else (keys, values) - vocab, indices = ( - self._tensor_vocab_to_numpy(vocab), - indices.numpy(), - ) - lookup = collections.defaultdict( - lambda: self.oov_token, zip(indices, vocab) - ) - vocab = [lookup[x] for x in range(self.vocabulary_size())] - if self.mask_token is not None and self.output_mode == INT: - vocab[0] = self.mask_token - if not include_special_tokens: - vocab = vocab[self._token_start_index() :] - return vocab - - def vocabulary_size(self): - """Gets the current size of the layer's vocabulary. - - Returns: - The integer size of the vocabulary, including optional mask and oov - indices. - """ - if tf.executing_eagerly(): - return ( - int(self.lookup_table.size().numpy()) - + self._token_start_index() - ) - else: - return self.lookup_table.size() + self._token_start_index() - - def vocab_size(self): - logging.warning("vocab_size is deprecated, please use vocabulary_size.") - return self.vocabulary_size() - - def get_config(self): - config = { - "invert": self.invert, - "max_tokens": self.max_tokens, - "num_oov_indices": self.num_oov_indices, - "oov_token": self.oov_token, - "mask_token": self.mask_token, - "output_mode": self.output_mode, - "sparse": self.sparse, - "pad_to_max_tokens": self.pad_to_max_tokens, - "vocabulary_dtype": self.vocabulary_dtype, - "idf_weights": utils.listify_tensors(self.input_idf_weights), - "vocabulary": utils.listify_tensors(self.input_vocabulary), - "vocabulary_size": self._frozen_vocab_size, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - def _record_vocabulary_size(self): - self._ensure_vocab_size_unchanged() - with tf.init_scope(): - self._frozen_vocab_size = self.vocabulary_size() - - def set_vocabulary(self, vocabulary, idf_weights=None): - """Sets vocabulary (and optionally document frequency) for this layer. - - This method sets the vocabulary and idf weights for this layer directly, - instead of analyzing a dataset through `adapt`. It should be used - whenever the vocab (and optionally document frequency) information is - already known. If vocabulary data is already present in the layer, this - method will replace it. - - Args: - vocabulary: Either an array or a string path to a text file. If - passing an array, can pass a tuple, list, 1D numpy array, or 1D - tensor containing the vocbulary terms. If passing a file path, the - file should contain one line per term in the vocabulary. - idf_weights: A tuple, list, 1D numpy array, or 1D tensor of inverse - document frequency weights with equal length to vocabulary. Must be - set if `output_mode` is `"tf_idf"`. Should not be set otherwise. - - Raises: - ValueError: If there are too many inputs, the inputs do not match, or - input data is missing. - RuntimeError: If the vocabulary cannot be set when this function is - called. This happens when `"multi_hot"`, `"count"`, and `"tf_idf"` - modes, if `pad_to_max_tokens` is False and the layer itself has - already been called. - RuntimeError: If a tensor vocabulary is passed outside of eager - execution. - """ - if self.output_mode == TF_IDF: - if idf_weights is None: - raise ValueError( - "`idf_weights` must be set if output_mode is TF_IDF" - ) - elif idf_weights is not None: - raise ValueError( - "`idf_weights` should only be set if output_mode is " - f"`'tf_idf'`. Received: output_mode={self.output_mode} " - f"and idf_weights={idf_weights}" - ) - - if isinstance(vocabulary, str): - if not tf.io.gfile.exists(vocabulary): - raise ValueError( - f"Vocabulary file {vocabulary} does not exist." - ) - if self.output_mode == TF_IDF: - raise ValueError( - "output_mode `'tf_idf'` does not support loading a " - "vocabulary from file." - ) - self.lookup_table = self._lookup_table_from_file(vocabulary) - self._record_vocabulary_size() - return - - if not tf.executing_eagerly() and ( - tf.is_tensor(vocabulary) or tf.is_tensor(idf_weights) - ): - raise RuntimeError( - "Cannot set a tensor vocabulary on {} layer {} when not " - "executing eagerly. Create this layer or call `set_vocabulary` " - "outside of any `tf.function`s and with eager execution " - "enabled.".format(self.__class__.__name__, self.name) - ) - - # TODO(mattdangerw): for better performance we should rewrite this - # entire function to operate on tensors and convert vocabulary to a - # tensor here. - if tf.is_tensor(vocabulary): - vocabulary = self._tensor_vocab_to_numpy(vocabulary) - elif isinstance(vocabulary, (list, tuple)): - vocabulary = np.array(vocabulary) - if tf.is_tensor(idf_weights): - idf_weights = idf_weights.numpy() - elif isinstance(idf_weights, (list, tuple)): - idf_weights = np.array(idf_weights) - - if vocabulary.size == 0: - raise ValueError( - f"Cannot set an empty vocabulary, you passed {vocabulary}." - ) - - oov_start = self._oov_start_index() - token_start = self._token_start_index() - special_tokens = [self.mask_token] * oov_start + [ - self.oov_token - ] * self.num_oov_indices - found_special_tokens = np.array_equal( - special_tokens, vocabulary[:token_start] - ) - if found_special_tokens: - tokens = vocabulary[token_start:] - else: - tokens = vocabulary - - repeated_tokens = self._find_repeated_tokens(tokens) - if repeated_tokens: - raise ValueError( - "The passed vocabulary has at least one repeated " - "term. Please uniquify your dataset. The repeated terms " - "are {}".format(repeated_tokens) - ) - - if self.mask_token is not None and self.mask_token in tokens: - mask_index = np.argwhere(vocabulary == self.mask_token)[-1] - raise ValueError( - "Found reserved mask token at unexpected location in " - "`vocabulary`. Note that passed `vocabulary` does not need to " - "include the OOV and mask tokens. Either remove all mask and " - "OOV tokens, or include them only at the start of the " - f"vocabulary in precisely this order: {special_tokens}. " - f"Received: mask_token={self.mask_token} at " - f"vocabulary index {mask_index}" - ) - # Only error out for oov_token when invert=True. When invert=False, - # oov_token is unused during lookup. - if ( - self.oov_token is not None - and self.invert - and self.oov_token in tokens - ): - oov_index = np.argwhere(vocabulary == self.oov_token)[-1] - raise ValueError( - "Found reserved OOV token at unexpected location in " - "`vocabulary`. Note that passed `vocabulary` does not need to " - "include the OOV and mask tokens. Either remove all mask and " - "OOV tokens, or include them only at the start of the " - f"vocabulary in precisely this order: {special_tokens}. " - f"Received: oov_token={self.oov_token} at " - f"vocabulary index {oov_index}" - ) - - new_vocab_size = token_start + len(tokens) - if self.max_tokens is not None and (new_vocab_size > self.max_tokens): - raise ValueError( - "Attempted to set a vocabulary larger than the maximum vocab " - "size. Passed vocab size is {}, max vocab size is {}.".format( - new_vocab_size, self.max_tokens - ) - ) - self.lookup_table = self._lookup_table_from_tokens(tokens) - self._record_vocabulary_size() - - if self.output_mode == TF_IDF and idf_weights is not False: - if len(vocabulary) != len(idf_weights): - raise ValueError( - "`idf_weights` must be the same length as vocabulary. " - "len(idf_weights) is {}, len(vocabulary) is {}".format( - len(vocabulary), len(idf_weights) - ) - ) - idf_weights = self._convert_to_ndarray(idf_weights) - if idf_weights.ndim != 1: - raise ValueError( - "TF-IDF data must be a 1-index array, " - "but received {}".format(type(idf_weights)) - ) - - # If the passed vocabulary has no special tokens, we need to pad the - # front of idf_weights. We don't have real document frequencies for - # these tokens so we will use an average of all idf_weights passed - # in as a reasonable default. - if found_special_tokens: - front_padding = 0 - front_padding_value = 0 - else: - front_padding = token_start - front_padding_value = np.average(idf_weights) - # If pad_to_max_tokens is true, and max_tokens is greater than our - # total vocab size, we need to pad the back of idf_weights with - # zeros as well. - back_padding_value = 0 - if self.pad_to_max_tokens and self.max_tokens is not None: - back_padding = ( - self.max_tokens - front_padding - len(idf_weights) - ) - else: - back_padding = 0 - weights = np.pad( - idf_weights, - (front_padding, back_padding), - "constant", - constant_values=(front_padding_value, back_padding_value), - ) - weights = tf.convert_to_tensor(weights, dtype=self.compute_dtype) - self.idf_weights.assign(weights) - self.idf_weights_const = self.idf_weights.value() - - def update_state(self, data): - if self._has_input_vocabulary: - raise ValueError( - "Cannot adapt {} layer after setting a static vocabulary via " - "init argument " - "or `set_vocabulary`.".format(self.__class__.__name__) - ) - - data = utils.ensure_tensor(data, dtype=self.vocabulary_dtype) - if data.shape.rank == 0: - data = tf.expand_dims(data, 0) - if data.shape.rank == 1: - # Expand dims on axis 0 for tf-idf. A 1-d tensor is a single - # document. - data = tf.expand_dims(data, 0) - - tokens, counts = self._num_tokens(data) - self.token_counts.insert( - tokens, counts + self.token_counts.lookup(tokens) - ) - - if self.output_mode == TF_IDF: - # Dedupe each row of our dataset. - deduped_doc_data = tf.map_fn(lambda x: tf.unique(x)[0], data) - # Flatten and count tokens. - tokens, doc_counts = self._num_tokens(deduped_doc_data) - self.token_document_counts.insert( - tokens, doc_counts + self.token_document_counts.lookup(tokens) - ) - if tf_utils.is_ragged(data): - self.num_documents.assign_add(data.nrows()) - else: - self.num_documents.assign_add( - tf.shape(data, out_type=tf.int64)[0] - ) - - def finalize_state(self): - if self._has_input_vocabulary or tf.equal(self.token_counts.size(), 0): - # Finalize idf_weights to a const for call even if we don't need to - # compute a new vocabulary. - if self.output_mode == TF_IDF: - self.idf_weights_const = self.idf_weights.value() - self._record_vocabulary_size() - return - - # Remove special tokens from our counts. - if self.mask_token is not None: - self.token_counts.remove( - tf.convert_to_tensor([self.mask_token], self.vocabulary_dtype) - ) - if self.oov_token is not None: - self.token_counts.remove( - tf.convert_to_tensor([self.oov_token], self.vocabulary_dtype) - ) - - tokens, counts = self.token_counts.export() - # To keep vocabs deterministic, we sort our tokens by count and break - # ties by sorting the tokens themselves. Tensorflow has no ops for - # sorting strings, so we need to use numpy for the sort. - sorted_indices = np.lexsort((tokens.numpy(), counts.numpy()))[::-1] - token_start = self._token_start_index() - if self.max_tokens: - max_learned_tokens = self.max_tokens - token_start - sorted_indices = sorted_indices[:max_learned_tokens] - tokens = tf.gather(tokens, sorted_indices) - self.lookup_table = self._lookup_table_from_tokens(tokens) - - if self.output_mode == TF_IDF: - token_document_counts = self.token_document_counts.lookup(tokens) - idf_weights = self._inverse_document_frequency( - token_document_counts, self.num_documents - ) - idf_weights = tf.cast(idf_weights, self.compute_dtype) - # Pad the front of idf_weights with the average idf weight for OOV - # tokens. We cannot compute the real idf weight of OOV in a single - # pass. - idf_weights = tf.pad( - idf_weights, - [[self._token_start_index(), 0]], - constant_values=tf.reduce_mean(idf_weights), - ) - if self.pad_to_max_tokens and self.max_tokens is not None: - # Pad the back of idf_weights with zeros. - idf_weights = tf.pad( - idf_weights, - [[0, self.max_tokens - tf.size(idf_weights)]], - constant_values=0, - ) - self.idf_weights.assign(idf_weights) - self.idf_weights_const = self.idf_weights.value() - - # We call this here to save memory, now that we've built our vocabulary, - # we don't want to keep every token we've seen in separate lookup - # tables. - self.reset_state() - self._record_vocabulary_size() - - def reset_state(self): - if self._has_input_vocabulary: - return - - self.token_counts.remove(self.token_counts.export()[0]) - if self.output_mode == TF_IDF: - self.token_document_counts.remove( - self.token_document_counts.export()[0] - ) - self.num_documents.assign(0) - - def call(self, inputs): - self._ensure_known_vocab_size() - - inputs = utils.ensure_tensor(inputs, dtype=self._key_dtype) - original_shape = inputs.shape - # Some ops will not handle scalar input, so uprank to rank 1. - if inputs.shape.rank == 0: - inputs = self._expand_dims(inputs, -1) - - if tf_utils.is_sparse(inputs): - lookups = tf.SparseTensor( - inputs.indices, - self._lookup_dense(inputs.values), - inputs.dense_shape, - ) - elif tf_utils.is_ragged(inputs): - lookups = tf.ragged.map_flat_values(self._lookup_dense, inputs) - else: - lookups = self._lookup_dense(inputs) - - if self.output_mode == INT: - # If we received a scalar input, downrank back to a scalar. - if original_shape.rank == 0: - lookups = tf.squeeze(lookups, -1) - return lookups - - depth = ( - self.max_tokens - if self.pad_to_max_tokens - else self._frozen_vocab_size - ) - idf_weights = ( - self.idf_weights_const if self.output_mode == TF_IDF else None - ) - return utils.encode_categorical_inputs( - lookups, - output_mode=self.output_mode, - depth=depth, - dtype=self.compute_dtype, - sparse=self.sparse, - idf_weights=idf_weights, - ) - - def _lookup_dense(self, inputs): - """Lookup table values for a dense Tensor, handling masking and OOV.""" - # When executing eagerly and tracing keras.Input objects, - # do not call lookup. - # This is critical for restoring SavedModel, which will first trace - # layer.call and then attempt to restore the table. We need the table to - # be uninitialized for the restore to work, but calling the table - # uninitialized would error. - if tf.executing_eagerly() and backend.is_keras_tensor(inputs): - lookups = tf.zeros_like(inputs, dtype=self._value_dtype) - else: - lookups = self.lookup_table.lookup(inputs) - - if self.mask_token is not None: - mask_locations = tf.equal(inputs, self._mask_key) - lookups = tf.where(mask_locations, self._mask_value, lookups) - - if self.invert: - return lookups - - lookup_checks = [] - - if self.num_oov_indices == 0: - # If we have zero oov indices, we need to check for oov inputs. - oov_indices = tf.where(tf.equal(lookups, -1)) - oov_inputs = tf.gather_nd(inputs, oov_indices) - msg = tf.strings.format( - "When `num_oov_indices=0` all inputs should be in vocabulary, " - "found OOV values {}, consider setting `num_oov_indices=1`.", - (oov_inputs,), - ) - assertion = tf.Assert(tf.equal(tf.size(oov_indices), 0), [msg]) - lookup_checks.append(assertion) - elif self.num_oov_indices > 1: - # If we have multiple oov indices, we need a further hashing step. - if self._key_dtype.is_integer: - oov_indices = tf.math.floormod(inputs, self.num_oov_indices) - else: - oov_indices = tf.strings.to_hash_bucket_fast( - inputs, num_buckets=self.num_oov_indices - ) - oov_indices = oov_indices + self._oov_start_index() - oov_locations = tf.equal(lookups, self._default_value) - lookups = tf.where(oov_locations, oov_indices, lookups) - - with tf.control_dependencies(lookup_checks): - return tf.identity(lookups) - - def save_own_variables(self, store): - if self.output_mode == TF_IDF: - store["idf_weights"] = self.idf_weights_const.numpy() - - def load_own_variables(self, store): - if self.output_mode == TF_IDF: - self.idf_weights.assign(store["idf_weights"]) - self.idf_weights_const = self.idf_weights.value() - - def save_assets(self, dir_path): - if self.input_vocabulary: - # Vocab saved in config. - # TODO: consider unifying both paths. - return - vocabulary = self.get_vocabulary(include_special_tokens=True) - vocabulary_filepath = tf.io.gfile.join(dir_path, "vocabulary.txt") - with open(vocabulary_filepath, "w") as f: - f.write("\n".join([str(w) for w in vocabulary])) - - def load_assets(self, dir_path): - if self.input_vocabulary: - # Vocab saved in config. - # TODO: consider unifying both paths. - return - vocabulary_filepath = tf.io.gfile.join(dir_path, "vocabulary.txt") - # TODO: fix bug with include_special_tokens and set reload from file. - with open(vocabulary_filepath, "r") as f: - lines = f.read().split("\n") - if tf.as_dtype(self.vocabulary_dtype) == tf.string: - values = [str(line) for line in lines] - else: - values = [int(line) for line in lines] - if self.output_mode == TF_IDF: - self.set_vocabulary(values, idf_weights=False) - else: - self.set_vocabulary(values) - - def _uninitialized_lookup_table(self): - with tf.init_scope(): - initializer = NullInitializer(self._key_dtype, self._value_dtype) - return tf.lookup.StaticHashTable(initializer, self._default_value) - - def _lookup_table_from_tokens(self, tokens): - with tf.init_scope(): - token_start = self._token_start_index() - token_end = token_start + tf.size(tokens) - indices_dtype = ( - self._key_dtype if self.invert else self._value_dtype - ) - indices = tf.range(token_start, token_end, dtype=indices_dtype) - keys, values = ( - (indices, tokens) if self.invert else (tokens, indices) - ) - initializer = tf.lookup.KeyValueTensorInitializer( - keys, values, self._key_dtype, self._value_dtype - ) - return tf.lookup.StaticHashTable(initializer, self._default_value) - - def _lookup_table_from_file(self, filename): - if self.invert: - key_index = tf.lookup.TextFileIndex.LINE_NUMBER - value_index = tf.lookup.TextFileIndex.WHOLE_LINE - else: - key_index = tf.lookup.TextFileIndex.WHOLE_LINE - value_index = tf.lookup.TextFileIndex.LINE_NUMBER - with tf.init_scope(): - initializer = tf.lookup.TextFileInitializer( - filename=filename, - key_dtype=self._key_dtype, - key_index=key_index, - value_dtype=self._value_dtype, - value_index=value_index, - value_index_offset=self._token_start_index(), - ) - return tf.lookup.StaticHashTable(initializer, self._default_value) - - def _convert_to_ndarray(self, x): - return np.array(x) if isinstance(x, (list, tuple)) else x - - def _expand_dims(self, inputs, axis): - if tf_utils.is_sparse(inputs): - return tf.sparse.expand_dims(inputs, axis) - else: - return tf.expand_dims(inputs, axis) - - def _oov_start_index(self): - return ( - 1 if self.mask_token is not None and self.output_mode == INT else 0 - ) - - def _token_start_index(self): - return self._oov_start_index() + self.num_oov_indices - - def _ensure_known_vocab_size(self): - if self.output_mode == INT or self.pad_to_max_tokens: - return - if self._frozen_vocab_size is None: - raise RuntimeError( - f"When using `output_mode={self.output_mode}` " - "and `pad_to_max_tokens=False`, " - "you must set the layer's vocabulary before calling it. Either " - "pass a `vocabulary` argument to the layer, or call `adapt` " - "with some sample data.".format(self.output_mode) - ) - - def _ensure_vocab_size_unchanged(self): - if self.output_mode == INT or self.pad_to_max_tokens: - return - - with tf.init_scope(): - new_vocab_size = self.vocabulary_size() - - if ( - self._frozen_vocab_size is not None - and new_vocab_size != self._frozen_vocab_size - ): - raise RuntimeError( - f"When using `output_mode={self.output_mode}` " - "and `pad_to_max_tokens=False`, " - "the vocabulary size cannot be changed after the layer is " - f"called. Old vocab size is {self._frozen_vocab_size}, " - f"new vocab size is {new_vocab_size}" - ) - - def _find_repeated_tokens(self, vocabulary): - """Return all repeated tokens in a vocabulary.""" - vocabulary_set = set(vocabulary) - if len(vocabulary) != len(vocabulary_set): - return [ - item - for item, count in collections.Counter(vocabulary).items() - if count > 1 - ] - else: - return [] - - def _num_tokens(self, data): - """Count the number of tokens in a ragged, sparse or dense tensor.""" - if tf_utils.is_sparse(data): - flat_values = data.values - elif tf_utils.is_ragged(data): - flat_values = data.flat_values - else: - flat_values = tf.reshape(data, [-1]) - tokens, _, counts = tf.unique_with_counts(flat_values, out_idx=tf.int64) - return tokens, counts - - def _inverse_document_frequency(self, token_document_counts, num_documents): - """Computes the inverse-document-frequency (IDF) component of "tf_idf". - - Uses the default weighting scheme described in - https://en.wikipedia.org/wiki/Tf%E2%80%93idf. - - Args: - token_document_counts: An array of the # of documents each token - appears in. - num_documents: An int representing the total number of documents - - Returns: - An array of "inverse document frequency" weights. - """ - return tf.math.log(1 + num_documents / (1 + token_document_counts)) - - @property - def _trackable_saved_model_saver(self): - return layer_serialization.VocabularySavedModelSaver(self) - - # Override points for IntegerLookup and StringLookup. - def _tensor_vocab_to_numpy(self, vocabulary): - """Converts a tensor vocabulary to a numpy vocabulary.""" - return vocabulary.numpy() diff --git a/keras/layers/preprocessing/index_lookup_distribution_test.py b/keras/layers/preprocessing/index_lookup_distribution_test.py deleted file mode 100644 index eb9790b7573..00000000000 --- a/keras/layers/preprocessing/index_lookup_distribution_test.py +++ /dev/null @@ -1,200 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Distribution tests for keras.layers.preprocessing.index_lookup.""" - - -import os - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras import backend -from keras.distribute import strategy_combinations -from keras.layers.preprocessing import index_lookup -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -@test_utils.run_v2_only -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=strategy_combinations.all_strategies - + strategy_combinations.multi_worker_mirrored_strategies - + strategy_combinations.parameter_server_strategies_single_worker - + strategy_combinations.parameter_server_strategies_multi_worker, - mode=["eager"], - ) -) -class IndexLookupDistributionTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def _write_to_temp_file(self, file_name, vocab_list): - vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt") - with tf.io.gfile.GFile(vocab_path, "w") as writer: - for vocab in vocab_list: - writer.write(vocab + "\n") - writer.flush() - writer.close() - return vocab_path - - def test_strategy(self, strategy): - if ( - backend.is_tpu_strategy(strategy) - and not tf_test_utils.is_mlir_bridge_enabled() - ): - self.skipTest("TPU tests require MLIR bridge") - - vocab_data = [ - [ - "earth", - "earth", - "earth", - "earth", - "wind", - "wind", - "wind", - "and", - "and", - "fire", - ] - ] - vocab_dataset = tf.data.Dataset.from_tensors(vocab_data) - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - input_dataset = tf.data.Dataset.from_tensor_slices(input_array).batch( - 2, drop_remainder=True - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - tf.config.set_soft_device_placement(True) - - with strategy.scope(): - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.adapt(vocab_dataset) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - model.compile(loss="mse") - output_dataset = model.predict(input_dataset) - self.assertAllEqual(expected_output, output_dataset) - - def test_strategy_with_file(self, strategy): - if ( - backend.is_tpu_strategy(strategy) - and not tf_test_utils.is_mlir_bridge_enabled() - ): - self.skipTest("TPU tests require MLIR bridge") - - vocab_data = ["earth", "wind", "and", "fire"] - vocab_file = self._write_to_temp_file("temp", vocab_data) - - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - input_dataset = tf.data.Dataset.from_tensor_slices(input_array).batch( - 2, drop_remainder=True - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - tf.config.set_soft_device_placement(True) - - with strategy.scope(): - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - vocabulary=vocab_file, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - model.compile(loss="mse") - output_dataset = model.predict(input_dataset) - self.assertAllEqual(expected_output, output_dataset) - - def test_tpu_with_multiple_oov(self, strategy): - # TODO(b/180614455): remove this check when MLIR bridge is always - # enabled. - if backend.is_tpu_strategy(strategy): - self.skipTest("This test needs MLIR bridge on TPU.") - - vocab_data = [ - [ - "earth", - "earth", - "earth", - "earth", - "wind", - "wind", - "wind", - "and", - "and", - "fire", - ] - ] - vocab_dataset = tf.data.Dataset.from_tensors(vocab_data) - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - input_dataset = tf.data.Dataset.from_tensor_slices(input_array).batch( - 2, drop_remainder=True - ) - expected_output = [[3, 4, 5, 6], [6, 5, 3, 1]] - - tf.config.set_soft_device_placement(True) - - with strategy.scope(): - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=2, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.adapt(vocab_dataset) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_dataset) - self.assertAllEqual(expected_output, output_dataset) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/layers/preprocessing/index_lookup_test.py b/keras/layers/preprocessing/index_lookup_test.py deleted file mode 100644 index 91a8fc8b771..00000000000 --- a/keras/layers/preprocessing/index_lookup_test.py +++ /dev/null @@ -1,2711 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras text vectorization preprocessing layer.""" - -import itertools -import math -import os -import random -import string - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.preprocessing import index_lookup -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import CustomObjectScope - - -def zip_and_sort(weight_values): - keys, values = weight_values - return sorted(zip(keys, values), key=lambda x: x[1]) - - -def _get_end_to_end_test_cases(): - test_cases = ( - { - "testcase_name": "test_strings_soft_vocab_cap", - # Create an array where 'earth' is the most frequent term, followed - # by 'wind', then 'and', then 'fire'. This ensures that the vocab - # accumulator is sorting by frequency. - "vocab_data": np.array( - [ - ["fire"], - ["earth"], - ["earth"], - ["earth"], - ["earth"], - ["wind"], - ["wind"], - ["wind"], - ["and"], - ["and"], - ] - ), - "input_data": np.array( - [ - ["earth"], - ["wind"], - ["and"], - ["fire"], - ["fire"], - ["and"], - ["earth"], - ["michigan"], - ] - ), - "kwargs": { - "max_tokens": None, - "num_oov_indices": 1, - "mask_token": "", - "oov_token": "[OOV]", - "vocabulary_dtype": tf.string, - }, - "expected_output": [[2], [3], [4], [5], [5], [4], [2], [1]], - "input_dtype": tf.string, - }, - { - "testcase_name": "test_inverse_strings_soft_vocab_cap", - # Create an array where 'earth' is the most frequent term, followed - # by 'wind', then 'and', then 'fire'. This ensures that the vocab - # accumulator is sorting by frequency. - "vocab_data": np.array( - [ - ["fire"], - ["earth"], - ["earth"], - ["earth"], - ["earth"], - ["wind"], - ["wind"], - ["wind"], - ["and"], - ["and"], - ] - ), - "input_data": np.array([[2], [3], [4], [1], [1], [4], [2], [5]]), - "kwargs": { - "max_tokens": None, - "num_oov_indices": 1, - "mask_token": "", - "oov_token": "[OOV]", - "vocabulary_dtype": tf.string, - "invert": True, - }, - "expected_output": np.array( - [ - [b"earth"], - [b"wind"], - [b"and"], - [b"[OOV]"], - [b"[OOV]"], - [b"and"], - [b"earth"], - [b"fire"], - ] - ), - "input_dtype": tf.int64, - }, - { - "testcase_name": "test_strings_with_special_tokens", - # Mask and oov values in the vocab data should be dropped, and - # mapped to 0 and 1 respectively when calling the layer. - "vocab_data": np.array( - [ - ["fire"], - ["earth"], - ["earth"], - ["earth"], - ["earth"], - [""], - [""], - [""], - ["[OOV]"], - ["[OOV]"], - ["[OOV]"], - ["wind"], - ["wind"], - ["wind"], - ["and"], - ["and"], - ] - ), - "input_data": np.array( - [ - ["earth"], - [""], - ["wind"], - ["[OOV]"], - ["and"], - [""], - ["fire"], - ["and"], - ["[OOV]"], - ["michigan"], - ] - ), - "kwargs": { - "max_tokens": None, - "num_oov_indices": 1, - "mask_token": "", - "oov_token": "[OOV]", - "vocabulary_dtype": tf.string, - }, - "expected_output": [ - [2], - [0], - [3], - [1], - [4], - [0], - [5], - [4], - [1], - [1], - ], - "input_dtype": tf.string, - }, - { - "testcase_name": "test_ints_soft_vocab_cap", - # Create an array where 1138 is the most frequent term, followed by - # 1729, then 725, then 42. This ensures that the vocab accumulator - # is sorting by frequency. - "vocab_data": np.array( - [ - [42], - [1138], - [1138], - [1138], - [1138], - [1729], - [1729], - [1729], - [725], - [725], - ], - dtype=np.int64, - ), - "input_data": np.array( - [[1138], [1729], [725], [42], [42], [725], [1138], [4]], - dtype=np.int64, - ), - "kwargs": { - "max_tokens": None, - "num_oov_indices": 1, - "mask_token": 0, - "oov_token": -1, - "vocabulary_dtype": tf.int64, - }, - "expected_output": [[2], [3], [4], [5], [5], [4], [2], [1]], - "input_dtype": tf.int64, - }, - { - "testcase_name": "test_ints_with_special_tokens", - # Mask and oov values in the vocab data should be dropped, and - # mapped to 0 and 1 respectively when calling the layer. - "vocab_data": np.array( - [ - [42], - [1138], - [1138], - [1138], - [1138], - [0], - [0], - [0], - [-1], - [-1], - [-1], - [1729], - [1729], - [1729], - [725], - [725], - ], - dtype=np.int64, - ), - "input_data": np.array( - [[1138], [0], [1729], [-1], [725], [0], [42], [725], [-1], [4]], - dtype=np.int64, - ), - "kwargs": { - "max_tokens": None, - "num_oov_indices": 1, - "mask_token": 0, - "oov_token": -1, - "vocabulary_dtype": tf.int64, - }, - "expected_output": [ - [2], - [0], - [3], - [1], - [4], - [0], - [5], - [4], - [1], - [1], - ], - "input_dtype": tf.int64, - }, - { - "testcase_name": "test_strings_hard_vocab_cap", - # Create an array where 'earth' is the most frequent term, followed - # by 'wind', then 'and', then 'fire'. This ensures that the vocab - # accumulator is sorting by frequency. - "vocab_data": np.array( - [ - ["fire"], - ["earth"], - ["earth"], - ["earth"], - ["earth"], - ["wind"], - ["wind"], - ["wind"], - ["and"], - ["and"], - ] - ), - "input_data": np.array( - [ - ["earth"], - ["wind"], - ["and"], - ["fire"], - ["fire"], - ["and"], - ["earth"], - ["michigan"], - ] - ), - "kwargs": { - "max_tokens": 5, - "num_oov_indices": 1, - "mask_token": "", - "oov_token": "[OOV]", - "vocabulary_dtype": tf.string, - }, - "expected_output": [[2], [3], [4], [1], [1], [4], [2], [1]], - "input_dtype": tf.string, - }, - { - "testcase_name": "test_inverse_strings_hard_vocab_cap", - # Create an array where 'earth' is the most frequent term, followed - # by 'wind', then 'and', then 'fire'. This ensures that the vocab - # accumulator is sorting by frequency. - "vocab_data": np.array( - [ - ["fire"], - ["earth"], - ["earth"], - ["earth"], - ["earth"], - ["wind"], - ["wind"], - ["wind"], - ["and"], - ["and"], - ] - ), - "input_data": np.array([[2], [3], [4], [1], [1], [4], [2], [5]]), - "kwargs": { - "max_tokens": 5, - "num_oov_indices": 1, - "mask_token": "", - "oov_token": "[OOV]", - "vocabulary_dtype": tf.string, - "invert": True, - }, - "expected_output": np.array( - [ - [b"earth"], - [b"wind"], - [b"and"], - [b"[OOV]"], - [b"[OOV]"], - [b"and"], - [b"earth"], - [b"[OOV]"], - ] - ), - "input_dtype": tf.int64, - }, - { - "testcase_name": "test_ints_hard_vocab_cap", - # Create an array where 1138 is the most frequent term, followed by - # 1729, then 725, then 42. This ensures that the vocab accumulator - # is sorting by frequency. - "vocab_data": np.array( - [ - [42], - [1138], - [1138], - [1138], - [1138], - [1729], - [1729], - [1729], - [725], - [725], - ], - dtype=np.int64, - ), - "input_data": np.array( - [[1138], [1729], [725], [42], [42], [725], [1138], [4]], - dtype=np.int64, - ), - "kwargs": { - "max_tokens": 5, - "num_oov_indices": 1, - "mask_token": 0, - "oov_token": -1, - "vocabulary_dtype": tf.int64, - }, - "expected_output": [[2], [3], [4], [1], [1], [4], [2], [1]], - "input_dtype": tf.int64, - }, - { - "testcase_name": "test_ints_tf_idf_output", - "vocab_data": np.array( - [ - [42], - [1138], - [1138], - [1138], - [1138], - [1729], - [1729], - [1729], - [725], - [725], - ] - ), - "input_data": np.array( - [[1138], [1729], [725], [42], [42], [725], [1138], [4]] - ), - "kwargs": { - "max_tokens": 5, - "pad_to_max_tokens": True, - "num_oov_indices": 1, - "mask_token": 0, - "oov_token": -1, - "output_mode": index_lookup.TF_IDF, - "vocabulary_dtype": tf.int64, - }, - "expected_output": [ - [0, 1.098612, 0, 0, 0], - [0, 0, 1.252763, 0, 0], - [0, 0, 0, 1.466337, 0], - [0, 0, 0, 0, 1.7917595], - [0, 0, 0, 0, 1.7917595], - [0, 0, 0, 1.4663371, 0], - [0, 1.098612, 0, 0, 0], - [1.402368, 0, 0, 0, 0], - ], - "input_dtype": tf.int64, - }, - { - "testcase_name": "test_strings_tf_idf_output", - "vocab_data": np.array( - [ - ["fire"], - ["earth"], - ["earth"], - ["earth"], - ["earth"], - ["wind"], - ["wind"], - ["wind"], - ["and"], - ["and"], - ] - ), - "input_data": np.array( - [ - ["earth"], - ["wind"], - ["and"], - ["fire"], - ["fire"], - ["and"], - ["earth"], - ["michigan"], - ] - ), - "kwargs": { - "max_tokens": 5, - "pad_to_max_tokens": True, - "num_oov_indices": 1, - "mask_token": "", - "oov_token": "[OOV]", - "output_mode": index_lookup.TF_IDF, - "vocabulary_dtype": tf.string, - }, - "expected_output": [ - [0, 1.098612, 0, 0, 0], - [0, 0, 1.252763, 0, 0], - [0, 0, 0, 1.466337, 0], - [0, 0, 0, 0, 1.7917595], - [0, 0, 0, 0, 1.7917595], - [0, 0, 0, 1.4663371, 0], - [0, 1.098612, 0, 0, 0], - [1.402368, 0, 0, 0, 0], - ], - "input_dtype": tf.string, - }, - ) - - crossed_test_cases = [] - # Cross above test cases with use_dataset in (True, False) - for use_dataset in (True, False): - for case in test_cases: - case = case.copy() - if use_dataset: - case["testcase_name"] = case["testcase_name"] + "_with_dataset" - case["use_dataset"] = use_dataset - crossed_test_cases.append(case) - - return crossed_test_cases - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class IndexLookupLayerTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - @parameterized.named_parameters(*_get_end_to_end_test_cases()) - def test_layer_end_to_end_with_adapt( - self, - vocab_data, - input_data, - kwargs, - use_dataset, - expected_output, - input_dtype, - ): - cls = index_lookup.IndexLookup - if "invert" in kwargs and kwargs["invert"]: - expected_output_dtype = kwargs["vocabulary_dtype"] - elif ( - "output_mode" in kwargs - and kwargs["output_mode"] != index_lookup.INT - ): - expected_output_dtype = tf.float32 - else: - expected_output_dtype = tf.int64 - - input_shape = input_data.shape - - if use_dataset: - # Keras APIs expect batched datasets. - # TODO(rachelim): `model.predict` predicts the result on each - # dataset batch separately, then tries to concatenate the results - # together. When the results have different shapes on the non-concat - # axis (which can happen in the output_mode = INT case for - # IndexLookup), the concatenation fails. In real use cases, this may - # not be an issue because users are likely to pipe the preprocessing - # layer into other keras layers instead of predicting it directly. A - # workaround for these unit tests is to have the dataset only - # contain one batch, so no concatenation needs to happen with the - # result. For consistency with numpy input, we should make `predict` - # join differently shaped results together sensibly, with 0 padding. - input_data = tf.data.Dataset.from_tensor_slices(input_data).batch( - input_shape[0] - ) - vocab_data = tf.data.Dataset.from_tensor_slices(vocab_data).batch( - input_shape[0] - ) - - with CustomObjectScope({"IndexLookup": cls}): - output_data = test_utils.layer_test( - cls, - kwargs=kwargs, - input_shape=input_shape, - input_data=input_data, - input_dtype=input_dtype, - expected_output_dtype=expected_output_dtype, - validate_training=False, - adapt_data=vocab_data, - ) - if "invert" in kwargs and kwargs["invert"]: - self.assertAllEqual(expected_output, output_data) - else: - self.assertAllClose(expected_output, output_data) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class CategoricalEncodingInputTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_sparse_string_input(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = tf.SparseTensor( - indices=[[0, 0], [1, 2]], - values=["fire", "michigan"], - dense_shape=[3, 4], - ) - - expected_indices = [[0, 0], [1, 2]] - expected_values = [5, 1] - expected_dense_shape = [3, 4] - - input_data = keras.Input(shape=(None,), dtype=tf.string, sparse=True) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array, steps=1) - self.assertAllEqual(expected_indices, output_data.indices) - self.assertAllEqual(expected_values, output_data.values) - self.assertAllEqual(expected_dense_shape, output_data.dense_shape) - - def test_sparse_int_input(self): - vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) - input_array = tf.SparseTensor( - indices=[[0, 0], [1, 2]], - values=np.array([13, 32], dtype=np.int64), - dense_shape=[3, 4], - ) - - expected_indices = [[0, 0], [1, 2]] - expected_values = [5, 1] - expected_dense_shape = [3, 4] - - input_data = keras.Input(shape=(None,), dtype=tf.int64, sparse=True) - layer = index_lookup.IndexLookup( - max_tokens=None, - vocabulary_dtype=tf.int64, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array, steps=1) - self.assertAllEqual(expected_indices, output_data.indices) - self.assertAllEqual(expected_values, output_data.values) - self.assertAllEqual(expected_dense_shape, output_data.dense_shape) - - def test_ragged_string_input(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = tf.ragged.constant( - [["earth", "wind", "fire"], ["fire", "and", "earth", "michigan"]] - ) - expected_output = [[2, 3, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.string, ragged=True) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_ragged_int_input(self): - vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) - input_array = tf.ragged.constant( - [[10, 11, 13], [13, 12, 10, 42]], dtype=np.int64 - ) - expected_output = [[2, 3, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64, ragged=True) - layer = index_lookup.IndexLookup( - max_tokens=None, - vocabulary_dtype=tf.int64, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int32_input_with_int64_keys(self): - vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) - input_array = tf.ragged.constant( - [[10, 11, 13], [13, 12, 10, 42]], dtype=np.int32 - ) - expected_output = [[2, 3, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.int32, ragged=True) - layer = index_lookup.IndexLookup( - max_tokens=None, - vocabulary_dtype=tf.int64, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class CategoricalEncodingMultiOOVTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_sparse_string_input_multi_bucket(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = tf.SparseTensor( - indices=[[0, 0], [1, 2]], - values=["fire", "ohio"], - dense_shape=[3, 4], - ) - - expected_indices = [[0, 0], [1, 2]] - expected_values = [6, 2] - expected_dense_shape = [3, 4] - - input_data = keras.Input(shape=(None,), dtype=tf.string, sparse=True) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=2, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array, steps=1) - self.assertAllEqual(expected_indices, output_data.indices) - self.assertAllEqual(expected_values, output_data.values) - self.assertAllEqual(expected_dense_shape, output_data.dense_shape) - - def test_sparse_int_input_multi_bucket(self): - vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) - input_array = tf.SparseTensor( - indices=[[0, 0], [1, 2]], - values=np.array([13, 133], dtype=np.int64), - dense_shape=[3, 4], - ) - - expected_indices = [[0, 0], [1, 2]] - expected_values = [6, 2] - expected_dense_shape = [3, 4] - - input_data = keras.Input(shape=(None,), dtype=tf.int64, sparse=True) - layer = index_lookup.IndexLookup( - max_tokens=None, - vocabulary_dtype=tf.int64, - num_oov_indices=2, - mask_token=0, - oov_token=-1, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array, steps=1) - self.assertAllEqual(expected_indices, output_data.indices) - self.assertAllEqual(expected_values, output_data.values) - self.assertAllEqual(expected_dense_shape, output_data.dense_shape) - - def test_ragged_string_input_multi_bucket(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = tf.ragged.constant( - [["earth", "wind", "fire"], ["fire", "and", "earth", "ohio"]] - ) - expected_output = [[3, 4, 6], [6, 5, 3, 2]] - - input_data = keras.Input(shape=(None,), dtype=tf.string, ragged=True) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=2, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_ragged_int_input_multi_bucket(self): - vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) - input_array = tf.ragged.constant( - [[10, 11, 13], [13, 12, 10, 133]], dtype=np.int64 - ) - expected_output = [[3, 4, 6], [6, 5, 3, 2]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64, ragged=True) - layer = index_lookup.IndexLookup( - max_tokens=None, - vocabulary_dtype=tf.int64, - num_oov_indices=2, - mask_token=0, - oov_token=-1, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class CategoricalEncodingAdaptTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_sparse_adapt(self): - vocab_data = tf.SparseTensor( - indices=[[0, 0], [0, 1], [1, 2]], - values=["michigan", "fire", "michigan"], - dense_shape=[3, 4], - ) - vocab_dataset = tf.data.Dataset.from_tensors(vocab_data) - - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.adapt(vocab_dataset) - expected_vocabulary = ["", "[OOV]", "michigan", "fire"] - self.assertAllEqual(expected_vocabulary, layer.get_vocabulary()) - - def test_ragged_adapt(self): - vocab_data = tf.ragged.constant([["michigan"], ["fire", "michigan"]]) - vocab_dataset = tf.data.Dataset.from_tensors(vocab_data) - - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.adapt(vocab_dataset) - expected_vocabulary = ["", "[OOV]", "michigan", "fire"] - self.assertAllEqual(expected_vocabulary, layer.get_vocabulary()) - - def test_sparse_int_input(self): - vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) - input_array = tf.SparseTensor( - indices=[[0, 0], [1, 2]], - values=np.array([13, 32], dtype=np.int64), - dense_shape=[3, 4], - ) - - expected_indices = [[0, 0], [1, 2]] - expected_values = [5, 1] - expected_dense_shape = [3, 4] - - input_data = keras.Input(shape=(None,), dtype=tf.int64, sparse=True) - layer = index_lookup.IndexLookup( - max_tokens=None, - vocabulary_dtype=tf.int64, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array, steps=1) - self.assertAllEqual(expected_indices, output_data.indices) - self.assertAllEqual(expected_values, output_data.values) - self.assertAllEqual(expected_dense_shape, output_data.dense_shape) - - def test_ragged_string_input(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = tf.ragged.constant( - [["earth", "wind", "fire"], ["fire", "and", "earth", "michigan"]] - ) - expected_output = [[2, 3, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.string, ragged=True) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_ragged_int_input(self): - vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) - input_array = tf.ragged.constant( - [[10, 11, 13], [13, 12, 10, 42]], dtype=np.int64 - ) - expected_output = [[2, 3, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64, ragged=True) - layer = index_lookup.IndexLookup( - max_tokens=None, - vocabulary_dtype=tf.int64, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_single_string_generator_dataset(self): - def word_gen(): - for _ in itertools.count(1): - yield "".join( - random.choice(string.ascii_letters) for i in range(2) - ) - - ds = tf.data.Dataset.from_generator( - word_gen, tf.string, tf.TensorShape([]) - ) - batched_ds = ds.take(2) - input_t = keras.Input(shape=(), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=10, - num_oov_indices=0, - mask_token=None, - oov_token=None, - vocabulary_dtype=tf.string, - ) - _ = layer(input_t) - layer.adapt(batched_ds) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class IndexLookupOutputTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def _write_to_temp_file(self, file_name, vocab_list): - vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt") - with tf.io.gfile.GFile(vocab_path, "w") as writer: - for vocab in vocab_list: - writer.write(vocab + "\n") - writer.flush() - writer.close() - return vocab_path - - @parameterized.product( - rank=[0, 1, 2], - # Check lists, numpy arrays, tensors, and objects convertable to tensor. - data_fn=[ - None, - np.array, - tf.constant, - preprocessing_test_utils.ArrayLike, - ], - ) - def test_input_types(self, rank, data_fn): - input_data = vocab = ["earth", "wind", "and", "fire"] - expected_output = [2, 3, 4, 5] - if rank == 0: - input_data = input_data[0] - expected_output = expected_output[0] - elif rank == 2: - input_data = [input_data] - expected_output = [expected_output] - if data_fn is not None: - input_data = data_fn(input_data) - input_shape = [] if rank == 0 else [None] - - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary=vocab, - vocabulary_dtype=tf.string, - ) - output_data = layer(input_data) - self.assertAllEqual(expected_output, output_data) - - # Again in a keras.Model - inputs = keras.Input(shape=input_shape, dtype=tf.string) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - output_data = model(tf.constant(input_data)) - self.assertAllEqual(expected_output, output_data) - - def test_int_output_shape(self): - input_data = keras.Input(batch_size=16, shape=(4,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=2, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - int_data = layer(input_data) - self.assertAllEqual(int_data.shape.as_list(), [16, 4]) - - @parameterized.named_parameters( - ("int32", tf.int32), - ("int64", tf.int64), - ) - def test_int_output_dtype(self, dtype): - input_data = keras.Input(batch_size=16, shape=(4,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=2, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - dtype=dtype, - ) - int_data = layer(input_data) - self.assertAllEqual(int_data.dtype, dtype) - - def test_int_output_float_dtype_fails(self): - with self.assertRaisesRegex(ValueError, "`dtype` should be an integer"): - index_lookup.IndexLookup( - max_tokens=2, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - dtype=tf.float32, - ) - - def test_int_output_no_reserved_zero(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token=None, - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_no_oov(self): - vocab_data = ["earth", "wind", "and", "fire"] - valid_input = np.array( - [["earth", "wind", "and", "fire"], ["fire", "and", "earth", ""]] - ) - invalid_input = np.array( - [ - ["earth", "wind", "and", "michigan"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=0, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(valid_input) - self.assertAllEqual(expected_output, output_data) - with self.assertRaisesRegex( - tf.errors.InvalidArgumentError, "found OOV values.*michigan" - ): - _ = model.predict(invalid_input) - - def test_int_output_no_oov_ragged(self): - vocab_data = ["earth", "wind", "and", "fire"] - valid_input = np.array( - [["earth", "wind", "and", "fire"], ["fire", "and", "earth", ""]] - ) - invalid_input = np.array( - [ - ["earth", "wind", "and", "michigan"], - ["fire", "and", "earth", "michigan"], - ] - ) - valid_input = tf.RaggedTensor.from_tensor(valid_input) - invalid_input = tf.RaggedTensor.from_tensor(invalid_input) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=0, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(valid_input) - self.assertAllEqual(expected_output, output_data) - with self.assertRaisesRegex( - tf.errors.InvalidArgumentError, "found OOV values.*michigan" - ): - _ = model.predict(invalid_input) - - def test_int_output_no_oov_sparse(self): - vocab_data = ["earth", "wind", "and", "fire"] - valid_input = np.array( - [["earth", "wind", "and", "fire"], ["fire", "and", "earth", ""]] - ) - invalid_input = np.array( - [ - ["earth", "wind", "and", "michigan"], - ["fire", "and", "earth", "michigan"], - ] - ) - valid_input = tf.sparse.from_dense(valid_input) - invalid_input = tf.sparse.from_dense(invalid_input) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=0, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(valid_input) - self.assertAllEqual(expected_output, tf.sparse.to_dense(output_data)) - with self.assertRaisesRegex( - tf.errors.InvalidArgumentError, "found OOV values.*michigan" - ): - _ = model.predict(invalid_input) - - def test_int_output_explicit_vocab(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - vocabulary=vocab_data, - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_one_hot_output_hard_maximum(self): - """Check binary output when pad_to_max_tokens=True.""" - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array(["earth", "wind", "and", "fire", "michigan", ""]) - expected_output = [ - [0, 1, 0, 0, 0, 0], - [0, 0, 1, 0, 0, 0], - [0, 0, 0, 1, 0, 0], - [0, 0, 0, 0, 1, 0], - [1, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0], - ] - - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=6, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - output_mode=index_lookup.ONE_HOT, - pad_to_max_tokens=True, - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - binary_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=binary_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_one_hot_output_soft_maximum(self): - """Check binary output when pad_to_max_tokens=False.""" - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array(["earth", "wind", "and", "fire", "michigan", ""]) - expected_output = [ - [0, 1, 0, 0, 0], - [0, 0, 1, 0, 0], - [0, 0, 0, 1, 0], - [0, 0, 0, 0, 1], - [1, 0, 0, 0, 0], - [0, 0, 0, 0, 0], - ] - - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - output_mode=index_lookup.ONE_HOT, - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - binary_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=binary_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_one_hot_output_rank_zero_no_oov(self): - """Check binary output when pad_to_max_tokens=False.""" - vocab_data = ["earth", "wind", "and", "fire"] - input_data = tf.constant("earth") - expected_output = [1, 0, 0, 0] - - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=0, - mask_token="", - oov_token="[OOV]", - output_mode=index_lookup.ONE_HOT, - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - output_data = layer(input_data) - self.assertAllEqual(expected_output, output_data) - - def test_one_hot_output_shape(self): - inputs = keras.Input(batch_size=16, shape=(1,), dtype=tf.string) - layer = index_lookup.IndexLookup( - vocabulary=["earth"], - max_tokens=2, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - output_mode=index_lookup.ONE_HOT, - vocabulary_dtype=tf.string, - ) - outputs = layer(inputs) - self.assertAllEqual(outputs.shape.as_list(), [16, 2]) - - @parameterized.product( - sparse=[True, False], - adapt=[True, False], - pad_to_max=[True, False], - mode=["multi_hot", "count", "tf_idf"], - dtype=[tf.float32, tf.float64], - ) - def test_binned_output(self, sparse, adapt, pad_to_max, mode, dtype): - """Check "multi_hot", "count", and "tf_idf" output.""" - # Adapt breaks ties with sort order. - vocab_data = ["wind", "fire", "earth", "and"] - # IDF weight for a term in 1 out of 1 document is log(1 + 1/2). - idf_data = [math.log(1.5)] * 4 - input_data = np.array( - [ - ["and", "earth", "fire", "and", ""], - ["michigan", "wind", "and", "ohio", ""], - ] - ) - - if mode == "count": - expected_output = np.array( - [ - [0, 0, 1, 1, 2], - [2, 1, 0, 0, 1], - ] - ) - elif mode == "tf_idf": - expected_output = np.array( - [ - [0, 0, 1, 1, 2], - [2, 1, 0, 0, 1], - ] - ) * math.log(1.5) - else: - expected_output = np.array( - [ - [0, 0, 1, 1, 1], - [1, 1, 0, 0, 1], - ] - ) - expected_output_shape = [None, 5] - if pad_to_max: - expected_output = np.concatenate( - (expected_output, [[0], [0]]), axis=1 - ) - expected_output_shape = [None, 6] - - inputs = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=6, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - output_mode=mode, - pad_to_max_tokens=pad_to_max, - vocabulary_dtype=tf.string, - sparse=sparse, - vocabulary=None if adapt else vocab_data, - idf_weights=None if adapt or mode != "tf_idf" else idf_data, - dtype=dtype, - ) - if adapt: - layer.adapt(vocab_data) - outputs = layer(inputs) - model = keras.Model(inputs, outputs) - output_data = model.predict(input_data) - if sparse: - output_data = tf.sparse.to_dense(output_data) - # Check output data. - self.assertAllClose(expected_output, output_data) - # Check symbolic output shape. - self.assertAllEqual(expected_output_shape, outputs.shape.as_list()) - # Check output dtype. - self.assertAllEqual(dtype, output_data.dtype) - - def test_multi_hot_output_no_oov(self): - """Check multi hot output when num_oov_indices=0.""" - vocab_data = ["earth", "wind", "and", "fire"] - valid_input = np.array( - [["earth", "wind", "and", "fire"], ["fire", "and", "earth", ""]] - ) - invalid_input = np.array( - [ - ["earth", "wind", "and", "michigan"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [ - [1, 1, 1, 1, 0], - [1, 0, 1, 1, 0], - ] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=5, - num_oov_indices=0, - mask_token="", - oov_token="[OOV]", - output_mode=index_lookup.MULTI_HOT, - pad_to_max_tokens=True, - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - binary_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=binary_data) - output_data = model.predict(valid_input) - self.assertAllEqual(expected_output, output_data) - with self.assertRaisesRegex( - tf.errors.InvalidArgumentError, "found OOV values.*michigan" - ): - _ = model.predict(invalid_input) - - def test_multi_hot_output_hard_maximum_multiple_adapts(self): - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "and", "earth", "michigan"], - ] - ) - adapt_data = [ - "earth", - "earth", - "earth", - "earth", - "wind", - "wind", - "wind", - ] - first_expected_output = [ - [1, 1, 1, 0, 0], - [1, 1, 0, 0, 0], - ] - second_adapt_data = [ - "earth", - "earth", - "earth", - "earth", - "wind", - "wind", - "wind", - "and", - "and", - "fire", - ] - second_expected_output = [ - [0, 1, 1, 1, 0], - [1, 1, 0, 1, 0], - ] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=5, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - output_mode=index_lookup.MULTI_HOT, - pad_to_max_tokens=True, - vocabulary_dtype=tf.string, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - - # Test the first adapt - layer.adapt(adapt_data) - first_output = model.predict(input_array) - # Test the second adapt - layer.adapt(second_adapt_data) - # We need to recompile the model to retrace our call graph. - model.compile() - second_output = model.predict(input_array) - self.assertAllEqual(first_expected_output, first_output) - self.assertAllEqual(second_expected_output, second_output) - - def test_int_output_file_vocab(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 0, 2, 1]] - - vocab_file = self._write_to_temp_file("temp", vocab_data) - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - vocabulary=vocab_file, - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_non_int_output_file_vocab_in_tf_function(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = tf.constant( - [ - ["earth", "wind", "and", "fire", ""], - ["fire", "and", "earth", "michigan", ""], - ], - dtype=tf.string, - ) - - expected_output = [ - [0, 1, 1, 1, 1], - [1, 1, 0, 1, 1], - ] - vocab_file = self._write_to_temp_file("temp", vocab_data) - - @tf.function - def compute(data): - layer = index_lookup.IndexLookup( - vocabulary=vocab_file, - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - output_mode=index_lookup.MULTI_HOT, - vocabulary_dtype=tf.string, - ) - return layer(data) - - output_dataset = compute(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_file_vocab_and_list_vocab_identical_attrs(self): - vocab_data = ["earth", "wind", "and", "fire"] - - vocab_file = self._write_to_temp_file("temp", vocab_data) - - file_layer = index_lookup.IndexLookup( - vocabulary=vocab_file, - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - - list_layer = index_lookup.IndexLookup( - vocabulary=vocab_data, - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - - expected_vocab = ["", "[OOV]", "earth", "wind", "and", "fire"] - self.assertAllEqual(expected_vocab, list_layer.get_vocabulary()) - expected_vocab_size = 6 - self.assertAllEqual(expected_vocab_size, list_layer.vocabulary_size()) - self.assertAllEqual( - list_layer.get_vocabulary(), file_layer.get_vocabulary() - ) - self.assertAllEqual( - list_layer.vocabulary_size(), file_layer.vocabulary_size() - ) - - def test_file_vocab_and_list_vocab_identical_attrs_multi_oov(self): - vocab_data = ["earth", "wind", "and", "fire"] - - vocab_file = self._write_to_temp_file("temp", vocab_data) - - file_layer = index_lookup.IndexLookup( - vocabulary=vocab_file, - max_tokens=None, - num_oov_indices=2, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - - list_layer = index_lookup.IndexLookup( - vocabulary=vocab_data, - max_tokens=None, - num_oov_indices=2, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - - expected_vocab = ["", "[OOV]", "[OOV]", "earth", "wind", "and", "fire"] - self.assertAllEqual(expected_vocab, list_layer.get_vocabulary()) - expected_vocab_size = 7 - self.assertAllEqual(expected_vocab_size, list_layer.vocabulary_size()) - self.assertAllEqual( - list_layer.get_vocabulary(), file_layer.get_vocabulary() - ) - self.assertAllEqual( - list_layer.vocabulary_size(), file_layer.vocabulary_size() - ) - - def test_file_vocab_and_list_vocab_identical_attrs_no_mask(self): - vocab_data = ["earth", "wind", "and", "fire"] - - vocab_file = self._write_to_temp_file("temp", vocab_data) - - file_layer = index_lookup.IndexLookup( - vocabulary=vocab_file, - max_tokens=None, - num_oov_indices=2, - mask_token=None, - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - - list_layer = index_lookup.IndexLookup( - vocabulary=vocab_data, - max_tokens=None, - num_oov_indices=2, - mask_token=None, - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - - expected_vocab = ["[OOV]", "[OOV]", "earth", "wind", "and", "fire"] - self.assertAllEqual(expected_vocab, list_layer.get_vocabulary()) - expected_vocab_size = 6 - self.assertAllEqual(expected_vocab_size, list_layer.vocabulary_size()) - self.assertAllEqual( - list_layer.get_vocabulary(), file_layer.get_vocabulary() - ) - self.assertAllEqual( - list_layer.vocabulary_size(), file_layer.vocabulary_size() - ) - - def test_int_output_file_vocab_no_mask(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "", "earth", "michigan"], - ] - ) - expected_output = [[1, 2, 3, 4], [4, 0, 1, 0]] - - vocab_file = self._write_to_temp_file("temp", vocab_data) - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - vocabulary=vocab_file, - max_tokens=None, - mask_token=None, - num_oov_indices=1, - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_file_vocab_no_oov_or_mask(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [["earth", "wind", "and", "fire"], ["fire", "wind", "earth", "and"]] - ) - expected_output = [[0, 1, 2, 3], [3, 1, 0, 2]] - - vocab_file = self._write_to_temp_file("temp", vocab_data) - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - vocabulary=vocab_file, - max_tokens=None, - mask_token=None, - num_oov_indices=0, - oov_token=None, - vocabulary_dtype=tf.string, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_file_vocab_inversion(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array([[1, 2, 3, 4], [4, 0, 1, 0]]) - expected_output = [ - ["earth", "wind", "and", "fire"], - ["fire", "[OOV]", "earth", "[OOV]"], - ] - - vocab_file = self._write_to_temp_file("temp", vocab_data) - idata = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - vocabulary=vocab_file, - max_tokens=None, - mask_token=None, - num_oov_indices=1, - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - _ = layer(idata) - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - - invert_layer = index_lookup.IndexLookup( - vocabulary=layer.get_vocabulary(), - max_tokens=None, - oov_token="[OOV]", - mask_token=None, - num_oov_indices=1, - invert=True, - vocabulary_dtype=tf.string, - ) - int_data = invert_layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_int_file_vocab(self): - vocab_data = ["10", "20", "30", "40"] - input_array = np.array([[10, 20, 30, 40], [40, 0, 10, 42]]) - expected_output = [[2, 3, 4, 5], [5, 0, 2, 1]] - - vocab_file = self._write_to_temp_file("temp", vocab_data) - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = index_lookup.IndexLookup( - vocabulary=vocab_file, - max_tokens=None, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - vocabulary_dtype=tf.int64, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_dataset_map_output(self): - vocab_data = ["earth", "wind", "and", "fire"] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=0, - mask_token=None, - oov_token="[OOV]", - vocabulary=vocab_data, - vocabulary_dtype=tf.string, - ) - ds = tf.data.Dataset.from_tensor_slices([["earth"], ["wind"], ["and"]]) - ds = ds.map(layer) - self.assertAllEqual(list(ds.as_numpy_iterator()), [[0], [1], [2]]) - - def test_dataset_map_output_layer_created_in_function(self): - vocab_data = ["earth", "wind", "and", "fire"] - - def apply_lookup(data): - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=0, - mask_token=None, - oov_token="[OOV]", - vocabulary=vocab_data, - vocabulary_dtype=tf.string, - ) - return layer(data) - - ds = tf.data.Dataset.from_tensor_slices([["earth"], ["wind"], ["and"]]) - ds = ds.map(apply_lookup) - self.assertAllEqual(list(ds.as_numpy_iterator()), [[0], [1], [2]]) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class IndexLookupVocabularyTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_int_output_explicit_vocab(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - vocabulary=vocab_data, - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_explicit_vocab_with_special_tokens(self): - vocab_data = ["", "[OOV]", "earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - vocabulary=vocab_data, - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_get_vocabulary_no_special_tokens(self): - vocab_data = ["", "[OOV]", "wind", "and", "fire"] - layer = index_lookup.IndexLookup( - max_tokens=5, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - returned_vocab = layer.get_vocabulary(include_special_tokens=False) - self.assertAllEqual(returned_vocab, ["wind", "and", "fire"]) - self.assertAllEqual(layer.vocabulary_size(), 5) - - def test_vocab_multi_oov(self): - vocab_data = ["", "[OOV]", "[OOV]", "wind", "and", "fire"] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=2, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - returned_vocab = layer.get_vocabulary() - self.assertAllEqual(returned_vocab, vocab_data) - - def test_vocab_multi_oov_not_present(self): - vocab_data = ["wind", "and", "fire"] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=10, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - returned_vocab = layer.get_vocabulary() - self.assertAllEqual( - returned_vocab, [""] + ["[OOV]"] * 10 + ["wind", "and", "fire"] - ) - - def test_vocab_with_max_cap(self): - vocab_data = ["", "[OOV]", "wind", "and", "fire"] - layer = index_lookup.IndexLookup( - max_tokens=5, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - returned_vocab = layer.get_vocabulary() - self.assertAllEqual(vocab_data, returned_vocab) - self.assertAllEqual(layer.vocabulary_size(), 5) - - def test_int_vocab_with_max_cap(self): - vocab_data = [0, -1, 42, 1276, 1138] - layer = index_lookup.IndexLookup( - max_tokens=5, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - vocabulary_dtype=tf.int64, - ) - layer.set_vocabulary(vocab_data) - returned_vocab = layer.get_vocabulary() - self.assertAllEqual(vocab_data, returned_vocab) - self.assertAllEqual(layer.vocabulary_size(), 5) - - def test_vocab_with_multiple_oov_indices(self): - vocab_data = ["", "[OOV]", "[OOV]", "[OOV]", "wind"] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=3, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - returned_vocab = layer.get_vocabulary() - self.assertAllEqual(vocab_data, returned_vocab) - - def test_int_vocab_with_multiple_oov_indices(self): - vocab_data = [0, -1, -1, -1, 42] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=3, - mask_token=0, - oov_token=-1, - vocabulary_dtype=tf.int64, - ) - layer.set_vocabulary(vocab_data) - returned_vocab = layer.get_vocabulary() - self.assertAllEqual(vocab_data, returned_vocab) - - def test_non_unique_vocab_fails(self): - vocab_data = ["earth", "wind", "and", "fire", "fire"] - with self.assertRaisesRegex(ValueError, "repeated term.*fire"): - _ = index_lookup.IndexLookup( - vocabulary=vocab_data, - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - - def test_vocab_with_repeated_element_fails(self): - vocab_data = ["earth", "earth", "wind", "and", "fire"] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - with self.assertRaisesRegex(ValueError, "repeated term.*earth"): - layer.set_vocabulary(vocab_data) - - def test_vocab_with_reserved_oov_element_and_invert_true_fails(self): - vocab_data = ["earth", "test", "[OOV]", "wind", "and", "fire"] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - invert=True, - vocabulary_dtype=tf.string, - ) - with self.assertRaisesRegex(ValueError, "reserved OOV"): - layer.set_vocabulary(vocab_data) - - def test_vocab_with_reserved_mask_element_fails(self): - vocab_data = ["earth", "mask_token", "wind", "and", "fire"] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="mask_token", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - with self.assertRaisesRegex(ValueError, "reserved mask"): - layer.set_vocabulary(vocab_data) - - def test_vocab_size_changed_pad_to_max_false_fails(self): - vocab_data = ["earth", "wind", "and", "fire"] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - pad_to_max_tokens=False, - output_mode=index_lookup.MULTI_HOT, - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - # Calling the layer should lock the vocabulary size. - _ = layer([["earth"]]) - with self.assertRaisesRegex( - RuntimeError, "vocabulary size cannot be changed" - ): - layer.set_vocabulary(vocab_data[:2]) - - def test_vocab_with_idf_weights_non_tfidf_output_fails(self): - vocab_data = ["earth", "wind", "and", "fire"] - weight_data = [1, 1, 1, 1, 1] - with self.assertRaisesRegex( - ValueError, "`idf_weights` should only be set if" - ): - index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - output_mode=index_lookup.MULTI_HOT, - vocabulary_dtype=tf.string, - vocabulary=vocab_data, - idf_weights=weight_data, - ) - - def test_vocab_with_idf_weights_length_mismatch_fails(self): - vocab_data = ["earth", "wind", "and", "fire"] - weight_data = [1, 1, 1, 1, 1] # too long - with self.assertRaisesRegex( - ValueError, "`idf_weights` must be the same length as vocab" - ): - index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - output_mode=index_lookup.TF_IDF, - vocabulary_dtype=tf.string, - vocabulary=vocab_data, - idf_weights=weight_data, - ) - - def test_vocab_without_idf_weights_tfidf_output_fails(self): - vocab_data = ["earth", "wind", "and", "fire"] - with self.assertRaisesRegex( - ValueError, "`idf_weights` must be set if output_mode is TF_IDF" - ): - index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - output_mode=index_lookup.TF_IDF, - vocabulary_dtype=tf.string, - vocabulary=vocab_data, - ) - - def test_non_unique_int_vocab_fails(self): - vocab_data = [12, 13, 14, 15, 15] - with self.assertRaisesRegex(ValueError, "repeated term.*15"): - _ = index_lookup.IndexLookup( - vocabulary=vocab_data, - max_tokens=None, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - vocabulary_dtype=tf.int64, - ) - - def test_int_vocab_with_reserved_oov_element_and_invert_true_fails(self): - vocab_data = [14, 38, -1, 34, 3, 84] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - invert=True, - vocabulary_dtype=tf.int64, - ) - with self.assertRaisesRegex(ValueError, "reserved OOV"): - layer.set_vocabulary(vocab_data) - - def test_int_vocab_with_reserved_mask_element_fails(self): - vocab_data = [125, 0, 3, 4, 94] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - vocabulary_dtype=tf.int64, - ) - with self.assertRaisesRegex(ValueError, "reserved mask"): - layer.set_vocabulary(vocab_data) - - def test_no_vocab_file_string_fails(self): - with self.assertRaisesRegex(ValueError, "non_existent_file"): - _ = index_lookup.IndexLookup( - vocabulary="non_existent_file", - max_tokens=None, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - vocabulary_dtype=tf.int64, - ) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class IndexLookupInverseVocabularyTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_int_output_explicit_vocab(self): - vocab_data = ["", "[OOV]", "earth", "wind", "and", "fire"] - input_array = np.array([[2, 3, 4, 5], [5, 4, 2, 1]]) - expected_output = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "[OOV]"], - ] - ) - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = index_lookup.IndexLookup( - vocabulary=vocab_data, - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - invert=True, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_vocab_with_max_cap(self): - vocab_data = ["", "[OOV]", "wind", "and", "fire"] - layer = index_lookup.IndexLookup( - max_tokens=5, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - invert=True, - ) - layer.set_vocabulary(vocab_data) - returned_vocab = layer.get_vocabulary() - self.assertAllEqual(vocab_data, returned_vocab) - - def test_int_vocab_with_max_cap(self): - vocab_data = [0, -1, 42, 1276, 1138] - layer = index_lookup.IndexLookup( - max_tokens=5, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - vocabulary_dtype=tf.int64, - invert=True, - ) - layer.set_vocabulary(vocab_data) - returned_vocab = layer.get_vocabulary() - self.assertAllEqual(vocab_data, returned_vocab) - - def test_non_unique_vocab_fails(self): - vocab_data = ["earth", "wind", "and", "fire", "fire"] - with self.assertRaisesRegex(ValueError, "repeated term.*fire"): - _ = index_lookup.IndexLookup( - vocabulary=vocab_data, - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - invert=True, - ) - - def test_non_int_output_fails(self): - with self.assertRaisesRegex( - ValueError, "`output_mode` must be `'int'`" - ): - _ = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - output_mode=index_lookup.COUNT, - invert=True, - ) - - def test_vocab_with_repeated_element_fails(self): - vocab_data = ["earth", "earth", "wind", "and", "fire"] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - invert=True, - ) - with self.assertRaisesRegex(ValueError, "repeated term.*earth"): - layer.set_vocabulary(vocab_data) - - def test_vocab_with_reserved_mask_element_fails(self): - vocab_data = ["earth", "mask_token", "wind", "and", "fire"] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="mask_token", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - invert=True, - ) - with self.assertRaisesRegex(ValueError, "reserved mask"): - layer.set_vocabulary(vocab_data) - - def test_non_unique_int_vocab_fails(self): - vocab_data = [12, 13, 14, 15, 15] - with self.assertRaisesRegex(ValueError, "repeated term.*15"): - _ = index_lookup.IndexLookup( - vocabulary=vocab_data, - max_tokens=None, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - vocabulary_dtype=tf.int64, - invert=True, - ) - - def test_int_vocab_with_repeated_element_fails(self): - vocab_data = [11, 11, 34, 23, 124] - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token=0, - oov_token=-1, - vocabulary_dtype=tf.int64, - invert=True, - ) - with self.assertRaisesRegex(ValueError, "repeated term.*11"): - layer.set_vocabulary(vocab_data) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class IndexLookupErrorTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_too_long_vocab_fails_in_single_setting(self): - vocab_data = ["earth", "wind", "and", "fire"] - - layer = index_lookup.IndexLookup( - max_tokens=4, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - with self.assertRaisesRegex( - ValueError, "vocabulary larger than the maximum vocab" - ): - layer.set_vocabulary(vocab_data) - - def test_zero_max_tokens_fails(self): - with self.assertRaisesRegex(ValueError, "max_tokens"): - _ = index_lookup.IndexLookup( - max_tokens=0, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class IndexLookupSavingTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def _write_to_temp_file(self, file_name, vocab_list): - vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt") - with tf.io.gfile.GFile(vocab_path, "w") as writer: - for vocab in vocab_list: - writer.write(vocab + "\n") - writer.flush() - writer.close() - return vocab_path - - def test_vocabulary_persistence_across_saving(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - # Build and validate a golden model. - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(output_dataset, expected_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format="tf") - - # Delete the session and graph to ensure that the loaded model is - # generated from scratch. - keras.backend.clear_session() - - loaded_model = keras.models.load_model( - output_path, - custom_objects={"IndexLookup": index_lookup.IndexLookup}, - ) - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_dataset = loaded_model.predict(input_array) - self.assertAllEqual(new_output_dataset, expected_output) - - def test_vocabulary_persistence_file_across_cloning(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - vocab_file = self._write_to_temp_file("temp", vocab_data) - - # Build and validate a golden model. - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - vocabulary=vocab_file, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(output_dataset, expected_output) - - # Clone the model and set weights. - new_model = keras.models.clone_model(model) - new_model.set_weights(model.get_weights()) - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, new_model) - - # Validate correctness of the new model. - new_output_dataset = new_model.predict(input_array) - self.assertAllEqual(new_output_dataset, expected_output) - - def test_persistence_file_vocabs_tf_save_tf_load(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - vocab_file = self._write_to_temp_file("temp", vocab_data) - - # Build and validate a golden model. - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - vocabulary=vocab_file, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(output_dataset, expected_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - tf.saved_model.save(obj=model, export_dir=output_path) - - # Delete the session and graph to ensure that the loaded model is - # generated from scratch. - keras.backend.clear_session() - - loaded_model = tf.saved_model.load(output_path) - f = loaded_model.signatures["serving_default"] - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_dataset = f(tf.constant(input_array))["index_lookup"] - self.assertAllEqual(new_output_dataset, expected_output) - - def test_vocabulary_persistence_file_vocab_keras_save_tf_load(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - vocab_file = self._write_to_temp_file("temp", vocab_data) - - # Build and validate a golden model. - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - vocabulary=vocab_file, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(output_dataset, expected_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format="tf") - - # Delete the session and graph to ensure that the loaded model is - # generated from scratch. - keras.backend.clear_session() - - loaded_model = tf.saved_model.load(output_path) - f = loaded_model.signatures["serving_default"] - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_dataset = f(tf.constant(input_array))["index_lookup"] - self.assertAllEqual(new_output_dataset, expected_output) - - def test_persistence_file_vocab_keras_save_keras_load(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - vocab_file = self._write_to_temp_file("temp", vocab_data) - - # Build and validate a golden model. - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - vocabulary=vocab_file, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(output_dataset, expected_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format="tf") - - # Delete the session and graph to ensure that the loaded model is - # generated from scratch. - keras.backend.clear_session() - tf.io.gfile.remove(vocab_file) - - loaded_model = keras.models.load_model( - output_path, - custom_objects={"IndexLookup": index_lookup.IndexLookup}, - ) - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_dataset = loaded_model.predict(input_array) - self.assertAllEqual(new_output_dataset, expected_output) - - # Try re-saving the layer. This simulates saving a layer contained at - # a hub Module. - input_data_2 = keras.Input(shape=(None,), dtype=tf.string) - output_2 = loaded_model(input_data_2) - model_2 = keras.Model(inputs=input_data_2, outputs=output_2) - new_output_dataset = model_2.predict(input_array) - self.assertAllEqual(new_output_dataset, expected_output) - - # Save the model to disk. - output_path = os.path.join( - self.get_temp_dir(), "tf_keras_saved_model_2" - ) - model_2.save(output_path, save_format="tf") - - # Delete the session and graph to ensure that the loaded model is - # generated from scratch. - keras.backend.clear_session() - - loaded_model = keras.models.load_model( - output_path, - custom_objects={"IndexLookup": index_lookup.IndexLookup}, - ) - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_dataset = loaded_model.predict(input_array) - self.assertAllEqual(new_output_dataset, expected_output) - - def test_persistence_file_vocab_keras_save_keras_load_tf_save_tf_load(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - vocab_file = self._write_to_temp_file("temp", vocab_data) - - # Build and validate a golden model. - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - vocabulary=vocab_file, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(output_dataset, expected_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format="tf") - - # Delete the session and graph to ensure that the loaded model is - # generated from scratch. - keras.backend.clear_session() - tf.io.gfile.remove(vocab_file) - - loaded_model = keras.models.load_model( - output_path, - custom_objects={"IndexLookup": index_lookup.IndexLookup}, - ) - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_dataset = loaded_model.predict(input_array) - self.assertAllEqual(new_output_dataset, expected_output) - - # Try re-saving the layer. This simulates saving a layer contained at - # a hub Module. - input_data_2 = keras.Input(shape=(None,), dtype=tf.string) - output_2 = loaded_model(input_data_2) - model_2 = keras.Model(inputs=input_data_2, outputs=output_2) - new_output_dataset = model_2.predict(input_array) - self.assertAllEqual(new_output_dataset, expected_output) - - # Save the model to disk. - output_path = os.path.join( - self.get_temp_dir(), "tf_keras_saved_model_2" - ) - tf.saved_model.save(model_2, output_path) - - # Delete the session and graph to ensure that the loaded model is - # generated from scratch. - keras.backend.clear_session() - - loaded_model = tf.saved_model.load(output_path) - f = loaded_model.signatures["serving_default"] - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_dataset = f(tf.constant(input_array))["model"] - self.assertAllEqual(new_output_dataset, expected_output) - - def test_persistence_file_vocab_keras_save_keras_load_keras_save_keras_load( - self, - ): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - vocab_file = self._write_to_temp_file("temp", vocab_data) - - # Build and validate a golden model. - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - vocabulary=vocab_file, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(output_dataset, expected_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format="tf") - - # Delete the session and graph to ensure that the loaded model is - # generated from scratch. - keras.backend.clear_session() - tf.io.gfile.remove(vocab_file) - - loaded_model = keras.models.load_model( - output_path, - custom_objects={"IndexLookup": index_lookup.IndexLookup}, - ) - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_dataset = loaded_model.predict(input_array) - self.assertAllEqual(new_output_dataset, expected_output) - - # Try re-saving the layer. This simulates saving a layer contained at - # a hub Module. - input_data_2 = keras.Input(shape=(None,), dtype=tf.string) - output_2 = loaded_model(input_data_2) - model_2 = keras.Model(inputs=input_data_2, outputs=output_2) - new_output_dataset = model_2.predict(input_array) - self.assertAllEqual(new_output_dataset, expected_output) - - # Save the model to disk. - output_path = os.path.join( - self.get_temp_dir(), "tf_keras_saved_model_2" - ) - model_2.save(output_path, save_format="tf") - - # Delete the session and graph to ensure that the loaded model is - # generated from scratch. - keras.backend.clear_session() - - loaded_model = keras.models.load_model( - output_path, - custom_objects={"IndexLookup": index_lookup.IndexLookup}, - ) - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_dataset = model_2.predict(input_array) - self.assertAllEqual(new_output_dataset, expected_output) - - def test_static_table_config_weight_data_transfer_succeeds(self): - vocab_data = ["earth", "wind", "and", "fire"] - vocab_file = self._write_to_temp_file("temp", vocab_data) - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - # Build and validate a golden model. - layer_cls = index_lookup.IndexLookup - layer = layer_cls( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - vocabulary=vocab_file, - ) - config = layer.get_config() - weights = layer.get_weights() - - layer = layer_cls.from_config(config) - layer.set_weights(weights) - - input_data = keras.Input(shape=(None,), dtype=tf.string) - output = layer(input_data) - model = keras.Model(inputs=input_data, outputs=output) - - new_output_dataset = model.predict(input_array) - self.assertAllEqual(new_output_dataset, expected_output) - - def test_sparse_output_across_saving(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - - expected_output = [[0.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 0.0, 1.0, 1.0]] - - layer_cls = index_lookup.IndexLookup - layer = layer_cls( - max_tokens=None, - num_oov_indices=1, - mask_token="", - oov_token="[OOV]", - vocabulary_dtype=tf.string, - vocabulary=vocab_data, - output_mode="multi_hot", - sparse=True, - ) - config = layer.get_config() - layer = layer_cls.from_config(config) - - output = layer(input_array) - self.assertIsInstance(output, tf.SparseTensor) - self.assertAllEqual(tf.sparse.to_dense(output), expected_output) - - -class EagerExecutionDisabled( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_lookup(self): - # We need this test for model_to_estimator followed by - # export_saved_model, which will call the layer in a legacy session. - # This could also happen directly if a user calls disable_v2_behavior or - # disable_eager_execution. - with tf.compat.v1.Session(): - with test_utils.run_eagerly_scope(False): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array(["earth", "wind", "and", "fire"]) - expected_output = [1, 2, 3, 4] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = index_lookup.IndexLookup( - max_tokens=None, - num_oov_indices=1, - mask_token=None, - oov_token="[OOV]", - vocabulary_dtype=tf.string, - vocabulary=vocab_data, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - # In a TF1 session the user will need to make sure all tables - # are initialized themselves. - tf.compat.v1.tables_initializer().run() - output_dataset = model(input_array) - self.assertAllEqual(output_dataset, expected_output) - - -if __name__ == "__main__": - # IndexLookup is only exported as a TF2 API. - tf.compat.v1.enable_v2_behavior() - tf.test.main() diff --git a/keras/layers/preprocessing/integer_lookup.py b/keras/layers/preprocessing/integer_lookup.py deleted file mode 100644 index 8b250c3aabe..00000000000 --- a/keras/layers/preprocessing/integer_lookup.py +++ /dev/null @@ -1,462 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras string lookup preprocessing layer.""" - - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.engine import base_preprocessing_layer -from keras.layers.preprocessing import index_lookup - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.layers.IntegerLookup", - "keras.layers.experimental.preprocessing.IntegerLookup", - v1=[], -) -class IntegerLookup(index_lookup.IndexLookup): - """A preprocessing layer which maps integer features to contiguous ranges. - - This layer maps a set of arbitrary integer input tokens into indexed integer - output via a table-based vocabulary lookup. The layer's output indices will - be contiguously arranged up to the maximum vocab size, even if the input - tokens are non-continguous or unbounded. The layer supports multiple options - for encoding the output via `output_mode`, and has optional support for - out-of-vocabulary (OOV) tokens and masking. - - The vocabulary for the layer must be either supplied on construction or - learned via `adapt()`. During `adapt()`, the layer will analyze a data set, - determine the frequency of individual integer tokens, and create a - vocabulary from them. If the vocabulary is capped in size, the most frequent - tokens will be used to create the vocabulary and all others will be treated - as OOV. - - There are two possible output modes for the layer. When `output_mode` is - `"int"`, input integers are converted to their index in the vocabulary (an - integer). When `output_mode` is `"multi_hot"`, `"count"`, or `"tf_idf"`, - input integers are encoded into an array where each dimension corresponds to - an element in the vocabulary. - - The vocabulary can optionally contain a mask token as well as an OOV token - (which can optionally occupy multiple indices in the vocabulary, as set - by `num_oov_indices`). - The position of these tokens in the vocabulary is fixed. When `output_mode` - is `"int"`, the vocabulary will begin with the mask token at index 0, - followed by OOV indices, followed by the rest of the vocabulary. When - `output_mode` is `"multi_hot"`, `"count"`, or `"tf_idf"` the vocabulary will - begin with OOV indices and instances of the mask token will be dropped. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - max_tokens: Maximum size of the vocabulary for this layer. This should - only be specified when adapting the vocabulary or when setting - `pad_to_max_tokens=True`. If None, there is no cap on the size of the - vocabulary. Note that this size includes the OOV and mask tokens. - Defaults to None. - num_oov_indices: The number of out-of-vocabulary tokens to use. If this - value is more than 1, OOV inputs are modulated to determine their OOV - value. If this value is 0, OOV inputs will cause an error when calling - the layer. Defaults to 1. - mask_token: An integer token that represents masked inputs. When - `output_mode` is `"int"`, the token is included in vocabulary and mapped - to index 0. In other output modes, the token will not appear in the - vocabulary and instances of the mask token in the input will be dropped. - If set to None, no mask term will be added. Defaults to None. - oov_token: Only used when `invert` is True. The token to return for OOV - indices. Defaults to -1. - vocabulary: Optional. Either an array of integers or a string path to a - text file. If passing an array, can pass a tuple, list, 1D numpy array, - or 1D tensor containing the integer vocbulary terms. If passing a file - path, the file should contain one line per term in the vocabulary. If - this argument is set, there is no need to `adapt()` the layer. - vocabulary_dtype: The dtype of the vocabulary terms, for example - `"int64"` or `"int32"`. Defaults to `"int64"`. - idf_weights: Only valid when `output_mode` is `"tf_idf"`. A tuple, list, - 1D numpy array, or 1D tensor or the same length as the vocabulary, - containing the floating point inverse document frequency weights, which - will be multiplied by per sample term counts for the final `tf_idf` - weight. If the `vocabulary` argument is set, and `output_mode` is - `"tf_idf"`, this argument must be supplied. - invert: Only valid when `output_mode` is `"int"`. If True, this layer will - map indices to vocabulary items instead of mapping vocabulary items to - indices. Default to False. - output_mode: Specification for the output of the layer. Defaults to - `"int"`. Values can be `"int"`, `"one_hot"`, `"multi_hot"`, `"count"`, - or `"tf_idf"` configuring the layer as follows: - - `"int"`: Return the vocabulary indices of the input tokens. - - `"one_hot"`: Encodes each individual element in the input into an - array the same size as the vocabulary, containing a 1 at the element - index. If the last dimension is size 1, will encode on that - dimension. If the last dimension is not size 1, will append a new - dimension for the encoded output. - - `"multi_hot"`: Encodes each sample in the input into a single array - the same size as the vocabulary, containing a 1 for each vocabulary - term present in the sample. Treats the last dimension as the sample - dimension, if input shape is (..., sample_length), output shape will - be (..., num_tokens). - - `"count"`: As `"multi_hot"`, but the int array contains a count of - the number of times the token at that index appeared in the sample. - - `"tf_idf"`: As `"multi_hot"`, but the TF-IDF algorithm is applied to - find the value in each token slot. - For `"int"` output, any shape of input and output is supported. For all - other output modes, currently only output up to rank 2 is supported. - pad_to_max_tokens: Only applicable when `output_mode` is `"multi_hot"`, - `"count"`, or `"tf_idf"`. If True, the output will have its feature axis - padded to `max_tokens` even if the number of unique tokens in the - vocabulary is less than max_tokens, resulting in a tensor of shape - [batch_size, max_tokens] regardless of vocabulary size. Defaults to - False. - sparse: Boolean. Only applicable when `output_mode` is `"multi_hot"`, - `"count"`, or `"tf_idf"`. If True, returns a `SparseTensor` instead of a - dense `Tensor`. Defaults to False. - - Examples: - - **Creating a lookup layer with a known vocabulary** - - This example creates a lookup layer with a pre-existing vocabulary. - - >>> vocab = [12, 36, 1138, 42] - >>> data = tf.constant([[12, 1138, 42], [42, 1000, 36]]) # Note OOV tokens - >>> layer = tf.keras.layers.IntegerLookup(vocabulary=vocab) - >>> layer(data) - - - **Creating a lookup layer with an adapted vocabulary** - - This example creates a lookup layer and generates the vocabulary by - analyzing the dataset. - - >>> data = tf.constant([[12, 1138, 42], [42, 1000, 36]]) - >>> layer = tf.keras.layers.IntegerLookup() - >>> layer.adapt(data) - >>> layer.get_vocabulary() - [-1, 42, 1138, 1000, 36, 12] - - Note that the OOV token -1 have been added to the vocabulary. The remaining - tokens are sorted by frequency (42, which has 2 occurrences, is first) then - by inverse sort order. - - >>> data = tf.constant([[12, 1138, 42], [42, 1000, 36]]) - >>> layer = tf.keras.layers.IntegerLookup() - >>> layer.adapt(data) - >>> layer(data) - - - - **Lookups with multiple OOV indices** - - This example demonstrates how to use a lookup layer with multiple OOV - indices. When a layer is created with more than one OOV index, any OOV - tokens are hashed into the number of OOV buckets, distributing OOV tokens in - a deterministic fashion across the set. - - >>> vocab = [12, 36, 1138, 42] - >>> data = tf.constant([[12, 1138, 42], [37, 1000, 36]]) - >>> layer = tf.keras.layers.IntegerLookup( - ... vocabulary=vocab, num_oov_indices=2) - >>> layer(data) - - - Note that the output for OOV token 37 is 1, while the output for OOV token - 1000 is 0. The in-vocab terms have their output index increased by 1 from - earlier examples (12 maps to 2, etc) in order to make space for the extra - OOV token. - - **One-hot output** - - Configure the layer with `output_mode='one_hot'`. Note that the first - `num_oov_indices` dimensions in the ont_hot encoding represent OOV values. - - >>> vocab = [12, 36, 1138, 42] - >>> data = tf.constant([12, 36, 1138, 42, 7]) # Note OOV tokens - >>> layer = tf.keras.layers.IntegerLookup( - ... vocabulary=vocab, output_mode='one_hot') - >>> layer(data) - - - **Multi-hot output** - - Configure the layer with `output_mode='multi_hot'`. Note that the first - `num_oov_indices` dimensions in the multi_hot encoding represent OOV tokens - - >>> vocab = [12, 36, 1138, 42] - >>> data = tf.constant([[12, 1138, 42, 42], - ... [42, 7, 36, 7]]) # Note OOV tokens - >>> layer = tf.keras.layers.IntegerLookup( - ... vocabulary=vocab, output_mode='multi_hot') - >>> layer(data) - - - **Token count output** - - Configure the layer with `output_mode='count'`. As with multi_hot output, - the first `num_oov_indices` dimensions in the output represent OOV tokens. - - >>> vocab = [12, 36, 1138, 42] - >>> data = tf.constant([[12, 1138, 42, 42], - ... [42, 7, 36, 7]]) # Note OOV tokens - >>> layer = tf.keras.layers.IntegerLookup( - ... vocabulary=vocab, output_mode='count') - >>> layer(data) - - - **TF-IDF output** - - Configure the layer with `output_mode='tf_idf'`. As with multi_hot output, - the first `num_oov_indices` dimensions in the output represent OOV tokens. - - Each token bin will output `token_count * idf_weight`, where the idf weights - are the inverse document frequency weights per token. These should be - provided along with the vocabulary. Note that the `idf_weight` for OOV - tokens will default to the average of all idf weights passed in. - - >>> vocab = [12, 36, 1138, 42] - >>> idf_weights = [0.25, 0.75, 0.6, 0.4] - >>> data = tf.constant([[12, 1138, 42, 42], - ... [42, 7, 36, 7]]) # Note OOV tokens - >>> layer = tf.keras.layers.IntegerLookup( - ... output_mode='tf_idf', vocabulary=vocab, idf_weights=idf_weights) - >>> layer(data) - - - To specify the idf weights for oov tokens, you will need to pass the entire - vocabularly including the leading oov token. - - >>> vocab = [-1, 12, 36, 1138, 42] - >>> idf_weights = [0.9, 0.25, 0.75, 0.6, 0.4] - >>> data = tf.constant([[12, 1138, 42, 42], - ... [42, 7, 36, 7]]) # Note OOV tokens - >>> layer = tf.keras.layers.IntegerLookup( - ... output_mode='tf_idf', vocabulary=vocab, idf_weights=idf_weights) - >>> layer(data) - - - When adapting the layer in tf_idf mode, each input sample will be considered - a document, and idf weight per token will be calculated as - `log(1 + num_documents / (1 + token_document_count))`. - - **Inverse lookup** - - This example demonstrates how to map indices to tokens using this layer. - (You can also use `adapt()` with `inverse=True`, but for simplicity we'll - pass the vocab in this example.) - - >>> vocab = [12, 36, 1138, 42] - >>> data = tf.constant([[1, 3, 4], [4, 0, 2]]) - >>> layer = tf.keras.layers.IntegerLookup(vocabulary=vocab, invert=True) - >>> layer(data) - - - Note that the first index correspond to the oov token by default. - - - **Forward and inverse lookup pairs** - - This example demonstrates how to use the vocabulary of a standard lookup - layer to create an inverse lookup layer. - - >>> vocab = [12, 36, 1138, 42] - >>> data = tf.constant([[12, 1138, 42], [42, 1000, 36]]) - >>> layer = tf.keras.layers.IntegerLookup(vocabulary=vocab) - >>> i_layer = tf.keras.layers.IntegerLookup( - ... vocabulary=layer.get_vocabulary(), invert=True) - >>> int_data = layer(data) - >>> i_layer(int_data) - - - In this example, the input token 1000 resulted in an output of -1, since - 1000 was not in the vocabulary - it got represented as an OOV, and all OOV - tokens are returned as -1 in the inverse layer. Also, note that for the - inverse to work, you must have already set the forward layer vocabulary - either directly or via `adapt()` before calling `get_vocabulary()`. - """ - - def __init__( - self, - max_tokens=None, - num_oov_indices=1, - mask_token=None, - oov_token=-1, - vocabulary=None, - vocabulary_dtype="int64", - idf_weights=None, - invert=False, - output_mode="int", - sparse=False, - pad_to_max_tokens=False, - **kwargs, - ): - if not tf.dtypes.as_dtype(vocabulary_dtype).is_integer: - raise ValueError( - "`vocabulary_dtype` must be an integer dtype. " - f"Received: {vocabulary_dtype}" - ) - - # Legacy versions of the IntegerLookup layer set layer dtype to int64, - # instead of the output type. If we see this and output mode is not - # "int", clear the setting so we don't switch types for old SavedModels. - if ( - output_mode != "int" - and "dtype" in kwargs - and (kwargs["dtype"] == tf.int64 or kwargs["dtype"] == "int64") - ): - del kwargs["dtype"] - - # Support deprecated args for this layer. - if "max_values" in kwargs: - logging.log_first_n( - logging.WARN, - "max_values is deprecated, use max_tokens instead.", - 1, - ) - max_tokens = kwargs["max_values"] - del kwargs["max_values"] - if "mask_value" in kwargs: - logging.log_first_n( - logging.WARN, - "mask_value is deprecated, use mask_token instead.", - 1, - ) - mask_token = kwargs["mask_value"] - del kwargs["mask_value"] - if "oov_value" in kwargs: - logging.log_first_n( - logging.WARN, - "oov_value is deprecated, use oov_token instead.", - 1, - ) - oov_token = kwargs["oov_value"] - del kwargs["oov_value"] - - # If max_tokens is set, the token must be greater than 1 - otherwise we - # are creating a 0-element vocab, which doesn't make sense. - if max_tokens is not None and max_tokens <= 1: - raise ValueError( - "If `max_tokens` is set for `IntegerLookup`, it must be " - f"greater than 1. Received: max_tokens={max_tokens}." - ) - - if num_oov_indices < 0: - raise ValueError( - "The value of `num_oov_indices` argument for `IntegerLookup` " - "must >= 0. Received num_oov_indices=" - f"{num_oov_indices}." - ) - - # Make sure mask and oov are of the dtype we want. - mask_token = None if mask_token is None else np.int64(mask_token) - oov_token = None if oov_token is None else np.int64(oov_token) - - super().__init__( - max_tokens=max_tokens, - num_oov_indices=num_oov_indices, - mask_token=mask_token, - oov_token=oov_token, - vocabulary=vocabulary, - vocabulary_dtype=vocabulary_dtype, - idf_weights=idf_weights, - invert=invert, - output_mode=output_mode, - sparse=sparse, - pad_to_max_tokens=pad_to_max_tokens, - **kwargs, - ) - base_preprocessing_layer.keras_kpl_gauge.get_cell("IntegerLookup").set( - True - ) - - # We override this method solely to generate a docstring. - def adapt(self, data, batch_size=None, steps=None): - """Computes a vocabulary of interger terms from tokens in a dataset. - - Calling `adapt()` on an `IntegerLookup` layer is an alternative to - passing in a precomputed vocabulary on construction via the - `vocabulary` argument. An `IntegerLookup` layer should always be either - adapted over a dataset or supplied with a vocabulary. - - During `adapt()`, the layer will build a vocabulary of all integer - tokens seen in the dataset, sorted by occurrence count, with ties broken - by sort order of the tokens (high to low). At the end of `adapt()`, if - `max_tokens` is set, the vocabulary wil be truncated to `max_tokens` - size. For example, adapting a layer with `max_tokens=1000` will compute - the 1000 most frequent tokens occurring in the input dataset. If - `output_mode='tf-idf'`, `adapt()` will also learn the document - frequencies of each token in the input dataset. - - In order to make `StringLookup` efficient in any distribution context, - the vocabulary is kept static with respect to any compiled `tf.Graph`s - that call the layer. As a consequence, if the layer is adapted a second - time, any models using the layer should be re-compiled. For more - information see - `tf.keras.layers.experimental.preprocessing.PreprocessingLayer.adapt`. - - `adapt()` is meant only as a single machine utility to compute layer - state. To analyze a dataset that cannot fit on a single machine, see - [Tensorflow Transform]( - https://www.tensorflow.org/tfx/transform/get_started) for a - multi-machine, map-reduce solution. - - Arguments: - data: The data to train on. It can be passed either as a - `tf.data.Dataset`, or as a numpy array. - batch_size: Integer or `None`. - Number of samples per state update. - If unspecified, `batch_size` will default to 32. - Do not specify the `batch_size` if your data is in the - form of datasets, generators, or `keras.utils.Sequence` instances - (since they generate batches). - steps: Integer or `None`. - Total number of steps (batches of samples) - When training with input tensors such as - TensorFlow data tensors, the default `None` is equal to - the number of samples in your dataset divided by - the batch size, or 1 if that cannot be determined. If x is a - `tf.data` dataset, and 'steps' is None, the epoch will run until - the input dataset is exhausted. When passing an infinitely - repeating dataset, you must specify the `steps` argument. This - argument is not supported with array inputs. - """ - super().adapt(data, batch_size=batch_size, steps=steps) diff --git a/keras/layers/preprocessing/integer_lookup_test.py b/keras/layers/preprocessing/integer_lookup_test.py deleted file mode 100644 index a99075db4d6..00000000000 --- a/keras/layers/preprocessing/integer_lookup_test.py +++ /dev/null @@ -1,657 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras text vectorization preprocessing layer.""" - -import gc -import itertools -import os -import random - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.preprocessing import integer_lookup -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -def _get_end_to_end_test_cases(): - test_cases = ( - { - "testcase_name": "test_ints_soft_vocab_cap", - # Create an array where 1138 is the most frequent term, followed by - # 1729, then 725, then 42. This ensures that the vocab accumulator - # is sorting by frequency. - "vocab_data": np.array( - [ - [42], - [1138], - [1138], - [1138], - [1138], - [1729], - [1729], - [1729], - [725], - [725], - ], - dtype=np.int64, - ), - "input_data": np.array( - [[1138], [1729], [725], [42], [42], [725], [1138], [4]], - dtype=np.int64, - ), - "kwargs": { - "max_tokens": None, - "dtype": tf.int64, - }, - "expected_output": [[1], [2], [3], [4], [4], [3], [1], [0]], - "input_dtype": tf.int64, - }, - ) - - crossed_test_cases = [] - # Cross above test cases with use_dataset in (True, False) - for use_dataset in (True, False): - for case in test_cases: - case = case.copy() - if use_dataset: - case["testcase_name"] = case["testcase_name"] + "_with_dataset" - case["use_dataset"] = use_dataset - crossed_test_cases.append(case) - - return crossed_test_cases - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class IntegerLookupLayerTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - @parameterized.named_parameters(*_get_end_to_end_test_cases()) - def test_layer_end_to_end_with_adapt( - self, - vocab_data, - input_data, - kwargs, - use_dataset, - expected_output, - input_dtype, - ): - cls = integer_lookup.IntegerLookup - expected_output_dtype = tf.int64 - input_shape = input_data.shape - - if use_dataset: - # Keras APIs expect batched datasets. - # TODO(rachelim): `model.predict` predicts the result on each - # dataset batch separately, then tries to concatenate the results - # together. When the results have different shapes on the non-concat - # axis (which can happen in the output_mode = INT case for - # IntegerLookup), the concatenation fails. In real use cases, this - # may not be an issue because users are likely to pipe the - # preprocessing layer into other keras layers instead of predicting - # it directly. A workaround for these unit tests is to have the - # dataset only contain one batch, so no concatenation needs to - # happen with the result. For consistency with numpy input, we - # should make `predict` join differently shaped results together - # sensibly, with 0 padding. - input_data = tf.data.Dataset.from_tensor_slices(input_data).batch( - input_shape[0] - ) - vocab_data = tf.data.Dataset.from_tensor_slices(vocab_data).batch( - input_shape[0] - ) - - output_data = test_utils.layer_test( - cls, - kwargs=kwargs, - input_shape=input_shape, - input_data=input_data, - input_dtype=input_dtype, - expected_output_dtype=expected_output_dtype, - validate_training=False, - adapt_data=vocab_data, - ) - self.assertAllClose(expected_output, output_data) - - def test_layer_with_list_input(self): - vocab = [12, 36, 1138, 42] - data = [[12, 1138, 42], [42, 1000, 36]] # Note OOV tokens - layer = integer_lookup.IntegerLookup(vocabulary=vocab) - output = layer(data) - expected_output = np.array([[1, 3, 4], [4, 0, 2]]) - self.assertEqual(output.numpy().tolist(), expected_output.tolist()) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class CategoricalEncodingInputTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_sparse_int_input(self): - vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) - input_array = tf.SparseTensor( - indices=[[0, 0], [1, 2]], - values=np.array([13, 32], dtype=np.int64), - dense_shape=[3, 4], - ) - - expected_indices = [[0, 0], [1, 2]] - expected_values = [4, 0] - expected_dense_shape = [3, 4] - - input_data = keras.Input(shape=(None,), dtype=tf.int64, sparse=True) - layer = integer_lookup.IntegerLookup(max_tokens=None) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array, steps=1) - self.assertAllEqual(expected_indices, output_data.indices) - self.assertAllEqual(expected_values, output_data.values) - self.assertAllEqual(expected_dense_shape, output_data.dense_shape) - - def test_ragged_int_input(self): - vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) - input_array = tf.ragged.constant( - [[10, 11, 13], [13, 12, 10, 42]], dtype=np.int64 - ) - expected_output = [[1, 2, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64, ragged=True) - layer = integer_lookup.IntegerLookup(max_tokens=None) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class CategoricalEncodingMultiOOVTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_sparse_int_input_multi_bucket(self): - vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) - input_array = tf.SparseTensor( - indices=[[0, 0], [1, 2]], - values=np.array([13, 133], dtype=np.int64), - dense_shape=[3, 4], - ) - - expected_indices = [[0, 0], [1, 2]] - expected_values = [6, 2] - expected_dense_shape = [3, 4] - - input_data = keras.Input(shape=(None,), dtype=tf.int64, sparse=True) - layer = integer_lookup.IntegerLookup( - max_tokens=None, - dtype=tf.int64, - num_oov_indices=2, - mask_token=0, - oov_token=-1, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array, steps=1) - self.assertAllEqual(expected_indices, output_data.indices) - self.assertAllEqual(expected_values, output_data.values) - self.assertAllEqual(expected_dense_shape, output_data.dense_shape) - - def test_ragged_int_input_multi_bucket(self): - vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) - input_array = tf.ragged.constant( - [[10, 11, 13], [13, 12, 10, 133]], dtype=np.int64 - ) - expected_output = [[2, 3, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64, ragged=True) - layer = integer_lookup.IntegerLookup(max_tokens=None, num_oov_indices=2) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class CategoricalEncodingAdaptTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_sparse_adapt(self): - vocab_data = tf.SparseTensor( - indices=[[0, 0], [0, 1], [1, 2]], - values=[203, 1729, 203], - dense_shape=[3, 4], - ) - vocab_dataset = tf.data.Dataset.from_tensors(vocab_data) - - layer = integer_lookup.IntegerLookup() - layer.adapt(vocab_dataset) - expected_vocabulary = [-1, 203, 1729] - self.assertAllEqual(expected_vocabulary, layer.get_vocabulary()) - - def test_ragged_adapt(self): - vocab_data = tf.ragged.constant([[203], [1729, 203]]) - vocab_dataset = tf.data.Dataset.from_tensors(vocab_data) - - layer = integer_lookup.IntegerLookup() - layer.adapt(vocab_dataset) - expected_vocabulary = [-1, 203, 1729] - self.assertAllEqual(expected_vocabulary, layer.get_vocabulary()) - - def test_single_int_generator_dataset(self): - def word_gen(): - for _ in itertools.count(1): - yield random.randint(0, 100) - - ds = tf.data.Dataset.from_generator( - word_gen, tf.int64, tf.TensorShape([]) - ) - batched_ds = ds.take(2) - input_t = keras.Input(shape=(), dtype=tf.int64) - layer = integer_lookup.IntegerLookup( - max_tokens=10, num_oov_indices=0, mask_token=None, oov_token=None - ) - _ = layer(input_t) - layer.adapt(batched_ds) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class IntegerLookupOutputTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_int_output(self): - vocab_data = [42, 1138, 725, 1729] - input_array = np.array([[42, 1138, 725, 1729], [1729, 725, 42, 203]]) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup() - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_output_shape(self): - input_data = keras.Input(shape=(4,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup(max_tokens=2, num_oov_indices=1) - int_data = layer(input_data) - self.assertAllEqual(int_data.shape[1:], input_data.shape[1:]) - - def test_int_output_with_mask(self): - vocab_data = [42, 1138, 725, 1729] - input_array = np.array([[42, 1138, 725, 1729], [1729, 725, 42, 203]]) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup(max_tokens=None, mask_token=0) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_explicit_vocab(self): - vocab_data = [42, 1138, 725, 1729] - input_array = np.array([[42, 1138, 725, 1729], [1729, 725, 42, 203]]) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup( - vocabulary=vocab_data, - max_tokens=None, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_explicit_vocab_with_special_tokens(self): - vocab_data = [0, -1, 42, 1138, 725, 1729] - input_array = np.array([[42, 1138, 725, 1729], [1729, 725, 42, 203]]) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup( - vocabulary=vocab_data, - max_tokens=None, - mask_token=0, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_no_oov(self): - vocab_data = [42, 1138, 725, 1729] - valid_input = np.array([[42, 1138, 725, 1729], [1729, 725, 42, 0]]) - invalid_input = np.array([[42, 1138, 725, 203], [1729, 725, 42, 203]]) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup( - vocabulary=vocab_data, mask_token=0, num_oov_indices=0 - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(valid_input) - self.assertAllEqual(expected_output, output_data) - with self.assertRaisesRegex( - tf.errors.InvalidArgumentError, "found OOV values.*203" - ): - _ = model.predict(invalid_input) - - def test_inverse_output(self): - vocab_data = [-1, 42, 1138, 725, 1729] - input_array = np.array([[1, 2, 3, 4], [4, 3, 1, 0]]) - expected_output = np.array([[42, 1138, 725, 1729], [1729, 725, 42, -1]]) - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup(invert=True) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_forward_backward_explicit_vocab(self): - vocab_data = [42, 1138, 725, 1729] - input_array = np.array([[42, 1138, 725, 1729], [1729, 725, 42, 203]]) - expected_output = np.array([[42, 1138, 725, 1729], [1729, 725, 42, -1]]) - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup(vocabulary=vocab_data) - inverse_layer = integer_lookup.IntegerLookup( - vocabulary=vocab_data, invert=True - ) - int_data = layer(input_data) - inverse_data = inverse_layer(int_data) - model = keras.Model(inputs=input_data, outputs=inverse_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_forward_backward_adapted_vocab(self): - adapt_data = [42, 1138, 725, 1729] - input_array = np.array([[42, 1138, 725, 1729], [1729, 725, 42, 203]]) - expected_output = np.array([[42, 1138, 725, 1729], [1729, 725, 42, -1]]) - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup() - layer.adapt(adapt_data) - inverse_layer = integer_lookup.IntegerLookup( - vocabulary=layer.get_vocabulary(), invert=True - ) - int_data = layer(input_data) - inverse_data = inverse_layer(int_data) - model = keras.Model(inputs=input_data, outputs=inverse_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class IntegerLookupVocabularyTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def _write_to_temp_file(self, file_name, vocab_list): - vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt") - with tf.io.gfile.GFile(vocab_path, "w") as writer: - for vocab in vocab_list: - writer.write(str(vocab) + "\n") - writer.flush() - writer.close() - return vocab_path - - def test_int_output_explicit_vocab(self): - vocab_data = [42, 1138, 725, 1729] - input_array = np.array([[42, 1138, 725, 1729], [1729, 725, 42, 203]]) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup(vocabulary=vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_no_vocab(self): - with self.assertRaisesRegex( - RuntimeError, "you must set the layer's vocabulary" - ): - layer = integer_lookup.IntegerLookup(output_mode="binary") - layer([[1]]) - - def test_one_hot_output(self): - vocab_data = [2, 3, 4, 5] - input_array = np.array([2, 3, 4, 5, 6]) - expected_output = [ - [0, 1, 0, 0, 0], - [0, 0, 1, 0, 0], - [0, 0, 0, 1, 0], - [0, 0, 0, 0, 1], - [1, 0, 0, 0, 0], - ] - - input_data = keras.Input(shape=(1,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup( - vocabulary=vocab_data, output_mode="one_hot" - ) - res = layer(input_data) - model = keras.Model(inputs=input_data, outputs=res) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_multi_hot_output(self): - vocab_data = [2, 3, 4, 5] - input_array = np.array([[2, 2, 3, 4], [0, 1, 5, 2]]) - expected_output = [[0, 1, 1, 1, 0], [1, 1, 0, 0, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup( - vocabulary=vocab_data, output_mode="multi_hot" - ) - res = layer(input_data) - model = keras.Model(inputs=input_data, outputs=res) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_count_output(self): - vocab_data = [2, 3, 4, 5] - input_array = np.array([[2, 2, 3, 4], [0, 1, 5, 6]]) - expected_output = [[0, 2, 1, 1, 0], [3, 0, 0, 0, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup( - vocabulary=vocab_data, output_mode="count" - ) - res = layer(input_data) - model = keras.Model(inputs=input_data, outputs=res) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_sparse_output(self): - vocab_data = [2, 3, 4, 5] - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup( - vocabulary=vocab_data, output_mode="multi_hot", sparse=True - ) - res = layer(input_data) - self.assertTrue(res.__class__.__name__, "SparseKerasTensor") - - def test_get_vocab_returns_int(self): - vocab_data = [42, 1138, 725, 1729] - expected_vocab = [-1, 42, 1138, 725, 1729] - layer = integer_lookup.IntegerLookup(vocabulary=vocab_data) - layer_vocab = layer.get_vocabulary() - self.assertAllEqual(expected_vocab, layer_vocab) - self.assertIsInstance(layer_vocab[0], np.int64) - - def test_int_output_explicit_vocab_from_file(self): - vocab_list = [42, 1138, 725, 1729] - vocab_path = self._write_to_temp_file("vocab_file", vocab_list) - - input_array = np.array([[42, 1138, 725, 1729], [1729, 725, 42, 203]]) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup(vocabulary=vocab_path) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_inverted_vocab_from_file(self): - vocab_list = [42, 1138, 725, 1729] - vocab_path = self._write_to_temp_file("vocab_file", vocab_list) - - input_array = np.array([[1, 2, 3, 4], [4, 3, 1, 0]]) - expected_output = [[42, 1138, 725, 1729], [1729, 725, 42, -1]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup(vocabulary=vocab_path, invert=True) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_inverted_vocab_from_file_with_mask(self): - vocab_list = [42, 1138, 725, 1729] - vocab_path = self._write_to_temp_file("vocab_file", vocab_list) - - input_array = np.array([[2, 3, 4, 5], [5, 4, 2, 0]]) - expected_output = [[42, 1138, 725, 1729], [1729, 725, 42, -10]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup( - vocabulary=vocab_path, invert=True, mask_value=-10 - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_explicit_vocab_from_file_via_setter(self): - vocab_list = [42, 1138, 725, 1729] - vocab_path = self._write_to_temp_file("vocab_file", vocab_list) - - input_array = np.array([[42, 1138, 725, 1729], [1729, 725, 42, 203]]) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup() - layer.set_vocabulary(vocab_path) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_non_unique_vocab_fails(self): - vocab_data = [42, 1138, 725, 1729, 1729] - with self.assertRaisesRegex(ValueError, ".*repeated term.*1729.*"): - _ = integer_lookup.IntegerLookup(vocabulary=vocab_data) - - def test_non_unique_vocab_from_file_fails(self): - vocab_list = [42, 1138, 725, 1729, 42] - vocab_path = self._write_to_temp_file("repeat_vocab_file", vocab_list) - with self.assertRaisesRegex( - tf.errors.FailedPreconditionError, - ".*HashTable has different value for same key.*42.*", - ): - _ = integer_lookup.IntegerLookup(vocabulary=vocab_path) - - def test_tensor_vocab(self): - vocab_data = [-1, 42, 1138, 725, 1729] - vocab_tensor = tf.constant(vocab_data, tf.int64) - layer = integer_lookup.IntegerLookup(vocabulary=vocab_tensor) - returned_vocab = layer.get_vocabulary() - self.assertAllEqual(vocab_data, returned_vocab) - self.assertAllEqual(layer.vocabulary_size(), 5) - fn = tf.function(lambda: layer.set_vocabulary(vocab_tensor)) - with self.assertRaisesRegex( - RuntimeError, "Cannot set a tensor vocabulary" - ): - fn() - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class IntegerLookupErrorTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_too_long_vocab_fails_in_single_setting(self): - vocab_data = [42, 1138, 725, 1729] - - layer = integer_lookup.IntegerLookup(max_tokens=4, num_oov_indices=1) - with self.assertRaisesRegex( - ValueError, "vocabulary larger than the maximum vocab.*" - ): - layer.set_vocabulary(vocab_data) - - def test_zero_max_tokens_fails(self): - with self.assertRaisesRegex(ValueError, ".*max_tokens.*"): - _ = integer_lookup.IntegerLookup(max_tokens=0, num_oov_indices=1) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class IntegerLookupSavingTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def tearDown(self): - keras.backend.clear_session() - gc.collect() - super(IntegerLookupSavingTest, self).tearDown() - - def test_vocabulary_persistence_across_saving(self): - vocab_data = [42, 1138, 725, 1729] - input_array = np.array([[42, 1138, 725, 1729], [1729, 725, 42, 203]]) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - # Build and validate a golden model. - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = integer_lookup.IntegerLookup(max_tokens=None, num_oov_indices=1) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(output_dataset, expected_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format="tf") - - # Delete the session and graph to ensure that the loaded model is - # generated from scratch. - # TODO(b/149526183): Can't clear session when TF2 is disabled. - if tf.__internal__.tf2.enabled(): - keras.backend.clear_session() - - loaded_model = keras.models.load_model( - output_path, - custom_objects={"IntegerLookup": integer_lookup.IntegerLookup}, - ) - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_dataset = loaded_model.predict(input_array) - self.assertAllEqual(new_output_dataset, expected_output) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/normalization.py b/keras/layers/preprocessing/normalization.py deleted file mode 100644 index 2ff1bb1af0c..00000000000 --- a/keras/layers/preprocessing/normalization.py +++ /dev/null @@ -1,392 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Normalization preprocessing layer.""" - - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_preprocessing_layer -from keras.layers.preprocessing import preprocessing_utils as utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.layers.Normalization", - "keras.layers.experimental.preprocessing.Normalization", -) -class Normalization(base_preprocessing_layer.PreprocessingLayer): - """A preprocessing layer which normalizes continuous features. - - This layer will shift and scale inputs into a distribution centered around - 0 with standard deviation 1. It accomplishes this by precomputing the mean - and variance of the data, and calling `(input - mean) / sqrt(var)` at - runtime. - - The mean and variance values for the layer must be either supplied on - construction or learned via `adapt()`. `adapt()` will compute the mean and - variance of the data and store them as the layer's weights. `adapt()` should - be called before `fit()`, `evaluate()`, or `predict()`. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - axis: Integer, tuple of integers, or None. The axis or axes that should - have a separate mean and variance for each index in the shape. For - example, if shape is `(None, 5)` and `axis=1`, the layer will track 5 - separate mean and variance values for the last axis. If `axis` is set - to `None`, the layer will normalize all elements in the input by a - scalar mean and variance. Defaults to -1, where the last axis of the - input is assumed to be a feature dimension and is normalized per - index. Note that in the specific case of batched scalar inputs where - the only axis is the batch axis, the default will normalize each index - in the batch separately. In this case, consider passing `axis=None`. - mean: The mean value(s) to use during normalization. The passed value(s) - will be broadcast to the shape of the kept axes above; if the value(s) - cannot be broadcast, an error will be raised when this layer's - `build()` method is called. - variance: The variance value(s) to use during normalization. The passed - value(s) will be broadcast to the shape of the kept axes above; if the - value(s) cannot be broadcast, an error will be raised when this - layer's `build()` method is called. - invert: If True, this layer will apply the inverse transformation - to its inputs: it would turn a normalized input back into its - original form. - - Examples: - - Calculate a global mean and variance by analyzing the dataset in `adapt()`. - - >>> adapt_data = np.array([1., 2., 3., 4., 5.], dtype='float32') - >>> input_data = np.array([1., 2., 3.], dtype='float32') - >>> layer = tf.keras.layers.Normalization(axis=None) - >>> layer.adapt(adapt_data) - >>> layer(input_data) - - - Calculate a mean and variance for each index on the last axis. - - >>> adapt_data = np.array([[0., 7., 4.], - ... [2., 9., 6.], - ... [0., 7., 4.], - ... [2., 9., 6.]], dtype='float32') - >>> input_data = np.array([[0., 7., 4.]], dtype='float32') - >>> layer = tf.keras.layers.Normalization(axis=-1) - >>> layer.adapt(adapt_data) - >>> layer(input_data) - - - Pass the mean and variance directly. - - >>> input_data = np.array([[1.], [2.], [3.]], dtype='float32') - >>> layer = tf.keras.layers.Normalization(mean=3., variance=2.) - >>> layer(input_data) - - - Use the layer to de-normalize inputs (after adapting the layer). - - >>> adapt_data = np.array([[0., 7., 4.], - ... [2., 9., 6.], - ... [0., 7., 4.], - ... [2., 9., 6.]], dtype='float32') - >>> input_data = np.array([[1., 2., 3.]], dtype='float32') - >>> layer = tf.keras.layers.Normalization(axis=-1, invert=True) - >>> layer.adapt(adapt_data) - >>> layer(input_data) - - """ - - def __init__( - self, axis=-1, mean=None, variance=None, invert=False, **kwargs - ): - super().__init__(**kwargs) - base_preprocessing_layer.keras_kpl_gauge.get_cell("Normalization").set( - True - ) - - # Standardize `axis` to a tuple. - if axis is None: - axis = () - elif isinstance(axis, int): - axis = (axis,) - else: - axis = tuple(axis) - self.axis = axis - - # Set `mean` and `variance` if passed. - if isinstance(mean, tf.Variable): - raise ValueError( - "Normalization does not support passing a Variable " - "for the `mean` init arg." - ) - if isinstance(variance, tf.Variable): - raise ValueError( - "Normalization does not support passing a Variable " - "for the `variance` init arg." - ) - if (mean is not None) != (variance is not None): - raise ValueError( - "When setting values directly, both `mean` and `variance` " - "must be set. Got mean: {} and variance: {}".format( - mean, variance - ) - ) - self.input_mean = mean - self.input_variance = variance - self.invert = invert - - def build(self, input_shape): - super().build(input_shape) - - if isinstance(input_shape, (list, tuple)) and all( - isinstance(shape, tf.TensorShape) for shape in input_shape - ): - raise ValueError( - "Normalization only accepts a single input. If you are " - "passing a python list or tuple as a single input, " - "please convert to a numpy array or `tf.Tensor`." - ) - - input_shape = tf.TensorShape(input_shape).as_list() - ndim = len(input_shape) - - if any(a < -ndim or a >= ndim for a in self.axis): - raise ValueError( - "All `axis` values must be in the range [-ndim, ndim). " - "Found ndim: `{}`, axis: {}".format(ndim, self.axis) - ) - - # Axes to be kept, replacing negative values with positive equivalents. - # Sorted to avoid transposing axes. - self._keep_axis = sorted([d if d >= 0 else d + ndim for d in self.axis]) - # All axes to be kept should have known shape. - for d in self._keep_axis: - if input_shape[d] is None: - raise ValueError( - "All `axis` values to be kept must have known shape. " - "Got axis: {}, " - "input shape: {}, with unknown axis at index: {}".format( - self.axis, input_shape, d - ) - ) - # Axes to be reduced. - self._reduce_axis = [d for d in range(ndim) if d not in self._keep_axis] - # 1 if an axis should be reduced, 0 otherwise. - self._reduce_axis_mask = [ - 0 if d in self._keep_axis else 1 for d in range(ndim) - ] - # Broadcast any reduced axes. - self._broadcast_shape = [ - input_shape[d] if d in self._keep_axis else 1 for d in range(ndim) - ] - mean_and_var_shape = tuple(input_shape[d] for d in self._keep_axis) - - if self.input_mean is None: - self.adapt_mean = self.add_weight( - name="mean", - shape=mean_and_var_shape, - dtype=self.compute_dtype, - initializer="zeros", - trainable=False, - ) - self.adapt_variance = self.add_weight( - name="variance", - shape=mean_and_var_shape, - dtype=self.compute_dtype, - initializer="ones", - trainable=False, - ) - self.count = self.add_weight( - name="count", - shape=(), - dtype=tf.int64, - initializer="zeros", - trainable=False, - ) - self.finalize_state() - else: - # In the no adapt case, make constant tensors for mean and variance - # with proper broadcast shape for use during call. - mean = self.input_mean * np.ones(mean_and_var_shape) - variance = self.input_variance * np.ones(mean_and_var_shape) - mean = tf.reshape(mean, self._broadcast_shape) - variance = tf.reshape(variance, self._broadcast_shape) - self.mean = tf.cast(mean, self.compute_dtype) - self.variance = tf.cast(variance, self.compute_dtype) - - # We override this method solely to generate a docstring. - def adapt(self, data, batch_size=None, steps=None): - """Computes the mean and variance of values in a dataset. - - Calling `adapt()` on a `Normalization` layer is an alternative to - passing in `mean` and `variance` arguments during layer construction. A - `Normalization` layer should always either be adapted over a dataset or - passed `mean` and `variance`. - - During `adapt()`, the layer will compute a `mean` and `variance` - separately for each position in each axis specified by the `axis` - argument. To calculate a single `mean` and `variance` over the input - data, simply pass `axis=None`. - - In order to make `Normalization` efficient in any distribution context, - the computed mean and variance are kept static with respect to any - compiled `tf.Graph`s that call the layer. As a consequence, if the layer - is adapted a second time, any models using the layer should be - re-compiled. For more information see - `tf.keras.layers.experimental.preprocessing.PreprocessingLayer.adapt`. - - `adapt()` is meant only as a single machine utility to compute layer - state. To analyze a dataset that cannot fit on a single machine, see - [Tensorflow Transform]( - https://www.tensorflow.org/tfx/transform/get_started) - for a multi-machine, map-reduce solution. - - Arguments: - data: The data to train on. It can be passed either as a - `tf.data.Dataset`, or as a numpy array. - batch_size: Integer or `None`. - Number of samples per state update. - If unspecified, `batch_size` will default to 32. - Do not specify the `batch_size` if your data is in the - form of datasets, generators, or `keras.utils.Sequence` instances - (since they generate batches). - steps: Integer or `None`. - Total number of steps (batches of samples) - When training with input tensors such as - TensorFlow data tensors, the default `None` is equal to - the number of samples in your dataset divided by - the batch size, or 1 if that cannot be determined. If x is a - `tf.data` dataset, and 'steps' is None, the epoch will run until - the input dataset is exhausted. When passing an infinitely - repeating dataset, you must specify the `steps` argument. This - argument is not supported with array inputs. - """ - super().adapt(data, batch_size=batch_size, steps=steps) - - def update_state(self, data): - if self.input_mean is not None: - raise ValueError( - "Cannot `adapt` a Normalization layer that is initialized with " - "static `mean` and `variance`, " - "you passed mean {} and variance {}.".format( - self.input_mean, self.input_variance - ) - ) - - if not self.built: - raise RuntimeError("`build` must be called before `update_state`.") - - data = self._standardize_inputs(data) - data = tf.cast(data, self.adapt_mean.dtype) - batch_mean, batch_variance = tf.nn.moments(data, axes=self._reduce_axis) - batch_shape = tf.shape(data, out_type=self.count.dtype) - if self._reduce_axis: - batch_reduce_shape = tf.gather(batch_shape, self._reduce_axis) - batch_count = tf.reduce_prod(batch_reduce_shape) - else: - batch_count = 1 - - total_count = batch_count + self.count - batch_weight = tf.cast(batch_count, dtype=self.compute_dtype) / tf.cast( - total_count, dtype=self.compute_dtype - ) - existing_weight = 1.0 - batch_weight - - total_mean = ( - self.adapt_mean * existing_weight + batch_mean * batch_weight - ) - # The variance is computed using the lack-of-fit sum of squares - # formula (see - # https://en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares). - total_variance = ( - self.adapt_variance + (self.adapt_mean - total_mean) ** 2 - ) * existing_weight + ( - batch_variance + (batch_mean - total_mean) ** 2 - ) * batch_weight - self.adapt_mean.assign(total_mean) - self.adapt_variance.assign(total_variance) - self.count.assign(total_count) - - def reset_state(self): - if self.input_mean is not None or not self.built: - return - - self.adapt_mean.assign(tf.zeros_like(self.adapt_mean)) - self.adapt_variance.assign(tf.ones_like(self.adapt_variance)) - self.count.assign(tf.zeros_like(self.count)) - - def finalize_state(self): - if self.input_mean is not None or not self.built: - return - - # In the adapt case, we make constant tensors for mean and variance with - # proper broadcast shape and dtype each time `finalize_state` is called. - self.mean = tf.reshape(self.adapt_mean, self._broadcast_shape) - self.mean = tf.cast(self.mean, self.compute_dtype) - self.variance = tf.reshape(self.adapt_variance, self._broadcast_shape) - self.variance = tf.cast(self.variance, self.compute_dtype) - - def call(self, inputs): - inputs = self._standardize_inputs(inputs) - # The base layer automatically casts floating-point inputs, but we - # explicitly cast here to also allow integer inputs to be passed - inputs = tf.cast(inputs, self.compute_dtype) - if self.invert: - return self.mean + ( - inputs * tf.maximum(tf.sqrt(self.variance), backend.epsilon()) - ) - else: - return (inputs - self.mean) / tf.maximum( - tf.sqrt(self.variance), backend.epsilon() - ) - - def compute_output_shape(self, input_shape): - return input_shape - - def compute_output_signature(self, input_spec): - return input_spec - - def get_config(self): - config = super().get_config() - config.update( - { - "axis": self.axis, - "invert": self.invert, - "mean": utils.listify_tensors(self.input_mean), - "variance": utils.listify_tensors(self.input_variance), - } - ) - return config - - def _standardize_inputs(self, inputs): - inputs = tf.convert_to_tensor(inputs) - if inputs.dtype != self.compute_dtype: - inputs = tf.cast(inputs, self.compute_dtype) - return inputs - - def load_own_variables(self, store): - # Ensure that we call finalize_state after variable loading. - super().load_own_variables(store) - self.finalize_state() diff --git a/keras/layers/preprocessing/normalization_distribution_test.py b/keras/layers/preprocessing/normalization_distribution_test.py deleted file mode 100644 index 3d8e08aacf4..00000000000 --- a/keras/layers/preprocessing/normalization_distribution_test.py +++ /dev/null @@ -1,159 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Distribution tests for keras.layers.preprocessing.normalization.""" - - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.distribute import strategy_combinations -from keras.layers.preprocessing import normalization -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -def _get_layer_computation_test_cases(): - test_cases = ( - { - "adapt_data": np.array( - [[1.0], [2.0], [3.0], [4.0], [5.0]], dtype=np.float32 - ), - "axis": -1, - "test_data": np.array([[1.0], [2.0], [3.0]], np.float32), - "expected": np.array([[-1.414214], [-0.707107], [0]], np.float32), - "testcase_name": "2d_single_element", - }, - { - "adapt_data": np.array( - [[1.0], [2.0], [3.0], [4.0], [5.0]], dtype=np.float32 - ), - "axis": None, - "test_data": np.array([[1.0], [2.0], [3.0]], np.float32), - "expected": np.array([[-1.414214], [-0.707107], [0]], np.float32), - "testcase_name": "2d_single_element_none_axis", - }, - { - "adapt_data": np.array( - [[1.0, 2.0, 3.0, 4.0, 5.0]], dtype=np.float32 - ), - "axis": None, - "test_data": np.array([[1.0], [2.0], [3.0]], np.float32), - "expected": np.array([[-1.414214], [-0.707107], [0]], np.float32), - "testcase_name": "2d_single_element_none_axis_flat_data", - }, - { - "adapt_data": np.array( - [ - [[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]], - [[3.0, 4.0, 5.0], [4.0, 5.0, 6.0]], - ], - np.float32, - ), - "axis": 1, - "test_data": np.array( - [ - [[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]], - [[3.0, 4.0, 5.0], [4.0, 5.0, 6.0]], - ], - np.float32, - ), - "expected": np.array( - [ - [[-1.549193, -0.774597, 0.0], [-1.549193, -0.774597, 0.0]], - [[0.0, 0.774597, 1.549193], [0.0, 0.774597, 1.549193]], - ], - np.float32, - ), - "testcase_name": "3d_internal_axis", - }, - { - "adapt_data": np.array( - [ - [[1.0, 0.0, 3.0], [2.0, 3.0, 4.0]], - [[3.0, -1.0, 5.0], [4.0, 5.0, 8.0]], - ], - np.float32, - ), - "axis": (1, 2), - "test_data": np.array( - [ - [[3.0, 1.0, -1.0], [2.0, 5.0, 4.0]], - [[3.0, 0.0, 5.0], [2.0, 5.0, 8.0]], - ], - np.float32, - ), - "expected": np.array( - [ - [[1.0, 3.0, -5.0], [-1.0, 1.0, -1.0]], - [[1.0, 1.0, 1.0], [-1.0, 1.0, 1.0]], - ], - np.float32, - ), - "testcase_name": "3d_multiple_axis", - }, - ) - - crossed_test_cases = [] - # Cross above test cases with use_dataset in (True, False) - for use_dataset in (True, False): - for case in test_cases: - case = case.copy() - if use_dataset: - case["testcase_name"] = case["testcase_name"] + "_with_dataset" - case["use_dataset"] = use_dataset - crossed_test_cases.append(case) - - return crossed_test_cases - - -@test_utils.run_v2_only -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.times( - tf.__internal__.test.combinations.combine( - strategy=strategy_combinations.all_strategies - + strategy_combinations.multi_worker_mirrored_strategies - + strategy_combinations.parameter_server_strategies_single_worker - + strategy_combinations.parameter_server_strategies_multi_worker, - mode=["eager"], - ), - _get_layer_computation_test_cases(), - ) -) -class NormalizationTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_layer_computation( - self, strategy, adapt_data, axis, test_data, use_dataset, expected - ): - input_shape = tuple([None for _ in range(test_data.ndim - 1)]) - if use_dataset: - # Keras APIs expect batched datasets - adapt_data = tf.data.Dataset.from_tensor_slices(adapt_data).batch(2) - test_data = tf.data.Dataset.from_tensor_slices(test_data).batch(2) - - with strategy.scope(): - input_data = keras.Input(shape=input_shape) - layer = normalization.Normalization(axis=axis) - layer.adapt(adapt_data) - output = layer(input_data) - model = keras.Model(input_data, output) - output_data = model.predict(test_data) - self.assertAllClose(expected, output_data) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/layers/preprocessing/normalization_test.py b/keras/layers/preprocessing/normalization_test.py deleted file mode 100644 index c0ffdb26fa8..00000000000 --- a/keras/layers/preprocessing/normalization_test.py +++ /dev/null @@ -1,533 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for keras.layers.preprocessing.normalization.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.preprocessing import normalization -from keras.layers.preprocessing import preprocessing_test_utils -from keras.mixed_precision import policy -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -def _get_layer_computation_test_cases(): - test_cases = ( - { - "adapt_data": np.array( - [[1.0], [2.0], [3.0], [4.0], [5.0]], dtype=np.float32 - ), - "axis": -1, - "test_data": np.array([[1.0], [2.0], [3.0]], np.float32), - "expected": np.array([[-1.414214], [-0.707107], [0]], np.float32), - "testcase_name": "2d_single_element", - }, - { - "adapt_data": np.array([[1], [2], [3], [4], [5]], dtype=np.int32), - "axis": -1, - "test_data": np.array([[1], [2], [3]], np.int32), - "expected": np.array([[-1.414214], [-0.707107], [0]], np.float32), - "testcase_name": "2d_int_data", - }, - { - "adapt_data": np.array( - [[1.0], [2.0], [3.0], [4.0], [5.0]], dtype=np.float32 - ), - "axis": None, - "test_data": np.array([[1.0], [2.0], [3.0]], np.float32), - "expected": np.array([[-1.414214], [-0.707107], [0]], np.float32), - "testcase_name": "2d_single_element_none_axis", - }, - { - "adapt_data": np.array( - [[1.0, 2.0, 3.0, 4.0, 5.0]], dtype=np.float32 - ), - "axis": None, - "test_data": np.array([[1.0], [2.0], [3.0]], np.float32), - "expected": np.array([[-1.414214], [-0.707107], [0]], np.float32), - "testcase_name": "2d_single_element_none_axis_flat_data", - }, - { - "adapt_data": np.array( - [ - [[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]], - [[3.0, 4.0, 5.0], [4.0, 5.0, 6.0]], - ], - np.float32, - ), - "axis": 1, - "test_data": np.array( - [ - [[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]], - [[3.0, 4.0, 5.0], [4.0, 5.0, 6.0]], - ], - np.float32, - ), - "expected": np.array( - [ - [[-1.549193, -0.774597, 0.0], [-1.549193, -0.774597, 0.0]], - [[0.0, 0.774597, 1.549193], [0.0, 0.774597, 1.549193]], - ], - np.float32, - ), - "testcase_name": "3d_internal_axis", - }, - { - "adapt_data": np.array( - [ - [[1.0, 0.0, 3.0], [2.0, 3.0, 4.0]], - [[3.0, -1.0, 5.0], [4.0, 5.0, 8.0]], - ], - np.float32, - ), - "axis": (1, 2), - "test_data": np.array( - [ - [[3.0, 1.0, -1.0], [2.0, 5.0, 4.0]], - [[3.0, 0.0, 5.0], [2.0, 5.0, 8.0]], - ], - np.float32, - ), - "expected": np.array( - [ - [[1.0, 3.0, -5.0], [-1.0, 1.0, -1.0]], - [[1.0, 1.0, 1.0], [-1.0, 1.0, 1.0]], - ], - np.float32, - ), - "testcase_name": "3d_multiple_axis", - }, - { - "adapt_data": np.zeros((3, 4)), - "axis": -1, - "test_data": np.zeros((3, 4)), - "expected": np.zeros((3, 4)), - "testcase_name": "zero_variance", - }, - ) - - crossed_test_cases = [] - # Cross above test cases with use_dataset in (True, False) - for use_dataset in (True, False): - for case in test_cases: - case = case.copy() - if use_dataset: - case["testcase_name"] = case["testcase_name"] + "_with_dataset" - case["use_dataset"] = use_dataset - crossed_test_cases.append(case) - - return crossed_test_cases - - -@test_combinations.run_all_keras_modes -class NormalizationTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_broadcasting_during_direct_setting(self): - layer = normalization.Normalization(axis=-1, mean=[1.0], variance=[1.0]) - output = layer(np.array([[1.0, 2.0]])) - expected_output = [[0.0, 1.0]] - self.assertAllClose(output, expected_output) - self.assertAllClose(layer.get_weights(), []) - - def test_broadcasting_during_direct_setting_with_tensors(self): - if not tf.executing_eagerly(): - self.skipTest("Only supported in TF2.") - - layer = normalization.Normalization( - axis=-1, mean=tf.constant([1.0]), variance=tf.constant([1.0]) - ) - output = layer(np.array([[1.0, 2.0]])) - expected_output = [[0.0, 1.0]] - self.assertAllClose(output, expected_output) - self.assertAllClose(layer.get_weights(), []) - - def test_1d_data(self): - data = np.array([0.0, 2.0, 0.0, 2.0]) - layer = normalization.Normalization(mean=1.0, variance=1.0) - output = layer(data) - self.assertListEqual(output.shape.as_list(), [4]) - self.assertAllClose(output, [-1, 1, -1, 1]) - - def test_0d_data(self): - layer = normalization.Normalization(axis=None, mean=1.0, variance=1.0) - output = layer(0.0) - self.assertListEqual(output.shape.as_list(), []) - self.assertAllClose(output, -1) - - def test_broadcasting_during_direct_setting_with_variables_fails(self): - with self.assertRaisesRegex(ValueError, "passing a Variable"): - _ = normalization.Normalization( - axis=-1, mean=tf.Variable([1.0]), variance=tf.Variable([2.0]) - ) - - def test_keeping_an_unknown_axis_fails(self): - layer = normalization.Normalization(axis=-1) - with self.assertRaisesRegex(ValueError, "axis.*must have known shape"): - layer.build([None]) - - @parameterized.parameters( - # Out of bounds - {"axis": 3}, - {"axis": -4}, - # In a tuple - {"axis": (1, 3)}, - {"axis": (1, -4)}, - ) - def test_bad_axis_fail_build(self, axis): - layer = normalization.Normalization(axis=axis) - with self.assertRaisesRegex(ValueError, "in the range"): - layer.build([None, 2, 3]) - - def test_list_input(self): - with self.assertRaisesRegex( - ValueError, - "Normalization only accepts a single input. If you are " - "passing a python list or tuple as a single input, " - "please convert to a numpy array or `tf.Tensor`.", - ): - normalization.Normalization()([1, 2, 3]) - - def test_scalar_input(self): - with self.assertRaisesRegex( - ValueError, "axis.*values must be in the range" - ): - normalization.Normalization()(1) - - def test_output_dtype(self): - if not tf.__internal__.tf2.enabled(): - self.skipTest("set_global_policy only supported in TF2.") - # Output should respect an explicit dtype, and default to the global - # policy. - policy.set_global_policy("float64") - input_data = keras.Input(batch_size=16, shape=(1,)) - layer = normalization.Normalization( - mean=1.0, variance=1.0, dtype="float16" - ) - output = layer(input_data) - self.assertAllEqual(output.dtype, tf.float16) - layer = normalization.Normalization(mean=1.0, variance=1.0) - output = layer(input_data) - self.assertAllEqual(output.dtype, tf.float64) - - def test_invert(self): - input_data = np.array([0.0, 4.0, 0.0, 4.0]) - norm = normalization.Normalization(mean=2.0, variance=4.0) - inv_norm = normalization.Normalization( - mean=2.0, variance=4.0, invert=True - ) - output = norm(input_data) - output2 = inv_norm(output) - self.assertListEqual(output2.shape.as_list(), [4]) - self.assertAllClose(input_data, output2) - - @test_utils.run_v2_only - def test_invert_adapt(self): - input_data = [[0.0], [4.0], [0.0], [4.0]] - norm = keras.layers.Normalization(axis=-1) - norm.adapt(input_data) - inv_norm = keras.layers.Normalization(axis=-1, invert=True) - inv_norm.adapt(input_data) - output = norm(input_data) - output2 = inv_norm(output) - self.assertListEqual(output2.shape.as_list(), [4, 1]) - self.assertAllClose(input_data, output2) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class NormalizationAdaptTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_layer_api_compatibility(self): - cls = normalization.Normalization - output_data = test_utils.layer_test( - cls, - kwargs={"axis": -1}, - input_shape=(None, 3), - input_data=np.array([[3, 1, 2], [6, 5, 4]], dtype=np.float32), - validate_training=False, - adapt_data=np.array([[1, 2, 1], [2, 3, 4], [1, 2, 1], [2, 3, 4]]), - ) - expected = np.array([[3.0, -3.0, -0.33333333], [9.0, 5.0, 1.0]]) - self.assertAllClose(expected, output_data) - - @parameterized.named_parameters(*_get_layer_computation_test_cases()) - def test_layer_computation( - self, adapt_data, axis, test_data, use_dataset, expected - ): - input_shape = tuple( - [test_data.shape[i] for i in range(1, test_data.ndim)] - ) - if use_dataset: - # Keras APIs expect batched datasets - adapt_data = tf.data.Dataset.from_tensor_slices(adapt_data).batch( - test_data.shape[0] // 2 - ) - test_data = tf.data.Dataset.from_tensor_slices(test_data).batch( - test_data.shape[0] // 2 - ) - - layer = normalization.Normalization(axis=axis) - layer.adapt(adapt_data) - - input_data = keras.Input(shape=input_shape) - output = layer(input_data) - model = keras.Model(input_data, output) - model._run_eagerly = test_utils.should_run_eagerly() - output_data = model.predict(test_data) - self.assertAllClose(expected, output_data) - - def test_1d_unbatched_adapt(self): - ds = tf.data.Dataset.from_tensor_slices( - [ - [2.0, 0.0, 2.0, 0.0], - [0.0, 2.0, 0.0, 2.0], - ] - ) - layer = normalization.Normalization(axis=-1) - layer.adapt(ds) - output_ds = ds.map(layer) - self.assertAllClose( - list(output_ds.as_numpy_iterator()), - [ - [1.0, -1.0, 1.0, -1.0], - [-1.0, 1.0, -1.0, 1.0], - ], - ) - - def test_0d_unbatched_adapt(self): - ds = tf.data.Dataset.from_tensor_slices([2.0, 0.0, 2.0, 0.0]) - layer = normalization.Normalization(axis=None) - layer.adapt(ds) - output_ds = ds.map(layer) - self.assertAllClose( - list(output_ds.as_numpy_iterator()), [1.0, -1.0, 1.0, -1.0] - ) - - @parameterized.parameters( - # Results should be identical no matter how the axes are specified (3d). - {"axis": (1, 2)}, - {"axis": (2, 1)}, - {"axis": (1, -1)}, - {"axis": (-1, 1)}, - ) - def test_axis_permutations(self, axis): - layer = normalization.Normalization(axis=axis) - # data.shape = [2, 2, 3] - data = np.array( - [ - [[0.0, 1.0, 2.0], [0.0, 2.0, 6.0]], - [[2.0, 3.0, 4.0], [3.0, 6.0, 10.0]], - ] - ) - expect = np.array( - [ - [[-1.0, -1.0, -1.0], [-1.0, -1.0, -1.0]], - [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], - ] - ) - layer.adapt(data) - self.assertAllClose(expect, layer(data)) - - def test_model_summary_after_layer_adapt(self): - data = np.array( - [ - [[0.0, 1.0, 2.0], [0.0, 2.0, 6.0]], - [[2.0, 3.0, 4.0], [3.0, 6.0, 10.0]], - ] - ) - layer = normalization.Normalization(axis=-1) - layer.adapt(data) - model = keras.Sequential( - [ - layer, - keras.layers.Dense(64, activation="relu"), - keras.layers.Dense(1), - ] - ) - model.summary() - - def test_multiple_adapts(self): - first_adapt = [[0], [2], [0], [2]] - second_adapt = [[2], [4], [2], [4]] - predict_input = [[2], [2]] - expected_first_output = [[1], [1]] - expected_second_output = [[-1], [-1]] - - inputs = keras.Input(shape=(1,), dtype=tf.int32) - layer = normalization.Normalization(axis=-1) - layer.adapt(first_adapt) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - - actual_output = model.predict(predict_input) - self.assertAllClose(actual_output, expected_first_output) - - # Re-adapt the layer on new inputs. - layer.adapt(second_adapt) - # Re-compile the model. - model.compile() - # `predict` should now use the new model state. - actual_output = model.predict(predict_input) - self.assertAllClose(actual_output, expected_second_output) - - @parameterized.parameters( - {"adapted": True}, - {"adapted": False}, - ) - def test_saved_model_tf(self, adapted): - input_data = [[0.0], [2.0], [0.0], [2.0]] - expected_output = [[-1.0], [1.0], [-1.0], [1.0]] - - inputs = keras.Input(shape=(1,), dtype=tf.float32) - if adapted: - layer = normalization.Normalization(axis=-1) - layer.adapt(input_data) - else: - layer = normalization.Normalization(mean=1.0, variance=1.0) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - - output_data = model.predict(input_data) - self.assertAllClose(output_data, expected_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_saved_model") - tf.saved_model.save(model, output_path) - loaded_model = tf.saved_model.load(output_path) - f = loaded_model.signatures["serving_default"] - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_data = f(tf.constant(input_data))["normalization"] - self.assertAllClose(new_output_data, expected_output) - - @parameterized.product( - save_format=["tf", "h5"], - adapt=[True, False], - ) - def test_saved_model_keras(self, save_format, adapt): - input_data = [[0.0], [2.0], [0.0], [2.0]] - expected_output = [[-1.0], [1.0], [-1.0], [1.0]] - - cls = normalization.Normalization - inputs = keras.Input(shape=(1,), dtype=tf.float32) - if adapt: - layer = cls(axis=-1) - layer.adapt(input_data) - else: - layer = cls(mean=1.0, variance=1.0) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - - output_data = model.predict(input_data) - self.assertAllClose(output_data, expected_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format=save_format) - loaded_model = keras.models.load_model( - output_path, custom_objects={"Normalization": cls} - ) - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_data = loaded_model.predict(input_data) - self.assertAllClose(new_output_data, expected_output) - - @parameterized.product( - save_format=["tf", "h5"], - adapt=[True, False], - ) - def test_saved_model_keras_invert(self, save_format, adapt): - expected_output = [[0.0], [2.0], [0.0], [2.0]] - input_data = [[-1.0], [1.0], [-1.0], [1.0]] - - cls = normalization.Normalization - inputs = keras.Input(shape=(1,), dtype=tf.float32) - if adapt: - layer = cls(axis=-1, invert=True) - layer.adapt(expected_output) - else: - layer = cls(mean=1.0, variance=1.0, invert=True) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - - output_data = model.predict(input_data) - self.assertAllClose(output_data, expected_output) - - # Save the model to disk. - output_path = os.path.join( - self.get_temp_dir(), "tf_keras_saved_model_invert" - ) - model.save(output_path, save_format=save_format) - loaded_model = keras.models.load_model( - output_path, custom_objects={"Normalization": cls} - ) - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_data = loaded_model.predict(input_data) - self.assertAllClose(new_output_data, expected_output) - - @parameterized.parameters( - {"adapted": True}, - {"adapted": False}, - ) - def test_saved_weights_keras(self, adapted): - input_data = [[0.0], [2.0], [0.0], [2.0]] - expected_output = [[-1.0], [1.0], [-1.0], [1.0]] - - cls = normalization.Normalization - inputs = keras.Input(shape=(1,), dtype=tf.float32) - if adapted: - layer = cls(axis=-1) - layer.adapt(input_data) - else: - layer = cls(mean=1.0, variance=1.0) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - - output_data = model.predict(input_data) - self.assertAllClose(output_data, expected_output) - - # Save the model to disk. - output_path = os.path.join( - self.get_temp_dir(), "tf_keras_saved_weights" - ) - model.save_weights(output_path, save_format="tf") - new_model = keras.Model.from_config( - model.get_config(), custom_objects={"Normalization": cls} - ) - new_model.load_weights(output_path) - - # Validate correctness of the new model. - new_output_data = new_model.predict(input_data) - self.assertAllClose(new_output_data, expected_output) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/preprocessing_stage.py b/keras/layers/preprocessing/preprocessing_stage.py deleted file mode 100644 index 035f18c16b6..00000000000 --- a/keras/layers/preprocessing/preprocessing_stage.py +++ /dev/null @@ -1,282 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Preprocessing stage.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.engine import base_preprocessing_layer -from keras.engine import functional -from keras.engine import sequential -from keras.utils import tf_utils - - -# Sequential methods should take precedence. -class PreprocessingStage( - sequential.Sequential, base_preprocessing_layer.PreprocessingLayer -): - """A sequential preprocessing stage. - - This preprocessing stage wraps a list of preprocessing layers into a - Sequential-like object that enables you to `adapt()` the whole list via - a single `adapt()` call on the preprocessing stage. - - Args: - layers: List of layers. Can include layers that aren't preprocessing - layers. - name: String. Optional name for the preprocessing stage object. - """ - - def adapt(self, data, reset_state=True): - """Adapt the state of the layers of the preprocessing stage to the data. - - Args: - data: A batched Dataset object, or a NumPy array, or an EagerTensor. - Data to be iterated over to adapt the state of the layers in this - preprocessing stage. - reset_state: Whether this call to `adapt` should reset the state of - the layers in this preprocessing stage. - """ - if not isinstance( - data, (tf.data.Dataset, np.ndarray, tf.__internal__.EagerTensor) - ): - raise ValueError( - "`adapt()` requires a batched Dataset, an EagerTensor, or a " - f"Numpy array as input. Received data={data}" - ) - if isinstance(data, tf.data.Dataset): - # Validate the datasets to try and ensure we haven't been passed one - # with infinite size. That would cause an infinite loop here. - if tf_utils.dataset_is_infinite(data): - raise ValueError( - "The dataset passed to `adapt()` has an infinite number of " - "elements. Please use dataset.take(...) to make the number " - "of elements finite." - ) - - for current_layer_index in range(0, len(self.layers)): - if not hasattr(self.layers[current_layer_index], "adapt"): - # Skip any layer that does not need adapting. - continue - - def map_fn(x): - """Maps this object's inputs to those at current_layer_index. - - Args: - x: Batch of inputs seen in entry of the `PreprocessingStage` - instance. - - Returns: - Batch of inputs to be processed by layer - `self.layers[current_layer_index]` - """ - if current_layer_index == 0: - return x - for i in range(current_layer_index): - x = self.layers[i](x) - return x - - if isinstance(data, tf.data.Dataset): - current_layer_data = data.map(map_fn) - else: - current_layer_data = map_fn(data) - self.layers[current_layer_index].adapt( - current_layer_data, reset_state=reset_state - ) - - -# Functional methods should take precedence. -class FunctionalPreprocessingStage( - functional.Functional, base_preprocessing_layer.PreprocessingLayer -): - """A functional preprocessing stage. - - This preprocessing stage wraps a graph of preprocessing layers into a - Functional-like object that enables you to `adapt()` the whole graph via - a single `adapt()` call on the preprocessing stage. - - Preprocessing stage is not a complete model, so it cannot be called with - `fit()`. However, it is possible to add regular layers that may be trainable - to a preprocessing stage. - - A functional preprocessing stage is created in the same way as `Functional` - models. A stage can be instantiated by passing two arguments to - `__init__`. The first argument is the `keras.Input` Tensors that represent - the inputs to the stage. The second argument specifies the output - tensors that represent the outputs of this stage. Both arguments can be a - nested structure of tensors. - - Example: - - >>> inputs = {'x2': tf.keras.Input(shape=(5,)), - ... 'x1': tf.keras.Input(shape=(1,))} - >>> norm_layer = tf.keras.layers.Normalization() - >>> y = norm_layer(inputs['x2']) - >>> y, z = tf.keras.layers.Lambda(lambda x: (x, x))(inputs['x1']) - >>> outputs = [inputs['x1'], [y, z]] - >>> stage = FunctionalPreprocessingStage(inputs, outputs) - - Args: - inputs: An input tensor (must be created via `tf.keras.Input()`), or a - list, a dict, or a nested structure of input tensors. - outputs: An output tensor, or a list, a dict or a nested structure of - output tensors. - name: String, optional. Name of the preprocessing stage. - """ - - def fit(self, *args, **kwargs): - raise ValueError( - "Preprocessing stage is not a complete model, and hence should not " - "be `fit`. Instead, you may feed data to `adapt` the stage to set " - "appropriate states of the layers in the stage." - ) - - def adapt(self, data, reset_state=True): - """Adapt the state of the layers of the preprocessing stage to the data. - - Args: - data: A batched Dataset object, a NumPy array, an EagerTensor, or a - list, dict or nested structure of Numpy Arrays or EagerTensors. The - elements of Dataset object need to conform with inputs of the stage. - The first dimension of NumPy arrays or EagerTensors are understood - to be batch dimension. Data to be iterated over to adapt the state - of the layers in this preprocessing stage. - reset_state: Whether this call to `adapt` should reset the state of - the layers in this preprocessing stage. - - Examples: - - >>> # For a stage with dict input - >>> inputs = {'x2': tf.keras.Input(shape=(5,)), - ... 'x1': tf.keras.Input(shape=(1,))} - >>> outputs = [inputs['x1'], inputs['x2']] - >>> stage = FunctionalPreprocessingStage(inputs, outputs) - >>> ds = tf.data.Dataset.from_tensor_slices({'x1': tf.ones((4,5)), - ... 'x2': tf.ones((4,1))}) - >>> sorted(ds.element_spec.items()) # Check element_spec - [('x1', TensorSpec(shape=(5,), dtype=tf.float32, name=None)), - ('x2', TensorSpec(shape=(1,), dtype=tf.float32, name=None))] - >>> stage.adapt(ds) - >>> data_np = {'x1': np.ones((4, 5)), 'x2': np.ones((4, 1))} - >>> stage.adapt(data_np) - - """ - if not isinstance(data, tf.data.Dataset): - data = self._flatten_to_reference_inputs(data) - if any( - not isinstance(datum, (np.ndarray, tf.__internal__.EagerTensor)) - for datum in data - ): - raise ValueError( - "`adapt()` requires a batched Dataset, a list of " - f"EagerTensors or Numpy arrays as input, got {type(data)}" - ) - ds_input = [ - tf.data.Dataset.from_tensor_slices(x).batch(1) for x in data - ] - - if isinstance(data, tf.data.Dataset): - # Validate the datasets to try and ensure we haven't been passed one - # with infinite size. That would cause an infinite loop here. - if tf_utils.dataset_is_infinite(data): - raise ValueError( - "The dataset passed to `adapt()` has an infinite number of " - "elements. Please use dataset.take(...) to make the number " - "of elements finite." - ) - # Unzip dataset object to a list of single input dataset. - ds_input = _unzip_dataset(data) - - # Dictionary mapping reference tensors to datasets - ds_dict = {} - tensor_usage_count = self._tensor_usage_count - for x, y in zip(self.inputs, ds_input): - x_id = str(id(x)) - ds_dict[x_id] = [y] * tensor_usage_count[x_id] - - nodes_by_depth = self._nodes_by_depth - depth_keys = sorted(nodes_by_depth.keys(), reverse=True) - - def build_map_fn(node, args, kwargs): - if not isinstance(args.element_spec, tuple): - - def map_fn(*x): - return tf.nest.flatten(node.layer(*x, **kwargs)) - - else: - - def map_fn(*x): - return tf.nest.flatten(node.layer(x, **kwargs)) - - return map_fn - - for depth in depth_keys: - for node in nodes_by_depth[depth]: - # Input node - if node.is_input: - continue - - # Node with input not computed yet - if any(t_id not in ds_dict for t_id in node.flat_input_ids): - continue - - args, kwargs = node.map_arguments(ds_dict) - args = tf.data.Dataset.zip( - tf.__internal__.nest.list_to_tuple(*args) - ) - - if node.layer.stateful and hasattr(node.layer, "adapt"): - node.layer.adapt(args, reset_state=reset_state) - - map_fn = build_map_fn(node, args, kwargs) - outputs = args.map(map_fn) - outputs = _unzip_dataset(outputs) - - # Update ds_dict. - for x_id, y in zip(node.flat_output_ids, outputs): - ds_dict[x_id] = [y] * tensor_usage_count[x_id] - - -def _unzip_dataset(ds): - """Unzip dataset into a list of single element datasets. - - Args: - ds: A Dataset object. - - Returns: - A list of Dataset object, each correspond to one of the `element_spec` of - the input Dataset object. - - Example: - - >>> ds1 = tf.data.Dataset.from_tensor_slices([1, 2, 3]) - >>> ds2 = tf.data.Dataset.from_tensor_slices([4, 5, 6]) - >>> ds_zipped_tuple = tf.data.Dataset.zip((ds1, ds2)) - >>> ds_unzipped_tuple = _unzip_dataset(ds_zipped_tuple) - >>> ds_zipped_dict = tf.data.Dataset.zip({'ds1': ds1, 'ds2': ds2}) - >>> ds_unzipped_dict = _unzip_dataset(ds_zipped_dict) - - Then the two elements of `ds_unzipped_tuple` and `ds_unzipped_dict` are both - the same as `ds1` and `ds2`. - """ - element_count = len(tf.nest.flatten(ds.element_spec)) - ds_unzipped = [] - for i in range(element_count): - - def map_fn(*x, j=i): - return tf.nest.flatten(x)[j] - - ds_unzipped.append(ds.map(map_fn)) - return ds_unzipped diff --git a/keras/layers/preprocessing/preprocessing_stage_functional_test.py b/keras/layers/preprocessing/preprocessing_stage_functional_test.py deleted file mode 100644 index 897c1d48ec6..00000000000 --- a/keras/layers/preprocessing/preprocessing_stage_functional_test.py +++ /dev/null @@ -1,448 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Functional preprocessing stage tests.""" - -import time - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.engine import base_preprocessing_layer -from keras.engine.input_layer import Input -from keras.layers import convolutional -from keras.layers import core -from keras.layers import merging -from keras.layers.preprocessing import image_preprocessing -from keras.layers.preprocessing import normalization -from keras.layers.preprocessing import preprocessing_stage -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations - - -class PL(base_preprocessing_layer.PreprocessingLayer): - def __init__(self, **kwargs): - self.adapt_time = None - self.adapt_count = 0 - super().__init__(**kwargs) - - def adapt(self, data, reset_state=True): - self.adapt_time = time.time() - self.adapt_count += 1 - - def call(self, inputs): - return inputs + 1 - - -class PLMerge(PL): - def call(self, inputs): - return inputs[0] + inputs[1] - - -class PLSplit(PL): - def call(self, inputs): - return inputs + 1, inputs - 1 - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class PreprocessingStageTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_adapt_preprocessing_stage_with_single_input_output(self): - - x = Input(shape=(3,)) - - l0 = PL() - y = l0(x) - - l1 = PL() - z = l1(y) - - stage = preprocessing_stage.FunctionalPreprocessingStage(x, z) - stage.compile() - - # Test with NumPy array - one_array = np.ones((4, 3), dtype="float32") - stage.adapt(one_array) - self.assertEqual(l0.adapt_count, 1) - self.assertEqual(l1.adapt_count, 1) - self.assertLessEqual(l0.adapt_time, l1.adapt_time) - - # Check call - z = stage(tf.ones((4, 3), dtype="float32")) - self.assertAllClose(z, np.ones((4, 3), dtype="float32") + 2.0) - - # Test with dataset - adapt_data = tf.data.Dataset.from_tensor_slices(one_array) - adapt_data = adapt_data.batch(2) # 5 batches of 2 samples - - stage.adapt(adapt_data) - self.assertEqual(l0.adapt_count, 2) - self.assertEqual(l1.adapt_count, 2) - self.assertLessEqual(l0.adapt_time, l1.adapt_time) - - # Test error with bad data - with self.assertRaisesRegex(ValueError, "requires a "): - stage.adapt(None) - - # Disallow calling fit - with self.assertRaisesRegex(ValueError, "Preprocessing stage"): - stage.fit(None) - - def test_adapt_preprocessing_stage_with_list_input(self): - - x0 = Input(shape=(3,)) - x1 = Input(shape=(3,)) - x2 = Input(shape=(3,)) - - l0 = PLMerge() - y = l0([x0, x1]) - - l1 = PLMerge() - y = l1([y, x2]) - - l2 = PLSplit() - z, y = l2(y) - - stage = preprocessing_stage.FunctionalPreprocessingStage( - [x0, x1, x2], [y, z] - ) - stage.compile() - - # Test with NumPy array - one_array = np.ones((4, 3), dtype="float32") - stage.adapt([one_array, one_array, one_array]) - self.assertEqual(l0.adapt_count, 1) - self.assertEqual(l1.adapt_count, 1) - self.assertEqual(l2.adapt_count, 1) - self.assertLessEqual(l0.adapt_time, l1.adapt_time) - self.assertLessEqual(l1.adapt_time, l2.adapt_time) - - # Check call - y, z = stage( - [ - tf.ones((4, 3), dtype="float32"), - tf.ones((4, 3), dtype="float32"), - tf.ones((4, 3), dtype="float32"), - ] - ) - self.assertAllClose(y, np.ones((4, 3), dtype="float32") + 1.0) - self.assertAllClose(z, np.ones((4, 3), dtype="float32") + 3.0) - - # Test with dataset - adapt_data = tf.data.Dataset.from_tensor_slices( - (one_array, one_array, one_array) - ) - adapt_data = adapt_data.batch(2) # 5 batches of 2 samples - - stage.adapt(adapt_data) - self.assertEqual(l0.adapt_count, 2) - self.assertEqual(l1.adapt_count, 2) - self.assertEqual(l2.adapt_count, 2) - self.assertLessEqual(l0.adapt_time, l1.adapt_time) - self.assertLessEqual(l1.adapt_time, l2.adapt_time) - - # Test error with bad data - with self.assertRaisesRegex(ValueError, "requires a "): - stage.adapt(None) - - def test_adapt_preprocessing_stage_with_dict_input(self): - x0 = Input(shape=(3,), name="x0") - x1 = Input(shape=(4,), name="x1") - x2 = Input(shape=(3, 5), name="x2") - - # dimension will mismatch if x1 incorrectly placed. - x1_sum = core.Lambda( - lambda x: tf.reduce_sum(x, axis=-1, keepdims=True) - )(x1) - x2_sum = core.Lambda(lambda x: tf.reduce_sum(x, axis=-1))(x2) - - l0 = PLMerge() - y = l0([x0, x1_sum]) - - l1 = PLMerge() - y = l1([y, x2_sum]) - - l2 = PLSplit() - z, y = l2(y) - stage = preprocessing_stage.FunctionalPreprocessingStage( - {"x2": x2, "x0": x0, "x1": x1}, [y, z] - ) - stage.compile() - - # Test with dict of NumPy array - one_array0 = np.ones((4, 3), dtype="float32") - one_array1 = np.ones((4, 4), dtype="float32") - one_array2 = np.ones((4, 3, 5), dtype="float32") - adapt_data = {"x1": one_array1, "x0": one_array0, "x2": one_array2} - stage.adapt(adapt_data) - self.assertEqual(l0.adapt_count, 1) - self.assertEqual(l1.adapt_count, 1) - self.assertEqual(l2.adapt_count, 1) - self.assertLessEqual(l0.adapt_time, l1.adapt_time) - self.assertLessEqual(l1.adapt_time, l2.adapt_time) - - # Check call - y, z = stage( - { - "x1": tf.constant(one_array1), - "x2": tf.constant(one_array2), - "x0": tf.constant(one_array0), - } - ) - self.assertAllClose(y, np.zeros((4, 3), dtype="float32") + 9.0) - self.assertAllClose(z, np.zeros((4, 3), dtype="float32") + 11.0) - - # Test with list of NumPy array - adapt_data = [one_array0, one_array1, one_array2] - stage.adapt(adapt_data) - self.assertEqual(l0.adapt_count, 2) - self.assertEqual(l1.adapt_count, 2) - self.assertEqual(l2.adapt_count, 2) - self.assertLessEqual(l0.adapt_time, l1.adapt_time) - self.assertLessEqual(l1.adapt_time, l2.adapt_time) - - # Test with flattened dataset - adapt_data = tf.data.Dataset.from_tensor_slices( - (one_array0, one_array1, one_array2) - ) - adapt_data = adapt_data.batch(2) # 5 batches of 2 samples - - stage.adapt(adapt_data) - self.assertEqual(l0.adapt_count, 3) - self.assertEqual(l1.adapt_count, 3) - self.assertEqual(l2.adapt_count, 3) - self.assertLessEqual(l0.adapt_time, l1.adapt_time) - self.assertLessEqual(l1.adapt_time, l2.adapt_time) - - # Test with dataset in dict shape - adapt_data = tf.data.Dataset.from_tensor_slices( - {"x0": one_array0, "x2": one_array2, "x1": one_array1} - ) - adapt_data = adapt_data.batch(2) # 5 batches of 2 samples - stage.adapt(adapt_data) - self.assertEqual(l0.adapt_count, 4) - self.assertEqual(l1.adapt_count, 4) - self.assertEqual(l2.adapt_count, 4) - self.assertLessEqual(l0.adapt_time, l1.adapt_time) - self.assertLessEqual(l1.adapt_time, l2.adapt_time) - - # Test error with bad data - with self.assertRaisesRegex(ValueError, "requires a "): - stage.adapt(None) - - def test_adapt_preprocessing_stage_with_dict_output(self): - x = Input(shape=(3,), name="x") - - l0 = PLSplit() - y0, y1 = l0(x) - - l1 = PLSplit() - z0, z1 = l1(y0) - stage = preprocessing_stage.FunctionalPreprocessingStage( - {"x": x}, {"y1": y1, "z1": z1, "y0": y0, "z0": z0} - ) - stage.compile() - - # Test with NumPy array - one_array = np.ones((4, 3), dtype="float32") - adapt_data = {"x": one_array} - stage.adapt(adapt_data) - self.assertEqual(l0.adapt_count, 1) - self.assertEqual(l1.adapt_count, 1) - self.assertLessEqual(l0.adapt_time, l1.adapt_time) - - # Check call - outputs = stage({"x": tf.constant(one_array)}) - self.assertEqual(set(outputs.keys()), {"y0", "y1", "z0", "z1"}) - self.assertAllClose( - outputs["y0"], np.ones((4, 3), dtype="float32") + 1.0 - ) - self.assertAllClose( - outputs["y1"], np.ones((4, 3), dtype="float32") - 1.0 - ) - self.assertAllClose( - outputs["z0"], np.ones((4, 3), dtype="float32") + 2.0 - ) - self.assertAllClose(outputs["z1"], np.ones((4, 3), dtype="float32")) - - def test_preprocessing_stage_with_nested_input(self): - # Test with NumPy array - x0 = Input(shape=(3,)) - x1 = Input(shape=(3,)) - x2 = Input(shape=(3,)) - - l0 = PLMerge() - y = l0([x0, x1]) - - l1 = PLMerge() - y = l1([y, x2]) - - l2 = PLSplit() - z, y = l2(y) - - stage = preprocessing_stage.FunctionalPreprocessingStage( - [x0, [x1, x2]], [y, z] - ) - stage.compile() - one_array = np.ones((4, 3), dtype="float32") - stage.adapt([one_array, [one_array, one_array]]) - self.assertEqual(l0.adapt_count, 1) - self.assertEqual(l1.adapt_count, 1) - self.assertEqual(l2.adapt_count, 1) - self.assertLessEqual(l0.adapt_time, l1.adapt_time) - self.assertLessEqual(l1.adapt_time, l2.adapt_time) - - # Check call - y, z = stage( - [ - tf.ones((4, 3), dtype="float32"), - [ - tf.ones((4, 3), dtype="float32"), - tf.ones((4, 3), dtype="float32"), - ], - ] - ) - self.assertAllClose(y, np.ones((4, 3), dtype="float32") + 1.0) - self.assertAllClose(z, np.ones((4, 3), dtype="float32") + 3.0) - - # Test with dataset - adapt_data = tf.data.Dataset.from_tensor_slices( - (one_array, (one_array, one_array)) - ) - adapt_data = adapt_data.batch(2) # 5 batches of 2 samples - - stage.adapt(adapt_data) - self.assertEqual(l0.adapt_count, 2) - self.assertEqual(l1.adapt_count, 2) - self.assertEqual(l2.adapt_count, 2) - self.assertLessEqual(l0.adapt_time, l1.adapt_time) - self.assertLessEqual(l1.adapt_time, l2.adapt_time) - - # Test error with bad data - with self.assertRaisesRegex(ValueError, "requires a "): - stage.adapt(None) - - def test_include_layers_with_dict_input(self): - class PLMergeDict(PLMerge): - def call(self, inputs): - return inputs["a"] + inputs["b"] - - x0 = Input(shape=(3,)) - x1 = Input(shape=(3,)) - - l0 = PLMergeDict() - y = l0({"a": x0, "b": x1}) - - l1 = PLSplit() - z, y = l1(y) - - stage = preprocessing_stage.FunctionalPreprocessingStage( - [x0, x1], [y, z] - ) - stage.compile() - - one_array = np.ones((4, 3), dtype="float32") - adapt_data = tf.data.Dataset.from_tensor_slices((one_array, one_array)) - stage.adapt(adapt_data) - self.assertEqual(l0.adapt_count, 1) - self.assertEqual(l1.adapt_count, 1) - self.assertLessEqual(l0.adapt_time, l1.adapt_time) - - # Check call - y, z = stage( - [tf.ones((4, 3), dtype="float32"), tf.ones((4, 3), dtype="float32")] - ) - self.assertAllClose(y, np.ones((4, 3), dtype="float32")) - self.assertAllClose(z, np.ones((4, 3), dtype="float32") + 2.0) - - def test_include_layers_with_nested_input(self): - class PLMergeNest(PLMerge): - def call(self, inputs): - a = inputs[0] - b = inputs[1][0] - c = inputs[1][1] - return a + b + c - - x0 = Input(shape=(3,)) - x1 = Input(shape=(3,)) - x2 = Input(shape=(3,)) - - l0 = PLMergeNest() - y = l0([x0, [x1, x2]]) - - stage = preprocessing_stage.FunctionalPreprocessingStage( - [x0, x1, x2], y - ) - stage.compile() - - one_array = np.ones((4, 3), dtype="float32") - adapt_data = tf.data.Dataset.from_tensor_slices((one_array,) * 3) - stage.adapt(adapt_data) - self.assertEqual(l0.adapt_count, 1) - - # Check call - y = stage( - [ - tf.ones((4, 3), dtype="float32"), - tf.ones((4, 3), dtype="float32"), - tf.ones((4, 3), dtype="float32"), - ] - ) - self.assertAllClose(y, np.ones((4, 3), dtype="float32") + 2.0) - - def test_mixing_preprocessing_and_regular_layers(self): - x0 = Input(shape=(10, 10, 3)) - x1 = Input(shape=(10, 10, 3)) - x2 = Input(shape=(10, 10, 3)) - - y0 = merging.Add()([x0, x1]) - y1 = image_preprocessing.CenterCrop(8, 8)(x2) - y1 = convolutional.ZeroPadding2D(padding=1)(y1) - - z = merging.Add()([y0, y1]) - z = normalization.Normalization()(z) - z = convolutional.Conv2D(4, 3)(z) - - stage = preprocessing_stage.FunctionalPreprocessingStage( - [x0, x1, x2], z - ) - - data = [ - np.ones((12, 10, 10, 3), dtype="float32"), - np.ones((12, 10, 10, 3), dtype="float32"), - np.ones((12, 10, 10, 3), dtype="float32"), - ] - - stage.adapt(data) - _ = stage(data) - stage.compile("rmsprop", "mse") - with self.assertRaisesRegex(ValueError, "Preprocessing stage"): - stage.fit(data, np.ones((12, 8, 8, 4))) - - ds_x0 = tf.data.Dataset.from_tensor_slices(np.ones((12, 10, 10, 3))) - ds_x1 = tf.data.Dataset.from_tensor_slices(np.ones((12, 10, 10, 3))) - ds_x2 = tf.data.Dataset.from_tensor_slices(np.ones((12, 10, 10, 3))) - ds_x = tf.data.Dataset.zip((ds_x0, ds_x1, ds_x2)) - ds_y = tf.data.Dataset.from_tensor_slices(np.ones((12, 8, 8, 4))) - dataset = tf.data.Dataset.zip((ds_x, ds_y)).batch(4) - - with self.assertRaisesRegex(ValueError, "Preprocessing stage"): - stage.fit(dataset) - _ = stage.evaluate(data, np.ones((12, 8, 8, 4))) - _ = stage.predict(data) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/preprocessing_stage_test.py b/keras/layers/preprocessing/preprocessing_stage_test.py deleted file mode 100644 index 5d183d84164..00000000000 --- a/keras/layers/preprocessing/preprocessing_stage_test.py +++ /dev/null @@ -1,86 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Preprocessing stage tests.""" - -import time - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.engine import base_preprocessing_layer -from keras.layers.preprocessing import preprocessing_stage -from keras.layers.preprocessing import preprocessing_test_utils -from keras.testing_infra import test_combinations - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class PreprocessingStageTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_adapt(self): - class PL(base_preprocessing_layer.PreprocessingLayer): - def __init__(self, **kwargs): - self.adapt_time = None - self.adapt_count = 0 - super().__init__(**kwargs) - - def adapt(self, data, reset_state=True): - self.adapt_time = time.time() - self.adapt_count += 1 - - def call(self, inputs): - return inputs + 1.0 - - # Test with NumPy array - stage = preprocessing_stage.PreprocessingStage( - [ - PL(), - PL(), - PL(), - ] - ) - stage.adapt(np.ones((3, 4))) - self.assertEqual(stage.layers[0].adapt_count, 1) - self.assertEqual(stage.layers[1].adapt_count, 1) - self.assertEqual(stage.layers[2].adapt_count, 1) - self.assertLessEqual( - stage.layers[0].adapt_time, stage.layers[1].adapt_time - ) - self.assertLessEqual( - stage.layers[1].adapt_time, stage.layers[2].adapt_time - ) - - # Check call - y = stage(tf.ones((3, 4))) - self.assertAllClose(y, np.ones((3, 4)) + 3.0) - - # Test with dataset - adapt_data = tf.data.Dataset.from_tensor_slices(np.ones((3, 10))) - adapt_data = adapt_data.batch(2) # 5 batches of 2 samples - - stage.adapt(adapt_data) - self.assertEqual(stage.layers[0].adapt_count, 2) - self.assertEqual(stage.layers[1].adapt_count, 2) - self.assertEqual(stage.layers[2].adapt_count, 2) - self.assertLess(stage.layers[0].adapt_time, stage.layers[1].adapt_time) - self.assertLess(stage.layers[1].adapt_time, stage.layers[2].adapt_time) - - # Test error with bad data - with self.assertRaisesRegex(ValueError, "requires a "): - stage.adapt(None) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/preprocessing_test_utils.py b/keras/layers/preprocessing/preprocessing_test_utils.py deleted file mode 100644 index 8862241e4f1..00000000000 --- a/keras/layers/preprocessing/preprocessing_test_utils.py +++ /dev/null @@ -1,203 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests utils for preprocessing layers.""" - -import collections - -import numpy as np -import tensorflow.compat.v2 as tf - - -class ArrayLike: - def __init__(self, values): - self.values = values - - def __array__(self): - return np.array(self.values) - - -class PreprocessingLayerTest(tf.test.TestCase): - """Base test class for preprocessing layer API validation.""" - - # TODO(b/137303934): Consider incorporating something like this Close vs All - # behavior into core tf.test.TestCase. - - def assertAllCloseOrEqual(self, a, b, msg=None): - """Asserts that elements are close (if numeric) or equal (if string).""" - if a is None or b is None: - self.assertAllEqual(a, b, msg=msg) - elif isinstance(a, (list, tuple)): - self.assertEqual(len(a), len(b)) - for a_value, b_value in zip(a, b): - self.assertAllCloseOrEqual(a_value, b_value, msg=msg) - elif isinstance(a, collections.abc.Mapping): - self.assertEqual(len(a), len(b)) - for key, a_value in a.items(): - b_value = b[key] - error_message = f"{msg} ({key})" if msg else None - self.assertAllCloseOrEqual(a_value, b_value, error_message) - elif ( - isinstance(a, float) - or hasattr(a, "dtype") - and np.issubdtype(a.dtype, np.number) - ): - self.assertAllClose(a, b, msg=msg) - else: - self.assertAllEqual(a, b, msg=msg) - - def assert_extracted_output_equal(self, combiner, acc1, acc2, msg=None): - data_1 = combiner.extract(acc1) - data_2 = combiner.extract(acc2) - self.assertAllCloseOrEqual(data_1, data_2, msg=msg) - - # This is an injection seam so that tests like TextVectorizationTest can - # define their own methods for asserting that accumulators are equal. - compare_accumulators = assertAllCloseOrEqual - - def validate_accumulator_computation(self, combiner, data, expected): - """Validate that various combinations of compute and merge are - identical.""" - if len(data) < 4: - raise AssertionError( - "Data must have at least 4 elements. Received " - f"len(data)={len(data)}." - ) - data_0 = np.array([data[0]]) - data_1 = np.array([data[1]]) - data_2 = np.array(data[2:]) - - single_compute = combiner.compute(data) - - all_merge = combiner.merge( - [ - combiner.compute(data_0), - combiner.compute(data_1), - combiner.compute(data_2), - ] - ) - - self.compare_accumulators( - single_compute, - all_merge, - msg="Sharding data should not change the data output.", - ) - - unordered_all_merge = combiner.merge( - [ - combiner.compute(data_1), - combiner.compute(data_2), - combiner.compute(data_0), - ] - ) - self.compare_accumulators( - all_merge, - unordered_all_merge, - msg=( - "The order of merge arguments should not change the data " - "output." - ), - ) - - hierarchical_merge = combiner.merge( - [ - combiner.compute(data_1), - combiner.merge( - [combiner.compute(data_2), combiner.compute(data_0)] - ), - ] - ) - self.compare_accumulators( - all_merge, - hierarchical_merge, - msg="Nesting merge arguments should not change the data output.", - ) - - nested_compute = combiner.compute( - data_0, combiner.compute(data_1, combiner.compute(data_2)) - ) - self.compare_accumulators( - all_merge, - nested_compute, - msg="Nesting compute arguments should not change the data output.", - ) - - mixed_compute = combiner.merge( - [ - combiner.compute(data_0), - combiner.compute(data_1, combiner.compute(data_2)), - ] - ) - self.compare_accumulators( - all_merge, - mixed_compute, - msg=( - "Mixing merge and compute calls should not change the data " - "output." - ), - ) - - single_merge = combiner.merge( - [ - combiner.merge([combiner.compute(data_0)]), - combiner.compute(data_1, combiner.compute(data_2)), - ] - ) - self.compare_accumulators( - all_merge, - single_merge, - msg=( - "Calling merge with a data length of 1 should not change " - "the data output." - ), - ) - - self.compare_accumulators( - expected, - all_merge, - msg="Calculated accumulators did not match expected accumulator.", - ) - - def validate_accumulator_extract(self, combiner, data, expected): - """Validate that the expected results of computing and extracting.""" - acc = combiner.compute(data) - extracted_data = combiner.extract(acc) - self.assertAllCloseOrEqual(expected, extracted_data) - - def validate_accumulator_extract_and_restore( - self, combiner, data, expected - ): - """Validate that the extract<->restore loop loses no data.""" - acc = combiner.compute(data) - extracted_data = combiner.extract(acc) - restored_acc = combiner.restore(extracted_data) - self.assert_extracted_output_equal(combiner, acc, restored_acc) - self.assertAllCloseOrEqual(expected, combiner.extract(restored_acc)) - - def validate_accumulator_serialize_and_deserialize( - self, combiner, data, expected - ): - """Validate that the serialize<->deserialize loop loses no data.""" - acc = combiner.compute(data) - serialized_data = combiner.serialize(acc) - deserialized_data = combiner.deserialize(serialized_data) - self.compare_accumulators(acc, deserialized_data) - self.compare_accumulators(expected, deserialized_data) - - def validate_accumulator_uniqueness(self, combiner, data): - """Validate that every call to compute creates a unique accumulator.""" - acc = combiner.compute(data) - acc2 = combiner.compute(data) - self.assertIsNot(acc, acc2) - self.compare_accumulators(acc, acc2) diff --git a/keras/layers/preprocessing/preprocessing_utils.py b/keras/layers/preprocessing/preprocessing_utils.py deleted file mode 100644 index b0f7cc94555..00000000000 --- a/keras/layers/preprocessing/preprocessing_utils.py +++ /dev/null @@ -1,166 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utils for preprocessing layers.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.utils import tf_utils - -INT = "int" -ONE_HOT = "one_hot" -MULTI_HOT = "multi_hot" -COUNT = "count" -TF_IDF = "tf_idf" - - -def ensure_tensor(inputs, dtype=None): - """Ensures the input is a Tensor, SparseTensor or RaggedTensor.""" - if not isinstance(inputs, (tf.Tensor, tf.RaggedTensor, tf.SparseTensor)): - inputs = tf.convert_to_tensor(inputs, dtype) - if dtype is not None and inputs.dtype != dtype: - inputs = tf.cast(inputs, dtype) - return inputs - - -def listify_tensors(x): - """Convert any tensors or numpy arrays to lists for config serialization.""" - if tf.is_tensor(x): - x = x.numpy() - if isinstance(x, np.ndarray): - x = x.tolist() - return x - - -def sparse_bincount(inputs, depth, binary_output, dtype, count_weights=None): - """Apply binary or count encoding to an input and return a sparse tensor.""" - result = tf.sparse.bincount( - inputs, - weights=count_weights, - minlength=depth, - maxlength=depth, - axis=-1, - binary_output=binary_output, - ) - result = tf.cast(result, dtype) - if inputs.shape.rank == 1: - output_shape = (depth,) - else: - batch_size = tf.shape(result)[0] - output_shape = (batch_size, depth) - result = tf.SparseTensor( - indices=result.indices, values=result.values, dense_shape=output_shape - ) - return result - - -def dense_bincount(inputs, depth, binary_output, dtype, count_weights=None): - """Apply binary or count encoding to an input.""" - result = tf.math.bincount( - inputs, - weights=count_weights, - minlength=depth, - maxlength=depth, - dtype=dtype, - axis=-1, - binary_output=binary_output, - ) - if inputs.shape.rank == 1: - result.set_shape(tf.TensorShape((depth,))) - else: - batch_size = inputs.shape.as_list()[0] - result.set_shape(tf.TensorShape((batch_size, depth))) - return result - - -def expand_dims(inputs, axis): - """Expand dims on sparse, ragged, or dense tensors.""" - if tf_utils.is_sparse(inputs): - return tf.sparse.expand_dims(inputs, axis) - else: - return tf.expand_dims(inputs, axis) - - -def encode_categorical_inputs( - inputs, - output_mode, - depth, - dtype="float32", - sparse=False, - count_weights=None, - idf_weights=None, -): - """Encodes categoical inputs according to output_mode.""" - if output_mode == INT: - return tf.identity(tf.cast(inputs, dtype)) - - original_shape = inputs.shape - # In all cases, we should uprank scalar input to a single sample. - if inputs.shape.rank == 0: - inputs = expand_dims(inputs, -1) - # One hot will unprank only if the final output dimension is not already 1. - if output_mode == ONE_HOT: - if inputs.shape[-1] != 1: - inputs = expand_dims(inputs, -1) - - # TODO(b/190445202): remove output rank restriction. - if inputs.shape.rank > 2: - raise ValueError( - "When output_mode is not `'int'`, maximum supported output rank " - f"is 2. Received output_mode {output_mode} and input shape " - f"{original_shape}, " - f"which would result in output rank {inputs.shape.rank}." - ) - - binary_output = output_mode in (MULTI_HOT, ONE_HOT) - if sparse: - bincounts = sparse_bincount( - inputs, depth, binary_output, dtype, count_weights - ) - else: - bincounts = dense_bincount( - inputs, depth, binary_output, dtype, count_weights - ) - - if output_mode != TF_IDF: - return bincounts - - if idf_weights is None: - raise ValueError( - "When output mode is `'tf_idf'`, idf_weights must be provided. " - f"Received: output_mode={output_mode} and idf_weights={idf_weights}" - ) - - if sparse: - value_weights = tf.gather(idf_weights, bincounts.indices[:, -1]) - return tf.SparseTensor( - bincounts.indices, - value_weights * bincounts.values, - bincounts.dense_shape, - ) - else: - return tf.multiply(bincounts, idf_weights) - - -def compute_shape_for_encode_categorical(shape, output_mode, depth): - """Computes the output shape of `encode_categorical_inputs`.""" - if output_mode == INT: - return tf.TensorShape(shape) - if not shape: - return tf.TensorShape([depth]) - if output_mode == ONE_HOT and shape[-1] != 1: - return tf.TensorShape(shape + [depth]) - else: - return tf.TensorShape(shape[:-1] + [depth]) diff --git a/keras/layers/preprocessing/preprocessing_utils_test.py b/keras/layers/preprocessing/preprocessing_utils_test.py deleted file mode 100644 index 5e48a0ca19f..00000000000 --- a/keras/layers/preprocessing/preprocessing_utils_test.py +++ /dev/null @@ -1,134 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for preprocessing utils.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.layers.preprocessing import preprocessing_utils -from keras.testing_infra import test_combinations - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class ListifyTensorsTest(test_combinations.TestCase): - def test_tensor_input(self): - inputs = tf.constant([0, 1, 2, 3, 4]) - outputs = preprocessing_utils.listify_tensors(inputs) - self.assertAllEqual([0, 1, 2, 3, 4], outputs) - self.assertIsInstance(outputs, list) - - def test_numpy_input(self): - inputs = np.array([0, 1, 2, 3, 4]) - outputs = preprocessing_utils.listify_tensors(inputs) - self.assertAllEqual([0, 1, 2, 3, 4], outputs) - self.assertIsInstance(outputs, list) - - -@test_combinations.run_all_keras_modes -class EncodeCategoricalInputsTest(test_combinations.TestCase): - def test_int_encoding(self): - inputs = tf.constant([0, 1, 2]) - outputs = preprocessing_utils.encode_categorical_inputs( - inputs, output_mode="int", depth=4 - ) - self.assertAllEqual([0, 1, 2], outputs) - - @parameterized.named_parameters( - ("sparse", True), - ("dense", False), - ) - def test_one_hot_encoding(self, sparse): - inputs = tf.constant([0, 1, 2]) - outputs = preprocessing_utils.encode_categorical_inputs( - inputs, output_mode="one_hot", depth=4, sparse=sparse - ) - if sparse: - outputs = tf.sparse.to_dense(outputs) - self.assertAllEqual([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]], outputs) - - @parameterized.named_parameters( - ("sparse", True), - ("dense", False), - ) - def test_multi_hot_encoding(self, sparse): - inputs = tf.constant([0, 1, 2]) - outputs = preprocessing_utils.encode_categorical_inputs( - inputs, output_mode="multi_hot", depth=4, sparse=sparse - ) - if sparse: - outputs = tf.sparse.to_dense(outputs) - self.assertAllEqual([1, 1, 1, 0], outputs) - - @parameterized.named_parameters( - ("sparse", True), - ("dense", False), - ) - def test_count_encoding(self, sparse): - inputs = tf.constant([0, 1, 1, 2, 2, 2]) - outputs = preprocessing_utils.encode_categorical_inputs( - inputs, output_mode="count", depth=4, sparse=sparse - ) - if sparse: - outputs = tf.sparse.to_dense(outputs) - self.assertAllEqual([1, 2, 3, 0], outputs) - - @parameterized.named_parameters( - ("sparse", True), - ("dense", False), - ) - def test_tf_idf_encoding(self, sparse): - inputs = tf.constant([0, 1, 1, 2, 2, 2]) - outputs = preprocessing_utils.encode_categorical_inputs( - inputs, - output_mode="tf_idf", - depth=4, - sparse=sparse, - idf_weights=[0.1, 1.0, 10.0, 0], - ) - if sparse: - outputs = tf.sparse.to_dense(outputs) - self.assertAllClose([0.1, 2, 30, 0], outputs) - - def test_output_dtype(self): - inputs = tf.constant([0, 1, 2], dtype=tf.dtypes.int32) - outputs = preprocessing_utils.encode_categorical_inputs( - inputs, output_mode="int", depth=4, dtype=tf.dtypes.int64 - ) - self.assertAllEqual(outputs.dtype, tf.dtypes.int64) - outputs = preprocessing_utils.encode_categorical_inputs( - inputs, output_mode="one_hot", depth=4, dtype=tf.dtypes.float64 - ) - self.assertAllEqual(outputs.dtype, tf.dtypes.float64) - - def test_rank_3_output_fails(self): - inputs = tf.constant([[[0]], [[1]], [[2]]]) - with self.assertRaisesRegex( - ValueError, "maximum supported output rank is 2" - ): - preprocessing_utils.encode_categorical_inputs( - inputs, "multi_hot", 4, "float32" - ) - - def test_tf_idf_output_with_no_weights_fails(self): - inputs = tf.constant([0, 1, 2]) - with self.assertRaisesRegex(ValueError, "idf_weights must be provided"): - preprocessing_utils.encode_categorical_inputs( - inputs, "tf_idf", 4, "float32" - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/string_lookup.py b/keras/layers/preprocessing/string_lookup.py deleted file mode 100644 index 4b16dca6f63..00000000000 --- a/keras/layers/preprocessing/string_lookup.py +++ /dev/null @@ -1,416 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras string lookup preprocessing layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.engine import base_preprocessing_layer -from keras.layers.preprocessing import index_lookup - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.layers.StringLookup", - "keras.layers.experimental.preprocessing.StringLookup", - v1=[], -) -class StringLookup(index_lookup.IndexLookup): - """A preprocessing layer which maps string features to integer indices. - - This layer translates a set of arbitrary strings into integer output via a - table-based vocabulary lookup. This layer will perform no splitting or - transformation of input strings. For a layer than can split and tokenize - natural language, see the `tf.keras.layers.TextVectorization` layer. - - The vocabulary for the layer must be either supplied on construction or - learned via `adapt()`. During `adapt()`, the layer will analyze a data set, - determine the frequency of individual strings tokens, and create a - vocabulary from them. If the vocabulary is capped in size, the most frequent - tokens will be used to create the vocabulary and all others will be treated - as out-of-vocabulary (OOV). - - There are two possible output modes for the layer. - When `output_mode` is `"int"`, - input strings are converted to their index in the vocabulary (an integer). - When `output_mode` is `"multi_hot"`, `"count"`, or `"tf_idf"`, input strings - are encoded into an array where each dimension corresponds to an element in - the vocabulary. - - The vocabulary can optionally contain a mask token as well as an OOV token - (which can optionally occupy multiple indices in the vocabulary, as set - by `num_oov_indices`). - The position of these tokens in the vocabulary is fixed. When `output_mode` - is `"int"`, the vocabulary will begin with the mask token (if set), followed - by OOV indices, followed by the rest of the vocabulary. When `output_mode` - is `"multi_hot"`, `"count"`, or `"tf_idf"` the vocabulary will begin with - OOV indices and instances of the mask token will be dropped. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - max_tokens: Maximum size of the vocabulary for this layer. This should - only be specified when adapting the vocabulary or when setting - `pad_to_max_tokens=True`. If None, there is no cap on the size of the - vocabulary. Note that this size includes the OOV and mask tokens. - Defaults to None. - num_oov_indices: The number of out-of-vocabulary tokens to use. If this - value is more than 1, OOV inputs are hashed to determine their OOV - value. If this value is 0, OOV inputs will cause an error when calling - the layer. Defaults to 1. - mask_token: A token that represents masked inputs. When `output_mode` is - `"int"`, the token is included in vocabulary and mapped to index 0. In - other output modes, the token will not appear in the vocabulary and - instances of the mask token in the input will be dropped. If set to - None, no mask term will be added. Defaults to `None`. - oov_token: Only used when `invert` is True. The token to return for OOV - indices. Defaults to `"[UNK]"`. - vocabulary: Optional. Either an array of strings or a string path to a - text file. If passing an array, can pass a tuple, list, 1D numpy array, - or 1D tensor containing the string vocbulary terms. If passing a file - path, the file should contain one line per term in the vocabulary. If - this argument is set, there is no need to `adapt()` the layer. - idf_weights: Only valid when `output_mode` is `"tf_idf"`. A tuple, list, - 1D numpy array, or 1D tensor or the same length as the vocabulary, - containing the floating point inverse document frequency weights, which - will be multiplied by per sample term counts for the final `tf_idf` - weight. If the `vocabulary` argument is set, and `output_mode` is - `"tf_idf"`, this argument must be supplied. - invert: Only valid when `output_mode` is `"int"`. If True, this layer will - map indices to vocabulary items instead of mapping vocabulary items to - indices. Default to False. - output_mode: Specification for the output of the layer. Defaults to - `"int"`. Values can be `"int"`, `"one_hot"`, `"multi_hot"`, `"count"`, - or `"tf_idf"` configuring the layer as follows: - - `"int"`: Return the raw integer indices of the input tokens. - - `"one_hot"`: Encodes each individual element in the input into an - array the same size as the vocabulary, containing a 1 at the element - index. If the last dimension is size 1, will encode on that - dimension. If the last dimension is not size 1, will append a new - dimension for the encoded output. - - `"multi_hot"`: Encodes each sample in the input into a single array - the same size as the vocabulary, containing a 1 for each vocabulary - term present in the sample. Treats the last dimension as the sample - dimension, if input shape is (..., sample_length), output shape will - be (..., num_tokens). - - `"count"`: As `"multi_hot"`, but the int array contains a count of - the number of times the token at that index appeared in the sample. - - `"tf_idf"`: As `"multi_hot"`, but the TF-IDF algorithm is applied to - find the value in each token slot. - For `"int"` output, any shape of input and output is supported. For all - other output modes, currently only output up to rank 2 is supported. - pad_to_max_tokens: Only applicable when `output_mode` is `"multi_hot"`, - `"count"`, or `"tf_idf"`. If True, the output will have its feature axis - padded to `max_tokens` even if the number of unique tokens in the - vocabulary is less than max_tokens, resulting in a tensor of shape - [batch_size, max_tokens] regardless of vocabulary size. Defaults to - False. - sparse: Boolean. Only applicable when `output_mode` is `"multi_hot"`, - `"count"`, or `"tf_idf"`. If True, returns a `SparseTensor` instead of a - dense `Tensor`. Defaults to False. - encoding: Optional. The text encoding to use to interpret the input - strings. Defaults to `"utf-8"`. - - Examples: - - **Creating a lookup layer with a known vocabulary** - - This example creates a lookup layer with a pre-existing vocabulary. - - >>> vocab = ["a", "b", "c", "d"] - >>> data = tf.constant([["a", "c", "d"], ["d", "z", "b"]]) - >>> layer = tf.keras.layers.StringLookup(vocabulary=vocab) - >>> layer(data) - - - **Creating a lookup layer with an adapted vocabulary** - - This example creates a lookup layer and generates the vocabulary by - analyzing the dataset. - - >>> data = tf.constant([["a", "c", "d"], ["d", "z", "b"]]) - >>> layer = tf.keras.layers.StringLookup() - >>> layer.adapt(data) - >>> layer.get_vocabulary() - ['[UNK]', 'd', 'z', 'c', 'b', 'a'] - - Note that the OOV token `"[UNK]"` has been added to the vocabulary. - The remaining tokens are sorted by frequency - (`"d"`, which has 2 occurrences, is first) then by inverse sort order. - - >>> data = tf.constant([["a", "c", "d"], ["d", "z", "b"]]) - >>> layer = tf.keras.layers.StringLookup() - >>> layer.adapt(data) - >>> layer(data) - - - **Lookups with multiple OOV indices** - - This example demonstrates how to use a lookup layer with multiple OOV - indices. When a layer is created with more than one OOV index, any OOV - values are hashed into the number of OOV buckets, distributing OOV values in - a deterministic fashion across the set. - - >>> vocab = ["a", "b", "c", "d"] - >>> data = tf.constant([["a", "c", "d"], ["m", "z", "b"]]) - >>> layer = tf.keras.layers.StringLookup(vocabulary=vocab, - ... num_oov_indices=2) - >>> layer(data) - - - Note that the output for OOV value 'm' is 0, while the output for OOV value - 'z' is 1. The in-vocab terms have their output index increased by 1 from - earlier examples (a maps to 2, etc) in order to make space for the extra OOV - value. - - **One-hot output** - - Configure the layer with `output_mode='one_hot'`. Note that the first - `num_oov_indices` dimensions in the ont_hot encoding represent OOV values. - - >>> vocab = ["a", "b", "c", "d"] - >>> data = tf.constant(["a", "b", "c", "d", "z"]) - >>> layer = tf.keras.layers.StringLookup( - ... vocabulary=vocab, output_mode='one_hot') - >>> layer(data) - - - **Multi-hot output** - - Configure the layer with `output_mode='multi_hot'`. Note that the first - `num_oov_indices` dimensions in the multi_hot encoding represent OOV values. - - >>> vocab = ["a", "b", "c", "d"] - >>> data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]]) - >>> layer = tf.keras.layers.StringLookup( - ... vocabulary=vocab, output_mode='multi_hot') - >>> layer(data) - - - **Token count output** - - Configure the layer with `output_mode='count'`. As with multi_hot output, - the first `num_oov_indices` dimensions in the output represent OOV values. - - >>> vocab = ["a", "b", "c", "d"] - >>> data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]]) - >>> layer = tf.keras.layers.StringLookup( - ... vocabulary=vocab, output_mode='count') - >>> layer(data) - - - **TF-IDF output** - - Configure the layer with `output_mode="tf_idf"`. As with multi_hot output, - the first `num_oov_indices` dimensions in the output represent OOV values. - - Each token bin will output `token_count * idf_weight`, where the idf weights - are the inverse document frequency weights per token. These should be - provided along with the vocabulary. Note that the `idf_weight` for OOV - values will default to the average of all idf weights passed in. - - >>> vocab = ["a", "b", "c", "d"] - >>> idf_weights = [0.25, 0.75, 0.6, 0.4] - >>> data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]]) - >>> layer = tf.keras.layers.StringLookup(output_mode="tf_idf") - >>> layer.set_vocabulary(vocab, idf_weights=idf_weights) - >>> layer(data) - - - To specify the idf weights for oov values, you will need to pass the entire - vocabularly including the leading oov token. - - >>> vocab = ["[UNK]", "a", "b", "c", "d"] - >>> idf_weights = [0.9, 0.25, 0.75, 0.6, 0.4] - >>> data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]]) - >>> layer = tf.keras.layers.StringLookup(output_mode="tf_idf") - >>> layer.set_vocabulary(vocab, idf_weights=idf_weights) - >>> layer(data) - - - When adapting the layer in `"tf_idf"` mode, each input sample will be - considered a document, and IDF weight per token will be calculated as - `log(1 + num_documents / (1 + token_document_count))`. - - **Inverse lookup** - - This example demonstrates how to map indices to strings using this layer. - (You can also use `adapt()` with `inverse=True`, but for simplicity we'll - pass the vocab in this example.) - - >>> vocab = ["a", "b", "c", "d"] - >>> data = tf.constant([[1, 3, 4], [4, 0, 2]]) - >>> layer = tf.keras.layers.StringLookup(vocabulary=vocab, invert=True) - >>> layer(data) - - - Note that the first index correspond to the oov token by default. - - - **Forward and inverse lookup pairs** - - This example demonstrates how to use the vocabulary of a standard lookup - layer to create an inverse lookup layer. - - >>> vocab = ["a", "b", "c", "d"] - >>> data = tf.constant([["a", "c", "d"], ["d", "z", "b"]]) - >>> layer = tf.keras.layers.StringLookup(vocabulary=vocab) - >>> i_layer = tf.keras.layers.StringLookup(vocabulary=vocab, invert=True) - >>> int_data = layer(data) - >>> i_layer(int_data) - - - In this example, the input value `"z"` resulted in an output of `"[UNK]"`, - since 1000 was not in the vocabulary - it got represented as an OOV, and all - OOV values are returned as `"[UNK]"` in the inverse layer. Also, note that - for the inverse to work, you must have already set the forward layer - vocabulary either directly or via `adapt()` before calling - `get_vocabulary()`. - """ - - def __init__( - self, - max_tokens=None, - num_oov_indices=1, - mask_token=None, - oov_token="[UNK]", - vocabulary=None, - idf_weights=None, - encoding="utf-8", - invert=False, - output_mode="int", - sparse=False, - pad_to_max_tokens=False, - **kwargs - ): - # Legacy versions of the StringLookup layer set layer dtype to string, - # instead of the output type. If we see this, clear it. - if "dtype" in kwargs and ( - kwargs["dtype"] == tf.string or kwargs["dtype"] == "string" - ): - del kwargs["dtype"] - - self.encoding = encoding - - super().__init__( - max_tokens=max_tokens, - num_oov_indices=num_oov_indices, - mask_token=mask_token, - oov_token=oov_token, - vocabulary=vocabulary, - vocabulary_dtype=tf.string, - idf_weights=idf_weights, - invert=invert, - output_mode=output_mode, - sparse=sparse, - pad_to_max_tokens=pad_to_max_tokens, - **kwargs - ) - base_preprocessing_layer.keras_kpl_gauge.get_cell("StringLookup").set( - True - ) - - def get_config(self): - config = {"encoding": self.encoding} - base_config = super().get_config() - # There is only one valid dtype for strings, so we don't expose this. - del base_config["vocabulary_dtype"] - return dict(list(base_config.items()) + list(config.items())) - - # We override this method solely to generate a docstring. - def adapt(self, data, batch_size=None, steps=None): - """Computes a vocabulary of string terms from tokens in a dataset. - - Calling `adapt()` on a `StringLookup` layer is an alternative to passing - in a precomputed vocabulary on construction via the `vocabulary` - argument. A `StringLookup` layer should always be either adapted over a - dataset or supplied with a vocabulary. - - During `adapt()`, the layer will build a vocabulary of all string tokens - seen in the dataset, sorted by occurrence count, with ties broken by - sort order of the tokens (high to low). At the end of `adapt()`, if - `max_tokens` is set, the vocabulary wil be truncated to `max_tokens` - size. For example, adapting a layer with `max_tokens=1000` will compute - the 1000 most frequent tokens occurring in the input dataset. If - `output_mode='tf-idf'`, `adapt()` will also learn the document - frequencies of each token in the input dataset. - - In order to make `StringLookup` efficient in any distribution context, - the vocabulary is kept static with respect to any compiled `tf.Graph`s - that call the layer. As a consequence, if the layer is adapted a second - time, any models using the layer should be re-compiled. For more - information see - `tf.keras.layers.experimental.preprocessing.PreprocessingLayer.adapt`. - - `adapt()` is meant only as a single machine utility to compute layer - state. To analyze a dataset that cannot fit on a single machine, see - [Tensorflow Transform]( - https://www.tensorflow.org/tfx/transform/get_started) for a - multi-machine, map-reduce solution. - - Arguments: - data: The data to train on. It can be passed either as a - `tf.data.Dataset`, or as a numpy array. - batch_size: Integer or `None`. - Number of samples per state update. - If unspecified, `batch_size` will default to 32. - Do not specify the `batch_size` if your data is in the - form of datasets, generators, or `keras.utils.Sequence` instances - (since they generate batches). - steps: Integer or `None`. - Total number of steps (batches of samples) - When training with input tensors such as - TensorFlow data tensors, the default `None` is equal to - the number of samples in your dataset divided by - the batch size, or 1 if that cannot be determined. If x is a - `tf.data` dataset, and 'steps' is None, the epoch will run until - the input dataset is exhausted. When passing an infinitely - repeating dataset, you must specify the `steps` argument. This - argument is not supported with array inputs. - """ - super().adapt(data, batch_size=batch_size, steps=steps) - - # Overridden methods from IndexLookup. - def _tensor_vocab_to_numpy(self, vocabulary): - vocabulary = vocabulary.numpy() - return np.array( - [tf.compat.as_text(x, self.encoding) for x in vocabulary] - ) diff --git a/keras/layers/preprocessing/string_lookup_test.py b/keras/layers/preprocessing/string_lookup_test.py deleted file mode 100644 index 0fac8cf28f1..00000000000 --- a/keras/layers/preprocessing/string_lookup_test.py +++ /dev/null @@ -1,528 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras text vectorization preprocessing layer.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.preprocessing import preprocessing_test_utils -from keras.layers.preprocessing import string_lookup -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -def _get_end_to_end_test_cases(): - test_cases = ( - { - "testcase_name": "test_strings_soft_vocab_cap", - # Create an array where 'earth' is the most frequent term, followed - # by 'wind', then 'and', then 'fire'. This ensures that the vocab - # accumulator is sorting by frequency. - "vocab_data": np.array( - [ - ["fire"], - ["earth"], - ["earth"], - ["earth"], - ["earth"], - ["wind"], - ["wind"], - ["wind"], - ["and"], - ["and"], - ] - ), - "input_data": np.array( - [ - ["earth"], - ["wind"], - ["and"], - ["fire"], - ["fire"], - ["and"], - ["earth"], - ["michigan"], - ] - ), - "kwargs": { - "max_tokens": None, - }, - "expected_output": [[1], [2], [3], [4], [4], [3], [1], [0]], - "input_dtype": tf.string, - }, - ) - - crossed_test_cases = [] - # Cross above test cases with use_dataset in (True, False) - for use_dataset in (True, False): - for case in test_cases: - case = case.copy() - if use_dataset: - case["testcase_name"] = case["testcase_name"] + "_with_dataset" - case["use_dataset"] = use_dataset - crossed_test_cases.append(case) - - return crossed_test_cases - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class StringLookupLayerTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - @parameterized.named_parameters(*_get_end_to_end_test_cases()) - def test_layer_end_to_end_with_adapt( - self, - vocab_data, - input_data, - kwargs, - use_dataset, - expected_output, - input_dtype, - ): - cls = string_lookup.StringLookup - expected_output_dtype = tf.int64 - input_shape = input_data.shape - - if use_dataset: - # Keras APIs expect batched datasets. - # TODO(rachelim): `model.predict` predicts the result on each - # dataset batch separately, then tries to concatenate the results - # together. When the results have different shapes on the non-concat - # axis (which can happen in the output_mode = INT case for - # StringLookup), the concatenation fails. In real use cases, this - # may not be an issue because users are likely to pipe the - # preprocessing layer into other keras layers instead of predicting - # it directly. A workaround for these unit tests is to have the - # dataset only contain one batch, so no concatenation needs to - # happen with the result. For consistency with numpy input, we - # should make `predict` join differently shaped results together - # sensibly, with 0 padding. - input_data = tf.data.Dataset.from_tensor_slices(input_data).batch( - input_shape[0] - ) - vocab_data = tf.data.Dataset.from_tensor_slices(vocab_data).batch( - input_shape[0] - ) - - output_data = test_utils.layer_test( - cls, - kwargs=kwargs, - input_shape=input_shape, - input_data=input_data, - input_dtype=input_dtype, - expected_output_dtype=expected_output_dtype, - validate_training=False, - adapt_data=vocab_data, - ) - self.assertAllClose(expected_output, output_data) - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class StringLookupVocabularyTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def _write_to_temp_file(self, file_name, vocab_list): - vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt") - with tf.io.gfile.GFile(vocab_path, "w") as writer: - for vocab in vocab_list: - writer.write(vocab + "\n") - writer.flush() - writer.close() - return vocab_path - - def test_int_output_explicit_vocab(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup(vocabulary=vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_int_output_explicit_vocab_with_special_tokens(self): - vocab_data = ["", "[UNK]", "earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup(vocabulary=vocab_data, mask_token="") - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_int_output_no_oov(self): - vocab_data = ["earth", "wind", "and", "fire"] - valid_input = np.array( - [["earth", "wind", "and", "fire"], ["fire", "and", "earth", ""]] - ) - invalid_input = np.array( - [ - ["earth", "wind", "and", "michigan"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup( - vocabulary=vocab_data, mask_token="", num_oov_indices=0 - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(valid_input) - self.assertAllEqual(expected_output, output_data) - with self.assertRaisesRegex( - tf.errors.InvalidArgumentError, "found OOV values.*michigan" - ): - _ = model.predict(invalid_input) - - def test_no_vocab(self): - with self.assertRaisesRegex( - RuntimeError, "you must set the layer's vocabulary" - ): - layer = string_lookup.StringLookup(output_mode="binary") - layer([["a"]]) - - def test_one_hot_output(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array(["earth", "wind", "and", "fire", "michigan"]) - expected_output = [ - [0, 1, 0, 0, 0], - [0, 0, 1, 0, 0], - [0, 0, 0, 1, 0], - [0, 0, 0, 0, 1], - [1, 0, 0, 0, 0], - ] - - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = string_lookup.StringLookup( - vocabulary=vocab_data, output_mode="one_hot" - ) - res = layer(input_data) - model = keras.Model(inputs=input_data, outputs=res) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_multi_hot_output(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[0, 1, 1, 1, 1], [1, 1, 0, 1, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup( - vocabulary=vocab_data, output_mode="multi_hot" - ) - res = layer(input_data) - model = keras.Model(inputs=input_data, outputs=res) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_count_output(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "earth", "fire", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[0, 2, 0, 0, 2], [1, 1, 0, 1, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup( - vocabulary=vocab_data, output_mode="count" - ) - res = layer(input_data) - model = keras.Model(inputs=input_data, outputs=res) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_sparse_output(self): - vocab_data = ["earth", "wind", "and", "fire"] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup( - vocabulary=vocab_data, output_mode="multi_hot", sparse=True - ) - res = layer(input_data) - self.assertTrue(res.__class__.__name__, "SparseKerasTensor") - - def test_get_vocab_returns_str(self): - vocab_data = ["earth", "wind", "and", "fire"] - expected_vocab = ["[UNK]", "earth", "wind", "and", "fire"] - layer = string_lookup.StringLookup(vocabulary=vocab_data) - layer_vocab = layer.get_vocabulary() - self.assertAllEqual(expected_vocab, layer_vocab) - self.assertIsInstance(layer_vocab[0], str) - - inverse_layer = string_lookup.StringLookup( - vocabulary=layer.get_vocabulary(), invert=True - ) - layer_vocab = inverse_layer.get_vocabulary() - self.assertAllEqual(expected_vocab, layer_vocab) - self.assertIsInstance(layer_vocab[0], str) - - def test_int_output_explicit_vocab_from_file(self): - vocab_list = ["earth", "wind", "and", "fire"] - vocab_path = self._write_to_temp_file("vocab_file", vocab_list) - - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup(vocabulary=vocab_path) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_int_output_explicit_vocab_from_file_via_setter(self): - vocab_list = ["earth", "wind", "and", "fire"] - vocab_path = self._write_to_temp_file("vocab_file", vocab_list) - - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[1, 2, 3, 4], [4, 3, 1, 0]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup() - layer.set_vocabulary(vocab_path) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_non_unique_vocab_fails(self): - vocab_data = ["earth", "wind", "and", "fire", "fire"] - with self.assertRaisesRegex(ValueError, ".*repeated term.*fire.*"): - _ = string_lookup.StringLookup(vocabulary=vocab_data) - - def test_non_unique_vocab_from_file_fails(self): - vocab_list = ["earth", "wind", "and", "fire", "earth"] - vocab_path = self._write_to_temp_file("repeat_vocab_file", vocab_list) - with self.assertRaisesRegex( - tf.errors.FailedPreconditionError, - "HashTable has different value for same key.*earth", - ): - _ = string_lookup.StringLookup(vocabulary=vocab_path) - - def test_inverse_layer(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array([[2, 3, 4, 5], [5, 4, 2, 0]]) - expected_output = np.array( - [["earth", "wind", "and", "fire"], ["fire", "and", "earth", ""]] - ) - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = string_lookup.StringLookup( - vocabulary=vocab_data, invert=True, mask_token="" - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_inverse_layer_from_file(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array([[1, 2, 3, 4], [4, 3, 1, 0]]) - expected_output = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "[UNK]"], - ] - ) - vocab_path = self._write_to_temp_file("vocab_file", vocab_data) - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = string_lookup.StringLookup(vocabulary=vocab_path, invert=True) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_inverse_layer_from_file_with_mask(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array([[2, 3, 4, 5], [5, 4, 2, 0]]) - expected_output = np.array( - [["earth", "wind", "and", "fire"], ["fire", "and", "earth", "[M]"]] - ) - vocab_path = self._write_to_temp_file("vocab_file", vocab_data) - - input_data = keras.Input(shape=(None,), dtype=tf.int64) - layer = string_lookup.StringLookup( - vocabulary=vocab_path, invert=True, mask_token="[M]" - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_forward_backward_explicit_vocab(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "[UNK]"], - ] - ) - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup(vocabulary=vocab_data) - invert_layer = string_lookup.StringLookup( - vocabulary=vocab_data, invert=True - ) - int_data = layer(input_data) - out_data = invert_layer(int_data) - model = keras.Model(inputs=input_data, outputs=out_data) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_forward_backward_adapted_vocab(self): - adapt_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "[UNK]"], - ] - ) - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup() - layer.adapt(adapt_data) - invert_layer = string_lookup.StringLookup( - vocabulary=layer.get_vocabulary(), invert=True - ) - int_data = layer(input_data) - out_data = invert_layer(int_data) - model = keras.Model(inputs=input_data, outputs=out_data) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_ragged_string_input_multi_bucket(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = tf.ragged.constant( - [["earth", "wind", "fire"], ["fire", "and", "earth", "ohio"]] - ) - expected_output = [[2, 3, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.string, ragged=True) - layer = string_lookup.StringLookup(num_oov_indices=2) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_data = model.predict(input_array) - self.assertAllEqual(expected_output, output_data) - - def test_tensor_vocab(self): - vocab_data = ["[UNK]", "wind", "and", "fire"] - vocab_tensor = tf.constant(vocab_data) - layer = string_lookup.StringLookup(vocabulary=vocab_tensor) - returned_vocab = layer.get_vocabulary() - self.assertAllEqual(vocab_data, returned_vocab) - self.assertAllEqual(layer.vocabulary_size(), 4) - fn = tf.function(lambda: layer.set_vocabulary(vocab_tensor)) - with self.assertRaisesRegex( - RuntimeError, "Cannot set a tensor vocabulary" - ): - fn() - - @test_utils.run_v2_only() - def test_saving_v3(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array(["earth", "wind", "and", "fire"]) - - # First, with a static vocabulary. - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup(vocabulary=vocab_data) - output = layer(input_data) - model = keras.Model(inputs=input_data, outputs=output) - ref_output = model.predict(input_array) - temp_dir = self.get_temp_dir() - model_path = os.path.join(temp_dir, "mymodel.keras") - model.save(model_path, save_format="keras_v3") - model = keras.models.load_model(model_path) - output = model.predict(input_array) - self.assertAllEqual(output, ref_output) - - # Second, with adapt(). - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup() - layer.adapt(vocab_data) - output = layer(input_data) - model = keras.Model(inputs=input_data, outputs=output) - ref_output = model.predict(input_array) - model.save(model_path, save_format="keras_v3", overwrite=True) - model = keras.models.load_model(model_path) - output = model.predict(input_array) - self.assertAllEqual(output, ref_output) - - # Test TF-IDF + adapt(). - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = string_lookup.StringLookup(output_mode="tf_idf") - layer.adapt(vocab_data) - output = layer(input_data) - model = keras.Model(inputs=input_data, outputs=output) - ref_output = model.predict(input_array) - model.save(model_path, save_format="keras_v3", overwrite=True) - model = keras.models.load_model(model_path) - output = model.predict(input_array) - self.assertAllEqual(output, ref_output) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/preprocessing/text_vectorization.py b/keras/layers/preprocessing/text_vectorization.py deleted file mode 100644 index a50beb2789c..00000000000 --- a/keras/layers/preprocessing/text_vectorization.py +++ /dev/null @@ -1,683 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras text vectorization preprocessing layer.""" - - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_preprocessing_layer -from keras.layers.preprocessing import preprocessing_utils as utils -from keras.layers.preprocessing import string_lookup -from keras.saving.legacy.saved_model import layer_serialization -from keras.saving.serialization_lib import deserialize_keras_object -from keras.utils import layer_utils -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -LOWER_AND_STRIP_PUNCTUATION = "lower_and_strip_punctuation" -STRIP_PUNCTUATION = "strip_punctuation" -LOWER = "lower" - -WHITESPACE = "whitespace" -CHARACTER = "character" - -TF_IDF = utils.TF_IDF -INT = utils.INT -MULTI_HOT = utils.MULTI_HOT -COUNT = utils.COUNT - -# This is an explicit regex of all the tokens that will be stripped if -# LOWER_AND_STRIP_PUNCTUATION is set. If an application requires other -# stripping, a Callable should be passed into the 'standardize' arg. -DEFAULT_STRIP_REGEX = r'[!"#$%&()\*\+,-\./:;<=>?@\[\\\]^_`{|}~\']' - - -@keras_export( - "keras.layers.TextVectorization", - "keras.layers.experimental.preprocessing.TextVectorization", - v1=[], -) -class TextVectorization(base_preprocessing_layer.PreprocessingLayer): - """A preprocessing layer which maps text features to integer sequences. - - This layer has basic options for managing text in a Keras model. It - transforms a batch of strings (one example = one string) into either a list - of token indices (one example = 1D tensor of integer token indices) or a - dense representation (one example = 1D tensor of float values representing - data about the example's tokens). This layer is meant to handle natural - language inputs. To handle simple string inputs (categorical strings or - pre-tokenized strings) see `tf.keras.layers.StringLookup`. - - The vocabulary for the layer must be either supplied on construction or - learned via `adapt()`. When this layer is adapted, it will analyze the - dataset, determine the frequency of individual string values, and create a - vocabulary from them. This vocabulary can have unlimited size or be capped, - depending on the configuration options for this layer; if there are more - unique values in the input than the maximum vocabulary size, the most - frequent terms will be used to create the vocabulary. - - The processing of each example contains the following steps: - - 1. Standardize each example (usually lowercasing + punctuation stripping) - 2. Split each example into substrings (usually words) - 3. Recombine substrings into tokens (usually ngrams) - 4. Index tokens (associate a unique int value with each token) - 5. Transform each example using this index, either into a vector of ints or - a dense float vector. - - Some notes on passing callables to customize splitting and normalization for - this layer: - - 1. Any callable can be passed to this Layer, but if you want to serialize - this object you should only pass functions that are registered Keras - serializables (see `tf.keras.utils.register_keras_serializable` for more - details). - 2. When using a custom callable for `standardize`, the data received - by the callable will be exactly as passed to this layer. The callable - should return a tensor of the same shape as the input. - 3. When using a custom callable for `split`, the data received by the - callable will have the 1st dimension squeezed out - instead of - `[["string to split"], ["another string to split"]]`, the Callable will - see `["string to split", "another string to split"]`. The callable should - return a Tensor with the first dimension containing the split tokens - - in this example, we should see something like `[["string", "to", - "split"], ["another", "string", "to", "split"]]`. This makes the callable - site natively compatible with `tf.strings.split()`. - - For an overview and full list of preprocessing layers, see the preprocessing - [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - max_tokens: Maximum size of the vocabulary for this layer. This should - only be specified when adapting a vocabulary or when setting - `pad_to_max_tokens=True`. Note that this vocabulary - contains 1 OOV token, so the effective number of tokens is - `(max_tokens - 1 - (1 if output_mode == "int" else 0))`. - standardize: Optional specification for standardization to apply to the - input text. Values can be: - - `None`: No standardization. - - `"lower_and_strip_punctuation"`: Text will be lowercased and all - punctuation removed. - - `"lower"`: Text will be lowercased. - - `"strip_punctuation"`: All punctuation will be removed. - - Callable: Inputs will passed to the callable function, which should - be standardized and returned. - split: Optional specification for splitting the input text. Values can be: - - `None`: No splitting. - - `"whitespace"`: Split on whitespace. - - `"character"`: Split on each unicode character. - - Callable: Standardized inputs will passed to the callable function, - which should be split and returned. - ngrams: Optional specification for ngrams to create from the - possibly-split input text. Values can be None, an integer or tuple of - integers; passing an integer will create ngrams up to that integer, and - passing a tuple of integers will create ngrams for the specified values - in the tuple. Passing None means that no ngrams will be created. - output_mode: Optional specification for the output of the layer. Values - can be `"int"`, `"multi_hot"`, `"count"` or `"tf_idf"`, configuring the - layer as follows: - - `"int"`: Outputs integer indices, one integer index per split string - token. When `output_mode == "int"`, 0 is reserved for masked - locations; this reduces the vocab size to - `max_tokens - 2` instead of `max_tokens - 1`. - - `"multi_hot"`: Outputs a single int array per batch, of either - vocab_size or max_tokens size, containing 1s in all elements where - the token mapped to that index exists at least once in the batch - item. - - `"count"`: Like `"multi_hot"`, but the int array contains a count of - the number of times the token at that index appeared in the - batch item. - - `"tf_idf"`: Like `"multi_hot"`, but the TF-IDF algorithm is applied - to find the value in each token slot. - For `"int"` output, any shape of input and output is supported. For all - other output modes, currently only rank 1 inputs (and rank 2 outputs - after splitting) are supported. - output_sequence_length: Only valid in INT mode. If set, the output will - have its time dimension padded or truncated to exactly - `output_sequence_length` values, resulting in a tensor of shape - `(batch_size, output_sequence_length)` regardless of how many tokens - resulted from the splitting step. Defaults to None. - pad_to_max_tokens: Only valid in `"multi_hot"`, `"count"`, and `"tf_idf"` - modes. If True, the output will have its feature axis padded to - `max_tokens` even if the number of unique tokens in the vocabulary is - less than max_tokens, resulting in a tensor of shape `(batch_size, - max_tokens)` regardless of vocabulary size. Defaults to False. - vocabulary: Optional. Either an array of strings or a string path to a - text file. If passing an array, can pass a tuple, list, 1D numpy array, - or 1D tensor containing the string vocabulary terms. If passing a file - path, the file should contain one line per term in the vocabulary. If - this argument is set, there is no need to `adapt()` the layer. - idf_weights: Only valid when `output_mode` is `"tf_idf"`. A tuple, list, - 1D numpy array, or 1D tensor of the same length as the vocabulary, - containing the floating point inverse document frequency weights, which - will be multiplied by per sample term counts for the final `tf_idf` - weight. If the `vocabulary` argument is set, and `output_mode` is - `"tf_idf"`, this argument must be supplied. - ragged: Boolean. Only applicable to `"int"` output mode. If True, returns - a `RaggedTensor` instead of a dense `Tensor`, where each sequence may - have a different length after string splitting. Defaults to False. - sparse: Boolean. Only applicable to `"multi_hot"`, `"count"`, and - `"tf_idf"` output modes. If True, returns a `SparseTensor` instead of a - dense `Tensor`. Defaults to False. - encoding: Optional. The text encoding to use to interpret the input - strings. Defaults to `"utf-8"`. - - Example: - - This example instantiates a `TextVectorization` layer that lowercases text, - splits on whitespace, strips punctuation, and outputs integer vocab indices. - - >>> text_dataset = tf.data.Dataset.from_tensor_slices(["foo", "bar", "baz"]) - >>> max_features = 5000 # Maximum vocab size. - >>> max_len = 4 # Sequence length to pad the outputs to. - >>> - >>> # Create the layer. - >>> vectorize_layer = tf.keras.layers.TextVectorization( - ... max_tokens=max_features, - ... output_mode='int', - ... output_sequence_length=max_len) - >>> - >>> # Now that the vocab layer has been created, call `adapt` on the - >>> # text-only dataset to create the vocabulary. You don't have to batch, - >>> # but for large datasets this means we're not keeping spare copies of - >>> # the dataset. - >>> vectorize_layer.adapt(text_dataset.batch(64)) - >>> - >>> # Create the model that uses the vectorize text layer - >>> model = tf.keras.models.Sequential() - >>> - >>> # Start by creating an explicit input layer. It needs to have a shape of - >>> # (1,) (because we need to guarantee that there is exactly one string - >>> # input per batch), and the dtype needs to be 'string'. - >>> model.add(tf.keras.Input(shape=(1,), dtype=tf.string)) - >>> - >>> # The first layer in our model is the vectorization layer. After this - >>> # layer, we have a tensor of shape (batch_size, max_len) containing - >>> # vocab indices. - >>> model.add(vectorize_layer) - >>> - >>> # Now, the model can map strings to integers, and you can add an - >>> # embedding layer to map these integers to learned embeddings. - >>> input_data = [["foo qux bar"], ["qux baz"]] - >>> model.predict(input_data) - array([[2, 1, 4, 0], - [1, 3, 0, 0]]) - - Example: - - This example instantiates a `TextVectorization` layer by passing a list - of vocabulary terms to the layer's `__init__()` method. - - >>> vocab_data = ["earth", "wind", "and", "fire"] - >>> max_len = 4 # Sequence length to pad the outputs to. - >>> - >>> # Create the layer, passing the vocab directly. You can also pass the - >>> # vocabulary arg a path to a file containing one vocabulary word per - >>> # line. - >>> vectorize_layer = tf.keras.layers.TextVectorization( - ... max_tokens=max_features, - ... output_mode='int', - ... output_sequence_length=max_len, - ... vocabulary=vocab_data) - >>> - >>> # Because we've passed the vocabulary directly, we don't need to adapt - >>> # the layer - the vocabulary is already set. The vocabulary contains the - >>> # padding token ('') and OOV token ('[UNK]') as well as the passed - >>> # tokens. - >>> vectorize_layer.get_vocabulary() - ['', '[UNK]', 'earth', 'wind', 'and', 'fire'] - - """ - - def __init__( - self, - max_tokens=None, - standardize="lower_and_strip_punctuation", - split="whitespace", - ngrams=None, - output_mode="int", - output_sequence_length=None, - pad_to_max_tokens=False, - vocabulary=None, - idf_weights=None, - sparse=False, - ragged=False, - encoding="utf-8", - **kwargs, - ): - - # This layer only applies to string processing, and so should only have - # a dtype of 'string'. - if "dtype" in kwargs and kwargs["dtype"] != tf.string: - raise ValueError( - "`TextVectorization` may only have a dtype of string. " - f"Received dtype: {kwargs['dtype']}." - ) - elif "dtype" not in kwargs: - kwargs["dtype"] = tf.string - - # 'standardize' must be one of - # (None, LOWER_AND_STRIP_PUNCTUATION, LOWER, STRIP_PUNCTUATION, - # callable) - layer_utils.validate_string_arg( - standardize, - allowable_strings=( - LOWER_AND_STRIP_PUNCTUATION, - LOWER, - STRIP_PUNCTUATION, - ), - layer_name="TextVectorization", - arg_name="standardize", - allow_none=True, - allow_callables=True, - ) - - # 'split' must be one of (None, WHITESPACE, CHARACTER, callable) - layer_utils.validate_string_arg( - split, - allowable_strings=(WHITESPACE, CHARACTER), - layer_name="TextVectorization", - arg_name="split", - allow_none=True, - allow_callables=True, - ) - - # Support deprecated names for output_modes. - if output_mode == "binary": - output_mode = MULTI_HOT - if output_mode == "tf-idf": - output_mode = TF_IDF - # 'output_mode' must be one of (None, INT, COUNT, MULTI_HOT, TF_IDF) - layer_utils.validate_string_arg( - output_mode, - allowable_strings=(INT, COUNT, MULTI_HOT, TF_IDF), - layer_name="TextVectorization", - arg_name="output_mode", - allow_none=True, - ) - - # 'ngrams' must be one of (None, int, tuple(int)) - if not ( - ngrams is None - or isinstance(ngrams, int) - or isinstance(ngrams, tuple) - and all(isinstance(item, int) for item in ngrams) - ): - raise ValueError( - "`ngrams` must be None, an integer, or a tuple of " - f"integers. Received: ngrams={ngrams}" - ) - - # 'output_sequence_length' must be one of (None, int) and is only - # set if output_mode is INT. - if output_mode == INT and not ( - isinstance(output_sequence_length, int) - or (output_sequence_length is None) - ): - raise ValueError( - "`output_sequence_length` must be either None or an " - "integer when `output_mode` is 'int'. Received: " - f"output_sequence_length={output_sequence_length}" - ) - - if output_mode != INT and output_sequence_length is not None: - raise ValueError( - "`output_sequence_length` must not be set if `output_mode` is " - "not 'int'. " - f"Received output_sequence_length={output_sequence_length}." - ) - - if ragged and output_mode != INT: - raise ValueError( - "`ragged` must not be true if `output_mode` is " - f"`'int'`. Received: ragged={ragged} and " - f"output_mode={output_mode}" - ) - - if ragged and output_sequence_length is not None: - raise ValueError( - "`output_sequence_length` must not be set if ragged " - f"is True. Received: ragged={ragged} and " - f"output_sequence_length={output_sequence_length}" - ) - - self._max_tokens = max_tokens - self._standardize = standardize - self._split = split - self._ngrams_arg = ngrams - if isinstance(ngrams, int): - self._ngrams = tuple(range(1, ngrams + 1)) - else: - self._ngrams = ngrams - self._ragged = ragged - - self._output_mode = output_mode - self._output_sequence_length = output_sequence_length - self._encoding = encoding - - # VocabularySavedModelSaver will clear the config vocabulary to restore - # the lookup table ops directly. We persist this hidden option to - # persist the fact that we have have a non-adaptable layer with a - # manually set vocab. - self._has_input_vocabulary = kwargs.pop( - "has_input_vocabulary", (vocabulary is not None) - ) - - vocabulary_size = kwargs.pop("vocabulary_size", None) - - super().__init__(**kwargs) - base_preprocessing_layer.keras_kpl_gauge.get_cell( - "TextVectorization" - ).set(True) - - self._lookup_layer = string_lookup.StringLookup( - max_tokens=max_tokens, - vocabulary=vocabulary, - idf_weights=idf_weights, - pad_to_max_tokens=pad_to_max_tokens, - mask_token="", - output_mode=output_mode if output_mode is not None else INT, - sparse=sparse, - has_input_vocabulary=self._has_input_vocabulary, - encoding=encoding, - vocabulary_size=vocabulary_size, - ) - - def compute_output_shape(self, input_shape): - if self._output_mode == INT: - return tf.TensorShape( - [input_shape[0], self._output_sequence_length] - ) - - if self._split is None: - if len(input_shape) <= 1: - input_shape = tuple(input_shape) + (1,) - else: - input_shape = tuple(input_shape) + (None,) - return self._lookup_layer.compute_output_shape(input_shape) - - def compute_output_signature(self, input_spec): - output_shape = self.compute_output_shape(input_spec.shape.as_list()) - output_dtype = ( - tf.int64 if self._output_mode == INT else backend.floatx() - ) - return tf.TensorSpec(shape=output_shape, dtype=output_dtype) - - # We override this method solely to generate a docstring. - def adapt(self, data, batch_size=None, steps=None): - """Computes a vocabulary of string terms from tokens in a dataset. - - Calling `adapt()` on a `TextVectorization` layer is an alternative to - passing in a precomputed vocabulary on construction via the `vocabulary` - argument. A `TextVectorization` layer should always be either adapted - over a dataset or supplied with a vocabulary. - - During `adapt()`, the layer will build a vocabulary of all string tokens - seen in the dataset, sorted by occurrence count, with ties broken by - sort order of the tokens (high to low). At the end of `adapt()`, if - `max_tokens` is set, the vocabulary wil be truncated to `max_tokens` - size. For example, adapting a layer with `max_tokens=1000` will compute - the 1000 most frequent tokens occurring in the input dataset. If - `output_mode='tf-idf'`, `adapt()` will also learn the document - frequencies of each token in the input dataset. - - In order to make `TextVectorization` efficient in any distribution - context, the vocabulary is kept static with respect to any compiled - `tf.Graph`s that call the layer. As a consequence, if the layer is - adapted a second time, any models using the layer should be re-compiled. - For more information see - `tf.keras.layers.experimental.preprocessing.PreprocessingLayer.adapt`. - - `adapt()` is meant only as a single machine utility to compute layer - state. To analyze a dataset that cannot fit on a single machine, see - [Tensorflow Transform]( - https://www.tensorflow.org/tfx/transform/get_started) for a - multi-machine, map-reduce solution. - - Arguments: - data: The data to train on. It can be passed either as a - `tf.data.Dataset`, or as a numpy array. - batch_size: Integer or `None`. - Number of samples per state update. - If unspecified, `batch_size` will default to 32. - Do not specify the `batch_size` if your data is in the - form of datasets, generators, or `keras.utils.Sequence` instances - (since they generate batches). - steps: Integer or `None`. - Total number of steps (batches of samples) - When training with input tensors such as - TensorFlow data tensors, the default `None` is equal to - the number of samples in your dataset divided by - the batch size, or 1 if that cannot be determined. If x is a - `tf.data` dataset, and 'steps' is None, the epoch will run until - the input dataset is exhausted. When passing an infinitely - repeating dataset, you must specify the `steps` argument. This - argument is not supported with array inputs. - """ - super().adapt(data, batch_size=batch_size, steps=steps) - - def update_state(self, data): - self._lookup_layer.update_state(self._preprocess(data)) - - def finalize_state(self): - self._lookup_layer.finalize_state() - - def reset_state(self): - self._lookup_layer.reset_state() - - def get_vocabulary(self, include_special_tokens=True): - """Returns the current vocabulary of the layer. - - Args: - include_special_tokens: If True, the returned vocabulary will include - the padding and OOV tokens, and a term's index in the vocabulary - will equal the term's index when calling the layer. If False, the - returned vocabulary will not include any padding or OOV tokens. - """ - return self._lookup_layer.get_vocabulary(include_special_tokens) - - def vocabulary_size(self): - """Gets the current size of the layer's vocabulary. - - Returns: - The integer size of the vocabulary, including optional mask and - OOV indices. - """ - return self._lookup_layer.vocabulary_size() - - def get_config(self): - config = { - "max_tokens": self._lookup_layer.max_tokens, - "standardize": self._standardize, - "split": self._split, - "ngrams": self._ngrams_arg, - "output_mode": self._output_mode, - "output_sequence_length": self._output_sequence_length, - "pad_to_max_tokens": self._lookup_layer.pad_to_max_tokens, - "sparse": self._lookup_layer.sparse, - "ragged": self._ragged, - "vocabulary": utils.listify_tensors( - self._lookup_layer.input_vocabulary - ), - "idf_weights": utils.listify_tensors( - self._lookup_layer.input_idf_weights - ), - "encoding": self._encoding, - "vocabulary_size": self.vocabulary_size(), - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config): - if config["standardize"] not in ( - LOWER_AND_STRIP_PUNCTUATION, - LOWER, - STRIP_PUNCTUATION, - ): - config["standardize"] = deserialize_keras_object( - config["standardize"] - ) - if config["split"] not in (WHITESPACE, CHARACTER): - config["split"] = deserialize_keras_object(config["split"]) - return cls(**config) - - def set_vocabulary(self, vocabulary, idf_weights=None): - """Sets vocabulary (and optionally document frequency) for this layer. - - This method sets the vocabulary and idf weights for this layer directly, - instead of analyzing a dataset through 'adapt'. It should be used - whenever the vocab (and optionally document frequency) information is - already known. If vocabulary data is already present in the layer, this - method will replace it. - - Args: - vocabulary: Either an array or a string path to a text file. If - passing an array, can pass a tuple, list, 1D numpy array, or 1D - tensor containing the vocbulary terms. If passing a file path, the - file should contain one line per term in the vocabulary. - idf_weights: A tuple, list, 1D numpy array, or 1D tensor of inverse - document frequency weights with equal length to vocabulary. Must be - set if `output_mode` is `"tf_idf"`. Should not be set otherwise. - - Raises: - ValueError: If there are too many inputs, the inputs do not match, or - input data is missing. - RuntimeError: If the vocabulary cannot be set when this function is - called. This happens when `"multi_hot"`, `"count"`, and "tf_idf" - modes, if `pad_to_max_tokens` is False and the layer itself has - already been called. - """ - self._lookup_layer.set_vocabulary(vocabulary, idf_weights=idf_weights) - - def _preprocess(self, inputs): - inputs = utils.ensure_tensor(inputs, dtype=tf.string) - if self._standardize in (LOWER, LOWER_AND_STRIP_PUNCTUATION): - inputs = tf.strings.lower(inputs) - if self._standardize in ( - STRIP_PUNCTUATION, - LOWER_AND_STRIP_PUNCTUATION, - ): - inputs = tf.strings.regex_replace(inputs, DEFAULT_STRIP_REGEX, "") - if callable(self._standardize): - inputs = self._standardize(inputs) - - if self._split is not None: - # If we are splitting, we validate that the 1st axis is of dimension - # 1 and so can be squeezed out. We do this here instead of after - # splitting for performance reasons - it's more expensive to squeeze - # a ragged tensor. - if inputs.shape.rank > 1: - if inputs.shape[-1] != 1: - raise ValueError( - "When using `TextVectorization` to tokenize strings, " - "the input rank must be 1 or the last shape dimension " - f"must be 1. Received: inputs.shape={inputs.shape} " - f"with rank={inputs.shape.rank}" - ) - else: - inputs = tf.squeeze(inputs, axis=-1) - if self._split == WHITESPACE: - # This treats multiple whitespaces as one whitespace, and strips - # leading and trailing whitespace. - inputs = tf.strings.split(inputs) - elif self._split == CHARACTER: - inputs = tf.strings.unicode_split(inputs, "UTF-8") - elif callable(self._split): - inputs = self._split(inputs) - else: - raise ValueError( - "%s is not a supported splitting." - "TextVectorization supports the following options " - "for `split`: None, 'whitespace', or a Callable." - % self._split - ) - - # Note that 'inputs' here can be either ragged or dense depending on the - # configuration choices for this Layer. The strings.ngrams op, however, - # does support both ragged and dense inputs. - if self._ngrams is not None: - inputs = tf.strings.ngrams( - inputs, ngram_width=self._ngrams, separator=" " - ) - - return inputs - - def call(self, inputs): - if isinstance(inputs, (list, tuple, np.ndarray)): - inputs = tf.convert_to_tensor(inputs) - - inputs = self._preprocess(inputs) - - # If we're not doing any output processing, return right away. - if self._output_mode is None: - return inputs - - lookup_data = self._lookup_layer(inputs) - - # For any non-int output, we can return directly from the underlying - # layer. - if self._output_mode != INT: - return lookup_data - - if self._ragged: - return lookup_data - - # If we have a ragged tensor, we can pad during the conversion to dense. - if tf_utils.is_ragged(lookup_data): - shape = lookup_data.shape.as_list() - # If output sequence length is None, to_tensor will pad the last - # dimension to the bounding shape of the ragged dimension. - shape[-1] = self._output_sequence_length - return lookup_data.to_tensor(default_value=0, shape=shape) - - # If we have a dense tensor, we need to pad/trim directly. - if self._output_sequence_length is not None: - # Maybe trim the output. - lookup_data = lookup_data[..., : self._output_sequence_length] - - # Maybe pad the output. We need to be careful to use dynamic shape - # here as required_space_to_batch_paddings requires a fully known - # shape. - shape = tf.shape(lookup_data) - padded_shape = tf.concat( - (shape[:-1], [self._output_sequence_length]), 0 - ) - padding, _ = tf.required_space_to_batch_paddings( - shape, padded_shape - ) - return tf.pad(lookup_data, padding) - - return lookup_data - - @property - def _trackable_saved_model_saver(self): - return layer_serialization.VocabularySavedModelSaver(self) - - def save_own_variables(self, store): - self._lookup_layer.save_own_variables(store) - - def load_own_variables(self, store): - self._lookup_layer.load_own_variables(store) - - def save_assets(self, dir_path): - self._lookup_layer.save_assets(dir_path) - - def load_assets(self, dir_path): - self._lookup_layer.load_assets(dir_path) diff --git a/keras/layers/preprocessing/text_vectorization_distribution_test.py b/keras/layers/preprocessing/text_vectorization_distribution_test.py deleted file mode 100644 index 94087acacba..00000000000 --- a/keras/layers/preprocessing/text_vectorization_distribution_test.py +++ /dev/null @@ -1,137 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Distribution tests for keras.layers.preprocessing.text_vectorization.""" - - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras import backend -from keras.distribute import strategy_combinations -from keras.layers.preprocessing import preprocessing_test_utils -from keras.layers.preprocessing import text_vectorization -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -@test_utils.run_v2_only -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=strategy_combinations.all_strategies - + strategy_combinations.multi_worker_mirrored_strategies - + strategy_combinations.parameter_server_strategies_single_worker - + strategy_combinations.parameter_server_strategies_multi_worker, - mode=["eager"], - ) -) -class TextVectorizationDistributionTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_distribution_strategy_output(self, strategy): - if ( - backend.is_tpu_strategy(strategy) - and not tf_test_utils.is_mlir_bridge_enabled() - ): - self.skipTest("TPU tests require MLIR bridge") - - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - input_dataset = tf.data.Dataset.from_tensor_slices(input_array).batch( - 2, drop_remainder=True - ) - - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - tf.config.set_soft_device_placement(True) - - with strategy.scope(): - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - output_mode=text_vectorization.INT, - vocabulary=vocab_data, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - - output_dataset = model.predict(input_dataset) - self.assertAllEqual(expected_output, output_dataset) - - def test_distribution_strategy_output_with_adapt(self, strategy): - # TODO(b/180614455): remove this check when MLIR bridge is always - # enabled. - if backend.is_tpu_strategy(strategy): - self.skipTest("This test needs MLIR bridge on TPU.") - - vocab_data = [ - [ - "earth", - "earth", - "earth", - "earth", - "wind", - "wind", - "wind", - "and", - "and", - "fire", - ] - ] - vocab_dataset = tf.data.Dataset.from_tensors(vocab_data) - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - input_dataset = tf.data.Dataset.from_tensor_slices(input_array).batch( - 2, drop_remainder=True - ) - - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - tf.config.set_soft_device_placement(True) - - with strategy.scope(): - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - output_mode=text_vectorization.INT, - ) - layer.adapt(vocab_dataset) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - - output_dataset = model.predict(input_dataset) - self.assertAllEqual(expected_output, output_dataset) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/layers/preprocessing/text_vectorization_test.py b/keras/layers/preprocessing/text_vectorization_test.py deleted file mode 100644 index 9a4b85c16d6..00000000000 --- a/keras/layers/preprocessing/text_vectorization_test.py +++ /dev/null @@ -1,2504 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras text vectorization preprocessing layer.""" - -import gc -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import backend -from keras.layers import convolutional -from keras.layers import core -from keras.layers.preprocessing import preprocessing_test_utils -from keras.layers.preprocessing import text_vectorization -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import register_keras_serializable - - -def _get_end_to_end_test_cases(): - test_cases = ( - { - "testcase_name": "test_simple_tokens_int_mode", - # Create an array where 'earth' is the most frequent term, followed - # by 'wind', then 'and', then 'fire'. This ensures that the vocab is - # sorting by frequency. - "vocab_data": np.array( - [ - ["fire"], - ["earth"], - ["earth"], - ["earth"], - ["earth"], - ["wind"], - ["wind"], - ["wind"], - ["and"], - ["and"], - ] - ), - "input_data": np.array( - [ - ["earth"], - ["wind"], - ["and"], - ["fire"], - ["fire"], - ["and"], - ["earth"], - ["michigan"], - ] - ), - "kwargs": { - "max_tokens": None, - "standardize": None, - "split": None, - "output_mode": text_vectorization.INT, - }, - "expected_output": [[2], [3], [4], [5], [5], [4], [2], [1]], - }, - { - "testcase_name": "test_simple_tokens_int_mode_hard_cap", - # Create an array where 'earth' is the most frequent term, followed - # by 'wind', then 'and', then 'fire'. This ensures that the vocab is - # sorting by frequency. - "vocab_data": np.array( - [ - ["fire"], - ["earth"], - ["earth"], - ["earth"], - ["earth"], - ["wind"], - ["wind"], - ["wind"], - ["and"], - ["and"], - ] - ), - "input_data": np.array( - [ - ["earth"], - ["wind"], - ["and"], - ["fire"], - ["fire"], - ["and"], - ["earth"], - ["michigan"], - ] - ), - "kwargs": { - "max_tokens": 6, - "standardize": None, - "split": None, - "output_mode": text_vectorization.INT, - }, - "expected_output": [[2], [3], [4], [5], [5], [4], [2], [1]], - }, - { - "testcase_name": "test_special_tokens_int_mode", - # Mask tokens in the vocab data should be ignored, and mapped to 0 - # in from the input data. - "vocab_data": np.array( - [ - ["fire"], - ["earth"], - ["earth"], - ["earth"], - ["earth"], - [""], - [""], - [""], - ["[UNK]"], - ["[UNK]"], - ["[UNK]"], - ["wind"], - ["wind"], - ["wind"], - ["and"], - ["and"], - ] - ), - "input_data": np.array( - [ - ["earth"], - [""], - ["wind"], - ["[UNK]"], - ["and"], - [""], - ["fire"], - ["and"], - ["[UNK]"], - ["michigan"], - ] - ), - "kwargs": { - "max_tokens": None, - "standardize": None, - "split": None, - "output_mode": text_vectorization.INT, - }, - "expected_output": [ - [2], - [0], - [3], - [1], - [4], - [0], - [5], - [4], - [1], - [1], - ], - }, - { - "testcase_name": "test_documents_int_mode", - "vocab_data": np.array( - [ - ["fire earth earth"], - ["earth earth"], - ["wind wind"], - ["and wind and"], - ] - ), - "input_data": np.array( - [["earth wind and"], ["fire fire"], ["and earth"], ["michigan"]] - ), - "kwargs": { - "max_tokens": None, - "standardize": None, - "split": text_vectorization.WHITESPACE, - "output_mode": text_vectorization.INT, - }, - "expected_output": [[2, 3, 4], [5, 5, 0], [4, 2, 0], [1, 0, 0]], - }, - { - "testcase_name": "test_documents_1d_input_int_mode", - "vocab_data": np.array( - ["fire earth earth", "earth earth", "wind wind", "and wind and"] - ), - "input_data": np.array( - [["earth wind and"], ["fire fire"], ["and earth"], ["michigan"]] - ), - "kwargs": { - "max_tokens": None, - "standardize": None, - "split": text_vectorization.WHITESPACE, - "output_mode": text_vectorization.INT, - }, - "expected_output": [[2, 3, 4], [5, 5, 0], [4, 2, 0], [1, 0, 0]], - }, - { - "testcase_name": "test_simple_tokens_binary_mode", - "vocab_data": np.array( - [ - ["fire"], - ["earth"], - ["earth"], - ["earth"], - ["earth"], - ["wind"], - ["wind"], - ["wind"], - ["and"], - ["and"], - ] - ), - "input_data": np.array( - [ - ["earth"], - ["wind"], - ["and"], - ["fire"], - ["fire"], - ["and"], - ["earth"], - ["michigan"], - ] - ), - "kwargs": { - "max_tokens": 5, - "pad_to_max_tokens": True, - "standardize": None, - "split": None, - "output_mode": text_vectorization.MULTI_HOT, - }, - "expected_output": [ - [0, 1, 0, 0, 0], - [0, 0, 1, 0, 0], - [0, 0, 0, 1, 0], - [0, 0, 0, 0, 1], - [0, 0, 0, 0, 1], - [0, 0, 0, 1, 0], - [0, 1, 0, 0, 0], - [1, 0, 0, 0, 0], - ], - }, - { - "testcase_name": "test_documents_binary_mode", - "vocab_data": np.array( - [ - ["fire earth earth"], - ["earth earth"], - ["wind wind"], - ["and wind and"], - ] - ), - "input_data": np.array( - [["earth wind"], ["and"], ["fire fire"], ["earth michigan"]] - ), - "kwargs": { - "max_tokens": 5, - "pad_to_max_tokens": True, - "standardize": None, - "split": text_vectorization.WHITESPACE, - "output_mode": text_vectorization.MULTI_HOT, - }, - "expected_output": [ - [0, 1, 1, 0, 0], - [0, 0, 0, 1, 0], - [0, 0, 0, 0, 1], - [1, 1, 0, 0, 0], - ], - }, - { - "testcase_name": "test_simple_tokens_count_mode", - "vocab_data": np.array( - [ - ["fire"], - ["earth"], - ["earth"], - ["earth"], - ["earth"], - ["wind"], - ["wind"], - ["wind"], - ["and"], - ["and"], - ] - ), - "input_data": np.array( - [ - ["earth"], - ["wind"], - ["and"], - ["fire"], - ["fire"], - ["and"], - ["earth"], - ["michigan"], - ] - ), - "kwargs": { - "max_tokens": 5, - "pad_to_max_tokens": True, - "standardize": None, - "split": None, - "output_mode": text_vectorization.COUNT, - }, - "expected_output": [ - [0, 1, 0, 0, 0], - [0, 0, 1, 0, 0], - [0, 0, 0, 1, 0], - [0, 0, 0, 0, 1], - [0, 0, 0, 0, 1], - [0, 0, 0, 1, 0], - [0, 1, 0, 0, 0], - [1, 0, 0, 0, 0], - ], - }, - { - "testcase_name": "test_documents_count_mode", - "vocab_data": np.array( - [ - ["fire earth earth"], - ["earth earth"], - ["wind wind"], - ["and wind and"], - ] - ), - "input_data": np.array( - [["earth wind"], ["and"], ["fire fire"], ["earth michigan"]] - ), - "kwargs": { - "max_tokens": 5, - "pad_to_max_tokens": True, - "standardize": None, - "split": text_vectorization.WHITESPACE, - "output_mode": text_vectorization.COUNT, - }, - "expected_output": [ - [0, 1, 1, 0, 0], - [0, 0, 0, 1, 0], - [0, 0, 0, 0, 2], - [1, 1, 0, 0, 0], - ], - }, - { - "testcase_name": "test_tokens_idf_mode", - "vocab_data": np.array( - [ - ["fire"], - ["earth"], - ["earth"], - ["earth"], - ["earth"], - ["wind"], - ["wind"], - ["wind"], - ["and"], - ["and"], - ] - ), - "input_data": np.array( - [ - ["earth"], - ["wind"], - ["and"], - ["fire"], - ["fire"], - ["and"], - ["earth"], - ["michigan"], - ] - ), - "kwargs": { - "max_tokens": 5, - "pad_to_max_tokens": True, - "standardize": None, - "split": None, - "output_mode": text_vectorization.TF_IDF, - }, - "expected_output": [ - [0, 1.098612, 0, 0, 0], - [0, 0, 1.252763, 0, 0], - [0, 0, 0, 1.466337, 0], - [0, 0, 0, 0, 1.7917595], - [0, 0, 0, 0, 1.7917595], - [0, 0, 0, 1.4663371, 0], - [0, 1.098612, 0, 0, 0], - [1.402368, 0, 0, 0, 0], - ], - }, - { - "testcase_name": "test_documents_idf_mode", - "vocab_data": np.array( - [ - ["fire earth earth"], - ["earth earth"], - ["wind wind"], - ["and wind and"], - ] - ), - "input_data": np.array( - [["earth wind"], ["and"], ["fire fire"], ["earth michigan"]] - ), - "kwargs": { - "max_tokens": 5, - "pad_to_max_tokens": True, - "standardize": None, - "split": text_vectorization.WHITESPACE, - "output_mode": text_vectorization.TF_IDF, - }, - "expected_output": [ - [0.0, 0.847298, 0.847298, 0.0, 0.0], - [0.0, 0.0, 0.0, 1.098612, 0.0], - [0.0, 0.0, 0.0, 0.0, 2.197225], - [0.972955, 0.847298, 0.0, 0.0, 0.0], - ], - }, - ) - - crossed_test_cases = [] - # Cross above test cases with use_dataset in (True, False) - for use_dataset in (True, False): - for case in test_cases: - case = case.copy() - if use_dataset: - case["testcase_name"] = case["testcase_name"] + "_with_dataset" - case["use_dataset"] = use_dataset - crossed_test_cases.append(case) - - return crossed_test_cases - - -@test_utils.run_v2_only -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TextVectorizationLayerTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - @parameterized.named_parameters(*_get_end_to_end_test_cases()) - def test_layer_end_to_end_with_adapt( - self, vocab_data, input_data, kwargs, use_dataset, expected_output - ): - cls = text_vectorization.TextVectorization - if kwargs.get("output_mode") == text_vectorization.INT: - expected_output_dtype = tf.int64 - else: - expected_output_dtype = tf.float32 - input_shape = input_data.shape - - if use_dataset: - # Keras APIs expect batched datasets. - # TODO(rachelim): `model.predict` predicts the result on each - # dataset batch separately, then tries to concatenate the results - # together. When the results have different shapes on the non-concat - # axis (which can happen in the output_mode = INT case for - # TextVectorization), the concatenation fails. In real use cases, - # this may not be an issue because users are likely to pipe the - # preprocessing layer into other keras layers instead of predicting - # it directly. A workaround for these unit tests is to have the - # dataset only contain one batch, so no concatenation needs to - # happen with the result. For consistency with numpy input, we - # should make `predict` join differently shaped results together - # sensibly, with 0 padding. - input_data = tf.data.Dataset.from_tensor_slices(input_data).batch( - input_shape[0] - ) - vocab_data = tf.data.Dataset.from_tensor_slices(vocab_data).batch( - input_shape[0] - ) - - output_data = test_utils.layer_test( - cls, - kwargs=kwargs, - input_shape=input_shape, - input_data=input_data, - input_dtype=tf.string, - expected_output_dtype=expected_output_dtype, - validate_training=False, - adapt_data=vocab_data, - ) - self.assertAllClose(expected_output, output_data) - - @parameterized.product( - rank=[0, 1, 2], - # Check lists, numpy arrays, tensors, and objects convertable to tensor. - data_fn=[ - None, - np.array, - tf.constant, - preprocessing_test_utils.ArrayLike, - ], - ) - def test_input_types(self, rank, data_fn): - input_data = "earth wind and fire" - expected_output = [2, 3, 4, 5] - if rank == 1: - input_data = [input_data] - expected_output = [expected_output] - elif rank == 2: - input_data = [[input_data]] - expected_output = [expected_output] - if data_fn is not None: - input_data = data_fn(input_data) - input_shape = [] if rank == 0 else [1] - - layer = text_vectorization.TextVectorization( - vocabulary=["earth", "wind", "and", "fire"] - ) - output_data = layer(input_data) - self.assertAllEqual(output_data, expected_output) - - # Again in a keras.Model - inputs = keras.Input(shape=input_shape, dtype=tf.string) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - output_data = model(tf.constant(input_data)) - self.assertAllEqual(output_data, expected_output) - - @parameterized.named_parameters( - [ - { - "testcase_name": "ragged_tensor1", - "input_data": [ - [["0 a b"], ["c d"]], - [["e a"], ["b c d"]], - [["f"]], - ], - "expected_output": [ - [[1, 2, 3], [4, 5]], - [[6, 2], [3, 4, 5]], - [[7]], - ], - }, - { - "testcase_name": "ragged_tensor2", - "input_data": [ - [["0 a b"], [""]], - [], - [["e a"], ["b c d"]], - [["f"]], - ], - "expected_output": [ - [[1, 2, 3], []], - [], - [[6, 2], [3, 4, 5]], - [[7]], - ], - }, - ] - ) - def test_ragged_input_and_ragged_output(self, input_data, expected_output): - input_data = tf.ragged.constant(input_data, inner_shape=(1,)) - layer = text_vectorization.TextVectorization( - vocabulary=["a", "b", "c", "d", "e", "f"], ragged=True - ) - output_data = layer(input_data) - self.assertAllEqual(output_data, expected_output) - - # Again in a keras.Model - inputs = keras.Input(shape=(1,), dtype=tf.string) - outputs = layer(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - output_data = model.predict(input_data) - self.assertAllEqual(output_data, expected_output) - - def test_scalar_input_int_mode_no_len_limit(self): - vocab_data = [ - "fire earth earth", - "earth earth", - "wind wind", - "and wind and", - ] - input_data = "earth wind and fire fire and earth michigan" - layer = text_vectorization.TextVectorization() - layer.adapt(vocab_data) - out = layer(input_data) - self.assertAllClose(out.numpy(), [2, 3, 4, 5, 5, 4, 2, 1]) - layer.set_vocabulary(["earth", "wind", "and", "fire"]) - out = layer(input_data) - self.assertAllClose(out.numpy(), [2, 3, 4, 5, 5, 4, 2, 1]) - - def test_scalar_input_int_mode_trim_to_len_limit(self): - vocab_data = [ - "fire earth earth", - "earth earth", - "wind wind", - "and wind and", - ] - input_data = "earth wind and fire fire and earth michigan" - layer = text_vectorization.TextVectorization(output_sequence_length=3) - layer.adapt(vocab_data) - out = layer(input_data) - self.assertAllClose(out.numpy(), [2, 3, 4]) - layer.set_vocabulary(["earth", "wind", "and", "fire"]) - out = layer(input_data) - self.assertAllClose(out.numpy(), [2, 3, 4]) - - def test_scalar_input_int_pad_to_len_limit(self): - vocab_data = [ - "fire earth earth", - "earth earth", - "wind wind", - "and wind and", - ] - input_data = "earth wind and fire fire and earth michigan" - layer = text_vectorization.TextVectorization(output_sequence_length=10) - layer.adapt(vocab_data) - out = layer(input_data) - self.assertAllClose(out.numpy(), [2, 3, 4, 5, 5, 4, 2, 1, 0, 0]) - layer.set_vocabulary(["earth", "wind", "and", "fire"]) - out = layer(input_data) - self.assertAllClose(out.numpy(), [2, 3, 4, 5, 5, 4, 2, 1, 0, 0]) - - def test_dataset_of_single_strings(self): - vocab_data = ["two two two", "two three three", "three four four five"] - input_data = ["two three", "four five"] - vocab_ds = tf.data.Dataset.from_tensor_slices(vocab_data) # unbatched - input_ds = tf.data.Dataset.from_tensor_slices(input_data) # unbatched - layer = text_vectorization.TextVectorization() - layer.adapt(vocab_ds) - out = input_ds.map(layer) - self.assertAllClose(list(out.as_numpy_iterator()), [[2, 3], [4, 5]]) - - def test_dataset_of_single_strings_with_output_sequence(self): - vocab_data = ["two two two", "two three three", "three four four five"] - input_data = ["two three", "four five"] - vocab_ds = tf.data.Dataset.from_tensor_slices(vocab_data) # unbatched - input_ds = tf.data.Dataset.from_tensor_slices(input_data) # unbatched - layer = text_vectorization.TextVectorization(output_sequence_length=3) - layer.adapt(vocab_ds) - out = input_ds.map(layer) - self.assertAllClose( - list(out.as_numpy_iterator()), [[2, 3, 0], [4, 5, 0]] - ) - - @parameterized.named_parameters( - { - "testcase_name": "1d", - "data": ["0", "a", "b", "c", "d", "e", "a", "b", "c", "d", "f"], - "expected": [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1], - }, - { - "testcase_name": "2d", - "data": [ - ["0", "a", "b", "c", "d"], - ["e", "a", "b", "c", "d"], - ["f"], - ], - "expected": [[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 0, 0, 0, 0]], - }, - { - "testcase_name": "3d", - "data": [ - [["0", "a", "b"], ["c", "d"]], - [["e", "a"], ["b", "c", "d"]], - [["f"]], - ], - "expected": [ - [[1, 2, 3], [4, 5, 0]], - [[1, 2, 0], [3, 4, 5]], - [[1, 0, 0], [0, 0, 0]], - ], - }, - ) - def test_layer_dimensionality_handling(self, data, expected): - vocab = ["a", "b", "c", "d"] - vectorization = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - pad_to_max_tokens=False, - ) - vectorization.set_vocabulary(vocab) - output = vectorization(tf.ragged.constant(data)) - self.assertAllEqual(expected, output) - - @parameterized.named_parameters( - { - "testcase_name": "1d", - "data": ["0 a b c d e a b c d f"], - "expected": [[1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1]], - }, - { - "testcase_name": "3d", - "data": [[["0 a b"], ["c d"]], [["e a"], ["b c d"]], [["f"]]], - "expected": [ - [[1, 2, 3], [4, 5, 0]], - [[1, 2, 0], [3, 4, 5]], - [[1, 0, 0], [0, 0, 0]], - ], - }, - ) - def test_layer_dimensionality_handling_with_split(self, data, expected): - vocab = ["a", "b", "c", "d"] - vectorization = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=text_vectorization.WHITESPACE, - pad_to_max_tokens=False, - ) - vectorization.set_vocabulary(vocab) - output = vectorization(tf.ragged.constant(data, inner_shape=(1,))) - self.assertAllEqual(expected, output) - - -@test_utils.run_v2_only -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TextVectorizationPreprocessingTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def _write_to_temp_file(self, file_name, vocab_list): - vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt") - with tf.io.gfile.GFile(vocab_path, "w") as writer: - for vocab in vocab_list: - writer.write(vocab + "\n") - writer.flush() - writer.close() - return vocab_path - - def test_summary_before_adapt(self): - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=10, - pad_to_max_tokens=True, - standardize=text_vectorization.LOWER_AND_STRIP_PUNCTUATION, - split=None, - ngrams=None, - output_mode=text_vectorization.TF_IDF, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - # We are testing that model.summary() can be called without erroring - # out. (b/145726907) - model.summary() - - @parameterized.parameters([list, np.array, tf.constant, tf.ragged.constant]) - def test_lower_and_strip_punctuation(self, data_fn): - input_array = data_fn( - [ - ["Earth", "wInD", "aNd", "firE"], - ["fire|", "an<>d", "{earth}", "michigan@%$"], - ] - ) - expected_output = data_fn( - [ - [b"earth", b"wind", b"and", b"fire"], - [b"fire", b"and", b"earth", b"michigan"], - ] - ) - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=text_vectorization.LOWER_AND_STRIP_PUNCTUATION, - split=None, - ngrams=None, - output_mode=None, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - @parameterized.parameters([list, np.array, tf.constant, tf.ragged.constant]) - def test_strip_punctuation(self, data_fn): - input_array = data_fn( - [ - ["Earth", "wInD", "aNd", "firE"], - ["fire|", "an<>d", "{earth}", "michigan@%$"], - ] - ) - expected_output = data_fn( - [ - [b"Earth", b"wInD", b"aNd", b"firE"], - [b"fire", b"and", b"earth", b"michigan"], - ] - ) - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=text_vectorization.STRIP_PUNCTUATION, - split=None, - ngrams=None, - output_mode=None, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - @parameterized.parameters([list, np.array, tf.constant, tf.ragged.constant]) - def test_lower(self, data_fn): - input_array = data_fn( - [ - ["Earth", "wInD", "aNd", "firE"], - ["fire|", "an<>d", "{earth}", "michigan@$"], - ] - ) - expected_output = data_fn( - [ - [b"earth", b"wind", b"and", b"fire"], - [b"fire|", b"an<>d", b"{earth}", b"michigan@$"], - ] - ) - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=text_vectorization.LOWER, - split=None, - ngrams=None, - output_mode=None, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_custom_normalization(self): - input_array = np.array( - [ - ["Earth", "wInD", "aNd", "firE"], - ["fire|", "an<>d", "{earth}", "michigan@%$"], - ] - ) - expected_output = np.array( - [ - [b"earth", b"wind", b"and", b"fire"], - [b"fire|", b"an<>d", b"{earth}", b"michigan@%$"], - ] - ) - - custom_standardization = tf.strings.lower - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=custom_standardization, - split=None, - ngrams=None, - output_mode=None, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_whitespace_splitting(self): - input_array = np.array( - [["earth wind and fire"], ["\tfire\tand\nearth michigan "]] - ) - expected_output = [ - [b"earth", b"wind", b"and", b"fire"], - [b"fire", b"and", b"earth", b"michigan"], - ] - - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=text_vectorization.WHITESPACE, - ngrams=None, - output_mode=None, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_character_splitting(self): - input_array = np.array([["earthwind"], ["and fire"]]) - expected_output = [ - [b"e", b"a", b"r", b"t", b"h", b"w", b"i", b"n", b"d"], - [b"a", b"n", b"d", b" ", b"f", b"i", b"r", b"e"], - ] - - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=text_vectorization.CHARACTER, - ngrams=None, - output_mode=None, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_custom_string_splitting(self): - input_array = np.array( - [["earth>wind>and fire"], ["\tfire>and\nearth>michigan"]] - ) - expected_output = [ - [b"earth", b"wind", b"and fire"], - [b"\tfire", b"and\nearth", b"michigan"], - ] - - custom_split = lambda x: tf.strings.split(x, sep=">") - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=custom_split, - ngrams=None, - output_mode=None, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_single_ngram_value_ragged_inputs(self): - input_array = tf.ragged.constant( - [["earth", "wind", "and", "fire"], ["fire", "and", "earth"]] - ) - # pyformat: disable - expected_output = [ - [ - b"earth", - b"wind", - b"and", - b"fire", - b"earth wind", - b"wind and", - b"and fire", - b"earth wind and", - b"wind and fire", - ], - [ - b"fire", - b"and", - b"earth", - b"fire and", - b"and earth", - b"fire and earth", - ], - ] - # pyformat: enable - - input_data = keras.Input(shape=(None,), ragged=True, dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - ngrams=3, - output_mode=None, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_single_ngram_value(self): - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - # pyformat: disable - expected_output = [ - [ - b"earth", - b"wind", - b"and", - b"fire", - b"earth wind", - b"wind and", - b"and fire", - b"earth wind and", - b"wind and fire", - ], - [ - b"fire", - b"and", - b"earth", - b"michigan", - b"fire and", - b"and earth", - b"earth michigan", - b"fire and earth", - b"and earth michigan", - ], - ] - # pyformat: enable - - input_data = keras.Input(shape=(4,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - ngrams=3, - output_mode=None, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_multiple_ngram_values(self): - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - # pyformat: disable - expected_output = [ - [ - b"earth wind", - b"wind and", - b"and fire", - b"earth wind and", - b"wind and fire", - ], - [ - b"fire and", - b"and earth", - b"earth michigan", - b"fire and earth", - b"and earth michigan", - ], - ] - # pyformat: enable - - input_data = keras.Input(shape=(4,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - ngrams=(2, 3), - output_mode=None, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_string_multiple_preprocessing_steps(self): - input_array = np.array( - [["earth wInD and firE"], ["\tfire\tand\nearth!! michig@n "]] - ) - expected_output = [ - [ - b"earth", - b"wind", - b"and", - b"fire", - b"earth wind", - b"wind and", - b"and fire", - ], - [ - b"fire", - b"and", - b"earth", - b"michign", - b"fire and", - b"and earth", - b"earth michign", - ], - ] - - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=text_vectorization.LOWER_AND_STRIP_PUNCTUATION, - split=text_vectorization.WHITESPACE, - ngrams=2, - output_mode=None, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_string_splitting_with_non_1d_array_fails(self): - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - vocabulary=["a"], - max_tokens=None, - standardize=None, - split=text_vectorization.WHITESPACE, - output_mode=None, - ) - with self.assertRaisesRegex( - ValueError, "last shape dimension must be 1" - ): - _ = layer(input_data) - - def test_string_splitting_with_non_1d_raggedarray_fails(self): - input_data = keras.Input(shape=(None,), ragged=True, dtype=tf.string) - layer = text_vectorization.TextVectorization( - vocabulary=["a"], - max_tokens=None, - standardize=None, - split=text_vectorization.WHITESPACE, - output_mode=None, - ) - with self.assertRaisesRegex( - ValueError, "last shape dimension must be 1" - ): - _ = layer(input_data) - - def test_standardization_with_invalid_standardize_arg(self): - with self.assertRaisesRegex( - ValueError, "Unkown value for `standardize`" - ): - text_vectorization.TextVectorization( - vocabulary=["a"], standardize="unsupported" - ) - - def test_splitting_with_invalid_split_arg(self): - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = text_vectorization.TextVectorization(vocabulary=["a"]) - layer._split = "unsupported" - with self.assertRaisesRegex( - ValueError, ".*is not a supported splitting.*" - ): - _ = layer(input_data) - - def test_vocab_setting_via_init(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - output_mode=text_vectorization.INT, - vocabulary=vocab_data, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_vocab_setting_via_init_file(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - vocab_path = self._write_to_temp_file("vocab_file", vocab_data) - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - output_mode=text_vectorization.INT, - vocabulary=vocab_path, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_vocab_setting_via_setter(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - vocab_path = self._write_to_temp_file("vocab_file", vocab_data) - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - output_mode=text_vectorization.INT, - ) - layer.set_vocabulary(vocab_path) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_vocab_setting_with_oov_via_setter(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - vocab_path = self._write_to_temp_file("vocab_file", vocab_data) - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - output_mode=text_vectorization.INT, - ) - layer.set_vocabulary(vocab_path) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - -@test_utils.run_v2_only -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TextVectorizationDistributionTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_distribution_strategy_output(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - strategy = tf.distribute.OneDeviceStrategy("/cpu:0") - with strategy.scope(): - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - output_mode=text_vectorization.INT, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - -@test_utils.run_v2_only -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TextVectorizationOutputTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_int_output(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - output_mode=text_vectorization.INT, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_densifies_with_zeros(self): - vocab_data = ["earth", "wind", "and", "fire"] - # Create an input array that has 5 elements in the first example and 4 - # in the second. This should output a 2x5 tensor with a padding value in - # the second example. - input_array = np.array( - [["earth wind and also fire"], ["fire and earth michigan"]] - ) - expected_output = [[2, 3, 4, 1, 5], [5, 4, 2, 1, 0]] - - # This test doesn't explicitly set an output shape, so the 2nd dimension - # should stay 'None'. - expected_output_shape = [None, None] - - # The input shape here is explicitly 1 because we're tokenizing. - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=text_vectorization.WHITESPACE, - output_mode=text_vectorization.INT, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_ragged(self): - vocab_data = ["earth", "wind", "and", "fire"] - # Create an input array that has 5 elements in the first example and 4 - # in the second. - input_array = np.array( - [["earth wind and also fire"], ["fire and earth michigan"]] - ) - expected_output = tf.ragged.constant([[2, 3, 4, 1, 5], [5, 4, 2, 1]]) - expected_output_shape = [None, None] - - # The input shape here is explicitly 1 because we're tokenizing. - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=text_vectorization.WHITESPACE, - output_mode=text_vectorization.INT, - ragged=True, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_densifies_with_zeros_and_pads(self): - vocab_data = ["earth", "wind", "and", "fire"] - # Create an input array that has 5 elements in the first example and 4 - # in the second. This should output a 2x6 tensor with a padding value in - # the second example, since output_sequence_length is set to 6. - input_array = np.array( - [["earth wind and also fire"], ["fire and earth michigan"]] - ) - expected_output = [[2, 3, 4, 1, 5, 0], [5, 4, 2, 1, 0, 0]] - - output_sequence_length = 6 - expected_output_shape = [None, output_sequence_length] - - # The input shape here is explicitly 1 because we're tokenizing. - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=text_vectorization.WHITESPACE, - output_mode=text_vectorization.INT, - output_sequence_length=output_sequence_length, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_densifies_with_zeros_and_strips(self): - vocab_data = ["earth", "wind", "and", "fire"] - # Create an input array that has 5 elements in the first example and 4 - # in the second. This should output a 2x3 tensor with a padding value in - # the second example, since output_sequence_length is set to 3. - input_array = np.array( - [["earth wind and also fire"], ["fire and earth michigan"]] - ) - expected_output = [[2, 3, 4], [5, 4, 2]] - output_sequence_length = 3 - expected_output_shape = [None, output_sequence_length] - - # The input shape here is explicitly 1 because we're tokenizing. - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=text_vectorization.WHITESPACE, - output_mode=text_vectorization.INT, - output_sequence_length=output_sequence_length, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_int_output_dynamically_strips_and_pads(self): - vocab_data = ["earth", "wind", "and", "fire"] - # Create an input array that has 5 elements in the first example and 4 - # in the second. This should output a 2x3 tensor with a padding value in - # the second example, since output_sequence_length is set to 3. - input_array = np.array( - [["earth wind and also fire"], ["fire and earth michigan"]] - ) - expected_output = [[2, 3, 4], [5, 4, 2]] - output_sequence_length = 3 - expected_output_shape = [None, output_sequence_length] - - # The input shape here is explicitly 1 because we're tokenizing. - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=text_vectorization.WHITESPACE, - output_mode=text_vectorization.INT, - output_sequence_length=output_sequence_length, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - # Create an input array that has 1 element in the first example and 2 in - # the second. This should output a 2x3 tensor with a padding value in - # the second example, since output_sequence_length is set to 3. - input_array_2 = np.array([["wind"], ["fire and"]]) - expected_output_2 = [[3, 0, 0], [5, 4, 0]] - output_dataset = model.predict(input_array_2) - self.assertAllEqual(expected_output_2, output_dataset) - - @parameterized.parameters( - {"sparse": True}, - {"sparse": False}, - ) - def test_multi_hot_output_hard_maximum(self, sparse): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "and", "earth", "michigan"], - ] - ) - - # pyformat: disable - expected_output = [[0, 1, 1, 1, 0, 0], [1, 1, 0, 1, 0, 0]] - # pyformat: enable - max_tokens = 6 - expected_output_shape = [None, max_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=max_tokens, - standardize=None, - split=None, - output_mode=text_vectorization.MULTI_HOT, - pad_to_max_tokens=True, - sparse=sparse, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - if sparse: - expected_output = tf.sparse.from_dense(tf.constant(expected_output)) - self.assertAllEqual(expected_output.indices, output_dataset.indices) - self.assertAllEqual(expected_output.values, output_dataset.values) - else: - self.assertAllEqual(expected_output, output_dataset) - - @parameterized.parameters( - {"sparse": True}, - {"sparse": False}, - ) - def test_multi_hot_output_soft_maximum(self, sparse): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "and", "earth", "michigan"], - ] - ) - - # pyformat: disable - expected_output = [[0, 1, 1, 1, 0], [1, 1, 0, 1, 0]] - # pyformat: enable - max_tokens = 5 - expected_output_shape = [None, max_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=10, - standardize=None, - split=None, - output_mode=text_vectorization.MULTI_HOT, - pad_to_max_tokens=False, - sparse=sparse, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - if sparse: - expected_output = tf.sparse.from_dense(tf.constant(expected_output)) - self.assertAllEqual(expected_output.indices, output_dataset.indices) - self.assertAllEqual(expected_output.values, output_dataset.values) - else: - self.assertAllEqual(expected_output, output_dataset) - - def test_multi_hot_output_hard_maximum_set_vocabulary_after_build(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "and", "earth", "michigan"], - ] - ) - - # pyformat: disable - expected_output = [[0, 1, 1, 1, 0], [1, 1, 0, 1, 0]] - # pyformat: enable - max_tokens = 5 - expected_output_shape = [None, max_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=max_tokens, - standardize=None, - split=None, - output_mode=text_vectorization.MULTI_HOT, - pad_to_max_tokens=True, - ) - int_data = layer(input_data) - layer.set_vocabulary(vocab_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_multi_hot_output_hard_maximum_adapt_after_build(self): - vocab_data = np.array( - [ - "earth", - "earth", - "earth", - "earth", - "wind", - "wind", - "wind", - "and", - "and", - "fire", - ] - ) - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "and", "earth", "michigan"], - ] - ) - - # pyformat: disable - expected_output = [[0, 1, 1, 1, 0], [1, 1, 0, 1, 0]] - # pyformat: enable - max_tokens = 5 - expected_output_shape = [None, max_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=max_tokens, - standardize=None, - split=None, - output_mode=text_vectorization.MULTI_HOT, - pad_to_max_tokens=True, - ) - int_data = layer(input_data) - layer.adapt(vocab_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_multi_hot_output_hard_maximum_multiple_adapts(self): - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "and", "earth", "michigan"], - ] - ) - adapt_data = [ - "earth", - "earth", - "earth", - "earth", - "wind", - "wind", - "wind", - ] - first_expected_output = [ - [1, 1, 1, 0, 0], - [1, 1, 0, 0, 0], - ] - second_adapt_data = [ - "earth", - "earth", - "earth", - "earth", - "wind", - "wind", - "wind", - "and", - "and", - "fire", - ] - second_expected_output = [ - [0, 1, 1, 1, 0], - [1, 1, 0, 1, 0], - ] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=5, - standardize=None, - split=None, - output_mode=text_vectorization.MULTI_HOT, - pad_to_max_tokens=True, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - - # Test the first adapt - layer.adapt(adapt_data) - first_output = model.predict(input_array) - # Test the second adapt - layer.adapt(second_adapt_data) - # We need to recompile the model to retrace our call graph. - model.compile() - second_output = model.predict(input_array) - self.assertAllEqual(first_expected_output, first_output) - self.assertAllEqual(second_expected_output, second_output) - - def test_multi_hot_output_soft_maximum_set_state_after_build(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "and", "earth", "michigan"], - ] - ) - - # pyformat: disable - expected_output = [[0, 1, 1, 1, 0], [1, 1, 0, 1, 0]] - # pyformat: enable - max_tokens = 5 - expected_output_shape = [None, max_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=10, - standardize=None, - split=None, - output_mode=text_vectorization.MULTI_HOT, - pad_to_max_tokens=False, - ) - layer.build(input_data.shape) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_vocab_size_changed_pad_to_max_false_fails(self): - vocab_data = ["earth", "wind", "and", "fire"] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - output_mode=text_vectorization.MULTI_HOT, - pad_to_max_tokens=False, - ) - layer.adapt(vocab_data) - _ = layer(input_data) - - with self.assertRaisesRegex( - RuntimeError, "vocabulary size cannot be changed" - ): - layer.set_vocabulary(vocab_data[:2]) - - def test_count_output_hard_maximum(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "and", "earth", "michigan"], - ] - ) - - # pyformat: disable - expected_output = [[0, 2, 1, 1, 0, 0], [2, 1, 0, 1, 0, 0]] - # pyformat: enable - max_tokens = 6 - expected_output_shape = [None, max_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=6, - standardize=None, - split=None, - output_mode=text_vectorization.COUNT, - pad_to_max_tokens=True, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - def test_count_output_soft_maximum(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "and", "earth", "michigan"], - ] - ) - - # pyformat: disable - expected_output = [[0, 2, 1, 1, 0], [2, 1, 0, 1, 0]] - # pyformat: enable - max_tokens = 5 - expected_output_shape = [None, max_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=10, - standardize=None, - split=None, - output_mode=text_vectorization.COUNT, - pad_to_max_tokens=False, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - @parameterized.named_parameters( - ("sparse", True), - ("dense", False), - ) - def test_tfidf_output_hard_maximum(self, sparse): - vocab_data = ["earth", "wind", "and", "fire"] - # OOV idf weight (bucket 0) should 0.5, the average of passed weights. - idf_weights = [0.4, 0.25, 0.75, 0.6] - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "fire", "earth", "michigan"], - ] - ) - - # pyformat: disable - - expected_output = [[0, 0.8, 0.25, 0.75, 0, 0], [1, 0.4, 0, 0, 0.6, 0]] - - # pyformat: enable - max_tokens = 6 - expected_output_shape = [None, max_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=6, - standardize=None, - split=None, - output_mode=text_vectorization.TF_IDF, - pad_to_max_tokens=True, - sparse=sparse, - vocabulary=vocab_data, - idf_weights=idf_weights, - ) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - if sparse: - output_dataset = tf.sparse.to_dense(output_dataset) - self.assertAllClose(expected_output, output_dataset) - - @parameterized.named_parameters( - ("sparse", True), - ("dense", False), - ) - def test_tfidf_output_soft_maximum(self, sparse): - vocab_data = ["earth", "wind", "and", "fire"] - # OOV idf weight (bucket 0) should 0.5, the average of passed weights. - idf_weights = [0.4, 0.25, 0.75, 0.6] - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "fire", "earth", "michigan"], - ] - ) - - # pyformat: disable - - expected_output = [[0, 0.8, 0.25, 0.75, 0], [1, 0.4, 0, 0, 0.6]] - - # pyformat: enable - max_tokens = 5 - expected_output_shape = [None, max_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=10, - standardize=None, - split=None, - output_mode=text_vectorization.TF_IDF, - pad_to_max_tokens=False, - sparse=sparse, - vocabulary=vocab_data, - idf_weights=idf_weights, - ) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - if sparse: - output_dataset = tf.sparse.to_dense(output_dataset) - self.assertAllClose(expected_output, output_dataset) - - @parameterized.named_parameters( - ("sparse", True), - ("dense", False), - ) - def test_tfidf_output_set_oov_weight(self, sparse): - vocab_data = ["[UNK]", "earth", "wind", "and", "fire"] - idf_weights = [0.1, 0.4, 0.25, 0.75, 0.6] - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "fire", "earth", "michigan"], - ] - ) - - # pyformat: disable - - expected_output = [[0, 0.8, 0.25, 0.75, 0], [0.2, 0.4, 0, 0, 0.6]] - - # pyformat: enable - max_tokens = 5 - expected_output_shape = [None, max_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=10, - standardize=None, - split=None, - output_mode=text_vectorization.TF_IDF, - pad_to_max_tokens=False, - sparse=sparse, - vocabulary=vocab_data, - idf_weights=idf_weights, - ) - int_data = layer(input_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - if sparse: - output_dataset = tf.sparse.to_dense(output_dataset) - self.assertAllClose(expected_output, output_dataset) - - def test_accept_1D_input(self): - input_array = np.array( - ["earth wind and fire", "fire and earth michigan"] - ) - layer = text_vectorization.TextVectorization( - standardize=None, split=None, output_mode="int" - ) - layer.adapt(input_array) - _ = layer(input_array) - - -@test_utils.run_v2_only -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TextVectorizationModelBuildingTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - @parameterized.named_parameters( - { - "testcase_name": "count_hard_max", - "pad_to_max_tokens": True, - "output_mode": text_vectorization.COUNT, - }, - { - "testcase_name": "count_soft_max", - "pad_to_max_tokens": False, - "output_mode": text_vectorization.COUNT, - }, - { - "testcase_name": "binary_hard_max", - "pad_to_max_tokens": True, - "output_mode": text_vectorization.MULTI_HOT, - }, - { - "testcase_name": "binary_soft_max", - "pad_to_max_tokens": False, - "output_mode": text_vectorization.MULTI_HOT, - }, - { - "testcase_name": "tfidf_hard_max", - "pad_to_max_tokens": True, - "output_mode": text_vectorization.TF_IDF, - }, - { - "testcase_name": "tfidf_soft_max", - "pad_to_max_tokens": False, - "output_mode": text_vectorization.TF_IDF, - }, - ) - def test_end_to_end_bagged_modeling(self, output_mode, pad_to_max_tokens): - vocab_data = ["earth", "wind", "and", "fire"] - if output_mode == text_vectorization.TF_IDF: - idf_weights = [0.5, 0.25, 0.2, 0.125] - else: - idf_weights = None - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "and", "earth", "michigan"], - ] - ) - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=10, - standardize=None, - split=None, - output_mode=output_mode, - pad_to_max_tokens=pad_to_max_tokens, - vocabulary=vocab_data, - idf_weights=idf_weights, - ) - - int_data = layer(input_data) - float_data = backend.cast(int_data, dtype="float32") - output_data = core.Dense(64)(float_data) - model = keras.Model(inputs=input_data, outputs=output_data) - _ = model.predict(input_array) - - def test_end_to_end_vocab_modeling(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [["earth wind and also fire"], ["fire and earth michigan"]] - ) - output_sequence_length = 6 - max_tokens = 5 - - # The input shape here is explicitly 1 because we're tokenizing. - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=text_vectorization.WHITESPACE, - output_mode=text_vectorization.INT, - output_sequence_length=output_sequence_length, - ) - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - embedded_data = core.Embedding(input_dim=max_tokens + 1, output_dim=32)( - int_data - ) - output_data = convolutional.Conv1D( - 250, 3, padding="valid", activation="relu", strides=1 - )(embedded_data) - - model = keras.Model(inputs=input_data, outputs=output_data) - _ = model.predict(input_array) - - -@test_utils.run_v2_only -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TextVectorizationVocabularyTest( - test_combinations.TestCase, - preprocessing_test_utils.PreprocessingLayerTest, -): - def test_get_vocabulary(self): - vocab = ["earth", "wind", "and", "fire"] - - layer = text_vectorization.TextVectorization(vocabulary=vocab) - self.assertAllEqual( - layer.get_vocabulary(), - ["", "[UNK]", "earth", "wind", "and", "fire"], - ) - - def test_get_vocabulary_adapt(self): - vocab = np.array( - [["earth earth earth earth wind wind wind and and fire"]] - ) - - layer = text_vectorization.TextVectorization() - layer.adapt(vocab) - self.assertAllEqual( - layer.get_vocabulary(), - ["", "[UNK]", "earth", "wind", "and", "fire"], - ) - - def test_get_vocabulary_no_special_tokens(self): - vocab = ["earth", "wind", "and", "fire"] - - layer = text_vectorization.TextVectorization(vocabulary=vocab) - self.assertAllEqual( - layer.get_vocabulary(include_special_tokens=False), - ["earth", "wind", "and", "fire"], - ) - - -@test_utils.run_v2_only -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TextVectorizationErrorTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_too_long_vocab_fails_in_single_setting(self): - vocab_data = ["earth", "wind", "and", "fire"] - - layer = text_vectorization.TextVectorization( - max_tokens=4, - standardize=None, - split=None, - output_mode=text_vectorization.INT, - ) - with self.assertRaisesRegex( - ValueError, "vocabulary larger than the maximum vocab.*" - ): - layer.set_vocabulary(vocab_data) - - def test_setting_vocab_without_idf_weights_fails_in_tfidf_mode(self): - vocab_data = ["earth", "wind", "and", "fire"] - - with self.assertRaisesRegex( - ValueError, "`idf_weights` must be set if output_mode is TF_IDF" - ): - text_vectorization.TextVectorization( - max_tokens=5, - standardize=None, - split=None, - output_mode=text_vectorization.TF_IDF, - vocabulary=vocab_data, - ) - - def test_idf_weights_length_mismatch_fails(self): - vocab_data = ["earth", "wind", "and", "fire"] - idf_weights = [1, 2, 3] - with self.assertRaisesRegex( - ValueError, "`idf_weights` must be the same length as vocab" - ): - text_vectorization.TextVectorization( - max_tokens=5, - standardize=None, - split=None, - output_mode=text_vectorization.TF_IDF, - vocabulary=vocab_data, - idf_weights=idf_weights, - ) - - def test_set_tfidf_in_non_tfidf_fails(self): - vocab_data = ["earth", "wind", "and", "fire"] - idf_weights = [1, 2, 3, 4] - with self.assertRaisesRegex( - ValueError, "`idf_weights` should only be set if" - ): - text_vectorization.TextVectorization( - max_tokens=5, - standardize=None, - split=None, - output_mode=text_vectorization.MULTI_HOT, - vocabulary=vocab_data, - idf_weights=idf_weights, - ) - - def test_zero_max_tokens_fails(self): - with self.assertRaisesRegex(ValueError, "max_tokens.*"): - _ = text_vectorization.TextVectorization(max_tokens=0) - - def test_non_string_dtype_fails(self): - with self.assertRaisesRegex(ValueError, "dtype of string.*"): - _ = text_vectorization.TextVectorization(dtype=tf.int64) - - def test_unknown_standardize_arg_fails(self): - with self.assertRaisesRegex( - ValueError, "`standardize` arg.*unsupported_value" - ): - _ = text_vectorization.TextVectorization( - standardize="unsupported_value" - ) - - def test_unknown_split_arg_fails(self): - with self.assertRaisesRegex( - ValueError, "`split` arg.*unsupported_value" - ): - _ = text_vectorization.TextVectorization(split="unsupported_value") - - def test_unknown_output_mode_arg_fails(self): - with self.assertRaisesRegex( - ValueError, "`output_mode` arg.*unsupported_value" - ): - _ = text_vectorization.TextVectorization( - output_mode="unsupported_value" - ) - - def test_unknown_ngrams_arg_fails(self): - with self.assertRaisesRegex(ValueError, "ngrams.*unsupported_value"): - _ = text_vectorization.TextVectorization(ngrams="unsupported_value") - - def test_float_ngrams_arg_fails(self): - with self.assertRaisesRegex(ValueError, "ngrams.*2.9"): - _ = text_vectorization.TextVectorization(ngrams=2.9) - - def test_float_tuple_ngrams_arg_fails(self): - with self.assertRaisesRegex(ValueError, "ngrams.*(1.3, 2.9)"): - _ = text_vectorization.TextVectorization(ngrams=(1.3, 2.9)) - - def test_non_int_output_sequence_length_dtype_fails(self): - with self.assertRaisesRegex(ValueError, "output_sequence_length.*2.0"): - _ = text_vectorization.TextVectorization( - output_mode="int", output_sequence_length=2.0 - ) - - def test_non_none_output_sequence_length_fails_if_output_mode_not_int(self): - with self.assertRaisesRegex( - ValueError, "`output_sequence_length` must not be set" - ): - _ = text_vectorization.TextVectorization( - output_mode="count", output_sequence_length=2 - ) - - def test_non_none_output_sequence_length_fails_if_ragged_true(self): - with self.assertRaisesRegex( - ValueError, "`output_sequence_length` must not be set" - ): - _ = text_vectorization.TextVectorization( - ragged=True, output_sequence_length=2 - ) - - def test_ragged_true_fails_if_output_mode_not_int(self): - with self.assertRaisesRegex(ValueError, "`ragged` must not be true if"): - _ = text_vectorization.TextVectorization( - ragged=True, output_mode=text_vectorization.MULTI_HOT - ) - - def test_sparse_true_fails_if_output_mode_is_int(self): - with self.assertRaisesRegex(ValueError, "`sparse` may only be true if"): - _ = text_vectorization.TextVectorization( - sparse=True, output_mode=text_vectorization.INT - ) - - -# Custom functions for the custom callable serialization test. Declared here -# to avoid multiple registrations from run_all_keras_modes(). -@register_keras_serializable(package="Test") -def custom_standardize_fn(x): - return tf.strings.lower(x) - - -@register_keras_serializable(package="Test") -def custom_split_fn(x): - return tf.strings.split(x, sep=">") - - -@test_utils.run_v2_only -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TextVectorizationSavingTest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def tearDown(self): - keras.backend.clear_session() - gc.collect() - super(TextVectorizationSavingTest, self).tearDown() - - @parameterized.parameters( - {"init_vocab": True}, - {"init_vocab": False}, - ) - def test_saving(self, init_vocab): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - # Build and validate a golden model. - input_data = keras.Input(shape=(None,), dtype=tf.string) - vocabulary = vocab_data if init_vocab else None - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - output_mode=text_vectorization.INT, - vocabulary=vocabulary, - ) - if not init_vocab: - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - - model.save(output_path, save_format="tf") - - # Delete the session and graph to ensure that the loaded model is - # generated from scratch. - keras.backend.clear_session() - - loaded_model = keras.models.load_model(output_path) - self.assertAllEqual(loaded_model.predict(input_array), expected_output) - - @parameterized.parameters( - {"init_vocab": True}, - {"init_vocab": False}, - ) - def test_saving_when_nested(self, init_vocab): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - # Build and validate a golden model. - input_data = keras.Input(shape=(None,), dtype=tf.string) - vocabulary = vocab_data if init_vocab else None - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - output_mode=text_vectorization.INT, - vocabulary=vocabulary, - ) - if not init_vocab: - layer.set_vocabulary(vocab_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - - outer_input = keras.Input(shape=(None,), dtype=tf.string) - outer_output = model(outer_input) - outer_model = keras.Model(inputs=outer_input, outputs=outer_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - outer_model.save(output_path, save_format="tf") - - # Delete the session and graph to ensure that the loaded model is - # generated from scratch. - keras.backend.clear_session() - - loaded_model = keras.models.load_model(output_path) - self.assertAllEqual(loaded_model.predict(input_array), expected_output) - - def test_saving_when_adapted(self): - adapt_data = [ - "earth", - "earth", - "earth", - "earth", - "wind", - "wind", - "wind", - "and", - "and", - "fire", - ] - input_array = np.array( - [ - ["earth", "wind", "and", "fire"], - ["fire", "and", "earth", "michigan"], - ] - ) - expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] - - # Build and validate a golden model. - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=None, - split=None, - output_mode=text_vectorization.INT, - ) - layer.adapt(adapt_data) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - - model.save(output_path, save_format="tf") - - # Delete the session and graph to ensure that the loaded model is - # generated from scratch. - keras.backend.clear_session() - - loaded_model = keras.models.load_model(output_path) - self.assertAllEqual(loaded_model.predict(input_array), expected_output) - - def test_saving_with_tfidf(self): - vocab_data = ["earth", "wind", "and", "fire"] - # OOV idf weight (bucket 0) should 0.5, the average of passed weights. - idf_weights = [0.4, 0.25, 0.75, 0.6] - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "fire", "earth", "michigan"], - ] - ) - - # pyformat: disable - - expected_output = [[0, 0.8, 0.25, 0.75, 0], [1, 0.4, 0, 0, 0.6]] - vocab_data = ["earth", "wind", "and", "fire"] - - # pyformat: enable - - # Build and validate a golden model. - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=5, - standardize=None, - split=None, - output_mode=text_vectorization.TF_IDF, - ) - layer.set_vocabulary(vocab_data, idf_weights=idf_weights) - - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllClose(output_dataset, expected_output) - - # Save the model to disk. - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format="tf") - loaded_model = keras.models.load_model(output_path) - - # Ensure that the loaded model is unique (so that the save/load is real) - self.assertIsNot(model, loaded_model) - - # Validate correctness of the new model. - new_output_dataset = loaded_model.predict(input_array) - self.assertAllClose(new_output_dataset, expected_output) - - def test_serialization_with_custom_callables(self): - input_array = np.array( - [["earth>wind>and Fire"], ["\tfire>And\nearth>michigan"]] - ) - expected_output = [ - [b"earth", b"wind", b"and fire"], - [b"\tfire", b"and\nearth", b"michigan"], - ] - - input_data = keras.Input(shape=(1,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=None, - standardize=custom_standardize_fn, - split=custom_split_fn, - ngrams=None, - output_mode=None, - ) - int_data = layer(input_data) - model = keras.Model(inputs=input_data, outputs=int_data) - output_dataset = model.predict(input_array) - self.assertAllEqual(expected_output, output_dataset) - - serialized_model_data = model.get_config() - new_model = keras.Model.from_config(serialized_model_data) - new_output_dataset = new_model.predict(input_array) - self.assertAllEqual(expected_output, new_output_dataset) - - @test_utils.run_v2_only() - def test_saving_v3(self): - vocab_data = ["earth", "wind", "and", "fire"] - input_array = np.array(["earth, wind, and fire"]) - - # First, with a static vocabulary. - input_data = keras.Input(shape=(), dtype=tf.string) - layer = text_vectorization.TextVectorization(vocabulary=vocab_data) - output = layer(input_data) - model = keras.Model(inputs=input_data, outputs=output) - ref_output = model.predict(input_array) - temp_dir = self.get_temp_dir() - model_path = os.path.join(temp_dir, "mymodel.keras") - model.save(model_path, save_format="keras_v3") - model = keras.models.load_model(model_path) - output = model.predict(input_array) - self.assertAllEqual(output, ref_output) - - # Second, with adapt(). - input_data = keras.Input(shape=(), dtype=tf.string) - layer = text_vectorization.TextVectorization() - layer.adapt(vocab_data) - output = layer(input_data) - model = keras.Model(inputs=input_data, outputs=output) - ref_output = model.predict(input_array) - model.save(model_path, save_format="keras_v3", overwrite=True) - model = keras.models.load_model(model_path) - output = model.predict(input_array) - self.assertAllEqual(output, ref_output) - - # Test TF-IDF + adapt(). - input_data = keras.Input(shape=(), dtype=tf.string) - layer = text_vectorization.TextVectorization(output_mode="tf_idf") - layer.adapt(vocab_data) - output = layer(input_data) - model = keras.Model(inputs=input_data, outputs=output) - ref_output = model.predict(input_array) - model.save(model_path, save_format="keras_v3", overwrite=True) - model = keras.models.load_model(model_path) - output = model.predict(input_array) - self.assertAllEqual(output, ref_output) - - -@test_utils.run_v2_only -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TextVectorizationE2ETest( - test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest -): - def test_keras_vocab_trimming_example(self): - vocab_data = np.array( - [ - "earth", - "earth", - "earth", - "earth", - "wind", - "wind", - "wind", - "and", - "and", - "fire", - ] - ) - input_array = np.array( - [ - ["earth", "wind", "and", "earth"], - ["ohio", "and", "earth", "michigan"], - ] - ) - - # pyformat: disable - expected_output = [[1, 2, 1], [3, 1, 0]] - # pyformat: enable - max_tokens = 3 - expected_output_shape = [None, max_tokens] - - input_data = keras.Input(shape=(None,), dtype=tf.string) - layer = text_vectorization.TextVectorization( - max_tokens=max_tokens, - standardize=None, - split=None, - output_mode=text_vectorization.COUNT, - pad_to_max_tokens=True, - ) - int_data = layer(input_data) - layer.adapt(vocab_data) - self.assertAllEqual(expected_output_shape, int_data.shape.as_list()) - model = keras.Model(input_data, int_data) - output = model.predict(input_array) - self.assertAllEqual(expected_output, output) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/regularization/BUILD b/keras/layers/regularization/BUILD deleted file mode 100644 index c49cb80ed4b..00000000000 --- a/keras/layers/regularization/BUILD +++ /dev/null @@ -1,212 +0,0 @@ -# Description: -# Contains the Keras regularization layers. - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/py/tensorflow_gnn:__subpackages__", - "//third_party/tensorflow/python/distribute:__pkg__", - "//third_party/tensorflow/python/feature_column:__pkg__", - "//third_party/tensorflow/python/training/tracking:__pkg__", - "//third_party/tensorflow/tools/pip_package:__pkg__", - "//third_party/tensorflow_models/official/projects/residual_mobilenet/modeling/backbones:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "regularization", - srcs = ["__init__.py"], - srcs_version = "PY3", - deps = [ - ":activity_regularization", - ":alpha_dropout", - ":dropout", - ":gaussian_dropout", - ":gaussian_noise", - ":spatial_dropout1d", - ":spatial_dropout2d", - ":spatial_dropout3d", - ], -) - -py_library( - name = "dropout", - srcs = ["dropout.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/utils:control_flow_util", - ], -) - -py_library( - name = "spatial_dropout1d", - srcs = ["spatial_dropout1d.py"], - srcs_version = "PY3", - deps = [ - ":dropout", - "//:expect_tensorflow_installed", - "//keras/engine:input_spec", - ], -) - -py_library( - name = "spatial_dropout2d", - srcs = ["spatial_dropout2d.py"], - srcs_version = "PY3", - deps = [ - ":dropout", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:input_spec", - ], -) - -py_library( - name = "spatial_dropout3d", - srcs = ["spatial_dropout3d.py"], - srcs_version = "PY3", - deps = [ - ":dropout", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:input_spec", - ], -) - -py_library( - name = "gaussian_dropout", - srcs = ["gaussian_dropout.py"], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "gaussian_noise", - srcs = ["gaussian_noise.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "activity_regularization", - srcs = ["activity_regularization.py"], - srcs_version = "PY3", - deps = [ - "//keras:regularizers", - "//keras/engine:base_layer", - ], -) - -py_library( - name = "alpha_dropout", - srcs = ["alpha_dropout.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/utils:tf_utils", - ], -) - -tf_py_test( - name = "dropout_test", - size = "medium", - srcs = ["dropout_test.py"], - python_version = "PY3", - shard_count = 3, - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "spatial_dropout_test", - size = "medium", - srcs = ["spatial_dropout_test.py"], - python_version = "PY3", - shard_count = 3, - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "gaussian_dropout_test", - size = "medium", - srcs = ["gaussian_dropout_test.py"], - python_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "gaussian_noise_test", - size = "medium", - srcs = ["gaussian_noise_test.py"], - python_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "activity_regularization_test", - size = "medium", - srcs = ["activity_regularization_test.py"], - python_version = "PY3", - shard_count = 3, - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "alpha_dropout_test", - size = "medium", - srcs = ["alpha_dropout_test.py"], - python_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) diff --git a/keras/layers/regularization/__init__.py b/keras/layers/regularization/__init__.py deleted file mode 100644 index 60e910e8ef6..00000000000 --- a/keras/layers/regularization/__init__.py +++ /dev/null @@ -1,27 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras regularization layers.""" - - -from keras.layers.regularization.activity_regularization import ( - ActivityRegularization, -) -from keras.layers.regularization.alpha_dropout import AlphaDropout -from keras.layers.regularization.dropout import Dropout -from keras.layers.regularization.gaussian_dropout import GaussianDropout -from keras.layers.regularization.gaussian_noise import GaussianNoise -from keras.layers.regularization.spatial_dropout1d import SpatialDropout1D -from keras.layers.regularization.spatial_dropout2d import SpatialDropout2D -from keras.layers.regularization.spatial_dropout3d import SpatialDropout3D diff --git a/keras/layers/regularization/activity_regularization.py b/keras/layers/regularization/activity_regularization.py deleted file mode 100644 index 977b7d24e56..00000000000 --- a/keras/layers/regularization/activity_regularization.py +++ /dev/null @@ -1,56 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the ActivityRegularization layer.""" - - -from keras import regularizers -from keras.engine.base_layer import Layer - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.ActivityRegularization") -class ActivityRegularization(Layer): - """Layer that applies an update to the cost function based input activity. - - Args: - l1: L1 regularization factor (positive float). - l2: L2 regularization factor (positive float). - - Input shape: - Arbitrary. Use the keyword argument `input_shape` - (tuple of integers, does not include the samples axis) - when using this layer as the first layer in a model. - - Output shape: - Same shape as input. - """ - - def __init__(self, l1=0.0, l2=0.0, **kwargs): - super().__init__( - activity_regularizer=regularizers.L1L2(l1=l1, l2=l2), **kwargs - ) - self.supports_masking = True - self.l1 = l1 - self.l2 = l2 - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = {"l1": self.l1, "l2": self.l2} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/regularization/activity_regularization_test.py b/keras/layers/regularization/activity_regularization_test.py deleted file mode 100644 index a98d57cc038..00000000000 --- a/keras/layers/regularization/activity_regularization_test.py +++ /dev/null @@ -1,35 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for activity regularization layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations - - -@test_combinations.run_all_keras_modes -class ActivityRegularizationTest(test_combinations.TestCase): - def test_activity_regularization(self): - layer = keras.layers.ActivityRegularization(l1=0.1) - layer(keras.backend.variable(np.ones((2, 4)))) - self.assertEqual(1, len(layer.losses)) - config = layer.get_config() - self.assertEqual(config.pop("l1"), 0.1) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/regularization/alpha_dropout.py b/keras/layers/regularization/alpha_dropout.py deleted file mode 100644 index 5c00ab34724..00000000000 --- a/keras/layers/regularization/alpha_dropout.py +++ /dev/null @@ -1,104 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the AlphaDropout layer.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.AlphaDropout") -class AlphaDropout(base_layer.BaseRandomLayer): - """Applies Alpha Dropout to the input. - - Alpha Dropout is a `Dropout` that keeps mean and variance of inputs - to their original values, in order to ensure the self-normalizing property - even after this dropout. - Alpha Dropout fits well to Scaled Exponential Linear Units - by randomly setting activations to the negative saturation value. - - Args: - rate: float, drop probability (as with `Dropout`). - The multiplicative noise will have - standard deviation `sqrt(rate / (1 - rate))`. - seed: Integer, optional random seed to enable deterministic behavior. - - Call arguments: - inputs: Input tensor (of any rank). - training: Python boolean indicating whether the layer should behave in - training mode (adding dropout) or in inference mode (doing nothing). - - Input shape: - Arbitrary. Use the keyword argument `input_shape` - (tuple of integers, does not include the samples axis) - when using this layer as the first layer in a model. - - Output shape: - Same shape as input. - """ - - def __init__(self, rate, noise_shape=None, seed=None, **kwargs): - super().__init__(seed=seed, **kwargs) - self.rate = rate - self.noise_shape = noise_shape - self.seed = seed - self.supports_masking = True - - def _get_noise_shape(self, inputs): - return self.noise_shape if self.noise_shape else tf.shape(inputs) - - def call(self, inputs, training=None): - if 0.0 < self.rate < 1.0: - noise_shape = self._get_noise_shape(inputs) - - def dropped_inputs(inputs=inputs, rate=self.rate): - alpha = 1.6732632423543772848170429916717 - scale = 1.0507009873554804934193349852946 - alpha_p = -alpha * scale - - kept_idx = tf.greater_equal( - self._random_generator.random_uniform(noise_shape), rate - ) - kept_idx = tf.cast(kept_idx, inputs.dtype) - - # Get affine transformation params - a = ((1 - rate) * (1 + rate * alpha_p**2)) ** -0.5 - b = -a * alpha_p * rate - - # Apply mask - x = inputs * kept_idx + alpha_p * (1 - kept_idx) - - # Do affine transformation - return a * x + b - - return backend.in_train_phase( - dropped_inputs, inputs, training=training - ) - return inputs - - def get_config(self): - config = {"rate": self.rate, "seed": self.seed} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - return input_shape diff --git a/keras/layers/regularization/alpha_dropout_test.py b/keras/layers/regularization/alpha_dropout_test.py deleted file mode 100644 index b466acf4fe8..00000000000 --- a/keras/layers/regularization/alpha_dropout_test.py +++ /dev/null @@ -1,59 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for alpha dropout layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class AlphaDropoutTest(test_combinations.TestCase): - def test_AlphaDropout(self): - test_utils.layer_test( - keras.layers.AlphaDropout, - kwargs={"rate": 0.2}, - input_shape=(3, 2, 3), - ) - - def _make_model(self, dtype): - assert dtype in (tf.float32, tf.float64) - model = keras.Sequential() - model.add(keras.layers.Dense(8, input_shape=(32,), dtype=dtype)) - layer = keras.layers.AlphaDropout(0.5, dtype=dtype) - model.add(layer) - return model - - def _train_model(self, dtype): - model = self._make_model(dtype) - model.compile( - optimizer="sgd", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((8, 32)), np.zeros((8, 8))) - - def test_alpha_dropout_float32(self): - self._train_model(tf.float32) - - def test_alpha_dropout_float64(self): - self._train_model(tf.float64) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/regularization/dropout.py b/keras/layers/regularization/dropout.py deleted file mode 100644 index 17374afcdf3..00000000000 --- a/keras/layers/regularization/dropout.py +++ /dev/null @@ -1,135 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the Dropout layer.""" - -import numbers - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer -from keras.utils import control_flow_util - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Dropout") -class Dropout(base_layer.BaseRandomLayer): - """Applies Dropout to the input. - - The Dropout layer randomly sets input units to 0 with a frequency of `rate` - at each step during training time, which helps prevent overfitting. - Inputs not set to 0 are scaled up by 1/(1 - rate) such that the sum over - all inputs is unchanged. - - Note that the Dropout layer only applies when `training` is set to True - such that no values are dropped during inference. When using `model.fit`, - `training` will be appropriately set to True automatically, and in other - contexts, you can set the kwarg explicitly to True when calling the layer. - - (This is in contrast to setting `trainable=False` for a Dropout layer. - `trainable` does not affect the layer's behavior, as Dropout does - not have any variables/weights that can be frozen during training.) - - >>> tf.random.set_seed(0) - >>> layer = tf.keras.layers.Dropout(.2, input_shape=(2,)) - >>> data = np.arange(10).reshape(5, 2).astype(np.float32) - >>> print(data) - [[0. 1.] - [2. 3.] - [4. 5.] - [6. 7.] - [8. 9.]] - >>> outputs = layer(data, training=True) - >>> print(outputs) - tf.Tensor( - [[ 0. 1.25] - [ 2.5 3.75] - [ 5. 6.25] - [ 7.5 8.75] - [10. 0. ]], shape=(5, 2), dtype=float32) - - Args: - rate: Float between 0 and 1. Fraction of the input units to drop. - noise_shape: 1D integer tensor representing the shape of the - binary dropout mask that will be multiplied with the input. - For instance, if your inputs have shape - `(batch_size, timesteps, features)` and - you want the dropout mask to be the same for all timesteps, - you can use `noise_shape=(batch_size, 1, features)`. - seed: A Python integer to use as random seed. - - Call arguments: - inputs: Input tensor (of any rank). - training: Python boolean indicating whether the layer should behave in - training mode (adding dropout) or in inference mode (doing nothing). - """ - - def __init__(self, rate, noise_shape=None, seed=None, **kwargs): - super().__init__(seed=seed, **kwargs) - if isinstance(rate, (int, float)) and not 0 <= rate <= 1: - raise ValueError( - f"Invalid value {rate} received for " - "`rate`, expected a value between 0 and 1." - ) - self.rate = rate - self.noise_shape = noise_shape - self.seed = seed - self.supports_masking = True - - def _get_noise_shape(self, inputs): - # Subclasses of `Dropout` may implement `_get_noise_shape(self, - # inputs)`, which will override `self.noise_shape`, and allows for - # custom noise shapes with dynamically sized inputs. - if self.noise_shape is None: - return None - - concrete_inputs_shape = tf.shape(inputs) - noise_shape = [] - for i, value in enumerate(self.noise_shape): - noise_shape.append( - concrete_inputs_shape[i] if value is None else value - ) - return tf.convert_to_tensor(noise_shape) - - def call(self, inputs, training=None): - if isinstance(self.rate, numbers.Real) and self.rate == 0: - return tf.identity(inputs) - - if training is None: - training = backend.learning_phase() - - def dropped_inputs(): - return self._random_generator.dropout( - inputs, self.rate, noise_shape=self._get_noise_shape(inputs) - ) - - output = control_flow_util.smart_cond( - training, dropped_inputs, lambda: tf.identity(inputs) - ) - return output - - def compute_output_shape(self, input_shape): - return input_shape - - def get_config(self): - config = { - "rate": self.rate, - "noise_shape": self.noise_shape, - "seed": self.seed, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/regularization/dropout_test.py b/keras/layers/regularization/dropout_test.py deleted file mode 100644 index bf53b4a44ad..00000000000 --- a/keras/layers/regularization/dropout_test.py +++ /dev/null @@ -1,140 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for dropout layer.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class DropoutTest(test_combinations.TestCase): - def test_dropout(self): - test_utils.layer_test( - keras.layers.Dropout, kwargs={"rate": 0.5}, input_shape=(3, 2) - ) - - test_utils.layer_test( - keras.layers.Dropout, - kwargs={"rate": 0.5, "noise_shape": [3, 1]}, - input_shape=(3, 2), - ) - - def test_dropout_supports_masking(self): - dropout = keras.layers.Dropout(0.5) - self.assertEqual(True, dropout.supports_masking) - - def test_dropout_partial_noise_shape(self): - inputs = keras.Input(shape=(5, 10)) - layer = keras.layers.Dropout(0.5, noise_shape=(None, 1, None)) - outputs = layer(inputs) - model = keras.Model(inputs, outputs) - out = model(np.ones((20, 5, 10)), training=True) - out_np = keras.backend.get_value(out) - # Test that dropout mask is shared across second dim. - self.assertAllClose(out_np[:, 0, :], out_np[:, 1, :]) - - @test_utils.run_v2_only - def test_dropout_with_zero_rate(self): - inputs = np.ones((20, 5, 10)) - dropout = keras.layers.Dropout(0.0, force_generator=True) - dropout.build((20, 5, 10)) - # Make sure we don't use the RNG when the dropout rate is 0 - # (for performance). - rng_state_var = tf.constant( - dropout._random_generator._generator._state_var - ) - output = dropout(inputs, training=True) - self.assertAllClose(inputs, output) - self.assertAllClose( - rng_state_var, dropout._random_generator._generator._state_var - ) - - def test_dropout_with_savemodel(self): - inputs = keras.Input(shape=(5, 10)) - layer = keras.layers.Dropout(0.5, force_generator=True) - outputs = layer(inputs) - model = keras.Model(inputs, outputs) - train = model(np.ones((20, 5, 10)), training=True) - predict = model(np.ones((20, 5, 10))) - # Make sure the weights from tf.random.Generator is not present in the - # model which will cause weight loading issue for existing application - # models if it contains dropout layer. - self.assertEmpty(layer.get_weights()) - self.assertEmpty(model.get_weights()) - - # Make sure the layer does dropout value when training - self.assertNotAllClose(train, predict) - - model.save( - os.path.join(self.get_temp_dir(), "savedmodel"), save_format="tf" - ) - loaded_model = keras.models.load_model( - os.path.join(self.get_temp_dir(), "savedmodel") - ) - predict2 = loaded_model(np.ones((20, 5, 10))) - - self.assertAllClose(predict, predict2) - # Make sure the model dropout different value after loading - train2 = loaded_model(np.ones((20, 5, 10)), training=True) - self.assertNotAllClose(train, train2) - self.assertIsNotNone(loaded_model.layers[1]._random_generator) - - # Also make sure the checkpoint doesn't contain any variable from the - # dropout layer, to keep the backward compatibility. - checkpoint = tf.train.Checkpoint(model) - save_path = checkpoint.save( - os.path.join(self.get_temp_dir(), "checkpoint") - ) - checkpoint_var_names = [ - name_value_tuple[0] - for name_value_tuple in tf.train.list_variables(save_path) - ] - for name in checkpoint_var_names: - self.assertNotIn("dropout", name) - - # Make sure the checkpoint can be loaded - clone_model = keras.models.clone_model(model) - checkpoint = tf.train.Checkpoint(clone_model) - status = checkpoint.restore( - os.path.join(self.get_temp_dir(), "checkpoint-1") - ) - self.assertTrue(status.assert_consumed()) - self.assertTrue(status.assert_existing_objects_matched()) - # Make sure the output is differnt from the original model, since - # the StateVar is not preserved. - train3 = clone_model(np.ones((20, 5, 10)), training=True) - self.assertNotAllClose(train3, train2) - - @test_utils.run_v2_only - def test_state_variable_name(self): - inputs = keras.Input(shape=(5, 10)) - layer = keras.layers.Dropout( - 0.5, force_generator=True, name="dropout_layer" - ) - layer(inputs) - self.assertEqual( - layer._random_generator._generator._state_var.name, - "dropout_layer/StateVar:0", - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/regularization/gaussian_dropout.py b/keras/layers/regularization/gaussian_dropout.py deleted file mode 100644 index 9e9d442bbe8..00000000000 --- a/keras/layers/regularization/gaussian_dropout.py +++ /dev/null @@ -1,83 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the GaussianDropout layer.""" - - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.GaussianDropout") -class GaussianDropout(base_layer.BaseRandomLayer): - """Apply multiplicative 1-centered Gaussian noise. - - As it is a regularization layer, it is only active at training time. - - Args: - rate: Float, drop probability (as with `Dropout`). - The multiplicative noise will have - standard deviation `sqrt(rate / (1 - rate))`. - seed: Integer, optional random seed to enable deterministic behavior. - - Call arguments: - inputs: Input tensor (of any rank). - training: Python boolean indicating whether the layer should behave in - training mode (adding dropout) or in inference mode (doing nothing). - - Input shape: - Arbitrary. Use the keyword argument `input_shape` - (tuple of integers, does not include the samples axis) - when using this layer as the first layer in a model. - - Output shape: - Same shape as input. - """ - - def __init__(self, rate, seed=None, **kwargs): - super().__init__(seed=seed, **kwargs) - self.supports_masking = True - self.rate = rate - self.seed = seed - - def call(self, inputs, training=None): - if 0 < self.rate < 1: - - def noised(): - stddev = np.sqrt(self.rate / (1.0 - self.rate)) - return inputs * self._random_generator.random_normal( - shape=tf.shape(inputs), - mean=1.0, - stddev=stddev, - dtype=inputs.dtype, - ) - - return backend.in_train_phase(noised, inputs, training=training) - return inputs - - def get_config(self): - config = {"rate": self.rate, "seed": self.seed} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - return input_shape diff --git a/keras/layers/regularization/gaussian_dropout_test.py b/keras/layers/regularization/gaussian_dropout_test.py deleted file mode 100644 index b50d348e254..00000000000 --- a/keras/layers/regularization/gaussian_dropout_test.py +++ /dev/null @@ -1,59 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for gaussian dropout layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class NoiseLayersTest(test_combinations.TestCase): - def test_GaussianDropout(self): - test_utils.layer_test( - keras.layers.GaussianDropout, - kwargs={"rate": 0.5}, - input_shape=(3, 2, 3), - ) - - def _make_model(self, dtype): - assert dtype in (tf.float32, tf.float64) - model = keras.Sequential() - model.add(keras.layers.Dense(8, input_shape=(32,), dtype=dtype)) - layer = keras.layers.GaussianDropout(0.1, dtype=dtype) - model.add(layer) - return model - - def _train_model(self, dtype): - model = self._make_model(dtype) - model.compile( - optimizer="sgd", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((8, 32)), np.zeros((8, 8))) - - def test_gaussian_dropout_float32(self): - self._train_model(tf.float32) - - def test_gaussian_dropout_float64(self): - self._train_model(tf.float64) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/regularization/gaussian_noise.py b/keras/layers/regularization/gaussian_noise.py deleted file mode 100644 index f88e3a3c4a2..00000000000 --- a/keras/layers/regularization/gaussian_noise.py +++ /dev/null @@ -1,81 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the GaussianNoise layer.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.GaussianNoise") -class GaussianNoise(base_layer.BaseRandomLayer): - """Apply additive zero-centered Gaussian noise. - - This is useful to mitigate overfitting - (you could see it as a form of random data augmentation). - Gaussian Noise (GS) is a natural choice as corruption process - for real valued inputs. - - As it is a regularization layer, it is only active at training time. - - Args: - stddev: Float, standard deviation of the noise distribution. - seed: Integer, optional random seed to enable deterministic behavior. - - Call arguments: - inputs: Input tensor (of any rank). - training: Python boolean indicating whether the layer should behave in - training mode (adding noise) or in inference mode (doing nothing). - - Input shape: - Arbitrary. Use the keyword argument `input_shape` - (tuple of integers, does not include the samples axis) - when using this layer as the first layer in a model. - - Output shape: - Same shape as input. - """ - - def __init__(self, stddev, seed=None, **kwargs): - super().__init__(seed=seed, **kwargs) - self.supports_masking = True - self.stddev = stddev - self.seed = seed - - def call(self, inputs, training=None): - def noised(): - return inputs + self._random_generator.random_normal( - shape=tf.shape(inputs), - mean=0.0, - stddev=self.stddev, - dtype=inputs.dtype, - ) - - return backend.in_train_phase(noised, inputs, training=training) - - def get_config(self): - config = {"stddev": self.stddev, "seed": self.seed} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - return input_shape diff --git a/keras/layers/regularization/gaussian_noise_test.py b/keras/layers/regularization/gaussian_noise_test.py deleted file mode 100644 index b67084e053f..00000000000 --- a/keras/layers/regularization/gaussian_noise_test.py +++ /dev/null @@ -1,59 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for gaussian noise layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class NoiseLayersTest(test_combinations.TestCase): - def test_GaussianNoise(self): - test_utils.layer_test( - keras.layers.GaussianNoise, - kwargs={"stddev": 1.0}, - input_shape=(3, 2, 3), - ) - - def _make_model(self, dtype): - assert dtype in (tf.float32, tf.float64) - model = keras.Sequential() - model.add(keras.layers.Dense(8, input_shape=(32,), dtype=dtype)) - layer = keras.layers.GaussianNoise(0.0003, dtype=dtype) - model.add(layer) - return model - - def _train_model(self, dtype): - model = self._make_model(dtype) - model.compile( - optimizer="sgd", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((8, 32)), np.zeros((8, 8))) - - def test_gaussian_noise_float32(self): - self._train_model(tf.float32) - - def test_gaussian_noise_float64(self): - self._train_model(tf.float64) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/regularization/spatial_dropout1d.py b/keras/layers/regularization/spatial_dropout1d.py deleted file mode 100644 index 7a3672c9d29..00000000000 --- a/keras/layers/regularization/spatial_dropout1d.py +++ /dev/null @@ -1,59 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the SpatialDropout1D layer.""" - - -import tensorflow.compat.v2 as tf - -from keras.engine.input_spec import InputSpec -from keras.layers.regularization.dropout import Dropout - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.SpatialDropout1D") -class SpatialDropout1D(Dropout): - """Spatial 1D version of Dropout. - - This version performs the same function as Dropout, however, it drops - entire 1D feature maps instead of individual elements. If adjacent frames - within feature maps are strongly correlated (as is normally the case in - early convolution layers) then regular dropout will not regularize the - activations and will otherwise just result in an effective learning rate - decrease. In this case, SpatialDropout1D will help promote independence - between feature maps and should be used instead. - - Args: - rate: Float between 0 and 1. Fraction of the input units to drop. - Call arguments: - inputs: A 3D tensor. - training: Python boolean indicating whether the layer should behave in - training mode (adding dropout) or in inference mode (doing nothing). - Input shape: - 3D tensor with shape: `(samples, timesteps, channels)` - Output shape: Same as input. - References: - [Efficient Object Localization Using Convolutional - Networks](https://arxiv.org/abs/1411.4280) - """ - - def __init__(self, rate, **kwargs): - super().__init__(rate, **kwargs) - self.input_spec = InputSpec(ndim=3) - - def _get_noise_shape(self, inputs): - input_shape = tf.shape(inputs) - noise_shape = (input_shape[0], 1, input_shape[2]) - return noise_shape diff --git a/keras/layers/regularization/spatial_dropout2d.py b/keras/layers/regularization/spatial_dropout2d.py deleted file mode 100644 index 4593d922029..00000000000 --- a/keras/layers/regularization/spatial_dropout2d.py +++ /dev/null @@ -1,79 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the SpatialDropout2D layer.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.input_spec import InputSpec -from keras.layers.regularization.dropout import Dropout - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.SpatialDropout2D") -class SpatialDropout2D(Dropout): - """Spatial 2D version of Dropout. - - This version performs the same function as Dropout, however, it drops - entire 2D feature maps instead of individual elements. If adjacent pixels - within feature maps are strongly correlated (as is normally the case in - early convolution layers) then regular dropout will not regularize the - activations and will otherwise just result in an effective learning rate - decrease. In this case, SpatialDropout2D will help promote independence - between feature maps and should be used instead. - - Args: - rate: Float between 0 and 1. Fraction of the input units to drop. - data_format: 'channels_first' or 'channels_last'. In 'channels_first' - mode, the channels dimension (the depth) is at index 1, in - 'channels_last' mode is it at index 3. It defaults to the - `image_data_format` value found in your Keras config file at - `~/.keras/keras.json`. If you never set it, then it will be - "channels_last". - Call arguments: - inputs: A 4D tensor. - training: Python boolean indicating whether the layer should behave in - training mode (adding dropout) or in inference mode (doing nothing). - Input shape: - 4D tensor with shape: `(samples, channels, rows, cols)` if - data_format='channels_first' - or 4D tensor with shape: `(samples, rows, cols, channels)` if - data_format='channels_last'. - Output shape: Same as input. - References: - [Efficient Object Localization Using Convolutional - Networks](https://arxiv.org/abs/1411.4280) - """ - - def __init__(self, rate, data_format=None, **kwargs): - super().__init__(rate, **kwargs) - if data_format is None: - data_format = backend.image_data_format() - if data_format not in {"channels_last", "channels_first"}: - raise ValueError( - '`data_format` must be "channels_last" or "channels_first". ' - f"Received: data_format={data_format}." - ) - self.data_format = data_format - self.input_spec = InputSpec(ndim=4) - - def _get_noise_shape(self, inputs): - input_shape = tf.shape(inputs) - if self.data_format == "channels_first": - return (input_shape[0], input_shape[1], 1, 1) - elif self.data_format == "channels_last": - return (input_shape[0], 1, 1, input_shape[3]) diff --git a/keras/layers/regularization/spatial_dropout3d.py b/keras/layers/regularization/spatial_dropout3d.py deleted file mode 100644 index fb54f924c93..00000000000 --- a/keras/layers/regularization/spatial_dropout3d.py +++ /dev/null @@ -1,79 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the SpatialDropout3D layer.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.input_spec import InputSpec -from keras.layers.regularization.dropout import Dropout - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.SpatialDropout3D") -class SpatialDropout3D(Dropout): - """Spatial 3D version of Dropout. - - This version performs the same function as Dropout, however, it drops - entire 3D feature maps instead of individual elements. If adjacent voxels - within feature maps are strongly correlated (as is normally the case in - early convolution layers) then regular dropout will not regularize the - activations and will otherwise just result in an effective learning rate - decrease. In this case, SpatialDropout3D will help promote independence - between feature maps and should be used instead. - - Args: - rate: Float between 0 and 1. Fraction of the input units to drop. - data_format: 'channels_first' or 'channels_last'. In 'channels_first' - mode, the channels dimension (the depth) is at index 1, in - 'channels_last' mode is it at index 4. It defaults to the - `image_data_format` value found in your Keras config file at - `~/.keras/keras.json`. If you never set it, then it will be - "channels_last". - Call arguments: - inputs: A 5D tensor. - training: Python boolean indicating whether the layer should behave in - training mode (adding dropout) or in inference mode (doing nothing). - Input shape: - 5D tensor with shape: `(samples, channels, dim1, dim2, dim3)` if - data_format='channels_first' - or 5D tensor with shape: `(samples, dim1, dim2, dim3, channels)` if - data_format='channels_last'. - Output shape: Same as input. - References: - [Efficient Object Localization Using Convolutional - Networks](https://arxiv.org/abs/1411.4280) - """ - - def __init__(self, rate, data_format=None, **kwargs): - super().__init__(rate, **kwargs) - if data_format is None: - data_format = backend.image_data_format() - if data_format not in {"channels_last", "channels_first"}: - raise ValueError( - '`data_format` must be "channels_last" or "channels_first". ' - f"Received: data_format={data_format}." - ) - self.data_format = data_format - self.input_spec = InputSpec(ndim=5) - - def _get_noise_shape(self, inputs): - input_shape = tf.shape(inputs) - if self.data_format == "channels_first": - return (input_shape[0], input_shape[1], 1, 1, 1) - elif self.data_format == "channels_last": - return (input_shape[0], 1, 1, 1, input_shape[4]) diff --git a/keras/layers/regularization/spatial_dropout_test.py b/keras/layers/regularization/spatial_dropout_test.py deleted file mode 100644 index 66ac40ec242..00000000000 --- a/keras/layers/regularization/spatial_dropout_test.py +++ /dev/null @@ -1,61 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for spatial dropout layers.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class SpacialDropoutTest(test_combinations.TestCase): - def test_spatial_dropout_1d(self): - test_utils.layer_test( - keras.layers.SpatialDropout1D, - kwargs={"rate": 0.5}, - input_shape=(2, 3, 4), - ) - - def test_spatial_dropout_2d(self): - test_utils.layer_test( - keras.layers.SpatialDropout2D, - kwargs={"rate": 0.5}, - input_shape=(2, 3, 4, 5), - ) - - test_utils.layer_test( - keras.layers.SpatialDropout2D, - kwargs={"rate": 0.5, "data_format": "channels_first"}, - input_shape=(2, 3, 4, 5), - ) - - def test_spatial_dropout_3d(self): - test_utils.layer_test( - keras.layers.SpatialDropout3D, - kwargs={"rate": 0.5}, - input_shape=(2, 3, 4, 4, 5), - ) - - test_utils.layer_test( - keras.layers.SpatialDropout3D, - kwargs={"rate": 0.5, "data_format": "channels_first"}, - input_shape=(2, 3, 4, 4, 5), - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/reshaping/BUILD b/keras/layers/reshaping/BUILD deleted file mode 100644 index 0fd9bdb8d92..00000000000 --- a/keras/layers/reshaping/BUILD +++ /dev/null @@ -1,309 +0,0 @@ -# Description: -# Contains the Keras reshaping layers. - -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -# buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:__subpackages__", - "//third_party/tensorflow/python/distribute:__pkg__", - "//third_party/tensorflow/python/feature_column:__pkg__", - "//third_party/tensorflow/python/keras:__subpackages__", - "//third_party/tensorflow/python/training/tracking:__pkg__", - "//third_party/tensorflow/tools/pip_package:__pkg__", - "//third_party/tensorflow_models/official/projects/residual_mobilenet/modeling/backbones:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "reshaping", - srcs = [ - "__init__.py", - ], - srcs_version = "PY3", - deps = [ - ":cropping1d", - ":cropping2d", - ":cropping3d", - ":flatten", - ":permute", - ":repeat_vector", - ":reshape", - ":up_sampling1d", - ":up_sampling2d", - ":up_sampling3d", - ":zero_padding1d", - ":zero_padding2d", - ":zero_padding3d", - ], -) - -py_library( - name = "cropping1d", - srcs = ["cropping1d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "cropping2d", - srcs = ["cropping2d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "cropping3d", - srcs = ["cropping3d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "flatten", - srcs = ["flatten.py"], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "permute", - srcs = ["permute.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - ], -) - -py_library( - name = "repeat_vector", - srcs = ["repeat_vector.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - ], -) - -py_library( - name = "reshape", - srcs = ["reshape.py"], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - ], -) - -py_library( - name = "up_sampling1d", - srcs = ["up_sampling1d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - ], -) - -py_library( - name = "up_sampling2d", - srcs = ["up_sampling2d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "up_sampling3d", - srcs = ["up_sampling3d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "zero_padding1d", - srcs = ["zero_padding1d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "zero_padding2d", - srcs = ["zero_padding2d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "zero_padding3d", - srcs = ["zero_padding3d.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - ], -) - -cuda_py_test( - name = "cropping_test", - size = "medium", - srcs = ["cropping_test.py"], - python_version = "PY3", - shard_count = 8, - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "flatten_test", - size = "medium", - srcs = ["flatten_test.py"], - python_version = "PY3", - shard_count = 3, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "permute_test", - size = "medium", - srcs = ["permute_test.py"], - python_version = "PY3", - shard_count = 3, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "repeat_vector_test", - size = "medium", - srcs = ["repeat_vector_test.py"], - python_version = "PY3", - shard_count = 3, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "reshape_test", - size = "medium", - srcs = ["reshape_test.py"], - python_version = "PY3", - shard_count = 3, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "up_sampling_test", - size = "medium", - srcs = ["up_sampling_test.py"], - python_version = "PY3", - shard_count = 8, - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -cuda_py_test( - name = "zero_padding_test", - size = "medium", - srcs = ["zero_padding_test.py"], - python_version = "PY3", - shard_count = 8, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) diff --git a/keras/layers/reshaping/__init__.py b/keras/layers/reshaping/__init__.py deleted file mode 100644 index fcf860c527e..00000000000 --- a/keras/layers/reshaping/__init__.py +++ /dev/null @@ -1,29 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras reshaping layers layers.""" - -from keras.layers.reshaping.cropping1d import Cropping1D -from keras.layers.reshaping.cropping2d import Cropping2D -from keras.layers.reshaping.cropping3d import Cropping3D -from keras.layers.reshaping.flatten import Flatten -from keras.layers.reshaping.permute import Permute -from keras.layers.reshaping.repeat_vector import RepeatVector -from keras.layers.reshaping.reshape import Reshape -from keras.layers.reshaping.up_sampling1d import UpSampling1D -from keras.layers.reshaping.up_sampling2d import UpSampling2D -from keras.layers.reshaping.up_sampling3d import UpSampling3D -from keras.layers.reshaping.zero_padding1d import ZeroPadding1D -from keras.layers.reshaping.zero_padding2d import ZeroPadding2D -from keras.layers.reshaping.zero_padding3d import ZeroPadding3D diff --git a/keras/layers/reshaping/cropping1d.py b/keras/layers/reshaping/cropping1d.py deleted file mode 100644 index 2eb632e38d0..00000000000 --- a/keras/layers/reshaping/cropping1d.py +++ /dev/null @@ -1,97 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras cropping layer for 1D input.""" - - -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Cropping1D") -class Cropping1D(Layer): - """Cropping layer for 1D input (e.g. temporal sequence). - - It crops along the time dimension (axis 1). - - Examples: - - >>> input_shape = (2, 3, 2) - >>> x = np.arange(np.prod(input_shape)).reshape(input_shape) - >>> print(x) - [[[ 0 1] - [ 2 3] - [ 4 5]] - [[ 6 7] - [ 8 9] - [10 11]]] - >>> y = tf.keras.layers.Cropping1D(cropping=1)(x) - >>> print(y) - tf.Tensor( - [[[2 3]] - [[8 9]]], shape=(2, 1, 2), dtype=int64) - - Args: - cropping: Int or tuple of int (length 2) - How many units should be trimmed off at the beginning and end of - the cropping dimension (axis 1). - If a single int is provided, the same value will be used for both. - - Input shape: - 3D tensor with shape `(batch_size, axis_to_crop, features)` - - Output shape: - 3D tensor with shape `(batch_size, cropped_axis, features)` - """ - - def __init__(self, cropping=(1, 1), **kwargs): - super().__init__(**kwargs) - self.cropping = conv_utils.normalize_tuple( - cropping, 2, "cropping", allow_zero=True - ) - self.input_spec = InputSpec(ndim=3) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if input_shape[1] is not None: - length = input_shape[1] - self.cropping[0] - self.cropping[1] - else: - length = None - return tf.TensorShape([input_shape[0], length, input_shape[2]]) - - def call(self, inputs): - if ( - inputs.shape[1] is not None - and sum(self.cropping) >= inputs.shape[1] - ): - raise ValueError( - "cropping parameter of Cropping layer must be " - "greater than the input shape. Received: inputs.shape=" - f"{inputs.shape}, and cropping={self.cropping}" - ) - if self.cropping[1] == 0: - return inputs[:, self.cropping[0] :, :] - else: - return inputs[:, self.cropping[0] : -self.cropping[1], :] - - def get_config(self): - config = {"cropping": self.cropping} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/reshaping/cropping2d.py b/keras/layers/reshaping/cropping2d.py deleted file mode 100644 index d09e5d16a7c..00000000000 --- a/keras/layers/reshaping/cropping2d.py +++ /dev/null @@ -1,218 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras cropping layer for 2D input.""" - - -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Cropping2D") -class Cropping2D(Layer): - """Cropping layer for 2D input (e.g. picture). - - It crops along spatial dimensions, i.e. height and width. - - Examples: - - >>> input_shape = (2, 28, 28, 3) - >>> x = np.arange(np.prod(input_shape)).reshape(input_shape) - >>> y = tf.keras.layers.Cropping2D(cropping=((2, 2), (4, 4)))(x) - >>> print(y.shape) - (2, 24, 20, 3) - - Args: - cropping: Int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints. - - If int: the same symmetric cropping - is applied to height and width. - - If tuple of 2 ints: - interpreted as two different - symmetric cropping values for height and width: - `(symmetric_height_crop, symmetric_width_crop)`. - - If tuple of 2 tuples of 2 ints: - interpreted as - `((top_crop, bottom_crop), (left_crop, right_crop))` - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch_size, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch_size, channels, height, width)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - - Input shape: - 4D tensor with shape: - - If `data_format` is `"channels_last"`: - `(batch_size, rows, cols, channels)` - - If `data_format` is `"channels_first"`: - `(batch_size, channels, rows, cols)` - - Output shape: - 4D tensor with shape: - - If `data_format` is `"channels_last"`: - `(batch_size, cropped_rows, cropped_cols, channels)` - - If `data_format` is `"channels_first"`: - `(batch_size, channels, cropped_rows, cropped_cols)` - """ - - def __init__(self, cropping=((0, 0), (0, 0)), data_format=None, **kwargs): - super().__init__(**kwargs) - self.data_format = conv_utils.normalize_data_format(data_format) - if isinstance(cropping, int): - self.cropping = ((cropping, cropping), (cropping, cropping)) - elif hasattr(cropping, "__len__"): - if len(cropping) != 2: - raise ValueError( - "`cropping` should have two elements. " - f"Received: {cropping}." - ) - height_cropping = conv_utils.normalize_tuple( - cropping[0], 2, "1st entry of cropping", allow_zero=True - ) - width_cropping = conv_utils.normalize_tuple( - cropping[1], 2, "2nd entry of cropping", allow_zero=True - ) - self.cropping = (height_cropping, width_cropping) - else: - raise ValueError( - "`cropping` should be either an int, " - "a tuple of 2 ints " - "(symmetric_height_crop, symmetric_width_crop), " - "or a tuple of 2 tuples of 2 ints " - "((top_crop, bottom_crop), (left_crop, right_crop)). " - f"Received: {cropping}." - ) - self.input_spec = InputSpec(ndim=4) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - - if self.data_format == "channels_first": - return tf.TensorShape( - [ - input_shape[0], - input_shape[1], - input_shape[2] - self.cropping[0][0] - self.cropping[0][1] - if input_shape[2] - else None, - input_shape[3] - self.cropping[1][0] - self.cropping[1][1] - if input_shape[3] - else None, - ] - ) - else: - return tf.TensorShape( - [ - input_shape[0], - input_shape[1] - self.cropping[0][0] - self.cropping[0][1] - if input_shape[1] - else None, - input_shape[2] - self.cropping[1][0] - self.cropping[1][1] - if input_shape[2] - else None, - input_shape[3], - ] - ) - - def call(self, inputs): - - if self.data_format == "channels_first": - if ( - inputs.shape[2] is not None - and sum(self.cropping[0]) >= inputs.shape[2] - ) or ( - inputs.shape[3] is not None - and sum(self.cropping[1]) >= inputs.shape[3] - ): - raise ValueError( - "Argument `cropping` must be " - "greater than the input shape. Received: inputs.shape=" - f"{inputs.shape}, and cropping={self.cropping}" - ) - if self.cropping[0][1] == self.cropping[1][1] == 0: - return inputs[ - :, :, self.cropping[0][0] :, self.cropping[1][0] : - ] - elif self.cropping[0][1] == 0: - return inputs[ - :, - :, - self.cropping[0][0] :, - self.cropping[1][0] : -self.cropping[1][1], - ] - elif self.cropping[1][1] == 0: - return inputs[ - :, - :, - self.cropping[0][0] : -self.cropping[0][1], - self.cropping[1][0] :, - ] - return inputs[ - :, - :, - self.cropping[0][0] : -self.cropping[0][1], - self.cropping[1][0] : -self.cropping[1][1], - ] - else: - if ( - inputs.shape[1] is not None - and sum(self.cropping[0]) >= inputs.shape[1] - ) or ( - inputs.shape[2] is not None - and sum(self.cropping[1]) >= inputs.shape[2] - ): - raise ValueError( - "Argument `cropping` must be " - "greater than the input shape. Received: inputs.shape=" - f"{inputs.shape}, and cropping={self.cropping}" - ) - if self.cropping[0][1] == self.cropping[1][1] == 0: - return inputs[ - :, self.cropping[0][0] :, self.cropping[1][0] :, : - ] - elif self.cropping[0][1] == 0: - return inputs[ - :, - self.cropping[0][0] :, - self.cropping[1][0] : -self.cropping[1][1], - :, - ] - elif self.cropping[1][1] == 0: - return inputs[ - :, - self.cropping[0][0] : -self.cropping[0][1], - self.cropping[1][0] :, - :, - ] - return inputs[ - :, - self.cropping[0][0] : -self.cropping[0][1], - self.cropping[1][0] : -self.cropping[1][1], - :, - ] - - def get_config(self): - config = {"cropping": self.cropping, "data_format": self.data_format} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/reshaping/cropping3d.py b/keras/layers/reshaping/cropping3d.py deleted file mode 100644 index 63e31ec7aaa..00000000000 --- a/keras/layers/reshaping/cropping3d.py +++ /dev/null @@ -1,312 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras cropping layer for 3D input.""" - - -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Cropping3D") -class Cropping3D(Layer): - """Cropping layer for 3D data (e.g. spatial or spatio-temporal). - - Examples: - - >>> input_shape = (2, 28, 28, 10, 3) - >>> x = np.arange(np.prod(input_shape)).reshape(input_shape) - >>> y = tf.keras.layers.Cropping3D(cropping=(2, 4, 2))(x) - >>> print(y.shape) - (2, 24, 20, 6, 3) - - Args: - cropping: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints. - - If int: the same symmetric cropping - is applied to depth, height, and width. - - If tuple of 3 ints: interpreted as two different - symmetric cropping values for depth, height, and width: - `(symmetric_dim1_crop, symmetric_dim2_crop, symmetric_dim3_crop)`. - - If tuple of 3 tuples of 2 ints: interpreted as - `((left_dim1_crop, right_dim1_crop), (left_dim2_crop, - right_dim2_crop), (left_dim3_crop, right_dim3_crop))` - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - while `channels_first` corresponds to inputs with shape - `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - - Input shape: - 5D tensor with shape: - - If `data_format` is `"channels_last"`: - `(batch_size, first_axis_to_crop, second_axis_to_crop, - third_axis_to_crop, depth)` - - If `data_format` is `"channels_first"`: - `(batch_size, depth, first_axis_to_crop, second_axis_to_crop, - third_axis_to_crop)` - - Output shape: - 5D tensor with shape: - - If `data_format` is `"channels_last"`: - `(batch_size, first_cropped_axis, second_cropped_axis, - third_cropped_axis, depth)` - - If `data_format` is `"channels_first"`: - `(batch_size, depth, first_cropped_axis, second_cropped_axis, - third_cropped_axis)` - """ - - def __init__( - self, cropping=((1, 1), (1, 1), (1, 1)), data_format=None, **kwargs - ): - super().__init__(**kwargs) - self.data_format = conv_utils.normalize_data_format(data_format) - if isinstance(cropping, int): - self.cropping = ( - (cropping, cropping), - (cropping, cropping), - (cropping, cropping), - ) - elif hasattr(cropping, "__len__"): - if len(cropping) != 3: - raise ValueError( - f"`cropping` should have 3 elements. Received: {cropping}." - ) - dim1_cropping = conv_utils.normalize_tuple( - cropping[0], 2, "1st entry of cropping", allow_zero=True - ) - dim2_cropping = conv_utils.normalize_tuple( - cropping[1], 2, "2nd entry of cropping", allow_zero=True - ) - dim3_cropping = conv_utils.normalize_tuple( - cropping[2], 2, "3rd entry of cropping", allow_zero=True - ) - self.cropping = (dim1_cropping, dim2_cropping, dim3_cropping) - else: - raise ValueError( - "`cropping` should be either an int, " - "a tuple of 3 ints " - "(symmetric_dim1_crop, symmetric_dim2_crop, " - "symmetric_dim3_crop), " - "or a tuple of 3 tuples of 2 ints " - "((left_dim1_crop, right_dim1_crop)," - " (left_dim2_crop, right_dim2_crop)," - " (left_dim3_crop, right_dim2_crop)). " - f"Received: {cropping}." - ) - self.input_spec = InputSpec(ndim=5) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - - if self.data_format == "channels_first": - if input_shape[2] is not None: - dim1 = ( - input_shape[2] - self.cropping[0][0] - self.cropping[0][1] - ) - else: - dim1 = None - if input_shape[3] is not None: - dim2 = ( - input_shape[3] - self.cropping[1][0] - self.cropping[1][1] - ) - else: - dim2 = None - if input_shape[4] is not None: - dim3 = ( - input_shape[4] - self.cropping[2][0] - self.cropping[2][1] - ) - else: - dim3 = None - return tf.TensorShape( - [input_shape[0], input_shape[1], dim1, dim2, dim3] - ) - elif self.data_format == "channels_last": - if input_shape[1] is not None: - dim1 = ( - input_shape[1] - self.cropping[0][0] - self.cropping[0][1] - ) - else: - dim1 = None - if input_shape[2] is not None: - dim2 = ( - input_shape[2] - self.cropping[1][0] - self.cropping[1][1] - ) - else: - dim2 = None - if input_shape[3] is not None: - dim3 = ( - input_shape[3] - self.cropping[2][0] - self.cropping[2][1] - ) - else: - dim3 = None - return tf.TensorShape( - [input_shape[0], dim1, dim2, dim3, input_shape[4]] - ) - - def call(self, inputs): - - if self.data_format == "channels_first": - if ( - self.cropping[0][1] - == self.cropping[1][1] - == self.cropping[2][1] - == 0 - ): - return inputs[ - :, - :, - self.cropping[0][0] :, - self.cropping[1][0] :, - self.cropping[2][0] :, - ] - elif self.cropping[0][1] == self.cropping[1][1] == 0: - return inputs[ - :, - :, - self.cropping[0][0] :, - self.cropping[1][0] :, - self.cropping[2][0] : -self.cropping[2][1], - ] - elif self.cropping[1][1] == self.cropping[2][1] == 0: - return inputs[ - :, - :, - self.cropping[0][0] : -self.cropping[0][1], - self.cropping[1][0] :, - self.cropping[2][0] :, - ] - elif self.cropping[0][1] == self.cropping[2][1] == 0: - return inputs[ - :, - :, - self.cropping[0][0] :, - self.cropping[1][0] : -self.cropping[1][1], - self.cropping[2][0] :, - ] - elif self.cropping[0][1] == 0: - return inputs[ - :, - :, - self.cropping[0][0] :, - self.cropping[1][0] : -self.cropping[1][1], - self.cropping[2][0] : -self.cropping[2][1], - ] - elif self.cropping[1][1] == 0: - return inputs[ - :, - :, - self.cropping[0][0] : -self.cropping[0][1], - self.cropping[1][0] :, - self.cropping[2][0] : -self.cropping[2][1], - ] - elif self.cropping[2][1] == 0: - return inputs[ - :, - :, - self.cropping[0][0] : -self.cropping[0][1], - self.cropping[1][0] : -self.cropping[1][1], - self.cropping[2][0] :, - ] - return inputs[ - :, - :, - self.cropping[0][0] : -self.cropping[0][1], - self.cropping[1][0] : -self.cropping[1][1], - self.cropping[2][0] : -self.cropping[2][1], - ] - else: - if ( - self.cropping[0][1] - == self.cropping[1][1] - == self.cropping[2][1] - == 0 - ): - return inputs[ - :, - self.cropping[0][0] :, - self.cropping[1][0] :, - self.cropping[2][0] :, - :, - ] - elif self.cropping[0][1] == self.cropping[1][1] == 0: - return inputs[ - :, - self.cropping[0][0] :, - self.cropping[1][0] :, - self.cropping[2][0] : -self.cropping[2][1], - :, - ] - elif self.cropping[1][1] == self.cropping[2][1] == 0: - return inputs[ - :, - self.cropping[0][0] : -self.cropping[0][1], - self.cropping[1][0] :, - self.cropping[2][0] :, - :, - ] - elif self.cropping[0][1] == self.cropping[2][1] == 0: - return inputs[ - :, - self.cropping[0][0] :, - self.cropping[1][0] : -self.cropping[1][1], - self.cropping[2][0] :, - :, - ] - elif self.cropping[0][1] == 0: - return inputs[ - :, - self.cropping[0][0] :, - self.cropping[1][0] : -self.cropping[1][1], - self.cropping[2][0] : -self.cropping[2][1], - :, - ] - elif self.cropping[1][1] == 0: - return inputs[ - :, - self.cropping[0][0] : -self.cropping[0][1], - self.cropping[1][0] :, - self.cropping[2][0] : -self.cropping[2][1], - :, - ] - elif self.cropping[2][1] == 0: - return inputs[ - :, - self.cropping[0][0] : -self.cropping[0][1], - self.cropping[1][0] : -self.cropping[1][1], - self.cropping[2][0] :, - :, - ] - return inputs[ - :, - self.cropping[0][0] : -self.cropping[0][1], - self.cropping[1][0] : -self.cropping[1][1], - self.cropping[2][0] : -self.cropping[2][1], - :, - ] - - def get_config(self): - config = {"cropping": self.cropping, "data_format": self.data_format} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/reshaping/cropping_test.py b/keras/layers/reshaping/cropping_test.py deleted file mode 100644 index 69f7a28003d..00000000000 --- a/keras/layers/reshaping/cropping_test.py +++ /dev/null @@ -1,212 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for cropping layers.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class CroppingTest(test_combinations.TestCase): - def test_cropping_1d(self): - num_samples = 2 - time_length = 4 - input_len_dim1 = 2 - inputs = np.random.rand(num_samples, time_length, input_len_dim1) - - with self.cached_session(): - test_utils.layer_test( - keras.layers.Cropping1D, - kwargs={"cropping": (1, 1)}, - input_shape=inputs.shape, - ) - - # test incorrect use - with self.assertRaises(ValueError): - keras.layers.Cropping1D(cropping=(1, 1, 1)) - with self.assertRaises(ValueError): - keras.layers.Cropping1D(cropping=None) - with self.assertRaises(ValueError): - input_layer = keras.layers.Input( - shape=(num_samples, time_length, input_len_dim1) - ) - keras.layers.Cropping1D(cropping=(2, 3))(input_layer) - - def test_cropping_2d(self): - num_samples = 2 - stack_size = 2 - input_len_dim1 = 9 - input_len_dim2 = 9 - cropping = ((2, 2), (3, 3)) - - for data_format in ["channels_first", "channels_last"]: - if data_format == "channels_first": - inputs = np.random.rand( - num_samples, stack_size, input_len_dim1, input_len_dim2 - ) - else: - inputs = np.random.rand( - num_samples, input_len_dim1, input_len_dim2, stack_size - ) - with self.cached_session(): - # basic test - test_utils.layer_test( - keras.layers.Cropping2D, - kwargs={"cropping": cropping, "data_format": data_format}, - input_shape=inputs.shape, - ) - # correctness test - layer = keras.layers.Cropping2D( - cropping=cropping, data_format=data_format - ) - layer.build(inputs.shape) - output = layer(keras.backend.variable(inputs)) - if tf.executing_eagerly(): - np_output = output.numpy() - else: - np_output = keras.backend.eval(output) - # compare with numpy - if data_format == "channels_first": - expected_out = inputs[ - :, - :, - cropping[0][0] : -cropping[0][1], - cropping[1][0] : -cropping[1][1], - ] - else: - expected_out = inputs[ - :, - cropping[0][0] : -cropping[0][1], - cropping[1][0] : -cropping[1][1], - :, - ] - np.testing.assert_allclose(np_output, expected_out) - - for data_format in ["channels_first", "channels_last"]: - if data_format == "channels_first": - inputs = np.random.rand( - num_samples, stack_size, input_len_dim1, input_len_dim2 - ) - else: - inputs = np.random.rand( - num_samples, input_len_dim1, input_len_dim2, stack_size - ) - # another correctness test (no cropping) - with self.cached_session(): - cropping = ((0, 0), (0, 0)) - layer = keras.layers.Cropping2D( - cropping=cropping, data_format=data_format - ) - layer.build(inputs.shape) - output = layer(keras.backend.variable(inputs)) - if tf.executing_eagerly(): - np_output = output.numpy() - else: - np_output = keras.backend.eval(output) - # compare with input - np.testing.assert_allclose(np_output, inputs) - - # test incorrect use - with self.assertRaises(ValueError): - keras.layers.Cropping2D(cropping=(1, 1, 1)) - with self.assertRaises(ValueError): - keras.layers.Cropping2D(cropping=None) - with self.assertRaises(ValueError): - input_layer = keras.layers.Input( - shape=(num_samples, input_len_dim1, input_len_dim2, stack_size) - ) - keras.layers.Cropping2D(cropping=((5, 4), (3, 4)))(input_layer) - - def test_cropping_3d(self): - num_samples = 2 - stack_size = 2 - input_len_dim1 = 8 - input_len_dim2 = 8 - input_len_dim3 = 8 - croppings = [((2, 2), (1, 1), (2, 3)), 3, (0, 1, 1)] - - for cropping in croppings: - for data_format in ["channels_last", "channels_first"]: - if data_format == "channels_first": - inputs = np.random.rand( - num_samples, - stack_size, - input_len_dim1, - input_len_dim2, - input_len_dim3, - ) - else: - inputs = np.random.rand( - num_samples, - input_len_dim1, - input_len_dim2, - input_len_dim3, - stack_size, - ) - # basic test - with self.cached_session(): - test_utils.layer_test( - keras.layers.Cropping3D, - kwargs={ - "cropping": cropping, - "data_format": data_format, - }, - input_shape=inputs.shape, - ) - - if len(croppings) == 3 and len(croppings[0]) == 2: - # correctness test - with self.cached_session(): - layer = keras.layers.Cropping3D( - cropping=cropping, data_format=data_format - ) - layer.build(inputs.shape) - output = layer(keras.backend.variable(inputs)) - if tf.executing_eagerly(): - np_output = output.numpy() - else: - np_output = keras.backend.eval(output) - # compare with numpy - if data_format == "channels_first": - expected_out = inputs[ - :, - :, - cropping[0][0] : -cropping[0][1], - cropping[1][0] : -cropping[1][1], - cropping[2][0] : -cropping[2][1], - ] - else: - expected_out = inputs[ - :, - cropping[0][0] : -cropping[0][1], - cropping[1][0] : -cropping[1][1], - cropping[2][0] : -cropping[2][1], - :, - ] - np.testing.assert_allclose(np_output, expected_out) - - # test incorrect use - with self.assertRaises(ValueError): - keras.layers.Cropping3D(cropping=(1, 1)) - with self.assertRaises(ValueError): - keras.layers.Cropping3D(cropping=None) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/reshaping/flatten.py b/keras/layers/reshaping/flatten.py deleted file mode 100644 index 5c66a604816..00000000000 --- a/keras/layers/reshaping/flatten.py +++ /dev/null @@ -1,121 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the flatten layer.""" - - -import functools -import operator - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Flatten") -class Flatten(Layer): - """Flattens the input. Does not affect the batch size. - - Note: If inputs are shaped `(batch,)` without a feature axis, then - flattening adds an extra channel dimension and output shape is `(batch, 1)`. - - Args: - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, ..., channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, ...)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - - Example: - - >>> model = tf.keras.Sequential() - >>> model.add(tf.keras.layers.Conv2D(64, 3, 3, input_shape=(3, 32, 32))) - >>> model.output_shape - (None, 1, 10, 64) - - >>> model.add(Flatten()) - >>> model.output_shape - (None, 640) - - """ - - def __init__(self, data_format=None, **kwargs): - super().__init__(**kwargs) - self.data_format = conv_utils.normalize_data_format(data_format) - self.input_spec = InputSpec(min_ndim=1) - self._channels_first = self.data_format == "channels_first" - - def call(self, inputs): - if self._channels_first: - rank = inputs.shape.rank - if rank and rank > 1: - # Switch to channels-last format. - permutation = [0] - permutation.extend(range(2, rank)) - permutation.append(1) - inputs = tf.transpose(inputs, perm=permutation) - - if tf.executing_eagerly(): - # Full static shape is guaranteed to be available. - # Performance: Using `constant_op` is much faster than passing a - # list. - flattened_shape = tf.constant([inputs.shape[0], -1]) - return tf.reshape(inputs, flattened_shape) - else: - input_shape = inputs.shape - rank = input_shape.rank - if rank == 1: - return tf.expand_dims(inputs, axis=1) - else: - batch_dim = tf.compat.dimension_value(input_shape[0]) - non_batch_dims = input_shape[1:] - # Reshape in a way that preserves as much shape info as - # possible. - if non_batch_dims.is_fully_defined(): - last_dim = int( - functools.reduce(operator.mul, non_batch_dims) - ) - flattened_shape = tf.constant([-1, last_dim]) - elif batch_dim is not None: - flattened_shape = tf.constant([int(batch_dim), -1]) - else: - flattened_shape = [tf.shape(inputs)[0], -1] - return tf.reshape(inputs, flattened_shape) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if not input_shape: - output_shape = tf.TensorShape([1]) - else: - output_shape = [input_shape[0]] - if np.all(input_shape[1:]): - output_shape += [np.prod(input_shape[1:], dtype=int)] - else: - output_shape += [None] - return tf.TensorShape(output_shape) - - def get_config(self): - config = super().get_config() - config.update({"data_format": self.data_format}) - return config diff --git a/keras/layers/reshaping/flatten_test.py b/keras/layers/reshaping/flatten_test.py deleted file mode 100644 index 92127afffe2..00000000000 --- a/keras/layers/reshaping/flatten_test.py +++ /dev/null @@ -1,59 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for flatten layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class FlattenTest(test_combinations.TestCase): - def test_flatten(self): - test_utils.layer_test( - keras.layers.Flatten, kwargs={}, input_shape=(3, 2, 4) - ) - - # Test channels_first - inputs = np.random.random((10, 3, 5, 5)).astype("float32") - outputs = test_utils.layer_test( - keras.layers.Flatten, - kwargs={"data_format": "channels_first"}, - input_data=inputs, - ) - target_outputs = np.reshape( - np.transpose(inputs, (0, 2, 3, 1)), (-1, 5 * 5 * 3) - ) - self.assertAllClose(outputs, target_outputs) - - def test_flatten_scalar_channels(self): - test_utils.layer_test(keras.layers.Flatten, kwargs={}, input_shape=(3,)) - - # Test channels_first - inputs = np.random.random((10,)).astype("float32") - outputs = test_utils.layer_test( - keras.layers.Flatten, - kwargs={"data_format": "channels_first"}, - input_data=inputs, - ) - target_outputs = np.expand_dims(inputs, -1) - self.assertAllClose(outputs, target_outputs) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/reshaping/permute.py b/keras/layers/reshaping/permute.py deleted file mode 100644 index 590815e9a8e..00000000000 --- a/keras/layers/reshaping/permute.py +++ /dev/null @@ -1,85 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the Permute layer.""" - - -import copy - -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Permute") -class Permute(Layer): - """Permutes the dimensions of the input according to a given pattern. - - Useful e.g. connecting RNNs and convnets. - - Example: - - ```python - model = Sequential() - model.add(Permute((2, 1), input_shape=(10, 64))) - # now: model.output_shape == (None, 64, 10) - # note: `None` is the batch dimension - ``` - - Args: - dims: Tuple of integers. Permutation pattern does not include the - samples dimension. Indexing starts at 1. - For instance, `(2, 1)` permutes the first and second dimensions - of the input. - - Input shape: - Arbitrary. Use the keyword argument `input_shape` - (tuple of integers, does not include the samples axis) - when using this layer as the first layer in a model. - - Output shape: - Same as the input shape, but with the dimensions re-ordered according - to the specified pattern. - """ - - def __init__(self, dims, **kwargs): - super().__init__(**kwargs) - self.dims = tuple(dims) - if sorted(dims) != list(range(1, len(dims) + 1)): - raise ValueError( - "Invalid permutation argument `dims` for Permute Layer. " - "The set of indices in `dims` must be consecutive and start " - f"from 1. Received dims={dims}" - ) - self.input_spec = InputSpec(ndim=len(self.dims) + 1) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - output_shape = copy.copy(input_shape) - for i, dim in enumerate(self.dims): - target_dim = input_shape[dim] - output_shape[i + 1] = target_dim - return tf.TensorShape(output_shape) - - def call(self, inputs): - return tf.transpose(inputs, perm=(0,) + self.dims) - - def get_config(self): - config = {"dims": self.dims} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/reshaping/permute_test.py b/keras/layers/reshaping/permute_test.py deleted file mode 100644 index 1a9e6564c8d..00000000000 --- a/keras/layers/reshaping/permute_test.py +++ /dev/null @@ -1,53 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras permute layer.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class PermuteTest(test_combinations.TestCase): - def test_permute(self): - test_utils.layer_test( - keras.layers.Permute, kwargs={"dims": (2, 1)}, input_shape=(3, 2, 4) - ) - - def test_permute_errors_on_invalid_starting_dims_index(self): - with self.assertRaisesRegex( - ValueError, r"Invalid permutation .*dims.*" - ): - test_utils.layer_test( - keras.layers.Permute, - kwargs={"dims": (0, 1, 2)}, - input_shape=(3, 2, 4), - ) - - def test_permute_errors_on_invalid_set_of_dims_indices(self): - with self.assertRaisesRegex( - ValueError, r"Invalid permutation .*dims.*" - ): - test_utils.layer_test( - keras.layers.Permute, - kwargs={"dims": (1, 4, 2)}, - input_shape=(3, 2, 4), - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/reshaping/repeat_vector.py b/keras/layers/reshaping/repeat_vector.py deleted file mode 100644 index 46dcb89e154..00000000000 --- a/keras/layers/reshaping/repeat_vector.py +++ /dev/null @@ -1,69 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the RepeatVector layer.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.RepeatVector") -class RepeatVector(Layer): - """Repeats the input n times. - - Example: - - ```python - model = Sequential() - model.add(Dense(32, input_dim=32)) - # now: model.output_shape == (None, 32) - # note: `None` is the batch dimension - - model.add(RepeatVector(3)) - # now: model.output_shape == (None, 3, 32) - ``` - - Args: - n: Integer, repetition factor. - Input shape: 2D tensor of shape `(num_samples, features)`. - Output shape: 3D tensor of shape `(num_samples, n, features)`. - """ - - def __init__(self, n, **kwargs): - super().__init__(**kwargs) - self.n = n - if not isinstance(n, int): - raise TypeError( - f"Expected an integer value for `n`, got {type(n)}." - ) - self.input_spec = InputSpec(ndim=2) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - return tf.TensorShape([input_shape[0], self.n, input_shape[1]]) - - def call(self, inputs): - return backend.repeat(inputs, self.n) - - def get_config(self): - config = {"n": self.n} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/reshaping/repeat_vector_test.py b/keras/layers/reshaping/repeat_vector_test.py deleted file mode 100644 index f307f308f74..00000000000 --- a/keras/layers/reshaping/repeat_vector_test.py +++ /dev/null @@ -1,40 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for repeat vector layer.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class RepeatVectorTest(test_combinations.TestCase): - def test_repeat_vector(self): - test_utils.layer_test( - keras.layers.RepeatVector, kwargs={"n": 3}, input_shape=(3, 2) - ) - - def test_numpy_inputs(self): - if tf.executing_eagerly(): - layer = keras.layers.RepeatVector(2) - x = np.ones((10, 10)) - self.assertAllEqual(np.ones((10, 2, 10)), layer(x)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/reshaping/reshape.py b/keras/layers/reshaping/reshape.py deleted file mode 100644 index 83bfccf61a2..00000000000 --- a/keras/layers/reshaping/reshape.py +++ /dev/null @@ -1,148 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the Reshape layer.""" - - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.engine.base_layer import Layer - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Reshape") -class Reshape(Layer): - """Layer that reshapes inputs into the given shape. - - Input shape: - Arbitrary, although all dimensions in the input shape must be known/fixed. - Use the keyword argument `input_shape` (tuple of integers, does not - include the samples/batch size axis) when using this layer as the first - layer in a model. - - Output shape: - `(batch_size,) + target_shape` - - Example: - - >>> # as first layer in a Sequential model - >>> model = tf.keras.Sequential() - >>> model.add(tf.keras.layers.Reshape((3, 4), input_shape=(12,))) - >>> # model.output_shape == (None, 3, 4), `None` is the batch size. - >>> model.output_shape - (None, 3, 4) - - >>> # as intermediate layer in a Sequential model - >>> model.add(tf.keras.layers.Reshape((6, 2))) - >>> model.output_shape - (None, 6, 2) - - >>> # also supports shape inference using `-1` as dimension - >>> model.add(tf.keras.layers.Reshape((-1, 2, 2))) - >>> model.output_shape - (None, 3, 2, 2) - """ - - def __init__(self, target_shape, **kwargs): - """Creates a `tf.keras.layers.Reshape` layer instance. - - Args: - target_shape: Target shape. Tuple of integers, does not include the - samples dimension (batch size). - **kwargs: Any additional layer keyword arguments. - """ - super().__init__(**kwargs) - self.target_shape = tuple(target_shape) - - def _fix_unknown_dimension(self, input_shape, output_shape): - """Find and replace a missing dimension in an output shape. - - This is a near direct port of the internal Numpy function - `_fix_unknown_dimension` in `numpy/core/src/multiarray/shape.c` - - Args: - input_shape: Shape of array being reshaped - output_shape: Desired shape of the array with at most a single -1 - which indicates a dimension that should be derived from the input - shape. - - Returns: - The new output shape with a -1 replaced with its computed value. - - Raises: - ValueError: If the total array size of the output_shape is - different than the input_shape, or more than one unknown dimension - is specified. - """ - output_shape = list(output_shape) - msg = ( - "total size of new array must be unchanged, " - "input_shape = {}, output_shape = {}".format( - input_shape, output_shape - ) - ) - - known, unknown = 1, None - for index, dim in enumerate(output_shape): - if dim < 0: - if unknown is None: - unknown = index - else: - raise ValueError( - "There must be at most one unknown dimension in " - f"output_shape. Received: output_shape={output_shape}." - ) - else: - known *= dim - - original = np.prod(input_shape, dtype=int) - if unknown is not None: - if known == 0 or original % known != 0: - raise ValueError(msg) - output_shape[unknown] = original // known - elif original != known: - raise ValueError(msg) - return output_shape - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if None in input_shape[1:]: - output_shape = [input_shape[0]] - # input shape (partially) unknown? replace -1's with None's - output_shape += tuple( - s if s != -1 else None for s in self.target_shape - ) - else: - output_shape = [input_shape[0]] - output_shape += self._fix_unknown_dimension( - input_shape[1:], self.target_shape - ) - return tf.TensorShape(output_shape) - - def call(self, inputs): - result = tf.reshape(inputs, (tf.shape(inputs)[0],) + self.target_shape) - if not tf.executing_eagerly(): - # Set the static shape for the result since it might lost during - # array_ops reshape, eg, some `None` dim in the result could be - # inferred. - result.set_shape(self.compute_output_shape(inputs.shape)) - return result - - def get_config(self): - config = {"target_shape": self.target_shape} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/reshaping/reshape_test.py b/keras/layers/reshaping/reshape_test.py deleted file mode 100644 index 0c9d89f737a..00000000000 --- a/keras/layers/reshaping/reshape_test.py +++ /dev/null @@ -1,59 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for reshape layer.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class ReshapeTest(test_combinations.TestCase): - def test_reshape(self): - test_utils.layer_test( - keras.layers.Reshape, - kwargs={"target_shape": (8, 1)}, - input_shape=(3, 2, 4), - ) - - test_utils.layer_test( - keras.layers.Reshape, - kwargs={"target_shape": (-1, 1)}, - input_shape=(3, 2, 4), - ) - - test_utils.layer_test( - keras.layers.Reshape, - kwargs={"target_shape": (1, -1)}, - input_shape=(3, 2, 4), - ) - - test_utils.layer_test( - keras.layers.Reshape, - kwargs={"target_shape": (-1, 1)}, - input_shape=(None, None, 2), - ) - - def test_reshape_set_static_shape(self): - input_layer = keras.Input(batch_shape=(1, None)) - reshaped = keras.layers.Reshape((1, 100))(input_layer) - # Make sure the batch dim is not lost after array_ops.reshape. - self.assertEqual(reshaped.shape, [1, 1, 100]) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/reshaping/up_sampling1d.py b/keras/layers/reshaping/up_sampling1d.py deleted file mode 100644 index 56b75ef23d2..00000000000 --- a/keras/layers/reshaping/up_sampling1d.py +++ /dev/null @@ -1,84 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras upsampling layer for 1D inputs.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.UpSampling1D") -class UpSampling1D(Layer): - """Upsampling layer for 1D inputs. - - Repeats each temporal step `size` times along the time axis. - - Examples: - - >>> input_shape = (2, 2, 3) - >>> x = np.arange(np.prod(input_shape)).reshape(input_shape) - >>> print(x) - [[[ 0 1 2] - [ 3 4 5]] - [[ 6 7 8] - [ 9 10 11]]] - >>> y = tf.keras.layers.UpSampling1D(size=2)(x) - >>> print(y) - tf.Tensor( - [[[ 0 1 2] - [ 0 1 2] - [ 3 4 5] - [ 3 4 5]] - [[ 6 7 8] - [ 6 7 8] - [ 9 10 11] - [ 9 10 11]]], shape=(2, 4, 3), dtype=int64) - - Args: - size: Integer. Upsampling factor. - - Input shape: - 3D tensor with shape: `(batch_size, steps, features)`. - - Output shape: - 3D tensor with shape: `(batch_size, upsampled_steps, features)`. - """ - - def __init__(self, size=2, **kwargs): - super().__init__(**kwargs) - self.size = int(size) - self.input_spec = InputSpec(ndim=3) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - size = ( - self.size * input_shape[1] if input_shape[1] is not None else None - ) - return tf.TensorShape([input_shape[0], size, input_shape[2]]) - - def call(self, inputs): - output = backend.repeat_elements(inputs, self.size, axis=1) - return output - - def get_config(self): - config = {"size": self.size} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/reshaping/up_sampling2d.py b/keras/layers/reshaping/up_sampling2d.py deleted file mode 100644 index 1e52b51e53f..00000000000 --- a/keras/layers/reshaping/up_sampling2d.py +++ /dev/null @@ -1,146 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras upsampling layer for 2D inputs.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils -from keras.utils import image_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.UpSampling2D") -class UpSampling2D(Layer): - """Upsampling layer for 2D inputs. - - Repeats the rows and columns of the data - by `size[0]` and `size[1]` respectively. - - Examples: - - >>> input_shape = (2, 2, 1, 3) - >>> x = np.arange(np.prod(input_shape)).reshape(input_shape) - >>> print(x) - [[[[ 0 1 2]] - [[ 3 4 5]]] - [[[ 6 7 8]] - [[ 9 10 11]]]] - >>> y = tf.keras.layers.UpSampling2D(size=(1, 2))(x) - >>> print(y) - tf.Tensor( - [[[[ 0 1 2] - [ 0 1 2]] - [[ 3 4 5] - [ 3 4 5]]] - [[[ 6 7 8] - [ 6 7 8]] - [[ 9 10 11] - [ 9 10 11]]]], shape=(2, 2, 2, 3), dtype=int64) - - Args: - size: Int, or tuple of 2 integers. - The upsampling factors for rows and columns. - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch_size, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch_size, channels, height, width)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - interpolation: A string, one of `"area"`, `"bicubic"`, `"bilinear"`, - `"gaussian"`, `"lanczos3"`, `"lanczos5"`, `"mitchellcubic"`, - `"nearest"`. - - Input shape: - 4D tensor with shape: - - If `data_format` is `"channels_last"`: - `(batch_size, rows, cols, channels)` - - If `data_format` is `"channels_first"`: - `(batch_size, channels, rows, cols)` - - Output shape: - 4D tensor with shape: - - If `data_format` is `"channels_last"`: - `(batch_size, upsampled_rows, upsampled_cols, channels)` - - If `data_format` is `"channels_first"`: - `(batch_size, channels, upsampled_rows, upsampled_cols)` - """ - - def __init__( - self, size=(2, 2), data_format=None, interpolation="nearest", **kwargs - ): - super().__init__(**kwargs) - self.data_format = conv_utils.normalize_data_format(data_format) - self.size = conv_utils.normalize_tuple(size, 2, "size") - self.interpolation = image_utils.get_interpolation(interpolation) - self.input_spec = InputSpec(ndim=4) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if self.data_format == "channels_first": - height = ( - self.size[0] * input_shape[2] - if input_shape[2] is not None - else None - ) - width = ( - self.size[1] * input_shape[3] - if input_shape[3] is not None - else None - ) - return tf.TensorShape( - [input_shape[0], input_shape[1], height, width] - ) - else: - height = ( - self.size[0] * input_shape[1] - if input_shape[1] is not None - else None - ) - width = ( - self.size[1] * input_shape[2] - if input_shape[2] is not None - else None - ) - return tf.TensorShape( - [input_shape[0], height, width, input_shape[3]] - ) - - def call(self, inputs): - return backend.resize_images( - inputs, - self.size[0], - self.size[1], - self.data_format, - interpolation=self.interpolation, - ) - - def get_config(self): - config = { - "size": self.size, - "data_format": self.data_format, - "interpolation": self.interpolation, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/reshaping/up_sampling3d.py b/keras/layers/reshaping/up_sampling3d.py deleted file mode 100644 index ae6740da00b..00000000000 --- a/keras/layers/reshaping/up_sampling3d.py +++ /dev/null @@ -1,130 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras upsampling layer for 3D inputs.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.UpSampling3D") -class UpSampling3D(Layer): - """Upsampling layer for 3D inputs. - - Repeats the 1st, 2nd and 3rd dimensions - of the data by `size[0]`, `size[1]` and `size[2]` respectively. - - Examples: - - >>> input_shape = (2, 1, 2, 1, 3) - >>> x = tf.constant(1, shape=input_shape) - >>> y = tf.keras.layers.UpSampling3D(size=2)(x) - >>> print(y.shape) - (2, 2, 4, 2, 3) - - Args: - size: Int, or tuple of 3 integers. - The upsampling factors for dim1, dim2 and dim3. - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - while `channels_first` corresponds to inputs with shape - `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - - Input shape: - 5D tensor with shape: - - If `data_format` is `"channels_last"`: - `(batch_size, dim1, dim2, dim3, channels)` - - If `data_format` is `"channels_first"`: - `(batch_size, channels, dim1, dim2, dim3)` - - Output shape: - 5D tensor with shape: - - If `data_format` is `"channels_last"`: - `(batch_size, upsampled_dim1, upsampled_dim2, upsampled_dim3, - channels)` - - If `data_format` is `"channels_first"`: - `(batch_size, channels, upsampled_dim1, upsampled_dim2, - upsampled_dim3)` - """ - - def __init__(self, size=(2, 2, 2), data_format=None, **kwargs): - self.data_format = conv_utils.normalize_data_format(data_format) - self.size = conv_utils.normalize_tuple(size, 3, "size") - self.input_spec = InputSpec(ndim=5) - super().__init__(**kwargs) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if self.data_format == "channels_first": - dim1 = ( - self.size[0] * input_shape[2] - if input_shape[2] is not None - else None - ) - dim2 = ( - self.size[1] * input_shape[3] - if input_shape[3] is not None - else None - ) - dim3 = ( - self.size[2] * input_shape[4] - if input_shape[4] is not None - else None - ) - return tf.TensorShape( - [input_shape[0], input_shape[1], dim1, dim2, dim3] - ) - else: - dim1 = ( - self.size[0] * input_shape[1] - if input_shape[1] is not None - else None - ) - dim2 = ( - self.size[1] * input_shape[2] - if input_shape[2] is not None - else None - ) - dim3 = ( - self.size[2] * input_shape[3] - if input_shape[3] is not None - else None - ) - return tf.TensorShape( - [input_shape[0], dim1, dim2, dim3, input_shape[4]] - ) - - def call(self, inputs): - return backend.resize_volumes( - inputs, self.size[0], self.size[1], self.size[2], self.data_format - ) - - def get_config(self): - config = {"size": self.size, "data_format": self.data_format} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/reshaping/up_sampling_test.py b/keras/layers/reshaping/up_sampling_test.py deleted file mode 100644 index 70ed79e6328..00000000000 --- a/keras/layers/reshaping/up_sampling_test.py +++ /dev/null @@ -1,258 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for up-sampling layers.""" - - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -@tf_test_utils.for_all_test_methods( - tf_test_utils.disable_xla, "align_corners=False not supported by XLA" -) -@test_combinations.run_all_keras_modes -class UpSamplingTest(test_combinations.TestCase): - def test_upsampling_1d(self): - with self.cached_session(): - test_utils.layer_test( - keras.layers.UpSampling1D, - kwargs={"size": 2}, - input_shape=(3, 5, 4), - ) - - def test_upsampling_2d(self): - num_samples = 2 - stack_size = 2 - input_num_row = 11 - input_num_col = 12 - - for data_format in ["channels_first", "channels_last"]: - if data_format == "channels_first": - inputs = np.random.rand( - num_samples, stack_size, input_num_row, input_num_col - ) - else: - inputs = np.random.rand( - num_samples, input_num_row, input_num_col, stack_size - ) - - # basic test - with self.cached_session(): - test_utils.layer_test( - keras.layers.UpSampling2D, - kwargs={"size": (2, 2), "data_format": data_format}, - input_shape=inputs.shape, - ) - - for length_row in [2]: - for length_col in [2, 3]: - layer = keras.layers.UpSampling2D( - size=(length_row, length_col), - data_format=data_format, - ) - layer.build(inputs.shape) - output = layer(keras.backend.variable(inputs)) - if tf.executing_eagerly(): - np_output = output.numpy() - else: - np_output = keras.backend.eval(output) - if data_format == "channels_first": - assert ( - np_output.shape[2] == length_row * input_num_row - ) - assert ( - np_output.shape[3] == length_col * input_num_col - ) - else: # tf - assert ( - np_output.shape[1] == length_row * input_num_row - ) - assert ( - np_output.shape[2] == length_col * input_num_col - ) - - # compare with numpy - if data_format == "channels_first": - expected_out = np.repeat(inputs, length_row, axis=2) - expected_out = np.repeat( - expected_out, length_col, axis=3 - ) - else: # tf - expected_out = np.repeat(inputs, length_row, axis=1) - expected_out = np.repeat( - expected_out, length_col, axis=2 - ) - - np.testing.assert_allclose(np_output, expected_out) - - def test_upsampling_2d_bilinear(self): - num_samples = 2 - stack_size = 2 - input_num_row = 11 - input_num_col = 12 - for data_format in ["channels_first", "channels_last"]: - if data_format == "channels_first": - inputs = np.random.rand( - num_samples, stack_size, input_num_row, input_num_col - ) - else: - inputs = np.random.rand( - num_samples, input_num_row, input_num_col, stack_size - ) - - test_utils.layer_test( - keras.layers.UpSampling2D, - kwargs={ - "size": (2, 2), - "data_format": data_format, - "interpolation": "bilinear", - }, - input_shape=inputs.shape, - ) - - if not tf.executing_eagerly(): - for length_row in [2]: - for length_col in [2, 3]: - layer = keras.layers.UpSampling2D( - size=(length_row, length_col), - data_format=data_format, - ) - layer.build(inputs.shape) - outputs = layer(keras.backend.variable(inputs)) - np_output = keras.backend.eval(outputs) - if data_format == "channels_first": - self.assertEqual( - np_output.shape[2], length_row * input_num_row - ) - self.assertEqual( - np_output.shape[3], length_col * input_num_col - ) - else: - self.assertEqual( - np_output.shape[1], length_row * input_num_row - ) - self.assertEqual( - np_output.shape[2], length_col * input_num_col - ) - - def test_upsampling_3d(self): - num_samples = 2 - stack_size = 2 - input_len_dim1 = 10 - input_len_dim2 = 11 - input_len_dim3 = 12 - - for data_format in ["channels_first", "channels_last"]: - if data_format == "channels_first": - inputs = np.random.rand( - num_samples, - stack_size, - input_len_dim1, - input_len_dim2, - input_len_dim3, - ) - else: - inputs = np.random.rand( - num_samples, - input_len_dim1, - input_len_dim2, - input_len_dim3, - stack_size, - ) - - # basic test - with self.cached_session(): - test_utils.layer_test( - keras.layers.UpSampling3D, - kwargs={"size": (2, 2, 2), "data_format": data_format}, - input_shape=inputs.shape, - ) - - for length_dim1 in [2, 3]: - for length_dim2 in [2]: - for length_dim3 in [3]: - layer = keras.layers.UpSampling3D( - size=(length_dim1, length_dim2, length_dim3), - data_format=data_format, - ) - layer.build(inputs.shape) - output = layer(keras.backend.variable(inputs)) - if tf.executing_eagerly(): - np_output = output.numpy() - else: - np_output = keras.backend.eval(output) - if data_format == "channels_first": - assert ( - np_output.shape[2] - == length_dim1 * input_len_dim1 - ) - assert ( - np_output.shape[3] - == length_dim2 * input_len_dim2 - ) - assert ( - np_output.shape[4] - == length_dim3 * input_len_dim3 - ) - else: # tf - assert ( - np_output.shape[1] - == length_dim1 * input_len_dim1 - ) - assert ( - np_output.shape[2] - == length_dim2 * input_len_dim2 - ) - assert ( - np_output.shape[3] - == length_dim3 * input_len_dim3 - ) - - # compare with numpy - if data_format == "channels_first": - expected_out = np.repeat( - inputs, length_dim1, axis=2 - ) - expected_out = np.repeat( - expected_out, length_dim2, axis=3 - ) - expected_out = np.repeat( - expected_out, length_dim3, axis=4 - ) - else: # tf - expected_out = np.repeat( - inputs, length_dim1, axis=1 - ) - expected_out = np.repeat( - expected_out, length_dim2, axis=2 - ) - expected_out = np.repeat( - expected_out, length_dim3, axis=3 - ) - - np.testing.assert_allclose(np_output, expected_out) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/reshaping/zero_padding1d.py b/keras/layers/reshaping/zero_padding1d.py deleted file mode 100644 index bd12795181e..00000000000 --- a/keras/layers/reshaping/zero_padding1d.py +++ /dev/null @@ -1,94 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras zero-padding layer for 1D input.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.ZeroPadding1D") -class ZeroPadding1D(Layer): - """Zero-padding layer for 1D input (e.g. temporal sequence). - - Examples: - - >>> input_shape = (2, 2, 3) - >>> x = np.arange(np.prod(input_shape)).reshape(input_shape) - >>> print(x) - [[[ 0 1 2] - [ 3 4 5]] - [[ 6 7 8] - [ 9 10 11]]] - >>> y = tf.keras.layers.ZeroPadding1D(padding=2)(x) - >>> print(y) - tf.Tensor( - [[[ 0 0 0] - [ 0 0 0] - [ 0 1 2] - [ 3 4 5] - [ 0 0 0] - [ 0 0 0]] - [[ 0 0 0] - [ 0 0 0] - [ 6 7 8] - [ 9 10 11] - [ 0 0 0] - [ 0 0 0]]], shape=(2, 6, 3), dtype=int64) - - Args: - padding: Int, or tuple of int (length 2), or dictionary. - - If int: - How many zeros to add at the beginning and end of - the padding dimension (axis 1). - - If tuple of int (length 2): - How many zeros to add at the beginning and the end of - the padding dimension (`(left_pad, right_pad)`). - - Input shape: - 3D tensor with shape `(batch_size, axis_to_pad, features)` - - Output shape: - 3D tensor with shape `(batch_size, padded_axis, features)` - """ - - def __init__(self, padding=1, **kwargs): - super().__init__(**kwargs) - self.padding = conv_utils.normalize_tuple( - padding, 2, "padding", allow_zero=True - ) - self.input_spec = InputSpec(ndim=3) - - def compute_output_shape(self, input_shape): - if input_shape[1] is not None: - length = input_shape[1] + self.padding[0] + self.padding[1] - else: - length = None - return tf.TensorShape([input_shape[0], length, input_shape[2]]) - - def call(self, inputs): - return backend.temporal_padding(inputs, padding=self.padding) - - def get_config(self): - config = {"padding": self.padding} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/reshaping/zero_padding2d.py b/keras/layers/reshaping/zero_padding2d.py deleted file mode 100644 index 2615da40739..00000000000 --- a/keras/layers/reshaping/zero_padding2d.py +++ /dev/null @@ -1,155 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras zero-padding layer for 2D input.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.ZeroPadding2D") -class ZeroPadding2D(Layer): - """Zero-padding layer for 2D input (e.g. picture). - - This layer can add rows and columns of zeros - at the top, bottom, left and right side of an image tensor. - - Examples: - - >>> input_shape = (1, 1, 2, 2) - >>> x = np.arange(np.prod(input_shape)).reshape(input_shape) - >>> print(x) - [[[[0 1] - [2 3]]]] - >>> y = tf.keras.layers.ZeroPadding2D(padding=1)(x) - >>> print(y) - tf.Tensor( - [[[[0 0] - [0 0] - [0 0] - [0 0]] - [[0 0] - [0 1] - [2 3] - [0 0]] - [[0 0] - [0 0] - [0 0] - [0 0]]]], shape=(1, 3, 4, 2), dtype=int64) - - Args: - padding: Int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints. - - If int: the same symmetric padding - is applied to height and width. - - If tuple of 2 ints: - interpreted as two different - symmetric padding values for height and width: - `(symmetric_height_pad, symmetric_width_pad)`. - - If tuple of 2 tuples of 2 ints: - interpreted as - `((top_pad, bottom_pad), (left_pad, right_pad))` - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch_size, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch_size, channels, height, width)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - - Input shape: - 4D tensor with shape: - - If `data_format` is `"channels_last"`: - `(batch_size, rows, cols, channels)` - - If `data_format` is `"channels_first"`: - `(batch_size, channels, rows, cols)` - - Output shape: - 4D tensor with shape: - - If `data_format` is `"channels_last"`: - `(batch_size, padded_rows, padded_cols, channels)` - - If `data_format` is `"channels_first"`: - `(batch_size, channels, padded_rows, padded_cols)` - """ - - def __init__(self, padding=(1, 1), data_format=None, **kwargs): - super().__init__(**kwargs) - self.data_format = conv_utils.normalize_data_format(data_format) - if isinstance(padding, int): - self.padding = ((padding, padding), (padding, padding)) - elif hasattr(padding, "__len__"): - if len(padding) != 2: - raise ValueError( - f"`padding` should have two elements. Received: {padding}." - ) - height_padding = conv_utils.normalize_tuple( - padding[0], 2, "1st entry of padding", allow_zero=True - ) - width_padding = conv_utils.normalize_tuple( - padding[1], 2, "2nd entry of padding", allow_zero=True - ) - self.padding = (height_padding, width_padding) - else: - raise ValueError( - "`padding` should be either an int, " - "a tuple of 2 ints " - "(symmetric_height_pad, symmetric_width_pad), " - "or a tuple of 2 tuples of 2 ints " - "((top_pad, bottom_pad), (left_pad, right_pad)). " - f"Received: {padding}." - ) - self.input_spec = InputSpec(ndim=4) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if self.data_format == "channels_first": - if input_shape[2] is not None: - rows = input_shape[2] + self.padding[0][0] + self.padding[0][1] - else: - rows = None - if input_shape[3] is not None: - cols = input_shape[3] + self.padding[1][0] + self.padding[1][1] - else: - cols = None - return tf.TensorShape([input_shape[0], input_shape[1], rows, cols]) - elif self.data_format == "channels_last": - if input_shape[1] is not None: - rows = input_shape[1] + self.padding[0][0] + self.padding[0][1] - else: - rows = None - if input_shape[2] is not None: - cols = input_shape[2] + self.padding[1][0] + self.padding[1][1] - else: - cols = None - return tf.TensorShape([input_shape[0], rows, cols, input_shape[3]]) - - def call(self, inputs): - return backend.spatial_2d_padding( - inputs, padding=self.padding, data_format=self.data_format - ) - - def get_config(self): - config = {"padding": self.padding, "data_format": self.data_format} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/reshaping/zero_padding3d.py b/keras/layers/reshaping/zero_padding3d.py deleted file mode 100644 index c51668dcbb9..00000000000 --- a/keras/layers/reshaping/zero_padding3d.py +++ /dev/null @@ -1,163 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras zero-padding layer for 3D input.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.utils import conv_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.ZeroPadding3D") -class ZeroPadding3D(Layer): - """Zero-padding layer for 3D data (spatial or spatio-temporal). - - Examples: - - >>> input_shape = (1, 1, 2, 2, 3) - >>> x = np.arange(np.prod(input_shape)).reshape(input_shape) - >>> y = tf.keras.layers.ZeroPadding3D(padding=2)(x) - >>> print(y.shape) - (1, 5, 6, 6, 3) - - Args: - padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints. - - If int: the same symmetric padding - is applied to height and width. - - If tuple of 3 ints: - interpreted as two different - symmetric padding values for height and width: - `(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)`. - - If tuple of 3 tuples of 2 ints: - interpreted as - `((left_dim1_pad, right_dim1_pad), (left_dim2_pad, - right_dim2_pad), (left_dim3_pad, right_dim3_pad))` - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - while `channels_first` corresponds to inputs with shape - `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - - Input shape: - 5D tensor with shape: - - If `data_format` is `"channels_last"`: - `(batch_size, first_axis_to_pad, second_axis_to_pad, - third_axis_to_pad, depth)` - - If `data_format` is `"channels_first"`: - `(batch_size, depth, first_axis_to_pad, second_axis_to_pad, - third_axis_to_pad)` - - Output shape: - 5D tensor with shape: - - If `data_format` is `"channels_last"`: - `(batch_size, first_padded_axis, second_padded_axis, - third_axis_to_pad, depth)` - - If `data_format` is `"channels_first"`: - `(batch_size, depth, first_padded_axis, second_padded_axis, - third_axis_to_pad)` - """ - - def __init__(self, padding=(1, 1, 1), data_format=None, **kwargs): - super().__init__(**kwargs) - self.data_format = conv_utils.normalize_data_format(data_format) - if isinstance(padding, int): - self.padding = ( - (padding, padding), - (padding, padding), - (padding, padding), - ) - elif hasattr(padding, "__len__"): - if len(padding) != 3: - raise ValueError( - f"`padding` should have 3 elements. Received: {padding}." - ) - dim1_padding = conv_utils.normalize_tuple( - padding[0], 2, "1st entry of padding", allow_zero=True - ) - dim2_padding = conv_utils.normalize_tuple( - padding[1], 2, "2nd entry of padding", allow_zero=True - ) - dim3_padding = conv_utils.normalize_tuple( - padding[2], 2, "3rd entry of padding", allow_zero=True - ) - self.padding = (dim1_padding, dim2_padding, dim3_padding) - else: - raise ValueError( - "`padding` should be either an int, " - "a tuple of 3 ints " - "(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad), " - "or a tuple of 3 tuples of 2 ints " - "((left_dim1_pad, right_dim1_pad)," - " (left_dim2_pad, right_dim2_pad)," - " (left_dim3_pad, right_dim2_pad)). " - f"Received: {padding}." - ) - self.input_spec = InputSpec(ndim=5) - - def compute_output_shape(self, input_shape): - input_shape = tf.TensorShape(input_shape).as_list() - if self.data_format == "channels_first": - if input_shape[2] is not None: - dim1 = input_shape[2] + self.padding[0][0] + self.padding[0][1] - else: - dim1 = None - if input_shape[3] is not None: - dim2 = input_shape[3] + self.padding[1][0] + self.padding[1][1] - else: - dim2 = None - if input_shape[4] is not None: - dim3 = input_shape[4] + self.padding[2][0] + self.padding[2][1] - else: - dim3 = None - return tf.TensorShape( - [input_shape[0], input_shape[1], dim1, dim2, dim3] - ) - elif self.data_format == "channels_last": - if input_shape[1] is not None: - dim1 = input_shape[1] + self.padding[0][0] + self.padding[0][1] - else: - dim1 = None - if input_shape[2] is not None: - dim2 = input_shape[2] + self.padding[1][0] + self.padding[1][1] - else: - dim2 = None - if input_shape[3] is not None: - dim3 = input_shape[3] + self.padding[2][0] + self.padding[2][1] - else: - dim3 = None - return tf.TensorShape( - [input_shape[0], dim1, dim2, dim3, input_shape[4]] - ) - - def call(self, inputs): - return backend.spatial_3d_padding( - inputs, padding=self.padding, data_format=self.data_format - ) - - def get_config(self): - config = {"padding": self.padding, "data_format": self.data_format} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/reshaping/zero_padding_test.py b/keras/layers/reshaping/zero_padding_test.py deleted file mode 100644 index 4e997658d79..00000000000 --- a/keras/layers/reshaping/zero_padding_test.py +++ /dev/null @@ -1,340 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for zero-padding layers.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class ZeroPaddingTest(test_combinations.TestCase): - def test_zero_padding_1d(self): - num_samples = 2 - input_dim = 2 - num_steps = 5 - shape = (num_samples, num_steps, input_dim) - inputs = np.ones(shape) - - with self.cached_session(): - # basic test - test_utils.layer_test( - keras.layers.ZeroPadding1D, - kwargs={"padding": 2}, - input_shape=inputs.shape, - ) - test_utils.layer_test( - keras.layers.ZeroPadding1D, - kwargs={"padding": (1, 2)}, - input_shape=inputs.shape, - ) - - # correctness test - layer = keras.layers.ZeroPadding1D(padding=2) - layer.build(shape) - output = layer(keras.backend.variable(inputs)) - if tf.executing_eagerly(): - np_output = output.numpy() - else: - np_output = keras.backend.eval(output) - for offset in [0, 1, -1, -2]: - np.testing.assert_allclose(np_output[:, offset, :], 0.0) - np.testing.assert_allclose(np_output[:, 2:-2, :], 1.0) - - layer = keras.layers.ZeroPadding1D(padding=(1, 2)) - layer.build(shape) - output = layer(keras.backend.variable(inputs)) - if tf.executing_eagerly(): - np_output = output.numpy() - else: - np_output = keras.backend.eval(output) - for left_offset in [0]: - np.testing.assert_allclose(np_output[:, left_offset, :], 0.0) - for right_offset in [-1, -2]: - np.testing.assert_allclose(np_output[:, right_offset, :], 0.0) - np.testing.assert_allclose(np_output[:, 1:-2, :], 1.0) - layer.get_config() - - # test incorrect use - with self.assertRaises(ValueError): - keras.layers.ZeroPadding1D(padding=(1, 1, 1)) - with self.assertRaises(ValueError): - keras.layers.ZeroPadding1D(padding=None) - - @parameterized.named_parameters( - ("channels_first", "channels_first"), ("channels_last", "channels_last") - ) - def test_zero_padding_2d(self, data_format): - num_samples = 2 - stack_size = 2 - input_num_row = 4 - input_num_col = 5 - if data_format == "channels_first": - inputs = np.ones( - (num_samples, stack_size, input_num_row, input_num_col) - ) - elif data_format == "channels_last": - inputs = np.ones( - (num_samples, input_num_row, input_num_col, stack_size) - ) - - # basic test - with self.cached_session(): - test_utils.layer_test( - keras.layers.ZeroPadding2D, - kwargs={"padding": (2, 2), "data_format": data_format}, - input_shape=inputs.shape, - ) - test_utils.layer_test( - keras.layers.ZeroPadding2D, - kwargs={ - "padding": ((1, 2), (3, 4)), - "data_format": data_format, - }, - input_shape=inputs.shape, - ) - - # correctness test - with self.cached_session(): - layer = keras.layers.ZeroPadding2D( - padding=(2, 2), data_format=data_format - ) - layer.build(inputs.shape) - output = layer(keras.backend.variable(inputs)) - if tf.executing_eagerly(): - np_output = output.numpy() - else: - np_output = keras.backend.eval(output) - if data_format == "channels_last": - for offset in [0, 1, -1, -2]: - np.testing.assert_allclose(np_output[:, offset, :, :], 0.0) - np.testing.assert_allclose(np_output[:, :, offset, :], 0.0) - np.testing.assert_allclose(np_output[:, 2:-2, 2:-2, :], 1.0) - elif data_format == "channels_first": - for offset in [0, 1, -1, -2]: - np.testing.assert_allclose(np_output[:, :, offset, :], 0.0) - np.testing.assert_allclose(np_output[:, :, :, offset], 0.0) - np.testing.assert_allclose(np_output[:, 2:-2, 2:-2, :], 1.0) - - layer = keras.layers.ZeroPadding2D( - padding=((1, 2), (3, 4)), data_format=data_format - ) - layer.build(inputs.shape) - output = layer(keras.backend.variable(inputs)) - if tf.executing_eagerly(): - np_output = output.numpy() - else: - np_output = keras.backend.eval(output) - if data_format == "channels_last": - for top_offset in [0]: - np.testing.assert_allclose( - np_output[:, top_offset, :, :], 0.0 - ) - for bottom_offset in [-1, -2]: - np.testing.assert_allclose( - np_output[:, bottom_offset, :, :], 0.0 - ) - for left_offset in [0, 1, 2]: - np.testing.assert_allclose( - np_output[:, :, left_offset, :], 0.0 - ) - for right_offset in [-1, -2, -3, -4]: - np.testing.assert_allclose( - np_output[:, :, right_offset, :], 0.0 - ) - np.testing.assert_allclose(np_output[:, 1:-2, 3:-4, :], 1.0) - elif data_format == "channels_first": - for top_offset in [0]: - np.testing.assert_allclose( - np_output[:, :, top_offset, :], 0.0 - ) - for bottom_offset in [-1, -2]: - np.testing.assert_allclose( - np_output[:, :, bottom_offset, :], 0.0 - ) - for left_offset in [0, 1, 2]: - np.testing.assert_allclose( - np_output[:, :, :, left_offset], 0.0 - ) - for right_offset in [-1, -2, -3, -4]: - np.testing.assert_allclose( - np_output[:, :, :, right_offset], 0.0 - ) - np.testing.assert_allclose(np_output[:, :, 1:-2, 3:-4], 1.0) - - # test incorrect use - with self.assertRaises(ValueError): - keras.layers.ZeroPadding2D(padding=(1, 1, 1)) - with self.assertRaises(ValueError): - keras.layers.ZeroPadding2D(padding=None) - - @parameterized.named_parameters( - ("channels_first", "channels_first"), ("channels_last", "channels_last") - ) - def test_zero_padding_3d(self, data_format): - num_samples = 2 - stack_size = 2 - input_len_dim1 = 4 - input_len_dim2 = 5 - input_len_dim3 = 3 - - if data_format == "channels_first": - inputs = np.ones( - ( - num_samples, - stack_size, - input_len_dim1, - input_len_dim2, - input_len_dim3, - ) - ) - elif data_format == "channels_last": - inputs = np.ones( - ( - num_samples, - input_len_dim1, - input_len_dim2, - input_len_dim3, - stack_size, - ) - ) - - with self.cached_session(): - # basic test - test_utils.layer_test( - keras.layers.ZeroPadding3D, - kwargs={"padding": (2, 2, 2), "data_format": data_format}, - input_shape=inputs.shape, - ) - test_utils.layer_test( - keras.layers.ZeroPadding3D, - kwargs={ - "padding": ((1, 2), (3, 4), (0, 2)), - "data_format": data_format, - }, - input_shape=inputs.shape, - ) - - with self.cached_session(): - # correctness test - layer = keras.layers.ZeroPadding3D( - padding=(2, 2, 2), data_format=data_format - ) - layer.build(inputs.shape) - output = layer(keras.backend.variable(inputs)) - if tf.executing_eagerly(): - np_output = output.numpy() - else: - np_output = keras.backend.eval(output) - if data_format == "channels_last": - for offset in [0, 1, -1, -2]: - np.testing.assert_allclose( - np_output[:, offset, :, :, :], 0.0 - ) - np.testing.assert_allclose( - np_output[:, :, offset, :, :], 0.0 - ) - np.testing.assert_allclose( - np_output[:, :, :, offset, :], 0.0 - ) - np.testing.assert_allclose( - np_output[:, 2:-2, 2:-2, 2:-2, :], 1.0 - ) - elif data_format == "channels_first": - for offset in [0, 1, -1, -2]: - np.testing.assert_allclose( - np_output[:, :, offset, :, :], 0.0 - ) - np.testing.assert_allclose( - np_output[:, :, :, offset, :], 0.0 - ) - np.testing.assert_allclose( - np_output[:, :, :, :, offset], 0.0 - ) - np.testing.assert_allclose( - np_output[:, :, 2:-2, 2:-2, 2:-2], 1.0 - ) - - layer = keras.layers.ZeroPadding3D( - padding=((1, 2), (3, 4), (0, 2)), data_format=data_format - ) - layer.build(inputs.shape) - output = layer(keras.backend.variable(inputs)) - if tf.executing_eagerly(): - np_output = output.numpy() - else: - np_output = keras.backend.eval(output) - if data_format == "channels_last": - for offset in [0]: - np.testing.assert_allclose( - np_output[:, offset, :, :, :], 0.0 - ) - for offset in [-1, -2]: - np.testing.assert_allclose( - np_output[:, offset, :, :, :], 0.0 - ) - for offset in [0, 1, 2]: - np.testing.assert_allclose( - np_output[:, :, offset, :, :], 0.0 - ) - for offset in [-1, -2, -3, -4]: - np.testing.assert_allclose( - np_output[:, :, offset, :, :], 0.0 - ) - for offset in [-1, -2]: - np.testing.assert_allclose( - np_output[:, :, :, offset, :], 0.0 - ) - np.testing.assert_allclose( - np_output[:, 1:-2, 3:-4, 0:-2, :], 1.0 - ) - elif data_format == "channels_first": - for offset in [0]: - np.testing.assert_allclose( - np_output[:, :, offset, :, :], 0.0 - ) - for offset in [-1, -2]: - np.testing.assert_allclose( - np_output[:, :, offset, :, :], 0.0 - ) - for offset in [0, 1, 2]: - np.testing.assert_allclose( - np_output[:, :, :, offset, :], 0.0 - ) - for offset in [-1, -2, -3, -4]: - np.testing.assert_allclose( - np_output[:, :, :, offset, :], 0.0 - ) - for offset in [-1, -2]: - np.testing.assert_allclose( - np_output[:, :, :, :, offset], 0.0 - ) - np.testing.assert_allclose( - np_output[:, :, 1:-2, 3:-4, 0:-2], 1.0 - ) - - # test incorrect use - with self.assertRaises(ValueError): - keras.layers.ZeroPadding3D(padding=(1, 1)) - with self.assertRaises(ValueError): - keras.layers.ZeroPadding3D(padding=None) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/BUILD b/keras/layers/rnn/BUILD deleted file mode 100644 index 11b9f5300ad..00000000000 --- a/keras/layers/rnn/BUILD +++ /dev/null @@ -1,667 +0,0 @@ -# Description: -# Contains the Keras recurrent layers. - -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -# buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/tensorflow_models/official/projects/residual_mobilenet/modeling/backbones:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "rnn", - srcs = ["__init__.py"], - srcs_version = "PY3", - deps = [ - ":abstract_rnn_cell", - ":base_rnn", - ":base_wrapper", - ":bidirectional", - ":cell_wrappers", - ":conv_lstm1d", - ":conv_lstm2d", - ":conv_lstm3d", - ":cudnn_gru", - ":cudnn_lstm", - ":gru", - ":gru_v1", - ":lstm", - ":lstm_v1", - ":simple_rnn", - ":stacked_rnn_cells", - ":time_distributed", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "rnn_utils", - srcs = ["rnn_utils.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/utils:control_flow_util", - ], -) - -py_library( - name = "abstract_rnn_cell", - srcs = ["abstract_rnn_cell.py"], - srcs_version = "PY3", - deps = [ - ":rnn_utils", - "//keras/engine:base_layer", - ], -) - -py_library( - name = "dropout_rnn_cell_mixin", - srcs = ["dropout_rnn_cell_mixin.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - ], -) - -py_library( - name = "gru_lstm_utils", - srcs = ["gru_lstm_utils.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "gru", - srcs = ["gru.py"], - srcs_version = "PY3", - deps = [ - ":base_rnn", - ":dropout_rnn_cell_mixin", - ":gru_lstm_utils", - ":rnn_utils", - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:backend", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/initializers", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "gru_v1", - srcs = ["gru_v1.py"], - srcs_version = "PY3", - deps = [ - ":base_rnn", - ":gru", - ":rnn_utils", - "//keras:activations", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:input_spec", - "//keras/initializers", - ], -) - -py_library( - name = "lstm", - srcs = ["lstm.py"], - srcs_version = "PY3", - deps = [ - ":base_rnn", - ":dropout_rnn_cell_mixin", - ":gru_lstm_utils", - ":rnn_utils", - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:backend", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/initializers", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "lstm_v1", - srcs = ["lstm_v1.py"], - srcs_version = "PY3", - deps = [ - ":base_rnn", - ":lstm", - ":rnn_utils", - "//keras:activations", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:input_spec", - "//keras/initializers", - ], -) - -py_library( - name = "stacked_rnn_cells", - srcs = ["stacked_rnn_cells.py"], - srcs_version = "PY3", - deps = [ - ":rnn_utils", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/utils:generic_utils", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "base_rnn", - srcs = ["base_rnn.py"], - srcs_version = "PY3", - deps = [ - ":dropout_rnn_cell_mixin", - ":rnn_utils", - ":stacked_rnn_cells", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/saving/legacy/saved_model", - "//keras/utils:generic_utils", - ], -) - -py_library( - name = "simple_rnn", - srcs = ["simple_rnn.py"], - srcs_version = "PY3", - deps = [ - ":base_rnn", - ":dropout_rnn_cell_mixin", - ":rnn_utils", - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:backend", - "//keras:constraints", - "//keras:regularizers", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/initializers", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "base_conv_rnn", - srcs = ["base_conv_rnn.py"], - srcs_version = "PY3", - deps = [ - ":base_rnn", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras:base_layer", - "//keras/engine:input_spec", - "//keras/utils:engine_utils", - "//keras/utils:generic_utils", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "base_conv_lstm", - srcs = ["base_conv_lstm.py"], - srcs_version = "PY3", - deps = [ - ":base_conv_rnn", - ":dropout_rnn_cell_mixin", - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:backend", - "//keras:base_layer", - "//keras:constraints", - "//keras:regularizers", - "//keras/initializers", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "conv_lstm1d", - srcs = ["conv_lstm1d.py"], - srcs_version = "PY3", - deps = [ - ":base_conv_lstm", - ], -) - -py_library( - name = "conv_lstm2d", - srcs = ["conv_lstm2d.py"], - srcs_version = "PY3", - deps = [ - ":base_conv_lstm", - ], -) - -py_library( - name = "conv_lstm3d", - srcs = ["conv_lstm3d.py"], - srcs_version = "PY3", - deps = [ - ":base_conv_lstm", - ], -) - -py_library( - name = "base_cudnn_rnn", - srcs = ["base_cudnn_rnn.py"], - srcs_version = "PY3", - deps = [ - ":base_rnn", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:input_spec", - ], -) - -py_library( - name = "cudnn_lstm", - srcs = ["cudnn_lstm.py"], - srcs_version = "PY3", - deps = [ - ":base_cudnn_rnn", - ":gru_lstm_utils", - "//:expect_tensorflow_installed", - "//keras:constraints", - "//keras:regularizers", - "//keras/initializers", - ], -) - -py_library( - name = "cudnn_gru", - srcs = ["cudnn_gru.py"], - srcs_version = "PY3", - deps = [ - ":base_cudnn_rnn", - ":gru_lstm_utils", - "//:expect_tensorflow_installed", - "//keras:constraints", - "//keras:regularizers", - "//keras/initializers", - ], -) - -py_library( - name = "cell_wrappers", - srcs = ["cell_wrappers.py"], - srcs_version = "PY3", - deps = [ - ":abstract_rnn_cell", - ":lstm", - "//:expect_tensorflow_installed", - "//keras/utils:generic_utils", - "//keras/utils:tf_inspect", - ], -) - -py_library( - name = "legacy_cell_wrappers", - srcs = ["legacy_cell_wrappers.py"], - srcs_version = "PY3", - deps = [ - ":cell_wrappers", - ":legacy_cells", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "legacy_cells", - srcs = ["legacy_cells.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:backend", - "//keras/engine:base_layer_utils", - "//keras/engine:input_spec", - "//keras/initializers", - "//keras/legacy_tf_layers:layers_base", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "base_wrapper", - srcs = ["base_wrapper.py"], - srcs_version = "PY3", - deps = [ - "//keras/engine:base_layer", - "//keras/utils:generic_utils", - ], -) - -py_library( - name = "bidirectional", - srcs = ["bidirectional.py"], - srcs_version = "PY3", - deps = [ - ":base_wrapper", - ":rnn_utils", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:generic_utils", - "//keras/utils:tf_inspect", - "//keras/utils:tf_utils", - ], -) - -py_library( - name = "time_distributed", - srcs = ["time_distributed.py"], - srcs_version = "PY3", - deps = [ - ":base_wrapper", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/utils:generic_utils", - "//keras/utils:layer_utils", - "//keras/utils:tf_utils", - ], -) - -cuda_py_test( - name = "gru_lstm_test", - size = "medium", - srcs = ["gru_lstm_test.py"], - python_version = "PY3", - shard_count = 2, - deps = [ - ":gru", - ":lstm", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -cuda_py_test( - name = "gru_test", - size = "medium", - srcs = ["gru_test.py"], - python_version = "PY3", - shard_count = 12, - deps = [ - ":gru_lstm_utils", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:np_utils", - ], -) - -tf_py_test( - name = "gru_v1_test", - size = "medium", - srcs = ["gru_v1_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "notsan", # http://b/62136390 - ], - deps = [ - ":gru", - ":gru_v1", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:np_utils", - ], -) - -cuda_py_test( - name = "lstm_test", - size = "medium", - srcs = ["lstm_test.py"], - python_version = "PY3", - shard_count = 12, - tags = [ - "no_oss", - "notsan", # TODO(b/170954246) - ], - deps = [ - ":gru_lstm_utils", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:np_utils", - ], -) - -tf_py_test( - name = "lstm_v1_test", - size = "medium", - srcs = ["lstm_v1_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "noasan", # times out b/63678675 - "notsan", # http://b/62189182 - ], - deps = [ - ":lstm", - ":lstm_v1", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:np_utils", - ], -) - -tf_py_test( - name = "base_rnn_test", - size = "medium", - srcs = ["base_rnn_test.py"], - python_version = "PY3", - shard_count = 12, - tags = [ - "notsan", # TODO(b/170870794) - ], - deps = [ - ":gru", - ":gru_v1", - ":legacy_cells", - ":lstm", - ":lstm_v1", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/engine:base_layer_utils", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:generic_utils", - ], -) - -tf_py_test( - name = "simple_rnn_test", - size = "medium", - srcs = ["simple_rnn_test.py"], - python_version = "PY3", - shard_count = 4, - tags = ["notsan"], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "conv_lstm_test", - size = "medium", - srcs = ["conv_lstm_test.py"], - python_version = "PY3", - shard_count = 8, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -cuda_py_test( - name = "cudnn_test", - size = "medium", - srcs = ["cudnn_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "no_windows_gpu", - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/optimizers/legacy:optimizers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "cell_wrappers_test", - size = "medium", - srcs = ["cell_wrappers_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "notsan", - ], - deps = [ - ":cell_wrappers", - ":legacy_cells", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/layers", - "//keras/legacy_tf_layers:layers_base", - "//keras/testing_infra:test_combinations", - "//keras/utils:generic_utils", - ], -) - -tf_py_test( - name = "legacy_cell_wrappers_test", - size = "small", - srcs = ["legacy_cell_wrappers_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":legacy_cell_wrappers", - ":legacy_cells", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "base_wrapper_test", - size = "small", - srcs = ["base_wrapper_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - ], -) - -tf_py_test( - name = "bidirectional_test", - size = "medium", - srcs = ["bidirectional_test.py"], - python_version = "PY3", - shard_count = 12, - tags = [ - "noasan", # http://b/78599823 - "notsan", - ], - deps = [ - ":cell_wrappers", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/engine:base_layer_utils", - "//keras/layers/core", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:generic_utils", - ], -) - -tf_py_test( - name = "time_distributed_test", - size = "medium", - srcs = ["time_distributed_test.py"], - python_version = "PY3", - shard_count = 12, - tags = [ - "noasan", # http://b/78599823 - "notsan", - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) diff --git a/keras/layers/rnn/__init__.py b/keras/layers/rnn/__init__.py deleted file mode 100644 index a2438fc7d10..00000000000 --- a/keras/layers/rnn/__init__.py +++ /dev/null @@ -1,73 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras recurrent layers.""" - -import tensorflow.compat.v2 as tf - -from keras.layers.rnn.abstract_rnn_cell import AbstractRNNCell - -# Recurrent layers. -from keras.layers.rnn.base_rnn import RNN -from keras.layers.rnn.simple_rnn import SimpleRNN -from keras.layers.rnn.simple_rnn import SimpleRNNCell -from keras.layers.rnn.stacked_rnn_cells import StackedRNNCells - -if tf.__internal__.tf2.enabled(): - from keras.layers.rnn.gru import GRU - from keras.layers.rnn.gru import GRUCell - from keras.layers.rnn.gru_v1 import GRU as GRUV1 - from keras.layers.rnn.gru_v1 import GRUCell as GRUCellV1 - from keras.layers.rnn.lstm import LSTM - from keras.layers.rnn.lstm import LSTMCell - from keras.layers.rnn.lstm_v1 import LSTM as LSTMV1 - from keras.layers.rnn.lstm_v1 import LSTMCell as LSTMCellV1 - - GRUV2 = GRU - GRUCellV2 = GRUCell - LSTMV2 = LSTM - LSTMCellV2 = LSTMCell -else: - from keras.layers.rnn.gru import GRU as GRUV2 - from keras.layers.rnn.gru import GRUCell as GRUCellV2 - from keras.layers.rnn.gru_v1 import GRU - from keras.layers.rnn.gru_v1 import GRUCell - from keras.layers.rnn.lstm import LSTM as LSTMV2 - from keras.layers.rnn.lstm import LSTMCell as LSTMCellV2 - from keras.layers.rnn.lstm_v1 import LSTM - from keras.layers.rnn.lstm_v1 import LSTMCell - - GRUV1 = GRU - GRUCellV1 = GRUCell - LSTMV1 = LSTM - LSTMCellV1 = LSTMCell - -# Wrapper functions. -from keras.layers.rnn.base_wrapper import Wrapper -from keras.layers.rnn.bidirectional import Bidirectional - -# RNN Cell wrappers. -from keras.layers.rnn.cell_wrappers import DeviceWrapper -from keras.layers.rnn.cell_wrappers import DropoutWrapper -from keras.layers.rnn.cell_wrappers import ResidualWrapper - -# Convolutional-recurrent layers. -from keras.layers.rnn.conv_lstm1d import ConvLSTM1D -from keras.layers.rnn.conv_lstm2d import ConvLSTM2D -from keras.layers.rnn.conv_lstm3d import ConvLSTM3D -from keras.layers.rnn.cudnn_gru import CuDNNGRU - -# cuDNN recurrent layers. -from keras.layers.rnn.cudnn_lstm import CuDNNLSTM -from keras.layers.rnn.time_distributed import TimeDistributed diff --git a/keras/layers/rnn/abstract_rnn_cell.py b/keras/layers/rnn/abstract_rnn_cell.py deleted file mode 100644 index d097947a21e..00000000000 --- a/keras/layers/rnn/abstract_rnn_cell.py +++ /dev/null @@ -1,115 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Base class for RNN cells.""" - - -from keras.engine import base_layer -from keras.layers.rnn import rnn_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.AbstractRNNCell") -class AbstractRNNCell(base_layer.Layer): - """Abstract object representing an RNN cell. - - See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) - for details about the usage of RNN API. - - This is the base class for implementing RNN cells with custom behavior. - - Every `RNNCell` must have the properties below and implement `call` with - the signature `(output, next_state) = call(input, state)`. - - Examples: - - ```python - class MinimalRNNCell(AbstractRNNCell): - - def __init__(self, units, **kwargs): - self.units = units - super(MinimalRNNCell, self).__init__(**kwargs) - - @property - def state_size(self): - return self.units - - def build(self, input_shape): - self.kernel = self.add_weight(shape=(input_shape[-1], self.units), - initializer='uniform', - name='kernel') - self.recurrent_kernel = self.add_weight( - shape=(self.units, self.units), - initializer='uniform', - name='recurrent_kernel') - self.built = True - - def call(self, inputs, states): - prev_output = states[0] - h = backend.dot(inputs, self.kernel) - output = h + backend.dot(prev_output, self.recurrent_kernel) - return output, output - ``` - - This definition of cell differs from the definition used in the literature. - In the literature, 'cell' refers to an object with a single scalar output. - This definition refers to a horizontal array of such units. - - An RNN cell, in the most abstract setting, is anything that has - a state and performs some operation that takes a matrix of inputs. - This operation results in an output matrix with `self.output_size` columns. - If `self.state_size` is an integer, this operation also results in a new - state matrix with `self.state_size` columns. If `self.state_size` is a - (possibly nested tuple of) TensorShape object(s), then it should return a - matching structure of Tensors having shape `[batch_size].concatenate(s)` - for each `s` in `self.batch_size`. - """ - - def call(self, inputs, states): - """The function that contains the logic for one RNN step calculation. - - Args: - inputs: the input tensor, which is a slide from the overall RNN input - by the time dimension (usually the second dimension). - states: the state tensor from previous step, which has the same shape - as `(batch, state_size)`. In the case of timestep 0, it will be the - initial state user specified, or zero filled tensor otherwise. - - Returns: - A tuple of two tensors: - 1. output tensor for the current timestep, with size `output_size`. - 2. state tensor for next step, which has the shape of `state_size`. - """ - raise NotImplementedError - - @property - def state_size(self): - """size(s) of state(s) used by this cell. - - It can be represented by an Integer, a TensorShape or a tuple of - Integers or TensorShapes. - """ - raise NotImplementedError - - @property - def output_size(self): - """Integer or TensorShape: size of outputs produced by this cell.""" - raise NotImplementedError - - def get_initial_state(self, inputs=None, batch_size=None, dtype=None): - return rnn_utils.generate_zero_filled_state_for_cell( - self, inputs, batch_size, dtype - ) diff --git a/keras/layers/rnn/base_conv_lstm.py b/keras/layers/rnn/base_conv_lstm.py deleted file mode 100644 index 49f52a71c80..00000000000 --- a/keras/layers/rnn/base_conv_lstm.py +++ /dev/null @@ -1,640 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Base class for N-D convolutional LSTM layers.""" - - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import backend -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine import base_layer -from keras.layers.rnn.base_conv_rnn import ConvRNN -from keras.layers.rnn.dropout_rnn_cell_mixin import DropoutRNNCellMixin -from keras.utils import conv_utils - - -class ConvLSTMCell(DropoutRNNCellMixin, base_layer.BaseRandomLayer): - """Cell class for the ConvLSTM layer. - - Args: - rank: Integer, rank of the convolution, e.g. "2" for 2D convolutions. - filters: Integer, the dimensionality of the output space (i.e. the number - of output filters in the convolution). - kernel_size: An integer or tuple/list of n integers, specifying the - dimensions of the convolution window. - strides: An integer or tuple/list of n integers, specifying the strides of - the convolution. Specifying any stride value != 1 is incompatible with - specifying any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). `"valid"` means - no padding. `"same"` results in padding evenly to the left/right or - up/down of the input such that output has the same height/width - dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. It defaults to the `image_data_format` value found in - your Keras config file at `~/.keras/keras.json`. If you never set it, - then it will be "channels_last". - dilation_rate: An integer or tuple/list of n integers, specifying the - dilation rate to use for dilated convolution. Currently, specifying any - `dilation_rate` value != 1 is incompatible with specifying any `strides` - value != 1. - activation: Activation function to use. If you don't specify anything, no - activation is applied - (ie. "linear" activation: `a(x) = x`). - recurrent_activation: Activation function to use for the recurrent step. - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, used for - the linear transformation of the inputs. - recurrent_initializer: Initializer for the `recurrent_kernel` weights - matrix, used for the linear transformation of the recurrent state. - bias_initializer: Initializer for the bias vector. - unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate - at initialization. Use in combination with `bias_initializer="zeros"`. - This is recommended in [Jozefowicz et al., 2015]( - http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. - recurrent_regularizer: Regularizer function applied to the - `recurrent_kernel` weights matrix. - bias_regularizer: Regularizer function applied to the bias vector. - kernel_constraint: Constraint function applied to the `kernel` weights - matrix. - recurrent_constraint: Constraint function applied to the - `recurrent_kernel` weights matrix. - bias_constraint: Constraint function applied to the bias vector. - dropout: Float between 0 and 1. Fraction of the units to drop for the - linear transformation of the inputs. - recurrent_dropout: Float between 0 and 1. Fraction of the units to drop - for the linear transformation of the recurrent state. - Call arguments: - inputs: A (2+ `rank`)D tensor. - states: List of state tensors corresponding to the previous timestep. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. Only relevant when `dropout` or - `recurrent_dropout` is used. - """ - - def __init__( - self, - rank, - filters, - kernel_size, - strides=1, - padding="valid", - data_format=None, - dilation_rate=1, - activation="tanh", - recurrent_activation="hard_sigmoid", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - unit_forget_bias=True, - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - dropout=0.0, - recurrent_dropout=0.0, - **kwargs, - ): - super().__init__(**kwargs) - self.rank = rank - if self.rank > 3: - raise ValueError( - f"Rank {rank} convolutions are not currently " - f"implemented. Received: rank={rank}" - ) - self.filters = filters - self.kernel_size = conv_utils.normalize_tuple( - kernel_size, self.rank, "kernel_size" - ) - self.strides = conv_utils.normalize_tuple( - strides, self.rank, "strides", allow_zero=True - ) - self.padding = conv_utils.normalize_padding(padding) - self.data_format = conv_utils.normalize_data_format(data_format) - self.dilation_rate = conv_utils.normalize_tuple( - dilation_rate, self.rank, "dilation_rate" - ) - self.activation = activations.get(activation) - self.recurrent_activation = activations.get(recurrent_activation) - self.use_bias = use_bias - - self.kernel_initializer = initializers.get(kernel_initializer) - self.recurrent_initializer = initializers.get(recurrent_initializer) - self.bias_initializer = initializers.get(bias_initializer) - self.unit_forget_bias = unit_forget_bias - - self.kernel_regularizer = regularizers.get(kernel_regularizer) - self.recurrent_regularizer = regularizers.get(recurrent_regularizer) - self.bias_regularizer = regularizers.get(bias_regularizer) - - self.kernel_constraint = constraints.get(kernel_constraint) - self.recurrent_constraint = constraints.get(recurrent_constraint) - self.bias_constraint = constraints.get(bias_constraint) - - self.dropout = min(1.0, max(0.0, dropout)) - self.recurrent_dropout = min(1.0, max(0.0, recurrent_dropout)) - self.state_size = (self.filters, self.filters) - - def build(self, input_shape): - super().build(input_shape) - if self.data_format == "channels_first": - channel_axis = 1 - else: - channel_axis = -1 - if input_shape[channel_axis] is None: - raise ValueError( - "The channel dimension of the inputs (last axis) should be " - "defined. Found None. Full input shape received: " - f"input_shape={input_shape}" - ) - input_dim = input_shape[channel_axis] - self.kernel_shape = self.kernel_size + (input_dim, self.filters * 4) - recurrent_kernel_shape = self.kernel_size + ( - self.filters, - self.filters * 4, - ) - - self.kernel = self.add_weight( - shape=self.kernel_shape, - initializer=self.kernel_initializer, - name="kernel", - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - ) - self.recurrent_kernel = self.add_weight( - shape=recurrent_kernel_shape, - initializer=self.recurrent_initializer, - name="recurrent_kernel", - regularizer=self.recurrent_regularizer, - constraint=self.recurrent_constraint, - ) - - if self.use_bias: - if self.unit_forget_bias: - - def bias_initializer(_, *args, **kwargs): - return backend.concatenate( - [ - self.bias_initializer( - (self.filters,), *args, **kwargs - ), - initializers.get("ones")( - (self.filters,), *args, **kwargs - ), - self.bias_initializer( - (self.filters * 2,), *args, **kwargs - ), - ] - ) - - else: - bias_initializer = self.bias_initializer - self.bias = self.add_weight( - shape=(self.filters * 4,), - name="bias", - initializer=bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - ) - else: - self.bias = None - self.built = True - - def call(self, inputs, states, training=None): - h_tm1 = states[0] # previous memory state - c_tm1 = states[1] # previous carry state - - # dropout matrices for input units - dp_mask = self.get_dropout_mask_for_cell(inputs, training, count=4) - # dropout matrices for recurrent units - rec_dp_mask = self.get_recurrent_dropout_mask_for_cell( - h_tm1, training, count=4 - ) - - if 0 < self.dropout < 1.0: - inputs_i = inputs * dp_mask[0] - inputs_f = inputs * dp_mask[1] - inputs_c = inputs * dp_mask[2] - inputs_o = inputs * dp_mask[3] - else: - inputs_i = inputs - inputs_f = inputs - inputs_c = inputs - inputs_o = inputs - - if 0 < self.recurrent_dropout < 1.0: - h_tm1_i = h_tm1 * rec_dp_mask[0] - h_tm1_f = h_tm1 * rec_dp_mask[1] - h_tm1_c = h_tm1 * rec_dp_mask[2] - h_tm1_o = h_tm1 * rec_dp_mask[3] - else: - h_tm1_i = h_tm1 - h_tm1_f = h_tm1 - h_tm1_c = h_tm1 - h_tm1_o = h_tm1 - - (kernel_i, kernel_f, kernel_c, kernel_o) = tf.split( - self.kernel, 4, axis=self.rank + 1 - ) - ( - recurrent_kernel_i, - recurrent_kernel_f, - recurrent_kernel_c, - recurrent_kernel_o, - ) = tf.split(self.recurrent_kernel, 4, axis=self.rank + 1) - - if self.use_bias: - bias_i, bias_f, bias_c, bias_o = tf.split(self.bias, 4) - else: - bias_i, bias_f, bias_c, bias_o = None, None, None, None - - x_i = self.input_conv(inputs_i, kernel_i, bias_i, padding=self.padding) - x_f = self.input_conv(inputs_f, kernel_f, bias_f, padding=self.padding) - x_c = self.input_conv(inputs_c, kernel_c, bias_c, padding=self.padding) - x_o = self.input_conv(inputs_o, kernel_o, bias_o, padding=self.padding) - h_i = self.recurrent_conv(h_tm1_i, recurrent_kernel_i) - h_f = self.recurrent_conv(h_tm1_f, recurrent_kernel_f) - h_c = self.recurrent_conv(h_tm1_c, recurrent_kernel_c) - h_o = self.recurrent_conv(h_tm1_o, recurrent_kernel_o) - - i = self.recurrent_activation(x_i + h_i) - f = self.recurrent_activation(x_f + h_f) - c = f * c_tm1 + i * self.activation(x_c + h_c) - o = self.recurrent_activation(x_o + h_o) - h = o * self.activation(c) - return h, [h, c] - - @property - def _conv_func(self): - if self.rank == 1: - return backend.conv1d - if self.rank == 2: - return backend.conv2d - if self.rank == 3: - return backend.conv3d - - def input_conv(self, x, w, b=None, padding="valid"): - conv_out = self._conv_func( - x, - w, - strides=self.strides, - padding=padding, - data_format=self.data_format, - dilation_rate=self.dilation_rate, - ) - if b is not None: - conv_out = backend.bias_add( - conv_out, b, data_format=self.data_format - ) - return conv_out - - def recurrent_conv(self, x, w): - strides = conv_utils.normalize_tuple( - 1, self.rank, "strides", allow_zero=True - ) - conv_out = self._conv_func( - x, w, strides=strides, padding="same", data_format=self.data_format - ) - return conv_out - - def get_config(self): - config = { - "filters": self.filters, - "kernel_size": self.kernel_size, - "strides": self.strides, - "padding": self.padding, - "data_format": self.data_format, - "dilation_rate": self.dilation_rate, - "activation": activations.serialize(self.activation), - "recurrent_activation": activations.serialize( - self.recurrent_activation - ), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "recurrent_initializer": initializers.serialize( - self.recurrent_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "unit_forget_bias": self.unit_forget_bias, - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "recurrent_regularizer": regularizers.serialize( - self.recurrent_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "recurrent_constraint": constraints.serialize( - self.recurrent_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - "dropout": self.dropout, - "recurrent_dropout": self.recurrent_dropout, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -class ConvLSTM(ConvRNN): - """Abstract N-D Convolutional LSTM layer (used as implementation base). - - Similar to an LSTM layer, but the input transformations - and recurrent transformations are both convolutional. - - Args: - rank: Integer, rank of the convolution, e.g. "2" for 2D convolutions. - filters: Integer, the dimensionality of the output space - (i.e. the number of output filters in the convolution). - kernel_size: An integer or tuple/list of n integers, specifying the - dimensions of the convolution window. - strides: An integer or tuple/list of n integers, - specifying the strides of the convolution. - Specifying any stride value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, time, ..., channels)` - while `channels_first` corresponds to - inputs with shape `(batch, time, channels, ...)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - dilation_rate: An integer or tuple/list of n integers, specifying - the dilation rate to use for dilated convolution. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any `strides` value != 1. - activation: Activation function to use. - By default hyperbolic tangent activation function is applied - (`tanh(x)`). - recurrent_activation: Activation function to use - for the recurrent step. - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, - used for the linear transformation of the inputs. - recurrent_initializer: Initializer for the `recurrent_kernel` - weights matrix, - used for the linear transformation of the recurrent state. - bias_initializer: Initializer for the bias vector. - unit_forget_bias: Boolean. - If True, add 1 to the bias of the forget gate at initialization. - Use in combination with `bias_initializer="zeros"`. - This is recommended in [Jozefowicz et al., 2015]( - http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) - kernel_regularizer: Regularizer function applied to - the `kernel` weights matrix. - recurrent_regularizer: Regularizer function applied to - the `recurrent_kernel` weights matrix. - bias_regularizer: Regularizer function applied to the bias vector. - activity_regularizer: Regularizer function applied to. - kernel_constraint: Constraint function applied to - the `kernel` weights matrix. - recurrent_constraint: Constraint function applied to - the `recurrent_kernel` weights matrix. - bias_constraint: Constraint function applied to the bias vector. - return_sequences: Boolean. Whether to return the last output - in the output sequence, or the full sequence. (default False) - return_state: Boolean Whether to return the last state - in addition to the output. (default False) - go_backwards: Boolean (default False). - If True, process the input sequence backwards. - stateful: Boolean (default False). If True, the last state - for each sample at index i in a batch will be used as initial - state for the sample of index i in the following batch. - dropout: Float between 0 and 1. - Fraction of the units to drop for - the linear transformation of the inputs. - recurrent_dropout: Float between 0 and 1. - Fraction of the units to drop for - the linear transformation of the recurrent state. - """ - - def __init__( - self, - rank, - filters, - kernel_size, - strides=1, - padding="valid", - data_format=None, - dilation_rate=1, - activation="tanh", - recurrent_activation="hard_sigmoid", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - unit_forget_bias=True, - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - dropout=0.0, - recurrent_dropout=0.0, - **kwargs, - ): - cell = ConvLSTMCell( - rank=rank, - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - recurrent_activation=recurrent_activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - recurrent_initializer=recurrent_initializer, - bias_initializer=bias_initializer, - unit_forget_bias=unit_forget_bias, - kernel_regularizer=kernel_regularizer, - recurrent_regularizer=recurrent_regularizer, - bias_regularizer=bias_regularizer, - kernel_constraint=kernel_constraint, - recurrent_constraint=recurrent_constraint, - bias_constraint=bias_constraint, - dropout=dropout, - recurrent_dropout=recurrent_dropout, - name="conv_lstm_cell", - dtype=kwargs.get("dtype"), - ) - super().__init__( - rank, - cell, - return_sequences=return_sequences, - return_state=return_state, - go_backwards=go_backwards, - stateful=stateful, - **kwargs, - ) - self.activity_regularizer = regularizers.get(activity_regularizer) - - def call(self, inputs, mask=None, training=None, initial_state=None): - return super().call( - inputs, mask=mask, training=training, initial_state=initial_state - ) - - @property - def filters(self): - return self.cell.filters - - @property - def kernel_size(self): - return self.cell.kernel_size - - @property - def strides(self): - return self.cell.strides - - @property - def padding(self): - return self.cell.padding - - @property - def data_format(self): - return self.cell.data_format - - @property - def dilation_rate(self): - return self.cell.dilation_rate - - @property - def activation(self): - return self.cell.activation - - @property - def recurrent_activation(self): - return self.cell.recurrent_activation - - @property - def use_bias(self): - return self.cell.use_bias - - @property - def kernel_initializer(self): - return self.cell.kernel_initializer - - @property - def recurrent_initializer(self): - return self.cell.recurrent_initializer - - @property - def bias_initializer(self): - return self.cell.bias_initializer - - @property - def unit_forget_bias(self): - return self.cell.unit_forget_bias - - @property - def kernel_regularizer(self): - return self.cell.kernel_regularizer - - @property - def recurrent_regularizer(self): - return self.cell.recurrent_regularizer - - @property - def bias_regularizer(self): - return self.cell.bias_regularizer - - @property - def kernel_constraint(self): - return self.cell.kernel_constraint - - @property - def recurrent_constraint(self): - return self.cell.recurrent_constraint - - @property - def bias_constraint(self): - return self.cell.bias_constraint - - @property - def dropout(self): - return self.cell.dropout - - @property - def recurrent_dropout(self): - return self.cell.recurrent_dropout - - def get_config(self): - config = { - "filters": self.filters, - "kernel_size": self.kernel_size, - "strides": self.strides, - "padding": self.padding, - "data_format": self.data_format, - "dilation_rate": self.dilation_rate, - "activation": activations.serialize(self.activation), - "recurrent_activation": activations.serialize( - self.recurrent_activation - ), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "recurrent_initializer": initializers.serialize( - self.recurrent_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "unit_forget_bias": self.unit_forget_bias, - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "recurrent_regularizer": regularizers.serialize( - self.recurrent_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "recurrent_constraint": constraints.serialize( - self.recurrent_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - "dropout": self.dropout, - "recurrent_dropout": self.recurrent_dropout, - } - base_config = super().get_config() - del base_config["cell"] - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config): - return cls(**config) diff --git a/keras/layers/rnn/base_conv_rnn.py b/keras/layers/rnn/base_conv_rnn.py deleted file mode 100644 index bdeef1155cd..00000000000 --- a/keras/layers/rnn/base_conv_rnn.py +++ /dev/null @@ -1,437 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Base class for convolutional-recurrent layers.""" - - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer -from keras.engine.input_spec import InputSpec -from keras.layers.rnn.base_rnn import RNN -from keras.utils import conv_utils -from keras.utils import generic_utils -from keras.utils import tf_utils - - -class ConvRNN(RNN): - """N-Dimensional Base class for convolutional-recurrent layers. - - Args: - rank: Integer, rank of the convolution, e.g. "2" for 2D convolutions. - cell: A RNN cell instance. A RNN cell is a class that has: - a - `call(input_at_t, states_at_t)` method, returning `(output_at_t, - states_at_t_plus_1)`. The call method of the cell can also take the - optional argument `constants`, see section "Note on passing external - constants" below. - a `state_size` attribute. This can be a single - integer (single state) in which case it is the number of channels of the - recurrent state (which should be the same as the number of channels of - the cell output). This can also be a list/tuple of integers (one size - per state). In this case, the first entry (`state_size[0]`) should be - the same as the size of the cell output. - return_sequences: Boolean. Whether to return the last output. in the - output sequence, or the full sequence. - return_state: Boolean. Whether to return the last state in addition to the - output. - go_backwards: Boolean (default False). If True, process the input sequence - backwards and return the reversed sequence. - stateful: Boolean (default False). If True, the last state for each sample - at index i in a batch will be used as initial state for the sample of - index i in the following batch. - input_shape: Use this argument to specify the shape of the input when this - layer is the first one in a model. - Call arguments: - inputs: A (2 + `rank`)D tensor. - mask: Binary tensor of shape `(samples, timesteps)` indicating whether a - given timestep should be masked. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. This argument is passed to the cell - when calling it. This is for use with cells that use dropout. - initial_state: List of initial state tensors to be passed to the first - call of the cell. - constants: List of constant tensors to be passed to the cell at each - timestep. - Input shape: - (3 + `rank`)D tensor with shape: `(samples, timesteps, channels, - img_dimensions...)` - if data_format='channels_first' or shape: `(samples, timesteps, - img_dimensions..., channels)` if data_format='channels_last'. - Output shape: - - If `return_state`: a list of tensors. The first tensor is the output. - The remaining tensors are the last states, - each (2 + `rank`)D tensor with shape: `(samples, filters, - new_img_dimensions...)` if data_format='channels_first' - or shape: `(samples, new_img_dimensions..., filters)` if - data_format='channels_last'. img_dimension values might have changed - due to padding. - - If `return_sequences`: (3 + `rank`)D tensor with shape: `(samples, - timesteps, filters, new_img_dimensions...)` if - data_format='channels_first' - or shape: `(samples, timesteps, new_img_dimensions..., filters)` if - data_format='channels_last'. - - Else, (2 + `rank`)D tensor with shape: `(samples, filters, - new_img_dimensions...)` if data_format='channels_first' - or shape: `(samples, new_img_dimensions..., filters)` if - data_format='channels_last'. - Masking: This layer supports masking for input data with a variable number - of timesteps. - Note on using statefulness in RNNs: You can set RNN layers to be 'stateful', - which means that the states computed for the samples in one batch will be - reused as initial states for the samples in the next batch. This assumes a - one-to-one mapping between samples in different successive batches. - To enable statefulness: - Specify `stateful=True` in the layer - constructor. - - Specify a fixed batch size for your model, by passing - - If sequential model: `batch_input_shape=(...)` to the first layer - in your model. - - If functional model with 1 or more Input layers: - `batch_shape=(...)` to all the first layers in your model. This is - the expected shape of your inputs *including the batch size*. It - should be a tuple of integers, e.g. `(32, 10, 100, 100, 32)`. for - rank 2 convolution Note that the image dimensions should be - specified too. - Specify `shuffle=False` when calling fit(). To - reset the states of your model, call `.reset_states()` on either a - specific layer, or on your entire model. - Note on specifying the initial state of RNNs: You can specify the initial - state of RNN layers symbolically by calling them with the keyword argument - `initial_state`. The value of `initial_state` should be a tensor or list - of tensors representing the initial state of the RNN layer. You can - specify the initial state of RNN layers numerically by calling - `reset_states` with the keyword argument `states`. The value of `states` - should be a numpy array or list of numpy arrays representing the initial - state of the RNN layer. - Note on passing external constants to RNNs: You can pass "external" - constants to the cell using the `constants` keyword argument of - `RNN.__call__` (as well as `RNN.call`) method. This requires that the - `cell.call` method accepts the same keyword argument `constants`. Such - constants can be used to condition the cell transformation on additional - static inputs (not changing over time), a.k.a. an attention mechanism. - """ - - def __init__( - self, - rank, - cell, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - unroll=False, - **kwargs, - ): - if unroll: - raise TypeError( - "Unrolling is not possible with convolutional RNNs. " - f"Received: unroll={unroll}" - ) - if isinstance(cell, (list, tuple)): - # The StackedConvRNN3DCells isn't implemented yet. - raise TypeError( - "It is not possible at the moment to" - "stack convolutional cells. Only pass a single cell " - "instance as the `cell` argument. Received: " - f"cell={cell}" - ) - super().__init__( - cell, - return_sequences, - return_state, - go_backwards, - stateful, - unroll, - **kwargs, - ) - self.rank = rank - self.input_spec = [InputSpec(ndim=rank + 3)] - self.states = None - self._num_constants = None - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - if isinstance(input_shape, list): - input_shape = input_shape[0] - - cell = self.cell - if cell.data_format == "channels_first": - img_dims = input_shape[3:] - elif cell.data_format == "channels_last": - img_dims = input_shape[2:-1] - - norm_img_dims = tuple( - [ - conv_utils.conv_output_length( - img_dims[idx], - cell.kernel_size[idx], - padding=cell.padding, - stride=cell.strides[idx], - dilation=cell.dilation_rate[idx], - ) - for idx in range(len(img_dims)) - ] - ) - - if cell.data_format == "channels_first": - output_shape = input_shape[:2] + (cell.filters,) + norm_img_dims - elif cell.data_format == "channels_last": - output_shape = input_shape[:2] + norm_img_dims + (cell.filters,) - - if not self.return_sequences: - output_shape = output_shape[:1] + output_shape[2:] - - if self.return_state: - output_shape = [output_shape] - if cell.data_format == "channels_first": - output_shape += [ - (input_shape[0], cell.filters) + norm_img_dims - for _ in range(2) - ] - elif cell.data_format == "channels_last": - output_shape += [ - (input_shape[0],) + norm_img_dims + (cell.filters,) - for _ in range(2) - ] - return output_shape - - @tf_utils.shape_type_conversion - def build(self, input_shape): - # Note input_shape will be list of shapes of initial states and - # constants if these are passed in __call__. - if self._num_constants is not None: - constants_shape = input_shape[-self._num_constants :] - else: - constants_shape = None - - if isinstance(input_shape, list): - input_shape = input_shape[0] - - batch_size = input_shape[0] if self.stateful else None - self.input_spec[0] = InputSpec( - shape=(batch_size, None) + input_shape[2 : self.rank + 3] - ) - - # allow cell (if layer) to build before we set or validate state_spec - if isinstance(self.cell, base_layer.Layer): - step_input_shape = (input_shape[0],) + input_shape[2:] - if constants_shape is not None: - self.cell.build([step_input_shape] + constants_shape) - else: - self.cell.build(step_input_shape) - - # set or validate state_spec - if hasattr(self.cell.state_size, "__len__"): - state_size = list(self.cell.state_size) - else: - state_size = [self.cell.state_size] - - if self.state_spec is not None: - # initial_state was passed in call, check compatibility - if self.cell.data_format == "channels_first": - ch_dim = 1 - elif self.cell.data_format == "channels_last": - ch_dim = self.rank + 1 - if [spec.shape[ch_dim] for spec in self.state_spec] != state_size: - raise ValueError( - "An `initial_state` was passed that is not compatible with " - "`cell.state_size`. Received state shapes " - f"{[spec.shape for spec in self.state_spec]}. " - f"However `cell.state_size` is {self.cell.state_size}" - ) - else: - img_dims = tuple((None for _ in range(self.rank))) - if self.cell.data_format == "channels_first": - self.state_spec = [ - InputSpec(shape=(None, dim) + img_dims) - for dim in state_size - ] - elif self.cell.data_format == "channels_last": - self.state_spec = [ - InputSpec(shape=(None,) + img_dims + (dim,)) - for dim in state_size - ] - if self.stateful: - self.reset_states() - self.built = True - - def get_initial_state(self, inputs): - # (samples, timesteps, img_dims..., filters) - initial_state = backend.zeros_like(inputs) - # (samples, img_dims..., filters) - initial_state = backend.sum(initial_state, axis=1) - shape = list(self.cell.kernel_shape) - shape[-1] = self.cell.filters - initial_state = self.cell.input_conv( - initial_state, - tf.zeros(tuple(shape), initial_state.dtype), - padding=self.cell.padding, - ) - - if hasattr(self.cell.state_size, "__len__"): - return [initial_state for _ in self.cell.state_size] - else: - return [initial_state] - - def call( - self, - inputs, - mask=None, - training=None, - initial_state=None, - constants=None, - ): - # note that the .build() method of subclasses MUST define - # self.input_spec and self.state_spec with complete input shapes. - inputs, initial_state, constants = self._process_inputs( - inputs, initial_state, constants - ) - - if isinstance(mask, list): - mask = mask[0] - timesteps = backend.int_shape(inputs)[1] - - kwargs = {} - if generic_utils.has_arg(self.cell.call, "training"): - kwargs["training"] = training - - if constants: - if not generic_utils.has_arg(self.cell.call, "constants"): - raise ValueError( - f"RNN cell {self.cell} does not support constants. " - f"Received: constants={constants}" - ) - - def step(inputs, states): - constants = states[-self._num_constants :] - states = states[: -self._num_constants] - return self.cell.call( - inputs, states, constants=constants, **kwargs - ) - - else: - - def step(inputs, states): - return self.cell.call(inputs, states, **kwargs) - - last_output, outputs, states = backend.rnn( - step, - inputs, - initial_state, - constants=constants, - go_backwards=self.go_backwards, - mask=mask, - input_length=timesteps, - return_all_outputs=self.return_sequences, - ) - if self.stateful: - updates = [ - backend.update(self_state, state) - for self_state, state in zip(self.states, states) - ] - self.add_update(updates) - - if self.return_sequences: - output = outputs - else: - output = last_output - - if self.return_state: - if not isinstance(states, (list, tuple)): - states = [states] - else: - states = list(states) - return [output] + states - return output - - def reset_states(self, states=None): - if not self.stateful: - raise AttributeError("Layer must be stateful.") - input_shape = self.input_spec[0].shape - state_shape = self.compute_output_shape(input_shape) - if self.return_state: - state_shape = state_shape[0] - if self.return_sequences: - state_shape = state_shape[:1].concatenate(state_shape[2:]) - if None in state_shape: - raise ValueError( - "If a RNN is stateful, it needs to know " - "its batch size. Specify the batch size " - "of your input tensors: \n" - "- If using a Sequential model, " - "specify the batch size by passing " - "a `batch_input_shape` " - "argument to your first layer.\n" - "- If using the functional API, specify " - "the time dimension by passing a " - "`batch_shape` argument to your Input layer.\n" - "The same thing goes for the number of rows and " - "columns." - ) - - # helper function - def get_tuple_shape(nb_channels): - result = list(state_shape) - if self.cell.data_format == "channels_first": - result[1] = nb_channels - elif self.cell.data_format == "channels_last": - result[self.rank + 1] = nb_channels - else: - raise KeyError( - "Cell data format must be one of " - '{"channels_first", "channels_last"}. Received: ' - f"cell.data_format={self.cell.data_format}" - ) - return tuple(result) - - # initialize state if None - if self.states[0] is None: - if hasattr(self.cell.state_size, "__len__"): - self.states = [ - backend.zeros(get_tuple_shape(dim)) - for dim in self.cell.state_size - ] - else: - self.states = [ - backend.zeros(get_tuple_shape(self.cell.state_size)) - ] - elif states is None: - if hasattr(self.cell.state_size, "__len__"): - for state, dim in zip(self.states, self.cell.state_size): - backend.set_value(state, np.zeros(get_tuple_shape(dim))) - else: - backend.set_value( - self.states[0], - np.zeros(get_tuple_shape(self.cell.state_size)), - ) - else: - if not isinstance(states, (list, tuple)): - states = [states] - if len(states) != len(self.states): - raise ValueError( - f"Layer {self.name} expects {len(self.states)} states, " - f"but it received {len(states)} state values. " - f"States received: {states}" - ) - for index, (value, state) in enumerate(zip(states, self.states)): - if hasattr(self.cell.state_size, "__len__"): - dim = self.cell.state_size[index] - else: - dim = self.cell.state_size - if value.shape != get_tuple_shape(dim): - raise ValueError( - "State {index} is incompatible with layer " - f"{self.name}: expected shape={get_tuple_shape(dim)}, " - f"found shape={value.shape}" - ) - backend.set_value(state, value) diff --git a/keras/layers/rnn/base_cudnn_rnn.py b/keras/layers/rnn/base_cudnn_rnn.py deleted file mode 100644 index 96426fc72e2..00000000000 --- a/keras/layers/rnn/base_cudnn_rnn.py +++ /dev/null @@ -1,150 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Base class for recurrent layers backed by cuDNN.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.input_spec import InputSpec -from keras.layers.rnn.base_rnn import RNN - - -class _CuDNNRNN(RNN): - """Private base class for CuDNNGRU and CuDNNLSTM layers. - - Args: - return_sequences: Boolean. Whether to return the last output - in the output sequence, or the full sequence. - return_state: Boolean. Whether to return the last state - in addition to the output. - go_backwards: Boolean (default False). - If True, process the input sequence backwards and return the - reversed sequence. - stateful: Boolean (default False). If True, the last state - for each sample at index i in a batch will be used as initial - state for the sample of index i in the following batch. - time_major: Boolean (default False). If true, the inputs and outputs will - be in shape `(timesteps, batch, ...)`, whereas in the False case, it - will be `(batch, timesteps, ...)`. - """ - - def __init__( - self, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - time_major=False, - **kwargs - ): - # We invoke the base layer's initializer directly here because we do not - # want to create RNN cell instance. - super(RNN, self).__init__(**kwargs) - self.return_sequences = return_sequences - self.return_state = return_state - self.go_backwards = go_backwards - self.stateful = stateful - self.time_major = time_major - self.supports_masking = False - self.input_spec = [InputSpec(ndim=3)] - if hasattr(self.cell.state_size, "__len__"): - state_size = self.cell.state_size - else: - state_size = [self.cell.state_size] - self.state_spec = [InputSpec(shape=(None, dim)) for dim in state_size] - self.constants_spec = None - self._states = None - self._num_constants = 0 - self._vector_shape = tf.constant([-1]) - - def call(self, inputs, mask=None, training=None, initial_state=None): - if isinstance(mask, list): - mask = mask[0] - if mask is not None: - raise ValueError("Masking is not supported for CuDNN RNNs.") - - # input shape: `(samples, time (padded with zeros), input_dim)` - # note that the .build() method of subclasses MUST define - # self.input_spec and self.state_spec with complete input shapes. - if isinstance(inputs, list): - initial_state = inputs[1:] - inputs = inputs[0] - elif initial_state is not None: - pass - elif self.stateful: - initial_state = self.states - else: - initial_state = self.get_initial_state(inputs) - - if len(initial_state) != len(self.states): - raise ValueError( - "Layer has " - + str(len(self.states)) - + " states but was passed " - + str(len(initial_state)) - + " initial states." - ) - - if self.go_backwards: - # Reverse time axis. - inputs = backend.reverse(inputs, 1) - output, states = self._process_batch(inputs, initial_state) - - if self.stateful: - updates = [ - tf.compat.v1.assign(self_state, state) - for self_state, state in zip(self.states, states) - ] - self.add_update(updates) - - if self.return_state: - return [output] + states - else: - return output - - def get_config(self): - config = { - "return_sequences": self.return_sequences, - "return_state": self.return_state, - "go_backwards": self.go_backwards, - "stateful": self.stateful, - "time_major": self.time_major, - } - base_config = super(RNN, self).get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config): - return cls(**config) - - @property - def trainable_weights(self): - if self.trainable and self.built: - return [self.kernel, self.recurrent_kernel, self.bias] - return [] - - @property - def non_trainable_weights(self): - if not self.trainable and self.built: - return [self.kernel, self.recurrent_kernel, self.bias] - return [] - - @property - def losses(self): - return super(RNN, self).losses - - def get_losses_for(self, inputs=None): - return super(RNN, self).get_losses_for(inputs=inputs) diff --git a/keras/layers/rnn/base_rnn.py b/keras/layers/rnn/base_rnn.py deleted file mode 100644 index e16c62bc357..00000000000 --- a/keras/layers/rnn/base_rnn.py +++ /dev/null @@ -1,979 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Base class for recurrent layers.""" - - -import collections - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer -from keras.engine.input_spec import InputSpec -from keras.layers.rnn import rnn_utils -from keras.layers.rnn.dropout_rnn_cell_mixin import DropoutRNNCellMixin -from keras.layers.rnn.stacked_rnn_cells import StackedRNNCells -from keras.saving import serialization_lib -from keras.saving.legacy.saved_model import layer_serialization -from keras.utils import generic_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export -from tensorflow.tools.docs import doc_controls - - -@keras_export("keras.layers.RNN") -class RNN(base_layer.Layer): - """Base class for recurrent layers. - - See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) - for details about the usage of RNN API. - - Args: - cell: A RNN cell instance or a list of RNN cell instances. - A RNN cell is a class that has: - - A `call(input_at_t, states_at_t)` method, returning - `(output_at_t, states_at_t_plus_1)`. The call method of the - cell can also take the optional argument `constants`, see - section "Note on passing external constants" below. - - A `state_size` attribute. This can be a single integer - (single state) in which case it is the size of the recurrent - state. This can also be a list/tuple of integers (one size per state). - The `state_size` can also be TensorShape or tuple/list of - TensorShape, to represent high dimension state. - - A `output_size` attribute. This can be a single integer or a - TensorShape, which represent the shape of the output. For backward - compatible reason, if this attribute is not available for the - cell, the value will be inferred by the first element of the - `state_size`. - - A `get_initial_state(inputs=None, batch_size=None, dtype=None)` - method that creates a tensor meant to be fed to `call()` as the - initial state, if the user didn't specify any initial state via other - means. The returned initial state should have a shape of - [batch_size, cell.state_size]. The cell might choose to create a - tensor full of zeros, or full of other values based on the cell's - implementation. - `inputs` is the input tensor to the RNN layer, which should - contain the batch size as its shape[0], and also dtype. Note that - the shape[0] might be `None` during the graph construction. Either - the `inputs` or the pair of `batch_size` and `dtype` are provided. - `batch_size` is a scalar tensor that represents the batch size - of the inputs. `dtype` is `tf.DType` that represents the dtype of - the inputs. - For backward compatibility, if this method is not implemented - by the cell, the RNN layer will create a zero filled tensor with the - size of [batch_size, cell.state_size]. - In the case that `cell` is a list of RNN cell instances, the cells - will be stacked on top of each other in the RNN, resulting in an - efficient stacked RNN. - return_sequences: Boolean (default `False`). Whether to return the last - output in the output sequence, or the full sequence. - return_state: Boolean (default `False`). Whether to return the last state - in addition to the output. - go_backwards: Boolean (default `False`). - If True, process the input sequence backwards and return the - reversed sequence. - stateful: Boolean (default `False`). If True, the last state - for each sample at index i in a batch will be used as initial - state for the sample of index i in the following batch. - unroll: Boolean (default `False`). - If True, the network will be unrolled, else a symbolic loop will be - used. Unrolling can speed-up a RNN, although it tends to be more - memory-intensive. Unrolling is only suitable for short sequences. - time_major: The shape format of the `inputs` and `outputs` tensors. - If True, the inputs and outputs will be in shape - `(timesteps, batch, ...)`, whereas in the False case, it will be - `(batch, timesteps, ...)`. Using `time_major = True` is a bit more - efficient because it avoids transposes at the beginning and end of the - RNN calculation. However, most TensorFlow data is batch-major, so by - default this function accepts input and emits output in batch-major - form. - zero_output_for_mask: Boolean (default `False`). - Whether the output should use zeros for the masked timesteps. Note that - this field is only used when `return_sequences` is True and mask is - provided. It can useful if you want to reuse the raw output sequence of - the RNN without interference from the masked timesteps, eg, merging - bidirectional RNNs. - - Call arguments: - inputs: Input tensor. - mask: Binary tensor of shape `[batch_size, timesteps]` indicating whether - a given timestep should be masked. An individual `True` entry indicates - that the corresponding timestep should be utilized, while a `False` - entry indicates that the corresponding timestep should be ignored. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. This argument is passed to the cell - when calling it. This is for use with cells that use dropout. - initial_state: List of initial state tensors to be passed to the first - call of the cell. - constants: List of constant tensors to be passed to the cell at each - timestep. - - Input shape: - N-D tensor with shape `[batch_size, timesteps, ...]` or - `[timesteps, batch_size, ...]` when time_major is True. - - Output shape: - - If `return_state`: a list of tensors. The first tensor is - the output. The remaining tensors are the last states, - each with shape `[batch_size, state_size]`, where `state_size` could - be a high dimension tensor shape. - - If `return_sequences`: N-D tensor with shape - `[batch_size, timesteps, output_size]`, where `output_size` could - be a high dimension tensor shape, or - `[timesteps, batch_size, output_size]` when `time_major` is True. - - Else, N-D tensor with shape `[batch_size, output_size]`, where - `output_size` could be a high dimension tensor shape. - - Masking: - This layer supports masking for input data with a variable number - of timesteps. To introduce masks to your data, - use an [tf.keras.layers.Embedding] layer with the `mask_zero` parameter - set to `True`. - - Note on using statefulness in RNNs: - You can set RNN layers to be 'stateful', which means that the states - computed for the samples in one batch will be reused as initial states - for the samples in the next batch. This assumes a one-to-one mapping - between samples in different successive batches. - - To enable statefulness: - - Specify `stateful=True` in the layer constructor. - - Specify a fixed batch size for your model, by passing - If sequential model: - `batch_input_shape=(...)` to the first layer in your model. - Else for functional model with 1 or more Input layers: - `batch_shape=(...)` to all the first layers in your model. - This is the expected shape of your inputs - *including the batch size*. - It should be a tuple of integers, e.g. `(32, 10, 100)`. - - Specify `shuffle=False` when calling `fit()`. - - To reset the states of your model, call `.reset_states()` on either - a specific layer, or on your entire model. - - Note on specifying the initial state of RNNs: - You can specify the initial state of RNN layers symbolically by - calling them with the keyword argument `initial_state`. The value of - `initial_state` should be a tensor or list of tensors representing - the initial state of the RNN layer. - - You can specify the initial state of RNN layers numerically by - calling `reset_states` with the keyword argument `states`. The value of - `states` should be a numpy array or list of numpy arrays representing - the initial state of the RNN layer. - - Note on passing external constants to RNNs: - You can pass "external" constants to the cell using the `constants` - keyword argument of `RNN.__call__` (as well as `RNN.call`) method. This - requires that the `cell.call` method accepts the same keyword argument - `constants`. Such constants can be used to condition the cell - transformation on additional static inputs (not changing over time), - a.k.a. an attention mechanism. - - Examples: - - ```python - from keras.layers import RNN - from keras import backend - - # First, let's define a RNN Cell, as a layer subclass. - class MinimalRNNCell(keras.layers.Layer): - - def __init__(self, units, **kwargs): - self.units = units - self.state_size = units - super(MinimalRNNCell, self).__init__(**kwargs) - - def build(self, input_shape): - self.kernel = self.add_weight(shape=(input_shape[-1], self.units), - initializer='uniform', - name='kernel') - self.recurrent_kernel = self.add_weight( - shape=(self.units, self.units), - initializer='uniform', - name='recurrent_kernel') - self.built = True - - def call(self, inputs, states): - prev_output = states[0] - h = backend.dot(inputs, self.kernel) - output = h + backend.dot(prev_output, self.recurrent_kernel) - return output, [output] - - # Let's use this cell in a RNN layer: - - cell = MinimalRNNCell(32) - x = keras.Input((None, 5)) - layer = RNN(cell) - y = layer(x) - - # Here's how to use the cell to build a stacked RNN: - - cells = [MinimalRNNCell(32), MinimalRNNCell(64)] - x = keras.Input((None, 5)) - layer = RNN(cells) - y = layer(x) - ``` - """ - - def __init__( - self, - cell, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - unroll=False, - time_major=False, - **kwargs, - ): - if isinstance(cell, (list, tuple)): - cell = StackedRNNCells(cell) - if "call" not in dir(cell): - raise ValueError( - "Argument `cell` should have a `call` method. " - f"The RNN was passed: cell={cell}" - ) - if "state_size" not in dir(cell): - raise ValueError( - "The RNN cell should have a `state_size` attribute " - "(tuple of integers, one integer per RNN state). " - f"Received: cell={cell}" - ) - # If True, the output for masked timestep will be zeros, whereas in the - # False case, output from previous timestep is returned for masked - # timestep. - self.zero_output_for_mask = kwargs.pop("zero_output_for_mask", False) - - if "input_shape" not in kwargs and ( - "input_dim" in kwargs or "input_length" in kwargs - ): - input_shape = ( - kwargs.pop("input_length", None), - kwargs.pop("input_dim", None), - ) - kwargs["input_shape"] = input_shape - - super().__init__(**kwargs) - self.cell = cell - self.return_sequences = return_sequences - self.return_state = return_state - self.go_backwards = go_backwards - self.stateful = stateful - self.unroll = unroll - self.time_major = time_major - - self.supports_masking = True - # The input shape is unknown yet, it could have nested tensor inputs, - # and the input spec will be the list of specs for nested inputs, the - # structure of the input_spec will be the same as the input. - self.input_spec = None - self.state_spec = None - self._states = None - self.constants_spec = None - self._num_constants = 0 - - if stateful: - if tf.distribute.has_strategy(): - raise ValueError( - "Stateful RNNs (created with `stateful=True`) " - "are not yet supported with tf.distribute.Strategy." - ) - - @property - def _use_input_spec_as_call_signature(self): - if self.unroll: - # When the RNN layer is unrolled, the time step shape cannot be - # unknown. The input spec does not define the time step (because - # this layer can be called with any time step value, as long as it - # is not None), so it cannot be used as the call function signature - # when saving to SavedModel. - return False - return super()._use_input_spec_as_call_signature - - @property - def states(self): - if self._states is None: - state = tf.nest.map_structure(lambda _: None, self.cell.state_size) - return state if tf.nest.is_nested(self.cell.state_size) else [state] - return self._states - - @states.setter - # Automatic tracking catches "self._states" which adds an extra weight and - # breaks HDF5 checkpoints. - @tf.__internal__.tracking.no_automatic_dependency_tracking - def states(self, states): - self._states = states - - def compute_output_shape(self, input_shape): - if isinstance(input_shape, list): - input_shape = input_shape[0] - # Check whether the input shape contains any nested shapes. It could be - # (tensor_shape(1, 2), tensor_shape(3, 4)) or (1, 2, 3) which is from - # numpy inputs. - try: - input_shape = tf.TensorShape(input_shape) - except (ValueError, TypeError): - # A nested tensor input - input_shape = tf.nest.flatten(input_shape)[0] - - batch = input_shape[0] - time_step = input_shape[1] - if self.time_major: - batch, time_step = time_step, batch - - if rnn_utils.is_multiple_state(self.cell.state_size): - state_size = self.cell.state_size - else: - state_size = [self.cell.state_size] - - def _get_output_shape(flat_output_size): - output_dim = tf.TensorShape(flat_output_size).as_list() - if self.return_sequences: - if self.time_major: - output_shape = tf.TensorShape( - [time_step, batch] + output_dim - ) - else: - output_shape = tf.TensorShape( - [batch, time_step] + output_dim - ) - else: - output_shape = tf.TensorShape([batch] + output_dim) - return output_shape - - if getattr(self.cell, "output_size", None) is not None: - # cell.output_size could be nested structure. - output_shape = tf.nest.flatten( - tf.nest.map_structure(_get_output_shape, self.cell.output_size) - ) - output_shape = ( - output_shape[0] if len(output_shape) == 1 else output_shape - ) - else: - # Note that state_size[0] could be a tensor_shape or int. - output_shape = _get_output_shape(state_size[0]) - - if self.return_state: - - def _get_state_shape(flat_state): - state_shape = [batch] + tf.TensorShape(flat_state).as_list() - return tf.TensorShape(state_shape) - - state_shape = tf.nest.map_structure(_get_state_shape, state_size) - return generic_utils.to_list(output_shape) + tf.nest.flatten( - state_shape - ) - else: - return output_shape - - def compute_mask(self, inputs, mask): - # Time step masks must be the same for each input. - # This is because the mask for an RNN is of size [batch, time_steps, 1], - # and specifies which time steps should be skipped, and a time step - # must be skipped for all inputs. - # TODO(scottzhu): Should we accept multiple different masks? - mask = tf.nest.flatten(mask)[0] - output_mask = mask if self.return_sequences else None - if self.return_state: - state_mask = [None for _ in self.states] - return [output_mask] + state_mask - else: - return output_mask - - def build(self, input_shape): - if isinstance(input_shape, list): - input_shape = input_shape[0] - # The input_shape here could be a nest structure. - - # do the tensor_shape to shapes here. The input could be single tensor, - # or a nested structure of tensors. - def get_input_spec(shape): - """Convert input shape to InputSpec.""" - if isinstance(shape, tf.TensorShape): - input_spec_shape = shape.as_list() - else: - input_spec_shape = list(shape) - batch_index, time_step_index = (1, 0) if self.time_major else (0, 1) - if not self.stateful: - input_spec_shape[batch_index] = None - input_spec_shape[time_step_index] = None - return InputSpec(shape=tuple(input_spec_shape)) - - def get_step_input_shape(shape): - if isinstance(shape, tf.TensorShape): - shape = tuple(shape.as_list()) - # remove the timestep from the input_shape - return shape[1:] if self.time_major else (shape[0],) + shape[2:] - - def get_state_spec(shape): - state_spec_shape = tf.TensorShape(shape).as_list() - # append batch dim - state_spec_shape = [None] + state_spec_shape - return InputSpec(shape=tuple(state_spec_shape)) - - # Check whether the input shape contains any nested shapes. It could be - # (tensor_shape(1, 2), tensor_shape(3, 4)) or (1, 2, 3) which is from - # numpy inputs. - try: - input_shape = tf.TensorShape(input_shape) - except (ValueError, TypeError): - # A nested tensor input - pass - - if not tf.nest.is_nested(input_shape): - # This indicates the there is only one input. - if self.input_spec is not None: - self.input_spec[0] = get_input_spec(input_shape) - else: - self.input_spec = [get_input_spec(input_shape)] - step_input_shape = get_step_input_shape(input_shape) - else: - if self.input_spec is not None: - self.input_spec[0] = tf.nest.map_structure( - get_input_spec, input_shape - ) - else: - self.input_spec = generic_utils.to_list( - tf.nest.map_structure(get_input_spec, input_shape) - ) - step_input_shape = tf.nest.map_structure( - get_step_input_shape, input_shape - ) - - # allow cell (if layer) to build before we set or validate state_spec. - if isinstance(self.cell, base_layer.Layer) and not self.cell.built: - with backend.name_scope(self.cell.name): - self.cell.build(step_input_shape) - self.cell.built = True - - # set or validate state_spec - if rnn_utils.is_multiple_state(self.cell.state_size): - state_size = list(self.cell.state_size) - else: - state_size = [self.cell.state_size] - - if self.state_spec is not None: - # initial_state was passed in call, check compatibility - self._validate_state_spec(state_size, self.state_spec) - else: - if tf.nest.is_nested(state_size): - self.state_spec = tf.nest.map_structure( - get_state_spec, state_size - ) - else: - self.state_spec = [ - InputSpec(shape=[None] + tf.TensorShape(dim).as_list()) - for dim in state_size - ] - # ensure the generated state_spec is correct. - self._validate_state_spec(state_size, self.state_spec) - if self.stateful: - self.reset_states() - super().build(input_shape) - - @staticmethod - def _validate_state_spec(cell_state_sizes, init_state_specs): - """Validate the state spec between the initial_state and the state_size. - - Args: - cell_state_sizes: list, the `state_size` attribute from the cell. - init_state_specs: list, the `state_spec` from the initial_state that - is passed in `call()`. - - Raises: - ValueError: When initial state spec is not compatible with the state - size. - """ - validation_error = ValueError( - "An `initial_state` was passed that is not compatible with " - "`cell.state_size`. Received `state_spec`={}; " - "however `cell.state_size` is " - "{}".format(init_state_specs, cell_state_sizes) - ) - flat_cell_state_sizes = tf.nest.flatten(cell_state_sizes) - flat_state_specs = tf.nest.flatten(init_state_specs) - - if len(flat_cell_state_sizes) != len(flat_state_specs): - raise validation_error - for cell_state_spec, cell_state_size in zip( - flat_state_specs, flat_cell_state_sizes - ): - if not tf.TensorShape( - # Ignore the first axis for init_state which is for batch - cell_state_spec.shape[1:] - ).is_compatible_with(tf.TensorShape(cell_state_size)): - raise validation_error - - @doc_controls.do_not_doc_inheritable - def get_initial_state(self, inputs): - get_initial_state_fn = getattr(self.cell, "get_initial_state", None) - - if tf.nest.is_nested(inputs): - # The input are nested sequences. Use the first element in the seq - # to get batch size and dtype. - inputs = tf.nest.flatten(inputs)[0] - - input_shape = tf.shape(inputs) - batch_size = input_shape[1] if self.time_major else input_shape[0] - dtype = inputs.dtype - if get_initial_state_fn: - init_state = get_initial_state_fn( - inputs=None, batch_size=batch_size, dtype=dtype - ) - else: - init_state = rnn_utils.generate_zero_filled_state( - batch_size, self.cell.state_size, dtype - ) - # Keras RNN expect the states in a list, even if it's a single state - # tensor. - if not tf.nest.is_nested(init_state): - init_state = [init_state] - # Force the state to be a list in case it is a namedtuple eg - # LSTMStateTuple. - return list(init_state) - - def __call__(self, inputs, initial_state=None, constants=None, **kwargs): - inputs, initial_state, constants = rnn_utils.standardize_args( - inputs, initial_state, constants, self._num_constants - ) - - if initial_state is None and constants is None: - return super().__call__(inputs, **kwargs) - - # If any of `initial_state` or `constants` are specified and are Keras - # tensors, then add them to the inputs and temporarily modify the - # input_spec to include them. - - additional_inputs = [] - additional_specs = [] - if initial_state is not None: - additional_inputs += initial_state - self.state_spec = tf.nest.map_structure( - lambda s: InputSpec(shape=backend.int_shape(s)), initial_state - ) - additional_specs += self.state_spec - if constants is not None: - additional_inputs += constants - self.constants_spec = [ - InputSpec(shape=backend.int_shape(constant)) - for constant in constants - ] - self._num_constants = len(constants) - additional_specs += self.constants_spec - # additional_inputs can be empty if initial_state or constants are - # provided but empty (e.g. the cell is stateless). - flat_additional_inputs = tf.nest.flatten(additional_inputs) - is_keras_tensor = ( - backend.is_keras_tensor(flat_additional_inputs[0]) - if flat_additional_inputs - else True - ) - for tensor in flat_additional_inputs: - if backend.is_keras_tensor(tensor) != is_keras_tensor: - raise ValueError( - "The initial state or constants of an RNN layer cannot be " - "specified via a mix of Keras tensors and non-Keras " - 'tensors (a "Keras tensor" is a tensor that was returned ' - "by a Keras layer or by `Input` during Functional " - "model construction). Received: " - f"initial_state={initial_state}, constants={constants}" - ) - - if is_keras_tensor: - # Compute the full input spec, including state and constants - full_input = [inputs] + additional_inputs - if self.built: - # Keep the input_spec since it has been populated in build() - # method. - full_input_spec = self.input_spec + additional_specs - else: - # The original input_spec is None since there could be a nested - # tensor input. Update the input_spec to match the inputs. - full_input_spec = ( - generic_utils.to_list( - tf.nest.map_structure(lambda _: None, inputs) - ) - + additional_specs - ) - # Perform the call with temporarily replaced input_spec - self.input_spec = full_input_spec - output = super().__call__(full_input, **kwargs) - # Remove the additional_specs from input spec and keep the rest. It - # is important to keep since the input spec was populated by - # build(), and will be reused in the stateful=True. - self.input_spec = self.input_spec[: -len(additional_specs)] - return output - else: - if initial_state is not None: - kwargs["initial_state"] = initial_state - if constants is not None: - kwargs["constants"] = constants - return super().__call__(inputs, **kwargs) - - def call( - self, - inputs, - mask=None, - training=None, - initial_state=None, - constants=None, - ): - # The input should be dense, padded with zeros. If a ragged input is fed - # into the layer, it is padded and the row lengths are used for masking. - inputs, row_lengths = backend.convert_inputs_if_ragged(inputs) - is_ragged_input = row_lengths is not None - self._validate_args_if_ragged(is_ragged_input, mask) - - inputs, initial_state, constants = self._process_inputs( - inputs, initial_state, constants - ) - - self._maybe_reset_cell_dropout_mask(self.cell) - if isinstance(self.cell, StackedRNNCells): - for cell in self.cell.cells: - self._maybe_reset_cell_dropout_mask(cell) - - if mask is not None: - # Time step masks must be the same for each input. - # TODO(scottzhu): Should we accept multiple different masks? - mask = tf.nest.flatten(mask)[0] - - if tf.nest.is_nested(inputs): - # In the case of nested input, use the first element for shape - # check. - input_shape = backend.int_shape(tf.nest.flatten(inputs)[0]) - else: - input_shape = backend.int_shape(inputs) - timesteps = input_shape[0] if self.time_major else input_shape[1] - if self.unroll and timesteps is None: - raise ValueError( - "Cannot unroll a RNN if the " - "time dimension is undefined. \n" - "- If using a Sequential model, " - "specify the time dimension by passing " - "an `input_shape` or `batch_input_shape` " - "argument to your first layer. If your " - "first layer is an Embedding, you can " - "also use the `input_length` argument.\n" - "- If using the functional API, specify " - "the time dimension by passing a `shape` " - "or `batch_shape` argument to your Input layer." - ) - - kwargs = {} - if generic_utils.has_arg(self.cell.call, "training"): - kwargs["training"] = training - - # TF RNN cells expect single tensor as state instead of list wrapped - # tensor. - is_tf_rnn_cell = getattr(self.cell, "_is_tf_rnn_cell", None) is not None - # Use the __call__ function for callable objects, eg layers, so that it - # will have the proper name scopes for the ops, etc. - cell_call_fn = ( - self.cell.__call__ if callable(self.cell) else self.cell.call - ) - if constants: - if not generic_utils.has_arg(self.cell.call, "constants"): - raise ValueError( - f"RNN cell {self.cell} does not support constants. " - f"Received: constants={constants}" - ) - - def step(inputs, states): - constants = states[-self._num_constants :] - states = states[: -self._num_constants] - - states = ( - states[0] if len(states) == 1 and is_tf_rnn_cell else states - ) - output, new_states = cell_call_fn( - inputs, states, constants=constants, **kwargs - ) - if not tf.nest.is_nested(new_states): - new_states = [new_states] - return output, new_states - - else: - - def step(inputs, states): - states = ( - states[0] if len(states) == 1 and is_tf_rnn_cell else states - ) - output, new_states = cell_call_fn(inputs, states, **kwargs) - if not tf.nest.is_nested(new_states): - new_states = [new_states] - return output, new_states - - last_output, outputs, states = backend.rnn( - step, - inputs, - initial_state, - constants=constants, - go_backwards=self.go_backwards, - mask=mask, - unroll=self.unroll, - input_length=row_lengths if row_lengths is not None else timesteps, - time_major=self.time_major, - zero_output_for_mask=self.zero_output_for_mask, - return_all_outputs=self.return_sequences, - ) - - if self.stateful: - updates = [ - tf.compat.v1.assign( - self_state, tf.cast(state, self_state.dtype) - ) - for self_state, state in zip( - tf.nest.flatten(self.states), tf.nest.flatten(states) - ) - ] - self.add_update(updates) - - if self.return_sequences: - output = backend.maybe_convert_to_ragged( - is_ragged_input, - outputs, - row_lengths, - go_backwards=self.go_backwards, - ) - else: - output = last_output - - if self.return_state: - if not isinstance(states, (list, tuple)): - states = [states] - else: - states = list(states) - return generic_utils.to_list(output) + states - else: - return output - - def _process_inputs(self, inputs, initial_state, constants): - # input shape: `(samples, time (padded with zeros), input_dim)` - # note that the .build() method of subclasses MUST define - # self.input_spec and self.state_spec with complete input shapes. - if isinstance(inputs, collections.abc.Sequence) and not isinstance( - inputs, tuple - ): - # get initial_state from full input spec - # as they could be copied to multiple GPU. - if not self._num_constants: - initial_state = inputs[1:] - else: - initial_state = inputs[1 : -self._num_constants] - constants = inputs[-self._num_constants :] - if len(initial_state) == 0: - initial_state = None - inputs = inputs[0] - - if self.stateful: - if initial_state is not None: - # When layer is stateful and initial_state is provided, check if - # the recorded state is same as the default value (zeros). Use - # the recorded state if it is not same as the default. - non_zero_count = tf.add_n( - [ - tf.math.count_nonzero(s) - for s in tf.nest.flatten(self.states) - ] - ) - # Set strict = True to keep the original structure of the state. - initial_state = tf.compat.v1.cond( - non_zero_count > 0, - true_fn=lambda: self.states, - false_fn=lambda: initial_state, - strict=True, - ) - else: - initial_state = self.states - initial_state = tf.nest.map_structure( - # When the layer has a inferred dtype, use the dtype from the - # cell. - lambda v: tf.cast( - v, self.compute_dtype or self.cell.compute_dtype - ), - initial_state, - ) - elif initial_state is None: - initial_state = self.get_initial_state(inputs) - - if len(initial_state) != len(self.states): - raise ValueError( - f"Layer has {len(self.states)} " - f"states but was passed {len(initial_state)} initial " - f"states. Received: initial_state={initial_state}" - ) - return inputs, initial_state, constants - - def _validate_args_if_ragged(self, is_ragged_input, mask): - if not is_ragged_input: - return - - if mask is not None: - raise ValueError( - f"The mask that was passed in was {mask}, which " - "cannot be applied to RaggedTensor inputs. Please " - "make sure that there is no mask injected by upstream " - "layers." - ) - if self.unroll: - raise ValueError( - "The input received contains RaggedTensors and does " - "not support unrolling. Disable unrolling by passing " - "`unroll=False` in the RNN Layer constructor." - ) - - def _maybe_reset_cell_dropout_mask(self, cell): - if isinstance(cell, DropoutRNNCellMixin): - cell.reset_dropout_mask() - cell.reset_recurrent_dropout_mask() - - def reset_states(self, states=None): - """Reset the recorded states for the stateful RNN layer. - - Can only be used when RNN layer is constructed with `stateful` = `True`. - Args: - states: Numpy arrays that contains the value for the initial state, - which will be feed to cell at the first time step. When the value is - None, zero filled numpy array will be created based on the cell - state size. - - Raises: - AttributeError: When the RNN layer is not stateful. - ValueError: When the batch size of the RNN layer is unknown. - ValueError: When the input numpy array is not compatible with the RNN - layer state, either size wise or dtype wise. - """ - if not self.stateful: - raise AttributeError("Layer must be stateful.") - spec_shape = None - if self.input_spec is not None: - spec_shape = tf.nest.flatten(self.input_spec[0])[0].shape - if spec_shape is None: - # It is possible to have spec shape to be None, eg when construct a - # RNN with a custom cell, or standard RNN layers (LSTM/GRU) which we - # only know it has 3 dim input, but not its full shape spec before - # build(). - batch_size = None - else: - batch_size = spec_shape[1] if self.time_major else spec_shape[0] - if not batch_size: - raise ValueError( - "If a RNN is stateful, it needs to know " - "its batch size. Specify the batch size " - "of your input tensors: \n" - "- If using a Sequential model, " - "specify the batch size by passing " - "a `batch_input_shape` " - "argument to your first layer.\n" - "- If using the functional API, specify " - "the batch size by passing a " - "`batch_shape` argument to your Input layer." - ) - # initialize state if None - if tf.nest.flatten(self.states)[0] is None: - if getattr(self.cell, "get_initial_state", None): - flat_init_state_values = tf.nest.flatten( - self.cell.get_initial_state( - inputs=None, - batch_size=batch_size, - # Use variable_dtype instead of compute_dtype, since the - # state is stored in a variable - dtype=self.variable_dtype or backend.floatx(), - ) - ) - else: - flat_init_state_values = tf.nest.flatten( - rnn_utils.generate_zero_filled_state( - batch_size, - self.cell.state_size, - self.variable_dtype or backend.floatx(), - ) - ) - flat_states_variables = tf.nest.map_structure( - backend.variable, flat_init_state_values - ) - self.states = tf.nest.pack_sequence_as( - self.cell.state_size, flat_states_variables - ) - if not tf.nest.is_nested(self.states): - self.states = [self.states] - elif states is None: - for state, size in zip( - tf.nest.flatten(self.states), - tf.nest.flatten(self.cell.state_size), - ): - backend.set_value( - state, - np.zeros([batch_size] + tf.TensorShape(size).as_list()), - ) - else: - flat_states = tf.nest.flatten(self.states) - flat_input_states = tf.nest.flatten(states) - if len(flat_input_states) != len(flat_states): - raise ValueError( - f"Layer {self.name} expects {len(flat_states)} " - f"states, but it received {len(flat_input_states)} " - f"state values. States received: {states}" - ) - set_value_tuples = [] - for i, (value, state) in enumerate( - zip(flat_input_states, flat_states) - ): - if value.shape != state.shape: - raise ValueError( - f"State {i} is incompatible with layer {self.name}: " - f"expected shape={(batch_size, state)} " - f"but found shape={value.shape}" - ) - set_value_tuples.append((state, value)) - backend.batch_set_value(set_value_tuples) - - def get_config(self): - config = { - "return_sequences": self.return_sequences, - "return_state": self.return_state, - "go_backwards": self.go_backwards, - "stateful": self.stateful, - "unroll": self.unroll, - "time_major": self.time_major, - } - if self._num_constants: - config["num_constants"] = self._num_constants - if self.zero_output_for_mask: - config["zero_output_for_mask"] = self.zero_output_for_mask - - config["cell"] = serialization_lib.serialize_keras_object(self.cell) - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - from keras.layers import deserialize as deserialize_layer - - cell = deserialize_layer( - config.pop("cell"), custom_objects=custom_objects - ) - num_constants = config.pop("num_constants", 0) - layer = cls(cell, **config) - layer._num_constants = num_constants - return layer - - @property - def _trackable_saved_model_saver(self): - return layer_serialization.RNNSavedModelSaver(self) diff --git a/keras/layers/rnn/base_rnn_test.py b/keras/layers/rnn/base_rnn_test.py deleted file mode 100644 index 7717ea58b0a..00000000000 --- a/keras/layers/rnn/base_rnn_test.py +++ /dev/null @@ -1,2148 +0,0 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for recurrent layers functionality other than GRU, LSTM, SimpleRNN. - -See also: lstm_test.py, gru_test.py, simplernn_test.py. -""" - - -import collections - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.engine import base_layer_utils -from keras.layers.rnn import gru -from keras.layers.rnn import gru_v1 -from keras.layers.rnn import lstm -from keras.layers.rnn import lstm_v1 -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.checkpoint import ( - checkpoint as trackable_util, -) - -# Used for nested input/output/state RNN test. -NestedInput = collections.namedtuple("NestedInput", ["t1", "t2"]) -NestedState = collections.namedtuple("NestedState", ["s1", "s2"]) - - -@test_combinations.run_all_keras_modes -class RNNTest(test_combinations.TestCase): - def test_minimal_rnn_cell_non_layer(self): - class MinimalRNNCell: - def __init__(self, units, input_dim): - self.units = units - self.state_size = units - self.kernel = keras.backend.variable( - np.random.random((input_dim, units)) - ) - - def call(self, inputs, states): - prev_output = states[0] - output = keras.backend.dot(inputs, self.kernel) + prev_output - return output, [output] - - # Basic test case. - cell = MinimalRNNCell(32, 5) - x = keras.Input((None, 5)) - layer = keras.layers.RNN(cell) - y = layer(x) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) - - # Test stacking. - cells = [ - MinimalRNNCell(8, 5), - MinimalRNNCell(32, 8), - MinimalRNNCell(32, 32), - ] - layer = keras.layers.RNN(cells) - y = layer(x) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) - - def test_minimal_rnn_cell_non_layer_multiple_states(self): - class MinimalRNNCell: - def __init__(self, units, input_dim): - self.units = units - self.state_size = (units, units) - self.kernel = keras.backend.variable( - np.random.random((input_dim, units)) - ) - - def call(self, inputs, states): - prev_output_1 = states[0] - prev_output_2 = states[1] - output = keras.backend.dot(inputs, self.kernel) - output += prev_output_1 - output -= prev_output_2 - return output, [output * 2, output * 3] - - # Basic test case. - cell = MinimalRNNCell(32, 5) - x = keras.Input((None, 5)) - layer = keras.layers.RNN(cell) - y = layer(x) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) - - # Test stacking. - cells = [ - MinimalRNNCell(8, 5), - MinimalRNNCell(16, 8), - MinimalRNNCell(32, 16), - ] - layer = keras.layers.RNN(cells) - self.assertEqual(layer.cell.state_size, ((8, 8), (16, 16), (32, 32))) - self.assertEqual(layer.cell.output_size, 32) - y = layer(x) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) - - def test_minimal_rnn_cell_layer(self): - class MinimalRNNCell(keras.layers.Layer): - def __init__(self, units, **kwargs): - self.units = units - self.state_size = units - super().__init__(**kwargs) - - def build(self, input_shape): - self.kernel = self.add_weight( - shape=(input_shape[-1], self.units), - initializer="uniform", - name="kernel", - ) - self.recurrent_kernel = self.add_weight( - shape=(self.units, self.units), - initializer="uniform", - name="recurrent_kernel", - ) - self.built = True - - def call(self, inputs, states): - prev_output = states[0] - h = keras.backend.dot(inputs, self.kernel) - output = h + keras.backend.dot( - prev_output, self.recurrent_kernel - ) - return output, [output] - - def get_config(self): - config = {"units": self.units} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - # Test basic case. - x = keras.Input((None, 5)) - cell = MinimalRNNCell(32) - layer = keras.layers.RNN(cell) - y = layer(x) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) - - # Test basic case serialization. - x_np = np.random.random((6, 5, 5)) - y_np = model.predict(x_np) - weights = model.get_weights() - config = layer.get_config() - with keras.utils.CustomObjectScope({"MinimalRNNCell": MinimalRNNCell}): - layer = keras.layers.RNN.from_config(config) - y = layer(x) - model = keras.models.Model(x, y) - model.set_weights(weights) - y_np_2 = model.predict(x_np) - self.assertAllClose(y_np, y_np_2, atol=1e-4) - - # Test stacking. - cells = [MinimalRNNCell(8), MinimalRNNCell(12), MinimalRNNCell(32)] - layer = keras.layers.RNN(cells) - y = layer(x) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) - - # Test stacked RNN serialization. - x_np = np.random.random((6, 5, 5)) - y_np = model.predict(x_np) - weights = model.get_weights() - config = layer.get_config() - with keras.utils.CustomObjectScope({"MinimalRNNCell": MinimalRNNCell}): - layer = keras.layers.RNN.from_config(config) - y = layer(x) - model = keras.models.Model(x, y) - model.set_weights(weights) - y_np_2 = model.predict(x_np) - self.assertAllClose(y_np, y_np_2, atol=1e-4) - - def test_minimal_rnn_cell_abstract_rnn_cell(self): - class MinimalRNNCell(keras.layers.AbstractRNNCell): - def __init__(self, units, **kwargs): - self.units = units - super().__init__(**kwargs) - - @property - def state_size(self): - return self.units - - def build(self, input_shape): - self.kernel = self.add_weight( - shape=(input_shape[-1], self.units), - initializer="uniform", - name="kernel", - ) - self.recurrent_kernel = self.add_weight( - shape=(self.units, self.units), - initializer="uniform", - name="recurrent_kernel", - ) - self.built = True - - def call(self, inputs, states): - prev_output = states[0] - h = keras.backend.dot(inputs, self.kernel) - output = h + keras.backend.dot( - prev_output, self.recurrent_kernel - ) - return output, output - - @property - def output_size(self): - return self.units - - cell = MinimalRNNCell(32) - x = keras.Input((None, 5)) - layer = keras.layers.RNN(cell) - y = layer(x) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) - - # Test stacking. - cells = [MinimalRNNCell(8), MinimalRNNCell(16), MinimalRNNCell(32)] - layer = keras.layers.RNN(cells) - y = layer(x) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) - - def test_rnn_with_time_major(self): - batch = 10 - time_step = 5 - embedding_dim = 4 - units = 3 - - # Test basic case. - x = keras.Input((time_step, embedding_dim)) - time_major_x = keras.layers.Lambda( - lambda t: tf.transpose(t, [1, 0, 2]) - )(x) - layer = keras.layers.SimpleRNN( - units, time_major=True, return_sequences=True - ) - self.assertEqual( - layer.compute_output_shape( - (time_step, None, embedding_dim) - ).as_list(), - [time_step, None, units], - ) - y = layer(time_major_x) - self.assertEqual(layer.output_shape, (time_step, None, units)) - - y = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))(y) - - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - np.zeros((batch, time_step, embedding_dim)), - np.zeros((batch, time_step, units)), - ) - - # Test stacking. - x = keras.Input((time_step, embedding_dim)) - time_major_x = keras.layers.Lambda( - lambda t: tf.transpose(t, [1, 0, 2]) - )(x) - cell_units = [10, 8, 6] - cells = [keras.layers.SimpleRNNCell(cell_units[i]) for i in range(3)] - layer = keras.layers.RNN(cells, time_major=True, return_sequences=True) - y = layer(time_major_x) - self.assertEqual(layer.output_shape, (time_step, None, cell_units[-1])) - - y = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))(y) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - np.zeros((batch, time_step, embedding_dim)), - np.zeros((batch, time_step, cell_units[-1])), - ) - - # Test masking. - x = keras.Input((time_step, embedding_dim)) - time_major = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))( - x - ) - mask = keras.layers.Masking()(time_major) - rnn = keras.layers.SimpleRNN( - units, time_major=True, return_sequences=True - )(mask) - y = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))(rnn) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - np.zeros((batch, time_step, embedding_dim)), - np.zeros((batch, time_step, units)), - ) - - # Test layer output - x = keras.Input((time_step, embedding_dim)) - rnn_1 = keras.layers.SimpleRNN(units, return_sequences=True) - y = rnn_1(x) - - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - np.zeros((batch, time_step, embedding_dim)), - np.zeros((batch, time_step, units)), - ) - - x_np = np.random.random((batch, time_step, embedding_dim)) - y_np_1 = model.predict(x_np) - - time_major = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))( - x - ) - rnn_2 = keras.layers.SimpleRNN( - units, time_major=True, return_sequences=True - ) - y_2 = rnn_2(time_major) - y_2 = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))(y_2) - - model_2 = keras.models.Model(x, y_2) - rnn_2.set_weights(rnn_1.get_weights()) - - y_np_2 = model_2.predict(x_np) - self.assertAllClose(y_np_1, y_np_2, atol=1e-4) - - def test_rnn_cell_with_constants_layer(self): - # Test basic case. - x = keras.Input((None, 5)) - c = keras.Input((3,)) - cell = RNNCellWithConstants(32, constant_size=3) - layer = keras.layers.RNN(cell) - y = layer(x, constants=c) - - model = keras.models.Model([x, c], y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - [np.zeros((6, 5, 5)), np.zeros((6, 3))], np.zeros((6, 32)) - ) - - # Test basic case serialization. - x_np = np.random.random((6, 5, 5)) - c_np = np.random.random((6, 3)) - y_np = model.predict([x_np, c_np]) - weights = model.get_weights() - config = layer.get_config() - custom_objects = {"RNNCellWithConstants": RNNCellWithConstants} - with keras.utils.CustomObjectScope(custom_objects): - layer = keras.layers.RNN.from_config(config.copy()) - y = layer(x, constants=c) - model = keras.models.Model([x, c], y) - model.set_weights(weights) - y_np_2 = model.predict([x_np, c_np]) - self.assertAllClose(y_np, y_np_2, atol=1e-4) - - # test flat list inputs. - with keras.utils.CustomObjectScope(custom_objects): - layer = keras.layers.RNN.from_config(config.copy()) - y = layer([x, c]) - model = keras.models.Model([x, c], y) - model.set_weights(weights) - y_np_3 = model.predict([x_np, c_np]) - self.assertAllClose(y_np, y_np_3, atol=1e-4) - - # Test stacking. - cells = [ - gru.GRUCell(8), - RNNCellWithConstants(12, constant_size=3), - RNNCellWithConstants(32, constant_size=3), - ] - layer = keras.layers.RNN(cells) - y = layer(x, constants=c) - model = keras.models.Model([x, c], y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - [np.zeros((6, 5, 5)), np.zeros((6, 3))], np.zeros((6, 32)) - ) - - # Test GRUCell reset_after property. - x = keras.Input((None, 5)) - c = keras.Input((3,)) - cells = [gru.GRUCell(32, reset_after=True)] - layer = keras.layers.RNN(cells) - y = layer(x, constants=c) - model = keras.models.Model([x, c], y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - [np.zeros((6, 5, 5)), np.zeros((6, 3))], np.zeros((6, 32)) - ) - - # Test stacked RNN serialization - x_np = np.random.random((6, 5, 5)) - c_np = np.random.random((6, 3)) - y_np = model.predict([x_np, c_np]) - weights = model.get_weights() - config = layer.get_config() - with keras.utils.CustomObjectScope(custom_objects): - layer = keras.layers.RNN.from_config(config.copy()) - y = layer(x, constants=c) - model = keras.models.Model([x, c], y) - model.set_weights(weights) - y_np_2 = model.predict([x_np, c_np]) - self.assertAllClose(y_np, y_np_2, atol=1e-4) - - def test_rnn_cell_with_non_keras_constants(self): - # Test basic case. - x = keras.Input((None, 5)) - c = tf.zeros([6, 3], dtype=tf.float32) - cell = RNNCellWithConstants(32, constant_size=3) - layer = keras.layers.RNN(cell) - y = layer(x, constants=c) - - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) - - # Test stacking. - cells = [ - gru.GRUCell(8), - RNNCellWithConstants(12, constant_size=3), - RNNCellWithConstants(32, constant_size=3), - ] - layer = keras.layers.RNN(cells) - y = layer(x, constants=c) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) - - def test_rnn_cell_with_constants_layer_passing_initial_state(self): - # Test basic case. - x = keras.Input((None, 5)) - c = keras.Input((3,)) - s = keras.Input((32,)) - cell = RNNCellWithConstants(32, constant_size=3) - layer = keras.layers.RNN(cell) - y = layer(x, initial_state=s, constants=c) - model = keras.models.Model([x, s, c], y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - [np.zeros((6, 5, 5)), np.zeros((6, 32)), np.zeros((6, 3))], - np.zeros((6, 32)), - ) - - # Test basic case serialization. - x_np = np.random.random((6, 5, 5)) - s_np = np.random.random((6, 32)) - c_np = np.random.random((6, 3)) - y_np = model.predict([x_np, s_np, c_np]) - weights = model.get_weights() - config = layer.get_config() - custom_objects = {"RNNCellWithConstants": RNNCellWithConstants} - with keras.utils.CustomObjectScope(custom_objects): - layer = keras.layers.RNN.from_config(config.copy()) - y = layer(x, initial_state=s, constants=c) - model = keras.models.Model([x, s, c], y) - model.set_weights(weights) - y_np_2 = model.predict([x_np, s_np, c_np]) - self.assertAllClose(y_np, y_np_2, atol=1e-4) - - # verify that state is used - y_np_2_different_s = model.predict([x_np, s_np + 10.0, c_np]) - with self.assertRaises(AssertionError): - self.assertAllClose(y_np, y_np_2_different_s, atol=1e-4) - - # test flat list inputs - with keras.utils.CustomObjectScope(custom_objects): - layer = keras.layers.RNN.from_config(config.copy()) - y = layer([x, s, c]) - model = keras.models.Model([x, s, c], y) - model.set_weights(weights) - y_np_3 = model.predict([x_np, s_np, c_np]) - self.assertAllClose(y_np, y_np_3, atol=1e-4) - - def test_rnn_cell_with_non_keras_constants_and_initial_state(self): - # Test basic case. - x = keras.Input((None, 5)) - c = tf.zeros([6, 3], dtype=tf.float32) - s = tf.zeros([6, 32], dtype=tf.float32) - cell = RNNCellWithConstants(32, constant_size=3) - layer = keras.layers.RNN(cell) - y = layer(x, initial_state=s, constants=c) - - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) - - # Test stacking. - cells = [ - gru.GRUCell(8), - RNNCellWithConstants(12, constant_size=3), - RNNCellWithConstants(32, constant_size=3), - ] - layer = keras.layers.RNN(cells) - s = [ - tf.zeros([6, 8], dtype=tf.float32), - tf.zeros([6, 12], dtype=tf.float32), - tf.zeros([6, 32], dtype=tf.float32), - ] - y = layer(x, initial_state=s, constants=c) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) - - def test_stacked_rnn_attributes(self): - if tf.executing_eagerly(): - self.skipTest("reduce_sum is not available in eager mode.") - - cells = [keras.layers.LSTMCell(1), keras.layers.LSTMCell(1)] - layer = keras.layers.RNN(cells) - layer.build((None, None, 1)) - - # Test weights - self.assertEqual(len(layer.trainable_weights), 6) - cells[0].trainable = False - self.assertEqual(len(layer.trainable_weights), 3) - self.assertEqual(len(layer.non_trainable_weights), 3) - - # Test `get_losses_for` and `losses` - x = keras.Input((None, 1)) - loss_1 = tf.reduce_sum(x) - loss_2 = tf.reduce_sum(cells[0].kernel) - cells[0].add_loss(loss_1, inputs=x) - cells[0].add_loss(loss_2) - self.assertEqual(len(layer.losses), 2) - self.assertEqual(layer.get_losses_for(None), [loss_2]) - self.assertEqual(layer.get_losses_for(x), [loss_1]) - - # Test `updates` - cells = [keras.layers.LSTMCell(1), keras.layers.LSTMCell(1)] - layer = keras.layers.RNN(cells) - x = keras.Input((None, 1)) - _ = layer(x) - - update_1 = tf.compat.v1.assign_add( - cells[0].kernel, x[0, 0, 0] * cells[0].kernel - ) - update_2 = tf.compat.v1.assign_add( - cells[0].kernel, tf.ones_like(cells[0].kernel) - ) - # TODO(b/128682878): Remove when RNNCells are __call__'d. - with base_layer_utils.call_context().enter(layer, x, True, None): - cells[0].add_update(update_1) - cells[0].add_update(update_2) - self.assertEqual(len(layer.updates), 2) - - def test_rnn_dynamic_trainability(self): - layer_class = keras.layers.SimpleRNN - embedding_dim = 4 - units = 3 - - layer = layer_class(units) - layer.build((None, None, embedding_dim)) - self.assertEqual(len(layer.weights), 3) - self.assertEqual(len(layer.trainable_weights), 3) - self.assertEqual(len(layer.non_trainable_weights), 0) - layer.trainable = False - self.assertEqual(len(layer.weights), 3) - self.assertEqual(len(layer.trainable_weights), 0) - self.assertEqual(len(layer.non_trainable_weights), 3) - layer.trainable = True - self.assertEqual(len(layer.weights), 3) - self.assertEqual(len(layer.trainable_weights), 3) - self.assertEqual(len(layer.non_trainable_weights), 0) - - @parameterized.parameters( - [keras.layers.SimpleRNN, keras.layers.GRU, keras.layers.LSTM] - ) - def test_rnn_cell_trainability(self, layer_cls): - # https://github.com/tensorflow/tensorflow/issues/32369. - layer = layer_cls(3, trainable=False) - self.assertFalse(layer.cell.trainable) - - layer.trainable = True - self.assertTrue(layer.cell.trainable) - - def test_state_reuse_with_dropout(self): - layer_class = keras.layers.SimpleRNN - embedding_dim = 4 - units = 3 - timesteps = 2 - num_samples = 2 - - input1 = keras.Input( - batch_shape=(num_samples, timesteps, embedding_dim) - ) - layer = layer_class( - units, return_state=True, return_sequences=True, dropout=0.2 - ) - state = layer(input1)[1:] - - input2 = keras.Input( - batch_shape=(num_samples, timesteps, embedding_dim) - ) - output = layer_class(units)(input2, initial_state=state) - model = keras.Model([input1, input2], output) - - inputs = [ - np.random.random((num_samples, timesteps, embedding_dim)), - np.random.random((num_samples, timesteps, embedding_dim)), - ] - model.predict(inputs) - - def test_builtin_and_custom_rnn_cell_serialization(self): - @keras.utils.register_keras_serializable(package="TestOnly") - class CustomRNNCell(keras.layers.Layer): - def __init__(self, units, **kwargs): - self.units = units - self.state_size = units - super().__init__(**kwargs) - - def build(self, input_shape): - self.kernel = self.add_weight( - shape=(input_shape[-1], self.units), - initializer="uniform", - name="kernel", - ) - self.recurrent_kernel = self.add_weight( - shape=(self.units, self.units), - initializer="uniform", - name="recurrent_kernel", - ) - self.built = True - - def call(self, inputs, states): - prev_output = states[0] - h = keras.backend.dot(inputs, self.kernel) - output = h + keras.backend.dot( - prev_output, self.recurrent_kernel - ) - return output, [output] - - def get_config(self): - config = {"units": self.units} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - for cell_class in [ - keras.layers.SimpleRNNCell, - keras.layers.GRUCell, - keras.layers.LSTMCell, - CustomRNNCell, - ]: - # Test basic case. - x = keras.Input((None, 5)) - cell = cell_class(32) - layer = keras.layers.RNN(cell) - y = layer(x) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - - # Test basic case serialization. - x_np = np.random.random((6, 5, 5)) - y_np = model.predict(x_np) - weights = model.get_weights() - config = layer.get_config() - layer = keras.layers.RNN.from_config(config) - y = layer(x) - model = keras.models.Model(x, y) - model.set_weights(weights) - y_np_2 = model.predict(x_np) - self.assertAllClose(y_np, y_np_2, atol=1e-4) - - # Test stacking. - cells = [cell_class(8), cell_class(12), cell_class(32)] - layer = keras.layers.RNN(cells) - y = layer(x) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - - # Test stacked RNN serialization. - x_np = np.random.random((6, 5, 5)) - y_np = model.predict(x_np) - weights = model.get_weights() - config = layer.get_config() - layer = keras.layers.RNN.from_config(config) - y = layer(x) - model = keras.models.Model(x, y) - model.set_weights(weights) - y_np_2 = model.predict(x_np) - self.assertAllClose(y_np, y_np_2, atol=1e-4) - - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - layer=[ - keras.layers.SimpleRNN, - gru_v1.GRU, - lstm_v1.LSTM, - gru.GRU, - lstm.LSTM, - ], - unroll=[True, False], - ) - ) - def test_rnn_dropout(self, layer, unroll): - rnn_layer = layer(3, dropout=0.1, recurrent_dropout=0.1, unroll=unroll) - if not unroll: - x = keras.Input((None, 5)) - else: - x = keras.Input((5, 5)) - y = rnn_layer(x) - model = keras.models.Model(x, y) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - x_np = np.random.random((6, 5, 5)) - y_np = np.random.random((6, 3)) - model.train_on_batch(x_np, y_np) - - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - cell=[ - keras.layers.SimpleRNNCell, - keras.layers.GRUCell, - keras.layers.LSTMCell, - ], - unroll=[True, False], - ) - ) - def test_stacked_rnn_dropout(self, cell, unroll): - cells = [ - cell(3, dropout=0.1, recurrent_dropout=0.1), - cell(3, dropout=0.1, recurrent_dropout=0.1), - ] - layer = keras.layers.RNN(cells, unroll=unroll) - - if not unroll: - x = keras.Input((None, 5)) - else: - x = keras.Input((5, 5)) - y = layer(x) - model = keras.models.Model(x, y) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - x_np = np.random.random((6, 5, 5)) - y_np = np.random.random((6, 3)) - model.train_on_batch(x_np, y_np) - - def test_dropout_mask_reuse(self): - # The layer is created with recurrent_initializer = zero, so that the - # the recurrent state won't affect the output. By doing this, we can - # verify the output and see if the same mask is applied to for each - # timestep. - layer_1 = keras.layers.SimpleRNN( - 3, - dropout=0.5, - kernel_initializer="ones", - recurrent_initializer="zeros", - return_sequences=True, - unroll=True, - ) - layer_2 = keras.layers.RNN( - keras.layers.SimpleRNNCell( - 3, - dropout=0.5, - kernel_initializer="ones", - recurrent_initializer="zeros", - ), - return_sequences=True, - unroll=True, - ) - layer_3 = keras.layers.RNN( - [ - keras.layers.SimpleRNNCell( - 3, - dropout=0.5, - kernel_initializer="ones", - recurrent_initializer="zeros", - ), - keras.layers.SimpleRNNCell( - 3, - dropout=0.5, - kernel_initializer="ones", - recurrent_initializer="zeros", - ), - ], - return_sequences=True, - unroll=True, - ) - - def verify(rnn_layer): - inputs = tf.constant(1.0, shape=(6, 2, 5)) - out = rnn_layer(inputs, training=True) - if not tf.executing_eagerly(): - self.evaluate(tf.compat.v1.global_variables_initializer()) - batch_1 = self.evaluate(out) - batch_1_t0, batch_1_t1 = batch_1[:, 0, :], batch_1[:, 1, :] - self.assertAllClose(batch_1_t0, batch_1_t1) - - # This simulate the layer called with multiple batches in eager mode - if tf.executing_eagerly(): - out2 = rnn_layer(inputs, training=True) - else: - out2 = out - batch_2 = self.evaluate(out2) - batch_2_t0, batch_2_t1 = batch_2[:, 0, :], batch_2[:, 1, :] - self.assertAllClose(batch_2_t0, batch_2_t1) - - # Also validate that different dropout is used by between batches. - self.assertNotAllClose(batch_1_t0, batch_2_t0) - self.assertNotAllClose(batch_1_t1, batch_2_t1) - - for l in [layer_1, layer_2, layer_3]: - verify(l) - - def test_stacked_rnn_compute_output_shape(self): - cells = [keras.layers.LSTMCell(3), keras.layers.LSTMCell(6)] - embedding_dim = 4 - timesteps = 2 - layer = keras.layers.RNN( - cells, return_state=True, return_sequences=True - ) - output_shape = layer.compute_output_shape( - (None, timesteps, embedding_dim) - ) - expected_output_shape = [ - (None, timesteps, 6), - (None, 3), - (None, 3), - (None, 6), - (None, 6), - ] - self.assertEqual( - [tuple(o.as_list()) for o in output_shape], expected_output_shape - ) - - # Test reverse_state_order = True for stacked cell. - stacked_cell = keras.layers.StackedRNNCells( - cells, reverse_state_order=True - ) - layer = keras.layers.RNN( - stacked_cell, return_state=True, return_sequences=True - ) - output_shape = layer.compute_output_shape( - (None, timesteps, embedding_dim) - ) - expected_output_shape = [ - (None, timesteps, 6), - (None, 6), - (None, 6), - (None, 3), - (None, 3), - ] - self.assertEqual( - [tuple(o.as_list()) for o in output_shape], expected_output_shape - ) - - def test_stacked_rnn_with_training_param(self): - # See https://github.com/tensorflow/tensorflow/issues/32586 - - class CellWrapper(keras.layers.AbstractRNNCell): - def __init__(self, cell): - super().__init__() - self.cell = cell - - @property - def state_size(self): - return self.cell.state_size - - @property - def output_size(self): - return self.cell.output_size - - def build(self, input_shape): - self.cell.build(input_shape) - self.built = True - - def get_initial_state( - self, inputs=None, batch_size=None, dtype=None - ): - return self.cell.get_initial_state( - inputs=inputs, batch_size=batch_size, dtype=dtype - ) - - def call(self, inputs, states, training=None, **kwargs): - assert training is not None - return self.cell(inputs, states=states, training=training) - - cell = keras.layers.LSTMCell(32) - cell = CellWrapper(cell) - cell = keras.layers.StackedRNNCells([cell]) - - rnn = keras.layers.RNN(cell) - inputs = np.ones((8, 4, 16), dtype=np.float32) - rnn(inputs, training=True) - - def test_stacked_rnn_with_nested_cell(self): - batch = 10 - t = 5 - i1, i2, i3 = 3, 4, 5 - o11, o12, o13 = 2, 3, 4 - o21, o22, o23 = 4, 5, 6 - - # test 1: use_tuple=False - cells = [NestedCell(o11, o12, o13), NestedCell(o21, o22, o23)] - rnn = keras.layers.RNN(cells, return_sequences=True, return_state=True) - - input_1 = keras.Input((t, i1)) - input_2 = keras.Input((t, i2, i3)) - - output1, output2, state1, state2 = rnn((input_1, input_2)) - s11, s12 = state1 - s21, s22 = state2 - - self.assertEqual(output1.shape.as_list(), [None, t, o21]) - self.assertEqual(output2.shape.as_list(), [None, t, o22, o23]) - self.assertEqual(s11.shape.as_list(), [None, o11]) - self.assertEqual(s12.shape.as_list(), [None, o12, o13]) - self.assertEqual(s21.shape.as_list(), [None, o21]) - self.assertEqual(s22.shape.as_list(), [None, o22, o23]) - - model = keras.models.Model([input_1, input_2], [output1, output2]) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - [np.zeros((batch, t, i1)), np.zeros((batch, t, i2, i3))], - [np.zeros((batch, t, o21)), np.zeros((batch, t, o22, o23))], - ) - self.assertEqual( - model.output_shape, [(None, t, o21), (None, t, o22, o23)] - ) - - # test 2: use_tuple=True - cells = [ - NestedCell(o11, o12, o13, use_tuple=True), - NestedCell(o21, o22, o23), - ] - - rnn = keras.layers.RNN(cells, return_sequences=True, return_state=True) - - input_1 = keras.Input((t, i1)) - input_2 = keras.Input((t, i2, i3)) - - output1, output2, state1, state2 = rnn( - NestedInput(t1=input_1, t2=input_2) - ) - s11, s12 = state1 - s21, s22 = state2 - - self.assertEqual(output1.shape.as_list(), [None, t, o21]) - self.assertEqual(output2.shape.as_list(), [None, t, o22, o23]) - self.assertEqual(s11.shape.as_list(), [None, o11]) - self.assertEqual(s12.shape.as_list(), [None, o12, o13]) - self.assertEqual(s21.shape.as_list(), [None, o21]) - self.assertEqual(s22.shape.as_list(), [None, o22, o23]) - - model = keras.models.Model([input_1, input_2], [output1, output2]) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - [np.zeros((batch, t, i1)), np.zeros((batch, t, i2, i3))], - [np.zeros((batch, t, o21)), np.zeros((batch, t, o22, o23))], - ) - self.assertEqual( - model.output_shape, [(None, t, o21), (None, t, o22, o23)] - ) - - def test_trackable_dependencies(self): - rnn = keras.layers.SimpleRNN - x = np.random.random((2, 2, 2)) - y = np.random.random((2, 2)) - model = keras.models.Sequential() - model.add(rnn(2)) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, y, epochs=1, batch_size=1) - - # check whether the model variables are present in the - # trackable list of objects - checkpointed_objects = { - id(o) for o in trackable_util.list_objects(model) - } - for v in model.variables: - self.assertIn(id(v), checkpointed_objects) - - def test_high_dimension_RNN(self): - # Basic test case. - unit_a = 10 - unit_b = 20 - input_a = 5 - input_b = 10 - batch = 32 - time_step = 4 - - cell = Minimal2DRNNCell(unit_a, unit_b) - x = keras.Input((None, input_a, input_b)) - layer = keras.layers.RNN(cell) - y = layer(x) - - self.assertEqual(cell.state_size.as_list(), [unit_a, unit_b]) - - if not tf.executing_eagerly(): - init_state = layer.get_initial_state(x) - self.assertEqual(len(init_state), 1) - self.assertEqual( - init_state[0].shape.as_list(), [None, unit_a, unit_b] - ) - - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - np.zeros((batch, time_step, input_a, input_b)), - np.zeros((batch, unit_a, unit_b)), - ) - self.assertEqual(model.output_shape, (None, unit_a, unit_b)) - - # Test stacking. - cells = [ - Minimal2DRNNCell(unit_a, unit_b), - Minimal2DRNNCell(unit_a * 2, unit_b * 2), - Minimal2DRNNCell(unit_a * 4, unit_b * 4), - ] - layer = keras.layers.RNN(cells) - y = layer(x) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - np.zeros((batch, time_step, input_a, input_b)), - np.zeros((batch, unit_a * 4, unit_b * 4)), - ) - self.assertEqual(model.output_shape, (None, unit_a * 4, unit_b * 4)) - - def test_high_dimension_RNN_with_init_state(self): - unit_a = 10 - unit_b = 20 - input_a = 5 - input_b = 10 - batch = 32 - time_step = 4 - - # Basic test case. - cell = Minimal2DRNNCell(unit_a, unit_b) - x = keras.Input((None, input_a, input_b)) - s = keras.Input((unit_a, unit_b)) - layer = keras.layers.RNN(cell) - y = layer(x, initial_state=s) - - model = keras.models.Model([x, s], y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - [ - np.zeros((batch, time_step, input_a, input_b)), - np.zeros((batch, unit_a, unit_b)), - ], - np.zeros((batch, unit_a, unit_b)), - ) - self.assertEqual(model.output_shape, (None, unit_a, unit_b)) - - # Bad init state shape. - bad_shape_a = unit_a * 2 - bad_shape_b = unit_b * 2 - cell = Minimal2DRNNCell(unit_a, unit_b) - x = keras.Input((None, input_a, input_b)) - s = keras.Input((bad_shape_a, bad_shape_b)) - layer = keras.layers.RNN(cell) - with self.assertRaisesWithPredicateMatch( - ValueError, "however `cell.state_size` is" - ): - layer(x, initial_state=s) - - def test_inconsistent_output_state_size(self): - batch = 32 - time_step = 4 - state_size = 5 - input_size = 6 - cell = PlusOneRNNCell(state_size) - x = keras.Input((None, input_size)) - layer = keras.layers.RNN(cell) - y = layer(x) - - self.assertEqual(cell.state_size, state_size) - if not tf.executing_eagerly(): - init_state = layer.get_initial_state(x) - self.assertEqual(len(init_state), 1) - self.assertEqual(init_state[0].shape.as_list(), [None, state_size]) - - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - np.zeros((batch, time_step, input_size)), - np.zeros((batch, input_size)), - ) - self.assertEqual(model.output_shape, (None, input_size)) - - def test_get_initial_state(self): - cell = keras.layers.SimpleRNNCell(5) - with self.assertRaisesRegex( - ValueError, "batch_size and dtype cannot be None" - ): - cell.get_initial_state(None, None, None) - - if not tf.executing_eagerly(): - inputs = keras.Input((None, 10)) - initial_state = cell.get_initial_state(inputs, None, None) - self.assertEqual(initial_state.shape.as_list(), [None, 5]) - self.assertEqual(initial_state.dtype, inputs.dtype) - - batch = tf.shape(inputs)[0] - dtype = inputs.dtype - initial_state = cell.get_initial_state(None, batch, dtype) - self.assertEqual(initial_state.shape.as_list(), [None, 5]) - self.assertEqual(initial_state.dtype, inputs.dtype) - else: - batch = 8 - inputs = np.random.random((batch, 10)) - initial_state = cell.get_initial_state(inputs, None, None) - self.assertEqual(initial_state.shape.as_list(), [8, 5]) - self.assertEqual(initial_state.dtype, inputs.dtype) - - dtype = inputs.dtype - initial_state = cell.get_initial_state(None, batch, dtype) - self.assertEqual(initial_state.shape.as_list(), [batch, 5]) - self.assertEqual(initial_state.dtype, inputs.dtype) - - @parameterized.parameters([True, False]) - def test_nested_input_output(self, stateful): - batch = 10 - t = 5 - i1, i2, i3 = 3, 4, 5 - o1, o2, o3 = 2, 3, 4 - - cell = NestedCell(o1, o2, o3) - rnn = keras.layers.RNN(cell, stateful=stateful) - - batch_size = batch if stateful else None - input_1 = keras.Input((t, i1), batch_size=batch_size) - input_2 = keras.Input((t, i2, i3), batch_size=batch_size) - - outputs = rnn((input_1, input_2)) - - self.assertEqual(len(outputs), 2) - self.assertEqual(outputs[0].shape.as_list(), [batch_size, o1]) - self.assertEqual(outputs[1].shape.as_list(), [batch_size, o2, o3]) - - model = keras.models.Model((input_1, input_2), outputs) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - [np.zeros((batch, t, i1)), np.zeros((batch, t, i2, i3))], - [np.zeros((batch, o1)), np.zeros((batch, o2, o3))], - ) - self.assertEqual( - model.output_shape, [(batch_size, o1), (batch_size, o2, o3)] - ) - - cell = NestedCell(o1, o2, o3, use_tuple=True) - - rnn = keras.layers.RNN(cell, stateful=stateful) - - input_1 = keras.Input((t, i1), batch_size=batch_size) - input_2 = keras.Input((t, i2, i3), batch_size=batch_size) - - outputs = rnn(NestedInput(t1=input_1, t2=input_2)) - - self.assertEqual(len(outputs), 2) - self.assertEqual(outputs[0].shape.as_list(), [batch_size, o1]) - self.assertEqual(outputs[1].shape.as_list(), [batch_size, o2, o3]) - - model = keras.models.Model([input_1, input_2], outputs) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - [np.zeros((batch, t, i1)), np.zeros((batch, t, i2, i3))], - [np.zeros((batch, o1)), np.zeros((batch, o2, o3))], - ) - self.assertEqual( - model.output_shape, [(batch_size, o1), (batch_size, o2, o3)] - ) - - def test_nested_input_output_with_state(self): - batch = 10 - t = 5 - i1, i2, i3 = 3, 4, 5 - o1, o2, o3 = 2, 3, 4 - - cell = NestedCell(o1, o2, o3) - rnn = keras.layers.RNN(cell, return_sequences=True, return_state=True) - - input_1 = keras.Input((t, i1)) - input_2 = keras.Input((t, i2, i3)) - - output1, output2, s1, s2 = rnn((input_1, input_2)) - - self.assertEqual(output1.shape.as_list(), [None, t, o1]) - self.assertEqual(output2.shape.as_list(), [None, t, o2, o3]) - self.assertEqual(s1.shape.as_list(), [None, o1]) - self.assertEqual(s2.shape.as_list(), [None, o2, o3]) - - model = keras.models.Model([input_1, input_2], [output1, output2]) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - [np.zeros((batch, t, i1)), np.zeros((batch, t, i2, i3))], - [np.zeros((batch, t, o1)), np.zeros((batch, t, o2, o3))], - ) - self.assertEqual(model.output_shape, [(None, t, o1), (None, t, o2, o3)]) - - cell = NestedCell(o1, o2, o3, use_tuple=True) - - rnn = keras.layers.RNN(cell, return_sequences=True, return_state=True) - - input_1 = keras.Input((t, i1)) - input_2 = keras.Input((t, i2, i3)) - - output1, output2, s1, s2 = rnn(NestedInput(t1=input_1, t2=input_2)) - - self.assertEqual(output1.shape.as_list(), [None, t, o1]) - self.assertEqual(output2.shape.as_list(), [None, t, o2, o3]) - self.assertEqual(s1.shape.as_list(), [None, o1]) - self.assertEqual(s2.shape.as_list(), [None, o2, o3]) - - model = keras.models.Model([input_1, input_2], [output1, output2]) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - [np.zeros((batch, t, i1)), np.zeros((batch, t, i2, i3))], - [np.zeros((batch, t, o1)), np.zeros((batch, t, o2, o3))], - ) - self.assertEqual(model.output_shape, [(None, t, o1), (None, t, o2, o3)]) - - def test_nest_input_output_with_init_state(self): - batch = 10 - t = 5 - i1, i2, i3 = 3, 4, 5 - o1, o2, o3 = 2, 3, 4 - - cell = NestedCell(o1, o2, o3) - rnn = keras.layers.RNN(cell, return_sequences=True, return_state=True) - - input_1 = keras.Input((t, i1)) - input_2 = keras.Input((t, i2, i3)) - init_s1 = keras.Input((o1,)) - init_s2 = keras.Input((o2, o3)) - - output1, output2, s1, s2 = rnn( - (input_1, input_2), initial_state=(init_s1, init_s2) - ) - - self.assertEqual(output1.shape.as_list(), [None, t, o1]) - self.assertEqual(output2.shape.as_list(), [None, t, o2, o3]) - self.assertEqual(s1.shape.as_list(), [None, o1]) - self.assertEqual(s2.shape.as_list(), [None, o2, o3]) - - model = keras.models.Model( - [input_1, input_2, init_s1, init_s2], [output1, output2] - ) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - [ - np.zeros((batch, t, i1)), - np.zeros((batch, t, i2, i3)), - np.zeros((batch, o1)), - np.zeros((batch, o2, o3)), - ], - [np.zeros((batch, t, o1)), np.zeros((batch, t, o2, o3))], - ) - self.assertEqual(model.output_shape, [(None, t, o1), (None, t, o2, o3)]) - - cell = NestedCell(o1, o2, o3, use_tuple=True) - - rnn = keras.layers.RNN(cell, return_sequences=True, return_state=True) - - input_1 = keras.Input((t, i1)) - input_2 = keras.Input((t, i2, i3)) - init_s1 = keras.Input((o1,)) - init_s2 = keras.Input((o2, o3)) - init_state = NestedState(s1=init_s1, s2=init_s2) - - output1, output2, s1, s2 = rnn( - NestedInput(t1=input_1, t2=input_2), initial_state=init_state - ) - - self.assertEqual(output1.shape.as_list(), [None, t, o1]) - self.assertEqual(output2.shape.as_list(), [None, t, o2, o3]) - self.assertEqual(s1.shape.as_list(), [None, o1]) - self.assertEqual(s2.shape.as_list(), [None, o2, o3]) - - model = keras.models.Model( - [input_1, input_2, init_s1, init_s2], [output1, output2] - ) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - [ - np.zeros((batch, t, i1)), - np.zeros((batch, t, i2, i3)), - np.zeros((batch, o1)), - np.zeros((batch, o2, o3)), - ], - [np.zeros((batch, t, o1)), np.zeros((batch, t, o2, o3))], - ) - self.assertEqual(model.output_shape, [(None, t, o1), (None, t, o2, o3)]) - - def test_masking_rnn_with_output_and_states(self): - class Cell(keras.layers.Layer): - def __init__(self): - self.state_size = None - self.output_size = None - super().__init__() - - def build(self, input_shape): - self.state_size = input_shape[-1] - self.output_size = input_shape[-1] - - def call(self, inputs, states): - return inputs, [s + 1 for s in states] - - x = keras.Input((3, 1), name="x") - x_masked = keras.layers.Masking()(x) - s_0 = keras.Input((1,), name="s_0") - y, s = keras.layers.RNN(Cell(), return_state=True)( - x_masked, initial_state=s_0 - ) - model = keras.models.Model([x, s_0], [y, s]) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - - # last time step masked - x_np = np.array([[[1.0], [2.0], [0.0]]]) - s_0_np = np.array([[10.0]]) - y_np, s_np = model.predict([x_np, s_0_np]) - - # 1 is added to initial state two times - self.assertAllClose(s_np, s_0_np + 2) - # Expect last output to be the same as last output before masking - self.assertAllClose(y_np, x_np[:, 1, :]) - - def test_zero_output_for_masking(self): - - for unroll in [True, False]: - cell = keras.layers.SimpleRNNCell(5) - x = keras.Input((5, 5)) - mask = keras.layers.Masking() - layer = keras.layers.RNN( - cell, - return_sequences=True, - zero_output_for_mask=True, - unroll=unroll, - ) - masked_input = mask(x) - y = layer(masked_input) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - - np_x = np.ones((6, 5, 5)) - result_1 = model.predict(np_x) - - # set the time 4 and 5 for last record to be zero (masked). - np_x[5, 3:] = 0 - result_2 = model.predict(np_x) - - # expect the result_2 has same output, except the time 4,5 for last - # record. - result_1[5, 3:] = 0 - self.assertAllClose(result_1, result_2) - - def test_unroll_single_step(self): - """Even if the time dimension is only one, we should be able to - unroll.""" - cell = keras.layers.SimpleRNNCell(5) - x = keras.Input((1, 5)) - layer = keras.layers.RNN(cell, return_sequences=True, unroll=True) - y = layer(x) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - - np_x = np.ones((6, 1, 5)) - result = model.predict(np_x) - self.assertEqual((6, 1, 5), result.shape) - - def test_unroll_zero_step(self): - """If the time dimension is None, we should fail to unroll.""" - cell = keras.layers.SimpleRNNCell(5) - x = keras.Input((None, 5)) - layer = keras.layers.RNN(cell, return_sequences=True, unroll=True) - with self.assertRaisesRegex(ValueError, "Cannot unroll a RNN.*"): - layer(x) - - def test_full_input_spec(self): - # See https://github.com/tensorflow/tensorflow/issues/25985 - inputs = keras.layers.Input(batch_shape=(1, 1, 1)) - state_h = keras.layers.Input(batch_shape=(1, 1)) - state_c = keras.layers.Input(batch_shape=(1, 1)) - states = [state_h, state_c] - decoder_out = keras.layers.LSTM(1, stateful=True)( - inputs, initial_state=states - ) - model = keras.Model([inputs, state_h, state_c], decoder_out) - output1 = model.predict( - [np.ones((1, 1, 1)), np.ones((1, 1)), np.ones((1, 1))] - ) - output2 = model.predict( - [np.ones((1, 1, 1)), np.ones((1, 1)), np.ones((1, 1))] - ) - model.reset_states() - output3 = model.predict( - [np.ones((1, 1, 1)), np.ones((1, 1)), np.ones((1, 1))] - ) - self.assertAllClose(output1, output3) - self.assertNotAllClose(output1, output2) - - def test_reset_states(self): - # See https://github.com/tensorflow/tensorflow/issues/25852 - with self.assertRaisesRegex( - ValueError, "it needs to know its batch size" - ): - simple_rnn = keras.layers.SimpleRNN(1, stateful=True) - simple_rnn.reset_states() - - with self.assertRaisesRegex( - ValueError, "it needs to know its batch size" - ): - cell = Minimal2DRNNCell(1, 2) - custom_rnn = keras.layers.RNN(cell, stateful=True) - custom_rnn.reset_states() - - @parameterized.parameters( - [ - keras.layers.SimpleRNNCell, - keras.layers.GRUCell, - keras.layers.LSTMCell, - ] - ) - def test_stateful_rnn_with_stacking(self, cell): - # See https://github.com/tensorflow/tensorflow/issues/28614. - batch = 12 - timesteps = 10 - input_dim = 8 - output_dim = 64 - cells = [cell(32), cell(64)] - x = keras.Input(batch_shape=(batch, None, input_dim)) - layer = keras.layers.RNN(cells, stateful=True) - y = layer(x) - - model = keras.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - np.zeros((batch, timesteps, input_dim)), - np.zeros((batch, output_dim)), - ) - model.predict(np.ones((batch, timesteps, input_dim))) - - model.reset_states() - model.predict(np.ones((batch, timesteps, input_dim))) - - new_states = tf.nest.map_structure( - lambda s: np.ones((batch, s)), layer.cell.state_size - ) - layer.reset_states(new_states) - model.predict(np.ones((batch, timesteps, input_dim))) - - def test_stateful_rnn_with_initial_state(self): - # See https://github.com/tensorflow/tensorflow/issues/32299. - batch = 12 - timesteps = 1 - input_dim = 8 - output_dim = 16 - - test_inputs = np.full((batch, timesteps, input_dim), 0.5) - - def make_model(stateful=False, with_initial_state=False): - input_layer = keras.Input(shape=(None, input_dim), batch_size=batch) - if with_initial_state: - initial_states = keras.backend.constant( - np.ones((batch, output_dim)) - ) - else: - initial_states = None - rnn_output = keras.layers.GRU( - units=output_dim, return_sequences=True, stateful=stateful - )(input_layer, initial_state=initial_states) - model = keras.Model(input_layer, rnn_output) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - return model - - # Define a model with a constant state initialization - model = make_model(stateful=True, with_initial_state=True) - layer_weights = model.layers[1].get_weights() - - model.reset_states() - predict_1 = model.predict(test_inputs) - predict_2 = model.predict(test_inputs) - - model.reset_states() - predict_3 = model.predict(test_inputs) - - # predict 1 and 2 should be different since the batch 2 should use the - # state from batch 1 as the initial state. - self.assertNotAllClose(predict_1, predict_2) - self.assertAllClose(predict_1, predict_3) - - # Create a new model with same weights but without initial states. Make - # sure the predict value is different from the model with non-zero - # initial state. - model_2 = make_model(stateful=True, with_initial_state=False) - model_2.layers[1].set_weights(layer_weights) - - model_2.reset_states() - predict_4 = model_2.predict(test_inputs) - predict_5 = model_2.predict(test_inputs) - self.assertNotAllClose(predict_1, predict_4) - self.assertNotAllClose(predict_4, predict_5) - - # Create models with stateful=False, and make sure they handle init - # state correctly. - model_3 = make_model(stateful=False, with_initial_state=True) - model_3.layers[1].set_weights(layer_weights) - - model_3.reset_states() - predict_6 = model_3.predict(test_inputs) - predict_7 = model_3.predict(test_inputs) - self.assertAllClose(predict_1, predict_6) - self.assertAllClose(predict_6, predict_7) - - def test_stateful_rnn_with_customized_get_initial_state(self): - class TestCell(keras.layers.AbstractRNNCell): - - state_size = 1 - output_size = 2 - - def get_initial_state( - self, inputs=None, batch_size=None, dtype=None - ): - return np.ones((batch_size, 1), dtype=dtype) - - def call(self, inputs, states): - return inputs, states - - layer = keras.layers.RNN(TestCell(), stateful=True, return_state=True) - inputs = keras.Input(shape=(10, 2), batch_size=4) - model = keras.Model(inputs, layer(inputs)) - x = np.ones((4, 10, 2), dtype=np.float32) - output, state = model.predict(x) - self.assertAllClose(output, np.ones((4, 2))) - self.assertAllClose(state, np.ones((4, 1))) - - def test_input_dim_length(self): - simple_rnn = keras.layers.SimpleRNN(5, input_length=10, input_dim=8) - self.assertEqual(simple_rnn._batch_input_shape, (None, 10, 8)) - - simple_rnn = keras.layers.SimpleRNN(5, input_dim=8) - self.assertEqual(simple_rnn._batch_input_shape, (None, None, 8)) - - simple_rnn = keras.layers.SimpleRNN(5, input_length=10) - self.assertEqual(simple_rnn._batch_input_shape, (None, 10, None)) - - @parameterized.parameters( - [ - keras.layers.SimpleRNNCell, - keras.layers.GRUCell, - keras.layers.LSTMCell, - ] - ) - def test_state_spec_with_stack_cell(self, cell): - # See https://github.com/tensorflow/tensorflow/issues/27817 for more - # detail. - batch = 12 - timesteps = 10 - input_dim = 8 - output_dim = 8 - - def create_cell(): - return [cell(output_dim), cell(output_dim), cell(output_dim)] - - inputs = keras.Input((timesteps, input_dim)) - encoder_output = keras.layers.RNN(create_cell(), return_state=True)( - inputs - ) - - states = encoder_output[1:] - - decoder_output = keras.layers.RNN(create_cell())( - inputs, initial_state=states - ) - - model = keras.models.Model(inputs, decoder_output) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch( - np.zeros((batch, timesteps, input_dim)), - np.zeros((batch, output_dim)), - ) - model.predict(np.ones((batch, timesteps, input_dim))) - - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - layer=[ - keras.layers.SimpleRNN, - gru_v1.GRU, - lstm_v1.LSTM, - gru.GRU, - lstm.LSTM, - ] - ) - ) - def test_rnn_with_ragged_input(self, layer): - ragged_data = tf.ragged.constant( - [ - [[1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 2.0, 3.0, 1.0, 1.0]], - [[2.0, 4.0, 1.0, 3.0, 1.0]], - [ - [2.0, 3.0, 4.0, 1.0, 5.0], - [2.0, 3.0, 1.0, 1.0, 1.0], - [1.0, 2.0, 3.0, 4.0, 5.0], - ], - ], - ragged_rank=1, - ) - label_data = np.array([[1, 0, 1], [1, 1, 0], [0, 0, 1]]) - - # Test results in feed forward - np.random.seed(100) - rnn_layer = layer(4, activation="sigmoid") - - x_ragged = keras.Input(shape=(None, 5), ragged=True) - y_ragged = rnn_layer(x_ragged) - model = keras.models.Model(x_ragged, y_ragged) - output_ragged = model.predict(ragged_data, steps=1) - - x_dense = keras.Input(shape=(3, 5)) - masking = keras.layers.Masking()(x_dense) - y_dense = rnn_layer(masking) - model_2 = keras.models.Model(x_dense, y_dense) - dense_data = ragged_data.to_tensor() - output_dense = model_2.predict(dense_data, steps=1) - - self.assertAllClose(output_dense, output_ragged) - - # Test results with go backwards - np.random.seed(200) - back_rnn_layer = layer(8, go_backwards=True, activation="sigmoid") - - x_ragged = keras.Input(shape=(None, 5), ragged=True) - y_ragged = back_rnn_layer(x_ragged) - model = keras.models.Model(x_ragged, y_ragged) - output_ragged = model.predict(ragged_data, steps=1) - - x_dense = keras.Input(shape=(3, 5)) - masking = keras.layers.Masking()(x_dense) - y_dense = back_rnn_layer(masking) - model_2 = keras.models.Model(x_dense, y_dense) - dense_data = ragged_data.to_tensor() - output_dense = model_2.predict(dense_data, steps=1) - - self.assertAllClose(output_dense, output_ragged) - - # Test densification of the ragged input - dense_tensor, row_lengths = keras.backend.convert_inputs_if_ragged( - ragged_data - ) - self.assertAllClose(dense_data, dense_tensor) - - # Test optional params, all should work except unrolling - inputs = keras.Input(shape=(None, 5), dtype=tf.float32, ragged=True) - custom_rnn_layer = layer( - 3, zero_output_for_mask=True, dropout=0.1, use_bias=True - ) - outputs = custom_rnn_layer(inputs) - model = keras.models.Model(inputs, outputs) - model.compile( - optimizer="sgd", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(ragged_data, label_data) - - # Test stateful and full shape specification - inputs = keras.Input( - shape=(None, 5), batch_size=3, dtype=tf.float32, ragged=True - ) - stateful_rnn_layer = layer(3, stateful=True) - outputs = stateful_rnn_layer(inputs) - model = keras.models.Model(inputs, outputs) - model.compile( - optimizer="sgd", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(ragged_data, label_data) - - # Must raise error when unroll is set to True - unroll_rnn_layer = layer(3, unroll=True) - with self.assertRaisesRegex( - ValueError, "The input received contains RaggedTensors *" - ): - unroll_rnn_layer(inputs) - - # Check if return sequences outputs are correct - np.random.seed(100) - returning_rnn_layer = layer(4, return_sequences=True) - - x_ragged = keras.Input(shape=(None, 5), ragged=True) - y_ragged = returning_rnn_layer(x_ragged) - model = keras.models.Model(x_ragged, y_ragged) - output_ragged = model.predict(ragged_data, steps=1) - self.assertAllClose(output_ragged.ragged_rank, ragged_data.ragged_rank) - self.assertAllClose(output_ragged.row_splits, ragged_data.row_splits) - - x_dense = keras.Input(shape=(3, 5)) - masking = keras.layers.Masking()(x_dense) - y_dense = returning_rnn_layer(masking) - model_2 = keras.models.Model(x_dense, y_dense) - dense_data = ragged_data.to_tensor() - output_dense = model_2.predict(dense_data, steps=1) - # Convert the output here to ragged for value comparison - output_dense = tf.RaggedTensor.from_tensor( - output_dense, lengths=row_lengths - ) - self.assertAllClose(output_ragged, output_dense) - - # Check if return sequences and go_backwards outputs are correct - np.random.seed(100) - returning_rnn_layer = layer(4, go_backwards=True, return_sequences=True) - - x_ragged = keras.Input(shape=(None, 5), ragged=True) - y_ragged = returning_rnn_layer(x_ragged) - model = keras.models.Model(x_ragged, y_ragged) - output_ragged = model.predict(ragged_data, steps=1) - self.assertAllClose(output_ragged.ragged_rank, ragged_data.ragged_rank) - self.assertAllClose(output_ragged.row_splits, ragged_data.row_splits) - - x_dense = keras.Input(shape=(3, 5)) - masking = keras.layers.Masking()(x_dense) - y_dense = returning_rnn_layer(masking) - model_2 = keras.models.Model(x_dense, y_dense) - dense_data = ragged_data.to_tensor() - output_dense = model_2.predict(dense_data, steps=1) - - # Note that the raw output for dense and ragged input when - # go_backward=True will be different. Consider following input - # [[a, b, 0], [c, 0, 0], [d, e, f]] where 0s are masked value. - # The dense output will be [[0, b, a], [0, 0, c], [f, e, d]] since it - # will process the whole sequence from the end. - # While ragged output will be [[b, a], [c], [f, e, d]] since it just - # ignore the 0s. And if we densify the ragged output, it will by default - # inserting 0s to the end (rather than from the beginning), which make - # the output to be [[b, a, 0], [c, 0, 0], [f, e, d]]. With this, we need - # to verify that reverse(ragged_output.to_tensor()) == - # reverse(dense_output) - output_dense = keras.backend.reverse(output_dense, [1]) - output_dense = tf.RaggedTensor.from_tensor( - output_dense, lengths=row_lengths - ) - - self.assertAllClose( - keras.backend.reverse(output_ragged, [1]), output_dense - ) - - def test_stateless_rnn_cell(self): - class StatelessCell(keras.layers.Layer): - def __init__(self): - self.state_size = ((), [], ()) - self.output_size = None - super().__init__() - - def build(self, input_shape): - self.output_size = input_shape[-1] - - def call(self, inputs, states): - return inputs, states - - x = keras.Input((None, 5)) - cell = StatelessCell() - initial_state = tf.nest.map_structure(lambda t: None, cell.state_size) - layer = keras.layers.RNN(cell) - y = layer(x, initial_state=initial_state) - model = keras.models.Model(x, y) - model.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 5))) - - @parameterized.parameters( - [keras.layers.SimpleRNN, gru_v1.GRU, lstm_v1.LSTM, gru.GRU, lstm.LSTM] - ) - def test_for_enable_caching_device_for_layer(self, layer_cls): - expected_caching_device = ( - tf.compat.v1.executing_eagerly_outside_functions() - ) - layer = layer_cls(1) - self.assertEqual( - layer.cell._enable_caching_device, expected_caching_device - ) - - # Make sure the config only appears when the none default value is used. - config = layer.get_config() - self.assertNotIn("enable_caching_device", config) - - non_default_value = not expected_caching_device - layer = layer_cls(1, enable_caching_device=non_default_value) - self.assertEqual(layer.cell._enable_caching_device, non_default_value) - config = layer.get_config() - self.assertEqual(config["enable_caching_device"], non_default_value) - - @parameterized.parameters( - [ - keras.layers.SimpleRNNCell, - gru_v1.GRUCell, - lstm_v1.LSTMCell, - gru.GRUCell, - lstm.LSTMCell, - ] - ) - def test_for_enable_caching_device_for_cell(self, cell_cls): - expected_caching_device = ( - tf.compat.v1.executing_eagerly_outside_functions() - ) - cell = cell_cls(1) - self.assertEqual(cell._enable_caching_device, expected_caching_device) - - # Make sure the config only appears when the none default value is used. - config = cell.get_config() - self.assertNotIn("enable_caching_device", config) - - non_default_value = not expected_caching_device - cell = cell_cls(1, enable_caching_device=non_default_value) - self.assertEqual(cell._enable_caching_device, non_default_value) - config = cell.get_config() - self.assertEqual(config["enable_caching_device"], non_default_value) - - -class RNNCellWithConstants(keras.layers.Layer): - def __init__(self, units, constant_size, **kwargs): - self.units = units - self.state_size = units - self.constant_size = constant_size - super().__init__(**kwargs) - - def build(self, input_shape): - self.input_kernel = self.add_weight( - shape=(input_shape[-1], self.units), - initializer="uniform", - name="kernel", - ) - self.recurrent_kernel = self.add_weight( - shape=(self.units, self.units), - initializer="uniform", - name="recurrent_kernel", - ) - self.constant_kernel = self.add_weight( - shape=(self.constant_size, self.units), - initializer="uniform", - name="constant_kernel", - ) - self.built = True - - def call(self, inputs, states, constants): - [prev_output] = states - [constant] = constants - h_input = keras.backend.dot(inputs, self.input_kernel) - h_state = keras.backend.dot(prev_output, self.recurrent_kernel) - h_const = keras.backend.dot(constant, self.constant_kernel) - output = h_input + h_state + h_const - return output, [output] - - def get_config(self): - config = {"units": self.units, "constant_size": self.constant_size} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -class Minimal2DRNNCell(keras.layers.Layer): - """The minimal 2D RNN cell is a simple combination of 2 1-D RNN cell. - - Both internal state and output have 2 dimensions and are orthogonal - between each other. - """ - - def __init__(self, unit_a, unit_b, **kwargs): - self.unit_a = unit_a - self.unit_b = unit_b - self.state_size = tf.TensorShape([unit_a, unit_b]) - self.output_size = tf.TensorShape([unit_a, unit_b]) - super().__init__(**kwargs) - - def build(self, input_shape): - input_a = input_shape[-2] - input_b = input_shape[-1] - self.kernel = self.add_weight( - shape=(input_a, input_b, self.unit_a, self.unit_b), - initializer="uniform", - name="kernel", - ) - self.recurring_kernel = self.add_weight( - shape=(self.unit_a, self.unit_b, self.unit_a, self.unit_b), - initializer="uniform", - name="recurring_kernel", - ) - self.bias = self.add_weight( - shape=(self.unit_a, self.unit_b), initializer="uniform", name="bias" - ) - self.built = True - - def call(self, inputs, states): - prev_output = states[0] - h = tf.einsum("bij,ijkl->bkl", inputs, self.kernel) - h += tf.expand_dims(self.bias, axis=0) - output = h + tf.einsum( - "bij,ijkl->bkl", prev_output, self.recurring_kernel - ) - return output, [output] - - -class PlusOneRNNCell(keras.layers.Layer): - """Add one to the input and state. - - This cell is used for testing state_size and output_size. - """ - - def __init__(self, num_unit, **kwargs): - self.state_size = num_unit - super().__init__(**kwargs) - - def build(self, input_shape): - self.output_size = input_shape[-1] - - def call(self, inputs, states): - return inputs + 1, [states[0] + 1] - - -class NestedCell(keras.layers.Layer): - def __init__(self, unit_1, unit_2, unit_3, use_tuple=False, **kwargs): - self.unit_1 = unit_1 - self.unit_2 = unit_2 - self.unit_3 = unit_3 - self.use_tuple = use_tuple - super().__init__(**kwargs) - # A nested state. - if use_tuple: - self.state_size = NestedState( - s1=unit_1, s2=tf.TensorShape([unit_2, unit_3]) - ) - else: - self.state_size = (unit_1, tf.TensorShape([unit_2, unit_3])) - self.output_size = (unit_1, tf.TensorShape([unit_2, unit_3])) - - def build(self, inputs_shape): - # expect input_shape to contain 2 items, [(batch, i1), (batch, i2, i3)] - if self.use_tuple: - input_1 = inputs_shape.t1[1] - input_2, input_3 = inputs_shape.t2[1:] - else: - input_1 = inputs_shape[0][1] - input_2, input_3 = inputs_shape[1][1:] - - self.kernel_1 = self.add_weight( - shape=(input_1, self.unit_1), initializer="uniform", name="kernel_1" - ) - self.kernel_2_3 = self.add_weight( - shape=(input_2, input_3, self.unit_2, self.unit_3), - initializer="uniform", - name="kernel_2_3", - ) - - def call(self, inputs, states): - # inputs should be in [(batch, input_1), (batch, input_2, input_3)] - # state should be in shape [(batch, unit_1), (batch, unit_2, unit_3)] - flatten_inputs = tf.nest.flatten(inputs) - s1, s2 = states - - output_1 = tf.matmul(flatten_inputs[0], self.kernel_1) - output_2_3 = tf.einsum( - "bij,ijkl->bkl", flatten_inputs[1], self.kernel_2_3 - ) - state_1 = s1 + output_1 - state_2_3 = s2 + output_2_3 - - output = [output_1, output_2_3] - new_states = NestedState(s1=state_1, s2=state_2_3) - - return output, new_states - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/base_wrapper.py b/keras/layers/rnn/base_wrapper.py deleted file mode 100644 index 6058d85fa59..00000000000 --- a/keras/layers/rnn/base_wrapper.py +++ /dev/null @@ -1,92 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Base class for wrapper layers. - -Wrappers are layers that augment the functionality of another layer. -""" - - -import copy - -from keras.engine.base_layer import Layer -from keras.saving import serialization_lib -from keras.saving.legacy import serialization as legacy_serialization - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Wrapper") -class Wrapper(Layer): - """Abstract wrapper base class. - - Wrappers take another layer and augment it in various ways. - Do not use this class as a layer, it is only an abstract base class. - Two usable wrappers are the `TimeDistributed` and `Bidirectional` wrappers. - - Args: - layer: The layer to be wrapped. - """ - - def __init__(self, layer, **kwargs): - try: - assert isinstance(layer, Layer) - except Exception: - raise ValueError( - f"Layer {layer} supplied to wrapper is" - " not a supported layer type. Please" - " ensure wrapped layer is a valid Keras layer." - ) - self.layer = layer - super().__init__(**kwargs) - - def build(self, input_shape=None): - if not self.layer.built: - self.layer.build(input_shape) - self.layer.built = True - self.built = True - - @property - def activity_regularizer(self): - if hasattr(self.layer, "activity_regularizer"): - return self.layer.activity_regularizer - else: - return None - - def get_config(self): - try: - config = { - "layer": serialization_lib.serialize_keras_object(self.layer) - } - except TypeError: # Case of incompatible custom wrappers - config = { - "layer": legacy_serialization.serialize_keras_object(self.layer) - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - from keras.layers import deserialize as deserialize_layer - - # Avoid mutating the input dict - config = copy.deepcopy(config) - use_legacy_format = "module" not in config - layer = deserialize_layer( - config.pop("layer"), - custom_objects=custom_objects, - use_legacy_format=use_legacy_format, - ) - return cls(layer, **config) diff --git a/keras/layers/rnn/base_wrapper_test.py b/keras/layers/rnn/base_wrapper_test.py deleted file mode 100644 index cd019a5f77a..00000000000 --- a/keras/layers/rnn/base_wrapper_test.py +++ /dev/null @@ -1,44 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for the Wrapper base class.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras - - -class ExampleWrapper(keras.layers.Wrapper): - """Simple Wrapper subclass.""" - - def call(self, inputs, *args, **kwargs): - return self.layer(inputs, *args, **kwargs) - - -class WrapperTest(parameterized.TestCase): - def test_wrapper_from_config_no_mutation(self): - wrapper = ExampleWrapper(keras.layers.Dense(1)) - config = wrapper.get_config() - config_copy = config.copy() - self.assertEqual(config, config_copy) - - wrapper_from_config = ExampleWrapper.from_config(config) - new_config = wrapper_from_config.get_config() - self.assertEqual(new_config, config) - self.assertEqual(new_config, config_copy) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/bidirectional.py b/keras/layers/rnn/bidirectional.py deleted file mode 100644 index 3a2d30536b4..00000000000 --- a/keras/layers/rnn/bidirectional.py +++ /dev/null @@ -1,533 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Bidirectional wrapper for RNNs.""" - - -import copy - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.layers.rnn import rnn_utils -from keras.layers.rnn.base_wrapper import Wrapper -from keras.saving import serialization_lib -from keras.utils import generic_utils -from keras.utils import tf_inspect -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.Bidirectional") -class Bidirectional(Wrapper): - """Bidirectional wrapper for RNNs. - - Args: - layer: `keras.layers.RNN` instance, such as `keras.layers.LSTM` or - `keras.layers.GRU`. It could also be a `keras.layers.Layer` instance - that meets the following criteria: - 1. Be a sequence-processing layer (accepts 3D+ inputs). - 2. Have a `go_backwards`, `return_sequences` and `return_state` - attribute (with the same semantics as for the `RNN` class). - 3. Have an `input_spec` attribute. - 4. Implement serialization via `get_config()` and `from_config()`. - Note that the recommended way to create new RNN layers is to write a - custom RNN cell and use it with `keras.layers.RNN`, instead of - subclassing `keras.layers.Layer` directly. - - When the `returns_sequences` is true, the output of the masked - timestep will be zero regardless of the layer's original - `zero_output_for_mask` value. - merge_mode: Mode by which outputs of the forward and backward RNNs will be - combined. One of {'sum', 'mul', 'concat', 'ave', None}. If None, the - outputs will not be combined, they will be returned as a list. Default - value is 'concat'. - backward_layer: Optional `keras.layers.RNN`, or `keras.layers.Layer` - instance to be used to handle backwards input processing. - If `backward_layer` is not provided, the layer instance passed as the - `layer` argument will be used to generate the backward layer - automatically. - Note that the provided `backward_layer` layer should have properties - matching those of the `layer` argument, in particular it should have the - same values for `stateful`, `return_states`, `return_sequences`, etc. - In addition, `backward_layer` and `layer` should have different - `go_backwards` argument values. - A `ValueError` will be raised if these requirements are not met. - - Call arguments: - The call arguments for this layer are the same as those of the wrapped RNN - layer. - Beware that when passing the `initial_state` argument during the call of - this layer, the first half in the list of elements in the `initial_state` - list will be passed to the forward RNN call and the last half in the list - of elements will be passed to the backward RNN call. - - Raises: - ValueError: - 1. If `layer` or `backward_layer` is not a `Layer` instance. - 2. In case of invalid `merge_mode` argument. - 3. If `backward_layer` has mismatched properties compared to `layer`. - - Examples: - - ```python - model = Sequential() - model.add(Bidirectional(LSTM(10, return_sequences=True), - input_shape=(5, 10))) - model.add(Bidirectional(LSTM(10))) - model.add(Dense(5)) - model.add(Activation('softmax')) - model.compile(loss='categorical_crossentropy', optimizer='rmsprop') - - # With custom backward layer - model = Sequential() - forward_layer = LSTM(10, return_sequences=True) - backward_layer = LSTM(10, activation='relu', return_sequences=True, - go_backwards=True) - model.add(Bidirectional(forward_layer, backward_layer=backward_layer, - input_shape=(5, 10))) - model.add(Dense(5)) - model.add(Activation('softmax')) - model.compile(loss='categorical_crossentropy', optimizer='rmsprop') - ``` - """ - - def __init__( - self, - layer, - merge_mode="concat", - weights=None, - backward_layer=None, - **kwargs, - ): - if not isinstance(layer, Layer): - raise ValueError( - "Please initialize `Bidirectional` layer with a " - f"`tf.keras.layers.Layer` instance. Received: {layer}" - ) - if backward_layer is not None and not isinstance(backward_layer, Layer): - raise ValueError( - "`backward_layer` need to be a `tf.keras.layers.Layer` " - f"instance. Received: {backward_layer}" - ) - if merge_mode not in ["sum", "mul", "ave", "concat", None]: - raise ValueError( - f"Invalid merge mode. Received: {merge_mode}. " - "Merge mode should be one of " - '{"sum", "mul", "ave", "concat", None}' - ) - # We don't want to track `layer` since we're already tracking the two - # copies of it we actually run. - self._setattr_tracking = False - super().__init__(layer, **kwargs) - self._setattr_tracking = True - - # Recreate the forward layer from the original layer config, so that it - # will not carry over any state from the layer. - self.forward_layer = self._recreate_layer_from_config(layer) - - if backward_layer is None: - self.backward_layer = self._recreate_layer_from_config( - layer, go_backwards=True - ) - else: - self.backward_layer = backward_layer - - # Keep the custom backward layer config, so that we can save it - # later. The layer's name might be updated below with prefix - # 'backward_', and we want to preserve the original config. - self._backward_layer_config = ( - serialization_lib.serialize_keras_object(backward_layer) - ) - - self.forward_layer._name = "forward_" + self.forward_layer.name - self.backward_layer._name = "backward_" + self.backward_layer.name - - self._verify_layer_config() - - def force_zero_output_for_mask(layer): - # Force the zero_output_for_mask to be True if returning sequences. - if getattr(layer, "zero_output_for_mask", None) is not None: - layer.zero_output_for_mask = layer.return_sequences - - force_zero_output_for_mask(self.forward_layer) - force_zero_output_for_mask(self.backward_layer) - - self.merge_mode = merge_mode - if weights: - nw = len(weights) - self.forward_layer.initial_weights = weights[: nw // 2] - self.backward_layer.initial_weights = weights[nw // 2 :] - self.stateful = layer.stateful - self.return_sequences = layer.return_sequences - self.return_state = layer.return_state - self.supports_masking = True - self._trainable = kwargs.get("trainable", layer.trainable) - self._num_constants = 0 - self.input_spec = layer.input_spec - - @property - def _use_input_spec_as_call_signature(self): - return self.layer._use_input_spec_as_call_signature - - def _verify_layer_config(self): - """Ensure the forward and backward layers have valid common property.""" - if self.forward_layer.go_backwards == self.backward_layer.go_backwards: - raise ValueError( - "Forward layer and backward layer should have different " - "`go_backwards` value." - "forward_layer.go_backwards = " - f"{self.forward_layer.go_backwards}," - "backward_layer.go_backwards = " - f"{self.backward_layer.go_backwards}" - ) - - common_attributes = ("stateful", "return_sequences", "return_state") - for a in common_attributes: - forward_value = getattr(self.forward_layer, a) - backward_value = getattr(self.backward_layer, a) - if forward_value != backward_value: - raise ValueError( - "Forward layer and backward layer are expected to have " - f'the same value for attribute "{a}", got ' - f'"{forward_value}" for forward layer and ' - f'"{backward_value}" for backward layer' - ) - - def _recreate_layer_from_config(self, layer, go_backwards=False): - # When recreating the layer from its config, it is possible that the - # layer is a RNN layer that contains custom cells. In this case we - # inspect the layer and pass the custom cell class as part of the - # `custom_objects` argument when calling `from_config`. See - # https://github.com/tensorflow/tensorflow/issues/26581 for more detail. - config = layer.get_config() - if go_backwards: - config["go_backwards"] = not config["go_backwards"] - if ( - "custom_objects" - in tf_inspect.getfullargspec(layer.__class__.from_config).args - ): - custom_objects = {} - cell = getattr(layer, "cell", None) - if cell is not None: - custom_objects[cell.__class__.__name__] = cell.__class__ - # For StackedRNNCells - stacked_cells = getattr(cell, "cells", []) - for c in stacked_cells: - custom_objects[c.__class__.__name__] = c.__class__ - return layer.__class__.from_config( - config, custom_objects=custom_objects - ) - else: - return layer.__class__.from_config(config) - - @tf_utils.shape_type_conversion - def compute_output_shape(self, input_shape): - output_shape = self.forward_layer.compute_output_shape(input_shape) - if self.return_state: - state_shape = tf_utils.convert_shapes( - output_shape[1:], to_tuples=False - ) - output_shape = tf_utils.convert_shapes( - output_shape[0], to_tuples=False - ) - else: - output_shape = tf_utils.convert_shapes( - output_shape, to_tuples=False - ) - - if self.merge_mode == "concat": - output_shape = output_shape.as_list() - output_shape[-1] *= 2 - output_shape = tf.TensorShape(output_shape) - elif self.merge_mode is None: - output_shape = [output_shape, copy.copy(output_shape)] - - if self.return_state: - if self.merge_mode is None: - return output_shape + state_shape + copy.copy(state_shape) - return [output_shape] + state_shape + copy.copy(state_shape) - return output_shape - - def __call__(self, inputs, initial_state=None, constants=None, **kwargs): - """`Bidirectional.__call__` implements the same API as the wrapped - `RNN`.""" - inputs, initial_state, constants = rnn_utils.standardize_args( - inputs, initial_state, constants, self._num_constants - ) - - if isinstance(inputs, list): - if len(inputs) > 1: - initial_state = inputs[1:] - inputs = inputs[0] - - if initial_state is None and constants is None: - return super().__call__(inputs, **kwargs) - - # Applies the same workaround as in `RNN.__call__` - additional_inputs = [] - additional_specs = [] - if initial_state is not None: - # Check if `initial_state` can be split into half - num_states = len(initial_state) - if num_states % 2 > 0: - raise ValueError( - "When passing `initial_state` to a Bidirectional RNN, " - "the state should be a list containing the states of " - "the underlying RNNs. " - f"Received: {initial_state}" - ) - - kwargs["initial_state"] = initial_state - additional_inputs += initial_state - state_specs = tf.nest.map_structure( - lambda state: InputSpec(shape=backend.int_shape(state)), - initial_state, - ) - self.forward_layer.state_spec = state_specs[: num_states // 2] - self.backward_layer.state_spec = state_specs[num_states // 2 :] - additional_specs += state_specs - if constants is not None: - kwargs["constants"] = constants - additional_inputs += constants - constants_spec = [ - InputSpec(shape=backend.int_shape(constant)) - for constant in constants - ] - self.forward_layer.constants_spec = constants_spec - self.backward_layer.constants_spec = constants_spec - additional_specs += constants_spec - - self._num_constants = len(constants) - self.forward_layer._num_constants = self._num_constants - self.backward_layer._num_constants = self._num_constants - - is_keras_tensor = backend.is_keras_tensor( - tf.nest.flatten(additional_inputs)[0] - ) - for tensor in tf.nest.flatten(additional_inputs): - if backend.is_keras_tensor(tensor) != is_keras_tensor: - raise ValueError( - "The initial state of a Bidirectional" - " layer cannot be specified with a mix of" - " Keras tensors and non-Keras tensors" - ' (a "Keras tensor" is a tensor that was' - " returned by a Keras layer, or by `Input`)" - ) - - if is_keras_tensor: - # Compute the full input spec, including state - full_input = [inputs] + additional_inputs - # The original input_spec is None since there could be a nested - # tensor input. Update the input_spec to match the inputs. - full_input_spec = [ - None for _ in range(len(tf.nest.flatten(inputs))) - ] + additional_specs - # Removing kwargs since the value are passed with input list. - kwargs["initial_state"] = None - kwargs["constants"] = None - - # Perform the call with temporarily replaced input_spec - original_input_spec = self.input_spec - self.input_spec = full_input_spec - output = super().__call__(full_input, **kwargs) - self.input_spec = original_input_spec - return output - else: - return super().__call__(inputs, **kwargs) - - def call( - self, - inputs, - training=None, - mask=None, - initial_state=None, - constants=None, - ): - """`Bidirectional.call` implements the same API as the wrapped `RNN`.""" - kwargs = {} - if generic_utils.has_arg(self.layer.call, "training"): - kwargs["training"] = training - if generic_utils.has_arg(self.layer.call, "mask"): - kwargs["mask"] = mask - if generic_utils.has_arg(self.layer.call, "constants"): - kwargs["constants"] = constants - - if generic_utils.has_arg(self.layer.call, "initial_state"): - if isinstance(inputs, list) and len(inputs) > 1: - # initial_states are keras tensors, which means they are passed - # in together with inputs as list. The initial_states need to be - # split into forward and backward section, and be feed to layers - # accordingly. - forward_inputs = [inputs[0]] - backward_inputs = [inputs[0]] - pivot = (len(inputs) - self._num_constants) // 2 + 1 - # add forward initial state - forward_inputs += inputs[1:pivot] - if not self._num_constants: - # add backward initial state - backward_inputs += inputs[pivot:] - else: - # add backward initial state - backward_inputs += inputs[pivot : -self._num_constants] - # add constants for forward and backward layers - forward_inputs += inputs[-self._num_constants :] - backward_inputs += inputs[-self._num_constants :] - forward_state, backward_state = None, None - if "constants" in kwargs: - kwargs["constants"] = None - elif initial_state is not None: - # initial_states are not keras tensors, eg eager tensor from np - # array. They are only passed in from kwarg initial_state, and - # should be passed to forward/backward layer via kwarg - # initial_state as well. - forward_inputs, backward_inputs = inputs, inputs - half = len(initial_state) // 2 - forward_state = initial_state[:half] - backward_state = initial_state[half:] - else: - forward_inputs, backward_inputs = inputs, inputs - forward_state, backward_state = None, None - - y = self.forward_layer( - forward_inputs, initial_state=forward_state, **kwargs - ) - y_rev = self.backward_layer( - backward_inputs, initial_state=backward_state, **kwargs - ) - else: - y = self.forward_layer(inputs, **kwargs) - y_rev = self.backward_layer(inputs, **kwargs) - - if self.return_state: - states = y[1:] + y_rev[1:] - y = y[0] - y_rev = y_rev[0] - - if self.return_sequences: - time_dim = ( - 0 if getattr(self.forward_layer, "time_major", False) else 1 - ) - y_rev = backend.reverse(y_rev, time_dim) - if self.merge_mode == "concat": - output = backend.concatenate([y, y_rev]) - elif self.merge_mode == "sum": - output = y + y_rev - elif self.merge_mode == "ave": - output = (y + y_rev) / 2 - elif self.merge_mode == "mul": - output = y * y_rev - elif self.merge_mode is None: - output = [y, y_rev] - else: - raise ValueError( - "Unrecognized value for `merge_mode`. " - f"Received: {self.merge_mode}" - 'Expected values are ["concat", "sum", "ave", "mul"]' - ) - - if self.return_state: - if self.merge_mode is None: - return output + states - return [output] + states - return output - - def reset_states(self, states=None): - if not self.stateful: - raise AttributeError("Layer must be stateful.") - - if states is None: - self.forward_layer.reset_states() - self.backward_layer.reset_states() - else: - if not isinstance(states, (list, tuple)): - raise ValueError( - "Unrecognized value for `states`. " - "Expected `states` to be list or tuple. " - f"Received: {states}" - ) - - half = len(states) // 2 - self.forward_layer.reset_states(states[:half]) - self.backward_layer.reset_states(states[half:]) - - def build(self, input_shape): - with backend.name_scope(self.forward_layer.name): - self.forward_layer.build(input_shape) - with backend.name_scope(self.backward_layer.name): - self.backward_layer.build(input_shape) - self.built = True - - def compute_mask(self, inputs, mask): - if isinstance(mask, list): - mask = mask[0] - if self.return_sequences: - if not self.merge_mode: - output_mask = [mask, mask] - else: - output_mask = mask - else: - output_mask = [None, None] if not self.merge_mode else None - - if self.return_state: - states = self.forward_layer.states - state_mask = [None for _ in states] - if isinstance(output_mask, list): - return output_mask + state_mask * 2 - return [output_mask] + state_mask * 2 - return output_mask - - @property - def constraints(self): - constraints = {} - if hasattr(self.forward_layer, "constraints"): - constraints.update(self.forward_layer.constraints) - constraints.update(self.backward_layer.constraints) - return constraints - - def get_config(self): - config = {"merge_mode": self.merge_mode} - if self._num_constants: - config["num_constants"] = self._num_constants - - if hasattr(self, "_backward_layer_config"): - config["backward_layer"] = self._backward_layer_config - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - # Instead of updating the input, create a copy and use that. - config = copy.deepcopy(config) - num_constants = config.pop("num_constants", 0) - # Handle forward layer instantiation (as would parent class). - from keras.layers import deserialize as deserialize_layer - - config["layer"] = deserialize_layer( - config["layer"], custom_objects=custom_objects - ) - # Handle (optional) backward layer instantiation. - backward_layer_config = config.pop("backward_layer", None) - if backward_layer_config is not None: - backward_layer = deserialize_layer( - backward_layer_config, custom_objects=custom_objects - ) - config["backward_layer"] = backward_layer - # Instantiate the wrapper, adjust it and return it. - layer = cls(**config) - layer._num_constants = num_constants - return layer diff --git a/keras/layers/rnn/bidirectional_test.py b/keras/layers/rnn/bidirectional_test.py deleted file mode 100644 index cc97f2c1b91..00000000000 --- a/keras/layers/rnn/bidirectional_test.py +++ /dev/null @@ -1,1133 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Bidirectional wrapper.""" - - -import copy - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.engine import base_layer_utils -from keras.layers import core -from keras.layers.rnn.cell_wrappers import ResidualWrapper -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.checkpoint import ( - checkpoint as trackable_util, -) -from tensorflow.python.framework import ( - test_util as tf_test_util, -) - - -class _RNNCellWithConstants(keras.layers.Layer): - def __init__(self, units, constant_size, **kwargs): - self.units = units - self.state_size = units - self.constant_size = constant_size - super().__init__(**kwargs) - - def build(self, input_shape): - self.input_kernel = self.add_weight( - shape=(input_shape[-1], self.units), - initializer="uniform", - name="kernel", - ) - self.recurrent_kernel = self.add_weight( - shape=(self.units, self.units), - initializer="uniform", - name="recurrent_kernel", - ) - self.constant_kernel = self.add_weight( - shape=(self.constant_size, self.units), - initializer="uniform", - name="constant_kernel", - ) - self.built = True - - def call(self, inputs, states, constants): - [prev_output] = states - [constant] = constants - h_input = keras.backend.dot(inputs, self.input_kernel) - h_state = keras.backend.dot(prev_output, self.recurrent_kernel) - h_const = keras.backend.dot(constant, self.constant_kernel) - output = h_input + h_state + h_const - return output, [output] - - def get_config(self): - config = {"units": self.units, "constant_size": self.constant_size} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -class _ResidualLSTMCell(keras.layers.LSTMCell): - def call(self, inputs, states, training=None): - output, states = super().call(inputs, states) - return output + inputs, states - - -class _AddOneCell(keras.layers.AbstractRNNCell): - """Increments inputs and state by one on each call.""" - - @property - def state_size(self): - return 1 - - @property - def output_size(self): - return 1 - - def call(self, inputs, state): - inputs = tf.reduce_mean(inputs, axis=1, keepdims=True) - outputs = inputs + 1.0 - state = tf.nest.map_structure(lambda t: t + 1.0, state) - return outputs, state - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class BidirectionalTest(tf.test.TestCase, parameterized.TestCase): - @parameterized.parameters(["sum", "concat", "ave", "mul"]) - def test_bidirectional(self, mode): - rnn = keras.layers.SimpleRNN - samples = 2 - dim = 2 - timesteps = 2 - output_dim = 2 - with self.cached_session(): - x = np.random.random((samples, timesteps, dim)) - target_dim = 2 * output_dim if mode == "concat" else output_dim - y = np.random.random((samples, target_dim)) - - # test with Sequential model - model = keras.models.Sequential() - model.add( - keras.layers.Bidirectional( - rnn(output_dim), - merge_mode=mode, - input_shape=(timesteps, dim), - ) - ) - model.compile(optimizer="rmsprop", loss="mse") - model.fit(x, y, epochs=1, batch_size=1) - - # check whether the model variables are present in the - # trackable list of objects - checkpointed_object_ids = { - id(o) for o in trackable_util.list_objects(model) - } - for v in model.variables: - self.assertIn(id(v), checkpointed_object_ids) - - # test compute output shape - ref_shape = model.layers[-1].output.shape - shape = model.layers[-1].compute_output_shape( - (None, timesteps, dim) - ) - self.assertListEqual(shape.as_list(), ref_shape.as_list()) - - # test config - model.get_config() - model = keras.models.model_from_json(model.to_json()) - model.summary() - - def test_bidirectional_invalid_init(self): - x = tf.constant(np.zeros((1, 1)).astype("float32")) - with self.assertRaisesRegex( - ValueError, - "Please initialize `Bidirectional` layer with a " - "`tf.keras.layers.Layer` instance.", - ): - keras.layers.Bidirectional(x) - - def test_bidirectional_weight_loading(self): - rnn = keras.layers.SimpleRNN - samples = 2 - dim = 2 - timesteps = 2 - output_dim = 2 - with self.cached_session(): - x = np.random.random((samples, timesteps, dim)) - model = keras.models.Sequential() - model.add( - keras.layers.Bidirectional( - rnn(output_dim), input_shape=(timesteps, dim) - ) - ) - y_ref = model.predict(x) - weights = model.layers[-1].get_weights() - model.layers[-1].set_weights(weights) - y = model.predict(x) - self.assertAllClose(y, y_ref) - - def test_bidirectional_stacked(self): - # test stacked bidirectional layers - rnn = keras.layers.SimpleRNN - samples = 2 - dim = 2 - timesteps = 2 - output_dim = 2 - mode = "sum" - - with self.cached_session(): - x = np.random.random((samples, timesteps, dim)) - target_dim = 2 * output_dim if mode == "concat" else output_dim - y = np.random.random((samples, target_dim)) - - model = keras.models.Sequential() - model.add( - keras.layers.Bidirectional( - rnn(output_dim, return_sequences=True), - merge_mode=mode, - input_shape=(timesteps, dim), - ) - ) - model.add( - keras.layers.Bidirectional(rnn(output_dim), merge_mode=mode) - ) - model.compile(loss="mse", optimizer="sgd") - model.fit(x, y, epochs=1, batch_size=1) - - # test with functional API - inputs = keras.layers.Input((timesteps, dim)) - output = keras.layers.Bidirectional( - rnn(output_dim), merge_mode=mode - )(inputs) - model = keras.models.Model(inputs, output) - model.compile(loss="mse", optimizer="sgd") - model.fit(x, y, epochs=1, batch_size=1) - - def test_bidirectional_statefulness(self): - # Bidirectional and stateful - def run_test(): - rnn = keras.layers.SimpleRNN - samples = 2 - dim = 2 - timesteps = 2 - output_dim = 2 - mode = "sum" - - with self.cached_session(): - x = np.random.random((samples, timesteps, dim)) - target_dim = 2 * output_dim if mode == "concat" else output_dim - y = np.random.random((samples, target_dim)) - - inputs = keras.layers.Input(batch_shape=(1, timesteps, dim)) - bidi_rnn = keras.layers.Bidirectional( - rnn(output_dim, stateful=True), merge_mode=mode - ) - self.assertTrue(bidi_rnn.stateful) - output = bidi_rnn(inputs) - model = keras.models.Model(inputs, output) - - y_1 = model.predict(x, batch_size=1) - model.reset_states() - y_2 = model.predict(x, batch_size=1) - - self.assertAllClose(y_1, y_2) - - model.compile(loss="mse", optimizer="sgd") - model.fit(x, y, epochs=1, batch_size=1) - - if tf.executing_eagerly(): - run_test() - else: - tf_test_util.enable_output_all_intermediates(run_test)() - - @parameterized.parameters(["sum", "mul", "ave", "concat", None]) - def test_Bidirectional_merged_value(self, merge_mode): - rnn = keras.layers.LSTM - samples = 2 - dim = 5 - timesteps = 3 - units = 3 - x = [np.random.rand(samples, timesteps, dim)] - - with self.cached_session(): - if merge_mode == "sum": - merge_func = lambda y, y_rev: y + y_rev - elif merge_mode == "mul": - merge_func = lambda y, y_rev: y * y_rev - elif merge_mode == "ave": - merge_func = lambda y, y_rev: (y + y_rev) / 2 - elif merge_mode == "concat": - merge_func = lambda y, y_rev: np.concatenate( - (y, y_rev), axis=-1 - ) - else: - merge_func = lambda y, y_rev: [y, y_rev] - - # basic case - inputs = keras.Input((timesteps, dim)) - layer = keras.layers.Bidirectional( - rnn(units, return_sequences=True), merge_mode=merge_mode - ) - f_merged = keras.backend.function([inputs], _to_list(layer(inputs))) - f_forward = keras.backend.function( - [inputs], [layer.forward_layer(inputs)] - ) - f_backward = keras.backend.function( - [inputs], - [keras.backend.reverse(layer.backward_layer(inputs), 1)], - ) - - y_merged = f_merged(x) - y_expected = _to_list(merge_func(f_forward(x)[0], f_backward(x)[0])) - assert len(y_merged) == len(y_expected) - for x1, x2 in zip(y_merged, y_expected): - self.assertAllClose(x1, x2, atol=1e-5) - - # test return_state - inputs = keras.Input((timesteps, dim)) - layer = keras.layers.Bidirectional( - rnn(units, return_state=True), merge_mode=merge_mode - ) - f_merged = keras.backend.function([inputs], layer(inputs)) - f_forward = keras.backend.function( - [inputs], layer.forward_layer(inputs) - ) - f_backward = keras.backend.function( - [inputs], layer.backward_layer(inputs) - ) - n_states = len(layer.layer.states) - - y_merged = f_merged(x) - y_forward = f_forward(x) - y_backward = f_backward(x) - y_expected = _to_list(merge_func(y_forward[0], y_backward[0])) - assert len(y_merged) == len(y_expected) + n_states * 2 - for x1, x2 in zip(y_merged, y_expected): - self.assertAllClose(x1, x2, atol=1e-5) - - y_merged = y_merged[-n_states * 2 :] - y_forward = y_forward[-n_states:] - y_backward = y_backward[-n_states:] - for state_birnn, state_inner in zip( - y_merged, y_forward + y_backward - ): - self.assertAllClose(state_birnn, state_inner, atol=1e-5) - - @parameterized.parameters([True, False]) - def test_Bidirectional_with_time_major_input(self, time_major): - batch_size, time, input_dim = 2, 3, 1 - inputs = tf.zeros((batch_size, time, input_dim)) - # length is [1 2]. Within the batch, the first element has 1 step, and - # the second element as 2 steps. - lengths = tf.range(1, 1 + batch_size) - mask = tf.sequence_mask(lengths, maxlen=time, dtype=tf.float32) - - forward_cell = _AddOneCell(name="forward") - backward_cell = _AddOneCell(name="backward") - - layer = keras.layers.Bidirectional( - layer=keras.layers.RNN( - forward_cell, time_major=time_major, return_sequences=True - ), - backward_layer=keras.layers.RNN( - backward_cell, - time_major=time_major, - return_sequences=True, - go_backwards=True, - ), - ) - - # Switch to time-major. - if time_major: - inputs = tf.transpose(inputs, [1, 0, 2]) - mask = tf.transpose(mask, [1, 0]) - - keras_outputs = layer(inputs, mask=mask) - if time_major: - keras_outputs = tf.transpose(keras_outputs, [1, 0, 2]) - - # expect the first element in batch has 1 step and second element in - # batch has 2 steps. - expected_result = np.array( - [ - [[1.0, 1.0], [0.0, 0.0], [0.0, 0.0]], - [[1.0, 1.0], [1.0, 1.0], [0.0, 0.0]], - ] - ) - self.assertAllClose(expected_result, keras_outputs) - - def test_Bidirectional_dropout(self): - rnn = keras.layers.LSTM - samples = 2 - dim = 5 - timesteps = 3 - units = 3 - merge_mode = "sum" - x = [np.random.rand(samples, timesteps, dim)] - - with self.cached_session(): - inputs = keras.Input((timesteps, dim)) - wrapped = keras.layers.Bidirectional( - rnn(units, dropout=0.2, recurrent_dropout=0.2), - merge_mode=merge_mode, - ) - outputs = _to_list(wrapped(inputs, training=True)) - - inputs = keras.Input((timesteps, dim)) - wrapped = keras.layers.Bidirectional( - rnn(units, dropout=0.2, return_state=True), - merge_mode=merge_mode, - ) - outputs = _to_list(wrapped(inputs)) - - model = keras.Model(inputs, outputs) - y1 = _to_list(model.predict(x)) - y2 = _to_list(model.predict(x)) - for x1, x2 in zip(y1, y2): - self.assertAllClose(x1, x2, atol=1e-5) - - def test_Bidirectional_state_reuse(self): - rnn = keras.layers.LSTM - samples = 2 - dim = 5 - timesteps = 3 - units = 3 - - with self.cached_session(): - input1 = keras.layers.Input((timesteps, dim)) - layer = keras.layers.Bidirectional( - rnn(units, return_state=True, return_sequences=True) - ) - state = layer(input1)[1:] - - # test passing invalid initial_state: passing a tensor - input2 = keras.layers.Input((timesteps, dim)) - with self.assertRaises(ValueError): - keras.layers.Bidirectional(rnn(units))( - input2, initial_state=state[0] - ) - - # test valid usage: passing a list - output = keras.layers.Bidirectional(rnn(units))( - input2, initial_state=state - ) - model = keras.models.Model([input1, input2], output) - assert len(model.layers) == 4 - assert isinstance(model.layers[-1].input, list) - inputs = [ - np.random.rand(samples, timesteps, dim), - np.random.rand(samples, timesteps, dim), - ] - model.predict(inputs) - - def test_Bidirectional_state_reuse_with_np_input(self): - # See https://github.com/tensorflow/tensorflow/issues/28761 for more - # detail. - rnn = keras.layers.LSTM - samples = 2 - dim = 5 - timesteps = 3 - units = 3 - - with self.cached_session(): - input1 = np.random.rand(samples, timesteps, dim).astype(np.float32) - layer = keras.layers.Bidirectional( - rnn(units, return_state=True, return_sequences=True) - ) - state = layer(input1)[1:] - - input2 = np.random.rand(samples, timesteps, dim).astype(np.float32) - keras.layers.Bidirectional(rnn(units))(input2, initial_state=state) - - def test_Bidirectional_trainable(self): - # test layers that need learning_phase to be set - with self.cached_session(): - x = keras.layers.Input(shape=(3, 2)) - layer = keras.layers.Bidirectional(keras.layers.SimpleRNN(3)) - _ = layer(x) - assert len(layer.trainable_weights) == 6 - layer.trainable = False - assert not layer.trainable_weights - layer.trainable = True - assert len(layer.trainable_weights) == 6 - - def test_Bidirectional_updates(self): - if tf.executing_eagerly(): - self.skipTest("layer.updates is only available in graph mode.") - - with self.cached_session(): - x = keras.layers.Input(shape=(3, 2)) - x_reachable_update = x * x - layer = keras.layers.Bidirectional(keras.layers.SimpleRNN(3)) - _ = layer(x) - assert not layer.updates - # TODO(b/128684069): Remove when Wrapper sublayers are __call__'d. - with base_layer_utils.call_context().enter(layer, x, True, None): - layer.forward_layer.add_update(x_reachable_update) - layer.forward_layer.add_update(1) - layer.backward_layer.add_update(x_reachable_update) - layer.backward_layer.add_update(1) - assert len(layer.updates) == 4 - - def test_Bidirectional_losses(self): - x = keras.layers.Input(shape=(3, 2)) - layer = keras.layers.Bidirectional( - keras.layers.SimpleRNN( - 3, - kernel_regularizer="l1", - bias_regularizer="l1", - activity_regularizer="l1", - ) - ) - _ = layer(x) - assert len(layer.losses) == 6 - - loss = x * x - layer.forward_layer.add_loss(loss) - layer.backward_layer.add_loss(loss) - assert len(layer.losses) == 8 - - def test_Bidirectional_with_constants(self): - with self.cached_session(): - # Test basic case. - x = keras.Input((5, 5)) - c = keras.Input((3,)) - cell = _RNNCellWithConstants(32, 3) - custom_objects = {"_RNNCellWithConstants": _RNNCellWithConstants} - with keras.utils.CustomObjectScope(custom_objects): - layer = keras.layers.Bidirectional(keras.layers.RNN(cell)) - y = layer(x, constants=c) - model = keras.Model([x, c], y) - model.compile(optimizer="rmsprop", loss="mse") - model.train_on_batch( - [np.zeros((6, 5, 5)), np.zeros((6, 3))], np.zeros((6, 64)) - ) - - # Test basic case serialization. - x_np = np.random.random((6, 5, 5)) - c_np = np.random.random((6, 3)) - y_np = model.predict([x_np, c_np]) - weights = model.get_weights() - config = layer.get_config() - - with keras.utils.CustomObjectScope(custom_objects): - layer = keras.layers.Bidirectional.from_config( - copy.deepcopy(config) - ) - y = layer(x, constants=c) - model = keras.Model([x, c], y) - model.set_weights(weights) - y_np_2 = model.predict([x_np, c_np]) - self.assertAllClose(y_np, y_np_2, atol=1e-4) - - # Test flat list inputs - with keras.utils.CustomObjectScope(custom_objects): - layer = keras.layers.Bidirectional.from_config( - copy.deepcopy(config) - ) - y = layer([x, c]) - model = keras.Model([x, c], y) - model.set_weights(weights) - y_np_3 = model.predict([x_np, c_np]) - self.assertAllClose(y_np, y_np_3, atol=1e-4) - - def test_Bidirectional_with_constants_layer_passing_initial_state(self): - with self.cached_session(): - # Test basic case. - x = keras.Input((5, 5)) - c = keras.Input((3,)) - s_for = keras.Input((32,)) - s_bac = keras.Input((32,)) - cell = _RNNCellWithConstants(32, 3) - custom_objects = {"_RNNCellWithConstants": _RNNCellWithConstants} - with keras.utils.CustomObjectScope(custom_objects): - layer = keras.layers.Bidirectional(keras.layers.RNN(cell)) - y = layer(x, initial_state=[s_for, s_bac], constants=c) - model = keras.Model([x, s_for, s_bac, c], y) - model.compile(optimizer="rmsprop", loss="mse") - model.train_on_batch( - [ - np.zeros((6, 5, 5)), - np.zeros((6, 32)), - np.zeros((6, 32)), - np.zeros((6, 3)), - ], - np.zeros((6, 64)), - ) - - # Test basic case serialization. - x_np = np.random.random((6, 5, 5)) - s_fw_np = np.random.random((6, 32)) - s_bk_np = np.random.random((6, 32)) - c_np = np.random.random((6, 3)) - y_np = model.predict([x_np, s_fw_np, s_bk_np, c_np]) - weights = model.get_weights() - config = layer.get_config() - - with keras.utils.CustomObjectScope(custom_objects): - layer = keras.layers.Bidirectional.from_config( - copy.deepcopy(config) - ) - y = layer(x, initial_state=[s_for, s_bac], constants=c) - model = keras.Model([x, s_for, s_bac, c], y) - model.set_weights(weights) - y_np_2 = model.predict([x_np, s_fw_np, s_bk_np, c_np]) - self.assertAllClose(y_np, y_np_2, atol=1e-4) - - # Verify that state is used - y_np_2_different_s = model.predict( - [x_np, s_fw_np + 10.0, s_bk_np + 10.0, c_np] - ) - assert np.mean(y_np - y_np_2_different_s) != 0 - - # Test flat list inputs - with keras.utils.CustomObjectScope(custom_objects): - layer = keras.layers.Bidirectional.from_config( - copy.deepcopy(config) - ) - y = layer([x, s_for, s_bac, c]) - model = keras.Model([x, s_for, s_bac, c], y) - model.set_weights(weights) - y_np_3 = model.predict([x_np, s_fw_np, s_bk_np, c_np]) - self.assertAllClose(y_np, y_np_3, atol=1e-4) - - @parameterized.parameters([keras.layers.LSTM, keras.layers.GRU]) - def test_Bidirectional_output_shape(self, rnn): - input_shape = [None, 2, 1] - num_state = 4 if rnn == keras.layers.LSTM else 2 - - wrapper = keras.layers.Bidirectional(rnn(3)) - output_shape = wrapper.compute_output_shape(input_shape) - self.assertEqual(output_shape.as_list(), [None, 6]) - - wrapper = keras.layers.Bidirectional(rnn(3, return_state=True)) - output_shape = wrapper.compute_output_shape(input_shape) - # 1 for output and the rest for forward and backward states - self.assertLen(output_shape, 1 + num_state) - self.assertEqual(output_shape[0].as_list(), [None, 6]) - for shape in output_shape[1:]: - self.assertEqual(shape.as_list(), [None, 3]) - - wrapper = keras.layers.Bidirectional( - rnn(3, return_state=True), merge_mode=None - ) - output_shape = wrapper.compute_output_shape(input_shape) - # 1 for forward output and 1 for backward output, and the rest for - # states - self.assertLen(output_shape, 2 + num_state) - for shape in output_shape: - self.assertEqual(shape.as_list(), [None, 3]) - - def test_Bidirectional_output_shape_return_types(self): - class TestLayer(keras.layers.SimpleRNN): - def call(self, inputs): - return tf.concat([inputs, inputs], axis=-1) - - def compute_output_shape(self, input_shape): - output_shape = tf.TensorShape(input_shape).as_list() - output_shape[-1] = output_shape[-1] * 2 - return tf.TensorShape(output_shape) - - class TestListLayer(TestLayer): - def compute_output_shape(self, input_shape): - shape = super().compute_output_shape(input_shape) - return shape.as_list() - - class TestTupleLayer(TestLayer): - def compute_output_shape(self, input_shape): - shape = super().compute_output_shape(input_shape) - return tuple(shape.as_list()) - - # Layers can specify output shape as list/tuple/TensorShape - test_layers = [TestLayer, TestListLayer, TestTupleLayer] - for layer in test_layers: - input_layer = keras.layers.Bidirectional(layer(1)) - inputs = keras.backend.placeholder(shape=(None, 2, 4)) - output = input_layer(inputs) - self.assertEqual(output.shape.as_list(), [None, 2, 16]) - self.assertEqual( - input_layer.compute_output_shape([None, 2, 4]).as_list(), - [None, 2, 16], - ) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - def test_Bidirectional_last_output_with_masking(self): - rnn = keras.layers.LSTM - samples = 2 - dim = 5 - timesteps = 3 - units = 3 - merge_mode = "concat" - x = np.random.rand(samples, timesteps, dim) - # clear the first record's timestep 2. Last output should be same as - # state, not zeroed. - x[0, 2] = 0 - - with self.cached_session(): - inputs = keras.Input((timesteps, dim)) - masked_inputs = keras.layers.Masking()(inputs) - wrapped = keras.layers.Bidirectional( - rnn(units, return_state=True), merge_mode=merge_mode - ) - outputs = _to_list(wrapped(masked_inputs, training=True)) - self.assertLen(outputs, 5) - self.assertEqual(outputs[0].shape.as_list(), [None, units * 2]) - - model = keras.Model(inputs, outputs) - y = _to_list(model.predict(x)) - self.assertLen(y, 5) - self.assertAllClose(y[0], np.concatenate([y[1], y[3]], axis=1)) - - @parameterized.parameters([keras.layers.LSTM, keras.layers.GRU]) - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - def test_Bidirectional_sequence_output_with_masking(self, rnn): - samples = 2 - dim = 5 - timesteps = 3 - units = 3 - merge_mode = "concat" - x = np.random.rand(samples, timesteps, dim) - # clear the first record's timestep 2, and expect the output of timestep - # 2 is also 0s. - x[0, 2] = 0 - - with self.cached_session(): - inputs = keras.Input((timesteps, dim)) - masked_inputs = keras.layers.Masking()(inputs) - wrapped = keras.layers.Bidirectional( - rnn(units, return_sequences=True), merge_mode=merge_mode - ) - outputs = _to_list(wrapped(masked_inputs, training=True)) - self.assertLen(outputs, 1) - self.assertEqual( - outputs[0].shape.as_list(), [None, timesteps, units * 2] - ) - - model = keras.Model(inputs, outputs) - y = _to_list(model.predict(x)) - self.assertLen(y, 1) - self.assertAllClose(y[0][0, 2], np.zeros(units * 2)) - - @parameterized.parameters(["sum", "concat"]) - def test_custom_backward_layer(self, mode): - rnn = keras.layers.SimpleRNN - samples = 2 - dim = 2 - timesteps = 2 - output_dim = 2 - - x = np.random.random((samples, timesteps, dim)) - target_dim = 2 * output_dim if mode == "concat" else output_dim - y = np.random.random((samples, target_dim)) - forward_layer = rnn(output_dim) - backward_layer = rnn(output_dim, go_backwards=True) - - # test with Sequential model - model = keras.models.Sequential() - model.add( - keras.layers.Bidirectional( - forward_layer, - merge_mode=mode, - backward_layer=backward_layer, - input_shape=(timesteps, dim), - ) - ) - model.compile(optimizer="rmsprop", loss="mse") - model.fit(x, y, epochs=1, batch_size=1) - - # check whether the model variables are present in the - # trackable list of objects - checkpointed_object_ids = { - id(o) for o in trackable_util.list_objects(model) - } - for v in model.variables: - self.assertIn(id(v), checkpointed_object_ids) - - # test compute output shape - ref_shape = model.layers[-1].output.shape - shape = model.layers[-1].compute_output_shape((None, timesteps, dim)) - self.assertListEqual(shape.as_list(), ref_shape.as_list()) - - # test config - model.get_config() - model = keras.models.model_from_json(model.to_json()) - model.summary() - - def test_custom_backward_layer_error_check(self): - rnn = keras.layers.LSTM - units = 2 - - forward_layer = rnn(units) - backward_layer = rnn(units) - - with self.assertRaisesRegex( - ValueError, "should have different `go_backwards` value." - ): - keras.layers.Bidirectional( - forward_layer, - merge_mode="concat", - backward_layer=backward_layer, - ) - - for attr in ("stateful", "return_sequences", "return_state"): - kwargs = {attr: True} - backward_layer = rnn(units, go_backwards=True, **kwargs) - with self.assertRaisesRegex( - ValueError, - 'expected to have the same value for attribute "' + attr, - ): - keras.layers.Bidirectional( - forward_layer, - merge_mode="concat", - backward_layer=backward_layer, - ) - - def test_custom_backward_layer_serialization(self): - rnn = keras.layers.LSTM - units = 2 - - forward_layer = rnn(units) - backward_layer = rnn(units, go_backwards=True) - layer = keras.layers.Bidirectional( - forward_layer, merge_mode="concat", backward_layer=backward_layer - ) - config = layer.get_config() - layer_from_config = keras.layers.Bidirectional.from_config(config) - new_config = layer_from_config.get_config() - self.assertDictEqual(config, new_config) - - def test_rnn_layer_name(self): - rnn = keras.layers.LSTM - units = 2 - - layer = keras.layers.Bidirectional(rnn(units, name="rnn")) - config = layer.get_config() - - self.assertEqual(config["layer"]["config"]["name"], "rnn") - - layer_from_config = keras.layers.Bidirectional.from_config(config) - self.assertEqual(layer_from_config.forward_layer.name, "forward_rnn") - self.assertEqual(layer_from_config.backward_layer.name, "backward_rnn") - - def test_custom_backward_rnn_layer_name(self): - rnn = keras.layers.LSTM - units = 2 - - forward_layer = rnn(units) - backward_layer = rnn(units, go_backwards=True) - layer = keras.layers.Bidirectional( - forward_layer, merge_mode="concat", backward_layer=backward_layer - ) - config = layer.get_config() - - self.assertEqual(config["layer"]["config"]["name"], "lstm") - self.assertEqual(config["backward_layer"]["config"]["name"], "lstm_1") - - layer_from_config = keras.layers.Bidirectional.from_config(config) - self.assertEqual(layer_from_config.forward_layer.name, "forward_lstm") - self.assertEqual( - layer_from_config.backward_layer.name, "backward_lstm_1" - ) - - def test_rnn_with_customized_cell(self): - batch = 20 - dim = 5 - timesteps = 3 - units = 5 - merge_mode = "sum" - - cell = _ResidualLSTMCell(units) - forward_layer = keras.layers.RNN(cell) - inputs = keras.Input((timesteps, dim)) - bidirectional_rnn = keras.layers.Bidirectional( - forward_layer, merge_mode=merge_mode - ) - outputs = _to_list(bidirectional_rnn(inputs)) - - model = keras.Model(inputs, outputs) - model.compile(optimizer="rmsprop", loss="mse") - model.fit( - np.random.random((batch, timesteps, dim)), - np.random.random((batch, units)), - epochs=1, - batch_size=10, - ) - - def test_rnn_with_customized_cell_stacking(self): - batch = 20 - dim = 5 - timesteps = 3 - units = 5 - merge_mode = "sum" - - cell = [_ResidualLSTMCell(units), _ResidualLSTMCell(units)] - forward_layer = keras.layers.RNN(cell) - inputs = keras.Input((timesteps, dim)) - bidirectional_rnn = keras.layers.Bidirectional( - forward_layer, merge_mode=merge_mode - ) - outputs = _to_list(bidirectional_rnn(inputs)) - - model = keras.Model(inputs, outputs) - model.compile(optimizer="rmsprop", loss="mse") - model.fit( - np.random.random((batch, timesteps, dim)), - np.random.random((batch, units)), - epochs=1, - batch_size=10, - ) - - @test_utils.run_v2_only - def test_wrapped_rnn_cell(self): - # See https://github.com/tensorflow/tensorflow/issues/26581. - batch = 20 - dim = 5 - timesteps = 3 - units = 5 - merge_mode = "sum" - - cell = keras.layers.LSTMCell(units) - cell = ResidualWrapper(cell) - rnn = keras.layers.RNN(cell) - - inputs = keras.Input((timesteps, dim)) - wrapped = keras.layers.Bidirectional(rnn, merge_mode=merge_mode) - outputs = _to_list(wrapped(inputs)) - - model = keras.Model(inputs, outputs) - model.compile(optimizer="rmsprop", loss="mse") - model.fit( - np.random.random((batch, timesteps, dim)), - np.random.random((batch, units)), - epochs=1, - batch_size=10, - ) - - @parameterized.parameters(["ave", "concat", "mul"]) - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm RNN does not support ragged tensors yet." - ), - ) - def test_Bidirectional_ragged_input(self, merge_mode): - np.random.seed(100) - rnn = keras.layers.LSTM - units = 3 - x = tf.ragged.constant( - [ - [[1, 1, 1], [1, 1, 1]], - [[1, 1, 1]], - [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], - [[1, 1, 1], [1, 1, 1], [1, 1, 1]], - ], - ragged_rank=1, - ) - x = tf.cast(x, "float32") - - with self.cached_session(): - if merge_mode == "ave": - merge_func = lambda y, y_rev: (y + y_rev) / 2 - elif merge_mode == "concat": - merge_func = lambda y, y_rev: tf.concat((y, y_rev), axis=-1) - elif merge_mode == "mul": - merge_func = lambda y, y_rev: (y * y_rev) - - inputs = keras.Input( - shape=(None, 3), batch_size=4, dtype="float32", ragged=True - ) - layer = keras.layers.Bidirectional( - rnn(units, return_sequences=True), merge_mode=merge_mode - ) - f_merged = keras.backend.function([inputs], layer(inputs)) - f_forward = keras.backend.function( - [inputs], layer.forward_layer(inputs) - ) - - # TODO(kaftan): after KerasTensor refactor TF op layers should work - # with many composite tensors, and this shouldn't need to be a - # lambda layer. - reverse_layer = core.Lambda(tf.reverse, arguments=dict(axis=[1])) - f_backward = keras.backend.function( - [inputs], reverse_layer(layer.backward_layer(inputs)) - ) - - y_merged = f_merged(x) - y_expected = merge_func( - convert_ragged_tensor_value(f_forward(x)), - convert_ragged_tensor_value(f_backward(x)), - ) - - y_merged = convert_ragged_tensor_value(y_merged) - self.assertAllClose(y_merged.flat_values, y_expected.flat_values) - - def test_Bidirectional_nested_state_reuse(self): - if not tf.executing_eagerly(): - self.skipTest("Only test eager mode.") - x = tf.random.normal([4, 8, 16]) - layer = keras.layers.Bidirectional( - keras.layers.RNN( - [keras.layers.LSTMCell(5), keras.layers.LSTMCell(5)], - return_sequences=True, - return_state=True, - ) - ) - y = layer(x) - self.assertAllClose(layer([x] + y[1:]), layer(x, initial_state=y[1:])) - - def test_full_input_spec(self): - # See https://github.com/tensorflow/tensorflow/issues/38403 - inputs = keras.layers.Input(batch_shape=(1, 1, 1)) - fw_state = keras.layers.Input(batch_shape=(1, 1)) - bw_state = keras.layers.Input(batch_shape=(1, 1)) - states = [fw_state, bw_state] - bidirectional_rnn = keras.layers.Bidirectional( - keras.layers.SimpleRNN(1, stateful=True) - ) - - rnn_output = bidirectional_rnn(inputs, initial_state=states) - model = keras.Model([inputs, fw_state, bw_state], rnn_output) - output1 = model.predict( - [np.ones((1, 1, 1)), np.ones((1, 1)), np.ones((1, 1))] - ) - output2 = model.predict( - [np.ones((1, 1, 1)), np.ones((1, 1)), np.ones((1, 1))] - ) - model.reset_states() - output3 = model.predict( - [np.ones((1, 1, 1)), np.ones((1, 1)), np.ones((1, 1))] - ) - self.assertAllClose(output1, output3) - self.assertNotAllClose(output1, output2) - - def test_reset_states(self): - ref_state = np.random.rand(1, 3).astype(np.float32) - - # build model - inp = keras.Input(batch_shape=[1, 2, 3]) - - stateful = keras.layers.SimpleRNN(units=3, stateful=True) - stateless = keras.layers.SimpleRNN(units=3, stateful=False) - - bid_stateless = keras.layers.Bidirectional(stateless) - bid_stateful = keras.layers.Bidirectional(stateful) - - # required to correctly initialize the state in the layers - _ = keras.Model( - inp, - [ - bid_stateless(inp), - bid_stateful(inp), - ], - ) - - with self.assertRaisesRegex( - AttributeError, - "Layer must be stateful.", - ): - bid_stateless.reset_states() - - with self.assertRaisesRegex(AttributeError, "Layer must be stateful."): - bid_stateless.reset_states([]) - - bid_stateful.reset_states() - bid_stateful.reset_states([ref_state, ref_state]) - - with self.assertRaisesRegex( - ValueError, - "Unrecognized value for `states`. Expected `states` " - "to be list or tuple", - ): - bid_stateful.reset_states({}) - - def test_trainable_parameter_argument(self): - inp = keras.layers.Input([None, 3]) - - def test(fwd, bwd, **kwargs): - def _remove_from_dict(d, remove_key): - if isinstance(d, dict): - d.pop(remove_key, None) - for key in list(d.keys()): - _remove_from_dict(d[key], remove_key) - - bid = keras.layers.Bidirectional(fwd, backward_layer=bwd, **kwargs) - - model = keras.Model(inp, bid(inp)) - clone = keras.models.clone_model(model) - - # Comparison should exclude `build_config` - clone_config = _remove_from_dict(clone.get_config(), "build_config") - model_config = _remove_from_dict(model.get_config(), "build_config") - self.assertEqual(clone_config, model_config) - - # test fetching trainable from `layer` - fwd = keras.layers.SimpleRNN(units=3) - bwd = keras.layers.SimpleRNN(units=3, go_backwards=True) - - fwd.trainable = True - test(fwd, None) - - fwd.trainable = False - test(fwd, None) - - fwd.trainable = True - bwd.trainable = False - test(fwd, bwd) - - fwd.trainable = False - bwd.trainable = True - test(fwd, bwd) - - fwd.trainable = True - bwd.trainable = True - test(fwd, bwd) - - fwd.trainable = False - bwd.trainable = False - test(fwd, bwd) - - # test fetching trainable from `kwargs` - test(fwd, None, trainable=True) - test(fwd, None, trainable=False) - - -def _to_list(ls): - if isinstance(ls, list): - return ls - else: - return [ls] - - -def convert_ragged_tensor_value(inputs): - if isinstance(inputs, tf.compat.v1.ragged.RaggedTensorValue): - flat_values = tf.convert_to_tensor( - value=inputs.flat_values, name="flat_values" - ) - return tf.RaggedTensor.from_nested_row_splits( - flat_values, inputs.nested_row_splits, validate=False - ) - return inputs - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/cell_wrappers.py b/keras/layers/rnn/cell_wrappers.py deleted file mode 100644 index 596c5e16ae7..00000000000 --- a/keras/layers/rnn/cell_wrappers.py +++ /dev/null @@ -1,701 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Module implementing RNN wrappers.""" - - -# Note that all the APIs under this module are exported as tf.nn.*. This is due -# to the fact that those APIs were from tf.nn.rnn_cell_impl. They are ported -# here to avoid the cyclic dependency issue for serialization. These APIs will -# probably be deprecated and removed in future since similar API is available in -# existing Keras RNN API. - -import hashlib -import numbers -import sys -import types as python_types -import warnings - -import tensorflow.compat.v2 as tf - -from keras.layers.rnn import lstm -from keras.layers.rnn.abstract_rnn_cell import AbstractRNNCell -from keras.saving import serialization_lib -from keras.utils import generic_utils -from keras.utils import tf_inspect - -# isort: off -from tensorflow.python.util.tf_export import tf_export -from tensorflow.python.util.deprecation import deprecated - - -class _RNNCellWrapper(AbstractRNNCell): - """Base class for cells wrappers V2 compatibility. - - This class along with `rnn_cell_impl._RNNCellWrapperV1` allows to define - wrappers that are compatible with V1 and V2, and defines helper methods for - this purpose. - """ - - def __init__(self, cell, *args, **kwargs): - super().__init__(*args, **kwargs) - self.cell = cell - cell_call_spec = tf_inspect.getfullargspec(cell.call) - self._call_spec.expects_training_arg = ( - "training" in cell_call_spec.args - ) or (cell_call_spec.varkw is not None) - - def _call_wrapped_cell(self, inputs, state, cell_call_fn, **kwargs): - """Calls the wrapped cell and performs the wrapping logic. - - This method is called from the wrapper's `call` or `__call__` methods. - - Args: - inputs: A tensor with wrapped cell's input. - state: A tensor or tuple of tensors with wrapped cell's state. - cell_call_fn: Wrapped cell's method to use for step computation - (cell's `__call__` or 'call' method). - **kwargs: Additional arguments. - - Returns: - A pair containing: - - Output: A tensor with cell's output. - - New state: A tensor or tuple of tensors with new wrapped cell's - state. - """ - raise NotImplementedError - - def call(self, inputs, state, **kwargs): - """Runs the RNN cell step computation. - - When `call` is being used, we assume that the wrapper object has been - built, and therefore the wrapped cells has been built via its `build` - method and its `call` method can be used directly. - - This allows to use the wrapped cell and the non-wrapped cell - equivalently when using `call` and `build`. - - Args: - inputs: A tensor with wrapped cell's input. - state: A tensor or tuple of tensors with wrapped cell's state. - **kwargs: Additional arguments passed to the wrapped cell's `call`. - - Returns: - A pair containing: - - - Output: A tensor with cell's output. - - New state: A tensor or tuple of tensors with new wrapped cell's - state. - """ - return self._call_wrapped_cell( - inputs, state, cell_call_fn=self.cell.call, **kwargs - ) - - def build(self, inputs_shape): - """Builds the wrapped cell.""" - self.cell.build(inputs_shape) - self.built = True - - @property - def wrapped_cell(self): - return self.cell - - @property - def state_size(self): - return self.cell.state_size - - @property - def output_size(self): - return self.cell.output_size - - def zero_state(self, batch_size, dtype): - with tf.name_scope(type(self).__name__ + "ZeroState"): - return self.cell.zero_state(batch_size, dtype) - - def get_config(self): - config = { - "cell": { - "class_name": self.cell.__class__.__name__, - "config": self.cell.get_config(), - }, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - config = config.copy() - from keras.layers.serialization import deserialize as deserialize_layer - - cell = deserialize_layer( - config.pop("cell"), custom_objects=custom_objects - ) - return cls(cell, **config) - - -@deprecated(None, "Please use tf.keras.layers.RNN instead.") -@tf_export("nn.RNNCellDropoutWrapper", v1=[]) -class DropoutWrapper(_RNNCellWrapper): - """Operator adding dropout to inputs and outputs of the given cell.""" - - def __init__( - self, - cell, - input_keep_prob=1.0, - output_keep_prob=1.0, - state_keep_prob=1.0, - variational_recurrent=False, - input_size=None, - dtype=None, - seed=None, - dropout_state_filter_visitor=None, - **kwargs, - ): - """Create a cell with added input, state, and/or output dropout. - - If `variational_recurrent` is set to `True` (**NOT** the default - behavior), then the same dropout mask is applied at every step, as - described in: [A Theoretically Grounded Application of Dropout in - Recurrent Neural Networks. Y. Gal, Z. - Ghahramani](https://arxiv.org/abs/1512.05287). - - Otherwise a different dropout mask is applied at every time step. - - Note, by default (unless a custom `dropout_state_filter` is provided), - the memory state (`c` component of any `LSTMStateTuple`) passing through - a `DropoutWrapper` is never modified. This behavior is described in the - above article. - - Args: - cell: an RNNCell, a projection to output_size is added to it. - input_keep_prob: unit Tensor or float between 0 and 1, input keep - probability; if it is constant and 1, no input dropout will be - added. - output_keep_prob: unit Tensor or float between 0 and 1, output keep - probability; if it is constant and 1, no output dropout will be - added. - state_keep_prob: unit Tensor or float between 0 and 1, output keep - probability; if it is constant and 1, no output dropout will be - added. State dropout is performed on the outgoing states of the - cell. **Note** the state components to which dropout is applied when - `state_keep_prob` is in `(0, 1)` are also determined by the argument - `dropout_state_filter_visitor` (e.g. by default dropout is never - applied to the `c` component of an `LSTMStateTuple`). - variational_recurrent: Python bool. If `True`, then the same dropout - pattern is applied across all time steps per run call. If this - parameter is set, `input_size` **must** be provided. - input_size: (optional) (possibly nested tuple of) `TensorShape` - objects containing the depth(s) of the input tensors expected to be - passed in to the `DropoutWrapper`. Required and used **iff** - `variational_recurrent = True` and `input_keep_prob < 1`. - dtype: (optional) The `dtype` of the input, state, and output tensors. - Required and used **iff** `variational_recurrent = True`. - seed: (optional) integer, the randomness seed. - dropout_state_filter_visitor: (optional), default: (see below). - Function that takes any hierarchical level of the state and returns - a scalar or depth=1 structure of Python booleans describing which - terms in the state should be dropped out. In addition, if the - function returns `True`, dropout is applied across this sublevel. - If the function returns `False`, dropout is not applied across this - entire sublevel. Default behavior: perform dropout on all terms - except the memory (`c`) state of `LSTMCellState` objects, and don't - try to apply dropout to - `TensorArray` objects: - ``` - def dropout_state_filter_visitor(s): - # Never perform dropout on the c state. - if isinstance(s, LSTMCellState): - return LSTMCellState(c=False, h=True) - elif isinstance(s, TensorArray): - return False - return True - ``` - **kwargs: dict of keyword arguments for base layer. - - Raises: - TypeError: if `cell` is not an `RNNCell`, or `keep_state_fn` is - provided but not `callable`. - ValueError: if any of the keep_probs are not between 0 and 1. - """ - if isinstance(cell, lstm.LSTMCell): - raise ValueError( - "keras LSTM cell does not work with DropoutWrapper. " - "Please use LSTMCell(dropout=x, recurrent_dropout=y) " - "instead." - ) - super().__init__(cell, dtype=dtype, **kwargs) - - if dropout_state_filter_visitor is not None and not callable( - dropout_state_filter_visitor - ): - raise TypeError( - "dropout_state_filter_visitor must be callable. " - f"Received: {dropout_state_filter_visitor}" - ) - self._dropout_state_filter = ( - dropout_state_filter_visitor - or _default_dropout_state_filter_visitor - ) - with tf.name_scope("DropoutWrapperInit"): - - def tensor_and_const_value(v): - tensor_value = tf.convert_to_tensor(v) - const_value = tf.get_static_value(tensor_value) - return (tensor_value, const_value) - - for prob, attr in [ - (input_keep_prob, "input_keep_prob"), - (state_keep_prob, "state_keep_prob"), - (output_keep_prob, "output_keep_prob"), - ]: - tensor_prob, const_prob = tensor_and_const_value(prob) - if const_prob is not None: - if const_prob < 0 or const_prob > 1: - raise ValueError( - f"Parameter {attr} must be between 0 and 1. " - f"Received {const_prob}" - ) - setattr(self, f"_{attr}", float(const_prob)) - else: - setattr(self, f"_{attr}", tensor_prob) - - # Set variational_recurrent, seed before running the code below - self._variational_recurrent = variational_recurrent - self._input_size = input_size - self._seed = seed - - self._recurrent_input_noise = None - self._recurrent_state_noise = None - self._recurrent_output_noise = None - - if variational_recurrent: - if dtype is None: - raise ValueError( - "When variational_recurrent=True, dtype must be provided" - ) - - def convert_to_batch_shape(s): - # Prepend a 1 for the batch dimension; for recurrent - # variational dropout we use the same dropout mask for all - # batch elements. - return tf.concat(([1], tf.TensorShape(s).as_list()), 0) - - def batch_noise(s, inner_seed): - shape = convert_to_batch_shape(s) - return tf.random.uniform(shape, seed=inner_seed, dtype=dtype) - - if ( - not isinstance(self._input_keep_prob, numbers.Real) - or self._input_keep_prob < 1.0 - ): - if input_size is None: - raise ValueError( - "When variational_recurrent=True and input_keep_prob < " - "1.0 or is unknown, input_size must be provided" - ) - self._recurrent_input_noise = _enumerated_map_structure_up_to( - input_size, - lambda i, s: batch_noise( - s, inner_seed=self._gen_seed("input", i) - ), - input_size, - ) - self._recurrent_state_noise = _enumerated_map_structure_up_to( - cell.state_size, - lambda i, s: batch_noise( - s, inner_seed=self._gen_seed("state", i) - ), - cell.state_size, - ) - self._recurrent_output_noise = _enumerated_map_structure_up_to( - cell.output_size, - lambda i, s: batch_noise( - s, inner_seed=self._gen_seed("output", i) - ), - cell.output_size, - ) - - def _gen_seed(self, salt_prefix, index): - if self._seed is None: - return None - salt = "%s_%d" % (salt_prefix, index) - string = (str(self._seed) + salt).encode("utf-8") - return int(hashlib.md5(string).hexdigest()[:8], 16) & 0x7FFFFFFF - - def _variational_recurrent_dropout_value( - self, unused_index, value, noise, keep_prob - ): - """Performs dropout given the pre-calculated noise tensor.""" - # uniform [keep_prob, 1.0 + keep_prob) - random_tensor = keep_prob + noise - - # 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob) - binary_tensor = tf.floor(random_tensor) - ret = tf.divide(value, keep_prob) * binary_tensor - ret.set_shape(value.get_shape()) - return ret - - def _dropout( - self, - values, - salt_prefix, - recurrent_noise, - keep_prob, - shallow_filtered_substructure=None, - ): - """Decides whether to perform standard dropout or recurrent dropout.""" - - if shallow_filtered_substructure is None: - # Put something so we traverse the entire structure; inside the - # dropout function we check to see if leafs of this are bool or not. - shallow_filtered_substructure = values - - if not self._variational_recurrent: - - def dropout(i, do_dropout, v): - if not isinstance(do_dropout, bool) or do_dropout: - return tf.nn.dropout( - v, - rate=1.0 - keep_prob, - seed=self._gen_seed(salt_prefix, i), - ) - else: - return v - - return _enumerated_map_structure_up_to( - shallow_filtered_substructure, - dropout, - *[shallow_filtered_substructure, values], - ) - else: - - def dropout(i, do_dropout, v, n): - if not isinstance(do_dropout, bool) or do_dropout: - return self._variational_recurrent_dropout_value( - i, v, n, keep_prob - ) - else: - return v - - return _enumerated_map_structure_up_to( - shallow_filtered_substructure, - dropout, - *[shallow_filtered_substructure, values, recurrent_noise], - ) - - def _call_wrapped_cell(self, inputs, state, cell_call_fn, **kwargs): - """Runs the wrapped cell and applies dropout. - - Args: - inputs: A tensor with wrapped cell's input. - state: A tensor or tuple of tensors with wrapped cell's state. - cell_call_fn: Wrapped cell's method to use for step computation - (cell's `__call__` or 'call' method). - **kwargs: Additional arguments. - - Returns: - A pair containing: - - - Output: A tensor with cell's output. - - New state: A tensor or tuple of tensors with new wrapped cell's - state. - """ - - def _should_dropout(p): - return (not isinstance(p, float)) or p < 1 - - if _should_dropout(self._input_keep_prob): - inputs = self._dropout( - inputs, - "input", - self._recurrent_input_noise, - self._input_keep_prob, - ) - output, new_state = cell_call_fn(inputs, state, **kwargs) - if _should_dropout(self._state_keep_prob): - # Identify which subsets of the state to perform dropout on and - # which ones to keep. - shallow_filtered_substructure = ( - tf.__internal__.nest.get_traverse_shallow_structure( - self._dropout_state_filter, new_state - ) - ) - new_state = self._dropout( - new_state, - "state", - self._recurrent_state_noise, - self._state_keep_prob, - shallow_filtered_substructure, - ) - if _should_dropout(self._output_keep_prob): - output = self._dropout( - output, - "output", - self._recurrent_output_noise, - self._output_keep_prob, - ) - return output, new_state - - def get_config(self): - """Returns the config of the dropout wrapper.""" - config = { - "input_keep_prob": self._input_keep_prob, - "output_keep_prob": self._output_keep_prob, - "state_keep_prob": self._state_keep_prob, - "variational_recurrent": self._variational_recurrent, - "input_size": self._input_size, - "seed": self._seed, - } - if self._dropout_state_filter != _default_dropout_state_filter_visitor: - ( - function, - function_type, - function_module, - ) = _serialize_function_to_config(self._dropout_state_filter) - config.update( - { - "dropout_fn": function, - "dropout_fn_type": function_type, - "dropout_fn_module": function_module, - } - ) - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - if "dropout_fn" in config: - config = config.copy() - dropout_state_filter = _parse_config_to_function( - config, - custom_objects, - "dropout_fn", - "dropout_fn_type", - "dropout_fn_module", - ) - config.pop("dropout_fn") - config["dropout_state_filter_visitor"] = dropout_state_filter - return super(DropoutWrapper, cls).from_config( - config, custom_objects=custom_objects - ) - - -@deprecated(None, "Please use tf.keras.layers.RNN instead.") -@tf_export("nn.RNNCellResidualWrapper", v1=[]) -class ResidualWrapper(_RNNCellWrapper): - """RNNCell wrapper that ensures cell inputs are added to the outputs.""" - - def __init__(self, cell, residual_fn=None, **kwargs): - """Constructs a `ResidualWrapper` for `cell`. - - Args: - cell: An instance of `RNNCell`. - residual_fn: (Optional) The function to map raw cell inputs and raw - cell outputs to the actual cell outputs of the residual network. - Defaults to calling nest.map_structure on (lambda i, o: i + o), - inputs and outputs. - **kwargs: dict of keyword arguments for base layer. - """ - super().__init__(cell, **kwargs) - self._residual_fn = residual_fn - - def _call_wrapped_cell(self, inputs, state, cell_call_fn, **kwargs): - """Run the cell and apply the residual_fn. - - Args: - inputs: cell inputs. - state: cell state. - cell_call_fn: Wrapped cell's method to use for step computation - (cell's `__call__` or 'call' method). - **kwargs: Additional arguments passed to the wrapped cell's `call`. - - Returns: - Tuple of cell outputs and new state. - - Raises: - TypeError: If cell inputs and outputs have different structure (type). - ValueError: If cell inputs and outputs have different structure - (value). - """ - outputs, new_state = cell_call_fn(inputs, state, **kwargs) - - # Ensure shapes match - def assert_shape_match(inp, out): - inp.get_shape().assert_is_compatible_with(out.get_shape()) - - def default_residual_fn(inputs, outputs): - tf.nest.assert_same_structure(inputs, outputs) - tf.nest.map_structure(assert_shape_match, inputs, outputs) - return tf.nest.map_structure( - lambda inp, out: inp + out, inputs, outputs - ) - - res_outputs = (self._residual_fn or default_residual_fn)( - inputs, outputs - ) - return (res_outputs, new_state) - - def get_config(self): - """Returns the config of the residual wrapper.""" - if self._residual_fn is not None: - ( - function, - function_type, - function_module, - ) = _serialize_function_to_config(self._residual_fn) - config = { - "residual_fn": function, - "residual_fn_type": function_type, - "residual_fn_module": function_module, - } - else: - config = {} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - if "residual_fn" in config: - config = config.copy() - residual_function = _parse_config_to_function( - config, - custom_objects, - "residual_fn", - "residual_fn_type", - "residual_fn_module", - ) - config["residual_fn"] = residual_function - return super(ResidualWrapper, cls).from_config( - config, custom_objects=custom_objects - ) - - -@deprecated(None, "Please use tf.keras.layers.RNN instead.") -@tf_export("nn.RNNCellDeviceWrapper", v1=[]) -class DeviceWrapper(_RNNCellWrapper): - """Operator that ensures an RNNCell runs on a particular device.""" - - def __init__(self, cell, device, **kwargs): - """Construct a `DeviceWrapper` for `cell` with device `device`. - - Ensures the wrapped `cell` is called with `tf.device(device)`. - - Args: - cell: An instance of `RNNCell`. - device: A device string or function, for passing to `tf.device`. - **kwargs: dict of keyword arguments for base layer. - """ - super().__init__(cell, **kwargs) - self._device = device - - def zero_state(self, batch_size, dtype): - with tf.name_scope(type(self).__name__ + "ZeroState"): - with tf.compat.v1.device(self._device): - return self.cell.zero_state(batch_size, dtype) - - def _call_wrapped_cell(self, inputs, state, cell_call_fn, **kwargs): - """Run the cell on specified device.""" - with tf.compat.v1.device(self._device): - return cell_call_fn(inputs, state, **kwargs) - - def get_config(self): - config = {"device": self._device} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -def _serialize_function_to_config(function): - """Serialize the function for get_config().""" - if isinstance(function, python_types.LambdaType): - output = generic_utils.func_dump(function) - output_type = "lambda" - module = function.__module__ - elif callable(function): - output = function.__name__ - output_type = "function" - module = function.__module__ - else: - raise ValueError( - f"Unrecognized function type for input: {type(function)}" - ) - - return output, output_type, module - - -def _parse_config_to_function( - config, - custom_objects, - func_attr_name, - func_type_attr_name, - module_attr_name, -): - """Reconstruct the function from the config.""" - globs = globals() - module = config.pop(module_attr_name, None) - if module in sys.modules: - globs.update(sys.modules[module].__dict__) - elif module is not None: - # Note: we don't know the name of the function if it's a lambda. - warnings.warn( - "{} is not loaded, but a layer uses it. " - "It may cause errors.".format(module), - UserWarning, - stacklevel=2, - ) - if custom_objects: - globs.update(custom_objects) - function_type = config.pop(func_type_attr_name) - if function_type == "function": - # Simple lookup in custom objects - function = serialization_lib.deserialize_keras_object( - config[func_attr_name], - custom_objects=custom_objects, - printable_module_name="function in wrapper", - ) - elif function_type == "lambda": - if serialization_lib.in_safe_mode(): - raise ValueError( - "Requested the deserialization of a layer with a " - "Python `lambda` inside it. " - "This carries a potential risk of arbitrary code execution " - "and thus it is disallowed by default. If you trust the " - "source of the saved model, you can pass `safe_mode=False` to " - "the loading function in order to allow " - "`lambda` loading." - ) - # Unsafe deserialization from bytecode - function = generic_utils.func_load(config[func_attr_name], globs=globs) - else: - raise TypeError( - f"Unknown function type received: {function_type}. " - "Expected types are ['function', 'lambda']" - ) - return function - - -def _default_dropout_state_filter_visitor(substate): - return not isinstance(substate, tf.TensorArray) - - -def _enumerated_map_structure_up_to(shallow_structure, map_fn, *args, **kwargs): - ix = [0] - - def enumerated_fn(*inner_args, **inner_kwargs): - r = map_fn(ix[0], *inner_args, **inner_kwargs) - ix[0] += 1 - return r - - return tf.__internal__.nest.map_structure_up_to( - shallow_structure, enumerated_fn, *args, **kwargs - ) diff --git a/keras/layers/rnn/cell_wrappers_test.py b/keras/layers/rnn/cell_wrappers_test.py deleted file mode 100644 index e8683a7f204..00000000000 --- a/keras/layers/rnn/cell_wrappers_test.py +++ /dev/null @@ -1,236 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for RNN cell wrappers.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import layers -from keras.layers.rnn import cell_wrappers -from keras.layers.rnn import legacy_cells -from keras.legacy_tf_layers import base as legacy_base_layer -from keras.testing_infra import test_combinations -from keras.utils import generic_utils - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class RNNCellWrapperTest(tf.test.TestCase, parameterized.TestCase): - def testResidualWrapper(self): - wrapper_type = cell_wrappers.ResidualWrapper - x = tf.convert_to_tensor(np.array([[1.0, 1.0, 1.0]]), dtype="float32") - m = tf.convert_to_tensor(np.array([[0.1, 0.1, 0.1]]), dtype="float32") - base_cell = legacy_cells.GRUCell( - 3, - kernel_initializer=tf.compat.v1.constant_initializer(0.5), - bias_initializer=tf.compat.v1.constant_initializer(0.5), - ) - g, m_new = base_cell(x, m) - wrapper_object = wrapper_type(base_cell) - self.assertDictEqual( - {"cell": base_cell}, wrapper_object._trackable_children() - ) - wrapper_object.get_config() # Should not throw an error - - g_res, m_new_res = wrapper_object(x, m) - self.evaluate([tf.compat.v1.global_variables_initializer()]) - res = self.evaluate([g, g_res, m_new, m_new_res]) - # Residual connections - self.assertAllClose(res[1], res[0] + [1.0, 1.0, 1.0]) - # States are left untouched - self.assertAllClose(res[2], res[3]) - - def testResidualWrapperWithSlice(self): - wrapper_type = cell_wrappers.ResidualWrapper - x = tf.convert_to_tensor( - np.array([[1.0, 1.0, 1.0, 1.0, 1.0]]), dtype="float32" - ) - m = tf.convert_to_tensor(np.array([[0.1, 0.1, 0.1]]), dtype="float32") - base_cell = legacy_cells.GRUCell( - 3, - kernel_initializer=tf.compat.v1.constant_initializer(0.5), - bias_initializer=tf.compat.v1.constant_initializer(0.5), - ) - g, m_new = base_cell(x, m) - - def residual_with_slice_fn(inp, out): - inp_sliced = tf.slice(inp, [0, 0], [-1, 3]) - return inp_sliced + out - - g_res, m_new_res = wrapper_type(base_cell, residual_with_slice_fn)(x, m) - self.evaluate([tf.compat.v1.global_variables_initializer()]) - res_g, res_g_res, res_m_new, res_m_new_res = self.evaluate( - [g, g_res, m_new, m_new_res] - ) - # Residual connections - self.assertAllClose(res_g_res, res_g + [1.0, 1.0, 1.0]) - # States are left untouched - self.assertAllClose(res_m_new, res_m_new_res) - - def testDeviceWrapper(self): - wrapper_type = cell_wrappers.DeviceWrapper - x = tf.zeros([1, 3]) - m = tf.zeros([1, 3]) - cell = legacy_cells.GRUCell(3) - wrapped_cell = wrapper_type(cell, "/cpu:0") - self.assertDictEqual({"cell": cell}, wrapped_cell._trackable_children()) - wrapped_cell.get_config() # Should not throw an error - - outputs, _ = wrapped_cell(x, m) - self.assertIn("cpu:0", outputs.device.lower()) - - @parameterized.parameters( - [cell_wrappers.DropoutWrapper, cell_wrappers.ResidualWrapper] - ) - def testWrapperKerasStyle(self, wrapper): - """Tests if wrapper cell is instantiated in keras style scope.""" - wrapped_cell = wrapper(legacy_cells.BasicRNNCell(1)) - self.assertIsNone(getattr(wrapped_cell, "_keras_style", None)) - - @parameterized.parameters( - [cell_wrappers.DropoutWrapper, cell_wrappers.ResidualWrapper] - ) - def testWrapperWeights(self, wrapper): - """Tests that wrapper weights contain wrapped cells weights.""" - base_cell = layers.SimpleRNNCell(1, name="basic_rnn_cell") - rnn_cell = wrapper(base_cell) - rnn_layer = layers.RNN(rnn_cell) - inputs = tf.convert_to_tensor([[[1]]], dtype=tf.float32) - rnn_layer(inputs) - - wrapper_name = generic_utils.to_snake_case(wrapper.__name__) - expected_weights = [ - "rnn/" + wrapper_name + "/" + var - for var in ("kernel:0", "recurrent_kernel:0", "bias:0") - ] - self.assertLen(rnn_cell.weights, 3) - self.assertCountEqual( - [v.name for v in rnn_cell.weights], expected_weights - ) - self.assertCountEqual( - [v.name for v in rnn_cell.trainable_variables], expected_weights - ) - self.assertCountEqual( - [v.name for v in rnn_cell.non_trainable_variables], [] - ) - self.assertCountEqual( - [v.name for v in rnn_cell.cell.weights], expected_weights - ) - - @parameterized.parameters( - [cell_wrappers.DropoutWrapper, cell_wrappers.ResidualWrapper] - ) - def testWrapperV2Caller(self, wrapper): - """Tests that wrapper V2 is using the LayerRNNCell's caller.""" - - with legacy_base_layer.keras_style_scope(): - base_cell = legacy_cells.MultiRNNCell( - [legacy_cells.BasicRNNCell(1) for _ in range(2)] - ) - rnn_cell = wrapper(base_cell) - inputs = tf.convert_to_tensor([[1]], dtype=tf.float32) - state = tf.convert_to_tensor([[1]], dtype=tf.float32) - _ = rnn_cell(inputs, [state, state]) - weights = base_cell._cells[0].weights - self.assertLen(weights, expected_len=2) - self.assertTrue(all("_wrapper" in v.name for v in weights)) - - @parameterized.parameters( - [cell_wrappers.DropoutWrapper, cell_wrappers.ResidualWrapper] - ) - def testWrapperV2Build(self, wrapper): - cell = legacy_cells.LSTMCell(10) - wrapper = wrapper(cell) - wrapper.build((1,)) - self.assertTrue(cell.built) - - def testDeviceWrapperSerialization(self): - wrapper_cls = cell_wrappers.DeviceWrapper - cell = layers.LSTMCell(10) - wrapper = wrapper_cls(cell, "/cpu:0") - config = wrapper.get_config() - - reconstructed_wrapper = wrapper_cls.from_config(config) - self.assertDictEqual(config, reconstructed_wrapper.get_config()) - self.assertIsInstance(reconstructed_wrapper, wrapper_cls) - - def testResidualWrapperSerialization(self): - wrapper_cls = cell_wrappers.ResidualWrapper - cell = layers.LSTMCell(10) - wrapper = wrapper_cls(cell) - config = wrapper.get_config() - - reconstructed_wrapper = wrapper_cls.from_config(config) - self.assertDictEqual(config, reconstructed_wrapper.get_config()) - self.assertIsInstance(reconstructed_wrapper, wrapper_cls) - - wrapper = wrapper_cls(cell, residual_fn=lambda i, o: i + i + o) - config = wrapper.get_config() - - reconstructed_wrapper = wrapper_cls.from_config(config) - # Assert the reconstructed function will perform the math correctly. - self.assertEqual(reconstructed_wrapper._residual_fn(1, 2), 4) - - def residual_fn(inputs, outputs): - return inputs * 3 + outputs - - wrapper = wrapper_cls(cell, residual_fn=residual_fn) - config = wrapper.get_config() - - reconstructed_wrapper = wrapper_cls.from_config(config) - # Assert the reconstructed function will perform the math correctly. - self.assertEqual(reconstructed_wrapper._residual_fn(1, 2), 5) - - def testDropoutWrapperSerialization(self): - wrapper_cls = cell_wrappers.DropoutWrapper - cell = layers.GRUCell(10) - wrapper = wrapper_cls(cell) - config = wrapper.get_config() - - reconstructed_wrapper = wrapper_cls.from_config(config) - self.assertDictEqual(config, reconstructed_wrapper.get_config()) - self.assertIsInstance(reconstructed_wrapper, wrapper_cls) - - wrapper = wrapper_cls(cell, dropout_state_filter_visitor=lambda s: True) - config = wrapper.get_config() - - reconstructed_wrapper = wrapper_cls.from_config(config) - self.assertTrue(reconstructed_wrapper._dropout_state_filter(None)) - - def dropout_state_filter_visitor(unused_state): - return False - - wrapper = wrapper_cls( - cell, dropout_state_filter_visitor=dropout_state_filter_visitor - ) - config = wrapper.get_config() - - reconstructed_wrapper = wrapper_cls.from_config(config) - self.assertFalse(reconstructed_wrapper._dropout_state_filter(None)) - - def testDropoutWrapperWithKerasLSTMCell(self): - wrapper_cls = cell_wrappers.DropoutWrapper - cell = layers.LSTMCell(10) - - with self.assertRaisesRegex(ValueError, "does not work with "): - wrapper_cls(cell) - - cell = layers.LSTMCellV2(10) - with self.assertRaisesRegex(ValueError, "does not work with "): - wrapper_cls(cell) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/conv_lstm1d.py b/keras/layers/rnn/conv_lstm1d.py deleted file mode 100644 index 5566b66808a..00000000000 --- a/keras/layers/rnn/conv_lstm1d.py +++ /dev/null @@ -1,188 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""1D Convolutional LSTM layer.""" - - -from keras.layers.rnn.base_conv_lstm import ConvLSTM - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.ConvLSTM1D") -class ConvLSTM1D(ConvLSTM): - """1D Convolutional LSTM. - - Similar to an LSTM layer, but the input transformations - and recurrent transformations are both convolutional. - - Args: - filters: Integer, the dimensionality of the output space (i.e. the number - of output filters in the convolution). - kernel_size: An integer or tuple/list of n integers, specifying the - dimensions of the convolution window. - strides: An integer or tuple/list of n integers, specifying the strides of - the convolution. Specifying any stride value != 1 is incompatible with - specifying any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). `"valid"` means - no padding. `"same"` results in padding evenly to the left/right or - up/down of the input such that output has the same height/width - dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape `(batch, time, ..., - channels)` while `channels_first` corresponds to inputs with shape - `(batch, time, channels, ...)`. It defaults to the `image_data_format` - value found in your Keras config file at `~/.keras/keras.json`. If you - never set it, then it will be "channels_last". - dilation_rate: An integer or tuple/list of n integers, specifying the - dilation rate to use for dilated convolution. Currently, specifying any - `dilation_rate` value != 1 is incompatible with specifying any `strides` - value != 1. - activation: Activation function to use. By default hyperbolic tangent - activation function is applied (`tanh(x)`). - recurrent_activation: Activation function to use for the recurrent step. - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, used for - the linear transformation of the inputs. - recurrent_initializer: Initializer for the `recurrent_kernel` weights - matrix, used for the linear transformation of the recurrent state. - bias_initializer: Initializer for the bias vector. - unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate - at initialization. Use in combination with `bias_initializer="zeros"`. - This is recommended in [Jozefowicz et al., 2015]( - http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. - recurrent_regularizer: Regularizer function applied to the - `recurrent_kernel` weights matrix. - bias_regularizer: Regularizer function applied to the bias vector. - activity_regularizer: Regularizer function applied to. - kernel_constraint: Constraint function applied to the `kernel` weights - matrix. - recurrent_constraint: Constraint function applied to the - `recurrent_kernel` weights matrix. - bias_constraint: Constraint function applied to the bias vector. - return_sequences: Boolean. Whether to return the last output in the output - sequence, or the full sequence. (default False) - return_state: Boolean Whether to return the last state in addition to the - output. (default False) - go_backwards: Boolean (default False). If True, process the input sequence - backwards. - stateful: Boolean (default False). If True, the last state for each sample - at index i in a batch will be used as initial state for the sample of - index i in the following batch. - dropout: Float between 0 and 1. Fraction of the units to drop for the - linear transformation of the inputs. - recurrent_dropout: Float between 0 and 1. Fraction of the units to drop - for the linear transformation of the recurrent state. - Call arguments: - inputs: A 4D tensor. - mask: Binary tensor of shape `(samples, timesteps)` indicating whether a - given timestep should be masked. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. This argument is passed to the cell - when calling it. This is only relevant if `dropout` or - `recurrent_dropout` are set. - initial_state: List of initial state tensors to be passed to the first - call of the cell. - Input shape: - If data_format='channels_first' - 4D tensor with shape: `(samples, time, channels, rows)` - If - data_format='channels_last' - 4D tensor with shape: `(samples, time, rows, channels)` - Output shape: - - If `return_state`: a list of tensors. The first tensor is the output. - The remaining tensors are the last states, - each 3D tensor with shape: `(samples, filters, new_rows)` if - data_format='channels_first' - or shape: `(samples, new_rows, filters)` if data_format='channels_last'. - `rows` values might have changed due to padding. - - If `return_sequences`: 4D tensor with shape: `(samples, timesteps, - filters, new_rows)` if data_format='channels_first' - or shape: `(samples, timesteps, new_rows, filters)` if - data_format='channels_last'. - - Else, 3D tensor with shape: `(samples, filters, new_rows)` if - data_format='channels_first' - or shape: `(samples, new_rows, filters)` if data_format='channels_last'. - - Raises: - ValueError: in case of invalid constructor arguments. - - References: - - [Shi et al., 2015](http://arxiv.org/abs/1506.04214v1) - (the current implementation does not include the feedback loop on the - cells output). - """ - - def __init__( - self, - filters, - kernel_size, - strides=1, - padding="valid", - data_format=None, - dilation_rate=1, - activation="tanh", - recurrent_activation="hard_sigmoid", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - unit_forget_bias=True, - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - dropout=0.0, - recurrent_dropout=0.0, - **kwargs - ): - super().__init__( - rank=1, - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - recurrent_activation=recurrent_activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - recurrent_initializer=recurrent_initializer, - bias_initializer=bias_initializer, - unit_forget_bias=unit_forget_bias, - kernel_regularizer=kernel_regularizer, - recurrent_regularizer=recurrent_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - recurrent_constraint=recurrent_constraint, - bias_constraint=bias_constraint, - return_sequences=return_sequences, - return_state=return_state, - go_backwards=go_backwards, - stateful=stateful, - dropout=dropout, - recurrent_dropout=recurrent_dropout, - **kwargs - ) diff --git a/keras/layers/rnn/conv_lstm2d.py b/keras/layers/rnn/conv_lstm2d.py deleted file mode 100644 index d62e8828bc0..00000000000 --- a/keras/layers/rnn/conv_lstm2d.py +++ /dev/null @@ -1,190 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""2D Convolutional LSTM layer.""" - - -from keras.layers.rnn.base_conv_lstm import ConvLSTM - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.ConvLSTM2D") -class ConvLSTM2D(ConvLSTM): - """2D Convolutional LSTM. - - Similar to an LSTM layer, but the input transformations - and recurrent transformations are both convolutional. - - Args: - filters: Integer, the dimensionality of the output space (i.e. the number - of output filters in the convolution). - kernel_size: An integer or tuple/list of n integers, specifying the - dimensions of the convolution window. - strides: An integer or tuple/list of n integers, specifying the strides of - the convolution. Specifying any stride value != 1 is incompatible with - specifying any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). `"valid"` means - no padding. `"same"` results in padding evenly to the left/right or - up/down of the input such that output has the same height/width - dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape `(batch, time, ..., - channels)` while `channels_first` corresponds to inputs with shape - `(batch, time, channels, ...)`. It defaults to the `image_data_format` - value found in your Keras config file at `~/.keras/keras.json`. If you - never set it, then it will be "channels_last". - dilation_rate: An integer or tuple/list of n integers, specifying the - dilation rate to use for dilated convolution. Currently, specifying any - `dilation_rate` value != 1 is incompatible with specifying any `strides` - value != 1. - activation: Activation function to use. By default hyperbolic tangent - activation function is applied (`tanh(x)`). - recurrent_activation: Activation function to use for the recurrent step. - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, used for - the linear transformation of the inputs. - recurrent_initializer: Initializer for the `recurrent_kernel` weights - matrix, used for the linear transformation of the recurrent state. - bias_initializer: Initializer for the bias vector. - unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate - at initialization. Use in combination with `bias_initializer="zeros"`. - This is recommended in [Jozefowicz et al., 2015]( - http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. - recurrent_regularizer: Regularizer function applied to the - `recurrent_kernel` weights matrix. - bias_regularizer: Regularizer function applied to the bias vector. - activity_regularizer: Regularizer function applied to. - kernel_constraint: Constraint function applied to the `kernel` weights - matrix. - recurrent_constraint: Constraint function applied to the - `recurrent_kernel` weights matrix. - bias_constraint: Constraint function applied to the bias vector. - return_sequences: Boolean. Whether to return the last output in the output - sequence, or the full sequence. (default False) - return_state: Boolean Whether to return the last state in addition to the - output. (default False) - go_backwards: Boolean (default False). If True, process the input sequence - backwards. - stateful: Boolean (default False). If True, the last state for each sample - at index i in a batch will be used as initial state for the sample of - index i in the following batch. - dropout: Float between 0 and 1. Fraction of the units to drop for the - linear transformation of the inputs. - recurrent_dropout: Float between 0 and 1. Fraction of the units to drop - for the linear transformation of the recurrent state. - Call arguments: - inputs: A 5D tensor. - mask: Binary tensor of shape `(samples, timesteps)` indicating whether a - given timestep should be masked. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. This argument is passed to the cell - when calling it. This is only relevant if `dropout` or - `recurrent_dropout` are set. - initial_state: List of initial state tensors to be passed to the first - call of the cell. - Input shape: - If data_format='channels_first' - 5D tensor with shape: `(samples, time, channels, rows, cols)` - If - data_format='channels_last' - 5D tensor with shape: `(samples, time, rows, cols, channels)` - Output shape: - - If `return_state`: a list of tensors. The first tensor is the output. - The remaining tensors are the last states, - each 4D tensor with shape: `(samples, filters, new_rows, new_cols)` if - data_format='channels_first' - or shape: `(samples, new_rows, new_cols, filters)` if - data_format='channels_last'. `rows` and `cols` values might have - changed due to padding. - - If `return_sequences`: 5D tensor with shape: `(samples, timesteps, - filters, new_rows, new_cols)` if data_format='channels_first' - or shape: `(samples, timesteps, new_rows, new_cols, filters)` if - data_format='channels_last'. - - Else, 4D tensor with shape: `(samples, filters, new_rows, new_cols)` if - data_format='channels_first' - or shape: `(samples, new_rows, new_cols, filters)` if - data_format='channels_last'. - - Raises: - ValueError: in case of invalid constructor arguments. - - References: - - [Shi et al., 2015](http://arxiv.org/abs/1506.04214v1) - (the current implementation does not include the feedback loop on the - cells output). - """ - - def __init__( - self, - filters, - kernel_size, - strides=(1, 1), - padding="valid", - data_format=None, - dilation_rate=(1, 1), - activation="tanh", - recurrent_activation="hard_sigmoid", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - unit_forget_bias=True, - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - dropout=0.0, - recurrent_dropout=0.0, - **kwargs - ): - super().__init__( - rank=2, - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - recurrent_activation=recurrent_activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - recurrent_initializer=recurrent_initializer, - bias_initializer=bias_initializer, - unit_forget_bias=unit_forget_bias, - kernel_regularizer=kernel_regularizer, - recurrent_regularizer=recurrent_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - recurrent_constraint=recurrent_constraint, - bias_constraint=bias_constraint, - return_sequences=return_sequences, - return_state=return_state, - go_backwards=go_backwards, - stateful=stateful, - dropout=dropout, - recurrent_dropout=recurrent_dropout, - **kwargs - ) diff --git a/keras/layers/rnn/conv_lstm3d.py b/keras/layers/rnn/conv_lstm3d.py deleted file mode 100644 index e8c37ec5ea7..00000000000 --- a/keras/layers/rnn/conv_lstm3d.py +++ /dev/null @@ -1,190 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""3D Convolutional LSTM layer.""" - - -from keras.layers.rnn.base_conv_lstm import ConvLSTM - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.ConvLSTM3D") -class ConvLSTM3D(ConvLSTM): - """3D Convolutional LSTM. - - Similar to an LSTM layer, but the input transformations - and recurrent transformations are both convolutional. - - Args: - filters: Integer, the dimensionality of the output space (i.e. the number - of output filters in the convolution). - kernel_size: An integer or tuple/list of n integers, specifying the - dimensions of the convolution window. - strides: An integer or tuple/list of n integers, specifying the strides of - the convolution. Specifying any stride value != 1 is incompatible with - specifying any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). `"valid"` means - no padding. `"same"` results in padding evenly to the left/right or - up/down of the input such that output has the same height/width - dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape `(batch, time, ..., - channels)` while `channels_first` corresponds to inputs with shape - `(batch, time, channels, ...)`. It defaults to the `image_data_format` - value found in your Keras config file at `~/.keras/keras.json`. If you - never set it, then it will be "channels_last". - dilation_rate: An integer or tuple/list of n integers, specifying the - dilation rate to use for dilated convolution. Currently, specifying any - `dilation_rate` value != 1 is incompatible with specifying any `strides` - value != 1. - activation: Activation function to use. By default hyperbolic tangent - activation function is applied (`tanh(x)`). - recurrent_activation: Activation function to use for the recurrent step. - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, used for - the linear transformation of the inputs. - recurrent_initializer: Initializer for the `recurrent_kernel` weights - matrix, used for the linear transformation of the recurrent state. - bias_initializer: Initializer for the bias vector. - unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate - at initialization. Use in combination with `bias_initializer="zeros"`. - This is recommended in [Jozefowicz et al., 2015]( - http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. - recurrent_regularizer: Regularizer function applied to the - `recurrent_kernel` weights matrix. - bias_regularizer: Regularizer function applied to the bias vector. - activity_regularizer: Regularizer function applied to. - kernel_constraint: Constraint function applied to the `kernel` weights - matrix. - recurrent_constraint: Constraint function applied to the - `recurrent_kernel` weights matrix. - bias_constraint: Constraint function applied to the bias vector. - return_sequences: Boolean. Whether to return the last output in the output - sequence, or the full sequence. (default False) - return_state: Boolean Whether to return the last state in addition to the - output. (default False) - go_backwards: Boolean (default False). If True, process the input sequence - backwards. - stateful: Boolean (default False). If True, the last state for each sample - at index i in a batch will be used as initial state for the sample of - index i in the following batch. - dropout: Float between 0 and 1. Fraction of the units to drop for the - linear transformation of the inputs. - recurrent_dropout: Float between 0 and 1. Fraction of the units to drop - for the linear transformation of the recurrent state. - Call arguments: - inputs: A 6D tensor. - mask: Binary tensor of shape `(samples, timesteps)` indicating whether a - given timestep should be masked. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. This argument is passed to the cell - when calling it. This is only relevant if `dropout` or - `recurrent_dropout` are set. - initial_state: List of initial state tensors to be passed to the first - call of the cell. - Input shape: - If data_format='channels_first' - 6D tensor with shape: `(samples, time, channels, rows, cols, depth)` - - If data_format='channels_last' - 5D tensor with shape: `(samples, time, rows, cols, depth, channels)` - Output shape: - - If `return_state`: a list of tensors. The first tensor is the output. - The remaining tensors are the last states, - each 5D tensor with shape: `(samples, filters, new_rows, new_cols, - new_depth)` if data_format='channels_first' - or shape: `(samples, new_rows, new_cols, new_depth, filters)` if - data_format='channels_last'. `rows`, `cols`, and `depth` values might - have changed due to padding. - - If `return_sequences`: 6D tensor with shape: `(samples, timesteps, - filters, new_rows, new_cols, new_depth)` if data_format='channels_first' - or shape: `(samples, timesteps, new_rows, new_cols, new_depth, filters)` - if data_format='channels_last'. - - Else, 5D tensor with shape: `(samples, filters, new_rows, new_cols, - new_depth)` if data_format='channels_first' - or shape: `(samples, new_rows, new_cols, new_depth, filters)` if - data_format='channels_last'. - - Raises: - ValueError: in case of invalid constructor arguments. - - References: - - [Shi et al., 2015](http://arxiv.org/abs/1506.04214v1) - (the current implementation does not include the feedback loop on the - cells output). - """ - - def __init__( - self, - filters, - kernel_size, - strides=(1, 1, 1), - padding="valid", - data_format=None, - dilation_rate=(1, 1, 1), - activation="tanh", - recurrent_activation="hard_sigmoid", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - unit_forget_bias=True, - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - dropout=0.0, - recurrent_dropout=0.0, - **kwargs - ): - super().__init__( - rank=3, - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - recurrent_activation=recurrent_activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - recurrent_initializer=recurrent_initializer, - bias_initializer=bias_initializer, - unit_forget_bias=unit_forget_bias, - kernel_regularizer=kernel_regularizer, - recurrent_regularizer=recurrent_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - recurrent_constraint=recurrent_constraint, - bias_constraint=bias_constraint, - return_sequences=return_sequences, - return_state=return_state, - go_backwards=go_backwards, - stateful=stateful, - dropout=dropout, - recurrent_dropout=recurrent_dropout, - **kwargs - ) diff --git a/keras/layers/rnn/conv_lstm_test.py b/keras/layers/rnn/conv_lstm_test.py deleted file mode 100644 index d8dfdeda2bf..00000000000 --- a/keras/layers/rnn/conv_lstm_test.py +++ /dev/null @@ -1,419 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for convolutional recurrent layers.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class ConvLSTM1DTest(test_combinations.TestCase): - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - data_format=["channels_first", "channels_last"], - return_sequences=[True, False], - ) - ) - def test_conv_lstm(self, data_format, return_sequences): - num_row = 3 - filters = 3 - num_samples = 1 - input_channel = 2 - input_num_row = 5 - sequence_len = 2 - if data_format == "channels_first": - inputs = np.random.rand( - num_samples, sequence_len, input_channel, input_num_row - ) - else: - inputs = np.random.rand( - num_samples, sequence_len, input_num_row, input_channel - ) - - # test for return state: - x = keras.Input(batch_shape=inputs.shape) - kwargs = { - "data_format": data_format, - "return_sequences": return_sequences, - "return_state": True, - "stateful": True, - "filters": filters, - "kernel_size": num_row, - "padding": "valid", - } - layer = keras.layers.ConvLSTM1D(**kwargs) - layer.build(inputs.shape) - outputs = layer(x) - _, states = outputs[0], outputs[1:] - self.assertEqual(len(states), 2) - model = keras.models.Model(x, states[0]) - - state = model.predict(inputs) - - self.assertAllClose( - keras.backend.eval(layer.states[0]), state, atol=1e-4 - ) - - # test for output shape: - test_utils.layer_test( - keras.layers.ConvLSTM1D, - kwargs={ - "data_format": data_format, - "return_sequences": return_sequences, - "filters": filters, - "kernel_size": num_row, - "padding": "valid", - }, - input_shape=inputs.shape, - ) - - -@test_combinations.run_all_keras_modes -class ConvLSTM2DTest(test_combinations.TestCase): - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - data_format=["channels_first", "channels_last"], - return_sequences=[True, False], - ) - ) - def test_conv_lstm(self, data_format, return_sequences): - num_row = 3 - num_col = 3 - filters = 2 - num_samples = 1 - input_channel = 2 - input_num_row = 5 - input_num_col = 5 - sequence_len = 2 - if data_format == "channels_first": - inputs = np.random.rand( - num_samples, - sequence_len, - input_channel, - input_num_row, - input_num_col, - ) - else: - inputs = np.random.rand( - num_samples, - sequence_len, - input_num_row, - input_num_col, - input_channel, - ) - - # test for return state: - x = keras.Input(batch_shape=inputs.shape) - kwargs = { - "data_format": data_format, - "return_sequences": return_sequences, - "return_state": True, - "stateful": True, - "filters": filters, - "kernel_size": (num_row, num_col), - "padding": "valid", - } - layer = keras.layers.ConvLSTM2D(**kwargs) - layer.build(inputs.shape) - outputs = layer(x) - _, states = outputs[0], outputs[1:] - self.assertEqual(len(states), 2) - model = keras.models.Model(x, states[0]) - state = model.predict(inputs) - - self.assertAllClose( - keras.backend.eval(layer.states[0]), state, atol=1e-4 - ) - - # test for output shape: - test_utils.layer_test( - keras.layers.ConvLSTM2D, - kwargs={ - "data_format": data_format, - "return_sequences": return_sequences, - "filters": filters, - "kernel_size": (num_row, num_col), - "padding": "valid", - }, - input_shape=inputs.shape, - ) - - def test_conv_lstm_statefulness(self): - # Tests for statefulness - num_row = 3 - num_col = 3 - filters = 2 - num_samples = 1 - input_channel = 2 - input_num_row = 5 - input_num_col = 5 - sequence_len = 2 - inputs = np.random.rand( - num_samples, - sequence_len, - input_num_row, - input_num_col, - input_channel, - ) - - with self.cached_session(): - model = keras.models.Sequential() - kwargs = { - "data_format": "channels_last", - "return_sequences": False, - "filters": filters, - "kernel_size": (num_row, num_col), - "stateful": True, - "batch_input_shape": inputs.shape, - "padding": "same", - } - layer = keras.layers.ConvLSTM2D(**kwargs) - - model.add(layer) - model.compile(optimizer="sgd", loss="mse") - out1 = model.predict(np.ones_like(inputs)) - - # train once so that the states change - model.train_on_batch( - np.ones_like(inputs), np.random.random(out1.shape) - ) - out2 = model.predict(np.ones_like(inputs)) - - # if the state is not reset, output should be different - self.assertNotEqual(out1.max(), out2.max()) - - # check that output changes after states are reset - # (even though the model itself didn't change) - layer.reset_states() - out3 = model.predict(np.ones_like(inputs)) - self.assertNotEqual(out3.max(), out2.max()) - - # check that container-level reset_states() works - model.reset_states() - out4 = model.predict(np.ones_like(inputs)) - self.assertAllClose(out3, out4, atol=1e-5) - - # check that the call to `predict` updated the states - out5 = model.predict(np.ones_like(inputs)) - self.assertNotEqual(out4.max(), out5.max()) - - def test_conv_lstm_regularizers(self): - # check regularizers - num_row = 3 - num_col = 3 - filters = 2 - num_samples = 1 - input_channel = 2 - input_num_row = 5 - input_num_col = 5 - sequence_len = 2 - inputs = np.random.rand( - num_samples, - sequence_len, - input_num_row, - input_num_col, - input_channel, - ) - - with self.cached_session(): - kwargs = { - "data_format": "channels_last", - "return_sequences": False, - "kernel_size": (num_row, num_col), - "stateful": True, - "filters": filters, - "batch_input_shape": inputs.shape, - "kernel_regularizer": keras.regularizers.L1L2(l1=0.01), - "recurrent_regularizer": keras.regularizers.L1L2(l1=0.01), - "activity_regularizer": "l2", - "bias_regularizer": "l2", - "kernel_constraint": "max_norm", - "recurrent_constraint": "max_norm", - "bias_constraint": "max_norm", - "padding": "same", - } - - layer = keras.layers.ConvLSTM2D(**kwargs) - layer.build(inputs.shape) - self.assertEqual(len(layer.losses), 3) - layer(keras.backend.variable(np.ones(inputs.shape))) - self.assertEqual(len(layer.losses), 4) - - def test_conv_lstm_dropout(self): - # check dropout - with self.cached_session(): - test_utils.layer_test( - keras.layers.ConvLSTM2D, - kwargs={ - "data_format": "channels_last", - "return_sequences": False, - "filters": 2, - "kernel_size": (3, 3), - "padding": "same", - "dropout": 0.1, - "recurrent_dropout": 0.1, - }, - input_shape=(1, 2, 5, 5, 2), - ) - - def test_conv_lstm_cloning(self): - with self.cached_session(): - model = keras.models.Sequential() - model.add( - keras.layers.ConvLSTM2D(5, 3, input_shape=(None, 5, 5, 3)) - ) - - test_inputs = np.random.random((2, 4, 5, 5, 3)) - reference_outputs = model.predict(test_inputs) - weights = model.get_weights() - - # Use a new graph to clone the model - with self.cached_session(): - clone = keras.models.clone_model(model) - clone.set_weights(weights) - - outputs = clone.predict(test_inputs) - self.assertAllClose(reference_outputs, outputs, atol=1e-5) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message="Skipping the test as OOM occurred with 1 GB budget.", - ) - def test_conv_lstm_with_initial_state(self): - num_samples = 32 - sequence_len = 5 - encoder_inputs = keras.layers.Input((None, 32, 32, 3)) - encoder = keras.layers.ConvLSTM2D( - filters=32, - kernel_size=(3, 3), - padding="same", - return_sequences=False, - return_state=True, - ) - _, state_h, state_c = encoder(encoder_inputs) - encoder_states = [state_h, state_c] - - decoder_inputs = keras.layers.Input((None, 32, 32, 4)) - decoder_lstm = keras.layers.ConvLSTM2D( - filters=32, - kernel_size=(3, 3), - padding="same", - return_sequences=False, - return_state=False, - ) - decoder_outputs = decoder_lstm( - decoder_inputs, initial_state=encoder_states - ) - output = keras.layers.Conv2D( - 1, (3, 3), padding="same", activation="relu" - )(decoder_outputs) - model = keras.Model([encoder_inputs, decoder_inputs], output) - - model.compile( - optimizer="sgd", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - x_1 = np.random.rand(num_samples, sequence_len, 32, 32, 3) - x_2 = np.random.rand(num_samples, sequence_len, 32, 32, 4) - y = np.random.rand(num_samples, 32, 32, 1) - model.fit([x_1, x_2], y) - - model.predict([x_1, x_2]) - - -@test_combinations.run_all_keras_modes -class ConvLSTM3DTest(test_combinations.TestCase): - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - data_format=["channels_first", "channels_last"], - return_sequences=[True, False], - ) - ) - def test_conv_lstm(self, data_format, return_sequences): - num_height = 3 - num_width = 3 - num_depth = 3 - filters = 3 - num_samples = 1 - input_channel = 2 - input_height = 5 - input_width = 5 - input_depth = 5 - sequence_len = 2 - if data_format == "channels_first": - inputs = np.random.rand( - num_samples, - sequence_len, - input_channel, - input_height, - input_width, - input_depth, - ) - else: - inputs = np.random.rand( - num_samples, - sequence_len, - input_height, - input_width, - input_depth, - input_channel, - ) - - # test for return state: - x = keras.Input(batch_shape=inputs.shape) - kwargs = { - "data_format": data_format, - "return_sequences": return_sequences, - "return_state": True, - "stateful": True, - "filters": filters, - "kernel_size": (num_height, num_width, num_depth), - "padding": "same", - } - layer = keras.layers.ConvLSTM3D(**kwargs) - layer.build(inputs.shape) - outputs = layer(x) - _, states = outputs[0], outputs[1:] - self.assertEqual(len(states), 2) - model = keras.models.Model(x, states[0]) - - state = model.predict(inputs) - - self.assertAllClose( - keras.backend.eval(layer.states[0]), state, atol=1e-4 - ) - - # test for output shape: - test_utils.layer_test( - keras.layers.ConvLSTM3D, - kwargs={ - "data_format": data_format, - "return_sequences": return_sequences, - "filters": filters, - "kernel_size": (num_height, num_width, num_depth), - "padding": "valid", - }, - input_shape=inputs.shape, - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/cudnn_gru.py b/keras/layers/rnn/cudnn_gru.py deleted file mode 100644 index 45c7c91d53e..00000000000 --- a/keras/layers/rnn/cudnn_gru.py +++ /dev/null @@ -1,224 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Fast GRU layer backed by cuDNN.""" - - -import collections - -import tensorflow.compat.v2 as tf - -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.layers.rnn import gru_lstm_utils -from keras.layers.rnn.base_cudnn_rnn import _CuDNNRNN - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export(v1=["keras.layers.CuDNNGRU"]) -class CuDNNGRU(_CuDNNRNN): - """Fast GRU implementation backed by cuDNN. - - More information about cuDNN can be found on the [NVIDIA - developer website](https://developer.nvidia.com/cudnn). - Can only be run on GPU. - - Args: - units: Positive integer, dimensionality of the output space. - kernel_initializer: Initializer for the `kernel` weights matrix, used - for the linear transformation of the inputs. - recurrent_initializer: Initializer for the `recurrent_kernel` weights - matrix, used for the linear transformation of the recurrent state. - bias_initializer: Initializer for the bias vector. - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. - recurrent_regularizer: Regularizer function applied to the - `recurrent_kernel` weights matrix. - bias_regularizer: Regularizer function applied to the bias vector. - activity_regularizer: Regularizer function applied to the output of the - layer (its "activation"). - kernel_constraint: Constraint function applied to the `kernel` weights - matrix. - recurrent_constraint: Constraint function applied to the - `recurrent_kernel` weights matrix. - bias_constraint: Constraint function applied to the bias vector. - return_sequences: Boolean. Whether to return the last output in the - output sequence, or the full sequence. - return_state: Boolean. Whether to return the last state in addition to - the output. - go_backwards: Boolean (default False). If True, process the input - sequence backwards and return the reversed sequence. - stateful: Boolean (default False). If True, the last state for each - sample at index i in a batch will be used as initial state for the - sample of index i in the following batch. - """ - - def __init__( - self, - units, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - **kwargs - ): - self.units = units - cell_spec = collections.namedtuple("cell", "state_size") - self._cell = cell_spec(state_size=self.units) - super().__init__( - return_sequences=return_sequences, - return_state=return_state, - go_backwards=go_backwards, - stateful=stateful, - **kwargs - ) - - self.kernel_initializer = initializers.get(kernel_initializer) - self.recurrent_initializer = initializers.get(recurrent_initializer) - self.bias_initializer = initializers.get(bias_initializer) - - self.kernel_regularizer = regularizers.get(kernel_regularizer) - self.recurrent_regularizer = regularizers.get(recurrent_regularizer) - self.bias_regularizer = regularizers.get(bias_regularizer) - self.activity_regularizer = regularizers.get(activity_regularizer) - - self.kernel_constraint = constraints.get(kernel_constraint) - self.recurrent_constraint = constraints.get(recurrent_constraint) - self.bias_constraint = constraints.get(bias_constraint) - - @property - def cell(self): - return self._cell - - def build(self, input_shape): - super().build(input_shape) - if isinstance(input_shape, list): - input_shape = input_shape[0] - input_dim = int(input_shape[-1]) - - self.kernel = self.add_weight( - shape=(input_dim, self.units * 3), - name="kernel", - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - ) - - self.recurrent_kernel = self.add_weight( - shape=(self.units, self.units * 3), - name="recurrent_kernel", - initializer=self.recurrent_initializer, - regularizer=self.recurrent_regularizer, - constraint=self.recurrent_constraint, - ) - - self.bias = self.add_weight( - shape=(self.units * 6,), - name="bias", - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - ) - - self.built = True - - def _process_batch(self, inputs, initial_state): - if not self.time_major: - inputs = tf.transpose(inputs, perm=(1, 0, 2)) - input_h = initial_state[0] - input_h = tf.expand_dims(input_h, axis=0) - - params = gru_lstm_utils.canonical_to_params( - weights=[ - self.kernel[:, self.units : self.units * 2], - self.kernel[:, : self.units], - self.kernel[:, self.units * 2 :], - self.recurrent_kernel[:, self.units : self.units * 2], - self.recurrent_kernel[:, : self.units], - self.recurrent_kernel[:, self.units * 2 :], - ], - biases=[ - self.bias[self.units : self.units * 2], - self.bias[: self.units], - self.bias[self.units * 2 : self.units * 3], - self.bias[self.units * 4 : self.units * 5], - self.bias[self.units * 3 : self.units * 4], - self.bias[self.units * 5 :], - ], - shape=self._vector_shape, - ) - - args = { - "input": inputs, - "input_h": input_h, - "input_c": 0, - "params": params, - "is_training": True, - "rnn_mode": "gru", - } - - outputs, h, _, _, _ = tf.raw_ops.CudnnRNNV2(**args) - - if self.stateful or self.return_state: - h = h[0] - if self.return_sequences: - if self.time_major: - output = outputs - else: - output = tf.transpose(outputs, perm=(1, 0, 2)) - else: - output = outputs[-1] - return output, [h] - - def get_config(self): - config = { - "units": self.units, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "recurrent_initializer": initializers.serialize( - self.recurrent_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "recurrent_regularizer": regularizers.serialize( - self.recurrent_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "recurrent_constraint": constraints.serialize( - self.recurrent_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/rnn/cudnn_lstm.py b/keras/layers/rnn/cudnn_lstm.py deleted file mode 100644 index 69ae8e96af6..00000000000 --- a/keras/layers/rnn/cudnn_lstm.py +++ /dev/null @@ -1,257 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Fast LSTM layer backed by cuDNN.""" - - -import collections - -import tensorflow.compat.v2 as tf - -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.layers.rnn import gru_lstm_utils -from keras.layers.rnn.base_cudnn_rnn import _CuDNNRNN - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export(v1=["keras.layers.CuDNNLSTM"]) -class CuDNNLSTM(_CuDNNRNN): - """Fast LSTM implementation backed by cuDNN. - - More information about cuDNN can be found on the [NVIDIA - developer website](https://developer.nvidia.com/cudnn). - Can only be run on GPU. - - Args: - units: Positive integer, dimensionality of the output space. - kernel_initializer: Initializer for the `kernel` weights matrix, used - for the linear transformation of the inputs. - unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate - at initialization. Setting it to true will also force - `bias_initializer="zeros"`. This is recommended in [Jozefowicz et - al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) - recurrent_initializer: Initializer for the `recurrent_kernel` weights - matrix, used for the linear transformation of the recurrent state. - bias_initializer: Initializer for the bias vector. - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. - recurrent_regularizer: Regularizer function applied to the - `recurrent_kernel` weights matrix. - bias_regularizer: Regularizer function applied to the bias vector. - activity_regularizer: Regularizer function applied to the output of the - layer (its "activation"). - kernel_constraint: Constraint function applied to the `kernel` weights - matrix. - recurrent_constraint: Constraint function applied to the - `recurrent_kernel` weights matrix. - bias_constraint: Constraint function applied to the bias vector. - return_sequences: Boolean. Whether to return the last output. in the - output sequence, or the full sequence. - return_state: Boolean. Whether to return the last state in addition to - the output. - go_backwards: Boolean (default False). If True, process the input - sequence backwards and return the reversed sequence. - stateful: Boolean (default False). If True, the last state for each - sample at index i in a batch will be used as initial state for the - sample of index i in the following batch. - """ - - def __init__( - self, - units, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - unit_forget_bias=True, - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - **kwargs - ): - self.units = units - cell_spec = collections.namedtuple("cell", "state_size") - self._cell = cell_spec(state_size=(self.units, self.units)) - super().__init__( - return_sequences=return_sequences, - return_state=return_state, - go_backwards=go_backwards, - stateful=stateful, - **kwargs - ) - - self.kernel_initializer = initializers.get(kernel_initializer) - self.recurrent_initializer = initializers.get(recurrent_initializer) - self.bias_initializer = initializers.get(bias_initializer) - self.unit_forget_bias = unit_forget_bias - - self.kernel_regularizer = regularizers.get(kernel_regularizer) - self.recurrent_regularizer = regularizers.get(recurrent_regularizer) - self.bias_regularizer = regularizers.get(bias_regularizer) - self.activity_regularizer = regularizers.get(activity_regularizer) - - self.kernel_constraint = constraints.get(kernel_constraint) - self.recurrent_constraint = constraints.get(recurrent_constraint) - self.bias_constraint = constraints.get(bias_constraint) - - @property - def cell(self): - return self._cell - - def build(self, input_shape): - super().build(input_shape) - if isinstance(input_shape, list): - input_shape = input_shape[0] - input_dim = int(input_shape[-1]) - - self.kernel = self.add_weight( - shape=(input_dim, self.units * 4), - name="kernel", - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - ) - - self.recurrent_kernel = self.add_weight( - shape=(self.units, self.units * 4), - name="recurrent_kernel", - initializer=self.recurrent_initializer, - regularizer=self.recurrent_regularizer, - constraint=self.recurrent_constraint, - ) - - if self.unit_forget_bias: - - def bias_initializer(_, *args, **kwargs): - return tf.concat( - [ - self.bias_initializer( - (self.units * 5,), *args, **kwargs - ), - tf.compat.v1.ones_initializer()( - (self.units,), *args, **kwargs - ), - self.bias_initializer( - (self.units * 2,), *args, **kwargs - ), - ], - axis=0, - ) - - else: - bias_initializer = self.bias_initializer - self.bias = self.add_weight( - shape=(self.units * 8,), - name="bias", - initializer=bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - ) - - self.built = True - - def _process_batch(self, inputs, initial_state): - if not self.time_major: - inputs = tf.transpose(inputs, perm=(1, 0, 2)) - input_h = initial_state[0] - input_c = initial_state[1] - input_h = tf.expand_dims(input_h, axis=0) - input_c = tf.expand_dims(input_c, axis=0) - - params = gru_lstm_utils.canonical_to_params( - weights=[ - self.kernel[:, : self.units], - self.kernel[:, self.units : self.units * 2], - self.kernel[:, self.units * 2 : self.units * 3], - self.kernel[:, self.units * 3 :], - self.recurrent_kernel[:, : self.units], - self.recurrent_kernel[:, self.units : self.units * 2], - self.recurrent_kernel[:, self.units * 2 : self.units * 3], - self.recurrent_kernel[:, self.units * 3 :], - ], - biases=[ - self.bias[: self.units], - self.bias[self.units : self.units * 2], - self.bias[self.units * 2 : self.units * 3], - self.bias[self.units * 3 : self.units * 4], - self.bias[self.units * 4 : self.units * 5], - self.bias[self.units * 5 : self.units * 6], - self.bias[self.units * 6 : self.units * 7], - self.bias[self.units * 7 :], - ], - shape=self._vector_shape, - ) - - args = { - "input": inputs, - "input_h": input_h, - "input_c": input_c, - "params": params, - "is_training": True, - } - - outputs, h, c, _, _ = tf.raw_ops.CudnnRNNV2(**args) - - if self.stateful or self.return_state: - h = h[0] - c = c[0] - if self.return_sequences: - if self.time_major: - output = outputs - else: - output = tf.transpose(outputs, perm=(1, 0, 2)) - else: - output = outputs[-1] - return output, [h, c] - - def get_config(self): - config = { - "units": self.units, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "recurrent_initializer": initializers.serialize( - self.recurrent_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "unit_forget_bias": self.unit_forget_bias, - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "recurrent_regularizer": regularizers.serialize( - self.recurrent_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "recurrent_constraint": constraints.serialize( - self.recurrent_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/layers/rnn/cudnn_test.py b/keras/layers/rnn/cudnn_test.py deleted file mode 100644 index 8e4a67c1e64..00000000000 --- a/keras/layers/rnn/cudnn_test.py +++ /dev/null @@ -1,543 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for cudnn recurrent layers.""" - -import os -import tempfile - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.optimizers.legacy.rmsprop import RMSprop -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -@test_combinations.run_all_keras_modes -class CuDNNTest(test_combinations.TestCase): - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - layer_class=[keras.layers.CuDNNGRU, keras.layers.CuDNNLSTM], - return_sequences=[True, False], - ) - ) - @tf_test_utils.run_gpu_only - def test_cudnn_rnn_return_sequence(self, layer_class, return_sequences): - input_size = 10 - timesteps = 6 - units = 2 - num_samples = 32 - test_utils.layer_test( - layer_class, - kwargs={"units": units, "return_sequences": return_sequences}, - input_shape=(num_samples, timesteps, input_size), - ) - - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - layer_class=[keras.layers.CuDNNGRU, keras.layers.CuDNNLSTM], - go_backwards=[True, False], - ) - ) - @tf_test_utils.run_gpu_only - def test_cudnn_rnn_go_backward(self, layer_class, go_backwards): - input_size = 10 - timesteps = 6 - units = 2 - num_samples = 32 - test_utils.layer_test( - layer_class, - kwargs={"units": units, "go_backwards": go_backwards}, - input_shape=(num_samples, timesteps, input_size), - ) - - @parameterized.named_parameters( - ("cudnngru", keras.layers.CuDNNGRU), - ("cudnnlstm", keras.layers.CuDNNLSTM), - ) - @tf_test_utils.run_gpu_only - def test_return_state(self, layer_class): - input_size = 10 - timesteps = 6 - units = 2 - num_samples = 32 - num_states = 2 if layer_class is keras.layers.CuDNNLSTM else 1 - - inputs = keras.Input(batch_shape=(num_samples, timesteps, input_size)) - layer = layer_class(units, return_state=True, stateful=True) - outputs = layer(inputs) - _, state = outputs[0], outputs[1:] - self.assertEqual(len(state), num_states) - model = keras.models.Model(inputs, state[0]) - model.run_eagerly = test_utils.should_run_eagerly() - - inputs = np.random.random((num_samples, timesteps, input_size)) - state = model.predict(inputs) - np.testing.assert_allclose( - keras.backend.eval(layer.states[0]), state, atol=1e-4 - ) - - @parameterized.named_parameters( - ("cudnngru", keras.layers.CuDNNGRU), - ("cudnnlstm", keras.layers.CuDNNLSTM), - ) - @tf_test_utils.run_gpu_only - def test_time_major_input(self, layer_class): - input_size = 10 - timesteps = 6 - units = 2 - num_samples = 32 - - model = keras.models.Sequential() - model.add(keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))) - layer = layer_class(units, time_major=True, return_sequences=True) - model.add(layer) - model.add(keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))) - model.compile( - loss="categorical_crossentropy", - optimizer=RMSprop(learning_rate=0.001), - ) - model.fit( - np.ones((num_samples, timesteps, input_size)), - np.ones((num_samples, timesteps, units)), - ) - out = model.predict(np.ones((num_samples, timesteps, input_size))) - self.assertEqual(out.shape, (num_samples, timesteps, units)) - - @parameterized.named_parameters( - ("cudnngru", keras.layers.CuDNNGRU), - ("cudnnlstm", keras.layers.CuDNNLSTM), - ) - @tf_test_utils.run_gpu_only - def test_specify_initial_state_keras_tensor(self, layer_class): - input_size = 10 - timesteps = 6 - units = 2 - num_samples = 32 - num_states = 2 if layer_class is keras.layers.CuDNNLSTM else 1 - - inputs = keras.Input((timesteps, input_size)) - initial_state = [keras.Input((units,)) for _ in range(num_states)] - layer = layer_class(units) - if len(initial_state) == 1: - output = layer(inputs, initial_state=initial_state[0]) - else: - output = layer(inputs, initial_state=initial_state) - self.assertTrue( - any( - initial_state[0] is t - for t in layer._inbound_nodes[0].input_tensors - ) - ) - - model = keras.models.Model([inputs] + initial_state, output) - model.compile( - loss="categorical_crossentropy", - optimizer=RMSprop(learning_rate=0.001), - run_eagerly=test_utils.should_run_eagerly(), - ) - - inputs = np.random.random((num_samples, timesteps, input_size)) - initial_state = [ - np.random.random((num_samples, units)) for _ in range(num_states) - ] - targets = np.random.random((num_samples, units)) - model.fit([inputs] + initial_state, targets) - - -class CuDNNGraphOnlyTest(test_combinations.TestCase): - @parameterized.named_parameters( - ("cudnngru", keras.layers.CuDNNGRU), - ("cudnnlstm", keras.layers.CuDNNLSTM), - ) - @tf_test_utils.run_gpu_only - def test_regularizer(self, layer_class): - input_size = 10 - timesteps = 6 - units = 2 - num_samples = 32 - with tf.Graph().as_default(): - layer = layer_class( - units, - return_sequences=False, - input_shape=(timesteps, input_size), - kernel_regularizer=keras.regularizers.l1(0.01), - recurrent_regularizer=keras.regularizers.l1(0.01), - bias_regularizer="l2", - ) - layer.build((None, None, input_size)) - self.assertEqual(len(layer.losses), 3) - - layer = layer_class( - units, - return_sequences=False, - input_shape=(timesteps, input_size), - activity_regularizer="l2", - ) - self.assertTrue(layer.activity_regularizer) - x = keras.backend.variable( - np.ones((num_samples, timesteps, input_size)) - ) - layer(x) - self.assertEqual(len(layer.get_losses_for(x)), 1) - - @parameterized.named_parameters( - ("cudnngru", keras.layers.CuDNNGRU), - ("cudnnlstm", keras.layers.CuDNNLSTM), - ) - @tf_test_utils.run_gpu_only - @tf_test_utils.run_v1_only("b/120941292") - def test_statefulness(self, layer_class): - input_size = 10 - timesteps = 6 - units = 2 - num_samples = 32 - - with self.cached_session(): - model = keras.models.Sequential() - model.add( - keras.layers.Embedding( - 10, - input_size, - input_length=timesteps, - batch_input_shape=(num_samples, timesteps), - ) - ) - layer = layer_class( - units, return_sequences=False, stateful=True, weights=None - ) - model.add(layer) - model.compile( - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - loss="mse", - ) - out1 = model.predict(np.ones((num_samples, timesteps))) - self.assertEqual(out1.shape, (num_samples, units)) - - # train once so that the states change - model.train_on_batch( - np.ones((num_samples, timesteps)), np.ones((num_samples, units)) - ) - out2 = model.predict(np.ones((num_samples, timesteps))) - - # if the state is not reset, output should be different - self.assertNotEqual(out1.max(), out2.max()) - - # check that output changes after states are reset - # (even though the model itself didn't change) - layer.reset_states() - out3 = model.predict(np.ones((num_samples, timesteps))) - self.assertNotEqual(out2.max(), out3.max()) - - # check that container-level reset_states() works - model.reset_states() - out4 = model.predict(np.ones((num_samples, timesteps))) - self.assertAllClose(out3, out4, atol=1e-5) - - # check that the call to `predict` updated the states - out5 = model.predict(np.ones((num_samples, timesteps))) - self.assertNotEqual(out4.max(), out5.max()) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CuDNNV1OnlyTest(test_combinations.TestCase): - @tf_test_utils.run_gpu_only - def test_trainability(self): - input_size = 10 - units = 2 - for layer_class in [keras.layers.CuDNNGRU, keras.layers.CuDNNLSTM]: - layer = layer_class(units) - layer.build((None, None, input_size)) - self.assertEqual(len(layer.weights), 3) - self.assertEqual(len(layer.trainable_weights), 3) - self.assertEqual(len(layer.non_trainable_weights), 0) - layer.trainable = False - self.assertEqual(len(layer.weights), 3) - self.assertEqual(len(layer.non_trainable_weights), 3) - self.assertEqual(len(layer.trainable_weights), 0) - layer.trainable = True - self.assertEqual(len(layer.weights), 3) - self.assertEqual(len(layer.trainable_weights), 3) - self.assertEqual(len(layer.non_trainable_weights), 0) - - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - rnn_type=["LSTM", "GRU"], - to_cudnn=[True, False], - bidirectional=[True, False], - implementation=[1, 2], - model_nest_level=[1, 2], - model_type=["seq", "func"], - ) - ) - @tf_test_utils.run_v1_only("b/120911602, b/112083752") - @tf_test_utils.run_gpu_only - def test_load_weights_between_noncudnn_rnn( - self, - rnn_type, - to_cudnn, - bidirectional, - implementation, - model_nest_level, - model_type, - ): - input_size = 10 - timesteps = 6 - input_shape = (timesteps, input_size) - units = 2 - num_samples = 32 - inputs = np.random.random((num_samples, timesteps, input_size)) - - rnn_layer_kwargs = { - "recurrent_activation": "sigmoid", - # ensure biases are non-zero and properly converted - "bias_initializer": "random_uniform", - "implementation": implementation, - } - if rnn_type == "LSTM": - rnn_layer_class = keras.layers.LSTM - cudnn_rnn_layer_class = keras.layers.CuDNNLSTM - else: - rnn_layer_class = keras.layers.GRU - cudnn_rnn_layer_class = keras.layers.CuDNNGRU - rnn_layer_kwargs["reset_after"] = True - - layer = rnn_layer_class(units, **rnn_layer_kwargs) - if bidirectional: - layer = keras.layers.Bidirectional(layer) - - cudnn_layer = cudnn_rnn_layer_class(units) - if bidirectional: - cudnn_layer = keras.layers.Bidirectional(cudnn_layer) - - model = self._make_nested_model( - input_shape, layer, model_nest_level, model_type - ) - cudnn_model = self._make_nested_model( - input_shape, cudnn_layer, model_nest_level, model_type - ) - - if to_cudnn: - self._convert_model_weights(model, cudnn_model) - else: - self._convert_model_weights(cudnn_model, model) - - self.assertAllClose( - model.predict(inputs), cudnn_model.predict(inputs), atol=1e-4 - ) - - def _make_nested_model( - self, input_shape, layer, level=1, model_type="func" - ): - # example: make_nested_seq_model((1,), Dense(10), level=2).summary() - def make_nested_seq_model(input_shape, layer, level=1): - model = layer - for i in range(1, level + 1): - layers = ( - [keras.layers.InputLayer(input_shape), model] - if (i == 1) - else [model] - ) - model = keras.models.Sequential(layers) - if i > 1: - model.build((None,) + input_shape) - return model - - # example: make_nested_func_model((1,), Dense(10), level=2).summary() - def make_nested_func_model(input_shape, layer, level=1): - model_input = keras.layers.Input(input_shape) - model = layer - for _ in range(level): - model = keras.models.Model(model_input, model(model_input)) - return model - - if model_type == "func": - return make_nested_func_model(input_shape, layer, level) - elif model_type == "seq": - return make_nested_seq_model(input_shape, layer, level) - - def _convert_model_weights(self, source_model, target_model): - _, fname = tempfile.mkstemp(".h5") - source_model.save_weights(fname) - target_model.load_weights(fname) - os.remove(fname) - - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - rnn_type=["LSTM", "GRU"], to_cudnn=[True, False] - ) - ) - @tf_test_utils.run_v1_only("b/120911602") - @tf_test_utils.run_gpu_only - def test_load_weights_between_noncudnn_rnn_time_distributed( - self, rnn_type, to_cudnn - ): - # Similar test as test_load_weights_between_noncudnn_rnn() but has - # different rank of input due to usage of TimeDistributed. Issue: - # #10356. - input_size = 10 - steps = 6 - timesteps = 6 - input_shape = (timesteps, steps, input_size) - units = 2 - num_samples = 32 - inputs = np.random.random((num_samples, timesteps, steps, input_size)) - - rnn_layer_kwargs = { - "recurrent_activation": "sigmoid", - # ensure biases are non-zero and properly converted - "bias_initializer": "random_uniform", - } - if rnn_type == "LSTM": - rnn_layer_class = keras.layers.LSTM - cudnn_rnn_layer_class = keras.layers.CuDNNLSTM - else: - rnn_layer_class = keras.layers.GRU - cudnn_rnn_layer_class = keras.layers.CuDNNGRU - rnn_layer_kwargs["reset_after"] = True - - layer = rnn_layer_class(units, **rnn_layer_kwargs) - layer = keras.layers.TimeDistributed(layer) - - cudnn_layer = cudnn_rnn_layer_class(units) - cudnn_layer = keras.layers.TimeDistributed(cudnn_layer) - - model = self._make_nested_model(input_shape, layer) - cudnn_model = self._make_nested_model(input_shape, cudnn_layer) - - if to_cudnn: - self._convert_model_weights(model, cudnn_model) - else: - self._convert_model_weights(cudnn_model, model) - - self.assertAllClose( - model.predict(inputs), cudnn_model.predict(inputs), atol=1e-4 - ) - - @tf_test_utils.run_gpu_only - def test_cudnnrnn_bidirectional(self): - rnn = keras.layers.CuDNNGRU - samples = 2 - dim = 2 - timesteps = 2 - output_dim = 2 - mode = "concat" - - x = np.random.random((samples, timesteps, dim)) - target_dim = 2 * output_dim if mode == "concat" else output_dim - y = np.random.random((samples, target_dim)) - - # test with Sequential model - model = keras.Sequential() - model.add( - keras.layers.Bidirectional( - rnn(output_dim), merge_mode=mode, input_shape=(None, dim) - ) - ) - model.compile(loss="mse", optimizer="rmsprop") - model.fit(x, y, epochs=1, batch_size=1) - - # test config - model.get_config() - model = keras.models.model_from_json(model.to_json()) - model.summary() - - # test stacked bidirectional layers - model = keras.Sequential() - model.add( - keras.layers.Bidirectional( - rnn(output_dim, return_sequences=True), - merge_mode=mode, - input_shape=(None, dim), - ) - ) - model.add(keras.layers.Bidirectional(rnn(output_dim), merge_mode=mode)) - model.compile(loss="mse", optimizer=R"rmsprop") - model.fit(x, y, epochs=1, batch_size=1) - - # test with functional API - inputs = keras.Input((timesteps, dim)) - outputs = keras.layers.Bidirectional(rnn(output_dim), merge_mode=mode)( - inputs - ) - model = keras.Model(inputs, outputs) - model.compile(loss="mse", optimizer=R"rmsprop") - model.fit(x, y, epochs=1, batch_size=1) - - # Bidirectional and stateful - inputs = keras.Input(batch_shape=(1, timesteps, dim)) - outputs = keras.layers.Bidirectional( - rnn(output_dim, stateful=True), merge_mode=mode - )(inputs) - model = keras.Model(inputs, outputs) - model.compile(loss="mse", optimizer="rmsprop") - model.fit(x, y, epochs=1, batch_size=1) - - @tf_test_utils.run_gpu_only - def test_preprocess_weights_for_loading_gru_incompatible(self): - """Test loading weights between incompatible layers. - - Should fail fast with an exception. - """ - input_shape = (3, 5) - - def gru(cudnn=False, **kwargs): - layer_class = keras.layers.CuDNNGRU if cudnn else keras.layers.GRUV1 - return layer_class(2, input_shape=input_shape, **kwargs) - - def get_layer_weights(layer): - layer.build(input_shape=input_shape) - return layer.get_weights() - - def assert_not_compatible(src, dest, message): - with self.assertRaises(ValueError) as ex: - keras.saving.legacy.hdf5_format.preprocess_weights_for_loading( - dest, get_layer_weights(src) - ) - self.assertIn(message, str(ex.exception)) - - assert_not_compatible( - gru(), - gru(cudnn=True), - "GRU(reset_after=False) is not compatible with CuDNNGRU", - ) - assert_not_compatible( - gru(cudnn=True), - gru(), - "CuDNNGRU is not compatible with GRU(reset_after=False)", - ) - assert_not_compatible( - gru(), - gru(reset_after=True), - "GRU(reset_after=False) is not compatible with " - "GRU(reset_after=True)", - ) - assert_not_compatible( - gru(reset_after=True), - gru(), - "GRU(reset_after=True) is not compatible with " - "GRU(reset_after=False)", - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/dropout_rnn_cell_mixin.py b/keras/layers/rnn/dropout_rnn_cell_mixin.py deleted file mode 100644 index df02f668ea3..00000000000 --- a/keras/layers/rnn/dropout_rnn_cell_mixin.py +++ /dev/null @@ -1,179 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Mixin holding dropout fields for RNN cells.""" - - -import tensorflow.compat.v2 as tf -from tensorflow.tools.docs import doc_controls - -from keras import backend - - -@doc_controls.do_not_generate_docs -class DropoutRNNCellMixin: - """Object that hold dropout related fields for RNN Cell. - - This class is not a standalone RNN cell. It suppose to be used with a RNN - cell by multiple inheritance. Any cell that mix with class should have - following fields: - dropout: a float number within range [0, 1). The ratio that the input - tensor need to dropout. - recurrent_dropout: a float number within range [0, 1). The ratio that the - recurrent state weights need to dropout. - _random_generator: A backend.RandomGenerator instance, which will be used - to produce outputs based on the inputs and dropout rate. - This object will create and cache created dropout masks, and reuse them for - the incoming data, so that the same mask is used for every batch input. - """ - - def __init__(self, *args, **kwargs): - self._create_non_trackable_mask_cache() - super().__init__(*args, **kwargs) - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def _create_non_trackable_mask_cache(self): - """Create the cache for dropout and recurrent dropout mask. - - Note that the following two masks will be used in "graph function" mode, - e.g. these masks are symbolic tensors. In eager mode, the `eager_*_mask` - tensors will be generated differently than in the "graph function" case, - and they will be cached. - - Also note that in graph mode, we still cache those masks only because - the RNN could be created with `unroll=True`. In that case, the - `cell.call()` function will be invoked multiple times, and we want to - ensure same mask is used every time. - - Also the caches are created without tracking. Since they are not - picklable by python when deepcopy, we don't want - `layer._obj_reference_counts_dict` to track it by default. - """ - self._dropout_mask_cache = backend.ContextValueCache( - self._create_dropout_mask - ) - self._recurrent_dropout_mask_cache = backend.ContextValueCache( - self._create_recurrent_dropout_mask - ) - - def reset_dropout_mask(self): - """Reset the cached dropout masks if any. - - This is important for the RNN layer to invoke this in it `call()` method - so that the cached mask is cleared before calling the `cell.call()`. The - mask should be cached across the timestep within the same batch, but - shouldn't be cached between batches. Otherwise it will introduce - unreasonable bias against certain index of data within the batch. - """ - self._dropout_mask_cache.clear() - - def reset_recurrent_dropout_mask(self): - """Reset the cached recurrent dropout masks if any. - - This is important for the RNN layer to invoke this in it call() method - so that the cached mask is cleared before calling the cell.call(). The - mask should be cached across the timestep within the same batch, but - shouldn't be cached between batches. Otherwise it will introduce - unreasonable bias against certain index of data within the batch. - """ - self._recurrent_dropout_mask_cache.clear() - - def _create_dropout_mask(self, inputs, training, count=1): - return _generate_dropout_mask( - self._random_generator, - tf.ones_like(inputs), - self.dropout, - training=training, - count=count, - ) - - def _create_recurrent_dropout_mask(self, inputs, training, count=1): - return _generate_dropout_mask( - self._random_generator, - tf.ones_like(inputs), - self.recurrent_dropout, - training=training, - count=count, - ) - - def get_dropout_mask_for_cell(self, inputs, training, count=1): - """Get the dropout mask for RNN cell's input. - - It will create mask based on context if there isn't any existing cached - mask. If a new mask is generated, it will update the cache in the cell. - - Args: - inputs: The input tensor whose shape will be used to generate dropout - mask. - training: Boolean tensor, whether its in training mode, dropout will - be ignored in non-training mode. - count: Int, how many dropout mask will be generated. It is useful for - cell that has internal weights fused together. - Returns: - List of mask tensor, generated or cached mask based on context. - """ - if self.dropout == 0: - return None - init_kwargs = dict(inputs=inputs, training=training, count=count) - return self._dropout_mask_cache.setdefault(kwargs=init_kwargs) - - def get_recurrent_dropout_mask_for_cell(self, inputs, training, count=1): - """Get the recurrent dropout mask for RNN cell. - - It will create mask based on context if there isn't any existing cached - mask. If a new mask is generated, it will update the cache in the cell. - - Args: - inputs: The input tensor whose shape will be used to generate dropout - mask. - training: Boolean tensor, whether its in training mode, dropout will - be ignored in non-training mode. - count: Int, how many dropout mask will be generated. It is useful for - cell that has internal weights fused together. - Returns: - List of mask tensor, generated or cached mask based on context. - """ - if self.recurrent_dropout == 0: - return None - init_kwargs = dict(inputs=inputs, training=training, count=count) - return self._recurrent_dropout_mask_cache.setdefault(kwargs=init_kwargs) - - def __getstate__(self): - # Used for deepcopy. The caching can't be pickled by python, since it - # will contain tensor and graph. - state = super().__getstate__() - state.pop("_dropout_mask_cache", None) - state.pop("_recurrent_dropout_mask_cache", None) - return state - - def __setstate__(self, state): - state["_dropout_mask_cache"] = backend.ContextValueCache( - self._create_dropout_mask - ) - state["_recurrent_dropout_mask_cache"] = backend.ContextValueCache( - self._create_recurrent_dropout_mask - ) - super().__setstate__(state) - - -def _generate_dropout_mask(generator, ones, rate, training=None, count=1): - def dropped_inputs(): - return generator.dropout(ones, rate) - - if count > 1: - return [ - backend.in_train_phase(dropped_inputs, ones, training=training) - for _ in range(count) - ] - return backend.in_train_phase(dropped_inputs, ones, training=training) diff --git a/keras/layers/rnn/gru.py b/keras/layers/rnn/gru.py deleted file mode 100644 index b06f9305153..00000000000 --- a/keras/layers/rnn/gru.py +++ /dev/null @@ -1,1300 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Gated Recurrent Unit layer.""" - - -import uuid - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import backend -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine import base_layer -from keras.engine.input_spec import InputSpec -from keras.layers.rnn import gru_lstm_utils -from keras.layers.rnn import rnn_utils -from keras.layers.rnn.base_rnn import RNN -from keras.layers.rnn.dropout_rnn_cell_mixin import DropoutRNNCellMixin -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - -RECURRENT_DROPOUT_WARNING_MSG = ( - "RNN `implementation=2` is not supported when `recurrent_dropout` is set. " - "Using `implementation=1`." -) - - -@keras_export("keras.layers.GRUCell", v1=[]) -class GRUCell(DropoutRNNCellMixin, base_layer.BaseRandomLayer): - """Cell class for the GRU layer. - - See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) - for details about the usage of RNN API. - - This class processes one step within the whole time sequence input, whereas - `tf.keras.layer.GRU` processes the whole sequence. - - For example: - - >>> inputs = tf.random.normal([32, 10, 8]) - >>> rnn = tf.keras.layers.RNN(tf.keras.layers.GRUCell(4)) - >>> output = rnn(inputs) - >>> print(output.shape) - (32, 4) - >>> rnn = tf.keras.layers.RNN( - ... tf.keras.layers.GRUCell(4), - ... return_sequences=True, - ... return_state=True) - >>> whole_sequence_output, final_state = rnn(inputs) - >>> print(whole_sequence_output.shape) - (32, 10, 4) - >>> print(final_state.shape) - (32, 4) - - Args: - units: Positive integer, dimensionality of the output space. - activation: Activation function to use. Default: hyperbolic tangent - (`tanh`). If you pass None, no activation is applied - (ie. "linear" activation: `a(x) = x`). - recurrent_activation: Activation function to use for the recurrent step. - Default: sigmoid (`sigmoid`). If you pass `None`, no activation is - applied (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean, (default `True`), whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, - used for the linear transformation of the inputs. Default: - `glorot_uniform`. - recurrent_initializer: Initializer for the `recurrent_kernel` - weights matrix, used for the linear transformation of the recurrent - state. Default: `orthogonal`. - bias_initializer: Initializer for the bias vector. Default: `zeros`. - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. Default: `None`. - recurrent_regularizer: Regularizer function applied to the - `recurrent_kernel` weights matrix. Default: `None`. - bias_regularizer: Regularizer function applied to the bias vector. - Default: `None`. - kernel_constraint: Constraint function applied to the `kernel` weights - matrix. Default: `None`. - recurrent_constraint: Constraint function applied to the - `recurrent_kernel` weights matrix. Default: `None`. - bias_constraint: Constraint function applied to the bias vector. Default: - `None`. - dropout: Float between 0 and 1. Fraction of the units to drop for the - linear transformation of the inputs. Default: 0. - recurrent_dropout: Float between 0 and 1. Fraction of the units to drop - for the linear transformation of the recurrent state. Default: 0. - reset_after: GRU convention (whether to apply reset gate after or - before matrix multiplication). False = "before", - True = "after" (default and cuDNN compatible). - - Call arguments: - inputs: A 2D tensor, with shape of `[batch, feature]`. - states: A 2D tensor with shape of `[batch, units]`, which is the state - from the previous time step. For timestep 0, the initial state provided - by user will be feed to cell. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. Only relevant when `dropout` or - `recurrent_dropout` is used. - """ - - def __init__( - self, - units, - activation="tanh", - recurrent_activation="sigmoid", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - dropout=0.0, - recurrent_dropout=0.0, - reset_after=True, - **kwargs, - ): - if units <= 0: - raise ValueError( - "Received an invalid value for argument `units`, " - f"expected a positive integer, got {units}." - ) - # By default use cached variable under v2 mode, see b/143699808. - if tf.compat.v1.executing_eagerly_outside_functions(): - self._enable_caching_device = kwargs.pop( - "enable_caching_device", True - ) - else: - self._enable_caching_device = kwargs.pop( - "enable_caching_device", False - ) - super().__init__(**kwargs) - self.units = units - self.activation = activations.get(activation) - self.recurrent_activation = activations.get(recurrent_activation) - self.use_bias = use_bias - - self.kernel_initializer = initializers.get(kernel_initializer) - self.recurrent_initializer = initializers.get(recurrent_initializer) - self.bias_initializer = initializers.get(bias_initializer) - - self.kernel_regularizer = regularizers.get(kernel_regularizer) - self.recurrent_regularizer = regularizers.get(recurrent_regularizer) - self.bias_regularizer = regularizers.get(bias_regularizer) - - self.kernel_constraint = constraints.get(kernel_constraint) - self.recurrent_constraint = constraints.get(recurrent_constraint) - self.bias_constraint = constraints.get(bias_constraint) - - self.dropout = min(1.0, max(0.0, dropout)) - self.recurrent_dropout = min(1.0, max(0.0, recurrent_dropout)) - - implementation = kwargs.pop("implementation", 2) - if self.recurrent_dropout != 0 and implementation != 1: - logging.debug(RECURRENT_DROPOUT_WARNING_MSG) - self.implementation = 1 - else: - self.implementation = implementation - self.reset_after = reset_after - self.state_size = self.units - self.output_size = self.units - - @tf_utils.shape_type_conversion - def build(self, input_shape): - super().build(input_shape) - input_dim = input_shape[-1] - default_caching_device = rnn_utils.caching_device(self) - self.kernel = self.add_weight( - shape=(input_dim, self.units * 3), - name="kernel", - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - caching_device=default_caching_device, - ) - self.recurrent_kernel = self.add_weight( - shape=(self.units, self.units * 3), - name="recurrent_kernel", - initializer=self.recurrent_initializer, - regularizer=self.recurrent_regularizer, - constraint=self.recurrent_constraint, - caching_device=default_caching_device, - ) - - if self.use_bias: - if not self.reset_after: - bias_shape = (3 * self.units,) - else: - # separate biases for input and recurrent kernels - # Note: the shape is intentionally different from CuDNNGRU - # biases `(2 * 3 * self.units,)`, so that we can distinguish the - # classes when loading and converting saved weights. - bias_shape = (2, 3 * self.units) - self.bias = self.add_weight( - shape=bias_shape, - name="bias", - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - caching_device=default_caching_device, - ) - else: - self.bias = None - self.built = True - - def call(self, inputs, states, training=None): - h_tm1 = ( - states[0] if tf.nest.is_nested(states) else states - ) # previous memory - - dp_mask = self.get_dropout_mask_for_cell(inputs, training, count=3) - rec_dp_mask = self.get_recurrent_dropout_mask_for_cell( - h_tm1, training, count=3 - ) - - if self.use_bias: - if not self.reset_after: - input_bias, recurrent_bias = self.bias, None - else: - input_bias, recurrent_bias = tf.unstack(self.bias) - - if self.implementation == 1: - if 0.0 < self.dropout < 1.0: - inputs_z = inputs * dp_mask[0] - inputs_r = inputs * dp_mask[1] - inputs_h = inputs * dp_mask[2] - else: - inputs_z = inputs - inputs_r = inputs - inputs_h = inputs - - x_z = backend.dot(inputs_z, self.kernel[:, : self.units]) - x_r = backend.dot( - inputs_r, self.kernel[:, self.units : self.units * 2] - ) - x_h = backend.dot(inputs_h, self.kernel[:, self.units * 2 :]) - - if self.use_bias: - x_z = backend.bias_add(x_z, input_bias[: self.units]) - x_r = backend.bias_add( - x_r, input_bias[self.units : self.units * 2] - ) - x_h = backend.bias_add(x_h, input_bias[self.units * 2 :]) - - if 0.0 < self.recurrent_dropout < 1.0: - h_tm1_z = h_tm1 * rec_dp_mask[0] - h_tm1_r = h_tm1 * rec_dp_mask[1] - h_tm1_h = h_tm1 * rec_dp_mask[2] - else: - h_tm1_z = h_tm1 - h_tm1_r = h_tm1 - h_tm1_h = h_tm1 - - recurrent_z = backend.dot( - h_tm1_z, self.recurrent_kernel[:, : self.units] - ) - recurrent_r = backend.dot( - h_tm1_r, self.recurrent_kernel[:, self.units : self.units * 2] - ) - if self.reset_after and self.use_bias: - recurrent_z = backend.bias_add( - recurrent_z, recurrent_bias[: self.units] - ) - recurrent_r = backend.bias_add( - recurrent_r, recurrent_bias[self.units : self.units * 2] - ) - - z = self.recurrent_activation(x_z + recurrent_z) - r = self.recurrent_activation(x_r + recurrent_r) - - # reset gate applied after/before matrix multiplication - if self.reset_after: - recurrent_h = backend.dot( - h_tm1_h, self.recurrent_kernel[:, self.units * 2 :] - ) - if self.use_bias: - recurrent_h = backend.bias_add( - recurrent_h, recurrent_bias[self.units * 2 :] - ) - recurrent_h = r * recurrent_h - else: - recurrent_h = backend.dot( - r * h_tm1_h, self.recurrent_kernel[:, self.units * 2 :] - ) - - hh = self.activation(x_h + recurrent_h) - else: - if 0.0 < self.dropout < 1.0: - inputs = inputs * dp_mask[0] - - # inputs projected by all gate matrices at once - matrix_x = backend.dot(inputs, self.kernel) - if self.use_bias: - # biases: bias_z_i, bias_r_i, bias_h_i - matrix_x = backend.bias_add(matrix_x, input_bias) - - x_z, x_r, x_h = tf.split(matrix_x, 3, axis=-1) - - if self.reset_after: - # hidden state projected by all gate matrices at once - matrix_inner = backend.dot(h_tm1, self.recurrent_kernel) - if self.use_bias: - matrix_inner = backend.bias_add( - matrix_inner, recurrent_bias - ) - else: - # hidden state projected separately for update/reset and new - matrix_inner = backend.dot( - h_tm1, self.recurrent_kernel[:, : 2 * self.units] - ) - - recurrent_z, recurrent_r, recurrent_h = tf.split( - matrix_inner, [self.units, self.units, -1], axis=-1 - ) - - z = self.recurrent_activation(x_z + recurrent_z) - r = self.recurrent_activation(x_r + recurrent_r) - - if self.reset_after: - recurrent_h = r * recurrent_h - else: - recurrent_h = backend.dot( - r * h_tm1, self.recurrent_kernel[:, 2 * self.units :] - ) - - hh = self.activation(x_h + recurrent_h) - # previous and candidate state mixed by update gate - h = z * h_tm1 + (1 - z) * hh - new_state = [h] if tf.nest.is_nested(states) else h - return h, new_state - - def get_config(self): - config = { - "units": self.units, - "activation": activations.serialize(self.activation), - "recurrent_activation": activations.serialize( - self.recurrent_activation - ), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "recurrent_initializer": initializers.serialize( - self.recurrent_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "recurrent_regularizer": regularizers.serialize( - self.recurrent_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "recurrent_constraint": constraints.serialize( - self.recurrent_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - "dropout": self.dropout, - "recurrent_dropout": self.recurrent_dropout, - "implementation": self.implementation, - "reset_after": self.reset_after, - } - config.update(rnn_utils.config_for_enable_caching_device(self)) - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - def get_initial_state(self, inputs=None, batch_size=None, dtype=None): - return rnn_utils.generate_zero_filled_state_for_cell( - self, inputs, batch_size, dtype - ) - - -@keras_export("keras.layers.GRU", v1=[]) -class GRU(DropoutRNNCellMixin, RNN, base_layer.BaseRandomLayer): - """Gated Recurrent Unit - Cho et al. 2014. - - See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) - for details about the usage of RNN API. - - Based on available runtime hardware and constraints, this layer - will choose different implementations (cuDNN-based or pure-TensorFlow) - to maximize the performance. If a GPU is available and all - the arguments to the layer meet the requirement of the cuDNN kernel - (see below for details), the layer will use a fast cuDNN implementation. - - The requirements to use the cuDNN implementation are: - - 1. `activation` == `tanh` - 2. `recurrent_activation` == `sigmoid` - 3. `recurrent_dropout` == 0 - 4. `unroll` is `False` - 5. `use_bias` is `True` - 6. `reset_after` is `True` - 7. Inputs, if use masking, are strictly right-padded. - 8. Eager execution is enabled in the outermost context. - - There are two variants of the GRU implementation. The default one is based - on [v3](https://arxiv.org/abs/1406.1078v3) and has reset gate applied to - hidden state before matrix multiplication. The other one is based on - [original](https://arxiv.org/abs/1406.1078v1) and has the order reversed. - - The second variant is compatible with CuDNNGRU (GPU-only) and allows - inference on CPU. Thus it has separate biases for `kernel` and - `recurrent_kernel`. To use this variant, set `reset_after=True` and - `recurrent_activation='sigmoid'`. - - For example: - - >>> inputs = tf.random.normal([32, 10, 8]) - >>> gru = tf.keras.layers.GRU(4) - >>> output = gru(inputs) - >>> print(output.shape) - (32, 4) - >>> gru = tf.keras.layers.GRU(4, return_sequences=True, return_state=True) - >>> whole_sequence_output, final_state = gru(inputs) - >>> print(whole_sequence_output.shape) - (32, 10, 4) - >>> print(final_state.shape) - (32, 4) - - Args: - units: Positive integer, dimensionality of the output space. - activation: Activation function to use. - Default: hyperbolic tangent (`tanh`). - If you pass `None`, no activation is applied - (ie. "linear" activation: `a(x) = x`). - recurrent_activation: Activation function to use - for the recurrent step. - Default: sigmoid (`sigmoid`). - If you pass `None`, no activation is applied - (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean, (default `True`), whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, - used for the linear transformation of the inputs. Default: - `glorot_uniform`. - recurrent_initializer: Initializer for the `recurrent_kernel` - weights matrix, used for the linear transformation of the recurrent - state. Default: `orthogonal`. - bias_initializer: Initializer for the bias vector. Default: `zeros`. - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. Default: `None`. - recurrent_regularizer: Regularizer function applied to the - `recurrent_kernel` weights matrix. Default: `None`. - bias_regularizer: Regularizer function applied to the bias vector. - Default: `None`. - activity_regularizer: Regularizer function applied to the output of the - layer (its "activation"). Default: `None`. - kernel_constraint: Constraint function applied to the `kernel` weights - matrix. Default: `None`. - recurrent_constraint: Constraint function applied to the - `recurrent_kernel` weights matrix. Default: `None`. - bias_constraint: Constraint function applied to the bias vector. Default: - `None`. - dropout: Float between 0 and 1. Fraction of the units to drop for the - linear transformation of the inputs. Default: 0. - recurrent_dropout: Float between 0 and 1. Fraction of the units to drop - for the linear transformation of the recurrent state. Default: 0. - return_sequences: Boolean. Whether to return the last output - in the output sequence, or the full sequence. Default: `False`. - return_state: Boolean. Whether to return the last state in addition to the - output. Default: `False`. - go_backwards: Boolean (default `False`). - If True, process the input sequence backwards and return the - reversed sequence. - stateful: Boolean (default False). If True, the last state - for each sample at index i in a batch will be used as initial - state for the sample of index i in the following batch. - unroll: Boolean (default False). - If True, the network will be unrolled, - else a symbolic loop will be used. - Unrolling can speed-up a RNN, - although it tends to be more memory-intensive. - Unrolling is only suitable for short sequences. - time_major: The shape format of the `inputs` and `outputs` tensors. - If True, the inputs and outputs will be in shape - `[timesteps, batch, feature]`, whereas in the False case, it will be - `[batch, timesteps, feature]`. Using `time_major = True` is a bit more - efficient because it avoids transposes at the beginning and end of the - RNN calculation. However, most TensorFlow data is batch-major, so by - default this function accepts input and emits output in batch-major - form. - reset_after: GRU convention (whether to apply reset gate after or - before matrix multiplication). False = "before", - True = "after" (default and cuDNN compatible). - - Call arguments: - inputs: A 3D tensor, with shape `[batch, timesteps, feature]`. - mask: Binary tensor of shape `[samples, timesteps]` indicating whether - a given timestep should be masked (optional, defaults to `None`). - An individual `True` entry indicates that the corresponding timestep - should be utilized, while a `False` entry indicates that the - corresponding timestep should be ignored. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. This argument is passed to the cell - when calling it. This is only relevant if `dropout` or - `recurrent_dropout` is used (optional, defaults to `None`). - initial_state: List of initial state tensors to be passed to the first - call of the cell (optional, defaults to `None` which causes creation - of zero-filled initial state tensors). - """ - - def __init__( - self, - units, - activation="tanh", - recurrent_activation="sigmoid", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - dropout=0.0, - recurrent_dropout=0.0, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - unroll=False, - time_major=False, - reset_after=True, - **kwargs, - ): - # return_runtime is a flag for testing, which shows the real backend - # implementation chosen by grappler in graph mode. - self._return_runtime = kwargs.pop("return_runtime", False) - implementation = kwargs.pop("implementation", 2) - if implementation == 0: - logging.warning( - "`implementation=0` has been deprecated, " - "and now defaults to `implementation=2`." - "Please update your layer call." - ) - if "enable_caching_device" in kwargs: - cell_kwargs = { - "enable_caching_device": kwargs.pop("enable_caching_device") - } - else: - cell_kwargs = {} - cell = GRUCell( - units, - activation=activation, - recurrent_activation=recurrent_activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - recurrent_initializer=recurrent_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - recurrent_regularizer=recurrent_regularizer, - bias_regularizer=bias_regularizer, - kernel_constraint=kernel_constraint, - recurrent_constraint=recurrent_constraint, - bias_constraint=bias_constraint, - dropout=dropout, - recurrent_dropout=recurrent_dropout, - implementation=implementation, - reset_after=reset_after, - dtype=kwargs.get("dtype"), - trainable=kwargs.get("trainable", True), - name="gru_cell", - **cell_kwargs, - ) - super().__init__( - cell, - return_sequences=return_sequences, - return_state=return_state, - go_backwards=go_backwards, - stateful=stateful, - unroll=unroll, - time_major=time_major, - **kwargs, - ) - self.activity_regularizer = regularizers.get(activity_regularizer) - self.input_spec = [InputSpec(ndim=3)] - - # GPU kernel uses following setting by default and not configurable. - self._could_use_gpu_kernel = ( - self.activation in (activations.tanh, tf.tanh) - and self.recurrent_activation in (activations.sigmoid, tf.sigmoid) - and recurrent_dropout == 0 - and not unroll - and use_bias - and reset_after - and tf.compat.v1.executing_eagerly_outside_functions() - ) - if tf.config.list_logical_devices("GPU"): - # Only show the message when there is GPU available, user will not - # care about the cuDNN if there isn't any GPU. - if self._could_use_gpu_kernel: - logging.debug(gru_lstm_utils.CUDNN_AVAILABLE_MSG % self.name) - else: - logging.warning( - gru_lstm_utils.CUDNN_NOT_AVAILABLE_MSG % self.name - ) - - if gru_lstm_utils.use_new_gru_lstm_impl(): - self._defun_wrapper = gru_lstm_utils.DefunWrapper( - time_major, go_backwards, "gru" - ) - - def call(self, inputs, mask=None, training=None, initial_state=None): - # The input should be dense, padded with zeros. If a ragged input is fed - # into the layer, it is padded and the row lengths are used for masking. - inputs, row_lengths = backend.convert_inputs_if_ragged(inputs) - is_ragged_input = row_lengths is not None - self._validate_args_if_ragged(is_ragged_input, mask) - - # GRU does not support constants. Ignore it during process. - inputs, initial_state, _ = self._process_inputs( - inputs, initial_state, None - ) - - if isinstance(mask, list): - mask = mask[0] - - input_shape = backend.int_shape(inputs) - timesteps = input_shape[0] if self.time_major else input_shape[1] - - if not self._could_use_gpu_kernel: - kwargs = {"training": training} - self._maybe_reset_cell_dropout_mask(self.cell) - - def step(cell_inputs, cell_states): - return self.cell(cell_inputs, cell_states, **kwargs) - - last_output, outputs, states = backend.rnn( - step, - inputs, - initial_state, - constants=None, - go_backwards=self.go_backwards, - mask=mask, - unroll=self.unroll, - input_length=row_lengths - if row_lengths is not None - else timesteps, - time_major=self.time_major, - zero_output_for_mask=self.zero_output_for_mask, - return_all_outputs=self.return_sequences, - ) - # This is a dummy tensor for testing purpose. - runtime = gru_lstm_utils.runtime(gru_lstm_utils.RUNTIME_UNKNOWN) - else: - last_output, outputs, runtime, states = self._defun_gru_call( - inputs, initial_state, training, mask, row_lengths - ) - - if self.stateful: - updates = [ - tf.compat.v1.assign( - self.states[0], tf.cast(states[0], self.states[0].dtype) - ) - ] - self.add_update(updates) - - if self.return_sequences: - output = backend.maybe_convert_to_ragged( - is_ragged_input, - outputs, - row_lengths, - go_backwards=self.go_backwards, - ) - else: - output = last_output - - if self.return_state: - return [output] + list(states) - elif self._return_runtime: - return output, runtime - else: - return output - - @property - def units(self): - return self.cell.units - - @property - def activation(self): - return self.cell.activation - - @property - def recurrent_activation(self): - return self.cell.recurrent_activation - - @property - def use_bias(self): - return self.cell.use_bias - - @property - def kernel_initializer(self): - return self.cell.kernel_initializer - - @property - def recurrent_initializer(self): - return self.cell.recurrent_initializer - - @property - def bias_initializer(self): - return self.cell.bias_initializer - - @property - def kernel_regularizer(self): - return self.cell.kernel_regularizer - - @property - def recurrent_regularizer(self): - return self.cell.recurrent_regularizer - - @property - def bias_regularizer(self): - return self.cell.bias_regularizer - - @property - def kernel_constraint(self): - return self.cell.kernel_constraint - - @property - def recurrent_constraint(self): - return self.cell.recurrent_constraint - - @property - def bias_constraint(self): - return self.cell.bias_constraint - - @property - def dropout(self): - return self.cell.dropout - - @property - def recurrent_dropout(self): - return self.cell.recurrent_dropout - - @property - def implementation(self): - return self.cell.implementation - - @property - def reset_after(self): - return self.cell.reset_after - - def get_config(self): - config = { - "units": self.units, - "activation": activations.serialize(self.activation), - "recurrent_activation": activations.serialize( - self.recurrent_activation - ), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "recurrent_initializer": initializers.serialize( - self.recurrent_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "recurrent_regularizer": regularizers.serialize( - self.recurrent_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "recurrent_constraint": constraints.serialize( - self.recurrent_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - "dropout": self.dropout, - "recurrent_dropout": self.recurrent_dropout, - "implementation": self.implementation, - "reset_after": self.reset_after, - } - config.update(rnn_utils.config_for_enable_caching_device(self.cell)) - base_config = super().get_config() - del base_config["cell"] - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config): - if "implementation" in config and config["implementation"] == 0: - config["implementation"] = 1 - return cls(**config) - - def _defun_gru_call( - self, inputs, initial_state, training, mask, sequence_lengths - ): - # Use the new defun approach for backend implementation swap. - # Note that different implementations need to have same function - # signature, eg, the tensor parameters need to have same shape and - # dtypes. - - self.reset_dropout_mask() - dropout_mask = self.get_dropout_mask_for_cell(inputs, training, count=3) - if dropout_mask is not None: - inputs = inputs * dropout_mask[0] - - if gru_lstm_utils.use_new_gru_lstm_impl(): - gru_kwargs = { - "inputs": inputs, - "init_h": gru_lstm_utils.read_variable_value(initial_state[0]), - "kernel": gru_lstm_utils.read_variable_value(self.cell.kernel), - "recurrent_kernel": gru_lstm_utils.read_variable_value( - self.cell.recurrent_kernel - ), - "bias": gru_lstm_utils.read_variable_value(self.cell.bias), - "mask": mask, - "time_major": self.time_major, - "go_backwards": self.go_backwards, - "sequence_lengths": sequence_lengths, - "zero_output_for_mask": self.zero_output_for_mask, - } - ( - last_output, - outputs, - new_h, - runtime, - ) = self._defun_wrapper.defun_layer(**gru_kwargs) - else: - gpu_gru_kwargs = { - "inputs": inputs, - "init_h": gru_lstm_utils.read_variable_value(initial_state[0]), - "kernel": gru_lstm_utils.read_variable_value(self.cell.kernel), - "recurrent_kernel": gru_lstm_utils.read_variable_value( - self.cell.recurrent_kernel - ), - "bias": gru_lstm_utils.read_variable_value(self.cell.bias), - "mask": mask, - "time_major": self.time_major, - "go_backwards": self.go_backwards, - "sequence_lengths": sequence_lengths, - "return_sequences": self.return_sequences, - } - normal_gru_kwargs = gpu_gru_kwargs.copy() - normal_gru_kwargs.update( - { - "zero_output_for_mask": self.zero_output_for_mask, - } - ) - - if tf.executing_eagerly(): - device_type = gru_lstm_utils.get_context_device_type() - can_use_gpu = ( - # Either user specified GPU or unspecified but GPU is - # available. - ( - device_type == gru_lstm_utils.GPU_DEVICE_NAME - or ( - device_type is None - and tf.config.list_logical_devices("GPU") - ) - ) - and ( - gru_lstm_utils.is_cudnn_supported_inputs( - mask, self.time_major, sequence_lengths - ) - ) - ) - # Under eager context, check the device placement and prefer the - if can_use_gpu: - last_output, outputs, new_h, runtime = gpu_gru( - **gpu_gru_kwargs - ) - else: - last_output, outputs, new_h, runtime = standard_gru( - **normal_gru_kwargs - ) - else: - ( - last_output, - outputs, - new_h, - runtime, - ) = gru_with_backend_selection(**normal_gru_kwargs) - - states = [new_h] - return last_output, outputs, runtime, states - - -def standard_gru( - inputs, - init_h, - kernel, - recurrent_kernel, - bias, - mask, - time_major, - go_backwards, - sequence_lengths, - zero_output_for_mask, - return_sequences, -): - """GRU with standard kernel implementation. - - This implementation can be run on all types of hardware. - - This implementation lifts out all the layer weights and make them function - parameters. It has same number of tensor input params as the cuDNN - counterpart. The RNN step logic has been simplified, eg dropout and mask is - removed since cuDNN implementation does not support that. - - Args: - inputs: Input tensor of GRU layer. - init_h: Initial state tensor for the cell output. - kernel: Weights for cell kernel. - recurrent_kernel: Weights for cell recurrent kernel. - bias: Weights for cell kernel bias and recurrent bias. The bias contains - the combined input_bias and recurrent_bias. - mask: Binary tensor of shape `(samples, timesteps)` indicating whether - a given timestep should be masked. An individual `True` entry indicates - that the corresponding timestep should be utilized, while a `False` - entry indicates that the corresponding timestep should be ignored. - time_major: Boolean, whether the inputs are in the format of - [time, batch, feature] or [batch, time, feature]. - go_backwards: Boolean (default False). If True, process the input sequence - backwards and return the reversed sequence. - sequence_lengths: The lengths of all sequences coming from a variable - length input, such as ragged tensors. If the input has a fixed timestep - size, this should be None. - zero_output_for_mask: Boolean, whether to output zero for masked timestep. - return_sequences: Boolean. If True, return the recurrent outputs for all - timesteps in the sequence. If False, only return the output for the - last timestep (which consumes less memory). - - Returns: - last_output: output tensor for the last timestep, which has shape - [batch, units]. - outputs: - - If `return_sequences=True`: output tensor for all timesteps, - which has shape [batch, time, units]. - - Else, a tensor equal to `last_output` with shape [batch, 1, units] - state_0: the cell output, which has same shape as init_h. - runtime: constant string tensor which indicate real runtime hardware. This - value is for testing purpose and should be used by user. - """ - input_shape = backend.int_shape(inputs) - timesteps = input_shape[0] if time_major else input_shape[1] - - input_bias, recurrent_bias = tf.unstack(bias) - - def step(cell_inputs, cell_states): - """Step function that will be used by Keras RNN backend.""" - h_tm1 = cell_states[0] - - # inputs projected by all gate matrices at once - matrix_x = backend.dot(cell_inputs, kernel) - matrix_x = backend.bias_add(matrix_x, input_bias) - - x_z, x_r, x_h = tf.split(matrix_x, 3, axis=1) - - # hidden state projected by all gate matrices at once - matrix_inner = backend.dot(h_tm1, recurrent_kernel) - matrix_inner = backend.bias_add(matrix_inner, recurrent_bias) - - recurrent_z, recurrent_r, recurrent_h = tf.split( - matrix_inner, 3, axis=1 - ) - z = tf.sigmoid(x_z + recurrent_z) - r = tf.sigmoid(x_r + recurrent_r) - hh = tf.tanh(x_h + r * recurrent_h) - - # previous and candidate state mixed by update gate - h = z * h_tm1 + (1 - z) * hh - return h, [h] - - last_output, outputs, new_states = backend.rnn( - step, - inputs, - [init_h], - constants=None, - unroll=False, - time_major=time_major, - mask=mask, - go_backwards=go_backwards, - input_length=sequence_lengths - if sequence_lengths is not None - else timesteps, - zero_output_for_mask=zero_output_for_mask, - return_all_outputs=return_sequences, - ) - return ( - last_output, - outputs, - new_states[0], - gru_lstm_utils.runtime(gru_lstm_utils.RUNTIME_CPU), - ) - - -def gpu_gru( - inputs, - init_h, - kernel, - recurrent_kernel, - bias, - mask, - time_major, - go_backwards, - sequence_lengths, - return_sequences, -): - """GRU with cuDNN implementation which is only available for GPU.""" - if mask is not None: - sequence_lengths = gru_lstm_utils.calculate_sequence_by_mask( - mask, time_major - ) - - if not time_major and sequence_lengths is None: - inputs = tf.transpose(inputs, perm=(1, 0, 2)) - seq_axis, batch_axis = (0, 1) - else: - seq_axis, batch_axis = (0, 1) if time_major else (1, 0) - # For init_h, cuDNN expects one more dim of num_layers before or after batch - # dim for time major or batch major inputs respectively - init_h = tf.expand_dims(init_h, axis=seq_axis) - - weights = tf.split(kernel, 3, axis=1) - weights += tf.split(recurrent_kernel, 3, axis=1) - # Note that the bias was initialized as shape (2, 3 * units), flat it into - # (6 * units) - bias = tf.split(backend.flatten(bias), 6) - - if tf.sysconfig.get_build_info()["is_cuda_build"]: - # Note that the gate order for cuDNN is different from the canonical - # format. canonical format is [z, r, h], whereas cuDNN is [r, z, h]. - # The swap need to be done for kernel, recurrent_kernel, input_bias, - # recurrent_bias. - # z is update gate weights. - # r is reset gate weights. - # h is output gate weights. - weights[0], weights[1] = weights[1], weights[0] - weights[3], weights[4] = weights[4], weights[3] - bias[0], bias[1] = bias[1], bias[0] - bias[3], bias[4] = bias[4], bias[3] - - params = gru_lstm_utils.canonical_to_params( - weights=weights, - biases=bias, - shape=tf.constant([-1]), - transpose_weights=True, - ) - - if sequence_lengths is not None: - if go_backwards: - # Three reversals are required. E.g., - # normal input = [1, 2, 3, 0, 0] # where 0 need to be masked - # reversed_input_to_cudnn = [3, 2, 1, 0, 0] - # output_from_cudnn = [6, 5, 4, 0, 0] - # expected_output = [0, 0, 6, 5 ,4] - inputs = tf.reverse_sequence( - inputs, - sequence_lengths, - seq_axis=seq_axis, - batch_axis=batch_axis, - ) - outputs, h, _, _, _ = tf.raw_ops.CudnnRNNV3( - input=inputs, - input_h=init_h, - input_c=0, - params=params, - is_training=True, - rnn_mode="gru", - sequence_lengths=sequence_lengths, - time_major=time_major, - ) - if go_backwards: - outputs = tf.reverse_sequence( - outputs, - sequence_lengths, - seq_axis=seq_axis, - batch_axis=batch_axis, - ) - outputs = tf.reverse(outputs, axis=[seq_axis]) - else: - if go_backwards: - # Reverse axis 0 since the input is already convert to time major. - inputs = tf.reverse(inputs, axis=[0]) - outputs, h, _, _ = tf.raw_ops.CudnnRNN( - input=inputs, - input_h=init_h, - input_c=0, - params=params, - is_training=True, - rnn_mode="gru", - ) - - last_output = outputs[-1] - if not time_major and sequence_lengths is None and return_sequences: - outputs = tf.transpose(outputs, perm=[1, 0, 2]) - h = tf.squeeze(h, axis=seq_axis) - - # In the case of variable length input, the cudnn kernel will fill zeros for - # the output, whereas the default keras behavior is to bring over the - # previous output for t-1, so that in the return_sequence=False case, user - # can quickly get the final effect output instead just 0s at the last - # timestep. In order to mimic the default keras behavior, we copy the final - # h state as the last_output, since it is numerically same as the output. - if sequence_lengths is not None: - last_output = h - - # Match CPU return format - if not return_sequences: - outputs = tf.expand_dims(last_output, axis=0 if time_major else 1) - - return ( - last_output, - outputs, - h, - gru_lstm_utils.runtime(gru_lstm_utils.RUNTIME_GPU), - ) - - -def gru_with_backend_selection( - inputs, - init_h, - kernel, - recurrent_kernel, - bias, - mask, - time_major, - go_backwards, - sequence_lengths, - zero_output_for_mask, - return_sequences, -): - """Call the GRU with optimized backend kernel selection. - - Under the hood, this function will create two TF function, one with the most - generic kernel and can run on all device condition, and the second one with - cuDNN specific kernel, which can only run on GPU. - - The first function will be called with normal_lstm_params, while the second - function is not called, but only registered in the graph. The Grappler will - do the proper graph rewrite and swap the optimized TF function based on the - device placement. - - Args: - inputs: Input tensor of GRU layer. - init_h: Initial state tensor for the cell output. - kernel: Weights for cell kernel. - recurrent_kernel: Weights for cell recurrent kernel. - bias: Weights for cell kernel bias and recurrent bias. Only recurrent bias - is used in this case. - mask: Boolean tensor for mask out the steps within sequence. - An individual `True` entry indicates that the corresponding timestep - should be utilized, while a `False` entry indicates that the - corresponding timestep should be ignored. - time_major: Boolean, whether the inputs are in the format of - [time, batch, feature] or [batch, time, feature]. - go_backwards: Boolean (default False). If True, process the input sequence - backwards and return the reversed sequence. - sequence_lengths: The lengths of all sequences coming from a variable - length input, such as ragged tensors. If the input has a fixed timestep - size, this should be None. - zero_output_for_mask: Boolean, whether to output zero for masked timestep. - return_sequences: Boolean. If True, return the recurrent outputs for all - timesteps in the sequence. If False, only return the output for the - last timestep (which consumes less memory). - - Returns: - List of output tensors, same as standard_gru. - """ - params = { - "inputs": inputs, - "init_h": init_h, - "kernel": kernel, - "recurrent_kernel": recurrent_kernel, - "bias": bias, - "mask": mask, - "time_major": time_major, - "go_backwards": go_backwards, - "sequence_lengths": sequence_lengths, - "zero_output_for_mask": zero_output_for_mask, - "return_sequences": return_sequences, - } - - def gpu_gru_with_fallback( - inputs, - init_h, - kernel, - recurrent_kernel, - bias, - mask, - time_major, - go_backwards, - sequence_lengths, - zero_output_for_mask, - return_sequences, - ): - """Use cuDNN kernel when mask is none or strictly right padded.""" - - def cudnn_gru_fn(): - return gpu_gru( - inputs=inputs, - init_h=init_h, - kernel=kernel, - recurrent_kernel=recurrent_kernel, - bias=bias, - mask=mask, - time_major=time_major, - go_backwards=go_backwards, - sequence_lengths=sequence_lengths, - return_sequences=return_sequences, - ) - - def standard_gru_fn(): - return standard_gru( - inputs=inputs, - init_h=init_h, - kernel=kernel, - recurrent_kernel=recurrent_kernel, - bias=bias, - mask=mask, - time_major=time_major, - go_backwards=go_backwards, - sequence_lengths=sequence_lengths, - zero_output_for_mask=zero_output_for_mask, - return_sequences=return_sequences, - ) - - return tf.__internal__.smart_cond.smart_cond( - gru_lstm_utils.is_cudnn_supported_inputs( - mask, time_major, sequence_lengths - ), - true_fn=cudnn_gru_fn, - false_fn=standard_gru_fn, - ) - - if gru_lstm_utils.use_new_gru_lstm_impl(): - # Chooses the implementation dynamically based on the running device. - ( - last_output, - outputs, - new_h, - runtime, - ) = tf.__internal__.execute_fn_for_device( - { - gru_lstm_utils.CPU_DEVICE_NAME: lambda: standard_gru(**params), - gru_lstm_utils.GPU_DEVICE_NAME: lambda: gpu_gru_with_fallback( - **params - ), - }, - lambda: standard_gru(**params), - ) - else: - # Each time a `tf.function` is called, we will give it a unique - # identifiable API name, so that Grappler won't get confused when it - # sees multiple GRU layers added into same graph, and it will be able - # to pair up the different implementations across them. - api_name = "gru_" + str(uuid.uuid4()) - supportive_attribute = { - "time_major": time_major, - "go_backwards": go_backwards, - } - defun_standard_gru = gru_lstm_utils.generate_defun_backend( - api_name, - gru_lstm_utils.CPU_DEVICE_NAME, - standard_gru, - supportive_attribute, - ) - defun_gpu_gru = gru_lstm_utils.generate_defun_backend( - api_name, - gru_lstm_utils.GPU_DEVICE_NAME, - gpu_gru_with_fallback, - supportive_attribute, - ) - - # Call the normal GRU impl and register the cuDNN impl function. The - # grappler will kick in during session execution to optimize the graph. - last_output, outputs, new_h, runtime = defun_standard_gru(**params) - gru_lstm_utils.function_register(defun_gpu_gru, **params) - - return last_output, outputs, new_h, runtime diff --git a/keras/layers/rnn/gru_lstm_test.py b/keras/layers/rnn/gru_lstm_test.py deleted file mode 100644 index 0c09541e605..00000000000 --- a/keras/layers/rnn/gru_lstm_test.py +++ /dev/null @@ -1,179 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests that are common for GRU and LSTM. - -See also: lstm_test.py, gru_test.py. -""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.rnn import gru -from keras.layers.rnn import lstm -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes -class RNNV2Test(test_combinations.TestCase): - @parameterized.parameters([lstm.LSTM, gru.GRU]) - def test_device_placement(self, layer): - if not tf.test.is_gpu_available(): - self.skipTest("Need GPU for testing.") - vocab_size = 20 - embedding_dim = 10 - batch_size = 8 - timestep = 12 - units = 5 - x = np.random.randint(0, vocab_size, size=(batch_size, timestep)) - y = np.random.randint(0, vocab_size, size=(batch_size, timestep)) - - # Test when GPU is available but not used, the graph should be properly - # created with CPU ops. - with test_utils.device(should_use_gpu=False): - model = keras.Sequential( - [ - keras.layers.Embedding( - vocab_size, - embedding_dim, - batch_input_shape=[batch_size, timestep], - ), - layer(units, return_sequences=True, stateful=True), - keras.layers.Dense(vocab_size), - ] - ) - model.compile( - optimizer="adam", - loss="sparse_categorical_crossentropy", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, y, epochs=1, shuffle=False) - - @parameterized.parameters([lstm.LSTM, gru.GRU]) - def test_reset_dropout_mask_between_batch(self, layer): - # See https://github.com/tensorflow/tensorflow/issues/29187 for more - # details - batch_size = 8 - timestep = 12 - embedding_dim = 10 - units = 5 - layer = layer(units, dropout=0.5, recurrent_dropout=0.5) - - inputs = np.random.random((batch_size, timestep, embedding_dim)).astype( - np.float32 - ) - previous_dropout, previous_recurrent_dropout = None, None - - for _ in range(5): - layer(inputs, training=True) - dropout = layer.cell.get_dropout_mask_for_cell( - inputs, training=True - ) - recurrent_dropout = layer.cell.get_recurrent_dropout_mask_for_cell( - inputs, training=True - ) - if previous_dropout is not None: - self.assertNotAllClose( - self.evaluate(previous_dropout), self.evaluate(dropout) - ) - previous_dropout = dropout - if previous_recurrent_dropout is not None: - self.assertNotAllClose( - self.evaluate(previous_recurrent_dropout), - self.evaluate(recurrent_dropout), - ) - previous_recurrent_dropout = recurrent_dropout - - @parameterized.parameters([lstm.LSTM, gru.GRU]) - def test_recurrent_dropout_with_stateful_RNN(self, layer): - # See https://github.com/tensorflow/tensorflow/issues/27829 for details. - # The issue was caused by using inplace mul for a variable, which was a - # warning for RefVariable, but an error for ResourceVariable in 2.0 - keras.models.Sequential( - [ - layer( - 128, - stateful=True, - return_sequences=True, - dropout=0.2, - batch_input_shape=[32, None, 5], - recurrent_dropout=0.2, - ) - ] - ) - - @parameterized.parameters([lstm.LSTM, gru.GRU]) - def test_recurrent_dropout_saved_model(self, layer): - if not tf.executing_eagerly(): - self.skipTest("v2-only test") - inputs = keras.Input(shape=(784, 3), name="digits") - x = layer(64, activation="relu", name="RNN", dropout=0.1)(inputs) - x = keras.layers.Dense(64, activation="relu", name="dense")(x) - outputs = keras.layers.Dense( - 10, activation="softmax", name="predictions" - )(x) - model = keras.Model(inputs=inputs, outputs=outputs, name="3_layer") - model.save(os.path.join(self.get_temp_dir(), "model"), save_format="tf") - - @parameterized.parameters([lstm.LSTM, gru.GRU]) - def test_ragged(self, layer): - vocab_size = 100 - inputs = tf.ragged.constant( - np.random.RandomState(0).randint(0, vocab_size, [128, 25]) - ) - embedder = keras.layers.Embedding(input_dim=vocab_size, output_dim=16) - embedded_inputs = embedder(inputs) - layer = layer(32) - layer(embedded_inputs) - - @parameterized.parameters([lstm.LSTM, gru.GRU]) - @test_utils.run_v2_only - def test_compare_ragged_with_masks(self, layer): - vocab_size = 100 - timestep = 20 - units = 32 - embedder = keras.layers.Embedding( - input_dim=vocab_size, output_dim=units - ) - layer = layer(units, return_sequences=True) - data = tf.constant( - np.random.RandomState(0).randint( - 0, vocab_size, [timestep, timestep] - ) - ) - mask = tf.sequence_mask(tf.range(1, timestep + 1)) - data_ragged = tf.ragged.boolean_mask(data, mask) - - outputs = [] - devices = [test_utils.device(should_use_gpu=False)] - if tf.test.is_gpu_available(): - devices.append(test_utils.device(should_use_gpu=True)) - for device in devices: - with device: - outputs.append( - tf.boolean_mask(layer(embedder(data), mask=mask), mask) - ) - outputs.append(layer(embedder(data_ragged)).values) - - for i in range(len(outputs) - 1): - self.assertAllClose(outputs[i], outputs[i + 1], atol=1e-4) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/gru_lstm_utils.py b/keras/layers/rnn/gru_lstm_utils.py deleted file mode 100644 index d0f3208134e..00000000000 --- a/keras/layers/rnn/gru_lstm_utils.py +++ /dev/null @@ -1,275 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities used by both the GRU and LSTM classes.""" - - -import uuid - -import tensorflow.compat.v2 as tf - -# isort: off -from tensorflow.python.eager.context import get_device_name - -# The following string constants are used by Defun approach for unified backend -# of LSTM and GRU. -_FUNCTION_API_NAME_ATTRIBUTE = "api_implements" -_FUNCTION_DEVICE_ATTRIBUTE = "api_preferred_device" -CPU_DEVICE_NAME = "CPU" -GPU_DEVICE_NAME = "GPU" - -# The following number constants are used to represent the runtime of the defun -# backend function. Since the CPU/GPU implementation are mathematically same, we -# need some signal for the function to indicate which function is executed. This -# is for testing purpose to verify the correctness of swapping backend function. -RUNTIME_UNKNOWN = 0 -RUNTIME_CPU = 1 -RUNTIME_GPU = 2 - -CUDNN_AVAILABLE_MSG = "Layer %s will use cuDNN kernels when running on GPU." -CUDNN_NOT_AVAILABLE_MSG = ( - "Layer %s will not use cuDNN kernels since it " - "doesn't meet the criteria. It will " - "use a generic GPU kernel as fallback when running " - "on GPU." -) - - -def use_new_gru_lstm_impl(): - return False - - -# TODO(b/169707691): The wrapper can be removed if TFLite doesn't need to rely -# on supportive attributes from LSTM/GRU. -class DefunWrapper: - """A wrapper with no deep copy of the Defun in LSTM/GRU layer.""" - - def __init__(self, time_major, go_backwards, layer_name): - self.time_major = time_major - self.go_backwards = go_backwards - self.layer_name = layer_name - if self.layer_name not in ["lstm", "gru"]: - raise ValueError( - "Defun wrapper only applies to LSTM and GRU layer, " - "but given {}".format(self.layer_name) - ) - # The first two attributes are added to support TFLite use case. - supportive_attributes = { - "time_major": self.time_major, - "go_backwards": self.go_backwards, - _FUNCTION_API_NAME_ATTRIBUTE: self.layer_name - + "_" - + str(uuid.uuid4()), - } - if self.layer_name == "lstm": - from keras.layers.rnn import ( - lstm, - ) - - layer_func = lstm.lstm_with_backend_selection - else: - from keras.layers.rnn import ( - gru, - ) - - layer_func = gru.gru_with_backend_selection - - self.defun_layer = tf.function( - layer_func, - autograph=False, - experimental_attributes=supportive_attributes, - ) - - def __deepcopy__(self, memo): - new_wrapper = type(self)( - self.time_major, self.go_backwards, self.layer_name - ) - memo[id(self)] = new_wrapper - return new_wrapper - - -def canonical_to_params(weights, biases, shape, transpose_weights=False): - """Utility function convert variable to cuDNN compatible parameter. - - Note that Keras weights for kernels are different from the cuDNN format. - Eg.: - - ``` - Keras cuDNN - [[0, 1, 2], <---> [[0, 2, 4], - [3, 4, 5]] [1, 3, 5]] - ``` - - If the input weights need to be in a unified format, then set - `transpose_weights=True` to convert the weights. - - Args: - weights: list of weights for the individual kernels and recurrent kernels. - biases: list of biases for individual gate. - shape: the shape for the converted variables that will be feed to cuDNN. - transpose_weights: boolean, whether to transpose the weights. - - Returns: - The converted weights that can be feed to cuDNN ops as param. - """ - - def convert(w): - return tf.transpose(w) if transpose_weights else w - - weights = [tf.reshape(convert(x), shape) for x in weights] - biases = [tf.reshape(x, shape) for x in biases] - return tf.concat(weights + biases, axis=0) - - -def is_sequence_right_padded(mask): - """Check the mask tensor and see if it right padded. - - For cuDNN kernel, it uses the sequence length param to skip the tailing - timestep. If the data is left padded, or not a strict right padding (has - masked value in the middle of the sequence), then cuDNN kernel won't be work - properly in those cases. - - Left padded data: [[False, False, True, True, True]]. - Right padded data: [[True, True, True, False, False]]. - Mixture of mask/unmasked data: [[True, False, True, False, False]]. - - Note that for the mixed data example above, the actually data RNN should see - are those 2 Trues (index 0 and 2), the index 1 False should be ignored and - not pollute the internal states. - - Args: - mask: the Boolean tensor with shape [batch, timestep] - - Returns: - boolean scalar tensor, whether the mask is strictly right padded. - """ - max_seq_length = tf.shape(mask)[1] - count_of_true = tf.reduce_sum(tf.cast(mask, tf.int32), axis=1) - right_padded_mask = tf.sequence_mask(count_of_true, maxlen=max_seq_length) - return tf.reduce_all(tf.equal(mask, right_padded_mask)) - - -def has_fully_masked_sequence(mask): - # See https://github.com/tensorflow/tensorflow/issues/33148 for more - # details. Cudnn kernel will error out if the input sequence contains any - # fully masked data. We walk around this issue by rerouting the computation - # to standard kernel, until the issue on cudnn side has been fixed. For a - # fully masked sequence, it will contain all Falses. To make it easy to - # check, we inverse the boolean, check if any of the sequence has all True. - return tf.reduce_any(tf.reduce_all(tf.logical_not(mask), axis=1)) - - -def is_cudnn_supported_inputs(mask, time_major, sequence_lengths): - if tf.sysconfig.get_build_info()["is_rocm_build"]: - if (not time_major) and (sequence_lengths is not None): - return False - if mask is not None: - return tf.reduce_all(mask) - elif sequence_lengths is not None: - return tf.math.equal( - tf.reduce_min(sequence_lengths), tf.reduce_max(sequence_lengths) - ) - else: - return True - if mask is None: - return True - if time_major: - mask = tf.transpose(mask) - - return tf.logical_and( - is_sequence_right_padded(mask), - tf.logical_not(has_fully_masked_sequence(mask)), - ) - - -def calculate_sequence_by_mask(mask, time_major): - """Calculate the sequence length tensor (1-D) based on the masking tensor. - - The masking tensor is a 2D boolean tensor with shape [batch, timestep]. For - any timestep that should be masked, the corresponding field will be False. - Consider the following example: - a = [[True, True, False, False], - [True, True, True, False]] - It is a (2, 4) tensor, and the corresponding sequence length result should - be 1D tensor with value [2, 3]. Note that the masking tensor must be right - padded that could be checked by, e.g., `is_sequence_right_padded()`. - - Args: - mask: Boolean tensor with shape [batch, timestep] or [timestep, batch] if - time_major=True. - time_major: Boolean, which indicates whether the mask is time major or - batch major. - Returns: - sequence_length: 1D int32 tensor. - """ - timestep_index = 0 if time_major else 1 - return tf.reduce_sum(tf.cast(mask, tf.int32), axis=timestep_index) - - -def generate_defun_backend( - unique_api_name, preferred_device, func, supportive_attributes -): - function_attributes = { - _FUNCTION_API_NAME_ATTRIBUTE: unique_api_name, - _FUNCTION_DEVICE_ATTRIBUTE: preferred_device, - } - function_attributes.update(supportive_attributes) - return tf.function( - func, autograph=False, experimental_attributes=function_attributes - ) - - -def get_context_device_type(): - """Parse the current context and return the device type, eg CPU/GPU.""" - current_device = get_device_name() - if current_device is None: - return None - return tf.compat.v1.DeviceSpec.from_string(current_device).device_type - - -def runtime(runtime_name): - with tf.device("/cpu:0"): - return tf.constant(runtime_name, dtype=tf.float32, name="runtime") - - -def read_variable_value(v): - """Read the value of a variable if it is variable.""" - if isinstance(v, tf.Variable): - return v.read_value() - return v - - -def function_register(func, *args, **kwargs): - """Register a specialization of a `Function` into the graph. - - This won't actually call the function with the inputs, and only put the - function definition into graph. Register function with different input param - will result into multiple version of functions registered in graph. - - Args: - func: the `Function` instance that generated by a @defun - *args: input arguments for the Python function. - **kwargs: input keyword arguments for the Python function. - - Returns: - a `ConcreteFunction` object specialized to inputs and execution context. - - Raises: - ValueError: When the input function is not a defun wrapped python - function. - """ - concrete_func = func.get_concrete_function(*args, **kwargs) - concrete_func.add_to_graph() - concrete_func.add_gradient_functions_to_graph() - return concrete_func diff --git a/keras/layers/rnn/gru_test.py b/keras/layers/rnn/gru_test.py deleted file mode 100644 index 241ad2c3181..00000000000 --- a/keras/layers/rnn/gru_test.py +++ /dev/null @@ -1,1057 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for GRU layer.""" - - -import copy -import os -import shutil - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.rnn import gru_lstm_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import np_utils - -# isort: off -from tensorflow.core.protobuf import rewriter_config_pb2 -from tensorflow.python.framework import ( - test_util as tf_test_util, -) - -# Global config for grappler setting that is used for graph mode test. -_rewrites = rewriter_config_pb2.RewriterConfig() -_rewrites.implementation_selector = rewriter_config_pb2.RewriterConfig.ON -_rewrites.min_graph_nodes = -1 -_graph_options = tf.compat.v1.GraphOptions(rewrite_options=_rewrites) -_config = tf.compat.v1.ConfigProto(graph_options=_graph_options) - - -@test_utils.run_all_without_tensor_float_32("RNN GRU can use TF32 on GPU") -@test_combinations.run_all_keras_modes(config=_config) -class GRUGraphRewriteTest(test_combinations.TestCase): - - input_shape = 10 - output_shape = 8 - rnn_state_size = 8 - timestep = 4 - batch = 100 - epoch = 1 - - @parameterized.named_parameters( - ("non_tan_activation", "relu", "sigmoid", 0, False, True, True), - ("non_sigmoid_recur_activation", "tanh", "relu", 0, False, True, True), - ("use_recurrent_dropout", "tanh", "sigmoid", 0.1, False, True, True), - ("unroll", "tanh", "sigmoid", 0, True, True, True), - ("not_use_bias", "tanh", "sigmoid", 0, False, False, True), - ("not_reset_after", "tanh", "sigmoid", 0, False, True, False), - ) - @test_utils.run_v2_only - def test_could_use_defun_backend( - self, - activation, - recurrent_activation, - recurrent_dropout, - unroll, - use_bias, - reset_after, - ): - layer = keras.layers.GRU( - 1, - activation=activation, - recurrent_activation=recurrent_activation, - recurrent_dropout=recurrent_dropout, - unroll=unroll, - use_bias=use_bias, - reset_after=reset_after, - ) - self.assertFalse(layer._could_use_gpu_kernel) - - @test_utils.run_v2_only - def test_use_on_default_activation_with_gpu_kernel(self): - layer = keras.layers.GRU(1, activation=tf.tanh) - self.assertTrue(layer._could_use_gpu_kernel) - - layer = keras.layers.GRU(1, recurrent_activation=tf.sigmoid) - self.assertTrue(layer._could_use_gpu_kernel) - - def test_keras_model_with_gru(self): - epoch = 10 - - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=self.batch, - test_samples=0, - input_shape=(self.timestep, self.input_shape), - num_classes=self.output_shape, - ) - y_train = np_utils.to_categorical(y_train, self.output_shape) - - layer = keras.layers.GRU(self.rnn_state_size) - - inputs = keras.layers.Input( - shape=[self.timestep, self.input_shape], dtype=tf.float32 - ) - - outputs = layer(inputs) - model = keras.models.Model(inputs, outputs) - model.compile("rmsprop", loss="mse") - model.fit(x_train, y_train, epochs=epoch) - model.evaluate(x_train, y_train) - model.predict(x_train) - - def test_dynamic_behavior_GRU(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - layer = keras.layers.GRU(units, input_shape=(None, embedding_dim)) - model = keras.models.Sequential() - model.add(layer) - model.compile(tf.compat.v1.train.GradientDescentOptimizer(0.001), "mse") - x = np.random.random((num_samples, timesteps, embedding_dim)) - y = np.random.random((num_samples, units)) - model.train_on_batch(x, y) - - def test_stacking_GRU(self): - inputs = np.random.random((2, 3, 4)) - targets = np.abs(np.random.random((2, 3, 5))) - targets /= targets.sum(axis=-1, keepdims=True) - model = keras.models.Sequential() - model.add(keras.layers.GRU(10, return_sequences=True, unroll=False)) - model.add(keras.layers.GRU(5, return_sequences=True, unroll=False)) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - ) - model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) - - def test_from_config_GRU(self): - layer_class = keras.layers.GRU - for stateful in (False, True): - l1 = layer_class(units=1, stateful=stateful) - l2 = layer_class.from_config(l1.get_config()) - assert l1.get_config() == l2.get_config() - - @parameterized.named_parameters( - # test_name, use_bias, bias_initializer, activation - ("normal", True, "zeros"), - ("no_bias", False, "zeros"), - ("random_bias", True, "random_uniform"), - ) - def test_gru_v2_model_save_load(self, use_bias, bias_initializer): - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir) - h5_path = os.path.join(temp_dir, "test.h5") - - batch = 10 - timestep = 3 - input_dim = 5 - units = 2 - - x = np.random.random((batch, timestep, input_dim)) - - def build_model(): - inputs = keras.layers.Input( - shape=[timestep, input_dim], dtype=tf.float32 - ) - layer = keras.layers.GRU( - units, use_bias=use_bias, bias_initializer=bias_initializer - ) - output = layer(inputs) - return keras.models.Model(inputs, output), layer - - model, layer = build_model() - y_ref = model.predict(x) - model.save_weights(h5_path) - - cloned_model, new_layer = build_model() - cloned_model.load_weights(h5_path) - y = cloned_model.predict(x) - - self.assertAllClose(y, y_ref) - self.assertAllClose(layer.get_weights(), new_layer.get_weights()) - - def test_gru_v2_output_on_multiple_kernel(self): - x_train = np.random.random( - (self.batch, self.timestep, self.input_shape) - ) - - inputs = keras.layers.Input( - shape=[self.timestep, self.input_shape], dtype=tf.float32 - ) - with test_utils.device(should_use_gpu=False): - layer = keras.layers.GRU(self.rnn_state_size) - output = layer(inputs) - cpu_model = keras.models.Model(inputs, output) - weights = cpu_model.get_weights() - y_1 = cpu_model.predict(x_train) - - with test_utils.device(should_use_gpu=True): - layer = keras.layers.GRU(self.rnn_state_size) - output = layer(inputs) - gpu_model = keras.models.Model(inputs, output) - gpu_model.set_weights(weights) - y_2 = gpu_model.predict(x_train) - - self.assertAllClose(y_1, y_2, rtol=1e-5, atol=1e-5) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - def test_with_masking_layer_GRU(self): - layer_class = keras.layers.GRU - inputs = np.random.random((2, 3, 4)) - targets = np.abs(np.random.random((2, 3, 5))) - targets /= targets.sum(axis=-1, keepdims=True) - model = keras.models.Sequential() - model.add(keras.layers.Masking(input_shape=(3, 4))) - model.add(layer_class(units=5, return_sequences=True, unroll=False)) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.001), - ) - model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - def test_masking_with_stacking_GRU(self): - inputs = np.random.random((2, 3, 4)) - targets = np.abs(np.random.random((2, 3, 5))) - targets /= targets.sum(axis=-1, keepdims=True) - model = keras.models.Sequential() - model.add(keras.layers.Masking(input_shape=(3, 4))) - model.add(keras.layers.GRU(10, return_sequences=True, unroll=False)) - model.add(keras.layers.GRU(5, return_sequences=True, unroll=False)) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - ) - model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) - - def test_return_sequences_GRU(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.GRU, - kwargs={"units": units, "return_sequences": True}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message="Double type is not yet supported in ROCm", - ) - @test_utils.run_v2_only - def test_float64_GRU(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.GRU, - kwargs={ - "units": units, - "return_sequences": True, - "dtype": "float64", - }, - input_shape=(num_samples, timesteps, embedding_dim), - input_dtype="float64", - ) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - def test_return_states_GRU(self): - layer_class = keras.layers.GRU - x = np.random.random((2, 3, 4)) - y = np.abs(np.random.random((2, 5))) - s = np.abs(np.random.random((2, 5))) - inputs = keras.layers.Input(shape=[3, 4], dtype=tf.float32) - masked = keras.layers.Masking()(inputs) - outputs, states = layer_class(units=5, return_state=True)(masked) - - model = keras.models.Model(inputs, [outputs, states]) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.001), - ) - model.fit(x, [y, s], epochs=1, batch_size=2, verbose=1) - - def test_dropout_GRU(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.GRU, - kwargs={"units": units, "dropout": 0.1, "recurrent_dropout": 0.1}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - def test_constraints_GRU(self): - embedding_dim = 4 - layer_class = keras.layers.GRU - k_constraint = keras.constraints.max_norm(0.01) - r_constraint = keras.constraints.max_norm(0.01) - b_constraint = keras.constraints.max_norm(0.01) - layer = layer_class( - 5, - return_sequences=False, - weights=None, - input_shape=(None, embedding_dim), - kernel_constraint=k_constraint, - recurrent_constraint=r_constraint, - bias_constraint=b_constraint, - ) - layer.build((None, None, embedding_dim)) - self.assertEqual(layer.cell.kernel.constraint, k_constraint) - self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint) - self.assertEqual(layer.cell.bias.constraint, b_constraint) - - @parameterized.parameters([0, 1, 2]) - def test_implementation_mode_GRU(self, implementation_mode): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.GRU, - kwargs={"units": units, "implementation": implementation_mode}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - def test_regularizers_GRU(self): - embedding_dim = 4 - layer_class = keras.layers.GRU - layer = layer_class( - 5, - return_sequences=False, - weights=None, - input_shape=(None, embedding_dim), - kernel_regularizer=keras.regularizers.l1(0.01), - recurrent_regularizer=keras.regularizers.l1(0.01), - bias_regularizer="l2", - activity_regularizer="l1", - ) - layer.build((None, None, 2)) - self.assertEqual(len(layer.losses), 3) - - x = keras.backend.variable(np.ones((2, 3, 2))) - layer(x) - if tf.executing_eagerly(): - self.assertEqual(len(layer.losses), 4) - else: - self.assertEqual(len(layer.get_losses_for(x)), 1) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - def test_statefulness_GRU(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - layer_class = keras.layers.GRU - model = keras.models.Sequential() - model.add( - keras.layers.Embedding( - 4, - embedding_dim, - mask_zero=True, - input_length=timesteps, - batch_input_shape=(num_samples, timesteps), - ) - ) - layer = layer_class( - units, return_sequences=False, stateful=True, weights=None - ) - model.add(layer) - model.compile( - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - out1 = model.predict(np.ones((num_samples, timesteps))) - self.assertEqual(out1.shape, (num_samples, units)) - - # train once so that the states change - model.train_on_batch( - np.ones((num_samples, timesteps)), np.ones((num_samples, units)) - ) - out2 = model.predict(np.ones((num_samples, timesteps))) - - # if the state is not reset, output should be different - self.assertNotEqual(out1.max(), out2.max()) - - # check that output changes after states are reset - # (even though the model itself didn't change) - layer.reset_states() - out3 = model.predict(np.ones((num_samples, timesteps))) - self.assertNotEqual(out2.max(), out3.max()) - - # check that container-level reset_states() works - model.reset_states() - out4 = model.predict(np.ones((num_samples, timesteps))) - np.testing.assert_allclose(out3, out4, atol=1e-5) - - # check that the call to `predict` updated the states - out5 = model.predict(np.ones((num_samples, timesteps))) - self.assertNotEqual(out4.max(), out5.max()) - - # Check masking - layer.reset_states() - - left_padded_input = np.ones((num_samples, timesteps)) - left_padded_input[0, :1] = 0 - left_padded_input[1, :2] = 0 - out6 = model.predict(left_padded_input) - - layer.reset_states() - - right_padded_input = np.ones((num_samples, timesteps)) - right_padded_input[0, -1:] = 0 - right_padded_input[1, -2:] = 0 - out7 = model.predict(right_padded_input) - - layer.reset_states() - - mix_padded_input = np.ones((num_samples, timesteps)) - mix_padded_input[0, 1] = 0 - mix_padded_input[1, 0] = 0 - mix_padded_input[1, 2] = 0 - out8 = model.predict(mix_padded_input) - - self.assertAllClose(out7, out6, atol=1e-5) - self.assertAllClose(out8, out7, atol=1e-5) - - def test_stateful_GRU_training(self): - # See b/123587692 for more context. - vocab_size = 20 - embedding_dim = 10 - batch_size = 8 - timestep = 12 - units = 5 - x = np.random.randint(0, vocab_size, size=(batch_size, timestep)) - y = np.random.randint(0, vocab_size, size=(batch_size, timestep)) - - model = keras.Sequential( - [ - keras.layers.Embedding( - vocab_size, - embedding_dim, - batch_input_shape=[batch_size, timestep], - ), - keras.layers.GRU(units, return_sequences=True, stateful=True), - keras.layers.Dense(vocab_size), - ] - ) - model.compile( - optimizer="adam", - loss="sparse_categorical_crossentropy", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, y, epochs=1, shuffle=False) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - @test_utils.run_v2_only - def test_explicit_device_with_go_backward_and_mask(self): - batch_size = 8 - timestep = 7 - masksteps = 5 - units = 4 - - inputs = np.random.randn(batch_size, timestep, units).astype(np.float32) - mask = np.ones((batch_size, timestep)).astype(bool) - mask[:, masksteps:] = 0 - - gru_layer = keras.layers.GRU( - units, return_sequences=True, go_backwards=True - ) - with test_utils.device(should_use_gpu=True): - outputs_masked = gru_layer(inputs, mask=tf.constant(mask)) - outputs_trimmed = gru_layer(inputs[:, :masksteps]) - self.assertAllClose(outputs_masked[:, -masksteps:], outputs_trimmed) - - @tf_test_util.enable_output_all_intermediates - def test_v1_session_behavior(self): - with tf.compat.v1.get_default_graph().as_default(): - # See b/139132348 for more details. - x = np.random.uniform(size=(100, 4, 8)) - y = np.random.uniform(size=(100, 1)) - dataset = ( - tf.data.Dataset.from_tensor_slices((x, y)) - .shuffle(100) - .batch(32) - ) - - inp = keras.layers.Input(shape=(4, 8)) - layer = keras.layers.GRU(1)(inp) - layer = keras.layers.Dense(1)(layer) - - model = keras.models.Model(inp, layer) - - model.compile(loss="mse", optimizer="sgd") - model.fit(dataset) - - def test_with_fully_masked_inputs(self): - num_samples = 8 - timestep = 5 - embedding_dim = 4 - vocab_size = 20 - units = 2 - - inputs = np.random.randint(0, vocab_size, size=(num_samples, timestep)) - # Set the first inputs to be fully zero. - inputs[0, :] = 0.0 - - model = keras.models.Sequential() - model.add( - keras.layers.Embedding( - vocab_size, - embedding_dim, - mask_zero=True, - input_length=timestep, - batch_input_shape=(num_samples, timestep), - ) - ) - layer = keras.layers.GRU(units) - model.add(layer) - model.compile( - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - # Make sure it doesn't crash with cudnn kernel. - model.predict(inputs) - - # TODO (b/169895267): test with xla_gpu is disabled. - def test_deepcopy(self): - if not tf.executing_eagerly(): - self.skipTest("v2-only test") - original_layer = keras.layers.GRU(5) - copied_layer = copy.deepcopy(original_layer) - self.assertEqual(copied_layer.units, 5) - self.assertEqual( - original_layer.get_config(), original_layer.get_config() - ) - - # Copy layer before layer call on inputs without weight initialization. - inputs = np.random.normal(size=[32, 10, 8]).astype(np.float32) - original_layer = keras.layers.GRU(4) - copied_layer = copy.deepcopy(original_layer) - outputs = original_layer(inputs) - copied_outputs = copied_layer(inputs) - self.assertNotAllClose( - self.evaluate(outputs), self.evaluate(copied_outputs) - ) - - # Copy layer after layer call on inputs with weight initialization. - original_layer = keras.layers.GRU(4) - outputs = original_layer(inputs) - copied_layer = copy.deepcopy(original_layer) - copied_outputs = copied_layer(inputs) - self.assertAllClose( - self.evaluate(outputs), self.evaluate(copied_outputs) - ) - - def _test_runtime_with_model(self, model): - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=self.batch, - test_samples=0, - input_shape=(self.timestep, self.input_shape), - num_classes=self.output_shape, - ) - y_train = np_utils.to_categorical(y_train, self.output_shape) - - model.compile(optimizer="sgd", loss=["categorical_crossentropy", None]) - - existing_loss = 0 - for _ in range(self.epoch): - history = model.fit(x_train, y_train) - loss_value = history.history["loss"][0] - - self.assertNotEqual(existing_loss, loss_value) - existing_loss = loss_value - - _, runtime_value = model.predict(x_train) - if not tf.sysconfig.get_build_info()["is_rocm_build"]: - if tf.test.is_gpu_available(): - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_GPU) - else: - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_CPU) - - @test_utils.run_v2_only - def test_GRU_runtime(self): - layer = keras.layers.GRU(self.rnn_state_size, return_runtime=True) - - inputs = keras.layers.Input( - shape=[self.timestep, self.input_shape], dtype=tf.float32 - ) - - outputs, runtime = layer(inputs) - # Expand the runtime so that it is a 1D tensor instead of scalar. - # TF model does not work with scalar model output, specially during - # aggregation. - runtime = keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1))( - runtime - ) - model = keras.models.Model(inputs=inputs, outputs=[outputs, runtime]) - self._test_runtime_with_model(model) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - @test_utils.run_v2_only - def test_GRU_runtime_with_mask(self): - # Masking will affect which backend is selected based on whether the - # mask is strictly right padded. - layer = keras.layers.GRU(self.rnn_state_size, return_runtime=True) - - inputs = keras.layers.Input( - shape=[self.timestep, self.input_shape], dtype=tf.float32 - ) - masked_inputs = keras.layers.Masking()(inputs) - - outputs, runtime = layer(masked_inputs) - # Expand the runtime so that it is a 1D tensor instead of scalar. - # TF model does not work with scalar model output, specially during - # aggregation. - runtime = keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1))( - runtime - ) - model = keras.models.Model(inputs=inputs, outputs=[outputs, runtime]) - - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=self.batch, - test_samples=0, - input_shape=(self.timestep, self.input_shape), - num_classes=self.output_shape, - ) - y_train = np_utils.to_categorical(y_train, self.output_shape) - - model.compile( - optimizer="sgd", - loss=["categorical_crossentropy", None], - run_eagerly=test_utils.should_run_eagerly(), - ) - - model.fit(x_train, y_train) - - # Verify unpadded data. - _, runtime_value = model.predict(x_train) - if tf.test.is_gpu_available(): - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_GPU) - else: - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_CPU) - - # Update x/y to be right padded by setting the last timestep to 0 - x_train[:, -1, :] = 0 - y_train[:, -1] = 0 - _, runtime_value = model.predict(x_train) - if tf.test.is_gpu_available(): - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_GPU) - else: - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_CPU) - - # Further update x/y to be mix padded (masks in the middle), and verify - # only cpu kernel can be selected. - x_train[:, -3, :] = 0 - y_train[:, -3] = 0 - _, runtime_value = model.predict(x_train) - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_CPU) - - @test_utils.run_v2_only - def test_GRU_runtime_with_cond(self): - # This test is to demonstrate the graph rewrite of grappler plugin under - # the condition that the function returns different number of internal - # states. - layer = keras.layers.GRU(self.rnn_state_size, return_runtime=True) - - inputs = keras.layers.Input( - shape=[self.timestep, self.input_shape], dtype=tf.float32 - ) - - zeros = tf.zeros([self.batch, self.output_shape]) - dummy_runtime = gru_lstm_utils.runtime(gru_lstm_utils.RUNTIME_UNKNOWN) - a = tf.constant(0) - b = tf.constant(1) - # Will always run the GRU layer. - outputs, runtime = tf.cond( - tf.less(a, b), lambda: layer(inputs), lambda: (zeros, dummy_runtime) - ) - - # Expand the runtime so that it is a 1D tensor instead of scalar. - # TF model does not work with scalar model output, specially during - # aggregation. - runtime = keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1))( - runtime - ) - model = keras.models.Model(inputs=inputs, outputs=[outputs, runtime]) - self._test_runtime_with_model(model) - - -@test_utils.run_all_without_tensor_float_32("RNN GRU can use TF32 on GPU") -class GRULayerGradientTapeTest(test_combinations.TestCase): - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_in_tape(self): - with self.test_session(config=_config): - time_steps = 10 - embedding_size = 11 - gru_unit_size = 12 - - gru_layer = keras.layers.GRU( - gru_unit_size, - return_sequences=True, - return_state=True, - recurrent_activation="sigmoid", - recurrent_initializer="glorot_uniform", - ) - - x = tf.random.uniform([1, time_steps, embedding_size]) - y = tf.random.uniform([1, gru_unit_size]) - - with tf.GradientTape() as tape: - hidden_state = tf.zeros([1, gru_unit_size], dtype=tf.float32) - _, state = gru_layer(x, initial_state=hidden_state) - - loss = tf.reduce_mean(tf.square(state - y)) - - tape.gradient(loss, gru_layer.variables) - - -@test_combinations.run_all_keras_modes -class GRULayerTest(test_combinations.TestCase): - def test_return_sequences_gru(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.GRU, - kwargs={"units": units, "return_sequences": True}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message="Double type is not yet supported in ROCm", - ) - @test_utils.run_v2_only - def test_float64_gru(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.GRU, - kwargs={ - "units": units, - "return_sequences": True, - "dtype": "float64", - }, - input_shape=(num_samples, timesteps, embedding_dim), - input_dtype="float64", - ) - - def test_dynamic_behavior_gru(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - layer = keras.layers.GRU(units, input_shape=(None, embedding_dim)) - model = keras.models.Sequential() - model.add(layer) - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - x = np.random.random((num_samples, timesteps, embedding_dim)) - y = np.random.random((num_samples, units)) - model.train_on_batch(x, y) - - def test_dropout_gru(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.GRU, - kwargs={"units": units, "dropout": 0.1, "recurrent_dropout": 0.1}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - def test_recurrent_dropout_with_implementation_restriction(self): - layer = keras.layers.GRU(2, recurrent_dropout=0.1, implementation=2) - # The implementation is force to 1 due to the limit of - # recurrent_dropout. - self.assertEqual(layer.implementation, 1) - - @test_utils.run_v2_only - def test_dropout_variable_name(self): - layer = keras.layers.RNN( - keras.layers.GRUCell(2, dropout=0.1, force_generator=True) - ) - layer(np.random.random((2, 3, 4))) - self.assertEqual( - layer.cell._random_generator._generator._state_var.name, - "rnn/gru_cell/StateVar:0", - ) - - layer = keras.layers.GRU(2, dropout=0.1, force_generator=True) - layer(np.random.random((2, 3, 4))) - self.assertEqual( - layer._random_generator._generator._state_var.name, - "gru/StateVar:0", - ) - - @parameterized.parameters([0, 1, 2]) - def test_implementation_mode_gru(self, implementation_mode): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.GRU, - kwargs={"units": units, "implementation": implementation_mode}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - def test_reset_after_gru(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=num_samples, - test_samples=0, - input_shape=(timesteps, embedding_dim), - num_classes=units, - ) - y_train = np_utils.to_categorical(y_train, units) - - inputs = keras.layers.Input(shape=[timesteps, embedding_dim]) - gru_layer = keras.layers.GRU(units, reset_after=True) - output = gru_layer(inputs) - gru_model = keras.models.Model(inputs, output) - gru_model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - gru_model.fit(x_train, y_train) - gru_model.predict(x_train) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message="MIOpen only supports packed input output", - ) - def test_with_masking_layer_gru(self): - layer_class = keras.layers.GRU - inputs = np.random.random((2, 3, 4)) - targets = np.abs(np.random.random((2, 3, 5))) - targets /= targets.sum(axis=-1, keepdims=True) - model = keras.models.Sequential() - model.add(keras.layers.Masking(input_shape=(3, 4))) - model.add(layer_class(units=5, return_sequences=True, unroll=False)) - model.compile( - loss="categorical_crossentropy", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message="MIOpen only supports packed input output", - ) - def test_statefulness_gru(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - layer_class = keras.layers.GRU - - model = keras.models.Sequential() - model.add( - keras.layers.Embedding( - 4, - embedding_dim, - mask_zero=True, - input_length=timesteps, - batch_input_shape=(num_samples, timesteps), - ) - ) - layer = layer_class( - units, return_sequences=False, stateful=True, weights=None - ) - model.add(layer) - model.compile( - optimizer="sgd", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - out1 = model.predict(np.ones((num_samples, timesteps))) - self.assertEqual(out1.shape, (num_samples, units)) - - # train once so that the states change - model.train_on_batch( - np.ones((num_samples, timesteps)), np.ones((num_samples, units)) - ) - out2 = model.predict(np.ones((num_samples, timesteps))) - - # if the state is not reset, output should be different - self.assertNotEqual(out1.max(), out2.max()) - - # check that output changes after states are reset - # (even though the model itself didn't change) - layer.reset_states() - out3 = model.predict(np.ones((num_samples, timesteps))) - self.assertNotEqual(out2.max(), out3.max()) - - # check that container-level reset_states() works - model.reset_states() - out4 = model.predict(np.ones((num_samples, timesteps))) - np.testing.assert_allclose(out3, out4, atol=1e-5) - - # check that the call to `predict` updated the states - out5 = model.predict(np.ones((num_samples, timesteps))) - self.assertNotEqual(out4.max(), out5.max()) - - # Check masking - layer.reset_states() - - left_padded_input = np.ones((num_samples, timesteps)) - left_padded_input[0, :1] = 0 - left_padded_input[1, :2] = 0 - out6 = model.predict(left_padded_input) - - layer.reset_states() - - right_padded_input = np.ones((num_samples, timesteps)) - right_padded_input[0, -1:] = 0 - right_padded_input[1, -2:] = 0 - out7 = model.predict(right_padded_input) - - np.testing.assert_allclose(out7, out6, atol=1e-5) - - def test_get_initial_states(self): - batch_size = 4 - cell = keras.layers.GRUCell(20) - initial_state = cell.get_initial_state( - batch_size=batch_size, dtype=tf.float32 - ) - _, state = cell( - np.ones((batch_size, 20), dtype=np.float32), initial_state - ) - self.assertEqual(state.shape, initial_state.shape) - - @test_utils.run_v2_only - def test_cloned_weight_names(self): - inp = keras.Input([None, 3]) - rnn = keras.layers.GRU(units=3) - model = keras.Model(inp, rnn(inp)) - clone = keras.models.clone_model(model) - - model_names = [x.name for x in model.weights] - clone_names = [x.name for x in clone.weights] - self.assertEqual(model_names, clone_names) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class GRULayerGenericTest(tf.test.TestCase): - def test_constraints_gru(self): - embedding_dim = 4 - layer_class = keras.layers.GRU - k_constraint = keras.constraints.max_norm(0.01) - r_constraint = keras.constraints.max_norm(0.01) - b_constraint = keras.constraints.max_norm(0.01) - layer = layer_class( - 5, - return_sequences=False, - weights=None, - input_shape=(None, embedding_dim), - kernel_constraint=k_constraint, - recurrent_constraint=r_constraint, - bias_constraint=b_constraint, - ) - layer.build((None, None, embedding_dim)) - self.assertEqual(layer.cell.kernel.constraint, k_constraint) - self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint) - self.assertEqual(layer.cell.bias.constraint, b_constraint) - - def test_from_config_gru(self): - layer_class = keras.layers.GRU - for stateful in (False, True): - l1 = layer_class(units=1, stateful=stateful) - l2 = layer_class.from_config(l1.get_config()) - assert l1.get_config() == l2.get_config() - - def test_deep_copy_gru(self): - cell = keras.layers.GRUCell(5) - copied_cell = copy.deepcopy(cell) - self.assertEqual(copied_cell.units, 5) - self.assertEqual(cell.get_config(), copied_cell.get_config()) - - def test_regularizers_gru(self): - embedding_dim = 4 - layer_class = keras.layers.GRU - layer = layer_class( - 5, - return_sequences=False, - weights=None, - input_shape=(None, embedding_dim), - kernel_regularizer=keras.regularizers.l1(0.01), - recurrent_regularizer=keras.regularizers.l1(0.01), - bias_regularizer="l2", - activity_regularizer="l1", - ) - layer.build((None, None, 2)) - self.assertLen(layer.losses, 3) - - x = keras.backend.variable(np.ones((2, 3, 2))) - layer(x) - if tf.executing_eagerly(): - self.assertLen(layer.losses, 4) - else: - self.assertLen(layer.get_losses_for(x), 1) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/gru_v1.py b/keras/layers/rnn/gru_v1.py deleted file mode 100644 index f6b458c6f8f..00000000000 --- a/keras/layers/rnn/gru_v1.py +++ /dev/null @@ -1,404 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Gated Recurrent Unit V1 layer.""" - - -from keras import activations -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine.input_spec import InputSpec -from keras.layers.rnn import gru -from keras.layers.rnn import rnn_utils -from keras.layers.rnn.base_rnn import RNN - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - - -@keras_export(v1=["keras.layers.GRUCell"]) -class GRUCell(gru.GRUCell): - """Cell class for the GRU layer. - - Args: - units: Positive integer, dimensionality of the output space. - activation: Activation function to use. - Default: hyperbolic tangent (`tanh`). - If you pass None, no activation is applied - (ie. "linear" activation: `a(x) = x`). - recurrent_activation: Activation function to use - for the recurrent step. - Default: hard sigmoid (`hard_sigmoid`). - If you pass `None`, no activation is applied - (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, - used for the linear transformation of the inputs. - recurrent_initializer: Initializer for the `recurrent_kernel` - weights matrix, - used for the linear transformation of the recurrent state. - bias_initializer: Initializer for the bias vector. - kernel_regularizer: Regularizer function applied to - the `kernel` weights matrix. - recurrent_regularizer: Regularizer function applied to - the `recurrent_kernel` weights matrix. - bias_regularizer: Regularizer function applied to the bias vector. - kernel_constraint: Constraint function applied to - the `kernel` weights matrix. - recurrent_constraint: Constraint function applied to - the `recurrent_kernel` weights matrix. - bias_constraint: Constraint function applied to the bias vector. - dropout: Float between 0 and 1. Fraction of the units to drop for the - linear transformation of the inputs. - recurrent_dropout: Float between 0 and 1. - Fraction of the units to drop for - the linear transformation of the recurrent state. - reset_after: GRU convention (whether to apply reset gate after or - before matrix multiplication). False = "before" (default), - True = "after" (cuDNN compatible). - - Call arguments: - inputs: A 2D tensor. - states: List of state tensors corresponding to the previous timestep. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. Only relevant when `dropout` or - `recurrent_dropout` is used. - """ - - def __init__( - self, - units, - activation="tanh", - recurrent_activation="hard_sigmoid", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - dropout=0.0, - recurrent_dropout=0.0, - reset_after=False, - **kwargs - ): - super().__init__( - units, - activation=activation, - recurrent_activation=recurrent_activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - recurrent_initializer=recurrent_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - recurrent_regularizer=recurrent_regularizer, - bias_regularizer=bias_regularizer, - kernel_constraint=kernel_constraint, - recurrent_constraint=recurrent_constraint, - bias_constraint=bias_constraint, - dropout=dropout, - recurrent_dropout=recurrent_dropout, - implementation=kwargs.pop("implementation", 1), - reset_after=reset_after, - **kwargs - ) - - -@keras_export(v1=["keras.layers.GRU"]) -class GRU(RNN): - """Gated Recurrent Unit - Cho et al. 2014. - - There are two variants. The default one is based on 1406.1078v3 and - has reset gate applied to hidden state before matrix multiplication. The - other one is based on original 1406.1078v1 and has the order reversed. - - The second variant is compatible with CuDNNGRU (GPU-only) and allows - inference on CPU. Thus it has separate biases for `kernel` and - `recurrent_kernel`. Use `'reset_after'=True` and - `recurrent_activation='sigmoid'`. - - Args: - units: Positive integer, dimensionality of the output space. - activation: Activation function to use. - Default: hyperbolic tangent (`tanh`). - If you pass `None`, no activation is applied - (ie. "linear" activation: `a(x) = x`). - recurrent_activation: Activation function to use - for the recurrent step. - Default: hard sigmoid (`hard_sigmoid`). - If you pass `None`, no activation is applied - (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, - used for the linear transformation of the inputs. - recurrent_initializer: Initializer for the `recurrent_kernel` weights - matrix, used for the linear transformation of the recurrent state. - bias_initializer: Initializer for the bias vector. - kernel_regularizer: Regularizer function applied to - the `kernel` weights matrix. - recurrent_regularizer: Regularizer function applied to - the `recurrent_kernel` weights matrix. - bias_regularizer: Regularizer function applied to the bias vector. - activity_regularizer: Regularizer function applied to - the output of the layer (its "activation").. - kernel_constraint: Constraint function applied to - the `kernel` weights matrix. - recurrent_constraint: Constraint function applied to - the `recurrent_kernel` weights matrix. - bias_constraint: Constraint function applied to the bias vector. - dropout: Float between 0 and 1. - Fraction of the units to drop for - the linear transformation of the inputs. - recurrent_dropout: Float between 0 and 1. - Fraction of the units to drop for - the linear transformation of the recurrent state. - return_sequences: Boolean. Whether to return the last output - in the output sequence, or the full sequence. - return_state: Boolean. Whether to return the last state - in addition to the output. - go_backwards: Boolean (default False). - If True, process the input sequence backwards and return the - reversed sequence. - stateful: Boolean (default False). If True, the last state - for each sample at index i in a batch will be used as initial - state for the sample of index i in the following batch. - unroll: Boolean (default False). - If True, the network will be unrolled, - else a symbolic loop will be used. - Unrolling can speed-up a RNN, - although it tends to be more memory-intensive. - Unrolling is only suitable for short sequences. - time_major: The shape format of the `inputs` and `outputs` tensors. - If True, the inputs and outputs will be in shape - `(timesteps, batch, ...)`, whereas in the False case, it will be - `(batch, timesteps, ...)`. Using `time_major = True` is a bit more - efficient because it avoids transposes at the beginning and end of the - RNN calculation. However, most TensorFlow data is batch-major, so by - default this function accepts input and emits output in batch-major - form. - reset_after: GRU convention (whether to apply reset gate after or - before matrix multiplication). False = "before" (default), - True = "after" (cuDNN compatible). - - Call arguments: - inputs: A 3D tensor. - mask: Binary tensor of shape `(samples, timesteps)` indicating whether - a given timestep should be masked. An individual `True` entry indicates - that the corresponding timestep should be utilized, while a `False` - entry indicates that the corresponding timestep should be ignored. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. This argument is passed to the cell - when calling it. This is only relevant if `dropout` or - `recurrent_dropout` is used. - initial_state: List of initial state tensors to be passed to the first - call of the cell. - """ - - def __init__( - self, - units, - activation="tanh", - recurrent_activation="hard_sigmoid", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - dropout=0.0, - recurrent_dropout=0.0, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - unroll=False, - reset_after=False, - **kwargs - ): - implementation = kwargs.pop("implementation", 1) - if implementation == 0: - logging.warning( - "`implementation=0` has been deprecated, " - "and now defaults to `implementation=1`." - "Please update your layer call." - ) - if "enable_caching_device" in kwargs: - cell_kwargs = { - "enable_caching_device": kwargs.pop("enable_caching_device") - } - else: - cell_kwargs = {} - cell = GRUCell( - units, - activation=activation, - recurrent_activation=recurrent_activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - recurrent_initializer=recurrent_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - recurrent_regularizer=recurrent_regularizer, - bias_regularizer=bias_regularizer, - kernel_constraint=kernel_constraint, - recurrent_constraint=recurrent_constraint, - bias_constraint=bias_constraint, - dropout=dropout, - recurrent_dropout=recurrent_dropout, - implementation=implementation, - reset_after=reset_after, - dtype=kwargs.get("dtype"), - trainable=kwargs.get("trainable", True), - name="gru_cell", - **cell_kwargs - ) - super().__init__( - cell, - return_sequences=return_sequences, - return_state=return_state, - go_backwards=go_backwards, - stateful=stateful, - unroll=unroll, - **kwargs - ) - self.activity_regularizer = regularizers.get(activity_regularizer) - self.input_spec = [InputSpec(ndim=3)] - - def call(self, inputs, mask=None, training=None, initial_state=None): - return super().call( - inputs, mask=mask, training=training, initial_state=initial_state - ) - - @property - def units(self): - return self.cell.units - - @property - def activation(self): - return self.cell.activation - - @property - def recurrent_activation(self): - return self.cell.recurrent_activation - - @property - def use_bias(self): - return self.cell.use_bias - - @property - def kernel_initializer(self): - return self.cell.kernel_initializer - - @property - def recurrent_initializer(self): - return self.cell.recurrent_initializer - - @property - def bias_initializer(self): - return self.cell.bias_initializer - - @property - def kernel_regularizer(self): - return self.cell.kernel_regularizer - - @property - def recurrent_regularizer(self): - return self.cell.recurrent_regularizer - - @property - def bias_regularizer(self): - return self.cell.bias_regularizer - - @property - def kernel_constraint(self): - return self.cell.kernel_constraint - - @property - def recurrent_constraint(self): - return self.cell.recurrent_constraint - - @property - def bias_constraint(self): - return self.cell.bias_constraint - - @property - def dropout(self): - return self.cell.dropout - - @property - def recurrent_dropout(self): - return self.cell.recurrent_dropout - - @property - def implementation(self): - return self.cell.implementation - - @property - def reset_after(self): - return self.cell.reset_after - - def get_config(self): - config = { - "units": self.units, - "activation": activations.serialize(self.activation), - "recurrent_activation": activations.serialize( - self.recurrent_activation - ), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "recurrent_initializer": initializers.serialize( - self.recurrent_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "recurrent_regularizer": regularizers.serialize( - self.recurrent_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "recurrent_constraint": constraints.serialize( - self.recurrent_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - "dropout": self.dropout, - "recurrent_dropout": self.recurrent_dropout, - "implementation": self.implementation, - "reset_after": self.reset_after, - } - config.update(rnn_utils.config_for_enable_caching_device(self.cell)) - base_config = super().get_config() - del base_config["cell"] - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config): - if "implementation" in config and config["implementation"] == 0: - config["implementation"] = 1 - return cls(**config) diff --git a/keras/layers/rnn/gru_v1_test.py b/keras/layers/rnn/gru_v1_test.py deleted file mode 100644 index 84f6e375f85..00000000000 --- a/keras/layers/rnn/gru_v1_test.py +++ /dev/null @@ -1,170 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for GRU V1 layer.""" - - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized -from tensorflow.core.protobuf import rewriter_config_pb2 - -import keras -from keras.layers.rnn import gru -from keras.layers.rnn import gru_v1 -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import np_utils - -# Global config for grappler setting that is used for graph mode test. -_rewrites = rewriter_config_pb2.RewriterConfig() -_rewrites.implementation_selector = rewriter_config_pb2.RewriterConfig.ON -_rewrites.min_graph_nodes = -1 -_graph_options = tf.compat.v1.GraphOptions(rewrite_options=_rewrites) -_config = tf.compat.v1.ConfigProto(graph_options=_graph_options) - - -@test_utils.run_all_without_tensor_float_32("RNN GRU can use TF32 on GPU") -@test_combinations.run_all_keras_modes(config=_config) -class GRUGraphRewriteTest(test_combinations.TestCase): - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - @test_utils.run_v2_only - def test_gru_feature_parity_v1_v2(self): - input_shape = 10 - rnn_state_size = 8 - timestep = 4 - batch = 20 - - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=batch, - test_samples=0, - input_shape=(timestep, input_shape), - num_classes=rnn_state_size, - random_seed=87654321, - ) - y_train = np_utils.to_categorical(y_train, rnn_state_size) - # For the last batch item of the test data, we filter out the last - # timestep to simulate the variable length sequence and masking test. - x_train[-2:, -1, :] = 0.0 - y_train[-2:] = 0 - - inputs = keras.layers.Input( - shape=[timestep, input_shape], dtype=tf.float32 - ) - masked_input = keras.layers.Masking()(inputs) - gru_layer = gru_v1.GRU( - rnn_state_size, recurrent_activation="sigmoid", reset_after=True - ) - output = gru_layer(masked_input) - gru_model = keras.models.Model(inputs, output) - weights = gru_model.get_weights() - y_1 = gru_model.predict(x_train) - gru_model.compile("rmsprop", "mse") - gru_model.fit(x_train, y_train) - y_2 = gru_model.predict(x_train) - - with test_utils.device(should_use_gpu=True): - cudnn_layer = gru.GRU( - rnn_state_size, recurrent_activation="sigmoid", reset_after=True - ) - cudnn_model = keras.models.Model(inputs, cudnn_layer(masked_input)) - cudnn_model.set_weights(weights) - y_3 = cudnn_model.predict(x_train) - cudnn_model.compile("rmsprop", "mse") - cudnn_model.fit(x_train, y_train) - y_4 = cudnn_model.predict(x_train) - - self.assertAllClose(y_1, y_3, rtol=2e-5, atol=2e-5) - self.assertAllClose(y_2, y_4, rtol=2e-5, atol=2e-5) - - @parameterized.named_parameters( - # test_name, time_major, go_backwards - ("normal", False, False), - ("time_major", True, False), - ("go_backwards", False, True), - ("both", True, True), - ) - def test_time_major_and_go_backward_v1_v2(self, time_major, go_backwards): - input_shape = 10 - rnn_state_size = 8 - timestep = 4 - batch = 100 - - x_train = np.random.random((batch, timestep, input_shape)) - - def build_model(layer_cls): - inputs = keras.layers.Input( - shape=[timestep, input_shape], dtype=tf.float32 - ) - layer = layer_cls( - rnn_state_size, - recurrent_activation="sigmoid", - time_major=time_major, - return_sequences=True, - go_backwards=go_backwards, - reset_after=True, - ) - if time_major: - converted_input = keras.layers.Lambda( - lambda t: tf.transpose(t, [1, 0, 2]) - )(inputs) - outputs = layer(converted_input) - outputs = keras.layers.Lambda( - lambda t: tf.transpose(t, [1, 0, 2]) - )(outputs) - else: - outputs = layer(inputs) - return keras.models.Model(inputs, outputs) - - gru_model = build_model(gru_v1.GRU) - y_ref = gru_model.predict(x_train) - weights = gru_model.get_weights() - - gru_v2_model = build_model(gru.GRU) - gru_v2_model.set_weights(weights) - y = gru_v2_model.predict(x_train) - - self.assertAllClose(y, y_ref) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - @test_utils.run_v2_only - def test_explicit_device_with_go_backward_and_mask_v1(self): - batch_size = 8 - timestep = 7 - masksteps = 5 - units = 4 - - inputs = np.random.randn(batch_size, timestep, units).astype(np.float32) - mask = np.ones((batch_size, timestep)).astype(bool) - mask[:, masksteps:] = 0 - - gru_layer = gru_v1.GRU(units, return_sequences=True, go_backwards=True) - with test_utils.device(should_use_gpu=True): - outputs_masked = gru_layer(inputs, mask=tf.constant(mask)) - outputs_trimmed = gru_layer(inputs[:, :masksteps]) - self.assertAllClose(outputs_masked[:, -masksteps:], outputs_trimmed) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/legacy_cell_wrappers.py b/keras/layers/rnn/legacy_cell_wrappers.py deleted file mode 100644 index ebdbd399c63..00000000000 --- a/keras/layers/rnn/legacy_cell_wrappers.py +++ /dev/null @@ -1,668 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Module implementing the V1 version of RNN cell wrappers.""" - - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import hashlib -import numbers - -import tensorflow.compat.v2 as tf - -from keras.layers.rnn.cell_wrappers import _enumerated_map_structure_up_to -from keras.layers.rnn.cell_wrappers import _parse_config_to_function -from keras.layers.rnn.cell_wrappers import _serialize_function_to_config -from keras.layers.rnn.legacy_cells import RNNCell - -# isort: off -from tensorflow.python.util.tf_export import keras_export -from tensorflow.python.util.tf_export import tf_export - -# This can be used with self.assertRaisesRegexp for assert_like_rnncell. -ASSERT_LIKE_RNNCELL_ERROR_REGEXP = "is not an RNNCell" - - -def _hasattr(obj, attr_name): - try: - getattr(obj, attr_name) - except AttributeError: - return False - else: - return True - - -def assert_like_rnncell(cell_name, cell): - """Raises a TypeError if cell is not like an RNNCell. - - NOTE: Do not rely on the error message (in particular in tests) which can be - subject to change to increase readability. Use - ASSERT_LIKE_RNNCELL_ERROR_REGEXP. - - Args: - cell_name: A string to give a meaningful error referencing to the name of - the functionargument. - cell: The object which should behave like an RNNCell. - - Raises: - TypeError: A human-friendly exception. - """ - conditions = [ - _hasattr(cell, "output_size"), - _hasattr(cell, "state_size"), - _hasattr(cell, "get_initial_state") or _hasattr(cell, "zero_state"), - callable(cell), - ] - errors = [ - "'output_size' property is missing", - "'state_size' property is missing", - "either 'zero_state' or 'get_initial_state' method is required", - "is not callable", - ] - - if not all(conditions): - - errors = [error for error, cond in zip(errors, conditions) if not cond] - raise TypeError( - "The argument {!r} ({}) is not an RNNCell: {}.".format( - cell_name, cell, ", ".join(errors) - ) - ) - - -class _RNNCellWrapperV1(RNNCell): - """Base class for cells wrappers V1 compatibility. - - This class along with `_RNNCellWrapperV2` allows to define cells wrappers - that are compatible with V1 and V2, and defines helper methods for this - purpose. - """ - - def __init__(self, cell, *args, **kwargs): - super().__init__(*args, **kwargs) - assert_like_rnncell("cell", cell) - self.cell = cell - if isinstance(cell, tf.__internal__.tracking.Trackable): - self._track_trackable(self.cell, name="cell") - - def _call_wrapped_cell(self, inputs, state, cell_call_fn, **kwargs): - """Calls the wrapped cell and performs the wrapping logic. - - This method is called from the wrapper's `call` or `__call__` methods. - - Args: - inputs: A tensor with wrapped cell's input. - state: A tensor or tuple of tensors with wrapped cell's state. - cell_call_fn: Wrapped cell's method to use for step computation - (cell's `__call__` or 'call' method). - **kwargs: Additional arguments. - - Returns: - A pair containing: - - Output: A tensor with cell's output. - - New state: A tensor or tuple of tensors with new wrapped cell's - state. - """ - raise NotImplementedError - - def __call__(self, inputs, state, scope=None): - """Runs the RNN cell step computation. - - We assume that the wrapped RNNCell is being built within its `__call__` - method. We directly use the wrapped cell's `__call__` in the overridden - wrapper `__call__` method. - - This allows to use the wrapped cell and the non-wrapped cell - equivalently when using `__call__`. - - Args: - inputs: A tensor with wrapped cell's input. - state: A tensor or tuple of tensors with wrapped cell's state. - scope: VariableScope for the subgraph created in the wrapped cells' - `__call__`. - - Returns: - A pair containing: - - - Output: A tensor with cell's output. - - New state: A tensor or tuple of tensors with new wrapped cell's - state. - """ - return self._call_wrapped_cell( - inputs, state, cell_call_fn=self.cell.__call__, scope=scope - ) - - @property - def state_size(self): - return self.cell.state_size - - @property - def output_size(self): - return self.cell.output_size - - def zero_state(self, batch_size, dtype): - with tf.name_scope(type(self).__name__ + "ZeroState"): - return self.cell.zero_state(batch_size, dtype) - - def get_config(self): - config = { - "cell": { - "class_name": self.cell.__class__.__name__, - "config": self.cell.get_config(), - }, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - config = config.copy() - cell = config.pop("cell") - try: - assert_like_rnncell("cell", cell) - return cls(cell, **config) - except TypeError: - raise ValueError( - "RNNCellWrapper cannot reconstruct the wrapped cell. " - "Please overwrite the cell in the config with a RNNCell " - "instance." - ) - - -@keras_export(v1=["keras.__internal__.legacy.rnn_cell.DropoutWrapper"]) -@tf_export(v1=["nn.rnn_cell.DropoutWrapper"]) -class DropoutWrapper(_RNNCellWrapperV1): - """Operator adding dropout to inputs and outputs of the given cell.""" - - def __init__( - self, - cell, - input_keep_prob=1.0, - output_keep_prob=1.0, - state_keep_prob=1.0, - variational_recurrent=False, - input_size=None, - dtype=None, - seed=None, - dropout_state_filter_visitor=None, - **kwargs, - ): - """Create a cell with added input, state, and/or output dropout. - - If `variational_recurrent` is set to `True` (**NOT** the default - behavior), then the same dropout mask is applied at every step, as - described in: [A Theoretically Grounded Application of Dropout in - Recurrent Neural Networks. Y. Gal, Z. - Ghahramani](https://arxiv.org/abs/1512.05287). - - Otherwise a different dropout mask is applied at every time step. - - Note, by default (unless a custom `dropout_state_filter` is provided), - the memory state (`c` component of any `LSTMStateTuple`) passing through - a `DropoutWrapper` is never modified. This behavior is described in the - above article. - - Args: - cell: an RNNCell, a projection to output_size is added to it. - input_keep_prob: unit Tensor or float between 0 and 1, input keep - probability; if it is constant and 1, no input dropout will be - added. - output_keep_prob: unit Tensor or float between 0 and 1, output keep - probability; if it is constant and 1, no output dropout will be - added. - state_keep_prob: unit Tensor or float between 0 and 1, output keep - probability; if it is constant and 1, no output dropout will be - added. State dropout is performed on the outgoing states of the - cell. **Note** the state components to which dropout is applied when - `state_keep_prob` is in `(0, 1)` are also determined by the argument - `dropout_state_filter_visitor` (e.g. by default dropout is never - applied to the `c` component of an `LSTMStateTuple`). - variational_recurrent: Python bool. If `True`, then the same dropout - pattern is applied across all time steps per run call. If this - parameter is set, `input_size` **must** be provided. - input_size: (optional) (possibly nested tuple of) `TensorShape` - objects containing the depth(s) of the input tensors expected to be - passed in to the `DropoutWrapper`. Required and used **iff** - `variational_recurrent = True` and `input_keep_prob < 1`. - dtype: (optional) The `dtype` of the input, state, and output tensors. - Required and used **iff** `variational_recurrent = True`. - seed: (optional) integer, the randomness seed. - dropout_state_filter_visitor: (optional), default: (see below). - Function that takes any hierarchical level of the state and returns - a scalar or depth=1 structure of Python booleans describing which - terms in the state should be dropped out. In addition, if the - function returns `True`, dropout is applied across this sublevel. - If the function returns `False`, dropout is not applied across this - entire sublevel. Default behavior: perform dropout on all terms - except the memory (`c`) state of `LSTMCellState` objects, and don't - try to apply dropout to `TensorArray` objects: - ``` - def dropout_state_filter_visitor(s): - # Never perform dropout on the c state. - if isinstance(s, LSTMCellState): - return LSTMCellState(c=False, h=True) - elif isinstance(s, TensorArray): - return False - return True - ``` - **kwargs: dict of keyword arguments for base layer. - - Raises: - TypeError: if `cell` is not an `RNNCell`, or `keep_state_fn` is - provided but not `callable`. - ValueError: if any of the keep_probs are not between 0 and 1. - """ - super().__init__(cell, dtype=dtype, **kwargs) - - if dropout_state_filter_visitor is not None and not callable( - dropout_state_filter_visitor - ): - raise TypeError( - "dropout_state_filter_visitor must be callable. " - f"Received: {dropout_state_filter_visitor}" - ) - self._dropout_state_filter = ( - dropout_state_filter_visitor - or _default_dropout_state_filter_visitor - ) - with tf.name_scope("DropoutWrapperInit"): - - def tensor_and_const_value(v): - tensor_value = tf.convert_to_tensor(v) - const_value = tf.get_static_value(tensor_value) - return (tensor_value, const_value) - - for prob, attr in [ - (input_keep_prob, "input_keep_prob"), - (state_keep_prob, "state_keep_prob"), - (output_keep_prob, "output_keep_prob"), - ]: - tensor_prob, const_prob = tensor_and_const_value(prob) - if const_prob is not None: - if const_prob < 0 or const_prob > 1: - raise ValueError( - f"Parameter {attr} must be between 0 and 1. " - f"Received {const_prob}" - ) - setattr(self, f"_{attr}", float(const_prob)) - else: - setattr(self, f"_{attr}", tensor_prob) - - # Set variational_recurrent, seed before running the code below - self._variational_recurrent = variational_recurrent - self._input_size = input_size - self._seed = seed - - self._recurrent_input_noise = None - self._recurrent_state_noise = None - self._recurrent_output_noise = None - - if variational_recurrent: - if dtype is None: - raise ValueError( - "When variational_recurrent=True, dtype must be provided" - ) - - def convert_to_batch_shape(s): - # Prepend a 1 for the batch dimension; for recurrent - # variational dropout we use the same dropout mask for all - # batch elements. - return tf.concat(([1], tf.TensorShape(s).as_list()), 0) - - def batch_noise(s, inner_seed): - shape = convert_to_batch_shape(s) - return tf.random.uniform(shape, seed=inner_seed, dtype=dtype) - - if ( - not isinstance(self._input_keep_prob, numbers.Real) - or self._input_keep_prob < 1.0 - ): - if input_size is None: - raise ValueError( - "When variational_recurrent=True and input_keep_prob " - "< 1.0 or is unknown, input_size must be provided" - ) - self._recurrent_input_noise = _enumerated_map_structure_up_to( - input_size, - lambda i, s: batch_noise( - s, inner_seed=self._gen_seed("input", i) - ), - input_size, - ) - self._recurrent_state_noise = _enumerated_map_structure_up_to( - cell.state_size, - lambda i, s: batch_noise( - s, inner_seed=self._gen_seed("state", i) - ), - cell.state_size, - ) - self._recurrent_output_noise = _enumerated_map_structure_up_to( - cell.output_size, - lambda i, s: batch_noise( - s, inner_seed=self._gen_seed("output", i) - ), - cell.output_size, - ) - - def _gen_seed(self, salt_prefix, index): - if self._seed is None: - return None - salt = "%s_%d" % (salt_prefix, index) - string = (str(self._seed) + salt).encode("utf-8") - return int(hashlib.md5(string).hexdigest()[:8], 16) & 0x7FFFFFFF - - @property - def wrapped_cell(self): - return self.cell - - def build(self, inputs_shape): - self.cell.build(inputs_shape) - self.built = True - - def _variational_recurrent_dropout_value( - self, unused_index, value, noise, keep_prob - ): - """Performs dropout given the pre-calculated noise tensor.""" - # uniform [keep_prob, 1.0 + keep_prob) - random_tensor = keep_prob + noise - - # 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob) - binary_tensor = tf.floor(random_tensor) - ret = tf.divide(value, keep_prob) * binary_tensor - ret.set_shape(value.get_shape()) - return ret - - def _dropout( - self, - values, - salt_prefix, - recurrent_noise, - keep_prob, - shallow_filtered_substructure=None, - ): - """Decides whether to perform standard dropout or recurrent dropout.""" - - if shallow_filtered_substructure is None: - # Put something so we traverse the entire structure; inside the - # dropout function we check to see if leafs of this are bool or not. - shallow_filtered_substructure = values - - if not self._variational_recurrent: - - def dropout(i, do_dropout, v): - if not isinstance(do_dropout, bool) or do_dropout: - return tf.nn.dropout( - v, - rate=1.0 - keep_prob, - seed=self._gen_seed(salt_prefix, i), - ) - else: - return v - - return _enumerated_map_structure_up_to( - shallow_filtered_substructure, - dropout, - *[shallow_filtered_substructure, values], - ) - else: - - def dropout(i, do_dropout, v, n): - if not isinstance(do_dropout, bool) or do_dropout: - return self._variational_recurrent_dropout_value( - i, v, n, keep_prob - ) - else: - return v - - return _enumerated_map_structure_up_to( - shallow_filtered_substructure, - dropout, - *[shallow_filtered_substructure, values, recurrent_noise], - ) - - def _call_wrapped_cell(self, inputs, state, cell_call_fn, **kwargs): - """Runs the wrapped cell and applies dropout. - - Args: - inputs: A tensor with wrapped cell's input. - state: A tensor or tuple of tensors with wrapped cell's state. - cell_call_fn: Wrapped cell's method to use for step computation - (cell's `__call__` or 'call' method). - **kwargs: Additional arguments. - - Returns: - A pair containing: - - - Output: A tensor with cell's output. - - New state: A tensor or tuple of tensors with new wrapped cell's - state. - """ - - def _should_dropout(p): - return (not isinstance(p, float)) or p < 1 - - if _should_dropout(self._input_keep_prob): - inputs = self._dropout( - inputs, - "input", - self._recurrent_input_noise, - self._input_keep_prob, - ) - output, new_state = cell_call_fn(inputs, state, **kwargs) - if _should_dropout(self._state_keep_prob): - # Identify which subsets of the state to perform dropout on and - # which ones to keep. - shallow_filtered_substructure = ( - tf.__internal__.nest.get_traverse_shallow_structure( - self._dropout_state_filter, new_state - ) - ) - new_state = self._dropout( - new_state, - "state", - self._recurrent_state_noise, - self._state_keep_prob, - shallow_filtered_substructure, - ) - if _should_dropout(self._output_keep_prob): - output = self._dropout( - output, - "output", - self._recurrent_output_noise, - self._output_keep_prob, - ) - return output, new_state - - def get_config(self): - """Returns the config of the dropout wrapper.""" - config = { - "input_keep_prob": self._input_keep_prob, - "output_keep_prob": self._output_keep_prob, - "state_keep_prob": self._state_keep_prob, - "variational_recurrent": self._variational_recurrent, - "input_size": self._input_size, - "seed": self._seed, - } - if self._dropout_state_filter != _default_dropout_state_filter_visitor: - ( - function, - function_type, - function_module, - ) = _serialize_function_to_config(self._dropout_state_filter) - config.update( - { - "dropout_fn": function, - "dropout_fn_type": function_type, - "dropout_fn_module": function_module, - } - ) - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - if "dropout_fn" in config: - config = config.copy() - dropout_state_filter = _parse_config_to_function( - config, - custom_objects, - "dropout_fn", - "dropout_fn_type", - "dropout_fn_module", - ) - config.pop("dropout_fn") - config["dropout_state_filter_visitor"] = dropout_state_filter - return super(DropoutWrapper, cls).from_config( - config, custom_objects=custom_objects - ) - - -@keras_export(v1=["keras.__internal__.legacy.rnn_cell.ResidualWrapper"]) -@tf_export(v1=["nn.rnn_cell.ResidualWrapper"]) -class ResidualWrapper(_RNNCellWrapperV1): - """RNNCell wrapper that ensures cell inputs are added to the outputs.""" - - def __init__(self, cell, residual_fn=None, **kwargs): - """Constructs a `ResidualWrapper` for `cell`. - - Args: - cell: An instance of `RNNCell`. - residual_fn: (Optional) The function to map raw cell inputs and raw - cell outputs to the actual cell outputs of the residual network. - Defaults to calling nest.map_structure on (lambda i, o: i + o), - inputs and outputs. - **kwargs: dict of keyword arguments for base layer. - """ - super().__init__(cell, **kwargs) - self._residual_fn = residual_fn - - def _call_wrapped_cell(self, inputs, state, cell_call_fn, **kwargs): - """Run the cell and apply the residual_fn. - - Args: - inputs: cell inputs. - state: cell state. - cell_call_fn: Wrapped cell's method to use for step computation - (cell's `__call__` or 'call' method). - **kwargs: Additional arguments passed to the wrapped cell's `call`. - - Returns: - Tuple of cell outputs and new state. - - Raises: - TypeError: If cell inputs and outputs have different structure (type). - ValueError: If cell inputs and outputs have different structure - (value). - """ - outputs, new_state = cell_call_fn(inputs, state, **kwargs) - - # Ensure shapes match - def assert_shape_match(inp, out): - inp.get_shape().assert_is_compatible_with(out.get_shape()) - - def default_residual_fn(inputs, outputs): - tf.nest.assert_same_structure(inputs, outputs) - tf.nest.map_structure(assert_shape_match, inputs, outputs) - return tf.nest.map_structure( - lambda inp, out: inp + out, inputs, outputs - ) - - res_outputs = (self._residual_fn or default_residual_fn)( - inputs, outputs - ) - return (res_outputs, new_state) - - def get_config(self): - """Returns the config of the residual wrapper.""" - if self._residual_fn is not None: - ( - function, - function_type, - function_module, - ) = _serialize_function_to_config(self._residual_fn) - config = { - "residual_fn": function, - "residual_fn_type": function_type, - "residual_fn_module": function_module, - } - else: - config = {} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - if "residual_fn" in config: - config = config.copy() - residual_function = _parse_config_to_function( - config, - custom_objects, - "residual_fn", - "residual_fn_type", - "residual_fn_module", - ) - config["residual_fn"] = residual_function - return super(ResidualWrapper, cls).from_config( - config, custom_objects=custom_objects - ) - - -@keras_export(v1=["keras.__internal__.legacy.rnn_cell.DeviceWrapper"]) -@tf_export(v1=["nn.rnn_cell.DeviceWrapper"]) -class DeviceWrapper(_RNNCellWrapperV1): - """Operator that ensures an RNNCell runs on a particular device.""" - - def __init__(self, cell, device, **kwargs): - """Construct a `DeviceWrapper` for `cell` with device `device`. - - Ensures the wrapped `cell` is called with `tf.device(device)`. - - Args: - cell: An instance of `RNNCell`. - device: A device string or function, for passing to `tf.device`. - **kwargs: dict of keyword arguments for base layer. - """ - super().__init__(cell, **kwargs) - self._device = device - - def zero_state(self, batch_size, dtype): - with tf.name_scope(type(self).__name__ + "ZeroState"): - with tf.compat.v1.device(self._device): - return self.cell.zero_state(batch_size, dtype) - - def _call_wrapped_cell(self, inputs, state, cell_call_fn, **kwargs): - """Run the cell on specified device.""" - with tf.compat.v1.device(self._device): - return cell_call_fn(inputs, state, **kwargs) - - def get_config(self): - config = {"device": self._device} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -def _default_dropout_state_filter_visitor(substate): - from keras.layers.rnn.legacy_cells import ( - LSTMStateTuple, - ) - - if isinstance(substate, LSTMStateTuple): - # Do not perform dropout on the memory state. - return LSTMStateTuple(c=False, h=True) - elif isinstance(substate, tf.TensorArray): - return False - return True diff --git a/keras/layers/rnn/legacy_cell_wrappers_test.py b/keras/layers/rnn/legacy_cell_wrappers_test.py deleted file mode 100644 index f9bf3040e70..00000000000 --- a/keras/layers/rnn/legacy_cell_wrappers_test.py +++ /dev/null @@ -1,40 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for RNN cell wrappers v1 implementation.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.layers.rnn import legacy_cell_wrappers -from keras.layers.rnn import legacy_cells -from keras.testing_infra import test_combinations - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class RNNCellWrapperV1Test(tf.test.TestCase, parameterized.TestCase): - @parameterized.parameters( - [ - legacy_cell_wrappers.DropoutWrapper, - legacy_cell_wrappers.ResidualWrapper, - ] - ) - def testWrapperKerasStyle(self, wrapper): - """Tests if wrapper cell is instantiated in keras style scope.""" - wrapped_cell = wrapper(legacy_cells.BasicRNNCell(1)) - self.assertFalse(wrapped_cell._keras_style) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/legacy_cells.py b/keras/layers/rnn/legacy_cells.py deleted file mode 100644 index 1df5c47d73d..00000000000 --- a/keras/layers/rnn/legacy_cells.py +++ /dev/null @@ -1,1357 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Legacy module implementing RNN Cells. - -This module provides a number of basic commonly used RNN cells, such as LSTM -(Long Short Term Memory) or GRU (Gated Recurrent Unit), and a number of -operators that allow adding dropouts, projections, or embeddings for inputs. -Constructing multi-layer cells is supported by the class `MultiRNNCell`, or by -calling the `rnn` ops several times. -""" - - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import collections -import warnings - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import backend -from keras import initializers -from keras.engine import base_layer_utils -from keras.engine import input_spec -from keras.legacy_tf_layers import base as base_layer -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export -from tensorflow.python.util.tf_export import tf_export - -_BIAS_VARIABLE_NAME = "bias" -_WEIGHTS_VARIABLE_NAME = "kernel" - - -def _hasattr(obj, attr_name): - try: - getattr(obj, attr_name) - except AttributeError: - return False - else: - return True - - -def _concat(prefix, suffix, static=False): - """Concat that enables int, Tensor, or TensorShape values. - - This function takes a size specification, which can be an integer, a - TensorShape, or a Tensor, and converts it into a concatenated Tensor - (if static = False) or a list of integers (if static = True). - - Args: - prefix: The prefix; usually the batch size (and/or time step size). - (TensorShape, int, or Tensor.) - suffix: TensorShape, int, or Tensor. - static: If `True`, return a python list with possibly unknown dimensions. - Otherwise return a `Tensor`. - - Returns: - shape: the concatenation of prefix and suffix. - - Raises: - ValueError: if `suffix` is not a scalar or vector (or TensorShape). - ValueError: if prefix or suffix was `None` and asked for dynamic - Tensors out. - """ - if isinstance(prefix, tf.Tensor): - p = prefix - p_static = tf.get_static_value(prefix) - if p.shape.ndims == 0: - p = tf.compat.v1.expand_dims(p, 0) - elif p.shape.ndims != 1: - raise ValueError( - "Prefix tensor must be either a scalar or vector, " - f"but received tensor: {p}" - ) - else: - p = tf.TensorShape(prefix) - p_static = p.as_list() if p.ndims is not None else None - p = ( - tf.constant(p.as_list(), dtype=tf.int32) - if p.is_fully_defined() - else None - ) - if isinstance(suffix, tf.Tensor): - s = suffix - s_static = tf.get_static_value(suffix) - if s.shape.ndims == 0: - s = tf.compat.v1.expand_dims(s, 0) - elif s.shape.ndims != 1: - raise ValueError( - "suffix tensor must be either a scalar or vector, " - f"but received tensor: {s}" - ) - else: - s = tf.TensorShape(suffix) - s_static = s.as_list() if s.ndims is not None else None - s = ( - tf.constant(s.as_list(), dtype=tf.int32) - if s.is_fully_defined() - else None - ) - - if static: - shape = tf.TensorShape(p_static).concatenate(s_static) - shape = shape.as_list() if shape.ndims is not None else None - else: - if p is None or s is None: - raise ValueError( - "Prefix or suffix can't be None. " - f"Received prefix = {prefix} and suffix = {suffix}" - ) - shape = tf.concat((p, s), 0) - return shape - - -def _zero_state_tensors(state_size, batch_size, dtype): - """Create tensors of zeros based on state_size, batch_size, and dtype.""" - - def get_state_shape(s): - """Combine s with batch_size to get a proper tensor shape.""" - c = _concat(batch_size, s) - size = tf.zeros(c, dtype=dtype) - if not tf.executing_eagerly(): - c_static = _concat(batch_size, s, static=True) - size.set_shape(c_static) - return size - - return tf.nest.map_structure(get_state_shape, state_size) - - -@keras_export(v1=["keras.__internal__.legacy.rnn_cell.RNNCell"]) -@tf_export(v1=["nn.rnn_cell.RNNCell"]) -class RNNCell(base_layer.Layer): - """Abstract object representing an RNN cell. - - Every `RNNCell` must have the properties below and implement `call` with - the signature `(output, next_state) = call(input, state)`. The optional - third input argument, `scope`, is allowed for backwards compatibility - purposes; but should be left off for new subclasses. - - This definition of cell differs from the definition used in the literature. - In the literature, 'cell' refers to an object with a single scalar output. - This definition refers to a horizontal array of such units. - - An RNN cell, in the most abstract setting, is anything that has - a state and performs some operation that takes a matrix of inputs. - This operation results in an output matrix with `self.output_size` columns. - If `self.state_size` is an integer, this operation also results in a new - state matrix with `self.state_size` columns. If `self.state_size` is a - (possibly nested tuple of) TensorShape object(s), then it should return a - matching structure of Tensors having shape `[batch_size].concatenate(s)` - for each `s` in `self.batch_size`. - """ - - def __init__(self, trainable=True, name=None, dtype=None, **kwargs): - super().__init__(trainable=trainable, name=name, dtype=dtype, **kwargs) - # Attribute that indicates whether the cell is a TF RNN cell, due the - # slight difference between TF and Keras RNN cell. Notably the state is - # not wrapped in a list for TF cell where they are single tensor state, - # whereas keras cell will wrap the state into a list, and call() will - # have to unwrap them. - self._is_tf_rnn_cell = True - - def __call__(self, inputs, state, scope=None): - """Run this RNN cell on inputs, starting from the given state. - - Args: - inputs: `2-D` tensor with shape `[batch_size, input_size]`. - state: if `self.state_size` is an integer, this should be a - `2-D Tensor` with shape `[batch_size, self.state_size]`. Otherwise, - if `self.state_size` is a tuple of integers, this should be a tuple - with shapes `[batch_size, s] for s in self.state_size`. - scope: VariableScope for the created subgraph; defaults to class name. - - Returns: - A pair containing: - - - Output: A `2-D` tensor with shape `[batch_size, self.output_size]`. - - New state: Either a single `2-D` tensor, or a tuple of tensors - matching the arity and shapes of `state`. - """ - if scope is not None: - with tf.compat.v1.variable_scope( - scope, custom_getter=self._rnn_get_variable - ) as scope: - return super().__call__(inputs, state, scope=scope) - else: - scope_attrname = "rnncell_scope" - scope = getattr(self, scope_attrname, None) - if scope is None: - scope = tf.compat.v1.variable_scope( - tf.compat.v1.get_variable_scope(), - custom_getter=self._rnn_get_variable, - ) - setattr(self, scope_attrname, scope) - with scope: - return super().__call__(inputs, state) - - def _rnn_get_variable(self, getter, *args, **kwargs): - variable = getter(*args, **kwargs) - if tf.compat.v1.executing_eagerly_outside_functions(): - trainable = variable.trainable - else: - trainable = variable in tf.compat.v1.trainable_variables() or ( - base_layer_utils.is_split_variable(variable) - and list(variable)[0] in tf.compat.v1.trainable_variables() - ) - if trainable and all( - variable is not v for v in self._trainable_weights - ): - self._trainable_weights.append(variable) - elif not trainable and all( - variable is not v for v in self._non_trainable_weights - ): - self._non_trainable_weights.append(variable) - return variable - - @property - def state_size(self): - """size(s) of state(s) used by this cell. - - It can be represented by an Integer, a TensorShape or a tuple of - Integers or TensorShapes. - """ - raise NotImplementedError("Abstract method") - - @property - def output_size(self): - """Integer or TensorShape: size of outputs produced by this cell.""" - raise NotImplementedError("Abstract method") - - def build(self, _): - # This tells the parent Layer object that it's OK to call - # self.add_weight() inside the call() method. - pass - - def get_initial_state(self, inputs=None, batch_size=None, dtype=None): - if inputs is not None: - # Validate the given batch_size and dtype against inputs if - # provided. - inputs = tf.convert_to_tensor(inputs, name="inputs") - if batch_size is not None: - if tf.is_tensor(batch_size): - static_batch_size = tf.get_static_value( - batch_size, partial=True - ) - else: - static_batch_size = batch_size - if inputs.shape.dims[0].value != static_batch_size: - raise ValueError( - "batch size from input tensor is different from the " - "input param. Input tensor batch: " - f"{inputs.shape.dims[0].value}, " - f"batch_size: {batch_size}" - ) - - if dtype is not None and inputs.dtype != dtype: - raise ValueError( - "dtype from input tensor is different from the " - f"input param. Input tensor dtype: {inputs.dtype}, " - f"dtype: {dtype}" - ) - - batch_size = ( - inputs.shape.dims[0].value or tf.compat.v1.shape(inputs)[0] - ) - dtype = inputs.dtype - if batch_size is None or dtype is None: - raise ValueError( - "batch_size and dtype cannot be None while constructing " - f"initial state: batch_size={batch_size}, dtype={dtype}" - ) - return self.zero_state(batch_size, dtype) - - def zero_state(self, batch_size, dtype): - """Return zero-filled state tensor(s). - - Args: - batch_size: int, float, or unit Tensor representing the batch size. - dtype: the data type to use for the state. - - Returns: - If `state_size` is an int or TensorShape, then the return value is a - `N-D` tensor of shape `[batch_size, state_size]` filled with zeros. - - If `state_size` is a nested list or tuple, then the return value is - a nested list or tuple (of the same structure) of `2-D` tensors with - the shapes `[batch_size, s]` for each s in `state_size`. - """ - # Try to use the last cached zero_state. This is done to avoid - # recreating zeros, especially when eager execution is enabled. - state_size = self.state_size - is_eager = tf.executing_eagerly() - if is_eager and _hasattr(self, "_last_zero_state"): - ( - last_state_size, - last_batch_size, - last_dtype, - last_output, - ) = getattr(self, "_last_zero_state") - if ( - last_batch_size == batch_size - and last_dtype == dtype - and last_state_size == state_size - ): - return last_output - with backend.name_scope(type(self).__name__ + "ZeroState"): - output = _zero_state_tensors(state_size, batch_size, dtype) - if is_eager: - self._last_zero_state = (state_size, batch_size, dtype, output) - return output - - def get_config(self): - return super().get_config() - - @property - def _use_input_spec_as_call_signature(self): - # We do not store the shape information for the state argument in the - # call function for legacy RNN cells, so do not generate an input - # signature. - return False - - -class LayerRNNCell(RNNCell): - """Subclass of RNNCells that act like proper `tf.Layer` objects. - - For backwards compatibility purposes, most `RNNCell` instances allow their - `call` methods to instantiate variables via `tf.compat.v1.get_variable`. - The underlying variable scope thus keeps track of any variables, and - returning cached versions. This is atypical of `tf.layer` objects, which - separate this part of layer building into a `build` method that is only - called once. - - Here we provide a subclass for `RNNCell` objects that act exactly as - `Layer` objects do. They must provide a `build` method and their - `call` methods do not access Variables `tf.compat.v1.get_variable`. - """ - - def __call__(self, inputs, state, scope=None, *args, **kwargs): - """Run this RNN cell on inputs, starting from the given state. - - Args: - inputs: `2-D` tensor with shape `[batch_size, input_size]`. - state: if `self.state_size` is an integer, this should be a `2-D - Tensor` with shape `[batch_size, self.state_size]`. Otherwise, if - `self.state_size` is a tuple of integers, this should be a tuple - with shapes `[batch_size, s] for s in self.state_size`. - scope: optional cell scope. - *args: Additional positional arguments. - **kwargs: Additional keyword arguments. - - Returns: - A pair containing: - - - Output: A `2-D` tensor with shape `[batch_size, self.output_size]`. - - New state: Either a single `2-D` tensor, or a tuple of tensors - matching the arity and shapes of `state`. - """ - # Bypass RNNCell's variable capturing semantics for LayerRNNCell. - # Instead, it is up to subclasses to provide a proper build - # method. See the class docstring for more details. - return base_layer.Layer.__call__( - self, inputs, state, scope=scope, *args, **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.rnn_cell.BasicRNNCell"]) -@tf_export(v1=["nn.rnn_cell.BasicRNNCell"]) -class BasicRNNCell(LayerRNNCell): - """The most basic RNN cell. - - Note that this cell is not optimized for performance. - - Args: - num_units: int, The number of units in the RNN cell. - activation: Nonlinearity to use. Default: `tanh`. It could also be string - that is within Keras activation function names. - reuse: (optional) Python boolean describing whether to reuse variables in - an existing scope. If not `True`, and the existing scope already has the - given variables, an error is raised. - name: String, the name of the layer. Layers with the same name will share - weights, but to avoid mistakes we require reuse=True in such cases. - dtype: Default dtype of the layer (default of `None` means use the type of - the first input). Required when `build` is called before `call`. - **kwargs: Dict, keyword named properties for common layer attributes, like - `trainable` etc when constructing the cell from configs of get_config(). - """ - - def __init__( - self, - num_units, - activation=None, - reuse=None, - name=None, - dtype=None, - **kwargs, - ): - warnings.warn( - "`tf.nn.rnn_cell.BasicRNNCell` is deprecated and will be " - "removed in a future version. This class " - "is equivalent as `tf.keras.layers.SimpleRNNCell`, " - "and will be replaced by that in Tensorflow 2.0.", - stacklevel=2, - ) - super().__init__(_reuse=reuse, name=name, dtype=dtype, **kwargs) - _check_supported_dtypes(self.dtype) - if tf.executing_eagerly() and tf.config.list_logical_devices("GPU"): - logging.warning( - "%s: Note that this cell is not optimized for performance.", - self, - ) - - # Inputs must be 2-dimensional. - self.input_spec = input_spec.InputSpec(ndim=2) - - self._num_units = num_units - if activation: - self._activation = activations.get(activation) - else: - self._activation = tf.tanh - - @property - def state_size(self): - return self._num_units - - @property - def output_size(self): - return self._num_units - - @tf_utils.shape_type_conversion - def build(self, inputs_shape): - if inputs_shape[-1] is None: - raise ValueError( - "Expected inputs.shape[-1] to be known, " - f"received shape: {inputs_shape}" - ) - _check_supported_dtypes(self.dtype) - - input_depth = inputs_shape[-1] - self._kernel = self.add_weight( - _WEIGHTS_VARIABLE_NAME, - shape=[input_depth + self._num_units, self._num_units], - ) - self._bias = self.add_weight( - _BIAS_VARIABLE_NAME, - shape=[self._num_units], - initializer=tf.compat.v1.zeros_initializer(dtype=self.dtype), - ) - - self.built = True - - def call(self, inputs, state): - """Most basic RNN: output = new_state = act(W * input + U * state + - B).""" - _check_rnn_cell_input_dtypes([inputs, state]) - gate_inputs = tf.matmul(tf.concat([inputs, state], 1), self._kernel) - gate_inputs = tf.nn.bias_add(gate_inputs, self._bias) - output = self._activation(gate_inputs) - return output, output - - def get_config(self): - config = { - "num_units": self._num_units, - "activation": activations.serialize(self._activation), - "reuse": self._reuse, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export(v1=["keras.__internal__.legacy.rnn_cell.GRUCell"]) -@tf_export(v1=["nn.rnn_cell.GRUCell"]) -class GRUCell(LayerRNNCell): - """Gated Recurrent Unit cell. - - Note that this cell is not optimized for performance. Please use - `tf.compat.v1.keras.layers.CuDNNGRU` for better performance on GPU, or - `tf.raw_ops.GRUBlockCell` for better performance on CPU. - - Args: - num_units: int, The number of units in the GRU cell. - activation: Nonlinearity to use. Default: `tanh`. - reuse: (optional) Python boolean describing whether to reuse variables in - an existing scope. If not `True`, and the existing scope already has - the given variables, an error is raised. - kernel_initializer: (optional) The initializer to use for the weight and - projection matrices. - bias_initializer: (optional) The initializer to use for the bias. - name: String, the name of the layer. Layers with the same name will share - weights, but to avoid mistakes we require reuse=True in such cases. - dtype: Default dtype of the layer (default of `None` means use the type of - the first input). Required when `build` is called before `call`. - **kwargs: Dict, keyword named properties for common layer attributes, like - `trainable` etc when constructing the cell from configs of get_config(). - References: Learning Phrase Representations using RNN Encoder Decoder - for Statistical Machine Translation: [Cho et al., 2014] - (https://aclanthology.coli.uni-saarland.de/papers/D14-1179/d14-1179) - ([pdf](http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf)) - """ - - def __init__( - self, - num_units, - activation=None, - reuse=None, - kernel_initializer=None, - bias_initializer=None, - name=None, - dtype=None, - **kwargs, - ): - warnings.warn( - "`tf.nn.rnn_cell.GRUCell` is deprecated and will be removed " - "in a future version. This class " - "is equivalent as `tf.keras.layers.GRUCell`, " - "and will be replaced by that in Tensorflow 2.0.", - stacklevel=2, - ) - super().__init__(_reuse=reuse, name=name, dtype=dtype, **kwargs) - _check_supported_dtypes(self.dtype) - - if tf.executing_eagerly() and tf.config.list_logical_devices("GPU"): - logging.warning( - "%s: Note that this cell is not optimized for performance. " - "Please use tf.compat.v1.keras.layers.CuDNNGRU for better " - "performance on GPU.", - self, - ) - # Inputs must be 2-dimensional. - self.input_spec = input_spec.InputSpec(ndim=2) - - self._num_units = num_units - if activation: - self._activation = activations.get(activation) - else: - self._activation = tf.tanh - self._kernel_initializer = initializers.get(kernel_initializer) - self._bias_initializer = initializers.get(bias_initializer) - - @property - def state_size(self): - return self._num_units - - @property - def output_size(self): - return self._num_units - - @tf_utils.shape_type_conversion - def build(self, inputs_shape): - if inputs_shape[-1] is None: - raise ValueError( - "Expected inputs.shape[-1] to be known, " - f"received shape: {inputs_shape}" - ) - _check_supported_dtypes(self.dtype) - input_depth = inputs_shape[-1] - self._gate_kernel = self.add_weight( - f"gates/{_WEIGHTS_VARIABLE_NAME}", - shape=[input_depth + self._num_units, 2 * self._num_units], - initializer=self._kernel_initializer, - ) - self._gate_bias = self.add_weight( - f"gates/{_BIAS_VARIABLE_NAME}", - shape=[2 * self._num_units], - initializer=( - self._bias_initializer - if self._bias_initializer is not None - else tf.compat.v1.constant_initializer(1.0, dtype=self.dtype) - ), - ) - self._candidate_kernel = self.add_weight( - f"candidate/{_WEIGHTS_VARIABLE_NAME}", - shape=[input_depth + self._num_units, self._num_units], - initializer=self._kernel_initializer, - ) - self._candidate_bias = self.add_weight( - f"candidate/{_BIAS_VARIABLE_NAME}", - shape=[self._num_units], - initializer=( - self._bias_initializer - if self._bias_initializer is not None - else tf.compat.v1.zeros_initializer(dtype=self.dtype) - ), - ) - - self.built = True - - def call(self, inputs, state): - """Gated recurrent unit (GRU) with nunits cells.""" - _check_rnn_cell_input_dtypes([inputs, state]) - - gate_inputs = tf.matmul( - tf.concat([inputs, state], 1), self._gate_kernel - ) - gate_inputs = tf.nn.bias_add(gate_inputs, self._gate_bias) - - value = tf.sigmoid(gate_inputs) - r, u = tf.split(value=value, num_or_size_splits=2, axis=1) - - r_state = r * state - - candidate = tf.matmul( - tf.concat([inputs, r_state], 1), self._candidate_kernel - ) - candidate = tf.nn.bias_add(candidate, self._candidate_bias) - - c = self._activation(candidate) - new_h = u * state + (1 - u) * c - return new_h, new_h - - def get_config(self): - config = { - "num_units": self._num_units, - "kernel_initializer": initializers.serialize( - self._kernel_initializer - ), - "bias_initializer": initializers.serialize(self._bias_initializer), - "activation": activations.serialize(self._activation), - "reuse": self._reuse, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -_LSTMStateTuple = collections.namedtuple("LSTMStateTuple", ("c", "h")) - - -@keras_export(v1=["keras.__internal__.legacy.rnn_cell.LSTMStateTuple"]) -@tf_export(v1=["nn.rnn_cell.LSTMStateTuple"]) -class LSTMStateTuple(_LSTMStateTuple): - """Tuple used by LSTM Cells for `state_size`, `zero_state`, & output state. - - Stores two elements: `(c, h)`, in that order. Where `c` is the hidden state - and `h` is the output. - - Only used when `state_is_tuple=True`. - """ - - __slots__ = () - - @property - def dtype(self): - (c, h) = self - if c.dtype != h.dtype: - raise TypeError( - "Inconsistent dtypes for internal state: " - f"{c.dtype} vs {h.dtype}" - ) - return c.dtype - - -@keras_export(v1=["keras.__internal__.legacy.rnn_cell.BasicLSTMCell"]) -@tf_export(v1=["nn.rnn_cell.BasicLSTMCell"]) -class BasicLSTMCell(LayerRNNCell): - """DEPRECATED: Please use `tf.compat.v1.nn.rnn_cell.LSTMCell` instead. - - Basic LSTM recurrent network cell. - - The implementation is based on - - We add forget_bias (default: 1) to the biases of the forget gate in order to - reduce the scale of forgetting in the beginning of the training. - - It does not allow cell clipping, a projection layer, and does not - use peep-hole connections: it is the basic baseline. - - For advanced models, please use the full `tf.compat.v1.nn.rnn_cell.LSTMCell` - that follows. - - Note that this cell is not optimized for performance. Please use - `tf.compat.v1.keras.layers.CuDNNLSTM` for better performance on GPU, or - `tf.raw_ops.LSTMBlockCell` for better performance on CPU. - """ - - def __init__( - self, - num_units, - forget_bias=1.0, - state_is_tuple=True, - activation=None, - reuse=None, - name=None, - dtype=None, - **kwargs, - ): - """Initialize the basic LSTM cell. - - Args: - num_units: int, The number of units in the LSTM cell. - forget_bias: float, The bias added to forget gates (see above). Must - set to `0.0` manually when restoring from CudnnLSTM-trained - checkpoints. - state_is_tuple: If True, accepted and returned states are 2-tuples of - the `c_state` and `m_state`. If False, they are concatenated along - the column axis. The latter behavior will soon be deprecated. - activation: Activation function of the inner states. Default: `tanh`. - It could also be string that is within Keras activation function - names. - reuse: (optional) Python boolean describing whether to reuse variables - in an existing scope. If not `True`, and the existing scope already - has the given variables, an error is raised. - name: String, the name of the layer. Layers with the same name will - share weights, but to avoid mistakes we require reuse=True in such - cases. - dtype: Default dtype of the layer (default of `None` means use the - type of the first input). Required when `build` is called before - `call`. - **kwargs: Dict, keyword named properties for common layer attributes, - like `trainable` etc when constructing the cell from configs of - get_config(). When restoring from CudnnLSTM-trained checkpoints, - must use `CudnnCompatibleLSTMCell` instead. - """ - warnings.warn( - "`tf.nn.rnn_cell.BasicLSTMCell` is deprecated and will be " - "removed in a future version. This class " - "is equivalent as `tf.keras.layers.LSTMCell`, " - "and will be replaced by that in Tensorflow 2.0.", - stacklevel=2, - ) - super().__init__(_reuse=reuse, name=name, dtype=dtype, **kwargs) - _check_supported_dtypes(self.dtype) - if not state_is_tuple: - logging.warning( - "%s: Using a concatenated state is slower and will soon be " - "deprecated. Use state_is_tuple=True.", - self, - ) - if tf.executing_eagerly() and tf.config.list_logical_devices("GPU"): - logging.warning( - "%s: Note that this cell is not optimized for performance. " - "Please use tf.compat.v1.keras.layers.CuDNNLSTM for better " - "performance on GPU.", - self, - ) - - # Inputs must be 2-dimensional. - self.input_spec = input_spec.InputSpec(ndim=2) - - self._num_units = num_units - self._forget_bias = forget_bias - self._state_is_tuple = state_is_tuple - if activation: - self._activation = activations.get(activation) - else: - self._activation = tf.tanh - - @property - def state_size(self): - return ( - LSTMStateTuple(self._num_units, self._num_units) - if self._state_is_tuple - else 2 * self._num_units - ) - - @property - def output_size(self): - return self._num_units - - @tf_utils.shape_type_conversion - def build(self, inputs_shape): - if inputs_shape[-1] is None: - raise ValueError( - "Expected inputs.shape[-1] to be known, " - f"received shape: {inputs_shape}" - ) - _check_supported_dtypes(self.dtype) - input_depth = inputs_shape[-1] - h_depth = self._num_units - self._kernel = self.add_weight( - _WEIGHTS_VARIABLE_NAME, - shape=[input_depth + h_depth, 4 * self._num_units], - ) - self._bias = self.add_weight( - _BIAS_VARIABLE_NAME, - shape=[4 * self._num_units], - initializer=tf.compat.v1.zeros_initializer(dtype=self.dtype), - ) - - self.built = True - - def call(self, inputs, state): - """Long short-term memory cell (LSTM). - - Args: - inputs: `2-D` tensor with shape `[batch_size, input_size]`. - state: An `LSTMStateTuple` of state tensors, each shaped `[batch_size, - num_units]`, if `state_is_tuple` has been set to `True`. Otherwise, - a `Tensor` shaped `[batch_size, 2 * num_units]`. - - Returns: - A pair containing the new hidden state, and the new state (either a - `LSTMStateTuple` or a concatenated state, depending on - `state_is_tuple`). - """ - _check_rnn_cell_input_dtypes([inputs, state]) - - sigmoid = tf.sigmoid - one = tf.constant(1, dtype=tf.int32) - # Parameters of gates are concatenated into one multiply for efficiency. - if self._state_is_tuple: - c, h = state - else: - c, h = tf.split(value=state, num_or_size_splits=2, axis=one) - - gate_inputs = tf.matmul(tf.concat([inputs, h], 1), self._kernel) - gate_inputs = tf.nn.bias_add(gate_inputs, self._bias) - - # i = input_gate, j = new_input, f = forget_gate, o = output_gate - i, j, f, o = tf.split(value=gate_inputs, num_or_size_splits=4, axis=one) - - forget_bias_tensor = tf.constant(self._forget_bias, dtype=f.dtype) - # Note that using `add` and `multiply` instead of `+` and `*` gives a - # performance improvement. So using those at the cost of readability. - add = tf.add - multiply = tf.multiply - new_c = add( - multiply(c, sigmoid(add(f, forget_bias_tensor))), - multiply(sigmoid(i), self._activation(j)), - ) - new_h = multiply(self._activation(new_c), sigmoid(o)) - - if self._state_is_tuple: - new_state = LSTMStateTuple(new_c, new_h) - else: - new_state = tf.concat([new_c, new_h], 1) - return new_h, new_state - - def get_config(self): - config = { - "num_units": self._num_units, - "forget_bias": self._forget_bias, - "state_is_tuple": self._state_is_tuple, - "activation": activations.serialize(self._activation), - "reuse": self._reuse, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export(v1=["keras.__internal__.legacy.rnn_cell.LSTMCell"]) -@tf_export(v1=["nn.rnn_cell.LSTMCell"]) -class LSTMCell(LayerRNNCell): - """Long short-term memory unit (LSTM) recurrent network cell. - - The default non-peephole implementation is based on (Gers et al., 1999). - The peephole implementation is based on (Sak et al., 2014). - - The class uses optional peep-hole connections, optional cell clipping, and - an optional projection layer. - - Note that this cell is not optimized for performance. Please use - `tf.compat.v1.keras.layers.CuDNNLSTM` for better performance on GPU, or - `tf.raw_ops.LSTMBlockCell` for better performance on CPU. - References: - Long short-term memory recurrent neural network architectures for large - scale acoustic modeling: - [Sak et al., 2014] - (https://www.isca-speech.org/archive/interspeech_2014/i14_0338.html) - ([pdf] - (https://www.isca-speech.org/archive/archive_papers/interspeech_2014/i14_0338.pdf)) - Learning to forget: - [Gers et al., 1999] - (http://digital-library.theiet.org/content/conferences/10.1049/cp_19991218) - ([pdf](https://arxiv.org/pdf/1409.2329.pdf)) - Long Short-Term Memory: - [Hochreiter et al., 1997] - (https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735) - ([pdf](http://ml.jku.at/publications/older/3504.pdf)) - """ - - def __init__( - self, - num_units, - use_peepholes=False, - cell_clip=None, - initializer=None, - num_proj=None, - proj_clip=None, - num_unit_shards=None, - num_proj_shards=None, - forget_bias=1.0, - state_is_tuple=True, - activation=None, - reuse=None, - name=None, - dtype=None, - **kwargs, - ): - """Initialize the parameters for an LSTM cell. - - Args: - num_units: int, The number of units in the LSTM cell. - use_peepholes: bool, set True to enable diagonal/peephole connections. - cell_clip: (optional) A float value, if provided the cell state is - clipped by this value prior to the cell output activation. - initializer: (optional) The initializer to use for the weight and - projection matrices. - num_proj: (optional) int, The output dimensionality for the projection - matrices. If None, no projection is performed. - proj_clip: (optional) A float value. If `num_proj > 0` and - `proj_clip` is provided, then the projected values are clipped - elementwise to within `[-proj_clip, proj_clip]`. - num_unit_shards: Deprecated, will be removed by Jan. 2017. Use a - variable_scope partitioner instead. - num_proj_shards: Deprecated, will be removed by Jan. 2017. Use a - variable_scope partitioner instead. - forget_bias: Biases of the forget gate are initialized by default to 1 - in order to reduce the scale of forgetting at the beginning of the - training. Must set it manually to `0.0` when restoring from - CudnnLSTM trained checkpoints. - state_is_tuple: If True, accepted and returned states are 2-tuples of - the `c_state` and `m_state`. If False, they are concatenated along - the column axis. This latter behavior will soon be deprecated. - activation: Activation function of the inner states. Default: `tanh`. - It could also be string that is within Keras activation function - names. - reuse: (optional) Python boolean describing whether to reuse variables - in an existing scope. If not `True`, and the existing scope already - has the given variables, an error is raised. - name: String, the name of the layer. Layers with the same name will - share weights, but to avoid mistakes we require reuse=True in such - cases. - dtype: Default dtype of the layer (default of `None` means use the - type of the first input). Required when `build` is called before - `call`. - **kwargs: Dict, keyword named properties for common layer attributes, - like `trainable` etc when constructing the cell from configs of - get_config(). When restoring from CudnnLSTM-trained checkpoints, - use `CudnnCompatibleLSTMCell` instead. - """ - warnings.warn( - "`tf.nn.rnn_cell.LSTMCell` is deprecated and will be " - "removed in a future version. This class " - "is equivalent as `tf.keras.layers.LSTMCell`, " - "and will be replaced by that in Tensorflow 2.0.", - stacklevel=2, - ) - super().__init__(_reuse=reuse, name=name, dtype=dtype, **kwargs) - _check_supported_dtypes(self.dtype) - if not state_is_tuple: - logging.warning( - "%s: Using a concatenated state is slower and will soon be " - "deprecated. Use state_is_tuple=True.", - self, - ) - if num_unit_shards is not None or num_proj_shards is not None: - logging.warning( - "%s: The num_unit_shards and proj_unit_shards parameters are " - "deprecated and will be removed in Jan 2017. " - "Use a variable scope with a partitioner instead.", - self, - ) - if tf.executing_eagerly() and tf.config.list_logical_devices("GPU"): - logging.warning( - "%s: Note that this cell is not optimized for performance. " - "Please use tf.compat.v1.keras.layers.CuDNNLSTM for better " - "performance on GPU.", - self, - ) - - # Inputs must be 2-dimensional. - self.input_spec = input_spec.InputSpec(ndim=2) - - self._num_units = num_units - self._use_peepholes = use_peepholes - self._cell_clip = cell_clip - self._initializer = initializers.get(initializer) - self._num_proj = num_proj - self._proj_clip = proj_clip - self._num_unit_shards = num_unit_shards - self._num_proj_shards = num_proj_shards - self._forget_bias = forget_bias - self._state_is_tuple = state_is_tuple - if activation: - self._activation = activations.get(activation) - else: - self._activation = tf.tanh - - if num_proj: - self._state_size = ( - LSTMStateTuple(num_units, num_proj) - if state_is_tuple - else num_units + num_proj - ) - self._output_size = num_proj - else: - self._state_size = ( - LSTMStateTuple(num_units, num_units) - if state_is_tuple - else 2 * num_units - ) - self._output_size = num_units - - @property - def state_size(self): - return self._state_size - - @property - def output_size(self): - return self._output_size - - @tf_utils.shape_type_conversion - def build(self, inputs_shape): - if inputs_shape[-1] is None: - raise ValueError( - "Expected inputs.shape[-1] to be known, " - f"received shape: {inputs_shape}" - ) - _check_supported_dtypes(self.dtype) - input_depth = inputs_shape[-1] - h_depth = self._num_units if self._num_proj is None else self._num_proj - maybe_partitioner = ( - tf.compat.v1.fixed_size_partitioner(self._num_unit_shards) - if self._num_unit_shards is not None - else None - ) - self._kernel = self.add_weight( - _WEIGHTS_VARIABLE_NAME, - shape=[input_depth + h_depth, 4 * self._num_units], - initializer=self._initializer, - partitioner=maybe_partitioner, - ) - if self.dtype is None: - initializer = tf.compat.v1.zeros_initializer - else: - initializer = tf.compat.v1.zeros_initializer(dtype=self.dtype) - self._bias = self.add_weight( - _BIAS_VARIABLE_NAME, - shape=[4 * self._num_units], - initializer=initializer, - ) - if self._use_peepholes: - self._w_f_diag = self.add_weight( - "w_f_diag", - shape=[self._num_units], - initializer=self._initializer, - ) - self._w_i_diag = self.add_weight( - "w_i_diag", - shape=[self._num_units], - initializer=self._initializer, - ) - self._w_o_diag = self.add_weight( - "w_o_diag", - shape=[self._num_units], - initializer=self._initializer, - ) - - if self._num_proj is not None: - maybe_proj_partitioner = ( - tf.compat.v1.fixed_size_partitioner(self._num_proj_shards) - if self._num_proj_shards is not None - else None - ) - self._proj_kernel = self.add_weight( - f"projection/{_WEIGHTS_VARIABLE_NAME}", - shape=[self._num_units, self._num_proj], - initializer=self._initializer, - partitioner=maybe_proj_partitioner, - ) - - self.built = True - - def call(self, inputs, state): - """Run one step of LSTM. - - Args: - inputs: input Tensor, must be 2-D, `[batch, input_size]`. - state: if `state_is_tuple` is False, this must be a state Tensor, - `2-D, [batch, state_size]`. If `state_is_tuple` is True, this must - be a tuple of state Tensors, both `2-D`, with column sizes `c_state` - and `m_state`. - - Returns: - A tuple containing: - - - A `2-D, [batch, output_dim]`, Tensor representing the output of the - LSTM after reading `inputs` when previous state was `state`. - Here output_dim is: - num_proj if num_proj was set, - num_units otherwise. - - Tensor(s) representing the new state of LSTM after reading `inputs` - when the previous state was `state`. Same type and shape(s) as - `state`. - - Raises: - ValueError: If input size cannot be inferred from inputs via - static shape inference. - """ - _check_rnn_cell_input_dtypes([inputs, state]) - - num_proj = self._num_units if self._num_proj is None else self._num_proj - sigmoid = tf.sigmoid - - if self._state_is_tuple: - (c_prev, m_prev) = state - else: - c_prev = tf.slice(state, [0, 0], [-1, self._num_units]) - m_prev = tf.slice(state, [0, self._num_units], [-1, num_proj]) - - input_size = inputs.get_shape().with_rank(2).dims[1].value - if input_size is None: - raise ValueError( - "Could not infer input size from inputs.get_shape()[-1]." - f"Received input shape: {inputs.get_shape()}" - ) - - # i = input_gate, j = new_input, f = forget_gate, o = output_gate - lstm_matrix = tf.matmul(tf.concat([inputs, m_prev], 1), self._kernel) - lstm_matrix = tf.nn.bias_add(lstm_matrix, self._bias) - - i, j, f, o = tf.split(value=lstm_matrix, num_or_size_splits=4, axis=1) - # Diagonal connections - if self._use_peepholes: - c = sigmoid( - f + self._forget_bias + self._w_f_diag * c_prev - ) * c_prev + sigmoid( - i + self._w_i_diag * c_prev - ) * self._activation( - j - ) - else: - c = sigmoid(f + self._forget_bias) * c_prev + sigmoid( - i - ) * self._activation(j) - - if self._cell_clip is not None: - - c = tf.clip_by_value(c, -self._cell_clip, self._cell_clip) - - if self._use_peepholes: - m = sigmoid(o + self._w_o_diag * c) * self._activation(c) - else: - m = sigmoid(o) * self._activation(c) - - if self._num_proj is not None: - m = tf.matmul(m, self._proj_kernel) - - if self._proj_clip is not None: - - m = tf.clip_by_value(m, -self._proj_clip, self._proj_clip) - - new_state = ( - LSTMStateTuple(c, m) - if self._state_is_tuple - else tf.concat([c, m], 1) - ) - return m, new_state - - def get_config(self): - config = { - "num_units": self._num_units, - "use_peepholes": self._use_peepholes, - "cell_clip": self._cell_clip, - "initializer": initializers.serialize(self._initializer), - "num_proj": self._num_proj, - "proj_clip": self._proj_clip, - "num_unit_shards": self._num_unit_shards, - "num_proj_shards": self._num_proj_shards, - "forget_bias": self._forget_bias, - "state_is_tuple": self._state_is_tuple, - "activation": activations.serialize(self._activation), - "reuse": self._reuse, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export(v1=["keras.__internal__.legacy.rnn_cell.MultiRNNCell"]) -@tf_export(v1=["nn.rnn_cell.MultiRNNCell"]) -class MultiRNNCell(RNNCell): - """RNN cell composed sequentially of multiple simple cells. - - Example: - - ```python - num_units = [128, 64] - cells = [BasicLSTMCell(num_units=n) for n in num_units] - stacked_rnn_cell = MultiRNNCell(cells) - ``` - """ - - def __init__(self, cells, state_is_tuple=True): - """Create a RNN cell composed sequentially of a number of RNNCells. - - Args: - cells: list of RNNCells that will be composed in this order. - state_is_tuple: If True, accepted and returned states are n-tuples, - where `n = len(cells)`. If False, the states are all concatenated - along the column axis. This latter behavior will soon be - deprecated. - - Raises: - ValueError: if cells is empty (not allowed), or at least one of the - cells returns a state tuple but the flag `state_is_tuple` is - `False`. - """ - logging.warning( - "`tf.nn.rnn_cell.MultiRNNCell` is deprecated. This class " - "is equivalent as `tf.keras.layers.StackedRNNCells`, " - "and will be replaced by that in Tensorflow 2.0." - ) - super().__init__() - if not cells: - raise ValueError("Must specify at least one cell for MultiRNNCell.") - if not tf.nest.is_nested(cells): - raise TypeError( - f"cells must be a list or tuple, but received: {cells}." - ) - - if len(set(id(cell) for cell in cells)) < len(cells): - logging.log_first_n( - logging.WARN, - "At least two cells provided to MultiRNNCell " - "are the same object and will share weights.", - 1, - ) - - self._cells = cells - for cell_number, cell in enumerate(self._cells): - # Add Trackable dependencies on these cells so their variables get - # saved with this object when using object-based saving. - if isinstance(cell, tf.__internal__.tracking.Trackable): - # TODO(allenl): Track down non-Trackable callers. - self._track_trackable(cell, name="cell-%d" % (cell_number,)) - self._state_is_tuple = state_is_tuple - if not state_is_tuple: - if any(tf.nest.is_nested(c.state_size) for c in self._cells): - raise ValueError( - "Some cells return tuples of states, but the flag " - "state_is_tuple is not set. " - f"State sizes are: {[c.state_size for c in self._cells]}" - ) - - @property - def state_size(self): - if self._state_is_tuple: - return tuple(cell.state_size for cell in self._cells) - else: - return sum(cell.state_size for cell in self._cells) - - @property - def output_size(self): - return self._cells[-1].output_size - - def zero_state(self, batch_size, dtype): - with backend.name_scope(type(self).__name__ + "ZeroState"): - if self._state_is_tuple: - return tuple( - cell.zero_state(batch_size, dtype) for cell in self._cells - ) - else: - # We know here that state_size of each cell is not a tuple and - # presumably does not contain TensorArrays or anything else - # fancy - return super().zero_state(batch_size, dtype) - - @property - def trainable_weights(self): - if not self.trainable: - return [] - weights = [] - for cell in self._cells: - if isinstance(cell, base_layer.Layer): - weights += cell.trainable_weights - return weights - - @property - def non_trainable_weights(self): - weights = [] - for cell in self._cells: - if isinstance(cell, base_layer.Layer): - weights += cell.non_trainable_weights - if not self.trainable: - trainable_weights = [] - for cell in self._cells: - if isinstance(cell, base_layer.Layer): - trainable_weights += cell.trainable_weights - return trainable_weights + weights - return weights - - def call(self, inputs, state): - """Run this multi-layer cell on inputs, starting from state.""" - cur_state_pos = 0 - cur_inp = inputs - new_states = [] - for i, cell in enumerate(self._cells): - with tf.compat.v1.variable_scope("cell_%d" % i): - if self._state_is_tuple: - if not tf.nest.is_nested(state): - raise ValueError( - "Expected state to be a tuple of length " - f"{len(self.state_size)}" - f", but received: {state}" - ) - cur_state = state[i] - else: - cur_state = tf.slice( - state, [0, cur_state_pos], [-1, cell.state_size] - ) - cur_state_pos += cell.state_size - cur_inp, new_state = cell(cur_inp, cur_state) - new_states.append(new_state) - - new_states = ( - tuple(new_states) - if self._state_is_tuple - else tf.concat(new_states, 1) - ) - - return cur_inp, new_states - - -def _check_rnn_cell_input_dtypes(inputs): - """Check whether the input tensors are with supported dtypes. - - Default RNN cells only support floats and complex as its dtypes since the - activation function (tanh and sigmoid) only allow those types. This function - will throw a proper error message if the inputs is not in a supported type. - - Args: - inputs: tensor or nested structure of tensors that are feed to RNN cell as - input or state. - - Raises: - ValueError: if any of the input tensor are not having dtypes of float or - complex. - """ - for t in tf.nest.flatten(inputs): - _check_supported_dtypes(t.dtype) - - -def _check_supported_dtypes(dtype): - if dtype is None: - return - dtype = tf.as_dtype(dtype) - if not (dtype.is_floating or dtype.is_complex): - raise ValueError( - "RNN cell only supports floating point inputs, " - f"but received dtype: {dtype}" - ) diff --git a/keras/layers/rnn/lstm.py b/keras/layers/rnn/lstm.py deleted file mode 100644 index 93e3e7cc200..00000000000 --- a/keras/layers/rnn/lstm.py +++ /dev/null @@ -1,1344 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Long Short-Term Memory layer.""" - - -import uuid - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import backend -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine import base_layer -from keras.engine.input_spec import InputSpec -from keras.layers.rnn import gru_lstm_utils -from keras.layers.rnn import rnn_utils -from keras.layers.rnn.base_rnn import RNN -from keras.layers.rnn.dropout_rnn_cell_mixin import DropoutRNNCellMixin -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - -RECURRENT_DROPOUT_WARNING_MSG = ( - "RNN `implementation=2` is not supported when `recurrent_dropout` is set. " - "Using `implementation=1`." -) - - -@keras_export("keras.layers.LSTMCell", v1=[]) -class LSTMCell(DropoutRNNCellMixin, base_layer.BaseRandomLayer): - """Cell class for the LSTM layer. - - See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) - for details about the usage of RNN API. - - This class processes one step within the whole time sequence input, whereas - `tf.keras.layer.LSTM` processes the whole sequence. - - For example: - - >>> inputs = tf.random.normal([32, 10, 8]) - >>> rnn = tf.keras.layers.RNN(tf.keras.layers.LSTMCell(4)) - >>> output = rnn(inputs) - >>> print(output.shape) - (32, 4) - >>> rnn = tf.keras.layers.RNN( - ... tf.keras.layers.LSTMCell(4), - ... return_sequences=True, - ... return_state=True) - >>> whole_seq_output, final_memory_state, final_carry_state = rnn(inputs) - >>> print(whole_seq_output.shape) - (32, 10, 4) - >>> print(final_memory_state.shape) - (32, 4) - >>> print(final_carry_state.shape) - (32, 4) - - Args: - units: Positive integer, dimensionality of the output space. - activation: Activation function to use. Default: hyperbolic tangent - (`tanh`). If you pass `None`, no activation is applied (ie. "linear" - activation: `a(x) = x`). - recurrent_activation: Activation function to use for the recurrent step. - Default: sigmoid (`sigmoid`). If you pass `None`, no activation is - applied (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean, (default `True`), whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, used for - the linear transformation of the inputs. Default: `glorot_uniform`. - recurrent_initializer: Initializer for the `recurrent_kernel` weights - matrix, used for the linear transformation of the recurrent state. - Default: `orthogonal`. - bias_initializer: Initializer for the bias vector. Default: `zeros`. - unit_forget_bias: Boolean (default `True`). If True, add 1 to the bias of - the forget gate at initialization. Setting it to true will also force - `bias_initializer="zeros"`. This is recommended in [Jozefowicz et - al.](https://github.com/mlresearch/v37/blob/gh-pages/jozefowicz15.pdf) - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. Default: `None`. - recurrent_regularizer: Regularizer function applied to - the `recurrent_kernel` weights matrix. Default: `None`. - bias_regularizer: Regularizer function applied to the bias vector. - Default: `None`. - kernel_constraint: Constraint function applied to the `kernel` weights - matrix. Default: `None`. - recurrent_constraint: Constraint function applied to the - `recurrent_kernel` weights matrix. Default: `None`. - bias_constraint: Constraint function applied to the bias vector. Default: - `None`. - dropout: Float between 0 and 1. Fraction of the units to drop for the - linear transformation of the inputs. Default: 0. - recurrent_dropout: Float between 0 and 1. Fraction of the units to drop - for the linear transformation of the recurrent state. Default: 0. - - Call arguments: - inputs: A 2D tensor, with shape of `[batch, feature]`. - states: List of 2 tensors that corresponding to the cell's units. Both of - them have shape `[batch, units]`, the first tensor is the memory state - from previous time step, the second tensor is the carry state from - previous time step. For timestep 0, the initial state provided by user - will be feed to cell. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. Only relevant when `dropout` or - `recurrent_dropout` is used. - """ - - def __init__( - self, - units, - activation="tanh", - recurrent_activation="sigmoid", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - unit_forget_bias=True, - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - dropout=0.0, - recurrent_dropout=0.0, - **kwargs, - ): - if units <= 0: - raise ValueError( - "Received an invalid value for argument `units`, " - f"expected a positive integer, got {units}." - ) - # By default use cached variable under v2 mode, see b/143699808. - if tf.compat.v1.executing_eagerly_outside_functions(): - self._enable_caching_device = kwargs.pop( - "enable_caching_device", True - ) - else: - self._enable_caching_device = kwargs.pop( - "enable_caching_device", False - ) - super().__init__(**kwargs) - self.units = units - self.activation = activations.get(activation) - self.recurrent_activation = activations.get(recurrent_activation) - self.use_bias = use_bias - - self.kernel_initializer = initializers.get(kernel_initializer) - self.recurrent_initializer = initializers.get(recurrent_initializer) - self.bias_initializer = initializers.get(bias_initializer) - self.unit_forget_bias = unit_forget_bias - - self.kernel_regularizer = regularizers.get(kernel_regularizer) - self.recurrent_regularizer = regularizers.get(recurrent_regularizer) - self.bias_regularizer = regularizers.get(bias_regularizer) - - self.kernel_constraint = constraints.get(kernel_constraint) - self.recurrent_constraint = constraints.get(recurrent_constraint) - self.bias_constraint = constraints.get(bias_constraint) - - self.dropout = min(1.0, max(0.0, dropout)) - self.recurrent_dropout = min(1.0, max(0.0, recurrent_dropout)) - implementation = kwargs.pop("implementation", 2) - if self.recurrent_dropout != 0 and implementation != 1: - logging.debug(RECURRENT_DROPOUT_WARNING_MSG) - self.implementation = 1 - else: - self.implementation = implementation - self.state_size = [self.units, self.units] - self.output_size = self.units - - @tf_utils.shape_type_conversion - def build(self, input_shape): - super().build(input_shape) - default_caching_device = rnn_utils.caching_device(self) - input_dim = input_shape[-1] - self.kernel = self.add_weight( - shape=(input_dim, self.units * 4), - name="kernel", - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - caching_device=default_caching_device, - ) - self.recurrent_kernel = self.add_weight( - shape=(self.units, self.units * 4), - name="recurrent_kernel", - initializer=self.recurrent_initializer, - regularizer=self.recurrent_regularizer, - constraint=self.recurrent_constraint, - caching_device=default_caching_device, - ) - - if self.use_bias: - if self.unit_forget_bias: - - def bias_initializer(_, *args, **kwargs): - return backend.concatenate( - [ - self.bias_initializer( - (self.units,), *args, **kwargs - ), - initializers.get("ones")( - (self.units,), *args, **kwargs - ), - self.bias_initializer( - (self.units * 2,), *args, **kwargs - ), - ] - ) - - else: - bias_initializer = self.bias_initializer - self.bias = self.add_weight( - shape=(self.units * 4,), - name="bias", - initializer=bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - caching_device=default_caching_device, - ) - else: - self.bias = None - self.built = True - - def _compute_carry_and_output(self, x, h_tm1, c_tm1): - """Computes carry and output using split kernels.""" - x_i, x_f, x_c, x_o = x - h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o = h_tm1 - i = self.recurrent_activation( - x_i + backend.dot(h_tm1_i, self.recurrent_kernel[:, : self.units]) - ) - f = self.recurrent_activation( - x_f - + backend.dot( - h_tm1_f, self.recurrent_kernel[:, self.units : self.units * 2] - ) - ) - c = f * c_tm1 + i * self.activation( - x_c - + backend.dot( - h_tm1_c, - self.recurrent_kernel[:, self.units * 2 : self.units * 3], - ) - ) - o = self.recurrent_activation( - x_o - + backend.dot(h_tm1_o, self.recurrent_kernel[:, self.units * 3 :]) - ) - return c, o - - def _compute_carry_and_output_fused(self, z, c_tm1): - """Computes carry and output using fused kernels.""" - z0, z1, z2, z3 = z - i = self.recurrent_activation(z0) - f = self.recurrent_activation(z1) - c = f * c_tm1 + i * self.activation(z2) - o = self.recurrent_activation(z3) - return c, o - - def call(self, inputs, states, training=None): - h_tm1 = states[0] # previous memory state - c_tm1 = states[1] # previous carry state - - dp_mask = self.get_dropout_mask_for_cell(inputs, training, count=4) - rec_dp_mask = self.get_recurrent_dropout_mask_for_cell( - h_tm1, training, count=4 - ) - - if self.implementation == 1: - if 0 < self.dropout < 1.0: - inputs_i = inputs * dp_mask[0] - inputs_f = inputs * dp_mask[1] - inputs_c = inputs * dp_mask[2] - inputs_o = inputs * dp_mask[3] - else: - inputs_i = inputs - inputs_f = inputs - inputs_c = inputs - inputs_o = inputs - k_i, k_f, k_c, k_o = tf.split( - self.kernel, num_or_size_splits=4, axis=1 - ) - x_i = backend.dot(inputs_i, k_i) - x_f = backend.dot(inputs_f, k_f) - x_c = backend.dot(inputs_c, k_c) - x_o = backend.dot(inputs_o, k_o) - if self.use_bias: - b_i, b_f, b_c, b_o = tf.split( - self.bias, num_or_size_splits=4, axis=0 - ) - x_i = backend.bias_add(x_i, b_i) - x_f = backend.bias_add(x_f, b_f) - x_c = backend.bias_add(x_c, b_c) - x_o = backend.bias_add(x_o, b_o) - - if 0 < self.recurrent_dropout < 1.0: - h_tm1_i = h_tm1 * rec_dp_mask[0] - h_tm1_f = h_tm1 * rec_dp_mask[1] - h_tm1_c = h_tm1 * rec_dp_mask[2] - h_tm1_o = h_tm1 * rec_dp_mask[3] - else: - h_tm1_i = h_tm1 - h_tm1_f = h_tm1 - h_tm1_c = h_tm1 - h_tm1_o = h_tm1 - x = (x_i, x_f, x_c, x_o) - h_tm1 = (h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o) - c, o = self._compute_carry_and_output(x, h_tm1, c_tm1) - else: - if 0.0 < self.dropout < 1.0: - inputs = inputs * dp_mask[0] - z = backend.dot(inputs, self.kernel) - z += backend.dot(h_tm1, self.recurrent_kernel) - if self.use_bias: - z = backend.bias_add(z, self.bias) - - z = tf.split(z, num_or_size_splits=4, axis=1) - c, o = self._compute_carry_and_output_fused(z, c_tm1) - - h = o * self.activation(c) - return h, [h, c] - - def get_config(self): - config = { - "units": self.units, - "activation": activations.serialize(self.activation), - "recurrent_activation": activations.serialize( - self.recurrent_activation - ), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "recurrent_initializer": initializers.serialize( - self.recurrent_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "unit_forget_bias": self.unit_forget_bias, - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "recurrent_regularizer": regularizers.serialize( - self.recurrent_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "recurrent_constraint": constraints.serialize( - self.recurrent_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - "dropout": self.dropout, - "recurrent_dropout": self.recurrent_dropout, - "implementation": self.implementation, - } - config.update(rnn_utils.config_for_enable_caching_device(self)) - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - def get_initial_state(self, inputs=None, batch_size=None, dtype=None): - return list( - rnn_utils.generate_zero_filled_state_for_cell( - self, inputs, batch_size, dtype - ) - ) - - -@keras_export("keras.layers.LSTM", v1=[]) -class LSTM(DropoutRNNCellMixin, RNN, base_layer.BaseRandomLayer): - """Long Short-Term Memory layer - Hochreiter 1997. - - See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) - for details about the usage of RNN API. - - Based on available runtime hardware and constraints, this layer - will choose different implementations (cuDNN-based or pure-TensorFlow) - to maximize the performance. If a GPU is available and all - the arguments to the layer meet the requirement of the cuDNN kernel - (see below for details), the layer will use a fast cuDNN implementation. - - The requirements to use the cuDNN implementation are: - - 1. `activation` == `tanh` - 2. `recurrent_activation` == `sigmoid` - 3. `recurrent_dropout` == 0 - 4. `unroll` is `False` - 5. `use_bias` is `True` - 6. Inputs, if use masking, are strictly right-padded. - 7. Eager execution is enabled in the outermost context. - - For example: - - >>> inputs = tf.random.normal([32, 10, 8]) - >>> lstm = tf.keras.layers.LSTM(4) - >>> output = lstm(inputs) - >>> print(output.shape) - (32, 4) - >>> lstm = tf.keras.layers.LSTM(4, return_sequences=True, return_state=True) - >>> whole_seq_output, final_memory_state, final_carry_state = lstm(inputs) - >>> print(whole_seq_output.shape) - (32, 10, 4) - >>> print(final_memory_state.shape) - (32, 4) - >>> print(final_carry_state.shape) - (32, 4) - - Args: - units: Positive integer, dimensionality of the output space. - activation: Activation function to use. - Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation - is applied (ie. "linear" activation: `a(x) = x`). - recurrent_activation: Activation function to use for the recurrent step. - Default: sigmoid (`sigmoid`). If you pass `None`, no activation is - applied (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean (default `True`), whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, used for - the linear transformation of the inputs. Default: `glorot_uniform`. - recurrent_initializer: Initializer for the `recurrent_kernel` weights - matrix, used for the linear transformation of the recurrent state. - Default: `orthogonal`. - bias_initializer: Initializer for the bias vector. Default: `zeros`. - unit_forget_bias: Boolean (default `True`). If True, add 1 to the bias of - the forget gate at initialization. Setting it to true will also force - `bias_initializer="zeros"`. This is recommended in [Jozefowicz et - al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf). - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. Default: `None`. - recurrent_regularizer: Regularizer function applied to the - `recurrent_kernel` weights matrix. Default: `None`. - bias_regularizer: Regularizer function applied to the bias vector. - Default: `None`. - activity_regularizer: Regularizer function applied to the output of the - layer (its "activation"). Default: `None`. - kernel_constraint: Constraint function applied to the `kernel` weights - matrix. Default: `None`. - recurrent_constraint: Constraint function applied to the - `recurrent_kernel` weights matrix. Default: `None`. - bias_constraint: Constraint function applied to the bias vector. Default: - `None`. - dropout: Float between 0 and 1. Fraction of the units to drop for the - linear transformation of the inputs. Default: 0. - recurrent_dropout: Float between 0 and 1. Fraction of the units to drop - for the linear transformation of the recurrent state. Default: 0. - return_sequences: Boolean. Whether to return the last output in the output - sequence, or the full sequence. Default: `False`. - return_state: Boolean. Whether to return the last state in addition to the - output. Default: `False`. - go_backwards: Boolean (default `False`). If True, process the input - sequence backwards and return the reversed sequence. - stateful: Boolean (default `False`). If True, the last state for each - sample at index i in a batch will be used as initial state for the sample - of index i in the following batch. - time_major: The shape format of the `inputs` and `outputs` tensors. - If True, the inputs and outputs will be in shape - `[timesteps, batch, feature]`, whereas in the False case, it will be - `[batch, timesteps, feature]`. Using `time_major = True` is a bit more - efficient because it avoids transposes at the beginning and end of the - RNN calculation. However, most TensorFlow data is batch-major, so by - default this function accepts input and emits output in batch-major - form. - unroll: Boolean (default `False`). If True, the network will be unrolled, - else a symbolic loop will be used. Unrolling can speed-up a RNN, - although it tends to be more memory-intensive. Unrolling is only - suitable for short sequences. - - Call arguments: - inputs: A 3D tensor with shape `[batch, timesteps, feature]`. - mask: Binary tensor of shape `[batch, timesteps]` indicating whether - a given timestep should be masked (optional, defaults to `None`). - An individual `True` entry indicates that the corresponding timestep - should be utilized, while a `False` entry indicates that the - corresponding timestep should be ignored. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. This argument is passed to the cell - when calling it. This is only relevant if `dropout` or - `recurrent_dropout` is used (optional, defaults to `None`). - initial_state: List of initial state tensors to be passed to the first - call of the cell (optional, defaults to `None` which causes creation - of zero-filled initial state tensors). - """ - - def __init__( - self, - units, - activation="tanh", - recurrent_activation="sigmoid", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - unit_forget_bias=True, - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - dropout=0.0, - recurrent_dropout=0.0, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - time_major=False, - unroll=False, - **kwargs, - ): - # return_runtime is a flag for testing, which shows the real backend - # implementation chosen by grappler in graph mode. - self.return_runtime = kwargs.pop("return_runtime", False) - implementation = kwargs.pop("implementation", 2) - if implementation == 0: - logging.warning( - "`implementation=0` has been deprecated, " - "and now defaults to `implementation=1`." - "Please update your layer call." - ) - if "enable_caching_device" in kwargs: - cell_kwargs = { - "enable_caching_device": kwargs.pop("enable_caching_device") - } - else: - cell_kwargs = {} - cell = LSTMCell( - units, - activation=activation, - recurrent_activation=recurrent_activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - recurrent_initializer=recurrent_initializer, - unit_forget_bias=unit_forget_bias, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - recurrent_regularizer=recurrent_regularizer, - bias_regularizer=bias_regularizer, - kernel_constraint=kernel_constraint, - recurrent_constraint=recurrent_constraint, - bias_constraint=bias_constraint, - dropout=dropout, - recurrent_dropout=recurrent_dropout, - implementation=implementation, - dtype=kwargs.get("dtype"), - trainable=kwargs.get("trainable", True), - name="lstm_cell", - **cell_kwargs, - ) - super().__init__( - cell, - return_sequences=return_sequences, - return_state=return_state, - go_backwards=go_backwards, - stateful=stateful, - time_major=time_major, - unroll=unroll, - **kwargs, - ) - self.activity_regularizer = regularizers.get(activity_regularizer) - self.input_spec = [InputSpec(ndim=3)] - self.state_spec = [ - InputSpec(shape=(None, dim)) for dim in (self.units, self.units) - ] - self._could_use_gpu_kernel = ( - self.activation in (activations.tanh, tf.tanh) - and self.recurrent_activation in (activations.sigmoid, tf.sigmoid) - and recurrent_dropout == 0 - and not unroll - and use_bias - and tf.compat.v1.executing_eagerly_outside_functions() - ) - if tf.config.list_logical_devices("GPU"): - # Only show the message when there is GPU available, user will not - # care about the cuDNN if there isn't any GPU. - if self._could_use_gpu_kernel: - logging.debug(gru_lstm_utils.CUDNN_AVAILABLE_MSG % self.name) - else: - logging.warning( - gru_lstm_utils.CUDNN_NOT_AVAILABLE_MSG % self.name - ) - - if gru_lstm_utils.use_new_gru_lstm_impl(): - self._defun_wrapper = gru_lstm_utils.DefunWrapper( - time_major, go_backwards, "lstm" - ) - - def call(self, inputs, mask=None, training=None, initial_state=None): - # The input should be dense, padded with zeros. If a ragged input is fed - # into the layer, it is padded and the row lengths are used for masking. - inputs, row_lengths = backend.convert_inputs_if_ragged(inputs) - is_ragged_input = row_lengths is not None - self._validate_args_if_ragged(is_ragged_input, mask) - - # LSTM does not support constants. Ignore it during process. - inputs, initial_state, _ = self._process_inputs( - inputs, initial_state, None - ) - - if isinstance(mask, list): - mask = mask[0] - - input_shape = backend.int_shape(inputs) - timesteps = input_shape[0] if self.time_major else input_shape[1] - - if not self._could_use_gpu_kernel: - # Fall back to use the normal LSTM. - kwargs = {"training": training} - self._maybe_reset_cell_dropout_mask(self.cell) - - def step(inputs, states): - return self.cell(inputs, states, **kwargs) - - last_output, outputs, states = backend.rnn( - step, - inputs, - initial_state, - constants=None, - go_backwards=self.go_backwards, - mask=mask, - unroll=self.unroll, - input_length=row_lengths - if row_lengths is not None - else timesteps, - time_major=self.time_major, - zero_output_for_mask=self.zero_output_for_mask, - return_all_outputs=self.return_sequences, - ) - runtime = gru_lstm_utils.runtime(gru_lstm_utils.RUNTIME_UNKNOWN) - else: - # Use the new defun approach for backend implementation swap. - # Note that different implementations need to have same function - # signature, eg, the tensor parameters need to have same shape and - # dtypes. Since the cuDNN has an extra set of bias, those bias will - # be passed to both normal and cuDNN implementations. - self.reset_dropout_mask() - dropout_mask = self.get_dropout_mask_for_cell( - inputs, training, count=4 - ) - if dropout_mask is not None: - inputs = inputs * dropout_mask[0] - if gru_lstm_utils.use_new_gru_lstm_impl(): - lstm_kwargs = { - "inputs": inputs, - "init_h": gru_lstm_utils.read_variable_value( - initial_state[0] - ), - "init_c": gru_lstm_utils.read_variable_value( - initial_state[1] - ), - "kernel": gru_lstm_utils.read_variable_value( - self.cell.kernel - ), - "recurrent_kernel": gru_lstm_utils.read_variable_value( - self.cell.recurrent_kernel - ), - "bias": gru_lstm_utils.read_variable_value(self.cell.bias), - "mask": mask, - "time_major": self.time_major, - "go_backwards": self.go_backwards, - "sequence_lengths": row_lengths, - "zero_output_for_mask": self.zero_output_for_mask, - } - ( - last_output, - outputs, - new_h, - new_c, - runtime, - ) = self._defun_wrapper.defun_layer(**lstm_kwargs) - else: - gpu_lstm_kwargs = { - "inputs": inputs, - "init_h": gru_lstm_utils.read_variable_value( - initial_state[0] - ), - "init_c": gru_lstm_utils.read_variable_value( - initial_state[1] - ), - "kernel": gru_lstm_utils.read_variable_value( - self.cell.kernel - ), - "recurrent_kernel": gru_lstm_utils.read_variable_value( - self.cell.recurrent_kernel - ), - "bias": gru_lstm_utils.read_variable_value(self.cell.bias), - "mask": mask, - "time_major": self.time_major, - "go_backwards": self.go_backwards, - "sequence_lengths": row_lengths, - "return_sequences": self.return_sequences, - } - normal_lstm_kwargs = gpu_lstm_kwargs.copy() - normal_lstm_kwargs.update( - { - "zero_output_for_mask": self.zero_output_for_mask, - } - ) - - if tf.executing_eagerly(): - device_type = gru_lstm_utils.get_context_device_type() - can_use_gpu = ( - # Either user specified GPU or unspecified but GPU is - # available. - ( - device_type == gru_lstm_utils.GPU_DEVICE_NAME - or ( - device_type is None - and tf.config.list_logical_devices("GPU") - ) - ) - and gru_lstm_utils.is_cudnn_supported_inputs( - mask, self.time_major, row_lengths - ) - ) - # Under eager context, check the device placement and prefer - # the GPU implementation when GPU is available. - if can_use_gpu: - last_output, outputs, new_h, new_c, runtime = gpu_lstm( - **gpu_lstm_kwargs - ) - else: - ( - last_output, - outputs, - new_h, - new_c, - runtime, - ) = standard_lstm(**normal_lstm_kwargs) - else: - ( - last_output, - outputs, - new_h, - new_c, - runtime, - ) = lstm_with_backend_selection(**normal_lstm_kwargs) - - states = [new_h, new_c] - - if self.stateful: - updates = [ - tf.compat.v1.assign( - self_state, tf.cast(state, self_state.dtype) - ) - for self_state, state in zip(self.states, states) - ] - self.add_update(updates) - - if self.return_sequences: - output = backend.maybe_convert_to_ragged( - is_ragged_input, - outputs, - row_lengths, - go_backwards=self.go_backwards, - ) - else: - output = last_output - - if self.return_state: - return [output] + list(states) - elif self.return_runtime: - return output, runtime - else: - return output - - @property - def units(self): - return self.cell.units - - @property - def activation(self): - return self.cell.activation - - @property - def recurrent_activation(self): - return self.cell.recurrent_activation - - @property - def use_bias(self): - return self.cell.use_bias - - @property - def kernel_initializer(self): - return self.cell.kernel_initializer - - @property - def recurrent_initializer(self): - return self.cell.recurrent_initializer - - @property - def bias_initializer(self): - return self.cell.bias_initializer - - @property - def unit_forget_bias(self): - return self.cell.unit_forget_bias - - @property - def kernel_regularizer(self): - return self.cell.kernel_regularizer - - @property - def recurrent_regularizer(self): - return self.cell.recurrent_regularizer - - @property - def bias_regularizer(self): - return self.cell.bias_regularizer - - @property - def kernel_constraint(self): - return self.cell.kernel_constraint - - @property - def recurrent_constraint(self): - return self.cell.recurrent_constraint - - @property - def bias_constraint(self): - return self.cell.bias_constraint - - @property - def dropout(self): - return self.cell.dropout - - @property - def recurrent_dropout(self): - return self.cell.recurrent_dropout - - @property - def implementation(self): - return self.cell.implementation - - def get_config(self): - config = { - "units": self.units, - "activation": activations.serialize(self.activation), - "recurrent_activation": activations.serialize( - self.recurrent_activation - ), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "recurrent_initializer": initializers.serialize( - self.recurrent_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "unit_forget_bias": self.unit_forget_bias, - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "recurrent_regularizer": regularizers.serialize( - self.recurrent_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "recurrent_constraint": constraints.serialize( - self.recurrent_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - "dropout": self.dropout, - "recurrent_dropout": self.recurrent_dropout, - "implementation": self.implementation, - } - config.update(rnn_utils.config_for_enable_caching_device(self.cell)) - base_config = super().get_config() - del base_config["cell"] - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config): - if "implementation" in config and config["implementation"] == 0: - config["implementation"] = 1 - return cls(**config) - - -def standard_lstm( - inputs, - init_h, - init_c, - kernel, - recurrent_kernel, - bias, - mask, - time_major, - go_backwards, - sequence_lengths, - zero_output_for_mask, - return_sequences, -): - """LSTM with standard kernel implementation. - - This implementation can be run on all types for hardware. - - This implementation lifts out all the layer weights and make them function - parameters. It has same number of tensor input params as the cuDNN - counterpart. The RNN step logic has been simplified, eg dropout and mask is - removed since cuDNN implementation does not support that. - - Note that the first half of the bias tensor should be ignored by this impl. - The cuDNN impl need an extra set of input gate bias. In order to make the - both function take same shape of parameter, that extra set of bias is also - feed - here. - - Args: - inputs: input tensor of LSTM layer. - init_h: initial state tensor for the cell output. - init_c: initial state tensor for the cell hidden state. - kernel: weights for cell kernel. - recurrent_kernel: weights for cell recurrent kernel. - bias: weights for cell kernel bias and recurrent bias. Only recurrent bias - is used in this case. - mask: Boolean tensor for mask out the steps within sequence. - An individual `True` entry indicates that the corresponding timestep - should be utilized, while a `False` entry indicates that the - corresponding timestep should be ignored. - time_major: boolean, whether the inputs are in the format of - [time, batch, feature] or [batch, time, feature]. - go_backwards: Boolean (default False). If True, process the input sequence - backwards and return the reversed sequence. - sequence_lengths: The lengths of all sequences coming from a variable - length input, such as ragged tensors. If the input has a fixed timestep - size, this should be None. - zero_output_for_mask: Boolean, whether to output zero for masked timestep. - return_sequences: Boolean. If True, return the recurrent outputs for all - timesteps in the sequence. If False, only return the output for the - last timestep (which consumes less memory). - - Returns: - last_output: output tensor for the last timestep, which has shape - [batch, units]. - outputs: - - If `return_sequences=True`: output tensor for all timesteps, - which has shape [batch, time, units]. - - Else, a tensor equal to `last_output` with shape [batch, 1, units] - state_0: the cell output, which has same shape as init_h. - state_1: the cell hidden state, which has same shape as init_c. - runtime: constant string tensor which indicate real runtime hardware. This - value is for testing purpose and should be used by user. - """ - input_shape = backend.int_shape(inputs) - timesteps = input_shape[0] if time_major else input_shape[1] - - def step(cell_inputs, cell_states): - """Step function that will be used by Keras RNN backend.""" - h_tm1 = cell_states[0] # previous memory state - c_tm1 = cell_states[1] # previous carry state - - z = backend.dot(cell_inputs, kernel) - z += backend.dot(h_tm1, recurrent_kernel) - z = backend.bias_add(z, bias) - - z0, z1, z2, z3 = tf.split(z, 4, axis=1) - - i = tf.sigmoid(z0) - f = tf.sigmoid(z1) - c = f * c_tm1 + i * tf.tanh(z2) - o = tf.sigmoid(z3) - - h = o * tf.tanh(c) - return h, [h, c] - - last_output, outputs, new_states = backend.rnn( - step, - inputs, - [init_h, init_c], - constants=None, - unroll=False, - time_major=time_major, - mask=mask, - go_backwards=go_backwards, - input_length=( - sequence_lengths if sequence_lengths is not None else timesteps - ), - zero_output_for_mask=zero_output_for_mask, - return_all_outputs=return_sequences, - ) - return ( - last_output, - outputs, - new_states[0], - new_states[1], - gru_lstm_utils.runtime(gru_lstm_utils.RUNTIME_CPU), - ) - - -def gpu_lstm( - inputs, - init_h, - init_c, - kernel, - recurrent_kernel, - bias, - mask, - time_major, - go_backwards, - sequence_lengths, - return_sequences, -): - """LSTM with either cuDNN or ROCm implementation which is only available for - GPU. - - Note that currently only right padded data is supported, or the result will - be polluted by the unmasked data which should be filtered. - - Args: - inputs: Input tensor of LSTM layer. - init_h: Initial state tensor for the cell output. - init_c: Initial state tensor for the cell hidden state. - kernel: Weights for cell kernel. - recurrent_kernel: Weights for cell recurrent kernel. - bias: Weights for cell kernel bias and recurrent bias. Only recurrent bias - is used in this case. - mask: Boolean tensor for mask out the steps within sequence. An individual - `True` entry indicates that the corresponding timestep should be - utilized, while a `False` entry indicates that the corresponding - timestep should be ignored. - time_major: Boolean, whether the inputs are in the format of [time, batch, - feature] or [batch, time, feature]. - go_backwards: Boolean (default False). If True, process the input sequence - backwards and return the reversed sequence. - sequence_lengths: The lengths of all sequences coming from a variable - length input, such as ragged tensors. If the input has a fixed timestep - size, this should be None. - return_sequences: Boolean. If True, return the recurrent outputs for all - timesteps in the sequence. If False, only return the output for the - last timestep, matching the CPU function output format. - - Returns: - last_output: Output tensor for the last timestep, which has shape - [batch, units]. - outputs: - - If `return_sequences=True`: output tensor for all timesteps, - which has shape [batch, time, units]. - - Else, a tensor equal to `last_output` with shape [batch, 1, units] - state_0: The cell output, which has same shape as init_h. - state_1: The cell hidden state, which has same shape as init_c. - runtime: Constant string tensor which indicate real runtime hardware. This - value is for testing purpose and should not be used by user. - """ - if mask is not None: - sequence_lengths = gru_lstm_utils.calculate_sequence_by_mask( - mask, time_major - ) - - if not time_major and sequence_lengths is None: - inputs = tf.transpose(inputs, perm=(1, 0, 2)) - seq_axis, batch_axis = (0, 1) - else: - seq_axis, batch_axis = (0, 1) if time_major else (1, 0) - # For init_h and init_c, cuDNN expects one more dim of num_layers before or - # after batch dim for time major or batch major inputs respectively - init_h = tf.expand_dims(init_h, axis=seq_axis) - init_c = tf.expand_dims(init_c, axis=seq_axis) - - weights = tf.split(kernel, 4, axis=1) - weights += tf.split(recurrent_kernel, 4, axis=1) - # cuDNN has an extra set of bias for inputs, we disable them (setting to 0), - # so that mathematically it is same as the canonical LSTM implementation. - full_bias = tf.concat((tf.zeros_like(bias), bias), 0) - - if tf.sysconfig.get_build_info()["is_rocm_build"]: - # ROCm MIOpen's weight sequence for LSTM is different from both - # canonical and Cudnn format - # MIOpen: [i, f, o, c] Cudnn/Canonical: [i, f, c, o] - # i is input gate weights. - # f is forget gate weights. - # o is output gate weights. - # c is cell gate weights. - weights = [weights[x] for x in (0, 1, 3, 2, 4, 5, 7, 6)] - # full_bias is a tensor of shape (8*n,) - full_bias = tf.split(full_bias, 8, axis=0) - full_bias = [full_bias[x] for x in (0, 1, 3, 2, 4, 5, 7, 6)] - - params = gru_lstm_utils.canonical_to_params( - weights=weights, - biases=tf.split(full_bias, 8), - shape=tf.constant([-1]), - transpose_weights=True, - ) - - if sequence_lengths is not None: - if go_backwards: - # Three reversals are required. E.g., - # normal input = [1, 2, 3, 0, 0] # where 0 need to be masked - # reversed_input_to_cudnn = [3, 2, 1, 0, 0] - # output_from_cudnn = [6, 5, 4, 0, 0] - # expected_output = [0, 0, 6, 5 ,4] - inputs = tf.reverse_sequence( - inputs, - sequence_lengths, - seq_axis=seq_axis, - batch_axis=batch_axis, - ) - outputs, h, c, _, _ = tf.raw_ops.CudnnRNNV3( - input=inputs, - input_h=init_h, - input_c=init_c, - params=params, - is_training=True, - rnn_mode="lstm", - sequence_lengths=sequence_lengths, - time_major=time_major, - ) - if go_backwards: - outputs = tf.reverse_sequence( - outputs, - sequence_lengths, - seq_axis=seq_axis, - batch_axis=batch_axis, - ) - outputs = tf.reverse(outputs, axis=[seq_axis]) - else: - # # Fill the array with shape [batch] with value of max timesteps. - # sequence_length = array_ops.fill([array_ops.shape(inputs)[1]], - # array_ops.shape(inputs)[0]) - if go_backwards: - # Reverse axis 0 since the input is already convert to time major. - inputs = tf.reverse(inputs, axis=[0]) - outputs, h, c, _ = tf.raw_ops.CudnnRNN( - input=inputs, - input_h=init_h, - input_c=init_c, - params=params, - is_training=True, - rnn_mode="lstm", - ) - - last_output = outputs[-1] - if not time_major and sequence_lengths is None and return_sequences: - outputs = tf.transpose(outputs, perm=[1, 0, 2]) - h = tf.squeeze(h, axis=seq_axis) - c = tf.squeeze(c, axis=seq_axis) - - # In the case of variable length input, the cudnn kernel will fill zeros for - # the output, whereas the default keras behavior is to bring over the - # previous output for t-1, so that in the return_sequence=False case, user - # can quickly get the final effect output instead just 0s at the last - # timestep. In order to mimic the default keras behavior, we copy the final - # h state as the last_output, since it is numerically same as the output. - if sequence_lengths is not None: - last_output = h - - # Match CPU return format - if not return_sequences: - outputs = tf.expand_dims(last_output, axis=0 if time_major else 1) - - return ( - last_output, - outputs, - h, - c, - gru_lstm_utils.runtime(gru_lstm_utils.RUNTIME_GPU), - ) - - -def lstm_with_backend_selection( - inputs, - init_h, - init_c, - kernel, - recurrent_kernel, - bias, - mask, - time_major, - go_backwards, - sequence_lengths, - zero_output_for_mask, - return_sequences, -): - """Call the LSTM with optimized backend kernel selection. - - Under the hood, this function will create two TF function, one with the most - generic kernel and can run on all device condition, and the second one with - cuDNN specific kernel, which can only run on GPU. - - The first function will be called with normal_lstm_params, while the second - function is not called, but only registered in the graph. The Grappler will - do the proper graph rewrite and swap the optimized TF function based on the - device placement. - - Args: - inputs: Input tensor of LSTM layer. - init_h: Initial state tensor for the cell output. - init_c: Initial state tensor for the cell hidden state. - kernel: Weights for cell kernel. - recurrent_kernel: Weights for cell recurrent kernel. - bias: Weights for cell kernel bias and recurrent bias. Only recurrent bias - is used in this case. - mask: Boolean tensor for mask out the steps within sequence. - An individual `True` entry indicates that the corresponding timestep - should be utilized, while a `False` entry indicates that the - corresponding timestep should be ignored. - time_major: Boolean, whether the inputs are in the format of - [time, batch, feature] or [batch, time, feature]. - go_backwards: Boolean (default False). If True, process the input sequence - backwards and return the reversed sequence. - sequence_lengths: The lengths of all sequences coming from a variable - length input, such as ragged tensors. If the input has a fixed timestep - size, this should be None. - zero_output_for_mask: Boolean, whether to output zero for masked timestep. - return_sequences: Boolean. If True, return the recurrent outputs for all - timesteps in the sequence. If False, only return the output for the - last timestep (which consumes less memory). - - Returns: - List of output tensors, same as standard_lstm. - """ - params = { - "inputs": inputs, - "init_h": init_h, - "init_c": init_c, - "kernel": kernel, - "recurrent_kernel": recurrent_kernel, - "bias": bias, - "mask": mask, - "time_major": time_major, - "go_backwards": go_backwards, - "sequence_lengths": sequence_lengths, - "zero_output_for_mask": zero_output_for_mask, - "return_sequences": return_sequences, - } - - def gpu_lstm_with_fallback( - inputs, - init_h, - init_c, - kernel, - recurrent_kernel, - bias, - mask, - time_major, - go_backwards, - sequence_lengths, - zero_output_for_mask, - return_sequences, - ): - """Use cuDNN kernel when mask is none or strictly right padded.""" - - def cudnn_lstm_fn(): - return gpu_lstm( - inputs=inputs, - init_h=init_h, - init_c=init_c, - kernel=kernel, - recurrent_kernel=recurrent_kernel, - bias=bias, - mask=mask, - time_major=time_major, - go_backwards=go_backwards, - sequence_lengths=sequence_lengths, - return_sequences=return_sequences, - ) - - def stardard_lstm_fn(): - return standard_lstm( - inputs=inputs, - init_h=init_h, - init_c=init_c, - kernel=kernel, - recurrent_kernel=recurrent_kernel, - bias=bias, - mask=mask, - time_major=time_major, - go_backwards=go_backwards, - sequence_lengths=sequence_lengths, - zero_output_for_mask=zero_output_for_mask, - return_sequences=return_sequences, - ) - - return tf.__internal__.smart_cond.smart_cond( - gru_lstm_utils.is_cudnn_supported_inputs( - mask, time_major, sequence_lengths - ), - true_fn=cudnn_lstm_fn, - false_fn=stardard_lstm_fn, - ) - - if gru_lstm_utils.use_new_gru_lstm_impl(): - # Chooses the implementation dynamically based on the running device. - ( - last_output, - outputs, - new_h, - new_c, - runtime, - ) = tf.__internal__.execute_fn_for_device( - { - gru_lstm_utils.CPU_DEVICE_NAME: lambda: standard_lstm(**params), - gru_lstm_utils.GPU_DEVICE_NAME: lambda: gpu_lstm_with_fallback( - **params - ), - }, - lambda: standard_lstm(**params), - ) - else: - # Each time a `tf.function` is called, we will give it a unique - # identifiable API name, so that Grappler won't get confused when it - # sees multiple LSTM layers added into same graph, and it will be able - # to pair up the different implementations across them. - api_name = "lstm_" + str(uuid.uuid4()) - supportive_attribute = { - "time_major": time_major, - "go_backwards": go_backwards, - } - defun_standard_lstm = gru_lstm_utils.generate_defun_backend( - api_name, - gru_lstm_utils.CPU_DEVICE_NAME, - standard_lstm, - supportive_attribute, - ) - defun_gpu_lstm = gru_lstm_utils.generate_defun_backend( - api_name, - gru_lstm_utils.GPU_DEVICE_NAME, - gpu_lstm_with_fallback, - supportive_attribute, - ) - - # Call the normal LSTM impl and register the cuDNN impl function. The - # grappler will kick in during session execution to optimize the graph. - last_output, outputs, new_h, new_c, runtime = defun_standard_lstm( - **params - ) - gru_lstm_utils.function_register(defun_gpu_lstm, **params) - - return last_output, outputs, new_h, new_c, runtime diff --git a/keras/layers/rnn/lstm_test.py b/keras/layers/rnn/lstm_test.py deleted file mode 100644 index e3e77dddae6..00000000000 --- a/keras/layers/rnn/lstm_test.py +++ /dev/null @@ -1,1429 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for LSTM layer.""" - - -import copy -import os -import shutil - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.rnn import gru_lstm_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import np_utils - -# isort: off -from tensorflow.core.protobuf import rewriter_config_pb2 -from tensorflow.python.framework import ( - test_util as tf_test_util, -) - -# Global config for grappler setting that is used for graph mode test. -_rewrites = rewriter_config_pb2.RewriterConfig() -_rewrites.implementation_selector = rewriter_config_pb2.RewriterConfig.ON -_rewrites.min_graph_nodes = -1 -_graph_options = tf.compat.v1.GraphOptions(rewrite_options=_rewrites) -_config = tf.compat.v1.ConfigProto(graph_options=_graph_options) - - -@test_combinations.run_all_keras_modes(config=_config) -class LSTMGraphRewriteTest(test_combinations.TestCase): - - input_shape = 10 - output_shape = 8 - rnn_state_size = 8 - timestep = 4 - batch = 100 - epoch = 1 - - @parameterized.named_parameters( - ("non_tan_activation", "relu", "sigmoid", 0, False, True), - ("non_sigmoid_recur_activation", "tanh", "relu", 0, False, True), - ("use_recurrent_dropout", "tanh", "sigmoid", 0.1, False, True), - ("unroll", "tanh", "sigmoid", 0, True, True), - ("not_use_bias", "tanh", "sigmoid", 0, False, False), - ) - @test_utils.run_v2_only - def test_could_use_defun_backend( - self, - activation, - recurrent_activation, - recurrent_dropout, - unroll, - use_bias, - ): - layer = keras.layers.LSTM( - 1, - activation=activation, - recurrent_activation=recurrent_activation, - recurrent_dropout=recurrent_dropout, - unroll=unroll, - use_bias=use_bias, - ) - self.assertFalse(layer._could_use_gpu_kernel) - - @test_utils.run_v2_only - def test_use_on_default_activation_with_gpu_kernel(self): - layer = keras.layers.LSTM(1, activation=tf.tanh) - self.assertTrue(layer._could_use_gpu_kernel) - - layer = keras.layers.LSTM(1, recurrent_activation=tf.sigmoid) - self.assertTrue(layer._could_use_gpu_kernel) - - def test_static_shape_inference_LSTM(self): - # GitHub issue: 15165 - timesteps = 3 - embedding_dim = 4 - units = 2 - - model = keras.models.Sequential() - inputs = keras.layers.Dense( - embedding_dim, input_shape=(timesteps, embedding_dim) - ) - model.add(inputs) - layer = keras.layers.LSTM(units, return_sequences=True) - model.add(layer) - outputs = model.layers[-1].output - self.assertEqual(outputs.shape.as_list(), [None, timesteps, units]) - - def test_dynamic_behavior_LSTM(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - layer = keras.layers.LSTM(units, input_shape=(None, embedding_dim)) - model = keras.models.Sequential() - model.add(layer) - model.compile(tf.compat.v1.train.GradientDescentOptimizer(0.001), "mse") - x = np.random.random((num_samples, timesteps, embedding_dim)) - y = np.random.random((num_samples, units)) - model.train_on_batch(x, y) - - def test_stacking_LSTM(self): - inputs = np.random.random((2, 3, 4)) - targets = np.abs(np.random.random((2, 3, 5))) - targets /= targets.sum(axis=-1, keepdims=True) - model = keras.models.Sequential() - model.add(keras.layers.LSTM(10, return_sequences=True, unroll=False)) - model.add(keras.layers.LSTM(5, return_sequences=True, unroll=False)) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - ) - model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) - - def test_from_config_LSTM(self): - layer_class = keras.layers.LSTM - for stateful in (False, True): - l1 = layer_class(units=1, stateful=stateful) - l2 = layer_class.from_config(l1.get_config()) - assert l1.get_config() == l2.get_config() - - def test_specify_initial_state_keras_tensor(self): - num_states = 2 - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - - # Test with Keras tensor - inputs = keras.Input((timesteps, embedding_dim)) - initial_state = [keras.Input((units,)) for _ in range(num_states)] - layer = keras.layers.LSTM(units) - if len(initial_state) == 1: - output = layer(inputs, initial_state=initial_state[0]) - else: - output = layer(inputs, initial_state=initial_state) - self.assertTrue( - any( - initial_state[0] is t - for t in layer._inbound_nodes[0].input_tensors - ) - ) - - model = keras.models.Model([inputs] + initial_state, output) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - ) - - inputs = np.random.random((num_samples, timesteps, embedding_dim)) - initial_state = [ - np.random.random((num_samples, units)) for _ in range(num_states) - ] - targets = np.random.random((num_samples, units)) - model.train_on_batch([inputs] + initial_state, targets) - - def test_specify_initial_state_non_keras_tensor(self): - num_states = 2 - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - - # Test with non-Keras tensor - inputs = keras.Input((timesteps, embedding_dim)) - initial_state = [ - keras.backend.random_normal_variable((num_samples, units), 0, 1) - for _ in range(num_states) - ] - layer = keras.layers.LSTM(units) - output = layer(inputs, initial_state=initial_state) - - model = keras.models.Model(inputs, output) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - ) - - inputs = np.random.random((num_samples, timesteps, embedding_dim)) - targets = np.random.random((num_samples, units)) - model.train_on_batch(inputs, targets) - - def test_reset_states_with_values(self): - num_states = 2 - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - - layer = keras.layers.LSTM(units, stateful=True) - layer.build((num_samples, timesteps, embedding_dim)) - initial_weight_count = len(layer.weights) - layer.reset_states() - assert len(layer.states) == num_states - assert layer.states[0] is not None - self.assertAllClose( - keras.backend.eval(layer.states[0]), - np.zeros(keras.backend.int_shape(layer.states[0])), - atol=1e-4, - ) - state_shapes = [ - keras.backend.int_shape(state) for state in layer.states - ] - values = [np.ones(shape) for shape in state_shapes] - if len(values) == 1: - values = values[0] - layer.reset_states(values) - self.assertAllClose( - keras.backend.eval(layer.states[0]), - np.ones(keras.backend.int_shape(layer.states[0])), - atol=1e-4, - ) - - # Test with invalid data - with self.assertRaises(ValueError): - layer.reset_states([1] * (len(layer.states) + 1)) - - self.assertEqual(initial_weight_count, len(layer.weights)) - # Variables in "states" shouldn't show up in .weights - layer.states = tf.nest.map_structure(tf.Variable, values) - layer.reset_states() - self.assertEqual(initial_weight_count, len(layer.weights)) - - def test_specify_state_with_masking(self): - num_states = 2 - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - - inputs = keras.Input((timesteps, embedding_dim)) - _ = keras.layers.Masking()(inputs) - initial_state = [keras.Input((units,)) for _ in range(num_states)] - output = keras.layers.LSTM(units)(inputs, initial_state=initial_state) - - model = keras.models.Model([inputs] + initial_state, output) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - ) - - inputs = np.random.random((num_samples, timesteps, embedding_dim)) - initial_state = [ - np.random.random((num_samples, units)) for _ in range(num_states) - ] - targets = np.random.random((num_samples, units)) - model.train_on_batch([inputs] + initial_state, targets) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - def test_return_state(self): - num_states = 2 - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - - inputs = keras.Input( - batch_shape=(num_samples, timesteps, embedding_dim) - ) - masked = keras.layers.Masking()(inputs) - layer = keras.layers.LSTM(units, return_state=True, stateful=True) - outputs = layer(masked) - state = outputs[1:] - assert len(state) == num_states - model = keras.models.Model(inputs, state[0]) - - inputs = np.random.random((num_samples, timesteps, embedding_dim)) - state = model.predict(inputs) - self.assertAllClose( - keras.backend.eval(layer.states[0]), state, atol=1e-4 - ) - - def test_state_reuse(self): - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - - inputs = keras.Input( - batch_shape=(num_samples, timesteps, embedding_dim) - ) - layer = keras.layers.LSTM( - units, return_state=True, return_sequences=True - ) - outputs = layer(inputs) - output, state = outputs[0], outputs[1:] - output = keras.layers.LSTM(units)(output, initial_state=state) - model = keras.models.Model(inputs, output) - - inputs = np.random.random((num_samples, timesteps, embedding_dim)) - model.predict(inputs) - - def test_initial_states_as_other_inputs(self): - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - num_states = 2 - layer_class = keras.layers.LSTM - - # Test with Keras tensor - main_inputs = keras.Input((timesteps, embedding_dim)) - initial_state = [keras.Input((units,)) for _ in range(num_states)] - inputs = [main_inputs] + initial_state - - layer = layer_class(units) - output = layer(inputs) - self.assertTrue( - any( - initial_state[0] is t - for t in layer._inbound_nodes[0].input_tensors - ) - ) - - model = keras.models.Model(inputs, output) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - ) - - main_inputs = np.random.random((num_samples, timesteps, embedding_dim)) - initial_state = [ - np.random.random((num_samples, units)) for _ in range(num_states) - ] - targets = np.random.random((num_samples, units)) - model.train_on_batch([main_inputs] + initial_state, targets) - - @parameterized.named_parameters(("v0", 0), ("v1", 1), ("v2", 2)) - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - def test_implementation_mode_LSTM(self, implementation_mode): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.LSTM, - kwargs={"units": units, "implementation": implementation_mode}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - layer_class = keras.layers.LSTM - k_constraint = keras.constraints.max_norm(0.01) - r_constraint = keras.constraints.max_norm(0.01) - b_constraint = keras.constraints.max_norm(0.01) - layer = layer_class( - 5, - return_sequences=False, - weights=None, - input_shape=(None, embedding_dim), - kernel_constraint=k_constraint, - recurrent_constraint=r_constraint, - bias_constraint=b_constraint, - ) - layer.build((None, None, embedding_dim)) - self.assertEqual(layer.cell.kernel.constraint, k_constraint) - self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint) - self.assertEqual(layer.cell.bias.constraint, b_constraint) - - layer_class = keras.layers.LSTM - inputs = np.random.random((2, 3, 4)) - targets = np.abs(np.random.random((2, 3, 5))) - targets /= targets.sum(axis=-1, keepdims=True) - model = keras.models.Sequential() - model.add(keras.layers.Masking(input_shape=(3, 4))) - model.add(layer_class(units=5, return_sequences=True, unroll=False)) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - ) - model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - def test_masking_with_stacking_LSTM(self): - inputs = np.random.random((2, 3, 4)) - targets = np.abs(np.random.random((2, 3, 5))) - targets /= targets.sum(axis=-1, keepdims=True) - model = keras.models.Sequential() - model.add(keras.layers.Masking(input_shape=(3, 4))) - model.add(keras.layers.LSTM(10, return_sequences=True, unroll=False)) - model.add(keras.layers.LSTM(5, return_sequences=True, unroll=False)) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - ) - model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) - - @parameterized.named_parameters( - # test_name, use_bias, bias_initializer, activation - ("normal", True, "zeros"), - ("no_bias", False, "zeros"), - ("random_bias", True, "random_uniform"), - ) - def test_lstm_model_save_load(self, use_bias, bias_initializer): - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir) - h5_path = os.path.join(temp_dir, "test.h5") - - batch = 10 - timestep = 3 - input_dim = 5 - units = 2 - - x = np.random.random((batch, timestep, input_dim)) - - def build_model(): - inputs = keras.layers.Input( - shape=[timestep, input_dim], dtype=tf.float32 - ) - layer = keras.layers.LSTM( - units, use_bias=use_bias, bias_initializer=bias_initializer - ) - output = layer(inputs) - return keras.models.Model(inputs, output), layer - - model, layer = build_model() - y_ref = model.predict(x) - model.save_weights(h5_path) - - cloned_model, new_layer = build_model() - cloned_model.load_weights(h5_path) - y = cloned_model.predict(x) - - self.assertAllClose(y, y_ref) - self.assertAllClose(layer.get_weights(), new_layer.get_weights()) - - def test_lstm_output_on_multiple_kernel(self): - x_train = np.random.random( - (self.batch, self.timestep, self.input_shape) - ) - - inputs = keras.layers.Input( - shape=[self.timestep, self.input_shape], dtype=tf.float32 - ) - with test_utils.device(should_use_gpu=False): - layer = keras.layers.LSTM(self.rnn_state_size) - output = layer(inputs) - cpu_model = keras.models.Model(inputs, output) - weights = cpu_model.get_weights() - y_1 = cpu_model.predict(x_train) - - with test_utils.device(should_use_gpu=True): - layer = keras.layers.LSTM(self.rnn_state_size) - output = layer(inputs) - gpu_model = keras.models.Model(inputs, output) - gpu_model.set_weights(weights) - y_2 = gpu_model.predict(x_train) - - self.assertAllClose(y_1, y_2) - - def test_return_sequences_LSTM(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.LSTM, - kwargs={"units": units, "return_sequences": True}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message="Skipping as ROCm MIOpen does not support float64 yet.", - ) - @test_utils.run_v2_only - def test_float64_LSTM(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.LSTM, - kwargs={ - "units": units, - "return_sequences": True, - "dtype": "float64", - }, - input_shape=(num_samples, timesteps, embedding_dim), - input_dtype="float64", - ) - - def test_regularizers_LSTM(self): - embedding_dim = 4 - layer_class = keras.layers.LSTM - layer = layer_class( - 5, - return_sequences=False, - weights=None, - input_shape=(None, embedding_dim), - kernel_regularizer=keras.regularizers.l1(0.01), - recurrent_regularizer=keras.regularizers.l1(0.01), - bias_regularizer="l2", - activity_regularizer="l1", - ) - layer.build((None, None, 2)) - self.assertEqual(len(layer.losses), 3) - x = keras.backend.variable(np.ones((2, 3, 2))) - layer(x) - if tf.executing_eagerly(): - self.assertEqual(len(layer.losses), 4) - else: - self.assertEqual(len(layer.get_losses_for(x)), 1) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - def test_statefulness_LSTM(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - layer_class = keras.layers.LSTM - model = keras.models.Sequential() - model.add( - keras.layers.Embedding( - 4, - embedding_dim, - mask_zero=True, - input_length=timesteps, - batch_input_shape=(num_samples, timesteps), - ) - ) - layer = layer_class( - units, return_sequences=False, stateful=True, weights=None - ) - model.add(layer) - model.compile( - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - out1 = model.predict(np.ones((num_samples, timesteps))) - self.assertEqual(out1.shape, (num_samples, units)) - - # train once so that the states change - model.train_on_batch( - np.ones((num_samples, timesteps)), np.ones((num_samples, units)) - ) - out2 = model.predict(np.ones((num_samples, timesteps))) - - # if the state is not reset, output should be different - self.assertNotEqual(out1.max(), out2.max()) - - # check that output changes after states are reset - # (even though the model itself didn't change) - layer.reset_states() - out3 = model.predict(np.ones((num_samples, timesteps))) - self.assertNotEqual(out2.max(), out3.max()) - - # check that container-level reset_states() works - model.reset_states() - out4 = model.predict(np.ones((num_samples, timesteps))) - self.assertAllClose(out3, out4, atol=1e-5) - - # check that the call to `predict` updated the states - out5 = model.predict(np.ones((num_samples, timesteps))) - self.assertNotEqual(out4.max(), out5.max()) - - # Check masking - layer.reset_states() - - left_padded_input = np.ones((num_samples, timesteps)) - left_padded_input[0, :1] = 0 - left_padded_input[1, :2] = 0 - out6 = model.predict(left_padded_input) - - layer.reset_states() - - right_padded_input = np.ones((num_samples, timesteps)) - right_padded_input[0, -1:] = 0 - right_padded_input[1, -2:] = 0 - out7 = model.predict(right_padded_input) - - layer.reset_states() - - mix_padded_input = np.ones((num_samples, timesteps)) - mix_padded_input[0, 1] = 0 - mix_padded_input[1, 0] = 0 - mix_padded_input[1, 2] = 0 - out8 = model.predict(mix_padded_input) - - self.assertAllClose(out7, out6, atol=1e-5) - self.assertAllClose(out8, out7, atol=1e-5) - - def test_stateful_LSTM_training(self): - # See b/123587692 for more context. - vocab_size = 20 - embedding_dim = 10 - batch_size = 8 - timestep = 12 - units = 5 - x = np.random.randint(0, vocab_size, size=(batch_size, timestep)) - y = np.random.randint(0, vocab_size, size=(batch_size, timestep)) - - model = keras.Sequential( - [ - keras.layers.Embedding( - vocab_size, - embedding_dim, - batch_input_shape=[batch_size, timestep], - ), - keras.layers.LSTM(units, return_sequences=True, stateful=True), - keras.layers.Dense(vocab_size), - ] - ) - model.compile( - optimizer="adam", - loss="sparse_categorical_crossentropy", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, y, epochs=1, shuffle=False) - - def test_dropout_LSTM(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.LSTM, - kwargs={"units": units, "dropout": 0.1, "recurrent_dropout": 0.1}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - def test_bidirectional(self): - batch = 128 - timestep = 20 - vocab_size = 1000 - model = keras.Sequential( - [ - keras.layers.Embedding(vocab_size, 64), - keras.layers.Bidirectional( - keras.layers.LSTM(64, return_sequences=True) - ), - keras.layers.Bidirectional(keras.layers.LSTM(32)), - keras.layers.Dense(64, activation="relu"), - keras.layers.Dense(1, activation="sigmoid"), - ] - ) - - model.compile( - loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"] - ) - - x = np.random.randint(0, vocab_size, size=(batch, timestep)) - y = np.random.randint(0, 1, size=(batch)) - model.fit(x, y, epochs=1, shuffle=False) - model.evaluate(x, y) - model.predict(x) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - @test_utils.run_v2_only - def test_explicit_device_with_go_backward_and_mask(self): - batch_size = 8 - timestep = 7 - masksteps = 5 - units = 4 - - inputs = np.random.randn(batch_size, timestep, units).astype(np.float32) - mask = np.ones((batch_size, timestep)).astype(bool) - mask[:, masksteps:] = 0 - - lstm_layer = keras.layers.LSTM( - units, return_sequences=True, go_backwards=True - ) - with test_utils.device(should_use_gpu=True): - outputs_masked = lstm_layer(inputs, mask=tf.constant(mask)) - outputs_trimmed = lstm_layer(inputs[:, :masksteps]) - self.assertAllClose(outputs_masked[:, -masksteps:], outputs_trimmed) - - @tf_test_util.enable_output_all_intermediates - def test_v1_session_behavior(self): - with tf.compat.v1.get_default_graph().as_default(): - # See b/139132348 for more details. - x = np.random.uniform(size=(100, 4, 8)) - y = np.random.uniform(size=(100, 1)) - dataset = ( - tf.data.Dataset.from_tensor_slices((x, y)) - .shuffle(100) - .batch(32) - ) - - inp = keras.layers.Input(shape=(4, 8)) - layer = keras.layers.LSTM(1)(inp) - layer = keras.layers.Dense(1)(layer) - - model = keras.models.Model(inp, layer) - - model.compile(loss="mse", optimizer="sgd") - model.fit(dataset) - - def test_with_fully_masked_inputs(self): - num_samples = 8 - timestep = 5 - embedding_dim = 4 - vocab_size = 20 - units = 2 - - inputs = np.random.randint(0, vocab_size, size=(num_samples, timestep)) - # Set the first inputs to be fully zero. - inputs[0, :] = 0.0 - - model = keras.models.Sequential() - model.add( - keras.layers.Embedding( - vocab_size, - embedding_dim, - mask_zero=True, - input_length=timestep, - batch_input_shape=(num_samples, timestep), - ) - ) - layer = keras.layers.LSTM(units) - model.add(layer) - model.compile( - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - # Make sure it doesn't crash with cudnn kernel. - model.predict(inputs) - - # TODO (b/169895267): test with xla_gpu is disabled. - def test_deepcopy(self): - if not tf.executing_eagerly(): - self.skipTest("v2-only test") - original_layer = keras.layers.LSTM(5) - copied_layer = copy.deepcopy(original_layer) - self.assertEqual(copied_layer.units, 5) - self.assertEqual( - original_layer.get_config(), original_layer.get_config() - ) - - # Copy layer before layer call on inputs without weight initialization. - inputs = np.random.normal(size=[32, 10, 8]).astype(np.float32) - original_layer = keras.layers.LSTM(4) - copied_layer = copy.deepcopy(original_layer) - outputs = original_layer(inputs) - copied_outputs = copied_layer(inputs) - self.assertNotAllClose( - self.evaluate(outputs), self.evaluate(copied_outputs) - ) - - # Copy layer after layer call on inputs with weight initialization. - original_layer = keras.layers.LSTM(4) - outputs = original_layer(inputs) - copied_layer = copy.deepcopy(original_layer) - copied_outputs = copied_layer(inputs) - self.assertAllClose( - self.evaluate(outputs), self.evaluate(copied_outputs) - ) - - def _test_runtime_with_model(self, model): - - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=self.batch, - test_samples=0, - input_shape=(self.timestep, self.input_shape), - num_classes=self.output_shape, - ) - y_train = np_utils.to_categorical(y_train, self.output_shape) - - model.compile( - optimizer="sgd", - loss=["categorical_crossentropy", None], - run_eagerly=test_utils.should_run_eagerly(), - ) - - existing_loss = 0 - for _ in range(self.epoch): - history = model.fit(x_train, y_train) - loss_value = history.history["loss"][0] - - self.assertNotEqual(existing_loss, loss_value) - existing_loss = loss_value - - _, runtime_value = model.predict(x_train) - if not tf.sysconfig.get_build_info()["is_rocm_build"]: - if tf.test.is_gpu_available(): - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_GPU) - else: - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_CPU) - - @test_utils.run_v2_only - def test_LSTM_runtime(self): - layer = keras.layers.LSTM(self.rnn_state_size, return_runtime=True) - - inputs = keras.layers.Input( - shape=[self.timestep, self.input_shape], dtype=tf.float32 - ) - - outputs, runtime = layer(inputs) - # Expand the runtime so that it is a 1D tensor instead of scalar. - # TF model does not work with scalar model output, specially during - # aggregation. - runtime = keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1))( - runtime - ) - model = keras.models.Model(inputs=inputs, outputs=[outputs, runtime]) - self._test_runtime_with_model(model) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - @test_utils.run_v2_only - def test_LSTM_runtime_with_mask(self): - # Masking will affect which backend is selected based on whether the - # mask is strictly right padded. - layer = keras.layers.LSTM(self.rnn_state_size, return_runtime=True) - - inputs = keras.layers.Input( - shape=[self.timestep, self.input_shape], dtype=tf.float32 - ) - masked_inputs = keras.layers.Masking()(inputs) - - outputs, runtime = layer(masked_inputs) - # Expand the runtime so that it is a 1D tensor instead of scalar. - # TF model does not work with scalar model output, specially during - # aggregation. - runtime = keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1))( - runtime - ) - model = keras.models.Model(inputs=inputs, outputs=[outputs, runtime]) - - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=self.batch, - test_samples=0, - input_shape=(self.timestep, self.input_shape), - num_classes=self.output_shape, - ) - y_train = np_utils.to_categorical(y_train, self.output_shape) - - model.compile( - optimizer="sgd", - loss=["categorical_crossentropy", None], - run_eagerly=test_utils.should_run_eagerly(), - ) - - model.fit(x_train, y_train) - - # Verify unpadded data. - _, runtime_value = model.predict(x_train) - if tf.test.is_gpu_available(): - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_GPU) - else: - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_CPU) - - # Update x/y to be right padded by setting the last timestep to 0 - x_train[:, -1, :] = 0 - y_train[:, -1] = 0 - _, runtime_value = model.predict(x_train) - if tf.test.is_gpu_available(): - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_GPU) - else: - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_CPU) - - # Further update x/y to be mix padded (masks in the middle), and verify - # only cpu kernel can be selected. - x_train[:, -3, :] = 0 - y_train[:, -3] = 0 - _, runtime_value = model.predict(x_train) - self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_CPU) - - @test_utils.run_v2_only - def test_LSTM_runtime_with_cond(self): - # This test is to demonstrate the graph rewrite of grappler plugin under - # the condition that the function returns different number of internal - # states. - layer = keras.layers.LSTM(self.rnn_state_size, return_runtime=True) - - inputs = keras.layers.Input( - shape=[self.timestep, self.input_shape], dtype=tf.float32 - ) - - zeros = tf.zeros([self.batch, self.output_shape]) - dummy_runtime = gru_lstm_utils.runtime(gru_lstm_utils.RUNTIME_UNKNOWN) - a = tf.constant(0) - b = tf.constant(1) - # Will always run the lstm layer. - outputs, runtime = tf.cond( - tf.less(a, b), lambda: layer(inputs), lambda: (zeros, dummy_runtime) - ) - - # Expand the runtime so that it is a 1D tensor instead of scalar. - # TF model does not work with scalar model output, specially during - # aggregation. - runtime = keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1))( - runtime - ) - model = keras.models.Model(inputs=inputs, outputs=[outputs, runtime]) - self._test_runtime_with_model(model) - - -@test_combinations.run_all_keras_modes -class LSTMLayerTest(test_combinations.TestCase): - def test_return_sequences_LSTM(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.LSTM, - kwargs={"units": units, "return_sequences": True}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message="Double type is yet not supported in ROCm", - ) - @test_utils.run_v2_only - def test_float64_LSTM(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.LSTM, - kwargs={ - "units": units, - "return_sequences": True, - "dtype": "float64", - }, - input_shape=(num_samples, timesteps, embedding_dim), - input_dtype="float64", - ) - - def test_static_shape_inference_LSTM(self): - # GitHub issue: 15165 - timesteps = 3 - embedding_dim = 4 - units = 2 - - model = keras.models.Sequential() - inputs = keras.layers.Dense( - embedding_dim, input_shape=(timesteps, embedding_dim) - ) - model.add(inputs) - layer = keras.layers.LSTM(units, return_sequences=True) - model.add(layer) - outputs = model.layers[-1].output - self.assertEqual(outputs.shape.as_list(), [None, timesteps, units]) - - def test_dynamic_behavior_LSTM(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - layer = keras.layers.LSTM(units, input_shape=(None, embedding_dim)) - model = keras.models.Sequential() - model.add(layer) - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - x = np.random.random((num_samples, timesteps, embedding_dim)) - y = np.random.random((num_samples, units)) - model.train_on_batch(x, y) - - def test_dropout_LSTM(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.LSTM, - kwargs={"units": units, "dropout": 0.1, "recurrent_dropout": 0.1}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - def test_recurrent_dropout_with_implementation_restriction(self): - layer = keras.layers.LSTM(2, recurrent_dropout=0.1, implementation=2) - # The implementation is force to 1 due to the limit of - # recurrent_dropout. - self.assertEqual(layer.implementation, 1) - - @test_utils.run_v2_only - def test_dropout_variable_name(self): - layer = keras.layers.RNN( - keras.layers.LSTMCell(2, dropout=0.1, force_generator=True) - ) - layer(np.random.random((2, 3, 4))) - self.assertEqual( - layer.cell._random_generator._generator._state_var.name, - "rnn/lstm_cell/StateVar:0", - ) - - layer = keras.layers.LSTM(2, dropout=0.1, force_generator=True) - layer(np.random.random((2, 3, 4))) - self.assertEqual( - layer._random_generator._generator._state_var.name, - "lstm/StateVar:0", - ) - - @parameterized.parameters([0, 1, 2]) - def test_implementation_mode_LSTM(self, implementation_mode): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.LSTM, - kwargs={"units": units, "implementation": implementation_mode}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - def test_constraints_LSTM(self): - embedding_dim = 4 - layer_class = keras.layers.LSTM - k_constraint = keras.constraints.max_norm(0.01) - r_constraint = keras.constraints.max_norm(0.01) - b_constraint = keras.constraints.max_norm(0.01) - layer = layer_class( - 5, - return_sequences=False, - weights=None, - input_shape=(None, embedding_dim), - kernel_constraint=k_constraint, - recurrent_constraint=r_constraint, - bias_constraint=b_constraint, - ) - layer.build((None, None, embedding_dim)) - self.assertEqual(layer.cell.kernel.constraint, k_constraint) - self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint) - self.assertEqual(layer.cell.bias.constraint, b_constraint) - - @parameterized.parameters([True, False]) - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message="Skipping as ROCm MIOpen does not support padded input.", - ) - def test_with_masking_layer_LSTM(self, unroll): - layer_class = keras.layers.LSTM - inputs = np.random.random((2, 3, 4)) - targets = np.abs(np.random.random((2, 3, 5))) - targets /= targets.sum(axis=-1, keepdims=True) - model = keras.models.Sequential() - model.add(keras.layers.Masking(input_shape=(3, 4))) - model.add(layer_class(units=5, return_sequences=True, unroll=unroll)) - model.compile( - loss="categorical_crossentropy", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) - - @parameterized.parameters([True, False]) - def test_masking_with_stacking_LSTM(self, unroll): - inputs = np.random.random((2, 3, 4)) - targets = np.abs(np.random.random((2, 3, 5))) - targets /= targets.sum(axis=-1, keepdims=True) - model = keras.models.Sequential() - model.add(keras.layers.Masking(input_shape=(3, 4))) - lstm_cells = [keras.layers.LSTMCell(10), keras.layers.LSTMCell(5)] - model.add( - keras.layers.RNN(lstm_cells, return_sequences=True, unroll=unroll) - ) - model.compile( - loss="categorical_crossentropy", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) - - def test_from_config_LSTM(self): - layer_class = keras.layers.LSTM - for stateful in (False, True): - l1 = layer_class(units=1, stateful=stateful) - l2 = layer_class.from_config(l1.get_config()) - assert l1.get_config() == l2.get_config() - - def test_deep_copy_LSTM(self): - cell = keras.layers.LSTMCell(5) - copied_cell = copy.deepcopy(cell) - self.assertEqual(copied_cell.units, 5) - self.assertEqual(cell.get_config(), copied_cell.get_config()) - - def test_specify_initial_state_keras_tensor(self): - num_states = 2 - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - - # Test with Keras tensor - inputs = keras.Input((timesteps, embedding_dim)) - initial_state = [keras.Input((units,)) for _ in range(num_states)] - layer = keras.layers.LSTM(units) - if len(initial_state) == 1: - output = layer(inputs, initial_state=initial_state[0]) - else: - output = layer(inputs, initial_state=initial_state) - self.assertTrue( - any( - initial_state[0] is t - for t in layer._inbound_nodes[0].input_tensors - ) - ) - - model = keras.models.Model([inputs] + initial_state, output) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.AdamOptimizer(), - run_eagerly=test_utils.should_run_eagerly(), - ) - - inputs = np.random.random((num_samples, timesteps, embedding_dim)) - initial_state = [ - np.random.random((num_samples, units)) for _ in range(num_states) - ] - targets = np.random.random((num_samples, units)) - model.train_on_batch([inputs] + initial_state, targets) - - def test_specify_initial_state_non_keras_tensor(self): - num_states = 2 - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - - # Test with non-Keras tensor - inputs = keras.Input((timesteps, embedding_dim)) - initial_state = [ - keras.backend.random_normal_variable((num_samples, units), 0, 1) - for _ in range(num_states) - ] - layer = keras.layers.LSTM(units) - output = layer(inputs, initial_state=initial_state) - - model = keras.models.Model(inputs, output) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.AdamOptimizer(), - run_eagerly=test_utils.should_run_eagerly(), - ) - - inputs = np.random.random((num_samples, timesteps, embedding_dim)) - targets = np.random.random((num_samples, units)) - model.train_on_batch(inputs, targets) - - def test_reset_states_with_values(self): - num_states = 2 - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - - layer = keras.layers.LSTM(units, stateful=True) - layer.build((num_samples, timesteps, embedding_dim)) - layer.reset_states() - assert len(layer.states) == num_states - assert layer.states[0] is not None - self.assertAllClose( - keras.backend.eval(layer.states[0]), - np.zeros(keras.backend.int_shape(layer.states[0])), - atol=1e-4, - ) - state_shapes = [ - keras.backend.int_shape(state) for state in layer.states - ] - values = [np.ones(shape) for shape in state_shapes] - if len(values) == 1: - values = values[0] - layer.reset_states(values) - self.assertAllClose( - keras.backend.eval(layer.states[0]), - np.ones(keras.backend.int_shape(layer.states[0])), - atol=1e-4, - ) - - # Test with invalid data - with self.assertRaises(ValueError): - layer.reset_states([1] * (len(layer.states) + 1)) - - def test_specify_state_with_masking(self): - num_states = 2 - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - - inputs = keras.Input((timesteps, embedding_dim)) - _ = keras.layers.Masking()(inputs) - initial_state = [keras.Input((units,)) for _ in range(num_states)] - output = keras.layers.LSTM(units)(inputs, initial_state=initial_state) - - model = keras.models.Model([inputs] + initial_state, output) - model.compile( - loss="categorical_crossentropy", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - - inputs = np.random.random((num_samples, timesteps, embedding_dim)) - initial_state = [ - np.random.random((num_samples, units)) for _ in range(num_states) - ] - targets = np.random.random((num_samples, units)) - model.train_on_batch([inputs] + initial_state, targets) - - def test_return_state(self): - num_states = 2 - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - - inputs = keras.Input( - batch_shape=(num_samples, timesteps, embedding_dim) - ) - layer = keras.layers.LSTM(units, return_state=True, stateful=True) - outputs = layer(inputs) - state = outputs[1:] - assert len(state) == num_states - model = keras.models.Model(inputs, state[0]) - - inputs = np.random.random((num_samples, timesteps, embedding_dim)) - state = model.predict(inputs) - self.assertAllClose( - keras.backend.eval(layer.states[0]), state, atol=1e-4 - ) - - def test_state_reuse(self): - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - - inputs = keras.Input( - batch_shape=(num_samples, timesteps, embedding_dim) - ) - layer = keras.layers.LSTM( - units, return_state=True, return_sequences=True - ) - outputs = layer(inputs) - output, state = outputs[0], outputs[1:] - output = keras.layers.LSTM(units)(output, initial_state=state) - model = keras.models.Model(inputs, output) - - inputs = np.random.random((num_samples, timesteps, embedding_dim)) - outputs = model.predict(inputs) - - def test_initial_states_as_other_inputs(self): - timesteps = 3 - embedding_dim = 4 - units = 3 - num_samples = 2 - num_states = 2 - layer_class = keras.layers.LSTM - - # Test with Keras tensor - main_inputs = keras.Input((timesteps, embedding_dim)) - initial_state = [keras.Input((units,)) for _ in range(num_states)] - inputs = [main_inputs] + initial_state - - layer = layer_class(units) - output = layer(inputs) - self.assertTrue( - any( - initial_state[0] is t - for t in layer._inbound_nodes[0].input_tensors - ) - ) - - model = keras.models.Model(inputs, output) - model.compile( - loss="categorical_crossentropy", - optimizer=tf.compat.v1.train.AdamOptimizer(), - run_eagerly=test_utils.should_run_eagerly(), - ) - - main_inputs = np.random.random((num_samples, timesteps, embedding_dim)) - initial_state = [ - np.random.random((num_samples, units)) for _ in range(num_states) - ] - targets = np.random.random((num_samples, units)) - model.train_on_batch([main_inputs] + initial_state, targets) - - def test_regularizers_LSTM(self): - embedding_dim = 4 - layer_class = keras.layers.LSTM - layer = layer_class( - 5, - return_sequences=False, - weights=None, - input_shape=(None, embedding_dim), - kernel_regularizer=keras.regularizers.l1(0.01), - recurrent_regularizer=keras.regularizers.l1(0.01), - bias_regularizer="l2", - activity_regularizer="l1", - ) - layer.build((None, None, 2)) - self.assertEqual(len(layer.losses), 3) - x = keras.backend.variable(np.ones((2, 3, 2))) - layer(x) - if tf.executing_eagerly(): - self.assertEqual(len(layer.losses), 4) - else: - self.assertEqual(len(layer.get_losses_for(x)), 1) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message="Skipping as ROCm MIOpen does not support padded input.", - ) - def test_statefulness_LSTM(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - layer_class = keras.layers.LSTM - model = keras.models.Sequential() - model.add( - keras.layers.Embedding( - 4, - embedding_dim, - mask_zero=True, - input_length=timesteps, - batch_input_shape=(num_samples, timesteps), - ) - ) - layer = layer_class( - units, return_sequences=False, stateful=True, weights=None - ) - model.add(layer) - model.compile( - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - out1 = model.predict(np.ones((num_samples, timesteps))) - self.assertEqual(out1.shape, (num_samples, units)) - - # train once so that the states change - model.train_on_batch( - np.ones((num_samples, timesteps)), np.ones((num_samples, units)) - ) - out2 = model.predict(np.ones((num_samples, timesteps))) - - # if the state is not reset, output should be different - self.assertNotEqual(out1.max(), out2.max()) - - # check that output changes after states are reset - # (even though the model itself didn't change) - layer.reset_states() - out3 = model.predict(np.ones((num_samples, timesteps))) - self.assertNotEqual(out2.max(), out3.max()) - - # check that container-level reset_states() works - model.reset_states() - out4 = model.predict(np.ones((num_samples, timesteps))) - self.assertAllClose(out3, out4, atol=1e-5) - - # check that the call to `predict` updated the states - out5 = model.predict(np.ones((num_samples, timesteps))) - self.assertNotEqual(out4.max(), out5.max()) - - # Check masking - layer.reset_states() - - left_padded_input = np.ones((num_samples, timesteps)) - left_padded_input[0, :1] = 0 - left_padded_input[1, :2] = 0 - out6 = model.predict(left_padded_input) - - layer.reset_states() - - right_padded_input = np.ones((num_samples, timesteps)) - right_padded_input[0, -1:] = 0 - right_padded_input[1, -2:] = 0 - out7 = model.predict(right_padded_input) - - self.assertAllClose(out7, out6, atol=1e-5) - - @test_utils.run_v2_only - def test_cloned_weight_names(self): - inp = keras.Input([None, 3]) - rnn = keras.layers.LSTM(units=3) - model = keras.Model(inp, rnn(inp)) - clone = keras.models.clone_model(model) - - model_names = [x.name for x in model.weights] - clone_names = [x.name for x in clone.weights] - self.assertEqual(model_names, clone_names) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/lstm_v1.py b/keras/layers/rnn/lstm_v1.py deleted file mode 100644 index 78d4c700cbb..00000000000 --- a/keras/layers/rnn/lstm_v1.py +++ /dev/null @@ -1,404 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Long Short-Term Memory V1 layer.""" - - -from keras import activations -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine.input_spec import InputSpec -from keras.layers.rnn import lstm -from keras.layers.rnn import rnn_utils -from keras.layers.rnn.base_rnn import RNN - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - - -@keras_export(v1=["keras.layers.LSTMCell"]) -class LSTMCell(lstm.LSTMCell): - """Cell class for the LSTM layer. - - Args: - units: Positive integer, dimensionality of the output space. - activation: Activation function to use. - Default: hyperbolic tangent (`tanh`). - If you pass `None`, no activation is applied - (ie. "linear" activation: `a(x) = x`). - recurrent_activation: Activation function to use - for the recurrent step. - Default: hard sigmoid (`hard_sigmoid`). - If you pass `None`, no activation is applied - (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, - used for the linear transformation of the inputs. - recurrent_initializer: Initializer for the `recurrent_kernel` - weights matrix, - used for the linear transformation of the recurrent state. - bias_initializer: Initializer for the bias vector. - unit_forget_bias: Boolean. - If True, add 1 to the bias of the forget gate at initialization. - Setting it to true will also force `bias_initializer="zeros"`. - This is recommended in [Jozefowicz et al., 2015]( - http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) - kernel_regularizer: Regularizer function applied to - the `kernel` weights matrix. - recurrent_regularizer: Regularizer function applied to - the `recurrent_kernel` weights matrix. - bias_regularizer: Regularizer function applied to the bias vector. - kernel_constraint: Constraint function applied to - the `kernel` weights matrix. - recurrent_constraint: Constraint function applied to - the `recurrent_kernel` weights matrix. - bias_constraint: Constraint function applied to the bias vector. - dropout: Float between 0 and 1. - Fraction of the units to drop for - the linear transformation of the inputs. - recurrent_dropout: Float between 0 and 1. - Fraction of the units to drop for - the linear transformation of the recurrent state. - - Call arguments: - inputs: A 2D tensor. - states: List of state tensors corresponding to the previous timestep. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. Only relevant when `dropout` or - `recurrent_dropout` is used. - """ - - def __init__( - self, - units, - activation="tanh", - recurrent_activation="hard_sigmoid", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - unit_forget_bias=True, - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - dropout=0.0, - recurrent_dropout=0.0, - **kwargs - ): - super().__init__( - units, - activation=activation, - recurrent_activation=recurrent_activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - recurrent_initializer=recurrent_initializer, - bias_initializer=bias_initializer, - unit_forget_bias=unit_forget_bias, - kernel_regularizer=kernel_regularizer, - recurrent_regularizer=recurrent_regularizer, - bias_regularizer=bias_regularizer, - kernel_constraint=kernel_constraint, - recurrent_constraint=recurrent_constraint, - bias_constraint=bias_constraint, - dropout=dropout, - recurrent_dropout=recurrent_dropout, - implementation=kwargs.pop("implementation", 1), - **kwargs - ) - - -@keras_export(v1=["keras.layers.LSTM"]) -class LSTM(RNN): - """Long Short-Term Memory layer - Hochreiter 1997. - - Note that this cell is not optimized for performance on GPU. Please use - `tf.compat.v1.keras.layers.CuDNNLSTM` for better performance on GPU. - - Args: - units: Positive integer, dimensionality of the output space. - activation: Activation function to use. - Default: hyperbolic tangent (`tanh`). - If you pass `None`, no activation is applied - (ie. "linear" activation: `a(x) = x`). - recurrent_activation: Activation function to use - for the recurrent step. - Default: hard sigmoid (`hard_sigmoid`). - If you pass `None`, no activation is applied - (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean, whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, - used for the linear transformation of the inputs.. - recurrent_initializer: Initializer for the `recurrent_kernel` - weights matrix, - used for the linear transformation of the recurrent state. - bias_initializer: Initializer for the bias vector. - unit_forget_bias: Boolean. - If True, add 1 to the bias of the forget gate at initialization. - Setting it to true will also force `bias_initializer="zeros"`. - This is recommended in [Jozefowicz et al., 2015]( - http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf). - kernel_regularizer: Regularizer function applied to - the `kernel` weights matrix. - recurrent_regularizer: Regularizer function applied to - the `recurrent_kernel` weights matrix. - bias_regularizer: Regularizer function applied to the bias vector. - activity_regularizer: Regularizer function applied to - the output of the layer (its "activation"). - kernel_constraint: Constraint function applied to - the `kernel` weights matrix. - recurrent_constraint: Constraint function applied to - the `recurrent_kernel` weights matrix. - bias_constraint: Constraint function applied to the bias vector. - dropout: Float between 0 and 1. - Fraction of the units to drop for - the linear transformation of the inputs. - recurrent_dropout: Float between 0 and 1. - Fraction of the units to drop for - the linear transformation of the recurrent state. - return_sequences: Boolean. Whether to return the last output - in the output sequence, or the full sequence. - return_state: Boolean. Whether to return the last state - in addition to the output. - go_backwards: Boolean (default False). - If True, process the input sequence backwards and return the - reversed sequence. - stateful: Boolean (default False). If True, the last state - for each sample at index i in a batch will be used as initial - state for the sample of index i in the following batch. - unroll: Boolean (default False). - If True, the network will be unrolled, - else a symbolic loop will be used. - Unrolling can speed-up a RNN, - although it tends to be more memory-intensive. - Unrolling is only suitable for short sequences. - time_major: The shape format of the `inputs` and `outputs` tensors. - If True, the inputs and outputs will be in shape - `(timesteps, batch, ...)`, whereas in the False case, it will be - `(batch, timesteps, ...)`. Using `time_major = True` is a bit more - efficient because it avoids transposes at the beginning and end of the - RNN calculation. However, most TensorFlow data is batch-major, so by - default this function accepts input and emits output in batch-major - form. - - Call arguments: - inputs: A 3D tensor. - mask: Binary tensor of shape `(samples, timesteps)` indicating whether - a given timestep should be masked. An individual `True` entry indicates - that the corresponding timestep should be utilized, while a `False` - entry indicates that the corresponding timestep should be ignored. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. This argument is passed to the cell - when calling it. This is only relevant if `dropout` or - `recurrent_dropout` is used. - initial_state: List of initial state tensors to be passed to the first - call of the cell. - """ - - def __init__( - self, - units, - activation="tanh", - recurrent_activation="hard_sigmoid", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - unit_forget_bias=True, - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - dropout=0.0, - recurrent_dropout=0.0, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - unroll=False, - **kwargs - ): - implementation = kwargs.pop("implementation", 1) - if implementation == 0: - logging.warning( - "`implementation=0` has been deprecated, " - "and now defaults to `implementation=1`." - "Please update your layer call." - ) - if "enable_caching_device" in kwargs: - cell_kwargs = { - "enable_caching_device": kwargs.pop("enable_caching_device") - } - else: - cell_kwargs = {} - cell = LSTMCell( - units, - activation=activation, - recurrent_activation=recurrent_activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - recurrent_initializer=recurrent_initializer, - unit_forget_bias=unit_forget_bias, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - recurrent_regularizer=recurrent_regularizer, - bias_regularizer=bias_regularizer, - kernel_constraint=kernel_constraint, - recurrent_constraint=recurrent_constraint, - bias_constraint=bias_constraint, - dropout=dropout, - recurrent_dropout=recurrent_dropout, - implementation=implementation, - dtype=kwargs.get("dtype"), - trainable=kwargs.get("trainable", True), - name="lstm_cell", - **cell_kwargs - ) - super().__init__( - cell, - return_sequences=return_sequences, - return_state=return_state, - go_backwards=go_backwards, - stateful=stateful, - unroll=unroll, - **kwargs - ) - self.activity_regularizer = regularizers.get(activity_regularizer) - self.input_spec = [InputSpec(ndim=3)] - - def call(self, inputs, mask=None, training=None, initial_state=None): - return super().call( - inputs, mask=mask, training=training, initial_state=initial_state - ) - - @property - def units(self): - return self.cell.units - - @property - def activation(self): - return self.cell.activation - - @property - def recurrent_activation(self): - return self.cell.recurrent_activation - - @property - def use_bias(self): - return self.cell.use_bias - - @property - def kernel_initializer(self): - return self.cell.kernel_initializer - - @property - def recurrent_initializer(self): - return self.cell.recurrent_initializer - - @property - def bias_initializer(self): - return self.cell.bias_initializer - - @property - def unit_forget_bias(self): - return self.cell.unit_forget_bias - - @property - def kernel_regularizer(self): - return self.cell.kernel_regularizer - - @property - def recurrent_regularizer(self): - return self.cell.recurrent_regularizer - - @property - def bias_regularizer(self): - return self.cell.bias_regularizer - - @property - def kernel_constraint(self): - return self.cell.kernel_constraint - - @property - def recurrent_constraint(self): - return self.cell.recurrent_constraint - - @property - def bias_constraint(self): - return self.cell.bias_constraint - - @property - def dropout(self): - return self.cell.dropout - - @property - def recurrent_dropout(self): - return self.cell.recurrent_dropout - - @property - def implementation(self): - return self.cell.implementation - - def get_config(self): - config = { - "units": self.units, - "activation": activations.serialize(self.activation), - "recurrent_activation": activations.serialize( - self.recurrent_activation - ), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "recurrent_initializer": initializers.serialize( - self.recurrent_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "unit_forget_bias": self.unit_forget_bias, - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "recurrent_regularizer": regularizers.serialize( - self.recurrent_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "recurrent_constraint": constraints.serialize( - self.recurrent_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - "dropout": self.dropout, - "recurrent_dropout": self.recurrent_dropout, - "implementation": self.implementation, - } - config.update(rnn_utils.config_for_enable_caching_device(self.cell)) - base_config = super().get_config() - del base_config["cell"] - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config): - if "implementation" in config and config["implementation"] == 0: - config["implementation"] = 1 - return cls(**config) diff --git a/keras/layers/rnn/lstm_v1_test.py b/keras/layers/rnn/lstm_v1_test.py deleted file mode 100644 index f1d539985dd..00000000000 --- a/keras/layers/rnn/lstm_v1_test.py +++ /dev/null @@ -1,371 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for LSTM V1 layer.""" - - -import time - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.rnn import lstm -from keras.layers.rnn import lstm_v1 -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import np_utils - -# isort: off -from tensorflow.core.protobuf import rewriter_config_pb2 -from tensorflow.python.platform import tf_logging as logging - -# Global config for grappler setting that is used for graph mode test. -_rewrites = rewriter_config_pb2.RewriterConfig() -_rewrites.implementation_selector = rewriter_config_pb2.RewriterConfig.ON -_rewrites.min_graph_nodes = -1 -_graph_options = tf.compat.v1.GraphOptions(rewrite_options=_rewrites) -_config = tf.compat.v1.ConfigProto(graph_options=_graph_options) - - -@test_combinations.run_all_keras_modes(config=_config) -class LSTMGraphRewriteTest(test_combinations.TestCase): - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - @test_utils.run_v2_only - def test_lstm_feature_parity_v1_v2(self): - input_shape = 10 - rnn_state_size = 8 - timestep = 4 - batch = 20 - - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=batch, - test_samples=0, - input_shape=(timestep, input_shape), - num_classes=rnn_state_size, - random_seed=87654321, - ) - y_train = np_utils.to_categorical(y_train, rnn_state_size) - # For the last batch item of the test data, we filter out the last - # timestep to simulate the variable length sequence and masking test. - x_train[-2:, -1, :] = 0.0 - y_train[-2:] = 0 - - inputs = keras.layers.Input( - shape=[timestep, input_shape], dtype=tf.float32 - ) - masked_input = keras.layers.Masking()(inputs) - lstm_layer = lstm_v1.LSTM( - rnn_state_size, recurrent_activation="sigmoid" - ) - output = lstm_layer(masked_input) - lstm_model = keras.models.Model(inputs, output) - weights = lstm_model.get_weights() - y_1 = lstm_model.predict(x_train) - lstm_model.compile("rmsprop", "mse") - lstm_model.fit(x_train, y_train) - y_2 = lstm_model.predict(x_train) - - with test_utils.device(should_use_gpu=True): - cudnn_layer = lstm.LSTM(rnn_state_size) - cudnn_model = keras.models.Model(inputs, cudnn_layer(masked_input)) - cudnn_model.set_weights(weights) - y_3 = cudnn_model.predict(x_train) - cudnn_model.compile("rmsprop", "mse") - cudnn_model.fit(x_train, y_train) - y_4 = cudnn_model.predict(x_train) - - self.assertAllClose(y_1, y_3, rtol=1e-5, atol=2e-5) - self.assertAllClose(y_2, y_4, rtol=1e-5, atol=2e-5) - - @parameterized.named_parameters( - # test_name, time_major, go_backwards - ("normal", False, False), - ("time_major", True, False), - ("go_backwards", False, True), - ("both", True, True), - ) - def test_time_major_and_go_backward_v1_v2(self, time_major, go_backwards): - input_shape = 10 - rnn_state_size = 8 - timestep = 4 - batch = 100 - - x_train = np.random.random((batch, timestep, input_shape)) - - def build_model(layer_cls): - inputs = keras.layers.Input( - shape=[timestep, input_shape], dtype=tf.float32 - ) - layer = layer_cls( - rnn_state_size, - recurrent_activation="sigmoid", - time_major=time_major, - return_sequences=True, - go_backwards=go_backwards, - ) - if time_major: - converted_input = keras.layers.Lambda( - lambda t: tf.transpose(t, [1, 0, 2]) - )(inputs) - outputs = layer(converted_input) - outputs = keras.layers.Lambda( - lambda t: tf.transpose(t, [1, 0, 2]) - )(outputs) - else: - outputs = layer(inputs) - return keras.models.Model(inputs, outputs) - - lstm_model = build_model(lstm_v1.LSTM) - y_ref = lstm_model.predict(x_train) - weights = lstm_model.get_weights() - - lstm_v2_model = build_model(lstm.LSTM) - lstm_v2_model.set_weights(weights) - y = lstm_v2_model.predict(x_train) - - self.assertAllClose(y, y_ref) - - input_shape = 10 - rnn_state_size = 8 - output_shape = 8 - timestep = 4 - batch = 100 - epoch = 10 - - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=batch, - test_samples=0, - input_shape=(timestep, input_shape), - num_classes=output_shape, - ) - y_train = np_utils.to_categorical(y_train, output_shape) - - layer = lstm.LSTM(rnn_state_size) - - inputs = keras.layers.Input( - shape=[timestep, input_shape], dtype=tf.float32 - ) - - outputs = layer(inputs) - model = keras.models.Model(inputs, outputs) - model.compile("rmsprop", loss="mse") - model.fit(x_train, y_train, epochs=epoch) - model.evaluate(x_train, y_train) - model.predict(x_train) - - @tf.test.disable_with_predicate( - pred=tf.test.is_built_with_rocm, - skip_message=( - "Skipping as ROCm MIOpen does not support padded input yet." - ), - ) - @test_utils.run_v2_only - def test_explicit_device_with_go_backward_and_mask_v1(self): - batch_size = 8 - timestep = 7 - masksteps = 5 - units = 4 - - inputs = np.random.randn(batch_size, timestep, units).astype(np.float32) - mask = np.ones((batch_size, timestep)).astype(bool) - mask[:, masksteps:] = 0 - - lstm_v1_layer = lstm_v1.LSTM( - units, return_sequences=True, go_backwards=True - ) - with test_utils.device(should_use_gpu=True): - outputs_masked_v1 = lstm_v1_layer(inputs, mask=tf.constant(mask)) - outputs_trimmed_v1 = lstm_v1_layer(inputs[:, :masksteps]) - self.assertAllClose( - outputs_masked_v1[:, -masksteps:], outputs_trimmed_v1 - ) - - -class LSTMPerformanceTest(tf.test.Benchmark): - def _measure_performance(self, test_config, model, x_train, y_train): - batch = test_config["batch"] - epoch = test_config["epoch"] - warmup_epoch = test_config["warmup_epoch"] - - # warm up the model - model.fit(x_train, y_train, batch_size=batch, epochs=warmup_epoch) - start_time = time.time() - model.fit( - x_train, y_train, batch_size=batch, epochs=epoch - warmup_epoch - ) - end_time = time.time() - return (end_time - start_time) / (epoch - warmup_epoch) - - def _time_performance_run_cudnn_lstm(self, test_config, x_train, y_train): - # Get the performance number for standard Cudnn LSTM - input_shape = test_config["input_shape"] - rnn_state_size = test_config["rnn_state_size"] - timestep = test_config["timestep"] - - cudnn_lstm_layer = keras.layers.CuDNNLSTM(rnn_state_size) - inputs = keras.layers.Input( - shape=[timestep, input_shape], dtype=tf.float32 - ) - - outputs = cudnn_lstm_layer(inputs) - model = keras.models.Model(inputs, outputs) - model.compile("sgd", "mse") - - sec_per_epoch = self._measure_performance( - test_config, model, x_train, y_train - ) - logging.info( - "Average performance for %s per epoch is: %s", - "CuDNN LSTM", - sec_per_epoch, - ) - return sec_per_epoch - - def _time_performance_run_unifed_lstm_gpu( - self, test_config, x_train, y_train - ): - # Get performance number for lstm_v2 with grappler swap the impl - input_shape = test_config["input_shape"] - rnn_state_size = test_config["rnn_state_size"] - timestep = test_config["timestep"] - - layer = keras.layers.LSTM(rnn_state_size) - inputs = keras.layers.Input( - shape=[timestep, input_shape], dtype=tf.float32 - ) - - outputs = layer(inputs) - model = keras.models.Model(inputs, outputs) - model.compile("sgd", "mse") - - sec_per_epoch = self._measure_performance( - test_config, model, x_train, y_train - ) - logging.info( - "Average performance for %s per epoch is: %s", - "LSTM V2", - sec_per_epoch, - ) - return sec_per_epoch - - def _time_performance_run_normal_lstm(self, test_config, x_train, y_train): - # Get performance number for standard LSTM on GPU. - input_shape = test_config["input_shape"] - rnn_state_size = test_config["rnn_state_size"] - timestep = test_config["timestep"] - - layer = lstm_v1.LSTM(rnn_state_size) - inputs = keras.layers.Input( - shape=[timestep, input_shape], dtype=tf.float32 - ) - - outputs = layer(inputs) - model = keras.models.Model(inputs, outputs) - model.compile("sgd", "mse") - - sec_per_epoch = self._measure_performance( - test_config, model, x_train, y_train - ) - logging.info( - "Average performance for %s per epoch is: %s", - "Normal LSTM", - sec_per_epoch, - ) - return sec_per_epoch - - def _benchmark_performance_with_standard_cudnn_impl(self): - if not tf.test.is_gpu_available(): - self.skipTest("performance test will only run on GPU") - - mode = "eager" if tf.executing_eagerly() else "graph" - batch = 64 - num_batch = 10 - test_config = { - "input_shape": 128, - "rnn_state_size": 64, - "output_shape": 64, - "timestep": 50, - "batch": batch, - "epoch": 20, - # The performance for warmup epoch is ignored. - "warmup_epoch": 1, - } - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=(batch * num_batch), - test_samples=0, - input_shape=(test_config["timestep"], test_config["input_shape"]), - num_classes=test_config["output_shape"], - ) - y_train = np_utils.to_categorical(y_train, test_config["output_shape"]) - - cudnn_sec_per_epoch = self._time_performance_run_cudnn_lstm( - test_config, x_train, y_train - ) - lstm_v2_sec_per_epoch = self._time_performance_run_unifed_lstm_gpu( - test_config, x_train, y_train - ) - normal_lstm_sec_per_epoch = self._time_performance_run_normal_lstm( - test_config, x_train, y_train - ) - - cudnn_vs_v2 = cudnn_sec_per_epoch / lstm_v2_sec_per_epoch - v2_vs_normal = normal_lstm_sec_per_epoch / lstm_v2_sec_per_epoch - - self.report_benchmark( - name="keras_cudnn_lstm_" + mode, - wall_time=cudnn_sec_per_epoch, - iters=test_config["epoch"], - extras=test_config, - ) - self.report_benchmark( - name="keras_lstm_v2_" + mode, - wall_time=lstm_v2_sec_per_epoch, - iters=test_config["epoch"], - extras=test_config, - ) - self.report_benchmark( - name="keras_canonical_lstm_" + mode, - wall_time=normal_lstm_sec_per_epoch, - iters=test_config["epoch"], - extras=test_config, - ) - - logging.info( - "Expect the performance of LSTM V2 is within 80% of " - "cuDNN LSTM, got {0:.2f}%".format(cudnn_vs_v2 * 100) - ) - logging.info( - "Expect the performance of LSTM V2 is more than 5 times" - " of normal LSTM, got {0:.2f}".format(v2_vs_normal) - ) - - def benchmark_performance_graph(self): - with tf.compat.v1.get_default_graph().as_default(): - with tf.compat.v1.Session(config=_config): - self._benchmark_performance_with_standard_cudnn_impl() - - def benchmark_performance_eager(self): - with tf.__internal__.eager_context.eager_mode(): - self._benchmark_performance_with_standard_cudnn_impl() - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/rnn_utils.py b/keras/layers/rnn/rnn_utils.py deleted file mode 100644 index c11bb3762fd..00000000000 --- a/keras/layers/rnn/rnn_utils.py +++ /dev/null @@ -1,195 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities for RNN cells and layers.""" - - -import tensorflow.compat.v2 as tf - -from keras.utils import control_flow_util - -# isort: off -from tensorflow.python.platform import tf_logging as logging - - -def standardize_args(inputs, initial_state, constants, num_constants): - """Standardizes `__call__` to a single list of tensor inputs. - - When running a model loaded from a file, the input tensors - `initial_state` and `constants` can be passed to `RNN.__call__()` as part - of `inputs` instead of by the dedicated keyword arguments. This method - makes sure the arguments are separated and that `initial_state` and - `constants` are lists of tensors (or None). - - Args: - inputs: Tensor or list/tuple of tensors. which may include constants - and initial states. In that case `num_constant` must be specified. - initial_state: Tensor or list of tensors or None, initial states. - constants: Tensor or list of tensors or None, constant tensors. - num_constants: Expected number of constants (if constants are passed as - part of the `inputs` list. - - Returns: - inputs: Single tensor or tuple of tensors. - initial_state: List of tensors or None. - constants: List of tensors or None. - """ - if isinstance(inputs, list): - # There are several situations here: - # In the graph mode, __call__ will be only called once. The - # initial_state and constants could be in inputs (from file loading). - # In the eager mode, __call__ will be called twice, once during - # rnn_layer(inputs=input_t, constants=c_t, ...), and second time will be - # model.fit/train_on_batch/predict with real np data. In the second - # case, the inputs will contain initial_state and constants as eager - # tensor. - # - # For either case, the real input is the first item in the list, which - # could be a nested structure itself. Then followed by initial_states, - # which could be a list of items, or list of list if the initial_state - # is complex structure, and finally followed by constants which is a - # flat list. - assert initial_state is None and constants is None - if num_constants: - constants = inputs[-num_constants:] - inputs = inputs[:-num_constants] - if len(inputs) > 1: - initial_state = inputs[1:] - inputs = inputs[:1] - - if len(inputs) > 1: - inputs = tuple(inputs) - else: - inputs = inputs[0] - - def to_list_or_none(x): - if x is None or isinstance(x, list): - return x - if isinstance(x, tuple): - return list(x) - return [x] - - initial_state = to_list_or_none(initial_state) - constants = to_list_or_none(constants) - - return inputs, initial_state, constants - - -def is_multiple_state(state_size): - """Check whether the state_size contains multiple states.""" - return hasattr(state_size, "__len__") and not isinstance( - state_size, tf.TensorShape - ) - - -def generate_zero_filled_state_for_cell(cell, inputs, batch_size, dtype): - if inputs is not None: - batch_size = tf.shape(inputs)[0] - dtype = inputs.dtype - return generate_zero_filled_state(batch_size, cell.state_size, dtype) - - -def generate_zero_filled_state(batch_size_tensor, state_size, dtype): - """Generate a zero filled tensor with shape [batch_size, state_size].""" - if batch_size_tensor is None or dtype is None: - raise ValueError( - "batch_size and dtype cannot be None while constructing initial " - f"state. Received: batch_size={batch_size_tensor}, dtype={dtype}" - ) - - def create_zeros(unnested_state_size): - flat_dims = tf.TensorShape(unnested_state_size).as_list() - init_state_size = [batch_size_tensor] + flat_dims - return tf.zeros(init_state_size, dtype=dtype) - - if tf.nest.is_nested(state_size): - return tf.nest.map_structure(create_zeros, state_size) - else: - return create_zeros(state_size) - - -def caching_device(rnn_cell): - """Returns the caching device for the RNN variable. - - This is useful for distributed training, when variable is not located as - same device as the training worker. By enabling the device cache, this - allows worker to read the variable once and cache locally, rather than read - it every time step from remote when it is needed. - - Note that this is assuming the variable that cell needs for each time step - is having the same value in the forward path, and only gets updated in the - backprop. It is true for all the default cells (SimpleRNN, GRU, LSTM). If - the cell body relies on any variable that gets updated every time step, then - caching device will cause it to read the stall value. - - Args: - rnn_cell: the rnn cell instance. - """ - if tf.executing_eagerly(): - # caching_device is not supported in eager mode. - return None - if not getattr(rnn_cell, "_enable_caching_device", False): - return None - # Don't set a caching device when running in a loop, since it is possible - # that train steps could be wrapped in a tf.while_loop. In that scenario - # caching prevents forward computations in loop iterations from re-reading - # the updated weights. - if control_flow_util.IsInWhileLoop(tf.compat.v1.get_default_graph()): - logging.warning( - "Variable read device caching has been disabled because the " - "RNN is in tf.while_loop loop context, which will cause " - "reading stalled value in forward path. This could slow down " - "the training due to duplicated variable reads. Please " - "consider updating your code to remove tf.while_loop if possible." - ) - return None - if ( - rnn_cell._dtype_policy.compute_dtype - != rnn_cell._dtype_policy.variable_dtype - ): - logging.warning( - "Variable read device caching has been disabled since it " - "doesn't work with the mixed precision API. This is " - "likely to cause a slowdown for RNN training due to " - "duplicated read of variable for each timestep, which " - "will be significant in a multi remote worker setting. " - "Please consider disabling mixed precision API if " - "the performance has been affected." - ) - return None - # Cache the value on the device that access the variable. - return lambda op: op.device - - -def config_for_enable_caching_device(rnn_cell): - """Return the dict config for RNN cell wrt to enable_caching_device field. - - Since enable_caching_device is a internal implementation detail for speed up - the RNN variable read when running on the multi remote worker setting, we - don't want this config to be serialized constantly in the JSON. We will only - serialize this field when a none default value is used to create the cell. - Args: - rnn_cell: the RNN cell for serialize. - - Returns: - A dict which contains the JSON config for enable_caching_device value or - empty dict if the enable_caching_device value is same as the default - value. - """ - default_enable_caching_device = ( - tf.compat.v1.executing_eagerly_outside_functions() - ) - if rnn_cell._enable_caching_device != default_enable_caching_device: - return {"enable_caching_device": rnn_cell._enable_caching_device} - return {} diff --git a/keras/layers/rnn/simple_rnn.py b/keras/layers/rnn/simple_rnn.py deleted file mode 100644 index 97a2e94d761..00000000000 --- a/keras/layers/rnn/simple_rnn.py +++ /dev/null @@ -1,510 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Fully connected RNN layer.""" - - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import backend -from keras import constraints -from keras import initializers -from keras import regularizers -from keras.engine import base_layer -from keras.engine.input_spec import InputSpec -from keras.layers.rnn import rnn_utils -from keras.layers.rnn.base_rnn import RNN -from keras.layers.rnn.dropout_rnn_cell_mixin import DropoutRNNCellMixin -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.SimpleRNNCell") -class SimpleRNNCell(DropoutRNNCellMixin, base_layer.BaseRandomLayer): - """Cell class for SimpleRNN. - - See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) - for details about the usage of RNN API. - - This class processes one step within the whole time sequence input, whereas - `tf.keras.layer.SimpleRNN` processes the whole sequence. - - Args: - units: Positive integer, dimensionality of the output space. - activation: Activation function to use. - Default: hyperbolic tangent (`tanh`). - If you pass `None`, no activation is applied - (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean, (default `True`), whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, - used for the linear transformation of the inputs. Default: - `glorot_uniform`. - recurrent_initializer: Initializer for the `recurrent_kernel` - weights matrix, used for the linear transformation of the recurrent - state. Default: `orthogonal`. - bias_initializer: Initializer for the bias vector. Default: `zeros`. - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. Default: `None`. - recurrent_regularizer: Regularizer function applied to the - `recurrent_kernel` weights matrix. Default: `None`. - bias_regularizer: Regularizer function applied to the bias vector. - Default: `None`. - kernel_constraint: Constraint function applied to the `kernel` weights - matrix. Default: `None`. - recurrent_constraint: Constraint function applied to the - `recurrent_kernel` weights matrix. Default: `None`. - bias_constraint: Constraint function applied to the bias vector. Default: - `None`. - dropout: Float between 0 and 1. Fraction of the units to drop for the - linear transformation of the inputs. Default: 0. - recurrent_dropout: Float between 0 and 1. Fraction of the units to drop - for the linear transformation of the recurrent state. Default: 0. - - Call arguments: - inputs: A 2D tensor, with shape of `[batch, feature]`. - states: A 2D tensor with shape of `[batch, units]`, which is the state - from the previous time step. For timestep 0, the initial state provided - by user will be feed to cell. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. Only relevant when `dropout` or - `recurrent_dropout` is used. - - Examples: - - ```python - inputs = np.random.random([32, 10, 8]).astype(np.float32) - rnn = tf.keras.layers.RNN(tf.keras.layers.SimpleRNNCell(4)) - - output = rnn(inputs) # The output has shape `[32, 4]`. - - rnn = tf.keras.layers.RNN( - tf.keras.layers.SimpleRNNCell(4), - return_sequences=True, - return_state=True) - - # whole_sequence_output has shape `[32, 10, 4]`. - # final_state has shape `[32, 4]`. - whole_sequence_output, final_state = rnn(inputs) - ``` - """ - - def __init__( - self, - units, - activation="tanh", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - dropout=0.0, - recurrent_dropout=0.0, - **kwargs, - ): - if units <= 0: - raise ValueError( - "Received an invalid value for argument `units`, " - f"expected a positive integer, got {units}." - ) - # By default use cached variable under v2 mode, see b/143699808. - if tf.compat.v1.executing_eagerly_outside_functions(): - self._enable_caching_device = kwargs.pop( - "enable_caching_device", True - ) - else: - self._enable_caching_device = kwargs.pop( - "enable_caching_device", False - ) - super().__init__(**kwargs) - self.units = units - self.activation = activations.get(activation) - self.use_bias = use_bias - - self.kernel_initializer = initializers.get(kernel_initializer) - self.recurrent_initializer = initializers.get(recurrent_initializer) - self.bias_initializer = initializers.get(bias_initializer) - - self.kernel_regularizer = regularizers.get(kernel_regularizer) - self.recurrent_regularizer = regularizers.get(recurrent_regularizer) - self.bias_regularizer = regularizers.get(bias_regularizer) - - self.kernel_constraint = constraints.get(kernel_constraint) - self.recurrent_constraint = constraints.get(recurrent_constraint) - self.bias_constraint = constraints.get(bias_constraint) - - self.dropout = min(1.0, max(0.0, dropout)) - self.recurrent_dropout = min(1.0, max(0.0, recurrent_dropout)) - self.state_size = self.units - self.output_size = self.units - - @tf_utils.shape_type_conversion - def build(self, input_shape): - super().build(input_shape) - default_caching_device = rnn_utils.caching_device(self) - self.kernel = self.add_weight( - shape=(input_shape[-1], self.units), - name="kernel", - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - caching_device=default_caching_device, - ) - self.recurrent_kernel = self.add_weight( - shape=(self.units, self.units), - name="recurrent_kernel", - initializer=self.recurrent_initializer, - regularizer=self.recurrent_regularizer, - constraint=self.recurrent_constraint, - caching_device=default_caching_device, - ) - if self.use_bias: - self.bias = self.add_weight( - shape=(self.units,), - name="bias", - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - caching_device=default_caching_device, - ) - else: - self.bias = None - self.built = True - - def call(self, inputs, states, training=None): - prev_output = states[0] if tf.nest.is_nested(states) else states - dp_mask = self.get_dropout_mask_for_cell(inputs, training) - rec_dp_mask = self.get_recurrent_dropout_mask_for_cell( - prev_output, training - ) - - if dp_mask is not None: - h = backend.dot(inputs * dp_mask, self.kernel) - else: - h = backend.dot(inputs, self.kernel) - if self.bias is not None: - h = backend.bias_add(h, self.bias) - - if rec_dp_mask is not None: - prev_output = prev_output * rec_dp_mask - output = h + backend.dot(prev_output, self.recurrent_kernel) - if self.activation is not None: - output = self.activation(output) - - new_state = [output] if tf.nest.is_nested(states) else output - return output, new_state - - def get_initial_state(self, inputs=None, batch_size=None, dtype=None): - return rnn_utils.generate_zero_filled_state_for_cell( - self, inputs, batch_size, dtype - ) - - def get_config(self): - config = { - "units": self.units, - "activation": activations.serialize(self.activation), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "recurrent_initializer": initializers.serialize( - self.recurrent_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "recurrent_regularizer": regularizers.serialize( - self.recurrent_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "recurrent_constraint": constraints.serialize( - self.recurrent_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - "dropout": self.dropout, - "recurrent_dropout": self.recurrent_dropout, - } - config.update(rnn_utils.config_for_enable_caching_device(self)) - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.layers.SimpleRNN") -class SimpleRNN(RNN): - """Fully-connected RNN where the output is to be fed back to input. - - See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) - for details about the usage of RNN API. - - Args: - units: Positive integer, dimensionality of the output space. - activation: Activation function to use. - Default: hyperbolic tangent (`tanh`). - If you pass None, no activation is applied - (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean, (default `True`), whether the layer uses a bias vector. - kernel_initializer: Initializer for the `kernel` weights matrix, - used for the linear transformation of the inputs. Default: - `glorot_uniform`. - recurrent_initializer: Initializer for the `recurrent_kernel` - weights matrix, used for the linear transformation of the recurrent - state. Default: `orthogonal`. - bias_initializer: Initializer for the bias vector. Default: `zeros`. - kernel_regularizer: Regularizer function applied to the `kernel` weights - matrix. Default: `None`. - recurrent_regularizer: Regularizer function applied to the - `recurrent_kernel` weights matrix. Default: `None`. - bias_regularizer: Regularizer function applied to the bias vector. - Default: `None`. - activity_regularizer: Regularizer function applied to the output of the - layer (its "activation"). Default: `None`. - kernel_constraint: Constraint function applied to the `kernel` weights - matrix. Default: `None`. - recurrent_constraint: Constraint function applied to the - `recurrent_kernel` weights matrix. Default: `None`. - bias_constraint: Constraint function applied to the bias vector. Default: - `None`. - dropout: Float between 0 and 1. - Fraction of the units to drop for the linear transformation of the - inputs. Default: 0. - recurrent_dropout: Float between 0 and 1. - Fraction of the units to drop for the linear transformation of the - recurrent state. Default: 0. - return_sequences: Boolean. Whether to return the last output - in the output sequence, or the full sequence. Default: `False`. - return_state: Boolean. Whether to return the last state - in addition to the output. Default: `False` - go_backwards: Boolean (default False). - If True, process the input sequence backwards and return the - reversed sequence. - stateful: Boolean (default False). If True, the last state - for each sample at index i in a batch will be used as initial - state for the sample of index i in the following batch. - unroll: Boolean (default False). - If True, the network will be unrolled, - else a symbolic loop will be used. - Unrolling can speed-up a RNN, - although it tends to be more memory-intensive. - Unrolling is only suitable for short sequences. - - Call arguments: - inputs: A 3D tensor, with shape `[batch, timesteps, feature]`. - mask: Binary tensor of shape `[batch, timesteps]` indicating whether - a given timestep should be masked. An individual `True` entry indicates - that the corresponding timestep should be utilized, while a `False` - entry indicates that the corresponding timestep should be ignored. - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. This argument is passed to the cell - when calling it. This is only relevant if `dropout` or - `recurrent_dropout` is used. - initial_state: List of initial state tensors to be passed to the first - call of the cell. - - Examples: - - ```python - inputs = np.random.random([32, 10, 8]).astype(np.float32) - simple_rnn = tf.keras.layers.SimpleRNN(4) - - output = simple_rnn(inputs) # The output has shape `[32, 4]`. - - simple_rnn = tf.keras.layers.SimpleRNN( - 4, return_sequences=True, return_state=True) - - # whole_sequence_output has shape `[32, 10, 4]`. - # final_state has shape `[32, 4]`. - whole_sequence_output, final_state = simple_rnn(inputs) - ``` - """ - - def __init__( - self, - units, - activation="tanh", - use_bias=True, - kernel_initializer="glorot_uniform", - recurrent_initializer="orthogonal", - bias_initializer="zeros", - kernel_regularizer=None, - recurrent_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - recurrent_constraint=None, - bias_constraint=None, - dropout=0.0, - recurrent_dropout=0.0, - return_sequences=False, - return_state=False, - go_backwards=False, - stateful=False, - unroll=False, - **kwargs, - ): - if "implementation" in kwargs: - kwargs.pop("implementation") - logging.warning( - "The `implementation` argument " - "in `SimpleRNN` has been deprecated. " - "Please remove it from your layer call." - ) - if "enable_caching_device" in kwargs: - cell_kwargs = { - "enable_caching_device": kwargs.pop("enable_caching_device") - } - else: - cell_kwargs = {} - cell = SimpleRNNCell( - units, - activation=activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - recurrent_initializer=recurrent_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - recurrent_regularizer=recurrent_regularizer, - bias_regularizer=bias_regularizer, - kernel_constraint=kernel_constraint, - recurrent_constraint=recurrent_constraint, - bias_constraint=bias_constraint, - dropout=dropout, - recurrent_dropout=recurrent_dropout, - dtype=kwargs.get("dtype"), - trainable=kwargs.get("trainable", True), - name="simple_rnn_cell", - **cell_kwargs, - ) - super().__init__( - cell, - return_sequences=return_sequences, - return_state=return_state, - go_backwards=go_backwards, - stateful=stateful, - unroll=unroll, - **kwargs, - ) - self.activity_regularizer = regularizers.get(activity_regularizer) - self.input_spec = [InputSpec(ndim=3)] - - def call(self, inputs, mask=None, training=None, initial_state=None): - return super().call( - inputs, mask=mask, training=training, initial_state=initial_state - ) - - @property - def units(self): - return self.cell.units - - @property - def activation(self): - return self.cell.activation - - @property - def use_bias(self): - return self.cell.use_bias - - @property - def kernel_initializer(self): - return self.cell.kernel_initializer - - @property - def recurrent_initializer(self): - return self.cell.recurrent_initializer - - @property - def bias_initializer(self): - return self.cell.bias_initializer - - @property - def kernel_regularizer(self): - return self.cell.kernel_regularizer - - @property - def recurrent_regularizer(self): - return self.cell.recurrent_regularizer - - @property - def bias_regularizer(self): - return self.cell.bias_regularizer - - @property - def kernel_constraint(self): - return self.cell.kernel_constraint - - @property - def recurrent_constraint(self): - return self.cell.recurrent_constraint - - @property - def bias_constraint(self): - return self.cell.bias_constraint - - @property - def dropout(self): - return self.cell.dropout - - @property - def recurrent_dropout(self): - return self.cell.recurrent_dropout - - def get_config(self): - config = { - "units": self.units, - "activation": activations.serialize(self.activation), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "recurrent_initializer": initializers.serialize( - self.recurrent_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "recurrent_regularizer": regularizers.serialize( - self.recurrent_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - "activity_regularizer": regularizers.serialize( - self.activity_regularizer - ), - "kernel_constraint": constraints.serialize(self.kernel_constraint), - "recurrent_constraint": constraints.serialize( - self.recurrent_constraint - ), - "bias_constraint": constraints.serialize(self.bias_constraint), - "dropout": self.dropout, - "recurrent_dropout": self.recurrent_dropout, - } - base_config = super().get_config() - config.update(rnn_utils.config_for_enable_caching_device(self.cell)) - del base_config["cell"] - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config): - if "implementation" in config: - config.pop("implementation") - return cls(**config) diff --git a/keras/layers/rnn/simple_rnn_test.py b/keras/layers/rnn/simple_rnn_test.py deleted file mode 100644 index 9cd1a27668d..00000000000 --- a/keras/layers/rnn/simple_rnn_test.py +++ /dev/null @@ -1,254 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for SimpleRNN layer.""" - -import copy - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.generate(test_combinations.keras_mode_combinations()) -class SimpleRNNLayerTest(tf.test.TestCase, parameterized.TestCase): - def test_return_sequences_SimpleRNN(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.SimpleRNN, - kwargs={"units": units, "return_sequences": True}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - @test_utils.run_v2_only - def test_float64_SimpleRNN(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.SimpleRNN, - kwargs={ - "units": units, - "return_sequences": True, - "dtype": "float64", - }, - input_shape=(num_samples, timesteps, embedding_dim), - input_dtype="float64", - ) - - def test_dynamic_behavior_SimpleRNN(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - layer = keras.layers.SimpleRNN(units, input_shape=(None, embedding_dim)) - model = keras.models.Sequential() - model.add(layer) - model.compile("rmsprop", "mse") - x = np.random.random((num_samples, timesteps, embedding_dim)) - y = np.random.random((num_samples, units)) - model.train_on_batch(x, y) - - def test_dropout_SimpleRNN(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - test_utils.layer_test( - keras.layers.SimpleRNN, - kwargs={"units": units, "dropout": 0.1, "recurrent_dropout": 0.1}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - def test_implementation_mode_SimpleRNN(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - for mode in [0, 1, 2]: - test_utils.layer_test( - keras.layers.SimpleRNN, - kwargs={"units": units, "implementation": mode}, - input_shape=(num_samples, timesteps, embedding_dim), - ) - - def test_constraints_SimpleRNN(self): - embedding_dim = 4 - layer_class = keras.layers.SimpleRNN - k_constraint = keras.constraints.max_norm(0.01) - r_constraint = keras.constraints.max_norm(0.01) - b_constraint = keras.constraints.max_norm(0.01) - layer = layer_class( - 5, - return_sequences=False, - weights=None, - input_shape=(None, embedding_dim), - kernel_constraint=k_constraint, - recurrent_constraint=r_constraint, - bias_constraint=b_constraint, - ) - layer.build((None, None, embedding_dim)) - self.assertEqual(layer.cell.kernel.constraint, k_constraint) - self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint) - self.assertEqual(layer.cell.bias.constraint, b_constraint) - - def test_with_masking_layer_SimpleRNN(self): - layer_class = keras.layers.SimpleRNN - inputs = np.random.random((2, 3, 4)) - targets = np.abs(np.random.random((2, 3, 5))) - targets /= targets.sum(axis=-1, keepdims=True) - model = keras.models.Sequential() - model.add(keras.layers.Masking(input_shape=(3, 4))) - model.add(layer_class(units=5, return_sequences=True, unroll=False)) - model.compile(loss="categorical_crossentropy", optimizer="rmsprop") - model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) - - def test_from_config_SimpleRNN(self): - layer_class = keras.layers.SimpleRNN - for stateful in (False, True): - l1 = layer_class(units=1, stateful=stateful) - l2 = layer_class.from_config(l1.get_config()) - assert l1.get_config() == l2.get_config() - - def test_deep_copy_SimpleRNN(self): - cell = keras.layers.SimpleRNNCell(5) - copied_cell = copy.deepcopy(cell) - self.assertEqual(copied_cell.units, 5) - self.assertEqual(cell.get_config(), copied_cell.get_config()) - - def test_regularizers_SimpleRNN(self): - embedding_dim = 4 - layer_class = keras.layers.SimpleRNN - layer = layer_class( - 5, - return_sequences=False, - weights=None, - input_shape=(None, embedding_dim), - kernel_regularizer=keras.regularizers.l1(0.01), - recurrent_regularizer=keras.regularizers.l1(0.01), - bias_regularizer="l2", - activity_regularizer="l1", - ) - layer.build((None, None, 2)) - self.assertLen(layer.losses, 3) - - x = keras.backend.variable(np.ones((2, 3, 2))) - layer(x) - if tf.executing_eagerly(): - self.assertLen(layer.losses, 4) - else: - self.assertLen(layer.get_losses_for(x), 1) - - def test_statefulness_SimpleRNN(self): - num_samples = 2 - timesteps = 3 - embedding_dim = 4 - units = 2 - layer_class = keras.layers.SimpleRNN - model = keras.models.Sequential() - model.add( - keras.layers.Embedding( - 4, - embedding_dim, - mask_zero=True, - input_length=timesteps, - batch_input_shape=(num_samples, timesteps), - ) - ) - layer = layer_class( - units, return_sequences=False, stateful=True, weights=None - ) - model.add(layer) - model.compile( - optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - out1 = model.predict(np.ones((num_samples, timesteps))) - self.assertEqual(out1.shape, (num_samples, units)) - - # train once so that the states change - model.train_on_batch( - np.ones((num_samples, timesteps)), np.ones((num_samples, units)) - ) - out2 = model.predict(np.ones((num_samples, timesteps))) - - # if the state is not reset, output should be different - self.assertNotEqual(out1.max(), out2.max()) - - # check that output changes after states are reset - # (even though the model itself didn't change) - layer.reset_states() - out3 = model.predict(np.ones((num_samples, timesteps))) - self.assertNotEqual(out2.max(), out3.max()) - - # check that container-level reset_states() works - model.reset_states() - out4 = model.predict(np.ones((num_samples, timesteps))) - np.testing.assert_allclose(out3, out4, atol=1e-5) - - # check that the call to `predict` updated the states - out5 = model.predict(np.ones((num_samples, timesteps))) - self.assertNotEqual(out4.max(), out5.max()) - - # Check masking - layer.reset_states() - - left_padded_input = np.ones((num_samples, timesteps)) - left_padded_input[0, :1] = 0 - left_padded_input[1, :2] = 0 - out6 = model.predict(left_padded_input) - - layer.reset_states() - - right_padded_input = np.ones((num_samples, timesteps)) - right_padded_input[0, -1:] = 0 - right_padded_input[1, -2:] = 0 - out7 = model.predict(right_padded_input) - - np.testing.assert_allclose(out7, out6, atol=1e-5) - - def test_get_initial_states(self): - batch_size = 4 - cell = keras.layers.SimpleRNNCell(20) - initial_state = cell.get_initial_state( - batch_size=batch_size, dtype=tf.float32 - ) - _, state = cell( - np.ones((batch_size, 20), dtype=np.float32), initial_state - ) - self.assertEqual(state.shape, initial_state.shape) - - @test_utils.run_v2_only - def test_cloned_weight_names(self): - inp = keras.Input([None, 3]) - rnn = keras.layers.SimpleRNN(units=3) - model = keras.Model(inp, rnn(inp)) - clone = keras.models.clone_model(model) - - model_names = [x.name for x in model.weights] - clone_names = [x.name for x in clone.weights] - self.assertEqual(model_names, clone_names) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/rnn/stacked_rnn_cells.py b/keras/layers/rnn/stacked_rnn_cells.py deleted file mode 100644 index 46bb3091f3f..00000000000 --- a/keras/layers/rnn/stacked_rnn_cells.py +++ /dev/null @@ -1,217 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Wrapper allowing a stack of RNN cells to behave as a single cell.""" - - -import functools - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer -from keras.layers.rnn import rnn_utils -from keras.saving import serialization_lib -from keras.utils import generic_utils -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.StackedRNNCells") -class StackedRNNCells(base_layer.Layer): - """Wrapper allowing a stack of RNN cells to behave as a single cell. - - Used to implement efficient stacked RNNs. - - Args: - cells: List of RNN cell instances. - - Examples: - - ```python - batch_size = 3 - sentence_max_length = 5 - n_features = 2 - new_shape = (batch_size, sentence_max_length, n_features) - x = tf.constant(np.reshape(np.arange(30), new_shape), dtype = tf.float32) - - rnn_cells = [tf.keras.layers.LSTMCell(128) for _ in range(2)] - stacked_lstm = tf.keras.layers.StackedRNNCells(rnn_cells) - lstm_layer = tf.keras.layers.RNN(stacked_lstm) - - result = lstm_layer(x) - ``` - """ - - def __init__(self, cells, **kwargs): - for cell in cells: - if "call" not in dir(cell): - raise ValueError( - "All cells must have a `call` method. " - f"Received cell without a `call` method: {cell}" - ) - if "state_size" not in dir(cell): - raise ValueError( - "All cells must have a `state_size` attribute. " - f"Received cell without a `state_size`: {cell}" - ) - self.cells = cells - # reverse_state_order determines whether the state size will be in a - # reverse order of the cells' state. User might want to set this to True - # to keep the existing behavior. This is only useful when use - # RNN(return_state=True) since the state will be returned as the same - # order of state_size. - self.reverse_state_order = kwargs.pop("reverse_state_order", False) - if self.reverse_state_order: - logging.warning( - "reverse_state_order=True in StackedRNNCells will soon " - "be deprecated. Please update the code to work with the " - "natural order of states if you rely on the RNN states, " - "eg RNN(return_state=True)." - ) - super().__init__(**kwargs) - - @property - def state_size(self): - return tuple( - c.state_size - for c in ( - self.cells[::-1] if self.reverse_state_order else self.cells - ) - ) - - @property - def output_size(self): - if getattr(self.cells[-1], "output_size", None) is not None: - return self.cells[-1].output_size - elif rnn_utils.is_multiple_state(self.cells[-1].state_size): - return self.cells[-1].state_size[0] - else: - return self.cells[-1].state_size - - def get_initial_state(self, inputs=None, batch_size=None, dtype=None): - initial_states = [] - for cell in ( - self.cells[::-1] if self.reverse_state_order else self.cells - ): - get_initial_state_fn = getattr(cell, "get_initial_state", None) - if get_initial_state_fn: - initial_states.append( - get_initial_state_fn( - inputs=inputs, batch_size=batch_size, dtype=dtype - ) - ) - else: - initial_states.append( - rnn_utils.generate_zero_filled_state_for_cell( - cell, inputs, batch_size, dtype - ) - ) - - return tuple(initial_states) - - def call(self, inputs, states, constants=None, training=None, **kwargs): - # Recover per-cell states. - state_size = ( - self.state_size[::-1] - if self.reverse_state_order - else self.state_size - ) - nested_states = tf.nest.pack_sequence_as( - state_size, tf.nest.flatten(states) - ) - - # Call the cells in order and store the returned states. - new_nested_states = [] - for cell, states in zip(self.cells, nested_states): - states = states if tf.nest.is_nested(states) else [states] - # TF cell does not wrap the state into list when there is only one - # state. - is_tf_rnn_cell = getattr(cell, "_is_tf_rnn_cell", None) is not None - states = ( - states[0] if len(states) == 1 and is_tf_rnn_cell else states - ) - if generic_utils.has_arg(cell.call, "training"): - kwargs["training"] = training - else: - kwargs.pop("training", None) - # Use the __call__ function for callable objects, eg layers, so that - # it will have the proper name scopes for the ops, etc. - cell_call_fn = cell.__call__ if callable(cell) else cell.call - if generic_utils.has_arg(cell.call, "constants"): - inputs, states = cell_call_fn( - inputs, states, constants=constants, **kwargs - ) - else: - inputs, states = cell_call_fn(inputs, states, **kwargs) - new_nested_states.append(states) - - return inputs, tf.nest.pack_sequence_as( - state_size, tf.nest.flatten(new_nested_states) - ) - - @tf_utils.shape_type_conversion - def build(self, input_shape): - if isinstance(input_shape, list): - input_shape = input_shape[0] - - def get_batch_input_shape(batch_size, dim): - shape = tf.TensorShape(dim).as_list() - return tuple([batch_size] + shape) - - for cell in self.cells: - if isinstance(cell, base_layer.Layer) and not cell.built: - with backend.name_scope(cell.name): - cell.build(input_shape) - cell.built = True - if getattr(cell, "output_size", None) is not None: - output_dim = cell.output_size - elif rnn_utils.is_multiple_state(cell.state_size): - output_dim = cell.state_size[0] - else: - output_dim = cell.state_size - batch_size = tf.nest.flatten(input_shape)[0] - if tf.nest.is_nested(output_dim): - input_shape = tf.nest.map_structure( - functools.partial(get_batch_input_shape, batch_size), - output_dim, - ) - input_shape = tuple(input_shape) - else: - input_shape = tuple( - [batch_size] + tf.TensorShape(output_dim).as_list() - ) - self.built = True - - def get_config(self): - cells = [] - for cell in self.cells: - cells.append(serialization_lib.serialize_keras_object(cell)) - config = {"cells": cells} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - from keras.layers import deserialize as deserialize_layer - - cells = [] - for cell_config in config.pop("cells"): - cells.append( - deserialize_layer(cell_config, custom_objects=custom_objects) - ) - return cls(cells, **config) diff --git a/keras/layers/rnn/time_distributed.py b/keras/layers/rnn/time_distributed.py deleted file mode 100644 index 27f28236394..00000000000 --- a/keras/layers/rnn/time_distributed.py +++ /dev/null @@ -1,352 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Wrapper layer to apply every temporal slice of an input.""" - - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine.base_layer import Layer -from keras.engine.input_spec import InputSpec -from keras.layers.rnn.base_wrapper import Wrapper -from keras.utils import generic_utils -from keras.utils import layer_utils -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.layers.TimeDistributed") -class TimeDistributed(Wrapper): - """This wrapper allows to apply a layer to every temporal slice of an input. - - Every input should be at least 3D, and the dimension of index one of the - first input will be considered to be the temporal dimension. - - Consider a batch of 32 video samples, where each sample is a 128x128 RGB - image with `channels_last` data format, across 10 timesteps. - The batch input shape is `(32, 10, 128, 128, 3)`. - - You can then use `TimeDistributed` to apply the same `Conv2D` layer to each - of the 10 timesteps, independently: - - >>> inputs = tf.keras.Input(shape=(10, 128, 128, 3)) - >>> conv_2d_layer = tf.keras.layers.Conv2D(64, (3, 3)) - >>> outputs = tf.keras.layers.TimeDistributed(conv_2d_layer)(inputs) - >>> outputs.shape - TensorShape([None, 10, 126, 126, 64]) - - Because `TimeDistributed` applies the same instance of `Conv2D` to each of - the timestamps, the same set of weights are used at each timestamp. - - Args: - layer: a `tf.keras.layers.Layer` instance. - - Call arguments: - inputs: Input tensor of shape (batch, time, ...) or nested tensors, - and each of which has shape (batch, time, ...). - training: Python boolean indicating whether the layer should behave in - training mode or in inference mode. This argument is passed to the - wrapped layer (only if the layer supports this argument). - mask: Binary tensor of shape `(samples, timesteps)` indicating whether - a given timestep should be masked. This argument is passed to the - wrapped layer (only if the layer supports this argument). - - Raises: - ValueError: If not initialized with a `tf.keras.layers.Layer` instance. - """ - - def __init__(self, layer, **kwargs): - if not isinstance(layer, Layer): - raise ValueError( - "Please initialize `TimeDistributed` layer with a " - f"`tf.keras.layers.Layer` instance. Received: {layer}" - ) - super().__init__(layer, **kwargs) - self.supports_masking = True - - # It is safe to use the fast, reshape-based approach with all of our - # built-in Layers. - self._always_use_reshape = layer_utils.is_builtin_layer( - layer - ) and not getattr(layer, "stateful", False) - - def _get_shape_tuple(self, init_tuple, tensor, start_idx): - """Finds non-specific dimensions in the static shapes. - - The static shapes are replaced with the corresponding dynamic shapes of - the tensor. - Args: - init_tuple: a tuple, the first part of the output shape - tensor: the tensor from which to get the (static and dynamic) shapes - as the last part of the output shape - start_idx: int, which indicate the first dimension to take from - the static shape of the tensor - Returns: - The new shape with the first part from `init_tuple` and the last part - from or `tensor.shape`, where every `None` is replaced by the - corresponding dimension from `tf.shape(tensor)`. - """ - # replace all None in int_shape by backend.shape - int_shape = backend.int_shape(tensor)[start_idx:] - if not any(s is None for s in int_shape): - return init_tuple + int_shape - shape = backend.shape(tensor) - int_shape = list(int_shape) - for i, s in enumerate(int_shape): - if s is None: - int_shape[i] = shape[start_idx + i] - return init_tuple + tuple(int_shape) - - def _remove_timesteps(self, dims): - dims = dims.as_list() - return tf.TensorShape([dims[0]] + dims[2:]) - - def build(self, input_shape): - input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False) - input_dims = tf.nest.flatten( - tf.nest.map_structure(lambda x: x.ndims, input_shape) - ) - if any(dim < 3 for dim in input_dims): - raise ValueError( - "`TimeDistributed` Layer should be passed an `input_shape ` " - f"with at least 3 dimensions, received: {input_shape}" - ) - # Don't enforce the batch or time dimension. - self.input_spec = tf.nest.map_structure( - lambda x: InputSpec(shape=[None, None] + x.as_list()[2:]), - input_shape, - ) - child_input_shape = tf.nest.map_structure( - self._remove_timesteps, input_shape - ) - child_input_shape = tf_utils.convert_shapes(child_input_shape) - super().build(tuple(child_input_shape)) - self.built = True - - def compute_output_shape(self, input_shape): - input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False) - - child_input_shape = tf.nest.map_structure( - self._remove_timesteps, input_shape - ) - child_output_shape = self.layer.compute_output_shape(child_input_shape) - child_output_shape = tf_utils.convert_shapes( - child_output_shape, to_tuples=False - ) - timesteps = tf_utils.convert_shapes(input_shape) - timesteps = tf.nest.flatten(timesteps)[1] - - def insert_timesteps(dims): - dims = dims.as_list() - return tf.TensorShape([dims[0], timesteps] + dims[1:]) - - return tf.nest.map_structure(insert_timesteps, child_output_shape) - - def call(self, inputs, training=None, mask=None): - kwargs = {} - if generic_utils.has_arg(self.layer.call, "training"): - kwargs["training"] = training - - input_shape = tf.nest.map_structure( - lambda x: tf.TensorShape(backend.int_shape(x)), inputs - ) - batch_size = tf_utils.convert_shapes(input_shape) - batch_size = tf.nest.flatten(batch_size)[0] - if batch_size and not self._always_use_reshape: - inputs, row_lengths = backend.convert_inputs_if_ragged(inputs) - is_ragged_input = row_lengths is not None - input_length = tf_utils.convert_shapes(input_shape) - input_length = tf.nest.flatten(input_length)[1] - - # batch size matters, use rnn-based implementation - def step(x, _): - output = self.layer(x, **kwargs) - return output, [] - - _, outputs, _ = backend.rnn( - step, - inputs, - initial_states=[], - input_length=row_lengths[0] - if is_ragged_input - else input_length, - mask=mask, - unroll=False, - ) - - y = tf.nest.map_structure( - lambda output: backend.maybe_convert_to_ragged( - is_ragged_input, output, row_lengths - ), - outputs, - ) - else: - # No batch size specified, therefore the layer will be able - # to process batches of any size. - # We can go with reshape-based implementation for performance. - is_ragged_input = tf.nest.map_structure( - lambda x: isinstance(x, tf.RaggedTensor), inputs - ) - is_ragged_input = tf.nest.flatten(is_ragged_input) - if all(is_ragged_input): - input_values = tf.nest.map_structure(lambda x: x.values, inputs) - input_row_lenghts = tf.nest.map_structure( - lambda x: x.nested_row_lengths()[0], inputs - ) - y = self.layer(input_values, **kwargs) - y = tf.nest.map_structure( - tf.RaggedTensor.from_row_lengths, y, input_row_lenghts - ) - elif any(is_ragged_input): - raise ValueError( - "All inputs has to be either ragged or not, " - f"but not mixed. Received: {inputs}" - ) - else: - input_length = tf_utils.convert_shapes(input_shape) - input_length = tf.nest.flatten(input_length)[1] - if not input_length: - input_length = tf.nest.map_structure( - lambda x: tf.shape(x)[1], inputs - ) - input_length = generic_utils.to_list( - tf.nest.flatten(input_length) - )[0] - - inner_input_shape = tf.nest.map_structure( - lambda x: self._get_shape_tuple((-1,), x, 2), inputs - ) - # Shape: (num_samples * timesteps, ...). And track the - # transformation in self._input_map. - inputs = tf.__internal__.nest.map_structure_up_to( - inputs, tf.reshape, inputs, inner_input_shape - ) - # (num_samples * timesteps, ...) - if ( - generic_utils.has_arg(self.layer.call, "mask") - and mask is not None - ): - inner_mask_shape = self._get_shape_tuple((-1,), mask, 2) - kwargs["mask"] = backend.reshape(mask, inner_mask_shape) - - y = self.layer(inputs, **kwargs) - - # Reconstruct the output shape by re-splitting the 0th dimension - # back into (num_samples, timesteps, ...) - # We use batch_size when available so that the 0th dimension is - # set in the static shape of the reshaped output - reshape_batch_size = batch_size if batch_size else -1 - output_shape = tf.nest.map_structure( - lambda tensor: self._get_shape_tuple( - (reshape_batch_size, input_length), tensor, 1 - ), - y, - ) - y = tf.__internal__.nest.map_structure_up_to( - y, tf.reshape, y, output_shape - ) - - return y - - def compute_mask(self, inputs, mask=None): - """Computes an output mask tensor for Embedding layer. - - This is based on the inputs, mask, and the inner layer. - If batch size is specified: - Simply return the input `mask`. (An rnn-based implementation with - more than one rnn inputs is required but not supported in tf.keras yet.) - Otherwise we call `compute_mask` of the inner layer at each time step. - If the output mask at each time step is not `None`: - (E.g., inner layer is Masking or RNN) - Concatenate all of them and return the concatenation. - If the output mask at each time step is `None` and the input mask is not - `None`:(E.g., inner layer is Dense) - Reduce the input_mask to 2 dimensions and return it. - Otherwise (both the output mask and the input mask are `None`): - (E.g., `mask` is not used at all) - Return `None`. - - Args: - inputs: Tensor with shape [batch size, timesteps, ...] indicating the - input to TimeDistributed. If static shape information is available - for "batch size", `mask` is returned unmodified. - mask: Either None (indicating no masking) or a Tensor indicating the - input mask for TimeDistributed. The shape can be static or dynamic. - - Returns: - Either None (no masking), or a [batch size, timesteps, ...] Tensor - with an output mask for the TimeDistributed layer with the shape - beyond the second dimension being the value of the input mask shape(if - the computed output mask is none), an output mask with the shape - beyond the first dimension being the value of the mask shape(if mask - is not None) or output mask with the shape beyond the first dimension - being the value of the computed output shape. - - """ - # cases need to call the layer.compute_mask when input_mask is None: - # Masking layer and Embedding layer with mask_zero - input_shape = tf.nest.map_structure( - lambda x: tf.TensorShape(backend.int_shape(x)), inputs - ) - input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False) - batch_size = tf_utils.convert_shapes(input_shape) - batch_size = tf.nest.flatten(batch_size)[0] - is_ragged_input = tf.nest.map_structure( - lambda x: isinstance(x, tf.RaggedTensor), inputs - ) - is_ragged_input = generic_utils.to_list( - tf.nest.flatten(is_ragged_input) - ) - if batch_size and not self._always_use_reshape or any(is_ragged_input): - # batch size matters, we currently do not handle mask explicitly, or - # if the layer always uses reshape approach, or the input is a - # ragged tensor. - return mask - inner_mask = mask - if inner_mask is not None: - inner_mask_shape = self._get_shape_tuple((-1,), mask, 2) - inner_mask = backend.reshape(inner_mask, inner_mask_shape) - inner_input_shape = tf.nest.map_structure( - lambda tensor: self._get_shape_tuple((-1,), tensor, 2), inputs - ) - inner_inputs = tf.__internal__.nest.map_structure_up_to( - inputs, tf.reshape, inputs, inner_input_shape - ) - output_mask = self.layer.compute_mask(inner_inputs, inner_mask) - if output_mask is None: - if mask is None: - return None - # input_mask is not None, and output_mask is None: - # we should return a not-None mask - output_mask = mask - for _ in range(2, len(backend.int_shape(mask))): - output_mask = backend.any(output_mask, axis=-1) - else: - # output_mask is not None. We need to reshape it - input_length = tf_utils.convert_shapes(input_shape) - input_length = tf.nest.flatten(input_length)[1] - if not input_length: - input_length = tf.nest.map_structure( - lambda x: backend.shape(x)[1], inputs - ) - input_length = tf.nest.flatten(input_length)[0] - reshape_batch_size = batch_size if batch_size else -1 - output_mask_shape = self._get_shape_tuple( - (reshape_batch_size, input_length), output_mask, 1 - ) - output_mask = backend.reshape(output_mask, output_mask_shape) - return output_mask diff --git a/keras/layers/rnn/time_distributed_test.py b/keras/layers/rnn/time_distributed_test.py deleted file mode 100644 index 432fa3ad26f..00000000000 --- a/keras/layers/rnn/time_distributed_test.py +++ /dev/null @@ -1,574 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for TimeDistributed wrapper.""" - - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.checkpoint import ( - checkpoint as trackable_util, -) - - -class TimeDistributedTest(test_combinations.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_timedistributed_dense(self): - model = keras.models.Sequential() - model.add( - keras.layers.TimeDistributed( - keras.layers.Dense(2), input_shape=(3, 4) - ) - ) - model.compile(optimizer="rmsprop", loss="mse") - model.fit( - np.random.random((10, 3, 4)), - np.random.random((10, 3, 2)), - epochs=1, - batch_size=10, - ) - - # test config - model.get_config() - - # check whether the model variables are present in the - # trackable list of objects - checkpointed_object_ids = { - id(o) for o in trackable_util.list_objects(model) - } - for v in model.variables: - self.assertIn(id(v), checkpointed_object_ids) - - def test_timedistributed_static_batch_size(self): - model = keras.models.Sequential() - model.add( - keras.layers.TimeDistributed( - keras.layers.Dense(2), input_shape=(3, 4), batch_size=10 - ) - ) - model.compile(optimizer="rmsprop", loss="mse") - model.fit( - np.random.random((10, 3, 4)), - np.random.random((10, 3, 2)), - epochs=1, - batch_size=10, - ) - - def test_timedistributed_invalid_init(self): - x = tf.constant(np.zeros((1, 1)).astype("float32")) - with self.assertRaisesRegex( - ValueError, - "Please initialize `TimeDistributed` layer with a " - "`tf.keras.layers.Layer` instance.", - ): - keras.layers.TimeDistributed(x) - - def test_timedistributed_conv2d(self): - with self.cached_session(): - model = keras.models.Sequential() - model.add( - keras.layers.TimeDistributed( - keras.layers.Conv2D(5, (2, 2), padding="same"), - input_shape=(2, 4, 4, 3), - ) - ) - model.add(keras.layers.Activation("relu")) - model.compile(optimizer="rmsprop", loss="mse") - model.train_on_batch( - np.random.random((1, 2, 4, 4, 3)), - np.random.random((1, 2, 4, 4, 5)), - ) - - model = keras.models.model_from_json(model.to_json()) - model.summary() - - def test_timedistributed_stacked(self): - with self.cached_session(): - model = keras.models.Sequential() - model.add( - keras.layers.TimeDistributed( - keras.layers.Dense(2), input_shape=(3, 4) - ) - ) - model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) - model.add(keras.layers.Activation("relu")) - model.compile(optimizer="rmsprop", loss="mse") - - model.fit( - np.random.random((10, 3, 4)), - np.random.random((10, 3, 3)), - epochs=1, - batch_size=10, - ) - - def test_regularizers(self): - with self.cached_session(): - model = keras.models.Sequential() - model.add( - keras.layers.TimeDistributed( - keras.layers.Dense( - 2, kernel_regularizer="l1", activity_regularizer="l1" - ), - input_shape=(3, 4), - ) - ) - model.add(keras.layers.Activation("relu")) - model.compile(optimizer="rmsprop", loss="mse") - self.assertEqual(len(model.losses), 2) - - def test_TimeDistributed_learning_phase(self): - with self.cached_session(): - keras.utils.set_random_seed(0) - x = keras.layers.Input(shape=(3, 2)) - y = keras.layers.TimeDistributed(keras.layers.Dropout(0.999))( - x, training=True - ) - model = keras.models.Model(x, y) - y = model.predict(np.random.random((10, 3, 2))) - self.assertAllClose(np.mean(y), 0.0, atol=1e-1, rtol=1e-1) - - def test_TimeDistributed_batchnorm(self): - with self.cached_session(): - # test that wrapped BN updates still work. - model = keras.models.Sequential() - model.add( - keras.layers.TimeDistributed( - keras.layers.BatchNormalization(center=True, scale=True), - name="bn", - input_shape=(10, 2), - ) - ) - model.compile(optimizer="rmsprop", loss="mse") - # Assert that mean and variance are 0 and 1. - td = model.layers[0] - self.assertAllClose(td.get_weights()[2], np.array([0, 0])) - assert np.array_equal(td.get_weights()[3], np.array([1, 1])) - # Train - model.train_on_batch( - np.random.normal(loc=2, scale=2, size=(1, 10, 2)), - np.broadcast_to(np.array([0, 1]), (1, 10, 2)), - ) - # Assert that mean and variance changed. - assert not np.array_equal(td.get_weights()[2], np.array([0, 0])) - assert not np.array_equal(td.get_weights()[3], np.array([1, 1])) - - def test_TimeDistributed_trainable(self): - # test layers that need learning_phase to be set - x = keras.layers.Input(shape=(3, 2)) - layer = keras.layers.TimeDistributed(keras.layers.BatchNormalization()) - _ = layer(x) - self.assertEqual(len(layer.trainable_weights), 2) - layer.trainable = False - assert not layer.trainable_weights - layer.trainable = True - assert len(layer.trainable_weights) == 2 - - def test_TimeDistributed_with_masked_embedding_and_unspecified_shape(self): - with self.cached_session(): - # test with unspecified shape and Embeddings with mask_zero - model = keras.models.Sequential() - model.add( - keras.layers.TimeDistributed( - keras.layers.Embedding(5, 6, mask_zero=True), - input_shape=(None, None), - ) - ) # N by t_1 by t_2 by 6 - model.add( - keras.layers.TimeDistributed( - keras.layers.SimpleRNN(7, return_sequences=True) - ) - ) - model.add( - keras.layers.TimeDistributed( - keras.layers.SimpleRNN(8, return_sequences=False) - ) - ) - model.add(keras.layers.SimpleRNN(1, return_sequences=False)) - model.compile(optimizer="rmsprop", loss="mse") - model_input = np.random.randint( - low=1, high=5, size=(10, 3, 4), dtype="int32" - ) - for i in range(4): - model_input[i, i:, i:] = 0 - model.fit( - model_input, np.random.random((10, 1)), epochs=1, batch_size=10 - ) - mask_outputs = [model.layers[0].compute_mask(model.input)] - for layer in model.layers[1:]: - mask_outputs.append( - layer.compute_mask(layer.input, mask_outputs[-1]) - ) - func = keras.backend.function([model.input], mask_outputs[:-1]) - mask_outputs_val = func([model_input]) - ref_mask_val_0 = model_input > 0 # embedding layer - ref_mask_val_1 = ref_mask_val_0 # first RNN layer - ref_mask_val_2 = np.any(ref_mask_val_1, axis=-1) # second RNN layer - ref_mask_val = [ref_mask_val_0, ref_mask_val_1, ref_mask_val_2] - for i in range(3): - self.assertAllEqual(mask_outputs_val[i], ref_mask_val[i]) - self.assertIs(mask_outputs[-1], None) # final layer - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_TimeDistributed_with_masking_layer(self): - # test with Masking layer - model = keras.models.Sequential() - model.add( - keras.layers.TimeDistributed( - keras.layers.Masking( - mask_value=0.0, - ), - input_shape=(None, 4), - ) - ) - model.add(keras.layers.TimeDistributed(keras.layers.Dense(5))) - model.compile(optimizer="rmsprop", loss="mse") - model_input = np.random.randint(low=1, high=5, size=(10, 3, 4)) - for i in range(4): - model_input[i, i:, :] = 0.0 - model.compile(optimizer="rmsprop", loss="mse") - model.fit( - model_input, np.random.random((10, 3, 5)), epochs=1, batch_size=6 - ) - mask_outputs = [model.layers[0].compute_mask(model.input)] - mask_outputs += [ - model.layers[1].compute_mask( - model.layers[1].input, mask_outputs[-1] - ) - ] - func = keras.backend.function([model.input], mask_outputs) - mask_outputs_val = func([model_input]) - self.assertEqual((mask_outputs_val[0]).all(), model_input.all()) - self.assertEqual((mask_outputs_val[1]).all(), model_input.all()) - - def test_TimeDistributed_with_different_time_shapes(self): - time_dist = keras.layers.TimeDistributed(keras.layers.Dense(5)) - ph_1 = keras.backend.placeholder(shape=(None, 10, 13)) - out_1 = time_dist(ph_1) - self.assertEqual(out_1.shape.as_list(), [None, 10, 5]) - - ph_2 = keras.backend.placeholder(shape=(None, 1, 13)) - out_2 = time_dist(ph_2) - self.assertEqual(out_2.shape.as_list(), [None, 1, 5]) - - ph_3 = keras.backend.placeholder(shape=(None, 1, 18)) - with self.assertRaisesRegex(ValueError, "is incompatible with"): - time_dist(ph_3) - - def test_TimeDistributed_with_invalid_dimensions(self): - time_dist = keras.layers.TimeDistributed(keras.layers.Dense(5)) - ph = keras.backend.placeholder(shape=(None, 10)) - with self.assertRaisesRegex( - ValueError, - "`TimeDistributed` Layer should be passed an `input_shape `", - ): - time_dist(ph) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_TimeDistributed_reshape(self): - class NoReshapeLayer(keras.layers.Layer): - def call(self, inputs): - return inputs - - # Built-in layers that aren't stateful use the reshape implementation. - td1 = keras.layers.TimeDistributed(keras.layers.Dense(5)) - self.assertTrue(td1._always_use_reshape) - - # Built-in layers that are stateful don't use the reshape - # implementation. - td2 = keras.layers.TimeDistributed( - keras.layers.RNN(keras.layers.SimpleRNNCell(10), stateful=True) - ) - self.assertFalse(td2._always_use_reshape) - - # Custom layers are not allowlisted for the fast reshape implementation. - td3 = keras.layers.TimeDistributed(NoReshapeLayer()) - self.assertFalse(td3._always_use_reshape) - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - ("fully_defined", [3, 2, 4], [3, 2, 8]), - ("dynamic_batch_size", [None, 2, 4], [None, 2, 8]), - ("two_dynamic_dims", [None, None, 4], [None, None, 8]), - ("rank_only", [None, None, None], [None, None, None]), - ) - def test_TimeDistributed_output_shape_return_types( - self, input_shape, expected_output_shape - ): - class TestLayer(keras.layers.Layer): - def call(self, inputs): - return tf.concat([inputs, inputs], axis=-1) - - def compute_output_shape(self, input_shape): - output_shape = tf.TensorShape(input_shape).as_list() - if output_shape[-1] is not None: - output_shape[-1] = output_shape[-1] * 2 - output_shape = tf.TensorShape(output_shape) - return output_shape - - class TestListLayer(TestLayer): - def compute_output_shape(self, input_shape): - shape = super().compute_output_shape(input_shape) - return shape.as_list() - - class TestTupleLayer(TestLayer): - def compute_output_shape(self, input_shape): - shape = super().compute_output_shape(input_shape) - return tuple(shape.as_list()) - - # Layers can specify output shape as list/tuple/TensorShape - test_layers = [TestLayer, TestListLayer, TestTupleLayer] - for layer in test_layers: - input_layer = keras.layers.TimeDistributed(layer()) - inputs = keras.backend.placeholder(shape=input_shape) - output = input_layer(inputs) - self.assertEqual(output.shape.as_list(), expected_output_shape) - self.assertEqual( - input_layer.compute_output_shape(input_shape).as_list(), - expected_output_shape, - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - # TODO(scottzhu): check why v1 session failed. - def test_TimeDistributed_with_mask_first_implementation(self): - np.random.seed(100) - rnn_layer = keras.layers.LSTM(4, return_sequences=True, stateful=True) - - data = np.array( - [ - [[[1.0], [1.0]], [[0.0], [1.0]]], - [[[1.0], [0.0]], [[1.0], [1.0]]], - [[[1.0], [0.0]], [[1.0], [1.0]]], - ] - ) - x = keras.layers.Input(shape=(2, 2, 1), batch_size=3) - x_masking = keras.layers.Masking()(x) - y = keras.layers.TimeDistributed(rnn_layer)(x_masking) - model_1 = keras.models.Model(x, y) - model_1.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - output_with_mask = model_1.predict(data, steps=1) - - y = keras.layers.TimeDistributed(rnn_layer)(x) - model_2 = keras.models.Model(x, y) - model_2.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - output = model_2.predict(data, steps=1) - - self.assertNotAllClose(output_with_mask, output, atol=1e-7) - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - layer=[keras.layers.LSTM, keras.layers.Dense] - ) - ) - def test_TimeDistributed_with_ragged_input(self, layer): - if tf.executing_eagerly(): - self.skipTest("b/143103634") - np.random.seed(100) - layer = layer(4) - ragged_data = tf.ragged.constant( - [ - [[[1.0], [1.0]], [[2.0], [2.0]]], - [[[4.0], [4.0]], [[5.0], [5.0]], [[6.0], [6.0]]], - [[[7.0], [7.0]], [[8.0], [8.0]], [[9.0], [9.0]]], - ], - ragged_rank=1, - ) - - x_ragged = keras.Input(shape=(None, 2, 1), dtype="float32", ragged=True) - y_ragged = keras.layers.TimeDistributed(layer)(x_ragged) - model_1 = keras.models.Model(x_ragged, y_ragged) - model_1._run_eagerly = test_utils.should_run_eagerly() - output_ragged = model_1.predict(ragged_data, steps=1) - - x_dense = keras.Input(shape=(None, 2, 1), dtype="float32") - masking = keras.layers.Masking()(x_dense) - y_dense = keras.layers.TimeDistributed(layer)(masking) - model_2 = keras.models.Model(x_dense, y_dense) - dense_data = ragged_data.to_tensor() - model_2._run_eagerly = test_utils.should_run_eagerly() - output_dense = model_2.predict(dense_data, steps=1) - - output_ragged = convert_ragged_tensor_value(output_ragged) - self.assertAllEqual(output_ragged.to_tensor(), output_dense) - - @test_combinations.run_all_keras_modes - def test_TimeDistributed_with_ragged_input_with_batch_size(self): - np.random.seed(100) - layer = keras.layers.Dense(16) - - ragged_data = tf.ragged.constant( - [ - [[[1.0], [1.0]], [[2.0], [2.0]]], - [[[4.0], [4.0]], [[5.0], [5.0]], [[6.0], [6.0]]], - [[[7.0], [7.0]], [[8.0], [8.0]], [[9.0], [9.0]]], - ], - ragged_rank=1, - ) - - # Use the first implementation by specifying batch_size - x_ragged = keras.Input( - shape=(None, 2, 1), batch_size=3, dtype="float32", ragged=True - ) - y_ragged = keras.layers.TimeDistributed(layer)(x_ragged) - model_1 = keras.models.Model(x_ragged, y_ragged) - output_ragged = model_1.predict(ragged_data, steps=1) - - x_dense = keras.Input(shape=(None, 2, 1), batch_size=3, dtype="float32") - masking = keras.layers.Masking()(x_dense) - y_dense = keras.layers.TimeDistributed(layer)(masking) - model_2 = keras.models.Model(x_dense, y_dense) - dense_data = ragged_data.to_tensor() - output_dense = model_2.predict(dense_data, steps=1) - - output_ragged = convert_ragged_tensor_value(output_ragged) - self.assertAllEqual(output_ragged.to_tensor(), output_dense) - - def test_TimeDistributed_set_static_shape(self): - layer = keras.layers.TimeDistributed(keras.layers.Conv2D(16, (3, 3))) - inputs = keras.Input(batch_shape=(1, None, 32, 32, 1)) - outputs = layer(inputs) - # Make sure the batch dim is not lost after array_ops.reshape. - self.assertListEqual(outputs.shape.as_list(), [1, None, 30, 30, 16]) - - @test_combinations.run_all_keras_modes - def test_TimeDistributed_with_mimo(self): - dense_1 = keras.layers.Dense(8) - dense_2 = keras.layers.Dense(16) - - class TestLayer(keras.layers.Layer): - def __init__(self): - super().__init__() - self.dense_1 = dense_1 - self.dense_2 = dense_2 - - def call(self, inputs): - return self.dense_1(inputs[0]), self.dense_2(inputs[1]) - - def compute_output_shape(self, input_shape): - output_shape_1 = self.dense_1.compute_output_shape( - input_shape[0] - ) - output_shape_2 = self.dense_2.compute_output_shape( - input_shape[1] - ) - return output_shape_1, output_shape_2 - - np.random.seed(100) - layer = TestLayer() - - data_1 = tf.constant( - [ - [[[1.0], [1.0]], [[2.0], [2.0]]], - [[[4.0], [4.0]], [[5.0], [5.0]]], - [[[7.0], [7.0]], [[8.0], [8.0]]], - ] - ) - - data_2 = tf.constant( - [ - [[[1.0], [1.0]], [[2.0], [2.0]]], - [[[4.0], [4.0]], [[5.0], [5.0]]], - [[[7.0], [7.0]], [[8.0], [8.0]]], - ] - ) - - x1 = keras.Input(shape=(None, 2, 1), dtype="float32") - x2 = keras.Input(shape=(None, 2, 1), dtype="float32") - y1, y2 = keras.layers.TimeDistributed(layer)([x1, x2]) - model_1 = keras.models.Model([x1, x2], [y1, y2]) - model_1.compile( - optimizer="rmsprop", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - output_1 = model_1.predict((data_1, data_2), steps=1) - - y1 = dense_1(x1) - y2 = dense_2(x2) - model_2 = keras.models.Model([x1, x2], [y1, y2]) - output_2 = model_2.predict((data_1, data_2), steps=1) - - self.assertAllClose(output_1, output_2) - - model_1.fit( - x=[ - np.random.random((10, 2, 2, 1)), - np.random.random((10, 2, 2, 1)), - ], - y=[ - np.random.random((10, 2, 2, 8)), - np.random.random((10, 2, 2, 16)), - ], - epochs=1, - batch_size=3, - ) - - def test_TimeDistributed_Attention(self): - query_input = keras.layers.Input(shape=(None, 1, 10), dtype="float32") - value_input = keras.layers.Input(shape=(None, 4, 10), dtype="float32") - - # Query-value attention of shape [batch_size, Tq, filters]. - query_value_attention_seq = keras.layers.TimeDistributed( - keras.layers.Attention() - )([query_input, value_input]) - model = keras.models.Model( - [query_input, value_input], query_value_attention_seq - ) - model.compile(optimizer="rmsprop", loss="mse") - model.fit( - [ - np.random.random((10, 8, 1, 10)), - np.random.random((10, 8, 4, 10)), - ], - np.random.random((10, 8, 1, 10)), - epochs=1, - batch_size=10, - ) - - # test config and serialization/deserialization - model.get_config() - model = keras.models.model_from_json(model.to_json()) - model.summary() - - -def convert_ragged_tensor_value(inputs): - if isinstance(inputs, tf.compat.v1.ragged.RaggedTensorValue): - flat_values = tf.convert_to_tensor( - value=inputs.flat_values, name="flat_values" - ) - return tf.RaggedTensor.from_nested_row_splits( - flat_values, inputs.nested_row_splits, validate=False - ) - return inputs - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/serialization.py b/keras/layers/serialization.py deleted file mode 100644 index fd0e6b0a6e5..00000000000 --- a/keras/layers/serialization.py +++ /dev/null @@ -1,291 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Layer serialization/deserialization functions.""" - -import threading - -import tensorflow.compat.v2 as tf - -from keras.engine import base_layer -from keras.engine import input_layer -from keras.engine import input_spec -from keras.layers import activation -from keras.layers import attention -from keras.layers import convolutional -from keras.layers import core -from keras.layers import locally_connected -from keras.layers import merging -from keras.layers import pooling -from keras.layers import regularization -from keras.layers import reshaping -from keras.layers import rnn -from keras.layers.normalization import batch_normalization -from keras.layers.normalization import batch_normalization_v1 -from keras.layers.normalization import group_normalization -from keras.layers.normalization import layer_normalization -from keras.layers.normalization import unit_normalization -from keras.layers.preprocessing import category_encoding -from keras.layers.preprocessing import discretization -from keras.layers.preprocessing import hashed_crossing -from keras.layers.preprocessing import hashing -from keras.layers.preprocessing import image_preprocessing -from keras.layers.preprocessing import integer_lookup -from keras.layers.preprocessing import ( - normalization as preprocessing_normalization, -) -from keras.layers.preprocessing import string_lookup -from keras.layers.preprocessing import text_vectorization -from keras.layers.rnn import cell_wrappers -from keras.layers.rnn import gru -from keras.layers.rnn import lstm -from keras.saving import serialization_lib -from keras.saving.legacy import serialization as legacy_serialization -from keras.saving.legacy.saved_model import json_utils -from keras.utils import generic_utils -from keras.utils import tf_inspect as inspect - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -ALL_MODULES = ( - base_layer, - input_layer, - activation, - attention, - convolutional, - core, - locally_connected, - merging, - batch_normalization_v1, - group_normalization, - layer_normalization, - unit_normalization, - pooling, - image_preprocessing, - regularization, - reshaping, - rnn, - hashing, - hashed_crossing, - category_encoding, - discretization, - integer_lookup, - preprocessing_normalization, - string_lookup, - text_vectorization, -) -ALL_V2_MODULES = ( - batch_normalization, - layer_normalization, - cell_wrappers, - gru, - lstm, -) -# ALL_OBJECTS is meant to be a global mutable. Hence we need to make it -# thread-local to avoid concurrent mutations. -LOCAL = threading.local() - - -def populate_deserializable_objects(): - """Populates dict ALL_OBJECTS with every built-in layer.""" - global LOCAL - if not hasattr(LOCAL, "ALL_OBJECTS"): - LOCAL.ALL_OBJECTS = {} - LOCAL.GENERATED_WITH_V2 = None - - if ( - LOCAL.ALL_OBJECTS - and LOCAL.GENERATED_WITH_V2 == tf.__internal__.tf2.enabled() - ): - # Objects dict is already generated for the proper TF version: - # do nothing. - return - - LOCAL.ALL_OBJECTS = {} - LOCAL.GENERATED_WITH_V2 = tf.__internal__.tf2.enabled() - - base_cls = base_layer.Layer - generic_utils.populate_dict_with_module_objects( - LOCAL.ALL_OBJECTS, - ALL_MODULES, - obj_filter=lambda x: inspect.isclass(x) and issubclass(x, base_cls), - ) - - # Overwrite certain V1 objects with V2 versions - if tf.__internal__.tf2.enabled(): - generic_utils.populate_dict_with_module_objects( - LOCAL.ALL_OBJECTS, - ALL_V2_MODULES, - obj_filter=lambda x: inspect.isclass(x) and issubclass(x, base_cls), - ) - - # These deserialization aliases are added for backward compatibility, - # as in TF 1.13, "BatchNormalizationV1" and "BatchNormalizationV2" - # were used as class name for v1 and v2 version of BatchNormalization, - # respectively. Here we explicitly convert them to their canonical names. - LOCAL.ALL_OBJECTS[ - "BatchNormalizationV1" - ] = batch_normalization_v1.BatchNormalization - LOCAL.ALL_OBJECTS[ - "BatchNormalizationV2" - ] = batch_normalization.BatchNormalization - - # Prevent circular dependencies. - from keras import models - from keras.feature_column.sequence_feature_column import ( - SequenceFeatures, - ) - from keras.premade_models.linear import ( - LinearModel, - ) - from keras.premade_models.wide_deep import ( - WideDeepModel, - ) - - LOCAL.ALL_OBJECTS["Input"] = input_layer.Input - LOCAL.ALL_OBJECTS["InputSpec"] = input_spec.InputSpec - LOCAL.ALL_OBJECTS["Functional"] = models.Functional - LOCAL.ALL_OBJECTS["Model"] = models.Model - LOCAL.ALL_OBJECTS["SequenceFeatures"] = SequenceFeatures - LOCAL.ALL_OBJECTS["Sequential"] = models.Sequential - LOCAL.ALL_OBJECTS["LinearModel"] = LinearModel - LOCAL.ALL_OBJECTS["WideDeepModel"] = WideDeepModel - - if tf.__internal__.tf2.enabled(): - from keras.feature_column.dense_features_v2 import ( - DenseFeatures, - ) - - LOCAL.ALL_OBJECTS["DenseFeatures"] = DenseFeatures - else: - from keras.feature_column.dense_features import ( - DenseFeatures, - ) - - LOCAL.ALL_OBJECTS["DenseFeatures"] = DenseFeatures - - # Merging layers, function versions. - LOCAL.ALL_OBJECTS["add"] = merging.add - LOCAL.ALL_OBJECTS["subtract"] = merging.subtract - LOCAL.ALL_OBJECTS["multiply"] = merging.multiply - LOCAL.ALL_OBJECTS["average"] = merging.average - LOCAL.ALL_OBJECTS["maximum"] = merging.maximum - LOCAL.ALL_OBJECTS["minimum"] = merging.minimum - LOCAL.ALL_OBJECTS["concatenate"] = merging.concatenate - LOCAL.ALL_OBJECTS["dot"] = merging.dot - - -@keras_export("keras.layers.serialize") -def serialize(layer, use_legacy_format=False): - """Serializes a `Layer` object into a JSON-compatible representation. - - Args: - layer: The `Layer` object to serialize. - - Returns: - A JSON-serializable dict representing the object's config. - - Example: - - ```python - from pprint import pprint - model = tf.keras.models.Sequential() - model.add(tf.keras.Input(shape=(16,))) - model.add(tf.keras.layers.Dense(32, activation='relu')) - - pprint(tf.keras.layers.serialize(model)) - # prints the configuration of the model, as a dict. - """ - if use_legacy_format: - return legacy_serialization.serialize_keras_object(layer) - - return serialization_lib.serialize_keras_object(layer) - - -@keras_export("keras.layers.deserialize") -def deserialize(config, custom_objects=None, use_legacy_format=False): - """Instantiates a layer from a config dictionary. - - Args: - config: dict of the form {'class_name': str, 'config': dict} - custom_objects: dict mapping class names (or function names) of custom - (non-Keras) objects to class/functions - - Returns: - Layer instance (may be Model, Sequential, Network, Layer...) - - Example: - - ```python - # Configuration of Dense(32, activation='relu') - config = { - 'class_name': 'Dense', - 'config': { - 'activation': 'relu', - 'activity_regularizer': None, - 'bias_constraint': None, - 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, - 'bias_regularizer': None, - 'dtype': 'float32', - 'kernel_constraint': None, - 'kernel_initializer': {'class_name': 'GlorotUniform', - 'config': {'seed': None}}, - 'kernel_regularizer': None, - 'name': 'dense', - 'trainable': True, - 'units': 32, - 'use_bias': True - } - } - dense_layer = tf.keras.layers.deserialize(config) - ``` - """ - populate_deserializable_objects() - if not config: - raise ValueError( - f"Cannot deserialize empty config. Received: config={config}" - ) - if use_legacy_format: - return legacy_serialization.deserialize_keras_object( - config, - module_objects=LOCAL.ALL_OBJECTS, - custom_objects=custom_objects, - printable_module_name="layer", - ) - - return serialization_lib.deserialize_keras_object( - config, - module_objects=LOCAL.ALL_OBJECTS, - custom_objects=custom_objects, - printable_module_name="layer", - ) - - -def get_builtin_layer(class_name): - """Returns class if `class_name` is registered, else returns None.""" - if not hasattr(LOCAL, "ALL_OBJECTS"): - populate_deserializable_objects() - return LOCAL.ALL_OBJECTS.get(class_name) - - -def deserialize_from_json(json_string, custom_objects=None): - """Instantiates a layer from a JSON string.""" - populate_deserializable_objects() - config = json_utils.decode_and_deserialize( - json_string, - module_objects=LOCAL.ALL_OBJECTS, - custom_objects=custom_objects, - ) - return deserialize(config, custom_objects) diff --git a/keras/layers/serialization_test.py b/keras/layers/serialization_test.py deleted file mode 100644 index c457ccd621e..00000000000 --- a/keras/layers/serialization_test.py +++ /dev/null @@ -1,196 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for layer serialization utils.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.layers.normalization import batch_normalization as batchnorm_v2 -from keras.layers.normalization import batch_normalization_v1 as batchnorm_v1 -from keras.layers.rnn import gru -from keras.layers.rnn import gru_v1 -from keras.layers.rnn import lstm -from keras.layers.rnn import lstm_v1 -from keras.testing_infra import test_combinations - - -class SerializableInt(int): - def __new__(cls, value): - return int.__new__(cls, value) - - def get_config(self): - return {"value": int(self)} - - @classmethod - def from_config(cls, config): - return cls(**config) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class LayerSerializationTest(parameterized.TestCase, tf.test.TestCase): - def test_serialize_deserialize(self): - layer = keras.layers.Dense( - 3, - activation="relu", - kernel_initializer="ones", - bias_regularizer="l2", - ) - config = keras.layers.serialize(layer) - new_layer = keras.layers.deserialize(config) - self.assertEqual(new_layer.activation, keras.activations.relu) - self.assertEqual( - new_layer.bias_regularizer.__class__, keras.regularizers.L2 - ) - if tf.__internal__.tf2.enabled(): - self.assertEqual( - new_layer.kernel_initializer.__class__, - keras.initializers.OnesV2, - ) - else: - self.assertEqual( - new_layer.kernel_initializer.__class__, keras.initializers.Ones - ) - self.assertEqual(new_layer.units, 3) - - def test_implicit_serialize_deserialize_fails_without_object(self): - # After discussion (rchao, nkovela) decided to exclude from new saving - if tf.__internal__.tf2.enabled(): - self.skipTest("Test excluded from new saving format.") - layer = keras.layers.Dense( - SerializableInt(3), - activation="relu", - kernel_initializer="ones", - bias_regularizer="l2", - ) - config = keras.layers.serialize(layer) - # Because we're passing an unknown class here, deserialization should - # fail unless we add SerializableInt to the custom object dict. - with self.assertRaisesRegex( - ValueError, "Unknown config_item: 'SerializableInt.*" - ): - _ = keras.layers.deserialize(config) - - def test_implicit_serialize_deserialize_succeeds_with_object(self): - layer = keras.layers.Dense( - SerializableInt(3), - activation="relu", - kernel_initializer="ones", - bias_regularizer="l2", - ) - config = keras.layers.serialize(layer) - # Because we're passing an unknown class here, deserialization should - # fail unless we add SerializableInt to the custom object dict. - new_layer = keras.layers.deserialize( - config, custom_objects={"SerializableInt": SerializableInt} - ) - self.assertEqual(new_layer.activation, keras.activations.relu) - self.assertEqual( - new_layer.bias_regularizer.__class__, keras.regularizers.L2 - ) - if tf.__internal__.tf2.enabled(): - self.assertEqual( - new_layer.kernel_initializer.__class__, - keras.initializers.OnesV2, - ) - else: - self.assertEqual( - new_layer.kernel_initializer.__class__, keras.initializers.Ones - ) - self.assertEqual(new_layer.units.__class__, SerializableInt) - self.assertEqual(new_layer.units, 3) - - @parameterized.parameters( - [batchnorm_v1.BatchNormalization, batchnorm_v2.BatchNormalization] - ) - def test_serialize_deserialize_batchnorm(self, batchnorm_layer): - layer = batchnorm_layer( - momentum=0.9, beta_initializer="zeros", gamma_regularizer="l2" - ) - config = keras.layers.serialize(layer) - self.assertEqual(config["class_name"], "BatchNormalization") - new_layer = keras.layers.deserialize(config) - self.assertEqual(new_layer.momentum, 0.9) - if tf.__internal__.tf2.enabled(): - self.assertIsInstance(new_layer, batchnorm_v2.BatchNormalization) - self.assertEqual( - new_layer.beta_initializer.__class__, keras.initializers.ZerosV2 - ) - else: - self.assertIsInstance(new_layer, batchnorm_v1.BatchNormalization) - self.assertEqual( - new_layer.beta_initializer.__class__, keras.initializers.Zeros - ) - self.assertEqual( - new_layer.gamma_regularizer.__class__, keras.regularizers.L2 - ) - - @parameterized.parameters( - [batchnorm_v1.BatchNormalization, batchnorm_v2.BatchNormalization] - ) - def test_deserialize_batchnorm_backwards_compatibility( - self, batchnorm_layer - ): - layer = batchnorm_layer( - momentum=0.9, beta_initializer="zeros", gamma_regularizer="l2" - ) - config = keras.layers.serialize(layer) - new_layer = keras.layers.deserialize(config) - self.assertEqual(new_layer.momentum, 0.9) - if tf.__internal__.tf2.enabled(): - self.assertIsInstance(new_layer, batchnorm_v2.BatchNormalization) - self.assertEqual( - new_layer.beta_initializer.__class__, keras.initializers.ZerosV2 - ) - else: - self.assertIsInstance(new_layer, batchnorm_v1.BatchNormalization) - self.assertEqual( - new_layer.beta_initializer.__class__, keras.initializers.Zeros - ) - self.assertEqual( - new_layer.gamma_regularizer.__class__, keras.regularizers.L2 - ) - - @parameterized.parameters([lstm_v1.LSTM, lstm.LSTM]) - def test_serialize_deserialize_lstm(self, layer): - lstm_layer = layer(5, return_sequences=True) - config = keras.layers.serialize(lstm_layer) - self.assertEqual(config["class_name"], "LSTM") - new_layer = keras.layers.deserialize(config) - self.assertEqual(new_layer.units, 5) - self.assertEqual(new_layer.return_sequences, True) - if tf.__internal__.tf2.enabled(): - self.assertIsInstance(new_layer, lstm.LSTM) - else: - self.assertIsInstance(new_layer, lstm_v1.LSTM) - self.assertNotIsInstance(new_layer, lstm.LSTM) - - @parameterized.parameters([gru_v1.GRU, gru.GRU]) - def test_serialize_deserialize_gru(self, layer): - gru_layer = layer(5, return_sequences=True) - config = keras.layers.serialize(gru_layer) - self.assertEqual(config["class_name"], "GRU") - new_layer = keras.layers.deserialize(config) - self.assertEqual(new_layer.units, 5) - self.assertEqual(new_layer.return_sequences, True) - if tf.__internal__.tf2.enabled(): - self.assertIsInstance(new_layer, gru.GRU) - else: - self.assertIsInstance(new_layer, gru_v1.GRU) - self.assertNotIsInstance(new_layer, gru.GRU) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/subclassed_layers_test.py b/keras/layers/subclassed_layers_test.py deleted file mode 100644 index de4ebeacaa1..00000000000 --- a/keras/layers/subclassed_layers_test.py +++ /dev/null @@ -1,77 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras subclassed layers utilizing desired user syntax.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import tf_utils - - -@test_combinations.run_all_keras_modes -@test_combinations.run_with_all_model_types -class SubclassedLayersTest(test_combinations.TestCase): - def test_simple_build_with_constant(self): - class BuildConstantLayer(keras.layers.Layer): - def build(self, input_shape): - self.b = tf.convert_to_tensor(2.0) - - def call(self, inputs): - return self.b * inputs - - layer = BuildConstantLayer() - model = test_utils.get_model_from_layers( - [layer, keras.layers.Dense(1)], input_shape=(1,) - ) - - x = tf.convert_to_tensor([[3.0]]) - self.assertEqual( - tf_utils.is_symbolic_tensor(model(x)), not tf.executing_eagerly() - ) - self.assertEqual( - tf_utils.is_symbolic_tensor(layer(x)), not tf.executing_eagerly() - ) - self.assertAllClose(keras.backend.get_value(layer(x)), [[6.0]]) - - def test_build_with_derived_constant(self): - class BuildDerivedConstantLayer(keras.layers.Layer): - def build(self, input_shape): - a = tf.convert_to_tensor(1.0) - b = 2.0 * a - self.variable = tf.Variable(b) - self.constant = tf.convert_to_tensor(self.variable) - - def call(self, inputs): - return self.variable * self.constant * inputs - - layer = BuildDerivedConstantLayer() - model = test_utils.get_model_from_layers( - [layer, keras.layers.Dense(1)], input_shape=(1,) - ) - - x = tf.convert_to_tensor([[3.0]]) - self.assertEqual( - tf_utils.is_symbolic_tensor(model(x)), not tf.executing_eagerly() - ) - self.assertEqual( - tf_utils.is_symbolic_tensor(layer(x)), not tf.executing_eagerly() - ) - self.assertAllClose(keras.backend.get_value(layer(x)), [[12.0]]) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/layers/tensorflow_op_layer_test.py b/keras/layers/tensorflow_op_layer_test.py deleted file mode 100644 index 6c0173c14ba..00000000000 --- a/keras/layers/tensorflow_op_layer_test.py +++ /dev/null @@ -1,774 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Test for allowing TF ops to work with Keras Functional API.""" - -import time - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.engine import keras_tensor -from keras.optimizers.legacy import adam -from keras.saving.legacy import model_config -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -def _single_op_at_end(): - inputs = keras.Input(shape=(10,)) - x = keras.layers.Dense(10)(inputs) - outputs = tf.nn.relu(x) - return keras.Model(inputs, outputs) - - -def _single_identity_op_at_end(): - inputs = keras.Input(shape=(10,)) - x = keras.layers.Dense(10)(inputs) - outputs = tf.identity(x) - return keras.Model(inputs, outputs) - - -def _multiple_ops_at_end(): - inputs = keras.Input(shape=(10,)) - x = keras.layers.Dense(10)(inputs) - x = tf.nn.relu(x) - outputs = tf.nn.relu(x) - return keras.Model(inputs, outputs) - - -def _single_op_in_middle(): - inputs = keras.Input(shape=(10,)) - x = keras.layers.Dense(10)(inputs) - x = tf.nn.relu(x) - outputs = keras.layers.Dense(10)(x) - return keras.Model(inputs, outputs) - - -def _multiple_ops_in_middle(): - inputs = keras.Input(shape=(10,)) - x = keras.layers.Dense(10)(inputs) - x = tf.nn.relu(x) - x = tf.nn.relu(x) - outputs = keras.layers.Dense(10)(x) - return keras.Model(inputs, outputs) - - -def _shape_op_inference(): - inputs = keras.Input(shape=(10,)) - x = tf.shape(inputs) - x = tf.ones(x) - assert x.shape.as_list() == [None, 10] - outputs = keras.layers.Dense(10)(x) - return keras.Model(inputs, outputs) - - -def _shape_op_known_batch_size(): - inputs = keras.Input(batch_size=2, shape=(10,)) - x = tf.shape(inputs) - x = tf.ones(x) - assert x.shape.as_list() == [2, 10] - outputs = keras.layers.Dense(10)(x) - if tf.executing_eagerly(): - return keras.Model(inputs, outputs) - else: - # In V1 the op layer fails for some reason, - # but we don't have access to the test case to call - # self.skip_test in this util method - return keras.Model(inputs, inputs) - - -def _shape_op_slice_and_range(): - inputs = keras.Input(shape=(10,)) - batch_size = tf.shape(inputs)[0] - x = tf.range(batch_size * 2) - assert x.shape.as_list() == [None] - x = tf.reshape(x, (batch_size, 2)) - x = tf.cast(x, dtype="float32") - outputs = keras.layers.Dense(10)(x) - return keras.Model(inputs, outputs) - - -def _shape_op_slice_and_range_known_dim(): - inputs = keras.Input(batch_size=2, shape=(10,)) - batch_size = tf.shape(inputs)[0] - x = tf.range(batch_size * 3) - assert x.shape.as_list() == [6] - x = tf.reshape(x, (batch_size, 3)) - x = tf.cast(x, dtype="float32") - outputs = keras.layers.Dense(10)(x) - if tf.executing_eagerly(): - return keras.Model(inputs, outputs) - else: - # In V1 the op layer fails for some reason, - # but we don't have access to the test case to call - # self.skip_test in this util method - return keras.Model(inputs, inputs) - - -def _int32_manipulation_too_big_for_shape(): - # This test verifies that the Keras Functional API - # won't crash when manipulating int32 tensors that are too large - # to represent shapes. - inputs = keras.Input(batch_size=2, shape=(10,)) - batch_size = tf.shape(inputs)[0] - num_features = 3 * 1024 * 16 - x = tf.range(batch_size * num_features, dtype="int32") - assert x.shape.as_list() == [inputs.shape[0] * num_features] - x = tf.reshape(x, (batch_size, num_features)) - x = tf.cast(x, dtype="float32") - outputs = keras.layers.Dense(10)(x) - if tf.executing_eagerly(): - return keras.Model(inputs, outputs) - else: - # In V1 the op layer fails for some reason, - # but we don't have access to the test case to call - # self.skip_test in this util method - return keras.Model(inputs, inputs) - - -def _int32_manipulation_at_max_shape_dims_limit(): - # This test verifies that the Keras Functional API - # won't crash when manipulating int32 tensors that are at the limit - # of the max tensor size Keras can try inferring values for. - inputs = keras.Input(batch_size=2, shape=(10,)) - batch_size = tf.shape(inputs)[0] - num_features = int(keras_tensor._MAX_TENSOR_RANK / int(inputs.shape[0])) - x = tf.range(batch_size * num_features, dtype="int32") - assert x.shape.as_list() == [keras_tensor._MAX_TENSOR_RANK] - - # Verify that a value was actually inferred for a tensor that *might* - # represent the shape, bying checking that a value in - # the range appears in the printed inferred value - if tf.compat.v1.executing_eagerly_outside_functions(): - assert str(keras_tensor._MAX_TENSOR_RANK - 1) in str(x) - - x = tf.reshape(x, (batch_size, num_features)) - x = tf.cast(x, dtype="float32") - outputs = keras.layers.Dense(10)(x) - if tf.executing_eagerly(): - return keras.Model(inputs, outputs) - else: - # In V1 the op layer fails for some reason, - # but we don't have access to the test case to call - # self.skip_test in this util method - return keras.Model(inputs, inputs) - - -def _single_standalone_branch(): - inputs = keras.Input(shape=(10,)) - x = keras.layers.Dense(10)(inputs) - outputs = x * 2 - return keras.Model(inputs, outputs) - - -def _single_op_with_attrs(): - inputs = keras.Input(shape=(10,)) - x = tf.reduce_mean(inputs, axis=1, keepdims=True) - outputs = keras.layers.Dense(10)(x) - return keras.Model(inputs, outputs) - - -def _multiple_uses(): - inputs = keras.Input(shape=(10,)) - x = tf.reduce_mean(inputs, axis=1, keepdims=True) - x1 = keras.layers.Dense(10)(x) - x2 = keras.layers.Dense(10)(x) - outputs = x1 + x2 - return keras.Model(inputs, outputs) - - -def _op_with_tensor_list(): - inputs = keras.Input(shape=(10,)) - x = tf.concat([inputs, inputs], axis=1) - outputs = keras.layers.Dense(10)(x) - return keras.Model(inputs, outputs) - - -def _add_n(): - inputs = keras.Input(shape=(10,)) - outputs = tf.add_n([inputs, inputs, inputs]) - return keras.Model(inputs, outputs) - - -def _reuse_op(): - inputs = keras.Input(shape=(10,)) - # This op needs to be checked multiple times. - x = tf.nn.relu(inputs) - y = keras.layers.Dense(10)(x) - x2 = x * 2 - y2 = keras.layers.Dense(10)(x2) - outputs = y + y2 - return keras.Model(inputs, outputs) - - -def _float64_op(): - inputs = keras.Input(shape=(10,)) - x = keras.layers.Dense(10, dtype="float64")(inputs) - x = tf.nn.relu(x) - assert x.dtype == "float64", f"x has dtype: {x.dtype}" - outputs = keras.layers.Dense(10)(x) - return keras.Model(inputs, outputs) - - -class MyAdd(keras.layers.Layer): - def call(self, x, y): - return x + y - - -def _layer_with_tensor_arg(): - inputs = keras.Input(shape=(10,)) - x = inputs * 2 - outputs = MyAdd()(inputs, x) - return keras.Model(inputs, outputs) - - -class LayerWithLayer(keras.layers.Layer): - def build(self, input_shape): - self.bias = self.add_weight(name="bias", dtype="float32") - self.layer = keras.layers.Dense(10) - - def call(self, inputs): - inputs = inputs * self.bias - # Would throw an error if Keras History was created here. - return self.layer(inputs) - - -def _inner_layer(): - inputs = keras.Input(shape=(10,)) - outputs = LayerWithLayer()(inputs) - return keras.Model(inputs, outputs) - - -def _reuse_ancillary_layer(): - inputs = (keras.Input(shape=(5,)), keras.Input(shape=(5,))) - base_model = keras.Sequential( - [ - keras.layers.Dense(3, input_shape=(5,)), - ] - ) - outputs = base_model(inputs[0]) - model = keras.Model(inputs, outputs) - # The second input is only involved in ancillary layers. - outputs_delta = outputs - base_model(0.5 * inputs[1]) - l2_loss = tf.reduce_mean(tf.reduce_sum(tf.square(outputs_delta), -1)) - model.add_loss(l2_loss) - model.add_metric(l2_loss, aggregation="mean", name="l2_loss") - l1_loss = 0.01 * tf.reduce_mean(tf.reduce_sum(tf.abs(outputs_delta), -1)) - model.add_loss(l1_loss) - model.add_metric(l1_loss, aggregation="mean", name="l1_loss") - return model - - -@test_combinations.run_all_keras_modes() -class AutoLambdaTest(test_combinations.TestCase): - @parameterized.named_parameters( - ("single_op_at_end", _single_op_at_end), - ("single_identity_op_at_end", _single_identity_op_at_end), - ("multiple_ops_at_end", _multiple_ops_at_end), - ("single_op_in_middle", _single_op_in_middle), - ("multiple_ops_in_middle", _multiple_ops_in_middle), - ("shape_op_inference", _shape_op_inference), - ("shape_op_known_batch_size", _shape_op_known_batch_size), - ("shape_op_slice_and_range", _shape_op_slice_and_range), - ( - "shape_op_slice_and_range_known_dim", - _shape_op_slice_and_range_known_dim, - ), - ( - "int32_manipulation_too_big_for_shape", - _int32_manipulation_too_big_for_shape, - ), - ( - "int32_manipulation_at_max_shape_dims_limit", - _int32_manipulation_at_max_shape_dims_limit, - ), - ("single_standalone_branch", _single_standalone_branch), - ("single_op_with_attrs", _single_op_with_attrs), - ("multiple_uses", _multiple_uses), - ("op_with_tensor_list", _op_with_tensor_list), - ("add_n", _add_n), - ("_reuse_op", _reuse_op), - ("_float64_op", _float64_op), - ("_inner_layer", _inner_layer), - ("_reuse_ancillary_layer", _reuse_ancillary_layer), - ("_layer_with_tensor_arg", _layer_with_tensor_arg), - ) - def test_autolambda(self, model_fn): - model = model_fn() - model.compile( - adam.Adam(0.001), "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - np_inputs = tf.nest.map_structure( - lambda x: np.ones((2,) + tuple(x.shape[1:]), "float32"), - model.inputs, - ) - np_outputs = tf.nest.map_structure( - lambda x: np.ones((2,) + tuple(x.shape[1:]), "float32"), - model.outputs, - ) - model.fit(np_inputs, np_outputs, batch_size=2) - model(np_inputs) # Test calling the model directly on inputs. - - new_model = keras.Model.from_config( - model.get_config(), - custom_objects={"LayerWithLayer": LayerWithLayer, "MyAdd": MyAdd}, - ) - new_model.compile( - adam.Adam(0.001), "mse", run_eagerly=test_utils.should_run_eagerly() - ) - new_model.fit(np_inputs, np_outputs, batch_size=2) - new_model(np_inputs) # Test calling the new model directly on inputs. - # Assert that metrics are preserved and in the right order. - self.assertAllEqual(model.metrics_names, new_model.metrics_names) - # Assert that layer names don't change. - self.assertAllEqual( - [layer.name for layer in model.layers], - [layer.name for layer in new_model.layers], - ) - - def test_stack_preserves_correct_shape(self): - ## Test stack([x]) - inp = keras.Input(shape=(), dtype="float32") - - out = tf.stack([inp]) - model = keras.Model(inputs=inp, outputs=out) - model.compile( - adam.Adam(0.001), "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - x = tf.ones(shape=(4, 4)) - expected = tf.stack([x]) - self.assertAllEqual(expected.shape, (1, 4, 4)) - - self.assertAllEqual(model(x).shape, (1, 4, 4)) - self.assertAllEqual(model(x), expected) - - config = model.get_config() - model = keras.Model.from_config(config) - - self.assertAllEqual(model(x).shape, (1, 4, 4)) - self.assertAllEqual(model(x), expected) - - ## Test stack(x) - inp = keras.Input(shape=(), dtype="float32") - - out = tf.stack(inp) - model = keras.Model(inputs=inp, outputs=out) - model.compile( - adam.Adam(0.001), "mse", run_eagerly=test_utils.should_run_eagerly() - ) - - x = tf.ones(shape=(4, 4)) - expected = tf.stack(x) - self.assertAllEqual(expected.shape, (4, 4)) - - self.assertAllEqual(model(x).shape, (4, 4)) - self.assertAllEqual(model(x), expected) - - config = model.get_config() - model = keras.Model.from_config(config) - - self.assertAllEqual(model(x).shape, (4, 4)) - self.assertAllEqual(model(x), expected) - - def test_getitem_slice_with_step_only(self): - if not tf.executing_eagerly(): - self.skipTest("Complex slicing like this fails in v1") - inp = keras.Input(shape=(8,)) - slice_step = keras.Input(shape=(), dtype="int32") - - out = inp[..., :: slice_step[0]] - model = keras.Model(inputs=[inp, slice_step], outputs=out) - model.compile( - adam.Adam(0.001), "mse", run_eagerly=test_utils.should_run_eagerly() - ) - batch_size = 7 - step = 3 - x = tf.stack([tf.range(8) for _ in range(batch_size)]) - args = [x, tf.constant(step, shape=(batch_size,))] - expected = tf.stack([tf.range(8)[::step] for _ in range(batch_size)]) - - if tf.compat.v1.executing_eagerly_outside_functions(): - self.assertIn( - "tf.__operators__.getitem", (x.name for x in model.layers) - ) - self.assertNotIn("tf.strided_slice", (x.name for x in model.layers)) - self.assertAllEqual(model(args), expected) - self.assertAllEqual( - model.predict(args, batch_size=batch_size), expected - ) - - # Make sure it can be successfully saved and loaded - config = model.get_config() - model = keras.Model.from_config(config) - - self.assertAllEqual(model(args), expected) - self.assertAllEqual( - model.predict(args, batch_size=batch_size), expected - ) - - def test_getitem_slice_real_tensor(self): - if not tf.executing_eagerly(): - self.skipTest("Complex slicing like this fails in v1") - x = tf.range(10.0) - slice_stop = keras.Input(shape=(), dtype="int32") - - out = x[: slice_stop[0]] - model = keras.Model(inputs=slice_stop, outputs=out) - model.compile( - adam.Adam(0.001), "mse", run_eagerly=test_utils.should_run_eagerly() - ) - batch_size = 7 - stop = 6 - args = tf.constant(stop, shape=(batch_size,)) - expected = x[:stop] - - if tf.compat.v1.executing_eagerly_outside_functions(): - self.assertIn( - "tf.__operators__.getitem", (x.name for x in model.layers) - ) - # TODO(b/161925288): Fix the dispatch triggering then uncomment: - # self.assertNotIn('tf.strided_slice', ( - # x.name for x in model.layers)) - self.assertAllEqual(model(args), expected) - self.assertAllEqual( - model.predict(args, batch_size=batch_size), expected - ) - - config = model.get_config() - model = keras.Model.from_config(config) - - self.assertAllEqual(model(args), expected) - self.assertAllEqual( - model.predict(args, batch_size=batch_size), expected - ) - - def test_getitem_index_real_tensor(self): - if not tf.executing_eagerly(): - self.skipTest("Complex slicing like this fails in v1") - x = tf.range(10.0) - slice_stop = keras.Input(shape=(), dtype="int32") - - out = x[slice_stop[0]] - model = keras.Model(inputs=slice_stop, outputs=out) - model.compile( - adam.Adam(0.001), "mse", run_eagerly=test_utils.should_run_eagerly() - ) - batch_size = 7 - index = 6 - args = tf.constant(index, shape=(batch_size,)) - expected = x[index] - - if tf.compat.v1.executing_eagerly_outside_functions(): - self.assertIn( - "tf.__operators__.getitem", (x.name for x in model.layers) - ) - # TODO(b/161925288): Fix the bug then uncomment: - # self.assertNotIn('tf.strided_slice', ( - # x.name for x in model.layers)) - self.assertAllEqual(model(args), expected) - self.assertAllEqual( - model.predict(args, batch_size=batch_size), expected - ) - - # Make sure it can be successfully saved and loaded - config = model.get_config() - model = keras.Model.from_config(config) - - self.assertAllEqual(model(args), expected) - self.assertAllEqual( - model.predict(args, batch_size=batch_size), expected - ) - - def test_getitem_slice_with_stop_only(self): - if not tf.executing_eagerly(): - self.skipTest("Complex slicing like this fails in v1") - inp = keras.Input(shape=(8,)) - slice_stop = keras.Input(shape=(), dtype="int32") - - out = inp[: slice_stop[0]] - model = keras.Model(inputs=[inp, slice_stop], outputs=out) - model.compile( - adam.Adam(0.001), "mse", run_eagerly=test_utils.should_run_eagerly() - ) - batch_size = 7 - stop = 6 - x = tf.stack([tf.range(8) for _ in range(batch_size)]) - args = [x, tf.constant(stop, shape=(batch_size,))] - expected = x[:stop] - - if tf.compat.v1.executing_eagerly_outside_functions(): - self.assertIn( - "tf.__operators__.getitem", (x.name for x in model.layers) - ) - self.assertNotIn("tf.strided_slice", (x.name for x in model.layers)) - self.assertAllEqual(model(args), expected) - self.assertAllEqual( - model.predict(args, batch_size=batch_size), expected - ) - - # Make sure it can be successfully saved and loaded - config = model.get_config() - model = keras.Model.from_config(config) - - self.assertAllEqual(model(args), expected) - self.assertAllEqual( - model.predict(args, batch_size=batch_size), expected - ) - - def test_getitem_slice_with_stop_and_ellipsis_only(self): - if not tf.executing_eagerly(): - self.skipTest("Complex slicing like this fails in v1") - inp = keras.Input(shape=(8,)) - slice_stop = keras.Input(shape=(), dtype="int32") - - out = inp[..., : slice_stop[0]] - model = keras.Model(inputs=[inp, slice_stop], outputs=out) - model.compile( - adam.Adam(0.001), "mse", run_eagerly=test_utils.should_run_eagerly() - ) - batch_size = 7 - stop = 6 - x = tf.stack([tf.range(8) for _ in range(batch_size)]) - args = [x, tf.constant(stop, shape=(batch_size,))] - expected = tf.stack([tf.range(8)[:stop] for _ in range(batch_size)]) - - if tf.compat.v1.executing_eagerly_outside_functions(): - self.assertIn( - "tf.__operators__.getitem", (x.name for x in model.layers) - ) - self.assertNotIn("tf.strided_slice", (x.name for x in model.layers)) - self.assertAllEqual(model(args), expected) - self.assertAllEqual( - model.predict(args, batch_size=batch_size), expected - ) - - # Make sure it can be successfully saved and loaded - config = model.get_config() - model = keras.Model.from_config(config) - - self.assertAllEqual(model(args), expected) - self.assertAllEqual( - model.predict(args, batch_size=batch_size), expected - ) - - def test_getitem_complex_slicing(self): - if not tf.executing_eagerly(): - self.skipTest("Complex slicing like this fails in v1") - inp = keras.Input(shape=(4, 3, 8)) - first_dim = keras.Input(shape=(), dtype="int32") - slice_start = keras.Input(shape=(), dtype="int32") - slice_stop = keras.Input(shape=(), dtype="int32") - slice_stride = keras.Input(shape=(), dtype="int32") - - out = inp[ - ..., first_dim[0], slice_start[0] : slice_stop[0] : slice_stride[0] - ] - model = keras.Model( - inputs=[inp, first_dim, slice_start, slice_stop, slice_stride], - outputs=out, - ) - model.compile( - adam.Adam(0.001), "mse", run_eagerly=test_utils.should_run_eagerly() - ) - batch_size = 7 - start = 1 - stop = 6 - step = 2 - x = tf.stack( - [ - tf.stack( - [ - tf.stack([tf.range(8) for _ in range(3)]) - for _ in range(4) - ] - ) - for _ in range(batch_size) - ] - ) - args = [ - x, - tf.constant(0, shape=(batch_size,)), - tf.constant(start, shape=(batch_size,)), - tf.constant(stop, shape=(batch_size,)), - tf.constant(step, shape=(batch_size,)), - ] - # Slice the innermost dim. only grab one index from the - # second-to-innermost dim, removing that dim from the shape. - expected = tf.stack( - [ - tf.stack([tf.range(8)[start:stop:step] for _ in range(4)]) - for _ in range(batch_size) - ] - ) - - if tf.compat.v1.executing_eagerly_outside_functions(): - self.assertIn( - "tf.__operators__.getitem", (x.name for x in model.layers) - ) - self.assertNotIn("tf.strided_slice", (x.name for x in model.layers)) - self.assertAllEqual(model(args), expected) - self.assertAllEqual( - model.predict(args, batch_size=batch_size), expected - ) - - # Make sure it can be successfully saved and loaded - config = model.get_config() - model = keras.Model.from_config(config) - - self.assertAllEqual(model(args), expected) - self.assertAllEqual( - model.predict(args, batch_size=batch_size), expected - ) - - def test_left_hand_numpy_multiplication(self): - x = np.asarray([3.0]) - inputs = keras.Input(shape=(4,)) - outputs = x * inputs - model = keras.Model(inputs, outputs) - ones = tf.ones((5, 4), dtype="float32") - self.assertAllEqual(model(ones), 3.0 * ones) - - def test_numerical_correctness_simple(self): - x = tf.convert_to_tensor([[-1.0, 0.0, -2.0, 1.0]]) - inputs = keras.Input(shape=(4,)) - outputs = tf.nn.relu(inputs) - model = keras.Model(inputs, outputs) - y = self.evaluate(model(x)) - self.assertAllClose(y, [[0.0, 0.0, 0.0, 1.0]]) - - def test_numerical_correctness_with_attrs(self): - x = tf.convert_to_tensor([[1.5, 1.5], [2.5, 3.5]]) - inputs = keras.Input(shape=(2,)) - outputs = tf.reduce_mean(inputs, axis=1) - model = keras.Model(inputs, outputs) - y = self.evaluate(model(x)) - self.assertAllClose(y, [1.5, 3.0]) - - def test_numerical_correctness_serialization(self): - x = tf.convert_to_tensor([[-1.0, 0.0, -2.0, 1.0]]) - inputs = keras.Input(shape=(4,)) - outputs = tf.nn.relu(inputs) - model1 = keras.Model(inputs, outputs) - y1 = self.evaluate(model1(x)) - model2 = keras.Model.from_config(model1.get_config()) - y2 = self.evaluate(model2(x)) - self.assertAllClose(y1, y2) - - def test_gradient_tape_in_function(self): - z = keras.Input((1,)) - x = tf.matmul(z, tf.constant(2.0, shape=(1, 1))) - x = tf.reduce_mean(x, axis=0, keepdims=True) - h = tf.nn.relu(x) - m = keras.Model(z, h) - - @tf.function() - def f(x): - with tf.GradientTape() as t: - t.watch(x) - z = m(x**2) - grads = t.gradient(z, x) - return grads - - self.assertAllEqual( - f(tf.constant(10.0, shape=(1, 1))), tf.constant(40.0, shape=(1, 1)) - ) - - f = tf.function(f) - - self.assertAllEqual( - f(tf.constant(10.0, shape=(1, 1))), tf.constant(40.0, shape=(1, 1)) - ) - - def test_no_tracking(self): - if not tf.executing_eagerly(): - x = tf.constant(1.0, shape=(10, 10)) - keras.layers.Dense(1)(x) - self.assertTrue(x._keras_history_checked) - - def test_timing_scales_linearly(self): - def _construct_graph_of_size(size): - start = time.time() - x = keras.backend.placeholder(shape=(10, 4)) - - for _ in range(size): - x = keras.layers.Dense(4)(x) - x = tf.nn.relu(x) - - end = time.time() - return end - start - - size_50 = _construct_graph_of_size(50) - size_500 = _construct_graph_of_size(500) - - # Check construction time grows approx. linearly with size. - e = 3 # Fudge factor to prevent flakiness. - self.assertLess(size_500, (10 * e) * size_50) - - def test_built(self): - inputs = keras.Input(shape=(10,)) - outputs = tf.nn.relu(inputs) - model = keras.Model(inputs, outputs) - model.compile("sgd", "mse") - for layer in model.layers: - self.assertTrue(layer.built) - # Test something that requires Layers to be built. - model.summary() - - def test_json_serialization(self): - inputs = keras.Input(shape=(4,), dtype="uint8") - outputs = tf.cast(inputs, "float32") / 4.0 - model = model_config.model_from_json( - keras.Model(inputs, outputs).to_json() - ) - self.assertAllEqual( - self.evaluate(model(np.array([0, 64, 128, 192], np.uint8))), - [0.0, 16.0, 32.0, 48.0], - ) - model.summary() - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class InputInEagerTest(test_combinations.TestCase): - """Tests ops on keras inputs in Eager runtime. - - Input returns graph/symbolic tensors in the Eager runtime (this - happens, for example, with tensors returned from Keras layers). These - should be routed to the graph-style branch of these ops (b/134715641) - """ - - def test_identity(self): - x = keras.Input(shape=(1,)) - ident = tf.identity(x) - - # This is now a graph tensor, and should be able to continue in - # graphland - self.assertIn("Identity", ident.name) - - def test_size(self): - x = keras.Input(shape=(3,)) - self.assertAllEqual(x.get_shape().as_list(), [None, 3]) - sz = tf.size(x) - - # This is now a graph tensor, and should be able to continue in - # graphland - self.assertIn("Size", sz.name) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/legacy_tf_layers/BUILD b/keras/legacy_tf_layers/BUILD deleted file mode 100644 index 9beaf00b237..00000000000 --- a/keras/legacy_tf_layers/BUILD +++ /dev/null @@ -1,191 +0,0 @@ -# Description: -# Contains the legacy TF layers (internal TensorFlow version). - -# buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "tf_py_test") -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//learning/brain/contrib:__subpackages__", - "//third_party/tensorflow:__subpackages__", - ], - licenses = ["notice"], -) - -py_library( - name = "layers", - srcs = [ - "__init__.py", - ], - deps = [ - ":convolutional", - ":core", - ":layers_base", - ":normalization", - ":pooling", - ], -) - -py_library( - name = "layers_base", - srcs = [ - "__init__.py", - "base.py", - "migration_utils.py", - "variable_scope_shim.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer", - "//keras/mixed_precision:policy", - ], -) - -py_library( - name = "convolutional", - srcs = ["convolutional.py"], - srcs_version = "PY3", - deps = [ - ":layers_base", - "//:expect_tensorflow_installed", - "//keras/layers", - ], -) - -py_library( - name = "core", - srcs = ["core.py"], - srcs_version = "PY3", - deps = [ - ":layers_base", - "//:expect_tensorflow_installed", - "//keras/layers", - ], -) - -py_library( - name = "normalization", - srcs = ["normalization.py"], - srcs_version = "PY3", - deps = [ - ":layers_base", - "//:expect_tensorflow_installed", - "//keras/layers/normalization", - ], -) - -py_library( - name = "pooling", - srcs = ["pooling.py"], - srcs_version = "PY3", - deps = [ - ":layers_base", - "//:expect_tensorflow_installed", - "//keras/layers", - ], -) - -tf_py_test( - name = "base_test", - size = "small", - srcs = ["base_test.py"], - main = "base_test.py", - python_version = "PY3", - deps = [ - ":core", - ":layers_base", - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "core_test", - size = "small", - srcs = ["core_test.py"], - main = "core_test.py", - python_version = "PY3", - deps = [ - ":core", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "convolutional_test", - size = "small", - srcs = ["convolutional_test.py"], - main = "convolutional_test.py", - python_version = "PY3", - deps = [ - ":convolutional", - "//:expect_tensorflow_installed", - ], -) - -tf_py_test( - name = "pooling_test", - size = "small", - srcs = ["pooling_test.py"], - main = "pooling_test.py", - python_version = "PY3", - tags = ["no_rocm"], - deps = [ - ":pooling", - "//:expect_tensorflow_installed", - ], -) - -cuda_py_test( - name = "normalization_test", - size = "medium", - srcs = ["normalization_test.py"], - main = "normalization_test.py", - python_version = "PY3", - shard_count = 10, - deps = [ - ":convolutional", - ":layers_base", - ":normalization", - "//:expect_tensorflow_installed", - ], -) - -tf_py_test( - name = "variable_scope_shim_test", - size = "small", - srcs = ["variable_scope_shim_test.py"], - main = "variable_scope_shim_test.py", - python_version = "PY3", - tags = ["no_windows"], - deps = [ - ":core", - ":layers_base", - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "migration_utils_test", - size = "small", - srcs = ["migration_utils_test.py"], - main = "migration_utils_test.py", - python_version = "PY3", - deps = [ - ":layers", - "//:expect_tensorflow_installed", - "//keras/engine:base_layer", - "//keras/engine:input_spec", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/legacy_tf_layers/__init__.py b/keras/legacy_tf_layers/__init__.py deleted file mode 100644 index 0bb028307a4..00000000000 --- a/keras/legacy_tf_layers/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -"""Init file.""" - -from keras.legacy_tf_layers import migration_utils diff --git a/keras/legacy_tf_layers/base.py b/keras/legacy_tf_layers/base.py deleted file mode 100644 index e2e925dba0e..00000000000 --- a/keras/legacy_tf_layers/base.py +++ /dev/null @@ -1,669 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -"""Contains the base Layer class, from which all layers inherit.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import copy -import warnings - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer_utils -from keras.engine import base_layer_v1 as base_layer -from keras.legacy_tf_layers import variable_scope_shim -from keras.mixed_precision import policy -from keras.utils import tf_contextlib - -# isort: off -from tensorflow.python.ops import variable_scope as vs -from tensorflow.python.util.tf_export import keras_export - -_KERAS_STYLE_SCOPE = False - - -@keras_export( - v1=["keras.__internal__.legacy.layers.experimental.keras_style_scope"] -) -@tf_contextlib.contextmanager -def keras_style_scope(): - """Use Keras-style variable management. - - All tf.layers and tf RNN cells created in this scope use Keras-style - variable management. Creating such layers with a scope= argument is - disallowed, and reuse=True is disallowed. - - The purpose of this scope is to allow users of existing layers to - slowly transition to a Keras layers API without breaking existing - functionality. - - One example of this is when using TensorFlow's RNN classes with Keras - Models or Networks. Because Keras models do not properly set variable - scopes, users of RNNs may either accidentally share scopes between two - different models, or get errors about variables that already exist. - - Example: - - ```python - class RNNModel(tf.keras.Model): - - def __init__(self, name): - super(RNNModel, self).__init__(name=name) - self.rnn = tf.compat.v1.nn.rnn_cell.MultiRNNCell( - [tf.compat.v1.nn.rnn_cell.LSTMCell(64) for _ in range(2)]) - - def call(self, input, state): - return self.rnn(input, state) - - model_1 = RNNModel("model_1") - model_2 = RNNModel("model_2") - - # OK - output_1, next_state_1 = model_1(input, state) - # Raises an error about trying to create an already existing variable. - output_2, next_state_2 = model_2(input, state) - ``` - - The solution is to wrap the model construction and execution in a - keras-style scope: - - ```python - with keras_style_scope(): - model_1 = RNNModel("model_1") - model_2 = RNNModel("model_2") - - # model_1 and model_2 are guaranteed to create their own variables. - output_1, next_state_1 = model_1(input, state) - output_2, next_state_2 = model_2(input, state) - - assert len(model_1.weights) > 0 - assert len(model_2.weights) > 0 - assert(model_1.weights != model_2.weights) - ``` - - Yields: - A keras layer style scope. - """ - global _KERAS_STYLE_SCOPE - stack = _KERAS_STYLE_SCOPE - _KERAS_STYLE_SCOPE = True - try: - yield - finally: - _KERAS_STYLE_SCOPE = stack - - -@keras_export( - v1=["keras.__internal__.legacy.layers.experimental.set_keras_style"] -) -def set_keras_style(): - """Use Keras-style variable management. - - All tf.layers and tf RNN cells created after keras style ha been enabled - use Keras-style variable management. Creating such layers with a - scope= argument is disallowed, and reuse=True is disallowed. - - The purpose of this function is to allow users of existing layers to - slowly transition to Keras layers API without breaking existing - functionality. - - For more details, see the documentation for `keras_style_scope`. - - Note, once keras style has been set, it is set globally for the entire - program and cannot be unset. - - Example: - - ```python - set_keras_style() - - model_1 = RNNModel(name="model_1") - model_2 = RNNModel(name="model_2") - - # model_1 and model_2 are guaranteed to create their own variables. - output_1, next_state_1 = model_1(input, state) - output_2, next_state_2 = model_2(input, state) - - assert len(model_1.weights) > 0 - assert len(model_2.weights) > 0 - assert(model_1.weights != model_2.weights) - ``` - """ - global _KERAS_STYLE_SCOPE - _KERAS_STYLE_SCOPE = True - - -def _is_in_keras_style_scope(): - global _KERAS_STYLE_SCOPE - return _KERAS_STYLE_SCOPE - - -@keras_export(v1=["keras.__internal__.legacy.layers.Layer"]) -class Layer(base_layer.Layer): - """Base layer class. - - It is considered legacy, and we recommend the use of `tf.keras.layers.Layer` - instead. - - Args: - trainable: Boolean, whether the layer's variables should be trainable. - name: String name of the layer. - dtype: Default dtype of the layer's weights (default of `None` means use - the type of the first input). - - Read-only properties: - name: The name of the layer (string). - dtype: Default dtype of the layer's weights (default of `None` means use - the type of the first input). - trainable_variables: List of trainable variables. - non_trainable_variables: List of non-trainable variables. - variables: List of all variables of this layer, trainable and - non-trainable. - updates: List of update ops of this layer. - losses: List of losses added by this layer. - trainable_weights: List of variables to be included in backprop. - non_trainable_weights: List of variables that should not be - included in backprop. - weights: The concatenation of the lists trainable_weights and - non_trainable_weights (in this order). - - Mutable properties: - trainable: Whether the layer should be trained (boolean). - input_spec: Optional (list of) `InputSpec` object(s) specifying the - constraints on inputs that can be accepted by the layer. - """ - - def __init__(self, trainable=True, name=None, dtype=None, **kwargs): - # For backwards compatibility, legacy layers do not use - # `ResourceVariable` by default. - self._use_resource_variables = False - scope = kwargs.pop("_scope", None) - self._reuse = kwargs.pop("_reuse", None) - - # Avoid an incorrect lint error - self._trainable_weights = [] - self.built = False - - if dtype is None: - # Indicates to infer dtype from inputs. When the V2 dtype behavior - # is enabled, Keras layers default their dtype to floatx instead, so - # we pass an "_infer" policy to keep the old V1 behavior. - dtype = policy.Policy("_infer") - - if "autocast" not in kwargs: - kwargs["autocast"] = False - - # Mark that legacy layers should not be instrumented as Keras usage - self._disable_keras_instrumentation = True - - super().__init__(trainable=trainable, name=name, dtype=dtype, **kwargs) - - if _is_in_keras_style_scope(): - if scope is not None: - raise ValueError( - "scope argument not allowed when keras style layers are " - "enabled, but saw: {}".format(scope) - ) - if self._reuse is not None: - raise ValueError( - "reuse argument not allowed when keras style layers are " - "enabled, but saw: {}".format(self._reuse) - ) - self._keras_style = True - else: - self._keras_style = False - - self._call_has_scope_arg = "scope" in self._call_spec.arg_names - if scope: - with tf.compat.v1.variable_scope(scope) as captured_scope: - self._scope = captured_scope - else: - self._scope = None - self._current_scope = None - - def apply(self, *args, **kwargs): - return self(*args, **kwargs) - - # We no longer track graph in tf.layers layers. This property is only kept - # to maintain API backward compatibility. - @property - def graph(self): - warnings.warn( - "`Layer.graph` is deprecated and " - "will be removed in a future version. " - "Please stop using this property because tf.layers layers no " - "longer track their graph.", - stacklevel=2, - ) - if tf.executing_eagerly(): - raise RuntimeError( - "Layer.graph not supported when executing eagerly." - ) - return None - - def _init_set_name(self, name): - # Determine layer name (non-unique). - if isinstance(name, tf.compat.v1.VariableScope): - base_name = name.name - self._name, _ = self._make_unique_name() - else: - base_name = name - self._name = name - if not name: - self._name, base_name = self._make_unique_name() - self._base_name = base_name - - def _make_unique_name( - self, - name_uid_map=None, - avoid_names=None, - namespace="", - zero_based=False, - ): - base_name = base_layer.to_snake_case(self.__class__.__name__) - name = backend.unique_object_name( - base_name, - name_uid_map=name_uid_map, - avoid_names=avoid_names, - namespace=namespace, - zero_based=zero_based, - ) - return (name, base_name) - - @property - def scope_name(self): - if not self._scope: - raise ValueError( - 'No name available for layer scope because the layer "' - + self._name - + '" has not been used yet. The scope name ' - + " is determined the first time the layer instance is " - + "called. You must therefore call the layer before " - + "querying `scope_name`." - ) - return self._scope.name - - def add_loss(self, losses, inputs=None): - previous_losses_length = len(self._losses) - previous_callable_losses_length = len(self._callable_losses) - super().add_loss(losses, inputs=inputs) - if not tf.executing_eagerly(): - # TODO(fchollet): deprecate collection below. - new_losses = self._losses[previous_losses_length:] - new_callable_losses = self._callable_losses[ - previous_callable_losses_length: - ] - for regularizer in new_callable_losses: - loss_tensor = regularizer() - if loss_tensor is not None: - new_losses.append(loss_tensor) - _add_elements_to_collection( - new_losses, tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - - def _name_scope(self): - """Determines op naming for the Layer.""" - if self._keras_style: - return super()._name_scope() - return self._current_scope.original_name_scope - - def _set_scope(self, scope=None): - if self._scope is None: - # If constructed with _scope=None, lazy setting of scope. - if self._reuse: - with tf.compat.v1.variable_scope( - scope if scope is not None else self._base_name - ) as captured_scope: - self._scope = captured_scope - else: - with tf.compat.v1.variable_scope( - scope, default_name=self._base_name - ) as captured_scope: - self._scope = captured_scope - - def add_weight( - self, - name, - shape, - dtype=None, - initializer=None, - regularizer=None, - trainable=None, - constraint=None, - use_resource=None, - synchronization=tf.VariableSynchronization.AUTO, - aggregation=tf.compat.v1.VariableAggregation.NONE, - partitioner=None, - **kwargs - ): - """Adds a new variable to the layer, or gets an existing one; returns it - - Args: - name: variable name. - shape: variable shape. - dtype: The type of the variable. Defaults to `self.dtype` or - `float32`. - initializer: initializer instance (callable). - regularizer: regularizer instance (callable). - trainable: whether the variable should be part of the layer's - "trainable_variables" (e.g. variables, biases) - or "non_trainable_variables" (e.g. BatchNorm mean, stddev). - Note, if the current variable scope is marked as non-trainable - then this parameter is ignored and any added variables are also - marked as non-trainable. `trainable` defaults to `True` unless - `synchronization` is set to `ON_READ`. - constraint: constraint instance (callable). - use_resource: Whether to use `ResourceVariable`. - synchronization: Indicates when a distributed a variable will be - aggregated. Accepted values are constants defined in the class - `tf.VariableSynchronization`. By default the synchronization is set - to `AUTO` and the current `DistributionStrategy` chooses when to - synchronize. If `synchronization` is set to `ON_READ`, `trainable` - must not be set to `True`. - aggregation: Indicates how a distributed variable will be aggregated. - Accepted values are constants defined in the class - `tf.VariableAggregation`. - partitioner: (optional) partitioner instance (callable). If - provided, when the requested variable is created it will be split - into multiple partitions according to `partitioner`. In this case, - an instance of `PartitionedVariable` is returned. Available - partitioners include `tf.compat.v1.fixed_size_partitioner` and - `tf.compat.v1.variable_axis_size_partitioner`. For more details, - see the documentation of `tf.compat.v1.get_variable` and the - "Variable Partitioners and Sharding" section of the API guide. - **kwargs: Additional keyword arguments. - - Returns: - The created variable. Usually either a `Variable` or - `ResourceVariable` instance. If `partitioner` is not `None`, a - `PartitionedVariable` instance is returned. - - Raises: - RuntimeError: If called with partitioned variable regularization and - eager execution is enabled. - ValueError: When trainable has been set to True with synchronization - set as `ON_READ`. - """ - for kwarg in kwargs: - if kwarg != "experimental_autocast": - raise TypeError("Unknown keyword argument:", kwarg) - if self._keras_style: - return super().add_weight( - name=name, - shape=shape, - dtype=dtype, - initializer=initializer, - regularizer=regularizer, - trainable=trainable and self.trainable, - constraint=constraint, - use_resource=use_resource, - synchronization=tf.VariableSynchronization.AUTO, - aggregation=tf.compat.v1.VariableAggregation.NONE, - partitioner=partitioner, - **kwargs - ) - - if synchronization == tf.VariableSynchronization.ON_READ: - if trainable: - raise ValueError( - "Synchronization value can be set to " - "VariableSynchronization.ON_READ only for non-trainable " - "variables. You have specified trainable=True and " - "synchronization=VariableSynchronization.ON_READ." - ) - else: - # Set trainable to be false when variable is to be synced on - # read. - trainable = False - elif trainable is None: - trainable = True - - def _should_add_regularizer(variable, existing_variable_set): - if base_layer_utils.is_split_variable(variable): - for var in variable: - if var in existing_variable_set: - return False - return True - else: - return variable not in existing_variable_set - - init_graph = None - if not tf.executing_eagerly(): - default_graph = tf.compat.v1.get_default_graph() - if default_graph.building_function: - with tf.init_scope(): - # Retrieve the variables from the graph into which variables - # will be lifted; if initialization ops will be lifted into - # the eager context, then there is nothing to retrieve, - # since variable collections are not supported when eager - # execution is enabled. - if not tf.executing_eagerly(): - init_graph = tf.compat.v1.get_default_graph() - existing_variables = set( - tf.compat.v1.global_variables() - ) - else: - # Initialization ops will not be lifted out of the default - # graph. - init_graph = default_graph - existing_variables = set(tf.compat.v1.global_variables()) - - if dtype is None: - dtype = self.dtype or tf.float32 - - self._set_scope(None) - reuse = self.built or self._reuse - prev_len_trainable = len(self._trainable_weights) - with tf.compat.v1.variable_scope( - self._scope, reuse=reuse, auxiliary_name_scope=False - ) as scope: - self._current_scope = scope - with backend.name_scope(self._name_scope()): - use_resource = ( - use_resource - or self._use_resource_variables - or scope.use_resource - ) - if initializer is None: - initializer = scope.initializer - variable = super().add_weight( - name, - shape, - dtype=tf.as_dtype(dtype), - initializer=initializer, - trainable=trainable and self.trainable, - constraint=constraint, - partitioner=partitioner, - use_resource=use_resource, - synchronization=synchronization, - aggregation=aggregation, - getter=tf.compat.v1.get_variable, - **kwargs - ) - - if regularizer: - if ( - tf.compat.v1.executing_eagerly_outside_functions() - or _should_add_regularizer(variable, existing_variables) - ): - self._handle_weight_regularization( - name, variable, regularizer - ) - var_store = vs._get_default_variable_store() - # When the shim to get variable scope working in TF2 is - # used, We need to explicitly make the shim track the - # regularization losses as the collections will not be - # accessible. - if hasattr(var_store, "add_regularizer"): - var_store.add_regularizer(variable, regularizer) - - if init_graph is not None: - # Handle edge case where a custom getter has overridden - # `trainable`. There is one known occurrence of this, in - # unit test testBasicRNNCellNotTrainable in - # contrib.rnn.python.kernel_tests.core_rnn_cell_test - with init_graph.as_default(): - trainable_variables = tf.compat.v1.trainable_variables() - if ( - trainable - and self.trainable - and variable not in trainable_variables - ): - # A custom getter / variable scope overrode the - # trainable flag. - extra_trainable_vars = self._trainable_weights[ - prev_len_trainable: - ] - self._trainable_weights = self._trainable_weights[ - :prev_len_trainable - ] - self._non_trainable_weights += extra_trainable_vars - return variable - - def __call__(self, inputs, *args, **kwargs): - """Wraps `call`, applying pre- and post-processing steps. - - Args: - inputs: input tensor(s). - *args: additional positional arguments to be passed to `self.call`. - **kwargs: additional keyword arguments to be passed to `self.call`. - **Note**: kwarg `scope` is reserved for use by the layer. - - Returns: - Output tensor(s). - - Note: - - If the layer's `call` method takes a `scope` keyword argument, this - argument will be automatically set to the current variable scope. - - If the layer's `call` method takes a `mask` argument (as some Keras - layers do), its default value will be set to the mask generated - for `inputs` by the previous layer (if `input` did come from - a layer that generated a corresponding mask, i.e. if it came from - a Keras layer with masking support. - - Raises: - ValueError: if the layer's `call` method returns None (an invalid - value). - """ - scope = kwargs.pop("scope", None) - - if self._keras_style: - if scope is not None: - raise ValueError( - "scope argument not allowed when keras style layers are " - "enabled, but saw: {}".format(scope) - ) - return super().__call__(inputs, *args, **kwargs) - - self._set_scope(scope) - - if self.built: - try: - # Some classes which inherit from Layer do not use its - # constructor, so rather than initializing to None we check for - # an AttributeError. - scope_context_manager = self._always_reuse_variable_scope - except AttributeError: - scope_context_manager = None - - if scope_context_manager is None: - # From this point we will always set reuse=True, so create a - # "final" variable scope with this setting. We avoid re-creating - # variable scopes after this point as an optimization. - scope_context_manager = tf.compat.v1.variable_scope( - self._scope, reuse=True, auxiliary_name_scope=False - ) - - # Do not cache variable scopes if Eager mode is enabled. If - # Eager mode is enabled then we don't want to reuse scopes - # because the cached scope might be from a FuncGraph or Eager - # scope we are no longer in. - if not tf.compat.v1.executing_eagerly_outside_functions(): - self._always_reuse_variable_scope = scope_context_manager - else: - scope_context_manager = tf.compat.v1.variable_scope( - self._scope, reuse=self._reuse, auxiliary_name_scope=False - ) - - with scope_context_manager as scope: - self._current_scope = scope - - try: - call_has_scope_arg = self._call_has_scope_arg - except AttributeError: - self._call_spec.arg_names = variable_scope_shim.fn_args( - self.call - ) - self._call_has_scope_arg = "scope" in self._call_spec.arg_names - call_has_scope_arg = self._call_has_scope_arg - if call_has_scope_arg: - kwargs["scope"] = scope - - # Actually call layer - outputs = super().__call__(inputs, *args, **kwargs) - - if not tf.executing_eagerly(): - # Update global default collections. - _add_elements_to_collection( - self.updates, tf.compat.v1.GraphKeys.UPDATE_OPS - ) - return outputs - - def __deepcopy__(self, memo): - no_copy = set(["_graph", "_thread_local", "_metrics_lock"]) - shallow_copy = set(["_scope", "_always_reuse_variable_scope"]) - cls = self.__class__ - result = cls.__new__(cls) - memo[id(self)] = result - for k, v in self.__dict__.items(): - if k in no_copy: - setattr(result, k, v) - elif k in shallow_copy: - setattr(result, k, copy.copy(v)) - elif base_layer.is_tensor_or_tensor_list(v): - setattr(result, k, v) - else: - setattr(result, k, copy.deepcopy(v, memo)) - return result - - def __setattr__(self, value, name): - # By-pass the automatic dependency tracking performed by the parent - # Layer. - super(tf.__internal__.tracking.Trackable, self).__setattr__(value, name) - - @property - def _is_legacy_layer(self): - """Used by keras to check compatibility. This should not be - overridden.""" - return True - - -def _add_elements_to_collection(elements, collection_list): - if tf.executing_eagerly(): - raise RuntimeError( - "Using collections from Layers not supported in Eager " - "mode. Tried to add %s to %s" % (elements, collection_list) - ) - elements = tf.nest.flatten(elements) - collection_list = tf.nest.flatten(collection_list) - for name in collection_list: - collection = tf.compat.v1.get_collection_ref(name) - collection_set = {id(e) for e in collection} - for element in elements: - if id(element) not in collection_set: - collection.append(element) diff --git a/keras/legacy_tf_layers/base_test.py b/keras/legacy_tf_layers/base_test.py deleted file mode 100644 index e71403e8c68..00000000000 --- a/keras/legacy_tf_layers/base_test.py +++ /dev/null @@ -1,736 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for tf.layers.base.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import copy - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import backend -from keras.engine import base_layer as keras_base_layer -from keras.engine import input_spec -from keras.legacy_tf_layers import base as base_tf_layers -from keras.legacy_tf_layers import core as core_tf_layers -from keras.testing_infra import test_combinations - - -class BaseLayerTest(tf.test.TestCase, parameterized.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testLayerProperties(self): - layer = base_tf_layers.Layer(name="my_layer") - self.assertEqual(layer.variables, []) - self.assertEqual(layer.trainable_variables, []) - self.assertEqual(layer.non_trainable_variables, []) - if not tf.executing_eagerly(): - # updates, losses only supported in GRAPH mode - self.assertEqual(layer.updates, []) - self.assertEqual(layer.losses, []) - self.assertEqual(layer.built, False) - layer = base_tf_layers.Layer(name="my_layer", trainable=False) - self.assertEqual(layer.trainable, False) - - # Assert that the layer was not instrumented as a Keras layer - self.assertFalse(layer._instrumented_keras_api) - - # Assert this was instrumented as a legacy layer - self.assertTrue( - keras_base_layer.keras_api_gauge.get_cell("legacy_layer").value() - ) - keras_base_layer.keras_api_gauge.get_cell("legacy_layer").set(False) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testInt64Layer(self): - layer = base_tf_layers.Layer(name="my_layer", dtype="int64") - layer.add_weight("my_var", [2, 2]) - self.assertEqual(layer.name, "my_layer") - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testKerasStyleAddWeight(self): - keras_layer = keras_base_layer.Layer(name="keras_layer") - with backend.name_scope("foo"): - keras_variable = keras_layer.add_weight( - "my_var", [2, 2], initializer=tf.compat.v1.zeros_initializer() - ) - self.assertEqual(keras_variable.name, "foo/my_var:0") - - with backend.name_scope("baz"): - old_style_layer = base_tf_layers.Layer(name="my_layer") - # Test basic variable creation. - variable = old_style_layer.add_weight( - "my_var", [2, 2], initializer=tf.compat.v1.zeros_initializer() - ) - self.assertEqual(variable.name, "my_layer/my_var:0") - - with base_tf_layers.keras_style_scope(): - layer = base_tf_layers.Layer(name="my_layer") - # Assert that the layer was not instrumented as a Keras layer - self.assertFalse(layer._instrumented_keras_api) - # Test basic variable creation. - with backend.name_scope("bar"): - variable = layer.add_weight( - "my_var", [2, 2], initializer=tf.compat.v1.zeros_initializer() - ) - self.assertEqual(variable.name, "bar/my_var:0") - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testAddWeight(self): - layer = base_tf_layers.Layer(name="my_layer") - - # Test basic variable creation. - variable = layer.add_weight( - "my_var", [2, 2], initializer=tf.compat.v1.zeros_initializer() - ) - self.assertEqual(variable.name, "my_layer/my_var:0") - self.assertEqual(layer.variables, [variable]) - self.assertEqual(layer.trainable_variables, [variable]) - self.assertEqual(layer.non_trainable_variables, []) - if not tf.executing_eagerly(): - self.assertEqual( - layer.variables, - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES - ), - ) - - # Test non-trainable variable creation. - # layer.add_variable should work even outside `build` and `call`. - variable_2 = layer.add_weight( - "non_trainable_var", - [2, 2], - initializer=tf.compat.v1.zeros_initializer(), - trainable=False, - ) - self.assertEqual(layer.variables, [variable, variable_2]) - self.assertEqual(layer.trainable_variables, [variable]) - self.assertEqual(layer.non_trainable_variables, [variable_2]) - - if not tf.executing_eagerly(): - self.assertEqual( - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES - ) - ), - 1, - ) - - regularizer = lambda x: tf.reduce_sum(x) * 1e-3 - _ = layer.add_weight( - "reg_var", - [2, 2], - initializer=tf.compat.v1.zeros_initializer(), - regularizer=regularizer, - ) - self.assertEqual(len(layer.losses), 1) - - added_variable = [False] - - # Test that sync `ON_READ` variables are defaulted to be non-trainable. - variable_3 = layer.add_weight( - "sync_on_read_var", - [2, 2], - initializer=tf.compat.v1.zeros_initializer(), - synchronization=tf.VariableSynchronization.ON_READ, - aggregation=tf.compat.v1.VariableAggregation.SUM, - ) - self.assertEqual( - layer.non_trainable_variables, [variable_2, variable_3] - ) - - @tf.function - def function_adds_weight(): - if not added_variable[0]: - layer.add_weight( - "reg_var_from_function", - [2, 2], - initializer=tf.compat.v1.zeros_initializer(), - regularizer=regularizer, - ) - added_variable[0] = True - - function_adds_weight() - self.assertEqual(len(layer.losses), 2) - - def testInvalidTrainableSynchronizationCombination(self): - layer = base_tf_layers.Layer(name="my_layer") - - with self.assertRaisesRegex( - ValueError, - "Synchronization value can be set to " - "VariableSynchronization.ON_READ only for non-trainable variables. " - "You have specified trainable=True and " - "synchronization=VariableSynchronization.ON_READ.", - ): - _ = layer.add_weight( - "v", - [2, 2], - initializer=tf.compat.v1.zeros_initializer(), - synchronization=tf.VariableSynchronization.ON_READ, - trainable=True, - ) - - def testReusePartitionedVariablesAndRegularizers(self): - with tf.Graph().as_default(): - regularizer = lambda x: tf.reduce_sum(x) * 1e-3 - partitioner = tf.compat.v1.fixed_size_partitioner(3) - for reuse in [False, True]: - with tf.compat.v1.variable_scope( - tf.compat.v1.get_variable_scope(), - partitioner=partitioner, - reuse=reuse, - ): - layer = base_tf_layers.Layer(name="my_layer") - _ = layer.add_weight( - "reg_part_var", - [4, 4], - initializer=tf.compat.v1.zeros_initializer(), - regularizer=regularizer, - ) - self.assertEqual( - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - ), - 3, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testCall(self): - class MyLayer(base_tf_layers.Layer): - def call(self, inputs): - return tf.square(inputs) - - layer = MyLayer(name="my_layer") - inputs = tf.random.uniform((5,), seed=1) - outputs = layer(inputs) - self.assertEqual(layer.built, True) - if not tf.executing_eagerly(): - # op is only supported in GRAPH mode - self.assertEqual(outputs.op.name, "my_layer/Square") - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testDeepCopy(self): - class MyLayer(base_tf_layers.Layer): - def call(self, inputs): - return tf.square(inputs) - - layer = MyLayer(name="my_layer") - layer._private_tensor = tf.random.uniform(()) - inputs = tf.random.uniform((5,), seed=1) - outputs = layer(inputs) - self.assertEqual(layer.built, True) - if not tf.executing_eagerly(): - # op only supported in GRAPH mode. - self.assertEqual(outputs.op.name, "my_layer/Square") - - layer_copy = copy.deepcopy(layer) - self.assertEqual(layer_copy.name, layer.name) - self.assertEqual(layer_copy._scope.name, layer._scope.name) - self.assertEqual(layer_copy._private_tensor, layer._private_tensor) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testScopeNaming(self): - class PrivateLayer(base_tf_layers.Layer): - def call(self, inputs): - return inputs - - inputs = tf.random.uniform((5,)) - default_layer = PrivateLayer() - _ = default_layer(inputs) - self.assertEqual(default_layer._scope.name, "private_layer") - default_layer1 = PrivateLayer() - default_layer1(inputs) - self.assertEqual(default_layer1._scope.name, "private_layer_1") - my_layer = PrivateLayer(name="my_layer") - my_layer(inputs) - self.assertEqual(my_layer._scope.name, "my_layer") - my_layer1 = PrivateLayer(name="my_layer") - my_layer1(inputs) - self.assertEqual(my_layer1._scope.name, "my_layer_1") - my_layer2 = PrivateLayer(name="my_layer") - my_layer2(inputs) - self.assertEqual(my_layer2._scope.name, "my_layer_2") - # Name scope shouldn't affect names. - with backend.name_scope("some_name_scope"): - default_layer2 = PrivateLayer() - default_layer2(inputs) - self.assertEqual(default_layer2._scope.name, "private_layer_2") - my_layer3 = PrivateLayer(name="my_layer") - my_layer3(inputs) - self.assertEqual(my_layer3._scope.name, "my_layer_3") - other_layer = PrivateLayer(name="other_layer") - other_layer(inputs) - self.assertEqual(other_layer._scope.name, "other_layer") - # Variable scope gets added to scope names. - with tf.compat.v1.variable_scope("var_scope"): - default_layer_scoped = PrivateLayer() - default_layer_scoped(inputs) - self.assertEqual( - default_layer_scoped._scope.name, "var_scope/private_layer" - ) - my_layer_scoped = PrivateLayer(name="my_layer") - my_layer_scoped(inputs) - self.assertEqual(my_layer_scoped._scope.name, "var_scope/my_layer") - my_layer_scoped1 = PrivateLayer(name="my_layer") - my_layer_scoped1(inputs) - self.assertEqual( - my_layer_scoped1._scope.name, "var_scope/my_layer_1" - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testInputSpecNdimCheck(self): - class CustomerLayer(base_tf_layers.Layer): - def __init__(self): - super().__init__() - self.input_spec = input_spec.InputSpec(ndim=2) - - def call(self, inputs): - return inputs - - layer = CustomerLayer() - with self.assertRaisesRegex(ValueError, r"expected ndim=2"): - layer(tf.constant([1])) - - # Note that we re-create the layer since in Eager mode, input spec - # checks only happen on first call. - # Works - layer = CustomerLayer() - layer(tf.constant([[1], [2]])) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testInputSpecMinNdimCheck(self): - class CustomLayer(base_tf_layers.Layer): - def __init__(self): - super().__init__() - self.input_spec = input_spec.InputSpec(min_ndim=2) - - def call(self, inputs): - return inputs - - layer = CustomLayer() - with self.assertRaisesRegex(ValueError, r"expected min_ndim=2"): - layer(tf.constant([1])) - - # Works - layer = CustomLayer() - layer(tf.constant([[1], [2]])) - - layer = CustomLayer() - layer(tf.constant([[[1], [2]]])) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testInputSpecMaxNdimCheck(self): - class CustomerLayer(base_tf_layers.Layer): - def __init__(self): - super().__init__() - self.input_spec = input_spec.InputSpec(max_ndim=2) - - def call(self, inputs): - return inputs - - layer = CustomerLayer() - with self.assertRaisesRegex(ValueError, r"expected max_ndim=2"): - layer(tf.constant([[[1], [2]]])) - - # Works - layer = CustomerLayer() - layer(tf.constant([1])) - - layer = CustomerLayer() - layer(tf.constant([[1], [2]])) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testInputSpecDtypeCheck(self): - class CustomerLayer(base_tf_layers.Layer): - def __init__(self): - super().__init__() - self.input_spec = input_spec.InputSpec(dtype="float32") - - def call(self, inputs): - return inputs - - layer = CustomerLayer() - with self.assertRaisesRegex(ValueError, r"expected dtype=float32"): - layer(tf.constant(1, dtype=tf.int32)) - - # Works - layer = CustomerLayer() - layer(tf.constant(1.0, dtype=tf.float32)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testInputSpecAxesCheck(self): - class CustomerLayer(base_tf_layers.Layer): - def __init__(self): - super().__init__() - self.input_spec = input_spec.InputSpec(axes={-1: 2}) - - def call(self, inputs): - return inputs - - layer = CustomerLayer() - with self.assertRaisesRegex(ValueError, r"expected axis"): - layer(tf.constant([1, 2, 3])) - - # Works - layer = CustomerLayer() - layer(tf.constant([1, 2])) - layer = CustomerLayer() - layer(tf.constant([[1, 2], [3, 4], [5, 6]])) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testInputSpecShapeCheck(self): - class CustomerLayer(base_tf_layers.Layer): - def __init__(self): - super().__init__() - self.input_spec = input_spec.InputSpec(shape=(None, 3)) - - def call(self, inputs): - return inputs - - layer = CustomerLayer() - with self.assertRaisesRegex(ValueError, r"expected shape"): - layer(tf.constant([[1, 2]])) - - # Works - layer = CustomerLayer() - layer(tf.constant([[1, 2, 3], [4, 5, 6]])) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testNoInputSpec(self): - class CustomerLayer(base_tf_layers.Layer): - def __init__(self): - super().__init__() - self.input_spec = None - - def call(self, inputs): - return inputs - - layer = CustomerLayer() - - layer(tf.constant(1)) - - # Works - if not tf.executing_eagerly(): - layer(tf.compat.v1.placeholder("int32")) - layer(tf.compat.v1.placeholder("int32", shape=(2, 3))) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_count_params(self): - dense = core_tf_layers.Dense(16) - dense.build((None, 4)) - self.assertEqual(dense.count_params(), 16 * 4 + 16) - - dense = core_tf_layers.Dense(16) - with self.assertRaises(ValueError): - dense.count_params() - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testDictInputOutput(self): - class DictLayer(base_tf_layers.Layer): - def call(self, inputs): - return {"l" + key: inputs[key] for key in inputs} - - layer = DictLayer() - if tf.executing_eagerly(): - i1 = tf.constant(3) - i2 = tf.constant(4.0) - result = layer({"abel": i1, "ogits": i2}) - self.assertTrue(isinstance(result, dict)) - self.assertEqual(set(["label", "logits"]), set(result.keys())) - self.assertEqual(3, result["label"].numpy()) - self.assertEqual(4.0, result["logits"].numpy()) - else: - i1 = tf.compat.v1.placeholder("int32") - i2 = tf.compat.v1.placeholder("float32") - result = layer({"abel": i1, "ogits": i2}) - self.assertTrue(isinstance(result, dict)) - self.assertEqual(set(["label", "logits"]), set(result.keys())) - - def testActivityRegularizer(self): - with tf.Graph().as_default(): - regularizer = tf.reduce_sum - layer = base_tf_layers.Layer(activity_regularizer=regularizer) - x = tf.compat.v1.placeholder("int32") - layer(x) - self.assertEqual(len(layer.get_losses_for(x)), 1) - - def testNameScopeIsConsistentWithVariableScope(self): - # GitHub issue 13429. - - class MyLayer(base_tf_layers.Layer): - def build(self, input_shape): - self.my_var = self.add_weight("my_var", (), tf.float32) - self.built = True - - def call(self, inputs): - return tf.multiply(inputs, self.my_var, name="my_op") - - def _gen_layer(x, name=None): - layer = MyLayer(name=name) - out = layer(x) - return layer, out - - # unnamed layer - with tf.Graph().as_default(): - x = tf.compat.v1.placeholder(tf.float32, (), "x") - layer, op = _gen_layer(x) - layer1, op1 = _gen_layer(op) - layer2, op2 = _gen_layer(op1) - - self.assertEqual(layer.my_var.name, "my_layer/my_var:0") - self.assertEqual(op.name, "my_layer/my_op:0") - self.assertEqual(layer1.my_var.name, "my_layer_1/my_var:0") - self.assertEqual(op1.name, "my_layer_1/my_op:0") - self.assertEqual(layer2.my_var.name, "my_layer_2/my_var:0") - self.assertEqual(op2.name, "my_layer_2/my_op:0") - # name starts from zero - with tf.Graph().as_default(): - x = tf.compat.v1.placeholder(tf.float32, (), "x") - layer, op = _gen_layer(x, name="name") - layer1, op1 = _gen_layer(op, name="name_1") - layer2, op2 = _gen_layer(op1, name="name_2") - - self.assertEqual(layer.my_var.name, "name/my_var:0") - self.assertEqual(op.name, "name/my_op:0") - self.assertEqual(layer1.my_var.name, "name_1/my_var:0") - self.assertEqual(op1.name, "name_1/my_op:0") - self.assertEqual(layer2.my_var.name, "name_2/my_var:0") - self.assertEqual(op2.name, "name_2/my_op:0") - # name starts from one - with tf.Graph().as_default(): - x = tf.compat.v1.placeholder(tf.float32, (), "x") - layer, op = _gen_layer(x, name="name_1") - layer1, op1 = _gen_layer(op, name="name_2") - layer2, op2 = _gen_layer(op1, name="name_3") - - self.assertEqual(layer.my_var.name, "name_1/my_var:0") - self.assertEqual(op.name, "name_1/my_op:0") - self.assertEqual(layer1.my_var.name, "name_2/my_var:0") - self.assertEqual(op1.name, "name_2/my_op:0") - self.assertEqual(layer2.my_var.name, "name_3/my_var:0") - self.assertEqual(op2.name, "name_3/my_op:0") - - def testVariablesAreLiftedFromFunctionBuildingGraphs(self): - class MyLayer(base_tf_layers.Layer): - def build(self, input_shape): - self.my_var = self.add_weight("my_var", (), tf.float32) - self.built = True - - def call(self, inputs): - return inputs - - outer_graph = tf.compat.v1.get_default_graph() - function_building_graph = tf.Graph() - function_building_graph._building_function = True - with outer_graph.as_default(): - with function_building_graph.as_default(): - layer = MyLayer() - # Create a variable by invoking build through __call__ and - # assert that it is both tracked and lifted into the outer - # graph. - inputs = tf.compat.v1.placeholder(tf.float32, (), "inputs") - layer(inputs) - self.assertEqual(len(layer.variables), 1) - self.assertEqual(len(layer.trainable_variables), 1) - self.assertEqual(layer.variables[0].graph, outer_graph) - - def testGetUpdateFor(self): - class MyLayer(base_tf_layers.Layer): - def build(self, input_shape): - self.a = self.add_weight("a", (), tf.float32, trainable=False) - self.b = self.add_weight("b", (), tf.float32, trainable=False) - self.add_update( - tf.compat.v1.assign_add(self.a, 1.0, name="b_update") - ) - self.built = True - - def call(self, inputs): - self.add_update( - tf.compat.v1.assign_add(self.a, inputs, name="a_update") - ) - return inputs + 1 - - with tf.Graph().as_default(): - layer = MyLayer() - inputs = tf.compat.v1.placeholder(tf.float32, (), "inputs") - intermediate_inputs = inputs + 1 - outputs = layer(intermediate_inputs) - - self.assertEqual(len(layer.updates), 2) - self.assertEqual(len(layer.get_updates_for(None)), 1) - self.assertEqual(len(layer.get_updates_for([inputs])), 1) - self.assertEqual( - len(layer.get_updates_for([intermediate_inputs])), 1 - ) - self.assertEqual(len(layer.get_updates_for([outputs])), 0) - - # Call same layer on new input, creating one more conditional update - inputs = tf.compat.v1.placeholder(tf.float32, (), "inputs") - intermediate_inputs = inputs + 1 - outputs = layer(intermediate_inputs) - - self.assertEqual(len(layer.updates), 3) - self.assertEqual(len(layer.get_updates_for(None)), 1) - # Check that we are successfully filtering out irrelevant updates - self.assertEqual(len(layer.get_updates_for([inputs])), 1) - self.assertEqual( - len(layer.get_updates_for([intermediate_inputs])), 1 - ) - self.assertEqual(len(layer.get_updates_for([outputs])), 0) - - def testGetLossesFor(self): - class MyLayer(base_tf_layers.Layer): - def build(self, input_shape): - self.a = self.add_weight("a", (), tf.float32, trainable=False) - self.b = self.add_weight("b", (), tf.float32, trainable=False) - self.add_loss(self.a) - self.built = True - - def call(self, inputs): - self.add_loss(inputs, inputs=True) - return inputs + 1 - - with tf.Graph().as_default(): - layer = MyLayer() - inputs = tf.compat.v1.placeholder(tf.float32, (), "inputs") - intermediate_inputs = inputs + 1 - outputs = layer(intermediate_inputs) - - self.assertEqual(len(layer.losses), 2) - self.assertEqual(len(layer.get_losses_for(None)), 1) - self.assertEqual(len(layer.get_losses_for([inputs])), 1) - self.assertEqual( - len(layer.get_losses_for([intermediate_inputs])), 1 - ) - self.assertEqual(len(layer.get_losses_for([outputs])), 0) - - # Call same layer on new input, creating one more conditional loss - inputs = tf.compat.v1.placeholder(tf.float32, (), "inputs") - intermediate_inputs = inputs + 1 - outputs = layer(intermediate_inputs) - - self.assertEqual(len(layer.losses), 3) - self.assertEqual(len(layer.get_losses_for(None)), 1) - # Check that we are successfully filtering out irrelevant losses - self.assertEqual(len(layer.get_losses_for([inputs])), 1) - self.assertEqual( - len(layer.get_losses_for([intermediate_inputs])), 1 - ) - self.assertEqual(len(layer.get_losses_for([outputs])), 0) - - -class IdentityLayer(base_tf_layers.Layer): - """A layer returns the identity of it's input.""" - - def call(self, inputs): - return inputs - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class DTypeTest(tf.test.TestCase, parameterized.TestCase): - def _const(self, dtype): - return tf.constant(1, dtype=dtype) - - def test_dtype_inferred_from_input(self): - # Test with Tensor input - layer = IdentityLayer() - self.assertIsNone(layer.dtype) - layer(self._const("float64")) - self.assertEqual(layer.dtype, "float64") - - # Test with Numpy input - layer = IdentityLayer() - self.assertIsNone(layer.dtype) - layer(np.array(1.0, dtype="float64")) - self.assertEqual(layer.dtype, "float64") - - # Test with integer input - layer = IdentityLayer() - self.assertIsNone(layer.dtype) - layer(self._const("int32")) - self.assertEqual(layer.dtype, "int32") - - # Test layer dtype doesn't change when passed a new dtype - layer = IdentityLayer() - self.assertIsNone(layer.dtype) - layer(self._const("float64")) - self.assertEqual(layer.dtype, "float64") - layer(self._const("float16")) - self.assertEqual(layer.dtype, "float64") - - # Test layer dtype inferred from first input - layer = IdentityLayer() - layer([self._const("float32"), self._const("float64")]) - self.assertEqual(layer.dtype, "float32") - - def test_passing_dtype_to_constructor(self): - layer = IdentityLayer(dtype="float64") - layer(self._const("float32")) - self.assertEqual(layer.dtype, "float64") - - layer = IdentityLayer(dtype="int32") - layer(self._const("float32")) - self.assertEqual(layer.dtype, "int32") - - layer = IdentityLayer(dtype=tf.float64) - layer(self._const("float32")) - self.assertEqual(layer.dtype, "float64") - - def test_inputs_not_casted(self): - layer = IdentityLayer(dtype="float32") - self.assertEqual(layer(self._const("float64")).dtype, "float64") - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/legacy_tf_layers/convolutional.py b/keras/legacy_tf_layers/convolutional.py deleted file mode 100644 index 735553e45a4..00000000000 --- a/keras/legacy_tf_layers/convolutional.py +++ /dev/null @@ -1,2056 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -"""Contains the convolutional layer classes and their functional aliases.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import warnings - -import tensorflow.compat.v2 as tf - -from keras import layers as keras_layers -from keras.legacy_tf_layers import base - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export(v1=["keras.__internal__.legacy.layers.Conv1D"]) -class Conv1D(keras_layers.Conv1D, base.Layer): - """1D convolution layer (e.g. temporal convolution). - - This layer creates a convolution kernel that is convolved - (actually cross-correlated) with the layer input to produce a tensor of - outputs. If `use_bias` is True (and a `bias_initializer` is provided), - a bias vector is created and added to the outputs. Finally, if - `activation` is not `None`, it is applied to the outputs as well. - - Args: - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: An integer or tuple/list of a single integer, specifying the - length of the 1D convolution window. - strides: An integer or tuple/list of a single integer, - specifying the stride length of the convolution. - Specifying any stride value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, length, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, length)`. - dilation_rate: An integer or tuple/list of a single integer, specifying - the dilation rate to use for dilated convolution. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any `strides` value != 1. - activation: Activation function. Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: An initializer for the convolution kernel. - bias_initializer: An initializer for the bias vector. If None, the default - initializer will be used. - kernel_regularizer: Optional regularizer for the convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - kernel_constraint: Optional projection function to be applied to the - kernel after being updated by an `Optimizer` (e.g. used to implement - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is `tf.keras.layers.Conv1D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - conv = tf.compat.v1.layers.Conv1D(filters=3, kernel_size=3) - ``` - - After: - - ```python - conv = tf.keras.layers.Conv1D(filters=3, kernels_size=3) - ``` - @end_compatibility - """ - - def __init__( - self, - filters, - kernel_size, - strides=1, - padding="valid", - data_format="channels_last", - dilation_rate=1, - activation=None, - use_bias=True, - kernel_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - **kwargs - ): - super().__init__( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.conv1d"]) -def conv1d( - inputs, - filters, - kernel_size, - strides=1, - padding="valid", - data_format="channels_last", - dilation_rate=1, - activation=None, - use_bias=True, - kernel_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - reuse=None, -): - """Functional interface for 1D convolution (e.g. temporal convolution). - - This layer creates a convolution kernel that is convolved - (actually cross-correlated) with the layer input to produce a tensor of - outputs. If `use_bias` is True (and a `bias_initializer` is provided), - a bias vector is created and added to the outputs. Finally, if - `activation` is not `None`, it is applied to the outputs as well. - - Args: - inputs: Tensor input. - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: An integer or tuple/list of a single integer, specifying the - length of the 1D convolution window. - strides: An integer or tuple/list of a single integer, - specifying the stride length of the convolution. - Specifying any stride value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, length, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, length)`. - dilation_rate: An integer or tuple/list of a single integer, specifying - the dilation rate to use for dilated convolution. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any `strides` value != 1. - activation: Activation function. Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: An initializer for the convolution kernel. - bias_initializer: An initializer for the bias vector. If None, the default - initializer will be used. - kernel_regularizer: Optional regularizer for the convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - kernel_constraint: Optional projection function to be applied to the - kernel after being updated by an `Optimizer` (e.g. used to implement - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - reuse: Boolean, whether to reuse the weights of a previous layer - by the same name. - - Returns: - Output tensor. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is `tf.keras.layers.Conv1D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.conv1d(x, filters=3, kernel_size=3) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.Conv1D(filters=3, kernels_size=3)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.conv1d` is deprecated and " - "will be removed in a future version. " - "Please Use `tf.keras.layers.Conv1D` instead.", - stacklevel=2, - ) - layer = Conv1D( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - _reuse=reuse, - _scope=name, - ) - return layer(inputs) - - -@keras_export(v1=["keras.__internal__.legacy.layers.Conv2D"]) -class Conv2D(keras_layers.Conv2D, base.Layer): - """2D convolution layer (e.g. spatial convolution over images). - - This layer creates a convolution kernel that is convolved - (actually cross-correlated) with the layer input to produce a tensor of - outputs. If `use_bias` is True (and a `bias_initializer` is provided), - a bias vector is created and added to the outputs. Finally, if - `activation` is not `None`, it is applied to the outputs as well. - - Args: - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: An integer or tuple/list of 2 integers, specifying the - height and width of the 2D convolution window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 2 integers, - specifying the strides of the convolution along the height and width. - Can be a single integer to specify the same value for - all spatial dimensions. - Specifying any stride value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, height, width)`. - - dilation_rate: An integer or tuple/list of 2 integers, specifying - the dilation rate to use for dilated convolution. - Can be a single integer to specify the same value for - all spatial dimensions. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any stride value != 1. - activation: Activation function. Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: An initializer for the convolution kernel. - bias_initializer: An initializer for the bias vector. If None, the default - initializer will be used. - kernel_regularizer: Optional regularizer for the convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - kernel_constraint: Optional projection function to be applied to the - kernel after being updated by an `Optimizer` (e.g. used to implement - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is `tf.keras.layers.Conv2D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - conv = tf.compat.v1.layers.Conv2D(filters=3, kernel_size=3) - ``` - - After: - - ```python - conv = tf.keras.layers.Conv2D(filters=3, kernels_size=3) - ``` - @end_compatibility - """ - - def __init__( - self, - filters, - kernel_size, - strides=(1, 1), - padding="valid", - data_format="channels_last", - dilation_rate=(1, 1), - activation=None, - use_bias=True, - kernel_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - **kwargs - ): - super().__init__( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.conv2d"]) -def conv2d( - inputs, - filters, - kernel_size, - strides=(1, 1), - padding="valid", - data_format="channels_last", - dilation_rate=(1, 1), - activation=None, - use_bias=True, - kernel_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - reuse=None, -): - """Functional interface for the 2D convolution layer. - - This layer creates a convolution kernel that is convolved - (actually cross-correlated) with the layer input to produce a tensor of - outputs. If `use_bias` is True (and a `bias_initializer` is provided), - a bias vector is created and added to the outputs. Finally, if - `activation` is not `None`, it is applied to the outputs as well. - - Args: - inputs: Tensor input. - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: An integer or tuple/list of 2 integers, specifying the - height and width of the 2D convolution window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 2 integers, - specifying the strides of the convolution along the height and width. - Can be a single integer to specify the same value for - all spatial dimensions. - Specifying any stride value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, height, width)`. - - dilation_rate: An integer or tuple/list of 2 integers, specifying - the dilation rate to use for dilated convolution. - Can be a single integer to specify the same value for - all spatial dimensions. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any stride value != 1. - activation: Activation function. Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: An initializer for the convolution kernel. - bias_initializer: An initializer for the bias vector. If None, the default - initializer will be used. - kernel_regularizer: Optional regularizer for the convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - kernel_constraint: Optional projection function to be applied to the - kernel after being updated by an `Optimizer` (e.g. used to implement - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - reuse: Boolean, whether to reuse the weights of a previous layer - by the same name. - - Returns: - Output tensor. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is `tf.keras.layers.Conv2D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.conv2d(x, filters=3, kernel_size=3) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.Conv2D(filters=3, kernels_size=3)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.conv2d` is deprecated and " - "will be removed in a future version. " - "Please Use `tf.keras.layers.Conv2D` instead.", - stacklevel=2, - ) - layer = Conv2D( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - _reuse=reuse, - _scope=name, - ) - return layer(inputs) - - -@keras_export(v1=["keras.__internal__.legacy.layers.Conv3D"]) -class Conv3D(keras_layers.Conv3D, base.Layer): - """3D convolution layer (e.g. spatial convolution over volumes). - - This layer creates a convolution kernel that is convolved - (actually cross-correlated) with the layer input to produce a tensor of - outputs. If `use_bias` is True (and a `bias_initializer` is provided), - a bias vector is created and added to the outputs. Finally, if - `activation` is not `None`, it is applied to the outputs as well. - - Args: - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: An integer or tuple/list of 3 integers, specifying the - depth, height and width of the 3D convolution window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 3 integers, - specifying the strides of the convolution along the depth, - height and width. - Can be a single integer to specify the same value for - all spatial dimensions. - Specifying any stride value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, depth, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch, channels, depth, height, width)`. - dilation_rate: An integer or tuple/list of 3 integers, specifying - the dilation rate to use for dilated convolution. - Can be a single integer to specify the same value for - all spatial dimensions. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any stride value != 1. - activation: Activation function. Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: An initializer for the convolution kernel. - bias_initializer: An initializer for the bias vector. If None, the default - initializer will be used. - kernel_regularizer: Optional regularizer for the convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - kernel_constraint: Optional projection function to be applied to the - kernel after being updated by an `Optimizer` (e.g. used to implement - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is `tf.keras.layers.Conv3D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - conv = tf.compat.v1.layers.Conv3D(filters=3, kernel_size=3) - ``` - - After: - - ```python - conv = tf.keras.layers.Conv3D(filters=3, kernels_size=3) - ``` - @end_compatibility - """ - - def __init__( - self, - filters, - kernel_size, - strides=(1, 1, 1), - padding="valid", - data_format="channels_last", - dilation_rate=(1, 1, 1), - activation=None, - use_bias=True, - kernel_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - **kwargs - ): - super().__init__( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.conv3d"]) -def conv3d( - inputs, - filters, - kernel_size, - strides=(1, 1, 1), - padding="valid", - data_format="channels_last", - dilation_rate=(1, 1, 1), - activation=None, - use_bias=True, - kernel_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - reuse=None, -): - """Functional interface for the 3D convolution layer. - - This layer creates a convolution kernel that is convolved - (actually cross-correlated) with the layer input to produce a tensor of - outputs. If `use_bias` is True (and a `bias_initializer` is provided), - a bias vector is created and added to the outputs. Finally, if - `activation` is not `None`, it is applied to the outputs as well. - - Args: - inputs: Tensor input. - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: An integer or tuple/list of 3 integers, specifying the - depth, height and width of the 3D convolution window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 3 integers, - specifying the strides of the convolution along the depth, - height and width. - Can be a single integer to specify the same value for - all spatial dimensions. - Specifying any stride value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, depth, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch, channels, depth, height, width)`. - dilation_rate: An integer or tuple/list of 3 integers, specifying - the dilation rate to use for dilated convolution. - Can be a single integer to specify the same value for - all spatial dimensions. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any stride value != 1. - activation: Activation function. Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: An initializer for the convolution kernel. - bias_initializer: An initializer for the bias vector. If None, the default - initializer will be used. - kernel_regularizer: Optional regularizer for the convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - kernel_constraint: Optional projection function to be applied to the - kernel after being updated by an `Optimizer` (e.g. used to implement - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - reuse: Boolean, whether to reuse the weights of a previous layer - by the same name. - - Returns: - Output tensor. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is `tf.keras.layers.Conv3D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.conv3d(x, filters=3, kernel_size=3) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.Conv3D(filters=3, kernels_size=3)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.conv3d` is deprecated and " - "will be removed in a future version. " - "Please Use `tf.keras.layers.Conv3D` instead.", - stacklevel=2, - ) - layer = Conv3D( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - activation=activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - _reuse=reuse, - _scope=name, - ) - return layer(inputs) - - -@keras_export(v1=["keras.__internal__.legacy.layers.SeparableConv1D"]) -class SeparableConv1D(keras_layers.SeparableConv1D, base.Layer): - """Depthwise separable 1D convolution. - - This layer performs a depthwise convolution that acts separately on - channels, followed by a pointwise convolution that mixes channels. - If `use_bias` is True and a bias initializer is provided, - it adds a bias vector to the output. - It then optionally applies an activation function to produce the final - output. - - Args: - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: A single integer specifying the spatial - dimensions of the filters. - strides: A single integer specifying the strides - of the convolution. - Specifying any `stride` value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, length, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, length)`. - dilation_rate: A single integer, specifying - the dilation rate to use for dilated convolution. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any stride value != 1. - depth_multiplier: The number of depthwise convolution output channels for - each input channel. The total number of depthwise convolution output - channels will be equal to `num_filters_in * depth_multiplier`. - activation: Activation function. Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - depthwise_initializer: An initializer for the depthwise convolution - kernel. - pointwise_initializer: An initializer for the pointwise convolution - kernel. - bias_initializer: An initializer for the bias vector. If None, the default - initializer will be used. - depthwise_regularizer: Optional regularizer for the depthwise - convolution kernel. - pointwise_regularizer: Optional regularizer for the pointwise - convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - depthwise_constraint: Optional projection function to be applied to the - depthwise kernel after being updated by an `Optimizer` (e.g. used for - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - pointwise_constraint: Optional projection function to be applied to the - pointwise kernel after being updated by an `Optimizer`. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.SeparableConv1D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - conv = tf.compat.v1.layers.SeparableConv1D(filters=3, kernel_size=3) - ``` - - After: - - ```python - conv = tf.keras.layers.SeparableConv1D(filters=3, kernels_size=3) - ``` - @end_compatibility - """ - - def __init__( - self, - filters, - kernel_size, - strides=1, - padding="valid", - data_format="channels_last", - dilation_rate=1, - depth_multiplier=1, - activation=None, - use_bias=True, - depthwise_initializer=None, - pointwise_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - depthwise_regularizer=None, - pointwise_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - depthwise_constraint=None, - pointwise_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - **kwargs - ): - super().__init__( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - depth_multiplier=depth_multiplier, - activation=activation, - use_bias=use_bias, - depthwise_initializer=depthwise_initializer, - pointwise_initializer=pointwise_initializer, - bias_initializer=bias_initializer, - depthwise_regularizer=depthwise_regularizer, - pointwise_regularizer=pointwise_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - depthwise_constraint=depthwise_constraint, - pointwise_constraint=pointwise_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.SeparableConv2D"]) -class SeparableConv2D(keras_layers.SeparableConv2D, base.Layer): - """Depthwise separable 2D convolution. - - This layer performs a depthwise convolution that acts separately on - channels, followed by a pointwise convolution that mixes channels. - If `use_bias` is True and a bias initializer is provided, - it adds a bias vector to the output. It then optionally applies an - activation function to produce the final output. - - Args: - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: A tuple or list of 2 integers specifying the spatial - dimensions of the filters. Can be a single integer to specify the same - value for all spatial dimensions. - strides: A tuple or list of 2 positive integers specifying the strides - of the convolution. Can be a single integer to specify the same value - for all spatial dimensions. - Specifying any `stride` value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, height, width)`. - - dilation_rate: An integer or tuple/list of 2 integers, specifying - the dilation rate to use for dilated convolution. - Can be a single integer to specify the same value for - all spatial dimensions. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any stride value != 1. - depth_multiplier: The number of depthwise convolution output channels for - each input channel. The total number of depthwise convolution output - channels will be equal to `num_filters_in * depth_multiplier`. - activation: Activation function. Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - depthwise_initializer: An initializer for the depthwise convolution - kernel. - pointwise_initializer: An initializer for the pointwise convolution - kernel. - bias_initializer: An initializer for the bias vector. If None, the default - initializer will be used. - depthwise_regularizer: Optional regularizer for the depthwise - convolution kernel. - pointwise_regularizer: Optional regularizer for the pointwise - convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - depthwise_constraint: Optional projection function to be applied to the - depthwise kernel after being updated by an `Optimizer` (e.g. used for - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - pointwise_constraint: Optional projection function to be applied to the - pointwise kernel after being updated by an `Optimizer`. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.SeparableConv2D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - conv = tf.compat.v1.layers.SeparableConv2D(filters=3, kernel_size=3) - ``` - - After: - - ```python - conv = tf.keras.layers.SeparableConv2D(filters=3, kernels_size=3) - ``` - @end_compatibility - """ - - def __init__( - self, - filters, - kernel_size, - strides=(1, 1), - padding="valid", - data_format="channels_last", - dilation_rate=(1, 1), - depth_multiplier=1, - activation=None, - use_bias=True, - depthwise_initializer=None, - pointwise_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - depthwise_regularizer=None, - pointwise_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - depthwise_constraint=None, - pointwise_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - **kwargs - ): - super().__init__( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - depth_multiplier=depth_multiplier, - activation=activation, - use_bias=use_bias, - depthwise_initializer=depthwise_initializer, - pointwise_initializer=pointwise_initializer, - bias_initializer=bias_initializer, - depthwise_regularizer=depthwise_regularizer, - pointwise_regularizer=pointwise_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - depthwise_constraint=depthwise_constraint, - pointwise_constraint=pointwise_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.separable_conv1d"]) -def separable_conv1d( - inputs, - filters, - kernel_size, - strides=1, - padding="valid", - data_format="channels_last", - dilation_rate=1, - depth_multiplier=1, - activation=None, - use_bias=True, - depthwise_initializer=None, - pointwise_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - depthwise_regularizer=None, - pointwise_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - depthwise_constraint=None, - pointwise_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - reuse=None, -): - """Functional interface for the depthwise separable 1D convolution layer. - - This layer performs a depthwise convolution that acts separately on - channels, followed by a pointwise convolution that mixes channels. - If `use_bias` is True and a bias initializer is provided, - it adds a bias vector to the output. It then optionally applies an - activation function to produce the final output. - - Args: - inputs: Input tensor. - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: A single integer specifying the spatial - dimensions of the filters. - strides: A single integer specifying the strides - of the convolution. - Specifying any `stride` value != 1 is incompatible with specifying - any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, length, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, length)`. - dilation_rate: A single integer, specifying - the dilation rate to use for dilated convolution. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any stride value != 1. - depth_multiplier: The number of depthwise convolution output channels for - each input channel. The total number of depthwise convolution output - channels will be equal to `num_filters_in * depth_multiplier`. - activation: Activation function. Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - depthwise_initializer: An initializer for the depthwise convolution - kernel. - pointwise_initializer: An initializer for the pointwise convolution - kernel. - bias_initializer: An initializer for the bias vector. If None, the default - initializer will be used. - depthwise_regularizer: Optional regularizer for the depthwise - convolution kernel. - pointwise_regularizer: Optional regularizer for the pointwise - convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - depthwise_constraint: Optional projection function to be applied to the - depthwise kernel after being updated by an `Optimizer` (e.g. used for - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - pointwise_constraint: Optional projection function to be applied to the - pointwise kernel after being updated by an `Optimizer`. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - reuse: Boolean, whether to reuse the weights of a previous layer - by the same name. - - Returns: - Output tensor. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.SeparableConv1D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.separable_conv1d(x, filters=3, kernel_size=3) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.SeparableConv1D(filters=3, kernels_size=3)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.separable_conv1d` is deprecated and " - "will be removed in a future version. " - "Please Use `tf.keras.layers.SeparableConv1D` instead.", - stacklevel=2, - ) - layer = SeparableConv1D( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - depth_multiplier=depth_multiplier, - activation=activation, - use_bias=use_bias, - depthwise_initializer=depthwise_initializer, - pointwise_initializer=pointwise_initializer, - bias_initializer=bias_initializer, - depthwise_regularizer=depthwise_regularizer, - pointwise_regularizer=pointwise_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - depthwise_constraint=depthwise_constraint, - pointwise_constraint=pointwise_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - _reuse=reuse, - _scope=name, - ) - return layer(inputs) - - -@keras_export(v1=["keras.__internal__.legacy.layers.separable_conv2d"]) -def separable_conv2d( - inputs, - filters, - kernel_size, - strides=(1, 1), - padding="valid", - data_format="channels_last", - dilation_rate=(1, 1), - depth_multiplier=1, - activation=None, - use_bias=True, - depthwise_initializer=None, - pointwise_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - depthwise_regularizer=None, - pointwise_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - depthwise_constraint=None, - pointwise_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - reuse=None, -): - """Functional interface for the depthwise separable 2D convolution layer. - - This layer performs a depthwise convolution that acts separately on - channels, followed by a pointwise convolution that mixes channels. - If `use_bias` is True and a bias initializer is provided, - it adds a bias vector to the output. It then optionally applies an - activation function to produce the final output. - - Args: - inputs: Input tensor. - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: A tuple or list of 2 integers specifying the spatial - dimensions of the filters. Can be a single integer to specify the same - value for all spatial dimensions. - strides: A tuple or list of 2 positive integers specifying the strides - of the convolution. Can be a single integer to specify the same value - for all spatial dimensions. Specifying any `stride` value != 1 is - incompatible with specifying any `dilation_rate` value != 1. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, height, width)`. - - dilation_rate: An integer or tuple/list of 2 integers, specifying - the dilation rate to use for dilated convolution. - Can be a single integer to specify the same value for - all spatial dimensions. - Currently, specifying any `dilation_rate` value != 1 is - incompatible with specifying any stride value != 1. - depth_multiplier: The number of depthwise convolution output channels for - each input channel. The total number of depthwise convolution output - channels will be equal to `num_filters_in * depth_multiplier`. - activation: Activation function. Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - depthwise_initializer: An initializer for the depthwise convolution - kernel. - pointwise_initializer: An initializer for the pointwise convolution - kernel. - bias_initializer: An initializer for the bias vector. If None, the default - initializer will be used. - depthwise_regularizer: Optional regularizer for the depthwise - convolution kernel. - pointwise_regularizer: Optional regularizer for the pointwise - convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - depthwise_constraint: Optional projection function to be applied to the - depthwise kernel after being updated by an `Optimizer` (e.g. used for - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - pointwise_constraint: Optional projection function to be applied to the - pointwise kernel after being updated by an `Optimizer`. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - reuse: Boolean, whether to reuse the weights of a previous layer - by the same name. - - Returns: - Output tensor. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.SeparableConv2D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.separable_conv2d(x, filters=3, kernel_size=3) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.SeparableConv2D(filters=3, kernels_size=3)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.separable_conv2d` is deprecated and " - "will be removed in a future version. " - "Please Use `tf.keras.layers.SeparableConv2D` instead.", - stacklevel=2, - ) - layer = SeparableConv2D( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - dilation_rate=dilation_rate, - depth_multiplier=depth_multiplier, - activation=activation, - use_bias=use_bias, - depthwise_initializer=depthwise_initializer, - pointwise_initializer=pointwise_initializer, - bias_initializer=bias_initializer, - depthwise_regularizer=depthwise_regularizer, - pointwise_regularizer=pointwise_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - depthwise_constraint=depthwise_constraint, - pointwise_constraint=pointwise_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - _reuse=reuse, - _scope=name, - ) - return layer(inputs) - - -@keras_export(v1=["keras.__internal__.legacy.layers.Conv2DTranspose"]) -class Conv2DTranspose(keras_layers.Conv2DTranspose, base.Layer): - """Transposed 2D convolution layer (sometimes called 2D Deconvolution). - - The need for transposed convolutions generally arises - from the desire to use a transformation going in the opposite direction - of a normal convolution, i.e., from something that has the shape of the - output of some convolution to something that has the shape of its input - while maintaining a connectivity pattern that is compatible with - said convolution. - - Args: - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: A tuple or list of 2 positive integers specifying the spatial - dimensions of the filters. Can be a single integer to specify the same - value for all spatial dimensions. - strides: A tuple or list of 2 positive integers specifying the strides - of the convolution. Can be a single integer to specify the same value - for all spatial dimensions. - padding: one of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, height, width)`. - activation: Activation function. Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: An initializer for the convolution kernel. - bias_initializer: An initializer for the bias vector. If None, the default - initializer will be used. - kernel_regularizer: Optional regularizer for the convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - kernel_constraint: Optional projection function to be applied to the - kernel after being updated by an `Optimizer` (e.g. used to implement - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.Conv2DTranspose`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - conv = tf.compat.v1.layers.Conv2DTranspose(filters=3, kernel_size=3) - ``` - - After: - - ```python - conv = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3) - ``` - @end_compatibility - """ - - def __init__( - self, - filters, - kernel_size, - strides=(1, 1), - padding="valid", - data_format="channels_last", - activation=None, - use_bias=True, - kernel_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - **kwargs - ): - super().__init__( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - activation=activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.conv2d_transpose"]) -def conv2d_transpose( - inputs, - filters, - kernel_size, - strides=(1, 1), - padding="valid", - data_format="channels_last", - activation=None, - use_bias=True, - kernel_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - reuse=None, -): - """Functional interface for transposed 2D convolution layer. - - The need for transposed convolutions generally arises - from the desire to use a transformation going in the opposite direction - of a normal convolution, i.e., from something that has the shape of the - output of some convolution to something that has the shape of its input - while maintaining a connectivity pattern that is compatible with - said convolution. - - Args: - inputs: Input tensor. - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: A tuple or list of 2 positive integers specifying the spatial - dimensions of the filters. Can be a single integer to specify the same - value for all spatial dimensions. - strides: A tuple or list of 2 positive integers specifying the strides - of the convolution. Can be a single integer to specify the same value - for all spatial dimensions. - padding: one of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, height, width)`. - activation: Activation function. Set it to `None` to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: An initializer for the convolution kernel. - bias_initializer: An initializer for the bias vector. If `None`, the - default initializer will be used. - kernel_regularizer: Optional regularizer for the convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - kernel_constraint: Optional projection function to be applied to the - kernel after being updated by an `Optimizer` (e.g. used to implement - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - reuse: Boolean, whether to reuse the weights of a previous layer - by the same name. - - Returns: - Output tensor. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.Conv2DTranspose`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.conv2d_transpose(x, filters=3, kernel_size=3) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.conv2d_transpose` is deprecated and " - "will be removed in a future version. " - "Please Use `tf.keras.layers.Conv2DTranspose` instead.", - stacklevel=2, - ) - layer = Conv2DTranspose( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - activation=activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - _reuse=reuse, - _scope=name, - ) - return layer(inputs) - - -@keras_export(v1=["keras.__internal__.legacy.layers.Conv3DTranspose"]) -class Conv3DTranspose(keras_layers.Conv3DTranspose, base.Layer): - """Transposed 3D convolution layer (sometimes called 3D Deconvolution). - - Args: - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: An integer or tuple/list of 3 integers, specifying the - depth, height and width of the 3D convolution window. - Can be a single integer to specify the same value for all spatial - dimensions. - strides: An integer or tuple/list of 3 integers, specifying the strides - of the convolution along the depth, height and width. - Can be a single integer to specify the same value for all spatial - dimensions. - padding: One of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, depth, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch, channels, depth, height, width)`. - activation: Activation function. Set it to `None` to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: An initializer for the convolution kernel. - bias_initializer: An initializer for the bias vector. If `None`, the - default initializer will be used. - kernel_regularizer: Optional regularizer for the convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - kernel_constraint: Optional projection function to be applied to the - kernel after being updated by an `Optimizer` (e.g. used to implement - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.Conv3DTranspose`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - conv = tf.compat.v1.layers.Conv3DTranspose(filters=3, kernel_size=3) - ``` - - After: - - ```python - conv = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3) - ``` - @end_compatibility - """ - - def __init__( - self, - filters, - kernel_size, - strides=(1, 1, 1), - padding="valid", - data_format="channels_last", - activation=None, - use_bias=True, - kernel_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - **kwargs - ): - super().__init__( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - activation=activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.conv3d_transpose"]) -def conv3d_transpose( - inputs, - filters, - kernel_size, - strides=(1, 1, 1), - padding="valid", - data_format="channels_last", - activation=None, - use_bias=True, - kernel_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - reuse=None, -): - """Functional interface for transposed 3D convolution layer. - - Args: - inputs: Input tensor. - filters: Integer, the dimensionality of the output space (i.e. the number - of filters in the convolution). - kernel_size: A tuple or list of 3 positive integers specifying the spatial - dimensions of the filters. Can be a single integer to specify the same - value for all spatial dimensions. - strides: A tuple or list of 3 positive integers specifying the strides - of the convolution. Can be a single integer to specify the same value - for all spatial dimensions. - padding: one of `"valid"` or `"same"` (case-insensitive). - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, depth, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch, channels, depth, height, width)`. - activation: Activation function. Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: An initializer for the convolution kernel. - bias_initializer: An initializer for the bias vector. If None, the default - initializer will be used. - kernel_regularizer: Optional regularizer for the convolution kernel. - bias_regularizer: Optional regularizer for the bias vector. - activity_regularizer: Optional regularizer function for the output. - kernel_constraint: Optional projection function to be applied to the - kernel after being updated by an `Optimizer` (e.g. used to implement - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - bias_constraint: Optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: A string, the name of the layer. - reuse: Boolean, whether to reuse the weights of a previous layer - by the same name. - - Returns: - Output tensor. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.Conv3DTranspose`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.conv3d_transpose(x, filters=3, kernel_size=3) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.conv3d_transpose` is deprecated and " - "will be removed in a future version. " - "Please Use `tf.keras.layers.Conv3DTranspose` instead.", - stacklevel=2, - ) - layer = Conv3DTranspose( - filters=filters, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - activation=activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - _reuse=reuse, - _scope=name, - ) - return layer(inputs) - - -# Aliases - -Convolution1D = Conv1D -Convolution2D = Conv2D -Convolution3D = Conv3D -SeparableConvolution2D = SeparableConv2D -Convolution2DTranspose = Deconvolution2D = Deconv2D = Conv2DTranspose -Convolution3DTranspose = Deconvolution3D = Deconv3D = Conv3DTranspose -convolution1d = conv1d -convolution2d = conv2d -convolution3d = conv3d -separable_convolution2d = separable_conv2d -convolution2d_transpose = deconvolution2d = deconv2d = conv2d_transpose -convolution3d_transpose = deconvolution3d = deconv3d = conv3d_transpose diff --git a/keras/legacy_tf_layers/convolutional_test.py b/keras/legacy_tf_layers/convolutional_test.py deleted file mode 100644 index 296aef07d98..00000000000 --- a/keras/legacy_tf_layers/convolutional_test.py +++ /dev/null @@ -1,1390 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for tf.layers.convolutional.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.legacy_tf_layers import convolutional as conv_layers - - -class ConvTest(tf.test.TestCase): - def testInvalidDataFormat(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - with self.assertRaisesRegex(ValueError, "data_format"): - conv_layers.conv2d(images, 32, 3, data_format="invalid") - - def testInvalidStrides(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - with self.assertRaisesRegex(ValueError, "strides"): - conv_layers.conv2d(images, 32, 3, strides=(1, 2, 3)) - - with self.assertRaisesRegex(ValueError, "strides"): - conv_layers.conv2d(images, 32, 3, strides=None) - - def testInvalidKernelSize(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - with self.assertRaisesRegex(ValueError, "kernel_size"): - conv_layers.conv2d(images, 32, (1, 2, 3)) - - with self.assertRaisesRegex(ValueError, "kernel_size"): - conv_layers.conv2d(images, 32, None) - - def testCreateConv2D(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = conv_layers.Conv2D(32, [3, 3], activation=tf.nn.relu) - output = layer(images) - if not tf.executing_eagerly(): - self.assertEqual(output.op.name, "conv2d/Relu") - self.assertListEqual( - output.get_shape().as_list(), [5, height - 2, width - 2, 32] - ) - self.assertListEqual(layer.kernel.get_shape().as_list(), [3, 3, 4, 32]) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - def testConv2DFloat16(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4), dtype="float16") - output = conv_layers.conv2d(images, 32, [3, 3], activation=tf.nn.relu) - self.assertListEqual( - output.get_shape().as_list(), [5, height - 2, width - 2, 32] - ) - - def testCreateConv2DIntegerKernelSize(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = conv_layers.Conv2D(32, 3) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height - 2, width - 2, 32] - ) - self.assertListEqual(layer.kernel.get_shape().as_list(), [3, 3, 4, 32]) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - def testCreateConv2DChannelsFirst(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, 4, height, width)) - layer = conv_layers.Conv2D(32, [3, 3], data_format="channels_first") - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, 32, height - 2, width - 2] - ) - self.assertListEqual( - layer.kernel.get_shape().as_list(), [3, 3, 4, 32] - ) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - def testUnknownInputChannels(self): - with tf.Graph().as_default(): - images = tf.compat.v1.placeholder(tf.float32, (5, 7, 9, None)) - layer = conv_layers.Conv2D(32, [3, 3], activation=tf.nn.relu) - with self.assertRaisesRegex( - ValueError, - "The channel dimension of the inputs " - "should be defined. The input_shape received is", - ): - _ = layer(images) - - images = tf.compat.v1.placeholder(tf.float32, (5, None, 7, 9)) - layer = conv_layers.Conv2D(32, [3, 3], data_format="channels_first") - with self.assertRaisesRegex( - ValueError, - "The channel dimension of the inputs " - "should be defined. The input_shape received is", - ): - _ = layer(images) - - def testConv2DPaddingSame(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 32), seed=1) - layer = conv_layers.Conv2D(64, images.get_shape()[1:3], padding="same") - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height, width, 64] - ) - - def testCreateConvWithStrides(self): - height, width = 6, 8 - # Test strides tuple - images = tf.random.uniform((5, height, width, 3), seed=1) - layer = conv_layers.Conv2D(32, [3, 3], strides=(2, 2), padding="same") - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height / 2, width / 2, 32] - ) - - # Test strides integer - layer = conv_layers.Conv2D(32, [3, 3], strides=2, padding="same") - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height / 2, width / 2, 32] - ) - - # Test unequal strides - layer = conv_layers.Conv2D(32, [3, 3], strides=(2, 1), padding="same") - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height / 2, width, 32] - ) - - def testCreateConv1D(self): - width = 7 - data = tf.random.uniform((5, width, 4)) - layer = conv_layers.Conv1D(32, 3, activation=tf.nn.relu) - output = layer(data) - if not tf.executing_eagerly(): - self.assertEqual(output.op.name, "conv1d/Relu") - self.assertListEqual(output.get_shape().as_list(), [5, width - 2, 32]) - self.assertListEqual(layer.kernel.get_shape().as_list(), [3, 4, 32]) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - def testConv1DFloat16(self): - width = 7 - data = tf.random.uniform((5, width, 4), dtype="float16") - output = conv_layers.conv1d(data, 32, 3, activation=tf.nn.relu) - self.assertListEqual(output.get_shape().as_list(), [5, width - 2, 32]) - - def testCreateConv1DChannelsFirst(self): - with tf.Graph().as_default(): - width = 7 - data = tf.random.uniform((5, 4, width)) - layer = conv_layers.Conv1D(32, 3, data_format="channels_first") - output = layer(data) - self.assertListEqual( - output.get_shape().as_list(), [5, 32, width - 2] - ) - self.assertListEqual(layer.kernel.get_shape().as_list(), [3, 4, 32]) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - def testUnknownInputChannelsConv1D(self): - with tf.Graph().as_default(): - data = tf.compat.v1.placeholder(tf.float32, (5, 4, None)) - layer = conv_layers.Conv1D(32, 3, activation=tf.nn.relu) - with self.assertRaisesRegex( - ValueError, - "The channel dimension of the inputs " - "should be defined. The input_shape received is", - ): - _ = layer(data) - - data = tf.compat.v1.placeholder(tf.float32, (5, None, 4)) - layer = conv_layers.Conv1D(32, 3, data_format="channels_first") - with self.assertRaisesRegex( - ValueError, - "The channel dimension of the inputs " - "should be defined. The input_shape received is", - ): - _ = layer(data) - - def testCreateConv3D(self): - depth, height, width = 6, 7, 9 - volumes = tf.random.uniform((5, depth, height, width, 4)) - layer = conv_layers.Conv3D(32, [3, 3, 3], activation=tf.nn.relu) - output = layer(volumes) - if not tf.executing_eagerly(): - self.assertEqual(output.op.name, "conv3d/Relu") - self.assertListEqual( - output.get_shape().as_list(), - [5, depth - 2, height - 2, width - 2, 32], - ) - self.assertListEqual( - layer.kernel.get_shape().as_list(), [3, 3, 3, 4, 32] - ) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - def testUnknownInputChannelsConv3D(self): - with tf.Graph().as_default(): - volumes = tf.compat.v1.placeholder(tf.float32, (5, 6, 7, 9, None)) - layer = conv_layers.Conv3D(32, [3, 3, 3], activation=tf.nn.relu) - with self.assertRaisesRegex( - ValueError, - "The channel dimension of the inputs " - "should be defined. The input_shape received is", - ): - _ = layer(volumes) - - def testConv2DKernelRegularizer(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - reg = lambda x: 0.1 * tf.reduce_sum(x) - layer = conv_layers.Conv2D(32, [3, 3], kernel_regularizer=reg) - layer(images) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in layer.variables]) - self.assertListEqual( - self.evaluate(layer.losses), self.evaluate(loss_keys) - ) - - def testConv2DBiasRegularizer(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - reg = lambda x: 0.1 * tf.reduce_sum(x) - layer = conv_layers.Conv2D(32, [3, 3], bias_regularizer=reg) - layer(images) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in layer.variables]) - self.assertListEqual( - self.evaluate(layer.losses), self.evaluate(loss_keys) - ) - - def testConv2DNoBias(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = conv_layers.Conv2D( - 32, [3, 3], activation=tf.nn.relu, use_bias=False - ) - output = layer(images) - if not tf.executing_eagerly(): - self.assertEqual(output.op.name, "conv2d/Relu") - self.assertListEqual( - output.get_shape().as_list(), [5, height - 2, width - 2, 32] - ) - self.assertListEqual(layer.kernel.get_shape().as_list(), [3, 3, 4, 32]) - self.assertEqual(layer.bias, None) - - def testDilatedConv2D(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = conv_layers.Conv2D(32, [3, 3], dilation_rate=3) - output = layer(images) - self.assertListEqual(output.get_shape().as_list(), [5, 1, 3, 32]) - self.assertListEqual(layer.kernel.get_shape().as_list(), [3, 3, 4, 32]) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - # Test tuple dilation rate - layer = conv_layers.Conv2D(32, [3, 3], dilation_rate=(1, 3)) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height - 2, 3, 32] - ) - - def testFunctionalConv2DReuse(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - conv_layers.conv2d(images, 32, [3, 3], name="conv1") - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - conv_layers.conv2d(images, 32, [3, 3], name="conv1", reuse=True) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - - def testFunctionalConv2DReuseFromScope(self): - with tf.Graph().as_default(): - with tf.compat.v1.variable_scope("scope"): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - conv_layers.conv2d(images, 32, [3, 3], name="conv1") - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - with tf.compat.v1.variable_scope("scope", reuse=True): - conv_layers.conv2d(images, 32, [3, 3], name="conv1") - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - - def testFunctionalConv2DInitializerFromScope(self): - with tf.Graph().as_default(), self.cached_session(): - with tf.compat.v1.variable_scope( - "scope", initializer=tf.compat.v1.ones_initializer() - ): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - conv_layers.conv2d(images, 32, [3, 3], name="conv1") - weights = tf.compat.v1.trainable_variables() - # Check the names of weights in order. - self.assertTrue("kernel" in weights[0].name) - self.assertTrue("bias" in weights[1].name) - self.evaluate(tf.compat.v1.global_variables_initializer()) - weights = self.evaluate(weights) - # Check that the kernel weights got initialized to ones (from - # scope) - self.assertAllClose(weights[0], np.ones((3, 3, 3, 32))) - # Check that the bias still got initialized to zeros. - self.assertAllClose(weights[1], np.zeros((32))) - - def testFunctionalConv2DNoReuse(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - conv_layers.conv2d(images, 32, [3, 3]) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - conv_layers.conv2d(images, 32, [3, 3]) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 4) - - def testConstraints(self): - # Conv1D - k_constraint = lambda x: x / tf.reduce_sum(x) - b_constraint = lambda x: x / tf.reduce_max(x) - conv1d = conv_layers.Conv1D( - 2, 3, kernel_constraint=k_constraint, bias_constraint=b_constraint - ) - inputs = tf.random.uniform((5, 3, 5), seed=1) - conv1d(inputs) - self.assertEqual(conv1d.kernel_constraint, k_constraint) - self.assertEqual(conv1d.bias_constraint, b_constraint) - - # Conv2D - k_constraint = lambda x: x / tf.reduce_sum(x) - b_constraint = lambda x: x / tf.reduce_max(x) - conv2d = conv_layers.Conv2D( - 2, 3, kernel_constraint=k_constraint, bias_constraint=b_constraint - ) - inputs = tf.random.uniform((5, 3, 3, 5), seed=1) - conv2d(inputs) - self.assertEqual(conv2d.kernel_constraint, k_constraint) - self.assertEqual(conv2d.bias_constraint, b_constraint) - - # Conv3D - k_constraint = lambda x: x / tf.reduce_sum(x) - b_constraint = lambda x: x / tf.reduce_max(x) - conv3d = conv_layers.Conv3D( - 2, 3, kernel_constraint=k_constraint, bias_constraint=b_constraint - ) - inputs = tf.random.uniform((5, 3, 3, 3, 5), seed=1) - conv3d(inputs) - self.assertEqual(conv3d.kernel_constraint, k_constraint) - self.assertEqual(conv3d.bias_constraint, b_constraint) - - def testConv3DChannelsFirst(self): - # Test case for GitHub issue 15655 - with tf.Graph().as_default(): - images = tf.compat.v1.placeholder( - dtype=tf.float32, shape=[None, 1, 32, 32, 32] - ) - conv_layers.conv3d(images, 32, 9, data_format="channels_first") - - -class SeparableConv1DTest(tf.test.TestCase): - def testInvalidDataFormat(self): - length = 9 - data = tf.random.uniform((5, length, 3), seed=1) - with self.assertRaisesRegex(ValueError, "data_format"): - conv_layers.separable_conv1d(data, 32, 3, data_format="invalid") - - def testInvalidStrides(self): - length = 9 - data = tf.random.uniform((5, length, 3), seed=1) - with self.assertRaisesRegex(ValueError, "strides"): - conv_layers.separable_conv1d(data, 32, 3, strides=(1, 2)) - - with self.assertRaisesRegex(ValueError, "strides"): - conv_layers.separable_conv1d(data, 32, 3, strides=None) - - def testInvalidKernelSize(self): - length = 9 - data = tf.random.uniform((5, length, 3), seed=1) - with self.assertRaisesRegex(ValueError, "kernel_size"): - conv_layers.separable_conv1d(data, 32, (1, 2)) - - with self.assertRaisesRegex(ValueError, "kernel_size"): - conv_layers.separable_conv1d(data, 32, None) - - def testCreateSeparableConv1D(self): - length = 9 - data = tf.random.uniform((5, length, 4)) - layer = conv_layers.SeparableConv1D(32, 3, activation=tf.nn.relu) - output = layer(data) - if not tf.executing_eagerly(): - self.assertEqual(output.op.name, "separable_conv1d/Relu") - self.assertEqual(output.get_shape().as_list(), [5, length - 2, 32]) - self.assertEqual( - layer.depthwise_kernel.get_shape().as_list(), [3, 4, 1] - ) - self.assertEqual( - layer.pointwise_kernel.get_shape().as_list(), [1, 4, 32] - ) - self.assertEqual(layer.bias.get_shape().as_list(), [32]) - - def testCreateSeparableConv1DDepthMultiplier(self): - length = 9 - data = tf.random.uniform((5, length, 4)) - layer = conv_layers.SeparableConv1D(32, 3, depth_multiplier=2) - output = layer(data) - self.assertEqual(output.get_shape().as_list(), [5, length - 2, 32]) - self.assertEqual( - layer.depthwise_kernel.get_shape().as_list(), [3, 4, 2] - ) - self.assertEqual( - layer.pointwise_kernel.get_shape().as_list(), [1, 8, 32] - ) - self.assertEqual(layer.bias.get_shape().as_list(), [32]) - - def testCreateSeparableConv1DChannelsFirst(self): - with tf.Graph().as_default(): - length = 9 - data = tf.random.uniform((5, 4, length)) - layer = conv_layers.SeparableConv1D( - 32, 3, data_format="channels_first" - ) - output = layer(data) - self.assertEqual(output.get_shape().as_list(), [5, 32, length - 2]) - self.assertEqual( - layer.depthwise_kernel.get_shape().as_list(), [3, 4, 1] - ) - self.assertEqual( - layer.pointwise_kernel.get_shape().as_list(), [1, 4, 32] - ) - self.assertEqual(layer.bias.get_shape().as_list(), [32]) - - def testSeparableConv1DPaddingSame(self): - length = 9 - data = tf.random.uniform((5, length, 32), seed=1) - layer = conv_layers.SeparableConv1D(64, length, padding="same") - output = layer(data) - self.assertEqual(output.get_shape().as_list(), [5, length, 64]) - - def testCreateSeparableConv1DWithStrides(self): - length = 10 - data = tf.random.uniform((5, length, 3), seed=1) - layer = conv_layers.SeparableConv1D(32, 3, strides=2, padding="same") - output = layer(data) - self.assertEqual(output.get_shape().as_list(), [5, length // 2, 32]) - - def testCreateSeparableConv1DWithStridesChannelsFirst(self): - with tf.Graph().as_default(): - data_format = "channels_first" - length = 10 - data = tf.random.uniform((5, 3, length), seed=1) - layer = conv_layers.SeparableConv1D( - 32, 3, strides=2, padding="same", data_format=data_format - ) - output = layer(data) - self.assertEqual(output.get_shape().as_list(), [5, 32, length // 2]) - - def testFunctionalConv1DReuse(self): - with tf.Graph().as_default(): - length = 10 - data = tf.random.uniform((5, length, 3), seed=1) - conv_layers.separable_conv1d(data, 32, 3, name="sepconv1") - self.assertEqual(len(tf.compat.v1.trainable_variables()), 3) - conv_layers.separable_conv1d( - data, 32, 3, name="sepconv1", reuse=True - ) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 3) - - def testFunctionalConv1DReuseFromScope(self): - with tf.Graph().as_default(): - with tf.compat.v1.variable_scope("scope"): - length = 10 - data = tf.random.uniform((5, length, 3), seed=1) - conv_layers.separable_conv1d(data, 32, 3, name="sepconv1") - self.assertEqual(len(tf.compat.v1.trainable_variables()), 3) - with tf.compat.v1.variable_scope("scope", reuse=True): - conv_layers.separable_conv1d(data, 32, 3, name="sepconv1") - self.assertEqual(len(tf.compat.v1.trainable_variables()), 3) - - def testFunctionalConv1DNoReuse(self): - with tf.Graph().as_default(): - length = 10 - data = tf.random.uniform((5, length, 3), seed=1) - conv_layers.separable_conv1d(data, 32, 3) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 3) - conv_layers.separable_conv1d(data, 32, 3) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 6) - - def testSeparableConv1DDepthwiseRegularizer(self): - with tf.Graph().as_default(): - length = 9 - data = tf.random.uniform((5, length, 4)) - reg = lambda x: 0.1 * tf.reduce_sum(x) - layer = conv_layers.SeparableConv1D( - 32, 3, depthwise_regularizer=reg - ) - layer(data) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in layer.variables]) - self.assertListEqual( - self.evaluate(layer.losses), self.evaluate(loss_keys) - ) - - def testSeparableConv1DPointwiseRegularizer(self): - with tf.Graph().as_default(): - length = 9 - data = tf.random.uniform((5, length, 4)) - reg = lambda x: 0.1 * tf.reduce_sum(x) - layer = conv_layers.SeparableConv1D( - 32, 3, pointwise_regularizer=reg - ) - layer(data) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in layer.variables]) - self.assertListEqual( - self.evaluate(layer.losses), self.evaluate(loss_keys) - ) - - def testSeparableConv1DBiasRegularizer(self): - with tf.Graph().as_default(): - length = 9 - data = tf.random.uniform((5, length, 4)) - reg = lambda x: 0.1 * tf.reduce_sum(x) - layer = conv_layers.SeparableConv1D(32, 3, bias_regularizer=reg) - layer(data) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in layer.variables]) - self.assertListEqual( - self.evaluate(layer.losses), self.evaluate(loss_keys) - ) - - def testSeparableConv1DNoBias(self): - with tf.Graph().as_default(): - length = 9 - data = tf.random.uniform((5, length, 4)) - layer = conv_layers.SeparableConv1D( - 32, 3, activation=tf.nn.relu, use_bias=False - ) - output = layer(data) - self.assertEqual(output.op.name, "separable_conv1d/Relu") - self.assertEqual(layer.bias, None) - - def testConstraints(self): - d_constraint = lambda x: x / tf.reduce_sum(x) - p_constraint = lambda x: x / tf.reduce_sum(x) - b_constraint = lambda x: x / tf.reduce_max(x) - layer = conv_layers.SeparableConv1D( - 2, - 3, - depthwise_constraint=d_constraint, - pointwise_constraint=p_constraint, - bias_constraint=b_constraint, - ) - inputs = tf.random.uniform((5, 3, 5), seed=1) - layer(inputs) - self.assertEqual(layer.depthwise_constraint, d_constraint) - self.assertEqual(layer.pointwise_constraint, p_constraint) - self.assertEqual(layer.bias_constraint, b_constraint) - - -class SeparableConv2DTest(tf.test.TestCase): - def testInvalidDataFormat(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - with self.assertRaisesRegex(ValueError, "data_format"): - conv_layers.separable_conv2d(images, 32, 3, data_format="invalid") - - def testInvalidStrides(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - with self.assertRaisesRegex(ValueError, "strides"): - conv_layers.separable_conv2d(images, 32, 3, strides=(1, 2, 3)) - - with self.assertRaisesRegex(ValueError, "strides"): - conv_layers.separable_conv2d(images, 32, 3, strides=None) - - def testInvalidKernelSize(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - with self.assertRaisesRegex(ValueError, "kernel_size"): - conv_layers.separable_conv2d(images, 32, (1, 2, 3)) - - with self.assertRaisesRegex(ValueError, "kernel_size"): - conv_layers.separable_conv2d(images, 32, None) - - def testCreateSeparableConv2D(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = conv_layers.SeparableConv2D(32, [3, 3], activation=tf.nn.relu) - output = layer(images) - if not tf.executing_eagerly(): - self.assertEqual(output.op.name, "separable_conv2d/Relu") - self.assertListEqual( - output.get_shape().as_list(), [5, height - 2, width - 2, 32] - ) - self.assertListEqual( - layer.depthwise_kernel.get_shape().as_list(), [3, 3, 4, 1] - ) - self.assertListEqual( - layer.pointwise_kernel.get_shape().as_list(), [1, 1, 4, 32] - ) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - def testCreateSeparableConv2DDepthMultiplier(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = conv_layers.SeparableConv2D(32, [3, 3], depth_multiplier=2) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height - 2, width - 2, 32] - ) - self.assertListEqual( - layer.depthwise_kernel.get_shape().as_list(), [3, 3, 4, 2] - ) - self.assertListEqual( - layer.pointwise_kernel.get_shape().as_list(), [1, 1, 8, 32] - ) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - def testCreateSeparableConv2DIntegerKernelSize(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = conv_layers.SeparableConv2D(32, 3) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height - 2, width - 2, 32] - ) - self.assertListEqual( - layer.depthwise_kernel.get_shape().as_list(), [3, 3, 4, 1] - ) - self.assertListEqual( - layer.pointwise_kernel.get_shape().as_list(), [1, 1, 4, 32] - ) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - def testCreateSeparableConv2DChannelsFirst(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, 4, height, width)) - layer = conv_layers.SeparableConv2D( - 32, [3, 3], data_format="channels_first" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, 32, height - 2, width - 2] - ) - self.assertListEqual( - layer.depthwise_kernel.get_shape().as_list(), [3, 3, 4, 1] - ) - self.assertListEqual( - layer.pointwise_kernel.get_shape().as_list(), [1, 1, 4, 32] - ) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - def testSeparableConv2DPaddingSame(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 32), seed=1) - layer = conv_layers.SeparableConv2D( - 64, images.get_shape()[1:3], padding="same" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height, width, 64] - ) - - def testCreateSeparableConvWithStrides(self): - with tf.Graph().as_default(): - height, width = 6, 8 - # Test strides tuple - images = tf.random.uniform((5, height, width, 3), seed=1) - layer = conv_layers.SeparableConv2D( - 32, [3, 3], strides=(2, 2), padding="same" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height / 2, width / 2, 32] - ) - - # Test strides integer - layer = conv_layers.SeparableConv2D( - 32, [3, 3], strides=2, padding="same" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height / 2, width / 2, 32] - ) - - # Test unequal strides - layer = conv_layers.SeparableConv2D( - 32, [3, 3], strides=(2, 1), padding="same" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height / 2, width, 32] - ) - - def testCreateSeparableConvWithStridesChannelsFirst(self): - with tf.Graph().as_default(): - data_format = "channels_first" - height, width = 6, 8 - # Test strides tuple - images = tf.random.uniform((5, 3, height, width), seed=1) - layer = conv_layers.SeparableConv2D( - 32, - [3, 3], - strides=(2, 2), - padding="same", - data_format=data_format, - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, 32, height / 2, width / 2] - ) - - # Test strides integer - layer = conv_layers.SeparableConv2D( - 32, [3, 3], strides=2, padding="same", data_format=data_format - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, 32, height / 2, width / 2] - ) - - # Test unequal strides - layer = conv_layers.SeparableConv2D( - 32, - [3, 3], - strides=(2, 1), - padding="same", - data_format=data_format, - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, 32, height / 2, width] - ) - - def testFunctionalConv2DReuse(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - conv_layers.separable_conv2d(images, 32, [3, 3], name="sepconv1") - self.assertEqual(len(tf.compat.v1.trainable_variables()), 3) - conv_layers.separable_conv2d( - images, 32, [3, 3], name="sepconv1", reuse=True - ) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 3) - - def testFunctionalConv2DReuseFromScope(self): - with tf.Graph().as_default(): - with tf.compat.v1.variable_scope("scope"): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - conv_layers.separable_conv2d( - images, 32, [3, 3], name="sepconv1" - ) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 3) - with tf.compat.v1.variable_scope("scope", reuse=True): - conv_layers.separable_conv2d( - images, 32, [3, 3], name="sepconv1" - ) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 3) - - def testFunctionalConv2DInitializerFromScope(self): - with tf.Graph().as_default(), self.cached_session(): - with tf.compat.v1.variable_scope( - "scope", initializer=tf.compat.v1.ones_initializer() - ): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - conv_layers.separable_conv2d( - images, 32, [3, 3], name="sepconv1" - ) - weights = tf.compat.v1.trainable_variables() - # Check the names of weights in order. - self.assertTrue("depthwise_kernel" in weights[0].name) - self.assertTrue("pointwise_kernel" in weights[1].name) - self.assertTrue("bias" in weights[2].name) - self.evaluate(tf.compat.v1.global_variables_initializer()) - weights = self.evaluate(weights) - # Check that the kernel weights got initialized to ones (from - # scope) - self.assertAllClose(weights[0], np.ones((3, 3, 3, 1))) - self.assertAllClose(weights[1], np.ones((1, 1, 3, 32))) - # Check that the bias still got initialized to zeros. - self.assertAllClose(weights[2], np.zeros((32))) - - def testFunctionalConv2DNoReuse(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - conv_layers.separable_conv2d(images, 32, [3, 3]) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 3) - conv_layers.separable_conv2d(images, 32, [3, 3]) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 6) - - def testSeparableConv2DDepthwiseRegularizer(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - reg = lambda x: 0.1 * tf.reduce_sum(x) - layer = conv_layers.SeparableConv2D( - 32, [3, 3], depthwise_regularizer=reg - ) - layer(images) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in layer.variables]) - self.assertListEqual( - self.evaluate(layer.losses), self.evaluate(loss_keys) - ) - - def testSeparableConv2DPointwiseRegularizer(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - reg = lambda x: 0.1 * tf.reduce_sum(x) - layer = conv_layers.SeparableConv2D( - 32, [3, 3], pointwise_regularizer=reg - ) - layer(images) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in layer.variables]) - self.assertListEqual( - self.evaluate(layer.losses), self.evaluate(loss_keys) - ) - - def testSeparableConv2DBiasRegularizer(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - reg = lambda x: 0.1 * tf.reduce_sum(x) - layer = conv_layers.SeparableConv2D( - 32, [3, 3], bias_regularizer=reg - ) - layer(images) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in layer.variables]) - self.assertListEqual( - self.evaluate(layer.losses), self.evaluate(loss_keys) - ) - - def testSeparableConv2DNoBias(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = conv_layers.SeparableConv2D( - 32, [3, 3], activation=tf.nn.relu, use_bias=False - ) - output = layer(images) - self.assertEqual(output.op.name, "separable_conv2d/Relu") - self.assertListEqual( - output.get_shape().as_list(), [5, height - 2, width - 2, 32] - ) - self.assertListEqual( - layer.depthwise_kernel.get_shape().as_list(), [3, 3, 4, 1] - ) - self.assertListEqual( - layer.pointwise_kernel.get_shape().as_list(), [1, 1, 4, 32] - ) - self.assertEqual(layer.bias, None) - - def testConstraints(self): - d_constraint = lambda x: x / tf.reduce_sum(x) - p_constraint = lambda x: x / tf.reduce_sum(x) - b_constraint = lambda x: x / tf.reduce_max(x) - layer = conv_layers.SeparableConv2D( - 2, - 3, - depthwise_constraint=d_constraint, - pointwise_constraint=p_constraint, - bias_constraint=b_constraint, - ) - inputs = tf.random.uniform((5, 3, 3, 5), seed=1) - layer(inputs) - self.assertEqual(layer.depthwise_constraint, d_constraint) - self.assertEqual(layer.pointwise_constraint, p_constraint) - self.assertEqual(layer.bias_constraint, b_constraint) - - -class Conv2DTransposeTest(tf.test.TestCase): - def testInvalidDataFormat(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - with self.assertRaisesRegex(ValueError, "data_format"): - conv_layers.conv2d_transpose(images, 32, 3, data_format="invalid") - - def testInvalidStrides(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - with self.assertRaisesRegex(ValueError, "strides"): - conv_layers.conv2d_transpose(images, 32, 3, strides=(1, 2, 3)) - - with self.assertRaisesRegex(ValueError, "strides"): - conv_layers.conv2d_transpose(images, 32, 3, strides=None) - - def testInvalidKernelSize(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - with self.assertRaisesRegex(ValueError, "kernel_size"): - conv_layers.conv2d_transpose(images, 32, (1, 2, 3)) - - with self.assertRaisesRegex(ValueError, "kernel_size"): - conv_layers.conv2d_transpose(images, 32, None) - - def testCreateConv2DTranspose(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = conv_layers.Conv2DTranspose(32, [3, 3], activation=tf.nn.relu) - output = layer(images) - if not tf.executing_eagerly(): - self.assertEqual(output.op.name, "conv2d_transpose/Relu") - self.assertListEqual( - output.get_shape().as_list(), [5, height + 2, width + 2, 32] - ) - self.assertListEqual(layer.kernel.get_shape().as_list(), [3, 3, 32, 4]) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - def testConv2DTransposeFloat16(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4), dtype="float16") - output = conv_layers.conv2d_transpose( - images, 32, [3, 3], activation=tf.nn.relu - ) - self.assertListEqual( - output.get_shape().as_list(), [5, height + 2, width + 2, 32] - ) - - def testCreateConv2DTransposeIntegerKernelSize(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = conv_layers.Conv2DTranspose(32, 3) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height + 2, width + 2, 32] - ) - self.assertListEqual(layer.kernel.get_shape().as_list(), [3, 3, 32, 4]) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - def testCreateConv2DTransposeChannelsFirst(self): - height, width = 7, 9 - images = tf.random.uniform((5, 4, height, width)) - layer = conv_layers.Conv2DTranspose( - 32, [3, 3], data_format="channels_first" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, 32, height + 2, width + 2] - ) - self.assertListEqual(layer.kernel.get_shape().as_list(), [3, 3, 32, 4]) - self.assertListEqual(layer.bias.get_shape().as_list(), [32]) - - def testConv2DTransposePaddingSame(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 32), seed=1) - layer = conv_layers.Conv2DTranspose( - 64, images.get_shape()[1:3], padding="same" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height, width, 64] - ) - - def testCreateConv2DTransposeWithStrides(self): - height, width = 6, 8 - # Test strides tuple - images = tf.random.uniform((5, height, width, 3), seed=1) - layer = conv_layers.Conv2DTranspose( - 32, [3, 3], strides=(2, 2), padding="same" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height * 2, width * 2, 32] - ) - - # Test strides integer - layer = conv_layers.Conv2DTranspose( - 32, [3, 3], strides=2, padding="same" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height * 2, width * 2, 32] - ) - - # Test unequal strides - layer = conv_layers.Conv2DTranspose( - 32, [3, 3], strides=(2, 1), padding="same" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height * 2, width, 32] - ) - - def testConv2DTransposeKernelRegularizer(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - reg = lambda x: 0.1 * tf.reduce_sum(x) - layer = conv_layers.Conv2DTranspose( - 32, [3, 3], kernel_regularizer=reg - ) - layer(images) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in layer.variables]) - self.assertListEqual( - self.evaluate(layer.losses), self.evaluate(loss_keys) - ) - - def testConv2DTransposeBiasRegularizer(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - reg = lambda x: 0.1 * tf.reduce_sum(x) - layer = conv_layers.Conv2DTranspose( - 32, [3, 3], bias_regularizer=reg - ) - layer(images) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in layer.variables]) - self.assertListEqual( - self.evaluate(layer.losses), self.evaluate(loss_keys) - ) - - def testConv2DTransposeNoBias(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = conv_layers.Conv2DTranspose( - 32, [3, 3], activation=tf.nn.relu, use_bias=False - ) - output = layer(images) - self.assertEqual(output.op.name, "conv2d_transpose/Relu") - self.assertListEqual( - output.get_shape().as_list(), [5, height + 2, width + 2, 32] - ) - self.assertListEqual( - layer.kernel.get_shape().as_list(), [3, 3, 32, 4] - ) - self.assertEqual(layer.bias, None) - - def testFunctionalConv2DTransposeReuse(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - conv_layers.conv2d_transpose(images, 32, [3, 3], name="deconv1") - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - conv_layers.conv2d_transpose( - images, 32, [3, 3], name="deconv1", reuse=True - ) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - - def testFunctionalConv2DTransposeReuseFromScope(self): - with tf.Graph().as_default(): - with tf.compat.v1.variable_scope("scope"): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - conv_layers.conv2d_transpose(images, 32, [3, 3], name="deconv1") - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - with tf.compat.v1.variable_scope("scope", reuse=True): - conv_layers.conv2d_transpose(images, 32, [3, 3], name="deconv1") - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - - def testFunctionalConv2DTransposeInitializerFromScope(self): - with tf.Graph().as_default(), self.cached_session(): - with tf.compat.v1.variable_scope( - "scope", initializer=tf.compat.v1.ones_initializer() - ): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - conv_layers.conv2d_transpose(images, 32, [3, 3], name="deconv1") - weights = tf.compat.v1.trainable_variables() - # Check the names of weights in order. - self.assertTrue("kernel" in weights[0].name) - self.assertTrue("bias" in weights[1].name) - self.evaluate(tf.compat.v1.global_variables_initializer()) - weights = self.evaluate(weights) - # Check that the kernel weights got initialized to ones (from - # scope) - self.assertAllClose(weights[0], np.ones((3, 3, 32, 3))) - # Check that the bias still got initialized to zeros. - self.assertAllClose(weights[1], np.zeros((32))) - - def testFunctionalConv2DTransposeNoReuse(self): - with tf.Graph().as_default(): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - conv_layers.conv2d_transpose(images, 32, [3, 3]) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - conv_layers.conv2d_transpose(images, 32, [3, 3]) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 4) - - def testConstraints(self): - k_constraint = lambda x: x / tf.reduce_sum(x) - b_constraint = lambda x: x / tf.reduce_max(x) - layer = conv_layers.Conv2DTranspose( - 2, 3, kernel_constraint=k_constraint, bias_constraint=b_constraint - ) - inputs = tf.random.uniform((5, 3, 3, 5), seed=1) - layer(inputs) - self.assertEqual(layer.kernel_constraint, k_constraint) - self.assertEqual(layer.bias_constraint, b_constraint) - - -class Conv3DTransposeTest(tf.test.TestCase): - def testInvalidDataFormat(self): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform((5, depth, height, width, 32), seed=1) - with self.assertRaisesRegex(ValueError, "data_format"): - conv_layers.conv3d_transpose(volumes, 4, 3, data_format="invalid") - - def testInvalidStrides(self): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform((5, depth, height, width, 32), seed=1) - with self.assertRaisesRegex(ValueError, "strides"): - conv_layers.conv3d_transpose(volumes, 4, 3, strides=(1, 2)) - - with self.assertRaisesRegex(ValueError, "strides"): - conv_layers.conv3d_transpose(volumes, 4, 3, strides=None) - - def testInvalidKernelSize(self): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform((5, depth, height, width, 32), seed=1) - with self.assertRaisesRegex(ValueError, "kernel_size"): - conv_layers.conv3d_transpose(volumes, 4, (1, 2)) - - with self.assertRaisesRegex(ValueError, "kernel_size"): - conv_layers.conv3d_transpose(volumes, 4, None) - - def testCreateConv3DTranspose(self): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform((5, depth, height, width, 32)) - layer = conv_layers.Conv3DTranspose(4, [3, 3, 3], activation=tf.nn.relu) - output = layer(volumes) - if not tf.executing_eagerly(): - self.assertEqual(output.op.name, "conv3d_transpose/Relu") - self.assertListEqual( - output.get_shape().as_list(), - [5, depth + 2, height + 2, width + 2, 4], - ) - self.assertListEqual( - layer.kernel.get_shape().as_list(), [3, 3, 3, 4, 32] - ) - self.assertListEqual(layer.bias.get_shape().as_list(), [4]) - - def testCreateConv3DTransposeIntegerKernelSize(self): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform((5, depth, height, width, 32)) - layer = conv_layers.Conv3DTranspose(4, 3) - output = layer(volumes) - self.assertListEqual( - output.get_shape().as_list(), - [5, depth + 2, height + 2, width + 2, 4], - ) - self.assertListEqual( - layer.kernel.get_shape().as_list(), [3, 3, 3, 4, 32] - ) - self.assertListEqual(layer.bias.get_shape().as_list(), [4]) - - def testCreateConv3DTransposeChannelsFirst(self): - with tf.Graph().as_default(): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform((5, 32, depth, height, width)) - layer = conv_layers.Conv3DTranspose( - 4, [3, 3, 3], data_format="channels_first" - ) - output = layer(volumes) - self.assertListEqual( - output.get_shape().as_list(), - [5, 4, depth + 2, height + 2, width + 2], - ) - self.assertListEqual( - layer.kernel.get_shape().as_list(), [3, 3, 3, 4, 32] - ) - self.assertListEqual(layer.bias.get_shape().as_list(), [4]) - - def testConv3DTransposePaddingSame(self): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform((5, depth, height, width, 64), seed=1) - layer = conv_layers.Conv3DTranspose( - 32, volumes.get_shape()[1:4], padding="same" - ) - output = layer(volumes) - self.assertListEqual( - output.get_shape().as_list(), [5, depth, height, width, 32] - ) - - def testCreateConv3DTransposeWithStrides(self): - depth, height, width = 4, 6, 8 - # Test strides tuple. - volumes = tf.random.uniform((5, depth, height, width, 32), seed=1) - layer = conv_layers.Conv3DTranspose( - 4, [3, 3, 3], strides=(2, 2, 2), padding="same" - ) - output = layer(volumes) - self.assertListEqual( - output.get_shape().as_list(), - [5, depth * 2, height * 2, width * 2, 4], - ) - - # Test strides integer. - layer = conv_layers.Conv3DTranspose( - 4, [3, 3, 3], strides=2, padding="same" - ) - output = layer(volumes) - self.assertListEqual( - output.get_shape().as_list(), - [5, depth * 2, height * 2, width * 2, 4], - ) - - # Test unequal strides. - layer = conv_layers.Conv3DTranspose( - 4, [3, 3, 3], strides=(2, 1, 1), padding="same" - ) - output = layer(volumes) - self.assertListEqual( - output.get_shape().as_list(), [5, depth * 2, height, width, 4] - ) - - def testConv3DTransposeKernelRegularizer(self): - with tf.Graph().as_default(): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform((5, depth, height, width, 32)) - reg = lambda x: 0.1 * tf.reduce_sum(x) - layer = conv_layers.Conv3DTranspose( - 4, [3, 3, 3], kernel_regularizer=reg - ) - layer(volumes) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in layer.variables]) - self.assertListEqual( - self.evaluate(layer.losses), self.evaluate(loss_keys) - ) - - def testConv3DTransposeBiasRegularizer(self): - with tf.Graph().as_default(): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform((5, depth, height, width, 32)) - reg = lambda x: 0.1 * tf.reduce_sum(x) - layer = conv_layers.Conv3DTranspose( - 4, [3, 3, 3], bias_regularizer=reg - ) - layer(volumes) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in layer.variables]) - self.assertListEqual( - self.evaluate(layer.losses), self.evaluate(loss_keys) - ) - - def testConv3DTransposeNoBias(self): - with tf.Graph().as_default(): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform((5, depth, height, width, 32)) - layer = conv_layers.Conv3DTranspose( - 4, [3, 3, 3], activation=tf.nn.relu, use_bias=False - ) - output = layer(volumes) - self.assertEqual(output.op.name, "conv3d_transpose/Relu") - self.assertListEqual( - output.get_shape().as_list(), - [5, depth + 2, height + 2, width + 2, 4], - ) - self.assertListEqual( - layer.kernel.get_shape().as_list(), [3, 3, 3, 4, 32] - ) - self.assertEqual(layer.bias, None) - - def testFunctionalConv3DTransposeReuse(self): - with tf.Graph().as_default(): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform((5, depth, height, width, 32), seed=1) - conv_layers.conv3d_transpose(volumes, 4, [3, 3, 3], name="deconv1") - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - conv_layers.conv3d_transpose( - volumes, 4, [3, 3, 3], name="deconv1", reuse=True - ) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - - def testFunctionalConv3DTransposeReuseFromScope(self): - with tf.Graph().as_default(): - with tf.compat.v1.variable_scope("scope"): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform( - (5, depth, height, width, 32), seed=1 - ) - conv_layers.conv3d_transpose( - volumes, 4, [3, 3, 3], name="deconv1" - ) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - with tf.compat.v1.variable_scope("scope", reuse=True): - conv_layers.conv3d_transpose( - volumes, 4, [3, 3, 3], name="deconv1" - ) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - - def testFunctionalConv3DTransposeInitializerFromScope(self): - with tf.Graph().as_default(), self.cached_session(): - with tf.compat.v1.variable_scope( - "scope", initializer=tf.compat.v1.ones_initializer() - ): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform( - (5, depth, height, width, 32), seed=1 - ) - conv_layers.conv3d_transpose( - volumes, 4, [3, 3, 3], name="deconv1" - ) - weights = tf.compat.v1.trainable_variables() - # Check the names of weights in order. - self.assertTrue("kernel" in weights[0].name) - self.assertTrue("bias" in weights[1].name) - self.evaluate(tf.compat.v1.global_variables_initializer()) - weights = self.evaluate(weights) - # Check that the kernel weights got initialized to ones (from - # scope) - self.assertAllClose(weights[0], np.ones((3, 3, 3, 4, 32))) - # Check that the bias still got initialized to zeros. - self.assertAllClose(weights[1], np.zeros((4))) - - def testFunctionalConv3DTransposeNoReuse(self): - with tf.Graph().as_default(): - depth, height, width = 5, 7, 9 - volumes = tf.random.uniform((5, depth, height, width, 32), seed=1) - conv_layers.conv3d_transpose(volumes, 4, [3, 3, 3]) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 2) - conv_layers.conv3d_transpose(volumes, 4, [3, 3, 3]) - self.assertEqual(len(tf.compat.v1.trainable_variables()), 4) - - def testConstraints(self): - k_constraint = lambda x: x / tf.reduce_sum(x) - b_constraint = lambda x: x / tf.reduce_max(x) - layer = conv_layers.Conv3DTranspose( - 2, 3, kernel_constraint=k_constraint, bias_constraint=b_constraint - ) - inputs = tf.random.uniform((5, 3, 3, 3, 5), seed=1) - layer(inputs) - self.assertEqual(layer.kernel_constraint, k_constraint) - self.assertEqual(layer.bias_constraint, b_constraint) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/legacy_tf_layers/core.py b/keras/legacy_tf_layers/core.py deleted file mode 100644 index b4111dc9134..00000000000 --- a/keras/legacy_tf_layers/core.py +++ /dev/null @@ -1,556 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -"""Contains the core layers: Dense, Dropout. - -Also contains their functional aliases. -""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import warnings - -import tensorflow.compat.v2 as tf - -from keras import layers as keras_layers -from keras.legacy_tf_layers import base - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export(v1=["keras.__internal__.legacy.layers.Dense"]) -class Dense(keras_layers.Dense, base.Layer): - """Densely-connected layer class. - - This layer implements the operation: - `outputs = activation(inputs * kernel + bias)` - Where `activation` is the activation function passed as the `activation` - argument (if not `None`), `kernel` is a weights matrix created by the layer, - and `bias` is a bias vector created by the layer - (only if `use_bias` is `True`). - - Args: - units: Integer or Long, dimensionality of the output space. - activation: Activation function (callable). Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: Initializer function for the weight matrix. - If `None` (default), weights are initialized using the default - initializer used by `tf.compat.v1.get_variable`. - bias_initializer: Initializer function for the bias. - kernel_regularizer: Regularizer function for the weight matrix. - bias_regularizer: Regularizer function for the bias. - activity_regularizer: Regularizer function for the output. - kernel_constraint: An optional projection function to be applied to the - kernel after being updated by an `Optimizer` (e.g. used to implement - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - bias_constraint: An optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: String, the name of the layer. Layers with the same name will - share weights, but to avoid mistakes we require reuse=True in such - cases. - _reuse: Boolean, whether to reuse the weights of a previous layer - by the same name. - - Properties: - units: Python integer, dimensionality of the output space. - activation: Activation function (callable). - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: Initializer instance (or name) for the kernel matrix. - bias_initializer: Initializer instance (or name) for the bias. - kernel_regularizer: Regularizer instance for the kernel matrix (callable) - bias_regularizer: Regularizer instance for the bias (callable). - activity_regularizer: Regularizer instance for the output (callable) - kernel_constraint: Constraint function for the kernel matrix. - bias_constraint: Constraint function for the bias. - kernel: Weight matrix (TensorFlow variable or tensor). - bias: Bias vector, if applicable (TensorFlow variable or tensor). - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is `tf.keras.layers.Dense`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - dense = tf.compat.v1.layers.Dense(units=3) - ``` - - After: - - ```python - dense = tf.keras.layers.Dense(units=3) - ``` - - @end_compatibility - """ - - def __init__( - self, - units, - activation=None, - use_bias=True, - kernel_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - **kwargs - ): - super().__init__( - units=units, - activation=activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.dense"]) -def dense( - inputs, - units, - activation=None, - use_bias=True, - kernel_initializer=None, - bias_initializer=tf.compat.v1.zeros_initializer(), - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - kernel_constraint=None, - bias_constraint=None, - trainable=True, - name=None, - reuse=None, -): - """Functional interface for the densely-connected layer. - - This layer implements the operation: - `outputs = activation(inputs * kernel + bias)` - where `activation` is the activation function passed as the `activation` - argument (if not `None`), `kernel` is a weights matrix created by the layer, - and `bias` is a bias vector created by the layer - (only if `use_bias` is `True`). - - Args: - inputs: Tensor input. - units: Integer or Long, dimensionality of the output space. - activation: Activation function (callable). Set it to None to maintain a - linear activation. - use_bias: Boolean, whether the layer uses a bias. - kernel_initializer: Initializer function for the weight matrix. - If `None` (default), weights are initialized using the default - initializer used by `tf.compat.v1.get_variable`. - bias_initializer: Initializer function for the bias. - kernel_regularizer: Regularizer function for the weight matrix. - bias_regularizer: Regularizer function for the bias. - activity_regularizer: Regularizer function for the output. - kernel_constraint: An optional projection function to be applied to the - kernel after being updated by an `Optimizer` (e.g. used to implement - norm constraints or value constraints for layer weights). The function - must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are - not safe to use when doing asynchronous distributed training. - bias_constraint: An optional projection function to be applied to the - bias after being updated by an `Optimizer`. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). - name: String, the name of the layer. - reuse: Boolean, whether to reuse the weights of a previous layer - by the same name. - - Returns: - Output tensor the same shape as `inputs` except the last dimension is of - size `units`. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is `tf.keras.layers.Dense`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.dense(x, units=3) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28,)) - y = tf.keras.layers.Dense(units=3)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - - """ - warnings.warn( - "`tf.layers.dense` is deprecated and " - "will be removed in a future version. " - "Please use `tf.keras.layers.Dense` instead.", - stacklevel=2, - ) - layer = Dense( - units, - activation=activation, - use_bias=use_bias, - kernel_initializer=kernel_initializer, - bias_initializer=bias_initializer, - kernel_regularizer=kernel_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - kernel_constraint=kernel_constraint, - bias_constraint=bias_constraint, - trainable=trainable, - name=name, - _scope=name, - _reuse=reuse, - ) - return layer(inputs) - - -@keras_export(v1=["keras.__internal__.legacy.layers.Dropout"]) -class Dropout(keras_layers.Dropout, base.Layer): - """Applies Dropout to the input. - - Dropout consists in randomly setting a fraction `rate` of input units to 0 - at each update during training time, which helps prevent overfitting. - The units that are kept are scaled by `1 / (1 - rate)`, so that their - sum is unchanged at training time and inference time. - - Args: - rate: The dropout rate, between 0 and 1. E.g. `rate=0.1` would drop out - 10% of input units. - noise_shape: 1D tensor of type `int32` representing the shape of the - binary dropout mask that will be multiplied with the input. - For instance, if your inputs have shape - `(batch_size, timesteps, features)`, and you want the dropout mask - to be the same for all timesteps, you can use - `noise_shape=[batch_size, 1, features]`. - seed: A Python integer. Used to create random seeds. See - `tf.compat.v1.set_random_seed`. - for behavior. - name: The name of the layer (string). - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is `tf.keras.layers.Dropout`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - dropout = tf.compat.v1.layers.Dropout() - ``` - - After: - - ```python - dropout = tf.keras.layers.Dropout() - ``` - @end_compatibility - """ - - def __init__( - self, rate=0.5, noise_shape=None, seed=None, name=None, **kwargs - ): - # Force the rng type to be legacy stateful since the new stateful code - # path is not supported by legacy layer. - super().__init__( - rate=rate, - noise_shape=noise_shape, - seed=seed, - name=name, - rng_type="legacy_stateful", - **kwargs - ) - - def call(self, inputs, training=False): - return super().call(inputs, training=training) - - -@keras_export(v1=["keras.__internal__.legacy.layers.dropout"]) -def dropout( - inputs, rate=0.5, noise_shape=None, seed=None, training=False, name=None -): - """Applies Dropout to the input. - - Dropout consists in randomly setting a fraction `rate` of input units to 0 - at each update during training time, which helps prevent overfitting. - The units that are kept are scaled by `1 / (1 - rate)`, so that their - sum is unchanged at training time and inference time. - - Args: - inputs: Tensor input. - rate: The dropout rate, between 0 and 1. E.g. "rate=0.1" would drop out - 10% of input units. - noise_shape: 1D tensor of type `int32` representing the shape of the - binary dropout mask that will be multiplied with the input. - For instance, if your inputs have shape - `(batch_size, timesteps, features)`, and you want the dropout mask - to be the same for all timesteps, you can use - `noise_shape=[batch_size, 1, features]`. - seed: A Python integer. Used to create random seeds. See - `tf.compat.v1.set_random_seed` - for behavior. - training: Either a Python boolean, or a TensorFlow boolean scalar tensor - (e.g. a placeholder). Whether to return the output in training mode - (apply dropout) or in inference mode (return the input untouched). - name: The name of the layer (string). - - Returns: - Output tensor. - - Raises: - ValueError: if eager execution is enabled. - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is `tf.keras.layers.Dropout`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.dropout(x) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.Dropout()(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.dropout` is deprecated and " - "will be removed in a future version. " - "Please use `tf.keras.layers.Dropout` instead.", - stacklevel=2, - ) - layer = Dropout(rate, noise_shape=noise_shape, seed=seed, name=name) - return layer(inputs, training=training) - - -@keras_export(v1=["keras.__internal__.legacy.layers.Flatten"]) -class Flatten(keras_layers.Flatten, base.Layer): - """Flattens an input tensor while preserving the batch axis (axis 0). - - Args: - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, ..., channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, ...)`. - - Examples: - - ``` - x = tf.compat.v1.placeholder(shape=(None, 4, 4), dtype='float32') - y = Flatten()(x) - # now `y` has shape `(None, 16)` - - x = tf.compat.v1.placeholder(shape=(None, 3, None), dtype='float32') - y = Flatten()(x) - # now `y` has shape `(None, None)` - ``` - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is `tf.keras.layers.Flatten`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - flatten = tf.compat.v1.layers.Flatten() - ``` - - After: - - ```python - flatten = tf.keras.layers.Flatten() - ``` - @end_compatibility - """ - - pass - - -@keras_export(v1=["keras.__internal__.legacy.layers.flatten"]) -def flatten(inputs, name=None, data_format="channels_last"): - """Flattens an input tensor while preserving the batch axis (axis 0). - - Args: - inputs: Tensor input. - name: The name of the layer (string). - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, height, width)`. - - Returns: - Reshaped tensor. - - Examples: - - ``` - x = tf.compat.v1.placeholder(shape=(None, 4, 4), dtype='float32') - y = flatten(x) - # now `y` has shape `(None, 16)` - - x = tf.compat.v1.placeholder(shape=(None, 3, None), dtype='float32') - y = flatten(x) - # now `y` has shape `(None, None)` - ``` - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is `tf.keras.layers.Flatten`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.flatten(x) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.Flatten()(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.flatten` is deprecated and " - "will be removed in a future version. " - "Please use `tf.keras.layers.Flatten` instead.", - stacklevel=2, - ) - layer = Flatten(name=name, data_format=data_format) - return layer(inputs) - - -# Aliases - -FullyConnected = Dense -fully_connected = dense diff --git a/keras/legacy_tf_layers/core_test.py b/keras/legacy_tf_layers/core_test.py deleted file mode 100644 index 558aa823d4b..00000000000 --- a/keras/legacy_tf_layers/core_test.py +++ /dev/null @@ -1,653 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for tf.layers.core.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import collections -import platform - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.legacy_tf_layers import core as core_layers -from keras.testing_infra import test_combinations - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) -from tensorflow.python.ops import variable_scope - - -class DenseTest(tf.test.TestCase, parameterized.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testDenseProperties(self): - dense = core_layers.Dense(2, activation=tf.nn.relu, name="my_dense") - self.assertEqual(dense.units, 2) - self.assertEqual(dense.activation, tf.nn.relu) - self.assertEqual(dense.kernel_regularizer, None) - self.assertEqual(dense.bias_regularizer, None) - self.assertEqual(dense.activity_regularizer, None) - self.assertEqual(dense.use_bias, True) - - # Test auto-naming - dense = core_layers.Dense(2, activation=tf.nn.relu) - dense(tf.random.uniform((5, 2))) - self.assertEqual(dense.name, "dense_1") - dense = core_layers.Dense(2, activation=tf.nn.relu) - dense(tf.random.uniform((5, 2))) - self.assertEqual(dense.name, "dense_2") - - @tf_test_utils.run_deprecated_v1 - def testVariableInput(self): - with self.cached_session(): - v = tf.compat.v1.get_variable( - "X", initializer=tf.compat.v1.zeros_initializer(), shape=(1, 1) - ) - x = core_layers.Dense(1)(v) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllEqual(x, [[0.0]]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testCall(self): - dense = core_layers.Dense(2, activation=tf.nn.relu, name="my_dense") - inputs = tf.random.uniform((5, 4), seed=1) - outputs = dense(inputs) - self.assertListEqual([5, 2], outputs.get_shape().as_list()) - self.assertListEqual(dense.variables, [dense.kernel, dense.bias]) - self.assertListEqual( - dense.trainable_variables, [dense.kernel, dense.bias] - ) - self.assertListEqual(dense.non_trainable_variables, []) - if not tf.executing_eagerly(): - self.assertEqual( - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES - ) - ), - 2, - ) - self.assertEqual(dense.kernel.name, "my_dense/kernel:0") - self.assertEqual(dense.bias.name, "my_dense/bias:0") - - @tf_test_utils.assert_no_new_pyobjects_executing_eagerly - def testNoEagerLeak(self): - # Tests that repeatedly constructing and building a Layer does not leak - # Python objects. - inputs = tf.random.uniform((5, 4), seed=1) - core_layers.Dense(5)(inputs) - core_layers.Dense(2, activation=tf.nn.relu, name="my_dense")(inputs) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testCallTensorDot(self): - dense = core_layers.Dense(2, activation=tf.nn.relu, name="my_dense") - inputs = tf.random.uniform((5, 4, 3), seed=1) - outputs = dense(inputs) - self.assertListEqual([5, 4, 2], outputs.get_shape().as_list()) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testNoBias(self): - dense = core_layers.Dense(2, use_bias=False, name="my_dense") - inputs = tf.random.uniform((5, 2), seed=1) - _ = dense(inputs) - self.assertListEqual(dense.variables, [dense.kernel]) - self.assertListEqual(dense.trainable_variables, [dense.kernel]) - self.assertListEqual(dense.non_trainable_variables, []) - if not tf.executing_eagerly(): - self.assertEqual( - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES - ) - ), - 1, - ) - self.assertEqual(dense.kernel.name, "my_dense/kernel:0") - self.assertEqual(dense.bias, None) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testNonTrainable(self): - dense = core_layers.Dense(2, trainable=False, name="my_dense") - inputs = tf.random.uniform((5, 2), seed=1) - _ = dense(inputs) - self.assertListEqual(dense.variables, [dense.kernel, dense.bias]) - self.assertListEqual( - dense.non_trainable_variables, [dense.kernel, dense.bias] - ) - self.assertListEqual(dense.trainable_variables, []) - if not tf.executing_eagerly(): - self.assertEqual( - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES - ) - ), - 0, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testOutputShape(self): - dense = core_layers.Dense(7, activation=tf.nn.relu, name="my_dense") - inputs = tf.random.uniform((5, 3), seed=1) - outputs = dense(inputs) - self.assertEqual(outputs.get_shape().as_list(), [5, 7]) - - inputs = tf.random.uniform((5, 2, 3), seed=1) - outputs = dense(inputs) - self.assertEqual(outputs.get_shape().as_list(), [5, 2, 7]) - - inputs = tf.random.uniform((1, 2, 4, 3), seed=1) - outputs = dense(inputs) - self.assertEqual(outputs.get_shape().as_list(), [1, 2, 4, 7]) - - @tf_test_utils.run_deprecated_v1 - def testCallOnPlaceHolder(self): - inputs = tf.compat.v1.placeholder(dtype=tf.float32) - dense = core_layers.Dense(4, name="my_dense") - with self.assertRaises(ValueError): - dense(inputs) - - inputs = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, None]) - dense = core_layers.Dense(4, name="my_dense") - with self.assertRaises(ValueError): - dense(inputs) - - inputs = tf.compat.v1.placeholder( - dtype=tf.float32, shape=[None, None, None] - ) - dense = core_layers.Dense(4, name="my_dense") - with self.assertRaises(ValueError): - dense(inputs) - - inputs = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, 3]) - dense = core_layers.Dense(4, name="my_dense") - dense(inputs) - - inputs = tf.compat.v1.placeholder( - dtype=tf.float32, shape=[None, None, 3] - ) - dense = core_layers.Dense(4, name="my_dense") - dense(inputs) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testActivation(self): - dense = core_layers.Dense(2, activation=tf.nn.relu, name="dense1") - inputs = tf.random.uniform((5, 3), seed=1) - outputs = dense(inputs) - if not tf.executing_eagerly(): - self.assertEqual(outputs.op.name, "dense1/Relu") - - dense = core_layers.Dense(2, name="dense2") - inputs = tf.random.uniform((5, 3), seed=1) - outputs = dense(inputs) - if not tf.executing_eagerly(): - self.assertEqual(outputs.op.name, "dense2/BiasAdd") - - @tf_test_utils.run_deprecated_v1 - def testActivityRegularizer(self): - regularizer = lambda x: tf.reduce_sum(x) * 1e-3 - dense = core_layers.Dense( - 2, name="my_dense", activity_regularizer=regularizer - ) - inputs = tf.random.uniform((5, 3), seed=1) - _ = dense(inputs) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.assertListEqual(dense.losses, loss_keys) - - @tf_test_utils.run_deprecated_v1 - def testKernelRegularizer(self): - regularizer = lambda x: tf.reduce_sum(x) * 1e-3 - dense = core_layers.Dense( - 2, name="my_dense", kernel_regularizer=regularizer - ) - inputs = tf.random.uniform((5, 3), seed=1) - _ = dense(inputs) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in dense.variables]) - self.assertAllEqual( - self.evaluate(dense.losses), self.evaluate(loss_keys) - ) - - @tf_test_utils.run_deprecated_v1 - def testKernelRegularizerWithReuse(self): - regularizer = lambda x: tf.reduce_sum(x) * 1e-3 - inputs = tf.random.uniform((5, 3), seed=1) - _ = core_layers.dense( - inputs, 2, name="my_dense", kernel_regularizer=regularizer - ) - self.assertEqual( - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - ), - 1, - ) - _ = core_layers.dense( - inputs, - 2, - name="my_dense", - kernel_regularizer=regularizer, - reuse=True, - ) - self.assertEqual( - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - ), - 1, - ) - - @tf_test_utils.run_deprecated_v1 - def testBiasRegularizer(self): - regularizer = lambda x: tf.reduce_sum(x) * 1e-3 - dense = core_layers.Dense( - 2, name="my_dense", bias_regularizer=regularizer - ) - inputs = tf.random.uniform((5, 3), seed=1) - _ = dense(inputs) - loss_keys = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES - ) - self.assertEqual(len(loss_keys), 1) - self.evaluate([v.initializer for v in dense.variables]) - self.assertAllEqual( - self.evaluate(dense.losses), self.evaluate(loss_keys) - ) - - @tf_test_utils.run_deprecated_v1 - def testFunctionalDense(self): - with self.cached_session(): - inputs = tf.random.uniform((5, 3), seed=1) - outputs = core_layers.dense( - inputs, 2, activation=tf.nn.relu, name="my_dense" - ) - self.assertEqual( - len( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES - ) - ), - 2, - ) - self.assertEqual(outputs.op.name, "my_dense/Relu") - - @tf_test_utils.run_deprecated_v1 - def testFunctionalDenseTwice(self): - inputs = tf.random.uniform((5, 3), seed=1) - core_layers.dense(inputs, 2) - vars1 = _get_variable_dict_from_varstore().values() - core_layers.dense(inputs, 2) - vars2 = _get_variable_dict_from_varstore().values() - self.assertEqual(len(vars1), 2) - self.assertEqual(len(vars2), 4) - - # TODO(alive): get this to work in eager mode. - def testFunctionalDenseTwiceReuse(self): - with self.cached_session(): - inputs = tf.random.uniform((5, 3), seed=1) - core_layers.dense(inputs, 2, name="my_dense") - vars1 = tf.compat.v1.trainable_variables() - core_layers.dense(inputs, 2, name="my_dense", reuse=True) - vars2 = tf.compat.v1.trainable_variables() - self.assertEqual(vars1, vars2) - - # TODO(alive): get this to work in eager mode. - def testFunctionalDenseTwiceReuseFromScope(self): - with self.cached_session(): - with tf.compat.v1.variable_scope("scope"): - inputs = tf.random.uniform((5, 3), seed=1) - core_layers.dense(inputs, 2, name="my_dense") - vars1 = tf.compat.v1.trainable_variables() - with tf.compat.v1.variable_scope("scope", reuse=True): - core_layers.dense(inputs, 2, name="my_dense") - vars2 = tf.compat.v1.trainable_variables() - self.assertEqual(vars1, vars2) - - @tf_test_utils.run_deprecated_v1 - def testFunctionalDenseInitializerFromScope(self): - with tf.compat.v1.variable_scope( - "scope", initializer=tf.compat.v1.ones_initializer() - ), self.cached_session(): - inputs = tf.random.uniform((5, 3), seed=1) - core_layers.dense(inputs, 2) - self.evaluate(tf.compat.v1.global_variables_initializer()) - weights = _get_variable_dict_from_varstore() - self.assertEqual(len(weights), 2) - # Check that the matrix weights got initialized to ones (from - # scope). - self.assertAllClose( - weights["scope/dense/kernel"].read_value(), np.ones((3, 2)) - ) - # Check that the bias still got initialized to zeros. - self.assertAllClose( - weights["scope/dense/bias"].read_value(), np.zeros((2)) - ) - - def testFunctionalDenseWithCustomGetter(self): - called = [0] - - def custom_getter(getter, *args, **kwargs): - called[0] += 1 - return getter(*args, **kwargs) - - with tf.compat.v1.variable_scope("test", custom_getter=custom_getter): - inputs = tf.random.uniform((5, 3), seed=1) - core_layers.dense(inputs, 2) - self.assertEqual(called[0], 2) - - @tf_test_utils.run_deprecated_v1 - def testFunctionalDenseInScope(self): - with self.cached_session(): - with tf.compat.v1.variable_scope("test"): - inputs = tf.random.uniform((5, 3), seed=1) - core_layers.dense(inputs, 2, name="my_dense") - var_dict = _get_variable_dict_from_varstore() - var_key = "test/my_dense/kernel" - self.assertEqual(var_dict[var_key].name, f"{var_key}:0") - with tf.compat.v1.variable_scope("test1") as scope: - inputs = tf.random.uniform((5, 3), seed=1) - core_layers.dense(inputs, 2, name=scope) - var_dict = _get_variable_dict_from_varstore() - var_key = "test1/kernel" - self.assertEqual(var_dict[var_key].name, f"{var_key}:0") - with tf.compat.v1.variable_scope("test2"): - inputs = tf.random.uniform((5, 3), seed=1) - core_layers.dense(inputs, 2) - var_dict = _get_variable_dict_from_varstore() - var_key = "test2/dense/kernel" - self.assertEqual(var_dict[var_key].name, f"{var_key}:0") - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testComputeOutputShape(self): - dense = core_layers.Dense(2, activation=tf.nn.relu, name="dense1") - ts = tf.TensorShape - - with self.assertRaises(ValueError): - dense.compute_output_shape(ts(None)) - with self.assertRaises(ValueError): - dense.compute_output_shape(ts([])) - with self.assertRaises(ValueError): - dense.compute_output_shape(ts([1])) - self.assertEqual( - [None, 2], dense.compute_output_shape((None, 3)).as_list() - ) - self.assertEqual( - [None, 2], dense.compute_output_shape(ts([None, 3])).as_list() - ) - self.assertEqual( - [None, 4, 2], dense.compute_output_shape(ts([None, 4, 3])).as_list() - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testConstraints(self): - k_constraint = lambda x: x / tf.reduce_sum(x) - b_constraint = lambda x: x / tf.reduce_max(x) - dense = core_layers.Dense( - 2, kernel_constraint=k_constraint, bias_constraint=b_constraint - ) - inputs = tf.random.uniform((5, 3), seed=1) - dense(inputs) - self.assertEqual(dense.kernel_constraint, k_constraint) - self.assertEqual(dense.bias_constraint, b_constraint) - - -def _get_variable_dict_from_varstore(): - var_dict = variable_scope._get_default_variable_store()._vars - sorted_var_dict = collections.OrderedDict( - sorted(var_dict.items(), key=lambda t: t[0]) - ) - return sorted_var_dict - - -class DropoutTest(tf.test.TestCase, parameterized.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testDropoutProperties(self): - dp = core_layers.Dropout(0.5, name="dropout") - self.assertEqual(dp.rate, 0.5) - self.assertEqual(dp.noise_shape, None) - dp(tf.ones(())) - self.assertEqual(dp.name, "dropout") - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBooleanLearningPhase(self): - dp = core_layers.Dropout(0.5) - inputs = tf.ones((5, 3)) - dropped = dp(inputs, training=True) - if not tf.executing_eagerly(): - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_output = self.evaluate(dropped) - self.assertAlmostEqual(0.0, np_output.min()) - dropped = dp(inputs, training=False) - np_output = self.evaluate(dropped) - self.assertAllClose(np.ones((5, 3)), np_output) - - @tf_test_utils.run_deprecated_v1 - def testDynamicLearningPhase(self): - with self.cached_session() as sess: - dp = core_layers.Dropout(0.5, seed=1) - inputs = tf.ones((5, 5)) - training = tf.compat.v1.placeholder(dtype="bool") - dropped = dp(inputs, training=training) - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_output = sess.run(dropped, feed_dict={training: True}) - self.assertAlmostEqual(0.0, np_output.min()) - np_output = sess.run(dropped, feed_dict={training: False}) - self.assertAllClose(np.ones((5, 5)), np_output) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testDynamicNoiseShape(self): - inputs = tf.ones((5, 3, 2)) - noise_shape = [None, 1, None] - dp = core_layers.Dropout(0.5, noise_shape=noise_shape, seed=1) - dropped = dp(inputs, training=True) - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_output = self.evaluate(dropped) - self.assertAlmostEqual(0.0, np_output.min()) - self.assertAllClose(np_output[:, 0, :], np_output[:, 1, :]) - - def testCustomNoiseShape(self): - inputs = tf.ones((5, 3, 2)) - noise_shape = [5, 1, 2] - dp = core_layers.Dropout(0.5, noise_shape=noise_shape, seed=1) - dropped = dp(inputs, training=True) - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_output = self.evaluate(dropped) - self.assertAlmostEqual(0.0, np_output.min()) - self.assertAllClose(np_output[:, 0, :], np_output[:, 1, :]) - - @tf_test_utils.run_deprecated_v1 - def testFunctionalDropout(self): - with self.cached_session(): - inputs = tf.ones((5, 5)) - dropped = core_layers.dropout(inputs, 0.5, training=True, seed=1) - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_output = self.evaluate(dropped) - self.assertAlmostEqual(0.0, np_output.min()) - dropped = core_layers.dropout(inputs, 0.5, training=False, seed=1) - np_output = self.evaluate(dropped) - self.assertAllClose(np.ones((5, 5)), np_output) - - @tf_test_utils.run_deprecated_v1 - def testDynamicRate(self): - with self.cached_session() as sess: - rate = tf.compat.v1.placeholder(dtype="float32", name="rate") - dp = core_layers.Dropout(rate, name="dropout") - inputs = tf.ones((5, 5)) - dropped = dp(inputs, training=True) - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_output = sess.run(dropped, feed_dict={rate: 0.5}) - self.assertAlmostEqual(0.0, np_output.min()) - np_output = sess.run(dropped, feed_dict={rate: 0.0}) - self.assertAllClose(np.ones((5, 5)), np_output) - - -class FlattenTest(tf.test.TestCase): - @tf_test_utils.run_deprecated_v1 - def testCreateFlatten(self): - with self.cached_session() as sess: - x = tf.compat.v1.placeholder(shape=(None, 2, 3), dtype="float32") - y = core_layers.Flatten()(x) - np_output = sess.run(y, feed_dict={x: np.zeros((3, 2, 3))}) - self.assertEqual(list(np_output.shape), [3, 6]) - self.assertEqual(y.get_shape().as_list(), [None, 6]) - - x = tf.compat.v1.placeholder(shape=(1, 2, 3, 2), dtype="float32") - y = core_layers.Flatten()(x) - np_output = sess.run(y, feed_dict={x: np.zeros((1, 2, 3, 2))}) - self.assertEqual(list(np_output.shape), [1, 12]) - self.assertEqual(y.get_shape().as_list(), [1, 12]) - - def testComputeShape(self): - shape = core_layers.Flatten().compute_output_shape((1, 2, 3, 2)) - self.assertEqual(shape.as_list(), [1, 12]) - - shape = core_layers.Flatten().compute_output_shape((None, 3, 2)) - self.assertEqual(shape.as_list(), [None, 6]) - - shape = core_layers.Flatten().compute_output_shape((None, 3, None)) - self.assertEqual(shape.as_list(), [None, None]) - - @tf_test_utils.run_deprecated_v1 - def testDataFormat5d(self): - np_input_channels_last = np.arange(120, dtype="float32").reshape( - [1, 5, 4, 3, 2] - ) - - with self.test_session() as sess: - x = tf.compat.v1.placeholder(shape=(1, 5, 4, 3, 2), dtype="float32") - y = core_layers.Flatten(data_format="channels_last")(x) - np_output_cl = sess.run(y, feed_dict={x: np_input_channels_last}) - - x = tf.compat.v1.placeholder(shape=(1, 2, 5, 4, 3), dtype="float32") - y = core_layers.Flatten(data_format="channels_first")(x) - np_input_channels_first = np.transpose( - np_input_channels_last, [0, 4, 1, 2, 3] - ) - np_output_cf = sess.run(y, feed_dict={x: np_input_channels_first}) - - self.assertAllEqual(np_output_cl, np_output_cf) - - @tf_test_utils.run_deprecated_v1 - def testDataFormat4d(self): - np_input_channels_last = np.arange(24, dtype="float32").reshape( - [1, 4, 3, 2] - ) - - with self.test_session() as sess: - x = tf.compat.v1.placeholder(shape=(1, 4, 3, 2), dtype="float32") - y = core_layers.Flatten(data_format="channels_last")(x) - np_output_cl = sess.run(y, feed_dict={x: np_input_channels_last}) - - x = tf.compat.v1.placeholder(shape=(1, 2, 4, 3), dtype="float32") - y = core_layers.Flatten(data_format="channels_first")(x) - np_input_channels_first = np.transpose( - np_input_channels_last, [0, 3, 1, 2] - ) - np_output_cf = sess.run(y, feed_dict={x: np_input_channels_first}) - - self.assertAllEqual(np_output_cl, np_output_cf) - - @tf_test_utils.run_deprecated_v1 - def testFunctionalFlatten(self): - x = tf.compat.v1.placeholder(shape=(None, 2, 3), dtype="float32") - y = core_layers.flatten(x, name="flatten") - self.assertEqual(y.get_shape().as_list(), [None, 6]) - - @tf_test_utils.run_deprecated_v1 - def testFlatten0D(self): - x = tf.compat.v1.placeholder(shape=(None,), dtype="float32") - y = core_layers.Flatten()(x) - with self.cached_session() as sess: - np_output = sess.run(y, feed_dict={x: np.zeros((5,))}) - self.assertEqual(list(np_output.shape), [5, 1]) - self.assertEqual(y.shape.as_list(), [None, 1]) - - @tf_test_utils.run_deprecated_v1 - def testFlattenUnknownAxes(self): - with self.cached_session() as sess: - x = tf.compat.v1.placeholder(shape=(5, None, None), dtype="float32") - y = core_layers.Flatten()(x) - np_output = sess.run(y, feed_dict={x: np.zeros((5, 2, 3))}) - self.assertEqual(list(np_output.shape), [5, 6]) - self.assertEqual(y.get_shape().as_list(), [5, None]) - - x = tf.compat.v1.placeholder(shape=(5, None, 2), dtype="float32") - y = core_layers.Flatten()(x) - np_output = sess.run(y, feed_dict={x: np.zeros((5, 3, 2))}) - self.assertEqual(list(np_output.shape), [5, 6]) - self.assertEqual(y.get_shape().as_list(), [5, None]) - - @tf_test_utils.run_deprecated_v1 - def testFlattenLargeDim(self): - if any(platform.win32_ver()): - self.skipTest( - "values are truncated on windows causing test failures" - ) - - x = tf.compat.v1.placeholder( - shape=(None, 21316, 21316, 80), dtype="float32" - ) - y = core_layers.Flatten()(x) - self.assertEqual(y.shape.as_list(), [None, 21316 * 21316 * 80]) - - @tf_test_utils.run_deprecated_v1 - def testFlattenLargeBatchDim(self): - batch_size = np.iinfo(np.int32).max + 10 - x = tf.compat.v1.placeholder( - shape=(batch_size, None, None, 1), dtype="float32" - ) - y = core_layers.Flatten()(x) - self.assertEqual(y.shape.as_list(), [batch_size, None]) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/legacy_tf_layers/migration_utils.py b/keras/legacy_tf_layers/migration_utils.py deleted file mode 100644 index 61dfcf6b934..00000000000 --- a/keras/legacy_tf_layers/migration_utils.py +++ /dev/null @@ -1,113 +0,0 @@ -"""The DetermisticRandomTestTool. - -(from www.tensorflow.org/guide/migrate/validate_correctness) is a tool used to -make random number generation semantics match between TF1.x graphs/sessions and -eager execution. -""" - -import sys - -import tensorflow.compat.v2 as tf - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export(v1=["keras.utils.DeterministicRandomTestTool"]) -class DeterministicRandomTestTool(object): - """DeterministicRandomTestTool is a testing tool. - - This tool is used to validate random number generation semantics match - between TF1.x graphs/sessions and eager execution. - - This is useful when you are migrating from TF 1.x to TF2 and need to make - sure your computation is still happening correctly along the way. See the - validating correctness migration guide for more info: - https://www.tensorflow.org/guide/migrate/validate_correctness - - The following DeterministicRandomTestTool object provides a context manager - scope() that can make stateful random operations use the same seed across - both TF1 graphs/sessions and eager execution,The tool provides two testing - modes: - - constant which uses the same seed for every single operation no matter how - many times it has been called and, - - num_random_ops which uses the number of previously-observed stateful - random operations as the operation seed. - The num_random_ops mode serves as a more sensitive validation check than the - constant mode. It ensures that the random numbers initialization does not - get accidentaly reused.(for example if several weights take on the same - initializations), you can use the num_random_ops mode to avoid this. In the - num_random_ops mode, the generated random numbers will depend on the - ordering of random ops in the program. - - This applies both to the stateful random operations used for creating and - initializing variables, and to the stateful random operations used in - computation (such as for dropout layers). - """ - - def __init__(self, seed: int = 42, mode="constant"): - """Set mode to 'constant' or 'num_random_ops'. Defaults to - 'constant'.""" - if mode not in {"constant", "num_random_ops"}: - raise ValueError( - "Mode arg must be 'constant' or 'num_random_ops'. " - + f"Got: {mode}" - ) - self.seed_implementation = sys.modules[tf.compat.v1.get_seed.__module__] - self._mode = mode - self._seed = seed - self.operation_seed = 0 - self._observed_seeds = set() - - @property - def operation_seed(self): - return self._operation_seed - - @operation_seed.setter - def operation_seed(self, value): - self._operation_seed = value - - def scope(self): - """set random seed.""" - - tf.random.set_seed(self._seed) - - def _get_seed(_): - """Wraps TF get_seed to make deterministic random generation easier. - - This makes a variable's initialization (and calls that involve - random number generation) depend only on how many random number - generations were used in the scope so far, rather than on how many - unrelated operations the graph contains. - - Returns: - Random seed tuple. - """ - op_seed = self._operation_seed - if self._mode == "constant": - tf.random.set_seed(op_seed) - else: - if op_seed in self._observed_seeds: - raise ValueError( - "This `DeterministicRandomTestTool` " - "object is trying to re-use the " - + f"already-used operation seed {op_seed}. " - + "It cannot guarantee random numbers will match " - + "between eager and sessions when an operation seed " - + "is reused. You most likely set " - + "`operation_seed` explicitly but used a value that " - + "caused the naturally-incrementing operation seed " - + "sequences to overlap with an already-used seed." - ) - - self._observed_seeds.add(op_seed) - self._operation_seed += 1 - - return (self._seed, op_seed) - - # mock.patch internal symbols to modify the behavior of TF APIs relying - # on them - - return tf.compat.v1.test.mock.patch.object( - self.seed_implementation, "get_seed", wraps=_get_seed - ) diff --git a/keras/legacy_tf_layers/migration_utils_test.py b/keras/legacy_tf_layers/migration_utils_test.py deleted file mode 100644 index 3d024ceb2bd..00000000000 --- a/keras/legacy_tf_layers/migration_utils_test.py +++ /dev/null @@ -1,206 +0,0 @@ -"""Tests for migration_utils.""" - -import tensorflow as tf - -from keras.legacy_tf_layers import migration_utils - - -class DeterministicRandomTestToolTest(tf.test.TestCase): - def test_constant_mode_no_seed(self): - """Test random tensor generation consistancy in constant mode. - - Verify that the random tensor generated without using the seed is - consistant between graph and eager mode - """ - - # Generate three random tensors to show how the stateful random number - # generation match between sessions and eager execution. - random_tool = migration_utils.DeterministicRandomTestTool() - with random_tool.scope(): - graph = tf.Graph() - with graph.as_default(), tf.compat.v1.Session(graph=graph) as sess: - a = tf.compat.v1.random.uniform(shape=(3, 1)) - # adding additional computation/ops to the graph and ensuring - # consistant random number generation - a = a * 3 - b = tf.compat.v1.random.uniform(shape=(3, 3)) - b = b * 3 - c = tf.compat.v1.random.uniform(shape=(3, 3)) - c = c * 3 - graph_a, graph_b, graph_c = sess.run([a, b, c]) - - a = tf.compat.v2.random.uniform(shape=(3, 1)) - a = a * 3 - b = tf.compat.v2.random.uniform(shape=(3, 3)) - b = b * 3 - c = tf.compat.v2.random.uniform(shape=(3, 3)) - c = c * 3 - # validate that the generated random tensors match - self.assertAllClose(graph_a, a) - self.assertAllClose(graph_b, b) - self.assertAllClose(graph_c, c) - # In constant mode, because b and c were generated with the same seed - # within the same scope and have the same shape, they will have exactly - # the same values. - # validate that b and c are the same, also graph_b and graph_c - self.assertAllClose(b, c) - self.assertAllClose(graph_b, graph_c) - - def test_constant_mode_seed_argument(self): - """Test random tensor generation consistancy in constant mode. - - Verify that the random tensor generated by setting the global seeed - in the args is consistant between graph and eager mode. - """ - random_tool = migration_utils.DeterministicRandomTestTool() - with random_tool.scope(): - graph = tf.Graph() - with graph.as_default(), tf.compat.v1.Session(graph=graph) as sess: - # adding additional computation/ops to the graph and ensuring - # consistant random number generation - a = tf.compat.v1.random.uniform(shape=(3, 1), seed=1234) - a = a * 3 - b = tf.compat.v1.random.uniform(shape=(3, 3), seed=1234) - b = b * 3 - graph_a, graph_b = sess.run([a, b]) - a = tf.compat.v2.random.uniform(shape=(3, 1), seed=1234) - a = a * 3 - b = tf.compat.v2.random.uniform(shape=(3, 3), seed=1234) - b = b * 3 - - # validate that the generated random tensors match - self.assertAllClose(graph_a, a) - self.assertAllClose(graph_b, b) - - def test_num_rand_ops(self): - """Test random tensor generation consistancy in num_random_ops mode. - - Verify that the random tensor generated without using the seed is - consistant between graph and eager mode. - Random tensor generated should be different based on random ops ordering - """ - random_tool = migration_utils.DeterministicRandomTestTool( - mode="num_random_ops" - ) - with random_tool.scope(): - graph = tf.Graph() - with graph.as_default(), tf.compat.v1.Session(graph=graph) as sess: - # adding additional computation/ops to the graph and ensuring - # consistant random number generation - a = tf.compat.v1.random.uniform(shape=(3, 1)) - a = a * 3 - b = tf.compat.v1.random.uniform(shape=(3, 3)) - b = b * 3 - c = tf.compat.v1.random.uniform(shape=(3, 3)) - c = c * 3 - graph_a, graph_b, graph_c = sess.run([a, b, c]) - - random_tool = migration_utils.DeterministicRandomTestTool( - mode="num_random_ops" - ) - with random_tool.scope(): - a = tf.compat.v2.random.uniform(shape=(3, 1)) - a = a * 3 - b = tf.compat.v2.random.uniform(shape=(3, 3)) - b = b * 3 - c = tf.compat.v2.random.uniform(shape=(3, 3)) - c = c * 3 - # validate that the generated random tensors match - self.assertAllClose(graph_a, a) - self.assertAllClose(graph_b, b) - self.assertAllClose(graph_c, c) - # validate that the tensors differ based on ops ordering - self.assertNotAllClose(b, c) - self.assertNotAllClose(graph_b, graph_c) - - def test_num_rand_ops_program_order(self): - """Test random tensor generation consistancy in num_random_ops mode. - - validate that in this mode random number generation is sensitive to - program order, so the generated random tesnors should not match. - """ - random_tool = migration_utils.DeterministicRandomTestTool( - mode="num_random_ops" - ) - with random_tool.scope(): - a = tf.random.uniform(shape=(3, 1)) - # adding additional computation/ops to the graph and ensuring - # consistant random number generation - a = a * 3 - b = tf.random.uniform(shape=(3, 3)) - b = b * 3 - - random_tool = migration_utils.DeterministicRandomTestTool( - mode="num_random_ops" - ) - with random_tool.scope(): - b_prime = tf.random.uniform(shape=(3, 3)) - # adding additional computation/ops to the graph and ensuring - # consistant random number generation - b_prime = b_prime * 3 - a_prime = tf.random.uniform(shape=(3, 1)) - a_prime = a_prime * 3 - # validate that the tensors are different - self.assertNotAllClose(a, a_prime) - self.assertNotAllClose(b, b_prime) - - def test_num_rand_ops_operation_seed(self): - """Test random tensor generation consistancy in num_random_ops mode. - - validate if random number generation match across two different program - orders. - """ - random_tool = migration_utils.DeterministicRandomTestTool( - mode="num_random_ops" - ) - with random_tool.scope(): - # operation seed = 0 - a = tf.random.uniform(shape=(3, 1)) - a = a * 3 - # operation seed = 1 - b = tf.random.uniform(shape=(3, 3)) - b = b * 3 - - random_tool = migration_utils.DeterministicRandomTestTool( - mode="num_random_ops" - ) - with random_tool.scope(): - random_tool.operation_seed = 1 - b_prime = tf.random.uniform(shape=(3, 3)) - b_prime = b_prime * 3 - random_tool.operation_seed = 0 - a_prime = tf.random.uniform(shape=(3, 1)) - a_prime = a_prime * 3 - - self.assertAllClose(a, a_prime) - self.assertAllClose(b, b_prime) - - def test_num_rand_ops_disallow_repeated_ops_seed(self): - """Test random tensor generation consistancy in num_random_ops mode. - - validate if DeterministicRandomTestTool disallows reusing already-used - operation seeds. - """ - random_tool = migration_utils.DeterministicRandomTestTool( - mode="num_random_ops" - ) - with random_tool.scope(): - random_tool.operation_seed = 1 - b_prime = tf.random.uniform(shape=(3, 3)) - b_prime = b_prime * 3 - random_tool.operation_seed = 0 - a_prime = tf.random.uniform(shape=(3, 1)) - a_prime = a_prime * 3 - error_string = "An exception should have been raised before this" - try: - tf.random.uniform(shape=(3, 1)) - raise RuntimeError(error_string) - - except ValueError as err: - err_raised = err - - self.assertNotEqual(err_raised, error_string) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/legacy_tf_layers/normalization.py b/keras/legacy_tf_layers/normalization.py deleted file mode 100644 index c11f6457b2c..00000000000 --- a/keras/legacy_tf_layers/normalization.py +++ /dev/null @@ -1,480 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -"""Contains the normalization layer classes and their functional aliases.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import warnings - -import tensorflow.compat.v2 as tf - -from keras.layers.normalization import batch_normalization_v1 -from keras.legacy_tf_layers import base - -# isort: off -from tensorflow.python.util.tf_export import keras_export -from tensorflow.python.util.tf_export import tf_export - - -@keras_export(v1=["keras.__internal__.legacy.layers.BatchNormalization"]) -@tf_export(v1=["layers.BatchNormalization"]) -class BatchNormalization(batch_normalization_v1.BatchNormalization, base.Layer): - """Batch Normalization layer from (Ioffe et al., 2015). - - Keras APIs handle BatchNormalization updates to the moving_mean and - moving_variance as part of their `fit()` and `evaluate()` loops. However, if - a custom training loop is used with an instance of `Model`, these updates - need to be explicitly included. Here's a simple example of how it can be - done: - - ```python - # model is an instance of Model that contains BatchNormalization layer. - update_ops = model.get_updates_for(None) + model.get_updates_for(features) - train_op = optimizer.minimize(loss) - train_op = tf.group([train_op, update_ops]) - ``` - - Args: - axis: An `int` or list of `int`, the axis or axes that should be - normalized, typically the features axis/axes. For instance, after a - `Conv2D` layer with `data_format="channels_first"`, set `axis=1`. If a - list of axes is provided, each axis in `axis` will be normalized - simultaneously. Default is `-1` which uses the last axis. Note: when - using multi-axis batch norm, the `beta`, `gamma`, `moving_mean`, and - `moving_variance` variables are the same rank as the input Tensor, with - dimension size 1 in all reduced (non-axis) dimensions). - momentum: Momentum for the moving average. - epsilon: Small float added to variance to avoid dividing by zero. - center: If True, add offset of `beta` to normalized tensor. If False, - `beta` is ignored. - scale: If True, multiply by `gamma`. If False, `gamma` is not used. When - the next layer is linear (also e.g. `nn.relu`), this can be disabled - since the scaling can be done by the next layer. - beta_initializer: Initializer for the beta weight. - gamma_initializer: Initializer for the gamma weight. - moving_mean_initializer: Initializer for the moving mean. - moving_variance_initializer: Initializer for the moving variance. - beta_regularizer: Optional regularizer for the beta weight. - gamma_regularizer: Optional regularizer for the gamma weight. - beta_constraint: An optional projection function to be applied to the - `beta` weight after being updated by an `Optimizer` (e.g. used to - implement norm constraints or value constraints for layer weights). The - function must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are not - safe to use when doing asynchronous distributed training. - gamma_constraint: An optional projection function to be applied to the - `gamma` weight after being updated by an `Optimizer`. - renorm: Whether to use Batch Renormalization (Ioffe, 2017). This adds - extra variables during training. The inference is the same for either - value of this parameter. - renorm_clipping: A dictionary that may map keys 'rmax', 'rmin', 'dmax' to - scalar `Tensors` used to clip the renorm correction. The correction `(r, - d)` is used as `corrected_value = normalized_value * r + d`, with `r` - clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, - dmax are set to inf, 0, inf, respectively. - renorm_momentum: Momentum used to update the moving means and standard - deviations with renorm. Unlike `momentum`, this affects training and - should be neither too small (which would add noise) nor too large (which - would give stale estimates). Note that `momentum` is still applied to - get the means and variances for inference. - fused: if `None` or `True`, use a faster, fused implementation if - possible. If `False`, use the system recommended implementation. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). - virtual_batch_size: An `int`. By default, `virtual_batch_size` is `None`, - which means batch normalization is performed across the whole batch. - When `virtual_batch_size` is not `None`, instead perform "Ghost Batch - Normalization", which creates virtual sub-batches which are each - normalized separately (with shared gamma, beta, and moving statistics). - Must divide the actual batch size during execution. - adjustment: A function taking the `Tensor` containing the (dynamic) shape - of the input tensor and returning a pair (scale, bias) to apply to the - normalized values (before gamma and beta), only during training. For - example, if axis==-1, - `adjustment = lambda shape: ( - tf.random.uniform(shape[-1:], 0.93, 1.07), - tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized - value by up to 7% up or down, then shift the result by up to 0.1 - (with independent scaling and bias for each feature but shared - across all examples), and finally apply gamma and/or beta. If - `None`, no adjustment is applied. Cannot be specified if - virtual_batch_size is specified. - name: A string, the name of the layer. - References: - Batch Normalization - Accelerating Deep Network Training by Reducing - Internal Covariate Shift: - [Ioffe et al., 2015](http://proceedings.mlr.press/v37/ioffe15.html) - ([pdf](http://proceedings.mlr.press/v37/ioffe15.pdf)) - Batch Renormalization - Towards Reducing Minibatch Dependence in - Batch-Normalized Models: - [Ioffe, - 2017](http://papers.nips.cc/paper/6790-batch-renormalization-towards-reducing-minibatch-dependence-in-batch-normalized-models) - ([pdf](http://papers.nips.cc/paper/6790-batch-renormalization-towards-reducing-minibatch-dependence-in-batch-normalized-models.pdf)) - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.BatchNormalization`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - bn = tf.compat.v1.layers.BatchNormalization() - ``` - - After: - - ```python - bn = tf.keras.layers.BatchNormalization() - ``` - - #### How to Map Arguments - - TF1 Arg Name | TF2 Arg Name | Note - :------------------------ | :------------------------ | :--------------- - `name` | `name` | Layer base class - `trainable` | `trainable` | Layer base class - `axis` | `axis` | - - `momentum` | `momentum` | - - `epsilon` | `epsilon` | - - `center` | `center` | - - `scale` | `scale` | - - `beta_initializer` | `beta_initializer` | - - `gamma_initializer` | `gamma_initializer` | - - `moving_mean_initializer` | `moving_mean_initializer` | - - `beta_regularizer` | `beta_regularizer' | - - `gamma_regularizer` | `gamma_regularizer' | - - `beta_constraint` | `beta_constraint' | - - `gamma_constraint` | `gamma_constraint' | - - `renorm` | Not supported | - - `renorm_clipping` | Not supported | - - `renorm_momentum` | Not supported | - - `fused` | Not supported | - - `virtual_batch_size` | Not supported | - - `adjustment` | Not supported | - - - @end_compatibility - """ - - def __init__( - self, - axis=-1, - momentum=0.99, - epsilon=1e-3, - center=True, - scale=True, - beta_initializer=tf.compat.v1.zeros_initializer(), - gamma_initializer=tf.compat.v1.ones_initializer(), - moving_mean_initializer=tf.compat.v1.zeros_initializer(), - moving_variance_initializer=tf.compat.v1.ones_initializer(), - beta_regularizer=None, - gamma_regularizer=None, - beta_constraint=None, - gamma_constraint=None, - renorm=False, - renorm_clipping=None, - renorm_momentum=0.99, - fused=None, - trainable=True, - virtual_batch_size=None, - adjustment=None, - name=None, - **kwargs - ): - super().__init__( - axis=axis, - momentum=momentum, - epsilon=epsilon, - center=center, - scale=scale, - beta_initializer=beta_initializer, - gamma_initializer=gamma_initializer, - moving_mean_initializer=moving_mean_initializer, - moving_variance_initializer=moving_variance_initializer, - beta_regularizer=beta_regularizer, - gamma_regularizer=gamma_regularizer, - beta_constraint=beta_constraint, - gamma_constraint=gamma_constraint, - renorm=renorm, - renorm_clipping=renorm_clipping, - renorm_momentum=renorm_momentum, - fused=fused, - trainable=trainable, - virtual_batch_size=virtual_batch_size, - adjustment=adjustment, - name=name, - **kwargs - ) - - def call(self, inputs, training=False, mask=None): - return super().call(inputs, training=training, mask=mask) - - -@keras_export(v1=["keras.__internal__.legacy.layers.batch_normalization"]) -@tf_export(v1=["layers.batch_normalization"]) -def batch_normalization( - inputs, - axis=-1, - momentum=0.99, - epsilon=1e-3, - center=True, - scale=True, - beta_initializer=tf.compat.v1.zeros_initializer(), - gamma_initializer=tf.compat.v1.ones_initializer(), - moving_mean_initializer=tf.compat.v1.zeros_initializer(), - moving_variance_initializer=tf.compat.v1.ones_initializer(), - beta_regularizer=None, - gamma_regularizer=None, - beta_constraint=None, - gamma_constraint=None, - training=False, - trainable=True, - name=None, - reuse=None, - renorm=False, - renorm_clipping=None, - renorm_momentum=0.99, - fused=None, - virtual_batch_size=None, - adjustment=None, -): - """Functional interface for the batch normalization layer from_config(Ioffe - et al., 2015). - - Note: when training, the moving_mean and moving_variance need to be updated. - By default the update ops are placed in `tf.GraphKeys.UPDATE_OPS`, so they - need to be executed alongside the `train_op`. Also, be sure to add any - batch_normalization ops before getting the update_ops collection. Otherwise, - update_ops will be empty, and training/inference will not work properly. For - example: - - ```python - x_norm = tf.compat.v1.layers.batch_normalization(x, training=training) - - # ... - - update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS) - train_op = optimizer.minimize(loss) - train_op = tf.group([train_op, update_ops]) - ``` - - Args: - inputs: Tensor input. - axis: An `int`, the axis that should be normalized (typically the features - axis). For instance, after a `Convolution2D` layer with - `data_format="channels_first"`, set `axis=1` in `BatchNormalization`. - momentum: Momentum for the moving average. - epsilon: Small float added to variance to avoid dividing by zero. - center: If True, add offset of `beta` to normalized tensor. If False, - `beta` is ignored. - scale: If True, multiply by `gamma`. If False, `gamma` is not used. When - the next layer is linear (also e.g. `nn.relu`), this can be disabled - since the scaling can be done by the next layer. - beta_initializer: Initializer for the beta weight. - gamma_initializer: Initializer for the gamma weight. - moving_mean_initializer: Initializer for the moving mean. - moving_variance_initializer: Initializer for the moving variance. - beta_regularizer: Optional regularizer for the beta weight. - gamma_regularizer: Optional regularizer for the gamma weight. - beta_constraint: An optional projection function to be applied to the - `beta` weight after being updated by an `Optimizer` (e.g. used to - implement norm constraints or value constraints for layer weights). The - function must take as input the unprojected variable and must return the - projected variable (which must have the same shape). Constraints are not - safe to use when doing asynchronous distributed training. - gamma_constraint: An optional projection function to be applied to the - `gamma` weight after being updated by an `Optimizer`. - training: Either a Python boolean, or a TensorFlow boolean scalar tensor - (e.g. a placeholder). Whether to return the output in training mode - (normalized with statistics of the current batch) or in inference mode - (normalized with moving statistics). **NOTE**: make sure to set this - parameter correctly, or else your training/inference will not work - properly. - trainable: Boolean, if `True` also add variables to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). - name: String, the name of the layer. - reuse: Boolean, whether to reuse the weights of a previous layer by the - same name. - renorm: Whether to use Batch Renormalization (Ioffe, 2017). This adds - extra variables during training. The inference is the same for either - value of this parameter. - renorm_clipping: A dictionary that may map keys 'rmax', 'rmin', 'dmax' to - scalar `Tensors` used to clip the renorm correction. The correction `(r, - d)` is used as `corrected_value = normalized_value * r + d`, with `r` - clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, - dmax are set to inf, 0, inf, respectively. - renorm_momentum: Momentum used to update the moving means and standard - deviations with renorm. Unlike `momentum`, this affects training and - should be neither too small (which would add noise) nor too large (which - would give stale estimates). Note that `momentum` is still applied to - get the means and variances for inference. - fused: if `None` or `True`, use a faster, fused implementation if - possible. If `False`, use the system recommended implementation. - virtual_batch_size: An `int`. By default, `virtual_batch_size` is `None`, - which means batch normalization is performed across the whole batch. - When `virtual_batch_size` is not `None`, instead perform "Ghost Batch - Normalization", which creates virtual sub-batches which are each - normalized separately (with shared gamma, beta, and moving statistics). - Must divide the actual batch size during execution. - adjustment: A function taking the `Tensor` containing the (dynamic) shape - of the input tensor and returning a pair (scale, bias) to apply to the - normalized values (before gamma and beta), only during training. For - example, if axis==-1, - `adjustment = lambda shape: ( - tf.random.uniform(shape[-1:], 0.93, 1.07), - tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized - value by up to 7% up or down, then shift the result by up to 0.1 - (with independent scaling and bias for each feature but shared - across all examples), and finally apply gamma and/or beta. If - `None`, no adjustment is applied. Cannot be specified if - virtual_batch_size is specified. - - Returns: - Output tensor. - - Raises: - ValueError: if eager execution is enabled. - - References: - Batch Normalization - Accelerating Deep Network Training by Reducing - Internal Covariate Shift: - [Ioffe et al., 2015](http://proceedings.mlr.press/v37/ioffe15.html) - ([pdf](http://proceedings.mlr.press/v37/ioffe15.pdf)) - Batch Renormalization - Towards Reducing Minibatch Dependence in - Batch-Normalized Models: - [Ioffe, - 2017](http://papers.nips.cc/paper/6790-batch-renormalization-towards-reducing-minibatch-dependence-in-batch-normalized-models) - ([pdf](http://papers.nips.cc/paper/6790-batch-renormalization-towards-reducing-minibatch-dependence-in-batch-normalized-models.pdf)) - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.BatchNormalization`. - - The batch updating pattern with - `tf.control_dependencies(tf.GraphKeys.UPDATE_OPS)` should not be used in - native TF2. Consult the `tf.keras.layers.BatchNormalization` documentation - for further information. - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - x_norm = tf.compat.v1.layers.batch_normalization(x) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input(shape=(28, 28, 1),) - y = tf.keras.layers.BatchNormalization()(x) - model = tf.keras.Model(x, y) - ``` - #### How to Map Arguments - - TF1 Arg Name | TF2 Arg Name | Note - :------------------------ | :------------------------ | :--------------- - `name` | `name` | Layer base class - `trainable` | `trainable` | Layer base class - `axis` | `axis` | - - `momentum` | `momentum` | - - `epsilon` | `epsilon` | - - `center` | `center` | - - `scale` | `scale` | - - `beta_initializer` | `beta_initializer` | - - `gamma_initializer` | `gamma_initializer` | - - `moving_mean_initializer` | `moving_mean_initializer` | - - `beta_regularizer` | `beta_regularizer' | - - `gamma_regularizer` | `gamma_regularizer' | - - `beta_constraint` | `beta_constraint' | - - `gamma_constraint` | `gamma_constraint' | - - `renorm` | Not supported | - - `renorm_clipping` | Not supported | - - `renorm_momentum` | Not supported | - - `fused` | Not supported | - - `virtual_batch_size` | Not supported | - - `adjustment` | Not supported | - - - @end_compatibility - """ - warnings.warn( - "`tf.layers.batch_normalization` is deprecated and " - "will be removed in a future version. " - "Please use `tf.keras.layers.BatchNormalization` instead. " - "In particular, `tf.control_dependencies(tf.GraphKeys.UPDATE_OPS)` " - "should not be used (consult the `tf.keras.layers.BatchNormalization` " - "documentation).", - stacklevel=2, - ) - layer = BatchNormalization( - axis=axis, - momentum=momentum, - epsilon=epsilon, - center=center, - scale=scale, - beta_initializer=beta_initializer, - gamma_initializer=gamma_initializer, - moving_mean_initializer=moving_mean_initializer, - moving_variance_initializer=moving_variance_initializer, - beta_regularizer=beta_regularizer, - gamma_regularizer=gamma_regularizer, - beta_constraint=beta_constraint, - gamma_constraint=gamma_constraint, - renorm=renorm, - renorm_clipping=renorm_clipping, - renorm_momentum=renorm_momentum, - fused=fused, - trainable=trainable, - virtual_batch_size=virtual_batch_size, - adjustment=adjustment, - name=name, - _reuse=reuse, - _scope=name, - ) - return layer(inputs, training=training) - - -# Aliases - -BatchNorm = BatchNormalization -batch_norm = batch_normalization diff --git a/keras/legacy_tf_layers/normalization_test.py b/keras/legacy_tf_layers/normalization_test.py deleted file mode 100644 index 097b20b8555..00000000000 --- a/keras/legacy_tf_layers/normalization_test.py +++ /dev/null @@ -1,1677 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for tf.layers.normalization.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.legacy_tf_layers import convolutional as conv_layers -from keras.legacy_tf_layers import normalization as normalization_layers - -# isort: off -from tensorflow.core.protobuf import saver_pb2 -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -@tf_test_utils.run_v1_only("b/120545219") -class BNTest(tf.test.TestCase): - def _simple_model(self, image, fused, freeze_mode): - output_channels, kernel_size = 2, 3 - conv = conv_layers.conv2d( - image, - output_channels, - kernel_size, - use_bias=False, - kernel_initializer=tf.compat.v1.ones_initializer(), - ) - bn_layer = normalization_layers.BatchNormalization(fused=fused) - bn_layer._bessels_correction_test_only = False - training = not freeze_mode - bn = bn_layer(conv, training=training) - loss = tf.reduce_sum(tf.abs(bn)) - optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.01) - if not freeze_mode: - update_ops = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.UPDATE_OPS - ) - with tf.control_dependencies(update_ops): - train_op = optimizer.minimize(loss) - else: - train_op = optimizer.minimize(loss) - saver = tf.compat.v1.train.Saver(write_version=saver_pb2.SaverDef.V2) - return loss, train_op, saver - - def _train( - self, - checkpoint_path, - shape, - use_gpu, - is_fused, - restore=False, - freeze_mode=False, - dtype=tf.float32, - ): - tf.compat.v1.reset_default_graph() - graph = tf.compat.v1.get_default_graph() - with self.session(graph=graph, use_gpu=use_gpu) as sess: - image = tf.compat.v1.placeholder(dtype=dtype, shape=shape) - loss, train_op, saver = self._simple_model( - image, is_fused, freeze_mode - ) - if restore: - saver.restore(sess, checkpoint_path) - else: - self.evaluate(tf.compat.v1.global_variables_initializer()) - np.random.seed(0) - for _ in range(2): - image_val = np.random.rand(*shape).astype(dtype.as_numpy_dtype) - sess.run([loss, train_op], feed_dict={image: image_val}) - if restore: - all_vars = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.GLOBAL_VARIABLES - ) - all_vars_values = [var.eval() for var in all_vars] - return all_vars_values - else: - saver.save(sess, checkpoint_path) - - def _infer(self, checkpoint_path, image_val, shape, use_gpu, is_fused): - dtype = image_val.dtype - tf.compat.v1.reset_default_graph() - graph = tf.compat.v1.get_default_graph() - with self.session(graph=graph, use_gpu=use_gpu) as sess: - image = tf.compat.v1.placeholder(dtype=dtype, shape=shape) - loss, _, saver = self._simple_model(image, is_fused, True) - saver.restore(sess, checkpoint_path) - loss_val = sess.run(loss, feed_dict={image: image_val}) - return loss_val - - def _trainEvalSequence( - self, dtype, train1_use_gpu, train2_use_gpu, infer_use_gpu - ): - batch, height, width, input_channels = 2, 4, 5, 3 - shape = [batch, height, width, input_channels] - - # Not all characters in a dtype string representation are allowed in - # filenames in all operating systems. This map will sanitize these. - dtype_to_valid_fn = { - tf.float16: "float16", - tf.float32: "float32", - } - checkpoint = os.path.join( - self.get_temp_dir(), - "cp_%s_%s_%s_%s" - % ( - dtype_to_valid_fn[dtype], - train1_use_gpu, - train2_use_gpu, - infer_use_gpu, - ), - ) - - self._train( - checkpoint, - shape, - use_gpu=train1_use_gpu, - is_fused=True, - restore=False, - freeze_mode=False, - dtype=dtype, - ) - - train_vars = self._train( - checkpoint, - shape, - use_gpu=train2_use_gpu, - is_fused=True, - restore=True, - freeze_mode=False, - dtype=dtype, - ) - - np.random.seed(0) - image_val = np.random.rand(batch, height, width, input_channels).astype( - dtype.as_numpy_dtype - ) - loss_val = self._infer( - checkpoint, image_val, shape, use_gpu=infer_use_gpu, is_fused=True - ) - - return train_vars, loss_val - - def testHalfPrecision(self): - ref_vars, ref_loss = self._trainEvalSequence( - dtype=tf.float32, - train1_use_gpu=True, - train2_use_gpu=True, - infer_use_gpu=True, - ) - - self.assertEqual(len(ref_vars), 5) - - for train1_use_gpu in [True, False]: - for train2_use_gpu in [True, False]: - for infer_use_gpu in [True, False]: - test_vars, test_loss = self._trainEvalSequence( - tf.float16, - train1_use_gpu, - train2_use_gpu, - infer_use_gpu, - ) - self.assertEqual(len(test_vars), 5) - for test_var, ref_var in zip(test_vars, ref_vars): - self.assertAllClose( - test_var, ref_var, rtol=1.0e-3, atol=1.0e-3 - ) - self.assertAllClose( - test_loss, ref_loss, rtol=1.0e-3, atol=1.0e-3 - ) - - def _testCheckpoint( - self, - is_fused_checkpoint_a, - is_fused_checkpoint_b, - use_gpu_checkpoint_a, - use_gpu_checkpoint_b, - use_gpu_test_a, - use_gpu_test_b, - freeze_mode, - ): - batch, height, width, input_channels = 2, 4, 5, 3 - shape = [batch, height, width, input_channels] - base_path = "%s_%s_%s_%s_%s_%s" % ( - is_fused_checkpoint_a, - is_fused_checkpoint_b, - use_gpu_checkpoint_a, - use_gpu_checkpoint_b, - use_gpu_test_a, - use_gpu_test_b, - ) - - checkpoint_path_a = os.path.join( - self.get_temp_dir(), f"checkpoint_a_{base_path}" - ) - self._train( - checkpoint_path_a, - shape, - use_gpu_checkpoint_a, - is_fused_checkpoint_a, - restore=False, - freeze_mode=freeze_mode, - ) - checkpoint_path_b = os.path.join( - self.get_temp_dir(), f"checkpoint_b_{base_path}" - ) - self._train( - checkpoint_path_b, - shape, - use_gpu_checkpoint_b, - is_fused_checkpoint_b, - restore=False, - freeze_mode=freeze_mode, - ) - - vars_fused = self._train( - checkpoint_path_a, - shape, - use_gpu_test_a, - True, - restore=True, - freeze_mode=freeze_mode, - ) - vars_nonfused = self._train( - checkpoint_path_b, - shape, - use_gpu_test_b, - False, - restore=True, - freeze_mode=freeze_mode, - ) - self.assertEqual(len(vars_fused), 5) - self.assertEqual(len(vars_nonfused), 5) - for var_fused, var_nonfused in zip(vars_fused, vars_nonfused): - self.assertAllClose(var_fused, var_nonfused, atol=1e-5) - - image_val = np.random.rand(batch, height, width, input_channels).astype( - np.float32 - ) - loss_fused_val = self._infer( - checkpoint_path_a, image_val, shape, use_gpu_test_a, True - ) - loss_nonfused_val = self._infer( - checkpoint_path_b, image_val, shape, use_gpu_test_b, False - ) - self.assertAllClose( - loss_fused_val, loss_nonfused_val, atol=1e-6, rtol=3e-4 - ) - - def _testCheckpointCrossDevice( - self, ckpt_a_fused, ckpt_a_use_gpu, ckpt_b_fused, ckpt_b_use_gpu - ): - for use_gpu_test_a in [True, False]: - for use_gpu_test_b in [True, False]: - for freeze_mode in [True, False]: - self._testCheckpoint( - ckpt_a_fused, - ckpt_a_use_gpu, - ckpt_b_fused, - ckpt_b_use_gpu, - use_gpu_test_a, - use_gpu_test_b, - freeze_mode, - ) - - def testCheckpointFusedCPUAndFusedGPU(self): - self._testCheckpointCrossDevice(True, False, True, True) - - def testCheckpointFusedCPUAndFusedCPU(self): - self._testCheckpointCrossDevice(True, False, True, False) - - def testCheckpointFusedGPUAndFusedGPU(self): - self._testCheckpointCrossDevice(True, True, True, True) - - def testCheckpointNonFusedCPUAndNonFusedGPU(self): - self._testCheckpointCrossDevice(False, False, False, True) - - def testCheckpointNonFusedCPUAndNonFusedCPU(self): - self._testCheckpointCrossDevice(False, False, False, False) - - def testCheckpointNonFusedGPUAndNonFusedGPU(self): - self._testCheckpointCrossDevice(False, True, False, True) - - def testCheckpointNonFusedGPUAndFusedGPU(self): - self._testCheckpointCrossDevice(False, True, True, True) - - def testCheckpointNonFusedGPUAndFusedCPU(self): - self._testCheckpointCrossDevice(False, True, True, False) - - def testCheckpointNonFusedCPUAndFusedCPU(self): - self._testCheckpointCrossDevice(False, False, True, False) - - def testCreateBN(self): - # Call layer. - bn = normalization_layers.BatchNormalization(axis=1) - inputs = tf.random.uniform((5, 4, 3), seed=1) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - # Verify shape. - self.assertListEqual(outputs.get_shape().as_list(), [5, 4, 3]) - - # Verify layer attributes. - self.assertEqual(len(bn.updates), 2) - self.assertEqual(len(bn.variables), 4) - self.assertEqual(len(bn.trainable_variables), 2) - self.assertEqual(len(bn.non_trainable_variables), 2) - - # Test that updates were created and added to UPDATE_OPS. - self.assertEqual(len(bn.updates), 2) - self.assertListEqual( - tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS), - bn.updates, - ) - - # Test that weights were created and added to TRAINABLE_VARIABLES. - self.assertListEqual( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES - ), - bn.trainable_variables, - ) - - def testCreateFusedBNFloat16(self): - # Call layer. - bn = normalization_layers.BatchNormalization(axis=1, fused=True) - inputs = tf.random.uniform((5, 4, 3, 3), seed=1, dtype=tf.float16) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - # Verify shape. - self.assertListEqual(outputs.get_shape().as_list(), [5, 4, 3, 3]) - - # Verify layer attributes. - self.assertEqual(len(bn.updates), 2) - self.assertEqual(len(bn.variables), 4) - self.assertEqual(len(bn.trainable_variables), 2) - self.assertEqual(len(bn.non_trainable_variables), 2) - for var in bn.variables: - self.assertTrue(var.dtype._is_ref_dtype) - - # Test that updates were created and added to UPDATE_OPS. - self.assertEqual(len(bn.updates), 2) - self.assertListEqual( - tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS), - bn.updates, - ) - - # Test that weights were created and added to TRAINABLE_VARIABLES. - self.assertListEqual( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES - ), - bn.trainable_variables, - ) - - def test3DInputAxis1(self): - epsilon = 1e-3 - bn = normalization_layers.BatchNormalization( - axis=1, epsilon=epsilon, momentum=0.9 - ) - inputs = tf.Variable( - np.random.random((5, 4, 3)) + 100, dtype=tf.float32 - ) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - with self.cached_session() as sess: - # Test training with placeholder learning phase. - self.evaluate(tf.compat.v1.global_variables_initializer()) - - np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) - np_gamma = np.reshape(np_gamma, (1, 4, 1)) - np_beta = np.reshape(np_beta, (1, 4, 1)) - - for _ in range(100): - np_output, _, _ = sess.run( - [outputs] + bn.updates, feed_dict={training: True} - ) - # Verify that the axis is normalized during training. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - # Verify that the statistics are updated during training. - moving_mean, moving_var = self.evaluate( - [bn.moving_mean, bn.moving_variance] - ) - np_inputs = self.evaluate(inputs) - mean = np.mean(np_inputs, axis=(0, 2)) - std = np.std(np_inputs, axis=(0, 2)) - variance = np.square(std) - self.assertAllClose(mean, moving_mean, atol=1e-2) - self.assertAllClose(variance, moving_var, atol=1e-2) - - # Test inference with placeholder learning phase. - np_output = sess.run(outputs, feed_dict={training: False}) - - # Verify that the axis is normalized during inference. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - def test3DInputAxis2(self): - epsilon = 1e-3 - bn = normalization_layers.BatchNormalization( - axis=2, epsilon=epsilon, momentum=0.9 - ) - inputs = tf.Variable( - np.random.random((5, 4, 3)) + 100, dtype=tf.float32 - ) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - with self.cached_session() as sess: - # Test training with placeholder learning phase. - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) - np_gamma = np.reshape(np_gamma, (1, 1, 3)) - np_beta = np.reshape(np_beta, (1, 1, 3)) - for _ in range(100): - np_output, _, _ = sess.run( - [outputs] + bn.updates, feed_dict={training: True} - ) - # Verify that the axis is normalized during training. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - # Verify that the statistics are updated during training. - moving_mean, moving_var = self.evaluate( - [bn.moving_mean, bn.moving_variance] - ) - np_inputs = self.evaluate(inputs) - mean = np.mean(np_inputs, axis=(0, 1)) - std = np.std(np_inputs, axis=(0, 1)) - variance = np.square(std) - self.assertAllClose(mean, moving_mean, atol=1e-2) - self.assertAllClose(variance, moving_var, atol=1e-2) - - # Test inference with placeholder learning phase. - np_output = sess.run(outputs, feed_dict={training: False}) - - # Verify that the axis is normalized during inference. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - def test4DInputAxis1(self): - if tf.test.is_gpu_available(cuda_only=True): - epsilon = 1e-3 - bn = normalization_layers.BatchNormalization( - axis=1, epsilon=epsilon, momentum=0.9 - ) - inputs = tf.Variable( - np.random.random((5, 4, 3, 6)) + 100, dtype=tf.float32 - ) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - with self.session() as sess: - # Test training with placeholder learning phase. - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) - np_gamma = np.reshape(np_gamma, (1, 4, 1, 1)) - np_beta = np.reshape(np_beta, (1, 4, 1, 1)) - for _ in range(100): - np_output, _, _ = sess.run( - [outputs] + bn.updates, feed_dict={training: True} - ) - # Verify that the axis is normalized during training. - normed_np_output = ( - (np_output - epsilon) * np_gamma - ) + np_beta - self.assertAlmostEqual( - np.mean(normed_np_output), 0.0, places=1 - ) - self.assertAlmostEqual( - np.std(normed_np_output), 1.0, places=1 - ) - - # Verify that the statistics are updated during training. - moving_mean, moving_var = self.evaluate( - [bn.moving_mean, bn.moving_variance] - ) - np_inputs = self.evaluate(inputs) - mean = np.mean(np_inputs, axis=(0, 2, 3)) - std = np.std(np_inputs, axis=(0, 2, 3)) - variance = np.square(std) - self.assertAllClose(mean, moving_mean, atol=1e-2) - self.assertAllClose(variance, moving_var, atol=1e-2) - - # Test inference with placeholder learning phase. - np_output = sess.run(outputs, feed_dict={training: False}) - - # Verify that the axis is normalized during inference. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - def test4DInputAxis2(self): - epsilon = 1e-3 - bn = normalization_layers.BatchNormalization( - axis=2, epsilon=epsilon, momentum=0.9 - ) - inputs = tf.Variable( - np.random.random((5, 4, 3, 6)) + 100, dtype=tf.float32 - ) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - with self.cached_session() as sess: - # Test training with placeholder learning phase. - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) - np_gamma = np.reshape(np_gamma, (1, 1, 3, 1)) - np_beta = np.reshape(np_beta, (1, 1, 3, 1)) - for _ in range(100): - np_output, _, _ = sess.run( - [outputs] + bn.updates, feed_dict={training: True} - ) - # Verify that the axis is normalized during training. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - # Verify that the statistics are updated during training. - moving_mean, moving_var = self.evaluate( - [bn.moving_mean, bn.moving_variance] - ) - np_inputs = self.evaluate(inputs) - mean = np.mean(np_inputs, axis=(0, 1, 3)) - std = np.std(np_inputs, axis=(0, 1, 3)) - variance = np.square(std) - self.assertAllClose(mean, moving_mean, atol=1e-2) - self.assertAllClose(variance, moving_var, atol=1e-2) - - # Test inference with placeholder learning phase. - np_output = sess.run(outputs, feed_dict={training: False}) - - # Verify that the axis is normalized during inference. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - def test4DInputAxis3(self): - epsilon = 1e-3 - bn = normalization_layers.BatchNormalization( - axis=3, epsilon=epsilon, momentum=0.9 - ) - inputs = tf.Variable( - np.random.random((5, 4, 3, 6)) + 100, dtype=tf.float32 - ) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - with self.cached_session() as sess: - # Test training with placeholder learning phase. - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) - np_gamma = np.reshape(np_gamma, (1, 1, 1, 6)) - np_beta = np.reshape(np_beta, (1, 1, 1, 6)) - for _ in range(100): - np_output, _, _ = sess.run( - [outputs] + bn.updates, feed_dict={training: True} - ) - # Verify that the axis is normalized during training. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - # Verify that the statistics are updated during training. - moving_mean, moving_var = self.evaluate( - [bn.moving_mean, bn.moving_variance] - ) - np_inputs = self.evaluate(inputs) - mean = np.mean(np_inputs, axis=(0, 1, 2)) - std = np.std(np_inputs, axis=(0, 1, 2)) - variance = np.square(std) - self.assertAllClose(mean, moving_mean, atol=1e-2) - self.assertAllClose(variance, moving_var, atol=1e-2) - - # Test inference with placeholder learning phase. - np_output = sess.run(outputs, feed_dict={training: False}) - - # Verify that the axis is normalized during inference. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - def test4DInputAxis3Fused(self): - epsilon = 1e-3 - bn = normalization_layers.BatchNormalization( - axis=3, epsilon=epsilon, momentum=0.9, fused=True - ) - inputs = tf.Variable( - np.random.random((5, 4, 3, 6)) + 100, dtype=tf.float32 - ) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - with self.cached_session() as sess: - # Test training with placeholder learning phase. - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) - np_gamma = np.reshape(np_gamma, (1, 1, 1, 6)) - np_beta = np.reshape(np_beta, (1, 1, 1, 6)) - for _ in range(100): - np_output, _, _ = sess.run( - [outputs] + bn.updates, feed_dict={training: True} - ) - # Verify that the axis is normalized during training. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - # Verify that the statistics are updated during training. - moving_mean, moving_var = self.evaluate( - [bn.moving_mean, bn.moving_variance] - ) - np_inputs = self.evaluate(inputs) - mean = np.mean(np_inputs, axis=(0, 1, 2)) - std = np.std(np_inputs, axis=(0, 1, 2)) - variance = np.square(std) - self.assertAllClose(mean, moving_mean, atol=1e-2) - self.assertAllClose(variance, moving_var, atol=1e-2) - - # Test inference with placeholder learning phase. - np_output = sess.run(outputs, feed_dict={training: False}) - - # Verify that the axis is normalized during inference. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - def test4DInputAxis1Fused(self): - if tf.test.is_gpu_available(cuda_only=True): - epsilon = 1e-3 - bn = normalization_layers.BatchNormalization( - axis=1, epsilon=epsilon, momentum=0.9, fused=True - ) - inputs = tf.Variable( - np.random.random((5, 4, 3, 6)) + 100, dtype=tf.float32 - ) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - with self.cached_session() as sess: - # Test training with placeholder learning phase. - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) - np_gamma = np.reshape(np_gamma, (1, 4, 1, 1)) - np_beta = np.reshape(np_beta, (1, 4, 1, 1)) - for _ in range(100): - np_output, _, _ = sess.run( - [outputs] + bn.updates, feed_dict={training: True} - ) - # Verify that the axis is normalized during training. - normed_np_output = ( - (np_output - epsilon) * np_gamma - ) + np_beta - self.assertAlmostEqual( - np.mean(normed_np_output), 0.0, places=1 - ) - self.assertAlmostEqual( - np.std(normed_np_output), 1.0, places=1 - ) - - # Verify that the statistics are updated during training. - moving_mean, moving_var = self.evaluate( - [bn.moving_mean, bn.moving_variance] - ) - np_inputs = self.evaluate(inputs) - mean = np.mean(np_inputs, axis=(0, 2, 3)) - std = np.std(np_inputs, axis=(0, 2, 3)) - variance = np.square(std) - self.assertAllClose(mean, moving_mean, atol=1e-2) - self.assertAllClose(variance, moving_var, atol=1e-2) - - # Test inference with placeholder learning phase. - np_output = sess.run(outputs, feed_dict={training: False}) - - # Verify that the axis is normalized during inference. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - def testNegativeAxis(self): - epsilon = 1e-3 - bn = normalization_layers.BatchNormalization( - axis=-1, epsilon=epsilon, momentum=0.9 - ) - inputs = tf.Variable( - np.random.random((5, 4, 3, 6)) + 100, dtype=tf.float32 - ) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - with self.cached_session() as sess: - # Test training with placeholder learning phase. - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) - np_gamma = np.reshape(np_gamma, (1, 1, 1, 6)) - np_beta = np.reshape(np_beta, (1, 1, 1, 6)) - for _ in range(100): - np_output, _, _ = sess.run( - [outputs] + bn.updates, feed_dict={training: True} - ) - - # Verify that the axis is normalized during training. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - # Verify that the statistics are updated during training. - moving_mean, moving_var = self.evaluate( - [bn.moving_mean, bn.moving_variance] - ) - np_inputs = self.evaluate(inputs) - mean = np.mean(np_inputs, axis=(0, 1, 2)) - std = np.std(np_inputs, axis=(0, 1, 2)) - variance = np.square(std) - self.assertAllClose(mean, moving_mean, atol=1e-2) - self.assertAllClose(variance, moving_var, atol=1e-2) - - # Test inference with placeholder learning phase. - np_output = sess.run(outputs, feed_dict={training: False}) - - # Verify that the axis is normalized during inference. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - def testBooleanLearningPhase(self): - epsilon = 1e-3 - bn = normalization_layers.BatchNormalization( - axis=-1, epsilon=epsilon, momentum=0.9 - ) - inputs = tf.Variable( - np.random.random((5, 4, 3, 6)) + 100, dtype=tf.float32 - ) - outputs_training = bn(inputs, training=True) - outputs_infer = bn(inputs, training=False) - - with self.cached_session() as sess: - # Test training with placeholder learning phase. - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) - np_gamma = np.reshape(np_gamma, (1, 1, 1, 6)) - np_beta = np.reshape(np_beta, (1, 1, 1, 6)) - for _ in range(100): - np_output, _, _ = sess.run([outputs_training] + bn.updates) - # Verify that the axis is normalized during training. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=2) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - # Verify that the statistics are updated during training. - moving_mean, moving_var = self.evaluate( - [bn.moving_mean, bn.moving_variance] - ) - np_inputs = self.evaluate(inputs) - mean = np.mean(np_inputs, axis=(0, 1, 2)) - std = np.std(np_inputs, axis=(0, 1, 2)) - variance = np.square(std) - self.assertAllClose(mean, moving_mean, atol=1e-2) - self.assertAllClose(variance, moving_var, atol=1e-2) - - # Test inference with placeholder learning phase. - np_output = self.evaluate(outputs_infer) - - # Verify that the axis is normalized during inference. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - def testFunctionalNoReuse(self): - inputs = tf.Variable(np.random.random((5, 4, 3, 6)), dtype=tf.float32) - epsilon = 1e-3 - training = tf.compat.v1.placeholder(dtype="bool") - outputs = normalization_layers.batch_norm( - inputs, - axis=-1, - momentum=0.9, - epsilon=epsilon, - training=training, - name="bn", - ) - - updates = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS) - all_vars = {v.name: v for v in tf.compat.v1.global_variables()} - moving_mean = all_vars["bn/moving_mean:0"] - moving_variance = all_vars["bn/moving_variance:0"] - beta = all_vars["bn/beta:0"] - gamma = all_vars["bn/gamma:0"] - - with self.cached_session() as sess: - # Test training with placeholder learning phase. - self.evaluate(tf.compat.v1.global_variables_initializer()) - np_gamma, np_beta = self.evaluate([gamma, beta]) - np_gamma = np.reshape(np_gamma, (1, 1, 1, 6)) - np_beta = np.reshape(np_beta, (1, 1, 1, 6)) - for _ in range(100): - np_output, _, _ = sess.run( - [outputs] + updates, feed_dict={training: True} - ) - # Verify that the axis is normalized during training. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - # Verify that the statistics are updated during training. - np_moving_mean, np_moving_var = self.evaluate( - [moving_mean, moving_variance] - ) - np_inputs = self.evaluate(inputs) - np_mean = np.mean(np_inputs, axis=(0, 1, 2)) - np_std = np.std(np_inputs, axis=(0, 1, 2)) - np_variance = np.square(np_std) - self.assertAllClose(np_mean, np_moving_mean, atol=1e-2) - self.assertAllClose(np_variance, np_moving_var, atol=1e-2) - - # Test inference with placeholder learning phase. - np_output = sess.run(outputs, feed_dict={training: False}) - - # Verify that the axis is normalized during inference. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - def testFunctionalReuse(self): - inputs1 = tf.Variable(np.random.random((5, 4, 3, 6)), dtype=tf.float32) - inputs2 = tf.Variable(np.random.random((5, 4, 3, 6)), dtype=tf.float32) - epsilon = 1e-3 - training = tf.compat.v1.placeholder(dtype="bool") - _ = normalization_layers.batch_norm( - inputs1, - axis=-1, - momentum=0.9, - epsilon=epsilon, - training=training, - name="bn", - ) - outputs2 = normalization_layers.batch_norm( - inputs2, - axis=-1, - momentum=0.9, - epsilon=epsilon, - training=training, - name="bn", - reuse=True, - ) - - # Last 2 update ops - updates = tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.UPDATE_OPS - )[-2:] - all_vars = {v.name: v for v in tf.compat.v1.global_variables()} - moving_mean = all_vars["bn/moving_mean:0"] - moving_variance = all_vars["bn/moving_variance:0"] - beta = all_vars["bn/beta:0"] - gamma = all_vars["bn/gamma:0"] - - with self.cached_session() as sess: - # Test training with placeholder learning phase. - self.evaluate(tf.compat.v1.global_variables_initializer()) - for _ in range(100): - np_output, _, _ = sess.run( - [outputs2] + updates, feed_dict={training: True} - ) - - # Verify that the statistics are updated during training. - np_moving_mean, np_moving_var = self.evaluate( - [moving_mean, moving_variance] - ) - np_inputs = self.evaluate(inputs2) - np_mean = np.mean(np_inputs, axis=(0, 1, 2)) - np_std = np.std(np_inputs, axis=(0, 1, 2)) - np_variance = np.square(np_std) - self.assertAllClose(np_mean, np_moving_mean, atol=1e-2) - self.assertAllClose(np_variance, np_moving_var, atol=1e-2) - - # Verify that the axis is normalized during training. - np_gamma, np_beta = self.evaluate([gamma, beta]) - np_gamma = np.reshape(np_gamma, (1, 1, 1, 6)) - np_beta = np.reshape(np_beta, (1, 1, 1, 6)) - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=2) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - # Test inference with placeholder learning phase. - np_output = sess.run(outputs2, feed_dict={training: False}) - - # Verify that the axis is normalized during inference. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=2) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - def testFunctionalReuseFromScope(self): - inputs = tf.Variable(np.random.random((5, 4, 3, 6)), dtype=tf.float32) - epsilon = 1e-3 - training = tf.compat.v1.placeholder(dtype="bool") - with tf.compat.v1.variable_scope("scope"): - _ = normalization_layers.batch_norm( - inputs, - axis=-1, - momentum=0.9, - epsilon=epsilon, - training=training, - ) - self.assertEqual(len(tf.compat.v1.global_variables()), 5) - with tf.compat.v1.variable_scope("scope", reuse=True): - _ = normalization_layers.batch_norm( - inputs, - axis=-1, - momentum=0.9, - epsilon=epsilon, - training=training, - ) - self.assertEqual(len(tf.compat.v1.global_variables()), 5) - - def testNoCenter(self): - bn = normalization_layers.BatchNormalization(axis=1, center=False) - inputs = tf.random.uniform((5, 4, 3), seed=1) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - # Verify shape. - self.assertListEqual(outputs.get_shape().as_list(), [5, 4, 3]) - - # Verify layer attributes. - self.assertEqual(len(bn.updates), 2) - self.assertEqual(len(bn.variables), 3) - self.assertEqual(len(bn.trainable_variables), 1) - self.assertEqual(len(bn.non_trainable_variables), 2) - - def testNoScale(self): - bn = normalization_layers.BatchNormalization(axis=1, scale=False) - inputs = tf.random.uniform((5, 4, 3), seed=1) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - # Verify shape. - self.assertListEqual(outputs.get_shape().as_list(), [5, 4, 3]) - - # Verify layer attributes. - self.assertEqual(len(bn.updates), 2) - self.assertEqual(len(bn.variables), 3) - self.assertEqual(len(bn.trainable_variables), 1) - self.assertEqual(len(bn.non_trainable_variables), 2) - - def testRegularizers(self): - reg = lambda x: 0.1 * tf.reduce_sum(x) - bn = normalization_layers.BatchNormalization( - axis=1, beta_regularizer=reg - ) - inputs = tf.random.uniform((5, 4, 3), seed=1) - training = tf.compat.v1.placeholder(dtype="bool") - _ = bn(inputs, training=training) - self.assertEqual(len(bn.losses), 1) - - bn = normalization_layers.BatchNormalization( - axis=1, gamma_regularizer=reg - ) - inputs = tf.random.uniform((5, 4, 3), seed=1) - training = tf.compat.v1.placeholder(dtype="bool") - _ = bn(inputs, training=training) - self.assertEqual(len(bn.losses), 1) - - def testConstraints(self): - g_constraint = lambda x: x / tf.reduce_sum(x) - b_constraint = lambda x: x / tf.reduce_max(x) - bn = normalization_layers.BatchNormalization( - axis=1, gamma_constraint=g_constraint, beta_constraint=b_constraint - ) - inputs = tf.random.uniform((5, 4, 3), seed=1) - bn(inputs) - self.assertEqual(bn.gamma_constraint, g_constraint) - self.assertEqual(bn.beta_constraint, b_constraint) - - def testRenorm(self): - shape = (4, 3) - xt = tf.compat.v1.placeholder(tf.float32, shape) - momentum = 0.99 - renorm_momentum = 0.8 - rmax = 1.1 - rmin = 0.9 - dmax = 0.1 - gamma = 2.0 - beta = 3.0 - epsilon = 0.001 - bn = normalization_layers.BatchNormalization( - axis=1, - gamma_initializer=tf.compat.v1.constant_initializer(gamma), - beta_initializer=tf.compat.v1.constant_initializer(beta), - epsilon=epsilon, - momentum=momentum, - renorm=True, - renorm_clipping={"rmax": rmax, "rmin": rmin, "dmax": dmax}, - renorm_momentum=renorm_momentum, - ) - training = tf.compat.v1.placeholder(tf.bool) - yt = bn(xt, training=training) - - moving_mean = 0.0 - moving_stddev = 1.0 - renorm_mean = 0.0 - renorm_stddev = 1.0 - with self.session() as sess: - self.evaluate(tf.compat.v1.global_variables_initializer()) - for _ in range(5): - x = np.random.random(shape) - - mean = x.mean(0) - variance = x.var(0) - stddev = np.sqrt(variance + epsilon) - r = (stddev / renorm_stddev).clip(rmin, rmax) - d = ((mean - renorm_mean) / renorm_stddev).clip(-dmax, dmax) - y_train = ((x - mean) / stddev * r + d) * gamma + beta - renorm_mean += (mean - renorm_mean) * (1.0 - renorm_momentum) - renorm_stddev += (stddev - renorm_stddev) * ( - 1.0 - renorm_momentum - ) - moving_mean += (mean - moving_mean) * (1.0 - momentum) - moving_stddev += (stddev - moving_stddev) * (1.0 - momentum) - - y_test = ( - (x - moving_mean) - / (moving_stddev * moving_stddev) ** 0.5 - * gamma - ) + beta - - yt_val_train, _, _ = sess.run( - [yt] + bn.updates, feed_dict={xt: x, training: True} - ) - yt_val_test, _, _ = sess.run( - [yt] + bn.updates, feed_dict={xt: x, training: False} - ) - - self.assertAllClose(y_train, yt_val_train, atol=1e-5) - self.assertAllClose(y_test, yt_val_test, atol=1e-5) - - def testRenormNoClippingSameMomentumGivesSameTestTrain(self): - shape = (4, 3) - xt = tf.compat.v1.placeholder(tf.float32, shape) - momentum = 0.9 - renorm_momentum = 0.9 - gamma = 2.0 - beta = 3.0 - epsilon = 0.001 - bn = normalization_layers.BatchNormalization( - axis=1, - gamma_initializer=tf.compat.v1.constant_initializer(gamma), - beta_initializer=tf.compat.v1.constant_initializer(beta), - epsilon=epsilon, - momentum=momentum, - renorm=True, - renorm_clipping=None, - renorm_momentum=momentum, - ) - training = tf.compat.v1.placeholder(tf.bool) - yt = bn(xt, training=training) - moving_mean = 0.0 - moving_stddev = 1.0 - renorm_mean = 0.0 - renorm_stddev = 1.0 - with self.session() as sess: - self.evaluate(tf.compat.v1.global_variables_initializer()) - for step in range(6): - x = np.random.random(shape) - - mean = x.mean(0) - variance = x.var(0) - stddev = np.sqrt(variance + epsilon) - r = stddev / renorm_stddev - d = (mean - renorm_mean) / renorm_stddev - y_test = ( - (x - moving_mean) - / (moving_stddev * moving_stddev) ** 0.5 - * gamma - ) + beta - y_train = ((x - mean) / stddev * r + d) * gamma + beta - renorm_mean += (mean - renorm_mean) * (1.0 - renorm_momentum) - renorm_stddev += (stddev - renorm_stddev) * ( - 1.0 - renorm_momentum - ) - moving_mean += (mean - moving_mean) * (1.0 - momentum) - moving_stddev += (stddev - moving_stddev) * (1.0 - momentum) - - # Compute test values first, before the train mode updates the - # moving averages. - yt_val_test, _, _ = sess.run( - [yt] + bn.updates, feed_dict={xt: x, training: False} - ) - yt_val_train, _, _ = sess.run( - [yt] + bn.updates, feed_dict={xt: x, training: True} - ) - - # Due to initialization inconsistencies, values may not be - # identical on the first iteration (but shouldn't be different - # by much more than epsilon). After the first iteration they - # should be identical. - atol = epsilon * 1.5 if step == 0 else 1e-5 - self.assertAllClose(y_train, yt_val_train, atol=atol) - self.assertAllClose(y_test, yt_val_test, atol=atol) - self.assertAllClose(yt_val_train, yt_val_test, atol=atol) - - def testAdjustment(self): - shape = (4, 3) - xt = tf.compat.v1.placeholder(tf.float32, shape) - momentum = 0.99 - gamma = 2.0 - beta = 3.0 - epsilon = 0.001 - adjust_scale = tf.random.uniform(shape[-1:], 0.5, 1.5) - adjust_bias = tf.random.uniform(shape[-1:], -0.2, 0.2) - bn = normalization_layers.BatchNormalization( - axis=1, - gamma_initializer=tf.compat.v1.constant_initializer(gamma), - beta_initializer=tf.compat.v1.constant_initializer(beta), - epsilon=epsilon, - momentum=momentum, - adjustment=lambda _: (adjust_scale, adjust_bias), - ) - training = tf.compat.v1.placeholder(tf.bool) - yt = bn(xt, training=training) - - moving_mean = 0.0 - moving_variance = 1.0 - with self.session() as sess: - self.evaluate(tf.compat.v1.global_variables_initializer()) - for _ in range(5): - x = np.random.random(shape) - yt_val_train, adj_scale_val, adj_bias_val = sess.run( - [yt, adjust_scale, adjust_bias] + bn.updates, - feed_dict={xt: x, training: True}, - )[:3] - yt_val_test = sess.run( - [yt] + bn.updates, feed_dict={xt: x, training: False} - )[0] - - mean = x.mean(0) - variance = x.var(0) - y_train = ( - ((x - mean) / (variance + epsilon) ** 0.5) * adj_scale_val - + adj_bias_val - ) * gamma + beta - moving_mean += (mean - moving_mean) * (1.0 - momentum) - moving_variance += (variance - moving_variance) * ( - 1.0 - momentum - ) - - y_test = ( - (x - moving_mean) - / (moving_variance + epsilon) ** 0.5 - * gamma - ) + beta - - self.assertAllClose(y_train, yt_val_train, atol=1e-5) - self.assertAllClose(y_test, yt_val_test, atol=1e-5) - - def testRenormWithAdjustment(self): - shape = (4, 3) - xt = tf.compat.v1.placeholder(tf.float32, shape) - momentum = 0.99 - renorm_momentum = 0.8 - rmax = 1.1 - rmin = 0.9 - dmax = 0.1 - gamma = 2.0 - beta = 3.0 - epsilon = 0.001 - adjust_scale = tf.random.uniform(shape[-1:], 0.5, 1.5) - adjust_bias = tf.random.uniform(shape[-1:], -0.2, 0.2) - bn = normalization_layers.BatchNormalization( - axis=1, - gamma_initializer=tf.compat.v1.constant_initializer(gamma), - beta_initializer=tf.compat.v1.constant_initializer(beta), - epsilon=epsilon, - momentum=momentum, - renorm=True, - renorm_clipping={"rmax": rmax, "rmin": rmin, "dmax": dmax}, - renorm_momentum=renorm_momentum, - adjustment=lambda _: (adjust_scale, adjust_bias), - ) - training = tf.compat.v1.placeholder(tf.bool) - yt = bn(xt, training=training) - - moving_mean = 0.0 - moving_stddev = 1.0 - renorm_mean = 0.0 - renorm_stddev = 1.0 - with self.session() as sess: - self.evaluate(tf.compat.v1.global_variables_initializer()) - for _ in range(5): - x = np.random.random(shape) - yt_val_train, adj_scale_val, adj_bias_val = sess.run( - [yt, adjust_scale, adjust_bias] + bn.updates, - feed_dict={xt: x, training: True}, - )[:3] - yt_val_test = sess.run( - [yt] + bn.updates, feed_dict={xt: x, training: False} - )[0] - - mean = x.mean(0) - variance = x.var(0) - stddev = np.sqrt(variance + epsilon) - r = (stddev / renorm_stddev).clip(rmin, rmax) - d = ((mean - renorm_mean) / renorm_stddev).clip(-dmax, dmax) - y_train = ( - ((x - mean) / stddev * r + d) * adj_scale_val + adj_bias_val - ) * gamma + beta - renorm_mean += (mean - renorm_mean) * (1.0 - renorm_momentum) - renorm_stddev += (stddev - renorm_stddev) * ( - 1.0 - renorm_momentum - ) - moving_mean += (mean - moving_mean) * (1.0 - momentum) - moving_stddev += (stddev - moving_stddev) * (1.0 - momentum) - - y_test = ( - (x - moving_mean) - / (moving_stddev * moving_stddev) ** 0.5 - * gamma - ) + beta - - self.assertAllClose(y_train, yt_val_train, atol=1e-5) - self.assertAllClose(y_test, yt_val_test, atol=1e-5) - - def testGhostBNNegativeVirtualBatch(self): - shape = [6, 5, 4, 3] - inp = tf.random.uniform(shape, seed=1) - - with self.assertRaises(ValueError): - normalization_layers.batch_normalization(inp, virtual_batch_size=-1) - - def testGhostBNVirtualBatchFull(self): - shape = [6, 5, 4, 3] - inp = tf.random.uniform(shape, seed=1) - out1 = normalization_layers.batch_normalization(inp) - out2 = normalization_layers.batch_normalization( - inp, virtual_batch_size=6 - ) - - self.assertListEqual(out1.shape.as_list(), out2.shape.as_list()) - - with self.session() as sess: - self.evaluate(tf.compat.v1.global_variables_initializer()) - - x = np.random.random(shape) - y1, y2 = sess.run([out1, out2], feed_dict={inp: x}) - - self.assertAllClose(y1, y2, atol=1e-5) - - def testGhostBNInputOutputShapesMatch(self): - shape = [6, 4, 3] - inp = tf.random.uniform(shape, seed=1) - out = normalization_layers.batch_normalization( - inp, virtual_batch_size=3 - ) - self.assertListEqual(out.shape.as_list(), shape) - - def testGhostBNUnknownBatchSize(self): - np_shape = [10, 5, 4] - tf_shape = [None, 5, 4] - inp = tf.compat.v1.placeholder(tf.float32, tf_shape) - out = normalization_layers.batch_normalization( - inp, virtual_batch_size=2 - ) - - with self.session() as sess: - self.evaluate(tf.compat.v1.global_variables_initializer()) - - x = np.random.random(np_shape) - y = sess.run(out, feed_dict={inp: x}) - - self.assertListEqual(list(y.shape), np_shape) - - def testGhostBN2Dims(self): - shape = [6, 2] - virtual_batch_size = 3 - beta = 2.0 - gamma = 3.0 - momentum = 0.8 - epsilon = 1e-3 - moving_means = np.zeros([2, 2], dtype=np.float32) - moving_vars = np.ones([2, 2], dtype=np.float32) - - inp = tf.compat.v1.placeholder(tf.float32, shape) - is_training = tf.compat.v1.placeholder(tf.bool) - bn = normalization_layers.BatchNormalization( - momentum=momentum, - epsilon=epsilon, - beta_initializer=tf.compat.v1.constant_initializer(beta), - gamma_initializer=tf.compat.v1.constant_initializer(gamma), - virtual_batch_size=virtual_batch_size, - ) - out = bn(inp, training=is_training) - ghost_shape = [ - virtual_batch_size, - shape[0] // virtual_batch_size, - shape[1], - ] - - with self.session() as sess: - self.evaluate(tf.compat.v1.global_variables_initializer()) - for _ in range(5): - x = np.random.random(shape) - - sub_batched = np.reshape(x, ghost_shape) - means = np.mean(sub_batched, axis=0, keepdims=True) - variances = np.var(sub_batched, axis=0, keepdims=True) - - avg_means = np.mean(means, axis=1, keepdims=True) - avg_variances = np.mean(variances, axis=1, keepdims=True) - - moving_means = moving_means * momentum + avg_means * ( - 1.0 - momentum - ) - moving_vars = moving_vars * momentum + avg_variances * ( - 1.0 - momentum - ) - - y_train = ( - (sub_batched - means) / (variances + epsilon) ** 0.5 * gamma - ) + beta - y_test = ( - (sub_batched - moving_means) - / (moving_vars + epsilon) ** 0.5 - * gamma - ) + beta - - y_train = np.reshape(y_train, shape) - y_test = np.reshape(y_test, shape) - - y_val_train, _, _ = sess.run( - [out] + bn.updates, feed_dict={inp: x, is_training: True} - ) - y_val_test = sess.run( - out, feed_dict={inp: x, is_training: False} - ) - - self.assertAllClose(y_train, y_val_train, atol=1e-5) - self.assertAllClose(y_test, y_val_test, atol=1e-5) - - def testGhostBN4DimsAxis3(self): - shape = [6, 10, 10, 3] - virtual_batch_size = 2 - beta = 2.0 - gamma = 3.0 - momentum = 0.8 - epsilon = 1e-3 - moving_means = np.zeros([1, 1, 1, 1, 3], dtype=np.float32) - moving_vars = np.ones([1, 1, 1, 1, 3], dtype=np.float32) - - inp = tf.compat.v1.placeholder(tf.float32, shape) - is_training = tf.compat.v1.placeholder(tf.bool) - bn = normalization_layers.BatchNormalization( - axis=3, - momentum=momentum, - epsilon=epsilon, - beta_initializer=tf.compat.v1.constant_initializer(beta), - gamma_initializer=tf.compat.v1.constant_initializer(gamma), - virtual_batch_size=virtual_batch_size, - ) - out = bn(inp, training=is_training) - ghost_shape = [ - virtual_batch_size, - shape[0] // virtual_batch_size, - ] + shape[1:] - - with self.session() as sess: - self.evaluate(tf.compat.v1.global_variables_initializer()) - for _ in range(5): - x = np.random.random(shape) - - sub_batched = np.reshape(x, ghost_shape) - means = np.mean(sub_batched, axis=(0, 2, 3), keepdims=True) - variances = np.var(sub_batched, axis=(0, 2, 3), keepdims=True) - - avg_means = np.mean(means, axis=1, keepdims=True) - avg_variances = np.mean(variances, axis=1, keepdims=True) - - moving_means = moving_means * momentum + avg_means * ( - 1.0 - momentum - ) - moving_vars = moving_vars * momentum + avg_variances * ( - 1.0 - momentum - ) - - y_train = ( - (sub_batched - means) / (variances + epsilon) ** 0.5 * gamma - ) + beta - y_test = ( - (sub_batched - moving_means) - / (moving_vars + epsilon) ** 0.5 - * gamma - ) + beta - - y_train = np.reshape(y_train, shape) - y_test = np.reshape(y_test, shape) - - y_val_train, _, _ = sess.run( - [out] + bn.updates, feed_dict={inp: x, is_training: True} - ) - y_val_test = sess.run( - out, feed_dict={inp: x, is_training: False} - ) - - self.assertAllClose(y_train, y_val_train, atol=1e-2) - self.assertAllClose(y_test, y_val_test, atol=1e-2) - - def testGhostBN4DimsAxis1(self): - shape = [6, 3, 10, 10] - virtual_batch_size = 2 - beta = 2.0 - gamma = 3.0 - momentum = 0.8 - epsilon = 1e-3 - moving_means = np.zeros([1, 1, 3, 1, 1], dtype=np.float32) - moving_vars = np.ones([1, 1, 3, 1, 1], dtype=np.float32) - - inp = tf.compat.v1.placeholder(tf.float32, shape) - is_training = tf.compat.v1.placeholder(tf.bool) - bn = normalization_layers.BatchNormalization( - axis=1, - momentum=momentum, - epsilon=epsilon, - beta_initializer=tf.compat.v1.constant_initializer(beta), - gamma_initializer=tf.compat.v1.constant_initializer(gamma), - virtual_batch_size=virtual_batch_size, - fused=False, - ) # NCHW is unsupported by CPU fused batch norm - out = bn(inp, training=is_training) - ghost_shape = [ - virtual_batch_size, - shape[0] // virtual_batch_size, - ] + shape[1:] - - with self.session() as sess: - self.evaluate(tf.compat.v1.global_variables_initializer()) - for _ in range(5): - x = np.random.random(shape) - - sub_batched = np.reshape(x, ghost_shape) - means = np.mean(sub_batched, axis=(0, 3, 4), keepdims=True) - variances = np.var(sub_batched, axis=(0, 3, 4), keepdims=True) - - avg_means = np.mean(means, axis=1, keepdims=True) - avg_variances = np.mean(variances, axis=1, keepdims=True) - - moving_means = moving_means * momentum + avg_means * ( - 1.0 - momentum - ) - moving_vars = moving_vars * momentum + avg_variances * ( - 1.0 - momentum - ) - - y_train = ( - (sub_batched - means) / (variances + epsilon) ** 0.5 * gamma - ) + beta - y_test = ( - (sub_batched - moving_means) - / (moving_vars + epsilon) ** 0.5 - * gamma - ) + beta - - y_train = np.reshape(y_train, shape) - y_test = np.reshape(y_test, shape) - - y_val_train, _, _ = sess.run( - [out] + bn.updates, feed_dict={inp: x, is_training: True} - ) - y_val_test = sess.run( - out, feed_dict={inp: x, is_training: False} - ) - - self.assertAllClose(y_train, y_val_train, atol=1e-2) - self.assertAllClose(y_test, y_val_test, atol=1e-2) - - def testMultiAxisInvalid(self): - shape = [6, 5, 4, 3] - inp = tf.random.uniform(shape, seed=1) - - with self.assertRaises(ValueError): - normalization_layers.batch_normalization( - inp, axis=[1, 4] - ) # out of bounds - - with self.assertRaises(ValueError): - normalization_layers.batch_normalization( - inp, axis=[-5, 1] - ) # out of bounds - - with self.assertRaises(ValueError): - normalization_layers.batch_normalization( - inp, axis=[1, 2, 1] - ) # duplicate - - def test3DInputMultiAxis12(self): - epsilon = 1e-3 - bn = normalization_layers.BatchNormalization( - axis=[1, 2], epsilon=epsilon, momentum=0.9 - ) - inputs = tf.Variable( - np.random.random((5, 4, 3)) + 100, dtype=tf.float32 - ) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - with self.cached_session() as sess: - # Test training with placeholder learning phase. - self.evaluate(tf.compat.v1.global_variables_initializer()) - - np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) - - for _ in range(100): - np_output, _, _ = sess.run( - [outputs] + bn.updates, feed_dict={training: True} - ) - # Verify that the axis is normalized during training. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - # Verify that the statistics are updated during training. - moving_mean, moving_var = self.evaluate( - [bn.moving_mean, bn.moving_variance] - ) - np_inputs = self.evaluate(inputs) - mean = np.mean(np_inputs, axis=0, keepdims=True) - std = np.std(np_inputs, axis=0, keepdims=True) - variance = np.square(std) - self.assertAllClose(mean, moving_mean, atol=1e-2) - self.assertAllClose(variance, moving_var, atol=1e-2) - - # Test inference with placeholder learning phase. - np_output = sess.run(outputs, feed_dict={training: False}) - - # Verify that the axis is normalized during inference. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - def test5DInputMultiAxis123(self): - epsilon = 1e-3 - bn = normalization_layers.BatchNormalization( - axis=[1, 2, 3], epsilon=epsilon, momentum=0.9 - ) - inputs = tf.Variable( - np.random.random((5, 3, 4, 4, 3)) + 100, dtype=tf.float32 - ) - training = tf.compat.v1.placeholder(dtype="bool") - outputs = bn(inputs, training=training) - - with self.cached_session() as sess: - # Test training with placeholder learning phase. - self.evaluate(tf.compat.v1.global_variables_initializer()) - - np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) - - for _ in range(100): - np_output, _, _ = sess.run( - [outputs] + bn.updates, feed_dict={training: True} - ) - # Verify that the axis is normalized during training. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - # Verify that the statistics are updated during training. - moving_mean, moving_var = self.evaluate( - [bn.moving_mean, bn.moving_variance] - ) - np_inputs = self.evaluate(inputs) - mean = np.mean(np_inputs, axis=(0, 4), keepdims=True) - std = np.std(np_inputs, axis=(0, 4), keepdims=True) - variance = np.square(std) - self.assertAllClose(mean, moving_mean, atol=1e-2) - self.assertAllClose(variance, moving_var, atol=1e-2) - - # Test inference with placeholder learning phase. - np_output = sess.run(outputs, feed_dict={training: False}) - - # Verify that the axis is normalized during inference. - normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta - self.assertAlmostEqual(np.mean(normed_np_output), 0.0, places=1) - self.assertAlmostEqual(np.std(normed_np_output), 1.0, places=1) - - def testGhostBN5DimsMultiAxis14(self): - shape = [6, 3, 10, 10, 4] - virtual_batch_size = 3 - beta = 2.0 - gamma = 3.0 - momentum = 0.8 - epsilon = 1e-3 - moving_means = np.zeros([1, 1, 3, 1, 1, 4], dtype=np.float32) - moving_vars = np.ones([1, 1, 3, 1, 1, 4], dtype=np.float32) - - inp = tf.compat.v1.placeholder(tf.float32, shape) - is_training = tf.compat.v1.placeholder(tf.bool) - bn = normalization_layers.BatchNormalization( - axis=[1, 4], - momentum=momentum, - epsilon=epsilon, - beta_initializer=tf.compat.v1.constant_initializer(beta), - gamma_initializer=tf.compat.v1.constant_initializer(gamma), - virtual_batch_size=virtual_batch_size, - fused=False, - ) - out = bn(inp, training=is_training) - ghost_shape = [ - virtual_batch_size, - shape[0] // virtual_batch_size, - ] + shape[1:] - - with self.session() as sess: - self.evaluate(tf.compat.v1.global_variables_initializer()) - for _ in range(5): - x = np.random.random(shape) - - sub_batched = np.reshape(x, ghost_shape) - means = np.mean(sub_batched, axis=(0, 3, 4), keepdims=True) - variances = np.var(sub_batched, axis=(0, 3, 4), keepdims=True) - - avg_means = np.mean(means, axis=1, keepdims=True) - avg_variances = np.mean(variances, axis=1, keepdims=True) - - moving_means = moving_means * momentum + avg_means * ( - 1.0 - momentum - ) - moving_vars = moving_vars * momentum + avg_variances * ( - 1.0 - momentum - ) - - y_train = ( - (sub_batched - means) / (variances + epsilon) ** 0.5 * gamma - ) + beta - y_test = ( - (sub_batched - moving_means) - / (moving_vars + epsilon) ** 0.5 - * gamma - ) + beta - - y_train = np.reshape(y_train, shape) - y_test = np.reshape(y_test, shape) - - y_val_train, _, _ = sess.run( - [out] + bn.updates, feed_dict={inp: x, is_training: True} - ) - y_val_test = sess.run( - out, feed_dict={inp: x, is_training: False} - ) - - self.assertAllClose(y_train, y_val_train, atol=1e-2) - self.assertAllClose(y_test, y_val_test, atol=1e-2) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/legacy_tf_layers/pooling.py b/keras/legacy_tf_layers/pooling.py deleted file mode 100644 index 71695d77161..00000000000 --- a/keras/legacy_tf_layers/pooling.py +++ /dev/null @@ -1,1004 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -"""Contains the pooling layer classes and their functional aliases.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import warnings - -from keras import layers as keras_layers -from keras.legacy_tf_layers import base - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export(v1=["keras.__internal__.legacy.layers.AveragePooling1D"]) -class AveragePooling1D(keras_layers.AveragePooling1D, base.Layer): - """Average Pooling layer for 1D inputs. - - Args: - pool_size: An integer or tuple/list of a single integer, - representing the size of the pooling window. - strides: An integer or tuple/list of a single integer, specifying the - strides of the pooling operation. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, length, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, length)`. - name: A string, the name of the layer. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.AveragePooling1D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - pooling = tf.compat.v1.layers.AveragePooling1D(pool_size=2, strides=2) - ``` - - After: - - ```python - pooling = tf.keras.layers.AveragePooling1D(pool_size=2, strides=2) - ``` - @end_compatibility - """ - - def __init__( - self, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, - **kwargs - ): - if strides is None: - raise ValueError("Argument `strides` must not be None.") - super().__init__( - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.average_pooling1d"]) -def average_pooling1d( - inputs, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, -): - """Average Pooling layer for 1D inputs. - - Args: - inputs: The tensor over which to pool. Must have rank 3. - pool_size: An integer or tuple/list of a single integer, - representing the size of the pooling window. - strides: An integer or tuple/list of a single integer, specifying the - strides of the pooling operation. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, length, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, length)`. - name: A string, the name of the layer. - - Returns: - The output tensor, of rank 3. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.AveragePooling1D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.average_pooling1d(x, pool_size=2, strides=2) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.AveragePooling1D(pool_size=2, strides=2)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.average_pooling1d` is deprecated and " - "will be removed in a future version. " - "Please use `tf.keras.layers.AveragePooling1D` instead.", - stacklevel=2, - ) - layer = AveragePooling1D( - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - name=name, - ) - return layer(inputs) - - -@keras_export(v1=["keras.__internal__.legacy.layers.MaxPooling1D"]) -class MaxPooling1D(keras_layers.MaxPooling1D, base.Layer): - """Max Pooling layer for 1D inputs. - - Args: - pool_size: An integer or tuple/list of a single integer, - representing the size of the pooling window. - strides: An integer or tuple/list of a single integer, specifying the - strides of the pooling operation. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, length, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, length)`. - name: A string, the name of the layer. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.MaxPooling1D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - pooling = tf.compat.v1.layers.MaxPooling1D(pool_size=2, strides=2) - ``` - - After: - - ```python - pooling = tf.keras.layers.MaxPooling1D(pool_size=2, strides=2) - ``` - @end_compatibility - """ - - def __init__( - self, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, - **kwargs - ): - if strides is None: - raise ValueError("Argument `strides` must not be None.") - super().__init__( - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.max_pooling1d"]) -def max_pooling1d( - inputs, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, -): - """Max Pooling layer for 1D inputs. - - Args: - inputs: The tensor over which to pool. Must have rank 3. - pool_size: An integer or tuple/list of a single integer, - representing the size of the pooling window. - strides: An integer or tuple/list of a single integer, specifying the - strides of the pooling operation. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string, one of `channels_last` (default) or - `channels_first`. The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, length, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, length)`. - name: A string, the name of the layer. - - Returns: - The output tensor, of rank 3. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.MaxPooling1D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.max_pooling1d(x, pool_size=2, strides=2) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.MaxPooling1D(pool_size=2, strides=2)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.max_pooling1d` is deprecated and " - "will be removed in a future version. " - "Please use `tf.keras.layers.MaxPooling1D` instead.", - stacklevel=2, - ) - layer = MaxPooling1D( - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - name=name, - ) - return layer(inputs) - - -@keras_export(v1=["keras.__internal__.legacy.layers.AveragePooling2D"]) -class AveragePooling2D(keras_layers.AveragePooling2D, base.Layer): - """Average pooling layer for 2D inputs (e.g. images). - - Args: - pool_size: An integer or tuple/list of 2 integers: (pool_height, - pool_width) specifying the size of the pooling window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 2 integers, - specifying the strides of the pooling operation. - Can be a single integer to specify the same value for - all spatial dimensions. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string. The ordering of the dimensions in the inputs. - `channels_last` (default) and `channels_first` are supported. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, height, width)`. - name: A string, the name of the layer. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.AveragePooling2D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - pooling = tf.compat.v1.layers.AveragePooling2D(pool_size=2, strides=2) - ``` - - After: - - ```python - pooling = tf.keras.layers.AveragePooling2D(pool_size=2, strides=2) - ``` - @end_compatibility - """ - - def __init__( - self, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, - **kwargs - ): - if strides is None: - raise ValueError("Argument `strides` must not be None.") - super().__init__( - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.average_pooling2d"]) -def average_pooling2d( - inputs, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, -): - """Average pooling layer for 2D inputs (e.g. images). - - Args: - inputs: The tensor over which to pool. Must have rank 4. - pool_size: An integer or tuple/list of 2 integers: (pool_height, - pool_width) specifying the size of the pooling window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 2 integers, - specifying the strides of the pooling operation. - Can be a single integer to specify the same value for - all spatial dimensions. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string. The ordering of the dimensions in the inputs. - `channels_last` (default) and `channels_first` are supported. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, height, width)`. - name: A string, the name of the layer. - - Returns: - Output tensor. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.AveragePooling2D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.average_pooling2d(x, pool_size=2, strides=2) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.AveragePooling2D(pool_size=2, strides=2)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.average_pooling2d` is deprecated and " - "will be removed in a future version. " - "Please use `tf.keras.layers.AveragePooling2D` instead.", - stacklevel=2, - ) - layer = AveragePooling2D( - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - name=name, - ) - return layer(inputs) - - -@keras_export(v1=["keras.__internal__.legacy.layers.MaxPooling2D"]) -class MaxPooling2D(keras_layers.MaxPooling2D, base.Layer): - """Max pooling layer for 2D inputs (e.g. images). - - Args: - pool_size: An integer or tuple/list of 2 integers: (pool_height, - pool_width) specifying the size of the pooling window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 2 integers, - specifying the strides of the pooling operation. - Can be a single integer to specify the same value for - all spatial dimensions. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string. The ordering of the dimensions in the inputs. - `channels_last` (default) and `channels_first` are supported. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, height, width)`. - name: A string, the name of the layer. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.MaxPooling2D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - pooling = tf.compat.v1.layers.MaxPooling2D(pool_size=2, strides=2) - ``` - - After: - - ```python - pooling = tf.keras.layers.MaxPooling2D(pool_size=2, strides=2) - ``` - @end_compatibility - """ - - def __init__( - self, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, - **kwargs - ): - if strides is None: - raise ValueError("Argument `strides` must not be None.") - super().__init__( - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.max_pooling2d"]) -def max_pooling2d( - inputs, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, -): - """Max pooling layer for 2D inputs (e.g. images). - - Args: - inputs: The tensor over which to pool. Must have rank 4. - pool_size: An integer or tuple/list of 2 integers: (pool_height, - pool_width) specifying the size of the pooling window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 2 integers, - specifying the strides of the pooling operation. - Can be a single integer to specify the same value for - all spatial dimensions. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string. The ordering of the dimensions in the inputs. - `channels_last` (default) and `channels_first` are supported. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` corresponds to - inputs with shape `(batch, channels, height, width)`. - name: A string, the name of the layer. - - Returns: - Output tensor. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.MaxPooling2D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.max_pooling2d(x, pool_size=2, strides=2) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.MaxPooling2D(pool_size=2, strides=2)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.max_pooling2d` is deprecated and " - "will be removed in a future version. " - "Please use `tf.keras.layers.MaxPooling2D` instead.", - stacklevel=2, - ) - layer = MaxPooling2D( - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - name=name, - ) - return layer(inputs) - - -@keras_export(v1=["keras.__internal__.legacy.layers.AveragePooling3D"]) -class AveragePooling3D(keras_layers.AveragePooling3D, base.Layer): - """Average pooling layer for 3D inputs (e.g. volumes). - - Args: - pool_size: An integer or tuple/list of 3 integers: - (pool_depth, pool_height, pool_width) - specifying the size of the pooling window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 3 integers, - specifying the strides of the pooling operation. - Can be a single integer to specify the same value for - all spatial dimensions. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string. The ordering of the dimensions in the inputs. - `channels_last` (default) and `channels_first` are supported. - `channels_last` corresponds to inputs with shape - `(batch, depth, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch, channels, depth, height, width)`. - name: A string, the name of the layer. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.AveragePooling3D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - pooling = tf.compat.v1.layers.AveragePooling3D(pool_size=2, strides=2) - ``` - - After: - - ```python - pooling = tf.keras.layers.AveragePooling3D(pool_size=2, strides=2) - ``` - @end_compatibility - """ - - def __init__( - self, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, - **kwargs - ): - if strides is None: - raise ValueError("Argument `strides` must not be None.") - super().__init__( - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.average_pooling3d"]) -def average_pooling3d( - inputs, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, -): - """Average pooling layer for 3D inputs (e.g. volumes). - - Args: - inputs: The tensor over which to pool. Must have rank 5. - pool_size: An integer or tuple/list of 3 integers: - (pool_depth, pool_height, pool_width) - specifying the size of the pooling window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 3 integers, - specifying the strides of the pooling operation. - Can be a single integer to specify the same value for - all spatial dimensions. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string. The ordering of the dimensions in the inputs. - `channels_last` (default) and `channels_first` are supported. - `channels_last` corresponds to inputs with shape - `(batch, depth, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch, channels, depth, height, width)`. - name: A string, the name of the layer. - - Returns: - Output tensor. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.AveragePooling3D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.average_pooling3d(x, pool_size=2, strides=2) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.AveragePooling3D(pool_size=2, strides=2)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.average_pooling3d` is deprecated and " - "will be removed in a future version. " - "Please use `tf.keras.layers.AveragePooling3D` instead.", - stacklevel=2, - ) - layer = AveragePooling3D( - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - name=name, - ) - return layer(inputs) - - -@keras_export(v1=["keras.__internal__.legacy.layers.MaxPooling3D"]) -class MaxPooling3D(keras_layers.MaxPooling3D, base.Layer): - """Max pooling layer for 3D inputs (e.g. volumes). - - Args: - pool_size: An integer or tuple/list of 3 integers: - (pool_depth, pool_height, pool_width) - specifying the size of the pooling window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 3 integers, - specifying the strides of the pooling operation. - Can be a single integer to specify the same value for - all spatial dimensions. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string. The ordering of the dimensions in the inputs. - `channels_last` (default) and `channels_first` are supported. - `channels_last` corresponds to inputs with shape - `(batch, depth, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch, channels, depth, height, width)`. - name: A string, the name of the layer. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.MaxPooling3D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - pooling = tf.compat.v1.layers.MaxPooling3D(pool_size=2, strides=2) - ``` - - After: - - ```python - pooling = tf.keras.layers.MaxPooling3D(pool_size=2, strides=2) - ``` - @end_compatibility - """ - - def __init__( - self, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, - **kwargs - ): - if strides is None: - raise ValueError("Argument `strides` must not be None.") - super().__init__( - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - name=name, - **kwargs - ) - - -@keras_export(v1=["keras.__internal__.legacy.layers.max_pooling3d"]) -def max_pooling3d( - inputs, - pool_size, - strides, - padding="valid", - data_format="channels_last", - name=None, -): - """Max pooling layer for 3D inputs (e.g. - - volumes). - - Args: - inputs: The tensor over which to pool. Must have rank 5. - pool_size: An integer or tuple/list of 3 integers: (pool_depth, - pool_height, pool_width) specifying the size of the pooling window. Can - be a single integer to specify the same value for all spatial - dimensions. - strides: An integer or tuple/list of 3 integers, specifying the strides of - the pooling operation. Can be a single integer to specify the same value - for all spatial dimensions. - padding: A string. The padding method, either 'valid' or 'same'. - Case-insensitive. - data_format: A string. The ordering of the dimensions in the inputs. - `channels_last` (default) and `channels_first` are supported. - `channels_last` corresponds to inputs with shape `(batch, depth, height, - width, channels)` while `channels_first` corresponds to inputs with - shape `(batch, channels, depth, height, width)`. - name: A string, the name of the layer. - - Returns: - Output tensor. - - Raises: - ValueError: if eager execution is enabled. - - - @compatibility(TF2) - This API is a legacy api that is only compatible with eager execution and - `tf.function` if you combine it with - `tf.compat.v1.keras.utils.track_tf1_style_variables` - - Please refer to [tf.layers model mapping section of the migration guide] - (https://www.tensorflow.org/guide/migrate/model_mapping) - to learn how to use your TensorFlow v1 model in TF2 with Keras. - - The corresponding TensorFlow v2 layer is - `tf.keras.layers.MaxPooling3D`. - - - #### Structural Mapping to Native TF2 - - None of the supported arguments have changed name. - - Before: - - ```python - y = tf.compat.v1.layers.max_pooling3d(x, pool_size=2, strides=2) - ``` - - After: - - To migrate code using TF1 functional layers use the [Keras Functional API] - (https://www.tensorflow.org/guide/keras/functional): - - ```python - x = tf.keras.Input((28, 28, 1)) - y = tf.keras.layers.MaxPooling3D(pool_size=2, strides=2)(x) - model = tf.keras.Model(x, y) - ``` - @end_compatibility - """ - warnings.warn( - "`tf.layers.max_pooling3d` is deprecated and " - "will be removed in a future version. " - "Please use `tf.keras.layers.MaxPooling3D` instead.", - stacklevel=2, - ) - layer = MaxPooling3D( - pool_size=pool_size, - strides=strides, - padding=padding, - data_format=data_format, - name=name, - ) - return layer(inputs) - - -# Aliases - -AvgPool2D = AveragePooling2D -MaxPool2D = MaxPooling2D -max_pool2d = max_pooling2d -avg_pool2d = average_pooling2d diff --git a/keras/legacy_tf_layers/pooling_test.py b/keras/legacy_tf_layers/pooling_test.py deleted file mode 100644 index a6004989793..00000000000 --- a/keras/legacy_tf_layers/pooling_test.py +++ /dev/null @@ -1,232 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for tf.layers.pooling.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import tensorflow.compat.v2 as tf - -from keras.legacy_tf_layers import pooling as pooling_layers - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -class PoolingTest(tf.test.TestCase): - def testInvalidDataFormat(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - with self.assertRaisesRegex(ValueError, "data_format"): - pooling_layers.max_pooling2d( - images, 3, strides=2, data_format="invalid" - ) - - def testInvalidStrides(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - with self.assertRaisesRegex(ValueError, "strides"): - pooling_layers.max_pooling2d(images, 3, strides=(1, 2, 3)) - - with self.assertRaisesRegex(ValueError, "strides"): - pooling_layers.max_pooling2d(images, 3, strides=None) - - def testInvalidPoolSize(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 3), seed=1) - with self.assertRaisesRegex(ValueError, "pool_size"): - pooling_layers.max_pooling2d(images, (1, 2, 3), strides=2) - - with self.assertRaisesRegex(ValueError, "pool_size"): - pooling_layers.max_pooling2d(images, None, strides=2) - - def testCreateMaxPooling2D(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = pooling_layers.MaxPooling2D([2, 2], strides=2) - output = layer(images) - self.assertListEqual(output.get_shape().as_list(), [5, 3, 4, 4]) - - def testCreateAveragePooling2D(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = pooling_layers.AveragePooling2D([2, 2], strides=2) - output = layer(images) - self.assertListEqual(output.get_shape().as_list(), [5, 3, 4, 4]) - - @tf_test_utils.run_deprecated_v1 - def testCreateMaxPooling2DChannelsFirst(self): - height, width = 7, 9 - images = tf.random.uniform((5, 2, height, width)) - layer = pooling_layers.MaxPooling2D( - [2, 2], strides=1, data_format="channels_first" - ) - output = layer(images) - self.assertListEqual(output.get_shape().as_list(), [5, 2, 6, 8]) - - @tf_test_utils.run_deprecated_v1 - def testCreateAveragePooling2DChannelsFirst(self): - height, width = 5, 6 - images = tf.random.uniform((3, 4, height, width)) - layer = pooling_layers.AveragePooling2D( - (2, 2), - strides=(1, 1), - padding="valid", - data_format="channels_first", - ) - output = layer(images) - self.assertListEqual(output.get_shape().as_list(), [3, 4, 4, 5]) - - @tf_test_utils.run_deprecated_v1 - def testCreateAveragePooling2DChannelsFirstWithNoneBatch(self): - height, width = 5, 6 - images = tf.compat.v1.placeholder( - dtype="float32", shape=(None, 4, height, width) - ) - layer = pooling_layers.AveragePooling2D( - (2, 2), - strides=(1, 1), - padding="valid", - data_format="channels_first", - ) - output = layer(images) - self.assertListEqual(output.get_shape().as_list(), [None, 4, 4, 5]) - - def testCreateMaxPooling1D(self): - width = 7 - channels = 3 - images = tf.random.uniform((5, width, channels)) - layer = pooling_layers.MaxPooling1D(2, strides=2) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, width // 2, channels] - ) - - def testCreateAveragePooling1D(self): - width = 7 - channels = 3 - images = tf.random.uniform((5, width, channels)) - layer = pooling_layers.AveragePooling1D(2, strides=2) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, width // 2, channels] - ) - - def testCreateMaxPooling1DChannelsFirst(self): - width = 7 - channels = 3 - images = tf.random.uniform((5, channels, width)) - layer = pooling_layers.MaxPooling1D( - 2, strides=2, data_format="channels_first" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, channels, width // 2] - ) - - def testCreateAveragePooling1DChannelsFirst(self): - width = 7 - channels = 3 - images = tf.random.uniform((5, channels, width)) - layer = pooling_layers.AveragePooling1D( - 2, strides=2, data_format="channels_first" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, channels, width // 2] - ) - - def testCreateMaxPooling3D(self): - depth, height, width = 6, 7, 9 - images = tf.random.uniform((5, depth, height, width, 4)) - layer = pooling_layers.MaxPooling3D([2, 2, 2], strides=2) - output = layer(images) - self.assertListEqual(output.get_shape().as_list(), [5, 3, 3, 4, 4]) - - def testCreateAveragePooling3D(self): - depth, height, width = 6, 7, 9 - images = tf.random.uniform((5, depth, height, width, 4)) - layer = pooling_layers.AveragePooling3D([2, 2, 2], strides=2) - output = layer(images) - self.assertListEqual(output.get_shape().as_list(), [5, 3, 3, 4, 4]) - - def testMaxPooling3DChannelsFirst(self): - depth, height, width = 6, 7, 9 - images = tf.random.uniform((5, 2, depth, height, width)) - layer = pooling_layers.MaxPooling3D( - [2, 2, 2], strides=2, data_format="channels_first" - ) - output = layer(images) - self.assertListEqual(output.get_shape().as_list(), [5, 2, 3, 3, 4]) - - def testAveragePooling3DChannelsFirst(self): - depth, height, width = 6, 7, 9 - images = tf.random.uniform((5, 2, depth, height, width)) - layer = pooling_layers.AveragePooling3D( - [2, 2, 2], strides=2, data_format="channels_first" - ) - output = layer(images) - self.assertListEqual(output.get_shape().as_list(), [5, 2, 3, 3, 4]) - - def testCreateMaxPooling2DIntegerPoolSize(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4)) - layer = pooling_layers.MaxPooling2D(2, strides=2) - output = layer(images) - self.assertListEqual(output.get_shape().as_list(), [5, 3, 4, 4]) - - def testMaxPooling2DPaddingSame(self): - height, width = 7, 9 - images = tf.random.uniform((5, height, width, 4), seed=1) - layer = pooling_layers.MaxPooling2D( - images.get_shape()[1:3], strides=2, padding="same" - ) - output = layer(images) - self.assertListEqual(output.get_shape().as_list(), [5, 4, 5, 4]) - - def testCreatePooling2DWithStrides(self): - height, width = 6, 8 - # Test strides tuple - images = tf.random.uniform((5, height, width, 3), seed=1) - layer = pooling_layers.MaxPooling2D( - [2, 2], strides=(2, 2), padding="same" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height / 2, width / 2, 3] - ) - - # Test strides integer - layer = pooling_layers.MaxPooling2D([2, 2], strides=2, padding="same") - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height / 2, width / 2, 3] - ) - - # Test unequal strides - layer = pooling_layers.MaxPooling2D( - [2, 2], strides=(2, 1), padding="same" - ) - output = layer(images) - self.assertListEqual( - output.get_shape().as_list(), [5, height / 2, width, 3] - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/legacy_tf_layers/variable_scope_shim.py b/keras/legacy_tf_layers/variable_scope_shim.py deleted file mode 100644 index ed08ac542e3..00000000000 --- a/keras/legacy_tf_layers/variable_scope_shim.py +++ /dev/null @@ -1,1085 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -"""Contains a shim to allow using TF1 get_variable code in TF2.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import contextlib -import functools - -import tensorflow.compat.v2 as tf - -from keras.engine import base_layer -from keras.utils import layer_utils -from keras.utils import tf_inspect - -# isort: off -from tensorflow.python.ops import variable_scope as vs -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util.tf_export import keras_export - - -def as_shape(shape): - """Converts the given object to a TensorShape.""" - if isinstance(shape, tf.TensorShape): - return shape - else: - return tf.TensorShape(shape) - - -def _is_callable_object(obj): - return hasattr(obj, "__call__") and tf_inspect.ismethod(obj.__call__) - - -def _has_kwargs(fn): - """Returns whether the passed callable has **kwargs in its signature. - - Args: - fn: Function, or function-like object (e.g., result of - `functools.partial`). - - Returns: - `bool`: if `fn` has **kwargs in its signature. - - Raises: - `TypeError`: If fn is not a Function, or function-like object. - """ - if isinstance(fn, functools.partial): - fn = fn.func - elif _is_callable_object(fn): - fn = fn.__call__ - elif not callable(fn): - raise TypeError( - f"fn should be a function-like object, but is of type {type(fn)}." - ) - return tf_inspect.getfullargspec(fn).varkw is not None - - -def fn_args(fn): - """Get argument names for function-like object. - - Args: - fn: Function, or function-like object (e.g., result of - `functools.partial`). - - Returns: - `tuple` of string argument names. - - Raises: - ValueError: if partial function has positionally bound arguments - """ - if isinstance(fn, functools.partial): - args = fn_args(fn.func) - args = [a for a in args[len(fn.args) :] if a not in (fn.keywords or [])] - else: - if hasattr(fn, "__call__") and tf_inspect.ismethod(fn.__call__): - fn = fn.__call__ - args = tf_inspect.getfullargspec(fn).args - if _is_bound_method(fn) and args: - # If it's a bound method, it may or may not have a self/cls first - # argument; for example, self could be captured in *args. - # If it does have a positional argument, it is self/cls. - args.pop(0) - return tuple(args) - - -def _is_bound_method(fn): - _, fn = tf.__internal__.decorator.unwrap(fn) - return tf_inspect.ismethod(fn) and (fn.__self__ is not None) - - -def validate_synchronization_aggregation_trainable( - synchronization, aggregation, trainable, name -): - """Given user-provided variable properties, sets defaults and validates.""" - if aggregation is None: - aggregation = tf.compat.v1.VariableAggregation.NONE - else: - if not isinstance( - aggregation, - (tf.compat.v1.VariableAggregation, tf.VariableAggregation), - ): - try: - aggregation = tf.VariableAggregation(aggregation) - except ValueError: - raise ValueError( - "Invalid variable aggregation mode: {} " - "for variable: {}".format(aggregation, name) - ) - if synchronization is None: - synchronization = tf.VariableSynchronization.AUTO - else: - try: - synchronization = tf.VariableSynchronization(synchronization) - except ValueError: - raise ValueError( - "Invalid variable synchronization mode: {} " - "for variable: {}".format(synchronization, name) - ) - if trainable is None: - trainable = synchronization != tf.VariableSynchronization.ON_READ - return synchronization, aggregation, trainable - - -class _EagerVariableStore(tf.Module): - """TF2-safe VariableStore that avoids collections & tracks regularizers. - - New variable names and new variables can be created; all stored - variables are initialized with the initializer passed to __init__. - - All variables get created in `tf.init_scope.` to avoid a bad - interaction between `tf.function` `FuncGraph` internals, Keras - Functional Models, and TPUStrategy variable initialization. - - Also, it always acts as if reuse is set to either "TRUE" or - tf.compat.v1.AUTO_REUSE - - Attributes: - vars: a dictionary with string names (same as passed in GetVar) as keys - and the corresponding TensorFlow Variables as values. - regularizers: a dictionary with string names as keys and the corresponding - callables that return losses as values. - layers: a dictionary with string names as keys and the corresponding - nested keras layers as values. - """ - - def __init__(self): - """Create a variable store.""" - self._vars = {} # A dictionary of the stored TensorFlow variables. - self._regularizers = ( - {} - ) # A dict mapping var names to their regularizers. - self._layers = {} # A dictionary of stored keras layers. - self._store_eager_variables = True - - @contextlib.contextmanager - def scope(self): - with vs.with_variable_store(self): - yield - - def get_variable( - self, - name, - shape=None, - dtype=tf.float32, - initializer=None, - regularizer=None, - reuse=None, - trainable=None, - collections=None, - caching_device=None, - partitioner=None, - validate_shape=True, - use_resource=None, - custom_getter=None, - constraint=None, - synchronization=tf.VariableSynchronization.AUTO, - aggregation=tf.compat.v1.VariableAggregation.NONE, - ): - """Gets an existing variable with these parameters or create a new one. - - If a variable with the given name is already stored, we return the - stored variable. Otherwise, we create a new one. - - Set `reuse` to `True` when you only want to reuse existing Variables. - Set `reuse` to None (the default) or tf.compat.v1.AUTO_REUSE when you - want variables to be created if they don't exist or returned if they do. - In this shim, `reuse` of `False` will be treated as auto-reuse. - - If initializer is `None` (the default), the default initializer passed - in the constructor is used. If that one is `None` too, we use a new - `glorot_uniform_initializer`. If initializer is a Tensor, we use it as a - value and derive the shape from the initializer. - - If a partitioner is provided, a `PartitionedVariable` is returned. - Accessing this object as a `Tensor` returns the shards concatenated - along the partition axis. - - Some useful partitioners are available. See, e.g., - `variable_axis_size_partitioner` and `min_max_variable_partitioner`. - - Args: - name: The name of the new or existing variable. - shape: Shape of the new or existing variable. - dtype: Type of the new or existing variable (defaults to `DT_FLOAT`). - initializer: Initializer for the variable. - regularizer: A (Tensor -> Tensor or None) function; the result of - applying it on a newly created variable will be added to the - collection GraphKeys.REGULARIZATION_LOSSES and can be used for - regularization. - reuse: a Boolean, None, or tf.AUTO_REUSE. Controls reuse or creation - of variables. When eager execution is enabled this argument is - always forced to be False. - trainable: If `True` also add the variable to the graph collection - `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). `trainable` - defaults to `True`, unless `synchronization` is set to `ON_READ`, in - which case it defaults to `False`. - collections: List of graph collections keys to add the `Variable` to. - Defaults to `[GraphKeys.GLOBAL_VARIABLES]` (see `tf.Variable`). - caching_device: Optional device string or function describing where - the Variable should be cached for reading. Defaults to the - Variable's device. If not `None`, caches on another device. - Typical use is to cache on the device where the Ops using the - `Variable` reside, to deduplicate copying through `Switch` and other - conditional statements. - partitioner: Optional callable that accepts a fully defined - `TensorShape` and dtype of the `Variable` to be created, and returns - a list of partitions for each axis (currently only one axis can be - partitioned). - validate_shape: If False, allows the variable to be initialized with a - value of unknown shape. If True, the default, the shape of - initial_value must be known. - use_resource: If False, creates a regular Variable. If True, creates - instead an experimental ResourceVariable which has well-defined - semantics. Defaults to False (will later change to True). When eager - execution is enabled this argument is always forced to be true. - custom_getter: Callable that takes as a first argument the true - getter, and allows overwriting the internal get_variable method. The - signature of `custom_getter` should match that of this method, but - the most future-proof version will allow for changes: - `def custom_getter(getter, *args, **kwargs)`. - Direct access to all `get_variable` parameters is also allowed: - `def custom_getter(getter, name, *args, **kwargs)`. - A simple identity custom getter that simply creates variables with - modified names is: - ```python - def custom_getter(getter, name, *args, **kwargs): - return getter(name + '_suffix', *args, **kwargs) - ``` - constraint: An optional projection function to be applied to the - variable after being updated by an `Optimizer` (e.g. used to - implement norm constraints or value constraints for layer weights). - The function must take as input the unprojected Tensor representing - the value of the variable and return the Tensor for the projected - value (which must have the same shape). Constraints are not safe to - use when doing asynchronous distributed training. - synchronization: Indicates when a distributed a variable will be - aggregated. Accepted values are constants defined in the class - `tf.VariableSynchronization`. By default the synchronization is set - to `AUTO` and the current `DistributionStrategy` chooses when to - synchronize. - aggregation: Indicates how a distributed variable will be aggregated. - Accepted values are constants defined in the class - `tf.VariableAggregation`. - - Returns: - The created or existing `Variable` (or `PartitionedVariable`, if a - partitioner was used). - - Raises: - ValueError: when creating a new variable and shape is not declared, - when reusing a variable and specifying a conflicting shape, - or when violating reuse during variable creation. - RuntimeError: when eager execution is enabled and not called from an - EagerVariableStore. - """ - if custom_getter is not None and not callable(custom_getter): - raise ValueError( - f"Passed a custom_getter which is not callable: {custom_getter}" - ) - - with tf.init_scope(): - if tf.executing_eagerly(): - # Variable creation and initialization takes place in - # `init_scope`s; as such, if an `init_scope` lifts us into the - # eager context, then we need to use `ResourceVariable`s. - use_resource = True - - # Note that it's fine to reuse eager variables whose initialization was - # lifted from a function-building graph into the eager context (that's - # why the following clause is not wrapped in an `init_scope`); lifted - # variables are tracked by the graph's `VariableStore`. - if not reuse: - reuse = tf.compat.v1.AUTO_REUSE - - # If a *_ref type is passed in an error would be triggered further down - # the stack. We prevent this using base_dtype to get a non-ref version - # of the type, before doing anything else. When _ref types are removed - # in favor of resources, this line can be removed. - try: - dtype = dtype.base_dtype - except AttributeError: - # .base_dtype not existing means that we will try and use the raw - # dtype which was passed in - this might be a NumPy type which is - # valid. - pass - - # This is the main logic of get_variable. However, custom_getter - # may override this logic. So we save it as a callable and pass - # it to custom_getter. - # Note: the parameters of _true_getter, and their documentation, match - # *exactly* item-for-item with the docstring of this method. - def _true_getter( - name, - shape=None, - dtype=tf.float32, - initializer=None, - regularizer=None, - reuse=None, - trainable=None, - collections=None, - caching_device=None, - partitioner=None, - validate_shape=True, - use_resource=None, - constraint=None, - synchronization=tf.VariableSynchronization.AUTO, - aggregation=tf.compat.v1.VariableAggregation.NONE, - ): - # Partitioned variable currently unsupported w/ the shim - if partitioner is not None: - raise ValueError( - "`partitioner` arg for `get_variable` is unsupported in " - "TF2. File a bug if you need help. " - "You passed %s" % partitioner - ) - - # Single variable case - if f"{name}/part_0" in self._vars: - raise ValueError( - "No partitioner was provided, but a partitioned version of " - "the variable was found: %s/part_0. Perhaps a variable of " - "the same name was already created with " - "partitioning?" % name - ) - - return self._get_single_variable( - name=name, - shape=shape, - dtype=dtype, - initializer=initializer, - regularizer=regularizer, - reuse=reuse, - trainable=trainable, - caching_device=caching_device, - validate_shape=validate_shape, - constraint=constraint, - synchronization=synchronization, - aggregation=aggregation, - ) - - ( - synchronization, - aggregation, - trainable, - ) = validate_synchronization_aggregation_trainable( - synchronization, aggregation, trainable, name - ) - - if custom_getter is not None: - # Handle backwards compatibility with getter arguments that were - # added to the API after users started writing custom getters. - custom_getter_kwargs = { - "getter": _true_getter, - "name": name, - "shape": shape, - "dtype": dtype, - "initializer": initializer, - "regularizer": regularizer, - "reuse": reuse, - "trainable": trainable, - "collections": collections, - "caching_device": caching_device, - "partitioner": partitioner, - "validate_shape": validate_shape, - "use_resource": use_resource, - "synchronization": synchronization, - "aggregation": aggregation, - } - # `fn_args` and `has_kwargs` can handle functions, - # `functools.partial`, `lambda`. - if "constraint" in fn_args(custom_getter) or _has_kwargs( - custom_getter - ): - custom_getter_kwargs["constraint"] = constraint - return custom_getter(**custom_getter_kwargs) - else: - return _true_getter( - name, - shape=shape, - dtype=dtype, - initializer=initializer, - regularizer=regularizer, - reuse=reuse, - trainable=trainable, - collections=collections, - caching_device=caching_device, - partitioner=partitioner, - validate_shape=validate_shape, - use_resource=use_resource, - constraint=constraint, - synchronization=synchronization, - aggregation=aggregation, - ) - - def _get_single_variable( - self, - name, - shape=None, - dtype=tf.float32, - initializer=None, - regularizer=None, - partition_info=None, - reuse=None, - trainable=None, - caching_device=None, - validate_shape=True, - constraint=None, - synchronization=tf.VariableSynchronization.AUTO, - aggregation=tf.compat.v1.VariableAggregation.NONE, - ): - """Get or create a single Variable (e.g. a shard or entire variable). - - See the documentation of get_variable above (ignore partitioning - components) for details. - - Args: - name: see get_variable. - shape: see get_variable. - dtype: see get_variable. - initializer: see get_variable. - regularizer: see get_variable. - partition_info: _PartitionInfo object. - reuse: see get_variable. - trainable: see get_variable. - caching_device: see get_variable. - validate_shape: see get_variable. - constraint: see get_variable. - synchronization: see get_variable. - aggregation: see get_variable. - - Returns: - A Variable. See documentation of get_variable above. - - Raises: - ValueError: See documentation of get_variable above. - """ - # Set to true if initializer is a constant. - initializing_from_value = False - if initializer is not None and not callable(initializer): - initializing_from_value = True - if shape is not None and initializing_from_value: - raise ValueError( - "If initializer is a constant, do not specify shape." - ) - - dtype = tf.as_dtype(dtype) - shape = as_shape(shape) - - if name in self._vars: - # Here we handle the case when returning an existing variable. - found_var = self._vars[name] - if not shape.is_compatible_with(found_var.get_shape()): - raise ValueError( - "Trying to share variable %s, but specified shape %s" - " and found shape %s." - % (name, shape, found_var.get_shape()) - ) - if not dtype.is_compatible_with(found_var.dtype): - dtype_str = dtype.name - found_type_str = found_var.dtype.name - raise ValueError( - "Trying to share variable %s, but specified dtype %s" - " and found dtype %s." % (name, dtype_str, found_type_str) - ) - return found_var - - # The code below handles only the case of creating a new variable. - if reuse is True: - raise ValueError( - "Variable %s does not exist, or was not created with " - "tf.get_variable(). Did you mean to set " - "reuse=tf.AUTO_REUSE in VarScope?" % name - ) - - # Create the tensor to initialize the variable with default value. - if initializer is None: - ( - initializer, - initializing_from_value, - ) = self._get_default_initializer( - name=name, shape=shape, dtype=dtype - ) - # Enter an init scope when creating the initializer. - with tf.init_scope(): - if initializing_from_value: - init_val = initializer - variable_dtype = None - else: - # Instantiate initializer if provided initializer is a type - # object. - if tf_inspect.isclass(initializer): - initializer = initializer() - if shape.is_fully_defined(): - if ( - "partition_info" - in tf_inspect.getargspec(initializer).args - ): - init_val = functools.partial( - initializer, - shape.as_list(), - dtype=dtype, - partition_info=partition_info, - ) - else: - init_val = functools.partial( - initializer, shape.as_list(), dtype=dtype - ) - variable_dtype = dtype.base_dtype - else: - init_val = initializer - variable_dtype = None - - # Create the variable (Always eagerly as a workaround for a strange - # tpu / funcgraph / keras functional model interaction ) - with tf.init_scope(): - v = tf.Variable( - initial_value=init_val, - name=name, - trainable=trainable, - caching_device=caching_device, - dtype=variable_dtype, - validate_shape=validate_shape, - constraint=constraint, - synchronization=synchronization, - aggregation=aggregation, - ) - - self._vars[name] = v - logging.vlog( - 1, - "Created variable %s with shape %s and init %s", - v.name, - format(shape), - initializer, - ) - - # Run the regularizer if requested and save the resulting loss. - if regularizer: - self.add_regularizer(v, regularizer) - - return v - - def get_or_create_layer(self, name, create_layer_method): - if name not in self._layers: - layer = create_layer_method() - self._layers[name] = layer - if isinstance(layer, base_layer.Layer): - self._regularizers[name] = lambda: tf.math.reduce_sum( - layer.losses - ) - return self._layers[name] - - def add_regularizer(self, var, regularizer): - self._regularizers[var.name] = functools.partial(regularizer, var) - - # Initialize variable when no initializer provided - def _get_default_initializer(self, name, shape=None, dtype=tf.float32): - """Provide a default initializer and a corresponding value. - - Args: - name: see get_variable. - shape: see get_variable. - dtype: see get_variable. - - Returns: - initializer and initializing_from_value. See get_variable above. - - Raises: - ValueError: When giving unsupported dtype. - """ - del shape - # If dtype is DT_FLOAT, provide a uniform unit scaling initializer - if dtype.is_floating: - initializer = tf.compat.v1.glorot_uniform_initializer() - initializing_from_value = False - # If dtype is DT_INT/DT_UINT, provide a default value `zero` - # If dtype is DT_BOOL, provide a default value `FALSE` - elif ( - dtype.is_integer - or dtype.is_unsigned - or dtype.is_bool - or dtype == tf.string - ): - initializer = tf.compat.v1.zeros_initializer() - initializing_from_value = False - # NOTES:Do we need to support for handling DT_STRING and DT_COMPLEX - # here? - else: - raise ValueError( - "An initializer for variable %s of %s is required" - % (name, dtype.base_dtype) - ) - - return initializer, initializing_from_value - - -@keras_export(v1=["keras.utils.track_tf1_style_variables"]) -def track_tf1_style_variables(method): - """Wrap layer & module methods in this decorator to capture tf1-style - weights. - - Decorating a `tf.keras.Layer`'s or `tf.Module`'s methods with this - decorator will cause the layer/module to track weights created/used - via `tf.compat.v1.get_variable` (and by extension `tf.compat.v1.layers`) - inside the decorated method. - - In addition to tracking the weights themselves under the standard - `layer.variable`/`module.variable`/etc. properties, if the method belongs - to a `tf.keras.Layer` then any regularization losses specified via the - `get_variable` or `tf.compat.v1.layers` regularizer arguments will get - tracked by the layer under the standard `layer.losses` property. - - This tracking enables using large classes of TF1-style model-forward-pass - code inside of Keras layers or `tf.Modules` in TF2 with TF2 behaviors - enabled. - - Example of capturing tf.compat.v1.layer-based modeling code as a Keras - layer: - - ```python - class WrappedDoubleDenseLayer(tf.keras.layers.Layer): - - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - @tf.compat.v1.keras.utils.track_tf1_style_variables - def call(self, inputs): - with tf.compat.v1.variable_scope("double_dense_layer"): - out = tf.compat.v1.layers.dense( - inputs, self.units, name="dense_one", - kernel_initializer=tf.compat.v1.random_normal_initializer, - kernel_regularizer="l2") - out = tf.compat.v1.layers.dense( - out, self.units, name="dense_two", - kernel_initializer=tf.compat.v1.random_normal_initializer(), - kernel_regularizer="l2") - return out - - # Create a layer that can be used as a standard keras layer - layer = WrappedDoubleDenseLayer(10) - - # call the layer on inputs - layer(...) - - # Variables created/used within the scope will be tracked by the layer - layer.weights - layer.trainable_variables - - # Regularization losses will be captured in layer.losses after a call, - # just like any other Keras layer - reg_losses = layer.losses - ``` - - Example of capturing tf.compat.v1.get_variable-based modeling code as - a Keras layer: - - ```python - class WrappedDoubleDenseLayer(tf.keras.layers.Layer): - - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - @tf.compat.v1.keras.utils.track_tf1_style_variables - def call(self, inputs): - out = inputs - with tf.compat.v1.variable_scope("double_dense_layer"): - with tf.compat.v1.variable_scope("dense_one"): - # The weights are created with a `regularizer`, - # so the layer should track their regularization losses - kernel = tf.compat.v1.get_variable( - shape=[out.shape[-1], self.units], - regularizer=regularizers.L2(), - initializer=init_ops.ones_initializer(), - name="kernel") - bias = tf.compat.v1.get_variable( - shape=[self.units,], - initializer=init_ops.zeros_initializer(), - name="bias") - out = tf.compat.v1.math.matmul(out, kernel) - out = tf.compat.v1.nn.bias_add(out, bias) - with tf.compat.v1.variable_scope("dense_two"): - kernel = tf.compat.v1.get_variable( - shape=[out.shape[-1], self.units], - regularizer=regularizers.L2(), - initializer=init_ops.ones_initializer(), - name="kernel") - bias = tf.compat.v1.get_variable( - shape=[self.units,], - initializer=init_ops.zeros_initializer(), - name="bias") - out = tf.compat.v1.math.matmul(out, kernel) - out = tf.compat.v1.nn.bias_add(out, bias) - return out - - # Create a layer that can be used as a standard keras layer - layer = WrappedDoubleDenseLayer(10) - - # call the layer on inputs - layer(...) - - # Variables created/used within the scope will be tracked by the layer - layer.weights - layer.trainable_variables - - # Regularization losses will be captured in layer.losses after a call, - # just like any other Keras layer - reg_losses = layer.losses - ``` - - Regularization losses: - Any regularizers specified in the `get_variable` calls or - `compat.v1.layer` creations will get captured if they occur in your - decorated method and the method belongs to a - `tf.keras.Layer`/`tf.keras.Module`. Regularization losses - are accessible in `layer.losses` after a call just like in a standard - Keras layer, and will be captured by any model that includes this layer. - Regularization losses attached to Keras layers/models set as attributes - of your layer will also get captured in the standard Keras regularization - loss tracking. - - (While Modules have no `losses` property, no-arg callables to compute - the regularization losses may be tracked as dict values in a private - `module._tf1_style_var_store._regularizers` property, but only for - `tf.compat.v1.layers` and `get_variable` weights and not for any other - nested Keras layers/tf.Modules) - - Variable scope / variable reuse: - variable-scope based reuse in your decorated method will be respected, - and work like variable-scope based reuse in TF1. - - Variable Names/Pre-trained checkpoint loading: - Variable naming from get_variable and `compat.v1.layer` layers will match - the TF1 names, so you should be able to re-use your old name-based - checkpoints. Variable naming for Keras layers/models or for variables - created by `tf.Variable` may change when going to eager execution. - - Training Arg if you decorate `layer.call`: - Keras will pass a `training` arg to this layer if `call` contains - a `training` arg or a `**kwargs` varargs in its call signature, - similarly to how keras passes `training` to other layers in TF2 that have - similar signatures in their `call` implementations. - See more details in the docs - on `tf.keras.layers.Layer` to understand what will be passed and when. - Note: tf.compat.v1.layers are usually not called with `training=None`, - so the training arg to `forward_pass` might not feed through to them - unless you pass it to their calls explicitly. - - Caveats: - * TF2 will not prune unused variable updates (or unused outputs). You may - need to adjust your forward pass code to avoid computations or variable - updates that you don't intend to use. - * Avoid Nesting variable creation in tf.function inside of - methods decorated with `track_tf1_style_variables` - While the method may safely be used from inside a `tf.function`, using - a function inside of a decorated method may break the variable scoping. - * This decorator only adds implicit tracking for legacy tf1-style - get_variable / compat.v1.layers usage. - If you would like to use nested Keras layers/models - inside the decorated method, you need to - assign them as attributes of your layer so that Keras/Module's standard - object-oriented weights (and loss tracking for layers) will kick in. - See the intro to modules, layers, and models - [guide](https://www.tensorflow.org/guide/intro_to_modules) for more - info. As a backup, the `compat.v1.keras.utils.get_or_create_layer` - method will ease tracking nested keras model weights and losses for - existing TF1 code, but new code should use explicit tracking. - - Args: - method: The method to decorate. This should belong to a custom tf.Module, - tf.keras.layers.Layer, or tf.keras.Model. - - Returns: - The decorated method. - """ - - def _method_wrapper(self, *args, **kwargs): - var_store = getattr(self, "_tf1_style_var_store", None) - if not var_store: - if not isinstance(self, tf.Module): - # Raise an error if you incorrectly decorate a method - # that is not a method of a Module, Layer, or Model: - raise ValueError( - "`@tf.compat.v1.keras.utils.track_tf1_layers_and_variables`" - " must be applied to a method of a subclassed `tf.Module`, " - "`tf.keras.layers.Layer`, or `tf.keras.Model` and which " - "takes `self` as the first argument. But, the first " - "argument passed to the decorated method was {}, which " - "does not extend Module, Layer, or Model.".format(self) - ) - var_store = _EagerVariableStore() - self._tf1_style_var_store = var_store - - existing_regularized_variables = set(var_store._regularizers.keys()) - with var_store.scope(): - out = method(self, *args, **kwargs) - - # If this is a layer method, add the regularization losses - # to the layer for any newly-created regularized variables - if isinstance(self, base_layer.Layer): - for ( - var_name, - regularizer, - ) in var_store._regularizers.items(): - if var_name not in existing_regularized_variables: - self.add_loss(regularizer) - - return out - - return tf.__internal__.decorator.make_decorator( - target=method, decorator_func=_method_wrapper - ) - - -class VariableScopeLayer(base_layer.Layer): - """Wrapper Layer to capture `compat.v1.get_variable` and `compat.v1.layers`. - - This shim layer allows using large sets of TF1 model-forward-pass code as a - Keras layer that works in TF2 with TF2 behaviors enabled. It will capture - both weights and regularization losses of your forward-pass code. To use it, - override this class and put your TF1 model's forward pass inside your - implementation for `forward_pass`. (Unlike standard custom Keras layers, - do not override `call`.) - - Below are some examples, and then more details on the functionality of this - shim layer to wrap TF1 model forward passes. - - Example of capturing tf.compat.v1.layer-based modeling code as a Keras - layer: - - ```python - class WrappedDoubleDenseLayer(variable_scope_shim.VariableScopeLayer): - - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - def forward_pass(self, inputs): - with variable_scope.variable_scope("double_dense_layer"): - out = tf.compat.v1.layers.dense( - inputs, self.units, name="dense_one", - kernel_initializer=tf.compat.v1.random_normal_initializer, - kernel_regularizer="l2") - out = tf.compat.v1.layers.dense( - out, self.units, name="dense_two", - kernel_initializer=tf.compat.v1.random_normal_initializer(), - kernel_regularizer="l2") - return out - - # Create a layer that can be used as a standard keras layer - layer = WrappedDoubleDenseLayer(10) - - # call the layer on inputs - layer(...) - - # Variables created/used within the scope will be tracked by the layer - layer.weights - layer.trainable_variables - - # Regularization losses will be captured in layer.losses after a call, - # just like any other Keras layer - reg_losses = layer.losses - ``` - - Example of capturing tf.compat.v1.get_variable-based modeling code as - a Keras layer: - - ```python - class WrappedDoubleDenseLayer(variable_scope_shim.VariableScopeLayer): - - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - def forward_pass(self, inputs): - out = inputs - with tf.compat.v1.variable_scope("double_dense_layer"): - with tf.compat.v1.variable_scope("dense_one"): - # The weights are created with a `regularizer`, - # so the layer should track their regularization losses - kernel = tf.compat.v1.get_variable( - shape=[out.shape[-1], self.units], - regularizer=regularizers.L2(), - initializer=init_ops.ones_initializer(), - name="kernel") - bias = tf.compat.v1.get_variable( - shape=[self.units,], - initializer=init_ops.zeros_initializer(), - name="bias") - out = tf.compat.v1.math.matmul(out, kernel) - out = tf.compat.v1.nn.bias_add(out, bias) - with tf.compat.v1.variable_scope("dense_two"): - kernel = tf.compat.v1.get_variable( - shape=[out.shape[-1], self.units], - regularizer=regularizers.L2(), - initializer=init_ops.ones_initializer(), - name="kernel") - bias = tf.compat.v1.get_variable( - shape=[self.units,], - initializer=init_ops.zeros_initializer(), - name="bias") - out = tf.compat.v1.math.matmul(out, kernel) - out = tf.compat.v1.nn.bias_add(out, bias) - return out - - # Create a layer that can be used as a standard keras layer - layer = WrappedDoubleDenseLayer(10) - - # call the layer on inputs - layer(...) - - # Variables created/used within the scope will be tracked by the layer - layer.weights - layer.trainable_variables - - # Regularization losses will be captured in layer.losses after a call, - # just like any other Keras layer - reg_losses = layer.losses - ``` - - Regularization losses: - Any regularizers specified in the `get_variable` calls or - `compat.v1.layer` creations will get captured by this wrapper layer. - Regularization losses are accessible in `layer.losses` after a call just - like in a standard Keras layer, and will be captured by any model that - includes this layer. Regularization losses attached to Keras - layers/models set as attributes of your layer will also get captured in - the standard Keras regularization loss tracking. - - Variable scope / variable reuse: - variable-scope based reuse in the `forward_pass` will be respected, - and work like variable-scope based reuse in TF1. - - Variable Names/Pre-trained checkpoint loading: - Variable naming from get_variable and `compat.v1.layer` layers will match - the TF1 names, so you should be able to re-use your old name-based - checkpoints. Variable naming for Keras layers/models or for variables - created by `tf.Variable` may change when going to eager execution. - - Training Arg in `forward_pass`: - Keras will pass a `training` arg to this layer if `forward_pass` contains - a `training` arg or a `**kwargs` varargs in its call signature, - similarly to how keras passes `training` to other layers in TF2 that have - similar signatures in their `call` implementations. - See more details in the docs - on `tf.keras.layers.Layer` to understand what will be passed and when. - Note: tf.compat.v1.layers are usually not called with `training=None`, - so the training arg to `forward_pass` might not feed through to them - unless you pass it to their calls explicitly. - - Call signature of the forward pass: - The semantics of the forward pass signature match the standard - Keras layer `call` signature, including how Keras decides when - to pass in a `training` arg., and the semantics applied to - the first positional arg in the call signature. - - Caveats: - * TF2 will not prune unused variable updates (or unused outputs). You may - need to adjust your forward pass code to avoid computations or variable - updates that you don't intend to use. (E.g. by adding a flag to the - `forward_pass` call signature and branching on it). - * Avoid Nesting variable creation in tf.function inside of `forward_pass` - While the layer may safely be used from inside a `tf.function`, using - a function inside of `forward_pass` will break the variable scoping. - * If you would like to nest Keras layers/models or other - `VariableScopeLayer`s directly in `forward_pass`, you need to - assign them as attributes of your layer so that Keras's standard - object-oriented weights and loss tracking will kick in. - See the intro to modules, layers, and models - [guide](https://www.tensorflow.org/guide/intro_to_modules) for more info - """ - - @property - @layer_utils.cached_per_instance - def _call_full_argspec(self): - # Argspec inspection is expensive and the call spec is used often, so it - # makes sense to cache the result. - return tf_inspect.getfullargspec(self.forward_pass) - - def forward_pass(self, *args, **kwargs): - """Implement this method. It should include your model forward pass.""" - raise NotImplementedError - - @track_tf1_style_variables - def call(self, *args, **kwargs): - return self.forward_pass(*args, **kwargs) - - -@keras_export(v1=["keras.utils.get_or_create_layer"]) -def get_or_create_layer(name, create_layer_method): - """Use this method to track nested keras models in a shim-decorated method. - - This method can be used within a `tf.keras.Layer`'s methods decorated by - the`track_tf1_style_variables` shim, to additionally track inner keras Model - objects created within the same method. The inner model's variables and - losses will be accessible via the outer model's `variables` and `losses` - attributes. - - This enables tracking of inner keras models using TF2 behaviors, with - minimal changes to existing TF1-style code. - - Example: - - ```python - class NestedLayer(tf.keras.layers.Layer): - - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - def build_model(self): - inp = tf.keras.Input(shape=(5, 5)) - dense_layer = tf.keras.layers.Dense( - 10, name="dense", kernel_regularizer="l2", - kernel_initializer=tf.compat.v1.ones_initializer()) - model = tf.keras.Model(inputs=inp, outputs=dense_layer(inp)) - return model - - @tf.compat.v1.keras.utils.track_tf1_style_variables - def call(self, inputs): - model = tf.compat.v1.keras.utils.get_or_create_layer( - "dense_model", self.build_model) - return model(inputs) - ``` - The inner model creation should be confined to its own zero-arg function, - which should be passed into this method. In TF1, this method will - immediately create and return the desired model, without any tracking. - - Args: - name: A name to give the nested layer to track. - create_layer_method: a Callable that takes no args and returns the nested - layer. - - Returns: - The created layer. - """ - store = vs._get_default_variable_store() - if not isinstance(store, _EagerVariableStore): - if not tf.compat.v1.executing_eagerly_outside_functions(): - # tf1 case; just create and return layer - return create_layer_method() - else: - raise ValueError( - "Tried to call get_or_create_layer in eager mode from a method " - "notdecorated with " - "@tf.compat.v1.keras.utils.track_tf1_style_variables." - ) - vs_name = tf.compat.v1.get_variable_scope().name - name = f"{vs_name}/{name}" - return store.get_or_create_layer(name, create_layer_method) diff --git a/keras/legacy_tf_layers/variable_scope_shim_test.py b/keras/legacy_tf_layers/variable_scope_shim_test.py deleted file mode 100644 index f593bdfa71d..00000000000 --- a/keras/legacy_tf_layers/variable_scope_shim_test.py +++ /dev/null @@ -1,1857 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for variable store.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import gc -import threading - -import numpy -import tensorflow as tf -from absl.testing import parameterized - -from keras import models -from keras import regularizers -from keras.engine import base_layer -from keras.engine import input_layer as input_layer_module -from keras.engine import training as training_module -from keras.layers import core -from keras.legacy_tf_layers import core as core_layers -from keras.legacy_tf_layers import variable_scope_shim -from keras.testing_infra import test_combinations - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) -from tensorflow.python.ops import variable_scope - - -def run_inside_wrap_function_in_eager_mode(graph_function): - """Decorator to execute the same graph code in eager and graph modes. - - In graph mode, we just execute the graph_function passed as argument. In - eager mode, we wrap the function using wrap_function and then execute the - wrapped result. - - Args: - graph_function: python function containing graph code to be wrapped - - Returns: - decorated function - """ - - def wrap_and_execute(self): - store = variable_scope_shim._EagerVariableStore() - with variable_scope.with_variable_store(store): - # use the original function - graph_function(self) - - return wrap_and_execute - - -class VariableScopeTest(tf.test.TestCase): - def tearDown(self): - gc.collect() - # This will only contain uncollectable garbage, i.e. reference cycles - # involving objects with __del__ defined. - self.assertEqual(0, len(gc.garbage)) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testGetVar(self): - vs = variable_scope._get_default_variable_store() - v = vs.get_variable("v", [1]) - v1 = vs.get_variable("v", [1]) - self.assertIs(v, v1) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testNameExists(self): - vs = variable_scope._get_default_variable_store() - # No check by default, so we can both create and get existing names. - v = vs.get_variable("v", [1]) - v1 = vs.get_variable("v", [1]) - self.assertIs(v, v1) - - self.assertIsNot(v, vs.get_variable("u", [1], reuse=False)) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testNamelessStore(self): - vs = variable_scope._get_default_variable_store() - vs.get_variable("v1", [2]) - vs.get_variable("v2", [2]) - expected_names = [f"{name}:0" for name in ["v1", "v2"]] - self.assertEqual( - set(expected_names), set(v.name for v in vs._vars.values()) - ) - - # TODO(mihaimaruseac): Not converted to use wrap_function because of - # TypeError: Expected tf.group() expected Tensor arguments not 'None' with - # type '' - @tf_test_utils.run_in_graph_and_eager_modes - def testVarScopeInitializer(self): - init = tf.compat.v1.constant_initializer(0.3) - with tf.compat.v1.variable_scope("tower0") as tower: - with tf.compat.v1.variable_scope("foo", initializer=init): - v = tf.compat.v1.get_variable("v", []) - self.evaluate(tf.compat.v1.variables_initializer([v])) - self.assertAllClose(self.evaluate(v.value()), 0.3) - with tf.compat.v1.variable_scope(tower, initializer=init): - w = tf.compat.v1.get_variable("w", []) - self.evaluate(tf.compat.v1.variables_initializer([w])) - self.assertAllClose(self.evaluate(w.value()), 0.3) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarScopeConstraint(self): - constraint = lambda x: 0.0 * x - with tf.compat.v1.variable_scope("tower1") as tower: - with tf.compat.v1.variable_scope("foo", constraint=constraint): - v = tf.compat.v1.get_variable("v", []) - self.assertIsNotNone(v.constraint) - with tf.compat.v1.variable_scope(tower, constraint=constraint): - w = tf.compat.v1.get_variable("w", []) - self.assertIsNotNone(w.constraint) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarScopeDType(self): - with tf.compat.v1.variable_scope("tower2") as tower: - with tf.compat.v1.variable_scope("foo", dtype=tf.float16): - v = tf.compat.v1.get_variable("v", []) - self.assertEqual(v.dtype.base_dtype, tf.float16) - with tf.compat.v1.variable_scope(tower, dtype=tf.float16): - w = tf.compat.v1.get_variable("w", []) - self.assertEqual(w.dtype.base_dtype, tf.float16) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testInitFromNonTensorValue(self): - v = tf.compat.v1.get_variable("v4", initializer=4, dtype=tf.int32) - self.evaluate(tf.compat.v1.variables_initializer([v])) - self.assertAllClose(self.evaluate(v.value()), 4) - - w = tf.compat.v1.get_variable( - "w4", initializer=numpy.array([1, 2, 3]), dtype=tf.int64 - ) - self.evaluate(tf.compat.v1.variables_initializer([w])) - self.assertAllClose(self.evaluate(w.value()), [1, 2, 3]) - - # A quirk to be revisited? - error = ValueError if tf.executing_eagerly() else TypeError - with self.assertRaises(error): - tf.compat.v1.get_variable("x4", initializer={}) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testInitFromNonInitializer(self): - # Test various dtypes with zeros initializer as following: - types = [ - tf.int8, - tf.uint8, - tf.int16, - tf.uint16, - tf.int32, - tf.int64, - tf.bool, - ] - - # Use different variable_name to distinguish various dtypes - for i, dtype in enumerate(types): - x = tf.compat.v1.get_variable( - name="xx%d" % i, shape=(3, 4), dtype=dtype - ) - y = tf.compat.v1.get_variable( - name="yy%d" % i, - shape=(3, 4), - dtype=dtype, - initializer=tf.compat.v1.zeros_initializer(dtype=dtype), - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllEqual( - self.evaluate(x.value()), self.evaluate(y.value()) - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarScopeRegularizer(self): - init = tf.compat.v1.constant_initializer(0.3) - - def regularizer1(v): - return tf.reduce_mean(v) + 0.1 - - def regularizer2(v): - return tf.reduce_mean(v) + 0.2 - - with tf.compat.v1.variable_scope( - "tower3", regularizer=regularizer1 - ) as tower: - with tf.compat.v1.variable_scope("foo", initializer=init): - v = tf.compat.v1.get_variable("v", []) - self.evaluate(tf.compat.v1.variables_initializer([v])) - with tf.compat.v1.variable_scope(tower, initializer=init) as vs: - tf.compat.v1.get_variable("u", []) - vs.set_regularizer(regularizer2) - tf.compat.v1.get_variable("w", []) - # Next 3 variable not regularized to test disabling - # regularization. - tf.compat.v1.get_variable( - "x", [], regularizer=tf.compat.v1.no_regularizer - ) - with tf.compat.v1.variable_scope( - "baz", regularizer=tf.compat.v1.no_regularizer - ): - tf.compat.v1.get_variable("y", []) - vs.set_regularizer(tf.compat.v1.no_regularizer) - tf.compat.v1.get_variable("z", []) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testInitializeFromValue(self): - init = tf.constant(0.1) - w = tf.compat.v1.get_variable("v", initializer=init) - self.evaluate(tf.compat.v1.variables_initializer([w])) - self.assertAllClose(self.evaluate(w.value()), 0.1) - - with self.assertRaisesRegex(ValueError, "shape"): - # We disallow explicit shape specification when initializer is - # constant. - tf.compat.v1.get_variable("u", [1], initializer=init) - - with tf.compat.v1.variable_scope("foo", initializer=init): - # Constant initializer can be passed through scopes if needed. - v = tf.compat.v1.get_variable("v") - self.evaluate(tf.compat.v1.variables_initializer([v])) - self.assertAllClose(self.evaluate(v.value()), 0.1) - - # Check that non-float32 initializer creates a non-float32 variable. - init = tf.constant(1, dtype=tf.int32) - t = tf.compat.v1.get_variable("t", initializer=init) - self.assertEqual(t.dtype.base_dtype, tf.int32) - - # Raise error if `initializer` dtype and `dtype` are not identical. - with self.assertRaisesRegex(ValueError, "don't match"): - tf.compat.v1.get_variable("s", initializer=init, dtype=tf.float64) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarScopeGetOrCreateReuse(self): - with self.cached_session(): - - def test_value(value): - x = tf.constant(value) - with tf.compat.v1.variable_scope( - "testVarScopeGetOrCreateReuse_bar", - reuse=tf.compat.v1.AUTO_REUSE, - ): - _ = tf.compat.v1.assign( - tf.compat.v1.get_variable("var", []), x - ) - with tf.compat.v1.variable_scope( - "testVarScopeGetOrCreateReuse_bar", - reuse=tf.compat.v1.AUTO_REUSE, - ): - _ = tf.compat.v1.get_variable("var", []) - self.assertEqual(value, self.evaluate(x)) - - test_value(42.0) # Variable is created. - test_value(13.0) # Variable is reused hereafter. - test_value(17.0) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarScopeGetOrCreateReuseIgnoreFalse(self): - with self.cached_session(): - - def test_value(value): - x = tf.constant(value) - with tf.compat.v1.variable_scope( - "testVarScopeGetOrCreateReuse_bar", reuse=False - ): - _ = tf.compat.v1.assign( - tf.compat.v1.get_variable("var", []), x - ) - # We need to ignore reuse=False in the shim, because the code is - # expected to get rerun each time the user calls the shim. - with tf.compat.v1.variable_scope( - "testVarScopeGetOrCreateReuse_bar", reuse=False - ): - _ = tf.compat.v1.get_variable("var", []) - self.assertEqual(value, self.evaluate(x)) - - test_value(42.0) # Variable is created. - test_value(13.0) # Variable is reused hereafter. - test_value(17.0) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarOpScope(self): - with self.cached_session(): - with tf.name_scope("testVarOpScope1"): - with tf.compat.v1.variable_scope("tower", "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, "tower/w:0" - ) - - with tf.name_scope("testVarOpScope2"): - with tf.compat.v1.variable_scope(None, "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, "default/w:0" - ) - with tf.compat.v1.variable_scope(None, "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, "default_1/w:0" - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarOpScopeUniqueNamesInterleavedSubstringScopes(self): - with self.cached_session(): - with tf.compat.v1.variable_scope(None, "defaultScope1"): - with tf.compat.v1.variable_scope(None, "layer"): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "defaultScope1/layer/w:0", - ) - with tf.compat.v1.variable_scope(None, "defaultScope1"): - with tf.compat.v1.variable_scope(None, "layer"): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "defaultScope1_1/layer/w:0", - ) - with tf.compat.v1.variable_scope(None, "defaultScope"): - with tf.compat.v1.variable_scope(None, "layer"): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "defaultScope/layer/w:0", - ) - with tf.compat.v1.variable_scope(None, "defaultScope1"): - with tf.compat.v1.variable_scope(None, "layer"): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "defaultScope1_2/layer/w:0", - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarOpScopeUniqueNamesWithJump(self): - with self.cached_session(): - with tf.compat.v1.variable_scope("default") as default: - with tf.compat.v1.variable_scope(None, "layer"): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "default/layer/w:0", - ) - with tf.compat.v1.variable_scope(None, "layer"): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "default/layer_1/w:0", - ) - with tf.compat.v1.variable_scope(default): - pass - # No matter the jump in the middle, unique numbering continues. - with tf.compat.v1.variable_scope(None, "layer"): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "default/layer_2/w:0", - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarOpScopeReuse(self): - with self.cached_session(): - with tf.compat.v1.variable_scope("outer") as outer: - with tf.compat.v1.variable_scope("tower", "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/tower/w:0", - ) - with tf.compat.v1.variable_scope(None, "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/default/w:0", - ) - - with tf.compat.v1.variable_scope(outer, reuse=True) as outer: - with tf.compat.v1.variable_scope("tower", "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/tower/w:0", - ) - with tf.compat.v1.variable_scope(None, "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/default/w:0", - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarScopeGetVar(self): - with self.cached_session(): - with tf.compat.v1.variable_scope("root"): - with tf.compat.v1.variable_scope("towerA") as tower_a: - va = tf.compat.v1.get_variable("v", [1]) - self.assertEqual(va.name, "root/towerA/v:0") - - with tf.compat.v1.variable_scope(tower_a, reuse=True): - va2 = tf.compat.v1.get_variable("v", [1]) - self.assertIs(va2, va) - - with tf.compat.v1.variable_scope("towerB"): - vb = tf.compat.v1.get_variable("v", [1]) - self.assertEqual(vb.name, "root/towerB/v:0") - - with tf.compat.v1.variable_scope("towerA", reuse=True): - va2 = tf.compat.v1.get_variable("v", [1]) - self.assertIs(va2, va) - - with tf.compat.v1.variable_scope("foo"): - with tf.compat.v1.variable_scope("bar"): - v = tf.compat.v1.get_variable("v", [1]) - self.assertEqual(v.name, "root/foo/bar/v:0") - with tf.compat.v1.variable_scope(tower_a, reuse=True): - va3 = tf.compat.v1.get_variable("v", [1]) - self.assertIs(va, va3) - - with self.assertRaises(ValueError) as exc: - with tf.compat.v1.variable_scope(tower_a, reuse=True): - tf.compat.v1.get_variable("v", [2]) # Different shape. - self.assertEqual("shape" in str(exc.exception), True) - - with self.assertRaises(ValueError) as exc: - with tf.compat.v1.variable_scope(tower_a, reuse=True): - tf.compat.v1.get_variable("v", [1], dtype=tf.int32) - self.assertEqual("dtype" in str(exc.exception), True) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarScopeOuterScope(self): - with self.cached_session(): - with tf.compat.v1.variable_scope("outer") as outer: - pass - with tf.compat.v1.variable_scope(outer): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, "outer/w:0" - ) - with tf.compat.v1.variable_scope("default"): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/default/w:0", - ) - - with tf.compat.v1.variable_scope(outer, reuse=True): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, "outer/w:0" - ) - with tf.compat.v1.variable_scope("default", reuse=True): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/default/w:0", - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarScopeNestedOuterScope(self): - with self.cached_session(): - with tf.compat.v1.variable_scope("outer") as outer: - with tf.compat.v1.variable_scope(outer): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, "outer/w:0" - ) - with tf.compat.v1.variable_scope("default"): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/default/w:0", - ) - - with tf.compat.v1.variable_scope(outer, reuse=True): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, "outer/w:0" - ) - with tf.compat.v1.variable_scope("default", reuse=True): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/default/w:0", - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarOpScopeReuseParam(self): - with self.cached_session(): - with tf.compat.v1.variable_scope("outer") as outer: - with tf.compat.v1.variable_scope("tower", "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/tower/w:0", - ) - with tf.compat.v1.variable_scope(None, "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/default/w:0", - ) - - with tf.compat.v1.variable_scope(outer) as outer: - with tf.compat.v1.variable_scope( - "tower", "default", reuse=True - ): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/tower/w:0", - ) - outer.reuse_variables() - with tf.compat.v1.variable_scope(None, "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/default/w:0", - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarOpScopeReuseError(self): - with self.cached_session(): - with self.assertRaises(ValueError): - with tf.compat.v1.variable_scope(None, "default", reuse=True): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/tower/w:0", - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarOpScopeOuterScope(self): - with self.cached_session(): - with tf.compat.v1.variable_scope("outer") as outer: - pass - with tf.compat.v1.variable_scope(outer, "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, "outer/w:0" - ) - with tf.compat.v1.variable_scope(None, "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/default/w:0", - ) - - with tf.compat.v1.variable_scope(outer, "default", reuse=True): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, "outer/w:0" - ) - outer.reuse_variables() - with tf.compat.v1.variable_scope(None, "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/default/w:0", - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVarOpScopeNestedOuterScope(self): - with self.cached_session(): - with tf.compat.v1.variable_scope("outer") as outer: - with tf.compat.v1.variable_scope(outer, "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, "outer/w:0" - ) - with tf.compat.v1.variable_scope(None, "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/default/w:0", - ) - - with tf.compat.v1.variable_scope(outer, "default", reuse=True): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, "outer/w:0" - ) - with tf.compat.v1.variable_scope(None, "default", []): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/default/w:0", - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testBasicWhenAuxiliaryNameScopeIsFalse(self): - with self.cached_session(): - with tf.compat.v1.variable_scope( - "scope", auxiliary_name_scope=False - ) as scope: - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, "scope/w:0" - ) - with tf.compat.v1.variable_scope(scope, auxiliary_name_scope=False): - self.assertEqual( - tf.compat.v1.get_variable("w1", []).name, "scope/w1:0" - ) - - with tf.compat.v1.variable_scope("outer"): - with tf.compat.v1.variable_scope( - "inner", auxiliary_name_scope=False - ) as inner: - self.assertEqual(inner.original_name_scope, "outer/") - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/inner/w:0", - ) - with tf.compat.v1.variable_scope( - inner, auxiliary_name_scope=False - ) as inner1: - self.assertEqual(inner1.original_name_scope, "outer/") - self.assertEqual( - tf.compat.v1.get_variable("w1", []).name, - "outer/inner/w1:0", - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testCreatedByDefaultNameWhenAuxiliaryNameScopeIsFalse(self): - with self.cached_session(): - with tf.compat.v1.variable_scope( - None, default_name="default", auxiliary_name_scope=False - ): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, "default/w:0" - ) - - with tf.compat.v1.variable_scope("outer"): - with tf.compat.v1.variable_scope( - None, default_name="default", auxiliary_name_scope=False - ) as inner: - self.assertEqual(inner.original_name_scope, "outer/") - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/default/w:0", - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testReenterRootScopeWhenAuxiliaryNameScopeIsFalse(self): - with self.cached_session(): - root_scope = tf.compat.v1.get_variable_scope() - with tf.compat.v1.variable_scope( - root_scope, auxiliary_name_scope=False - ): - self.assertEqual(tf.compat.v1.get_variable("w", []).name, "w:0") - - with tf.compat.v1.variable_scope("outer"): - with tf.compat.v1.variable_scope( - root_scope, auxiliary_name_scope=False - ) as inner: - self.assertEqual(inner.original_name_scope, "") - self.assertEqual( - tf.compat.v1.get_variable("w1", []).name, "w1:0" - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testAuxiliaryNameScopeIsInvalid(self): - with self.cached_session(): - with self.assertRaisesRegex(TypeError, "auxiliary_name_scope"): - with tf.compat.v1.variable_scope( - None, default_name="scope", auxiliary_name_scope="invalid" - ): - pass - - with self.assertRaisesRegex(TypeError, "auxiliary_name_scope"): - with tf.compat.v1.variable_scope( - "scope", auxiliary_name_scope="invalid" - ): - pass - - with tf.compat.v1.variable_scope("scope") as scope: - pass - with self.assertRaisesRegex(TypeError, "auxiliary_name_scope"): - with tf.compat.v1.variable_scope( - scope, auxiliary_name_scope="invalid" - ): - pass - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testReuseScopeWithoutNameScopeCollision(self): - # GitHub issue: #13429 - with self.cached_session(): - with tf.compat.v1.variable_scope("outer"): - with tf.compat.v1.variable_scope("inner") as inner: - pass - - with tf.compat.v1.variable_scope( - inner, auxiliary_name_scope=False - ) as scope: - with tf.name_scope(scope.original_name_scope): - self.assertEqual( - tf.compat.v1.get_variable("w", []).name, - "outer/inner/w:0", - ) - - with tf.compat.v1.variable_scope("another"): - with tf.compat.v1.variable_scope( - inner, auxiliary_name_scope=False - ) as scope1: - with tf.name_scope(scope1.original_name_scope): - self.assertEqual( - tf.compat.v1.get_variable("w1", []).name, - "outer/inner/w1:0", - ) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testGetVarWithDevice(self): - g = tf.Graph() - varname_type = [] - - def device_func(op): - if op.type in ["Variable", "VariableV2", "VarHandleOp"]: - varname_type.append((op.name, op.get_attr("dtype"))) - return "/device:GPU:0" - - with g.as_default(): - with tf.compat.v1.device(device_func): - _ = tf.compat.v1.get_variable("x", (100, 200)) - _ = tf.compat.v1.get_variable( - "y", dtype=tf.int64, initializer=numpy.arange(73) - ) - self.assertEqual(varname_type[0], ("x", tf.float32)) - self.assertEqual(varname_type[1], ("y", tf.int64)) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testGetVariableWithRefDtype(self): - v = tf.compat.v1.get_variable("v", shape=[3, 4], dtype=tf.float32) - # Ensure it is possible to do get_variable with a _ref dtype passed in. - _ = tf.compat.v1.get_variable("w", shape=[5, 6], dtype=v.dtype) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testGetVariableWithInitializerWhichTakesNoArgs(self): - v = tf.compat.v1.get_variable("foo", initializer=lambda: [2]) - self.assertEqual(v.name, "foo:0") - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testGetVariableWithInitializerWhichTakesOptionalArgs(self): - v = tf.compat.v1.get_variable("foo", initializer=lambda x=True: [2]) - self.assertEqual(v.name, "foo:0") - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testTwoGraphs(self): - def f(): - g1 = tf.Graph() - g2 = tf.Graph() - with g1.as_default(): - with g2.as_default(): - with tf.compat.v1.variable_scope("_"): - pass - - self.assertRaisesRegex( - ValueError, "'_' is not a valid (?:root )?scope name", f - ) - - -class VariableScopeWithCustomGetterTest(tf.test.TestCase): - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testNonCallableGetterFails(self): - with self.assertRaisesRegex( - ValueError, r"custom_getter .* not callable:" - ): - with tf.compat.v1.variable_scope("scope0", custom_getter=3): - tf.compat.v1.get_variable("name0") - with self.assertRaisesRegex( - ValueError, r"custom_getter .* not callable:" - ): - tf.compat.v1.get_variable("name0", custom_getter=3) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testNoSideEffectsWithIdentityCustomGetter(self): - called = [0] - - def custom_getter(getter, *args, **kwargs): - called[0] += 1 - return getter(*args, **kwargs) - - with tf.compat.v1.variable_scope( - "scope", custom_getter=custom_getter - ) as scope: - v = tf.compat.v1.get_variable("v", [1]) - with tf.compat.v1.variable_scope(scope, reuse=True): - v2 = tf.compat.v1.get_variable("v", [1]) - with tf.compat.v1.variable_scope("new_scope") as new_scope: - v3 = tf.compat.v1.get_variable("v3", [1]) - with tf.compat.v1.variable_scope( - new_scope, reuse=True, custom_getter=custom_getter - ): - v4 = tf.compat.v1.get_variable("v3", [1]) - - self.assertIs(v, v2) - self.assertIs(v3, v4) - self.assertEqual(3, called[0]) # skipped one in the first new_scope - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testSynchronizationAndAggregationWithCustomGetter(self): - called = [0] - synchronization = tf.VariableSynchronization.AUTO - aggregation = tf.compat.v1.VariableAggregation.NONE - - def custom_getter(getter, *args, **kwargs): - called[0] += 1 - - # Verify synchronization and aggregation kwargs are as expected. - self.assertEqual(kwargs["synchronization"], synchronization) - self.assertEqual(kwargs["aggregation"], aggregation) - return getter(*args, **kwargs) - - with tf.compat.v1.variable_scope("scope", custom_getter=custom_getter): - tf.compat.v1.get_variable("v", [1]) - self.assertEqual(1, called[0]) - - with tf.compat.v1.variable_scope("scope", custom_getter=custom_getter): - synchronization = tf.VariableSynchronization.ON_READ - aggregation = tf.compat.v1.VariableAggregation.MEAN - tf.compat.v1.get_variable( - "v1", - [1], - synchronization=synchronization, - aggregation=aggregation, - ) - - self.assertEqual(2, called[0]) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVariableCreator(self): - variable_names = [] - - def creator_a(next_creator, **kwargs): - variable_names.append(kwargs.get("name", "")) - return next_creator(**kwargs) - - def creator_b(next_creator, **kwargs): - kwargs["name"] = "forced_name" - return next_creator(**kwargs) - - with tf.variable_creator_scope(creator_a): - with tf.variable_creator_scope(creator_b): - tf.compat.v1.Variable(1.0, name="one_name") - - self.assertEqual(variable_names[0], "forced_name") - - called = [False] - - def creater_c(next_creator, **kwargs): - called[0] = True - self.assertEqual( - kwargs["synchronization"], tf.VariableSynchronization.ON_WRITE - ) - self.assertEqual( - kwargs["aggregation"], tf.compat.v1.VariableAggregation.MEAN - ) - return next_creator(**kwargs) - - with tf.variable_creator_scope(creater_c): - tf.compat.v1.get_variable( - "v", - [], - synchronization=tf.VariableSynchronization.ON_WRITE, - aggregation=tf.compat.v1.VariableAggregation.MEAN, - ) - self.assertTrue(called[0]) - - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testVariableCreatorNestingError(self): - def creator(next_creator, **kwargs): - return next_creator(**kwargs) - - # Save the state so we can clean up at the end. - graph = tf.compat.v1.get_default_graph() - old_creator_stack = graph._variable_creator_stack - - try: - scope = tf.variable_creator_scope(creator) - scope.__enter__() - with tf.variable_creator_scope(creator): - with self.assertRaises(RuntimeError): - scope.__exit__(None, None, None) - finally: - graph._variable_creator_stack = old_creator_stack - - -class VariableScopeMultithreadedTest(tf.test.TestCase): - @tf_test_utils.run_in_graph_and_eager_modes - @run_inside_wrap_function_in_eager_mode - def testReenterMainScope(self): - def thread_fn(graph, main_thread_scope): - with graph.as_default(): - # Variable created with main scope will have prefix "main". - with tf.compat.v1.variable_scope(main_thread_scope): - with tf.compat.v1.variable_scope("foo"): - v = tf.compat.v1.get_variable("v", []) - self.assertEqual("main/foo/v:0", v.name) - - # Variable created outside main scope will not have prefix - # "main". - with tf.compat.v1.variable_scope("bar"): - v = tf.compat.v1.get_variable("v", []) - self.assertEqual("bar/v:0", v.name) - - graph = tf.compat.v1.get_default_graph() - with tf.compat.v1.variable_scope("main") as main_thread_scope: - thread = threading.Thread( - target=thread_fn, args=(graph, main_thread_scope) - ) - thread.start() - thread.join() - - -class CompatV1TemplateScaleByY(base_layer.Layer): - def __init__(self, **kwargs): - super().__init__(**kwargs) - - def my_op(x, scalar_name): - var1 = tf.compat.v1.get_variable( - scalar_name, - shape=[], - regularizer=regularizers.L2(), - initializer=tf.compat.v1.constant_initializer(1.5), - ) - return x * var1 - - self.scale_by_y = tf.compat.v1.make_template( - "scale_by_y", my_op, scalar_name="y" - ) - - @variable_scope_shim.track_tf1_style_variables - def call(self, inputs): - with tf.compat.v1.variable_scope("foo"): - return self.scale_by_y(inputs) - - -class VariableScopeModule(tf.Module): - """Module that uses the shim.""" - - @variable_scope_shim.track_tf1_style_variables - def __call__(self, *args, **kwargs): - with self.name_scope: - return self.forward_pass(*args, **kwargs) - - def get_compat_v1_regularization_losses(self): - """Dict w/ regularization losses from - `get_variable`&`compat.v1.layers`.""" - return { - name: regularizer() - for name, regularizer in self._tf1_style_var_store._regularizers.items() # noqa: E501 - } - - -@test_combinations.generate(test_combinations.combine(mode=["eager"])) -class TF1VariableScopeLayerTest(tf.test.TestCase, parameterized.TestCase): - def test_get_variable(self): - # Test the shim when using `get_variable` (and regularizers) directly - - class WrappedDenseLayer(base_layer.Layer): - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - @variable_scope_shim.track_tf1_style_variables - def call(self, inputs, training=None): - out = inputs - with tf.compat.v1.variable_scope("dense_one"): - # The weights are created with a `regularizer`, - # so the layer should track their regularization losses - kernel = tf.compat.v1.get_variable( - shape=[out.shape[-1], self.units], - regularizer=regularizers.L2(), - initializer=tf.compat.v1.ones_initializer(), - name="kernel", - ) - bias = tf.compat.v1.get_variable( - shape=[ - self.units, - ], - initializer=tf.compat.v1.zeros_initializer(), - name="bias", - ) - out = tf.matmul(out, kernel) - out = tf.nn.bias_add(out, bias) - with tf.compat.v1.variable_scope("nested_scope"): - with tf.compat.v1.variable_scope("dense_two"): - kernel = tf.compat.v1.get_variable( - shape=[out.shape[-1], self.units], - regularizer=regularizers.L2(), - initializer=tf.compat.v1.ones_initializer(), - name="kernel", - ) - bias = tf.compat.v1.get_variable( - shape=[ - self.units, - ], - initializer=tf.compat.v1.zeros_initializer(), - name="bias", - ) - out = tf.matmul(out, kernel) - out = tf.nn.bias_add(out, bias) - return out - - layer = WrappedDenseLayer(10) - out = layer(tf.ones(shape=(5, 5))) - weights = {x.name: x for x in layer.variables} - - # Verify the correct output, regularization losses, + variables were - # made - self.assertEqual( - weights.keys(), - { - "dense_one/bias:0", - "dense_one/kernel:0", - "nested_scope/dense_two/bias:0", - "nested_scope/dense_two/kernel:0", - }, - ) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 50) - self.assertAllEqual(tf.add_n(layer.losses), 1.5) - - # Verify reuse by updating the variables then re-running - weights["dense_one/kernel:0"].assign(tf.ones(shape=(5, 10)) * 2) - weights["nested_scope/dense_two/kernel:0"].assign( - tf.ones(shape=(10, 10)) * 2 - ) - out = layer(tf.ones(shape=(5, 5))) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 200) - self.assertAllEqual(tf.add_n(layer.losses), 6) - - def test_compat_v1_layer(self): - # Test the shim when using `compat.v1` layers - - class WrappedDenseLayer(base_layer.Layer): - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - @variable_scope_shim.track_tf1_style_variables - def call(self, inputs, training=None): - out = core_layers.dense( - inputs, - self.units, - name="dense_one", - kernel_initializer=tf.compat.v1.ones_initializer(), - kernel_regularizer="l2", - ) - with tf.compat.v1.variable_scope("nested_scope"): - out = core_layers.dense( - out, - self.units, - name="dense_two", - kernel_initializer=tf.compat.v1.ones_initializer(), - kernel_regularizer="l2", - ) - return out - - layer = WrappedDenseLayer(10) - out = layer(tf.ones(shape=(5, 5))) - weights = {x.name: x for x in layer.variables} - - # Verify the correct output, losses, + variables were made - self.assertEqual( - weights.keys(), - { - "dense_one/bias:0", - "dense_one/kernel:0", - "nested_scope/dense_two/bias:0", - "nested_scope/dense_two/kernel:0", - }, - ) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 50) - self.assertAllEqual(tf.add_n(layer.losses), 1.5) - - # Verify reuse by updating the variables then re-running - weights["dense_one/kernel:0"].assign(tf.ones(shape=(5, 10)) * 2) - weights["nested_scope/dense_two/kernel:0"].assign( - tf.ones(shape=(10, 10)) * 2 - ) - out = layer(tf.ones(shape=(5, 5))) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 200) - self.assertAllEqual(tf.add_n(layer.losses), 6) - - def test_shim_exporting(self): - class WrappedDenseLayer(base_layer.Layer): - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - @variable_scope_shim.track_tf1_style_variables - def call(self, inputs, training=None): - out = core_layers.dense( - inputs, - self.units, - name="dense_one", - kernel_initializer=tf.compat.v1.ones_initializer(), - kernel_regularizer="l2", - ) - with tf.compat.v1.variable_scope("nested_scope"): - out = core_layers.dense( - out, - self.units, - name="dense_two", - kernel_initializer=tf.compat.v1.ones_initializer(), - kernel_regularizer="l2", - ) - return out - - layer = WrappedDenseLayer(10) - layer(tf.ones(shape=(5, 5))) - - tmp_dir = self.get_temp_dir() - - # Try exporting the layer directly - tf.saved_model.save(layer, tmp_dir) - - # Try exporting the layer nested in a functional model - # This is where saving reflection gets tricky due to - # trying to replace the passed training arg in training=True - # and training=False modes - inp = input_layer_module.Input(shape=(5, 5)) - outs = layer(inp) - model = models.Model(inp, outs) - tf.saved_model.save(model, tmp_dir) - - def test_variable_store_scope_get_variable(self): - # Test the module shim when using `get_variable` (and regularizers) - # directly - - class WrappedDenseLayer(tf.Module): - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - self._variable_store = variable_scope_shim._EagerVariableStore() - - def get_compat_v1_regularization_losses(self): - """Dict w/ regularization losses from `get_variable`.""" - return { - name: regularizer() - for name, regularizer in self._variable_store._regularizers.items() # noqa: E501 - } - - def __call__(self, inputs, training=None): - with self._variable_store.scope(): - out = inputs - with tf.compat.v1.variable_scope("dense_one"): - # The weights are created with a `regularizer`, - # so the layer should track their regularization losses - kernel = tf.compat.v1.get_variable( - shape=[out.shape[-1], self.units], - regularizer=regularizers.L2(), - initializer=tf.compat.v1.ones_initializer(), - name="kernel", - ) - bias = tf.compat.v1.get_variable( - shape=[ - self.units, - ], - initializer=tf.compat.v1.zeros_initializer(), - name="bias", - ) - out = tf.matmul(out, kernel) - out = tf.nn.bias_add(out, bias) - with tf.compat.v1.variable_scope("nested_scope"): - with tf.compat.v1.variable_scope("dense_two"): - kernel = tf.compat.v1.get_variable( - shape=[out.shape[-1], self.units], - regularizer=regularizers.L2(), - initializer=tf.compat.v1.ones_initializer(), - name="kernel", - ) - bias = tf.compat.v1.get_variable( - shape=[ - self.units, - ], - initializer=tf.compat.v1.zeros_initializer(), - name="bias", - ) - out = tf.matmul(out, kernel) - out = tf.nn.bias_add(out, bias) - return out - - layer = WrappedDenseLayer(10) - out = layer(tf.ones(shape=(5, 5))) - weights = {x.name: x for x in layer.variables} - - # Verify the correct output, regularization losses, + variables were - # made - self.assertEqual( - weights.keys(), - { - "dense_one/bias:0", - "dense_one/kernel:0", - "nested_scope/dense_two/bias:0", - "nested_scope/dense_two/kernel:0", - }, - ) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 50) - self.assertAllEqual( - tf.add_n(layer.get_compat_v1_regularization_losses().values()), 1.5 - ) - - # Verify reuse by updating the variables then re-running - weights["dense_one/kernel:0"].assign(tf.ones(shape=(5, 10)) * 2) - weights["nested_scope/dense_two/kernel:0"].assign( - tf.ones(shape=(10, 10)) * 2 - ) - out = layer(tf.ones(shape=(5, 5))) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 200) - self.assertAllEqual( - tf.add_n(layer.get_compat_v1_regularization_losses().values()), 6 - ) - - def test_module_get_variable(self): - # Test the module shim when using `get_variable` (and regularizers) - # directly - - class WrappedDenseLayer(VariableScopeModule): - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - def forward_pass(self, inputs, training=None): - out = inputs - with tf.compat.v1.variable_scope("dense_one"): - # The weights are created with a `regularizer`, - # so the layer should track their regularization losses - kernel = tf.compat.v1.get_variable( - shape=[out.shape[-1], self.units], - regularizer=regularizers.L2(), - initializer=tf.compat.v1.ones_initializer(), - name="kernel", - ) - bias = tf.compat.v1.get_variable( - shape=[ - self.units, - ], - initializer=tf.compat.v1.zeros_initializer(), - name="bias", - ) - out = tf.matmul(out, kernel) - out = tf.nn.bias_add(out, bias) - with tf.compat.v1.variable_scope("nested_scope"): - with tf.compat.v1.variable_scope("dense_two"): - kernel = tf.compat.v1.get_variable( - shape=[out.shape[-1], self.units], - regularizer=regularizers.L2(), - initializer=tf.compat.v1.ones_initializer(), - name="kernel", - ) - bias = tf.compat.v1.get_variable( - shape=[ - self.units, - ], - initializer=tf.compat.v1.zeros_initializer(), - name="bias", - ) - out = tf.matmul(out, kernel) - out = tf.nn.bias_add(out, bias) - return out - - layer = WrappedDenseLayer(10) - out = layer(tf.ones(shape=(5, 5))) - weights = {x.name: x for x in layer.variables} - - # Verify the correct output, regularization losses, + variables were - # made - self.assertEqual( - weights.keys(), - { - "dense_one/bias:0", - "dense_one/kernel:0", - "nested_scope/dense_two/bias:0", - "nested_scope/dense_two/kernel:0", - }, - ) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 50) - self.assertAllEqual( - tf.add_n(layer.get_compat_v1_regularization_losses().values()), 1.5 - ) - - # Verify reuse by updating the variables then re-running - weights["dense_one/kernel:0"].assign(tf.ones(shape=(5, 10)) * 2) - weights["nested_scope/dense_two/kernel:0"].assign( - tf.ones(shape=(10, 10)) * 2 - ) - out = layer(tf.ones(shape=(5, 5))) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 200) - self.assertAllEqual( - tf.add_n(layer.get_compat_v1_regularization_losses().values()), 6 - ) - - def test_module_compat_v1_layer(self): - # Test the module shim when using `compat.v1` layers - - class WrappedDenseLayer(VariableScopeModule): - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - def forward_pass(self, inputs, training=None): - out = core_layers.dense( - inputs, - self.units, - name="dense_one", - kernel_initializer=tf.compat.v1.ones_initializer(), - kernel_regularizer="l2", - ) - with tf.compat.v1.variable_scope("nested_scope"): - out = core_layers.dense( - out, - self.units, - name="dense_two", - kernel_initializer=tf.compat.v1.ones_initializer(), - kernel_regularizer="l2", - ) - return out - - layer = WrappedDenseLayer(10) - out = layer(tf.ones(shape=(5, 5))) - weights = {x.name: x for x in layer.variables} - - # Verify the correct output, losses, + variables were made - self.assertEqual( - weights.keys(), - { - "dense_one/bias:0", - "dense_one/kernel:0", - "nested_scope/dense_two/bias:0", - "nested_scope/dense_two/kernel:0", - }, - ) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 50) - self.assertAllEqual( - tf.add_n(layer.get_compat_v1_regularization_losses().values()), 1.5 - ) - - # Verify reuse by updating the variables then re-running - weights["dense_one/kernel:0"].assign(tf.ones(shape=(5, 10)) * 2) - weights["nested_scope/dense_two/kernel:0"].assign( - tf.ones(shape=(10, 10)) * 2 - ) - out = layer(tf.ones(shape=(5, 5))) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 200) - self.assertAllEqual( - tf.add_n(layer.get_compat_v1_regularization_losses().values()), 6 - ) - - def test_shim_nesting(self): - # Test that nesting the shim in itself works - - class NestedLayer(base_layer.Layer): - def __init__(self, units, name, *args, **kwargs): - super().__init__(*args, name=name, **kwargs) - self.units = units - - @variable_scope_shim.track_tf1_style_variables - def call(self, inputs): - out = inputs - with tf.compat.v1.variable_scope(self.name): - # The weights are created with a `regularizer`, - # so the layer should track their regularization losses - kernel = tf.compat.v1.get_variable( - shape=[out.shape[-1], self.units], - regularizer=regularizers.L2(1.0), - initializer=tf.compat.v1.ones_initializer(), - name="kernel", - ) - bias = tf.compat.v1.get_variable( - shape=[ - self.units, - ], - initializer=tf.compat.v1.initializers.zeros, - name="bias", - ) - out = tf.linalg.matmul(out, kernel) - out = tf.compat.v1.nn.bias_add(out, bias) - return out - - class WrappedDenseLayer(base_layer.Layer): - def __init__(self, units, **kwargs): - super().__init__(**kwargs) - self.units = units - self.dense_layer_a = None - self.dense_layer_b = None - - @variable_scope_shim.track_tf1_style_variables - def call(self, inputs): - # Only create the nested tf.variable/module/layer/model if it - # has not already been created! - if not self.dense_layer_a: - self.dense_layer_a = NestedLayer( - self.units * 2, "dense_one" - ) - out = self.dense_layer_a(inputs) - if not self.dense_layer_b: - self.dense_layer_b = NestedLayer(self.units, "dense_two") - out = self.dense_layer_b(out) - return out - - layer = WrappedDenseLayer(5) - out = layer(tf.ones(shape=(1, 3))) - weights = {x.name: x for x in layer.variables} - - # Verify the correct output, losses, + variables were made - # (Specifically: no double-counting of any weights or reg. losses - # between nested components!) - self.assertEqual( - {var.name for var in layer.trainable_weights}, - { - "dense_one/bias:0", - "dense_one/kernel:0", - "dense_two/bias:0", - "dense_two/kernel:0", - }, - ) - self.assertEqual( - {var.name for var in layer.dense_layer_a.weights}, - {"dense_one/bias:0", "dense_one/kernel:0"}, - ) - self.assertEqual( - {var.name for var in layer.dense_layer_b.weights}, - {"dense_two/bias:0", "dense_two/kernel:0"}, - ) - self.assertAllEqual(out, tf.ones(shape=(1, 5)) * 30) - self.assertAllEqual(tf.add_n(layer.dense_layer_a.losses), 30) - self.assertAllEqual(tf.add_n(layer.dense_layer_b.losses), 50) - self.assertAllEqual(tf.add_n(layer.losses), 80) - - # Verify reuse by updating the variables then re-running - weights["dense_one/kernel:0"].assign(tf.ones(shape=(3, 10)) * 2) - weights["dense_two/kernel:0"].assign(tf.ones(shape=(10, 5)) * 2) - out = layer(tf.ones(shape=(1, 3))) - self.assertAllEqual(out, tf.ones(shape=(1, 5)) * 120) - self.assertAllEqual(tf.add_n(layer.losses), 320) - - def test_compat_v1_make_template_in_shim_eager(self): - # Test the shim when using `compat.v1.make_template` - # Verify it works correctly in eager - layer = CompatV1TemplateScaleByY() - for _ in range(3): - # Use multiple calls to verify that no new weights get created - self.assertAllEqual( - layer(tf.ones(shape=(2, 3))), tf.constant(1.5, shape=(2, 3)) - ) - self.assertAllEqual( - {var.name: var.numpy() for var in layer.weights}, - {"foo/scale_by_y/y:0": 1.5}, - ) - self.assertAllEqual( - tf.add_n(layer.losses), regularizers.L2()(layer.weights[0]) - ) - - def test_compat_v1_make_template_in_shim_tf_function(self): - # Test the shim when using `compat.v1.make_template` - # Verify it works correctly in a tf.function - # when made outside the function - layer = CompatV1TemplateScaleByY() - - @tf.function - def foo(x): - return layer(x), tf.add_n(layer.losses) - - for _ in range(3): - # Use multiple calls to verify that no new weights get created - out, loss = foo(tf.ones(shape=(2, 3))) - self.assertAllEqual(out, tf.constant(1.5, shape=(2, 3))) - self.assertAllEqual(loss, regularizers.L2()(layer.weights[0])) - self.assertAllEqual( - {var.name: var.numpy() for var in layer.weights}, - {"foo/scale_by_y/y:0": 1.5}, - ) - - def test_compat_v1_make_template_in_trace_in_shim(self): - # Test the shim when using `compat.v1.make_template` - # Verify it works correctly when the make_template/layer/shim - # is created on the first tf.function trace! - layers = {} - - @tf.function - def bar(x): - if "layer" not in layers: - layers["layer"] = CompatV1TemplateScaleByY() - layer = layers["layer"] - return layer(x), tf.add_n(layer.losses) - - for _ in range(3): - # Use multiple calls to verify that no new weights get created - out, loss = bar(tf.ones(shape=(2, 3))) - self.assertAllEqual(out, tf.constant(1.5, shape=(2, 3))) - self.assertAllEqual( - loss, regularizers.L2()(layers["layer"].weights[0]) - ) - self.assertAllEqual( - {var.name: var.numpy() for var in layers["layer"].weights}, - {"foo/scale_by_y/y:0": 1.5}, - ) - - def test_only_track_get_variable(self): - # Test the shim does not try tracking or reusing variables - # that were not created by get_variable. These variables/modules/layers - # need to be tracked separately - - class WrappedDenseLayer(base_layer.Layer): - def __init__(self, units, **kwargs): - super().__init__(**kwargs) - self.units = units - self._dense_model = None - - @variable_scope_shim.track_tf1_style_variables - def call(self, inputs): - dense_layer = core.Dense( - self.units, - name="dense", - kernel_initializer=tf.compat.v1.ones_initializer(), - kernel_regularizer="l2", - ) - return dense_layer(inputs) - - layer = WrappedDenseLayer(10) - out = layer(tf.ones(shape=(5, 5))) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 5) - - self.assertEmpty(layer.weights) - - def test_embedded_keras_model(self): - # Test the shim when embedding a Keras model inside of it - # And assigning the model to an attribute - - class WrappedDenseLayer(base_layer.Layer): - def __init__(self, units, **kwargs): - super().__init__(**kwargs) - self.units = units - self._dense_model = None - - @variable_scope_shim.track_tf1_style_variables - def call(self, inputs): - if not self._dense_model: - inp = input_layer_module.Input(shape=inputs.shape) - dense_layer = core.Dense( - self.units, - name="dense", - kernel_initializer=tf.compat.v1.ones_initializer(), - kernel_regularizer="l2", - ) - self._dense_model = training_module.Model( - inputs=inp, outputs=dense_layer(inp) - ) - return self._dense_model(inputs) - - layer = WrappedDenseLayer(10) - out = layer(tf.ones(shape=(5, 5))) - weights = {x.name: x for x in layer.variables} - - # Verify the correct output, losses, + variables were made - self.assertEqual(weights.keys(), {"dense/bias:0", "dense/kernel:0"}) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 5) - self.assertAllEqual(tf.add_n(layer.losses), 0.5) - - # Verify reuse by updating the variables then re-running - weights["dense/kernel:0"].assign(tf.ones(shape=(5, 10)) * 2) - out = layer(tf.ones(shape=(5, 5))) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 10) - self.assertAllEqual(tf.add_n(layer.losses), 2) - - def test_embedded_keras_model_in_module(self): - # Test the module shim when embedding a Keras model inside of it - # And assigning the model to an attribute - - class WrappedDenseLayer(VariableScopeModule): - def __init__(self, units, **kwargs): - super().__init__(**kwargs) - self.units = units - self._dense_model = None - - def forward_pass(self, inputs): - if not self._dense_model: - inp = input_layer_module.Input(shape=inputs.shape) - dense_layer = core.Dense( - self.units, - name="dense", - kernel_initializer=tf.compat.v1.ones_initializer(), - kernel_regularizer="l2", - ) - self._dense_model = training_module.Model( - inputs=inp, outputs=dense_layer(inp) - ) - return self._dense_model(inputs) - - layer = WrappedDenseLayer(10) - out = layer(tf.ones(shape=(5, 5))) - weights = {x.name: x for x in layer.variables} - - # Verify the correct output, losses, + variables were made - self.assertEqual(weights.keys(), {"dense/bias:0", "dense/kernel:0"}) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 5) - - # The module shim will only track regularization losses made by - # compat.v1.layers and compat.v1.get_variable. Other regularization - # losses must be tracked by separate user-created mechanisms. - self.assertEmpty(layer.get_compat_v1_regularization_losses()) - - # Verify reuse by updating the variables then re-running - weights["dense/kernel:0"].assign(tf.ones(shape=(5, 10)) * 2) - out = layer(tf.ones(shape=(5, 5))) - self.assertAllEqual(out, tf.ones(shape=(5, 10)) * 10) - - # The module shim will only track regularization losses made by - # compat.v1.layers and compat.v1.get_variable. Other regularization - # losses must be tracked by separate user-created mechanisms. - self.assertEmpty(layer.get_compat_v1_regularization_losses()) - - def test_training_arg(self): - # Test the shim when passing in a Keras `training` arg - - class TrainingCheckLayer(base_layer.Layer): - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - @variable_scope_shim.track_tf1_style_variables - def call(self, inputs, training=None): - if training: - out = core_layers.dense( - inputs, self.units, name="dense_training" - ) - else: - out = core_layers.dense( - inputs, self.units, name="dense_no_training" - ) - return out - - layer = TrainingCheckLayer(10) - layer(tf.ones(shape=(5, 5)), training=True) - weights = {x.name: x for x in layer.variables} - - # Verify the correct variables were made - self.assertEqual( - weights.keys(), {"dense_training/bias:0", "dense_training/kernel:0"} - ) - - layer = TrainingCheckLayer(10) - layer(tf.ones(shape=(5, 5))) - weights = {x.name: x for x in layer.variables} - - # Verify the correct variables were made - self.assertEqual( - weights.keys(), - {"dense_no_training/bias:0", "dense_no_training/kernel:0"}, - ) - - def test_incorrect_decoration(self): - # Raise an error if you incorrectly decorate a method - # that is not a method of a Module, layer, or model: - @variable_scope_shim.track_tf1_style_variables - def foo(x): - return x * 2 - - with self.assertRaisesRegex(ValueError, "does not extend"): - foo(tf.ones(shape=(4, 4))) - - -class GetOrCreateLayerTest(tf.test.TestCase, parameterized.TestCase): - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_get_or_create_layer_with_regularizer_eager(self): - class NestedLayer(base_layer.Layer): - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - def build_model(self): - inp = input_layer_module.Input(shape=(5, 5)) - dense_layer = core.Dense( - 10, - name="dense", - kernel_regularizer="l2", - kernel_initializer=tf.compat.v1.ones_initializer(), - ) - model = training_module.Model( - inputs=inp, outputs=dense_layer(inp) - ) - return model - - @variable_scope_shim.track_tf1_style_variables - def call(self, inputs): - # enter a variable scope to check module key naming - with tf.compat.v1.variable_scope("test_scope"): - model = variable_scope_shim.get_or_create_layer( - "dense_model", self.build_model - ) - return model(inputs) - - layer = NestedLayer(10) - x = tf.ones(shape=(5, 5)) - - out1 = layer(tf.expand_dims(x, 0)) - - model1 = layer.submodules[0]._layers["test_scope/dense_model"] - - out2 = layer(tf.expand_dims(x, 0)) - # Verify model produces same output on successive calls with same input - self.assertAllEqual(out1, out2) - - # Verify the model used on subsequent calls is the same - model2 = layer.submodules[0]._layers["test_scope/dense_model"] - self.assertIs(model1, model2) - - # Verify that stored layer computes outputs and losses correctly - weights = {x.name: x for x in layer.variables} - self.assertEqual(weights.keys(), {"dense/bias:0", "dense/kernel:0"}) - self.assertAllEqual(out2, tf.ones(shape=(1, 5, 10)) * 5) - self.assertAllEqual(layer.losses, [0.5]) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_get_or_create_layer_no_regularizer_eager(self): - class NestedLayer(base_layer.Layer): - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - def build_model(self): - inp = input_layer_module.Input(shape=(5, 5)) - dense_layer = core.Dense( - 10, - name="dense", - kernel_initializer=tf.compat.v1.ones_initializer(), - ) - model = training_module.Model( - inputs=inp, outputs=dense_layer(inp) - ) - return model - - @variable_scope_shim.track_tf1_style_variables - def call(self, inputs): - # enter a variable scope to check module key naming - with tf.compat.v1.variable_scope("test_scope"): - model = variable_scope_shim.get_or_create_layer( - "dense_model", self.build_model - ) - return model(inputs) - - layer = NestedLayer(10) - x = tf.ones(shape=(5, 5)) - - out1 = layer(tf.expand_dims(x, 0)) - - model1 = layer.submodules[0]._layers["test_scope/dense_model"] - - out2 = layer(tf.expand_dims(x, 0)) - # Verify model produces same output on successive calls with same input - self.assertAllEqual(out1, out2) - - # Verify the model used on subsequent calls is the same - model2 = layer.submodules[0]._layers["test_scope/dense_model"] - self.assertIs(model1, model2) - - # Verify that stored layer computes outputs and losses correctly - weights = {x.name: x for x in layer.variables} - self.assertEqual(weights.keys(), {"dense/bias:0", "dense/kernel:0"}) - self.assertAllEqual(out2, tf.ones(shape=(1, 5, 10)) * 5) - self.assertAllEqual(layer.losses, [0.0]) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_get_or_create_layer_tf_function(self): - class NestedLayer(base_layer.Layer): - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - def build_model(self): - inp = input_layer_module.Input(shape=(5, 5)) - dense_layer = core.Dense( - 10, - name="dense", - kernel_regularizer="l2", - ) - model = training_module.Model( - inputs=inp, outputs=dense_layer(inp) - ) - return model - - @variable_scope_shim.track_tf1_style_variables - def call(self, inputs): - model = variable_scope_shim.get_or_create_layer( - "dense_model", self.build_model - ) - return model(inputs) - - layer = NestedLayer(10) - - @tf.function - def foo(x): - return layer(x), tf.add_n(layer.losses) - - # Verify inner model is reused - out1, loss1 = foo(tf.ones(shape=(5, 5))) - out2, loss2 = foo(tf.ones(shape=(5, 5))) - self.assertAllEqual(out1, out2) - self.assertAllEqual(loss1, loss2) - - @tf_test_utils.run_deprecated_v1 - def test_get_or_create_layer_graph(self): - class NestedLayer(object): - def __init__(self, units, *args, **kwargs): - super().__init__(*args, **kwargs) - self.units = units - - def build_model(self): - inp = input_layer_module.Input(shape=(5, 5)) - dense_layer = core.Dense( - 10, - name="dense", - kernel_regularizer="l2", - kernel_initializer=tf.compat.v1.ones_initializer(), - ) - model = training_module.Model( - inputs=inp, outputs=dense_layer(inp) - ) - return model - - def __call__(self, inputs): - model = variable_scope_shim.get_or_create_layer( - "dense_model", self.build_model - ) - return model(inputs) - - with self.cached_session(): - layer = NestedLayer(10) - x = tf.ones(shape=(5, 5)) - - out1 = layer(tf.expand_dims(x, 0)) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # verify output - self.assertEqual(out1.shape, tf.TensorShape([1, 5, 10])) - self.assertAllEqual(out1, tf.ones(shape=(1, 5, 10)) * 5) - - # verify variables are tracked - weights = {var.name for var in tf.compat.v1.trainable_variables()} - self.assertEqual(weights, {"dense/bias:0", "dense/kernel:0"}) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/losses.py b/keras/losses.py deleted file mode 100644 index adf918a5102..00000000000 --- a/keras/losses.py +++ /dev/null @@ -1,2942 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Built-in loss functions.""" - - -import abc -import functools -import warnings - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.saving import saving_lib -from keras.saving.legacy import serialization as legacy_serialization -from keras.saving.serialization_lib import deserialize_keras_object -from keras.saving.serialization_lib import serialize_keras_object -from keras.utils import losses_utils -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.ops.ragged import ragged_map_ops -from tensorflow.python.ops.ragged import ragged_util -from tensorflow.python.util import dispatch -from tensorflow.python.util.tf_export import keras_export -from tensorflow.tools.docs import doc_controls - - -@keras_export("keras.losses.Loss") -class Loss: - """Loss base class. - - To be implemented by subclasses: - * `call()`: Contains the logic for loss calculation using `y_true`, - `y_pred`. - - Example subclass implementation: - - ```python - class MeanSquaredError(Loss): - - def call(self, y_true, y_pred): - return tf.reduce_mean(tf.math.square(y_pred - y_true), axis=-1) - ``` - - When using a Loss under a `tf.distribute.Strategy`, except passing it - to `Model.compile()` for use by `Model.fit()`, please use reduction - types 'SUM' or 'NONE', and reduce losses explicitly. Using 'AUTO' or - 'SUM_OVER_BATCH_SIZE' will raise an error when calling the Loss object - from a custom training loop or from user-defined code in `Layer.call()`. - Please see this custom training - [tutorial](https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details on this. - """ - - def __init__(self, reduction=losses_utils.ReductionV2.AUTO, name=None): - """Initializes `Loss` class. - - Args: - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. - """ - losses_utils.ReductionV2.validate(reduction) - self.reduction = reduction - self.name = name - # SUM_OVER_BATCH is only allowed in losses managed by `fit` or - # CannedEstimators. - self._allow_sum_over_batch_size = False - self._set_name_scope() - - def _set_name_scope(self): - """Creates a valid `name_scope` name.""" - if self.name is None: - self._name_scope = self.__class__.__name__.strip("_") - elif self.name == "": - self._name_scope = "lambda" - else: - # E.g. '_my_loss' => 'my_loss' - self._name_scope = self.name.strip("_") - - def __call__(self, y_true, y_pred, sample_weight=None): - """Invokes the `Loss` instance. - - Args: - y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`, except - sparse loss functions such as sparse categorical crossentropy where - shape = `[batch_size, d0, .. dN-1]` - y_pred: The predicted values. shape = `[batch_size, d0, .. dN]` - sample_weight: Optional `sample_weight` acts as a coefficient for the - loss. If a scalar is provided, then the loss is simply scaled by the - given value. If `sample_weight` is a tensor of size `[batch_size]`, - then the total loss for each sample of the batch is rescaled by the - corresponding element in the `sample_weight` vector. If the shape of - `sample_weight` is `[batch_size, d0, .. dN-1]` (or can be - broadcasted to this shape), then each loss element of `y_pred` is - scaled by the corresponding value of `sample_weight`. (Note - on`dN-1`: all loss functions reduce by 1 dimension, usually - axis=-1.) - - Returns: - Weighted loss float `Tensor`. If `reduction` is `NONE`, this has - shape `[batch_size, d0, .. dN-1]`; otherwise, it is scalar. (Note - `dN-1` because all loss functions reduce by 1 dimension, usually - axis=-1.) - - Raises: - ValueError: If the shape of `sample_weight` is invalid. - """ - # If we are wrapping a lambda function strip '<>' from the name as it is - # not accepted in scope name. - graph_ctx = tf_utils.graph_context_for_symbolic_tensors( - y_true, y_pred, sample_weight - ) - with backend.name_scope(self._name_scope), graph_ctx: - if tf.executing_eagerly(): - call_fn = self.call - else: - call_fn = tf.__internal__.autograph.tf_convert( - self.call, tf.__internal__.autograph.control_status_ctx() - ) - - losses = call_fn(y_true, y_pred) - - in_mask = losses_utils.get_mask(y_pred) - out_mask = losses_utils.get_mask(losses) - - if in_mask is not None and out_mask is not None: - mask = in_mask & out_mask - elif in_mask is not None: - mask = in_mask - elif out_mask is not None: - mask = out_mask - else: - mask = None - - reduction = self._get_reduction() - sample_weight = losses_utils.apply_valid_mask( - losses, sample_weight, mask, reduction - ) - return losses_utils.compute_weighted_loss( - losses, sample_weight, reduction=reduction - ) - - @classmethod - def from_config(cls, config): - """Instantiates a `Loss` from its config (output of `get_config()`). - - Args: - config: Output of `get_config()`. - - Returns: - A `Loss` instance. - """ - return cls(**config) - - def get_config(self): - """Returns the config dictionary for a `Loss` instance.""" - return {"reduction": self.reduction, "name": self.name} - - @abc.abstractmethod - @doc_controls.for_subclass_implementers - def call(self, y_true, y_pred): - """Invokes the `Loss` instance. - - Args: - y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`, except - sparse loss functions such as sparse categorical crossentropy where - shape = `[batch_size, d0, .. dN-1]` - y_pred: The predicted values. shape = `[batch_size, d0, .. dN]` - - Returns: - Loss values with the shape `[batch_size, d0, .. dN-1]`. - """ - raise NotImplementedError("Must be implemented in subclasses.") - - def _get_reduction(self): - """Handles `AUTO` reduction cases and returns the reduction value.""" - if ( - not self._allow_sum_over_batch_size - and tf.distribute.has_strategy() - and ( - self.reduction == losses_utils.ReductionV2.AUTO - or self.reduction - == losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE - ) - ): - raise ValueError( - "Please use `tf.keras.losses.Reduction.SUM` or " - "`tf.keras.losses.Reduction.NONE` for loss reduction when " - "losses are used with `tf.distribute.Strategy`, " - "except for specifying losses in `Model.compile()` " - "for use by the built-in training looop `Model.fit()`.\n" - "Please see https://www.tensorflow.org/tutorials" - "/distribute/custom_training for more details." - ) - - if self.reduction == losses_utils.ReductionV2.AUTO: - return losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE - return self.reduction - - -@keras_export("keras.__internal__.losses.LossFunctionWrapper", v1=[]) -class LossFunctionWrapper(Loss): - """Wraps a loss function in the `Loss` class.""" - - def __init__( - self, fn, reduction=losses_utils.ReductionV2.AUTO, name=None, **kwargs - ): - """Initializes `LossFunctionWrapper` class. - - Args: - fn: The loss function to wrap, with signature `fn(y_true, y_pred, - **kwargs)`. - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. - **kwargs: The keyword arguments that are passed on to `fn`. - """ - super().__init__(reduction=reduction, name=name) - self.fn = fn - self._fn_kwargs = kwargs - - def call(self, y_true, y_pred): - """Invokes the `LossFunctionWrapper` instance. - - Args: - y_true: Ground truth values. - y_pred: The predicted values. - - Returns: - Loss values per sample. - """ - if tf.is_tensor(y_pred) and tf.is_tensor(y_true): - y_pred, y_true = losses_utils.squeeze_or_expand_dimensions( - y_pred, y_true - ) - - ag_fn = tf.__internal__.autograph.tf_convert( - self.fn, tf.__internal__.autograph.control_status_ctx() - ) - return ag_fn(y_true, y_pred, **self._fn_kwargs) - - def get_config(self): - config = {} - for k, v in self._fn_kwargs.items(): - config[k] = ( - backend.eval(v) if tf_utils.is_tensor_or_variable(v) else v - ) - - if saving_lib.saving_v3_enabled(): - from keras.utils import get_registered_name - - config["fn"] = get_registered_name(self.fn) - - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config): - """Instantiates a `Loss` from its config (output of `get_config()`). - - Args: - config: Output of `get_config()`. - - Returns: - A `keras.losses.Loss` instance. - """ - if saving_lib.saving_v3_enabled(): - fn_name = config.pop("fn", None) - if fn_name and cls is LossFunctionWrapper: - config["fn"] = get(fn_name) - return cls(**config) - - -@keras_export("keras.losses.MeanSquaredError") -class MeanSquaredError(LossFunctionWrapper): - """Computes the mean of squares of errors between labels and predictions. - - `loss = square(y_true - y_pred)` - - Standalone usage: - - >>> y_true = [[0., 1.], [0., 0.]] - >>> y_pred = [[1., 1.], [1., 0.]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> mse = tf.keras.losses.MeanSquaredError() - >>> mse(y_true, y_pred).numpy() - 0.5 - - >>> # Calling with 'sample_weight'. - >>> mse(y_true, y_pred, sample_weight=[0.7, 0.3]).numpy() - 0.25 - - >>> # Using 'sum' reduction type. - >>> mse = tf.keras.losses.MeanSquaredError( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> mse(y_true, y_pred).numpy() - 1.0 - - >>> # Using 'none' reduction type. - >>> mse = tf.keras.losses.MeanSquaredError( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> mse(y_true, y_pred).numpy() - array([0.5, 0.5], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', loss=tf.keras.losses.MeanSquaredError()) - ``` - """ - - def __init__( - self, reduction=losses_utils.ReductionV2.AUTO, name="mean_squared_error" - ): - """Initializes `MeanSquaredError` instance. - - Args: - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. Defaults to - 'mean_squared_error'. - """ - super().__init__(mean_squared_error, name=name, reduction=reduction) - - -@keras_export("keras.losses.MeanAbsoluteError") -class MeanAbsoluteError(LossFunctionWrapper): - """Computes the mean of absolute difference between labels and predictions. - - `loss = abs(y_true - y_pred)` - - Standalone usage: - - >>> y_true = [[0., 1.], [0., 0.]] - >>> y_pred = [[1., 1.], [1., 0.]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> mae = tf.keras.losses.MeanAbsoluteError() - >>> mae(y_true, y_pred).numpy() - 0.5 - - >>> # Calling with 'sample_weight'. - >>> mae(y_true, y_pred, sample_weight=[0.7, 0.3]).numpy() - 0.25 - - >>> # Using 'sum' reduction type. - >>> mae = tf.keras.losses.MeanAbsoluteError( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> mae(y_true, y_pred).numpy() - 1.0 - - >>> # Using 'none' reduction type. - >>> mae = tf.keras.losses.MeanAbsoluteError( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> mae(y_true, y_pred).numpy() - array([0.5, 0.5], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', loss=tf.keras.losses.MeanAbsoluteError()) - ``` - """ - - def __init__( - self, - reduction=losses_utils.ReductionV2.AUTO, - name="mean_absolute_error", - ): - """Initializes `MeanAbsoluteError` instance. - - Args: - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. Defaults to - 'mean_absolute_error'. - """ - super().__init__(mean_absolute_error, name=name, reduction=reduction) - - -@keras_export("keras.losses.MeanAbsolutePercentageError") -class MeanAbsolutePercentageError(LossFunctionWrapper): - """Computes the mean absolute percentage error between `y_true` & `y_pred`. - - Formula: - - `loss = 100 * abs((y_true - y_pred) / y_true)` - - Note that to avoid dividing by zero, a small epsilon value - is added to the denominator. - - Standalone usage: - - >>> y_true = [[2., 1.], [2., 3.]] - >>> y_pred = [[1., 1.], [1., 0.]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> mape = tf.keras.losses.MeanAbsolutePercentageError() - >>> mape(y_true, y_pred).numpy() - 50. - - >>> # Calling with 'sample_weight'. - >>> mape(y_true, y_pred, sample_weight=[0.7, 0.3]).numpy() - 20. - - >>> # Using 'sum' reduction type. - >>> mape = tf.keras.losses.MeanAbsolutePercentageError( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> mape(y_true, y_pred).numpy() - 100. - - >>> # Using 'none' reduction type. - >>> mape = tf.keras.losses.MeanAbsolutePercentageError( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> mape(y_true, y_pred).numpy() - array([25., 75.], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss=tf.keras.losses.MeanAbsolutePercentageError()) - ``` - """ - - def __init__( - self, - reduction=losses_utils.ReductionV2.AUTO, - name="mean_absolute_percentage_error", - ): - """Initializes `MeanAbsolutePercentageError` instance. - - Args: - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. Defaults to - 'mean_absolute_percentage_error'. - """ - super().__init__( - mean_absolute_percentage_error, name=name, reduction=reduction - ) - - -@keras_export("keras.losses.MeanSquaredLogarithmicError") -class MeanSquaredLogarithmicError(LossFunctionWrapper): - """Computes the mean squared logarithmic error between `y_true` & `y_pred`. - - `loss = square(log(y_true + 1.) - log(y_pred + 1.))` - - Standalone usage: - - >>> y_true = [[0., 1.], [0., 0.]] - >>> y_pred = [[1., 1.], [1., 0.]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> msle = tf.keras.losses.MeanSquaredLogarithmicError() - >>> msle(y_true, y_pred).numpy() - 0.240 - - >>> # Calling with 'sample_weight'. - >>> msle(y_true, y_pred, sample_weight=[0.7, 0.3]).numpy() - 0.120 - - >>> # Using 'sum' reduction type. - >>> msle = tf.keras.losses.MeanSquaredLogarithmicError( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> msle(y_true, y_pred).numpy() - 0.480 - - >>> # Using 'none' reduction type. - >>> msle = tf.keras.losses.MeanSquaredLogarithmicError( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> msle(y_true, y_pred).numpy() - array([0.240, 0.240], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss=tf.keras.losses.MeanSquaredLogarithmicError()) - ``` - """ - - def __init__( - self, - reduction=losses_utils.ReductionV2.AUTO, - name="mean_squared_logarithmic_error", - ): - """Initializes `MeanSquaredLogarithmicError` instance. - - Args: - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. Defaults to - 'mean_squared_logarithmic_error'. - """ - super().__init__( - mean_squared_logarithmic_error, name=name, reduction=reduction - ) - - -@keras_export("keras.losses.BinaryCrossentropy") -class BinaryCrossentropy(LossFunctionWrapper): - """Computes the cross-entropy loss between true labels and predicted labels. - - Use this cross-entropy loss for binary (0 or 1) classification applications. - The loss function requires the following inputs: - - - `y_true` (true label): This is either 0 or 1. - - `y_pred` (predicted value): This is the model's prediction, i.e, a single - floating-point value which either represents a - [logit](https://en.wikipedia.org/wiki/Logit), (i.e, value in [-inf, inf] - when `from_logits=True`) or a probability (i.e, value in [0., 1.] when - `from_logits=False`). - - **Recommended Usage:** (set `from_logits=True`) - - With `tf.keras` API: - - ```python - model.compile( - loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), - .... - ) - ``` - - As a standalone function: - - >>> # Example 1: (batch_size = 1, number of samples = 4) - >>> y_true = [0, 1, 0, 0] - >>> y_pred = [-18.6, 0.51, 2.94, -12.8] - >>> bce = tf.keras.losses.BinaryCrossentropy(from_logits=True) - >>> bce(y_true, y_pred).numpy() - 0.865 - - >>> # Example 2: (batch_size = 2, number of samples = 4) - >>> y_true = [[0, 1], [0, 0]] - >>> y_pred = [[-18.6, 0.51], [2.94, -12.8]] - >>> # Using default 'auto'/'sum_over_batch_size' reduction type. - >>> bce = tf.keras.losses.BinaryCrossentropy(from_logits=True) - >>> bce(y_true, y_pred).numpy() - 0.865 - >>> # Using 'sample_weight' attribute - >>> bce(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy() - 0.243 - >>> # Using 'sum' reduction` type. - >>> bce = tf.keras.losses.BinaryCrossentropy(from_logits=True, - ... reduction=tf.keras.losses.Reduction.SUM) - >>> bce(y_true, y_pred).numpy() - 1.730 - >>> # Using 'none' reduction type. - >>> bce = tf.keras.losses.BinaryCrossentropy(from_logits=True, - ... reduction=tf.keras.losses.Reduction.NONE) - >>> bce(y_true, y_pred).numpy() - array([0.235, 1.496], dtype=float32) - - **Default Usage:** (set `from_logits=False`) - - >>> # Make the following updates to the above "Recommended Usage" section - >>> # 1. Set `from_logits=False` - >>> tf.keras.losses.BinaryCrossentropy() # OR ...('from_logits=False') - >>> # 2. Update `y_pred` to use probabilities instead of logits - >>> y_pred = [0.6, 0.3, 0.2, 0.8] # OR [[0.6, 0.3], [0.2, 0.8]] - """ - - def __init__( - self, - from_logits=False, - label_smoothing=0.0, - axis=-1, - reduction=losses_utils.ReductionV2.AUTO, - name="binary_crossentropy", - ): - """Initializes `BinaryCrossentropy` instance. - - Args: - from_logits: Whether to interpret `y_pred` as a tensor of - [logit](https://en.wikipedia.org/wiki/Logit) values. By default, we - assume that `y_pred` contains probabilities (i.e., values in [0, - 1]). - label_smoothing: Float in [0, 1]. When 0, no smoothing occurs. When > - 0, we compute the loss between the predicted labels and a smoothed - version of the true labels, where the smoothing squeezes the labels - towards 0.5. Larger values of `label_smoothing` correspond to - heavier smoothing. - axis: The axis along which to compute crossentropy (the features - axis). Defaults to -1. - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Name for the op. Defaults to 'binary_crossentropy'. - """ - super().__init__( - binary_crossentropy, - name=name, - reduction=reduction, - from_logits=from_logits, - label_smoothing=label_smoothing, - axis=axis, - ) - self.from_logits = from_logits - - -@keras_export("keras.losses.BinaryFocalCrossentropy") -class BinaryFocalCrossentropy(LossFunctionWrapper): - """Computes focal cross-entropy loss between true labels and predictions. - - Binary cross-entropy loss is often used for binary (0 or 1) classification - tasks. The loss function requires the following inputs: - - - `y_true` (true label): This is either 0 or 1. - - `y_pred` (predicted value): This is the model's prediction, i.e, a single - floating-point value which either represents a - [logit](https://en.wikipedia.org/wiki/Logit), (i.e, value in [-inf, inf] - when `from_logits=True`) or a probability (i.e, value in `[0., 1.]` when - `from_logits=False`). - - According to [Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf), it - helps to apply a "focal factor" to down-weight easy examples and focus more - on hard examples. By default, the focal tensor is computed as follows: - - `focal_factor = (1 - output) ** gamma` for class 1 - `focal_factor = output ** gamma` for class 0 - where `gamma` is a focusing parameter. When `gamma=0`, this function is - equivalent to the binary crossentropy loss. - - With the `compile()` API: - - ```python - model.compile( - loss=tf.keras.losses.BinaryFocalCrossentropy(gamma=2.0, from_logits=True), - .... - ) - ``` - - As a standalone function: - - >>> # Example 1: (batch_size = 1, number of samples = 4) - >>> y_true = [0, 1, 0, 0] - >>> y_pred = [-18.6, 0.51, 2.94, -12.8] - >>> loss = tf.keras.losses.BinaryFocalCrossentropy(gamma=2, - ... from_logits=True) - >>> loss(y_true, y_pred).numpy() - 0.691 - - >>> # Apply class weight - >>> loss = tf.keras.losses.BinaryFocalCrossentropy( - ... apply_class_balancing=True, gamma=2, from_logits=True) - >>> loss(y_true, y_pred).numpy() - 0.51 - - >>> # Example 2: (batch_size = 2, number of samples = 4) - >>> y_true = [[0, 1], [0, 0]] - >>> y_pred = [[-18.6, 0.51], [2.94, -12.8]] - >>> # Using default 'auto'/'sum_over_batch_size' reduction type. - >>> loss = tf.keras.losses.BinaryFocalCrossentropy(gamma=3, - ... from_logits=True) - >>> loss(y_true, y_pred).numpy() - 0.647 - - >>> # Apply class weight - >>> loss = tf.keras.losses.BinaryFocalCrossentropy( - ... apply_class_balancing=True, gamma=3, from_logits=True) - >>> loss(y_true, y_pred).numpy() - 0.482 - - >>> # Using 'sample_weight' attribute with focal effect - >>> loss = tf.keras.losses.BinaryFocalCrossentropy(gamma=3, - ... from_logits=True) - >>> loss(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy() - 0.133 - - >>> # Apply class weight - >>> loss = tf.keras.losses.BinaryFocalCrossentropy( - ... apply_class_balancing=True, gamma=3, from_logits=True) - >>> loss(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy() - 0.097 - - >>> # Using 'sum' reduction` type. - >>> loss = tf.keras.losses.BinaryFocalCrossentropy(gamma=4, - ... from_logits=True, - ... reduction=tf.keras.losses.Reduction.SUM) - >>> loss(y_true, y_pred).numpy() - 1.222 - - >>> # Apply class weight - >>> loss = tf.keras.losses.BinaryFocalCrossentropy( - ... apply_class_balancing=True, gamma=4, from_logits=True, - ... reduction=tf.keras.losses.Reduction.SUM) - >>> loss(y_true, y_pred).numpy() - 0.914 - - >>> # Using 'none' reduction type. - >>> loss = tf.keras.losses.BinaryFocalCrossentropy( - ... gamma=5, from_logits=True, - ... reduction=tf.keras.losses.Reduction.NONE) - >>> loss(y_true, y_pred).numpy() - array([0.0017 1.1561], dtype=float32) - - >>> # Apply class weight - >>> loss = tf.keras.losses.BinaryFocalCrossentropy( - ... apply_class_balancing=True, gamma=5, from_logits=True, - ... reduction=tf.keras.losses.Reduction.NONE) - >>> loss(y_true, y_pred).numpy() - array([0.0004 0.8670], dtype=float32) - - - Args: - apply_class_balancing: A bool, whether to apply weight balancing on the - binary classes 0 and 1. - alpha: A weight balancing factor for class 1, default is `0.25` as - mentioned in reference [Lin et al., 2018]( - https://arxiv.org/pdf/1708.02002.pdf). The weight for class 0 is - `1.0 - alpha`. - gamma: A focusing parameter used to compute the focal factor, default is - `2.0` as mentioned in the reference - [Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf). - from_logits: Whether to interpret `y_pred` as a tensor of - [logit](https://en.wikipedia.org/wiki/Logit) values. By default, we - assume that `y_pred` are probabilities (i.e., values in `[0, 1]`). - label_smoothing: Float in `[0, 1]`. When `0`, no smoothing occurs. When > - `0`, we compute the loss between the predicted labels and a smoothed - version of the true labels, where the smoothing squeezes the labels - towards `0.5`. Larger values of `label_smoothing` correspond to heavier - smoothing. - axis: The axis along which to compute crossentropy (the features axis). - Defaults to `-1`. - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Name for the op. Defaults to 'binary_focal_crossentropy'. - """ - - def __init__( - self, - apply_class_balancing=False, - alpha=0.25, - gamma=2.0, - from_logits=False, - label_smoothing=0.0, - axis=-1, - reduction=losses_utils.ReductionV2.AUTO, - name="binary_focal_crossentropy", - ): - """Initializes `BinaryFocalCrossentropy` instance.""" - super().__init__( - binary_focal_crossentropy, - apply_class_balancing=apply_class_balancing, - alpha=alpha, - gamma=gamma, - name=name, - reduction=reduction, - from_logits=from_logits, - label_smoothing=label_smoothing, - axis=axis, - ) - self.from_logits = from_logits - self.apply_class_balancing = apply_class_balancing - self.alpha = alpha - self.gamma = gamma - - def get_config(self): - config = { - "apply_class_balancing": self.apply_class_balancing, - "alpha": self.alpha, - "gamma": self.gamma, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.losses.CategoricalCrossentropy") -class CategoricalCrossentropy(LossFunctionWrapper): - """Computes the crossentropy loss between the labels and predictions. - - Use this crossentropy loss function when there are two or more label - classes. We expect labels to be provided in a `one_hot` representation. If - you want to provide labels as integers, please use - `SparseCategoricalCrossentropy` loss. There should be `# classes` floating - point values per feature. - - In the snippet below, there is `# classes` floating pointing values per - example. The shape of both `y_pred` and `y_true` are - `[batch_size, num_classes]`. - - Standalone usage: - - >>> y_true = [[0, 1, 0], [0, 0, 1]] - >>> y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> cce = tf.keras.losses.CategoricalCrossentropy() - >>> cce(y_true, y_pred).numpy() - 1.177 - - >>> # Calling with 'sample_weight'. - >>> cce(y_true, y_pred, sample_weight=tf.constant([0.3, 0.7])).numpy() - 0.814 - - >>> # Using 'sum' reduction type. - >>> cce = tf.keras.losses.CategoricalCrossentropy( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> cce(y_true, y_pred).numpy() - 2.354 - - >>> # Using 'none' reduction type. - >>> cce = tf.keras.losses.CategoricalCrossentropy( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> cce(y_true, y_pred).numpy() - array([0.0513, 2.303], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss=tf.keras.losses.CategoricalCrossentropy()) - ``` - """ - - def __init__( - self, - from_logits=False, - label_smoothing=0.0, - axis=-1, - reduction=losses_utils.ReductionV2.AUTO, - name="categorical_crossentropy", - ): - """Initializes `CategoricalCrossentropy` instance. - - Args: - from_logits: Whether `y_pred` is expected to be a logits tensor. By - default, we assume that `y_pred` encodes a probability distribution. - label_smoothing: Float in [0, 1]. When > 0, label values are smoothed, - meaning the confidence on label values are relaxed. For example, if - `0.1`, use `0.1 / num_classes` for non-target labels and - `0.9 + 0.1 / num_classes` for target labels. - axis: The axis along which to compute crossentropy (the features - axis). Defaults to -1. - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. - Defaults to 'categorical_crossentropy'. - """ - super().__init__( - categorical_crossentropy, - name=name, - reduction=reduction, - from_logits=from_logits, - label_smoothing=label_smoothing, - axis=axis, - ) - - -@keras_export("keras.losses.CategoricalFocalCrossentropy") -class CategoricalFocalCrossentropy(LossFunctionWrapper): - """Computes the alpha balanced focal crossentropy loss. - - Use this crossentropy loss function when there are two or more label - classes and if you want to handle class imbalance without using - `class_weights`. We expect labels to be provided in a `one_hot` - representation. - - According to [Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf), it - helps to apply a focal factor to down-weight easy examples and focus more on - hard examples. The general formula for the focal loss (FL) - is as follows: - - `FL(p_t) = (1 − p_t)^gamma * log(p_t)` - - where `p_t` is defined as follows: - `p_t = output if y_true == 1, else 1 - output` - - `(1 − p_t)^gamma` is the `modulating_factor`, where `gamma` is a focusing - parameter. When `gamma` = 0, there is no focal effect on the cross entropy. - `gamma` reduces the importance given to simple examples in a smooth manner. - - The authors use alpha-balanced variant of focal loss (FL) in the paper: - `FL(p_t) = −alpha * (1 − p_t)^gamma * log(p_t)` - - where `alpha` is the weight factor for the classes. If `alpha` = 1, the - loss won't be able to handle class imbalance properly as all - classes will have the same weight. This can be a constant or a list of - constants. If alpha is a list, it must have the same length as the number - of classes. - - The formula above can be generalized to: - `FL(p_t) = alpha * (1 − p_t)^gamma * CrossEntropy(y_true, y_pred)` - - where minus comes from `CrossEntropy(y_true, y_pred)` (CE). - - Extending this to multi-class case is straightforward: - `FL(p_t) = alpha * (1 − p_t)^gamma * CategoricalCE(y_true, y_pred)` - - In the snippet below, there is `# classes` floating pointing values per - example. The shape of both `y_pred` and `y_true` are - `[batch_size, num_classes]`. - - Standalone usage: - - >>> y_true = [[0., 1., 0.], [0., 0., 1.]] - >>> y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> cce = tf.keras.losses.CategoricalFocalCrossentropy() - >>> cce(y_true, y_pred).numpy() - 0.23315276 - - >>> # Calling with 'sample_weight'. - >>> cce(y_true, y_pred, sample_weight=tf.constant([0.3, 0.7])).numpy() - 0.1632 - - >>> # Using 'sum' reduction type. - >>> cce = tf.keras.losses.CategoricalFocalCrossentropy( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> cce(y_true, y_pred).numpy() - 0.46631 - - >>> # Using 'none' reduction type. - >>> cce = tf.keras.losses.CategoricalFocalCrossentropy( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> cce(y_true, y_pred).numpy() - array([3.2058331e-05, 4.6627346e-01], dtype=float32) - - Usage with the `compile()` API: - ```python - model.compile(optimizer='adam', - loss=tf.keras.losses.CategoricalFocalCrossentropy()) - ``` - Args: - alpha: A weight balancing factor for all classes, default is `0.25` as - mentioned in the reference. It can be a list of floats or a scalar. - In the multi-class case, alpha may be set by inverse class - frequency by using `compute_class_weight` from `sklearn.utils`. - gamma: A focusing parameter, default is `2.0` as mentioned in the - reference. It helps to gradually reduce the importance given to - simple (easy) examples in a smooth manner. - from_logits: Whether `output` is expected to be a logits tensor. By - default, we consider that `output` encodes a probability - distribution. - label_smoothing: Float in [0, 1]. When > 0, label values are smoothed, - meaning the confidence on label values are relaxed. For example, if - `0.1`, use `0.1 / num_classes` for non-target labels and - `0.9 + 0.1 / num_classes` for target labels. - axis: The axis along which to compute crossentropy (the features - axis). Defaults to -1. - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. - Defaults to 'categorical_focal_crossentropy'. - """ - - def __init__( - self, - alpha=0.25, - gamma=2.0, - from_logits=False, - label_smoothing=0.0, - axis=-1, - reduction=losses_utils.ReductionV2.AUTO, - name="categorical_focal_crossentropy", - ): - """Initializes `CategoricalFocalCrossentropy` instance.""" - super().__init__( - categorical_focal_crossentropy, - alpha=alpha, - gamma=gamma, - name=name, - reduction=reduction, - from_logits=from_logits, - label_smoothing=label_smoothing, - axis=axis, - ) - self.from_logits = from_logits - self.alpha = alpha - self.gamma = gamma - - def get_config(self): - config = { - "alpha": self.alpha, - "gamma": self.gamma, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.losses.SparseCategoricalCrossentropy") -class SparseCategoricalCrossentropy(LossFunctionWrapper): - """Computes the crossentropy loss between the labels and predictions. - - Use this crossentropy loss function when there are two or more label - classes. We expect labels to be provided as integers. If you want to - provide labels using `one-hot` representation, please use - `CategoricalCrossentropy` loss. There should be `# classes` floating point - values per feature for `y_pred` and a single floating point value per - feature for `y_true`. - - In the snippet below, there is a single floating point value per example for - `y_true` and `# classes` floating pointing values per example for `y_pred`. - The shape of `y_true` is `[batch_size]` and the shape of `y_pred` is - `[batch_size, num_classes]`. - - Standalone usage: - - >>> y_true = [1, 2] - >>> y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> scce = tf.keras.losses.SparseCategoricalCrossentropy() - >>> scce(y_true, y_pred).numpy() - 1.177 - - >>> # Calling with 'sample_weight'. - >>> scce(y_true, y_pred, sample_weight=tf.constant([0.3, 0.7])).numpy() - 0.814 - - >>> # Using 'sum' reduction type. - >>> scce = tf.keras.losses.SparseCategoricalCrossentropy( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> scce(y_true, y_pred).numpy() - 2.354 - - >>> # Using 'none' reduction type. - >>> scce = tf.keras.losses.SparseCategoricalCrossentropy( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> scce(y_true, y_pred).numpy() - array([0.0513, 2.303], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss=tf.keras.losses.SparseCategoricalCrossentropy()) - ``` - """ - - def __init__( - self, - from_logits=False, - ignore_class=None, - reduction=losses_utils.ReductionV2.AUTO, - name="sparse_categorical_crossentropy", - ): - """Initializes `SparseCategoricalCrossentropy` instance. - - Args: - from_logits: Whether `y_pred` is expected to be a logits tensor. By - default, we assume that `y_pred` encodes a probability distribution. - ignore_class: Optional integer. The ID of a class to be ignored during - loss computation. This is useful, for example, in segmentation - problems featuring a "void" class (commonly -1 or 255) in - segmentation maps. - By default (`ignore_class=None`), all classes are considered. - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. Defaults to - 'sparse_categorical_crossentropy'. - """ - super().__init__( - sparse_categorical_crossentropy, - name=name, - reduction=reduction, - from_logits=from_logits, - ignore_class=ignore_class, - ) - - -@keras_export("keras.losses.Hinge") -class Hinge(LossFunctionWrapper): - """Computes the hinge loss between `y_true` & `y_pred`. - - `loss = maximum(1 - y_true * y_pred, 0)` - - `y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are - provided we will convert them to -1 or 1. - - Standalone usage: - - >>> y_true = [[0., 1.], [0., 0.]] - >>> y_pred = [[0.6, 0.4], [0.4, 0.6]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> h = tf.keras.losses.Hinge() - >>> h(y_true, y_pred).numpy() - 1.3 - - >>> # Calling with 'sample_weight'. - >>> h(y_true, y_pred, sample_weight=[1, 0]).numpy() - 0.55 - - >>> # Using 'sum' reduction type. - >>> h = tf.keras.losses.Hinge( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> h(y_true, y_pred).numpy() - 2.6 - - >>> # Using 'none' reduction type. - >>> h = tf.keras.losses.Hinge( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> h(y_true, y_pred).numpy() - array([1.1, 1.5], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', loss=tf.keras.losses.Hinge()) - ``` - """ - - def __init__(self, reduction=losses_utils.ReductionV2.AUTO, name="hinge"): - """Initializes `Hinge` instance. - - Args: - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. Defaults to 'hinge'. - """ - super().__init__(hinge, name=name, reduction=reduction) - - -@keras_export("keras.losses.SquaredHinge") -class SquaredHinge(LossFunctionWrapper): - """Computes the squared hinge loss between `y_true` & `y_pred`. - - `loss = square(maximum(1 - y_true * y_pred, 0))` - - `y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are - provided we will convert them to -1 or 1. - - Standalone usage: - - >>> y_true = [[0., 1.], [0., 0.]] - >>> y_pred = [[0.6, 0.4], [0.4, 0.6]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> h = tf.keras.losses.SquaredHinge() - >>> h(y_true, y_pred).numpy() - 1.86 - - >>> # Calling with 'sample_weight'. - >>> h(y_true, y_pred, sample_weight=[1, 0]).numpy() - 0.73 - - >>> # Using 'sum' reduction type. - >>> h = tf.keras.losses.SquaredHinge( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> h(y_true, y_pred).numpy() - 3.72 - - >>> # Using 'none' reduction type. - >>> h = tf.keras.losses.SquaredHinge( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> h(y_true, y_pred).numpy() - array([1.46, 2.26], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', loss=tf.keras.losses.SquaredHinge()) - ``` - """ - - def __init__( - self, reduction=losses_utils.ReductionV2.AUTO, name="squared_hinge" - ): - """Initializes `SquaredHinge` instance. - - Args: - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. Defaults to 'squared_hinge'. - """ - super().__init__(squared_hinge, name=name, reduction=reduction) - - -@keras_export("keras.losses.CategoricalHinge") -class CategoricalHinge(LossFunctionWrapper): - """Computes the categorical hinge loss between `y_true` & `y_pred`. - - `loss = maximum(neg - pos + 1, 0)` - where `neg=maximum((1-y_true)*y_pred) and pos=sum(y_true*y_pred)` - - Standalone usage: - - >>> y_true = [[0, 1], [0, 0]] - >>> y_pred = [[0.6, 0.4], [0.4, 0.6]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> h = tf.keras.losses.CategoricalHinge() - >>> h(y_true, y_pred).numpy() - 1.4 - - >>> # Calling with 'sample_weight'. - >>> h(y_true, y_pred, sample_weight=[1, 0]).numpy() - 0.6 - - >>> # Using 'sum' reduction type. - >>> h = tf.keras.losses.CategoricalHinge( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> h(y_true, y_pred).numpy() - 2.8 - - >>> # Using 'none' reduction type. - >>> h = tf.keras.losses.CategoricalHinge( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> h(y_true, y_pred).numpy() - array([1.2, 1.6], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', loss=tf.keras.losses.CategoricalHinge()) - ``` - """ - - def __init__( - self, reduction=losses_utils.ReductionV2.AUTO, name="categorical_hinge" - ): - """Initializes `CategoricalHinge` instance. - - Args: - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. Defaults to 'categorical_hinge'. - """ - super().__init__(categorical_hinge, name=name, reduction=reduction) - - -@keras_export("keras.losses.Poisson") -class Poisson(LossFunctionWrapper): - """Computes the Poisson loss between `y_true` & `y_pred`. - - `loss = y_pred - y_true * log(y_pred)` - - Standalone usage: - - >>> y_true = [[0., 1.], [0., 0.]] - >>> y_pred = [[1., 1.], [0., 0.]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> p = tf.keras.losses.Poisson() - >>> p(y_true, y_pred).numpy() - 0.5 - - >>> # Calling with 'sample_weight'. - >>> p(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy() - 0.4 - - >>> # Using 'sum' reduction type. - >>> p = tf.keras.losses.Poisson( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> p(y_true, y_pred).numpy() - 0.999 - - >>> # Using 'none' reduction type. - >>> p = tf.keras.losses.Poisson( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> p(y_true, y_pred).numpy() - array([0.999, 0.], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', loss=tf.keras.losses.Poisson()) - ``` - """ - - def __init__(self, reduction=losses_utils.ReductionV2.AUTO, name="poisson"): - """Initializes `Poisson` instance. - - Args: - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. Defaults to 'poisson'. - """ - super().__init__(poisson, name=name, reduction=reduction) - - -@keras_export("keras.losses.LogCosh") -class LogCosh(LossFunctionWrapper): - """Computes the logarithm of the hyperbolic cosine of the prediction error. - - `logcosh = log((exp(x) + exp(-x))/2)`, - where x is the error `y_pred - y_true`. - - Standalone usage: - - >>> y_true = [[0., 1.], [0., 0.]] - >>> y_pred = [[1., 1.], [0., 0.]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> l = tf.keras.losses.LogCosh() - >>> l(y_true, y_pred).numpy() - 0.108 - - >>> # Calling with 'sample_weight'. - >>> l(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy() - 0.087 - - >>> # Using 'sum' reduction type. - >>> l = tf.keras.losses.LogCosh( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> l(y_true, y_pred).numpy() - 0.217 - - >>> # Using 'none' reduction type. - >>> l = tf.keras.losses.LogCosh( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> l(y_true, y_pred).numpy() - array([0.217, 0.], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', loss=tf.keras.losses.LogCosh()) - ``` - """ - - def __init__( - self, reduction=losses_utils.ReductionV2.AUTO, name="log_cosh" - ): - """Initializes `LogCosh` instance. - - Args: - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. Defaults to 'log_cosh'. - """ - super().__init__(log_cosh, name=name, reduction=reduction) - - -@keras_export("keras.losses.KLDivergence") -class KLDivergence(LossFunctionWrapper): - """Computes Kullback-Leibler divergence loss between `y_true` & `y_pred`. - - `loss = y_true * log(y_true / y_pred)` - - See: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence - - Standalone usage: - - >>> y_true = [[0, 1], [0, 0]] - >>> y_pred = [[0.6, 0.4], [0.4, 0.6]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> kl = tf.keras.losses.KLDivergence() - >>> kl(y_true, y_pred).numpy() - 0.458 - - >>> # Calling with 'sample_weight'. - >>> kl(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy() - 0.366 - - >>> # Using 'sum' reduction type. - >>> kl = tf.keras.losses.KLDivergence( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> kl(y_true, y_pred).numpy() - 0.916 - - >>> # Using 'none' reduction type. - >>> kl = tf.keras.losses.KLDivergence( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> kl(y_true, y_pred).numpy() - array([0.916, -3.08e-06], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', loss=tf.keras.losses.KLDivergence()) - ``` - """ - - def __init__( - self, reduction=losses_utils.ReductionV2.AUTO, name="kl_divergence" - ): - """Initializes `KLDivergence` instance. - - Args: - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. Defaults to 'kl_divergence'. - """ - super().__init__(kl_divergence, name=name, reduction=reduction) - - -@keras_export("keras.losses.Huber") -class Huber(LossFunctionWrapper): - """Computes the Huber loss between `y_true` & `y_pred`. - - For each value x in `error = y_true - y_pred`: - - ``` - loss = 0.5 * x^2 if |x| <= d - loss = 0.5 * d^2 + d * (|x| - d) if |x| > d - ``` - where d is `delta`. See: https://en.wikipedia.org/wiki/Huber_loss - - Standalone usage: - - >>> y_true = [[0, 1], [0, 0]] - >>> y_pred = [[0.6, 0.4], [0.4, 0.6]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> h = tf.keras.losses.Huber() - >>> h(y_true, y_pred).numpy() - 0.155 - - >>> # Calling with 'sample_weight'. - >>> h(y_true, y_pred, sample_weight=[1, 0]).numpy() - 0.09 - - >>> # Using 'sum' reduction type. - >>> h = tf.keras.losses.Huber( - ... reduction=tf.keras.losses.Reduction.SUM) - >>> h(y_true, y_pred).numpy() - 0.31 - - >>> # Using 'none' reduction type. - >>> h = tf.keras.losses.Huber( - ... reduction=tf.keras.losses.Reduction.NONE) - >>> h(y_true, y_pred).numpy() - array([0.18, 0.13], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', loss=tf.keras.losses.Huber()) - ``` - """ - - def __init__( - self, - delta=1.0, - reduction=losses_utils.ReductionV2.AUTO, - name="huber_loss", - ): - """Initializes `Huber` instance. - - Args: - delta: A float, the point where the Huber loss function changes from a - quadratic to linear. - reduction: Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `AUTO`. `AUTO` indicates that the reduction - option will be determined by the usage context. For almost all cases - this defaults to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. Defaults to 'huber_loss'. - """ - super().__init__(huber, name=name, reduction=reduction, delta=delta) - - -@keras_export( - "keras.metrics.mean_squared_error", - "keras.metrics.mse", - "keras.metrics.MSE", - "keras.losses.mean_squared_error", - "keras.losses.mse", - "keras.losses.MSE", -) -@tf.__internal__.dispatch.add_dispatch_support -def mean_squared_error(y_true, y_pred): - """Computes the mean squared error between labels and predictions. - - After computing the squared distance between the inputs, the mean value over - the last dimension is returned. - - `loss = mean(square(y_true - y_pred), axis=-1)` - - Standalone usage: - - >>> y_true = np.random.randint(0, 2, size=(2, 3)) - >>> y_pred = np.random.random(size=(2, 3)) - >>> loss = tf.keras.losses.mean_squared_error(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> assert np.array_equal( - ... loss.numpy(), np.mean(np.square(y_true - y_pred), axis=-1)) - - Args: - y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`. - y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. - - Returns: - Mean squared error values. shape = `[batch_size, d0, .. dN-1]`. - """ - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - return backend.mean(tf.math.squared_difference(y_pred, y_true), axis=-1) - - -def _ragged_tensor_apply_loss(loss_fn, y_true, y_pred, y_pred_extra_dim=False): - """Apply a loss function on a per batch basis. - - Args: - loss_fn: The loss function - y_true: truth values (RaggedTensor) - y_pred: predicted values (RaggedTensor) - y_pred_extra_dim: whether y_pred has an additional dimension compared to - y_true - - Returns: - Loss-function result. A dense tensor if the output has a single dimension - (per-batch loss value); a ragged tensor otherwise. - """ - - def rt_is_equiv_dense(rt): - """Returns true if this RaggedTensor has the same row_lengths across - - all ragged dimensions and thus can be converted to a dense tensor - without loss of information. - - Args: - rt: RaggedTensor. - """ - return tf.reduce_all( - [ - tf.equal( - tf.math.reduce_variance( - tf.cast(row_lens, backend.floatx()) - ), - tf.constant([0.0]), - ) - for row_lens in rt.nested_row_lengths() - ] - ) - - def _convert_to_dense(inputs): - return tuple( - rt.to_tensor() if isinstance(rt, tf.RaggedTensor) else rt - for rt in inputs - ) - - def _call_loss(inputs, ragged_output): - """Adapt the result to ragged or dense tensor according to the expected - - output type. This is done so that all the return values of the map - operation have the same type. - """ - r = loss_fn(*inputs) - if ragged_output and not isinstance(r, tf.RaggedTensor): - r = tf.RaggedTensor.from_tensor(r) - elif not ragged_output and isinstance(r, tf.RaggedTensor): - r = r.to_tensor() - return r - - def _wrapper(inputs, ragged_output): - _, y_pred = inputs - if isinstance(y_pred, tf.RaggedTensor): - return tf.cond( - rt_is_equiv_dense(y_pred), - lambda: _call_loss(_convert_to_dense(inputs), ragged_output), - lambda: _call_loss(inputs, ragged_output), - ) - - return loss_fn(*inputs) - - if not isinstance(y_true, tf.RaggedTensor): - return loss_fn(y_true, y_pred.to_tensor()) - - lshape = y_pred.shape.as_list()[1:-1] - if len(lshape) > 0: - spec = tf.RaggedTensorSpec(shape=lshape, dtype=y_pred.dtype) - else: - spec = tf.TensorSpec(shape=[], dtype=y_pred.dtype) - - nested_splits_list = [rt.nested_row_splits for rt in (y_true, y_pred)] - if y_pred_extra_dim: - # The last dimension of a categorical prediction may be ragged or not. - rdims = [len(slist) for slist in nested_splits_list] - if rdims[0] == rdims[1] - 1: - nested_splits_list[1] = nested_splits_list[1][:-1] - - map_fn = functools.partial(_wrapper, ragged_output=len(lshape) > 1) - - assertion_list = ragged_util.assert_splits_match(nested_splits_list) - with tf.control_dependencies(assertion_list): - return ragged_map_ops.map_fn(map_fn, elems=(y_true, y_pred), dtype=spec) - - -@dispatch.dispatch_for_types(mean_squared_error, tf.RaggedTensor) -def _ragged_tensor_mse(y_true, y_pred): - """Implements support for handling RaggedTensors. - - Args: - y_true: RaggedTensor truth values. shape = `[batch_size, d0, .. dN]`. - y_pred: RaggedTensor predicted values. shape = `[batch_size, d0, .. dN]`. - - Returns: - Mean squared error values. shape = `[batch_size, d0, .. dN-1]`. - When the number of dimensions of the batch feature vector [d0, .. dN] is - greater than one the return value is a RaggedTensor. Otherwise a Dense - tensor with dimensions [batch_size] is returned. - """ - return _ragged_tensor_apply_loss(mean_squared_error, y_true, y_pred) - - -@keras_export( - "keras.metrics.mean_absolute_error", - "keras.metrics.mae", - "keras.metrics.MAE", - "keras.losses.mean_absolute_error", - "keras.losses.mae", - "keras.losses.MAE", -) -@tf.__internal__.dispatch.add_dispatch_support -def mean_absolute_error(y_true, y_pred): - """Computes the mean absolute error between labels and predictions. - - `loss = mean(abs(y_true - y_pred), axis=-1)` - - Standalone usage: - - >>> y_true = np.random.randint(0, 2, size=(2, 3)) - >>> y_pred = np.random.random(size=(2, 3)) - >>> loss = tf.keras.losses.mean_absolute_error(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> assert np.array_equal( - ... loss.numpy(), np.mean(np.abs(y_true - y_pred), axis=-1)) - - Args: - y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`. - y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. - - Returns: - Mean absolute error values. shape = `[batch_size, d0, .. dN-1]`. - """ - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - return backend.mean(tf.abs(y_pred - y_true), axis=-1) - - -@dispatch.dispatch_for_types(mean_absolute_error, tf.RaggedTensor) -def _ragged_tensor_mae(y_true, y_pred): - """RaggedTensor adapter for mean_absolute_error.""" - return _ragged_tensor_apply_loss(mean_absolute_error, y_true, y_pred) - - -@keras_export( - "keras.metrics.mean_absolute_percentage_error", - "keras.metrics.mape", - "keras.metrics.MAPE", - "keras.losses.mean_absolute_percentage_error", - "keras.losses.mape", - "keras.losses.MAPE", -) -@tf.__internal__.dispatch.add_dispatch_support -def mean_absolute_percentage_error(y_true, y_pred): - """Computes the mean absolute percentage error between `y_true` & `y_pred`. - - `loss = 100 * mean(abs((y_true - y_pred) / y_true), axis=-1)` - - Standalone usage: - - >>> y_true = np.random.random(size=(2, 3)) - >>> y_true = np.maximum(y_true, 1e-7) # Prevent division by zero - >>> y_pred = np.random.random(size=(2, 3)) - >>> loss = tf.keras.losses.mean_absolute_percentage_error(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> assert np.array_equal( - ... loss.numpy(), - ... 100. * np.mean(np.abs((y_true - y_pred) / y_true), axis=-1)) - - Args: - y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`. - y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. - - Returns: - Mean absolute percentage error values. shape = `[batch_size, d0, .. - dN-1]`. - """ - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - diff = tf.abs( - (y_true - y_pred) / backend.maximum(tf.abs(y_true), backend.epsilon()) - ) - return 100.0 * backend.mean(diff, axis=-1) - - -@dispatch.dispatch_for_types(mean_absolute_percentage_error, tf.RaggedTensor) -def _ragged_tensor_mape(y_true, y_pred): - """Support RaggedTensors.""" - return _ragged_tensor_apply_loss( - mean_absolute_percentage_error, y_true, y_pred - ) - - -@keras_export( - "keras.metrics.mean_squared_logarithmic_error", - "keras.metrics.msle", - "keras.metrics.MSLE", - "keras.losses.mean_squared_logarithmic_error", - "keras.losses.msle", - "keras.losses.MSLE", -) -@tf.__internal__.dispatch.add_dispatch_support -def mean_squared_logarithmic_error(y_true, y_pred): - """Computes the mean squared logarithmic error between `y_true` & `y_pred`. - - `loss = mean(square(log(y_true + 1) - log(y_pred + 1)), axis=-1)` - - Standalone usage: - - >>> y_true = np.random.randint(0, 2, size=(2, 3)) - >>> y_pred = np.random.random(size=(2, 3)) - >>> loss = tf.keras.losses.mean_squared_logarithmic_error(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> y_true = np.maximum(y_true, 1e-7) - >>> y_pred = np.maximum(y_pred, 1e-7) - >>> assert np.allclose( - ... loss.numpy(), - ... np.mean( - ... np.square(np.log(y_true + 1.) - np.log(y_pred + 1.)), axis=-1)) - - Args: - y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`. - y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. - - Returns: - Mean squared logarithmic error values. shape = `[batch_size, d0, .. - dN-1]`. - """ - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - first_log = tf.math.log(backend.maximum(y_pred, backend.epsilon()) + 1.0) - second_log = tf.math.log(backend.maximum(y_true, backend.epsilon()) + 1.0) - return backend.mean( - tf.math.squared_difference(first_log, second_log), axis=-1 - ) - - -@dispatch.dispatch_for_types(mean_squared_logarithmic_error, tf.RaggedTensor) -def _ragged_tensor_msle(y_true, y_pred): - """Implements support for handling RaggedTensors.""" - return _ragged_tensor_apply_loss( - mean_squared_logarithmic_error, y_true, y_pred - ) - - -def _maybe_convert_labels(y_true): - """Converts binary labels into -1/1.""" - are_zeros = tf.equal(y_true, 0) - are_ones = tf.equal(y_true, 1) - is_binary = tf.reduce_all(tf.logical_or(are_zeros, are_ones)) - - def _convert_binary_labels(): - # Convert the binary labels to -1 or 1. - return 2.0 * y_true - 1.0 - - updated_y_true = tf.__internal__.smart_cond.smart_cond( - is_binary, _convert_binary_labels, lambda: y_true - ) - return updated_y_true - - -@keras_export("keras.metrics.squared_hinge", "keras.losses.squared_hinge") -@tf.__internal__.dispatch.add_dispatch_support -def squared_hinge(y_true, y_pred): - """Computes the squared hinge loss between `y_true` & `y_pred`. - - `loss = mean(square(maximum(1 - y_true * y_pred, 0)), axis=-1)` - - Standalone usage: - - >>> y_true = np.random.choice([-1, 1], size=(2, 3)) - >>> y_pred = np.random.random(size=(2, 3)) - >>> loss = tf.keras.losses.squared_hinge(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> assert np.array_equal( - ... loss.numpy(), - ... np.mean(np.square(np.maximum(1. - y_true * y_pred, 0.)), axis=-1)) - - Args: - y_true: The ground truth values. `y_true` values are expected to be -1 or - 1. If binary (0 or 1) labels are provided we will convert them to -1 or - 1. shape = `[batch_size, d0, .. dN]`. - y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. - - Returns: - Squared hinge loss values. shape = `[batch_size, d0, .. dN-1]`. - """ - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - y_true = _maybe_convert_labels(y_true) - return backend.mean( - tf.square(tf.maximum(1.0 - y_true * y_pred, 0.0)), axis=-1 - ) - - -@keras_export("keras.metrics.hinge", "keras.losses.hinge") -@tf.__internal__.dispatch.add_dispatch_support -def hinge(y_true, y_pred): - """Computes the hinge loss between `y_true` & `y_pred`. - - `loss = mean(maximum(1 - y_true * y_pred, 0), axis=-1)` - - Standalone usage: - - >>> y_true = np.random.choice([-1, 1], size=(2, 3)) - >>> y_pred = np.random.random(size=(2, 3)) - >>> loss = tf.keras.losses.hinge(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> assert np.array_equal( - ... loss.numpy(), - ... np.mean(np.maximum(1. - y_true * y_pred, 0.), axis=-1)) - - Args: - y_true: The ground truth values. `y_true` values are expected to be -1 or - 1. If binary (0 or 1) labels are provided they will be converted to -1 - or 1. shape = `[batch_size, d0, .. dN]`. - y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. - - Returns: - Hinge loss values. shape = `[batch_size, d0, .. dN-1]`. - """ - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - y_true = _maybe_convert_labels(y_true) - return backend.mean(tf.maximum(1.0 - y_true * y_pred, 0.0), axis=-1) - - -@keras_export("keras.losses.categorical_hinge") -@tf.__internal__.dispatch.add_dispatch_support -def categorical_hinge(y_true, y_pred): - """Computes the categorical hinge loss between `y_true` & `y_pred`. - - `loss = maximum(neg - pos + 1, 0)` - where `neg=maximum((1-y_true)*y_pred) and pos=sum(y_true*y_pred)` - - Standalone usage: - - >>> y_true = np.random.randint(0, 3, size=(2,)) - >>> y_true = tf.keras.utils.to_categorical(y_true, num_classes=3) - >>> y_pred = np.random.random(size=(2, 3)) - >>> loss = tf.keras.losses.categorical_hinge(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> pos = np.sum(y_true * y_pred, axis=-1) - >>> neg = np.amax((1. - y_true) * y_pred, axis=-1) - >>> assert np.array_equal(loss.numpy(), np.maximum(0., neg - pos + 1.)) - - Args: - y_true: The ground truth values. `y_true` values are expected to be - either `{-1, +1}` or `{0, 1}` (i.e. a one-hot-encoded tensor). - y_pred: The predicted values. - - Returns: - Categorical hinge loss values. - """ - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - pos = tf.reduce_sum(y_true * y_pred, axis=-1) - neg = tf.reduce_max((1.0 - y_true) * y_pred, axis=-1) - zero = tf.cast(0.0, y_pred.dtype) - return tf.maximum(neg - pos + 1.0, zero) - - -@keras_export("keras.losses.huber", v1=[]) -@tf.__internal__.dispatch.add_dispatch_support -def huber(y_true, y_pred, delta=1.0): - """Computes Huber loss value. - - For each value x in `error = y_true - y_pred`: - - ``` - loss = 0.5 * x^2 if |x| <= d - loss = d * |x| - 0.5 * d^2 if |x| > d - ``` - where d is `delta`. See: https://en.wikipedia.org/wiki/Huber_loss - - Args: - y_true: tensor of true targets. - y_pred: tensor of predicted targets. - delta: A float, the point where the Huber loss function changes from a - quadratic to linear. - - Returns: - Tensor with one scalar loss entry per sample. - """ - y_pred = tf.cast(y_pred, dtype=backend.floatx()) - y_true = tf.cast(y_true, dtype=backend.floatx()) - delta = tf.cast(delta, dtype=backend.floatx()) - error = tf.subtract(y_pred, y_true) - abs_error = tf.abs(error) - half = tf.convert_to_tensor(0.5, dtype=abs_error.dtype) - return backend.mean( - tf.where( - abs_error <= delta, - half * tf.square(error), - delta * abs_error - half * tf.square(delta), - ), - axis=-1, - ) - - -@keras_export( - "keras.losses.log_cosh", - "keras.losses.logcosh", - "keras.metrics.log_cosh", - "keras.metrics.logcosh", -) -@tf.__internal__.dispatch.add_dispatch_support -def log_cosh(y_true, y_pred): - """Logarithm of the hyperbolic cosine of the prediction error. - - `log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and - to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly - like the mean squared error, but will not be so strongly affected by the - occasional wildly incorrect prediction. - - Standalone usage: - - >>> y_true = np.random.random(size=(2, 3)) - >>> y_pred = np.random.random(size=(2, 3)) - >>> loss = tf.keras.losses.logcosh(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> x = y_pred - y_true - >>> assert np.allclose( - ... loss.numpy(), - ... np.mean(x + np.log(np.exp(-2. * x) + 1.) - tf.math.log(2.), - ... axis=-1), - ... atol=1e-5) - - Args: - y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`. - y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. - - Returns: - Logcosh error values. shape = `[batch_size, d0, .. dN-1]`. - """ - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - - def _logcosh(x): - return ( - x + tf.math.softplus(-2.0 * x) - tf.cast(tf.math.log(2.0), x.dtype) - ) - - return backend.mean(_logcosh(y_pred - y_true), axis=-1) - - -@keras_export( - "keras.metrics.categorical_crossentropy", - "keras.losses.categorical_crossentropy", -) -@tf.__internal__.dispatch.add_dispatch_support -def categorical_crossentropy( - y_true, y_pred, from_logits=False, label_smoothing=0.0, axis=-1 -): - """Computes the categorical crossentropy loss. - - Standalone usage: - - >>> y_true = [[0, 1, 0], [0, 0, 1]] - >>> y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]] - >>> loss = tf.keras.losses.categorical_crossentropy(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> loss.numpy() - array([0.0513, 2.303], dtype=float32) - - Args: - y_true: Tensor of one-hot true targets. - y_pred: Tensor of predicted targets. - from_logits: Whether `y_pred` is expected to be a logits tensor. By - default, we assume that `y_pred` encodes a probability distribution. - label_smoothing: Float in [0, 1]. If > `0` then smooth the labels. For - example, if `0.1`, use `0.1 / num_classes` for non-target labels - and `0.9 + 0.1 / num_classes` for target labels. - axis: Defaults to -1. The dimension along which the entropy is - computed. - - Returns: - Categorical crossentropy loss value. - """ - if isinstance(axis, bool): - raise ValueError( - "`axis` must be of type `int`. " - f"Received: axis={axis} of type {type(axis)}" - ) - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - label_smoothing = tf.convert_to_tensor(label_smoothing, dtype=y_pred.dtype) - - if y_pred.shape[-1] == 1: - warnings.warn( - "In loss categorical_crossentropy, expected " - "y_pred.shape to be (batch_size, num_classes) " - f"with num_classes > 1. Received: y_pred.shape={y_pred.shape}. " - "Consider using 'binary_crossentropy' if you only have 2 classes.", - SyntaxWarning, - stacklevel=2, - ) - - def _smooth_labels(): - num_classes = tf.cast(tf.shape(y_true)[-1], y_pred.dtype) - return y_true * (1.0 - label_smoothing) + ( - label_smoothing / num_classes - ) - - y_true = tf.__internal__.smart_cond.smart_cond( - label_smoothing, _smooth_labels, lambda: y_true - ) - - return backend.categorical_crossentropy( - y_true, y_pred, from_logits=from_logits, axis=axis - ) - - -@dispatch.dispatch_for_types(categorical_crossentropy, tf.RaggedTensor) -def _ragged_tensor_categorical_crossentropy( - y_true, y_pred, from_logits=False, label_smoothing=0.0, axis=-1 -): - """Implements support for handling RaggedTensors. - - Args: - y_true: Tensor of one-hot true targets. - y_pred: Tensor of predicted targets. - from_logits: Whether `y_pred` is expected to be a logits tensor. By - default, we assume that `y_pred` encodes a probability distribution. - label_smoothing: Float in [0, 1]. If > `0` then smooth the labels. For - example, if `0.1`, use `0.1 / num_classes` for non-target labels - and `0.9 + 0.1 / num_classes` for target labels. - axis: The axis along which to compute crossentropy (the features axis). - Defaults to -1. - - Returns: - Categorical crossentropy loss value. - - Expected shape: (batch, sequence_len, n_classes) with sequence_len - being variable per batch. - Return shape: (batch, sequence_len). - - When used by CategoricalCrossentropy() with the default reduction - (SUM_OVER_BATCH_SIZE), the reduction averages the loss over the - number of elements independent of the batch. E.g. if the RaggedTensor - has 2 batches with [2, 1] values respectively the resulting loss is - the sum of the individual loss values divided by 3. - """ - fn = functools.partial( - categorical_crossentropy, - from_logits=from_logits, - label_smoothing=label_smoothing, - axis=axis, - ) - return _ragged_tensor_apply_loss(fn, y_true, y_pred) - - -@keras_export( - "keras.metrics.categorical_focal_crossentropy", - "keras.losses.categorical_focal_crossentropy", -) -@tf.__internal__.dispatch.add_dispatch_support -def categorical_focal_crossentropy( - y_true, - y_pred, - alpha=0.25, - gamma=2.0, - from_logits=False, - label_smoothing=0.0, - axis=-1, -): - """Computes the categorical focal crossentropy loss. - - Standalone usage: - >>> y_true = [[0, 1, 0], [0, 0, 1]] - >>> y_pred = [[0.05, 0.9, 0.05], [0.1, 0.85, 0.05]] - >>> loss = tf.keras.losses.categorical_focal_crossentropy(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> loss.numpy() - array([2.63401289e-04, 6.75912094e-01], dtype=float32) - - Args: - y_true: Tensor of one-hot true targets. - y_pred: Tensor of predicted targets. - alpha: A weight balancing factor for all classes, default is `0.25` as - mentioned in the reference. It can be a list of floats or a scalar. - In the multi-class case, alpha may be set by inverse class - frequency by using `compute_class_weight` from `sklearn.utils`. - gamma: A focusing parameter, default is `2.0` as mentioned in the - reference. It helps to gradually reduce the importance given to - simple examples in a smooth manner. When `gamma` = 0, there is - no focal effect on the categorical crossentropy. - from_logits: Whether `y_pred` is expected to be a logits tensor. By - default, we assume that `y_pred` encodes a probability - distribution. - label_smoothing: Float in [0, 1]. If > `0` then smooth the labels. For - example, if `0.1`, use `0.1 / num_classes` for non-target labels - and `0.9 + 0.1 / num_classes` for target labels. - axis: Defaults to -1. The dimension along which the entropy is - computed. - - Returns: - Categorical focal crossentropy loss value. - """ - if isinstance(axis, bool): - raise ValueError( - "`axis` must be of type `int`. " - f"Received: axis={axis} of type {type(axis)}" - ) - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - label_smoothing = tf.convert_to_tensor(label_smoothing, dtype=y_pred.dtype) - - if y_pred.shape[-1] == 1: - warnings.warn( - "In loss categorical_focal_crossentropy, expected " - "y_pred.shape to be (batch_size, num_classes) " - f"with num_classes > 1. Received: y_pred.shape={y_pred.shape}. " - "Consider using 'binary_crossentropy' if you only have 2 classes.", - SyntaxWarning, - stacklevel=2, - ) - - def _smooth_labels(): - num_classes = tf.cast(tf.shape(y_true)[-1], y_pred.dtype) - return y_true * (1.0 - label_smoothing) + ( - label_smoothing / num_classes - ) - - y_true = tf.__internal__.smart_cond.smart_cond( - label_smoothing, _smooth_labels, lambda: y_true - ) - - return backend.categorical_focal_crossentropy( - target=y_true, - output=y_pred, - alpha=alpha, - gamma=gamma, - from_logits=from_logits, - axis=axis, - ) - - -@dispatch.dispatch_for_types(categorical_focal_crossentropy, tf.RaggedTensor) -def _ragged_tensor_categorical_focal_crossentropy( - y_true, - y_pred, - alpha=0.25, - gamma=2.0, - from_logits=False, - label_smoothing=0.0, - axis=-1, -): - """Implements support for handling RaggedTensors. - - Expected shape: (batch, sequence_len, n_classes) with sequence_len - being variable per batch. - Return shape: (batch, sequence_len). - When used by CategoricalFocalCrossentropy() with the default reduction - (SUM_OVER_BATCH_SIZE), the reduction averages the loss over the - number of elements independent of the batch. E.g. if the RaggedTensor - has 2 batches with [2, 1] values respectively the resulting loss is - the sum of the individual loss values divided by 3. - - Args: - alpha: A weight balancing factor for all classes, default is `0.25` as - mentioned in the reference. It can be a list of floats or a scalar. - In the multi-class case, alpha may be set by inverse class - frequency by using `compute_class_weight` from `sklearn.utils`. - gamma: A focusing parameter, default is `2.0` as mentioned in the - reference. It helps to gradually reduce the importance given to - simple examples in a smooth manner. When `gamma` = 0, there is - no focal effect on the categorical crossentropy. - from_logits: Whether `y_pred` is expected to be a logits tensor. By - default, we assume that `y_pred` encodes a probability distribution. - label_smoothing: Float in [0, 1]. If > `0` then smooth the labels. For - example, if `0.1`, use `0.1 / num_classes` for non-target labels - and `0.9 + 0.1 / num_classes` for target labels. - axis: Defaults to -1. The dimension along which the entropy is - computed. - - Returns: - Categorical focal crossentropy loss value. - """ - fn = functools.partial( - categorical_focal_crossentropy, - alpha=alpha, - gamma=gamma, - from_logits=from_logits, - label_smoothing=label_smoothing, - axis=axis, - ) - return _ragged_tensor_apply_loss(fn, y_true, y_pred) - - -@keras_export( - "keras.metrics.sparse_categorical_crossentropy", - "keras.losses.sparse_categorical_crossentropy", -) -@tf.__internal__.dispatch.add_dispatch_support -def sparse_categorical_crossentropy( - y_true, y_pred, from_logits=False, axis=-1, ignore_class=None -): - """Computes the sparse categorical crossentropy loss. - - Standalone usage: - - >>> y_true = [1, 2] - >>> y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]] - >>> loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> loss.numpy() - array([0.0513, 2.303], dtype=float32) - - >>> y_true = [[[ 0, 2], - ... [-1, -1]], - ... [[ 0, 2], - ... [-1, -1]]] - >>> y_pred = [[[[1.0, 0.0, 0.0], [0.0, 0.0, 1.0]], - ... [[0.2, 0.5, 0.3], [0.0, 1.0, 0.0]]], - ... [[[1.0, 0.0, 0.0], [0.0, 0.5, 0.5]], - ... [[0.2, 0.5, 0.3], [0.0, 1.0, 0.0]]]] - >>> loss = tf.keras.losses.sparse_categorical_crossentropy( - ... y_true, y_pred, ignore_class=-1) - >>> loss.numpy() - array([[[2.3841855e-07, 2.3841855e-07], - [0.0000000e+00, 0.0000000e+00]], - [[2.3841855e-07, 6.9314730e-01], - [0.0000000e+00, 0.0000000e+00]]], dtype=float32) - - Args: - y_true: Ground truth values. - y_pred: The predicted values. - from_logits: Whether `y_pred` is expected to be a logits tensor. By - default, we assume that `y_pred` encodes a probability distribution. - axis: Defaults to -1. The dimension along which the entropy is - computed. - ignore_class: Optional integer. The ID of a class to be ignored during - loss computation. This is useful, for example, in segmentation - problems featuring a "void" class (commonly -1 or 255) in segmentation - maps. By default (`ignore_class=None`), all classes are considered. - - Returns: - Sparse categorical crossentropy loss value. - """ - return backend.sparse_categorical_crossentropy( - y_true, - y_pred, - from_logits=from_logits, - ignore_class=ignore_class, - axis=axis, - ) - - -@dispatch.dispatch_for_types(sparse_categorical_crossentropy, tf.RaggedTensor) -def _ragged_tensor_sparse_categorical_crossentropy( - y_true, y_pred, from_logits=False, axis=-1, ignore_class=None -): - """Implements support for handling RaggedTensors. - - Expected y_pred shape: (batch, sequence_len, n_classes) with sequence_len - being variable per batch. - Return shape: (batch, sequence_len). - - When used by SparseCategoricalCrossentropy() with the default reduction - (SUM_OVER_BATCH_SIZE), the reduction averages the loss over the - number of elements independent of the batch. E.g. if the RaggedTensor - has 2 batches with [2, 1] values respectively, the resulting loss is - the sum of the individual loss values divided by 3. - """ - fn = functools.partial( - sparse_categorical_crossentropy, - from_logits=from_logits, - ignore_class=ignore_class, - axis=axis, - ) - return _ragged_tensor_apply_loss(fn, y_true, y_pred, y_pred_extra_dim=True) - - -@keras_export( - "keras.metrics.binary_crossentropy", "keras.losses.binary_crossentropy" -) -@tf.__internal__.dispatch.add_dispatch_support -def binary_crossentropy( - y_true, y_pred, from_logits=False, label_smoothing=0.0, axis=-1 -): - """Computes the binary crossentropy loss. - - Standalone usage: - - >>> y_true = [[0, 1], [0, 0]] - >>> y_pred = [[0.6, 0.4], [0.4, 0.6]] - >>> loss = tf.keras.losses.binary_crossentropy(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> loss.numpy() - array([0.916 , 0.714], dtype=float32) - - Args: - y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`. - y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. - from_logits: Whether `y_pred` is expected to be a logits tensor. By - default, we assume that `y_pred` encodes a probability distribution. - label_smoothing: Float in [0, 1]. If > `0` then smooth the labels by - squeezing them towards 0.5 That is, using `1. - 0.5 * label_smoothing` - for the target class and `0.5 * label_smoothing` for the non-target - class. - axis: The axis along which the mean is computed. Defaults to -1. - - Returns: - Binary crossentropy loss value. shape = `[batch_size, d0, .. dN-1]`. - """ - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - label_smoothing = tf.convert_to_tensor(label_smoothing, dtype=y_pred.dtype) - - def _smooth_labels(): - return y_true * (1.0 - label_smoothing) + 0.5 * label_smoothing - - y_true = tf.__internal__.smart_cond.smart_cond( - label_smoothing, _smooth_labels, lambda: y_true - ) - - return backend.mean( - backend.binary_crossentropy(y_true, y_pred, from_logits=from_logits), - axis=axis, - ) - - -@dispatch.dispatch_for_types(binary_crossentropy, tf.RaggedTensor) -def _ragged_tensor_binary_crossentropy( - y_true, y_pred, from_logits=False, label_smoothing=0.0, axis=-1 -): - """Implements support for handling RaggedTensors. - - Args: - y_true: Tensor of one-hot true targets. - y_pred: Tensor of predicted targets. - from_logits: Whether `y_pred` is expected to be a logits tensor. By - default, we assume that `y_pred` encodes a probability distribution. - label_smoothing: Float in [0, 1]. If > `0` then smooth the labels. For - example, if `0.1`, use `0.1 / num_classes` for non-target labels - and `0.9 + 0.1 / num_classes` for target labels. - axis: Axis along which to compute crossentropy. - - Returns: - Binary crossentropy loss value. - - Expected shape: (batch, sequence_len) with sequence_len being variable - per batch. - Return shape: (batch,); returns the per batch mean of the loss values. - - When used by BinaryCrossentropy() with the default reduction - (SUM_OVER_BATCH_SIZE), the reduction averages the per batch losses over - the number of batches. - """ - fn = functools.partial( - binary_crossentropy, - from_logits=from_logits, - label_smoothing=label_smoothing, - axis=axis, - ) - return _ragged_tensor_apply_loss(fn, y_true, y_pred) - - -@keras_export( - "keras.metrics.binary_focal_crossentropy", - "keras.losses.binary_focal_crossentropy", -) -@tf.__internal__.dispatch.add_dispatch_support -def binary_focal_crossentropy( - y_true, - y_pred, - apply_class_balancing=False, - alpha=0.25, - gamma=2.0, - from_logits=False, - label_smoothing=0.0, - axis=-1, -): - """Computes the binary focal crossentropy loss. - - According to [Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf), it - helps to apply a focal factor to down-weight easy examples and focus more on - hard examples. By default, the focal tensor is computed as follows: - - `focal_factor = (1 - output)**gamma` for class 1 - `focal_factor = output**gamma` for class 0 - where `gamma` is a focusing parameter. When `gamma` = 0, there is no focal - effect on the binary crossentropy loss. - - If `apply_class_balancing == True`, this function also takes into account a - weight balancing factor for the binary classes 0 and 1 as follows: - - `weight = alpha` for class 1 (`target == 1`) - `weight = 1 - alpha` for class 0 - where `alpha` is a float in the range of `[0, 1]`. - - Standalone usage: - - >>> y_true = [[0, 1], [0, 0]] - >>> y_pred = [[0.6, 0.4], [0.4, 0.6]] - >>> loss = tf.keras.losses.binary_focal_crossentropy(y_true, y_pred, - ... gamma=2) - >>> assert loss.shape == (2,) - >>> loss.numpy() - array([0.330, 0.206], dtype=float32) - - Args: - y_true: Ground truth values, of shape `(batch_size, d0, .. dN)`. - y_pred: The predicted values, of shape `(batch_size, d0, .. dN)`. - apply_class_balancing: A bool, whether to apply weight balancing on the - binary classes 0 and 1. - alpha: A weight balancing factor for class 1, default is `0.25` as - mentioned in the reference. The weight for class 0 is `1.0 - alpha`. - gamma: A focusing parameter, default is `2.0` as mentioned in the - reference. - from_logits: Whether `y_pred` is expected to be a logits tensor. By - default, we assume that `y_pred` encodes a probability distribution. - label_smoothing: Float in `[0, 1]`. If higher than 0 then smooth the - labels by squeezing them towards `0.5`, i.e., using `1. - 0.5 * - label_smoothing` for the target class and `0.5 * label_smoothing` for - the non-target class. - axis: The axis along which the mean is computed. Defaults to `-1`. - - Returns: - Binary focal crossentropy loss value. shape = `[batch_size, d0, .. dN-1]`. - """ - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - label_smoothing = tf.convert_to_tensor(label_smoothing, dtype=y_pred.dtype) - - def _smooth_labels(): - return y_true * (1.0 - label_smoothing) + 0.5 * label_smoothing - - y_true = tf.__internal__.smart_cond.smart_cond( - label_smoothing, _smooth_labels, lambda: y_true - ) - - return backend.mean( - backend.binary_focal_crossentropy( - target=y_true, - output=y_pred, - apply_class_balancing=apply_class_balancing, - alpha=alpha, - gamma=gamma, - from_logits=from_logits, - ), - axis=axis, - ) - - -@dispatch.dispatch_for_types(binary_focal_crossentropy, tf.RaggedTensor) -def _ragged_tensor_binary_focal_crossentropy( - y_true, - y_pred, - apply_class_balancing=False, - alpha=0.25, - gamma=2.0, - from_logits=False, - label_smoothing=0.0, - axis=-1, -): - """Implements support for handling RaggedTensors. - - Expected shape: `(batch, sequence_len)` with sequence_len being variable per - batch. - Return shape: `(batch,)`; returns the per batch mean of the loss values. - - When used by BinaryFocalCrossentropy() with the default reduction - (SUM_OVER_BATCH_SIZE), the reduction averages the per batch losses over - the number of batches. - - Args: - y_true: Tensor of one-hot true targets. - y_pred: Tensor of predicted targets. - apply_class_balancing: A bool, whether to apply weight balancing on the - binary classes 0 and 1. - alpha: A weight balancing factor for class 1, default is `0.25` as - mentioned in the reference [Lin et al., 2018]( - https://arxiv.org/pdf/1708.02002.pdf). The weight for class 0 is - `1.0 - alpha`. - gamma: A focusing parameter, default is `2.0` as mentioned in the - reference. - from_logits: Whether `y_pred` is expected to be a logits tensor. By - default, we assume that `y_pred` encodes a probability distribution. - label_smoothing: Float in `[0, 1]`. If > `0` then smooth the labels. For - example, if `0.1`, use `0.1 / num_classes` for non-target labels - and `0.9 + 0.1 / num_classes` for target labels. - axis: Axis along which to compute crossentropy. - - Returns: - Binary focal crossentropy loss value. - """ - fn = functools.partial( - binary_focal_crossentropy, - apply_class_balancing=apply_class_balancing, - alpha=alpha, - gamma=gamma, - from_logits=from_logits, - label_smoothing=label_smoothing, - axis=axis, - ) - return _ragged_tensor_apply_loss(fn, y_true, y_pred) - - -@keras_export( - "keras.metrics.kl_divergence", - "keras.metrics.kullback_leibler_divergence", - "keras.metrics.kld", - "keras.metrics.KLD", - "keras.losses.kl_divergence", - "keras.losses.kullback_leibler_divergence", - "keras.losses.kld", - "keras.losses.KLD", -) -@tf.__internal__.dispatch.add_dispatch_support -def kl_divergence(y_true, y_pred): - """Computes Kullback-Leibler divergence loss between `y_true` & `y_pred`. - - `loss = y_true * log(y_true / y_pred)` - - See: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence - - Standalone usage: - - >>> y_true = np.random.randint(0, 2, size=(2, 3)).astype(np.float64) - >>> y_pred = np.random.random(size=(2, 3)) - >>> loss = tf.keras.losses.kullback_leibler_divergence(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> y_true = tf.keras.backend.clip(y_true, 1e-7, 1) - >>> y_pred = tf.keras.backend.clip(y_pred, 1e-7, 1) - >>> assert np.array_equal( - ... loss.numpy(), np.sum(y_true * np.log(y_true / y_pred), axis=-1)) - - Args: - y_true: Tensor of true targets. - y_pred: Tensor of predicted targets. - - Returns: - A `Tensor` with loss. - - Raises: - TypeError: If `y_true` cannot be cast to the `y_pred.dtype`. - """ - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - y_true = backend.clip(y_true, backend.epsilon(), 1) - y_pred = backend.clip(y_pred, backend.epsilon(), 1) - return tf.reduce_sum(y_true * tf.math.log(y_true / y_pred), axis=-1) - - -@keras_export("keras.metrics.poisson", "keras.losses.poisson") -@tf.__internal__.dispatch.add_dispatch_support -def poisson(y_true, y_pred): - """Computes the Poisson loss between y_true and y_pred. - - The Poisson loss is the mean of the elements of the `Tensor` - `y_pred - y_true * log(y_pred)`. - - Standalone usage: - - >>> y_true = np.random.randint(0, 2, size=(2, 3)) - >>> y_pred = np.random.random(size=(2, 3)) - >>> loss = tf.keras.losses.poisson(y_true, y_pred) - >>> assert loss.shape == (2,) - >>> y_pred = y_pred + 1e-7 - >>> assert np.allclose( - ... loss.numpy(), np.mean(y_pred - y_true * np.log(y_pred), axis=-1), - ... atol=1e-5) - - Args: - y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`. - y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. - - Returns: - Poisson loss value. shape = `[batch_size, d0, .. dN-1]`. - - Raises: - InvalidArgumentError: If `y_true` and `y_pred` have incompatible shapes. - """ - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.cast(y_true, y_pred.dtype) - return backend.mean( - y_pred - y_true * tf.math.log(y_pred + backend.epsilon()), axis=-1 - ) - - -@keras_export( - "keras.losses.cosine_similarity", - v1=[ - "keras.metrics.cosine_proximity", - "keras.metrics.cosine", - "keras.losses.cosine_proximity", - "keras.losses.cosine", - "keras.losses.cosine_similarity", - ], -) -@tf.__internal__.dispatch.add_dispatch_support -def cosine_similarity(y_true, y_pred, axis=-1): - """Computes the cosine similarity between labels and predictions. - - Note that it is a number between -1 and 1. When it is a negative number - between -1 and 0, 0 indicates orthogonality and values closer to -1 - indicate greater similarity. The values closer to 1 indicate greater - dissimilarity. This makes it usable as a loss function in a setting - where you try to maximize the proximity between predictions and - targets. If either `y_true` or `y_pred` is a zero vector, cosine - similarity will be 0 regardless of the proximity between predictions - and targets. - - `loss = -sum(l2_norm(y_true) * l2_norm(y_pred))` - - Standalone usage: - - >>> y_true = [[0., 1.], [1., 1.], [1., 1.]] - >>> y_pred = [[1., 0.], [1., 1.], [-1., -1.]] - >>> loss = tf.keras.losses.cosine_similarity(y_true, y_pred, axis=1) - >>> loss.numpy() - array([-0., -0.999, 0.999], dtype=float32) - - Args: - y_true: Tensor of true targets. - y_pred: Tensor of predicted targets. - axis: Axis along which to determine similarity. - - Returns: - Cosine similarity tensor. - """ - y_true = tf.linalg.l2_normalize(y_true, axis=axis) - y_pred = tf.linalg.l2_normalize(y_pred, axis=axis) - return -tf.reduce_sum(y_true * y_pred, axis=axis) - - -@keras_export("keras.losses.CosineSimilarity") -class CosineSimilarity(LossFunctionWrapper): - """Computes the cosine similarity between labels and predictions. - - Note that it is a number between -1 and 1. When it is a negative number - between -1 and 0, 0 indicates orthogonality and values closer to -1 - indicate greater similarity. The values closer to 1 indicate greater - dissimilarity. This makes it usable as a loss function in a setting - where you try to maximize the proximity between predictions and targets. - If either `y_true` or `y_pred` is a zero vector, cosine similarity will be 0 - regardless of the proximity between predictions and targets. - - `loss = -sum(l2_norm(y_true) * l2_norm(y_pred))` - - Standalone usage: - - >>> y_true = [[0., 1.], [1., 1.]] - >>> y_pred = [[1., 0.], [1., 1.]] - >>> # Using 'auto'/'sum_over_batch_size' reduction type. - >>> cosine_loss = tf.keras.losses.CosineSimilarity(axis=1) - >>> # l2_norm(y_true) = [[0., 1.], [1./1.414, 1./1.414]] - >>> # l2_norm(y_pred) = [[1., 0.], [1./1.414, 1./1.414]] - >>> # l2_norm(y_true) . l2_norm(y_pred) = [[0., 0.], [0.5, 0.5]] - >>> # loss = mean(sum(l2_norm(y_true) . l2_norm(y_pred), axis=1)) - >>> # = -((0. + 0.) + (0.5 + 0.5)) / 2 - >>> cosine_loss(y_true, y_pred).numpy() - -0.5 - - >>> # Calling with 'sample_weight'. - >>> cosine_loss(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy() - -0.0999 - - >>> # Using 'sum' reduction type. - >>> cosine_loss = tf.keras.losses.CosineSimilarity(axis=1, - ... reduction=tf.keras.losses.Reduction.SUM) - >>> cosine_loss(y_true, y_pred).numpy() - -0.999 - - >>> # Using 'none' reduction type. - >>> cosine_loss = tf.keras.losses.CosineSimilarity(axis=1, - ... reduction=tf.keras.losses.Reduction.NONE) - >>> cosine_loss(y_true, y_pred).numpy() - array([-0., -0.999], dtype=float32) - - Usage with the `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss=tf.keras.losses.CosineSimilarity(axis=1)) - ``` - - Args: - axis: The axis along which the cosine similarity is computed - (the features axis). Defaults to -1. - reduction: Type of `tf.keras.losses.Reduction` to apply to loss. - Default value is `AUTO`. `AUTO` indicates that the reduction option will - be determined by the usage context. For almost all cases this defaults - to `SUM_OVER_BATCH_SIZE`. When used under a - `tf.distribute.Strategy`, except via `Model.compile()` and - `Model.fit()`, using `AUTO` or `SUM_OVER_BATCH_SIZE` - will raise an error. Please see this custom training [tutorial]( - https://www.tensorflow.org/tutorials/distribute/custom_training) - for more details. - name: Optional name for the instance. - """ - - def __init__( - self, - axis=-1, - reduction=losses_utils.ReductionV2.AUTO, - name="cosine_similarity", - ): - super().__init__( - cosine_similarity, reduction=reduction, name=name, axis=axis - ) - - -# Aliases. - -bce = BCE = binary_crossentropy -mse = MSE = mean_squared_error -mae = MAE = mean_absolute_error -mape = MAPE = mean_absolute_percentage_error -msle = MSLE = mean_squared_logarithmic_error -kld = KLD = kullback_leibler_divergence = kl_divergence -logcosh = log_cosh -huber_loss = huber - - -def is_categorical_crossentropy(loss): - result = ( - isinstance(loss, CategoricalCrossentropy) - or ( - isinstance(loss, LossFunctionWrapper) - and loss.fn == categorical_crossentropy - ) - or ( - hasattr(loss, "__name__") - and loss.__name__ == "categorical_crossentropy" - ) - or (loss == "categorical_crossentropy") - ) - return result - - -@keras_export("keras.losses.serialize") -def serialize(loss, use_legacy_format=False): - """Serializes loss function or `Loss` instance. - - Args: - loss: A Keras `Loss` instance or a loss function. - - Returns: - Loss configuration dictionary. - """ - if use_legacy_format: - return legacy_serialization.serialize_keras_object(loss) - return serialize_keras_object(loss) - - -@keras_export("keras.losses.deserialize") -def deserialize(name, custom_objects=None, use_legacy_format=False): - """Deserializes a serialized loss class/function instance. - - Args: - name: Loss configuration. - custom_objects: Optional dictionary mapping names (strings) to custom - objects (classes and functions) to be considered during - deserialization. - - Returns: - A Keras `Loss` instance or a loss function. - """ - if use_legacy_format: - return legacy_serialization.deserialize_keras_object( - name, - module_objects=globals(), - custom_objects=custom_objects, - printable_module_name="loss function", - ) - return deserialize_keras_object( - name, - module_objects=globals(), - custom_objects=custom_objects, - printable_module_name="loss function", - ) - - -@keras_export("keras.losses.get") -def get(identifier): - """Retrieves a Keras loss as a `function`/`Loss` class instance. - - The `identifier` may be the string name of a loss function or `Loss` class. - - >>> loss = tf.keras.losses.get("categorical_crossentropy") - >>> type(loss) - - >>> loss = tf.keras.losses.get("CategoricalCrossentropy") - >>> type(loss) - - - You can also specify `config` of the loss to this function by passing dict - containing `class_name` and `config` as an identifier. Also note that the - `class_name` must map to a `Loss` class - - >>> identifier = {"class_name": "CategoricalCrossentropy", - ... "config": {"from_logits": True}} - >>> loss = tf.keras.losses.get(identifier) - >>> type(loss) - - - Args: - identifier: A loss identifier. One of None or string name of a loss - function/class or loss configuration dictionary or a loss function or a - loss class instance. - - Returns: - A Keras loss as a `function`/ `Loss` class instance. - - Raises: - ValueError: If `identifier` cannot be interpreted. - """ - if identifier is None: - return None - if isinstance(identifier, str): - identifier = str(identifier) - use_legacy_format = "module" not in identifier - return deserialize(identifier, use_legacy_format=use_legacy_format) - if isinstance(identifier, dict): - return deserialize(identifier) - if callable(identifier): - return identifier - raise ValueError( - f"Could not interpret loss function identifier: {identifier}" - ) - - -LABEL_DTYPES_FOR_LOSSES = { - tf.compat.v1.losses.sparse_softmax_cross_entropy: "int32", - sparse_categorical_crossentropy: "int32", -} diff --git a/keras/losses_test.py b/keras/losses_test.py deleted file mode 100644 index 9700f1ed280..00000000000 --- a/keras/losses_test.py +++ /dev/null @@ -1,2985 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras loss functions.""" - -import warnings - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import activations -from keras import backend -from keras import losses -from keras.testing_infra import test_combinations -from keras.utils import losses_utils - -# isort: off -from tensorflow.python.autograph.impl import ( - api as autograph, -) - -ALL_LOSSES = [ - losses.mean_squared_error, - losses.mean_absolute_error, - losses.mean_absolute_percentage_error, - losses.mean_squared_logarithmic_error, - losses.squared_hinge, - losses.hinge, - losses.categorical_crossentropy, - losses.binary_crossentropy, - losses.kl_divergence, - losses.poisson, - losses.cosine_similarity, - losses.log_cosh, - losses.categorical_hinge, -] - - -class KerasLossesTest(tf.test.TestCase, parameterized.TestCase): - def test_objective_shapes_3d(self): - with self.cached_session(): - y_a = backend.variable(np.random.random((5, 6, 7))) - y_b = backend.variable(np.random.random((5, 6, 7))) - for obj in ALL_LOSSES: - objective_output = obj(y_a, y_b) - self.assertListEqual(objective_output.shape.as_list(), [5, 6]) - - def test_objective_shapes_2d(self): - with self.cached_session(): - y_a = backend.variable(np.random.random((6, 7))) - y_b = backend.variable(np.random.random((6, 7))) - for obj in ALL_LOSSES: - objective_output = obj(y_a, y_b) - self.assertListEqual( - objective_output.shape.as_list(), - [ - 6, - ], - ) - - def test_cce_one_hot(self): - with self.cached_session(): - y_a = backend.variable(np.random.randint(0, 7, (5, 6))) - y_b = backend.variable(np.random.random((5, 6, 7))) - objective_output = losses.sparse_categorical_crossentropy(y_a, y_b) - assert backend.eval(objective_output).shape == (5, 6) - - y_a = backend.variable(np.random.randint(0, 7, (6,))) - y_b = backend.variable(np.random.random((6, 7))) - objective_output = losses.sparse_categorical_crossentropy(y_a, y_b) - assert backend.eval(objective_output).shape == (6,) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_categorical_crossentropy_loss(self): - target = backend.variable(np.random.randint(0, 1, (5, 1))) - logits = backend.variable(np.random.random((5, 1))) - softmax_output = backend.softmax(logits) - output_from_logit = losses.categorical_crossentropy( - target, logits, from_logits=True - ) - output_from_softmax = losses.categorical_crossentropy( - target, softmax_output - ) - np.testing.assert_allclose( - backend.eval(output_from_logit), - backend.eval(output_from_softmax), - atol=1e-5, - ) - - axis = 0 - output_from_logit_axis = losses.categorical_crossentropy( - target, logits, from_logits=True, axis=axis - ) - output_from_softmax_axis = losses.categorical_crossentropy( - target, softmax_output, axis=axis - ) - - np.testing.assert_allclose( - backend.eval(output_from_logit_axis), - backend.eval(output_from_softmax_axis), - atol=1e-5, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_categorical_crossentropy_loss_with_unknown_rank_tensor(self): - t = backend.placeholder() - p = backend.placeholder() - o = losses.categorical_crossentropy(t, p) - - t_val = tf.convert_to_tensor( - [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] - ) - p_val = tf.convert_to_tensor( - [[0.9, 0.05, 0.05], [0.05, 0.89, 0.06], [0.05, 0.01, 0.94]] - ) - f = backend.function([t, p], o) - - result = f([t_val, p_val]) - self.assertArrayNear(result, [0.105, 0.116, 0.062], 1e-3) - - # from logits - p_val = tf.convert_to_tensor( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - o = losses.categorical_crossentropy(t, p, from_logits=True) - f = backend.function([t, p], o) - - result = f([t_val, p_val]) - self.assertArrayNear(result, [0.002, 0, 0.17], 1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_sparse_categorical_crossentropy_loss(self): - target = backend.variable(np.random.randint(0, 1, (5, 1))) - logits = backend.variable(np.random.random((5, 1))) - softmax_output = backend.softmax(logits) - output_from_logit = losses.sparse_categorical_crossentropy( - target, logits, from_logits=True - ) - output_from_softmax = losses.sparse_categorical_crossentropy( - target, softmax_output - ) - np.testing.assert_allclose( - backend.eval(output_from_logit), - backend.eval(output_from_softmax), - atol=1e-5, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_sparse_categorical_crossentropy_loss_with_ignore_class(self): - ignore_class = 255 - target = backend.variable(np.random.randint(0, 1, (5, 1))) - logits = backend.variable(np.random.random((5, 1))) - softmax_output = backend.softmax(logits) - - _valid = tf.constant([[0], [1], [0], [1], [1]], target.dtype) - target.assign(target * _valid + (1 - _valid) * ignore_class) - - output_from_logit = losses.sparse_categorical_crossentropy( - target, logits, ignore_class=ignore_class, from_logits=True - ) - output_from_softmax = losses.sparse_categorical_crossentropy( - target, softmax_output, ignore_class=ignore_class - ) - - # expected_mask = [False, True, False, True, True] - # for o in (output_from_logit, output_from_softmax): - # mask = backend.eval(losses_utils.get_mask(o)) - # np.testing.assert_array_equal(mask, expected_mask) - - np.testing.assert_allclose( - backend.eval(output_from_logit), - backend.eval(output_from_softmax), - atol=1e-5, - ) - - @test_combinations.generate(test_combinations.combine(mode=["graph"])) - def test_sparse_categorical_crossentropy_loss_with_unknown_rank_tensor( - self, - ): - # This test only runs in graph because the TF op layer is not supported - # yet for sparse ops. - t = backend.placeholder() - p = backend.placeholder() - o = losses.sparse_categorical_crossentropy(t, p) - - t_val = tf.convert_to_tensor([0, 1, 2]) - p_val = tf.convert_to_tensor( - [[0.9, 0.05, 0.05], [0.05, 0.89, 0.06], [0.05, 0.01, 0.94]] - ) - f = backend.function([t, p], o) - - result = f([t_val, p_val]) - self.assertArrayNear(result, [0.105, 0.116, 0.062], 1e-3) - - # from logits - p_val = tf.convert_to_tensor( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - o = losses.sparse_categorical_crossentropy(t, p, from_logits=True) - f = backend.function([t, p], o) - - result = f([t_val, p_val]) - self.assertArrayNear(result, [0.002, 0, 0.17], 1e-3) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_sparse_categorical_crossentropy_with_float16(self): - # See https://github.com/keras-team/keras/issues/15012 for more details. - # we don't cast y_true to have same dtype as y_pred, since y_pred could - # be float16 which has a small upbound, and the casting could cause an - # underflow. The y_true will be used as int64 anyway. - - # create 2 observations with 2049 labels, since 2048 is the largest - # number for float16 - y_true = [0, 2049] - # should result in a loss close to 0 since predicting y_true perfectly - y_pred = np.zeros((2, 2050)) - y_pred[0][0] = 1 - y_pred[1][2049] = 1 - y_pred_16 = tf.convert_to_tensor(y_pred, dtype=tf.float16) - - # If we did a cast for y_true to float16 in - # SparseCategoricalCrossentropy, then the loss will not be zero. - scce = losses.SparseCategoricalCrossentropy() - self.assertAllClose(scce(y_true, y_pred_16).numpy(), 0.0, atol=1e-3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_binary_crossentropy_loss(self): - target = backend.variable(np.random.randint(0, 1, (5, 1))) - logits = backend.variable(np.random.random((5, 1))) - sigmoid_output = backend.sigmoid(logits) - output_from_logit = losses.binary_crossentropy( - target, logits, from_logits=True - ) - output_from_sigmoid = losses.binary_crossentropy(target, sigmoid_output) - np.testing.assert_allclose( - backend.eval(output_from_logit), - backend.eval(output_from_sigmoid), - atol=1e-5, - ) - - axis = 0 - output_from_logit_axis = losses.binary_crossentropy( - target, logits, from_logits=True, axis=axis - ) - output_from_sigmoid_axis = losses.binary_crossentropy( - target, sigmoid_output, axis=axis - ) - - np.testing.assert_allclose( - backend.eval(output_from_logit_axis), - backend.eval(output_from_sigmoid_axis), - atol=1e-5, - ) - - def test_get_bce(self): - bce_fn = losses.get("bce") - self.assertEqual(bce_fn, losses.binary_crossentropy) - - def test_serialization(self): - fn = losses.get("mse") - config = losses.serialize(fn) - new_fn = losses.deserialize(config) - self.assertEqual(fn, new_fn) - - def test_categorical_hinge(self): - y_pred = backend.variable(np.array([[0.3, 0.2, 0.1], [0.1, 0.2, 0.7]])) - y_true = backend.variable(np.array([[0, 1, 0], [1, 0, 0]])) - expected_loss = ((0.3 - 0.2 + 1) + (0.7 - 0.1 + 1)) / 2.0 - loss = backend.eval(losses.categorical_hinge(y_true, y_pred)) - self.assertAllClose(expected_loss, np.mean(loss)) - - def test_loss_wrapper(self): - loss_fn = losses.get("mse") - mse_obj = losses.LossFunctionWrapper(loss_fn, name=loss_fn.__name__) - - self.assertEqual(mse_obj.name, "mean_squared_error") - self.assertEqual(mse_obj.reduction, losses_utils.ReductionV2.AUTO) - - y_true = tf.constant([[1.0, 9.0], [2.0, 5.0]]) - y_pred = tf.constant([[4.0, 8.0], [12.0, 3.0]]) - sample_weight = tf.constant([1.2, 0.5]) - loss = mse_obj(y_true, y_pred, sample_weight=sample_weight) - - # mse = [((4 - 1)^2 + (8 - 9)^2) / 2, ((12 - 2)^2 + (3 - 5)^2) / 2] - # mse = [5, 52] - # weighted_mse = [5 * 1.2, 52 * 0.5] = [6, 26] - # reduced_weighted_mse = (6 + 26) / 2 = - self.assertAllClose(self.evaluate(loss), 16, 1e-2) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_loss_wrapper_autograph(self): - # Test that functions with control flow wrapped in a LossFunctionWrapper - # get autographed when in a tf.function - def loss_fn(y_true, y_pred): - mse_loss_fn = losses.get("mse") - if tf.reduce_mean(y_true) > 0: - return mse_loss_fn(y_true, y_pred) - else: - return mse_loss_fn(y_true, y_pred) - - mse_obj = losses.LossFunctionWrapper(loss_fn) - - y_true = tf.constant([[1.0, 9.0], [2.0, 5.0]]) - y_pred = tf.constant([[4.0, 8.0], [12.0, 3.0]]) - sample_weight = tf.constant([1.2, 0.5]) - - @tf.function - def tf_functioned_loss_fn(y_true, y_pred, sample_weight=None): - return mse_obj(y_true, y_pred, sample_weight=sample_weight) - - loss = tf_functioned_loss_fn( - y_true, y_pred, sample_weight=sample_weight - ) - - # mse = [((4 - 1)^2 + (8 - 9)^2) / 2, ((12 - 2)^2 + (3 - 5)^2) / 2] - # mse = [5, 52] - # weighted_mse = [5 * 1.2, 52 * 0.5] = [6, 26] - # reduced_weighted_mse = (6 + 26) / 2 = - self.assertAllClose(self.evaluate(loss), 16, 1e-2) - - def test_loss_wrapper_dtype(self): - # Make sure the loss wrapper doesn't cause any numerical precision loss - # during calculation. See - # https://github.com/keras-team/keras/issues/15791 - x = tf.convert_to_tensor([[2.1]], dtype=tf.float64) - y_true = tf.square(x) - y_pred = tf.convert_to_tensor([[3.68]], dtype=tf.float64) - - # TF loss - loss = losses.MeanSquaredError() - tf_loss = loss(y_pred, y_true) - - # manually computed loss in 64-bit - man_loss64 = tf.squeeze(tf.square(y_pred - y_true)) - - self.assertEqual(tf_loss.dtype, tf.float64) - # Make a smaller atol to ensure the float64 precision is hold. - self.assertAllClose( - self.evaluate(tf_loss), self.evaluate(man_loss64), atol=1e-8 - ) - - def test_invalid_reduction(self): - with self.assertRaisesRegex(ValueError, "Invalid Reduction Key: Foo."): - losses.MeanSquaredError(reduction="Foo") - - mse_obj = losses.MeanSquaredError() - y = tf.constant([1]) - mse_obj.reduction = "Bar" - with self.assertRaisesRegex(ValueError, "Invalid Reduction Key: Bar."): - mse_obj(y, y) - - def test_deserialization_error(self): - with self.assertRaisesRegex(ValueError, "Could not interpret loss"): - losses.get(0) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_binary_crossentropy_uses_cached_logits(self): - logits = tf.constant([[-30.0, 30.0]]) - y_pred = activations.sigmoid(logits) - self.assertTrue(hasattr(y_pred, "_keras_logits")) - y_true = tf.constant([[0.0, 1.0]]) - loss = losses.binary_crossentropy(y_true, y_pred)[0] - # Check that logits are used. If y_pred is used directly, loss will - # collapse to 0 from underflow. - self.assertNotEqual(self.evaluate(loss), 0.0) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_categorical_crossentropy_uses_cached_logits(self): - logits = tf.constant([[-5.0, 0.0, 5.0]]) - y_pred = activations.softmax(logits) - self.assertTrue(hasattr(y_pred, "_keras_logits")) - y_true = tf.constant([[0.0, 0.0, 1.0]]) - loss = losses.categorical_crossentropy( - y_true, logits, from_logits=True - )[0] - # Check that logits are used. If y_pred is used directly, loss will - # collapse to 0 from underflow. - self.assertNotEqual(self.evaluate(loss), 0.0) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_sparse_categorical_crossentropy_uses_cached_logits(self): - logits = tf.constant([[-5.0, 0.0, 5.0]]) - y_pred = activations.softmax(logits) - self.assertTrue(hasattr(y_pred, "_keras_logits")) - y_true = tf.constant([2]) - loss = losses.sparse_categorical_crossentropy( - y_true, logits, from_logits=True - )[0] - # Check that logits are used. If y_pred is used directly, loss will - # collapse to 0 from underflow. - self.assertNotEqual(self.evaluate(loss), 0.0) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_loss_not_autographed_in_eager(self): - class MyLoss(losses.Loss): - def call(self, y_true, y_pred): - return y_true - y_pred - - loss = MyLoss() - y_true = tf.constant([[0.0, 0.0, 0.0]]) - y_pred = tf.constant([[1.0, 1.0, 1.0]]) - - def tf_convert(fn, _): - assert False, "Function should not be autographed." - return fn - - with tf.compat.v1.test.mock.patch.object( - autograph, "tf_convert", tf_convert - ): - loss(y_true, y_pred) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MeanSquaredErrorTest(tf.test.TestCase): - def test_config(self): - mse_obj = losses.MeanSquaredError( - reduction=losses_utils.ReductionV2.SUM, name="mse_1" - ) - self.assertEqual(mse_obj.name, "mse_1") - self.assertEqual(mse_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_all_correct_unweighted(self): - mse_obj = losses.MeanSquaredError() - y_true = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3)) - loss = mse_obj(y_true, y_true) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_unweighted(self): - mse_obj = losses.MeanSquaredError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mse_obj(y_true, y_pred) - self.assertAlmostEqual(self.evaluate(loss), 49.5, 3) - - def test_scalar_weighted(self): - mse_obj = losses.MeanSquaredError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mse_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 113.85, 3) - - def test_sample_weighted(self): - mse_obj = losses.MeanSquaredError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - loss = mse_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 767.8 / 6, 3) - - def test_ragged_tensors(self): - mse_obj = losses.MeanSquaredError() - - y_true = tf.ragged.constant([[1.0, 1.0, 9.0], [2.0, 5.0]]) - y_pred = tf.ragged.constant([[4.0, 1.0, 8.0], [12.0, 3.0]]) - sample_weight = tf.constant([1.2, 0.5]) - loss = mse_obj(y_true, y_pred, sample_weight=sample_weight) - - # mse = [((4 - 1)^2 + (8 - 9)^2) / 3, ((12 - 2)^2 + (3 - 5)^2) / 2] - # mse = [3.(3), 52] - # weighted_mse = [3.(3) * 1.2, 52 * 0.5] = [4, 26] - # reduced_weighted_mse = (4 + 26) / 2 = - self.assertAllClose(self.evaluate(loss), 15, 1e-2) - - def test_timestep_weighted(self): - mse_obj = losses.MeanSquaredError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3, 1), dtype=tf.float32 - ) - sample_weight = tf.constant([3, 6, 5, 0, 4, 2], shape=(2, 3)) - loss = mse_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 587 / 6, 3) - - def test_zero_weighted(self): - mse_obj = losses.MeanSquaredError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mse_obj(y_true, y_pred, sample_weight=0) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_invalid_sample_weight(self): - mse_obj = losses.MeanSquaredError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1)) - y_pred = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3, 1)) - sample_weight = tf.constant([3, 6, 5, 0], shape=(2, 2)) - with self.assertRaisesRegex( - (ValueError, tf.errors.InvalidArgumentError), - ( - r"Incompatible shapes: \[2,3\] vs. \[2,2\]|" - "Dimensions must be equal" - ), - ): - mse_obj(y_true, y_pred, sample_weight=sample_weight) - - def test_no_reduction(self): - mse_obj = losses.MeanSquaredError( - reduction=losses_utils.ReductionV2.NONE - ) - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mse_obj(y_true, y_pred, sample_weight=2.3) - loss = self.evaluate(loss) - self.assertArrayNear(loss, [84.3333, 143.3666], 1e-3) - - def test_sum_reduction(self): - mse_obj = losses.MeanSquaredError( - reduction=losses_utils.ReductionV2.SUM - ) - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mse_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 227.69998, 3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MeanAbsoluteErrorTest(tf.test.TestCase): - def test_config(self): - mae_obj = losses.MeanAbsoluteError( - reduction=losses_utils.ReductionV2.SUM, name="mae_1" - ) - self.assertEqual(mae_obj.name, "mae_1") - self.assertEqual(mae_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_all_correct_unweighted(self): - mae_obj = losses.MeanAbsoluteError() - y_true = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3)) - loss = mae_obj(y_true, y_true) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_unweighted(self): - mae_obj = losses.MeanAbsoluteError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mae_obj(y_true, y_pred) - self.assertAlmostEqual(self.evaluate(loss), 5.5, 3) - - def test_scalar_weighted(self): - mae_obj = losses.MeanAbsoluteError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mae_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 12.65, 3) - - def test_sample_weighted(self): - mae_obj = losses.MeanAbsoluteError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - loss = mae_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 81.4 / 6, 3) - - def test_timestep_weighted(self): - mae_obj = losses.MeanAbsoluteError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3, 1), dtype=tf.float32 - ) - sample_weight = tf.constant([3, 6, 5, 0, 4, 2], shape=(2, 3)) - loss = mae_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 83 / 6, 3) - - def test_zero_weighted(self): - mae_obj = losses.MeanAbsoluteError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mae_obj(y_true, y_pred, sample_weight=0) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_invalid_sample_weight(self): - mae_obj = losses.MeanAbsoluteError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1)) - y_pred = tf.constant([4, 8, 12, 8, 1, 3], shape=(2, 3, 1)) - sample_weight = tf.constant([3, 6, 5, 0], shape=(2, 2)) - with self.assertRaisesRegex( - (ValueError, tf.errors.InvalidArgumentError), - ( - r"Incompatible shapes: \[2,3\] vs. \[2,2\]|" - "Dimensions must be equal" - ), - ): - mae_obj(y_true, y_pred, sample_weight=sample_weight) - - def test_no_reduction(self): - mae_obj = losses.MeanAbsoluteError( - reduction=losses_utils.ReductionV2.NONE - ) - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mae_obj(y_true, y_pred, sample_weight=2.3) - loss = self.evaluate(loss) - self.assertArrayNear(loss, [10.7333, 14.5666], 1e-3) - - def test_sum_reduction(self): - mae_obj = losses.MeanAbsoluteError( - reduction=losses_utils.ReductionV2.SUM - ) - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mae_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 25.29999, 3) - - def test_ragged_tensor(self): - mae_obj = losses.MeanAbsoluteError() - y_true = tf.ragged.constant([[1, 9, 2], [-5, -2]], dtype=tf.float32) - y_pred = tf.ragged.constant([[4, 8, 12], [8, 1]], dtype=tf.float32) - # loss = [14/3, 16/2] - sample_weight = tf.constant([1.2, 1.0], shape=(2, 1)) - loss = mae_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 6.8, 5) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MeanAbsolutePercentageErrorTest(tf.test.TestCase): - def test_config(self): - mape_obj = losses.MeanAbsolutePercentageError( - reduction=losses_utils.ReductionV2.SUM, name="mape_1" - ) - self.assertEqual(mape_obj.name, "mape_1") - self.assertEqual(mape_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_all_correct_unweighted(self): - mape_obj = losses.MeanAbsolutePercentageError() - y_true = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mape_obj(y_true, y_true) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_unweighted(self): - mape_obj = losses.MeanAbsolutePercentageError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mape_obj(y_true, y_pred) - self.assertAlmostEqual(self.evaluate(loss), 211.8518, 3) - - def test_scalar_weighted(self): - mape_obj = losses.MeanAbsolutePercentageError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mape_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 487.259, 3) - - def test_sample_weighted(self): - mape_obj = losses.MeanAbsolutePercentageError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - loss = mape_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 422.8888, 3) - - def test_ragged_tensors(self): - mape_obj = losses.MeanAbsolutePercentageError() - y_true = tf.ragged.constant([[1, 9, 2], [-5, -2]]) - y_pred = tf.ragged.constant([[4, 8, 12], [8, 1]], dtype=tf.float32) - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - loss = mape_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 510.7222, 3) - - def test_timestep_weighted(self): - mape_obj = losses.MeanAbsolutePercentageError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3, 1), dtype=tf.float32 - ) - sample_weight = tf.constant([3, 6, 5, 0, 4, 2], shape=(2, 3)) - loss = mape_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 694.4445, 3) - - def test_zero_weighted(self): - mape_obj = losses.MeanAbsolutePercentageError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mape_obj(y_true, y_pred, sample_weight=0) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_no_reduction(self): - mape_obj = losses.MeanAbsolutePercentageError( - reduction=losses_utils.ReductionV2.NONE - ) - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = mape_obj(y_true, y_pred, sample_weight=2.3) - loss = self.evaluate(loss) - self.assertArrayNear(loss, [621.8518, 352.6666], 1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MeanSquaredLogarithmicErrorTest(tf.test.TestCase): - def test_config(self): - msle_obj = losses.MeanSquaredLogarithmicError( - reduction=losses_utils.ReductionV2.SUM, name="mape_1" - ) - self.assertEqual(msle_obj.name, "mape_1") - self.assertEqual(msle_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_unweighted(self): - msle_obj = losses.MeanSquaredLogarithmicError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = msle_obj(y_true, y_pred) - self.assertAlmostEqual(self.evaluate(loss), 1.4370, 3) - - def test_scalar_weighted(self): - msle_obj = losses.MeanSquaredLogarithmicError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = msle_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 3.3051, 3) - - def test_sample_weighted(self): - msle_obj = losses.MeanSquaredLogarithmicError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - loss = msle_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 3.7856, 3) - - def test_timestep_weighted(self): - msle_obj = losses.MeanSquaredLogarithmicError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3, 1), dtype=tf.float32 - ) - sample_weight = tf.constant([3, 6, 5, 0, 4, 2], shape=(2, 3)) - loss = msle_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 2.6473, 3) - - def test_zero_weighted(self): - msle_obj = losses.MeanSquaredLogarithmicError() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = msle_obj(y_true, y_pred, sample_weight=0) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_ragged_tensors(self): - msle_obj = losses.MeanSquaredLogarithmicError() - y_true = tf.ragged.constant([[1, 9, 2], [-5, -2]]) - # log(max(y_true, 0) + 1): [[0.69314, 2.3025, 1.0986], [0., 0.]] - y_pred = tf.ragged.constant([[4, 8, 12], [8, 1]], dtype=tf.float32) - # log(max(y_pred, 0) + 1): [[1.6094, 2.1972, 2.5649], [2.1972, 0.6932]] - # per batch loss: [1.0002, 2.6541] - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - loss = msle_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 5.1121, 3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CosineSimilarityTest(tf.test.TestCase): - def l2_norm(self, x, axis): - epsilon = 1e-12 - square_sum = np.sum(np.square(x), axis=axis, keepdims=True) - x_inv_norm = 1 / np.sqrt(np.maximum(square_sum, epsilon)) - return np.multiply(x, x_inv_norm) - - def setup(self, axis=1): - self.np_y_true = np.asarray([[1, 9, 2], [-5, -2, 6]], dtype=np.float32) - self.np_y_pred = np.asarray([[4, 8, 12], [8, 1, 3]], dtype=np.float32) - - y_true = self.l2_norm(self.np_y_true, axis) - y_pred = self.l2_norm(self.np_y_pred, axis) - self.expected_loss = np.sum(np.multiply(y_true, y_pred), axis=(axis,)) - - self.y_true = tf.constant(self.np_y_true) - self.y_pred = tf.constant(self.np_y_pred) - - def test_config(self): - cosine_obj = losses.CosineSimilarity( - axis=2, reduction=losses_utils.ReductionV2.SUM, name="cosine_loss" - ) - self.assertEqual(cosine_obj.name, "cosine_loss") - self.assertEqual(cosine_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_unweighted(self): - self.setup() - cosine_obj = losses.CosineSimilarity() - loss = cosine_obj(self.y_true, self.y_pred) - expected_loss = -np.mean(self.expected_loss) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_scalar_weighted(self): - self.setup() - cosine_obj = losses.CosineSimilarity() - sample_weight = 2.3 - loss = cosine_obj(self.y_true, self.y_pred, sample_weight=sample_weight) - expected_loss = -np.mean(self.expected_loss * sample_weight) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_sample_weighted(self): - self.setup() - cosine_obj = losses.CosineSimilarity() - sample_weight = np.asarray([1.2, 3.4]) - loss = cosine_obj( - self.y_true, self.y_pred, sample_weight=tf.constant(sample_weight) - ) - expected_loss = -np.mean(self.expected_loss * sample_weight) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_timestep_weighted(self): - self.setup() - cosine_obj = losses.CosineSimilarity() - np_y_true = self.np_y_true.reshape((2, 3, 1)) - np_y_pred = self.np_y_pred.reshape((2, 3, 1)) - sample_weight = np.asarray([3, 6, 5, 0, 4, 2]).reshape((2, 3)) - - y_true = self.l2_norm(np_y_true, 2) - y_pred = self.l2_norm(np_y_pred, 2) - expected_loss = np.sum(np.multiply(y_true, y_pred), axis=(2,)) - - y_true = tf.constant(np_y_true) - y_pred = tf.constant(np_y_pred) - loss = cosine_obj( - y_true, y_pred, sample_weight=tf.constant(sample_weight) - ) - - expected_loss = -np.mean(expected_loss * sample_weight) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_zero_weighted(self): - self.setup() - cosine_obj = losses.CosineSimilarity() - loss = cosine_obj(self.y_true, self.y_pred, sample_weight=0) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_axis(self): - self.setup(axis=1) - cosine_obj = losses.CosineSimilarity(axis=1) - loss = cosine_obj(self.y_true, self.y_pred) - expected_loss = -np.mean(self.expected_loss) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class BinaryCrossentropyTest(tf.test.TestCase): - def test_config(self): - bce_obj = losses.BinaryCrossentropy( - reduction=losses_utils.ReductionV2.SUM, name="bce_1" - ) - self.assertEqual(bce_obj.name, "bce_1") - self.assertEqual(bce_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_all_correct_unweighted(self): - y_true = tf.constant( - [[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=tf.float32 - ) - bce_obj = losses.BinaryCrossentropy() - loss = bce_obj(y_true, y_true) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - # Test with logits. - logits = tf.constant( - [ - [100.0, -100.0, -100.0], - [-100.0, 100.0, -100.0], - [-100.0, -100.0, 100.0], - ] - ) - bce_obj = losses.BinaryCrossentropy(from_logits=True) - loss = bce_obj(y_true, logits) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_unweighted(self): - y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) - y_pred = np.asarray([1, 1, 1, 0], dtype=np.float32).reshape([2, 2]) - bce_obj = losses.BinaryCrossentropy() - loss = bce_obj(y_true, y_pred) - - # EPSILON = 1e-7, y = y_true, y` = y_pred, Y_MAX = 0.9999999 - # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) - # y` = [Y_MAX, Y_MAX, Y_MAX, EPSILON] - - # Loss = -(y log(y` + EPSILON) + (1 - y) log(1 - y` + EPSILON)) - # = [-log(Y_MAX + EPSILON), -log(1 - Y_MAX + EPSILON), - # -log(Y_MAX + EPSILON), -log(1)] - # = [0, 15.33, 0, 0] - # Reduced loss = 15.33 / 4 - - self.assertAlmostEqual(self.evaluate(loss), 3.833, 3) - - # Test with logits. - y_true = tf.constant([[1, 0, 1], [0, 1, 1]]) - logits = tf.constant([[100.0, -100.0, 100.0], [100.0, 100.0, -100.0]]) - bce_obj = losses.BinaryCrossentropy(from_logits=True) - loss = bce_obj(y_true, logits) - - # Loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) - # (where x = logits and z = y_true) - # = [((100 - 100 * 1 + log(1 + exp(-100))) + - # (0 + 100 * 0 + log(1 + exp(-100))) + - # (100 - 100 * 1 + log(1 + exp(-100))), - # ((100 - 100 * 0 + log(1 + exp(-100))) + - # (100 - 100 * 1 + log(1 + exp(-100))) + - # (0 + 100 * 1 + log(1 + exp(-100))))] - # = [(0 + 0 + 0) / 3, 200 / 3] - # Reduced loss = (0 + 66.666) / 2 - - self.assertAlmostEqual(self.evaluate(loss), 33.333, 3) - - def test_scalar_weighted(self): - bce_obj = losses.BinaryCrossentropy() - y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) - y_pred = np.asarray([1, 1, 1, 0], dtype=np.float32).reshape([2, 2]) - loss = bce_obj(y_true, y_pred, sample_weight=2.3) - - # EPSILON = 1e-7, y = y_true, y` = y_pred, Y_MAX = 0.9999999 - # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) - # y` = [Y_MAX, Y_MAX, Y_MAX, EPSILON] - - # Loss = -(y log(y` + EPSILON) + (1 - y) log(1 - y` + EPSILON)) - # = [-log(Y_MAX + EPSILON), -log(1 - Y_MAX + EPSILON), - # -log(Y_MAX + EPSILON), -log(1)] - # = [0, 15.33, 0, 0] - # Weighted loss = [0, 15.33 * 2.3, 0, 0] - # Reduced loss = 15.33 * 2.3 / 4 - - self.assertAlmostEqual(self.evaluate(loss), 8.817, 3) - - # Test with logits. - y_true = tf.constant([[1, 0, 1], [0, 1, 1]]) - logits = tf.constant([[100.0, -100.0, 100.0], [100.0, 100.0, -100.0]]) - bce_obj = losses.BinaryCrossentropy(from_logits=True) - loss = bce_obj(y_true, logits, sample_weight=2.3) - - # Loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) - # (where x = logits and z = y_true) - # Loss = [(0 + 0 + 0) / 3, 200 / 3] - # Weighted loss = [0 * 2.3, 66.666 * 2.3] - # Reduced loss = (0 + 66.666 * 2.3) / 2 - - self.assertAlmostEqual(self.evaluate(loss), 76.667, 3) - - def test_sample_weighted(self): - bce_obj = losses.BinaryCrossentropy() - y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) - y_pred = np.asarray([1, 1, 1, 0], dtype=np.float32).reshape([2, 2]) - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - loss = bce_obj(y_true, y_pred, sample_weight=sample_weight) - - # EPSILON = 1e-7, y = y_true, y` = y_pred, Y_MAX = 0.9999999 - # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) - # y` = [Y_MAX, Y_MAX, Y_MAX, EPSILON] - - # Loss = -(y log(y` + EPSILON) + (1 - y) log(1 - y` + EPSILON)) - # = [-log(Y_MAX + EPSILON), -log(1 - Y_MAX + EPSILON), - # -log(Y_MAX + EPSILON), -log(1)] - # = [0, 15.33, 0, 0] - # Reduced loss = 15.33 * 1.2 / 4 - - self.assertAlmostEqual(self.evaluate(loss), 4.6, 3) - - # Test with logits. - y_true = tf.constant([[1, 0, 1], [0, 1, 1]]) - logits = tf.constant([[100.0, -100.0, 100.0], [100.0, 100.0, -100.0]]) - weights = tf.constant([4, 3]) - bce_obj = losses.BinaryCrossentropy(from_logits=True) - loss = bce_obj(y_true, logits, sample_weight=weights) - - # Loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) - # (where x = logits and z = y_true) - # Loss = [(0 + 0 + 0)/3, 200 / 3] - # Weighted loss = [0 * 4, 66.666 * 3] - # Reduced loss = (0 + 66.666 * 3) / 2 - - self.assertAlmostEqual(self.evaluate(loss), 100, 3) - - def test_no_reduction(self): - y_true = tf.constant([[1, 0, 1], [0, 1, 1]]) - logits = tf.constant([[100.0, -100.0, 100.0], [100.0, 100.0, -100.0]]) - bce_obj = losses.BinaryCrossentropy( - from_logits=True, reduction=losses_utils.ReductionV2.NONE - ) - loss = bce_obj(y_true, logits) - - # Loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) - # (where x = logits and z = y_true) - # Loss = [(0 + 0 + 0)/3, (200)/3] - - self.assertAllClose((0.0, 66.6666), self.evaluate(loss), 3) - - def test_label_smoothing(self): - logits = tf.constant([[100.0, -100.0, -100.0]]) - y_true = tf.constant([[1, 0, 1]]) - label_smoothing = 0.1 - # Loss: max(x, 0) - x * z + log(1 + exp(-abs(x))) - # (where x = logits and z = y_true) - # Label smoothing: z' = z * (1 - L) + 0.5L - # 1 = 1 - 0.5L - # 0 = 0.5L - # Applying the above two fns to the given input: - # (100 - 100 * (1 - 0.5 L) + 0 + - # 0 + 100 * (0.5 L) + 0 + - # 0 + 100 * (1 - 0.5 L) + 0) * (1/3) - # = (100 + 50L) * 1/3 - bce_obj = losses.BinaryCrossentropy( - from_logits=True, label_smoothing=label_smoothing - ) - loss = bce_obj(y_true, logits) - expected_value = (100.0 + 50.0 * label_smoothing) / 3.0 - self.assertAlmostEqual(self.evaluate(loss), expected_value, 3) - - def test_label_smoothing_ndarray(self): - logits = np.asarray([[100.0, -100.0, -100.0]]) - y_true = np.asarray([[1, 0, 1]]) - label_smoothing = 0.1 - # Loss: max(x, 0) - x * z + log(1 + exp(-abs(x))) - # (where x = logits and z = y_true) - # Label smoothing: z' = z * (1 - L) + 0.5L - # 1 = 1 - 0.5L - # 0 = 0.5L - # Applying the above two fns to the given input: - # (100 - 100 * (1 - 0.5 L) + 0 + - # 0 + 100 * (0.5 L) + 0 + - # 0 + 100 * (1 - 0.5 L) + 0) * (1/3) - # = (100 + 50L) * 1/3 - bce_obj = losses.BinaryCrossentropy( - from_logits=True, label_smoothing=label_smoothing - ) - loss = bce_obj(y_true, logits) - expected_value = (100.0 + 50.0 * label_smoothing) / 3.0 - self.assertAlmostEqual(self.evaluate(loss), expected_value, 3) - - def test_ragged_tensors(self): - bce_obj = losses.BinaryCrossentropy() - y_true = tf.ragged.constant([[1, 0, 1], [0]]) - y_pred = tf.ragged.constant([[1, 1, 1], [0]], dtype=tf.float32) - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - loss = bce_obj(y_true, y_pred, sample_weight=sample_weight) - - # per batch loss = [ sum([0, 15.33, 0]) / 3, 0. ] - # = [ 5.11, 0] - # Reduced loss = 5.11 * 1.2 / 2 - - self.assertAlmostEqual(self.evaluate(loss), 3.0666, 3) - - # Test with logits. - y_true = tf.ragged.constant([[1, 0, 1], [0, 1]]) - logits = tf.ragged.constant([[100.0, -100.0, 100.0], [100.0, 100.0]]) - weights = tf.constant([4, 3]) - bce_obj = losses.BinaryCrossentropy(from_logits=True) - loss = bce_obj(y_true, logits, sample_weight=weights) - - # Loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) - # (where x = logits and z = y_true) - # Loss = [(0 + 0 + 0)/3, 100 / 2] - # Weighted loss = [0 * 4, 50 * 3] - # Reduced loss = (0 + 50 * 3) / 2 - - self.assertAlmostEqual(self.evaluate(loss), 75.0, 3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class BinaryFocalCrossentropyTest(tf.test.TestCase): - def test_config(self): - obj = losses.BinaryFocalCrossentropy(gamma=1.5, name="bfce_0") - self.assertEqual(obj.name, "bfce_0") - self.assertAlmostEqual(obj.gamma, 1.5) - - obj_2 = losses.BinaryFocalCrossentropy.from_config(obj.get_config()) - self.assertEqual(obj_2.name, "bfce_0") - self.assertAlmostEqual(obj_2.gamma, 1.5) - - def test_all_correct_unweighted(self): - y_true = tf.constant( - [ - [1, 0, 0], - [0, 1, 0], - [0, 0, 1], - ], - dtype=tf.float32, - ) - obj = losses.BinaryFocalCrossentropy(gamma=1.5) - loss = obj(y_true, y_true) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - # Test with logits. - logits = tf.constant( - [ - [100.0, -100.0, -100.0], - [-100.0, 100.0, -100.0], - [-100.0, -100.0, 100.0], - ] - ) - obj = losses.BinaryFocalCrossentropy(gamma=2.0, from_logits=True) - loss = obj(y_true, logits) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_unweighted(self): - y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) - y_pred = np.asarray([0.9, 0.8, 0.7, 0.2], dtype=np.float32).reshape( - [2, 2] - ) - obj = losses.BinaryFocalCrossentropy(gamma=2.0) - loss = obj(y_true, y_pred) - - # p_t = y_true y_pred + (1 - y_true) (1 - y_pred) = [[0.9, 0.2], - # [0.7, 0.8]] - # focal = (1 - p_t) ** gamma = [[0.01, 0.64], [0.09, 0.04]] - - # bceLoss = -log(p_t) = [[0.105, 1.609] ,[0.357, 0.223]] - # focalLoss = focal bceLoss = [[0.001, 1.03], [0.032, 0.009]] - # Reduced loss = (0.001 + 1.03 + 0.032 + 0.009) / 4 = 0.268 - - self.assertAlmostEqual(self.evaluate(loss), 0.268, 3) - - # Test with logits. - y_true = tf.constant([[1, 1, 0], [0, 1, 0]], dtype=tf.float32) - logits = tf.constant([[1.5, -2.7, 2.9], [-3.8, 1.2, -4.5]]) - obj = losses.BinaryFocalCrossentropy(gamma=3.0, from_logits=True) - loss = obj(y_true, logits) - - # sigmoidal = sigmoid(logits) - # = [[0.8176, 0.063, 0.9478], [0.0219, 0.7685, 0.011]] - # p_t = y_true sigmoidal + (1 - y_true) (1 - sigmoidal) - # = [[0.8176, 0.063, 0.0522], [0.9781, 0.7685, 0.989]] - # focal = (1 - p_t) ** gamma - # = [[0.006, 0.823, 0.851], [0.00001, 0.0124, 0.000001]] - - # bceLoss = -log(p_t) - # = [[0.2014, 2.7646 , 2.9527], [0.0221, 0.2633, 0.01106]] - - # focalLoss = focal bceLoss - # = [[0.0012, 2.2743, 2.514], [0.0000002, 0.0033, 0.00000001]] - # Reduced loss = 0.799 - - self.assertAlmostEqual(self.evaluate(loss), 0.799, 3) - - def test_scalar_weighted(self): - y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) - y_pred = np.asarray([0.9, 0.8, 0.7, 0.2], dtype=np.float32).reshape( - [2, 2] - ) - obj = losses.BinaryFocalCrossentropy(gamma=2.0) - loss = obj(y_true, y_pred, sample_weight=1.23) - - # p_t = y_true y_pred + (1 - y_true) (1 - y_pred) = [[0.9, 0.2], - # [0.7, 0.8]] - # focal = (1 - p_t) ** gamma = [[0.01, 0.64], [0.09, 0.04]] - - # bceLoss = -log(p_t) = [[0.105, 1.609] ,[0.357, 0.223]] * sample_weight - # focalLoss = focal bceLoss - # = [[0.001, 1.03], [0.032, 0.009]] * sample_weight - # Reduced loss = (0.001 + 1.03 + 0.032 + 0.009) * 1.23 / 4 = 0.3296 - - self.assertAlmostEqual(self.evaluate(loss), 0.3296, 3) - - # Test with logits. - y_true = tf.constant([[1, 1, 0], [0, 1, 0]], dtype=tf.float32) - logits = tf.constant([[1.5, -2.7, 2.9], [-3.8, 1.2, -4.5]]) - obj = losses.BinaryFocalCrossentropy(gamma=3.0, from_logits=True) - loss = obj(y_true, logits, sample_weight=3.21) - - # sigmoidal = sigmoid(logits) - # = [[0.8176, 0.063, 0.9478], [0.0219, 0.7685, 0.011]] - # p_t = y_true sigmoidal + (1 - y_true) (1 - sigmoidal) - # = [[0.8176, 0.063, 0.0522], [0.9781, 0.7685, 0.989]] - # focal = (1 - p_t) ** gamma - # = [[0.006, 0.823, 0.851], [0.00001, 0.0124, 0.000001]] - - # bceLoss = -log(p_t) * sample_weight - # = [[0.2014, 2.7646 , 2.9527], [0.0221, 0.2633, 0.01106]] * - # sample_weight - - # focalLoss = focal * bceLoss = - # [[0.0012, 2.2743, 2.514], [0.0000002, 0.0033, 0.00000001]] * - # sample_weight - # Reduced loss = 0.799 * 3.21 = 2.565 - - self.assertAlmostEqual(self.evaluate(loss), 2.565, 3) - - def test_sample_weighted(self): - y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) - y_pred = np.asarray([0.9, 0.8, 0.7, 0.2], dtype=np.float32).reshape( - [2, 2] - ) - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - obj = losses.BinaryFocalCrossentropy(gamma=2.0) - loss = obj(y_true, y_pred, sample_weight=sample_weight) - - # p_t = y_true y_pred + (1 - y_true) (1 - y_pred) = [[0.9, 0.2], [0.7, - # 0.8]] - # focal = (1 - p_t) ** gamma = [[0.01, 0.64], [0.09, 0.04]] - - # bceLoss = -log(p_t) * sample_weight - # = [[0.105, 1.609] ,[0.357, 0.223]] * sample_weight - # focalLoss = focal * bceLoss - # = [[0.001, 1.03], [0.032, 0.009]] * sample_weight - # = [[0.0012, 1.236], [0.1088, 0.0306]] - # Reduced loss = (0.0012 + 1.236 + 0.1088 + 0.0306) / 4 = 0.34415 - - self.assertAlmostEqual(self.evaluate(loss), 0.34415, 3) - - # Test with logits. - y_true = tf.constant([[1, 1, 0], [0, 1, 0]], dtype=tf.float32) - logits = tf.constant([[1.5, -2.7, 2.9], [-3.8, 1.2, -4.5]]) - obj = losses.BinaryFocalCrossentropy(gamma=3.0, from_logits=True) - loss = obj(y_true, logits, sample_weight=sample_weight) - - # sigmoidal = sigmoid(logits) - # = [[0.8176, 0.063, 0.9478], [0.0219, 0.7685, 0.011]] - # p_t = y_true sigmoidal + (1 - y_true) (1 - sigmoidal) - # = [[0.8176, 0.063, 0.0522], [0.9781, 0.7685, 0.989]] - # focal = (1 - p_t) ** gamma - # = [[0.006, 0.823, 0.851], [0.00001, 0.0124, 0.000001]] - - # bceLoss = -log(p_t) * sample_weight - # = [[0.2014, 2.7646 , 2.9527], [0.0221, 0.2633, 0.01106]] * - # sample_weight - - # focalLoss = focal * bceLoss = - # [[0.0012, 2.2743, 2.514], [0.0000002, 0.0033, 0.00000001]] * - # sample_weight - # focalLoss = [[0.00144, 2.72916, 3.0168], [6.8e-7, 0.01122, 3.4e-8]] - # Reduced loss = 0.799 - - self.assertAlmostEqual(self.evaluate(loss), 0.95977, 3) - - def test_no_reduction(self): - y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) - y_pred = np.asarray([0.9, 0.8, 0.7, 0.2], dtype=np.float32).reshape( - [2, 2] - ) - obj = losses.BinaryFocalCrossentropy( - gamma=2.0, - reduction=losses_utils.ReductionV2.NONE, - ) - loss = obj(y_true, y_pred) - - # p_t = y_true y_pred + (1 - y_true) (1 - y_pred) = [[0.9, 0.2], [0.7, - # 0.8]] - # focal = (1 - p_t) ** gamma = [[0.01, 0.64], [0.09, 0.04]] - - # bceLoss = -log(p_t) = [[0.105, 1.609] ,[0.357, 0.223]] - # focalLoss = focal bceLoss = [[0.001, 1.03], [0.032, 0.009]] - # Reduced loss = [(0.001 + 1.03) / 2, (0.032 + 0.009) / 2] - - self.assertAllClose(self.evaluate(loss), (0.5155, 0.0205), 3) - - def test_ragged_tensors(self): - y_true = tf.ragged.constant([[1, 0, 1], [0]]) - y_pred = tf.ragged.constant([[0.9, 0.8, 0.7], [0.2]]) - obj = losses.BinaryFocalCrossentropy(gamma=2.0) - loss = obj(y_true, y_pred) - - # p_t = y_true y_pred + (1 - y_true) (1 - y_pred) = [[0.9, 0.2, 0.7], - # [0.8]] - # focal = (1 - p_t) ** gamma = [[0.01, 0.64, 0.09], [0.04]] - - # bceLoss = -log(p_t) = [[0.105, 1.609, 0.357], [0.223]] - # focalLoss = focal bceLoss = [[0.001, 1.03, 0.032], [0.009]] - # Reduced loss = ((0.001 + 1.03 + 0.032) / 3 + 0.009) / 2 = 0.18166 - - self.assertAlmostEqual(self.evaluate(loss), 0.18166, 3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class BinaryWeightedFocalCrossentropyTest(tf.test.TestCase): - def test_config(self): - obj = losses.BinaryFocalCrossentropy( - apply_class_balancing=True, - alpha=0.1, - gamma=1.5, - name="bfce_0", - ) - self.assertTrue(obj.apply_class_balancing) - self.assertEqual(obj.name, "bfce_0") - self.assertAlmostEqual(obj.alpha, 0.1) - self.assertAlmostEqual(obj.gamma, 1.5) - - obj_2 = losses.BinaryFocalCrossentropy.from_config(obj.get_config()) - self.assertTrue(obj_2.apply_class_balancing) - self.assertEqual(obj_2.name, "bfce_0") - self.assertAlmostEqual(obj_2.alpha, 0.1) - self.assertAlmostEqual(obj_2.gamma, 1.5) - - def test_all_correct_unweighted(self): - y_true = tf.constant( - [ - [1, 0, 0], - [0, 1, 0], - [0, 0, 1], - ], - dtype=tf.float32, - ) - obj = losses.BinaryFocalCrossentropy( - apply_class_balancing=True, gamma=1.5 - ) - loss = obj(y_true, y_true) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - # Test with logits. - logits = tf.constant( - [ - [100.0, -100.0, -100.0], - [-100.0, 100.0, -100.0], - [-100.0, -100.0, 100.0], - ] - ) - obj = losses.BinaryFocalCrossentropy( - apply_class_balancing=True, - alpha=0.3, - gamma=2.0, - from_logits=True, - ) - loss = obj(y_true, logits) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_unweighted(self): - y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) - y_pred = np.asarray([0.9, 0.8, 0.7, 0.2], dtype=np.float32).reshape( - [2, 2] - ) - obj = losses.BinaryFocalCrossentropy( - apply_class_balancing=True, - alpha=0.4, - gamma=2.0, - ) - loss = obj(y_true, y_pred) - - # p_t = y_true y_pred + (1 - y_true) (1 - y_pred) = [[0.9, 0.2], [0.7, - # 0.8]] - # alpha_weight = alpha y_true + (1 - alpha) (1 - y_true) - # = [[0.4, 0.6], [0.4, 0.6]] - # focal = (1 - p_t) ** gamma = [[0.01, 0.64], [0.09, 0.04]] - - # bceLoss = -log(p_t) = [[0.105, 1.609] ,[0.357, 0.223]] - # weightedfocalLoss = alpha_weight focal bceLoss - # = [[0.0004, 0.618], [0.0128, 0.0054]] - # Reduced loss = (0.0004 + 0.618 + 0.0128 + 0.0054) / 4 = 0.15915 - - self.assertAlmostEqual(self.evaluate(loss), 0.15915, 3) - - # Test with logits. - y_true = tf.constant([[1, 1, 0], [0, 1, 0]], dtype=tf.float32) - logits = tf.constant([[1.5, -2.7, 2.9], [-3.8, 1.2, -4.5]]) - obj = losses.BinaryFocalCrossentropy( - apply_class_balancing=True, - alpha=0.3, - gamma=3.0, - from_logits=True, - ) - loss = obj(y_true, logits) - - # alpha_weight = alpha y_true + (1 - alpha) (1 - y_true) - # = [[0.3, 0.3, 0.7], [0.7, 0.3, 0.7]] - # sigmoidal = sigmoid(logits) - # = [[0.8176, 0.063, 0.9478], [0.0219, 0.7685, 0.011]] - # p_t = y_true sigmoidal + (1 - y_true) (1 - sigmoidal) - # = [[0.8176, 0.063, 0.0522], [0.9781, 0.7685, 0.989]] - # focal = (1 - p_t) ** gamma - # = [[0.006, 0.823, 0.851], [0.00001, 0.0124, 0.000001]] - - # bceLoss = -log(p_t) - # = [[0.2014, 2.7646 , 2.9527], [0.0221, 0.2633, 0.01106]] - - # weightedfocalLoss = alpha_weight focal bceLoss - # = [[0.00036, 0.68229, 1.7598], [0.00000014, 0.00099, 0.000000007]] - # Reduced loss = 0.40724 - - self.assertAlmostEqual(self.evaluate(loss), 0.40724, 3) - - def test_scalar_weighted(self): - y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) - y_pred = np.asarray([0.9, 0.8, 0.7, 0.2], dtype=np.float32).reshape( - [2, 2] - ) - obj = losses.BinaryFocalCrossentropy( - apply_class_balancing=True, - alpha=0.6, - gamma=2.0, - ) - loss = obj(y_true, y_pred, sample_weight=1.23) - - # alpha_weight = alpha y_true + (1 - alpha) (1 - y_true) - # = [[0.6, 0.4], [0.6, 0.4]] - # p_t = y_true y_pred + (1 - y_true) (1 - y_pred) = [[0.9, 0.2], [0.7, - # 0.8]] - # focal = (1 - p_t) ** gamma = [[0.01, 0.64], [0.09, 0.04]] - - # bceLoss = -log(p_t) = [[0.105, 1.609] ,[0.357, 0.223]] * sample_weight - # weightedfocalLoss = alpha_weight focal bceLoss - # = [[0.0006, 0.412], [0.0192, 0.0036]] * sample_weight - # Reduced loss = (0.0006 + 0.412 + 0.0192 + 0.0036) * 1.23 / 4 = 0.13388 - - self.assertAlmostEqual(self.evaluate(loss), 0.13388, 3) - - # Test with logits. - y_true = tf.constant([[1, 1, 0], [0, 1, 0]], dtype=tf.float32) - logits = tf.constant([[1.5, -2.7, 2.9], [-3.8, 1.2, -4.5]]) - obj = losses.BinaryFocalCrossentropy( - apply_class_balancing=True, - alpha=0.2, - gamma=3.0, - from_logits=True, - ) - loss = obj(y_true, logits, sample_weight=3.21) - - # alpha_weight = alpha y_true + (1 - alpha) (1 - y_true) - # = [[0.2, 0.2, 0.8], [0.8, 0.2, 0.8]] - # sigmoidal = sigmoid(logits) - # = [[0.8176, 0.063, 0.9478], [0.0219, 0.7685, 0.011]] - # p_t = y_true sigmoidal + (1 - y_true) (1 - sigmoidal) - # = [[0.8176, 0.063, 0.0522], [0.9781, 0.7685, 0.989]] - # focal = (1 - p_t) ** gamma - # = [[0.006, 0.823, 0.851], [0.00001, 0.0124, 0.000001]] - - # bceLoss = -log(p_t) * sample_weight - # = [[0.2014, 2.7646 , 2.9527], [0.0221, 0.2633, 0.01106]] * - # sample_weight - - # weightedfocalLoss = alpha_weight * focal * bceLoss = - # [[0.00024, 0.45486, 2.0112], [0.00000016, 0.00066, 0.000000008]] * - # 3.21 - # Reduced loss = 0.41116 * 3.21 = 1.32 - - self.assertAlmostEqual(self.evaluate(loss), 1.32, 3) - - def test_sample_weighted(self): - y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) - y_pred = np.asarray([0.9, 0.8, 0.7, 0.2], dtype=np.float32).reshape( - [2, 2] - ) - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - obj = losses.BinaryFocalCrossentropy( - apply_class_balancing=True, - alpha=0.1, - gamma=2.0, - ) - loss = obj(y_true, y_pred, sample_weight=sample_weight) - - # alpha_weight = alpha y_true + (1 - alpha) (1 - y_true) - # = [[0.1, 0.9], [0.1, 0.9]] - # p_t = y_true y_pred + (1 - y_true) (1 - y_pred) = [[0.9, 0.2], [0.7, - # 0.8]] - # focal = (1 - p_t) ** gamma = [[0.01, 0.64], [0.09, 0.04]] - - # bceLoss = -log(p_t) * sample_weight - # = [[0.105, 1.609] ,[0.357, 0.223]] * sample_weight - # focalLoss = alpha_weight * focal * bceLoss - # = [[0.0001, 0.927], [0.0032, 0.0081]] * sample_weight - # = [[0.00012, 1.1124], [0.01088, 0.02754]] - # Reduced loss = (0.00012 + 1.1124 + 0.01088 + 0.02754) / 4 = 0.2877 - - self.assertAlmostEqual(self.evaluate(loss), 0.2877, 3) - - # Test with logits. - y_true = tf.constant([[1, 1, 0], [0, 1, 0]], dtype=tf.float32) - logits = tf.constant([[1.5, -2.7, 2.9], [-3.8, 1.2, -4.5]]) - obj = losses.BinaryFocalCrossentropy( - apply_class_balancing=True, - alpha=0.2, - gamma=3.0, - from_logits=True, - ) - loss = obj(y_true, logits, sample_weight=sample_weight) - - # sigmoidal = sigmoid(logits) - # = [[0.8176, 0.063, 0.9478], [0.0219, 0.7685, 0.011]] - # p_t = y_true sigmoidal + (1 - y_true) (1 - sigmoidal) - # = [[0.8176, 0.063, 0.0522], [0.9781, 0.7685, 0.989]] - # focal = (1 - p_t) ** gamma - # = [[0.006, 0.823, 0.851], [0.00001, 0.0124, 0.000001]] - - # alpha_weight = alpha y_true + (1 - alpha) (1 - y_true) - # = [[0.2, 0.2, 0.8], [0.8, 0.2, 0.8]] - - # bceLoss = -log(p_t) * sample_weight - # = [[0.2014, 2.7646 , 2.9527], [0.0221, 0.2633, 0.01106]] * - # sample_weight - - # focalLoss = alpha_weight * focal * bceLoss = - # [[0.00024, 0.45486, 2.0112], [1.6e-7, 6.6e-4, 8e-9]] * sample_weight - # focalLoss = [[0.000288, 0.5458, 2.41344], [5.44e-7, 2.444e-3, - # 2.72e-8]] - # Reduced loss = 0.49366 - - self.assertAlmostEqual(self.evaluate(loss), 0.49366, 3) - - def test_no_reduction(self): - y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) - y_pred = np.asarray([0.9, 0.8, 0.7, 0.2], dtype=np.float32).reshape( - [2, 2] - ) - obj = losses.BinaryFocalCrossentropy( - apply_class_balancing=True, - alpha=0.6, - gamma=2.0, - reduction=losses_utils.ReductionV2.NONE, - ) - loss = obj(y_true, y_pred) - - # alpha_weight = alpha y_true + (1 - alpha) (1 - y_true) - # = [[0.6, 0.4], [0.6, 0.4]] - - # p_t = y_true y_pred + (1 - y_true) (1 - y_pred) = [[0.9, 0.2], [0.7, - # 0.8]] - # focal = (1 - p_t) ** gamma = [[0.01, 0.64], [0.09, 0.04]] - - # bceLoss = -log(p_t) = [[0.105, 1.609] ,[0.357, 0.223]] - # focalLoss = alpha_weight focal bceLoss - # = [[0.0006, 0.412], [0.0192, 0.0036]] - # Reduced loss = [(0.0006 + 0.412) / 2, (0.0192 + 0.0036) / 2] - - self.assertAllClose(self.evaluate(loss), (0.2063, 0.0114), 3) - - def test_ragged_tensors(self): - y_true = tf.ragged.constant([[1, 0, 1], [0]]) - y_pred = tf.ragged.constant([[0.9, 0.8, 0.7], [0.2]]) - obj = losses.BinaryFocalCrossentropy( - apply_class_balancing=True, - alpha=0.1, - gamma=2.0, - ) - loss = obj(y_true, y_pred) - - # alpha_weight = alpha y_true + (1 - alpha) (1 - y_true) - # = [[0.1, 0.9, 0.1], [0.9]] - # p_t = y_true y_pred + (1 - y_true) (1 - y_pred) = [[0.9, 0.2, 0.7], - # [0.8]] - # focal = (1 - p_t) ** gamma = [[0.01, 0.64, 0.09], [0.04]] - - # bceLoss = -log(p_t) = [[0.105, 1.609, 0.357], [0.223]] - # focalLoss = alpha_weight focal bceLoss - # = [[0.0001, 0.927, 0.0032], [0.0081]] - # Reduced loss = ((0.0001 + 0.927 + 0.0032) / 3 + 0.0081) / 2 = 0.1591 - - self.assertAlmostEqual(self.evaluate(loss), 0.1591, 3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CategoricalCrossentropyTest(tf.test.TestCase): - def test_config(self): - cce_obj = losses.CategoricalCrossentropy( - reduction=losses_utils.ReductionV2.SUM, name="bce_1" - ) - self.assertEqual(cce_obj.name, "bce_1") - self.assertEqual(cce_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_all_correct_unweighted(self): - y_true = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=tf.int64) - y_pred = tf.constant( - [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]], - dtype=tf.float32, - ) - cce_obj = losses.CategoricalCrossentropy() - loss = cce_obj(y_true, y_pred) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - # Test with logits. - logits = tf.constant( - [[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 10.0]] - ) - cce_obj = losses.CategoricalCrossentropy(from_logits=True) - loss = cce_obj(y_true, logits) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_unweighted(self): - cce_obj = losses.CategoricalCrossentropy() - y_true = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) - y_pred = tf.constant( - [[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [0.05, 0.01, 0.94]], - dtype=tf.float32, - ) - loss = cce_obj(y_true, y_pred) - self.assertAlmostEqual(self.evaluate(loss), 0.3239, 3) - - # Test with logits. - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - cce_obj = losses.CategoricalCrossentropy(from_logits=True) - loss = cce_obj(y_true, logits) - self.assertAlmostEqual(self.evaluate(loss), 0.0573, 3) - - def test_scalar_weighted(self): - cce_obj = losses.CategoricalCrossentropy() - y_true = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) - y_pred = tf.constant( - [[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [0.05, 0.01, 0.94]], - dtype=tf.float32, - ) - loss = cce_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 0.7449, 3) - - # Test with logits. - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - cce_obj = losses.CategoricalCrossentropy(from_logits=True) - loss = cce_obj(y_true, logits, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 0.1317, 3) - - def test_sample_weighted(self): - cce_obj = losses.CategoricalCrossentropy() - y_true = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) - y_pred = tf.constant( - [[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [0.05, 0.01, 0.94]], - dtype=tf.float32, - ) - sample_weight = tf.constant([[1.2], [3.4], [5.6]], shape=(3, 1)) - loss = cce_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 1.0696, 3) - - # Test with logits. - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - cce_obj = losses.CategoricalCrossentropy(from_logits=True) - loss = cce_obj(y_true, logits, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 0.31829, 3) - - def test_no_reduction(self): - y_true = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - cce_obj = losses.CategoricalCrossentropy( - from_logits=True, reduction=losses_utils.ReductionV2.NONE - ) - loss = cce_obj(y_true, logits) - self.assertAllClose( - (0.001822, 0.000459, 0.169846), self.evaluate(loss), 3 - ) - - def test_label_smoothing(self): - logits = tf.constant([[100.0, -100.0, -100.0]]) - y_true = tf.constant([[1, 0, 0]]) - label_smoothing = 0.1 - # Softmax Cross Entropy Loss: -\sum_i p_i \log q_i - # where for a softmax activation - # \log q_i = x_i - \log \sum_j \exp x_j - # = x_i - x_max - \log \sum_j \exp (x_j - x_max) - # For our activations, [100, -100, -100] - # \log ( exp(0) + exp(-200) + exp(-200) ) = 0 - # so our log softmaxes become: [0, -200, -200] - # Label smoothing: z' = z * (1 - L) + L/n - # 1 = 1 - L + L/n - # 0 = L/n - # Applying the above two fns to the given input: - # -0 * (1 - L + L/n) + 200 * L/n + 200 * L/n = 400 L/n - cce_obj = losses.CategoricalCrossentropy( - from_logits=True, label_smoothing=label_smoothing - ) - loss = cce_obj(y_true, logits) - expected_value = 400.0 * label_smoothing / 3.0 - self.assertAlmostEqual(self.evaluate(loss), expected_value, 3) - - def test_label_smoothing_ndarray(self): - logits = np.asarray([[100.0, -100.0, -100.0]]) - y_true = np.asarray([[1, 0, 0]]) - label_smoothing = 0.1 - # Softmax Cross Entropy Loss: -\sum_i p_i \log q_i - # where for a softmax activation - # \log q_i = x_i - \log \sum_j \exp x_j - # = x_i - x_max - \log \sum_j \exp (x_j - x_max) - # For our activations, [100, -100, -100] - # \log ( exp(0) + exp(-200) + exp(-200) ) = 0 - # so our log softmaxes become: [0, -200, -200] - # Label smoothing: z' = z * (1 - L) + L/n - # 1 = 1 - L + L/n - # 0 = L/n - # Applying the above two fns to the given input: - # -0 * (1 - L + L/n) + 200 * L/n + 200 * L/n = 400 L/n - cce_obj = losses.CategoricalCrossentropy( - from_logits=True, label_smoothing=label_smoothing - ) - loss = cce_obj(y_true, logits) - expected_value = 400.0 * label_smoothing / 3.0 - self.assertAlmostEqual(self.evaluate(loss), expected_value, 3) - - def test_shape_mismatch(self): - y_true = tf.constant([[0], [1], [2]]) - y_pred = tf.constant( - [[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [0.05, 0.01, 0.94]] - ) - - cce_obj = losses.CategoricalCrossentropy() - with self.assertRaisesRegex(ValueError, "Shapes .+ are incompatible"): - cce_obj(y_true, y_pred) - - def test_ragged_tensors(self): - cce_obj = losses.CategoricalCrossentropy() - y_true = tf.ragged.constant([[[1, 0, 0], [0, 1, 0]], [[0, 0, 1]]]) - y_pred = tf.ragged.constant( - [[[0.9, 0.05, 0.05], [0.5, 0.89, 0.6]], [[0.05, 0.01, 0.94]]], - dtype=tf.float32, - ) - # batch losses [[0.1054, 0.8047], [0.0619]] - sample_weight = tf.constant([[1.2], [3.4]], shape=(2, 1)) - loss = cce_obj(y_true, y_pred, sample_weight=sample_weight) - # sum([0.1054, 0.8047, 0.0619]) / 3 - self.assertAlmostEqual(self.evaluate(loss), 0.4341, 3) - - # Test with logits. - logits = tf.ragged.constant( - [[[8.0, 1.0, 1.0], [0.0, 9.0, 1.0]], [[2.0, 3.0, 5.0]]] - ) - cce_obj = losses.CategoricalCrossentropy(from_logits=True) - # batch losses [[0.0018, 0.0004], [0.1698]] - loss = cce_obj(y_true, logits, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 0.1934, 3) - - def test_ragged_tensors_ragged_sample_weights(self): - cce_obj = losses.CategoricalCrossentropy() - y_true = tf.ragged.constant([[[1, 0, 0], [0, 1, 0]], [[0, 0, 1]]]) - y_pred = tf.ragged.constant( - [[[0.9, 0.05, 0.05], [0.05, 0.89, 0.06]], [[0.05, 0.01, 0.94]]], - dtype=tf.float32, - ) - # batch losses [[0.1054, 0.1165], [0.0619]] - # Use independent weights for each batch element - sample_weight = tf.ragged.constant( - [[1.2, 3.4], [5.6]], dtype=tf.float32 - ) - loss = cce_obj(y_true, y_pred, sample_weight=sample_weight) - # sum([0.1054*1.2, 0.1165*3.4, 0.0619*5.6])/3 - self.assertAlmostEqual(self.evaluate(loss), 0.2897, 3) - - # Test with logits. - logits = tf.ragged.constant( - [[[8.0, 1.0, 1.0], [0.0, 9.0, 1.0]], [[2.0, 3.0, 5.0]]] - ) - cce_obj = losses.CategoricalCrossentropy(from_logits=True) - # batch losses [[0.0018, 0.0004], [0.1698]] - # sum([0.0018*1.2, 0.0004*3.4, 0.1698*5.6]) / 3 - loss = cce_obj(y_true, logits, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 0.3181, 3) - - def test_binary_labels(self): - # raise a warning if the shape of y_true and y_pred are all (None, 1). - # categorical_crossentropy shouldn't be used with binary labels. - with warnings.catch_warnings(record=True) as w: - warnings.simplefilter("always") - cce_obj = losses.CategoricalCrossentropy() - cce_obj(tf.constant([[1.0], [0.0]]), tf.constant([[1.0], [1.0]])) - self.assertIs(w[-1].category, SyntaxWarning) - self.assertIn( - "In loss categorical_crossentropy, expected ", - str(w[-1].message), - ) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CategoricalFocalCrossentropyTest(tf.test.TestCase): - def test_config(self): - - cce_obj = losses.CategoricalFocalCrossentropy( - name="focal_cce", - reduction=losses_utils.ReductionV2.SUM, - alpha=0.25, - gamma=2.0, - ) - self.assertEqual(cce_obj.name, "focal_cce") - self.assertEqual(cce_obj.reduction, losses_utils.ReductionV2.SUM) - self.assertEqual(cce_obj.alpha, 0.25) - self.assertEqual(cce_obj.gamma, 2.0) - - # Test alpha as a list - cce_obj = losses.CategoricalFocalCrossentropy(alpha=[0.25, 0.5, 0.75]) - self.assertEqual(cce_obj.alpha, [0.25, 0.5, 0.75]) - - def test_all_correct_unweighted(self): - y_true = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=tf.int64) - y_pred = tf.constant( - [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]], - dtype=tf.float32, - ) - cce_obj = losses.CategoricalFocalCrossentropy(alpha=0.25, gamma=2.0) - loss = cce_obj(y_true, y_pred) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - # Test with logits. - logits = tf.constant( - [[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 10.0]] - ) - cce_obj = losses.CategoricalFocalCrossentropy(from_logits=True) - loss = cce_obj(y_true, logits) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_unweighted(self): - cce_obj = losses.CategoricalFocalCrossentropy() - y_true = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) - y_pred = tf.constant( - [[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [0.05, 0.01, 0.94]], - dtype=tf.float32, - ) - loss = cce_obj(y_true, y_pred) - self.assertAlmostEqual(self.evaluate(loss), 0.02059, 3) - - # Test with logits. - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - cce_obj = losses.CategoricalFocalCrossentropy(from_logits=True) - loss = cce_obj(y_true, logits) - self.assertAlmostEqual(self.evaluate(loss), 0.000345, 3) - - def test_scalar_weighted(self): - cce_obj = losses.CategoricalFocalCrossentropy() - y_true = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) - y_pred = tf.constant( - [[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [0.05, 0.01, 0.94]], - dtype=tf.float32, - ) - loss = cce_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 0.047368, 3) - - # Test with logits. - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - cce_obj = losses.CategoricalFocalCrossentropy(from_logits=True) - loss = cce_obj(y_true, logits, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 0.000794, 4) - - def test_sample_weighted(self): - cce_obj = losses.CategoricalFocalCrossentropy() - y_true = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) - y_pred = tf.constant( - [[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [0.05, 0.01, 0.94]], - dtype=tf.float32, - ) - sample_weight = tf.constant([[1.2], [3.4], [5.6]], shape=(3, 1)) - loss = cce_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 0.06987, 3) - - # Test with logits. - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - cce_obj = losses.CategoricalFocalCrossentropy(from_logits=True) - loss = cce_obj(y_true, logits, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 0.001933, 3) - - def test_no_reduction(self): - y_true = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - cce_obj = losses.CategoricalFocalCrossentropy( - from_logits=True, reduction=losses_utils.ReductionV2.NONE - ) - loss = cce_obj(y_true, logits) - self.assertAllClose( - (1.5096224e-09, 2.4136547e-11, 1.0360638e-03), - self.evaluate(loss), - 3, - ) - - def test_label_smoothing(self): - logits = tf.constant([[4.9, -0.5, 2.05]]) - y_true = tf.constant([[1, 0, 0]]) - label_smoothing = 0.1 - - cce_obj = losses.CategoricalFocalCrossentropy( - from_logits=True, label_smoothing=label_smoothing - ) - loss = cce_obj(y_true, logits) - - expected_value = 0.06685 - self.assertAlmostEqual(self.evaluate(loss), expected_value, 3) - - def test_label_smoothing_ndarray(self): - logits = np.asarray([[4.9, -0.5, 2.05]]) - y_true = np.asarray([[1, 0, 0]]) - label_smoothing = 0.1 - - cce_obj = losses.CategoricalFocalCrossentropy( - from_logits=True, label_smoothing=label_smoothing - ) - loss = cce_obj(y_true, logits) - - expected_value = 0.06685 - self.assertAlmostEqual(self.evaluate(loss), expected_value, 3) - - def test_shape_mismatch(self): - y_true = tf.constant([[0], [1], [2]]) - y_pred = tf.constant( - [[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [0.05, 0.01, 0.94]] - ) - - cce_obj = losses.CategoricalFocalCrossentropy() - with self.assertRaisesRegex(ValueError, "Shapes .+ are incompatible"): - cce_obj(y_true, y_pred) - - def test_ragged_tensors(self): - cce_obj = losses.CategoricalFocalCrossentropy() - y_true = tf.ragged.constant([[[1, 0, 0], [0, 1, 0]], [[0, 0, 1]]]) - y_pred = tf.ragged.constant( - [[[0.9, 0.05, 0.05], [0.5, 0.89, 0.6]], [[0.05, 0.01, 0.94]]], - dtype=tf.float32, - ) - # batch losses [[0.1054, 0.8047], [0.0619]] - sample_weight = tf.constant([[1.2], [3.4]], shape=(2, 1)) - loss = cce_obj(y_true, y_pred, sample_weight=sample_weight) - - self.assertAlmostEqual(self.evaluate(loss), 0.024754, 3) - - # Test with logits. - logits = tf.ragged.constant( - [[[8.0, 1.0, 1.0], [0.0, 9.0, 1.0]], [[2.0, 3.0, 5.0]]] - ) - cce_obj = losses.CategoricalFocalCrossentropy(from_logits=True) - - loss = cce_obj(y_true, logits, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 0.00117, 3) - - def test_ragged_tensors_ragged_sample_weights(self): - cce_obj = losses.CategoricalFocalCrossentropy() - y_true = tf.ragged.constant([[[1, 0, 0], [0, 1, 0]], [[0, 0, 1]]]) - y_pred = tf.ragged.constant( - [[[0.9, 0.05, 0.05], [0.05, 0.89, 0.06]], [[0.05, 0.01, 0.94]]], - dtype=tf.float32, - ) - sample_weight = tf.ragged.constant( - [[1.2, 3.4], [5.6]], dtype=tf.float32 - ) - loss = cce_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 0.0006088, 4) - - # Test with logits. - logits = tf.ragged.constant( - [[[8.0, 1.0, 1.0], [0.0, 9.0, 1.0]], [[2.0, 3.0, 5.0]]] - ) - cce_obj = losses.CategoricalFocalCrossentropy(from_logits=True) - - loss = cce_obj(y_true, logits, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 0.001933, 3) - - def test_binary_labels(self): - # raise a warning if the shape of y_true and y_pred are all (None, 1). - # categorical_crossentropy shouldn't be used with binary labels. - with warnings.catch_warnings(record=True) as w: - warnings.simplefilter("always") - cce_obj = losses.CategoricalFocalCrossentropy() - cce_obj(tf.constant([[1.0], [0.0]]), tf.constant([[1.0], [1.0]])) - self.assertIs(w[-1].category, SyntaxWarning) - self.assertIn( - "In loss categorical_focal_crossentropy, expected ", - str(w[-1].message), - ) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class SparseCategoricalCrossentropyTest(tf.test.TestCase): - def test_config(self): - cce_obj = losses.SparseCategoricalCrossentropy( - reduction=losses_utils.ReductionV2.SUM, name="scc" - ) - self.assertEqual(cce_obj.name, "scc") - self.assertEqual(cce_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_all_correct_unweighted(self): - y_true = tf.constant([[0], [1], [2]], dtype=tf.int64) - y_pred = tf.constant( - [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]], - dtype=tf.float32, - ) - cce_obj = losses.SparseCategoricalCrossentropy() - loss = cce_obj(y_true, y_pred) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - # Test with logits. - logits = tf.constant( - [[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 10.0]] - ) - cce_obj = losses.SparseCategoricalCrossentropy(from_logits=True) - loss = cce_obj(y_true, logits) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_unweighted(self): - cce_obj = losses.SparseCategoricalCrossentropy() - y_true = tf.constant([0, 1, 2]) - y_pred = tf.constant( - [[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [0.05, 0.01, 0.94]], - dtype=tf.float32, - ) - loss = cce_obj(y_true, y_pred) - self.assertAlmostEqual(self.evaluate(loss), 0.3239, 3) - - # Test with logits. - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - cce_obj = losses.SparseCategoricalCrossentropy(from_logits=True) - loss = cce_obj(y_true, logits) - self.assertAlmostEqual(self.evaluate(loss), 0.0573, 3) - - def test_unweighted_ignore_class(self): - cce_obj = losses.SparseCategoricalCrossentropy(ignore_class=-1) - y_true = tf.constant([0, 1, 2, -1]) - y_pred = tf.constant( - [ - [0.9, 0.05, 0.05], - [0.5, 0.89, 0.6], - [0.05, 0.01, 0.94], - [0.85, 0.14, 0.01], - ], - dtype=tf.float32, - ) - loss = cce_obj(y_true, y_pred) - self.assertAlmostEqual(self.evaluate(loss), 0.3239, 3) - - # Test with logits. - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0], [7.8, 2.0, 1.0]] - ) - cce_obj = losses.SparseCategoricalCrossentropy( - ignore_class=-1, from_logits=True - ) - loss = cce_obj(y_true, logits) - self.assertAlmostEqual(self.evaluate(loss), 0.0573, 3) - - def test_unweighted_ignore_class_for_segmentation(self): - cce_obj = losses.SparseCategoricalCrossentropy(ignore_class=-1) - y_true = tf.constant( - [[[0, 2], [-1, -1]], [[0, 2], [-1, -1]], [[0, 0], [0, 0]]] - ) - y_pred = tf.constant( - [ - [ - [[1.0, 0.0, 0.0], [0.0, 0.0, 1.0]], - [[0.2, 0.5, 0.3], [0.0, 1.0, 0.0]], - ], - [ - [[1.0, 0.0, 0.0], [0.0, 0.5, 0.5]], - [[0.2, 0.5, 0.3], [0.0, 1.0, 0.0]], - ], - [ - [[1.0, 0.0, 0.0], [1.0, 0.0, 0.0]], - [[0.1, 0.9, 0.0], [0.2, 0.8, 0.0]], - ], - ], - dtype=tf.float32, - ) - - # Expected loss values: - # [[0.0, 0.0], [0.0, 0.0]], - # [[0.0, 0.693148], [0.0, 0.0]], - # [[0.0, 0.0], [2.302585, 1.609438]], - - loss = cce_obj(y_true, y_pred) - self.assertAlmostEqual(self.evaluate(loss), 0.575646375, 3) - - # # Test with logits. - # logits = tf.constant( - # [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - # ) - # cce_obj = losses.SparseCategoricalCrossentropy(from_logits=True) - # loss = cce_obj(y_true, logits) - # self.assertAlmostEqual(self.evaluate(loss), 0.0573, 3) - - def test_scalar_weighted(self): - cce_obj = losses.SparseCategoricalCrossentropy() - y_true = tf.constant([[0], [1], [2]]) - y_pred = tf.constant( - [[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [0.05, 0.01, 0.94]], - dtype=tf.float32, - ) - loss = cce_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 0.7449, 3) - - # Test with logits. - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - cce_obj = losses.SparseCategoricalCrossentropy(from_logits=True) - loss = cce_obj(y_true, logits, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 0.1317, 3) - - def test_sample_weighted(self): - cce_obj = losses.SparseCategoricalCrossentropy() - y_true = tf.constant([[0], [1], [2]]) - y_pred = tf.constant( - [[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [0.05, 0.01, 0.94]], - dtype=tf.float32, - ) - sample_weight = tf.constant([[1.2], [3.4], [5.6]], shape=(3, 1)) - loss = cce_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 1.0696, 3) - - # Test with logits. - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - cce_obj = losses.SparseCategoricalCrossentropy(from_logits=True) - loss = cce_obj(y_true, logits, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 0.31829, 3) - - def test_sample_weighted_ignore_class(self): - cce_obj = losses.SparseCategoricalCrossentropy(ignore_class=-1) - y_true = tf.constant([[0], [1], [2], [-1]]) - y_pred = tf.constant( - [ - [0.9, 0.05, 0.05], - [0.5, 0.89, 0.6], - [0.05, 0.01, 0.94], - [0.85, 0.14, 0.01], - ], - dtype=tf.float32, - ) - sample_weight = tf.constant([[1.2], [3.4], [5.6], [10.4]], shape=(4, 1)) - loss = cce_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 1.0696, 3) - - # Test with logits. - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0], [7.8, 2.0, 1.0]] - ) - cce_obj = losses.SparseCategoricalCrossentropy( - ignore_class=-1, from_logits=True - ) - loss = cce_obj(y_true, logits, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 0.31829, 3) - - def test_no_reduction(self): - y_true = tf.constant([[0], [1], [2]]) - logits = tf.constant( - [[8.0, 1.0, 1.0], [0.0, 9.0, 1.0], [2.0, 3.0, 5.0]] - ) - cce_obj = losses.SparseCategoricalCrossentropy( - from_logits=True, reduction=losses_utils.ReductionV2.NONE - ) - loss = cce_obj(y_true, logits) - self.assertAllClose( - (0.001822, 0.000459, 0.169846), self.evaluate(loss), 3 - ) - - def test_non_tensor(self): - # Test case for GitHub issue 33394. - cce_obj = losses.SparseCategoricalCrossentropy() - y_true = [[0], [1], [2]] - y_pred = [[0.9, 0.05, 0.05], [0.5, 0.89, 0.6], [0.05, 0.01, 0.94]] - loss = cce_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 0.7449, 3) - - def test_ragged_tensors(self): - cce_obj = losses.SparseCategoricalCrossentropy() - y_true = tf.ragged.constant([[0, 1], [2]]) - y_pred = tf.ragged.constant( - [[[0.9, 0.05, 0.05], [0.5, 0.89, 0.6]], [[0.05, 0.01, 0.94]]], - dtype=tf.float32, - ) - # batch losses [[0.1054, 0.8047], [0.0619]] - sample_weight = tf.constant([[1.2], [3.4]], shape=(2, 1)) - loss = cce_obj(y_true, y_pred, sample_weight=sample_weight) - # sum([0.1054, 0.8047, 0.0619]) / 3 - self.assertAlmostEqual(self.evaluate(loss), 0.4341, 3) - - # Test with logits. - logits = tf.ragged.constant( - [[[8.0, 1.0, 1.0], [0.0, 9.0, 1.0]], [[2.0, 3.0, 5.0]]] - ) - cce_obj = losses.SparseCategoricalCrossentropy(from_logits=True) - # batch losses [[0.0018, 0.0004], [0.1698]] - loss = cce_obj(y_true, logits, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 0.1934, 3) - - def test_ragged_tensors_rank_1(self): - cce_obj = losses.SparseCategoricalCrossentropy() - y_true = tf.ragged.constant([[0, 1], [2]]) - y_pred = tf.ragged.constant( - [[[0.9, 0.05, 0.05], [0.5, 0.89, 0.6]], [[0.05, 0.01, 0.94]]], - ragged_rank=1, - dtype=tf.float32, - ) - # batch losses [[0.1054, 0.8047], [0.0619]] - sample_weight = tf.constant([[1.2], [3.4]], shape=(2, 1)) - loss = cce_obj(y_true, y_pred, sample_weight=sample_weight) - # sum([0.1054, 0.8047, 0.0619]) / 3 - self.assertAlmostEqual(self.evaluate(loss), 0.4341, 3) - - # Test with logits. - logits = tf.ragged.constant( - [[[8.0, 1.0, 1.0], [0.0, 9.0, 1.0]], [[2.0, 3.0, 5.0]]], - ragged_rank=1, - ) - cce_obj = losses.SparseCategoricalCrossentropy(from_logits=True) - # batch losses [[0.0018, 0.0004], [0.1698]] - loss = cce_obj(y_true, logits, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 0.1934, 3) - - def test_ragged_tensors_3d(self): - # shape [2, 1, None] - y_true = tf.ragged.constant([[[1, 1]], [[0]]]) - # shape [2, 1, None, 2] - y_pred = tf.ragged.constant( - [[[[0.1, 0.9], [0.1, 0.9]]], [[[0.9, 0.1]]]] - ) - cce_obj = losses.SparseCategoricalCrossentropy() - loss = cce_obj(y_true, y_pred) - self.assertAlmostEqual(self.evaluate(loss), 0.1054, 3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class HingeTest(tf.test.TestCase): - def test_config(self): - hinge_obj = losses.Hinge( - reduction=losses_utils.ReductionV2.SUM, name="hinge_loss" - ) - self.assertEqual(hinge_obj.name, "hinge_loss") - self.assertEqual(hinge_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_unweighted(self): - hinge_obj = losses.Hinge() - y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]]) - y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]]) - - # loss = max(0, 1-y_true * y_pred), where y_true is -1/1 - - # y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]] - # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] - # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] - # loss = [(0.7 + 0.8 + 0.9 + 0) / 4, (0.75 + 0 + 0.5 + 0.4) / 4] - # = [0.6, 0.4125] - # reduced loss = (0.6 + 0.4125) / 2 - - loss = hinge_obj(y_true, y_pred) - self.assertAllClose(0.506, self.evaluate(loss), atol=1e-3) - - def test_scalar_weighted(self): - hinge_obj = losses.Hinge() - y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]]) - y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]]) - - # loss = max(0, 1-y_true * y_pred), where y_true is -1/1 - - # y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]] - # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] - # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] - # loss = [(0.7 + 0.8 + 0.9 + 0) / 4, (0.75 + 0 + 0.5 + 0.4) / 4] - # = [0.6, 0.4125] - # weighted_loss = [0.6 * 2.3, 0.4125 * 2.3] - # reduced loss = (0.6 + 0.4125) * 2.3 / 2 - - loss = hinge_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 1.164, 3) - - # Verify we get the same output when the same input is given - loss_2 = hinge_obj(y_true, y_pred, sample_weight=2.3) - self.assertAllClose(self.evaluate(loss), self.evaluate(loss_2), 1e-3) - - def test_sample_weighted(self): - hinge_obj = losses.Hinge() - y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]]) - y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]]) - - # loss = max(0, 1-y_true * y_pred), where y_true is -1/1 - - # y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]] - # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] - # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] - # loss = [(0.7 + 0.8 + 0.9 + 0) / 4, (0.75 + 0 + 0.5 + 0.4) / 4] - # = [0.6, 0.4125] - # weighted loss = [0.6 * 1.2, 0.4125 * 3.4] - # reduced loss = (0.6 * 1.2 + 0.4125 * 3.4) / 2 - - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - loss = hinge_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(self.evaluate(loss), 1.061, 1e-3) - - def test_timestep_weighted(self): - hinge_obj = losses.Hinge() - y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]], shape=(2, 4, 1)) - y_pred = tf.constant( - [[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]], shape=(2, 4, 1) - ) - sample_weight = tf.constant([3, 6, 5, 0, 4, 2, 1, 3], shape=(2, 4)) - - # loss = max(0, 1-y_true * y_pred), where y_true is -1/1 - - # y_true = [[[-1], [1], [-1], [1]], [[-1], [-1], [1], [1]]] - # y_true * y_pred = [[[0.3], [0.2], [0.1], [1.6]], - # [[0.25], [1], [0.5], [0.6]]] - # 1 - y_true * y_pred = [[[0.7], [0.8], [0.9], [-0.6]], - # [[0.75], [0], [0.5], [0.4]]] - # loss = [[0.7, 0.8, 0.9, 0], [0.75, 0, 0.5, 0.4]] - # weighted loss = [[2.1, 4.8, 4.5, 0], [3, 0, 0.5, 1.2]] - # reduced loss = (2.1 + 4.8 + 4.5 + 0 + 3 + 0 + 0.5 + 1.2) / 8 - - loss = hinge_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(self.evaluate(loss), 2.012, 1e-3) - - def test_zero_weighted(self): - hinge_obj = losses.Hinge() - y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]]) - y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]]) - loss = hinge_obj(y_true, y_pred, sample_weight=0) - self.assertAllClose(self.evaluate(loss), 0.0, 1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class SquaredHingeTest(tf.test.TestCase): - def test_config(self): - sq_hinge_obj = losses.SquaredHinge( - reduction=losses_utils.ReductionV2.SUM, name="sq_hinge_loss" - ) - self.assertEqual(sq_hinge_obj.name, "sq_hinge_loss") - self.assertEqual(sq_hinge_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_unweighted(self): - sq_hinge_obj = losses.SquaredHinge() - y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]]) - y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]]) - - # loss = max(0, 1-y_true * y_pred), where y_true is -1/1 - - # y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]] - # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] - # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] - # max(0, 1 - y_true * y_pred) = [[0.7, 0.8, 0.9, 0], [0.75, 0, 0.5, - # 0.4]] - # squared(max(0, 1 - y_true * y_pred)) = [[0.49, 0.64, 0.81, 0], - # [0.5625, 0, 0.25, 0.16]] - # loss = [(0.49 + 0.64 + 0.81 + 0) / 4, (0.5625 + 0 + 0.25 + 0.16) / 4] - # = [0.485, 0.2431] - # reduced loss = (0.485 + 0.2431) / 2 - - loss = sq_hinge_obj(y_true, y_pred) - self.assertAllClose(self.evaluate(loss), 0.364, 1e-3) - - def test_scalar_weighted(self): - sq_hinge_obj = losses.SquaredHinge() - y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]]) - y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]]) - - # loss = max(0, 1-y_true * y_pred), where y_true is -1/1 - - # y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]] - # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] - # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] - # max(0, 1 - y_true * y_pred) = [[0.7, 0.8, 0.9, 0], [0.75, 0, 0.5, - # 0.4]] - # squared(max(0, 1 - y_true * y_pred)) = [[0.49, 0.64, 0.81, 0], - # [0.5625, 0, 0.25, 0.16]] - # loss = [(0.49 + 0.64 + 0.81 + 0) / 4, (0.5625 + 0 + 0.25 + 0.16) / 4] - # = [0.485, 0.2431] - # weighted loss = [0.485 * 2.3, 0.2431 * 2.3] - # reduced loss = (0.485 + 0.2431) * 2.3 / 2 - - loss = sq_hinge_obj(y_true, y_pred, sample_weight=2.3) - self.assertAllClose(self.evaluate(loss), 0.837, 1e-3) - - # Verify we get the same output when the same input is given - loss_2 = sq_hinge_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), self.evaluate(loss_2), 3) - - def test_sample_weighted(self): - sq_hinge_obj = losses.SquaredHinge() - y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]]) - y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]]) - - # loss = max(0, 1-y_true * y_pred), where y_true is -1/1 - - # y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]] - # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] - # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] - # max(0, 1 - y_true * y_pred) = [[0.7, 0.8, 0.9, 0], [0.75, 0, 0.5, - # 0.4]] - # squared(max(0, 1 - y_true * y_pred)) = [[0.49, 0.64, 0.81, 0], - # [0.5625, 0, 0.25, 0.16]] - # loss = [(0.49 + 0.64 + 0.81 + 0) / 4, (0.5625 + 0 + 0.25 + 0.16) / 4] - # = [0.485, 0.2431] - # weighted loss = [0.485 * 1.2, 0.2431 * 3.4] - # reduced loss = (0.485 * 1.2 + 0.2431 * 3.4) / 2 - - sample_weight = tf.constant([1.2, 3.4]) - loss = sq_hinge_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(self.evaluate(loss), 0.704, 1e-3) - - def test_timestep_weighted(self): - sq_hinge_obj = losses.SquaredHinge() - y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]], shape=(2, 4, 1)) - y_pred = tf.constant( - [[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]], shape=(2, 4, 1) - ) - sample_weight = tf.constant([3, 6, 5, 0, 4, 2, 1, 3], shape=(2, 4)) - - # loss = max(0, 1-y_true * y_pred), where y_true is -1/1 - - # y_true = [[[-1], [1], [-1], [1]], [[-1], [-1], [1], [1]]] - # y_true * y_pred = [[[0.3], [0.2], [0.1], [1.6]], - # [[0.25], [1], [0.5], [0.6]]] - # 1 - y_true * y_pred = [[[0.7], [0.8], [0.9], [-0.6]], - # [[0.75], [0], [0.5], [0.4]]] - # loss = [[0.49, 0.64, 0.81, 0], [0.5625, 0, 0.25, 0.16]] - # weighted loss = [[1.47, 3.84, 4.05, 0], [2.25, 0, 0.25, 0.48]] - # reduced loss = (1.47 + 3.84 + 4.05 + 0 + 2.25 + 0 + 0.25 + 0.48) / 8 - - loss = sq_hinge_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(self.evaluate(loss), 1.542, 1e-3) - - def test_zero_weighted(self): - sq_hinge_obj = losses.SquaredHinge() - y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]]) - y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]]) - loss = sq_hinge_obj(y_true, y_pred, sample_weight=0) - self.assertAllClose(self.evaluate(loss), 0.0, 1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CategoricalHingeTest(tf.test.TestCase): - def test_config(self): - cat_hinge_obj = losses.CategoricalHinge( - reduction=losses_utils.ReductionV2.SUM, name="cat_hinge_loss" - ) - self.assertEqual(cat_hinge_obj.name, "cat_hinge_loss") - self.assertEqual(cat_hinge_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_unweighted(self): - cat_hinge_obj = losses.CategoricalHinge() - y_true = tf.constant([1, 9, 2, -5], shape=(2, 2)) - y_pred = tf.constant([4, 8, 12, 8], shape=(2, 2), dtype=tf.float32) - loss = cat_hinge_obj(y_true, y_pred) - - # pos = reduce_sum(y_true * y_pred) = [1*4+8*9, 12*2+8*-5] = [76, -16] - # neg = reduce_max((1. - y_true) * y_pred) = [[0, -64], [-12, 48]] = [0, - # 48] - # cat_hinge = max(0., neg - pos + 1.) = [0, 65] - # reduced_loss = (0 + 65)/2 = 32.5 - self.assertAlmostEqual(self.evaluate(loss), 32.5, 3) - - def test_scalar_weighted(self): - cat_hinge_obj = losses.CategoricalHinge() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = cat_hinge_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), 83.95, 3) - - # Verify we get the same output when the same input is given - loss_2 = cat_hinge_obj(y_true, y_pred, sample_weight=2.3) - self.assertAlmostEqual(self.evaluate(loss), self.evaluate(loss_2), 3) - - def test_sample_weighted(self): - cat_hinge_obj = losses.CategoricalHinge() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - loss = cat_hinge_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 124.1, 3) - - def test_timestep_weighted(self): - cat_hinge_obj = losses.CategoricalHinge() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3, 1), dtype=tf.float32 - ) - sample_weight = tf.constant([3, 6, 5, 0, 4, 2], shape=(2, 3)) - loss = cat_hinge_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 4.0, 3) - - def test_zero_weighted(self): - cat_hinge_obj = losses.CategoricalHinge() - y_true = tf.constant([1, 9, 2, -5, -2, 6], shape=(2, 3)) - y_pred = tf.constant( - [4, 8, 12, 8, 1, 3], shape=(2, 3), dtype=tf.float32 - ) - loss = cat_hinge_obj(y_true, y_pred, sample_weight=0) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class LogCoshTest(tf.test.TestCase): - def setup(self): - y_pred = np.asarray([1, 9, 2, -5, -2, 6]).reshape((2, 3)) - y_true = np.asarray([4, 8, 12, 8, 1, 3]).reshape((2, 3)) - - self.batch_size = 6 - error = y_pred - y_true - self.expected_losses = np.log((np.exp(error) + np.exp(-error)) / 2) - - self.y_pred = tf.constant(y_pred, dtype=tf.float32) - self.y_true = tf.constant(y_true) - - def test_config(self): - logcosh_obj = losses.LogCosh( - reduction=losses_utils.ReductionV2.SUM, name="logcosh_loss" - ) - self.assertEqual(logcosh_obj.name, "logcosh_loss") - self.assertEqual(logcosh_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_unweighted(self): - self.setup() - logcosh_obj = losses.LogCosh() - - loss = logcosh_obj(self.y_true, self.y_pred) - expected_loss = np.sum(self.expected_losses) / self.batch_size - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_scalar_weighted(self): - self.setup() - logcosh_obj = losses.LogCosh() - sample_weight = 2.3 - - loss = logcosh_obj( - self.y_true, self.y_pred, sample_weight=sample_weight - ) - expected_loss = ( - sample_weight * np.sum(self.expected_losses) / self.batch_size - ) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - # Verify we get the same output when the same input is given - loss_2 = logcosh_obj( - self.y_true, self.y_pred, sample_weight=sample_weight - ) - self.assertAlmostEqual(self.evaluate(loss), self.evaluate(loss_2), 3) - - def test_sample_weighted(self): - self.setup() - logcosh_obj = losses.LogCosh() - - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - loss = logcosh_obj( - self.y_true, self.y_pred, sample_weight=sample_weight - ) - - expected_loss = np.multiply( - self.expected_losses, - np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape((2, 3)), - ) - expected_loss = np.sum(expected_loss) / self.batch_size - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_timestep_weighted(self): - self.setup() - logcosh_obj = losses.LogCosh() - y_true = np.asarray([1, 9, 2, -5, -2, 6]).reshape(2, 3, 1) - y_pred = np.asarray([4, 8, 12, 8, 1, 3]).reshape(2, 3, 1) - error = y_pred - y_true - expected_losses = np.log((np.exp(error) + np.exp(-error)) / 2) - sample_weight = np.array([3, 6, 5, 0, 4, 2]).reshape((2, 3, 1)) - - y_pred = tf.constant(y_pred, dtype=tf.float32) - y_true = tf.constant(y_true) - loss = logcosh_obj( - y_true, - y_pred, - sample_weight=tf.constant(sample_weight, shape=(2, 3)), - ) - expected_loss = ( - np.sum(expected_losses * sample_weight) / self.batch_size - ) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_zero_weighted(self): - self.setup() - logcosh_obj = losses.LogCosh() - sample_weight = 0 - loss = logcosh_obj( - self.y_true, self.y_pred, sample_weight=sample_weight - ) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class PoissonTest(tf.test.TestCase): - def setup(self): - self.np_y_pred = np.asarray([1, 9, 2, 5, 2, 6]).reshape((2, 3)) - self.np_y_true = np.asarray([4, 8, 12, 8, 1, 3]).reshape((2, 3)) - - self.batch_size = 6 - self.expected_losses = self.np_y_pred - np.multiply( - self.np_y_true, np.log(self.np_y_pred) - ) - - self.y_pred = tf.constant(self.np_y_pred, dtype=tf.float32) - self.y_true = tf.constant(self.np_y_true) - - def test_config(self): - poisson_obj = losses.Poisson( - reduction=losses_utils.ReductionV2.SUM, name="poisson" - ) - self.assertEqual(poisson_obj.name, "poisson") - self.assertEqual(poisson_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_unweighted(self): - self.setup() - poisson_obj = losses.Poisson() - - loss = poisson_obj(self.y_true, self.y_pred) - expected_loss = np.sum(self.expected_losses) / self.batch_size - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_scalar_weighted(self): - self.setup() - poisson_obj = losses.Poisson() - sample_weight = 2.3 - loss = poisson_obj( - self.y_true, self.y_pred, sample_weight=sample_weight - ) - - expected_loss = ( - sample_weight * np.sum(self.expected_losses) / self.batch_size - ) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - # Verify we get the same output when the same input is given - loss_2 = poisson_obj( - self.y_true, self.y_pred, sample_weight=sample_weight - ) - self.assertAlmostEqual(self.evaluate(loss), self.evaluate(loss_2), 3) - - def test_sample_weighted(self): - self.setup() - poisson_obj = losses.Poisson() - - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - loss = poisson_obj( - self.y_true, self.y_pred, sample_weight=sample_weight - ) - - expected_loss = np.multiply( - self.expected_losses, - np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape((2, 3)), - ) - expected_loss = np.sum(expected_loss) / self.batch_size - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_timestep_weighted(self): - self.setup() - poisson_obj = losses.Poisson() - y_true = self.np_y_true.reshape(2, 3, 1) - y_pred = self.np_y_pred.reshape(2, 3, 1) - sample_weight = np.asarray([3, 6, 5, 0, 4, 2]).reshape(2, 3, 1) - expected_losses = y_pred - np.multiply(y_true, np.log(y_pred)) - - y_pred = tf.constant(y_pred, dtype=tf.float32) - y_true = tf.constant(y_true) - - loss = poisson_obj( - y_true, - y_pred, - sample_weight=tf.constant(sample_weight, shape=(2, 3)), - ) - expected_loss = ( - np.sum(expected_losses * sample_weight) / self.batch_size - ) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_zero_weighted(self): - self.setup() - poisson_obj = losses.Poisson() - loss = poisson_obj(self.y_true, self.y_pred, sample_weight=0) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class KLDivergenceTest(tf.test.TestCase): - def setup(self): - self.np_y_pred = np.asarray([0.4, 0.9, 0.12, 0.36, 0.3, 0.4]).reshape( - (2, 3) - ) - self.np_y_true = np.asarray([0.5, 0.8, 0.12, 0.7, 0.43, 0.8]).reshape( - (2, 3) - ) - - self.batch_size = 2 - self.expected_losses = np.multiply( - self.np_y_true, np.log(self.np_y_true / self.np_y_pred) - ) - - self.y_pred = tf.constant(self.np_y_pred, dtype=tf.float32) - self.y_true = tf.constant(self.np_y_true) - - def test_config(self): - k_obj = losses.KLDivergence( - reduction=losses_utils.ReductionV2.SUM, name="kld" - ) - self.assertEqual(k_obj.name, "kld") - self.assertEqual(k_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_unweighted(self): - self.setup() - k_obj = losses.KLDivergence() - - loss = k_obj(self.y_true, self.y_pred) - expected_loss = np.sum(self.expected_losses) / self.batch_size - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_scalar_weighted(self): - self.setup() - k_obj = losses.KLDivergence() - sample_weight = 2.3 - - loss = k_obj(self.y_true, self.y_pred, sample_weight=sample_weight) - expected_loss = ( - sample_weight * np.sum(self.expected_losses) / self.batch_size - ) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - # Verify we get the same output when the same input is given - loss_2 = k_obj(self.y_true, self.y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), self.evaluate(loss_2), 3) - - def test_sample_weighted(self): - self.setup() - k_obj = losses.KLDivergence() - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - loss = k_obj(self.y_true, self.y_pred, sample_weight=sample_weight) - - expected_loss = np.multiply( - self.expected_losses, - np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape(2, 3), - ) - expected_loss = np.sum(expected_loss) / self.batch_size - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_timestep_weighted(self): - self.setup() - k_obj = losses.KLDivergence() - y_true = self.np_y_true.reshape(2, 3, 1) - y_pred = self.np_y_pred.reshape(2, 3, 1) - sample_weight = np.asarray([3, 6, 5, 0, 4, 2]).reshape(2, 3) - expected_losses = np.sum( - np.multiply(y_true, np.log(y_true / y_pred)), axis=-1 - ) - - y_pred = tf.constant(y_pred, dtype=tf.float32) - y_true = tf.constant(y_true) - loss = k_obj(y_true, y_pred, sample_weight=tf.constant(sample_weight)) - - num_timesteps = 3 - expected_loss = np.sum(expected_losses * sample_weight) / ( - self.batch_size * num_timesteps - ) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_zero_weighted(self): - self.setup() - k_obj = losses.KLDivergence() - loss = k_obj(self.y_true, self.y_pred, sample_weight=0) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class HuberLossTest(tf.test.TestCase): - def huber_loss(self, y_true, y_pred, delta=1.0): - error = y_pred - y_true - abs_error = np.abs(error) - - quadratic = np.minimum(abs_error, delta) - linear = np.subtract(abs_error, quadratic) - return np.add( - np.multiply(0.5, np.multiply(quadratic, quadratic)), - np.multiply(delta, linear), - ) - - def setup(self, delta=1.0): - self.np_y_pred = np.asarray([0.9, 0.2, 0.2, 0.8, 0.4, 0.6]).reshape( - (2, 3) - ) - self.np_y_true = np.asarray([1.0, 0.0, 1.0, 1.0, 0.0, 0.0]).reshape( - (2, 3) - ) - - self.batch_size = 6 - self.expected_losses = self.huber_loss( - self.np_y_true, self.np_y_pred, delta - ) - - self.y_pred = tf.constant(self.np_y_pred) - self.y_true = tf.constant(self.np_y_true) - - def test_config(self): - h_obj = losses.Huber( - reduction=losses_utils.ReductionV2.SUM, name="huber" - ) - self.assertEqual(h_obj.name, "huber") - self.assertEqual(h_obj.reduction, losses_utils.ReductionV2.SUM) - - def test_all_correct(self): - self.setup() - h_obj = losses.Huber() - loss = h_obj(self.y_true, self.y_true) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_unweighted(self): - self.setup() - h_obj = losses.Huber() - loss = h_obj(self.y_true, self.y_pred) - actual_loss = np.sum(self.expected_losses) / self.batch_size - self.assertAlmostEqual(self.evaluate(loss), actual_loss, 3) - - def test_scalar_weighted(self): - self.setup() - h_obj = losses.Huber() - sample_weight = 2.3 - loss = h_obj(self.y_true, self.y_pred, sample_weight=sample_weight) - actual_loss = ( - sample_weight * np.sum(self.expected_losses) / self.batch_size - ) - self.assertAlmostEqual(self.evaluate(loss), actual_loss, 3) - - # Verify we get the same output when the same input is given - loss_2 = h_obj(self.y_true, self.y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), self.evaluate(loss_2), 3) - - def test_sample_weighted(self): - self.setup() - h_obj = losses.Huber() - sample_weight = tf.constant((1.2, 3.4), shape=(2, 1)) - - loss = h_obj(self.y_true, self.y_pred, sample_weight=sample_weight) - actual_loss = np.multiply( - self.expected_losses, - np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape((2, 3)), - ) - actual_loss = np.sum(actual_loss) / self.batch_size - self.assertAlmostEqual(self.evaluate(loss), actual_loss, 3) - - def test_timestep_weighted(self): - self.setup() - h_obj = losses.Huber() - y_pred = self.np_y_pred.reshape((2, 3, 1)) - y_true = self.np_y_true.reshape((2, 3, 1)) - expected_losses = self.huber_loss(y_true, y_pred) - - y_pred = tf.constant(y_pred) - y_true = tf.constant(y_true) - sample_weight = np.array([3, 6, 5, 0, 4, 2]).reshape((2, 3, 1)) - loss = h_obj( - y_true, - y_pred, - sample_weight=tf.constant(sample_weight, shape=(2, 3)), - ) - actual_loss = np.multiply(expected_losses, sample_weight) - actual_loss = np.sum(actual_loss) / self.batch_size - self.assertAlmostEqual(self.evaluate(loss), actual_loss, 3) - - def test_zero_weighted(self): - self.setup() - h_obj = losses.Huber() - sample_weight = 0 - loss = h_obj(self.y_true, self.y_pred, sample_weight=sample_weight) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - - def test_non_default_delta(self): - self.setup(delta=0.8) - h_obj = losses.Huber(delta=0.8) - sample_weight = 2.3 - loss = h_obj(self.y_true, self.y_pred, sample_weight=sample_weight) - actual_loss = ( - sample_weight * np.sum(self.expected_losses) / self.batch_size - ) - self.assertAlmostEqual(self.evaluate(loss), actual_loss, 3) - - def test_loss_with_non_default_dtype(self): - # Test case for GitHub issue: - # https://github.com/tensorflow/tensorflow/issues/39004 - self.setup() - h_obj = losses.Huber() - try: - backend.set_floatx("float64") - loss = h_obj(self.y_true, self.y_true) - self.assertAlmostEqual(self.evaluate(loss), 0.0, 3) - finally: - backend.set_floatx("float32") - - -class BinaryTruePositivesViaControlFlow(losses.Loss): - def __init__(self, reduction=losses_utils.ReductionV2.AUTO): - super().__init__(reduction=reduction) - - def call(self, y_true, y_pred): - y_true = tf.cast(y_true, tf.bool) - y_pred = tf.cast(y_pred, tf.bool) - - result = tf.constant(0.0) - for i in range(len(y_true)): - for j in range(len(y_true[i])): - if y_true[i][j] and y_pred[i][j]: - result = result + 1 - return result - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CustomLossTest(tf.test.TestCase): - def test_autograph(self): - y_true = tf.constant( - [ - [0, 0.9, 0, 1, 0], - [0, 0, 1, 1, 1], - [1, 1, 1, 1, 0], - [0, 0, 0, 0, 1.5], - ] - ) - y_pred = tf.constant( - [ - [0, 0, 1, 5, 0], - [1, 1, 1, 1, 1], - [0, 1, 0, 1, 0], - [1, 10, 1, 1, 1], - ] - ) - - @tf.function - def loss_fn(y_true, y_pred): - loss_obj = BinaryTruePositivesViaControlFlow() - return loss_obj(y_true, y_pred) - - loss = loss_fn(y_true, y_pred) - self.assertAllEqual( - self.evaluate(loss), - 7.0, - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/metrics/BUILD b/keras/metrics/BUILD deleted file mode 100644 index dcb5e5bb5d3..00000000000 --- a/keras/metrics/BUILD +++ /dev/null @@ -1,245 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -# Description: -# Contains the Keras metrics submodule. - -load("@org_keras//keras:keras.bzl", "cuda_py_test") -load("@org_keras//keras:keras.bzl", "tf_py_test") # buildifier: disable=same-origin-load - -package( - default_visibility = [ - "//keras:friends", - "//third_party/tensorflow/python/feature_column:__subpackages__", - "//third_party/tensorflow/python/tpu:__subpackages__", - "//third_party/tensorflow_estimator:__subpackages__", - ], - licenses = ["notice"], -) - -py_library( - name = "metrics", - srcs = [ - "__init__.py", - "accuracy_metrics.py", - "base_metric.py", - "confusion_metrics.py", - "f_score_metrics.py", - "hinge_metrics.py", - "iou_metrics.py", - "probabilistic_metrics.py", - "py_metric.py", - "regression_metrics.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:activations", - "//keras:backend", - "//keras:losses", - "//keras/distribute", - "//keras/dtensor", - "//keras/dtensor:utils", - "//keras/engine:base_layer", - "//keras/engine:base_layer_utils", - "//keras/utils:generic_utils", - "//keras/utils:metrics_utils", - "//keras/utils:tf_utils", - ], -) - -tf_py_test( - name = "metrics_functional_test", - size = "small", - srcs = ["metrics_functional_test.py"], - python_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "accuracy_metrics_test", - size = "medium", - srcs = ["accuracy_metrics_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":metrics", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/layers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "confusion_metrics_test", - size = "medium", - srcs = ["confusion_metrics_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":metrics", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_scipy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/layers", - "//keras/models", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/utils:metrics_utils", - ], -) - -tf_py_test( - name = "f_score_metrics_test", - size = "medium", - srcs = ["f_score_metrics_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":metrics", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "hinge_metrics_test", - size = "medium", - srcs = ["hinge_metrics_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":metrics", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/layers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "iou_metrics_test", - size = "medium", - srcs = ["iou_metrics_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":metrics", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/layers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "probabilistic_metrics_test", - size = "medium", - srcs = ["probabilistic_metrics_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":metrics", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/layers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "regression_metrics_test", - size = "medium", - srcs = ["regression_metrics_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":metrics", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "base_metric_test", - size = "medium", - srcs = ["base_metric_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":metrics", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/layers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "metrics_correctness_test", - size = "medium", - srcs = ["metrics_correctness_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "py_metric_test", - size = "medium", - srcs = ["py_metric_test.py"], - shard_count = 2, - tags = [ - "no_windows", - ], - deps = [ - ":metrics", - "//:expect_tensorflow_installed", - "//keras", - "//keras/layers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) diff --git a/keras/metrics/__init__.py b/keras/metrics/__init__.py deleted file mode 100644 index 8943a7a4f7c..00000000000 --- a/keras/metrics/__init__.py +++ /dev/null @@ -1,215 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""All Keras metrics.""" - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -# Base classes and utilities -from keras.metrics.base_metric import Mean -from keras.metrics.base_metric import MeanMetricWrapper -from keras.metrics.base_metric import MeanTensor -from keras.metrics.base_metric import Metric -from keras.metrics.base_metric import Reduce -from keras.metrics.base_metric import Sum -from keras.metrics.base_metric import SumOverBatchSize -from keras.metrics.base_metric import SumOverBatchSizeMetricWrapper -from keras.metrics.base_metric import clone_metric -from keras.metrics.base_metric import clone_metrics - -from keras.saving.legacy import serialization as legacy_serialization -from keras.saving.serialization_lib import deserialize_keras_object -from keras.saving.serialization_lib import serialize_keras_object - -from keras.metrics.py_metric import PyMetric - -# Individual metric classes - -# Accuracy metrics -from keras.metrics.accuracy_metrics import Accuracy -from keras.metrics.accuracy_metrics import BinaryAccuracy -from keras.metrics.accuracy_metrics import CategoricalAccuracy -from keras.metrics.accuracy_metrics import SparseCategoricalAccuracy -from keras.metrics.accuracy_metrics import SparseTopKCategoricalAccuracy -from keras.metrics.accuracy_metrics import TopKCategoricalAccuracy - -from keras.metrics.accuracy_metrics import accuracy -from keras.metrics.accuracy_metrics import binary_accuracy -from keras.metrics.accuracy_metrics import categorical_accuracy -from keras.metrics.accuracy_metrics import sparse_categorical_accuracy -from keras.metrics.accuracy_metrics import sparse_top_k_categorical_accuracy -from keras.metrics.accuracy_metrics import top_k_categorical_accuracy - -# Probabilistic metrics -from keras.metrics.probabilistic_metrics import BinaryCrossentropy -from keras.metrics.probabilistic_metrics import CategoricalCrossentropy -from keras.metrics.probabilistic_metrics import KLDivergence -from keras.metrics.probabilistic_metrics import Poisson -from keras.metrics.probabilistic_metrics import SparseCategoricalCrossentropy - -from keras.metrics.probabilistic_metrics import binary_crossentropy -from keras.metrics.probabilistic_metrics import categorical_crossentropy -from keras.metrics.probabilistic_metrics import poisson -from keras.metrics.probabilistic_metrics import kullback_leibler_divergence -from keras.metrics.probabilistic_metrics import sparse_categorical_crossentropy - -# Regression metrics -from keras.metrics.regression_metrics import CosineSimilarity -from keras.metrics.regression_metrics import LogCoshError -from keras.metrics.regression_metrics import MeanAbsoluteError -from keras.metrics.regression_metrics import MeanAbsolutePercentageError -from keras.metrics.regression_metrics import MeanRelativeError -from keras.metrics.regression_metrics import MeanSquaredError -from keras.metrics.regression_metrics import MeanSquaredLogarithmicError -from keras.metrics.regression_metrics import RootMeanSquaredError -from keras.metrics.regression_metrics import R2Score - -from keras.metrics.regression_metrics import cosine_similarity -from keras.metrics.regression_metrics import logcosh -from keras.metrics.regression_metrics import mean_absolute_error -from keras.metrics.regression_metrics import mean_absolute_percentage_error -from keras.metrics.regression_metrics import mean_squared_error -from keras.metrics.regression_metrics import mean_squared_logarithmic_error - -# Confusion metrics -from keras.metrics.confusion_metrics import AUC -from keras.metrics.confusion_metrics import FalseNegatives -from keras.metrics.confusion_metrics import FalsePositives -from keras.metrics.confusion_metrics import Precision -from keras.metrics.confusion_metrics import PrecisionAtRecall -from keras.metrics.confusion_metrics import Recall -from keras.metrics.confusion_metrics import RecallAtPrecision -from keras.metrics.confusion_metrics import SensitivityAtSpecificity -from keras.metrics.confusion_metrics import SensitivitySpecificityBase -from keras.metrics.confusion_metrics import SpecificityAtSensitivity -from keras.metrics.confusion_metrics import TrueNegatives -from keras.metrics.confusion_metrics import TruePositives - -# F-Scores -from keras.metrics.f_score_metrics import FBetaScore -from keras.metrics.f_score_metrics import F1Score - -# IoU metrics -from keras.metrics.iou_metrics import BinaryIoU -from keras.metrics.iou_metrics import IoU -from keras.metrics.iou_metrics import MeanIoU -from keras.metrics.iou_metrics import OneHotIoU -from keras.metrics.iou_metrics import OneHotMeanIoU - -# Hinge metrics -from keras.metrics.hinge_metrics import CategoricalHinge -from keras.metrics.hinge_metrics import Hinge -from keras.metrics.hinge_metrics import SquaredHinge - -from keras.metrics.hinge_metrics import categorical_hinge -from keras.metrics.hinge_metrics import squared_hinge -from keras.metrics.hinge_metrics import hinge - -# Aliases -acc = ACC = accuracy -bce = BCE = binary_crossentropy -mse = MSE = mean_squared_error -mae = MAE = mean_absolute_error -mape = MAPE = mean_absolute_percentage_error -msle = MSLE = mean_squared_logarithmic_error -log_cosh = logcosh -cosine_proximity = cosine_similarity - - -@keras_export("keras.metrics.serialize") -def serialize(metric, use_legacy_format=False): - """Serializes metric function or `Metric` instance. - - Args: - metric: A Keras `Metric` instance or a metric function. - - Returns: - Metric configuration dictionary. - """ - if use_legacy_format: - return legacy_serialization.serialize_keras_object(metric) - return serialize_keras_object(metric) - - -@keras_export("keras.metrics.deserialize") -def deserialize(config, custom_objects=None, use_legacy_format=False): - """Deserializes a serialized metric class/function instance. - - Args: - config: Metric configuration. - custom_objects: Optional dictionary mapping names (strings) to custom - objects (classes and functions) to be considered during deserialization. - - Returns: - A Keras `Metric` instance or a metric function. - """ - if use_legacy_format: - return legacy_serialization.deserialize_keras_object( - config, - module_objects=globals(), - custom_objects=custom_objects, - printable_module_name="metric function", - ) - return deserialize_keras_object( - config, - module_objects=globals(), - custom_objects=custom_objects, - printable_module_name="metric function", - ) - - -@keras_export("keras.metrics.get") -def get(identifier): - """Retrieves a Keras metric as a `function`/`Metric` class instance. - - The `identifier` may be the string name of a metric function or class. - - >>> metric = tf.keras.metrics.get("categorical_crossentropy") - >>> type(metric) - - >>> metric = tf.keras.metrics.get("CategoricalCrossentropy") - >>> type(metric) - - - You can also specify `config` of the metric to this function by passing dict - containing `class_name` and `config` as an identifier. Also note that the - `class_name` must map to a `Metric` class - - >>> identifier = {"class_name": "CategoricalCrossentropy", - ... "config": {"from_logits": True}} - >>> metric = tf.keras.metrics.get(identifier) - >>> type(metric) - - - Args: - identifier: A metric identifier. One of None or string name of a metric - function/class or metric configuration dictionary or a metric function - or a metric class instance - - Returns: - A Keras metric as a `function`/ `Metric` class instance. - - Raises: - ValueError: If `identifier` cannot be interpreted. - """ - if isinstance(identifier, dict): - use_legacy_format = "module" not in identifier - return deserialize(identifier, use_legacy_format=use_legacy_format) - elif isinstance(identifier, str): - return deserialize(str(identifier)) - elif callable(identifier): - return identifier - else: - raise ValueError(f"Could not interpret metric identifier: {identifier}") diff --git a/keras/metrics/accuracy_metrics.py b/keras/metrics/accuracy_metrics.py deleted file mode 100644 index 17cb1849e01..00000000000 --- a/keras/metrics/accuracy_metrics.py +++ /dev/null @@ -1,527 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Accuracy metrics.""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.dtensor import utils as dtensor_utils -from keras.metrics import base_metric -from keras.utils import metrics_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.metrics.Accuracy") -class Accuracy(base_metric.MeanMetricWrapper): - """Calculates how often predictions equal labels. - - This metric creates two local variables, `total` and `count` that are used - to compute the frequency with which `y_pred` matches `y_true`. This - frequency is ultimately returned as `binary accuracy`: an idempotent - operation that simply divides `total` by `count`. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.Accuracy() - >>> m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]]) - >>> m.result().numpy() - 0.75 - - >>> m.reset_state() - >>> m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]], - ... sample_weight=[1, 1, 0, 0]) - >>> m.result().numpy() - 0.5 - - Usage with `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.Accuracy()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="accuracy", dtype=None): - super().__init__(accuracy, name, dtype=dtype) - - -@keras_export("keras.metrics.BinaryAccuracy") -class BinaryAccuracy(base_metric.MeanMetricWrapper): - """Calculates how often predictions match binary labels. - - This metric creates two local variables, `total` and `count` that are used - to compute the frequency with which `y_pred` matches `y_true`. This - frequency is ultimately returned as `binary accuracy`: an idempotent - operation that simply divides `total` by `count`. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - threshold: (Optional) Float representing the threshold for deciding - whether prediction values are 1 or 0. - - Standalone usage: - - >>> m = tf.keras.metrics.BinaryAccuracy() - >>> m.update_state([[1], [1], [0], [0]], [[0.98], [1], [0], [0.6]]) - >>> m.result().numpy() - 0.75 - - >>> m.reset_state() - >>> m.update_state([[1], [1], [0], [0]], [[0.98], [1], [0], [0.6]], - ... sample_weight=[1, 0, 0, 1]) - >>> m.result().numpy() - 0.5 - - Usage with `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.BinaryAccuracy()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="binary_accuracy", dtype=None, threshold=0.5): - super().__init__( - metrics_utils.binary_matches, name, dtype=dtype, threshold=threshold - ) - - -@keras_export("keras.metrics.CategoricalAccuracy") -class CategoricalAccuracy(base_metric.MeanMetricWrapper): - """Calculates how often predictions match one-hot labels. - - You can provide logits of classes as `y_pred`, since argmax of - logits and probabilities are same. - - This metric creates two local variables, `total` and `count` that are used - to compute the frequency with which `y_pred` matches `y_true`. This - frequency is ultimately returned as `categorical accuracy`: an idempotent - operation that simply divides `total` by `count`. - - `y_pred` and `y_true` should be passed in as vectors of probabilities, - rather than as labels. If necessary, use `tf.one_hot` to expand `y_true` as - a vector. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.CategoricalAccuracy() - >>> m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8], - ... [0.05, 0.95, 0]]) - >>> m.result().numpy() - 0.5 - - >>> m.reset_state() - >>> m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8], - ... [0.05, 0.95, 0]], - ... sample_weight=[0.7, 0.3]) - >>> m.result().numpy() - 0.3 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.CategoricalAccuracy()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="categorical_accuracy", dtype=None): - super().__init__( - lambda y_true, y_pred: metrics_utils.sparse_categorical_matches( - tf.math.argmax(y_true, axis=-1), y_pred - ), - name, - dtype=dtype, - ) - - -@keras_export("keras.metrics.SparseCategoricalAccuracy") -class SparseCategoricalAccuracy(base_metric.MeanMetricWrapper): - """Calculates how often predictions match integer labels. - - ```python - acc = np.dot(sample_weight, np.equal(y_true, np.argmax(y_pred, axis=1)) - ``` - - You can provide logits of classes as `y_pred`, since argmax of - logits and probabilities are same. - - This metric creates two local variables, `total` and `count` that are used - to compute the frequency with which `y_pred` matches `y_true`. This - frequency is ultimately returned as `sparse categorical accuracy`: an - idempotent operation that simply divides `total` by `count`. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.SparseCategoricalAccuracy() - >>> m.update_state([[2], [1]], [[0.1, 0.6, 0.3], [0.05, 0.95, 0]]) - >>> m.result().numpy() - 0.5 - - >>> m.reset_state() - >>> m.update_state([[2], [1]], [[0.1, 0.6, 0.3], [0.05, 0.95, 0]], - ... sample_weight=[0.7, 0.3]) - >>> m.result().numpy() - 0.3 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="sparse_categorical_accuracy", dtype=None): - super().__init__( - metrics_utils.sparse_categorical_matches, name, dtype=dtype - ) - - -_SPARSE_CATEGORICAL_UPDATE_STATE_DOCSTRING = """Accumulates metric statistics. - -For sparse categorical metrics, the shapes of `y_true` and `y_pred` are -different. - -Args: - y_true: Ground truth label values. shape = `[batch_size, d0, .. dN-1]` or - shape = `[batch_size, d0, .. dN-1, 1]`. - y_pred: The predicted probability values. shape = `[batch_size, d0, .. dN]`. - sample_weight: Optional `sample_weight` acts as a - coefficient for the metric. If a scalar is provided, then the metric is - simply scaled by the given value. If `sample_weight` is a tensor of size - `[batch_size]`, then the metric for each sample of the batch is rescaled - by the corresponding element in the `sample_weight` vector. If the shape - of `sample_weight` is `[batch_size, d0, .. dN-1]` (or can be broadcasted - to this shape), then each metric element of `y_pred` is scaled by the - corresponding value of `sample_weight`. (Note on `dN-1`: all metric - functions reduce by 1 dimension, usually the last axis (-1)). - -Returns: - Update op. -""" - -SparseCategoricalAccuracy.update_state.__doc__ = ( - _SPARSE_CATEGORICAL_UPDATE_STATE_DOCSTRING -) - - -@keras_export("keras.metrics.TopKCategoricalAccuracy") -class TopKCategoricalAccuracy(base_metric.MeanMetricWrapper): - """Computes how often targets are in the top `K` predictions. - - Args: - k: (Optional) Number of top elements to look at for computing accuracy. - Defaults to 5. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.TopKCategoricalAccuracy(k=1) - >>> m.update_state([[0, 0, 1], [0, 1, 0]], - ... [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]) - >>> m.result().numpy() - 0.5 - - >>> m.reset_state() - >>> m.update_state([[0, 0, 1], [0, 1, 0]], - ... [[0.1, 0.9, 0.8], [0.05, 0.95, 0]], - ... sample_weight=[0.7, 0.3]) - >>> m.result().numpy() - 0.3 - - Usage with `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.TopKCategoricalAccuracy()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, k=5, name="top_k_categorical_accuracy", dtype=None): - super().__init__( - lambda yt, yp, k: metrics_utils.sparse_top_k_categorical_matches( - tf.math.argmax(yt, axis=-1), yp, k - ), - name, - dtype=dtype, - k=k, - ) - - -@keras_export("keras.metrics.SparseTopKCategoricalAccuracy") -class SparseTopKCategoricalAccuracy(base_metric.MeanMetricWrapper): - """Computes how often integer targets are in the top `K` predictions. - - Args: - k: (Optional) Number of top elements to look at for computing accuracy. - Defaults to 5. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.SparseTopKCategoricalAccuracy(k=1) - >>> m.update_state([2, 1], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]) - >>> m.result().numpy() - 0.5 - - >>> m.reset_state() - >>> m.update_state([2, 1], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]], - ... sample_weight=[0.7, 0.3]) - >>> m.result().numpy() - 0.3 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.SparseTopKCategoricalAccuracy()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, k=5, name="sparse_top_k_categorical_accuracy", dtype=None - ): - super().__init__( - metrics_utils.sparse_top_k_categorical_matches, - name, - dtype=dtype, - k=k, - ) - - -SparseTopKCategoricalAccuracy.update_state.__doc__ = ( - _SPARSE_CATEGORICAL_UPDATE_STATE_DOCSTRING -) - - -def accuracy(y_true, y_pred): - [ - y_pred, - y_true, - ], _ = metrics_utils.ragged_assert_compatible_and_get_flat_values( - [y_pred, y_true] - ) - y_true.shape.assert_is_compatible_with(y_pred.shape) - if y_true.dtype != y_pred.dtype: - y_pred = tf.cast(y_pred, y_true.dtype) - return tf.cast(tf.equal(y_true, y_pred), backend.floatx()) - - -@keras_export("keras.metrics.binary_accuracy") -@tf.__internal__.dispatch.add_dispatch_support -def binary_accuracy(y_true, y_pred, threshold=0.5): - """Calculates how often predictions match binary labels. - - Standalone usage: - >>> y_true = [[1], [1], [0], [0]] - >>> y_pred = [[1], [1], [0], [0]] - >>> m = tf.keras.metrics.binary_accuracy(y_true, y_pred) - >>> assert m.shape == (4,) - >>> m.numpy() - array([1., 1., 1., 1.], dtype=float32) - - Args: - y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`. - y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. - threshold: (Optional) Float representing the threshold for deciding - whether prediction values are 1 or 0. - - Returns: - Binary accuracy values. shape = `[batch_size, d0, .. dN-1]` - """ - # Note: calls metrics_utils.binary_matches with mean reduction. This - # maintains public facing binary_accuracy behavior and seperates it from the - # vital behavior of the binary_matches method needed in backend - # dependencies. - - return tf.reduce_mean( - metrics_utils.binary_matches(y_true, y_pred, threshold), axis=-1 - ) - - -@keras_export("keras.metrics.categorical_accuracy") -@tf.__internal__.dispatch.add_dispatch_support -def categorical_accuracy(y_true, y_pred): - """Calculates how often predictions match one-hot labels. - - Standalone usage: - >>> y_true = [[0, 0, 1], [0, 1, 0]] - >>> y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]] - >>> m = tf.keras.metrics.categorical_accuracy(y_true, y_pred) - >>> assert m.shape == (2,) - >>> m.numpy() - array([0., 1.], dtype=float32) - - You can provide logits of classes as `y_pred`, since argmax of - logits and probabilities are same. - - Args: - y_true: One-hot ground truth values. - y_pred: The prediction values. - - Returns: - Categorical accuracy values. - """ - # Note: wraps metrics_utils.categorical_matches. This seperates public - # facing categorical_accuracy behavior from the vital behavior of the - # categorical_matches method needed in backend dependencies. - - return metrics_utils.sparse_categorical_matches( - tf.math.argmax(y_true, axis=-1), y_pred - ) - - -@keras_export("keras.metrics.sparse_categorical_accuracy") -@tf.__internal__.dispatch.add_dispatch_support -def sparse_categorical_accuracy(y_true, y_pred): - """Calculates how often predictions match integer labels. - - Standalone usage: - >>> y_true = [2, 1] - >>> y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]] - >>> m = tf.keras.metrics.sparse_categorical_accuracy(y_true, y_pred) - >>> assert m.shape == (2,) - >>> m.numpy() - array([0., 1.], dtype=float32) - - You can provide logits of classes as `y_pred`, since argmax of - logits and probabilities are same. - - Args: - y_true: Integer ground truth values. - y_pred: The prediction values. - - Returns: - Sparse categorical accuracy values. - """ - # Note: wraps metrics_utils.sparse_categorical_matches method and checks for - # squeezing to align with expected public facing behavior. This seperates - # public facing sparse_categorical_accuracy behavior from the vital behavior - # of the sparse_categorical_matches method needed in backend dependencies. - - matches = metrics_utils.sparse_categorical_matches(y_true, y_pred) - - # if shape is (num_samples, 1) squeeze - if matches.shape.ndims > 1 and matches.shape[-1] == 1: - matches = tf.squeeze(matches, [-1]) - - return matches - - -@keras_export("keras.metrics.top_k_categorical_accuracy") -@tf.__internal__.dispatch.add_dispatch_support -def top_k_categorical_accuracy(y_true, y_pred, k=5): - """Computes how often targets are in the top `K` predictions. - - Standalone usage: - >>> y_true = [[0, 0, 1], [0, 1, 0]] - >>> y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]] - >>> m = tf.keras.metrics.top_k_categorical_accuracy(y_true, y_pred, k=3) - >>> assert m.shape == (2,) - >>> m.numpy() - array([1., 1.], dtype=float32) - - Args: - y_true: The ground truth values. - y_pred: The prediction values. - k: (Optional) Number of top elements to look at for computing accuracy. - Defaults to 5. - - Returns: - Top K categorical accuracy value. - """ - # Note: wraps metrics_utils.top_k_categorical_matches. This seperates - # public facing top_k_categorical_accuracy behavior from the vital behavior - # of the top_k_categorical_matches method needed in backend dependencies. - - return metrics_utils.sparse_top_k_categorical_matches( - tf.math.argmax(y_true, axis=-1), y_pred, k - ) - - -@keras_export("keras.metrics.sparse_top_k_categorical_accuracy") -@tf.__internal__.dispatch.add_dispatch_support -def sparse_top_k_categorical_accuracy(y_true, y_pred, k=5): - """Computes how often integer targets are in the top `K` predictions. - - Standalone usage: - >>> y_true = [2, 1] - >>> y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]] - >>> m = tf.keras.metrics.sparse_top_k_categorical_accuracy( - ... y_true, y_pred, k=3) - >>> assert m.shape == (2,) - >>> m.numpy() - array([1., 1.], dtype=float32) - - Args: - y_true: tensor of true targets. - y_pred: tensor of predicted targets. - k: (Optional) Number of top elements to look at for computing accuracy. - Defaults to 5. - - Returns: - Sparse top K categorical accuracy value. - """ - # Note: wraps metrics_utils.sparse_top_k_categorical_matches. This seperates - # public facing sparse_top_k_categorical_accuracy behavior from the vital - # behavior of the sparse_top_k_categorical_matches method needed in backend - # dependencies. - - return metrics_utils.sparse_top_k_categorical_matches(y_true, y_pred, k) diff --git a/keras/metrics/accuracy_metrics_test.py b/keras/metrics/accuracy_metrics_test.py deleted file mode 100644 index a89ded8016c..00000000000 --- a/keras/metrics/accuracy_metrics_test.py +++ /dev/null @@ -1,407 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for accuracy metrics.""" - -import tensorflow.compat.v2 as tf - -from keras import Model -from keras import layers -from keras import metrics -from keras.testing_infra import test_combinations - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class AccuracyTest(tf.test.TestCase): - def test_accuracy(self): - acc_obj = metrics.Accuracy(name="my_acc") - - # check config - self.assertEqual(acc_obj.name, "my_acc") - self.assertTrue(acc_obj.stateful) - self.assertEqual(len(acc_obj.variables), 2) - self.assertEqual(acc_obj.dtype, tf.float32) - self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) - - # verify that correct value is returned - update_op = acc_obj.update_state( - [[1], [2], [3], [4]], [[1], [2], [3], [4]] - ) - self.evaluate(update_op) - result = self.evaluate(acc_obj.result()) - self.assertEqual(result, 1) # 2/2 - - # Check save and restore config - a2 = metrics.Accuracy.from_config(acc_obj.get_config()) - self.assertEqual(a2.name, "my_acc") - self.assertTrue(a2.stateful) - self.assertEqual(len(a2.variables), 2) - self.assertEqual(a2.dtype, tf.float32) - - # check with sample_weight - result_t = acc_obj([[2], [1]], [[2], [0]], sample_weight=[[0.5], [0.2]]) - result = self.evaluate(result_t) - self.assertAlmostEqual(result, 0.96, 2) # 4.5/4.7 - - def test_accuracy_ragged(self): - acc_obj = metrics.Accuracy(name="my_acc") - self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) - - # verify that correct value is returned - rt1 = tf.ragged.constant([[1], [2], [3], [4]]) - rt2 = tf.ragged.constant([[1], [2], [3], [4]]) - update_op = acc_obj.update_state(rt1, rt2) - self.evaluate(update_op) - result = self.evaluate(acc_obj.result()) - self.assertEqual(result, 1) # 2/2 - - # check with sample_weight - rt1 = tf.ragged.constant([[2], [1]]) - rt2 = tf.ragged.constant([[2], [0]]) - sw_ragged = tf.ragged.constant([[0.5], [0.2]]) - result_t = acc_obj(rt1, rt2, sample_weight=sw_ragged) - result = self.evaluate(result_t) - self.assertAlmostEqual(result, 0.96, 2) # 4.5/4.7 - - def test_binary_accuracy(self): - acc_obj = metrics.BinaryAccuracy(name="my_acc") - - # check config - self.assertEqual(acc_obj.name, "my_acc") - self.assertTrue(acc_obj.stateful) - self.assertEqual(len(acc_obj.variables), 2) - self.assertEqual(acc_obj.dtype, tf.float32) - self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) - - # verify that correct value is returned - update_op = acc_obj.update_state([[1], [0]], [[1], [0]]) - self.evaluate(update_op) - result = self.evaluate(acc_obj.result()) - self.assertEqual(result, 1) # 2/2 - - # check y_pred squeeze - update_op = acc_obj.update_state([[1], [1]], [[[1]], [[0]]]) - self.evaluate(update_op) - result = self.evaluate(acc_obj.result()) - self.assertAlmostEqual(result, 0.75, 2) # 3/4 - - # check y_true squeeze - result_t = acc_obj([[[1]], [[1]]], [[1], [0]]) - result = self.evaluate(result_t) - self.assertAlmostEqual(result, 0.67, 2) # 4/6 - - # check with sample_weight - result_t = acc_obj([[1], [1]], [[1], [0]], [[0.5], [0.2]]) - result = self.evaluate(result_t) - self.assertAlmostEqual(result, 0.67, 2) # 4.5/6.7 - - def test_binary_accuracy_ragged(self): - acc_obj = metrics.BinaryAccuracy(name="my_acc") - self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) - - # verify that correct value is returned - rt1 = tf.ragged.constant([[1], [0]]) - rt2 = tf.ragged.constant([[1], [0]]) - update_op = acc_obj.update_state(rt1, rt2) - self.evaluate(update_op) - result = self.evaluate(acc_obj.result()) - self.assertEqual(result, 1) # 2/2 - - # check y_true squeeze only supported for dense tensors and is - # not supported by ragged tensor (different ranks). --> error - rt1 = tf.ragged.constant([[[1], [1]]]) - rt2 = tf.ragged.constant([[1], [0]]) - with self.assertRaises(ValueError): - result_t = acc_obj(rt1, rt2) - result = self.evaluate(result_t) - - def test_binary_accuracy_threshold(self): - acc_obj = metrics.BinaryAccuracy(threshold=0.7) - self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) - result_t = acc_obj([[1], [1], [0], [0]], [[0.9], [0.6], [0.4], [0.8]]) - result = self.evaluate(result_t) - self.assertAlmostEqual(result, 0.5, 2) - - def test_binary_accuracy_threshold_ragged(self): - acc_obj = metrics.BinaryAccuracy(threshold=0.7) - self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) - rt1 = tf.ragged.constant([[1], [1], [0], [0]]) - rt2 = tf.ragged.constant([[0.9], [0.6], [0.4], [0.8]]) - result_t = acc_obj(rt1, rt2) - result = self.evaluate(result_t) - self.assertAlmostEqual(result, 0.5, 2) - - def test_categorical_accuracy(self): - acc_obj = metrics.CategoricalAccuracy(name="my_acc") - - # check config - self.assertEqual(acc_obj.name, "my_acc") - self.assertTrue(acc_obj.stateful) - self.assertEqual(len(acc_obj.variables), 2) - self.assertEqual(acc_obj.dtype, tf.float32) - self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) - - # verify that correct value is returned - update_op = acc_obj.update_state( - [[0, 0, 1], [0, 1, 0]], [[0.1, 0.1, 0.8], [0.05, 0.95, 0]] - ) - self.evaluate(update_op) - result = self.evaluate(acc_obj.result()) - self.assertEqual(result, 1) # 2/2 - - # check with sample_weight - result_t = acc_obj( - [[0, 0, 1], [0, 1, 0]], - [[0.1, 0.1, 0.8], [0.05, 0, 0.95]], - [[0.5], [0.2]], - ) - result = self.evaluate(result_t) - self.assertAlmostEqual(result, 0.93, 2) # 2.5/2.7 - - def test_categorical_accuracy_ragged(self): - acc_obj = metrics.CategoricalAccuracy(name="my_acc") - self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) - - # verify that correct value is returned - rt1 = tf.ragged.constant([[0, 0, 1], [0, 1, 0]]) - rt2 = tf.ragged.constant([[0.1, 0.1, 0.8], [0.05, 0.95, 0]]) - update_op = acc_obj.update_state(rt1, rt2) - self.evaluate(update_op) - result = self.evaluate(acc_obj.result()) - self.assertEqual(result, 1) # 2/2 - - # check with sample_weight - rt1 = tf.ragged.constant([[0, 0, 1], [0, 1, 0]]) - rt2 = tf.ragged.constant([[0.1, 0.1, 0.8], [0.05, 0, 0.95]]) - sample_weight = tf.ragged.constant([[0.5], [0.2]]) - with self.assertRaises(tf.errors.InvalidArgumentError): - result_t = acc_obj(rt1, rt2, sample_weight) - result = self.evaluate(result_t) - - def test_sparse_categorical_accuracy(self): - acc_obj = metrics.SparseCategoricalAccuracy(name="my_acc") - - # check config - self.assertEqual(acc_obj.name, "my_acc") - self.assertTrue(acc_obj.stateful) - self.assertEqual(len(acc_obj.variables), 2) - self.assertEqual(acc_obj.dtype, tf.float32) - self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) - - # verify that correct value is returned - update_op = acc_obj.update_state( - [[2], [1]], [[0.1, 0.1, 0.8], [0.05, 0.95, 0]] - ) - self.evaluate(update_op) - result = self.evaluate(acc_obj.result()) - self.assertEqual(result, 1) # 2/2 - - # check with sample_weight - result_t = acc_obj( - [[2], [1]], [[0.1, 0.1, 0.8], [0.05, 0, 0.95]], [[0.5], [0.2]] - ) - result = self.evaluate(result_t) - self.assertAlmostEqual(result, 0.93, 2) # 2.5/2.7 - - def test_sparse_categorical_accuracy_ragged(self): - acc_obj = metrics.SparseCategoricalAccuracy(name="my_acc") - - # verify that correct value is returned - rt1 = tf.ragged.constant([[2], [1]]) - rt2 = tf.ragged.constant([[0.1, 0.1, 0.8], [0.05, 0.95, 0]]) - - with self.assertRaises(tf.errors.InvalidArgumentError): - # sparse_categorical_accuracy is not supported for composite/ragged - # tensors. - update_op = acc_obj.update_state(rt1, rt2) - self.evaluate(update_op) - - def test_sparse_categorical_accuracy_mismatched_dims(self): - acc_obj = metrics.SparseCategoricalAccuracy(name="my_acc") - - # check config - self.assertEqual(acc_obj.name, "my_acc") - self.assertTrue(acc_obj.stateful) - self.assertEqual(len(acc_obj.variables), 2) - self.assertEqual(acc_obj.dtype, tf.float32) - self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) - - # verify that correct value is returned - update_op = acc_obj.update_state( - [2, 1], [[0.1, 0.1, 0.8], [0.05, 0.95, 0]] - ) - self.evaluate(update_op) - result = self.evaluate(acc_obj.result()) - self.assertEqual(result, 1) # 2/2 - - # check with sample_weight - result_t = acc_obj( - [2, 1], [[0.1, 0.1, 0.8], [0.05, 0, 0.95]], [[0.5], [0.2]] - ) - result = self.evaluate(result_t) - self.assertAlmostEqual(result, 0.93, 2) # 2.5/2.7 - - def test_sparse_categorical_accuracy_mismatched_dims_dynamic(self): - with tf.compat.v1.get_default_graph().as_default(), self.cached_session() as sess: # noqa: E501 - acc_obj = metrics.SparseCategoricalAccuracy(name="my_acc") - self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) - - t = tf.compat.v1.placeholder(tf.float32) - p = tf.compat.v1.placeholder(tf.float32) - w = tf.compat.v1.placeholder(tf.float32) - - result_t = acc_obj(t, p, w) - result = sess.run( - result_t, - feed_dict=( - { - t: [2, 1], - p: [[0.1, 0.1, 0.8], [0.05, 0, 0.95]], - w: [[0.5], [0.2]], - } - ), - ) - self.assertAlmostEqual(result, 0.71, 2) # 2.5/2.7 - - def test_get_acc(self): - acc_fn = metrics.get("acc") - self.assertEqual(acc_fn, metrics.accuracy) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class TopKCategoricalAccuracyTest(tf.test.TestCase): - def test_config(self): - a_obj = metrics.TopKCategoricalAccuracy(name="topkca", dtype=tf.int32) - self.assertEqual(a_obj.name, "topkca") - self.assertEqual(a_obj._dtype, tf.int32) - - a_obj2 = metrics.TopKCategoricalAccuracy.from_config(a_obj.get_config()) - self.assertEqual(a_obj2.name, "topkca") - self.assertEqual(a_obj2._dtype, tf.int32) - - def test_correctness(self): - a_obj = metrics.TopKCategoricalAccuracy() - self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) - y_true = tf.constant([[0, 0, 1], [0, 1, 0]]) - y_pred = tf.constant([[0.1, 0.9, 0.8], [0.05, 0.95, 0]]) - - result = a_obj(y_true, y_pred) - self.assertEqual(1, self.evaluate(result)) # both the samples match - - # With `k` < 5. - a_obj = metrics.TopKCategoricalAccuracy(k=1) - self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) - result = a_obj(y_true, y_pred) - self.assertEqual(0.5, self.evaluate(result)) # only sample #2 matches - - # With `k` > 5. - y_true = tf.constant([[0, 0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0]]) - y_pred = tf.constant( - [[0.5, 0.9, 0.1, 0.7, 0.6, 0.5, 0.4], [0.05, 0.95, 0, 0, 0, 0, 0]] - ) - a_obj = metrics.TopKCategoricalAccuracy(k=6) - self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) - result = a_obj(y_true, y_pred) - self.assertEqual(0.5, self.evaluate(result)) # only 1 sample matches. - - def test_weighted(self): - a_obj = metrics.TopKCategoricalAccuracy(k=2) - self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) - y_true = tf.constant([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) - y_pred = tf.constant([[0, 0.9, 0.1], [0, 0.9, 0.1], [0, 0.9, 0.1]]) - sample_weight = tf.constant((1.0, 0.0, 1.0)) - result = a_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(1.0, self.evaluate(result), atol=1e-5) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class SparseTopKCategoricalAccuracyTest(tf.test.TestCase): - def test_config(self): - a_obj = metrics.SparseTopKCategoricalAccuracy( - name="stopkca", dtype=tf.int32 - ) - self.assertEqual(a_obj.name, "stopkca") - self.assertEqual(a_obj._dtype, tf.int32) - - a_obj2 = metrics.SparseTopKCategoricalAccuracy.from_config( - a_obj.get_config() - ) - self.assertEqual(a_obj2.name, "stopkca") - self.assertEqual(a_obj2._dtype, tf.int32) - - def test_correctness(self): - a_obj = metrics.SparseTopKCategoricalAccuracy() - self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) - y_true = tf.constant([2, 1]) - y_pred = tf.constant([[0.1, 0.9, 0.8], [0.05, 0.95, 0]]) - - result = a_obj(y_true, y_pred) - self.assertEqual(1, self.evaluate(result)) # both the samples match - - # With `k` < 5. - a_obj = metrics.SparseTopKCategoricalAccuracy(k=1) - self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) - result = a_obj(y_true, y_pred) - self.assertEqual(0.5, self.evaluate(result)) # only sample #2 matches - - # With `k` > 5. - y_pred = tf.constant( - [[0.5, 0.9, 0.1, 0.7, 0.6, 0.5, 0.4], [0.05, 0.95, 0, 0, 0, 0, 0]] - ) - a_obj = metrics.SparseTopKCategoricalAccuracy(k=6) - self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) - result = a_obj(y_true, y_pred) - self.assertEqual(0.5, self.evaluate(result)) # only 1 sample matches. - - def test_weighted(self): - a_obj = metrics.SparseTopKCategoricalAccuracy(k=2) - self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) - y_true = tf.constant([1, 0, 2]) - y_pred = tf.constant([[0, 0.9, 0.1], [0, 0.9, 0.1], [0, 0.9, 0.1]]) - sample_weight = tf.constant((1.0, 0.0, 1.0)) - result = a_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(1.0, self.evaluate(result), atol=1e-5) - - def test_sparse_top_k_categorical_accuracy_mismatched_dims_dynamic(self): - - if not tf.compat.v1.executing_eagerly(): - # Test will fail in v1 graph mode since the metric is not a normal - # layer. It will aggregate the output by batch dim, which failed on - # v1 code. - self.skipTest("v2 eager mode only") - - class AccLayer(layers.Layer): - def build(self, _): - self.acc = metrics.SparseTopKCategoricalAccuracy(k=1) - - def call(self, y_true, y_pred): - return self.acc(y_true, y_pred) - - label = layers.Input(shape=[1]) - predict = layers.Input(shape=[3]) - metric_result = AccLayer()(label, predict) - model = Model([label, predict], metric_result) - - result = model.predict( - [ - tf.constant([[2], [1]]), - tf.constant([[0.1, 0.1, 0.8], [0.05, 0, 0.95]]), - ], - steps=1, - ) - self.assertAllClose(result, 0.5) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/metrics/base_metric.py b/keras/metrics/base_metric.py deleted file mode 100644 index af0aa318c99..00000000000 --- a/keras/metrics/base_metric.py +++ /dev/null @@ -1,993 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Base Metric classes.""" - -import abc -import types -import warnings - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.dtensor import dtensor_api as dtensor -from keras.dtensor import utils as dtensor_utils -from keras.engine import base_layer -from keras.engine import base_layer_utils -from keras.engine import keras_tensor -from keras.saving.legacy.saved_model import metric_serialization -from keras.utils import generic_utils -from keras.utils import losses_utils -from keras.utils import metrics_utils -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export -from tensorflow.tools.docs import doc_controls - - -@keras_export("keras.metrics.Metric") -class Metric(base_layer.Layer, metaclass=abc.ABCMeta): - """Encapsulates metric logic and state. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - **kwargs: Additional layer keywords arguments. - - Standalone usage: - - ```python - m = SomeMetric(...) - for input in ...: - m.update_state(input) - print('Final result: ', m.result().numpy()) - ``` - - Usage with `compile()` API: - - ```python - model = tf.keras.Sequential() - model.add(tf.keras.layers.Dense(64, activation='relu')) - model.add(tf.keras.layers.Dense(64, activation='relu')) - model.add(tf.keras.layers.Dense(10, activation='softmax')) - - model.compile(optimizer=tf.keras.optimizers.RMSprop(0.01), - loss=tf.keras.losses.CategoricalCrossentropy(), - metrics=[tf.keras.metrics.CategoricalAccuracy()]) - - data = np.random.random((1000, 32)) - labels = np.random.random((1000, 10)) - - dataset = tf.data.Dataset.from_tensor_slices((data, labels)) - dataset = dataset.batch(32) - - model.fit(dataset, epochs=10) - ``` - - To be implemented by subclasses: - * `__init__()`: All state variables should be created in this method by - calling `self.add_weight()` like: `self.var = self.add_weight(...)` - * `update_state()`: Has all updates to the state variables like: - self.var.assign_add(...). - * `result()`: Computes and returns a scalar value or a dict of scalar values - for the metric from the state variables. - - Example subclass implementation: - - ```python - class BinaryTruePositives(tf.keras.metrics.Metric): - - def __init__(self, name='binary_true_positives', **kwargs): - super(BinaryTruePositives, self).__init__(name=name, **kwargs) - self.true_positives = self.add_weight(name='tp', initializer='zeros') - - def update_state(self, y_true, y_pred, sample_weight=None): - y_true = tf.cast(y_true, tf.bool) - y_pred = tf.cast(y_pred, tf.bool) - - values = tf.logical_and(tf.equal(y_true, True), tf.equal(y_pred, True)) - values = tf.cast(values, self.dtype) - if sample_weight is not None: - sample_weight = tf.cast(sample_weight, self.dtype) - sample_weight = tf.broadcast_to(sample_weight, values.shape) - values = tf.multiply(values, sample_weight) - self.true_positives.assign_add(tf.reduce_sum(values)) - - def result(self): - return self.true_positives - ``` - """ - - def __init__(self, name=None, dtype=None, **kwargs): - super().__init__(name=name, dtype=dtype, **kwargs) - self.stateful = True # All metric layers are stateful. - self.built = True - if not base_layer_utils.v2_dtype_behavior_enabled(): - # We only do this when the V2 behavior is not enabled, as when it is - # enabled, the dtype already defaults to floatx. - self._dtype = ( - backend.floatx() if dtype is None else tf.as_dtype(dtype).name - ) - - def __new__(cls, *args, **kwargs): - obj = super(Metric, cls).__new__(cls) - - # If `update_state` is not in eager/tf.function and it is not from a - # built-in metric, wrap it in `tf.function`. This is so that users - # writing custom metrics in v1 need not worry about control dependencies - # and return ops. - if base_layer_utils.is_in_eager_or_tf_function() or is_built_in(cls): - obj_update_state = obj.update_state - - def update_state_fn(*args, **kwargs): - control_status = tf.__internal__.autograph.control_status_ctx() - ag_update_state = tf.__internal__.autograph.tf_convert( - obj_update_state, control_status - ) - return ag_update_state(*args, **kwargs) - - else: - if isinstance(obj.update_state, tf.__internal__.function.Function): - update_state_fn = obj.update_state - else: - update_state_fn = tf.function(obj.update_state) - - obj.update_state = types.MethodType( - metrics_utils.update_state_wrapper(update_state_fn), obj - ) - - obj_result = obj.result - - def result_fn(*args, **kwargs): - control_status = tf.__internal__.autograph.control_status_ctx() - ag_result = tf.__internal__.autograph.tf_convert( - obj_result, control_status - ) - return ag_result(*args, **kwargs) - - obj.result = types.MethodType( - metrics_utils.result_wrapper(result_fn), obj - ) - - return obj - - def __call__(self, *args, **kwargs): - """Accumulates statistics and then computes metric result value. - - Args: - *args: - **kwargs: A mini-batch of inputs to the Metric, - passed on to `update_state()`. - - Returns: - The metric value tensor. - """ - - def replica_local_fn(*args, **kwargs): - """Updates the state of the metric in a replica-local context.""" - if any( - isinstance(arg, keras_tensor.KerasTensor) - for arg in tf.nest.flatten((args, kwargs)) - ): - update_op = None - else: - update_op = self.update_state(*args, **kwargs) - update_ops = [] - if update_op is not None: - update_ops.append(update_op) - with tf.control_dependencies(update_ops): - result_t = self.result() - - # If the metric object return a dictionary as a result, wrap it - # with our custom dict object so we can attach the metric object - # to it. - if isinstance(result_t, dict): - result_t = _MetricDict(**result_t) - - # We are adding the metric object as metadata on the result - # tensor. This is required when we want to use a metric with - # `add_metric` API on a Model/Layer in graph mode. This metric - # instance will later be used to reset variable state after each - # epoch of training. - # Example: - # model = Model() - # mean = Mean() - # model.add_metric(mean(values), name='mean') - result_t._metric_obj = self - return result_t - - from keras.distribute import ( - distributed_training_utils, - ) - - return distributed_training_utils.call_replica_local_fn( - replica_local_fn, *args, **kwargs - ) - - def __str__(self): - args = ",".join(f"{k}={v}" for k, v in self.get_config().items()) - return f"{self.__class__.__name__}({args})" - - def __deepcopy__(self, memo=None): - try: - new_self = self.from_config(self.get_config()) - except NotImplementedError as e: - raise NotImplementedError( - "Calling `__deepcopy__()` on a Keras metric " - "requires the metric to be serializable, " - "i.e. it should implement `get_config()`.\n\n" - f"Error encountered during serialization: [{e}]" - ) - # Note that metrics don't implement `build()` so their variables - # are readily available after instantiation. - if self.weights: - new_self.set_weights(self.get_weights()) - memo[self] = new_self - return new_self - - @property - def dtype(self): - return self._dtype - - def get_config(self): - """Returns the serializable config of the metric.""" - return {"name": self.name, "dtype": self.dtype} - - def reset_state(self): - """Resets all of the metric state variables. - - This function is called between epochs/steps, - when a metric is evaluated during training. - """ - if not generic_utils.is_default(self.reset_states): - warnings.warn( - "Metric %s implements a `reset_states()` method; rename it " - 'to `reset_state()` (without the final "s"). The name ' - "`reset_states()` has been deprecated to improve API " - "consistency." % (self.__class__.__name__,), - stacklevel=2, - ) - return self.reset_states() - else: - backend.batch_set_value([(v, 0) for v in self.variables]) - - @abc.abstractmethod - def update_state(self, *args, **kwargs): - """Accumulates statistics for the metric. - - Note: This function is executed as a graph function in graph mode. - This means: - a) Operations on the same resource are executed in textual order. - This should make it easier to do things like add the updated - value of a variable to another, for example. - b) You don't need to worry about collecting the update ops to execute. - All update ops added to the graph by this function will be - executed. - As a result, code should generally work the same way with graph or - eager execution. - - Args: - *args: - **kwargs: A mini-batch of inputs to the Metric. - """ - raise NotImplementedError("Must be implemented in subclasses.") - - def merge_state(self, metrics): - """Merges the state from one or more metrics. - - This method can be used by distributed systems to merge the state - computed by different metric instances. Typically the state will be - stored in the form of the metric's weights. For example, a - tf.keras.metrics.Mean metric contains a list of two weight values: a - total and a count. If there were two instances of a - tf.keras.metrics.Accuracy that each independently aggregated partial - state for an overall accuracy calculation, these two metric's states - could be combined as follows: - - >>> m1 = tf.keras.metrics.Accuracy() - >>> _ = m1.update_state([[1], [2]], [[0], [2]]) - - >>> m2 = tf.keras.metrics.Accuracy() - >>> _ = m2.update_state([[3], [4]], [[3], [4]]) - - >>> m2.merge_state([m1]) - >>> m2.result().numpy() - 0.75 - - Args: - metrics: an iterable of metrics. The metrics must have compatible - state. - - Raises: - ValueError: If the provided iterable does not contain metrics matching - the metric's required specifications. - """ - assign_add_ops = [] - for metric in metrics: - if len(self.weights) != len(metric.weights): - raise ValueError( - f"Metric {metric} is not compatible with {self}" - ) - for weight, weight_to_add in zip(self.weights, metric.weights): - assign_add_ops.append(weight.assign_add(weight_to_add)) - return assign_add_ops - - @abc.abstractmethod - def result(self): - """Computes and returns the scalar metric value tensor or a dict of - scalars. - - Result computation is an idempotent operation that simply calculates the - metric value using the state variables. - - Returns: - A scalar tensor, or a dictionary of scalar tensors. - """ - raise NotImplementedError("Must be implemented in subclasses.") - - ### For use by subclasses ### - @doc_controls.for_subclass_implementers - def add_weight( - self, - name, - shape=(), - aggregation=tf.VariableAggregation.SUM, - synchronization=tf.VariableSynchronization.ON_READ, - initializer=None, - dtype=None, - ): - """Adds state variable. Only for use by subclasses.""" - if tf.distribute.has_strategy(): - strategy = tf.distribute.get_strategy() - else: - strategy = None - - additional_kwargs = {} - - # TODO(b/120571621): Make `ON_READ` work with Keras metrics on TPU. - if backend.is_tpu_strategy(strategy): - synchronization = tf.VariableSynchronization.ON_WRITE - if getattr(self, "_mesh", None) is not None: - # When self._mesh is set, it means this metric is used for DTensor. - additional_kwargs = { - "layout": dtensor.Layout.replicated( - self._mesh, tf.TensorShape(shape).rank - ) - } - - if tf_utils.in_local_vars_context(): - # Metrics created within a remotely-executed tf.function during - # parameter server evaluation should use tf2 Variables, so that they - # can be local variables that are freely usable and mutable within - # the function, using the - # `experimental_enable_variable_lifting=False` argument. This - # supports a visitation guarantee for model evaluation. - def local_v2_var_creator( - initializer=None, dtype=None, shape=None, **kwargs - ): - init_val, var_dtype = base_layer_utils.infer_init_val_and_dtype( - initializer, dtype, shape - ) - v1_only_args = ["use_resource", "collections"] - for v1_arg in v1_only_args: - kwargs.pop(v1_arg, None) - kwargs["experimental_enable_variable_lifting"] = False - return tf.Variable( - initial_value=init_val, - dtype=var_dtype, - shape=shape, - **kwargs, - ) - - additional_kwargs["getter"] = local_v2_var_creator - - with tf_utils.maybe_init_scope(layer=self): - return super().add_weight( - name=name, - shape=shape, - dtype=self._dtype if dtype is None else dtype, - trainable=False, - initializer=initializer, - collections=[], - synchronization=synchronization, - aggregation=aggregation, - **additional_kwargs, - ) - - ### End: For use by subclasses ### - - @property - def trainable_weights(self): - # Overridden from Layer class to track submetric weights. - if self.trainable: - trainable_weights = self._trainable_weights - for m in self._metrics: - trainable_weights += m.trainable_weights - return self._dedup_weights(trainable_weights) - else: - return [] - - @property - def non_trainable_weights(self): - # Overridden from Layer class to track submetric weights. - if self.trainable: - non_trainable_weights = self._non_trainable_weights - for m in self._metrics: - non_trainable_weights += m.non_trainable_weights - else: - non_trainable_weights = ( - self._non_trainable_weights + self._trainable_weights - ) - for m in self._metrics: - non_trainable_weights += m.weights - return self._dedup_weights(non_trainable_weights) - - @property - def _trackable_saved_model_saver(self): - return metric_serialization.MetricSavedModelSaver(self) - - @generic_utils.default - @doc_controls.do_not_generate_docs - def reset_states(self): - # Backwards compatibility alias of `reset_state`. New classes should - # only implement `reset_state`. - return self.reset_state() - - -class Reduce(Metric): - """Encapsulates metrics that perform a reduce operation on the values. - - Args: - reduction: a `tf.keras.metrics.Reduction` enum value. - name: string name of the metric instance. - dtype: (Optional) data type of the metric result. - """ - - def __init__(self, reduction, name, dtype=None): - super().__init__(name=name, dtype=dtype) - self.reduction = reduction - self.total = self.add_weight("total", initializer="zeros") - if reduction in [ - metrics_utils.Reduction.SUM_OVER_BATCH_SIZE, - metrics_utils.Reduction.WEIGHTED_MEAN, - ]: - self.count = self.add_weight("count", initializer="zeros") - - def update_state(self, values, sample_weight=None): - """Accumulates statistics for computing the metric. - - Args: - values: Per-example value. - sample_weight: Optional weighting of each example. Defaults to 1. - - Returns: - Update op. - """ - [ - values - ], sample_weight = metrics_utils.ragged_assert_compatible_and_get_flat_values( # noqa: E501 - [values], sample_weight - ) - try: - values = tf.cast(values, self._dtype) - except (ValueError, TypeError): - msg = ( - "The output of a metric function can only be a single Tensor. " - f"Received: {values}. " - ) - if isinstance(values, dict): - msg += ( - "To return a dict of values, implement a custom Metric " - "subclass." - ) - raise RuntimeError(msg) - if sample_weight is not None: - sample_weight = tf.cast(sample_weight, self._dtype) - # Update dimensions of weights to match with values if possible. - ( - values, - _, - sample_weight, - ) = losses_utils.squeeze_or_expand_dimensions( - values, sample_weight=sample_weight - ) - try: - # Broadcast weights if possible. - sample_weight = tf.__internal__.ops.broadcast_weights( - sample_weight, values - ) - except ValueError: - # Reduce values to same ndim as weight array - ndim = backend.ndim(values) - weight_ndim = backend.ndim(sample_weight) - if self.reduction == metrics_utils.Reduction.SUM: - values = tf.reduce_sum( - values, axis=list(range(weight_ndim, ndim)) - ) - else: - values = tf.reduce_mean( - values, axis=list(range(weight_ndim, ndim)) - ) - values = tf.multiply(values, sample_weight) - - value_sum = tf.reduce_sum(values) - with tf.control_dependencies([value_sum]): - update_total_op = self.total.assign_add(value_sum) - - # Exit early if the reduction doesn't have a denominator. - if self.reduction == metrics_utils.Reduction.SUM: - return update_total_op - - # Update `count` for reductions that require a denominator. - if self.reduction == metrics_utils.Reduction.SUM_OVER_BATCH_SIZE: - num_values = tf.cast(tf.size(values), self._dtype) - elif self.reduction == metrics_utils.Reduction.WEIGHTED_MEAN: - if sample_weight is None: - num_values = tf.cast(tf.size(values), self._dtype) - else: - num_values = tf.reduce_sum(sample_weight) - else: - raise NotImplementedError( - f'Reduction "{self.reduction}" not implemented. Expected ' - '"sum", "weighted_mean", or "sum_over_batch_size".' - ) - - with tf.control_dependencies([update_total_op]): - return self.count.assign_add(num_values) - - def result(self): - if self.reduction == metrics_utils.Reduction.SUM: - return tf.identity(self.total) - elif self.reduction in [ - metrics_utils.Reduction.WEIGHTED_MEAN, - metrics_utils.Reduction.SUM_OVER_BATCH_SIZE, - ]: - return tf.math.divide_no_nan(self.total, self.count) - else: - raise NotImplementedError( - f'Reduction "{self.reduction}" not implemented. Expected ' - '"sum", "weighted_mean", or "sum_over_batch_size".' - ) - - -@keras_export("keras.metrics.Sum") -class Sum(Reduce): - """Computes the (weighted) sum of the given values. - - For example, if values is [1, 3, 5, 7] then the sum is 16. - If the weights were specified as [1, 1, 0, 0] then the sum would be 4. - - This metric creates one variable, `total`, that is used to compute the sum - of `values`. This is ultimately returned as `sum`. - - If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of - 0 to mask values. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.Sum() - >>> m.update_state([1, 3, 5, 7]) - >>> m.result().numpy() - 16.0 - - Usage with `compile()` API: - - ```python - model.add_metric(tf.keras.metrics.Sum(name='sum_1')(outputs)) - model.compile(optimizer='sgd', loss='mse') - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="sum", dtype=None): - super().__init__( - reduction=metrics_utils.Reduction.SUM, name=name, dtype=dtype - ) - - -@keras_export("keras.metrics.Mean") -class Mean(Reduce): - """Computes the (weighted) mean of the given values. - - For example, if values is [1, 3, 5, 7] then the mean is 4. - If the weights were specified as [1, 1, 0, 0] then the mean would be 2. - - This metric creates two variables, `total` and `count` that are used to - compute the average of `values`. This average is ultimately returned as - `mean` which is an idempotent operation that simply divides `total` by - `count`. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.Mean() - >>> m.update_state([1, 3, 5, 7]) - >>> m.result().numpy() - 4.0 - >>> m.reset_state() - >>> m.update_state([1, 3, 5, 7], sample_weight=[1, 1, 0, 0]) - >>> m.result().numpy() - 2.0 - - Usage with `compile()` API: - - ```python - model.add_metric(tf.keras.metrics.Mean(name='mean_1')(outputs)) - model.compile(optimizer='sgd', loss='mse') - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="mean", dtype=None): - super().__init__( - reduction=metrics_utils.Reduction.WEIGHTED_MEAN, - name=name, - dtype=dtype, - ) - - -@keras_export("keras.metrics.MeanMetricWrapper") -class MeanMetricWrapper(Mean): - """Wraps a stateless metric function with the Mean metric. - - You could use this class to quickly build a mean metric from a function. The - function needs to have the signature `fn(y_true, y_pred)` and return a - per-sample loss array. `MeanMetricWrapper.result()` will return - the average metric value across all samples seen so far. - - For example: - - ```python - def accuracy(y_true, y_pred): - return tf.cast(tf.math.equal(y_true, y_pred), tf.float32) - - accuracy_metric = tf.keras.metrics.MeanMetricWrapper(fn=accuracy) - - keras_model.compile(..., metrics=accuracy_metric) - ``` - - Args: - fn: The metric function to wrap, with signature `fn(y_true, y_pred, - **kwargs)`. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - **kwargs: Keyword arguments to pass on to `fn`. - """ - - @dtensor_utils.inject_mesh - def __init__(self, fn, name=None, dtype=None, **kwargs): - super().__init__(name=name, dtype=dtype) - self._fn = fn - self._fn_kwargs = kwargs - - def update_state(self, y_true, y_pred, sample_weight=None): - """Accumulates metric statistics. - - `y_true` and `y_pred` should have the same shape. - - Args: - y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`. - y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. - sample_weight: Optional `sample_weight` acts as a - coefficient for the metric. If a scalar is provided, then the metric - is simply scaled by the given value. If `sample_weight` is a tensor - of size `[batch_size]`, then the metric for each sample of the batch - is rescaled by the corresponding element in the `sample_weight` - vector. If the shape of `sample_weight` is `[batch_size, d0, .. - dN-1]` (or can be broadcasted to this shape), then each metric - element of `y_pred` is scaled by the corresponding value of - `sample_weight`. (Note on `dN-1`: all metric functions reduce by 1 - dimension, usually the last axis (-1)). - - Returns: - Update op. - """ - y_true = tf.cast(y_true, self._dtype) - y_pred = tf.cast(y_pred, self._dtype) - [ - y_true, - y_pred, - ], sample_weight = metrics_utils.ragged_assert_compatible_and_get_flat_values( # noqa: E501 - [y_true, y_pred], sample_weight - ) - y_pred, y_true = losses_utils.squeeze_or_expand_dimensions( - y_pred, y_true - ) - - ag_fn = tf.__internal__.autograph.tf_convert( - self._fn, tf.__internal__.autograph.control_status_ctx() - ) - matches = ag_fn(y_true, y_pred, **self._fn_kwargs) - mask = losses_utils.get_mask(matches) - sample_weight = losses_utils.apply_valid_mask( - matches, sample_weight, mask, self.reduction - ) - return super().update_state(matches, sample_weight=sample_weight) - - def get_config(self): - config = { - k: backend.eval(v) if tf_utils.is_tensor_or_variable(v) else v - for k, v in self._fn_kwargs.items() - } - - if type(self) is MeanMetricWrapper: - # Only include function argument when the object is a - # MeanMetricWrapper and not a subclass. - config["fn"] = self._fn - - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config): - from keras.metrics import get - - # Note that while MeanMetricWrapper itself isn't public, objects of this - # class may be created and added to the model by calling model.compile. - fn = config.pop("fn", None) - if cls is MeanMetricWrapper: - return cls(get(fn), **config) - return super(MeanMetricWrapper, cls).from_config(config) - - -@keras_export("keras.metrics.MeanTensor") -class MeanTensor(Metric): - """Computes the element-wise (weighted) mean of the given tensors. - - `MeanTensor` returns a tensor with the same shape of the input tensors. The - mean value is updated by keeping local variables `total` and `count`. The - `total` tracks the sum of the weighted values, and `count` stores the sum of - the weighted counts. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - shape: (Optional) A list of integers, a tuple of integers, or a 1-D Tensor - of type int32. If not specified, the shape is inferred from the values - at the first call of update_state. - - Standalone usage: - - >>> m = tf.keras.metrics.MeanTensor() - >>> m.update_state([0, 1, 2, 3]) - >>> m.update_state([4, 5, 6, 7]) - >>> m.result().numpy() - array([2., 3., 4., 5.], dtype=float32) - - >>> m.update_state([12, 10, 8, 6], sample_weight= [0, 0.2, 0.5, 1]) - >>> m.result().numpy() - array([2. , 3.6363635, 4.8 , 5.3333335], dtype=float32) - - >>> m = tf.keras.metrics.MeanTensor(dtype=tf.float64, shape=(1, 4)) - >>> m.result().numpy() - array([[0., 0., 0., 0.]]) - >>> m.update_state([[0, 1, 2, 3]]) - >>> m.update_state([[4, 5, 6, 7]]) - >>> m.result().numpy() - array([[2., 3., 4., 5.]]) - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="mean_tensor", dtype=None, shape=None): - super().__init__(name=name, dtype=dtype) - self._shape = None - self._total = None - self._count = None - self._built = False - if shape is not None: - self._build(shape) - - def _build(self, shape): - self._shape = tf.TensorShape(shape) - self._build_input_shape = self._shape - # Create new state variables - self._total = self.add_weight( - name="total", shape=shape, initializer="zeros" - ) - self._count = self.add_weight( - name="count", shape=shape, initializer="zeros" - ) - with tf.init_scope(): - if not tf.executing_eagerly(): - backend._initialize_variables(backend._get_session()) - self._built = True - - @property - def total(self): - return self._total if self._built else None - - @property - def count(self): - return self._count if self._built else None - - def update_state(self, values, sample_weight=None): - """Accumulates statistics for computing the element-wise mean. - - Args: - values: Per-example value. - sample_weight: Optional weighting of each example. Defaults to 1. - - Returns: - Update op. - """ - values = tf.cast(values, self._dtype) - if not self._built: - self._build(values.shape) - elif values.shape != self._shape: - raise ValueError( - "MeanTensor input values must always have the same " - "shape. Expected shape (set during the first call): " - f"{self._shape}. " - f"Got: {values.shape}." - ) - - num_values = tf.ones_like(values) - if sample_weight is not None: - sample_weight = tf.cast(sample_weight, self._dtype) - - # Update dimensions of weights to match with values if possible. - ( - values, - _, - sample_weight, - ) = losses_utils.squeeze_or_expand_dimensions( - values, sample_weight=sample_weight - ) - try: - # Broadcast weights if possible. - sample_weight = tf.__internal__.ops.broadcast_weights( - sample_weight, values - ) - except ValueError: - # Reduce values to same ndim as weight array - ndim = backend.ndim(values) - weight_ndim = backend.ndim(sample_weight) - values = tf.reduce_mean( - values, axis=list(range(weight_ndim, ndim)) - ) - - num_values = tf.multiply(num_values, sample_weight) - values = tf.multiply(values, sample_weight) - - update_total_op = self._total.assign_add(values) - with tf.control_dependencies([update_total_op]): - return self._count.assign_add(num_values) - - def result(self): - if not self._built: - raise ValueError( - "MeanTensor does not have any value yet. Please call the " - "MeanTensor instance or use `.update_state(value)` " - "before retrieving the result." - ) - return tf.math.divide_no_nan(self.total, self.count) - - def reset_state(self): - if self._built: - backend.batch_set_value( - [(v, np.zeros(v.shape.as_list())) for v in self.variables] - ) - - -class SumOverBatchSize(Reduce): - """Computes the weighted sum over batch size of the given values. - - For example, if values is [1, 3, 5, 7] then the metric value is 4. - If the weights were specified as [1, 1, 0, 0] then the value would be 1. - - This metric creates two variables, `total` and `count` that are used to - compute the average of `values`. This average is ultimately returned as sum - over batch size which is an idempotent operation that simply divides `total` - by `count`. - - If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of - 0 to mask values. - """ - - def __init__(self, name="sum_over_batch_size", dtype=None): - super().__init__( - reduction=metrics_utils.Reduction.SUM_OVER_BATCH_SIZE, - name=name, - dtype=dtype, - ) - - -class SumOverBatchSizeMetricWrapper(SumOverBatchSize): - """Wraps a function with the `SumOverBatchSizeMetricWrapper` metric.""" - - def __init__(self, fn, name=None, dtype=None, **kwargs): - """Creates a `SumOverBatchSizeMetricWrapper` instance. - - Args: - fn: The metric function to wrap, with signature `fn(y_true, y_pred, - **kwargs)`. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - **kwargs: The keyword arguments that are passed on to `fn`. - """ - super().__init__(name=name, dtype=dtype) - self._fn = fn - self._fn_kwargs = kwargs - - def update_state(self, y_true, y_pred, sample_weight=None): - y_true = tf.cast(y_true, self._dtype) - y_pred = tf.cast(y_pred, self._dtype) - y_pred, y_true = losses_utils.squeeze_or_expand_dimensions( - y_pred, y_true - ) - - ag_fn = tf.__internal__.autograph.tf_convert( - self._fn, tf.__internal__.autograph.control_status_ctx() - ) - matches = ag_fn(y_true, y_pred, **self._fn_kwargs) - mask = losses_utils.get_mask(matches) - sample_weight = losses_utils.apply_valid_mask( - matches, sample_weight, mask, self.reduction - ) - return super().update_state(matches, sample_weight=sample_weight) - - def get_config(self): - config = { - k: backend.eval(v) if tf_utils.is_tensor_or_variable(v) else v - for k, v in self._fn_kwargs.items() - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -def clone_metric(metric): - """Returns a clone of the metric if stateful, otherwise returns it as is.""" - if isinstance(metric, Metric): - # Metrics created within a remotely-executed tf.function during - # parameter server evaluation should not be lifted out of the graph by - # `init_scope`. This way the metric variables can be local: freely - # usable and mutable within the function. This supports a visitation - # guarantee for model evaluation. - if tf_utils.in_local_vars_context(): - return metric.__class__.from_config(metric.get_config()) - else: - with tf.init_scope(): - return metric.__class__.from_config(metric.get_config()) - return metric - - -def clone_metrics(metrics): - """Clones the given metric list/dict.""" - return tf.nest.map_structure(clone_metric, metrics) - - -def is_built_in(cls): - return cls.__module__.startswith( - ".".join(Metric.__module__.split(".")[:-1]) - ) - - -class _MetricDict(dict): - """Wrapper for returned dictionary of metrics.""" - - def __init__(self, **kwargs): - super().__init__(**kwargs) - self._metric_obj = None diff --git a/keras/metrics/base_metric_test.py b/keras/metrics/base_metric_test.py deleted file mode 100644 index 0e1fda7b2c3..00000000000 --- a/keras/metrics/base_metric_test.py +++ /dev/null @@ -1,818 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras base Metric classes.""" - -import copy -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import Model -from keras import layers -from keras import metrics -from keras.engine import base_layer -from keras.engine import training as training_module -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class KerasSumTest(tf.test.TestCase, parameterized.TestCase): - def test_sum(self): - with self.test_session(): - m = metrics.Sum(name="my_sum") - - # check config - self.assertEqual(m.name, "my_sum") - self.assertTrue(m.stateful) - self.assertEqual(m.dtype, tf.float32) - self.assertLen(m.variables, 1) - self.evaluate(tf.compat.v1.variables_initializer(m.variables)) - - # check initial state - self.assertEqual(self.evaluate(m.total), 0) - - # check __call__() - self.assertEqual(self.evaluate(m(100)), 100) - self.assertEqual(self.evaluate(m.total), 100) - - # check update_state() and result() + state accumulation + tensor - # input - update_op = m.update_state(tf.convert_to_tensor([1, 5])) - self.evaluate(update_op) - self.assertAlmostEqual(self.evaluate(m.result()), 106) - self.assertEqual(self.evaluate(m.total), 106) # 100 + 1 + 5 - - # check reset_state() - m.reset_state() - self.assertEqual(self.evaluate(m.total), 0) - - def test_sum_with_sample_weight(self): - m = metrics.Sum(dtype=tf.float64) - self.assertEqual(m.dtype, tf.float64) - self.evaluate(tf.compat.v1.variables_initializer(m.variables)) - - # check scalar weight - result_t = m(100, sample_weight=0.5) - self.assertEqual(self.evaluate(result_t), 50) - self.assertEqual(self.evaluate(m.total), 50) - - # check weights not scalar and weights rank matches values rank - result_t = m([1, 5], sample_weight=[1, 0.2]) - result = self.evaluate(result_t) - self.assertAlmostEqual(result, 52.0, 4) # 50 + 1 + 5 * 0.2 - self.assertAlmostEqual(self.evaluate(m.total), 52.0, 4) - - # check weights broadcast - result_t = m([1, 2], sample_weight=0.5) - self.assertAlmostEqual(self.evaluate(result_t), 53.5, 1) # 52 + 0.5 + 1 - self.assertAlmostEqual(self.evaluate(m.total), 53.5, 1) - - # check weights squeeze - result_t = m([1, 5], sample_weight=[[1], [0.2]]) - self.assertAlmostEqual(self.evaluate(result_t), 55.5, 1) # 53.5 + 1 + 1 - self.assertAlmostEqual(self.evaluate(m.total), 55.5, 1) - - # check weights expand - result_t = m([[1], [5]], sample_weight=[1, 0.2]) - self.assertAlmostEqual(self.evaluate(result_t), 57.5, 2) # 55.5 + 1 + 1 - self.assertAlmostEqual(self.evaluate(m.total), 57.5, 1) - - # check values reduced to the dimensions of weight - result_t = m( - [[[1.0, 2.0], [3.0, 2.0], [0.5, 4.0]]], sample_weight=[0.5] - ) - result = np.round(self.evaluate(result_t), decimals=2) - # result = (prev: 57.5) + 0.5 + 1 + 1.5 + 1 + 0.25 + 2 - self.assertAlmostEqual(result, 63.75, 2) - self.assertAlmostEqual(self.evaluate(m.total), 63.75, 2) - - def test_sum_graph_with_placeholder(self): - with tf.compat.v1.get_default_graph().as_default(), self.cached_session() as sess: # noqa: E501 - m = metrics.Sum() - v = tf.compat.v1.placeholder(tf.float32) - w = tf.compat.v1.placeholder(tf.float32) - self.evaluate(tf.compat.v1.variables_initializer(m.variables)) - - # check __call__() - result_t = m(v, sample_weight=w) - result = sess.run(result_t, feed_dict=({v: 100, w: 0.5})) - self.assertEqual(result, 50) - self.assertEqual(self.evaluate(m.total), 50) - - # check update_state() and result() - result = sess.run(result_t, feed_dict=({v: [1, 5], w: [1, 0.2]})) - self.assertAlmostEqual(result, 52.0, 2) # 50 + 1 + 5 * 0.2 - self.assertAlmostEqual(self.evaluate(m.total), 52.0, 2) - - def test_save_restore(self): - with self.test_session(): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - m = metrics.Sum() - checkpoint = tf.train.Checkpoint(sum=m) - self.evaluate(tf.compat.v1.variables_initializer(m.variables)) - - # update state - self.evaluate(m(100.0)) - self.evaluate(m(200.0)) - - # save checkpoint and then add an update - save_path = checkpoint.save(checkpoint_prefix) - self.evaluate(m(1000.0)) - - # restore to the same checkpoint sum object (= 300) - checkpoint.restore(save_path).assert_consumed().run_restore_ops() - self.evaluate(m(300.0)) - self.assertEqual(600.0, self.evaluate(m.result())) - - # restore to a different checkpoint sum object - restore_sum = metrics.Sum() - restore_checkpoint = tf.train.Checkpoint(sum=restore_sum) - status = restore_checkpoint.restore(save_path) - restore_update = restore_sum(300.0) - status.assert_consumed().run_restore_ops() - self.evaluate(restore_update) - self.assertEqual(600.0, self.evaluate(restore_sum.result())) - - def test_init_scope_during_add_weight(self): - seen_variables = 0 - - def capture_variable_creation(next_creator_fn, **kwargs) -> tf.Variable: - nonlocal seen_variables - seen_variables += 1 - return tf.constant(seen_variables) - - @tf.function - def create_variables(): - # When this method is called in a graph context, any usage of - # `tf.init_scope` will bypass this variable creator scope, resulting - # in different behavior. - with tf.variable_creator_scope(capture_variable_creation): - return metrics.Sum().variables - - metric_variables = self.evaluate(create_variables()) - # The Sum metric contains a single `total` variable, which the creation - # scope has changed to a `1` tensor. - self.assertAllEqual([1], metric_variables) - - -class MeanTest(test_combinations.TestCase): - - # TODO(b/120949004): Re-enable garbage collection check - # @tf_test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) - @test_combinations.run_all_keras_modes - def test_mean(self): - m = metrics.Mean(name="my_mean") - - # check config - self.assertEqual(m.name, "my_mean") - self.assertTrue(m.stateful) - self.assertEqual(m.dtype, tf.float32) - self.assertEqual(len(m.variables), 2) - self.evaluate(tf.compat.v1.variables_initializer(m.variables)) - - # check initial state - self.assertEqual(self.evaluate(m.total), 0) - self.assertEqual(self.evaluate(m.count), 0) - - # check __call__() - self.assertEqual(self.evaluate(m(100)), 100) - self.assertEqual(self.evaluate(m.total), 100) - self.assertEqual(self.evaluate(m.count), 1) - - # check update_state() and result() + state accumulation + tensor input - update_op = m.update_state( - [tf.convert_to_tensor(1), tf.convert_to_tensor(5)] - ) - self.evaluate(update_op) - self.assertAlmostEqual(self.evaluate(m.result()), 106 / 3, 2) - self.assertEqual(self.evaluate(m.total), 106) # 100 + 1 + 5 - self.assertEqual(self.evaluate(m.count), 3) - - # check reset_state() - m.reset_state() - self.assertEqual(self.evaluate(m.total), 0) - self.assertEqual(self.evaluate(m.count), 0) - - # Check save and restore config - m2 = metrics.Mean.from_config(m.get_config()) - self.assertEqual(m2.name, "my_mean") - self.assertTrue(m2.stateful) - self.assertEqual(m2.dtype, tf.float32) - self.assertEqual(len(m2.variables), 2) - - @test_utils.run_v2_only - def test_function_wrapped_reset_state(self): - m = metrics.Mean(name="my_mean") - - # check reset_state in function. - @tf.function - def reset_in_fn(): - m.reset_state() - return m.update_state(100) - - for _ in range(5): - self.evaluate(reset_in_fn()) - self.assertEqual(self.evaluate(m.count), 1) - - @test_combinations.run_all_keras_modes - def test_mean_with_sample_weight(self): - m = metrics.Mean(dtype=tf.float64) - self.assertEqual(m.dtype, tf.float64) - self.evaluate(tf.compat.v1.variables_initializer(m.variables)) - - # check scalar weight - result_t = m(100, sample_weight=0.5) - self.assertEqual(self.evaluate(result_t), 50 / 0.5) - self.assertEqual(self.evaluate(m.total), 50) - self.assertEqual(self.evaluate(m.count), 0.5) - - # check weights not scalar and weights rank matches values rank - result_t = m([1, 5], sample_weight=[1, 0.2]) - result = self.evaluate(result_t) - self.assertAlmostEqual(result, 52 / 1.7, 2) - self.assertAlmostEqual( - self.evaluate(m.total), 52, 2 - ) # 50 + 1 + 5 * 0.2 - self.assertAlmostEqual(self.evaluate(m.count), 1.7, 2) # 0.5 + 1.2 - - # check weights broadcast - result_t = m([1, 2], sample_weight=0.5) - self.assertAlmostEqual(self.evaluate(result_t), 53.5 / 2.7, 2) - self.assertAlmostEqual(self.evaluate(m.total), 53.5, 2) # 52 + 0.5 + 1 - self.assertAlmostEqual( - self.evaluate(m.count), 2.7, 2 - ) # 1.7 + 0.5 + 0.5 - - # check weights squeeze - result_t = m([1, 5], sample_weight=[[1], [0.2]]) - self.assertAlmostEqual(self.evaluate(result_t), 55.5 / 3.9, 2) - self.assertAlmostEqual(self.evaluate(m.total), 55.5, 2) # 53.5 + 1 + 1 - self.assertAlmostEqual(self.evaluate(m.count), 3.9, 2) # 2.7 + 1.2 - - # check weights expand - result_t = m([[1], [5]], sample_weight=[1, 0.2]) - self.assertAlmostEqual(self.evaluate(result_t), 57.5 / 5.1, 2) - self.assertAlmostEqual(self.evaluate(m.total), 57.5, 2) # 55.5 + 1 + 1 - self.assertAlmostEqual(self.evaluate(m.count), 5.1, 2) # 3.9 + 1.2 - - # check values reduced to the dimensions of weight - result_t = m( - [[[1.0, 2.0], [3.0, 2.0], [0.5, 4.0]]], sample_weight=[0.5] - ) - result = np.round(self.evaluate(result_t), decimals=2) # 58.5 / 5.6 - self.assertEqual(result, 10.45) - self.assertEqual(np.round(self.evaluate(m.total), decimals=2), 58.54) - self.assertEqual(np.round(self.evaluate(m.count), decimals=2), 5.6) - - @test_combinations.run_all_keras_modes - def test_mean_graph_with_placeholder(self): - with tf.compat.v1.get_default_graph().as_default(), self.cached_session() as sess: # noqa: E501 - m = metrics.Mean() - v = tf.compat.v1.placeholder(tf.float32) - w = tf.compat.v1.placeholder(tf.float32) - self.evaluate(tf.compat.v1.variables_initializer(m.variables)) - - # check __call__() - result_t = m(v, sample_weight=w) - result = sess.run(result_t, feed_dict=({v: 100, w: 0.5})) - self.assertEqual(self.evaluate(m.total), 50) - self.assertEqual(self.evaluate(m.count), 0.5) - self.assertEqual(result, 50 / 0.5) - - # check update_state() and result() - result = sess.run(result_t, feed_dict=({v: [1, 5], w: [1, 0.2]})) - self.assertAlmostEqual( - self.evaluate(m.total), 52, 2 - ) # 50 + 1 + 5 * 0.2 - self.assertAlmostEqual(self.evaluate(m.count), 1.7, 2) # 0.5 + 1.2 - self.assertAlmostEqual(result, 52 / 1.7, 2) - - @test_combinations.run_all_keras_modes - def test_save_restore(self): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - m = metrics.Mean() - checkpoint = tf.train.Checkpoint(mean=m) - self.evaluate(tf.compat.v1.variables_initializer(m.variables)) - - # update state - self.evaluate(m(100.0)) - self.evaluate(m(200.0)) - - # save checkpoint and then add an update - save_path = checkpoint.save(checkpoint_prefix) - self.evaluate(m(1000.0)) - - # restore to the same checkpoint mean object - checkpoint.restore(save_path).assert_consumed().run_restore_ops() - self.evaluate(m(300.0)) - self.assertEqual(200.0, self.evaluate(m.result())) - - # restore to a different checkpoint mean object - restore_mean = metrics.Mean() - restore_checkpoint = tf.train.Checkpoint(mean=restore_mean) - status = restore_checkpoint.restore(save_path) - restore_update = restore_mean(300.0) - status.assert_consumed().run_restore_ops() - self.evaluate(restore_update) - self.assertEqual(200.0, self.evaluate(restore_mean.result())) - self.assertEqual(3, self.evaluate(restore_mean.count)) - - @test_combinations.run_all_keras_modes - def test_multiple_instances(self): - m = metrics.Mean() - m2 = metrics.Mean() - - self.assertEqual(m.name, "mean") - self.assertEqual(m2.name, "mean") - - self.assertEqual( - [v.name for v in m.variables], - test_utils.get_expected_metric_variable_names(["total", "count"]), - ) - self.assertEqual( - [v.name for v in m2.variables], - test_utils.get_expected_metric_variable_names( - ["total", "count"], name_suffix="_1" - ), - ) - - self.evaluate(tf.compat.v1.variables_initializer(m.variables)) - self.evaluate(tf.compat.v1.variables_initializer(m2.variables)) - - # check initial state - self.assertEqual(self.evaluate(m.total), 0) - self.assertEqual(self.evaluate(m.count), 0) - self.assertEqual(self.evaluate(m2.total), 0) - self.assertEqual(self.evaluate(m2.count), 0) - - # check __call__() - self.assertEqual(self.evaluate(m(100)), 100) - self.assertEqual(self.evaluate(m.total), 100) - self.assertEqual(self.evaluate(m.count), 1) - self.assertEqual(self.evaluate(m2.total), 0) - self.assertEqual(self.evaluate(m2.count), 0) - - self.assertEqual(self.evaluate(m2([63, 10])), 36.5) - self.assertEqual(self.evaluate(m2.total), 73) - self.assertEqual(self.evaluate(m2.count), 2) - self.assertEqual(self.evaluate(m.result()), 100) - self.assertEqual(self.evaluate(m.total), 100) - self.assertEqual(self.evaluate(m.count), 1) - - @test_utils.run_v2_only - def test_deepcopy_of_metrics(self): - m = metrics.Mean(name="my_mean") - - m.reset_state() - m.update_state(100) - m_copied = copy.deepcopy(m) - m_copied.update_state(200) - - self.assertEqual(self.evaluate(m.result()), 100) - self.assertEqual(self.evaluate(m_copied.result()), 150) - - m.reset_state() - - self.assertEqual(self.evaluate(m.result()), 0) - self.assertEqual(self.evaluate(m_copied.result()), 150) - - -class MeanTensorTest(tf.test.TestCase, parameterized.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_config(self): - with self.test_session(): - m = metrics.MeanTensor(name="mean_by_element") - - # check config - self.assertEqual(m.name, "mean_by_element") - self.assertTrue(m.stateful) - self.assertEqual(m.dtype, tf.float32) - self.assertEmpty(m.variables) - - with self.assertRaisesRegex( - ValueError, "does not have any value yet" - ): - m.result() - - self.evaluate(m([[3], [5], [3]])) - self.assertAllEqual(m._shape, [3, 1]) - - m2 = metrics.MeanTensor.from_config(m.get_config()) - self.assertEqual(m2.name, "mean_by_element") - self.assertTrue(m2.stateful) - self.assertEqual(m2.dtype, tf.float32) - self.assertEmpty(m2.variables) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_unweighted(self): - with self.test_session(): - m = metrics.MeanTensor(dtype=tf.float64) - - # check __call__() - self.assertAllClose(self.evaluate(m([100, 40])), [100, 40]) - self.assertAllClose(self.evaluate(m.total), [100, 40]) - self.assertAllClose(self.evaluate(m.count), [1, 1]) - - # check update_state() and result() + state accumulation + tensor - # input - update_op = m.update_state( - [tf.convert_to_tensor(1), tf.convert_to_tensor(5)] - ) - self.evaluate(update_op) - self.assertAllClose(self.evaluate(m.result()), [50.5, 22.5]) - self.assertAllClose(self.evaluate(m.total), [101, 45]) - self.assertAllClose(self.evaluate(m.count), [2, 2]) - - # check reset_state() - m.reset_state() - self.assertAllClose(self.evaluate(m.total), [0, 0]) - self.assertAllClose(self.evaluate(m.count), [0, 0]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_weighted(self): - with self.test_session(): - m = metrics.MeanTensor(dtype=tf.float64) - self.assertEqual(m.dtype, tf.float64) - - # check scalar weight - result_t = m([100, 30], sample_weight=0.5) - self.assertAllClose(self.evaluate(result_t), [100, 30]) - self.assertAllClose(self.evaluate(m.total), [50, 15]) - self.assertAllClose(self.evaluate(m.count), [0.5, 0.5]) - - # check weights not scalar and weights rank matches values rank - result_t = m([1, 5], sample_weight=[1, 0.2]) - result = self.evaluate(result_t) - self.assertAllClose(result, [51 / 1.5, 16 / 0.7], 2) - self.assertAllClose(self.evaluate(m.total), [51, 16]) - self.assertAllClose(self.evaluate(m.count), [1.5, 0.7]) - - # check weights broadcast - result_t = m([1, 2], sample_weight=0.5) - self.assertAllClose(self.evaluate(result_t), [51.5 / 2, 17 / 1.2]) - self.assertAllClose(self.evaluate(m.total), [51.5, 17]) - self.assertAllClose(self.evaluate(m.count), [2, 1.2]) - - # check weights squeeze - result_t = m([1, 5], sample_weight=[[1], [0.2]]) - self.assertAllClose(self.evaluate(result_t), [52.5 / 3, 18 / 1.4]) - self.assertAllClose(self.evaluate(m.total), [52.5, 18]) - self.assertAllClose(self.evaluate(m.count), [3, 1.4]) - - # check weights expand - m = metrics.MeanTensor(dtype=tf.float64) - self.evaluate(tf.compat.v1.variables_initializer(m.variables)) - result_t = m([[1], [5]], sample_weight=[1, 0.2]) - self.assertAllClose(self.evaluate(result_t), [[1], [5]]) - self.assertAllClose(self.evaluate(m.total), [[1], [1]]) - self.assertAllClose(self.evaluate(m.count), [[1], [0.2]]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_invalid_value_shape(self): - m = metrics.MeanTensor(dtype=tf.float64) - m([1]) - with self.assertRaisesRegex( - ValueError, - "MeanTensor input values must always have the same shape", - ): - m([1, 5]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_build_in_tf_function(self): - """Ensure that variables are created correctly in a tf function.""" - m = metrics.MeanTensor(dtype=tf.float64) - - @tf.function - def call_metric(x): - return m(x) - - with self.test_session(): - self.assertAllClose( - self.evaluate(call_metric([100, 40])), [100, 40] - ) - self.assertAllClose(self.evaluate(m.total), [100, 40]) - self.assertAllClose(self.evaluate(m.count), [1, 1]) - self.assertAllClose(self.evaluate(call_metric([20, 2])), [60, 21]) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_in_keras_model(self): - class ModelWithMetric(Model): - def __init__(self): - super().__init__() - self.dense1 = layers.Dense( - 3, activation="relu", kernel_initializer="ones" - ) - self.dense2 = layers.Dense( - 1, activation="sigmoid", kernel_initializer="ones" - ) - self.mean_tensor = metrics.MeanTensor() - - def call(self, x): - x = self.dense1(x) - x = self.dense2(x) - self.mean_tensor(self.dense1.kernel) - return x - - model = ModelWithMetric() - model.compile(loss="mae", optimizer="rmsprop", run_eagerly=True) - - x = np.ones((100, 4)) - y = np.zeros((100, 1)) - model.evaluate(x, y, batch_size=50) - self.assertAllClose( - self.evaluate(model.mean_tensor.result()), np.ones((4, 3)) - ) - self.assertAllClose( - self.evaluate(model.mean_tensor.total), np.full((4, 3), 2) - ) - self.assertAllClose( - self.evaluate(model.mean_tensor.count), np.full((4, 3), 2) - ) - - model.evaluate(x, y, batch_size=25) - self.assertAllClose( - self.evaluate(model.mean_tensor.result()), np.ones((4, 3)) - ) - self.assertAllClose( - self.evaluate(model.mean_tensor.total), np.full((4, 3), 4) - ) - self.assertAllClose( - self.evaluate(model.mean_tensor.count), np.full((4, 3), 4) - ) - - -class BinaryTruePositives(metrics.Metric): - def __init__(self, name="binary_true_positives", **kwargs): - super().__init__(name=name, **kwargs) - self.true_positives = self.add_weight(name="tp", initializer="zeros") - - def update_state(self, y_true, y_pred, sample_weight=None): - y_true = tf.cast(y_true, tf.bool) - y_pred = tf.cast(y_pred, tf.bool) - - values = tf.logical_and(tf.equal(y_true, True), tf.equal(y_pred, True)) - values = tf.cast(values, self.dtype) - if sample_weight is not None: - sample_weight = tf.cast(sample_weight, dtype=self.dtype) - sample_weight = tf.__internal__.ops.broadcast_weights( - sample_weight, values - ) - values = tf.multiply(values, sample_weight) - self.true_positives.assign_add(tf.reduce_sum(values)) - - def result(self): - return self.true_positives - - -class BinaryTruePositivesViaControlFlow(metrics.Metric): - def __init__(self, name="binary_true_positives", **kwargs): - super().__init__(name=name, **kwargs) - self.true_positives = self.add_weight(name="tp", initializer="zeros") - - def update_state(self, y_true, y_pred, sample_weight=None): - y_true = tf.cast(y_true, tf.bool) - y_pred = tf.cast(y_pred, tf.bool) - - for i in range(len(y_true)): - for j in range(len(y_true[i])): - if y_true[i][j] and y_pred[i][j]: - if sample_weight is None: - self.true_positives.assign_add(1) - else: - self.true_positives.assign_add(sample_weight[i][0]) - - def result(self): - if tf.constant(True): - return self.true_positives - return 0.0 - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CustomMetricsTest(tf.test.TestCase): - def test_config(self): - btp_obj = BinaryTruePositives(name="btp", dtype=tf.int32) - self.assertEqual(btp_obj.name, "btp") - self.assertEqual(btp_obj.dtype, tf.int32) - - # Check save and restore config - btp_obj2 = BinaryTruePositives.from_config(btp_obj.get_config()) - self.assertEqual(btp_obj2.name, "btp") - self.assertEqual(btp_obj2.dtype, tf.int32) - - def test_unweighted(self): - btp_obj = BinaryTruePositives() - self.evaluate(tf.compat.v1.variables_initializer(btp_obj.variables)) - y_true = tf.constant( - [ - [0, 0.9, 0, 1, 0], - [0, 0, 1, 1, 1], - [1, 1, 1, 1, 0], - [0, 0, 0, 0, 1.5], - ] - ) - y_pred = tf.constant( - [ - [0, 0, 1, 5, 0], - [1, 1, 1, 1, 1], - [0, 1, 0, 1, 0], - [1, 10, 1, 1, 1], - ] - ) - - update_op = btp_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = btp_obj.result() - self.assertEqual(7, self.evaluate(result)) - - def test_weighted(self): - btp_obj = BinaryTruePositives() - self.evaluate(tf.compat.v1.variables_initializer(btp_obj.variables)) - y_true = tf.constant( - [ - [0, 0.9, 0, 1, 0], - [0, 0, 1, 1, 1], - [1, 1, 1, 1, 0], - [0, 0, 0, 0, 1.5], - ] - ) - y_pred = tf.constant( - [ - [0, 0, 1, 5, 0], - [1, 1, 1, 1, 1], - [0, 1, 0, 1, 0], - [1, 10, 1, 1, 1], - ] - ) - sample_weight = tf.constant([[1.0], [1.5], [2.0], [2.5]]) - result = btp_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertEqual(12, self.evaluate(result)) - - def test_autograph(self): - metric = BinaryTruePositivesViaControlFlow() - self.evaluate(tf.compat.v1.variables_initializer(metric.variables)) - y_true = tf.constant( - [ - [0, 0.9, 0, 1, 0], - [0, 0, 1, 1, 1], - [1, 1, 1, 1, 0], - [0, 0, 0, 0, 1.5], - ] - ) - y_pred = tf.constant( - [ - [0, 0, 1, 5, 0], - [1, 1, 1, 1, 1], - [0, 1, 0, 1, 0], - [1, 10, 1, 1, 1], - ] - ) - sample_weight = tf.constant([[1.0], [1.5], [2.0], [2.5]]) - - @tf.function - def compute_metric(y_true, y_pred, sample_weight): - metric(y_true, y_pred, sample_weight) - return metric.result() - - result = compute_metric(y_true, y_pred, sample_weight) - self.assertEqual(12, self.evaluate(result)) - - def test_metric_wrappers_autograph(self): - def metric_fn(y_true, y_pred): - x = tf.constant(0.0) - for i in range(len(y_true)): - for j in range(len(y_true[i])): - if ( - tf.equal(y_true[i][j], y_pred[i][j]) - and y_true[i][j] > 0 - ): - x += 1.0 - return x - - mean_metric = metrics.MeanMetricWrapper(metric_fn) - sum_metric = metrics.SumOverBatchSizeMetricWrapper(metric_fn) - self.evaluate(tf.compat.v1.variables_initializer(mean_metric.variables)) - self.evaluate(tf.compat.v1.variables_initializer(sum_metric.variables)) - - y_true = tf.constant( - [[0, 0, 0, 1, 0], [0, 0, 1, 1, 1], [1, 1, 1, 1, 0], [1, 1, 1, 0, 1]] - ) - y_pred = tf.constant( - [[0, 0, 1, 1, 0], [1, 1, 1, 1, 1], [0, 1, 0, 1, 0], [1, 1, 1, 1, 1]] - ) - - @tf.function - def tf_functioned_metric_fn(metric, y_true, y_pred): - return metric(y_true, y_pred) - - metric_result = tf_functioned_metric_fn(mean_metric, y_true, y_pred) - self.assertAllClose(self.evaluate(metric_result), 10, 1e-2) - metric_result = tf_functioned_metric_fn(sum_metric, y_true, y_pred) - self.assertAllClose(self.evaluate(metric_result), 10, 1e-2) - - def test_metric_not_tracked_as_sublayer_in_layer(self): - class MyLayer(base_layer.Layer): - def __init__(self, **kwargs): - super().__init__(**kwargs) - self.mean_obj = metrics.Mean(name="my_mean_obj") - - def call(self, x): - self.add_metric( - tf.reduce_sum(x), aggregation="mean", name="my_mean_tensor" - ) - self.add_metric(self.mean_obj(x)) - return x - - layer = MyLayer() - x = np.ones((1, 1)) - layer(x) - self.assertLen(list(layer._flatten_layers(include_self=False)), 0) - self.assertLen(layer.metrics, 2) - - def test_metric_not_tracked_as_sublayer_in_model(self): - class MyModel(training_module.Model): - def __init__(self, **kwargs): - super().__init__(**kwargs) - self.mean_obj = metrics.Mean(name="my_mean_obj") - - def call(self, x): - self.add_metric( - tf.reduce_sum(x), aggregation="mean", name="my_mean_tensor" - ) - self.add_metric(self.mean_obj(x)) - return x - - model = MyModel() - x = np.ones((1, 1)) - model(x) - self.assertLen(list(model._flatten_layers(include_self=False)), 0) - self.assertLen(model.layers, 0) - self.assertLen(model.metrics, 2) - - def test_invalid_custom_metric_class_error_msg(self): - x = layers.Input(shape=(2,)) - y = layers.Dense(3)(x) - model = training_module.Model(x, y) - - class BadMetric(metrics.Metric): - def update_state(self, y_true, y_pred, sample_weight=None): - return - - def result(self): - return - - with self.assertRaisesRegex(RuntimeError, "can only be a single"): - model.compile("sgd", "mse", metrics=[BadMetric()]) - model.fit(np.ones((10, 2)), np.ones((10, 3))) - - def test_invalid_custom_metric_fn_error_msg(self): - x = layers.Input(shape=(2,)) - y = layers.Dense(3)(x) - model = training_module.Model(x, y) - - def bad_metric(y_true, y_pred, sample_weight=None): - return None - - def dict_metric(y_true, y_pred, sample_weight=None): - return {"value": 0.0} - - with self.assertRaisesRegex( - RuntimeError, "The output of a metric function can only be" - ): - model.compile("sgd", "mse", metrics=[bad_metric]) - model.fit(np.ones((10, 2)), np.ones((10, 3))) - with self.assertRaisesRegex( - RuntimeError, "To return a dict of values, implement" - ): - model.compile("sgd", "mse", metrics=[dict_metric]) - model.fit(np.ones((10, 2)), np.ones((10, 3))) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/metrics/confusion_metrics.py b/keras/metrics/confusion_metrics.py deleted file mode 100644 index 6a1af4ea22f..00000000000 --- a/keras/metrics/confusion_metrics.py +++ /dev/null @@ -1,1706 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Confusion metrics, i.e. metrics based on True/False positives/negatives.""" - -import abc - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import backend -from keras.dtensor import utils as dtensor_utils -from keras.metrics import base_metric -from keras.utils import metrics_utils -from keras.utils.generic_utils import to_list -from keras.utils.tf_utils import is_tensor_or_variable - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -class _ConfusionMatrixConditionCount(base_metric.Metric): - """Calculates the number of the given confusion matrix condition. - - Args: - confusion_matrix_cond: One of `metrics_utils.ConfusionMatrix` conditions. - thresholds: (Optional) Defaults to 0.5. A float value or a python - list/tuple of float threshold values in [0, 1]. A threshold is compared - with prediction values to determine the truth value of predictions - (i.e., above the threshold is `true`, below is `false`). One metric - value is generated for each threshold value. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - """ - - def __init__( - self, confusion_matrix_cond, thresholds=None, name=None, dtype=None - ): - super().__init__(name=name, dtype=dtype) - self._confusion_matrix_cond = confusion_matrix_cond - self.init_thresholds = thresholds - self.thresholds = metrics_utils.parse_init_thresholds( - thresholds, default_threshold=0.5 - ) - self._thresholds_distributed_evenly = ( - metrics_utils.is_evenly_distributed_thresholds(self.thresholds) - ) - self.accumulator = self.add_weight( - "accumulator", shape=(len(self.thresholds),), initializer="zeros" - ) - - def update_state(self, y_true, y_pred, sample_weight=None): - """Accumulates the metric statistics. - - Args: - y_true: The ground truth values. - y_pred: The predicted values. - sample_weight: Optional weighting of each example. Defaults to 1. Can - be a `Tensor` whose rank is either 0, or the same rank as `y_true`, - and must be broadcastable to `y_true`. - - Returns: - Update op. - """ - return metrics_utils.update_confusion_matrix_variables( - {self._confusion_matrix_cond: self.accumulator}, - y_true, - y_pred, - thresholds=self.thresholds, - thresholds_distributed_evenly=self._thresholds_distributed_evenly, - sample_weight=sample_weight, - ) - - def result(self): - if len(self.thresholds) == 1: - result = self.accumulator[0] - else: - result = self.accumulator - return tf.convert_to_tensor(result) - - def reset_state(self): - backend.batch_set_value( - [(v, np.zeros(v.shape.as_list())) for v in self.variables] - ) - - def get_config(self): - config = {"thresholds": self.init_thresholds} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.metrics.FalsePositives") -class FalsePositives(_ConfusionMatrixConditionCount): - """Calculates the number of false positives. - - If `sample_weight` is given, calculates the sum of the weights of - false positives. This metric creates one local variable, `accumulator` - that is used to keep track of the number of false positives. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Args: - thresholds: (Optional) Defaults to 0.5. A float value, or a Python - list/tuple of float threshold values in [0, 1]. A threshold is compared - with prediction values to determine the truth value of predictions - (i.e., above the threshold is `true`, below is `false`). If used with a - loss function that sets `from_logits=True` (i.e. no sigmoid applied to - predictions), `thresholds` should be set to 0. One metric value is - generated for each threshold value. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.FalsePositives() - >>> m.update_state([0, 1, 0, 0], [0, 0, 1, 1]) - >>> m.result().numpy() - 2.0 - - >>> m.reset_state() - >>> m.update_state([0, 1, 0, 0], [0, 0, 1, 1], sample_weight=[0, 0, 1, 0]) - >>> m.result().numpy() - 1.0 - - Usage with `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.FalsePositives()]) - ``` - - Usage with a loss with `from_logits=True`: - - ```python - model.compile(optimizer='adam', - loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), - metrics=[tf.keras.metrics.FalsePositives(thresholds=0)]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, thresholds=None, name=None, dtype=None): - super().__init__( - confusion_matrix_cond=metrics_utils.ConfusionMatrix.FALSE_POSITIVES, - thresholds=thresholds, - name=name, - dtype=dtype, - ) - - -@keras_export("keras.metrics.FalseNegatives") -class FalseNegatives(_ConfusionMatrixConditionCount): - """Calculates the number of false negatives. - - If `sample_weight` is given, calculates the sum of the weights of - false negatives. This metric creates one local variable, `accumulator` - that is used to keep track of the number of false negatives. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Args: - thresholds: (Optional) Defaults to 0.5. A float value, or a Python - list/tuple of float threshold values in [0, 1]. A threshold is compared - with prediction values to determine the truth value of predictions - (i.e., above the threshold is `true`, below is `false`). If used with a - loss function that sets `from_logits=True` (i.e. no sigmoid applied to - predictions), `thresholds` should be set to 0. One metric value is - generated for each threshold value. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.FalseNegatives() - >>> m.update_state([0, 1, 1, 1], [0, 1, 0, 0]) - >>> m.result().numpy() - 2.0 - - >>> m.reset_state() - >>> m.update_state([0, 1, 1, 1], [0, 1, 0, 0], sample_weight=[0, 0, 1, 0]) - >>> m.result().numpy() - 1.0 - - Usage with `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.FalseNegatives()]) - ``` - - Usage with a loss with `from_logits=True`: - - ```python - model.compile(optimizer='adam', - loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), - metrics=[tf.keras.metrics.FalseNegatives(thresholds=0)]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, thresholds=None, name=None, dtype=None): - super().__init__( - confusion_matrix_cond=metrics_utils.ConfusionMatrix.FALSE_NEGATIVES, - thresholds=thresholds, - name=name, - dtype=dtype, - ) - - -@keras_export("keras.metrics.TrueNegatives") -class TrueNegatives(_ConfusionMatrixConditionCount): - """Calculates the number of true negatives. - - If `sample_weight` is given, calculates the sum of the weights of - true negatives. This metric creates one local variable, `accumulator` - that is used to keep track of the number of true negatives. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Args: - thresholds: (Optional) Defaults to 0.5. A float value, or a Python - list/tuple of float threshold values in [0, 1]. A threshold is compared - with prediction values to determine the truth value of predictions - (i.e., above the threshold is `true`, below is `false`). If used with a - loss function that sets `from_logits=True` (i.e. no sigmoid applied to - predictions), `thresholds` should be set to 0. One metric value is - generated for each threshold value. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.TrueNegatives() - >>> m.update_state([0, 1, 0, 0], [1, 1, 0, 0]) - >>> m.result().numpy() - 2.0 - - >>> m.reset_state() - >>> m.update_state([0, 1, 0, 0], [1, 1, 0, 0], sample_weight=[0, 0, 1, 0]) - >>> m.result().numpy() - 1.0 - - Usage with `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.TrueNegatives()]) - ``` - - Usage with a loss with `from_logits=True`: - - ```python - model.compile(optimizer='adam', - loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), - metrics=[tf.keras.metrics.TrueNegatives(thresholds=0)]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, thresholds=None, name=None, dtype=None): - super().__init__( - confusion_matrix_cond=metrics_utils.ConfusionMatrix.TRUE_NEGATIVES, - thresholds=thresholds, - name=name, - dtype=dtype, - ) - - -@keras_export("keras.metrics.TruePositives") -class TruePositives(_ConfusionMatrixConditionCount): - """Calculates the number of true positives. - - If `sample_weight` is given, calculates the sum of the weights of - true positives. This metric creates one local variable, `true_positives` - that is used to keep track of the number of true positives. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Args: - thresholds: (Optional) Defaults to 0.5. A float value, or a Python - list/tuple of float threshold values in [0, 1]. A threshold is compared - with prediction values to determine the truth value of predictions - (i.e., above the threshold is `true`, below is `false`). If used with a - loss function that sets `from_logits=True` (i.e. no sigmoid applied to - predictions), `thresholds` should be set to 0. One metric value is - generated for each threshold value. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.TruePositives() - >>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1]) - >>> m.result().numpy() - 2.0 - - >>> m.reset_state() - >>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0]) - >>> m.result().numpy() - 1.0 - - Usage with `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.TruePositives()]) - ``` - - Usage with a loss with `from_logits=True`: - - ```python - model.compile(optimizer='adam', - loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), - metrics=[tf.keras.metrics.TruePositives(thresholds=0)]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, thresholds=None, name=None, dtype=None): - super().__init__( - confusion_matrix_cond=metrics_utils.ConfusionMatrix.TRUE_POSITIVES, - thresholds=thresholds, - name=name, - dtype=dtype, - ) - - -@keras_export("keras.metrics.Precision") -class Precision(base_metric.Metric): - """Computes the precision of the predictions with respect to the labels. - - The metric creates two local variables, `true_positives` and - `false_positives` that are used to compute the precision. This value is - ultimately returned as `precision`, an idempotent operation that simply - divides `true_positives` by the sum of `true_positives` and - `false_positives`. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - If `top_k` is set, we'll calculate precision as how often on average a class - among the top-k classes with the highest predicted values of a batch entry - is correct and can be found in the label for that entry. - - If `class_id` is specified, we calculate precision by considering only the - entries in the batch for which `class_id` is above the threshold and/or in - the top-k highest predictions, and computing the fraction of them for which - `class_id` is indeed a correct label. - - Args: - thresholds: (Optional) A float value, or a Python list/tuple of float - threshold values in [0, 1]. A threshold is compared with prediction - values to determine the truth value of predictions (i.e., above the - threshold is `true`, below is `false`). If used with a loss function - that sets `from_logits=True` (i.e. no sigmoid applied to predictions), - `thresholds` should be set to 0. One metric value is generated for each - threshold value. If neither thresholds nor top_k are set, the default is - to calculate precision with `thresholds=0.5`. - top_k: (Optional) Unset by default. An int value specifying the top-k - predictions to consider when calculating precision. - class_id: (Optional) Integer class ID for which we want binary metrics. - This must be in the half-open interval `[0, num_classes)`, where - `num_classes` is the last dimension of predictions. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.Precision() - >>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1]) - >>> m.result().numpy() - 0.6666667 - - >>> m.reset_state() - >>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0]) - >>> m.result().numpy() - 1.0 - - >>> # With top_k=2, it will calculate precision over y_true[:2] - >>> # and y_pred[:2] - >>> m = tf.keras.metrics.Precision(top_k=2) - >>> m.update_state([0, 0, 1, 1], [1, 1, 1, 1]) - >>> m.result().numpy() - 0.0 - - >>> # With top_k=4, it will calculate precision over y_true[:4] - >>> # and y_pred[:4] - >>> m = tf.keras.metrics.Precision(top_k=4) - >>> m.update_state([0, 0, 1, 1], [1, 1, 1, 1]) - >>> m.result().numpy() - 0.5 - - Usage with `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.Precision()]) - ``` - - Usage with a loss with `from_logits=True`: - - ```python - model.compile(optimizer='adam', - loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), - metrics=[tf.keras.metrics.Precision(thresholds=0)]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, thresholds=None, top_k=None, class_id=None, name=None, dtype=None - ): - super().__init__(name=name, dtype=dtype) - self.init_thresholds = thresholds - self.top_k = top_k - self.class_id = class_id - - default_threshold = 0.5 if top_k is None else metrics_utils.NEG_INF - self.thresholds = metrics_utils.parse_init_thresholds( - thresholds, default_threshold=default_threshold - ) - self._thresholds_distributed_evenly = ( - metrics_utils.is_evenly_distributed_thresholds(self.thresholds) - ) - self.true_positives = self.add_weight( - "true_positives", shape=(len(self.thresholds),), initializer="zeros" - ) - self.false_positives = self.add_weight( - "false_positives", - shape=(len(self.thresholds),), - initializer="zeros", - ) - - def update_state(self, y_true, y_pred, sample_weight=None): - """Accumulates true positive and false positive statistics. - - Args: - y_true: The ground truth values, with the same dimensions as `y_pred`. - Will be cast to `bool`. - y_pred: The predicted values. Each element must be in the range - `[0, 1]`. - sample_weight: Optional weighting of each example. Defaults to 1. Can - be a `Tensor` whose rank is either 0, or the same rank as `y_true`, - and must be broadcastable to `y_true`. - - Returns: - Update op. - """ - return metrics_utils.update_confusion_matrix_variables( - { - metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, # noqa: E501 - metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives, # noqa: E501 - }, - y_true, - y_pred, - thresholds=self.thresholds, - thresholds_distributed_evenly=self._thresholds_distributed_evenly, - top_k=self.top_k, - class_id=self.class_id, - sample_weight=sample_weight, - ) - - def result(self): - result = tf.math.divide_no_nan( - self.true_positives, - tf.math.add(self.true_positives, self.false_positives), - ) - return result[0] if len(self.thresholds) == 1 else result - - def reset_state(self): - num_thresholds = len(to_list(self.thresholds)) - backend.batch_set_value( - [ - (v, np.zeros((num_thresholds,))) - for v in (self.true_positives, self.false_positives) - ] - ) - - def get_config(self): - config = { - "thresholds": self.init_thresholds, - "top_k": self.top_k, - "class_id": self.class_id, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.metrics.Recall") -class Recall(base_metric.Metric): - """Computes the recall of the predictions with respect to the labels. - - This metric creates two local variables, `true_positives` and - `false_negatives`, that are used to compute the recall. This value is - ultimately returned as `recall`, an idempotent operation that simply divides - `true_positives` by the sum of `true_positives` and `false_negatives`. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - If `top_k` is set, recall will be computed as how often on average a class - among the labels of a batch entry is in the top-k predictions. - - If `class_id` is specified, we calculate recall by considering only the - entries in the batch for which `class_id` is in the label, and computing the - fraction of them for which `class_id` is above the threshold and/or in the - top-k predictions. - - Args: - thresholds: (Optional) A float value, or a Python list/tuple of float - threshold values in [0, 1]. A threshold is compared with prediction - values to determine the truth value of predictions (i.e., above the - threshold is `true`, below is `false`). If used with a loss function - that sets `from_logits=True` (i.e. no sigmoid applied to predictions), - `thresholds` should be set to 0. One metric value is generated for each - threshold value. If neither thresholds nor top_k are set, the default is - to calculate recall with `thresholds=0.5`. - top_k: (Optional) Unset by default. An int value specifying the top-k - predictions to consider when calculating recall. - class_id: (Optional) Integer class ID for which we want binary metrics. - This must be in the half-open interval `[0, num_classes)`, where - `num_classes` is the last dimension of predictions. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.Recall() - >>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1]) - >>> m.result().numpy() - 0.6666667 - - >>> m.reset_state() - >>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0]) - >>> m.result().numpy() - 1.0 - - Usage with `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.Recall()]) - ``` - - Usage with a loss with `from_logits=True`: - - ```python - model.compile(optimizer='adam', - loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), - metrics=[tf.keras.metrics.Recall(thresholds=0)]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, thresholds=None, top_k=None, class_id=None, name=None, dtype=None - ): - super().__init__(name=name, dtype=dtype) - self.init_thresholds = thresholds - self.top_k = top_k - self.class_id = class_id - - default_threshold = 0.5 if top_k is None else metrics_utils.NEG_INF - self.thresholds = metrics_utils.parse_init_thresholds( - thresholds, default_threshold=default_threshold - ) - self._thresholds_distributed_evenly = ( - metrics_utils.is_evenly_distributed_thresholds(self.thresholds) - ) - self.true_positives = self.add_weight( - "true_positives", shape=(len(self.thresholds),), initializer="zeros" - ) - self.false_negatives = self.add_weight( - "false_negatives", - shape=(len(self.thresholds),), - initializer="zeros", - ) - - def update_state(self, y_true, y_pred, sample_weight=None): - """Accumulates true positive and false negative statistics. - - Args: - y_true: The ground truth values, with the same dimensions as `y_pred`. - Will be cast to `bool`. - y_pred: The predicted values. Each element must be in the range - `[0, 1]`. - sample_weight: Optional weighting of each example. Defaults to 1. Can - be a `Tensor` whose rank is either 0, or the same rank as `y_true`, - and must be broadcastable to `y_true`. - - Returns: - Update op. - """ - return metrics_utils.update_confusion_matrix_variables( - { - metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, # noqa: E501 - metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives, # noqa: E501 - }, - y_true, - y_pred, - thresholds=self.thresholds, - thresholds_distributed_evenly=self._thresholds_distributed_evenly, - top_k=self.top_k, - class_id=self.class_id, - sample_weight=sample_weight, - ) - - def result(self): - result = tf.math.divide_no_nan( - self.true_positives, - tf.math.add(self.true_positives, self.false_negatives), - ) - return result[0] if len(self.thresholds) == 1 else result - - def reset_state(self): - num_thresholds = len(to_list(self.thresholds)) - backend.batch_set_value( - [ - (v, np.zeros((num_thresholds,))) - for v in (self.true_positives, self.false_negatives) - ] - ) - - def get_config(self): - config = { - "thresholds": self.init_thresholds, - "top_k": self.top_k, - "class_id": self.class_id, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -class SensitivitySpecificityBase(base_metric.Metric, metaclass=abc.ABCMeta): - """Abstract base class for computing sensitivity and specificity. - - For additional information about specificity and sensitivity, see - [the following](https://en.wikipedia.org/wiki/Sensitivity_and_specificity). - """ - - def __init__( - self, value, num_thresholds=200, class_id=None, name=None, dtype=None - ): - super().__init__(name=name, dtype=dtype) - if num_thresholds <= 0: - raise ValueError( - "Argument `num_thresholds` must be an integer > 0. " - f"Received: num_thresholds={num_thresholds}" - ) - self.value = value - self.class_id = class_id - self.true_positives = self.add_weight( - "true_positives", shape=(num_thresholds,), initializer="zeros" - ) - self.true_negatives = self.add_weight( - "true_negatives", shape=(num_thresholds,), initializer="zeros" - ) - self.false_positives = self.add_weight( - "false_positives", shape=(num_thresholds,), initializer="zeros" - ) - self.false_negatives = self.add_weight( - "false_negatives", shape=(num_thresholds,), initializer="zeros" - ) - - # Compute `num_thresholds` thresholds in [0, 1] - if num_thresholds == 1: - self.thresholds = [0.5] - self._thresholds_distributed_evenly = False - else: - thresholds = [ - (i + 1) * 1.0 / (num_thresholds - 1) - for i in range(num_thresholds - 2) - ] - self.thresholds = [0.0] + thresholds + [1.0] - self._thresholds_distributed_evenly = True - - def update_state(self, y_true, y_pred, sample_weight=None): - """Accumulates confusion matrix statistics. - - Args: - y_true: The ground truth values. - y_pred: The predicted values. - sample_weight: Optional weighting of each example. Defaults to 1. Can - be a `Tensor` whose rank is either 0, or the same rank as `y_true`, - and must be broadcastable to `y_true`. - - Returns: - Update op. - """ - return metrics_utils.update_confusion_matrix_variables( - { - metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, # noqa: E501 - metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives, # noqa: E501 - metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives, # noqa: E501 - metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives, # noqa: E501 - }, - y_true, - y_pred, - thresholds=self.thresholds, - thresholds_distributed_evenly=self._thresholds_distributed_evenly, - class_id=self.class_id, - sample_weight=sample_weight, - ) - - def reset_state(self): - num_thresholds = len(self.thresholds) - confusion_matrix_variables = ( - self.true_positives, - self.true_negatives, - self.false_positives, - self.false_negatives, - ) - backend.batch_set_value( - [ - (v, np.zeros((num_thresholds,))) - for v in confusion_matrix_variables - ] - ) - - def get_config(self): - config = {"class_id": self.class_id} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - def _find_max_under_constraint(self, constrained, dependent, predicate): - """Returns the maximum of dependent_statistic that satisfies the - constraint. - - Args: - constrained: Over these values the constraint - is specified. A rank-1 tensor. - dependent: From these values the maximum that satiesfies the - constraint is selected. Values in this tensor and in - `constrained` are linked by having the same threshold at each - position, hence this tensor must have the same shape. - predicate: A binary boolean functor to be applied to arguments - `constrained` and `self.value`, e.g. `tf.greater`. - - Returns: - maximal dependent value, if no value satiesfies the constraint 0.0. - """ - feasible = tf.where(predicate(constrained, self.value)) - feasible_exists = tf.greater(tf.size(feasible), 0) - max_dependent = tf.reduce_max(tf.gather(dependent, feasible)) - - return tf.where(feasible_exists, max_dependent, 0.0) - - -@keras_export("keras.metrics.SensitivityAtSpecificity") -class SensitivityAtSpecificity(SensitivitySpecificityBase): - """Computes best sensitivity where specificity is >= specified value. - - the sensitivity at a given specificity. - - `Sensitivity` measures the proportion of actual positives that are correctly - identified as such (tp / (tp + fn)). - `Specificity` measures the proportion of actual negatives that are correctly - identified as such (tn / (tn + fp)). - - This metric creates four local variables, `true_positives`, - `true_negatives`, `false_positives` and `false_negatives` that are used to - compute the sensitivity at the given specificity. The threshold for the - given specificity value is computed and used to evaluate the corresponding - sensitivity. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - If `class_id` is specified, we calculate precision by considering only the - entries in the batch for which `class_id` is above the threshold - predictions, and computing the fraction of them for which `class_id` is - indeed a correct label. - - For additional information about specificity and sensitivity, see - [the following](https://en.wikipedia.org/wiki/Sensitivity_and_specificity). - - Args: - specificity: A scalar value in range `[0, 1]`. - num_thresholds: (Optional) Defaults to 200. The number of thresholds to - use for matching the given specificity. - class_id: (Optional) Integer class ID for which we want binary metrics. - This must be in the half-open interval `[0, num_classes)`, where - `num_classes` is the last dimension of predictions. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.SensitivityAtSpecificity(0.5) - >>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8]) - >>> m.result().numpy() - 0.5 - - >>> m.reset_state() - >>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8], - ... sample_weight=[1, 1, 2, 2, 1]) - >>> m.result().numpy() - 0.333333 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.SensitivityAtSpecificity()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - specificity, - num_thresholds=200, - class_id=None, - name=None, - dtype=None, - ): - if specificity < 0 or specificity > 1: - raise ValueError( - "Argument `specificity` must be in the range [0, 1]. " - f"Received: specificity={specificity}" - ) - self.specificity = specificity - self.num_thresholds = num_thresholds - super().__init__( - specificity, - num_thresholds=num_thresholds, - class_id=class_id, - name=name, - dtype=dtype, - ) - - def result(self): - specificities = tf.math.divide_no_nan( - self.true_negatives, - tf.math.add(self.true_negatives, self.false_positives), - ) - sensitivities = tf.math.divide_no_nan( - self.true_positives, - tf.math.add(self.true_positives, self.false_negatives), - ) - return self._find_max_under_constraint( - specificities, sensitivities, tf.greater_equal - ) - - def get_config(self): - config = { - "num_thresholds": self.num_thresholds, - "specificity": self.specificity, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.metrics.SpecificityAtSensitivity") -class SpecificityAtSensitivity(SensitivitySpecificityBase): - """Computes best specificity where sensitivity is >= specified value. - - `Sensitivity` measures the proportion of actual positives that are correctly - identified as such (tp / (tp + fn)). - `Specificity` measures the proportion of actual negatives that are correctly - identified as such (tn / (tn + fp)). - - This metric creates four local variables, `true_positives`, - `true_negatives`, `false_positives` and `false_negatives` that are used to - compute the specificity at the given sensitivity. The threshold for the - given sensitivity value is computed and used to evaluate the corresponding - specificity. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - If `class_id` is specified, we calculate precision by considering only the - entries in the batch for which `class_id` is above the threshold - predictions, and computing the fraction of them for which `class_id` is - indeed a correct label. - - For additional information about specificity and sensitivity, see - [the following](https://en.wikipedia.org/wiki/Sensitivity_and_specificity). - - Args: - sensitivity: A scalar value in range `[0, 1]`. - num_thresholds: (Optional) Defaults to 200. The number of thresholds to - use for matching the given sensitivity. - class_id: (Optional) Integer class ID for which we want binary metrics. - This must be in the half-open interval `[0, num_classes)`, where - `num_classes` is the last dimension of predictions. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.SpecificityAtSensitivity(0.5) - >>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8]) - >>> m.result().numpy() - 0.66666667 - - >>> m.reset_state() - >>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8], - ... sample_weight=[1, 1, 2, 2, 2]) - >>> m.result().numpy() - 0.5 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.SpecificityAtSensitivity()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - sensitivity, - num_thresholds=200, - class_id=None, - name=None, - dtype=None, - ): - if sensitivity < 0 or sensitivity > 1: - raise ValueError( - "Argument `sensitivity` must be in the range [0, 1]. " - f"Received: sensitivity={sensitivity}" - ) - self.sensitivity = sensitivity - self.num_thresholds = num_thresholds - super().__init__( - sensitivity, - num_thresholds=num_thresholds, - class_id=class_id, - name=name, - dtype=dtype, - ) - - def result(self): - sensitivities = tf.math.divide_no_nan( - self.true_positives, - tf.math.add(self.true_positives, self.false_negatives), - ) - specificities = tf.math.divide_no_nan( - self.true_negatives, - tf.math.add(self.true_negatives, self.false_positives), - ) - return self._find_max_under_constraint( - sensitivities, specificities, tf.greater_equal - ) - - def get_config(self): - config = { - "num_thresholds": self.num_thresholds, - "sensitivity": self.sensitivity, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.metrics.PrecisionAtRecall") -class PrecisionAtRecall(SensitivitySpecificityBase): - """Computes best precision where recall is >= specified value. - - This metric creates four local variables, `true_positives`, - `true_negatives`, `false_positives` and `false_negatives` that are used to - compute the precision at the given recall. The threshold for the given - recall value is computed and used to evaluate the corresponding precision. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - If `class_id` is specified, we calculate precision by considering only the - entries in the batch for which `class_id` is above the threshold - predictions, and computing the fraction of them for which `class_id` is - indeed a correct label. - - Args: - recall: A scalar value in range `[0, 1]`. - num_thresholds: (Optional) Defaults to 200. The number of thresholds to - use for matching the given recall. - class_id: (Optional) Integer class ID for which we want binary metrics. - This must be in the half-open interval `[0, num_classes)`, where - `num_classes` is the last dimension of predictions. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.PrecisionAtRecall(0.5) - >>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8]) - >>> m.result().numpy() - 0.5 - - >>> m.reset_state() - >>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8], - ... sample_weight=[2, 2, 2, 1, 1]) - >>> m.result().numpy() - 0.33333333 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.PrecisionAtRecall(recall=0.8)]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, recall, num_thresholds=200, class_id=None, name=None, dtype=None - ): - if recall < 0 or recall > 1: - raise ValueError( - "Argument `recall` must be in the range [0, 1]. " - f"Received: recall={recall}" - ) - self.recall = recall - self.num_thresholds = num_thresholds - super().__init__( - value=recall, - num_thresholds=num_thresholds, - class_id=class_id, - name=name, - dtype=dtype, - ) - - def result(self): - recalls = tf.math.divide_no_nan( - self.true_positives, - tf.math.add(self.true_positives, self.false_negatives), - ) - precisions = tf.math.divide_no_nan( - self.true_positives, - tf.math.add(self.true_positives, self.false_positives), - ) - return self._find_max_under_constraint( - recalls, precisions, tf.greater_equal - ) - - def get_config(self): - config = {"num_thresholds": self.num_thresholds, "recall": self.recall} - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.metrics.RecallAtPrecision") -class RecallAtPrecision(SensitivitySpecificityBase): - """Computes best recall where precision is >= specified value. - - For a given score-label-distribution the required precision might not - be achievable, in this case 0.0 is returned as recall. - - This metric creates four local variables, `true_positives`, - `true_negatives`, `false_positives` and `false_negatives` that are used to - compute the recall at the given precision. The threshold for the given - precision value is computed and used to evaluate the corresponding recall. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - If `class_id` is specified, we calculate precision by considering only the - entries in the batch for which `class_id` is above the threshold - predictions, and computing the fraction of them for which `class_id` is - indeed a correct label. - - Args: - precision: A scalar value in range `[0, 1]`. - num_thresholds: (Optional) Defaults to 200. The number of thresholds to - use for matching the given precision. - class_id: (Optional) Integer class ID for which we want binary metrics. - This must be in the half-open interval `[0, num_classes)`, where - `num_classes` is the last dimension of predictions. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.RecallAtPrecision(0.8) - >>> m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9]) - >>> m.result().numpy() - 0.5 - - >>> m.reset_state() - >>> m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9], - ... sample_weight=[1, 0, 0, 1]) - >>> m.result().numpy() - 1.0 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.RecallAtPrecision(precision=0.8)]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - precision, - num_thresholds=200, - class_id=None, - name=None, - dtype=None, - ): - if precision < 0 or precision > 1: - raise ValueError( - "Argument `precision` must be in the range [0, 1]. " - f"Received: precision={precision}" - ) - self.precision = precision - self.num_thresholds = num_thresholds - super().__init__( - value=precision, - num_thresholds=num_thresholds, - class_id=class_id, - name=name, - dtype=dtype, - ) - - def result(self): - precisions = tf.math.divide_no_nan( - self.true_positives, - tf.math.add(self.true_positives, self.false_positives), - ) - recalls = tf.math.divide_no_nan( - self.true_positives, - tf.math.add(self.true_positives, self.false_negatives), - ) - return self._find_max_under_constraint( - precisions, recalls, tf.greater_equal - ) - - def get_config(self): - config = { - "num_thresholds": self.num_thresholds, - "precision": self.precision, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.metrics.AUC") -class AUC(base_metric.Metric): - """Approximates the AUC (Area under the curve) of the ROC or PR curves. - - The AUC (Area under the curve) of the ROC (Receiver operating - characteristic; default) or PR (Precision Recall) curves are quality - measures of binary classifiers. Unlike the accuracy, and like cross-entropy - losses, ROC-AUC and PR-AUC evaluate all the operational points of a model. - - This class approximates AUCs using a Riemann sum. During the metric - accumulation phrase, predictions are accumulated within predefined buckets - by value. The AUC is then computed by interpolating per-bucket averages. - These buckets define the evaluated operational points. - - This metric creates four local variables, `true_positives`, - `true_negatives`, `false_positives` and `false_negatives` that are used to - compute the AUC. To discretize the AUC curve, a linearly spaced set of - thresholds is used to compute pairs of recall and precision values. The area - under the ROC-curve is therefore computed using the height of the recall - values by the false positive rate, while the area under the PR-curve is the - computed using the height of the precision values by the recall. - - This value is ultimately returned as `auc`, an idempotent operation that - computes the area under a discretized curve of precision versus recall - values (computed using the aforementioned variables). The `num_thresholds` - variable controls the degree of discretization with larger numbers of - thresholds more closely approximating the true AUC. The quality of the - approximation may vary dramatically depending on `num_thresholds`. The - `thresholds` parameter can be used to manually specify thresholds which - split the predictions more evenly. - - For a best approximation of the real AUC, `predictions` should be - distributed approximately uniformly in the range [0, 1] (if - `from_logits=False`). The quality of the AUC approximation may be poor if - this is not the case. Setting `summation_method` to 'minoring' or 'majoring' - can help quantify the error in the approximation by providing lower or upper - bound estimate of the AUC. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Args: - num_thresholds: (Optional) Defaults to 200. The number of thresholds to - use when discretizing the roc curve. Values must be > 1. - curve: (Optional) Specifies the name of the curve to be computed, 'ROC' - [default] or 'PR' for the Precision-Recall-curve. - summation_method: (Optional) Specifies the [Riemann summation method]( - https://en.wikipedia.org/wiki/Riemann_sum) used. - 'interpolation' (default) applies mid-point summation scheme for - `ROC`. For PR-AUC, interpolates (true/false) positives but not the - ratio that is precision (see Davis & Goadrich 2006 for details); - 'minoring' applies left summation for increasing intervals and right - summation for decreasing intervals; 'majoring' does the opposite. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - thresholds: (Optional) A list of floating point values to use as the - thresholds for discretizing the curve. If set, the `num_thresholds` - parameter is ignored. Values should be in [0, 1]. Endpoint thresholds - equal to {-epsilon, 1+epsilon} for a small positive epsilon value will - be automatically included with these to correctly handle predictions - equal to exactly 0 or 1. - multi_label: boolean indicating whether multilabel data should be - treated as such, wherein AUC is computed separately for each label and - then averaged across labels, or (when False) if the data should be - flattened into a single label before AUC computation. In the latter - case, when multilabel data is passed to AUC, each label-prediction pair - is treated as an individual data point. Should be set to False for - multi-class data. - num_labels: (Optional) The number of labels, used when `multi_label` is - True. If `num_labels` is not specified, then state variables get created - on the first call to `update_state`. - label_weights: (Optional) list, array, or tensor of non-negative weights - used to compute AUCs for multilabel data. When `multi_label` is True, - the weights are applied to the individual label AUCs when they are - averaged to produce the multi-label AUC. When it's False, they are used - to weight the individual label predictions in computing the confusion - matrix on the flattened data. Note that this is unlike class_weights in - that class_weights weights the example depending on the value of its - label, whereas label_weights depends only on the index of that label - before flattening; therefore `label_weights` should not be used for - multi-class data. - from_logits: boolean indicating whether the predictions (`y_pred` in - `update_state`) are probabilities or sigmoid logits. As a rule of thumb, - when using a keras loss, the `from_logits` constructor argument of the - loss should match the AUC `from_logits` constructor argument. - - Standalone usage: - - >>> m = tf.keras.metrics.AUC(num_thresholds=3) - >>> m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9]) - >>> # threshold values are [0 - 1e-7, 0.5, 1 + 1e-7] - >>> # tp = [2, 1, 0], fp = [2, 0, 0], fn = [0, 1, 2], tn = [0, 2, 2] - >>> # tp_rate = recall = [1, 0.5, 0], fp_rate = [1, 0, 0] - >>> # auc = ((((1+0.5)/2)*(1-0)) + (((0.5+0)/2)*(0-0))) = 0.75 - >>> m.result().numpy() - 0.75 - - >>> m.reset_state() - >>> m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9], - ... sample_weight=[1, 0, 0, 1]) - >>> m.result().numpy() - 1.0 - - Usage with `compile()` API: - - ```python - # Reports the AUC of a model outputting a probability. - model.compile(optimizer='sgd', - loss=tf.keras.losses.BinaryCrossentropy(), - metrics=[tf.keras.metrics.AUC()]) - - # Reports the AUC of a model outputting a logit. - model.compile(optimizer='sgd', - loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), - metrics=[tf.keras.metrics.AUC(from_logits=True)]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - num_thresholds=200, - curve="ROC", - summation_method="interpolation", - name=None, - dtype=None, - thresholds=None, - multi_label=False, - num_labels=None, - label_weights=None, - from_logits=False, - ): - # Validate configurations. - if isinstance(curve, metrics_utils.AUCCurve) and curve not in list( - metrics_utils.AUCCurve - ): - raise ValueError( - f'Invalid `curve` argument value "{curve}". ' - f"Expected one of: {list(metrics_utils.AUCCurve)}" - ) - if isinstance( - summation_method, metrics_utils.AUCSummationMethod - ) and summation_method not in list(metrics_utils.AUCSummationMethod): - raise ValueError( - "Invalid `summation_method` " - f'argument value "{summation_method}". ' - f"Expected one of: {list(metrics_utils.AUCSummationMethod)}" - ) - - # Update properties. - self._init_from_thresholds = thresholds is not None - if thresholds is not None: - # If specified, use the supplied thresholds. - self.num_thresholds = len(thresholds) + 2 - thresholds = sorted(thresholds) - self._thresholds_distributed_evenly = ( - metrics_utils.is_evenly_distributed_thresholds( - np.array([0.0] + thresholds + [1.0]) - ) - ) - else: - if num_thresholds <= 1: - raise ValueError( - "Argument `num_thresholds` must be an integer > 1. " - f"Received: num_thresholds={num_thresholds}" - ) - - # Otherwise, linearly interpolate (num_thresholds - 2) thresholds in - # (0, 1). - self.num_thresholds = num_thresholds - thresholds = [ - (i + 1) * 1.0 / (num_thresholds - 1) - for i in range(num_thresholds - 2) - ] - self._thresholds_distributed_evenly = True - - # Add an endpoint "threshold" below zero and above one for either - # threshold method to account for floating point imprecisions. - self._thresholds = np.array( - [0.0 - backend.epsilon()] + thresholds + [1.0 + backend.epsilon()] - ) - - if isinstance(curve, metrics_utils.AUCCurve): - self.curve = curve - else: - self.curve = metrics_utils.AUCCurve.from_str(curve) - if isinstance(summation_method, metrics_utils.AUCSummationMethod): - self.summation_method = summation_method - else: - self.summation_method = metrics_utils.AUCSummationMethod.from_str( - summation_method - ) - super().__init__(name=name, dtype=dtype) - - # Handle multilabel arguments. - self.multi_label = multi_label - self.num_labels = num_labels - if label_weights is not None: - label_weights = tf.constant(label_weights, dtype=self.dtype) - tf.debugging.assert_non_negative( - label_weights, - message="All values of `label_weights` must be non-negative.", - ) - self.label_weights = label_weights - - else: - self.label_weights = None - - self._from_logits = from_logits - - self._built = False - if self.multi_label: - if num_labels: - shape = tf.TensorShape([None, num_labels]) - self._build(shape) - else: - if num_labels: - raise ValueError( - "`num_labels` is needed only when `multi_label` is True." - ) - self._build(None) - - @property - def thresholds(self): - """The thresholds used for evaluating AUC.""" - return list(self._thresholds) - - def _build(self, shape): - """Initialize TP, FP, TN, and FN tensors, given the shape of the - data.""" - if self.multi_label: - if shape.ndims != 2: - raise ValueError( - "`y_true` must have rank 2 when `multi_label=True`. " - f"Found rank {shape.ndims}. " - f"Full shape received for `y_true`: {shape}" - ) - self._num_labels = shape[1] - variable_shape = tf.TensorShape( - [self.num_thresholds, self._num_labels] - ) - else: - variable_shape = tf.TensorShape([self.num_thresholds]) - - self._build_input_shape = shape - # Create metric variables - self.true_positives = self.add_weight( - "true_positives", shape=variable_shape, initializer="zeros" - ) - self.true_negatives = self.add_weight( - "true_negatives", shape=variable_shape, initializer="zeros" - ) - self.false_positives = self.add_weight( - "false_positives", shape=variable_shape, initializer="zeros" - ) - self.false_negatives = self.add_weight( - "false_negatives", shape=variable_shape, initializer="zeros" - ) - - if self.multi_label: - with tf.init_scope(): - # This should only be necessary for handling v1 behavior. In v2, - # AUC should be initialized outside of any tf.functions, and - # therefore in eager mode. - if not tf.executing_eagerly(): - backend._initialize_variables(backend._get_session()) - - self._built = True - - def update_state(self, y_true, y_pred, sample_weight=None): - """Accumulates confusion matrix statistics. - - Args: - y_true: The ground truth values. - y_pred: The predicted values. - sample_weight: Optional weighting of each example. Defaults to 1. Can - be a `Tensor` whose rank is either 0, or the same rank as `y_true`, - and must be broadcastable to `y_true`. - - Returns: - Update op. - """ - if not self._built: - self._build(tf.TensorShape(y_pred.shape)) - - if self.multi_label or (self.label_weights is not None): - # y_true should have shape (number of examples, number of labels). - shapes = [(y_true, ("N", "L"))] - if self.multi_label: - # TP, TN, FP, and FN should all have shape - # (number of thresholds, number of labels). - shapes.extend( - [ - (self.true_positives, ("T", "L")), - (self.true_negatives, ("T", "L")), - (self.false_positives, ("T", "L")), - (self.false_negatives, ("T", "L")), - ] - ) - if self.label_weights is not None: - # label_weights should be of length equal to the number of - # labels. - shapes.append((self.label_weights, ("L",))) - tf.debugging.assert_shapes( - shapes, message="Number of labels is not consistent." - ) - - # Only forward label_weights to update_confusion_matrix_variables when - # multi_label is False. Otherwise the averaging of individual label AUCs - # is handled in AUC.result - label_weights = None if self.multi_label else self.label_weights - - if self._from_logits: - y_pred = activations.sigmoid(y_pred) - - return metrics_utils.update_confusion_matrix_variables( - { - metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, # noqa: E501 - metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives, # noqa: E501 - metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives, # noqa: E501 - metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives, # noqa: E501 - }, - y_true, - y_pred, - self._thresholds, - thresholds_distributed_evenly=self._thresholds_distributed_evenly, - sample_weight=sample_weight, - multi_label=self.multi_label, - label_weights=label_weights, - ) - - def interpolate_pr_auc(self): - """Interpolation formula inspired by section 4 of Davis & Goadrich 2006. - - https://www.biostat.wisc.edu/~page/rocpr.pdf - - Note here we derive & use a closed formula not present in the paper - as follows: - - Precision = TP / (TP + FP) = TP / P - - Modeling all of TP (true positive), FP (false positive) and their sum - P = TP + FP (predicted positive) as varying linearly within each - interval [A, B] between successive thresholds, we get - - Precision slope = dTP / dP - = (TP_B - TP_A) / (P_B - P_A) - = (TP - TP_A) / (P - P_A) - Precision = (TP_A + slope * (P - P_A)) / P - - The area within the interval is (slope / total_pos_weight) times - - int_A^B{Precision.dP} = int_A^B{(TP_A + slope * (P - P_A)) * dP / P} - int_A^B{Precision.dP} = int_A^B{slope * dP + intercept * dP / P} - - where intercept = TP_A - slope * P_A = TP_B - slope * P_B, resulting in - - int_A^B{Precision.dP} = TP_B - TP_A + intercept * log(P_B / P_A) - - Bringing back the factor (slope / total_pos_weight) we'd put aside, we - get - - slope * [dTP + intercept * log(P_B / P_A)] / total_pos_weight - - where dTP == TP_B - TP_A. - - Note that when P_A == 0 the above calculation simplifies into - - int_A^B{Precision.dTP} = int_A^B{slope * dTP} = slope * (TP_B - TP_A) - - which is really equivalent to imputing constant precision throughout the - first bucket having >0 true positives. - - Returns: - pr_auc: an approximation of the area under the P-R curve. - """ - dtp = ( - self.true_positives[: self.num_thresholds - 1] - - self.true_positives[1:] - ) - p = tf.math.add(self.true_positives, self.false_positives) - dp = p[: self.num_thresholds - 1] - p[1:] - prec_slope = tf.math.divide_no_nan( - dtp, tf.maximum(dp, 0), name="prec_slope" - ) - intercept = self.true_positives[1:] - tf.multiply(prec_slope, p[1:]) - - safe_p_ratio = tf.where( - tf.logical_and(p[: self.num_thresholds - 1] > 0, p[1:] > 0), - tf.math.divide_no_nan( - p[: self.num_thresholds - 1], - tf.maximum(p[1:], 0), - name="recall_relative_ratio", - ), - tf.ones_like(p[1:]), - ) - - pr_auc_increment = tf.math.divide_no_nan( - prec_slope * (dtp + intercept * tf.math.log(safe_p_ratio)), - tf.maximum(self.true_positives[1:] + self.false_negatives[1:], 0), - name="pr_auc_increment", - ) - - if self.multi_label: - by_label_auc = tf.reduce_sum( - pr_auc_increment, name=self.name + "_by_label", axis=0 - ) - if self.label_weights is None: - # Evenly weighted average of the label AUCs. - return tf.reduce_mean(by_label_auc, name=self.name) - else: - # Weighted average of the label AUCs. - return tf.math.divide_no_nan( - tf.reduce_sum( - tf.multiply(by_label_auc, self.label_weights) - ), - tf.reduce_sum(self.label_weights), - name=self.name, - ) - else: - return tf.reduce_sum(pr_auc_increment, name="interpolate_pr_auc") - - def result(self): - if ( - self.curve == metrics_utils.AUCCurve.PR - and self.summation_method - == metrics_utils.AUCSummationMethod.INTERPOLATION - ): - # This use case is different and is handled separately. - return self.interpolate_pr_auc() - - # Set `x` and `y` values for the curves based on `curve` config. - recall = tf.math.divide_no_nan( - self.true_positives, - tf.math.add(self.true_positives, self.false_negatives), - ) - if self.curve == metrics_utils.AUCCurve.ROC: - fp_rate = tf.math.divide_no_nan( - self.false_positives, - tf.math.add(self.false_positives, self.true_negatives), - ) - x = fp_rate - y = recall - else: # curve == 'PR'. - precision = tf.math.divide_no_nan( - self.true_positives, - tf.math.add(self.true_positives, self.false_positives), - ) - x = recall - y = precision - - # Find the rectangle heights based on `summation_method`. - if ( - self.summation_method - == metrics_utils.AUCSummationMethod.INTERPOLATION - ): - # Note: the case ('PR', 'interpolation') has been handled above. - heights = (y[: self.num_thresholds - 1] + y[1:]) / 2.0 - elif self.summation_method == metrics_utils.AUCSummationMethod.MINORING: - heights = tf.minimum(y[: self.num_thresholds - 1], y[1:]) - # self.summation_method = metrics_utils.AUCSummationMethod.MAJORING: - else: - heights = tf.maximum(y[: self.num_thresholds - 1], y[1:]) - - # Sum up the areas of all the rectangles. - if self.multi_label: - riemann_terms = tf.multiply( - x[: self.num_thresholds - 1] - x[1:], heights - ) - by_label_auc = tf.reduce_sum( - riemann_terms, name=self.name + "_by_label", axis=0 - ) - - if self.label_weights is None: - # Unweighted average of the label AUCs. - return tf.reduce_mean(by_label_auc, name=self.name) - else: - # Weighted average of the label AUCs. - return tf.math.divide_no_nan( - tf.reduce_sum( - tf.multiply(by_label_auc, self.label_weights) - ), - tf.reduce_sum(self.label_weights), - name=self.name, - ) - else: - return tf.reduce_sum( - tf.multiply(x[: self.num_thresholds - 1] - x[1:], heights), - name=self.name, - ) - - def reset_state(self): - if self._built: - confusion_matrix_variables = ( - self.true_positives, - self.true_negatives, - self.false_positives, - self.false_negatives, - ) - if self.multi_label: - backend.batch_set_value( - [ - (v, np.zeros((self.num_thresholds, self._num_labels))) - for v in confusion_matrix_variables - ] - ) - else: - backend.batch_set_value( - [ - (v, np.zeros((self.num_thresholds,))) - for v in confusion_matrix_variables - ] - ) - - def get_config(self): - if is_tensor_or_variable(self.label_weights): - label_weights = backend.eval(self.label_weights) - else: - label_weights = self.label_weights - config = { - "num_thresholds": self.num_thresholds, - "curve": self.curve.value, - "summation_method": self.summation_method.value, - "multi_label": self.multi_label, - "num_labels": self.num_labels, - "label_weights": label_weights, - "from_logits": self._from_logits, - } - # optimization to avoid serializing a large number of generated - # thresholds - if self._init_from_thresholds: - # We remove the endpoint thresholds as an inverse of how the - # thresholds were initialized. This ensures that a metric - # initialized from this config has the same thresholds. - config["thresholds"] = self.thresholds[1:-1] - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) diff --git a/keras/metrics/confusion_metrics_test.py b/keras/metrics/confusion_metrics_test.py deleted file mode 100644 index a1e16a51fdf..00000000000 --- a/keras/metrics/confusion_metrics_test.py +++ /dev/null @@ -1,2735 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for confusion metrics.""" - -import json - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized -from tensorflow.python.platform import tf_logging - -from keras import backend -from keras import layers -from keras import metrics -from keras import models -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import metrics_utils - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class FalsePositivesTest(tf.test.TestCase, parameterized.TestCase): - def test_config(self): - fp_obj = metrics.FalsePositives(name="my_fp", thresholds=[0.4, 0.9]) - self.assertEqual(fp_obj.name, "my_fp") - self.assertLen(fp_obj.variables, 1) - self.assertEqual(fp_obj.thresholds, [0.4, 0.9]) - - # Check save and restore config - fp_obj2 = metrics.FalsePositives.from_config(fp_obj.get_config()) - self.assertEqual(fp_obj2.name, "my_fp") - self.assertLen(fp_obj2.variables, 1) - self.assertEqual(fp_obj2.thresholds, [0.4, 0.9]) - - def test_unweighted(self): - fp_obj = metrics.FalsePositives() - self.evaluate(tf.compat.v1.variables_initializer(fp_obj.variables)) - - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - - update_op = fp_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = fp_obj.result() - self.assertAllClose(7.0, result) - - def test_weighted(self): - fp_obj = metrics.FalsePositives() - self.evaluate(tf.compat.v1.variables_initializer(fp_obj.variables)) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - sample_weight = tf.constant((1.0, 1.5, 2.0, 2.5)) - result = fp_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(14.0, self.evaluate(result)) - - def test_unweighted_with_thresholds(self): - fp_obj = metrics.FalsePositives(thresholds=[0.15, 0.5, 0.85]) - self.evaluate(tf.compat.v1.variables_initializer(fp_obj.variables)) - - y_pred = tf.constant( - ( - (0.9, 0.2, 0.8, 0.1), - (0.2, 0.9, 0.7, 0.6), - (0.1, 0.2, 0.4, 0.3), - (0, 1, 0.7, 0.3), - ) - ) - y_true = tf.constant( - ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) - ) - - update_op = fp_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = fp_obj.result() - self.assertAllClose([7.0, 4.0, 2.0], result) - - def test_weighted_with_thresholds(self): - fp_obj = metrics.FalsePositives(thresholds=[0.15, 0.5, 0.85]) - self.evaluate(tf.compat.v1.variables_initializer(fp_obj.variables)) - - y_pred = tf.constant( - ( - (0.9, 0.2, 0.8, 0.1), - (0.2, 0.9, 0.7, 0.6), - (0.1, 0.2, 0.4, 0.3), - (0, 1, 0.7, 0.3), - ) - ) - y_true = tf.constant( - ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) - ) - sample_weight = ( - (1.0, 2.0, 3.0, 5.0), - (7.0, 11.0, 13.0, 17.0), - (19.0, 23.0, 29.0, 31.0), - (5.0, 15.0, 10.0, 0), - ) - - result = fp_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose([125.0, 42.0, 12.0], self.evaluate(result)) - - def test_threshold_limit(self): - with self.assertRaisesRegex( - ValueError, - r"Threshold values must be in \[0, 1\]. Received: \[-1, 2\]", - ): - metrics.FalsePositives(thresholds=[-1, 0.5, 2]) - - with self.assertRaisesRegex( - ValueError, - r"Threshold values must be in \[0, 1\]. Received: \[None\]", - ): - metrics.FalsePositives(thresholds=[None]) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class FalseNegativesTest(tf.test.TestCase, parameterized.TestCase): - def test_config(self): - fn_obj = metrics.FalseNegatives(name="my_fn", thresholds=[0.4, 0.9]) - self.assertEqual(fn_obj.name, "my_fn") - self.assertLen(fn_obj.variables, 1) - self.assertEqual(fn_obj.thresholds, [0.4, 0.9]) - - # Check save and restore config - fn_obj2 = metrics.FalseNegatives.from_config(fn_obj.get_config()) - self.assertEqual(fn_obj2.name, "my_fn") - self.assertLen(fn_obj2.variables, 1) - self.assertEqual(fn_obj2.thresholds, [0.4, 0.9]) - - def test_unweighted(self): - fn_obj = metrics.FalseNegatives() - self.evaluate(tf.compat.v1.variables_initializer(fn_obj.variables)) - - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - - update_op = fn_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = fn_obj.result() - self.assertAllClose(3.0, result) - - def test_weighted(self): - fn_obj = metrics.FalseNegatives() - self.evaluate(tf.compat.v1.variables_initializer(fn_obj.variables)) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - sample_weight = tf.constant((1.0, 1.5, 2.0, 2.5)) - result = fn_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(5.0, self.evaluate(result)) - - def test_unweighted_with_thresholds(self): - fn_obj = metrics.FalseNegatives(thresholds=[0.15, 0.5, 0.85]) - self.evaluate(tf.compat.v1.variables_initializer(fn_obj.variables)) - - y_pred = tf.constant( - ( - (0.9, 0.2, 0.8, 0.1), - (0.2, 0.9, 0.7, 0.6), - (0.1, 0.2, 0.4, 0.3), - (0, 1, 0.7, 0.3), - ) - ) - y_true = tf.constant( - ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) - ) - - update_op = fn_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = fn_obj.result() - self.assertAllClose([1.0, 4.0, 6.0], result) - - def test_weighted_with_thresholds(self): - fn_obj = metrics.FalseNegatives(thresholds=[0.15, 0.5, 0.85]) - self.evaluate(tf.compat.v1.variables_initializer(fn_obj.variables)) - - y_pred = tf.constant( - ( - (0.9, 0.2, 0.8, 0.1), - (0.2, 0.9, 0.7, 0.6), - (0.1, 0.2, 0.4, 0.3), - (0, 1, 0.7, 0.3), - ) - ) - y_true = tf.constant( - ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) - ) - sample_weight = ((3.0,), (5.0,), (7.0,), (4.0,)) - - result = fn_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose([4.0, 16.0, 23.0], self.evaluate(result)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class TrueNegativesTest(tf.test.TestCase, parameterized.TestCase): - def test_config(self): - tn_obj = metrics.TrueNegatives(name="my_tn", thresholds=[0.4, 0.9]) - self.assertEqual(tn_obj.name, "my_tn") - self.assertLen(tn_obj.variables, 1) - self.assertEqual(tn_obj.thresholds, [0.4, 0.9]) - - # Check save and restore config - tn_obj2 = metrics.TrueNegatives.from_config(tn_obj.get_config()) - self.assertEqual(tn_obj2.name, "my_tn") - self.assertLen(tn_obj2.variables, 1) - self.assertEqual(tn_obj2.thresholds, [0.4, 0.9]) - - def test_unweighted(self): - tn_obj = metrics.TrueNegatives() - self.evaluate(tf.compat.v1.variables_initializer(tn_obj.variables)) - - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - - update_op = tn_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = tn_obj.result() - self.assertAllClose(3.0, result) - - def test_weighted(self): - tn_obj = metrics.TrueNegatives() - self.evaluate(tf.compat.v1.variables_initializer(tn_obj.variables)) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - sample_weight = tf.constant((1.0, 1.5, 2.0, 2.5)) - result = tn_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(4.0, self.evaluate(result)) - - def test_unweighted_with_thresholds(self): - tn_obj = metrics.TrueNegatives(thresholds=[0.15, 0.5, 0.85]) - self.evaluate(tf.compat.v1.variables_initializer(tn_obj.variables)) - - y_pred = tf.constant( - ( - (0.9, 0.2, 0.8, 0.1), - (0.2, 0.9, 0.7, 0.6), - (0.1, 0.2, 0.4, 0.3), - (0, 1, 0.7, 0.3), - ) - ) - y_true = tf.constant( - ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) - ) - - update_op = tn_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = tn_obj.result() - self.assertAllClose([2.0, 5.0, 7.0], result) - - def test_weighted_with_thresholds(self): - tn_obj = metrics.TrueNegatives(thresholds=[0.15, 0.5, 0.85]) - self.evaluate(tf.compat.v1.variables_initializer(tn_obj.variables)) - - y_pred = tf.constant( - ( - (0.9, 0.2, 0.8, 0.1), - (0.2, 0.9, 0.7, 0.6), - (0.1, 0.2, 0.4, 0.3), - (0, 1, 0.7, 0.3), - ) - ) - y_true = tf.constant( - ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) - ) - sample_weight = ((0.0, 2.0, 3.0, 5.0),) - - result = tn_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose([5.0, 15.0, 23.0], self.evaluate(result)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class TruePositivesTest(tf.test.TestCase, parameterized.TestCase): - def test_config(self): - tp_obj = metrics.TruePositives(name="my_tp", thresholds=[0.4, 0.9]) - self.assertEqual(tp_obj.name, "my_tp") - self.assertLen(tp_obj.variables, 1) - self.assertEqual(tp_obj.thresholds, [0.4, 0.9]) - - # Check save and restore config - tp_obj2 = metrics.TruePositives.from_config(tp_obj.get_config()) - self.assertEqual(tp_obj2.name, "my_tp") - self.assertLen(tp_obj2.variables, 1) - self.assertEqual(tp_obj2.thresholds, [0.4, 0.9]) - - def test_unweighted(self): - tp_obj = metrics.TruePositives() - self.evaluate(tf.compat.v1.variables_initializer(tp_obj.variables)) - - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - - update_op = tp_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = tp_obj.result() - self.assertAllClose(7.0, result) - - def test_weighted(self): - tp_obj = metrics.TruePositives() - self.evaluate(tf.compat.v1.variables_initializer(tp_obj.variables)) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - sample_weight = tf.constant((1.0, 1.5, 2.0, 2.5)) - result = tp_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(12.0, self.evaluate(result)) - - def test_unweighted_with_thresholds(self): - tp_obj = metrics.TruePositives(thresholds=[0.15, 0.5, 0.85]) - self.evaluate(tf.compat.v1.variables_initializer(tp_obj.variables)) - - y_pred = tf.constant( - ( - (0.9, 0.2, 0.8, 0.1), - (0.2, 0.9, 0.7, 0.6), - (0.1, 0.2, 0.4, 0.3), - (0, 1, 0.7, 0.3), - ) - ) - y_true = tf.constant( - ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) - ) - - update_op = tp_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = tp_obj.result() - self.assertAllClose([6.0, 3.0, 1.0], result) - - def test_weighted_with_thresholds(self): - tp_obj = metrics.TruePositives(thresholds=[0.15, 0.5, 0.85]) - self.evaluate(tf.compat.v1.variables_initializer(tp_obj.variables)) - - y_pred = tf.constant( - ( - (0.9, 0.2, 0.8, 0.1), - (0.2, 0.9, 0.7, 0.6), - (0.1, 0.2, 0.4, 0.3), - (0, 1, 0.7, 0.3), - ) - ) - y_true = tf.constant( - ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) - ) - - result = tp_obj(y_true, y_pred, sample_weight=37.0) - self.assertAllClose([222.0, 111.0, 37.0], self.evaluate(result)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class PrecisionTest(tf.test.TestCase, parameterized.TestCase): - def test_config(self): - p_obj = metrics.Precision( - name="my_precision", thresholds=[0.4, 0.9], top_k=15, class_id=12 - ) - self.assertEqual(p_obj.name, "my_precision") - self.assertLen(p_obj.variables, 2) - self.assertEqual( - [v.name for v in p_obj.variables], - ["true_positives:0", "false_positives:0"], - ) - self.assertEqual(p_obj.thresholds, [0.4, 0.9]) - self.assertEqual(p_obj.top_k, 15) - self.assertEqual(p_obj.class_id, 12) - - # Check save and restore config - p_obj2 = metrics.Precision.from_config(p_obj.get_config()) - self.assertEqual(p_obj2.name, "my_precision") - self.assertLen(p_obj2.variables, 2) - self.assertEqual(p_obj2.thresholds, [0.4, 0.9]) - self.assertEqual(p_obj2.top_k, 15) - self.assertEqual(p_obj2.class_id, 12) - - def test_value_is_idempotent(self): - p_obj = metrics.Precision(thresholds=[0.3, 0.72]) - y_pred = tf.random.uniform(shape=(10, 3)) - y_true = tf.random.uniform(shape=(10, 3)) - update_op = p_obj.update_state(y_true, y_pred) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - - # Run several updates. - for _ in range(10): - self.evaluate(update_op) - - # Then verify idempotency. - initial_precision = self.evaluate(p_obj.result()) - for _ in range(10): - self.assertArrayNear( - initial_precision, self.evaluate(p_obj.result()), 1e-3 - ) - - def test_unweighted(self): - p_obj = metrics.Precision() - y_pred = tf.constant([1, 0, 1, 0], shape=(1, 4)) - y_true = tf.constant([0, 1, 1, 0], shape=(1, 4)) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - result = p_obj(y_true, y_pred) - self.assertAlmostEqual(0.5, self.evaluate(result)) - - def test_unweighted_all_incorrect(self): - p_obj = metrics.Precision(thresholds=[0.5]) - inputs = np.random.randint(0, 2, size=(100, 1)) - y_pred = tf.constant(inputs) - y_true = tf.constant(1 - inputs) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - result = p_obj(y_true, y_pred) - self.assertAlmostEqual(0, self.evaluate(result)) - - def test_weighted(self): - p_obj = metrics.Precision() - y_pred = tf.constant([[1, 0, 1, 0], [1, 0, 1, 0]]) - y_true = tf.constant([[0, 1, 1, 0], [1, 0, 0, 1]]) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - result = p_obj( - y_true, - y_pred, - sample_weight=tf.constant([[1, 2, 3, 4], [4, 3, 2, 1]]), - ) - weighted_tp = 3.0 + 4.0 - weighted_positives = (1.0 + 3.0) + (4.0 + 2.0) - expected_precision = weighted_tp / weighted_positives - self.assertAlmostEqual(expected_precision, self.evaluate(result)) - - def test_div_by_zero(self): - p_obj = metrics.Precision() - y_pred = tf.constant([0, 0, 0, 0]) - y_true = tf.constant([0, 0, 0, 0]) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - result = p_obj(y_true, y_pred) - self.assertEqual(0, self.evaluate(result)) - - def test_unweighted_with_threshold(self): - p_obj = metrics.Precision(thresholds=[0.5, 0.7]) - y_pred = tf.constant([1, 0, 0.6, 0], shape=(1, 4)) - y_true = tf.constant([0, 1, 1, 0], shape=(1, 4)) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - result = p_obj(y_true, y_pred) - self.assertArrayNear([0.5, 0.0], self.evaluate(result), 0) - - def test_weighted_with_threshold(self): - p_obj = metrics.Precision(thresholds=[0.5, 1.0]) - y_true = tf.constant([[0, 1], [1, 0]], shape=(2, 2)) - y_pred = tf.constant([[1, 0], [0.6, 0]], shape=(2, 2), dtype=tf.float32) - weights = tf.constant([[4, 0], [3, 1]], shape=(2, 2), dtype=tf.float32) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - result = p_obj(y_true, y_pred, sample_weight=weights) - weighted_tp = 0 + 3.0 - weighted_positives = (0 + 3.0) + (4.0 + 0.0) - expected_precision = weighted_tp / weighted_positives - self.assertArrayNear( - [expected_precision, 0], self.evaluate(result), 1e-3 - ) - - def test_multiple_updates(self): - p_obj = metrics.Precision(thresholds=[0.5, 1.0]) - y_true = tf.constant([[0, 1], [1, 0]], shape=(2, 2)) - y_pred = tf.constant([[1, 0], [0.6, 0]], shape=(2, 2), dtype=tf.float32) - weights = tf.constant([[4, 0], [3, 1]], shape=(2, 2), dtype=tf.float32) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - update_op = p_obj.update_state(y_true, y_pred, sample_weight=weights) - for _ in range(2): - self.evaluate(update_op) - - weighted_tp = (0 + 3.0) + (0 + 3.0) - weighted_positives = ((0 + 3.0) + (4.0 + 0.0)) + ( - (0 + 3.0) + (4.0 + 0.0) - ) - expected_precision = weighted_tp / weighted_positives - self.assertArrayNear( - [expected_precision, 0], self.evaluate(p_obj.result()), 1e-3 - ) - - def test_unweighted_top_k(self): - p_obj = metrics.Precision(top_k=3) - y_pred = tf.constant([0.2, 0.1, 0.5, 0, 0.2], shape=(1, 5)) - y_true = tf.constant([0, 1, 1, 0, 0], shape=(1, 5)) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - result = p_obj(y_true, y_pred) - self.assertAlmostEqual(1.0 / 3, self.evaluate(result)) - - def test_weighted_top_k(self): - p_obj = metrics.Precision(top_k=3) - y_pred1 = tf.constant([0.2, 0.1, 0.4, 0, 0.2], shape=(1, 5)) - y_true1 = tf.constant([0, 1, 1, 0, 1], shape=(1, 5)) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - self.evaluate( - p_obj( - y_true1, y_pred1, sample_weight=tf.constant([[1, 4, 2, 3, 5]]) - ) - ) - - y_pred2 = tf.constant([0.2, 0.6, 0.4, 0.2, 0.2], shape=(1, 5)) - y_true2 = tf.constant([1, 0, 1, 1, 1], shape=(1, 5)) - result = p_obj(y_true2, y_pred2, sample_weight=tf.constant(3)) - - tp = (2 + 5) + (3 + 3) - predicted_positives = (1 + 2 + 5) + (3 + 3 + 3) - expected_precision = tp / predicted_positives - self.assertAlmostEqual(expected_precision, self.evaluate(result)) - - def test_unweighted_class_id(self): - p_obj = metrics.Precision(class_id=2) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - - y_pred = tf.constant([0.2, 0.1, 0.6, 0, 0.2], shape=(1, 5)) - y_true = tf.constant([0, 1, 1, 0, 0], shape=(1, 5)) - result = p_obj(y_true, y_pred) - self.assertAlmostEqual(1, self.evaluate(result)) - self.assertAlmostEqual(1, self.evaluate(p_obj.true_positives)) - self.assertAlmostEqual(0, self.evaluate(p_obj.false_positives)) - - y_pred = tf.constant([0.2, 0.1, 0, 0, 0.2], shape=(1, 5)) - y_true = tf.constant([0, 1, 1, 0, 0], shape=(1, 5)) - result = p_obj(y_true, y_pred) - self.assertAlmostEqual(1, self.evaluate(result)) - self.assertAlmostEqual(1, self.evaluate(p_obj.true_positives)) - self.assertAlmostEqual(0, self.evaluate(p_obj.false_positives)) - - y_pred = tf.constant([0.2, 0.1, 0.6, 0, 0.2], shape=(1, 5)) - y_true = tf.constant([0, 1, 0, 0, 0], shape=(1, 5)) - result = p_obj(y_true, y_pred) - self.assertAlmostEqual(0.5, self.evaluate(result)) - self.assertAlmostEqual(1, self.evaluate(p_obj.true_positives)) - self.assertAlmostEqual(1, self.evaluate(p_obj.false_positives)) - - def test_unweighted_top_k_and_class_id(self): - p_obj = metrics.Precision(class_id=2, top_k=2) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - - y_pred = tf.constant([0.2, 0.6, 0.3, 0, 0.2], shape=(1, 5)) - y_true = tf.constant([0, 1, 1, 0, 0], shape=(1, 5)) - result = p_obj(y_true, y_pred) - self.assertAlmostEqual(1, self.evaluate(result)) - self.assertAlmostEqual(1, self.evaluate(p_obj.true_positives)) - self.assertAlmostEqual(0, self.evaluate(p_obj.false_positives)) - - y_pred = tf.constant([1, 1, 0.9, 1, 1], shape=(1, 5)) - y_true = tf.constant([0, 1, 1, 0, 0], shape=(1, 5)) - result = p_obj(y_true, y_pred) - self.assertAlmostEqual(1, self.evaluate(result)) - self.assertAlmostEqual(1, self.evaluate(p_obj.true_positives)) - self.assertAlmostEqual(0, self.evaluate(p_obj.false_positives)) - - def test_unweighted_top_k_and_threshold(self): - p_obj = metrics.Precision(thresholds=0.7, top_k=2) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - - y_pred = tf.constant([0.2, 0.8, 0.6, 0, 0.2], shape=(1, 5)) - y_true = tf.constant([0, 1, 1, 0, 1], shape=(1, 5)) - result = p_obj(y_true, y_pred) - self.assertAlmostEqual(1, self.evaluate(result)) - self.assertAlmostEqual(1, self.evaluate(p_obj.true_positives)) - self.assertAlmostEqual(0, self.evaluate(p_obj.false_positives)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class RecallTest(tf.test.TestCase, parameterized.TestCase): - def test_config(self): - r_obj = metrics.Recall( - name="my_recall", thresholds=[0.4, 0.9], top_k=15, class_id=12 - ) - self.assertEqual(r_obj.name, "my_recall") - self.assertLen(r_obj.variables, 2) - self.assertEqual( - [v.name for v in r_obj.variables], - ["true_positives:0", "false_negatives:0"], - ) - self.assertEqual(r_obj.thresholds, [0.4, 0.9]) - self.assertEqual(r_obj.top_k, 15) - self.assertEqual(r_obj.class_id, 12) - - # Check save and restore config - r_obj2 = metrics.Recall.from_config(r_obj.get_config()) - self.assertEqual(r_obj2.name, "my_recall") - self.assertLen(r_obj2.variables, 2) - self.assertEqual(r_obj2.thresholds, [0.4, 0.9]) - self.assertEqual(r_obj2.top_k, 15) - self.assertEqual(r_obj2.class_id, 12) - - def test_value_is_idempotent(self): - r_obj = metrics.Recall(thresholds=[0.3, 0.72]) - y_pred = tf.random.uniform(shape=(10, 3)) - y_true = tf.random.uniform(shape=(10, 3)) - update_op = r_obj.update_state(y_true, y_pred) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - - # Run several updates. - for _ in range(10): - self.evaluate(update_op) - - # Then verify idempotency. - initial_recall = self.evaluate(r_obj.result()) - for _ in range(10): - self.assertArrayNear( - initial_recall, self.evaluate(r_obj.result()), 1e-3 - ) - - def test_unweighted(self): - r_obj = metrics.Recall() - y_pred = tf.constant([1, 0, 1, 0], shape=(1, 4)) - y_true = tf.constant([0, 1, 1, 0], shape=(1, 4)) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - result = r_obj(y_true, y_pred) - self.assertAlmostEqual(0.5, self.evaluate(result)) - - def test_unweighted_all_incorrect(self): - r_obj = metrics.Recall(thresholds=[0.5]) - inputs = np.random.randint(0, 2, size=(100, 1)) - y_pred = tf.constant(inputs) - y_true = tf.constant(1 - inputs) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - result = r_obj(y_true, y_pred) - self.assertAlmostEqual(0, self.evaluate(result)) - - def test_weighted(self): - r_obj = metrics.Recall() - y_pred = tf.constant([[1, 0, 1, 0], [0, 1, 0, 1]]) - y_true = tf.constant([[0, 1, 1, 0], [1, 0, 0, 1]]) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - result = r_obj( - y_true, - y_pred, - sample_weight=tf.constant([[1, 2, 3, 4], [4, 3, 2, 1]]), - ) - weighted_tp = 3.0 + 1.0 - weighted_t = (2.0 + 3.0) + (4.0 + 1.0) - expected_recall = weighted_tp / weighted_t - self.assertAlmostEqual(expected_recall, self.evaluate(result)) - - def test_div_by_zero(self): - r_obj = metrics.Recall() - y_pred = tf.constant([0, 0, 0, 0]) - y_true = tf.constant([0, 0, 0, 0]) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - result = r_obj(y_true, y_pred) - self.assertEqual(0, self.evaluate(result)) - - def test_unweighted_with_threshold(self): - r_obj = metrics.Recall(thresholds=[0.5, 0.7]) - y_pred = tf.constant([1, 0, 0.6, 0], shape=(1, 4)) - y_true = tf.constant([0, 1, 1, 0], shape=(1, 4)) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - result = r_obj(y_true, y_pred) - self.assertArrayNear([0.5, 0.0], self.evaluate(result), 0) - - def test_weighted_with_threshold(self): - r_obj = metrics.Recall(thresholds=[0.5, 1.0]) - y_true = tf.constant([[0, 1], [1, 0]], shape=(2, 2)) - y_pred = tf.constant([[1, 0], [0.6, 0]], shape=(2, 2), dtype=tf.float32) - weights = tf.constant([[1, 4], [3, 2]], shape=(2, 2), dtype=tf.float32) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - result = r_obj(y_true, y_pred, sample_weight=weights) - weighted_tp = 0 + 3.0 - weighted_positives = (0 + 3.0) + (4.0 + 0.0) - expected_recall = weighted_tp / weighted_positives - self.assertArrayNear([expected_recall, 0], self.evaluate(result), 1e-3) - - def test_multiple_updates(self): - r_obj = metrics.Recall(thresholds=[0.5, 1.0]) - y_true = tf.constant([[0, 1], [1, 0]], shape=(2, 2)) - y_pred = tf.constant([[1, 0], [0.6, 0]], shape=(2, 2), dtype=tf.float32) - weights = tf.constant([[1, 4], [3, 2]], shape=(2, 2), dtype=tf.float32) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - update_op = r_obj.update_state(y_true, y_pred, sample_weight=weights) - for _ in range(2): - self.evaluate(update_op) - - weighted_tp = (0 + 3.0) + (0 + 3.0) - weighted_positives = ((0 + 3.0) + (4.0 + 0.0)) + ( - (0 + 3.0) + (4.0 + 0.0) - ) - expected_recall = weighted_tp / weighted_positives - self.assertArrayNear( - [expected_recall, 0], self.evaluate(r_obj.result()), 1e-3 - ) - - def test_unweighted_top_k(self): - r_obj = metrics.Recall(top_k=3) - y_pred = tf.constant([0.2, 0.1, 0.5, 0, 0.2], shape=(1, 5)) - y_true = tf.constant([0, 1, 1, 0, 0], shape=(1, 5)) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - result = r_obj(y_true, y_pred) - self.assertAlmostEqual(0.5, self.evaluate(result)) - - def test_weighted_top_k(self): - r_obj = metrics.Recall(top_k=3) - y_pred1 = tf.constant([0.2, 0.1, 0.4, 0, 0.2], shape=(1, 5)) - y_true1 = tf.constant([0, 1, 1, 0, 1], shape=(1, 5)) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - self.evaluate( - r_obj( - y_true1, y_pred1, sample_weight=tf.constant([[1, 4, 2, 3, 5]]) - ) - ) - - y_pred2 = tf.constant([0.2, 0.6, 0.4, 0.2, 0.2], shape=(1, 5)) - y_true2 = tf.constant([1, 0, 1, 1, 1], shape=(1, 5)) - result = r_obj(y_true2, y_pred2, sample_weight=tf.constant(3)) - - tp = (2 + 5) + (3 + 3) - positives = (4 + 2 + 5) + (3 + 3 + 3 + 3) - expected_recall = tp / positives - self.assertAlmostEqual(expected_recall, self.evaluate(result)) - - def test_unweighted_class_id(self): - r_obj = metrics.Recall(class_id=2) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - - y_pred = tf.constant([0.2, 0.1, 0.6, 0, 0.2], shape=(1, 5)) - y_true = tf.constant([0, 1, 1, 0, 0], shape=(1, 5)) - result = r_obj(y_true, y_pred) - self.assertAlmostEqual(1, self.evaluate(result)) - self.assertAlmostEqual(1, self.evaluate(r_obj.true_positives)) - self.assertAlmostEqual(0, self.evaluate(r_obj.false_negatives)) - - y_pred = tf.constant([0.2, 0.1, 0, 0, 0.2], shape=(1, 5)) - y_true = tf.constant([0, 1, 1, 0, 0], shape=(1, 5)) - result = r_obj(y_true, y_pred) - self.assertAlmostEqual(0.5, self.evaluate(result)) - self.assertAlmostEqual(1, self.evaluate(r_obj.true_positives)) - self.assertAlmostEqual(1, self.evaluate(r_obj.false_negatives)) - - y_pred = tf.constant([0.2, 0.1, 0.6, 0, 0.2], shape=(1, 5)) - y_true = tf.constant([0, 1, 0, 0, 0], shape=(1, 5)) - result = r_obj(y_true, y_pred) - self.assertAlmostEqual(0.5, self.evaluate(result)) - self.assertAlmostEqual(1, self.evaluate(r_obj.true_positives)) - self.assertAlmostEqual(1, self.evaluate(r_obj.false_negatives)) - - def test_unweighted_top_k_and_class_id(self): - r_obj = metrics.Recall(class_id=2, top_k=2) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - - y_pred = tf.constant([0.2, 0.6, 0.3, 0, 0.2], shape=(1, 5)) - y_true = tf.constant([0, 1, 1, 0, 0], shape=(1, 5)) - result = r_obj(y_true, y_pred) - self.assertAlmostEqual(1, self.evaluate(result)) - self.assertAlmostEqual(1, self.evaluate(r_obj.true_positives)) - self.assertAlmostEqual(0, self.evaluate(r_obj.false_negatives)) - - y_pred = tf.constant([1, 1, 0.9, 1, 1], shape=(1, 5)) - y_true = tf.constant([0, 1, 1, 0, 0], shape=(1, 5)) - result = r_obj(y_true, y_pred) - self.assertAlmostEqual(0.5, self.evaluate(result)) - self.assertAlmostEqual(1, self.evaluate(r_obj.true_positives)) - self.assertAlmostEqual(1, self.evaluate(r_obj.false_negatives)) - - def test_unweighted_top_k_and_threshold(self): - r_obj = metrics.Recall(thresholds=0.7, top_k=2) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - - y_pred = tf.constant([0.2, 0.8, 0.6, 0, 0.2], shape=(1, 5)) - y_true = tf.constant([1, 1, 1, 0, 1], shape=(1, 5)) - result = r_obj(y_true, y_pred) - self.assertAlmostEqual(0.25, self.evaluate(result)) - self.assertAlmostEqual(1, self.evaluate(r_obj.true_positives)) - self.assertAlmostEqual(3, self.evaluate(r_obj.false_negatives)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class SensitivityAtSpecificityTest(tf.test.TestCase, parameterized.TestCase): - def test_config(self): - s_obj = metrics.SensitivityAtSpecificity( - 0.4, - num_thresholds=100, - class_id=12, - name="sensitivity_at_specificity_1", - ) - self.assertEqual(s_obj.name, "sensitivity_at_specificity_1") - self.assertLen(s_obj.variables, 4) - self.assertEqual(s_obj.specificity, 0.4) - self.assertEqual(s_obj.num_thresholds, 100) - self.assertEqual(s_obj.class_id, 12) - - # Check save and restore config - s_obj2 = metrics.SensitivityAtSpecificity.from_config( - s_obj.get_config() - ) - self.assertEqual(s_obj2.name, "sensitivity_at_specificity_1") - self.assertLen(s_obj2.variables, 4) - self.assertEqual(s_obj2.specificity, 0.4) - self.assertEqual(s_obj2.num_thresholds, 100) - self.assertEqual(s_obj.class_id, 12) - - def test_value_is_idempotent(self): - s_obj = metrics.SensitivityAtSpecificity(0.7) - y_pred = tf.random.uniform((10, 3), maxval=1, dtype=tf.float32, seed=1) - y_true = tf.random.uniform((10, 3), maxval=2, dtype=tf.int64, seed=1) - update_op = s_obj.update_state(y_true, y_pred) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - - # Run several updates. - for _ in range(10): - self.evaluate(update_op) - - # Then verify idempotency. - initial_sensitivity = self.evaluate(s_obj.result()) - for _ in range(10): - self.assertAlmostEqual( - initial_sensitivity, self.evaluate(s_obj.result()), 1e-3 - ) - - def test_unweighted_all_correct(self): - with self.test_session(): - s_obj = metrics.SensitivityAtSpecificity(0.7) - inputs = np.random.randint(0, 2, size=(100, 1)) - y_pred = tf.constant(inputs, dtype=tf.float32) - y_true = tf.constant(inputs) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - self.assertAlmostEqual(1, self.evaluate(result)) - - def test_unweighted_high_specificity(self): - s_obj = metrics.SensitivityAtSpecificity(0.8) - pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.1, 0.45, 0.5, 0.8, 0.9] - label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] - - y_pred = tf.constant(pred_values, dtype=tf.float32) - y_true = tf.constant(label_values) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - self.assertAlmostEqual(0.8, self.evaluate(result)) - - def test_unweighted_low_specificity(self): - s_obj = metrics.SensitivityAtSpecificity(0.4) - pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] - label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] - - y_pred = tf.constant(pred_values, dtype=tf.float32) - y_true = tf.constant(label_values) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - self.assertAlmostEqual(0.6, self.evaluate(result)) - - def test_unweighted_class_id(self): - s_obj = metrics.SpecificityAtSensitivity(0.4, class_id=2) - pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] - label_values = [0, 0, 0, 0, 0, 2, 2, 2, 2, 2] - - y_pred = tf.transpose([pred_values] * 3) - y_true = tf.one_hot(label_values, depth=3) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - self.assertAlmostEqual(0.6, self.evaluate(result)) - - @parameterized.parameters([tf.bool, tf.int32, tf.float32]) - def test_weighted(self, label_dtype): - s_obj = metrics.SensitivityAtSpecificity(0.4) - pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] - label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] - weight_values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] - - y_pred = tf.constant(pred_values, dtype=tf.float32) - y_true = tf.cast(label_values, dtype=label_dtype) - weights = tf.constant(weight_values) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred, sample_weight=weights) - self.assertAlmostEqual(0.675, self.evaluate(result)) - - def test_invalid_specificity(self): - with self.assertRaisesRegex( - ValueError, r"`specificity` must be in the range \[0, 1\]." - ): - metrics.SensitivityAtSpecificity(-1) - - def test_invalid_num_thresholds(self): - with self.assertRaisesRegex( - ValueError, "Argument `num_thresholds` must be an integer > 0" - ): - metrics.SensitivityAtSpecificity(0.4, num_thresholds=-1) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class SpecificityAtSensitivityTest(tf.test.TestCase, parameterized.TestCase): - def test_config(self): - s_obj = metrics.SpecificityAtSensitivity( - 0.4, - num_thresholds=100, - class_id=12, - name="specificity_at_sensitivity_1", - ) - self.assertEqual(s_obj.name, "specificity_at_sensitivity_1") - self.assertLen(s_obj.variables, 4) - self.assertEqual(s_obj.sensitivity, 0.4) - self.assertEqual(s_obj.num_thresholds, 100) - self.assertEqual(s_obj.class_id, 12) - - # Check save and restore config - s_obj2 = metrics.SpecificityAtSensitivity.from_config( - s_obj.get_config() - ) - self.assertEqual(s_obj2.name, "specificity_at_sensitivity_1") - self.assertLen(s_obj2.variables, 4) - self.assertEqual(s_obj2.sensitivity, 0.4) - self.assertEqual(s_obj2.num_thresholds, 100) - self.assertEqual(s_obj.class_id, 12) - - def test_value_is_idempotent(self): - s_obj = metrics.SpecificityAtSensitivity(0.7) - y_pred = tf.random.uniform((10, 3), maxval=1, dtype=tf.float32, seed=1) - y_true = tf.random.uniform((10, 3), maxval=2, dtype=tf.int64, seed=1) - update_op = s_obj.update_state(y_true, y_pred) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - - # Run several updates. - for _ in range(10): - self.evaluate(update_op) - - # Then verify idempotency. - initial_specificity = self.evaluate(s_obj.result()) - for _ in range(10): - self.assertAlmostEqual( - initial_specificity, self.evaluate(s_obj.result()), 1e-3 - ) - - def test_unweighted_all_correct(self): - s_obj = metrics.SpecificityAtSensitivity(0.7) - inputs = np.random.randint(0, 2, size=(100, 1)) - y_pred = tf.constant(inputs, dtype=tf.float32) - y_true = tf.constant(inputs) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - self.assertAlmostEqual(1, self.evaluate(result)) - - def test_unweighted_high_sensitivity(self): - s_obj = metrics.SpecificityAtSensitivity(1.0) - pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] - label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] - - y_pred = tf.constant(pred_values, dtype=tf.float32) - y_true = tf.constant(label_values) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - self.assertAlmostEqual(0.2, self.evaluate(result)) - - def test_unweighted_low_sensitivity(self): - s_obj = metrics.SpecificityAtSensitivity(0.4) - pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] - label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] - - y_pred = tf.constant(pred_values, dtype=tf.float32) - y_true = tf.constant(label_values) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - self.assertAlmostEqual(0.6, self.evaluate(result)) - - def test_unweighted_class_id(self): - s_obj = metrics.SpecificityAtSensitivity(0.4, class_id=2) - pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] - label_values = [0, 0, 0, 0, 0, 2, 2, 2, 2, 2] - - y_pred = tf.transpose([pred_values] * 3) - y_true = tf.one_hot(label_values, depth=3) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - self.assertAlmostEqual(0.6, self.evaluate(result)) - - @parameterized.parameters([tf.bool, tf.int32, tf.float32]) - def test_weighted(self, label_dtype): - s_obj = metrics.SpecificityAtSensitivity(0.4) - pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] - label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] - weight_values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] - - y_pred = tf.constant(pred_values, dtype=tf.float32) - y_true = tf.cast(label_values, dtype=label_dtype) - weights = tf.constant(weight_values) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred, sample_weight=weights) - self.assertAlmostEqual(0.4, self.evaluate(result)) - - def test_invalid_sensitivity(self): - with self.assertRaisesRegex( - ValueError, r"`sensitivity` must be in the range \[0, 1\]." - ): - metrics.SpecificityAtSensitivity(-1) - - def test_invalid_num_thresholds(self): - with self.assertRaisesRegex( - ValueError, "Argument `num_thresholds` must be an integer > 0" - ): - metrics.SpecificityAtSensitivity(0.4, num_thresholds=-1) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class PrecisionAtRecallTest(tf.test.TestCase, parameterized.TestCase): - def test_config(self): - s_obj = metrics.PrecisionAtRecall( - 0.4, num_thresholds=100, class_id=12, name="precision_at_recall_1" - ) - self.assertEqual(s_obj.name, "precision_at_recall_1") - self.assertLen(s_obj.variables, 4) - self.assertEqual(s_obj.recall, 0.4) - self.assertEqual(s_obj.num_thresholds, 100) - self.assertEqual(s_obj.class_id, 12) - - # Check save and restore config - s_obj2 = metrics.PrecisionAtRecall.from_config(s_obj.get_config()) - self.assertEqual(s_obj2.name, "precision_at_recall_1") - self.assertLen(s_obj2.variables, 4) - self.assertEqual(s_obj2.recall, 0.4) - self.assertEqual(s_obj2.num_thresholds, 100) - self.assertEqual(s_obj.class_id, 12) - - def test_value_is_idempotent(self): - s_obj = metrics.PrecisionAtRecall(0.7) - y_pred = tf.random.uniform((10, 3), maxval=1, dtype=tf.float32, seed=1) - y_true = tf.random.uniform((10, 3), maxval=2, dtype=tf.int64, seed=1) - update_op = s_obj.update_state(y_true, y_pred) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - - # Run several updates. - for _ in range(10): - self.evaluate(update_op) - - # Then verify idempotency. - initial_precision = self.evaluate(s_obj.result()) - for _ in range(10): - self.assertAlmostEqual( - initial_precision, self.evaluate(s_obj.result()), 1e-3 - ) - - def test_unweighted_all_correct(self): - s_obj = metrics.PrecisionAtRecall(0.7) - inputs = np.random.randint(0, 2, size=(100, 1)) - y_pred = tf.constant(inputs, dtype=tf.float32) - y_true = tf.constant(inputs) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - self.assertAlmostEqual(1, self.evaluate(result)) - - def test_unweighted_high_recall(self): - s_obj = metrics.PrecisionAtRecall(0.8) - pred_values = [0.0, 0.1, 0.2, 0.5, 0.6, 0.2, 0.5, 0.6, 0.8, 0.9] - label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] - - y_pred = tf.constant(pred_values, dtype=tf.float32) - y_true = tf.constant(label_values) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - # For 0.5 < decision threshold < 0.6. - self.assertAlmostEqual(2.0 / 3, self.evaluate(result)) - - def test_unweighted_low_recall(self): - s_obj = metrics.PrecisionAtRecall(0.6) - pred_values = [0.0, 0.1, 0.2, 0.5, 0.6, 0.2, 0.5, 0.6, 0.8, 0.9] - label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] - - y_pred = tf.constant(pred_values, dtype=tf.float32) - y_true = tf.constant(label_values) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - # For 0.2 < decision threshold < 0.5. - self.assertAlmostEqual(0.75, self.evaluate(result)) - - def test_unweighted_class_id(self): - s_obj = metrics.PrecisionAtRecall(0.6, class_id=2) - pred_values = [0.0, 0.1, 0.2, 0.5, 0.6, 0.2, 0.5, 0.6, 0.8, 0.9] - label_values = [0, 0, 0, 0, 0, 2, 2, 2, 2, 2] - - y_pred = tf.transpose([pred_values] * 3) - y_true = tf.one_hot(label_values, depth=3) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - # For 0.2 < decision threshold < 0.5. - self.assertAlmostEqual(0.75, self.evaluate(result)) - - @parameterized.parameters([tf.bool, tf.int32, tf.float32]) - def test_weighted(self, label_dtype): - s_obj = metrics.PrecisionAtRecall(7.0 / 8) - pred_values = [0.0, 0.1, 0.2, 0.5, 0.6, 0.2, 0.5, 0.6, 0.8, 0.9] - label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] - weight_values = [2, 1, 2, 1, 2, 1, 2, 2, 1, 2] - - y_pred = tf.constant(pred_values, dtype=tf.float32) - y_true = tf.cast(label_values, dtype=label_dtype) - weights = tf.constant(weight_values) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred, sample_weight=weights) - # For 0.0 < decision threshold < 0.2. - self.assertAlmostEqual(0.7, self.evaluate(result)) - - def test_invalid_sensitivity(self): - with self.assertRaisesRegex( - ValueError, r"`recall` must be in the range \[0, 1\]." - ): - metrics.PrecisionAtRecall(-1) - - def test_invalid_num_thresholds(self): - with self.assertRaisesRegex( - ValueError, "Argument `num_thresholds` must be an integer > 0" - ): - metrics.PrecisionAtRecall(0.4, num_thresholds=-1) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class RecallAtPrecisionTest(tf.test.TestCase, parameterized.TestCase): - def test_config(self): - s_obj = metrics.RecallAtPrecision( - 0.4, num_thresholds=100, class_id=12, name="recall_at_precision_1" - ) - self.assertEqual(s_obj.name, "recall_at_precision_1") - self.assertLen(s_obj.variables, 4) - self.assertEqual(s_obj.precision, 0.4) - self.assertEqual(s_obj.num_thresholds, 100) - self.assertEqual(s_obj.class_id, 12) - - # Check save and restore config - s_obj2 = metrics.RecallAtPrecision.from_config(s_obj.get_config()) - self.assertEqual(s_obj2.name, "recall_at_precision_1") - self.assertLen(s_obj2.variables, 4) - self.assertEqual(s_obj2.precision, 0.4) - self.assertEqual(s_obj2.num_thresholds, 100) - self.assertEqual(s_obj.class_id, 12) - - def test_value_is_idempotent(self): - s_obj = metrics.RecallAtPrecision(0.7) - y_pred = tf.random.uniform((10, 3), maxval=1, dtype=tf.float32, seed=1) - y_true = tf.random.uniform((10, 3), maxval=2, dtype=tf.int64, seed=1) - update_op = s_obj.update_state(y_true, y_pred) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - - # Run several updates. - for _ in range(10): - self.evaluate(update_op) - - # Then verify idempotency. - initial_recall = self.evaluate(s_obj.result()) - for _ in range(10): - self.assertAlmostEqual( - initial_recall, self.evaluate(s_obj.result()), 1e-3 - ) - - def test_unweighted_all_correct(self): - s_obj = metrics.RecallAtPrecision(0.7) - inputs = np.random.randint(0, 2, size=(100, 1)) - y_pred = tf.constant(inputs, dtype=tf.float32) - y_true = tf.constant(inputs) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - self.assertAlmostEqual(1, self.evaluate(result)) - - def test_unweighted_high_precision(self): - s_obj = metrics.RecallAtPrecision(0.75) - pred_values = [ - 0.05, - 0.1, - 0.2, - 0.3, - 0.3, - 0.35, - 0.4, - 0.45, - 0.5, - 0.6, - 0.9, - 0.95, - ] - label_values = [0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1] - # precisions: [1/2, 6/11, 1/2, 5/9, 5/8, 5/7, 2/3, 3/5, 3/5, 2/3, 1/2, - # 1]. - # recalls: [1, 1, 5/6, 5/6, 5/6, 5/6, 2/3, 1/2, 1/2, 1/3, 1/6, - # 1/6]. - y_pred = tf.constant(pred_values, dtype=tf.float32) - y_true = tf.constant(label_values) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - # The precision 0.75 can be reached at thresholds 0.4<=t<0.45. - self.assertAlmostEqual(0.5, self.evaluate(result)) - - def test_unweighted_low_precision(self): - s_obj = metrics.RecallAtPrecision(2.0 / 3) - pred_values = [ - 0.05, - 0.1, - 0.2, - 0.3, - 0.3, - 0.35, - 0.4, - 0.45, - 0.5, - 0.6, - 0.9, - 0.95, - ] - label_values = [0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1] - # precisions: [1/2, 6/11, 1/2, 5/9, 5/8, 5/7, 2/3, 3/5, 3/5, 2/3, 1/2, - # 1]. - # recalls: [1, 1, 5/6, 5/6, 5/6, 5/6, 2/3, 1/2, 1/2, 1/3, 1/6, - # 1/6]. - y_pred = tf.constant(pred_values, dtype=tf.float32) - y_true = tf.constant(label_values) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - # The precision 5/7 can be reached at thresholds 00.3<=t<0.35. - self.assertAlmostEqual(5.0 / 6, self.evaluate(result)) - - def test_unweighted_class_id(self): - s_obj = metrics.RecallAtPrecision(2.0 / 3, class_id=2) - pred_values = [ - 0.05, - 0.1, - 0.2, - 0.3, - 0.3, - 0.35, - 0.4, - 0.45, - 0.5, - 0.6, - 0.9, - 0.95, - ] - label_values = [0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 2] - # precisions: [1/2, 6/11, 1/2, 5/9, 5/8, 5/7, 2/3, 3/5, 3/5, 2/3, 1/2, - # 1]. - # recalls: [1, 1, 5/6, 5/6, 5/6, 5/6, 2/3, 1/2, 1/2, 1/3, 1/6, - # 1/6]. - y_pred = tf.transpose([pred_values] * 3) - y_true = tf.one_hot(label_values, depth=3) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - # The precision 5/7 can be reached at thresholds 00.3<=t<0.35. - self.assertAlmostEqual(5.0 / 6, self.evaluate(result)) - - @parameterized.parameters([tf.bool, tf.int32, tf.float32]) - def test_weighted(self, label_dtype): - s_obj = metrics.RecallAtPrecision(0.75) - pred_values = [0.1, 0.2, 0.3, 0.5, 0.6, 0.9, 0.9] - label_values = [0, 1, 0, 0, 0, 1, 1] - weight_values = [1, 2, 1, 2, 1, 2, 1] - y_pred = tf.constant(pred_values, dtype=tf.float32) - y_true = tf.cast(label_values, dtype=label_dtype) - weights = tf.constant(weight_values) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred, sample_weight=weights) - self.assertAlmostEqual(0.6, self.evaluate(result)) - - def test_unachievable_precision(self): - s_obj = metrics.RecallAtPrecision(2.0 / 3) - pred_values = [0.1, 0.2, 0.3, 0.9] - label_values = [1, 1, 0, 0] - y_pred = tf.constant(pred_values, dtype=tf.float32) - y_true = tf.constant(label_values) - self.evaluate(tf.compat.v1.variables_initializer(s_obj.variables)) - result = s_obj(y_true, y_pred) - # The highest possible precision is 1/2 which is below the required - # value, expect 0 recall. - self.assertAlmostEqual(0, self.evaluate(result)) - - def test_invalid_sensitivity(self): - with self.assertRaisesRegex( - ValueError, r"`precision` must be in the range \[0, 1\]." - ): - metrics.RecallAtPrecision(-1) - - def test_invalid_num_thresholds(self): - with self.assertRaisesRegex( - ValueError, "Argument `num_thresholds` must be an integer > 0" - ): - metrics.RecallAtPrecision(0.4, num_thresholds=-1) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class AUCTest(tf.test.TestCase, parameterized.TestCase): - def setup(self): - self.num_thresholds = 3 - self.y_pred = tf.constant([0, 0.5, 0.3, 0.9], dtype=tf.float32) - self.y_pred_multi_label = tf.constant( - [[0.0, 0.4], [0.5, 0.7], [0.3, 0.2], [0.9, 0.3]], dtype=tf.float32 - ) - epsilon = 1e-12 - self.y_pred_logits = -tf.math.log(1.0 / (self.y_pred + epsilon) - 1.0) - self.y_true = tf.constant([0, 0, 1, 1]) - self.y_true_multi_label = tf.constant([[0, 0], [1, 1], [1, 1], [1, 0]]) - self.sample_weight = [1, 2, 3, 4] - - # threshold values are [0 - 1e-7, 0.5, 1 + 1e-7] - # y_pred when threshold = 0 - 1e-7 : [1, 1, 1, 1] - # y_pred when threshold = 0.5 : [0, 0, 0, 1] - # y_pred when threshold = 1 + 1e-7 : [0, 0, 0, 0] - - # without sample_weight: - # tp = np.sum([[0, 0, 1, 1], [0, 0, 0, 1], [0, 0, 0, 0]], axis=1) - # fp = np.sum([[1, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], axis=1) - # fn = np.sum([[0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 1]], axis=1) - # tn = np.sum([[0, 0, 0, 0], [1, 1, 0, 0], [1, 1, 0, 0]], axis=1) - - # tp = [2, 1, 0], fp = [2, 0, 0], fn = [0, 1, 2], tn = [0, 2, 2] - - # with sample_weight: - # tp = np.sum([[0, 0, 3, 4], [0, 0, 0, 4], [0, 0, 0, 0]], axis=1) - # fp = np.sum([[1, 2, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], axis=1) - # fn = np.sum([[0, 0, 0, 0], [0, 0, 3, 0], [0, 0, 3, 4]], axis=1) - # tn = np.sum([[0, 0, 0, 0], [1, 2, 0, 0], [1, 2, 0, 0]], axis=1) - - # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] - - def test_config(self): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=100, - curve="PR", - summation_method="majoring", - name="auc_1", - dtype=tf.float64, - multi_label=True, - num_labels=2, - from_logits=True, - ) - auc_obj.update_state(self.y_true_multi_label, self.y_pred_multi_label) - self.assertEqual(auc_obj.name, "auc_1") - self.assertEqual(auc_obj._dtype, tf.float64) - self.assertLen(auc_obj.variables, 4) - self.assertEqual(auc_obj.num_thresholds, 100) - self.assertEqual(auc_obj.curve, metrics_utils.AUCCurve.PR) - self.assertEqual( - auc_obj.summation_method, metrics_utils.AUCSummationMethod.MAJORING - ) - self.assertTrue(auc_obj.multi_label) - self.assertEqual(auc_obj.num_labels, 2) - self.assertTrue(auc_obj._from_logits) - old_config = auc_obj.get_config() - self.assertNotIn("thresholds", old_config) - self.assertDictEqual(old_config, json.loads(json.dumps(old_config))) - - # Check save and restore config. - auc_obj2 = metrics.AUC.from_config(auc_obj.get_config()) - auc_obj2.update_state(self.y_true_multi_label, self.y_pred_multi_label) - self.assertEqual(auc_obj2.name, "auc_1") - self.assertLen(auc_obj2.variables, 4) - self.assertEqual(auc_obj2.num_thresholds, 100) - self.assertEqual(auc_obj2.curve, metrics_utils.AUCCurve.PR) - self.assertEqual( - auc_obj2.summation_method, metrics_utils.AUCSummationMethod.MAJORING - ) - self.assertTrue(auc_obj2.multi_label) - self.assertEqual(auc_obj2.num_labels, 2) - self.assertTrue(auc_obj2._from_logits) - new_config = auc_obj2.get_config() - self.assertNotIn("thresholds", new_config) - self.assertDictEqual(old_config, new_config) - self.assertAllClose(auc_obj.thresholds, auc_obj2.thresholds) - - def test_config_manual_thresholds(self): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=None, - curve="PR", - summation_method="majoring", - name="auc_1", - thresholds=[0.3, 0.5], - ) - auc_obj.update_state(self.y_true, self.y_pred) - self.assertEqual(auc_obj.name, "auc_1") - self.assertLen(auc_obj.variables, 4) - self.assertEqual(auc_obj.num_thresholds, 4) - self.assertAllClose(auc_obj.thresholds, [0.0, 0.3, 0.5, 1.0]) - self.assertEqual(auc_obj.curve, metrics_utils.AUCCurve.PR) - self.assertEqual( - auc_obj.summation_method, metrics_utils.AUCSummationMethod.MAJORING - ) - old_config = auc_obj.get_config() - self.assertDictEqual(old_config, json.loads(json.dumps(old_config))) - - # Check save and restore config. - auc_obj2 = metrics.AUC.from_config(auc_obj.get_config()) - auc_obj2.update_state(self.y_true, self.y_pred) - self.assertEqual(auc_obj2.name, "auc_1") - self.assertLen(auc_obj2.variables, 4) - self.assertEqual(auc_obj2.num_thresholds, 4) - self.assertEqual(auc_obj2.curve, metrics_utils.AUCCurve.PR) - self.assertEqual( - auc_obj2.summation_method, metrics_utils.AUCSummationMethod.MAJORING - ) - new_config = auc_obj2.get_config() - self.assertDictEqual(old_config, new_config) - self.assertAllClose(auc_obj.thresholds, auc_obj2.thresholds) - - def test_value_is_idempotent(self): - self.setup() - auc_obj = metrics.AUC(num_thresholds=3) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - - # Run several updates. - update_op = auc_obj.update_state(self.y_true, self.y_pred) - for _ in range(10): - self.evaluate(update_op) - - # Then verify idempotency. - initial_auc = self.evaluate(auc_obj.result()) - for _ in range(10): - self.assertAllClose( - initial_auc, self.evaluate(auc_obj.result()), 1e-3 - ) - - def test_unweighted_all_correct(self): - self.setup() - auc_obj = metrics.AUC() - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(self.y_true, self.y_true) - self.assertEqual(self.evaluate(result), 1) - - def test_unweighted(self): - self.setup() - auc_obj = metrics.AUC(num_thresholds=self.num_thresholds) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(self.y_true, self.y_pred) - - # tp = [2, 1, 0], fp = [2, 0, 0], fn = [0, 1, 2], tn = [0, 2, 2] - # recall = [2/2, 1/(1+1), 0] = [1, 0.5, 0] - # fp_rate = [2/2, 0, 0] = [1, 0, 0] - # heights = [(1 + 0.5)/2, (0.5 + 0)/2] = [0.75, 0.25] - # widths = [(1 - 0), (0 - 0)] = [1, 0] - expected_result = 0.75 * 1 + 0.25 * 0 - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_unweighted_from_logits(self): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, from_logits=True - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(self.y_true, self.y_pred_logits) - - # tp = [2, 1, 0], fp = [2, 0, 0], fn = [0, 1, 2], tn = [0, 2, 2] - # recall = [2/2, 1/(1+1), 0] = [1, 0.5, 0] - # fp_rate = [2/2, 0, 0] = [1, 0, 0] - # heights = [(1 + 0.5)/2, (0.5 + 0)/2] = [0.75, 0.25] - # widths = [(1 - 0), (0 - 0)] = [1, 0] - expected_result = 0.75 * 1 + 0.25 * 0 - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_manual_thresholds(self): - self.setup() - # Verify that when specified, thresholds are used instead of - # num_thresholds. - auc_obj = metrics.AUC(num_thresholds=2, thresholds=[0.5]) - self.assertEqual(auc_obj.num_thresholds, 3) - self.assertAllClose(auc_obj.thresholds, [0.0, 0.5, 1.0]) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(self.y_true, self.y_pred) - - # tp = [2, 1, 0], fp = [2, 0, 0], fn = [0, 1, 2], tn = [0, 2, 2] - # recall = [2/2, 1/(1+1), 0] = [1, 0.5, 0] - # fp_rate = [2/2, 0, 0] = [1, 0, 0] - # heights = [(1 + 0.5)/2, (0.5 + 0)/2] = [0.75, 0.25] - # widths = [(1 - 0), (0 - 0)] = [1, 0] - expected_result = 0.75 * 1 + 0.25 * 0 - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_weighted_roc_interpolation(self): - self.setup() - auc_obj = metrics.AUC(num_thresholds=self.num_thresholds) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj( - self.y_true, self.y_pred, sample_weight=self.sample_weight - ) - - # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] - # recall = [7/7, 4/(4+3), 0] = [1, 0.571, 0] - # fp_rate = [3/3, 0, 0] = [1, 0, 0] - # heights = [(1 + 0.571)/2, (0.571 + 0)/2] = [0.7855, 0.2855] - # widths = [(1 - 0), (0 - 0)] = [1, 0] - expected_result = 0.7855 * 1 + 0.2855 * 0 - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_weighted_roc_majoring(self): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, summation_method="majoring" - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj( - self.y_true, self.y_pred, sample_weight=self.sample_weight - ) - - # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] - # recall = [7/7, 4/(4+3), 0] = [1, 0.571, 0] - # fp_rate = [3/3, 0, 0] = [1, 0, 0] - # heights = [max(1, 0.571), max(0.571, 0)] = [1, 0.571] - # widths = [(1 - 0), (0 - 0)] = [1, 0] - expected_result = 1 * 1 + 0.571 * 0 - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_weighted_roc_minoring(self): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, summation_method="minoring" - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj( - self.y_true, self.y_pred, sample_weight=self.sample_weight - ) - - # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] - # recall = [7/7, 4/(4+3), 0] = [1, 0.571, 0] - # fp_rate = [3/3, 0, 0] = [1, 0, 0] - # heights = [min(1, 0.571), min(0.571, 0)] = [0.571, 0] - # widths = [(1 - 0), (0 - 0)] = [1, 0] - expected_result = 0.571 * 1 + 0 * 0 - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_weighted_pr_majoring(self): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, - curve="PR", - summation_method="majoring", - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj( - self.y_true, self.y_pred, sample_weight=self.sample_weight - ) - - # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] - # precision = [7/(7+3), 4/4, 0] = [0.7, 1, 0] - # recall = [7/7, 4/(4+3), 0] = [1, 0.571, 0] - # heights = [max(0.7, 1), max(1, 0)] = [1, 1] - # widths = [(1 - 0.571), (0.571 - 0)] = [0.429, 0.571] - expected_result = 1 * 0.429 + 1 * 0.571 - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_weighted_pr_minoring(self): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, - curve="PR", - summation_method="minoring", - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj( - self.y_true, self.y_pred, sample_weight=self.sample_weight - ) - - # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] - # precision = [7/(7+3), 4/4, 0] = [0.7, 1, 0] - # recall = [7/7, 4/(4+3), 0] = [1, 0.571, 0] - # heights = [min(0.7, 1), min(1, 0)] = [0.7, 0] - # widths = [(1 - 0.571), (0.571 - 0)] = [0.429, 0.571] - expected_result = 0.7 * 0.429 + 0 * 0.571 - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_weighted_pr_interpolation(self): - self.setup() - auc_obj = metrics.AUC(num_thresholds=self.num_thresholds, curve="PR") - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj( - self.y_true, self.y_pred, sample_weight=self.sample_weight - ) - - # auc = (slope / Total Pos) * [dTP - intercept * log(Pb/Pa)] - - # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] - # P = tp + fp = [10, 4, 0] - # dTP = [7-4, 4-0] = [3, 4] - # dP = [10-4, 4-0] = [6, 4] - # slope = dTP/dP = [0.5, 1] - # intercept = (TPa+(slope*Pa) = [(4 - 0.5*4), (0 - 1*0)] = [2, 0] - # (Pb/Pa) = (Pb/Pa) if Pb > 0 AND Pa > 0 else 1 = [10/4, 4/0] = [2.5, 1] - # auc * TotalPos = [(0.5 * (3 + 2 * log(2.5))), (1 * (4 + 0))] - # = [2.416, 4] - # auc = [2.416, 4]/(tp[1:]+fn[1:]) - expected_result = 2.416 / 7 + 4 / 7 - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_invalid_num_thresholds(self): - with self.assertRaisesRegex( - ValueError, "Argument `num_thresholds` must be an integer > 1" - ): - metrics.AUC(num_thresholds=-1) - - with self.assertRaisesRegex( - ValueError, "Argument `num_thresholds` must be an integer > 1." - ): - metrics.AUC(num_thresholds=1) - - def test_invalid_curve(self): - with self.assertRaisesRegex( - ValueError, 'Invalid AUC curve value: "Invalid".' - ): - metrics.AUC(curve="Invalid") - - def test_invalid_summation_method(self): - with self.assertRaisesRegex( - ValueError, 'Invalid AUC summation method value: "Invalid".' - ): - metrics.AUC(summation_method="Invalid") - - def test_extra_dims(self): - try: - from scipy import special - - self.setup() - logits = special.expit( - -np.array( - [ - [[-10.0, 10.0, -10.0], [10.0, -10.0, 10.0]], - [[-12.0, 12.0, -12.0], [12.0, -12.0, 12.0]], - ], - dtype=np.float32, - ) - ) - labels = np.array( - [[[1, 0, 0], [1, 0, 0]], [[0, 1, 1], [0, 1, 1]]], dtype=np.int64 - ) - auc_obj = metrics.AUC() - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(labels, logits) - self.assertEqual(self.evaluate(result), 0.5) - except ImportError as e: - tf_logging.warning(f"Cannot test special functions: {str(e)}") - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MultiAUCTest(tf.test.TestCase, parameterized.TestCase): - def setup(self): - self.num_thresholds = 5 - self.y_pred = tf.constant( - np.array([[0, 0.5, 0.3, 0.9], [0.1, 0.2, 0.3, 0.4]]).T, - dtype=tf.float32, - ) - - epsilon = 1e-12 - self.y_pred_logits = -tf.math.log(1.0 / (self.y_pred + epsilon) - 1.0) - - self.y_true_good = tf.constant(np.array([[0, 0, 1, 1], [0, 0, 1, 1]]).T) - self.y_true_bad = tf.constant(np.array([[0, 0, 1, 1], [1, 1, 0, 0]]).T) - self.sample_weight = [1, 2, 3, 4] - - # threshold values are [0 - 1e-7, 0.25, 0.5, 0.75, 1 + 1e-7] - # y_pred when threshold = 0 - 1e-7 : [[1, 1, 1, 1], [1, 1, 1, 1]] - # y_pred when threshold = 0.25 : [[0, 1, 1, 1], [0, 0, 1, 1]] - # y_pred when threshold = 0.5 : [[0, 0, 0, 1], [0, 0, 0, 0]] - # y_pred when threshold = 0.75 : [[0, 0, 0, 1], [0, 0, 0, 0]] - # y_pred when threshold = 1 + 1e-7 : [[0, 0, 0, 0], [0, 0, 0, 0]] - - # for y_true_good, over thresholds: - # tp = [[2, 2, 1, 1, 0], [2, 2, 0, 0, 0]] - # fp = [[2, 1, 0, 0 , 0], [2, 0, 0 ,0, 0]] - # fn = [[0, 0, 1, 1, 2], [0, 0, 2, 2, 2]] - # tn = [[0, 1, 2, 2, 2], [0, 2, 2, 2, 2]] - - # tpr = [[1, 1, 0.5, 0.5, 0], [1, 1, 0, 0, 0]] - # fpr = [[1, 0.5, 0, 0, 0], [1, 0, 0, 0, 0]] - - # for y_true_bad: - # tp = [[2, 2, 1, 1, 0], [2, 0, 0, 0, 0]] - # fp = [[2, 1, 0, 0 , 0], [2, 2, 0 ,0, 0]] - # fn = [[0, 0, 1, 1, 2], [0, 2, 2, 2, 2]] - # tn = [[0, 1, 2, 2, 2], [0, 0, 2, 2, 2]] - - # tpr = [[1, 1, 0.5, 0.5, 0], [1, 0, 0, 0, 0]] - # fpr = [[1, 0.5, 0, 0, 0], [1, 1, 0, 0, 0]] - - # for y_true_good with sample_weights: - - # tp = [[7, 7, 4, 4, 0], [7, 7, 0, 0, 0]] - # fp = [[3, 2, 0, 0, 0], [3, 0, 0, 0, 0]] - # fn = [[0, 0, 3, 3, 7], [0, 0, 7, 7, 7]] - # tn = [[0, 1, 3, 3, 3], [0, 3, 3, 3, 3]] - - # tpr = [[1, 1, 0.57, 0.57, 0], [1, 1, 0, 0, 0]] - # fpr = [[1, 0.67, 0, 0, 0], [1, 0, 0, 0, 0]] - - def test_value_is_idempotent(self): - with self.test_session(): - self.setup() - auc_obj = metrics.AUC(num_thresholds=5, multi_label=True) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - - # Run several updates. - update_op = auc_obj.update_state(self.y_true_good, self.y_pred) - for _ in range(10): - self.evaluate(update_op) - - # Then verify idempotency. - initial_auc = self.evaluate(auc_obj.result()) - for _ in range(10): - self.assertAllClose( - initial_auc, self.evaluate(auc_obj.result()), 1e-3 - ) - - def test_unweighted_all_correct(self): - with self.test_session(): - self.setup() - auc_obj = metrics.AUC(multi_label=True) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(self.y_true_good, self.y_true_good) - self.assertEqual(self.evaluate(result), 1) - - def test_unweighted_all_correct_flat(self): - self.setup() - auc_obj = metrics.AUC(multi_label=False) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(self.y_true_good, self.y_true_good) - self.assertEqual(self.evaluate(result), 1) - - def test_unweighted(self): - with self.test_session(): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, multi_label=True - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(self.y_true_good, self.y_pred) - - # tpr = [[1, 1, 0.5, 0.5, 0], [1, 1, 0, 0, 0]] - # fpr = [[1, 0.5, 0, 0, 0], [1, 0, 0, 0, 0]] - expected_result = (0.875 + 1.0) / 2.0 - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_unweighted_from_logits(self): - with self.test_session(): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, - multi_label=True, - from_logits=True, - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(self.y_true_good, self.y_pred_logits) - - # tpr = [[1, 1, 0.5, 0.5, 0], [1, 1, 0, 0, 0]] - # fpr = [[1, 0.5, 0, 0, 0], [1, 0, 0, 0, 0]] - expected_result = (0.875 + 1.0) / 2.0 - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_sample_weight_flat(self): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, multi_label=False - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj( - self.y_true_good, self.y_pred, sample_weight=[1, 2, 3, 4] - ) - - # tpr = [1, 1, 0.2857, 0.2857, 0] - # fpr = [1, 0.3333, 0, 0, 0] - expected_result = 1.0 - (0.3333 * (1.0 - 0.2857) / 2.0) - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_full_sample_weight_flat(self): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, multi_label=False - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - sw = np.arange(4 * 2) - sw = sw.reshape(4, 2) - result = auc_obj(self.y_true_good, self.y_pred, sample_weight=sw) - - # tpr = [1, 1, 0.2727, 0.2727, 0] - # fpr = [1, 0.3333, 0, 0, 0] - expected_result = 1.0 - (0.3333 * (1.0 - 0.2727) / 2.0) - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_label_weights(self): - with self.test_session(): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, - multi_label=True, - label_weights=[0.75, 0.25], - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(self.y_true_good, self.y_pred) - - # tpr = [[1, 1, 0.5, 0.5, 0], [1, 1, 0, 0, 0]] - # fpr = [[1, 0.5, 0, 0, 0], [1, 0, 0, 0, 0]] - expected_result = (0.875 * 0.75 + 1.0 * 0.25) / (0.75 + 0.25) - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_label_weights_flat(self): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, - multi_label=False, - label_weights=[0.75, 0.25], - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(self.y_true_good, self.y_pred) - - # tpr = [1, 1, 0.375, 0.375, 0] - # fpr = [1, 0.375, 0, 0, 0] - expected_result = 1.0 - ((1.0 - 0.375) * 0.375 / 2.0) - self.assertAllClose(self.evaluate(result), expected_result, 1e-2) - - def test_unweighted_flat(self): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, multi_label=False - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(self.y_true_good, self.y_pred) - - # tp = [4, 4, 1, 1, 0] - # fp = [4, 1, 0, 0, 0] - # fn = [0, 0, 3, 3, 4] - # tn = [0, 3, 4, 4, 4] - - # tpr = [1, 1, 0.25, 0.25, 0] - # fpr = [1, 0.25, 0, 0, 0] - expected_result = 1.0 - (3.0 / 32.0) - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_unweighted_flat_from_logits(self): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, - multi_label=False, - from_logits=True, - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(self.y_true_good, self.y_pred_logits) - - # tp = [4, 4, 1, 1, 0] - # fp = [4, 1, 0, 0, 0] - # fn = [0, 0, 3, 3, 4] - # tn = [0, 3, 4, 4, 4] - - # tpr = [1, 1, 0.25, 0.25, 0] - # fpr = [1, 0.25, 0, 0, 0] - expected_result = 1.0 - (3.0 / 32.0) - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_manual_thresholds(self): - with self.test_session(): - self.setup() - # Verify that when specified, thresholds are used instead of - # num_thresholds. - auc_obj = metrics.AUC( - num_thresholds=2, thresholds=[0.5], multi_label=True - ) - self.assertEqual(auc_obj.num_thresholds, 3) - self.assertAllClose(auc_obj.thresholds, [0.0, 0.5, 1.0]) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj(self.y_true_good, self.y_pred) - - # tp = [[2, 1, 0], [2, 0, 0]] - # fp = [2, 0, 0], [2, 0, 0]] - # fn = [[0, 1, 2], [0, 2, 2]] - # tn = [[0, 2, 2], [0, 2, 2]] - - # tpr = [[1, 0.5, 0], [1, 0, 0]] - # fpr = [[1, 0, 0], [1, 0, 0]] - - # auc by slice = [0.75, 0.5] - expected_result = (0.75 + 0.5) / 2.0 - - self.assertAllClose(self.evaluate(result), expected_result, 1e-3) - - def test_weighted_roc_interpolation(self): - with self.test_session(): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, multi_label=True - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - result = auc_obj( - self.y_true_good, self.y_pred, sample_weight=self.sample_weight - ) - - # tpr = [[1, 1, 0.57, 0.57, 0], [1, 1, 0, 0, 0]] - # fpr = [[1, 0.67, 0, 0, 0], [1, 0, 0, 0, 0]] - expected_result = 1.0 - 0.5 * 0.43 * 0.67 - self.assertAllClose(self.evaluate(result), expected_result, 1e-1) - - def test_pr_interpolation_unweighted(self): - with self.test_session(): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, curve="PR", multi_label=True - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - good_result = auc_obj(self.y_true_good, self.y_pred) - with self.subTest(name="good"): - # PR AUCs are 0.917 and 1.0 respectively - self.assertAllClose( - self.evaluate(good_result), (0.91667 + 1.0) / 2.0, 1e-1 - ) - bad_result = auc_obj(self.y_true_bad, self.y_pred) - with self.subTest(name="bad"): - # PR AUCs are 0.917 and 0.5 respectively - self.assertAllClose( - self.evaluate(bad_result), (0.91667 + 0.5) / 2.0, 1e-1 - ) - - def test_pr_interpolation(self): - with self.test_session(): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, curve="PR", multi_label=True - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - good_result = auc_obj( - self.y_true_good, self.y_pred, sample_weight=self.sample_weight - ) - # PR AUCs are 0.939 and 1.0 respectively - self.assertAllClose( - self.evaluate(good_result), (0.939 + 1.0) / 2.0, 1e-1 - ) - - def test_keras_model_compiles(self): - inputs = layers.Input(shape=(10,)) - output = layers.Dense(3, activation="sigmoid")(inputs) - model = models.Model(inputs=inputs, outputs=output) - model.compile( - loss="binary_crossentropy", metrics=[metrics.AUC(multi_label=True)] - ) - - def test_reset_state(self): - with self.test_session(): - self.setup() - auc_obj = metrics.AUC( - num_thresholds=self.num_thresholds, multi_label=True - ) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - auc_obj(self.y_true_good, self.y_pred) - auc_obj.reset_state() - self.assertAllEqual(auc_obj.true_positives, np.zeros((5, 2))) - - -@test_combinations.generate(test_combinations.combine(mode=["eager"])) -class ThresholdsTest(tf.test.TestCase, parameterized.TestCase): - @parameterized.parameters( - [ - metrics.TruePositives(), - metrics.TrueNegatives(), - metrics.FalsePositives(), - metrics.FalseNegatives(), - metrics.Precision(), - metrics.Recall(), - metrics.SensitivityAtSpecificity(0.5), - metrics.SpecificityAtSensitivity(0.5), - metrics.PrecisionAtRecall(0.5), - metrics.RecallAtPrecision(0.5), - metrics.AUC(), - ] - ) - def test_with_default_thresholds(self, metric_obj): - # By default, the thresholds will be evenly distributed if there are - # more than 1. In case there is only 1 thresholds, then we expect - # _thresholds_distributed_evenly to be false. - expected = len(metric_obj.thresholds) > 1 - self.assertEqual(metric_obj._thresholds_distributed_evenly, expected) - - @parameterized.parameters( - [ - metrics.TruePositives, - metrics.TrueNegatives, - metrics.FalsePositives, - metrics.FalseNegatives, - metrics.Precision, - metrics.Recall, - ] - ) - def test_with_manual_thresholds(self, metric_cls): - even_thresholds = [0.0, 0.25, 0.5, 0.75, 1.0] - metric_obj = metric_cls(thresholds=even_thresholds) - self.assertTrue(metric_obj._thresholds_distributed_evenly) - - uneven_thresholds = [0.0, 0.45, 1.0] - metric_obj = metric_cls(thresholds=uneven_thresholds) - self.assertFalse(metric_obj._thresholds_distributed_evenly) - - def test_manual_thresholds_auc(self): - # The AUC metric handles manual thresholds input differently (it will - # add 0.0 and 1.0 for user). - even_thresholds = [0.25, 0.5, 0.75] - auc = metrics.AUC(thresholds=even_thresholds) - self.assertTrue(auc._thresholds_distributed_evenly) - - # Test for save model - cloned = metrics.AUC.from_config(auc.get_config()) - self.assertTrue(cloned._thresholds_distributed_evenly) - - uneven_thresholds = [ - 0.45, - ] - auc = metrics.AUC(thresholds=uneven_thresholds) - self.assertFalse(auc._thresholds_distributed_evenly) - - cloned = metrics.AUC.from_config(auc.get_config()) - self.assertFalse(cloned._thresholds_distributed_evenly) - - @parameterized.parameters( - [ - metrics.TruePositives, - metrics.TrueNegatives, - metrics.FalsePositives, - metrics.FalseNegatives, - metrics.Precision, - metrics.Recall, - metrics.AUC, - ] - ) - def test_even_thresholds_correctness(self, metric_cls): - with tf.compat.forward_compatibility_horizon(2021, 6, 9): - # make sure the old approach and new approach produce same result - # for evenly distributed thresholds - y_true = np.random.randint(2, size=(10,)) - y_pred = np.random.rand(10) - - even_thresholds = [0.0, 0.25, 0.5, 0.75, 1.0] - if metric_cls == metrics.AUC: - even_thresholds = even_thresholds[1:-1] - metric_obj = metric_cls(thresholds=even_thresholds) - metric_obj.update_state(y_true, y_pred) - result1 = metric_obj.result() - - metric_obj2 = metric_cls(thresholds=even_thresholds) - # Force to use the old approach - metric_obj2._thresholds_distributed_evenly = False - metric_obj2.update_state(y_true, y_pred) - result2 = metric_obj2.result() - - self.assertAllClose(result1, result2) - # Check all the variables are the same, eg tp, tn, fp, fn - for v1, v2 in zip(metric_obj.variables, metric_obj2.variables): - self.assertAllClose(v1, v2) - - @parameterized.parameters( - [ - metrics.SensitivityAtSpecificity, - metrics.SpecificityAtSensitivity, - metrics.PrecisionAtRecall, - metrics.RecallAtPrecision, - ] - ) - def test_even_thresholds_correctness_2(self, metric_cls): - with tf.compat.forward_compatibility_horizon(2021, 6, 9): - y_true = np.random.randint(2, size=(10,)) - y_pred = np.random.rand(10) - - metric_obj = metric_cls(0.5) - metric_obj.update_state(y_true, y_pred) - result1 = metric_obj.result() - - metric_obj2 = metric_cls(0.5) - # Force to use the old approach - metric_obj2._thresholds_distributed_evenly = False - metric_obj2.update_state(y_true, y_pred) - result2 = metric_obj2.result() - - self.assertAllClose(result1, result2) - # Check all the variables are the same, eg tp, tn, fp, fn - for v1, v2 in zip(metric_obj.variables, metric_obj2.variables): - self.assertAllClose(v1, v2) - - -class BinaryTruePositives(metrics.Metric): - def __init__(self, name="binary_true_positives", **kwargs): - super().__init__(name=name, **kwargs) - self.true_positives = self.add_weight(name="tp", initializer="zeros") - - def update_state(self, y_true, y_pred, sample_weight=None): - y_true = tf.cast(y_true, tf.bool) - y_pred = tf.cast(y_pred, tf.bool) - - values = tf.logical_and(tf.equal(y_true, True), tf.equal(y_pred, True)) - values = tf.cast(values, self.dtype) - if sample_weight is not None: - sample_weight = tf.cast(sample_weight, dtype=self.dtype) - sample_weight = tf.__internal__.ops.broadcast_weights( - sample_weight, values - ) - values = tf.multiply(values, sample_weight) - self.true_positives.assign_add(tf.reduce_sum(values)) - - def result(self): - return self.true_positives - - -class BinaryTruePositivesViaControlFlow(metrics.Metric): - def __init__(self, name="binary_true_positives", **kwargs): - super().__init__(name=name, **kwargs) - self.true_positives = self.add_weight(name="tp", initializer="zeros") - - def update_state(self, y_true, y_pred, sample_weight=None): - y_true = tf.cast(y_true, tf.bool) - y_pred = tf.cast(y_pred, tf.bool) - - for i in range(len(y_true)): - for j in range(len(y_true[i])): - if y_true[i][j] and y_pred[i][j]: - if sample_weight is None: - self.true_positives.assign_add(1) - else: - self.true_positives.assign_add(sample_weight[i][0]) - - def result(self): - if tf.constant(True): - return self.true_positives - return 0.0 - - -def _get_model(compile_metrics): - model_layers = [ - layers.Dense(3, activation="relu", kernel_initializer="ones"), - layers.Dense(1, activation="sigmoid", kernel_initializer="ones"), - ] - - model = test_utils.get_model_from_layers(model_layers, input_shape=(4,)) - model.compile( - loss="mae", - metrics=compile_metrics, - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - return model - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes -class ResetStatesTest(test_combinations.TestCase): - def test_reset_state_false_positives(self): - fp_obj = metrics.FalsePositives() - model = _get_model([fp_obj]) - x = np.ones((100, 4)) - y = np.zeros((100, 1)) - model.evaluate(x, y) - self.assertEqual(self.evaluate(fp_obj.accumulator), 100.0) - model.evaluate(x, y) - self.assertEqual(self.evaluate(fp_obj.accumulator), 100.0) - - def test_reset_state_false_negatives(self): - fn_obj = metrics.FalseNegatives() - model = _get_model([fn_obj]) - x = np.zeros((100, 4)) - y = np.ones((100, 1)) - model.evaluate(x, y) - self.assertEqual(self.evaluate(fn_obj.accumulator), 100.0) - model.evaluate(x, y) - self.assertEqual(self.evaluate(fn_obj.accumulator), 100.0) - - def test_reset_state_true_negatives(self): - tn_obj = metrics.TrueNegatives() - model = _get_model([tn_obj]) - x = np.zeros((100, 4)) - y = np.zeros((100, 1)) - model.evaluate(x, y) - self.assertEqual(self.evaluate(tn_obj.accumulator), 100.0) - model.evaluate(x, y) - self.assertEqual(self.evaluate(tn_obj.accumulator), 100.0) - - def test_reset_state_true_positives(self): - tp_obj = metrics.TruePositives() - model = _get_model([tp_obj]) - x = np.ones((100, 4)) - y = np.ones((100, 1)) - model.evaluate(x, y) - self.assertEqual(self.evaluate(tp_obj.accumulator), 100.0) - model.evaluate(x, y) - self.assertEqual(self.evaluate(tp_obj.accumulator), 100.0) - - def test_reset_state_precision(self): - p_obj = metrics.Precision() - model = _get_model([p_obj]) - x = np.concatenate((np.ones((50, 4)), np.ones((50, 4)))) - y = np.concatenate((np.ones((50, 1)), np.zeros((50, 1)))) - model.evaluate(x, y) - self.assertEqual(self.evaluate(p_obj.true_positives), 50.0) - self.assertEqual(self.evaluate(p_obj.false_positives), 50.0) - model.evaluate(x, y) - self.assertEqual(self.evaluate(p_obj.true_positives), 50.0) - self.assertEqual(self.evaluate(p_obj.false_positives), 50.0) - - def test_precision_update_state_with_logits(self): - p_obj = metrics.Precision() - # Update state with logits (not in range (0, 1)) should not an raise - # error. - p_obj.update_state([-0.5, 0.5], [-2.0, 2.0]) - - def test_reset_state_recall(self): - r_obj = metrics.Recall() - model = _get_model([r_obj]) - x = np.concatenate((np.ones((50, 4)), np.zeros((50, 4)))) - y = np.concatenate((np.ones((50, 1)), np.ones((50, 1)))) - model.evaluate(x, y) - self.assertEqual(self.evaluate(r_obj.true_positives), 50.0) - self.assertEqual(self.evaluate(r_obj.false_negatives), 50.0) - model.evaluate(x, y) - self.assertEqual(self.evaluate(r_obj.true_positives), 50.0) - self.assertEqual(self.evaluate(r_obj.false_negatives), 50.0) - - def test_reset_state_sensitivity_at_specificity(self): - s_obj = metrics.SensitivityAtSpecificity(0.5, num_thresholds=1) - model = _get_model([s_obj]) - x = np.concatenate( - ( - np.ones((25, 4)), - np.zeros((25, 4)), - np.zeros((25, 4)), - np.ones((25, 4)), - ) - ) - y = np.concatenate( - ( - np.ones((25, 1)), - np.zeros((25, 1)), - np.ones((25, 1)), - np.zeros((25, 1)), - ) - ) - - for _ in range(2): - model.evaluate(x, y) - self.assertEqual(self.evaluate(s_obj.true_positives), 25.0) - self.assertEqual(self.evaluate(s_obj.false_positives), 25.0) - self.assertEqual(self.evaluate(s_obj.false_negatives), 25.0) - self.assertEqual(self.evaluate(s_obj.true_negatives), 25.0) - - def test_reset_state_specificity_at_sensitivity(self): - s_obj = metrics.SpecificityAtSensitivity(0.5, num_thresholds=1) - model = _get_model([s_obj]) - x = np.concatenate( - ( - np.ones((25, 4)), - np.zeros((25, 4)), - np.zeros((25, 4)), - np.ones((25, 4)), - ) - ) - y = np.concatenate( - ( - np.ones((25, 1)), - np.zeros((25, 1)), - np.ones((25, 1)), - np.zeros((25, 1)), - ) - ) - - for _ in range(2): - model.evaluate(x, y) - self.assertEqual(self.evaluate(s_obj.true_positives), 25.0) - self.assertEqual(self.evaluate(s_obj.false_positives), 25.0) - self.assertEqual(self.evaluate(s_obj.false_negatives), 25.0) - self.assertEqual(self.evaluate(s_obj.true_negatives), 25.0) - - def test_reset_state_precision_at_recall(self): - s_obj = metrics.PrecisionAtRecall(recall=0.5, num_thresholds=1) - model = _get_model([s_obj]) - x = np.concatenate( - ( - np.ones((25, 4)), - np.zeros((25, 4)), - np.zeros((25, 4)), - np.ones((25, 4)), - ) - ) - y = np.concatenate( - ( - np.ones((25, 1)), - np.zeros((25, 1)), - np.ones((25, 1)), - np.zeros((25, 1)), - ) - ) - - for _ in range(2): - model.evaluate(x, y) - self.assertEqual(self.evaluate(s_obj.true_positives), 25.0) - self.assertEqual(self.evaluate(s_obj.false_positives), 25.0) - self.assertEqual(self.evaluate(s_obj.false_negatives), 25.0) - self.assertEqual(self.evaluate(s_obj.true_negatives), 25.0) - - def test_reset_state_recall_at_precision(self): - s_obj = metrics.RecallAtPrecision(precision=0.5, num_thresholds=1) - model = _get_model([s_obj]) - x = np.concatenate( - ( - np.ones((25, 4)), - np.zeros((25, 4)), - np.zeros((25, 4)), - np.ones((25, 4)), - ) - ) - y = np.concatenate( - ( - np.ones((25, 1)), - np.zeros((25, 1)), - np.ones((25, 1)), - np.zeros((25, 1)), - ) - ) - - for _ in range(2): - model.evaluate(x, y) - self.assertEqual(self.evaluate(s_obj.true_positives), 25.0) - self.assertEqual(self.evaluate(s_obj.false_positives), 25.0) - self.assertEqual(self.evaluate(s_obj.false_negatives), 25.0) - self.assertEqual(self.evaluate(s_obj.true_negatives), 25.0) - - def test_reset_state_auc(self): - auc_obj = metrics.AUC(num_thresholds=3) - model = _get_model([auc_obj]) - x = np.concatenate( - ( - np.ones((25, 4)), - np.zeros((25, 4)), - np.zeros((25, 4)), - np.ones((25, 4)), - ) - ) - y = np.concatenate( - ( - np.ones((25, 1)), - np.zeros((25, 1)), - np.ones((25, 1)), - np.zeros((25, 1)), - ) - ) - - for _ in range(2): - model.evaluate(x, y) - self.assertEqual(self.evaluate(auc_obj.true_positives[1]), 25.0) - self.assertEqual(self.evaluate(auc_obj.false_positives[1]), 25.0) - self.assertEqual(self.evaluate(auc_obj.false_negatives[1]), 25.0) - self.assertEqual(self.evaluate(auc_obj.true_negatives[1]), 25.0) - - def test_reset_state_auc_from_logits(self): - auc_obj = metrics.AUC(num_thresholds=3, from_logits=True) - - model_layers = [ - layers.Dense(1, kernel_initializer="ones", use_bias=False) - ] - model = test_utils.get_model_from_layers(model_layers, input_shape=(4,)) - model.compile( - loss="mae", - metrics=[auc_obj], - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.concatenate( - ( - np.ones((25, 4)), - -np.ones((25, 4)), - -np.ones((25, 4)), - np.ones((25, 4)), - ) - ) - y = np.concatenate( - ( - np.ones((25, 1)), - np.zeros((25, 1)), - np.ones((25, 1)), - np.zeros((25, 1)), - ) - ) - - for _ in range(2): - model.evaluate(x, y) - self.assertEqual(self.evaluate(auc_obj.true_positives[1]), 25.0) - self.assertEqual(self.evaluate(auc_obj.false_positives[1]), 25.0) - self.assertEqual(self.evaluate(auc_obj.false_negatives[1]), 25.0) - self.assertEqual(self.evaluate(auc_obj.true_negatives[1]), 25.0) - - def test_reset_state_auc_manual_thresholds(self): - auc_obj = metrics.AUC(thresholds=[0.5]) - model = _get_model([auc_obj]) - x = np.concatenate( - ( - np.ones((25, 4)), - np.zeros((25, 4)), - np.zeros((25, 4)), - np.ones((25, 4)), - ) - ) - y = np.concatenate( - ( - np.ones((25, 1)), - np.zeros((25, 1)), - np.ones((25, 1)), - np.zeros((25, 1)), - ) - ) - - for _ in range(2): - model.evaluate(x, y) - self.assertEqual(self.evaluate(auc_obj.true_positives[1]), 25.0) - self.assertEqual(self.evaluate(auc_obj.false_positives[1]), 25.0) - self.assertEqual(self.evaluate(auc_obj.false_negatives[1]), 25.0) - self.assertEqual(self.evaluate(auc_obj.true_negatives[1]), 25.0) - - def test_reset_state_mean_iou(self): - m_obj = metrics.MeanIoU(num_classes=2) - model = _get_model([m_obj]) - x = np.asarray( - [[0, 0, 0, 0], [1, 1, 1, 1], [1, 0, 1, 0], [0, 1, 0, 1]], - dtype=np.float32, - ) - y = np.asarray([[0], [1], [1], [1]], dtype=np.float32) - model.evaluate(x, y) - self.assertArrayNear(self.evaluate(m_obj.total_cm)[0], [1, 0], 1e-1) - self.assertArrayNear(self.evaluate(m_obj.total_cm)[1], [3, 0], 1e-1) - model.evaluate(x, y) - self.assertArrayNear(self.evaluate(m_obj.total_cm)[0], [1, 0], 1e-1) - self.assertArrayNear(self.evaluate(m_obj.total_cm)[1], [3, 0], 1e-1) - - def test_reset_state_recall_float64(self): - # Test case for GitHub issue 36790. - try: - backend.set_floatx("float64") - r_obj = metrics.Recall() - model = _get_model([r_obj]) - x = np.concatenate((np.ones((50, 4)), np.zeros((50, 4)))) - y = np.concatenate((np.ones((50, 1)), np.ones((50, 1)))) - model.evaluate(x, y) - self.assertEqual(self.evaluate(r_obj.true_positives), 50.0) - self.assertEqual(self.evaluate(r_obj.false_negatives), 50.0) - model.evaluate(x, y) - self.assertEqual(self.evaluate(r_obj.true_positives), 50.0) - self.assertEqual(self.evaluate(r_obj.false_negatives), 50.0) - finally: - backend.set_floatx("float32") - - def test_function_wrapped_reset_state(self): - m = metrics.Mean(name="my_mean") - - # check reset_state in function. - @tf.function - def reset_in_fn(): - m.reset_state() - return m.update_state(100) - - for _ in range(5): - self.evaluate(reset_in_fn()) - self.assertEqual(self.evaluate(m.count), 1) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MergeStateTest(test_combinations.TestCase): - def test_merge_state_incompatible_metrics(self): - with self.assertRaisesRegex( - ValueError, "Metric .* is not compatible with .*" - ): - obj1 = metrics.FalsePositives() - self.evaluate(tf.compat.v1.variables_initializer(obj1.variables)) - obj2 = metrics.Accuracy() - self.evaluate(tf.compat.v1.variables_initializer(obj2.variables)) - self.evaluate(obj1.merge_state([obj2])) - - def test_merge_state_accuracy(self): - a_objs = [] - for y_true, y_pred in zip( - [[[1], [2]], [[3], [4]]], [[[0], [2]], [[3], [4]]] - ): - a_obj = metrics.Accuracy() - a_objs.append(a_obj) - self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) - self.evaluate(a_obj.update_state(y_true, y_pred)) - self.evaluate(a_objs[0].merge_state(a_objs[1:])) - self.assertEqual(self.evaluate(a_objs[0].total), 3.0) - self.assertEqual(self.evaluate(a_objs[0].count), 4.0) - self.assertEqual(self.evaluate(a_objs[0].result()), 0.75) - - def test_merge_state_false_positives(self): - fp_objs = [] - for _ in range(4): - fp_obj = metrics.FalsePositives() - fp_objs.append(fp_obj) - self.evaluate(tf.compat.v1.variables_initializer(fp_obj.variables)) - y_true = np.zeros((25, 1)) - y_pred = np.ones((25, 1)) - self.evaluate(fp_obj.update_state(y_true, y_pred)) - self.evaluate(fp_objs[0].merge_state(fp_objs[1:])) - self.assertEqual(self.evaluate(fp_objs[0].accumulator), 100.0) - - def test_merge_state_false_negatives(self): - fn_objs = [] - for _ in range(4): - fn_obj = metrics.FalseNegatives() - fn_objs.append(fn_obj) - self.evaluate(tf.compat.v1.variables_initializer(fn_obj.variables)) - y_true = np.ones((25, 1)) - y_pred = np.zeros((25, 1)) - self.evaluate(fn_obj.update_state(y_true, y_pred)) - self.evaluate(fn_objs[0].merge_state(fn_objs[1:])) - self.assertEqual(self.evaluate(fn_objs[0].accumulator), 100.0) - - def test_merge_state_true_negatives(self): - tn_objs = [] - for _ in range(4): - tn_obj = metrics.TrueNegatives() - tn_objs.append(tn_obj) - self.evaluate(tf.compat.v1.variables_initializer(tn_obj.variables)) - y_true = np.zeros((25, 1)) - y_pred = np.zeros((25, 1)) - self.evaluate(tn_obj.update_state(y_true, y_pred)) - self.evaluate(tn_objs[0].merge_state(tn_objs[1:])) - self.assertEqual(self.evaluate(tn_objs[0].accumulator), 100.0) - - def test_merge_state_true_positives(self): - tp_objs = [] - for _ in range(4): - tp_obj = metrics.TruePositives() - tp_objs.append(tp_obj) - self.evaluate(tf.compat.v1.variables_initializer(tp_obj.variables)) - y_true = np.ones((25, 1)) - y_pred = np.ones((25, 1)) - self.evaluate(tp_obj.update_state(y_true, y_pred)) - self.evaluate(tp_objs[0].merge_state(tp_objs[1:])) - self.assertEqual(self.evaluate(tp_objs[0].accumulator), 100.0) - - def test_merge_state_precision(self): - p_objs = [] - for _ in range(5): - p_obj = metrics.Precision() - p_objs.append(p_obj) - self.evaluate(tf.compat.v1.variables_initializer(p_obj.variables)) - y_true = np.concatenate((np.ones((10, 1)), np.zeros((10, 1)))) - y_pred = np.concatenate((np.ones((10, 1)), np.ones((10, 1)))) - self.evaluate(p_obj.update_state(y_true, y_pred)) - self.evaluate(p_objs[0].merge_state(p_objs[1:])) - self.assertEqual(self.evaluate(p_objs[0].true_positives), 50.0) - self.assertEqual(self.evaluate(p_objs[0].false_positives), 50.0) - - def test_merge_state_recall(self): - r_objs = [] - for _ in range(5): - r_obj = metrics.Recall() - r_objs.append(r_obj) - self.evaluate(tf.compat.v1.variables_initializer(r_obj.variables)) - y_true = np.concatenate((np.ones((10, 1)), np.ones((10, 1)))) - y_pred = np.concatenate((np.ones((10, 1)), np.zeros((10, 1)))) - self.evaluate(r_obj.update_state(y_true, y_pred)) - self.evaluate(r_objs[0].merge_state(r_objs[1:])) - self.assertEqual(self.evaluate(r_objs[0].true_positives), 50.0) - self.assertEqual(self.evaluate(r_objs[0].false_negatives), 50.0) - - def test_merge_state_sensitivity_at_specificity(self): - sas_objs = [] - for _ in range(5): - sas_obj = metrics.SensitivityAtSpecificity(0.5, num_thresholds=1) - sas_objs.append(sas_obj) - self.evaluate(tf.compat.v1.variables_initializer(sas_obj.variables)) - y_true = np.concatenate( - ( - np.ones((5, 1)), - np.zeros((5, 1)), - np.ones((5, 1)), - np.zeros((5, 1)), - ) - ) - y_pred = np.concatenate( - ( - np.ones((5, 1)), - np.zeros((5, 1)), - np.zeros((5, 1)), - np.ones((5, 1)), - ) - ) - self.evaluate(sas_obj.update_state(y_true, y_pred)) - self.evaluate(sas_objs[0].merge_state(sas_objs[1:])) - self.assertEqual(self.evaluate(sas_objs[0].true_positives), 25.0) - self.assertEqual(self.evaluate(sas_objs[0].false_positives), 25.0) - self.assertEqual(self.evaluate(sas_objs[0].false_negatives), 25.0) - self.assertEqual(self.evaluate(sas_objs[0].true_negatives), 25.0) - - def test_merge_state_specificity_at_sensitivity(self): - sas_objs = [] - for _ in range(5): - sas_obj = metrics.SpecificityAtSensitivity(0.5, num_thresholds=1) - sas_objs.append(sas_obj) - self.evaluate(tf.compat.v1.variables_initializer(sas_obj.variables)) - y_true = np.concatenate( - ( - np.ones((5, 1)), - np.zeros((5, 1)), - np.ones((5, 1)), - np.zeros((5, 1)), - ) - ) - y_pred = np.concatenate( - ( - np.ones((5, 1)), - np.zeros((5, 1)), - np.zeros((5, 1)), - np.ones((5, 1)), - ) - ) - self.evaluate(sas_obj.update_state(y_true, y_pred)) - self.evaluate(sas_objs[0].merge_state(sas_objs[1:])) - self.assertEqual(self.evaluate(sas_objs[0].true_positives), 25.0) - self.assertEqual(self.evaluate(sas_objs[0].false_positives), 25.0) - self.assertEqual(self.evaluate(sas_objs[0].false_negatives), 25.0) - self.assertEqual(self.evaluate(sas_objs[0].true_negatives), 25.0) - - def test_merge_state_precision_at_recall(self): - par_objs = [] - for _ in range(5): - par_obj = metrics.PrecisionAtRecall(recall=0.5, num_thresholds=1) - par_objs.append(par_obj) - self.evaluate(tf.compat.v1.variables_initializer(par_obj.variables)) - y_true = np.concatenate( - ( - np.ones((5, 1)), - np.zeros((5, 1)), - np.ones((5, 1)), - np.zeros((5, 1)), - ) - ) - y_pred = np.concatenate( - ( - np.ones((5, 1)), - np.zeros((5, 1)), - np.zeros((5, 1)), - np.ones((5, 1)), - ) - ) - self.evaluate(par_obj.update_state(y_true, y_pred)) - self.evaluate(par_objs[0].merge_state(par_objs[1:])) - self.assertEqual(self.evaluate(par_objs[0].true_positives), 25.0) - self.assertEqual(self.evaluate(par_objs[0].false_positives), 25.0) - self.assertEqual(self.evaluate(par_objs[0].false_negatives), 25.0) - self.assertEqual(self.evaluate(par_objs[0].true_negatives), 25.0) - - def test_merge_state_recall_at_precision(self): - rap_objs = [] - for _ in range(5): - rap_obj = metrics.PrecisionAtRecall(recall=0.5, num_thresholds=1) - rap_objs.append(rap_obj) - self.evaluate(tf.compat.v1.variables_initializer(rap_obj.variables)) - y_true = np.concatenate( - ( - np.ones((5, 1)), - np.zeros((5, 1)), - np.ones((5, 1)), - np.zeros((5, 1)), - ) - ) - y_pred = np.concatenate( - ( - np.ones((5, 1)), - np.zeros((5, 1)), - np.zeros((5, 1)), - np.ones((5, 1)), - ) - ) - self.evaluate(rap_obj.update_state(y_true, y_pred)) - self.evaluate(rap_objs[0].merge_state(rap_objs[1:])) - self.assertEqual(self.evaluate(rap_objs[0].true_positives), 25.0) - self.assertEqual(self.evaluate(rap_objs[0].false_positives), 25.0) - self.assertEqual(self.evaluate(rap_objs[0].false_negatives), 25.0) - self.assertEqual(self.evaluate(rap_objs[0].true_negatives), 25.0) - - def test_merge_state_auc(self): - auc_objs = [] - for _ in range(5): - auc_obj = metrics.AUC(num_thresholds=3) - auc_objs.append(auc_obj) - self.evaluate(tf.compat.v1.variables_initializer(auc_obj.variables)) - y_true = np.concatenate( - ( - np.ones((5, 1)), - np.zeros((5, 1)), - np.ones((5, 1)), - np.zeros((5, 1)), - ) - ) - y_pred = np.concatenate( - ( - np.ones((5, 1)), - np.zeros((5, 1)), - np.zeros((5, 1)), - np.ones((5, 1)), - ) - ) - self.evaluate(auc_obj.update_state(y_true, y_pred)) - self.evaluate(auc_objs[0].merge_state(auc_objs[1:])) - self.assertEqual(self.evaluate(auc_objs[0].true_positives[1]), 25.0) - self.assertEqual(self.evaluate(auc_objs[0].false_positives[1]), 25.0) - self.assertEqual(self.evaluate(auc_objs[0].false_negatives[1]), 25.0) - self.assertEqual(self.evaluate(auc_objs[0].true_negatives[1]), 25.0) - - def test_merge_state_mean_iou(self): - m_objs = [] - for y_true, y_pred in zip( - [[0], [1], [1], [1]], [[0.5], [1.0], [1.0], [1.0]] - ): - m_obj = metrics.MeanIoU(num_classes=2) - m_objs.append(m_obj) - self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) - self.evaluate(m_obj.update_state(y_true, y_pred)) - self.evaluate(m_objs[0].merge_state(m_objs[1:])) - self.assertArrayNear(self.evaluate(m_objs[0].total_cm)[0], [1, 0], 1e-1) - self.assertArrayNear(self.evaluate(m_objs[0].total_cm)[1], [0, 3], 1e-1) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/metrics/f_score_metrics.py b/keras/metrics/f_score_metrics.py deleted file mode 100644 index 3e59a0de006..00000000000 --- a/keras/metrics/f_score_metrics.py +++ /dev/null @@ -1,323 +0,0 @@ -# Copyright 2023 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""F-Score metrics.""" - -import tensorflow.compat.v2 as tf -from tensorflow.python.util.tf_export import keras_export - -from keras.dtensor import utils as dtensor_utils -from keras.metrics import base_metric - - -# Adapted from TF-Addons implementation. -@keras_export("keras.metrics.FBetaScore") -class FBetaScore(base_metric.Metric): - """Computes F-Beta score. - - This is the weighted harmonic mean of precision and recall. - Its output range is `[0, 1]`. It works for both multi-class - and multi-label classification. - - It is defined as: - - ```python - b2 = beta ** 2 - f_beta_score = (1 + b2) * (precision * recall) / (precision * b2 + recall) - ``` - - Args: - average: Type of averaging to be performed across per-class results - in the multi-class case. - Acceptable values are `None`, `"micro"`, `"macro"` and - `"weighted"`. Default value is `None`. - If `None`, no averaging is performed and `result()` will return - the score for each class. - If `"micro"`, compute metrics globally by counting the total - true positives, false negatives and false positives. - If `"macro"`, compute metrics for each label, - and return their unweighted mean. - This does not take label imbalance into account. - If `"weighted"`, compute metrics for each label, - and return their average weighted by support - (the number of true instances for each label). - This alters `"macro"` to account for label imbalance. - It can result in an score that is not between precision and recall. - beta: Determines the weight of given to recall - in the harmonic mean between precision and recall (see pseudocode - equation above). Default value is 1. - threshold: Elements of `y_pred` greater than `threshold` are - converted to be 1, and the rest 0. If `threshold` is - `None`, the argmax of `y_pred` is converted to 1, and the rest to 0. - name: Optional. String name of the metric instance. - dtype: Optional. Data type of the metric result. - - Returns: - F-Beta Score: float. - - Example: - - >>> metric = tf.keras.metrics.FBetaScore(beta=2.0, threshold=0.5) - >>> y_true = np.array([[1, 1, 1], - ... [1, 0, 0], - ... [1, 1, 0]], np.int32) - >>> y_pred = np.array([[0.2, 0.6, 0.7], - ... [0.2, 0.6, 0.6], - ... [0.6, 0.8, 0.0]], np.float32) - >>> metric.update_state(y_true, y_pred) - >>> result = metric.result() - >>> result.numpy() - array([0.3846154 , 0.90909094, 0.8333334 ], dtype=float32) - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - average=None, - beta=1.0, - threshold=None, - name="fbeta_score", - dtype=None, - ): - super().__init__(name=name, dtype=dtype) - - if average not in (None, "micro", "macro", "weighted"): - raise ValueError( - "Invalid `average` argument value. Expected one of: " - "{None, 'micro', 'macro', 'weighted'}. " - f"Received: average={average}" - ) - - if not isinstance(beta, float): - raise ValueError( - "Invalid `beta` argument value. " - "It should be a Python float. " - f"Received: beta={beta} of type '{type(beta)}'" - ) - if beta <= 0.0: - raise ValueError( - "Invalid `beta` argument value. " - "It should be > 0. " - f"Received: beta={beta}" - ) - - if threshold is not None: - if not isinstance(threshold, float): - raise ValueError( - "Invalid `threshold` argument value. " - "It should be a Python float. " - f"Received: threshold={threshold} " - f"of type '{type(threshold)}'" - ) - if threshold > 1.0 or threshold <= 0.0: - raise ValueError( - "Invalid `threshold` argument value. " - "It should verify 0 < threshold <= 1. " - f"Received: threshold={threshold}" - ) - - self.average = average - self.beta = beta - self.threshold = threshold - self.axis = None - self.built = False - - if self.average != "micro": - self.axis = 0 - - def build(self, y_true_shape, y_pred_shape): - if len(y_pred_shape) != 2 or len(y_true_shape) != 2: - raise ValueError( - "FBetaScore expects 2D inputs with shape " - "(batch_size, output_dim). Received input " - f"shapes: y_pred.shape={y_pred_shape} and " - f"y_true.shape={y_true_shape}." - ) - if y_pred_shape[-1] is None or y_true_shape[-1] is None: - raise ValueError( - "FBetaScore expects 2D inputs with shape " - "(batch_size, output_dim), with output_dim fully " - "defined (not None). Received input " - f"shapes: y_pred.shape={y_pred_shape} and " - f"y_true.shape={y_true_shape}." - ) - num_classes = y_pred_shape[-1] - if self.average != "micro": - init_shape = [num_classes] - else: - init_shape = [] - - def _add_zeros_weight(name): - return self.add_weight( - name, - shape=init_shape, - initializer="zeros", - dtype=self.dtype, - ) - - self.true_positives = _add_zeros_weight("true_positives") - self.false_positives = _add_zeros_weight("false_positives") - self.false_negatives = _add_zeros_weight("false_negatives") - self.intermediate_weights = _add_zeros_weight("intermediate_weights") - self.built = True - - def update_state(self, y_true, y_pred, sample_weight=None): - y_true = tf.convert_to_tensor(y_true, dtype=self.dtype) - y_pred = tf.convert_to_tensor(y_pred, dtype=self.dtype) - if not self.built: - self.build(y_true.shape, y_pred.shape) - - if self.threshold is None: - threshold = tf.reduce_max(y_pred, axis=-1, keepdims=True) - # make sure [0, 0, 0] doesn't become [1, 1, 1] - # Use abs(x) > eps, instead of x != 0 to check for zero - y_pred = tf.logical_and(y_pred >= threshold, tf.abs(y_pred) > 1e-9) - else: - y_pred = y_pred > self.threshold - y_pred = tf.cast(y_pred, dtype=self.dtype) - - def _weighted_sum(val, sample_weight): - if sample_weight is not None: - val = tf.math.multiply(val, tf.expand_dims(sample_weight, 1)) - return tf.reduce_sum(val, axis=self.axis) - - self.true_positives.assign_add( - _weighted_sum(y_pred * y_true, sample_weight) - ) - self.false_positives.assign_add( - _weighted_sum(y_pred * (1 - y_true), sample_weight) - ) - self.false_negatives.assign_add( - _weighted_sum((1 - y_pred) * y_true, sample_weight) - ) - self.intermediate_weights.assign_add( - _weighted_sum(y_true, sample_weight) - ) - - def result(self): - precision = tf.math.divide_no_nan( - self.true_positives, self.true_positives + self.false_positives - ) - recall = tf.math.divide_no_nan( - self.true_positives, self.true_positives + self.false_negatives - ) - - mul_value = precision * recall - add_value = (tf.math.square(self.beta) * precision) + recall - mean = tf.math.divide_no_nan(mul_value, add_value) - f1_score = mean * (1 + tf.math.square(self.beta)) - - if self.average == "weighted": - weights = tf.math.divide_no_nan( - self.intermediate_weights, - tf.reduce_sum(self.intermediate_weights), - ) - f1_score = tf.reduce_sum(f1_score * weights) - - elif self.average is not None: # [micro, macro] - f1_score = tf.reduce_mean(f1_score) - - return f1_score - - def get_config(self): - """Returns the serializable config of the metric.""" - - config = { - "average": self.average, - "beta": self.beta, - "threshold": self.threshold, - } - - base_config = super().get_config() - return {**base_config, **config} - - def reset_state(self): - for v in self.variables: - v.assign(tf.zeros(v.shape, dtype=v.dtype)) - - -@keras_export("keras.metrics.F1Score") -class F1Score(FBetaScore): - r"""Computes F-1 Score. - - This is the harmonic mean of precision and recall. - Its output range is `[0, 1]`. It works for both multi-class - and multi-label classification. - - It is defined as: - - ```python - f1_score = 2 * (precision * recall) / (precision + recall) - ``` - - Args: - average: Type of averaging to be performed on data. - Acceptable values are `None`, `"micro"`, `"macro"` - and `"weighted"`. Default value is `None`. - If `None`, no averaging is performed and `result()` will return - the score for each class. - If `"micro"`, compute metrics globally by counting the total - true positives, false negatives and false positives. - If `"macro"`, compute metrics for each label, - and return their unweighted mean. - This does not take label imbalance into account. - If `"weighted"`, compute metrics for each label, - and return their average weighted by support - (the number of true instances for each label). - This alters `"macro"` to account for label imbalance. - It can result in an score that is not between precision and recall. - threshold: Elements of `y_pred` greater than `threshold` are - converted to be 1, and the rest 0. If `threshold` is - `None`, the argmax of `y_pred` is converted to 1, and the rest to 0. - name: Optional. String name of the metric instance. - dtype: Optional. Data type of the metric result. - - Returns: - F-1 Score: float. - - Example: - - >>> metric = tf.keras.metrics.F1Score(threshold=0.5) - >>> y_true = np.array([[1, 1, 1], - ... [1, 0, 0], - ... [1, 1, 0]], np.int32) - >>> y_pred = np.array([[0.2, 0.6, 0.7], - ... [0.2, 0.6, 0.6], - ... [0.6, 0.8, 0.0]], np.float32) - >>> metric.update_state(y_true, y_pred) - >>> result = metric.result() - >>> result.numpy() - array([0.5 , 0.8 , 0.6666667], dtype=float32) - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - average=None, - threshold=None, - name="f1_score", - dtype=None, - ): - super().__init__( - average=average, - beta=1.0, - threshold=threshold, - name=name, - dtype=dtype, - ) - - def get_config(self): - base_config = super().get_config() - del base_config["beta"] - return base_config diff --git a/keras/metrics/f_score_metrics_test.py b/keras/metrics/f_score_metrics_test.py deleted file mode 100644 index 8854467ad8e..00000000000 --- a/keras/metrics/f_score_metrics_test.py +++ /dev/null @@ -1,277 +0,0 @@ -# Copyright 2023 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for F-score metrics.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.metrics import f_score_metrics -from keras.testing_infra import test_utils - - -@test_utils.run_v2_only -class FBetaScoreTest(parameterized.TestCase, tf.test.TestCase): - def _run_test( - self, - y_true, - y_pred, - sample_weights, - average, - beta, - threshold, - reference_result, - ): - y_true = tf.constant(y_true, dtype="float32") - y_pred = tf.constant(y_pred, dtype="float32") - fbeta = f_score_metrics.FBetaScore(average, beta, threshold) - fbeta.update_state(y_true, y_pred, sample_weights) - result = fbeta.result().numpy() - self.assertAllClose(result, reference_result, atol=1e-6) - - def test_config(self): - fbeta_obj = f_score_metrics.FBetaScore( - beta=0.5, threshold=0.3, average=None - ) - self.assertEqual(fbeta_obj.beta, 0.5) - self.assertEqual(fbeta_obj.average, None) - self.assertEqual(fbeta_obj.threshold, 0.3) - self.assertEqual(fbeta_obj.dtype, tf.float32) - - # Check save and restore config - fbeta_obj2 = f_score_metrics.FBetaScore.from_config( - fbeta_obj.get_config() - ) - self.assertEqual(fbeta_obj2.beta, 0.5) - self.assertEqual(fbeta_obj2.average, None) - self.assertEqual(fbeta_obj2.threshold, 0.3) - self.assertEqual(fbeta_obj2.dtype, tf.float32) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - average=["micro", "macro", "weighted"], beta=[0.5, 1.0, 2.0] - ) - ) - def test_fbeta_perfect_score(self, average, beta): - y_true = [[1, 1, 1], [1, 0, 0], [1, 1, 0]] - y_pred = [[0.7, 0.7, 0.7], [1, 0, 0], [0.9, 0.8, 0]] - self._run_test( - y_true, - y_pred, - None, - average=average, - beta=beta, - threshold=0.66, - reference_result=1.0, - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - average=["micro", "macro", "weighted"], beta=[0.5, 1.0, 2.0] - ) - ) - def test_fbeta_worst_score(self, average, beta): - y_true = [[0, 0, 0], [0, 1, 0], [0, 0, 1]] - y_pred = [[0.7, 0.7, 0.7], [1, 0, 0], [0.9, 0.8, 0]] - self._run_test( - y_true, - y_pred, - None, - average=average, - beta=beta, - threshold=0.66, - reference_result=0.0, - ) - - @parameterized.parameters( - # average, beta, result - (None, 0.5, [0.71428573, 0.5, 0.833334]), - (None, 1.0, [0.8, 0.5, 0.6666667]), - (None, 2.0, [0.9090904, 0.5, 0.555556]), - ("micro", 0.5, 0.6666667), - ("micro", 1.0, 0.6666667), - ("micro", 2.0, 0.6666667), - ("macro", 0.5, 0.6825397), - ("macro", 1.0, 0.6555555), - ("macro", 2.0, 0.6548822), - ("weighted", 0.5, 0.6825397), - ("weighted", 1.0, 0.6555555), - ("weighted", 2.0, 0.6548822), - ) - def test_fbeta_random_score(self, average, beta, result): - y_pred = [[0.7, 0.7, 0.7], [1, 0, 0], [0.9, 0.8, 0]] - y_true = [[0, 0, 1], [1, 1, 0], [1, 1, 1]] - self._run_test( - y_true, - y_pred, - None, - average=average, - beta=beta, - threshold=0.66, - reference_result=result, - ) - - @parameterized.parameters( - # average, beta, result - (None, 0.5, [0.9090904, 0.555556, 1.0]), - (None, 1.0, [0.8, 0.6666667, 1.0]), - (None, 2.0, [0.71428573, 0.833334, 1.0]), - ("micro", 0.5, 0.833334), - ("micro", 1.0, 0.833334), - ("micro", 2.0, 0.833334), - ("macro", 0.5, 0.821549), - ("macro", 1.0, 0.822222), - ("macro", 2.0, 0.849206), - ("weighted", 0.5, 0.880471), - ("weighted", 1.0, 0.844445), - ("weighted", 2.0, 0.829365), - ) - def test_fbeta_random_score_none(self, average, beta, result): - y_true = [ - [1, 0, 0], - [0, 1, 0], - [0, 0, 1], - [1, 0, 0], - [1, 0, 0], - [0, 0, 1], - ] - y_pred = [ - [0.9, 0.1, 0], - [0.2, 0.6, 0.2], - [0, 0, 1], - [0.4, 0.3, 0.3], - [0, 0.9, 0.1], - [0, 0, 1], - ] - self._run_test( - y_true, - y_pred, - None, - average=average, - beta=beta, - threshold=None, - reference_result=result, - ) - - @parameterized.parameters( - # average, beta, sample_weights, result - (None, 0.5, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [0.909091, 0.555556, 1.0]), - (None, 0.5, [1.0, 0.0, 1.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0]), - (None, 0.5, [0.5, 1.0, 1.0, 1.0, 0.5, 1.0], [0.9375, 0.714286, 1.0]), - (None, 1.0, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [0.8, 0.666667, 1.0]), - (None, 1.0, [1.0, 0.0, 1.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0]), - (None, 1.0, [0.5, 1.0, 1.0, 1.0, 0.5, 1.0], [0.857143, 0.8, 1.0]), - (None, 2.0, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [0.714286, 0.833333, 1.0]), - (None, 2.0, [1.0, 0.0, 1.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0]), - (None, 2.0, [0.5, 1.0, 1.0, 1.0, 0.5, 1.0], [0.789474, 0.909091, 1.0]), - ("micro", 0.5, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 0.833333), - ("micro", 0.5, [1.0, 0.0, 1.0, 1.0, 0.0, 1.0], 1.0), - ("micro", 0.5, [0.5, 1.0, 1.0, 1.0, 0.5, 1.0], 0.9), - ("micro", 1.0, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 0.833333), - ("micro", 1.0, [1.0, 0.0, 1.0, 1.0, 0.0, 1.0], 1.0), - ("micro", 1.0, [0.5, 1.0, 1.0, 1.0, 0.5, 1.0], 0.9), - ("micro", 2.0, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 0.833333), - ("micro", 2.0, [1.0, 0.0, 1.0, 1.0, 0.0, 1.0], 1.0), - ("micro", 2.0, [0.5, 1.0, 1.0, 1.0, 0.5, 1.0], 0.9), - ("macro", 0.5, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 0.821549), - ("macro", 0.5, [1.0, 0.0, 1.0, 1.0, 0.0, 1.0], 0.666667), - ("macro", 0.5, [0.5, 1.0, 1.0, 1.0, 0.5, 1.0], 0.883929), - ("macro", 1.0, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 0.822222), - ("macro", 1.0, [1.0, 0.0, 1.0, 1.0, 0.0, 1.0], 0.666667), - ("macro", 1.0, [0.5, 1.0, 1.0, 1.0, 0.5, 1.0], 0.885714), - ("macro", 2.0, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 0.849206), - ("macro", 2.0, [1.0, 0.0, 1.0, 1.0, 0.0, 1.0], 0.666667), - ("macro", 2.0, [0.5, 1.0, 1.0, 1.0, 0.5, 1.0], 0.899522), - ("weighted", 0.5, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 0.880471), - ("weighted", 0.5, [1.0, 0.0, 1.0, 1.0, 0.0, 1.0], 1.0), - ("weighted", 0.5, [0.5, 1.0, 1.0, 1.0, 0.5, 1.0], 0.917857), - ("weighted", 1.0, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 0.844444), - ("weighted", 1.0, [1.0, 0.0, 1.0, 1.0, 0.0, 1.0], 1.0), - ("weighted", 1.0, [0.5, 1.0, 1.0, 1.0, 0.5, 1.0], 0.902857), - ("weighted", 2.0, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 0.829365), - ("weighted", 2.0, [1.0, 0.0, 1.0, 1.0, 0.0, 1.0], 1.0), - ("weighted", 2.0, [0.5, 1.0, 1.0, 1.0, 0.5, 1.0], 0.897608), - ) - def test_fbeta_weighted_random_score_none( - self, average, beta, sample_weights, result - ): - y_true = [ - [1, 0, 0], - [0, 1, 0], - [0, 0, 1], - [1, 0, 0], - [1, 0, 0], - [0, 0, 1], - ] - y_pred = [ - [0.9, 0.1, 0], - [0.2, 0.6, 0.2], - [0, 0, 1], - [0.4, 0.3, 0.3], - [0, 0.9, 0.1], - [0, 0, 1], - ] - self._run_test( - y_true, - y_pred, - sample_weights, - average=average, - beta=beta, - threshold=None, - reference_result=result, - ) - - -@test_utils.run_v2_only -class F1ScoreTest(tf.test.TestCase): - def test_config(self): - f1_obj = f_score_metrics.F1Score() - config = f1_obj.get_config() - self.assertNotIn("beta", config) - - # Check save and restore config - f1_obj = f_score_metrics.F1Score.from_config(config) - self.assertEqual(f1_obj.average, None) - self.assertEqual(f1_obj.dtype, tf.float32) - - def test_correctness(self): - f1 = f_score_metrics.F1Score() - fbeta = f_score_metrics.FBetaScore(beta=1.0) - - y_true = [ - [1, 0, 0], - [0, 1, 0], - [0, 0, 1], - [1, 0, 0], - [1, 0, 0], - [0, 0, 1], - ] - y_pred = [ - [0.9, 0.1, 0], - [0.2, 0.6, 0.2], - [0, 0, 1], - [0.4, 0.3, 0.3], - [0, 0.9, 0.1], - [0, 0, 1], - ] - - fbeta.update_state(y_true, y_pred) - f1.update_state(y_true, y_pred) - self.assertAllClose( - fbeta.result().numpy(), f1.result().numpy(), atol=1e-6 - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/metrics/hinge_metrics.py b/keras/metrics/hinge_metrics.py deleted file mode 100644 index ff49472c8f0..00000000000 --- a/keras/metrics/hinge_metrics.py +++ /dev/null @@ -1,136 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Hinge metrics.""" - -from keras.dtensor import utils as dtensor_utils -from keras.losses import categorical_hinge -from keras.losses import hinge -from keras.losses import squared_hinge -from keras.metrics import base_metric - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.metrics.Hinge") -class Hinge(base_metric.MeanMetricWrapper): - """Computes the hinge metric between `y_true` and `y_pred`. - - `y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are - provided we will convert them to -1 or 1. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.Hinge() - >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) - >>> m.result().numpy() - 1.3 - - >>> m.reset_state() - >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], - ... sample_weight=[1, 0]) - >>> m.result().numpy() - 1.1 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', loss='mse', metrics=[tf.keras.metrics.Hinge()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="hinge", dtype=None): - super().__init__(hinge, name, dtype=dtype) - - -@keras_export("keras.metrics.SquaredHinge") -class SquaredHinge(base_metric.MeanMetricWrapper): - """Computes the squared hinge metric between `y_true` and `y_pred`. - - `y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are - provided we will convert them to -1 or 1. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.SquaredHinge() - >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) - >>> m.result().numpy() - 1.86 - - >>> m.reset_state() - >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], - ... sample_weight=[1, 0]) - >>> m.result().numpy() - 1.46 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.SquaredHinge()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="squared_hinge", dtype=None): - super().__init__(squared_hinge, name, dtype=dtype) - - -@keras_export("keras.metrics.CategoricalHinge") -class CategoricalHinge(base_metric.MeanMetricWrapper): - """Computes the categorical hinge metric between `y_true` and `y_pred`. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.CategoricalHinge() - >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) - >>> m.result().numpy() - 1.4000001 - - >>> m.reset_state() - >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], - ... sample_weight=[1, 0]) - >>> m.result().numpy() - 1.2 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.CategoricalHinge()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="categorical_hinge", dtype=None): - super().__init__(categorical_hinge, name, dtype=dtype) diff --git a/keras/metrics/hinge_metrics_test.py b/keras/metrics/hinge_metrics_test.py deleted file mode 100644 index d5b09314210..00000000000 --- a/keras/metrics/hinge_metrics_test.py +++ /dev/null @@ -1,193 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras metrics.""" - -import tensorflow.compat.v2 as tf - -from keras import metrics -from keras.testing_infra import test_combinations - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class HingeTest(tf.test.TestCase): - def test_config(self): - hinge_obj = metrics.Hinge(name="hinge", dtype=tf.int32) - self.assertEqual(hinge_obj.name, "hinge") - self.assertEqual(hinge_obj._dtype, tf.int32) - - # Check save and restore config - hinge_obj2 = metrics.Hinge.from_config(hinge_obj.get_config()) - self.assertEqual(hinge_obj2.name, "hinge") - self.assertEqual(hinge_obj2._dtype, tf.int32) - - def test_unweighted(self): - hinge_obj = metrics.Hinge() - self.evaluate(tf.compat.v1.variables_initializer(hinge_obj.variables)) - y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]]) - y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]]) - - # metric = max(0, 1-y_true * y_pred), where y_true is -1/1 - - # y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]] - # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] - # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] - # metric = [(0.7 + 0.8 + 0.9 + 0) / 4, (0.75 + 0 + 0.5 + 0.4) / 4] - # = [0.6, 0.4125] - # reduced metric = (0.6 + 0.4125) / 2 - - update_op = hinge_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = hinge_obj.result() - self.assertAllClose(0.506, result, atol=1e-3) - - def test_weighted(self): - hinge_obj = metrics.Hinge() - self.evaluate(tf.compat.v1.variables_initializer(hinge_obj.variables)) - y_true = tf.constant([[-1, 1, -1, 1], [-1, -1, 1, 1]]) - y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]]) - sample_weight = tf.constant([1.5, 2.0]) - - # metric = max(0, 1-y_true * y_pred), where y_true is -1/1 - - # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] - # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] - # metric = [(0.7 + 0.8 + 0.9 + 0) / 4, (0.75 + 0 + 0.5 + 0.4) / 4] - # = [0.6, 0.4125] - # weighted metric = [0.6 * 1.5, 0.4125 * 2] - # reduced metric = (0.6 * 1.5 + 0.4125 * 2) / (1.5 + 2) - - result = hinge_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(0.493, self.evaluate(result), atol=1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class SquaredHingeTest(tf.test.TestCase): - def test_config(self): - sq_hinge_obj = metrics.SquaredHinge(name="sq_hinge", dtype=tf.int32) - self.assertEqual(sq_hinge_obj.name, "sq_hinge") - self.assertEqual(sq_hinge_obj._dtype, tf.int32) - - # Check save and restore config - sq_hinge_obj2 = metrics.SquaredHinge.from_config( - sq_hinge_obj.get_config() - ) - self.assertEqual(sq_hinge_obj2.name, "sq_hinge") - self.assertEqual(sq_hinge_obj2._dtype, tf.int32) - - def test_unweighted(self): - sq_hinge_obj = metrics.SquaredHinge() - self.evaluate( - tf.compat.v1.variables_initializer(sq_hinge_obj.variables) - ) - y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]]) - y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]]) - - # metric = max(0, 1-y_true * y_pred), where y_true is -1/1 - - # y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]] - # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] - # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] - # max(0, 1 - y_true * y_pred) = [[0.7, 0.8, 0.9, 0], [0.75, 0, 0.5, - # 0.4]] - # squared(max(0, 1 - y_true * y_pred)) = [[0.49, 0.64, 0.81, 0], - # [0.5625, 0, 0.25, 0.16]] - # metric = [(0.49 + 0.64 + 0.81 + 0) / 4, (0.5625 + 0 + 0.25 + 0.16) / - # 4] - # = [0.485, 0.2431] - # reduced metric = (0.485 + 0.2431) / 2 - - update_op = sq_hinge_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = sq_hinge_obj.result() - self.assertAllClose(0.364, result, atol=1e-3) - - def test_weighted(self): - sq_hinge_obj = metrics.SquaredHinge() - self.evaluate( - tf.compat.v1.variables_initializer(sq_hinge_obj.variables) - ) - y_true = tf.constant([[-1, 1, -1, 1], [-1, -1, 1, 1]]) - y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1.0, 0.5, 0.6]]) - sample_weight = tf.constant([1.5, 2.0]) - - # metric = max(0, 1-y_true * y_pred), where y_true is -1/1 - - # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] - # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] - # max(0, 1 - y_true * y_pred) = [[0.7, 0.8, 0.9, 0], [0.75, 0, 0.5, - # 0.4]] - # squared(max(0, 1 - y_true * y_pred)) = [[0.49, 0.64, 0.81, 0], - # [0.5625, 0, 0.25, 0.16]] - # metric = [(0.49 + 0.64 + 0.81 + 0) / 4, (0.5625 + 0 + 0.25 + 0.16) / - # 4] - # = [0.485, 0.2431] - # weighted metric = [0.485 * 1.5, 0.2431 * 2] - # reduced metric = (0.485 * 1.5 + 0.2431 * 2) / (1.5 + 2) - - result = sq_hinge_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(0.347, self.evaluate(result), atol=1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CategoricalHingeTest(tf.test.TestCase): - def test_config(self): - cat_hinge_obj = metrics.CategoricalHinge( - name="cat_hinge", dtype=tf.int32 - ) - self.assertEqual(cat_hinge_obj.name, "cat_hinge") - self.assertEqual(cat_hinge_obj._dtype, tf.int32) - - # Check save and restore config - cat_hinge_obj2 = metrics.CategoricalHinge.from_config( - cat_hinge_obj.get_config() - ) - self.assertEqual(cat_hinge_obj2.name, "cat_hinge") - self.assertEqual(cat_hinge_obj2._dtype, tf.int32) - - def test_unweighted(self): - cat_hinge_obj = metrics.CategoricalHinge() - self.evaluate( - tf.compat.v1.variables_initializer(cat_hinge_obj.variables) - ) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - - update_op = cat_hinge_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = cat_hinge_obj.result() - self.assertAllClose(0.5, result, atol=1e-5) - - def test_weighted(self): - cat_hinge_obj = metrics.CategoricalHinge() - self.evaluate( - tf.compat.v1.variables_initializer(cat_hinge_obj.variables) - ) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - sample_weight = tf.constant((1.0, 1.5, 2.0, 2.5)) - result = cat_hinge_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(0.5, self.evaluate(result), atol=1e-5) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/metrics/iou_metrics.py b/keras/metrics/iou_metrics.py deleted file mode 100644 index 83aac5b94a1..00000000000 --- a/keras/metrics/iou_metrics.py +++ /dev/null @@ -1,757 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""IoU metrics.""" - -from typing import List -from typing import Optional -from typing import Tuple -from typing import Union - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.dtensor import utils as dtensor_utils -from keras.metrics import base_metric - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -class _IoUBase(base_metric.Metric): - """Computes the confusion matrix for Intersection-Over-Union metrics. - - Intersection-Over-Union is a common evaluation metric for semantic image - segmentation. - - For an individual class, the IoU metric is defined as follows: - - ``` - iou = true_positives / (true_positives + false_positives + false_negatives) - ``` - - From IoUs of individual classes, the MeanIoU can be computed as the mean of - the individual IoUs. - - To compute IoUs, the predictions are accumulated in a confusion matrix, - weighted by `sample_weight` and the metric is then calculated from it. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Args: - num_classes: The possible number of labels the prediction task can have. - This value must be provided, since a confusion matrix of size - `(num_classes, num_classes)` will be allocated. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - ignore_class: Optional integer. The ID of a class to be ignored during - metric computation. This is useful, for example, in segmentation - problems featuring a "void" class (commonly -1 or 255) in segmentation - maps. By default (`ignore_class=None`), all classes are considered. - sparse_y_true: Whether labels are encoded using integers or - dense floating point vectors. If `False`, the `tf.argmax` function - will be used to determine each sample's most likely associated label. - sparse_y_pred: Whether predictions are encoded using integers or - dense floating point vectors. If `False`, the `tf.argmax` function - will be used to determine each sample's most likely associated label. - axis: (Optional) Defaults to -1. The dimension containing the logits. - """ - - def __init__( - self, - num_classes: int, - name: Optional[str] = None, - dtype: Optional[Union[str, tf.dtypes.DType]] = None, - ignore_class: Optional[int] = None, - sparse_y_true: bool = True, - sparse_y_pred: bool = True, - axis: int = -1, - ): - super().__init__(name=name, dtype=dtype) - self.num_classes = num_classes - self.ignore_class = ignore_class - self.sparse_y_true = sparse_y_true - self.sparse_y_pred = sparse_y_pred - self.axis = axis - - # Variable to accumulate the predictions in the confusion matrix. - self.total_cm = self.add_weight( - "total_confusion_matrix", - shape=(num_classes, num_classes), - initializer="zeros", - ) - - def update_state(self, y_true, y_pred, sample_weight=None): - """Accumulates the confusion matrix statistics. - - Args: - y_true: The ground truth values. - y_pred: The predicted values. - sample_weight: Optional weighting of each example. Defaults to 1. Can - be a `Tensor` whose rank is either 0, or the same rank as `y_true`, - and must be broadcastable to `y_true`. - - Returns: - Update op. - """ - - if not self.sparse_y_true: - y_true = tf.argmax(y_true, axis=self.axis) - if not self.sparse_y_pred: - y_pred = tf.argmax(y_pred, axis=self.axis) - - y_true = tf.cast(y_true, self._dtype) - y_pred = tf.cast(y_pred, self._dtype) - - # Flatten the input if its rank > 1. - if y_pred.shape.ndims > 1: - y_pred = tf.reshape(y_pred, [-1]) - - if y_true.shape.ndims > 1: - y_true = tf.reshape(y_true, [-1]) - - if sample_weight is not None: - sample_weight = tf.cast(sample_weight, self._dtype) - if sample_weight.shape.ndims > 1: - sample_weight = tf.reshape(sample_weight, [-1]) - - if self.ignore_class is not None: - ignore_class = tf.cast(self.ignore_class, y_true.dtype) - valid_mask = tf.not_equal(y_true, ignore_class) - y_true = y_true[valid_mask] - y_pred = y_pred[valid_mask] - if sample_weight is not None: - sample_weight = sample_weight[valid_mask] - - # Accumulate the prediction to current confusion matrix. - current_cm = tf.math.confusion_matrix( - y_true, - y_pred, - self.num_classes, - weights=sample_weight, - dtype=self._dtype, - ) - return self.total_cm.assign_add(current_cm) - - def reset_state(self): - backend.set_value( - self.total_cm, np.zeros((self.num_classes, self.num_classes)) - ) - - -@keras_export("keras.metrics.IoU") -class IoU(_IoUBase): - """Computes the Intersection-Over-Union metric for specific target classes. - - General definition and computation: - - Intersection-Over-Union is a common evaluation metric for semantic image - segmentation. - - For an individual class, the IoU metric is defined as follows: - - ``` - iou = true_positives / (true_positives + false_positives + false_negatives) - ``` - - To compute IoUs, the predictions are accumulated in a confusion matrix, - weighted by `sample_weight` and the metric is then calculated from it. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Note, this class first computes IoUs for all individual classes, then - returns the mean of IoUs for the classes that are specified by - `target_class_ids`. If `target_class_ids` has only one id value, the IoU of - that specific class is returned. - - Args: - num_classes: The possible number of labels the prediction task can have. - A confusion matrix of dimension = [num_classes, num_classes] will be - allocated to accumulate predictions from which the metric is calculated. - target_class_ids: A tuple or list of target class ids for which the metric - is returned. To compute IoU for a specific class, a list (or tuple) of a - single id value should be provided. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - ignore_class: Optional integer. The ID of a class to be ignored during - metric computation. This is useful, for example, in segmentation - problems featuring a "void" class (commonly -1 or 255) in segmentation - maps. By default (`ignore_class=None`), all classes are considered. - sparse_y_true: Whether labels are encoded using integers or - dense floating point vectors. If `False`, the `tf.argmax` function - will be used to determine each sample's most likely associated label. - sparse_y_pred: Whether predictions are encoded using integers or - dense floating point vectors. If `False`, the `tf.argmax` function - will be used to determine each sample's most likely associated label. - axis: (Optional) Defaults to -1. The dimension containing the logits. - - Standalone usage: - - >>> # cm = [[1, 1], - >>> # [1, 1]] - >>> # sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1] - >>> # iou = true_positives / (sum_row + sum_col - true_positives)) - >>> # iou = [0.33, 0.33] - >>> m = tf.keras.metrics.IoU(num_classes=2, target_class_ids=[0]) - >>> m.update_state([0, 0, 1, 1], [0, 1, 0, 1]) - >>> m.result().numpy() - 0.33333334 - - >>> m.reset_state() - >>> m.update_state([0, 0, 1, 1], [0, 1, 0, 1], - ... sample_weight=[0.3, 0.3, 0.3, 0.1]) - >>> # cm = [[0.3, 0.3], - >>> # [0.3, 0.1]] - >>> # sum_row = [0.6, 0.4], sum_col = [0.6, 0.4], - >>> # true_positives = [0.3, 0.1] - >>> # iou = [0.33, 0.14] - >>> m.result().numpy() - 0.33333334 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.IoU(num_classes=2, target_class_ids=[0])]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - num_classes: int, - target_class_ids: Union[List[int], Tuple[int, ...]], - name: Optional[str] = None, - dtype: Optional[Union[str, tf.dtypes.DType]] = None, - ignore_class: Optional[int] = None, - sparse_y_true: bool = True, - sparse_y_pred: bool = True, - axis: int = -1, - ): - super().__init__( - name=name, - num_classes=num_classes, - ignore_class=ignore_class, - sparse_y_true=sparse_y_true, - sparse_y_pred=sparse_y_pred, - axis=axis, - dtype=dtype, - ) - if max(target_class_ids) >= num_classes: - raise ValueError( - f"Target class id {max(target_class_ids)} " - "is out of range, which is " - f"[{0}, {num_classes})." - ) - self.target_class_ids = list(target_class_ids) - - def result(self): - """Compute the intersection-over-union via the confusion matrix.""" - sum_over_row = tf.cast( - tf.reduce_sum(self.total_cm, axis=0), dtype=self._dtype - ) - sum_over_col = tf.cast( - tf.reduce_sum(self.total_cm, axis=1), dtype=self._dtype - ) - true_positives = tf.cast( - tf.linalg.tensor_diag_part(self.total_cm), dtype=self._dtype - ) - - # sum_over_row + sum_over_col = - # 2 * true_positives + false_positives + false_negatives. - denominator = sum_over_row + sum_over_col - true_positives - - # Only keep the target classes - true_positives = tf.gather(true_positives, self.target_class_ids) - denominator = tf.gather(denominator, self.target_class_ids) - - # If the denominator is 0, we need to ignore the class. - num_valid_entries = tf.reduce_sum( - tf.cast(tf.not_equal(denominator, 0), dtype=self._dtype) - ) - - iou = tf.math.divide_no_nan(true_positives, denominator) - - return tf.math.divide_no_nan( - tf.reduce_sum(iou, name="mean_iou"), num_valid_entries - ) - - def get_config(self): - config = { - "num_classes": self.num_classes, - "target_class_ids": self.target_class_ids, - "ignore_class": self.ignore_class, - "sparse_y_true": self.sparse_y_true, - "sparse_y_pred": self.sparse_y_pred, - "axis": self.axis, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.metrics.BinaryIoU") -class BinaryIoU(IoU): - """Computes the Intersection-Over-Union metric for class 0 and/or 1. - - General definition and computation: - - Intersection-Over-Union is a common evaluation metric for semantic image - segmentation. - - For an individual class, the IoU metric is defined as follows: - - ``` - iou = true_positives / (true_positives + false_positives + false_negatives) - ``` - - To compute IoUs, the predictions are accumulated in a confusion matrix, - weighted by `sample_weight` and the metric is then calculated from it. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - This class can be used to compute IoUs for a binary classification task - where the predictions are provided as logits. First a `threshold` is applied - to the predicted values such that those that are below the `threshold` are - converted to class 0 and those that are above the `threshold` are converted - to class 1. - - IoUs for classes 0 and 1 are then computed, the mean of IoUs for the classes - that are specified by `target_class_ids` is returned. - - Note: with `threshold=0`, this metric has the same behavior as `IoU`. - - Args: - target_class_ids: A tuple or list of target class ids for which the metric - is returned. Options are `[0]`, `[1]`, or `[0, 1]`. With `[0]` (or - `[1]`), the IoU metric for class 0 (or class 1, respectively) is - returned. With `[0, 1]`, the mean of IoUs for the two classes is - returned. - threshold: A threshold that applies to the prediction logits to convert - them to either predicted class 0 if the logit is below `threshold` or - predicted class 1 if the logit is above `threshold`. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.BinaryIoU(target_class_ids=[0, 1], threshold=0.3) - >>> m.update_state([0, 1, 0, 1], [0.1, 0.2, 0.4, 0.7]) - >>> m.result().numpy() - 0.33333334 - - >>> m.reset_state() - >>> m.update_state([0, 1, 0, 1], [0.1, 0.2, 0.4, 0.7], - ... sample_weight=[0.2, 0.3, 0.4, 0.1]) - >>> # cm = [[0.2, 0.4], - >>> # [0.3, 0.1]] - >>> # sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], - >>> # true_positives = [0.2, 0.1] - >>> # iou = [0.222, 0.125] - >>> m.result().numpy() - 0.17361112 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.BinaryIoU(target_class_ids=[0], threshold=0.5)]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - target_class_ids: Union[List[int], Tuple[int, ...]] = (0, 1), - threshold=0.5, - name=None, - dtype=None, - ): - - super().__init__( - num_classes=2, - target_class_ids=target_class_ids, - name=name, - dtype=dtype, - ) - self.threshold = threshold - - def update_state(self, y_true, y_pred, sample_weight=None): - """Accumulates the confusion matrix statistics. - - Before the confusion matrix is updated, the predicted values are - thresholded to be: - 0 for values that are smaller than the `threshold` - 1 for values that are larger or equal to the `threshold` - - Args: - y_true: The ground truth values. - y_pred: The predicted values. - sample_weight: Optional weighting of each example. Defaults to 1. Can - be a `Tensor` whose rank is either 0, or the same rank as `y_true`, - and must be broadcastable to `y_true`. - - Returns: - Update op. - """ - y_pred = tf.cast(y_pred, self._dtype) - y_pred = tf.cast(y_pred >= self.threshold, self._dtype) - return super().update_state(y_true, y_pred, sample_weight) - - def get_config(self): - return { - "target_class_ids": self.target_class_ids, - "threshold": self.threshold, - "name": self.name, - "dtype": self._dtype, - } - - -@keras_export("keras.metrics.MeanIoU") -class MeanIoU(IoU): - """Computes the mean Intersection-Over-Union metric. - - General definition and computation: - - Intersection-Over-Union is a common evaluation metric for semantic image - segmentation. - - For an individual class, the IoU metric is defined as follows: - - ``` - iou = true_positives / (true_positives + false_positives + false_negatives) - ``` - - To compute IoUs, the predictions are accumulated in a confusion matrix, - weighted by `sample_weight` and the metric is then calculated from it. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Note that this class first computes IoUs for all individual classes, then - returns the mean of these values. - - Args: - num_classes: The possible number of labels the prediction task can have. - This value must be provided, since a confusion matrix of dimension = - [num_classes, num_classes] will be allocated. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - ignore_class: Optional integer. The ID of a class to be ignored during - metric computation. This is useful, for example, in segmentation - problems featuring a "void" class (commonly -1 or 255) in segmentation - maps. By default (`ignore_class=None`), all classes are considered. - sparse_y_true: Whether labels are encoded using integers or - dense floating point vectors. If `False`, the `tf.argmax` function - will be used to determine each sample's most likely associated label. - sparse_y_pred: Whether predictions are encoded using integers or - dense floating point vectors. If `False`, the `tf.argmax` function - will be used to determine each sample's most likely associated label. - axis: (Optional) Defaults to -1. The dimension containing the logits. - - Standalone usage: - - >>> # cm = [[1, 1], - >>> # [1, 1]] - >>> # sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1] - >>> # iou = true_positives / (sum_row + sum_col - true_positives)) - >>> # result = (1 / (2 + 2 - 1) + 1 / (2 + 2 - 1)) / 2 = 0.33 - >>> m = tf.keras.metrics.MeanIoU(num_classes=2) - >>> m.update_state([0, 0, 1, 1], [0, 1, 0, 1]) - >>> m.result().numpy() - 0.33333334 - - >>> m.reset_state() - >>> m.update_state([0, 0, 1, 1], [0, 1, 0, 1], - ... sample_weight=[0.3, 0.3, 0.3, 0.1]) - >>> m.result().numpy() - 0.23809525 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.MeanIoU(num_classes=2)]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - num_classes: int, - name: Optional[str] = None, - dtype: Optional[Union[str, tf.dtypes.DType]] = None, - ignore_class: Optional[int] = None, - sparse_y_true: bool = True, - sparse_y_pred: bool = True, - axis: int = -1, - ): - target_class_ids = list(range(num_classes)) - super().__init__( - name=name, - num_classes=num_classes, - target_class_ids=target_class_ids, - axis=axis, - dtype=dtype, - ignore_class=ignore_class, - sparse_y_true=sparse_y_true, - sparse_y_pred=sparse_y_pred, - ) - - def get_config(self): - return { - "num_classes": self.num_classes, - "name": self.name, - "dtype": self._dtype, - "ignore_class": self.ignore_class, - "sparse_y_true": self.sparse_y_true, - "sparse_y_pred": self.sparse_y_pred, - "axis": self.axis, - } - - -@keras_export("keras.metrics.OneHotIoU") -class OneHotIoU(IoU): - """Computes the Intersection-Over-Union metric for one-hot encoded labels. - - General definition and computation: - - Intersection-Over-Union is a common evaluation metric for semantic image - segmentation. - - For an individual class, the IoU metric is defined as follows: - - ``` - iou = true_positives / (true_positives + false_positives + false_negatives) - ``` - - To compute IoUs, the predictions are accumulated in a confusion matrix, - weighted by `sample_weight` and the metric is then calculated from it. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - This class can be used to compute IoU for multi-class classification tasks - where the labels are one-hot encoded (the last axis should have one - dimension per class). Note that the predictions should also have the same - shape. To compute the IoU, first the labels and predictions are converted - back into integer format by taking the argmax over the class axis. Then the - same computation steps as for the base `IoU` class apply. - - Note, if there is only one channel in the labels and predictions, this class - is the same as class `IoU`. In this case, use `IoU` instead. - - Also, make sure that `num_classes` is equal to the number of classes in the - data, to avoid a "labels out of bound" error when the confusion matrix is - computed. - - Args: - num_classes: The possible number of labels the prediction task can have. - A confusion matrix of shape `(num_classes, num_classes)` will be - allocated to accumulate predictions from which the metric is calculated. - target_class_ids: A tuple or list of target class ids for which the metric - is returned. To compute IoU for a specific class, a list (or tuple) of a - single id value should be provided. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - ignore_class: Optional integer. The ID of a class to be ignored during - metric computation. This is useful, for example, in segmentation - problems featuring a "void" class (commonly -1 or 255) in segmentation - maps. By default (`ignore_class=None`), all classes are considered. - sparse_y_pred: Whether predictions are encoded using natural numbers or - probability distribution vectors. If `False`, the `tf.argmax` function - will be used to determine each sample's most likely associated label. - axis: (Optional) Defaults to -1. The dimension containing the logits. - - Standalone usage: - - >>> y_true = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 0]]) - >>> y_pred = tf.constant([[0.2, 0.3, 0.5], [0.1, 0.2, 0.7], [0.5, 0.3, 0.1], - ... [0.1, 0.4, 0.5]]) - >>> sample_weight = [0.1, 0.2, 0.3, 0.4] - >>> m = tf.keras.metrics.OneHotIoU(num_classes=3, target_class_ids=[0, 2]) - >>> m.update_state( - ... y_true=y_true, y_pred=y_pred, sample_weight=sample_weight) - >>> # cm = [[0, 0, 0.2+0.4], - >>> # [0.3, 0, 0], - >>> # [0, 0, 0.1]] - >>> # sum_row = [0.3, 0, 0.7], sum_col = [0.6, 0.3, 0.1] - >>> # true_positives = [0, 0, 0.1] - >>> # single_iou = true_positives / (sum_row + sum_col - true_positives)) - >>> # mean_iou = (0 / (0.3 + 0.6 - 0) + 0.1 / (0.7 + 0.1 - 0.1)) / 2 - >>> m.result().numpy() - 0.071 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.OneHotIoU(num_classes=3, target_class_id=[1])]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - num_classes: int, - target_class_ids: Union[List[int], Tuple[int, ...]], - name=None, - dtype=None, - ignore_class: Optional[int] = None, - sparse_y_pred: bool = False, - axis: int = -1, - ): - super().__init__( - num_classes=num_classes, - target_class_ids=target_class_ids, - name=name, - dtype=dtype, - ignore_class=ignore_class, - sparse_y_true=False, - sparse_y_pred=sparse_y_pred, - axis=axis, - ) - - def get_config(self): - return { - "num_classes": self.num_classes, - "target_class_ids": self.target_class_ids, - "name": self.name, - "dtype": self._dtype, - "ignore_class": self.ignore_class, - "sparse_y_pred": self.sparse_y_pred, - "axis": self.axis, - } - - -@keras_export("keras.metrics.OneHotMeanIoU") -class OneHotMeanIoU(MeanIoU): - """Computes mean Intersection-Over-Union metric for one-hot encoded labels. - - General definition and computation: - - Intersection-Over-Union is a common evaluation metric for semantic image - segmentation. - - For an individual class, the IoU metric is defined as follows: - - ``` - iou = true_positives / (true_positives + false_positives + false_negatives) - ``` - - To compute IoUs, the predictions are accumulated in a confusion matrix, - weighted by `sample_weight` and the metric is then calculated from it. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - This class can be used to compute the mean IoU for multi-class - classification tasks where the labels are one-hot encoded (the last axis - should have one dimension per class). Note that the predictions should also - have the same shape. To compute the mean IoU, first the labels and - predictions are converted back into integer format by taking the argmax over - the class axis. Then the same computation steps as for the base `MeanIoU` - class apply. - - Note, if there is only one channel in the labels and predictions, this class - is the same as class `MeanIoU`. In this case, use `MeanIoU` instead. - - Also, make sure that `num_classes` is equal to the number of classes in the - data, to avoid a "labels out of bound" error when the confusion matrix is - computed. - - Args: - num_classes: The possible number of labels the prediction task can have. - A confusion matrix of shape `(num_classes, num_classes)` will be - allocated to accumulate predictions from which the metric is calculated. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - ignore_class: Optional integer. The ID of a class to be ignored during - metric computation. This is useful, for example, in segmentation - problems featuring a "void" class (commonly -1 or 255) in segmentation - maps. By default (`ignore_class=None`), all classes are considered. - sparse_y_pred: Whether predictions are encoded using natural numbers or - probability distribution vectors. If `False`, the `tf.argmax` function - will be used to determine each sample's most likely associated label. - axis: (Optional) Defaults to -1. The dimension containing the logits. - - Standalone usage: - - >>> y_true = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 0]]) - >>> y_pred = tf.constant([[0.2, 0.3, 0.5], [0.1, 0.2, 0.7], [0.5, 0.3, 0.1], - ... [0.1, 0.4, 0.5]]) - >>> sample_weight = [0.1, 0.2, 0.3, 0.4] - >>> m = tf.keras.metrics.OneHotMeanIoU(num_classes=3) - >>> m.update_state( - ... y_true=y_true, y_pred=y_pred, sample_weight=sample_weight) - >>> # cm = [[0, 0, 0.2+0.4], - >>> # [0.3, 0, 0], - >>> # [0, 0, 0.1]] - >>> # sum_row = [0.3, 0, 0.7], sum_col = [0.6, 0.3, 0.1] - >>> # true_positives = [0, 0, 0.1] - >>> # single_iou = true_positives / (sum_row + sum_col - true_positives)) - >>> # mean_iou = (0 + 0 + 0.1 / (0.7 + 0.1 - 0.1)) / 3 - >>> m.result().numpy() - 0.048 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.OneHotMeanIoU(num_classes=3)]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - num_classes: int, - name: str = None, - dtype: Optional[Union[str, tf.dtypes.DType]] = None, - ignore_class: Optional[int] = None, - sparse_y_pred: bool = False, - axis: int = -1, - ): - super().__init__( - num_classes=num_classes, - axis=axis, - name=name, - dtype=dtype, - ignore_class=ignore_class, - sparse_y_true=False, - sparse_y_pred=sparse_y_pred, - ) - - def get_config(self): - return { - "num_classes": self.num_classes, - "name": self.name, - "dtype": self._dtype, - "ignore_class": self.ignore_class, - "sparse_y_pred": self.sparse_y_pred, - "axis": self.axis, - } diff --git a/keras/metrics/iou_metrics_test.py b/keras/metrics/iou_metrics_test.py deleted file mode 100644 index a642abeeeff..00000000000 --- a/keras/metrics/iou_metrics_test.py +++ /dev/null @@ -1,475 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras metrics.""" - -import tensorflow.compat.v2 as tf - -from keras import metrics -from keras.testing_infra import test_combinations - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class IoUTest(tf.test.TestCase): - def test_config(self): - obj = metrics.IoU( - num_classes=2, target_class_ids=[1, 0], name="iou_class_1_0" - ) - self.assertEqual(obj.name, "iou_class_1_0") - self.assertEqual(obj.num_classes, 2) - self.assertEqual(obj.target_class_ids, [1, 0]) - - obj2 = metrics.IoU.from_config(obj.get_config()) - self.assertEqual(obj2.name, "iou_class_1_0") - self.assertEqual(obj2.num_classes, 2) - self.assertEqual(obj2.target_class_ids, [1, 0]) - - def test_unweighted(self): - y_pred = [0, 1, 0, 1] - y_true = [0, 0, 1, 1] - - obj = metrics.IoU(num_classes=2, target_class_ids=[0, 1]) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - - result = obj(y_true, y_pred) - - # cm = [[1, 1], - # [1, 1]] - # sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = (1 / (2 + 2 - 1) + 1 / (2 + 2 - 1)) / 2 - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_weighted(self): - y_pred = tf.constant([0, 1, 0, 1], dtype=tf.float32) - y_true = tf.constant([0, 0, 1, 1]) - sample_weight = tf.constant([0.2, 0.3, 0.4, 0.1]) - - obj = metrics.IoU(num_classes=2, target_class_ids=[1, 0]) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - - result = obj(y_true, y_pred, sample_weight=sample_weight) - - # cm = [[0.2, 0.3], - # [0.4, 0.1]] - # sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, - # 0.1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = ( - 0.1 / (0.4 + 0.5 - 0.1) + 0.2 / (0.6 + 0.5 - 0.2) - ) / 2 - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_multi_dim_input(self): - y_pred = tf.constant([[0, 1], [0, 1]], dtype=tf.float32) - y_true = tf.constant([[0, 0], [1, 1]]) - sample_weight = tf.constant([[0.2, 0.3], [0.4, 0.1]]) - - obj = metrics.IoU(num_classes=2, target_class_ids=[0, 1]) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - - result = obj(y_true, y_pred, sample_weight=sample_weight) - - # cm = [[0.2, 0.3], - # [0.4, 0.1]] - # sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, - # 0.1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = ( - 0.2 / (0.6 + 0.5 - 0.2) + 0.1 / (0.4 + 0.5 - 0.1) - ) / 2 - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_zero_valid_entries(self): - obj = metrics.IoU(num_classes=2, target_class_ids=[0, 1]) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - self.assertAllClose(self.evaluate(obj.result()), 0, atol=1e-3) - - def test_zero_and_non_zero_entries(self): - y_pred = tf.constant([1], dtype=tf.float32) - y_true = tf.constant([1]) - - obj = metrics.IoU(num_classes=2, target_class_ids=[0, 1]) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - result = obj(y_true, y_pred) - - # cm = [[0, 0], - # [0, 1]] - # sum_row = [0, 1], sum_col = [0, 1], true_positives = [0, 1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = (1 / (1 + 1 - 1)) / 1 - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class BinaryIoUTest(tf.test.TestCase): - def test_config(self): - obj = metrics.BinaryIoU( - target_class_ids=[1, 0], threshold=0.1, name="iou_class_1_0" - ) - self.assertEqual(obj.name, "iou_class_1_0") - self.assertAlmostEqual(obj.threshold, 0.1) - self.assertEqual(obj.target_class_ids, [1, 0]) - - obj2 = metrics.BinaryIoU.from_config(obj.get_config()) - self.assertEqual(obj.name, "iou_class_1_0") - self.assertAlmostEqual(obj2.threshold, 0.1) - self.assertEqual(obj.target_class_ids, [1, 0]) - - def test_different_thresholds_weighted(self): - y_true = [0, 1, 0, 1] - y_pred = [0.1, 0.2, 0.4, 0.7] - - sample_weight = tf.constant([0.2, 0.3, 0.4, 0.1]) - # with threshold = 0.3, y_pred will be converted to [0, 0, 1, 1] - # cm = [[0.2, 0.4], - # [0.3, 0.1]] - # sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, - # 0.1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = ( - 0.2 / (0.6 + 0.5 - 0.2) + 0.1 / (0.4 + 0.5 - 0.1) - ) / 2 - obj = metrics.BinaryIoU(target_class_ids=[0, 1], threshold=0.3) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - result = obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - sample_weight = tf.constant([0.1, 0.2, 0.4, 0.3]) - # with threshold = 0.5, y_pred will be converted to [0, 0, 0, 1] - # cm = [[0.1+0.4, 0], - # [0.2, 0.3]] - # sum_row = [0.5, 0.5], sum_col = [0.7, 0.3], true_positives = [0.5, - # 0.3] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = ( - 0.5 / (0.5 + 0.7 - 0.5) + 0.3 / (0.5 + 0.3 - 0.3) - ) / 2 - obj = metrics.BinaryIoU(target_class_ids=[0, 1], threshold=0.5) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - result = obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_different_thresholds_unweighted(self): - y_true = [0, 1, 0, 1] - y_pred = [0.1, 0.2, 0.4, 0.7] - - # with threshold = 0.3, y_pred will be converted to [0, 0, 1, 1] - # cm = [[1, 1], - # [1, 1]] - # sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = (1 / (2 + 2 - 1) + 1 / (2 + 2 - 1)) / 2 - obj = metrics.BinaryIoU(target_class_ids=[0, 1], threshold=0.3) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - result = obj(y_true, y_pred) - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - # with threshold = 0.5, y_pred will be converted to [0, 0, 0, 1] - # cm = [[2, 0], - # [1, 1]] - # sum_row = [2, 2], sum_col = [3, 1], true_positives = [2, 1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = (2 / (2 + 3 - 2) + 1 / (2 + 1 - 1)) / 2 - obj = metrics.BinaryIoU(target_class_ids=[0, 1], threshold=0.5) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - result = obj(y_true, y_pred) - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_multi_dim_input(self): - y_true = tf.constant([[0, 1], [0, 1]], dtype=tf.float32) - y_pred = tf.constant([[0.1, 0.7], [0.9, 0.3]]) - threshold = 0.4 # y_pred will become [[0, 1], [1, 0]] - sample_weight = tf.constant([[0.2, 0.3], [0.4, 0.1]]) - # cm = [[0.2, 0.4], - # [0.1, 0.3]] - # sum_row = [0.6, 0.4], sum_col = [0.3, 0.7], true_positives = [0.2, - # 0.3] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = ( - 0.2 / (0.6 + 0.3 - 0.2) + 0.3 / (0.4 + 0.7 - 0.3) - ) / 2 - obj = metrics.BinaryIoU(target_class_ids=[0, 1], threshold=threshold) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - result = obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_zero_valid_entries(self): - obj = metrics.BinaryIoU(target_class_ids=[0, 1]) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - self.assertAllClose(self.evaluate(obj.result()), 0, atol=1e-3) - - def test_zero_and_non_zero_entries(self): - y_pred = tf.constant([0.6], dtype=tf.float32) - threshold = 0.5 - y_true = tf.constant([1]) - - obj = metrics.BinaryIoU(target_class_ids=[0, 1], threshold=threshold) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - result = obj(y_true, y_pred) - - # cm = [[0, 0], - # [0, 1]] - # sum_row = [0, 1], sum_col = [0, 1], true_positives = [0, 1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = 1 / (1 + 1 - 1) - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MeanIoUTest(tf.test.TestCase): - def test_config(self): - m_obj = metrics.MeanIoU(num_classes=2, name="mean_iou") - self.assertEqual(m_obj.name, "mean_iou") - self.assertEqual(m_obj.num_classes, 2) - - m_obj2 = metrics.MeanIoU.from_config(m_obj.get_config()) - self.assertEqual(m_obj2.name, "mean_iou") - self.assertEqual(m_obj2.num_classes, 2) - - def test_unweighted(self): - y_pred = [0, 1, 0, 1] - y_true = [0, 0, 1, 1] - - m_obj = metrics.MeanIoU(num_classes=2) - self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) - - result = m_obj(y_true, y_pred) - - # cm = [[1, 1], - # [1, 1]] - # sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = (1 / (2 + 2 - 1) + 1 / (2 + 2 - 1)) / 2 - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_unweighted_ignore_class_255(self): - y_pred = [0, 1, 1, 1] - y_true = [0, 1, 2, 255] - - m_obj = metrics.MeanIoU(num_classes=3, ignore_class=255) - self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) - - result = m_obj(y_true, y_pred) - - # cm = [[1, 0, 0], - # [0, 1, 0], - # [0, 1, 0]] - # sum_row = [1, 1, 1], sum_col = [1, 2, 0], true_positives = [1, 1, 0] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = ( - 1 / (1 + 1 - 1) + 1 / (2 + 1 - 1) + 0 / (0 + 1 - 0) - ) / 3 - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_unweighted_ignore_class_1(self): - y_pred = [0, 1, 1, 1] - y_true = [0, 1, 2, -1] - - m_obj = metrics.MeanIoU(num_classes=3, ignore_class=-1) - self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) - - result = m_obj(y_true, y_pred) - - # cm = [[1, 0, 0], - # [0, 1, 0], - # [0, 1, 0]] - # sum_row = [1, 1, 1], sum_col = [1, 2, 0], true_positives = [1, 1, 0] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = ( - 1 / (1 + 1 - 1) + 1 / (2 + 1 - 1) + 0 / (0 + 1 - 0) - ) / 3 - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_weighted(self): - y_pred = tf.constant([0, 1, 0, 1], dtype=tf.float32) - y_true = tf.constant([0, 0, 1, 1]) - sample_weight = tf.constant([0.2, 0.3, 0.4, 0.1]) - - m_obj = metrics.MeanIoU(num_classes=2) - self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) - - result = m_obj(y_true, y_pred, sample_weight=sample_weight) - - # cm = [[0.2, 0.3], - # [0.4, 0.1]] - # sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, - # 0.1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = ( - 0.2 / (0.6 + 0.5 - 0.2) + 0.1 / (0.4 + 0.5 - 0.1) - ) / 2 - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_weighted_ignore_class_1(self): - y_pred = tf.constant([0, 1, 0, 1], dtype=tf.float32) - y_true = tf.constant([0, 0, 1, -1]) - sample_weight = tf.constant([0.2, 0.3, 0.4, 0.1]) - - m_obj = metrics.MeanIoU(num_classes=2, ignore_class=-1) - self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) - - result = m_obj(y_true, y_pred, sample_weight=sample_weight) - - # cm = [[0.2, 0.3], - # [0.4, 0.0]] - # sum_row = [0.6, 0.3], sum_col = [0.5, 0.4], true_positives = [0.2, - # 0.0] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = ( - 0.2 / (0.6 + 0.5 - 0.2) + 0.0 / (0.3 + 0.4 - 0.0) - ) / 2 - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_multi_dim_input(self): - y_pred = tf.constant([[0, 1], [0, 1]], dtype=tf.float32) - y_true = tf.constant([[0, 0], [1, 1]]) - sample_weight = tf.constant([[0.2, 0.3], [0.4, 0.1]]) - - m_obj = metrics.MeanIoU(num_classes=2) - self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) - - result = m_obj(y_true, y_pred, sample_weight=sample_weight) - - # cm = [[0.2, 0.3], - # [0.4, 0.1]] - # sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, - # 0.1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = ( - 0.2 / (0.6 + 0.5 - 0.2) + 0.1 / (0.4 + 0.5 - 0.1) - ) / 2 - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_zero_valid_entries(self): - m_obj = metrics.MeanIoU(num_classes=2) - self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) - self.assertAllClose(self.evaluate(m_obj.result()), 0, atol=1e-3) - - def test_zero_and_non_zero_entries(self): - y_pred = tf.constant([1], dtype=tf.float32) - y_true = tf.constant([1]) - - m_obj = metrics.MeanIoU(num_classes=2) - self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) - result = m_obj(y_true, y_pred) - - # cm = [[0, 0], - # [0, 1]] - # sum_row = [0, 1], sum_col = [0, 1], true_positives = [0, 1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = (0 + 1 / (1 + 1 - 1)) / 1 - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class OneHotIoUTest(tf.test.TestCase): - def test_unweighted(self): - y_true = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 0]]) - # y_true will be converted to [2, 0, 1, 0] - y_pred = tf.constant( - [[0.2, 0.3, 0.5], [0.1, 0.2, 0.7], [0.5, 0.3, 0.1], [0.1, 0.4, 0.5]] - ) - # y_pred will be converted to [2, 2, 0, 2] - # cm = [[0, 0, 2], - # [1, 0, 0], - # [0, 0, 1] - # sum_row = [1, 0, 3], sum_col = [2, 1, 1], true_positives = [0, 0, 1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = (0 / (1 + 2 - 0) + 1 / (3 + 1 - 1)) / 2 - obj = metrics.OneHotIoU(num_classes=3, target_class_ids=[0, 2]) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - result = obj(y_true, y_pred) - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_weighted(self): - y_true = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 0]]) - # y_true will be converted to [2, 0, 1, 0] - y_pred = tf.constant( - [[0.2, 0.3, 0.5], [0.1, 0.2, 0.7], [0.5, 0.3, 0.1], [0.1, 0.4, 0.5]] - ) - # y_pred will be converted to [2, 2, 0, 2] - sample_weight = [0.1, 0.2, 0.3, 0.4] - # cm = [[0, 0, 0.2+0.4], - # [0.3, 0, 0], - # [0, 0, 0.1]] - # sum_row = [0.3, 0, 0.7], sum_col = [0.6, 0.3, 0.1] - # true_positives = [0, 0, 0.1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = (0 / (0.3 + 0.6 - 0) + 0.1 / (0.7 + 0.1 - 0.1)) / 2 - obj = metrics.OneHotIoU(num_classes=3, target_class_ids=[0, 2]) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - result = obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class OneHotMeanIoUTest(tf.test.TestCase): - def test_unweighted(self): - y_true = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 0]]) - # y_true will be converted to [2, 0, 1, 0] - y_pred = tf.constant( - [[0.2, 0.3, 0.5], [0.1, 0.2, 0.7], [0.5, 0.3, 0.1], [0.1, 0.4, 0.5]] - ) - # y_pred will be converted to [2, 2, 0, 2] - # cm = [[0, 0, 2], - # [1, 0, 0], - # [0, 0, 1] - # sum_row = [1, 0, 3], sum_col = [2, 1, 1], true_positives = [0, 0, 1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = (0 + 0 + 1 / (3 + 1 - 1)) / 3 - obj = metrics.OneHotMeanIoU(num_classes=3) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - result = obj(y_true, y_pred) - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - def test_weighted(self): - y_true = tf.constant( - [ - [0, 0, 1], - [1, 0, 0], - [0, 1, 0], - [1, 0, 0], - [1, 0, 0], - ] - ) - # y_true will be converted to [2, 0, 1, 0, 0] - y_pred = tf.constant( - [ - [0.2, 0.3, 0.5], - [0.1, 0.2, 0.7], - [0.5, 0.3, 0.1], - [0.1, 0.4, 0.5], - [0.6, 0.2, 0.2], - ] - ) - # y_pred will be converted to [2, 2, 0, 2, 0] - sample_weight = [0.1, 0.2, 0.3, 0.3, 0.1] - # cm = [[0.1, 0, 0.2+0.3], - # [0.3, 0, 0], - # [0, 0, 0.1]] - # sum_row = [0.4, 0, 0.6], sum_col = [0.6, 0.3, 0.1] - # true_positives = [0.1, 0, 0.1] - # iou = true_positives / (sum_row + sum_col - true_positives)) - expected_result = ( - 0.1 / (0.4 + 0.6 - 0.1) + 0 + 0.1 / (0.6 + 0.1 - 0.1) - ) / 3 - obj = metrics.OneHotMeanIoU(num_classes=3) - self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) - result = obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/metrics/metrics_correctness_test.py b/keras/metrics/metrics_correctness_test.py deleted file mode 100644 index 6532a151252..00000000000 --- a/keras/metrics/metrics_correctness_test.py +++ /dev/null @@ -1,823 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests metrics correctness using Keras model.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import layers -from keras import losses -from keras import metrics -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import losses_utils - - -def get_multi_io_model(): - inp_1 = layers.Input(shape=(1,), name="input_1") - inp_2 = layers.Input(shape=(1,), name="input_2") - x = layers.Dense(3, kernel_initializer="ones", trainable=False) - out_1 = layers.Dense( - 1, kernel_initializer="ones", name="output_1", trainable=False - ) - out_2 = layers.Dense( - 1, kernel_initializer="ones", name="output_2", trainable=False - ) - - branch_a = [inp_1, x, out_1] - branch_b = [inp_2, x, out_2] - return test_utils.get_multi_io_model(branch_a, branch_b) - - -def custom_generator_multi_io(sample_weights=None): - batch_size = 2 - num_samples = 5 - inputs = np.asarray([[1.0], [2.0], [3.0], [4.0], [5.0]]) - targets_1 = np.asarray([[2.0], [4.0], [6.0], [8.0], [10.0]]) - targets_2 = np.asarray([[1.0], [2.0], [3.0], [4.0], [5.0]]) - start = 0 - while True: - if start > num_samples: - start = 0 - end = start + batch_size - x = [inputs[start:end], inputs[start:end]] - y = [targets_1[start:end], targets_2[start:end]] - if sample_weights: - sw = tf.nest.map_structure(lambda w: w[start:end], sample_weights) - else: - sw = None - start = end - yield x, y, sw - - -@test_combinations.run_with_all_model_types(exclude_models=["sequential"]) -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TestMetricsCorrectnessMultiIO(test_combinations.TestCase): - def _get_compiled_multi_io_model(self): - model = get_multi_io_model() - model.compile( - optimizer="rmsprop", - loss="mse", - metrics=[metrics.MeanSquaredError(name="mean_squared_error")], - weighted_metrics=[ - metrics.MeanSquaredError(name="mean_squared_error_2") - ], - run_eagerly=test_utils.should_run_eagerly(), - ) - return model - - def setUp(self): - super(TestMetricsCorrectnessMultiIO, self).setUp() - self.x = np.asarray([[1.0], [2.0], [3.0], [4.0], [5.0]]) - self.y1 = np.asarray([[2.0], [4.0], [6.0], [8.0], [10.0]]) - self.y2 = np.asarray([[1.0], [2.0], [3.0], [4.0], [5.0]]) - self.sample_weight_1 = np.asarray([2.0, 3.0, 4.0, 5.0, 6.0]) - self.sample_weight_2 = np.asarray([3.5, 2.5, 1.5, 0.5, 3.0]) - - # y_true_1 = [[2.], [4.], [6.], [8.], [10.]] - # y_pred_1 = [[3.], [6.], [9.], [12.], [15.]] - # y_true_2 = [[1.], [2.], [3.], [4.], [5.]] - # y_pred_2 = [[3.], [6.], [9.], [12.], [15.]] - - # Weighted metric `output_1`: - # Total = ((3 - 2)^2 * 2 + (6 - 4)^2 * 3) + - # ((9 - 6)^2 * 4 + (12 - 8)^2 * 5) + - # ((15 - 10)^2 * 6) - # = 280 - # Count = (2 + 3) + (4 + 5) + 6 = 20 - # Result = 14 - - # Weighted metric `output_2`: - # Total = ((3 - 1)^2 * 3.5 + (6 - 2)^2 * 2.5) + - # ((9 - 3)^2 * 1.5 + (12 - 4)^2 * 0.5) + - # (15 - 5)^2 * 3.0 - # = 440 - # Count = (3.5 + 2.5) + (1.5 + 0.5) + 3.0 = 11.0 - # Result = 40 - - # Loss `output_1` with weights: - # Total = ((3 - 2)^2 * 2 + (6 - 4)^2 * 3) + - # ((9 - 6)^2 * 4 + (12 - 8)^2 * 5) + - # ((15 - 10)^2 * 6) - # = 280 - # Count = 2 + 2 + 1 - # Result = 56 - - # Loss `output_1` without weights/Metric `output_1`: - # Total = ((3 - 2)^2 + (6 - 4)^2) + ((9 - 6)^2 + \ - # (12 - 8)^2) + (15 - 10)^2 - # = 55 - # Count = 2 + 2 + 1 - # Result = 11 - - # Loss `output_2` with weights: - # Total = ((3 - 1)^2 * 3.5 + (6 - 2)^2 * 2.5) + - # ((9 - 3)^2 * 1.5 + (12 - 4)^2 * 0.5) + - # (15 - 5)^2 * 3.0 - # = 440 - # Count = 2 + 2 + 1 - # Result = 88 - - # Loss `output_2` without weights/Metric `output_2`: - # Total = ((3 - 1)^2 + (6 - 2)^2) + ((9 - 3)^2 + \ - # (12 - 4)^2) + (15 - 5)^2 - # = 220 - # Count = 2 + 2 + 1 - # Result = 44 - - # Total loss with weights = 56 + 88 = 144 - # Total loss without weights = 11 + 44 = 55 - - self.wmse = "mean_squared_error_2" - self.expected_fit_result_with_weights = { - "output_1_mean_squared_error": [11, 11], - "output_2_mean_squared_error": [44, 44], - "output_1_" + self.wmse: [14, 14], - "output_2_" + self.wmse: [40, 40], - "loss": [144, 144], - "output_1_loss": [56, 56], - "output_2_loss": [88, 88], - } - - self.expected_fit_result_with_weights_output_2 = { - "output_1_mean_squared_error": [11, 11], - "output_2_mean_squared_error": [44, 44], - "output_1_" + self.wmse: [11, 11], - "output_2_" + self.wmse: [40, 40], - "loss": [99, 99], - "output_1_loss": [11, 11], - "output_2_loss": [88, 88], - } - - self.expected_fit_result = { - "output_1_mean_squared_error": [11, 11], - "output_2_mean_squared_error": [44, 44], - "output_1_" + self.wmse: [11, 11], - "output_2_" + self.wmse: [44, 44], - "loss": [55, 55], - "output_1_loss": [11, 11], - "output_2_loss": [44, 44], - } - - # In the order: 'loss', 'output_1_loss', 'output_2_loss', - # 'output_1_mean_squared_error', 'output_1_mean_squared_error_2', - # 'output_2_mean_squared_error', 'output_2_mean_squared_error_2' - self.expected_batch_result_with_weights = [144, 56, 88, 11, 14, 44, 40] - self.expected_batch_result_with_weights_output_2 = [ - 99, - 11, - 88, - 11, - 11, - 44, - 40, - ] - self.expected_batch_result = [55, 11, 44, 11, 11, 44, 44] - - def test_fit(self): - model = self._get_compiled_multi_io_model() - history = model.fit( - [self.x, self.x], - [self.y1, self.y2], - batch_size=2, - epochs=2, - shuffle=False, - ) - for key, value in self.expected_fit_result.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - def test_fit_with_sample_weight(self): - model = self._get_compiled_multi_io_model() - history = model.fit( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - batch_size=2, - epochs=2, - shuffle=False, - ) - for key, value in self.expected_fit_result_with_weights.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - # Set weights for one output (use batch size). - history = model.fit( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={"output_2": self.sample_weight_2}, - batch_size=2, - epochs=2, - shuffle=False, - ) - - for ( - key, - value, - ) in self.expected_fit_result_with_weights_output_2.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - def test_eval(self): - model = self._get_compiled_multi_io_model() - eval_result = model.evaluate( - [self.x, self.x], [self.y1, self.y2], batch_size=2 - ) - self.assertAllClose(eval_result, self.expected_batch_result, 1e-3) - - def test_eval_with_sample_weight(self): - model = self._get_compiled_multi_io_model() - eval_result = model.evaluate( - [self.x, self.x], - [self.y1, self.y2], - batch_size=2, - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - ) - self.assertAllClose( - eval_result, self.expected_batch_result_with_weights, 1e-3 - ) - - # Set weights for one output. - model = self._get_compiled_multi_io_model() - eval_result = model.evaluate( - [self.x, self.x], - [self.y1, self.y2], - batch_size=2, - sample_weight={ - "output_2": self.sample_weight_2, - }, - ) - self.assertAllClose( - eval_result, self.expected_batch_result_with_weights_output_2, 1e-3 - ) - - # Verify that metric value is same with arbitrary weights and batch - # size. - x = np.random.random((50, 1)) - y = np.random.random((50, 1)) - w = np.random.random((50,)) - mse1 = model.evaluate( - [x, x], [y, y], sample_weight=[w, w], batch_size=5 - )[3] - mse2 = model.evaluate( - [x, x], [y, y], sample_weight=[w, w], batch_size=10 - )[3] - self.assertAllClose(mse1, mse2, 1e-3) - - def test_train_on_batch(self): - model = self._get_compiled_multi_io_model() - result = model.train_on_batch([self.x, self.x], [self.y1, self.y2]) - self.assertAllClose(result, self.expected_batch_result, 1e-3) - - def test_train_on_batch_with_sample_weight(self): - model = self._get_compiled_multi_io_model() - result = model.train_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - ) - self.assertAllClose( - result, self.expected_batch_result_with_weights, 1e-3 - ) - - # Set weights for one output. - result = model.train_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_2": self.sample_weight_2, - }, - ) - self.assertAllClose( - result, self.expected_batch_result_with_weights_output_2, 1e-3 - ) - - def test_test_on_batch(self): - model = self._get_compiled_multi_io_model() - result = model.test_on_batch([self.x, self.x], [self.y1, self.y2]) - self.assertAllClose(result, self.expected_batch_result, 1e-3) - - def test_test_on_batch_with_sample_weight(self): - model = self._get_compiled_multi_io_model() - result = model.test_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - ) - self.assertAllClose( - result, self.expected_batch_result_with_weights, 1e-3 - ) - - # Set weights for one output. - result = model.test_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_2": self.sample_weight_2, - }, - ) - self.assertAllClose( - result, self.expected_batch_result_with_weights_output_2, 1e-3 - ) - - def test_fit_generator(self): - model = self._get_compiled_multi_io_model() - history = model.fit_generator( - custom_generator_multi_io(), steps_per_epoch=3, epochs=2 - ) - for key, value in self.expected_fit_result.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - def test_fit_generator_with_sample_weight(self): - model = self._get_compiled_multi_io_model() - history = model.fit_generator( - custom_generator_multi_io( - sample_weights=[self.sample_weight_1, self.sample_weight_2] - ), - steps_per_epoch=3, - epochs=2, - ) - for key, value in self.expected_fit_result_with_weights.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - # Set weights for one output. - history = model.fit_generator( - custom_generator_multi_io( - sample_weights={"output_2": self.sample_weight_2} - ), - steps_per_epoch=3, - epochs=2, - ) - for ( - key, - value, - ) in self.expected_fit_result_with_weights_output_2.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - def test_eval_generator(self): - model = self._get_compiled_multi_io_model() - eval_result = model.evaluate_generator( - custom_generator_multi_io(), steps=3 - ) - self.assertAllClose(eval_result, self.expected_batch_result, 1e-3) - - def test_eval_generator_with_sample_weight(self): - model = self._get_compiled_multi_io_model() - eval_result = model.evaluate_generator( - custom_generator_multi_io( - sample_weights=[self.sample_weight_1, self.sample_weight_2] - ), - steps=3, - ) - self.assertAllClose( - eval_result, self.expected_batch_result_with_weights, 1e-3 - ) - - # Set weights for one output. - eval_result = model.evaluate_generator( - custom_generator_multi_io( - sample_weights={"output_2": self.sample_weight_2} - ), - steps=3, - ) - self.assertAllClose( - eval_result, self.expected_batch_result_with_weights_output_2, 1e-3 - ) - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TestMetricsCorrectnessSingleIO(test_combinations.TestCase): - def _get_model(self): - x = layers.Dense(3, kernel_initializer="ones", trainable=False) - out = layers.Dense( - 1, kernel_initializer="ones", name="output", trainable=False - ) - model = test_utils.get_model_from_layers([x, out], input_shape=(1,)) - model.compile( - optimizer="rmsprop", - loss="mse", - metrics=[metrics.MeanSquaredError(name="mean_squared_error")], - weighted_metrics=[ - metrics.MeanSquaredError(name="mean_squared_error_2") - ], - run_eagerly=test_utils.should_run_eagerly(), - ) - return model - - def _custom_generator(self, sample_weight=None): - batch_size = 2 - num_samples = 4 - x = np.asarray([[1.0], [2.0], [3.0], [4.0]]) - y = np.asarray([[2.0], [4.0], [6.0], [8.0]]) - w = sample_weight - i = 0 - - while True: - batch_index = i * batch_size % num_samples - i += 1 - start = batch_index - end = start + batch_size - yield x[start:end], y[start:end], None if w is None else w[ - start:end - ] - - def setUp(self): - super(TestMetricsCorrectnessSingleIO, self).setUp() - self.x = np.asarray([[1.0], [2.0], [3.0], [4.0]]) - self.y = np.asarray([[2.0], [4.0], [6.0], [8.0]]) - self.sample_weight = np.asarray([2.0, 3.0, 4.0, 5.0]) - self.class_weight = {i: 1 for i in range(10)} - self.class_weight.update({2: 2, 4: 3, 6: 4, 8: 5}) - - # y_true = [[2.], [4.], [6.], [8.]], y_pred = [[3.], [6.], [9.], [12.]] - - # Metric: - # Total = ((3 - 2)^2 + (6 - 4)^2) + ((9 - 6)^2 + (12 - 8)^2) = 30, - # Count = 2 + 2 - # Result = 7.5 - - # Weighted metric: - # Total = ((3 - 2)^2 * 2 + (6 - 4)^2 * 3) + - # ((9 - 6)^2 * 4 + (12 - 8)^2 * 5) - # = 130 - # Count = (2 + 3) + (4 + 5) - # Result = 9.2857141 - - # Total loss with weights: - # Total = ((3 - 2)^2 * 2 + (6 - 4)^2 * 3) + - # ((9 - 6)^2 * 4 + (12 - 8)^2 * 5) - # = 130, - # Count = 2 + 2 - # Result = 32.5 - - # Total loss without weights: - # Total = ((3 - 2)^2 + (6 - 4)^2) + - # ((9 - 6)^2 + (12 - 8)^2) - # = 30, - # Count = 2 + 2 - # Result = 7.5 - - wmse = "mean_squared_error_2" - - self.expected_fit_result_with_weights = { - "mean_squared_error": [7.5, 7.5], - wmse: [9.286, 9.286], - "loss": [32.5, 32.5], - } - - self.expected_fit_result = { - "mean_squared_error": [7.5, 7.5], - wmse: [7.5, 7.5], - "loss": [7.5, 7.5], - } - - # In the order: 'loss', 'mean_squared_error', 'mean_squared_error_2' - self.expected_batch_result_with_weights = [32.5, 7.5, 9.286] - self.expected_batch_result = [7.5, 7.5, 7.5] - - def test_fit(self): - model = self._get_model() - - history = model.fit( - self.x, self.y, batch_size=2, epochs=2, shuffle=False - ) - for key, value in self.expected_fit_result.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - def test_fit_with_sample_weight(self): - model = self._get_model() - history = model.fit( - self.x, - self.y, - sample_weight=self.sample_weight, - batch_size=2, - epochs=2, - shuffle=False, - ) - for key, value in self.expected_fit_result_with_weights.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - def test_fit_with_class_weight(self): - model = self._get_model() - history = model.fit( - self.x, - self.y, - class_weight=self.class_weight, - batch_size=2, - epochs=2, - shuffle=False, - ) - for key, value in self.expected_fit_result_with_weights.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - def test_eval(self): - model = self._get_model() - eval_result = model.evaluate(self.x, self.y, batch_size=2) - self.assertAllClose(eval_result, self.expected_batch_result, 1e-3) - - def test_eval_with_sample_weight(self): - model = self._get_model() - eval_result = model.evaluate( - self.x, self.y, batch_size=2, sample_weight=self.sample_weight - ) - self.assertAllClose( - eval_result, self.expected_batch_result_with_weights, 1e-3 - ) - - # Verify that metric value is same with arbitrary weights and batch - # size. - x = np.random.random((50, 1)) - y = np.random.random((50, 1)) - w = np.random.random((50,)) - mse1 = model.evaluate(x, y, sample_weight=w, batch_size=5)[1] - mse2 = model.evaluate(x, y, sample_weight=w, batch_size=10)[1] - self.assertAllClose(mse1, mse2, 1e-3) - - def test_train_on_batch(self): - model = self._get_model() - result = model.train_on_batch(self.x, self.y) - self.assertAllClose(result, self.expected_batch_result, 1e-3) - - def test_train_on_batch_with_sample_weight(self): - model = self._get_model() - result = model.train_on_batch( - self.x, self.y, sample_weight=self.sample_weight - ) - self.assertAllClose( - result, self.expected_batch_result_with_weights, 1e-3 - ) - - def test_train_on_batch_with_class_weight(self): - model = self._get_model() - result = model.train_on_batch( - self.x, self.y, class_weight=self.class_weight - ) - self.assertAllClose( - result, self.expected_batch_result_with_weights, 1e-3 - ) - - def test_test_on_batch(self): - model = self._get_model() - result = model.test_on_batch(self.x, self.y) - self.assertAllClose(result, self.expected_batch_result, 1e-3) - - def test_test_on_batch_with_sample_weight(self): - model = self._get_model() - result = model.test_on_batch( - self.x, self.y, sample_weight=self.sample_weight - ) - self.assertAllClose( - result, self.expected_batch_result_with_weights, 1e-3 - ) - - def test_fit_generator(self): - model = self._get_model() - history = model.fit_generator( - self._custom_generator(), steps_per_epoch=2, epochs=2 - ) - for key, value in self.expected_fit_result.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - def test_fit_generator_with_sample_weight(self): - model = self._get_model() - history = model.fit_generator( - self._custom_generator(sample_weight=self.sample_weight), - steps_per_epoch=2, - epochs=2, - ) - for key, value in self.expected_fit_result_with_weights.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - def test_fit_generator_with_class_weight(self): - model = self._get_model() - history = model.fit_generator( - self._custom_generator(), - steps_per_epoch=2, - epochs=2, - class_weight=self.class_weight, - ) - for key, value in self.expected_fit_result_with_weights.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - def test_eval_generator(self): - model = self._get_model() - eval_result = model.evaluate_generator( - self._custom_generator(), steps=2 - ) - self.assertAllClose(eval_result, self.expected_batch_result, 1e-3) - - def test_eval_generator_with_sample_weight(self): - model = self._get_model() - eval_result = model.evaluate_generator( - self._custom_generator(sample_weight=self.sample_weight), steps=2 - ) - self.assertAllClose( - eval_result, self.expected_batch_result_with_weights, 1e-3 - ) - - -@test_combinations.run_with_all_model_types(exclude_models=["sequential"]) -@test_combinations.run_all_keras_modes(always_skip_v1=True) -@parameterized.parameters( - [ - losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, - losses_utils.ReductionV2.AUTO, - losses_utils.ReductionV2.SUM, - ] -) -class TestOutputLossMetrics(test_combinations.TestCase): - def _get_compiled_multi_io_model(self, loss): - model = get_multi_io_model() - model.compile( - optimizer="rmsprop", - loss=loss, - run_eagerly=test_utils.should_run_eagerly(), - ) - return model - - def setUp(self): - super(TestOutputLossMetrics, self).setUp() - self.x = np.asarray([[1.0], [2.0], [3.0], [4.0], [5.0]]) - self.y1 = np.asarray([[2.0], [4.0], [6.0], [8.0], [10.0]]) - self.y2 = np.asarray([[1.0], [2.0], [3.0], [4.0], [5.0]]) - self.sample_weight_1 = np.asarray([2.0, 3.0, 4.0, 5.0, 6.0]) - self.sample_weight_2 = np.asarray([3.5, 2.5, 1.5, 0.5, 3.0]) - - # y_true_1 = [[2.], [4.], [6.], [8.], [10.]] - # y_pred_1 = [[3.], [6.], [9.], [12.], [15.]] - # y_true_2 = [[1.], [2.], [3.], [4.], [5.]] - # y_pred_2 = [[3.], [6.], [9.], [12.], [15.]] - - # Loss `output_1`: - # Per-sample weighted losses - # Batch 1 = [(3 - 2)^2 * 2, (6 - 4)^2 * 3)] = [2, 12] - # Batch 2 = [((9 - 6)^2 * 4, (12 - 8)^2 * 5)] = [36, 80] - # Batch 3 = [(15 - 10)^2 * 6] = [150] - - # Result (reduction=SUM) = ((2 + 12)*2 + (36 + 80)*2 + 150) / 5 = 82 - # Result (reduction=SUM_OVER_BATCH_SIZE/AUTO/NONE) = 280 / 5 = 56 - - # Loss `output_2`: - # Per-sample weighted losses - # Batch 1 = [(3 - 1)^2 * 3.5, (6 - 2)^2 * 2.5)] = [14, 40] - # Batch 2 = [(9 - 3)^2 * 1.5, (12 - 4)^2 * 0.5)] = [54, 32] - # Batch 3 = [(15 - 5)^2 * 3] = [300] - - # Result (reduction=SUM) = ((14 + 40)*2 + (54 + 32)*2 + 300) / 5 = 116 - # Result (reduction=SUM_OVER_BATCH_SIZE/AUTO/NONE) = 440 / 5 = 88 - - # When reduction is 'NONE' loss value that is passed to the optimizer - # will be vector loss but what is reported is a scalar, which is an - # average of all the values in all the batch vectors. - - # Total loss = Output_loss_1 + Output_loss_2 - - sum_over_batch_size_fit_result = { - "loss": [144, 144], - "output_1_loss": [56, 56], - "output_2_loss": [88, 88], - } - - self.expected_fit_result = { - losses_utils.ReductionV2.NONE: sum_over_batch_size_fit_result, - losses_utils.ReductionV2.SUM: { - "loss": [198, 198], - "output_1_loss": [82, 82], - "output_2_loss": [116, 116], - }, - losses_utils.ReductionV2.AUTO: sum_over_batch_size_fit_result, - losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE: sum_over_batch_size_fit_result, # noqa: E501 - } - - # In the order: 'loss', 'output_1_loss', 'output_2_loss', - self.expected_batch_result = { - losses_utils.ReductionV2.NONE: [144, 56, 88], - losses_utils.ReductionV2.SUM: [198, 82, 116], - losses_utils.ReductionV2.AUTO: [144, 56, 88], - losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE: [144, 56, 88], - } - - # 2 + 12 + 36 + 80 + 150 = 280 - # 14 + 40 + 54 + 32 + 300 = 440 - self.expected_single_batch_result = [720, 280, 440] - - def test_fit(self, reduction): - model = self._get_compiled_multi_io_model( - loss=losses.MeanSquaredError(reduction=reduction) - ) - history = model.fit( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - batch_size=2, - epochs=2, - shuffle=False, - ) - for key, value in self.expected_fit_result[reduction].items(): - self.assertAllClose(history.history[key], value) - - def test_eval(self, reduction): - model = self._get_compiled_multi_io_model( - loss=losses.MeanSquaredError(reduction=reduction) - ) - eval_result = model.evaluate( - [self.x, self.x], - [self.y1, self.y2], - batch_size=2, - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - ) - self.assertAllClose(eval_result, self.expected_batch_result[reduction]) - - def test_train_on_batch(self, reduction): - model = self._get_compiled_multi_io_model( - loss=losses.MeanSquaredError(reduction=reduction) - ) - result = model.train_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - ) - - expected_values = self.expected_batch_result[reduction] - if reduction == losses_utils.ReductionV2.SUM: - expected_values = self.expected_single_batch_result - self.assertAllClose(result, expected_values) - - def test_test_on_batch(self, reduction): - model = self._get_compiled_multi_io_model( - loss=losses.MeanSquaredError(reduction=reduction) - ) - result = model.test_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - ) - expected_values = self.expected_batch_result[reduction] - if reduction == losses_utils.ReductionV2.SUM: - expected_values = self.expected_single_batch_result - self.assertAllClose(result, expected_values) - - def test_fit_generator(self, reduction): - model = self._get_compiled_multi_io_model( - loss=losses.MeanSquaredError(reduction=reduction) - ) - history = model.fit_generator( - custom_generator_multi_io( - sample_weights=[self.sample_weight_1, self.sample_weight_2] - ), - steps_per_epoch=3, - epochs=2, - ) - for key, value in self.expected_fit_result[reduction].items(): - self.assertAllClose(history.history[key], value) - - def test_eval_generator(self, reduction): - model = self._get_compiled_multi_io_model( - loss=losses.MeanSquaredError(reduction=reduction) - ) - eval_result = model.evaluate_generator( - custom_generator_multi_io( - sample_weights=[self.sample_weight_1, self.sample_weight_2] - ), - steps=3, - ) - self.assertAllClose(eval_result, self.expected_batch_result[reduction]) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/metrics/metrics_functional_test.py b/keras/metrics/metrics_functional_test.py deleted file mode 100644 index c52a2f4cea2..00000000000 --- a/keras/metrics/metrics_functional_test.py +++ /dev/null @@ -1,190 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras metrics functions.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import backend -from keras import metrics -from keras.testing_infra import test_combinations - - -class KerasFunctionalMetricsTest(tf.test.TestCase, parameterized.TestCase): - def test_metrics(self): - with self.cached_session(): - y_a = backend.variable(np.random.random((6, 7))) - y_b = backend.variable(np.random.random((6, 7))) - for metric in [ - metrics.binary_accuracy, - metrics.categorical_accuracy, - ]: - output = metric(y_a, y_b) - self.assertEqual(backend.eval(output).shape, (6,)) - - def test_sparse_categorical_accuracy_int(self): - with self.cached_session(): - metric = metrics.sparse_categorical_accuracy - y_true = backend.variable(np.random.randint(0, 7, (6,))) - y_pred = backend.variable(np.random.random((6, 7))) - self.assertEqual(backend.eval(metric(y_true, y_pred)).shape, (6,)) - - # Test correctness if the shape of y_true is (num_samples,) - y_true = backend.variable([1.0, 0.0, 0.0, 0.0]) - y_pred = backend.variable( - [[0.8, 0.2], [0.6, 0.4], [0.7, 0.3], [0.9, 0.1]] - ) - self.assertAllEqual( - backend.eval(metric(y_true, y_pred)), [0.0, 1.0, 1.0, 1.0] - ) - - # Test correctness if the shape of y_true is (num_samples, 1) - y_true = backend.variable([[1.0], [0.0], [0.0], [0.0]]) - y_pred = backend.variable( - [[0.8, 0.2], [0.6, 0.4], [0.7, 0.3], [0.9, 0.1]] - ) - self.assertAllEqual( - backend.eval(metric(y_true, y_pred)), [0.0, 1.0, 1.0, 1.0] - ) - - # Test correctness if the shape of y_true is (batch_size, - # seq_length) and y_pred is (batch_size, seq_length, num_classes) - y_pred = backend.variable( - np.array( - [ - [[0.2, 0.3, 0.1], [0.1, 0.2, 0.7]], - [[0.3, 0.2, 0.1], [0.7, 0.2, 0.1]], - ] - ) - ) - y_true = backend.variable(np.array([[1, 0], [1, 0]])) - self.assertAllEqual( - backend.eval(metric(y_true, y_pred)), [[1.0, 0.0], [0.0, 1.0]] - ) - - def test_sparse_categorical_accuracy_float(self): - with self.cached_session(): - metric = metrics.sparse_categorical_accuracy - y_true = backend.variable(np.random.random((6,))) - y_pred = backend.variable(np.random.random((6, 7))) - self.assertEqual(backend.eval(metric(y_true, y_pred)).shape, (6,)) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_sparse_categorical_accuracy_eager(self): - """Tests that ints passed in via Eager return results. See - b/113504761.""" - metric = metrics.sparse_categorical_accuracy - y_true = np.arange(6).reshape([6, 1]) - y_pred = np.arange(36).reshape([6, 6]) - self.assertAllEqual( - metric(y_true, y_pred), [0.0, 0.0, 0.0, 0.0, 0.0, 1.0] - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_sparse_categorical_accuracy_float_eager(self): - """Tests that floats passed in via Eager return results. See - b/113504761.""" - metric = metrics.sparse_categorical_accuracy - y_true = np.arange(6, dtype=np.float32).reshape([6, 1]) - y_pred = np.arange(36).reshape([6, 6]) - self.assertAllEqual( - metric(y_true, y_pred), [0.0, 0.0, 0.0, 0.0, 0.0, 1.0] - ) - - def test_sparse_top_k_categorical_accuracy(self): - with self.cached_session(): - # Test correctness if the shape of y_true is (num_samples, 1) - y_pred = backend.variable( - np.array([[0.3, 0.2, 0.1], [0.1, 0.2, 0.7]]) - ) - y_true = backend.variable(np.array([[1], [0]])) - result = backend.eval( - metrics.sparse_top_k_categorical_accuracy(y_true, y_pred, k=3) - ) - self.assertEqual(np.mean(result), 1) - result = backend.eval( - metrics.sparse_top_k_categorical_accuracy(y_true, y_pred, k=2) - ) - self.assertEqual(np.mean(result), 0.5) - result = backend.eval( - metrics.sparse_top_k_categorical_accuracy(y_true, y_pred, k=1) - ) - self.assertEqual(np.mean(result), 0.0) - - # Test correctness if the shape of y_true is (num_samples,) - y_pred = backend.variable( - np.array([[0.3, 0.2, 0.1], [0.1, 0.2, 0.7]]) - ) - y_true = backend.variable(np.array([1, 0])) - result = backend.eval( - metrics.sparse_top_k_categorical_accuracy(y_true, y_pred, k=3) - ) - self.assertEqual(np.mean(result), 1) - result = backend.eval( - metrics.sparse_top_k_categorical_accuracy(y_true, y_pred, k=2) - ) - self.assertEqual(np.mean(result), 0.5) - result = backend.eval( - metrics.sparse_top_k_categorical_accuracy(y_true, y_pred, k=1) - ) - self.assertEqual(np.mean(result), 0.0) - - # Test correctness if the shape of y_true is (batch_size, - # seq_length) and y_pred is (batch_size, seq_length, num_classes) - y_pred = backend.variable( - np.array( - [ - [[0.3, 0.2, 0.1], [0.1, 0.2, 0.7], [0.1, 0.2, 0.7]], - [[0.3, 0.2, 0.1], [0.1, 0.2, 0.7], [0.3, 0.2, 0.1]], - ] - ) - ) - y_true = backend.variable(np.array([[1, 0, 0], [1, 0, 1]])) - result = backend.eval( - metrics.sparse_top_k_categorical_accuracy(y_true, y_pred, k=3) - ) - self.assertEqual(np.mean(result), 1) - result = backend.eval( - metrics.sparse_top_k_categorical_accuracy(y_true, y_pred, k=2) - ) - self.assertEqual(np.mean(result), 0.5) - result = backend.eval( - metrics.sparse_top_k_categorical_accuracy(y_true, y_pred, k=1) - ) - self.assertEqual(np.mean(result), 0.0) - - def test_top_k_categorical_accuracy(self): - with self.cached_session(): - y_pred = backend.variable( - np.array([[0.3, 0.2, 0.1], [0.1, 0.2, 0.7]]) - ) - y_true = backend.variable(np.array([[0, 1, 0], [1, 0, 0]])) - result = backend.eval( - metrics.top_k_categorical_accuracy(y_true, y_pred, k=3) - ) - self.assertEqual(np.mean(result), 1) - result = backend.eval( - metrics.top_k_categorical_accuracy(y_true, y_pred, k=2) - ) - self.assertEqual(np.mean(result), 0.5) - result = backend.eval( - metrics.top_k_categorical_accuracy(y_true, y_pred, k=1) - ) - self.assertEqual(np.mean(result), 0.0) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/metrics/probabilistic_metrics.py b/keras/metrics/probabilistic_metrics.py deleted file mode 100644 index ce4eb419ec2..00000000000 --- a/keras/metrics/probabilistic_metrics.py +++ /dev/null @@ -1,346 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Probabilistic metrics (based on Entropy).""" - -from typing import Optional -from typing import Union - -import tensorflow.compat.v2 as tf - -from keras.dtensor import utils as dtensor_utils -from keras.losses import binary_crossentropy -from keras.losses import categorical_crossentropy -from keras.losses import kullback_leibler_divergence -from keras.losses import poisson -from keras.losses import sparse_categorical_crossentropy -from keras.metrics import base_metric - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.metrics.Poisson") -class Poisson(base_metric.MeanMetricWrapper): - """Computes the Poisson score between `y_true` and `y_pred`. - - 🟠🟠🟠- - It is defined as: `poisson_score = y_pred - y_true * log(y_pred)`. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.Poisson() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) - >>> m.result().numpy() - 0.49999997 - - >>> m.reset_state() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], - ... sample_weight=[1, 0]) - >>> m.result().numpy() - 0.99999994 - - Usage with `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.Poisson()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="poisson", dtype=None): - super().__init__(poisson, name, dtype=dtype) - - -@keras_export("keras.metrics.KLDivergence") -class KLDivergence(base_metric.MeanMetricWrapper): - """Computes Kullback-Leibler divergence metric between `y_true` and - `y_pred`. - - `metric = y_true * log(y_true / y_pred)` - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.KLDivergence() - >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) - >>> m.result().numpy() - 0.45814306 - - >>> m.reset_state() - >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], - ... sample_weight=[1, 0]) - >>> m.result().numpy() - 0.9162892 - - Usage with `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.KLDivergence()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="kullback_leibler_divergence", dtype=None): - super().__init__(kullback_leibler_divergence, name, dtype=dtype) - - -@keras_export("keras.metrics.BinaryCrossentropy") -class BinaryCrossentropy(base_metric.MeanMetricWrapper): - """Computes the crossentropy metric between the labels and predictions. - - This is the crossentropy metric class to be used when there are only two - label classes (0 and 1). - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - from_logits: (Optional) Whether output is expected to be a logits tensor. - By default, we consider that output encodes a probability distribution. - label_smoothing: (Optional) Float in [0, 1]. When > 0, label values are - smoothed, meaning the confidence on label values are relaxed. - e.g. `label_smoothing=0.2` means that we will use a value of `0.1` for - label `0` and `0.9` for label `1`". - - Standalone usage: - - >>> m = tf.keras.metrics.BinaryCrossentropy() - >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) - >>> m.result().numpy() - 0.81492424 - - >>> m.reset_state() - >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], - ... sample_weight=[1, 0]) - >>> m.result().numpy() - 0.9162905 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.BinaryCrossentropy()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - name="binary_crossentropy", - dtype=None, - from_logits=False, - label_smoothing=0, - ): - super().__init__( - binary_crossentropy, - name, - dtype=dtype, - from_logits=from_logits, - label_smoothing=label_smoothing, - ) - - -@keras_export("keras.metrics.CategoricalCrossentropy") -class CategoricalCrossentropy(base_metric.MeanMetricWrapper): - """Computes the crossentropy metric between the labels and predictions. - - This is the crossentropy metric class to be used when there are multiple - label classes (2 or more). Here we assume that labels are given as a - `one_hot` representation. eg., When labels values are [2, 0, 1], - `y_true` = [[0, 0, 1], [1, 0, 0], [0, 1, 0]]. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - from_logits: (Optional) Whether output is expected to be a logits tensor. - By default, we consider that output encodes a probability distribution. - label_smoothing: (Optional) Float in [0, 1]. When > 0, label values are - smoothed, meaning the confidence on label values are relaxed. e.g. - `label_smoothing=0.2` means that we will use a value of `0.1` for label - `0` and `0.9` for label `1`" - axis: (Optional) Defaults to -1. The dimension along which entropy is - computed. - - Standalone usage: - - >>> # EPSILON = 1e-7, y = y_true, y` = y_pred - >>> # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) - >>> # y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] - >>> # xent = -sum(y * log(y'), axis = -1) - >>> # = -((log 0.95), (log 0.1)) - >>> # = [0.051, 2.302] - >>> # Reduced xent = (0.051 + 2.302) / 2 - >>> m = tf.keras.metrics.CategoricalCrossentropy() - >>> m.update_state([[0, 1, 0], [0, 0, 1]], - ... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) - >>> m.result().numpy() - 1.1769392 - - >>> m.reset_state() - >>> m.update_state([[0, 1, 0], [0, 0, 1]], - ... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]], - ... sample_weight=tf.constant([0.3, 0.7])) - >>> m.result().numpy() - 1.6271976 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.CategoricalCrossentropy()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - name="categorical_crossentropy", - dtype=None, - from_logits=False, - label_smoothing=0, - axis=-1, - ): - super().__init__( - categorical_crossentropy, - name, - dtype=dtype, - from_logits=from_logits, - label_smoothing=label_smoothing, - axis=axis, - ) - - -@keras_export("keras.metrics.SparseCategoricalCrossentropy") -class SparseCategoricalCrossentropy(base_metric.MeanMetricWrapper): - """Computes the crossentropy metric between the labels and predictions. - - Use this crossentropy metric when there are two or more label classes. - We expect labels to be provided as integers. If you want to provide labels - using `one-hot` representation, please use `CategoricalCrossentropy` metric. - There should be `# classes` floating point values per feature for `y_pred` - and a single floating point value per feature for `y_true`. - - In the snippet below, there is a single floating point value per example for - `y_true` and `# classes` floating pointing values per example for `y_pred`. - The shape of `y_true` is `[batch_size]` and the shape of `y_pred` is - `[batch_size, num_classes]`. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - from_logits: (Optional) Whether output is expected to be a logits tensor. - By default, we consider that output encodes a probability distribution. - ignore_class: Optional integer. The ID of a class to be ignored during - metric computation. This is useful, for example, in segmentation - problems featuring a "void" class (commonly -1 or 255) in segmentation - maps. By default (`ignore_class=None`), all classes are considered. - axis: (Optional) Defaults to -1. The dimension along which entropy is - computed. - - Standalone usage: - - >>> # y_true = one_hot(y_true) = [[0, 1, 0], [0, 0, 1]] - >>> # logits = log(y_pred) - >>> # softmax = exp(logits) / sum(exp(logits), axis=-1) - >>> # softmax = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] - >>> # xent = -sum(y * log(softmax), 1) - >>> # log(softmax) = [[-2.9957, -0.0513, -16.1181], - >>> # [-2.3026, -0.2231, -2.3026]] - >>> # y_true * log(softmax) = [[0, -0.0513, 0], [0, 0, -2.3026]] - >>> # xent = [0.0513, 2.3026] - >>> # Reduced xent = (0.0513 + 2.3026) / 2 - >>> m = tf.keras.metrics.SparseCategoricalCrossentropy() - >>> m.update_state([1, 2], - ... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) - >>> m.result().numpy() - 1.1769392 - - >>> m.reset_state() - >>> m.update_state([1, 2], - ... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]], - ... sample_weight=tf.constant([0.3, 0.7])) - >>> m.result().numpy() - 1.6271976 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.SparseCategoricalCrossentropy()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - name: str = "sparse_categorical_crossentropy", - dtype: Optional[Union[str, tf.dtypes.DType]] = None, - from_logits: bool = False, - ignore_class: Optional[int] = None, - axis: int = -1, - ): - super().__init__( - sparse_categorical_crossentropy, - name, - dtype=dtype, - from_logits=from_logits, - ignore_class=ignore_class, - axis=axis, - ) - - -_SPARSE_CATEGORICAL_UPDATE_STATE_DOCSTRING = """Accumulates metric statistics. - -For sparse categorical metrics, the shapes of `y_true` and `y_pred` are -different. - -Args: - y_true: Ground truth label values. shape = `[batch_size, d0, .. dN-1]` or - shape = `[batch_size, d0, .. dN-1, 1]`. - y_pred: The predicted probability values. shape = `[batch_size, d0, .. dN]`. - sample_weight: Optional `sample_weight` acts as a - coefficient for the metric. If a scalar is provided, then the metric is - simply scaled by the given value. If `sample_weight` is a tensor of size - `[batch_size]`, then the metric for each sample of the batch is rescaled - by the corresponding element in the `sample_weight` vector. If the shape - of `sample_weight` is `[batch_size, d0, .. dN-1]` (or can be broadcasted - to this shape), then each metric element of `y_pred` is scaled by the - corresponding value of `sample_weight`. (Note on `dN-1`: all metric - functions reduce by 1 dimension, usually the last axis (-1)). - -Returns: - Update op. -""" - -SparseCategoricalCrossentropy.update_state.__doc__ = ( - _SPARSE_CATEGORICAL_UPDATE_STATE_DOCSTRING -) diff --git a/keras/metrics/probabilistic_metrics_test.py b/keras/metrics/probabilistic_metrics_test.py deleted file mode 100644 index 0a2e8577d56..00000000000 --- a/keras/metrics/probabilistic_metrics_test.py +++ /dev/null @@ -1,567 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras metrics.""" - -import json - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import metrics -from keras.testing_infra import test_combinations - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class PoissonTest(tf.test.TestCase): - def setup(self): - y_pred = np.asarray([1, 9, 2, 5, 2, 6]).reshape((2, 3)) - y_true = np.asarray([4, 8, 12, 8, 1, 3]).reshape((2, 3)) - - self.batch_size = 6 - self.expected_results = y_pred - np.multiply(y_true, np.log(y_pred)) - - self.y_pred = tf.constant(y_pred, dtype=tf.float32) - self.y_true = tf.constant(y_true) - - def test_config(self): - poisson_obj = metrics.Poisson(name="poisson", dtype=tf.int32) - self.assertEqual(poisson_obj.name, "poisson") - self.assertEqual(poisson_obj._dtype, tf.int32) - - poisson_obj2 = metrics.Poisson.from_config(poisson_obj.get_config()) - self.assertEqual(poisson_obj2.name, "poisson") - self.assertEqual(poisson_obj2._dtype, tf.int32) - - def test_unweighted(self): - self.setup() - poisson_obj = metrics.Poisson() - self.evaluate(tf.compat.v1.variables_initializer(poisson_obj.variables)) - - update_op = poisson_obj.update_state(self.y_true, self.y_pred) - self.evaluate(update_op) - result = poisson_obj.result() - expected_result = np.sum(self.expected_results) / self.batch_size - self.assertAllClose(result, expected_result, atol=1e-3) - - def test_weighted(self): - self.setup() - poisson_obj = metrics.Poisson() - self.evaluate(tf.compat.v1.variables_initializer(poisson_obj.variables)) - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - - result = poisson_obj( - self.y_true, self.y_pred, sample_weight=sample_weight - ) - sample_weight = np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape( - (2, 3) - ) - expected_result = np.multiply(self.expected_results, sample_weight) - expected_result = np.sum(expected_result) / np.sum(sample_weight) - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class KLDivergenceTest(tf.test.TestCase): - def setup(self): - y_pred = np.asarray([0.4, 0.9, 0.12, 0.36, 0.3, 0.4]).reshape((2, 3)) - y_true = np.asarray([0.5, 0.8, 0.12, 0.7, 0.43, 0.8]).reshape((2, 3)) - - self.batch_size = 2 - self.expected_results = np.multiply(y_true, np.log(y_true / y_pred)) - - self.y_pred = tf.constant(y_pred, dtype=tf.float32) - self.y_true = tf.constant(y_true) - - def test_config(self): - k_obj = metrics.KLDivergence(name="kld", dtype=tf.int32) - self.assertEqual(k_obj.name, "kld") - self.assertEqual(k_obj._dtype, tf.int32) - - k_obj2 = metrics.KLDivergence.from_config(k_obj.get_config()) - self.assertEqual(k_obj2.name, "kld") - self.assertEqual(k_obj2._dtype, tf.int32) - - def test_unweighted(self): - self.setup() - k_obj = metrics.KLDivergence() - self.evaluate(tf.compat.v1.variables_initializer(k_obj.variables)) - - update_op = k_obj.update_state(self.y_true, self.y_pred) - self.evaluate(update_op) - result = k_obj.result() - expected_result = np.sum(self.expected_results) / self.batch_size - self.assertAllClose(result, expected_result, atol=1e-3) - - def test_weighted(self): - self.setup() - k_obj = metrics.KLDivergence() - self.evaluate(tf.compat.v1.variables_initializer(k_obj.variables)) - - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - result = k_obj(self.y_true, self.y_pred, sample_weight=sample_weight) - - sample_weight = np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape( - (2, 3) - ) - expected_result = np.multiply(self.expected_results, sample_weight) - expected_result = np.sum(expected_result) / (1.2 + 3.4) - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class BinaryCrossentropyTest(tf.test.TestCase): - def test_config(self): - bce_obj = metrics.BinaryCrossentropy( - name="bce", dtype=tf.int32, label_smoothing=0.2 - ) - self.assertEqual(bce_obj.name, "bce") - self.assertEqual(bce_obj._dtype, tf.int32) - - old_config = bce_obj.get_config() - self.assertAllClose(old_config["label_smoothing"], 0.2, 1e-3) - - # Check save and restore config - bce_obj2 = metrics.BinaryCrossentropy.from_config(old_config) - self.assertEqual(bce_obj2.name, "bce") - self.assertEqual(bce_obj2._dtype, tf.int32) - new_config = bce_obj2.get_config() - self.assertDictEqual(old_config, new_config) - - def test_unweighted(self): - bce_obj = metrics.BinaryCrossentropy() - self.evaluate(tf.compat.v1.variables_initializer(bce_obj.variables)) - y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) - y_pred = np.asarray([1, 1, 1, 0], dtype=np.float32).reshape([2, 2]) - result = bce_obj(y_true, y_pred) - - # EPSILON = 1e-7, y = y_true, y` = y_pred, Y_MAX = 0.9999999 - # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) - # y` = [Y_MAX, Y_MAX, Y_MAX, EPSILON] - - # Metric = -(y log(y` + EPSILON) + (1 - y) log(1 - y` + EPSILON)) - # = [-log(Y_MAX + EPSILON), -log(1 - Y_MAX + EPSILON), - # -log(Y_MAX + EPSILON), -log(1)] - # = [(0 + 15.33) / 2, (0 + 0) / 2] - # Reduced metric = 7.665 / 2 - - self.assertAllClose(self.evaluate(result), 3.833, atol=1e-3) - - def test_unweighted_with_logits(self): - bce_obj = metrics.BinaryCrossentropy(from_logits=True) - self.evaluate(tf.compat.v1.variables_initializer(bce_obj.variables)) - - y_true = tf.constant([[1, 0, 1], [0, 1, 1]]) - y_pred = tf.constant([[100.0, -100.0, 100.0], [100.0, 100.0, -100.0]]) - result = bce_obj(y_true, y_pred) - - # Metric = max(x, 0) - x * z + log(1 + exp(-abs(x))) - # (where x = logits and z = y_true) - # = [((100 - 100 * 1 + log(1 + exp(-100))) + - # (0 + 100 * 0 + log(1 + exp(-100))) + - # (100 - 100 * 1 + log(1 + exp(-100))), - # ((100 - 100 * 0 + log(1 + exp(-100))) + - # (100 - 100 * 1 + log(1 + exp(-100))) + - # (0 + 100 * 1 + log(1 + exp(-100))))] - # = [(0 + 0 + 0) / 3, 200 / 3] - # Reduced metric = (0 + 66.666) / 2 - - self.assertAllClose(self.evaluate(result), 33.333, atol=1e-3) - - def test_weighted(self): - bce_obj = metrics.BinaryCrossentropy() - self.evaluate(tf.compat.v1.variables_initializer(bce_obj.variables)) - y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) - y_pred = np.asarray([1, 1, 1, 0], dtype=np.float32).reshape([2, 2]) - sample_weight = tf.constant([1.5, 2.0]) - result = bce_obj(y_true, y_pred, sample_weight=sample_weight) - - # EPSILON = 1e-7, y = y_true, y` = y_pred, Y_MAX = 0.9999999 - # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) - # y` = [Y_MAX, Y_MAX, Y_MAX, EPSILON] - - # Metric = -(y log(y` + EPSILON) + (1 - y) log(1 - y` + EPSILON)) - # = [-log(Y_MAX + EPSILON), -log(1 - Y_MAX + EPSILON), - # -log(Y_MAX + EPSILON), -log(1)] - # = [(0 + 15.33) / 2, (0 + 0) / 2] - # Weighted metric = [7.665 * 1.5, 0] - # Reduced metric = 7.665 * 1.5 / (1.5 + 2) - - self.assertAllClose(self.evaluate(result), 3.285, atol=1e-3) - - def test_weighted_from_logits(self): - bce_obj = metrics.BinaryCrossentropy(from_logits=True) - self.evaluate(tf.compat.v1.variables_initializer(bce_obj.variables)) - y_true = tf.constant([[1, 0, 1], [0, 1, 1]]) - y_pred = tf.constant([[100.0, -100.0, 100.0], [100.0, 100.0, -100.0]]) - sample_weight = tf.constant([2.0, 2.5]) - result = bce_obj(y_true, y_pred, sample_weight=sample_weight) - - # Metric = max(x, 0) - x * z + log(1 + exp(-abs(x))) - # (where x = logits and z = y_true) - # = [(0 + 0 + 0) / 3, 200 / 3] - # Weighted metric = [0, 66.666 * 2.5] - # Reduced metric = 66.666 * 2.5 / (2 + 2.5) - - self.assertAllClose(self.evaluate(result), 37.037, atol=1e-3) - - def test_label_smoothing(self): - logits = tf.constant(((100.0, -100.0, -100.0))) - y_true = tf.constant(((1, 0, 1))) - label_smoothing = 0.1 - # Metric: max(x, 0) - x * z + log(1 + exp(-abs(x))) - # (where x = logits and z = y_true) - # Label smoothing: z' = z * (1 - L) + 0.5L - # After label smoothing, label 1 becomes 1 - 0.5L - # label 0 becomes 0.5L - # Applying the above two fns to the given input: - # (100 - 100 * (1 - 0.5 L) + 0 + - # 0 + 100 * (0.5 L) + 0 + - # 0 + 100 * (1 - 0.5 L) + 0) * (1/3) - # = (100 + 50L) * 1/3 - bce_obj = metrics.BinaryCrossentropy( - from_logits=True, label_smoothing=label_smoothing - ) - self.evaluate(tf.compat.v1.variables_initializer(bce_obj.variables)) - result = bce_obj(y_true, logits) - expected_value = (100.0 + 50.0 * label_smoothing) / 3.0 - self.assertAllClose(expected_value, self.evaluate(result), atol=1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CategoricalCrossentropyTest(tf.test.TestCase): - def test_config(self): - cce_obj = metrics.CategoricalCrossentropy( - name="cce", dtype=tf.int32, label_smoothing=0.2 - ) - self.assertEqual(cce_obj.name, "cce") - self.assertEqual(cce_obj._dtype, tf.int32) - - old_config = cce_obj.get_config() - self.assertAllClose(old_config["label_smoothing"], 0.2, 1e-3) - - # Check save and restore config - cce_obj2 = metrics.CategoricalCrossentropy.from_config(old_config) - self.assertEqual(cce_obj2.name, "cce") - self.assertEqual(cce_obj2._dtype, tf.int32) - new_config = cce_obj2.get_config() - self.assertDictEqual(old_config, new_config) - - def test_unweighted(self): - cce_obj = metrics.CategoricalCrossentropy() - self.evaluate(tf.compat.v1.variables_initializer(cce_obj.variables)) - - y_true = np.asarray([[0, 1, 0], [0, 0, 1]]) - y_pred = np.asarray([[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) - result = cce_obj(y_true, y_pred) - - # EPSILON = 1e-7, y = y_true, y` = y_pred - # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) - # y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] - - # Metric = -sum(y * log(y'), axis = -1) - # = -((log 0.95), (log 0.1)) - # = [0.051, 2.302] - # Reduced metric = (0.051 + 2.302) / 2 - - self.assertAllClose(self.evaluate(result), 1.176, atol=1e-3) - - def test_unweighted_from_logits(self): - cce_obj = metrics.CategoricalCrossentropy(from_logits=True) - self.evaluate(tf.compat.v1.variables_initializer(cce_obj.variables)) - - y_true = np.asarray([[0, 1, 0], [0, 0, 1]]) - logits = np.asarray([[1, 9, 0], [1, 8, 1]], dtype=np.float32) - result = cce_obj(y_true, logits) - - # softmax = exp(logits) / sum(exp(logits), axis=-1) - # xent = -sum(labels * log(softmax), 1) - - # exp(logits) = [[2.718, 8103.084, 1], [2.718, 2980.958, 2.718]] - # sum(exp(logits), axis=-1) = [8106.802, 2986.394] - # softmax = [[0.00033, 0.99954, 0.00012], [0.00091, 0.99817, 0.00091]] - # log(softmax) = [[-8.00045, -0.00045, -9.00045], - # [-7.00182, -0.00182, -7.00182]] - # labels * log(softmax) = [[0, -0.00045, 0], [0, 0, -7.00182]] - # xent = [0.00045, 7.00182] - # Reduced xent = (0.00045 + 7.00182) / 2 - - self.assertAllClose(self.evaluate(result), 3.5011, atol=1e-3) - - def test_weighted(self): - cce_obj = metrics.CategoricalCrossentropy() - self.evaluate(tf.compat.v1.variables_initializer(cce_obj.variables)) - - y_true = np.asarray([[0, 1, 0], [0, 0, 1]]) - y_pred = np.asarray([[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) - sample_weight = tf.constant([1.5, 2.0]) - result = cce_obj(y_true, y_pred, sample_weight=sample_weight) - - # EPSILON = 1e-7, y = y_true, y` = y_pred - # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) - # y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] - - # Metric = -sum(y * log(y'), axis = -1) - # = -((log 0.95), (log 0.1)) - # = [0.051, 2.302] - # Weighted metric = [0.051 * 1.5, 2.302 * 2.] - # Reduced metric = (0.051 * 1.5 + 2.302 * 2.) / 3.5 - - self.assertAllClose(self.evaluate(result), 1.338, atol=1e-3) - - def test_weighted_from_logits(self): - cce_obj = metrics.CategoricalCrossentropy(from_logits=True) - self.evaluate(tf.compat.v1.variables_initializer(cce_obj.variables)) - - y_true = np.asarray([[0, 1, 0], [0, 0, 1]]) - logits = np.asarray([[1, 9, 0], [1, 8, 1]], dtype=np.float32) - sample_weight = tf.constant([1.5, 2.0]) - result = cce_obj(y_true, logits, sample_weight=sample_weight) - - # softmax = exp(logits) / sum(exp(logits), axis=-1) - # xent = -sum(labels * log(softmax), 1) - # xent = [0.00045, 7.00182] - # weighted xent = [0.000675, 14.00364] - # Reduced xent = (0.000675 + 14.00364) / (1.5 + 2) - - self.assertAllClose(self.evaluate(result), 4.0012, atol=1e-3) - - def test_label_smoothing(self): - y_true = np.asarray([[0, 1, 0], [0, 0, 1]]) - logits = np.asarray([[1, 9, 0], [1, 8, 1]], dtype=np.float32) - label_smoothing = 0.1 - - # Label smoothing: z' = z * (1 - L) + L/n, - # where L = label smoothing value and n = num classes - # Label value 1 becomes: 1 - L + L/n - # Label value 0 becomes: L/n - # y_true with label_smoothing = [[0.0333, 0.9333, 0.0333], - # [0.0333, 0.0333, 0.9333]] - - # softmax = exp(logits) / sum(exp(logits), axis=-1) - # xent = -sum(labels * log(softmax), 1) - # log(softmax) = [[-8.00045, -0.00045, -9.00045], - # [-7.00182, -0.00182, -7.00182]] - # labels * log(softmax) = [[-0.26641, -0.00042, -0.29971], - # [-0.23316, -0.00006, -6.53479]] - # xent = [0.56654, 6.76801] - # Reduced xent = (0.56654 + 6.76801) / 2 - - cce_obj = metrics.CategoricalCrossentropy( - from_logits=True, label_smoothing=label_smoothing - ) - self.evaluate(tf.compat.v1.variables_initializer(cce_obj.variables)) - loss = cce_obj(y_true, logits) - self.assertAllClose(self.evaluate(loss), 3.667, atol=1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class SparseCategoricalCrossentropyTest(tf.test.TestCase): - def test_config(self): - scce_obj = metrics.SparseCategoricalCrossentropy( - name="scce", dtype=tf.int32 - ) - self.assertEqual(scce_obj.name, "scce") - self.assertEqual(scce_obj.dtype, tf.int32) - old_config = scce_obj.get_config() - self.assertDictEqual(old_config, json.loads(json.dumps(old_config))) - - # Check save and restore config - scce_obj2 = metrics.SparseCategoricalCrossentropy.from_config( - old_config - ) - self.assertEqual(scce_obj2.name, "scce") - self.assertEqual(scce_obj2.dtype, tf.int32) - new_config = scce_obj2.get_config() - self.assertDictEqual(old_config, new_config) - - def test_unweighted(self): - scce_obj = metrics.SparseCategoricalCrossentropy() - self.evaluate(tf.compat.v1.variables_initializer(scce_obj.variables)) - - y_true = np.asarray([1, 2]) - y_pred = np.asarray([[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) - result = scce_obj(y_true, y_pred) - - # EPSILON = 1e-7, y = y_true, y` = y_pred - # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) - # y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] - # logits = log(y`) = [[-2.9957, -0.0513, -16.1181], - # [-2.3026, -0.2231, -2.3026]] - - # softmax = exp(logits) / sum(exp(logits), axis=-1) - # y = one_hot(y) = [[0, 1, 0], [0, 0, 1]] - # xent = -sum(y * log(softmax), 1) - - # exp(logits) = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] - # sum(exp(logits), axis=-1) = [1, 1] - # softmax = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] - # log(softmax) = [[-2.9957, -0.0513, -16.1181], - # [-2.3026, -0.2231, -2.3026]] - # y * log(softmax) = [[0, -0.0513, 0], [0, 0, -2.3026]] - # xent = [0.0513, 2.3026] - # Reduced xent = (0.0513 + 2.3026) / 2 - - self.assertAllClose(self.evaluate(result), 1.176, atol=1e-3) - - def test_unweighted_ignore_class(self): - scce_obj = metrics.SparseCategoricalCrossentropy(ignore_class=-1) - self.evaluate(tf.compat.v1.variables_initializer(scce_obj.variables)) - - y_true = np.asarray([-1, 2]) - y_pred = np.asarray([[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) - result = scce_obj(y_true, y_pred) - - self.assertAllClose(self.evaluate(result), 2.3026, atol=1e-3) - - def test_unweighted_from_logits(self): - scce_obj = metrics.SparseCategoricalCrossentropy(from_logits=True) - self.evaluate(tf.compat.v1.variables_initializer(scce_obj.variables)) - - y_true = np.asarray([1, 2]) - logits = np.asarray([[1, 9, 0], [1, 8, 1]], dtype=np.float32) - result = scce_obj(y_true, logits) - - # softmax = exp(logits) / sum(exp(logits), axis=-1) - # y_true = one_hot(y_true) = [[0, 1, 0], [0, 0, 1]] - # xent = -sum(y_true * log(softmax), 1) - - # exp(logits) = [[2.718, 8103.084, 1], [2.718, 2980.958, 2.718]] - # sum(exp(logits), axis=-1) = [8106.802, 2986.394] - # softmax = [[0.00033, 0.99954, 0.00012], [0.00091, 0.99817, 0.00091]] - # log(softmax) = [[-8.00045, -0.00045, -9.00045], - # [-7.00182, -0.00182, -7.00182]] - # y_true * log(softmax) = [[0, -0.00045, 0], [0, 0, -7.00182]] - # xent = [0.00045, 7.00182] - # Reduced xent = (0.00045 + 7.00182) / 2 - - self.assertAllClose(self.evaluate(result), 3.5011, atol=1e-3) - - def test_weighted(self): - scce_obj = metrics.SparseCategoricalCrossentropy() - self.evaluate(tf.compat.v1.variables_initializer(scce_obj.variables)) - - y_true = np.asarray([1, 2]) - y_pred = np.asarray([[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) - sample_weight = tf.constant([1.5, 2.0]) - result = scce_obj(y_true, y_pred, sample_weight=sample_weight) - - # EPSILON = 1e-7, y = y_true, y` = y_pred - # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) - # y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] - # logits = log(y`) = [[-2.9957, -0.0513, -16.1181], - # [-2.3026, -0.2231, -2.3026]] - - # softmax = exp(logits) / sum(exp(logits), axis=-1) - # y = one_hot(y) = [[0, 1, 0], [0, 0, 1]] - # xent = -sum(y * log(softmax), 1) - - # exp(logits) = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] - # sum(exp(logits), axis=-1) = [1, 1] - # softmax = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] - # log(softmax) = [[-2.9957, -0.0513, -16.1181], - # [-2.3026, -0.2231, -2.3026]] - # y * log(softmax) = [[0, -0.0513, 0], [0, 0, -2.3026]] - # xent = [0.0513, 2.3026] - # Weighted xent = [0.051 * 1.5, 2.302 * 2.] - # Reduced xent = (0.051 * 1.5 + 2.302 * 2.) / 3.5 - - self.assertAllClose(self.evaluate(result), 1.338, atol=1e-3) - - def test_weighted_ignore_class(self): - scce_obj = metrics.SparseCategoricalCrossentropy(ignore_class=-1) - self.evaluate(tf.compat.v1.variables_initializer(scce_obj.variables)) - - y_true = np.asarray([1, 2, -1]) - y_pred = np.asarray([[0.05, 0.95, 0], [0.1, 0.8, 0.1], [0.1, 0.8, 0.1]]) - sample_weight = tf.constant([1.5, 2.0, 1.5]) - result = scce_obj(y_true, y_pred, sample_weight=sample_weight) - - self.assertAllClose(self.evaluate(result), 1.338, atol=1e-3) - - def test_weighted_from_logits(self): - scce_obj = metrics.SparseCategoricalCrossentropy(from_logits=True) - self.evaluate(tf.compat.v1.variables_initializer(scce_obj.variables)) - - y_true = np.asarray([1, 2]) - logits = np.asarray([[1, 9, 0], [1, 8, 1]], dtype=np.float32) - sample_weight = tf.constant([1.5, 2.0]) - result = scce_obj(y_true, logits, sample_weight=sample_weight) - - # softmax = exp(logits) / sum(exp(logits), axis=-1) - # y_true = one_hot(y_true) = [[0, 1, 0], [0, 0, 1]] - # xent = -sum(y_true * log(softmax), 1) - # xent = [0.00045, 7.00182] - # weighted xent = [0.000675, 14.00364] - # Reduced xent = (0.000675 + 14.00364) / (1.5 + 2) - - self.assertAllClose(self.evaluate(result), 4.0012, atol=1e-3) - - def test_axis(self): - scce_obj = metrics.SparseCategoricalCrossentropy(axis=0) - self.evaluate(tf.compat.v1.variables_initializer(scce_obj.variables)) - - y_true = np.asarray([1, 2]) - y_pred = np.asarray([[0.05, 0.1], [0.95, 0.8], [0, 0.1]]) - result = scce_obj(y_true, y_pred) - - # EPSILON = 1e-7, y = y_true, y` = y_pred - # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) - # y` = [[0.05, 0.1], [0.95, 0.8], [EPSILON, 0.1]] - # logits = log(y`) = [[-2.9957, -2.3026], - # [-0.0513, -0.2231], - # [-16.1181, -2.3026]] - - # softmax = exp(logits) / sum(exp(logits), axis=-1) - # y = one_hot(y) = [[0, 0], [1, 0], [0, 1]] - # xent = -sum(y * log(softmax), 1) - - # exp(logits) = [[0.05, 0.1], [0.95, 0.8], [EPSILON, 0.1]] - # sum(exp(logits)) = [1, 1] - # softmax = [[0.05, 0.1], [0.95, 0.8], [EPSILON, 0.1]] - # log(softmax) = [[-2.9957, -2.3026], - # [-0.0513, -0.2231], - # [-16.1181, -2.3026]] - # y * log(softmax) = [[0, 0], [-0.0513, 0], [0, -2.3026]] - # xent = [0.0513, 2.3026] - # Reduced xent = (0.0513 + 2.3026) / 2 - - self.assertAllClose(self.evaluate(result), 1.176, atol=1e-3) - - -class BinaryTruePositives(metrics.Metric): - def __init__(self, name="binary_true_positives", **kwargs): - super().__init__(name=name, **kwargs) - self.true_positives = self.add_weight(name="tp", initializer="zeros") - - def update_state(self, y_true, y_pred, sample_weight=None): - y_true = tf.cast(y_true, tf.bool) - y_pred = tf.cast(y_pred, tf.bool) - - values = tf.logical_and(tf.equal(y_true, True), tf.equal(y_pred, True)) - values = tf.cast(values, self.dtype) - if sample_weight is not None: - sample_weight = tf.cast(sample_weight, dtype=self.dtype) - sample_weight = tf.__internal__.ops.broadcast_weights( - sample_weight, values - ) - values = tf.multiply(values, sample_weight) - self.true_positives.assign_add(tf.reduce_sum(values)) - - def result(self): - return self.true_positives - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/metrics/py_metric.py b/keras/metrics/py_metric.py deleted file mode 100644 index e0718203119..00000000000 --- a/keras/metrics/py_metric.py +++ /dev/null @@ -1,191 +0,0 @@ -# Copyright 2023 The Keras Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Base class for Python-based metrics""" - -import types - -import tensorflow.compat.v2 as tf -from tensorflow.python.util.tf_export import keras_export - -from keras.metrics import base_metric - - -@keras_export("keras.metrics.experimental.PyMetric", v1=[]) -class PyMetric(base_metric.Metric): - """Metric which runs in Python, compiled outside of the TensorFlow graph. - - Args: - name: (Optional) string name of the PyMetric instance. - dtype: (Optional) data type of the PyMetric result. - **kwargs: Additional layer keywords arguments. - - Usage of `PyMetric` is generally identical to `keras.metrics.Metric`. - It can be used in isolation, or in tandem with the `compile()` API. For more - information about the usage of `PyMetric`, see `keras.metrics.Metric`. - - Unlike regular metrics, `PyMetric` instances are outside-compiled - with respect to the TensorFlow graph during training or evaluation. - They have access to the same - inputs of a standard in-graph metric, but they run in a Python interpreter - on the host CPU. Any data stored in a `PyMetric` is located on the main - memory of the host CPU, and any TensorFlow ops used in a PyMetric are - run eagerly on the host CPU. - - As a result, `PyMetric` instances are generally not as performant - as in-graph metrics, and should only be used in cases where computing - the metric inside of the TensorFlow graph is either impossible - or prohibitively expensive. - - **Note:** Due to the use of `tf.py_function`, PyMetrics - are incompatible with XLA and therefore TPUs. - - Methods to be implemented by subclasses: - - * `update_state()`: Handles updates to internal state variables - * `result()`: Computes and returns a scalar value or a dict of scalar values - for the metric from the state variables. - * `reset_state()`: Computes and returns a scalar value for the metric from - the state variables. - - This subclass implementation is similar to that of `keras.metrics.Metric`, - with two notable differences: - - * Inputs to `update_state()` in a `PyMetric` are eager tensors, and both - `update_state()` and `result()` run outside of the TensorFlow graph, - executing any TensorFlow ops eagerly. - * `reset_state()` is also called at initialization time to initialize the - Python state of the metric. - * `result()` can only return a single scalar. It does not support returning - a dictionary of results like `keras.metrics.Metric`. - - Example subclass implementation using sklearn's Jaccard Score: - - ```python - from sklearn.metrics import jaccard_score - import tensorflow as tf - - class JaccardScore(tf.keras.metrics.experimental.PyMetric): - - def __init__(self, name='jaccard_score', **kwargs): - super().__init__(name=name, **kwargs) - - def update_state(self, y_true, y_pred, sample_weight=None): - self.jaccard_sum += jaccard_score(y_pred, y_true, average="macro") - self.count += 1 - - def reset_state(self): - self.jaccard_sum = 0. - self.count = 0. - - def result(self): - return self.jaccard_sum / self.count - ``` - """ - - def __init__(self, name=None, dtype=None, **kwargs): - super().__init__(name=name, dtype=dtype, **kwargs) - self.reset_state() - - def __new__(cls, *args, **kwargs): - obj = super(base_metric.Metric, cls).__new__(cls) - - # Wrap the update_state function in a py_function and scope it to /cpu:0 - obj_update_state = obj.update_state - - def update_state_on_cpu(y_true, y_pred, sample_weight=None): - with tf.device("/cpu:0"): - return obj_update_state(y_true, y_pred, sample_weight) - - obj.update_state_on_cpu = update_state_on_cpu - - def update_state_fn(self, y_true, y_pred, sample_weight=None): - eager_inputs = [y_true, y_pred] - if sample_weight is not None: - eager_inputs.append(sample_weight) - return tf.py_function( - func=self.update_state_on_cpu, inp=eager_inputs, Tout=[] - ) - - obj.update_state = types.MethodType(update_state_fn, obj) - - # Wrap the result function in a py_function and scope it to /cpu:0 - obj_result = obj.result - - def result_on_host_cpu(): - with tf.device("/cpu:0"): - return obj_result() - - obj.result_on_host_cpu = result_on_host_cpu - - def result_fn(self): - return tf.py_function( - self.result_on_host_cpu, inp=[], Tout=obj.dtype - ) - - obj.result = types.MethodType(result_fn, obj) - - return obj - - def update_state(self, y_true, y_pred, sample_weight=None): - """Accumulates statistics for the metric. - - **Note:** This function is executed outside of the TensorFlow graph - on the CPU host. - - This means: - - a) Inputs are eager tensors. - b) Any TensorFlow ops run in this method are run eagerly. - c) Any Tensors created are allocated to the CPU's main memory. - - Args: - y_true: Target output - y_pred: Predicted output - sample_weight: (Optional) weights for the individual samples in - `y_true` and `y_pred` - """ - raise NotImplementedError("Subclasses should implement `update_state`") - - def merge_state(self, metrics): - """Merges the state from one or more metrics. - - `PyMetric` instances that intend to support merging state must override - this method, as the default implementation - in `keras.metrics.Metric` does not apply to `PyMetric`. - """ - raise NotImplementedError("Subclasses should implement `merge_state`") - - def reset_state(self): - """Resets all of the metric state variables. - - This function is called between epochs when a metric is evaluated during - training. It's also called when the metric is initialized. - """ - raise NotImplementedError("Subclasses should implement `reset_state`") - - def result(self): - """Computes and returns the scalar metric value. - - **Note:** This function is executed outside of the TensorFlow graph - on the CPU host. This means any TensorFlow ops run in this method - are run eagerly. - - Result computation is an idempotent operation that simply calculates the - metric value using the state variables. - - Returns: - A Python scalar. - """ - raise NotImplementedError("Subclasses should implement `result`") diff --git a/keras/metrics/py_metric_test.py b/keras/metrics/py_metric_test.py deleted file mode 100644 index d8f00d3a510..00000000000 --- a/keras/metrics/py_metric_test.py +++ /dev/null @@ -1,145 +0,0 @@ -# Copyright 2023 The Keras Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras PyMetric classes.""" - - -import tensorflow.compat.v2 as tf - -from keras import metrics -from keras.testing_infra import test_combinations - - -class KTrimmedMean(metrics.PyMetric): - """An example PyMetric which computes the trimmed mean of `y_pred`.""" - - def __init__(self, k=0.1, name="k_trimmed_mean", **kwargs): - super().__init__(name=name, **kwargs) - self.k = k - - def update_state(self, y_true, y_pred, sample_weight=None): - y_true = y_true.numpy() - - if sample_weight is not None: - y_true *= sample_weight.numpy() - - # Insert y_pred into our values list (keeping the list sorted) - index = 0 - for i, element in enumerate(self.values): - if y_true > element: - index = i - break - self.values = self.values[:index] + [y_true] + self.values[index:] - - def reset_state(self): - self.values = [] - - def result(self): - k = int(self.k * len(self.values)) - return tf.reduce_mean(self.values[k:-k]) - - def get_config(self): - config = super().get_config() - config.update({"k": self.k}) - return config - - -class Mean(metrics.PyMetric): - """An example PyMetric which computes the mean of `y_pred`.""" - - def __init__(self, name="mean", **kwargs): - super().__init__(name=name, **kwargs) - - def update_state(self, y_true, y_pred, sample_weight=None): - self.values.append(y_true) - - def reset_state(self): - self.values = [] - - def result(self): - return tf.reduce_mean(tf.concat(self.values, axis=0)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class PyMetricsTest(tf.test.TestCase): - def test_config(self): - ktm_object = KTrimmedMean(name="ktm", k=0.2, dtype=tf.float16) - self.assertEqual(ktm_object.name, "ktm") - self.assertEqual(ktm_object.k, 0.2) - self.assertEqual(ktm_object.dtype, tf.float16) - - # Check save and restore config - ktm_object2 = KTrimmedMean.from_config(ktm_object.get_config()) - self.assertEqual(ktm_object2.name, "ktm") - self.assertEqual(ktm_object.k, 0.2) - self.assertEqual(ktm_object2.dtype, tf.float16) - - def test_unweighted(self): - ktm_object = KTrimmedMean(k=0.2) - - for y_true in [-100, -10, 1, 2, 3, 4, 5, 6, 14, 9001]: - self.evaluate( - ktm_object.update_state( - tf.constant(y_true, dtype=tf.float32), - y_pred=tf.constant(0, dtype=tf.float32), - ) - ) - - result = ktm_object.result() - self.assertEqual(3.5, self.evaluate(result)) - - def test_weighted(self): - ktm_object = KTrimmedMean(k=0.2) - - for y_true in [-100, -10, 1, 2, 3, 4, 5, 6, 14, 9001]: - self.evaluate( - ktm_object.update_state( - tf.constant(y_true, dtype=tf.float32), - y_pred=tf.constant(0, dtype=tf.float32), - sample_weight=tf.constant(2, dtype=tf.float32), - ) - ) - - result = ktm_object.result() - self.assertEqual(7, self.evaluate(result)) - - def test_state_stored_on_cpu_host(self): - with tf.device("/device:GPU:0"): - mean_obj = Mean() - - y_true_0 = tf.constant([0, 1, 2], dtype=tf.float32) - y_true_1 = tf.constant([3, 4], dtype=tf.float32) - self.evaluate( - mean_obj.update_state( - y_true=y_true_0, y_pred=tf.constant(0, dtype=tf.float32) - ) - ) - self.evaluate( - mean_obj.update_state( - y_true=y_true_1, y_pred=tf.constant(0, dtype=tf.float32) - ) - ) - - self.assertEqual(2, self.evaluate(mean_obj.result())) - - if not tf.executing_eagerly(): - self.assertEndsWith(y_true_0.device, "/device:GPU:0") - self.assertEndsWith(y_true_1.device, "/device:GPU:0") - - self.assertEndsWith(mean_obj.values[0].device, "/device:CPU:0") - self.assertEndsWith(mean_obj.values[1].device, "/device:CPU:0") - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/metrics/regression_metrics.py b/keras/metrics/regression_metrics.py deleted file mode 100644 index 637706432d5..00000000000 --- a/keras/metrics/regression_metrics.py +++ /dev/null @@ -1,625 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Regression metrics, e.g. MAE/MSE/etc.""" - -import warnings - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.dtensor import utils as dtensor_utils -from keras.losses import logcosh -from keras.losses import mean_absolute_error -from keras.losses import mean_absolute_percentage_error -from keras.losses import mean_squared_error -from keras.losses import mean_squared_logarithmic_error -from keras.metrics import base_metric -from keras.utils import losses_utils -from keras.utils import metrics_utils -from keras.utils.tf_utils import is_tensor_or_variable - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.metrics.MeanRelativeError") -class MeanRelativeError(base_metric.Mean): - """Computes the mean relative error by normalizing with the given values. - - This metric creates two local variables, `total` and `count` that are used - to compute the mean relative error. This is weighted by `sample_weight`, and - it is ultimately returned as `mean_relative_error`: an idempotent operation - that simply divides `total` by `count`. - - If `sample_weight` is `None`, weights default to 1. - Use `sample_weight` of 0 to mask values. - - Args: - normalizer: The normalizer values with same shape as predictions. - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.MeanRelativeError(normalizer=[1, 3, 2, 3]) - >>> m.update_state([1, 3, 2, 3], [2, 4, 6, 8]) - - >>> # metric = mean(|y_pred - y_true| / normalizer) - >>> # = mean([1, 1, 4, 5] / [1, 3, 2, 3]) = mean([1, 1/3, 2, 5/3]) - >>> # = 5/4 = 1.25 - >>> m.result().numpy() - 1.25 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.MeanRelativeError(normalizer=[1, 3])]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, normalizer, name=None, dtype=None): - super().__init__(name=name, dtype=dtype) - normalizer = tf.cast(normalizer, self._dtype) - self.normalizer = normalizer - - def update_state(self, y_true, y_pred, sample_weight=None): - """Accumulates metric statistics. - - Args: - y_true: The ground truth values. - y_pred: The predicted values. - sample_weight: Optional weighting of each example. Defaults to 1. Can - be a `Tensor` whose rank is either 0, or the same rank as `y_true`, - and must be broadcastable to `y_true`. - - Returns: - Update op. - """ - y_true = tf.cast(y_true, self._dtype) - y_pred = tf.cast(y_pred, self._dtype) - [ - y_pred, - y_true, - ], sample_weight = metrics_utils.ragged_assert_compatible_and_get_flat_values( # noqa: E501 - [y_pred, y_true], sample_weight - ) - y_pred, y_true = losses_utils.squeeze_or_expand_dimensions( - y_pred, y_true - ) - - y_pred, self.normalizer = losses_utils.remove_squeezable_dimensions( - y_pred, self.normalizer - ) - y_pred.shape.assert_is_compatible_with(y_true.shape) - relative_errors = tf.math.divide_no_nan( - tf.abs(y_true - y_pred), self.normalizer - ) - - return super().update_state( - relative_errors, sample_weight=sample_weight - ) - - def get_config(self): - n = self.normalizer - config = { - "normalizer": backend.eval(n) if is_tensor_or_variable(n) else n - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -@keras_export("keras.metrics.CosineSimilarity") -class CosineSimilarity(base_metric.MeanMetricWrapper): - """Computes the cosine similarity between the labels and predictions. - - `cosine similarity = (a . b) / ||a|| ||b||` - - See: [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity). - - This metric keeps the average cosine similarity between `predictions` and - `labels` over a stream of data. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - axis: (Optional) Defaults to -1. The dimension along which the cosine - similarity is computed. - - Standalone usage: - - >>> # l2_norm(y_true) = [[0., 1.], [1./1.414, 1./1.414]] - >>> # l2_norm(y_pred) = [[1., 0.], [1./1.414, 1./1.414]] - >>> # l2_norm(y_true) . l2_norm(y_pred) = [[0., 0.], [0.5, 0.5]] - >>> # result = mean(sum(l2_norm(y_true) . l2_norm(y_pred), axis=1)) - >>> # = ((0. + 0.) + (0.5 + 0.5)) / 2 - >>> m = tf.keras.metrics.CosineSimilarity(axis=1) - >>> m.update_state([[0., 1.], [1., 1.]], [[1., 0.], [1., 1.]]) - >>> m.result().numpy() - 0.49999997 - - >>> m.reset_state() - >>> m.update_state([[0., 1.], [1., 1.]], [[1., 0.], [1., 1.]], - ... sample_weight=[0.3, 0.7]) - >>> m.result().numpy() - 0.6999999 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.CosineSimilarity(axis=1)]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="cosine_similarity", dtype=None, axis=-1): - super().__init__(cosine_similarity, name, dtype=dtype, axis=axis) - - -@keras_export("keras.metrics.MeanAbsoluteError") -class MeanAbsoluteError(base_metric.MeanMetricWrapper): - """Computes the mean absolute error between the labels and predictions. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.MeanAbsoluteError() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) - >>> m.result().numpy() - 0.25 - - >>> m.reset_state() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], - ... sample_weight=[1, 0]) - >>> m.result().numpy() - 0.5 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.MeanAbsoluteError()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="mean_absolute_error", dtype=None): - super().__init__(mean_absolute_error, name, dtype=dtype) - - -@keras_export("keras.metrics.MeanAbsolutePercentageError") -class MeanAbsolutePercentageError(base_metric.MeanMetricWrapper): - """Computes the mean absolute percentage error between `y_true` and - `y_pred`. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.MeanAbsolutePercentageError() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) - >>> m.result().numpy() - 250000000.0 - - >>> m.reset_state() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], - ... sample_weight=[1, 0]) - >>> m.result().numpy() - 500000000.0 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.MeanAbsolutePercentageError()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="mean_absolute_percentage_error", dtype=None): - super().__init__(mean_absolute_percentage_error, name, dtype=dtype) - - -@keras_export("keras.metrics.MeanSquaredError") -class MeanSquaredError(base_metric.MeanMetricWrapper): - """Computes the mean squared error between `y_true` and `y_pred`. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.MeanSquaredError() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) - >>> m.result().numpy() - 0.25 - - >>> m.reset_state() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], - ... sample_weight=[1, 0]) - >>> m.result().numpy() - 0.5 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.MeanSquaredError()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="mean_squared_error", dtype=None): - super().__init__(mean_squared_error, name, dtype=dtype) - - -@keras_export("keras.metrics.MeanSquaredLogarithmicError") -class MeanSquaredLogarithmicError(base_metric.MeanMetricWrapper): - """Computes the mean squared logarithmic error between `y_true` and - `y_pred`. - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.MeanSquaredLogarithmicError() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) - >>> m.result().numpy() - 0.12011322 - - >>> m.reset_state() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], - ... sample_weight=[1, 0]) - >>> m.result().numpy() - 0.24022643 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.MeanSquaredLogarithmicError()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="mean_squared_logarithmic_error", dtype=None): - super().__init__(mean_squared_logarithmic_error, name, dtype=dtype) - - -@keras_export("keras.metrics.RootMeanSquaredError") -class RootMeanSquaredError(base_metric.Mean): - """Computes root mean squared error metric between `y_true` and `y_pred`. - - Standalone usage: - - >>> m = tf.keras.metrics.RootMeanSquaredError() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) - >>> m.result().numpy() - 0.5 - - >>> m.reset_state() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], - ... sample_weight=[1, 0]) - >>> m.result().numpy() - 0.70710677 - - Usage with `compile()` API: - - ```python - model.compile( - optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.RootMeanSquaredError()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="root_mean_squared_error", dtype=None): - super().__init__(name, dtype=dtype) - - def update_state(self, y_true, y_pred, sample_weight=None): - """Accumulates root mean squared error statistics. - - Args: - y_true: The ground truth values. - y_pred: The predicted values. - sample_weight: Optional weighting of each example. Defaults to 1. Can - be a `Tensor` whose rank is either 0, or the same rank as `y_true`, - and must be broadcastable to `y_true`. - - Returns: - Update op. - """ - y_true = tf.cast(y_true, self._dtype) - y_pred = tf.cast(y_pred, self._dtype) - y_pred, y_true = losses_utils.squeeze_or_expand_dimensions( - y_pred, y_true - ) - error_sq = tf.math.squared_difference(y_pred, y_true) - return super().update_state(error_sq, sample_weight=sample_weight) - - def result(self): - return tf.sqrt(tf.math.divide_no_nan(self.total, self.count)) - - -@keras_export("keras.metrics.LogCoshError") -class LogCoshError(base_metric.MeanMetricWrapper): - """Computes the logarithm of the hyperbolic cosine of the prediction error. - - `logcosh = log((exp(x) + exp(-x))/2)`, where x is the error (y_pred - - y_true) - - Args: - name: (Optional) string name of the metric instance. - dtype: (Optional) data type of the metric result. - - Standalone usage: - - >>> m = tf.keras.metrics.LogCoshError() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) - >>> m.result().numpy() - 0.10844523 - - >>> m.reset_state() - >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], - ... sample_weight=[1, 0]) - >>> m.result().numpy() - 0.21689045 - - Usage with `compile()` API: - - ```python - model.compile(optimizer='sgd', - loss='mse', - metrics=[tf.keras.metrics.LogCoshError()]) - ``` - """ - - @dtensor_utils.inject_mesh - def __init__(self, name="logcosh", dtype=None): - super().__init__(logcosh, name, dtype=dtype) - - -# Adapted from TF-Addons implementation (RSquare class). -@keras_export("keras.metrics.R2Score") -class R2Score(base_metric.Metric): - """Computes R2 score. - - This is also called the - [coefficient of - determination](https://en.wikipedia.org/wiki/Coefficient_of_determination). - - It indicates how close the fitted regression line - is to ground-truth data. - - - The highest score possible is 1.0. It indicates that the predictors - perfectly accounts for variation in the target. - - A score of 0.0 indicates that the predictors do not - account for variation in the target. - - It can also be negative if the model is worse than random. - - This metric can also compute the "Adjusted R2" score. - - Args: - class_aggregation: Specifies how to aggregate scores corresponding to - different output classes (or target dimensions), - i.e. different dimensions on the last axis of the predictions. - Equivalent to `multioutput` argument in Scikit-Learn. - Should be one of - `None` (no aggregation), `"uniform_average"`, - `"variance_weighted_average"`. - num_regressors: Number of independent regressors used - ("Adjusted R2" score). Defaults to 0 (standard R2 score). - name: Optional. string name of the metric instance. - dtype: Optional. data type of the metric result. - - Example: - - >>> y_true = np.array([[1], [4], [3]], dtype=np.float32) - >>> y_pred = np.array([[2], [4], [4]], dtype=np.float32) - >>> metric = tf.keras.metrics.R2Score() - >>> metric.update_state(y_true, y_pred) - >>> result = metric.result() - >>> result.numpy() - 0.57142854 - """ - - @dtensor_utils.inject_mesh - def __init__( - self, - class_aggregation="uniform_average", - num_regressors=0, - name="r2_score", - dtype=None, - ): - super().__init__(name=name, dtype=dtype) - - valid_class_aggregation_values = ( - None, - "uniform_average", - "variance_weighted_average", - ) - if class_aggregation not in valid_class_aggregation_values: - raise ValueError( - "Invalid value for argument `class_aggregation`. Expected " - f"one of {valid_class_aggregation_values}. " - f"Received: class_aggregation={class_aggregation}" - ) - if num_regressors < 0: - raise ValueError( - "Invalid value for argument `num_regressors`. " - "Expected a value >= 0. " - f"Received: num_regressors={num_regressors}" - ) - self.class_aggregation = class_aggregation - self.num_regressors = num_regressors - self.num_samples = self.add_weight(name="num_samples", dtype="int32") - self.built = False - - def build(self, y_true_shape, y_pred_shape): - if len(y_pred_shape) != 2 or len(y_true_shape) != 2: - raise ValueError( - "R2Score expects 2D inputs with shape " - "(batch_size, output_dim). Received input " - f"shapes: y_pred.shape={y_pred_shape} and " - f"y_true.shape={y_true_shape}." - ) - if y_pred_shape[-1] is None or y_true_shape[-1] is None: - raise ValueError( - "R2Score expects 2D inputs with shape " - "(batch_size, output_dim), with output_dim fully " - "defined (not None). Received input " - f"shapes: y_pred.shape={y_pred_shape} and " - f"y_true.shape={y_true_shape}." - ) - num_classes = y_pred_shape[-1] - self.squared_sum = self.add_weight( - name="squared_sum", - shape=[num_classes], - initializer="zeros", - ) - self.sum = self.add_weight( - name="sum", - shape=[num_classes], - initializer="zeros", - ) - self.total_mse = self.add_weight( - name="residual", - shape=[num_classes], - initializer="zeros", - ) - self.count = self.add_weight( - name="count", - shape=[num_classes], - initializer="zeros", - ) - self.built = True - - def update_state(self, y_true, y_pred, sample_weight=None): - y_true = tf.convert_to_tensor(y_true, dtype=self.dtype) - y_pred = tf.convert_to_tensor(y_pred, dtype=self.dtype) - if not self.built: - self.build(y_true.shape, y_pred.shape) - - if sample_weight is None: - sample_weight = 1 - - sample_weight = tf.convert_to_tensor(sample_weight, dtype=self.dtype) - if sample_weight.shape.rank == 1: - # Make sure there's a features dimension - sample_weight = tf.expand_dims(sample_weight, axis=1) - sample_weight = tf.__internal__.ops.broadcast_weights( - weights=sample_weight, values=y_true - ) - - weighted_y_true = y_true * sample_weight - self.sum.assign_add(tf.reduce_sum(weighted_y_true, axis=0)) - self.squared_sum.assign_add( - tf.reduce_sum(y_true * weighted_y_true, axis=0) - ) - self.total_mse.assign_add( - tf.reduce_sum((y_true - y_pred) ** 2 * sample_weight, axis=0) - ) - self.count.assign_add(tf.reduce_sum(sample_weight, axis=0)) - self.num_samples.assign_add(tf.size(y_true)) - - def result(self): - mean = self.sum / self.count - total = self.squared_sum - self.sum * mean - raw_scores = 1 - (self.total_mse / total) - raw_scores = tf.where(tf.math.is_inf(raw_scores), 0.0, raw_scores) - - if self.class_aggregation == "uniform_average": - r2_score = tf.reduce_mean(raw_scores) - elif self.class_aggregation == "variance_weighted_average": - weighted_sum = tf.reduce_sum(total * raw_scores) - sum_of_weights = tf.reduce_sum(total) - r2_score = weighted_sum / sum_of_weights - else: - r2_score = raw_scores - - if self.num_regressors != 0: - if self.num_regressors > self.num_samples - 1: - warnings.warn( - "More independent predictors than datapoints " - "in adjusted R2 score. Falling back to standard R2 score.", - stacklevel=2, - ) - elif self.num_regressors == self.num_samples - 1: - warnings.warn( - "Division by zero in Adjusted R2 score. " - "Falling back to standard R2 score.", - stacklevel=2, - ) - else: - n = tf.cast(self.num_samples, dtype=tf.float32) - p = tf.cast(self.num_regressors, dtype=tf.float32) - num = tf.multiply( - tf.subtract(1.0, r2_score), tf.subtract(n, 1.0) - ) - den = tf.subtract(tf.subtract(n, p), 1.0) - r2_score = tf.subtract(1.0, tf.divide(num, den)) - return r2_score - - def reset_state(self): - for v in self.variables: - v.assign(tf.zeros(v.shape)) - - def get_config(self): - config = { - "class_aggregation": self.class_aggregation, - "num_regressors": self.num_regressors, - } - base_config = super().get_config() - return {**base_config, **config} - - -def cosine_similarity(y_true, y_pred, axis=-1): - """Computes the cosine similarity between labels and predictions. - - Args: - y_true: The ground truth values. - y_pred: The prediction values. - axis: (Optional) Defaults to -1. The dimension along which the cosine - similarity is computed. - - Returns: - Cosine similarity value. - """ - y_true = tf.linalg.l2_normalize(y_true, axis=axis) - y_pred = tf.linalg.l2_normalize(y_pred, axis=axis) - return tf.reduce_sum(y_true * y_pred, axis=axis) diff --git a/keras/metrics/regression_metrics_test.py b/keras/metrics/regression_metrics_test.py deleted file mode 100644 index 57b1a8191d3..00000000000 --- a/keras/metrics/regression_metrics_test.py +++ /dev/null @@ -1,506 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras metrics.""" - -import math - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import Input -from keras import metrics -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CosineSimilarityTest(tf.test.TestCase): - def l2_norm(self, x, axis): - epsilon = 1e-12 - square_sum = np.sum(np.square(x), axis=axis, keepdims=True) - x_inv_norm = 1 / np.sqrt(np.maximum(square_sum, epsilon)) - return np.multiply(x, x_inv_norm) - - def setup(self, axis=1): - self.np_y_true = np.asarray([[1, 9, 2], [-5, -2, 6]], dtype=np.float32) - self.np_y_pred = np.asarray([[4, 8, 12], [8, 1, 3]], dtype=np.float32) - - y_true = self.l2_norm(self.np_y_true, axis) - y_pred = self.l2_norm(self.np_y_pred, axis) - self.expected_loss = np.sum(np.multiply(y_true, y_pred), axis=(axis,)) - - self.y_true = tf.constant(self.np_y_true) - self.y_pred = tf.constant(self.np_y_pred) - - def test_config(self): - cosine_obj = metrics.CosineSimilarity( - axis=2, name="my_cos", dtype=tf.int32 - ) - self.assertEqual(cosine_obj.name, "my_cos") - self.assertEqual(cosine_obj._dtype, tf.int32) - - # Check save and restore config - cosine_obj2 = metrics.CosineSimilarity.from_config( - cosine_obj.get_config() - ) - self.assertEqual(cosine_obj2.name, "my_cos") - self.assertEqual(cosine_obj2._dtype, tf.int32) - - def test_unweighted(self): - self.setup() - cosine_obj = metrics.CosineSimilarity() - self.evaluate(tf.compat.v1.variables_initializer(cosine_obj.variables)) - loss = cosine_obj(self.y_true, self.y_pred) - expected_loss = np.mean(self.expected_loss) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_weighted(self): - self.setup() - cosine_obj = metrics.CosineSimilarity() - self.evaluate(tf.compat.v1.variables_initializer(cosine_obj.variables)) - sample_weight = np.asarray([1.2, 3.4]) - loss = cosine_obj( - self.y_true, self.y_pred, sample_weight=tf.constant(sample_weight) - ) - expected_loss = np.sum(self.expected_loss * sample_weight) / np.sum( - sample_weight - ) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - def test_axis(self): - self.setup(axis=1) - cosine_obj = metrics.CosineSimilarity(axis=1) - self.evaluate(tf.compat.v1.variables_initializer(cosine_obj.variables)) - loss = cosine_obj(self.y_true, self.y_pred) - expected_loss = np.mean(self.expected_loss) - self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MeanAbsoluteErrorTest(tf.test.TestCase): - def test_config(self): - mae_obj = metrics.MeanAbsoluteError(name="my_mae", dtype=tf.int32) - self.assertEqual(mae_obj.name, "my_mae") - self.assertEqual(mae_obj._dtype, tf.int32) - - # Check save and restore config - mae_obj2 = metrics.MeanAbsoluteError.from_config(mae_obj.get_config()) - self.assertEqual(mae_obj2.name, "my_mae") - self.assertEqual(mae_obj2._dtype, tf.int32) - - def test_unweighted(self): - mae_obj = metrics.MeanAbsoluteError() - self.evaluate(tf.compat.v1.variables_initializer(mae_obj.variables)) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - - update_op = mae_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = mae_obj.result() - self.assertAllClose(0.5, result, atol=1e-5) - - def test_weighted(self): - mae_obj = metrics.MeanAbsoluteError() - self.evaluate(tf.compat.v1.variables_initializer(mae_obj.variables)) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - sample_weight = tf.constant((1.0, 1.5, 2.0, 2.5)) - result = mae_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(0.54285, self.evaluate(result), atol=1e-5) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MeanAbsolutePercentageErrorTest(tf.test.TestCase): - def test_config(self): - mape_obj = metrics.MeanAbsolutePercentageError( - name="my_mape", dtype=tf.int32 - ) - self.assertEqual(mape_obj.name, "my_mape") - self.assertEqual(mape_obj._dtype, tf.int32) - - # Check save and restore config - mape_obj2 = metrics.MeanAbsolutePercentageError.from_config( - mape_obj.get_config() - ) - self.assertEqual(mape_obj2.name, "my_mape") - self.assertEqual(mape_obj2._dtype, tf.int32) - - def test_unweighted(self): - mape_obj = metrics.MeanAbsolutePercentageError() - self.evaluate(tf.compat.v1.variables_initializer(mape_obj.variables)) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - - update_op = mape_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = mape_obj.result() - self.assertAllClose(35e7, result, atol=1e-5) - - def test_weighted(self): - mape_obj = metrics.MeanAbsolutePercentageError() - self.evaluate(tf.compat.v1.variables_initializer(mape_obj.variables)) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - sample_weight = tf.constant((1.0, 1.5, 2.0, 2.5)) - result = mape_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(40e7, self.evaluate(result), atol=1e-5) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MeanSquaredErrorTest(tf.test.TestCase): - def test_config(self): - mse_obj = metrics.MeanSquaredError(name="my_mse", dtype=tf.int32) - self.assertEqual(mse_obj.name, "my_mse") - self.assertEqual(mse_obj._dtype, tf.int32) - - # Check save and restore config - mse_obj2 = metrics.MeanSquaredError.from_config(mse_obj.get_config()) - self.assertEqual(mse_obj2.name, "my_mse") - self.assertEqual(mse_obj2._dtype, tf.int32) - - def test_unweighted(self): - mse_obj = metrics.MeanSquaredError() - self.evaluate(tf.compat.v1.variables_initializer(mse_obj.variables)) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - - update_op = mse_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = mse_obj.result() - self.assertAllClose(0.5, result, atol=1e-5) - - def test_weighted(self): - mse_obj = metrics.MeanSquaredError() - self.evaluate(tf.compat.v1.variables_initializer(mse_obj.variables)) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - sample_weight = tf.constant((1.0, 1.5, 2.0, 2.5)) - result = mse_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(0.54285, self.evaluate(result), atol=1e-5) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MeanSquaredLogarithmicErrorTest(tf.test.TestCase): - def test_config(self): - msle_obj = metrics.MeanSquaredLogarithmicError( - name="my_msle", dtype=tf.int32 - ) - self.assertEqual(msle_obj.name, "my_msle") - self.assertEqual(msle_obj._dtype, tf.int32) - - # Check save and restore config - msle_obj2 = metrics.MeanSquaredLogarithmicError.from_config( - msle_obj.get_config() - ) - self.assertEqual(msle_obj2.name, "my_msle") - self.assertEqual(msle_obj2._dtype, tf.int32) - - def test_unweighted(self): - msle_obj = metrics.MeanSquaredLogarithmicError() - self.evaluate(tf.compat.v1.variables_initializer(msle_obj.variables)) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - - update_op = msle_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = msle_obj.result() - self.assertAllClose(0.24022, result, atol=1e-5) - - def test_weighted(self): - msle_obj = metrics.MeanSquaredLogarithmicError() - self.evaluate(tf.compat.v1.variables_initializer(msle_obj.variables)) - y_true = tf.constant( - ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) - ) - y_pred = tf.constant( - ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) - ) - sample_weight = tf.constant((1.0, 1.5, 2.0, 2.5)) - result = msle_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(0.26082, self.evaluate(result), atol=1e-5) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class RootMeanSquaredErrorTest(tf.test.TestCase): - def test_config(self): - rmse_obj = metrics.RootMeanSquaredError(name="rmse", dtype=tf.int32) - self.assertEqual(rmse_obj.name, "rmse") - self.assertEqual(rmse_obj._dtype, tf.int32) - - rmse_obj2 = metrics.RootMeanSquaredError.from_config( - rmse_obj.get_config() - ) - self.assertEqual(rmse_obj2.name, "rmse") - self.assertEqual(rmse_obj2._dtype, tf.int32) - - def test_unweighted(self): - rmse_obj = metrics.RootMeanSquaredError() - self.evaluate(tf.compat.v1.variables_initializer(rmse_obj.variables)) - y_true = tf.constant((2, 4, 6)) - y_pred = tf.constant((1, 3, 2)) - - update_op = rmse_obj.update_state(y_true, y_pred) - self.evaluate(update_op) - result = rmse_obj.result() - # error = [-1, -1, -4], square(error) = [1, 1, 16], mean = 18/3 = 6 - self.assertAllClose(math.sqrt(6), result, atol=1e-3) - - def test_weighted(self): - rmse_obj = metrics.RootMeanSquaredError() - self.evaluate(tf.compat.v1.variables_initializer(rmse_obj.variables)) - y_true = tf.constant((2, 4, 6, 8)) - y_pred = tf.constant((1, 3, 2, 3)) - sample_weight = tf.constant((0, 1, 0, 1)) - result = rmse_obj(y_true, y_pred, sample_weight=sample_weight) - self.assertAllClose(math.sqrt(13), self.evaluate(result), atol=1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class LogCoshErrorTest(tf.test.TestCase): - def setup(self): - y_pred = np.asarray([1, 9, 2, -5, -2, 6]).reshape((2, 3)) - y_true = np.asarray([4, 8, 12, 8, 1, 3]).reshape((2, 3)) - - self.batch_size = 6 - error = y_pred - y_true - self.expected_results = np.log((np.exp(error) + np.exp(-error)) / 2) - - self.y_pred = tf.constant(y_pred, dtype=tf.float32) - self.y_true = tf.constant(y_true) - - def test_config(self): - logcosh_obj = metrics.LogCoshError(name="logcosh", dtype=tf.int32) - self.assertEqual(logcosh_obj.name, "logcosh") - self.assertEqual(logcosh_obj._dtype, tf.int32) - - def test_unweighted(self): - self.setup() - logcosh_obj = metrics.LogCoshError() - self.evaluate(tf.compat.v1.variables_initializer(logcosh_obj.variables)) - - update_op = logcosh_obj.update_state(self.y_true, self.y_pred) - self.evaluate(update_op) - result = logcosh_obj.result() - expected_result = np.sum(self.expected_results) / self.batch_size - self.assertAllClose(result, expected_result, atol=1e-3) - - def test_weighted(self): - self.setup() - logcosh_obj = metrics.LogCoshError() - self.evaluate(tf.compat.v1.variables_initializer(logcosh_obj.variables)) - sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) - result = logcosh_obj( - self.y_true, self.y_pred, sample_weight=sample_weight - ) - - sample_weight = np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape( - (2, 3) - ) - expected_result = np.multiply(self.expected_results, sample_weight) - expected_result = np.sum(expected_result) / np.sum(sample_weight) - self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MeanRelativeErrorTest(tf.test.TestCase): - def test_config(self): - normalizer = tf.constant([1, 3], dtype=tf.float32) - mre_obj = metrics.MeanRelativeError(normalizer=normalizer, name="mre") - self.assertEqual(mre_obj.name, "mre") - self.assertArrayNear(self.evaluate(mre_obj.normalizer), [1, 3], 1e-1) - - mre_obj2 = metrics.MeanRelativeError.from_config(mre_obj.get_config()) - self.assertEqual(mre_obj2.name, "mre") - self.assertArrayNear(self.evaluate(mre_obj2.normalizer), [1, 3], 1e-1) - - def test_unweighted(self): - np_y_pred = np.asarray([2, 4, 6, 8], dtype=np.float32) - np_y_true = np.asarray([1, 3, 2, 3], dtype=np.float32) - expected_error = np.mean( - np.divide(np.absolute(np_y_pred - np_y_true), np_y_true) - ) - - y_pred = tf.constant(np_y_pred, shape=(1, 4), dtype=tf.float32) - y_true = tf.constant(np_y_true, shape=(1, 4)) - - mre_obj = metrics.MeanRelativeError(normalizer=y_true) - self.evaluate(tf.compat.v1.variables_initializer(mre_obj.variables)) - - result = mre_obj(y_true, y_pred) - self.assertAllClose(self.evaluate(result), expected_error, atol=1e-3) - - def test_weighted(self): - np_y_pred = np.asarray([2, 4, 6, 8], dtype=np.float32) - np_y_true = np.asarray([1, 3, 2, 3], dtype=np.float32) - sample_weight = np.asarray([0.2, 0.3, 0.5, 0], dtype=np.float32) - rel_errors = np.divide(np.absolute(np_y_pred - np_y_true), np_y_true) - expected_error = np.sum(rel_errors * sample_weight) - - y_pred = tf.constant(np_y_pred, dtype=tf.float32) - y_true = tf.constant(np_y_true) - - mre_obj = metrics.MeanRelativeError(normalizer=y_true) - self.evaluate(tf.compat.v1.variables_initializer(mre_obj.variables)) - - result = mre_obj( - y_true, y_pred, sample_weight=tf.constant(sample_weight) - ) - self.assertAllClose(self.evaluate(result), expected_error, atol=1e-3) - - def test_zero_normalizer(self): - y_pred = tf.constant([2, 4], dtype=tf.float32) - y_true = tf.constant([1, 3]) - - mre_obj = metrics.MeanRelativeError(normalizer=tf.zeros_like(y_true)) - self.evaluate(tf.compat.v1.variables_initializer(mre_obj.variables)) - - result = mre_obj(y_true, y_pred) - self.assertEqual(self.evaluate(result), 0) - - -@test_utils.run_v2_only -class R2ScoreTest(parameterized.TestCase, tf.test.TestCase): - def _run_test( - self, - y_true, - y_pred, - sample_weights, - class_aggregation, - num_regressors, - reference_result, - ): - y_true = tf.constant(y_true, dtype="float32") - y_pred = tf.constant(y_pred, dtype="float32") - r2 = metrics.R2Score(class_aggregation, num_regressors) - r2.update_state(y_true, y_pred, sample_weights) - result = r2.result().numpy() - self.assertAllClose(result, reference_result, atol=1e-6) - - def test_config(self): - r2_obj = metrics.R2Score( - class_aggregation=None, - num_regressors=2, - ) - self.assertEqual(r2_obj.class_aggregation, None) - self.assertEqual(r2_obj.num_regressors, 2) - self.assertEqual(r2_obj.dtype, tf.float32) - - # Check save and restore config - r2_obj2 = metrics.R2Score.from_config(r2_obj.get_config()) - self.assertEqual(r2_obj2.class_aggregation, None) - self.assertEqual(r2_obj2.num_regressors, 2) - self.assertEqual(r2_obj2.dtype, tf.float32) - - @parameterized.parameters( - # class_aggregation, num_regressors, result - (None, 0, [0.37, -1.295, 0.565]), - ("uniform_average", 0, -0.12), - ("variance_weighted_average", 0, -0.12), - ) - def test_r2_sklearn_comparison( - self, class_aggregation, num_regressors, result - ): - y_true = [[0.0, 0.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]] - y_pred = [[0.4, 0.5, 0.6], [0.1, 0.2, 0.3], [0.5, 0.8, 0.2]] - self._run_test( - y_true, - y_pred, - None, - class_aggregation=class_aggregation, - num_regressors=num_regressors, - reference_result=result, - ) - - @parameterized.parameters( - # class_aggregation, num_regressors, result - (None, 0, [0.17305559, -8.836666, -0.521]), - (None, 1, [0.054920673, -10.241904, -0.7382858]), - (None, 2, [-0.10259259, -12.115555, -1.0280001]), - ("uniform_average", 0, -3.0615367889404297), - ("uniform_average", 1, -3.641756534576416), - ("uniform_average", 2, -4.415382385253906), - ("variance_weighted_average", 0, -1.3710224628448486), - ("variance_weighted_average", 1, -1.7097399234771729), - ("variance_weighted_average", 2, -2.161363363265991), - ) - def test_r2_tfa_comparison(self, class_aggregation, num_regressors, result): - y_true = [[0.0, 0.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]] - y_pred = [[0.4, 0.9, 1.6], [0.1, 1.2, 0.6], [1.5, 0.8, 0.6]] - sample_weights = [0.8, 0.1, 0.4] - self._run_test( - y_true, - y_pred, - sample_weights, - class_aggregation=class_aggregation, - num_regressors=num_regressors, - reference_result=result, - ) - - def test_errors(self): - # Bad class_aggregation value - with self.assertRaisesRegex( - ValueError, "Invalid value for argument `class_aggregation`" - ): - metrics.R2Score(class_aggregation="wrong") - - # Bad num_regressors value - with self.assertRaisesRegex( - ValueError, "Invalid value for argument `num_regressors`" - ): - metrics.R2Score(num_regressors=-1) - - # Bad input shape - with self.assertRaisesRegex(ValueError, "expects 2D inputs with shape"): - r2 = metrics.R2Score() - r2.update_state(tf.constant([0.0, 1.0]), tf.constant([0.0, 1.0])) - - with self.assertRaisesRegex( - ValueError, "with output_dim fully defined" - ): - r2 = metrics.R2Score() - r2.update_state(Input(shape=(None,)), tf.constant([[0.0], [1.0]])) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/mixed_precision/BUILD b/keras/mixed_precision/BUILD deleted file mode 100644 index ecf61bbeb2a..00000000000 --- a/keras/mixed_precision/BUILD +++ /dev/null @@ -1,230 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -# Description: -# Contains the Keras Mixed Precision API (TensorFlow version). - -load("@org_keras//keras:keras.bzl", "cuda_py_test") -load("@org_keras//keras:keras.bzl", "tf_py_test") # buildifier: disable=same-origin-load - -package( - default_visibility = [ - # TODO(scottzhu): Remove these two deps and convert the test to integration test. - "//third_party/tensorflow/python/distribute:__pkg__", # For collective_all_reduce_strategy_test - "//keras:friends", - "//third_party/tensorflow/tools/pip_package:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "mixed_precision_experimental", - srcs = ["__init__.py"], - srcs_version = "PY3", - deps = [ - ":loss_scale_optimizer", - ":policy", - ], -) - -py_library( - name = "policy", - srcs = [ - "policy.py", - ], - srcs_version = "PY3", - deps = [ - ":device_compatibility_check", - "//:expect_tensorflow_installed", - ], -) - -tf_py_test( - name = "policy_test", - size = "medium", - srcs = [ - "policy_test.py", - ], - python_version = "PY3", - srcs_version = "PY3", - tags = ["no_rocm"], - deps = [ - ":policy", - "//:expect_tensorflow_installed", - "//keras", - "//keras/optimizers/legacy:optimizers", - "//keras/testing_infra:test_combinations", - ], -) - -py_library( - name = "device_compatibility_check", - srcs = ["device_compatibility_check.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -cuda_py_test( - name = "device_compatibility_check_test", - srcs = ["device_compatibility_check_test.py"], - srcs_version = "PY3", - tfrt_enabled = True, - deps = [ - ":device_compatibility_check", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -py_library( - name = "autocast_variable", - srcs = [ - "autocast_variable.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/distribute", - ], -) - -tf_py_test( - name = "autocast_variable_test", - size = "medium", - srcs = ["autocast_variable_test.py"], - python_version = "PY3", - deps = [ - ":autocast_variable", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/layers", - "//keras/optimizers/legacy:optimizers", - ], -) - -py_library( - name = "loss_scale_optimizer", - srcs = ["loss_scale_optimizer.py"], - srcs_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/optimizers/legacy:optimizers", - "//keras/utils:generic_utils", - ], -) - -cuda_py_test( - name = "loss_scale_optimizer_test", - size = "medium", - srcs = ["loss_scale_optimizer_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - ":loss_scale_optimizer", - ":test_util", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "mixed_precision_graph_rewrite_test", - size = "small", - srcs = ["mixed_precision_graph_rewrite_test.py"], - python_version = "PY3", - tfrt_enabled = True, - deps = [ - ":loss_scale_optimizer", - ":policy", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/optimizers/legacy:optimizers", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -py_library( - name = "test_util", - srcs = ["test_util.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - ], -) - -cuda_py_test( - name = "layer_test", - size = "medium", - srcs = ["layer_test.py"], - python_version = "PY3", - tags = [ - "no_pip", - "no_windows", # b/139083295: bfloat16 tests fail on Windows - ], - deps = [ - ":test_util", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "model_test", - size = "medium", - srcs = ["model_test.py"], - data = [ - "//keras/mixed_precision/testdata:lso_ckpt_tf2.2", - "//keras/mixed_precision/testdata:lso_savedmodel_tf2.2", - ], - python_version = "PY3", - shard_count = 5, - tags = [ - "no_pip", - "no_windows", # b/139083295: bfloat16 tests fail on Windows - ], - deps = [ - ":test_util", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "layer_correctness_test", - size = "medium", - srcs = ["layer_correctness_test.py"], - python_version = "PY3", - shard_count = 10, - tags = [ - "no_rocm", - ], - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/mixed_precision/__init__.py b/keras/mixed_precision/__init__.py deleted file mode 100644 index 58c7cd9475f..00000000000 --- a/keras/mixed_precision/__init__.py +++ /dev/null @@ -1,25 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras mixed precision API. - -See [the mixed precision guide]( - https://www.tensorflow.org/guide/keras/mixed_precision) to learn how to -use the API. -""" - -from keras.mixed_precision.loss_scale_optimizer import LossScaleOptimizer -from keras.mixed_precision.policy import Policy -from keras.mixed_precision.policy import global_policy -from keras.mixed_precision.policy import set_global_policy diff --git a/keras/mixed_precision/autocast_variable.py b/keras/mixed_precision/autocast_variable.py deleted file mode 100644 index a4187c2cbe1..00000000000 --- a/keras/mixed_precision/autocast_variable.py +++ /dev/null @@ -1,621 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains AutoCastVariable, a variable which automatically casts itself.""" - -import threading -from typing import Optional - -import tensorflow.compat.v2 as tf - -from keras.distribute import distributed_training_utils - -# _autocast_dtype.dtype is the dtype AutoCastVariables should be cast to, or -# None if AutoCastVariables should not be cast. -_autocast_dtype = threading.local() - - -def numpy_text(tensor, is_repr=False): - """Human readable representation of a tensor's numpy value.""" - if tensor.dtype.is_numpy_compatible: - - text = repr(tensor._numpy()) if is_repr else str(tensor._numpy()) - - else: - text = "" - if "\n" in text: - text = "\n" + text - return text - - -class AutoCastVariableSpec(tf.types.experimental.TraceType): - """TraceType for AutoCastVariableSpec for tracing with tf.function. - - This class implements the Type for AutoCastVariable used in tracing. - """ - - def __init__(self, value): - self._value = value - - def is_subtype_of(self, other) -> bool: - """If the other spec is the same as `self`, return True.""" - return self == other - - def most_specific_common_supertype(self, others): - """`self` is the common supertype if all input types match it.""" - return self if all(self == other for other in others) else None - - def placeholder_value(self, placeholder_context=None): - """Use the AutoCastVariable value itself as a placeholder.""" - return self._value - - def _to_tensors(self, value): - return [] - - def __hash__(self) -> int: - return hash(id(self._value)) - - def __eq__(self, other) -> bool: - return self is other - - -class AutoCastVariable(tf.Variable, tf.__internal__.types.Tensor): - """Variable that casts itself to a different dtype in applicable contexts. - - This class wraps a floating-point `tf.Variable`. It emulates the variable - interface and delegates to the wrapped variable, but it additionally will - cast the wrapped variable under an `enable_auto_cast_variables(dtype)` - context manager. - - For example: - - >>> v = tf.Variable(1.0, dtype=tf.float32) - >>> v = AutoCastVariable(v) - >>> tf.identity(v).dtype - tf.float32 - >>> with enable_auto_cast_variables(tf.float16): - ... tf.identity(v).dtype - tf.float16 - - The purpose of this class is to allow Keras layers to create variables in - float32, and automatically cast them to float16 or bfloat16 when the layer - is called. - """ - - def __init__(self, variable): - """Creates an AutoCastVariable instance. - - Args: - variable: A floating-point resource variable to wrap. - - Raises: - ValueError: If `variable` is not a floating-point resource variable - """ - if not isinstance(variable, tf.Variable): - raise ValueError( - "variable must be of type tf.ResourceVariable, but got: %s" - % variable - ) - if not variable.dtype.is_floating: - raise ValueError( - "variable must be a floating point variable but has type: %s" - % variable.dtype.name - ) - self._variable = variable - # 'delegate' means AutoCastVariable.op return self._variable.op, which - # will raise an AttributeError in Eager (as intended). If set to any - # other value, AutoCastVariable.op returns that value instead, which is - # used to set the op attribute in AutoCastVariable.assign(). - self._op = "delegate" - - def _should_cast(self): - """Returns True if this variable should be casted when accessed.""" - autocast_dtype = getattr(_autocast_dtype, "dtype", None) - return autocast_dtype is not None and self.dtype != autocast_dtype - - @property - def dtype(self): - """The dtype of the underlying variable, before any casts are done.""" - return self._variable.dtype - - @property - def true_dtype(self): - """Deprecated alias of `dtype`.""" - return self._variable.dtype - - @property - def _cast_dtype(self): - dtype = getattr(_autocast_dtype, "dtype", None) - return dtype or self._variable.dtype - - def value(self): - val = self._variable.value() - if not self._should_cast(): - return val - return tf.cast(val, self._cast_dtype) - - def read_value(self): - val = self._variable.read_value() - return tf.cast(val, self._cast_dtype) - - def sparse_read(self, indices, name=None): - """Reads the value of this variable sparsely, using `gather`.""" - val = self._variable.sparse_read(indices, name=name) - return tf.cast(val, self._cast_dtype) - - def gather_nd(self, indices, name=None): - """Gather slices of the variable into a Tensor.""" - val = self._variable.gather_nd(indices, name=name) - return tf.cast(val, self._cast_dtype) - - def __getattr__(self, name): - return getattr(self._variable, name) - - def _dense_var_to_tensor(self, dtype=None, name=None, as_ref=False): - """Converts this variable to a tensor.""" - if as_ref: - # This ValueError should not occur in practice since it is - # impossible to pass as_ref=True using public APIs. - raise ValueError( - "Cannot convert AutoCastVariable to a tensor if " - "as_ref=True is passed to convert_to_tensor" - ) - if not self._should_cast(): - return tf.convert_to_tensor(self._variable, dtype=dtype, name=name) - if dtype is not None and not dtype.is_compatible_with(self._cast_dtype): - raise ValueError( - "Incompatible type conversion requested to type {!r} for " - "AutoCastVariable which is casted to type {!r}".format( - dtype.name, self._cast_dtype.name - ) - ) - val = tf.convert_to_tensor( - self._variable, dtype=self._variable.dtype, name=name - ) - return tf.cast(val, self._cast_dtype) - - def __tf_tensor__( - self, - dtype: Optional[tf.dtypes.DType] = None, - name: Optional[str] = None, - ) -> tf.Tensor: - return self._dense_var_to_tensor(dtype=dtype, name=name) - - def _should_act_as_resource_variable(self): - """Pass resource_variable_ops.is_resource_variable check.""" - pass - - def __repr__(self): - if tf.executing_eagerly() and not self._in_graph_mode: - repr_str = ( - "" - ) - return repr_str.format( - v=self, np_repr=numpy_text(self.read_value(), is_repr=True) - ) - else: - repr_str = ( - "" - ) - return repr_str.format(v=self) - - # Method delegations: We delegate the following methods to self._variable. - # Each of these methods simply calls the same method on self._variable. The - # base Variable raises NotImplementedError for most of these, so we must - # override them. - # - # We do not define the following methods from Variable for the following - # reasons: - # * 'count_up_to': This method only applies to int variables, which cannot - # be wrapped with an AutoCastVariable. - # * 'ref': Instead we inherit the definition from Variable. - # If we defined and delegated to Variable, the ref of an - # AutoCastVariable would be the same as the ref of the underlying - # variable, which would be strange as they are different Python objects. - - def set_shape(self, shape): - return self._variable.set_shape(self, shape) - - @property - def trainable(self): - return self._variable.trainable - - @property - def synchronization(self): - return self._variable.synchronization - - @property - def aggregation(self): - return self._variable.aggregation - - def eval(self, session=None): - return self._variable.eval(session) - - def initialized_value(self): - return self._variable.initialized_value() - - @property - def initial_value(self): - return self._variable.initial_value - - @property - def constraint(self): - return self._variable.constraint - - def _apply_assign_update( - self, update_fn, value, use_locking=None, name=None, read_value=True - ): - # TODO(b/146181571): This logic can be simplified once - # DistributedVariable.assign returns a DistributedVariable. Currently - # for MirroredStrategy, it returns a Mirrored value. - if tf.compat.v1.executing_eagerly_outside_functions(): - assign_op = update_fn(value, use_locking, name, False) - if read_value: - # We create a new AutoCastVariable with the same underlying - # tf.Variable. The new AutoCastVariable is identical except the - # 'op' attribute is defined. This matches the behavior of - # tf.Variable.assign. - var = create_autocast_variable(self._variable) - var._op = assign_op - return var - return assign_op - - # Fallback to wrapping the returned variable in graph mode if possible - assign_var = update_fn(value, use_locking, name, read_value) - if read_value and tf.__internal__.ops.is_resource_variable(assign_var): - return create_autocast_variable(assign_var) - return assign_var - - def _apply_update(self, update_fn, *args, **kwargs): - update_var = update_fn(*args, **kwargs) - if tf.compat.v1.executing_eagerly_outside_functions(): - return self - - # Fallback to wrapping the returned variable in graph mode if possible - if tf.__internal__.ops.is_resource_variable(update_var): - return create_autocast_variable(update_var) - return update_var - - def assign(self, value, use_locking=None, name=None, read_value=True): - return self._apply_assign_update( - self._variable.assign, value, use_locking, name, read_value - ) - - def assign_add(self, delta, use_locking=None, name=None, read_value=True): - return self._apply_assign_update( - self._variable.assign_add, delta, use_locking, name, read_value - ) - - def assign_sub(self, delta, use_locking=None, name=None, read_value=True): - return self._apply_assign_update( - self._variable.assign_sub, delta, use_locking, name, read_value - ) - - def scatter_sub(self, sparse_delta, use_locking=False, name=None): - return self._apply_update( - self._variable.scatter_sub, sparse_delta, use_locking, name - ) - - def scatter_add(self, sparse_delta, use_locking=False, name=None): - return self._apply_update( - self._variable.scatter_add, sparse_delta, use_locking, name - ) - - def scatter_max(self, sparse_delta, use_locking=False, name=None): - return self._apply_update( - self._variable.scatter_max, sparse_delta, use_locking, name - ) - - def scatter_min(self, sparse_delta, use_locking=False, name=None): - return self._apply_update( - self._variable.scatter_min, sparse_delta, use_locking, name - ) - - def scatter_mul(self, sparse_delta, use_locking=False, name=None): - return self._apply_update( - self._variable.scatter_mul, sparse_delta, use_locking, name - ) - - def scatter_div(self, sparse_delta, use_locking=False, name=None): - return self._apply_update( - self._variable.scatter_div, sparse_delta, use_locking, name - ) - - def scatter_update(self, sparse_delta, use_locking=False, name=None): - return self._apply_update( - self._variable.scatter_update, sparse_delta, use_locking, name - ) - - def batch_scatter_update(self, sparse_delta, use_locking=False, name=None): - return self._apply_update( - self._variable.batch_scatter_update, sparse_delta, use_locking, name - ) - - def scatter_nd_sub(self, indices, updates, name=None): - return self._apply_update( - self._variable.scatter_nd_sub, indices, updates, name - ) - - def scatter_nd_add(self, indices, updates, name=None): - return self._apply_update( - self._variable.scatter_nd_add, indices, updates, name - ) - - def scatter_nd_update(self, indices, updates, name=None): - return self._apply_update( - self._variable.scatter_nd_update, indices, updates, name - ) - - def load(self, value, session=None): - return self._variable.load(value, session) - - @property - def name(self): - return self._variable.name - - @property - def _shared_name(self): - return self._variable._shared_name - - @property - def initializer(self): - return self._variable.initializer - - @property - def device(self): - return self._variable.device - - @property - def op(self): - if self._op == "delegate": - return self._variable.op - return self._op - - def _as_graph_element(self): - graph_element = self._variable._as_graph_element() - if graph_element is None: - return self._op - return graph_element - - @property - def graph(self): - return self._variable.graph - - @property - def shape(self): - return self._variable.shape - - def get_shape(self): - return self._variable.get_shape() - - def __tf_tracing_type__(self, context): - return AutoCastVariableSpec(self) - - def _gather_saveables_for_checkpoint(self): - # By delegating this method to the wrapped variable, checkpoints with - # AutoCastVariables are identical to checkpoints with normal variables. - # Therefore models checkpointed with AutoCastVariables can be restored - # on models with normal variables, and vice versa. - return self._variable._gather_saveables_for_checkpoint() - - def _export_to_saved_model_graph( - self, object_map, tensor_map, options, **kwargs - ): - # By delegating this method to the wrapped variable, SavedModel with - # AutoCastVariables are identical to SavedModel with normal variables. - resource_list = self._variable._export_to_saved_model_graph( - object_map, tensor_map, options, **kwargs - ) - object_map[self] = object_map[self._variable] - return resource_list - - # TODO(reedwm): Maybe encode the fact the variable is an AutoCastVariable in - # to_proto(). - def to_proto(self, export_scope=None): - return self._variable.to_proto(export_scope) - - def from_proto(self, variable_def, import_scope=None): - return self._variable.from_proto(variable_def, import_scope) - - # Delegate the private attributes _handle_name and _initializer_op to - # self._variable. SavedModel sets these attributes when loading a model. For - # example, it sets _handle_name here: - # https://github.com/tensorflow/tensorflow/blob/db26bd574fa95b5bdd53c08463dd19407cc0297e/tensorflow/python/keras/saving/saved_model/load.py#L211 - # We need to expose these attributes on AutoCastVariable as well for - # SavedModel to work properly. - # TODO(reedwm/kathywu): Find a better way to support SavedModel. Exposing - # private attributes is hacky and difficult to maintain. - @property - def _handle_name(self): - return self._variable._handle_name - - @_handle_name.setter - def _handle_name(self, handle_name): - self._variable._handle_name = handle_name - - @property - def _initializer_op(self): - return self._variable._initializer_op - - @_initializer_op.setter - def _initializer_op(self, initializer_op): - self._variable._initializer_op = initializer_op - - # Operator overloads: - # Note we only overload operators that support floating-point types, as - # non-float variables cannot be wrapped with an AutoCastVariable. - # Also note: We call read_value() instead of value(), because value() causes - # gradients not to work properly when TPUStrategy is used: b/143380936 - - def __add__(self, o): - return self.read_value() + o - - def __radd__(self, o): - return o + self.read_value() - - def __sub__(self, o): - return self.read_value() - o - - def __rsub__(self, o): - return o - self.read_value() - - def __mul__(self, o): - return self.read_value() * o - - def __rmul__(self, o): - return o * self.read_value() - - def __truediv__(self, o): - return self.read_value() / o - - def __rtruediv__(self, o): - return o / self.read_value() - - def __floordiv__(self, o): - return self.read_value() // o - - def __rfloordiv__(self, o): - return o // self.read_value() - - def __mod__(self, o): - return self.read_value() % o - - def __rmod__(self, o): - return o % self.read_value() - - def __lt__(self, o): - return self.read_value() < o - - def __le__(self, o): - return self.read_value() <= o - - def __gt__(self, o): - return self.read_value() > o - - def __ge__(self, o): - return self.read_value() >= o - - def __getitem__(self, o): - return self.read_value()[o] - - def __pow__(self, o, modulo=None): - return pow(self.read_value(), o, modulo) - - def __rpow__(self, o): - return pow(o, self.read_value()) - - def __neg__(self): - return -self.read_value() - - def __abs__(self): - return abs(self.read_value()) - - def __div__(self, o): - try: - return self.read_value().__div__(o) - except AttributeError: - # See - # https://docs.python.org/3/library/constants.html#NotImplemented - return NotImplemented - - def __rdiv__(self, o): - try: - return self.read_value().__rdiv__(o) - except AttributeError: - # See - # https://docs.python.org/3/library/constants.html#NotImplemented - return NotImplemented - - def __matmul__(self, o): - try: - return self.read_value().__matmul__(o) - except AttributeError: - # See - # https://docs.python.org/3/library/constants.html#NotImplemented - return NotImplemented - - def __rmatmul__(self, o): - try: - return self.read_value().__rmatmul__(o) - except AttributeError: - # See - # https://docs.python.org/3/library/constants.html#NotImplemented - return NotImplemented - - -tf.register_tensor_conversion_function( - AutoCastVariable, AutoCastVariable._dense_var_to_tensor -) - - -def create_autocast_variable(variable): - """Creates an AutoCastVariable that wraps another variable. - - This typically just returns `AutoCastVariable(variable)`. But, if the - variable is a DistributedVariable or one of its subclasses, we instead - dynamically create a class that subclasses from both AutoCastVariable and - variable.__class__. This is so the returned variable will still pass - `isinstance(variable, variable.__class__)`, which is required for - DistributedVariables and its subclasses to work properly. - - Args: - variable: A floating-point resource variable to wrap. - - Returns: - An AutoCastVariable that wraps the variable. - """ - if not distributed_training_utils.is_distributed_variable(variable): - return AutoCastVariable(variable) - - class AutoCastDistributedVariable(AutoCastVariable, variable.__class__): - """An AutoCastVariable that also subclasses from variable.__class__. - - variable.__class__ is either a DistributedVariable or an - AggregatingVariable. - """ - - def __repr__(self): - - return ( - "" - ).format(v=self) - - return AutoCastDistributedVariable(variable) - - -class enable_auto_cast_variables: - """Context manager which enables the autocasting of `AutoCastVariable`s. - - Under this context manager, `AutoCastVariable`s will be cast to `dtype` if - `dtype` is floating-point. Otherwise, `AutoCastVariable`s will not be cast. - """ - - __slots__ = ["_dtype", "_prev_dtype"] - - def __init__(self, dtype): - if dtype and not dtype.is_floating: - dtype = None - self._dtype = dtype - - def __enter__(self): - self._prev_dtype = getattr(_autocast_dtype, "dtype", None) - _autocast_dtype.dtype = self._dtype - - def __exit__(self, type_arg, value_arg, traceback_arg): - _autocast_dtype.dtype = self._prev_dtype diff --git a/keras/mixed_precision/autocast_variable_test.py b/keras/mixed_precision/autocast_variable_test.py deleted file mode 100644 index 1a6637b6fcc..00000000000 --- a/keras/mixed_precision/autocast_variable_test.py +++ /dev/null @@ -1,660 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for AutoCastVariable.""" - -import os -import threading - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.layers import Dense -from keras.mixed_precision import autocast_variable -from keras.optimizers.legacy import adadelta -from keras.optimizers.legacy import adagrad -from keras.optimizers.legacy import adam -from keras.optimizers.legacy import adamax -from keras.optimizers.legacy import ftrl -from keras.optimizers.legacy import gradient_descent as gradient_descent_v2 -from keras.optimizers.legacy import nadam -from keras.optimizers.legacy import rmsprop - -maybe_distribute = tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.default_strategy, - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_cpus, # noqa: E501 - ] -) - - -def get_var(val, dtype, name=None): - return tf.Variable(val, dtype=dtype, name=name) - - -@tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine(mode=["graph", "eager"]) -) -class AutoCastVariableTest(tf.test.TestCase, parameterized.TestCase): - @tf.__internal__.distribute.combinations.generate(maybe_distribute) - def test_read(self, distribution): - with distribution.scope(): - x = get_var(1.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - self.evaluate(x.initializer) - - # outside of auto cast scope. - self.assertEqual(x.dtype, tf.float32) - self.assertEqual(x.value().dtype, tf.float32) - self.assertEqual(x.read_value().dtype, tf.float32) - self.assertEqual(tf.identity(x).dtype, tf.float32) - - # within auto cast scope of different dtype - with autocast_variable.enable_auto_cast_variables(tf.float16): - self.assertEqual(x.dtype, tf.float32) - self.assertEqual(x.value().dtype, tf.float16) - self.assertEqual(x.read_value().dtype, tf.float16) - self.assertEqual(tf.identity(x).dtype, tf.float16) - - # within auto cast scope of same dtype - with autocast_variable.enable_auto_cast_variables(tf.float32): - self.assertEqual(x.dtype, tf.float32) - self.assertEqual(x.value().dtype, tf.float32) - self.assertEqual(x.read_value().dtype, tf.float32) - self.assertEqual(tf.identity(x).dtype, tf.float32) - - def test_sparse_reads(self): - x = get_var([1.0, 2], tf.float32) - # DistributedVariables do not support sparse_read or gather_nd, so we - # pass distribute=False - x = autocast_variable.create_autocast_variable(x) - self.evaluate(x.initializer) - - self.assertEqual(x.sparse_read([0]).dtype, tf.float32) - self.assertEqual(x.gather_nd([0]).dtype, tf.float32) - - with autocast_variable.enable_auto_cast_variables(tf.float16): - self.assertEqual(x.sparse_read([0]).dtype, tf.float16) - self.assertEqual(x.gather_nd([0]).dtype, tf.float16) - - def test_tf_function_with_variable_and_autocast_variable(self): - ones = tf.ones((2, 2)) - layer1 = Dense(2, dtype="float32") - layer2 = Dense(2, dtype="mixed_float16") - layer1(ones) - layer2(ones) - - @tf.function - def f(x): - return x + 1 - - self.assertEqual(f(layer1.kernel).dtype, tf.dtypes.float32) - self.assertEqual(f(layer2.kernel).dtype, tf.dtypes.float32) - - @tf.__internal__.distribute.combinations.generate(maybe_distribute) - def test_read_nested_scopes(self, distribution): - with distribution.scope(): - x = get_var(1.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - self.evaluate(x.initializer) - - with autocast_variable.enable_auto_cast_variables(tf.float16): - self.assertEqual(x.read_value().dtype, tf.float16) - - with autocast_variable.enable_auto_cast_variables(tf.float32): - self.assertEqual(x.read_value().dtype, tf.float32) - - self.assertEqual(x.read_value().dtype, tf.float16) - - @tf.__internal__.distribute.combinations.generate(maybe_distribute) - def test_dtype_is_not_string(self, distribution): - with distribution.scope(): - x = get_var(1.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - self.assertEqual(x.dtype, tf.float32) - self.assertIsInstance(x.dtype, tf.DType) - self.assertEqual(x.true_dtype, tf.float32) - self.assertIsInstance(x.true_dtype, tf.DType) - - dtype = tf.float16 - with autocast_variable.enable_auto_cast_variables(dtype): - self.assertEqual(x.dtype, tf.float32) - self.assertIsInstance(x.dtype, tf.DType) - self.assertEqual(x.true_dtype, tf.float32) - self.assertIsInstance(x.true_dtype, tf.DType) - - @tf.__internal__.distribute.combinations.generate(maybe_distribute) - def test_method_delegations(self, distribution): - # Test AutoCastVariable correctly delegates Variable methods to the - # underlying variable. - with self.test_session(), distribution.scope(): - for read_dtype in (tf.float32, tf.float16): - if tf.distribute.has_strategy() and not tf.executing_eagerly(): - # MirroredVariable.assign will (incorrectly) return a - # Mirrored value instead of a MirroredVariable in graph - # mode. So we cannot properly wrap it in an - # AutoCastVariable. - evaluate = self.evaluate - else: - - def evaluate(var): - self.assertIsInstance( - var, autocast_variable.AutoCastVariable - ) - self.assertEqual(tf.identity(var).dtype, read_dtype) - return self.evaluate(var) - - x = get_var(7.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - with autocast_variable.enable_auto_cast_variables(read_dtype): - self.evaluate(x.initializer) - self.assertEqual(self.evaluate(x.value()), 7) - self.assertEqual(self.evaluate(x.read_value()), 7) - self.assertTrue(x.trainable) - self.assertEqual( - x.synchronization, x._variable.synchronization - ) - self.assertEqual(x.aggregation, x._variable.aggregation) - self.assertEqual(self.evaluate(x.read_value()), 7) - if not tf.executing_eagerly(): - if not tf.distribute.has_strategy(): - # These functions are not supported for - # DistributedVariables - x.load(9) - self.assertEqual(x.eval(), 9) - self.assertEqual(self.evaluate(x.initial_value), 7) - self.assertEqual(x.op, x._variable.op) - self.assertEqual(x.graph, x._variable.graph) - if not tf.distribute.has_strategy(): - # These attributes are not supported for - # DistributedVariables - self.assertIsNone(x.constraint) - self.assertEqual(x.initializer, x._variable.initializer) - self.assertEqual(evaluate(x.assign(8)), 8) - self.assertEqual(evaluate(x.assign_add(2)), 10) - self.assertEqual(evaluate(x.assign_sub(3)), 7) - self.assertEqual(x.name, x._variable.name) - self.assertEqual(x.device, x._variable.device) - self.assertEqual(x.shape, ()) - self.assertEqual(x.get_shape(), ()) - - if not tf.distribute.has_strategy(): - # Test scatter_* methods. These are not supported for - # DistributedVariables - x = get_var([7, 8], tf.float32) - x = autocast_variable.create_autocast_variable(x) - with autocast_variable.enable_auto_cast_variables( - read_dtype - ): - self.evaluate(x.initializer) - self.assertAllEqual(self.evaluate(x.value()), [7, 8]) - - def slices(val, index): - return tf.IndexedSlices( - values=tf.constant(val, dtype=tf.float32), - indices=tf.constant(index, dtype=tf.int32), - dense_shape=tf.constant([2], dtype=tf.int32), - ) - - self.assertAllEqual( - evaluate(x.scatter_sub(slices(1.0, 0))), [6, 8] - ) - self.assertAllEqual( - evaluate(x.scatter_add(slices(1.0, 0))), [7, 8] - ) - self.assertAllEqual( - evaluate(x.scatter_max(slices(9.0, 1))), [7, 9] - ) - self.assertAllEqual( - evaluate(x.scatter_min(slices(8.0, 1))), [7, 8] - ) - self.assertAllEqual( - evaluate(x.scatter_mul(slices(2.0, 1))), [7, 16] - ) - self.assertAllEqual( - evaluate(x.scatter_div(slices(2.0, 1))), [7, 8] - ) - self.assertAllEqual( - evaluate(x.scatter_update(slices(4.0, 1))), [7, 4] - ) - self.assertAllEqual( - evaluate(x.scatter_nd_sub([[0], [1]], [1.0, 2.0])), - [6, 2], - ) - self.assertAllEqual( - evaluate(x.scatter_nd_add([[0], [1]], [1.0, 2.0])), - [7, 4], - ) - self.assertAllEqual( - evaluate( - x.scatter_nd_update([[0], [1]], [1.0, 2.0]) - ), - [1, 2], - ) - - @tf.__internal__.distribute.combinations.generate(maybe_distribute) - def test_operator_overloads(self, distribution): - with distribution.scope(): - for read_dtype in (tf.float32, tf.float16): - x = get_var(7.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - with autocast_variable.enable_auto_cast_variables(read_dtype): - self.evaluate(x.initializer) - self.assertAlmostEqual(8, self.evaluate(x + 1)) - self.assertAlmostEqual(10, self.evaluate(3 + x)) - self.assertAlmostEqual(14, self.evaluate(x + x)) - self.assertAlmostEqual(5, self.evaluate(x - 2)) - self.assertAlmostEqual(6, self.evaluate(13 - x)) - self.assertAlmostEqual(0, self.evaluate(x - x)) - self.assertAlmostEqual(14, self.evaluate(x * 2)) - self.assertAlmostEqual(21, self.evaluate(3 * x)) - self.assertAlmostEqual(49, self.evaluate(x * x)) - self.assertAlmostEqual(3.5, self.evaluate(x / 2)) - self.assertAlmostEqual(1.5, self.evaluate(10.5 / x)) - self.assertAlmostEqual(3, self.evaluate(x // 2)) - self.assertAlmostEqual(2, self.evaluate(15 // x)) - if read_dtype == tf.float32: - # The "mod" operator does not support float16 - self.assertAlmostEqual(1, self.evaluate(x % 2)) - self.assertAlmostEqual(2, self.evaluate(16 % x)) - self.assertTrue(self.evaluate(x < 12)) - self.assertTrue(self.evaluate(x <= 12)) - self.assertFalse(self.evaluate(x > 12)) - self.assertFalse(self.evaluate(x >= 12)) - self.assertFalse(self.evaluate(12 < x)) - self.assertFalse(self.evaluate(12 <= x)) - self.assertTrue(self.evaluate(12 > x)) - self.assertTrue(self.evaluate(12 >= x)) - self.assertAlmostEqual( - 343, self.evaluate(pow(x, 3)), places=4 - ) - self.assertAlmostEqual( - 128, self.evaluate(pow(2, x)), places=4 - ) - self.assertAlmostEqual(-7, self.evaluate(-x)) - self.assertAlmostEqual(7, self.evaluate(abs(x))) - - x = get_var([7, 8, 9], tf.float32) - x = autocast_variable.create_autocast_variable(x) - self.evaluate(x.initializer) - self.assertEqual(self.evaluate(x[1]), 8) - if tf.__internal__.tf2.enabled() and tf.executing_eagerly(): - self.assertAllEqual( - x == [7.0, 8.0, 10.0], [True, True, False] - ) - self.assertAllEqual( - x != [7.0, 8.0, 10.0], [False, False, True] - ) - - @tf.__internal__.distribute.combinations.generate(maybe_distribute) - def test_assign(self, distribution): - with distribution.scope(): - x = get_var(0.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - self.evaluate(x.initializer) - - # outside of auto cast scope. - v1 = tf.constant(3.0, dtype=tf.float32) - v2 = tf.constant(3.0, dtype=tf.float16) - - def run_and_check(): - # Assign float32 values - self.assertAllClose(3.0, self.evaluate(x.assign(v1))) - self.assertAllClose(3.0 * 2, self.evaluate(x.assign_add(v1))) - self.assertAllClose(3.0, self.evaluate(x.assign_sub(v1))) - - # Attempt to assign float16 values - with self.assertRaisesRegex( - ValueError, - "conversion requested dtype float32 for Tensor with dtype " - "float16", - ): - self.evaluate(x.assign(v2)) - with self.assertRaisesRegex( - ValueError, - "conversion requested dtype float32 for Tensor with dtype " - "float16", - ): - self.evaluate(x.assign_add(v2)) - with self.assertRaisesRegex( - ValueError, - "conversion requested dtype float32 for Tensor with dtype " - "float16", - ): - self.evaluate(x.assign_sub(v2)) - - # Assign Python floats - self.assertAllClose(0.0, self.evaluate(x.assign(0.0))) - self.assertAllClose(3.0, self.evaluate(x.assign(3.0))) - self.assertAllClose(3.0 * 2, self.evaluate(x.assign_add(3.0))) - self.assertAllClose(3.0, self.evaluate(x.assign_sub(3.0))) - - # Assign multiple times - # This currently doesn't work in graph mode if a strategy is - # used - if not tf.distribute.has_strategy() or tf.executing_eagerly(): - assign = x.assign(1.0) - self.assertAllClose(1.0, self.evaluate(assign)) - self.assertAllClose(0.0, self.evaluate(assign.assign(0.0))) - assign_add = x.assign_add(3.0) - self.assertAllClose(3.0, self.evaluate(assign_add)) - self.assertAllClose( - 3.0 * 3, - self.evaluate(x.assign_add(3.0).assign_add(3.0)), - ) - self.assertAllClose(3.0 * 3, x) - assign_sub = x.assign_sub(3.0) - self.assertAllClose(3.0 * 2, self.evaluate(assign_sub)) - self.assertAllClose( - 0.0, self.evaluate(x.assign_sub(3.0).assign_sub(3.0)) - ) - - # Assign with read_value=False - self.assertIsNone( - self.evaluate(x.assign(1.0, read_value=False)) - ) - self.assertAllClose(1.0, self.evaluate(x)) - self.assertIsNone( - self.evaluate(x.assign_add(2.0, read_value=False)) - ) - self.assertAllClose(3.0, self.evaluate(x)) - self.assertIsNone( - self.evaluate(x.assign_sub(3.0, read_value=False)) - ) - self.assertAllClose(0.0, self.evaluate(x)) - - # Use the tf.assign functions instead of the var.assign methods. - self.assertAllClose( - 0.0, self.evaluate(tf.compat.v1.assign(x, 0.0)) - ) - self.assertAllClose( - 3.0, self.evaluate(tf.compat.v1.assign(x, 3.0)) - ) - self.assertAllClose( - 3.0 * 2, self.evaluate(tf.compat.v1.assign_add(x, 3.0)) - ) - self.assertAllClose( - 3.0, self.evaluate(tf.compat.v1.assign_sub(x, 3.0)) - ) - - run_and_check() - # reset x - self.evaluate(x.assign(0.0)) - # within auto cast scope. - with autocast_variable.enable_auto_cast_variables(tf.float16): - # assign still expect float32 value even if in float16 scope - run_and_check() - - @tf.__internal__.distribute.combinations.generate(maybe_distribute) - def test_assign_tf_function(self, distribution): - if not tf.executing_eagerly(): - self.skipTest("Test is not compatible with graph mode") - - with distribution.scope(): - x = get_var(0.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - - @tf.function - def run_assign(): - return ( - x.assign(1.0) - .assign_add(3.0) - .assign_add(3.0) - .assign_sub(2.0) - ) - - with autocast_variable.enable_auto_cast_variables(tf.float16): - self.assertAllClose(5.0, self.evaluate(run_assign())) - - @tf.__internal__.distribute.combinations.generate(maybe_distribute) - def test_op_attribute(self, distribution): - with distribution.scope(): - x = get_var(0.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - - # Variable.op raises an AttributeError in Eager mode and is an op in - # graph mode. Variable.assign(...).op is None in Eager mode and an - # op in Graph mode or a tf.function. We test this is also true of - # AutoCastVariable. - if tf.executing_eagerly(): - with self.assertRaises(AttributeError): - x.op - self.assertIsNone(x.assign(1.0).op) - self.assertIsNone(x.assign_add(1.0).op) - self.assertIsNone(x.assign_sub(1.0).op) - else: - self.assertIsNotNone(x.op) - self.assertIsNotNone(x.assign(1.0).op) - self.assertIsNotNone(x.assign_add(1.0).op) - self.assertIsNotNone(x.assign_sub(1.0).op) - - @tf.function - def func(): - self.assertIsNotNone(x.assign(1.0).op) - self.assertIsNotNone(x.assign_add(1.0).op) - self.assertIsNotNone(x.assign_sub(1.0).op) - - func() - - @tf.__internal__.distribute.combinations.generate(maybe_distribute) - def test_tf_function_control_dependencies(self, distribution): - if not tf.executing_eagerly(): - self.skipTest("Test is not compatible with graph mode") - - with distribution.scope(): - x = get_var(0.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - - @tf.function - def func(): - update = x.assign_add(1.0) - with tf.control_dependencies([update]): - x.assign_add(1.0) - - func() - self.assertAllClose(2.0, self.evaluate(x)) - - @tf.__internal__.distribute.combinations.generate(maybe_distribute) - def test_assign_stays_in_true_dtype(self, distribution): - with distribution.scope(): - x = get_var(1.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - self.evaluate(x.initializer) - # small_val is a value such that 1.0 + small_val == 1.0 in fp16, but - # not in fp32 - small_val = np.finfo("float16").eps / 2 - small_tensor = tf.constant(small_val, dtype=tf.float32) - with autocast_variable.enable_auto_cast_variables(tf.float16): - # Variable should be increased, despite it appearing to be the - # same float16 value. - self.evaluate(x.assign(1.0 + small_tensor)) - self.assertEqual(1.0, self.evaluate(x.value())) - self.assertEqual(1.0 + small_val, self.evaluate(x)) - - self.evaluate(x.assign(1.0)) - with autocast_variable.enable_auto_cast_variables(tf.float16): - self.evaluate(x.assign_add(small_tensor)) - self.assertEqual(1.0, self.evaluate(x.value())) - self.assertEqual(1.0 + small_val, self.evaluate(x)) - - def test_thread_local_autocast_dtype(self): - x = get_var(1.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - self.evaluate(x.initializer) - - with autocast_variable.enable_auto_cast_variables(tf.float16): - self.assertEqual(tf.identity(x).dtype, tf.float16) - - # New threads should not see the modified value of the autocast - # dtype. - var_dtype = None - - def f(): - nonlocal var_dtype - var_dtype = x._cast_dtype - - thread = threading.Thread(target=f) - thread.start() - thread.join() - self.assertEqual(var_dtype, tf.float32) - - @tf.__internal__.distribute.combinations.generate(maybe_distribute) - def test_checkpoint(self, distribution): - with self.test_session(): - with distribution.scope(): - x = get_var(1.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - self.evaluate(x.initializer) - self.evaluate(x.assign(123.0)) - - checkpoint = tf.train.Checkpoint(x=x) - prefix = os.path.join(self.get_temp_dir(), "ckpt") - save_path = checkpoint.save(prefix) - self.evaluate(x.assign(234.0)) - checkpoint.restore(save_path).assert_consumed().run_restore_ops() - self.assertEqual(self.evaluate(x), 123.0) - - @tf.__internal__.distribute.combinations.generate(maybe_distribute) - def test_invalid_wrapped_variable(self, distribution): - with distribution.scope(): - # Wrap a non-variable - with self.assertRaisesRegex(ValueError, "variable must be of type"): - x = tf.constant([1.0], dtype=tf.float32) - autocast_variable.create_autocast_variable(x) - - # Wrap a non-floating point variable - with self.assertRaisesRegex( - ValueError, "variable must be a floating point" - ): - x = get_var(1, tf.int32) - autocast_variable.create_autocast_variable(x) - - def test_repr(self): - # We do not test with DistributionStrategy because we do not want to - # rely on the exact __repr__ output of a DistributedVariable. - x = get_var(1.0, tf.float32, name="x") - x = autocast_variable.create_autocast_variable(x) - if tf.executing_eagerly(): - self.assertStartsWith( - repr(x), - "", - ) - with autocast_variable.enable_auto_cast_variables(tf.float16): - self.assertEqual( - repr(x), - "", - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - distribution=[ - tf.__internal__.distribute.combinations.mirrored_strategy_with_two_cpus, # noqa: E501 - ] - ) - ) - def test_repr_distributed(self, distribution): - with distribution.scope(): - x = get_var(1.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - use_policy = getattr( - distribution.extended, "_use_var_policy", False - ) - if use_policy: - self.assertRegex( - repr(x).replace("\n", " "), - "", - ) - else: - self.assertRegex( - repr(x).replace("\n", " "), - "", - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - optimizer_class=[ - adadelta.Adadelta, - adagrad.Adagrad, - adam.Adam, - adamax.Adamax, - ftrl.Ftrl, - gradient_descent_v2.SGD, - nadam.Nadam, - rmsprop.RMSprop, - tf.compat.v1.train.GradientDescentOptimizer, - ], - use_tf_function=[False, True], - ) - ) - def test_optimizer(self, optimizer_class, use_tf_function): - if use_tf_function and not tf.executing_eagerly(): - self.skipTest("Test does not support graph mode with tf.function") - x = get_var(1.0, tf.float32) - x = autocast_variable.create_autocast_variable(x) - y = get_var(1.0, tf.float32) - opt = optimizer_class(learning_rate=1.0) - - def f(): - # Minimize both the AutoCastVariable and the normal tf.Variable. - # Both variables should be updated to the same value. - op = opt.minimize(lambda: x + y, var_list=[x, y]) - return ( - None - if tf.compat.v1.executing_eagerly_outside_functions() - else op - ) - - if use_tf_function: - f = tf.function(f) - - if tf.executing_eagerly(): - f() - else: - op = f() - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(op) - # Assert the AutoCastVariable has changed from its initial value - self.assertNotEqual(self.evaluate(x), 1.0) - # Assert AutoCastVariable is updated correctly by comparing it to the - # normal variable - self.assertAlmostEqual(self.evaluate(x), self.evaluate(y)) - if optimizer_class in ( - gradient_descent_v2.SGD, - tf.compat.v1.train.GradientDescentOptimizer, - ): - # With SGD, the variables decreases by exactly 1 - self.assertEqual(self.evaluate(x), 0) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/mixed_precision/device_compatibility_check.py b/keras/mixed_precision/device_compatibility_check.py deleted file mode 100644 index 477b61b562d..00000000000 --- a/keras/mixed_precision/device_compatibility_check.py +++ /dev/null @@ -1,166 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains function to log if devices are compatible with mixed precision.""" - -import itertools - -import tensorflow.compat.v2 as tf - -# isort: off -from tensorflow.python.platform import tf_logging - -_COMPAT_CHECK_PREFIX = "Mixed precision compatibility check (mixed_float16): " -_COMPAT_CHECK_OK_PREFIX = _COMPAT_CHECK_PREFIX + "OK" -_COMPAT_CHECK_WARNING_PREFIX = _COMPAT_CHECK_PREFIX + "WARNING" -_COMPAT_CHECK_WARNING_SUFFIX = ( - "If you will use compatible GPU(s) not attached to this host, e.g. by " - "running a multi-worker model, you can ignore this warning. This message " - "will only be logged once" -) - - -def _dedup_strings(device_strs): - """Groups together consecutive identical strings. - - For example, given: - ['GPU 1', 'GPU 2', 'GPU 2', 'GPU 3', 'GPU 3', 'GPU 3'] - This function returns: - ['GPU 1', 'GPU 2 (x2)', 'GPU 3 (x3)'] - - Args: - device_strs: A list of strings, each representing a device. - - Returns: - A copy of the input, but identical consecutive strings are merged into a - single string. - """ - new_device_strs = [] - for device_str, vals in itertools.groupby(device_strs): - num = len(list(vals)) - if num == 1: - new_device_strs.append(device_str) - else: - new_device_strs.append("%s (x%d)" % (device_str, num)) - return new_device_strs - - -def _log_device_compatibility_check(policy_name, gpu_details_list): - """Logs a compatibility check if the devices support the policy. - - Currently only logs for the policy mixed_float16. - - Args: - policy_name: The name of the dtype policy. - gpu_details_list: A list of dicts, one dict per GPU. Each dict - is the device details for a GPU, as returned by - `tf.config.experimental.get_device_details()`. - """ - if policy_name != "mixed_float16": - # TODO(b/145686977): Log if the policy is 'mixed_bfloat16'. This - # requires checking if a TPU is available. - return - supported_device_strs = [] - unsupported_device_strs = [] - for details in gpu_details_list: - name = details.get("device_name", "Unknown GPU") - cc = details.get("compute_capability") - if cc: - device_str = f"{name}, compute capability {cc[0]}.{cc[1]}" - if cc >= (7, 0): - supported_device_strs.append(device_str) - else: - unsupported_device_strs.append(device_str) - else: - unsupported_device_strs.append( - name + ", no compute capability (probably not an Nvidia GPU)" - ) - - if unsupported_device_strs: - warning_str = _COMPAT_CHECK_WARNING_PREFIX + "\n" - if supported_device_strs: - warning_str += ( - "Some of your GPUs may run slowly with dtype policy " - "mixed_float16 because they do not all have compute " - "capability of at least 7.0. Your GPUs:\n" - ) - elif len(unsupported_device_strs) == 1: - warning_str += ( - "Your GPU may run slowly with dtype policy mixed_float16 " - "because it does not have compute capability of at least " - "7.0. Your GPU:\n" - ) - else: - warning_str += ( - "Your GPUs may run slowly with dtype policy " - "mixed_float16 because they do not have compute " - "capability of at least 7.0. Your GPUs:\n" - ) - for device_str in _dedup_strings( - supported_device_strs + unsupported_device_strs - ): - warning_str += " " + device_str + "\n" - warning_str += ( - "See https://developer.nvidia.com/cuda-gpus for a list of " - "GPUs and their compute capabilities.\n" - ) - warning_str += _COMPAT_CHECK_WARNING_SUFFIX - tf_logging.warning(warning_str) - elif not supported_device_strs: - tf_logging.warning( - "%s\n" - "The dtype policy mixed_float16 may run slowly because " - "this machine does not have a GPU. Only Nvidia GPUs with " - "compute capability of at least 7.0 run quickly with " - "mixed_float16.\n%s" - % (_COMPAT_CHECK_WARNING_PREFIX, _COMPAT_CHECK_WARNING_SUFFIX) - ) - elif len(supported_device_strs) == 1: - tf_logging.info( - "%s\n" - "Your GPU will likely run quickly with dtype policy " - "mixed_float16 as it has compute capability of at least " - "7.0. Your GPU: %s" - % (_COMPAT_CHECK_OK_PREFIX, supported_device_strs[0]) - ) - else: - tf_logging.info( - "%s\n" - "Your GPUs will likely run quickly with dtype policy " - "mixed_float16 as they all have compute capability of at " - "least 7.0" % _COMPAT_CHECK_OK_PREFIX - ) - - -_logged_compatibility_check = False - - -def log_device_compatibility_check(policy_name): - """Logs a compatibility check if the devices support the policy. - - Currently only logs for the policy mixed_float16. A log is shown only the - first time this function is called. - - Args: - policy_name: The name of the dtype policy. - """ - global _logged_compatibility_check - if _logged_compatibility_check: - return - _logged_compatibility_check = True - gpus = tf.config.list_physical_devices("GPU") - gpu_details_list = [ - tf.config.experimental.get_device_details(g) for g in gpus - ] - _log_device_compatibility_check(policy_name, gpu_details_list) diff --git a/keras/mixed_precision/device_compatibility_check_test.py b/keras/mixed_precision/device_compatibility_check_test.py deleted file mode 100644 index 9b355e09b29..00000000000 --- a/keras/mixed_precision/device_compatibility_check_test.py +++ /dev/null @@ -1,164 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests the device compatibility check.""" - -import re - -import tensorflow.compat.v2 as tf - -from keras.mixed_precision import device_compatibility_check -from keras.testing_infra import test_combinations - -# isort: off -from tensorflow.python.platform import tf_logging - - -def device_details(device_name, compute_capability=None): - details = {} - if device_name: - details["device_name"] = device_name - if compute_capability: - details["compute_capability"] = compute_capability - return details - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class DeviceCompatibilityCheckTest(tf.test.TestCase): - def _test_compat_check( - self, - device_attr_list, - should_warn, - expected_regex, - policy_name="mixed_float16", - ): - with tf.compat.v1.test.mock.patch.object( - tf_logging, "warning" - ) as mock_warn, tf.compat.v1.test.mock.patch.object( - tf_logging, "info" - ) as mock_info: - device_compatibility_check._log_device_compatibility_check( - policy_name, device_attr_list - ) - if should_warn: - self.assertRegex(mock_warn.call_args[0][0], expected_regex) - mock_info.assert_not_called() - else: - self.assertRegex(mock_info.call_args[0][0], expected_regex) - mock_warn.assert_not_called() - - def test_supported(self): - details_list = [device_details("GPU 1", (7, 1))] - regex = re.compile( - r".*compatibility check \(mixed_float16\): OK\n" - r"Your GPU will likely run quickly with dtype policy mixed_float16 " - r"as it has compute capability of at least 7.0. Your GPU: GPU 1, " - r"compute capability 7.1", - flags=re.MULTILINE, - ) - self._test_compat_check(details_list, False, regex) - - details_list = [ - device_details("GPU 1", (7, 0)), - device_details("GPU 2", (7, 1)), - device_details("GPU 3", (8, 0)), - ] - regex = re.compile( - r".*compatibility check \(mixed_float16\): OK\n" - r"Your GPUs will likely run quickly with dtype policy " - r"mixed_float16 as they all have compute capability of " - r"at least 7.0", - flags=re.MULTILINE, - ) - self._test_compat_check(details_list, False, regex) - - def test_unsupported(self): - details_list = [device_details("GPU 1", (6, 0))] - regex = re.compile( - r".*compatibility check \(mixed_float16\): WARNING\n" - r"Your GPU may run slowly with dtype policy mixed_float16.*\n" - r" GPU 1, compute capability 6.0\n" - r"See.*", - flags=re.MULTILINE, - ) - self._test_compat_check(details_list, True, regex) - - details_list = [device_details(None)] - regex = re.compile( - r".*compatibility check \(mixed_float16\): WARNING\n" - r"Your GPU may run slowly with dtype policy mixed_float16.*\n" - r" Unknown GPU, no compute capability " - r"\(probably not an Nvidia GPU\)\nSee.*", - flags=re.MULTILINE, - ) - self._test_compat_check(details_list, True, regex) - - details_list = [ - device_details("GPU 1", (6, 0)), - device_details("GPU 2", (3, 10)), - ] - regex = re.compile( - r".*compatibility check \(mixed_float16\): WARNING\n" - r"Your GPUs may run slowly with dtype policy mixed_float16.*\n" - r" GPU 1, compute capability 6.0\n" - r" GPU 2, compute capability 3.10\n" - r"See.*", - flags=re.MULTILINE, - ) - self._test_compat_check(details_list, True, regex) - - details_list = [ - device_details("GPU 1", (6, 0)), - device_details("GPU 1", (6, 0)), - device_details("GPU 1", (6, 0)), - device_details("GPU 2", (3, 10)), - ] - regex = re.compile( - r".*compatibility check \(mixed_float16\): WARNING\n" - r"Your GPUs may run slowly with dtype policy mixed_float16.*\n" - r" GPU 1, compute capability 6.0 \(x3\)\n" - r" GPU 2, compute capability 3.10\n" - r"See.*", - flags=re.MULTILINE, - ) - self._test_compat_check(details_list, True, regex) - - details_list = [] - regex = re.compile( - r".*compatibility check \(mixed_float16\): WARNING\n" - r"The dtype policy mixed_float16 may run slowly because this " - r"machine does not have a GPU", - flags=re.MULTILINE, - ) - self._test_compat_check(details_list, True, regex) - - def test_mix_of_supported_and_unsupported(self): - details_list = [ - device_details("GPU 1", (7, 0)), - device_details("GPU 1", (7, 0)), - device_details("GPU 2", (6, 0)), - ] - regex = re.compile( - r".*compatibility check \(mixed_float16\): WARNING\n" - r"Some of your GPUs may run slowly with dtype policy " - r"mixed_float16.*\n GPU 1, compute capability 7.0 \(x2\)\n" - r" GPU 2, compute capability 6.0\n" - r"See.*", - flags=re.MULTILINE, - ) - self._test_compat_check(details_list, True, regex) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/mixed_precision/layer_correctness_test.py b/keras/mixed_precision/layer_correctness_test.py deleted file mode 100644 index 274b4e186e7..00000000000 --- a/keras/mixed_precision/layer_correctness_test.py +++ /dev/null @@ -1,353 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests various Layer subclasses have correct outputs with mixed precision.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import layers -from keras import models -from keras.layers import activation -from keras.layers import attention -from keras.layers import convolutional -from keras.layers import core -from keras.layers import locally_connected -from keras.layers import merging -from keras.layers import pooling -from keras.layers import regularization -from keras.layers import reshaping -from keras.layers.normalization import batch_normalization -from keras.layers.normalization import layer_normalization -from keras.layers.preprocessing import image_preprocessing -from keras.layers.preprocessing import normalization -from keras.layers.rnn import bidirectional -from keras.layers.rnn import conv_lstm2d -from keras.layers.rnn import gru -from keras.layers.rnn import gru_v1 -from keras.layers.rnn import lstm -from keras.layers.rnn import lstm_v1 -from keras.layers.rnn import simple_rnn -from keras.layers.rnn import time_distributed -from keras.mixed_precision import policy -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -def create_mirrored_strategy(): - # The test creates two virtual CPUs, and we use both of them to test with - # multiple devices. - # pylint: disable=protected-access - tf.distribute.MirroredStrategy._collective_key_base += 1 - return tf.distribute.MirroredStrategy(["cpu:0", "cpu:1"]) - - -def _create_normalization_layer_with_adapt(): - layer = normalization.Normalization() - layer.adapt(np.random.normal(size=(10, 4))) - return layer - - -def _create_normalization_layer_without_adapt(): - return normalization.Normalization( - mean=np.random.normal(size=(4,)), - variance=np.random.uniform(0.5, 2.0, size=(4,)), - ) - - -@test_utils.run_v2_only -class LayerCorrectnessTest(test_combinations.TestCase): - def setUp(self): - super().setUp() - # Set two virtual CPUs to test MirroredStrategy with multiple devices - cpus = tf.config.list_physical_devices("CPU") - tf.config.set_logical_device_configuration( - cpus[0], - [ - tf.config.LogicalDeviceConfiguration(), - tf.config.LogicalDeviceConfiguration(), - ], - ) - self.strategy = create_mirrored_strategy() - - def _create_model_from_layer(self, layer, input_shapes): - inputs = [layers.Input(batch_input_shape=s) for s in input_shapes] - if len(inputs) == 1: - inputs = inputs[0] - y = layer(inputs) - model = models.Model(inputs, y) - model.compile("sgd", "mse") - return model - - @parameterized.named_parameters( - ("LeakyReLU", activation.LeakyReLU, (2, 2)), - ("PReLU", activation.PReLU, (2, 2)), - ("ELU", activation.ELU, (2, 2)), - ("ThresholdedReLU", activation.ThresholdedReLU, (2, 2)), - ("Softmax", activation.Softmax, (2, 2)), - ("ReLU", activation.ReLU, (2, 2)), - ("Conv1D", lambda: convolutional.Conv1D(2, 2), (2, 2, 1)), - ("Conv2D", lambda: convolutional.Conv2D(2, 2), (2, 2, 2, 1)), - ("Conv3D", lambda: convolutional.Conv3D(2, 2), (2, 2, 2, 2, 1)), - ( - "Conv2DTranspose", - lambda: convolutional.Conv2DTranspose(2, 2), - (2, 2, 2, 2), - ), - ( - "SeparableConv2D", - lambda: convolutional.SeparableConv2D(2, 2), - (2, 2, 2, 1), - ), - ( - "DepthwiseConv2D", - lambda: convolutional.DepthwiseConv2D(2, 2), - (2, 2, 2, 1), - ), - ("UpSampling2D", reshaping.UpSampling2D, (2, 2, 2, 1)), - ("ZeroPadding2D", reshaping.ZeroPadding2D, (2, 2, 2, 1)), - ("Cropping2D", reshaping.Cropping2D, (2, 3, 3, 1)), - ( - "ConvLSTM2D", - lambda: conv_lstm2d.ConvLSTM2D(4, kernel_size=(2, 2)), - (4, 4, 4, 4, 4), - ), - ("Dense", lambda: core.Dense(2), (2, 2)), - ("Dropout", lambda: regularization.Dropout(0.5), (2, 2)), - ( - "SpatialDropout2D", - lambda: regularization.SpatialDropout2D(0.5), - (2, 2, 2, 2), - ), - ("Activation", lambda: core.Activation("sigmoid"), (2, 2)), - ("Reshape", lambda: reshaping.Reshape((1, 4, 1)), (2, 2, 2)), - ("Permute", lambda: reshaping.Permute((2, 1)), (2, 2, 2)), - ("Attention", attention.Attention, [(2, 2, 3), (2, 3, 3), (2, 3, 3)]), - ( - "AdditiveAttention", - attention.AdditiveAttention, - [(2, 2, 3), (2, 3, 3), (2, 3, 3)], - ), - ( - "Embedding", - lambda: core.Embedding(4, 4), - (2, 4), - 2e-3, - 2e-3, - np.random.randint(4, size=(2, 4)), - ), - ( - "LocallyConnected1D", - lambda: locally_connected.LocallyConnected1D(2, 2), - (2, 2, 1), - ), - ( - "LocallyConnected2D", - lambda: locally_connected.LocallyConnected2D(2, 2), - (2, 2, 2, 1), - ), - ("Add", merging.Add, [(2, 2), (2, 2)]), - ("Subtract", merging.Subtract, [(2, 2), (2, 2)]), - ("Multiply", merging.Multiply, [(2, 2), (2, 2)]), - ("Average", merging.Average, [(2, 2), (2, 2)]), - ("Maximum", merging.Maximum, [(2, 2), (2, 2)]), - ("Minimum", merging.Minimum, [(2, 2), (2, 2)]), - ("Concatenate", merging.Concatenate, [(2, 2), (2, 2)]), - ("Dot", lambda: merging.Dot(1), [(2, 2), (2, 2)]), - ("GaussianNoise", lambda: regularization.GaussianNoise(0.5), (2, 2)), - ( - "GaussianDropout", - lambda: regularization.GaussianDropout(0.5), - (2, 2), - ), - ("AlphaDropout", lambda: regularization.AlphaDropout(0.5), (2, 2)), - ( - "BatchNormalization", - batch_normalization.BatchNormalization, - (2, 2), - 1e-2, - 1e-2, - ), - ("LayerNormalization", layer_normalization.LayerNormalization, (2, 2)), - ( - "LayerNormalizationUnfused", - lambda: layer_normalization.LayerNormalization(axis=1), - (2, 2, 2), - ), - ("MaxPooling2D", pooling.MaxPooling2D, (2, 2, 2, 1)), - ("AveragePooling2D", pooling.AveragePooling2D, (2, 2, 2, 1)), - ("GlobalMaxPooling2D", pooling.GlobalMaxPooling2D, (2, 2, 2, 1)), - ( - "GlobalAveragePooling2D", - pooling.GlobalAveragePooling2D, - (2, 2, 2, 1), - ), - ( - "SimpleRNN", - lambda: simple_rnn.SimpleRNN(units=4), - (4, 4, 4), - 1e-2, - 1e-2, - ), - ( - "SimpleRNN_stateful", - lambda: simple_rnn.SimpleRNN(units=4, stateful=True), - (4, 4, 4), - 1e-2, - 1e-2, - ), - ("GRU", lambda: gru_v1.GRU(units=4), (4, 4, 4)), - ("LSTM", lambda: lstm_v1.LSTM(units=4), (4, 4, 4)), - ("GRUV2", lambda: gru.GRU(units=4), (4, 4, 4)), - ("GRUV2_stateful", lambda: gru.GRU(units=4, stateful=True), (4, 4, 4)), - ("LSTMV2", lambda: lstm.LSTM(units=4), (4, 4, 4)), - ( - "LSTMV2_stateful", - lambda: lstm.LSTM(units=4, stateful=True), - (4, 4, 4), - ), - ( - "TimeDistributed", - lambda: time_distributed.TimeDistributed(core.Dense(2)), - (2, 2, 2), - ), - ( - "Bidirectional", - lambda: bidirectional.Bidirectional(simple_rnn.SimpleRNN(units=4)), - (2, 2, 2), - ), - ("NormalizationAdapt", _create_normalization_layer_with_adapt, (4, 4)), - ( - "NormalizationNoAdapt", - _create_normalization_layer_without_adapt, - (4, 4), - ), - ("Resizing", lambda: image_preprocessing.Resizing(3, 3), (2, 5, 5, 1)), - ("Rescaling", lambda: image_preprocessing.Rescaling(2.0, 1.0), (6, 6)), - ( - "CenterCrop", - lambda: image_preprocessing.CenterCrop(3, 3), - (2, 5, 5, 1), - ), - ) - def test_layer( - self, f32_layer_fn, input_shape, rtol=2e-3, atol=2e-3, input_data=None - ): - """Tests a layer by comparing the float32 and mixed precision weights. - - A float32 layer, a mixed precision layer, and a distributed mixed - precision layer are run. The three layers are identical other than their - dtypes and distribution strategies. The outputs after predict() and - weights after fit() are asserted to be close. - - Args: - f32_layer_fn: A function returning a float32 layer. The other two - layers will automatically be created from this. - input_shape: The shape of the input to the layer, including the batch - dimension. Or a list of shapes if the layer takes multiple inputs. - rtol: The relative tolerance to be asserted. - atol: The absolute tolerance to be asserted. - input_data: A Numpy array with the data of the input. If None, input - data will be randomly generated. - """ - - if ( - f32_layer_fn == reshaping.ZeroPadding2D - and tf.test.is_built_with_rocm() - ): - return - if isinstance(input_shape[0], int): - input_shapes = [input_shape] - else: - input_shapes = input_shape - f32_layer = f32_layer_fn() - - # Create the layers - assert f32_layer.dtype == f32_layer._compute_dtype == "float32" - config = f32_layer.get_config() - config["dtype"] = policy.Policy("mixed_float16") - mp_layer = f32_layer.__class__.from_config(config) - distributed_mp_layer = f32_layer.__class__.from_config(config) - - # Compute per_replica_input_shapes for the distributed model - global_batch_size = input_shapes[0][0] - assert global_batch_size % self.strategy.num_replicas_in_sync == 0, ( - "The number of replicas, %d, does not divide the global batch " - "size of %d" - % (self.strategy.num_replicas_in_sync, global_batch_size) - ) - per_replica_batch_size = ( - global_batch_size // self.strategy.num_replicas_in_sync - ) - per_replica_input_shapes = [ - (per_replica_batch_size,) + s[1:] for s in input_shapes - ] - - # Create the models - f32_model = self._create_model_from_layer(f32_layer, input_shapes) - mp_model = self._create_model_from_layer(mp_layer, input_shapes) - with self.strategy.scope(): - distributed_mp_model = self._create_model_from_layer( - distributed_mp_layer, per_replica_input_shapes - ) - - # Set all model weights to the same values - f32_weights = f32_model.get_weights() - mp_model.set_weights(f32_weights) - distributed_mp_model.set_weights(f32_weights) - - # Generate input data - if input_data is None: - # Cast inputs to float16 to avoid measuring error from having f16 - # layers cast to float16. - input_data = [ - np.random.normal(size=s).astype("float16") for s in input_shapes - ] - if len(input_data) == 1: - input_data = input_data[0] - - # Assert all models have close outputs. - f32_output = f32_model.predict(input_data) - mp_output = mp_model.predict(input_data) - self.assertAllClose(mp_output, f32_output, rtol=rtol, atol=atol) - self.assertAllClose( - distributed_mp_model.predict(input_data), - f32_output, - rtol=rtol, - atol=atol, - ) - - # Run fit() on models - output = np.random.normal(size=f32_model.outputs[0].shape).astype( - "float16" - ) - for model in f32_model, mp_model, distributed_mp_model: - model.fit(input_data, output, batch_size=global_batch_size) - - # Assert all models have close weights - f32_weights = f32_model.get_weights() - self.assertAllClose( - mp_model.get_weights(), f32_weights, rtol=rtol, atol=atol - ) - self.assertAllClose( - distributed_mp_model.get_weights(), - f32_weights, - rtol=rtol, - atol=atol, - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/mixed_precision/layer_test.py b/keras/mixed_precision/layer_test.py deleted file mode 100644 index b45133d0a5c..00000000000 --- a/keras/mixed_precision/layer_test.py +++ /dev/null @@ -1,508 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests keras.layers.Layer works properly with mixed precision.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import layers -from keras import models -from keras.engine import base_layer -from keras.engine import base_layer_utils -from keras.engine import input_spec -from keras.mixed_precision import policy -from keras.mixed_precision import test_util as mp_test_util -from keras.optimizers.legacy import gradient_descent -from keras.testing_infra import test_combinations - - -class MultiplyLayerWithFunction(mp_test_util.MultiplyLayer): - """Same as MultiplyLayer, but _multiply is decorated with a tf.function.""" - - @tf.function - def _multiply(self, x, y): - return super()._multiply(x, y) - - -# If called outside any strategy.scope() calls, this will return the default -# strategy. -default_strategy_fn = tf.distribute.get_strategy - - -def create_mirrored_strategy(): - """Create a MirroredStrategy, using a GPU if it is available.""" - if tf.config.list_logical_devices("GPU"): - return tf.distribute.MirroredStrategy(["cpu:0", "gpu:0"]) - else: - return tf.distribute.MirroredStrategy(["cpu:0"]) - - -def create_central_storage_strategy(): - """Create a CentralStorageStrategy, using a GPU if it is available.""" - compute_devices = ( - ["cpu:0", "gpu:0"] - if (tf.config.list_logical_devices("GPU")) - else ["cpu:0"] - ) - return tf.distribute.experimental.CentralStorageStrategy( - compute_devices, parameter_device="cpu:0" - ) - - -TESTCASES = ( - {"testcase_name": "base", "strategy_fn": default_strategy_fn}, - {"testcase_name": "distribute", "strategy_fn": create_mirrored_strategy}, -) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class LayerTest(test_combinations.TestCase): - """Test mixed precision with Keras layers.""" - - @parameterized.named_parameters(*TESTCASES) - def test_mixed_policies_(self, strategy_fn): - strategy = strategy_fn() - for dtype in "float16", "bfloat16": - x = tf.constant([1.0]) - policy_name = "mixed_" + dtype - with strategy.scope(), policy.policy_scope(policy_name): - layer = mp_test_util.MultiplyLayer(assert_type=dtype) - self.assertEqual(layer.dtype, tf.float32) - self.assertEqual(layer.dtype_policy.name, policy_name) - y = layer(x) - self.assertEqual(layer.v.dtype, tf.float32) - self.assertEqual(y.dtype, dtype) - self.assertEqual(layer.dtype_policy.name, policy_name) - self.assertIsInstance(layer.dtype_policy, policy.Policy) - self.assertEqual(layer.compute_dtype, dtype) - self.assertEqual(layer.dtype, tf.float32) - self.assertEqual(layer.variable_dtype, tf.float32) - self.assertEqual(layer.dtype_policy.name, policy_name) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual(self.evaluate(y), 1.0) - - def test_layer_with_int_variable(self): - class LayerWithIntVar(base_layer.Layer): - def build(self, _): - self.v = self.add_weight("v", dtype="int32", trainable=False) - - def call(self, inputs): - # Only float variables should be autocasted. This will fail if - # self.v is autocasted to float32 - return tf.cast(inputs, "int32") + self.v - - x = tf.constant([1.0]) - layer = LayerWithIntVar(dtype="mixed_float16") - self.assertEqual(layer(x).dtype, "int32") - - @parameterized.named_parameters(*TESTCASES) - def test_layer_with_non_autocast_variable(self, strategy_fn): - x = tf.constant([1.0]) - with strategy_fn().scope(): - with policy.policy_scope("mixed_float16"): - layer = mp_test_util.MultiplyLayerWithoutAutoCast( - assert_type=tf.float16 - ) - y = layer(x) - self.assertEqual(layer.v.dtype, tf.float32) - self.assertEqual(y.dtype, tf.float16) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual(self.evaluate(y), 1.0) - - @parameterized.named_parameters(*TESTCASES) - def test_layer_calling_tf_function(self, strategy_fn): - x = tf.constant([1.0]) - with strategy_fn().scope(): - with policy.policy_scope("mixed_float16"): - layer = MultiplyLayerWithFunction(assert_type=tf.float16) - y = layer(x) - self.assertEqual(layer.v.dtype, tf.float32) - self.assertEqual(y.dtype, tf.float16) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual(self.evaluate(y), 1.0) - - @parameterized.named_parameters(*TESTCASES) - def test_layer_regularizer_runs_in_var_dtype(self, strategy_fn): - x = tf.constant([1.0]) - with strategy_fn().scope(): - with policy.policy_scope("mixed_float16"): - # Test on MultiplyLayer - layer = mp_test_util.MultiplyLayer( - assert_type=tf.float16, - regularizer=mp_test_util.IdentityRegularizer(), - ) - layer(x) - (regularizer_loss,) = layer.losses - self.assertEqual(regularizer_loss.dtype, tf.float32) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual(self.evaluate(regularizer_loss), 1.0) - - # Test on MultiplyLayerWithoutAutoCast - layer = mp_test_util.MultiplyLayerWithoutAutoCast( - assert_type=tf.float16, - regularizer=mp_test_util.IdentityRegularizer(), - ) - layer(x) - (regularizer_loss,) = layer.losses - self.assertEqual(regularizer_loss.dtype, tf.float32) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual(self.evaluate(regularizer_loss), 1.0) - - @parameterized.named_parameters(*TESTCASES) - def test_passing_policy_to_layer(self, strategy_fn): - x = tf.constant([1.0], dtype=tf.float16) - with strategy_fn().scope(): - # Passing a Policy to 'dtype' sets the policy for that layer. - layer = mp_test_util.MultiplyLayer( - assert_type=tf.float16, dtype=policy.Policy("mixed_float16") - ) - # layer.dtype refers to the variable dtype - self.assertEqual(layer.dtype, tf.float32) - layer(x) - self.assertEqual(layer.v.dtype, tf.float32) - with policy.policy_scope("mixed_float16"): - # Passing a Policy to dtype overrides the global Policy - layer = mp_test_util.MultiplyLayer( - assert_type=tf.float64, dtype=policy.Policy("float64") - ) - self.assertEqual(layer.dtype_policy.name, "float64") - self.assertIsInstance(layer.dtype_policy, policy.Policy) - self.assertEqual(layer.compute_dtype, tf.float64) - self.assertEqual(layer.dtype, tf.float64) - self.assertEqual(layer.variable_dtype, tf.float64) - self.assertEqual(layer(x).dtype, tf.float64) - self.assertEqual(layer.v.dtype, tf.float64) - - @parameterized.named_parameters(*TESTCASES) - def test_gradient(self, strategy_fn): - x = tf.constant([1.0]) - with strategy_fn().scope() as strategy: - with policy.policy_scope("mixed_float16"): - layer = mp_test_util.MultiplyLayer(assert_type=tf.float16) - # Learning rate is small enough that if applied to a float16 - # variable, the variable will not change. So this tests the - # learning rate is not applied to a float16 value, but instead - # the float32 variable. - opt = gradient_descent.SGD(2**-14) - - def run_fn(): - with tf.GradientTape() as tape: - y = layer(x) - # Divide by num_replicas_in_sync, as the effective total - # loss is the sum of each of the replica's losses. - y /= strategy.num_replicas_in_sync - - grad = tape.gradient(y, layer.v) - return opt.apply_gradients([(grad, layer.v)]) - - op = strategy.experimental_run(run_fn) - if not tf.executing_eagerly(): - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(op) - # The gradient with respective to the variable is 1. Since the - # variable is initialized with 1 and the learning rate is - # 2**-14, the new variable value should be: init_val - gradient - # * learning_rate, which is 1 - 1 * 2**-14 - self.assertEqual(self.evaluate(layer.v), 1 - 2**-14) - - def _test_checkpointing_layer_weights( - self, strategy_fn, mixed_prec_when_saving, mixed_prec_when_loading - ): - # In this test, we potentially save with mixed precision enabled and - # load with mixed precision disabled, or vice versa. This is possible - # because variables are float32 regardless of whether mixed precision is - # enabled. - save_policy = "mixed_float16" if mixed_prec_when_saving else "float32" - load_policy = "mixed_float16" if mixed_prec_when_loading else "float32" - save_input_dtype = "float16" if mixed_prec_when_saving else "float32" - load_input_dtype = "float16" if mixed_prec_when_loading else "float32" - - # Create a layer and save a checkpoint. - x = tf.constant([1.0]) - with strategy_fn().scope(): - with policy.policy_scope(save_policy): - layer = mp_test_util.MultiplyLayer(assert_type=save_input_dtype) - layer(x) # Build layer - layer.set_weights([np.array(100.0)]) - self.assertEqual(self.evaluate(layer(x)), 100.0) - checkpoint = tf.train.Checkpoint(layer=layer) - prefix = os.path.join(self.get_temp_dir(), "ckpt") - save_path = checkpoint.save(prefix) - - # Create a new layer and restore the checkpoint. - x = tf.constant([1.0]) - with strategy_fn().scope(): - with policy.policy_scope(load_policy): - layer = mp_test_util.MultiplyLayer(assert_type=load_input_dtype) - layer(x) # Build layer - layer.set_weights([np.array(200.0)]) - self.assertEqual(self.evaluate(layer(x)), 200.0) - checkpoint = tf.train.Checkpoint(layer=layer) - checkpoint.restore(save_path).assert_consumed().run_restore_ops() - self.assertEqual(layer.get_weights(), [100.0]) - self.assertEqual(self.evaluate(layer(x)), 100.0) - - @parameterized.named_parameters(*TESTCASES) - def test_checkpointing_layer_weights(self, strategy_fn): - with self.test_session(): - self._test_checkpointing_layer_weights( - strategy_fn, - mixed_prec_when_saving=True, - mixed_prec_when_loading=True, - ) - self._test_checkpointing_layer_weights( - strategy_fn, - mixed_prec_when_saving=True, - mixed_prec_when_loading=False, - ) - self._test_checkpointing_layer_weights( - strategy_fn, - mixed_prec_when_saving=False, - mixed_prec_when_loading=True, - ) - - @parameterized.named_parameters(*TESTCASES) - def test_config(self, strategy_fn): - x = tf.constant([1.0], dtype=tf.float16) - with strategy_fn().scope(): - for layer, dtype in ( - (mp_test_util.MultiplyLayer(), "float32"), - (mp_test_util.MultiplyLayer(dtype="float64"), "float64"), - ( - mp_test_util.MultiplyLayer(dtype=policy.Policy("float64")), - "float64", - ), - ): - config = layer.get_config() - self.assertEqual(config["dtype"], dtype) - self.assertIsInstance(config["dtype"], str) - layer = mp_test_util.MultiplyLayer.from_config(config) - self.assertEqual(layer.dtype, dtype) - self.assertEqual(layer(x).dtype, dtype) - self.assertEqual(layer.v.dtype, dtype) - - layer = mp_test_util.MultiplyLayer(dtype="mixed_float16") - config = layer.get_config() - if tf.__internal__.tf2.enabled(): - self.assertEqual( - config["dtype"], - { - "module": "keras.mixed_precision", - "class_name": "Policy", - "config": {"name": "mixed_float16"}, - "registered_name": None, - }, - ) - else: - self.assertEqual( - config["dtype"], - { - "class_name": "Policy", - "config": {"name": "mixed_float16"}, - }, - ) - layer = mp_test_util.MultiplyLayer.from_config(config) - self.assertEqual(layer.dtype, "float32") - self.assertEqual(layer(x).dtype, "float16") - self.assertEqual(layer.v.dtype, "float32") - config = layer.get_config() - if tf.__internal__.tf2.enabled(): - self.assertEqual( - config["dtype"], - { - "module": "keras.mixed_precision", - "class_name": "Policy", - "config": {"name": "mixed_float16"}, - "registered_name": None, - }, - ) - else: - self.assertEqual( - config["dtype"], - { - "class_name": "Policy", - "config": {"name": "mixed_float16"}, - }, - ) - - layer = mp_test_util.MultiplyLayer(dtype=policy.Policy("_infer")) - config = layer.get_config() - self.assertIsNone(config["dtype"]) - layer = mp_test_util.MultiplyLayer.from_config(config) - # If a layer is serialized with the "_infer" policy, when - # deserialized into TF 2 it will have the global policy instead of - # "_infer". This is because "_infer" is serialized into None, and - # passing dtype=None in TensorFlow 2 indicates to use the global - # policy. - self.assertEqual(layer.dtype, "float32") - self.assertEqual(layer(x).dtype, "float32") - self.assertEqual(layer.v.dtype, "float32") - - @parameterized.named_parameters(*TESTCASES) - def test_from_config_policy_v1(self, strategy_fn): - # Test that layers serialized in previous Keras versions with the - # now-deleted PolicyV1 can be deserialized. In such cases, the PolicyV1 - # will be converted to a Policy, since PolicyV1 no longer exists. Unlike - # Policy, PolicyV1 had a "loss_scale" field, which is silently dropped - # when deserialized. - x = tf.constant([1.0], dtype=tf.float16) - with strategy_fn().scope(): - layer = mp_test_util.MultiplyLayer(dtype="mixed_float16") - config = layer.get_config() - # Change the serialized dtype policy to a PolicyV1 - if tf.__internal__.tf2.enabled(): - config["dtype"] = { - "module": "keras.mixed_precision", - "class_name": "PolicyV1", - "config": {"name": "mixed_float16", "loss_scale": None}, - "registered_name": None, - } - else: - config["dtype"] = { - "class_name": "PolicyV1", - "config": {"name": "mixed_float16", "loss_scale": None}, - } - layer = mp_test_util.MultiplyLayer.from_config(config) - self.assertEqual(layer.dtype, "float32") - self.assertEqual(layer(x).dtype, "float16") - self.assertEqual(layer.v.dtype, "float32") - config = layer.get_config() - # The loss_scale is silently dropped - if tf.__internal__.tf2.enabled(): - self.assertEqual( - config["dtype"], - { - "module": "keras.mixed_precision", - "class_name": "Policy", - "config": {"name": "mixed_float16"}, - "registered_name": None, - }, - ) - else: - self.assertEqual( - config["dtype"], - { - "class_name": "Policy", - "config": {"name": "mixed_float16"}, - }, - ) - - layer = mp_test_util.MultiplyLayer(dtype="float64") - config = layer.get_config() - config["dtype"] = { - "class_name": "PolicyV1", - "config": { - "name": "float64", - "loss_scale": { - "class_name": "FixedLossScale", - "config": {"loss_scale_value": 2.0}, - }, - }, - } - layer = mp_test_util.MultiplyLayer.from_config(config) - self.assertEqual(layer.dtype, "float64") - self.assertEqual(layer(x).dtype, "float64") - self.assertEqual(layer.v.dtype, "float64") - config = layer.get_config() - self.assertEqual(config["dtype"], "float64") - - layer = mp_test_util.MultiplyLayer(dtype=policy.Policy("_infer")) - config = layer.get_config() - config["dtype"] = { - "class_name": "PolicyV1", - "config": { - "name": "_infer", - "loss_scale": { - "class_name": "FixedLossScale", - "config": {"loss_scale_value": 2.0}, - }, - }, - } - layer = mp_test_util.MultiplyLayer.from_config(config) - self.assertEqual(layer.dtype, None) - self.assertEqual(layer(x).dtype, "float16") - self.assertEqual(layer.v.dtype, "float16") - self.assertEqual(type(layer.dtype_policy), policy.Policy) - config = layer.get_config() - self.assertEqual(config["dtype"], "float16") - - def test_delete_variable(self): - layer = base_layer.Layer(dtype="mixed_float16") - layer.x = layer.add_weight("x") - self.assertEqual(layer.trainable_weights, [layer.x]) - del layer.x - self.assertEqual(layer.trainable_weights, []) - - def test_build_and_call_layer_in_function(self): - layer = mp_test_util.MultiplyLayer(dtype=policy.Policy("mixed_float16")) - - @tf.function - def f(): - return layer(1.0) - - y = f() - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual(y.dtype, "float16") - self.assertEqual(layer.v.dtype, "float32") - self.assertEqual(self.evaluate(y), 1.0) - - def test_unsupported_strategy(self): - strategy = create_central_storage_strategy() - with strategy.scope(), self.assertRaisesRegex( - ValueError, - "Mixed precision is not supported with the " - "tf.distribute.Strategy: CentralStorageStrategy.", - ): - mp_test_util.MultiplyLayer(dtype="mixed_float16") - # Non-mixed policies are fine - mp_test_util.MultiplyLayer(dtype=policy.Policy("float64")) - - def test_input_spec_dtype(self): - # Test the InputSpec's dtype is compared against the inputs before the - # layer casts them, not after. - layer = mp_test_util.MultiplyLayer(dtype="float64") - layer.input_spec = input_spec.InputSpec(dtype="float16") - - # Test passing Eager tensors - x = tf.ones((2, 2), dtype="float16") - layer(x) - x = tf.ones((2, 2), dtype="float64") - with self.assertRaisesRegex( - ValueError, "expected dtype=float16, found dtype=.*float64" - ): - layer(x) - - # Test passing symbolic tensors - x = layers.Input((2,), dtype="float16") - y = layer(x) - model = models.Model(x, y) - model(tf.ones((2, 2))) - - x = layers.Input((2,), dtype="float64") - with self.assertRaisesRegex( - ValueError, "expected dtype=float16, found dtype=.*float64" - ): - # In TF2, the error is only raised when the model is run - y = layer(x) - model = models.Model(x, y) - model(tf.ones((2, 2))) - - -if __name__ == "__main__": - base_layer_utils.enable_v2_dtype_behavior() - tf.test.main() diff --git a/keras/mixed_precision/loss_scale_optimizer.py b/keras/mixed_precision/loss_scale_optimizer.py deleted file mode 100644 index ab7105c816e..00000000000 --- a/keras/mixed_precision/loss_scale_optimizer.py +++ /dev/null @@ -1,1607 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the loss scaling optimizer class.""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import optimizers -from keras.dtensor import utils as dtensor_utils -from keras.optimizers import optimizer -from keras.optimizers import utils as optimizer_utils -from keras.optimizers.legacy import optimizer_v2 -from keras.saving import serialization_lib - -# isort: off -from tensorflow.python.platform import tf_logging -from tensorflow.python.util.tf_export import keras_export - - -class _UnwrapPreventer: - """Wrapper that DistributionStrategy will not unwrap. - - Typically, DistributionStrategy will unwrap values when going from a cross- - replica context to a replica context via `call_for_each_replica`. This class - is a wrapper that DistributionStrategy will not unwrap, so it can be used to - prevent it from unwrapping a value. - - TODO(reedwm): Find/implement a better way of preventing values from being - unwrapped by DistributionStrategy - """ - - __slots__ = ["value"] - - def __init__(self, value): - self.value = value - - -def _is_all_finite(grads): - """Returns a scalar boolean tensor indicating if all gradients are - finite.""" - - def raw_values(g): - return g.values if isinstance(g, tf.IndexedSlices) else g - - is_finite_per_grad = [ - tf.reduce_all(tf.math.is_finite(raw_values(g))) - for g in grads - if g is not None - ] - return tf.reduce_all(is_finite_per_grad) - - -def _op_in_graph_mode(tensor): - """Returns the tensor's op in graph mode, or the tensor in eager mode. - - This is useful because sometimes an op is needed in graph mode instead of a - tensor. In eager mode, there are no ops. - - Args: - tensor: A tensor. - - Returns: - The tensor's op in graph mode. The tensor in eager mode. - """ - if tf.executing_eagerly(): - return tensor - return tensor.op - - -def _assign_if_finite(var, value): - """Assigns a value to a variable if the value is finite.""" - return tf.cond( - tf.math.is_finite(value), - lambda: _op_in_graph_mode(var.assign(value)), - tf.no_op, - ) - - -def _maybe_warn_about_scaling( - loss_has_been_scaled, gradients_have_been_unscaled -): - """Warn if the loss or gradients hasn't been scaled or unscaled.""" - if loss_has_been_scaled and gradients_have_been_unscaled: - return - - example_code = """ - with tf.GradientTape() as tape: - loss = loss_fn() - scaled_loss = opt.get_scaled_loss(loss) - scaled_grads = tape.gradient(scaled_loss, vars) - grads = opt.get_unscaled_gradients(scaled_grads) - opt.apply_gradients([(grads, var)])""" - - if not loss_has_been_scaled and not gradients_have_been_unscaled: - tf_logging.warning( - "You forgot to call LossScaleOptimizer.get_scaled_loss() and " - "LossScaleOptimizer.get_unscaled_gradients() before calling " - "LossScaleOptimizer.apply_gradients(). This will likely result in " - "worse model quality, so please call them in the correct places! " - f"For example:{example_code}\nFor more information, see " - "https://www.tensorflow.org/api_docs/python/tf/keras/mixed_precision/LossScaleOptimizer" # noqa: E501 - ) - elif not loss_has_been_scaled: - tf_logging.warning( - "You forgot to call LossScaleOptimizer.get_scaled_loss() before " - "calling LossScaleOptimizer.apply_gradients() (you did call " - "get_unscaled_gradients() however). This will likely result in " - "worse model quality, so please call get_scaled_loss() in the " - f"correct place! For example:{example_code}\nFor more information, " - "see " - "https://www.tensorflow.org/api_docs/python/tf/keras/mixed_precision/LossScaleOptimizer" # noqa: E501 - ) - elif not gradients_have_been_unscaled: - tf_logging.warning( - "You forgot to call LossScaleOptimizer.get_unscaled_gradients() " - "before calling LossScaleOptimizer.apply_gradients() (you did call " - "get_scaled_loss() however). This will likely result in worse " - "model quality, so please call get_unscaled_gradients() in the " - f"correct place! For example:{example_code}\nFor more information, " - "see " - "https://www.tensorflow.org/api_docs/python/tf/keras/mixed_precision/LossScaleOptimizer" # noqa: E501 - ) - - -class _DynamicLossScaleState(tf.__internal__.tracking.Trackable): - """The state of a dynamic loss scale.""" - - def __init__(self, initial_loss_scale, growth_steps, multiplier): - """Creates the dynamic loss scale.""" - super().__init__() - self._initial_loss_scale = float(initial_loss_scale) - self._growth_steps = int(growth_steps) - self._multiplier = float(multiplier) - - self._weights = {} - self._current_loss_scale = self._add_weight( - name="current_loss_scale", - dtype=tf.float32, - initial_value=self._initial_loss_scale, - ) - # The number of consecutive steps with finite gradients since the last - # nonfinite gradient or change in loss scale. The name is 'good_steps' - # for backwards compatibility with older checkpoints. - self._counter = self._add_weight( - name="good_steps", dtype=tf.int64, initial_value=0 - ) - - def _add_weight(self, name, initial_value, dtype=None): - """Adds a weight to this loss scale. - - Args: - name: Variable name. - initial_value: The variable's initial value. - dtype: The type of the variable. - - Returns: - A variable. - - Raises: - RuntimeError: If a weight with `name` has already been added. - """ - variable = tf.Variable( - initial_value=initial_value, - name=name, - dtype=dtype, - trainable=False, - synchronization=tf.VariableSynchronization.AUTO, - # Set aggregation to NONE, as loss scaling variables should never be - # aggregated. - aggregation=tf.VariableAggregation.NONE, - ) - if tf.executing_eagerly(): - graph_key = None - else: - graph = tf.compat.v1.get_default_graph() - graph_key = graph._graph_key - - key = (name, graph_key) - self._weights[key] = variable - self._handle_deferred_dependencies(name=name, trackable=variable) - backend.track_variable(variable) - return variable - - def _trackable_children(self, save_type="checkpoint", **kwargs): - """From Trackable. Gather graph-specific weights to save.""" - if tf.executing_eagerly(): - graph_key = None - else: - graph = tf.compat.v1.get_default_graph() - graph_key = graph._graph_key - weights = {} - for (name, g), v in sorted( - self._weights.items(), key=lambda i: i[0][0] - ): - if g == graph_key: - weights[name] = v - weights.update(super()._trackable_children(save_type, **kwargs)) - return weights - - def _lookup_dependency(self, name): - """From Trackable. Find a weight in the current graph.""" - unconditional = super()._lookup_dependency(name) - if unconditional is not None: - return unconditional - if tf.executing_eagerly(): - graph_key = None - else: - graph = tf.compat.v1.get_default_graph() - graph_key = graph._graph_key - return self._weights.get((name, graph_key), None) - - @property - def initial_loss_scale(self): - return self._initial_loss_scale - - @property - def growth_steps(self): - return self._growth_steps - - @property - def multiplier(self): - return self._multiplier - - @property - def current_loss_scale(self): - """Returns the current loss scale as a float32 `tf.Variable`.""" - return self._current_loss_scale - - @property - def counter(self): - """Returns the counter as a float32 `tf.Variable`.""" - return self._counter - - def __call__(self): - """Returns the current loss scale as a scalar `float32` tensor.""" - return tf.convert_to_tensor(self._current_loss_scale) - - def update(self, grads): - """Updates the value of the loss scale. - - Args: - grads: A nested structure of unscaled gradients, each which is an - all-reduced gradient of the loss with respect to a weight. - - Returns: - update_op: In eager mode, None. In graph mode, an op to update the - loss scale. - should_apply_gradients: Either a bool or a scalar boolean tensor. If - False, the caller should skip applying `grads` to the variables this - step. - """ - grads = tf.nest.flatten(grads) - if ( - tf.distribute.has_strategy() - and tf.distribute.in_cross_replica_context() - ): - distribution = tf.distribute.get_strategy() - is_finite_per_replica = distribution.extended.call_for_each_replica( - _is_all_finite, args=(grads,) - ) - # Each replica computed the same `is_finite` value, since `grads` is - # all-reduced across replicas. Arbitrarily take `is_finite` from the - # first replica. - is_finite = distribution.experimental_local_results( - is_finite_per_replica - )[0] - else: - is_finite = _is_all_finite(grads) - - def update_if_finite_grads(): - """Update assuming the gradients are finite.""" - - def incr_loss_scale(): - new_loss_scale = self.current_loss_scale * self.multiplier - return tf.group( - _assign_if_finite(self.current_loss_scale, new_loss_scale), - self.counter.assign(0), - ) - - return tf.cond( - self.counter + 1 >= self.growth_steps, - incr_loss_scale, - lambda: _op_in_graph_mode(self.counter.assign_add(1)), - ) - - def update_if_not_finite_grads(): - """Update assuming the gradients are nonfinite.""" - - new_loss_scale = tf.maximum( - self.current_loss_scale / self.multiplier, 1 - ) - return tf.group( - self.counter.assign(0), - self.current_loss_scale.assign(new_loss_scale), - ) - - update_op = tf.cond( - is_finite, update_if_finite_grads, update_if_not_finite_grads - ) - should_apply_gradients = is_finite - return update_op, should_apply_gradients - - -# See LossScaleOptimizer docstring for why this is so big -_DEFAULT_INITIAL_SCALE = 2**15 -_DEFAULT_GROWTH_STEPS = 2000 - - -# TODO(b/215389169): Delete this class after `OptimizerV2` is deprecated. -class LossScaleOptimizerMetaclass(type): - """Metaclass that delegates LossScaleOptimizer instance creation. - - This metaclass causes a LossScaleOptimizer or LossScaleOptimizerV3 to be - created when a BaseLossScaleOptimizer is constructed. As a result, when a - user creates a loss scale optimizer with - `tf.keras.mixed_precision.LossScaleOptimizer(opt)`, either a - LossScaleOptimizer or LossScaleOptimizerV3 will be created, depending on the - type of `opt`. - """ - - def __call__(cls, inner_optimizer, *args, **kwargs): - if cls is not BaseLossScaleOptimizer: - return super(LossScaleOptimizerMetaclass, cls).__call__( - inner_optimizer, *args, **kwargs - ) - if isinstance(inner_optimizer, optimizer_v2.OptimizerV2): - return LossScaleOptimizer(inner_optimizer, *args, **kwargs) - elif isinstance(inner_optimizer, optimizer.Optimizer): - return LossScaleOptimizerV3(inner_optimizer, *args, **kwargs) - - # Raise TypeError because inner_optimizer is not an optimizer - msg = ( - '"inner_optimizer" must be an instance of ' - "`tf.keras.optimizers.Optimizer` or " - "`tf.keras.optimizers.experimental.Optimizer`, but got: " - f"{inner_optimizer}." - ) - raise TypeError(msg) - - -# TODO(b/215389169): Delete this class after `OptimizerV2` is deprecated. - - -@keras_export("keras.mixed_precision.LossScaleOptimizer") -class BaseLossScaleOptimizer(metaclass=LossScaleOptimizerMetaclass): - """An optimizer that applies loss scaling to prevent numeric underflow. - - Loss scaling is a technique to prevent numeric underflow in intermediate - gradients when float16 is used. To prevent underflow, the loss is multiplied - (or "scaled") by a certain factor called the "loss scale", which causes - intermediate gradients to be scaled by the loss scale as well. The final - gradients are divided (or "unscaled") by the loss scale to bring them back - to their original value. - - `LossScaleOptimizer` wraps another optimizer and applies loss scaling to it. - By default, the loss scale is dynamically updated over time so you do not - have to choose the loss scale. The `minimize` method automatically scales - the loss, unscales the gradients, and updates the loss scale so all you have - to do is wrap your optimizer with a `LossScaleOptimizer` if you use - `minimize`. For example: - - >>> opt = tf.keras.optimizers.experimental.SGD(0.25) - >>> opt = tf.keras.mixed_precision.LossScaleOptimizer(opt) - >>> var = tf.Variable(1.) - >>> loss_fn = lambda: var ** 2 - >>> # 'minimize' applies loss scaling and updates the loss sale. - >>> opt.minimize(loss_fn, var_list=[var]) - >>> var.numpy() - 0.5 - - If a `tf.GradientTape` is used to compute gradients instead of `minimize`, - you must scale the loss and gradients manually. This can be done with the - `LossScaleOptimizer.get_scaled_loss` and - `LossScaleOptimizer.get_unscaled_gradients` methods. For example: - - >>> with tf.GradientTape() as tape: - ... loss = loss_fn() - ... scaled_loss = opt.get_scaled_loss(loss) - >>> scaled_grad = tape.gradient(scaled_loss, var) - >>> (grad,) = opt.get_unscaled_gradients([scaled_grad]) - >>> opt.apply_gradients([(grad, var)]) # Loss scale is updated here - >>> var.numpy() - 0.25 - - Warning: If you forget to call `get_scaled_loss` or `get_unscaled_gradients` - (or both) when using a `tf.GradientTape`, the model will likely converge to - a worse quality. Please make sure you call each function exactly once. - - When mixed precision with float16 is used, there is typically no risk of - underflow affecting model quality if loss scaling is properly used. See - [the mixed precision guide]( - https://www.tensorflow.org/guide/keras/mixed_precision) for more information - on how to use mixed precision. - - Args: - inner_optimizer: The `tf.keras.optimizers.Optimizer` or - `tf.keras.optimizers.experimental.Optimizer` instance to wrap. - dynamic: Bool indicating whether dynamic loss scaling is used. Defaults to - True. If True, the loss scale will be dynamically updated over time - using an algorithm that keeps the loss scale at approximately its - optimal value. If False, a single fixed loss scale is used and - `initial_scale` must be specified, which is used as the loss scale. - Recommended to keep as True, as choosing a fixed loss scale can be - tricky. Currently, there is a small performance overhead to dynamic loss - scaling compared to fixed loss scaling. - initial_scale: The initial loss scale. If `dynamic` is True, this defaults - to `2 ** 15`. If `dynamic` is False, this must be specified and acts as - the sole loss scale, as the loss scale does not change over time. When - dynamic loss scaling is used, is better for this to be a very high - number, because a loss scale that is too high gets lowered far more - quickly than a loss scale that is too low gets raised. - dynamic_growth_steps: With dynamic loss scaling, every - `dynamic_growth_steps` steps with finite gradients, the loss scale is - doubled. Defaults to 2000. If a nonfinite gradient is encountered, the - count is reset back to zero, gradients are skipped that step, and the - loss scale is halved. The count can be queried with - `LossScaleOptimizer.dynamic_counter`. This argument can only be - specified if `dynamic` is True. - - `LossScaleOptimizer` will occasionally skip applying gradients to the - variables, in which case the trainable variables will not change that step. - This is done because the dynamic loss scale will sometimes be raised too - high, causing overflow in the gradients. Typically, the first 2 to 15 steps - of the model are skipped as the initial loss scale is very high, but - afterwards steps will only be skipped on average 0.05% of the time (the - fraction of steps skipped is `1 / dynamic_growth_steps`). - - `LossScaleOptimizer` delegates all public `Optimizer` methods to the inner - optimizer. Additionally, in methods `minimize` and `get_gradients`, it - scales the loss and unscales the gradients. In methods `minimize` and - `apply_gradients`, it additionally updates the loss scale and skips applying - gradients if any gradient has a nonfinite value. - - ### Hyperparameters - - If wrapping a `tf.keras.optimizers.Optimizer`, hyperparameters can be - accessed and set on the LossScaleOptimizer, which will be delegated to the - wrapped optimizer. - - >>> opt = tf.keras.optimizers.legacy.Adam(beta_1=0.8, epsilon=1e-5) - >>> opt = tf.keras.mixed_precision.LossScaleOptimizer(opt) - >>> opt.beta_1 # Equivalent to `opt.inner_optimizer.beta_1` - 0.8 - >>> opt.beta_1 = 0.7 # Equivalent to `opt.inner_optimizer.beta_1 = 0.7` - >>> opt.beta_1 - 0.7 - >>> opt.inner_optimizer.beta_1 - 0.7 - - However, accessing or setting non-hyperparameters is not delegated to the - LossScaleOptimizer. In an Adam optimizer, `beta_1` is a hyperparameter but - `epsilon` is not, as the Adam optimizer only calls `Optimizer._set_hyper` on - `beta_1`. - - >>> opt.inner_optimizer.epsilon - 1e-5 - >>> opt.epsilon - Traceback (most recent call last): - ... - AttributeError: 'LossScaleOptimizer' object has no attribute 'epsilon' - >>> opt.epsilon = 1e-4 # This does NOT set epsilon on `opt.inner_optimizer` - >>> opt.inner_optimizer.epsilon - >>> 1e-5 - - In the above example, despite epsilon being set on the LossScaleOptimizer, - the old epsilon value will still be used when training as epsilon was not - set on the inner optimizer. - """ - - @property - def dynamic(self): - """Bool indicating whether dynamic loss scaling is used.""" - raise NotImplementedError - - @property - def loss_scale(self): - """The current loss scale as a float32 scalar tensor.""" - raise NotImplementedError - - @property - def dynamic_counter(self): - """The number of steps since the loss scale was last increased or - decreased. - - This is None if `LossScaleOptimizer.dynamic` is False. - - The counter is incremented every step. Once it reaches - `LossScaleOptimizer.dynamic_growth_steps`, the loss scale will be - doubled and the counter will be reset back to zero. If nonfinite - gradients are encountered, the loss scale will be halved and the counter - will be reset back to zero. - """ - raise NotImplementedError - - @property - def initial_scale(self): - """The initial loss scale. - - If `LossScaleOptimizer.dynamic` is False, this is the same number as - `LossScaleOptimizer.loss_scale`, as the loss scale never changes. - """ - raise NotImplementedError - - @property - def dynamic_growth_steps(self): - """The number of steps it takes to increase the loss scale. - - This is None if `LossScaleOptimizer.dynamic` is False. - - Every `dynamic_growth_steps` consecutive steps with finite gradients, - the loss scale is increased. - """ - raise NotImplementedError - - @property - def inner_optimizer(self): - """The optimizer that this LossScaleOptimizer is wrapping.""" - raise NotImplementedError - - def get_scaled_loss(self, loss): - """Scales the loss by the loss scale. - - This method is only needed if you compute gradients manually, e.g. with - `tf.GradientTape`. In that case, call this method to scale the loss - before passing the loss to `tf.GradientTape`. If you use - `LossScaleOptimizer.minimize` or `LossScaleOptimizer.get_gradients`, - loss scaling is automatically applied and this method is unneeded. - - If this method is called, `get_unscaled_gradients` should also be - called. See the `tf.keras.mixed_precision.LossScaleOptimizer` doc for - an example. - - Args: - loss: The loss, which will be multiplied by the loss scale. Can either - be a tensor or a callable returning a tensor. - - Returns: - `loss` multiplied by `LossScaleOptimizer.loss_scale`. - """ - # Calls to this function would be delegated to `get_scaled_loss` - # of either `LossScaleOptimizer` or `LossScaleOptimizerV3`, depending on - # the type of `inner_optimizer`. - raise NotImplementedError - - def get_unscaled_gradients(self, grads): - """Unscales the gradients by the loss scale. - - This method is only needed if you compute gradients manually, e.g. with - `tf.GradientTape`. In that case, call this method to unscale the - gradients after computing them with `tf.GradientTape`. If you use - `LossScaleOptimizer.minimize` or `LossScaleOptimizer.get_gradients`, - loss scaling is automatically applied and this method is unneeded. - - If this method is called, `get_scaled_loss` should also be called. See - the `tf.keras.mixed_precision.LossScaleOptimizer` doc for an - example. - - Args: - grads: A list of tensors, each which will be divided by the loss - scale. Can have None values, which are ignored. - - Returns: - A new list the same size as `grads`, where every non-None value in - `grads` is divided by `LossScaleOptimizer.loss_scale`. - """ - # Calls to this function would be delegated to `get_unscaled_gradients` - # of either `LossScaleOptimizer` or `LossScaleOptimizerV3`, depending on - # the type of `inner_optimizer`. - raise NotImplementedError - - -class LossScaleOptimizer( - tf.__internal__.tracking.DelegatingTrackableMixin, - optimizer_v2.OptimizerV2, - BaseLossScaleOptimizer, -): - """An optimizer that applies loss scaling to prevent numeric underflow.""" - - _HAS_AGGREGATE_GRAD = True - - def __init__( - self, - inner_optimizer, - dynamic=True, - initial_scale=None, - dynamic_growth_steps=None, - ): - if not isinstance(inner_optimizer, optimizer_v2.OptimizerV2): - if isinstance(inner_optimizer, optimizer.Optimizer): - # Give better error message if the new experimental optimizer is - # passed. - raise TypeError( - "You passed an instance of the new experimental " - "optimizer, `optimizer.Optimizer`, " - "to LossScaleOptimizer, but " - "only the classic optimizers subclassing from " - "`tf.keras.optimizers.Optimizer` can be passed. Please " - "use `loss_scale_optimizer.LossScaleOptimizerV3` " - "instead of " - "`tf.keras.mixed_precision.LossScaleOptimizer`, " - "as the former supports wrapping " - "instances of the new experimental optimizer. " - f"Got optimizer: {inner_optimizer}" - ) - msg = ( - '"inner_optimizer" must be an instance of ' - "`tf.keras.optimizers.Optimizer`, but got: %s. " - % inner_optimizer - ) - raise TypeError(msg) - if not isinstance(dynamic, bool): - # Catch errors if a user incorrectly passes a string or float to the - # second argument argument, as this was commonly done for the - # now-removed LossScaleOptimizerV1. - raise TypeError( - '"dynamic" argument to LossScaleOptimizer.__init__ must ' - "be a bool, but got: %r" % (dynamic,) - ) - if isinstance(inner_optimizer, LossScaleOptimizer): - raise TypeError( - "LossScaleOptimizer cannot wrap another " - "LossScaleOptimizer, but got: %s" % (inner_optimizer,) - ) - _raise_if_strategy_unsupported() - if getattr( - inner_optimizer, "_is_wrapped_by_loss_scale_optimizer", False - ): - # TODO(reedwm): Maybe support this. The difficulty is that LSO has - # the same checkpoint format as the inner optimizer, so multiple - # LSOs wrapping the same optimizer causes the checkpointing logic to - # become confused. - raise ValueError( - '"inner_optimizer" is already wrapped by a ' - "LossScaleOptimizer. An optimizer can only be wrapped " - "by a single LossScaleOptimizer" - ) - self._optimizer = inner_optimizer - self._optimizer._is_wrapped_by_loss_scale_optimizer = True - - # We don't call super().__init__, since we do not want to call - # OptimizerV2's constructor. - tf.__internal__.tracking.DelegatingTrackableMixin.__init__( - self, self._optimizer - ) - - if dynamic: - if initial_scale is None: - initial_scale = _DEFAULT_INITIAL_SCALE - if dynamic_growth_steps is None: - dynamic_growth_steps = _DEFAULT_GROWTH_STEPS - self._loss_scale = _DynamicLossScaleState( - initial_scale, dynamic_growth_steps, multiplier=2 - ) - self._track_trackable(self._loss_scale, "loss_scale") - else: - if initial_scale is None: - raise ValueError( - '"initial_scale" must be specified if "dynamic" is False' - ) - self._loss_scale = float(initial_scale) - if dynamic_growth_steps is not None: - raise ValueError( - '"dynamic_growth_steps" must be None if "dynamic" ' - "is False, but got: %s" % (dynamic_growth_steps,) - ) - - # Used to track whether get_scaled_loss() and get_unscaled_gradients() - # have been called - self._loss_has_been_scaled = False - self._gradients_have_been_unscaled = False - - # To support restoring TensorFlow 2.2 checkpoints. - self._track_trackable( - FakeOptimizerForRestoration(self._optimizer), "base_optimizer" - ) - - @property - def dynamic(self): - return isinstance(self._loss_scale, _DynamicLossScaleState) - - @property - def loss_scale(self): - if isinstance(self._loss_scale, _DynamicLossScaleState): - return tf.convert_to_tensor(self._loss_scale.current_loss_scale) - else: - return tf.convert_to_tensor(self._loss_scale) - - @property - def dynamic_counter(self): - if isinstance(self._loss_scale, _DynamicLossScaleState): - return self._loss_scale.counter - else: - return None - - @property - def initial_scale(self): - if isinstance(self._loss_scale, _DynamicLossScaleState): - return self._loss_scale.initial_loss_scale - else: - return self._loss_scale - - @property - def dynamic_growth_steps(self): - if isinstance(self._loss_scale, _DynamicLossScaleState): - return self._loss_scale.growth_steps - else: - return None - - @property - def inner_optimizer(self): - return self._optimizer - - def get_scaled_loss(self, loss): - self._loss_has_been_scaled = True - if callable(loss): - - def new_loss(): - loss_val = loss() - return loss_val * tf.cast(self.loss_scale, loss_val.dtype) - - return new_loss - else: - return loss * tf.cast(self.loss_scale, loss.dtype) - - def get_unscaled_gradients(self, grads): - self._gradients_have_been_unscaled = True - loss_scale_reciprocal = 1.0 / self.loss_scale - return [ - _multiply_gradient(g, loss_scale_reciprocal) - if g is not None - else None - for g in grads - ] - - def _compute_gradients(self, loss, var_list, grad_loss=None, tape=None): - tape = tf.GradientTape() if tape is None else tape - with tape: - loss = self.get_scaled_loss(loss) - grads_and_vars = self._optimizer._compute_gradients( - loss, var_list, grad_loss, tape=tape - ) - grads = [g for g, _ in grads_and_vars] - weights = [v for _, v in grads_and_vars] - unscaled_grads = self.get_unscaled_gradients(grads) - return list(zip(unscaled_grads, weights)) - - def get_gradients(self, loss, params): - loss = self.get_scaled_loss(loss) - grads = self._optimizer.get_gradients(loss, params) - return self.get_unscaled_gradients(grads) - - def _create_all_weights(self, var_list): - self._optimizer._create_all_weights(var_list) - - def apply_gradients( - self, grads_and_vars, name=None, experimental_aggregate_gradients=True - ): - if tf.distribute.in_cross_replica_context(): - raise ValueError( - "apply_gradients() must be called in a replica context." - ) - # We check for the strategy here despite already checking in the - # constructor as frequently the optimizer is created outside the - # strategy's scope. - _raise_if_strategy_unsupported() - _maybe_warn_about_scaling( - self._loss_has_been_scaled, self._gradients_have_been_unscaled - ) - - grads_and_vars = optimizer_utils.filter_empty_gradients(grads_and_vars) - if experimental_aggregate_gradients: - # We must aggregate the gradients here instead of in - # self.optimizer.apply_gradients, so that any NaN or Inf gradients - # are propagated to each replica. If any replica has a NaN or Inf - # gradient, they must all have a NaN or Inf gradient so that they - # all skip the step. - grads_and_vars = self._optimizer._transform_unaggregated_gradients( - grads_and_vars - ) - grads_and_vars = self._optimizer._aggregate_gradients( - grads_and_vars - ) - - grads_and_vars = tuple(grads_and_vars) - grads = [g for g, _ in grads_and_vars] - # We do not want DistributionStrategy to unwrap any MirroredVariables in - # grads_and_vars, because even in a replica context, the wrapped - # optimizer expects mirrored variables. So we wrap the variables with an - # _UnwrapPreventer, preventing DistributionStrategy from unwrapping the - # MirroredVariables. - wrapped_vars = _UnwrapPreventer([v for _, v in grads_and_vars]) - - def do_not_apply_fn(): - # Normally self._optimizer.iterations is incremented in - # self._optimizer.apply_gradients(). Since that is not called in - # this branch, we increment it here instead. - return self._optimizer.iterations.assign_add(1, read_value=False) - - def _if_should_apply_grads(grads): - if isinstance(self._loss_scale, _DynamicLossScaleState): - return self._loss_scale.update(grads) - else: - return (tf.no_op(), True) - - if tf.__internal__.distribute.strategy_supports_no_merge_call(): - loss_scale_update_op, should_apply_grads = _if_should_apply_grads( - grads - ) - - def apply_fn(): - return self._apply_gradients(grads, wrapped_vars, name) - - maybe_apply_op = tf.__internal__.smart_cond.smart_cond( - should_apply_grads, apply_fn, do_not_apply_fn - ) - return tf.group(maybe_apply_op, loss_scale_update_op) - - else: - - def _apply_gradients_cross_replica( - distribution, grads, wrapped_vars, name - ): - ( - loss_scale_update_op, - should_apply_grads, - ) = _if_should_apply_grads(grads) - - def apply_fn(): - return distribution.extended.call_for_each_replica( - self._apply_gradients, args=(grads, wrapped_vars, name) - ) - - # Note: We must call this cond() in a cross-replica context. - # DistributionStrategy does not support having a cond in a - # replica context with a branch that calls `merge_call`, and - # self._optimizer.apply_gradients calls `merge_call`. - maybe_apply_op = tf.__internal__.smart_cond.smart_cond( - should_apply_grads, apply_fn, do_not_apply_fn - ) - return tf.group(maybe_apply_op, loss_scale_update_op) - - return tf.distribute.get_replica_context().merge_call( - _apply_gradients_cross_replica, args=(grads, wrapped_vars, name) - ) - - def _apply_gradients(self, grads, wrapped_vars, name): - # Pass experimental_aggregate_gradients=False since LossScaleOptimizer - # already aggregated the gradients. - # TODO(reedwm): This will raise a fairly cryptic error message if - # self._optimizer.apply_gradients does not take - # experimental_aggregate_gradients. - return self._optimizer.apply_gradients( - list(zip(grads, wrapped_vars.value)), - name=name, - experimental_aggregate_gradients=False, - ) - - def get_config(self): - serialized_optimizer = optimizers.serialize(self._optimizer) - return { - "inner_optimizer": serialized_optimizer, - "dynamic": self.dynamic, - "initial_scale": self.initial_scale, - "dynamic_growth_steps": self.dynamic_growth_steps, - } - - @classmethod - def from_config(cls, config, custom_objects=None): - config = config.copy() # Make a copy, since we mutate config - if "loss_scale" in config: - # If loss_scale is in config, we assume we are deserializing a - # LossScaleOptimizer from TF 2.3 or below. We convert the config so - # it can be deserialized in the current LossScaleOptimizer. - loss_scale = serialization_lib.deserialize_keras_object( - config.pop("loss_scale"), - module_objects={ - "FixedLossScale": tf.compat.v1.mixed_precision.FixedLossScale, # noqa: E501 - "DynamicLossScale": tf.compat.v1.mixed_precision.DynamicLossScale, # noqa: E501 - }, - printable_module_name="loss scale", - ) - - if isinstance( - loss_scale, tf.compat.v1.mixed_precision.FixedLossScale - ): - config["dynamic"] = False - config["initial_scale"] = loss_scale._loss_scale_value - elif isinstance( - loss_scale, tf.compat.v1.mixed_precision.DynamicLossScale - ): - config["dynamic"] = True - config["initial_scale"] = loss_scale.initial_loss_scale - config["dynamic_growth_steps"] = loss_scale.increment_period - if loss_scale.multiplier != 2: - raise ValueError( - "Cannot deserialize LossScaleOptimizer with a " - "DynamicLossScale whose multiplier is not 2. Got " - "DynamicLossScale: %s" % (loss_scale,) - ) - else: - raise ValueError( - "Serialized LossScaleOptimizers with a LossScale that is " - "neither a FixedLossScale nor a DynamicLossScale can no " - "longer be deserialized" - ) - config["inner_optimizer"] = config.pop("optimizer") - if isinstance(config["inner_optimizer"], optimizer_v2.OptimizerV2): - inner_optimizer = config["inner_optimizer"] - else: - inner_optimizer = optimizers.deserialize( - config["inner_optimizer"], - custom_objects=custom_objects, - use_legacy_optimizer=True, - ) - del config["inner_optimizer"] - return cls(inner_optimizer, **config) - - # Delegations: We delegate most OptimizerV2 methods to the wrapped optimizer - # below. - - @property - def iterations(self): - return self._optimizer.iterations - - @iterations.setter - def iterations(self, variable): - self._optimizer.iterations = variable - - def get_slot_names(self): - return self._optimizer.get_slot_names() - - def variables(self): - return self._optimizer.variables() - - @property - def weights(self): - return self._optimizer.weights - - def get_weights(self): - return self._optimizer.get_weights() - - def set_weights(self, weights): - return self._optimizer.set_weights(weights) - - @property - def clipnorm(self): - return self._optimizer.clipnorm - - @clipnorm.setter - def clipnorm(self, val): - self._optimizer.clipnorm = val - - @property - def global_clipnorm(self): - return self._optimizer.global_clipnorm - - @global_clipnorm.setter - def global_clipnorm(self, val): - self._optimizer.global_clipnorm = val - - @property - def clipvalue(self): - return self._optimizer.clipvalue - - @clipvalue.setter - def clipvalue(self, val): - self._optimizer.clipvalue = val - - def _aggregate_gradients(self, grads_and_vars): - return self._optimizer._aggregate_gradients(grads_and_vars) - - def _restore_slot_variable(self, slot_name, variable, slot_variable): - return self._optimizer._restore_slot_variable( - slot_name, - variable, - slot_variable, - ) - - def _create_or_restore_slot_variable( - self, slot_variable_position, slot_name, variable - ): - return self._optimizer._create_or_restore_slot_variable( - slot_variable_position, slot_name, variable - ) - - def get_slot(self, var, slot_name): - return self._optimizer.get_slot(var, slot_name) - - def add_slot(self, var, slot_name, initializer="zeros"): - return self._optimizer.add_slot(var, slot_name, initializer) - - def __getattribute__(self, name): - try: - return object.__getattribute__(self, name) - except AttributeError as e: - if name == "_optimizer" or name == "_hyper": - # Avoid infinite recursion - raise e - - # Delegate hyperparameter accesses to inner optimizer. - if name == "lr": - name = "learning_rate" - if name in self._optimizer._hyper: - return self._optimizer._get_hyper(name) - raise e - - def __dir__(self): - result = set(super().__dir__()) - if "_optimizer" in result: - result |= self._optimizer._hyper.keys() - if "learning_rate" in self._optimizer._hyper.keys(): - result.add("lr") - return list(result) - - def __setattr__(self, name, value): - if name == "lr": - name = "learning_rate" - # Delegate setting hyperparameter to inner optimizer if the attribute - # does not exist on the LossScaleOptimizer - try: - # We cannot check for the 'iterations' attribute as it cannot be set - # after it is accessed. - if name != "iterations": - object.__getattribute__(self, name) - has_attribute = True - except AttributeError: - has_attribute = False - if ( - name != "_optimizer" - and name in self._optimizer._hyper - and not has_attribute - ): - self._optimizer._set_hyper(name, value) - else: - super().__setattr__(name, value) - - # Explicitly delegate learning_rate. Normally hyperparameters are delegated - # in __getattribute__, but if a hyperparameter is not in - # self._optimizer._hyper (e.g. because self._optimizer itself wraps another - # optimizer), then it won't be delegated. Since learning_rate is a very - # commonly accessed hyperparameter, we delegate it here. - @property - def learning_rate(self): - return self._optimizer.learning_rate - - @learning_rate.setter - def learning_rate(self, value): - self._optimizer.learning_rate = value - - @property - def lr(self): - return self._optimizer.learning_rate - - @lr.setter - def lr(self, value): - self._optimizer.lr = value - - # We do not override some OptimizerV2 methods. For each, we describe why we - # do not delegate them to self._optimizer: - # * get_updates: get_updates() calls get_gradients(). Since we override - # get_gradients(), we cannot delegate get_updates() to self._optimizer, - # otherwise the overridden get_gradients() method would not be called. - # Luckily, get_updates() does not access any OptimizerV2 fields, so - # inheriting the OptimizerV2 version works fine. - # * minimize: We don't delegate for a similar as get_updates(): it calls - # both self._compute_gradients() and self.apply_gradients(), and both need - # to have the LossScaleOptimizer version called. - - # TODO(reedwm): Maybe throw an error if mixed precision is used without this - # optimizer being used. - - -class LossScaleOptimizerV3( - tf.__internal__.tracking.DelegatingTrackableMixin, - optimizer.Optimizer, - BaseLossScaleOptimizer, -): - """An optimizer that applies loss scaling to prevent numeric underflow. - - This is a copy of the `mixed_precision.LossScaleOptimizer` class - defined above, except it subclasses and wraps the new experimental Optimizer - class instead of the `tf.keras.optimizers.Optimizer` class. Some of the - methods this class defines and calls are different compared to - LossScaleOptimizer due to the differences between the two Optimizer base - classes. Additionally, this class does not support the legacy graph mode, - but LossScaleOptimizer does. - - Since the new experimental Optimizer does not have a hyperparameter concept, - LossScaleOptimizerV3 does not delegate arbitrary hyperparameter accesses to - the inner optimizer, unlike LossScaleOptimizer. LossScaleOptimizerV3 does - delegate the "learning_rate" attribute, however. - """ - - @tf.__internal__.tracking.no_automatic_dependency_tracking - def __init__( - self, - inner_optimizer, - dynamic=True, - initial_scale=None, - dynamic_growth_steps=None, - ): - if not isinstance(inner_optimizer, optimizer.Optimizer): - if isinstance(inner_optimizer, optimizer_v2.OptimizerV2): - # Give better error message if the OptimizerV2 class is passed - # instead of the new experimental optimizer. - raise TypeError( - "You passed a `tf.keras.optimizers.Optimizer` instance to " - "LossScaleOptimizerV3, but only the new experimental " - "optimizer defined in " - "keras/optimizer_expeirmental/optimizer.py can be " - "passed. Please use " - "`tf.keras.mixed_precision.LossScaleOptimizer` " - "instead of LossScaleOptimizerV3, as the former supports " - "`tf.keras.optimizers.Optimizer`s. Got optimizer: " - f"{inner_optimizer}" - ) - raise TypeError( - '"inner_optimizer" must be an instance of ' - f"Optimizer, but got: {inner_optimizer}." - ) - if not isinstance(dynamic, bool): - # Catch errors if a user incorrectly passes a string or float to the - # second argument argument, as this was commonly done for the - # now-removed LossScaleOptimizerV1. - raise TypeError( - '"dynamic" argument to LossScaleOptimizer.__init__ must ' - f"be a bool, but got: {repr(dynamic)}" - ) - if isinstance(inner_optimizer, LossScaleOptimizerV3): - raise TypeError( - "LossScaleOptimizer cannot wrap another " - f"LossScaleOptimizer, but got: {inner_optimizer}" - ) - _raise_if_strategy_unsupported() - if getattr( - inner_optimizer, "_is_wrapped_by_loss_scale_optimizer", False - ): - # TODO(reedwm): Maybe support this. The difficulty is that LSO has - # the same checkpoint format as the inner optimizer, so multiple - # LSOs wrapping the same optimizer causes the checkpointing logic to - # become confused. - raise ValueError( - '"inner_optimizer" is already wrapped by a ' - "LossScaleOptimizer. An optimizer can only be wrapped " - "by a single LossScaleOptimizer" - ) - self._optimizer = inner_optimizer - self._optimizer._is_wrapped_by_loss_scale_optimizer = True - - # We don't call super().__init__, since we do not want to call - # Optimizer's constructor. - tf.__internal__.tracking.DelegatingTrackableMixin.__init__( - self, self._optimizer - ) - - if dynamic: - if initial_scale is None: - initial_scale = _DEFAULT_INITIAL_SCALE - if dynamic_growth_steps is None: - dynamic_growth_steps = _DEFAULT_GROWTH_STEPS - self._loss_scale = _DynamicLossScaleState( - initial_scale, dynamic_growth_steps, multiplier=2 - ) - self._track_trackable(self._loss_scale, "loss_scale") - else: - if initial_scale is None: - raise ValueError( - '"initial_scale" must be specified if "dynamic" is False' - ) - self._loss_scale = float(initial_scale) - if dynamic_growth_steps is not None: - raise ValueError( - '"dynamic_growth_steps" must be None if "dynamic" ' - f"is False, but got: {dynamic_growth_steps}" - ) - - # Used to track whether get_scaled_loss() and get_unscaled_gradients() - # have been called - self._loss_has_been_scaled = False - self._gradients_have_been_unscaled = False - - @property - def dynamic(self): - return isinstance(self._loss_scale, _DynamicLossScaleState) - - @property - def loss_scale(self): - if isinstance(self._loss_scale, _DynamicLossScaleState): - return tf.convert_to_tensor(self._loss_scale.current_loss_scale) - else: - return tf.convert_to_tensor(self._loss_scale) - - @property - def dynamic_counter(self): - if isinstance(self._loss_scale, _DynamicLossScaleState): - return self._loss_scale.counter - else: - return None - - @property - def initial_scale(self): - if isinstance(self._loss_scale, _DynamicLossScaleState): - return self._loss_scale.initial_loss_scale - else: - return self._loss_scale - - @property - def dynamic_growth_steps(self): - if isinstance(self._loss_scale, _DynamicLossScaleState): - return self._loss_scale.growth_steps - else: - return None - - @property - def inner_optimizer(self): - return self._optimizer - - def get_scaled_loss(self, loss): - self._loss_has_been_scaled = True - if callable(loss): - - def new_loss(): - loss_val = loss() - return loss_val * tf.cast(self.loss_scale, loss_val.dtype) - - return new_loss - else: - return loss * tf.cast(self.loss_scale, loss.dtype) - - def get_unscaled_gradients(self, grads): - self._gradients_have_been_unscaled = True - loss_scale_reciprocal = 1.0 / self.loss_scale - return [ - _multiply_gradient(g, loss_scale_reciprocal) - if g is not None - else None - for g in grads - ] - - def compute_gradients(self, loss, var_list, tape=None): - tape = tf.GradientTape() if tape is None else tape - with tape: - loss = self.get_scaled_loss(loss) - grads_and_vars = self._optimizer.compute_gradients( - loss, var_list, tape=tape - ) - grads = [g for g, _ in grads_and_vars] - weights = [v for _, v in grads_and_vars] - unscaled_grads = self.get_unscaled_gradients(grads) - return list(zip(unscaled_grads, weights)) - - def apply_gradients( - self, grads_and_vars, skip_gradients_aggregation=False, **kwargs - ): - if tf.distribute.in_cross_replica_context(): - raise ValueError( - "apply_gradients() must be called in a replica context." - ) - # We check for the strategy here despite already checking in the - # constructor as frequently the optimizer is created outside the - # strategy's scope. - _raise_if_strategy_unsupported() - _maybe_warn_about_scaling( - self._loss_has_been_scaled, self._gradients_have_been_unscaled - ) - - grads_and_vars = optimizer_utils.filter_empty_gradients(grads_and_vars) - # `experimental_aggregate_gradients` is an arg in `apply_gradients` of - # v2 optimizer -- the reverse of `skip_gradients_aggregation`. - # We read it from kwargs for backward compatibility. - experimental_aggregate_gradients = kwargs.pop( - "experimental_aggregate_gradients", True - ) - run_with_dtensor = ( - # `_run_with_dtensor` is for dtensor based strategy scope, and - # `_mesh` is when user explicitly specify the mesh setting for - # optimizer. - self._optimizer._run_with_dtensor - or self._optimizer._mesh - ) - - if ( - not skip_gradients_aggregation - and experimental_aggregate_gradients - and not run_with_dtensor - ): - # We must aggregate the gradients here instead of in - # self.optimizer.apply_gradients, so that any NaN or Inf gradients - # are propagated to each replica. If any replica has a NaN or Inf - # gradient, they must all have a NaN or Inf gradient so that they - # all skip the step. - grads_and_vars = self._optimizer.aggregate_gradients(grads_and_vars) - - grads_and_vars = tuple(grads_and_vars) - grads = [g for g, _ in grads_and_vars] - # We do not want DistributionStrategy to unwrap any MirroredVariables in - # grads_and_vars, because even in a replica context, the wrapped - # optimizer expects mirrored variables. So we wrap the variables with an - # _UnwrapPreventer, preventing DistributionStrategy from unwrapping the - # MirroredVariables. - wrapped_vars = _UnwrapPreventer([v for _, v in grads_and_vars]) - - def do_not_apply_fn(): - # Normally self._optimizer.iterations is incremented in - # self._optimizer.apply_gradients(). Since that is not called in - # this branch, we increment it here instead. - self._optimizer.iterations.assign_add(1, read_value=False) - - def _if_should_apply_grads(grads): - if isinstance(self._loss_scale, _DynamicLossScaleState): - _, should_apply_grad = self._loss_scale.update(grads) - return should_apply_grad - else: - return True - - if tf.__internal__.distribute.strategy_supports_no_merge_call(): - should_apply_grads = _if_should_apply_grads(grads) - - def apply_fn(): - return self._apply_gradients(grads, wrapped_vars) - - tf.__internal__.smart_cond.smart_cond( - should_apply_grads, apply_fn, do_not_apply_fn - ) - else: - - def _apply_gradients_cross_replica( - distribution, grads, wrapped_vars - ): - should_apply_grads = _if_should_apply_grads(grads) - - def apply_fn(): - distribution.extended.call_for_each_replica( - self._apply_gradients, args=(grads, wrapped_vars) - ) - - # Note: We must call this cond() in a cross-replica context. - # DistributionStrategy does not support having a cond in a - # replica context with a branch that calls `merge_call`, and - # self._optimizer.apply_gradients calls `merge_call`. - tf.__internal__.smart_cond.smart_cond( - should_apply_grads, apply_fn, do_not_apply_fn - ) - - tf.distribute.get_replica_context().merge_call( - _apply_gradients_cross_replica, args=(grads, wrapped_vars) - ) - - def _apply_gradients(self, grads, wrapped_vars): - # Pass skip_gradients_aggregation=True since LossScaleOptimizer - # already aggregated the gradients. - self._optimizer.apply_gradients( - list(zip(grads, wrapped_vars.value)), - skip_gradients_aggregation=True, - ) - - def get_config(self): - serialized_optimizer = optimizers.serialize(self._optimizer) - return { - "inner_optimizer": serialized_optimizer, - "dynamic": self.dynamic, - "initial_scale": self.initial_scale, - "dynamic_growth_steps": self.dynamic_growth_steps, - } - - @classmethod - def from_config(cls, config, custom_objects=None): - config = config.copy() # Make a copy, since we mutate config - if isinstance(config["inner_optimizer"], optimizer.Optimizer): - inner_optimizer = config["inner_optimizer"] - else: - inner_optimizer = optimizers.deserialize( - config["inner_optimizer"], - custom_objects=custom_objects, - use_legacy_optimizer=False, - ) - del config["inner_optimizer"] - return cls(inner_optimizer, **config) - - @property - def iterations(self): - return self._optimizer.iterations - - @iterations.setter - def iterations(self, variable): - self._optimizer.iterations = variable - - @property - def variables(self): - return self._optimizer.variables - - def build(self, var_list): - return self._optimizer.build(var_list) - - @property - def learning_rate(self): - return self._optimizer.learning_rate - - @learning_rate.setter - def learning_rate(self, learning_rate): - self._optimizer.learning_rate = learning_rate - - @property - def use_ema(self): - return self._optimizer.use_ema - - @use_ema.setter - def use_ema(self, use_ema): - self._optimizer.use_ema = use_ema - - @property - def ema_momentum(self): - return self._optimizer.ema_momentum - - @ema_momentum.setter - def ema_momentum(self, ema_momentum): - self._optimizer.ema_momentum = ema_momentum - - def finalize_variable_values(self, var_list): - self._optimizer.finalize_variable_values(var_list) - - -class FakeOptimizerForRestoration(tf.__internal__.tracking.Trackable): - """A fake optimizer used to support restoring TensorFlow 2.2 checkpoints. - - The checkpoint format for LossScaleOptimizers changed after TF 2.2. This - class exists to support restoring TF 2.2 checkpoints in newer version of - TensorFlow. - - In TF 2.2, LossScaleOptimizer would track the wrapped optimizer by calling - the following in LossScaleOptimizer.__init__ - - ``` - self._track_trackable(self._optimizer, 'base_optimizer') - ``` - - This means a dependency from the LossScaleOptimizer to the wrapped optimizer - would be stored in the checkpoint. However now, the checkpoint format with a - LossScaleOptimizer is the same as the format without a LossScaleOptimizer, - except the loss scale is also stored. This means there is no dependency from - the LossScaleOptimizer to the wrapped optimizer. Instead, the - LossScaleOptimizer acts as if it is the wrapped optimizer, from a - checkpoint's perspective, by overriding all Trackable methods and delegating - them to the wrapped optimizer. - - To allow restoring TF 2.2. checkpoints, LossScaleOptimizer adds a dependency - on this class instead of the inner optimizer. When restored, this class will - instead restore the slot variables of the inner optimizer. Since this class - has no variables, it does not affect the checkpoint when saved. - """ - - def __init__(self, optimizer): - self._optimizer = optimizer - - def get_slot_names(self): - return self._optimizer.get_slot_names() - - def _create_or_restore_slot_variable( - self, slot_variable_position, slot_name, variable - ): - return self._optimizer._create_or_restore_slot_variable( - slot_variable_position, slot_name, variable - ) - - -def _create_loss_scale_optimizer_from_v1_loss_scale(optimizer, loss_scale): - """Creates an LSO from a tf.compat.v1.mixed_precision.LossScale. - - This is only used to pass to - `tf.__internal__.mixed_precision.register_loss_scale_wrapper` below, which - is called so that - `tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite` can - wrap a Keras optimizer with a LossScaleOptimizer. - - Args: - optimizer: An OptimizerV2 instance. - loss_scale: A `tf.compat.v1.mixed_precision.LossScale` instance - - Returns: - A LossScaleOptimizer that wraps `optimizer` and uses the same loss scaling - algorithm as `loss_scale`. - """ - if isinstance(loss_scale, (int, float)): - return LossScaleOptimizer( - optimizer, dynamic=False, initial_scale=loss_scale - ) - elif isinstance(loss_scale, tf.compat.v1.mixed_precision.FixedLossScale): - ls_val = loss_scale._loss_scale_value - return LossScaleOptimizer( - optimizer, dynamic=False, initial_scale=ls_val - ) - elif loss_scale == "dynamic": - return LossScaleOptimizer(optimizer) - elif isinstance(loss_scale, tf.compat.v1.mixed_precision.DynamicLossScale): - if loss_scale.multiplier != 2: - raise ValueError( - 'When passing a DynamicLossScale to "loss_scale", ' - "DynamicLossScale.multiplier must be 2. Got: " - f"{loss_scale}" - ) - return LossScaleOptimizer( - optimizer, - initial_scale=loss_scale.initial_loss_scale, - dynamic_growth_steps=loss_scale.increment_period, - ) - elif isinstance(loss_scale, tf.compat.v1.mixed_precision.LossScale): - raise TypeError( - "Passing a LossScale that is not a FixedLossScale or a " - f"DynamicLossScale is not supported. Got: {loss_scale}" - ) - else: - raise ValueError( - "Invalid value passed to loss_scale. loss_scale " - 'must be the string "dynamic" (recommended), an int, ' - "a float, a FixedLossScale, or a DynamicLossScale. Got " - f"value: {loss_scale}" - ) - - -tf.__internal__.mixed_precision.register_loss_scale_wrapper( - optimizer_v2.OptimizerV2, - _create_loss_scale_optimizer_from_v1_loss_scale, - LossScaleOptimizer, -) - - -def _multiply_gradient(gradient, scale): - """Multiply a (possibly sparse) gradient by the given scale factor.""" - scale = tf.cast(scale, gradient.dtype) - if isinstance(gradient, tf.IndexedSlices): - return tf.IndexedSlices( - gradient.values * scale, - gradient.indices, - dense_shape=gradient.dense_shape, - ) - else: - return gradient * scale - - -def strategy_supports_loss_scaling(): - """Returns True if the current Strategy supports loss scaling.""" - if not tf.distribute.has_strategy(): - return True - strategy = tf.distribute.get_strategy() - # Strategies are supported if either there is only one replica or if - # variables are replicated per device. Otherwise, the current model.fit() - # implementation and most custom training loops incorrectly unscale the - # gradients. Currently, gradients are unscaled once per compute replica, but - # they should be unscaled once per variable replica. When there is one - # variable replica for each compute replica, this works fine, but otherwise - # issues will occur. - # TODO(reedwm): Support all strategies. - return ( - isinstance( - strategy, - ( - tf.distribute.MultiWorkerMirroredStrategy, - tf.compat.v1.distribute.experimental.MultiWorkerMirroredStrategy, # noqa: E501 - tf.distribute.OneDeviceStrategy, - tf.compat.v1.distribute.OneDeviceStrategy, - tf.distribute.MirroredStrategy, - tf.compat.v1.distribute.MirroredStrategy, - ), - ) - or dtensor_utils.running_with_dtensor_strategy() - ) - - -def _raise_if_strategy_unsupported(): - """Raise an exception if the current strategy doesn't support loss - scaling.""" - if not strategy_supports_loss_scaling(): - strategy = tf.distribute.get_strategy() - if isinstance( - strategy, - ( - tf.distribute.experimental.TPUStrategy, - tf.compat.v1.distribute.experimental.TPUStrategy, - tf.distribute.TPUStrategy, - ), - ): - raise ValueError( - "Loss scaling is not supported with TPUStrategy. Loss scaling " - "is unnecessary with TPUs, since they support bfloat16 instead " - "of float16 and bfloat16 does not require loss scaling. You " - "should remove the use of the LossScaleOptimizer when TPUs are " - "used." - ) - else: - raise ValueError( - "Loss scaling is not supported with the " - "tf.distribute.Strategy: " - f"{strategy.__class__.__name__}. Try using a different " - "Strategy, e.g. a MirroredStrategy" - ) diff --git a/keras/mixed_precision/loss_scale_optimizer_test.py b/keras/mixed_precision/loss_scale_optimizer_test.py deleted file mode 100644 index e7c2885bca7..00000000000 --- a/keras/mixed_precision/loss_scale_optimizer_test.py +++ /dev/null @@ -1,1385 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for LossScaleOptimizer.""" - -import os -from unittest import mock - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import optimizers -from keras.mixed_precision import loss_scale_optimizer -from keras.mixed_precision import test_util as mp_test_util -from keras.optimizers import adam as adam_experimental -from keras.optimizers import optimizer as optimizer_experimental -from keras.optimizers import sgd as sgd_experimental -from keras.optimizers.legacy import adam -from keras.optimizers.legacy import gradient_descent -from keras.optimizers.legacy import optimizer_v2 -from keras.optimizers.schedules import learning_rate_schedule -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) -from tensorflow.python.platform import tf_logging - -# If called outside any strategy.scope() calls, this will return the default -# strategy. -default_strategy_fn = tf.distribute.get_strategy - - -def create_mirrored_strategy(): - if tf.config.list_logical_devices("GPU"): - return tf.distribute.MirroredStrategy(["cpu:0", "gpu:0"]) - else: - return tf.distribute.MirroredStrategy(["cpu:0"]) - - -STRATEGY_FNS = [default_strategy_fn, create_mirrored_strategy] - - -def create_sgd(base_optimizer_cls, *args, **kwargs): - """Creates an SGD optimizer. - - Will return either the new experimental SGD optimizer subclassing from - `optimizer_experimental.Optimizer` or the old SGD optimizer subclassing from - `optimizer_v2.OptimizerV2`, depending on `base_optimizer_cls`. - - Args: - base_optimizer_cls: What the superclass of the returned SGD optimizer will - be. Either `optimizer_experimental.Optimizer` or - `optimizer_v2.OptimizerV2`. - *args: Arguments to pass to the SGD constructor - **kwargs: Keyword arguments to pass to the SGD constructor. - - Returns: - An SGD optimizer. - """ - if base_optimizer_cls == optimizer_v2.OptimizerV2: - return gradient_descent.SGD(*args, **kwargs) - else: - assert ( - base_optimizer_cls == optimizer_experimental.Optimizer - ), f"Got invalid base_optimizer_cls: {base_optimizer_cls}" - return sgd_experimental.SGD(*args, **kwargs) - - -# TODO(b/215568552): Remove this as the delegation is handled by metaclass. -def create_lso( - inner_optimizer, dynamic=True, initial_scale=None, dynamic_growth_steps=None -): - """Creates a LossScaleOptimizer. - - Creates either the new LossScaleOptimizerV3 subclassing from - `optimizer_experimental.Optimizer` or the old LossScaleOptimizer subclassing - from `optimizer_v2.OptimizerV2`, depending on the type of `inner_optimizer`. - - Args: - inner_optimizer: The optimizer to wrap. Either an - `optimizer_experimental.Optimizer` or an `optimizer_v2.OptimizerV2`. - dynamic: Whether dynamic loss scaling is used. - initial_scale: The initial loss scale. - dynamic_growth_steps: How frequently to increase the dynamic loss scale. - - Returns: - Returns a LossScaleOptimizerV3 or a LossScaleOptimizer, depending on the - type of `inner_optimizer`. - """ - return loss_scale_optimizer.BaseLossScaleOptimizer( - inner_optimizer, - dynamic=dynamic, - initial_scale=initial_scale, - dynamic_growth_steps=dynamic_growth_steps, - ) - - -def opt_and_strategy_and_mode_combinations(): - """Returns combinations for running with multiple optimizers and strategies. - - Returns: - Combinations that run with both OptimizerV2 and the experimental - optimizer; and with the default strategy and mirrored strategy; and in - both graph and eager mode. - """ - # For the experimental optimizer, don't use graph mode directly since it's - # unsupported. Instead, run both without and with a tf.function, in order to - # test both graph and eager mode. - experimental_opt_combinations = test_combinations.combine( - opt_cls=optimizer_experimental.Optimizer, - strategy_fn=STRATEGY_FNS, - mode="eager", - use_tf_function=[False, True], - ) - orig_opt_combinations = test_combinations.combine( - opt_cls=optimizer_v2.OptimizerV2, - strategy_fn=STRATEGY_FNS, - mode=["graph", "eager"], - use_tf_function=False, - ) - return experimental_opt_combinations + orig_opt_combinations - - -def opt_combinations_only(): - """Returns two combinations for running with the two base optimizers.""" - experimental_opt_combinations = test_combinations.combine( - mode="eager", opt_cls=optimizer_experimental.Optimizer - ) - orig_opt_combination = test_combinations.combine( - opt_cls=optimizer_v2.OptimizerV2 - ) - return experimental_opt_combinations + orig_opt_combination - - -@tf_test_utils.with_control_flow_v2 -class LossScaleOptimizerTest(tf.test.TestCase, parameterized.TestCase): - def _run_if_in_graph_mode(self, val): - # Running only in graph mode is useful, because optimizers sometimes - # return a value that, in Graph mode, is runnable with self.evaluate. - # But in Eager mode, the optimizer already does the computations and the - # return value cannot be run. - if not tf.executing_eagerly(): - self.evaluate(val) - - def _eval_if_tensor(self, val): - # Calls self.evaluate on val if val is a Tensor or Variable. This is - # useful, since hyperparameters are tf.Variables on OptimizerV2 and are - # Python floats on the experimental optimizer. - return ( - self.evaluate(val) - if isinstance(val, (tf.Tensor, tf.Variable)) - else val - ) - - def _run_fn_with_grad_check(self, strategy, var, opt, expected_grad): - grad_check_fn = mp_test_util.create_identity_with_grad_check_fn( - expected_grad - ) - loss = lambda: grad_check_fn(var) / strategy.num_replicas_in_sync - return lambda: opt.minimize(loss, var_list=[var]) - - def testIsInstance(self): - optimizer = create_lso(sgd_experimental.SGD()) - self.assertIsInstance( - optimizer, loss_scale_optimizer.BaseLossScaleOptimizer - ) - - optimizer = create_lso(gradient_descent.SGD()) - self.assertIsInstance( - optimizer, loss_scale_optimizer.BaseLossScaleOptimizer - ) - - @test_combinations.generate(opt_and_strategy_and_mode_combinations()) - def testFixedLossScaleAppliedToLossWithMinimize( - self, opt_cls, strategy_fn, use_tf_function - ): - with strategy_fn().scope() as strategy: - var = tf.Variable([5.0]) - opt = create_sgd(opt_cls, 2.0) - loss_scale = 10.0 - opt = create_lso(opt, dynamic=False, initial_scale=loss_scale) - self.assertEqual(self.evaluate(opt.loss_scale), loss_scale) - self.assertIsInstance(opt.loss_scale, tf.Tensor) - # We need num_replicas_in_sync to divide loss_scale, otherwise - # loss_scale / strategy.num_replicas_in_sync will not be exact, - # which could lead to assertion failures due to rounding issues. - self.assertEqual(loss_scale % strategy.num_replicas_in_sync, 0) - run_fn = self._run_fn_with_grad_check( - strategy, var, opt, loss_scale / strategy.num_replicas_in_sync - ) - if use_tf_function: - run_fn = tf.function(run_fn) - run_op = strategy.experimental_run(run_fn) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self._run_if_in_graph_mode(run_op) - # The loss is the identity of the variable. Therefore the gradient - # is 1, and so the variable will be init_val - grad * lr == 5 - 1 * - # 2 == 3 - self.assertAllClose([3.0], self.evaluate(var)) - - def testFixedLossScaleAppliedToLossWithGetGradients(self): - with tf.Graph().as_default(): - var = tf.Variable([2.0]) - opt = gradient_descent.SGD(1.0) - loss_scale = 10.0 - opt = loss_scale_optimizer.LossScaleOptimizer( - opt, dynamic=False, initial_scale=loss_scale - ) - grad_check_fn = mp_test_util.create_identity_with_grad_check_fn( - loss_scale - ) - loss = grad_check_fn(var) - run_op = opt.get_gradients(loss, [var]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # This will cause an assertion to run, as - # mp_test_util.create_identity_with_grad_check_fn added an assertion - # op. - self.evaluate(run_op) - - @test_combinations.generate(opt_combinations_only()) - def testDynamicAttrsWithFixedLossScale(self, opt_cls): - opt = create_sgd(opt_cls) - opt = create_lso(opt, dynamic=False, initial_scale=2.0) - self.assertFalse(opt.dynamic) - self.assertIsNone(opt.dynamic_counter) - self.assertIsNone(opt.dynamic_growth_steps) - - @test_combinations.generate(opt_combinations_only()) - def testGetScaledLoss(self, opt_cls): - opt = create_sgd(opt_cls) - opt = create_lso(opt, dynamic=False, initial_scale=2.0) - loss = tf.convert_to_tensor(5.0) - self.assertEqual(10.0, self.evaluate(opt.get_scaled_loss(loss))) - self.assertEqual( - 10.0, self.evaluate(opt.get_scaled_loss(lambda: loss)()) - ) - loss = tf.convert_to_tensor(5.0, dtype="float16") - self.assertEqual(10.0, self.evaluate(opt.get_scaled_loss(loss))) - self.assertEqual( - 10.0, self.evaluate(opt.get_scaled_loss(lambda: loss)()) - ) - - @test_combinations.generate(opt_combinations_only()) - def testGetUnscaledGradients(self, opt_cls): - opt = create_sgd(opt_cls) - opt = create_lso(opt, dynamic=False, initial_scale=2) - scaled_grads = [ - tf.convert_to_tensor(3.0), - None, - tf.convert_to_tensor(-4.0, dtype="float16"), - ] - grads = opt.get_unscaled_gradients(scaled_grads) - grads = [self.evaluate(g) if g is not None else g for g in grads] - self.assertEqual([1.5, None, -2.0], grads) - - @test_combinations.generate(opt_combinations_only()) - def testGetUnscaledSparseGradients(self, opt_cls): - opt = create_sgd(opt_cls) - opt = create_lso(opt, dynamic=False, initial_scale=2) - sparse_scaled_grad = tf.IndexedSlices( - tf.convert_to_tensor([[4.0, 2.0], [8.0, 5.0]]), - tf.convert_to_tensor([1, 3], dtype="int32"), - dense_shape=tf.convert_to_tensor([5, 2], dtype="int32"), - ) - sparse_grad = opt.get_unscaled_gradients([sparse_scaled_grad])[0] - self.assertIsInstance(sparse_grad, tf.IndexedSlices) - self.assertAllEqual( - [[2.0, 1.0], [4.0, 2.5]], self.evaluate(sparse_grad.values) - ) - - @test_combinations.generate(opt_and_strategy_and_mode_combinations()) - def testDynamicLossScale(self, opt_cls, strategy_fn, use_tf_function): - strategy = strategy_fn() - learning_rate = 2.0 - expected_gradient = tf.Variable( - learning_rate / strategy.num_replicas_in_sync - ) - with strategy.scope(): - var = tf.Variable([5.0]) - opt = create_sgd(opt_cls, learning_rate) - opt = create_lso(opt, initial_scale=2, dynamic_growth_steps=1) - self.assertEqual(opt.initial_scale, 2.0) - self.assertIsInstance(opt.initial_scale, float) - self.assertEqual(opt.dynamic_growth_steps, 1) - self.assertIsInstance(opt.dynamic_growth_steps, int) - - self.assertEqual( - opt.initial_scale % strategy.num_replicas_in_sync, 0 - ) - run_fn = self._run_fn_with_grad_check( - strategy, var, opt, expected_gradient - ) - if use_tf_function: - run_fn = tf.function(run_fn) - run_op = strategy.experimental_run(run_fn) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self._run_if_in_graph_mode(run_op) - # The loss is the identity of the variable. Therefore the gradient - # is 1, and so the variable will be init_val - grad * lr == 5 - 1 * - # 2 == 3 - self.assertAllClose([3.0], self.evaluate(var)) - - # Loss scale will be double, so the expected gradient is also - # doubled. - self.evaluate( - expected_gradient.assign( - 2 * learning_rate / strategy.num_replicas_in_sync - ) - ) - run_op = strategy.experimental_run(run_fn) - self._run_if_in_graph_mode(run_op) - # As before, the 2 is subtracted from the variable, making it's new - # value 1. - self.assertAllClose([1.0], self.evaluate(var)) - - @test_combinations.generate(opt_combinations_only()) - def testDynamicLossScaleDefaultValues(self, opt_cls): - opt = create_sgd(opt_cls) - opt = create_lso(opt) - self.assertEqual(opt.initial_scale, 2**15) - self.assertEqual(opt.dynamic_growth_steps, 2000) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual(self.evaluate(opt.loss_scale), 2**15) - - @test_combinations.generate(opt_and_strategy_and_mode_combinations()) - def testClipping(self, opt_cls, strategy_fn, use_tf_function): - strategy = strategy_fn() - learning_rate = 2.0 - for clip_type in ("clipnorm", "global_clipnorm", "clipvalue"): - with strategy.scope(), self.subTest(clip_type=clip_type): - var = tf.Variable([5.0]) - opt = create_sgd(opt_cls, learning_rate, **{clip_type: 2.0}) - opt = create_lso(opt, initial_scale=2, dynamic_growth_steps=1) - if isinstance(opt, loss_scale_optimizer.LossScaleOptimizer): - # Only OptimizerV2 exposes the clipping attributes - self.assertEqual(getattr(opt, clip_type), 2.0) - self.assertEqual( - opt.initial_scale % strategy.num_replicas_in_sync, 0 - ) - - loss = lambda: var * 4 / strategy.num_replicas_in_sync - run_fn = lambda: opt.minimize(loss, var_list=[var]) - if use_tf_function: - run_fn = tf.function(run_fn) - - # Test running with clipped gradients - run_op = strategy.experimental_run(run_fn) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self._run_if_in_graph_mode(run_op) - # The gradient is 4 but is clipped to 2, so the variable will be - # init_val - clipped_grad * lr == 5 - 2 * 2 == 1 - self.assertAllClose([1.0], self.evaluate(var)) - self.assertEqual(self.evaluate(opt.loss_scale), 4) - - if isinstance(opt, loss_scale_optimizer.LossScaleOptimizerV3): - # Only OptimizerV2 exposes the clipping attributes, so we - # cannot set them on the new optimizer - return - # Test changing the clip amount and running again - setattr(opt, clip_type, 3.0) - run_op = strategy.experimental_run(run_fn) - self._run_if_in_graph_mode(run_op) - # The gradient is 4 but is clipped to 3, so the variable will be - # prev_var - clipped_grad * lr == 1 - 3 * 2 == -5 - self.assertAllClose([-5.0], self.evaluate(var)) - self.assertEqual(self.evaluate(opt.loss_scale), 8) - - # Test Inf gradients are still skipped instead of being clipped - loss = lambda: var * float("Inf") - run_fn = lambda: opt.minimize(loss, var_list=[var]) - run_op = strategy.experimental_run(run_fn) - self._run_if_in_graph_mode(run_op) - self.assertAllClose( - [-5.0], self.evaluate(var) - ) # Var does not change - self.assertEqual(self.evaluate(opt.loss_scale), 4) - - @test_combinations.generate(opt_and_strategy_and_mode_combinations()) - def testDynamicUpdate(self, opt_cls, strategy_fn, use_tf_function): - with strategy_fn().scope() as strategy: - var = tf.Variable([1.0, 2.0]) - opt = create_sgd(opt_cls, 1.0) - opt = create_lso(opt, initial_scale=2, dynamic_growth_steps=1) - - # Test optimizer with finite gradients - loss = lambda: var * 2.0 / strategy.num_replicas_in_sync - run_fn = lambda: opt.minimize(loss, var_list=[var]) - if use_tf_function: - run_fn = tf.function(run_fn) - run_op = strategy.experimental_run(run_fn) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self._run_if_in_graph_mode(run_op) - # Gradient is 2, so variable will have 2 subtracted from it - self.assertAllClose([-1.0, 0.0], self.evaluate(var)) - # Loss scale has doubled from 2 to 4 - self.assertEqual(4.0, self.evaluate(opt.loss_scale)) - - # Test optimizer with NaN gradients - loss = lambda: var * float("NaN") - run_fn = lambda: opt.minimize(loss, var_list=[var]) - run_op = strategy.experimental_run(run_fn) - self._run_if_in_graph_mode(run_op) - # Variable should not change from before, due to NaN gradients. - self.assertAllClose(self.evaluate(var), [-1.0, 0.0]) - # Loss scale should half due to NaN gradients. - self.assertEqual(2.0, self.evaluate(opt.loss_scale)) - - @test_combinations.generate(opt_and_strategy_and_mode_combinations()) - def testDynamicLossScaleWithFloat16Loss( - self, opt_cls, strategy_fn, use_tf_function - ): - strategy = strategy_fn() - learning_rate = 2.0 - with strategy.scope(): - var = tf.Variable([5.0]) - opt = create_sgd(opt_cls, learning_rate) - opt = create_lso(opt, initial_scale=2, dynamic_growth_steps=1) - - def loss(): - return tf.cast(var / strategy.num_replicas_in_sync, "float16") - - run_fn = lambda: opt.minimize(loss, var_list=[var]) - if use_tf_function: - run_fn = tf.function(run_fn) - run_op = strategy.experimental_run(run_fn) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self._run_if_in_graph_mode(run_op) - # The loss is the identity of the variable. Therefore the gradient - # is 1, and so the variable will be init_val - grad * lr == 5 - 1 * - # 2 == 3 - self.assertAllClose([3.0], self.evaluate(var)) - - @test_combinations.generate(opt_and_strategy_and_mode_combinations()) - def testNanOnOneReplicaOnly(self, opt_cls, strategy_fn, use_tf_function): - if strategy_fn == default_strategy_fn: - self.skipTest("The test is only useful for non-default strategies") - if not tf.test.is_gpu_available(): - self.skipTest("Test requires GPU") - if ( - not tf.executing_eagerly() - and not tf.compat.v1.control_flow_v2_enabled() - ): - self.skipTest( - "b/181283011: GradientTape does not work properly with " - "V1 control flow, and opt.minimize uses GradientTape" - ) - with strategy_fn().scope() as strategy: - var = tf.Variable([1.0, 2.0]) - opt = create_sgd(opt_cls, 1.0) - opt = create_lso(opt, initial_scale=2, dynamic_growth_steps=2) - - def loss(): - rep_id = ( - tf.distribute.get_replica_context().replica_id_in_sync_group - ) - # The last element of last replica's gradient is NaN. - return tf.cond( - tf.equal(rep_id, 0), - lambda: var * 2.0, - lambda: var * tf.constant([1.0, float("NaN")]), - ) - - run_fn = lambda: opt.minimize(loss, var_list=[var]) - if use_tf_function: - run_fn = tf.function(run_fn) - run_op = strategy.experimental_run(run_fn) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self._run_if_in_graph_mode(run_op) - # Variable should not change from before, due to NaN gradients. - self.assertAllClose(self.evaluate(var), [1.0, 2.0]) - # Loss scale should half due to NaN gradients. - self.assertEqual(1.0, self.evaluate(opt.loss_scale)) - - def testCustomAggregater(self): - def gradient_aggregator(grads_and_vars): - # Simulate an all-reduce where a replica has a NaN gradient by - # setting the last gradient to NaN - grads_and_vars = list(grads_and_vars) - last_grad, last_var = grads_and_vars[-1] - grads_and_vars[-1] = (last_grad * float("NaN"), last_var) - return grads_and_vars - - var = tf.Variable([1.0, 2.0]) - opt = gradient_descent.SGD(1.0, gradient_aggregator=gradient_aggregator) - opt = loss_scale_optimizer.LossScaleOptimizer( - opt, initial_scale=2, dynamic_growth_steps=2 - ) - - loss = lambda: var * 2 - run_op = opt.minimize(loss, var_list=[var]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self._run_if_in_graph_mode(run_op) - # Variable should not change from before, due to NaN gradients. - self.assertAllClose(self.evaluate(var), [1.0, 2.0]) - # Loss scale should half due to NaN gradients. - self.assertEqual(1.0, self.evaluate(opt.loss_scale)) - - @test_combinations.generate(opt_and_strategy_and_mode_combinations()) - def testDynamicLossScaleWithSlots( - self, opt_cls, strategy_fn, use_tf_function - ): - strategy_obj = strategy_fn() - if ( - isinstance(strategy_obj, tf.distribute.MirroredStrategy) - and tf.compat.v1.control_flow_v2_enabled() - and not tf.executing_eagerly() - ): - self.skipTest("b/138667997") - with strategy_obj.scope() as strategy: - var = tf.Variable([1.0, 2.0]) - # An SGD optimizer with momentum has slot variables. - opt = create_sgd(opt_cls, 1.0, momentum=1.0) - initial_scale = 2.0 - opt = create_lso( - opt, initial_scale=initial_scale, dynamic_growth_steps=1 - ) - loss = lambda: var / strategy.num_replicas_in_sync - run_fn = lambda: opt.minimize(loss, var_list=[var]) - if use_tf_function: - run_fn = tf.function(run_fn) - run_op = strategy.experimental_run(run_fn) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self._run_if_in_graph_mode(run_op) - # The momentum accumulator starts at 0 and the gradient is 1. The - # accumulator is incremented by the gradient, so it is now 1. Then - # the variable is subtracted by the accumulator, so the variable is - # subtracted by 1. - self.assertAllClose([0.0, 1.0], self.evaluate(var)) - self.assertEqual(self.evaluate(opt.loss_scale), initial_scale * 2) - - run_op = strategy.experimental_run(run_fn) - self._run_if_in_graph_mode(run_op) - # The momentum accumulator was 1 before this step and the gradient - # is 1. The accumulator is incremented by the gradient, so it is - # now 2. Then the variable is subtracted by the accumulator, so the - # variable is subtracted by 2. - self.assertAllClose([-2.0, -1.0], self.evaluate(var)) - self.assertEqual(self.evaluate(opt.loss_scale), initial_scale * 4) - - if isinstance(opt, loss_scale_optimizer.LossScaleOptimizer): - self.assertEqual(opt.get_slot_names(), ["momentum"]) - - def testIterations(self): - opt = gradient_descent.SGD(2.0) - lso = loss_scale_optimizer.LossScaleOptimizer( - opt, dynamic=False, initial_scale=10.0 - ) - lso.iterations = 7 - self.assertEqual(lso.iterations, 7) - self.assertEqual(opt.iterations, 7) - - @test_combinations.generate(opt_and_strategy_and_mode_combinations()) - def testIterationsIncremented(self, opt_cls, strategy_fn, use_tf_function): - with strategy_fn().scope() as strategy: - # Test iterations is incremented in opt.minimize. - opt = create_sgd(opt_cls, 1.0) - opt = create_lso(opt) - var = tf.Variable([5.0]) - loss = lambda: var * 2.0 / strategy.num_replicas_in_sync - run_fn = lambda: opt.minimize(loss, [var]) - if use_tf_function: - run_fn = tf.function(run_fn) - run_op = strategy.experimental_run(run_fn) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self._run_if_in_graph_mode(run_op) - self.assertEqual( - self.evaluate(var), 3.0 - ) # Grad is 2, so var is 5 - 2 - self.assertEqual(self.evaluate(opt.iterations), 1) - - # Test iterations is incremented in opt.minimize even if gradients - # aren't applied to variables due to NaN gradients. - loss = lambda: var * float("NaN") - run_fn = lambda: opt.minimize(loss, [var]) - if use_tf_function: - run_fn = tf.function(run_fn) - run_op = strategy.experimental_run(run_fn) - self._run_if_in_graph_mode(run_op) - self.assertEqual(self.evaluate(var), 3.0) - self.assertEqual(self.evaluate(opt.iterations), 2) - - def testWeightMethods(self): - with self.test_session(): - var = tf.Variable([1.0]) - opt = gradient_descent.SGD(1.0) - opt = loss_scale_optimizer.LossScaleOptimizer( - opt, initial_scale=2.0, dynamic_growth_steps=1 - ) - run_op = opt.minimize(lambda: var * 2, [var]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self._run_if_in_graph_mode(run_op) - - self.assertLen(opt.weights, 1) # The 'iterations' weight - self.assertEqual(self.evaluate(opt.weights[0]), 1) - self.assertEqual(opt.get_weights()[0], 1) - self.assertEqual(self.evaluate(opt.variables()[0]), 1) - opt.set_weights([np.array(2.0)]) - self.assertEqual(self.evaluate(opt.variables()[0]), 2) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def testHyperParametersExposedLSOV3(self): - opt = adam_experimental.Adam(learning_rate=1.0, beta_1=0.5, beta_2=0.9) - lso = loss_scale_optimizer.BaseLossScaleOptimizer(opt) - lso.learning_rate = tf.Variable(0.005) - self.assertAllClose(self.evaluate(lso.learning_rate), 0.005) - self.assertIs(lso.learning_rate, opt.learning_rate) - - lso.use_ema = True - self.assertEqual(lso.use_ema, True) - self.assertEqual(opt.use_ema, True) - - lso.ema_momentum = 0.88 - self.assertEqual(lso.ema_momentum, 0.88) - self.assertEqual(opt.ema_momentum, 0.88) - - def testHyperParametersExposed(self): - with self.cached_session(): - opt = adam.Adam(learning_rate=1.0, beta_1=0.5, beta_2=0.9) - lso = loss_scale_optimizer.LossScaleOptimizer(opt) - # Force hyperparameters to be created - opt.lr - self.evaluate(tf.compat.v1.global_variables_initializer()) - - self.assertEqual(self.evaluate(lso.beta_1), 0.5) - self.assertIsInstance(lso.beta_1, tf.Variable) - self.assertEqual(self.evaluate(lso.lr), 1.0) - self.assertIs(lso.lr, opt.lr) - self.assertIs(lso.lr, lso.learning_rate) - - lso.beta_1 = 0.25 - self.assertEqual(self.evaluate(lso.beta_1), 0.25) - self.assertEqual(self.evaluate(opt.beta_1), 0.25) - self.assertIs(lso.beta_1, opt.beta_1) - opt.beta_1 = 0.75 - self.assertEqual(self.evaluate(lso.beta_1), 0.75) - self.assertEqual(self.evaluate(opt.beta_1), 0.75) - self.assertIs(lso.beta_1, opt.beta_1) - lso.lr = 2.0 - self.assertEqual(self.evaluate(lso.lr), 2.0) - self.assertEqual(self.evaluate(lso.learning_rate), 2.0) - self.assertEqual(self.evaluate(opt.lr), 2.0) - self.assertEqual(self.evaluate(opt.learning_rate), 2.0) - self.assertIs(lso.lr, opt.lr) - - # Test setting attribute that is both attribute on - # LossScaleOptimizer and hyperparameter on wrapped optimizer. - class MyOpt(gradient_descent.SGD): - def __init__(self): - super().__init__() - self._set_hyper("loss_scale", 123.0) - - opt = MyOpt() - lso = loss_scale_optimizer.LossScaleOptimizer(opt) - with self.assertRaises(AttributeError): - lso.loss_scale = 2.0 - - @test_combinations.generate(opt_combinations_only()) - def testArbitraryAttributesNotExposed(self, opt_cls): - opt = create_sgd(opt_cls) - lso = create_lso(opt) - self.assertFalse(opt.nesterov) - with self.assertRaisesRegex( - AttributeError, - "'LossScaleOptimizer(V3)?' object has no attribute 'nesterov'", - ): - lso.nesterov - - lso.nesterov = True - self.assertTrue(lso.nesterov) - self.assertFalse(opt.nesterov) - - def testDir(self): - lso = loss_scale_optimizer.LossScaleOptimizer(gradient_descent.SGD()) - dir_result = dir(lso) - self.assertIn("learning_rate", dir_result) # Hyperparameter - self.assertIn("lr", dir_result) # Hyperparameter - self.assertIn("minimize", dir_result) # Attribute - self.assertIn("loss_scale", dir_result) # Attribute - self.assertNotIn("nesterov", dir_result) # Attribute on inner optimizer - self.assertIn("nesterov", dir(lso.inner_optimizer)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testApplyGradientsGetsUnwrappedTensors(self): - # Tests that gradients passed to apply_gradients are not wrapped in a - # DistributionStrategy wrapper, such as PerReplica, but instead are raw - # Tensors. Optimizer subclasses that override apply_gradients() expect - # raw Tensors, even though the base Optimizer can handle PerReplica - # gradients. - - outer_self = self - - class MyOptimizer(gradient_descent.SGD): - def apply_gradients( - self, - grads_and_vars, - name=None, - experimental_aggregate_gradients=True, - ): - for grad, _ in grads_and_vars: - outer_self.assertIsInstance(grad, tf.Tensor) - return super().apply_gradients( - grads_and_vars, name, experimental_aggregate_gradients - ) - - with create_mirrored_strategy().scope() as strategy: - var = tf.Variable([5.0]) - opt = MyOptimizer(learning_rate=1.0) - opt = loss_scale_optimizer.LossScaleOptimizer( - opt, dynamic=False, initial_scale=1 - ) - loss = lambda: var * 2.0 - run_fn = lambda: opt.minimize(loss, [var]) - strategy.experimental_run(run_fn) - - @test_combinations.generate( - test_combinations.combine(mode="eager", use_tf_function=[False, True]) - ) - def testApplyGradientsGetsUnwrappedTensorsWithNewOptimizer( - self, use_tf_function - ): - outer_self = self - - class MyOptimizer(sgd_experimental.SGD): - def apply_gradients( - self, - grads_and_vars, - skip_gradients_aggregation=False, - experimental_aggregate_gradients=True, - ): - for grad, _ in grads_and_vars: - outer_self.assertIsInstance(grad, tf.Tensor) - return super().apply_gradients( - grads_and_vars, - skip_gradients_aggregation=skip_gradients_aggregation, - ) - - with create_mirrored_strategy().scope() as strategy: - var = tf.Variable([5.0]) - opt = MyOptimizer(learning_rate=1.0) - opt = loss_scale_optimizer.LossScaleOptimizerV3( - opt, dynamic=False, initial_scale=1 - ) - loss = lambda: var * 2.0 - run_fn = lambda: opt.minimize(loss, [var]) - if use_tf_function: - run_fn = tf.function(run_fn) - strategy.experimental_run(run_fn) - - @test_combinations.generate(opt_combinations_only()) - def testLossScaleDelegationWithWrapper(self, opt_cls): - # Test learning_rate is exposed when LossScaleOptimizer wraps another - # wrapper. - - class MyOptimizer(opt_cls): - def __init__(self): - super().__init__("MyOptimizer") - self.inner_optimizer = create_sgd(opt_cls, learning_rate=1.0) - - @property - def learning_rate(self): - return self.inner_optimizer.learning_rate - - @learning_rate.setter - def learning_rate(self, value): - self.inner_optimizer.learning_rate = value - - def get_config(self): - return {} - - with self.cached_session(): - opt = MyOptimizer() - opt = create_lso(opt) - - # Force hyperparameters to be created - opt.learning_rate - self.evaluate(tf.compat.v1.global_variables_initializer()) - - self.assertEqual(self.evaluate(opt.learning_rate), 1.0) - self.assertEqual( - self.evaluate( - opt.inner_optimizer.inner_optimizer.learning_rate - ), - 1.0, - ) - opt.learning_rate = 2.0 - self.assertEqual(self.evaluate(opt.learning_rate), 2.0) - self.assertEqual( - self.evaluate( - opt.inner_optimizer.inner_optimizer.learning_rate - ), - 2.0, - ) - - @test_combinations.generate( - test_combinations.combine( - opt_cls=optimizer_v2.OptimizerV2, - strategy_fn=STRATEGY_FNS, - mode=["graph", "eager"], - use_tf_function=False, - save_with_ls=[False, True], - restore_with_ls=[False, True], - ) - + test_combinations.combine( - opt_cls=optimizer_experimental.Optimizer, - strategy_fn=STRATEGY_FNS, - mode="eager", - use_tf_function=[False, True], - save_with_ls=[False, True], - restore_with_ls=[False, True], - ) - ) - def testCheckpoint( - self, - opt_cls, - strategy_fn, - use_tf_function, - save_with_ls, - restore_with_ls, - ): - - if not save_with_ls and not restore_with_ls: - self.skipTest( - "Skipping because save_with_ls=False and " - "restore_with_ls=False, which means loss scaling is not " - "used" - ) - - sgd_cls = type(create_sgd(opt_cls)) - - class MySGD(sgd_cls): - """A custom optimizer that tracks an extra variable.""" - - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.my_var = tf.Variable(0.0) - self._track_trackable(self.my_var, "my_var") - - strategy = strategy_fn() - replicas = strategy.num_replicas_in_sync - if ( - isinstance(strategy, tf.distribute.MirroredStrategy) - and not tf.executing_eagerly() - ): - # TODO(b/121381184): Enable running the test in this case. - return - - with self.test_session(), strategy.scope(): - # Build and run a simple model. - var = tf.Variable([2.0]) - opt = inner_opt = MySGD(1.0, momentum=1.0) - if save_with_ls: - opt = create_lso( - opt, initial_scale=1.0, dynamic_growth_steps=2.0 - ) - run_fn = lambda: opt.minimize( - lambda: var / replicas + 1.0, var_list=[var] - ) - if use_tf_function: - run_fn = tf.function(run_fn) - opt_op = strategy.experimental_run(run_fn) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(strategy.experimental_local_results(opt_op)) - - # Assert values. - self.assertEqual(self.evaluate(var), 1.0) - if save_with_ls: - self.assertEqual(self.evaluate(opt.loss_scale), 1.0) - self.assertEqual(self.evaluate(opt.dynamic_counter), 1) - if opt_cls == optimizer_v2.OptimizerV2: - slot_var = opt.get_slot(var, "momentum") - self.assertEqual(self.evaluate(slot_var).item(), -1) - self.assertEqual(self.evaluate(opt.iterations), 1) - - # Set optimizer variable to check arbitrary optimizer attributes can - # be saved/restored - self.evaluate(inner_opt.my_var.assign(1.0)) - - # Save a checkpoint. - checkpoint = tf.train.Checkpoint(optimizer=opt, var=var) - prefix = os.path.join(self.get_temp_dir(), "ckpt") - save_path = checkpoint.save(prefix) - - # Create new model - var = tf.Variable([2.0]) - opt = inner_opt = MySGD(1.0, momentum=1.0) - if restore_with_ls: - opt = create_lso( - opt, initial_scale=1.0, dynamic_growth_steps=2.0 - ) - - # Restore new model. - checkpoint = tf.train.Checkpoint(optimizer=opt, var=var) - status = checkpoint.restore(save_path) - if save_with_ls: - status.assert_existing_objects_matched() - else: - status.assert_nontrivial_match() - - # Assert restored values. We can only assert in eager mode since the - # variables are uninitialized in graph mode - if tf.executing_eagerly(): - self.assertEqual(self.evaluate(var), 1.0) - if save_with_ls and restore_with_ls: - self.assertEqual(self.evaluate(opt.loss_scale), 1.0) - self.assertEqual(self.evaluate(opt.dynamic_counter), 1) - elif restore_with_ls: - self.assertEqual(self.evaluate(opt.loss_scale), 1.0) - self.assertEqual(self.evaluate(opt.dynamic_counter), 0) - self.assertEqual(self.evaluate(opt.iterations), 1) - - # Run the model again. - run_fn = lambda: opt.minimize( - lambda: var / replicas + 1.0, var_list=[var] - ) - if use_tf_function: - run_fn = tf.function(run_fn) - opt_op = strategy.experimental_run(run_fn) - - # Assert new values. - self.evaluate(tf.compat.v1.global_variables_initializer()) - status.run_restore_ops() - self.evaluate(strategy.experimental_local_results(opt_op)) - self.assertEqual(self.evaluate(var), -1) - if opt_cls == optimizer_v2.OptimizerV2: - slot_var = opt.get_slot(var, "momentum") - self.assertEqual(self.evaluate(slot_var).item(), -2) - self.assertEqual(self.evaluate(opt.iterations), 2) - self.assertEqual(self.evaluate(inner_opt.my_var), 1) - - # Restore model again to test restoring after slots are created - status = checkpoint.restore(save_path) - if save_with_ls and restore_with_ls: - status.assert_consumed() - elif save_with_ls: - status.assert_existing_objects_matched() - elif restore_with_ls: - status.assert_nontrivial_match() - status.run_restore_ops() - self.assertEqual(self.evaluate(var), 1) - if opt_cls == optimizer_v2.OptimizerV2: - self.assertEqual(self.evaluate(slot_var).item(), -1) - - @test_combinations.generate( - test_combinations.combine(config_version=["v2", "tf2_3"]) - + test_combinations.combine(config_version="v3", mode="eager") - ) - def testGetConfigFixed(self, config_version): - # Get a config from LossScaleOptimizer, LossScaleOptimizerV3, or the - # LossScaleOptimizer from TF 2.3. Then restore the config into a - # LossScaleOptimizer or LossScaleOptimizerV3 - if config_version == "v2": - opt = gradient_descent.SGD(2.0, momentum=0.5) - opt = loss_scale_optimizer.LossScaleOptimizer( - opt, dynamic=False, initial_scale=2 - ) - config = opt.get_config() - opt = loss_scale_optimizer.LossScaleOptimizer.from_config(config) - elif config_version == "v3": - opt = sgd_experimental.SGD(2.0, momentum=0.5) - opt = loss_scale_optimizer.LossScaleOptimizerV3( - opt, dynamic=False, initial_scale=2 - ) - config = opt.get_config() - opt = loss_scale_optimizer.LossScaleOptimizerV3.from_config(config) - else: - self.assertEqual(config_version, "tf2_3") - config = { - "optimizer": { - "class_name": "SGD", - "config": { - "learning_rate": 2.0, - "momentum": 0.5, - "decay": 0.0, - "nesterov": False, - "name": "SGD", - }, - }, - "loss_scale": { - "class_name": "FixedLossScale", - "config": {"loss_scale_value": 2.0}, - }, - } - opt = loss_scale_optimizer.LossScaleOptimizer.from_config(config) - - # Force hyperparameters to be created - opt.learning_rate - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Test attributes on the optimizer - self.assertEqual(self.evaluate(opt.learning_rate), 2.0) - self.assertEqual(self.evaluate(opt.inner_optimizer.learning_rate), 2.0) - self.assertEqual( - self._eval_if_tensor(opt.inner_optimizer.momentum), 0.5 - ) - self.assertEqual(self.evaluate(opt.loss_scale), 2.0) - self.assertEqual(opt.initial_scale, 2.0) - self.assertIsNone(opt.dynamic_growth_steps) - self.assertIsNone(opt.dynamic_counter) - self.assertFalse(opt.dynamic) - - # Ensure the optimizer can be used - var = tf.Variable([5.0]) - run_op = self._run_fn_with_grad_check( - tf.distribute.get_strategy(), var, opt, 2 - )() - self.evaluate(tf.compat.v1.global_variables_initializer()) - self._run_if_in_graph_mode(run_op) - self.assertEqual(self.evaluate(var), [3.0]) - - @test_combinations.generate( - test_combinations.combine(config_version=["v2", "tf2_3"]) - + test_combinations.combine(config_version="v3", mode="eager") - ) - def testGetConfigDynamic(self, config_version): - # Get a config from LossScaleOptimizer, LossScaleOptimizerV3, or the - # LossScaleOptimizer from TF 2.3. Then restore the config into a - # LossScaleOptimizer or LossScaleOptimizerV3 - if config_version == "v2": - opt = gradient_descent.SGD(2.0, momentum=0.5) - opt = loss_scale_optimizer.LossScaleOptimizer( - opt, initial_scale=2, dynamic_growth_steps=3 - ) - config = opt.get_config() - opt = loss_scale_optimizer.LossScaleOptimizer.from_config(config) - elif config_version == "v3": - opt = sgd_experimental.SGD(2.0, momentum=0.5) - opt = loss_scale_optimizer.LossScaleOptimizerV3( - opt, initial_scale=2, dynamic_growth_steps=3 - ) - config = opt.get_config() - opt = loss_scale_optimizer.LossScaleOptimizerV3.from_config(config) - else: - self.assertEqual(config_version, "tf2_3") - config = { - "optimizer": { - "class_name": "SGD", - "config": { - "learning_rate": 2.0, - "momentum": 0.5, - "decay": 0.0, - "nesterov": False, - "name": "SGD", - }, - }, - "loss_scale": { - "class_name": "DynamicLossScale", - "config": { - "initial_loss_scale": 2.0, - "increment_period": 3, - "multiplier": 2.0, - }, - }, - } - opt = loss_scale_optimizer.LossScaleOptimizer.from_config(config) - - # Force hyperparameters to be created - opt.learning_rate - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Test attributes on the optimizer - self.assertEqual(self.evaluate(opt.learning_rate), 2.0) - self.assertEqual(self.evaluate(opt.inner_optimizer.learning_rate), 2.0) - self.assertEqual( - self._eval_if_tensor(opt.inner_optimizer.momentum), 0.5 - ) - self.assertEqual(self.evaluate(opt.loss_scale), 2.0) - self.assertEqual(opt.initial_scale, 2.0) - self.assertEqual(opt.dynamic_growth_steps, 3.0) - self.assertTrue(opt.dynamic) - - # Ensure the optimizer can be used - var = tf.Variable([5.0]) - run_op = self._run_fn_with_grad_check( - tf.distribute.get_strategy(), var, opt, 2 - )() - self.evaluate(tf.compat.v1.global_variables_initializer()) - self._run_if_in_graph_mode(run_op) - self.assertEqual(self.evaluate(var), [3.0]) - self.assertEqual(self.evaluate(opt.dynamic_counter), 1) - - def test_from_config_with_invalid_multiplier(self): - config = { - "optimizer": { - "class_name": "SGD", - "config": { - "learning_rate": 2.0, - "momentum": 0.5, - "decay": 0.0, - "nesterov": False, - "name": "SGD", - }, - }, - "loss_scale": { - "class_name": "DynamicLossScale", - "config": { - "initial_loss_scale": 2.0, - "increment_period": 3, - "multiplier": 4.0, - }, - }, - } - - expected_error = ( - "Cannot deserialize LossScaleOptimizer with a " - "DynamicLossScale whose multiplier is not 2. Got " - "DynamicLossScale: DynamicLossScale\\(" - ) - with self.assertRaisesRegex(ValueError, expected_error): - loss_scale_optimizer.LossScaleOptimizer.from_config(config) - - @test_combinations.generate( - test_combinations.combine(lso_type=["v1", "v2"]) - + test_combinations.combine(lso_type="v3", mode="eager") - ) - def testSerializationWithBuiltInOptimizer(self, lso_type): - if lso_type in ("v1", "v2"): - opt = gradient_descent.SGD(2.0, momentum=0.5) - opt = loss_scale_optimizer.LossScaleOptimizer( - opt, initial_scale=2.0, dynamic_growth_steps=3.0 - ) - config = optimizers.serialize(opt) - if lso_type == "v1": - # LossScaleOptimizerV1 was an older experimental version of LSO - # that is now deleted. The config had the same format as LSO but - # the class name was different. This tests that LSO V1 configs - # can still be deserialized, which are deserialized as a - # (non-V1) LSO - config["class_name"] = "LossScaleOptimizerV1" - else: - opt = sgd_experimental.SGD(2.0, momentum=0.5) - opt = loss_scale_optimizer.LossScaleOptimizerV3( - opt, initial_scale=2.0, dynamic_growth_steps=3 - ) - config = optimizers.serialize(opt) - opt = optimizers.deserialize(config) - # Force hyperparameters to be created - opt.learning_rate - self.evaluate(tf.compat.v1.global_variables_initializer()) - - self.assertEqual(self.evaluate(opt.learning_rate), 2.0) - self.assertEqual( - self._eval_if_tensor(opt.inner_optimizer.momentum), 0.5 - ) - self.assertEqual(self.evaluate(opt.loss_scale), 2.0) - self.assertEqual(opt.dynamic_growth_steps, 3.0) - self.assertTrue(opt.dynamic) - if lso_type in ("v1", "v2"): - self.assertEqual(type(opt), loss_scale_optimizer.LossScaleOptimizer) - else: - self.assertEqual( - type(opt), loss_scale_optimizer.LossScaleOptimizerV3 - ) - - # Ensure the optimizer can be used - var = tf.Variable([5.0]) - run_op = self._run_fn_with_grad_check( - tf.distribute.get_strategy(), var, opt, 2 - )() - self.evaluate(tf.compat.v1.global_variables_initializer()) - self._run_if_in_graph_mode(run_op) - self.assertEqual(self.evaluate(var), [3.0]) - self.assertEqual(self.evaluate(opt.dynamic_counter), 1) - - @test_combinations.generate(opt_combinations_only()) - def testSerializationWithCustomOptimizer(self, opt_cls): - sgd_cls = type(create_sgd(opt_cls)) - - class MySGD(sgd_cls): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.my_attribute = 123 - - opt = MySGD(2.0, momentum=0.5) - opt = create_lso(opt, initial_scale=2.0, dynamic_growth_steps=3.0) - config = optimizers.serialize(opt) - custom_objects = {"MySGD": MySGD} - opt = optimizers.deserialize(config, custom_objects=custom_objects) - # Force hyperparameters to be created - opt.learning_rate - self.evaluate(tf.compat.v1.global_variables_initializer()) - - self.assertEqual(self.evaluate(opt.learning_rate), 2.0) - self.assertEqual( - self._eval_if_tensor(opt.inner_optimizer.momentum), 0.5 - ) - self.assertEqual(self.evaluate(opt.loss_scale), 2.0) - self.assertEqual(opt.dynamic_growth_steps, 3.0) - self.assertEqual(opt.inner_optimizer.my_attribute, 123) - - @test_utils.run_v2_only - def testConvertToLegacyOptimizer(self): - opt = sgd_experimental.SGD(1.0) - opt = loss_scale_optimizer.BaseLossScaleOptimizer(opt) - converted_opt = optimizers.convert_to_legacy_optimizer(opt) - self.assertEqual( - type(converted_opt), loss_scale_optimizer.LossScaleOptimizer - ) - - reference_opt = gradient_descent.SGD(1.0) - reference_opt = loss_scale_optimizer.BaseLossScaleOptimizer( - reference_opt - ) - self.assertEqual(converted_opt.get_config(), reference_opt.get_config()) - - # Test with a custom learning rate schedule - class CustomLRSchedule(learning_rate_schedule.LearningRateSchedule): - def __init__(self, initial_learning_rate): - self.initial_learning_rate = initial_learning_rate - - def __call__(self, step): - step = tf.cast(step, tf.float32) - return self.initial_learning_rate / (step + 1) - - def get_config(self): - return {"initial_learning_rate": self.initial_learning_rate} - - opt = sgd_experimental.SGD(CustomLRSchedule(1.0)) - opt = loss_scale_optimizer.BaseLossScaleOptimizer(opt) - converted_opt = optimizers.convert_to_legacy_optimizer(opt) - self.assertEqual( - type(converted_opt), loss_scale_optimizer.LossScaleOptimizer - ) - - reference_opt = gradient_descent.SGD(CustomLRSchedule(1.0)) - reference_opt = loss_scale_optimizer.BaseLossScaleOptimizer( - reference_opt - ) - self.assertEqual(converted_opt.get_config(), reference_opt.get_config()) - - @test_combinations.generate(opt_combinations_only()) - def testUnsupportedStrategy(self, opt_cls): - strategy = tf.distribute.experimental.CentralStorageStrategy() - expected_error = ( - "Loss scaling is not supported with the tf.distribute.Strategy: " - "CentralStorageStrategy. Try using a different Strategy, e.g. a " - "MirroredStrategy" - ) - with strategy.scope(), self.assertRaisesRegex( - ValueError, expected_error - ): - create_lso(create_sgd(opt_cls)) - opt = create_lso(create_sgd(opt_cls)) - with strategy.scope(): - var = tf.Variable(1.0) - loss = lambda: var * 2.0 - run_fn = lambda: opt.minimize(loss, [var]) - with self.assertRaisesRegex(ValueError, expected_error): - strategy.experimental_run(run_fn) - - @test_combinations.generate(opt_combinations_only()) - def testInvalidArgsWithFixedLossScale(self, opt_cls): - opt = create_sgd(opt_cls) - with self.assertRaisesRegex( - ValueError, - '"initial_scale" must be specified if "dynamic" is False', - ): - create_lso(opt, dynamic=False) - opt = create_sgd(opt_cls) - with self.assertRaisesRegex( - ValueError, - '"dynamic_growth_steps" must be None if "dynamic" is ' - "False, but got: 2", - ): - create_lso( - opt, dynamic=False, initial_scale=1, dynamic_growth_steps=2 - ) - - @test_combinations.generate(opt_combinations_only()) - def testDynamicMustBeBool(self, opt_cls): - opt = create_sgd(opt_cls) - with self.assertRaisesRegex( - TypeError, - '"dynamic" argument to LossScaleOptimizer.__init__ must be ' - "a bool, but got: 'dynamic'", - ): - create_lso(opt, "dynamic") - - @test_combinations.generate(opt_combinations_only()) - def testScalingWarning(self, opt_cls): - var = tf.Variable(1.0) - lso = create_lso(create_sgd(opt_cls)) - with mock.patch.object(tf_logging, "warning") as mock_warn: - lso.apply_gradients([(tf.constant(1.0), var)]) - self.assertIn( - "You forgot to call LossScaleOptimizer.get_scaled_loss() and " - "LossScaleOptimizer.get_unscaled_gradients() before", - mock_warn.call_args_list[0][0][0], - ) - lso = create_lso(create_sgd(opt_cls)) - with mock.patch.object(tf_logging, "warning") as mock_warn: - lso.get_scaled_loss(tf.constant(1.0)) - lso.apply_gradients([(tf.constant(1.0), var)]) - self.assertIn( - "You forgot to call " - "LossScaleOptimizer.get_unscaled_gradients() before", - mock_warn.call_args_list[0][0][0], - ) - lso = create_lso(create_sgd(opt_cls)) - with mock.patch.object(tf_logging, "warning") as mock_warn: - lso.get_unscaled_gradients([tf.constant(1.0)]) - lso.apply_gradients([(tf.constant(1.0), var)]) - self.assertIn( - "You forgot to call LossScaleOptimizer.get_scaled_loss() " - "before", - mock_warn.call_args_list[0][0][0], - ) - - @test_combinations.generate(opt_combinations_only()) - def testScalingNoWarning(self, opt_cls): - var = tf.Variable(1.0) - lso = create_lso(create_sgd(opt_cls)) - with mock.patch.object(tf_logging, "warning") as mock_warn: - lso.get_scaled_loss(tf.constant(1.0)) - lso.get_unscaled_gradients([tf.constant(1.0)]) - lso.apply_gradients([(tf.constant(1.0), var)]) - mock_warn.assert_not_called() - - @test_combinations.generate(opt_combinations_only()) - def testErrorWhenNesting(self, opt_cls): - opt = create_sgd(opt_cls) - opt = create_lso(opt) - with self.assertRaisesRegex( - TypeError, - "LossScaleOptimizer cannot wrap another LossScaleOptimizer", - ): - create_lso(opt) - - @test_combinations.generate(opt_combinations_only()) - def testErrorWrappingSameOptimizerMultipleTimes(self, opt_cls): - inner_opt = create_sgd(opt_cls) - create_lso(inner_opt) - with self.assertRaisesRegex( - ValueError, - '"inner_optimizer" is already wrapped by a LossScaleOptimizer.', - ): - create_lso(inner_opt) - - def testErrorWhenWrappingNonOptimizer(self): - with self.assertRaisesRegex( - TypeError, - '"inner_optimizer" must be an instance of ' - "`tf.keras.optimizers.Optimizer` or " - "`tf.keras.optimizers.experimental.Optimizer`, but got: 1", - ): - loss_scale_optimizer.BaseLossScaleOptimizer(1) - - def testErrorWhenV3LsoWrapsV2Optimizer(self): - sgd = gradient_descent.SGD() - with self.assertRaisesRegex( - TypeError, - "only the new experimental optimizer " - "defined in keras/optimizer_expeirmental/optimizer.py can be " - "passed", - ): - loss_scale_optimizer.LossScaleOptimizerV3(sgd) - - def testErrorWhenV2LsoWrapsV3Optimizer(self): - sgd = sgd_experimental.SGD() - with self.assertRaisesRegex( - TypeError, - "only the classic optimizers subclassing from " - "`tf.keras.optimizers.Optimizer` can be passed", - ): - loss_scale_optimizer.LossScaleOptimizer(sgd) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/mixed_precision/mixed_precision_graph_rewrite_test.py b/keras/mixed_precision/mixed_precision_graph_rewrite_test.py deleted file mode 100644 index 141fac60977..00000000000 --- a/keras/mixed_precision/mixed_precision_graph_rewrite_test.py +++ /dev/null @@ -1,180 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests Keras integration with enable_mixed_precision_graph_rewrite().""" - -import os - -import tensorflow.compat.v2 as tf - -from keras.mixed_precision import ( - loss_scale_optimizer as loss_scale_optimizer_v2, -) -from keras.mixed_precision import policy -from keras.optimizers.legacy import gradient_descent as gradient_descent_v2 -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class MixedPrecisionTest(test_combinations.TestCase): - - IGNORE_PERF_VAR = "TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_IGNORE_PERFORMANCE" - - def setUp(self): - super().setUp() - # Enable the tests to be run on pre-Volta GPUs by telling the grappler - # pass to ignore performance and always transform the graph. - self._original_ignore_perf_value = os.getenv(self.IGNORE_PERF_VAR) - os.environ[self.IGNORE_PERF_VAR] = "1" - - def tearDown(self): - # Set the IGNORE_PERF_VAR variable back to it's original value. - if self._original_ignore_perf_value is not None: - os.environ[self.IGNORE_PERF_VAR] = self._original_ignore_perf_value - else: - del os.environ[self.IGNORE_PERF_VAR] - - tf.compat.v1.mixed_precision.disable_mixed_precision_graph_rewrite() - super().tearDown() - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_wrap_optimizer_fixed_loss_scale(self): - opt = gradient_descent_v2.SGD(1.0) - opt = tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite( - opt, 123 - ) - self.assertIsInstance(opt, loss_scale_optimizer_v2.LossScaleOptimizer) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual(self.evaluate(opt.loss_scale), 123.0) - self.assertFalse(opt.dynamic) - self.assertTrue(opt.initial_scale, 123.0) - - opt = gradient_descent_v2.SGD(1.0) - opt = tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite( - opt, tf.compat.v1.mixed_precision.FixedLossScale(123) - ) - self.assertIsInstance(opt, loss_scale_optimizer_v2.LossScaleOptimizer) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual(self.evaluate(opt.loss_scale), 123.0) - self.assertFalse(opt.dynamic) - self.assertTrue(opt.initial_scale, 123.0) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_wrap_optimizer_dynamic_loss_scale(self): - opt = gradient_descent_v2.SGD(1.0) - opt = tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite( - opt, "dynamic" - ) - self.assertIsInstance(opt, loss_scale_optimizer_v2.LossScaleOptimizer) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual(self.evaluate(opt.loss_scale), 2.0**15) - self.assertTrue(opt.dynamic) - self.assertTrue(opt.initial_scale, 2.0**15) - self.assertTrue(opt.dynamic_growth_steps, 2000) - - opt = gradient_descent_v2.SGD(1.0) - opt = tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite( - opt, - tf.compat.v1.mixed_precision.DynamicLossScale( - initial_loss_scale=4, increment_period=1000 - ), - ) - self.assertIsInstance(opt, loss_scale_optimizer_v2.LossScaleOptimizer) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual(self.evaluate(opt.loss_scale), 4.0) - self.assertTrue(opt.dynamic) - self.assertTrue(opt.initial_scale, 4.0) - self.assertTrue(opt.dynamic_growth_steps, 1000) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_wrap_optimizer_dynamic_loss_scale_errors(self): - - opt = gradient_descent_v2.SGD(1.0) - with self.assertRaisesRegex( - ValueError, - 'When passing a DynamicLossScale to "loss_scale", ' - "DynamicLossScale.multiplier must be 2. Got: " - "DynamicLossScale", - ): - tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite( - opt, - tf.compat.v1.mixed_precision.DynamicLossScale(multiplier=4.0), - ) - - class MyLossScale(tf.compat.v1.mixed_precision.LossScale): - def __call__(self): - return 1.0 - - def update(self, grads): - return None, True - - def get_config(self): - return {} - - with self.assertRaisesRegex( - TypeError, - "Passing a LossScale that is not a FixedLossScale or a " - "DynamicLossScale is not supported. Got:", - ): - tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite( - opt, MyLossScale() - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_optimizer_errors(self): - opt = gradient_descent_v2.SGD(1.0) - opt = loss_scale_optimizer_v2.LossScaleOptimizer(opt) - with self.assertRaisesRegex( - ValueError, - '"opt" must not already be an instance of a LossScaleOptimizer.', - ): - tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite( - opt - ) - self.assertFalse( - tf.config.optimizer.get_experimental_options().get( - "auto_mixed_precision", False - ) - ) - - @test_utils.enable_v2_dtype_behavior - def test_error_if_policy_is_set(self): - with policy.policy_scope("mixed_float16"): - with self.assertRaisesRegex( - ValueError, "the global Keras dtype Policy has been set" - ): - tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite( # noqa: E501 - gradient_descent_v2.SGD(1.0) - ) - # Test no error is thrown when the policy is currently the default. - tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite( - gradient_descent_v2.SGD(1.0) - ) - # Test no error is thrown when the policy is a non-mixed policy. - with policy.policy_scope("float64"): - tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite( - gradient_descent_v2.SGD(1.0) - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/mixed_precision/model_test.py b/keras/mixed_precision/model_test.py deleted file mode 100644 index 0663d589f33..00000000000 --- a/keras/mixed_precision/model_test.py +++ /dev/null @@ -1,1043 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests keras.Model works properly with mixed precision.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl import flags -from absl.testing import parameterized - -from keras import backend -from keras import layers -from keras import models -from keras.applications import densenet -from keras.applications import efficientnet -from keras.applications import inception_resnet_v2 -from keras.applications import inception_v3 -from keras.applications import mobilenet -from keras.applications import nasnet -from keras.applications import resnet -from keras.applications import vgg16 -from keras.applications import xception -from keras.engine import base_layer_utils -from keras.engine import input_spec -from keras.engine import sequential -from keras.layers import core -from keras.mixed_precision import loss_scale_optimizer -from keras.mixed_precision import policy -from keras.mixed_precision import test_util as mp_test_util -from keras.optimizers import optimizer_v1 -from keras.optimizers import sgd -from keras.optimizers.legacy import gradient_descent -from keras.saving import object_registration -from keras.saving.legacy import save -from keras.saving.serialization_lib import SafeModeScope -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# If called outside any strategy.scope() calls, this will return the default -# strategy. -default_strategy_fn = tf.distribute.get_strategy - - -def create_mirrored_strategy(): - """Create a MirroredStrategy, using a GPU if it is available.""" - if tf.config.list_logical_devices("GPU"): - return tf.distribute.MirroredStrategy(["cpu:0", "gpu:0"]) - else: - return tf.distribute.MirroredStrategy(["cpu:0"]) - - -TESTCASES = ( - {"testcase_name": "base", "strategy_fn": default_strategy_fn}, - {"testcase_name": "distribute", "strategy_fn": create_mirrored_strategy}, -) - - -class KerasModelTest(test_combinations.TestCase): - """Test mixed precision with Keras models.""" - - def _skip_if_strategy_unsupported(self, strategy_fn): - if ( - strategy_fn != default_strategy_fn - and test_utils.get_model_type() == "subclass" - ): - self.skipTest( - "Non-default strategies are unsupported with subclassed models" - ) - - def _skip_if_save_format_unsupported(self, save_format): - model_type = test_utils.get_model_type() - if save_format == "h5" and model_type == "subclass": - self.skipTest( - "Saving subclassed models with the HDF5 format is unsupported" - ) - if ( - save_format == "tf" - and model_type == "subclass" - and not tf.executing_eagerly() - ): - self.skipTest( - "b/148820505: This combination of features is currently broken." - ) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - {"testcase_name": "base", "strategy_fn": default_strategy_fn}, - { - "testcase_name": "distribute", - "strategy_fn": create_mirrored_strategy, - }, - { - "testcase_name": "operator", - "strategy_fn": create_mirrored_strategy, - "use_operator": True, - }, - { - "testcase_name": "regularizer", - "strategy_fn": create_mirrored_strategy, - "use_regularizer": True, - }, - { - "testcase_name": "get_config", - "strategy_fn": create_mirrored_strategy, - "get_config": True, - "use_regularizer": True, - }, - { - "testcase_name": "saved_model", - "strategy_fn": default_strategy_fn, - "save_format": "tf", - "use_regularizer": True, - }, - { - "testcase_name": "saved_model_input_spec", - "strategy_fn": default_strategy_fn, - "save_format": "tf", - "use_regularizer": True, - "use_input_spec": True, - }, - { - "testcase_name": "h5", - "strategy_fn": default_strategy_fn, - "save_format": "h5", - "use_regularizer": True, - }, - { - "testcase_name": "saved_model_distribute", - "strategy_fn": create_mirrored_strategy, - "save_format": "tf", - "use_regularizer": True, - }, - { - "testcase_name": "saved_model_legacy_distribute", - "strategy_fn": create_mirrored_strategy, - "save_format": "tf", - "use_regularizer": True, - "use_legacy_optimizer": True, - }, - { - "testcase_name": "saved_model_input_spec_distribute", - "strategy_fn": create_mirrored_strategy, - "save_format": "tf", - "use_regularizer": True, - "use_input_spec": True, - }, - { - "testcase_name": "h5_distribute", - "strategy_fn": create_mirrored_strategy, - "save_format": "h5", - "use_regularizer": True, - }, - { - "testcase_name": "h5_legacy_distribute", - "strategy_fn": create_mirrored_strategy, - "save_format": "h5", - "use_regularizer": True, - "use_legacy_optimizer": True, - }, - ) - def test_model( - self, - strategy_fn, - use_operator=False, - use_regularizer=False, - policy_name="mixed_float16", - get_config=False, - save_format=None, - use_input_spec=False, - use_legacy_optimizer=False, - ): - self._skip_if_strategy_unsupported(strategy_fn) - self._skip_if_save_format_unsupported(save_format) - if not tf.__internal__.tf2.enabled(): - # The non-legacy optimizer is only supported in TF2 - use_legacy_optimizer = True - if use_regularizer: - weight_regularizer = mp_test_util.IdentityRegularizer() - activity_regularizer = mp_test_util.ReduceSumRegularizer() - else: - weight_regularizer = activity_regularizer = None - with strategy_fn().scope(): - with policy.policy_scope(policy_name): - layer = mp_test_util.MultiplyLayer( - assert_type=tf.float16, - use_operator=use_operator, - regularizer=weight_regularizer, - activity_regularizer=activity_regularizer, - input_shape=(1,), - ) - if use_input_spec: - layer.input_spec = input_spec.InputSpec(shape=(None, 1)) - model = test_utils.get_model_from_layers( - [layer], input_shape=(1,), input_dtype=tf.float16 - ) - if get_config: - config = model.get_config() - model = model.__class__.from_config( - config, - custom_objects={ - "MultiplyLayer": mp_test_util.MultiplyLayer - }, - ) - (layer,) = ( - layer - for layer in model.layers - if isinstance(layer, mp_test_util.MultiplyLayer) - ) - - def loss_fn(y_true, y_pred): - del y_true - return tf.reduce_mean(y_pred) - - # Learning rate is small enough that if applied to a float16 - # variable, the variable will not change. So this tests the - # learning rate not applied to a float16 value, but instead the - # float32 variable. - learning_rate = 2**-14 - if use_legacy_optimizer: - opt = gradient_descent.SGD(learning_rate) - else: - opt = sgd.SGD(learning_rate) - # Use a fixed loss scale, as this test will fail if gradients - # are skipped for a step due to dynamic loss scaling. - opt = loss_scale_optimizer.BaseLossScaleOptimizer( - opt, dynamic=False, initial_scale=8 - ) - model.compile( - opt, - loss=loss_fn, - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones((2, 1)) - y = np.ones((2, 1)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(2) - model.fit(dataset) - # Variable starts at 1, and should have gradient of 2 ** -14 subtracted - # from it. - expected = 1 - 2**-14 - if use_regularizer: - # Weight and activity regularizer each add another 2 ** -14 to the - # gradient. - expected -= 2 * 2**-14 - self.assertEqual(backend.eval(layer.v), expected) - - if save_format: - with object_registration.CustomObjectScope( - { - "MultiplyLayer": mp_test_util.MultiplyLayer, - "loss_fn": loss_fn, - } - ): - self._test_saving(model, dataset, save_format, use_regularizer) - - def _test_saving(self, model, dataset, save_format, use_regularizer): - # Save and load model, asserting variable does not change - save_path = os.path.join(self.get_temp_dir(), "model") - model.save(save_path, save_format=save_format) - model = save.load_model(save_path) - (layer,) = ( - layer - for layer in model.layers - if "MultiplyLayer" in layer.__class__.__name__ - ) - expected = 1 - 2**-14 - if use_regularizer: - expected -= 2 * 2**-14 - self.assertEqual(backend.eval(layer.v), expected) - - # Continue training, and assert variable is correct value - model.fit(dataset) - new_expected = expected - 2**-14 - if use_regularizer: - new_expected -= 2 * 2**-14 - self.assertEqual(backend.eval(layer.v), new_expected) - - # Load saved model again, and assert variable is previous value - model = save.load_model(save_path) - (layer,) = ( - layer - for layer in model.layers - if "MultiplyLayer" in layer.__class__.__name__ - ) - self.assertEqual(backend.eval(layer.v), expected) - - # Ensure various dtype-related aspects of the layer are correct - self.assertEqual(layer.dtype, "float32") - self.assertEqual(layer.dtype_policy.name, "mixed_float16") - self.assertEqual(layer.v.dtype, "float32") - self.assertEqual(layer(np.ones((2, 1))).dtype, "float16") - - self.assertEqual(type(model.dtype_policy), policy.Policy) - if tf.__internal__.tf2.enabled(): - self.assertEqual( - layer.get_config()["dtype"], - { - "module": "keras.mixed_precision", - "class_name": "Policy", - "config": {"name": "mixed_float16"}, - "registered_name": None, - }, - ) - else: - self.assertEqual( - layer.get_config()["dtype"], - { - "class_name": "Policy", - "config": {"name": "mixed_float16"}, - }, - ) - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - {"testcase_name": "base", "strategy_fn": default_strategy_fn}, - { - "testcase_name": "distribute", - "strategy_fn": create_mirrored_strategy, - }, - ) - def test_fixed_loss_scaling(self, strategy_fn): - # The non-legacy optimizer is only supported in TF2 - use_legacy_optimizer = not tf.__internal__.tf2.enabled() - # Note: We do not test mixed precision in this method, only loss - # scaling. - loss_scale = 8.0 - batch_size = 4 - with strategy_fn().scope(): - x = layers.Input(shape=(1,), batch_size=batch_size) - layer = mp_test_util.MultiplyLayer() - y = layer(x) - - # The gradient of 'y' at this point is 1. With loss scaling, the - # gradient is 'loss_scale'. We divide by the batch size since the - # loss is averaged across batch elements. - expected_gradient = loss_scale / batch_size - identity_with_grad_check_fn = ( - mp_test_util.create_identity_with_grad_check_fn( - [expected_gradient] - ) - ) - y = core.Lambda(identity_with_grad_check_fn)(y) - model = models.Model(inputs=x, outputs=y) - - def loss_fn(y_true, y_pred): - del y_true - return tf.reduce_mean(y_pred) - - if use_legacy_optimizer: - opt = gradient_descent.SGD(1.0) - else: - opt = sgd.SGD(1.0) - opt = loss_scale_optimizer.BaseLossScaleOptimizer( - opt, dynamic=False, initial_scale=loss_scale - ) - model.compile( - opt, loss=loss_fn, run_eagerly=test_utils.should_run_eagerly() - ) - - self.assertEqual(backend.eval(layer.v), 1) - x = np.ones((batch_size, 1)) - y = np.ones((batch_size, 1)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(batch_size) - model.fit(dataset) - # Variable starts at 1, and should have gradient of 1 subtracted from - # it. - expected = 0 - self.assertEqual(backend.eval(layer.v), expected) - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - {"testcase_name": "base", "strategy_fn": default_strategy_fn}, - { - "testcase_name": "distribute", - "strategy_fn": create_mirrored_strategy, - }, - { - "testcase_name": "loss_scaling", - "strategy_fn": create_mirrored_strategy, - "use_loss_scaling": True, - }, - ) - def test_advanced_model(self, strategy_fn, use_loss_scaling=False): - # The advanced model tests mixed-precision-related features that would - # occur in a resnet50 model. It tests a model that has: - # * Multiple layers, some which use auto-cast variables and some which - # do not - # * Regularization on some variables and not others. - # * A fixed loss scale (if use_loss_scaling is True) - - strategy = strategy_fn() - if use_loss_scaling: - loss_scale = 8.0 - learning_rate = 2**-14 - # The non-legacy optimizer is only supported in TF2 - use_legacy_optimizer = not tf.__internal__.tf2.enabled() - - with strategy.scope(): - with policy.policy_scope(policy.Policy("mixed_float16")): - x = layers.Input(shape=(1,), batch_size=2) - layer1 = mp_test_util.MultiplyLayer( - assert_type=tf.float16, - regularizer=mp_test_util.IdentityRegularizer(), - use_operator=True, - ) - layer2 = mp_test_util.MultiplyLayerWithoutAutoCast( - assert_type=tf.float16, use_operator=True - ) - layer3 = mp_test_util.MultiplyLayer( - assert_type=tf.float16, use_operator=False - ) - layer4 = mp_test_util.MultiplyLayerWithoutAutoCast( - assert_type=tf.float16, - regularizer=mp_test_util.IdentityRegularizer(), - use_operator=False, - ) - y = layer1(x) - y = layer2(y) - y = layer3(y) - y = layer4(y) - if use_loss_scaling: - # The gradient of 'y' at this point is 1. With loss scaling, - # the gradient is 'loss_scale'. We divide by the batch size - # of 2 since the loss is averaged across batch elements. - expected_gradient = loss_scale / 2 - identity_with_grad_check_fn = ( - mp_test_util.create_identity_with_grad_check_fn( - expected_dtype=tf.float16, - expected_gradient=[expected_gradient], - ) - ) - y = core.Lambda(identity_with_grad_check_fn)(y) - model = models.Model(inputs=x, outputs=y) - - def loss_fn(y_true, y_pred): - del y_true - return tf.reduce_mean(y_pred) - - if use_legacy_optimizer: - opt = gradient_descent.SGD(learning_rate) - else: - opt = sgd.SGD(learning_rate) - if use_loss_scaling: - opt = loss_scale_optimizer.BaseLossScaleOptimizer( - opt, dynamic=False, initial_scale=loss_scale - ) - model.compile( - opt, - loss=loss_fn, - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones((2, 1)) - y = np.ones((2, 1)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(2) - model.fit(dataset) - for layer in (layer1, layer2, layer3, layer4): - if layer.losses: - # Layer has weight regularizer - self.assertEqual(backend.eval(layer.v), 1 - 2 * learning_rate) - else: - # Layer does not have weight regularizer - self.assertEqual(backend.eval(layer.v), 1 - learning_rate) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - @parameterized.named_parameters( - {"testcase_name": "base", "strategy_fn": default_strategy_fn}, - { - "testcase_name": "distribute", - "strategy_fn": create_mirrored_strategy, - }, - { - "testcase_name": "get_config", - "strategy_fn": create_mirrored_strategy, - "get_config": True, - }, - ) - def test_dynamic_loss_scaling(self, strategy_fn, get_config=False): - strategy = strategy_fn() - initial_loss_scale = 2.0 - batch_size = 4 - expected_gradient = backend.variable( - [initial_loss_scale / batch_size], dtype=tf.float16 - ) - # If this variable is set to True, the model below will have NaN - # gradients - have_nan_gradients = backend.variable(False, dtype=tf.bool) - with strategy.scope(): - opt = sgd.SGD(1.0) - opt = loss_scale_optimizer.BaseLossScaleOptimizer( - opt, initial_scale=initial_loss_scale, dynamic_growth_steps=2 - ) - with policy.policy_scope("mixed_float16"): - x = layers.Input( - shape=(1,), batch_size=batch_size, dtype=tf.float16 - ) - layer = mp_test_util.MultiplyLayer(assert_type=tf.float16) - y = layer(x) - identity_with_nan_grads = ( - mp_test_util.create_identity_with_nan_gradients_fn( - have_nan_gradients - ) - ) - y = core.Lambda(identity_with_nan_grads)(y) - identity_with_grad_check_fn = ( - mp_test_util.create_identity_with_grad_check_fn( - expected_dtype=tf.float16, - expected_gradient=expected_gradient, - ) - ) - y = core.Lambda(identity_with_grad_check_fn)(y) - model = models.Model(inputs=x, outputs=y) - if get_config: - config = model.get_config() - with SafeModeScope(safe_mode=False): - model = model.__class__.from_config( - config, - custom_objects={ - "MultiplyLayer": mp_test_util.MultiplyLayer - }, - ) - (layer,) = ( - layer - for layer in model.layers - if isinstance(layer, mp_test_util.MultiplyLayer) - ) - - def loss_fn(y_true, y_pred): - del y_true - return tf.reduce_mean(y_pred) - - model.compile( - opt, - loss=loss_fn, - run_eagerly=test_utils.should_run_eagerly(), - ) - - self.assertEqual(backend.eval(layer.v), 1) - x = np.ones((batch_size, 1)) - y = np.ones((batch_size, 1)) - dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(batch_size) - model.fit(dataset) - # The variables starts with 1 and has a gradient of 1, so will go down - # by 1 each step. - self.assertEqual(backend.eval(layer.v), 0) - - model.fit(dataset) - self.assertEqual(backend.eval(layer.v), -1) - - # There have been two steps without NaNs, so the loss scale will double - backend.set_value( - expected_gradient, backend.get_value(expected_gradient * 2) - ) - model.fit(dataset) - self.assertEqual(backend.eval(layer.v), -2) - - # Next test with NaN gradients. - backend.set_value(have_nan_gradients, True) - model.fit(dataset) - # Variable should not be updated - self.assertEqual(backend.eval(layer.v), -2) - - # Test with finite gradients again - backend.set_value(have_nan_gradients, False) - # The loss scale will be halved due to the NaNs, so the gradient will - # also be halved - backend.set_value( - expected_gradient, backend.get_value(expected_gradient / 2) - ) - model.fit(dataset) - self.assertEqual(backend.eval(layer.v), -3) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_compile_wraps_with_loss_scale_optimizer(self): - x = layers.Input(shape=(1,)) - y = mp_test_util.MultiplyLayer()(x) - - # The non-legacy optimizer is only supported in TF2 - use_legacy_optimizer = ( - not tf.__internal__.tf2.enabled() or not tf.executing_eagerly() - ) - - with policy.policy_scope("mixed_float16"): - # Test optimizer is automatically wrapped with LSO - model = models.Model(x, y) - if use_legacy_optimizer: - optimizer = gradient_descent.SGD(1.0) - else: - optimizer = sgd.SGD(1.0) - model.compile(optimizer, "mse") - self.assertIsInstance( - model.optimizer, loss_scale_optimizer.BaseLossScaleOptimizer - ) - self.assertEqual( - backend.get_value(model.optimizer.learning_rate), 1.0 - ) - - # Test optimizer specified as string is automatically wrapped in LSO - model = models.Model(x, y) - model.compile("sgd", "mse") - self.assertIsInstance( - model.optimizer, loss_scale_optimizer.BaseLossScaleOptimizer - ) - - # Test if an LSO is passed, optimizer is not automatically wrapped - # with another LSO - model = models.Model(x, y) - if use_legacy_optimizer: - optimizer = gradient_descent.SGD(1.0) - else: - optimizer = sgd.SGD(1.0) - optimizer = loss_scale_optimizer.BaseLossScaleOptimizer( - optimizer, dynamic_growth_steps=2 - ) - model.compile(optimizer, "mse") - self.assertIsInstance( - model.optimizer, loss_scale_optimizer.BaseLossScaleOptimizer - ) - self.assertEqual(model.optimizer.dynamic_growth_steps, 2) - - with policy.policy_scope("mixed_bfloat16"): - # Test mixed_bfloat16 models are not automatically wrapped with LSO - model = models.Model(x, y) - if use_legacy_optimizer: - optimizer = gradient_descent.SGD(1.0) - else: - optimizer = sgd.SGD(1.0) - model.compile(optimizer, "mse") - self.assertNotIsInstance( - model.optimizer, loss_scale_optimizer.BaseLossScaleOptimizer - ) - self.assertIsInstance( - model.optimizer, - gradient_descent.SGD if use_legacy_optimizer else sgd.SGD, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_pass_invalid_optimizer_with_loss_scaling(self): - with policy.policy_scope(policy.Policy("mixed_float16")): - x = layers.Input(shape=(1,)) - y = mp_test_util.MultiplyLayer()(x) - model = models.Model(x, y) - if tf.executing_eagerly(): - error_msg = "Use a `tf.keras` Optimizer instead" - else: - error_msg = 'optimizer" must be an instance of ' - with self.assertRaisesRegex(ValueError, error_msg): - model.compile(optimizer_v1.SGD(1.0), "mse") - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_functional_model_loss_dtype(self): - with policy.policy_scope("float16"): - x = layers.Input(shape=(1,)) - y = mp_test_util.MultiplyLayer()(x) - model = models.Model(x, y) - model.add_loss(tf.cast(y, "float32")) - # The loss should not be casted to the policy's dtype. - self.assertEqual(model.losses[0].dtype, "float32") - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - { - "testcase_name": "base", - "strategy_fn": default_strategy_fn, - }, - { - "testcase_name": "distribute", - "strategy_fn": create_mirrored_strategy, - }, - { - "testcase_name": "base_h5", - "strategy_fn": default_strategy_fn, - "h5": True, - }, - { - "testcase_name": "distribute_h5", - "strategy_fn": create_mirrored_strategy, - "h5": True, - }, - ) - def test_save_weights_with_autocast_vars(self, strategy_fn, h5=False): - with strategy_fn().scope(): - with policy.policy_scope("mixed_float16"): - x = layers.Input(shape=(1,), batch_size=2) - layer = mp_test_util.MultiplyLayer(assert_type=tf.float16) - y = layer(x) - model = models.Model(inputs=x, outputs=y) - - model.set_weights([np.array(100.0)]) - x = np.ones((2, 1)) - self.assertAllClose(backend.get_value(model(x)), x * 100.0) - suffix = ".h5" if h5 else "" - weights_file = os.path.join(self.get_temp_dir(), "weights" + suffix) - model.save_weights(weights_file) - - model.set_weights([np.array(200.0)]) - self.assertAllClose(backend.get_value(model(x)), x * 200.0) - model.load_weights(weights_file) - self.assertAllClose(backend.get_value(model(x)), x * 100.0) - self.assertEqual(model.get_weights(), [np.array(100.0)]) - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - { - "testcase_name": "base", - "strategy_fn": default_strategy_fn, - }, - { - "testcase_name": "distribute", - "strategy_fn": create_mirrored_strategy, - }, - { - "testcase_name": "distribute_legacy", - "strategy_fn": create_mirrored_strategy, - "use_legacy_optimizer": True, - }, - { - "testcase_name": "different_var_name", - "strategy_fn": default_strategy_fn, - "var_name": "w", - }, - { - "testcase_name": "different_var_name_distribute", - "strategy_fn": create_mirrored_strategy, - "var_name": "w", - }, - ) - def test_save_slot_variables_with_autocast_vars( - self, strategy_fn, var_name="v", use_legacy_optimizer=False - ): - if not tf.__internal__.tf2.enabled(): - # The non-legacy optimizer is only supported in TF2 - use_legacy_optimizer = True - p = policy.Policy("mixed_float16") - with strategy_fn().scope(), policy.policy_scope(p): - x = layers.Input(shape=(2,), batch_size=2) - # Having a var_name other than 'v' tests that a fixed bug - # (b/134713714) does not reoccur. The bug was that a crash would - # occur when saving a checkpoint where an AutoCastVariable with a - # slot variable would have a different name than the layer - # attribute's name (layer.v in this case). - layer = mp_test_util.MultiplyLayer( - assert_type=tf.float16, var_name=var_name - ) - y = layer(x) - model = models.Model(inputs=x, outputs=y) - if use_legacy_optimizer: - opt = gradient_descent.SGD(1.0, 1.0) - else: - opt = sgd.SGD(1.0, 1.0) - opt = loss_scale_optimizer.BaseLossScaleOptimizer( - opt, dynamic=False, initial_scale=1 - ) - model.compile( - optimizer=opt, - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - - def get_momentum_slot(): - if use_legacy_optimizer: - return opt.get_slot(layer.v, "momentum") - else: - return opt.inner_optimizer.momentums[0] - - model.fit(np.ones((2, 2)), np.zeros((2, 2)), batch_size=2) - weights_file = os.path.join(self.get_temp_dir(), "weights") - model.save_weights(weights_file) - saved_slot = backend.get_value(get_momentum_slot()) - - model.fit(np.ones((2, 2)), np.zeros((2, 2)), batch_size=2) - new_slot = backend.get_value(get_momentum_slot()) - self.assertNotEqual(new_slot, saved_slot) - - model.load_weights(weights_file) - restored_slot = backend.get_value(get_momentum_slot()) - self.assertEqual(restored_slot, saved_slot) - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters(*TESTCASES) - def test_save_weights_with_dynamic_loss_scaling(self, strategy_fn): - strategy = strategy_fn() - if ( - isinstance(strategy, tf.distribute.MirroredStrategy) - and not tf.executing_eagerly() - ): - # TODO(b/121381184): Enable running the test in this case. - return - - # The non-legacy optimizer is only supported in TF2 - use_legacy_optimizer = not tf.__internal__.tf2.enabled() - - # Create and run model. - with strategy.scope(): - x = layers.Input(shape=(2,), batch_size=2, dtype=tf.float32) - y = mp_test_util.MultiplyLayer(assert_type=tf.float32)(x) - model = models.Model(inputs=x, outputs=y) - - if use_legacy_optimizer: - opt = gradient_descent.SGD(1.0) - else: - opt = sgd.SGD(1.0) - opt = loss_scale_optimizer.BaseLossScaleOptimizer( - opt, initial_scale=1.0, dynamic_growth_steps=2.0 - ) - model.compile( - optimizer=opt, - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - # Run for 3 steps (6 examples with a batch size of 2) - model.fit(np.zeros((6, 2)), np.zeros((6, 2)), batch_size=2) - self.assertEqual(backend.get_value(opt.loss_scale), 2) - self.assertEqual(backend.get_value(opt.dynamic_counter), 1) - - # Save model weights. - save_prefix = os.path.join(self.get_temp_dir(), "ckpt") - model.save_weights(save_prefix) - - # Run model again for 1 step (2 examples with a batch size of 2) - model.fit(np.zeros((2, 2)), np.zeros((2, 2)), batch_size=2) - self.assertEqual(backend.get_value(opt.loss_scale), 4) - self.assertEqual(backend.get_value(opt.dynamic_counter), 0) - - # Load model weights and ensure loss scale weights are restored. - model.load_weights(save_prefix) - self.assertEqual(backend.get_value(opt.loss_scale), 2) - self.assertEqual(backend.get_value(opt.dynamic_counter), 1) - - @test_combinations.run_all_keras_modes - def test_restore_old_loss_scale_checkpoint(self): - # Ensure a checkpoint from TF 2.2 can be loaded. The checkpoint format - # of LossScaleOptimizer changed, but old checkpoints can still be loaded - # into the legacy optimizers. - opt = gradient_descent.SGD(0.1, momentum=0.1) - opt = loss_scale_optimizer.LossScaleOptimizer(opt) - model = sequential.Sequential( - [ - core.Dense( - 2, - ) - ] - ) - - # The checkpoint and expected values were obtained from the program in - # testdata/BUILD. - ckpt_dir = os.path.join( - flags.FLAGS["test_srcdir"].value, - "org_keras/keras", - "mixed_precision/testdata/lso_ckpt_tf2.2", - ) - # ckpt_dir = test.test_src_dir_path( - # 'python/keras/mixed_precision/testdata/lso_ckpt_tf2.2') - model.load_weights(os.path.join(ckpt_dir, "ckpt")) - model.compile(opt, "mse", run_eagerly=test_utils.should_run_eagerly()) - model(np.zeros((2, 2))) # Create model weights - opt._create_all_weights(model.weights) - expected_kernel = np.array( - [[9.229685, 10.901115], [10.370763, 9.757362]] - ) - expected_slot = np.array([[10.049943, 9.917691], [10.049943, 9.917691]]) - self.assertAllClose(self.evaluate(model.weights[0]), expected_kernel) - self.assertAllClose( - self.evaluate(opt.get_slot(model.weights[0], "momentum")), - expected_slot, - ) - self.assertEqual(self.evaluate(opt.loss_scale), 32768) - self.assertEqual(self.evaluate(opt.dynamic_counter), 1) - - # Check restoring works even after the model is compiled and the weights - # have been created. - model.fit(np.random.normal(size=(2, 2)), np.random.normal(size=(2, 2))) - self.assertNotAllClose(self.evaluate(model.weights[0]), expected_kernel) - self.assertNotAllClose( - self.evaluate(opt.get_slot(model.weights[0], "momentum")), - expected_slot, - ) - model.load_weights(os.path.join(ckpt_dir, "ckpt")) - self.assertAllClose(self.evaluate(model.weights[0]), expected_kernel) - self.assertAllClose( - self.evaluate(opt.get_slot(model.weights[0], "momentum")), - expected_slot, - ) - self.assertEqual(self.evaluate(opt.loss_scale), 32768) - self.assertEqual(self.evaluate(opt.dynamic_counter), 1) - - def test_restore_old_saved_model(self): - saved_model_dir = os.path.join( - flags.FLAGS["test_srcdir"].value, - "org_keras/keras", - "mixed_precision/testdata/lso_savedmodel_tf2.2", - ) - # saved_model_dir = test.test_src_dir_path( - # 'python/keras/mixed_precision/testdata/' - # 'lso_savedmodel_tf2.2') - model = save.load_model(saved_model_dir) - expected_kernel = np.array( - [[9.229685, 10.901115], [10.370763, 9.757362]] - ) - self.assertAllClose(backend.eval(model.weights[0]), expected_kernel) - self.assertEqual( - type(model.optimizer), loss_scale_optimizer.LossScaleOptimizer - ) - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - { - "testcase_name": "base", - "strategy_fn": default_strategy_fn, - }, - { - "testcase_name": "distribute", - "strategy_fn": create_mirrored_strategy, - }, - { - "testcase_name": "base_h5", - "strategy_fn": default_strategy_fn, - "h5": True, - }, - { - "testcase_name": "distribute_h5", - "strategy_fn": create_mirrored_strategy, - "h5": True, - }, - ) - def test_save_model_with_dynamic_loss_scaling(self, strategy_fn, h5=False): - # TODO(reedwm): Support and test saving model with a mixed_[b]float16 - # policy as well. - strategy = strategy_fn() - if ( - isinstance(strategy, tf.distribute.MirroredStrategy) - and not tf.executing_eagerly() - ): - # TODO(b/121381184): Enable running the test in this case. - return - - # Create and run model. - with strategy.scope(): - x = layers.Input(shape=(2,), batch_size=2, dtype=tf.float32) - y = mp_test_util.MultiplyLayer()(x) - model = models.Model(inputs=x, outputs=y) - - # Only test the legacy optimizer. The new optimizer does not - # support saving optimizer weights. - opt = gradient_descent.SGD(1.0) - opt = loss_scale_optimizer.LossScaleOptimizer( - opt, initial_scale=1.0, dynamic_growth_steps=2.0 - ) - model.compile( - optimizer=opt, - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - # Run for 3 steps (6 examples with a batch size of 2) - model.fit(np.ones((6, 2)), np.zeros((6, 2)), batch_size=2) - self.assertEqual(backend.get_value(opt.loss_scale), 2) - self.assertEqual(backend.get_value(opt.dynamic_counter), 1) - (weight,) = model.trainable_weights - orig_weight = backend.get_value(weight) - - # Save model weights. - save_path = os.path.join(self.get_temp_dir(), "model") - model.save(save_path, save_format="h5" if h5 else "tf") - - # Run model again for 1 step (2 examples with a batch size of 2) - model.fit(np.ones((2, 2)), np.zeros((2, 2)), batch_size=2) - new_weight = backend.get_value(weight) - self.assertNotEqual(new_weight, orig_weight) - self.assertEqual(backend.get_value(opt.loss_scale), 4) - self.assertEqual(backend.get_value(opt.dynamic_counter), 0) - - # Load model weights and ensure loss scale weights are restored. - model = save.load_model( - save_path, - custom_objects={"MultiplyLayer": mp_test_util.MultiplyLayer}, - ) - (weight,) = model.trainable_weights - loaded_weight = backend.get_value(weight) - self.assertEqual(loaded_weight, orig_weight) - # Currently the loss scale isn't always saved when the model is saved - # with Model.save(). So we assert the loss scale either has the value - # when it was saved, or the value it was initialized with. - # TODO(reedwm): Always save/restore the loss scale with Model.save(). - self.assertIn(backend.get_value(model.optimizer.loss_scale), (1, 2)) - self.assertIn( - backend.get_value(model.optimizer.dynamic_counter), (0, 1) - ) - - # Test optimizer attributes and type - self.assertEqual(model.optimizer.initial_scale, 1.0) - self.assertEqual(model.optimizer.dynamic_growth_steps, 2.0) - self.assertEqual( - type(model.optimizer), loss_scale_optimizer.LossScaleOptimizer - ) - - -class ApplicationModelTest(test_combinations.TestCase): - """Tests that application models can be built with mixed precision. - - This does not test that such models can be trained in mixed precision, as - doing so takes too much time for a unit test. - """ - - @parameterized.named_parameters( - ("densenet", densenet.DenseNet121), - ("efficientnet", efficientnet.EfficientNetB0), - ("inception_resnet_v2", inception_resnet_v2.InceptionResNetV2), - ("inception_v3", inception_v3.InceptionV3), - ("mobilenet", mobilenet.MobileNet), - ("nasnet", nasnet.NASNetMobile), - ("vgg16", vgg16.VGG16), - ("xception", xception.Xception), - ("resnet50", resnet.ResNet50), - ) - def test_application_model(self, app): - # Run on CPU since model weights may exhaust GPU memory - with policy.policy_scope("mixed_float16"), tf.device("/CPU:0"): - app(weights=None) - - -if __name__ == "__main__": - base_layer_utils.enable_v2_dtype_behavior() - tf.test.main() diff --git a/keras/mixed_precision/policy.py b/keras/mixed_precision/policy.py deleted file mode 100644 index 8751dfc5359..00000000000 --- a/keras/mixed_precision/policy.py +++ /dev/null @@ -1,555 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains the Policy class for mixed precision training.""" - -import contextlib - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer_utils -from keras.mixed_precision import device_compatibility_check -from keras.mixed_precision import loss_scale_optimizer -from keras.saving import serialization_lib - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.mixed_precision.Policy", v1=[]) -class Policy: - """A dtype policy for a Keras layer. - - A dtype policy determines a layer's computation and variable dtypes. Each - layer has a policy. Policies can be passed to the `dtype` argument of layer - constructors, or a global policy can be set with - `tf.keras.mixed_precision.set_global_policy`. - - Args: - name: The policy name, which determines the compute and variable dtypes. - Can be any dtype name, such as `'float32'` or `'float64'`, which causes - both the compute and variable dtypes will be that dtype. Can also be the - string `'mixed_float16'` or `'mixed_bfloat16'`, which causes the compute - dtype to be float16 or bfloat16 and the variable dtype to be float32. - - Typically you only need to interact with dtype policies when using mixed - precision, which is the use of float16 or bfloat16 for computations and - float32 for variables. This is why the term `mixed_precision` appears in the - API name. Mixed precision can be enabled by passing `'mixed_float16'` or - `'mixed_bfloat16'` to `tf.keras.mixed_precision.set_global_policy`. See [the - mixed precision - guide](https://www.tensorflow.org/guide/keras/mixed_precision) for more - information on how to use mixed precision. - - >>> tf.keras.mixed_precision.set_global_policy('mixed_float16') - >>> layer1 = tf.keras.layers.Dense(10) - >>> layer1.dtype_policy # `layer1` will automatically use mixed precision - - >>> # Can optionally override layer to use float32 - >>> # instead of mixed precision. - >>> layer2 = tf.keras.layers.Dense(10, dtype='float32') - >>> layer2.dtype_policy - - >>> # Set policy back to initial float32 for future examples. - >>> tf.keras.mixed_precision.set_global_policy('float32') - - In the example above, passing `dtype='float32'` to the layer is equivalent - to passing `dtype=tf.keras.mixed_precision.Policy('float32')`. In general, - passing a dtype policy name to a layer is equivalent to passing the - corresponding policy, so it is never necessary to explicitly construct a - `Policy` object. - - Note: `Model.compile` will automatically wrap an optimizer with a - `tf.keras.mixed_precision.LossScaleOptimizer` if you use the - `'mixed_float16'` policy. If you use a custom training loop instead of - calling `Model.compile`, you should explicitly use a - `tf.keras.mixed_precision.LossScaleOptimizer` to avoid numeric underflow - with float16. - - ### How a layer uses its policy's compute dtype - - A layer casts its inputs to its compute dtype. This causes the layer's - computations and output to also be in the compute dtype. For example: - - >>> x = tf.ones((4, 4, 4, 4), dtype='float64') - >>> # `layer`'s policy defaults to float32. - >>> layer = tf.keras.layers.Conv2D(filters=4, kernel_size=2) - >>> layer.compute_dtype # Equivalent to layer.dtype_policy.compute_dtype - 'float32' - >>> # `layer` casts its inputs to its compute dtype and does computations in - >>> # that dtype. - >>> y = layer(x) - >>> y.dtype - tf.float32 - - Note that the base `tf.keras.layers.Layer` class inserts the casts. If - subclassing your own layer, you do not have to insert any casts. - - Currently, only tensors in the first argument to the layer's `call` method - are casted (although this will likely be changed in a future minor release). - For example: - - >>> class MyLayer(tf.keras.layers.Layer): - ... # Bug! `b` will not be casted. - ... def call(self, a, b): - ... return a + 1., b + 1. - >>> a = tf.constant(1., dtype="float32") - >>> b = tf.constant(1., dtype="float32") - >>> layer = MyLayer(dtype="float64") - >>> x, y = layer(a, b) - >>> x.dtype - tf.float64 - >>> y.dtype - tf.float32 - - If writing your own layer with multiple inputs, you should either explicitly - cast other tensors to `self.compute_dtype` in `call` or accept all tensors - in the first argument as a list. - - The casting only occurs in TensorFlow 2. If - `tf.compat.v1.disable_v2_behavior()` has been called, you can enable the - casting behavior with - `tf.compat.v1.keras.layers.enable_v2_dtype_behavior()`. - - ### How a layer uses its policy's variable dtype - - The default dtype of variables created by `tf.keras.layers.Layer.add_weight` - is the layer's policy's variable dtype. - - If a layer's compute and variable dtypes differ, `add_weight` will wrap - floating-point variables with a special wrapper called an - `AutoCastVariable`. `AutoCastVariable` is identical to the original - variable except it casts itself to the layer's compute dtype when used - within `Layer.call`. This means if you are writing a layer, you do not have - to explicitly cast the variables to the layer's compute dtype. For example: - - >>> class SimpleDense(tf.keras.layers.Layer): - ... - ... def build(self, input_shape): - ... # With mixed precision, self.kernel is a float32 AutoCastVariable - ... self.kernel = self.add_weight('kernel', (input_shape[-1], 10)) - ... - ... def call(self, inputs): - ... # With mixed precision, self.kernel will be casted to float16 - ... return tf.linalg.matmul(inputs, self.kernel) - ... - >>> layer = SimpleDense(dtype='mixed_float16') - >>> y = layer(tf.ones((10, 10))) - >>> y.dtype - tf.float16 - >>> layer.kernel.dtype - tf.float32 - - A layer author can prevent a variable from being wrapped with an - `AutoCastVariable` by passing `experimental_autocast=False` to `add_weight`, - which is useful if the float32 value of the variable must be accessed within - the layer. - - ### How to write a layer that supports mixed precision and float64. - - For the most part, layers will automatically support mixed precision and - float64 without any additional work, due to the fact the base layer - automatically casts inputs, creates variables of the correct type, and in - the case of mixed precision, wraps variables with `AutoCastVariables`. - - The primary case where you need extra work to support mixed precision or - float64 is when you create a new tensor, such as with `tf.ones` or - `tf.random.normal`, In such cases, you must create the tensor of the correct - dtype. For example, if you call `tf.random.normal`, you must pass the - compute dtype, which is the dtype the inputs have been casted to: - - >>> class AddRandom(tf.keras.layers.Layer): - ... - ... def call(self, inputs): - ... # We must pass `dtype=inputs.dtype`, otherwise a TypeError may - ... # occur when adding `inputs` to `rand`. - ... rand = tf.random.normal(shape=inputs.shape, dtype=inputs.dtype) - ... return inputs + rand - >>> layer = AddRandom(dtype='mixed_float16') - >>> y = layer(x) - >>> y.dtype - tf.float16 - - If you did not pass `dtype=inputs.dtype` to `tf.random.normal`, a - `TypeError` would have occurred. This is because the `tf.random.normal`'s - dtype defaults to `"float32"`, but the input dtype is float16. You cannot - add a float32 tensor with a float16 tensor. - """ - - def __init__(self, name): - if isinstance(name, tf.DType): - raise TypeError( - "'name' must be a string, not a DType. " - f"Instead, pass DType.name. Received: name={name.name}" - ) - elif not isinstance(name, str): - raise TypeError(f"'name' must be a string, but got: {name}") - self._name = name - self._compute_dtype, self._variable_dtype = self._parse_name(name) - if name in ("mixed_float16", "mixed_bloat16"): - device_compatibility_check.log_device_compatibility_check(name) - - def _parse_name(self, name): - """Parses a Policy name into a compute and variable dtype. - - Args: - name: The name of the policy: - - Returns: - The (compute_dtype, variable_dtype) pair. - """ - if name.endswith("_float32_vars"): - error_msg = ( - "Policies ending in '_float32_vars' have been removed " - "from TensorFlow." - ) - if name in ("infer_float32_vars", "infer_with_float32_vars"): - error_msg += ( - " Please use the 'mixed_float16' or 'mixed_bfloat16' " - "policy instead." - ) - elif name == "float16_with_float32_vars": - error_msg += " Please use the 'mixed_float16' policy instead." - elif name == "bfloat16_with_float32_vars": - error_msg += " Please use the 'mixed_bfloat16' policy instead." - error_msg += f" Got policy name: '{name}'" - raise ValueError(error_msg) - - if name == "mixed_float16": - return "float16", "float32" - elif name == "mixed_bfloat16": - return "bfloat16", "float32" - elif name == "_infer": - # The "_infer" policy exists only for compatibility with TF 1, where - # "_infer" is the default. The behavior matches the behavior of TF - # 1's behavior before policies were introduced. With "_infer", the - # computation and variable dtype are inferred from the first input - # the first time the layer is called. Once the layer is called for - # the first time, the layer's policy will change to the dtype of the - # first input, and it will no longer have the "_infer" policy. - # - # The infer policy should be considered an implementation detail and - # may be removed in the future. - return None, None - - try: - dtype = tf.as_dtype(name).name - except TypeError: - raise ValueError( - f"Cannot convert value {name} to a mixed precision Policy. " - "Valid policies include 'mixed_float16', 'mixed_bfloat16', " - "and the name of any dtype such as 'float32'." - ) - return dtype, dtype - - @property - def variable_dtype(self): - """The variable dtype of this policy. - - This is the dtype layers will create their variables in, unless a layer - explicitly chooses a different dtype. If this is different than - `Policy.compute_dtype`, Layers will cast variables to the compute dtype - to avoid type errors. - - Variable regularizers are run in the variable dtype, not the compute - dtype. - - Returns: - The variable dtype of this policy, as a string. - """ - return self._variable_dtype - - @property - def compute_dtype(self): - """The compute dtype of this policy. - - This is the dtype layers will do their computations in. Typically layers - output tensors with the compute dtype as well. - - Note that even if the compute dtype is float16 or bfloat16, hardware - devices may not do individual adds, multiplies, and other fundamental - operations in float16 or bfloat16, but instead may do some of them in - float32 for numeric stability. The compute dtype is the dtype of the - inputs and outputs of the TensorFlow ops that the layer executes. - Internally, many TensorFlow ops will do certain internal calculations in - float32 or some other device-internal intermediate format with higher - precision than float16/bfloat16, to increase numeric stability. - - For example, a `tf.keras.layers.Dense` layer, when run on a GPU with a - float16 compute dtype, will pass float16 inputs to `tf.linalg.matmul`. - But, `tf.linalg.matmul` will do use float32 intermediate math. The - performance benefit of float16 is still apparent, due to increased - memory bandwidth and the fact modern GPUs have specialized hardware for - computing matmuls on float16 inputs while still keeping intermediate - computations in float32. - - Returns: - The compute dtype of this policy, as a string. - """ - return self._compute_dtype - - @property - def name(self): - """Returns the name of this policy.""" - return self._name - - def __repr__(self): - return f'' - - def get_config(self): - return {"name": self.name} - - @classmethod - def from_config(cls, config, custom_objects=None): - del custom_objects - if "loss_scale" in config: - config = config.copy() - # Policy.get_config in TensorFlow 2.3 and below had a loss_scale. We - # silently drop it. - del config["loss_scale"] - return cls(**config) - - -# The current global policy in effect. If None, it means the current value of -# floatx should be used as the policy if the V2 dtype behavior is enabled, -# or "_infer" otherwise. -# TODO(reedwm): Make this thread local? -_global_policy = None - - -@keras_export("keras.mixed_precision.global_policy", v1=[]) -def global_policy(): - """Returns the global dtype policy. - - The global policy is the default `tf.keras.mixed_precision.Policy` used for - layers, if no policy is passed to the layer constructor. If no policy has - been set with `keras.mixed_precision.set_global_policy`, this will return a - policy constructed from `tf.keras.backend.floatx()` (floatx defaults to - float32). - - >>> tf.keras.mixed_precision.global_policy() - - >>> tf.keras.layers.Dense(10).dtype_policy # Defaults to the global policy - - - If TensorFlow 2 behavior has been disabled with - `tf.compat.v1.disable_v2_behavior()`, this will instead return a special - "_infer" policy which infers the dtype from the dtype of the first input the - first time the layer is called. This behavior matches the behavior that - existed in TensorFlow 1. - - See `tf.keras.mixed_precision.Policy` for more information on policies. - - Returns: - The global Policy. - """ - if _global_policy is None: - if base_layer_utils.v2_dtype_behavior_enabled(): - return Policy(backend.floatx()) - else: - return Policy("_infer") - return _global_policy - - -def _check_if_mixed_precision_graph_rewrite_is_enabled(policy): - if tf.__internal__.train.is_mixed_precision_graph_rewrite_enabled(): - raise ValueError( - 'The global dtype policy cannot be set to "{policy.name}", because ' - "the mixed precision graph rewrite has already been enabled.\n" - "At most, one of the following can be called:\n\n" - " 1. tf.compat.v1.train.enable_mixed_precision_graph_rewrite() " - "(You called this first)\n" - " 2. tf.keras.mixed_precision.set_global_policy() with a mixed " - "precision policy (You called this second)\n\n" - "You called both functions, which is an error, because both " - "functions enable you to use mixed precision. If in doubt which " - "function to use, use the second, as it supports Eager execution " - "and is more customizable.".format(policy=policy) - ) - - -@keras_export("keras.mixed_precision.set_global_policy", v1=[]) -def set_global_policy(policy): - """Sets the global dtype policy. - - The global policy is the default `tf.keras.mixed_precision.Policy` used for - layers, if no policy is passed to the layer constructor. - - >>> tf.keras.mixed_precision.set_global_policy('mixed_float16') - >>> tf.keras.mixed_precision.global_policy() - - >>> tf.keras.layers.Dense(10).dtype_policy - - >>> # Global policy is not used if a policy - >>> # is directly passed to constructor - >>> tf.keras.layers.Dense(10, dtype='float64').dtype_policy - - >>> tf.keras.mixed_precision.set_global_policy('float32') - - If no global policy is set, layers will instead default to a Policy - constructed from `tf.keras.backend.floatx()`. - - To use mixed precision, the global policy should be set to `'mixed_float16'` - or `'mixed_bfloat16'`, so that every layer uses a 16-bit compute dtype and - float32 variable dtype by default. - - Only floating point policies can be set as the global policy, such as - `'float32'` and `'mixed_float16'`. Non-floating point policies such as - `'int32'` and `'complex64'` cannot be set as the global policy because most - layers do not support such policies. - - See `tf.keras.mixed_precision.Policy` for more information. - - Args: - policy: A Policy, or a string that will be converted to a Policy. Can also - be None, in which case the global policy will be constructed from - `tf.keras.backend.floatx()` - """ - global _global_policy - if not base_layer_utils.v2_dtype_behavior_enabled(): - raise ValueError( - "The global policy can only be set in TensorFlow 2 or if " - "V2 dtype behavior has been set. To enable V2 dtype " - "behavior, call " - '"tf.compat.v1.keras.layers.enable_v2_dtype_behavior()"' - ) - if policy is not None and not isinstance(policy, Policy): - policy = Policy(policy) - is_mixed_policy = ( - policy is not None and policy.compute_dtype != policy.variable_dtype - ) - if is_mixed_policy: - _check_if_mixed_precision_graph_rewrite_is_enabled(policy) - if ( - policy is not None - and policy.compute_dtype is not None - and not tf.as_dtype(policy.compute_dtype).is_floating - ): - raise ValueError( - "set_global_policy can only be used to set the global " - 'policy to floating-point policies, such as "float32" and ' - f'"mixed_float16", but got policy: {policy.name}' - ) - _global_policy = policy - tf.__internal__.train.set_using_mixed_precision_policy(is_mixed_policy) - - -# TODO(reedwm): Make this thread local -@contextlib.contextmanager -def policy_scope(policy): - """A context manager that sets the global Policy under it. - - Args: - policy: A Policy, or a string that will be converted to a Policy.. - - Yields: - Nothing. - """ - old_policy = _global_policy - try: - set_global_policy(policy) - yield - finally: - set_global_policy(old_policy) - - -def get_policy(identifier): - if isinstance(identifier, Policy): - dtype_policy = identifier - elif isinstance(identifier, dict): - dtype_policy = deserialize(identifier) - elif isinstance(identifier, str) and identifier in ( - "mixed_float16", - "mixed_bfloat16", - ): - # The isinstance check is required since np.dtype raises an error if - # compared to a non-dtype string. - dtype_policy = Policy(identifier) - elif identifier: - dtype_policy = Policy(tf.as_dtype(identifier).name) - else: - dtype_policy = global_policy() - if ( - dtype_policy.name == "mixed_float16" - and not loss_scale_optimizer.strategy_supports_loss_scaling() - ): - # Although only loss scaling doesn't support certain strategies, to - # avoid confusion, we disallow the 'mixed_float16' policy with - # unsupported strategies. This is because 'mixed_float16' requires - # loss scaling for numeric stability. - strategy = tf.distribute.get_strategy() - raise ValueError( - "Mixed precision is not supported with the " - f"tf.distribute.Strategy: {strategy.__class__.__name__}. " - "Either stop using mixed precision by removing the use of " - f"the {dtype_policy.name} policy or " - "use a different Strategy, e.g. a MirroredStrategy." - ) - return dtype_policy - - -def _is_convertible_to_dtype(dtype): - try: - tf.as_dtype(dtype) - return True - except TypeError: - return False - - -def _policy_equivalent_to_dtype(policy): - """Returns True if the Policy is equivalent to a single dtype. - - A policy is equivalent to a single dtype if the policy's compute and - variable dtypes are the same and the policy's type is Policy and not a - subclass of Policy. - - The "_infer" policy is considered equivalent to a single dtype. - - Args: - policy: A Policy. - - Returns: - True, if the policy is equivalent to a single dtype. - """ - # We use type() instead of isinstance because a subclass of Policy is never - # equivalent to a dtype. - return type(policy) == Policy and ( - policy.name == "_infer" or _is_convertible_to_dtype(policy.name) - ) - - -def serialize(policy): - if _policy_equivalent_to_dtype(policy): - # We return either None or the policy name for compatibility with older - # versions of Keras. If the policy name is returned, it is a dtype - # string such as 'float32'. - return None if policy.name == "_infer" else policy.name - return serialization_lib.serialize_keras_object(policy) - - -def deserialize(config, custom_objects=None): - if isinstance(config, str) and _is_convertible_to_dtype(config): - return Policy(config) - if config is None: - return Policy("_infer") - # PolicyV1 was an old version of Policy that was removed. Deserializing it - # turns it into a (non-V1) Policy. - module_objects = {"Policy": Policy, "PolicyV1": Policy} - return serialization_lib.deserialize_keras_object( - config, - module_objects=module_objects, - custom_objects=custom_objects, - printable_module_name="dtype policy", - ) diff --git a/keras/mixed_precision/policy_test.py b/keras/mixed_precision/policy_test.py deleted file mode 100644 index 5131ce085b7..00000000000 --- a/keras/mixed_precision/policy_test.py +++ /dev/null @@ -1,314 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests Policies.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.engine import base_layer_utils -from keras.mixed_precision import device_compatibility_check -from keras.mixed_precision import policy as mp_policy -from keras.optimizers.legacy import gradient_descent -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.platform import tf_logging - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class PolicyTest(tf.test.TestCase, parameterized.TestCase): - """Tests Policies.""" - - @test_utils.enable_v2_dtype_behavior - def test_dtype_attributes(self): - for dtype in "int32", "bool", "float16", "float32": - policy = mp_policy.Policy(dtype) - self.assertEqual(policy.name, dtype) - self.assertEqual(policy.compute_dtype, dtype) - self.assertEqual(policy.variable_dtype, dtype) - - for dtype in "float16", "bfloat16": - policy = mp_policy.Policy("mixed_" + dtype) - self.assertEqual(policy.name, "mixed_" + dtype) - self.assertEqual(policy.compute_dtype, dtype) - self.assertEqual(policy.variable_dtype, "float32") - - policy = mp_policy.Policy("_infer") - self.assertEqual(policy.compute_dtype, None) - self.assertEqual(policy.variable_dtype, None) - - @test_utils.enable_v2_dtype_behavior - def test_repr(self): - # Test Policy repr - for policy in ( - "float32", - "int8", - "mixed_float16", - "mixed_bfloat16", - "_infer", - ): - self.assertEqual( - repr(mp_policy.Policy(policy)), f'' - ) - - @test_utils.enable_v2_dtype_behavior - def test_policy_errors(self): - # Test passing invalid strings - - with self.assertRaisesRegex( - ValueError, "Cannot convert value abc to a mixed precision Policy." - ): - mp_policy.Policy("abc") - - # Test passing a DType - with self.assertRaisesRegex( - TypeError, "'name' must be a string, not a DType. " - ): - mp_policy.Policy(tf.float16) - - # Test passing a non-DType invalid type - with self.assertRaisesRegex( - TypeError, "'name' must be a string, but got: 5" - ): - mp_policy.Policy(5) - - # Test passing a now-removed policy ending in float32_vars - with self.assertRaisesRegex( - ValueError, - "Policies ending in '_float32_vars' have been removed " - "from TensorFlow. Please use the 'mixed_float16' or " - "'mixed_bfloat16' policy instead. Got policy name: " - "'infer_float32_vars'", - ): - mp_policy.Policy("infer_float32_vars") - with self.assertRaisesRegex( - ValueError, - "Policies ending in '_float32_vars' have been removed " - "from TensorFlow. Please use the 'mixed_float16' policy " - "instead. Got policy name: 'float16_with_float32_vars'", - ): - mp_policy.Policy("float16_with_float32_vars") - with self.assertRaisesRegex( - ValueError, - "Policies ending in '_float32_vars' have been removed " - "from TensorFlow. Please use the 'mixed_bfloat16' policy " - "instead. Got policy name: 'bfloat16_with_float32_vars'", - ): - mp_policy.Policy("bfloat16_with_float32_vars") - with self.assertRaisesRegex( - ValueError, - "Policies ending in '_float32_vars' have been removed " - "from TensorFlow. Got policy name: " - "'int8_with_float32_vars'", - ): - mp_policy.Policy("int8_with_float32_vars") - - @test_utils.enable_v2_dtype_behavior - def test_global_policy(self): - if base_layer_utils.v2_dtype_behavior_enabled(): - default_policy = "float32" - else: - default_policy = "_infer" - self.assertEqual(mp_policy.global_policy().name, default_policy) - try: - mp_policy.set_global_policy("mixed_float16") - self.assertEqual(mp_policy.global_policy().name, "mixed_float16") - # Policies are not associated with a graph - with tf.Graph().as_default(): - self.assertEqual( - mp_policy.global_policy().name, "mixed_float16" - ) - mp_policy.set_global_policy("_infer") - self.assertEqual(mp_policy.global_policy().name, "_infer") - policy = mp_policy.Policy("mixed_bfloat16") - mp_policy.set_global_policy(policy) - self.assertIs(mp_policy.global_policy(), policy) - finally: - mp_policy.set_global_policy(None) - - @test_utils.enable_v2_dtype_behavior - def test_global_policy_dtype_error(self): - with self.assertRaisesRegex( - ValueError, - "set_global_policy can only be used to set the global policy to " - 'floating-point policies, such as "float32" and "mixed_float16", ' - "but got policy: int32", - ): - mp_policy.set_global_policy("int32") - with self.assertRaisesRegex( - ValueError, - "set_global_policy can only be used to set the global policy to " - 'floating-point policies, such as "float32" and "mixed_float16", ' - "but got policy: complex64", - ): - mp_policy.set_global_policy(mp_policy.Policy("complex64")) - - @test_utils.enable_v2_dtype_behavior - def test_device_compatibility_warning(self): - if not tf.executing_eagerly(): - self.skipTest("Run in eager mode only.") - - device_compatibility_check._logged_compatibility_check = False - with tf.compat.v1.test.mock.patch.object( - tf_logging, "warning" - ) as mock_warn: - mp_policy.Policy("mixed_float16") - if tf.config.list_physical_devices("GPU"): - mock_warn.assert_not_called() - else: - self.assertRegex( - mock_warn.call_args[0][0], - r"Mixed precision compatibility check \(mixed_float16\): " - r"WARNING.*", - ) - - if tf.config.list_physical_devices("GPU"): - # Assert message is only logged once - with tf.compat.v1.test.mock.patch.object( - tf_logging, "warning" - ) as mock_warn: - mp_policy.Policy("mixed_float16") - mock_warn.assert_not_called() - - @test_utils.enable_v2_dtype_behavior - def test_policy_scope(self): - if base_layer_utils.v2_dtype_behavior_enabled(): - default_policy = "float32" - else: - default_policy = "_infer" - with mp_policy.policy_scope("mixed_float16"): - self.assertEqual(mp_policy.global_policy().name, "mixed_float16") - with mp_policy.policy_scope("_infer"): - self.assertEqual(mp_policy.global_policy().name, "_infer") - self.assertEqual(mp_policy.global_policy().name, "mixed_float16") - self.assertEqual(mp_policy.global_policy().name, default_policy) - - @test_utils.enable_v2_dtype_behavior - def test_config(self): - for policy in ( - mp_policy.Policy("float16"), - mp_policy.Policy("float32"), - mp_policy.Policy("int16"), - mp_policy.Policy("mixed_float16"), - mp_policy.Policy("mixed_bfloat16"), - mp_policy.Policy("_infer"), - ): - config = policy.get_config() - new_policy = mp_policy.Policy.from_config(config) - # Comparing strings is the easiest way to ensure the policies are - # the same, as policy does not override the == operator. - self.assertEqual(str(policy), str(new_policy)) - - @test_utils.enable_v2_dtype_behavior - def test_serialization(self): - # Test policies that are equivalent to a single dtype - for policy_name in "float16", "float32", "int8", "string", "bool": - policy = mp_policy.Policy(policy_name) - config = mp_policy.serialize(policy) - self.assertEqual(config, policy_name) - new_policy = mp_policy.deserialize(config) - self.assertEqual(str(policy), str(new_policy)) - - # Test "_infer" policy - policy = mp_policy.Policy("_infer") - config = mp_policy.serialize(policy) - self.assertIsNone(config) - new_policy = mp_policy.deserialize(config) - self.assertEqual(str(policy), str(new_policy)) - - class MyPolicy(mp_policy.Policy): - pass - - # Test policies that are not equivalent to a single dtype - for policy in ( - mp_policy.Policy("mixed_float16"), - mp_policy.Policy("mixed_bfloat16"), - MyPolicy("float32"), - ): - config = mp_policy.serialize(policy) - if tf.__internal__.tf2.enabled(): - if policy.name == "float32": - self.assertEqual( - config, - { - "module": None, - "class_name": policy.__class__.__name__, - "config": {"name": policy.name}, - "registered_name": "MyPolicy", - }, - ) - else: - self.assertEqual( - config, - { - "module": "keras.mixed_precision", - "class_name": policy.__class__.__name__, - "config": {"name": policy.name}, - "registered_name": None, - }, - ) - else: - self.assertEqual( - config, - { - "class_name": policy.__class__.__name__, - "config": {"name": policy.name}, - }, - ) - new_policy = mp_policy.deserialize( - config, custom_objects={"MyPolicy": MyPolicy} - ) - self.assertEqual(str(policy), str(new_policy)) - - @test_utils.enable_v2_dtype_behavior - def test_error_if_graph_rewrite_enabled(self): - try: - tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite( - gradient_descent.SGD(1.0) - ) - with self.assertRaisesRegex( - ValueError, - 'cannot be set to "mixed_float16", .* the mixed ' - "precision graph rewrite has already been enabled", - ): - mp_policy.set_global_policy("mixed_float16") - with mp_policy.policy_scope("float64"): - pass # Non-mixed policies are allowed - finally: - tf.compat.v1.mixed_precision.disable_mixed_precision_graph_rewrite() - - @test_utils.disable_v2_dtype_behavior - def test_v1_dtype_behavior(self): - # Setting global policies are not allowed with V1 dtype behavior - with self.assertRaisesRegex( - ValueError, "global policy can only be set in TensorFlow 2" - ): - with mp_policy.policy_scope(mp_policy.Policy("_infer")): - pass - with self.assertRaisesRegex( - ValueError, "global policy can only be set in TensorFlow 2" - ): - with mp_policy.policy_scope(mp_policy.Policy("float32")): - pass - with self.assertRaisesRegex( - ValueError, "global policy can only be set in TensorFlow 2" - ): - with mp_policy.policy_scope(mp_policy.Policy("mixed_float16")): - pass - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/mixed_precision/test_util.py b/keras/mixed_precision/test_util.py deleted file mode 100644 index 43c422189e3..00000000000 --- a/keras/mixed_precision/test_util.py +++ /dev/null @@ -1,242 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Contains testing utilities related to mixed precision.""" - -import tensorflow.compat.v2 as tf - -from keras import regularizers -from keras.engine import base_layer - - -def create_identity_with_grad_check_fn(expected_gradient, expected_dtype=None): - """Returns a function that asserts it's gradient has a certain value. - - This serves as a hook to assert intermediate gradients have a certain value. - This returns an identity function. The identity's gradient function is also - the identity function, except it asserts that the gradient equals - `expected_gradient` and has dtype `expected_dtype`. - - Args: - expected_gradient: The gradient function asserts that the gradient is this - value. - expected_dtype: The gradient function asserts the gradient has this dtype. - - Returns: - An identity function whose gradient function asserts the gradient has a - certain value. - """ - - @tf.custom_gradient - def _identity_with_grad_check(x): - """Function that asserts it's gradient has a certain value.""" - x = tf.identity(x) - - def grad(dx): - """Gradient function that asserts the gradient has a certain - value.""" - if expected_dtype: - assert ( - dx.dtype == expected_dtype - ), f"dx.dtype should be {expected_dtype} but is: {dx.dtype}" - expected_tensor = tf.convert_to_tensor( - expected_gradient, dtype=dx.dtype, name="expected_gradient" - ) - # Control dependency is to ensure input is available. It's possible - # the dataset will throw a StopIteration to indicate there is no - # more data, in which case we don't want to run the assertion. - with tf.control_dependencies([x]): - assert_op = tf.compat.v1.assert_equal(dx, expected_tensor) - with tf.control_dependencies([assert_op]): - dx = tf.identity(dx) - return dx - - return x, grad - - # Keras sometimes has trouble serializing Lambda layers with a decorated - # function. So we define and return a non-decorated function. - def identity_with_grad_check(x): - return _identity_with_grad_check(x) - - return identity_with_grad_check - - -def create_identity_with_nan_gradients_fn(have_nan_gradients): - """Returns a function that optionally has NaN gradients. - - This serves as a hook to introduce NaN gradients to a model. This returns an - identity function. The identity's gradient function will check if the - boolean tensor `have_nan_gradients` is True. If so, the gradient will be - NaN. Otherwise, the gradient will also be the identity. - - Args: - have_nan_gradients: A scalar boolean tensor. If True, gradients will be - NaN. Otherwise, the gradient function is the identity function. - - Returns: - An identity function whose gradient function will return NaNs, if - `have_nan_gradients` is True. - """ - - @tf.custom_gradient - def _identity_with_nan_gradients(x): - """Function whose gradient is NaN iff `have_nan_gradients` is True.""" - x = tf.identity(x) - - def grad(dx): - return tf.cond( - have_nan_gradients, lambda: dx * float("NaN"), lambda: dx - ) - - return x, grad - - # Keras sometimes has trouble serializing Lambda layers with a decorated - # function. So we define and return a non-decorated function. - def identity_with_nan_gradients(x): - return _identity_with_nan_gradients(x) - - return identity_with_nan_gradients - - -class AssertTypeLayer(base_layer.Layer): - """A layer which asserts it's inputs are a certain type.""" - - def __init__(self, assert_type=None, **kwargs): - self._assert_type = ( - tf.as_dtype(assert_type).name if assert_type else None - ) - super().__init__(**kwargs) - - def assert_input_types(self, inputs): - """Asserts `inputs` are of the correct type. Should be called in - call().""" - if self._assert_type: - inputs_flattened = tf.nest.flatten(inputs) - for inp in inputs_flattened: - assert inp.dtype.base_dtype == self._assert_type, ( - "Input tensor has type %s which does " - "not match assert type %s" - % (inp.dtype.name, self._assert_type) - ) - - -class MultiplyLayer(AssertTypeLayer): - """A layer which multiplies its input by a scalar variable.""" - - def __init__( - self, - regularizer=None, - activity_regularizer=None, - use_operator=False, - var_name="v", - **kwargs, - ): - """Initializes the MultiplyLayer. - - Args: - regularizer: The weight regularizer on the scalar variable. - activity_regularizer: The activity regularizer. - use_operator: If True, add using the * operator. If False, add using - tf.multiply. - var_name: The name of the variable. It can be useful to pass a name - other than 'v', to test having the attribute name (self.v) being - different from the variable name. - **kwargs: Passed to AssertTypeLayer constructor. - """ - self._regularizer = regularizer - if isinstance(regularizer, dict): - self._regularizer = regularizers.deserialize( - regularizer, custom_objects=globals() - ) - self._activity_regularizer = activity_regularizer - if isinstance(activity_regularizer, dict): - self._activity_regularizer = regularizers.deserialize( - activity_regularizer, custom_objects=globals() - ) - - self._use_operator = use_operator - self._var_name = var_name - super().__init__( - activity_regularizer=self._activity_regularizer, **kwargs - ) - - def build(self, _): - self.v = self.add_weight( - self._var_name, - (), - initializer="ones", - regularizer=self._regularizer, - ) - self.built = True - - def call(self, inputs): - self.assert_input_types(inputs) - return self._multiply(inputs, self.v) - - def _multiply(self, x, y): - if self._use_operator: - return x * y - else: - return tf.multiply(x, y) - - def get_config(self): - config = super().get_config() - config["regularizer"] = regularizers.serialize(self._regularizer) - config["activity_regularizer"] = regularizers.serialize( - self._activity_regularizer - ) - config["use_operator"] = self._use_operator - config["var_name"] = self._var_name - config["assert_type"] = self._assert_type - return config - - -class MultiplyLayerWithoutAutoCast(MultiplyLayer): - """Same as MultiplyLayer, but does not use AutoCastVariables.""" - - def build(self, _): - dtype = self.dtype - if dtype in ("float16", "bfloat16"): - dtype = "float32" - self.v = self.add_weight( - "v", - (), - initializer="ones", - dtype=dtype, - experimental_autocast=False, - regularizer=self._regularizer, - ) - self.built = True - - def call(self, inputs): - self.assert_input_types(inputs) - assert self.v.dtype in (tf.float32, tf.float64) - return self._multiply(inputs, tf.cast(self.v, inputs.dtype)) - - -class IdentityRegularizer(regularizers.Regularizer): - def __call__(self, x): - assert x.dtype == tf.float32 - return tf.identity(x) - - def get_config(self): - return {} - - -class ReduceSumRegularizer(regularizers.Regularizer): - def __call__(self, x): - return tf.reduce_sum(x) - - def get_config(self): - return {} diff --git a/keras/mixed_precision/testdata/BUILD b/keras/mixed_precision/testdata/BUILD deleted file mode 100644 index 14d27cfda07..00000000000 --- a/keras/mixed_precision/testdata/BUILD +++ /dev/null @@ -1,43 +0,0 @@ -# Description: -# Contains checkpoints and SavedModels for testing purposes. - -package( - default_visibility = ["//keras:friends"], - licenses = ["notice"], -) - -# These files were generated by running the following program with TensorFlow -# 2.2rc2. The final release of TF 2.2 was not out when this change was created.: - -# import os -# import numpy as np -# import tensorflow as tf -# -# tf.random.set_seed(1) -# opt = tf.keras.optimizers.SGD(0.1, momentum=0.1) -# opt = tf.keras.mixed_precision.experimental.LossScaleOptimizer(opt, 'dynamic') -# model = tf.keras.Sequential([tf.keras.layers.Dense(2)]) -# model.compile(opt, 'mse') -# -# x = np.ones((10, 2)) -# y = x * 100 -# model.fit(x, y) -# weight_dir = os.environ['TF_LSO_WEIGHT_DIR'] -# model_dir = os.environ['TF_LSO_MODEL_DIR'] -# model.save_weights(weight_dir) -# model.save(model_dir) -# print(model.get_weights()[0]) -# print(opt._optimizer.get_slot(model.weights[0], 'momentum')) -# print(opt.loss_scale) - -filegroup( - name = "lso_ckpt_tf2.2", - srcs = glob(["lso_ckpt_tf2.2/**"]), - tags = ["no_pip"], -) - -filegroup( - name = "lso_savedmodel_tf2.2", - srcs = glob(["lso_savedmodel_tf2.2/**"]), - tags = ["no_pip"], -) diff --git a/keras/mixed_precision/testdata/lso_ckpt_tf2.2/checkpoint b/keras/mixed_precision/testdata/lso_ckpt_tf2.2/checkpoint deleted file mode 100644 index 30b525422ea..00000000000 --- a/keras/mixed_precision/testdata/lso_ckpt_tf2.2/checkpoint +++ /dev/null @@ -1,2 +0,0 @@ -model_checkpoint_path: "ckpt" -all_model_checkpoint_paths: "ckpt" diff --git a/keras/mixed_precision/testdata/lso_ckpt_tf2.2/ckpt.data-00000-of-00002 b/keras/mixed_precision/testdata/lso_ckpt_tf2.2/ckpt.data-00000-of-00002 deleted file mode 100644 index 119d52883c9..00000000000 --- a/keras/mixed_precision/testdata/lso_ckpt_tf2.2/ckpt.data-00000-of-00002 +++ /dev/null @@ -1,45 +0,0 @@ -Ê -Ò Êf -6 -layer_with_weights-0 - layer-0 -  optimizer - - -kernel -bias -$ -base_optimizer - -loss_scale -ca -VARIABLE_VALUEsequential/dense/kernel6layer_with_weights-0/kernel/.ATTRIBUTES/VARIABLE_VALUE -_] -VARIABLE_VALUEsequential/dense/bias4layer_with_weights-0/bias/.ATTRIBUTES/VARIABLE_VALUE -V -iter - decay -  learning_rate -  -momentummomentum momentum -( - current_loss_scale -  -good_steps -VT -VARIABLE_VALUESGD/iter8optimizer/base_optimizer/iter/.ATTRIBUTES/VARIABLE_VALUE -XV -VARIABLE_VALUE SGD/decay9optimizer/base_optimizer/decay/.ATTRIBUTES/VARIABLE_VALUE -hf -VARIABLE_VALUESGD/learning_rateAoptimizer/base_optimizer/learning_rate/.ATTRIBUTES/VARIABLE_VALUE -^\ -VARIABLE_VALUE SGD/momentum 0.5 - - sam_model.compile( - optimizer=adam.Adam(), - loss=keras.losses.BinaryCrossentropy(from_logits=True), - ) - - sam_model.fit(data, label, steps_per_epoch=1) - - @ds_combinations.generate( - tf.__internal__.test.combinations.combine(strategy=STRATEGIES) - ) - def test_sam_model_fit_with_sub_batch(self, strategy): - with strategy.scope(): - model = keras.Sequential( - [ - keras.Input([2, 2]), - keras.layers.Dense(4), - keras.layers.Dense(1), - ] - ) - sam_model = sharpness_aware_minimization.SharpnessAwareMinimization( - model, num_batch_splits=4 - ) - data = tf.random.uniform([48, 2]) - label = data[:, 0] > 0.5 - - sam_model.compile( - optimizer=adam.Adam(), - loss=keras.losses.BinaryCrossentropy(from_logits=True), - ) - - sam_model.fit(data, label, steps_per_epoch=1) - - def test_save_sam(self): - model = keras.Sequential( - [ - keras.Input([2, 2]), - keras.layers.Dense(4), - keras.layers.Dense(1), - ] - ) - sam_model = sharpness_aware_minimization.SharpnessAwareMinimization( - model - ) - data = tf.random.uniform([1, 2, 2]) - label = data[:, 0] > 0.5 - - sam_model.compile( - optimizer=adam.Adam(), - loss=keras.losses.BinaryCrossentropy(from_logits=True), - ) - - sam_model.fit(data, label) - - path = os.path.join(self.get_temp_dir(), "model") - sam_model.save(path) - loaded_sam_model = keras.models.load_model(path) - loaded_sam_model.load_weights(path) - - self.assertAllClose(sam_model(data), loaded_sam_model(data)) - - def test_checkpoint_sam(self): - model = keras.Sequential( - [ - keras.Input([2, 2]), - keras.layers.Dense(4), - keras.layers.Dense(1), - ] - ) - sam_model_1 = sharpness_aware_minimization.SharpnessAwareMinimization( - model - ) - sam_model_2 = sharpness_aware_minimization.SharpnessAwareMinimization( - model - ) - data = tf.random.uniform([1, 2, 2]) - label = data[:, 0] > 0.5 - - sam_model_1.compile( - optimizer=adam.Adam(), - loss=keras.losses.BinaryCrossentropy(from_logits=True), - ) - - sam_model_1.fit(data, label) - - checkpoint = tf.train.Checkpoint(sam_model_1) - checkpoint2 = tf.train.Checkpoint(sam_model_2) - temp_dir = self.get_temp_dir() - save_path = checkpoint.save(temp_dir) - checkpoint2.restore(save_path) - - self.assertAllClose(sam_model_1(data), sam_model_2(data)) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/opensource_only.files b/keras/opensource_only.files deleted file mode 100644 index e237c53b845..00000000000 --- a/keras/opensource_only.files +++ /dev/null @@ -1,3 +0,0 @@ -keras/api/tests/API_UPDATE_WARNING.txt: -keras/api/tests/README.txt: -keras/benchmarks/layer_benchmarks/run_xprof.py: diff --git a/keras/optimizers/BUILD b/keras/optimizers/BUILD deleted file mode 100644 index ec028f3310e..00000000000 --- a/keras/optimizers/BUILD +++ /dev/null @@ -1,149 +0,0 @@ -# Description: -# Contains the Keras Optimizer API. - -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -# buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "tf_py_test") -load("@org_keras//keras:keras.bzl", "distribute_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/tensorflow/cc/saved_model:__pkg__", # For unit tests. - "//third_party/tensorflow/python:__pkg__", - "//third_party/tensorflow/python/distribute:__pkg__", - "//third_party/tensorflow/python/saved_model:__pkg__", # For unit tests. - "//third_party/tensorflow/python/training/tracking:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "optimizers", - srcs = [ - "__init__.py", - "adadelta.py", - "adafactor.py", - "adagrad.py", - "adam.py", - "adamax.py", - "adamw.py", - "ftrl.py", - "lion.py", - "nadam.py", - "optimizer.py", - "optimizer_v1.py", - "rmsprop.py", - "sgd.py", - ], - srcs_version = "PY3", - deps = [ - ":utils", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/dtensor:utils", - "//keras/optimizers/legacy:optimizers", - "//keras/optimizers/schedules:learning_rate_schedule", - "//keras/utils:engine_utils", - ], -) - -py_library( - name = "utils", - srcs = ["utils.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "legacy_learning_rate_decay", - srcs = ["legacy_learning_rate_decay.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/optimizers/schedules:learning_rate_schedule", - ], -) - -tf_py_test( - name = "optimizer_v1_test", - size = "medium", - srcs = ["optimizer_v1_test.py"], - python_version = "PY3", - shard_count = 8, - tags = ["notsan"], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "legacy_learning_rate_decay_test", - size = "medium", - srcs = ["legacy_learning_rate_decay_test.py"], - deps = [ - ":legacy_learning_rate_decay", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -# TODO(b/228209527): Combine this test with optimizer_test after -# fixing the NCCL issue. -distribute_py_test( - name = "optimizer_pss_test", - size = "medium", - srcs = ["optimizer_pss_test.py"], - shard_count = 32, - tags = [ - "multi_gpu", - "no_oss", - "no_windows", - ], - deps = [ - ":optimizers", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -distribute_py_test( - name = "optimizer_test", - size = "medium", - srcs = ["optimizer_test.py"], - shard_count = 16, - tags = [ - "multi_gpu", - "no_windows", - "nomultivm", # TODO(b/203558991): Re-enable. - ], - deps = [ - ":optimizers", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "lion_test", - size = "medium", - srcs = ["lion_test.py"], - shard_count = 4, - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - ], -) diff --git a/keras/optimizers/__init__.py b/keras/optimizers/__init__.py deleted file mode 100644 index e29d04d6727..00000000000 --- a/keras/optimizers/__init__.py +++ /dev/null @@ -1,321 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Built-in optimizer classes. - -For more examples see the base class `tf.keras.optimizers.Optimizer`. -""" - -# Imports needed for deserialization. - -import platform - -import tensorflow.compat.v2 as tf -from absl import logging - -from keras import backend -from keras.optimizers import adadelta -from keras.optimizers import adafactor -from keras.optimizers import adagrad -from keras.optimizers import adam -from keras.optimizers import adamax -from keras.optimizers import adamw -from keras.optimizers import ftrl -from keras.optimizers import lion -from keras.optimizers import nadam -from keras.optimizers import optimizer as base_optimizer -from keras.optimizers import rmsprop -from keras.optimizers import sgd -from keras.optimizers.legacy import adadelta as adadelta_legacy -from keras.optimizers.legacy import adagrad as adagrad_legacy -from keras.optimizers.legacy import adam as adam_legacy -from keras.optimizers.legacy import adamax as adamax_legacy -from keras.optimizers.legacy import ftrl as ftrl_legacy -from keras.optimizers.legacy import gradient_descent as gradient_descent_legacy -from keras.optimizers.legacy import nadam as nadam_legacy -from keras.optimizers.legacy import optimizer_v2 as base_optimizer_legacy -from keras.optimizers.legacy import rmsprop as rmsprop_legacy -from keras.optimizers.legacy.adadelta import Adadelta -from keras.optimizers.legacy.adagrad import Adagrad -from keras.optimizers.legacy.adam import Adam -from keras.optimizers.legacy.adamax import Adamax -from keras.optimizers.legacy.ftrl import Ftrl - -# Symbols to be accessed under keras.optimizers. To be replaced with -# optimizers v2022 when they graduate out of experimental. -from keras.optimizers.legacy.gradient_descent import SGD -from keras.optimizers.legacy.nadam import Nadam -from keras.optimizers.legacy.rmsprop import RMSprop -from keras.optimizers.optimizer_v1 import Optimizer -from keras.optimizers.optimizer_v1 import TFOptimizer -from keras.optimizers.schedules import learning_rate_schedule -from keras.saving.legacy import serialization as legacy_serialization -from keras.saving.serialization_lib import deserialize_keras_object -from keras.saving.serialization_lib import serialize_keras_object - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -# pylint: disable=line-too-long - - -@keras_export("keras.optimizers.serialize") -def serialize(optimizer, use_legacy_format=False): - """Serialize the optimizer configuration to JSON compatible python dict. - - The configuration can be used for persistence and reconstruct the - `Optimizer` instance again. - - >>> tf.keras.optimizers.serialize(tf.keras.optimizers.legacy.SGD()) - {'module': 'keras.optimizers.legacy', 'class_name': 'SGD', 'config': {'name': 'SGD', 'learning_rate': 0.01, 'decay': 0.0, 'momentum': 0.0, 'nesterov': False}, 'registered_name': None}""" # noqa: E501 - """ - Args: - optimizer: An `Optimizer` instance to serialize. - - Returns: - Python dict which contains the configuration of the input optimizer. - """ - if use_legacy_format: - return legacy_serialization.serialize_keras_object(optimizer) - return serialize_keras_object(optimizer) - - -def is_arm_mac(): - return platform.system() == "Darwin" and platform.processor() == "arm" - - -@keras_export("keras.optimizers.deserialize") -def deserialize(config, custom_objects=None, use_legacy_format=False, **kwargs): - """Inverse of the `serialize` function. - - Args: - config: Optimizer configuration dictionary. - custom_objects: Optional dictionary mapping names (strings) to custom - objects (classes and functions) to be considered during - deserialization. - - Returns: - A Keras Optimizer instance. - """ - # loss_scale_optimizer has a direct dependency of optimizer, import here - # rather than top to avoid the cyclic dependency. - from keras.mixed_precision import ( - loss_scale_optimizer, - ) - - use_legacy_optimizer = kwargs.pop("use_legacy_optimizer", False) - if kwargs: - raise TypeError(f"Invalid keyword arguments: {kwargs}") - if len(config["config"]) > 0: - # If the optimizer config is not empty, then we use the value of - # `is_legacy_optimizer` to override `use_legacy_optimizer`. If - # `is_legacy_optimizer` does not exist in config, it means we are - # using the legacy optimzier. - use_legacy_optimizer = config["config"].get("is_legacy_optimizer", True) - if ( - tf.__internal__.tf2.enabled() - and tf.executing_eagerly() - and not is_arm_mac() - and not use_legacy_optimizer - ): - # We observed a slowdown of optimizer on M1 Mac, so we fall back to the - # legacy optimizer for M1 users now, see b/263339144 for more context. - all_classes = { - "adadelta": adadelta.Adadelta, - "adagrad": adagrad.Adagrad, - "adam": adam.Adam, - "adamax": adamax.Adamax, - "experimentaladadelta": adadelta.Adadelta, - "experimentaladagrad": adagrad.Adagrad, - "experimentaladam": adam.Adam, - "experimentalsgd": sgd.SGD, - "nadam": nadam.Nadam, - "rmsprop": rmsprop.RMSprop, - "sgd": sgd.SGD, - "ftrl": ftrl.Ftrl, - "lossscaleoptimizer": loss_scale_optimizer.LossScaleOptimizerV3, - "lossscaleoptimizerv3": loss_scale_optimizer.LossScaleOptimizerV3, - # LossScaleOptimizerV1 was an old version of LSO that was removed. - # Deserializing it turns it into a LossScaleOptimizer - "lossscaleoptimizerv1": loss_scale_optimizer.LossScaleOptimizer, - } - else: - all_classes = { - "adadelta": adadelta_legacy.Adadelta, - "adagrad": adagrad_legacy.Adagrad, - "adam": adam_legacy.Adam, - "adamax": adamax_legacy.Adamax, - "experimentaladadelta": adadelta.Adadelta, - "experimentaladagrad": adagrad.Adagrad, - "experimentaladam": adam.Adam, - "experimentalsgd": sgd.SGD, - "nadam": nadam_legacy.Nadam, - "rmsprop": rmsprop_legacy.RMSprop, - "sgd": gradient_descent_legacy.SGD, - "ftrl": ftrl_legacy.Ftrl, - "lossscaleoptimizer": loss_scale_optimizer.LossScaleOptimizer, - "lossscaleoptimizerv3": loss_scale_optimizer.LossScaleOptimizerV3, - # LossScaleOptimizerV1 was an old version of LSO that was removed. - # Deserializing it turns it into a LossScaleOptimizer - "lossscaleoptimizerv1": loss_scale_optimizer.LossScaleOptimizer, - } - - # Make deserialization case-insensitive for built-in optimizers. - if config["class_name"].lower() in all_classes: - config["class_name"] = config["class_name"].lower() - - if use_legacy_format: - return legacy_serialization.deserialize_keras_object( - config, - module_objects=all_classes, - custom_objects=custom_objects, - printable_module_name="optimizer", - ) - - return deserialize_keras_object( - config, - module_objects=all_classes, - custom_objects=custom_objects, - printable_module_name="optimizer", - ) - - -@keras_export( - "keras.__internal__.optimizers.convert_to_legacy_optimizer", v1=[] -) -def convert_to_legacy_optimizer(optimizer): - """Convert experimental optimizer to legacy optimizer. - - This function takes in a `tf.keras.optimizers.experimental.Optimizer` - instance and converts it to the corresponding - `tf.keras.optimizers.legacy.Optimizer` instance. - For example, `tf.keras.optimizers.experimental.Adam(...)` to - `tf.keras.optimizers.legacy.Adam(...)`. - - Args: - optimizer: An instance of `tf.keras.optimizers.experimental.Optimizer`. - """ - # loss_scale_optimizer has a direct dependency of optimizer, import here - # rather than top to avoid the cyclic dependency. - from keras.mixed_precision import ( - loss_scale_optimizer, - ) - - if not isinstance(optimizer, base_optimizer.Optimizer): - raise ValueError( - "`convert_to_legacy_optimizer` should only be called " - "on instances of `tf.keras.optimizers.Optimizer`, but " - f"received {optimizer} of type {type(optimizer)}." - ) - optimizer_name = optimizer.__class__.__name__.lower() - config = optimizer.get_config() - # Remove fields that only exist in experimental optimizer. - keys_to_remove = [ - "weight_decay", - "use_ema", - "ema_momentum", - "ema_overwrite_frequency", - "jit_compile", - "is_legacy_optimizer", - ] - for key in keys_to_remove: - config.pop(key, None) - - if isinstance(optimizer, loss_scale_optimizer.LossScaleOptimizerV3): - # For LossScaleOptimizers, recursively convert the inner optimizer - config["inner_optimizer"] = convert_to_legacy_optimizer( - optimizer.inner_optimizer - ) - if optimizer_name == "lossscaleoptimizerv3": - optimizer_name = "lossscaleoptimizer" - - # Learning rate can be a custom LearningRateSchedule, which is stored as - # a dict in config, and cannot be deserialized. - if hasattr(optimizer, "_learning_rate") and isinstance( - optimizer._learning_rate, learning_rate_schedule.LearningRateSchedule - ): - config["learning_rate"] = optimizer._learning_rate - legacy_optimizer_config = { - "class_name": optimizer_name, - "config": config, - } - return deserialize(legacy_optimizer_config, use_legacy_optimizer=True) - - -@keras_export("keras.optimizers.get") -def get(identifier, **kwargs): - """Retrieves a Keras Optimizer instance. - - Args: - identifier: Optimizer identifier, one of - String: name of an optimizer - - Dictionary: configuration dictionary. - Keras Optimizer instance (it - will be returned unchanged). - TensorFlow Optimizer instance (it will - be wrapped as a Keras Optimizer). - - Returns: - A Keras Optimizer instance. - - Raises: - ValueError: If `identifier` cannot be interpreted. - """ - use_legacy_optimizer = kwargs.pop("use_legacy_optimizer", False) - if kwargs: - raise TypeError(f"Invalid keyword arguments: {kwargs}") - if isinstance( - identifier, - ( - Optimizer, - base_optimizer_legacy.OptimizerV2, - ), - ): - return identifier - elif isinstance(identifier, base_optimizer.Optimizer): - if tf.__internal__.tf2.enabled() and not is_arm_mac(): - return identifier - else: - # If TF2 is disabled or on a M1 mac, we convert to the legacy - # optimizer. We observed a slowdown of optimizer on M1 Mac, so we - # fall back to the legacy optimizer for now, see b/263339144 - # for more context. - optimizer_name = identifier.__class__.__name__ - logging.warning( - "There is a known slowdown when using v2.11+ Keras optimizers " - "on M1/M2 Macs. Falling back to the " - "legacy Keras optimizer, i.e., " - f"`tf.keras.optimizers.legacy.{optimizer_name}`." - ) - return convert_to_legacy_optimizer(identifier) - - # Wrap legacy TF optimizer instances - elif isinstance(identifier, tf.compat.v1.train.Optimizer): - opt = TFOptimizer(identifier) - backend.track_tf_optimizer(opt) - return opt - elif isinstance(identifier, dict): - use_legacy_format = "module" not in identifier - return deserialize( - identifier, - use_legacy_optimizer=use_legacy_optimizer, - use_legacy_format=use_legacy_format, - ) - elif isinstance(identifier, str): - config = {"class_name": str(identifier), "config": {}} - return get( - config, - use_legacy_optimizer=use_legacy_optimizer, - ) - else: - raise ValueError( - f"Could not interpret optimizer identifier: {identifier}" - ) diff --git a/keras/optimizers/adadelta.py b/keras/optimizers/adadelta.py deleted file mode 100644 index 20f723f1881..00000000000 --- a/keras/optimizers/adadelta.py +++ /dev/null @@ -1,170 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Adadelta optimizer implementation.""" - -import tensorflow.compat.v2 as tf - -from keras.optimizers import optimizer -from keras.saving.object_registration import register_keras_serializable - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@register_keras_serializable() -@keras_export( - "keras.optimizers.experimental.Adadelta", - "keras.optimizers.Adadelta", - "keras.dtensor.experimental.optimizers.Adadelta", - v1=[], -) -class Adadelta(optimizer.Optimizer): - r"""Optimizer that implements the Adadelta algorithm. - - Adadelta optimization is a stochastic gradient descent method that is based - on adaptive learning rate per dimension to address two drawbacks: - - - The continual decay of learning rates throughout training. - - The need for a manually selected global learning rate. - - Adadelta is a more robust extension of Adagrad that adapts learning rates - based on a moving window of gradient updates, instead of accumulating all - past gradients. This way, Adadelta continues learning even when many updates - have been done. Compared to Adagrad, in the original version of Adadelta you - don't have to set an initial learning rate. In this version, the initial - learning rate can be set, as in most other Keras optimizers. - - Args: - learning_rate: Initial value for the learning rate: either a floating - point value, or a `tf.keras.optimizers.schedules.LearningRateSchedule` - instance. Defaults to 0.001. Note that `Adadelta` tends to benefit from - higher initial learning rate values compared to other optimizers. To - match the exact form in the original paper, use 1.0. - rho: A `Tensor` or a floating point value. The decay rate. Defaults to - 0.95. - epsilon: Small floating point value used to maintain numerical stability. - Defaults to 1e-7. - {{base_optimizer_keyword_args}} - - Reference: - - [Zeiler, 2012](http://arxiv.org/abs/1212.5701) - """ - - def __init__( - self, - learning_rate=0.001, - rho=0.95, - epsilon=1e-7, - weight_decay=None, - clipnorm=None, - clipvalue=None, - global_clipnorm=None, - use_ema=False, - ema_momentum=0.99, - ema_overwrite_frequency=None, - jit_compile=True, - name="Adadelta", - **kwargs - ): - super().__init__( - weight_decay=weight_decay, - clipnorm=clipnorm, - clipvalue=clipvalue, - global_clipnorm=global_clipnorm, - use_ema=use_ema, - ema_momentum=ema_momentum, - ema_overwrite_frequency=ema_overwrite_frequency, - jit_compile=jit_compile, - name=name, - **kwargs - ) - self._learning_rate = self._build_learning_rate(learning_rate) - self.rho = rho - self.epsilon = epsilon - - def build(self, var_list): - super().build(var_list) - if hasattr(self, "_built") and self._built: - return - self._built = True - self._accumulated_grads = [] - self._accumulated_delta_vars = [] - for var in var_list: - self._accumulated_grads.append( - self.add_variable_from_reference(var, "accumulated_grad") - ) - self._accumulated_delta_vars.append( - self.add_variable_from_reference(var, "accumulated_delta_var") - ) - - def update_step(self, grad, variable): - """Update step given gradient and the associated model variable.""" - lr = tf.cast(self.learning_rate, variable.dtype) - - var_key = self._var_key(variable) - rho = self.rho - accumulated_grad = self._accumulated_grads[self._index_dict[var_key]] - accumulated_delta_var = self._accumulated_delta_vars[ - self._index_dict[var_key] - ] - - def rms(x): - return tf.sqrt(x + self.epsilon) - - if isinstance(grad, tf.IndexedSlices): - # Sparse gradients. - accumulated_grad.assign_add((rho - 1) * accumulated_grad) - accumulated_grad.scatter_add( - tf.IndexedSlices( - (1 - rho) * tf.square(grad.values), grad.indices - ) - ) - delta_var = ( - -rms(accumulated_delta_var) * grad / rms(accumulated_grad) - ) - accumulated_delta_var.assign( - rho * accumulated_delta_var + (1 - rho) * delta_var * delta_var - ) - else: - # Dense gradients. - accumulated_grad.assign( - rho * accumulated_grad + (1 - rho) * grad * grad - ) - delta_var = ( - -rms(accumulated_delta_var) * grad / rms(accumulated_grad) - ) - accumulated_delta_var.assign( - rho * accumulated_delta_var + (1 - rho) * delta_var * delta_var - ) - variable.assign_add(lr * delta_var) - - def get_config(self): - config = super().get_config() - - config.update( - { - "learning_rate": self._serialize_hyperparameter( - self._learning_rate - ), - "rho": self.rho, - "epsilon": self.epsilon, - } - ) - return config - - -Adadelta.__doc__ = Adadelta.__doc__.replace( - "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args -) diff --git a/keras/optimizers/adafactor.py b/keras/optimizers/adafactor.py deleted file mode 100644 index 07e48ad3166..00000000000 --- a/keras/optimizers/adafactor.py +++ /dev/null @@ -1,231 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Adagrad optimizer implementation.""" - -import tensorflow.compat.v2 as tf - -from keras.optimizers import optimizer -from keras.optimizers.schedules import learning_rate_schedule -from keras.saving.object_registration import register_keras_serializable - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@register_keras_serializable() -@keras_export( - "keras.optimizers.Adafactor", - "keras.optimizers.experimental.Adafactor", - v1=[], -) -class Adafactor(optimizer.Optimizer): - """Optimizer that implements the Adafactor algorithm. - - Adafactor is commonly used in NLP tasks, and has the advantage - of taking less memory because it only saves partial information of previous - gradients. - - The default argument setup is based on the original paper (see reference). - When gradients are of dimension > 2, Adafactor optimizer will delete the - last 2 dimensions separately in its accumulator variables. - - Args: - learning_rate: Initial value for the learning rate: - either a floating point value, - or a `tf.keras.optimizers.schedules.LearningRateSchedule` instance. - Defaults to 0.001. - beta_2_decay: float, defaults to -0.8. The decay rate of `beta_2`. - epsilon_1: float, defaults to 1e-30. A small offset to keep demoninator - away from 0. - epsilon_2: float, defaults to 1e-3. A small offset to avoid learning - rate becoming too small by time. - clip_threshold: float, defaults to 1.0. Clipping threshold. This is a part - of Adafactor algorithm, independent from `clipnorm`, `clipvalue` and - `global_clipnorm`. - relative_step: bool, defaults to True. If `learning_rate` is a - constant and `relative_step=True`, learning rate will be adjusted - based on current iterations. This is a default learning rate decay - in Adafactor. - {{base_optimizer_keyword_args}} - - Reference: - - [Shazeer, Noam et al., 2018](https://arxiv.org/abs/1804.04235). - - """ - - def __init__( - self, - learning_rate=0.001, - beta_2_decay=-0.8, - epsilon_1=1e-30, - epsilon_2=1e-3, - clip_threshold=1.0, - relative_step=True, - weight_decay=None, - clipnorm=None, - clipvalue=None, - global_clipnorm=None, - use_ema=False, - ema_momentum=0.99, - ema_overwrite_frequency=None, - jit_compile=True, - name="Adafactor", - **kwargs, - ): - super().__init__( - name=name, - weight_decay=weight_decay, - clipnorm=clipnorm, - clipvalue=clipvalue, - global_clipnorm=global_clipnorm, - use_ema=use_ema, - ema_momentum=ema_momentum, - ema_overwrite_frequency=ema_overwrite_frequency, - jit_compile=jit_compile, - **kwargs, - ) - self._learning_rate = self._build_learning_rate(learning_rate) - self.beta_2_decay = beta_2_decay - self.epsilon_1 = epsilon_1 - self.epsilon_2 = epsilon_2 - self.clip_threshold = clip_threshold - self.relative_step = relative_step - - def build(self, var_list): - """Initialize optimizer variables. - - Adam optimizer has 3 types of variables: momentums, velocities and - velocity_hat (only set when amsgrad is applied), - - Args: - var_list: list of model variables to build Adam variables on. - """ - super().build(var_list) - if hasattr(self, "_built") and self._built: - return - self._built = True - self._r = [] - self._c = [] - self._v = [] - for var in var_list: - if len(var.shape) < 2: - # Don't factor if variable is of dimension < 2, but we still - # need to create dummy variables as placeholder. - self._r.append(tf.Variable(0, name=f"r/{var._shared_name}")) - self._c.append(tf.Variable(0, name=f"r/{var._shared_name}")) - else: - # Always factor the last 2 dimenstions. - r_shape = var.shape[:-1] - c_shape = var.shape[:-2] + var.shape[-1] - self._r.append( - self.add_variable( - shape=r_shape, - dtype=var.dtype, - name=f"r/{var._shared_name}", - ) - ) - self._c.append( - self.add_variable( - shape=c_shape, - dtype=var.dtype, - name=f"c/{var._shared_name}", - ) - ) - self._v.append( - self.add_variable_from_reference( - model_variable=var, variable_name="v" - ) - ) - - def _rms(self, x): - return tf.sqrt(tf.reduce_mean(tf.square(x))) - - def update_step(self, gradient, variable): - """Update step given gradient and the associated model variable.""" - - lr = tf.cast(self.learning_rate, variable.dtype) - epsilon_2 = tf.cast(self.epsilon_2, variable.dtype) - one = tf.cast(1.0, variable.dtype) - local_step = tf.cast(self.iterations + 1, variable.dtype) - if ( - not isinstance( - self._learning_rate, learning_rate_schedule.LearningRateSchedule - ) - and self.relative_step - ): - # If `relative_step=True` and learning rate is a constant, we - # apply the relative step algorithm. - lr = tf.minimum(lr, tf.math.rsqrt(local_step)) - - var_key = self._var_key(variable) - r = self._r[self._index_dict[var_key]] - c = self._c[self._index_dict[var_key]] - v = self._v[self._index_dict[var_key]] - - rho_t = tf.minimum(lr, tf.math.rsqrt(local_step)) - alpha_t = tf.maximum(epsilon_2, self._rms(variable)) * rho_t - regulated_grad_square = tf.square(gradient) + self.epsilon_1 - beta_2_t = 1 - tf.pow(local_step, self.beta_2_decay) - - if len(variable.shape) >= 2: - # `r` deletes the last dimension of gradient, so it is of shape - # `gradient.shape[:-1]`. - r.assign( - beta_2_t * r - + (1 - beta_2_t) - * tf.reduce_mean(regulated_grad_square, axis=-1) - ) - # `c` deletes the second last dimension of gradient, so it is of - # shape `gradient.shape[:-2] + gradient.shape[-1]`. - c.assign( - beta_2_t * c - + (1 - beta_2_t) - * tf.reduce_mean(regulated_grad_square, axis=-2) - ) - v.assign( - tf.expand_dims( - r / tf.reduce_mean(r, axis=-1, keepdims=True), axis=-1 - ) - * tf.expand_dims(c, -2) - ) - else: - v.assign(beta_2_t * v + (1 - beta_2_t) * regulated_grad_square) - - # `convert_to_tensor` unifies the handling of sparse and dense grads. - u_t = tf.convert_to_tensor(gradient) * tf.math.rsqrt(v) - u_t_hat = u_t / tf.maximum(one, (self._rms(u_t) / self.clip_threshold)) - variable.assign_add(-alpha_t * u_t_hat) - - def get_config(self): - config = super().get_config() - - config.update( - { - "learning_rate": self._serialize_hyperparameter( - self._learning_rate - ), - "beta_2_decay": self.beta_2_decay, - "epsilon_1": self.epsilon_1, - "epsilon_2": self.epsilon_2, - "clip_threshold": self.clip_threshold, - "relative_step": self.relative_step, - } - ) - return config - - -Adafactor.__doc__ = Adafactor.__doc__.replace( - "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args -) diff --git a/keras/optimizers/adagrad.py b/keras/optimizers/adagrad.py deleted file mode 100644 index 0d288e834d9..00000000000 --- a/keras/optimizers/adagrad.py +++ /dev/null @@ -1,150 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Adagrad optimizer implementation.""" - -import tensorflow.compat.v2 as tf - -from keras import initializers -from keras.optimizers import optimizer -from keras.saving.object_registration import register_keras_serializable - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@register_keras_serializable() -@keras_export( - "keras.optimizers.experimental.Adagrad", - "keras.optimizers.Adagrad", - "keras.dtensor.experimental.optimizers.Adagrad", - v1=[], -) -class Adagrad(optimizer.Optimizer): - r"""Optimizer that implements the Adagrad algorithm. - - Adagrad is an optimizer with parameter-specific learning rates, - which are adapted relative to how frequently a parameter gets - updated during training. The more updates a parameter receives, - the smaller the updates. - - Args: - learning_rate: Initial value for the learning rate: - either a floating point value, - or a `tf.keras.optimizers.schedules.LearningRateSchedule` instance. - Defaults to 0.001. - Note that `Adagrad` tends to benefit from higher initial learning rate - values compared to other optimizers. - To match the exact form in the original paper, use 1.0. - initial_accumulator_value: Floating point value. - Starting value for the accumulators (per-parameter momentum values). - Must be non-negative. - epsilon: Small floating point value used to maintain numerical stability. - {{base_optimizer_keyword_args}} - - Reference: - - [Duchi et al., 2011]( - http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf). - """ - - def __init__( - self, - learning_rate=0.001, - initial_accumulator_value=0.1, - epsilon=1e-7, - weight_decay=None, - clipnorm=None, - clipvalue=None, - global_clipnorm=None, - use_ema=False, - ema_momentum=0.99, - ema_overwrite_frequency=None, - jit_compile=True, - name="Adagrad", - **kwargs - ): - super().__init__( - weight_decay=weight_decay, - clipnorm=clipnorm, - clipvalue=clipvalue, - global_clipnorm=global_clipnorm, - use_ema=use_ema, - ema_momentum=ema_momentum, - ema_overwrite_frequency=ema_overwrite_frequency, - jit_compile=jit_compile, - name=name, - **kwargs - ) - self._learning_rate = self._build_learning_rate(learning_rate) - self.initial_accumulator_value = initial_accumulator_value - self.epsilon = epsilon - - def build(self, var_list): - super().build(var_list) - if hasattr(self, "_built") and self._built: - return - self._built = True - self._accumulators = [] - initializer = initializers.Constant(self.initial_accumulator_value) - for var in var_list: - self._accumulators.append( - self.add_variable_from_reference( - var, - "accumulator", - initial_value=initializer(shape=var.shape, dtype=var.dtype), - ) - ) - - def update_step(self, grad, variable): - """Update step given gradient and the associated model variable.""" - lr = tf.cast(self.learning_rate, variable.dtype) - - var_key = self._var_key(variable) - accumulator = self._accumulators[self._index_dict[var_key]] - - if isinstance(grad, tf.IndexedSlices): - # Sparse gradients. - accumulator.scatter_add( - tf.IndexedSlices(grad.values * grad.values, grad.indices) - ) - sparse_accumulator = tf.gather(accumulator, indices=grad.indices) - sparse_denominator = tf.sqrt(sparse_accumulator + self.epsilon) - variable.scatter_add( - tf.IndexedSlices( - -lr * grad.values / sparse_denominator, grad.indices - ) - ) - else: - # Dense gradients. - accumulator.assign_add(grad * grad) - variable.assign_sub(lr * grad / tf.sqrt(accumulator + self.epsilon)) - - def get_config(self): - config = super().get_config() - - config.update( - { - "learning_rate": self._serialize_hyperparameter( - self._learning_rate - ), - "initial_accumulator_value": self.initial_accumulator_value, - "epsilon": self.epsilon, - } - ) - return config - - -Adagrad.__doc__ = Adagrad.__doc__.replace( - "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args -) diff --git a/keras/optimizers/adam.py b/keras/optimizers/adam.py deleted file mode 100644 index 04585b5ee5f..00000000000 --- a/keras/optimizers/adam.py +++ /dev/null @@ -1,224 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Adam optimizer implementation.""" - -import tensorflow.compat.v2 as tf - -from keras.optimizers import optimizer -from keras.saving.object_registration import register_keras_serializable - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@register_keras_serializable() -@keras_export( - "keras.optimizers.Adam", - "keras.optimizers.experimental.Adam", - "keras.dtensor.experimental.optimizers.Adam", - v1=[], -) -class Adam(optimizer.Optimizer): - r"""Optimizer that implements the Adam algorithm. - - Adam optimization is a stochastic gradient descent method that is based on - adaptive estimation of first-order and second-order moments. - - According to - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980), - the method is "*computationally - efficient, has little memory requirement, invariant to diagonal rescaling of - gradients, and is well suited for problems that are large in terms of - data/parameters*". - - Args: - learning_rate: A `tf.Tensor`, floating point value, a schedule that is a - `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable - that takes no arguments and returns the actual value to use. The - learning rate. Defaults to 0.001. - beta_1: A float value or a constant float tensor, or a callable - that takes no arguments and returns the actual value to use. The - exponential decay rate for the 1st moment estimates. Defaults to 0.9. - beta_2: A float value or a constant float tensor, or a callable - that takes no arguments and returns the actual value to use. The - exponential decay rate for the 2nd moment estimates. Defaults to 0.999. - epsilon: A small constant for numerical stability. This epsilon is - "epsilon hat" in the Kingma and Ba paper (in the formula just before - Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to - 1e-7. - amsgrad: Boolean. Whether to apply AMSGrad variant of this algorithm from - the paper "On the Convergence of Adam and beyond". Defaults to `False`. - {{base_optimizer_keyword_args}} - - Reference: - - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) - - [Reddi et al., 2018]( - https://openreview.net/pdf?id=ryQu7f-RZ) for `amsgrad`. - - Notes: - - The default value of 1e-7 for epsilon might not be a good default in - general. For example, when training an Inception network on ImageNet a - current good choice is 1.0 or 0.1. Note that since Adam uses the - formulation just before Section 2.1 of the Kingma and Ba paper rather than - the formulation in Algorithm 1, the "epsilon" referred to here is "epsilon - hat" in the paper. - - The sparse implementation of this algorithm (used when the gradient is an - IndexedSlices object, typically because of `tf.gather` or an embedding - lookup in the forward pass) does apply momentum to variable slices even if - they were not used in the forward pass (meaning they have a gradient equal - to zero). Momentum decay (beta1) is also applied to the entire momentum - accumulator. This means that the sparse behavior is equivalent to the dense - behavior (in contrast to some momentum implementations which ignore momentum - unless a variable slice was actually used). - """ - - def __init__( - self, - learning_rate=0.001, - beta_1=0.9, - beta_2=0.999, - epsilon=1e-7, - amsgrad=False, - weight_decay=None, - clipnorm=None, - clipvalue=None, - global_clipnorm=None, - use_ema=False, - ema_momentum=0.99, - ema_overwrite_frequency=None, - jit_compile=True, - name="Adam", - **kwargs - ): - super().__init__( - name=name, - weight_decay=weight_decay, - clipnorm=clipnorm, - clipvalue=clipvalue, - global_clipnorm=global_clipnorm, - use_ema=use_ema, - ema_momentum=ema_momentum, - ema_overwrite_frequency=ema_overwrite_frequency, - jit_compile=jit_compile, - **kwargs - ) - self._learning_rate = self._build_learning_rate(learning_rate) - self.beta_1 = beta_1 - self.beta_2 = beta_2 - self.epsilon = epsilon - self.amsgrad = amsgrad - - def build(self, var_list): - """Initialize optimizer variables. - - Adam optimizer has 3 types of variables: momentums, velocities and - velocity_hat (only set when amsgrad is applied), - - Args: - var_list: list of model variables to build Adam variables on. - """ - super().build(var_list) - if hasattr(self, "_built") and self._built: - return - self._built = True - self._momentums = [] - self._velocities = [] - for var in var_list: - self._momentums.append( - self.add_variable_from_reference( - model_variable=var, variable_name="m" - ) - ) - self._velocities.append( - self.add_variable_from_reference( - model_variable=var, variable_name="v" - ) - ) - if self.amsgrad: - self._velocity_hats = [] - for var in var_list: - self._velocity_hats.append( - self.add_variable_from_reference( - model_variable=var, variable_name="vhat" - ) - ) - - def update_step(self, gradient, variable): - """Update step given gradient and the associated model variable.""" - beta_1_power = None - beta_2_power = None - lr = tf.cast(self.learning_rate, variable.dtype) - local_step = tf.cast(self.iterations + 1, variable.dtype) - beta_1_power = tf.pow(tf.cast(self.beta_1, variable.dtype), local_step) - beta_2_power = tf.pow(tf.cast(self.beta_2, variable.dtype), local_step) - - var_key = self._var_key(variable) - m = self._momentums[self._index_dict[var_key]] - v = self._velocities[self._index_dict[var_key]] - - alpha = lr * tf.sqrt(1 - beta_2_power) / (1 - beta_1_power) - - if isinstance(gradient, tf.IndexedSlices): - # Sparse gradients. - m.assign_add(-m * (1 - self.beta_1)) - m.scatter_add( - tf.IndexedSlices( - gradient.values * (1 - self.beta_1), gradient.indices - ) - ) - v.assign_add(-v * (1 - self.beta_2)) - v.scatter_add( - tf.IndexedSlices( - tf.square(gradient.values) * (1 - self.beta_2), - gradient.indices, - ) - ) - if self.amsgrad: - v_hat = self._velocity_hats[self._index_dict[var_key]] - v_hat.assign(tf.maximum(v_hat, v)) - v = v_hat - variable.assign_sub((m * alpha) / (tf.sqrt(v) + self.epsilon)) - else: - # Dense gradients. - m.assign_add((gradient - m) * (1 - self.beta_1)) - v.assign_add((tf.square(gradient) - v) * (1 - self.beta_2)) - if self.amsgrad: - v_hat = self._velocity_hats[self._index_dict[var_key]] - v_hat.assign(tf.maximum(v_hat, v)) - v = v_hat - variable.assign_sub((m * alpha) / (tf.sqrt(v) + self.epsilon)) - - def get_config(self): - config = super().get_config() - - config.update( - { - "learning_rate": self._serialize_hyperparameter( - self._learning_rate - ), - "beta_1": self.beta_1, - "beta_2": self.beta_2, - "epsilon": self.epsilon, - "amsgrad": self.amsgrad, - } - ) - return config - - -Adam.__doc__ = Adam.__doc__.replace( - "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args -) diff --git a/keras/optimizers/adamax.py b/keras/optimizers/adamax.py deleted file mode 100644 index 63aa208884f..00000000000 --- a/keras/optimizers/adamax.py +++ /dev/null @@ -1,188 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Adamax optimizer implementation.""" - -import tensorflow.compat.v2 as tf - -from keras.optimizers import optimizer -from keras.saving.object_registration import register_keras_serializable - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@register_keras_serializable() -@keras_export( - "keras.optimizers.experimental.Adamax", "keras.optimizers.Adamax", v1=[] -) -class Adamax(optimizer.Optimizer): - """Optimizer that implements the Adamax algorithm. - - Adamax, a variant of Adam based on the infinity norm, is a first-order - gradient-based optimization method. Due to its capability of adjusting the - learning rate based on data characteristics, it is suited to learn - time-variant process, e.g., speech data with dynamically changed noise - conditions. Default parameters follow those provided in the paper (see - references below). - - Initialization: - - ```python - m = 0 # Initialize initial 1st moment vector - u = 0 # Initialize the exponentially weighted infinity norm - t = 0 # Initialize timestep - ``` - - The update rule for parameter `w` with gradient `g` is described at the end - of section 7.1 of the paper (see the referenece section): - - ```python - t += 1 - m = beta1 * m + (1 - beta) * g - u = max(beta2 * u, abs(g)) - current_lr = learning_rate / (1 - beta1 ** t) - w = w - current_lr * m / (u + epsilon) - ``` - - Args: - learning_rate: A `tf.Tensor`, floating point value, a schedule that is a - `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable - that takes no arguments and returns the actual value to use. The - learning rate. Defaults to 0.001. - beta_1: A float value or a constant float tensor. The exponential decay - rate for the 1st moment estimates. - beta_2: A float value or a constant float tensor. The exponential decay - rate for the exponentially weighted infinity norm. - epsilon: A small constant for numerical stability. - {{base_optimizer_keyword_args}} - - Reference: - - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) - """ - - def __init__( - self, - learning_rate=0.001, - beta_1=0.9, - beta_2=0.999, - epsilon=1e-7, - weight_decay=None, - clipnorm=None, - clipvalue=None, - global_clipnorm=None, - use_ema=False, - ema_momentum=0.99, - ema_overwrite_frequency=None, - jit_compile=True, - name="Adamax", - **kwargs - ): - super().__init__( - name=name, - weight_decay=weight_decay, - clipnorm=clipnorm, - clipvalue=clipvalue, - global_clipnorm=global_clipnorm, - use_ema=use_ema, - ema_momentum=ema_momentum, - ema_overwrite_frequency=ema_overwrite_frequency, - jit_compile=jit_compile, - **kwargs - ) - self._learning_rate = self._build_learning_rate(learning_rate) - self.beta_1 = beta_1 - self.beta_2 = beta_2 - self.epsilon = epsilon - - def build(self, var_list): - """Initialize optimizer variables. - - Adamax optimizer has 2 types of variables: momentums (denoted as m), - exponentially weighted infinity norm (denoted as u). - - Args: - var_list: list of model variables to build Adamax variables on. - """ - super().build(var_list) - if hasattr(self, "_built") and self._built: - return - self._built = True - self._m = [] - self._u = [] - for var in var_list: - self._m.append( - self.add_variable_from_reference( - model_variable=var, variable_name="m" - ) - ) - self._u.append( - self.add_variable_from_reference( - model_variable=var, variable_name="u" - ) - ) - - def update_step(self, gradient, variable): - """Update step given gradient and the associated model variable.""" - lr = tf.cast(self.learning_rate, variable.dtype) - local_step = tf.cast(self.iterations + 1, variable.dtype) - beta_1_power = tf.pow(tf.cast(self.beta_1, variable.dtype), local_step) - - var_key = self._var_key(variable) - m = self._m[self._index_dict[var_key]] - u = self._u[self._index_dict[var_key]] - - if isinstance(gradient, tf.IndexedSlices): - # Sparse gradients. - indices = gradient.indices - m.assign_add(-m * (1 - self.beta_1)) - m.scatter_add( - tf.IndexedSlices(gradient.values * (1 - self.beta_1), indices) - ) - u.assign(u * self.beta_2) - u_slice = tf.gather(u, indices) - u_slice_incremental = ( - tf.maximum(u_slice, tf.abs(gradient.values)) - u_slice - ) - u.scatter_add(tf.IndexedSlices(u_slice_incremental, indices)) - variable.assign_sub( - (lr * m) / ((1 - beta_1_power) * (u + self.epsilon)) - ) - else: - # Dense gradients. - m.assign_add((gradient - m) * (1 - self.beta_1)) - u.assign(tf.maximum(self.beta_2 * u, tf.abs(gradient))) - variable.assign_sub( - (lr * m) / ((1 - beta_1_power) * (u + self.epsilon)) - ) - - def get_config(self): - config = super().get_config() - - config.update( - { - "learning_rate": self._serialize_hyperparameter( - self._learning_rate - ), - "beta_1": self.beta_1, - "beta_2": self.beta_2, - "epsilon": self.epsilon, - } - ) - return config - - -Adamax.__doc__ = Adamax.__doc__.replace( - "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args -) diff --git a/keras/optimizers/adamw.py b/keras/optimizers/adamw.py deleted file mode 100644 index cf7b4a05b9c..00000000000 --- a/keras/optimizers/adamw.py +++ /dev/null @@ -1,231 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""AdamW optimizer implementation.""" - - -import tensorflow.compat.v2 as tf - -from keras.optimizers import optimizer -from keras.saving.object_registration import register_keras_serializable - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@register_keras_serializable() -@keras_export( - "keras.optimizers.AdamW", - "keras.optimizers.experimental.AdamW", - "keras.dtensor.experimental.optimizers.AdamW", - v1=[], -) -class AdamW(optimizer.Optimizer): - r"""Optimizer that implements the AdamW algorithm. - - AdamW optimization is a stochastic gradient descent method that is based on - adaptive estimation of first-order and second-order moments with an added - method to decay weights per the techniques discussed in the paper, - 'Decoupled Weight Decay Regularization' by - [Loshchilov, Hutter et al., 2019](https://arxiv.org/abs/1711.05101). - - According to - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980), - the underying Adam method is "*computationally - efficient, has little memory requirement, invariant to diagonal rescaling of - gradients, and is well suited for problems that are large in terms of - data/parameters*". - - Args: - learning_rate: A `tf.Tensor`, floating point value, a schedule that is a - `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable - that takes no arguments and returns the actual value to use. The - learning rate. Defaults to 0.001. - weight_decay: A `tf.Tensor`, floating point value. The weight decay. - Defaults to 0.004. - beta_1: A float value or a constant float tensor, or a callable - that takes no arguments and returns the actual value to use. The - exponential decay rate for the 1st moment estimates. Defaults to 0.9. - beta_2: A float value or a constant float tensor, or a callable - that takes no arguments and returns the actual value to use. The - exponential decay rate for the 2nd moment estimates. Defaults to 0.999. - epsilon: A small constant for numerical stability. This epsilon is - "epsilon hat" in the Kingma and Ba paper (in the formula just before - Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to - 1e-7. - amsgrad: Boolean. Whether to apply AMSGrad variant of this algorithm from - the paper "On the Convergence of Adam and beyond". Defaults to `False`. - {{base_optimizer_keyword_args}} - - Reference: - - [Loshchilov et al., 2019](https://arxiv.org/abs/1711.05101) - - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) for `adam` - - [Reddi et al., 2018]( - https://openreview.net/pdf?id=ryQu7f-RZ) for `amsgrad`. - - Notes: - - The sparse implementation of this algorithm (used when the gradient is an - IndexedSlices object, typically because of `tf.gather` or an embedding - lookup in the forward pass) does apply momentum to variable slices even if - they were not used in the forward pass (meaning they have a gradient equal - to zero). Momentum decay (beta1) is also applied to the entire momentum - accumulator. This means that the sparse behavior is equivalent to the dense - behavior (in contrast to some momentum implementations which ignore momentum - unless a variable slice was actually used). - """ - - def __init__( - self, - learning_rate=0.001, - weight_decay=0.004, - beta_1=0.9, - beta_2=0.999, - epsilon=1e-7, - amsgrad=False, - clipnorm=None, - clipvalue=None, - global_clipnorm=None, - use_ema=False, - ema_momentum=0.99, - ema_overwrite_frequency=None, - jit_compile=True, - name="AdamW", - **kwargs - ): - super().__init__( - name=name, - clipnorm=clipnorm, - clipvalue=clipvalue, - global_clipnorm=global_clipnorm, - use_ema=use_ema, - ema_momentum=ema_momentum, - ema_overwrite_frequency=ema_overwrite_frequency, - jit_compile=jit_compile, - **kwargs - ) - self._learning_rate = self._build_learning_rate(learning_rate) - self.weight_decay = weight_decay - self.beta_1 = beta_1 - self.beta_2 = beta_2 - self.epsilon = epsilon - self.amsgrad = amsgrad - - if self.weight_decay is None: - raise ValueError( - "Missing value of `weight_decay` which is required and" - " must be a float value." - ) - - def build(self, var_list): - """Initialize optimizer variables. - - AdamW optimizer has 3 types of variables: momentums, velocities and - velocity_hat (only set when amsgrad is applied), - - Args: - var_list: list of model variables to build AdamW variables on. - """ - super().build(var_list) - if hasattr(self, "_built") and self._built: - return - self._built = True - self._momentums = [] - self._velocities = [] - for var in var_list: - self._momentums.append( - self.add_variable_from_reference( - model_variable=var, variable_name="m" - ) - ) - self._velocities.append( - self.add_variable_from_reference( - model_variable=var, variable_name="v" - ) - ) - if self.amsgrad: - self._velocity_hats = [] - for var in var_list: - self._velocity_hats.append( - self.add_variable_from_reference( - model_variable=var, variable_name="vhat" - ) - ) - - def update_step(self, gradient, variable): - """Update step given gradient and the associated model variable.""" - beta_1_power = None - beta_2_power = None - lr = tf.cast(self.learning_rate, variable.dtype) - local_step = tf.cast(self.iterations + 1, variable.dtype) - beta_1_power = tf.pow(tf.cast(self.beta_1, variable.dtype), local_step) - beta_2_power = tf.pow(tf.cast(self.beta_2, variable.dtype), local_step) - - var_key = self._var_key(variable) - m = self._momentums[self._index_dict[var_key]] - v = self._velocities[self._index_dict[var_key]] - - alpha = lr * tf.sqrt(1 - beta_2_power) / (1 - beta_1_power) - - if isinstance(gradient, tf.IndexedSlices): - # Sparse gradients. - m.assign_add(-m * (1 - self.beta_1)) - m.scatter_add( - tf.IndexedSlices( - gradient.values * (1 - self.beta_1), gradient.indices - ) - ) - v.assign_add(-v * (1 - self.beta_2)) - v.scatter_add( - tf.IndexedSlices( - tf.square(gradient.values) * (1 - self.beta_2), - gradient.indices, - ) - ) - if self.amsgrad: - v_hat = self._velocity_hats[self._index_dict[var_key]] - v_hat.assign(tf.maximum(v_hat, v)) - v = v_hat - variable.assign_sub((m * alpha) / (tf.sqrt(v) + self.epsilon)) - else: - # Dense gradients. - m.assign_add((gradient - m) * (1 - self.beta_1)) - v.assign_add((tf.square(gradient) - v) * (1 - self.beta_2)) - if self.amsgrad: - v_hat = self._velocity_hats[self._index_dict[var_key]] - v_hat.assign(tf.maximum(v_hat, v)) - v = v_hat - variable.assign_sub((m * alpha) / (tf.sqrt(v) + self.epsilon)) - - def get_config(self): - config = super().get_config() - - config.update( - { - "learning_rate": self._serialize_hyperparameter( - self._learning_rate - ), - "weight_decay": self.weight_decay, - "beta_1": self.beta_1, - "beta_2": self.beta_2, - "epsilon": self.epsilon, - "amsgrad": self.amsgrad, - } - ) - return config - - -AdamW.__doc__ = AdamW.__doc__.replace( - "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args -) diff --git a/keras/optimizers/ftrl.py b/keras/optimizers/ftrl.py deleted file mode 100644 index 0499294610a..00000000000 --- a/keras/optimizers/ftrl.py +++ /dev/null @@ -1,257 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""FTRL optimizer implementation.""" - -import tensorflow.compat.v2 as tf - -from keras.optimizers import optimizer -from keras.saving.object_registration import register_keras_serializable - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@register_keras_serializable() -@keras_export( - "keras.optimizers.experimental.Ftrl", "keras.optimizers.Ftrl", v1=[] -) -class Ftrl(optimizer.Optimizer): - r"""Optimizer that implements the FTRL algorithm. - - "Follow The Regularized Leader" (FTRL) is an optimization algorithm - developed at Google for click-through rate prediction in the early 2010s. It - is most suitable for shallow models with large and sparse feature spaces. - The algorithm is described by - [McMahan et al., 2013](https://research.google.com/pubs/archive/41159.pdf). - The Keras version has support for both online L2 regularization - (the L2 regularization described in the paper - above) and shrinkage-type L2 regularization - (which is the addition of an L2 penalty to the loss function). - - Initialization: - - ```python - n = 0 - sigma = 0 - z = 0 - ``` - - Update rule for one variable `w`: - - ```python - prev_n = n - n = n + g ** 2 - sigma = (n ** -lr_power - prev_n ** -lr_power) / lr - z = z + g - sigma * w - if abs(z) < lambda_1: - w = 0 - else: - w = (sgn(z) * lambda_1 - z) / ((beta + sqrt(n)) / alpha + lambda_2) - ``` - - Notation: - - - `lr` is the learning rate - - `g` is the gradient for the variable - - `lambda_1` is the L1 regularization strength - - `lambda_2` is the L2 regularization strength - - `lr_power` is the power to scale n. - - Check the documentation for the `l2_shrinkage_regularization_strength` - parameter for more details when shrinkage is enabled, in which case gradient - is replaced with a gradient with shrinkage. - - Args: - learning_rate: A `Tensor`, floating point value, a schedule that is a - `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable that - takes no arguments and returns the actual value to use. The learning - rate. Defaults to 0.001. - learning_rate_power: A float value, must be less or equal to zero. - Controls how the learning rate decreases during training. Use zero for a - fixed learning rate. - initial_accumulator_value: The starting value for accumulators. Only zero - or positive values are allowed. - l1_regularization_strength: A float value, must be greater than or equal - to zero. Defaults to 0.0. - l2_regularization_strength: A float value, must be greater than or equal - to zero. Defaults to 0.0. - l2_shrinkage_regularization_strength: A float value, must be greater than - or equal to zero. This differs from L2 above in that the L2 above is a - stabilization penalty, whereas this L2 shrinkage is a magnitude penalty. - When input is sparse shrinkage will only happen on the active weights. - beta: A float value, representing the beta value from the paper. Defaults - to 0.0. - {{base_optimizer_keyword_args}} - """ - - def __init__( - self, - learning_rate=0.001, - learning_rate_power=-0.5, - initial_accumulator_value=0.1, - l1_regularization_strength=0.0, - l2_regularization_strength=0.0, - l2_shrinkage_regularization_strength=0.0, - beta=0.0, - weight_decay=None, - clipnorm=None, - clipvalue=None, - global_clipnorm=None, - use_ema=False, - ema_momentum=0.99, - ema_overwrite_frequency=None, - jit_compile=True, - name="Ftrl", - **kwargs, - ): - super().__init__( - name=name, - weight_decay=weight_decay, - clipnorm=clipnorm, - clipvalue=clipvalue, - global_clipnorm=global_clipnorm, - use_ema=use_ema, - ema_momentum=ema_momentum, - ema_overwrite_frequency=ema_overwrite_frequency, - jit_compile=jit_compile, - **kwargs, - ) - - if initial_accumulator_value < 0.0: - raise ValueError( - "`initial_accumulator_value` needs to be positive or zero. " - "Received: initial_accumulator_value=" - f"{initial_accumulator_value}." - ) - if learning_rate_power > 0.0: - raise ValueError( - "`learning_rate_power` needs to be negative or zero. Received: " - f"learning_rate_power={learning_rate_power}." - ) - if l1_regularization_strength < 0.0: - raise ValueError( - "`l1_regularization_strength` needs to be positive or zero. " - "Received: l1_regularization_strength=" - f"{l1_regularization_strength}." - ) - if l2_regularization_strength < 0.0: - raise ValueError( - "`l2_regularization_strength` needs to be positive or zero. " - "Received: l2_regularization_strength=" - f"{l2_regularization_strength}." - ) - if l2_shrinkage_regularization_strength < 0.0: - raise ValueError( - "`l2_shrinkage_regularization_strength` needs to be positive " - "or zero. Received: l2_shrinkage_regularization_strength" - f"={l2_shrinkage_regularization_strength}." - ) - - self._learning_rate = self._build_learning_rate(learning_rate) - self.learning_rate_power = learning_rate_power - self.initial_accumulator_value = initial_accumulator_value - self.l1_regularization_strength = l1_regularization_strength - self.l2_regularization_strength = l2_regularization_strength - self.l2_shrinkage_regularization_strength = ( - l2_shrinkage_regularization_strength - ) - self.beta = beta - - def build(self, var_list): - """Initialize optimizer variables. - - Args: - var_list: list of model variables to build Ftrl variables on. - """ - super().build(var_list) - if hasattr(self, "_built") and self._built: - return - self._accumulators = [] - self._linears = [] - for var in var_list: - self._accumulators.append( - self.add_variable_from_reference( - model_variable=var, - variable_name="accumulator", - initial_value=tf.cast( - tf.fill( - dims=var.shape, value=self.initial_accumulator_value - ), - dtype=var.dtype, - ), - ) - ) - self._linears.append( - self.add_variable_from_reference( - model_variable=var, variable_name="linear" - ) - ) - self._built = True - - def update_step(self, gradient, variable): - """Update step given gradient and the associated model variable.""" - - lr = tf.cast(self.learning_rate, variable.dtype) - var_key = self._var_key(variable) - accum = self._accumulators[self._index_dict[var_key]] - linear = self._linears[self._index_dict[var_key]] - - lr_power = self.learning_rate_power - l2_reg = self.l2_regularization_strength - l2_reg = l2_reg + self.beta / (2.0 * lr) - - # Ftrl optimizer has the same implementation for sparse and dense - # gradients update. - grad_to_use = ( - gradient + 2 * self.l2_shrinkage_regularization_strength * variable - ) - new_accum = accum + tf.pow(gradient, 2) - linear.assign_add( - grad_to_use - - (tf.pow(new_accum, -lr_power) - tf.pow(accum, -lr_power)) - / lr - * variable - ) - quadratic = tf.pow(new_accum, (-lr_power)) / lr + 2 * l2_reg - linear_clipped = tf.clip_by_value( - linear, - -self.l1_regularization_strength, - self.l1_regularization_strength, - ) - variable.assign((linear_clipped - linear) / quadratic) - accum.assign(new_accum) - - def get_config(self): - config = super().get_config() - - config.update( - { - "learning_rate": self._serialize_hyperparameter( - self._learning_rate - ), - "learning_rate_power": self.learning_rate_power, - "initial_accumulator_value": self.initial_accumulator_value, - "l1_regularization_strength": self.l1_regularization_strength, - "l2_regularization_strength": self.l2_regularization_strength, - "l2_shrinkage_regularization_strength": self.l2_shrinkage_regularization_strength, # noqa: E501 - "beta": self.beta, - } - ) - return config - - -Ftrl.__doc__ = Ftrl.__doc__.replace( - "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args -) diff --git a/keras/optimizers/legacy/BUILD b/keras/optimizers/legacy/BUILD deleted file mode 100644 index 96b3eef22d4..00000000000 --- a/keras/optimizers/legacy/BUILD +++ /dev/null @@ -1,162 +0,0 @@ -# Description: -# Contains the Keras OptimizerV2 API (internal TensorFlow version). - -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -package( - # TODO(scottzhu): Remove non-keras deps from TF. - default_visibility = [ - "//keras:friends", - "//third_party/tensorflow/python:__pkg__", - "//third_party/tensorflow/python/distribute:__pkg__", - "//third_party/tensorflow/python/training/tracking:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "optimizers", - srcs = [ - "adadelta.py", - "adagrad.py", - "adam.py", - "adamax.py", - "ftrl.py", - "gradient_descent.py", - "nadam.py", - "optimizer_v2.py", - "rmsprop.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras:backend_config", - "//keras/engine:base_layer_utils", - "//keras/initializers", - "//keras/optimizers:utils", - "//keras/optimizers/schedules:learning_rate_schedule", - "//keras/utils:layer_utils", - "//keras/utils:tf_utils", - ], -) - -cuda_py_test( - name = "adagrad_test", - size = "medium", - srcs = ["adagrad_test.py"], - shard_count = 4, - deps = [ - ":optimizers", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "adam_test", - size = "medium", - srcs = ["adam_test.py"], - shard_count = 4, - tags = [ - "no_rocm", - "no_windows", # TODO(b/171384138) - ], - deps = [ - ":optimizers", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "adamax_test", - size = "medium", - srcs = ["adamax_test.py"], - shard_count = 4, - # TODO(b/168527439): invalid resource variable reference on GPU for TFRT. - tags = ["no_rocm"], - deps = [ - ":optimizers", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "adadelta_test", - size = "medium", - srcs = ["adadelta_test.py"], - shard_count = 4, - # TODO(b/168527439): invalid resource variable reference on GPU for TFRT. - deps = [ - ":optimizers", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "ftrl_test", - size = "medium", - srcs = ["ftrl_test.py"], - shard_count = 4, - deps = [ - ":optimizers", - "//:expect_tensorflow_installed", - ], -) - -cuda_py_test( - name = "gradient_descent_test", - size = "medium", - srcs = ["gradient_descent_test.py"], - shard_count = 4, - deps = [ - ":optimizers", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "nadam_test", - size = "medium", - srcs = ["nadam_test.py"], - shard_count = 4, - deps = [ - ":optimizers", - "//:expect_tensorflow_installed", - ], -) - -cuda_py_test( - name = "optimizer_v2_test", - size = "medium", - srcs = ["optimizer_v2_test.py"], - shard_count = 8, - tags = [ - "no_windows", - ], - deps = [ - ":optimizers", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "rmsprop_test", - size = "medium", - srcs = ["rmsprop_test.py"], - shard_count = 2, - # TODO(b/168527439): invalid resource variable reference on GPU for TFRT. - deps = [ - ":optimizers", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/optimizers/legacy/__init__.py b/keras/optimizers/legacy/__init__.py deleted file mode 100644 index 78cb171abba..00000000000 --- a/keras/optimizers/legacy/__init__.py +++ /dev/null @@ -1,14 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== diff --git a/keras/optimizers/legacy/adadelta.py b/keras/optimizers/legacy/adadelta.py deleted file mode 100644 index 4b8b1680e2f..00000000000 --- a/keras/optimizers/legacy/adadelta.py +++ /dev/null @@ -1,164 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Adadelta optimizer implementation.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend_config -from keras.optimizers.legacy import optimizer_v2 - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.optimizers.legacy.Adadelta", - v1=["keras.optimizers.Adadelta", "keras.optimizers.legacy.Adadelta"], -) -class Adadelta(optimizer_v2.OptimizerV2): - r"""Optimizer that implements the Adadelta algorithm. - - Adadelta optimization is a stochastic gradient descent method that is based - on adaptive learning rate per dimension to address two drawbacks: - - - The continual decay of learning rates throughout training. - - The need for a manually selected global learning rate. - - Adadelta is a more robust extension of Adagrad that adapts learning rates - based on a moving window of gradient updates, instead of accumulating all - past gradients. This way, Adadelta continues learning even when many updates - have been done. Compared to Adagrad, in the original version of Adadelta you - don't have to set an initial learning rate. In this version, the initial - learning rate can be set, as in most other Keras optimizers. - - Args: - learning_rate: Initial value for the learning rate: - either a floating point value, - or a `tf.keras.optimizers.schedules.LearningRateSchedule` instance. - Defaults to 0.001. - Note that `Adadelta` tends to benefit from higher initial learning rate - values compared to other optimizers. - To match the exact form in the original paper, use 1.0. - rho: A `Tensor` or a floating point value. The decay rate. - epsilon: Small floating point value used to maintain numerical stability. - name: Optional name prefix for the operations created when applying - gradients. Defaults to `"Adadelta"`. - **kwargs: keyword arguments. Allowed arguments are `clipvalue`, - `clipnorm`, `global_clipnorm`. - If `clipvalue` (float) is set, the gradient of each weight - is clipped to be no higher than this value. - If `clipnorm` (float) is set, the gradient of each weight - is individually clipped so that its norm is no higher than this value. - If `global_clipnorm` (float) is set the gradient of all weights is - clipped so that their global norm is no higher than this value. - - Reference: - - [Zeiler, 2012](http://arxiv.org/abs/1212.5701) - """ - - _HAS_AGGREGATE_GRAD = True - - def __init__( - self, - learning_rate=0.001, - rho=0.95, - epsilon=1e-7, - name="Adadelta", - **kwargs - ): - super().__init__(name, **kwargs) - self._set_hyper("learning_rate", kwargs.get("lr", learning_rate)) - self._set_hyper("decay", self._initial_decay) - self._set_hyper("rho", rho) - self.epsilon = epsilon or backend_config.epsilon() - - def _create_slots(self, var_list): - # Separate for-loops to respect the ordering of slot variables from v1. - for v in var_list: - self.add_slot(v, "accum_grad") - for v in var_list: - self.add_slot(v, "accum_var") - - def _prepare_local(self, var_device, var_dtype, apply_state): - super()._prepare_local(var_device, var_dtype, apply_state) - apply_state[(var_device, var_dtype)].update( - dict( - epsilon=tf.convert_to_tensor(self.epsilon, var_dtype), - rho=tf.identity(self._get_hyper("rho", var_dtype)), - ) - ) - - def set_weights(self, weights): - params = self.weights - # Override set_weights for backward compatibility of Keras V1 optimizer - # since it does not include iteration at head of the weight list. Set - # iteration to 0. - if len(params) == len(weights) + 1: - weights = [np.array(0)] + weights - super().set_weights(weights) - - def _resource_apply_dense(self, grad, var, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - accum_grad = self.get_slot(var, "accum_grad") - accum_var = self.get_slot(var, "accum_var") - return tf.raw_ops.ResourceApplyAdadelta( - var=var.handle, - accum=accum_grad.handle, - accum_update=accum_var.handle, - lr=coefficients["lr_t"], - rho=coefficients["rho"], - epsilon=coefficients["epsilon"], - grad=grad, - use_locking=self._use_locking, - ) - - def _resource_apply_sparse(self, grad, var, indices, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - accum_grad = self.get_slot(var, "accum_grad") - accum_var = self.get_slot(var, "accum_var") - return tf.raw_ops.ResourceSparseApplyAdadelta( - var=var.handle, - accum=accum_grad.handle, - accum_update=accum_var.handle, - lr=coefficients["lr_t"], - rho=coefficients["rho"], - epsilon=coefficients["epsilon"], - grad=grad, - indices=indices, - use_locking=self._use_locking, - ) - - def get_config(self): - config = super().get_config() - config.update( - { - "learning_rate": self._serialize_hyperparameter( - "learning_rate" - ), - "decay": self._initial_decay, - "rho": self._serialize_hyperparameter("rho"), - "epsilon": self.epsilon, - } - ) - return config diff --git a/keras/optimizers/legacy/adadelta_test.py b/keras/optimizers/legacy/adadelta_test.py deleted file mode 100644 index b9d8937b266..00000000000 --- a/keras/optimizers/legacy/adadelta_test.py +++ /dev/null @@ -1,223 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Adadelta Optimizer.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.optimizers.legacy import adadelta -from keras.testing_infra import test_combinations - -_DATA_TYPES = [tf.half, tf.float32, tf.float64, tf.complex64, tf.complex128] - - -class AdadeltaOptimizerTest(tf.test.TestCase, parameterized.TestCase): - def doTestBasic(self, use_resource=False, use_callable_params=False): - num_updates = 4 # number of ADADELTA steps to perform - for dtype in _DATA_TYPES: - for grad in [0.2, 0.1, 0.01]: - for lr in [1.0, 0.5, 0.1]: - var0_init = [1.0, 2.0] - var1_init = [3.0, 4.0] - if use_resource: - var0 = tf.Variable(var0_init, dtype=dtype) - var1 = tf.Variable(var1_init, dtype=dtype) - else: - var0 = tf.Variable(var0_init, dtype=dtype) - var1 = tf.Variable(var1_init, dtype=dtype) - - grads = tf.constant([grad, grad], dtype=dtype) - - accum = 0.0 - accum_update = 0.0 - - # ADADELTA gradient optimizer - rho = 0.95 - epsilon = 1e-8 - if use_callable_params: - adadelta_opt = adadelta.Adadelta( - learning_rate=lambda: lr, - rho=lambda: rho, - epsilon=epsilon, - ) - else: - adadelta_opt = adadelta.Adadelta( - learning_rate=lr, rho=rho, epsilon=epsilon - ) - if not tf.executing_eagerly(): - adadelta_update = adadelta_opt.apply_gradients( - zip([grads, grads], [var0, var1]) - ) - self.evaluate( - tf.compat.v1.global_variables_initializer() - ) - - # Assign slots - slot = [None] * 2 - slot_update = [None] * 2 - slot[0] = adadelta_opt.get_slot(var0, "accum_grad") - self.assertEqual(slot[0].shape, var0.shape) - - slot_update[0] = adadelta_opt.get_slot( - var0, "accum_var" - ) - self.assertEqual(slot_update[0].shape, var0.shape) - - slot[1] = adadelta_opt.get_slot(var1, "accum_grad") - self.assertEqual(slot[1].shape, var1.shape) - - slot_update[1] = adadelta_opt.get_slot( - var1, "accum_var" - ) - self.assertEqual(slot_update[1].shape, var1.shape) - - # Fetch params to validate initial values - self.assertAllClose(var0_init, self.evaluate(var0)) - self.assertAllClose(var1_init, self.evaluate(var1)) - - update = [None] * num_updates - tot_update = 0 - for step in range(num_updates): - # Run adadelta update for comparison - if not tf.executing_eagerly(): - self.evaluate(adadelta_update) - else: - adadelta_opt.apply_gradients( - zip([grads, grads], [var0, var1]) - ) - - # Perform initial update without previous accum values - accum = accum * rho + (grad**2) * (1 - rho) - update[step] = ( - np.sqrt(accum_update + epsilon) - * (1.0 / np.sqrt(accum + epsilon)) - * grad - ) - accum_update = accum_update * rho + ( - update[step] ** 2 - ) * (1.0 - rho) - tot_update += update[step] * lr - - if not tf.executing_eagerly(): - # Check that the accumulators have been updated - # TODO(lxuechen): This is hard to test in eager mode - for slot_idx in range(2): - self.assertAllCloseAccordingToType( - np.array( - [accum, accum], - dtype=dtype.as_numpy_dtype(0), - ), - self.evaluate(slot[slot_idx]), - rtol=1e-5, - ) - - self.assertAllCloseAccordingToType( - np.array( - [accum_update, accum_update], - dtype=dtype.as_numpy_dtype(0), - ), - self.evaluate(slot_update[slot_idx]), - rtol=1e-5, - ) - - # Check that the parameters have been updated - self.assertAllCloseAccordingToType( - np.array( - [ - var0_init[0] - tot_update, - var0_init[1] - tot_update, - ], - dtype=dtype.as_numpy_dtype(0), - ), - self.evaluate(var0), - rtol=1e-5, - ) - - self.assertAllCloseAccordingToType( - np.array( - [ - var1_init[0] - tot_update, - var1_init[1] - tot_update, - ], - dtype=dtype.as_numpy_dtype(0), - ), - self.evaluate(var1), - rtol=1e-5, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testResourceBasic(self): - self.doTestBasic(use_resource=True) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testBasicCallableParams(self): - self.doTestBasic(use_resource=True, use_callable_params=True) - - def testMinimizeSparseResourceVariable(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in _DATA_TYPES: - var0 = tf.Variable([[1.0, 2.0]], dtype=dtype) - x = tf.constant([[4.0], [5.0]], dtype=dtype) - - def loss(): - pred = tf.matmul( - tf.compat.v1.nn.embedding_lookup([var0], [0]), x - ) - return pred * pred - - sgd_op = adadelta.Adadelta(1.0, 1.0, 1.0).minimize( - loss, var_list=[var0] - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Fetch params to validate initial values - self.assertAllCloseAccordingToType( - [[1.0, 2.0]], self.evaluate(var0) - ) - # Run 1 step of sgd - self.evaluate(sgd_op) - # Validate updated params - self.assertAllCloseAccordingToType( - [[-111, -138]], self.evaluate(var0) - ) - - def testConstructAdadeltaWithLR(self): - opt = adadelta.Adadelta(lr=1.0, rho=0.9, epsilon=1.0) - opt_2 = adadelta.Adadelta( - learning_rate=0.1, rho=0.9, epsilon=1.0, lr=1.0 - ) - opt_3 = adadelta.Adadelta(learning_rate=0.1, rho=0.9, epsilon=1.0) - self.assertIsInstance(opt.lr, tf.Variable) - self.assertIsInstance(opt_2.lr, tf.Variable) - self.assertIsInstance(opt_3.lr, tf.Variable) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose(self.evaluate(opt.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_2.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_3.lr), (0.1)) - - def testConstructAdadeltaWithEpsilonValues(self): - opt = adadelta.Adadelta(epsilon=None) - self.assertEqual(opt.epsilon, 1e-7) - - opt = adadelta.Adadelta(epsilon=1e-8) - self.assertEqual(opt.epsilon, 1e-8) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/optimizers/legacy/adagrad.py b/keras/optimizers/legacy/adagrad.py deleted file mode 100644 index c29280c8690..00000000000 --- a/keras/optimizers/legacy/adagrad.py +++ /dev/null @@ -1,185 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Adagrad optimizer implementation.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend_config -from keras.optimizers.legacy import optimizer_v2 - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.optimizers.legacy.Adagrad", - v1=["keras.optimizers.Adagrad", "keras.optimizers.legacy.Adagrad"], -) -class Adagrad(optimizer_v2.OptimizerV2): - r"""Optimizer that implements the Adagrad algorithm. - - Adagrad is an optimizer with parameter-specific learning rates, - which are adapted relative to how frequently a parameter gets - updated during training. The more updates a parameter receives, - the smaller the updates. - - Args: - learning_rate: Initial value for the learning rate: - either a floating point value, - or a `tf.keras.optimizers.schedules.LearningRateSchedule` instance. - Defaults to 0.001. - Note that `Adagrad` tends to benefit from higher initial learning rate - values compared to other optimizers. - To match the exact form in the original paper, use 1.0. - initial_accumulator_value: Floating point value. - Starting value for the accumulators (per-parameter momentum values). - Must be non-negative. - epsilon: Small floating point value used to maintain numerical stability. - name: Optional name prefix for the operations created when applying - gradients. Defaults to `"Adagrad"`. - **kwargs: keyword arguments. Allowed arguments are `clipvalue`, - `clipnorm`, `global_clipnorm`. - If `clipvalue` (float) is set, the gradient of each weight - is clipped to be no higher than this value. - If `clipnorm` (float) is set, the gradient of each weight - is individually clipped so that its norm is no higher than this value. - If `global_clipnorm` (float) is set the gradient of all weights is - clipped so that their global norm is no higher than this value.. - - Reference: - - [Duchi et al., 2011]( - http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf). - """ - - _HAS_AGGREGATE_GRAD = True - - def __init__( - self, - learning_rate=0.001, - initial_accumulator_value=0.1, - epsilon=1e-7, - name="Adagrad", - **kwargs - ): - if initial_accumulator_value < 0.0: - raise ValueError( - "initial_accumulator_value must be non-negative: %s" - % initial_accumulator_value - ) - if epsilon is None: - epsilon = backend_config.epsilon() - super().__init__(name, **kwargs) - self._set_hyper("learning_rate", kwargs.get("lr", learning_rate)) - self._set_hyper("decay", self._initial_decay) - self._initial_accumulator_value = initial_accumulator_value - self.epsilon = epsilon or backend_config.epsilon() - - def _create_slots(self, var_list): - for var in var_list: - dtype = var.dtype.base_dtype - init = tf.compat.v1.constant_initializer( - self._initial_accumulator_value, dtype=dtype - ) - self.add_slot(var, "accumulator", init) - - def _prepare_local(self, var_device, var_dtype, apply_state): - super()._prepare_local(var_device, var_dtype, apply_state) - apply_state[(var_device, var_dtype)].update( - dict( - epsilon=tf.convert_to_tensor(self.epsilon, var_dtype), - neg_lr_t=-apply_state[(var_device, var_dtype)]["lr_t"], - zero=tf.zeros((), dtype=tf.int64), - ) - ) - - def set_weights(self, weights): - params = self.weights - # Override set_weights for backward compatibility of Keras V1 optimizer - # since it does not include iteration at head of the weight list. Set - # iteration to 0. - if len(params) == len(weights) + 1: - weights = [np.array(0)] + weights - super().set_weights(weights) - - @classmethod - def from_config(cls, config, custom_objects=None): - """Creates an optimizer from its config. - - This method is the reverse of `get_config`, - capable of instantiating the same optimizer from the config - dictionary. - - Args: - config: A Python dictionary, typically the output of get_config. - custom_objects: A Python dictionary mapping names to additional - Python objects used to create this optimizer, such as a function - used for a hyperparameter. - - Returns: - An optimizer instance. - """ - if "initial_accumulator_value" not in config: - config["initial_accumulator_value"] = 0.1 - if "lr" in config: - config["learning_rate"] = config.pop("lr") - return cls(**config) - - def _resource_apply_dense(self, grad, var, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - acc = self.get_slot(var, "accumulator") - return tf.raw_ops.ResourceApplyAdagradV2( - var=var.handle, - accum=acc.handle, - lr=coefficients["lr_t"], - epsilon=coefficients["epsilon"], - grad=grad, - use_locking=self._use_locking, - ) - - def _resource_apply_sparse(self, grad, var, indices, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - acc = self.get_slot(var, "accumulator") - return tf.raw_ops.ResourceSparseApplyAdagradV2( - var=var.handle, - accum=acc.handle, - lr=coefficients["lr_t"], - epsilon=coefficients["epsilon"], - grad=grad, - indices=indices, - use_locking=self._use_locking, - ) - - def get_config(self): - config = super().get_config() - config.update( - { - "learning_rate": self._serialize_hyperparameter( - "learning_rate" - ), - "decay": self._initial_decay, - "initial_accumulator_value": self._initial_accumulator_value, - "epsilon": self.epsilon, - } - ) - return config diff --git a/keras/optimizers/legacy/adagrad_test.py b/keras/optimizers/legacy/adagrad_test.py deleted file mode 100644 index 221883aa3f4..00000000000 --- a/keras/optimizers/legacy/adagrad_test.py +++ /dev/null @@ -1,618 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Functional tests for aggregate operations.""" - -import copy - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.optimizers.legacy import adagrad -from keras.optimizers.schedules import learning_rate_schedule -from keras.testing_infra import test_combinations - -_DATA_TYPES = [tf.half, tf.float32, tf.float64, tf.complex64, tf.complex128] - - -def adagrad_update_numpy(param, accum, g_t, lr=0.001, epsilon=1e-7): - accum_t = accum + g_t * g_t - param_t = param - lr * g_t / (np.sqrt(accum_t) + epsilon) - return param_t, accum_t - - -def sparse_adagrad_update_numpy( - param, accum, gindexs, gvalues, lr=0.001, epsilon=1e-7 -): - accum_t = copy.deepcopy(accum) - param_t = copy.deepcopy(param) - # first loop accumulates repeated indices if necessary. - for i in range(len(gindexs)): - gindex = gindexs[i] - gvalue = gvalues[i] - accum_t[gindex] = accum_t[gindex] + gvalue * gvalue - for i in range(len(gindexs)): - gindex = gindexs[i] - gvalue = gvalues[i] - param_t[gindex] = param_t[gindex] - lr * gvalue / ( - np.sqrt(accum_t[gindex]) + epsilon - ) - return param_t, accum_t - - -class AdagradOptimizerTest(tf.test.TestCase, parameterized.TestCase): - def doTestBasic(self, use_callable_params=False): - for dtype in _DATA_TYPES: - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - learning_rate = lambda: 3.0 - if not use_callable_params: - learning_rate = learning_rate() - - ada_opt = adagrad.Adagrad(learning_rate) - - accum0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - accum1_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - - if not tf.executing_eagerly(): - ada_update = ada_opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllClose([1.0, 2.0], v0_val) - self.assertAllClose([3.0, 4.0], v1_val) - - # Run 3 steps of adagrad - for _ in range(3): - if not tf.executing_eagerly(): - self.evaluate(ada_update) - else: - ada_opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - var0_np, accum0_np = adagrad_update_numpy( - var0_np, accum0_np, grads0_np, 3.0 - ) - var1_np, accum1_np = adagrad_update_numpy( - var1_np, accum1_np, grads1_np, 3.0 - ) - self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) - self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasic(self): - self.doTestBasic() - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testBasicCallableParams(self): - self.doTestBasic(use_callable_params=True) - - def testBasicWithLearningRateDecay(self): - for dtype in _DATA_TYPES: - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - learning_rate = 3.0 - decay = 0.5 - - ada_opt = adagrad.Adagrad(learning_rate, decay=decay) - - accum0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - accum1_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - - if not tf.executing_eagerly(): - ada_update = ada_opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllClose([1.0, 2.0], v0_val) - self.assertAllClose([3.0, 4.0], v1_val) - - # Run 3 steps of adagrad - for t in range(3): - if not tf.executing_eagerly(): - self.evaluate(ada_update) - else: - ada_opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - lr_np = learning_rate / (1 + decay * t) - var0_np, accum0_np = adagrad_update_numpy( - var0_np, accum0_np, grads0_np, lr_np - ) - var1_np, accum1_np = adagrad_update_numpy( - var1_np, accum1_np, grads1_np, lr_np - ) - self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) - self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) - - def testBasicWithLargeEpsilon(self): - var0_np = np.array([1.0, 2.0]) - var1_np = np.array([3.0, 4.0]) - grads0_np = np.array([0.1, 0.1]) - grads1_np = np.array([0.01, 0.01]) - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - learning_rate = 3.0 - - ada_opt = adagrad.Adagrad(learning_rate, epsilon=1.0) - - accum0_np = np.array([0.1, 0.1]) - accum1_np = np.array([0.1, 0.1]) - - if not tf.executing_eagerly(): - ada_update = ada_opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllClose([1.0, 2.0], v0_val) - self.assertAllClose([3.0, 4.0], v1_val) - - # Run 3 steps of adagrad - for _ in range(3): - if not tf.executing_eagerly(): - self.evaluate(ada_update) - else: - ada_opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - var0_np, accum0_np = adagrad_update_numpy( - var0_np, accum0_np, grads0_np, 3.0, 1.0 - ) - var1_np, accum1_np = adagrad_update_numpy( - var1_np, accum1_np, grads1_np, 3.0, 1.0 - ) - self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) - self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) - - def testBasicWithLearningRateInverseTimeDecay(self): - for dtype in _DATA_TYPES: - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - learning_rate = 3.0 - decay = 0.5 - lr_schedule = learning_rate_schedule.InverseTimeDecay( - learning_rate, decay_steps=1.0, decay_rate=decay - ) - - ada_opt = adagrad.Adagrad(lr_schedule) - - accum0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - accum1_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - - if not tf.executing_eagerly(): - ada_update = ada_opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllClose([1.0, 2.0], v0_val) - self.assertAllClose([3.0, 4.0], v1_val) - - # Run 3 steps of adagrad - for t in range(3): - if not tf.executing_eagerly(): - self.evaluate(ada_update) - else: - ada_opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - lr_np = learning_rate / (1 + decay * t) - var0_np, accum0_np = adagrad_update_numpy( - var0_np, accum0_np, grads0_np, lr_np - ) - var1_np, accum1_np = adagrad_update_numpy( - var1_np, accum1_np, grads1_np, lr_np - ) - self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) - self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) - - def testMinimizeSparseResourceVariable(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in _DATA_TYPES: - var0 = tf.Variable([[1.0, 2.0], [3.0, 4.0]], dtype=dtype) - x = tf.constant([[4.0], [5.0]], dtype=dtype) - - def loss(): - pred = tf.matmul( - tf.compat.v1.nn.embedding_lookup([var0], [0]), x - ) - return pred * pred - - sgd_op = adagrad.Adagrad(1.0).minimize(loss, var_list=[var0]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Fetch params to validate initial values - self.assertAllCloseAccordingToType( - [[1.0, 2.0], [3.0, 4.0]], self.evaluate(var0) - ) - # Run 1 step of sgd - self.evaluate(sgd_op) - # Validate updated params - self.assertAllCloseAccordingToType( - [[0, 1], [3, 4]], self.evaluate(var0), atol=0.01 - ) - - def testTensorLearningRate(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in _DATA_TYPES: - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - learning_rate = tf.constant(3.0) - ada_opt = adagrad.Adagrad(learning_rate) - ada_update = ada_opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - accum0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - accum1_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - # Run 3 steps of adagrad - for _ in range(3): - self.evaluate(ada_update) - var0_np, accum0_np = adagrad_update_numpy( - var0_np, accum0_np, grads0_np, learning_rate - ) - var1_np, accum1_np = adagrad_update_numpy( - var1_np, accum1_np, grads1_np, learning_rate - ) - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - def testSparseBasic(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in _DATA_TYPES: - var0_np = np.array([1.0, 1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array( - [0.01, 0, 0.01], dtype=dtype.as_numpy_dtype - ) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0_np_indices = np.array([0, 2], dtype=np.int32) - grads0 = tf.IndexedSlices( - tf.constant(grads0_np[grads0_np_indices]), - tf.constant(grads0_np_indices), - tf.constant([3]), - ) - grads1_np_indices = np.array([0, 2], dtype=np.int32) - grads1 = tf.IndexedSlices( - tf.constant(grads1_np[grads1_np_indices]), - tf.constant(grads1_np_indices), - tf.constant([3]), - ) - learning_rate = 3.0 - ada_opt = adagrad.Adagrad(learning_rate) - ada_update = ada_opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 3.0, 4.0], self.evaluate(var1)) - - accum0_np = np.array( - [0.1, 0.1, 0.1], dtype=dtype.as_numpy_dtype - ) - accum1_np = np.array( - [0.1, 0.1, 0.1], dtype=dtype.as_numpy_dtype - ) - - # Run 3 step of sgd - for _ in range(3): - self.evaluate(ada_update) - - var0_np, accum0_np = sparse_adagrad_update_numpy( - var0_np, - accum0_np, - grads0_np_indices, - grads0_np[grads0_np_indices], - learning_rate, - ) - var1_np, accum1_np = sparse_adagrad_update_numpy( - var1_np, - accum1_np, - grads1_np_indices, - grads1_np[grads1_np_indices], - learning_rate, - ) - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - def testSparseSingleVarDim(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in _DATA_TYPES: - var0_np = np.array([1.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np) - grads0_np_indices = np.array([0], dtype=np.int32) - grads0 = tf.IndexedSlices( - tf.constant(grads0_np[grads0_np_indices]), - tf.constant(grads0_np_indices), - tf.constant([3]), - ) - learning_rate = 3.0 - ada_opt = adagrad.Adagrad(learning_rate, epsilon=1.0) - ada_update = ada_opt.apply_gradients(zip([grads0], [var0])) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - self.assertAllClose([1.0], self.evaluate(var0)) - - accum0_np = np.array([0.1], dtype=dtype.as_numpy_dtype) - - # Run 3 step of sgd - for _ in range(3): - self.evaluate(ada_update) - - var0_np, accum0_np = sparse_adagrad_update_numpy( - var0_np, - accum0_np, - grads0_np_indices, - grads0_np[grads0_np_indices], - learning_rate, - epsilon=1.0, - ) - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - - def testSparseRepeatedIndices(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in _DATA_TYPES: - var_np = np.array([[1.0], [2.0]], dtype=dtype.as_numpy_dtype) - - repeated_index_update_var = tf.Variable(var_np, dtype=dtype) - aggregated_update_var = tf.Variable(var_np, dtype=dtype) - grad_repeated_index = tf.IndexedSlices( - tf.constant([0.1, 0.1], shape=[2, 1], dtype=dtype), - tf.constant([1, 1]), - tf.constant([2, 1]), - ) - grad_aggregated = tf.IndexedSlices( - tf.constant([0.2], shape=[1, 1], dtype=dtype), - tf.constant([1]), - tf.constant([2, 1]), - ) - repeated_update = adagrad.Adagrad(3.0).apply_gradients( - [(grad_repeated_index, repeated_index_update_var)] - ) - aggregated_update = adagrad.Adagrad(3.0).apply_gradients( - [(grad_aggregated, aggregated_update_var)] - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose( - self.evaluate(aggregated_update_var), - self.evaluate(repeated_index_update_var), - ) - for _ in range(3): - self.evaluate(repeated_update) - self.evaluate(aggregated_update) - self.assertAllClose( - self.evaluate(aggregated_update_var), - self.evaluate(repeated_index_update_var), - ) - - def testSparseRepeatedIndicesByEmbeddingLookUp(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in _DATA_TYPES: - var_repeated = tf.Variable([1.0, 2.0], dtype=dtype) - loss_repeated = lambda: tf.reduce_sum( - tf.compat.v1.nn.embedding_lookup(var_repeated, [0, 0]) - ) - var_aggregated = tf.Variable([1.0, 2.0], dtype=dtype) - loss_aggregated = lambda: 2 * tf.reduce_sum( - tf.compat.v1.nn.embedding_lookup(var_aggregated, [0]) - ) - update_op_repeated = adagrad.Adagrad(2.0).minimize( - loss_repeated, var_list=[var_repeated] - ) - update_op_aggregated = adagrad.Adagrad(2.0).minimize( - loss_aggregated, var_list=[var_aggregated] - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllCloseAccordingToType( - self.evaluate(var_repeated), self.evaluate(var_aggregated) - ) - for _ in range(3): - self.evaluate(update_op_repeated) - self.evaluate(update_op_aggregated) - self.assertAllCloseAccordingToType( - self.evaluate(var_repeated), - self.evaluate(var_aggregated), - ) - - def testSparseStability(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in [tf.half]: - shape = [1, 6] - var0_np = np.array( - [ - [ - 0.00872496, - -0.106952, - 0.110467, - 0.226505, - -0.0147257, - -0.0105945, - ] - ], - dtype=dtype.as_numpy_dtype, - ) - var0 = tf.Variable(var0_np) - grads0_np = np.array( - [ - [ - -5.91278e-05, - 5.31673e-05, - -2.5779e-06, - 4.29153e-05, - -8.4877e-05, - -9.48906e-05, - ] - ], - dtype=dtype.as_numpy_dtype, - ) - grads0 = tf.IndexedSlices( - tf.constant(grads0_np), tf.constant([0]), tf.constant(shape) - ) - ada_opt = adagrad.Adagrad(1.0) - ada_update = ada_opt.apply_gradients(zip([grads0], [var0])) - slot0 = ada_opt.get_slot(var0, "accumulator") - init = tf.compat.v1.global_variables_initializer() - for _ in range(100): - self.evaluate(init) - self.evaluate(ada_update) - self.assertAllCloseAccordingToType( - np.array([[0.1, 0.1, 0.1, 0.1, 0.1, 0.1]]), - self.evaluate(slot0), - ) - self.assertAllCloseAccordingToType( - np.array( - [ - [ - 0.00891194, - -0.10712013, - 0.11047515, - 0.22636929, - -0.0144573, - -0.01029443, - ] - ] - ), - self.evaluate(var0), - ) - - def testSharing(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in _DATA_TYPES: - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - learning_rate = 3.0 - ada_opt = adagrad.Adagrad(learning_rate) - # Apply the optimizer twice. Both applications will use - # the same accums. - ada_update1 = ada_opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - ada_update2 = ada_opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - slot0 = ada_opt.get_slot(var0, "accumulator") - self.assertEqual(slot0.shape, var0.shape) - slot1 = ada_opt.get_slot(var1, "accumulator") - self.assertEqual(slot1.shape, var1.shape) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values. - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - # Mix the first and the second adagrad for 3 steps. - self.evaluate(ada_update1) - self.evaluate(ada_update2) - self.evaluate(ada_update1) - - accum0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - accum1_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - for _ in range(3): - var0_np, accum0_np = adagrad_update_numpy( - var0_np, accum0_np, grads0_np, learning_rate - ) - var1_np, accum1_np = adagrad_update_numpy( - var1_np, accum1_np, grads1_np, learning_rate - ) - self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) - self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) - - def testConstructAdagradWithLR(self): - opt = adagrad.Adagrad(lr=1.0) - opt_2 = adagrad.Adagrad(learning_rate=0.1, lr=1.0) - opt_3 = adagrad.Adagrad(learning_rate=0.1) - self.assertIsInstance(opt.lr, tf.Variable) - self.assertIsInstance(opt_2.lr, tf.Variable) - self.assertIsInstance(opt_3.lr, tf.Variable) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose(self.evaluate(opt.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_2.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_3.lr), (0.1)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/optimizers/legacy/adam.py b/keras/optimizers/legacy/adam.py deleted file mode 100644 index a416d22f10b..00000000000 --- a/keras/optimizers/legacy/adam.py +++ /dev/null @@ -1,515 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Adam optimizer implementation.""" - -import tensorflow.compat.v2 as tf - -from keras import backend_config -from keras.optimizers.legacy import optimizer_v2 - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.optimizers.legacy.Adam", - v1=["keras.optimizers.Adam", "keras.optimizers.legacy.Adam"], -) -class Adam(optimizer_v2.OptimizerV2): - r"""Optimizer that implements the Adam algorithm. - - Adam optimization is a stochastic gradient descent method that is based on - adaptive estimation of first-order and second-order moments. - - According to - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980), - the method is "*computationally - efficient, has little memory requirement, invariant to diagonal rescaling of - gradients, and is well suited for problems that are large in terms of - data/parameters*". - - Args: - learning_rate: A `Tensor`, floating point value, or a schedule that is a - `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable - that takes no arguments and returns the actual value to use, The - learning rate. Defaults to 0.001. - beta_1: A float value or a constant float tensor, or a callable - that takes no arguments and returns the actual value to use. The - exponential decay rate for the 1st moment estimates. Defaults to 0.9. - beta_2: A float value or a constant float tensor, or a callable - that takes no arguments and returns the actual value to use, The - exponential decay rate for the 2nd moment estimates. Defaults to 0.999. - epsilon: A small constant for numerical stability. This epsilon is - "epsilon hat" in the Kingma and Ba paper (in the formula just before - Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to - 1e-7. - amsgrad: Boolean. Whether to apply AMSGrad variant of this algorithm from - the paper "On the Convergence of Adam and beyond". Defaults to `False`. - name: Optional name for the operations created when applying gradients. - Defaults to `"Adam"`. - **kwargs: keyword arguments. Allowed arguments are `clipvalue`, - `clipnorm`, `global_clipnorm`. - If `clipvalue` (float) is set, the gradient of each weight - is clipped to be no higher than this value. - If `clipnorm` (float) is set, the gradient of each weight - is individually clipped so that its norm is no higher than this value. - If `global_clipnorm` (float) is set the gradient of all weights is - clipped so that their global norm is no higher than this value. - - Usage: - - >>> opt = tf.keras.optimizers.legacy.Adam(learning_rate=0.1) - >>> var1 = tf.Variable(10.0) - >>> loss = lambda: (var1 ** 2)/2.0 # d(loss)/d(var1) == var1 - >>> step_count = opt.minimize(loss, [var1]).numpy() - >>> # The first step is `-learning_rate*sign(grad)` - >>> var1.numpy() - 9.9 - - Reference: - - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) - - [Reddi et al., 2018]( - https://openreview.net/pdf?id=ryQu7f-RZ) for `amsgrad`. - - Notes: - - The default value of 1e-7 for epsilon might not be a good default in - general. For example, when training an Inception network on ImageNet a - current good choice is 1.0 or 0.1. Note that since Adam uses the - formulation just before Section 2.1 of the Kingma and Ba paper rather than - the formulation in Algorithm 1, the "epsilon" referred to here is "epsilon - hat" in the paper. - - The sparse implementation of this algorithm (used when the gradient is an - IndexedSlices object, typically because of `tf.gather` or an embedding - lookup in the forward pass) does apply momentum to variable slices even if - they were not used in the forward pass (meaning they have a gradient equal - to zero). Momentum decay (beta1) is also applied to the entire momentum - accumulator. This means that the sparse behavior is equivalent to the dense - behavior (in contrast to some momentum implementations which ignore momentum - unless a variable slice was actually used). - """ - - _HAS_AGGREGATE_GRAD = True - - def __init__( - self, - learning_rate=0.001, - beta_1=0.9, - beta_2=0.999, - epsilon=1e-7, - amsgrad=False, - name="Adam", - **kwargs - ): - super().__init__(name, **kwargs) - self._set_hyper("learning_rate", kwargs.get("lr", learning_rate)) - self._set_hyper("decay", self._initial_decay) - self._set_hyper("beta_1", beta_1) - self._set_hyper("beta_2", beta_2) - self.epsilon = epsilon or backend_config.epsilon() - self.amsgrad = amsgrad - - def _create_slots(self, var_list): - # Create slots for the first and second moments. - # Separate for-loops to respect the ordering of slot variables from v1. - for var in var_list: - self.add_slot(var, "m") - for var in var_list: - self.add_slot(var, "v") - if self.amsgrad: - for var in var_list: - self.add_slot(var, "vhat") - - def _prepare_local(self, var_device, var_dtype, apply_state): - super()._prepare_local(var_device, var_dtype, apply_state) - - local_step = tf.cast(self.iterations + 1, var_dtype) - beta_1_t = tf.identity(self._get_hyper("beta_1", var_dtype)) - beta_2_t = tf.identity(self._get_hyper("beta_2", var_dtype)) - beta_1_power = tf.pow(beta_1_t, local_step) - beta_2_power = tf.pow(beta_2_t, local_step) - lr = apply_state[(var_device, var_dtype)]["lr_t"] * ( - tf.sqrt(1 - beta_2_power) / (1 - beta_1_power) - ) - apply_state[(var_device, var_dtype)].update( - dict( - lr=lr, - epsilon=tf.convert_to_tensor(self.epsilon, var_dtype), - beta_1_t=beta_1_t, - beta_1_power=beta_1_power, - one_minus_beta_1_t=1 - beta_1_t, - beta_2_t=beta_2_t, - beta_2_power=beta_2_power, - one_minus_beta_2_t=1 - beta_2_t, - ) - ) - - def set_weights(self, weights): - params = self.weights - # If the weights are generated by Keras V1 optimizer, it includes vhats - # even without amsgrad, i.e, V1 optimizer has 3x + 1 variables, while V2 - # optimizer has 2x + 1 variables. Filter vhats out for compatibility. - num_vars = int((len(params) - 1) / 2) - if len(weights) == 3 * num_vars + 1: - weights = weights[: len(params)] - super().set_weights(weights) - - def _resource_apply_dense(self, grad, var, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - m = self.get_slot(var, "m") - v = self.get_slot(var, "v") - - if not self.amsgrad: - return tf.raw_ops.ResourceApplyAdam( - var=var.handle, - m=m.handle, - v=v.handle, - beta1_power=coefficients["beta_1_power"], - beta2_power=coefficients["beta_2_power"], - lr=coefficients["lr_t"], - beta1=coefficients["beta_1_t"], - beta2=coefficients["beta_2_t"], - epsilon=coefficients["epsilon"], - grad=grad, - use_locking=self._use_locking, - ) - else: - vhat = self.get_slot(var, "vhat") - return tf.raw_ops.ResourceApplyAdamWithAmsgrad( - var=var.handle, - m=m.handle, - v=v.handle, - vhat=vhat.handle, - beta1_power=coefficients["beta_1_power"], - beta2_power=coefficients["beta_2_power"], - lr=coefficients["lr_t"], - beta1=coefficients["beta_1_t"], - beta2=coefficients["beta_2_t"], - epsilon=coefficients["epsilon"], - grad=grad, - use_locking=self._use_locking, - ) - - def _resource_apply_sparse(self, grad, var, indices, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - # m_t = beta1 * m + (1 - beta1) * g_t - m = self.get_slot(var, "m") - m_scaled_g_values = grad * coefficients["one_minus_beta_1_t"] - m_t = tf.compat.v1.assign( - m, m * coefficients["beta_1_t"], use_locking=self._use_locking - ) - with tf.control_dependencies([m_t]): - m_t = self._resource_scatter_add(m, indices, m_scaled_g_values) - - # v_t = beta2 * v + (1 - beta2) * (g_t * g_t) - v = self.get_slot(var, "v") - v_scaled_g_values = (grad * grad) * coefficients["one_minus_beta_2_t"] - v_t = tf.compat.v1.assign( - v, v * coefficients["beta_2_t"], use_locking=self._use_locking - ) - with tf.control_dependencies([v_t]): - v_t = self._resource_scatter_add(v, indices, v_scaled_g_values) - - if not self.amsgrad: - v_sqrt = tf.sqrt(v_t) - var_update = tf.compat.v1.assign_sub( - var, - coefficients["lr"] * m_t / (v_sqrt + coefficients["epsilon"]), - use_locking=self._use_locking, - ) - return tf.group(*[var_update, m_t, v_t]) - else: - v_hat = self.get_slot(var, "vhat") - v_hat_t = tf.maximum(v_hat, v_t) - with tf.control_dependencies([v_hat_t]): - v_hat_t = tf.compat.v1.assign( - v_hat, v_hat_t, use_locking=self._use_locking - ) - v_hat_sqrt = tf.sqrt(v_hat_t) - var_update = tf.compat.v1.assign_sub( - var, - coefficients["lr"] - * m_t - / (v_hat_sqrt + coefficients["epsilon"]), - use_locking=self._use_locking, - ) - return tf.group(*[var_update, m_t, v_t, v_hat_t]) - - def get_config(self): - config = super().get_config() - config.update( - { - "learning_rate": self._serialize_hyperparameter( - "learning_rate" - ), - "decay": self._initial_decay, - "beta_1": self._serialize_hyperparameter("beta_1"), - "beta_2": self._serialize_hyperparameter("beta_2"), - "epsilon": self.epsilon, - "amsgrad": self.amsgrad, - } - ) - return config - - -class NonFusedAdam(optimizer_v2.OptimizerV2): - r"""Optimizer that implements the Adam algorithm without fused kernels. - - Adam optimization is a stochastic gradient descent method that is based on - adaptive estimation of first-order and second-order moments. - According to the paper - [Adam: A Method for Stochastic Optimization. Kingma et al., - 2014](http://arxiv.org/abs/1412.6980), the method is "*computationally - efficient, has little memory requirement, invariant to diagonal rescaling of - gradients, and is well suited for problems that are large in terms of - data/parameters*". - - For AMSGrad see [On The Convergence Of Adam And Beyond. - Reddi et al., 5-8](https://openreview.net/pdf?id=ryQu7f-RZ). - - **If amsgrad = False**: - - initialize $m_0$ as 1st moment vector - initialize $v_0$ as 2nd moment vector - - The update rule for $\theta$ with gradient $g$ uses an optimization - described at the end of section 2 of the paper: - - $$lr_t = \mathrm{learning\_rate} * - \sqrt{1 - \beta_2^t} / (1 - \beta_1^t)$$ - $$m_t = \beta_1 * m_{t-1} + (1 - \beta_1) * g$$ - $$v_t = \beta_2 * v_{t-1} + (1 - \beta_2) * g^2$$ - $$\theta_t = \theta_{t-1} - lr_t * m_t / (\sqrt{v_t} + \epsilon)$$ - - **If amsgrad = True**: - - initialize $m_0$ as 1st moment vector - initialize $v_0$ as 2nd moment vector - initialize $\hat{v}_0$ as 2nd moment vector - - The update rule for $\theta$ with gradient $g$ uses an optimization - described at the end of section 2 of the paper: - - $$lr_t = \mathrm{learning\_rate} * - \sqrt{1 - \beta_2^t} / (1 - \beta_1^t)$$ - - $$m_t = \beta_1 * m_{t-1} + (1 - \beta_1) * g$$ - $$v_t = \beta_2 * v_{t-1} + (1 - \beta_2) * g^2$$ - $$\hat{v}_t = \max(\hat{v}_{t-1}, v_t)$$ - $$\theta_t = \theta_{t-1} - lr_t * m_t / (\sqrt{\hat{v}_t} + \epsilon)$$ - - The default value of 1e-7 for epsilon might not be a good default in - general. For example, when training an Inception network on ImageNet a - current good choice is 1.0 or 0.1. Note that since Adam uses the - formulation just before Section 2.1 of the Kingma and Ba paper rather than - the formulation in Algorithm 1, the "epsilon" referred to here is "epsilon - hat" in the paper. - - The sparse implementation of this algorithm (used when the gradient is an - IndexedSlices object, typically because of `tf.gather` or an embedding - lookup in the forward pass) does apply momentum to variable slices even if - they were not used in the forward pass (meaning they have a gradient equal - to zero). Momentum decay (beta1) is also applied to the entire momentum - accumulator. This means that the sparse behavior is equivalent to the dense - behavior (in contrast to some momentum implementations which ignore momentum - unless a variable slice was actually used). - - Usage: - - >>> opt = tf.keras.optimizers.legacy.Adam(learning_rate=0.1) - >>> var1 = tf.Variable(10.0) - >>> loss = lambda: (var1 ** 2)/2.0 # d(loss)/d(var1) == var1 - >>> step_count = opt.minimize(loss, [var1]).numpy() - >>> # The first step is `-learning_rate*sign(grad)` - >>> var1.numpy() - 9.9 - """ - - _HAS_AGGREGATE_GRAD = True - - def __init__( - self, - learning_rate=0.001, - beta_1=0.9, - beta_2=0.999, - epsilon=1e-7, - amsgrad=False, - name="Adam", - **kwargs - ): - """Construct a new Adam optimizer. - - Args: - learning_rate: A `Tensor`, floating point value, or a schedule that is - a `tf.keras.optimizers.schedules.LearningRateSchedule`, or a - callable that takes no arguments and returns the actual value to - use, The learning rate. Defaults to 0.001. - beta_1: A float value or a constant float tensor, or a callable that - takes no arguments and returns the actual value to use. The - exponential decay rate for the 1st moment estimates. Defaults to - 0.9. - beta_2: A float value or a constant float tensor, or a callable that - takes no arguments and returns the actual value to use, The - exponential decay rate for the 2nd moment estimates. Defaults to - 0.999. - epsilon: A small constant for numerical stability. This epsilon is - "epsilon hat" in the Kingma and Ba paper (in the formula just before - Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults - to 1e-7. - amsgrad: Boolean. Whether to apply AMSGrad variant of this algorithm - from the paper "On the Convergence of Adam and beyond". Defaults to - `False`. - name: Optional name for the operations created when applying - gradients. Defaults to "Adam". - **kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, - `lr`, `decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is - clip gradients by value, `decay` is included for backward - compatibility to allow time inverse decay of learning rate. `lr` is - included for backward compatibility, recommended to use - `learning_rate` instead. - """ - - super().__init__(name, **kwargs) - self._set_hyper("learning_rate", kwargs.get("lr", learning_rate)) - self._set_hyper("decay", self._initial_decay) - self._set_hyper("beta_1", beta_1) - self._set_hyper("beta_2", beta_2) - self.epsilon = epsilon or backend_config.epsilon() - self.amsgrad = amsgrad - - def _create_slots(self, var_list): - # Create slots for the first and second moments. - # Separate for-loops to respect the ordering of slot variables from v1. - for var in var_list: - self.add_slot(var, "m") - for var in var_list: - self.add_slot(var, "v") - if self.amsgrad: - for var in var_list: - self.add_slot(var, "vhat") - - def _prepare_local(self, var_device, var_dtype, apply_state): - super()._prepare_local(var_device, var_dtype, apply_state) - - local_step = tf.cast(self.iterations + 1, var_dtype) - beta_1_t = tf.identity(self._get_hyper("beta_1", var_dtype)) - beta_2_t = tf.identity(self._get_hyper("beta_2", var_dtype)) - beta_1_power = tf.pow(beta_1_t, local_step) - beta_2_power = tf.pow(beta_2_t, local_step) - lr = apply_state[(var_device, var_dtype)]["lr_t"] * ( - tf.sqrt(1 - beta_2_power) / (1 - beta_1_power) - ) - apply_state[(var_device, var_dtype)].update( - dict( - lr=lr, - epsilon=tf.convert_to_tensor(self.epsilon, var_dtype), - beta_1_t=beta_1_t, - beta_1_power=beta_1_power, - one_minus_beta_1_t=1 - beta_1_t, - beta_2_t=beta_2_t, - beta_2_power=beta_2_power, - one_minus_beta_2_t=1 - beta_2_t, - ) - ) - - def set_weights(self, weights): - params = self.weights - # If the weights are generated by Keras V1 optimizer, it includes vhats - # even without amsgrad, i.e, V1 optimizer has 3x + 1 variables, while V2 - # optimizer has 2x + 1 variables. Filter vhats out for compatibility. - num_vars = int((len(params) - 1) / 2) - if len(weights) == 3 * num_vars + 1: - weights = weights[: len(params)] - super().set_weights(weights) - - @tf.function(jit_compile=True) - def _resource_apply_dense(self, grad, var, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - m = self.get_slot(var, "m") - v = self.get_slot(var, "v") - - alpha = ( - coefficients["lr_t"] - * tf.sqrt(1 - coefficients["beta_2_power"]) - / (1 - coefficients["beta_1_power"]) - ) - m.assign_add((grad - m) * (1 - coefficients["beta_1_t"])) - v.assign_add((tf.square(grad) - v) * (1 - coefficients["beta_2_t"])) - if self.amsgrad: - vhat = self.get_slot(var, "vhat") - vhat.assign(tf.maximum(vhat, v)) - v = vhat - var.assign_sub((m * alpha) / (tf.sqrt(v) + coefficients["epsilon"])) - - @tf.function(jit_compile=True) - def _resource_apply_sparse(self, grad, var, indices, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - # m_t = beta1 * m + (1 - beta1) * g_t - m = self.get_slot(var, "m") - m_scaled_g_values = grad * coefficients["one_minus_beta_1_t"] - m.assign(m * coefficients["beta_1_t"]) - m.scatter_add(tf.IndexedSlices(m_scaled_g_values, indices)) - - # v_t = beta2 * v + (1 - beta2) * (g_t * g_t) - v = self.get_slot(var, "v") - v_scaled_g_values = (grad * grad) * coefficients["one_minus_beta_2_t"] - v.assign(v * coefficients["beta_2_t"]) - v.scatter_add(tf.IndexedSlices(v_scaled_g_values, indices)) - - if not self.amsgrad: - var.assign_sub( - coefficients["lr"] * m / (tf.sqrt(v) + coefficients["epsilon"]) - ) - else: - v_hat = self.get_slot(var, "vhat") - v_hat.assign(tf.maximum(v_hat, v)) - var.assign_sub( - coefficients["lr"] - * m - / (tf.sqrt(v_hat) + coefficients["epsilon"]) - ) - - def get_config(self): - config = super().get_config() - config.update( - { - "learning_rate": self._serialize_hyperparameter( - "learning_rate" - ), - "decay": self._initial_decay, - "beta_1": self._serialize_hyperparameter("beta_1"), - "beta_2": self._serialize_hyperparameter("beta_2"), - "epsilon": self.epsilon, - "amsgrad": self.amsgrad, - } - ) - return config diff --git a/keras/optimizers/legacy/adam_test.py b/keras/optimizers/legacy/adam_test.py deleted file mode 100644 index f796b5a98e6..00000000000 --- a/keras/optimizers/legacy/adam_test.py +++ /dev/null @@ -1,1196 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Adam.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.optimizers import optimizer_v1 -from keras.optimizers.legacy import adam -from keras.optimizers.schedules import learning_rate_schedule -from keras.testing_infra import test_combinations - - -def adam_update_numpy( - param, g_t, t, m, v, lr=0.001, beta1=0.9, beta2=0.999, epsilon=1e-7 -): - lr_t = lr * np.sqrt(1 - beta2 ** (t + 1)) / (1 - beta1 ** (t + 1)) - - m_t = beta1 * m + (1 - beta1) * g_t - v_t = beta2 * v + (1 - beta2) * g_t * g_t - - param_t = param - lr_t * m_t / (np.sqrt(v_t) + epsilon) - return param_t, m_t, v_t - - -def adam_update_numpy_amsgrad( - param, g_t, t, m, v, vhat, lr=0.001, beta1=0.9, beta2=0.999, epsilon=1e-7 -): - lr_t = lr * np.sqrt(1 - beta2 ** (t + 1)) / (1 - beta1 ** (t + 1)) - - m_t = beta1 * m + (1 - beta1) * g_t - v_t = beta2 * v + (1 - beta2) * g_t * g_t - vhat_t = np.maximum(vhat, v_t) - - param_t = param - lr_t * m_t / (np.sqrt(vhat_t) + epsilon) - return param_t, m_t, v_t, vhat_t - - -def adam_sparse_update_numpy_amsgrad( - param, - indices, - g_t, - t, - m, - v, - vhat, - lr=0.001, - beta1=0.9, - beta2=0.999, - epsilon=1e-7, -): - m_t, v_t, vhat_t, param_t = ( - np.copy(m), - np.copy(v), - np.copy(vhat), - np.copy(param), - ) - lr_t = lr * np.sqrt(1 - beta2 ** (t + 1)) / (1 - beta1 ** (t + 1)) - m_t_slice = beta1 * m[indices] + (1 - beta1) * g_t - v_t_slice = beta2 * v[indices] + (1 - beta2) * g_t * g_t - m_t[indices] = m_t_slice - v_t[indices] = v_t_slice - v_hat_t = np.maximum(vhat_t, v_t) - v_hat_t_slice = v_hat_t[indices] - param_t_slice = param[indices] - ( - lr_t * (m_t_slice / (np.sqrt(v_hat_t_slice) + epsilon)) - ) - param_t[indices] = param_t_slice - return param_t, m_t, v_t, vhat_t - - -def get_beta_accumulators(opt, dtype): - local_step = tf.cast(opt.iterations + 1, dtype) - beta_1_t = tf.cast(opt._get_hyper("beta_1"), dtype) - beta_1_power = tf.pow(beta_1_t, local_step) - beta_2_t = tf.cast(opt._get_hyper("beta_2"), dtype) - beta_2_power = tf.pow(beta_2_t, local_step) - return (beta_1_power, beta_2_power) - - -class AdamOptimizerTest(tf.test.TestCase, parameterized.TestCase): - def testSparse(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array( - [0.1, 0.0, 0.1], dtype=dtype.as_numpy_dtype - ) - var1_np = np.array([3.0, 3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array( - [0.01, 0.0, 0.01], dtype=dtype.as_numpy_dtype - ) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0_np_indices = np.array([0, 2], dtype=np.int32) - grads0 = tf.IndexedSlices( - tf.constant(grads0_np[grads0_np_indices]), - tf.constant(grads0_np_indices), - tf.constant([3]), - ) - grads1_np_indices = np.array([0, 2], dtype=np.int32) - grads1 = tf.IndexedSlices( - tf.constant(grads1_np[grads1_np_indices]), - tf.constant(grads1_np_indices), - tf.constant([3]), - ) - opt = adam.Adam() - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 3.0, 4.0], self.evaluate(var1)) - - beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype) - # Run 3 steps of Adam - for t in range(3): - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), self.evaluate(beta_1_power) - ) - self.assertAllCloseAccordingToType( - 0.999 ** (t + 1), self.evaluate(beta_2_power) - ) - update.run() - - var0_np, m0, v0 = adam_update_numpy( - var0_np, grads0_np, t, m0, v0 - ) - var1_np, m1, v1 = adam_update_numpy( - var1_np, grads1_np, t, m1, v1 - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - def testSparseDevicePlacement(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for index_dtype in [tf.int32, tf.int64]: - with tf.Graph().as_default(), self.cached_session( - force_gpu=tf.test.is_gpu_available() - ): - # If a GPU is available, tests that all optimizer ops can be - # placed on it (i.e. they have GPU kernels). - var = tf.Variable([[1.0], [2.0]]) - indices = tf.constant([0, 1], dtype=index_dtype) - g_sum = lambda: tf.reduce_sum(tf.gather(var, indices)) - optimizer = adam.Adam(3.0) - minimize_op = optimizer.minimize(g_sum, var_list=[var]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - minimize_op.run() - - def testSparseRepeatedIndices(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - repeated_index_update_var = tf.Variable( - [[1.0], [2.0]], dtype=dtype - ) - aggregated_update_var = tf.Variable([[1.0], [2.0]], dtype=dtype) - grad_repeated_index = tf.IndexedSlices( - tf.constant([0.1, 0.1], shape=[2, 1], dtype=dtype), - tf.constant([1, 1]), - tf.constant([2, 1]), - ) - grad_aggregated = tf.IndexedSlices( - tf.constant([0.2], shape=[1, 1], dtype=dtype), - tf.constant([1]), - tf.constant([2, 1]), - ) - repeated_update = adam.Adam().apply_gradients( - [(grad_repeated_index, repeated_index_update_var)] - ) - aggregated_update = adam.Adam().apply_gradients( - [(grad_aggregated, aggregated_update_var)] - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose( - aggregated_update_var, - self.evaluate(repeated_index_update_var), - ) - for _ in range(3): - repeated_update.run() - aggregated_update.run() - self.assertAllClose( - aggregated_update_var, - self.evaluate(repeated_index_update_var), - ) - - def doTestBasic(self, use_callable_params=False): - for i, dtype in enumerate([tf.half, tf.float32, tf.float64]): - with self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np, name="var0_%d" % i) - var1 = tf.Variable(var1_np, name="var1_%d" % i) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - learning_rate = lambda: 0.001 - beta1 = lambda: 0.9 - beta2 = lambda: 0.999 - epsilon = lambda: 1e-8 - if not use_callable_params: - learning_rate = learning_rate() - beta1 = beta1() - beta2 = beta2() - epsilon = epsilon() - - opt = adam.Adam(learning_rate=learning_rate) - if not tf.executing_eagerly(): - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 3 steps of Adam - for t in range(3): - beta_1_power, beta_2_power = get_beta_accumulators( - opt, dtype - ) - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), self.evaluate(beta_1_power) - ) - self.assertAllCloseAccordingToType( - 0.999 ** (t + 1), self.evaluate(beta_2_power) - ) - if not tf.executing_eagerly(): - self.evaluate(update) - else: - opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - - var0_np, m0, v0 = adam_update_numpy( - var0_np, grads0_np, t, m0, v0 - ) - var1_np, m1, v1 = adam_update_numpy( - var1_np, grads1_np, t, m1, v1 - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testResourceBasic(self): - self.doTestBasic() - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testBasicCallableParams(self): - self.doTestBasic(use_callable_params=True) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasicWithAmsgrad(self): - for i, dtype in enumerate([tf.half, tf.float32, tf.float64]): - with self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, v0hat, m1, v1, v1hat = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np, name="var0_%d" % i) - var1 = tf.Variable(var1_np, name="var1_%d" % i) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - opt = adam.Adam(amsgrad=True) - if not tf.executing_eagerly(): - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 3 steps of Adam - for t in range(3): - beta_1_power, beta_2_power = get_beta_accumulators( - opt, dtype - ) - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), self.evaluate(beta_1_power) - ) - self.assertAllCloseAccordingToType( - 0.999 ** (t + 1), self.evaluate(beta_2_power) - ) - if not tf.executing_eagerly(): - self.evaluate(update) - else: - opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - - var0_np, m0, v0, v0hat = adam_update_numpy_amsgrad( - var0_np, grads0_np, t, m0, v0, v0hat - ) - var1_np, m1, v1, v1hat = adam_update_numpy_amsgrad( - var1_np, grads1_np, t, m1, v1, v1hat - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testSparseWithAmsgrad(self): - # dtypes.half does not work on gpu + eager. - for dtype in [tf.float32, tf.float64]: - with self.cached_session(): - m0 = np.array([[0.0], [0.0]]) - v0 = np.array([[0.0], [0.0]]) - v0hat = np.array([[0.0], [0.0]]) - indices_np = np.array([1]) - indices = tf.constant(indices_np, dtype=tf.int32) - var0_np = np.array([[1.0], [2.0]], dtype=dtype.as_numpy_dtype) - repeated_index_update_var = tf.Variable(var0_np, dtype=dtype) - aggregated_update_var = tf.Variable(var0_np, dtype=dtype) - grads0_np = np.array([[0.2]], dtype=dtype.as_numpy_dtype) - grad_repeated_index = tf.IndexedSlices( - tf.constant([0.1, 0.1], shape=[2, 1], dtype=dtype), - tf.constant([1, 1]), - tf.constant([2, 1]), - ) - grad_aggregated = tf.IndexedSlices( - grads0_np, indices, tf.constant([2, 1]) - ) - opt_repeated = adam.Adam(amsgrad=True) - opt_aggregated = adam.Adam(amsgrad=True) - if not tf.executing_eagerly(): - repeated_update = opt_repeated.apply_gradients( - [(grad_repeated_index, repeated_index_update_var)] - ) - aggregated_update = opt_aggregated.apply_gradients( - [(grad_aggregated, aggregated_update_var)] - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose( - self.evaluate(aggregated_update_var), - self.evaluate(repeated_index_update_var), - ) - for t in range(3): - if not tf.executing_eagerly(): - self.evaluate(repeated_update) - self.evaluate(aggregated_update) - else: - opt_repeated.apply_gradients( - [(grad_repeated_index, repeated_index_update_var)] - ) - opt_aggregated.apply_gradients( - [(grad_aggregated, aggregated_update_var)] - ) - - var0_np, m0, v0, v0hat = adam_sparse_update_numpy_amsgrad( - var0_np, indices_np, grads0_np, t, m0, v0, v0hat - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(aggregated_update_var) - ) - self.assertAllCloseAccordingToType( - self.evaluate(aggregated_update_var), - self.evaluate(repeated_index_update_var), - ) - - def testBasicWithLearningRateDecay(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for i, dtype in enumerate([tf.half, tf.float32, tf.float64]): - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np, name="var0_%d" % i) - var1 = tf.Variable(var1_np, name="var1_%d" % i) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - learning_rate = 0.001 - beta_1 = 0.9 - beta_2 = 0.999 - epsilon = 1e-7 - decay = 0.5 - - opt = adam.Adam( - learning_rate=learning_rate, - beta_1=beta_1, - beta_2=beta_2, - epsilon=epsilon, - decay=decay, - ) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 3 steps of Adam - for t in range(3): - self.evaluate(update) - lr_np = learning_rate / (1 + decay * t) - - var0_np, m0, v0 = adam_update_numpy( - var0_np, grads0_np, t, m0, v0, lr=lr_np - ) - var1_np, m1, v1 = adam_update_numpy( - var1_np, grads1_np, t, m1, v1, lr=lr_np - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - def testBasicWithLearningRateInverseTimeDecay(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for i, dtype in enumerate([tf.half, tf.float32, tf.float64]): - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np, name="var0_%d" % i) - var1 = tf.Variable(var1_np, name="var1_%d" % i) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - learning_rate = 0.001 - decay = 0.5 - lr_schedule = learning_rate_schedule.InverseTimeDecay( - learning_rate, decay_steps=1.0, decay_rate=decay - ) - beta_1 = 0.9 - beta_2 = 0.999 - epsilon = 1e-7 - - opt = adam.Adam( - learning_rate=lr_schedule, - beta_1=beta_1, - beta_2=beta_2, - epsilon=epsilon, - ) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 3 steps of Adam - for t in range(3): - self.evaluate(update) - - lr_np = learning_rate / (1 + decay * t) - - var0_np, m0, v0 = adam_update_numpy( - var0_np, grads0_np, t, m0, v0, lr=lr_np - ) - var1_np, m1, v1 = adam_update_numpy( - var1_np, grads1_np, t, m1, v1, lr=lr_np - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - def testTensorLearningRate(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - opt = adam.Adam(tf.constant(0.001)) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - - beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype) - # Run 3 steps of Adam - for t in range(3): - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), self.evaluate(beta_1_power) - ) - self.assertAllCloseAccordingToType( - 0.999 ** (t + 1), self.evaluate(beta_2_power) - ) - update.run() - - var0_np, m0, v0 = adam_update_numpy( - var0_np, grads0_np, t, m0, v0 - ) - var1_np, m1, v1 = adam_update_numpy( - var1_np, grads1_np, t, m1, v1 - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - def testSharing(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - opt = adam.Adam() - update1 = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - update2 = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - - # Run 3 steps of intertwined Adam1 and Adam2. - for t in range(3): - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), self.evaluate(beta_1_power) - ) - self.assertAllCloseAccordingToType( - 0.999 ** (t + 1), self.evaluate(beta_2_power) - ) - if t % 2 == 0: - update1.run() - else: - update2.run() - - var0_np, m0, v0 = adam_update_numpy( - var0_np, grads0_np, t, m0, v0 - ) - var1_np, m1, v1 = adam_update_numpy( - var1_np, grads1_np, t, m1, v1 - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testSlotsUniqueEager(self): - v1 = tf.Variable(1.0) - v2 = tf.Variable(1.0) - opt = adam.Adam(1.0) - opt.minimize(lambda: v1 + v2, var_list=[v1, v2]) - # There should be iteration, and two unique slot variables for v1 and - # v2. - self.assertLen(set(v.ref() for v in opt.variables()), 5) - self.assertEqual( - self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations) - ) - - def testSetWeightsFromV1AdamWithoutMinimize(self): - keras_v1_adam = optimizer_v1.Adam() - keras_v2_adam = adam.Adam() - keras_v2_adam.set_weights(keras_v1_adam.get_weights()) - keras_v1_iteration = keras_v1_adam.iterations - keras_v2_iteration = keras_v2_adam.iterations - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual( - self.evaluate(keras_v1_iteration), self.evaluate(keras_v2_iteration) - ) - - def testConstructAdamWithLR(self): - opt = adam.Adam(lr=1.0) - opt_2 = adam.Adam(learning_rate=0.1, lr=1.0) - opt_3 = adam.Adam(learning_rate=0.1) - self.assertIsInstance(opt.lr, tf.Variable) - self.assertIsInstance(opt_2.lr, tf.Variable) - self.assertIsInstance(opt_3.lr, tf.Variable) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose(self.evaluate(opt.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_2.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_3.lr), (0.1)) - - -class NonFusedAdamOptimizerTest(tf.test.TestCase, parameterized.TestCase): - def testSparse(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array( - [0.1, 0.0, 0.1], dtype=dtype.as_numpy_dtype - ) - var1_np = np.array([3.0, 3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array( - [0.01, 0.0, 0.01], dtype=dtype.as_numpy_dtype - ) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0_np_indices = np.array([0, 2], dtype=np.int32) - grads0 = tf.IndexedSlices( - tf.constant(grads0_np[grads0_np_indices]), - tf.constant(grads0_np_indices), - tf.constant([3]), - ) - grads1_np_indices = np.array([0, 2], dtype=np.int32) - grads1 = tf.IndexedSlices( - tf.constant(grads1_np[grads1_np_indices]), - tf.constant(grads1_np_indices), - tf.constant([3]), - ) - opt = adam.NonFusedAdam() - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 3.0, 4.0], self.evaluate(var1)) - - beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype) - # Run 3 steps of NonFusedAdam - for t in range(3): - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), self.evaluate(beta_1_power) - ) - self.assertAllCloseAccordingToType( - 0.999 ** (t + 1), self.evaluate(beta_2_power) - ) - update.run() - - var0_np, m0, v0 = adam_update_numpy( - var0_np, grads0_np, t, m0, v0 - ) - var1_np, m1, v1 = adam_update_numpy( - var1_np, grads1_np, t, m1, v1 - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - def testSparseDevicePlacement(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for index_dtype in [tf.int32, tf.int64]: - with tf.Graph().as_default(), self.cached_session( - force_gpu=tf.test.is_gpu_available() - ): - # If a GPU is available, tests that all optimizer ops can be - # placed on it (i.e. they have GPU kernels). - var = tf.Variable([[1.0], [2.0]]) - indices = tf.constant([0, 1], dtype=index_dtype) - g_sum = lambda: tf.reduce_sum(tf.gather(var, indices)) - optimizer = adam.NonFusedAdam(3.0) - minimize_op = optimizer.minimize(g_sum, var_list=[var]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - minimize_op.run() - - def testSparseRepeatedIndices(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - repeated_index_update_var = tf.Variable( - [[1.0], [2.0]], dtype=dtype - ) - aggregated_update_var = tf.Variable([[1.0], [2.0]], dtype=dtype) - grad_repeated_index = tf.IndexedSlices( - tf.constant([0.1, 0.1], shape=[2, 1], dtype=dtype), - tf.constant([1, 1]), - tf.constant([2, 1]), - ) - grad_aggregated = tf.IndexedSlices( - tf.constant([0.2], shape=[1, 1], dtype=dtype), - tf.constant([1]), - tf.constant([2, 1]), - ) - repeated_update = adam.NonFusedAdam().apply_gradients( - [(grad_repeated_index, repeated_index_update_var)] - ) - aggregated_update = adam.NonFusedAdam().apply_gradients( - [(grad_aggregated, aggregated_update_var)] - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose( - aggregated_update_var, - self.evaluate(repeated_index_update_var), - ) - for _ in range(3): - repeated_update.run() - aggregated_update.run() - self.assertAllClose( - aggregated_update_var, - self.evaluate(repeated_index_update_var), - ) - - def doTestBasic(self, use_callable_params=False): - for i, dtype in enumerate([tf.half, tf.float32, tf.float64]): - with self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np, name="var0_%d" % i) - var1 = tf.Variable(var1_np, name="var1_%d" % i) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - learning_rate = lambda: 0.001 - beta1 = lambda: 0.9 - beta2 = lambda: 0.999 - epsilon = lambda: 1e-8 - if not use_callable_params: - learning_rate = learning_rate() - beta1 = beta1() - beta2 = beta2() - epsilon = epsilon() - - opt = adam.NonFusedAdam(learning_rate=learning_rate) - if not tf.executing_eagerly(): - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 3 steps of NonFusedAdam - for t in range(3): - beta_1_power, beta_2_power = get_beta_accumulators( - opt, dtype - ) - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), self.evaluate(beta_1_power) - ) - self.assertAllCloseAccordingToType( - 0.999 ** (t + 1), self.evaluate(beta_2_power) - ) - if not tf.executing_eagerly(): - self.evaluate(update) - else: - opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - - var0_np, m0, v0 = adam_update_numpy( - var0_np, grads0_np, t, m0, v0 - ) - var1_np, m1, v1 = adam_update_numpy( - var1_np, grads1_np, t, m1, v1 - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0), rtol=1e-4, atol=1e-4 - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1), rtol=1e-4, atol=1e-4 - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testResourceBasic(self): - self.doTestBasic() - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testBasicCallableParams(self): - self.doTestBasic(use_callable_params=True) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasicWithAmsgrad(self): - for i, dtype in enumerate([tf.half, tf.float32, tf.float64]): - with self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, v0hat, m1, v1, v1hat = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np, name="var0_%d" % i) - var1 = tf.Variable(var1_np, name="var1_%d" % i) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - opt = adam.NonFusedAdam(amsgrad=True) - if not tf.executing_eagerly(): - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 3 steps of NonFusedAdam - for t in range(3): - beta_1_power, beta_2_power = get_beta_accumulators( - opt, dtype - ) - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), self.evaluate(beta_1_power) - ) - self.assertAllCloseAccordingToType( - 0.999 ** (t + 1), self.evaluate(beta_2_power) - ) - if not tf.executing_eagerly(): - self.evaluate(update) - else: - opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - - var0_np, m0, v0, v0hat = adam_update_numpy_amsgrad( - var0_np, grads0_np, t, m0, v0, v0hat - ) - var1_np, m1, v1, v1hat = adam_update_numpy_amsgrad( - var1_np, grads1_np, t, m1, v1, v1hat - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0), rtol=1e-4, atol=1e-4 - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1), rtol=1e-4, atol=1e-4 - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testSparseWithAmsgrad(self): - # dtypes.half does not work on gpu + eager. - for dtype in [tf.float32, tf.float64]: - with self.cached_session(): - m0 = np.array([[0.0], [0.0]]) - v0 = np.array([[0.0], [0.0]]) - v0hat = np.array([[0.0], [0.0]]) - indices_np = np.array([1]) - indices = tf.constant(indices_np, dtype=tf.int32) - var0_np = np.array([[1.0], [2.0]], dtype=dtype.as_numpy_dtype) - repeated_index_update_var = tf.Variable(var0_np, dtype=dtype) - aggregated_update_var = tf.Variable(var0_np, dtype=dtype) - grads0_np = np.array([[0.2]], dtype=dtype.as_numpy_dtype) - grad_repeated_index = tf.IndexedSlices( - tf.constant([0.1, 0.1], shape=[2, 1], dtype=dtype), - tf.constant([1, 1]), - tf.constant([2, 1]), - ) - grad_aggregated = tf.IndexedSlices( - grads0_np, indices, tf.constant([2, 1]) - ) - opt_repeated = adam.NonFusedAdam(amsgrad=True) - opt_aggregated = adam.NonFusedAdam(amsgrad=True) - if not tf.executing_eagerly(): - repeated_update = opt_repeated.apply_gradients( - [(grad_repeated_index, repeated_index_update_var)] - ) - aggregated_update = opt_aggregated.apply_gradients( - [(grad_aggregated, aggregated_update_var)] - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose( - self.evaluate(aggregated_update_var), - self.evaluate(repeated_index_update_var), - ) - for t in range(3): - if not tf.executing_eagerly(): - self.evaluate(repeated_update) - self.evaluate(aggregated_update) - else: - opt_repeated.apply_gradients( - [(grad_repeated_index, repeated_index_update_var)] - ) - opt_aggregated.apply_gradients( - [(grad_aggregated, aggregated_update_var)] - ) - - var0_np, m0, v0, v0hat = adam_sparse_update_numpy_amsgrad( - var0_np, indices_np, grads0_np, t, m0, v0, v0hat - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(aggregated_update_var) - ) - self.assertAllCloseAccordingToType( - self.evaluate(aggregated_update_var), - self.evaluate(repeated_index_update_var), - ) - - def testBasicWithLearningRateDecay(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for i, dtype in enumerate([tf.half, tf.float32, tf.float64]): - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np, name="var0_%d" % i) - var1 = tf.Variable(var1_np, name="var1_%d" % i) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - learning_rate = 0.001 - beta_1 = 0.9 - beta_2 = 0.999 - epsilon = 1e-7 - decay = 0.5 - - opt = adam.NonFusedAdam( - learning_rate=learning_rate, - beta_1=beta_1, - beta_2=beta_2, - epsilon=epsilon, - decay=decay, - ) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 3 steps of NonFusedAdam - for t in range(3): - self.evaluate(update) - lr_np = learning_rate / (1 + decay * t) - - var0_np, m0, v0 = adam_update_numpy( - var0_np, grads0_np, t, m0, v0, lr=lr_np - ) - var1_np, m1, v1 = adam_update_numpy( - var1_np, grads1_np, t, m1, v1, lr=lr_np - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - def testBasicWithLearningRateInverseTimeDecay(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for i, dtype in enumerate([tf.half, tf.float32, tf.float64]): - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np, name="var0_%d" % i) - var1 = tf.Variable(var1_np, name="var1_%d" % i) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - learning_rate = 0.001 - decay = 0.5 - lr_schedule = learning_rate_schedule.InverseTimeDecay( - learning_rate, decay_steps=1.0, decay_rate=decay - ) - beta_1 = 0.9 - beta_2 = 0.999 - epsilon = 1e-7 - - opt = adam.NonFusedAdam( - learning_rate=lr_schedule, - beta_1=beta_1, - beta_2=beta_2, - epsilon=epsilon, - ) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 3 steps of NonFusedAdam - for t in range(3): - self.evaluate(update) - - lr_np = learning_rate / (1 + decay * t) - - var0_np, m0, v0 = adam_update_numpy( - var0_np, grads0_np, t, m0, v0, lr=lr_np - ) - var1_np, m1, v1 = adam_update_numpy( - var1_np, grads1_np, t, m1, v1, lr=lr_np - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - def testTensorLearningRate(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - opt = adam.NonFusedAdam(tf.constant(0.001)) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - - beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype) - # Run 3 steps of NonFusedAdam - for t in range(3): - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), self.evaluate(beta_1_power) - ) - self.assertAllCloseAccordingToType( - 0.999 ** (t + 1), self.evaluate(beta_2_power) - ) - update.run() - - var0_np, m0, v0 = adam_update_numpy( - var0_np, grads0_np, t, m0, v0 - ) - var1_np, m1, v1 = adam_update_numpy( - var1_np, grads1_np, t, m1, v1 - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - def testSharing(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - opt = adam.NonFusedAdam() - update1 = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - update2 = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - - # Run 3 steps of intertwined NonFusedAdam1 and NonFusedAdam2. - for t in range(3): - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), self.evaluate(beta_1_power) - ) - self.assertAllCloseAccordingToType( - 0.999 ** (t + 1), self.evaluate(beta_2_power) - ) - if t % 2 == 0: - update1.run() - else: - update2.run() - - var0_np, m0, v0 = adam_update_numpy( - var0_np, grads0_np, t, m0, v0 - ) - var1_np, m1, v1 = adam_update_numpy( - var1_np, grads1_np, t, m1, v1 - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/optimizers/legacy/adamax.py b/keras/optimizers/legacy/adamax.py deleted file mode 100644 index f89690fadb7..00000000000 --- a/keras/optimizers/legacy/adamax.py +++ /dev/null @@ -1,201 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Adamax optimizer implementation.""" - -import tensorflow.compat.v2 as tf - -from keras import backend_config -from keras.optimizers.legacy import optimizer_v2 - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.optimizers.legacy.Adamax", - v1=["keras.optimizers.Adamax", "keras.optimizers.legacy.Adamax"], -) -class Adamax(optimizer_v2.OptimizerV2): - """Optimizer that implements the Adamax algorithm. - - It is a variant of Adam based on the infinity norm. - Default parameters follow those provided in the paper. - Adamax is sometimes superior to adam, specially in models with embeddings. - - Initialization: - - ```python - m = 0 # Initialize initial 1st moment vector - v = 0 # Initialize the exponentially weighted infinity norm - t = 0 # Initialize timestep - ``` - - The update rule for parameter `w` with gradient `g` is - described at the end of section 7.1 of the paper: - - ```python - t += 1 - m = beta1 * m + (1 - beta) * g - v = max(beta2 * v, abs(g)) - current_lr = learning_rate / (1 - beta1 ** t) - w = w - current_lr * m / (v + epsilon) - ``` - - Similarly to `Adam`, the epsilon is added for numerical stability - (especially to get rid of division by zero when `v_t == 0`). - - In contrast to `Adam`, the sparse implementation of this algorithm - (used when the gradient is an IndexedSlices object, typically because of - `tf.gather` or an embedding lookup in the forward pass) only updates - variable slices and corresponding `m_t`, `v_t` terms when that part of - the variable was used in the forward pass. This means that the sparse - behavior is contrast to the dense behavior (similar to some momentum - implementations which ignore momentum unless a variable slice was actually - used). - - Args: - learning_rate: A `Tensor`, floating point value, or a schedule that is a - `tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate. - beta_1: A float value or a constant float tensor. The exponential decay - rate for the 1st moment estimates. - beta_2: A float value or a constant float tensor. The exponential decay - rate for the exponentially weighted infinity norm. - epsilon: A small constant for numerical stability. - name: Optional name for the operations created when applying gradients. - Defaults to `"Adamax"`. - **kwargs: keyword arguments. Allowed arguments are `clipvalue`, - `clipnorm`, `global_clipnorm`. - If `clipvalue` (float) is set, the gradient of each weight - is clipped to be no higher than this value. - If `clipnorm` (float) is set, the gradient of each weight - is individually clipped so that its norm is no higher than this value. - If `global_clipnorm` (float) is set the gradient of all weights is - clipped so that their global norm is no higher than this value. - - Reference: - - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) - """ - - _HAS_AGGREGATE_GRAD = True - - def __init__( - self, - learning_rate=0.001, - beta_1=0.9, - beta_2=0.999, - epsilon=1e-7, - name="Adamax", - **kwargs - ): - super().__init__(name, **kwargs) - self._set_hyper("learning_rate", kwargs.get("lr", learning_rate)) - self._set_hyper("decay", self._initial_decay) - self._set_hyper("beta_1", beta_1) - self._set_hyper("beta_2", beta_2) - self.epsilon = epsilon or backend_config.epsilon() - - def _create_slots(self, var_list): - # Separate for-loops to respect the ordering of slot variables from v1. - for var in var_list: - self.add_slot(var, "m") # Create slots for the first moments. - for var in var_list: - self.add_slot(var, "v") # Create slots for the second moments. - - def _prepare_local(self, var_device, var_dtype, apply_state): - super()._prepare_local(var_device, var_dtype, apply_state) - - local_step = tf.cast(self.iterations + 1, var_dtype) - beta_1_t = tf.identity(self._get_hyper("beta_1", var_dtype)) - beta_2_t = tf.identity(self._get_hyper("beta_2", var_dtype)) - beta_1_power = tf.pow(beta_1_t, local_step) - lr_t = apply_state[(var_device, var_dtype)]["lr_t"] - - apply_state[(var_device, var_dtype)].update( - dict( - neg_scaled_lr=-lr_t / (1 - beta_1_power), - epsilon=tf.convert_to_tensor(self.epsilon, var_dtype), - beta_1_t=beta_1_t, - beta_1_power=beta_1_power, - one_minus_beta_1_t=1 - beta_1_t, - beta_2_t=beta_2_t, - zero=tf.zeros((), dtype=tf.int64), - ) - ) - - def _resource_apply_dense(self, grad, var, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - m = self.get_slot(var, "m") - v = self.get_slot(var, "v") - return tf.raw_ops.ResourceApplyAdaMax( - var=var.handle, - m=m.handle, - v=v.handle, - beta1_power=coefficients["beta_1_power"], - lr=coefficients["lr_t"], - beta1=coefficients["beta_1_t"], - beta2=coefficients["beta_2_t"], - epsilon=coefficients["epsilon"], - grad=grad, - use_locking=self._use_locking, - ) - - def _resource_apply_sparse(self, grad, var, indices, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - # m_t = beta1 * m + (1 - beta1) * g_t - m = self.get_slot(var, "m") - m_slice = tf.gather(m, indices, axis=coefficients["zero"]) - m_t_slice = ( - m_slice * coefficients["beta_1_t"] - + grad * coefficients["one_minus_beta_1_t"] - ) - with tf.control_dependencies([m_t_slice]): - m_t = self._resource_scatter_update(m, indices, m_t_slice) - - # u_t = max(beta2 * u, abs(g_t)) - v = self.get_slot(var, "v") - v_slice = tf.gather(v, indices, axis=coefficients["zero"]) - v_t_slice = tf.maximum(v_slice * coefficients["beta_2_t"], tf.abs(grad)) - with tf.control_dependencies([v_t_slice]): - v_t = self._resource_scatter_update(v, indices, v_t_slice) - # theta_t = theta - lr / (1 - beta1^t) * m_t / u_t - var_slice = coefficients["neg_scaled_lr"] * ( - m_t_slice / (v_t_slice + coefficients["epsilon"]) - ) - with tf.control_dependencies([var_slice]): - var_update = self._resource_scatter_add(var, indices, var_slice) - return tf.group(*[var_update, m_t, v_t]) - - def get_config(self): - config = super().get_config() - config.update( - { - "learning_rate": self._serialize_hyperparameter( - "learning_rate" - ), - "decay": self._initial_decay, - "beta_1": self._serialize_hyperparameter("beta_1"), - "beta_2": self._serialize_hyperparameter("beta_2"), - "epsilon": self.epsilon, - } - ) - return config diff --git a/keras/optimizers/legacy/adamax_test.py b/keras/optimizers/legacy/adamax_test.py deleted file mode 100644 index b0a921dc03b..00000000000 --- a/keras/optimizers/legacy/adamax_test.py +++ /dev/null @@ -1,421 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Adamax.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.optimizers.legacy import adamax -from keras.testing_infra import test_combinations - - -def adamax_update_numpy( - param, g_t, t, m, v, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8 -): - m_t = beta1 * m + (1 - beta1) * g_t - v_t = np.maximum(beta2 * v, np.abs(g_t)) - param_t = param - (alpha / (1 - beta1 ** (t + 1))) * (m_t / (v_t + epsilon)) - return param_t, m_t, v_t - - -def adamax_sparse_update_numpy( - param, - indices, - g_t, - t, - m, - v, - alpha=0.001, - beta1=0.9, - beta2=0.999, - epsilon=1e-8, -): - m_t, v_t, param_t = np.copy(m), np.copy(v), np.copy(param) - m_t_slice = beta1 * m[indices] + (1 - beta1) * g_t - v_t_slice = np.maximum(beta2 * v[indices], np.abs(g_t)) - param_t_slice = param[indices] - ( - (alpha / (1 - beta1 ** (t + 1))) * (m_t_slice / (v_t_slice + epsilon)) - ) - m_t[indices] = m_t_slice - v_t[indices] = v_t_slice - param_t[indices] = param_t_slice - return param_t, m_t, v_t - - -def get_beta_accumulators(opt, dtype): - local_step = tf.cast(opt.iterations + 1, dtype) - beta_1_t = tf.cast(opt._get_hyper("beta_1"), dtype) - beta_1_power = tf.pow(beta_1_t, local_step) - return beta_1_power - - -class AdamaxOptimizerTest(tf.test.TestCase, parameterized.TestCase): - def testResourceSparse(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - zero_slots = lambda: np.zeros((3), dtype=dtype.as_numpy_dtype) - m0, v0, m1, v1 = ( - zero_slots(), - zero_slots(), - zero_slots(), - zero_slots(), - ) - var0_np = np.array([1.0, 2.0, 3.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([4.0, 5.0, 6.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - - grads0_np_indices = np.array([0, 1], dtype=np.int32) - grads0 = tf.IndexedSlices( - tf.constant(grads0_np), - tf.constant(grads0_np_indices), - tf.constant([3]), - ) - grads1_np_indices = np.array([2, 1], dtype=np.int32) - grads1 = tf.IndexedSlices( - tf.constant(grads1_np), - tf.constant(grads1_np_indices), - tf.constant([3]), - ) - opt = adamax.Adamax() - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0, 3.0], var0) - self.assertAllClose([4.0, 5.0, 6.0], var1) - - beta1_power = get_beta_accumulators(opt, dtype) - - # Run 3 steps of Adamax - for t in range(3): - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), beta1_power - ) - update.run() - - var0_np, m0, v0 = adamax_sparse_update_numpy( - var0_np, grads0_np_indices, grads0_np, t, m0, v0 - ) - var1_np, m1, v1 = adamax_sparse_update_numpy( - var1_np, grads1_np_indices, grads1_np, t, m1, v1 - ) - - # Validate updated params - self.assertAllCloseAccordingToType(var0_np, var0) - self.assertAllCloseAccordingToType(var1_np, var1) - - def testSparseDevicePlacement(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for index_dtype in [tf.int32, tf.int64]: - with tf.Graph().as_default(), self.cached_session( - force_gpu=tf.test.is_gpu_available() - ): - # If a GPU is available, tests that all optimizer ops can be - # placed on it (i.e. they have GPU kernels). - var = tf.Variable([[1.0], [2.0]]) - indices = tf.constant([0, 1], dtype=index_dtype) - g_sum = lambda: tf.reduce_sum(tf.gather(var, indices)) - optimizer = adamax.Adamax(3.0) - minimize_op = optimizer.minimize(g_sum, var_list=[var]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - minimize_op.run() - - def testSparseRepeatedIndices(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - repeated_index_update_var = tf.Variable( - [[1.0], [2.0]], dtype=dtype - ) - aggregated_update_var = tf.Variable([[1.0], [2.0]], dtype=dtype) - grad_repeated_index = tf.IndexedSlices( - tf.constant([0.1, 0.1], shape=[2, 1], dtype=dtype), - tf.constant([1, 1]), - tf.constant([2, 1]), - ) - grad_aggregated = tf.IndexedSlices( - tf.constant([0.2], shape=[1, 1], dtype=dtype), - tf.constant([1]), - tf.constant([2, 1]), - ) - repeated_update = adamax.Adamax().apply_gradients( - [(grad_repeated_index, repeated_index_update_var)] - ) - aggregated_update = adamax.Adamax().apply_gradients( - [(grad_aggregated, aggregated_update_var)] - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose( - aggregated_update_var, repeated_index_update_var.eval() - ) - for _ in range(3): - repeated_update.run() - aggregated_update.run() - self.assertAllClose( - aggregated_update_var, repeated_index_update_var.eval() - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasic(self): - for i, dtype in enumerate([tf.half, tf.float32, tf.float64]): - with self.session(graph=tf.Graph(), use_gpu=True): - # Initialize variables for numpy implementation. - m0 = np.array([0.0, 0.0]) - v0 = np.array([0.0, 0.0]) - m1 = np.array([0.0, 0.0]) - v1 = np.array([0.0, 0.0]) - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np, name="var0_%d" % i) - var1 = tf.Variable(var1_np, name="var1_%d" % i) - - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - opt = adamax.Adamax() - if not tf.executing_eagerly(): - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - - if not tf.executing_eagerly(): - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - - # Run 3 steps of Adamax - for t in range(3): - beta_1_power = get_beta_accumulators(opt, dtype) - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), self.evaluate(beta_1_power) - ) - if not tf.executing_eagerly(): - self.evaluate(update) - else: - opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - - var0_np, m0, v0 = adamax_update_numpy( - var0_np, grads0_np, t, m0, v0 - ) - var1_np, m1, v1 = adamax_update_numpy( - var1_np, grads1_np, t, m1, v1 - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0), rtol=1e-2 - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1), rtol=1e-2 - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasicWithLearningRateDecay(self): - for i, dtype in enumerate([tf.half, tf.float32, tf.float64]): - with self.session(graph=tf.Graph(), use_gpu=True): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np, name="var0_%d" % i) - var1 = tf.Variable(var1_np, name="var1_%d" % i) - - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - - learning_rate = 0.001 - decay = 0.002 - opt = adamax.Adamax(learning_rate=learning_rate, decay=decay) - if not tf.executing_eagerly(): - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - - if not tf.executing_eagerly(): - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - - # Run 3 steps of Adamax - for t in range(3): - beta_1_power = get_beta_accumulators(opt, dtype) - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), self.evaluate(beta_1_power) - ) - if not tf.executing_eagerly(): - self.evaluate(update) - else: - opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - - lr = learning_rate / (1 + decay * t) - - var0_np, m0, v0 = adamax_update_numpy( - var0_np, grads0_np, t, m0, v0, alpha=lr - ) - var1_np, m1, v1 = adamax_update_numpy( - var1_np, grads1_np, t, m1, v1, alpha=lr - ) - - # Validate updated params - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0), rtol=1e-2 - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1), rtol=1e-2 - ) - - def testTensorLearningRate(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - opt = adamax.Adamax(tf.constant(0.001)) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], var0) - self.assertAllClose([3.0, 4.0], var1) - - beta1_power = get_beta_accumulators(opt, dtype) - - # Run 3 steps of Adamax - for t in range(3): - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), beta1_power - ) - update.run() - - var0_np, m0, v0 = adamax_update_numpy( - var0_np, grads0_np, t, m0, v0 - ) - var1_np, m1, v1 = adamax_update_numpy( - var1_np, grads1_np, t, m1, v1 - ) - - # Validate updated params - self.assertAllCloseAccordingToType(var0_np, var0) - self.assertAllCloseAccordingToType(var1_np, var1) - - def testSharing(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - opt = adamax.Adamax() - update1 = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - update2 = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - beta1_power = get_beta_accumulators(opt, dtype) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], var0) - self.assertAllClose([3.0, 4.0], var1) - - # Run 3 steps of intertwined Adamax1 and Adamax2. - for t in range(3): - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), beta1_power - ) - if t % 2 == 0: - update1.run() - else: - update2.run() - - var0_np, m0, v0 = adamax_update_numpy( - var0_np, grads0_np, t, m0, v0 - ) - var1_np, m1, v1 = adamax_update_numpy( - var1_np, grads1_np, t, m1, v1 - ) - - # Validate updated params - self.assertAllCloseAccordingToType(var0_np, var0) - self.assertAllCloseAccordingToType(var1_np, var1) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testSlotsUniqueEager(self): - v1 = tf.Variable(1.0) - v2 = tf.Variable(1.0) - opt = adamax.Adamax(1.0) - opt.minimize(lambda: v1 + v2, var_list=[v1, v2]) - # There should be iteration, and two unique slot variables for v1 and - # v2. - self.assertLen({id(v) for v in opt.variables()}, 5) - - def testConstructAdamaxWithLR(self): - opt = adamax.Adamax(lr=1.0) - opt_2 = adamax.Adamax(learning_rate=0.1, lr=1.0) - opt_3 = adamax.Adamax(learning_rate=0.1) - self.assertIsInstance(opt.lr, tf.Variable) - self.assertIsInstance(opt_2.lr, tf.Variable) - self.assertIsInstance(opt_3.lr, tf.Variable) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose(self.evaluate(opt.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_2.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_3.lr), (0.1)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/optimizers/legacy/ftrl.py b/keras/optimizers/legacy/ftrl.py deleted file mode 100644 index d41536ecaf1..00000000000 --- a/keras/optimizers/legacy/ftrl.py +++ /dev/null @@ -1,309 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Ftrl-proximal optimizer implementation.""" - - -import tensorflow.compat.v2 as tf - -from keras.optimizers.legacy import optimizer_v2 - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.optimizers.legacy.Ftrl", - v1=["keras.optimizers.Ftrl", "keras.optimizers.legacy.Ftrl"], -) -class Ftrl(optimizer_v2.OptimizerV2): - r"""Optimizer that implements the FTRL algorithm. - - "Follow The Regularized Leader" (FTRL) is an optimization algorithm - developed at Google for click-through rate prediction in the early 2010s. It - is most suitable for shallow models with large and sparse feature spaces. - The algorithm is described by - [McMahan et al., 2013](https://research.google.com/pubs/archive/41159.pdf). - The Keras version has support for both online L2 regularization - (the L2 regularization described in the paper - above) and shrinkage-type L2 regularization - (which is the addition of an L2 penalty to the loss function). - - Initialization: - - ```python - n = 0 - sigma = 0 - z = 0 - ``` - - Update rule for one variable `w`: - - ```python - prev_n = n - n = n + g ** 2 - sigma = (sqrt(n) - sqrt(prev_n)) / lr - z = z + g - sigma * w - if abs(z) < lambda_1: - w = 0 - else: - w = (sgn(z) * lambda_1 - z) / ((beta + sqrt(n)) / alpha + lambda_2) - ``` - - Notation: - - - `lr` is the learning rate - - `g` is the gradient for the variable - - `lambda_1` is the L1 regularization strength - - `lambda_2` is the L2 regularization strength - - Check the documentation for the `l2_shrinkage_regularization_strength` - parameter for more details when shrinkage is enabled, in which case gradient - is replaced with a gradient with shrinkage. - - Args: - learning_rate: A `Tensor`, floating point value, or a schedule that is a - `tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate. - learning_rate_power: A float value, must be less or equal to zero. - Controls how the learning rate decreases during training. Use zero for - a fixed learning rate. - initial_accumulator_value: The starting value for accumulators. - Only zero or positive values are allowed. - l1_regularization_strength: A float value, must be greater than or - equal to zero. Defaults to 0.0. - l2_regularization_strength: A float value, must be greater than or - equal to zero. Defaults to 0.0. - name: Optional name prefix for the operations created when applying - gradients. Defaults to `"Ftrl"`. - l2_shrinkage_regularization_strength: A float value, must be greater than - or equal to zero. This differs from L2 above in that the L2 above is a - stabilization penalty, whereas this L2 shrinkage is a magnitude penalty. - When input is sparse shrinkage will only happen on the active weights. - beta: A float value, representing the beta value from the paper. - Defaults to 0.0. - **kwargs: keyword arguments. Allowed arguments are `clipvalue`, - `clipnorm`, `global_clipnorm`. - If `clipvalue` (float) is set, the gradient of each weight - is clipped to be no higher than this value. - If `clipnorm` (float) is set, the gradient of each weight - is individually clipped so that its norm is no higher than this value. - If `global_clipnorm` (float) is set the gradient of all weights is - clipped so that their global norm is no higher than this value. - - Reference: - - [McMahan et al., 2013]( - https://research.google.com/pubs/archive/41159.pdf) - """ - - def __init__( - self, - learning_rate=0.001, - learning_rate_power=-0.5, - initial_accumulator_value=0.1, - l1_regularization_strength=0.0, - l2_regularization_strength=0.0, - name="Ftrl", - l2_shrinkage_regularization_strength=0.0, - beta=0.0, - **kwargs, - ): - super().__init__(name, **kwargs) - - if initial_accumulator_value < 0.0: - raise ValueError( - "`initial_accumulator_value` needs to be " - "positive or zero. Received: " - f"initial_accumulator_value={initial_accumulator_value}." - ) - if learning_rate_power > 0.0: - raise ValueError( - "`learning_rate_power` needs to be " - "negative or zero. Received: " - f"learning_rate_power={learning_rate_power}." - ) - if l1_regularization_strength < 0.0: - raise ValueError( - "`l1_regularization_strength` needs to be positive or zero. " - "Received: l1_regularization_strength=" - f"{l1_regularization_strength}." - ) - if l2_regularization_strength < 0.0: - raise ValueError( - "`l2_regularization_strength` needs to be positive or zero. " - "Received: l2_regularization_strength=" - f"{l2_regularization_strength}." - ) - if l2_shrinkage_regularization_strength < 0.0: - raise ValueError( - "`l2_shrinkage_regularization_strength` needs to be positive " - "or zero. Received: l2_shrinkage_regularization_strength" - f"={l2_shrinkage_regularization_strength}." - ) - - self._set_hyper("learning_rate", learning_rate) - self._set_hyper("decay", self._initial_decay) - self._set_hyper("learning_rate_power", learning_rate_power) - self._set_hyper( - "l1_regularization_strength", l1_regularization_strength - ) - self._set_hyper( - "l2_regularization_strength", l2_regularization_strength - ) - self._set_hyper("beta", beta) - self._initial_accumulator_value = initial_accumulator_value - self._l2_shrinkage_regularization_strength = ( - l2_shrinkage_regularization_strength - ) - - def _create_slots(self, var_list): - # Create the "accum" and "linear" slots. - for var in var_list: - dtype = var.dtype.base_dtype - init = tf.compat.v1.constant_initializer( - self._initial_accumulator_value, dtype=dtype - ) - self.add_slot(var, "accumulator", init) - self.add_slot(var, "linear") - - def _prepare_local(self, var_device, var_dtype, apply_state): - super()._prepare_local(var_device, var_dtype, apply_state) - apply_state[(var_device, var_dtype)].update( - dict( - learning_rate_power=tf.identity( - self._get_hyper("learning_rate_power", var_dtype) - ), - l1_regularization_strength=tf.identity( - self._get_hyper("l1_regularization_strength", var_dtype) - ), - l2_regularization_strength=tf.identity( - self._get_hyper("l2_regularization_strength", var_dtype) - ), - beta=tf.identity(self._get_hyper("beta", var_dtype)), - l2_shrinkage_regularization_strength=tf.cast( - self._l2_shrinkage_regularization_strength, var_dtype - ), - ) - ) - - def _resource_apply_dense(self, grad, var, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - # Adjust L2 regularization strength to include beta to avoid the - # underlying TensorFlow ops needing to include it. - adjusted_l2_regularization_strength = coefficients[ - "l2_regularization_strength" - ] + coefficients["beta"] / (2.0 * coefficients["lr_t"]) - - accum = self.get_slot(var, "accumulator") - linear = self.get_slot(var, "linear") - - if self._l2_shrinkage_regularization_strength <= 0.0: - return tf.raw_ops.ResourceApplyFtrl( - var=var.handle, - accum=accum.handle, - linear=linear.handle, - grad=grad, - lr=coefficients["lr_t"], - l1=coefficients["l1_regularization_strength"], - l2=adjusted_l2_regularization_strength, - lr_power=coefficients["learning_rate_power"], - use_locking=self._use_locking, - ) - else: - return tf.raw_ops.ResourceApplyFtrlV2( - var=var.handle, - accum=accum.handle, - linear=linear.handle, - grad=grad, - lr=coefficients["lr_t"], - l1=coefficients["l1_regularization_strength"], - l2=adjusted_l2_regularization_strength, - l2_shrinkage=coefficients[ - "l2_shrinkage_regularization_strength" - ], - lr_power=coefficients["learning_rate_power"], - use_locking=self._use_locking, - ) - - def _resource_apply_sparse(self, grad, var, indices, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - # Adjust L2 regularization strength to include beta to avoid the - # underlying TensorFlow ops needing to include it. - adjusted_l2_regularization_strength = coefficients[ - "l2_regularization_strength" - ] + coefficients["beta"] / (2.0 * coefficients["lr_t"]) - - accum = self.get_slot(var, "accumulator") - linear = self.get_slot(var, "linear") - - if self._l2_shrinkage_regularization_strength <= 0.0: - return tf.raw_ops.ResourceSparseApplyFtrl( - var=var.handle, - accum=accum.handle, - linear=linear.handle, - grad=grad, - indices=indices, - lr=coefficients["lr_t"], - l1=coefficients["l1_regularization_strength"], - l2=adjusted_l2_regularization_strength, - lr_power=coefficients["learning_rate_power"], - use_locking=self._use_locking, - ) - else: - return tf.raw_ops.ResourceSparseApplyFtrlV2( - var=var.handle, - accum=accum.handle, - linear=linear.handle, - grad=grad, - indices=indices, - lr=coefficients["lr_t"], - l1=coefficients["l1_regularization_strength"], - l2=adjusted_l2_regularization_strength, - l2_shrinkage=coefficients[ - "l2_shrinkage_regularization_strength" - ], - lr_power=coefficients["learning_rate_power"], - use_locking=self._use_locking, - ) - - def get_config(self): - config = super().get_config() - config.update( - { - "learning_rate": self._serialize_hyperparameter( - "learning_rate" - ), - "decay": self._initial_decay, - "initial_accumulator_value": self._initial_accumulator_value, - "learning_rate_power": self._serialize_hyperparameter( - "learning_rate_power" - ), - "l1_regularization_strength": self._serialize_hyperparameter( - "l1_regularization_strength" - ), - "l2_regularization_strength": self._serialize_hyperparameter( - "l2_regularization_strength" - ), - "beta": self._serialize_hyperparameter("beta"), - "l2_shrinkage_regularization_strength": self._l2_shrinkage_regularization_strength, # noqa: E501 - } - ) - return config diff --git a/keras/optimizers/legacy/ftrl_test.py b/keras/optimizers/legacy/ftrl_test.py deleted file mode 100644 index 4c1caa94124..00000000000 --- a/keras/optimizers/legacy/ftrl_test.py +++ /dev/null @@ -1,558 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Functional tests for Ftrl operations.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.optimizers.legacy import ftrl - - -class FtrlOptimizerTest(tf.test.TestCase): - def doTestFtrlwithoutRegularization(self, use_resource=False): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.float32]: - with tf.Graph().as_default(), self.cached_session(): - if use_resource: - var0 = tf.Variable([0.0, 0.0], dtype=dtype) - var1 = tf.Variable([0.0, 0.0], dtype=dtype) - else: - var0 = tf.Variable([0.0, 0.0], dtype=dtype) - var1 = tf.Variable([0.0, 0.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.2], dtype=dtype) - grads1 = tf.constant([0.01, 0.02], dtype=dtype) - opt = ftrl.Ftrl( - 3.0, - initial_accumulator_value=0.1, - l1_regularization_strength=0.0, - l2_regularization_strength=0.0, - ) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllClose([0.0, 0.0], v0_val) - self.assertAllClose([0.0, 0.0], v1_val) - - # Run 3 steps FTRL - for _ in range(3): - update.run() - - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType( - np.array([-2.60260963, -4.29698515]), v0_val - ) - self.assertAllCloseAccordingToType( - np.array([-0.28432083, -0.56694895]), v1_val - ) - - def testFtrlWithoutRegularization(self): - self.doTestFtrlwithoutRegularization(use_resource=False) - - def testResourceFtrlWithoutRegularization(self): - self.doTestFtrlwithoutRegularization(use_resource=True) - - def testFtrlwithoutRegularization2(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32]: - with tf.Graph().as_default(), self.cached_session(): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([4.0, 3.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.2], dtype=dtype) - grads1 = tf.constant([0.01, 0.02], dtype=dtype) - - opt = ftrl.Ftrl( - 3.0, - initial_accumulator_value=0.1, - l1_regularization_strength=0.0, - l2_regularization_strength=0.0, - ) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType([1.0, 2.0], v0_val) - self.assertAllCloseAccordingToType([4.0, 3.0], v1_val) - - # Run 3 steps FTRL - for _ in range(3): - update.run() - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType( - np.array([-2.55607247, -3.98729396]), v0_val - ) - self.assertAllCloseAccordingToType( - np.array([-0.28232238, -0.56096673]), v1_val - ) - - def testMinimizeSparseResourceVariable(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - var0 = tf.Variable([[1.0, 2.0]], dtype=dtype) - x = tf.constant([[4.0], [5.0]], dtype=dtype) - - def loss(): - pred = tf.matmul( - tf.compat.v1.nn.embedding_lookup([var0], [0]), x - ) - return pred * pred - - sgd_op = ftrl.Ftrl(1.0).minimize(loss, var_list=[var0]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Fetch params to validate initial values - self.assertAllCloseAccordingToType( - [[1.0, 2.0]], self.evaluate(var0) - ) - # Run 1 step of sgd - sgd_op.run() - # Validate updated params - self.assertAllCloseAccordingToType( - [[0, 1]], self.evaluate(var0), atol=0.01 - ) - - def testFtrlWithL1(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32]: - with tf.Graph().as_default(), self.cached_session(): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([4.0, 3.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.2], dtype=dtype) - grads1 = tf.constant([0.01, 0.02], dtype=dtype) - - opt = ftrl.Ftrl( - 3.0, - initial_accumulator_value=0.1, - l1_regularization_strength=0.001, - l2_regularization_strength=0.0, - ) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType([1.0, 2.0], v0_val) - self.assertAllCloseAccordingToType([4.0, 3.0], v1_val) - - # Run 10 steps FTRL - for _ in range(10): - update.run() - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType( - np.array([-7.66718769, -10.91273689]), v0_val - ) - self.assertAllCloseAccordingToType( - np.array([-0.93460727, -1.86147261]), v1_val - ) - - def testFtrlWithBeta(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32]: - with tf.Graph().as_default(), self.cached_session(): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([4.0, 3.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.2], dtype=dtype) - grads1 = tf.constant([0.01, 0.02], dtype=dtype) - - opt = ftrl.Ftrl(3.0, initial_accumulator_value=0.1, beta=0.1) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType([1.0, 2.0], v0_val) - self.assertAllCloseAccordingToType([4.0, 3.0], v1_val) - - # Run 10 steps FTRL - for _ in range(10): - update.run() - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType( - np.array([-6.096838, -9.162214]), v0_val - ) - self.assertAllCloseAccordingToType( - np.array([-0.717741, -1.425132]), v1_val - ) - - def testFtrlWithL2_Beta(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32]: - with tf.Graph().as_default(), self.cached_session(): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([4.0, 3.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.2], dtype=dtype) - grads1 = tf.constant([0.01, 0.02], dtype=dtype) - - opt = ftrl.Ftrl( - 3.0, - initial_accumulator_value=0.1, - l1_regularization_strength=0.0, - l2_regularization_strength=0.1, - beta=0.1, - ) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType([1.0, 2.0], v0_val) - self.assertAllCloseAccordingToType([4.0, 3.0], v1_val) - - # Run 10 steps FTRL - for _ in range(10): - update.run() - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType( - np.array([-2.735487, -4.704625]), v0_val - ) - self.assertAllCloseAccordingToType( - np.array([-0.294335, -0.586556]), v1_val - ) - - def testFtrlWithL1_L2(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32]: - with tf.Graph().as_default(), self.cached_session(): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([4.0, 3.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.2], dtype=dtype) - grads1 = tf.constant([0.01, 0.02], dtype=dtype) - - opt = ftrl.Ftrl( - 3.0, - initial_accumulator_value=0.1, - l1_regularization_strength=0.001, - l2_regularization_strength=2.0, - ) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType([1.0, 2.0], v0_val) - self.assertAllCloseAccordingToType([4.0, 3.0], v1_val) - - # Run 10 steps FTRL - for _ in range(10): - update.run() - - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType( - np.array([-0.24059935, -0.46829352]), v0_val - ) - self.assertAllCloseAccordingToType( - np.array([-0.02406147, -0.04830509]), v1_val - ) - - def testFtrlWithL1_L2_L2Shrinkage(self): - """Test the new FTRL op with support for l2 shrinkage. - - The addition of this parameter which places a constant pressure on - weights towards the origin causes the gradient descent trajectory to - differ. The weights will tend to have smaller magnitudes with this - parameter set. - """ - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32]: - with tf.Graph().as_default(), self.cached_session(): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([4.0, 3.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.2], dtype=dtype) - grads1 = tf.constant([0.01, 0.02], dtype=dtype) - - opt = ftrl.Ftrl( - 3.0, - initial_accumulator_value=0.1, - l1_regularization_strength=0.001, - l2_regularization_strength=2.0, - l2_shrinkage_regularization_strength=0.1, - ) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType([1.0, 2.0], v0_val) - self.assertAllCloseAccordingToType([4.0, 3.0], v1_val) - - # Run 10 steps FTRL - for _ in range(10): - update.run() - - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType( - np.array([-0.22578995, -0.44345796]), v0_val - ) - self.assertAllCloseAccordingToType( - np.array([-0.14378493, -0.13229476]), v1_val - ) - - def testFtrlWithL1_L2_L2ShrinkageSparse(self): - """Tests the new FTRL op with support for l2 shrinkage on sparse - grads.""" - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32]: - with tf.Graph().as_default(), self.cached_session(): - var0 = tf.Variable([[1.0], [2.0]], dtype=dtype) - var1 = tf.Variable([[4.0], [3.0]], dtype=dtype) - grads0 = tf.IndexedSlices( - tf.constant([0.1], shape=[1, 1], dtype=dtype), - tf.constant([0]), - tf.constant([2, 1]), - ) - grads1 = tf.IndexedSlices( - tf.constant([0.02], shape=[1, 1], dtype=dtype), - tf.constant([1]), - tf.constant([2, 1]), - ) - - opt = ftrl.Ftrl( - 3.0, - initial_accumulator_value=0.1, - l1_regularization_strength=0.001, - l2_regularization_strength=2.0, - l2_shrinkage_regularization_strength=0.1, - ) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType([[1.0], [2.0]], v0_val) - self.assertAllCloseAccordingToType([[4.0], [3.0]], v1_val) - - # Run 10 steps FTRL - for _ in range(10): - update.run() - - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType( - [[-0.22578995], [2.0]], v0_val - ) - self.assertAllCloseAccordingToType( - [[4.0], [-0.13229476]], v1_val - ) - - def testFtrlWithL2ShrinkageDoesNotChangeLrSchedule(self): - """Verifies that l2 shrinkage in FTRL does not change lr schedule.""" - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32]: - with tf.Graph().as_default(), self.cached_session() as sess: - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([1.0, 2.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.2], dtype=dtype) - grads1 = tf.constant([0.1, 0.2], dtype=dtype) - - opt0 = ftrl.Ftrl( - 3.0, - initial_accumulator_value=0.1, - l1_regularization_strength=0.001, - l2_regularization_strength=2.0, - l2_shrinkage_regularization_strength=0.1, - ) - opt1 = ftrl.Ftrl( - 3.0, - initial_accumulator_value=0.1, - l1_regularization_strength=0.001, - l2_regularization_strength=2.0, - ) - update0 = opt0.apply_gradients([(grads0, var0)]) - update1 = opt1.apply_gradients([(grads1, var1)]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - v0_val, v1_val = self.evaluate([var0, var1]) - self.assertAllCloseAccordingToType([1.0, 2.0], v0_val) - self.assertAllCloseAccordingToType([1.0, 2.0], v1_val) - - # Run 10 steps FTRL - for _ in range(10): - update0.run() - update1.run() - - v0_val, v1_val = self.evaluate([var0, var1]) - # var0 is experiencing L2 shrinkage so it should be smaller than - # var1 in magnitude. - self.assertTrue((v0_val**2 < v1_val**2).all()) - accum0 = sess.run(opt0.get_slot(var0, "accumulator")) - accum1 = sess.run(opt1.get_slot(var1, "accumulator")) - # L2 shrinkage should not change how we update grad accumulator. - self.assertAllCloseAccordingToType(accum0, accum1) - - def applyOptimizer(self, opt, dtype, steps=5, is_sparse=False): - if is_sparse: - var0 = tf.Variable([[0.0], [0.0]], dtype=dtype) - var1 = tf.Variable([[0.0], [0.0]], dtype=dtype) - grads0 = tf.IndexedSlices( - tf.constant([0.1], shape=[1, 1], dtype=dtype), - tf.constant([0]), - tf.constant([2, 1]), - ) - grads1 = tf.IndexedSlices( - tf.constant([0.02], shape=[1, 1], dtype=dtype), - tf.constant([1]), - tf.constant([2, 1]), - ) - else: - var0 = tf.Variable([0.0, 0.0], dtype=dtype) - var1 = tf.Variable([0.0, 0.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.2], dtype=dtype) - grads1 = tf.constant([0.01, 0.02], dtype=dtype) - - update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - v0_val, v1_val = self.evaluate([var0, var1]) - if is_sparse: - self.assertAllCloseAccordingToType([[0.0], [0.0]], v0_val) - self.assertAllCloseAccordingToType([[0.0], [0.0]], v1_val) - else: - self.assertAllCloseAccordingToType([0.0, 0.0], v0_val) - self.assertAllCloseAccordingToType([0.0, 0.0], v1_val) - - # Run Ftrl for a few steps - for _ in range(steps): - update.run() - - v0_val, v1_val = self.evaluate([var0, var1]) - return v0_val, v1_val - - # When variables are initialized with Zero, FTRL-Proximal has two - # properties: - # 1. Without L1&L2 but with fixed learning rate, FTRL-Proximal is identical - # with GradientDescent. - # 2. Without L1&L2 but with adaptive learning rate, FTRL-Proximal is - # identical with Adagrad. - # So, basing on these two properties, we test if our implementation of - # FTRL-Proximal performs same updates as Adagrad or GradientDescent. - def testEquivAdagradwithoutRegularization(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32]: - with tf.Graph().as_default(), self.cached_session(): - val0, val1 = self.applyOptimizer( - ftrl.Ftrl( - 3.0, - # Adagrad learning rate - learning_rate_power=-0.5, - initial_accumulator_value=0.1, - l1_regularization_strength=0.0, - l2_regularization_strength=0.0, - ), - dtype, - ) - - with tf.Graph().as_default(), self.cached_session(): - val2, val3 = self.applyOptimizer( - tf.compat.v1.train.AdagradOptimizer( - 3.0, initial_accumulator_value=0.1 - ), - dtype, - ) - - self.assertAllCloseAccordingToType(val0, val2) - self.assertAllCloseAccordingToType(val1, val3) - - def testEquivSparseAdagradwithoutRegularization(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32]: - with tf.Graph().as_default(), self.cached_session(): - val0, val1 = self.applyOptimizer( - ftrl.Ftrl( - 3.0, - # Adagrad learning rate - learning_rate_power=-0.5, - initial_accumulator_value=0.1, - l1_regularization_strength=0.0, - l2_regularization_strength=0.0, - ), - dtype, - is_sparse=True, - ) - - with tf.Graph().as_default(), self.cached_session(): - val2, val3 = self.applyOptimizer( - tf.compat.v1.train.AdagradOptimizer( - 3.0, initial_accumulator_value=0.1 - ), - dtype, - is_sparse=True, - ) - - self.assertAllCloseAccordingToType(val0, val2) - self.assertAllCloseAccordingToType(val1, val3) - - def testEquivSparseGradientDescentwithoutRegularization(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32]: - with tf.Graph().as_default(), self.cached_session(): - val0, val1 = self.applyOptimizer( - ftrl.Ftrl( - 3.0, - # Fixed learning rate - learning_rate_power=-0.0, - initial_accumulator_value=0.1, - l1_regularization_strength=0.0, - l2_regularization_strength=0.0, - ), - dtype, - is_sparse=True, - ) - - with tf.Graph().as_default(), self.cached_session(): - val2, val3 = self.applyOptimizer( - tf.compat.v1.train.GradientDescentOptimizer(3.0), - dtype, - is_sparse=True, - ) - - self.assertAllCloseAccordingToType(val0, val2) - self.assertAllCloseAccordingToType(val1, val3) - - def testEquivGradientDescentwithoutRegularization(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32]: - with tf.Graph().as_default(), self.cached_session(): - val0, val1 = self.applyOptimizer( - ftrl.Ftrl( - 3.0, - # Fixed learning rate - learning_rate_power=-0.0, - initial_accumulator_value=0.1, - l1_regularization_strength=0.0, - l2_regularization_strength=0.0, - ), - dtype, - ) - - with tf.Graph().as_default(), self.cached_session(): - val2, val3 = self.applyOptimizer( - tf.compat.v1.train.GradientDescentOptimizer(3.0), dtype - ) - - self.assertAllCloseAccordingToType(val0, val2) - self.assertAllCloseAccordingToType(val1, val3) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/optimizers/legacy/gradient_descent.py b/keras/optimizers/legacy/gradient_descent.py deleted file mode 100644 index 0bcb10fdfec..00000000000 --- a/keras/optimizers/legacy/gradient_descent.py +++ /dev/null @@ -1,222 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""SGD optimizer implementation.""" - - -import tensorflow.compat.v2 as tf - -from keras.optimizers.legacy import optimizer_v2 - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.optimizers.legacy.SGD", - v1=["keras.optimizers.SGD", "keras.optimizers.legacy.SGD"], -) -class SGD(optimizer_v2.OptimizerV2): - r"""Gradient descent (with momentum) optimizer. - - Update rule for parameter `w` with gradient `g` when `momentum=0`: - - ```python - w = w - learning_rate * g - ``` - - Update rule when `momentum` is larger than 0: - - ```python - velocity = momentum * velocity - learning_rate * g - w = w + velocity - ``` - - When `nesterov=True`, this rule becomes: - - ```python - velocity = momentum * velocity - learning_rate * g - w = w + momentum * velocity - learning_rate * g - ``` - - Args: - learning_rate: A `Tensor`, floating point value, or a schedule that is a - `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable - that takes no arguments and returns the actual value to use. The - learning rate. Defaults to 0.01. - momentum: float hyperparameter >= 0 that accelerates gradient descent in - the relevant direction and dampens oscillations. Defaults to 0, i.e., - vanilla gradient descent. - nesterov: boolean. Whether to apply Nesterov momentum. - Defaults to `False`. - name: Optional name prefix for the operations created when applying - gradients. Defaults to `"SGD"`. - **kwargs: keyword arguments. Allowed arguments are `clipvalue`, - `clipnorm`, `global_clipnorm`. - If `clipvalue` (float) is set, the gradient of each weight - is clipped to be no higher than this value. - If `clipnorm` (float) is set, the gradient of each weight - is individually clipped so that its norm is no higher than this value. - If `global_clipnorm` (float) is set the gradient of all weights is - clipped so that their global norm is no higher than this value. - - Usage: - - >>> opt = tf.keras.optimizers.legacy.SGD(learning_rate=0.1) - >>> var = tf.Variable(1.0) - >>> loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1 - >>> step_count = opt.minimize(loss, [var]).numpy() - >>> # Step is `- learning_rate * grad` - >>> var.numpy() - 0.9 - - >>> opt = tf.keras.optimizers.legacy.SGD(learning_rate=0.1, momentum=0.9) - >>> var = tf.Variable(1.0) - >>> val0 = var.value() - >>> loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1 - >>> # First step is `- learning_rate * grad` - >>> step_count = opt.minimize(loss, [var]).numpy() - >>> val1 = var.value() - >>> (val0 - val1).numpy() - 0.1 - >>> # On later steps, step-size increases because of momentum - >>> step_count = opt.minimize(loss, [var]).numpy() - >>> val2 = var.value() - >>> (val1 - val2).numpy() - 0.18 - - Reference: - - For `nesterov=True`, See [Sutskever et al., 2013]( - https://github.com/mlresearch/v28/blob/gh-pages/sutskever13.pdf). - """ - - _HAS_AGGREGATE_GRAD = True - - def __init__( - self, - learning_rate=0.01, - momentum=0.0, - nesterov=False, - name="SGD", - **kwargs, - ): - super().__init__(name, **kwargs) - self._set_hyper("learning_rate", kwargs.get("lr", learning_rate)) - self._set_hyper("decay", self._initial_decay) - - self._momentum = False - if ( - isinstance(momentum, tf.Tensor) - or callable(momentum) - or momentum > 0 - ): - self._momentum = True - if isinstance(momentum, (int, float)) and ( - momentum < 0 or momentum > 1 - ): - raise ValueError( - "`momentum` must be between [0, 1]. Received: " - f"momentum={momentum} (of type {type(momentum)})." - ) - self._set_hyper("momentum", momentum) - - self.nesterov = nesterov - - def _create_slots(self, var_list): - if self._momentum: - for var in var_list: - self.add_slot(var, "momentum") - - def _prepare_local(self, var_device, var_dtype, apply_state): - super()._prepare_local(var_device, var_dtype, apply_state) - apply_state[(var_device, var_dtype)]["momentum"] = tf.identity( - self._get_hyper("momentum", var_dtype) - ) - - def _resource_apply_dense(self, grad, var, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - if self._momentum: - momentum_var = self.get_slot(var, "momentum") - return tf.raw_ops.ResourceApplyKerasMomentum( - var=var.handle, - accum=momentum_var.handle, - lr=coefficients["lr_t"], - grad=grad, - momentum=coefficients["momentum"], - use_locking=self._use_locking, - use_nesterov=self.nesterov, - ) - else: - return tf.raw_ops.ResourceApplyGradientDescent( - var=var.handle, - alpha=coefficients["lr_t"], - delta=grad, - use_locking=self._use_locking, - ) - - def _resource_apply_sparse_duplicate_indices( - self, grad, var, indices, **kwargs - ): - if self._momentum: - return super()._resource_apply_sparse_duplicate_indices( - grad, var, indices, **kwargs - ) - else: - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = kwargs.get("apply_state", {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - return tf.raw_ops.ResourceScatterAdd( - resource=var.handle, - indices=indices, - updates=-grad * coefficients["lr_t"], - ) - - def _resource_apply_sparse(self, grad, var, indices, apply_state=None): - # This method is only needed for momentum optimization. - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - momentum_var = self.get_slot(var, "momentum") - return tf.raw_ops.ResourceSparseApplyKerasMomentum( - var=var.handle, - accum=momentum_var.handle, - lr=coefficients["lr_t"], - grad=grad, - indices=indices, - momentum=coefficients["momentum"], - use_locking=self._use_locking, - use_nesterov=self.nesterov, - ) - - def get_config(self): - config = super().get_config() - config.update( - { - "learning_rate": self._serialize_hyperparameter( - "learning_rate" - ), - "decay": self._initial_decay, - "momentum": self._serialize_hyperparameter("momentum"), - "nesterov": self.nesterov, - } - ) - return config diff --git a/keras/optimizers/legacy/gradient_descent_test.py b/keras/optimizers/legacy/gradient_descent_test.py deleted file mode 100644 index ec5bc4e99bd..00000000000 --- a/keras/optimizers/legacy/gradient_descent_test.py +++ /dev/null @@ -1,881 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Functional test for GradientDescent.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.optimizers.legacy import gradient_descent -from keras.optimizers.schedules import learning_rate_schedule -from keras.testing_infra import test_combinations - - -class GradientDescentOptimizerTest(tf.test.TestCase, parameterized.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasic(self): - for dtype in [tf.half, tf.float32, tf.float64]: - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.1], dtype=dtype) - grads1 = tf.constant([0.01, 0.01], dtype=dtype) - sgd = gradient_descent.SGD(3.0) - sgd_op = sgd.apply_gradients(zip([grads0, grads1], [var0, var1])) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 1 step of sgd - self.evaluate(sgd_op) - # Validate updated params - self.assertAllCloseAccordingToType( - [1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - [3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], self.evaluate(var1) - ) - - def _test_basic_sgd_with_learning_rate_decay(self, sgd, dtype): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.1], dtype=dtype) - grads1 = tf.constant([0.01, 0.01], dtype=dtype) - if not tf.executing_eagerly(): - sgd_op = sgd.apply_gradients(zip([grads0, grads1], [var0, var1])) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 2 steps of sgd - if not tf.executing_eagerly(): - self.evaluate(sgd_op) - else: - sgd.apply_gradients(zip([grads0, grads1], [var0, var1])) - # Validate updated params - self.assertAllCloseAccordingToType( - [1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - [3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], self.evaluate(var1) - ) - - if not tf.executing_eagerly(): - self.evaluate(sgd_op) - else: - sgd.apply_gradients(zip([grads0, grads1], [var0, var1])) - # Validate updated params - self.assertAllCloseAccordingToType( - [1.0 - 3.0 * 0.1 - 2.0 * 0.1, 2.0 - 3.0 * 0.1 - 2.0 * 0.1], - self.evaluate(var0), - ) - self.assertAllCloseAccordingToType( - [3.0 - 3.0 * 0.01 - 2.0 * 0.01, 4.0 - 3.0 * 0.01 - 2.0 * 0.01], - self.evaluate(var1), - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasicWithLearningRateDecay(self): - for dtype in [tf.half, tf.float32, tf.float64]: - learning_rate = 3.0 - decay = 0.5 - sgd = gradient_descent.SGD(learning_rate=learning_rate, decay=decay) - self._test_basic_sgd_with_learning_rate_decay(sgd, dtype) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasicWithLearningRateInverseTimeDecay(self): - for dtype in [tf.half, tf.float32, tf.float64]: - learning_rate = learning_rate_schedule.InverseTimeDecay( - 3.0, decay_steps=1.0, decay_rate=0.5 - ) - sgd = gradient_descent.SGD(learning_rate=learning_rate) - self._test_basic_sgd_with_learning_rate_decay(sgd, dtype) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasicWithLearningRateInverseTimeDecaySerializeAndDeserialize(self): - for dtype in [tf.half, tf.float32, tf.float64]: - learning_rate = learning_rate_schedule.InverseTimeDecay( - 3.0, decay_steps=1.0, decay_rate=0.5 - ) - sgd = gradient_descent.SGD(learning_rate=learning_rate) - sgd = gradient_descent.SGD.from_config(sgd.get_config()) - self._test_basic_sgd_with_learning_rate_decay(sgd, dtype) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasicCallableParams(self): - for dtype in [tf.half, tf.float32, tf.float64]: - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.1], dtype=dtype) - grads1 = tf.constant([0.01, 0.01], dtype=dtype) - lr = lambda: 3.0 - sgd = gradient_descent.SGD(lr) - sgd_op = sgd.apply_gradients(zip([grads0, grads1], [var0, var1])) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 1 step of sgd - self.evaluate(sgd_op) - # Validate updated params - self.assertAllCloseAccordingToType( - [1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - [3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], self.evaluate(var1) - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testMinimizeResourceVariable(self): - for dtype in [tf.half, tf.float32, tf.float64]: - var0 = tf.Variable([[1.0, 2.0]], dtype=dtype) - var1 = tf.Variable([3.0], dtype=dtype) - x = tf.constant([[4.0], [5.0]], dtype=dtype) - loss = lambda: tf.matmul(var0, x) + var1 - sgd = gradient_descent.SGD(1.0) - sgd_op = sgd.minimize(loss, [var0, var1]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 1 step of sgd - self.evaluate(sgd_op) - # Validate updated params - self.assertAllCloseAccordingToType( - [[1.0 - 4.0, 2.0 - 5.0]], self.evaluate(var0) - ) - self.assertAllCloseAccordingToType([3.0 - 1.0], self.evaluate(var1)) - - def testMinimizeSparseResourceVariable(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in [tf.half, tf.float32, tf.float64]: - var0 = tf.Variable([[1.0, 2.0]], dtype=dtype) - var1 = tf.Variable([3.0], dtype=dtype) - x = tf.constant([[4.0], [5.0]], dtype=dtype) - - def loss(): - pred = tf.matmul( - tf.compat.v1.nn.embedding_lookup([var0], [0]), x - ) - pred += var1 - return pred * pred - - sgd_op = gradient_descent.SGD(1.0).minimize(loss, [var0, var1]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 1 step of sgd - self.evaluate(sgd_op) - # Validate updated params - np_pred = 1.0 * 4.0 + 2.0 * 5.0 + 3.0 - np_grad = 2 * np_pred - self.assertAllCloseAccordingToType( - [[1.0 - np_grad * 4.0, 2.0 - np_grad * 5.0]], - self.evaluate(var0), - ) - self.assertAllCloseAccordingToType( - [3.0 - np_grad], self.evaluate(var1) - ) - - def testTensorLearningRate(self): - for dtype in [tf.half, tf.float32, tf.float64]: - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.1], dtype=dtype) - grads1 = tf.constant([0.01, 0.01], dtype=dtype) - lrate = tf.constant(3.0) - sgd_op = gradient_descent.SGD(lrate).apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 1 step of sgd - self.evaluate(sgd_op) - # Validate updated params - self.assertAllCloseAccordingToType( - [1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - [3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], self.evaluate(var1) - ) - - def testGradWrtRef(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in [tf.half, tf.float32, tf.float64]: - opt = gradient_descent.SGD(3.0) - values = [1.0, 3.0] - vars_ = [tf.Variable([v], dtype=dtype) for v in values] - loss = lambda: vars_[0] + vars_[1] - grads_and_vars = opt._compute_gradients(loss, vars_) - self.evaluate(tf.compat.v1.global_variables_initializer()) - for grad, _ in grads_and_vars: - self.assertAllCloseAccordingToType( - [1.0], self.evaluate(grad) - ) - - def testSparseBasic(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in [tf.half, tf.float32, tf.float64]: - var0 = tf.Variable([[1.0], [2.0]], dtype=dtype) - var1 = tf.Variable([[3.0], [4.0]], dtype=dtype) - grads0 = tf.IndexedSlices( - tf.constant([0.1], shape=[1, 1], dtype=dtype), - tf.constant([0]), - tf.constant([2, 1]), - ) - grads1 = tf.IndexedSlices( - tf.constant([0.01], shape=[1, 1], dtype=dtype), - tf.constant([1]), - tf.constant([2, 1]), - ) - sgd_op = gradient_descent.SGD(3.0).apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 1 step of sgd - self.evaluate(sgd_op) - # Validate updated params - self.assertAllCloseAccordingToType( - [[1.0 - 3.0 * 0.1], [2.0]], self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - [[3.0], [4.0 - 3.0 * 0.01]], self.evaluate(var1) - ) - - def testSparseBasicWithLearningRateDecay(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in [tf.half, tf.float32, tf.float64]: - var0 = tf.Variable([[1.0], [2.0]], dtype=dtype) - var1 = tf.Variable([[3.0], [4.0]], dtype=dtype) - grads0 = tf.IndexedSlices( - tf.constant([0.1], shape=[1, 1], dtype=dtype), - tf.constant([0]), - tf.constant([2, 1]), - ) - grads1 = tf.IndexedSlices( - tf.constant([0.01], shape=[1, 1], dtype=dtype), - tf.constant([1]), - tf.constant([2, 1]), - ) - sgd_op = gradient_descent.SGD(3.0, decay=0.5).apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 2 steps of sgd - self.evaluate(sgd_op) - # Validate updated params - self.assertAllCloseAccordingToType( - [[1.0 - 3.0 * 0.1], [2.0]], self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - [[3.0], [4.0 - 3.0 * 0.01]], self.evaluate(var1) - ) - - self.evaluate(sgd_op) - # Validate updated params - self.assertAllCloseAccordingToType( - [[1.0 - 3.0 * 0.1 - 2.0 * 0.1], [2.0]], self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - [[3.0], [4.0 - 3.0 * 0.01 - 2.0 * 0.01]], - self.evaluate(var1), - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testCapturingInFunctionWhileExecutingEagerly(self): - optimizer = gradient_descent.SGD(1.0) - - var_holder = {} - - def step(): - if not var_holder: - var_holder["var"] = tf.Variable(1.0) - else: - var_holder["var"].assign(1.0) - - with tf.GradientTape() as tape: - loss = var_holder["var"] ** 2 - grad = tape.gradient(loss, var_holder["var"]) - optimizer.apply_gradients([(grad, var_holder["var"])]) - return var_holder["var"].read_value() - - compiled_step = tf.function(step) - - self.assertEqual(float(step()), -1.0) - self.assertEqual(float(compiled_step()), -1.0) - # This shouldn't fail; in particular, the learning rate tensor should - # be an EagerTensor once again, not a graph Tensor. - self.assertEqual(float(step()), -1.0) - - def testConstructSGDWithLR(self): - opt = gradient_descent.SGD(lr=1.0) - opt_2 = gradient_descent.SGD(learning_rate=0.1, lr=1.0) - opt_3 = gradient_descent.SGD(learning_rate=0.1) - self.assertIsInstance(opt.lr, tf.Variable) - self.assertIsInstance(opt_2.lr, tf.Variable) - self.assertIsInstance(opt_3.lr, tf.Variable) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose(self.evaluate(opt.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_2.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_3.lr), (0.1)) - - -class MomentumOptimizerTest(tf.test.TestCase, parameterized.TestCase): - def _update_nesterov_momentum_numpy(self, var, accum, g, lr, momentum): - accum = accum * momentum - g * lr - var += accum * momentum - g * lr - return var, accum - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasic(self): - for _, dtype in enumerate([tf.half, tf.float32, tf.float64]): - var0 = tf.Variable([1.0, 2.0], dtype=dtype, name="var0") - var1 = tf.Variable([3.0, 4.0], dtype=dtype, name="var1") - grads0 = tf.constant([0.1, 0.1], dtype=dtype) - grads1 = tf.constant([0.01, 0.01], dtype=dtype) - learning_rate = 2.0 - momentum = 0.9 - mom_opt = gradient_descent.SGD( - learning_rate=learning_rate, momentum=momentum - ) - # self.assertFalse(mom_opt._initial_decay) - mom_update = mom_opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - - # Check we have slots - slot0 = mom_opt.get_slot(var0, "momentum") - self.assertEqual(slot0.shape, var0.shape) - slot1 = mom_opt.get_slot(var1, "momentum") - self.assertEqual(slot1.shape, var1.shape) - - # Step 1: the momentum accumulators where 0. So we should see a - # normal update: v -= grad * learning_rate - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(mom_update) - # Check that the momentum accumulators have been updated. - self.assertAllCloseAccordingToType( - np.array([-0.2, -0.2]), self.evaluate(slot0) - ) - self.assertAllCloseAccordingToType( - np.array([-0.02, -0.02]), self.evaluate(slot1) - ) - # Check that the parameters have been updated. - self.assertAllCloseAccordingToType( - np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]), - self.evaluate(var0), - ) - self.assertAllCloseAccordingToType( - np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]), - self.evaluate(var1), - ) - # Step 2: the momentum accumulators contain the previous update. - self.evaluate(mom_update) - if tf.executing_eagerly(): - mom_opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - # Check that the momentum accumulators have been updated. - self.assertAllCloseAccordingToType( - np.array( - [(0.9 * (-0.2) - 2.0 * 0.1), (0.9 * (-0.2) - 2.0 * 0.1)] - ), - self.evaluate(slot0), - ) - self.assertAllCloseAccordingToType( - np.array( - [(0.9 * (-0.02) - 2.0 * 0.01), (0.9 * (-0.02) - 2.0 * 0.01)] - ), - self.evaluate(slot1), - ) - # Check that the parameters have been updated. - self.assertAllCloseAccordingToType( - np.array( - [ - 1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0), - 2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0), - ] - ), - self.evaluate(var0), - ) - self.assertAllCloseAccordingToType( - np.array( - [ - 2.98 - ((0.9 * 0.01 + 0.01) * 2.0), - 3.98 - ((0.9 * 0.01 + 0.01) * 2.0), - ] - ), - self.evaluate(var1), - ) - - def testNesterovMomentum(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in [tf.float32, tf.float64]: - var0 = tf.Variable([1.0, 2.0], dtype=dtype, name="var0") - var1 = tf.Variable([3.0, 4.0], dtype=dtype, name="var1") - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - accum0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - accum1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - loss = lambda: 5 * var0 * var0 + 3 * var1 - mom_op = gradient_descent.SGD( - learning_rate=2.0, momentum=0.9, nesterov=True - ) - opt_op = mom_op.minimize(loss, [var0, var1]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - for _ in range(1, 5): - self.evaluate(opt_op) - var0_np, accum0_np = self._update_nesterov_momentum_numpy( - var0_np, accum0_np, var0_np * 10, 2.0, 0.9 - ) - var1_np, accum1_np = self._update_nesterov_momentum_numpy( - var1_np, accum1_np, 3, 2.0, 0.9 - ) - self.assertAllClose(var0_np, self.evaluate(var0)) - self.assertAllClose(var1_np, self.evaluate(var1)) - - def testSparseNesterovMomentum(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session() as sess: - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - accum0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - accum1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - grads = [] - for t in range(1, 5): - grads.append(var0_np * 10) - var0_np, accum0_np = self._update_nesterov_momentum_numpy( - var0_np, accum0_np, var0_np * 10, 2.0, 0.9 - ) - var1_np, accum1_np = self._update_nesterov_momentum_numpy( - var1_np, accum1_np, 3, 2.0, 0.9 - ) - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - accum0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - accum1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - var0 = tf.Variable(var0_np, dtype=dtype, name="var0") - var1 = tf.Variable(var1_np, dtype=dtype, name="var1") - mom_op = gradient_descent.SGD( - learning_rate=2.0, momentum=0.9, nesterov=True - ) - x_feed = tf.compat.v1.placeholder(dtype) - y_feed = tf.IndexedSlices( - x_feed, tf.constant([0, 1]), tf.constant([2]) - ) - grads_and_vars = [ - (y_feed, var0), - (tf.constant([3.0, 3.0], dtype=dtype), var1), - ] - opt_update = mom_op.apply_gradients(grads_and_vars) - self.evaluate(tf.compat.v1.global_variables_initializer()) - for t in range(1, 5): - sess.run(opt_update, feed_dict={x_feed: grads[t - 1]}) - var0_np, accum0_np = self._update_nesterov_momentum_numpy( - var0_np, accum0_np, var0_np * 10, 2.0, 0.9 - ) - var1_np, accum1_np = self._update_nesterov_momentum_numpy( - var1_np, accum1_np, 3, 2.0, 0.9 - ) - self.assertAllClose(var0_np, self.evaluate(var0)) - self.assertAllClose(var1_np, self.evaluate(var1)) - - def testMinimizeSparseResourceVariable(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in [tf.half, tf.float32, tf.float64]: - var0 = tf.Variable([[1.0, 2.0]], dtype=dtype) - - def loss(): - x = tf.constant([[4.0], [5.0]], dtype=dtype) - pred = tf.matmul( - tf.compat.v1.nn.embedding_lookup([var0], [0]), x - ) - return pred * pred - - opt = gradient_descent.SGD(learning_rate=1.0, momentum=0.9) - sgd_op = opt.minimize(loss, [var0]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Run 1 step of sgd - self.evaluate(sgd_op) - # Validate updated params - self.assertAllCloseAccordingToType( - [[-111, -138]], self.evaluate(var0) - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testMinimizeWith2DIndicesForEmbeddingLookup(self): - var0 = tf.Variable(tf.ones([2, 2])) - - def loss(): - return tf.reduce_sum(tf.compat.v1.nn.embedding_lookup(var0, [[1]])) - - opt = gradient_descent.SGD(learning_rate=1.0, momentum=0.9) - sgd_op = opt.minimize(loss, [var0]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(sgd_op) - self.assertAllCloseAccordingToType( - [[1, 1], [0, 0]], self.evaluate(var0) - ) - - def testTensorLearningRateAndMomentum(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in [tf.half, tf.float32, tf.float64]: - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.1], dtype=dtype) - grads1 = tf.constant([0.01, 0.01], dtype=dtype) - mom_opt = gradient_descent.SGD( - learning_rate=tf.constant(2.0), momentum=tf.constant(0.9) - ) - mom_update = mom_opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Check we have slots - slot0 = mom_opt.get_slot(var0, "momentum") - self.assertEqual(slot0.shape, var0.shape) - slot1 = mom_opt.get_slot(var1, "momentum") - self.assertEqual(slot1.shape, var1.shape) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - # Step 1: the momentum accumulators where 0. So we should see a - # normal update: v -= grad * learning_rate - self.evaluate(mom_update) - # Check that the momentum accumulators have been updated. - self.assertAllCloseAccordingToType( - np.array([-0.2, -0.2]), self.evaluate(slot0) - ) - self.assertAllCloseAccordingToType( - np.array([-0.02, -0.02]), self.evaluate(slot1) - ) - # Check that the parameters have been updated. - self.assertAllCloseAccordingToType( - np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]), - self.evaluate(var0), - ) - self.assertAllCloseAccordingToType( - np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]), - self.evaluate(var1), - ) - # Step 2: the momentum accumulators contain the previous update. - self.evaluate(mom_update) - # Check that the momentum accumulators have been updated. - self.assertAllCloseAccordingToType( - np.array( - [(0.9 * (-0.2) - 2.0 * 0.1), (0.9 * (-0.2) - 2.0 * 0.1)] - ), - self.evaluate(slot0), - ) - self.assertAllCloseAccordingToType( - np.array( - [ - (0.9 * (-0.02) - 2.0 * 0.01), - (0.9 * (-0.02) - 2.0 * 0.01), - ] - ), - self.evaluate(slot1), - ) - # Check that the parameters have been updated. - self.assertAllCloseAccordingToType( - np.array( - [ - 1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0), - 2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0), - ] - ), - self.evaluate(var0), - ) - self.assertAllCloseAccordingToType( - np.array( - [ - 2.98 - ((0.9 * 0.01 + 0.01) * 2.0), - 3.98 - ((0.9 * 0.01 + 0.01) * 2.0), - ] - ), - self.evaluate(var1), - ) - - def testSparse(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in [tf.half, tf.float32, tf.float64]: - var0 = tf.Variable(tf.zeros([4, 2], dtype=dtype)) - var1 = tf.Variable(tf.constant(1.0, dtype, [4, 2])) - grads0 = tf.IndexedSlices( - tf.constant([[0.1, 0.1]], dtype=dtype), - tf.constant([1]), - tf.constant([4, 2]), - ) - grads1 = tf.IndexedSlices( - tf.constant([[0.01, 0.01], [0.01, 0.01]], dtype=dtype), - tf.constant([2, 3]), - tf.constant([4, 2]), - ) - mom_opt = gradient_descent.SGD(learning_rate=2.0, momentum=0.9) - mom_update = mom_opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Check we have slots - slot0 = mom_opt.get_slot(var0, "momentum") - self.assertEqual(slot0.shape, var0.shape) - slot1 = mom_opt.get_slot(var1, "momentum") - self.assertEqual(slot1.shape, var1.shape) - - # Fetch params to validate initial values - self.assertAllClose([0, 0], self.evaluate(var0)[0]) - self.assertAllClose([0, 0], self.evaluate(var0)[1]) - self.assertAllClose([1, 1], self.evaluate(var1)[2]) - - # Step 1: the momentum accumulators are 0. So we should see a - # normal update: v -= grad * learning_rate - self.evaluate(mom_update) - # Check that the momentum accumulators have been updated. - self.assertAllCloseAccordingToType( - np.array([0, 0]), self.evaluate(slot0)[0] - ) - self.assertAllCloseAccordingToType( - np.array([-2.0 * 0.1, -2.0 * 0.1]), self.evaluate(slot0)[1] - ) - self.assertAllCloseAccordingToType( - np.array([-2.0 * 0.01, -2.0 * 0.01]), - self.evaluate(slot1)[2], - ) - # Check that the parameters have been updated. - self.assertAllCloseAccordingToType( - np.array([0, 0]), self.evaluate(var0)[0] - ) - self.assertAllCloseAccordingToType( - np.array([-(0.1 * 2.0), -(0.1 * 2.0)]), - self.evaluate(var0)[1], - ) - self.assertAllCloseAccordingToType( - np.array([1.0 - (0.01 * 2.0), 1.0 - (0.01 * 2.0)]), - self.evaluate(var1)[2], - ) - # Step 2: the momentum accumulators contain the previous update. - self.evaluate(mom_update) - # Check that the momentum accumulators have been updated. - self.assertAllClose(np.array([0, 0]), self.evaluate(slot0)[0]) - self.assertAllCloseAccordingToType( - np.array( - [(0.9 * (-0.2) - 2.0 * 0.1), (0.9 * (-0.2) - 2.0 * 0.1)] - ), - self.evaluate(slot0)[1], - ) - self.assertAllCloseAccordingToType( - np.array( - [ - (0.9 * (-0.02) - 2.0 * 0.01), - (0.9 * (-0.02) - 2.0 * 0.01), - ] - ), - self.evaluate(slot1)[2], - ) - # Check that the parameters have been updated. - self.assertAllClose(np.array([0, 0]), self.evaluate(var0)[0]) - self.assertAllCloseAccordingToType( - np.array( - [ - -(0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0), - -(0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0), - ] - ), - self.evaluate(var0)[1], - ) - self.assertAllCloseAccordingToType( - np.array( - [ - 0.98 - ((0.9 * 0.01 + 0.01) * 2.0), - 0.98 - ((0.9 * 0.01 + 0.01) * 2.0), - ] - ), - self.evaluate(var1)[2], - ) - - def testSharing(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in [tf.half, tf.float32, tf.float64]: - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.1], dtype=dtype) - grads1 = tf.constant([0.01, 0.01], dtype=dtype) - mom_opt = gradient_descent.SGD(learning_rate=2.0, momentum=0.9) - mom_update1 = mom_opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - mom_update2 = mom_opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - slot0 = mom_opt.get_slot(var0, "momentum") - self.assertEqual(slot0.shape, var0.shape) - slot1 = mom_opt.get_slot(var1, "momentum") - self.assertEqual(slot1.shape, var1.shape) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - # Step 1: the momentum accumulators where 0. So we should see a - # normal update: v -= grad * learning_rate - self.evaluate(mom_update1) - # Check that the momentum accumulators have been updated. - self.assertAllCloseAccordingToType( - np.array([-0.2, -0.2]), self.evaluate(slot0) - ) - self.assertAllCloseAccordingToType( - np.array([-0.02, -0.02]), self.evaluate(slot1) - ) - # Check that the parameters have been updated. - self.assertAllCloseAccordingToType( - np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]), - self.evaluate(var0), - ) - self.assertAllCloseAccordingToType( - np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]), - self.evaluate(var1), - ) - # Step 2: the second momentum accumulators contain the previous - # update. - self.evaluate(mom_update2) - # Check that the momentum accumulators have been updated. - self.assertAllCloseAccordingToType( - np.array( - [(0.9 * (-0.2) - 2.0 * 0.1), (0.9 * (-0.2) - 2.0 * 0.1)] - ), - self.evaluate(slot0), - ) - self.assertAllCloseAccordingToType( - np.array( - [ - (0.9 * (-0.02) - 2.0 * 0.01), - (0.9 * (-0.02) - 2.0 * 0.01), - ] - ), - self.evaluate(slot1), - ) - # Check that the parameters have been updated. - self.assertAllCloseAccordingToType( - np.array( - [ - 1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0), - 2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0), - ] - ), - self.evaluate(var0), - ) - self.assertAllCloseAccordingToType( - np.array( - [ - 2.98 - ((0.9 * 0.01 + 0.01) * 2.0), - 3.98 - ((0.9 * 0.01 + 0.01) * 2.0), - ] - ), - self.evaluate(var1), - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testConfig(self): - opt = gradient_descent.SGD( - learning_rate=1.0, momentum=0.9, nesterov=True - ) - config = opt.get_config() - opt2 = gradient_descent.SGD.from_config(config) - lr = opt.lr - lr2 = opt2.lr - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose(self.evaluate(lr), self.evaluate(lr2)) - self.assertAllClose( - self.evaluate(opt._get_hyper("momentum")), - self.evaluate(opt2._get_hyper("momentum")), - ) - self.assertAllClose( - self.evaluate(opt._get_hyper("decay")), - self.evaluate(opt2._get_hyper("decay")), - ) - var0 = tf.Variable([[1.0], [2.0]], dtype=tf.float32) - loss = lambda: 3 * var0 - # learning rate variable created when calling minimize. - opt.minimize(loss, [var0]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - config = opt.get_config() - opt3 = gradient_descent.SGD.from_config(config) - lr3 = opt3.lr - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose(self.evaluate(lr), self.evaluate(lr3)) - self.assertAllClose( - self.evaluate(opt._get_hyper("momentum")), - self.evaluate(opt3._get_hyper("momentum")), - ) - self.assertAllClose( - self.evaluate(opt._get_hyper("decay")), - self.evaluate(opt3._get_hyper("decay")), - ) - self.assertTrue(opt3.nesterov) - - def testNesterovWithoutMomentum(self): - with self.assertRaisesRegex(ValueError, "must be between"): - gradient_descent.SGD(learning_rate=1.0, momentum=2.0) - - def testConstructMomentumWithLR(self): - opt = gradient_descent.SGD(lr=1.0, momentum=0.9) - opt_2 = gradient_descent.SGD(learning_rate=0.1, momentum=0.9, lr=1.0) - opt_3 = gradient_descent.SGD(learning_rate=0.1, momentum=0.9) - self.assertIsInstance(opt.lr, tf.Variable) - self.assertIsInstance(opt_2.lr, tf.Variable) - self.assertIsInstance(opt_3.lr, tf.Variable) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose(self.evaluate(opt.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_2.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_3.lr), (0.1)) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testMinimizeLossTensor(self): - for dtype in [tf.half, tf.float32, tf.float64]: - var0 = tf.Variable([[1.0, 2.0]], dtype=dtype) - var1 = tf.Variable([3.0], dtype=dtype) - x = tf.constant([[4.0], [5.0]], dtype=dtype) - - tape = tf.GradientTape() - with tape: - loss = tf.matmul(var0, x) + var1 - sgd = gradient_descent.SGD(1.0) - with self.assertRaisesRegex(ValueError, "`tape` is required"): - sgd.minimize(loss, [var0, var1]) - sgd.minimize(loss, [var0, var1], tape=tape) - - self.assertAllCloseAccordingToType( - [[1.0 - 4.0, 2.0 - 5.0]], self.evaluate(var0) - ) - self.assertAllCloseAccordingToType([3.0 - 1.0], self.evaluate(var1)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/optimizers/legacy/nadam.py b/keras/optimizers/legacy/nadam.py deleted file mode 100644 index 263ccca4a64..00000000000 --- a/keras/optimizers/legacy/nadam.py +++ /dev/null @@ -1,254 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Nadam optimizer implementation.""" - -import tensorflow.compat.v2 as tf - -from keras import backend_config -from keras.optimizers.legacy import optimizer_v2 -from keras.optimizers.schedules import learning_rate_schedule - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.optimizers.legacy.Nadam", - v1=["keras.optimizers.Nadam", "keras.optimizers.legacy.Nadam"], -) -class Nadam(optimizer_v2.OptimizerV2): - r"""Optimizer that implements the NAdam algorithm. - Much like Adam is essentially RMSprop with momentum, Nadam is Adam with - Nesterov momentum. - - Args: - learning_rate: A Tensor or a floating point value. The learning rate. - beta_1: A float value or a constant float tensor. The exponential decay - rate for the 1st moment estimates. - beta_2: A float value or a constant float tensor. The exponential decay - rate for the exponentially weighted infinity norm. - epsilon: A small constant for numerical stability. - name: Optional name for the operations created when applying gradients. - Defaults to `"Nadam"`. - **kwargs: keyword arguments. Allowed arguments are `clipvalue`, - `clipnorm`, `global_clipnorm`. - If `clipvalue` (float) is set, the gradient of each weight - is clipped to be no higher than this value. - If `clipnorm` (float) is set, the gradient of each weight - is individually clipped so that its norm is no higher than this value. - If `global_clipnorm` (float) is set the gradient of all weights is - clipped so that their global norm is no higher than this value. - - Usage Example: - >>> opt = tf.keras.optimizers.legacy.Nadam(learning_rate=0.2) - >>> var1 = tf.Variable(10.0) - >>> loss = lambda: (var1 ** 2) / 2.0 - >>> step_count = opt.minimize(loss, [var1]).numpy() - >>> "{:.1f}".format(var1.numpy()) - 9.8 - - Reference: - - [Dozat, 2015](http://cs229.stanford.edu/proj2015/054_report.pdf). - """ - - _HAS_AGGREGATE_GRAD = True - - def __init__( - self, - learning_rate=0.001, - beta_1=0.9, - beta_2=0.999, - epsilon=1e-7, - name="Nadam", - **kwargs - ): - # Backwards compatibility with keras NAdam optimizer. - kwargs["decay"] = kwargs.pop("schedule_decay", 0.004) - learning_rate = kwargs.get("lr", learning_rate) - if isinstance( - learning_rate, learning_rate_schedule.LearningRateSchedule - ): - raise ValueError( - "The Nadam optimizer does not support " - "tf.keras.optimizers.LearningRateSchedules as the " - "learning rate." - ) - - super().__init__(name, **kwargs) - self._set_hyper("learning_rate", kwargs.get("lr", learning_rate)) - self._set_hyper("decay", self._initial_decay) - self._set_hyper("beta_1", beta_1) - self._set_hyper("beta_2", beta_2) - self.epsilon = epsilon or backend_config.epsilon() - self._m_cache = None - - def _create_slots(self, var_list): - var_dtype = var_list[0].dtype.base_dtype - if self._m_cache is None: - self._m_cache = self.add_weight( - "momentum_cache", - shape=[], - dtype=var_dtype, - initializer="ones", - trainable=False, - aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, - ) - self._weights.append(self._m_cache) - # Separate for-loops to respect the ordering of slot variables from v1. - for var in var_list: - # Create slots for the first moments. - self.add_slot(var, "m") - for var in var_list: - # Create slots for the second moments. - self.add_slot(var, "v") - - def _prepare_local(self, var_device, var_dtype, apply_state): - lr_t = tf.identity(self._get_hyper("learning_rate", var_dtype)) - beta_1_t = tf.identity(self._get_hyper("beta_1", var_dtype)) - beta_2_t = tf.identity(self._get_hyper("beta_2", var_dtype)) - local_step = tf.cast(self.iterations + 1, var_dtype) - next_step = tf.cast(self.iterations + 2, var_dtype) - - decay_base = tf.cast(0.96, var_dtype) - - m_t = beta_1_t * ( - 1.0 - 0.5 * (tf.pow(decay_base, self._initial_decay * local_step)) - ) - m_t_1 = beta_1_t * ( - 1.0 - 0.5 * (tf.pow(decay_base, self._initial_decay * next_step)) - ) - - m_schedule_new = tf.cast(self._m_cache_read, var_dtype) * m_t - if var_dtype is self._m_cache.dtype: - m_schedule_new = tf.identity( - tf.compat.v1.assign( - self._m_cache, m_schedule_new, use_locking=self._use_locking - ) - ) - m_schedule_next = m_schedule_new * m_t_1 - - apply_state[(var_device, var_dtype)] = dict( - lr_t=lr_t, - neg_lr_t=-lr_t, - epsilon=tf.convert_to_tensor(self.epsilon, var_dtype), - beta_1_t=beta_1_t, - beta_2_t=beta_2_t, - m_t=m_t, - m_t_1=m_t_1, - one_minus_beta_1_t=1 - beta_1_t, - one_minus_beta_2_t=1 - beta_2_t, - one_minus_m_t=1.0 - m_t, - one_minus_m_schedule_new=1.0 - m_schedule_new, - one_minus_m_schedule_next=1.0 - m_schedule_next, - v_t_prime_denominator=1.0 - tf.pow(beta_2_t, local_step), - ) - - def _prepare(self, var_list): - # Get the value of the momentum cache before starting to apply - # gradients. - self._m_cache_read = tf.identity(self._m_cache) - return super()._prepare(var_list) - - def _resource_apply_dense(self, grad, var, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - m = self.get_slot(var, "m") - v = self.get_slot(var, "v") - - g_prime = grad / coefficients["one_minus_m_schedule_new"] - m_t = ( - coefficients["beta_1_t"] * m - + coefficients["one_minus_beta_1_t"] * grad - ) - m_t = tf.compat.v1.assign(m, m_t, use_locking=self._use_locking) - m_t_prime = m_t / coefficients["one_minus_m_schedule_next"] - v_t = coefficients["beta_2_t"] * v + coefficients[ - "one_minus_beta_2_t" - ] * tf.square(grad) - v_t = tf.compat.v1.assign(v, v_t, use_locking=self._use_locking) - v_t_prime = v_t / coefficients["v_t_prime_denominator"] - m_t_bar = ( - coefficients["one_minus_m_t"] * g_prime - + coefficients["m_t_1"] * m_t_prime - ) - var_t = var - coefficients["lr_t"] * m_t_bar / ( - tf.sqrt(v_t_prime) + coefficients["epsilon"] - ) - return tf.compat.v1.assign(var, var_t, use_locking=self._use_locking).op - - def _resource_apply_sparse(self, grad, var, indices, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - m = self.get_slot(var, "m") - v = self.get_slot(var, "v") - - g_prime = grad / coefficients["one_minus_m_schedule_new"] - - # m_t = beta1 * m + (1 - beta1) * g_t - m_scaled_g_values = grad * coefficients["one_minus_beta_1_t"] - m_t = tf.compat.v1.assign( - m, m * coefficients["beta_1_t"], use_locking=self._use_locking - ) - - with tf.control_dependencies([m_t]): - m_t = self._resource_scatter_add(m, indices, m_scaled_g_values) - m_t_slice = tf.gather(m_t, indices) - - m_t_prime = m_t_slice / coefficients["one_minus_m_schedule_next"] - m_t_bar = ( - coefficients["one_minus_m_t"] * g_prime - + coefficients["m_t_1"] * m_t_prime - ) - - # v_t = beta2 * v + (1 - beta2) * (g_t * g_t) - v_scaled_g_values = (grad * grad) * coefficients["one_minus_beta_2_t"] - v_t = tf.compat.v1.assign( - v, v * coefficients["beta_2_t"], use_locking=self._use_locking - ) - - with tf.control_dependencies([v_t]): - v_t = self._resource_scatter_add(v, indices, v_scaled_g_values) - v_t_slice = tf.gather(v_t, indices) - - v_t_prime = v_t_slice / coefficients["v_t_prime_denominator"] - v_prime_sqrt_plus_eps = tf.sqrt(v_t_prime) + coefficients["epsilon"] - - var_update = self._resource_scatter_add( - var, - indices, - coefficients["neg_lr_t"] * m_t_bar / v_prime_sqrt_plus_eps, - ) - return tf.group(*[var_update, m_t_bar, v_t]) - - def get_config(self): - config = super().get_config() - config.update( - { - "learning_rate": self._serialize_hyperparameter( - "learning_rate" - ), - "decay": self._initial_decay, - "beta_1": self._serialize_hyperparameter("beta_1"), - "beta_2": self._serialize_hyperparameter("beta_2"), - "epsilon": self.epsilon, - } - ) - return config diff --git a/keras/optimizers/legacy/nadam_test.py b/keras/optimizers/legacy/nadam_test.py deleted file mode 100644 index aee3453c42f..00000000000 --- a/keras/optimizers/legacy/nadam_test.py +++ /dev/null @@ -1,203 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Nadam.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.optimizers.legacy import nadam - - -def get_beta_accumulators(opt, dtype): - local_step = tf.cast(opt.iterations + 1, dtype) - beta_1_t = tf.cast(opt._get_hyper("beta_1"), dtype) - beta_1_power = tf.pow(beta_1_t, local_step) - beta_2_t = tf.cast(opt._get_hyper("beta_2"), dtype) - beta_2_power = tf.pow(beta_2_t, local_step) - return (beta_1_power, beta_2_power) - - -def update_m_cache(m_cache, t, beta1=0.9): - mu_t = beta1 * (1 - 0.5 * 0.96 ** (0.004 * (t + 1))) - m_cache_t = m_cache * mu_t - return m_cache_t - - -def nadam_update_numpy( - param, - g_t, - t, - m, - v, - m_cache, - alpha=0.001, - beta1=0.9, - beta2=0.999, - epsilon=1e-8, -): - - mu_t = beta1 * (1 - 0.5 * 0.96 ** (0.004 * (t + 1))) - mu_t_1 = beta1 * (1 - 0.5 * 0.96 ** (0.004 * (t + 2))) - m_cache_t_1 = m_cache * mu_t_1 - g_prime_t = g_t / (1 - m_cache) - m_t = beta1 * m + (1 - beta1) * g_t - v_t = beta2 * v + (1 - beta2) * g_t * g_t - - m_prime_t = m_t / (1 - m_cache_t_1) - v_prime_t = v_t / (1 - beta2 ** (t + 1)) - m_bar_t = (1 - mu_t) * g_prime_t + mu_t_1 * m_prime_t - - param_t = param - alpha * m_bar_t / (np.sqrt(v_prime_t) + epsilon) - return param_t, m_t, v_t - - -class NadamOptimizerTest(tf.test.TestCase): - def testSparse(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - sparse_epsilon = 1e-7 - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1, mcache = 0.0, 0.0, 0.0, 0.0, 1.0 - var0_np = np.array([1.0, 1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array( - [0.01, 0, 0.01], dtype=dtype.as_numpy_dtype - ) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0_np_indices = np.array([0, 2], dtype=np.int32) - grads0 = tf.IndexedSlices( - tf.constant(grads0_np[grads0_np_indices]), - tf.constant(grads0_np_indices), - tf.constant([3]), - ) - grads1_np_indices = np.array([0, 2], dtype=np.int32) - grads1 = tf.IndexedSlices( - tf.constant(grads1_np[grads1_np_indices]), - tf.constant(grads1_np_indices), - tf.constant([3]), - ) - opt = nadam.Nadam(epsilon=sparse_epsilon) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 1.0, 2.0], var0) - self.assertAllClose([3.0, 3.0, 4.0], var1) - - beta1_power, beta2_power = get_beta_accumulators(opt, dtype) - - # Run 3 steps of Nadam - for t in range(3): - self.assertAllCloseAccordingToType( - 0.9 ** (t + 1), beta1_power - ) - self.assertAllCloseAccordingToType( - 0.999 ** (t + 1), beta2_power - ) - update.run() - - mcache = update_m_cache(mcache, t) - var0_np, m0, v0 = nadam_update_numpy( - var0_np, - grads0_np, - t, - m0, - v0, - mcache, - epsilon=sparse_epsilon, - ) - var1_np, m1, v1 = nadam_update_numpy( - var1_np, - grads1_np, - t, - m1, - v1, - mcache, - epsilon=sparse_epsilon, - ) - - # Validate updated params - self.assertAllCloseAccordingToType(var0_np, var0) - self.assertAllCloseAccordingToType(var1_np, var1) - - def testBasic(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for dtype in [tf.half, tf.float32, tf.float64]: - with tf.Graph().as_default(), self.cached_session(): - # Initialize variables for numpy implementation. - m0, v0, m1, v1, mcache = 0.0, 0.0, 0.0, 0.0, 1.0 - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - opt = nadam.Nadam() - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], var0) - self.assertAllClose([3.0, 4.0], var1) - - # Run 3 steps of Nadam - for t in range(3): - update.run() - - mcache = update_m_cache(mcache, t) - var0_np, m0, v0 = nadam_update_numpy( - var0_np, grads0_np, t, m0, v0, mcache - ) - var1_np, m1, v1 = nadam_update_numpy( - var1_np, grads1_np, t, m1, v1, mcache - ) - - # Validate updated params - self.assertAllCloseAccordingToType(var0_np, var0) - self.assertAllCloseAccordingToType(var1_np, var1) - - def testConstructNAdamWithLR(self): - opt = nadam.Nadam(lr=1.0) - opt_2 = nadam.Nadam(learning_rate=0.1, lr=1.0) - opt_3 = nadam.Nadam(learning_rate=0.1) - self.assertIsInstance(opt.lr, tf.Variable) - self.assertIsInstance(opt_2.lr, tf.Variable) - self.assertIsInstance(opt_3.lr, tf.Variable) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose(self.evaluate(opt.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_2.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_3.lr), (0.1)) - - def testConstructNAdamWithScheduleDecay(self): - opt = nadam.Nadam(schedule_decay=0.2) - self.assertIsInstance(opt.decay, tf.Variable) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose(self.evaluate(opt.decay), (0.2)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/optimizers/legacy/optimizer_v2.py b/keras/optimizers/legacy/optimizer_v2.py deleted file mode 100644 index 7deacfad20e..00000000000 --- a/keras/optimizers/legacy/optimizer_v2.py +++ /dev/null @@ -1,1727 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Version 2 of class Optimizer.""" - - -import abc -import contextlib -import functools -import warnings -from copy import deepcopy - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import initializers -from keras.engine import base_layer_utils -from keras.optimizers import utils as optimizer_utils -from keras.optimizers.schedules import learning_rate_schedule -from keras.utils import generic_utils -from keras.utils import layer_utils -from keras.utils import tf_inspect -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -keras_optimizers_gauge = tf.__internal__.monitoring.BoolGauge( - "/tensorflow/api/keras/optimizers", "keras optimizer usage", "method" -) - -_DEFAULT_VALID_DTYPES = frozenset( - [ - tf.float16, - tf.bfloat16, - tf.float32, - tf.float64, - tf.complex64, - tf.complex128, - ] -) - - -def _deduplicate_indexed_slices(values, indices): - """Sums `values` associated with any non-unique `indices`. - - Args: - values: A `Tensor` with rank >= 1. - indices: A one-dimensional integer `Tensor`, indexing into the first - dimension of `values` (as in an IndexedSlices object). - - Returns: - A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a - de-duplicated version of `indices` and `summed_values` contains the sum of - `values` slices associated with each unique index. - """ - unique_indices, new_index_positions = tf.unique(indices) - summed_values = tf.math.unsorted_segment_sum( - values, new_index_positions, tf.shape(unique_indices)[0] - ) - return (summed_values, unique_indices) - - -class NullContextmanager: - def __init__(self, *args, **kwargs): - pass - - def __enter__(self): - pass - - def __exit__(self, type_arg, value_arg, traceback_arg): - return False # False values do not suppress exceptions - - -def name_scope_only_in_function_or_graph(name): - """Internal-only entry point for `name_scope*`. - - Enters a compat.v1.name_scope only when in a function or graph, - not when running fully eagerly. - - Args: - name: The name argument that is passed to the op function. - - Returns: - `name_scope*` context manager. - """ - if not tf.executing_eagerly(): - return tf.name_scope(name) - else: - return NullContextmanager() - - -@keras_export( - "keras.optimizers.legacy.Optimizer", - v1=["keras.optimizers.Optimizer", "keras.optimizers.legacy.Optimizer"], -) -class OptimizerV2(tf.__internal__.tracking.Trackable): - """Base class for legacy Keras optimizers. - - You should not use this class directly, but instead instantiate one of its - subclasses such as `tf.keras.optimizers.legacy.SGD`, - `tf.keras.optimizers.legacy.Adam`, etc. - - This is the default Keras optimizer base class until v2.10 (included). - In v2.11 and later, `tf.keras.optimizers.Optimizer` - points to a new base class implementation. The legacy class won't be - deleted in the future and will continue to be available at - `tf.keras.optimizers.legacy.Optimizer`. - - ### Usage - - ```python - # Create an optimizer with the desired parameters. - opt = tf.keras.optimizers.legacy.SGD(learning_rate=0.1) - # `loss` is a callable that takes no argument and returns the value - # to minimize. - var1 = tf.Variable(2.0) - var2 = tf.Variable(5.0) - loss = lambda: 3 * var1 * var1 + 2 * var2 * var2 - # In graph mode, returns op that minimizes the loss by updating the listed - # variables. - opt_op = opt.minimize(loss, var_list=[var1, var2]) - opt_op.run() - # In eager mode, simply call minimize to update the list of variables. - opt.minimize(loss, var_list=[var1, var2]) - ``` - - ### Usage in custom training loops - - In Keras models, sometimes variables are created when the model is first - called, instead of construction time. Examples include 1) sequential models - without input shape pre-defined, or 2) subclassed models. Pass var_list as - callable in these cases. - - Example: - - ```python - opt = tf.keras.optimizers.legacy.SGD(learning_rate=0.1) - model = tf.keras.Sequential() - model.add(tf.keras.layers.Dense(num_hidden, activation='relu')) - model.add(tf.keras.layers.Dense(num_classes, activation='sigmoid')) - loss_fn = lambda: tf.keras.losses.mse(model(input), output) - var_list_fn = lambda: model.trainable_weights - for input, output in data: - opt.minimize(loss_fn, var_list_fn) - ``` - - ### Processing gradients before applying them - - Calling `minimize()` takes care of both computing the gradients and - applying them to the variables. If you want to process the gradients - before applying them you can instead use the optimizer in three steps: - - 1. Compute the gradients with `tf.GradientTape`. - 2. Process the gradients as you wish. - 3. Apply the processed gradients with `apply_gradients()`. - - Example: - - ```python - # Create an optimizer. - opt = tf.keras.optimizers.legacy.SGD(learning_rate=0.1) - - # Compute the gradients for a list of variables. - with tf.GradientTape() as tape: - loss = - vars = - grads = tape.gradient(loss, vars) - - # Process the gradients, for example cap them, etc. - # capped_grads = [MyCapper(g) for g in grads] - processed_grads = [process_gradient(g) for g in grads] - - # Ask the optimizer to apply the processed gradients. - opt.apply_gradients(zip(processed_grads, var_list)) - ``` - - ### Use with `tf.distribute.Strategy` - - This optimizer class is `tf.distribute.Strategy` aware, which means it - automatically sums gradients across all replicas. To average gradients, - you divide your loss by the global batch size, which is done - automatically if you use `tf.keras` built-in training or evaluation loops. - See the `reduction` argument of your loss which should be set to - `tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE` for averaging or - `tf.keras.losses.Reduction.SUM` for not. - - To aggregate gradients yourself, call `apply_gradients` with - `experimental_aggregate_gradients` set to False. This is useful if you need - to process aggregated gradients. - - If you are not using these and you want to average gradients, you should use - `tf.math.reduce_sum` to add up your per-example losses and then divide by - the global batch size. Note that when using `tf.distribute.Strategy`, the - first component of a tensor's shape is the *replica-local* batch size, which - is off by a factor equal to the number of replicas being used to compute a - single step. As a result, using `tf.math.reduce_mean` will give the wrong - answer, resulting in gradients that can be many times too big. - - ### Variable Constraints - - All Keras optimizers respect variable constraints. If constraint function is - passed to any variable, the constraint will be applied to the variable after - the gradient has been applied to the variable. - Important: If gradient is sparse tensor, variable constraint is not - supported. - - ### Thread Compatibility - - The entire optimizer is currently thread compatible, not thread-safe. The - user needs to perform synchronization if necessary. - - ### Slots - - Many optimizer subclasses, such as `Adam` and `Adagrad` allocate and manage - additional variables associated with the variables to train. These are - called Slots. Slots have names and you can ask the optimizer for the - names of the slots that it uses. Once you have a slot name you can ask the - optimizer for the variable it created to hold the slot value. - - This can be useful if you want to log debug a training algorithm, report - stats about the slots, etc. - - ### Hyperparameters - - These are arguments passed to the optimizer subclass constructor - (the `__init__` method), and then passed to `self._set_hyper()`. - They can be either regular Python values (like 1.0), tensors, or - callables. If they are callable, the callable will be called during - `apply_gradients()` to get the value for the hyper parameter. - - Hyperparameters can be overwritten through user code: - - Example: - - ```python - # Create an optimizer with the desired parameters. - opt = tf.keras.optimizers.legacy.SGD(learning_rate=0.1) - # `loss` is a callable that takes no argument and returns the value - # to minimize. - loss = lambda: 3 * var1 + 2 * var2 - # In eager mode, simply call minimize to update the list of variables. - opt.minimize(loss, var_list=[var1, var2]) - # update learning rate - opt.learning_rate = 0.05 - opt.minimize(loss, var_list=[var1, var2]) - ``` - - ### Callable learning rate - - Optimizer accepts a callable learning rate in two ways. The first way is - through built-in or customized - `tf.keras.optimizers.schedules.LearningRateSchedule`. The schedule will be - called on each iteration with `schedule(iteration)`, a `tf.Variable` - owned by the optimizer. - - Example: - - >>> var = tf.Variable(np.random.random(size=(1,))) - >>> learning_rate = tf.keras.optimizers.schedules.ExponentialDecay( - ... initial_learning_rate=.01, decay_steps=20, decay_rate=.1) - >>> opt = tf.keras.optimizers.legacy.SGD(learning_rate=learning_rate) - >>> loss = lambda: 3 * var - >>> opt.minimize(loss, var_list=[var]) - >> var = tf.Variable(np.random.random(size=(1,))) - >>> def lr_callable(): - ... return .1 - >>> opt = tf.keras.optimizers.legacy.SGD(learning_rate=lr_callable) - >>> loss = lambda: 3 * var - >>> opt.minimize(loss, var_list=[var]) - = 0, received: {kwargs[k]}") - if k == "lr": - warnings.warn( - "The `lr` argument is deprecated, " - "use `learning_rate` instead.", - stacklevel=2, - ) - - self._use_locking = True - self._init_set_name(name) - self._hyper = {} - # dict: {variable name : {slot name : variable}} - self._slots = {} - self._slot_names = [] - self._weights = [] - self._iterations = None - - # For implementing Trackable. Stores information about how to restore - # slot variables which have not yet been created - # (trackable._CheckpointPosition objects). - # {slot_name : - # {_var_key(variable_to_train): [checkpoint_position, ... ], ... }, - # ... } - self._deferred_slot_restorations = {} - - decay = kwargs.pop("decay", 0.0) - if decay < 0.0: - raise ValueError( - f"decay cannot be less than 0. Received: decay={decay}." - ) - self._initial_decay = decay - - self._hypers_created = False - # Store the distribution strategy object if the optimizer is created - # inside strategy scope, so it could be used to create variables later. - if tf.distribute.has_strategy(): - self._distribution_strategy = tf.distribute.get_strategy() - else: - self._distribution_strategy = None - - # Configure gradient transformations. - if gradient_aggregator is None: - gradient_aggregator = optimizer_utils.all_reduce_sum_gradients - self.gradient_aggregator = gradient_aggregator - if gradient_transformers is None: - gradient_transformers = [] - self.gradient_transformers = gradient_transformers - self.clipnorm = kwargs.pop("clipnorm", None) - self.global_clipnorm = kwargs.pop("global_clipnorm", None) - if self.clipnorm is not None and self.global_clipnorm is not None: - raise ValueError( - "Cannot accept both `clipnorm` and `global_clipnorm`. " - "Received: `clipnorm`={}, `global_clipnorm`={}.".format( - self.clipnorm, self.global_clipnorm - ) - ) - self.clipvalue = kwargs.pop("clipvalue", None) - - def __deepcopy__(self, memo): - cls = self.__class__ - result = cls.__new__(cls) - memo[id(self)] = result - for k, v in self.__dict__.items(): - # DistributionStrategy singleton cannot be serialized - if k == "_distribution_strategy": - continue - setattr(result, k, deepcopy(v, memo)) - result._distribution_strategy = self._distribution_strategy - return result - - @property - def clipnorm(self): - """`float` or `None`. If set, clips gradients to a maximum norm.""" - return self._clipnorm - - @property - def global_clipnorm(self): - """`float` or `None`. - - If set, clips gradients to a maximum norm. - - Check `tf.clip_by_global_norm` for more details. - """ - return self._global_clipnorm - - @clipnorm.setter - def clipnorm(self, val): - if val is not None and self.gradient_transformers: - raise ValueError( - "`clipnorm` cannot be set when `gradient_transformers` " - "is set. Instead, use the `gradient_transformers` to " - "specify clipping and other transformations. Received: " - f"val={val}, " - f"gradient_transformers={self.gradient_transformers}." - ) - self._clipnorm = val - self._clipnorm_fn = optimizer_utils.make_gradient_clipnorm_fn( - self._clipnorm - ) - - @global_clipnorm.setter - def global_clipnorm(self, val): - if val is not None and self.gradient_transformers: - raise ValueError( - "`global_clipnorm` cannot be set when " - "`gradient_transformers` " - "is set. Instead, use the `gradient_transformers` to " - "specify clipping and other transformations. Received: " - f"val={val}, " - f"gradient_transformers={self.gradient_transformers}." - ) - self._global_clipnorm = val - self._global_clipnorm_fn = ( - optimizer_utils.make_global_gradient_clipnorm_fn( - self._global_clipnorm - ) - ) - - @property - def clipvalue(self): - """`float` or `None`. If set, clips gradients to a maximum value.""" - return self._clipvalue - - @clipvalue.setter - def clipvalue(self, val): - if val is not None and self.gradient_transformers: - raise ValueError( - "`clipvalue` cannot be set when `gradient_transformers` " - "is set. Instead, use the `gradient_transformers` to " - "specify clipping and other transformations. Received: " - f"val={val}, " - f"gradient_transformers={self.gradient_transformers}." - ) - self._clipvalue = val - self._clipvalue_fn = optimizer_utils.make_gradient_clipvalue_fn( - self._clipvalue - ) - - def _transform_loss(self, loss): - """Called in `.minimize` to transform loss before computing - gradients.""" - return loss - - def _get_gradients(self, tape, loss, var_list, grad_loss=None): - """Called in `minimize` to compute gradients from loss.""" - grads = tape.gradient(loss, var_list, grad_loss) - return list(zip(grads, var_list)) - - def _transform_unaggregated_gradients(self, grads_and_vars): - """Called in `apply_gradients` before gradient aggregation.""" - return grads_and_vars - - def _aggregate_gradients(self, grads_and_vars): - """Called in `apply_gradients` to aggregate gradients across devices. - - Note that user subclasses may override this, so the interface should not - be changed. - - Args: - grads_and_vars: List of (gradient, variable) pairs. - - Returns: - A list of (aggregrated_gradient, variable) pairs. By default, this - calls `self.gradient_aggregator`. - """ - return self.gradient_aggregator(grads_and_vars) - - def _transform_gradients(self, grads_and_vars): - """Called in `apply_gradients` after aggregation.""" - if self._clipvalue is not None: - grads_and_vars = self._clipvalue_fn(grads_and_vars) - if self._clipnorm is not None: - grads_and_vars = self._clipnorm_fn(grads_and_vars) - if self._global_clipnorm is not None: - grads_and_vars = self._global_clipnorm_fn(grads_and_vars) - - for fn in self.gradient_transformers: - grads_and_vars = fn(grads_and_vars) - return grads_and_vars - - def minimize(self, loss, var_list, grad_loss=None, name=None, tape=None): - """Minimize `loss` by updating `var_list`. - - This method simply computes gradient using `tf.GradientTape` and calls - `apply_gradients()`. If you want to process the gradient before applying - then call `tf.GradientTape` and `apply_gradients()` explicitly instead - of using this function. - - Args: - loss: `Tensor` or callable. If a callable, `loss` should take no - arguments and return the value to minimize. If a `Tensor`, the - `tape` argument must be passed. - var_list: list or tuple of `Variable` objects to update to minimize - `loss`, or a callable returning the list or tuple of `Variable` - objects. Use callable when the variable list would otherwise be - incomplete before `minimize` since the variables are created at the - first time `loss` is called. - grad_loss: (Optional). A `Tensor` holding the gradient computed for - `loss`. - name: (Optional) str. Name for the returned operation. - tape: (Optional) `tf.GradientTape`. If `loss` is provided as a - `Tensor`, the tape that computed the `loss` must be provided. - - Returns: - An `Operation` that updates the variables in `var_list`. The - `iterations` will be automatically increased by 1. - - Raises: - ValueError: If some of the variables are not `Variable` objects. - - """ - grads_and_vars = self._compute_gradients( - loss, var_list=var_list, grad_loss=grad_loss, tape=tape - ) - return self.apply_gradients(grads_and_vars, name=name) - - def _compute_gradients(self, loss, var_list, grad_loss=None, tape=None): - """Compute gradients of `loss` for the variables in `var_list`. - - This is the first part of `minimize()`. It returns a list - of (gradient, variable) pairs where "gradient" is the gradient - for "variable". Note that "gradient" can be a `Tensor`, an - `IndexedSlices`, or `None` if there is no gradient for the - given variable. - - Args: - loss: `Tensor` or callable. If a callable, `loss` should take no - arguments and return the value to minimize. If a `Tensor`, the - `tape` argument must be passed. - var_list: list or tuple of `Variable` objects to update to minimize - `loss`, or a callable returning the list or tuple of `Variable` - objects. Use callable when the variable list would otherwise be - incomplete before `minimize` and the variables are created at the - first time when `loss` is called. - grad_loss: Optional. A `Tensor` holding the gradient computed for - `loss`. - tape: (Optional) `tf.GradientTape`. If `loss` is provided as a - `Tensor`, the tape that computed the `loss` must be provided. - - Returns: - A list of (gradient, variable) pairs. Variable is always present, but - gradient can be `None`. - - Raises: - TypeError: If `var_list` contains anything else than `Variable` - objects. - ValueError: If some arguments are invalid, or var_list is None. - """ - # TODO(joshl): Test that we handle weight decay in a reasonable way. - if not callable(loss) and tape is None: - raise ValueError( - "`tape` is required when a `Tensor` loss is passed. " - f"Received: loss={loss}, tape={tape}." - ) - tape = tape if tape is not None else tf.GradientTape() - - if callable(loss): - with tape: - if not callable(var_list): - tape.watch(var_list) - loss = loss() - if callable(var_list): - var_list = var_list() - - with tape: - loss = self._transform_loss(loss) - - var_list = tf.nest.flatten(var_list) - with tf.name_scope(self._name + "/gradients"): - grads_and_vars = self._get_gradients( - tape, loss, var_list, grad_loss - ) - - self._assert_valid_dtypes( - [ - v - for g, v in grads_and_vars - if g is not None and v.dtype != tf.resource - ] - ) - - return grads_and_vars - - def apply_gradients( - self, grads_and_vars, name=None, experimental_aggregate_gradients=True - ): - """Apply gradients to variables. - - This is the second part of `minimize()`. It returns an `Operation` that - applies gradients. - - The method sums gradients from all replicas in the presence of - `tf.distribute.Strategy` by default. You can aggregate gradients - yourself by passing `experimental_aggregate_gradients=False`. - - Example: - - ```python - grads = tape.gradient(loss, vars) - grads = tf.distribute.get_replica_context().all_reduce('sum', grads) - # Processing aggregated gradients. - optimizer.apply_gradients(zip(grads, vars), - experimental_aggregate_gradients=False) - - ``` - - Args: - grads_and_vars: List of (gradient, variable) pairs. - name: Optional name for the returned operation. Default to the name - passed to the `Optimizer` constructor. - experimental_aggregate_gradients: Whether to sum gradients from - different replicas in the presence of `tf.distribute.Strategy`. If - False, it's user responsibility to aggregate the gradients. Default - to True. - - Returns: - An `Operation` that applies the specified gradients. The `iterations` - will be automatically increased by 1. - - Raises: - TypeError: If `grads_and_vars` is malformed. - ValueError: If none of the variables have gradients. - RuntimeError: If called in a cross-replica context. - """ - grads_and_vars = optimizer_utils.filter_empty_gradients(grads_and_vars) - var_list = [v for (_, v) in grads_and_vars] - - with tf.name_scope(self._name): - # Create iteration if necessary. - with tf.init_scope(): - self._create_all_weights(var_list) - - if not grads_and_vars: - # Distribution strategy does not support reducing an empty list - # of gradients - return tf.no_op() - - if tf.distribute.in_cross_replica_context(): - raise RuntimeError( - "`apply_gradients() cannot be called in cross-replica " - "context. Use `tf.distribute.Strategy.run` to enter " - "replica context. For more information, please see the " - "docstring of `tf.distribute.get_replica_context`." - ) - - strategy = tf.distribute.get_strategy() - if ( - not experimental_aggregate_gradients - and strategy - and isinstance( - strategy, - ( - tf.compat.v1.distribute.experimental.ParameterServerStrategy, # noqa: E501 - tf.distribute.experimental.ParameterServerStrategy, - tf.distribute.experimental.CentralStorageStrategy, - tf.compat.v1.distribute.experimental.CentralStorageStrategy, # noqa: E501 - ), - ) - ): - raise NotImplementedError( - "`experimental_aggregate_gradients=False is not supported " - "for ParameterServerStrategy and CentralStorageStrategy. " - f"Used: strategy={strategy}." - ) - - apply_state = self._prepare(var_list) - if experimental_aggregate_gradients: - grads_and_vars = self._transform_unaggregated_gradients( - grads_and_vars - ) - grads_and_vars = self._aggregate_gradients(grads_and_vars) - grads_and_vars = self._transform_gradients(grads_and_vars) - - return tf.__internal__.distribute.interim.maybe_merge_call( - functools.partial( - self._distributed_apply, apply_state=apply_state - ), - strategy, - grads_and_vars, - name=name, - ) - - def _distributed_apply( - self, distribution, grads_and_vars, apply_state, name - ): - """`apply_gradients` using a `DistributionStrategy`.""" - - def apply_grad_to_update_var(var, grad): - """Apply gradient to variable.""" - if isinstance(var, tf.Tensor): - raise NotImplementedError( - "Updating a `Tensor` is not implemented. " - f"Received: var={var}." - ) - - apply_kwargs = {} - if isinstance(grad, tf.IndexedSlices): - if var.constraint is not None: - raise RuntimeError( - "Cannot use a constraint function on a sparse " - f"variable. Received: grad={grad}, " - f"var.constraint={var.constraint}." - ) - if "apply_state" in self._sparse_apply_args: - apply_kwargs["apply_state"] = apply_state - return self._resource_apply_sparse_duplicate_indices( - grad.values, var, grad.indices, **apply_kwargs - ) - - if "apply_state" in self._dense_apply_args: - apply_kwargs["apply_state"] = apply_state - update_op = self._resource_apply_dense(grad, var, **apply_kwargs) - if var.constraint is not None: - with tf.control_dependencies([update_op]): - return var.assign(var.constraint(var)) - else: - return update_op - - eagerly_outside_functions = ( - tf.compat.v1.executing_eagerly_outside_functions() - ) - update_ops = [] - with name_scope_only_in_function_or_graph(name or self._name): - for grad, var in grads_and_vars: - # Colocate the update with variables to avoid unnecessary - # communication delays. See b/136304694. - with distribution.extended.colocate_vars_with(var): - with name_scope_only_in_function_or_graph( - "update" - if eagerly_outside_functions - else "update_" + var.op.name - ): - update_op = distribution.extended.update( - var, - apply_grad_to_update_var, - args=(grad,), - group=False, - ) - if tf.distribute.in_cross_replica_context(): - # In cross-replica context, extended.update returns - # a list of update ops from all replicas - # (group=False). - update_ops.extend(update_op) - else: - # In replica context, extended.update return the - # single update op of current replica. - update_ops.append(update_op) - - any_symbolic = any( - isinstance(i, tf.Operation) or tf_utils.is_symbolic_tensor(i) - for i in update_ops - ) - if not tf.executing_eagerly() or any_symbolic: - # If the current context is graph mode or any of the update ops - # are symbolic then the step update should be carried out under - # a graph context. (eager updates execute immediately) - with backend._current_graph(update_ops).as_default(): - with tf.control_dependencies([tf.group(update_ops)]): - return self.iterations.assign_add(1, read_value=False) - - return self.iterations.assign_add(1) - - def get_gradients(self, loss, params): - """Returns gradients of `loss` with respect to `params`. - - Should be used only in legacy v1 graph mode. - - Args: - loss: Loss tensor. - params: List of variables. - - Returns: - List of gradient tensors. - - Raises: - ValueError: In case any gradient cannot be computed (e.g. if gradient - function not implemented). - """ - params = tf.nest.flatten(params) - with backend.get_graph().as_default(), backend.name_scope( - self._name + "/gradients" - ): - grads = tf.compat.v1.gradients(loss, params) - for grad, param in zip(grads, params): - if grad is None: - raise ValueError( - "Variable {} has `None` for gradient. " - "Please make sure that all of your ops have a " - "gradient defined (i.e. are differentiable). " - "Common ops without gradient: " - "K.argmax, K.round, K.eval.".format(param) - ) - return grads - - def get_updates(self, loss, params): - grads = self.get_gradients(loss, params) - grads_and_vars = list(zip(grads, params)) - self._assert_valid_dtypes( - [ - v - for g, v in grads_and_vars - if g is not None and v.dtype != tf.resource - ] - ) - return [self.apply_gradients(grads_and_vars)] - - def _set_hyper(self, name, value): - """set hyper `name` to value. value can be callable, tensor, numeric.""" - if isinstance(value, tf.__internal__.tracking.Trackable): - self._track_trackable(value, name, overwrite=True) - if name not in self._hyper: - self._hyper[name] = value - else: - prev_value = self._hyper[name] - if ( - callable(prev_value) - or isinstance( - prev_value, - ( - tf.Tensor, - int, - float, - learning_rate_schedule.LearningRateSchedule, - ), - ) - or isinstance( - value, learning_rate_schedule.LearningRateSchedule - ) - ): - self._hyper[name] = value - else: - backend.set_value(self._hyper[name], value) - - def _get_hyper(self, name, dtype=None): - if not self._hypers_created: - self._create_hypers() - value = self._hyper[name] - if isinstance(value, learning_rate_schedule.LearningRateSchedule): - return value - if callable(value): - value = value() - if dtype: - return tf.cast(value, dtype) - else: - return value - - def _create_slots(self, var_list): - pass - - def _create_slots_for_sharded_variables(self, var_list): - """Add ShardedVariables to slots to later reconstruct for checkpointing. - - ShardedVariables don't have slot variables created for them; their - shards do. This function allows users to call get_slot with a - ShardedVariable input and receive a ShardedVariable output containing - the appropriate slot vars. - - Iterate over the variables to find shards, and aggregate the sharded - containers in a set. Add these ShardedVariables to _slots so that - get_slot can retrieve the proper slot variables for their component - shards, and reconstruct those into a ShardedVariable. - - Args: - var_list: list or tuple of `Variable` objects that will be minimized - using this optimizer. - """ - sharded_vars = set() - for var in var_list: - if getattr(var, "_sharded_container", False): - sharded_vars.add(var._sharded_container()) - - for sharded_var in sharded_vars: - sharded_key = _var_key(sharded_var) - slot_dict = {} - for slot in self.get_slot_names(): - slot_dict[slot] = sharded_var - self._slots[sharded_key] = slot_dict - - def _create_all_weights(self, var_list): - """Creates all weights, including iterations, hyperparameters and slot - vars. - - This will add newly created variables to `optimizer.weights`. - - New variables are only created when this method is called the first - time, or when called with different variables in the var_list. - - Args: - var_list: list or tuple of `Variable` objects that will be minimized - using this optimizer. - """ - - _ = self.iterations - self._create_hypers() - self._create_slots(var_list) - self._create_slots_for_sharded_variables(var_list) - - def __getattribute__(self, name): - """Overridden to support hyperparameter access.""" - try: - return super().__getattribute__(name) - except AttributeError as e: - # Needed to avoid infinite recursion with __setattr__. - if name == "_hyper": - raise e - # Backwards compatibility with Keras optimizers. - if name == "lr": - name = "learning_rate" - if name in self._hyper: - return self._get_hyper(name) - raise e - - def __dir__(self): - result = set(super().__dir__()) - if "_hyper" in result: - result |= self._hyper.keys() - if "learning_rate" in self._hyper.keys(): - result.add("lr") - return list(result) - - def __setattr__(self, name, value): - """Override setattr to support dynamic hyperparameter setting.""" - # Backwards compatibility with Keras optimizers. - if name == "lr": - name = "learning_rate" - if hasattr(self, "_hyper") and name in self._hyper: - self._set_hyper(name, value) - else: - super().__setattr__(name, value) - - def get_slot_names(self): - """A list of names for this optimizer's slots.""" - return self._slot_names - - def add_slot(self, var, slot_name, initializer="zeros", shape=None): - """Add a new slot variable for `var`. - - A slot variable is an additional variable associated with `var` to - train. It is allocated and managed by optimizers, e.g. `Adam`. - - Args: - var: a `Variable` object. - slot_name: name of the slot variable. - initializer: initializer of the slot variable - shape: (Optional) shape of the slot variable. If not set, it will - default to the shape of `var`. - - Returns: - A slot variable. - """ - if slot_name not in self._slot_names: - self._slot_names.append(slot_name) - var_key = _var_key(var) - slot_dict = self._slots.setdefault(var_key, {}) - weight = slot_dict.get(slot_name, None) - if weight is None: - if isinstance(initializer, str) or callable(initializer): - initializer = initializers.get(initializer) - if isinstance( - initializer, - tf.__internal__.tracking.CheckpointInitialValueCallable, - ) or (shape is not None): - slot_shape = shape - else: - slot_shape = var.shape - initial_value = functools.partial( - initializer, shape=slot_shape, dtype=var.dtype - ) - else: - initial_value = initializer - - with self._distribution_strategy_scope(): - strategy = tf.distribute.get_strategy() - if not strategy.extended.variable_created_in_scope(var): - raise ValueError( - "Trying to create optimizer slot variable under the " - "scope for tf.distribute.Strategy ({}), which is " - "different from the scope used for the original " - "variable ({}). Make sure the slot variables are " - "created under the same strategy scope. This may " - "happen if you're restoring from a checkpoint " - "outside the scope.".format(strategy, var) - ) - - with strategy.extended.colocate_vars_with(var): - weight = tf.Variable( - name=f"{var._shared_name}/{slot_name}", - dtype=var.dtype, - trainable=False, - initial_value=initial_value, - ) - backend.track_variable(weight) - slot_dict[slot_name] = weight - self._restore_slot_variable( - slot_name=slot_name, variable=var, slot_variable=weight - ) - self._weights.append(weight) - return weight - - def get_slot(self, var, slot_name): - var_key = _var_key(var) - slot_dict = self._slots[var_key] - slot_variable = slot_dict[slot_name] - if isinstance( - slot_variable, tf.__internal__.distribute.ShardedVariable - ): - # Construct a ShardedVariable that points to the input - # ShardedVariable's component shard's slot variables. - shard_vars = [] - for shard in slot_variable.variables: - slot_shard = self.get_slot(shard, slot_name) - shard_vars.append(slot_shard) - slot_variable = tf.__internal__.distribute.ShardedVariable( - shard_vars, name=slot_variable.name - ) - return slot_variable - - def _prepare(self, var_list): - keys = set() - for var in var_list: - if isinstance(var, tf.distribute.DistributedValues): - var_devices = var._devices - else: - var_devices = [var.device] - var_dtype = var.dtype.base_dtype - for var_device in var_devices: - keys.add((var_device, var_dtype)) - - apply_state = {} - for var_device, var_dtype in keys: - apply_state[(var_device, var_dtype)] = {} - with tf.device(var_device): - self._prepare_local(var_device, var_dtype, apply_state) - - return apply_state - - def _prepare_local(self, var_device, var_dtype, apply_state): - if "learning_rate" in self._hyper: - lr_t = tf.identity(self._decayed_lr(var_dtype)) - apply_state[(var_device, var_dtype)]["lr_t"] = lr_t - - def _fallback_apply_state(self, var_device, var_dtype): - """Compatibility for subclasses that don't pass apply_state through.""" - apply_state = {(var_device, var_dtype): {}} - self._prepare_local(var_device, var_dtype, apply_state) - return apply_state[(var_device, var_dtype)] - - def _create_hypers(self): - if self._hypers_created: - return - with self._distribution_strategy_scope(): - # Iterate hyper values deterministically. - for name, value in sorted(self._hyper.items()): - if isinstance(value, (tf.Tensor, tf.Variable)) or callable( - value - ): - # The check for `callable` covers the usage when `value` is - # a `LearningRateSchedule`, in which case it does not need - # to create a variable. - continue - else: - self._hyper[name] = self.add_weight( - name, - shape=[], - trainable=False, - initializer=value, - aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, - ) - self._hypers_created = True - - @property - def iterations(self): - """Variable. The number of training steps this Optimizer has run.""" - if self._iterations is None: - with self._distribution_strategy_scope(): - self._iterations = self.add_weight( - "iter", - shape=[], - dtype=tf.int64, - trainable=False, - aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, - ) - self._weights.append(self._iterations) - return self._iterations - - @iterations.setter - def iterations(self, variable): - if self._iterations is not None: - raise RuntimeError( - "Cannot set `iterations` to a new Variable after " - "the Optimizer weights have been created. Here it is " - f"attempting to set `iterations` to {variable}." - ) - self._iterations = variable - self._weights.append(self._iterations) - - def _decayed_lr(self, var_dtype): - """Get decayed learning rate as a Tensor with dtype=var_dtype.""" - lr_t = self._get_hyper("learning_rate", var_dtype) - if isinstance(lr_t, learning_rate_schedule.LearningRateSchedule): - local_step = tf.cast(self.iterations, var_dtype) - lr_t = tf.cast(lr_t(local_step), var_dtype) - if self._initial_decay > 0.0: - local_step = tf.cast(self.iterations, var_dtype) - decay_t = tf.cast(self._initial_decay, var_dtype) - lr_t = lr_t / (1.0 + decay_t * local_step) - return lr_t - - @abc.abstractmethod - def get_config(self): - """Returns the config of the optimizer. - - An optimizer config is a Python dictionary (serializable) - containing the configuration of an optimizer. - The same optimizer can be reinstantiated later - (without any saved state) from this configuration. - - Returns: - Python dictionary. - """ - config = {"name": self._name} - if self.clipnorm is not None: - config["clipnorm"] = self.clipnorm - if self.clipvalue is not None: - config["clipvalue"] = self.clipvalue - if self.global_clipnorm is not None: - config["global_clipnorm"] = self.global_clipnorm - return config - - @classmethod - def from_config(cls, config, custom_objects=None): - """Creates an optimizer from its config. - - This method is the reverse of `get_config`, - capable of instantiating the same optimizer from the config - dictionary. - - Args: - config: A Python dictionary, typically the output of get_config. - custom_objects: A Python dictionary mapping names to additional - Python objects used to create this optimizer, such as a function - used for a hyperparameter. - - Returns: - An optimizer instance. - """ - if "lr" in config: - config["learning_rate"] = config.pop("lr") - if "learning_rate" in config: - if isinstance(config["learning_rate"], dict): - config["learning_rate"] = learning_rate_schedule.deserialize( - config["learning_rate"], custom_objects=custom_objects - ) - return cls(**config) - - def _serialize_hyperparameter(self, hyperparameter_name): - """Serialize a hyperparameter that can be a float, callable, or - Tensor.""" - value = self._hyper[hyperparameter_name] - if isinstance(value, learning_rate_schedule.LearningRateSchedule): - return learning_rate_schedule.serialize(value) - if callable(value): - return value() - if tf.is_tensor(value): - return backend.get_value(value) - return value - - def variables(self): - """Returns variables of this Optimizer based on the order created.""" - return self._weights - - @property - def weights(self): - """Returns variables of this Optimizer based on the order created.""" - return self._weights - - def get_weights(self): - """Returns the current weights of the optimizer. - - The weights of an optimizer are its state (ie, variables). - This function returns the weight values associated with this - optimizer as a list of Numpy arrays. The first value is always the - iterations count of the optimizer, followed by the optimizer's state - variables in the order they were created. The returned list can in turn - be used to load state into similarly parameterized optimizers. - - For example, the RMSprop optimizer for this simple model returns a list - of three values-- the iteration count, followed by the root-mean-square - value of the kernel and bias of the single Dense layer: - - >>> opt = tf.keras.optimizers.legacy.RMSprop() - >>> m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)]) - >>> m.compile(opt, loss='mse') - >>> data = np.arange(100).reshape(5, 20) - >>> labels = np.zeros(5) - >>> results = m.fit(data, labels) # Training. - >>> len(opt.get_weights()) - 3 - - Returns: - Weights values as a list of numpy arrays. - """ - params = self.weights - return backend.batch_get_value(params) - - # TODO(tanzheny): Maybe share this logic with base_layer. - def set_weights(self, weights): - """Set the weights of the optimizer. - - The weights of an optimizer are its state (ie, variables). - This function takes the weight values associated with this - optimizer as a list of Numpy arrays. The first value is always the - iterations count of the optimizer, followed by the optimizer's state - variables in the order they are created. The passed values are used to - set the new state of the optimizer. - - For example, the RMSprop optimizer for this simple model takes a list of - three values-- the iteration count, followed by the root-mean-square - value of the kernel and bias of the single Dense layer: - - >>> opt = tf.keras.optimizers.legacy.RMSprop() - >>> m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)]) - >>> m.compile(opt, loss='mse') - >>> data = np.arange(100).reshape(5, 20) - >>> labels = np.zeros(5) - >>> results = m.fit(data, labels) # Training. - >>> new_weights = [np.array(10), np.ones([20, 10]), np.zeros([10])] - >>> opt.set_weights(new_weights) - >>> opt.iterations - - - Args: - weights: weight values as a list of numpy arrays. - """ - params = self.weights - if len(params) != len(weights): - raise ValueError( - f"You called `set_weights(weights)` on optimizer {self._name} " - f"with a weight list of length {str(len(weights))}, " - f"but the optimizer was expecting {str(len(params))} " - f"weights. Provided weights: {str(weights)[:50]}..." - ) - if not params: - return - weight_value_tuples = [] - param_values = backend.batch_get_value(params) - for pv, p, w in zip(param_values, params, weights): - if pv.shape != w.shape: - raise ValueError( - f"Optimizer weight shape {str(pv.shape)} " - "not compatible with " - f"provided weight shape {str(w.shape)}." - ) - weight_value_tuples.append((p, w)) - backend.batch_set_value(weight_value_tuples) - - def add_weight( - self, - name, - shape, - dtype=None, - initializer="zeros", - trainable=None, - synchronization=tf.VariableSynchronization.AUTO, - aggregation=tf.VariableAggregation.NONE, - ): - - if dtype is None: - dtype = tf.float32 - if isinstance(initializer, str) or callable(initializer): - initializer = initializers.get(initializer) - - if synchronization == tf.VariableSynchronization.ON_READ: - if trainable: - raise ValueError( - "Synchronization value can be set to " - "VariableSynchronization.ON_READ only for non-trainable " - "variables. You have specified trainable=True and " - "synchronization=VariableSynchronization.ON_READ." - ) - else: - # Set trainable to be false when variable is to be synced on - # read. - trainable = False - elif trainable is None: - trainable = True - - variable = self._add_variable_with_custom_getter( - name=name, - shape=shape, - getter=base_layer_utils.make_variable, - overwrite=True, - initializer=initializer, - dtype=dtype, - trainable=trainable, - use_resource=True, - synchronization=synchronization, - aggregation=aggregation, - ) - backend.track_variable(variable) - - return variable - - def _init_set_name(self, name, zero_based=True): - if not name: - self._name = backend.unique_object_name( - generic_utils.to_snake_case(self.__class__.__name__), - zero_based=zero_based, - ) - else: - self._name = name - - def _assert_valid_dtypes(self, tensors): - """Asserts tensors are all valid types (see `_valid_dtypes`). - - Args: - tensors: Tensors to check. - - Raises: - ValueError: If any tensor is not a valid type. - """ - valid_dtypes = self._valid_dtypes() - for t in tensors: - dtype = t.dtype.base_dtype - if dtype not in valid_dtypes: - raise ValueError( - "Invalid type {} for {}, expected: {}.".format( - dtype, t.name, [v for v in valid_dtypes] - ) - ) - - def _valid_dtypes(self): - """Valid types for loss, variables and gradients. - - Subclasses should override to allow other float types. - - Returns: - Valid types for loss, variables and gradients. - """ - return _DEFAULT_VALID_DTYPES - - def _call_if_callable(self, param): - """Call the function if param is callable.""" - return param() if callable(param) else param - - def _resource_apply_dense(self, grad, handle, apply_state): - """Add ops to apply dense gradients to the variable `handle`. - - Args: - grad: a `Tensor` representing the gradient. - handle: a `Tensor` of dtype `resource` which points to the variable to - be updated. - apply_state: A dict which is used across multiple apply calls. - - Returns: - An `Operation` which updates the value of the variable. - """ - raise NotImplementedError( - "`_resource_apply_dense` must be implemented in subclasses." - ) - - def _resource_apply_sparse_duplicate_indices( - self, grad, handle, indices, **kwargs - ): - """Add ops to apply sparse gradients to `handle`, with repeated indices. - - Optimizers which override this method must deal with repeated indices. - See the docstring of `_apply_sparse_duplicate_indices` for details. By - default the correct behavior, to sum non-unique indices and their - associated gradients, is enforced by first pre-processing `grad` and - `indices` and passing them on to `_resource_apply_sparse`. Optimizers - which deal correctly with duplicate indices may instead override this - method to avoid the overhead of summing. - - Args: - grad: a `Tensor` representing the gradient for the affected indices. - handle: a `Tensor` of dtype `resource` which points to the variable to - be updated. - indices: a `Tensor` of integral type representing the indices for - which the gradient is nonzero. Indices may be repeated. - **kwargs: May optionally contain `apply_state` - - Returns: - An `Operation` which updates the value of the variable. - """ - summed_grad, unique_indices = _deduplicate_indexed_slices( - values=grad, indices=indices - ) - return self._resource_apply_sparse( - summed_grad, handle, unique_indices, **kwargs - ) - - def _resource_apply_sparse(self, grad, handle, indices, apply_state): - """Add ops to apply sparse gradients to the variable `handle`. - - Similar to `_apply_sparse`, the `indices` argument to this method has - been de-duplicated. Optimizers which deal correctly with non-unique - indices may instead override `_resource_apply_sparse_duplicate_indices` - to avoid this overhead. - - Args: - grad: a `Tensor` representing the gradient for the affected indices. - handle: a `Tensor` of dtype `resource` which points to the variable to - be updated. - indices: a `Tensor` of integral type representing the indices for - which the gradient is nonzero. Indices are unique. - apply_state: A dict which is used across multiple apply calls. - - Returns: - An `Operation` which updates the value of the variable. - """ - raise NotImplementedError( - "`_resource_apply_sparse` Must be implemented in subclasses." - ) - - def _resource_scatter_add(self, x, i, v): - with tf.control_dependencies( - [ - tf.raw_ops.ResourceScatterAdd( - resource=x.handle, indices=i, updates=v - ) - ] - ): - return x.value() - - def _resource_scatter_update(self, x, i, v): - with tf.control_dependencies( - [ - tf.raw_ops.ResourceScatterUpdate( - resource=x.handle, indices=i, updates=v - ) - ] - ): - return x.value() - - @property - @layer_utils.cached_per_instance - def _dense_apply_args(self): - return tf_inspect.getfullargspec(self._resource_apply_dense).args - - @property - @layer_utils.cached_per_instance - def _sparse_apply_args(self): - return tf_inspect.getfullargspec(self._resource_apply_sparse).args - - # --------------- - # For implementing the trackable interface - # --------------- - - def _restore_slot_variable(self, slot_name, variable, slot_variable): - """Restore a newly created slot variable's value.""" - variable_key = _var_key(variable) - deferred_restorations = self._deferred_slot_restorations.get( - slot_name, {} - ).pop(variable_key, []) - # Iterate over restores, highest restore UID first to minimize the - # number of assignments. - deferred_restorations.sort( - key=lambda position: position.restore_uid, reverse=True - ) - for checkpoint_position in deferred_restorations: - checkpoint_position.restore(slot_variable) - - def _create_or_restore_slot_variable( - self, slot_variable_position, slot_name, variable - ): - """Returns the slot variable that should have a value restored into it. - - It is up to the caller to restore the value into the slot variable if a - valid slot variable is returned. - - Called when a variable which has an associated slot variable is created - or restored. When executing eagerly, we create the slot variable with a - restoring initializer. - - No new variables are created when graph building. Instead, - _restore_slot_variable catches these after normal creation and adds - restore ops to the graph. This method is nonetheless important when - graph building for the case when a slot variable has already been - created but `variable` has just been added to a dependency graph - (causing us to realize that the slot variable needs to be restored). - - Args: - slot_variable_position: A `trackable._CheckpointPosition` object - indicating the slot variable `Trackable` object to be restored. - slot_name: The name of this `Optimizer`'s slot to restore into. - variable: The variable object this slot is being created for. - - Returns: - A slot variable that should have a value restored into it, or None if - a slot variable should not be restored at this time. - """ - variable_key = _var_key(variable) - slot_dict = self._slots.get(variable_key, {}) - slot_variable = slot_dict.get(slot_name, None) - if ( - slot_variable is None - and tf.executing_eagerly() - and slot_variable_position.is_simple_variable() - # Defer slot variable creation if there is an active variable - # creator scope. Generally we'd like to eagerly create/restore slot - # variables when possible, but this may mean that scopes intended to - # catch `variable` also catch its eagerly created slot variable - # unintentionally (specifically make_template would add a dependency - # on a slot variable if not for this case). Deferring is mostly - # harmless (aside from double initialization), and makes variable - # creator scopes behave the same way they do when graph building. - # - # One notable case is with distribution strategy, which uses - # variable creator scope but always desires the `variable` and the - # slot to use the same scope, thus we can safely eagerly - # create/restore slot variables. - and ( - not tf.compat.v1.get_default_graph()._variable_creator_stack - or self._distribution_strategy - ) - ): - initializer = ( - tf.__internal__.tracking.CheckpointInitialValueCallable( - checkpoint_position=slot_variable_position - ) - ) - slot_variable = self.add_slot( - var=variable, - initializer=initializer, - slot_name=slot_name, - shape=slot_variable_position.value_shape(), - ) - # Slot variables are not owned by any one object (because we don't - # want to save the slot variable if the optimizer is saved without - # the non-slot variable, or if the non-slot variable is saved - # without the optimizer; it's a dependency hypergraph with edges of - # the form (optimizer, non-slot variable, variable)). So we don't - # _track_ slot variables anywhere, and instead special-case this - # dependency and otherwise pretend it's a normal graph. - if slot_variable is not None: - # For sharded variables, we need the logic in get_slot to combine - # slot variables for its shards - if (slot_variable is variable) and ( - isinstance(variable, tf.__internal__.distribute.ShardedVariable) - ): - return self.get_slot(variable, slot_name) - # If we've either made this slot variable, or if we've pulled out an - # existing slot variable, we should restore it. - return slot_variable - else: - # We didn't make the slot variable. Defer restoring until it gets - # created normally. We keep a list rather than the one with the - # highest restore UID in case slot variables have their own - # dependencies, in which case those could differ between restores. - self._deferred_slot_restorations.setdefault( - slot_name, {} - ).setdefault(variable_key, []).append(slot_variable_position) - return None - - @contextlib.contextmanager - def _distribution_strategy_scope(self): - """Returns the `tf.distribute.Strategy` this optimizer was created - under.""" - if self._distribution_strategy and not tf.distribute.has_strategy(): - with self._distribution_strategy.scope(): - yield self._distribution_strategy.scope() - else: - yield - - -def _var_key(var): - """Key for representing a primary variable, for looking up slots. - - In graph mode the name is derived from the var shared name. - In eager mode the name is derived from the var unique id. - If distribution strategy exists, get the primary variable first. - - Args: - var: the variable. - - Returns: - the unique name of the variable. - """ - - # Get the distributed variable if it exists. - if hasattr(var, "_distributed_container"): - var = var._distributed_container() - elif ( - tf_utils.is_extension_type(var) - and hasattr(var, "handle") - and hasattr(var.handle, "_distributed_container") - ): - # For ResourceVariables, the _distributed_container attribute - # is added to their handle tensors. - var = var.handle._distributed_container() - if getattr(var, "_in_graph_mode", False): - return var._shared_name - return var._unique_id - - -def _get_slot_key_from_var(var, slot_name): - """Get the slot key for the variable: var_name/slot_name.""" - - name = _var_key(var) - return name + "/" + slot_name - - -class RestoredOptimizer(OptimizerV2): - """A non-functional Optimizer implementation for checkpoint compatibility. - - Holds slot variables and hyperparameters when an optimizer is restored from - a SavedModel. These variables may be referenced in functions along with ops - created by the original optimizer, but currently we do not support using the - optimizer object itself (e.g. through `apply_gradients`). - """ - - # TODO(allenl): Make the restored optimizer functional by tracing its apply - # methods. - - def __init__(self): - super().__init__("RestoredOptimizer") - self._hypers_created = True - - def get_config(self): - # TODO(allenl): Save and restore the Optimizer's config - raise NotImplementedError( - "Restoring functional Optimizers from SavedModels is not currently " - "supported. Please file a feature request if this limitation " - "bothers you." - ) - - -tf.__internal__.saved_model.load.register_revived_type( - "optimizer", - lambda obj: isinstance(obj, OptimizerV2), - versions=[ - tf.__internal__.saved_model.load.VersionedTypeRegistration( - object_factory=lambda proto: RestoredOptimizer(), - version=2, - min_producer_version=1, - min_consumer_version=1, - setter=RestoredOptimizer._set_hyper, - ) - ], -) diff --git a/keras/optimizers/legacy/optimizer_v2_test.py b/keras/optimizers/legacy/optimizer_v2_test.py deleted file mode 100644 index 47ffec24453..00000000000 --- a/keras/optimizers/legacy/optimizer_v2_test.py +++ /dev/null @@ -1,1474 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Functional test for OptimizerV2.""" - -import collections -from copy import deepcopy - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import backend -from keras import callbacks -from keras import losses -from keras.engine import input_layer -from keras.engine import sequential -from keras.engine import training -from keras.layers import core -from keras.layers import regularization -from keras.optimizers import optimizer_v1 -from keras.optimizers.legacy import adadelta -from keras.optimizers.legacy import adagrad -from keras.optimizers.legacy import adam -from keras.optimizers.legacy import adamax -from keras.optimizers.legacy import ftrl -from keras.optimizers.legacy import gradient_descent -from keras.optimizers.legacy import nadam -from keras.optimizers.legacy import optimizer_v2 -from keras.optimizers.legacy import rmsprop -from keras.optimizers.schedules import learning_rate_schedule -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import np_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - -_DATA_TYPES = [tf.half, tf.float32, tf.float64] -# TODO(b/141710709): complex support in NVCC and ROCM. -if not tf_test_utils.IsBuiltWithNvcc() and not tf.test.is_built_with_rocm(): - _DATA_TYPES += [tf.complex64, tf.complex128] - - -class OptimizerTest(tf.test.TestCase, parameterized.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testBasic(self): - for dtype in _DATA_TYPES: - with test_utils.use_gpu(): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - loss = lambda: 5 * var0 + 3 * var1 - sgd = gradient_descent.SGD(3.0) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - # Run 1 step of sgd through optimizer - opt_op = sgd.minimize(loss, var_list=[var0, var1]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - # Validate updated params - self.assertAllClose([-14.0, -13.0], self.evaluate(var0)) - self.assertAllClose([-6.0, -5.0], self.evaluate(var1)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testAdaptiveLearningRate(self): - for dtype in _DATA_TYPES: - with self.test_session(): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - - def loss(): - return 5 * var0 + 3 * var1 - - sgd = gradient_descent.SGD(1.0) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - # Run 1 step of sgd through optimizer - opt_op = sgd.minimize(loss, [var0, var1]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - # Validate updated params - # var0 = [1., 2.] - 1.0 * [5, 5] - self.assertAllClose([-4.0, -3.0], self.evaluate(var0)) - # var1 = [3., 4.] - 1.0 * [3, 3] - self.assertAllClose([0.0, 1.0], self.evaluate(var1)) - - sgd.learning_rate = 0.5 - if tf.executing_eagerly(): - sgd.minimize(loss, [var0, var1]) - else: - self.evaluate(opt_op) - # Validate updated params - # var0 = [-4., -3.] - 0.5 * [5, 5] - self.assertAllClose([-6.5, -5.5], self.evaluate(var0)) - # var1 = [0., 1.] - 0.5 * [3, 3] - self.assertAllClose([-1.5, -0.5], self.evaluate(var1)) - - sgd.learning_rate = learning_rate_schedule.InverseTimeDecay( - 0.5, decay_steps=1.0, decay_rate=0.5 - ) - if tf.executing_eagerly(): - sgd.minimize(loss, [var0, var1]) - else: - self.evaluate(opt_op) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testPrecomputedGradient(self): - for dtype in _DATA_TYPES: - with test_utils.use_gpu(): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - loss = lambda: 5 * var0 + 3 * var1 - grad_loss = tf.constant([42, -42], dtype=dtype) - sgd = gradient_descent.SGD(3.0) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - # Run 1 step of sgd through optimizer - opt_op = sgd.minimize( - loss, var_list=[var0, var1], grad_loss=grad_loss - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - # Validate updated params - self.assertAllClose( - [1.0 - 3 * 5 * 42.0, 2.0 - 3 * 5 * (-42.0)], - self.evaluate(var0), - ) - self.assertAllClose( - [3.0 - 3 * 3 * 42.0, 4.0 - 3 * 3 * (-42.0)], - self.evaluate(var1), - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testNoGradients(self): - for dtype in _DATA_TYPES: - with test_utils.use_gpu(): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - loss = lambda: 5 * var0 - sgd_op = gradient_descent.SGD(3.0) - with self.assertRaisesRegex(ValueError, "No gradients"): - # var1 has no gradient - sgd_op.minimize(loss, var_list=[var1]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testNoGradientsForAnyVariables_Minimize(self): - for dtype in _DATA_TYPES: - with test_utils.use_gpu(): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - loss = lambda: tf.constant(5.0) - - sgd_op = gradient_descent.SGD(3.0) - with self.assertRaisesRegex( - ValueError, "No gradients provided for any variable" - ): - sgd_op.minimize(loss, var_list=[var0, var1]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testNoGradientsForAnyVariables_ApplyGradients(self): - for dtype in _DATA_TYPES: - with test_utils.use_gpu(): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - sgd_op = gradient_descent.SGD(3.0) - with self.assertRaisesRegex( - ValueError, "No gradients provided for any variable" - ): - sgd_op.apply_gradients([(None, var0), (None, var1)]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testGradientsAsVariables(self): - for i, dtype in enumerate(_DATA_TYPES): - with test_utils.use_gpu(): - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - loss = lambda: 5 * var0 + 3 * var1 - - sgd = gradient_descent.SGD(3.0) - grads_and_vars = sgd._compute_gradients(loss, [var0, var1]) - # Convert gradients to tf.Variables - converted_grads = [ - tf.Variable(tf.zeros([2], dtype), name="c_%d_%d" % (i, j)) - for j, gv in enumerate(grads_and_vars) - ] - convert_ops = [ - tf.compat.v1.assign(converted_grads[j], gv[0]) - for j, gv in enumerate(grads_and_vars) - ] - - # Run convert_ops to achieve the gradients converting - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(convert_ops) - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - - # Run 1 step of sgd through optimizer - converted_grads_and_vars = list( - zip(converted_grads, [var0, var1]) - ) - opt_op = sgd.apply_gradients(converted_grads_and_vars) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(convert_ops) - self.evaluate(opt_op) - - # Validate updated params - self.assertAllClose([-14.0, -13.0], self.evaluate(var0)) - self.assertAllClose([-6.0, -5.0], self.evaluate(var1)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testComputeGradientsWithTensors(self): - with test_utils.use_gpu(): - x = tf.convert_to_tensor(1.0) - - def f(): - return x * x - - sgd = gradient_descent.SGD(3.0) - grads_and_vars = sgd._compute_gradients(f, [x]) - self.assertLen(grads_and_vars, 1) - grad, x_as_var = grads_and_vars[0] - self.assertIs(x, x_as_var) - self.assertEqual(2.0, self.evaluate(grad)) - - with self.assertRaises(NotImplementedError): - sgd.apply_gradients(grads_and_vars) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testConstraint(self): - constraint_01 = lambda x: tf.clip_by_value(x, -0.1, 0.0) - constraint_0 = lambda x: tf.clip_by_value(x, 0.0, 1.0) - with test_utils.use_gpu(): - var0 = tf.Variable([1.0, 2.0], constraint=constraint_01) - var1 = tf.Variable([3.0, 4.0], constraint=constraint_0) - loss = lambda: 5 * var0 + 3 * var1 - sgd = gradient_descent.SGD(3.0) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - # Run 1 step of sgd through optimizer - opt_op = sgd.minimize(loss, var_list=[var0, var1]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - # Validate updated params - self.assertAllClose([-0.1, -0.1], self.evaluate(var0)) - self.assertAllClose([0.0, 0.0], self.evaluate(var1)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testIterationWithoutMinimize(self): - with test_utils.use_gpu(): - sgd = gradient_descent.SGD(3.0) - self.evaluate(sgd.iterations.initializer) - self.assertEqual(0, self.evaluate(sgd.iterations)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testConfig(self): - with test_utils.use_gpu(): - opt = gradient_descent.SGD(learning_rate=1.0) - config = opt.get_config() - opt2 = gradient_descent.SGD.from_config(config) - lr = opt._get_hyper("learning_rate") - lr2 = opt2._get_hyper("learning_rate") - self.evaluate(tf.compat.v1.global_variables_initializer()) - # assert both are equal float values. - self.assertEqual(self.evaluate(lr), self.evaluate(lr2)) - var0 = tf.Variable([[1.0], [2.0]], dtype=tf.float32) - loss = lambda: 3 * var0 - # learning rate variable created when calling minimize. - opt.minimize(loss, [var0]) - opt3 = gradient_descent.SGD.from_config(config) - lr3 = opt3._get_hyper("learning_rate") - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual(self.evaluate(lr), self.evaluate(lr3)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testConfigWithLearningRateDecay(self): - with test_utils.use_gpu(): - var0 = tf.Variable([[1.0], [2.0]], dtype=tf.float32) - for decay_schedule in [ - learning_rate_schedule.InverseTimeDecay( - 0.5, decay_steps=1.0, decay_rate=0.1 - ), - learning_rate_schedule.PiecewiseConstantDecay([5], [1.0, 0.5]), - ]: - step = 10 - opt = gradient_descent.SGD(decay_schedule) - config = opt.get_config() - opt2 = gradient_descent.SGD.from_config(config) - # assert both are equal float values. - self.assertAllEqual( - decay_schedule(step), opt._get_hyper("learning_rate")(step) - ) - self.assertAllEqual( - decay_schedule(step), opt2._get_hyper("learning_rate")(step) - ) - loss = lambda: 3 * var0 - # learning rate variable is created when calling minimize. - opt.minimize(loss, [var0]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - config = opt.get_config() - opt3 = gradient_descent.SGD.from_config(config) - self.assertAllEqual( - self.evaluate(opt._get_hyper("learning_rate")(step)), - opt3._get_hyper("learning_rate")(step), - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testGradClipValue(self): - with test_utils.use_gpu(): - var = tf.Variable([1.0, 2.0]) - loss = lambda: 3 * var - opt = gradient_descent.SGD(learning_rate=1.0, clipvalue=1.0) - opt_op = opt.minimize(loss, [var]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - self.assertAllClose([0.0, 1.0], self.evaluate(var)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testGradClipNorm(self): - with test_utils.use_gpu(): - var = tf.Variable([1.0]) - loss = lambda: 3 * var - opt = gradient_descent.SGD(learning_rate=1.0, clipnorm=1.0) - opt_op = opt.minimize(loss, [var]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - self.assertAllClose([0.0], self.evaluate(var)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testGradGlobalClipNorm(self): - with test_utils.use_gpu(): - # l2 norm is 5.0 - var1 = tf.Variable([1.0]) - var2 = tf.Variable([2.0]) - loss = lambda: 3 * var1 + 4 * var2 - opt = gradient_descent.SGD(learning_rate=1.0, global_clipnorm=2.0) - opt_op = opt.minimize(loss, [var1, var2]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - # grad1 = 3.0 * 2.0 / 5.0 = 1.2 - self.assertAllClose([-0.2], self.evaluate(var1)) - # grad2 = 4.0 * 2.0 / 5.0 = 1.6 - self.assertAllClose([0.4], self.evaluate(var2)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testInvalidClipNorm(self): - with self.assertRaisesRegex(ValueError, ">= 0"): - gradient_descent.SGD(learning_rate=1.0, clipnorm=-1.0) - - @test_combinations.generate( - test_combinations.combine( - mode=["graph", "eager"], - clip_type=["clipnorm", "global_clipnorm", "clipvalue"], - ) - ) - def testConfigWithCliping(self, clip_type): - opt = gradient_descent.SGD(learning_rate=1.0, **{clip_type: 2.0}) - config = opt.get_config() - opt = gradient_descent.SGD.from_config(config) - self.assertEqual(getattr(opt, clip_type), 2.0) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testInvalidKwargs(self): - with self.assertRaisesRegex(TypeError, "Unexpected keyword argument"): - gradient_descent.SGD(learning_rate=1.0, invalidkwargs=1.0) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testWeights(self): - with test_utils.use_gpu(): - opt1 = adam.Adam(learning_rate=1.0) - var1 = tf.Variable([1.0, 2.0], dtype=tf.float32) - loss1 = lambda: 3 * var1 - opt_op_1 = opt1.minimize(loss1, [var1]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - config = opt1.get_config() - opt2 = adam.Adam.from_config(config) - var2 = tf.Variable([1.0, 2.0], dtype=tf.float32) - loss2 = lambda: 3 * var2 - opt_op_2 = opt2.minimize(loss2, [var2]) - weights = opt1.get_weights() - - # Assert set_weights and both variables get updated to same value. - self.evaluate(tf.compat.v1.global_variables_initializer()) - opt2.set_weights(weights) - self.evaluate([opt_op_1, opt_op_2]) - self.assertAllClose(self.evaluate(var1), self.evaluate(var2)) - self.assertEqual(1, self.evaluate(opt1.iterations)) - self.assertEqual(1, self.evaluate(opt2.iterations)) - - var3 = tf.Variable([1.0, 2.0, 3.0], dtype=tf.float32) - var4 = tf.Variable([4.0, 5.0, 6.0], dtype=tf.float32) - loss3 = lambda: 3 * var3 + 5 * var4 - opt_op_3 = opt1.minimize(loss3, [var3, var4]) - - # Assert set_weights with ValueError since weight list does not - # match. - self.evaluate(tf.compat.v1.global_variables_initializer()) - weights = opt1.get_weights() - with self.assertRaisesRegex(ValueError, "but the optimizer was"): - opt2.set_weights(weights) - - # Assert set_weights and variables get updated to same value. - var5 = tf.Variable([1.0, 2.0, 3.0], dtype=tf.float32) - var6 = tf.Variable([4.0, 5.0, 6.0], dtype=tf.float32) - loss4 = lambda: 3 * var5 + 5 * var6 - opt_op_4 = opt2.minimize(loss4, [var5, var6]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - opt2.set_weights(weights) - self.evaluate([opt_op_3, opt_op_4]) - self.assertAllClose( - self.evaluate([var3, var4]), self.evaluate([var5, var6]) - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testGettingHyperParameters(self): - with self.test_session(): - opt = adam.Adam(learning_rate=1.0) - var = tf.Variable([1.0, 2.0], dtype=tf.float32) - loss = lambda: 3 * var - opt_op = opt.minimize(loss, [var]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - - lr = self.evaluate(opt.lr) - self.assertEqual(1.0, lr) - - opt.lr = 2.0 - lr = self.evaluate(opt.lr) - self.assertEqual(2.0, lr) - - self.evaluate(opt.lr.assign(3.0)) - lr = self.evaluate(opt.lr) - self.assertEqual(3.0, lr) - - with self.assertRaises(AttributeError): - opt.not_an_attr += 3 - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testGettingHyperParametersWithLrInConstructor(self): - with self.test_session(): - opt = gradient_descent.SGD(lr=3.0) - var = tf.Variable([1.0, 2.0], dtype=tf.float32) - loss = lambda: 3 * var - opt_op = opt.minimize(loss, [var]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - - self.assertIsInstance(opt.lr, tf.Variable) - self.assertIsInstance(opt.learning_rate, tf.Variable) - - lr = self.evaluate(opt.lr) - self.assertEqual(3.0, lr) - - opt.lr = 2.0 - lr = self.evaluate(opt.lr) - self.assertEqual(2.0, lr) - - self.evaluate(opt.lr.assign(4.0)) - lr = self.evaluate(opt.lr) - self.assertEqual(4.0, lr) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testDir(self): - opt = gradient_descent.SGD(learning_rate=1.0, momentum=0.1) - dir_result = set(dir(opt)) - self.assertIn("learning_rate", dir_result) # Hyperparameter - self.assertIn("lr", dir_result) # Hyperparameter - self.assertIn("momentum", dir_result) # Hyperparameter - self.assertIn("nesterov", dir_result) # Attribute - self.assertIn("minimize", dir_result) # Attribute - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testOptimizerWithKerasModel(self): - a = input_layer.Input(shape=(3,), name="input_a") - b = input_layer.Input(shape=(3,), name="input_b") - - dense = core.Dense(4, name="dense") - c = dense(a) - d = dense(b) - e = regularization.Dropout(0.5, name="dropout")(c) - - model = training.Model([a, b], [d, e]) - - optimizer = gradient_descent.SGD(learning_rate=0.001) - loss = "mse" - model.compile(optimizer, loss, metrics=["mae"]) - - input_a_np = np.random.random((10, 3)) - input_b_np = np.random.random((10, 3)) - - output_d_np = np.random.random((10, 4)) - output_e_np = np.random.random((10, 4)) - - model.fit( - [input_a_np, input_b_np], - [output_d_np, output_e_np], - epochs=1, - batch_size=5, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testOptimizerWithCallbacks(self): - np.random.seed(1331) - input_np = np.random.random((10, 3)) - output_np = np.random.random((10, 4)) - a = input_layer.Input(shape=(3,), name="input_a") - model = sequential.Sequential() - model.add(core.Dense(4, kernel_initializer="zeros", name="dense")) - model.add(regularization.Dropout(0.5, name="dropout")) - model(a) - optimizer = gradient_descent.SGD(learning_rate=0.1) - model.compile(optimizer, loss="mse", metrics=["mae"]) - # This does not reduce the LR after the first epoch (due to low delta). - cbks = [ - callbacks.ReduceLROnPlateau( - monitor="val_loss", - factor=0.1, - min_delta=0, - patience=1, - cooldown=5, - ) - ] - model.fit( - input_np, - output_np, - batch_size=10, - validation_data=(input_np, output_np), - callbacks=cbks, - epochs=2, - verbose=0, - ) - self.assertAllClose( - float(backend.get_value(model.optimizer.lr)), 0.1, atol=1e-4 - ) - - # This should reduce the LR after the first epoch (due to high delta). - cbks = [ - callbacks.ReduceLROnPlateau( - monitor="val_loss", - factor=0.1, - min_delta=10, - patience=1, - cooldown=5, - ) - ] - model.fit( - input_np, - output_np, - batch_size=10, - validation_data=(input_np, output_np), - callbacks=cbks, - epochs=2, - verbose=2, - ) - self.assertAllClose( - float(backend.get_value(model.optimizer.lr)), 0.01, atol=1e-4 - ) - - def testOptimizerSetIterations(self): - global_step = tf.compat.v1.train.get_or_create_global_step() - opt = adam.Adam(learning_rate=1.0) - opt.iterations = global_step - var = tf.Variable([1.0, 2.0], dtype=tf.float32) - self.evaluate(tf.compat.v1.global_variables_initializer()) - init_step_value = self.evaluate(global_step) - loss = lambda: 3 * var - opt_op = opt.minimize(loss, [var]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - new_step_value = self.evaluate(global_step) - self.assertEqual(new_step_value, init_step_value + 1) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testOptimizerWithCallableVarList(self): - train_samples = 20 - input_dim = 1 - num_classes = 2 - (x, y), _ = test_utils.get_test_data( - train_samples=train_samples, - test_samples=10, - input_shape=(input_dim,), - num_classes=num_classes, - ) - y = np_utils.to_categorical(y) - - num_hidden = 1 - model = test_utils.get_small_sequential_mlp( - num_hidden=num_hidden, num_classes=num_classes - ) - opt = adam.Adam() - - loss = lambda: losses.mean_squared_error(model(x), y) - var_list = lambda: model.trainable_weights - - with self.assertRaisesRegex( - ValueError, "Weights for model .* have not yet been created" - ): - var_list() - train_op = opt.minimize(loss, var_list) - if not tf.executing_eagerly(): - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertEqual( - [[0.0]], self.evaluate(opt.get_slot(var_list()[0], "m")) - ) - self.evaluate(train_op) - self.assertNotEqual( - [[0.0]], self.evaluate(opt.get_slot(var_list()[0], "m")) - ) - self.assertLen(var_list(), 4) - - def testVarKey(self): - with tf.compat.v1.get_default_graph().as_default(): - a = tf.Variable([1.0, 2.0], name="var") - b = tf.Variable([1.0], name="var") - self.assertTrue(a._in_graph_mode) - self.assertTrue(b._in_graph_mode) - var_key = optimizer_v2._var_key(a) - self.assertEqual("var", var_key) - var_key = optimizer_v2._var_key(b) - self.assertEqual("var_1", var_key) - - def testVarName(self): - with tf.compat.v1.get_default_graph().as_default(): - var = tf.Variable([1.0, 2.0], name="var") - loss = var + 1.0 - opt = adam.Adam() - opt.get_updates(loss, [var]) - opt_vars = opt.variables() - self.assertLen(opt_vars, 3) - self.assertEqual("Adam/iter:0", opt_vars[0].name) - self.assertEqual("Adam/var/m:0", opt_vars[1].name) - var_2 = tf.Variable([1.0, 2.0], name="var_2") - loss = var_2 + 1.0 - with backend.name_scope("outter"): - opt.get_updates(loss, [var_2]) - opt_vars = opt.variables() - self.assertLen(opt_vars, 5) - self.assertEqual("outter/Adam/var_2/m:0", opt_vars[3].name) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testEmptyVarList(self): - opt = gradient_descent.SGD(1.0) - opt.minimize(lambda: tf.constant(1.0), []) - opt.apply_gradients([]) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testAggregationTrue(self): - # Test that experimental_aggregate_gradients=True works without - # distributed strategy. - var = tf.Variable([1.0, 2.0]) - opt = gradient_descent.SGD(3.0) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose([1.0, 2.0], self.evaluate(var)) - opt_op = opt.apply_gradients( - [([0.1, 0.1], var)], experimental_aggregate_gradients=True - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - self.assertAllClose([0.7, 1.7], self.evaluate(var)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testAggregationFalse(self): - # Test that experimental_aggregate_gradients=False works without - # distributed strategy. - var = tf.Variable([1.0, 2.0]) - opt = gradient_descent.SGD(3.0) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose([1.0, 2.0], self.evaluate(var)) - opt_op = opt.apply_gradients( - [([0.1, 0.1], var)], experimental_aggregate_gradients=False - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - self.assertAllClose([0.7, 1.7], self.evaluate(var)) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testRestoringIterationsWithoutAnOptimizer(self): - opt = gradient_descent.SGD(3.0) - opt.iterations.assign(5) - checkpoint = tf.train.Checkpoint(optimizer=opt) - path = checkpoint.save(self.get_temp_dir()) - - # Following verifies that the `iterations` can be restored with the - # absence of an `Optimizer` object (using a `Checkpoint` as a - # placeholder). - iterations_var = tf.Variable(0, dtype=tf.int64) - optimizer_checkpoint = tf.train.Checkpoint(iter=iterations_var) - checkpoint_to_restore = tf.train.Checkpoint( - optimizer=optimizer_checkpoint - ) - checkpoint_to_restore.restore(path) - - self.assertEqual(5, self.evaluate(iterations_var)) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testSlotWithNonstandardShapeRestoresBasedOnCheckpoint(self): - # First create an optimizer and a slot variable with a non-standard - # shape. - x = tf.Variable([[1.0, 2.0], [3.0, 4.0]], dtype=tf.float32) - slot_shape = [2, 1] - optimizer_1 = optimizer_v2.OptimizerV2(name="test") - optimizer_1.add_slot(x, "test_slot", "ones", shape=slot_shape) - - # Then save the variable and optimizer to a checkpoint. - checkpoint_1 = tf.train.Checkpoint(var=x, optimizer=optimizer_1) - checkpoint_path = checkpoint_1.save(self.get_temp_dir()) - - # Create a new optimizer and call restore on it (and x) - optimizer_2 = optimizer_v2.OptimizerV2(name="test") - checkpoint_2 = tf.train.Checkpoint(var=x, optimizer=optimizer_2) - checkpoint_2.restore(checkpoint_path) - - self.assertEqual( - slot_shape, optimizer_2.get_slot(x, "test_slot").shape.as_list() - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_gradient_aggregator(self): - def gradient_aggregator(grads_and_vars): - # Simulate an all-reduce where the other replica has zeros for - # gradients, by dividing each gradient by 2. - grads = [g for g, _ in grads_and_vars] - vars = [v for _, v in grads_and_vars] - all_reduced_grads = [g / 2 for g in grads] - return list(zip(all_reduced_grads, vars)) - - var = tf.Variable(2.0) - sgd = gradient_descent.SGD(1.0, gradient_aggregator=gradient_aggregator) - loss = lambda: 2 * var - opt_op = sgd.minimize(loss, var_list=[var]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - self.assertEqual(self.evaluate(var), 1.0) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_override_aggregate_gradients(self): - class MyOptimizer(gradient_descent.SGD): - def _aggregate_gradients(self, grads_and_vars): - # Simulate an all-reduce where the other replica has zeros for - # gradients, by dividing each gradient by 2. - grads = [g for g, _ in grads_and_vars] - vars = [v for _, v in grads_and_vars] - all_reduced_grads = [g / 2 for g in grads] - return list(zip(all_reduced_grads, vars)) - - var = tf.Variable(2.0) - sgd = MyOptimizer(1.0) - loss = lambda: 2 * var - opt_op = sgd.minimize(loss, var_list=[var]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - self.assertEqual(self.evaluate(var), 1.0) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_create_slots_for_sharded_variables(self): - # set names so that ShardedVariable is well-named for slot variable - # keying. - var_a = tf.Variable([1.0], name="part_0") - var_b = tf.Variable([2.0], name="part_1") - sharded_var = tf.__internal__.distribute.ShardedVariable([var_a, var_b]) - - opt = adagrad.Adagrad() - opt._create_slots(sharded_var.variables) - opt._create_slots_for_sharded_variables(sharded_var.variables) - - sharded_slot = opt.get_slot(sharded_var, "accumulator") - self.assertIsInstance( - sharded_slot, tf.__internal__.distribute.ShardedVariable - ) - - slot_a = opt.get_slot(var_a, "accumulator") - self.assertAllClose(sharded_slot.variables[0], slot_a) - slot_b = opt.get_slot(var_b, "accumulator") - self.assertAllClose(sharded_slot.variables[1], slot_b) - - -@test_combinations.run_all_keras_modes -class OptimizersCompatibilityTest(test_combinations.TestCase): - def _testOptimizersCompatibility(self, opt_v1, opt_v2, test_weights=True): - if tf.executing_eagerly(): - self.skipTest("v1 optimizer does not run in eager mode") - np.random.seed(1331) - with test_utils.use_gpu(): - train_samples = 20 - input_dim = 3 - num_classes = 2 - (x, y), _ = test_utils.get_test_data( - train_samples=train_samples, - test_samples=10, - input_shape=(input_dim,), - num_classes=num_classes, - ) - y = np_utils.to_categorical(y) - - num_hidden = 5 - model_v1 = test_utils.get_small_sequential_mlp( - num_hidden=num_hidden, - num_classes=num_classes, - input_dim=input_dim, - ) - model_v1.compile( - opt_v1, - loss="categorical_crossentropy", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - model_v1.fit(x, y, batch_size=5, epochs=1) - - model_v2 = test_utils.get_small_sequential_mlp( - num_hidden=num_hidden, - num_classes=num_classes, - input_dim=input_dim, - ) - model_v2.set_weights(model_v1.get_weights()) - model_v2.compile( - opt_v2, - loss="categorical_crossentropy", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - if not tf.compat.v1.executing_eagerly_outside_functions(): - model_v2._make_train_function() - if test_weights: - opt_v2.set_weights(opt_v1.get_weights()) - - hist_1 = model_v1.fit(x, y, batch_size=5, epochs=1, shuffle=False) - hist_2 = model_v2.fit(x, y, batch_size=5, epochs=1, shuffle=False) - self.assertAllClose( - model_v1.get_weights(), - model_v2.get_weights(), - rtol=1e-5, - atol=1e-5, - ) - self.assertAllClose( - hist_1.history["loss"], - hist_2.history["loss"], - rtol=1e-5, - atol=1e-5, - ) - - def testAdadeltaCompatibility(self): - opt_v1 = optimizer_v1.Adadelta(lr=0.01) - opt_v2 = adadelta.Adadelta(learning_rate=0.01) - self._testOptimizersCompatibility(opt_v1, opt_v2) - - def testAdagradCompatibility(self): - opt_v1 = optimizer_v1.Adagrad(lr=0.01) - opt_v2 = adagrad.Adagrad(learning_rate=0.01) - self._testOptimizersCompatibility(opt_v1, opt_v2) - - def testAdamCompatibility(self): - opt_v1 = optimizer_v1.Adam() - opt_v2 = adam.Adam() - self._testOptimizersCompatibility(opt_v1, opt_v2) - - def testAdamaxCompatibility(self): - opt_v1 = optimizer_v1.Adamax(lr=0.01) - opt_v2 = adamax.Adamax(learning_rate=0.01) - self._testOptimizersCompatibility(opt_v1, opt_v2) - - def testNadamCompatibility(self): - opt_v1 = optimizer_v1.Nadam(lr=0.001) - opt_v2 = nadam.Nadam(learning_rate=0.001) - self._testOptimizersCompatibility(opt_v1, opt_v2) - - def testMomentumCompatibility(self): - opt_v1 = optimizer_v1.SGD(lr=0.01, momentum=0.9) - opt_v2 = gradient_descent.SGD(learning_rate=0.01, momentum=0.9) - self._testOptimizersCompatibility(opt_v1, opt_v2) - - def testRMSpropCompatibility(self): - opt_v1 = optimizer_v1.RMSprop() - opt_v2 = rmsprop.RMSprop() - self._testOptimizersCompatibility(opt_v1, opt_v2) - - def testSGDCompatibility(self): - opt_v1 = optimizer_v1.SGD(lr=0.01) - opt_v2 = gradient_descent.SGD(learning_rate=0.01) - self._testOptimizersCompatibility(opt_v1, opt_v2, False) - - def testNumericEquivalenceForNesterovMomentum(self): - if tf.executing_eagerly(): - self.skipTest("v1 optimizer does not run in eager mode") - np.random.seed(1331) - with test_utils.use_gpu(): - train_samples = 20 - input_dim = 3 - num_classes = 2 - (x, y), _ = test_utils.get_test_data( - train_samples=train_samples, - test_samples=10, - input_shape=(input_dim,), - num_classes=num_classes, - ) - y = np_utils.to_categorical(y) - - num_hidden = 5 - model_k_v1 = test_utils.get_small_sequential_mlp( - num_hidden=num_hidden, - num_classes=num_classes, - input_dim=input_dim, - ) - model_k_v2 = test_utils.get_small_sequential_mlp( - num_hidden=num_hidden, - num_classes=num_classes, - input_dim=input_dim, - ) - model_k_v2.set_weights(model_k_v1.get_weights()) - model_tf = test_utils.get_small_sequential_mlp( - num_hidden=num_hidden, - num_classes=num_classes, - input_dim=input_dim, - ) - model_tf.set_weights(model_k_v2.get_weights()) - - opt_k_v1 = optimizer_v1.SGD(momentum=0.9, nesterov=True) - opt_k_v2 = gradient_descent.SGD(momentum=0.9, nesterov=True) - opt_tf = tf.compat.v1.train.MomentumOptimizer( - learning_rate=0.01, momentum=0.9, use_nesterov=True - ) - - model_k_v1.compile( - opt_k_v1, - loss="categorical_crossentropy", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - model_k_v2.compile( - opt_k_v2, - loss="categorical_crossentropy", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - model_tf.compile( - opt_tf, - loss="categorical_crossentropy", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - - hist_k_v1 = model_k_v1.fit( - x, y, batch_size=5, epochs=10, shuffle=False - ) - hist_k_v2 = model_k_v2.fit( - x, y, batch_size=5, epochs=10, shuffle=False - ) - hist_tf = model_tf.fit(x, y, batch_size=5, epochs=10, shuffle=False) - - self.assertAllClose( - model_k_v1.get_weights(), model_tf.get_weights() - ) - self.assertAllClose( - model_k_v1.get_weights(), model_k_v2.get_weights() - ) - self.assertAllClose(opt_k_v1.get_weights(), opt_k_v2.get_weights()) - self.assertAllClose( - hist_k_v1.history["loss"], hist_tf.history["loss"] - ) - self.assertAllClose( - hist_k_v1.history["loss"], hist_k_v2.history["loss"] - ) - - def testNumericEquivalenceForAmsgrad(self): - if tf.executing_eagerly(): - self.skipTest("v1 optimizer does not run in eager mode") - np.random.seed(1331) - with test_utils.use_gpu(): - train_samples = 20 - input_dim = 3 - num_classes = 2 - (x, y), _ = test_utils.get_test_data( - train_samples=train_samples, - test_samples=10, - input_shape=(input_dim,), - num_classes=num_classes, - ) - y = np_utils.to_categorical(y) - - num_hidden = 5 - model_k_v1 = test_utils.get_small_sequential_mlp( - num_hidden=num_hidden, - num_classes=num_classes, - input_dim=input_dim, - ) - model_k_v2 = test_utils.get_small_sequential_mlp( - num_hidden=num_hidden, - num_classes=num_classes, - input_dim=input_dim, - ) - model_k_v2.set_weights(model_k_v1.get_weights()) - - opt_k_v1 = optimizer_v1.Adam(amsgrad=True) - opt_k_v2 = adam.Adam(amsgrad=True) - - model_k_v1.compile( - opt_k_v1, - loss="categorical_crossentropy", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - model_k_v2.compile( - opt_k_v2, - loss="categorical_crossentropy", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - - hist_k_v1 = model_k_v1.fit( - x, y, batch_size=5, epochs=10, shuffle=False - ) - hist_k_v2 = model_k_v2.fit( - x, y, batch_size=5, epochs=10, shuffle=False - ) - - self.assertAllClose( - model_k_v1.get_weights(), model_k_v2.get_weights() - ) - self.assertAllClose(opt_k_v1.get_weights(), opt_k_v2.get_weights()) - self.assertAllClose( - hist_k_v1.history["loss"], hist_k_v2.history["loss"] - ) - - -# Note: These tests are kept in a separate class to avoid bugs in some -# distributions of Python that break AutoGraph which is used by tf.function. -@test_combinations.generate(test_combinations.combine(mode=["eager"])) -class OptimizerWithFunctionTest(tf.test.TestCase, parameterized.TestCase): - def testBasic(self): - var = tf.Variable([1.0, 2.0], dtype=tf.float32) - loss = lambda: 3 * var - opt = adam.Adam(learning_rate=1.0) - - @tf.function - def fn(): - opt.minimize(loss, [var]) - return var - - self.assertAllClose([0.0, 1.0], fn(), atol=1e-4) - self.assertAllClose([-1, 0.0], fn(), atol=1e-4) - - def testBasicWithConstantDecay(self): - var = tf.Variable([1.0, 2.0], dtype=tf.float32) - loss = lambda: 3 * var - opt = adam.Adam(learning_rate=1.0) - - @tf.function - def fn(): - opt.minimize(loss, [var]) - return var - - self.assertAllClose([0.0, 1.0], fn(), atol=1e-4) - self.assertAllClose([-1, 0.0], fn(), atol=1e-4) - - def testVarKeyWithVarCreatedInEager(self): - a = tf.Variable([1.0, 2.0], name="var") - b = tf.Variable([1.0], name="var") - - @tf_test_utils.also_run_as_tf_function - def var_key_test(): - self.assertFalse(a._in_graph_mode) - self.assertFalse(b._in_graph_mode) - var_key_a = optimizer_v2._var_key(a) - self.assertStartsWith(var_key_a, "var_") - var_key_b = optimizer_v2._var_key(b) - self.assertStartsWith(var_key_b, "var_") - self.assertNotEqual(var_key_a, var_key_b) - - var_key_test() - - def testLearningRateDecayUsedInTwoFunctions(self): - a = tf.Variable([1.0, 2.0], name="var") - b = tf.Variable([1.0], name="var") - - learning_rate_decay = learning_rate_schedule.InverseTimeDecay( - 0.5, decay_steps=1.0, decay_rate=0.5 - ) - opt = adam.Adam(learning_rate=learning_rate_decay) - loss_a = lambda: 3 * a - loss_b = lambda: 2 * b - - @tf.function - def fn_a(): - opt.minimize(loss_a, [a]) - return a - - @tf.function - def fn_b(): - opt.minimize(loss_b, [b]) - return b - - fn_a() - fn_b() - - -_NUM_LEARNERS = 50 -APPLY_SCOPE = "debug_apply" -ALLOWLIST = [ - # optimizer_v2._deduplicate_indexed_slices contains an indexed slice: - # array_ops.shape(unique_indices)[0] - # which winds up expanding to [0:1:1] thereby creating three constants - # to represent the indices. - ("embeddings/strided_slice/stack", "Const"), -] - - -def get_inputs(op): - op_inputs = list(op.inputs) + op.control_inputs - names = [i.name for i in op_inputs] - op_inputs = [getattr(i, "op", i) for i in op_inputs] - return op_inputs, names - - -def strip_name(node): - if "Placeholder" in node.op: - return - node.name = "" - - -def topological_sort(graph): - graph_ops = graph.get_operations() - - sources = [] - result = [] - - inputs = {} - outputs = collections.defaultdict(set) - for op in graph_ops: - op_inputs = get_inputs(op)[0] - if not op_inputs: - sources.append(op) - - inputs[op] = set(op_inputs) - for i in op_inputs: - outputs[i].add(op) - - while sources: - op = sources.pop() - for op_output in outputs[op]: - inputs[op_output].remove(op) - if not inputs[op_output]: - sources.append(op_output) - - result.append(op) - - # Check correctness. - if len(result) != len(graph_ops): - raise ValueError( - f"Sort result has {len(result)} ops, " - f"source graph has {len(graph_ops)}." - ) - - sort_check_seen = set() - for op in result: - sort_check_seen.add(op) - for i in get_inputs(op)[0]: - assert i in sort_check_seen - - return result - - -def identify_redundant_ops(graph): - """Implements basic common subexpression elimination. - - This is not intended to replicate the graph semantics of TensorFlow Graphs - (for instance it does not handle stateful op ordering), nor is it intended - to replace the common subexpression elimination Grappler pass. Rather, it - provides a high level sanity check that clearly redundant ops are not being - created. - - Args: - graph: The graph to be analyzed. - - Returns: - A count of the duplicate ops and a description of the structure of each. - """ - sorted_ops = topological_sort(graph) - duplicates = collections.defaultdict(list) - unified_node_defs = {} - name_map = {} - - for op in sorted_ops: - input_names = [] - for op_input, name in zip(*get_inputs(op)): - input_def = op_input.node_def - - # Operations can have multiple outputs. We track which is used to - # prevent overzealous elimination. - input_def.name = name - - input_def.input[:] = [name_map.get(i, i) for i in input_def.input] - strip_name(input_def) - - # NodeDef.SerializeToString() does not provide identical serialized - # representations for identical NodeDefs, so we instead use string - # representation as a dict key. - key = repr(input_def) - - if key in unified_node_defs: - input_names.append(unified_node_defs[key]) - - else: - unified_node_defs[key] = op_input.name - input_names.append(name) - - node_def = op.node_def - node_def.input[:] = input_names - strip_name(node_def) - - key = repr(node_def) - duplicates[key].append(op) - name_map[op.name] = duplicates[key][0].name - - num_duplicates = 0 - duplicate_types = [] - for standard_def, op_defs in duplicates.items(): - # We are only interested in testing the apply method of the optimizer - op_defs = [i for i in op_defs if APPLY_SCOPE in i.name] - - # We only check for per-apply redundant ops. - if len(op_defs) < _NUM_LEARNERS: - continue - - # Certain ops are simply not worth eliminating, and are instead simply - # ignored. - name, op_type = op_defs[0].name, op_defs[0].type - if any( - allowlisted_scope in name and op_type == allowlisted_type - for allowlisted_scope, allowlisted_type in ALLOWLIST - ): - continue - - num_duplicates += len(op_defs) - traceback = [] - for level in op_defs[0].traceback: - traceback.append(f" {level[0]} {level[2]}:{level[1]}") - - duplicate_types.append( - "# Example name: {}\n# Op creation stack:\n{}\n{}".format( - op_defs[0].name, "\n".join(traceback), standard_def - ) - ) - - return num_duplicates, duplicate_types - - -def make_model(): - r"""Constructs a simple ensemble of weak learners model. - - --------- --------- --------- --------- - | Input | | Input | ... | Input | | Input | - --------- --------- --------- --------- - | | | | - V V V V - --------- --------- --------- --------- - | Embed | | Embed | ... | Embed | | Embed | - --------- --------- --------- --------- - | | | | - V V V V - --------- --------- --------- --------- - | Dense | | Dense | ... | Dense | | Dense | - --------- --------- --------- --------- - \ | | / - \ | | / - --------------------------------------------- - | - --------- - | Dense | - --------- - - This topology is chosen because it exercises both dense and sparse update - paths. - - Returns: - A model for testing optimizer coefficient reuse. - """ - inputs = [] - intermediates = [] - for _ in range(_NUM_LEARNERS): - inp = keras.layers.Input(shape=(1,), dtype=tf.int32) - layer = keras.layers.Embedding(1, 4)(inp) - layer = keras.layers.Dense(1)(layer) - - inputs.append(inp) - intermediates.append(layer) - - layer = keras.layers.Concatenate(axis=-1)(intermediates) - layer = keras.layers.Dense(1)(layer) - - return keras.models.Model(inputs, layer) - - -COEFFICIENT_PARAMS = ( - ("Adadelta", adadelta.Adadelta, None), - ("Adagrad", adagrad.Adagrad, None), - ("Adam", adam.Adam, None), - ("Adam_amdgrad", adam.Adam, dict(amsgrad=True)), - ("Adamax", adamax.Adamax, None), - ("Ftrl", ftrl.Ftrl, None), - ( - "Ftrl_l2_shrinkage", - ftrl.Ftrl, - dict(l2_shrinkage_regularization_strength=0.1), - ), - ("SGD", gradient_descent.SGD, None), - ("SGD_momentum", gradient_descent.SGD, dict(momentum=0.5)), - ("Nadam", nadam.Nadam, None), - ("RMSprop", rmsprop.RMSprop, None), - ("RMSprop_centered", rmsprop.RMSprop, dict(centered=True)), - ("RMSprop_momentum", rmsprop.RMSprop, dict(momentum=0.5)), - ( - "RMSprop_momentum_centered", - rmsprop.RMSprop, - dict(momentum=0.5, centered=True), - ), -) - - -class OptimizerCoefficientTest(test_combinations.TestCase): - @parameterized.named_parameters(*COEFFICIENT_PARAMS) - def test_duplicate_ops(self, optimizer_class, init_kwargs=None): - init_kwargs = init_kwargs or {} - optimizer = optimizer_class(**init_kwargs) - - graph = tf.Graph() - with graph.as_default(): - model = make_model() - trainable_variables = model.trainable_variables - grads = optimizer.get_gradients( - model.outputs[0], trainable_variables - ) - - with backend.name_scope(APPLY_SCOPE): - optimizer.apply_gradients(zip(grads, trainable_variables)) - - num_duplicates, duplicate_types = identify_redundant_ops(graph) - if num_duplicates: - # Avoid spamming logs. - if len(duplicate_types) > 3: - duplicate_types = duplicate_types[:3] + ["..."] - - num_total = len(graph.get_operations()) - raise ValueError( - "{} of {} ({:.1f}%) ops were duplicates:\n\n{}".format( - num_duplicates, - num_total, - num_duplicates / num_total * 100, - "\n".join(duplicate_types), - ) - ) - - @parameterized.named_parameters(*COEFFICIENT_PARAMS) - def test_subclass_compat(self, optimizer_class, init_kwargs=None): - """Ensure that subclassed optimizers without apply_state still work.""" - - class SubclassedOptimizer(optimizer_class): - def _resource_apply_dense(self, grad, var): - return super()._resource_apply_dense(grad, var) - - def _resource_apply_sparse(self, grad, var, indices): - return super()._resource_apply_sparse(grad, var, indices) - - init_kwargs = init_kwargs or {} - optimizer = SubclassedOptimizer(**init_kwargs) - - graph = tf.Graph() - with graph.as_default(): - model = make_model() - trainable_variables = model.trainable_variables - grads = optimizer.get_gradients( - model.outputs[0], trainable_variables - ) - - with backend.name_scope(APPLY_SCOPE): - optimizer.apply_gradients(zip(grads, trainable_variables)) - - -class DeepcopyTests(tf.test.TestCase): - def setUp(self): - self.optimizer = adam.Adam(0.42) - super().setUp() - - def test_deepcopy(self): - clone = deepcopy(self.optimizer) - assert clone.get_config()["learning_rate"] == 0.42, "wrong lr" - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/optimizers/legacy/rmsprop.py b/keras/optimizers/legacy/rmsprop.py deleted file mode 100644 index 626c333398d..00000000000 --- a/keras/optimizers/legacy/rmsprop.py +++ /dev/null @@ -1,348 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""RMSprop optimizer implementation.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend_config -from keras.optimizers.legacy import optimizer_v2 - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.optimizers.legacy.RMSprop", - v1=["keras.optimizers.RMSprop", "keras.optimizers.legacy.RMSprop"], -) -class RMSprop(optimizer_v2.OptimizerV2): - r"""Optimizer that implements the RMSprop algorithm. - - The gist of RMSprop is to: - - - Maintain a moving (discounted) average of the square of gradients - - Divide the gradient by the root of this average - - This implementation of RMSprop uses plain momentum, not Nesterov momentum. - - The centered version additionally maintains a moving average of the - gradients, and uses that average to estimate the variance. - - Args: - learning_rate: A `Tensor`, floating point value, or a schedule that is a - `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable - that takes no arguments and returns the actual value to use. The - learning rate. Defaults to 0.001. - rho: Discounting factor for the history/coming gradient. Defaults to 0.9. - momentum: A scalar or a scalar `Tensor`. Defaults to 0.0. - epsilon: A small constant for numerical stability. This epsilon is - "epsilon hat" in the Kingma and Ba paper (in the formula just before - Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to - 1e-7. - centered: Boolean. If `True`, gradients are normalized by the estimated - variance of the gradient; if False, by the uncentered second moment. - Setting this to `True` may help with training, but is slightly more - expensive in terms of computation and memory. Defaults to `False`. - name: Optional name prefix for the operations created when applying - gradients. Defaults to `"RMSprop"`. - **kwargs: keyword arguments. Allowed arguments are `clipvalue`, - `clipnorm`, `global_clipnorm`. - If `clipvalue` (float) is set, the gradient of each weight - is clipped to be no higher than this value. - If `clipnorm` (float) is set, the gradient of each weight - is individually clipped so that its norm is no higher than this value. - If `global_clipnorm` (float) is set the gradient of all weights is - clipped so that their global norm is no higher than this value. - - Note that in the dense implementation of this algorithm, variables and their - corresponding accumulators (momentum, gradient moving average, square - gradient moving average) will be updated even if the gradient is zero - (i.e. accumulators will decay, momentum will be applied). The sparse - implementation (used when the gradient is an `IndexedSlices` object, - typically because of `tf.gather` or an embedding lookup in the forward pass) - will not update variable slices or their accumulators unless those slices - were used in the forward pass (nor is there an "eventual" correction to - account for these omitted updates). This leads to more efficient updates for - large embedding lookup tables (where most of the slices are not accessed in - a particular graph execution), but differs from the published algorithm. - - Usage: - - >>> opt = tf.keras.optimizers.legacy.RMSprop(learning_rate=0.1) - >>> var1 = tf.Variable(10.0) - >>> loss = lambda: (var1 ** 2) / 2.0 # d(loss) / d(var1) = var1 - >>> step_count = opt.minimize(loss, [var1]).numpy() - >>> var1.numpy() - 9.683772 - - Reference: - - [Hinton, 2012]( - http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) - """ - - _HAS_AGGREGATE_GRAD = True - - def __init__( - self, - learning_rate=0.001, - rho=0.9, - momentum=0.0, - epsilon=1e-7, - centered=False, - name="RMSprop", - **kwargs, - ): - """Construct a new RMSprop optimizer. - - Args: - learning_rate: A `Tensor`, floating point value, or a schedule that is - a `tf.keras.optimizers.schedules.LearningRateSchedule`, or a - callable that takes no arguments and returns the actual value to - use. The learning rate. Defaults to 0.001. - rho: Discounting factor for the history/coming gradient. Defaults to - 0.9. - momentum: A scalar or a scalar `Tensor`. Defaults to 0.0. - epsilon: A small constant for numerical stability. This epsilon is - "epsilon hat" in the Kingma and Ba paper (in the formula just before - Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults - to 1e-7. - centered: Boolean. If `True`, gradients are normalized by the - estimated variance of the gradient; if False, by the uncentered - second moment. Setting this to `True` may help with training, but - is slightly more expensive in terms of computation and memory. - Defaults to `False`. - name: Optional name prefix for the operations created when applying - gradients. Defaults to "RMSprop". - **kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, - `lr`, `decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is - clip gradients by value, `decay` is included for backward - compatibility to allow time inverse decay of learning rate. `lr` is - included for backward compatibility, recommended to use - `learning_rate` instead. - - @compatibility(eager) - When eager execution is enabled, `learning_rate`, `decay`, `momentum`, - and `epsilon` can each be a callable that takes no arguments and returns - the actual value to use. This can be useful for changing these values - across different invocations of optimizer functions. - @end_compatibility - """ - super().__init__(name, **kwargs) - self._set_hyper("learning_rate", kwargs.get("lr", learning_rate)) - self._set_hyper("decay", self._initial_decay) - self._set_hyper("rho", rho) - - self._momentum = False - if ( - isinstance(momentum, tf.Tensor) - or callable(momentum) - or momentum > 0 - ): - self._momentum = True - if isinstance(momentum, (int, float)) and ( - momentum < 0 or momentum > 1 - ): - raise ValueError( - "`momentum` must be between [0, 1]. Received: " - f"momentum={momentum} (of type {type(momentum)})." - ) - self._set_hyper("momentum", momentum) - - self.epsilon = epsilon or backend_config.epsilon() - self.centered = centered - - def _create_slots(self, var_list): - for var in var_list: - self.add_slot(var, "rms") - if self._momentum: - for var in var_list: - self.add_slot(var, "momentum") - if self.centered: - for var in var_list: - self.add_slot(var, "mg") - - def _prepare_local(self, var_device, var_dtype, apply_state): - super()._prepare_local(var_device, var_dtype, apply_state) - - rho = tf.identity(self._get_hyper("rho", var_dtype)) - apply_state[(var_device, var_dtype)].update( - dict( - neg_lr_t=-apply_state[(var_device, var_dtype)]["lr_t"], - epsilon=tf.convert_to_tensor(self.epsilon, var_dtype), - rho=rho, - momentum=tf.identity(self._get_hyper("momentum", var_dtype)), - one_minus_rho=1.0 - rho, - ) - ) - - def _resource_apply_dense(self, grad, var, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - rms = self.get_slot(var, "rms") - if self._momentum: - mom = self.get_slot(var, "momentum") - if self.centered: - mg = self.get_slot(var, "mg") - return tf.raw_ops.ResourceApplyCenteredRMSProp( - var=var.handle, - mg=mg.handle, - ms=rms.handle, - mom=mom.handle, - lr=coefficients["lr_t"], - rho=coefficients["rho"], - momentum=coefficients["momentum"], - epsilon=coefficients["epsilon"], - grad=grad, - use_locking=self._use_locking, - ) - else: - return tf.raw_ops.ResourceApplyRMSProp( - var=var.handle, - ms=rms.handle, - mom=mom.handle, - lr=coefficients["lr_t"], - rho=coefficients["rho"], - momentum=coefficients["momentum"], - epsilon=coefficients["epsilon"], - grad=grad, - use_locking=self._use_locking, - ) - else: - rms_t = coefficients["rho"] * rms + coefficients[ - "one_minus_rho" - ] * tf.square(grad) - rms_t = tf.compat.v1.assign( - rms, rms_t, use_locking=self._use_locking - ) - denom_t = rms_t - if self.centered: - mg = self.get_slot(var, "mg") - mg_t = ( - coefficients["rho"] * mg - + coefficients["one_minus_rho"] * grad - ) - mg_t = tf.compat.v1.assign( - mg, mg_t, use_locking=self._use_locking - ) - denom_t = rms_t - tf.square(mg_t) - var_t = var - coefficients["lr_t"] * grad / ( - tf.sqrt(denom_t) + coefficients["epsilon"] - ) - return tf.compat.v1.assign( - var, var_t, use_locking=self._use_locking - ).op - - def _resource_apply_sparse(self, grad, var, indices, apply_state=None): - var_device, var_dtype = var.device, var.dtype.base_dtype - coefficients = (apply_state or {}).get( - (var_device, var_dtype) - ) or self._fallback_apply_state(var_device, var_dtype) - - rms = self.get_slot(var, "rms") - if self._momentum: - mom = self.get_slot(var, "momentum") - if self.centered: - mg = self.get_slot(var, "mg") - return tf.raw_ops.ResourceSparseApplyCenteredRMSProp( - var=var.handle, - mg=mg.handle, - ms=rms.handle, - mom=mom.handle, - lr=coefficients["lr_t"], - rho=coefficients["rho"], - momentum=coefficients["momentum"], - epsilon=coefficients["epsilon"], - grad=grad, - indices=indices, - use_locking=self._use_locking, - ) - else: - return tf.raw_ops.ResourceSparseApplyRMSProp( - var=var.handle, - ms=rms.handle, - mom=mom.handle, - lr=coefficients["lr_t"], - rho=coefficients["rho"], - momentum=coefficients["momentum"], - epsilon=coefficients["epsilon"], - grad=grad, - indices=indices, - use_locking=self._use_locking, - ) - else: - rms_scaled_g_values = (grad * grad) * coefficients["one_minus_rho"] - rms_t = tf.compat.v1.assign( - rms, rms * coefficients["rho"], use_locking=self._use_locking - ) - with tf.control_dependencies([rms_t]): - rms_t = self._resource_scatter_add( - rms, indices, rms_scaled_g_values - ) - rms_slice = tf.gather(rms_t, indices) - denom_slice = rms_slice - if self.centered: - mg = self.get_slot(var, "mg") - mg_scaled_g_values = grad * coefficients["one_minus_rho"] - mg_t = tf.compat.v1.assign( - mg, mg * coefficients["rho"], use_locking=self._use_locking - ) - with tf.control_dependencies([mg_t]): - mg_t = self._resource_scatter_add( - mg, indices, mg_scaled_g_values - ) - mg_slice = tf.gather(mg_t, indices) - denom_slice = rms_slice - tf.square(mg_slice) - var_update = self._resource_scatter_add( - var, - indices, - coefficients["neg_lr_t"] - * grad - / (tf.sqrt(denom_slice) + coefficients["epsilon"]), - ) - if self.centered: - return tf.group(*[var_update, rms_t, mg_t]) - return tf.group(*[var_update, rms_t]) - - def set_weights(self, weights): - params = self.weights - # Override set_weights for backward compatibility of Keras V1 optimizer - # since it does not include iteration at head of the weight list. Set - # iteration to 0. - if len(params) == len(weights) + 1: - weights = [np.array(0)] + weights - super().set_weights(weights) - - def get_config(self): - config = super().get_config() - config.update( - { - "learning_rate": self._serialize_hyperparameter( - "learning_rate" - ), - "decay": self._initial_decay, - "rho": self._serialize_hyperparameter("rho"), - "momentum": self._serialize_hyperparameter("momentum"), - "epsilon": self.epsilon, - "centered": self.centered, - } - ) - return config - - -RMSProp = RMSprop diff --git a/keras/optimizers/legacy/rmsprop_test.py b/keras/optimizers/legacy/rmsprop_test.py deleted file mode 100644 index f47d3f6b671..00000000000 --- a/keras/optimizers/legacy/rmsprop_test.py +++ /dev/null @@ -1,814 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for rmsprop.""" - -import copy -import itertools -import math - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.optimizers.legacy import rmsprop -from keras.optimizers.schedules import learning_rate_schedule -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - -_DATA_TYPES = [tf.half, tf.float32, tf.float64, tf.complex64, tf.complex128] - -_TEST_PARAM_VALUES = [ - # learning_rate, rho, momentum, epsilon, centered - [0.05, 0.9, 0.0, 1e-3, True], - [0.05, 0.9, 0.0, 1e-3, False], - [0.1, 0.9, 0.0, 1e-3, True], - [0.01, 0.9, 0.0, 1e-5, True], - [0.01, 0.9, 0.9, 1e-5, True], -] - -_TESTPARAMS = [ - [data_type] + values - for data_type, values in itertools.product(_DATA_TYPES, _TEST_PARAM_VALUES) -] - - -class RMSpropOptimizerTest(tf.test.TestCase, parameterized.TestCase): - def _rmsprop_update_numpy( - self, var, g, mg, rms, mom, lr, rho, momentum, epsilon, centered - ): - rms_t = rms * rho + (1 - rho) * g * g - if centered: - mg_t = mg * rho + (1 - rho) * g - denom_t = rms_t - mg_t * mg_t - else: - mg_t = mg - denom_t = rms_t - if momentum > 0.0: - mom_t = momentum * mom + lr * g / (np.sqrt(denom_t + epsilon)) - var_t = var - mom_t - else: - mom_t = mom - var_t = var - lr * g / (np.sqrt(denom_t) + epsilon) - return var_t, mg_t, rms_t, mom_t - - def _sparse_rmsprop_update_numpy( - self, - var, - gindexs, - gvalues, - mg, - rms, - mom, - lr, - rho, - momentum, - epsilon, - centered, - ): - mg_t = copy.deepcopy(mg) - rms_t = copy.deepcopy(rms) - mom_t = copy.deepcopy(mom) - var_t = copy.deepcopy(var) - for i in range(len(gindexs)): - gindex = gindexs[i] - gvalue = gvalues[i] - rms_t[gindex] = rms[gindex] * rho + (1 - rho) * gvalue * gvalue - if centered: - mg_t[gindex] = mg_t[gindex] * rho + (1 - rho) * gvalue - denom_t = rms_t[gindex] - mg_t[gindex] * mg_t[gindex] - else: - denom_t = rms_t[gindex] - if momentum > 0.0: - mom_t[gindex] = momentum * mom[gindex] + lr * gvalue / np.sqrt( - denom_t + epsilon - ) - var_t[gindex] = var[gindex] - mom_t[gindex] - else: - mom_t[gindex] = mom[gindex] - var_t[gindex] = var[gindex] - lr * gvalue / ( - np.sqrt(denom_t) + epsilon - ) - return var_t, mg_t, rms_t, mom_t - - def testDense(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for ( - dtype, - learning_rate, - rho, - momentum, - epsilon, - centered, - ) in _TESTPARAMS: - with tf.compat.v1.get_default_graph().as_default(), test_utils.use_gpu(): # noqa: E501 - # Initialize variables for numpy implementation. - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1, 0.2], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01, 0.2], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np, dtype=dtype) - var1 = tf.Variable(var1_np, dtype=dtype) - grads0 = tf.constant(grads0_np, dtype=dtype) - grads1 = tf.constant(grads1_np, dtype=dtype) - opt = rmsprop.RMSprop( - learning_rate=learning_rate, - rho=rho, - momentum=momentum, - epsilon=epsilon, - centered=centered, - ) - - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - if centered: - mg0 = opt.get_slot(var0, "mg") - mg1 = opt.get_slot(var1, "mg") - else: - mg0 = None - mg1 = None - - if momentum > 0.0: - mom0 = opt.get_slot(var0, "momentum") - mom1 = opt.get_slot(var1, "momentum") - else: - mom0 = None - mom1 = None - - rms0 = opt.get_slot(var0, "rms") - self.assertIsNotNone(rms0) - rms1 = opt.get_slot(var1, "rms") - self.assertIsNotNone(rms1) - - mg0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - mg1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - rms0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - rms1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - mom0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - mom1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - - # Run 3 steps of RMSprop - for _ in range(1, 4): - self.evaluate(update) - - ( - var0_np, - mg0_np, - rms0_np, - mom0_np, - ) = self._rmsprop_update_numpy( - var0_np, - grads0_np, - mg0_np, - rms0_np, - mom0_np, - learning_rate, - rho, - momentum, - epsilon, - centered, - ) - ( - var1_np, - mg1_np, - rms1_np, - mom1_np, - ) = self._rmsprop_update_numpy( - var1_np, - grads1_np, - mg1_np, - rms1_np, - mom1_np, - learning_rate, - rho, - momentum, - epsilon, - centered, - ) - - # Validate updated params - if centered: - self.assertAllCloseAccordingToType( - mg0_np, self.evaluate(mg0) - ) - self.assertAllCloseAccordingToType( - mg1_np, self.evaluate(mg1) - ) - if momentum > 0.0: - self.assertAllCloseAccordingToType( - mom0_np, self.evaluate(mom0) - ) - self.assertAllCloseAccordingToType( - mom1_np, self.evaluate(mom1) - ) - self.assertAllCloseAccordingToType( - rms0_np, self.evaluate(rms0) - ) - self.assertAllCloseAccordingToType( - rms1_np, self.evaluate(rms1) - ) - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - def testDenseWithLearningRateDecay(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - var0_np = np.array([1.0, 2.0]) - grads0_np = np.array([0.1, 0.2]) - var1_np = np.array([3.0, 4.0]) - grads1_np = np.array([0.01, 0.2]) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - learning_rate = 0.01 - rho = 0.9 - momentum = 0.0 - epsilon = 1e-7 - centered = False - decay = 0.5 - opt = rmsprop.RMSprop( - learning_rate=learning_rate, - rho=rho, - momentum=momentum, - epsilon=epsilon, - centered=centered, - decay=decay, - ) - - update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - rms0 = opt.get_slot(var0, "rms") - self.assertIsNotNone(rms0) - rms1 = opt.get_slot(var1, "rms") - self.assertIsNotNone(rms1) - if momentum > 0.0: - mom0 = opt.get_slot(var0, "momentum") - mom1 = opt.get_slot(var1, "momentum") - else: - mom0 = None - mom1 = None - - mg0_np = np.array([0.0, 0.0]) - mg1_np = np.array([0.0, 0.0]) - rms0_np = np.array([0.0, 0.0]) - rms1_np = np.array([0.0, 0.0]) - mom0_np = np.array([0.0, 0.0]) - mom1_np = np.array([0.0, 0.0]) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - - # Run 4 steps of RMSprop - for t in range(2): - self.evaluate(update) - - lr = learning_rate / (1 + decay * t) - var0_np, mg0_np, rms0_np, mom0_np = self._rmsprop_update_numpy( - var0_np, - grads0_np, - mg0_np, - rms0_np, - mom0_np, - lr, - rho, - momentum, - epsilon, - centered, - ) - var1_np, mg1_np, rms1_np, mom1_np = self._rmsprop_update_numpy( - var1_np, - grads1_np, - mg1_np, - rms1_np, - mom1_np, - lr, - rho, - momentum, - epsilon, - centered, - ) - - # Validate updated params - self.assertAllCloseAccordingToType(rms0_np, self.evaluate(rms0)) - self.assertAllCloseAccordingToType(rms1_np, self.evaluate(rms1)) - if momentum > 0.0: - self.assertAllCloseAccordingToType( - mom0_np, self.evaluate(mom0) - ) - self.assertAllCloseAccordingToType( - mom1_np, self.evaluate(mom1) - ) - self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) - self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) - - def testDenseWithLearningRateInverseTimeDecay(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - var0_np = np.array([1.0, 2.0]) - grads0_np = np.array([0.1, 0.2]) - var1_np = np.array([3.0, 4.0]) - grads1_np = np.array([0.01, 0.2]) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - learning_rate = 0.01 - rho = 0.9 - momentum = 0.0 - epsilon = 1e-7 - centered = False - decay = 0.5 - lr_schedule = learning_rate_schedule.InverseTimeDecay( - learning_rate, decay_steps=1.0, decay_rate=decay - ) - opt = rmsprop.RMSprop( - learning_rate=lr_schedule, - rho=rho, - momentum=momentum, - epsilon=epsilon, - centered=centered, - ) - - update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - rms0 = opt.get_slot(var0, "rms") - self.assertIsNotNone(rms0) - rms1 = opt.get_slot(var1, "rms") - self.assertIsNotNone(rms1) - if momentum > 0.0: - mom0 = opt.get_slot(var0, "momentum") - mom1 = opt.get_slot(var1, "momentum") - else: - mom0 = None - mom1 = None - - mg0_np = np.array([0.0, 0.0]) - mg1_np = np.array([0.0, 0.0]) - rms0_np = np.array([0.0, 0.0]) - rms1_np = np.array([0.0, 0.0]) - mom0_np = np.array([0.0, 0.0]) - mom1_np = np.array([0.0, 0.0]) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - - # Run 4 steps of RMSprop - for t in range(2): - self.evaluate(update) - - lr = learning_rate / (1 + decay * t) - var0_np, mg0_np, rms0_np, mom0_np = self._rmsprop_update_numpy( - var0_np, - grads0_np, - mg0_np, - rms0_np, - mom0_np, - lr, - rho, - momentum, - epsilon, - centered, - ) - var1_np, mg1_np, rms1_np, mom1_np = self._rmsprop_update_numpy( - var1_np, - grads1_np, - mg1_np, - rms1_np, - mom1_np, - lr, - rho, - momentum, - epsilon, - centered, - ) - - # Validate updated params - self.assertAllCloseAccordingToType(rms0_np, self.evaluate(rms0)) - self.assertAllCloseAccordingToType(rms1_np, self.evaluate(rms1)) - if momentum > 0.0: - self.assertAllCloseAccordingToType( - mom0_np, self.evaluate(mom0) - ) - self.assertAllCloseAccordingToType( - mom1_np, self.evaluate(mom1) - ) - self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) - self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) - - def testMinimizeSparseResourceVariable(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in _DATA_TYPES: - var0 = tf.Variable([[1.0, 2.0]], dtype=dtype) - x = tf.constant([[4.0], [5.0]], dtype=dtype) - - def loss(): - pred = tf.matmul( - tf.compat.v1.nn.embedding_lookup([var0], [0]), x - ) - return pred * pred - - sgd_op = rmsprop.RMSprop( - learning_rate=1.0, - rho=0.0, - momentum=0.0, - epsilon=0.0, - centered=False, - ).minimize(loss, var_list=[var0]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Fetch params to validate initial values - self.assertAllCloseAccordingToType( - [[1.0, 2.0]], self.evaluate(var0) - ) - # Run 1 step of sgd - self.evaluate(sgd_op) - # Validate updated params - self.assertAllCloseAccordingToType( - [[0.0, 1.0]], self.evaluate(var0), atol=0.01 - ) - - def testMinimizeSparseResourceVariableCentered(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - for dtype in _DATA_TYPES: - var0 = tf.Variable([[1.0, 2.0]], dtype=dtype) - x = tf.constant([[4.0], [5.0]], dtype=dtype) - - def loss(): - pred = tf.matmul( - tf.compat.v1.nn.embedding_lookup([var0], [0]), x - ) - return pred * pred - - # loss = lambda: pred * pred - # disable=cell-var-from-loop - sgd_op = rmsprop.RMSprop( - learning_rate=1.0, - rho=0.0, - momentum=0.0, - epsilon=1.0, - centered=True, - ).minimize(loss, var_list=[var0]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # Fetch params to validate initial values - self.assertAllCloseAccordingToType( - [[1.0, 2.0]], self.evaluate(var0) - ) - # Run 1 step of sgd - self.evaluate(sgd_op) - # Validate updated params - self.assertAllCloseAccordingToType( - [[-111, -138]], self.evaluate(var0), atol=0.01 - ) - - def testSparse(self): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - for ( - dtype, - learning_rate, - rho, - momentum, - epsilon, - centered, - ) in _TESTPARAMS: - with tf.compat.v1.get_default_graph().as_default(), test_utils.use_gpu(): # noqa: E501 - # Initialize variables for numpy implementation. - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.1], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.01], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0_np_indices = np.array([0], dtype=np.int32) - grads0 = tf.IndexedSlices( - tf.constant(grads0_np), - tf.constant(grads0_np_indices), - tf.constant([1]), - ) - grads1_np_indices = np.array([1], dtype=np.int32) - grads1 = tf.IndexedSlices( - tf.constant(grads1_np), - tf.constant(grads1_np_indices), - tf.constant([1]), - ) - opt = rmsprop.RMSprop( - learning_rate=learning_rate, - rho=rho, - momentum=momentum, - epsilon=epsilon, - centered=centered, - ) - update = opt.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - - if centered: - mg0 = opt.get_slot(var0, "mg") - self.assertEqual(mg0 is not None, centered) - mg1 = opt.get_slot(var1, "mg") - self.assertEqual(mg1 is not None, centered) - else: - mg0 = None - mg1 = None - rms0 = opt.get_slot(var0, "rms") - self.assertIsNotNone(rms0) - rms1 = opt.get_slot(var1, "rms") - self.assertIsNotNone(rms1) - if momentum > 0.0: - mom0 = opt.get_slot(var0, "momentum") - mom1 = opt.get_slot(var1, "momentum") - else: - mom0 = None - mom1 = None - - mg0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - mg1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - rms0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - rms1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - mom0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - mom1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - - # Run 3 steps of RMSprop - for _ in range(1, 4): - self.evaluate(update) - - ( - var0_np, - mg0_np, - rms0_np, - mom0_np, - ) = self._sparse_rmsprop_update_numpy( - var0_np, - grads0_np_indices, - grads0_np, - mg0_np, - rms0_np, - mom0_np, - learning_rate, - rho, - momentum, - epsilon, - centered, - ) - ( - var1_np, - mg1_np, - rms1_np, - mom1_np, - ) = self._sparse_rmsprop_update_numpy( - var1_np, - grads1_np_indices, - grads1_np, - mg1_np, - rms1_np, - mom1_np, - learning_rate, - rho, - momentum, - epsilon, - centered, - ) - - # Validate updated params - if centered: - self.assertAllCloseAccordingToType( - mg0_np, self.evaluate(mg0) - ) - self.assertAllCloseAccordingToType( - mg1_np, self.evaluate(mg1) - ) - self.assertAllCloseAccordingToType( - rms0_np, self.evaluate(rms0) - ) - self.assertAllCloseAccordingToType( - rms1_np, self.evaluate(rms1) - ) - if momentum > 0.0: - self.assertAllCloseAccordingToType( - mom0_np, self.evaluate(mom0) - ) - self.assertAllCloseAccordingToType( - mom1_np, self.evaluate(mom1) - ) - self.assertAllCloseAccordingToType( - var0_np, self.evaluate(var0) - ) - self.assertAllCloseAccordingToType( - var1_np, self.evaluate(var1) - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testCallableParams(self): - for dtype in _DATA_TYPES: - var0 = tf.Variable([1.0, 2.0], dtype=dtype) - var1 = tf.Variable([3.0, 4.0], dtype=dtype) - grads0 = tf.constant([0.1, 0.1], dtype=dtype) - grads1 = tf.constant([0.01, 0.01], dtype=dtype) - - learning_rate = lambda: 2.0 - rho = lambda: 0.9 - momentum = lambda: 0.0 - epsilon = 1.0 - opt = rmsprop.RMSprop(learning_rate, rho, momentum, epsilon) - - # Fetch params to validate initial values - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - # Step 1: the rms accumulators where 1. So we should see a normal - # update: v -= grad * learning_rate - opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - # Check the parameters. - self.assertAllCloseAccordingToType( - np.array( - [ - 1.0 - (0.1 * 2.0 / math.sqrt(0.001 + 1.0)), - 2.0 - (0.1 * 2.0 / math.sqrt(0.001 + 1.0)), - ] - ), - self.evaluate(var0), - ) - self.assertAllCloseAccordingToType( - np.array( - [ - 3.0 - (0.01 * 2.0 / math.sqrt(0.00001 + 1.0)), - 4.0 - (0.01 * 2.0 / math.sqrt(0.00001 + 1.0)), - ] - ), - self.evaluate(var1), - ) - # Step 2: the root mean square accumulators contain the previous - # update. - opt.apply_gradients(zip([grads0, grads1], [var0, var1])) - # Check the parameters. - self.assertAllCloseAccordingToType( - np.array( - [ - 1.0 - - (0.1 * 2.0 / math.sqrt(0.001 + 1.0)) - - (0.1 * 2.0 / math.sqrt(0.001 * 0.9 + 0.001 + 1.0)), - 2.0 - - (0.1 * 2.0 / math.sqrt(0.001 + 1.0)) - - (0.1 * 2.0 / math.sqrt(0.001 * 0.9 + 0.001 + 1.0)), - ] - ), - self.evaluate(var0), - ) - self.assertAllCloseAccordingToType( - np.array( - [ - 3.0 - - (0.01 * 2.0 / math.sqrt(0.00001 + 1.0)) - - (0.01 * 2.0 / math.sqrt(0.00001 * 0.9 + 1e-5 + 1.0)), - 4.0 - - (0.01 * 2.0 / math.sqrt(0.00001 + 1.0)) - - (0.01 * 2.0 / math.sqrt(0.00001 * 0.9 + 1e-5 + 1.0)), - ] - ), - self.evaluate(var1), - ) - - def testConstructRMSpropWithLR(self): - opt = rmsprop.RMSprop(lr=1.0) - opt_2 = rmsprop.RMSprop(learning_rate=0.1, lr=1.0) - opt_3 = rmsprop.RMSprop(learning_rate=0.1) - self.assertIsInstance(opt.lr, tf.Variable) - self.assertIsInstance(opt_2.lr, tf.Variable) - self.assertIsInstance(opt_3.lr, tf.Variable) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose(self.evaluate(opt.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_2.lr), (1.0)) - self.assertAllClose(self.evaluate(opt_3.lr), (0.1)) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testSlotsUniqueEager(self): - v1 = tf.Variable(1.0) - v2 = tf.Variable(1.0) - - opt = rmsprop.RMSprop(1.0, momentum=0.0, centered=False) - opt.minimize(lambda: v1 + v2, var_list=[v1, v2]) - # There should be iteration, and one unique slot variable for v1 and v2. - self.assertLen(set({id(v) for v in opt.variables()}), 3) - self.assertEqual( - self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations) - ) - - opt = rmsprop.RMSprop(learning_rate=1.0, momentum=0.2, centered=False) - opt.minimize(lambda: v1 + v2, var_list=[v1, v2]) - # There should be iteration, and two unique slot variables for v1 and - # v2. - self.assertLen(set({id(v) for v in opt.variables()}), 5) - self.assertEqual( - self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations) - ) - - opt = rmsprop.RMSprop(learning_rate=1.0, momentum=0.2, centered=True) - opt.minimize(lambda: v1 + v2, var_list=[v1, v2]) - # There should be iteration, and three unique slot variables for v1 and - # v2 - self.assertLen(set({id(v) for v in opt.variables()}), 7) - self.assertEqual( - self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations) - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testMomentumProperValue(self): - with self.assertRaisesRegex( - ValueError, - r"`momentum` must be between \[0, 1\]. " - r"Received: momentum=2.5 \(of type \).", - ): - rmsprop.RMSprop(1.0, momentum=2.5, centered=False) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class SlotColocationTest(tf.test.TestCase, parameterized.TestCase): - @parameterized.parameters([True, False]) - @tf_test_utils.run_gpu_only - def testRunMinimizeOnGPUForCPUVariables(self, use_resource): - with tf.device("/device:CPU:0"): - if use_resource: - var0 = tf.Variable([1.0, 2.0], dtype=tf.float32) - var1 = tf.Variable([3.0, 4.0], dtype=tf.float32) - else: - var0 = tf.Variable([1.0, 2.0], dtype=tf.float32) - var1 = tf.Variable([3.0, 4.0], dtype=tf.float32) - - def loss(): - return 5 * var0 + 3 * var1 - - opt = rmsprop.RMSprop( - learning_rate=1.0, decay=0.9, momentum=0.5, epsilon=1.0 - ) - - # Fetch params to validate initial values - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose([1.0, 2.0], self.evaluate(var0)) - self.assertAllClose([3.0, 4.0], self.evaluate(var1)) - - # Run 1 step through optimizer on GPU. - # Slot variables are created the first time optimizer is used on some - # variable. This tests that slot variables will be colocated with the - # base variable. - with tf.device("/device:GPU:0"): - # Note that for eager execution, minimize expects a function instead - # of a Tensor. - opt_op = opt.minimize(loss, [var0, var1]) - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.evaluate(opt_op) - - # Validate updated params, All variables should have decreased. - self.assertTrue( - all(v < 0.0 for v in self.evaluate(var0)), - msg=f"updated variables: {self.evaluate(var0)}", - ) - self.assertTrue( - all(v < 2.0 for v in self.evaluate(var1)), - msg=f"updated variables: {self.evaluate(var1)}", - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/optimizers/legacy_learning_rate_decay.py b/keras/optimizers/legacy_learning_rate_decay.py deleted file mode 100644 index a75a43e0372..00000000000 --- a/keras/optimizers/legacy_learning_rate_decay.py +++ /dev/null @@ -1,812 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Various learning rate decay functions.""" - -import functools - -import tensorflow.compat.v2 as tf - -from keras.optimizers.schedules import learning_rate_schedule - -# isort: off -from tensorflow.python.util.tf_export import tf_export - - -@tf_export(v1=["train.exponential_decay"]) -def exponential_decay( - learning_rate, - global_step, - decay_steps, - decay_rate, - staircase=False, - name=None, -): - """Applies exponential decay to the learning rate. - - When training a model, it is often recommended to lower the learning rate as - the training progresses. This function applies an exponential decay function - to a provided initial learning rate. It requires a `global_step` value to - compute the decayed learning rate. You can just pass a TensorFlow variable - that you increment at each training step. - - The function returns the decayed learning rate. It is computed as: - - ```python - decayed_learning_rate = learning_rate * - decay_rate ^ (global_step / decay_steps) - ``` - - If the argument `staircase` is `True`, then `global_step / decay_steps` is - an integer division and the decayed learning rate follows a staircase - function. - - Example: decay every 100000 steps with a base of 0.96: - - ```python - ... - global_step = tf.Variable(0, trainable=False) - starter_learning_rate = 0.1 - learning_rate = tf.compat.v1.train.exponential_decay(starter_learning_rate, - global_step, - 100000, 0.96, staircase=True) - # Passing global_step to minimize() will increment it at each step. - learning_step = ( - tf.compat.v1.train.GradientDescentOptimizer(learning_rate) - .minimize(...my loss..., global_step=global_step) - ) - ``` - - Args: - learning_rate: A scalar `float32` or `float64` `Tensor` or a Python - number. The initial learning rate. - global_step: A scalar `int32` or `int64` `Tensor` or a Python number. - Global step to use for the decay computation. Must not be negative. - decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Must - be positive. See the decay computation above. - decay_rate: A scalar `float32` or `float64` `Tensor` or a Python number. - The decay rate. - staircase: Boolean. If `True` decay the learning rate at discrete - intervals - name: String. Optional name of the operation. Defaults to - 'ExponentialDecay'. - - Returns: - A scalar `Tensor` of the same type as `learning_rate`. The decayed - learning rate. - - Raises: - ValueError: if `global_step` is not supplied. - - @compatibility(eager) - When eager execution is enabled, this function returns a function which in - turn returns the decayed learning rate Tensor. This can be useful for - changing the learning rate value across different invocations of optimizer - functions. - @end_compatibility - """ - decayed_lr = learning_rate_schedule.ExponentialDecay( - learning_rate, decay_steps, decay_rate, staircase=staircase, name=name - ) - if not tf.executing_eagerly(): - decayed_lr = decayed_lr(global_step) - else: - decayed_lr = functools.partial(decayed_lr, global_step) - return decayed_lr - - -@tf_export(v1=["train.piecewise_constant_decay", "train.piecewise_constant"]) -def piecewise_constant(x, boundaries, values, name=None): - """Piecewise constant from boundaries and interval values. - - Example: use a learning rate that's 1.0 for the first 100001 steps, 0.5 - for the next 10000 steps, and 0.1 for any additional steps. - - ```python - global_step = tf.Variable(0, trainable=False) - boundaries = [100000, 110000] - values = [1.0, 0.5, 0.1] - learning_rate = tf.compat.v1.train.piecewise_constant( - global_step, boundaries, values) - - # Later, whenever we perform an optimization step, we increment global_step. - ``` - - Args: - x: A 0-D scalar `Tensor`. Must be one of the following types: `float32`, - `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`. - boundaries: A list of `Tensor`s or `int`s or `float`s with strictly - increasing entries, and with all elements having the same type as `x`. - values: A list of `Tensor`s or `float`s or `int`s that specifies the - values for the intervals defined by `boundaries`. It should have one - more element than `boundaries`, and all elements should have the same - type. - name: A string. Optional name of the operation. Defaults to - 'PiecewiseConstant'. - - Returns: - A 0-D Tensor. Its value is `values[0]` when `x <= boundaries[0]`, - `values[1]` when `x > boundaries[0]` and `x <= boundaries[1]`, ..., - and values[-1] when `x > boundaries[-1]`. - - Raises: - ValueError: if types of `x` and `boundaries` do not match, or types of all - `values` do not match or - the number of elements in the lists does not match. - - @compatibility(eager) - When eager execution is enabled, this function returns a function which in - turn returns the decayed learning rate Tensor. This can be useful for - changing the learning rate value across different invocations of optimizer - functions. - @end_compatibility - """ - boundaries = tf.nest.map_structure( - tf.convert_to_tensor, tf.nest.flatten(boundaries) - ) - values = tf.nest.map_structure( - tf.convert_to_tensor, tf.nest.flatten(values) - ) - x_recomp = tf.convert_to_tensor(x) - # Avoid explicit conversion to x's dtype. This could result in faulty - # comparisons, for example if floats are converted to integers. - for i, b in enumerate(boundaries): - if b.dtype.base_dtype != x_recomp.dtype.base_dtype: - # We can promote int32 boundaries to int64 without loss of - # precision. This covers the most common case where the user passes - # in boundaries as an array of Python integers. - if ( - b.dtype.base_dtype == tf.int32 - and x_recomp.dtype.base_dtype == tf.int64 - ): - b = tf.cast(b, x_recomp.dtype.base_dtype) - boundaries[i] = b - else: - raise ValueError( - f"`boundaries` ({b.dtype.base_dtype}) must have the same " - f"dtype as x ({x_recomp.dtype.base_dtype})." - ) - for v in values[1:]: - if v.dtype.base_dtype != values[0].dtype.base_dtype: - raise ValueError( - "`values` must have elements all with the same dtype " - f"({values[0].dtype.base_dtype} vs {v.dtype.base_dtype})." - ) - decayed_lr = learning_rate_schedule.PiecewiseConstantDecay( - boundaries, values, name=name - ) - if not tf.executing_eagerly(): - decayed_lr = decayed_lr(x) - else: - decayed_lr = functools.partial(decayed_lr, x) - return decayed_lr - - -@tf_export(v1=["train.polynomial_decay"]) -def polynomial_decay( - learning_rate, - global_step, - decay_steps, - end_learning_rate=0.0001, - power=1.0, - cycle=False, - name=None, -): - """Applies a polynomial decay to the learning rate. - - It is commonly observed that a monotonically decreasing learning rate, whose - degree of change is carefully chosen, results in a better performing model. - This function applies a polynomial decay function to a provided initial - `learning_rate` to reach an `end_learning_rate` in the given `decay_steps`. - - It requires a `global_step` value to compute the decayed learning rate. You - can just pass a TensorFlow variable that you increment at each training - step. - - The function returns the decayed learning rate. It is computed as: - - ```python - global_step = min(global_step, decay_steps) - decayed_learning_rate = (learning_rate - end_learning_rate) * - (1 - global_step / decay_steps) ^ (power) + - end_learning_rate - - ``` - - If `cycle` is True then a multiple of `decay_steps` is used, the first one - that is bigger than `global_steps`. - - ```python - decay_steps = decay_steps * ceil(global_step / decay_steps) - decayed_learning_rate = (learning_rate - end_learning_rate) * - (1 - global_step / decay_steps) ^ (power) + - end_learning_rate - - ``` - - Example: decay from 0.1 to 0.01 in 10000 steps using sqrt (i.e. power=0.5): - - ```python - ... - global_step = tf.Variable(0, trainable=False) - starter_learning_rate = 0.1 - end_learning_rate = 0.01 - decay_steps = 10000 - learning_rate = tf.compat.v1.train.polynomial_decay(starter_learning_rate, - global_step, - decay_steps, end_learning_rate, - power=0.5) - # Passing global_step to minimize() will increment it at each step. - learning_step = ( - tf.compat.v1.train.GradientDescentOptimizer(learning_rate) - .minimize(...my loss..., global_step=global_step) - ) - ``` - - Args: - learning_rate: A scalar `float32` or `float64` `Tensor` or a Python - number. The initial learning rate. - global_step: A scalar `int32` or `int64` `Tensor` or a Python number. - Global step to use for the decay computation. Must not be negative. - decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Must - be positive. See the decay computation above. - end_learning_rate: A scalar `float32` or `float64` `Tensor` or a Python - number. The minimal end learning rate. - power: A scalar `float32` or `float64` `Tensor` or a Python number. The - power of the polynomial. Defaults to linear, 1.0. - cycle: A boolean, whether or not it should cycle beyond decay_steps. - name: String. Optional name of the operation. Defaults to - 'PolynomialDecay'. - - Returns: - A scalar `Tensor` of the same type as `learning_rate`. The decayed - learning rate. - - Raises: - ValueError: if `global_step` is not supplied. - - @compatibility(eager) - When eager execution is enabled, this function returns a function which in - turn returns the decayed learning rate Tensor. This can be useful for - changing the learning rate value across different invocations of optimizer - functions. - @end_compatibility - """ - decayed_lr = learning_rate_schedule.PolynomialDecay( - learning_rate, - decay_steps, - end_learning_rate=end_learning_rate, - power=power, - cycle=cycle, - name=name, - ) - - if not tf.executing_eagerly(): - decayed_lr = decayed_lr(global_step) - else: - decayed_lr = functools.partial(decayed_lr, global_step) - return decayed_lr - - -@tf_export(v1=["train.natural_exp_decay"]) -def natural_exp_decay( - learning_rate, - global_step, - decay_steps, - decay_rate, - staircase=False, - name=None, -): - """Applies natural exponential decay to the initial learning rate. - - When training a model, it is often recommended to lower the learning rate as - the training progresses. This function applies an exponential decay - function to a provided initial learning rate. It requires an `global_step` - value to compute the decayed learning rate. You can just pass a TensorFlow - variable that you increment at each training step. - - The function returns the decayed learning rate. It is computed as: - - ```python - decayed_learning_rate = learning_rate * exp(-decay_rate * global_step / - decay_step) - ``` - - or, if `staircase` is `True`, as: - - ```python - decayed_learning_rate = learning_rate * exp(-decay_rate * \ - floor(global_step / decay_step)) - ``` - - Example: decay exponentially with a base of 0.96: - - ```python - ... - global_step = tf.Variable(0, trainable=False) - learning_rate = 0.1 - decay_steps = 5 - k = 0.5 - learning_rate = tf.compat.v1.train.natural_exp_decay(learning_rate, - global_step, - decay_steps, k) - - # Passing global_step to minimize() will increment it at each step. - learning_step = ( - tf.compat.v1.train.GradientDescentOptimizer(learning_rate) - .minimize(...my loss..., global_step=global_step) - ) - ``` - - Args: - learning_rate: A scalar `float32` or `float64` `Tensor` or a Python - number. The initial learning rate. - global_step: A Python number. Global step to use for the decay - computation. Must not be negative. - decay_steps: How often to apply decay. - decay_rate: A Python number. The decay rate. - staircase: Whether to apply decay in a discrete staircase, as opposed to - continuous, fashion. - name: String. Optional name of the operation. Defaults to - 'ExponentialTimeDecay'. - - Returns: - A scalar `Tensor` of the same type as `learning_rate`. The decayed - learning rate. - - Raises: - ValueError: if `global_step` is not supplied. - - @compatibility(eager) - When eager execution is enabled, this function returns a function which in - turn returns the decayed learning rate Tensor. This can be useful for - changing the learning rate value across different invocations of optimizer - functions. - @end_compatibility - """ - natural_exp_rate = tf.exp(tf.negative(decay_rate)) - decayed_lr = learning_rate_schedule.ExponentialDecay( - learning_rate, - decay_steps, - natural_exp_rate, - staircase=staircase, - name=name, - ) - - if not tf.executing_eagerly(): - decayed_lr = decayed_lr(global_step) - else: - decayed_lr = functools.partial(decayed_lr, global_step) - return decayed_lr - - -@tf_export(v1=["train.inverse_time_decay"]) -def inverse_time_decay( - learning_rate, - global_step, - decay_steps, - decay_rate, - staircase=False, - name=None, -): - """Applies inverse time decay to the initial learning rate. - - When training a model, it is often recommended to lower the learning rate as - the training progresses. This function applies an inverse decay function - to a provided initial learning rate. It requires an `global_step` value to - compute the decayed learning rate. You can just pass a TensorFlow variable - that you increment at each training step. - - The function returns the decayed learning rate. It is computed as: - - ```python - decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / - decay_step) - ``` - - or, if `staircase` is `True`, as: - - ```python - decayed_learning_rate = learning_rate / (1 + decay_rate * \ - floor(global_step / decay_step)) - ``` - - Example: decay 1/t with a rate of 0.5: - - ```python - ... - global_step = tf.Variable(0, trainable=False) - learning_rate = 0.1 - decay_steps = 1.0 - decay_rate = 0.5 - learning_rate = tf.compat.v1.train.inverse_time_decay(learning_rate, - global_step, - decay_steps, decay_rate) - - # Passing global_step to minimize() will increment it at each step. - learning_step = ( - tf.compat.v1.train.GradientDescentOptimizer(learning_rate) - .minimize(...my loss..., global_step=global_step) - ) - ``` - - Args: - learning_rate: A scalar `float32` or `float64` `Tensor` or a Python - number. The initial learning rate. - global_step: A Python number. Global step to use for the decay - computation. Must not be negative. - decay_steps: How often to apply decay. - decay_rate: A Python number. The decay rate. - staircase: Whether to apply decay in a discrete staircase, as opposed to - continuous, fashion. - name: String. Optional name of the operation. Defaults to - 'InverseTimeDecay'. - - Returns: - A scalar `Tensor` of the same type as `learning_rate`. The decayed - learning rate. - - Raises: - ValueError: if `global_step` is not supplied. - - @compatibility(eager) - When eager execution is enabled, this function returns a function which in - turn returns the decayed learning rate Tensor. This can be useful for - changing the learning rate value across different invocations of optimizer - functions. - @end_compatibility - """ - decayed_lr = learning_rate_schedule.InverseTimeDecay( - learning_rate, decay_steps, decay_rate, staircase=staircase, name=name - ) - - if not tf.executing_eagerly(): - decayed_lr = decayed_lr(global_step) - else: - decayed_lr = functools.partial(decayed_lr, global_step) - return decayed_lr - - -@tf_export(v1=["train.cosine_decay"]) -def cosine_decay(learning_rate, global_step, decay_steps, alpha=0.0, name=None): - """Applies cosine decay to the learning rate. - - When training a model, it is often recommended to lower the learning rate as - the training progresses. This function applies a cosine decay function - to a provided initial learning rate. It requires a `global_step` value to - compute the decayed learning rate. You can just pass a TensorFlow variable - that you increment at each training step. - - The function returns the decayed learning rate. It is computed as: - ```python - global_step = min(global_step, decay_steps) - cosine_decay = 0.5 * (1 + cos(pi * global_step / decay_steps)) - decayed = (1 - alpha) * cosine_decay + alpha - decayed_learning_rate = learning_rate * decayed - ``` - - Example usage: - ```python - decay_steps = 1000 - lr_decayed = cosine_decay(learning_rate, global_step, decay_steps) - ``` - - Args: - learning_rate: A scalar `float32` or `float64` Tensor or a Python number. - The initial learning rate. - global_step: A scalar `int32` or `int64` `Tensor` or a Python number. - Global step to use for the decay computation. - decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. - Number of steps to decay over. - alpha: A scalar `float32` or `float64` Tensor or a Python number. Minimum - learning rate value as a fraction of learning_rate. - name: String. Optional name of the operation. Defaults to 'CosineDecay'. - - Returns: - A scalar `Tensor` of the same type as `learning_rate`. The decayed - learning rate. - Raises: - ValueError: if `global_step` is not supplied. - - References: - Stochastic Gradient Descent with Warm Restarts: - [Loshchilov et al., 2017] - (https://openreview.net/forum?id=Skq89Scxx¬eId=Skq89Scxx) - ([pdf](https://openreview.net/pdf?id=Skq89Scxx)) - - @compatibility(eager) - When eager execution is enabled, this function returns a function which in - turn returns the decayed learning rate Tensor. This can be useful for - changing the learning rate value across different invocations of optimizer - functions. - @end_compatibility - """ - decayed_lr = learning_rate_schedule.CosineDecay( - learning_rate, decay_steps, alpha=alpha, name=name - ) - - if not tf.executing_eagerly(): - decayed_lr = decayed_lr(global_step) - else: - decayed_lr = functools.partial(decayed_lr, global_step) - return decayed_lr - - -@tf_export(v1=["train.cosine_decay_restarts"]) -def cosine_decay_restarts( - learning_rate, - global_step, - first_decay_steps, - t_mul=2.0, - m_mul=1.0, - alpha=0.0, - name=None, -): - """Applies cosine decay with restarts to the learning rate. - - When training a model, it is often recommended to lower the learning rate as - the training progresses. This function applies a cosine decay function with - restarts to a provided initial learning rate. It requires a `global_step` - value to compute the decayed learning rate. You can just pass a TensorFlow - variable that you increment at each training step. - - The function returns the decayed learning rate while taking into account - possible warm restarts. The learning rate multiplier first decays - from 1 to `alpha` for `first_decay_steps` steps. Then, a warm restart is - performed. Each new warm restart runs for `t_mul` times more steps and with - `m_mul` times smaller initial learning rate. - - Example usage: - ```python - first_decay_steps = 1000 - lr_decayed = cosine_decay_restarts(learning_rate, global_step, - first_decay_steps) - ``` - - Args: - learning_rate: A scalar `float32` or `float64` Tensor or a Python number. - The initial learning rate. - global_step: A scalar `int32` or `int64` `Tensor` or a Python number. - Global step to use for the decay computation. - first_decay_steps: A scalar `int32` or `int64` `Tensor` or a Python - number. Number of steps to decay over. - t_mul: A scalar `float32` or `float64` `Tensor` or a Python number. Used - to derive the number of iterations in the i-th period - m_mul: A scalar `float32` or `float64` `Tensor` or a Python number. - Used to derive the initial learning rate of the i-th period: - alpha: A scalar `float32` or `float64` Tensor or a Python number. Minimum - learning rate value as a fraction of the learning_rate. - name: String. Optional name of the operation. Defaults to 'SGDRDecay'. - - Returns: - A scalar `Tensor` of the same type as `learning_rate`. The decayed - learning rate. - Raises: - ValueError: if `global_step` is not supplied. - - References: - Stochastic Gradient Descent with Warm Restarts: - [Loshchilov et al., 2017] - (https://openreview.net/forum?id=Skq89Scxx¬eId=Skq89Scxx) - ([pdf](https://openreview.net/pdf?id=Skq89Scxx)) - - @compatibility(eager) - When eager execution is enabled, this function returns a function which in - turn returns the decayed learning rate Tensor. This can be useful for - changing the learning rate value across different invocations of optimizer - functions. - @end_compatibility - """ - decayed_lr = learning_rate_schedule.CosineDecayRestarts( - learning_rate, - first_decay_steps, - t_mul=t_mul, - m_mul=m_mul, - alpha=alpha, - name=name, - ) - - if not tf.executing_eagerly(): - decayed_lr = decayed_lr(global_step) - else: - decayed_lr = functools.partial(decayed_lr, global_step) - return decayed_lr - - -@tf_export(v1=["train.linear_cosine_decay"]) -def linear_cosine_decay( - learning_rate, - global_step, - decay_steps, - num_periods=0.5, - alpha=0.0, - beta=0.001, - name=None, -): - """Applies linear cosine decay to the learning rate. - - Note that linear cosine decay is more aggressive than cosine decay and - larger initial learning rates can typically be used. - - When training a model, it is often recommended to lower the learning rate as - the training progresses. This function applies a linear cosine decay - function to a provided initial learning rate. It requires a `global_step` - value to compute the decayed learning rate. You can just pass a TensorFlow - variable that you increment at each training step. - - The function returns the decayed learning rate. It is computed as: - ```python - global_step = min(global_step, decay_steps) - linear_decay = (decay_steps - global_step) / decay_steps) - cosine_decay = 0.5 * ( - 1 + cos(pi * 2 * num_periods * global_step / decay_steps)) - decayed = (alpha + linear_decay) * cosine_decay + beta - decayed_learning_rate = learning_rate * decayed - ``` - - Example usage: - ```python - decay_steps = 1000 - lr_decayed = linear_cosine_decay(learning_rate, global_step, decay_steps) - ``` - - Args: - learning_rate: A scalar `float32` or `float64` Tensor or a Python number. - The initial learning rate. - global_step: A scalar `int32` or `int64` `Tensor` or a Python number. - Global step to use for the decay computation. - decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. - Number of steps to decay over. - num_periods: Number of periods in the cosine part of the decay. See - computation above. - alpha: See computation above. - beta: See computation above. - name: String. Optional name of the operation. Defaults to - 'LinearCosineDecay'. - - Returns: - A scalar `Tensor` of the same type as `learning_rate`. The decayed - learning rate. - Raises: - ValueError: if `global_step` is not supplied. - - References: - Neural Optimizer Search with Reinforcement Learning: - [Bello et al., 2017](http://proceedings.mlr.press/v70/bello17a.html) - ([pdf](http://proceedings.mlr.press/v70/bello17a/bello17a.pdf)) - Stochastic Gradient Descent with Warm Restarts: - [Loshchilov et al., 2017] - (https://openreview.net/forum?id=Skq89Scxx¬eId=Skq89Scxx) - ([pdf](https://openreview.net/pdf?id=Skq89Scxx)) - - @compatibility(eager) - When eager execution is enabled, this function returns a function which in - turn returns the decayed learning rate Tensor. This can be useful for - changing the learning rate value across different invocations of optimizer - functions. - @end_compatibility - """ - decayed_lr = learning_rate_schedule.LinearCosineDecay( - learning_rate, - decay_steps, - num_periods=num_periods, - alpha=alpha, - beta=beta, - name=name, - ) - - if not tf.executing_eagerly(): - decayed_lr = decayed_lr(global_step) - else: - decayed_lr = functools.partial(decayed_lr, global_step) - return decayed_lr - - -@tf_export(v1=["train.noisy_linear_cosine_decay"]) -def noisy_linear_cosine_decay( - learning_rate, - global_step, - decay_steps, - initial_variance=1.0, - variance_decay=0.55, - num_periods=0.5, - alpha=0.0, - beta=0.001, - name=None, -): - """Applies noisy linear cosine decay to the learning rate. - - Note that linear cosine decay is more aggressive than cosine decay and - larger initial learning rates can typically be used. - - When training a model, it is often recommended to lower the learning rate as - the training progresses. This function applies a noisy linear - cosine decay function to a provided initial learning rate. - It requires a `global_step` value to compute the decayed learning rate. - You can just pass a TensorFlow variable that you increment at each - training step. - - The function returns the decayed learning rate. It is computed as: - ```python - global_step = min(global_step, decay_steps) - linear_decay = (decay_steps - global_step) / decay_steps) - cosine_decay = 0.5 * ( - 1 + cos(pi * 2 * num_periods * global_step / decay_steps)) - decayed = (alpha + linear_decay + eps_t) * cosine_decay + beta - decayed_learning_rate = learning_rate * decayed - ``` - where eps_t is 0-centered gaussian noise with variance - initial_variance / (1 + global_step) ** variance_decay - - Example usage: - ```python - decay_steps = 1000 - lr_decayed = noisy_linear_cosine_decay( - learning_rate, global_step, decay_steps) - ``` - - Args: - learning_rate: A scalar `float32` or `float64` Tensor or a Python number. - The initial learning rate. - global_step: A scalar `int32` or `int64` `Tensor` or a Python number. - Global step to use for the decay computation. - decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. - Number of steps to decay over. - initial_variance: initial variance for the noise. See computation above. - variance_decay: decay for the noise's variance. See computation above. - num_periods: Number of periods in the cosine part of the decay. See - computation above. - alpha: See computation above. - beta: See computation above. - name: String. Optional name of the operation. Defaults to - 'NoisyLinearCosineDecay'. - - Returns: - A scalar `Tensor` of the same type as `learning_rate`. The decayed - learning rate. - Raises: - ValueError: if `global_step` is not supplied. - - References: - Neural Optimizer Search with Reinforcement Learning: - [Bello et al., 2017](http://proceedings.mlr.press/v70/bello17a.html) - ([pdf](http://proceedings.mlr.press/v70/bello17a/bello17a.pdf)) - Stochastic Gradient Descent with Warm Restarts: - [Loshchilov et al., 2017] - (https://openreview.net/forum?id=Skq89Scxx¬eId=Skq89Scxx) - ([pdf](https://openreview.net/pdf?id=Skq89Scxx)) - - @compatibility(eager) - When eager execution is enabled, this function returns a function which in - turn returns the decayed learning rate Tensor. This can be useful for - changing the learning rate value across different invocations of optimizer - functions. - @end_compatibility - """ - decayed_lr = learning_rate_schedule.NoisyLinearCosineDecay( - learning_rate, - decay_steps, - initial_variance=initial_variance, - variance_decay=variance_decay, - num_periods=num_periods, - alpha=alpha, - beta=beta, - name=name, - ) - - if not tf.executing_eagerly(): - decayed_lr = decayed_lr(global_step) - else: - decayed_lr = functools.partial(decayed_lr, global_step) - return decayed_lr diff --git a/keras/optimizers/legacy_learning_rate_decay_test.py b/keras/optimizers/legacy_learning_rate_decay_test.py deleted file mode 100644 index d0322426560..00000000000 --- a/keras/optimizers/legacy_learning_rate_decay_test.py +++ /dev/null @@ -1,492 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Functional test for learning rate decay.""" - -import math - -import tensorflow.compat.v2 as tf - -from keras.testing_infra import test_combinations - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class LRDecayTest(test_combinations.TestCase): - def testContinuous(self): - self.evaluate(tf.compat.v1.global_variables_initializer()) - step = 5 - decayed_lr = tf.compat.v1.train.exponential_decay(0.05, step, 10, 0.96) - expected = 0.05 * 0.96 ** (5.0 / 10.0) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testStaircase(self): - if tf.executing_eagerly(): - step = tf.Variable(0) - self.evaluate(tf.compat.v1.global_variables_initializer()) - decayed_lr = tf.compat.v1.train.exponential_decay( - 0.1, step, 3, 0.96, staircase=True - ) - - # No change to learning rate due to staircase - expected = 0.1 - self.evaluate(step.assign(1)) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - expected = 0.1 - self.evaluate(step.assign(2)) - self.assertAllClose(self.evaluate(decayed_lr), 0.1, 1e-6) - - # Decayed learning rate - expected = 0.1 * 0.96 ** (100 // 3) - self.evaluate(step.assign(100)) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testVariables(self): - step = tf.Variable(1) - - decayed_lr = tf.compat.v1.train.exponential_decay( - 0.1, step, 3, 0.96, staircase=True - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - # No change to learning rate - assign_1 = step.assign(1) - if not tf.executing_eagerly(): - self.evaluate(assign_1.op) - self.assertAllClose(self.evaluate(decayed_lr), 0.1, 1e-6) - assign_2 = step.assign(2) - if not tf.executing_eagerly(): - self.evaluate(assign_2.op) - self.assertAllClose(self.evaluate(decayed_lr), 0.1, 1e-6) - # Decayed learning rate - assign_100 = step.assign(100) - if not tf.executing_eagerly(): - self.evaluate(assign_100.op) - expected = 0.1 * 0.96 ** (100 // 3) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testPiecewiseConstant(self): - x = tf.Variable(-999) - decayed_lr = tf.compat.v1.train.piecewise_constant( - x, [100, 110, 120], [1.0, 0.1, 0.01, 0.001] - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - - self.assertAllClose(self.evaluate(decayed_lr), 1.0, 1e-6) - self.evaluate(x.assign(100)) - self.assertAllClose(self.evaluate(decayed_lr), 1.0, 1e-6) - self.evaluate(x.assign(105)) - self.assertAllClose(self.evaluate(decayed_lr), 0.1, 1e-6) - self.evaluate(x.assign(110)) - self.assertAllClose(self.evaluate(decayed_lr), 0.1, 1e-6) - self.evaluate(x.assign(120)) - self.assertAllClose(self.evaluate(decayed_lr), 0.01, 1e-6) - self.evaluate(x.assign(999)) - self.assertAllClose(self.evaluate(decayed_lr), 0.001, 1e-6) - - def testPiecewiseConstantEdgeCases(self): - x_int = tf.Variable(0, dtype=tf.int32) - boundaries, values = [-1.0, 1.0], [1, 2, 3] - with self.assertRaises(ValueError): - decayed_lr = tf.compat.v1.train.piecewise_constant( - x_int, boundaries, values - ) - if tf.executing_eagerly(): - decayed_lr() - - x = tf.Variable(0.0) - boundaries, values = [-1.0, 1.0], [1.0, 2, 3] - with self.assertRaises(ValueError): - decayed_lr = tf.compat.v1.train.piecewise_constant( - x, boundaries, values - ) - if tf.executing_eagerly(): - decayed_lr() - - # Test that ref types are valid. - if not tf.executing_eagerly(): - x = tf.compat.v1.Variable(0.0, use_resource=False) - x_ref = x.op.outputs[0] # float32_ref tensor should be accepted - boundaries, values = [1.0, 2.0], [1, 2, 3] - tf.compat.v1.train.piecewise_constant(x_ref, boundaries, values) - - # Test casting boundaries from int32 to int64. - x_int64 = tf.Variable(0, dtype=tf.int64) - boundaries, values = [1, 2, 3], [0.4, 0.5, 0.6, 0.7] - decayed_lr = tf.compat.v1.train.piecewise_constant( - x_int64, boundaries, values - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose(self.evaluate(decayed_lr), 0.4, 1e-6) - self.evaluate(x_int64.assign(1)) - self.assertAllClose(self.evaluate(decayed_lr), 0.4, 1e-6) - self.evaluate(x_int64.assign(2)) - self.assertAllClose(self.evaluate(decayed_lr), 0.5, 1e-6) - self.evaluate(x_int64.assign(3)) - self.assertAllClose(self.evaluate(decayed_lr), 0.6, 1e-6) - self.evaluate(x_int64.assign(4)) - self.assertAllClose(self.evaluate(decayed_lr), 0.7, 1e-6) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class LinearDecayTest(test_combinations.TestCase): - def testHalfWay(self): - step = 5 - lr = 0.05 - end_lr = 0.0 - decayed_lr = tf.compat.v1.train.polynomial_decay(lr, step, 10, end_lr) - expected = lr * 0.5 - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testEnd(self): - step = 10 - lr = 0.05 - end_lr = 0.001 - decayed_lr = tf.compat.v1.train.polynomial_decay(lr, step, 10, end_lr) - expected = end_lr - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testHalfWayWithEnd(self): - step = 5 - lr = 0.05 - end_lr = 0.001 - decayed_lr = tf.compat.v1.train.polynomial_decay(lr, step, 10, end_lr) - expected = (lr + end_lr) * 0.5 - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testBeyondEnd(self): - step = 15 - lr = 0.05 - end_lr = 0.001 - decayed_lr = tf.compat.v1.train.polynomial_decay(lr, step, 10, end_lr) - expected = end_lr - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testBeyondEndWithCycle(self): - step = 15 - lr = 0.05 - end_lr = 0.001 - decayed_lr = tf.compat.v1.train.polynomial_decay( - lr, step, 10, end_lr, cycle=True - ) - expected = (lr - end_lr) * 0.25 + end_lr - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class SqrtDecayTest(test_combinations.TestCase): - def testHalfWay(self): - step = 5 - lr = 0.05 - end_lr = 0.0 - power = 0.5 - decayed_lr = tf.compat.v1.train.polynomial_decay( - lr, step, 10, end_lr, power=power - ) - expected = lr * 0.5**power - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testEnd(self): - step = 10 - lr = 0.05 - end_lr = 0.001 - power = 0.5 - decayed_lr = tf.compat.v1.train.polynomial_decay( - lr, step, 10, end_lr, power=power - ) - expected = end_lr - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testHalfWayWithEnd(self): - step = 5 - lr = 0.05 - end_lr = 0.001 - power = 0.5 - decayed_lr = tf.compat.v1.train.polynomial_decay( - lr, step, 10, end_lr, power=power - ) - expected = (lr - end_lr) * 0.5**power + end_lr - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testBeyondEnd(self): - step = 15 - lr = 0.05 - end_lr = 0.001 - power = 0.5 - decayed_lr = tf.compat.v1.train.polynomial_decay( - lr, step, 10, end_lr, power=power - ) - expected = end_lr - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testBeyondEndWithCycle(self): - step = 15 - lr = 0.05 - end_lr = 0.001 - power = 0.5 - decayed_lr = tf.compat.v1.train.polynomial_decay( - lr, step, 10, end_lr, power=power, cycle=True - ) - expected = (lr - end_lr) * 0.25**power + end_lr - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class PolynomialDecayTest(test_combinations.TestCase): - def testBeginWithCycle(self): - lr = 0.001 - decay_steps = 10 - step = 0 - decayed_lr = tf.compat.v1.train.polynomial_decay( - lr, step, decay_steps, cycle=True - ) - expected = lr - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class ExponentialDecayTest(test_combinations.TestCase): - def testDecay(self): - initial_lr = 0.1 - k = 10 - decay_rate = 0.96 - step = tf.Variable(0) - decayed_lr = tf.compat.v1.train.natural_exp_decay( - initial_lr, step, k, decay_rate - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - for i in range(k + 1): - expected = initial_lr * math.exp(-i / k * decay_rate) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - self.evaluate(step.assign_add(1)) - - def testStaircase(self): - initial_lr = 0.1 - k = 10 - decay_rate = 0.96 - step = tf.Variable(0) - decayed_lr = tf.compat.v1.train.natural_exp_decay( - initial_lr, step, k, decay_rate, staircase=True - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - for i in range(k + 1): - expected = initial_lr * math.exp(-decay_rate * (i // k)) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - self.evaluate(step.assign_add(1)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class InverseDecayTest(test_combinations.TestCase): - def testDecay(self): - initial_lr = 0.1 - k = 10 - decay_rate = 0.96 - step = tf.Variable(0) - decayed_lr = tf.compat.v1.train.inverse_time_decay( - initial_lr, step, k, decay_rate - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - for i in range(k + 1): - expected = initial_lr / (1 + i / k * decay_rate) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - self.evaluate(step.assign_add(1)) - - def testStaircase(self): - initial_lr = 0.1 - k = 10 - decay_rate = 0.96 - step = tf.Variable(0) - decayed_lr = tf.compat.v1.train.inverse_time_decay( - initial_lr, step, k, decay_rate, staircase=True - ) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - for i in range(k + 1): - expected = initial_lr / (1 + decay_rate * (i // k)) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - self.evaluate(step.assign_add(1)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CosineDecayTest(test_combinations.TestCase): - def np_cosine_decay(self, step, decay_steps, alpha=0.0): - step = min(step, decay_steps) - completed_fraction = step / decay_steps - decay = 0.5 * (1.0 + math.cos(math.pi * completed_fraction)) - return (1.0 - alpha) * decay + alpha - - def testDecay(self): - num_training_steps = 1000 - initial_lr = 1.0 - for step in range(0, 1500, 250): - decayed_lr = tf.compat.v1.train.cosine_decay( - initial_lr, step, num_training_steps - ) - expected = self.np_cosine_decay(step, num_training_steps) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testAlpha(self): - num_training_steps = 1000 - initial_lr = 1.0 - alpha = 0.1 - for step in range(0, 1500, 250): - decayed_lr = tf.compat.v1.train.cosine_decay( - initial_lr, step, num_training_steps, alpha - ) - expected = self.np_cosine_decay(step, num_training_steps, alpha) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CosineDecayRestartsTest(test_combinations.TestCase): - def np_cosine_decay_restarts( - self, step, decay_steps, t_mul=2.0, m_mul=1.0, alpha=0.0 - ): - fac = 1.0 - while step >= decay_steps: - step -= decay_steps - decay_steps *= t_mul - fac *= m_mul - - completed_fraction = step / decay_steps - decay = fac * 0.5 * (1.0 + math.cos(math.pi * completed_fraction)) - return (1.0 - alpha) * decay + alpha - - def testDecay(self): - num_training_steps = 1000 - initial_lr = 1.0 - for step in range(0, 1500, 250): - decayed_lr = tf.compat.v1.train.cosine_decay_restarts( - initial_lr, step, num_training_steps - ) - expected = self.np_cosine_decay_restarts(step, num_training_steps) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testAlpha(self): - num_training_steps = 1000 - initial_lr = 1.0 - alpha = 0.1 - for step in range(0, 1500, 250): - decayed_lr = tf.compat.v1.train.cosine_decay_restarts( - initial_lr, step, num_training_steps, alpha=alpha - ) - expected = self.np_cosine_decay_restarts( - step, num_training_steps, alpha=alpha - ) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testMMul(self): - num_training_steps = 1000 - initial_lr = 1.0 - m_mul = 0.9 - for step in range(0, 1500, 250): - decayed_lr = tf.compat.v1.train.cosine_decay_restarts( - initial_lr, step, num_training_steps, m_mul=m_mul - ) - expected = self.np_cosine_decay_restarts( - step, num_training_steps, m_mul=m_mul - ) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testTMul(self): - num_training_steps = 1000 - initial_lr = 1.0 - t_mul = 1.0 - for step in range(0, 1500, 250): - decayed_lr = tf.compat.v1.train.cosine_decay_restarts( - initial_lr, step, num_training_steps, t_mul=t_mul - ) - expected = self.np_cosine_decay_restarts( - step, num_training_steps, t_mul=t_mul - ) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class LinearCosineDecayTest(test_combinations.TestCase): - def np_linear_cosine_decay( - self, step, decay_steps, alpha=0.0, beta=0.001, num_periods=0.5 - ): - step = min(step, decay_steps) - linear_decayed = float(decay_steps - step) / decay_steps - fraction = 2.0 * num_periods * step / float(decay_steps) - cosine_decayed = 0.5 * (1.0 + math.cos(math.pi * fraction)) - return (alpha + linear_decayed) * cosine_decayed + beta - - def testDefaultDecay(self): - num_training_steps = 1000 - initial_lr = 1.0 - for step in range(0, 1500, 250): - decayed_lr = tf.compat.v1.train.linear_cosine_decay( - initial_lr, step, num_training_steps - ) - expected = self.np_linear_cosine_decay(step, num_training_steps) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - def testNonDefaultDecay(self): - num_training_steps = 1000 - initial_lr = 1.0 - for step in range(0, 1500, 250): - decayed_lr = tf.compat.v1.train.linear_cosine_decay( - initial_lr, - step, - num_training_steps, - alpha=0.1, - beta=1e-4, - num_periods=5, - ) - expected = self.np_linear_cosine_decay( - step, num_training_steps, alpha=0.1, beta=1e-4, num_periods=5 - ) - self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class NoisyLinearCosineDecayTest(test_combinations.TestCase): - def testDefaultNoisyLinearCosine(self): - num_training_steps = 1000 - initial_lr = 1.0 - for step in range(0, 1500, 250): - # No numerical check because of noise - decayed_lr = tf.compat.v1.train.noisy_linear_cosine_decay( - initial_lr, step, num_training_steps - ) - # Cannot be deterministically tested - self.evaluate(decayed_lr) - - def testNonDefaultNoisyLinearCosine(self): - num_training_steps = 1000 - initial_lr = 1.0 - for step in range(0, 1500, 250): - # No numerical check because of noise - decayed_lr = tf.compat.v1.train.noisy_linear_cosine_decay( - initial_lr, - step, - num_training_steps, - initial_variance=0.5, - variance_decay=0.1, - alpha=0.1, - beta=1e-4, - num_periods=5, - ) - # Cannot be deterministically tested - self.evaluate(decayed_lr) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/optimizers/lion.py b/keras/optimizers/lion.py deleted file mode 100644 index 4a0eff2492f..00000000000 --- a/keras/optimizers/lion.py +++ /dev/null @@ -1,167 +0,0 @@ -# Copyright 2023 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Lion optimizer implementation.""" - -import tensorflow.compat.v2 as tf - -from keras.optimizers import optimizer -from keras.saving.object_registration import register_keras_serializable - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@register_keras_serializable() -@keras_export("keras.optimizers.Lion", v1=[]) -class Lion(optimizer.Optimizer): - """Optimizer that implements the Lion algorithm. - - The Lion optimizer is a stochastic-gradient-descent method that uses the - sign operator to control the magnitude of the update, unlike other adaptive - optimizers such as Adam that rely on second-order moments. This make - Lion more memory-efficient as it only keeps track of the momentum. According - to the authors (see reference), its performance gain over Adam grows with - the batch size. Because the update of Lion is produced through the sign - operation, resulting in a larger norm, a suitable learning rate for Lion is - typically 3-10x smaller than that for AdamW. The weight decay for Lion - should be in turn 3-10x larger than that for AdamW to maintain a - similar strength (lr * wd). - - Args: - learning_rate: A `tf.Tensor`, floating point value, a schedule that is a - `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable - that takes no arguments and returns the actual value to use. The - learning rate. Defaults to 0.0001. - beta_1: A float value or a constant float tensor, or a callable - that takes no arguments and returns the actual value to use. The rate - to combine the current gradient and the 1st moment estimate. - beta_2: A float value or a constant float tensor, or a callable - that takes no arguments and returns the actual value to use. The - exponential decay rate for the 1st moment estimate. - {{base_optimizer_keyword_args}} - - References: - - [Chen et al., 2023](http://arxiv.org/abs/2302.06675) - - [Authors' implementation]( - http://github.com/google/automl/tree/master/lion) - - """ - - def __init__( - self, - learning_rate=0.0001, - beta_1=0.9, - beta_2=0.99, - weight_decay=None, - clipnorm=None, - clipvalue=None, - global_clipnorm=None, - use_ema=False, - ema_momentum=0.99, - ema_overwrite_frequency=None, - jit_compile=True, - name="Lion", - **kwargs, - ): - super().__init__( - name=name, - weight_decay=weight_decay, - clipnorm=clipnorm, - clipvalue=clipvalue, - global_clipnorm=global_clipnorm, - use_ema=use_ema, - ema_momentum=ema_momentum, - ema_overwrite_frequency=ema_overwrite_frequency, - jit_compile=jit_compile, - **kwargs, - ) - self._learning_rate = self._build_learning_rate(learning_rate) - self.beta_1 = beta_1 - self.beta_2 = beta_2 - if beta_1 <= 0 or beta_1 > 1: - raise ValueError( - f"`beta_1`={beta_1} must be between ]0, 1]. Otherwise, " - "the optimizer degenerates to SignSGD." - ) - - def build(self, var_list): - """Initialize optimizer variables. - - Lion optimizer has one variable `momentums`. - - Args: - var_list: list of model variables to build Lion variables on. - """ - super().build(var_list) - if hasattr(self, "_built") and self._built: - return - self.momentums = [] - for var in var_list: - self.momentums.append( - self.add_variable_from_reference( - model_variable=var, variable_name="m" - ) - ) - self._built = True - - def update_step(self, gradient, variable): - """Update step given gradient and the associated model variable.""" - lr = tf.cast(self.learning_rate, variable.dtype) - beta_1 = tf.cast(self.beta_1, variable.dtype) - beta_2 = tf.cast(self.beta_2, variable.dtype) - var_key = self._var_key(variable) - m = self.momentums[self._index_dict[var_key]] - - if isinstance(gradient, tf.IndexedSlices): - # Sparse gradients (use m as a buffer) - m.assign(m * beta_1) - m.scatter_add( - tf.IndexedSlices( - gradient.values * (1.0 - beta_1), gradient.indices - ) - ) - variable.assign_sub(lr * tf.math.sign(m)) - - m.assign(m * beta_2 / beta_1) - m.scatter_add( - tf.IndexedSlices( - gradient.values * (1.0 - beta_2 / beta_1), gradient.indices - ) - ) - else: - # Dense gradients - variable.assign_sub( - lr * tf.math.sign(m * beta_1 + gradient * (1.0 - beta_1)) - ) - m.assign(m * beta_2 + gradient * (1.0 - beta_2)) - - def get_config(self): - config = super().get_config() - - config.update( - { - "learning_rate": self._serialize_hyperparameter( - self._learning_rate - ), - "beta_1": self.beta_1, - "beta_2": self.beta_2, - } - ) - return config - - -Lion.__doc__ = Lion.__doc__.replace( - "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args -) diff --git a/keras/optimizers/lion_test.py b/keras/optimizers/lion_test.py deleted file mode 100644 index 6cd44066fd6..00000000000 --- a/keras/optimizers/lion_test.py +++ /dev/null @@ -1,149 +0,0 @@ -# Copyright 2023 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Lion.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from tensorflow.python.framework import dtypes - -from keras.optimizers.lion import Lion - - -def lion_update_numpy( - params, - grads, - momentums, - learning_rate=0.0001, - beta_1=0.9, - beta_2=0.99, -): - params = params - learning_rate * np.sign( - beta_1 * momentums + (1 - beta_1) * grads - ) - momentums = beta_2 * momentums + (1 - beta_2) * grads - return params, momentums - - -class LionOptimizerTest(tf.test.TestCase): - def testDense(self): - for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: - learning_rate = 0.0001 - beta_1 = 0.9 - beta_2 = 0.99 - with self.cached_session(): - m0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - m1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.9, 0.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.1, 0.0], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0 = tf.constant(grads0_np) - grads1 = tf.constant(grads1_np) - optimizer = Lion( - learning_rate=learning_rate, - beta_1=beta_1, - beta_2=beta_2, - ) - - # Run 3 steps of Lion - for _ in range(3): - optimizer.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - var0_np, m0_np = lion_update_numpy( - var0_np, - grads0_np, - m0_np, - learning_rate=learning_rate, - beta_1=beta_1, - beta_2=beta_2, - ) - var1_np, m1_np = lion_update_numpy( - var1_np, - grads1_np, - m1_np, - learning_rate=learning_rate, - beta_1=beta_1, - beta_2=beta_2, - ) - # Validate updated params - self.assertAllCloseAccordingToType(var0_np, var0) - self.assertAllCloseAccordingToType(var1_np, var1) - - def testSparse(self): - for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: - learning_rate = 0.0001 - beta_1 = 0.9 - beta_2 = 0.99 - with self.cached_session(): - m0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - m1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype) - var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) - var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) - grads0_np = np.array([0.9, 0.0], dtype=dtype.as_numpy_dtype) - grads1_np = np.array([0.1, 0.0], dtype=dtype.as_numpy_dtype) - - var0 = tf.Variable(var0_np) - var1 = tf.Variable(var1_np) - grads0_np_indices = np.array([0], dtype=np.int32) - grads0 = tf.IndexedSlices( - tf.constant(grads0_np[grads0_np_indices]), - tf.constant(grads0_np_indices), - tf.constant([2]), - ) - grads1_np_indices = np.array([0], dtype=np.int32) - grads1 = tf.IndexedSlices( - tf.constant(grads1_np[grads1_np_indices]), - tf.constant(grads1_np_indices), - tf.constant([2]), - ) - - optimizer = Lion( - learning_rate=learning_rate, - beta_1=beta_1, - beta_2=beta_2, - ) - - # Run 3 steps of Lion - for _ in range(3): - optimizer.apply_gradients( - zip([grads0, grads1], [var0, var1]) - ) - var0_np, m0_np = lion_update_numpy( - var0_np, - grads0_np, - m0_np, - learning_rate=learning_rate, - beta_1=beta_1, - beta_2=beta_2, - ) - var1_np, m1_np = lion_update_numpy( - var1_np, - grads1_np, - m1_np, - learning_rate=learning_rate, - beta_1=beta_1, - beta_2=beta_2, - ) - # Validate updated params - self.assertAllCloseAccordingToType(var0_np, var0) - self.assertAllCloseAccordingToType(var1_np, var1) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/optimizers/nadam.py b/keras/optimizers/nadam.py deleted file mode 100644 index e8084c343dd..00000000000 --- a/keras/optimizers/nadam.py +++ /dev/null @@ -1,205 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Nadam optimizer implementation.""" - -import tensorflow.compat.v2 as tf - -from keras.optimizers import optimizer -from keras.saving.object_registration import register_keras_serializable - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@register_keras_serializable() -@keras_export( - "keras.optimizers.experimental.Nadam", "keras.optimizers.Nadam", v1=[] -) -class Nadam(optimizer.Optimizer): - r"""Optimizer that implements the Nadam algorithm. - - Much like Adam is essentially RMSprop with momentum, Nadam is Adam with - Nesterov momentum. - - Args: - learning_rate: A `tf.Tensor`, floating point value, a schedule that is a - `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable - that takes no arguments and returns the actual value to use. The - learning rate. Defaults to 0.001. - beta_1: A float value or a constant float tensor, or a callable - that takes no arguments and returns the actual value to use. The - exponential decay rate for the 1st moment estimates. Defaults to 0.9. - beta_2: A float value or a constant float tensor, or a callable - that takes no arguments and returns the actual value to use. The - exponential decay rate for the 2nd moment estimates. Defaults to 0.999. - epsilon: A small constant for numerical stability. This epsilon is - "epsilon hat" in the Kingma and Ba paper (in the formula just before - Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to - 1e-7. - {{base_optimizer_keyword_args}} - - Reference: - - [Dozat, 2015](http://cs229.stanford.edu/proj2015/054_report.pdf). - - """ - - def __init__( - self, - learning_rate=0.001, - beta_1=0.9, - beta_2=0.999, - epsilon=1e-7, - weight_decay=None, - clipnorm=None, - clipvalue=None, - global_clipnorm=None, - use_ema=False, - ema_momentum=0.99, - ema_overwrite_frequency=None, - jit_compile=True, - name="Nadam", - **kwargs - ): - super().__init__( - name=name, - weight_decay=weight_decay, - clipnorm=clipnorm, - clipvalue=clipvalue, - global_clipnorm=global_clipnorm, - use_ema=use_ema, - ema_momentum=ema_momentum, - ema_overwrite_frequency=ema_overwrite_frequency, - jit_compile=jit_compile, - **kwargs - ) - self._learning_rate = self._build_learning_rate(learning_rate) - self.beta_1 = beta_1 - self.beta_2 = beta_2 - self.epsilon = epsilon - - def build(self, var_list): - """Initialize optimizer variables. - - Nadam optimizer has 2 types of variables: momentums and velocities. - - Args: - var_list: list of model variables to build Nadam variables on. - """ - super().build(var_list) - if getattr(self, "_built", False): - return - self._built = True - self._momentums = [] - self._velocities = [] - self._u_product = tf.Variable(1.0, dtype=var_list[0].dtype) - # Keep a counter on how many times of _u_product has been computed to - # avoid duplicated computations. - self._u_product_counter = 1 - - for var in var_list: - self._momentums.append( - self.add_variable_from_reference( - model_variable=var, variable_name="m" - ) - ) - self._velocities.append( - self.add_variable_from_reference( - model_variable=var, variable_name="v" - ) - ) - - def update_step(self, gradient, variable): - """Update step given gradient and the associated model variable.""" - var_dtype = variable.dtype - lr = tf.cast(self.learning_rate, var_dtype) - local_step = tf.cast(self.iterations + 1, var_dtype) - next_step = tf.cast(self.iterations + 2, var_dtype) - decay = tf.cast(0.96, var_dtype) - beta_1 = tf.cast(self.beta_1, var_dtype) - beta_2 = tf.cast(self.beta_2, var_dtype) - u_t = beta_1 * (1.0 - 0.5 * (tf.pow(decay, local_step))) - u_t_1 = beta_1 * (1.0 - 0.5 * (tf.pow(decay, next_step))) - - def get_cached_u_product(): - return self._u_product - - def compute_new_u_product(): - u_product_t = self._u_product * u_t - self._u_product.assign(u_product_t) - self._u_product_counter += 1 - return u_product_t - - u_product_t = tf.cond( - self._u_product_counter == (self.iterations + 2), - true_fn=get_cached_u_product, - false_fn=compute_new_u_product, - ) - u_product_t_1 = u_product_t * u_t_1 - beta_2_power = tf.pow(beta_2, local_step) - - var_key = self._var_key(variable) - m = self._momentums[self._index_dict[var_key]] - v = self._velocities[self._index_dict[var_key]] - - if isinstance(gradient, tf.IndexedSlices): - # Sparse gradients. - m.assign_add(-m * (1 - beta_1)) - m.scatter_add( - tf.IndexedSlices( - gradient.values * (1 - beta_1), gradient.indices - ) - ) - v.assign_add(-v * (1 - beta_2)) - v.scatter_add( - tf.IndexedSlices( - tf.square(gradient.values) * (1 - beta_2), gradient.indices - ) - ) - m_hat = u_t_1 * m / (1 - u_product_t_1) + (1 - u_t) * gradient / ( - 1 - u_product_t - ) - v_hat = v / (1 - beta_2_power) - - variable.assign_sub((m_hat * lr) / (tf.sqrt(v_hat) + self.epsilon)) - else: - # Dense gradients. - m.assign_add((gradient - m) * (1 - beta_1)) - v.assign_add((tf.square(gradient) - v) * (1 - beta_2)) - m_hat = u_t_1 * m / (1 - u_product_t_1) + (1 - u_t) * gradient / ( - 1 - u_product_t - ) - v_hat = v / (1 - beta_2_power) - - variable.assign_sub((m_hat * lr) / (tf.sqrt(v_hat) + self.epsilon)) - - def get_config(self): - config = super().get_config() - - config.update( - { - "learning_rate": self._serialize_hyperparameter( - self._learning_rate - ), - "beta_1": self.beta_1, - "beta_2": self.beta_2, - "epsilon": self.epsilon, - } - ) - return config - - -Nadam.__doc__ = Nadam.__doc__.replace( - "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args -) diff --git a/keras/optimizers/optimizer.py b/keras/optimizers/optimizer.py deleted file mode 100644 index e312160850a..00000000000 --- a/keras/optimizers/optimizer.py +++ /dev/null @@ -1,1410 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Base class of optimizer.""" - -import abc -import platform -import re - -import tensorflow.compat.v2 as tf -from absl import logging - -from keras import backend -from keras import initializers -from keras.dtensor import utils as dtensor_utils -from keras.optimizers import utils as optimizer_utils -from keras.optimizers.schedules import learning_rate_schedule -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export -from tensorflow.tools.docs import doc_controls - - -class _BaseOptimizer(tf.__internal__.tracking.AutoTrackable): - """Optimizer base class, which only supports non-distribute use case.""" - - def __init__( - self, - name, - weight_decay=None, - clipnorm=None, - clipvalue=None, - global_clipnorm=None, - use_ema=False, - ema_momentum=0.99, - ema_overwrite_frequency=None, - jit_compile=True, - **kwargs, - ): - self.name = name - self.weight_decay = weight_decay - self.clipnorm = clipnorm - self.global_clipnorm = global_clipnorm - self.clipvalue = clipvalue - self.use_ema = use_ema - # Optimizer only benefits from XLA when training on GPU. So if no - # GPU is found, we turn off XLA. - if ( - jit_compile - and tf_utils.can_jit_compile() - and tf.config.list_physical_devices("GPU") - ): - self.jit_compile = True - else: - self.jit_compile = False - - if platform.system() == "Darwin" and platform.processor() == "arm": - logging.warning( - "At this time, the v2.11+ optimizer " - f"`tf.keras.optimizers.{self.__class__.__name__}` runs slowly " - "on M1/M2 Macs, please use the legacy Keras optimizer " - "instead, located at " - f"`tf.keras.optimizers.legacy.{self.__class__.__name__}`." - ) - - if use_ema: - # Verify the arguments related to EMA. - if ema_momentum > 1 or ema_momentum < 0: - raise ValueError( - "`ema_momentum` must be in the range [0, 1]. " - f"Received: ema_momentum={ema_momentum}" - ) - if ema_overwrite_frequency and ( - not isinstance(ema_overwrite_frequency, int) - or ema_overwrite_frequency < 1 - ): - raise ValueError( - "`ema_overwrite_frequency` must be an integer > 1 or None. " - "Received: ema_overwrite_frequency=" - f"{ema_overwrite_frequency}" - ) - self.ema_momentum = ema_momentum - self.ema_overwrite_frequency = ema_overwrite_frequency - - if self.clipnorm is not None and self.global_clipnorm is not None: - raise ValueError( - "At most one of `clipnorm` and `global_clipnorm` can " - f"be set. Received: clipnorm={self.clipnorm}, " - f"global_clipnorm={self.global_clipnorm}." - ) - - self._variables = [] - self._create_iteration_variable() - self._process_kwargs(kwargs) - - def _create_iteration_variable(self): - """Create the iterations counter variable.""" - with tf.init_scope(): - # Lift the variable creation to init scope to avoid environment - # issue. - self._iterations = tf.Variable( - 0, name="iteration", dtype=tf.int64, trainable=False - ) - self._variables.append(self._iterations) - - def _process_kwargs(self, kwargs): - # Remove the `is_legacy_optimizer` arg, which is for serialization only. - kwargs.pop("is_legacy_optimizer", None) - lr = kwargs.pop("lr", None) - if lr: - logging.warning( - "`lr` is deprecated in Keras optimizer, please use " - "`learning_rate` or use the legacy optimizer, e.g.," - f"tf.keras.optimizers.legacy.{self.__class__.__name__}." - ) - legacy_kwargs = { - "decay", - "gradient_aggregator", - "gradient_transformers", - } - for k in kwargs: - if k in legacy_kwargs: - raise ValueError( - f"{k} is deprecated in the new Keras optimizer, please " - "check the docstring for valid arguments, or use the " - "legacy optimizer, e.g., " - f"tf.keras.optimizers.legacy.{self.__class__.__name__}." - ) - else: - raise TypeError( - f"{k} is not a valid argument, kwargs should be empty " - " for `optimizer_experimental.Optimizer`." - ) - - def _create_or_restore_slot_variable(self, **kwargs): - raise ValueError( - "You are trying to restore a checkpoint from a legacy Keras " - "optimizer into a v2.11+ Optimizer, which can cause " - "errors. Please update the optimizer referenced in your code " - "to be an instance of " - "`tf.keras.optimizers.legacy.Optimizer`, e.g.: " - f"`tf.keras.optimizers.legacy.{self.__class__.__name__}`." - ) - - def _var_key(self, variable): - """Get a unique identifier of the given variable.""" - # Get the distributed variable if it exists. - # TODO(b/199214315): replace _unique_id with ref() after fixing ref() - # issues on AggregatingVariable. - return variable._unique_id - - def _deduplicate_sparse_grad(self, grads): - """Deduplicate sparse gradient. - - For sparse gradients, i.e., gradient is of type `tf.IndexedSlices`, - it is possible that `gradient.indices` has duplicated indices. - This function adds up values for the duplicated indices, and returns - a `tf.IndexedSlices` with indices of unique values. - """ - processed_grads = [] - for grad in grads: - if isinstance(grad, tf.IndexedSlices): - values = grad.values - indices = grad.indices - unique_indices, new_index_positions = tf.unique(indices) - summed_values = tf.math.unsorted_segment_sum( - values, new_index_positions, tf.shape(unique_indices)[0] - ) - processed_grads.append( - tf.IndexedSlices( - summed_values, unique_indices, grad.dense_shape - ) - ) - else: - processed_grads.append(grad) - - return processed_grads - - @abc.abstractmethod - def update_step(self, gradient, variable): - """Function to update variable value based on given gradients. - - This method must be implemented in customized optimizers. - - Args: - gradient: backpropagated gradient of the given variable. - variable: variable whose value needs to be updated. - - Returns: - An `Operation` that applies the specified gradients. - - """ - raise NotImplementedError - - @tf.function(jit_compile=True) - def _update_step_xla(self, gradient, variable, key): - """A wrapper of `update_step` to enable XLA acceleration. - - Due to `tf.function` tracing mechanism, for (gradient, variable) pairs - of the same shape and dtype, the execution graph always invoke the first - pair it has seen. Thus, we need a `key` argument to make each (gradient, - variable) pair unique. In additions, XLA cannot understand string input, - so the key is an integer. - - Args: - gradient: backpropagated gradient of the given variable. - variable: variable whose value needs to be updated. - key (int): a unique key that identifies the variable. - - Returns: - An `Operation` that applies the specified gradients. - """ - return self._update_step(gradient, variable) - - def _update_step(self, gradient, variable): - if getattr(variable, "_unique_id", None) is None: - # Variable has no `_unique_id` if called during `model.save()`, in - # which case we do not want to update the variable. - return - if self._var_key(variable) not in self._index_dict: - raise KeyError( - f"The optimizer cannot recognize variable {variable.name}. " - "This usually means you are trying to call the optimizer to " - "update different parts of the model separately. Please call " - "`optimizer.build(variables)` with the full list of trainable " - "variables before the training loop or use legacy optimizer " - f"`tf.keras.optimizers.legacy.{self.__class__.__name__}." - ) - self.update_step(gradient, variable) - - def compute_gradients(self, loss, var_list, tape=None): - """Compute gradients of loss on trainable variables. - - Args: - loss: `Tensor` or callable. If a callable, `loss` should take no - arguments and return the value to minimize. - var_list: list or tuple of `Variable` objects to update to minimize - `loss`, or a callable returning the list or tuple of `Variable` - objects. Use callable when the variable list would otherwise be - incomplete before `minimize` since the variables are created at the - first time `loss` is called. - tape: (Optional) `tf.GradientTape`. If `loss` is provided as a - `Tensor`, the tape that computed the `loss` must be provided. - - Returns: - A list of (gradient, variable) pairs. Variable is always present, but - gradient can be `None`. - """ - if not callable(loss) and tape is None: - raise ValueError( - "`tape` is required when a `Tensor` loss is passed. " - f"Received: loss={loss}, tape={tape}." - ) - if tape is None: - tape = tf.GradientTape() - if callable(loss): - with tape: - if not callable(var_list): - tape.watch(var_list) - loss = loss() - if callable(var_list): - var_list = var_list() - - grads = tape.gradient(loss, var_list) - return list(zip(grads, var_list)) - - def _clip_gradients(self, grads): - clipped_grads = [] - if self.clipnorm and self.clipnorm > 0: - for g in grads: - if g is None: - clipped_grads.append(g) - else: - clipped_grads.append(tf.clip_by_norm(g, self.clipnorm)) - return clipped_grads - - if self.global_clipnorm and self.global_clipnorm > 0: - return tf.clip_by_global_norm(grads, self.global_clipnorm)[0] - - if self.clipvalue and self.clipvalue > 0: - for g in grads: - if g is None: - clipped_grads.append(g) - else: - clipped_grads.append( - tf.clip_by_value( - g, - clip_value_min=-self.clipvalue, - clip_value_max=self.clipvalue, - ) - ) - return clipped_grads - - return grads - - @property - def iterations(self): - """The number of training steps this `optimizer` has run. - - By default, iterations would be incremented by one every time - `apply_gradients()` is called. - """ - return self._iterations - - @iterations.setter - def iterations(self, variable): - if getattr(self, "_built", False): - raise RuntimeError( - "Cannot set `iterations` to a new Variable after " - "the Optimizer weights have been created. Here it is " - f"attempting to set `iterations` to {variable}." - "Usually this means you are trying to set `iterations`" - " after calling `apply_gradients()`. Please set " - "`iterations` before calling `apply_gradients()`." - ) - self._iterations = variable - - @property - def learning_rate(self): - if not hasattr(self, "_learning_rate") or self._learning_rate is None: - raise ValueError( - "Missing learning rate, please set self.learning_rate at" - " optimizer creation time." - ) - lr = self._learning_rate - if isinstance(lr, learning_rate_schedule.LearningRateSchedule): - # If the optimizer takes in LearningRateSchedule, then each call to - # learning_rate would return `self._current_learning_rate`, which is - # updated at each call to `apply_gradients`. - return self._current_learning_rate - return lr - - @learning_rate.setter - def learning_rate(self, learning_rate): - if isinstance( - learning_rate, learning_rate_schedule.LearningRateSchedule - ): - self._learning_rate = learning_rate - else: - if isinstance( - self._learning_rate, learning_rate_schedule.LearningRateSchedule - ): - raise TypeError( - "This optimizer was created with a `LearningRateSchedule`" - " object as its `learning_rate` constructor argument, " - "hence its learning rate is not settable. If you need the" - " learning rate to be settable, you should instantiate " - "the optimizer with a float `learning_rate` argument." - ) - self._learning_rate.assign(learning_rate) - - @property - @doc_controls.do_not_generate_docs - def lr(self): - """Alias of `learning_rate()`. - - `lr()` is heavily called in workflows using `optimizer_v2.OptimizerV2`, - so we keep it for backward compabitliy. - """ - return self.learning_rate - - @lr.setter - def lr(self, learning_rate): - self.learning_rate = learning_rate - - def _build_learning_rate(self, learning_rate): - with tf.init_scope(): - if isinstance( - learning_rate, learning_rate_schedule.LearningRateSchedule - ): - # Create a variable to hold the current learning rate. - current_learning_rate = tf.convert_to_tensor( - learning_rate(self.iterations) - ) - self._current_learning_rate = tf.Variable( - current_learning_rate, - name="current_learning_rate", - dtype=current_learning_rate.dtype, - trainable=False, - ) - return learning_rate - - return tf.Variable( - learning_rate, - name="learning_rate", - dtype=backend.floatx(), - trainable=False, - ) - - @abc.abstractmethod - def build(self, var_list): - """Initialize the optimizer's variables, such as momemtum variables. - - This function has to be implemented by subclass optimizers, and subclass - optimizers need to call `super().build(var_list)`. - - Args: - var_list: List of model variables to build optimizers on. For example, - SGD optimizer with momentum will store one momentum variable - corresponding to each model variable. - """ - if getattr(self, "_built", False): - return - self._build_index_dict(var_list) - if self.use_ema: - self._model_variables_moving_average = [] - for var in var_list: - # Make a copy of the model variables, we will use the copy to - # store the moving average of model variables. - self._model_variables_moving_average.append( - self.add_variable_from_reference( - var, "average", initial_value=var - ) - ) - - def _build_index_dict(self, var_list): - """Build variable to index dictionary. - - Build a dictionary that maps variable to the index of it in the given - var_list. - - Args: - var_list: List of variables to build index dict on. - - Returns: - None - """ - self._index_dict = {} - for i, var in enumerate(var_list): - var_key = self._var_key(var) - self._index_dict[var_key] = i - - def add_variable(self, shape, dtype=None, initializer="zeros", name=None): - """Create an optimizer variable. - - Args: - shape: A list of integers, a tuple of integers, or a 1-D Tensor of - type int32. Defaults to scalar if unspecified. - dtype: The DType of the optimizer variable to be created. Defaults to - `tf.keras.backend.floatx` if unspecified. - initializer: string or callable. Initializer instance. - name: The name of the optimizer variable to be created. - - Returns: - An optimizer variable, in the format of tf.Variable. - - """ - if isinstance(initializer, str): - initializer = initializers.get(initializer) - if dtype is None: - dtype = backend.floatx() - if shape is None: - shape = [] - variable = tf.Variable( - initial_value=initializer(shape, dtype), name=name, trainable=False - ) - self._variables.append(variable) - return variable - - def add_variable_from_reference( - self, model_variable, variable_name, shape=None, initial_value=None - ): - """Create an optimizer variable from model variable. - - Create an optimizer variable based on the information of model variable. - For example, in SGD optimizer momemtum, for each model variable, a - corresponding momemtum variable is created of the same shape and dtype. - - Args: - model_variable: tf.Variable. The corresponding model variable to the - optimizer variable to be created. - variable_name: String. The name prefix of the optimizer variable to be - created. The create variables name will follow the pattern - `{variable_name}/{model_variable.name}`, e.g., `momemtum/dense_1`. - shape: List or Tuple, defaults to None. The shape of the optimizer - variable to be created. If None, the created variable will have the - same shape as `model_variable`. - initial_value: A Tensor, or Python object convertible to a Tensor, - defaults to None. The initial value of the optimizer variable, if - None, the initial value will be default to 0. - - Returns: - An optimizer variable. - """ - if initial_value is None: - if shape is None: - if model_variable.shape.rank is None: - # When the rank is None, we cannot get a concrete - # `model_variable.shape`, we use dynamic shape. - initial_value = tf.zeros_like( - model_variable, dtype=model_variable.dtype - ) - else: - # We cannot always use `zeros_like`, because some cases - # the shape exists while values don't. - initial_value = tf.zeros( - model_variable.shape, dtype=model_variable.dtype - ) - else: - initial_value = tf.zeros(shape, dtype=model_variable.dtype) - variable = tf.Variable( - initial_value=initial_value, - name=f"{variable_name}/{model_variable._shared_name}", - dtype=model_variable.dtype, - trainable=False, - ) - self._variables.append(variable) - return variable - - def minimize(self, loss, var_list, tape=None): - """Minimize `loss` by updating `var_list`. - - This method simply computes gradient using `tf.GradientTape` and calls - `apply_gradients()`. If you want to process the gradient before applying - then call `tf.GradientTape` and `apply_gradients()` explicitly instead - of using this function. - - Args: - loss: `Tensor` or callable. If a callable, `loss` should take no - arguments and return the value to minimize. - var_list: list or tuple of `Variable` objects to update to minimize - `loss`, or a callable returning the list or tuple of `Variable` - objects. Use callable when the variable list would otherwise be - incomplete before `minimize` since the variables are created at the - first time `loss` is called. - tape: (Optional) `tf.GradientTape`. - - Returns: - None - """ - grads_and_vars = self.compute_gradients(loss, var_list, tape) - self.apply_gradients(grads_and_vars) - - def _compute_current_learning_rate(self): - if isinstance( - self._learning_rate, learning_rate_schedule.LearningRateSchedule - ): - # Compute the current learning rate at the beginning of variable - # update. - if hasattr(self, "_current_learning_rate"): - self._current_learning_rate.assign( - self._learning_rate(self.iterations) - ) - else: - current_learning_rate = tf.convert_to_tensor( - self._learning_rate(self.iterations) - ) - self._current_learning_rate = tf.Variable( - current_learning_rate, - name="current_learning_rate", - dtype=current_learning_rate.dtype, - trainable=False, - ) - - def exclude_from_weight_decay(self, var_list=None, var_names=None): - """Exclude variables from weight decay. - - This method must be called before the optimizer's `build` method is - called. You can set specific variables to exclude out, or set a list of - strings as the anchor words, if any of which appear in a variable's - name, then the variable is excluded. - - Args: - var_list: A list of `tf.Variable`s to exclude from weight decay. - var_names: A list of strings. If any string in `var_names` appear - in the model variable's name, then this model variable is - excluded from weight decay. For example, `var_names=['bias']` - excludes all bias variables from weight decay. - """ - if hasattr(self, "_built") and self._built: - raise ValueError( - "`exclude_from_weight_decay()` can only be configued before " - "the optimizer is built." - ) - - if var_list: - self._exclude_from_weight_decay = [ - self._var_key(variable) for variable in var_list - ] - else: - self._exclude_from_weight_decay = [] - self._exclude_from_weight_decay_names = var_names or [] - - def _use_weight_decay(self, variable): - exclude_from_weight_decay = getattr( - self, "_exclude_from_weight_decay", [] - ) - exclude_from_weight_decay_names = getattr( - self, "_exclude_from_weight_decay_names", [] - ) - variable_id = self._var_key(variable) - for exclude_id in exclude_from_weight_decay: - if variable_id == exclude_id: - return False - for name in exclude_from_weight_decay_names: - if re.search(name, variable.name) is not None: - return False - return True - - def apply_gradients(self, grads_and_vars, name=None): - """Apply gradients to variables. - - Args: - grads_and_vars: List of `(gradient, variable)` pairs. - name: string, defaults to None. The name of the namescope to - use when creating variables. If None, `self.name` will be used. - - Returns: - A `tf.Variable`, representing the current iteration. - - Raises: - TypeError: If `grads_and_vars` is malformed. - """ - self._compute_current_learning_rate() - grads_and_vars = list(grads_and_vars) - if len(grads_and_vars) == 0: - # It is possible that the grad is empty. In this case, - # `apply_gradients` is a no-op. - return self._iterations - grads, trainable_variables = zip(*grads_and_vars) - scope_name = name or self.name or "optimizer" - with tf.name_scope(scope_name): - with tf.init_scope(): - # Lift variable creation to init scope to avoid environment - # issues. - self.build(trainable_variables) - grads_and_vars = optimizer_utils.filter_empty_gradients( - grads_and_vars - ) - if len(list(grads_and_vars)) == 0: - # Check again after filtering gradients. - return self._iterations - - grads, trainable_variables = zip(*grads_and_vars) - - grads = self._clip_gradients(grads) - grads = self._deduplicate_sparse_grad(grads) - self._apply_weight_decay(trainable_variables) - grads_and_vars = list(zip(grads, trainable_variables)) - iteration = self._internal_apply_gradients(grads_and_vars) - - # Apply variable constraints after applying gradients. - for variable in trainable_variables: - if variable.constraint is not None: - variable.assign(variable.constraint(variable)) - return iteration - - def _apply_weight_decay(self, variables): - if self.weight_decay is None: - return - for variable in variables: - if self._use_weight_decay(variable): - lr = tf.cast(self.learning_rate, variable.dtype) - wd = tf.cast(self.weight_decay, variable.dtype) - variable.assign_sub(variable * wd * lr) - - def _internal_apply_gradients(self, grads_and_vars): - """Helper function of apply gradients. - - This is required for separating out distributed training logic. - - Args: - grads_and_vars: List of (gradient, variable) pairs. - """ - if self.jit_compile: - for grad, var in grads_and_vars: - self._update_step_xla(grad, var, id(self._var_key(var))) - else: - for grad, var in grads_and_vars: - self._update_step(grad, var) - return self.iterations.assign_add(1) - - def _update_model_variables_moving_average(self, var_list): - """Update the stored moving average using the latest value.""" - if self.use_ema: - for var, average in zip( - var_list, self._model_variables_moving_average - ): - average.assign( - self.ema_momentum * average + (1 - self.ema_momentum) * var - ) - - def _overwrite_model_variables_with_average_value(self, var_list): - """Overwrite model variables with its moving average.""" - if len(var_list) != len(self._model_variables_moving_average): - raise ValueError( - f"The length of model variables ({len(var_list)}) to " - "override does not match the length of model variables " - "stored in the optimizer " - f"({len(self._model_variables_moving_average)}). Please " - "check if the optimizer was called on your model." - ) - self._overwrite_model_variables_with_average_value_helper(var_list) - - def _overwrite_model_variables_with_average_value_helper(self, var_list): - """Helper function that overwrites model variables.""" - for var, average_var in zip( - var_list, self._model_variables_moving_average - ): - var.assign(average_var) - - def finalize_variable_values(self, var_list): - """Set the final value of model's trainable variables. - - Sometimes there are some extra steps before ending the variable updates, - such as overriding the model variables with its average value. - - Args: - var_list: list of model variables. - """ - if self.use_ema: - # If the optimizer uses EMA, then when finalizing, we replace the - # model variable value with its moving average stored inside - # optimizer. - self._overwrite_model_variables_with_average_value(var_list) - - def _serialize_hyperparameter(self, hyperparameter): - """Serialize a hyperparameter that can be a numeric or callable.""" - if isinstance( - hyperparameter, learning_rate_schedule.LearningRateSchedule - ): - return learning_rate_schedule.serialize(hyperparameter) - if isinstance(hyperparameter, tf.Variable): - return hyperparameter.numpy() - if callable(hyperparameter): - return hyperparameter() - return hyperparameter - - def get_config(self): - """Returns the config of the optimizer. - - An optimizer config is a Python dictionary (serializable) - containing the configuration of an optimizer. - The same optimizer can be reinstantiated later - (without any saved state) from this configuration. - - Subclass optimizer should override this method to include other - hyperparameters. - - Returns: - Python dictionary. - """ - config = { - "name": self.name, - "weight_decay": self.weight_decay, - "clipnorm": self.clipnorm, - "global_clipnorm": self.global_clipnorm, - "clipvalue": self.clipvalue, - "use_ema": self.use_ema, - "ema_momentum": self.ema_momentum, - "ema_overwrite_frequency": self.ema_overwrite_frequency, - "jit_compile": self.jit_compile, - "is_legacy_optimizer": False, - } - return config - - @classmethod - def from_config(cls, config, custom_objects=None): - """Creates an optimizer from its config. - - This method is the reverse of `get_config`, capable of instantiating the - same optimizer from the config dictionary. - - Args: - config: A Python dictionary, typically the output of get_config. - custom_objects: A Python dictionary mapping names to additional - user-defined Python objects needed to recreate this optimizer. - - Returns: - An optimizer instance. - """ - if "learning_rate" in config: - if isinstance(config["learning_rate"], dict): - config["learning_rate"] = learning_rate_schedule.deserialize( - config["learning_rate"], custom_objects=custom_objects - ) - return cls(**config) - - @property - def variables(self): - """Returns variables of this optimizer.""" - return CallableList(self._variables) - - def set_weights(self, weights): - """Set the weights of the optimizer. - - Args: - weights: a list of `tf.Variable`s or numpy arrays, the target values - of optimizer variables. It should have the same order as - `self._variables`. - """ - if not getattr(self, "_built", False): - raise ValueError( - "You are calling `set_weights()` on an optimizer that has not " - "yet been built. Please call " - "`optimizer.build(trainable_variables)` to create the " - "optimizer weights before calling `set_weights()`." - ) - - for variable, weight in zip(self._variables, weights): - if variable.shape != weight.shape: - raise ValueError( - f"Optimizer variable {self._var_key(variable)} has shape " - f"{str(variable.shape)} not compatible with provided " - f"weight shape {str(weight.shape)}." - ) - variable.assign(weight) - - def save_own_variables(self, store): - """Get the state of this optimizer object.""" - for i, variable in enumerate(self.variables): - store[str(i)] = variable.numpy() - - def load_own_variables(self, store): - """Set the state of this optimizer object.""" - if len(store.keys()) != len(self.variables): - msg = ( - f"Skipping variable loading for optimizer '{self.name}', " - f"because it has {len(self.variables)} variables whereas " - f"the saved optimizer has {len(store.keys())} variables. " - ) - if len(self.variables) == 0: - msg += ( - "This is likely because the optimizer has not been " - "called/built yet." - ) - logging.warning(msg) - return - for i, variable in enumerate(self.variables): - variable.assign(store[str(i)]) - - -base_optimizer_keyword_args = """name: String. The name to use - for momentum accumulator weights created by - the optimizer. - weight_decay: Float, defaults to None. If set, weight decay is applied. - clipnorm: Float. If set, the gradient of each weight is individually - clipped so that its norm is no higher than this value. - clipvalue: Float. If set, the gradient of each weight is clipped to be no - higher than this value. - global_clipnorm: Float. If set, the gradient of all weights is clipped so - that their global norm is no higher than this value. - use_ema: Boolean, defaults to False. If True, exponential moving average - (EMA) is applied. EMA consists of computing an exponential moving - average of the weights of the model (as the weight values change after - each training batch), and periodically overwriting the weights with - their moving average. - ema_momentum: Float, defaults to 0.99. Only used if `use_ema=True`. - This is the momentum to use when computing - the EMA of the model's weights: - `new_average = ema_momentum * old_average + (1 - ema_momentum) * - current_variable_value`. - ema_overwrite_frequency: Int or None, defaults to None. Only used if - `use_ema=True`. Every `ema_overwrite_frequency` steps of iterations, - we overwrite the model variable by its moving average. - If None, the optimizer - does not overwrite model variables in the middle of training, and you - need to explicitly overwrite the variables at the end of training - by calling `optimizer.finalize_variable_values()` - (which updates the model - variables in-place). When using the built-in `fit()` training loop, - this happens automatically after the last epoch, - and you don't need to do anything. - jit_compile: Boolean, defaults to True. - If True, the optimizer will use XLA - compilation. If no GPU device is found, this flag will be ignored. - mesh: optional `tf.experimental.dtensor.Mesh` instance. When provided, - the optimizer will be run in DTensor mode, e.g. state - tracking variable will be a DVariable, and aggregation/reduction will - happen in the global DTensor context. - **kwargs: keyword arguments only used for backward compatibility.""" - - -@keras_export( - "keras.optimizers.Optimizer", - "keras.optimizers.experimental.Optimizer", - v1=[], -) -class Optimizer(_BaseOptimizer): - """Abstract optimizer base class. - - This class supports distributed training. If you want to implement your own - optimizer, please subclass this class instead of _BaseOptimizer. - - Args: - {{base_optimizer_keyword_args}} - - ### Usage - - ```python - # Create an optimizer with the desired parameters. - opt = tf.keras.optimizers.experimental.SGD(learning_rate=0.1) - var1, var2 = tf.Variable(1.0), tf.Variable(2.0) - # `loss` is a callable that takes no argument and returns the value - # to minimize. - loss = lambda: 3 * var1 * var1 + 2 * var2 * var2 - # Call minimize to update the list of variables. - opt.minimize(loss, var_list=[var1, var2]) - ``` - - ### Processing gradients before applying them - - Calling `minimize()` takes care of both computing the gradients and - applying them to the variables. If you want to process the gradients - before applying them you can instead use the optimizer in three steps: - - 1. Compute the gradients with `tf.GradientTape`. - 2. Process the gradients as you wish. - 3. Apply the processed gradients with `apply_gradients()`. - - Example: - - ```python - # Create an optimizer. - opt = tf.keras.optimizers.experimental.SGD(learning_rate=0.1) - var1, var2 = tf.Variable(1.0), tf.Variable(2.0) - - # Compute the gradients for a list of variables. - with tf.GradientTape() as tape: - loss = 3 * var1 * var1 + 2 * var2 * var2 - grads = tape.gradient(loss, [var1, var2]) - - # Process the gradients. - grads[0] = grads[0] + 1 - - # Ask the optimizer to apply the gradients on variables. - opt.apply_gradients(zip(grads, [var1, var2])) - ``` - - ### Dynamic learning rate - - Dynamic learning rate can be achieved by setting learning rate as a built-in - or customized `tf.keras.optimizers.schedules.LearningRateSchedule`. - - Example: - - >>> var = tf.Variable(np.random.random(size=(1,))) - >>> learning_rate = tf.keras.optimizers.schedules.ExponentialDecay( - ... initial_learning_rate=.01, decay_steps=20, decay_rate=.1) - >>> opt = tf.keras.optimizers.experimental.SGD(learning_rate=learning_rate) - >>> loss = lambda: 3 * var - >>> opt.minimize(loss, var_list=[var]) - - ### Gradients clipping - - Users can clip the gradients before applying to variables by setting - `clipnorm`, `clipvalue` and `global_clipnorm`. Notice that `clipnorm` and - `global_clipnorm` can only have one being set. - - Example: - - >>> opt = tf.keras.optimizers.experimental.SGD(learning_rate=1, clipvalue=1) - >>> var1, var2 = tf.Variable(2.0), tf.Variable(2.0) - >>> with tf.GradientTape() as tape: - ... loss = 2 * var1 + 2 * var2 - >>> grads = tape.gradient(loss, [var1, var2]) - >>> print([grads[0].numpy(), grads[1].numpy()]) - [2.0, 2.0] - >>> opt.apply_gradients(zip(grads, [var1, var2])) - >>> # Without clipping, we should get [0, 0], but as gradients are clipped - >>> # to have max value 1, we get [1.0, 1.0]. - >>> print([var1.numpy(), var2.numpy()]) - [1.0, 1.0] - - ### Using weight decay. - - Weight decay in certain scenarios can boost the model's performance. Keras - has built-in support for weight decay in all optimizers. Users can apply - weight decay by setting `weight_decay` argument. - - >>> opt = tf.keras.optimizers.experimental.SGD(1, weight_decay=0.004) - >>> grads, var1, var2 = tf.zeros(()), tf.Variable(2.0), tf.Variable(2.0) - >>> # You can exclude variables from weight decay, in this case we - >>> # exclude `var2`. - >>> opt.exclude_from_weight_decay(var_list=[var2]) - >>> opt.apply_gradients(zip([grads, grads], [var1, var2])) - >>> print([var1.numpy(), var2.numpy()]) - [1.992, 2.0] - - - ### Using exponential moving average. - - Empirically it has been found that using the exponential moving average - (EMA) of the trained parameters of a deep network achieves a better - performance than using its trained parameters directly. Keras optimizers - allows users to compute this moving average and overwrite the model - variables at desired time. - - Example: - - ```python - # Create an SGD optimizer with EMA on. `ema_momentum` controls the decay - # rate of the moving average. `ema_momentum=1` means no decay and the stored - # moving average is always model variable's initial value before training. - # Reversely, `ema_momentum=0` is equivalent to not using EMA. - # `ema_overwrite_frequency=3` means every 3 iterations, we overwrite the - # trainable variables with their moving average values. - opt = tf.keras.optimizers.experimental.SGD( - learning_rate=1, - use_ema=True, - ema_momentum=0.5, - ema_overwrite_frequency=3) - var1, var2 = tf.Variable(2.0), tf.Variable(2.0) - with tf.GradientTape() as tape: - loss = var1 + var2 - grads = tape.gradient(loss, [var1, var2]) - # First iteration: [var1, var2] = [1.0, 1.0] - opt.apply_gradients(zip(grads, [var1, var2])) - print([var1, var2]) - - # Second iteration: [var1, var2] = [0.0, 0.0] - opt.apply_gradients(zip(grads, [var1, var2])) - print([var1, var2]) - - # Third iteration, without EMA, we should see [var1, var2] = [-1.0, -1.0], - # but overwriting results in [var1, var2] = [-0.125, -0.125]. The full - # calculation for the moving average of var1 is: - # var1=2*0.5**3+1*(1-0.5)*0.5**2+0*(1-0.5)*0.5**1+(-1)*(1-0.5)=-0.125. - opt.apply_gradients(zip(grads, [var1, var2])) - print([var1, var2]) - - ``` - When optimizer is constructed with `use_ema=True`, in custom training loop, - users can explicitly call `finalize_variable_values()` to overwrite - trainable variables with their EMA values. `finalize_variable_values()` is - by default called at the end of `model.fit()`. - - ### Use with `tf.distribute.Strategy` - - This optimizer class is `tf.distribute.Strategy` aware, which means it - automatically sums gradients across all replicas. To aggregate gradients - yourself, call `apply_gradients` with `skip_aggregate_gradients` set to - True. This is useful if you need to process aggregated gradients. - - ```python - # This example is not runnable, it consists of dummy code for simple - # tutorial. - strategy = tf.distribute.experimental.TPUStrategy() - - with strategy.scope(): - opt = tf.keras.optimizers.experimental.SGD() - model = magic_function_that_returns_model() - gradients = magic_function_that_returns_gradients() - # Custom logic to aggregate gradients. - gradients = strategy.reduce("SUM", gradients, axis=None) - opt.apply_gradients(zip(gradients, model.trainable_variables), - skip_aggregate_gradients=True) - ``` - - ### Creating a custom optimizer - - If you intend to create your own optimization algorithm, please inherit from - this class and override the following methods: - - - `build`: Create your optimizer-related variables, such as `momentums` in - SGD optimizer. - - `update_step`: Implement your optimizer's updating logic. - - `get_config`: serialization of the optimizer, include all hyper - parameters. - - Your optimizer would automatically be compatible with tensorflow distributed - training if you subclass `optimizer_experimental.Optimizer`. - - """ - - def __init__( - self, - name, - weight_decay=0, - clipnorm=None, - clipvalue=None, - global_clipnorm=None, - use_ema=False, - ema_momentum=0.99, - ema_overwrite_frequency=None, - jit_compile=True, - **kwargs, - ): - """Create a new Optimizer.""" - mesh = kwargs.pop("mesh", None) - self._mesh = mesh - super().__init__( - name, - weight_decay, - clipnorm, - clipvalue, - global_clipnorm, - use_ema, - ema_momentum, - ema_overwrite_frequency, - jit_compile, - **kwargs, - ) - self._distribution_strategy = tf.distribute.get_strategy() - self._run_with_dtensor = dtensor_utils.running_with_dtensor_strategy() - - def add_variable_from_reference( - self, model_variable, variable_name, shape=None, initial_value=None - ): - if self._mesh: - if initial_value is None: - # Use tf.zeros_like which will propagate the layout information - # from the model weights if any. - initial_value = tf.zeros_like(model_variable) - elif isinstance(initial_value, tf.Tensor): - initial_value = tf.experimental.dtensor.copy_to_mesh( - initial_value, - tf.experimental.dtensor.Layout.replicated( - self._mesh, rank=initial_value.shape.rank - ), - ) - variable = tf.experimental.dtensor.DVariable( - initial_value=initial_value, - name=f"{variable_name}/{model_variable._shared_name}", - dtype=model_variable.dtype, - trainable=False, - ) - self._variables.append(variable) - return variable - else: - strategy = tf.distribute.get_strategy() - with strategy.extended.colocate_vars_with(model_variable): - return super().add_variable_from_reference( - model_variable, variable_name, shape, initial_value - ) - - def _create_iteration_variable(self): - if self._mesh: - init_val = tf.constant(0, dtype=tf.int64) - init_val = tf.experimental.dtensor.copy_to_mesh( - init_val, - tf.experimental.dtensor.Layout.replicated(self._mesh, rank=0), - ) - with tf.init_scope(): - # Lift the variable creation to init scope to avoid environment - # issue. - self._iterations = tf.experimental.dtensor.DVariable( - init_val, name="iteration" - ) - self._variables.append(self._iterations) - else: - super()._create_iteration_variable() - - def _var_key(self, variable): - """Get a unique identifier of the given variable.""" - - # Get the distributed variable if it exists. - # TODO(b/197554203): replace _distributed_container() with a public api. - if hasattr(variable, "_distributed_container"): - variable = variable._distributed_container() - elif ( - tf_utils.is_extension_type(variable) - and hasattr(variable, "handle") - and hasattr(variable.handle, "_distributed_container") - ): - # For ResourceVariables, the _distributed_container attribute - # is added to their handle tensors. - variable = variable.handle._distributed_container() - return super()._var_key(variable) - - def aggregate_gradients(self, grads_and_vars): - """Aggregate gradients on all devices. - - By default, we will perform reduce_sum of gradients across devices. - Users can implement their own aggregation logic by overriding this - method. - - Args: - grads_and_vars: List of (gradient, variable) pairs. - - Returns: - List of (gradient, variable) pairs. - """ - if self._mesh or self._run_with_dtensor: - raise NotImplementedError( - "Dtensor doesn't need to manually aggregate gradients" - ) - else: - return optimizer_utils.all_reduce_sum_gradients(grads_and_vars) - - def apply_gradients( - self, - grads_and_vars, - name=None, - skip_gradients_aggregation=False, - **kwargs, - ): - """Apply gradients to variables. - - Args: - grads_and_vars: List of `(gradient, variable)` pairs. - name: string, defaults to None. The name of the namescope to - use when creating variables. If None, `self.name` will be used. - skip_gradients_aggregation: If true, gradients aggregation will not be - performed inside optimizer. Usually this arg is set to True when you - write custom code aggregating gradients outside the optimizer. - **kwargs: keyword arguments only used for backward compatibility. - - Returns: - A `tf.Variable`, representing the current iteration. - - Raises: - TypeError: If `grads_and_vars` is malformed. - RuntimeError: If called in a cross-replica context. - """ - if self._mesh or self._run_with_dtensor: - # Skip any usage of strategy logic for DTensor - return super().apply_gradients(grads_and_vars, name=name) - - # `experimental_aggregate_gradients` is an arg in `apply_gradients` of - # v2 optimizer -- the reverse of `skip_gradients_aggregation`. - # We read it from kwargs for backward compatibility. - experimental_aggregate_gradients = kwargs.pop( - "experimental_aggregate_gradients", True - ) - if not skip_gradients_aggregation and experimental_aggregate_gradients: - grads_and_vars = self.aggregate_gradients(grads_and_vars) - return super().apply_gradients(grads_and_vars, name=name) - - def _apply_weight_decay(self, variables): - # Apply weight decay in distributed setup. - if self.weight_decay is None: - return - - def distributed_apply_weight_decay(distribution, variables, **kwargs): - def weight_decay_fn(variable): - if self._use_weight_decay(variable): - lr = tf.cast(self.learning_rate, variable.dtype) - wd = tf.cast(self.weight_decay, variable.dtype) - variable.assign_sub(variable * wd * lr) - - for variable in variables: - distribution.extended.update( - variable, weight_decay_fn, group=False - ) - - tf.__internal__.distribute.interim.maybe_merge_call( - distributed_apply_weight_decay, - self._distribution_strategy, - variables, - ) - - def _internal_apply_gradients(self, grads_and_vars): - if self._mesh or self._run_with_dtensor: - # Skip any usage of strategy logic for DTensor - return super()._internal_apply_gradients(grads_and_vars) - - return tf.__internal__.distribute.interim.maybe_merge_call( - self._distributed_apply_gradients_fn, - self._distribution_strategy, - grads_and_vars, - ) - - def _overwrite_model_variables_with_average_value_helper(self, var_list): - """Helper function to _overwrite_model_variables_with_average_value. - - This function overwrites variables on each device. - Args: - var_list: list of model variables. - """ - if self._mesh or self._run_with_dtensor: - # Skip any usage of strategy logic for DTensor - super()._overwrite_model_variables_with_average_value_helper( - var_list - ) - - strategy = self._distribution_strategy - # Override model variable by the stored average value on all devices. - for var, average_var in zip( - var_list, self._model_variables_moving_average - ): - strategy.extended.update( - var, lambda a, b: a.assign(b), args=(average_var,) - ) - - def _build_learning_rate(self, learning_rate): - if not self._mesh: - return super()._build_learning_rate(learning_rate) - - # For DTensor - variable_creation = tf.experimental.dtensor.DVariable - init_value_convert_fn = lambda x: tf.experimental.dtensor.copy_to_mesh( - x, tf.experimental.dtensor.Layout.replicated(self._mesh, rank=0) - ) - if isinstance( - learning_rate, learning_rate_schedule.LearningRateSchedule - ): - current_learning_rate = tf.convert_to_tensor( - learning_rate(self.iterations) - ) - current_learning_rate = init_value_convert_fn(current_learning_rate) - # Create a variable to hold the current learning rate. - # Note that the init value `learning_rate(self.iterations)` should - # have the correct layout information from self.iterations. - self._current_learning_rate = variable_creation( - current_learning_rate, - name="learning_rate", - dtype=tf.float32, - ) - return learning_rate - - init_val = init_value_convert_fn( - tf.constant(learning_rate, dtype=tf.float32) - ) - return variable_creation( - init_val, - name="learning_rate", - dtype=backend.floatx(), - trainable=False, - ) - - def _update_model_variables_moving_average(self, var_list): - """Update the stored moving average using the latest value.""" - if self.use_ema: - - def update_average(average, var): - average.assign( - self.ema_momentum * average + (1 - self.ema_momentum) * var - ) - - for var, average in zip( - var_list, self._model_variables_moving_average - ): - self._distribution_strategy.extended.update( - average, update_average, args=(var,), group=False - ) - - def _distributed_apply_gradients_fn( - self, distribution, grads_and_vars, **kwargs - ): - """`apply_gradients` using a `DistributionStrategy`.""" - - def apply_grad_to_update_var(var, grad): - if self.jit_compile: - return self._update_step_xla(grad, var, id(self._var_key(var))) - else: - return self._update_step(grad, var) - - for grad, var in grads_and_vars: - distribution.extended.update( - var, apply_grad_to_update_var, args=(grad,), group=False - ) - - if self.use_ema: - _, var_list = zip(*grads_and_vars) - self._update_model_variables_moving_average(var_list) - if self.ema_overwrite_frequency: - # Only when self.ema_overwrite_frequency is not None, we - # overwrite the model variables. - should_overwrite_model_vars = ( - self.iterations + 1 - ) % self.ema_overwrite_frequency == 0 - tf.cond( - tf.cast(should_overwrite_model_vars, tf.bool), - true_fn=lambda: self._overwrite_model_variables_with_average_value( # noqa: E501 - var_list - ), - false_fn=lambda: None, - ) - return self.iterations.assign_add(1) - - -class RestoredOptimizer(Optimizer): - def __init__(self): - super().__init__("RestoredOptimizer") - - def get_config(self): - raise NotImplementedError( - "Restoring functional Optimizers from SavedModels is not currently " - "supported. Please file a feature request if this limitation " - "bothers you." - ) - - -class CallableList(list): - """Temporary shim to support both `opt.variables()` and `opt.variables`.""" - - def __call__(self): - return self - - -# Register the optimizer for loading from saved_model purpose. -tf.__internal__.saved_model.load.register_revived_type( - "experimentalOptimizer", - lambda obj: isinstance(obj, Optimizer), - versions=[ - tf.__internal__.saved_model.load.VersionedTypeRegistration( - object_factory=lambda proto: RestoredOptimizer(), - version=2, - min_producer_version=1, - min_consumer_version=1, - ) - ], -) - -Optimizer.__doc__ = Optimizer.__doc__.replace( - "{{base_optimizer_keyword_args}}", base_optimizer_keyword_args -) diff --git a/keras/optimizers/optimizer_pss_test.py b/keras/optimizers/optimizer_pss_test.py deleted file mode 100644 index f4ff19c98bb..00000000000 --- a/keras/optimizers/optimizer_pss_test.py +++ /dev/null @@ -1,165 +0,0 @@ -"""Tests for calling optimizer on ParameterServerStrategy.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.optimizers import adadelta -from keras.optimizers import adagrad -from keras.optimizers import adam -from keras.optimizers import adamax -from keras.optimizers import adamw -from keras.optimizers import ftrl -from keras.optimizers import lion -from keras.optimizers import nadam -from keras.optimizers import rmsprop -from keras.optimizers import sgd -from keras.utils import dataset_creator -from keras.utils import losses_utils - -ds_combinations = tf.__internal__.distribute.combinations - -STRATEGIES = [ - ds_combinations.parameter_server_strategy_3worker_2ps_cpu, - ds_combinations.parameter_server_strategy_3worker_2ps_1gpu, -] - -adadelta_fn = tf.__internal__.test.combinations.NamedObject( - "adadelta", - lambda: adadelta.Adadelta( - 0.002, use_ema=True, ema_overwrite_frequency=None - ), -) -adagrad_fn = tf.__internal__.test.combinations.NamedObject( - "adagrad", lambda: adagrad.Adagrad(0.002) -) -adam_fn = tf.__internal__.test.combinations.NamedObject( - "adam", lambda: adam.Adam(0.002) -) -adamax_fn = tf.__internal__.test.combinations.NamedObject( - "adamax", lambda: adamax.Adamax(0.002) -) -adamw_fn = tf.__internal__.test.combinations.NamedObject( - "adamw", lambda: adamw.AdamW(0.002, weight_decay=0.004) -) -ftrl_fn = tf.__internal__.test.combinations.NamedObject( - "ftrl", lambda: ftrl.Ftrl(0.002) -) -lion_fn = tf.__internal__.test.combinations.NamedObject( - "lion", lambda: lion.Lion(0.002) -) -nadam_fn = tf.__internal__.test.combinations.NamedObject( - "experimentnadam", lambda: nadam.Nadam(0.002) -) -rmsprop_fn = tf.__internal__.test.combinations.NamedObject( - "rmsprop", lambda: rmsprop.RMSprop(0.002) -) -sgd_fn = tf.__internal__.test.combinations.NamedObject( - "sgdaverage", - lambda: sgd.SGD(0.002, use_ema=True, ema_overwrite_frequency=1), -) - -OPTIMIZER_FN = [ - adadelta_fn, - adagrad_fn, - adam_fn, - adamax_fn, - adamw_fn, - ftrl_fn, - lion_fn, - nadam_fn, - rmsprop_fn, - sgd_fn, -] - - -# TODO(b/228209527): Combine this test with optimizer_test after -# fixing the NCCL issue. -class OptimizerPssTest(tf.test.TestCase, parameterized.TestCase): - def _get_model(self): - return keras.Sequential( - [keras.layers.Input(shape=(1,)), keras.layers.Dense(1)] - ) - - def _get_dataset_fn(self): - def dataset_fn(_): - x, y = [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0] - ds = tf.data.Dataset.from_tensor_slices((x, y)) - ds = ds.repeat().batch(6) - return ds - - return dataset_fn - - def _verify_accumulators_updated(self, optimizer): - variables = optimizer.variables - for var in variables: - if "iteration" not in var.name and "learning_rate" not in var.name: - # Find a variable not iteration or learning_rate, and verify its - # value is updated (not 0). - self.assertNotAllEqual(var, 0) - - @ds_combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=STRATEGIES, optimizer_fn=OPTIMIZER_FN - ) - ) - def testGetGradientsInModelPss(self, strategy, optimizer_fn): - with strategy.scope(): - model = self._get_model() - optimizer = optimizer_fn() - ds_fn = self._get_dataset_fn() - if isinstance(strategy, tf.distribute.ParameterServerStrategy): - ds = dataset_creator.DatasetCreator(ds_fn) - else: - ds = ds_fn(None) - model.compile(loss="mse", optimizer=optimizer) - model.fit(ds, epochs=1, steps_per_epoch=5) - - self._verify_accumulators_updated(optimizer) - - @ds_combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=STRATEGIES, optimizer_fn=OPTIMIZER_FN - ) - ) - def testGetGradientsInCustomTrainingLoopPss(self, strategy, optimizer_fn): - coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator( - strategy - ) - - with strategy.scope(): - model = self._get_model() - optimizer = optimizer_fn() - - def per_worker_dataset_fn(): - return strategy.distribute_datasets_from_function( - self._get_dataset_fn() - ) - - ds = coordinator.create_per_worker_dataset(per_worker_dataset_fn) - - @tf.function - def train_step(iterator): - def replica_fn(data): - features, labels = data - with tf.GradientTape() as tape: - output = model(tf.expand_dims(features, axis=1)) - loss = keras.losses.MeanSquaredError( - reduction=losses_utils.ReductionV2.NONE - )(labels, output) - grads = tape.gradient(loss, model.trainable_variables) - optimizer.apply_gradients( - zip(grads, model.trainable_variables) - ) - - strategy.run(replica_fn, args=(next(iterator),)) - - for _ in range(3): - coordinator.schedule(train_step, args=(iter(ds),)) - coordinator.join() - self.assertEqual(self.evaluate(optimizer.iterations), 3) - self._verify_accumulators_updated(optimizer) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/optimizers/optimizer_test.py b/keras/optimizers/optimizer_test.py deleted file mode 100644 index 7e47b4a4793..00000000000 --- a/keras/optimizers/optimizer_test.py +++ /dev/null @@ -1,846 +0,0 @@ -"""Tests for the reworked optimizer. - -More context in go/new-keras-optimizer -""" - -import os -from unittest import mock - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.optimizers import adadelta as adadelta_new -from keras.optimizers import adafactor as adafactor_new -from keras.optimizers import adagrad as adagrad_new -from keras.optimizers import adam as adam_new -from keras.optimizers import adamax as adamax_new -from keras.optimizers import adamw as adamw_new -from keras.optimizers import ftrl as ftrl_new -from keras.optimizers import lion as lion_new -from keras.optimizers import nadam as nadam_new -from keras.optimizers import rmsprop as rmsprop_new -from keras.optimizers import sgd as sgd_new -from keras.optimizers.legacy import adadelta as adadelta_old -from keras.optimizers.legacy import adagrad as adagrad_old -from keras.optimizers.legacy import adam as adam_old -from keras.optimizers.legacy import ftrl as ftrl_old -from keras.optimizers.legacy import gradient_descent as sgd_old -from keras.optimizers.legacy import rmsprop as rmsprop_old -from keras.optimizers.schedules import learning_rate_schedule -from keras.testing_infra import test_utils -from keras.utils import losses_utils - -ds_combinations = tf.__internal__.distribute.combinations - -STRATEGIES = [ - # TODO(b/202992598): Add PSS strategy once the XLA issues is resolved. - ds_combinations.one_device_strategy, - ds_combinations.mirrored_strategy_with_two_cpus, - ds_combinations.mirrored_strategy_with_two_gpus, - ds_combinations.tpu_strategy, - ds_combinations.cloud_tpu_strategy, - ds_combinations.multi_worker_mirrored_2x1_cpu, - ds_combinations.multi_worker_mirrored_2x2_gpu, - ds_combinations.central_storage_strategy_with_two_gpus, -] - -adadelta_new_fn = tf.__internal__.test.combinations.NamedObject( - "experimentaladadelta", - lambda: adadelta_new.Adadelta( - 0.002, use_ema=True, ema_overwrite_frequency=None - ), -) -adagrad_new_fn = tf.__internal__.test.combinations.NamedObject( - "experimentaladagrad", lambda: adagrad_new.Adagrad(0.002) -) -adafactor_new_fn = tf.__internal__.test.combinations.NamedObject( - "adafactor", lambda: adafactor_new.Adafactor(0.002) -) -adam_new_fn = tf.__internal__.test.combinations.NamedObject( - "experimentaladam", lambda: adam_new.Adam(0.002) -) -adamax_new_fn = tf.__internal__.test.combinations.NamedObject( - "experimentaladamax", lambda: adamax_new.Adamax(0.002) -) -adamw_new_fn = tf.__internal__.test.combinations.NamedObject( - "experimentaladamw", lambda: adamw_new.AdamW(0.002, weight_decay=0.004) -) -ftrl_new_fn = tf.__internal__.test.combinations.NamedObject( - "experimentalftrl", lambda: ftrl_new.Ftrl(0.002) -) -lion_new_fn = tf.__internal__.test.combinations.NamedObject( - "lion", lambda: lion_new.Lion(0.002) -) -nadam_new_fn = tf.__internal__.test.combinations.NamedObject( - "experimentnadam", lambda: nadam_new.Nadam(0.002) -) -rmsprop_new_fn = tf.__internal__.test.combinations.NamedObject( - "experimentalrmsprop", lambda: rmsprop_new.RMSprop(0.002) -) -sgd_new_fn = tf.__internal__.test.combinations.NamedObject( - "experimentalsgdaverage", - lambda: sgd_new.SGD( - 0.002, weight_decay=0.004, use_ema=True, ema_overwrite_frequency=1 - ), -) - -OPTIMIZER_FN = [ - adadelta_new_fn, - adagrad_new_fn, - adafactor_new_fn, - adam_new_fn, - adamax_new_fn, - adamw_new_fn, - ftrl_new_fn, - lion_new_fn, - nadam_new_fn, - rmsprop_new_fn, - sgd_new_fn, -] - - -class OptimizerFuntionalityTest(tf.test.TestCase, parameterized.TestCase): - """Test the functionality of optimizer.""" - - def testAddVariableFromReference(self): - optimizer = adam_new.Adam() - variable = optimizer.add_variable_from_reference( - tf.Variable(1.0, name="tmp"), "test" - ) - self.assertEqual(variable._shared_name, "test/tmp") - self.assertEqual(self.evaluate(variable), 0) - - def testAddVarialeWithCustomShape(self): - optimizer = adam_new.Adam() - variable = optimizer.add_variable_from_reference( - tf.Variable([1.0, 2.0], name="tmp"), "test", shape=[] - ) - self.assertEqual(variable, tf.Variable(0.0)) - - def testBuildIndexDict(self): - optimizer = adam_new.Adam() - var_list = [tf.Variable(0, name=f"var{i}") for i in range(10)] - optimizer._build_index_dict(var_list) - self.assertEqual( - optimizer._index_dict[optimizer._var_key(var_list[7])], 7 - ) - - def testComputeGradients(self): - optimizer = adam_new.Adam() - x = tf.Variable([1.0, 2.0], dtype=tf.float32) - loss_fn = lambda: x - # Test Tensor-type var_list. - var_list = [x] - grads_and_vars = optimizer.compute_gradients(loss_fn, var_list) - grads, _ = zip(*grads_and_vars) - self.assertAllEqual(grads[0], tf.constant([1.0, 1.0])) - # Test callable-type var_list, and create variable in loss fn. - x = [] - - def loss_fn(): - variable = tf.Variable([1.0, 2.0], dtype=tf.float32) - x.append(variable) - return variable - - var_list = lambda: x - - grads_and_vars = optimizer.compute_gradients(loss_fn, var_list) - grads, _ = zip(*grads_and_vars) - self.assertAllEqual(grads[0], tf.constant([1.0, 1.0])) - - def testClipNorm(self): - optimizer = adam_new.Adam(clipnorm=1) - grad = [tf.convert_to_tensor([100.0, 100.0])] - clipped_grad = optimizer._clip_gradients(grad) - self.assertAllClose(clipped_grad[0], [2**0.5 / 2, 2**0.5 / 2]) - - def testClipValue(self): - optimizer = adam_new.Adam(clipvalue=1) - grad = [tf.convert_to_tensor([100.0, 100.0])] - clipped_grad = optimizer._clip_gradients(grad) - self.assertAllEqual(clipped_grad[0], [1.0, 1.0]) - - def testWeightDecay(self): - grads, var1, var2, var3 = ( - tf.zeros(()), - tf.Variable(2.0), - tf.Variable(2.0, name="exclude"), - tf.Variable(2.0), - ) - optimizer_1 = adamw_new.AdamW(learning_rate=1, weight_decay=0.004) - optimizer_1.apply_gradients(zip([grads], [var1])) - - optimizer_2 = adamw_new.AdamW(learning_rate=1, weight_decay=0.004) - optimizer_2.exclude_from_weight_decay(var_names=["exclude"]) - optimizer_2.apply_gradients(zip([grads, grads], [var1, var2])) - - optimizer_3 = adamw_new.AdamW(learning_rate=1, weight_decay=0.004) - optimizer_3.exclude_from_weight_decay(var_list=[var3]) - optimizer_3.apply_gradients(zip([grads, grads], [var1, var3])) - - self.assertEqual(var1, 1.9760959) - self.assertEqual(var2, 2.0) - self.assertEqual(var3, 2.0) - - grads, var1, var2, var3 = ( - tf.zeros(()), - tf.Variable(2.0), - tf.Variable(2.0, name="exclude"), - tf.Variable(2.0), - ) - optimizer_1 = sgd_new.SGD(learning_rate=1, weight_decay=0.004) - optimizer_1.apply_gradients(zip([grads], [var1])) - - optimizer_2 = sgd_new.SGD(learning_rate=1, weight_decay=0.004) - optimizer_2.exclude_from_weight_decay(var_names=["exclude"]) - optimizer_2.apply_gradients(zip([grads, grads], [var1, var2])) - - optimizer_3 = sgd_new.SGD(learning_rate=1, weight_decay=0.004) - optimizer_3.exclude_from_weight_decay(var_list=[var3]) - optimizer_3.apply_gradients(zip([grads, grads], [var1, var3])) - - self.assertEqual(var1, 1.9760959) - self.assertEqual(var2, 2.0) - self.assertEqual(var3, 2.0) - - def testClipGlobalNorm(self): - optimizer = adam_new.Adam(global_clipnorm=1) - grad = [ - tf.cast([100.0, 100.0], dtype=tf.float32), - tf.cast([100.0, 100.0], dtype=tf.float32), - ] - clipped_grad = optimizer._clip_gradients(grad) - self.assertAllClose(clipped_grad[0], [0.5, 0.5]) - - def testPassingLegacyArgsRaiseError(self): - with self.assertRaisesRegex(ValueError, "decay is deprecated*"): - _ = adam_new.Adam(clipnorm=1, decay=0.5) - - def testPassingLegacyClipnorm(self): - optimizer = adam_new.Adam(clipnorm=1) - self.assertEqual(optimizer.clipnorm, 1) - - def testReturnAllOptimizerVariables(self): - x = tf.Variable([[1.0, 2.0], [3.0, 4.0]], dtype=tf.float32) - optimizer = adam_new.Adam() - grads = tf.convert_to_tensor([[1.0, 2.0], [3.0, 4.0]]) - optimizer.apply_gradients(zip([grads], [x])) - optimizer_variables = optimizer.variables - all_names = [var._shared_name for var in optimizer_variables] - self.assertLen(optimizer_variables, 3) - self.assertCountEqual( - all_names, - [ - "iteration", - "Adam/m/Variable", - "Adam/v/Variable", - ], - ) - - def testSetWeights(self): - x = tf.Variable([[1.0, 2.0], [3.0, 4.0]], dtype=tf.float32) - optimizer_1 = adam_new.Adam() - grads = tf.convert_to_tensor([[1.0, 2.0], [3.0, 4.0]]) - optimizer_1.apply_gradients(zip([grads], [x])) - optimizer_2 = adam_new.Adam() - with self.assertRaisesRegex(ValueError, "You are calling*"): - optimizer_2.set_weights(optimizer_1.variables) - optimizer_2.build([x]) - optimizer_2.set_weights(optimizer_1.variables) - self.assertAllClose(optimizer_1.variables, optimizer_2.variables) - - def testSetLearningRate(self): - optimizer = adam_new.Adam(learning_rate=1.0) - self.assertIsInstance(optimizer._learning_rate, tf.Variable) - self.assertEqual(self.evaluate(optimizer.learning_rate), 1.0) - optimizer.learning_rate = 2.0 - self.assertEqual(self.evaluate(optimizer.learning_rate), 2.0) - # Test the legacy setter. - optimizer.lr = 3.0 - self.assertEqual(self.evaluate(optimizer.learning_rate), 3.0) - - lr_schedule = learning_rate_schedule.ExponentialDecay( - initial_learning_rate=1e-2, decay_steps=10000, decay_rate=0.9 - ) - optimizer = adam_new.Adam(learning_rate=lr_schedule) - self.assertIsInstance( - optimizer._learning_rate, learning_rate_schedule.ExponentialDecay - ) - self.assertEqual(optimizer.learning_rate, 0.01) - # Test the legacy property. - self.assertEqual(optimizer.lr, 0.01) - - x = tf.Variable([1.0, 2.0], dtype=tf.float32) - grads = tf.convert_to_tensor([1.0, 2.0]) - for _ in range(2): - optimizer.apply_gradients(zip([grads], [x])) - self.assertTrue( - optimizer.learning_rate < 0.01 and optimizer.learning_rate > 0.00999 - ) - # Check it does not throw error to set `learning_rate` by a - # LearningRateScheduler instance. - optimizer.learning_rate = learning_rate_schedule.ExponentialDecay( - initial_learning_rate=1e-2, decay_steps=10000, decay_rate=0.9 - ) - with self.assertRaisesRegex( - TypeError, "This optimizer was created with*" - ): - optimizer.learning_rate = 2.0 - - def testSetIterations(self): - optimizer = adam_new.Adam(jit_compile=False) - optimizer.iterations = tf.Variable(2, dtype=tf.int32) - self.assertEqual(optimizer.iterations, 2) - var_list = [tf.Variable(2.0), tf.Variable(2.0)] - grads = tf.convert_to_tensor([1.0, 1.0]) - iterations = optimizer.apply_gradients(zip(grads, var_list)) - self.assertEqual(iterations, 3) - self.assertEqual(optimizer.iterations, 3) - with self.assertRaisesRegex(RuntimeError, "Cannot set*"): - optimizer.iterations = 2 - - def testVariableConstraints(self): - optimizer = adam_new.Adam() - inputs = keras.layers.Input(shape=[1]) - outputs = keras.layers.Dense(1, kernel_constraint="NonNeg")(inputs) - model = keras.models.Model(inputs=inputs, outputs=outputs) - model.trainable_variables[0] = -999999 # Set as a negative number. - grads = [tf.zeros(1, 1), tf.zeros(1)] - optimizer.apply_gradients(zip(grads, model.trainable_variables)) - self.assertEqual(model.trainable_variables[0], 0.0) - - def testNoGradients(self): - optimizer = adam_new.Adam(jit_compile=False) - optimizer.apply_gradients(zip([], [])) - - def testApplyGradientsNameArg(self): - optimizer = adam_new.Adam(jit_compile=False) - var_list = [tf.Variable(2.0), tf.Variable(2.0)] - grads = tf.convert_to_tensor([1.0, 1.0]) - optimizer.apply_gradients(zip(grads, var_list), name="dummy") - self.assertIn("dummy", optimizer._velocities[0].name) - - def testPassingMissingWDError(self): - with self.assertRaises(ValueError): - _ = adamw_new.AdamW(0.01, weight_decay=None) - - with self.assertRaisesRegex(ValueError, "Missing value of"): - _ = adamw_new.AdamW(0.01, weight_decay=None) - - def testMovingAverageOptimizer(self): - optimizer = sgd_new.SGD( - learning_rate=1, - use_ema=True, - ema_momentum=0.5, - ema_overwrite_frequency=3, - ) - - var1, var2 = tf.Variable(2.0), tf.Variable(2.0) - with tf.GradientTape() as tape: - loss = var1 + var2 - grads = tape.gradient(loss, [var1, var2]) - # First iteration: [var1, var2] = [1.0, 1.0] - optimizer.apply_gradients(zip(grads, [var1, var2])) - self.assertAllEqual([var1.numpy(), var2.numpy()], [1.0, 1.0]) - - # Second iteration: [var1, var2] = [0.0, 0.0] - optimizer.apply_gradients(zip(grads, [var1, var2])) - self.assertAllEqual([var1.numpy(), var2.numpy()], [0.0, 0.0]) - - # Third iteration, without EMA, we should see [var1, var2] = [-1.0, - # -1.0], but overwriting results in [var1, var2] = [-0.125, -0.125]. - optimizer.apply_gradients(zip(grads, [var1, var2])) - self.assertAllEqual([var1.numpy(), var2.numpy()], [-0.125, -0.125]) - - def testGetAndFromConfig(self): - class CustomLRSchedule(learning_rate_schedule.LearningRateSchedule): - def __init__(self, initial_learning_rate): - self.initial_learning_rate = initial_learning_rate - - def __call__(self, step): - step = tf.cast(step, tf.float32) - return self.initial_learning_rate / (step + 1) - - def get_config(self): - return {"initial_learning_rate": self.initial_learning_rate} - - learning_rate = CustomLRSchedule(0.05) - optimizer = adam_new.Adam( - learning_rate=learning_rate, - beta_1=0.7, - beta_2=0.77, - amsgrad=True, - epsilon=0.001, - clipnorm=0.5, - use_ema=True, - ema_momentum=0.5, - ema_overwrite_frequency=50, - name="custom_adam", - ) - config = optimizer.get_config() - expected_config = { - "name": "custom_adam", - "beta_1": 0.7, - "beta_2": 0.77, - "epsilon": 0.001, - "amsgrad": True, - "clipnorm": 0.5, - "global_clipnorm": None, - "clipvalue": None, - "use_ema": True, - "ema_momentum": 0.5, - "ema_overwrite_frequency": 50, - "is_legacy_optimizer": False, - } - expected_learning_rate = { - "class_name": "CustomLRSchedule", - "config": {"initial_learning_rate": 0.05}, - "module": None, - "registered_name": "CustomLRSchedule", - } - self.assertDictContainsSubset(expected_config, config) - self.assertDictEqual(expected_learning_rate, config["learning_rate"]) - - restored_optimizer = adam_new.Adam.from_config( - config, custom_objects={"CustomLRSchedule": CustomLRSchedule} - ) - self.assertDictEqual( - restored_optimizer.get_config(), optimizer.get_config() - ) - - def testCheckpointOptimizer(self): - x = tf.Variable([[1.0, 2.0], [3.0, 4.0]], dtype=tf.float32) - lr_schedule = learning_rate_schedule.ExponentialDecay( - initial_learning_rate=1e-2, decay_steps=10000, decay_rate=0.9 - ) - optimizer_1 = adam_new.Adam( - learning_rate=lr_schedule, beta_1=0.8, beta_2=0.888 - ) - grads = tf.convert_to_tensor([[1.0, 2.0], [3.0, 4.0]]) - - for _ in range(1): - optimizer_1.apply_gradients(zip([grads], [x])) - - # Then save the variable and optimizer to a checkpoint. - checkpoint_1 = tf.train.Checkpoint(var=x, optimizer=optimizer_1) - checkpoint_path = checkpoint_1.save(self.get_temp_dir()) - - # Create a new optimizer and call restore on it (and x) - x2 = tf.Variable([[0.0, 0.0], [0.0, 0.0]], dtype=x.dtype) - optimizer_2 = adam_new.Adam( - learning_rate=lr_schedule, beta_1=0.8, beta_2=0.888 - ) - checkpoint_2 = tf.train.Checkpoint(var=x2, optimizer=optimizer_2) - checkpoint_2.restore(checkpoint_path) - - for _ in range(2): - optimizer_1.apply_gradients(zip([grads], [x])) - optimizer_2.apply_gradients(zip([grads], [x])) - - self.assertTrue( - ( - self.evaluate(optimizer_1._momentums._storage[0]) - == self.evaluate(optimizer_2._momentums._storage[0]) - ).all() - ) - self.assertEqual( - self.evaluate(optimizer_1._iterations), - self.evaluate(optimizer_2._iterations), - ) - - def testCheckpointOptimizerWithModel(self): - inputs = keras.layers.Input(shape=(1,)) - outputs = keras.layers.Dense(1)(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - optimizer = adamax_new_fn() - x = tf.expand_dims(tf.convert_to_tensor([1, 1, 1, 0, 0, 0]), axis=1) - y = tf.expand_dims(tf.convert_to_tensor([1, 1, 1, 0, 0, 0]), axis=1) - model.compile(loss="mse", optimizer=optimizer) - path = os.path.join(self.get_temp_dir(), "ckpt") - checkpoint_callback = keras.callbacks.ModelCheckpoint(path) - model.fit(x, y, callbacks=[checkpoint_callback]) - - new_model = keras.Model(inputs=inputs, outputs=outputs) - new_optimizer = adamax_new_fn() - new_model.compile(loss="mse", optimizer=new_optimizer) - new_model.load_weights(path) - self.assertEqual( - new_model.optimizer.iterations.numpy(), - model.optimizer.iterations.numpy(), - ) - - def testRestoreOldOptimizerCheckpoint(self): - inputs = keras.layers.Input(shape=(1,)) - outputs = keras.layers.Dense(1)(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - optimizer = adam_old.Adam() - x = tf.expand_dims(tf.convert_to_tensor([1, 1, 1, 0, 0, 0]), axis=1) - y = tf.expand_dims(tf.convert_to_tensor([1, 1, 1, 0, 0, 0]), axis=1) - model.compile(loss="mse", optimizer=optimizer) - path = os.path.join(self.get_temp_dir(), "ckpt") - checkpoint_callback = keras.callbacks.ModelCheckpoint(path) - model.fit(x, y, callbacks=[checkpoint_callback]) - - new_model = keras.Model(inputs=inputs, outputs=outputs) - new_optimizer = adam_new.Adam() - new_model.compile(loss="mse", optimizer=new_optimizer) - with self.assertRaisesRegex( - ValueError, "You are trying to restore a checkpoint.*Adam.*" - ): - new_model.load_weights(path) - - @parameterized.product(optimizer_fn=OPTIMIZER_FN) - def testSaveAndLoadOptimizerWithModel(self, optimizer_fn): - inputs = keras.layers.Input(shape=(1,)) - outputs = keras.layers.Dense(1)(inputs) - model = keras.Model(inputs=inputs, outputs=outputs) - optimizer = optimizer_fn() - optimizer.clipnorm = 0.1 - x = tf.expand_dims(tf.convert_to_tensor([1, 1, 1, 0, 0, 0]), axis=1) - y = tf.expand_dims(tf.convert_to_tensor([1, 1, 1, 0, 0, 0]), axis=1) - model.compile(loss="mse", optimizer=optimizer) - model.fit(x, y) - - # Save in h5 format. - path = os.path.join(self.get_temp_dir(), "model.h5") - model.save(path) - loaded_model = keras.models.load_model(path) - loaded_model.load_weights(path) - loaded_optimizer = loaded_model.optimizer - self.assertEqual(type(optimizer), type(loaded_optimizer)) - self.assertEqual(loaded_optimizer.learning_rate, 0.002) - self.assertEqual(loaded_optimizer.clipnorm, 0.1) - self.assertAllClose(optimizer.variables, loaded_optimizer.variables) - - # Save in Keras SavedModel format. - model.fit(x, y) - path = os.path.join(self.get_temp_dir(), "model") - model.save(path) - loaded_model = keras.models.load_model(path) - loaded_model.load_weights(path) - loaded_optimizer = loaded_model.optimizer - self.assertEqual(type(optimizer), type(loaded_optimizer)) - self.assertEqual(loaded_optimizer.learning_rate, 0.002) - self.assertEqual(loaded_optimizer.clipnorm, 0.1) - loaded_optimizer.build(loaded_model.trainable_variables) - self.assertAllClose(optimizer.variables, loaded_optimizer.variables) - - @parameterized.product(optimizer_fn=OPTIMIZER_FN) - def testSparseGradientsWorkAsExpected(self, optimizer_fn): - optimizer_1 = optimizer_fn() - optimizer_2 = optimizer_fn() - x1 = tf.Variable(np.ones([5]), dtype=tf.float64) - x2 = tf.Variable(np.ones([5]), dtype=tf.float64) - grads = tf.convert_to_tensor([0, 1.0, 1.5, 0, 0], dtype=tf.float64) - sparse_grads = tf.IndexedSlices( - tf.convert_to_tensor([1.0, 1.5], dtype=tf.float64), - tf.convert_to_tensor([1, 2]), - dense_shape=tf.convert_to_tensor([len(grads)]), - ) - for _ in range(5): - optimizer_1.apply_gradients(zip([grads], [x1])) - optimizer_2.apply_gradients(zip([sparse_grads], [x2])) - self.assertAllClose(x1, x2) - - @test_utils.run_v2_only - def test_convert_to_legacy_optimizer(self): - if not tf.executing_eagerly(): - # The conversion could only happen in eager mode. - return - optimizer_list = [ - "adadelta", - "adagrad", - "adam", - "adamax", - "nadam", - "rmsprop", - "sgd", - "ftrl", - ] - # Test conversion does not throw errors. - for name in optimizer_list: - experimental_optimizer = keras.optimizers.get( - name, use_legacy_optimizer=False - ) - reference_legacy_optimizer = keras.optimizers.get( - name, use_legacy_optimizer=True - ) - converted_legacy_optimizer = ( - keras.optimizers.convert_to_legacy_optimizer( - experimental_optimizer - ) - ) - self.assertEqual( - type(reference_legacy_optimizer), - type(converted_legacy_optimizer), - ) - self.assertDictEqual( - reference_legacy_optimizer.get_config(), - converted_legacy_optimizer.get_config(), - ) - - lr_schedule = learning_rate_schedule.ExponentialDecay( - initial_learning_rate=1e-2, decay_steps=10000, decay_rate=0.9 - ) - optimizer = adam_new.Adam(learning_rate=lr_schedule) - legacy_optimizer = keras.optimizers.convert_to_legacy_optimizer( - optimizer - ) - self.assertDictEqual( - optimizer.get_config()["learning_rate"], - legacy_optimizer.get_config()["learning_rate"], - ) - - class CustomLRSchedule(learning_rate_schedule.LearningRateSchedule): - def __init__(self, initial_learning_rate): - self.initial_learning_rate = initial_learning_rate - - def __call__(self, step): - step = tf.cast(step, tf.float32) - return self.initial_learning_rate / (step + 1) - - def get_config(self): - return {"initial_learning_rate": self.initial_learning_rate} - - lr_schedule = CustomLRSchedule(0.001) - optimizer = adam_new.Adam(learning_rate=lr_schedule) - legacy_optimizer = keras.optimizers.convert_to_legacy_optimizer( - optimizer - ) - self.assertDictEqual( - optimizer.get_config()["learning_rate"], - legacy_optimizer.get_config()["learning_rate"], - ) - - @test_utils.run_v2_only - def test_arm_mac_get_legacy_optimizer(self): - with mock.patch( - "platform.system", - mock.MagicMock(return_value="Darwin"), - ): - with mock.patch( - "platform.processor", - mock.MagicMock(return_value="arm"), - ): - optimizer = keras.optimizers.get("adam") - self.assertIsInstance(optimizer, adam_old.Adam) - - -class OptimizerRegressionTest(tf.test.TestCase, parameterized.TestCase): - """Test optimizer outputs the same numerical results as optimizer_v2.""" - - def _compare_numerical(self, old_optimizer, new_optimizer): - x1 = tf.Variable(np.ones([10]), dtype=tf.float64) - x2 = tf.Variable(np.ones([10]), dtype=tf.float64) - grads = tf.convert_to_tensor(np.arange(0.1, 1.1, 0.1)) - first_grads = tf.constant([0.01] * 10, dtype=tf.float64) - sparse_grads = tf.IndexedSlices( - tf.convert_to_tensor([0, 0.2, 0.4, 0.8, 0.8], dtype=tf.float64), - tf.convert_to_tensor([0, 2, 4, 6, 6]), - dense_shape=tf.convert_to_tensor([len(grads)]), - ) - - old_optimizer.apply_gradients(zip([first_grads], [x1])) - new_optimizer.apply_gradients(zip([first_grads], [x2])) - for _ in range(5): - self.assertAllClose(x1, x2, rtol=5e-4, atol=5e-4) - old_optimizer.apply_gradients(zip([grads], [x1])) - new_optimizer.apply_gradients(zip([grads], [x2])) - - for _ in range(5): - self.assertAllClose(x1, x2, rtol=5e-4, atol=5e-4) - old_optimizer.apply_gradients(zip([sparse_grads], [x1])) - new_optimizer.apply_gradients(zip([sparse_grads], [x2])) - - def testAdam(self): - self._compare_numerical( - adam_old.Adam(amsgrad=True), adam_new.Adam(amsgrad=True) - ) - - def testAdadelta(self): - self._compare_numerical( - adadelta_old.Adadelta(), adadelta_new.Adadelta() - ) - - def testAdagrad(self): - self._compare_numerical(adagrad_old.Adagrad(), adagrad_new.Adagrad()) - - def testFtrl(self): - self._compare_numerical(ftrl_old.Ftrl(), ftrl_new.Ftrl()) - - def testRMSprop(self): - self._compare_numerical( - rmsprop_old.RMSprop(centered=True), - rmsprop_new.RMSprop(centered=True), - ) - - @parameterized.product(nesterov=[True, False]) - def testSgd(self, nesterov): - self._compare_numerical( - sgd_old.SGD(nesterov=nesterov), sgd_new.SGD(nesterov=nesterov) - ) - - def testWeightDecay(self): - self._compare_numerical( - adam_new.Adam(learning_rate=1, weight_decay=0.5, epsilon=0), - adamw_new.AdamW(learning_rate=1, weight_decay=0.5, epsilon=0), - ) - - -class DistributedTrainingTest(tf.test.TestCase, parameterized.TestCase): - @ds_combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=STRATEGIES, optimizer_fn=OPTIMIZER_FN - ) - ) - def testGetGradientsInModel(self, strategy, optimizer_fn): - with strategy.scope(): - model = keras.Sequential( - [keras.layers.Input(shape=(1,)), keras.layers.Dense(1)] - ) - optimizer = optimizer_fn() - x = tf.expand_dims(tf.convert_to_tensor([1, 1, 1, 0, 0, 0]), axis=1) - y = tf.expand_dims(tf.convert_to_tensor([1, 1, 1, 0, 0, 0]), axis=1) - model.compile(loss="mse", optimizer=optimizer) - model.fit(x, y, epochs=1, steps_per_epoch=5) - if optimizer.name == "Adam": - # Assert the momentum variable is not 0. - self.assertNotEqual( - self.evaluate(optimizer._momentums._storage[0]), 0 - ) - elif optimizer.name == "Adadelta": - # Assert the accumulated variable is not 0. - self.assertNotEqual( - self.evaluate(optimizer._accumulated_grads._storage[0]), 0 - ) - elif optimizer.name == "Adagrad": - # Assert the accumulated variable is not 0. - self.assertNotEqual( - self.evaluate(optimizer._accumulators._storage[0]), 0 - ) - - @ds_combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=STRATEGIES, optimizer_fn=OPTIMIZER_FN - ) - ) - def testGetGradientsInCustomTrainingLoop(self, strategy, optimizer_fn): - with strategy.scope(): - model = keras.Sequential( - [keras.layers.Input(shape=(1,)), keras.layers.Dense(1)] - ) - optimizer = optimizer_fn() - - def per_worker_dataset_fn(): - def dataset_fn(_): - x, y = [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0] - ds = tf.data.Dataset.from_tensor_slices((x, y)) - ds = ds.repeat().batch(6) - return ds - - return strategy.distribute_datasets_from_function(dataset_fn) - - ds = per_worker_dataset_fn() - - @tf.function - def train_step(ds): - def replica_fn(data): - features, labels = data - with tf.GradientTape() as tape: - output = model(tf.expand_dims(features, axis=1)) - loss = keras.losses.MeanSquaredError( - reduction=losses_utils.ReductionV2.NONE - )(labels, output) - grads = tape.gradient(loss, model.trainable_variables) - optimizer.apply_gradients( - zip(grads, model.trainable_variables) - ) - - strategy.run(replica_fn, args=(next(iter(ds)),)) - - for _ in range(3): - train_step(ds) - self.assertEqual(self.evaluate(optimizer.iterations), 3) - - @ds_combinations.generate( - tf.__internal__.test.combinations.combine( - strategy=[ - ds_combinations.mirrored_strategy_with_two_gpus, - ds_combinations.tpu_strategy, - ds_combinations.multi_worker_mirrored_2x2_gpu, - ds_combinations.central_storage_strategy_with_two_gpus, - ] - ) - ) - def testJitCompile(self, strategy): - # Test the optimizer yields same numerical results when jit_compile is - # on and off. - with strategy.scope(): - optimizer_1 = adam_new.Adam( - jit_compile=False, use_ema=True, ema_overwrite_frequency=1 - ) - optimizer_2 = adam_new.Adam( - jit_compile=True, use_ema=True, ema_overwrite_frequency=1 - ) - model_1 = keras.Sequential( - [ - keras.layers.Input(shape=(2,)), - keras.layers.Dense(5), - keras.layers.Dense(1), - ] - ) - model_2 = keras.models.clone_model(model_1) - model_2.set_weights(model_1.get_weights()) - - def per_worker_dataset_fn(): - def dataset_fn(_): - x = np.random.rand(6, 2) - y = [1, 1, 1, 0, 0, 0] - ds = tf.data.Dataset.from_tensor_slices((x, y)) - ds = ds.repeat().batch(6) - return ds - - return strategy.distribute_datasets_from_function(dataset_fn) - - ds = per_worker_dataset_fn() - - @tf.function - def train_step(ds): - def replica_fn(data): - features, labels = data - with tf.GradientTape() as tape: - output_1 = model_1(features) - loss_1 = keras.losses.MeanSquaredError( - reduction=losses_utils.ReductionV2.NONE - )(labels, output_1) - grads_1 = tape.gradient(loss_1, model_1.trainable_variables) - optimizer_1.apply_gradients( - zip(grads_1, model_1.trainable_variables), - skip_gradients_aggregation=False, - ) - - with tf.GradientTape() as tape: - output_2 = model_2(features) - loss_2 = keras.losses.MeanSquaredError( - reduction=losses_utils.ReductionV2.NONE - )(labels, output_2) - grads_2 = tape.gradient(loss_2, model_2.trainable_variables) - optimizer_2.apply_gradients( - zip(grads_2, model_2.trainable_variables), - experimental_aggregate_gradients=True, - ) - - strategy.run(replica_fn, args=(next(iter(ds)),)) - - for _ in range(3): - train_step(ds) - self.assertAllClose( - model_1.trainable_variables[0][0], - model_2.trainable_variables[0][0], - ) - - -if __name__ == "__main__": - tf.__internal__.distribute.multi_process_runner.test_main() diff --git a/keras/optimizers/optimizer_v1.py b/keras/optimizers/optimizer_v1.py deleted file mode 100644 index 5cb3544ecf9..00000000000 --- a/keras/optimizers/optimizer_v1.py +++ /dev/null @@ -1,932 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""Legacy v1 optimizer classes. - -For more examples see the base class `tf.compat.v1.keras.optimizers.Optimizer`. -""" - -import tensorflow.compat.v2 as tf - -from keras import backend - - -class Optimizer: - """Abstract optimizer base class. - - Note: this is the parent class of all optimizers, not an actual optimizer - that can be used for training models. - - All Keras optimizers support the following keyword arguments: - - clipnorm: float >= 0. Gradients will be clipped - when their L2 norm exceeds this value. - clipvalue: float >= 0. Gradients will be clipped - when their absolute value exceeds this value. - """ - - def __init__(self, **kwargs): - allowed_kwargs = {"clipnorm", "clipvalue"} - for k in kwargs: - if k not in allowed_kwargs: - raise TypeError( - "Unexpected keyword argument passed to optimizer: " + str(k) - ) - # checks that clipnorm >= 0 and clipvalue >= 0 - if kwargs[k] < 0: - raise ValueError(f"Expected {k} >= 0, received: {kwargs[k]}") - self.__dict__.update(kwargs) - self.updates = [] - self.weights = [] - - # Set this to False, indicating `apply_gradients` does not take the - # `experimental_aggregate_gradients` argument. - _HAS_AGGREGATE_GRAD = False - - def _create_all_weights(self, params): - """Creates and sets all optimizer weights. - - Args: - params: list or tuple of `Variable` objects that will be minimized - using this optimizer. - - Returns: - Specific weight values that are used in `get_updates` - """ - raise NotImplementedError - - def get_updates(self, loss, params): - raise NotImplementedError - - def get_gradients(self, loss, params): - """Returns gradients of `loss` with respect to `params`. - - Args: - loss: Loss tensor. - params: List of variables. - - Returns: - List of gradient tensors. - - Raises: - ValueError: In case any gradient cannot be computed (e.g. if - gradient function not implemented). - """ - grads = backend.gradients(loss, params) - if any(g is None for g in grads): - raise ValueError( - "An operation has `None` for gradient. " - "Please make sure that all of your ops have a " - "gradient defined (i.e. are differentiable). " - "Common ops without gradient: " - "backend.argmax, backend.round, backend.eval." - ) - if hasattr(self, "clipnorm"): - grads = [tf.clip_by_norm(g, self.clipnorm) for g in grads] - if hasattr(self, "clipvalue"): - grads = [ - tf.clip_by_value(g, -self.clipvalue, self.clipvalue) - for g in grads - ] - return grads - - def set_weights(self, weights): - """Sets the weights of the optimizer, from Numpy arrays. - - Should only be called after computing the gradients - (otherwise the optimizer has no weights). - - Args: - weights: a list of Numpy arrays. The number of arrays and their - shape must match number of the dimensions of the weights of the - optimizer (i.e. it should match the output of `get_weights`). - - Raises: - ValueError: in case of incompatible weight shapes. - """ - params = self.weights - if len(params) != len(weights): - raise ValueError( - "Length of the specified weight list (" - + str(len(weights)) - + ") does not match the number of weights of the optimizer (" - + str(len(params)) - + ")" - ) - weight_value_tuples = [] - param_values = backend.batch_get_value(params) - for pv, p, w in zip(param_values, params, weights): - if pv.shape != w.shape: - raise ValueError( - "Optimizer weight shape " - + str(pv.shape) - + " not compatible with provided weight shape " - + str(w.shape) - ) - weight_value_tuples.append((p, w)) - backend.batch_set_value(weight_value_tuples) - - def get_weights(self): - """Returns the current value of the weights of the optimizer. - - Returns: - A list of numpy arrays. - """ - return backend.batch_get_value(self.weights) - - def get_config(self): - config = {} - if hasattr(self, "clipnorm"): - config["clipnorm"] = self.clipnorm - if hasattr(self, "clipvalue"): - config["clipvalue"] = self.clipvalue - return config - - @classmethod - def from_config(cls, config): - return cls(**config) - - -class SGD(Optimizer): - """Stochastic gradient descent optimizer. - - Includes support for momentum, - learning rate decay, and Nesterov momentum. - - Args: - lr: float >= 0. Learning rate. - momentum: float >= 0. Parameter that accelerates SGD in the relevant - direction and dampens oscillations. - decay: float >= 0. Learning rate decay over each update. - nesterov: boolean. Whether to apply Nesterov momentum. - """ - - def __init__( - self, lr=0.01, momentum=0.0, decay=0.0, nesterov=False, **kwargs - ): - super().__init__(**kwargs) - with backend.name_scope(self.__class__.__name__): - self.iterations = backend.variable( - 0, dtype="int64", name="iterations" - ) - self.lr = backend.variable(lr, name="lr") - self.momentum = backend.variable(momentum, name="momentum") - self.decay = backend.variable(decay, name="decay") - self.initial_decay = decay - self.nesterov = nesterov - - def _create_all_weights(self, params): - shapes = [backend.int_shape(p) for p in params] - moments = [backend.zeros(shape) for shape in shapes] - self.weights = [self.iterations] + moments - return moments - - def get_updates(self, loss, params): - grads = self.get_gradients(loss, params) - self.updates = [tf.compat.v1.assign_add(self.iterations, 1)] - - lr = self.lr - if self.initial_decay > 0: - lr = lr * ( - 1.0 - / ( - 1.0 - + self.decay - * tf.cast(self.iterations, backend.dtype(self.decay)) - ) - ) - # momentum - moments = self._create_all_weights(params) - for p, g, m in zip(params, grads, moments): - v = self.momentum * m - lr * g # velocity - self.updates.append(tf.compat.v1.assign(m, v)) - - if self.nesterov: - new_p = p + self.momentum * v - lr * g - else: - new_p = p + v - - # Apply constraints. - if getattr(p, "constraint", None) is not None: - new_p = p.constraint(new_p) - - self.updates.append(tf.compat.v1.assign(p, new_p)) - return self.updates - - def get_config(self): - config = { - "lr": float(backend.get_value(self.lr)), - "momentum": float(backend.get_value(self.momentum)), - "decay": float(backend.get_value(self.decay)), - "nesterov": self.nesterov, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -class RMSprop(Optimizer): - """RMSProp optimizer. - - It is recommended to leave the parameters of this optimizer - at their default values - (except the learning rate, which can be freely tuned). - - Args: - lr: float >= 0. Learning rate. - rho: float >= 0. - epsilon: float >= 0. Fuzz factor. - If `None`, defaults to `backend.epsilon()`. - decay: float >= 0. Learning rate decay over each update. - """ - - def __init__(self, lr=0.001, rho=0.9, epsilon=None, decay=0.0, **kwargs): - super().__init__(**kwargs) - with backend.name_scope(self.__class__.__name__): - self.lr = backend.variable(lr, name="lr") - self.rho = backend.variable(rho, name="rho") - self.decay = backend.variable(decay, name="decay") - self.iterations = backend.variable( - 0, dtype="int64", name="iterations" - ) - if epsilon is None: - epsilon = backend.epsilon() - self.epsilon = epsilon - self.initial_decay = decay - - def _create_all_weights(self, params): - accumulators = [ - backend.zeros(backend.int_shape(p), dtype=backend.dtype(p)) - for p in params - ] - self.weights = accumulators - return accumulators - - def get_updates(self, loss, params): - grads = self.get_gradients(loss, params) - accumulators = self._create_all_weights(params) - self.updates = [tf.compat.v1.assign_add(self.iterations, 1)] - - lr = self.lr - if self.initial_decay > 0: - lr = lr * ( - 1.0 - / ( - 1.0 - + self.decay - * tf.cast(self.iterations, backend.dtype(self.decay)) - ) - ) - - for p, g, a in zip(params, grads, accumulators): - # update accumulator - new_a = self.rho * a + (1.0 - self.rho) * tf.square(g) - self.updates.append(tf.compat.v1.assign(a, new_a)) - new_p = p - lr * g / (backend.sqrt(new_a) + self.epsilon) - - # Apply constraints. - if getattr(p, "constraint", None) is not None: - new_p = p.constraint(new_p) - - self.updates.append(tf.compat.v1.assign(p, new_p)) - return self.updates - - def get_config(self): - config = { - "lr": float(backend.get_value(self.lr)), - "rho": float(backend.get_value(self.rho)), - "decay": float(backend.get_value(self.decay)), - "epsilon": self.epsilon, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -class Adagrad(Optimizer): - """Adagrad optimizer. - - Adagrad is an optimizer with parameter-specific learning rates, - which are adapted relative to how frequently a parameter gets - updated during training. The more updates a parameter receives, - the smaller the updates. - - It is recommended to leave the parameters of this optimizer - at their default values. - - # Arguments - lr: float >= 0. Initial learning rate. - epsilon: float >= 0. If `None`, defaults to `backend.epsilon()`. - decay: float >= 0. Learning rate decay over each update. - - # References - - [Adaptive Subgradient Methods for Online Learning and Stochastic - Optimization](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) - """ - - def __init__(self, lr=0.01, epsilon=None, decay=0.0, **kwargs): - super().__init__(**kwargs) - with backend.name_scope(self.__class__.__name__): - self.lr = backend.variable(lr, name="lr") - self.decay = backend.variable(decay, name="decay") - self.iterations = backend.variable( - 0, dtype="int64", name="iterations" - ) - if epsilon is None: - epsilon = backend.epsilon() - self.epsilon = epsilon - self.initial_decay = decay - - def _create_all_weights(self, params): - shapes = [backend.int_shape(p) for p in params] - accumulators = [backend.zeros(shape) for shape in shapes] - self.weights = accumulators - return accumulators - - def get_updates(self, loss, params): - grads = self.get_gradients(loss, params) - accumulators = self._create_all_weights(params) - - self.updates = [tf.compat.v1.assign_add(self.iterations, 1)] - - lr = self.lr - if self.initial_decay > 0: - lr = lr * ( - 1.0 - / ( - 1.0 - + self.decay - * tf.cast(self.iterations, backend.dtype(self.decay)) - ) - ) - - for p, g, a in zip(params, grads, accumulators): - new_a = a + tf.square(g) # update accumulator - self.updates.append(tf.compat.v1.assign(a, new_a)) - new_p = p - lr * g / (backend.sqrt(new_a) + self.epsilon) - - # Apply constraints. - if getattr(p, "constraint", None) is not None: - new_p = p.constraint(new_p) - - self.updates.append(tf.compat.v1.assign(p, new_p)) - return self.updates - - def get_config(self): - config = { - "lr": float(backend.get_value(self.lr)), - "decay": float(backend.get_value(self.decay)), - "epsilon": self.epsilon, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -class Adadelta(Optimizer): - """Adadelta optimizer. - - Adadelta is a more robust extension of Adagrad - that adapts learning rates based on a moving window of gradient updates, - instead of accumulating all past gradients. This way, Adadelta continues - learning even when many updates have been done. Compared to Adagrad, in the - original version of Adadelta you don't have to set an initial learning - rate. In this version, initial learning rate and decay factor can - be set, as in most other Keras optimizers. - - It is recommended to leave the parameters of this optimizer - at their default values. - - Arguments: - lr: float >= 0. Initial learning rate, defaults to 1. - It is recommended to leave it at the default value. - rho: float >= 0. Adadelta decay factor, corresponding to fraction of - gradient to keep at each time step. - epsilon: float >= 0. Fuzz factor. - If `None`, defaults to `backend.epsilon()`. - decay: float >= 0. Initial learning rate decay. - - References: - - [Adadelta - an adaptive learning rate - method](http://arxiv.org/abs/1212.5701) - """ - - def __init__(self, lr=1.0, rho=0.95, epsilon=None, decay=0.0, **kwargs): - super().__init__(**kwargs) - with backend.name_scope(self.__class__.__name__): - self.lr = backend.variable(lr, name="lr") - self.decay = backend.variable(decay, name="decay") - self.iterations = backend.variable( - 0, dtype="int64", name="iterations" - ) - if epsilon is None: - epsilon = backend.epsilon() - self.rho = rho - self.epsilon = epsilon - self.initial_decay = decay - - def _create_all_weights(self, params): - shapes = [backend.int_shape(p) for p in params] - accumulators = [backend.zeros(shape) for shape in shapes] - delta_accumulators = [backend.zeros(shape) for shape in shapes] - self.weights = accumulators + delta_accumulators - return accumulators, delta_accumulators - - def get_updates(self, loss, params): - grads = self.get_gradients(loss, params) - self.updates = [tf.compat.v1.assign_add(self.iterations, 1)] - accumulators, delta_accumulators = self._create_all_weights(params) - - lr = self.lr - if self.initial_decay > 0: - lr = lr * ( - 1.0 - / ( - 1.0 - + self.decay - * tf.cast(self.iterations, backend.dtype(self.decay)) - ) - ) - - for p, g, a, d_a in zip( - params, grads, accumulators, delta_accumulators - ): - # update accumulator - new_a = self.rho * a + (1.0 - self.rho) * tf.square(g) - self.updates.append(tf.compat.v1.assign(a, new_a)) - - # use the new accumulator and the *old* delta_accumulator - update = ( - g - * backend.sqrt(d_a + self.epsilon) - / backend.sqrt(new_a + self.epsilon) - ) - new_p = p - lr * update - - # Apply constraints. - if getattr(p, "constraint", None) is not None: - new_p = p.constraint(new_p) - - self.updates.append(tf.compat.v1.assign(p, new_p)) - - # update delta_accumulator - new_d_a = self.rho * d_a + (1 - self.rho) * tf.square(update) - self.updates.append(tf.compat.v1.assign(d_a, new_d_a)) - return self.updates - - def get_config(self): - config = { - "lr": float(backend.get_value(self.lr)), - "rho": self.rho, - "decay": float(backend.get_value(self.decay)), - "epsilon": self.epsilon, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -class Adam(Optimizer): - """Adam optimizer. - - Default parameters follow those provided in the original paper. - - Args: - lr: float >= 0. Learning rate. - beta_1: float, 0 < beta < 1. Generally close to 1. - beta_2: float, 0 < beta < 1. Generally close to 1. - epsilon: float >= 0. Fuzz factor. - If `None`, defaults to `backend.epsilon()`. - decay: float >= 0. Learning rate decay over each update. - amsgrad: boolean. Whether to apply the AMSGrad variant of this algorithm - from the paper "On the Convergence of Adam and Beyond". - """ - - def __init__( - self, - lr=0.001, - beta_1=0.9, - beta_2=0.999, - epsilon=None, - decay=0.0, - amsgrad=False, - **kwargs, - ): - super().__init__(**kwargs) - with backend.name_scope(self.__class__.__name__): - self.iterations = backend.variable( - 0, dtype="int64", name="iterations" - ) - self.lr = backend.variable(lr, name="lr") - self.beta_1 = backend.variable(beta_1, name="beta_1") - self.beta_2 = backend.variable(beta_2, name="beta_2") - self.decay = backend.variable(decay, name="decay") - if epsilon is None: - epsilon = backend.epsilon() - self.epsilon = epsilon - self.initial_decay = decay - self.amsgrad = amsgrad - - def _create_all_weights(self, params): - ms = [ - backend.zeros(backend.int_shape(p), dtype=backend.dtype(p)) - for p in params - ] - vs = [ - backend.zeros(backend.int_shape(p), dtype=backend.dtype(p)) - for p in params - ] - if self.amsgrad: - vhats = [ - backend.zeros(backend.int_shape(p), dtype=backend.dtype(p)) - for p in params - ] - else: - vhats = [backend.zeros(1) for _ in params] - self.weights = [self.iterations] + ms + vs + vhats - return ms, vs, vhats - - def get_updates(self, loss, params): - grads = self.get_gradients(loss, params) - self.updates = [] - - lr = self.lr - if self.initial_decay > 0: - lr = lr * ( - 1.0 - / ( - 1.0 - + self.decay - * tf.cast(self.iterations, backend.dtype(self.decay)) - ) - ) - - with tf.control_dependencies( - [tf.compat.v1.assign_add(self.iterations, 1)] - ): - t = tf.cast(self.iterations, backend.floatx()) - lr_t = lr * ( - backend.sqrt(1.0 - tf.pow(self.beta_2, t)) - / (1.0 - tf.pow(self.beta_1, t)) - ) - - ms, vs, vhats = self._create_all_weights(params) - for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats): - m_t = (self.beta_1 * m) + (1.0 - self.beta_1) * g - v_t = (self.beta_2 * v) + (1.0 - self.beta_2) * tf.square(g) - if self.amsgrad: - vhat_t = tf.maximum(vhat, v_t) - p_t = p - lr_t * m_t / (backend.sqrt(vhat_t) + self.epsilon) - self.updates.append(tf.compat.v1.assign(vhat, vhat_t)) - else: - p_t = p - lr_t * m_t / (backend.sqrt(v_t) + self.epsilon) - - self.updates.append(tf.compat.v1.assign(m, m_t)) - self.updates.append(tf.compat.v1.assign(v, v_t)) - new_p = p_t - - # Apply constraints. - if getattr(p, "constraint", None) is not None: - new_p = p.constraint(new_p) - - self.updates.append(tf.compat.v1.assign(p, new_p)) - return self.updates - - def get_config(self): - config = { - "lr": float(backend.get_value(self.lr)), - "beta_1": float(backend.get_value(self.beta_1)), - "beta_2": float(backend.get_value(self.beta_2)), - "decay": float(backend.get_value(self.decay)), - "epsilon": self.epsilon, - "amsgrad": self.amsgrad, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -class Adamax(Optimizer): - """Adamax optimizer from Adam paper's Section 7. - - It is a variant of Adam based on the infinity norm. - Default parameters follow those provided in the paper. - - Args: - lr: float >= 0. Learning rate. - beta_1/beta_2: floats, 0 < beta < 1. Generally close to 1. - epsilon: float >= 0. Fuzz factor. - If `None`, defaults to `backend.epsilon()`. - decay: float >= 0. Learning rate decay over each update. - """ - - def __init__( - self, - lr=0.002, - beta_1=0.9, - beta_2=0.999, - epsilon=None, - decay=0.0, - **kwargs, - ): - super().__init__(**kwargs) - with backend.name_scope(self.__class__.__name__): - self.iterations = backend.variable( - 0, dtype="int64", name="iterations" - ) - self.lr = backend.variable(lr, name="lr") - self.beta_1 = backend.variable(beta_1, name="beta_1") - self.beta_2 = backend.variable(beta_2, name="beta_2") - self.decay = backend.variable(decay, name="decay") - if epsilon is None: - epsilon = backend.epsilon() - self.epsilon = epsilon - self.initial_decay = decay - - def _create_all_weights(self, params): - - shapes = [backend.int_shape(p) for p in params] - # zero init of 1st moment - ms = [backend.zeros(shape) for shape in shapes] - # zero init of exponentially weighted infinity norm - us = [backend.zeros(shape) for shape in shapes] - self.weights = [self.iterations] + ms + us - return ms, us - - def get_updates(self, loss, params): - grads = self.get_gradients(loss, params) - self.updates = [] - - lr = self.lr - if self.initial_decay > 0: - lr = lr * ( - 1.0 - / ( - 1.0 - + self.decay - * tf.cast(self.iterations, backend.dtype(self.decay)) - ) - ) - - with tf.control_dependencies( - [tf.compat.v1.assign_add(self.iterations, 1)] - ): - t = tf.cast(self.iterations, backend.floatx()) - lr_t = lr / (1.0 - tf.pow(self.beta_1, t)) - - ms, us = self._create_all_weights(params) - - for p, g, m, u in zip(params, grads, ms, us): - - m_t = (self.beta_1 * m) + (1.0 - self.beta_1) * g - u_t = tf.maximum(self.beta_2 * u, tf.abs(g)) - p_t = p - lr_t * m_t / (u_t + self.epsilon) - - self.updates.append(tf.compat.v1.assign(m, m_t)) - self.updates.append(tf.compat.v1.assign(u, u_t)) - new_p = p_t - - # Apply constraints. - if getattr(p, "constraint", None) is not None: - new_p = p.constraint(new_p) - - self.updates.append(tf.compat.v1.assign(p, new_p)) - return self.updates - - def get_config(self): - config = { - "lr": float(backend.get_value(self.lr)), - "beta_1": float(backend.get_value(self.beta_1)), - "beta_2": float(backend.get_value(self.beta_2)), - "decay": float(backend.get_value(self.decay)), - "epsilon": self.epsilon, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -class Nadam(Optimizer): - """Nesterov Adam optimizer. - - Much like Adam is essentially RMSprop with momentum, - Nadam is Adam RMSprop with Nesterov momentum. - - Default parameters follow those provided in the paper. - It is recommended to leave the parameters of this optimizer - at their default values. - - Args: - lr: float >= 0. Learning rate. - beta_1/beta_2: floats, 0 < beta < 1. Generally close to 1. - epsilon: float >= 0. Fuzz factor. - If `None`, defaults to `backend.epsilon()`. - """ - - def __init__( - self, - lr=0.002, - beta_1=0.9, - beta_2=0.999, - epsilon=None, - schedule_decay=0.004, - **kwargs, - ): - super().__init__(**kwargs) - with backend.name_scope(self.__class__.__name__): - self.iterations = backend.variable( - 0, dtype="int64", name="iterations" - ) - self.m_schedule = backend.variable(1.0, name="m_schedule") - self.lr = backend.variable(lr, name="lr") - self.beta_1 = backend.variable(beta_1, name="beta_1") - self.beta_2 = backend.variable(beta_2, name="beta_2") - if epsilon is None: - epsilon = backend.epsilon() - self.epsilon = epsilon - self.schedule_decay = schedule_decay - - def _create_all_weights(self, params): - shapes = [backend.int_shape(p) for p in params] - ms = [backend.zeros(shape) for shape in shapes] - vs = [backend.zeros(shape) for shape in shapes] - - self.weights = [self.iterations, self.m_schedule] + ms + vs - return ms, vs - - def get_updates(self, loss, params): - grads = self.get_gradients(loss, params) - self.updates = [] - - with tf.control_dependencies( - [tf.compat.v1.assign_add(self.iterations, 1)] - ): - t = tf.cast(self.iterations, backend.floatx()) - - # Due to the recommendations in [2], i.e. warming momentum schedule - momentum_cache_t = self.beta_1 * ( - 1.0 - - 0.5 - * (tf.pow(backend.cast_to_floatx(0.96), t * self.schedule_decay)) - ) - momentum_cache_t_1 = self.beta_1 * ( - 1.0 - - 0.5 - * ( - tf.pow( - backend.cast_to_floatx(0.96), (t + 1) * self.schedule_decay - ) - ) - ) - m_schedule_new = self.m_schedule * momentum_cache_t - m_schedule_next = ( - self.m_schedule * momentum_cache_t * momentum_cache_t_1 - ) - self.updates.append((self.m_schedule, m_schedule_new)) - - ms, vs = self._create_all_weights(params) - - for p, g, m, v in zip(params, grads, ms, vs): - # the following equations given in [1] - g_prime = g / (1.0 - m_schedule_new) - m_t = self.beta_1 * m + (1.0 - self.beta_1) * g - m_t_prime = m_t / (1.0 - m_schedule_next) - v_t = self.beta_2 * v + (1.0 - self.beta_2) * tf.square(g) - v_t_prime = v_t / (1.0 - tf.pow(self.beta_2, t)) - m_t_bar = ( - 1.0 - momentum_cache_t - ) * g_prime + momentum_cache_t_1 * m_t_prime - - self.updates.append(tf.compat.v1.assign(m, m_t)) - self.updates.append(tf.compat.v1.assign(v, v_t)) - - p_t = p - self.lr * m_t_bar / ( - backend.sqrt(v_t_prime) + self.epsilon - ) - new_p = p_t - - # Apply constraints. - if getattr(p, "constraint", None) is not None: - new_p = p.constraint(new_p) - - self.updates.append(tf.compat.v1.assign(p, new_p)) - return self.updates - - def get_config(self): - config = { - "lr": float(backend.get_value(self.lr)), - "beta_1": float(backend.get_value(self.beta_1)), - "beta_2": float(backend.get_value(self.beta_2)), - "epsilon": self.epsilon, - "schedule_decay": self.schedule_decay, - } - base_config = super().get_config() - return dict(list(base_config.items()) + list(config.items())) - - -class TFOptimizer(Optimizer, tf.__internal__.tracking.Trackable): - """Wrapper class for native TensorFlow optimizers.""" - - def __init__(self, optimizer, iterations=None): - self.optimizer = optimizer - self._track_trackable(optimizer, name="optimizer") - if iterations is None: - with backend.name_scope(self.__class__.__name__): - self.iterations = backend.variable( - 0, dtype="int64", name="iterations" - ) - else: - self.iterations = iterations - self._track_trackable(self.iterations, name="global_step") - - def _clip_gradients(self, grads): - """Clip gradients according to the clipnorm and clipvalue attributes.""" - # TFOptimizer wrapper has no gradient clipping options. - return grads - - def minimize(self, loss, var_list, grad_loss=None, tape=None): - """Mimics the `OptimizerV2.minimize` API.""" - if not callable(loss) and tape is None: - raise ValueError( - "`tape` is required when a `Tensor` loss is passed." - ) - tape = tape if tape is not None else tf.GradientTape() - - if callable(loss): - with tape: - if not callable(var_list): - tape.watch(var_list) - loss = loss() - if callable(var_list): - var_list = var_list() - - var_list = tf.nest.flatten(var_list) - if var_list: - grads = tape.gradient(loss, var_list, grad_loss) - grads_and_vars = list(zip(grads, var_list)) - self.apply_gradients(grads_and_vars) - - def apply_gradients(self, grads_and_vars): - self.optimizer.apply_gradients( - grads_and_vars, global_step=self.iterations - ) - - def get_grads(self, loss, params): - return self.optimizer.compute_gradients(loss, params) - - def get_updates(self, loss, params): - if tf.distribute.has_strategy(): - self.updates = [] - - if not params: - # After the model vars have been created, the second call to - # get_updates is called with params as an empty list. This - # ensures that we call compute_gradients with params=None. - grads = self.optimizer.compute_gradients(loss) - else: - grads = self.optimizer.compute_gradients(loss, params) - global_step = tf.compat.v1.train.get_global_step() - opt_update = self.optimizer.apply_gradients(grads, global_step) - else: - if not params: - self.updates = [tf.compat.v1.assign_add(self.iterations, 1)] - return self.updates - - # Updates list starts out empty because the iterations variable is - # incremented in optimizer.apply_gradients() - self.updates = [] - grads = self.optimizer.compute_gradients(loss, params) - opt_update = self.optimizer.apply_gradients( - grads, global_step=self.iterations - ) - - self.updates.append(opt_update) - return self.updates - - @property - def weights(self): - raise NotImplementedError - - def get_config(self): - raise NotImplementedError - - def from_config(self, config): - raise NotImplementedError - - -# Aliases. - -sgd = SGD -rmsprop = RMSprop -adagrad = Adagrad -adadelta = Adadelta -adam = Adam -adamax = Adamax -nadam = Nadam diff --git a/keras/optimizers/optimizer_v1_test.py b/keras/optimizers/optimizer_v1_test.py deleted file mode 100644 index 977d573ee5b..00000000000 --- a/keras/optimizers/optimizer_v1_test.py +++ /dev/null @@ -1,304 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras optimizers.""" - -import gc -import weakref - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.optimizers import optimizer_v1 -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import np_utils - -# isort: off -from tensorflow.python.training.adam import AdamOptimizer -from tensorflow.python.training.experimental.loss_scale_optimizer import ( # noqa: E501 - MixedPrecisionLossScaleOptimizer, -) - - -def _get_model(input_dim, num_hidden, output_dim): - model = keras.models.Sequential() - model.add( - keras.layers.Dense( - num_hidden, activation="relu", input_shape=(input_dim,) - ) - ) - model.add(keras.layers.Dense(output_dim, activation="softmax")) - return model - - -@test_combinations.run_all_keras_modes -class KerasOptimizersTest(test_combinations.TestCase): - def _test_optimizer(self, optimizer, target=0.75): - if tf.executing_eagerly(): - self.skipTest("v1 optimizer does not run in eager mode") - np.random.seed(1337) - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=1000, - test_samples=200, - input_shape=(10,), - num_classes=2, - ) - y_train = np_utils.to_categorical(y_train) - model = _get_model(x_train.shape[1], 20, y_train.shape[1]) - model.compile( - loss="categorical_crossentropy", - optimizer=optimizer, - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - np.testing.assert_equal( - keras.backend.get_value(model.optimizer.iterations), 0 - ) - history = model.fit( - x_train, y_train, epochs=2, batch_size=16, verbose=0 - ) - np.testing.assert_equal( - keras.backend.get_value(model.optimizer.iterations), 126 - ) # 63 steps per epoch - self.assertGreaterEqual(history.history["acc"][-1], target) - config = keras.optimizers.serialize(optimizer) - optim = keras.optimizers.deserialize(config) - new_config = keras.optimizers.serialize(optim) - new_config["class_name"] = new_config["class_name"].lower() - new_config["config"].pop("name", None) - if "amsgrad" not in config["config"]: - new_config["config"].pop("amsgrad", None) - if ( - "decay" in new_config["config"] - and "schedule_decay" in config["config"] - ): - new_config["config"]["schedule_decay"] = new_config["config"].pop( - "decay" - ) - if "momentum" not in config["config"]: - new_config["config"].pop("momentum", None) - if "centered" not in config["config"]: - new_config["config"].pop("centered", None) - self.assertDictEqual(config, new_config) - - # Test constraints. - model = keras.models.Sequential() - dense = keras.layers.Dense( - 10, - input_shape=(x_train.shape[1],), - kernel_constraint=lambda x: 0.0 * x + 1.0, - bias_constraint=lambda x: 0.0 * x + 2.0, - activation="relu", - ) - model.add(dense) - model.add(keras.layers.Dense(y_train.shape[1], activation="softmax")) - model.compile( - loss="categorical_crossentropy", - optimizer=optimizer, - metrics=["accuracy"], - run_eagerly=test_utils.should_run_eagerly(), - ) - np.testing.assert_equal( - keras.backend.get_value(model.optimizer.iterations), 126 - ) # Using same optimizer from before - model.train_on_batch(x_train[:10], y_train[:10]) - np.testing.assert_equal( - keras.backend.get_value(model.optimizer.iterations), 127 - ) - kernel, bias = dense.get_weights() - np.testing.assert_allclose(kernel, 1.0, atol=1e-3) - np.testing.assert_allclose(bias, 2.0, atol=1e-3) - - def test_sgd(self): - with self.cached_session(): - self._test_optimizer(optimizer_v1.SGD()) - - def test_momentum(self): - with self.cached_session(): - self._test_optimizer( - optimizer_v1.SGD(lr=0.01, momentum=0.9, nesterov=True) - ) - - def test_rmsprop(self): - with self.cached_session(): - self._test_optimizer(optimizer_v1.RMSprop()) - self._test_optimizer(optimizer_v1.RMSprop(decay=1e-3)) - - def test_adagrad(self): - with self.cached_session(): - self._test_optimizer(optimizer_v1.Adagrad()) - self._test_optimizer(optimizer_v1.Adagrad(decay=1e-3)) - - def test_adadelta(self): - with self.cached_session(): - self._test_optimizer(optimizer_v1.Adadelta(), target=0.6) - # Accuracy seems dependent on the initialization. Even adding - # tf.compat.v1.Print nodes in the graph seemed to affect the - # initialization seed, and hence the accuracy. - self._test_optimizer(optimizer_v1.Adadelta(decay=1e-3), target=0.4) - - def test_adam(self): - with self.cached_session(): - self._test_optimizer(optimizer_v1.Adam()) - # Accuracy seems dependent on the seed initialization. - # TODO(b/121051441): fix test flakiness. - self._test_optimizer(optimizer_v1.Adam(decay=1e-3), target=0.73) - self._test_optimizer(optimizer_v1.Adam(amsgrad=True)) - - def test_adamax(self): - with self.cached_session(): - self._test_optimizer(optimizer_v1.Adamax()) - self._test_optimizer(optimizer_v1.Adamax(decay=1e-3)) - - def test_nadam(self): - with self.cached_session(): - self._test_optimizer(optimizer_v1.Nadam()) - - def test_clipnorm(self): - with self.cached_session(): - self._test_optimizer( - optimizer_v1.SGD(lr=0.01, momentum=0.9, clipnorm=0.5) - ) - - def test_clipvalue(self): - with self.cached_session(): - self._test_optimizer( - optimizer_v1.SGD(lr=0.01, momentum=0.9, clipvalue=0.5) - ) - - def test_tf_optimizer(self): - if tf.executing_eagerly(): - self.skipTest("v1 optimizer does not run in eager mode") - optimizer = optimizer_v1.TFOptimizer(AdamOptimizer(0.01)) - model = keras.models.Sequential() - model.add( - keras.layers.Dense( - 2, - input_shape=(3,), - kernel_constraint=keras.constraints.MaxNorm(1), - ) - ) - # This is possible - model.compile( - loss="mean_squared_error", - optimizer=optimizer, - run_eagerly=test_utils.should_run_eagerly(), - ) - keras.backend.track_tf_optimizer(optimizer) - model.fit( - np.random.random((5, 3)), - np.random.random((5, 2)), - epochs=1, - batch_size=5, - verbose=0, - ) - # not supported - with self.assertRaises(NotImplementedError): - _ = optimizer.weights - with self.assertRaises(NotImplementedError): - optimizer.get_config() - with self.assertRaises(NotImplementedError): - optimizer.from_config(None) - - def test_optimizer_garbage_collection(self): - if tf.executing_eagerly(): - self.skipTest("v1 optimizer does not run in eager mode") - graph = tf.Graph() - with graph.as_default(): - optimizer = optimizer_v1.TFOptimizer(AdamOptimizer(0.01)) - keras.backend.track_tf_optimizer(optimizer) - optimizer_weak = weakref.ref(optimizer) - graph_weak = weakref.ref(graph) - del graph, optimizer - gc.collect() - # Check that the weak references are dead now. - self.assertIs(graph_weak(), None) - self.assertIs(optimizer_weak(), None) - - def test_tf_optimizer_iterations(self): - if tf.executing_eagerly(): - self.skipTest("v1 optimizer does not run in eager mode") - with self.cached_session(): - optimizer = optimizer_v1.TFOptimizer(AdamOptimizer(0.01)) - model = keras.models.Sequential() - model.add( - keras.layers.Dense( - 2, - input_shape=(3,), - kernel_constraint=keras.constraints.MaxNorm(1), - ) - ) - model.compile( - loss="mean_squared_error", - optimizer=optimizer, - run_eagerly=test_utils.should_run_eagerly(), - ) - keras.backend.track_tf_optimizer(optimizer) - self.assertEqual( - keras.backend.get_value(model.optimizer.iterations), 0 - ) - - model.fit( - np.random.random((55, 3)), - np.random.random((55, 2)), - epochs=1, - batch_size=5, - verbose=0, - ) - self.assertEqual( - keras.backend.get_value(model.optimizer.iterations), 11 - ) - - def test_negative_clipvalue_or_clipnorm(self): - with self.assertRaises(ValueError): - _ = optimizer_v1.SGD(lr=0.01, clipvalue=-0.5) - with self.assertRaises(ValueError): - _ = optimizer_v1.Adam(clipnorm=-2.0) - - def test_mixed_precision_loss_scale_optimizer(self): - if tf.executing_eagerly(): - self.skipTest("v1 optimizer does not run in eager mode") - optimizer = MixedPrecisionLossScaleOptimizer(AdamOptimizer(), "dynamic") - model = keras.models.Sequential() - model.add( - keras.layers.Dense( - 2, - input_shape=(3,), - kernel_constraint=keras.constraints.MaxNorm(1), - ) - ) - model.compile( - loss="mean_squared_error", - optimizer=optimizer, - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit( - np.random.random((5, 3)), - np.random.random((5, 2)), - epochs=1, - batch_size=5, - verbose=0, - ) - - def test_deserialization_error(self): - with self.assertRaisesRegex( - ValueError, "Could not interpret optimizer" - ): - keras.optimizers.get(0) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/optimizers/rmsprop.py b/keras/optimizers/rmsprop.py deleted file mode 100644 index 46332713bb7..00000000000 --- a/keras/optimizers/rmsprop.py +++ /dev/null @@ -1,219 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""RMSprop optimizer implementation.""" - -import tensorflow.compat.v2 as tf - -from keras.optimizers import optimizer -from keras.saving.object_registration import register_keras_serializable - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@register_keras_serializable() -@keras_export( - "keras.optimizers.experimental.RMSprop", - "keras.optimizers.RMSprop", - "keras.dtensor.experimental.optimizers.RMSprop", - v1=[], -) -class RMSprop(optimizer.Optimizer): - r"""Optimizer that implements the RMSprop algorithm. - - The gist of RMSprop is to: - - - Maintain a moving (discounted) average of the square of gradients - - Divide the gradient by the root of this average - - This implementation of RMSprop uses plain momentum, not Nesterov momentum. - - The centered version additionally maintains a moving average of the - gradients, and uses that average to estimate the variance. - - Args: - learning_rate: Initial value for the learning rate: - either a floating point value, - or a `tf.keras.optimizers.schedules.LearningRateSchedule` instance. - Defaults to 0.001. - rho: float, defaults to 0.9. Discounting factor for the old gradients. - momentum: float, defaults to 0.0. If not 0.0., the optimizer tracks the - momentum value, with a decay rate equals to `1 - momentum`. - epsilon: A small constant for numerical stability. This epsilon is - "epsilon hat" in the Kingma and Ba paper (in the formula just before - Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to - 1e-7. - centered: Boolean. If `True`, gradients are normalized by the estimated - variance of the gradient; if False, by the uncentered second moment. - Setting this to `True` may help with training, but is slightly more - expensive in terms of computation and memory. Defaults to `False`. - {{base_optimizer_keyword_args}} - - Usage: - - >>> opt = tf.keras.optimizers.experimental.RMSprop(learning_rate=0.1) - >>> var1 = tf.Variable(10.0) - >>> loss = lambda: (var1 ** 2) / 2.0 # d(loss) / d(var1) = var1 - >>> opt.minimize(loss, [var1]) - >>> var1.numpy() - 9.683772 - - Reference: - - [Hinton, 2012]( - http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) - """ - - def __init__( - self, - learning_rate=0.001, - rho=0.9, - momentum=0.0, - epsilon=1e-7, - centered=False, - weight_decay=None, - clipnorm=None, - clipvalue=None, - global_clipnorm=None, - use_ema=False, - ema_momentum=0.99, - ema_overwrite_frequency=100, - jit_compile=True, - name="RMSprop", - **kwargs - ): - super().__init__( - weight_decay=weight_decay, - clipnorm=clipnorm, - clipvalue=clipvalue, - global_clipnorm=global_clipnorm, - use_ema=use_ema, - ema_momentum=ema_momentum, - ema_overwrite_frequency=ema_overwrite_frequency, - jit_compile=jit_compile, - name=name, - **kwargs - ) - self._learning_rate = self._build_learning_rate(learning_rate) - self.rho = rho - self.momentum = momentum - self.epsilon = epsilon - self.centered = centered - - def build(self, var_list): - super().build(var_list) - if hasattr(self, "_built") and self._built: - return - self._built = True - - self._velocities = [] - for var in var_list: - self._velocities.append( - self.add_variable_from_reference(var, "velocity") - ) - - self._momentums = [] - if self.momentum > 0: - for var in var_list: - self._momentums.append( - self.add_variable_from_reference(var, "momentum") - ) - - self._average_gradients = [] - if self.centered: - for var in var_list: - self._average_gradients.append( - self.add_variable_from_reference(var, "average_gradient") - ) - - def update_step(self, gradient, variable): - """Update step given gradient and the associated model variable.""" - lr = tf.cast(self.learning_rate, variable.dtype) - - var_key = self._var_key(variable) - velocity = self._velocities[self._index_dict[var_key]] - momentum = None - if self.momentum > 0: - momentum = self._momentums[self._index_dict[var_key]] - average_grad = None - if self.centered: - average_grad = self._average_gradients[self._index_dict[var_key]] - - rho = self.rho - - if isinstance(gradient, tf.IndexedSlices): - # Sparse gradients. - velocity.assign(rho * velocity) - velocity.scatter_add( - tf.IndexedSlices( - tf.square(gradient.values) * (1 - rho), gradient.indices - ) - ) - if self.centered: - average_grad.assign(rho * average_grad) - average_grad.scatter_add( - tf.IndexedSlices( - gradient.values * (1 - rho), gradient.indices - ) - ) - denominator = velocity - tf.square(average_grad) + self.epsilon - else: - denominator = velocity + self.epsilon - denominator_slices = tf.gather(denominator, gradient.indices) - increment = tf.IndexedSlices( - lr * gradient.values * tf.math.rsqrt(denominator_slices), - gradient.indices, - ) - - if self.momentum > 0: - momentum.assign(self.momentum * momentum) - momentum.scatter_add(increment) - variable.assign_add(-momentum) - else: - variable.scatter_add(-increment) - else: - # Dense gradients. - velocity.assign(rho * velocity + (1 - rho) * tf.square(gradient)) - if self.centered: - average_grad.assign(rho * average_grad + (1 - rho) * gradient) - denominator = velocity - tf.square(average_grad) + self.epsilon - else: - denominator = velocity + self.epsilon - increment = lr * gradient * tf.math.rsqrt(denominator) - if self.momentum > 0: - momentum.assign(self.momentum * momentum + increment) - variable.assign_add(-momentum) - else: - variable.assign_add(-increment) - - def get_config(self): - config = super().get_config() - - config.update( - { - "learning_rate": self._serialize_hyperparameter( - self._learning_rate - ), - "rho": self.rho, - "momentum": self.momentum, - "epsilon": self.epsilon, - "centered": self.centered, - } - ) - return config - - -RMSprop.__doc__ = RMSprop.__doc__.replace( - "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args -) diff --git a/keras/optimizers/schedules/BUILD b/keras/optimizers/schedules/BUILD deleted file mode 100644 index 15061aa8264..00000000000 --- a/keras/optimizers/schedules/BUILD +++ /dev/null @@ -1,41 +0,0 @@ -# Description: -# Contains the learning rate schedule API, - -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/tensorflow/python:__pkg__", - "//third_party/tensorflow/python/distribute:__pkg__", - "//third_party/tensorflow/python/training/tracking:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "learning_rate_schedule", - srcs = [ - "learning_rate_schedule.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/utils:generic_utils", - ], -) - -cuda_py_test( - name = "learning_rate_schedule_test", - size = "medium", - srcs = ["learning_rate_schedule_test.py"], - shard_count = 4, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/optimizers/legacy:optimizers", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/optimizers/schedules/__init__.py b/keras/optimizers/schedules/__init__.py deleted file mode 100644 index cfa6e7a47ff..00000000000 --- a/keras/optimizers/schedules/__init__.py +++ /dev/null @@ -1,22 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Learning rate schedule API.""" - -from keras.optimizers.schedules.learning_rate_schedule import ExponentialDecay -from keras.optimizers.schedules.learning_rate_schedule import InverseTimeDecay -from keras.optimizers.schedules.learning_rate_schedule import ( - PiecewiseConstantDecay, -) -from keras.optimizers.schedules.learning_rate_schedule import PolynomialDecay diff --git a/keras/optimizers/schedules/learning_rate_schedule.py b/keras/optimizers/schedules/learning_rate_schedule.py deleted file mode 100644 index ef773c9b1b9..00000000000 --- a/keras/optimizers/schedules/learning_rate_schedule.py +++ /dev/null @@ -1,1259 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Various learning rate schedule functions.""" - -import abc -import math - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.saving import serialization_lib -from keras.saving.legacy import serialization as legacy_serialization - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.optimizers.schedules.LearningRateSchedule") -class LearningRateSchedule: - """The learning rate schedule base class. - - You can use a learning rate schedule to modulate how the learning rate - of your optimizer changes over time. - - Several built-in learning rate schedules are available, such as - `tf.keras.optimizers.schedules.ExponentialDecay` or - `tf.keras.optimizers.schedules.PiecewiseConstantDecay`: - - ```python - lr_schedule = keras.optimizers.schedules.ExponentialDecay( - initial_learning_rate=1e-2, - decay_steps=10000, - decay_rate=0.9) - optimizer = keras.optimizers.SGD(learning_rate=lr_schedule) - ``` - - A `LearningRateSchedule` instance can be passed in as the `learning_rate` - argument of any optimizer. - - To implement your own schedule object, you should implement the `__call__` - method, which takes a `step` argument (scalar integer tensor, the - current training step count). - Like for any other Keras object, you can also optionally - make your object serializable by implementing the `get_config` - and `from_config` methods. - - Example: - - ```python - class MyLRSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): - - def __init__(self, initial_learning_rate): - self.initial_learning_rate = initial_learning_rate - - def __call__(self, step): - return self.initial_learning_rate / (step + 1) - - optimizer = tf.keras.optimizers.SGD(learning_rate=MyLRSchedule(0.1)) - ``` - """ - - @abc.abstractmethod - def __call__(self, step): - raise NotImplementedError( - f"Learning rate schedule '{self.__class__.__name__}' " - "must override `__call__(self, step)`." - ) - - @abc.abstractmethod - def get_config(self): - raise NotImplementedError( - f"Learning rate schedule '{self.__class__.__name__}' " - "must override `get_config()` in order to be serializable." - ) - - @classmethod - def from_config(cls, config): - """Instantiates a `LearningRateSchedule` from its config. - - Args: - config: Output of `get_config()`. - - Returns: - A `LearningRateSchedule` instance. - """ - return cls(**config) - - -@keras_export("keras.optimizers.schedules.ExponentialDecay") -class ExponentialDecay(LearningRateSchedule): - """A LearningRateSchedule that uses an exponential decay schedule. - - When training a model, it is often useful to lower the learning rate as - the training progresses. This schedule applies an exponential decay function - to an optimizer step, given a provided initial learning rate. - - The schedule is a 1-arg callable that produces a decayed learning - rate when passed the current optimizer step. This can be useful for changing - the learning rate value across different invocations of optimizer functions. - It is computed as: - - ```python - def decayed_learning_rate(step): - return initial_learning_rate * decay_rate ^ (step / decay_steps) - ``` - - If the argument `staircase` is `True`, then `step / decay_steps` is - an integer division and the decayed learning rate follows a - staircase function. - - You can pass this schedule directly into a `tf.keras.optimizers.Optimizer` - as the learning rate. - Example: When fitting a Keras model, decay every 100000 steps with a base - of 0.96: - - ```python - initial_learning_rate = 0.1 - lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( - initial_learning_rate, - decay_steps=100000, - decay_rate=0.96, - staircase=True) - - model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=lr_schedule), - loss='sparse_categorical_crossentropy', - metrics=['accuracy']) - - model.fit(data, labels, epochs=5) - ``` - - The learning rate schedule is also serializable and deserializable using - `tf.keras.optimizers.schedules.serialize` and - `tf.keras.optimizers.schedules.deserialize`. - - Returns: - A 1-arg callable learning rate schedule that takes the current optimizer - step and outputs the decayed learning rate, a scalar `Tensor` of the same - type as `initial_learning_rate`. - """ - - def __init__( - self, - initial_learning_rate, - decay_steps, - decay_rate, - staircase=False, - name=None, - ): - """Applies exponential decay to the learning rate. - - Args: - initial_learning_rate: A scalar `float32` or `float64` `Tensor` or a - Python number. The initial learning rate. - decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. - Must be positive. See the decay computation above. - decay_rate: A scalar `float32` or `float64` `Tensor` or a - Python number. The decay rate. - staircase: Boolean. If `True` decay the learning rate at discrete - intervals - name: String. Optional name of the operation. Defaults to - 'ExponentialDecay'. - """ - super().__init__() - self.initial_learning_rate = initial_learning_rate - self.decay_steps = decay_steps - self.decay_rate = decay_rate - self.staircase = staircase - self.name = name - - def __call__(self, step): - with tf.name_scope(self.name or "ExponentialDecay") as name: - initial_learning_rate = tf.convert_to_tensor( - self.initial_learning_rate, name="initial_learning_rate" - ) - dtype = initial_learning_rate.dtype - decay_steps = tf.cast(self.decay_steps, dtype) - decay_rate = tf.cast(self.decay_rate, dtype) - - global_step_recomp = tf.cast(step, dtype) - p = global_step_recomp / decay_steps - if self.staircase: - p = tf.floor(p) - return tf.multiply( - initial_learning_rate, tf.pow(decay_rate, p), name=name - ) - - def get_config(self): - return { - "initial_learning_rate": self.initial_learning_rate, - "decay_steps": self.decay_steps, - "decay_rate": self.decay_rate, - "staircase": self.staircase, - "name": self.name, - } - - -@keras_export("keras.optimizers.schedules.PiecewiseConstantDecay") -class PiecewiseConstantDecay(LearningRateSchedule): - """A LearningRateSchedule that uses a piecewise constant decay schedule. - - The function returns a 1-arg callable to compute the piecewise constant - when passed the current optimizer step. This can be useful for changing the - learning rate value across different invocations of optimizer functions. - - Example: use a learning rate that's 1.0 for the first 100001 steps, 0.5 - for the next 10000 steps, and 0.1 for any additional steps. - - ```python - step = tf.Variable(0, trainable=False) - boundaries = [100000, 110000] - values = [1.0, 0.5, 0.1] - learning_rate_fn = keras.optimizers.schedules.PiecewiseConstantDecay( - boundaries, values) - - # Later, whenever we perform an optimization step, we pass in the step. - learning_rate = learning_rate_fn(step) - ``` - - You can pass this schedule directly into a `tf.keras.optimizers.Optimizer` - as the learning rate. The learning rate schedule is also serializable and - deserializable using `tf.keras.optimizers.schedules.serialize` and - `tf.keras.optimizers.schedules.deserialize`. - - Returns: - A 1-arg callable learning rate schedule that takes the current optimizer - step and outputs the decayed learning rate, a scalar `Tensor` of the same - type as the boundary tensors. - - The output of the 1-arg function that takes the `step` - is `values[0]` when `step <= boundaries[0]`, - `values[1]` when `step > boundaries[0]` and `step <= boundaries[1]`, ..., - and values[-1] when `step > boundaries[-1]`. - """ - - def __init__(self, boundaries, values, name=None): - """Piecewise constant from boundaries and interval values. - - Args: - boundaries: A list of `Tensor`s or `int`s or `float`s with strictly - increasing entries, and with all elements having the same type as - the optimizer step. - values: A list of `Tensor`s or `float`s or `int`s that specifies the - values for the intervals defined by `boundaries`. It should have one - more element than `boundaries`, and all elements should have the - same type. - name: A string. Optional name of the operation. Defaults to - 'PiecewiseConstant'. - - Raises: - ValueError: if the number of elements in the lists do not match. - """ - super().__init__() - - if len(boundaries) != len(values) - 1: - raise ValueError( - "The length of boundaries should be 1 less than the length of " - f"values. Received: boundaries={boundaries} of length " - f"{len(boundaries)}, and values={values} " - f"of length {len(values)}." - ) - - self.boundaries = boundaries - self.values = values - self.name = name - - def __call__(self, step): - with tf.name_scope(self.name or "PiecewiseConstant"): - boundaries = tf.nest.map_structure( - tf.convert_to_tensor, tf.nest.flatten(self.boundaries) - ) - values = tf.nest.map_structure( - tf.convert_to_tensor, tf.nest.flatten(self.values) - ) - x_recomp = tf.convert_to_tensor(step) - for i, b in enumerate(boundaries): - if b.dtype.base_dtype != x_recomp.dtype.base_dtype: - # We cast the boundaries to have the same type as the step - b = tf.cast(b, x_recomp.dtype.base_dtype) - boundaries[i] = b - pred_fn_pairs = [] - pred_fn_pairs.append((x_recomp <= boundaries[0], lambda: values[0])) - pred_fn_pairs.append( - (x_recomp > boundaries[-1], lambda: values[-1]) - ) - for low, high, v in zip( - boundaries[:-1], boundaries[1:], values[1:-1] - ): - # Need to bind v here; can do this with lambda v=v: ... - pred = (x_recomp > low) & (x_recomp <= high) - pred_fn_pairs.append((pred, lambda v=v: v)) - - # The default isn't needed here because our conditions are mutually - # exclusive and exhaustive, but tf.case requires it. - default = lambda: values[0] - return tf.case(pred_fn_pairs, default, exclusive=True) - - def get_config(self): - return { - "boundaries": self.boundaries, - "values": self.values, - "name": self.name, - } - - -@keras_export("keras.optimizers.schedules.PolynomialDecay") -class PolynomialDecay(LearningRateSchedule): - """A LearningRateSchedule that uses a polynomial decay schedule. - - It is commonly observed that a monotonically decreasing learning rate, whose - degree of change is carefully chosen, results in a better performing model. - This schedule applies a polynomial decay function to an optimizer step, - given a provided `initial_learning_rate`, to reach an `end_learning_rate` - in the given `decay_steps`. - - It requires a `step` value to compute the decayed learning rate. You - can just pass a TensorFlow variable that you increment at each training - step. - - The schedule is a 1-arg callable that produces a decayed learning rate - when passed the current optimizer step. This can be useful for changing the - learning rate value across different invocations of optimizer functions. - It is computed as: - - ```python - def decayed_learning_rate(step): - step = min(step, decay_steps) - return ((initial_learning_rate - end_learning_rate) * - (1 - step / decay_steps) ^ (power) - ) + end_learning_rate - ``` - - If `cycle` is True then a multiple of `decay_steps` is used, the first one - that is bigger than `step`. - - ```python - def decayed_learning_rate(step): - decay_steps = decay_steps * ceil(step / decay_steps) - return ((initial_learning_rate - end_learning_rate) * - (1 - step / decay_steps) ^ (power) - ) + end_learning_rate - ``` - - You can pass this schedule directly into a `tf.keras.optimizers.Optimizer` - as the learning rate. - Example: Fit a model while decaying from 0.1 to 0.01 in 10000 steps using - sqrt (i.e. power=0.5): - - ```python - ... - starter_learning_rate = 0.1 - end_learning_rate = 0.01 - decay_steps = 10000 - learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay( - starter_learning_rate, - decay_steps, - end_learning_rate, - power=0.5) - - model.compile(optimizer=tf.keras.optimizers.SGD( - learning_rate=learning_rate_fn), - loss='sparse_categorical_crossentropy', - metrics=['accuracy']) - - model.fit(data, labels, epochs=5) - ``` - - The learning rate schedule is also serializable and deserializable using - `tf.keras.optimizers.schedules.serialize` and - `tf.keras.optimizers.schedules.deserialize`. - - Returns: - A 1-arg callable learning rate schedule that takes the current optimizer - step and outputs the decayed learning rate, a scalar `Tensor` of the same - type as `initial_learning_rate`. - """ - - def __init__( - self, - initial_learning_rate, - decay_steps, - end_learning_rate=0.0001, - power=1.0, - cycle=False, - name=None, - ): - """Applies a polynomial decay to the learning rate. - - Args: - initial_learning_rate: A scalar `float32` or `float64` `Tensor` or a - Python number. The initial learning rate. - decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. - Must be positive. See the decay computation above. - end_learning_rate: A scalar `float32` or `float64` `Tensor` or a - Python number. The minimal end learning rate. - power: A scalar `float32` or `float64` `Tensor` or a - Python number. The power of the polynomial. Defaults to linear, 1.0. - cycle: A boolean, whether or not it should cycle beyond decay_steps. - name: String. Optional name of the operation. Defaults to - 'PolynomialDecay'. - """ - super().__init__() - - self.initial_learning_rate = initial_learning_rate - self.decay_steps = decay_steps - self.end_learning_rate = end_learning_rate - self.power = power - self.cycle = cycle - self.name = name - - def __call__(self, step): - with tf.name_scope(self.name or "PolynomialDecay") as name: - initial_learning_rate = tf.convert_to_tensor( - self.initial_learning_rate, name="initial_learning_rate" - ) - dtype = initial_learning_rate.dtype - end_learning_rate = tf.cast(self.end_learning_rate, dtype) - power = tf.cast(self.power, dtype) - - global_step_recomp = tf.cast(step, dtype) - decay_steps_recomp = tf.cast(self.decay_steps, dtype) - if self.cycle: - # Find the first multiple of decay_steps that is bigger than - # global_step. If global_step is zero set the multiplier to 1 - multiplier = tf.where( - tf.equal(global_step_recomp, 0), - 1.0, - tf.math.ceil(global_step_recomp / self.decay_steps), - ) - decay_steps_recomp = tf.multiply(decay_steps_recomp, multiplier) - else: - # Make sure that the global_step used is not bigger than - # decay_steps. - global_step_recomp = tf.minimum( - global_step_recomp, decay_steps_recomp - ) - - p = tf.divide(global_step_recomp, decay_steps_recomp) - return tf.add( - tf.multiply( - initial_learning_rate - end_learning_rate, - tf.pow(1 - p, power), - ), - end_learning_rate, - name=name, - ) - - def get_config(self): - return { - "initial_learning_rate": self.initial_learning_rate, - "decay_steps": self.decay_steps, - "end_learning_rate": self.end_learning_rate, - "power": self.power, - "cycle": self.cycle, - "name": self.name, - } - - -@keras_export("keras.optimizers.schedules.InverseTimeDecay") -class InverseTimeDecay(LearningRateSchedule): - """A LearningRateSchedule that uses an inverse time decay schedule. - - When training a model, it is often useful to lower the learning rate as - the training progresses. This schedule applies the inverse decay function - to an optimizer step, given a provided initial learning rate. - It requires a `step` value to compute the decayed learning rate. You can - just pass a TensorFlow variable that you increment at each training step. - - The schedule is a 1-arg callable that produces a decayed learning - rate when passed the current optimizer step. This can be useful for changing - the learning rate value across different invocations of optimizer functions. - It is computed as: - - ```python - def decayed_learning_rate(step): - return initial_learning_rate / (1 + decay_rate * step / decay_step) - ``` - - or, if `staircase` is `True`, as: - - ```python - def decayed_learning_rate(step): - return initial_learning_rate / (1 + decay_rate * floor(step / decay_step)) - ``` - - You can pass this schedule directly into a `tf.keras.optimizers.Optimizer` - as the learning rate. - Example: Fit a Keras model when decaying 1/t with a rate of 0.5: - - ```python - ... - initial_learning_rate = 0.1 - decay_steps = 1.0 - decay_rate = 0.5 - learning_rate_fn = keras.optimizers.schedules.InverseTimeDecay( - initial_learning_rate, decay_steps, decay_rate) - - model.compile(optimizer=tf.keras.optimizers.SGD( - learning_rate=learning_rate_fn), - loss='sparse_categorical_crossentropy', - metrics=['accuracy']) - - model.fit(data, labels, epochs=5) - ``` - - Returns: - A 1-arg callable learning rate schedule that takes the current optimizer - step and outputs the decayed learning rate, a scalar `Tensor` of the same - type as `initial_learning_rate`. - """ - - def __init__( - self, - initial_learning_rate, - decay_steps, - decay_rate, - staircase=False, - name=None, - ): - """Applies inverse time decay to the initial learning rate. - - Args: - initial_learning_rate: A scalar `float32` or `float64` `Tensor` or a - Python number. The initial learning rate. - decay_steps: How often to apply decay. - decay_rate: A Python number. The decay rate. - staircase: Whether to apply decay in a discrete staircase, as opposed - to continuous, fashion. - name: String. Optional name of the operation. Defaults to - 'InverseTimeDecay'. - """ - super().__init__() - - self.initial_learning_rate = initial_learning_rate - self.decay_steps = decay_steps - self.decay_rate = decay_rate - self.staircase = staircase - self.name = name - - def __call__(self, step): - with tf.name_scope(self.name or "InverseTimeDecay") as name: - initial_learning_rate = tf.convert_to_tensor( - self.initial_learning_rate, name="initial_learning_rate" - ) - dtype = initial_learning_rate.dtype - decay_steps = tf.cast(self.decay_steps, dtype) - decay_rate = tf.cast(self.decay_rate, dtype) - - global_step_recomp = tf.cast(step, dtype) - p = global_step_recomp / decay_steps - if self.staircase: - p = tf.floor(p) - const = tf.cast(tf.constant(1), dtype) - denom = tf.add(const, tf.multiply(decay_rate, p)) - return tf.divide(initial_learning_rate, denom, name=name) - - def get_config(self): - return { - "initial_learning_rate": self.initial_learning_rate, - "decay_steps": self.decay_steps, - "decay_rate": self.decay_rate, - "staircase": self.staircase, - "name": self.name, - } - - -@keras_export( - "keras.optimizers.schedules.CosineDecay", "keras.experimental.CosineDecay" -) -class CosineDecay(LearningRateSchedule): - """A LearningRateSchedule that uses a cosine decay with optional warmup. - - See [Loshchilov & Hutter, ICLR2016](https://arxiv.org/abs/1608.03983), - SGDR: Stochastic Gradient Descent with Warm Restarts. - - For the idea of a linear warmup of our learning rate, - see [Goyal et al.](https://arxiv.org/pdf/1706.02677.pdf). - - When we begin training a model, we often want an initial increase in our - learning rate followed by a decay. If `warmup_target` is an int, this - schedule applies a linear increase per optimizer step to our learning rate - from `initial_learning_rate` to `warmup_target` for a duration of - `warmup_steps`. Afterwards, it applies a cosine decay function taking our - learning rate from `warmup_target` to `alpha` for a duration of - `decay_steps`. If `warmup_target` is None we skip warmup and our decay - will take our learning rate from `initial_learning_rate` to `alpha`. - It requires a `step` value to compute the learning rate. You can - just pass a TensorFlow variable that you increment at each training step. - - The schedule is a 1-arg callable that produces a warmup followed by a - decayed learning rate when passed the current optimizer step. This can be - useful for changing the learning rate value across different invocations of - optimizer functions. - - Our warmup is computed as: - - ```python - def warmup_learning_rate(step): - completed_fraction = step / warmup_steps - total_delta = target_warmup - initial_learning_rate - return completed_fraction * total_delta - ``` - - And our decay is computed as: - - ```python - if warmup_target is None: - initial_decay_lr = initial_learning_rate - else: - initial_decay_lr = warmup_target - - def decayed_learning_rate(step): - step = min(step, decay_steps) - cosine_decay = 0.5 * (1 + cos(pi * step / decay_steps)) - decayed = (1 - alpha) * cosine_decay + alpha - return initial_decay_lr * decayed - ``` - - Example usage without warmup: - - ```python - decay_steps = 1000 - initial_learning_rate = 0.1 - lr_decayed_fn = tf.keras.optimizers.schedules.CosineDecay( - initial_learning_rate, decay_steps) - ``` - - Example usage with warmup: - - ```python - decay_steps = 1000 - initial_learning_rate = 0 - warmup_steps = 1000 - target_learning_rate = 0.1 - lr_warmup_decayed_fn = tf.keras.optimizers.schedules.CosineDecay( - initial_learning_rate, decay_steps, warmup_target=target_learning_rate, - warmup_steps=warmup_steps - ) - ``` - - You can pass this schedule directly into a `tf.keras.optimizers.Optimizer` - as the learning rate. The learning rate schedule is also serializable and - deserializable using `tf.keras.optimizers.schedules.serialize` and - `tf.keras.optimizers.schedules.deserialize`. - - Returns: - A 1-arg callable learning rate schedule that takes the current optimizer - step and outputs the decayed learning rate, a scalar `Tensor` of the same - type as `initial_learning_rate`. - """ - - def __init__( - self, - initial_learning_rate, - decay_steps, - alpha=0.0, - name=None, - warmup_target=None, - warmup_steps=0, - ): - """Applies cosine decay to the learning rate. - - Args: - initial_learning_rate: A scalar `float32` or `float64` `Tensor` or a - Python int. The initial learning rate. - decay_steps: A scalar `int32` or `int64` `Tensor` or a Python int. - Number of steps to decay over. - alpha: A scalar `float32` or `float64` `Tensor` or a Python int. - Minimum learning rate value for decay as a fraction of - `initial_learning_rate`. - name: String. Optional name of the operation. Defaults to - 'CosineDecay'. - warmup_target: None or a scalar `float32` or `float64` `Tensor` or a - Python int. The target learning rate for our warmup phase. Will cast - to the `initial_learning_rate` datatype. Setting to None will skip - warmup and begins decay phase from `initial_learning_rate`. - Otherwise scheduler will warmup from `initial_learning_rate` to - `warmup_target`. - warmup_steps: A scalar `int32` or `int64` `Tensor` or a Python int. - Number of steps to warmup over. - """ - super().__init__() - - self.initial_learning_rate = initial_learning_rate - self.decay_steps = decay_steps - self.alpha = alpha - self.name = name - self.warmup_steps = warmup_steps - self.warmup_target = warmup_target - - def _decay_function(self, step, decay_steps, decay_from_lr, dtype): - with tf.name_scope(self.name or "CosineDecay"): - completed_fraction = step / decay_steps - tf_pi = tf.constant(math.pi, dtype=dtype) - cosine_decayed = 0.5 * (1.0 + tf.cos(tf_pi * completed_fraction)) - decayed = (1 - self.alpha) * cosine_decayed + self.alpha - return tf.multiply(decay_from_lr, decayed) - - def _warmup_function( - self, step, warmup_steps, warmup_target, initial_learning_rate - ): - with tf.name_scope(self.name or "CosineDecay"): - completed_fraction = step / warmup_steps - total_step_delta = warmup_target - initial_learning_rate - return total_step_delta * completed_fraction + initial_learning_rate - - def __call__(self, step): - with tf.name_scope(self.name or "CosineDecay"): - initial_learning_rate = tf.convert_to_tensor( - self.initial_learning_rate, name="initial_learning_rate" - ) - dtype = initial_learning_rate.dtype - decay_steps = tf.cast(self.decay_steps, dtype) - global_step_recomp = tf.cast(step, dtype) - - if self.warmup_target is None: - global_step_recomp = tf.minimum(global_step_recomp, decay_steps) - return self._decay_function( - global_step_recomp, - decay_steps, - initial_learning_rate, - dtype, - ) - - warmup_target = tf.cast(self.warmup_target, dtype) - warmup_steps = tf.cast(self.warmup_steps, dtype) - - global_step_recomp = tf.minimum( - global_step_recomp, decay_steps + warmup_steps - ) - - return tf.cond( - global_step_recomp < warmup_steps, - lambda: self._warmup_function( - global_step_recomp, - warmup_steps, - warmup_target, - initial_learning_rate, - ), - lambda: self._decay_function( - global_step_recomp - warmup_steps, - decay_steps, - warmup_target, - dtype, - ), - ) - - def get_config(self): - return { - "initial_learning_rate": self.initial_learning_rate, - "decay_steps": self.decay_steps, - "alpha": self.alpha, - "name": self.name, - "warmup_target": self.warmup_target, - "warmup_steps": self.warmup_steps, - } - - -@keras_export( - "keras.optimizers.schedules.CosineDecayRestarts", - "keras.experimental.CosineDecayRestarts", -) -class CosineDecayRestarts(LearningRateSchedule): - """A LearningRateSchedule that uses a cosine decay schedule with restarts. - - See [Loshchilov & Hutter, ICLR2016](https://arxiv.org/abs/1608.03983), - SGDR: Stochastic Gradient Descent with Warm Restarts. - - When training a model, it is often useful to lower the learning rate as - the training progresses. This schedule applies a cosine decay function with - restarts to an optimizer step, given a provided initial learning rate. - It requires a `step` value to compute the decayed learning rate. You can - just pass a TensorFlow variable that you increment at each training step. - - The schedule is a 1-arg callable that produces a decayed learning - rate when passed the current optimizer step. This can be useful for changing - the learning rate value across different invocations of optimizer functions. - - The learning rate multiplier first decays - from 1 to `alpha` for `first_decay_steps` steps. Then, a warm - restart is performed. Each new warm restart runs for `t_mul` times more - steps and with `m_mul` times initial learning rate as the new learning rate. - - Example usage: - ```python - first_decay_steps = 1000 - lr_decayed_fn = ( - tf.keras.optimizers.schedules.CosineDecayRestarts( - initial_learning_rate, - first_decay_steps)) - ``` - - You can pass this schedule directly into a `tf.keras.optimizers.Optimizer` - as the learning rate. The learning rate schedule is also serializable and - deserializable using `tf.keras.optimizers.schedules.serialize` and - `tf.keras.optimizers.schedules.deserialize`. - - Returns: - A 1-arg callable learning rate schedule that takes the current optimizer - step and outputs the decayed learning rate, a scalar `Tensor` of the same - type as `initial_learning_rate`. - """ - - def __init__( - self, - initial_learning_rate, - first_decay_steps, - t_mul=2.0, - m_mul=1.0, - alpha=0.0, - name=None, - ): - """Applies cosine decay with restarts to the learning rate. - - Args: - initial_learning_rate: A scalar `float32` or `float64` Tensor or a - Python number. The initial learning rate. - first_decay_steps: A scalar `int32` or `int64` `Tensor` or a Python - number. Number of steps to decay over. - t_mul: A scalar `float32` or `float64` `Tensor` or a Python number. - Used to derive the number of iterations in the i-th period. - m_mul: A scalar `float32` or `float64` `Tensor` or a Python number. - Used to derive the initial learning rate of the i-th period. - alpha: A scalar `float32` or `float64` Tensor or a Python number. - Minimum learning rate value as a fraction of the - initial_learning_rate. - name: String. Optional name of the operation. Defaults to 'SGDRDecay'. - """ - super().__init__() - - self.initial_learning_rate = initial_learning_rate - self.first_decay_steps = first_decay_steps - self._t_mul = t_mul - self._m_mul = m_mul - self.alpha = alpha - self.name = name - - def __call__(self, step): - with tf.name_scope(self.name or "SGDRDecay") as name: - initial_learning_rate = tf.convert_to_tensor( - self.initial_learning_rate, name="initial_learning_rate" - ) - dtype = initial_learning_rate.dtype - first_decay_steps = tf.cast(self.first_decay_steps, dtype) - alpha = tf.cast(self.alpha, dtype) - t_mul = tf.cast(self._t_mul, dtype) - m_mul = tf.cast(self._m_mul, dtype) - - global_step_recomp = tf.cast(step, dtype) - completed_fraction = global_step_recomp / first_decay_steps - - def compute_step(completed_fraction, geometric=False): - """Helper for `cond` operation.""" - if geometric: - i_restart = tf.floor( - tf.math.log(1.0 - completed_fraction * (1.0 - t_mul)) - / tf.math.log(t_mul) - ) - - sum_r = (1.0 - t_mul**i_restart) / (1.0 - t_mul) - completed_fraction = ( - completed_fraction - sum_r - ) / t_mul**i_restart - - else: - i_restart = tf.floor(completed_fraction) - completed_fraction -= i_restart - - return i_restart, completed_fraction - - i_restart, completed_fraction = tf.cond( - tf.equal(t_mul, 1.0), - lambda: compute_step(completed_fraction, geometric=False), - lambda: compute_step(completed_fraction, geometric=True), - ) - - m_fac = m_mul**i_restart - cosine_decayed = ( - 0.5 - * m_fac - * ( - 1.0 - + tf.cos( - tf.constant(math.pi, dtype=dtype) * completed_fraction - ) - ) - ) - decayed = (1 - alpha) * cosine_decayed + alpha - - return tf.multiply(initial_learning_rate, decayed, name=name) - - def get_config(self): - return { - "initial_learning_rate": self.initial_learning_rate, - "first_decay_steps": self.first_decay_steps, - "t_mul": self._t_mul, - "m_mul": self._m_mul, - "alpha": self.alpha, - "name": self.name, - } - - -# Note: this code is still used by V1 APIs. -class LinearCosineDecay(LearningRateSchedule): - """A LearningRateSchedule that uses a linear cosine decay schedule. - - See [Bello et al., ICML2017] Neural Optimizer Search with RL. - https://arxiv.org/abs/1709.07417 - - For the idea of warm starts here controlled by `num_periods`, - see [Loshchilov & Hutter, ICLR2016] SGDR: Stochastic Gradient Descent - with Warm Restarts. https://arxiv.org/abs/1608.03983 - - Note that linear cosine decay is more aggressive than cosine decay and - larger initial learning rates can typically be used. - - When training a model, it is often recommended to lower the learning rate as - the training progresses. This schedule applies a linear cosine decay - function to an optimizer step, given a provided initial learning rate. - It requires a `step` value to compute the decayed learning rate. You can - just pass a TensorFlow variable that you increment at each training step. - - The schedule is a 1-arg callable that produces a decayed learning - rate when passed the current optimizer step. This can be useful for changing - the learning rate value across different invocations of optimizer functions. - It is computed as: - - ```python - def decayed_learning_rate(step): - step = min(step, decay_steps) - linear_decay = (decay_steps - step) / decay_steps - cosine_decay = 0.5 * ( - 1 + cos(pi * 2 * num_periods * step / decay_steps)) - decayed = (alpha + linear_decay) * cosine_decay + beta - return initial_learning_rate * decayed - ``` - - Example usage: - ```python - decay_steps = 1000 - lr_decayed_fn = ( - tf.keras.experimental.LinearCosineDecay( - initial_learning_rate, decay_steps)) - ``` - - You can pass this schedule directly into a `tf.keras.optimizers.Optimizer` - as the learning rate. The learning rate schedule is also serializable and - deserializable using `tf.keras.optimizers.schedules.serialize` and - `tf.keras.optimizers.schedules.deserialize`. - - Returns: - A 1-arg callable learning rate schedule that takes the current optimizer - step and outputs the decayed learning rate, a scalar `Tensor` of the same - type as `initial_learning_rate`. - """ - - def __init__( - self, - initial_learning_rate, - decay_steps, - num_periods=0.5, - alpha=0.0, - beta=0.001, - name=None, - ): - """Applies linear cosine decay to the learning rate. - - Args: - initial_learning_rate: A scalar `float32` or `float64` Tensor or a - Python number. The initial learning rate. - decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. - Number of steps to decay over. - num_periods: Number of periods in the cosine part of the decay. - See computation above. - alpha: See computation above. - beta: See computation above. - name: String. Optional name of the operation. Defaults to - 'LinearCosineDecay'. - """ - super().__init__() - - self.initial_learning_rate = initial_learning_rate - self.decay_steps = decay_steps - self.num_periods = num_periods - self.alpha = alpha - self.beta = beta - self.name = name - - def __call__(self, step): - with tf.name_scope(self.name or "LinearCosineDecay") as name: - initial_learning_rate = tf.convert_to_tensor( - self.initial_learning_rate, name="initial_learning_rate" - ) - dtype = initial_learning_rate.dtype - decay_steps = tf.cast(self.decay_steps, dtype) - num_periods = tf.cast(self.num_periods, dtype) - alpha = tf.cast(self.alpha, dtype) - beta = tf.cast(self.beta, dtype) - - global_step_recomp = tf.cast(step, dtype) - global_step_recomp = tf.minimum(global_step_recomp, decay_steps) - linear_decayed = (decay_steps - global_step_recomp) / decay_steps - completed_fraction = global_step_recomp / decay_steps - fraction = 2.0 * num_periods * completed_fraction - cosine_decayed = 0.5 * ( - 1.0 + tf.cos(tf.constant(math.pi, dtype=dtype) * fraction) - ) - - linear_cosine_decayed = ( - alpha + linear_decayed - ) * cosine_decayed + beta - return tf.multiply( - initial_learning_rate, linear_cosine_decayed, name=name - ) - - def get_config(self): - return { - "initial_learning_rate": self.initial_learning_rate, - "decay_steps": self.decay_steps, - "num_periods": self.num_periods, - "alpha": self.alpha, - "beta": self.beta, - "name": self.name, - } - - -# Note: this code is still used by V1 APIs. -class NoisyLinearCosineDecay(LearningRateSchedule): - """A LearningRateSchedule that uses a noisy linear cosine decay schedule. - - See [Bello et al., ICML2017] Neural Optimizer Search with RL. - https://arxiv.org/abs/1709.07417 - - For the idea of warm starts here controlled by `num_periods`, - see [Loshchilov & Hutter, ICLR2016] SGDR: Stochastic Gradient Descent - with Warm Restarts. https://arxiv.org/abs/1608.03983 - - Note that linear cosine decay is more aggressive than cosine decay and - larger initial learning rates can typically be used. - - When training a model, it is often recommended to lower the learning rate as - the training progresses. This schedule applies a noisy linear cosine decay - function to an optimizer step, given a provided initial learning rate. - It requires a `step` value to compute the decayed learning rate. You can - just pass a TensorFlow variable that you increment at each training step. - - The schedule is a 1-arg callable that produces a decayed learning - rate when passed the current optimizer step. This can be useful for changing - the learning rate value across different invocations of optimizer functions. - It is computed as: - - ```python - def decayed_learning_rate(step): - step = min(step, decay_steps) - linear_decay = (decay_steps - step) / decay_steps) - cosine_decay = 0.5 * ( - 1 + cos(pi * 2 * num_periods * step / decay_steps)) - decayed = (alpha + linear_decay + eps_t) * cosine_decay + beta - return initial_learning_rate * decayed - ``` - where eps_t is 0-centered gaussian noise with variance - initial_variance / (1 + global_step) ** variance_decay - - Example usage: - ```python - decay_steps = 1000 - lr_decayed_fn = ( - tf.keras.experimental.NoisyLinearCosineDecay( - initial_learning_rate, decay_steps)) - ``` - - You can pass this schedule directly into a `tf.keras.optimizers.Optimizer` - as the learning rate. The learning rate schedule is also serializable and - deserializable using `tf.keras.optimizers.schedules.serialize` and - `tf.keras.optimizers.schedules.deserialize`. - - Returns: - A 1-arg callable learning rate schedule that takes the current optimizer - step and outputs the decayed learning rate, a scalar `Tensor` of the same - type as `initial_learning_rate`. - """ - - def __init__( - self, - initial_learning_rate, - decay_steps, - initial_variance=1.0, - variance_decay=0.55, - num_periods=0.5, - alpha=0.0, - beta=0.001, - seed=None, - name=None, - ): - """Applies noisy linear cosine decay to the learning rate. - - Args: - initial_learning_rate: A scalar `float32` or `float64` Tensor or a - Python number. The initial learning rate. - decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. - Number of steps to decay over. - initial_variance: initial variance for the noise. See computation - above. - variance_decay: decay for the noise's variance. See computation above. - num_periods: Number of periods in the cosine part of the decay. - See computation above. - alpha: See computation above. - beta: See computation above. - seed: Integer, optional random seed to enable deterministic behavior. - name: String. Optional name of the operation. Defaults to - 'NoisyLinearCosineDecay'. - """ - super().__init__() - - self.initial_learning_rate = initial_learning_rate - self.decay_steps = decay_steps - self.initial_variance = initial_variance - self.variance_decay = variance_decay - self.num_periods = num_periods - self.alpha = alpha - self.beta = beta - self.seed = seed - self.name = name - self._random_generator = backend.RandomGenerator(seed) - - def __call__(self, step): - with tf.name_scope(self.name or "NoisyLinearCosineDecay") as name: - initial_learning_rate = tf.convert_to_tensor( - self.initial_learning_rate, name="initial_learning_rate" - ) - dtype = initial_learning_rate.dtype - decay_steps = tf.cast(self.decay_steps, dtype) - initial_variance = tf.cast(self.initial_variance, dtype) - variance_decay = tf.cast(self.variance_decay, dtype) - num_periods = tf.cast(self.num_periods, dtype) - alpha = tf.cast(self.alpha, dtype) - beta = tf.cast(self.beta, dtype) - - global_step_recomp = tf.cast(step, dtype) - global_step_recomp = tf.minimum(global_step_recomp, decay_steps) - linear_decayed = (decay_steps - global_step_recomp) / decay_steps - variance = initial_variance / ( - tf.pow(1.0 + global_step_recomp, variance_decay) - ) - std = tf.sqrt(variance) - noisy_linear_decayed = ( - linear_decayed - + self._random_generator.random_normal( - linear_decayed.shape, stddev=std - ) - ) - - completed_fraction = global_step_recomp / decay_steps - fraction = 2.0 * num_periods * completed_fraction - cosine_decayed = 0.5 * ( - 1.0 + tf.cos(tf.constant(math.pi, dtype=dtype) * fraction) - ) - noisy_linear_cosine_decayed = ( - alpha + noisy_linear_decayed - ) * cosine_decayed + beta - - return tf.multiply( - initial_learning_rate, noisy_linear_cosine_decayed, name=name - ) - - def get_config(self): - return { - "initial_learning_rate": self.initial_learning_rate, - "decay_steps": self.decay_steps, - "initial_variance": self.initial_variance, - "variance_decay": self.variance_decay, - "num_periods": self.num_periods, - "alpha": self.alpha, - "beta": self.beta, - "seed": self.seed, - "name": self.name, - } - - -@keras_export("keras.optimizers.schedules.serialize") -def serialize(learning_rate_schedule, use_legacy_format=False): - """Serializes a `LearningRateSchedule` into a JSON-compatible dict. - - Args: - learning_rate_schedule: The `LearningRateSchedule` object to serialize. - - Returns: - A JSON-serializable dict representing the object's config. - - Example: - - >>> lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( - ... 0.1, decay_steps=100000, decay_rate=0.96, staircase=True) - >>> tf.keras.optimizers.schedules.serialize(lr_schedule) - {'module': 'keras.optimizers.schedules', - 'class_name': 'ExponentialDecay', 'config': {...}, - 'registered_name': None} - """ - if use_legacy_format: - return legacy_serialization.serialize_keras_object( - learning_rate_schedule - ) - - return serialization_lib.serialize_keras_object(learning_rate_schedule) - - -@keras_export("keras.optimizers.schedules.deserialize") -def deserialize(config, custom_objects=None, use_legacy_format=False): - """Instantiates a `LearningRateSchedule` object from a serialized form. - - Args: - config: The serialized form of the `LearningRateSchedule`. - Dictionary of the form {'class_name': str, 'config': dict}. - custom_objects: A dictionary mapping class names (or function names) of - custom (non-Keras) objects to class/functions. - - Returns: - A `LearningRateSchedule` object. - - Example: - - ```python - # Configuration for PolynomialDecay - config = { - 'class_name': 'PolynomialDecay', - 'config': {'cycle': False, - 'decay_steps': 10000, - 'end_learning_rate': 0.01, - 'initial_learning_rate': 0.1, - 'name': None, - 'power': 0.5}} - lr_schedule = tf.keras.optimizers.schedules.deserialize(config) - ``` - """ - if use_legacy_format: - return legacy_serialization.deserialize_keras_object( - config, - module_objects=globals(), - custom_objects=custom_objects, - printable_module_name="decay", - ) - - return serialization_lib.deserialize_keras_object( - config, - module_objects=globals(), - custom_objects=custom_objects, - printable_module_name="decay", - ) diff --git a/keras/optimizers/schedules/learning_rate_schedule_test.py b/keras/optimizers/schedules/learning_rate_schedule_test.py deleted file mode 100644 index e78709d9089..00000000000 --- a/keras/optimizers/schedules/learning_rate_schedule_test.py +++ /dev/null @@ -1,516 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for learning rate schedule API.""" - -import math - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.optimizers.legacy import gradient_descent -from keras.optimizers.schedules import learning_rate_schedule -from keras.testing_infra import test_combinations - - -def _maybe_serialized(lr_decay, serialize_and_deserialize): - if serialize_and_deserialize: - serialized = learning_rate_schedule.serialize(lr_decay) - return learning_rate_schedule.deserialize(serialized) - else: - return lr_decay - - -@test_combinations.generate( - test_combinations.combine(serialize=[False, True], mode=["graph", "eager"]) -) -class LRDecayTestV2(tf.test.TestCase, parameterized.TestCase): - def testContinuous(self, serialize): - self.evaluate(tf.compat.v1.global_variables_initializer()) - step = 5 - decayed_lr = learning_rate_schedule.ExponentialDecay(0.05, 10, 0.96) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = 0.05 * 0.96 ** (5.0 / 10.0) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testStaircase(self, serialize): - if tf.executing_eagerly(): - step = tf.Variable(0) - self.evaluate(tf.compat.v1.global_variables_initializer()) - decayed_lr = learning_rate_schedule.ExponentialDecay( - 0.1, 3, 0.96, staircase=True - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - - # No change to learning rate due to staircase - expected = 0.1 - self.evaluate(step.assign(1)) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - expected = 0.1 - self.evaluate(step.assign(2)) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - # Decayed learning rate - expected = 0.1 * 0.96 ** (100 // 3) - self.evaluate(step.assign(100)) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testVariables(self, serialize): - # TODO(tanzheny, omalleyt): Fix test in eager mode. - with tf.Graph().as_default(): - step = tf.Variable(1) - assign_1 = step.assign(1) - assign_2 = step.assign(2) - assign_100 = step.assign(100) - decayed_lr = learning_rate_schedule.ExponentialDecay( - 0.1, 3, 0.96, staircase=True - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - # No change to learning rate - self.evaluate(assign_1.op) - self.assertAllClose(self.evaluate(decayed_lr(step)), 0.1, 1e-6) - self.evaluate(assign_2.op) - self.assertAllClose(self.evaluate(decayed_lr(step)), 0.1, 1e-6) - # Decayed learning rate - self.evaluate(assign_100.op) - expected = 0.1 * 0.96 ** (100 // 3) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testPiecewiseConstant(self, serialize): - x = tf.Variable(-999) - decayed_lr = learning_rate_schedule.PiecewiseConstantDecay( - [100, 110, 120], [1.0, 0.1, 0.01, 0.001] - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - - self.assertAllClose(self.evaluate(decayed_lr(x)), 1.0, 1e-6) - self.evaluate(x.assign(100)) - self.assertAllClose(self.evaluate(decayed_lr(x)), 1.0, 1e-6) - self.evaluate(x.assign(105)) - self.assertAllClose(self.evaluate(decayed_lr(x)), 0.1, 1e-6) - self.evaluate(x.assign(110)) - self.assertAllClose(self.evaluate(decayed_lr(x)), 0.1, 1e-6) - self.evaluate(x.assign(120)) - self.assertAllClose(self.evaluate(decayed_lr(x)), 0.01, 1e-6) - self.evaluate(x.assign(999)) - self.assertAllClose(self.evaluate(decayed_lr(x)), 0.001, 1e-6) - - def testPiecewiseFunction(self, serialize): - if not tf.executing_eagerly(): - self.skipTest("Run on eager mode only.") - - del serialize - v = tf.Variable(1.0) - - def loss_fn(): - return v * v - - learning_rate = learning_rate_schedule.PiecewiseConstantDecay( - [1.0], [1.0, 0.1] - ) - opt = gradient_descent.SGD(learning_rate=learning_rate) - - @tf.function - def minimize(): - with tf.GradientTape() as tape: - loss = loss_fn() - g = tape.gradient(loss, [v]) - opt.apply_gradients(list(zip(g, [v]))) - - minimize() - self.assertAllEqual(v.read_value(), -1.0) - - def testPiecewiseConstantEdgeCases(self, serialize): - # Test casting boundaries from int32 to int64. - x_int64 = tf.Variable(0, dtype=tf.int64) - boundaries, values = [1, 2, 3], [0.4, 0.5, 0.6, 0.7] - decayed_lr = learning_rate_schedule.PiecewiseConstantDecay( - boundaries, values - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - self.assertAllClose(self.evaluate(decayed_lr(x_int64)), 0.4, 1e-6) - self.evaluate(x_int64.assign(1)) - self.assertAllClose(self.evaluate(decayed_lr(x_int64)), 0.4, 1e-6) - self.evaluate(x_int64.assign(2)) - self.assertAllClose(self.evaluate(decayed_lr(x_int64)), 0.5, 1e-6) - self.evaluate(x_int64.assign(3)) - self.assertAllClose(self.evaluate(decayed_lr(x_int64)), 0.6, 1e-6) - self.evaluate(x_int64.assign(4)) - self.assertAllClose(self.evaluate(decayed_lr(x_int64)), 0.7, 1e-6) - - -# @parameterized.named_parameters( -# ("NotSerialized", False), -# ("Serialized", True)) -@test_combinations.generate( - test_combinations.combine(serialize=[False, True], mode=["graph", "eager"]) -) -class LinearDecayTestV2(tf.test.TestCase, parameterized.TestCase): - def testHalfWay(self, serialize): - step = 5 - lr = 0.05 - end_lr = 0.0 - decayed_lr = learning_rate_schedule.PolynomialDecay(lr, 10, end_lr) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = lr * 0.5 - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testEnd(self, serialize): - step = 10 - lr = 0.05 - end_lr = 0.001 - decayed_lr = learning_rate_schedule.PolynomialDecay(lr, 10, end_lr) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = end_lr - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testHalfWayWithEnd(self, serialize): - step = 5 - lr = 0.05 - end_lr = 0.001 - decayed_lr = learning_rate_schedule.PolynomialDecay(lr, 10, end_lr) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = (lr + end_lr) * 0.5 - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testBeyondEnd(self, serialize): - step = 15 - lr = 0.05 - end_lr = 0.001 - decayed_lr = learning_rate_schedule.PolynomialDecay(lr, 10, end_lr) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = end_lr - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testBeyondEndWithCycle(self, serialize): - step = 15 - lr = 0.05 - end_lr = 0.001 - decayed_lr = learning_rate_schedule.PolynomialDecay( - lr, 10, end_lr, cycle=True - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = (lr - end_lr) * 0.25 + end_lr - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - -# @parameterized.named_parameters( -# ("NotSerialized", False), -# ("Serialized", True)) -@test_combinations.generate( - test_combinations.combine(serialize=[False, True], mode=["graph", "eager"]) -) -class SqrtDecayTestV2(tf.test.TestCase, parameterized.TestCase): - def testHalfWay(self, serialize): - step = 5 - lr = 0.05 - end_lr = 0.0 - power = 0.5 - decayed_lr = learning_rate_schedule.PolynomialDecay( - lr, 10, end_lr, power=power - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = lr * 0.5**power - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testEnd(self, serialize): - step = 10 - lr = 0.05 - end_lr = 0.001 - power = 0.5 - decayed_lr = learning_rate_schedule.PolynomialDecay( - lr, 10, end_lr, power=power - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = end_lr - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testHalfWayWithEnd(self, serialize): - step = 5 - lr = 0.05 - end_lr = 0.001 - power = 0.5 - decayed_lr = learning_rate_schedule.PolynomialDecay( - lr, 10, end_lr, power=power - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = (lr - end_lr) * 0.5**power + end_lr - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testBeyondEnd(self, serialize): - step = 15 - lr = 0.05 - end_lr = 0.001 - power = 0.5 - decayed_lr = learning_rate_schedule.PolynomialDecay( - lr, 10, end_lr, power=power - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = end_lr - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testBeyondEndWithCycle(self, serialize): - step = 15 - lr = 0.05 - end_lr = 0.001 - power = 0.5 - decayed_lr = learning_rate_schedule.PolynomialDecay( - lr, 10, end_lr, power=power, cycle=True - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = (lr - end_lr) * 0.25**power + end_lr - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - -# @parameterized.named_parameters( -# ("NotSerialized", False), -# ("Serialized", True)) -@test_combinations.generate( - test_combinations.combine(serialize=[False, True], mode=["graph", "eager"]) -) -class PolynomialDecayTestV2(tf.test.TestCase, parameterized.TestCase): - def testBeginWithCycle(self, serialize): - lr = 0.001 - decay_steps = 10 - step = 0 - decayed_lr = learning_rate_schedule.PolynomialDecay( - lr, decay_steps, cycle=True - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = lr - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - -# @parameterized.named_parameters( -# ("NotSerialized", False), -# ("Serialized", True)) -@test_combinations.generate( - test_combinations.combine(serialize=[False, True], mode=["graph", "eager"]) -) -class InverseDecayTestV2(tf.test.TestCase, parameterized.TestCase): - def testDecay(self, serialize): - initial_lr = 0.1 - k = 10 - decay_rate = 0.96 - step = tf.Variable(0) - decayed_lr = learning_rate_schedule.InverseTimeDecay( - initial_lr, k, decay_rate - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - for i in range(k + 1): - expected = initial_lr / (1 + i / k * decay_rate) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - self.evaluate(step.assign_add(1)) - - def testStaircase(self, serialize): - initial_lr = 0.1 - k = 10 - decay_rate = 0.96 - step = tf.Variable(0) - decayed_lr = learning_rate_schedule.InverseTimeDecay( - initial_lr, k, decay_rate, staircase=True - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - - self.evaluate(tf.compat.v1.global_variables_initializer()) - for i in range(k + 1): - expected = initial_lr / (1 + decay_rate * (i // k)) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - self.evaluate(step.assign_add(1)) - - -@test_combinations.generate( - test_combinations.combine(serialize=[False, True], mode=["graph", "eager"]) -) -class CosineDecayTestV2(tf.test.TestCase, parameterized.TestCase): - def np_cosine_decay(self, step, decay_steps, alpha=0.0): - step = min(step, decay_steps) - completed_fraction = step / decay_steps - decay = 0.5 * (1.0 + math.cos(math.pi * completed_fraction)) - return (1.0 - alpha) * decay + alpha - - def testDecay(self, serialize): - num_training_steps = 1000 - initial_lr = 1.0 - for step in range(0, 1500, 250): - decayed_lr = learning_rate_schedule.CosineDecay( - initial_lr, num_training_steps - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = self.np_cosine_decay(step, num_training_steps) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def linear_warmup(self, step, warmup_steps, initial_lr, target_lr): - completed_fraction = step / warmup_steps - total_delta = target_lr - initial_lr - return completed_fraction * total_delta - - def testWarmup(self, serialize): - warmup_steps = 1500 - initial_lr = 0.0 - target_lr = 10.0 - for step in range(0, 1500, 250): - lr = learning_rate_schedule.CosineDecay( - initial_lr, - 0, - warmup_target=target_lr, - warmup_steps=warmup_steps, - ) - lr = _maybe_serialized(lr, serialize) - expected = self.linear_warmup( - step, warmup_steps, initial_lr, target_lr - ) - self.assertAllClose(self.evaluate(lr(step)), expected) - - def testAlpha(self, serialize): - num_training_steps = 1000 - initial_lr = 1.0 - alpha = 0.1 - for step in range(0, 1500, 250): - decayed_lr = learning_rate_schedule.CosineDecay( - initial_lr, num_training_steps, alpha - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = self.np_cosine_decay(step, num_training_steps, alpha) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testFloat64InitLearningRate(self, serialize): - num_training_steps = 1000 - initial_lr = np.float64(1.0) - for step in range(0, 1500, 250): - decayed_lr = learning_rate_schedule.CosineDecay( - initial_lr, num_training_steps - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = self.np_cosine_decay(step, num_training_steps) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testWarmupDecay(self, serialize): - warmup_steps = 2000 - decay_steps = 1000 - initial_lr = 0.0 - target_lr = 10.0 - for step in range(0, 3000, 250): - lr = learning_rate_schedule.CosineDecay( - initial_lr, - decay_steps, - warmup_target=target_lr, - warmup_steps=warmup_steps, - ) - lr = _maybe_serialized(lr, serialize) - if step < warmup_steps + 1: - expected = self.linear_warmup( - step, warmup_steps, initial_lr, target_lr - ) - else: - expected = target_lr * self.np_cosine_decay( - step - warmup_steps, decay_steps - ) - self.assertAllClose(self.evaluate(lr(step)), expected) - - -@test_combinations.generate( - test_combinations.combine(serialize=[False, True], mode=["graph", "eager"]) -) -class CosineDecayRestartsTestV2(tf.test.TestCase, parameterized.TestCase): - def np_cosine_decay_restarts( - self, step, decay_steps, t_mul=2.0, m_mul=1.0, alpha=0.0 - ): - fac = 1.0 - while step >= decay_steps: - step -= decay_steps - decay_steps *= t_mul - fac *= m_mul - - completed_fraction = step / decay_steps - decay = fac * 0.5 * (1.0 + math.cos(math.pi * completed_fraction)) - return (1.0 - alpha) * decay + alpha - - def testDecay(self, serialize): - num_training_steps = 1000 - initial_lr = 1.0 - for step in range(0, 1500, 250): - decayed_lr = learning_rate_schedule.CosineDecayRestarts( - initial_lr, num_training_steps - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = self.np_cosine_decay_restarts(step, num_training_steps) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testFloat64InitLearningRate(self, serialize): - num_training_steps = 1000 - initial_lr = np.float64(1.0) - for step in range(0, 1500, 250): - decayed_lr = learning_rate_schedule.CosineDecayRestarts( - initial_lr, num_training_steps - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = self.np_cosine_decay_restarts(step, num_training_steps) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testAlpha(self, serialize): - num_training_steps = 1000 - initial_lr = 1.0 - alpha = 0.1 - for step in range(0, 1500, 250): - decayed_lr = learning_rate_schedule.CosineDecayRestarts( - initial_lr, num_training_steps, alpha=alpha - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = self.np_cosine_decay_restarts( - step, num_training_steps, alpha=alpha - ) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testMMul(self, serialize): - num_training_steps = 1000 - initial_lr = 1.0 - m_mul = 0.9 - for step in range(0, 1500, 250): - decayed_lr = learning_rate_schedule.CosineDecayRestarts( - initial_lr, num_training_steps, m_mul=m_mul - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = self.np_cosine_decay_restarts( - step, num_training_steps, m_mul=m_mul - ) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - def testTMul(self, serialize): - num_training_steps = 1000 - initial_lr = 1.0 - t_mul = 1.0 - for step in range(0, 1500, 250): - decayed_lr = learning_rate_schedule.CosineDecayRestarts( - initial_lr, num_training_steps, t_mul=t_mul - ) - decayed_lr = _maybe_serialized(decayed_lr, serialize) - expected = self.np_cosine_decay_restarts( - step, num_training_steps, t_mul=t_mul - ) - self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/optimizers/sgd.py b/keras/optimizers/sgd.py deleted file mode 100644 index 39b79a0d99a..00000000000 --- a/keras/optimizers/sgd.py +++ /dev/null @@ -1,207 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""SGD optimizer implementation.""" - -import tensorflow.compat.v2 as tf - -from keras.optimizers import optimizer -from keras.saving.object_registration import register_keras_serializable - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@register_keras_serializable() -@keras_export( - "keras.optimizers.experimental.SGD", - "keras.optimizers.SGD", - "keras.dtensor.experimental.optimizers.SGD", - v1=[], -) -class SGD(optimizer.Optimizer): - r"""Gradient descent (with momentum) optimizer. - - Update rule for parameter `w` with gradient `g` when `momentum` is 0: - - ```python - w = w - learning_rate * g - ``` - - Update rule when `momentum` is larger than 0: - - ```python - velocity = momentum * velocity - learning_rate * g - w = w + velocity - ``` - - When `nesterov=True`, this rule becomes: - - ```python - velocity = momentum * velocity - learning_rate * g - w = w + momentum * velocity - learning_rate * g - ``` - - Args: - learning_rate: A `Tensor`, floating point value, or a schedule that is a - `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable - that takes no arguments and returns the actual value to use. The - learning rate. Defaults to 0.001. - momentum: float hyperparameter >= 0 that accelerates gradient descent in - the relevant direction and dampens oscillations. Defaults to 0, i.e., - vanilla gradient descent. - nesterov: boolean. Whether to apply Nesterov momentum. - Defaults to `False`. - {{base_optimizer_keyword_args}} - - Usage: - - >>> opt = tf.keras.optimizers.experimental.SGD(learning_rate=0.1) - >>> var = tf.Variable(1.0) - >>> loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1 - >>> opt.minimize(loss, [var]) - >>> # Step is `- learning_rate * grad` - >>> var.numpy() - 0.9 - - >>> opt = tf.keras.optimizers.experimental.SGD(0.1, momentum=0.9) - >>> var = tf.Variable(1.0) - >>> val0 = var.value() - >>> loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1 - >>> # First step is `- learning_rate * grad` - >>> opt.minimize(loss, [var]) - >>> val1 = var.value() - >>> (val0 - val1).numpy() - 0.1 - >>> # On later steps, step-size increases because of momentum - >>> opt.minimize(loss, [var]) - >>> val2 = var.value() - >>> (val1 - val2).numpy() - 0.18 - - Reference: - - For `nesterov=True`, See [Sutskever et al., 2013]( - http://proceedings.mlr.press/v28/sutskever13.pdf). - """ - - def __init__( - self, - learning_rate=0.01, - momentum=0.0, - nesterov=False, - weight_decay=None, - clipnorm=None, - clipvalue=None, - global_clipnorm=None, - use_ema=False, - ema_momentum=0.99, - ema_overwrite_frequency=None, - jit_compile=True, - name="SGD", - **kwargs - ): - super().__init__( - name=name, - weight_decay=weight_decay, - clipnorm=clipnorm, - clipvalue=clipvalue, - global_clipnorm=global_clipnorm, - use_ema=use_ema, - ema_momentum=ema_momentum, - ema_overwrite_frequency=ema_overwrite_frequency, - jit_compile=jit_compile, - **kwargs - ) - self._learning_rate = self._build_learning_rate(learning_rate) - self.momentum = momentum - self.nesterov = nesterov - if isinstance(momentum, (int, float)) and ( - momentum < 0 or momentum > 1 - ): - raise ValueError("`momentum` must be between [0, 1].") - - def build(self, var_list): - """Initialize optimizer variables. - - SGD optimizer has one variable `momentums`, only set if `self.momentum` - is not 0. - - Args: - var_list: list of model variables to build SGD variables on. - """ - super().build(var_list) - if hasattr(self, "_built") and self._built: - return - self.momentums = [] - for var in var_list: - self.momentums.append( - self.add_variable_from_reference( - model_variable=var, variable_name="m" - ) - ) - self._built = True - - def update_step(self, gradient, variable): - """Update step given gradient and the associated model variable.""" - lr = tf.cast(self.learning_rate, variable.dtype) - m = None - var_key = self._var_key(variable) - momentum = tf.cast(self.momentum, variable.dtype) - m = self.momentums[self._index_dict[var_key]] - - # TODO(b/204321487): Add nesterov acceleration. - if isinstance(gradient, tf.IndexedSlices): - # Sparse gradients. - add_value = tf.IndexedSlices( - -gradient.values * lr, gradient.indices - ) - if m is not None: - m.assign(m * momentum) - m.scatter_add(add_value) - if self.nesterov: - variable.scatter_add(add_value) - variable.assign_add(m * momentum) - else: - variable.assign_add(m) - else: - variable.scatter_add(add_value) - else: - # Dense gradients - if m is not None: - m.assign(-gradient * lr + m * momentum) - if self.nesterov: - variable.assign_add(-gradient * lr + m * momentum) - else: - variable.assign_add(m) - else: - variable.assign_add(-gradient * lr) - - def get_config(self): - config = super().get_config() - - config.update( - { - "learning_rate": self._serialize_hyperparameter( - self._learning_rate - ), - "momentum": self.momentum, - "nesterov": self.nesterov, - } - ) - return config - - -SGD.__doc__ = SGD.__doc__.replace( - "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args -) diff --git a/keras/optimizers/utils.py b/keras/optimizers/utils.py deleted file mode 100644 index 720ed64fd0a..00000000000 --- a/keras/optimizers/utils.py +++ /dev/null @@ -1,177 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Optimizer utilities.""" - -import tensorflow.compat.v2 as tf - -# isort: off -from tensorflow.python.platform import tf_logging as logging - - -def all_reduce_sum_gradients(grads_and_vars): - """Returns all-reduced gradients aggregated via summation. - - Args: - grads_and_vars: List of (gradient, variable) pairs. - - Returns: - List of (gradient, variable) pairs where gradients have been all-reduced. - """ - grads_and_vars = list(grads_and_vars) - filtered_grads_and_vars = filter_empty_gradients(grads_and_vars) - if filtered_grads_and_vars: - if tf.__internal__.distribute.strategy_supports_no_merge_call(): - grads = [pair[0] for pair in filtered_grads_and_vars] - reduced = tf.distribute.get_replica_context().all_reduce( - tf.distribute.ReduceOp.SUM, grads - ) - else: - # TODO(b/183257003): Remove this branch - reduced = tf.distribute.get_replica_context().merge_call( - _all_reduce_sum_fn, args=(filtered_grads_and_vars,) - ) - else: - reduced = [] - # Copy 'reduced' but add None gradients back in - reduced_with_nones = [] - reduced_pos = 0 - for g, v in grads_and_vars: - if g is None: - reduced_with_nones.append((None, v)) - else: - reduced_with_nones.append((reduced[reduced_pos], v)) - reduced_pos += 1 - assert reduced_pos == len(reduced), "Failed to add all gradients" - return reduced_with_nones - - -def filter_empty_gradients(grads_and_vars): - """Filter out `(grad, var)` pairs that have a gradient equal to `None`.""" - grads_and_vars = tuple(grads_and_vars) - if not grads_and_vars: - return grads_and_vars - - filtered = [] - vars_with_empty_grads = [] - for grad, var in grads_and_vars: - if grad is None: - vars_with_empty_grads.append(var) - else: - filtered.append((grad, var)) - filtered = tuple(filtered) - - if not filtered: - variable = ([v.name for _, v in grads_and_vars],) - raise ValueError( - f"No gradients provided for any variable: {variable}. " - f"Provided `grads_and_vars` is {grads_and_vars}." - ) - if vars_with_empty_grads: - logging.warning( - "Gradients do not exist for variables %s when minimizing the " - "loss. If you're using `model.compile()`, did you forget to " - "provide a `loss` argument?", - ([v.name for v in vars_with_empty_grads]), - ) - return filtered - - -def make_gradient_clipnorm_fn(clipnorm): - """Creates a gradient transformation function for clipping by norm.""" - if clipnorm is None: - return lambda grads_and_vars: grads_and_vars - - def gradient_clipnorm_fn(grads_and_vars): - - if isinstance( - tf.distribute.get_strategy(), - ( - tf.distribute.experimental.CentralStorageStrategy, - tf.compat.v1.distribute.experimental.CentralStorageStrategy, - ), - ): - raise ValueError( - "`clipnorm` is not supported with `CenteralStorageStrategy`. " - f"The strategy used is {tf.distribute.get_strategy()}." - ) - - clipped_grads_and_vars = [ - (tf.clip_by_norm(g, clipnorm), v) for g, v in grads_and_vars - ] - return clipped_grads_and_vars - - return gradient_clipnorm_fn - - -def make_global_gradient_clipnorm_fn(clipnorm): - """Creates a gradient transformation function for clipping by norm.""" - if clipnorm is None: - return lambda grads_and_vars: grads_and_vars - - def gradient_clipnorm_fn(grads_and_vars): - - if isinstance( - tf.distribute.get_strategy(), - ( - tf.distribute.experimental.CentralStorageStrategy, - tf.compat.v1.distribute.experimental.CentralStorageStrategy, - ), - ): - raise ValueError( - "`global_clipnorm` is not supported with " - "`CenteralStorageStrategy`. " - f"The strategy used is {tf.distribute.get_strategy()}." - ) - - grads, variables = zip(*grads_and_vars) - clipped_grads, _ = tf.clip_by_global_norm(grads, clipnorm) - clipped_grads_and_vars = list(zip(clipped_grads, variables)) - return clipped_grads_and_vars - - return gradient_clipnorm_fn - - -def make_gradient_clipvalue_fn(clipvalue): - """Creates a gradient transformation function for clipping by value.""" - if clipvalue is None: - return lambda grads_and_vars: grads_and_vars - - def gradient_clipvalue_fn(grads_and_vars): - - if isinstance( - tf.distribute.get_strategy(), - ( - tf.distribute.experimental.CentralStorageStrategy, - tf.compat.v1.distribute.experimental.CentralStorageStrategy, - ), - ): - raise ValueError( - "`clipvalue` is not supported with `CenteralStorageStrategy`. " - f"The strategy used is {tf.distribute.get_strategy()}." - ) - - clipped_grads_and_vars = [ - (tf.clip_by_value(g, -clipvalue, clipvalue), v) - for g, v in grads_and_vars - ] - return clipped_grads_and_vars - - return gradient_clipvalue_fn - - -def _all_reduce_sum_fn(distribution, grads_and_vars): - return distribution.extended.batch_reduce_to( - tf.distribute.ReduceOp.SUM, grads_and_vars - ) diff --git a/keras/premade_models/BUILD b/keras/premade_models/BUILD deleted file mode 100644 index 00286775da6..00000000000 --- a/keras/premade_models/BUILD +++ /dev/null @@ -1,56 +0,0 @@ -# Description: -# Contains the Keras Premade Models (internal TensorFlow version). -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:friends", - ], - licenses = ["notice"], -) - -py_library( - name = "premade_models", - srcs = [ - "__init__.py", - "linear.py", - "wide_deep.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend_config", - "//keras:regularizers", - ], -) - -tf_py_test( - name = "linear_test", - size = "medium", - srcs = ["linear_test.py"], - python_version = "PY3", - shard_count = 2, - deps = [ - ":premade_models", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "wide_deep_test", - size = "medium", - srcs = ["wide_deep_test.py"], - python_version = "PY3", - shard_count = 2, - srcs_version = "PY3", - deps = [ - ":premade_models", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/premade_models/__init__.py b/keras/premade_models/__init__.py deleted file mode 100644 index 49b80f388fd..00000000000 --- a/keras/premade_models/__init__.py +++ /dev/null @@ -1,18 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Premade Model API.""" - -from keras.premade_models import linear -from keras.premade_models import wide_deep diff --git a/keras/premade_models/linear.py b/keras/premade_models/linear.py deleted file mode 100644 index e2423616695..00000000000 --- a/keras/premade_models/linear.py +++ /dev/null @@ -1,218 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Built-in linear model classes.""" - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import initializers -from keras import regularizers -from keras.engine import base_layer -from keras.engine import input_spec -from keras.engine import training -from keras.layers import core - -# isort: off -from tensorflow.python.util import deprecation -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.experimental.LinearModel", - v1=["keras.experimental.LinearModel", "keras.models.LinearModel"], -) -@deprecation.deprecated_endpoints("keras.experimental.LinearModel") -class LinearModel(training.Model): - r"""Linear Model for regression and classification problems. - - This model approximates the following function: - $$y = \beta + \sum_{i=1}^{N} w_{i} * x_{i}$$ - where $$\beta$$ is the bias and $$w_{i}$$ is the weight for each feature. - - Example: - - ```python - model = LinearModel() - model.compile(optimizer='sgd', loss='mse') - model.fit(x, y, epochs=epochs) - ``` - - This model accepts sparse float inputs as well: - - Example: - ```python - model = LinearModel() - opt = tf.keras.optimizers.Adam() - loss_fn = tf.keras.losses.MeanSquaredError() - with tf.GradientTape() as tape: - output = model(sparse_input) - loss = tf.reduce_mean(loss_fn(target, output)) - grads = tape.gradient(loss, model.weights) - opt.apply_gradients(zip(grads, model.weights)) - ``` - - """ - - def __init__( - self, - units=1, - activation=None, - use_bias=True, - kernel_initializer="zeros", - bias_initializer="zeros", - kernel_regularizer=None, - bias_regularizer=None, - **kwargs, - ): - """Create a Linear Model. - - Args: - units: Positive integer, output dimension without the batch size. - activation: Activation function to use. - If you don't specify anything, no activation is applied. - use_bias: whether to calculate the bias/intercept for this model. If - set to False, no bias/intercept will be used in calculations, e.g., - the data is already centered. - kernel_initializer: Initializer for the `kernel` weights matrices. - bias_initializer: Initializer for the bias vector. - kernel_regularizer: regularizer for kernel vectors. - bias_regularizer: regularizer for bias vector. - **kwargs: The keyword arguments that are passed on to - BaseLayer.__init__. - """ - - self.units = units - self.activation = activations.get(activation) - self.use_bias = use_bias - self.kernel_initializer = initializers.get(kernel_initializer) - self.bias_initializer = initializers.get(bias_initializer) - self.kernel_regularizer = regularizers.get(kernel_regularizer) - self.bias_regularizer = regularizers.get(bias_regularizer) - super().__init__(**kwargs) - base_layer.keras_premade_model_gauge.get_cell("Linear").set(True) - - def build(self, input_shape): - if isinstance(input_shape, dict): - names = sorted(list(input_shape.keys())) - self.input_specs = [] - self.dense_layers = [] - for name in names: - shape = input_shape[name] - layer = core.Dense( - units=self.units, - use_bias=False, - kernel_initializer=self.kernel_initializer, - kernel_regularizer=self.kernel_regularizer, - name=name, - ) - layer.build(shape) - self.input_specs.append( - input_spec.InputSpec(shape=shape, name=name) - ) - self.dense_layers.append(layer) - elif isinstance(input_shape, (tuple, list)) and all( - isinstance(shape, tf.TensorShape) for shape in input_shape - ): - self.dense_layers = [] - for shape in input_shape: - layer = core.Dense( - units=self.units, - use_bias=False, - kernel_initializer=self.kernel_initializer, - kernel_regularizer=self.kernel_regularizer, - ) - layer.build(shape) - self.dense_layers.append(layer) - else: - # input_shape can be a single TensorShape or a tuple of ints. - layer = core.Dense( - units=self.units, - use_bias=False, - kernel_initializer=self.kernel_initializer, - kernel_regularizer=self.kernel_regularizer, - ) - layer.build(input_shape) - self.dense_layers = [layer] - - if self.use_bias: - self.bias = self.add_weight( - "bias", - shape=self.units, - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - dtype=self.dtype, - trainable=True, - ) - else: - self.bias = None - self.built = True - - def call(self, inputs): - result = None - if isinstance(inputs, dict): - names = [layer.name for layer in self.dense_layers] - different_keys = set(names) - set(inputs.keys()) - if different_keys: - raise ValueError( - "The `inputs` dictionary does not match " - "the structure expected by the model." - f"\n\tExpected keys: {set(names)}" - f"\n\tReceived keys: {set(inputs.keys())}" - f"\n\tMissing keys: {different_keys}" - ) - inputs = [inputs[name] for name in names] - for inp, layer in zip(inputs, self.dense_layers): - output = layer(inp) - if result is None: - result = output - else: - result += output - elif isinstance(inputs, (tuple, list)): - for inp, layer in zip(inputs, self.dense_layers): - output = layer(inp) - if result is None: - result = output - else: - result += output - else: - result = self.dense_layers[0](inputs) - - if self.use_bias: - result = tf.nn.bias_add(result, self.bias) - if self.activation is not None: - return self.activation(result) - return result - - def get_config(self): - config = { - "units": self.units, - "activation": activations.serialize(self.activation), - "use_bias": self.use_bias, - "kernel_initializer": initializers.serialize( - self.kernel_initializer - ), - "bias_initializer": initializers.serialize(self.bias_initializer), - "kernel_regularizer": regularizers.serialize( - self.kernel_regularizer - ), - "bias_regularizer": regularizers.serialize(self.bias_regularizer), - } - base_config = base_layer.Layer.get_config(self) - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - del custom_objects - return cls(**config) diff --git a/keras/premade_models/linear_test.py b/keras/premade_models/linear_test.py deleted file mode 100644 index 9d7d83b76b2..00000000000 --- a/keras/premade_models/linear_test.py +++ /dev/null @@ -1,177 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras Premade Linear models.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import losses -from keras.engine import input_layer -from keras.engine import sequential -from keras.engine import training -from keras.feature_column import dense_features_v2 -from keras.layers import core -from keras.optimizers.legacy import gradient_descent -from keras.premade_models import linear -from keras.testing_infra import test_combinations - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class LinearModelTest(test_combinations.TestCase): - def test_linear_model_with_single_input(self): - model = linear.LinearModel() - inp = np.random.uniform(low=-5.0, high=5.0, size=(64, 2)) - output = 0.3 * inp[:, 0] + 0.2 * inp[:, 1] - model.compile("sgd", "mse", []) - model.fit(inp, output, epochs=5) - self.assertTrue(model.built) - - def test_linear_model_with_list_input(self): - model = linear.LinearModel() - input_a = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) - input_b = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) - output = 0.3 * input_a + 0.2 * input_b - model.compile("sgd", "mse", []) - model.fit([input_a, input_b], output, epochs=5) - - def test_linear_model_with_mismatched_dict_inputs(self): - model = linear.LinearModel() - input_a = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) - input_b = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) - output = 0.3 * input_a + 0.2 * input_b - model.compile("sgd", "mse", []) - model.build( - {"a": tf.TensorShape([None, 1]), "b": tf.TensorShape([None, 1])} - ) - with self.assertRaisesRegex(ValueError, "Missing keys"): - model.fit({"c": input_a, "b": input_b}, output, epochs=5) - - def test_linear_model_with_dict_input(self): - model = linear.LinearModel() - input_a = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) - input_b = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) - output = 0.3 * input_a + 0.2 * input_b - model.compile("sgd", "mse", []) - model.fit({"a": input_a, "b": input_b}, output, epochs=5) - - def test_linear_model_as_layer(self): - input_a = input_layer.Input(shape=(1,), name="a") - output_a = linear.LinearModel()(input_a) - input_b = input_layer.Input(shape=(1,), name="b") - output_b = core.Dense(units=1)(input_b) - output = output_a + output_b - model = training.Model(inputs=[input_a, input_b], outputs=[output]) - input_a_np = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) - input_b_np = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) - output_np = 0.3 * input_a_np + 0.2 * input_b_np - model.compile("sgd", "mse", []) - model.fit([input_a_np, input_b_np], output_np, epochs=5) - - def test_linear_model_with_sparse_input(self): - indices = tf.constant([[0, 0], [0, 2], [1, 0], [1, 1]], dtype=tf.int64) - values = tf.constant([0.4, 0.6, 0.8, 0.5]) - shape = tf.constant([2, 3], dtype=tf.int64) - model = linear.LinearModel() - inp = tf.SparseTensor(indices, values, shape) - output = model(inp) - self.evaluate(tf.compat.v1.global_variables_initializer()) - if tf.executing_eagerly(): - weights = model.get_weights() - weights[0] = np.ones((3, 1)) - model.set_weights(weights) - output = model(inp) - self.assertAllClose([[1.0], [1.3]], self.evaluate(output)) - - def test_linear_model_with_sparse_input_and_custom_training(self): - batch_size = 64 - indices = [] - values = [] - target = np.zeros((batch_size, 1)) - for i in range(64): - rand_int = np.random.randint(3) - if rand_int == 0: - indices.append((i, 0)) - val = np.random.uniform(low=-5.0, high=5.0) - values.append(val) - target[i] = 0.3 * val - elif rand_int == 1: - indices.append((i, 1)) - val = np.random.uniform(low=-5.0, high=5.0) - values.append(val) - target[i] = 0.2 * val - else: - indices.append((i, 0)) - indices.append((i, 1)) - val_1 = np.random.uniform(low=-5.0, high=5.0) - val_2 = np.random.uniform(low=-5.0, high=5.0) - values.append(val_1) - values.append(val_2) - target[i] = 0.3 * val_1 + 0.2 * val_2 - - indices = np.asarray(indices) - values = np.asarray(values) - shape = tf.constant([batch_size, 2], dtype=tf.int64) - inp = tf.SparseTensor(indices, values, shape) - model = linear.LinearModel(use_bias=False) - opt = gradient_descent.SGD() - for _ in range(20): - with tf.GradientTape() as t: - output = model(inp) - loss = backend.mean(losses.mean_squared_error(target, output)) - grads = t.gradient(loss, model.trainable_variables) - grads_and_vars = zip(grads, model.trainable_variables) - opt.apply_gradients(grads_and_vars) - - # This test is an example for a regression on categorical inputs, i.e., - # the output is 0.4, 0.6, 0.9 when input is 'alpha', 'beta', 'gamma' - # separately. - def test_linear_model_with_feature_column(self): - vocab_list = ["alpha", "beta", "gamma"] - vocab_val = [0.4, 0.6, 0.9] - data = np.random.choice(vocab_list, size=256) - y = np.zeros_like(data, dtype=np.float32) - for vocab, val in zip(vocab_list, vocab_val): - indices = np.where(data == vocab) - y[indices] = val + np.random.uniform( - low=-0.01, high=0.01, size=indices[0].shape - ) - cat_column = tf.feature_column.categorical_column_with_vocabulary_list( - key="symbol", vocabulary_list=vocab_list - ) - ind_column = tf.feature_column.indicator_column(cat_column) - dense_feature_layer = dense_features_v2.DenseFeatures([ind_column]) - linear_model = linear.LinearModel( - use_bias=False, kernel_initializer="zeros" - ) - combined = sequential.Sequential([dense_feature_layer, linear_model]) - opt = gradient_descent.SGD(learning_rate=0.1) - combined.compile(opt, "mse", []) - combined.fit(x={"symbol": data}, y=y, batch_size=32, epochs=10) - self.assertAllClose( - [[0.4], [0.6], [0.9]], - combined.layers[1].dense_layers[0].kernel.numpy(), - atol=0.01, - ) - - def test_config(self): - linear_model = linear.LinearModel(units=3, use_bias=True) - config = linear_model.get_config() - cloned_linear_model = linear.LinearModel.from_config(config) - self.assertEqual(linear_model.units, cloned_linear_model.units) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/premade_models/wide_deep.py b/keras/premade_models/wide_deep.py deleted file mode 100644 index b06aa60cf72..00000000000 --- a/keras/premade_models/wide_deep.py +++ /dev/null @@ -1,240 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Built-in WideNDeep model classes.""" - -import tensorflow.compat.v2 as tf - -from keras import activations -from keras import backend -from keras import layers as layer_module -from keras.engine import base_layer -from keras.engine import data_adapter -from keras.engine import training as keras_training -from keras.saving import serialization_lib - -# isort: off -from tensorflow.python.util import deprecation -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.experimental.WideDeepModel", - v1=["keras.experimental.WideDeepModel", "keras.models.WideDeepModel"], -) -@deprecation.deprecated_endpoints("keras.experimental.WideDeepModel") -class WideDeepModel(keras_training.Model): - r"""Wide & Deep Model for regression and classification problems. - - This model jointly train a linear and a dnn model. - - Example: - - ```python - linear_model = LinearModel() - dnn_model = keras.Sequential([keras.layers.Dense(units=64), - keras.layers.Dense(units=1)]) - combined_model = WideDeepModel(linear_model, dnn_model) - combined_model.compile(optimizer=['sgd', 'adam'], - loss='mse', metrics=['mse']) - # define dnn_inputs and linear_inputs as separate numpy arrays or - # a single numpy array if dnn_inputs is same as linear_inputs. - combined_model.fit([linear_inputs, dnn_inputs], y, epochs) - # or define a single `tf.data.Dataset` that contains a single tensor or - # separate tensors for dnn_inputs and linear_inputs. - dataset = tf.data.Dataset.from_tensors(([linear_inputs, dnn_inputs], y)) - combined_model.fit(dataset, epochs) - ``` - - Both linear and dnn model can be pre-compiled and trained separately - before jointly training: - - Example: - ```python - linear_model = LinearModel() - linear_model.compile('adagrad', 'mse') - linear_model.fit(linear_inputs, y, epochs) - dnn_model = keras.Sequential([keras.layers.Dense(units=1)]) - dnn_model.compile('rmsprop', 'mse') - dnn_model.fit(dnn_inputs, y, epochs) - combined_model = WideDeepModel(linear_model, dnn_model) - combined_model.compile(optimizer=['sgd', 'adam'], - loss='mse', metrics=['mse']) - combined_model.fit([linear_inputs, dnn_inputs], y, epochs) - ``` - - """ - - def __init__(self, linear_model, dnn_model, activation=None, **kwargs): - """Create a Wide & Deep Model. - - Args: - linear_model: a premade LinearModel, its output must match the output - of the dnn model. - dnn_model: a `tf.keras.Model`, its output must match the output of the - linear model. - activation: Activation function. Set it to None to maintain a linear - activation. - **kwargs: The keyword arguments that are passed on to - BaseLayer.__init__. Allowed keyword arguments include `name`. - """ - super().__init__(**kwargs) - base_layer.keras_premade_model_gauge.get_cell("WideDeep").set(True) - self.linear_model = linear_model - self.dnn_model = dnn_model - self.activation = activations.get(activation) - - def call(self, inputs, training=None): - if not isinstance(inputs, (tuple, list)) or len(inputs) != 2: - linear_inputs = dnn_inputs = inputs - else: - linear_inputs, dnn_inputs = inputs - linear_output = self.linear_model(linear_inputs) - - if self.dnn_model._expects_training_arg: - if training is None: - training = backend.learning_phase() - dnn_output = self.dnn_model(dnn_inputs, training=training) - else: - dnn_output = self.dnn_model(dnn_inputs) - output = tf.nest.map_structure( - lambda x, y: (x + y), linear_output, dnn_output - ) - if self.activation: - return tf.nest.map_structure(self.activation, output) - return output - - # This does not support gradient scaling and LossScaleOptimizer. - def train_step(self, data): - x, y, sample_weight = data_adapter.unpack_x_y_sample_weight(data) - with tf.GradientTape() as tape: - y_pred = self(x, training=True) - loss = self.compiled_loss( - y, y_pred, sample_weight, regularization_losses=self.losses - ) - self.compiled_metrics.update_state(y, y_pred, sample_weight) - - if isinstance(self.optimizer, (list, tuple)): - linear_vars = self.linear_model.trainable_variables - dnn_vars = self.dnn_model.trainable_variables - linear_grads, dnn_grads = tape.gradient( - loss, (linear_vars, dnn_vars) - ) - - linear_optimizer = self.optimizer[0] - dnn_optimizer = self.optimizer[1] - linear_optimizer.apply_gradients(zip(linear_grads, linear_vars)) - dnn_optimizer.apply_gradients(zip(dnn_grads, dnn_vars)) - else: - trainable_variables = self.trainable_variables - grads = tape.gradient(loss, trainable_variables) - self.optimizer.apply_gradients(zip(grads, trainable_variables)) - - return {m.name: m.result() for m in self.metrics} - - def _make_train_function(self): - # Only needed for graph mode and model_to_estimator. - has_recompiled = self._recompile_weights_loss_and_weighted_metrics() - self._check_trainable_weights_consistency() - # If we have re-compiled the loss/weighted metric sub-graphs then create - # train function even if one exists already. This is because - # `_feed_sample_weights` list has been updated on re-compile. - if getattr(self, "train_function", None) is None or has_recompiled: - # Restore the compiled trainable state. - current_trainable_state = self._get_trainable_state() - self._set_trainable_state(self._compiled_trainable_state) - - inputs = ( - self._feed_inputs - + self._feed_targets - + self._feed_sample_weights - ) - if not isinstance(backend.symbolic_learning_phase(), int): - inputs += [backend.symbolic_learning_phase()] - - if isinstance(self.optimizer, (list, tuple)): - linear_optimizer = self.optimizer[0] - dnn_optimizer = self.optimizer[1] - else: - linear_optimizer = self.optimizer - dnn_optimizer = self.optimizer - - with backend.get_graph().as_default(): - with backend.name_scope("training"): - # Training updates - updates = [] - linear_updates = linear_optimizer.get_updates( - params=self.linear_model.trainable_weights, - loss=self.total_loss, - ) - updates += linear_updates - dnn_updates = dnn_optimizer.get_updates( - params=self.dnn_model.trainable_weights, - loss=self.total_loss, - ) - updates += dnn_updates - # Unconditional updates - updates += self.get_updates_for(None) - # Conditional updates relevant to this model - updates += self.get_updates_for(self.inputs) - - metrics = self._get_training_eval_metrics() - metrics_tensors = [ - m._call_result - for m in metrics - if hasattr(m, "_call_result") - ] - - with backend.name_scope("training"): - # Gets loss and metrics. Updates weights at each call. - fn = backend.function( - inputs, - [self.total_loss] + metrics_tensors, - updates=updates, - name="train_function", - **self._function_kwargs - ) - setattr(self, "train_function", fn) - - # Restore the current trainable state - self._set_trainable_state(current_trainable_state) - - def get_config(self): - linear_config = serialization_lib.serialize_keras_object( - self.linear_model - ) - dnn_config = serialization_lib.serialize_keras_object(self.dnn_model) - config = { - "linear_model": linear_config, - "dnn_model": dnn_config, - "activation": activations.serialize(self.activation), - } - base_config = base_layer.Layer.get_config(self) - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config, custom_objects=None): - linear_config = config.pop("linear_model") - linear_model = layer_module.deserialize(linear_config, custom_objects) - dnn_config = config.pop("dnn_model") - dnn_model = layer_module.deserialize(dnn_config, custom_objects) - activation = activations.deserialize( - config.pop("activation", None), custom_objects=custom_objects - ) - return cls( - linear_model=linear_model, - dnn_model=dnn_model, - activation=activation, - **config - ) diff --git a/keras/premade_models/wide_deep_test.py b/keras/premade_models/wide_deep_test.py deleted file mode 100644 index 8f6a5df0783..00000000000 --- a/keras/premade_models/wide_deep_test.py +++ /dev/null @@ -1,300 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras Premade WideNDeep models.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.engine import input_layer -from keras.engine import sequential -from keras.engine import training -from keras.feature_column import dense_features_v2 -from keras.layers import core -from keras.optimizers.legacy import gradient_descent -from keras.premade_models import linear -from keras.premade_models import wide_deep -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class WideDeepModelTest(test_combinations.TestCase): - def test_wide_deep_model(self): - linear_model = linear.LinearModel(units=1) - dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) - wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model) - linear_inp = np.random.uniform(low=-5.0, high=5.0, size=(64, 2)) - dnn_inp = np.random.uniform(low=-5.0, high=5.0, size=(64, 3)) - inputs = [linear_inp, dnn_inp] - output = 0.3 * linear_inp[:, 0] + 0.2 * dnn_inp[:, 1] - wide_deep_model.compile( - optimizer=["sgd", "adam"], - loss="mse", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - wide_deep_model.fit(inputs, output, epochs=5) - self.assertTrue(wide_deep_model.built) - - def test_wide_deep_model_backprop(self): - with self.cached_session(): - linear_model = linear.LinearModel( - units=1, kernel_initializer="zeros" - ) - dnn_model = sequential.Sequential( - [core.Dense(units=1, kernel_initializer="zeros")] - ) - wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model) - linear_inp = np.array([[1.0]]) - dnn_inp = np.array([[1.0]]) - inputs = [linear_inp, dnn_inp] - output = linear_inp + 2 * dnn_inp - linear_opt = gradient_descent.SGD(learning_rate=0.1) - dnn_opt = gradient_descent.SGD(learning_rate=0.3) - wide_deep_model.compile( - optimizer=[linear_opt, dnn_opt], - loss="mse", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - self.evaluate(tf.compat.v1.global_variables_initializer()) - wide_deep_model.fit(inputs, output, epochs=1) - self.assertAllClose( - [[0.6]], - self.evaluate( - wide_deep_model.linear_model.dense_layers[0].kernel - ), - ) - self.assertAllClose( - [[1.8]], - self.evaluate(wide_deep_model.dnn_model.layers[0].kernel), - ) - - def test_wide_deep_model_with_single_input(self): - linear_model = linear.LinearModel(units=1) - dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) - wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model) - inputs = np.random.uniform(low=-5.0, high=5.0, size=(64, 3)) - output = 0.3 * inputs[:, 0] - wide_deep_model.compile( - optimizer=["sgd", "adam"], - loss="mse", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - wide_deep_model.fit(inputs, output, epochs=5) - - def test_wide_deep_model_with_multi_outputs(self): - inp = input_layer.Input(shape=(1,), name="linear") - l = linear.LinearModel(units=2, use_bias=False)(inp) - l1, l2 = tf.split(l, num_or_size_splits=2, axis=1) - linear_model = training.Model(inp, [l1, l2]) - linear_model.set_weights([np.asarray([[0.5, 0.3]])]) - h = core.Dense(units=2, use_bias=False)(inp) - h1, h2 = tf.split(h, num_or_size_splits=2, axis=1) - dnn_model = training.Model(inp, [h1, h2]) - dnn_model.set_weights([np.asarray([[0.1, -0.5]])]) - wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model) - inp_np = np.asarray([[1.0]]) - out1, out2 = wide_deep_model(inp_np) - # output should be (0.5 + 0.1), and (0.3 - 0.5) - self.assertAllClose([[0.6]], out1) - self.assertAllClose([[-0.2]], out2) - - wide_deep_model = wide_deep.WideDeepModel( - linear_model, dnn_model, activation="relu" - ) - out1, out2 = wide_deep_model(inp_np) - # output should be relu((0.5 + 0.1)), and relu((0.3 - 0.5)) - self.assertAllClose([[0.6]], out1) - self.assertAllClose([[0.0]], out2) - - def test_wide_deep_model_with_single_optimizer(self): - linear_model = linear.LinearModel(units=1) - dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) - wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model) - linear_inp = np.random.uniform(low=-5.0, high=5.0, size=(64, 2)) - dnn_inp = np.random.uniform(low=-5.0, high=5.0, size=(64, 3)) - inputs = [linear_inp, dnn_inp] - output = 0.3 * linear_inp[:, 0] + 0.2 * dnn_inp[:, 1] - wide_deep_model.compile( - optimizer="sgd", - loss="mse", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - wide_deep_model.fit(inputs, output, epochs=5) - self.assertTrue(wide_deep_model.built) - - def test_wide_deep_model_as_layer(self): - linear_model = linear.LinearModel(units=1) - dnn_model = sequential.Sequential([core.Dense(units=1)]) - linear_input = input_layer.Input(shape=(3,), name="linear") - dnn_input = input_layer.Input(shape=(5,), name="dnn") - wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model) - wide_deep_output = wide_deep_model((linear_input, dnn_input)) - input_b = input_layer.Input(shape=(1,), name="b") - output_b = core.Dense(units=1)(input_b) - model = training.Model( - inputs=[linear_input, dnn_input, input_b], - outputs=[wide_deep_output + output_b], - ) - linear_input_np = np.random.uniform(low=-5.0, high=5.0, size=(64, 3)) - dnn_input_np = np.random.uniform(low=-5.0, high=5.0, size=(64, 5)) - input_b_np = np.random.uniform(low=-5.0, high=5.0, size=(64,)) - output_np = ( - linear_input_np[:, 0] + 0.2 * dnn_input_np[:, 1] + input_b_np - ) - model.compile( - optimizer="sgd", - loss="mse", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit( - [linear_input_np, dnn_input_np, input_b_np], output_np, epochs=5 - ) - - def test_wide_deep_model_with_sub_model_trained(self): - linear_model = linear.LinearModel(units=1) - dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) - wide_deep_model = wide_deep.WideDeepModel( - linear.LinearModel(units=1), - sequential.Sequential([core.Dense(units=1, input_dim=3)]), - ) - linear_inp = np.random.uniform(low=-5.0, high=5.0, size=(64, 2)) - dnn_inp = np.random.uniform(low=-5.0, high=5.0, size=(64, 3)) - inputs = [linear_inp, dnn_inp] - output = 0.3 * linear_inp[:, 0] + 0.2 * dnn_inp[:, 1] - linear_model.compile( - optimizer="sgd", - loss="mse", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - dnn_model.compile( - optimizer="adam", - loss="mse", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - linear_model.fit(linear_inp, output, epochs=50) - dnn_model.fit(dnn_inp, output, epochs=50) - wide_deep_model.compile( - optimizer=["sgd", "adam"], - loss="mse", - metrics=[], - run_eagerly=test_utils.should_run_eagerly(), - ) - wide_deep_model.fit(inputs, output, epochs=50) - - # This test is an example for cases where linear and dnn model accepts - # same raw input and same transformed inputs, i.e., the raw input is - # categorical, and both linear and dnn model accept one hot encoding. - def test_wide_deep_model_with_single_feature_column(self): - vocab_list = ["alpha", "beta", "gamma"] - vocab_val = [0.4, 0.6, 0.9] - data = np.random.choice(vocab_list, size=256) - y = np.zeros_like(data, dtype=np.float32) - for vocab, val in zip(vocab_list, vocab_val): - indices = np.where(data == vocab) - y[indices] = val + np.random.uniform( - low=-0.01, high=0.01, size=indices[0].shape - ) - cat_column = tf.feature_column.categorical_column_with_vocabulary_list( - key="symbol", vocabulary_list=vocab_list - ) - ind_column = tf.feature_column.indicator_column(cat_column) - dense_feature_layer = dense_features_v2.DenseFeatures([ind_column]) - linear_model = linear.LinearModel( - use_bias=False, kernel_initializer="zeros" - ) - dnn_model = sequential.Sequential([core.Dense(units=1)]) - wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model) - combined = sequential.Sequential([dense_feature_layer, wide_deep_model]) - opt = gradient_descent.SGD(learning_rate=0.1) - combined.compile( - opt, "mse", [], run_eagerly=test_utils.should_run_eagerly() - ) - combined.fit(x={"symbol": data}, y=y, batch_size=32, epochs=10) - - # This test is an example for cases where linear and dnn model accepts - # same raw input but different transformed inputs, i.e,. the raw input is - # categorical, and linear model accepts one hot encoding, while dnn model - # accepts embedding encoding. - def test_wide_deep_model_with_two_feature_columns(self): - vocab_list = ["alpha", "beta", "gamma"] - vocab_val = [0.4, 0.6, 0.9] - data = np.random.choice(vocab_list, size=256) - y = np.zeros_like(data, dtype=np.float32) - for vocab, val in zip(vocab_list, vocab_val): - indices = np.where(data == vocab) - y[indices] = val + np.random.uniform( - low=-0.01, high=0.01, size=indices[0].shape - ) - cat_column = tf.feature_column.categorical_column_with_vocabulary_list( - key="symbol", vocabulary_list=vocab_list - ) - ind_column = tf.feature_column.indicator_column(cat_column) - emb_column = tf.feature_column.embedding_column(cat_column, dimension=5) - linear_feature_layer = dense_features_v2.DenseFeatures([ind_column]) - linear_model = linear.LinearModel( - use_bias=False, kernel_initializer="zeros" - ) - combined_linear = sequential.Sequential( - [linear_feature_layer, linear_model] - ) - dnn_model = sequential.Sequential([core.Dense(units=1)]) - dnn_feature_layer = dense_features_v2.DenseFeatures([emb_column]) - combined_dnn = sequential.Sequential([dnn_feature_layer, dnn_model]) - wide_deep_model = wide_deep.WideDeepModel(combined_linear, combined_dnn) - opt = gradient_descent.SGD(learning_rate=0.1) - wide_deep_model.compile( - opt, "mse", [], run_eagerly=test_utils.should_run_eagerly() - ) - wide_deep_model.fit(x={"symbol": data}, y=y, batch_size=32, epochs=10) - - def test_config(self): - linear_model = linear.LinearModel(units=1) - dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) - wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model) - config = wide_deep_model.get_config() - cloned_wide_deep_model = wide_deep.WideDeepModel.from_config(config) - self.assertEqual( - linear_model.units, cloned_wide_deep_model.linear_model.units - ) - self.assertEqual( - dnn_model.layers[0].units, - cloned_wide_deep_model.dnn_model.layers[0].units, - ) - - def test_config_with_custom_objects(self): - def my_activation(x): - return x - - linear_model = linear.LinearModel(units=1) - dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) - wide_deep_model = wide_deep.WideDeepModel( - linear_model, dnn_model, activation=my_activation - ) - config = wide_deep_model.get_config() - cloned_wide_deep_model = wide_deep.WideDeepModel.from_config( - config, custom_objects={"my_activation": my_activation} - ) - self.assertEqual(cloned_wide_deep_model.activation, my_activation) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/preprocessing/BUILD b/keras/preprocessing/BUILD deleted file mode 100644 index 8cb88f6ecbb..00000000000 --- a/keras/preprocessing/BUILD +++ /dev/null @@ -1,107 +0,0 @@ -# Description: -# Contains the Keras preprocessing layers (internal TensorFlow version). - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras:friends", - ], - licenses = ["notice"], -) - -py_library( - name = "preprocessing", - srcs = [ - "__init__.py", - ], - srcs_version = "PY3", - deps = [ - ":image", - ":sequence", - ":text", - "//keras/utils", - ], -) - -py_library( - name = "image", - srcs = [ - "image.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_pandas_installed", - "//:expect_pillow_installed", - "//:expect_scipy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/utils:data_utils", - "//keras/utils:image_utils", - ], -) - -py_library( - name = "sequence", - srcs = [ - "sequence.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/utils:data_utils", - ], -) - -py_library( - name = "text", - srcs = [ - "text.py", - ], - srcs_version = "PY3", - deps = ["//:expect_tensorflow_installed"], -) - -tf_py_test( - name = "image_test", - size = "medium", - srcs = ["image_test.py"], - python_version = "PY3", - tags = [ - "no_oss", # TODO(scottzhu): Fix for multiple export issue. - ], - deps = [ - ":image", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "sequence_test", - size = "small", - srcs = ["sequence_test.py"], - python_version = "PY3", - deps = [ - ":sequence", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "text_test", - size = "small", - srcs = ["text_test.py"], - python_version = "PY3", - deps = [ - ":text", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/preprocessing/__init__.py b/keras/preprocessing/__init__.py deleted file mode 100644 index 1c9bbc75f11..00000000000 --- a/keras/preprocessing/__init__.py +++ /dev/null @@ -1,33 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities to preprocess data before training. - -Deprecated: `tf.keras.preprocessing` APIs do not operate on tensors and are -not recommended for new code. Prefer loading data with either -`tf.keras.utils.text_dataset_from_directory` or -`tf.keras.utils.image_dataset_from_directory`, and then transforming the output -`tf.data.Dataset` with preprocessing layers. These approaches will offer -better performance and intergration with the broader Tensorflow ecosystem. For -more information, see the tutorials for [loading text]( -https://www.tensorflow.org/tutorials/load_data/text), [loading images]( -https://www.tensorflow.org/tutorials/load_data/images), and [augmenting images]( -https://www.tensorflow.org/tutorials/images/data_augmentation), as well as the -[preprocessing layer guide]( -https://www.tensorflow.org/guide/keras/preprocessing_layers). -""" -from keras import backend -from keras.preprocessing import image -from keras.preprocessing import sequence -from keras.preprocessing import text diff --git a/keras/preprocessing/image.py b/keras/preprocessing/image.py deleted file mode 100644 index e088fafb66e..00000000000 --- a/keras/preprocessing/image.py +++ /dev/null @@ -1,2622 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""Utilies for image preprocessing and augmentation. - -Deprecated: `tf.keras.preprocessing.image` APIs do not operate on tensors and -are not recommended for new code. Prefer loading data with -`tf.keras.utils.image_dataset_from_directory`, and then transforming the output -`tf.data.Dataset` with preprocessing layers. For more information, see the -tutorials for [loading images]( -https://www.tensorflow.org/tutorials/load_data/images) and [augmenting images]( -https://www.tensorflow.org/tutorials/images/data_augmentation), as well as the -[preprocessing layer guide]( -https://www.tensorflow.org/guide/keras/preprocessing_layers). -""" - -import collections -import multiprocessing -import os -import threading -import warnings - -import numpy as np - -from keras import backend -from keras.utils import data_utils -from keras.utils import image_utils -from keras.utils import io_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -try: - import scipy - from scipy import linalg # noqa: F401 - from scipy import ndimage # noqa: F401 -except ImportError: - pass -try: - from PIL import ImageEnhance -except ImportError: - ImageEnhance = None - - -@keras_export("keras.preprocessing.image.Iterator") -class Iterator(data_utils.Sequence): - """Base class for image data iterators. - - Deprecated: `tf.keras.preprocessing.image.Iterator` is not recommended for - new code. Prefer loading images with - `tf.keras.utils.image_dataset_from_directory` and transforming the output - `tf.data.Dataset` with preprocessing layers. For more information, see the - tutorials for [loading images]( - https://www.tensorflow.org/tutorials/load_data/images) and - [augmenting images]( - https://www.tensorflow.org/tutorials/images/data_augmentation), as well as - the [preprocessing layer guide]( - https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Every `Iterator` must implement the `_get_batches_of_transformed_samples` - method. - - Args: - n: Integer, total number of samples in the dataset to loop over. - batch_size: Integer, size of a batch. - shuffle: Boolean, whether to shuffle the data between epochs. - seed: Random seeding for data shuffling. - """ - - white_list_formats = ("png", "jpg", "jpeg", "bmp", "ppm", "tif", "tiff") - - def __init__(self, n, batch_size, shuffle, seed): - self.n = n - self.batch_size = batch_size - self.seed = seed - self.shuffle = shuffle - self.batch_index = 0 - self.total_batches_seen = 0 - self.lock = threading.Lock() - self.index_array = None - self.index_generator = self._flow_index() - - def _set_index_array(self): - self.index_array = np.arange(self.n) - if self.shuffle: - self.index_array = np.random.permutation(self.n) - - def __getitem__(self, idx): - if idx >= len(self): - raise ValueError( - "Asked to retrieve element {idx}, " - "but the Sequence " - "has length {length}".format(idx=idx, length=len(self)) - ) - if self.seed is not None: - np.random.seed(self.seed + self.total_batches_seen) - self.total_batches_seen += 1 - if self.index_array is None: - self._set_index_array() - index_array = self.index_array[ - self.batch_size * idx : self.batch_size * (idx + 1) - ] - return self._get_batches_of_transformed_samples(index_array) - - def __len__(self): - return (self.n + self.batch_size - 1) // self.batch_size # round up - - def on_epoch_end(self): - self._set_index_array() - - def reset(self): - self.batch_index = 0 - - def _flow_index(self): - # Ensure self.batch_index is 0. - self.reset() - while 1: - if self.seed is not None: - np.random.seed(self.seed + self.total_batches_seen) - if self.batch_index == 0: - self._set_index_array() - - if self.n == 0: - # Avoiding modulo by zero error - current_index = 0 - else: - current_index = (self.batch_index * self.batch_size) % self.n - if self.n > current_index + self.batch_size: - self.batch_index += 1 - else: - self.batch_index = 0 - self.total_batches_seen += 1 - yield self.index_array[ - current_index : current_index + self.batch_size - ] - - def __iter__(self): - # Needed if we want to do something like: - # for x, y in data_gen.flow(...): - return self - - def __next__(self, *args, **kwargs): - return self.next(*args, **kwargs) - - def next(self): - """For python 2.x. - - Returns: - The next batch. - """ - with self.lock: - index_array = next(self.index_generator) - # The transformation of images is not under thread lock - # so it can be done in parallel - return self._get_batches_of_transformed_samples(index_array) - - def _get_batches_of_transformed_samples(self, index_array): - """Gets a batch of transformed samples. - - Args: - index_array: Array of sample indices to include in batch. - Returns: - A batch of transformed samples. - """ - raise NotImplementedError - - -def _iter_valid_files(directory, white_list_formats, follow_links): - """Iterates on files with extension. - - Args: - directory: Absolute path to the directory - containing files to be counted - white_list_formats: Set of strings containing allowed extensions for - the files to be counted. - follow_links: Boolean, follow symbolic links to subdirectories. - Yields: - Tuple of (root, filename) with extension in `white_list_formats`. - """ - - def _recursive_list(subpath): - return sorted( - os.walk(subpath, followlinks=follow_links), key=lambda x: x[0] - ) - - for root, _, files in _recursive_list(directory): - for fname in sorted(files): - if fname.lower().endswith(".tiff"): - warnings.warn( - 'Using ".tiff" files with multiple bands ' - "will cause distortion. Please verify your output." - ) - if fname.lower().endswith(white_list_formats): - yield root, fname - - -def _list_valid_filenames_in_directory( - directory, white_list_formats, split, class_indices, follow_links -): - """Lists paths of files in `subdir` with extensions in `white_list_formats`. - - Args: - directory: absolute path to a directory containing the files to list. - The directory name is used as class label - and must be a key of `class_indices`. - white_list_formats: set of strings containing allowed extensions for - the files to be counted. - split: tuple of floats (e.g. `(0.2, 0.6)`) to only take into - account a certain fraction of files in each directory. - E.g.: `segment=(0.6, 1.0)` would only account for last 40 percent - of images in each directory. - class_indices: dictionary mapping a class name to its index. - follow_links: boolean, follow symbolic links to subdirectories. - - Returns: - classes: a list of class indices - filenames: the path of valid files in `directory`, relative from - `directory`'s parent (e.g., if `directory` is "dataset/class1", - the filenames will be - `["class1/file1.jpg", "class1/file2.jpg", ...]`). - """ - dirname = os.path.basename(directory) - if split: - all_files = list( - _iter_valid_files(directory, white_list_formats, follow_links) - ) - num_files = len(all_files) - start, stop = int(split[0] * num_files), int(split[1] * num_files) - valid_files = all_files[start:stop] - else: - valid_files = _iter_valid_files( - directory, white_list_formats, follow_links - ) - classes = [] - filenames = [] - for root, fname in valid_files: - classes.append(class_indices[dirname]) - absolute_path = os.path.join(root, fname) - relative_path = os.path.join( - dirname, os.path.relpath(absolute_path, directory) - ) - filenames.append(relative_path) - - return classes, filenames - - -class BatchFromFilesMixin: - """Adds methods related to getting batches from filenames. - - It includes the logic to transform image files to batches. - """ - - def set_processing_attrs( - self, - image_data_generator, - target_size, - color_mode, - data_format, - save_to_dir, - save_prefix, - save_format, - subset, - interpolation, - keep_aspect_ratio, - ): - """Sets attributes to use later for processing files into a batch. - - Args: - image_data_generator: Instance of `ImageDataGenerator` - to use for random transformations and normalization. - target_size: tuple of integers, dimensions to resize input images - to. - color_mode: One of `"rgb"`, `"rgba"`, `"grayscale"`. - Color mode to read images. - data_format: String, one of `channels_first`, `channels_last`. - save_to_dir: Optional directory where to save the pictures - being yielded, in a viewable format. This is useful - for visualizing the random transformations being - applied, for debugging purposes. - save_prefix: String prefix to use for saving sample - images (if `save_to_dir` is set). - save_format: Format to use for saving sample images - (if `save_to_dir` is set). - subset: Subset of data (`"training"` or `"validation"`) if - validation_split is set in ImageDataGenerator. - interpolation: Interpolation method used to resample the image if - the target size is different from that of the loaded image. - Supported methods are "nearest", "bilinear", and "bicubic". If - PIL version 1.1.3 or newer is installed, "lanczos" is also - supported. If PIL version 3.4.0 or newer is installed, "box" and - "hamming" are also supported. By default, "nearest" is used. - keep_aspect_ratio: Boolean, whether to resize images to a target - size without aspect ratio distortion. The image is cropped in - the center with target aspect ratio before resizing. - """ - self.image_data_generator = image_data_generator - self.target_size = tuple(target_size) - self.keep_aspect_ratio = keep_aspect_ratio - if color_mode not in {"rgb", "rgba", "grayscale"}: - raise ValueError( - "Invalid color mode:", - color_mode, - '; expected "rgb", "rgba", or "grayscale".', - ) - self.color_mode = color_mode - self.data_format = data_format - if self.color_mode == "rgba": - if self.data_format == "channels_last": - self.image_shape = self.target_size + (4,) - else: - self.image_shape = (4,) + self.target_size - elif self.color_mode == "rgb": - if self.data_format == "channels_last": - self.image_shape = self.target_size + (3,) - else: - self.image_shape = (3,) + self.target_size - else: - if self.data_format == "channels_last": - self.image_shape = self.target_size + (1,) - else: - self.image_shape = (1,) + self.target_size - self.save_to_dir = save_to_dir - self.save_prefix = save_prefix - self.save_format = save_format - self.interpolation = interpolation - if subset is not None: - validation_split = self.image_data_generator._validation_split - if subset == "validation": - split = (0, validation_split) - elif subset == "training": - split = (validation_split, 1) - else: - raise ValueError( - "Invalid subset name: %s;" - 'expected "training" or "validation"' % (subset,) - ) - else: - split = None - self.split = split - self.subset = subset - - def _get_batches_of_transformed_samples(self, index_array): - """Gets a batch of transformed samples. - - Args: - index_array: Array of sample indices to include in batch. - Returns: - A batch of transformed samples. - """ - batch_x = np.zeros( - (len(index_array),) + self.image_shape, dtype=self.dtype - ) - # build batch of image data - # self.filepaths is dynamic, is better to call it once outside the loop - filepaths = self.filepaths - for i, j in enumerate(index_array): - img = image_utils.load_img( - filepaths[j], - color_mode=self.color_mode, - target_size=self.target_size, - interpolation=self.interpolation, - keep_aspect_ratio=self.keep_aspect_ratio, - ) - x = image_utils.img_to_array(img, data_format=self.data_format) - # Pillow images should be closed after `load_img`, - # but not PIL images. - if hasattr(img, "close"): - img.close() - if self.image_data_generator: - params = self.image_data_generator.get_random_transform(x.shape) - x = self.image_data_generator.apply_transform(x, params) - x = self.image_data_generator.standardize(x) - batch_x[i] = x - # optionally save augmented images to disk for debugging purposes - if self.save_to_dir: - for i, j in enumerate(index_array): - img = image_utils.array_to_img( - batch_x[i], self.data_format, scale=True - ) - fname = "{prefix}_{index}_{hash}.{format}".format( - prefix=self.save_prefix, - index=j, - hash=np.random.randint(1e7), - format=self.save_format, - ) - img.save(os.path.join(self.save_to_dir, fname)) - # build batch of labels - if self.class_mode == "input": - batch_y = batch_x.copy() - elif self.class_mode in {"binary", "sparse"}: - batch_y = np.empty(len(batch_x), dtype=self.dtype) - for i, n_observation in enumerate(index_array): - batch_y[i] = self.classes[n_observation] - elif self.class_mode == "categorical": - batch_y = np.zeros( - (len(batch_x), len(self.class_indices)), dtype=self.dtype - ) - for i, n_observation in enumerate(index_array): - batch_y[i, self.classes[n_observation]] = 1.0 - elif self.class_mode == "multi_output": - batch_y = [output[index_array] for output in self.labels] - elif self.class_mode == "raw": - batch_y = self.labels[index_array] - else: - return batch_x - if self.sample_weight is None: - return batch_x, batch_y - else: - return batch_x, batch_y, self.sample_weight[index_array] - - @property - def filepaths(self): - """List of absolute paths to image files.""" - raise NotImplementedError( - "`filepaths` property method has not " - "been implemented in {}.".format(type(self).__name__) - ) - - @property - def labels(self): - """Class labels of every observation.""" - raise NotImplementedError( - "`labels` property method has not been implemented in {}.".format( - type(self).__name__ - ) - ) - - @property - def sample_weight(self): - raise NotImplementedError( - "`sample_weight` property method has not " - "been implemented in {}.".format(type(self).__name__) - ) - - -@keras_export("keras.preprocessing.image.DirectoryIterator") -class DirectoryIterator(BatchFromFilesMixin, Iterator): - """Iterator capable of reading images from a directory on disk. - - Deprecated: `tf.keras.preprocessing.image.DirectoryIterator` is not - recommended for new code. Prefer loading images with - `tf.keras.utils.image_dataset_from_directory` and transforming the output - `tf.data.Dataset` with preprocessing layers. For more information, see the - tutorials for [loading images]( - https://www.tensorflow.org/tutorials/load_data/images) and - [augmenting images]( - https://www.tensorflow.org/tutorials/images/data_augmentation), as well as - the [preprocessing layer guide]( - https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - directory: Path to the directory to read images from. Each subdirectory - in this directory will be considered to contain images from one class, - or alternatively you could specify class subdirectories via the - `classes` argument. - image_data_generator: Instance of `ImageDataGenerator` to use for random - transformations and normalization. - target_size: tuple of integers, dimensions to resize input images to. - color_mode: One of `"rgb"`, `"rgba"`, `"grayscale"`. Color mode to read - images. - classes: Optional list of strings, names of subdirectories containing - images from each class (e.g. `["dogs", "cats"]`). It will be computed - automatically if not set. - class_mode: Mode for yielding the targets: - - `"binary"`: binary targets (if there are only two classes), - - `"categorical"`: categorical targets, - - `"sparse"`: integer targets, - - `"input"`: targets are images identical to input images (mainly - used to work with autoencoders), - - `None`: no targets get yielded (only input images are yielded). - batch_size: Integer, size of a batch. - shuffle: Boolean, whether to shuffle the data between epochs. - seed: Random seed for data shuffling. - data_format: String, one of `channels_first`, `channels_last`. - save_to_dir: Optional directory where to save the pictures being - yielded, in a viewable format. This is useful for visualizing the - random transformations being applied, for debugging purposes. - save_prefix: String prefix to use for saving sample images (if - `save_to_dir` is set). - save_format: Format to use for saving sample images (if `save_to_dir` is - set). - subset: Subset of data (`"training"` or `"validation"`) if - validation_split is set in ImageDataGenerator. - interpolation: Interpolation method used to resample the image if the - target size is different from that of the loaded image. Supported - methods are "nearest", "bilinear", and "bicubic". If PIL version 1.1.3 - or newer is installed, "lanczos" is also supported. If PIL version - 3.4.0 or newer is installed, "box" and "hamming" are also supported. - By default, "nearest" is used. - keep_aspect_ratio: Boolean, whether to resize images to a target size - without aspect ratio distortion. The image is cropped in the center - with target aspect ratio before resizing. - dtype: Dtype to use for generated arrays. - """ - - allowed_class_modes = {"categorical", "binary", "sparse", "input", None} - - def __init__( - self, - directory, - image_data_generator, - target_size=(256, 256), - color_mode="rgb", - classes=None, - class_mode="categorical", - batch_size=32, - shuffle=True, - seed=None, - data_format=None, - save_to_dir=None, - save_prefix="", - save_format="png", - follow_links=False, - subset=None, - interpolation="nearest", - keep_aspect_ratio=False, - dtype=None, - ): - if data_format is None: - data_format = backend.image_data_format() - if dtype is None: - dtype = backend.floatx() - super().set_processing_attrs( - image_data_generator, - target_size, - color_mode, - data_format, - save_to_dir, - save_prefix, - save_format, - subset, - interpolation, - keep_aspect_ratio, - ) - self.directory = directory - self.classes = classes - if class_mode not in self.allowed_class_modes: - raise ValueError( - "Invalid class_mode: {}; expected one of: {}".format( - class_mode, self.allowed_class_modes - ) - ) - self.class_mode = class_mode - self.dtype = dtype - # First, count the number of samples and classes. - self.samples = 0 - - if not classes: - classes = [] - for subdir in sorted(os.listdir(directory)): - if os.path.isdir(os.path.join(directory, subdir)): - classes.append(subdir) - self.num_classes = len(classes) - self.class_indices = dict(zip(classes, range(len(classes)))) - - pool = multiprocessing.pool.ThreadPool() - - # Second, build an index of the images - # in the different class subfolders. - results = [] - self.filenames = [] - i = 0 - for dirpath in (os.path.join(directory, subdir) for subdir in classes): - results.append( - pool.apply_async( - _list_valid_filenames_in_directory, - ( - dirpath, - self.white_list_formats, - self.split, - self.class_indices, - follow_links, - ), - ) - ) - classes_list = [] - for res in results: - classes, filenames = res.get() - classes_list.append(classes) - self.filenames += filenames - self.samples = len(self.filenames) - self.classes = np.zeros((self.samples,), dtype="int32") - for classes in classes_list: - self.classes[i : i + len(classes)] = classes - i += len(classes) - - io_utils.print_msg( - f"Found {self.samples} images belonging to " - f"{self.num_classes} classes." - ) - pool.close() - pool.join() - self._filepaths = [ - os.path.join(self.directory, fname) for fname in self.filenames - ] - super().__init__(self.samples, batch_size, shuffle, seed) - - @property - def filepaths(self): - return self._filepaths - - @property - def labels(self): - return self.classes - - @property # mixin needs this property to work - def sample_weight(self): - # no sample weights will be returned - return None - - -@keras_export("keras.preprocessing.image.NumpyArrayIterator") -class NumpyArrayIterator(Iterator): - """Iterator yielding data from a Numpy array. - - Deprecated: `tf.keras.preprocessing.image.NumpyArrayIterator` is not - recommended for new code. Prefer loading images with - `tf.keras.utils.image_dataset_from_directory` and transforming the output - `tf.data.Dataset` with preprocessing layers. For more information, see the - tutorials for [loading images]( - https://www.tensorflow.org/tutorials/load_data/images) and - [augmenting images]( - https://www.tensorflow.org/tutorials/images/data_augmentation), as well as - the [preprocessing layer guide]( - https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - x: Numpy array of input data or tuple. If tuple, the second elements is - either another numpy array or a list of numpy arrays, each of which - gets passed through as an output without any modifications. - y: Numpy array of targets data. - image_data_generator: Instance of `ImageDataGenerator` to use for random - transformations and normalization. - batch_size: Integer, size of a batch. - shuffle: Boolean, whether to shuffle the data between epochs. - sample_weight: Numpy array of sample weights. - seed: Random seed for data shuffling. - data_format: String, one of `channels_first`, `channels_last`. - save_to_dir: Optional directory where to save the pictures being - yielded, in a viewable format. This is useful for visualizing the - random transformations being applied, for debugging purposes. - save_prefix: String prefix to use for saving sample images (if - `save_to_dir` is set). - save_format: Format to use for saving sample images (if `save_to_dir` is - set). - subset: Subset of data (`"training"` or `"validation"`) if - validation_split is set in ImageDataGenerator. - ignore_class_split: Boolean (default: False), ignore difference - in number of classes in labels across train and validation - split (useful for non-classification tasks) - dtype: Dtype to use for the generated arrays. - """ - - def __init__( - self, - x, - y, - image_data_generator, - batch_size=32, - shuffle=False, - sample_weight=None, - seed=None, - data_format=None, - save_to_dir=None, - save_prefix="", - save_format="png", - subset=None, - ignore_class_split=False, - dtype=None, - ): - if data_format is None: - data_format = backend.image_data_format() - if dtype is None: - dtype = backend.floatx() - self.dtype = dtype - if isinstance(x, tuple) or isinstance(x, list): - if not isinstance(x[1], list): - x_misc = [np.asarray(x[1])] - else: - x_misc = [np.asarray(xx) for xx in x[1]] - x = x[0] - for xx in x_misc: - if len(x) != len(xx): - raise ValueError( - "All of the arrays in `x` " - "should have the same length. " - "Found a pair with: len(x[0]) = %s, len(x[?]) = %s" - % (len(x), len(xx)) - ) - else: - x_misc = [] - - if y is not None and len(x) != len(y): - raise ValueError( - "`x` (images tensor) and `y` (labels) " - "should have the same length. " - "Found: x.shape = %s, y.shape = %s" - % (np.asarray(x).shape, np.asarray(y).shape) - ) - if sample_weight is not None and len(x) != len(sample_weight): - raise ValueError( - "`x` (images tensor) and `sample_weight` " - "should have the same length. " - "Found: x.shape = %s, sample_weight.shape = %s" - % (np.asarray(x).shape, np.asarray(sample_weight).shape) - ) - if subset is not None: - if subset not in {"training", "validation"}: - raise ValueError( - "Invalid subset name:", - subset, - '; expected "training" or "validation".', - ) - split_idx = int(len(x) * image_data_generator._validation_split) - - if ( - y is not None - and not ignore_class_split - and not np.array_equal( - np.unique(y[:split_idx]), np.unique(y[split_idx:]) - ) - ): - raise ValueError( - "Training and validation subsets " - "have different number of classes after " - "the split. If your numpy arrays are " - "sorted by the label, you might want " - "to shuffle them." - ) - - if subset == "validation": - x = x[:split_idx] - x_misc = [np.asarray(xx[:split_idx]) for xx in x_misc] - if y is not None: - y = y[:split_idx] - else: - x = x[split_idx:] - x_misc = [np.asarray(xx[split_idx:]) for xx in x_misc] - if y is not None: - y = y[split_idx:] - - self.x = np.asarray(x, dtype=self.dtype) - self.x_misc = x_misc - if self.x.ndim != 4: - raise ValueError( - "Input data in `NumpyArrayIterator` " - "should have rank 4. You passed an array " - "with shape", - self.x.shape, - ) - channels_axis = 3 if data_format == "channels_last" else 1 - if self.x.shape[channels_axis] not in {1, 3, 4}: - warnings.warn( - 'NumpyArrayIterator is set to use the data format convention "' - + data_format - + '" (channels on axis ' - + str(channels_axis) - + "), i.e. expected either 1, 3, or 4 channels on axis " - + str(channels_axis) - + ". However, it was passed an array with shape " - + str(self.x.shape) - + " (" - + str(self.x.shape[channels_axis]) - + " channels)." - ) - if y is not None: - self.y = np.asarray(y) - else: - self.y = None - if sample_weight is not None: - self.sample_weight = np.asarray(sample_weight) - else: - self.sample_weight = None - self.image_data_generator = image_data_generator - self.data_format = data_format - self.save_to_dir = save_to_dir - self.save_prefix = save_prefix - self.save_format = save_format - super().__init__(x.shape[0], batch_size, shuffle, seed) - - def _get_batches_of_transformed_samples(self, index_array): - batch_x = np.zeros( - tuple([len(index_array)] + list(self.x.shape)[1:]), dtype=self.dtype - ) - for i, j in enumerate(index_array): - x = self.x[j] - params = self.image_data_generator.get_random_transform(x.shape) - x = self.image_data_generator.apply_transform( - x.astype(self.dtype), params - ) - x = self.image_data_generator.standardize(x) - batch_x[i] = x - - if self.save_to_dir: - for i, j in enumerate(index_array): - img = image_utils.array_to_img( - batch_x[i], self.data_format, scale=True - ) - fname = "{prefix}_{index}_{hash}.{format}".format( - prefix=self.save_prefix, - index=j, - hash=np.random.randint(1e4), - format=self.save_format, - ) - img.save(os.path.join(self.save_to_dir, fname)) - batch_x_miscs = [xx[index_array] for xx in self.x_misc] - output = (batch_x if not batch_x_miscs else [batch_x] + batch_x_miscs,) - if self.y is None: - return output[0] - output += (self.y[index_array],) - if self.sample_weight is not None: - output += (self.sample_weight[index_array],) - return output - - -def validate_filename(filename, white_list_formats): - """Check if a filename refers to a valid file. - - Args: - filename: String, absolute path to a file - white_list_formats: Set, allowed file extensions - Returns: - A boolean value indicating if the filename is valid or not - """ - return filename.lower().endswith(white_list_formats) and os.path.isfile( - filename - ) - - -class DataFrameIterator(BatchFromFilesMixin, Iterator): - """Iterator capable of reading images from a directory as a dataframe. - - Args: - dataframe: Pandas dataframe containing the filepaths relative to - `directory` (or absolute paths if `directory` is None) of the images - in a string column. It should include other column/s depending on the - `class_mode`: - if `class_mode` is `"categorical"` (default value) it - must include the `y_col` column with the class/es of each image. - Values in column can be string/list/tuple if a single class or - list/tuple if multiple classes. - - if `class_mode` is `"binary"` or `"sparse"` it must include the - given `y_col` column with class values as strings. - - if `class_mode` is `"raw"` or `"multi_output"` it should contain - the columns specified in `y_col`. - - if `class_mode` is `"input"` or `None` no extra column is needed. - directory: string, path to the directory to read images from. If `None`, - data in `x_col` column should be absolute paths. - image_data_generator: Instance of `ImageDataGenerator` to use for random - transformations and normalization. If None, no transformations and - normalizations are made. - x_col: string, column in `dataframe` that contains the filenames (or - absolute paths if `directory` is `None`). - y_col: string or list, column/s in `dataframe` that has the target data. - weight_col: string, column in `dataframe` that contains the sample - weights. Default: `None`. - target_size: tuple of integers, dimensions to resize input images to. - color_mode: One of `"rgb"`, `"rgba"`, `"grayscale"`. Color mode to read - images. - classes: Optional list of strings, classes to use (e.g. `["dogs", - "cats"]`). If None, all classes in `y_col` will be used. - class_mode: one of "binary", "categorical", "input", "multi_output", - "raw", "sparse" or None. Default: "categorical". - Mode for yielding the targets: - - `"binary"`: 1D numpy array of binary labels, - - `"categorical"`: 2D numpy array of one-hot encoded labels. - Supports multi-label output. - - `"input"`: images identical to input images (mainly used to work - with autoencoders), - - `"multi_output"`: list with the values of the different columns, - - `"raw"`: numpy array of values in `y_col` column(s), - - `"sparse"`: 1D numpy array of integer labels, - `None`, no targets - are returned (the generator will only yield batches of image data, - which is useful to use in `model.predict()`). - batch_size: Integer, size of a batch. - shuffle: Boolean, whether to shuffle the data between epochs. - seed: Random seed for data shuffling. - data_format: String, one of `channels_first`, `channels_last`. - save_to_dir: Optional directory where to save the pictures being - yielded, in a viewable format. This is useful for visualizing the - random transformations being applied, for debugging purposes. - save_prefix: String prefix to use for saving sample images (if - `save_to_dir` is set). - save_format: Format to use for saving sample images (if `save_to_dir` is - set). - subset: Subset of data (`"training"` or `"validation"`) if - validation_split is set in ImageDataGenerator. - interpolation: Interpolation method used to resample the image if the - target size is different from that of the loaded image. Supported - methods are "nearest", "bilinear", and "bicubic". If PIL version 1.1.3 - or newer is installed, "lanczos" is also supported. If PIL version - 3.4.0 or newer is installed, "box" and "hamming" are also supported. - By default, "nearest" is used. - keep_aspect_ratio: Boolean, whether to resize images to a target size - without aspect ratio distortion. The image is cropped in the center - with target aspect ratio before resizing. - dtype: Dtype to use for the generated arrays. - validate_filenames: Boolean, whether to validate image filenames in - `x_col`. If `True`, invalid images will be ignored. Disabling this - option can lead to speed-up in the instantiation of this class. - Default: `True`. - """ - - allowed_class_modes = { - "binary", - "categorical", - "input", - "multi_output", - "raw", - "sparse", - None, - } - - def __init__( - self, - dataframe, - directory=None, - image_data_generator=None, - x_col="filename", - y_col="class", - weight_col=None, - target_size=(256, 256), - color_mode="rgb", - classes=None, - class_mode="categorical", - batch_size=32, - shuffle=True, - seed=None, - data_format="channels_last", - save_to_dir=None, - save_prefix="", - save_format="png", - subset=None, - interpolation="nearest", - keep_aspect_ratio=False, - dtype="float32", - validate_filenames=True, - ): - super().set_processing_attrs( - image_data_generator, - target_size, - color_mode, - data_format, - save_to_dir, - save_prefix, - save_format, - subset, - interpolation, - keep_aspect_ratio, - ) - df = dataframe.copy() - self.directory = directory or "" - self.class_mode = class_mode - self.dtype = dtype - # check that inputs match the required class_mode - self._check_params(df, x_col, y_col, weight_col, classes) - if ( - validate_filenames - ): # check which image files are valid and keep them - df = self._filter_valid_filepaths(df, x_col) - if class_mode not in ["input", "multi_output", "raw", None]: - df, classes = self._filter_classes(df, y_col, classes) - num_classes = len(classes) - # build an index of all the unique classes - self.class_indices = dict(zip(classes, range(len(classes)))) - # retrieve only training or validation set - if self.split: - num_files = len(df) - start = int(self.split[0] * num_files) - stop = int(self.split[1] * num_files) - df = df.iloc[start:stop, :] - # get labels for each observation - if class_mode not in ["input", "multi_output", "raw", None]: - self.classes = self.get_classes(df, y_col) - self.filenames = df[x_col].tolist() - self._sample_weight = df[weight_col].values if weight_col else None - - if class_mode == "multi_output": - self._targets = [np.array(df[col].tolist()) for col in y_col] - if class_mode == "raw": - self._targets = df[y_col].values - self.samples = len(self.filenames) - validated_string = ( - "validated" if validate_filenames else "non-validated" - ) - if class_mode in ["input", "multi_output", "raw", None]: - io_utils.print_msg( - f"Found {self.samples} {validated_string} image filenames." - ) - else: - io_utils.print_msg( - f"Found {self.samples} {validated_string} image filenames " - f"belonging to {num_classes} classes." - ) - self._filepaths = [ - os.path.join(self.directory, fname) for fname in self.filenames - ] - super().__init__(self.samples, batch_size, shuffle, seed) - - def _check_params(self, df, x_col, y_col, weight_col, classes): - # check class mode is one of the currently supported - if self.class_mode not in self.allowed_class_modes: - raise ValueError( - "Invalid class_mode: {}; expected one of: {}".format( - self.class_mode, self.allowed_class_modes - ) - ) - # check that y_col has several column names if class_mode is - # multi_output - if (self.class_mode == "multi_output") and not isinstance(y_col, list): - raise TypeError( - 'If class_mode="{}", y_col must be a list. Received {}.'.format( - self.class_mode, type(y_col).__name__ - ) - ) - # check that filenames/filepaths column values are all strings - if not all(df[x_col].apply(lambda x: isinstance(x, str))): - raise TypeError( - f"All values in column x_col={x_col} must be strings." - ) - # check labels are string if class_mode is binary or sparse - if self.class_mode in {"binary", "sparse"}: - if not all(df[y_col].apply(lambda x: isinstance(x, str))): - raise TypeError( - 'If class_mode="{}", y_col="{}" column ' - "values must be strings.".format(self.class_mode, y_col) - ) - # check that if binary there are only 2 different classes - if self.class_mode == "binary": - if classes: - classes = set(classes) - if len(classes) != 2: - raise ValueError( - 'If class_mode="binary" there must be 2 ' - "classes. {} class/es were given.".format(len(classes)) - ) - elif df[y_col].nunique() != 2: - raise ValueError( - 'If class_mode="binary" there must be 2 classes. ' - "Found {} classes.".format(df[y_col].nunique()) - ) - # check values are string, list or tuple if class_mode is categorical - if self.class_mode == "categorical": - types = (str, list, tuple) - if not all(df[y_col].apply(lambda x: isinstance(x, types))): - raise TypeError( - 'If class_mode="{}", y_col="{}" column ' - "values must be type string, list or tuple.".format( - self.class_mode, y_col - ) - ) - # raise warning if classes are given but will be unused - if classes and self.class_mode in { - "input", - "multi_output", - "raw", - None, - }: - warnings.warn( - '`classes` will be ignored given the class_mode="{}"'.format( - self.class_mode - ) - ) - # check that if weight column that the values are numerical - if weight_col and not issubclass(df[weight_col].dtype.type, np.number): - raise TypeError(f"Column weight_col={weight_col} must be numeric.") - - def get_classes(self, df, y_col): - labels = [] - for label in df[y_col]: - if isinstance(label, (list, tuple)): - labels.append([self.class_indices[lbl] for lbl in label]) - else: - labels.append(self.class_indices[label]) - return labels - - @staticmethod - def _filter_classes(df, y_col, classes): - df = df.copy() - - def remove_classes(labels, classes): - if isinstance(labels, (list, tuple)): - labels = [cls for cls in labels if cls in classes] - return labels or None - elif isinstance(labels, str): - return labels if labels in classes else None - else: - raise TypeError( - "Expect string, list or tuple " - "but found {} in {} column ".format(type(labels), y_col) - ) - - if classes: - # prepare for membership lookup - classes = list(collections.OrderedDict.fromkeys(classes).keys()) - df[y_col] = df[y_col].apply(lambda x: remove_classes(x, classes)) - else: - classes = set() - for v in df[y_col]: - if isinstance(v, (list, tuple)): - classes.update(v) - else: - classes.add(v) - classes = sorted(classes) - return df.dropna(subset=[y_col]), classes - - def _filter_valid_filepaths(self, df, x_col): - """Keep only dataframe rows with valid filenames. - - Args: - df: Pandas dataframe containing filenames in a column - x_col: string, column in `df` that contains the filenames or - filepaths - Returns: - absolute paths to image files - """ - filepaths = df[x_col].map( - lambda fname: os.path.join(self.directory, fname) - ) - mask = filepaths.apply( - validate_filename, args=(self.white_list_formats,) - ) - n_invalid = (~mask).sum() - if n_invalid: - warnings.warn( - 'Found {} invalid image filename(s) in x_col="{}". ' - "These filename(s) will be ignored.".format(n_invalid, x_col) - ) - return df[mask] - - @property - def filepaths(self): - return self._filepaths - - @property - def labels(self): - if self.class_mode in {"multi_output", "raw"}: - return self._targets - else: - return self.classes - - @property - def sample_weight(self): - return self._sample_weight - - -def flip_axis(x, axis): - x = np.asarray(x).swapaxes(axis, 0) - x = x[::-1, ...] - x = x.swapaxes(0, axis) - return x - - -@keras_export("keras.preprocessing.image.ImageDataGenerator") -class ImageDataGenerator: - """Generate batches of tensor image data with real-time data augmentation. - - Deprecated: `tf.keras.preprocessing.image.ImageDataGenerator` is not - recommended for new code. Prefer loading images with - `tf.keras.utils.image_dataset_from_directory` and transforming the output - `tf.data.Dataset` with preprocessing layers. For more information, see the - tutorials for [loading images]( - https://www.tensorflow.org/tutorials/load_data/images) and - [augmenting images]( - https://www.tensorflow.org/tutorials/images/data_augmentation), as well as - the [preprocessing layer guide]( - https://www.tensorflow.org/guide/keras/preprocessing_layers). - - The data will be looped over (in batches). - - Args: - featurewise_center: Boolean. Set input mean to 0 over the dataset, - feature-wise. - samplewise_center: Boolean. Set each sample mean to 0. - featurewise_std_normalization: Boolean. Divide inputs by std of the - dataset, feature-wise. - samplewise_std_normalization: Boolean. Divide each input by its std. - zca_epsilon: epsilon for ZCA whitening. Default is 1e-6. - zca_whitening: Boolean. Apply ZCA whitening. - rotation_range: Int. Degree range for random rotations. - width_shift_range: Float, 1-D array-like or int - - float: fraction of total width, if < 1, or pixels if >= 1. - - 1-D array-like: random elements from the array. - - int: integer number of pixels from interval `(-width_shift_range, - +width_shift_range)` - With `width_shift_range=2` possible values - are integers `[-1, 0, +1]`, same as with `width_shift_range=[-1, - 0, +1]`, while with `width_shift_range=1.0` possible values are - floats in the interval [-1.0, +1.0). - height_shift_range: Float, 1-D array-like or int - - float: fraction of total height, if < 1, or pixels if >= 1. - - 1-D array-like: random elements from the array. - - int: integer number of pixels from interval `(-height_shift_range, - +height_shift_range)` - With `height_shift_range=2` possible - values are integers `[-1, 0, +1]`, same as with - `height_shift_range=[-1, 0, +1]`, while with - `height_shift_range=1.0` possible values are floats in the - interval [-1.0, +1.0). - brightness_range: Tuple or list of two floats. Range for picking a - brightness shift value from. - shear_range: Float. Shear Intensity (Shear angle in counter-clockwise - direction in degrees) - zoom_range: Float or [lower, upper]. Range for random zoom. If a float, - `[lower, upper] = [1-zoom_range, 1+zoom_range]`. - channel_shift_range: Float. Range for random channel shifts. - fill_mode: One of {"constant", "nearest", "reflect" or "wrap"}. Default - is 'nearest'. Points outside the boundaries of the input are filled - according to the given mode: - - 'constant': kkkkkkkk|abcd|kkkkkkkk (cval=k) - - 'nearest': aaaaaaaa|abcd|dddddddd - - 'reflect': abcddcba|abcd|dcbaabcd - - 'wrap': abcdabcd|abcd|abcdabcd - cval: Float or Int. Value used for points outside the boundaries when - `fill_mode = "constant"`. - horizontal_flip: Boolean. Randomly flip inputs horizontally. - vertical_flip: Boolean. Randomly flip inputs vertically. - rescale: rescaling factor. Defaults to None. If None or 0, no rescaling - is applied, otherwise we multiply the data by the value provided - (after applying all other transformations). - preprocessing_function: function that will be applied on each input. The - function will run after the image is resized and augmented. - The function should take one argument: one image (Numpy tensor with - rank 3), and should output a Numpy tensor with the same shape. - data_format: Image data format, either "channels_first" or - "channels_last". "channels_last" mode means that the images should - have shape `(samples, height, width, channels)`, "channels_first" mode - means that the images should have shape `(samples, channels, height, - width)`. It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. If you never set it, then - it will be "channels_last". - validation_split: Float. Fraction of images reserved for validation - (strictly between 0 and 1). - dtype: Dtype to use for the generated arrays. - - Raises: - ValueError: If the value of the argument, `data_format` is other than - `"channels_last"` or `"channels_first"`. - ValueError: If the value of the argument, `validation_split` > 1 - or `validation_split` < 0. - - Examples: - - Example of using `.flow(x, y)`: - - ```python - (x_train, y_train), (x_test, y_test) = cifar10.load_data() - y_train = utils.to_categorical(y_train, num_classes) - y_test = utils.to_categorical(y_test, num_classes) - datagen = ImageDataGenerator( - featurewise_center=True, - featurewise_std_normalization=True, - rotation_range=20, - width_shift_range=0.2, - height_shift_range=0.2, - horizontal_flip=True, - validation_split=0.2) - # compute quantities required for featurewise normalization - # (std, mean, and principal components if ZCA whitening is applied) - datagen.fit(x_train) - # fits the model on batches with real-time data augmentation: - model.fit(datagen.flow(x_train, y_train, batch_size=32, - subset='training'), - validation_data=datagen.flow(x_train, y_train, - batch_size=8, subset='validation'), - steps_per_epoch=len(x_train) / 32, epochs=epochs) - # here's a more "manual" example - for e in range(epochs): - print('Epoch', e) - batches = 0 - for x_batch, y_batch in datagen.flow(x_train, y_train, batch_size=32): - model.fit(x_batch, y_batch) - batches += 1 - if batches >= len(x_train) / 32: - # we need to break the loop by hand because - # the generator loops indefinitely - break - ``` - - Example of using `.flow_from_directory(directory)`: - - ```python - train_datagen = ImageDataGenerator( - rescale=1./255, - shear_range=0.2, - zoom_range=0.2, - horizontal_flip=True) - test_datagen = ImageDataGenerator(rescale=1./255) - train_generator = train_datagen.flow_from_directory( - 'data/train', - target_size=(150, 150), - batch_size=32, - class_mode='binary') - validation_generator = test_datagen.flow_from_directory( - 'data/validation', - target_size=(150, 150), - batch_size=32, - class_mode='binary') - model.fit( - train_generator, - steps_per_epoch=2000, - epochs=50, - validation_data=validation_generator, - validation_steps=800) - ``` - - Example of transforming images and masks together. - - ```python - # we create two instances with the same arguments - data_gen_args = dict(featurewise_center=True, - featurewise_std_normalization=True, - rotation_range=90, - width_shift_range=0.1, - height_shift_range=0.1, - zoom_range=0.2) - image_datagen = ImageDataGenerator(**data_gen_args) - mask_datagen = ImageDataGenerator(**data_gen_args) - # Provide the same seed and keyword arguments to the fit and flow methods - seed = 1 - image_datagen.fit(images, augment=True, seed=seed) - mask_datagen.fit(masks, augment=True, seed=seed) - image_generator = image_datagen.flow_from_directory( - 'data/images', - class_mode=None, - seed=seed) - mask_generator = mask_datagen.flow_from_directory( - 'data/masks', - class_mode=None, - seed=seed) - # combine generators into one which yields image and masks - train_generator = zip(image_generator, mask_generator) - model.fit( - train_generator, - steps_per_epoch=2000, - epochs=50) - ``` - """ - - def __init__( - self, - featurewise_center=False, - samplewise_center=False, - featurewise_std_normalization=False, - samplewise_std_normalization=False, - zca_whitening=False, - zca_epsilon=1e-6, - rotation_range=0, - width_shift_range=0.0, - height_shift_range=0.0, - brightness_range=None, - shear_range=0.0, - zoom_range=0.0, - channel_shift_range=0.0, - fill_mode="nearest", - cval=0.0, - horizontal_flip=False, - vertical_flip=False, - rescale=None, - preprocessing_function=None, - data_format=None, - validation_split=0.0, - interpolation_order=1, - dtype=None, - ): - if data_format is None: - data_format = backend.image_data_format() - if dtype is None: - dtype = backend.floatx() - - self.featurewise_center = featurewise_center - self.samplewise_center = samplewise_center - self.featurewise_std_normalization = featurewise_std_normalization - self.samplewise_std_normalization = samplewise_std_normalization - self.zca_whitening = zca_whitening - self.zca_epsilon = zca_epsilon - self.rotation_range = rotation_range - self.width_shift_range = width_shift_range - self.height_shift_range = height_shift_range - self.shear_range = shear_range - self.zoom_range = zoom_range - self.channel_shift_range = channel_shift_range - self.fill_mode = fill_mode - self.cval = cval - self.horizontal_flip = horizontal_flip - self.vertical_flip = vertical_flip - self.rescale = rescale - self.preprocessing_function = preprocessing_function - self.dtype = dtype - self.interpolation_order = interpolation_order - - if data_format not in {"channels_last", "channels_first"}: - raise ValueError( - '`data_format` should be `"channels_last"` ' - "(channel after row and column) or " - '`"channels_first"` (channel before row and column). ' - "Received: %s" % data_format - ) - self.data_format = data_format - if data_format == "channels_first": - self.channel_axis = 1 - self.row_axis = 2 - self.col_axis = 3 - if data_format == "channels_last": - self.channel_axis = 3 - self.row_axis = 1 - self.col_axis = 2 - if validation_split and not 0 < validation_split < 1: - raise ValueError( - "`validation_split` must be strictly between 0 and 1. " - " Received: %s" % validation_split - ) - self._validation_split = validation_split - - self.mean = None - self.std = None - self.zca_whitening_matrix = None - - if isinstance(zoom_range, (float, int)): - self.zoom_range = [1 - zoom_range, 1 + zoom_range] - elif len(zoom_range) == 2 and all( - isinstance(val, (float, int)) for val in zoom_range - ): - self.zoom_range = [zoom_range[0], zoom_range[1]] - else: - raise ValueError( - "`zoom_range` should be a float or " - "a tuple or list of two floats. " - "Received: %s" % (zoom_range,) - ) - if zca_whitening: - if not featurewise_center: - self.featurewise_center = True - warnings.warn( - "This ImageDataGenerator specifies " - "`zca_whitening`, which overrides " - "setting of `featurewise_center`." - ) - if featurewise_std_normalization: - self.featurewise_std_normalization = False - warnings.warn( - "This ImageDataGenerator specifies " - "`zca_whitening` " - "which overrides setting of" - "`featurewise_std_normalization`." - ) - if featurewise_std_normalization: - if not featurewise_center: - self.featurewise_center = True - warnings.warn( - "This ImageDataGenerator specifies " - "`featurewise_std_normalization`, " - "which overrides setting of " - "`featurewise_center`." - ) - if samplewise_std_normalization: - if not samplewise_center: - self.samplewise_center = True - warnings.warn( - "This ImageDataGenerator specifies " - "`samplewise_std_normalization`, " - "which overrides setting of " - "`samplewise_center`." - ) - if brightness_range is not None: - if ( - not isinstance(brightness_range, (tuple, list)) - or len(brightness_range) != 2 - ): - raise ValueError( - "`brightness_range should be tuple or list of two floats. " - "Received: %s" % (brightness_range,) - ) - self.brightness_range = brightness_range - - def flow( - self, - x, - y=None, - batch_size=32, - shuffle=True, - sample_weight=None, - seed=None, - save_to_dir=None, - save_prefix="", - save_format="png", - ignore_class_split=False, - subset=None, - ): - """Takes data & label arrays, generates batches of augmented data. - - Args: - x: Input data. Numpy array of rank 4 or a tuple. If tuple, the first - element should contain the images and the second element another - numpy array or a list of numpy arrays that gets passed to the - output without any modifications. Can be used to feed the model - miscellaneous data along with the images. In case of grayscale - data, the channels axis of the image array should have value 1, in - case of RGB data, it should have value 3, and in case of RGBA - data, it should have value 4. - y: Labels. - batch_size: Int (default: 32). - shuffle: Boolean (default: True). - sample_weight: Sample weights. - seed: Int (default: None). - save_to_dir: None or str (default: None). This allows you to - optionally specify a directory to which to save the augmented - pictures being generated (useful for visualizing what you are - doing). - save_prefix: Str (default: `''`). Prefix to use for filenames of - saved pictures (only relevant if `save_to_dir` is set). - save_format: one of "png", "jpeg", "bmp", "pdf", "ppm", "gif", - "tif", "jpg" (only relevant if `save_to_dir` is set). Default: - "png". - ignore_class_split: Boolean (default: False), ignore difference - in number of classes in labels across train and validation - split (useful for non-classification tasks) - subset: Subset of data (`"training"` or `"validation"`) if - `validation_split` is set in `ImageDataGenerator`. - - Returns: - An `Iterator` yielding tuples of `(x, y)` - where `x` is a numpy array of image data - (in the case of a single image input) or a list - of numpy arrays (in the case with - additional inputs) and `y` is a numpy array - of corresponding labels. If 'sample_weight' is not None, - the yielded tuples are of the form `(x, y, sample_weight)`. - If `y` is None, only the numpy array `x` is returned. - Raises: - ValueError: If the Value of the argument, `subset` is other than - "training" or "validation". - - """ - return NumpyArrayIterator( - x, - y, - self, - batch_size=batch_size, - shuffle=shuffle, - sample_weight=sample_weight, - seed=seed, - data_format=self.data_format, - save_to_dir=save_to_dir, - save_prefix=save_prefix, - save_format=save_format, - ignore_class_split=ignore_class_split, - subset=subset, - dtype=self.dtype, - ) - - def flow_from_directory( - self, - directory, - target_size=(256, 256), - color_mode="rgb", - classes=None, - class_mode="categorical", - batch_size=32, - shuffle=True, - seed=None, - save_to_dir=None, - save_prefix="", - save_format="png", - follow_links=False, - subset=None, - interpolation="nearest", - keep_aspect_ratio=False, - ): - """Takes the path to a directory & generates batches of augmented data. - - Args: - directory: string, path to the target directory. It should contain - one subdirectory per class. Any PNG, JPG, BMP, PPM or TIF images - inside each of the subdirectories directory tree will be included - in the generator. See [this script]( - https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d) - for more details. - target_size: Tuple of integers `(height, width)`, defaults to `(256, - 256)`. The dimensions to which all images found will be resized. - color_mode: One of "grayscale", "rgb", "rgba". Default: "rgb". - Whether the images will be converted to have 1, 3, or 4 channels. - classes: Optional list of class subdirectories (e.g. `['dogs', - 'cats']`). Default: None. If not provided, the list of classes - will be automatically inferred from the subdirectory - names/structure under `directory`, where each subdirectory will be - treated as a different class (and the order of the classes, which - will map to the label indices, will be alphanumeric). The - dictionary containing the mapping from class names to class - indices can be obtained via the attribute `class_indices`. - class_mode: One of "categorical", "binary", "sparse", - "input", or None. Default: "categorical". - Determines the type of label arrays that are returned: - - "categorical" will be 2D one-hot encoded labels, - - "binary" will be 1D binary labels, - "sparse" will be 1D integer labels, - - "input" will be images identical - to input images (mainly used to work with autoencoders). - - If None, no labels are returned - (the generator will only yield batches of image data, - which is useful to use with `model.predict_generator()`). - Please note that in case of class_mode None, - the data still needs to reside in a subdirectory - of `directory` for it to work correctly. - batch_size: Size of the batches of data (default: 32). - shuffle: Whether to shuffle the data (default: True) If set to - False, sorts the data in alphanumeric order. - seed: Optional random seed for shuffling and transformations. - save_to_dir: None or str (default: None). This allows you to - optionally specify a directory to which to save the augmented - pictures being generated (useful for visualizing what you are - doing). - save_prefix: Str. Prefix to use for filenames of saved pictures - (only relevant if `save_to_dir` is set). - save_format: one of "png", "jpeg", "bmp", "pdf", "ppm", "gif", - "tif", "jpg" (only relevant if `save_to_dir` is set). Default: - "png". - follow_links: Whether to follow symlinks inside - class subdirectories (default: False). - subset: Subset of data (`"training"` or `"validation"`) if - `validation_split` is set in `ImageDataGenerator`. - interpolation: Interpolation method used to resample the image if - the target size is different from that of the loaded image. - Supported methods are `"nearest"`, `"bilinear"`, and `"bicubic"`. - If PIL version 1.1.3 or newer is installed, `"lanczos"` is also - supported. If PIL version 3.4.0 or newer is installed, `"box"` and - `"hamming"` are also supported. By default, `"nearest"` is used. - keep_aspect_ratio: Boolean, whether to resize images to a target - size without aspect ratio distortion. The image is cropped in - the center with target aspect ratio before resizing. - - Returns: - A `DirectoryIterator` yielding tuples of `(x, y)` - where `x` is a numpy array containing a batch - of images with shape `(batch_size, *target_size, channels)` - and `y` is a numpy array of corresponding labels. - """ - return DirectoryIterator( - directory, - self, - target_size=target_size, - color_mode=color_mode, - keep_aspect_ratio=keep_aspect_ratio, - classes=classes, - class_mode=class_mode, - data_format=self.data_format, - batch_size=batch_size, - shuffle=shuffle, - seed=seed, - save_to_dir=save_to_dir, - save_prefix=save_prefix, - save_format=save_format, - follow_links=follow_links, - subset=subset, - interpolation=interpolation, - dtype=self.dtype, - ) - - def flow_from_dataframe( - self, - dataframe, - directory=None, - x_col="filename", - y_col="class", - weight_col=None, - target_size=(256, 256), - color_mode="rgb", - classes=None, - class_mode="categorical", - batch_size=32, - shuffle=True, - seed=None, - save_to_dir=None, - save_prefix="", - save_format="png", - subset=None, - interpolation="nearest", - validate_filenames=True, - **kwargs, - ): - """Takes the dataframe and the path to a directory + generates batches. - - The generated batches contain augmented/normalized data. - - **A simple tutorial can be found **[here]( - http://bit.ly/keras_flow_from_dataframe). - - Args: - dataframe: Pandas dataframe containing the filepaths relative to - `directory` (or absolute paths if `directory` is None) of the - images in a string column. It should include other column/s - depending on the `class_mode`: - - if `class_mode` is `"categorical"` (default value) it must - include the `y_col` column with the class/es of each image. - Values in column can be string/list/tuple if a single class - or list/tuple if multiple classes. - - if `class_mode` is `"binary"` or `"sparse"` it must include - the given `y_col` column with class values as strings. - - if `class_mode` is `"raw"` or `"multi_output"` it should - contain the columns specified in `y_col`. - - if `class_mode` is `"input"` or `None` no extra column is - needed. - directory: string, path to the directory to read images from. If - `None`, data in `x_col` column should be absolute paths. - x_col: string, column in `dataframe` that contains the filenames (or - absolute paths if `directory` is `None`). - y_col: string or list, column/s in `dataframe` that has the target - data. - weight_col: string, column in `dataframe` that contains the sample - weights. Default: `None`. - target_size: tuple of integers `(height, width)`, default: `(256, - 256)`. The dimensions to which all images found will be resized. - color_mode: one of "grayscale", "rgb", "rgba". Default: "rgb". - Whether the images will be converted to have 1 or 3 color - channels. - classes: optional list of classes (e.g. `['dogs', 'cats']`). Default - is None. If not provided, the list of classes will be - automatically inferred from the `y_col`, which will map to the - label indices, will be alphanumeric). The dictionary containing - the mapping from class names to class indices can be obtained via - the attribute `class_indices`. - class_mode: one of "binary", "categorical", "input", "multi_output", - "raw", sparse" or None. Default: "categorical". - Mode for yielding the targets: - - `"binary"`: 1D numpy array of binary labels, - - `"categorical"`: 2D numpy array of one-hot encoded labels. - Supports multi-label output. - - `"input"`: images identical to input images (mainly used to - work with autoencoders), - - `"multi_output"`: list with the values of the different - columns, - - `"raw"`: numpy array of values in `y_col` column(s), - - `"sparse"`: 1D numpy array of integer labels, - - `None`, no targets are returned (the generator will only yield - batches of image data, which is useful to use in - `model.predict()`). - batch_size: size of the batches of data (default: 32). - shuffle: whether to shuffle the data (default: True) - seed: optional random seed for shuffling and transformations. - save_to_dir: None or str (default: None). This allows you to - optionally specify a directory to which to save the augmented - pictures being generated (useful for visualizing what you are - doing). - save_prefix: str. Prefix to use for filenames of saved pictures - (only relevant if `save_to_dir` is set). - save_format: one of "png", "jpeg", "bmp", "pdf", "ppm", "gif", - "tif", "jpg" (only relevant if `save_to_dir` is set). Default: - "png". - subset: Subset of data (`"training"` or `"validation"`) if - `validation_split` is set in `ImageDataGenerator`. - interpolation: Interpolation method used to resample the image if - the target size is different from that of the loaded image. - Supported methods are `"nearest"`, `"bilinear"`, and `"bicubic"`. - If PIL version 1.1.3 or newer is installed, `"lanczos"` is also - supported. If PIL version 3.4.0 or newer is installed, `"box"` and - `"hamming"` are also supported. By default, `"nearest"` is used. - validate_filenames: Boolean, whether to validate image filenames in - `x_col`. If `True`, invalid images will be ignored. Disabling this - option can lead to speed-up in the execution of this function. - Defaults to `True`. - **kwargs: legacy arguments for raising deprecation warnings. - - Returns: - A `DataFrameIterator` yielding tuples of `(x, y)` - where `x` is a numpy array containing a batch - of images with shape `(batch_size, *target_size, channels)` - and `y` is a numpy array of corresponding labels. - """ - if "has_ext" in kwargs: - warnings.warn( - "has_ext is deprecated, filenames in the dataframe have " - "to match the exact filenames in disk.", - DeprecationWarning, - ) - if "sort" in kwargs: - warnings.warn( - "sort is deprecated, batches will be created in the" - "same order than the filenames provided if shuffle" - "is set to False.", - DeprecationWarning, - ) - if class_mode == "other": - warnings.warn( - '`class_mode` "other" is deprecated, please use ' - '`class_mode` "raw".', - DeprecationWarning, - ) - class_mode = "raw" - if "drop_duplicates" in kwargs: - warnings.warn( - "drop_duplicates is deprecated, you can drop duplicates " - "by using the pandas.DataFrame.drop_duplicates method.", - DeprecationWarning, - ) - - return DataFrameIterator( - dataframe, - directory, - self, - x_col=x_col, - y_col=y_col, - weight_col=weight_col, - target_size=target_size, - color_mode=color_mode, - classes=classes, - class_mode=class_mode, - data_format=self.data_format, - batch_size=batch_size, - shuffle=shuffle, - seed=seed, - save_to_dir=save_to_dir, - save_prefix=save_prefix, - save_format=save_format, - subset=subset, - interpolation=interpolation, - validate_filenames=validate_filenames, - dtype=self.dtype, - ) - - def standardize(self, x): - """Applies the normalization configuration in-place to a batch of - inputs. - - `x` is changed in-place since the function is mainly used internally - to standardize images and feed them to your network. If a copy of `x` - would be created instead it would have a significant performance cost. - If you want to apply this method without changing the input in-place - you can call the method creating a copy before: - - standardize(np.copy(x)) - - Args: - x: Batch of inputs to be normalized. - - Returns: - The inputs, normalized. - """ - if self.preprocessing_function: - x = self.preprocessing_function(x) - if self.rescale: - x *= self.rescale - if self.samplewise_center: - x -= np.mean(x, keepdims=True) - if self.samplewise_std_normalization: - x /= np.std(x, keepdims=True) + 1e-6 - - if self.featurewise_center: - if self.mean is not None: - x -= self.mean - else: - warnings.warn( - "This ImageDataGenerator specifies " - "`featurewise_center`, but it hasn't " - "been fit on any training data. Fit it " - "first by calling `.fit(numpy_data)`." - ) - if self.featurewise_std_normalization: - if self.std is not None: - x /= self.std + 1e-6 - else: - warnings.warn( - "This ImageDataGenerator specifies " - "`featurewise_std_normalization`, " - "but it hasn't " - "been fit on any training data. Fit it " - "first by calling `.fit(numpy_data)`." - ) - if self.zca_whitening: - if self.zca_whitening_matrix is not None: - flat_x = x.reshape(-1, np.prod(x.shape[-3:])) - white_x = flat_x @ self.zca_whitening_matrix - x = np.reshape(white_x, x.shape) - else: - warnings.warn( - "This ImageDataGenerator specifies " - "`zca_whitening`, but it hasn't " - "been fit on any training data. Fit it " - "first by calling `.fit(numpy_data)`." - ) - return x - - def get_random_transform(self, img_shape, seed=None): - """Generates random parameters for a transformation. - - Args: - img_shape: Tuple of integers. - Shape of the image that is transformed. - seed: Random seed. - - Returns: - A dictionary containing randomly chosen parameters describing the - transformation. - """ - img_row_axis = self.row_axis - 1 - img_col_axis = self.col_axis - 1 - - if seed is not None: - np.random.seed(seed) - - if self.rotation_range: - theta = np.random.uniform(-self.rotation_range, self.rotation_range) - else: - theta = 0 - - if self.height_shift_range: - try: # 1-D array-like or int - tx = np.random.choice(self.height_shift_range) - tx *= np.random.choice([-1, 1]) - except ValueError: # floating point - tx = np.random.uniform( - -self.height_shift_range, self.height_shift_range - ) - if np.max(self.height_shift_range) < 1: - tx *= img_shape[img_row_axis] - else: - tx = 0 - - if self.width_shift_range: - try: # 1-D array-like or int - ty = np.random.choice(self.width_shift_range) - ty *= np.random.choice([-1, 1]) - except ValueError: # floating point - ty = np.random.uniform( - -self.width_shift_range, self.width_shift_range - ) - if np.max(self.width_shift_range) < 1: - ty *= img_shape[img_col_axis] - else: - ty = 0 - - if self.shear_range: - shear = np.random.uniform(-self.shear_range, self.shear_range) - else: - shear = 0 - - if self.zoom_range[0] == 1 and self.zoom_range[1] == 1: - zx, zy = 1, 1 - else: - zx, zy = np.random.uniform( - self.zoom_range[0], self.zoom_range[1], 2 - ) - - flip_horizontal = (np.random.random() < 0.5) * self.horizontal_flip - flip_vertical = (np.random.random() < 0.5) * self.vertical_flip - - channel_shift_intensity = None - if self.channel_shift_range != 0: - channel_shift_intensity = np.random.uniform( - -self.channel_shift_range, self.channel_shift_range - ) - - brightness = None - if self.brightness_range is not None: - brightness = np.random.uniform( - self.brightness_range[0], self.brightness_range[1] - ) - - transform_parameters = { - "theta": theta, - "tx": tx, - "ty": ty, - "shear": shear, - "zx": zx, - "zy": zy, - "flip_horizontal": flip_horizontal, - "flip_vertical": flip_vertical, - "channel_shift_intensity": channel_shift_intensity, - "brightness": brightness, - } - - return transform_parameters - - def apply_transform(self, x, transform_parameters): - """Applies a transformation to an image according to given parameters. - - Args: - x: 3D tensor, single image. - transform_parameters: Dictionary with string - parameter pairs - describing the transformation. - Currently, the following parameters - from the dictionary are used: - - `'theta'`: Float. Rotation angle in degrees. - - `'tx'`: Float. Shift in the x direction. - - `'ty'`: Float. Shift in the y direction. - - `'shear'`: Float. Shear angle in degrees. - - `'zx'`: Float. Zoom in the x direction. - - `'zy'`: Float. Zoom in the y direction. - - `'flip_horizontal'`: Boolean. Horizontal flip. - - `'flip_vertical'`: Boolean. Vertical flip. - - `'channel_shift_intensity'`: Float. Channel shift intensity. - - `'brightness'`: Float. Brightness shift intensity. - - Returns: - A transformed version of the input (same shape). - """ - # x is a single image, so it doesn't have image number at index 0 - img_row_axis = self.row_axis - 1 - img_col_axis = self.col_axis - 1 - img_channel_axis = self.channel_axis - 1 - - x = apply_affine_transform( - x, - transform_parameters.get("theta", 0), - transform_parameters.get("tx", 0), - transform_parameters.get("ty", 0), - transform_parameters.get("shear", 0), - transform_parameters.get("zx", 1), - transform_parameters.get("zy", 1), - row_axis=img_row_axis, - col_axis=img_col_axis, - channel_axis=img_channel_axis, - fill_mode=self.fill_mode, - cval=self.cval, - order=self.interpolation_order, - ) - - if transform_parameters.get("channel_shift_intensity") is not None: - x = apply_channel_shift( - x, - transform_parameters["channel_shift_intensity"], - img_channel_axis, - ) - - if transform_parameters.get("flip_horizontal", False): - x = flip_axis(x, img_col_axis) - - if transform_parameters.get("flip_vertical", False): - x = flip_axis(x, img_row_axis) - - if transform_parameters.get("brightness") is not None: - x = apply_brightness_shift( - x, transform_parameters["brightness"], False - ) - - return x - - def random_transform(self, x, seed=None): - """Applies a random transformation to an image. - - Args: - x: 3D tensor, single image. - seed: Random seed. - - Returns: - A randomly transformed version of the input (same shape). - """ - params = self.get_random_transform(x.shape, seed) - return self.apply_transform(x, params) - - def fit(self, x, augment=False, rounds=1, seed=None): - """Fits the data generator to some sample data. - - This computes the internal data stats related to the - data-dependent transformations, based on an array of sample data. - - Only required if `featurewise_center` or - `featurewise_std_normalization` or `zca_whitening` are set to True. - - When `rescale` is set to a value, rescaling is applied to - sample data before computing the internal data stats. - - Args: - x: Sample data. Should have rank 4. - In case of grayscale data, - the channels axis should have value 1, in case - of RGB data, it should have value 3, and in case - of RGBA data, it should have value 4. - augment: Boolean (default: False). - Whether to fit on randomly augmented samples. - rounds: Int (default: 1). - If using data augmentation (`augment=True`), - this is how many augmentation passes over the data to use. - seed: Int (default: None). Random seed. - """ - x = np.asarray(x, dtype=self.dtype) - if x.ndim != 4: - raise ValueError( - "Input to `.fit()` should have rank 4. Got array with shape: " - + str(x.shape) - ) - if x.shape[self.channel_axis] not in {1, 3, 4}: - warnings.warn( - "Expected input to be images (as Numpy array) " - 'following the data format convention "' - + self.data_format - + '" (channels on axis ' - + str(self.channel_axis) - + "), i.e. expected either 1, 3 or 4 channels on axis " - + str(self.channel_axis) - + ". However, it was passed an array with shape " - + str(x.shape) - + " (" - + str(x.shape[self.channel_axis]) - + " channels)." - ) - - if seed is not None: - np.random.seed(seed) - - x = np.copy(x) - if self.rescale: - x *= self.rescale - - if augment: - ax = np.zeros( - tuple([rounds * x.shape[0]] + list(x.shape)[1:]), - dtype=self.dtype, - ) - for r in range(rounds): - for i in range(x.shape[0]): - ax[i + r * x.shape[0]] = self.random_transform(x[i]) - x = ax - - if self.featurewise_center: - self.mean = np.mean(x, axis=(0, self.row_axis, self.col_axis)) - broadcast_shape = [1, 1, 1] - broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis] - self.mean = np.reshape(self.mean, broadcast_shape) - x -= self.mean - - if self.featurewise_std_normalization: - self.std = np.std(x, axis=(0, self.row_axis, self.col_axis)) - broadcast_shape = [1, 1, 1] - broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis] - self.std = np.reshape(self.std, broadcast_shape) - x /= self.std + 1e-6 - - if self.zca_whitening: - n = len(x) - flat_x = np.reshape(x, (n, -1)) - - u, s, _ = np.linalg.svd(flat_x.T, full_matrices=False) - s_inv = np.sqrt(n) / (s + self.zca_epsilon) - self.zca_whitening_matrix = (u * s_inv).dot(u.T) - - -@keras_export("keras.preprocessing.image.random_rotation") -def random_rotation( - x, - rg, - row_axis=1, - col_axis=2, - channel_axis=0, - fill_mode="nearest", - cval=0.0, - interpolation_order=1, -): - """Performs a random rotation of a Numpy image tensor. - - Deprecated: `tf.keras.preprocessing.image.random_rotation` does not operate - on tensors and is not recommended for new code. Prefer - `tf.keras.layers.RandomRotation` which provides equivalent functionality as - a preprocessing layer. For more information, see the tutorial for - [augmenting images]( - https://www.tensorflow.org/tutorials/images/data_augmentation), as well as - the [preprocessing layer guide]( - https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - x: Input tensor. Must be 3D. - rg: Rotation range, in degrees. - row_axis: Index of axis for rows in the input tensor. - col_axis: Index of axis for columns in the input tensor. - channel_axis: Index of axis for channels in the input tensor. - fill_mode: Points outside the boundaries of the input - are filled according to the given mode - (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). - cval: Value used for points outside the boundaries - of the input if `mode='constant'`. - interpolation_order: int, order of spline interpolation. - see `ndimage.interpolation.affine_transform` - - Returns: - Rotated Numpy image tensor. - """ - theta = np.random.uniform(-rg, rg) - x = apply_affine_transform( - x, - theta=theta, - row_axis=row_axis, - col_axis=col_axis, - channel_axis=channel_axis, - fill_mode=fill_mode, - cval=cval, - order=interpolation_order, - ) - return x - - -@keras_export("keras.preprocessing.image.random_shift") -def random_shift( - x, - wrg, - hrg, - row_axis=1, - col_axis=2, - channel_axis=0, - fill_mode="nearest", - cval=0.0, - interpolation_order=1, -): - """Performs a random spatial shift of a Numpy image tensor. - - Deprecated: `tf.keras.preprocessing.image.random_shift` does not operate on - tensors and is not recommended for new code. Prefer - `tf.keras.layers.RandomTranslation` which provides equivalent functionality - as a preprocessing layer. For more information, see the tutorial for - [augmenting images]( - https://www.tensorflow.org/tutorials/images/data_augmentation), as well as - the [preprocessing layer guide]( - https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - x: Input tensor. Must be 3D. - wrg: Width shift range, as a float fraction of the width. - hrg: Height shift range, as a float fraction of the height. - row_axis: Index of axis for rows in the input tensor. - col_axis: Index of axis for columns in the input tensor. - channel_axis: Index of axis for channels in the input tensor. - fill_mode: Points outside the boundaries of the input - are filled according to the given mode - (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). - cval: Value used for points outside the boundaries - of the input if `mode='constant'`. - interpolation_order: int, order of spline interpolation. - see `ndimage.interpolation.affine_transform` - - Returns: - Shifted Numpy image tensor. - """ - h, w = x.shape[row_axis], x.shape[col_axis] - tx = np.random.uniform(-hrg, hrg) * h - ty = np.random.uniform(-wrg, wrg) * w - x = apply_affine_transform( - x, - tx=tx, - ty=ty, - row_axis=row_axis, - col_axis=col_axis, - channel_axis=channel_axis, - fill_mode=fill_mode, - cval=cval, - order=interpolation_order, - ) - return x - - -@keras_export("keras.preprocessing.image.random_shear") -def random_shear( - x, - intensity, - row_axis=1, - col_axis=2, - channel_axis=0, - fill_mode="nearest", - cval=0.0, - interpolation_order=1, -): - """Performs a random spatial shear of a Numpy image tensor. - - Args: - x: Input tensor. Must be 3D. - intensity: Transformation intensity in degrees. - row_axis: Index of axis for rows in the input tensor. - col_axis: Index of axis for columns in the input tensor. - channel_axis: Index of axis for channels in the input tensor. - fill_mode: Points outside the boundaries of the input - are filled according to the given mode - (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). - cval: Value used for points outside the boundaries - of the input if `mode='constant'`. - interpolation_order: int, order of spline interpolation. - see `ndimage.interpolation.affine_transform` - - Returns: - Sheared Numpy image tensor. - """ - shear = np.random.uniform(-intensity, intensity) - x = apply_affine_transform( - x, - shear=shear, - row_axis=row_axis, - col_axis=col_axis, - channel_axis=channel_axis, - fill_mode=fill_mode, - cval=cval, - order=interpolation_order, - ) - return x - - -@keras_export("keras.preprocessing.image.random_zoom") -def random_zoom( - x, - zoom_range, - row_axis=1, - col_axis=2, - channel_axis=0, - fill_mode="nearest", - cval=0.0, - interpolation_order=1, -): - """Performs a random spatial zoom of a Numpy image tensor. - - Deprecated: `tf.keras.preprocessing.image.random_zoom` does not operate on - tensors and is not recommended for new code. Prefer - `tf.keras.layers.RandomZoom` which provides equivalent functionality as - a preprocessing layer. For more information, see the tutorial for - [augmenting images]( - https://www.tensorflow.org/tutorials/images/data_augmentation), as well as - the [preprocessing layer guide]( - https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - x: Input tensor. Must be 3D. - zoom_range: Tuple of floats; zoom range for width and height. - row_axis: Index of axis for rows in the input tensor. - col_axis: Index of axis for columns in the input tensor. - channel_axis: Index of axis for channels in the input tensor. - fill_mode: Points outside the boundaries of the input - are filled according to the given mode - (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). - cval: Value used for points outside the boundaries - of the input if `mode='constant'`. - interpolation_order: int, order of spline interpolation. - see `ndimage.interpolation.affine_transform` - - Returns: - Zoomed Numpy image tensor. - - Raises: - ValueError: if `zoom_range` isn't a tuple. - """ - if len(zoom_range) != 2: - raise ValueError( - "`zoom_range` should be a tuple or list of two floats. Received: %s" - % (zoom_range,) - ) - - if zoom_range[0] == 1 and zoom_range[1] == 1: - zx, zy = 1, 1 - else: - zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2) - x = apply_affine_transform( - x, - zx=zx, - zy=zy, - row_axis=row_axis, - col_axis=col_axis, - channel_axis=channel_axis, - fill_mode=fill_mode, - cval=cval, - order=interpolation_order, - ) - return x - - -@keras_export("keras.preprocessing.image.apply_channel_shift") -def apply_channel_shift(x, intensity, channel_axis=0): - """Performs a channel shift. - - Args: - x: Input tensor. Must be 3D. - intensity: Transformation intensity. - channel_axis: Index of axis for channels in the input tensor. - - Returns: - Numpy image tensor. - """ - x = np.rollaxis(x, channel_axis, 0) - min_x, max_x = np.min(x), np.max(x) - channel_images = [ - np.clip(x_channel + intensity, min_x, max_x) for x_channel in x - ] - x = np.stack(channel_images, axis=0) - x = np.rollaxis(x, 0, channel_axis + 1) - return x - - -@keras_export("keras.preprocessing.image.random_channel_shift") -def random_channel_shift(x, intensity_range, channel_axis=0): - """Performs a random channel shift. - - Args: - x: Input tensor. Must be 3D. - intensity_range: Transformation intensity. - channel_axis: Index of axis for channels in the input tensor. - - Returns: - Numpy image tensor. - """ - intensity = np.random.uniform(-intensity_range, intensity_range) - return apply_channel_shift(x, intensity, channel_axis=channel_axis) - - -@keras_export("keras.preprocessing.image.apply_brightness_shift") -def apply_brightness_shift(x, brightness, scale=True): - """Performs a brightness shift. - - Args: - x: Input tensor. Must be 3D. - brightness: Float. The new brightness value. - scale: Whether to rescale the image such that minimum and maximum values - are 0 and 255 respectively. Default: True. - - Returns: - Numpy image tensor. - - Raises: - ImportError: if PIL is not available. - """ - if ImageEnhance is None: - raise ImportError( - "Using brightness shifts requires PIL. Install PIL or Pillow." - ) - x_min, x_max = np.min(x), np.max(x) - local_scale = (x_min < 0) or (x_max > 255) - x = image_utils.array_to_img(x, scale=local_scale or scale) - x = imgenhancer_Brightness = ImageEnhance.Brightness(x) - x = imgenhancer_Brightness.enhance(brightness) - x = image_utils.img_to_array(x) - if not scale and local_scale: - x = x / 255 * (x_max - x_min) + x_min - return x - - -@keras_export("keras.preprocessing.image.random_brightness") -def random_brightness(x, brightness_range, scale=True): - """Performs a random brightness shift. - - Deprecated: `tf.keras.preprocessing.image.random_brightness` does not - operate on tensors and is not recommended for new code. Prefer - `tf.keras.layers.RandomBrightness` which provides equivalent functionality - as a preprocessing layer. For more information, see the tutorial for - [augmenting images]( - https://www.tensorflow.org/tutorials/images/data_augmentation), as well as - the [preprocessing layer guide]( - https://www.tensorflow.org/guide/keras/preprocessing_layers). - - Args: - x: Input tensor. Must be 3D. - brightness_range: Tuple of floats; brightness range. - scale: Whether to rescale the image such that minimum and maximum values - are 0 and 255 respectively. Default: True. - - Returns: - Numpy image tensor. - - Raises: - ValueError if `brightness_range` isn't a tuple. - """ - if len(brightness_range) != 2: - raise ValueError( - "`brightness_range should be tuple or list of two floats. " - "Received: %s" % (brightness_range,) - ) - - u = np.random.uniform(brightness_range[0], brightness_range[1]) - return apply_brightness_shift(x, u, scale) - - -def transform_matrix_offset_center(matrix, x, y): - o_x = float(x) / 2 - 0.5 - o_y = float(y) / 2 - 0.5 - offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) - reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) - transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) - return transform_matrix - - -@keras_export("keras.preprocessing.image.apply_affine_transform") -def apply_affine_transform( - x, - theta=0, - tx=0, - ty=0, - shear=0, - zx=1, - zy=1, - row_axis=1, - col_axis=2, - channel_axis=0, - fill_mode="nearest", - cval=0.0, - order=1, -): - """Applies an affine transformation specified by the parameters given. - - Args: - x: 3D numpy array - a 2D image with one or more channels. - theta: Rotation angle in degrees. - tx: Width shift. - ty: Heigh shift. - shear: Shear angle in degrees. - zx: Zoom in x direction. - zy: Zoom in y direction - row_axis: Index of axis for rows (aka Y axis) in the input - image. Direction: left to right. - col_axis: Index of axis for columns (aka X axis) in the input - image. Direction: top to bottom. - channel_axis: Index of axis for channels in the input image. - fill_mode: Points outside the boundaries of the input - are filled according to the given mode - (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). - cval: Value used for points outside the boundaries - of the input if `mode='constant'`. - order: int, order of interpolation - - Returns: - The transformed version of the input. - - Raises: - ImportError: if SciPy is not available. - """ - if scipy is None: - raise ImportError("Image transformations require SciPy. Install SciPy.") - - # Input sanity checks: - # 1. x must 2D image with one or more channels (i.e., a 3D tensor) - # 2. channels must be either first or last dimension - if np.unique([row_axis, col_axis, channel_axis]).size != 3: - raise ValueError( - "'row_axis', 'col_axis', and 'channel_axis' must be distinct" - ) - - # shall we support negative indices? - valid_indices = set([0, 1, 2]) - actual_indices = set([row_axis, col_axis, channel_axis]) - if actual_indices != valid_indices: - raise ValueError( - f"Invalid axis' indices: {actual_indices - valid_indices}" - ) - - if x.ndim != 3: - raise ValueError("Input arrays must be multi-channel 2D images.") - if channel_axis not in [0, 2]: - raise ValueError( - "Channels are allowed and the first and last dimensions." - ) - - transform_matrix = None - if theta != 0: - theta = np.deg2rad(theta) - rotation_matrix = np.array( - [ - [np.cos(theta), -np.sin(theta), 0], - [np.sin(theta), np.cos(theta), 0], - [0, 0, 1], - ] - ) - transform_matrix = rotation_matrix - - if tx != 0 or ty != 0: - shift_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) - if transform_matrix is None: - transform_matrix = shift_matrix - else: - transform_matrix = np.dot(transform_matrix, shift_matrix) - - if shear != 0: - shear = np.deg2rad(shear) - shear_matrix = np.array( - [[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]] - ) - if transform_matrix is None: - transform_matrix = shear_matrix - else: - transform_matrix = np.dot(transform_matrix, shear_matrix) - - if zx != 1 or zy != 1: - zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) - if transform_matrix is None: - transform_matrix = zoom_matrix - else: - transform_matrix = np.dot(transform_matrix, zoom_matrix) - - if transform_matrix is not None: - h, w = x.shape[row_axis], x.shape[col_axis] - transform_matrix = transform_matrix_offset_center( - transform_matrix, h, w - ) - x = np.rollaxis(x, channel_axis, 0) - - # Matrix construction assumes that coordinates are x, y (in that order). - # However, regular numpy arrays use y,x (aka i,j) indexing. - # Possible solution is: - # 1. Swap the x and y axes. - # 2. Apply transform. - # 3. Swap the x and y axes again to restore image-like data ordering. - # Mathematically, it is equivalent to the following transformation: - # M' = PMP, where P is the permutation matrix, M is the original - # transformation matrix. - if col_axis > row_axis: - transform_matrix[:, [0, 1]] = transform_matrix[:, [1, 0]] - transform_matrix[[0, 1]] = transform_matrix[[1, 0]] - final_affine_matrix = transform_matrix[:2, :2] - final_offset = transform_matrix[:2, 2] - - channel_images = [ - ndimage.interpolation.affine_transform( - x_channel, - final_affine_matrix, - final_offset, - order=order, - mode=fill_mode, - cval=cval, - ) - for x_channel in x - ] - x = np.stack(channel_images, axis=0) - x = np.rollaxis(x, 0, channel_axis + 1) - return x diff --git a/keras/preprocessing/image_test.py b/keras/preprocessing/image_test.py deleted file mode 100644 index 90a379cc8d9..00000000000 --- a/keras/preprocessing/image_test.py +++ /dev/null @@ -1,2363 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for image preprocessing utils.""" - -import os -import random -import shutil -import tempfile - -import numpy as np -import pandas as pd -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import layers -from keras.engine import sequential -from keras.preprocessing import image -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import image_utils - -try: - import PIL -except ImportError: - PIL = None - - -def _generate_test_images( - include_rgba=False, include_16bit=False, include_32bit=False -): - img_w = img_h = 20 - rgb_images = [] - rgba_images = [] - gray_images = [] - gray_images_16bit = [] - gray_images_32bit = [] - for _ in range(8): - bias = np.random.rand(img_w, img_h, 1) * 64 - variance = np.random.rand(img_w, img_h, 1) * (255 - 64) - # RGB - imarray = np.random.rand(img_w, img_h, 3) * variance + bias - im = PIL.Image.fromarray(imarray.astype("uint8")).convert("RGB") - rgb_images.append(im) - # RGBA - imarray = np.random.rand(img_w, img_h, 4) * variance + bias - im = PIL.Image.fromarray(imarray.astype("uint8")).convert("RGBA") - rgba_images.append(im) - # 8-bit grayscale - imarray = np.random.rand(img_w, img_h, 1) * variance + bias - im = PIL.Image.fromarray(imarray.astype("uint8").squeeze()).convert("L") - gray_images.append(im) - # 16-bit grayscale - imarray = np.array( - np.random.randint(-2147483648, 2147483647, (img_w, img_h)) - ) - im = PIL.Image.fromarray(imarray.astype("uint16")) - gray_images_16bit.append(im) - # 32-bit grayscale - im = PIL.Image.fromarray(imarray.astype("uint32")) - gray_images_32bit.append(im) - - ret = [rgb_images, gray_images] - if include_rgba: - ret.append(rgba_images) - if include_16bit: - ret.append(gray_images_16bit) - if include_32bit: - ret.append(gray_images_32bit) - return ret - - -@test_utils.run_v2_only -class TestImage(test_combinations.TestCase): - def test_iterator_empty_directory(self): - # Testing with different batch sizes - for batch_size in [0, 32]: - data_iterator = image.Iterator(0, batch_size, False, 0) - ret = next(data_iterator.index_generator) - self.assertEqual(ret.size, 0) - - def test_image(self): - if PIL is None: - return # Skip test if PIL is not available. - - for test_images in _generate_test_images(): - img_list = [] - for im in test_images: - img_list.append(image_utils.img_to_array(im)[None, ...]) - - images = np.vstack(img_list) - generator = image.ImageDataGenerator( - featurewise_center=True, - samplewise_center=True, - featurewise_std_normalization=True, - samplewise_std_normalization=True, - zca_whitening=True, - rotation_range=90.0, - width_shift_range=0.1, - height_shift_range=0.1, - shear_range=0.5, - zoom_range=0.2, - channel_shift_range=0.0, - brightness_range=(1, 5), - fill_mode="nearest", - cval=0.5, - horizontal_flip=True, - vertical_flip=True, - ) - # Basic test before fit - x = np.random.random((32, 10, 10, 3)) - generator.flow(x) - - # Fit - generator.fit(images, augment=True) - - for x, _ in generator.flow( - images, np.arange(images.shape[0]), shuffle=True - ): - self.assertEqual(x.shape[1:], images.shape[1:]) - break - - def test_image_with_split_value_error(self): - with self.assertRaises(ValueError): - image.ImageDataGenerator(validation_split=5) - - def test_image_invalid_data(self): - generator = image.ImageDataGenerator( - featurewise_center=True, - samplewise_center=True, - featurewise_std_normalization=True, - samplewise_std_normalization=True, - zca_whitening=True, - data_format="channels_last", - ) - - # Test fit with invalid data - with self.assertRaises(ValueError): - x = np.random.random((3, 10, 10)) - generator.fit(x) - # Test flow with invalid data - with self.assertRaises(ValueError): - generator.flow(np.arange(5)) - # Invalid number of channels: will work but raise a warning - x = np.random.random((32, 10, 10, 5)) - generator.flow(x) - - with self.assertRaises(ValueError): - generator = image.ImageDataGenerator(data_format="unknown") - - generator = image.ImageDataGenerator(zoom_range=(2.0, 2.0)) - - def test_image_fit(self): - generator = image.ImageDataGenerator( - featurewise_center=True, - samplewise_center=True, - featurewise_std_normalization=True, - samplewise_std_normalization=True, - zca_whitening=True, - data_format="channels_last", - ) - # Test grayscale - x = np.random.random((32, 10, 10, 1)) - generator.fit(x) - # Test RBG - x = np.random.random((32, 10, 10, 3)) - generator.fit(x) - generator = image.ImageDataGenerator( - featurewise_center=True, - samplewise_center=True, - featurewise_std_normalization=True, - samplewise_std_normalization=True, - zca_whitening=True, - data_format="channels_first", - ) - # Test grayscale - x = np.random.random((32, 1, 10, 10)) - generator.fit(x) - # Test RBG - x = np.random.random((32, 3, 10, 10)) - generator.fit(x) - - def test_directory_iterator(self): - if PIL is None: - return # Skip test if PIL is not available. - - num_classes = 2 - - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir) - - # create folders and subfolders - paths = [] - for cl in range(num_classes): - class_directory = f"class-{cl}" - classpaths = [ - class_directory, - os.path.join(class_directory, "subfolder-1"), - os.path.join(class_directory, "subfolder-2"), - os.path.join(class_directory, "subfolder-1", "sub-subfolder"), - ] - for path in classpaths: - os.mkdir(os.path.join(temp_dir, path)) - paths.append(classpaths) - - # save the images in the paths - count = 0 - filenames = [] - for test_images in _generate_test_images(): - for im in test_images: - # rotate image class - im_class = count % num_classes - # rotate subfolders - classpaths = paths[im_class] - filename = os.path.join( - classpaths[count % len(classpaths)], - f"image-{count}.jpg", - ) - filenames.append(filename) - im.save(os.path.join(temp_dir, filename)) - count += 1 - - # Test image loading util - fname = os.path.join(temp_dir, filenames[0]) - _ = image_utils.load_img(fname) - _ = image_utils.load_img(fname, grayscale=True) - _ = image_utils.load_img(fname, target_size=(10, 10)) - _ = image_utils.load_img( - fname, target_size=(10, 10), interpolation="bilinear" - ) - - # create iterator - generator = image.ImageDataGenerator() - dir_iterator = generator.flow_from_directory(temp_dir) - - # check number of classes and images - self.assertEqual(len(dir_iterator.class_indices), num_classes) - self.assertEqual(len(dir_iterator.classes), count) - self.assertEqual(set(dir_iterator.filenames), set(filenames)) - - def preprocessing_function(x): - """This will fail if not provided by a Numpy array. - - Note: This is made to enforce backward compatibility. - - Args: - x: A numpy array. - - Returns: - An array of zeros with the same shape as the given array. - """ - self.assertEqual(x.shape, (26, 26, 3)) - self.assertIs(type(x), np.ndarray) - return np.zeros_like(x) - - # Test usage as Sequence - generator = image.ImageDataGenerator( - preprocessing_function=preprocessing_function - ) - dir_seq = generator.flow_from_directory( - str(temp_dir), - target_size=(26, 26), - color_mode="rgb", - batch_size=3, - class_mode="categorical", - ) - self.assertEqual(len(dir_seq), count // 3 + 1) - x1, y1 = dir_seq[1] - self.assertEqual(x1.shape, (3, 26, 26, 3)) - self.assertEqual(y1.shape, (3, num_classes)) - x1, y1 = dir_seq[5] - self.assertTrue((x1 == 0).all()) - - def directory_iterator_with_validation_split_test_helper( - self, validation_split - ): - if PIL is None: - return # Skip test if PIL is not available. - - num_classes = 2 - tmp_folder = tempfile.mkdtemp(prefix="test_images") - - # create folders and subfolders - paths = [] - for cl in range(num_classes): - class_directory = f"class-{cl}" - classpaths = [ - class_directory, - os.path.join(class_directory, "subfolder-1"), - os.path.join(class_directory, "subfolder-2"), - os.path.join(class_directory, "subfolder-1", "sub-subfolder"), - ] - for path in classpaths: - os.mkdir(os.path.join(tmp_folder, path)) - paths.append(classpaths) - - # save the images in the paths - count = 0 - filenames = [] - for test_images in _generate_test_images(): - for im in test_images: - # rotate image class - im_class = count % num_classes - # rotate subfolders - classpaths = paths[im_class] - filename = os.path.join( - classpaths[count % len(classpaths)], - f"image-{count}.jpg", - ) - filenames.append(filename) - im.save(os.path.join(tmp_folder, filename)) - count += 1 - - # create iterator - generator = image.ImageDataGenerator(validation_split=validation_split) - - with self.assertRaises(ValueError): - generator.flow_from_directory(tmp_folder, subset="foo") - - num_validation = int(count * validation_split) - num_training = count - num_validation - train_iterator = generator.flow_from_directory( - tmp_folder, subset="training" - ) - self.assertEqual(train_iterator.samples, num_training) - - valid_iterator = generator.flow_from_directory( - tmp_folder, subset="validation" - ) - self.assertEqual(valid_iterator.samples, num_validation) - - # check number of classes and images - self.assertEqual(len(train_iterator.class_indices), num_classes) - self.assertEqual(len(train_iterator.classes), num_training) - self.assertEqual( - len(set(train_iterator.filenames) & set(filenames)), num_training - ) - - model = sequential.Sequential([layers.Flatten(), layers.Dense(2)]) - model.compile(optimizer="sgd", loss="mse") - model.fit(train_iterator, epochs=1) - - shutil.rmtree(tmp_folder) - - @test_combinations.run_all_keras_modes - def test_directory_iterator_with_validation_split_25_percent(self): - self.directory_iterator_with_validation_split_test_helper(0.25) - - @test_combinations.run_all_keras_modes - def test_directory_iterator_with_validation_split_40_percent(self): - self.directory_iterator_with_validation_split_test_helper(0.40) - - @test_combinations.run_all_keras_modes - def test_directory_iterator_with_validation_split_50_percent(self): - self.directory_iterator_with_validation_split_test_helper(0.50) - - def test_batch_standardize(self): - if PIL is None: - return # Skip test if PIL is not available. - - # ImageDataGenerator.standardize should work on batches - for test_images in _generate_test_images(): - img_list = [] - for im in test_images: - img_list.append(image_utils.img_to_array(im)[None, ...]) - - images = np.vstack(img_list) - generator = image.ImageDataGenerator( - featurewise_center=True, - samplewise_center=True, - featurewise_std_normalization=True, - samplewise_std_normalization=True, - zca_whitening=True, - rotation_range=90.0, - width_shift_range=0.1, - height_shift_range=0.1, - shear_range=0.5, - zoom_range=0.2, - channel_shift_range=0.0, - brightness_range=(1, 5), - fill_mode="nearest", - cval=0.5, - horizontal_flip=True, - vertical_flip=True, - ) - generator.fit(images, augment=True) - - transformed = np.copy(images) - for i, im in enumerate(transformed): - transformed[i] = generator.random_transform(im) - transformed = generator.standardize(transformed) - - def test_img_transforms(self): - x = np.random.random((3, 200, 200)) - _ = image.random_rotation(x, 20) - _ = image.random_shift(x, 0.2, 0.2) - _ = image.random_shear(x, 2.0) - _ = image.random_zoom(x, (0.5, 0.5)) - _ = image.apply_channel_shift(x, 2, 2) - _ = image.apply_affine_transform(x, 2) - with self.assertRaises(ValueError): - image.random_zoom(x, (0, 0, 0)) - _ = image.random_channel_shift(x, 2.0) - - -@test_utils.run_v2_only -class TestDirectoryIterator(test_combinations.TestCase): - def test_directory_iterator(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images( - include_rgba=True, include_16bit=True, include_32bit=True - ) - num_classes = 2 - - # create folders and subfolders - paths = [] - for cl in range(num_classes): - class_directory = f"class-{cl}" - classpaths = [ - class_directory, - os.path.join(class_directory, "subfolder-1"), - os.path.join(class_directory, "subfolder-2"), - os.path.join(class_directory, "subfolder-1", "sub-subfolder"), - ] - for path in classpaths: - os.mkdir(os.path.join(tmpdir.full_path, path)) - paths.append(classpaths) - - # save the images in the paths - count = 0 - filenames = [] - for test_images in all_test_images: - for im in test_images: - # rotate image class - im_class = count % num_classes - # rotate subfolders - classpaths = paths[im_class] - filename = os.path.join( - classpaths[count % len(classpaths)], - f"image-{count}.png", - ) - filenames.append(filename) - im.save(os.path.join(tmpdir.full_path, filename)) - count += 1 - - # create iterator - generator = image.ImageDataGenerator() - dir_iterator = generator.flow_from_directory(tmpdir.full_path) - - # check number of classes and images - self.assertLen(dir_iterator.class_indices, num_classes) - self.assertLen(dir_iterator.classes, count) - self.assertEqual(set(dir_iterator.filenames), set(filenames)) - - # Test invalid use cases - with self.assertRaises(ValueError): - generator.flow_from_directory(tmpdir.full_path, color_mode="cmyk") - with self.assertRaises(ValueError): - generator.flow_from_directory(tmpdir.full_path, class_mode="output") - - def preprocessing_function(x): - # This will fail if not provided by a Numpy array. - # Note: This is made to enforce backward compatibility. - self.assertEqual(x.shape, (26, 26, 3)) - self.assertIsInstance(x, np.ndarray) - - return np.zeros_like(x) - - # Test usage as Sequence - generator = image.ImageDataGenerator( - preprocessing_function=preprocessing_function - ) - dir_seq = generator.flow_from_directory( - tmpdir.full_path, - target_size=(26, 26), - color_mode="rgb", - batch_size=3, - class_mode="categorical", - ) - self.assertLen(dir_seq, np.ceil(count / 3.0)) - x1, y1 = dir_seq[1] - self.assertEqual(x1.shape, (3, 26, 26, 3)) - self.assertEqual(y1.shape, (3, num_classes)) - x1, y1 = dir_seq[5] - self.assertTrue((x1 == 0).all()) - - with self.assertRaises(ValueError): - x1, y1 = dir_seq[14] # there are 40 images and batch size is 3 - - def test_directory_iterator_class_mode_input(self): - tmpdir = self.create_tempdir() - os.mkdir(os.path.join(tmpdir.full_path, "class-1")) - all_test_images = _generate_test_images( - include_rgba=True, include_16bit=True, include_32bit=True - ) - - # save the images in the paths - count = 0 - for test_images in all_test_images: - for im in test_images: - filename = os.path.join(tmpdir, "class-1", f"image-{count}.png") - im.save(filename) - count += 1 - - # create iterator - generator = image.ImageDataGenerator() - dir_iterator = generator.flow_from_directory( - tmpdir.full_path, class_mode="input" - ) - batch = next(dir_iterator) - - # check if input and output have the same shape - self.assertEqual(batch[0].shape, batch[1].shape) - # check if the input and output images are not the same numpy array - input_img = batch[0][0] - output_img = batch[1][0] - output_img[0][0][0] += 1 - self.assertNotEqual(input_img[0][0][0], output_img[0][0][0]) - - @parameterized.parameters( - [ - (0.25, 30), - (0.50, 20), - (0.75, 10), - ] - ) - def test_directory_iterator_with_validation_split( - self, validation_split, num_training - ): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images( - include_rgba=True, include_16bit=True, include_32bit=True - ) - num_classes = 2 - - # create folders and subfolders - paths = [] - for cl in range(num_classes): - class_directory = f"class-{cl}" - classpaths = [ - class_directory, - os.path.join(class_directory, "subfolder-1"), - os.path.join(class_directory, "subfolder-2"), - os.path.join(class_directory, "subfolder-1", "sub-subfolder"), - ] - for path in classpaths: - os.mkdir(os.path.join(tmpdir.full_path, path)) - paths.append(classpaths) - - # save the images in the paths - count = 0 - filenames = [] - for test_images in all_test_images: - for im in test_images: - # rotate image class - im_class = count % num_classes - # rotate subfolders - classpaths = paths[im_class] - filename = os.path.join( - classpaths[count % len(classpaths)], - f"image-{count}.png", - ) - filenames.append(filename) - im.save(os.path.join(tmpdir.full_path, filename)) - count += 1 - - # create iterator - generator = image.ImageDataGenerator(validation_split=validation_split) - - with self.assertRaises(ValueError): - generator.flow_from_directory(tmpdir.full_path, subset="foo") - - train_iterator = generator.flow_from_directory( - tmpdir.full_path, subset="training" - ) - self.assertEqual(train_iterator.samples, num_training) - - valid_iterator = generator.flow_from_directory( - tmpdir.full_path, subset="validation" - ) - self.assertEqual(valid_iterator.samples, count - num_training) - - # check number of classes and images - self.assertLen(train_iterator.class_indices, num_classes) - self.assertLen(train_iterator.classes, num_training) - self.assertLen( - set(train_iterator.filenames) & set(filenames), num_training - ) - - -@test_utils.run_v2_only -class TestNumpyArrayIterator(test_combinations.TestCase): - def test_numpy_array_iterator(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - - image_data_generator = image.ImageDataGenerator( - featurewise_center=True, - samplewise_center=True, - featurewise_std_normalization=True, - samplewise_std_normalization=True, - zca_whitening=True, - rotation_range=90.0, - width_shift_range=0.1, - height_shift_range=0.1, - shear_range=0.5, - zoom_range=0.2, - channel_shift_range=0.0, - brightness_range=(1, 5), - fill_mode="nearest", - cval=0.5, - horizontal_flip=True, - vertical_flip=True, - interpolation_order=1, - ) - - for test_images in all_test_images: - img_list = [] - for im in test_images: - img_list.append(image_utils.img_to_array(im)[None, ...]) - images = np.vstack(img_list) - dsize = images.shape[0] - - iterator = image.NumpyArrayIterator( - images, - np.arange(images.shape[0]), - image_data_generator, - shuffle=False, - save_to_dir=tmpdir.full_path, - batch_size=3, - ) - x, y = next(iterator) - self.assertEqual(x.shape, images[:3].shape) - self.assertEqual(list(y), [0, 1, 2]) - - # Test with sample weights - iterator = image.NumpyArrayIterator( - images, - np.arange(images.shape[0]), - image_data_generator, - shuffle=False, - sample_weight=np.arange(images.shape[0]) + 1, - save_to_dir=tmpdir.full_path, - batch_size=3, - ) - x, y, w = iterator.next() - self.assertEqual(x.shape, images[:3].shape) - self.assertEqual(list(y), [0, 1, 2]) - self.assertEqual(list(w), [1, 2, 3]) - - # Test with `shuffle=True` - iterator = image.NumpyArrayIterator( - images, - np.arange(images.shape[0]), - image_data_generator, - shuffle=True, - save_to_dir=tmpdir.full_path, - batch_size=3, - seed=42, - ) - x, y = iterator.next() - self.assertEqual(x.shape, images[:3].shape) - # Check that the sequence is shuffled. - self.assertNotEqual(list(y), [0, 1, 2]) - - # Test without y - iterator = image.NumpyArrayIterator( - images, - None, - image_data_generator, - shuffle=True, - save_to_dir=tmpdir.full_path, - batch_size=3, - ) - x = iterator.next() - self.assertIsInstance(x, np.ndarray) - self.assertEqual(x.shape, images[:3].shape) - - # Test with a single miscellaneous input data array - x_misc1 = np.random.random(dsize) - iterator = image.NumpyArrayIterator( - (images, x_misc1), - np.arange(dsize), - image_data_generator, - shuffle=False, - batch_size=2, - ) - for i, (x, y) in enumerate(iterator): - self.assertEqual(x[0].shape, images[:2].shape) - self.assertTrue( - (x[1] == x_misc1[(i * 2) : ((i + 1) * 2)]).all() - ) - if i == 2: - break - - # Test with two miscellaneous inputs - x_misc2 = np.random.random((dsize, 3, 3)) - iterator = image.NumpyArrayIterator( - (images, [x_misc1, x_misc2]), - np.arange(dsize), - image_data_generator, - shuffle=False, - batch_size=2, - ) - for i, (x, y) in enumerate(iterator): - self.assertEqual(x[0].shape, images[:2].shape) - self.assertTrue( - (x[1] == x_misc1[(i * 2) : ((i + 1) * 2)]).all() - ) - self.assertTrue( - (x[2] == x_misc2[(i * 2) : ((i + 1) * 2)]).all() - ) - if i == 2: - break - - # Test cases with `y = None` - iterator = image.NumpyArrayIterator( - images, None, image_data_generator, batch_size=3 - ) - x = iterator.next() - self.assertIsInstance(x, np.ndarray) - self.assertEqual(x.shape, images[:3].shape) - - iterator = image.NumpyArrayIterator( - (images, x_misc1), - None, - image_data_generator, - batch_size=3, - shuffle=False, - ) - x = iterator.next() - self.assertIsInstance(x, list) - self.assertEqual(x[0].shape, images[:3].shape) - self.assertTrue((x[1] == x_misc1[:3]).all()) - - iterator = image.NumpyArrayIterator( - (images, [x_misc1, x_misc2]), - None, - image_data_generator, - batch_size=3, - shuffle=False, - ) - x = iterator.next() - self.assertIsInstance(x, list) - self.assertEqual(x[0].shape, images[:3].shape) - self.assertTrue((x[1] == x_misc1[:3]).all()) - self.assertTrue((x[2] == x_misc2[:3]).all()) - - # Test with validation split - generator = image.ImageDataGenerator(validation_split=0.2) - iterator = image.NumpyArrayIterator( - images, None, generator, batch_size=3 - ) - x = iterator.next() - self.assertIsInstance(x, np.ndarray) - self.assertEqual(x.shape, images[:3].shape) - - # Test some failure cases: - x_misc_err = np.random.random((dsize + 1, 3, 3)) - - with self.assertRaisesRegex(ValueError, "All of the arrays in"): - image.NumpyArrayIterator( - (images, x_misc_err), - np.arange(dsize), - generator, - batch_size=3, - ) - - with self.assertRaisesRegex( - ValueError, r"`x` \(images tensor\) and `y` \(labels\)" - ): - image.NumpyArrayIterator( - (images, x_misc1), - np.arange(dsize + 1), - generator, - batch_size=3, - ) - - # Test `flow` behavior as Sequence - seq = image.NumpyArrayIterator( - images, - np.arange(images.shape[0]), - generator, - shuffle=False, - save_to_dir=tmpdir.full_path, - batch_size=3, - ) - self.assertLen(seq, images.shape[0] // 3 + 1) - x, y = seq[0] - self.assertEqual(x.shape, images[:3].shape) - self.assertEqual(list(y), [0, 1, 2]) - - # Test with `shuffle=True` - seq = image.NumpyArrayIterator( - images, - np.arange(images.shape[0]), - generator, - shuffle=True, - save_to_dir=tmpdir.full_path, - batch_size=3, - seed=123, - ) - x, y = seq[0] - # Check that the sequence is shuffled. - self.assertNotEqual(list(y), [0, 1, 2]) - # `on_epoch_end` should reshuffle the sequence. - seq.on_epoch_end() - _, y2 = seq[0] - self.assertNotEqual(list(y), list(y2)) - - # test order_interpolation - labels = np.array( - [ - [2, 2, 0, 2, 2], - [1, 3, 2, 3, 1], - [2, 1, 0, 1, 2], - [3, 1, 0, 2, 0], - [3, 1, 3, 2, 1], - ] - ) - label_generator = image.ImageDataGenerator( - rotation_range=90.0, interpolation_order=0 - ) - labels_gen = image.NumpyArrayIterator( - labels[np.newaxis, ..., np.newaxis], None, label_generator, seed=123 - ) - self.assertTrue( - (np.unique(labels) == np.unique(next(labels_gen))).all() - ) - - -@test_utils.run_v2_only -class TestDataFrameIterator(test_combinations.TestCase): - def test_dataframe_iterator(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - num_classes = 2 - - # save the images in the tmpdir - count = 0 - filenames = [] - filepaths = [] - filenames_without = [] - for test_images in all_test_images: - for im in test_images: - filename = f"image-{count}.png" - filename_without = f"image-{count}" - filenames.append(filename) - filepaths.append(os.path.join(tmpdir.full_path, filename)) - filenames_without.append(filename_without) - im.save(os.path.join(tmpdir.full_path, filename)) - count += 1 - - df = pd.DataFrame( - { - "filename": filenames, - "class": [str(random.randint(0, 1)) for _ in filenames], - "filepaths": filepaths, - } - ) - - # create iterator - iterator = image.DataFrameIterator(df, tmpdir.full_path) - batch = next(iterator) - self.assertLen(batch, 2) - self.assertIsInstance(batch[0], np.ndarray) - self.assertIsInstance(batch[1], np.ndarray) - generator = image.ImageDataGenerator() - df_iterator = generator.flow_from_dataframe(df, x_col="filepaths") - df_iterator_dir = generator.flow_from_dataframe(df, tmpdir.full_path) - df_sparse_iterator = generator.flow_from_dataframe( - df, tmpdir.full_path, class_mode="sparse" - ) - self.assertFalse(np.isnan(df_sparse_iterator.classes).any()) - # check number of classes and images - self.assertLen(df_iterator.class_indices, num_classes) - self.assertLen(df_iterator.classes, count) - self.assertEqual(set(df_iterator.filenames), set(filepaths)) - self.assertLen(df_iterator_dir.class_indices, num_classes) - self.assertLen(df_iterator_dir.classes, count) - self.assertEqual(set(df_iterator_dir.filenames), set(filenames)) - # test without shuffle - _, batch_y = next( - generator.flow_from_dataframe( - df, tmpdir.full_path, shuffle=False, class_mode="sparse" - ) - ) - self.assertTrue( - (batch_y == df["class"].astype("float")[: len(batch_y)]).all() - ) - # Test invalid use cases - with self.assertRaises(ValueError): - generator.flow_from_dataframe( - df, tmpdir.full_path, color_mode="cmyk" - ) - with self.assertRaises(ValueError): - generator.flow_from_dataframe( - df, tmpdir.full_path, class_mode="output" - ) - with self.assertWarns(DeprecationWarning): - generator.flow_from_dataframe(df, tmpdir.full_path, has_ext=True) - with self.assertWarns(DeprecationWarning): - generator.flow_from_dataframe(df, tmpdir.full_path, has_ext=False) - - def preprocessing_function(x): - # This will fail if not provided by a Numpy array. - # Note: This is made to enforce backward compatibility. - - self.assertEqual(x.shape, (26, 26, 3)) - self.assertIsInstance(x, np.ndarray) - - return np.zeros_like(x) - - # Test usage as Sequence - generator = image.ImageDataGenerator( - preprocessing_function=preprocessing_function - ) - dir_seq = generator.flow_from_dataframe( - df, - tmpdir.full_path, - target_size=(26, 26), - color_mode="rgb", - batch_size=3, - class_mode="categorical", - ) - self.assertLen(dir_seq, np.ceil(count / 3)) - x1, y1 = dir_seq[1] - self.assertEqual(x1.shape, (3, 26, 26, 3)) - self.assertEqual(y1.shape, (3, num_classes)) - x1, y1 = dir_seq[5] - self.assertTrue((x1 == 0).all()) - - with self.assertRaises(ValueError): - x1, y1 = dir_seq[9] - - def test_dataframe_iterator_validate_filenames(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - # save the images in the paths - count = 0 - filenames = [] - for test_images in all_test_images: - for im in test_images: - filename = f"image-{count}.png" - im.save(os.path.join(tmpdir.full_path, filename)) - filenames.append(filename) - count += 1 - df = pd.DataFrame({"filename": filenames + ["test.jpp", "test.jpg"]}) - generator = image.ImageDataGenerator() - df_iterator = generator.flow_from_dataframe( - df, tmpdir.full_path, class_mode="input" - ) - self.assertLen(df_iterator.filenames, len(df["filename"]) - 2) - df_iterator = generator.flow_from_dataframe( - df, tmpdir.full_path, class_mode="input", validate_filenames=False - ) - self.assertLen(df_iterator.filenames, len(df["filename"])) - - def test_dataframe_iterator_sample_weights(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - # save the images in the paths - count = 0 - filenames = [] - for test_images in all_test_images: - for im in test_images: - filename = f"image-{count}.png" - im.save(os.path.join(tmpdir.full_path, filename)) - filenames.append(filename) - count += 1 - df = pd.DataFrame({"filename": filenames}) - df["weight"] = ([2, 5] * len(df))[: len(df)] - generator = image.ImageDataGenerator() - df_iterator = generator.flow_from_dataframe( - df, - tmpdir.full_path, - x_col="filename", - y_col=None, - shuffle=False, - batch_size=5, - weight_col="weight", - class_mode="input", - ) - - batch = next(df_iterator) - self.assertLen(batch, 3) # (x, y, weights) - # check if input and output have the same shape and they're the same - self.assertEqual(batch[0].all(), batch[1].all()) - # check if the input and output images are not the same numpy array - input_img = batch[0][0] - output_img = batch[1][0] - output_img[0][0][0] += 1 - self.assertNotEqual(input_img[0][0][0], output_img[0][0][0]) - self.assertAllEqual(np.array([2, 5, 2, 5, 2]), batch[2]) - - # fail - df["weight"] = (["2", "5"] * len(df))[: len(df)] - with self.assertRaises(TypeError): - image.ImageDataGenerator().flow_from_dataframe( - df, weight_col="weight", class_mode="input" - ) - - def test_dataframe_iterator_class_mode_input(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - # save the images in the paths - count = 0 - filenames = [] - for test_images in all_test_images: - for im in test_images: - filename = f"image-{count}.png" - im.save(os.path.join(tmpdir.full_path, filename)) - filenames.append(filename) - count += 1 - df = pd.DataFrame({"filename": filenames}) - generator = image.ImageDataGenerator() - df_autoencoder_iterator = generator.flow_from_dataframe( - df, - tmpdir.full_path, - x_col="filename", - y_col=None, - class_mode="input", - ) - - batch = next(df_autoencoder_iterator) - - # check if input and output have the same shape and they're the same - self.assertAllClose(batch[0], batch[1]) - # check if the input and output images are not the same numpy array - input_img = batch[0][0] - output_img = batch[1][0] - output_img[0][0][0] += 1 - self.assertNotEqual(input_img[0][0][0], output_img[0][0][0]) - - df_autoencoder_iterator = generator.flow_from_dataframe( - df, - tmpdir.full_path, - x_col="filename", - y_col="class", - class_mode="input", - ) - - batch = next(df_autoencoder_iterator) - - # check if input and output have the same shape and they're the same - self.assertEqual(batch[0].all(), batch[1].all()) - # check if the input and output images are not the same numpy array - input_img = batch[0][0] - output_img = batch[1][0] - output_img[0][0][0] += 1 - self.assertNotEqual(input_img[0][0][0], output_img[0][0][0]) - - def test_dataframe_iterator_class_mode_categorical_multi_label(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - # save the images in the paths - filenames = [] - count = 0 - for test_images in all_test_images: - for im in test_images: - filename = f"image-{count}.png" - im.save(os.path.join(tmpdir.full_path, filename)) - filenames.append(filename) - count += 1 - label_opt = ["a", "b", ["a"], ["b"], ["a", "b"], ["b", "a"]] - df = pd.DataFrame( - { - "filename": filenames, - "class": [random.choice(label_opt) for _ in filenames[:-2]] - + ["b", "a"], - } - ) - generator = image.ImageDataGenerator() - df_iterator = generator.flow_from_dataframe(df, tmpdir.full_path) - batch_x, batch_y = next(df_iterator) - self.assertIsInstance(batch_x, np.ndarray) - self.assertLen(batch_x.shape, 4) - self.assertIsInstance(batch_y, np.ndarray) - self.assertEqual(batch_y.shape, (len(batch_x), 2)) - for labels in batch_y: - self.assertTrue(all(label in {0, 1} for label in labels)) - - # on first 3 batches - df = pd.DataFrame( - { - "filename": filenames, - "class": [["b", "a"]] - + ["b"] - + [["c"]] - + [random.choice(label_opt) for _ in filenames[:-3]], - } - ) - generator = image.ImageDataGenerator() - df_iterator = generator.flow_from_dataframe( - df, tmpdir.full_path, shuffle=False - ) - batch_x, batch_y = next(df_iterator) - self.assertIsInstance(batch_x, np.ndarray) - self.assertLen(batch_x.shape, 4) - self.assertIsInstance(batch_y, np.ndarray) - self.assertEqual(batch_y.shape, (len(batch_x), 3)) - for labels in batch_y: - self.assertTrue(all(label in {0, 1} for label in labels)) - self.assertTrue((batch_y[0] == np.array([1, 1, 0])).all()) - self.assertTrue((batch_y[1] == np.array([0, 1, 0])).all()) - self.assertTrue((batch_y[2] == np.array([0, 0, 1])).all()) - - def test_dataframe_iterator_class_mode_multi_output(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - # save the images in the paths - filenames = [] - count = 0 - for test_images in all_test_images: - for im in test_images: - filename = f"image-{count}.png" - im.save(os.path.join(tmpdir.full_path, filename)) - filenames.append(filename) - count += 1 - # fit both outputs are a single number - df = pd.DataFrame({"filename": filenames}).assign( - output_0=np.random.uniform(size=len(filenames)), - output_1=np.random.uniform(size=len(filenames)), - ) - df_iterator = image.ImageDataGenerator().flow_from_dataframe( - df, - y_col=["output_0", "output_1"], - directory=tmpdir.full_path, - batch_size=3, - shuffle=False, - class_mode="multi_output", - ) - batch_x, batch_y = next(df_iterator) - self.assertIsInstance(batch_x, np.ndarray) - self.assertLen(batch_x.shape, 4) - self.assertIsInstance(batch_y, list) - self.assertLen(batch_y, 2) - self.assertAllEqual(batch_y[0], np.array(df["output_0"].tolist()[:3])) - self.assertAllEqual(batch_y[1], np.array(df["output_1"].tolist()[:3])) - # if one of the outputs is a 1D array - df["output_1"] = [ - np.random.uniform(size=(2, 2, 1)).flatten() for _ in range(len(df)) - ] - df_iterator = image.ImageDataGenerator().flow_from_dataframe( - df, - y_col=["output_0", "output_1"], - directory=tmpdir.full_path, - batch_size=3, - shuffle=False, - class_mode="multi_output", - ) - batch_x, batch_y = next(df_iterator) - self.assertIsInstance(batch_x, np.ndarray) - self.assertLen(batch_x.shape, 4) - self.assertIsInstance(batch_y, list) - self.assertLen(batch_y, 2) - self.assertAllEqual(batch_y[0], np.array(df["output_0"].tolist()[:3])) - self.assertAllEqual(batch_y[1], np.array(df["output_1"].tolist()[:3])) - # if one of the outputs is a 2D array - df["output_1"] = [ - np.random.uniform(size=(2, 2, 1)) for _ in range(len(df)) - ] - df_iterator = image.ImageDataGenerator().flow_from_dataframe( - df, - y_col=["output_0", "output_1"], - directory=tmpdir.full_path, - batch_size=3, - shuffle=False, - class_mode="multi_output", - ) - batch_x, batch_y = next(df_iterator) - self.assertIsInstance(batch_x, np.ndarray) - self.assertLen(batch_x.shape, 4) - self.assertIsInstance(batch_y, list) - self.assertLen(batch_y, 2) - self.assertAllEqual(batch_y[0], np.array(df["output_0"].tolist()[:3])) - self.assertAllEqual(batch_y[1], np.array(df["output_1"].tolist()[:3])) - # fail if single column - with self.assertRaises(TypeError): - image.ImageDataGenerator().flow_from_dataframe( - df, - y_col="output_0", - directory=tmpdir.full_path, - class_mode="multi_output", - ) - - def test_dataframe_iterator_class_mode_raw(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - # save the images in the paths - filenames = [] - count = 0 - for test_images in all_test_images: - for im in test_images: - filename = f"image-{count}.png" - im.save(os.path.join(tmpdir.full_path, filename)) - filenames.append(filename) - count += 1 - # case for 1D output - df = pd.DataFrame({"filename": filenames}).assign( - output_0=np.random.uniform(size=len(filenames)), - output_1=np.random.uniform(size=len(filenames)), - ) - df_iterator = image.ImageDataGenerator().flow_from_dataframe( - df, - y_col="output_0", - directory=tmpdir.full_path, - batch_size=3, - shuffle=False, - class_mode="raw", - ) - batch_x, batch_y = next(df_iterator) - self.assertIsInstance(batch_x, np.ndarray) - self.assertLen(batch_x.shape, 4) - self.assertIsInstance(batch_y, np.ndarray) - self.assertEqual(batch_y.shape, (3,)) - self.assertAllEqual(batch_y, df["output_0"].values[:3]) - # case with a 2D output - df_iterator = image.ImageDataGenerator().flow_from_dataframe( - df, - y_col=["output_0", "output_1"], - directory=tmpdir.full_path, - batch_size=3, - shuffle=False, - class_mode="raw", - ) - batch_x, batch_y = next(df_iterator) - self.assertIsInstance(batch_x, np.ndarray) - self.assertLen(batch_x.shape, 4) - self.assertIsInstance(batch_y, np.ndarray) - self.assertEqual(batch_y.shape, (3, 2)) - self.assertAllEqual(batch_y, df[["output_0", "output_1"]].values[:3]) - - @parameterized.parameters( - [ - (0.25, 18), - (0.50, 12), - (0.75, 6), - ] - ) - def test_dataframe_iterator_with_validation_split( - self, validation_split, num_training - ): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - num_classes = 2 - - # save the images in the tmpdir - count = 0 - filenames = [] - filenames_without = [] - for test_images in all_test_images: - for im in test_images: - filename = f"image-{count}.png" - filename_without = f"image-{count}" - filenames.append(filename) - filenames_without.append(filename_without) - im.save(os.path.join(tmpdir.full_path, filename)) - count += 1 - - df = pd.DataFrame( - { - "filename": filenames, - "class": [str(random.randint(0, 1)) for _ in filenames], - } - ) - # create iterator - generator = image.ImageDataGenerator(validation_split=validation_split) - df_sparse_iterator = generator.flow_from_dataframe( - df, tmpdir.full_path, class_mode="sparse" - ) - if np.isnan(next(df_sparse_iterator)[:][1]).any(): - raise ValueError("Invalid values.") - - with self.assertRaises(ValueError): - generator.flow_from_dataframe(df, tmpdir.full_path, subset="foo") - - train_iterator = generator.flow_from_dataframe( - df, tmpdir.full_path, subset="training" - ) - self.assertEqual(train_iterator.samples, num_training) - - valid_iterator = generator.flow_from_dataframe( - df, tmpdir.full_path, subset="validation" - ) - self.assertEqual(valid_iterator.samples, count - num_training) - - # check number of classes and images - self.assertLen(train_iterator.class_indices, num_classes) - self.assertLen(train_iterator.classes, num_training) - self.assertLen( - set(train_iterator.filenames) & set(filenames), num_training - ) - - def test_dataframe_iterator_with_custom_indexed_dataframe(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - num_classes = 2 - - # save the images in the tmpdir - count = 0 - filenames = [] - for test_images in all_test_images: - for im in test_images: - filename = f"image-{count}.png" - filenames.append(filename) - im.save(os.path.join(tmpdir.full_path, filename)) - count += 1 - - # create dataframes - classes = np.random.randint(num_classes, size=len(filenames)) - classes = [str(c) for c in classes] - df = pd.DataFrame({"filename": filenames, "class": classes}) - df2 = pd.DataFrame( - {"filename": filenames, "class": classes}, - index=np.arange(1, len(filenames) + 1), - ) - df3 = pd.DataFrame( - {"filename": filenames, "class": classes}, index=filenames - ) - - # create iterators - seed = 1 - generator = image.ImageDataGenerator() - df_iterator = generator.flow_from_dataframe( - df, tmpdir.full_path, seed=seed - ) - df2_iterator = generator.flow_from_dataframe( - df2, tmpdir.full_path, seed=seed - ) - df3_iterator = generator.flow_from_dataframe( - df3, tmpdir.full_path, seed=seed - ) - - # Test all iterators return same pairs of arrays - for _ in range(len(filenames)): - a1, c1 = next(df_iterator) - a2, c2 = next(df2_iterator) - a3, c3 = next(df3_iterator) - self.assertAllEqual(a1, a2) - self.assertAllEqual(a1, a3) - self.assertAllEqual(c1, c2) - self.assertAllEqual(c1, c3) - - def test_dataframe_iterator_n(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - - # save the images in the tmpdir - count = 0 - filenames = [] - for test_images in all_test_images: - for im in test_images: - filename = f"image-{count}.png" - filenames.append(filename) - im.save(os.path.join(tmpdir.full_path, filename)) - count += 1 - - # exclude first two items - n_files = len(filenames) - input_filenames = filenames[2:] - - # create dataframes - classes = np.random.randint(2, size=len(input_filenames)) - classes = [str(c) for c in classes] - df = pd.DataFrame({"filename": input_filenames}) - df2 = pd.DataFrame({"filename": input_filenames, "class": classes}) - - # create iterators - generator = image.ImageDataGenerator() - df_iterator = generator.flow_from_dataframe( - df, tmpdir.full_path, class_mode=None - ) - df2_iterator = generator.flow_from_dataframe( - df2, tmpdir.full_path, class_mode="binary" - ) - - # Test the number of items in iterators - self.assertEqual(df_iterator.n, n_files - 2) - self.assertEqual(df2_iterator.n, n_files - 2) - - def test_dataframe_iterator_absolute_path(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - - # save the images in the tmpdir - count = 0 - file_paths = [] - for test_images in all_test_images: - for im in test_images: - filename = f"image-{count:0>5}.png" - file_path = os.path.join(tmpdir.full_path, filename) - file_paths.append(file_path) - im.save(file_path) - count += 1 - - # prepare an image with a forbidden extension. - file_path_fbd = os.path.join(tmpdir.full_path, "image-forbid.fbd") - shutil.copy(file_path, file_path_fbd) - - # create dataframes - classes = np.random.randint(2, size=len(file_paths)) - classes = [str(c) for c in classes] - df = pd.DataFrame({"filename": file_paths}) - df2 = pd.DataFrame({"filename": file_paths, "class": classes}) - df3 = pd.DataFrame({"filename": ["image-not-exist.png"] + file_paths}) - df4 = pd.DataFrame({"filename": file_paths + [file_path_fbd]}) - - # create iterators - generator = image.ImageDataGenerator() - df_iterator = generator.flow_from_dataframe( - df, None, class_mode=None, shuffle=False, batch_size=1 - ) - df2_iterator = generator.flow_from_dataframe( - df2, None, class_mode="binary", shuffle=False, batch_size=1 - ) - df3_iterator = generator.flow_from_dataframe( - df3, None, class_mode=None, shuffle=False, batch_size=1 - ) - df4_iterator = generator.flow_from_dataframe( - df4, None, class_mode=None, shuffle=False, batch_size=1 - ) - - validation_split = 0.2 - generator_split = image.ImageDataGenerator( - validation_split=validation_split - ) - df_train_iterator = generator_split.flow_from_dataframe( - df, - None, - class_mode=None, - shuffle=False, - subset="training", - batch_size=1, - ) - df_val_iterator = generator_split.flow_from_dataframe( - df, - None, - class_mode=None, - shuffle=False, - subset="validation", - batch_size=1, - ) - - # Test the number of items in iterators - self.assertLen(file_paths, df_iterator.n) - self.assertLen(file_paths, df2_iterator.n) - self.assertLen(file_paths, df3_iterator.n) - self.assertLen(file_paths, df4_iterator.n) - self.assertEqual( - df_val_iterator.n, int(validation_split * len(file_paths)) - ) - self.assertLen(file_paths, df_train_iterator.n + df_val_iterator.n) - - # Test flow_from_dataframe - for i in range(len(file_paths)): - a1 = next(df_iterator) - a2, _ = next(df2_iterator) - a3 = next(df3_iterator) - a4 = next(df4_iterator) - - if i < df_val_iterator.n: - a5 = next(df_val_iterator) - else: - a5 = next(df_train_iterator) - - self.assertAllEqual(a1, a2) - self.assertAllEqual(a1, a3) - self.assertAllEqual(a1, a4) - self.assertAllEqual(a1, a5) - - def test_dataframe_iterator_with_subdirs(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - num_classes = 2 - - # create folders and subfolders - paths = [] - for cl in range(num_classes): - class_directory = f"class-{cl}" - classpaths = [ - class_directory, - os.path.join(class_directory, "subfolder-1"), - os.path.join(class_directory, "subfolder-2"), - os.path.join(class_directory, "subfolder-1", "sub-subfolder"), - ] - for path in classpaths: - os.mkdir(os.path.join(tmpdir, path)) - paths.append(classpaths) - - # save the images in the paths - count = 0 - filenames = [] - for test_images in all_test_images: - for im in test_images: - # rotate image class - im_class = count % num_classes - # rotate subfolders - classpaths = paths[im_class] - filename = os.path.join( - classpaths[count % len(classpaths)], - f"image-{count}.png", - ) - filenames.append(filename) - im.save(os.path.join(tmpdir.full_path, filename)) - count += 1 - - # create dataframe - classes = np.random.randint(num_classes, size=len(filenames)) - classes = [str(c) for c in classes] - df = pd.DataFrame({"filename": filenames, "class": classes}) - - # create iterator - generator = image.ImageDataGenerator() - df_iterator = generator.flow_from_dataframe( - df, tmpdir.full_path, class_mode="binary" - ) - - # Test the number of items in iterator - self.assertLen(filenames, df_iterator.n) - self.assertEqual(set(df_iterator.filenames), set(filenames)) - - def test_dataframe_iterator_classes_indices_order(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - # save the images in the paths - count = 0 - filenames = [] - for test_images in all_test_images: - for im in test_images: - filename = f"image-{count}.png" - im.save(os.path.join(tmpdir.full_path, filename)) - filenames.append(filename) - count += 1 - - # Test the class_indices without classes input - generator = image.ImageDataGenerator() - label_opt = ["a", "b", ["a"], ["b"], ["a", "b"], ["b", "a"]] - df_f = pd.DataFrame( - { - "filename": filenames, - "class": ["a", "b"] - + [random.choice(label_opt) for _ in filenames[:-2]], - } - ) - flow_forward_iter = generator.flow_from_dataframe( - df_f, tmpdir.full_path - ) - label_rev = ["b", "a", ["b"], ["a"], ["b", "a"], ["a", "b"]] - df_r = pd.DataFrame( - { - "filename": filenames, - "class": ["b", "a"] - + [random.choice(label_rev) for _ in filenames[:-2]], - } - ) - flow_backward_iter = generator.flow_from_dataframe( - df_r, tmpdir.full_path - ) - - # check class_indices - self.assertEqual( - flow_forward_iter.class_indices, flow_backward_iter.class_indices - ) - - # Test the class_indices with classes input - generator_2 = image.ImageDataGenerator() - df_f2 = pd.DataFrame( - [["data/A.jpg", "A"], ["data/B.jpg", "B"]], - columns=["filename", "class"], - ) - flow_forward = generator_2.flow_from_dataframe( - df_f2, classes=["A", "B"] - ) - df_b2 = pd.DataFrame( - [["data/A.jpg", "A"], ["data/B.jpg", "B"]], - columns=["filename", "class"], - ) - flow_backward = generator_2.flow_from_dataframe( - df_b2, classes=["B", "A"] - ) - - # check class_indices - self.assertNotEqual( - flow_forward.class_indices, flow_backward.class_indices - ) - - -@test_utils.run_v2_only -class TestImageDataGenerator(test_combinations.TestCase): - def test_image_data_generator(self): - all_test_images = _generate_test_images(include_rgba=True) - for test_images in all_test_images: - img_list = [] - for im in test_images: - img_list.append(image_utils.img_to_array(im)[None, ...]) - - image.ImageDataGenerator( - featurewise_center=True, - samplewise_center=True, - featurewise_std_normalization=True, - samplewise_std_normalization=True, - zca_whitening=True, - rotation_range=90.0, - width_shift_range=0.1, - height_shift_range=0.1, - shear_range=0.5, - zoom_range=0.2, - channel_shift_range=0.0, - brightness_range=(1, 5), - fill_mode="nearest", - cval=0.5, - horizontal_flip=True, - vertical_flip=True, - interpolation_order=1, - ) - - def test_image_data_generator_with_validation_split(self): - all_test_images = _generate_test_images(include_rgba=True) - for test_images in all_test_images: - img_list = [] - for im in test_images: - img_list.append(image_utils.img_to_array(im)[None, ...]) - - images = np.vstack(img_list) - labels = np.concatenate( - [ - np.zeros((int(len(images) / 2),)), - np.ones((int(len(images) / 2),)), - ] - ) - generator = image.ImageDataGenerator(validation_split=0.5) - - # training and validation sets would have different - # number of classes, because labels are sorted - with self.assertRaisesRegex( - ValueError, - "Training and validation subsets have " - "different number of classes", - ): - generator.flow( - images, - labels, - shuffle=False, - batch_size=10, - subset="validation", - ) - - # test non categorical labels with validation split - generator.flow( - images, - labels, - shuffle=False, - batch_size=10, - ignore_class_split=True, - subset="validation", - ) - - labels = np.concatenate( - [ - np.zeros((int(len(images) / 4),)), - np.ones((int(len(images) / 4),)), - np.zeros((int(len(images) / 4),)), - np.ones((int(len(images) / 4),)), - ] - ) - - seq = generator.flow( - images, - labels, - shuffle=False, - batch_size=10, - subset="validation", - ) - - _, y = seq[0] - self.assertLen(np.unique(y), 2) - - seq = generator.flow( - images, labels, shuffle=False, batch_size=10, subset="training" - ) - _, y2 = seq[0] - self.assertLen(np.unique(y2), 2) - - with self.assertRaises(ValueError): - generator.flow( - images, - np.arange(images.shape[0]), - shuffle=False, - batch_size=3, - subset="foo", - ) - - def test_image_data_generator_with_split_value_error(self): - with self.assertRaises(ValueError): - image.ImageDataGenerator(validation_split=5) - - def test_image_data_generator_invalid_data(self): - generator = image.ImageDataGenerator( - featurewise_center=True, - samplewise_center=True, - featurewise_std_normalization=True, - samplewise_std_normalization=True, - zca_whitening=True, - data_format="channels_last", - ) - # Test fit with invalid data - with self.assertRaises(ValueError): - x = np.random.random((3, 10, 10)) - generator.fit(x) - - # Test flow with invalid data - with self.assertRaises(ValueError): - x = np.random.random((32, 10, 10)) - generator.flow(np.arange(x.shape[0])) - - def test_image_data_generator_fit(self): - generator = image.ImageDataGenerator( - featurewise_center=True, - samplewise_center=True, - featurewise_std_normalization=True, - samplewise_std_normalization=True, - zca_whitening=True, - rotation_range=90.0, - width_shift_range=0.1, - height_shift_range=0.1, - shear_range=0.5, - zoom_range=(0.2, 0.2), - channel_shift_range=0.0, - brightness_range=(1, 5), - fill_mode="nearest", - cval=0.5, - horizontal_flip=True, - vertical_flip=True, - interpolation_order=1, - data_format="channels_last", - ) - x = np.random.random((32, 10, 10, 3)) - generator.fit(x, augment=True) - # Test grayscale - x = np.random.random((32, 10, 10, 1)) - generator.fit(x) - # Test RBG - x = np.random.random((32, 10, 10, 3)) - generator.fit(x) - # Test more samples than dims - x = np.random.random((32, 4, 4, 1)) - generator.fit(x) - generator = image.ImageDataGenerator( - featurewise_center=True, - samplewise_center=True, - featurewise_std_normalization=True, - samplewise_std_normalization=True, - zca_whitening=True, - rotation_range=90.0, - width_shift_range=0.1, - height_shift_range=0.1, - shear_range=0.5, - zoom_range=(0.2, 0.2), - channel_shift_range=0.0, - brightness_range=(1, 5), - fill_mode="nearest", - cval=0.5, - horizontal_flip=True, - vertical_flip=True, - interpolation_order=1, - data_format="channels_first", - ) - x = np.random.random((32, 10, 10, 3)) - generator.fit(x, augment=True) - # Test grayscale - x = np.random.random((32, 1, 10, 10)) - generator.fit(x) - # Test RBG - x = np.random.random((32, 3, 10, 10)) - generator.fit(x) - # Test more samples than dims - x = np.random.random((32, 1, 4, 4)) - generator.fit(x) - - def test_image_data_generator_flow(self): - tmpdir = self.create_tempdir() - all_test_images = _generate_test_images(include_rgba=True) - for test_images in all_test_images: - img_list = [] - for im in test_images: - img_list.append(image_utils.img_to_array(im)[None, ...]) - - images = np.vstack(img_list) - dsize = images.shape[0] - generator = image.ImageDataGenerator( - featurewise_center=True, - samplewise_center=True, - featurewise_std_normalization=True, - samplewise_std_normalization=True, - zca_whitening=True, - rotation_range=90.0, - width_shift_range=0.1, - height_shift_range=0.1, - shear_range=0.5, - zoom_range=0.2, - channel_shift_range=0.0, - brightness_range=(1, 5), - fill_mode="nearest", - cval=0.5, - horizontal_flip=True, - vertical_flip=True, - interpolation_order=1, - ) - - generator.flow( - images, - np.arange(images.shape[0]), - shuffle=False, - save_to_dir=tmpdir.full_path, - batch_size=3, - ) - - generator.flow( - images, - np.arange(images.shape[0]), - shuffle=False, - sample_weight=np.arange(images.shape[0]) + 1, - save_to_dir=tmpdir.full_path, - batch_size=3, - ) - - # Test with `shuffle=True` - generator.flow( - images, - np.arange(images.shape[0]), - shuffle=True, - save_to_dir=tmpdir.full_path, - batch_size=3, - seed=42, - ) - - # Test without y - generator.flow( - images, - None, - shuffle=True, - save_to_dir=tmpdir.full_path, - batch_size=3, - ) - - # Test with a single miscellaneous input data array - x_misc1 = np.random.random(dsize) - generator.flow( - (images, x_misc1), np.arange(dsize), shuffle=False, batch_size=2 - ) - - # Test with two miscellaneous inputs - x_misc2 = np.random.random((dsize, 3, 3)) - generator.flow( - (images, [x_misc1, x_misc2]), - np.arange(dsize), - shuffle=False, - batch_size=2, - ) - - # Test cases with `y = None` - generator.flow(images, None, batch_size=3) - generator.flow((images, x_misc1), None, batch_size=3, shuffle=False) - generator.flow( - (images, [x_misc1, x_misc2]), None, batch_size=3, shuffle=False - ) - generator = image.ImageDataGenerator(validation_split=0.2) - generator.flow(images, batch_size=3) - - # Test some failure cases: - x_misc_err = np.random.random((dsize + 1, 3, 3)) - with self.assertRaisesRegex(ValueError, "All of the arrays in"): - generator.flow( - (images, x_misc_err), np.arange(dsize), batch_size=3 - ) - - with self.assertRaisesRegex( - ValueError, r"`x` \(images tensor\) and `y` \(labels\)" - ): - generator.flow( - (images, x_misc1), np.arange(dsize + 1), batch_size=3 - ) - - # Test `flow` behavior as Sequence - generator.flow( - images, - np.arange(images.shape[0]), - shuffle=False, - save_to_dir=tmpdir.full_path, - batch_size=3, - ) - - # Test with `shuffle=True` - generator.flow( - images, - np.arange(images.shape[0]), - shuffle=True, - save_to_dir=tmpdir.full_path, - batch_size=3, - seed=123, - ) - - # test order_interpolation - labels = np.array( - [ - [2, 2, 0, 2, 2], - [1, 3, 2, 3, 1], - [2, 1, 0, 1, 2], - [3, 1, 0, 2, 0], - [3, 1, 3, 2, 1], - ] - ) - - label_generator = image.ImageDataGenerator( - rotation_range=90.0, interpolation_order=0 - ) - label_generator.flow(x=labels[np.newaxis, ..., np.newaxis], seed=123) - - def test_valid_args(self): - with self.assertRaises(ValueError): - image.ImageDataGenerator(brightness_range=0.1) - - def test_batch_standardize(self): - all_test_images = _generate_test_images(include_rgba=True) - # ImageDataGenerator.standardize should work on batches - for test_images in all_test_images: - img_list = [] - for im in test_images: - img_list.append(image_utils.img_to_array(im)[None, ...]) - - images = np.vstack(img_list) - generator = image.ImageDataGenerator( - featurewise_center=True, - samplewise_center=True, - featurewise_std_normalization=True, - samplewise_std_normalization=True, - zca_whitening=True, - rotation_range=90.0, - width_shift_range=0.1, - height_shift_range=0.1, - shear_range=0.5, - zoom_range=0.2, - channel_shift_range=0.0, - brightness_range=(1, 5), - fill_mode="nearest", - cval=0.5, - horizontal_flip=True, - vertical_flip=True, - ) - generator.fit(images, augment=True) - - transformed = np.copy(images) - for i, im in enumerate(transformed): - transformed[i] = generator.random_transform(im) - transformed = generator.standardize(transformed) - - def test_deterministic_transform(self): - x = np.ones((32, 32, 3)) - generator = image.ImageDataGenerator( - rotation_range=90, fill_mode="constant" - ) - x = np.random.random((32, 32, 3)) - self.assertAllClose( - generator.apply_transform(x, {"flip_vertical": True}), x[::-1, :, :] - ) - self.assertAllClose( - generator.apply_transform(x, {"flip_horizontal": True}), - x[:, ::-1, :], - ) - x = np.ones((3, 3, 3)) - x_rotated = np.array( - [ - [[0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [0.0, 0.0, 0.0]], - [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], - [[0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [0.0, 0.0, 0.0]], - ] - ) - self.assertAllClose( - generator.apply_transform(x, {"theta": 45}), x_rotated - ) - - def test_random_transforms(self): - x = np.random.random((2, 28, 28)) - # Test get_random_transform with predefined seed - seed = 1 - generator = image.ImageDataGenerator( - rotation_range=90.0, - width_shift_range=0.1, - height_shift_range=0.1, - shear_range=0.5, - zoom_range=0.2, - channel_shift_range=0.1, - brightness_range=(1, 5), - horizontal_flip=True, - vertical_flip=True, - ) - transform_dict = generator.get_random_transform(x.shape, seed) - transform_dict2 = generator.get_random_transform(x.shape, seed * 2) - self.assertNotEqual(transform_dict["theta"], 0) - self.assertNotEqual(transform_dict["theta"], transform_dict2["theta"]) - self.assertNotEqual(transform_dict["tx"], 0) - self.assertNotEqual(transform_dict["tx"], transform_dict2["tx"]) - self.assertNotEqual(transform_dict["ty"], 0) - self.assertNotEqual(transform_dict["ty"], transform_dict2["ty"]) - self.assertNotEqual(transform_dict["shear"], 0) - self.assertNotEqual(transform_dict["shear"], transform_dict2["shear"]) - self.assertNotEqual(transform_dict["zx"], 0) - self.assertNotEqual(transform_dict["zx"], transform_dict2["zx"]) - self.assertNotEqual(transform_dict["zy"], 0) - self.assertNotEqual(transform_dict["zy"], transform_dict2["zy"]) - self.assertNotEqual(transform_dict["channel_shift_intensity"], 0) - self.assertNotEqual( - transform_dict["channel_shift_intensity"], - transform_dict2["channel_shift_intensity"], - ) - self.assertNotEqual(transform_dict["brightness"], 0) - self.assertNotEqual( - transform_dict["brightness"], transform_dict2["brightness"] - ) - - # Test get_random_transform without any randomness - generator = image.ImageDataGenerator() - transform_dict = generator.get_random_transform(x.shape, seed) - self.assertEqual(transform_dict["theta"], 0) - self.assertEqual(transform_dict["tx"], 0) - self.assertEqual(transform_dict["ty"], 0) - self.assertEqual(transform_dict["shear"], 0) - self.assertEqual(transform_dict["zx"], 1) - self.assertEqual(transform_dict["zy"], 1) - self.assertIsNone(transform_dict["channel_shift_intensity"], None) - self.assertIsNone(transform_dict["brightness"], None) - - def test_fit_rescale(self): - all_test_images = _generate_test_images(include_rgba=True) - rescale = 1.0 / 255 - - for test_images in all_test_images: - img_list = [] - for im in test_images: - img_list.append(image_utils.img_to_array(im)[None, ...]) - images = np.vstack(img_list) - - # featurewise_center test - generator = image.ImageDataGenerator( - rescale=rescale, featurewise_center=True, dtype="float64" - ) - generator.fit(images) - batch = generator.flow(images, batch_size=8).next() - self.assertLess(abs(np.mean(batch)), 1e-6) - - # featurewise_std_normalization test - generator = image.ImageDataGenerator( - rescale=rescale, - featurewise_center=True, - featurewise_std_normalization=True, - dtype="float64", - ) - generator.fit(images) - batch = generator.flow(images, batch_size=8).next() - self.assertLess(abs(np.mean(batch)), 1e-6) - self.assertLess(abs(1 - np.std(batch)), 1e-5) - - # zca_whitening test - generator = image.ImageDataGenerator( - rescale=rescale, - featurewise_center=True, - zca_whitening=True, - dtype="float64", - ) - generator.fit(images) - batch = generator.flow(images, batch_size=8).next() - batch = np.reshape( - batch, - ( - batch.shape[0], - batch.shape[1] * batch.shape[2] * batch.shape[3], - ), - ) - # Y * Y_T = n * I, where Y = W * X - identity = np.dot(batch, batch.T) / batch.shape[0] - self.assertTrue( - ( - (np.abs(identity) - np.identity(identity.shape[0])) < 1e-6 - ).all() - ) - - -@test_utils.run_v2_only -class TestAffineTransformations(test_combinations.TestCase): - def test_random_transforms(self): - x = np.random.random((2, 28, 28)) - self.assertEqual(image.random_rotation(x, 45).shape, (2, 28, 28)) - self.assertEqual(image.random_shift(x, 1, 1).shape, (2, 28, 28)) - self.assertEqual(image.random_shear(x, 20).shape, (2, 28, 28)) - self.assertEqual(image.random_channel_shift(x, 20).shape, (2, 28, 28)) - - def test_deterministic_transform(self): - x = np.ones((3, 3, 3)) - x_rotated = np.array( - [ - [[0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [0.0, 0.0, 0.0]], - [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], - [[0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [0.0, 0.0, 0.0]], - ] - ) - self.assertAllClose( - image.apply_affine_transform( - x, - theta=45, - row_axis=0, - col_axis=1, - channel_axis=2, - fill_mode="constant", - ), - x_rotated, - ) - - def test_matrix_center(self): - x = np.expand_dims( - np.array( - [ - [0, 1], - [0, 0], - ] - ), - -1, - ) - x_rotated90 = np.expand_dims( - np.array( - [ - [1, 0], - [0, 0], - ] - ), - -1, - ) - - self.assertAllClose( - image.apply_affine_transform( - x, theta=90, row_axis=0, col_axis=1, channel_axis=2 - ), - x_rotated90, - ) - - def test_translation(self): - x = np.array( - [ - [0, 0, 0, 0], - [0, 1, 0, 0], - [0, 0, 0, 0], - ] - ) - x_up = np.array( - [ - [0, 1, 0, 0], - [0, 0, 0, 0], - [0, 0, 0, 0], - ] - ) - x_dn = np.array( - [ - [0, 0, 0, 0], - [0, 0, 0, 0], - [0, 1, 0, 0], - ] - ) - x_left = np.array( - [ - [0, 0, 0, 0], - [1, 0, 0, 0], - [0, 0, 0, 0], - ] - ) - x_right = np.array( - [ - [0, 0, 0, 0], - [0, 0, 1, 0], - [0, 0, 0, 0], - ] - ) - - # Channels first - x_test = np.expand_dims(x, 0) - - # Horizontal translation - self.assertAllEqual( - x_left, np.squeeze(image.apply_affine_transform(x_test, tx=1)) - ) - self.assertAllEqual( - x_right, np.squeeze(image.apply_affine_transform(x_test, tx=-1)) - ) - - # change axes: x<->y - self.assertAllEqual( - x_left, - np.squeeze( - image.apply_affine_transform( - x_test, ty=1, row_axis=2, col_axis=1 - ) - ), - ) - self.assertAllEqual( - x_right, - np.squeeze( - image.apply_affine_transform( - x_test, ty=-1, row_axis=2, col_axis=1 - ) - ), - ) - - # Vertical translation - self.assertAllEqual( - x_up, np.squeeze(image.apply_affine_transform(x_test, ty=1)) - ) - self.assertAllEqual( - x_dn, np.squeeze(image.apply_affine_transform(x_test, ty=-1)) - ) - - # change axes: x<->y - self.assertAllEqual( - x_up, - np.squeeze( - image.apply_affine_transform( - x_test, tx=1, row_axis=2, col_axis=1 - ) - ), - ) - self.assertAllEqual( - x_dn, - np.squeeze( - image.apply_affine_transform( - x_test, tx=-1, row_axis=2, col_axis=1 - ) - ), - ) - - # Channels last - x_test = np.expand_dims(x, -1) - - # Horizontal translation - self.assertAllEqual( - x_left, - np.squeeze( - image.apply_affine_transform( - x_test, tx=1, row_axis=0, col_axis=1, channel_axis=2 - ) - ), - ) - self.assertAllEqual( - x_right, - np.squeeze( - image.apply_affine_transform( - x_test, tx=-1, row_axis=0, col_axis=1, channel_axis=2 - ) - ), - ) - - # change axes: x<->y - self.assertAllEqual( - x_left, - np.squeeze( - image.apply_affine_transform( - x_test, ty=1, row_axis=1, col_axis=0, channel_axis=2 - ) - ), - ) - self.assertAllEqual( - x_right, - np.squeeze( - image.apply_affine_transform( - x_test, ty=-1, row_axis=1, col_axis=0, channel_axis=2 - ) - ), - ) - - # Vertical translation - self.assertAllEqual( - x_up, - np.squeeze( - image.apply_affine_transform( - x_test, ty=1, row_axis=0, col_axis=1, channel_axis=2 - ) - ), - ) - self.assertAllEqual( - x_dn, - np.squeeze( - image.apply_affine_transform( - x_test, ty=-1, row_axis=0, col_axis=1, channel_axis=2 - ) - ), - ) - - # change axes: x<->y - self.assertAllEqual( - x_up, - np.squeeze( - image.apply_affine_transform( - x_test, tx=1, row_axis=1, col_axis=0, channel_axis=2 - ) - ), - ) - self.assertAllEqual( - x_dn, - np.squeeze( - image.apply_affine_transform( - x_test, tx=-1, row_axis=1, col_axis=0, channel_axis=2 - ) - ), - ) - - def test_random_zoom(self): - x = np.random.random((2, 28, 28)) - self.assertEqual(image.random_zoom(x, (5, 5)).shape, (2, 28, 28)) - self.assertAllClose(x, image.random_zoom(x, (1, 1))) - - def test_random_zoom_error(self): - with self.assertRaises(ValueError): - image.random_zoom(0, zoom_range=[0]) - - def test_random_brightness_error(self): - with self.assertRaises(ValueError): - image.random_brightness(0, [0]) - - def test_random_brightness_scale(self): - img = np.ones((1, 1, 3)) * 128 - zeros = np.zeros((1, 1, 3)) - must_be_128 = image.random_brightness(img, [1, 1], False) - self.assertAllEqual(img, must_be_128) - must_be_0 = image.random_brightness(img, [1, 1], True) - self.assertAllEqual(zeros, must_be_0) - - def test_random_brightness_scale_outside_range_positive(self): - img = np.ones((1, 1, 3)) * 1024 - zeros = np.zeros((1, 1, 3)) - must_be_1024 = image.random_brightness(img, [1, 1], False) - self.assertAllEqual(img, must_be_1024) - must_be_0 = image.random_brightness(img, [1, 1], True) - self.assertAllEqual(zeros, must_be_0) - - def test_random_brightness_scale_outside_range_negative(self): - img = np.ones((1, 1, 3)) * -1024 - zeros = np.zeros((1, 1, 3)) - must_be_neg_1024 = image.random_brightness(img, [1, 1], False) - self.assertAllEqual(img, must_be_neg_1024) - must_be_0 = image.random_brightness(img, [1, 1], True) - self.assertAllEqual(zeros, must_be_0) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/preprocessing/sequence.py b/keras/preprocessing/sequence.py deleted file mode 100644 index 25569118718..00000000000 --- a/keras/preprocessing/sequence.py +++ /dev/null @@ -1,385 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities for preprocessing sequence data. - -Deprecated: `tf.keras.preprocessing.sequence` APIs are not recommended for new -code. Prefer `tf.keras.utils.timeseries_dataset_from_array` and -the `tf.data` APIs which provide a much more flexible mechanisms for dealing -with sequences. See the [tf.data guide](https://www.tensorflow.org/guide/data) -for more details. -""" - - -import json -import random - -import numpy as np - -from keras.utils import data_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -def _remove_long_seq(maxlen, seq, label): - """Removes sequences that exceed the maximum length. - - Args: - maxlen: Int, maximum length of the output sequences. - seq: List of lists, where each sublist is a sequence. - label: List where each element is an integer. - - Returns: - new_seq, new_label: shortened lists for `seq` and `label`. - """ - new_seq, new_label = [], [] - for x, y in zip(seq, label): - if len(x) < maxlen: - new_seq.append(x) - new_label.append(y) - return new_seq, new_label - - -@keras_export("keras.preprocessing.sequence.TimeseriesGenerator") -class TimeseriesGenerator(data_utils.Sequence): - """Utility class for generating batches of temporal data. - - Deprecated: `tf.keras.preprocessing.sequence.TimeseriesGenerator` does not - operate on tensors and is not recommended for new code. Prefer using a - `tf.data.Dataset` which provides a more efficient and flexible mechanism for - batching, shuffling, and windowing input. See the - [tf.data guide](https://www.tensorflow.org/guide/data) for more details. - - This class takes in a sequence of data-points gathered at - equal intervals, along with time series parameters such as - stride, length of history, etc., to produce batches for - training/validation. - - Arguments: - data: Indexable generator (such as list or Numpy array) - containing consecutive data points (timesteps). - The data should be at 2D, and axis 0 is expected - to be the time dimension. - targets: Targets corresponding to timesteps in `data`. - It should have same length as `data`. - length: Length of the output sequences (in number of timesteps). - sampling_rate: Period between successive individual timesteps - within sequences. For rate `r`, timesteps - `data[i]`, `data[i-r]`, ... `data[i - length]` - are used for create a sample sequence. - stride: Period between successive output sequences. - For stride `s`, consecutive output samples would - be centered around `data[i]`, `data[i+s]`, `data[i+2*s]`, etc. - start_index: Data points earlier than `start_index` will not be used - in the output sequences. This is useful to reserve part of the - data for test or validation. - end_index: Data points later than `end_index` will not be used - in the output sequences. This is useful to reserve part of the - data for test or validation. - shuffle: Whether to shuffle output samples, - or instead draw them in chronological order. - reverse: Boolean: if `true`, timesteps in each output sample will be - in reverse chronological order. - batch_size: Number of timeseries samples in each batch - (except maybe the last one). - - Returns: - A [Sequence]( - https://www.tensorflow.org/api_docs/python/tf/keras/utils/Sequence) - instance. - - Examples: - ```python - from keras.preprocessing.sequence import TimeseriesGenerator - import numpy as np - data = np.array([[i] for i in range(50)]) - targets = np.array([[i] for i in range(50)]) - data_gen = TimeseriesGenerator(data, targets, - length=10, sampling_rate=2, - batch_size=2) - assert len(data_gen) == 20 - batch_0 = data_gen[0] - x, y = batch_0 - assert np.array_equal(x, - np.array([[[0], [2], [4], [6], [8]], - [[1], [3], [5], [7], [9]]])) - assert np.array_equal(y, - np.array([[10], [11]])) - ``` - """ - - def __init__( - self, - data, - targets, - length, - sampling_rate=1, - stride=1, - start_index=0, - end_index=None, - shuffle=False, - reverse=False, - batch_size=128, - ): - - if len(data) != len(targets): - raise ValueError( - "Data and targets have to be" - + f" of same length. Data length is {len(data)}" - + f" while target length is {len(targets)}" - ) - - self.data = data - self.targets = targets - self.length = length - self.sampling_rate = sampling_rate - self.stride = stride - self.start_index = start_index + length - if end_index is None: - end_index = len(data) - 1 - self.end_index = end_index - self.shuffle = shuffle - self.reverse = reverse - self.batch_size = batch_size - - if self.start_index > self.end_index: - raise ValueError( - "`start_index+length=%i > end_index=%i` " - "is disallowed, as no part of the sequence " - "would be left to be used as current step." - % (self.start_index, self.end_index) - ) - - def __len__(self): - return ( - self.end_index - self.start_index + self.batch_size * self.stride - ) // (self.batch_size * self.stride) - - def __getitem__(self, index): - if self.shuffle: - rows = np.random.randint( - self.start_index, self.end_index + 1, size=self.batch_size - ) - else: - i = self.start_index + self.batch_size * self.stride * index - rows = np.arange( - i, - min(i + self.batch_size * self.stride, self.end_index + 1), - self.stride, - ) - - samples = np.array( - [ - self.data[row - self.length : row : self.sampling_rate] - for row in rows - ] - ) - targets = np.array([self.targets[row] for row in rows]) - - if self.reverse: - return samples[:, ::-1, ...], targets - return samples, targets - - def get_config(self): - """Returns the TimeseriesGenerator configuration as Python dictionary. - - Returns: - A Python dictionary with the TimeseriesGenerator configuration. - """ - data = self.data - if type(self.data).__module__ == np.__name__: - data = self.data.tolist() - try: - json_data = json.dumps(data) - except TypeError as e: - raise TypeError("Data not JSON Serializable:", data) from e - - targets = self.targets - if type(self.targets).__module__ == np.__name__: - targets = self.targets.tolist() - try: - json_targets = json.dumps(targets) - except TypeError as e: - raise TypeError("Targets not JSON Serializable:", targets) from e - - return { - "data": json_data, - "targets": json_targets, - "length": self.length, - "sampling_rate": self.sampling_rate, - "stride": self.stride, - "start_index": self.start_index, - "end_index": self.end_index, - "shuffle": self.shuffle, - "reverse": self.reverse, - "batch_size": self.batch_size, - } - - def to_json(self, **kwargs): - """Returns a JSON string containing the generator's configuration. - - Args: - **kwargs: Additional keyword arguments to be passed - to `json.dumps()`. - - Returns: - A JSON string containing the tokenizer configuration. - """ - config = self.get_config() - timeseries_generator_config = { - "class_name": self.__class__.__name__, - "config": config, - } - return json.dumps(timeseries_generator_config, **kwargs) - - -@keras_export("keras.preprocessing.sequence.make_sampling_table") -def make_sampling_table(size, sampling_factor=1e-5): - """Generates a word rank-based probabilistic sampling table. - - Used for generating the `sampling_table` argument for `skipgrams`. - `sampling_table[i]` is the probability of sampling - the word i-th most common word in a dataset - (more common words should be sampled less frequently, for balance). - - The sampling probabilities are generated according - to the sampling distribution used in word2vec: - - ``` - p(word) = (min(1, sqrt(word_frequency / sampling_factor) / - (word_frequency / sampling_factor))) - ``` - - We assume that the word frequencies follow Zipf's law (s=1) to derive - a numerical approximation of frequency(rank): - - `frequency(rank) ~ 1/(rank * (log(rank) + gamma) + 1/2 - 1/(12*rank))` - where `gamma` is the Euler-Mascheroni constant. - - Args: - size: Int, number of possible words to sample. - sampling_factor: The sampling factor in the word2vec formula. - - Returns: - A 1D Numpy array of length `size` where the ith entry - is the probability that a word of rank i should be sampled. - """ - gamma = 0.577 - rank = np.arange(size) - rank[0] = 1 - inv_fq = rank * (np.log(rank) + gamma) + 0.5 - 1.0 / (12.0 * rank) - f = sampling_factor * inv_fq - - return np.minimum(1.0, f / np.sqrt(f)) - - -@keras_export("keras.preprocessing.sequence.skipgrams") -def skipgrams( - sequence, - vocabulary_size, - window_size=4, - negative_samples=1.0, - shuffle=True, - categorical=False, - sampling_table=None, - seed=None, -): - """Generates skipgram word pairs. - - This function transforms a sequence of word indexes (list of integers) - into tuples of words of the form: - - - (word, word in the same window), with label 1 (positive samples). - - (word, random word from the vocabulary), with label 0 (negative samples). - - Read more about Skipgram in this gnomic paper by Mikolov et al.: - [Efficient Estimation of Word Representations in - Vector Space](http://arxiv.org/pdf/1301.3781v3.pdf) - - Args: - sequence: A word sequence (sentence), encoded as a list - of word indices (integers). If using a `sampling_table`, - word indices are expected to match the rank - of the words in a reference dataset (e.g. 10 would encode - the 10-th most frequently occurring token). - Note that index 0 is expected to be a non-word and will be skipped. - vocabulary_size: Int, maximum possible word index + 1 - window_size: Int, size of sampling windows (technically half-window). - The window of a word `w_i` will be - `[i - window_size, i + window_size+1]`. - negative_samples: Float >= 0. 0 for no negative (i.e. random) samples. - 1 for same number as positive samples. - shuffle: Whether to shuffle the word couples before returning them. - categorical: bool. if False, labels will be - integers (eg. `[0, 1, 1 .. ]`), - if `True`, labels will be categorical, e.g. - `[[1,0],[0,1],[0,1] .. ]`. - sampling_table: 1D array of size `vocabulary_size` where the entry i - encodes the probability to sample a word of rank i. - seed: Random seed. - - Returns: - couples, labels: where `couples` are int pairs and - `labels` are either 0 or 1. - - Note: - By convention, index 0 in the vocabulary is - a non-word and will be skipped. - """ - couples = [] - labels = [] - for i, wi in enumerate(sequence): - if not wi: - continue - if sampling_table is not None: - if sampling_table[wi] < random.random(): - continue - - window_start = max(0, i - window_size) - window_end = min(len(sequence), i + window_size + 1) - for j in range(window_start, window_end): - if j != i: - wj = sequence[j] - if not wj: - continue - couples.append([wi, wj]) - if categorical: - labels.append([0, 1]) - else: - labels.append(1) - - if negative_samples > 0: - num_negative_samples = int(len(labels) * negative_samples) - words = [c[0] for c in couples] - random.shuffle(words) - - couples += [ - [words[i % len(words)], random.randint(1, vocabulary_size - 1)] - for i in range(num_negative_samples) - ] - if categorical: - labels += [[1, 0]] * num_negative_samples - else: - labels += [0] * num_negative_samples - - if shuffle: - if seed is None: - seed = random.randint(0, 10e6) - random.seed(seed) - random.shuffle(couples) - random.seed(seed) - random.shuffle(labels) - - return couples, labels diff --git a/keras/preprocessing/sequence_test.py b/keras/preprocessing/sequence_test.py deleted file mode 100644 index a5b2637efcc..00000000000 --- a/keras/preprocessing/sequence_test.py +++ /dev/null @@ -1,237 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for sequence data preprocessing utils.""" - -import math - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.preprocessing import sequence - - -class TestSequence(tf.test.TestCase): - def test_make_sampling_table(self): - a = sequence.make_sampling_table(3) - self.assertAllClose( - a, np.asarray([0.00315225, 0.00315225, 0.00547597]), rtol=0.1 - ) - - def test_skipgrams(self): - # test with no window size and binary labels - couples, labels = sequence.skipgrams(np.arange(3), vocabulary_size=3) - for couple in couples: - self.assertIn(couple[0], [0, 1, 2]) - self.assertIn(couple[1], [0, 1, 2]) - - # test window size and categorical labels - couples, labels = sequence.skipgrams( - np.arange(5), vocabulary_size=5, window_size=1, categorical=True - ) - for couple in couples: - self.assertLessEqual(couple[0] - couple[1], 3) - for label in labels: - self.assertLen(label, 2) - - def test_remove_long_seq(self): - maxlen = 5 - seq = [ - [1, 2, 3], - [1, 2, 3, 4, 5, 6], - ] - label = ["a", "b"] - new_seq, new_label = sequence._remove_long_seq(maxlen, seq, label) - self.assertEqual(new_seq, [[1, 2, 3]]) - self.assertEqual(new_label, ["a"]) - - def test_TimeseriesGenerator(self): - data = np.array([[i] for i in range(50)]) - targets = np.array([[i] for i in range(50)]) - - data_gen = sequence.TimeseriesGenerator( - data, targets, length=10, sampling_rate=2, batch_size=2 - ) - self.assertLen(data_gen, 20) - self.assertAllClose( - data_gen[0][0], - np.array([[[0], [2], [4], [6], [8]], [[1], [3], [5], [7], [9]]]), - ) - self.assertAllClose(data_gen[0][1], np.array([[10], [11]])) - self.assertAllClose( - data_gen[1][0], - np.array([[[2], [4], [6], [8], [10]], [[3], [5], [7], [9], [11]]]), - ) - self.assertAllClose(data_gen[1][1], np.array([[12], [13]])) - - data_gen = sequence.TimeseriesGenerator( - data, - targets, - length=10, - sampling_rate=2, - reverse=True, - batch_size=2, - ) - self.assertLen(data_gen, 20) - self.assertAllClose( - data_gen[0][0], - np.array([[[8], [6], [4], [2], [0]], [[9], [7], [5], [3], [1]]]), - ) - self.assertAllClose(data_gen[0][1], np.array([[10], [11]])) - - data_gen = sequence.TimeseriesGenerator( - data, - targets, - length=10, - sampling_rate=2, - shuffle=True, - batch_size=1, - ) - batch = data_gen[0] - r = batch[1][0][0] - self.assertAllClose( - batch[0], np.array([[[r - 10], [r - 8], [r - 6], [r - 4], [r - 2]]]) - ) - self.assertAllClose( - batch[1], - np.array( - [ - [r], - ] - ), - ) - - data_gen = sequence.TimeseriesGenerator( - data, targets, length=10, sampling_rate=2, stride=2, batch_size=2 - ) - self.assertLen(data_gen, 10) - self.assertAllClose( - data_gen[1][0], - np.array( - [[[4], [6], [8], [10], [12]], [[6], [8], [10], [12], [14]]] - ), - ) - self.assertAllClose(data_gen[1][1], np.array([[14], [16]])) - - data_gen = sequence.TimeseriesGenerator( - data, - targets, - length=10, - sampling_rate=2, - start_index=10, - end_index=30, - batch_size=2, - ) - self.assertLen(data_gen, 6) - self.assertAllClose( - data_gen[0][0], - np.array( - [[[10], [12], [14], [16], [18]], [[11], [13], [15], [17], [19]]] - ), - ) - self.assertAllClose(data_gen[0][1], np.array([[20], [21]])) - - data = np.array( - [np.random.random_sample((1, 2, 3, 4)) for i in range(50)] - ) - targets = np.array( - [np.random.random_sample((3, 2, 1)) for i in range(50)] - ) - data_gen = sequence.TimeseriesGenerator( - data, - targets, - length=10, - sampling_rate=2, - start_index=10, - end_index=30, - batch_size=2, - ) - self.assertLen(data_gen, 6) - self.assertAllClose( - data_gen[0][0], - np.array([np.array(data[10:19:2]), np.array(data[11:20:2])]), - ) - self.assertAllClose( - data_gen[0][1], np.array([targets[20], targets[21]]) - ) - - with self.assertRaisesRegex( - ValueError, r"`start_index\+length=50 > end_index=49` is disallowed" - ): - sequence.TimeseriesGenerator(data, targets, length=50) - - def test_TimeSeriesGenerator_doesnt_miss_any_sample(self): - x = np.array([[i] for i in range(10)]) - - for length in range(3, 10): - g = sequence.TimeseriesGenerator(x, x, length=length, batch_size=1) - expected = max(0, len(x) - length) - actual = len(g) - - self.assertEqual(expected, actual) - - if len(g) > 0: - # All elements in range(length, 10) should be used as current - # step - expected = np.arange(length, 10).reshape(-1, 1) - - y = np.concatenate([g[ix][1] for ix in range(len(g))], axis=0) - self.assertAllClose(y, expected) - - x = np.array([[i] for i in range(23)]) - - strides = (1, 1, 5, 7, 3, 5, 3) - lengths = (3, 3, 4, 3, 1, 3, 7) - batch_sizes = (6, 6, 6, 5, 6, 6, 6) - shuffles = (False, True, True, False, False, False, False) - - for stride, length, batch_size, shuffle in zip( - strides, lengths, batch_sizes, shuffles - ): - g = sequence.TimeseriesGenerator( - x, - x, - length=length, - sampling_rate=1, - stride=stride, - start_index=0, - end_index=None, - shuffle=shuffle, - reverse=False, - batch_size=batch_size, - ) - if shuffle: - # all batches have the same size when shuffle is True. - expected_sequences = ( - math.ceil((23 - length) / float(batch_size * stride)) - * batch_size - ) - else: - # last batch will be different if `(samples - length) / stride` - # is not a multiple of `batch_size`. - expected_sequences = math.ceil((23 - length) / float(stride)) - - expected_batches = math.ceil(expected_sequences / float(batch_size)) - - y = [g[ix][1] for ix in range(len(g))] - - actual_sequences = sum(len(y_) for y_ in y) - actual_batches = len(y) - - self.assertEqual(expected_sequences, actual_sequences) - self.assertEqual(expected_batches, actual_batches) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/preprocessing/text.py b/keras/preprocessing/text.py deleted file mode 100644 index f47d4068059..00000000000 --- a/keras/preprocessing/text.py +++ /dev/null @@ -1,613 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities for text input preprocessing. - -Deprecated: `tf.keras.preprocessing.text` APIs are not recommended for new code. -Prefer `tf.keras.utils.text_dataset_from_directory` and -`tf.keras.layers.TextVectorization` which provide a more efficient approach -for preprocessing text input. For an introduction to these APIs, see -the [text loading tutorial] -(https://www.tensorflow.org/tutorials/load_data/text) -and [preprocessing layer guide] -(https://www.tensorflow.org/guide/keras/preprocessing_layers). -""" - - -import collections -import hashlib -import json -import warnings - -import numpy as np - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.preprocessing.text.text_to_word_sequence") -def text_to_word_sequence( - input_text, - filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', - lower=True, - split=" ", -): - r"""Converts a text to a sequence of words (or tokens). - - Deprecated: `tf.keras.preprocessing.text.text_to_word_sequence` does not - operate on tensors and is not recommended for new code. Prefer - `tf.strings.regex_replace` and `tf.strings.split` which provide equivalent - functionality and accept `tf.Tensor` input. For an overview of text handling - in Tensorflow, see the [text loading tutorial] - (https://www.tensorflow.org/tutorials/load_data/text). - - This function transforms a string of text into a list of words - while ignoring `filters` which include punctuations by default. - - >>> sample_text = 'This is a sample sentence.' - >>> tf.keras.preprocessing.text.text_to_word_sequence(sample_text) - ['this', 'is', 'a', 'sample', 'sentence'] - - Args: - input_text: Input text (string). - filters: list (or concatenation) of characters to filter out, such as - punctuation. Default: ``'!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\\t\\n'``, - includes basic punctuation, tabs, and newlines. - lower: boolean. Whether to convert the input to lowercase. - split: str. Separator for word splitting. - - Returns: - A list of words (or tokens). - """ - if lower: - input_text = input_text.lower() - - translate_dict = {c: split for c in filters} - translate_map = str.maketrans(translate_dict) - input_text = input_text.translate(translate_map) - - seq = input_text.split(split) - return [i for i in seq if i] - - -@keras_export("keras.preprocessing.text.one_hot") -def one_hot( - input_text, - n, - filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', - lower=True, - split=" ", - analyzer=None, -): - r"""One-hot encodes a text into a list of word indexes of size `n`. - - Deprecated: `tf.keras.text.preprocessing.one_hot` does not operate on - tensors and is not recommended for new code. Prefer - `tf.keras.layers.Hashing` with `output_mode='one_hot'` which provides - equivalent functionality through a layer which accepts `tf.Tensor` input. - See the [preprocessing layer guide] - (https://www.tensorflow.org/guide/keras/preprocessing_layers) for an - overview of preprocessing layers. - - This function receives as input a string of text and returns a - list of encoded integers each corresponding to a word (or token) - in the given input string. - - Args: - input_text: Input text (string). - n: int. Size of vocabulary. - filters: list (or concatenation) of characters to filter out, such as - punctuation. Default: - ``` - '!"#$%&()*+,-./:;<=>?@[\]^_`{|}~\t\n - ```, - includes basic punctuation, tabs, and newlines. - lower: boolean. Whether to set the text to lowercase. - split: str. Separator for word splitting. - analyzer: function. Custom analyzer to split the text - - Returns: - List of integers in `[1, n]`. Each integer encodes a word - (unicity non-guaranteed). - """ - return hashing_trick( - input_text, - n, - hash_function=hash, - filters=filters, - lower=lower, - split=split, - analyzer=analyzer, - ) - - -@keras_export("keras.preprocessing.text.hashing_trick") -def hashing_trick( - text, - n, - hash_function=None, - filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', - lower=True, - split=" ", - analyzer=None, -): - r"""Converts a text to a sequence of indexes in a fixed-size hashing space. - - Deprecated: `tf.keras.text.preprocessing.hashing_trick` does not operate on - tensors and is not recommended for new code. Prefer - `tf.keras.layers.Hashing` which provides equivalent functionality through a - layer which accepts `tf.Tensor` input. See the [preprocessing layer guide]( - https://www.tensorflow.org/guide/keras/preprocessing_layers) for an - overview of preprocessing layers. - - Args: - text: Input text (string). - n: Dimension of the hashing space. - hash_function: defaults to python `hash` function, can be 'md5' or - any function that takes in input a string and returns a int. - Note that 'hash' is not a stable hashing function, so - it is not consistent across different runs, while 'md5' - is a stable hashing function. - filters: list (or concatenation) of characters to filter out, such as - punctuation. Default: ``!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\\t\\n``, - includes basic punctuation, tabs, and newlines. - lower: boolean. Whether to set the text to lowercase. - split: str. Separator for word splitting. - analyzer: function. Custom analyzer to split the text - - Returns: - A list of integer word indices (unicity non-guaranteed). - `0` is a reserved index that won't be assigned to any word. - Two or more words may be assigned to the same index, due to possible - collisions by the hashing function. - The [probability]( - https://en.wikipedia.org/wiki/Birthday_problem#Probability_table) - of a collision is in relation to the dimension of the hashing space and - the number of distinct objects. - """ - if hash_function is None: - hash_function = hash - elif hash_function == "md5": - hash_function = lambda w: int(hashlib.md5(w.encode()).hexdigest(), 16) - - if analyzer is None: - seq = text_to_word_sequence( - text, filters=filters, lower=lower, split=split - ) - else: - seq = analyzer(text) - - return [(hash_function(w) % (n - 1) + 1) for w in seq] - - -@keras_export("keras.preprocessing.text.Tokenizer") -class Tokenizer(object): - """Text tokenization utility class. - - Deprecated: `tf.keras.preprocessing.text.Tokenizer` does not operate on - tensors and is not recommended for new code. Prefer - `tf.keras.layers.TextVectorization` which provides equivalent functionality - through a layer which accepts `tf.Tensor` input. See the - [text loading tutorial](https://www.tensorflow.org/tutorials/load_data/text) - for an overview of the layer and text handling in tensorflow. - - This class allows to vectorize a text corpus, by turning each - text into either a sequence of integers (each integer being the index - of a token in a dictionary) or into a vector where the coefficient - for each token could be binary, based on word count, based on tf-idf... - - By default, all punctuation is removed, turning the texts into - space-separated sequences of words - (words may include the `'` character). These sequences are then - split into lists of tokens. They will then be indexed or vectorized. - - `0` is a reserved index that won't be assigned to any word. - - Args: - num_words: the maximum number of words to keep, based - on word frequency. Only the most common `num_words-1` words will - be kept. - filters: a string where each element is a character that will be - filtered from the texts. The default is all punctuation, plus - tabs and line breaks, minus the `'` character. - lower: boolean. Whether to convert the texts to lowercase. - split: str. Separator for word splitting. - char_level: if True, every character will be treated as a token. - oov_token: if given, it will be added to word_index and used to - replace out-of-vocabulary words during text_to_sequence calls - analyzer: function. Custom analyzer to split the text. - The default analyzer is text_to_word_sequence - """ - - def __init__( - self, - num_words=None, - filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', - lower=True, - split=" ", - char_level=False, - oov_token=None, - analyzer=None, - **kwargs - ): - # Legacy support - if "nb_words" in kwargs: - warnings.warn( - "The `nb_words` argument in `Tokenizer` " - "has been renamed `num_words`." - ) - num_words = kwargs.pop("nb_words") - document_count = kwargs.pop("document_count", 0) - if kwargs: - raise TypeError("Unrecognized keyword arguments: " + str(kwargs)) - - self.word_counts = collections.OrderedDict() - self.word_docs = collections.defaultdict(int) - self.filters = filters - self.split = split - self.lower = lower - self.num_words = num_words - self.document_count = document_count - self.char_level = char_level - self.oov_token = oov_token - self.index_docs = collections.defaultdict(int) - self.word_index = {} - self.index_word = {} - self.analyzer = analyzer - - def fit_on_texts(self, texts): - """Updates internal vocabulary based on a list of texts. - - In the case where texts contains lists, - we assume each entry of the lists to be a token. - - Required before using `texts_to_sequences` or `texts_to_matrix`. - - Args: - texts: can be a list of strings, - a generator of strings (for memory-efficiency), - or a list of list of strings. - """ - for text in texts: - self.document_count += 1 - if self.char_level or isinstance(text, list): - if self.lower: - if isinstance(text, list): - text = [text_elem.lower() for text_elem in text] - else: - text = text.lower() - seq = text - else: - if self.analyzer is None: - seq = text_to_word_sequence( - text, - filters=self.filters, - lower=self.lower, - split=self.split, - ) - else: - seq = self.analyzer(text) - for w in seq: - if w in self.word_counts: - self.word_counts[w] += 1 - else: - self.word_counts[w] = 1 - for w in set(seq): - # In how many documents each word occurs - self.word_docs[w] += 1 - - wcounts = list(self.word_counts.items()) - wcounts.sort(key=lambda x: x[1], reverse=True) - # forcing the oov_token to index 1 if it exists - if self.oov_token is None: - sorted_voc = [] - else: - sorted_voc = [self.oov_token] - sorted_voc.extend(wc[0] for wc in wcounts) - - # note that index 0 is reserved, never assigned to an existing word - self.word_index = dict( - zip(sorted_voc, list(range(1, len(sorted_voc) + 1))) - ) - - self.index_word = {c: w for w, c in self.word_index.items()} - - for w, c in list(self.word_docs.items()): - self.index_docs[self.word_index[w]] = c - - def fit_on_sequences(self, sequences): - """Updates internal vocabulary based on a list of sequences. - - Required before using `sequences_to_matrix` - (if `fit_on_texts` was never called). - - Args: - sequences: A list of sequence. - A "sequence" is a list of integer word indices. - """ - self.document_count += len(sequences) - for seq in sequences: - seq = set(seq) - for i in seq: - self.index_docs[i] += 1 - - def texts_to_sequences(self, texts): - """Transforms each text in texts to a sequence of integers. - - Only top `num_words-1` most frequent words will be taken into account. - Only words known by the tokenizer will be taken into account. - - Args: - texts: A list of texts (strings). - - Returns: - A list of sequences. - """ - return list(self.texts_to_sequences_generator(texts)) - - def texts_to_sequences_generator(self, texts): - """Transforms each text in `texts` to a sequence of integers. - - Each item in texts can also be a list, - in which case we assume each item of that list to be a token. - - Only top `num_words-1` most frequent words will be taken into account. - Only words known by the tokenizer will be taken into account. - - Args: - texts: A list of texts (strings). - - Yields: - Yields individual sequences. - """ - num_words = self.num_words - oov_token_index = self.word_index.get(self.oov_token) - for text in texts: - if self.char_level or isinstance(text, list): - if self.lower: - if isinstance(text, list): - text = [text_elem.lower() for text_elem in text] - else: - text = text.lower() - seq = text - else: - if self.analyzer is None: - seq = text_to_word_sequence( - text, - filters=self.filters, - lower=self.lower, - split=self.split, - ) - else: - seq = self.analyzer(text) - vect = [] - for w in seq: - i = self.word_index.get(w) - if i is not None: - if num_words and i >= num_words: - if oov_token_index is not None: - vect.append(oov_token_index) - else: - vect.append(i) - elif self.oov_token is not None: - vect.append(oov_token_index) - yield vect - - def sequences_to_texts(self, sequences): - """Transforms each sequence into a list of text. - - Only top `num_words-1` most frequent words will be taken into account. - Only words known by the tokenizer will be taken into account. - - Args: - sequences: A list of sequences (list of integers). - - Returns: - A list of texts (strings) - """ - return list(self.sequences_to_texts_generator(sequences)) - - def sequences_to_texts_generator(self, sequences): - """Transforms each sequence in `sequences` to a list of texts(strings). - - Each sequence has to a list of integers. - In other words, sequences should be a list of sequences - - Only top `num_words-1` most frequent words will be taken into account. - Only words known by the tokenizer will be taken into account. - - Args: - sequences: A list of sequences. - - Yields: - Yields individual texts. - """ - num_words = self.num_words - oov_token_index = self.word_index.get(self.oov_token) - for seq in sequences: - vect = [] - for num in seq: - word = self.index_word.get(num) - if word is not None: - if num_words and num >= num_words: - if oov_token_index is not None: - vect.append(self.index_word[oov_token_index]) - else: - vect.append(word) - elif self.oov_token is not None: - vect.append(self.index_word[oov_token_index]) - vect = " ".join(vect) - yield vect - - def texts_to_matrix(self, texts, mode="binary"): - """Convert a list of texts to a Numpy matrix. - - Args: - texts: list of strings. - mode: one of "binary", "count", "tfidf", "freq". - - Returns: - A Numpy matrix. - """ - sequences = self.texts_to_sequences(texts) - return self.sequences_to_matrix(sequences, mode=mode) - - def sequences_to_matrix(self, sequences, mode="binary"): - """Converts a list of sequences into a Numpy matrix. - - Args: - sequences: list of sequences - (a sequence is a list of integer word indices). - mode: one of "binary", "count", "tfidf", "freq" - - Returns: - A Numpy matrix. - - Raises: - ValueError: In case of invalid `mode` argument, - or if the Tokenizer requires to be fit to sample data. - """ - if not self.num_words: - if self.word_index: - num_words = len(self.word_index) + 1 - else: - raise ValueError( - "Specify a dimension (`num_words` argument), " - "or fit on some text data first." - ) - else: - num_words = self.num_words - - if mode == "tfidf" and not self.document_count: - raise ValueError( - "Fit the Tokenizer on some data before using tfidf mode." - ) - - x = np.zeros((len(sequences), num_words)) - for i, seq in enumerate(sequences): - if not seq: - continue - counts = collections.defaultdict(int) - for j in seq: - if j >= num_words: - continue - counts[j] += 1 - for j, c in list(counts.items()): - if mode == "count": - x[i][j] = c - elif mode == "freq": - x[i][j] = c / len(seq) - elif mode == "binary": - x[i][j] = 1 - elif mode == "tfidf": - # Use weighting scheme 2 in - # https://en.wikipedia.org/wiki/Tf%E2%80%93idf - tf = 1 + np.log(c) - idf = np.log( - 1 - + self.document_count / (1 + self.index_docs.get(j, 0)) - ) - x[i][j] = tf * idf - else: - raise ValueError("Unknown vectorization mode:", mode) - return x - - def get_config(self): - """Returns the tokenizer configuration as Python dictionary. - - The word count dictionaries used by the tokenizer get serialized - into plain JSON, so that the configuration can be read by other - projects. - - Returns: - A Python dictionary with the tokenizer configuration. - """ - json_word_counts = json.dumps(self.word_counts) - json_word_docs = json.dumps(self.word_docs) - json_index_docs = json.dumps(self.index_docs) - json_word_index = json.dumps(self.word_index) - json_index_word = json.dumps(self.index_word) - - return { - "num_words": self.num_words, - "filters": self.filters, - "lower": self.lower, - "split": self.split, - "char_level": self.char_level, - "oov_token": self.oov_token, - "document_count": self.document_count, - "word_counts": json_word_counts, - "word_docs": json_word_docs, - "index_docs": json_index_docs, - "index_word": json_index_word, - "word_index": json_word_index, - } - - def to_json(self, **kwargs): - """Returns a JSON string containing the tokenizer configuration. - - To load a tokenizer from a JSON string, use - `keras.preprocessing.text.tokenizer_from_json(json_string)`. - - Args: - **kwargs: Additional keyword arguments - to be passed to `json.dumps()`. - - Returns: - A JSON string containing the tokenizer configuration. - """ - config = self.get_config() - tokenizer_config = { - "class_name": self.__class__.__name__, - "config": config, - } - return json.dumps(tokenizer_config, **kwargs) - - -@keras_export("keras.preprocessing.text.tokenizer_from_json") -def tokenizer_from_json(json_string): - """Parses a JSON tokenizer configuration and returns a tokenizer instance. - - Deprecated: `tf.keras.preprocessing.text.Tokenizer` does not operate on - tensors and is not recommended for new code. Prefer - `tf.keras.layers.TextVectorization` which provides equivalent functionality - through a layer which accepts `tf.Tensor` input. See the - [text loading tutorial](https://www.tensorflow.org/tutorials/load_data/text) - for an overview of the layer and text handling in tensorflow. - - Args: - json_string: JSON string encoding a tokenizer configuration. - - Returns: - A Keras Tokenizer instance - """ - tokenizer_config = json.loads(json_string) - config = tokenizer_config.get("config") - - word_counts = json.loads(config.pop("word_counts")) - word_docs = json.loads(config.pop("word_docs")) - index_docs = json.loads(config.pop("index_docs")) - # Integer indexing gets converted to strings with json.dumps() - index_docs = {int(k): v for k, v in index_docs.items()} - index_word = json.loads(config.pop("index_word")) - index_word = {int(k): v for k, v in index_word.items()} - word_index = json.loads(config.pop("word_index")) - - tokenizer = Tokenizer(**config) - tokenizer.word_counts = word_counts - tokenizer.word_docs = word_docs - tokenizer.index_docs = index_docs - tokenizer.word_index = word_index - tokenizer.index_word = index_word - return tokenizer diff --git a/keras/preprocessing/text_test.py b/keras/preprocessing/text_test.py deleted file mode 100644 index a73e81ccc62..00000000000 --- a/keras/preprocessing/text_test.py +++ /dev/null @@ -1,348 +0,0 @@ -# -*- coding: utf-8 -*- -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for text data preprocessing utils.""" - -import collections - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.preprocessing import text - - -class TestText(tf.test.TestCase): - def test_one_hot(self): - sample_text = "The cat sat on the mat." - encoded = text.one_hot(sample_text, 5) - self.assertLen(encoded, 6) - self.assertLessEqual(np.max(encoded), 4) - self.assertGreaterEqual(np.min(encoded), 0) - - sample_text = "The-cat-sat-on-the-mat" - encoded2 = text.one_hot( - sample_text, 5, analyzer=lambda t: t.lower().split("-") - ) - self.assertEqual(encoded, encoded2) - self.assertLen(encoded, 6) - self.assertLessEqual(np.max(encoded), 4) - self.assertGreaterEqual(np.min(encoded), 0) - - def test_hashing_trick_hash(self): - sample_text = "The cat sat on the mat." - encoded = text.hashing_trick(sample_text, 5) - self.assertLen(encoded, 6) - self.assertLessEqual(np.max(encoded), 4) - self.assertGreaterEqual(np.min(encoded), 1) - - def test_hashing_trick_md5(self): - sample_text = "The cat sat on the mat." - encoded = text.hashing_trick(sample_text, 5, hash_function="md5") - self.assertLen(encoded, 6) - self.assertLessEqual(np.max(encoded), 4) - self.assertGreaterEqual(np.min(encoded), 1) - - def test_tokenizer(self): - sample_texts = [ - "The cat sat on the mat.", - "The dog sat on the log.", - "Dogs and cats living together.", - ] - tokenizer = text.Tokenizer(num_words=10) - tokenizer.fit_on_texts(sample_texts) - - sequences = [] - for seq in tokenizer.texts_to_sequences_generator(sample_texts): - sequences.append(seq) - self.assertLess(np.max(np.max(np.asarray(sequences, dtype=object))), 10) - self.assertEqual(np.min(np.min(np.asarray(sequences, dtype=object))), 1) - - tokenizer.fit_on_sequences(sequences) - - for mode in ["binary", "count", "tfidf", "freq"]: - tokenizer.texts_to_matrix(sample_texts, mode) - - def test_tokenizer_serde_no_fitting(self): - tokenizer = text.Tokenizer(num_words=100) - - tokenizer_json = tokenizer.to_json() - recovered = text.tokenizer_from_json(tokenizer_json) - - self.assertEqual(tokenizer.get_config(), recovered.get_config()) - - self.assertEqual(tokenizer.word_docs, recovered.word_docs) - self.assertEqual(tokenizer.word_counts, recovered.word_counts) - self.assertEqual(tokenizer.word_index, recovered.word_index) - self.assertEqual(tokenizer.index_word, recovered.index_word) - self.assertEqual(tokenizer.index_docs, recovered.index_docs) - - def test_tokenizer_serde_fitting(self): - sample_texts = [ - "There was a time that the pieces fit, but I watched " - "them fall away", - "Mildewed and smoldering, strangled by our coveting", - "I've done the math enough to know the dangers of our second " - "guessing", - ] - tokenizer = text.Tokenizer(num_words=100) - tokenizer.fit_on_texts(sample_texts) - - seq_generator = tokenizer.texts_to_sequences_generator(sample_texts) - sequences = [seq for seq in seq_generator] - tokenizer.fit_on_sequences(sequences) - - tokenizer_json = tokenizer.to_json() - recovered = text.tokenizer_from_json(tokenizer_json) - - self.assertEqual(tokenizer.char_level, recovered.char_level) - self.assertEqual(tokenizer.document_count, recovered.document_count) - self.assertEqual(tokenizer.filters, recovered.filters) - self.assertEqual(tokenizer.lower, recovered.lower) - self.assertEqual(tokenizer.num_words, recovered.num_words) - self.assertEqual(tokenizer.oov_token, recovered.oov_token) - - self.assertEqual(tokenizer.word_docs, recovered.word_docs) - self.assertEqual(tokenizer.word_counts, recovered.word_counts) - self.assertEqual(tokenizer.word_index, recovered.word_index) - self.assertEqual(tokenizer.index_word, recovered.index_word) - self.assertEqual(tokenizer.index_docs, recovered.index_docs) - - def test_sequential_fit(self): - texts = [ - "The cat sat on the mat.", - "The dog sat on the log.", - "Dogs and cats living together.", - ] - word_sequences = [ - ["The", "cat", "is", "sitting"], - ["The", "dog", "is", "standing"], - ] - - tokenizer = text.Tokenizer() - tokenizer.fit_on_texts(texts) - tokenizer.fit_on_texts(word_sequences) - - self.assertEqual(tokenizer.document_count, 5) - - tokenizer.texts_to_matrix(texts) - tokenizer.texts_to_matrix(word_sequences) - - def test_text_to_word_sequence(self): - sample_text = "hello! ? world!" - self.assertEqual( - text.text_to_word_sequence(sample_text), ["hello", "world"] - ) - - def test_text_to_word_sequence_multichar_split(self): - sample_text = "hello!stop?world!" - self.assertEqual( - text.text_to_word_sequence(sample_text, split="stop"), - ["hello", "world"], - ) - - def test_text_to_word_sequence_unicode(self): - sample_text = "ali! veli? kırk dokuz elli" - self.assertEqual( - text.text_to_word_sequence(sample_text), - ["ali", "veli", "kırk", "dokuz", "elli"], - ) - - def test_text_to_word_sequence_unicode_multichar_split(self): - sample_text = "ali!stopveli?stopkırkstopdokuzstopelli" - self.assertEqual( - text.text_to_word_sequence(sample_text, split="stop"), - ["ali", "veli", "kırk", "dokuz", "elli"], - ) - - def test_tokenizer_unicode(self): - sample_texts = [ - "ali veli kırk dokuz elli", - "ali veli kırk dokuz elli veli kırk dokuz", - ] - tokenizer = text.Tokenizer(num_words=5) - tokenizer.fit_on_texts(sample_texts) - - self.assertLen(tokenizer.word_counts, 5) - - def test_tokenizer_oov_flag(self): - """Test of Out of Vocabulary (OOV) flag in text.Tokenizer.""" - x_train = ["This text has only known words"] - x_test = ["This text has some unknown words"] # 2 OOVs: some, unknown - - # Default, without OOV flag - tokenizer = text.Tokenizer() - tokenizer.fit_on_texts(x_train) - x_test_seq = tokenizer.texts_to_sequences(x_test) - self.assertLen(x_test_seq[0], 4) # discards 2 OOVs - - # With OOV feature - tokenizer = text.Tokenizer(oov_token="") - tokenizer.fit_on_texts(x_train) - x_test_seq = tokenizer.texts_to_sequences(x_test) - self.assertLen(x_test_seq[0], 6) # OOVs marked in place - - def test_tokenizer_oov_flag_and_num_words(self): - x_train = ["This text has only known words this text"] - x_test = ["This text has some unknown words"] - - tokenizer = text.Tokenizer(num_words=3, oov_token="") - tokenizer.fit_on_texts(x_train) - x_test_seq = tokenizer.texts_to_sequences(x_test) - trans_text = " ".join(tokenizer.index_word[t] for t in x_test_seq[0]) - self.assertLen(x_test_seq[0], 6) - self.assertEqual(trans_text, "this ") - - def test_sequences_to_texts_with_num_words_and_oov_token(self): - x_train = ["This text has only known words this text"] - x_test = ["This text has some unknown words"] - - tokenizer = text.Tokenizer(num_words=3, oov_token="") - - tokenizer.fit_on_texts(x_train) - x_test_seq = tokenizer.texts_to_sequences(x_test) - trans_text = tokenizer.sequences_to_texts(x_test_seq) - self.assertEqual(trans_text, ["this "]) - - def test_sequences_to_texts_no_num_words(self): - x_train = ["This text has only known words this text"] - x_test = ["This text has some unknown words"] - - tokenizer = text.Tokenizer(oov_token="") - - tokenizer.fit_on_texts(x_train) - x_test_seq = tokenizer.texts_to_sequences(x_test) - trans_text = tokenizer.sequences_to_texts(x_test_seq) - self.assertEqual(trans_text, ["this text has words"]) - - def test_sequences_to_texts_no_oov_token(self): - x_train = ["This text has only known words this text"] - x_test = ["This text has some unknown words"] - - tokenizer = text.Tokenizer(num_words=3) - - tokenizer.fit_on_texts(x_train) - x_test_seq = tokenizer.texts_to_sequences(x_test) - trans_text = tokenizer.sequences_to_texts(x_test_seq) - self.assertEqual(trans_text, ["this text"]) - - def test_sequences_to_texts_no_num_words_no_oov_token(self): - x_train = ["This text has only known words this text"] - x_test = ["This text has some unknown words"] - - tokenizer = text.Tokenizer() - - tokenizer.fit_on_texts(x_train) - x_test_seq = tokenizer.texts_to_sequences(x_test) - trans_text = tokenizer.sequences_to_texts(x_test_seq) - self.assertEqual(trans_text, ["this text has words"]) - - def test_sequences_to_texts(self): - texts = [ - "The cat sat on the mat.", - "The dog sat on the log.", - "Dogs and cats living together.", - ] - tokenizer = text.Tokenizer(num_words=10, oov_token="") - tokenizer.fit_on_texts(texts) - tokenized_text = tokenizer.texts_to_sequences(texts) - trans_text = tokenizer.sequences_to_texts(tokenized_text) - self.assertEqual( - trans_text, - [ - "the cat sat on the mat", - "the dog sat on the log", - "dogs ", - ], - ) - - def test_tokenizer_lower_flag(self): - """Tests for `lower` flag in text.Tokenizer.""" - # word level tokenizer with sentences as texts - word_tokenizer = text.Tokenizer(lower=True) - texts = [ - "The cat sat on the mat.", - "The dog sat on the log.", - "Dog and Cat living Together.", - ] - word_tokenizer.fit_on_texts(texts) - expected_word_counts = collections.OrderedDict( - [ - ("the", 4), - ("cat", 2), - ("sat", 2), - ("on", 2), - ("mat", 1), - ("dog", 2), - ("log", 1), - ("and", 1), - ("living", 1), - ("together", 1), - ] - ) - self.assertEqual(word_tokenizer.word_counts, expected_word_counts) - - # word level tokenizer with word_sequences as texts - word_tokenizer = text.Tokenizer(lower=True) - word_sequences = [ - ["The", "cat", "is", "sitting"], - ["The", "dog", "is", "standing"], - ] - word_tokenizer.fit_on_texts(word_sequences) - expected_word_counts = collections.OrderedDict( - [ - ("the", 2), - ("cat", 1), - ("is", 2), - ("sitting", 1), - ("dog", 1), - ("standing", 1), - ] - ) - self.assertEqual(word_tokenizer.word_counts, expected_word_counts) - - # char level tokenizer with sentences as texts - char_tokenizer = text.Tokenizer(lower=True, char_level=True) - texts = [ - "The cat sat on the mat.", - "The dog sat on the log.", - "Dog and Cat living Together.", - ] - char_tokenizer.fit_on_texts(texts) - expected_word_counts = collections.OrderedDict( - [ - ("t", 11), - ("h", 5), - ("e", 6), - (" ", 14), - ("c", 2), - ("a", 6), - ("s", 2), - ("o", 6), - ("n", 4), - ("m", 1), - (".", 3), - ("d", 3), - ("g", 5), - ("l", 2), - ("i", 2), - ("v", 1), - ("r", 1), - ] - ) - self.assertEqual(char_tokenizer.word_counts, expected_word_counts) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/protobuf/BUILD b/keras/protobuf/BUILD deleted file mode 100644 index 413dcb74d90..00000000000 --- a/keras/protobuf/BUILD +++ /dev/null @@ -1,27 +0,0 @@ -# Description: -# Contains Keras protobufs - -load("@com_google_protobuf//:protobuf.bzl", "py_proto_library") - -package( - default_visibility = [ - "//keras:friends", - ], - licenses = ["notice"], # Apache 2.0 -) - -py_proto_library( - name = "saved_metadata_proto_py_pb2", - srcs = ["saved_metadata.proto"], - deps = [":versions_proto_py_pb2"], -) - -py_proto_library( - name = "projector_config_proto_py_pb2", - srcs = ["projector_config.proto"], -) - -py_proto_library( - name = "versions_proto_py_pb2", - srcs = ["versions.proto"], -) diff --git a/keras/protobuf/projector_config.proto b/keras/protobuf/projector_config.proto deleted file mode 100644 index 056249466a5..00000000000 --- a/keras/protobuf/projector_config.proto +++ /dev/null @@ -1,50 +0,0 @@ -/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -==============================================================================*/ - -// This file is a copy of the TensorBoard ProjectorConfig proto. -// Keep this file in sync with the source proto definition at -// https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/projector/projector_config.proto - -syntax = "proto3"; - -package third_party.py.keras.protobuf; - -message SpriteMetadata { - string image_path = 1; - // [width, height] of a single image in the sprite. - repeated uint32 single_image_dim = 2; -} - -message EmbeddingInfo { - string tensor_name = 1; - string metadata_path = 2; - string bookmarks_path = 3; - // Shape of the 2D tensor [N x D]. If missing, it will be inferred from the - // model checkpoint. - repeated uint32 tensor_shape = 4; - SpriteMetadata sprite = 5; - // Path to the TSV file holding the tensor values. If missing, the tensor - // is assumed to be stored in the model checkpoint. - string tensor_path = 6; -} - -message ProjectorConfig { - // Path to the checkpoint file. Use either this or model_checkpoint_dir. - string model_checkpoint_path = 1; - repeated EmbeddingInfo embeddings = 2; - // Path to the checkpoint directory. The directory will be scanned for the - // latest checkpoint file. - string model_checkpoint_dir = 3; -} diff --git a/keras/protobuf/saved_metadata.proto b/keras/protobuf/saved_metadata.proto deleted file mode 100644 index 264a6974cd3..00000000000 --- a/keras/protobuf/saved_metadata.proto +++ /dev/null @@ -1,50 +0,0 @@ -/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -==============================================================================*/ -// Protobuf containing the metadata for each Keras object saved in a SavedModel. - -syntax = "proto3"; - -package third_party.py.keras.protobuf; - -import "keras/protobuf/versions.proto"; - -message SavedMetadata { - // Nodes represent trackable objects in the SavedModel. The data for every - // Keras object is stored. - repeated SavedObject nodes = 1; -} - -// Metadata of an individual Keras object. -message SavedObject { - reserved 1; // For previous VersionDef info. - - // Index of the node in the SavedModel SavedObjectGraph. - int32 node_id = 2; - // String path from root (e.g. "root.child_layer") - string node_path = 3; - - // Identifier to determine loading function. - // Currently supported identifiers: - // _tf_keras_layer, _tf_keras_input_layer, _tf_keras_rnn_layer, - // _tf_keras_metric, _tf_keras_network, _tf_keras_model, - // _tf_keras_sequential - string identifier = 4; - // Metadata containing a JSON-serialized object with the non-TensorFlow - // attributes for this Keras object. - string metadata = 5; - - // Version defined by the code serializing this Keras object. - third_party.py.keras.protobuf.VersionDef version = 6; -} diff --git a/keras/protobuf/versions.proto b/keras/protobuf/versions.proto deleted file mode 100644 index 0bf954fa882..00000000000 --- a/keras/protobuf/versions.proto +++ /dev/null @@ -1,49 +0,0 @@ -/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -==============================================================================*/ -// Protobuf containing the version for each Keras object saved in a SavedModel. - -syntax = "proto3"; - -package third_party.py.keras.protobuf; - -// This file is a copy of the TensorFlow Versions proto. -// Keep this file in sync with the source proto definition at -// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/versions.proto - -// Version information for a piece of serialized data -// -// There are different types of versions for each type of data -// (GraphDef, etc.), but they all have the same common shape -// described here. -// -// Each consumer has "consumer" and "min_producer" versions (specified -// elsewhere). A consumer is allowed to consume this data if -// -// producer >= min_producer -// consumer >= min_consumer -// consumer not in bad_consumers -// -// LINT.IfChange -message VersionDef { - // The version of the code that produced this data. - int32 producer = 1; - - // Any consumer below this version is not allowed to consume this data. - int32 min_consumer = 2; - - // Specific consumer versions which are disallowed (e.g. due to bugs). - repeated int32 bad_consumers = 3; -} -// LINT.ThenChange(third_party/tensorflow/core/framework/versions.proto) diff --git a/keras/regularizers.py b/keras/regularizers.py deleted file mode 100644 index f50fc0a6c8b..00000000000 --- a/keras/regularizers.py +++ /dev/null @@ -1,463 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Built-in regularizers.""" - - -import math - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.saving.legacy import serialization as legacy_serialization -from keras.saving.serialization_lib import deserialize_keras_object -from keras.saving.serialization_lib import serialize_keras_object - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -def _check_penalty_number(x): - """check penalty number availability, raise ValueError if failed.""" - if not isinstance(x, (float, int)): - raise ValueError( - f"Value {x} is not a valid regularization penalty number, " - "expected an int or float value." - ) - - if math.isinf(x) or math.isnan(x): - raise ValueError( - f"Value {x} is not a valid regularization penalty number, " - "an infinite number or NaN are not valid values." - ) - - -def _none_to_default(inputs, default): - return default if inputs is None else default - - -@keras_export("keras.regularizers.Regularizer") -class Regularizer: - """Regularizer base class. - - Regularizers allow you to apply penalties on layer parameters or layer - activity during optimization. These penalties are summed into the loss - function that the network optimizes. - - Regularization penalties are applied on a per-layer basis. The exact API - will depend on the layer, but many layers (e.g. `Dense`, `Conv1D`, `Conv2D` - and `Conv3D`) have a unified API. - - These layers expose 3 keyword arguments: - - - `kernel_regularizer`: Regularizer to apply a penalty on the layer's kernel - - `bias_regularizer`: Regularizer to apply a penalty on the layer's bias - - `activity_regularizer`: Regularizer to apply a penalty on the layer's - output - - All layers (including custom layers) expose `activity_regularizer` as a - settable property, whether or not it is in the constructor arguments. - - The value returned by the `activity_regularizer` is divided by the input - batch size so that the relative weighting between the weight regularizers - and the activity regularizers does not change with the batch size. - - You can access a layer's regularization penalties by calling `layer.losses` - after calling the layer on inputs. - - ## Example - - >>> layer = tf.keras.layers.Dense( - ... 5, input_dim=5, - ... kernel_initializer='ones', - ... kernel_regularizer=tf.keras.regularizers.L1(0.01), - ... activity_regularizer=tf.keras.regularizers.L2(0.01)) - >>> tensor = tf.ones(shape=(5, 5)) * 2.0 - >>> out = layer(tensor) - - >>> # The kernel regularization term is 0.25 - >>> # The activity regularization term (after dividing by the batch size) - >>> # is 5 - >>> tf.math.reduce_sum(layer.losses) - - - ## Available penalties - - ```python - tf.keras.regularizers.L1(0.3) # L1 Regularization Penalty - tf.keras.regularizers.L2(0.1) # L2 Regularization Penalty - tf.keras.regularizers.L1L2(l1=0.01, l2=0.01) # L1 + L2 penalties - ``` - - ## Directly calling a regularizer - - Compute a regularization loss on a tensor by directly calling a regularizer - as if it is a one-argument function. - - E.g. - >>> regularizer = tf.keras.regularizers.L2(2.) - >>> tensor = tf.ones(shape=(5, 5)) - >>> regularizer(tensor) - - - - ## Developing new regularizers - - Any function that takes in a weight matrix and returns a scalar - tensor can be used as a regularizer, e.g.: - - >>> @tf.keras.utils.register_keras_serializable(package='Custom', name='l1') - ... def l1_reg(weight_matrix): - ... return 0.01 * tf.math.reduce_sum(tf.math.abs(weight_matrix)) - ... - >>> layer = tf.keras.layers.Dense(5, input_dim=5, - ... kernel_initializer='ones', kernel_regularizer=l1_reg) - >>> tensor = tf.ones(shape=(5, 5)) - >>> out = layer(tensor) - >>> layer.losses - [] - - Alternatively, you can write your custom regularizers in an - object-oriented way by extending this regularizer base class, e.g.: - - >>> @tf.keras.utils.register_keras_serializable(package='Custom', name='l2') - ... class L2Regularizer(tf.keras.regularizers.Regularizer): - ... def __init__(self, l2=0.): - ... self.l2 = l2 - ... - ... def __call__(self, x): - ... return self.l2 * tf.math.reduce_sum(tf.math.square(x)) - ... - ... def get_config(self): - ... return {'l2': float(self.l2)} - ... - >>> layer = tf.keras.layers.Dense( - ... 5, input_dim=5, kernel_initializer='ones', - ... kernel_regularizer=L2Regularizer(l2=0.5)) - - >>> tensor = tf.ones(shape=(5, 5)) - >>> out = layer(tensor) - >>> layer.losses - [] - - ### A note on serialization and deserialization: - - Registering the regularizers as serializable is optional if you are just - training and executing models, exporting to and from SavedModels, or saving - and loading weight checkpoints. - - Registration is required for saving and - loading models to HDF5 format, Keras model cloning, some visualization - utilities, and exporting models to and from JSON. If using this - functionality, you must make sure any python process running your model has - also defined and registered your custom regularizer. - """ - - def __call__(self, x): - """Compute a regularization penalty from an input tensor.""" - return 0.0 - - @classmethod - def from_config(cls, config): - """Creates a regularizer from its config. - - This method is the reverse of `get_config`, - capable of instantiating the same regularizer from the config - dictionary. - - This method is used by Keras `model_to_estimator`, saving and - loading models to HDF5 formats, Keras model cloning, some visualization - utilities, and exporting models to and from JSON. - - Args: - config: A Python dictionary, typically the output of get_config. - - Returns: - A regularizer instance. - """ - return cls(**config) - - def get_config(self): - """Returns the config of the regularizer. - - An regularizer config is a Python dictionary (serializable) - containing all configuration parameters of the regularizer. - The same regularizer can be reinstantiated later - (without any saved state) from this configuration. - - This method is optional if you are just training and executing models, - exporting to and from SavedModels, or using weight checkpoints. - - This method is required for Keras `model_to_estimator`, saving and - loading models to HDF5 formats, Keras model cloning, some visualization - utilities, and exporting models to and from JSON. - - Returns: - Python dictionary. - """ - raise NotImplementedError(f"{self} does not implement get_config()") - - -@keras_export("keras.regularizers.L1L2") -class L1L2(Regularizer): - """A regularizer that applies both L1 and L2 regularization penalties. - - The L1 regularization penalty is computed as: - `loss = l1 * reduce_sum(abs(x))` - - The L2 regularization penalty is computed as - `loss = l2 * reduce_sum(square(x))` - - L1L2 may be passed to a layer as a string identifier: - - >>> dense = tf.keras.layers.Dense(3, kernel_regularizer='l1_l2') - - In this case, the default values used are `l1=0.01` and `l2=0.01`. - - Arguments: - l1: Float; L1 regularization factor. - l2: Float; L2 regularization factor. - """ - - def __init__(self, l1=0.0, l2=0.0): - # The default value for l1 and l2 are different from the value in l1_l2 - # for backward compatibility reason. Eg, L1L2(l2=0.1) will only have l2 - # and no l1 penalty. - l1 = 0.0 if l1 is None else l1 - l2 = 0.0 if l2 is None else l2 - _check_penalty_number(l1) - _check_penalty_number(l2) - - self.l1 = backend.cast_to_floatx(l1) - self.l2 = backend.cast_to_floatx(l2) - - def __call__(self, x): - regularization = backend.constant(0.0, dtype=x.dtype) - if self.l1: - regularization += self.l1 * tf.reduce_sum(tf.abs(x)) - if self.l2: - # equivalent to "self.l2 * tf.reduce_sum(tf.square(x))" - regularization += 2.0 * self.l2 * tf.nn.l2_loss(x) - return regularization - - def get_config(self): - return {"l1": float(self.l1), "l2": float(self.l2)} - - -@keras_export("keras.regularizers.L1", "keras.regularizers.l1") -class L1(Regularizer): - """A regularizer that applies a L1 regularization penalty. - - The L1 regularization penalty is computed as: - `loss = l1 * reduce_sum(abs(x))` - - L1 may be passed to a layer as a string identifier: - - >>> dense = tf.keras.layers.Dense(3, kernel_regularizer='l1') - - In this case, the default value used is `l1=0.01`. - - Arguments: - l1: Float; L1 regularization factor. - """ - - def __init__(self, l1=0.01, **kwargs): - l1 = kwargs.pop("l", l1) # Backwards compatibility - if kwargs: - raise TypeError(f"Argument(s) not recognized: {kwargs}") - - l1 = 0.01 if l1 is None else l1 - _check_penalty_number(l1) - - self.l1 = backend.cast_to_floatx(l1) - - def __call__(self, x): - return self.l1 * tf.reduce_sum(tf.abs(x)) - - def get_config(self): - return {"l1": float(self.l1)} - - -@keras_export("keras.regularizers.L2", "keras.regularizers.l2") -class L2(Regularizer): - """A regularizer that applies a L2 regularization penalty. - - The L2 regularization penalty is computed as: - `loss = l2 * reduce_sum(square(x))` - - L2 may be passed to a layer as a string identifier: - - >>> dense = tf.keras.layers.Dense(3, kernel_regularizer='l2') - - In this case, the default value used is `l2=0.01`. - - Arguments: - l2: Float; L2 regularization factor. - """ - - def __init__(self, l2=0.01, **kwargs): - l2 = kwargs.pop("l", l2) # Backwards compatibility - if kwargs: - raise TypeError(f"Argument(s) not recognized: {kwargs}") - - l2 = 0.01 if l2 is None else l2 - _check_penalty_number(l2) - - self.l2 = backend.cast_to_floatx(l2) - - def __call__(self, x): - # equivalent to "self.l2 * tf.reduce_sum(tf.square(x))" - return 2.0 * self.l2 * tf.nn.l2_loss(x) - - def get_config(self): - return {"l2": float(self.l2)} - - -@keras_export( - "keras.regularizers.OrthogonalRegularizer", - "keras.regularizers.orthogonal_regularizer", - v1=[], -) -class OrthogonalRegularizer(Regularizer): - """Regularizer that encourages input vectors to be orthogonal to each other. - - It can be applied to either the rows of a matrix (`mode="rows"`) or its - columns (`mode="columns"`). When applied to a `Dense` kernel of shape - `(input_dim, units)`, rows mode will seek to make the feature vectors - (i.e. the basis of the output space) orthogonal to each other. - - Arguments: - factor: Float. The regularization factor. The regularization penalty will - be proportional to `factor` times the mean of the dot products between - the L2-normalized rows (if `mode="rows"`, or columns if - `mode="columns"`) of the inputs, excluding the product of each - row/column with itself. Defaults to 0.01. - mode: String, one of `{"rows", "columns"}`. Defaults to `"rows"`. In rows - mode, the regularization effect seeks to make the rows of the input - orthogonal to each other. In columns mode, it seeks to make the columns - of the input orthogonal to each other. - - Example: - - >>> regularizer = tf.keras.regularizers.OrthogonalRegularizer(factor=0.01) - >>> layer = tf.keras.layers.Dense(units=4, kernel_regularizer=regularizer) - """ - - def __init__(self, factor=0.01, mode="rows"): - _check_penalty_number(factor) - self.factor = backend.cast_to_floatx(factor) - if mode not in {"rows", "columns"}: - raise ValueError( - "Invalid value for argument `mode`. Expected one of " - f'{{"rows", "columns"}}. Received: mode={mode}' - ) - self.mode = mode - - def __call__(self, inputs): - if inputs.shape.rank != 2: - raise ValueError( - "Inputs to OrthogonalRegularizer must have rank 2. Received: " - f"inputs.shape == {inputs.shape}" - ) - if self.mode == "rows": - inputs = tf.math.l2_normalize(inputs, axis=1) - product = tf.matmul(inputs, tf.transpose(inputs)) - size = inputs.shape[0] - else: - inputs = tf.math.l2_normalize(inputs, axis=0) - product = tf.matmul(tf.transpose(inputs), inputs) - size = inputs.shape[1] - product_no_diagonal = product * (1.0 - tf.eye(size, dtype=inputs.dtype)) - num_pairs = size * (size - 1.0) / 2.0 - return ( - self.factor - * 0.5 - * tf.reduce_sum(tf.abs(product_no_diagonal)) - / num_pairs - ) - - def get_config(self): - return {"factor": float(self.factor), "mode": self.mode} - - -@keras_export("keras.regularizers.l1_l2") -def l1_l2(l1=0.01, l2=0.01): - r"""Create a regularizer that applies both L1 and L2 penalties. - - The L1 regularization penalty is computed as: - `loss = l1 * reduce_sum(abs(x))` - - The L2 regularization penalty is computed as: - `loss = l2 * reduce_sum(square(x))` - - Args: - l1: Float; L1 regularization factor. - l2: Float; L2 regularization factor. - - Returns: - An L1L2 Regularizer with the given regularization factors. - """ - return L1L2(l1=l1, l2=l2) - - -# Deserialization aliases. -l1 = L1 -l2 = L2 -orthogonal_regularizer = OrthogonalRegularizer - - -@keras_export("keras.regularizers.serialize") -def serialize(regularizer, use_legacy_format=False): - if use_legacy_format: - return legacy_serialization.serialize_keras_object(regularizer) - return serialize_keras_object(regularizer) - - -@keras_export("keras.regularizers.deserialize") -def deserialize(config, custom_objects=None, use_legacy_format=False): - if config == "l1_l2": - # Special case necessary since the defaults used for "l1_l2" (string) - # differ from those of the L1L2 class. - return L1L2(l1=0.01, l2=0.01) - if use_legacy_format: - return legacy_serialization.deserialize_keras_object( - config, - module_objects=globals(), - custom_objects=custom_objects, - printable_module_name="regularizer", - ) - return deserialize_keras_object( - config, - module_objects=globals(), - custom_objects=custom_objects, - printable_module_name="regularizer", - ) - - -@keras_export("keras.regularizers.get") -def get(identifier): - """Retrieve a regularizer instance from a config or identifier.""" - if identifier is None: - return None - if isinstance(identifier, dict): - use_legacy_format = "module" not in identifier - return deserialize(identifier, use_legacy_format=use_legacy_format) - elif isinstance(identifier, str): - return deserialize(str(identifier)) - elif callable(identifier): - return identifier - else: - raise ValueError( - f"Could not interpret regularizer identifier: {identifier}" - ) diff --git a/keras/regularizers_test.py b/keras/regularizers_test.py deleted file mode 100644 index e8bc3606e12..00000000000 --- a/keras/regularizers_test.py +++ /dev/null @@ -1,382 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras regularizers.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import regularizers -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import np_utils - -DATA_DIM = 5 -NUM_CLASSES = 2 - - -class KerasRegularizersTest(test_combinations.TestCase, parameterized.TestCase): - def create_model( - self, - kernel_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - ): - model = keras.models.Sequential() - model.add( - keras.layers.Dense( - NUM_CLASSES, - kernel_regularizer=kernel_regularizer, - bias_regularizer=bias_regularizer, - activity_regularizer=activity_regularizer, - input_shape=(DATA_DIM,), - ) - ) - return model - - def regularizer_fn_tensor(x): - return tf.constant(0.0) - - def regularizer_fn_scalar(x): - return 0.0 - - class RegularizerTensor(regularizers.Regularizer): - def __call__(self, x): - return tf.constant(0.0) - - class RegularizerScalar(regularizers.Regularizer): - def __call__(self, x): - return 0.0 - - def get_data(self): - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=10, - test_samples=10, - input_shape=(DATA_DIM,), - num_classes=NUM_CLASSES, - ) - y_train = np_utils.to_categorical(y_train, NUM_CLASSES) - y_test = np_utils.to_categorical(y_test, NUM_CLASSES) - return (x_train, y_train), (x_test, y_test) - - def create_multi_input_model_from(self, layer1, layer2): - input_1 = keras.layers.Input(shape=(DATA_DIM,)) - input_2 = keras.layers.Input(shape=(DATA_DIM,)) - out1 = layer1(input_1) - out2 = layer2(input_2) - out = keras.layers.Average()([out1, out2]) - model = keras.models.Model([input_1, input_2], out) - model.add_loss(keras.backend.mean(out2)) - model.add_loss(tf.reduce_sum(input_1)) - return model - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - [ - ("l1", regularizers.l1()), - ("l2", regularizers.l2()), - ("l1_l2", regularizers.l1_l2()), - ("l2_zero", keras.regularizers.l2(0.0)), - ("function_tensor", regularizer_fn_tensor), - ("function_scalar", regularizer_fn_scalar), - ("lambda_tensor", lambda x: tf.constant(0.0)), - ("lambda_scalar", lambda x: 0.0), - ("regularizer_base_class", regularizers.Regularizer()), - ("regularizer_custom_class_tensor", RegularizerTensor()), - ("regularizer_custom_class_scalar", RegularizerScalar()), - ] - ) - def test_kernel_regularization(self, regularizer): - (x_train, y_train), _ = self.get_data() - model = self.create_model(kernel_regularizer=regularizer) - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.assertEqual(len(model.losses), 1) - model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0) - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - [ - ("l1", regularizers.l1()), - ("l2", regularizers.l2()), - ("l1_l2", regularizers.l1_l2()), - ("l2_zero", keras.regularizers.l2(0.0)), - ("function_tensor", regularizer_fn_tensor), - ("function_scalar", regularizer_fn_scalar), - ("lambda_tensor", lambda x: tf.constant(0.0)), - ("lambda_scalar", lambda x: 0.0), - ("regularizer_base_class", regularizers.Regularizer()), - ("regularizer_custom_class_tensor", RegularizerTensor()), - ("regularizer_custom_class_scalar", RegularizerScalar()), - ] - ) - def test_bias_regularization(self, regularizer): - (x_train, y_train), _ = self.get_data() - model = self.create_model(bias_regularizer=regularizer) - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.assertEqual(len(model.losses), 1) - model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0) - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - [ - ("l1", regularizers.l1()), - ("l2", regularizers.l2()), - ("l1_l2", regularizers.l1_l2()), - ("l2_zero", keras.regularizers.l2(0.0)), - ("function_tensor", regularizer_fn_tensor), - ("function_scalar", regularizer_fn_scalar), - ("lambda_tensor", lambda x: tf.constant(0.0)), - ("lambda_scalar", lambda x: 0.0), - ("regularizer_base_class", regularizers.Regularizer()), - ("regularizer_custom_class_tensor", RegularizerTensor()), - ("regularizer_custom_class_scalar", RegularizerScalar()), - ] - ) - def test_activity_regularization(self, regularizer): - (x_train, y_train), _ = self.get_data() - model = self.create_model(activity_regularizer=regularizer) - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.assertEqual(len(model.losses), 1 if tf.executing_eagerly() else 1) - model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0) - - @test_combinations.run_all_keras_modes - @test_combinations.run_with_all_model_types - def test_zero_regularization(self): - # Verifies that training with zero regularization works. - x, y = np.ones((10, 10)), np.ones((10, 3)) - model = test_utils.get_model_from_layers( - [ - keras.layers.Dense( - 3, kernel_regularizer=keras.regularizers.l2(0) - ) - ], - input_shape=(10,), - ) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - model.fit(x, y, batch_size=5, epochs=1) - - def test_custom_regularizer_saving(self): - def my_regularizer(weights): - return tf.reduce_sum(tf.abs(weights)) - - inputs = keras.Input((10,)) - outputs = keras.layers.Dense(1, kernel_regularizer=my_regularizer)( - inputs - ) - model = keras.Model(inputs, outputs) - model2 = model.from_config( - model.get_config(), - custom_objects={"my_regularizer": my_regularizer}, - ) - self.assertEqual(model2.layers[1].kernel_regularizer, my_regularizer) - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - [ - ("l1", regularizers.l1()), - ("l2", regularizers.l2()), - ("l1_l2", regularizers.l1_l2()), - ] - ) - def test_regularization_shared_layer(self, regularizer): - dense_layer = keras.layers.Dense( - NUM_CLASSES, - kernel_regularizer=regularizer, - activity_regularizer=regularizer, - ) - model = self.create_multi_input_model_from(dense_layer, dense_layer) - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.assertLen(model.losses, 5) - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - [ - ("l1", regularizers.l1()), - ("l2", regularizers.l2()), - ("l1_l2", regularizers.l1_l2()), - ] - ) - def test_regularization_shared_model(self, regularizer): - dense_layer = keras.layers.Dense( - NUM_CLASSES, - kernel_regularizer=regularizer, - activity_regularizer=regularizer, - ) - - input_tensor = keras.layers.Input(shape=(DATA_DIM,)) - dummy_model = keras.models.Model( - input_tensor, dense_layer(input_tensor) - ) - - model = self.create_multi_input_model_from(dummy_model, dummy_model) - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - self.assertLen(model.losses, 6) - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - [ - ("l1", regularizers.l1()), - ("l2", regularizers.l2()), - ("l1_l2", regularizers.l1_l2()), - ] - ) - def test_regularization_shared_layer_in_different_models(self, regularizer): - shared_dense = keras.layers.Dense( - NUM_CLASSES, - kernel_regularizer=regularizer, - activity_regularizer=regularizer, - ) - models = [] - for _ in range(2): - input_tensor = keras.layers.Input(shape=(DATA_DIM,)) - unshared_dense = keras.layers.Dense( - NUM_CLASSES, kernel_regularizer=regularizer - ) - out = unshared_dense(shared_dense(input_tensor)) - models.append(keras.models.Model(input_tensor, out)) - - model = self.create_multi_input_model_from( - layer1=models[0], layer2=models[1] - ) - model.compile( - loss="categorical_crossentropy", - optimizer="sgd", - run_eagerly=test_utils.should_run_eagerly(), - ) - - # We expect to see 9 losses on the model: - # - 2 from the 2 add_loss calls on the outer model. - # - 3 from the weight regularizers on the shared_dense layer, - # unshared_dense in inner model 1, unshared_dense in inner model 2. - # - 4 from activity regularizers on the shared_dense layer. - self.assertLen(model.losses, 9) - - def test_deserialization_error(self): - with self.assertRaisesRegex( - ValueError, "Could not interpret regularizer" - ): - keras.regularizers.get(0) - - @parameterized.named_parameters( - [ - ("l1", regularizers.l1(l1=None), 0.01), - ("l2", regularizers.l2(l2=None), 0.01), - ("l1_l2", regularizers.l1_l2(l1=None, l2=None), 0.0), - ] - ) - def test_default_value_when_init_with_none( - self, regularizer, expected_value - ): - expected_value = np.asarray(expected_value) - if hasattr(regularizer, "l1"): - self.assertAllClose(regularizer.l1, expected_value) - if hasattr(regularizer, "l2"): - self.assertAllClose(regularizer.l2, expected_value) - - @test_utils.run_v2_only - def test_orthogonal_regularizer(self): - # Test correctness. - factor = 0.1 - reg_rows = regularizers.OrthogonalRegularizer( - factor=factor, mode="rows" - ) - reg_cols = regularizers.OrthogonalRegularizer( - factor=factor, mode="columns" - ) - - # Test with square matrix - inputs = tf.constant( - [[1, 1, 1, 1], [2, 0, 0, 0], [0, 0, 3, 1]], dtype="float32" - ) - normalized_rows = tf.math.l2_normalize(inputs, axis=1) - normalized_cols = tf.math.l2_normalize(inputs, axis=0) - rows_pairs = [ - tf.reduce_sum(normalized_rows[0] * normalized_rows[1]), - tf.reduce_sum(normalized_rows[0] * normalized_rows[2]), - tf.reduce_sum(normalized_rows[1] * normalized_rows[2]), - ] - col_pairs = [ - tf.reduce_sum(normalized_cols[:, 0] * normalized_cols[:, 1]), - tf.reduce_sum(normalized_cols[:, 0] * normalized_cols[:, 2]), - tf.reduce_sum(normalized_cols[:, 0] * normalized_cols[:, 3]), - tf.reduce_sum(normalized_cols[:, 1] * normalized_cols[:, 2]), - tf.reduce_sum(normalized_cols[:, 1] * normalized_cols[:, 3]), - tf.reduce_sum(normalized_cols[:, 2] * normalized_cols[:, 3]), - ] - num_row_pairs = 3 - num_col_pairs = 6 - # Expected: factor * sum(pairwise_dot_products_of_rows) / num_row_pairs - self.assertAllClose( - reg_rows(inputs), factor * sum(rows_pairs) / num_row_pairs - ) - # Expected: factor * sum(pairwise_dot_products_of_columns) / - # num_col_pairs - self.assertAllClose( - reg_cols(inputs), factor * sum(col_pairs) / num_col_pairs - ) - - # Test incorrect usage. - with self.assertRaisesRegex(ValueError, "must have rank 2"): - reg_rows(tf.constant([1, 1], dtype="float32")) - - # Test serialization - self.assertDictEqual( - reg_cols.get_config(), {"factor": factor, "mode": "columns"} - ) - - # Test usage in model. - model_inputs = keras.Input((3,)) - model_outputs = keras.layers.Dense(4, kernel_regularizer=reg_rows)( - model_inputs - ) - model = keras.Model(model_inputs, model_outputs) - model.compile(optimizer="rmsprop", loss="mse") - model.fit( - np.random.random((16, 3)), np.random.random((16, 4)), epochs=1 - ) - - # Test serialization and deserialiation as part of model. - inputs = tf.constant([[1, 1, 1], [2, 0, 0], [0, 0, 3]], dtype="float32") - outputs = model(inputs) - config = model.get_config() - weights = model.get_weights() - model = keras.Model.from_config(config) - model.set_weights(weights) - self.assertAllClose(model(inputs), outputs, atol=1e-5) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/saving/BUILD b/keras/saving/BUILD deleted file mode 100644 index e951f6c08d1..00000000000 --- a/keras/saving/BUILD +++ /dev/null @@ -1,238 +0,0 @@ -# Description: -# Contains the Keras save model API (internal TensorFlow version). - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - # TODO(scottzhu): Remove non-keras deps from TF. - default_visibility = [ - "//keras:friends", - "//third_party/tensorflow/python/distribute:__pkg__", - ], - licenses = ["notice"], -) - -py_library( - name = "saving", - srcs = [ - "__init__.py", - "legacy/hdf5_format.py", - "legacy/model_config.py", - "legacy/save.py", - "legacy/saving_utils.py", - "pickle_utils.py", - "saving_api.py", - ], - srcs_version = "PY3", - deps = [ - ":object_registration", - ":serialization", - ":serialization_lib", - "//:expect_h5py_installed", - "//:expect_tensorflow_installed", - "//:expect_yaml_installed", - "//keras:backend", - "//keras:losses", - "//keras:regularizers", - "//keras/engine:input_spec", - "//keras/mixed_precision:autocast_variable", - "//keras/optimizers", - "//keras/protobuf:saved_metadata_proto_py_pb2", - "//keras/saving/legacy/saved_model", - "//keras/utils:engine_utils", - "//keras/utils:metrics_utils", - "//keras/utils:mode_keys", - ], -) - -py_library( - name = "saving_lib", - srcs = [ - "saving_lib.py", - ], - srcs_version = "PY3", - deps = [ - ":serialization_lib", - "//:expect_tensorflow_installed", - "//keras/utils:generic_utils", - "//keras/utils:io_utils", - ], -) - -tf_py_test( - name = "saving_lib_test", - size = "medium", - srcs = ["saving_lib_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/utils:generic_utils", - ], -) - -py_library( - name = "object_registration", - srcs = [ - "object_registration.py", - ], - srcs_version = "PY3", -) - -py_library( - name = "serialization_lib", - srcs = [ - "serialization_lib.py", - ], - srcs_version = "PY3", - deps = [ - ":object_registration", - ":serialization", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/saving/legacy/saved_model:utils", - ], -) - -py_library( - name = "serialization", - srcs = [ - "legacy/serialization.py", - ], - srcs_version = "PY3", - deps = [ - ":object_registration", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/utils:tf_contextlib", - "//keras/utils:tf_inspect", - ], -) - -tf_py_test( - name = "object_registration_test", - size = "small", - srcs = ["object_registration_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - ], -) - -tf_py_test( - name = "metrics_serialization_test", - size = "medium", - srcs = ["legacy/metrics_serialization_test.py"], - python_version = "PY3", - shard_count = 8, - tags = [ - "notsan", # TODO(b/170870790) - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "losses_serialization_test", - size = "medium", - srcs = ["legacy/losses_serialization_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "pickle_utils_test", - size = "medium", - srcs = ["pickle_utils_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "save_weights_test", - size = "medium", - srcs = ["legacy/save_weights_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "no_oss_py35", # b/147011479 - "no_pip", # TODO(b/202022379) - "no_windows", - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "save_test", - size = "medium", - srcs = ["legacy/save_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "no_pip", # TODO(b/202022379) - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "saving_utils_test", - size = "medium", - srcs = ["legacy/saving_utils_test.py"], - python_version = "PY3", - tags = ["notsan"], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "serialization_lib_test", - size = "small", - srcs = ["serialization_lib_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/saving:serialization", - "//keras/testing_infra:test_combinations", - ], -) diff --git a/keras/saving/__init__.py b/keras/saving/__init__.py deleted file mode 100644 index e69de29bb2d..00000000000 diff --git a/keras/saving/legacy/__init__.py b/keras/saving/legacy/__init__.py deleted file mode 100644 index e69de29bb2d..00000000000 diff --git a/keras/saving/legacy/hdf5_format.py b/keras/saving/legacy/hdf5_format.py deleted file mode 100644 index f739a0ec728..00000000000 --- a/keras/saving/legacy/hdf5_format.py +++ /dev/null @@ -1,1113 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Functions for saving and loading a Keras Model from HDF5 format.""" - -import json -import os - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.optimizers import optimizer as optimizer_base -from keras.optimizers import optimizer_v1 -from keras.saving import object_registration -from keras.saving.legacy import model_config as model_config_lib -from keras.saving.legacy import saving_utils -from keras.saving.legacy.saved_model import json_utils -from keras.utils.generic_utils import LazyLoader -from keras.utils.io_utils import ask_to_proceed_with_overwrite - -# isort: off -from tensorflow.python.platform import tf_logging as logging - -try: - import h5py - - HDF5_OBJECT_HEADER_LIMIT = 64512 -except ImportError: - h5py = None - -# TODO(b/134426265): Switch back to single-quotes to match the rest of the file -# once the issue with copybara is fixed. - -sequential_lib = LazyLoader( - "sequential_lib", globals(), "keras.engine.sequential" -) - - -def save_model_to_hdf5(model, filepath, overwrite=True, include_optimizer=True): - """Saves a model to a HDF5 file. - - The saved model contains: - - the model's configuration (topology) - - the model's weights - - the model's optimizer's state (if any) - - Thus the saved model can be reinstantiated in - the exact same state, without any of the code - used for model definition or training. - - Args: - model: Keras model instance to be saved. - filepath: One of the following: - - String, path where to save the model - - `h5py.File` object where to save the model - overwrite: Whether we should overwrite any existing - model at the target location, or instead - ask the user with a manual prompt. - include_optimizer: If True, save optimizer's state together. - - Raises: - ImportError: if h5py is not available. - """ - - if h5py is None: - raise ImportError( - "`save_model()` using h5 format requires h5py. Could not " - "import h5py." - ) - - # TODO(psv) Add warning when we save models that contain non-serializable - # entities like metrics added using `add_metric` and losses added using - # `add_loss.` - if len(model.weights) != len(model._undeduplicated_weights): - logging.warning( - "Found duplicated `Variable`s in Model's `weights`. " - "This is usually caused by `Variable`s being shared by " - "Layers in the Model. These `Variable`s will be treated " - "as separate `Variable`s when the Model is restored. To " - 'avoid this, please save with `save_format="tf"`.' - ) - - if not isinstance(filepath, h5py.File): - # If file exists and should not be overwritten. - if not overwrite and os.path.isfile(filepath): - proceed = ask_to_proceed_with_overwrite(filepath) - if not proceed: - return - - # Try creating dir if not exist - dirpath = os.path.dirname(filepath) - if not os.path.exists(dirpath): - tf.io.gfile.makedirs(dirpath) - - f = h5py.File(filepath, mode="w") - opened_new_file = True - else: - f = filepath - opened_new_file = False - - try: - model_metadata = saving_utils.model_metadata(model, include_optimizer) - for k, v in model_metadata.items(): - if isinstance(v, (dict, list, tuple)): - f.attrs[k] = json.dumps( - v, default=json_utils.get_json_type - ).encode("utf8") - else: - f.attrs[k] = v - - model_weights_group = f.create_group("model_weights") - save_weights_to_hdf5_group(model_weights_group, model) - - # TODO(b/128683857): Add integration tests between tf.keras and external - # Keras, to avoid breaking TF.js users. - if ( - include_optimizer - and model.optimizer - and not isinstance(model.optimizer, optimizer_v1.TFOptimizer) - ): - save_optimizer_weights_to_hdf5_group(f, model.optimizer) - - f.flush() - finally: - if opened_new_file: - f.close() - - -def load_model_from_hdf5(filepath, custom_objects=None, compile=True): - """Loads a model saved via `save_model_to_hdf5`. - - Args: - filepath: One of the following: - - String, path to the saved model - - `h5py.File` object from which to load the model - custom_objects: Optional dictionary mapping names - (strings) to custom classes or functions to be - considered during deserialization. - compile: Boolean, whether to compile the model - after loading. - - Returns: - A Keras model instance. If an optimizer was found - as part of the saved model, the model is already - compiled. Otherwise, the model is uncompiled and - a warning will be displayed. When `compile` is set - to False, the compilation is omitted without any - warning. - - Raises: - ImportError: if h5py is not available. - ValueError: In case of an invalid savefile. - """ - if h5py is None: - raise ImportError( - "`load_model()` using h5 format requires h5py. Could not " - "import h5py." - ) - - if not custom_objects: - custom_objects = {} - - tlco = object_registration._THREAD_LOCAL_CUSTOM_OBJECTS.__dict__ - gco = object_registration._GLOBAL_CUSTOM_OBJECTS - custom_objects = {**custom_objects, **tlco, **gco} - - opened_new_file = not isinstance(filepath, h5py.File) - if opened_new_file: - f = h5py.File(filepath, mode="r") - else: - f = filepath - - model = None - try: - # instantiate model - model_config = f.attrs.get("model_config") - if model_config is None: - raise ValueError( - f"No model config found in the file at {filepath}." - ) - if hasattr(model_config, "decode"): - model_config = model_config.decode("utf-8") - model_config = json_utils.decode(model_config) - model = model_config_lib.model_from_config( - model_config, custom_objects=custom_objects - ) - - # set weights - load_weights_from_hdf5_group(f["model_weights"], model) - - if compile: - # instantiate optimizer - training_config = f.attrs.get("training_config") - if hasattr(training_config, "decode"): - training_config = training_config.decode("utf-8") - if training_config is None: - logging.warning( - "No training configuration found in the save file, so " - "the model was *not* compiled. Compile it manually." - ) - return model - training_config = json_utils.decode(training_config) - - # Compile model. - model.compile( - **saving_utils.compile_args_from_training_config( - training_config, custom_objects - ), - from_serialized=True, - ) - saving_utils.try_build_compiled_arguments(model) - - # Set optimizer weights. - if "optimizer_weights" in f: - try: - if isinstance(model.optimizer, optimizer_base.Optimizer): - model.optimizer.build(model.trainable_variables) - else: - model.optimizer._create_all_weights( - model.trainable_variables - ) - except (NotImplementedError, AttributeError): - logging.warning( - "Error when creating the weights of optimizer {}, " - "making it impossible to restore the saved optimizer " - "state. As a result, your model is starting with " - "a freshly initialized optimizer." - ) - - optimizer_weight_values = ( - load_optimizer_weights_from_hdf5_group(f) - ) - try: - model.optimizer.set_weights(optimizer_weight_values) - except ValueError: - logging.warning( - "Error in loading the saved optimizer " - "state. As a result, your model is " - "starting with a freshly initialized " - "optimizer." - ) - finally: - if opened_new_file: - f.close() - return model - - -def preprocess_weights_for_loading( - layer, weights, original_keras_version=None, original_backend=None -): - """Preprocess layer weights between different Keras formats. - - Converts layers weights from Keras 1 format to Keras 2 and also weights of - cuDNN layers in Keras 2. - - Args: - layer: Layer instance. - weights: List of weights values (Numpy arrays). - original_keras_version: Keras version for the weights, as a string. - original_backend: Keras backend the weights were trained with, - as a string. - - Returns: - A list of weights values (Numpy arrays). - """ - - def convert_nested_bidirectional(weights): - """Converts layers nested in `Bidirectional` wrapper. - - This function uses `preprocess_weights_for_loading()` for converting - layers. - - Args: - weights: List of weights values (Numpy arrays). - - Returns: - A list of weights values (Numpy arrays). - """ - num_weights_per_layer = len(weights) // 2 - forward_weights = preprocess_weights_for_loading( - layer.forward_layer, - weights[:num_weights_per_layer], - original_keras_version, - original_backend, - ) - backward_weights = preprocess_weights_for_loading( - layer.backward_layer, - weights[num_weights_per_layer:], - original_keras_version, - original_backend, - ) - return forward_weights + backward_weights - - def convert_nested_time_distributed(weights): - """Converts layers nested in `TimeDistributed` wrapper. - - This function uses `preprocess_weights_for_loading()` for converting - nested layers. - - Args: - weights: List of weights values (Numpy arrays). - - Returns: - A list of weights values (Numpy arrays). - """ - return preprocess_weights_for_loading( - layer.layer, weights, original_keras_version, original_backend - ) - - def convert_nested_model(weights): - """Converts layers nested in `Model` or `Sequential`. - - This function uses `preprocess_weights_for_loading()` for converting - nested layers. - - Args: - weights: List of weights values (Numpy arrays). - - Returns: - A list of weights values (Numpy arrays). - """ - trainable_weights = weights[: len(layer.trainable_weights)] - non_trainable_weights = weights[len(layer.trainable_weights) :] - - new_trainable_weights = [] - new_non_trainable_weights = [] - - for sublayer in layer.layers: - num_trainable_weights = len(sublayer.trainable_weights) - num_non_trainable_weights = len(sublayer.non_trainable_weights) - if sublayer.weights: - preprocessed = preprocess_weights_for_loading( - layer=sublayer, - weights=( - trainable_weights[:num_trainable_weights] - + non_trainable_weights[:num_non_trainable_weights] - ), - original_keras_version=original_keras_version, - original_backend=original_backend, - ) - new_trainable_weights.extend( - preprocessed[:num_trainable_weights] - ) - new_non_trainable_weights.extend( - preprocessed[num_trainable_weights:] - ) - - trainable_weights = trainable_weights[num_trainable_weights:] - non_trainable_weights = non_trainable_weights[ - num_non_trainable_weights: - ] - new_trainable_weights += layer._trainable_weights - new_non_trainable_weights += layer._non_trainable_weights - return new_trainable_weights + new_non_trainable_weights - - # Convert layers nested in Bidirectional/Model/Sequential. - # Both transformation should be ran for both Keras 1->2 conversion - # and for conversion of cuDNN layers. - if layer.__class__.__name__ == "Bidirectional": - weights = convert_nested_bidirectional(weights) - if layer.__class__.__name__ == "TimeDistributed": - weights = convert_nested_time_distributed(weights) - elif layer.__class__.__name__ in ["Model", "Sequential", "Functional"]: - weights = convert_nested_model(weights) - - if original_keras_version == "1": - if layer.__class__.__name__ == "TimeDistributed": - weights = preprocess_weights_for_loading( - layer.layer, weights, original_keras_version, original_backend - ) - - if layer.__class__.__name__ == "Conv1D": - shape = weights[0].shape - # Handle Keras 1.1 format - if ( - shape[:2] != (layer.kernel_size[0], 1) - or shape[3] != layer.filters - ): - # Legacy shape: - # (filters, input_dim, filter_length, 1) - assert shape[0] == layer.filters and shape[2:] == ( - layer.kernel_size[0], - 1, - ) - weights[0] = np.transpose(weights[0], (2, 3, 1, 0)) - weights[0] = weights[0][:, 0, :, :] - - if layer.__class__.__name__ == "Conv2D": - if layer.data_format == "channels_first": - # old: (filters, stack_size, kernel_rows, kernel_cols) - # new: (kernel_rows, kernel_cols, stack_size, filters) - weights[0] = np.transpose(weights[0], (2, 3, 1, 0)) - - if layer.__class__.__name__ == "Conv2DTranspose": - if layer.data_format == "channels_last": - # old: (kernel_rows, kernel_cols, stack_size, filters) - # new: (kernel_rows, kernel_cols, filters, stack_size) - weights[0] = np.transpose(weights[0], (0, 1, 3, 2)) - if layer.data_format == "channels_first": - # old: (filters, stack_size, kernel_rows, kernel_cols) - # new: (kernel_rows, kernel_cols, filters, stack_size) - weights[0] = np.transpose(weights[0], (2, 3, 0, 1)) - - if layer.__class__.__name__ == "Conv3D": - if layer.data_format == "channels_first": - # old: (filters, stack_size, ...) - # new: (..., stack_size, filters) - weights[0] = np.transpose(weights[0], (2, 3, 4, 1, 0)) - - if layer.__class__.__name__ == "GRU": - if len(weights) == 9: - kernel = np.concatenate( - [weights[0], weights[3], weights[6]], axis=-1 - ) - recurrent_kernel = np.concatenate( - [weights[1], weights[4], weights[7]], axis=-1 - ) - bias = np.concatenate( - [weights[2], weights[5], weights[8]], axis=-1 - ) - weights = [kernel, recurrent_kernel, bias] - - if layer.__class__.__name__ == "LSTM": - if len(weights) == 12: - # old: i, c, f, o - # new: i, f, c, o - kernel = np.concatenate( - [weights[0], weights[6], weights[3], weights[9]], axis=-1 - ) - recurrent_kernel = np.concatenate( - [weights[1], weights[7], weights[4], weights[10]], axis=-1 - ) - bias = np.concatenate( - [weights[2], weights[8], weights[5], weights[11]], axis=-1 - ) - weights = [kernel, recurrent_kernel, bias] - - if layer.__class__.__name__ == "ConvLSTM2D": - if len(weights) == 12: - kernel = np.concatenate( - [weights[0], weights[6], weights[3], weights[9]], axis=-1 - ) - recurrent_kernel = np.concatenate( - [weights[1], weights[7], weights[4], weights[10]], axis=-1 - ) - bias = np.concatenate( - [weights[2], weights[8], weights[5], weights[11]], axis=-1 - ) - if layer.data_format == "channels_first": - # old: (filters, stack_size, kernel_rows, kernel_cols) - # new: (kernel_rows, kernel_cols, stack_size, filters) - kernel = np.transpose(kernel, (2, 3, 1, 0)) - recurrent_kernel = np.transpose( - recurrent_kernel, (2, 3, 1, 0) - ) - weights = [kernel, recurrent_kernel, bias] - - conv_layers = [ - "Conv1D", - "Conv2D", - "Conv3D", - "Conv2DTranspose", - "ConvLSTM2D", - ] - if layer.__class__.__name__ in conv_layers: - if backend.int_shape(layer.weights[0]) != weights[0].shape: - weights[0] = np.transpose(weights[0], (3, 2, 0, 1)) - if layer.__class__.__name__ == "ConvLSTM2D": - weights[1] = np.transpose(weights[1], (3, 2, 0, 1)) - - # convert cuDNN layers - return _convert_rnn_weights(layer, weights) - - -def _convert_rnn_weights(layer, weights): - """Converts weights for RNN layers between native and cuDNN format. - - Input kernels for each gate are transposed and converted between Fortran - and C layout, recurrent kernels are transposed. For LSTM biases are summed/ - split in half, for GRU biases are reshaped. - - Weights can be converted in both directions between `LSTM` and`CuDNNSLTM` - and between `CuDNNGRU` and `GRU(reset_after=True)`. Default `GRU` is not - compatible with `CuDNNGRU`. - - For missing biases in `LSTM`/`GRU` (`use_bias=False`) no conversion is made. - - Args: - layer: Target layer instance. - weights: List of source weights values (input kernels, recurrent - kernels, [biases]) (Numpy arrays). - - Returns: - A list of converted weights values (Numpy arrays). - - Raises: - ValueError: for incompatible GRU layer/weights or incompatible biases - """ - - def transform_kernels(kernels, func, n_gates): - """Transforms kernel for each gate separately using given function. - - Args: - kernels: Stacked array of kernels for individual gates. - func: Function applied to kernel of each gate. - n_gates: Number of gates (4 for LSTM, 3 for GRU). - - Returns: - Stacked array of transformed kernels. - """ - return np.hstack([func(k) for k in np.hsplit(kernels, n_gates)]) - - def transpose_input(from_cudnn): - """Makes a function that transforms input kernels from/to cuDNN format. - - It keeps the shape, but changes between the layout (Fortran/C). Eg.: - - ``` - Keras cuDNN - [[0, 1, 2], <---> [[0, 2, 4], - [3, 4, 5]] [1, 3, 5]] - ``` - - It can be passed to `transform_kernels()`. - - Args: - from_cudnn: `True` if source weights are in cuDNN format, `False` if - they're in plain Keras format. - - Returns: - Function that converts input kernel to the other format. - """ - order = "F" if from_cudnn else "C" - - def transform(kernel): - return kernel.T.reshape(kernel.shape, order=order) - - return transform - - target_class = layer.__class__.__name__ - - # convert the weights between CuDNNLSTM and LSTM - if target_class in ["LSTM", "CuDNNLSTM"] and len(weights) == 3: - # determine if we're loading a CuDNNLSTM layer - # from the number of bias weights: - # CuDNNLSTM has (units * 8) weights; while LSTM has (units * 4) - # if there's no bias weight in the file, skip this conversion - units = weights[1].shape[0] - bias_shape = weights[2].shape - n_gates = 4 - - if bias_shape == (2 * units * n_gates,): - source = "CuDNNLSTM" - elif bias_shape == (units * n_gates,): - source = "LSTM" - else: - raise ValueError("Invalid bias shape: " + str(bias_shape)) - - def convert_lstm_weights(weights, from_cudnn=True): - """Converts the weights between CuDNNLSTM and LSTM. - - Args: - weights: Original weights. - from_cudnn: Indicates whether original weights are from cuDNN - layer. - - Returns: - Updated weights compatible with LSTM. - """ - - # Transpose (and reshape) input and recurrent kernels - kernels = transform_kernels( - weights[0], transpose_input(from_cudnn), n_gates - ) - recurrent_kernels = transform_kernels( - weights[1], lambda k: k.T, n_gates - ) - if from_cudnn: - # merge input and recurrent biases into a single set - biases = np.sum(np.split(weights[2], 2, axis=0), axis=0) - else: - # Split single set of biases evenly to two sets. The way of - # splitting doesn't matter as long as the two sets sum is kept. - biases = np.tile(0.5 * weights[2], 2) - return [kernels, recurrent_kernels, biases] - - if source != target_class: - weights = convert_lstm_weights( - weights, from_cudnn=source == "CuDNNLSTM" - ) - - # convert the weights between CuDNNGRU and GRU(reset_after=True) - if target_class in ["GRU", "CuDNNGRU"] and len(weights) == 3: - # We can determine the source of the weights from the shape of the bias. - # If there is no bias we skip the conversion since - # CuDNNGRU always has biases. - - units = weights[1].shape[0] - bias_shape = weights[2].shape - n_gates = 3 - - def convert_gru_weights(weights, from_cudnn=True): - """Converts the weights between CuDNNGRU and GRU. - - Args: - weights: Original weights. - from_cudnn: Indicates whether original weights are from cuDNN - layer. - - Returns: - Updated weights compatible with GRU. - """ - - kernels = transform_kernels( - weights[0], transpose_input(from_cudnn), n_gates - ) - recurrent_kernels = transform_kernels( - weights[1], lambda k: k.T, n_gates - ) - biases = np.array(weights[2]).reshape((2, -1) if from_cudnn else -1) - return [kernels, recurrent_kernels, biases] - - if bias_shape == (2 * units * n_gates,): - source = "CuDNNGRU" - elif bias_shape == (2, units * n_gates): - source = "GRU(reset_after=True)" - elif bias_shape == (units * n_gates,): - source = "GRU(reset_after=False)" - else: - raise ValueError("Invalid bias shape: " + str(bias_shape)) - - if target_class == "CuDNNGRU": - target = "CuDNNGRU" - elif layer.reset_after: - target = "GRU(reset_after=True)" - else: - target = "GRU(reset_after=False)" - - # only convert between different types - if source != target: - types = (source, target) - if "GRU(reset_after=False)" in types: - raise ValueError("%s is not compatible with %s" % types) - if source == "CuDNNGRU": - weights = convert_gru_weights(weights, from_cudnn=True) - elif source == "GRU(reset_after=True)": - weights = convert_gru_weights(weights, from_cudnn=False) - - return weights - - -def save_optimizer_weights_to_hdf5_group(hdf5_group, optimizer): - """Saves optimizer weights of a optimizer to a HDF5 group. - - Args: - hdf5_group: HDF5 group. - optimizer: optimizer instance. - """ - if isinstance(optimizer, optimizer_base.Optimizer): - symbolic_weights = optimizer.variables - else: - symbolic_weights = getattr(optimizer, "weights") - if symbolic_weights: - weights_group = hdf5_group.create_group("optimizer_weights") - weight_names = [str(w.name).encode("utf8") for w in symbolic_weights] - save_attributes_to_hdf5_group( - weights_group, "weight_names", weight_names - ) - weight_values = backend.batch_get_value(symbolic_weights) - for name, val in zip(weight_names, weight_values): - param_dset = weights_group.create_dataset( - name, val.shape, dtype=val.dtype - ) - if not val.shape: - # scalar - param_dset[()] = val - else: - param_dset[:] = val - - -def load_optimizer_weights_from_hdf5_group(hdf5_group): - """Load optimizer weights from a HDF5 group. - - Args: - hdf5_group: A pointer to a HDF5 group. - - Returns: - data: List of optimizer weight names. - """ - weights_group = hdf5_group["optimizer_weights"] - optimizer_weight_names = load_attributes_from_hdf5_group( - weights_group, "weight_names" - ) - return [ - weights_group[weight_name] for weight_name in optimizer_weight_names - ] - - -def save_subset_weights_to_hdf5_group(f, weights): - """Save top-level weights of a model to a HDF5 group. - - Args: - f: HDF5 group. - weights: List of weight variables. - """ - weight_values = backend.batch_get_value(weights) - weight_names = [w.name.encode("utf8") for w in weights] - save_attributes_to_hdf5_group(f, "weight_names", weight_names) - for name, val in zip(weight_names, weight_values): - param_dset = f.create_dataset(name, val.shape, dtype=val.dtype) - if not val.shape: - # scalar - param_dset[()] = val - else: - param_dset[:] = val - - -def save_weights_to_hdf5_group(f, model): - """Saves the weights of a list of layers to a HDF5 group. - - Args: - f: HDF5 group. - model: Model instance. - """ - from keras import __version__ as keras_version - - save_attributes_to_hdf5_group( - f, "layer_names", [layer.name.encode("utf8") for layer in model.layers] - ) - f.attrs["backend"] = backend.backend().encode("utf8") - f.attrs["keras_version"] = str(keras_version).encode("utf8") - - # Sort model layers by layer name to ensure that group names are strictly - # growing to avoid prefix issues. - for layer in sorted(model.layers, key=lambda x: x.name): - g = f.create_group(layer.name) - weights = _legacy_weights(layer) - save_subset_weights_to_hdf5_group(g, weights) - weights = model._trainable_weights + model._non_trainable_weights - g = f.create_group("top_level_model_weights") - save_subset_weights_to_hdf5_group(g, weights) - - -def load_subset_weights_from_hdf5_group(f): - """Load layer weights of a model from hdf5. - - Args: - f: A pointer to a HDF5 group. - - Returns: - List of NumPy arrays of the weight values. - - Raises: - ValueError: in case of mismatch between provided model - and weights file. - """ - weight_names = load_attributes_from_hdf5_group(f, "weight_names") - return [np.asarray(f[weight_name]) for weight_name in weight_names] - - -def load_weights_from_hdf5_group(f, model): - """Implements topological (order-based) weight loading. - - Args: - f: A pointer to a HDF5 group. - model: Model instance. - - Raises: - ValueError: in case of mismatch between provided layers - and weights file. - """ - if "keras_version" in f.attrs: - original_keras_version = f.attrs["keras_version"] - if hasattr(original_keras_version, "decode"): - original_keras_version = original_keras_version.decode("utf8") - else: - original_keras_version = "1" - if "backend" in f.attrs: - original_backend = f.attrs["backend"] - if hasattr(original_backend, "decode"): - original_backend = original_backend.decode("utf8") - else: - original_backend = None - - filtered_layers = [] - for layer in model.layers: - weights = _legacy_weights(layer) - if weights: - filtered_layers.append(layer) - - layer_names = load_attributes_from_hdf5_group(f, "layer_names") - filtered_layer_names = [] - for name in layer_names: - g = f[name] - weight_names = load_attributes_from_hdf5_group(g, "weight_names") - if weight_names: - filtered_layer_names.append(name) - layer_names = filtered_layer_names - if len(layer_names) != len(filtered_layers): - raise ValueError( - "Layer count mismatch when loading weights from file. " - f"Model expected {len(filtered_layers)} layers, found " - f"{len(layer_names)} saved layers." - ) - - # We batch weight value assignments in a single backend call - # which provides a speedup in TensorFlow. - weight_value_tuples = [] - for k, name in enumerate(layer_names): - g = f[name] - layer = filtered_layers[k] - symbolic_weights = _legacy_weights(layer) - weight_values = load_subset_weights_from_hdf5_group(g) - weight_values = preprocess_weights_for_loading( - layer, weight_values, original_keras_version, original_backend - ) - if len(weight_values) != len(symbolic_weights): - raise ValueError( - f"Weight count mismatch for layer #{k} (named {layer.name} in " - f"the current model, {name} in the save file). " - f"Layer expects {len(symbolic_weights)} weight(s). Received " - f"{len(weight_values)} saved weight(s)" - ) - weight_value_tuples += zip(symbolic_weights, weight_values) - - if "top_level_model_weights" in f: - symbolic_weights = ( - model._trainable_weights + model._non_trainable_weights - ) - weight_values = load_subset_weights_from_hdf5_group( - f["top_level_model_weights"] - ) - if len(weight_values) != len(symbolic_weights): - raise ValueError( - "Weight count mismatch for top-level weights when loading " - "weights from file. " - f"Model expects {len(symbolic_weights)} top-level weight(s). " - f"Received {len(weight_values)} saved top-level weight(s)" - ) - weight_value_tuples += zip(symbolic_weights, weight_values) - backend.batch_set_value(weight_value_tuples) - - # Perform any layer defined finalization of the layer state. - for layer in model._flatten_layers(): - layer.finalize_state() - - -def load_weights_from_hdf5_group_by_name(f, model, skip_mismatch=False): - """Implements name-based weight loading (instead of topological loading). - - Layers that have no matching name are skipped. - - Args: - f: A pointer to a HDF5 group. - model: Model instance. - skip_mismatch: Boolean, whether to skip loading of layers - where there is a mismatch in the number of weights, - or a mismatch in the shape of the weights. - - Raises: - ValueError: in case of mismatch between provided layers - and weights file and skip_match=False. - """ - if "keras_version" in f.attrs: - original_keras_version = f.attrs["keras_version"] - if hasattr(original_keras_version, "decode"): - original_keras_version = original_keras_version.decode("utf8") - else: - original_keras_version = "1" - if "backend" in f.attrs: - original_backend = f.attrs["backend"] - if hasattr(original_backend, "decode"): - original_backend = original_backend.decode("utf8") - else: - original_backend = None - - # New file format. - layer_names = load_attributes_from_hdf5_group(f, "layer_names") - - # Reverse index of layer name to list of layers with name. - index = {} - for layer in model.layers: - if layer.name: - index.setdefault(layer.name, []).append(layer) - - # We batch weight value assignments in a single backend call - # which provides a speedup in TensorFlow. - weight_value_tuples = [] - for k, name in enumerate(layer_names): - g = f[name] - weight_values = load_subset_weights_from_hdf5_group(g) - for layer in index.get(name, []): - symbolic_weights = _legacy_weights(layer) - weight_values = preprocess_weights_for_loading( - layer, weight_values, original_keras_version, original_backend - ) - if len(weight_values) != len(symbolic_weights): - if skip_mismatch: - logging.warning( - f"Skipping loading of weights for layer #{k} (named " - f"{layer.name}) due to mismatch in number of weights. " - f"Layer expects {len(symbolic_weights)} weight(s). " - f"Received {len(weight_values)} saved weight(s)" - ) - continue - raise ValueError( - f"Weight count mismatch for layer #{k} " - f"(named {layer.name}). " - f"Layer expects {len(symbolic_weights)} weight(s). " - f"Received {len(weight_values)} saved weight(s)" - ) - # Set values. - for i in range(len(weight_values)): - expected_shape = backend.int_shape(symbolic_weights[i]) - received_shape = weight_values[i].shape - if expected_shape != received_shape: - if skip_mismatch: - logging.warning( - f"Skipping loading weights for layer #{k} (named " - f"{layer.name}) due to mismatch in shape for " - f"weight {symbolic_weights[i].name}. " - f"Weight expects shape {expected_shape}. " - "Received saved weight " - f"with shape {received_shape}" - ) - continue - raise ValueError( - f"Shape mismatch in layer #{k} (named {layer.name}) " - f"for weight {symbolic_weights[i].name}. " - f"Weight expects shape {expected_shape}. " - "Received saved weight " - f"with shape {received_shape}" - ) - else: - weight_value_tuples.append( - (symbolic_weights[i], weight_values[i]) - ) - - if "top_level_model_weights" in f: - symbolic_weights = ( - model._trainable_weights + model._non_trainable_weights - ) - weight_values = load_subset_weights_from_hdf5_group( - f["top_level_model_weights"] - ) - - if len(weight_values) != len(symbolic_weights): - if skip_mismatch: - logging.warning( - "Skipping loading top-level weights for model due to " - "mismatch in number of weights. " - f"Model expects {len(symbolic_weights)} " - "top-level weight(s). " - f"Received {len(weight_values)} saved top-level weight(s)" - ) - else: - raise ValueError( - "Weight count mismatch for top-level weights of model. " - f"Model expects {len(symbolic_weights)} " - "top-level weight(s). " - f"Received {len(weight_values)} saved top-level weight(s)" - ) - else: - for i in range(len(weight_values)): - expected_shape = backend.int_shape(symbolic_weights[i]) - received_shape = weight_values[i].shape - if expected_shape != received_shape: - if skip_mismatch: - logging.warning( - "Skipping loading top-level weight for model due " - "to mismatch in shape for " - f"weight {symbolic_weights[i].name}. " - f"Weight expects shape {expected_shape}. " - "Received saved weight " - f"with shape {received_shape}" - ) - else: - raise ValueError( - "Shape mismatch in model for top-level weight " - f"{symbolic_weights[i].name}. " - f"Weight expects shape {expected_shape}. " - "Received saved weight " - f"with shape {received_shape}" - ) - else: - weight_value_tuples.append( - (symbolic_weights[i], weight_values[i]) - ) - - backend.batch_set_value(weight_value_tuples) - - # Perform any layer defined finalization of the layer state. - for layer in model._flatten_layers(): - layer.finalize_state() - - -def save_attributes_to_hdf5_group(group, name, data): - """Saves attributes (data) of the specified name into the HDF5 group. - - This method deals with an inherent problem of HDF5 file which is not - able to store data larger than HDF5_OBJECT_HEADER_LIMIT bytes. - - Args: - group: A pointer to a HDF5 group. - name: A name of the attributes to save. - data: Attributes data to store. - - Raises: - RuntimeError: If any single attribute is too large to be saved. - """ - # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` - # because in that case even chunking the array would not make the saving - # possible. - bad_attributes = [x for x in data if len(x) > HDF5_OBJECT_HEADER_LIMIT] - - # Expecting this to never be true. - if bad_attributes: - raise RuntimeError( - "The following attributes cannot be saved to HDF5 file because " - f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " - f"bytes: {bad_attributes}" - ) - - data_npy = np.asarray(data) - - num_chunks = 1 - chunked_data = np.array_split(data_npy, num_chunks) - - # This will never loop forever thanks to the test above. - while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data): - num_chunks += 1 - chunked_data = np.array_split(data_npy, num_chunks) - - if num_chunks > 1: - for chunk_id, chunk_data in enumerate(chunked_data): - group.attrs["%s%d" % (name, chunk_id)] = chunk_data - else: - group.attrs[name] = data - - -def load_attributes_from_hdf5_group(group, name): - """Loads attributes of the specified name from the HDF5 group. - - This method deals with an inherent problem - of HDF5 file which is not able to store - data larger than HDF5_OBJECT_HEADER_LIMIT bytes. - - Args: - group: A pointer to a HDF5 group. - name: A name of the attributes to load. - - Returns: - data: Attributes data. - """ - if name in group.attrs: - data = [ - n.decode("utf8") if hasattr(n, "decode") else n - for n in group.attrs[name] - ] - else: - data = [] - chunk_id = 0 - while "%s%d" % (name, chunk_id) in group.attrs: - data.extend( - [ - n.decode("utf8") if hasattr(n, "decode") else n - for n in group.attrs["%s%d" % (name, chunk_id)] - ] - ) - chunk_id += 1 - return data - - -def _legacy_weights(layer): - """DO NOT USE. - - For legacy reason, the layer.weights was in the order of - [self.trainable_weights + self.non_trainable_weights], and this order was - used for preserving the weights in h5 format. The new order of layer.weights - are the same as layer.get_weights() which is more intuitive for user. To - keep supporting the existing saved h5 file, this method should be used to - save/load weights. In future version, we will delete this method and - introduce a breaking change for h5 and stay with the new order for weights. - - Args: - layer: a `tf.keras.Model` or `tf.keras.layers.Layer` instance. - - Returns: - A list of variables with the order of trainable_weights, followed by - non_trainable_weights. - """ - weights = layer.trainable_weights + layer.non_trainable_weights - if any(not isinstance(w, tf.Variable) for w in weights): - raise NotImplementedError( - "Save or restore weights that is not an instance of `tf.Variable` " - "is not supported in h5, use `save_format='tf'` instead. Received " - f"a model or layer {layer.__class__.__name__} " - f"with weights {weights}" - ) - return weights diff --git a/keras/saving/legacy/losses_serialization_test.py b/keras/saving/legacy/losses_serialization_test.py deleted file mode 100644 index 3a4df6ad84b..00000000000 --- a/keras/saving/legacy/losses_serialization_test.py +++ /dev/null @@ -1,213 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras losses serialization.""" - -import os -import shutil - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import layers -from keras import losses -from keras.optimizers import legacy as optimizer_legacy -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import losses_utils - -try: - import h5py -except ImportError: - h5py = None - - -# Custom loss class -class MyMeanAbsoluteError(losses.LossFunctionWrapper): - def __init__( - self, - reduction=losses_utils.ReductionV2.AUTO, - name="mean_absolute_error", - ): - super().__init__(my_mae, name=name, reduction=reduction) - - -# Custom loss function -def my_mae(y_true, y_pred): - return keras.backend.mean(tf.abs(y_pred - y_true), axis=-1) - - -def _get_multi_io_model(): - inp_1 = layers.Input(shape=(1,), name="input_1") - inp_2 = layers.Input(shape=(1,), name="input_2") - d = test_utils.Bias(name="output") - out_1 = d(inp_1) - out_2 = d(inp_2) - return keras.Model([inp_1, inp_2], [out_1, out_2]) - - -@test_combinations.run_all_keras_modes -@parameterized.named_parameters( - [ - dict(testcase_name="string", value="mae"), - dict(testcase_name="built_in_fn", value=losses.mae), - dict(testcase_name="built_in_class", value=losses.MeanAbsoluteError()), - dict(testcase_name="custom_fn", value=my_mae), - dict(testcase_name="custom_class", value=MyMeanAbsoluteError()), - dict(testcase_name="list_of_strings", value=["mae", "mae"]), - dict( - testcase_name="list_of_built_in_fns", value=[losses.mae, losses.mae] - ), - dict( - testcase_name="list_of_built_in_classes", - value=[losses.MeanAbsoluteError(), losses.MeanAbsoluteError()], - ), - dict(testcase_name="list_of_custom_fns", value=[my_mae, my_mae]), - dict( - testcase_name="list_of_custom_classes", - value=[MyMeanAbsoluteError(), MyMeanAbsoluteError()], - ), - dict( - testcase_name="dict_of_string", - value={ - "output": "mae", - "output_1": "mae", - }, - ), - dict( - testcase_name="dict_of_built_in_fn", - value={ - "output": losses.mae, - "output_1": losses.mae, - }, - ), - dict( - testcase_name="dict_of_built_in_class", - value={ - "output": losses.MeanAbsoluteError(), - "output_1": losses.MeanAbsoluteError(), - }, - ), - dict( - testcase_name="dict_of_custom_fn", - value={"output": my_mae, "output_1": my_mae}, - ), - dict( - testcase_name="dict_of_custom_class", - value={ - "output": MyMeanAbsoluteError(), - "output_1": MyMeanAbsoluteError(), - }, - ), - ] -) -class LossesSerialization(test_combinations.TestCase): - def setUp(self): - super(LossesSerialization, self).setUp() - tmpdir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, tmpdir) - self.model_filename = os.path.join(tmpdir, "tmp_model_loss.h5") - self.x = np.array([[0.0], [1.0], [2.0]], dtype="float32") - self.y = np.array([[0.5], [2.0], [3.5]], dtype="float32") - self.w = np.array([1.25, 0.5, 1.25], dtype="float32") - - def test_serializing_model_with_loss_with_custom_object_scope(self, value): - with keras.utils.custom_object_scope( - { - "MyMeanAbsoluteError": MyMeanAbsoluteError, - "my_mae": my_mae, - "Bias": test_utils.Bias, - } - ): - model = _get_multi_io_model() - model.compile( - optimizer_legacy.gradient_descent.SGD(0.1), - loss=value, - run_eagerly=test_utils.should_run_eagerly(), - ) - history = model.fit( - [self.x, self.x], - [self.y, self.y], - batch_size=3, - epochs=3, - sample_weight=[self.w, self.w], - ) - - # Assert training. - self.assertAllClose(history.history["loss"], [2.0, 1.6, 1.2], 1e-3) - eval_results = model.evaluate( - [self.x, self.x], - [self.y, self.y], - sample_weight=[self.w, self.w], - ) - - if h5py is None: - return - model.save(self.model_filename) - loaded_model = keras.models.load_model(self.model_filename) - loaded_model.predict([self.x, self.x]) - loaded_eval_results = loaded_model.evaluate( - [self.x, self.x], - [self.y, self.y], - sample_weight=[self.w, self.w], - ) - - # Assert all evaluation results are the same. - self.assertAllClose(eval_results, loaded_eval_results, 1e-9) - - def test_serializing_model_with_loss_with_custom_objects(self, value): - model = _get_multi_io_model() - model.compile( - optimizer_legacy.gradient_descent.SGD(0.1), - loss=value, - run_eagerly=test_utils.should_run_eagerly(), - ) - history = model.fit( - [self.x, self.x], - [self.y, self.y], - batch_size=3, - epochs=3, - sample_weight=[self.w, self.w], - ) - - # Assert training. - self.assertAllClose(history.history["loss"], [2.0, 1.6, 1.2], 1e-3) - eval_results = model.evaluate( - [self.x, self.x], [self.y, self.y], sample_weight=[self.w, self.w] - ) - - if h5py is None: - return - model.save(self.model_filename) - loaded_model = keras.models.load_model( - self.model_filename, - custom_objects={ - "MyMeanAbsoluteError": MyMeanAbsoluteError, - "my_mae": my_mae, - "Bias": test_utils.Bias, - }, - ) - loaded_model.predict([self.x, self.x]) - loaded_eval_results = loaded_model.evaluate( - [self.x, self.x], [self.y, self.y], sample_weight=[self.w, self.w] - ) - - # Assert all evaluation results are the same. - self.assertAllClose(eval_results, loaded_eval_results, 1e-9) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/saving/legacy/metrics_serialization_test.py b/keras/saving/legacy/metrics_serialization_test.py deleted file mode 100644 index 9956657d044..00000000000 --- a/keras/saving/legacy/metrics_serialization_test.py +++ /dev/null @@ -1,278 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras metrics serialization.""" - -import os -import shutil - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import layers -from keras import metrics -from keras.optimizers import legacy as optimizer_legacy -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import custom_object_scope - -try: - import h5py -except ImportError: - h5py = None - - -# Custom metric -class MyMeanAbsoluteError(metrics.MeanMetricWrapper): - def __init__(self, name="my_mae", dtype=None): - super().__init__(_my_mae, name, dtype=dtype) - - -# Custom metric function -def _my_mae(y_true, y_pred): - return keras.backend.mean(tf.abs(y_pred - y_true), axis=-1) - - -def _get_multi_io_model(): - inp_1 = layers.Input(shape=(1,), name="input_1") - inp_2 = layers.Input(shape=(1,), name="input_2") - d = test_utils.Bias(name="output") - out_1 = d(inp_1) - out_2 = d(inp_2) - return keras.Model([inp_1, inp_2], [out_1, out_2]) - - -@test_combinations.run_all_keras_modes -@parameterized.named_parameters( - dict(testcase_name="string", value=["mae"]), - dict(testcase_name="built_in_fn", value=[metrics.mae]), - dict(testcase_name="built_in_class", value=[metrics.MeanAbsoluteError]), - dict(testcase_name="custom_fn", value=[_my_mae]), - dict(testcase_name="custom_class", value=[MyMeanAbsoluteError]), - dict( - testcase_name="list_of_built_in_fn_and_list", - value=[metrics.mae, [metrics.mae]], - ), - dict( - testcase_name="list_of_built_in_class_and_list", - value=[metrics.MeanAbsoluteError, [metrics.MeanAbsoluteError]], - ), - dict( - testcase_name="list_of_custom_fn_and_list", value=[_my_mae, [_my_mae]] - ), - dict( - testcase_name="list_of_custom_class_and_list", - value=[MyMeanAbsoluteError, [MyMeanAbsoluteError]], - ), - dict( - testcase_name="list_of_lists_of_custom_fns", - value=[[_my_mae], [_my_mae, "mae"]], - ), - dict( - testcase_name="list_of_lists_of_custom_classes", - value=[[MyMeanAbsoluteError], [MyMeanAbsoluteError, "mae"]], - ), - dict( - testcase_name="dict_of_list_of_string", - value={ - "output": ["mae"], - "output_1": ["mae"], - }, - ), - dict( - testcase_name="dict_of_list_of_built_in_fn", - value={ - "output": [metrics.mae], - "output_1": [metrics.mae], - }, - ), - dict( - testcase_name="dict_of_list_of_built_in_class", - value={ - "output": [metrics.MeanAbsoluteError], - "output_1": [metrics.MeanAbsoluteError], - }, - ), - dict( - testcase_name="dict_of_list_of_custom_fn", - value={ - "output": [_my_mae], - "output_1": [_my_mae], - }, - ), - dict( - testcase_name="dict_of_list_of_custom_class", - value={ - "output": [MyMeanAbsoluteError], - "output_1": [MyMeanAbsoluteError], - }, - ), - dict( - testcase_name="dict_of_string", - value={ - "output": "mae", - "output_1": "mae", - }, - ), - dict( - testcase_name="dict_of_built_in_fn", - value={ - "output": metrics.mae, - "output_1": metrics.mae, - }, - ), - dict( - testcase_name="dict_of_built_in_class", - value={ - "output": metrics.MeanAbsoluteError, - "output_1": metrics.MeanAbsoluteError, - }, - ), - dict( - testcase_name="dict_of_custom_fn", - value={"output": _my_mae, "output_1": _my_mae}, - ), - dict( - testcase_name="dict_of_custom_class", - value={ - "output": MyMeanAbsoluteError, - "output_1": MyMeanAbsoluteError, - }, - ), -) -class MetricsSerialization(test_combinations.TestCase): - def setUp(self): - super(MetricsSerialization, self).setUp() - tmpdir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, tmpdir) - self.model_filename = os.path.join(tmpdir, "tmp_model_metric.h5") - self.x = np.array([[0.0], [1.0], [2.0]], dtype="float32") - self.y = np.array([[0.5], [2.0], [3.5]], dtype="float32") - self.w = np.array([1.25, 0.5, 1.25], dtype="float32") - - def test_serializing_model_with_metric_with_custom_object_scope( - self, value - ): - def get_instance(x): - if isinstance(x, str): - return x - if isinstance(x, type) and issubclass(x, metrics.Metric): - return x() - return x - - metric_input = tf.nest.map_structure(get_instance, value) - weighted_metric_input = tf.nest.map_structure(get_instance, value) - - with custom_object_scope( - { - "MyMeanAbsoluteError": MyMeanAbsoluteError, - "_my_mae": _my_mae, - "Bias": test_utils.Bias, - } - ): - model = _get_multi_io_model() - model.compile( - optimizer_legacy.gradient_descent.SGD(0.1), - "mae", - metrics=metric_input, - weighted_metrics=weighted_metric_input, - run_eagerly=test_utils.should_run_eagerly(), - ) - history = model.fit( - [self.x, self.x], - [self.y, self.y], - batch_size=3, - epochs=3, - sample_weight=[self.w, self.w], - ) - - # Assert training. - self.assertAllClose(history.history["loss"], [2.0, 1.6, 1.2], 1e-3) - eval_results = model.evaluate( - [self.x, self.x], - [self.y, self.y], - sample_weight=[self.w, self.w], - ) - - if h5py is None: - return - model.save(self.model_filename) - loaded_model = keras.models.load_model(self.model_filename) - loaded_model.predict([self.x, self.x]) - loaded_eval_results = loaded_model.evaluate( - [self.x, self.x], - [self.y, self.y], - sample_weight=[self.w, self.w], - ) - - # Assert all evaluation results are the same. - self.assertAllClose(eval_results, loaded_eval_results, 1e-9) - - def test_serializing_model_with_metric_with_custom_objects(self, value): - def get_instance(x): - if isinstance(x, str): - return x - if isinstance(x, type) and issubclass(x, metrics.Metric): - return x() - return x - - metric_input = tf.nest.map_structure(get_instance, value) - weighted_metric_input = tf.nest.map_structure(get_instance, value) - - model = _get_multi_io_model() - model.compile( - optimizer_legacy.gradient_descent.SGD(0.1), - "mae", - metrics=metric_input, - weighted_metrics=weighted_metric_input, - run_eagerly=test_utils.should_run_eagerly(), - ) - history = model.fit( - [self.x, self.x], - [self.y, self.y], - batch_size=3, - epochs=3, - sample_weight=[self.w, self.w], - ) - - # Assert training. - self.assertAllClose(history.history["loss"], [2.0, 1.6, 1.2], 1e-3) - eval_results = model.evaluate( - [self.x, self.x], [self.y, self.y], sample_weight=[self.w, self.w] - ) - - if h5py is None: - return - model.save(self.model_filename) - loaded_model = keras.models.load_model( - self.model_filename, - custom_objects={ - "MyMeanAbsoluteError": MyMeanAbsoluteError, - "_my_mae": _my_mae, - "Bias": test_utils.Bias, - }, - ) - loaded_model.predict([self.x, self.x]) - loaded_eval_results = loaded_model.evaluate( - [self.x, self.x], [self.y, self.y], sample_weight=[self.w, self.w] - ) - - # Assert all evaluation results are the same. - self.assertAllClose(eval_results, loaded_eval_results, 1e-9) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/saving/legacy/model_config.py b/keras/saving/legacy/model_config.py deleted file mode 100644 index a916289b3ab..00000000000 --- a/keras/saving/legacy/model_config.py +++ /dev/null @@ -1,125 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Functions that save the model's config into different formats.""" - -# isort: off - -import threading -from tensorflow.python.util.tf_export import keras_export -from keras.saving.legacy import serialization - -MODULE_OBJECTS = threading.local() - - -@keras_export("keras.models.model_from_config") -def model_from_config(config, custom_objects=None): - """Instantiates a Keras model from its config. - - Usage: - ``` - # for a Functional API model - tf.keras.Model().from_config(model.get_config()) - - # for a Sequential model - tf.keras.Sequential().from_config(model.get_config()) - ``` - - Args: - config: Configuration dictionary. - custom_objects: Optional dictionary mapping names - (strings) to custom classes or functions to be - considered during deserialization. - - Returns: - A Keras model instance (uncompiled). - - Raises: - TypeError: if `config` is not a dictionary. - """ - if isinstance(config, list): - raise TypeError( - "`model_from_config` expects a dictionary, not a list. " - f"Received: config={config}. Did you meant to use " - "`Sequential.from_config(config)`?" - ) - from keras import layers - - global MODULE_OBJECTS - - if not hasattr(MODULE_OBJECTS, "ALL_OBJECTS"): - layers.serialization.populate_deserializable_objects() - MODULE_OBJECTS.ALL_OBJECTS = layers.serialization.LOCAL.ALL_OBJECTS - - return serialization.deserialize_keras_object( - config, - module_objects=MODULE_OBJECTS.ALL_OBJECTS, - custom_objects=custom_objects, - printable_module_name="layer", - ) - - -@keras_export("keras.models.model_from_yaml") -def model_from_yaml(yaml_string, custom_objects=None): - """Parses a yaml model configuration file and returns a model instance. - - Note: Since TF 2.6, this method is no longer supported and will raise a - RuntimeError. - - Args: - yaml_string: YAML string or open file encoding a model configuration. - custom_objects: Optional dictionary mapping names - (strings) to custom classes or functions to be - considered during deserialization. - - Returns: - A Keras model instance (uncompiled). - - Raises: - RuntimeError: announces that the method poses a security risk - """ - raise RuntimeError( - "Method `model_from_yaml()` has been removed due to security risk of " - "arbitrary code execution. Please use `Model.to_json()` and " - "`model_from_json()` instead." - ) - - -@keras_export("keras.models.model_from_json") -def model_from_json(json_string, custom_objects=None): - """Parses a JSON model configuration string and returns a model instance. - - Usage: - - >>> model = tf.keras.Sequential([ - ... tf.keras.layers.Dense(5, input_shape=(3,)), - ... tf.keras.layers.Softmax()]) - >>> config = model.to_json() - >>> loaded_model = tf.keras.models.model_from_json(config) - - Args: - json_string: JSON string encoding a model configuration. - custom_objects: Optional dictionary mapping names - (strings) to custom classes or functions to be - considered during deserialization. - - Returns: - A Keras model instance (uncompiled). - """ - from keras.layers import ( - deserialize_from_json, - ) - - return deserialize_from_json(json_string, custom_objects=custom_objects) diff --git a/keras/saving/legacy/save.py b/keras/saving/legacy/save.py deleted file mode 100644 index 4c6a3825308..00000000000 --- a/keras/saving/legacy/save.py +++ /dev/null @@ -1,547 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras model saving code.""" - -import os - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.saving import object_registration -from keras.saving.legacy import hdf5_format -from keras.saving.legacy import saving_utils -from keras.saving.legacy import serialization -from keras.saving.legacy.saved_model import load as saved_model_load -from keras.saving.legacy.saved_model import load_context -from keras.saving.legacy.saved_model import save as saved_model_save -from keras.saving.legacy.saved_model.utils import keras_option_scope -from keras.utils import io_utils -from keras.utils import traceback_utils - -try: - import h5py -except ImportError: - h5py = None - - -@traceback_utils.filter_traceback -def save_model( - model, - filepath, - overwrite=True, - include_optimizer=True, - save_format=None, - signatures=None, - options=None, - save_traces=True, -): - """Saves a model as a TensorFlow SavedModel or HDF5 file. - - See the [Serialization and Saving - guide](https://keras.io/guides/serialization_and_saving/) for details. - - Usage: - - >>> model = tf.keras.Sequential([ - ... tf.keras.layers.Dense(5, input_shape=(3,)), - ... tf.keras.layers.Softmax()]) - >>> model.save('/tmp/model') - >>> loaded_model = tf.keras.models.load_model('/tmp/model') - >>> x = tf.random.uniform((10, 3)) - >>> assert np.allclose(model.predict(x), loaded_model.predict(x)) - - Note that `model.save()` is an alias for `tf.keras.models.save_model()`. - - The SavedModel and HDF5 file contains: - - - the model's configuration (topology) - - the model's weights - - the model's optimizer's state (if any) - - Thus models can be reinstantiated in the exact same state, without any of - the code used for model definition or training. - - Note that the model weights may have different scoped names after being - loaded. Scoped names include the model/layer names, such as - `"dense_1/kernel:0"`. It is recommended that you use the layer properties to - access specific variables, e.g. `model.get_layer("dense_1").kernel`. - - __SavedModel serialization format__ - - Keras SavedModel uses `tf.saved_model.save` to save the model and all - trackable objects attached to the model (e.g. layers and variables). The - model config, weights, and optimizer are saved in the SavedModel. - Additionally, for every Keras layer attached to the model, the SavedModel - stores: - - * the config and metadata -- e.g. name, dtype, trainable status - * traced call and loss functions, which are stored as TensorFlow - subgraphs. - - The traced functions allow the SavedModel format to save and load custom - layers without the original class definition. - - You can choose to not save the traced functions by disabling the - `save_traces` option. This will decrease the time it takes to save the model - and the amount of disk space occupied by the output SavedModel. If you - enable this option, then you _must_ provide all custom class definitions - when loading the model. See the `custom_objects` argument in - `tf.keras.models.load_model`. - - Args: - model: Keras model instance to be saved. - filepath: One of the following: - - String or `pathlib.Path` object, path where to save the model - - `h5py.File` object where to save the model - overwrite: Whether we should overwrite any existing model at the target - location, or instead ask the user with a manual prompt. - include_optimizer: If True, save optimizer's state together. - save_format: Either 'tf' or 'h5', indicating whether to save the model - to Tensorflow SavedModel or HDF5. Defaults to 'tf' in TF 2.X, and 'h5' - in TF 1.X. - signatures: Signatures to save with the SavedModel. Applicable to the - 'tf' format only. Please see the `signatures` argument in - `tf.saved_model.save` for details. - options: (only applies to SavedModel format) - `tf.saved_model.SaveOptions` object that specifies options for saving - to SavedModel. - save_traces: (only applies to SavedModel format) When enabled, the - SavedModel will store the function traces for each layer. This - can be disabled, so that only the configs of each layer are stored. - Defaults to `True`. Disabling this will decrease serialization time - and reduce file size, but it requires that all custom layers/models - implement a `get_config()` method. - - Raises: - ImportError: If save format is hdf5, and h5py is not available. - """ - - from keras.engine import sequential - - default_format = "tf" if tf.__internal__.tf2.enabled() else "h5" - save_format = save_format or default_format - - filepath = io_utils.path_to_string(filepath) - - # If the user has not already called fit or built the underlying metrics, we - # should do that before saving to ensure the metric names have all - # appropriate name transformations applied. - saving_utils.try_build_compiled_arguments(model) - - if ( - save_format == "h5" - or (h5py is not None and isinstance(filepath, h5py.File)) - or saving_utils.is_hdf5_filepath(filepath) - ): - # TODO(b/130258301): add utility method for detecting model type. - if not model._is_graph_network and not isinstance( - model, sequential.Sequential - ): - raise NotImplementedError( - "Saving the model to HDF5 format requires the model to be a " - "Functional model or a Sequential model. It does not work for " - "subclassed models, because such models are defined via the " - "body of a Python method, which isn't safely serializable. " - "Consider saving to the Tensorflow SavedModel format (by " - 'setting save_format="tf") or using `save_weights`.' - ) - hdf5_format.save_model_to_hdf5( - model, filepath, overwrite, include_optimizer - ) - else: - with serialization.SharedObjectSavingScope(): - with keras_option_scope( - save_traces=save_traces, in_tf_saved_model_scope=True - ): - saved_model_save.save( - model, - filepath, - overwrite, - include_optimizer, - signatures, - options, - save_traces, - ) - - -@traceback_utils.filter_traceback -def load_model(filepath, custom_objects=None, compile=True, options=None): - """Loads a model saved via `model.save()`. - - Usage: - - >>> model = tf.keras.Sequential([ - ... tf.keras.layers.Dense(5, input_shape=(3,)), - ... tf.keras.layers.Softmax()]) - >>> model.save('/tmp/model') - >>> loaded_model = tf.keras.models.load_model('/tmp/model') - >>> x = tf.random.uniform((10, 3)) - >>> assert np.allclose(model.predict(x), loaded_model.predict(x)) - - Note that the model weights may have different scoped names after being - loaded. Scoped names include the model/layer names, such as - `"dense_1/kernel:0"`. It is recommended that you use the layer properties to - access specific variables, e.g. `model.get_layer("dense_1").kernel`. - - Args: - filepath: One of the following: - - String or `pathlib.Path` object, path to the saved model - - `h5py.File` object from which to load the model - custom_objects: Optional dictionary mapping names - (strings) to custom classes or functions to be - considered during deserialization. - compile: Boolean, whether to compile the model - after loading. - options: Optional `tf.saved_model.LoadOptions` object that specifies - options for loading from SavedModel. - - Returns: - A Keras model instance. If the original model was compiled, and saved - with the optimizer, then the returned model will be compiled. Otherwise, - the model will be left uncompiled. In the case that an uncompiled model - is returned, a warning is displayed if the `compile` argument is set to - `True`. - - Raises: - ImportError: if loading from an hdf5 file and h5py is not available. - IOError: In case of an invalid savefile. - """ - with serialization.SharedObjectLoadingScope(): - custom_objects = custom_objects or {} - tlco = object_registration._THREAD_LOCAL_CUSTOM_OBJECTS.__dict__ - gco = object_registration._GLOBAL_CUSTOM_OBJECTS - custom_objects = {**custom_objects, **tlco, **gco} - with object_registration.CustomObjectScope(custom_objects): - with keras_option_scope( - save_traces=False, in_tf_saved_model_scope=True - ): - with load_context.load_context(options): - filepath_str = io_utils.path_to_string(filepath) - if isinstance(filepath_str, str): - if not tf.io.gfile.exists(filepath_str): - raise IOError( - f"No file or directory found at {filepath_str}" - ) - - if tf.io.gfile.isdir(filepath_str): - return saved_model_load.load( - filepath_str, compile, options - ) - else: - if h5py is None: - raise ImportError( - "Filepath looks like a hdf5 file but h5py" - "is not available." - f" filepath={filepath_str}" - ) - return hdf5_format.load_model_from_hdf5( - tf.io.gfile.GFile(filepath_str, mode="rb"), - custom_objects, - compile, - ) - elif h5py is not None and isinstance(filepath, h5py.File): - return hdf5_format.load_model_from_hdf5( - filepath, custom_objects, compile - ) - - raise IOError( - "Unable to load model. Filepath is not an hdf5 file (or h5py is not " - f"available) or SavedModel. Received: filepath={filepath}" - ) - - -def save_weights( - model, filepath, overwrite=True, save_format=None, options=None -): - """Saves all layer weights. - - Either saves in HDF5 or in TensorFlow format based on the `save_format` - argument. - - When saving in HDF5 format, the weight file has: - - `layer_names` (attribute), a list of strings - (ordered names of model layers). - - For every layer, a `group` named `layer.name` - - For every such layer group, a group attribute `weight_names`, - a list of strings - (ordered names of weights tensor of the layer). - - For every weight in the layer, a dataset - storing the weight value, named after the weight tensor. - - When saving in TensorFlow format, all objects referenced by the network - are saved in the same format as `tf.train.Checkpoint`, including any - `Layer` instances or `Optimizer` instances assigned to object - attributes. For networks constructed from inputs and outputs using - `tf.keras.Model(inputs, outputs)`, `Layer` instances used by the network - are tracked/saved automatically. For user-defined classes which inherit - from `tf.keras.Model`, `Layer` instances must be assigned to object - attributes, typically in the constructor. See the documentation of - `tf.train.Checkpoint` and `tf.keras.Model` for details. - - While the formats are the same, do not mix `save_weights` and - `tf.train.Checkpoint`. Checkpoints saved by `Model.save_weights` should - be loaded using `Model.load_weights`. Checkpoints saved using - `tf.train.Checkpoint.save` should be restored using the corresponding - `tf.train.Checkpoint.restore`. Prefer `tf.train.Checkpoint` over - `save_weights` for training checkpoints. - - The TensorFlow format matches objects and variables by starting at a - root object, `self` for `save_weights`, and greedily matching attribute - names. For `Model.save` this is the `Model`, and for `Checkpoint.save` - this is the `Checkpoint` even if the `Checkpoint` has a model attached. - This means saving a `tf.keras.Model` using `save_weights` and loading - into a `tf.train.Checkpoint` with a `Model` attached (or vice versa) - will not match the `Model`'s variables. See the - [guide to training checkpoints]( - https://www.tensorflow.org/guide/checkpoint) for details on - the TensorFlow format. - - Args: - filepath: String or PathLike, path to the file to save the weights - to. When saving in TensorFlow format, this is the prefix used - for checkpoint files (multiple files are generated). Note that - the '.h5' suffix causes weights to be saved in HDF5 format. - overwrite: Whether to silently overwrite any existing file at the - target location, or provide the user with a manual prompt. - save_format: Either 'tf' or 'h5'. A `filepath` ending in '.h5' or - '.keras' will default to HDF5 if `save_format` is `None`. - Otherwise `None` defaults to 'tf'. - options: Optional `tf.train.CheckpointOptions` object that specifies - options for saving weights. - - Raises: - ImportError: If `h5py` is not available when attempting to save in - HDF5 format. - """ - model._assert_weights_created() - filepath = io_utils.path_to_string(filepath) - filepath_is_h5 = saving_utils.is_hdf5_filepath(filepath) - if save_format is None: - if filepath_is_h5: - save_format = "h5" - else: - save_format = "tf" - else: - user_format = save_format.lower().strip() - if user_format in ("tensorflow", "tf"): - save_format = "tf" - elif user_format in ("hdf5", "h5", "keras"): - save_format = "h5" - else: - raise ValueError( - f"Unknown format. Received: `save_format`={save_format}. " - 'Was expecting one of {"tf", "h5"}.' - ) - if save_format == "tf" and filepath_is_h5: - raise ValueError( - 'save_weights got save_format="tf"/"tensorflow", but the ' - f"filepath ({filepath}) looks like an HDF5 file. " - 'Omit the ".h5"/".keras" when saving in TensorFlow format.' - ) - - if save_format == "h5" and h5py is None: - raise ImportError( - "`save_weights` requires h5py when saving in hdf5, but h5py is " - "not available. Try installing h5py package." - ) - if save_format == "tf": - check_filepath = filepath + ".index" - else: - check_filepath = filepath - # If file exists and should not be overwritten: - if not overwrite and os.path.isfile(check_filepath): - proceed = io_utils.ask_to_proceed_with_overwrite(check_filepath) - if not proceed: - return - if save_format == "h5": - with h5py.File(filepath, "w") as f: - hdf5_format.save_weights_to_hdf5_group(f, model) - else: - if not tf.executing_eagerly(): - # Call `get_session` to initialize any uninitialized variables. - backend.get_session() - model._checkpoint.write(filepath, options=options) - - # Record this checkpoint so it's visible from - # tf.train.latest_checkpoint. - tf.__internal__.train.update_checkpoint_state( - save_dir=os.path.dirname(filepath), - model_checkpoint_path=filepath, - save_relative_paths=True, - all_model_checkpoint_paths=[filepath], - ) - - -def load_weights( - model, filepath, by_name=False, skip_mismatch=False, options=None -): - """Loads all layer weights, either from a SavedModel or H5 weights file. - - If `by_name` is False weights are loaded based on the network's - topology. This means the architecture should be the same as when the - weights were saved. Note that layers that don't have weights are not - taken into account in the topological ordering, so adding or removing - layers is fine as long as they don't have weights. - - If `by_name` is True, weights are loaded into layers only if they share - the same name. This is useful for fine-tuning or transfer-learning - models where some of the layers have changed. - - Only topological loading (`by_name=False`) is supported when loading - weights from the TensorFlow format. Note that topological loading - differs slightly between TensorFlow and HDF5 formats for user-defined - classes inheriting from `tf.keras.Model`: HDF5 loads based on a - flattened list of weights, while the TensorFlow format loads based on - the object-local names of attributes to which layers are assigned in the - `Model`'s constructor. - - Args: - filepath: String, path to the weights file to load. For weight files - in TensorFlow format, this is the file prefix (the same as was - passed to `save_weights`). This can also be a path to a - SavedModel saved from `model.save`. - by_name: Boolean, whether to load weights by name or by topological - order. Only topological loading is supported for weight files in - TensorFlow format. - skip_mismatch: Boolean, whether to skip loading of layers where - there is a mismatch in the number of weights, or a mismatch in - the shape of the weight (only valid when `by_name=True`). - options: Optional `tf.train.CheckpointOptions` object that specifies - options for loading weights. - - Returns: - When loading a weight file in TensorFlow format, returns the same - status object as `tf.train.Checkpoint.restore`. When graph building, - restore ops are run automatically as soon as the network is built - (on first call for user-defined classes inheriting from `Model`, - immediately if it is already built). - - When loading weights in HDF5 format, returns `None`. - - Raises: - ImportError: If `h5py` is not available and the weight file is in - HDF5 format. - ValueError: If `skip_mismatch` is set to `True` when `by_name` is - `False`. - """ - if backend.is_tpu_strategy(model._distribution_strategy): - if model._distribution_strategy.extended.steps_per_run > 1 and ( - not saving_utils.is_hdf5_filepath(filepath) - ): - spr = model._distribution_strategy.extended.steps_per_run - raise ValueError( - "Load weights is not implemented with TPUStrategy " - "with `steps_per_run` greater than 1. The " - f"`steps_per_run` is {spr}" - ) - if skip_mismatch and not by_name: - raise ValueError( - "When calling model.load_weights, skip_mismatch can only be " - "set to True when by_name is True." - ) - - filepath, save_format = _detect_save_format(filepath) - if save_format == "tf": - status = model._checkpoint.read(filepath, options) - if by_name: - raise NotImplementedError( - "Weights may only be loaded based on topology into Models " - "when loading TensorFlow-formatted weights " - "(got by_name=True to load_weights)." - ) - if not tf.executing_eagerly(): - session = backend.get_session() - # Restore existing variables (if any) immediately, and set up a - # streaming restore for any variables created in the future. - tf.__internal__.tracking.streaming_restore( - status=status, session=session - ) - status.assert_nontrivial_match() - else: - status = None - if h5py is None: - raise ImportError( - "`load_weights` requires h5py package when loading weights " - "from HDF5. Try installing h5py." - ) - if not model._is_graph_network and not model.built: - raise ValueError( - "Unable to load weights saved in HDF5 format into a " - "subclassed Model which has not created its variables yet. " - "Call the Model first, then load the weights." - ) - model._assert_weights_created() - with h5py.File(filepath, "r") as f: - if "layer_names" not in f.attrs and "model_weights" in f: - f = f["model_weights"] - if by_name: - hdf5_format.load_weights_from_hdf5_group_by_name( - f, model, skip_mismatch - ) - else: - hdf5_format.load_weights_from_hdf5_group(f, model) - - # Perform any layer defined finalization of the layer state. - for layer in model.layers: - layer.finalize_state() - return status - - -def _detect_save_format(filepath): - """Returns path to weights file and save format.""" - - filepath = io_utils.path_to_string(filepath) - if saving_utils.is_hdf5_filepath(filepath): - return filepath, "h5" - - # Filepath could be a TensorFlow checkpoint file prefix or SavedModel - # directory. It's possible for filepath to be both a prefix and directory. - # Prioritize checkpoint over SavedModel. - if _is_readable_tf_checkpoint(filepath): - save_format = "tf" - elif tf.saved_model.contains_saved_model(filepath): - ckpt_path = os.path.join( - filepath, - tf.saved_model.VARIABLES_DIRECTORY, - tf.saved_model.VARIABLES_FILENAME, - ) - if _is_readable_tf_checkpoint(ckpt_path): - filepath = ckpt_path - save_format = "tf" - else: - raise ValueError( - "Unable to load weights. filepath {} appears to be a " - "SavedModel directory, but checkpoint either doesn't " - "exist, or is incorrectly formatted.".format(filepath) - ) - else: - # Not a TensorFlow checkpoint. This filepath is likely an H5 file that - # doesn't have the hdf5/keras extensions. - save_format = "h5" - return filepath, save_format - - -def _is_readable_tf_checkpoint(filepath): - try: - tf.compat.v1.train.NewCheckpointReader(filepath) - return True - except tf.errors.DataLossError: - # The checkpoint is not readable in TensorFlow format. - return False - - -# Inject the load_model function to keras_deps to remove the dependency -# from TFLite to Keras. -tf.__internal__.register_load_model_function(load_model) diff --git a/keras/saving/legacy/save_test.py b/keras/saving/legacy/save_test.py deleted file mode 100644 index 7d7185baefb..00000000000 --- a/keras/saving/legacy/save_test.py +++ /dev/null @@ -1,1516 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras model saving code.""" - -import collections -import os -import pathlib -import shutil -import tempfile - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import losses -from keras import optimizers -from keras.engine import functional -from keras.engine import sequential -from keras.feature_column import dense_features -from keras.feature_column import sequence_feature_column as ksfc -from keras.layers import core -from keras.optimizers import optimizer_v1 -from keras.premade_models.linear import LinearModel -from keras.saving import object_registration -from keras.saving.legacy import model_config -from keras.saving.legacy import save -from keras.saving.legacy import serialization -from keras.saving.legacy.saved_model import utils as saved_model_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -try: - import h5py -except ImportError: - h5py = None - - -class TestSaveModel(tf.test.TestCase, parameterized.TestCase): - def setUp(self): - super().setUp() - self.model = test_utils.get_small_sequential_mlp(1, 2, 3) - self.subclassed_model = test_utils.get_small_subclass_mlp(1, 2) - - def assert_h5_format(self, path): - if h5py is not None: - self.assertTrue( - h5py.is_hdf5(path), - f"Model saved at path {path} is not a valid hdf5 file.", - ) - - def assert_saved_model(self, path): - tf.__internal__.saved_model.parse_saved_model(path) - - @test_utils.run_v2_only - def test_load_file_not_found(self): - path = pathlib.Path(self.get_temp_dir()) / "does_not_exist" - with self.assertRaisesRegex(IOError, "No file or directory found at"): - save.load_model(path) - - @test_utils.run_v2_only - def test_save_format_defaults(self): - path = os.path.join(self.get_temp_dir(), "model_path") - save.save_model(self.model, path) - self.assert_saved_model(path) - - @test_utils.run_v2_only - def test_save_format_defaults_pathlib(self): - path = pathlib.Path(self.get_temp_dir()) / "model_path" - save.save_model(self.model, path) - self.assert_saved_model(path) - - @test_utils.run_v2_only - def test_save_hdf5(self): - path = os.path.join(self.get_temp_dir(), "model") - save.save_model(self.model, path, save_format="h5") - self.assert_h5_format(path) - with self.assertRaisesRegex( - NotImplementedError, - "requires the model to be a Functional model " - "or a Sequential model.", - ): - save.save_model(self.subclassed_model, path, save_format="h5") - - @test_utils.run_v2_only - def test_save_load_hdf5_pathlib(self): - path = pathlib.Path(self.get_temp_dir()) / "model" - save.save_model(self.model, path, save_format="h5") - save.load_model(path) - - @test_utils.run_v2_only - def test_save_tf(self): - path = os.path.join(self.get_temp_dir(), "model") - save.save_model(self.model, path, save_format="tf") - self.assert_saved_model(path) - with self.assertRaisesRegex( - ValueError, - r"Model.*cannot be saved.*as opposed to `model.call\(\).*", - ): - save.save_model(self.subclassed_model, path, save_format="tf") - self.subclassed_model.predict(np.random.random((3, 5))) - save.save_model(self.subclassed_model, path, save_format="tf") - self.assert_saved_model(path) - - @test_utils.run_v2_only - def test_save_load_tf_string(self): - path = os.path.join(self.get_temp_dir(), "model") - save.save_model(self.model, path, save_format="tf") - save.load_model(path) - - @test_utils.run_v2_only - def test_save_load_tf_pathlib(self): - path = pathlib.Path(self.get_temp_dir()) / "model" - save.save_model(self.model, path, save_format="tf") - save.load_model(path) - - @test_utils.run_v2_only - def test_save_load_weights_tf_pathlib(self): - path = pathlib.Path(self.get_temp_dir()) / "model" - self.model.save_weights(path, save_format="tf") - self.model.load_weights(path) - - @test_utils.run_v2_only - def test_save_load_weights_hdf5_pathlib(self): - path = pathlib.Path(self.get_temp_dir()) / "model" - self.model.save_weights(path, save_format="h5") - self.model.load_weights(path) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_saving_h5_for_rnn_layers(self): - # See https://github.com/tensorflow/tensorflow/issues/35731 for details. - inputs = keras.Input([10, 91], name="train_input") - rnn_layers = [ - keras.layers.LSTMCell( - size, recurrent_dropout=0, name="rnn_cell%d" % i - ) - for i, size in enumerate([512, 512]) - ] - rnn_output = keras.layers.RNN( - rnn_layers, return_sequences=True, name="rnn_layer" - )(inputs) - pred_feat = keras.layers.Dense(91, name="prediction_features")( - rnn_output - ) - pred = keras.layers.Softmax()(pred_feat) - model = keras.Model(inputs=[inputs], outputs=[pred, pred_feat]) - path = os.path.join(self.get_temp_dir(), "model_path.h5") - model.save(path) - - # Make sure the variable name is unique. - self.assertNotEqual( - rnn_layers[0].kernel.name, rnn_layers[1].kernel.name - ) - self.assertIn("rnn_cell1", rnn_layers[1].kernel.name) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_saving_optimizer_weights(self): - class MyModel(keras.Model): - def __init__(self): - super().__init__() - self.layer = keras.layers.Dense(1) - - def call(self, x): - return self.layer(x) - - path = os.path.join(self.get_temp_dir(), "weights_path") - x, y = np.ones((10, 10)), np.ones((10, 1)) - - model = MyModel() - model.compile("rmsprop", loss="bce") - model.train_on_batch(x, y) - model.reset_metrics() - model.save_weights(path, save_format="tf") - - batch_loss = model.train_on_batch(x, y) - - new_model = MyModel() - new_model.compile("rmsprop", loss="bce") - new_model.train_on_batch(x, y) - new_model.reset_metrics() - - new_model.load_weights(path) - new_batch_loss = new_model.train_on_batch(x, y) - - self.assertAllClose(batch_loss, new_batch_loss) - - @test_combinations.generate( - test_combinations.combine(mode=["eager", "graph"]) - ) - def test_save_include_optimizer_false(self): - def get_variables(file_name): - reader = tf.train.load_checkpoint( - os.path.join(file_name, "variables/variables") - ) - shape_from_key = reader.get_variable_to_shape_map() - return sorted(shape_from_key.keys()) - - path = os.path.join(self.get_temp_dir(), "no_optimizer") - x, y = np.ones((10, 10)), np.ones((10, 1)) - - model = keras.models.Sequential() - model.add(keras.layers.Dense(1)) - model.compile("adam", loss="mse") - model.train_on_batch(x, y) - model.save(path, save_format="tf", include_optimizer=False) - variables = get_variables(path) - - for v in variables: - self.assertNotIn("optimizer", v) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_saving_model_with_custom_object(self): - with object_registration.custom_object_scope(), self.cached_session(): - - @object_registration.register_keras_serializable() - class CustomLoss(losses.MeanSquaredError): - pass - - model = sequential.Sequential( - [core.Dense(units=1, input_shape=(1,))] - ) - model.compile(optimizer="sgd", loss=CustomLoss()) - model.fit(np.zeros([10, 1]), np.zeros([10, 1])) - - temp_dir = self.get_temp_dir() - filepath = os.path.join(temp_dir, "saving") - model.save(filepath) - - # Make sure the model can be correctly load back. - _ = save.load_model(filepath, compile=True) - - def test_saving_model_with_name_conflict(self): - class Sequential(keras.Model): - def __init__(self): - super().__init__() - self.layer = keras.layers.Dense(1) - - def call(self, x): - return self.layer(x) - - model = Sequential() - model(tf.ones((10, 10))) - temp_dir = self.get_temp_dir() - filepath = os.path.join(temp_dir, "Sequential") - - with self.assertLogs() as logs: - model.save(filepath, save_format="tf") - - expected_substring = ( - "has the same name 'Sequential' as a built-in Keras" - ) - matched = [log for log in logs.output if expected_substring in log] - self.assertNotEmpty(matched) - - def test_saving_built_in_model(self): - model = LinearModel() - model(tf.constant([[5.0]])) - temp_dir = self.get_temp_dir() - filepath = os.path.join(temp_dir, "LinearModel") - with self.assertLogs() as logs: - model.save(filepath, save_format="tf") - - expected_substring = ( - "has the same name 'LinearModel' as a built-in Keras" - ) - matched = [log for log in logs.output if expected_substring in log] - # Check that a warning is *not* logged for a premade model. - self.assertEmpty(matched) - - -@object_registration.register_keras_serializable(package="Foo") -class RegisteredSubLayer(keras.layers.Layer): - pass - - -class TestJson(test_combinations.TestCase): - """Tests to_json()/from_json().""" - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_saving_with_dense_features(self): - cols = [ - tf.feature_column.numeric_column("a"), - tf.feature_column.indicator_column( - tf.feature_column.categorical_column_with_vocabulary_list( - "b", ["one", "two"] - ) - ), - ] - input_layers = { - "a": keras.layers.Input(shape=(1,), name="a"), - "b": keras.layers.Input(shape=(1,), name="b", dtype="string"), - } - - fc_layer = dense_features.DenseFeatures(cols)(input_layers) - output = keras.layers.Dense(10)(fc_layer) - - model = keras.models.Model(input_layers, output) - - model.compile( - loss=keras.losses.MSE, - optimizer="rmsprop", - metrics=[keras.metrics.categorical_accuracy], - ) - - config = model.to_json() - loaded_model = model_config.model_from_json(config) - - inputs_a = np.arange(10).reshape(10, 1) - inputs_b = np.arange(10).reshape(10, 1).astype("str") - - with self.cached_session(): - # Initialize tables for V1 lookup. - if not tf.executing_eagerly(): - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertLen( - loaded_model.predict({"a": inputs_a, "b": inputs_b}), 10 - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_saving_with_sequence_features(self): - cols = [ - tf.feature_column.sequence_numeric_column("a"), - tf.feature_column.indicator_column( - tf.feature_column.sequence_categorical_column_with_vocabulary_list( # noqa: E501 - "b", ["one", "two"] - ) - ), - ] - input_layers = { - "a": keras.layers.Input(shape=(None, 1), sparse=True, name="a"), - "b": keras.layers.Input( - shape=(None, 1), sparse=True, name="b", dtype="string" - ), - } - - fc_layer, _ = ksfc.SequenceFeatures(cols)(input_layers) - # TODO(tibell): Figure out the right dtype and apply masking. - # sequence_length_mask = array_ops.sequence_mask(sequence_length) - # x = keras.layers.GRU(32)(fc_layer, mask=sequence_length_mask) - x = keras.layers.GRU(32)(fc_layer) - output = keras.layers.Dense(10)(x) - - model = keras.models.Model(input_layers, output) - - model.compile( - loss=keras.losses.MSE, - optimizer="rmsprop", - metrics=[keras.metrics.categorical_accuracy], - ) - - config = model.to_json() - loaded_model = model_config.model_from_json(config) - - batch_size = 10 - timesteps = 1 - - values_a = np.arange(10, dtype=np.float32) - indices_a = np.zeros((10, 3), dtype=np.int64) - indices_a[:, 0] = np.arange(10) - inputs_a = tf.SparseTensor( - indices_a, values_a, (batch_size, timesteps, 1) - ) - - values_b = np.zeros(10, dtype=str) - indices_b = np.zeros((10, 3), dtype=np.int64) - indices_b[:, 0] = np.arange(10) - inputs_b = tf.SparseTensor( - indices_b, values_b, (batch_size, timesteps, 1) - ) - - with self.cached_session(): - # Initialize tables for V1 lookup. - if not tf.executing_eagerly(): - self.evaluate(tf.compat.v1.tables_initializer()) - - self.assertLen( - loaded_model.predict({"a": inputs_a, "b": inputs_b}, steps=1), - batch_size, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_nested_layers(self): - class MyLayer(keras.layers.Layer): - def __init__(self, sublayers, **kwargs): - super().__init__(**kwargs) - self.sublayers = sublayers - - def get_config(self): - config = super().get_config() - config["sublayers"] = self.sublayers - return config - - layer = MyLayer( - [ - keras.layers.Dense(2, name="MyDense"), - RegisteredSubLayer(name="MySubLayer"), - ] - ) - model = keras.Sequential([keras.Input([None]), layer]) - model_json = model.to_json() - - self.assertIn("Foo>RegisteredSubLayer", model_json) - - loaded_model = model_config.model_from_json( - model_json, custom_objects={"MyLayer": MyLayer} - ) - loaded_layer = loaded_model.layers[0] - self.assertIsInstance(loaded_layer.sublayers[0], keras.layers.Dense) - self.assertEqual(loaded_layer.sublayers[0].name, "MyDense") - self.assertIsInstance(loaded_layer.sublayers[1], RegisteredSubLayer) - self.assertEqual(loaded_layer.sublayers[1].name, "MySubLayer") - - -class MaskedTensor(tf.experimental.ExtensionType): - __name__ = "MaskedTensor_save_test" - values: tf.Tensor - mask: tf.Tensor - - class Spec(tf.TypeSpec): - @property - def shape(self): - return self.values.shape - - @property - def dtype(self): - return self.values.dtype - - def with_shape(self, shape): - values_spec = tf.TensorSpec( - shape, dtype=self.values.dtype, name=self.values.name - ) - mask_spec = tf.TensorSpec( - shape, dtype=self.mask.dtype, name=self.mask.name - ) - return MaskedTensor.Spec(values_spec, mask_spec) - - -@test_combinations.run_with_all_saved_model_formats -class TestWholeModelSaving(test_combinations.TestCase): - def _save_model_dir(self, dirname="saved_model"): - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - return os.path.join(temp_dir, dirname) - - def _assert_same_weights_and_metrics(self, model, loaded_model): - """Checks that loaded weights & metrics are the same as the original. - - Args: - model: original model - loaded_model: loaded model - """ - self.assertAllClose(model.weights, loaded_model.weights) - - if loaded_model.optimizer: - if test_utils.get_save_format() == "tf": - # TODO(b/153110928): Keras TF format doesn't restore optimizer - # weights currently. - return - if isinstance( - loaded_model.optimizer, - keras.optimizers.optimizer.Optimizer, - ): - loaded_model.optimizer.build(loaded_model.trainable_variables) - self.assertAllClose( - model.optimizer.variables, - loaded_model.optimizer.variables, - ) - else: - self.assertAllClose( - model.optimizer.weights, loaded_model.optimizer.weights - ) - - # In V1/Graph mode, the model isn't built, so the metrics are not loaded - # immediately (requires model to be called on some data before building - # metrics). - check_metrics = tf.__internal__.tf2.enabled() and tf.executing_eagerly() - - if check_metrics: - self.assertAllEqual( - [m.name for m in model.metrics], - [m.name for m in loaded_model.metrics], - ) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_save_and_load(self): - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - save_kwargs = test_utils.get_save_kwargs() - - if ( - save_format == "h5" or not save_kwargs.get("save_traces", True) - ) and test_utils.get_model_type() == "subclass": - # HDF5 format currently does not allow saving subclassed models. - # When saving with `save_traces=False`, the subclassed model must - # have a get_config/from_config, which the autogenerated model does - # not have. - return - - with self.cached_session(): - model = test_utils.get_model_from_layers( - [ - keras.layers.Dense(2), - keras.layers.RepeatVector(3), - keras.layers.TimeDistributed(keras.layers.Dense(3)), - ], - input_shape=(3,), - ) - model.compile( - loss=keras.losses.MSE, - optimizer=keras.optimizers.legacy.rmsprop.RMSprop(lr=0.0001), - metrics=[ - keras.metrics.categorical_accuracy, - keras.metrics.CategoricalCrossentropy( - name="cce", label_smoothing=tf.constant(0.2) - ), - ], - weighted_metrics=[ - keras.metrics.categorical_crossentropy, - keras.metrics.CategoricalCrossentropy( - name="cce", label_smoothing=tf.constant(0.2) - ), - ], - sample_weight_mode="temporal", - ) - - x = np.random.random((1, 3)) - y = np.random.random((1, 3, 3)) - model.train_on_batch(x, y) - - out = model.predict(x) - keras.models.save_model( - model, saved_model_dir, save_format=save_format, **save_kwargs - ) - - loaded_model = keras.models.load_model(saved_model_dir) - self._assert_same_weights_and_metrics(model, loaded_model) - - out2 = loaded_model.predict(x) - self.assertAllClose(out, out2, atol=1e-05) - - eval_out = model.evaluate(x, y) - eval_out2 = loaded_model.evaluate(x, y) - self.assertArrayNear(eval_out, eval_out2, 0.001) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_sequential_model_saving_without_input_shape(self): - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - with self.cached_session(): - model = keras.models.Sequential() - model.add(keras.layers.Dense(2)) - model.add(keras.layers.RepeatVector(3)) - model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) - model.compile( - loss=keras.losses.MSE, - optimizer="rmsprop", - metrics=[ - keras.metrics.categorical_accuracy, - keras.metrics.CategoricalAccuracy(name="cat_acc"), - ], - weighted_metrics=[ - keras.metrics.categorical_accuracy, - keras.metrics.CategoricalAccuracy(name="cat_acc2"), - ], - sample_weight_mode="temporal", - ) - x = np.random.random((1, 3)) - y = np.random.random((1, 3, 3)) - model.train_on_batch(x, y) - - out = model.predict(x) - model.save(saved_model_dir, save_format=save_format) - - new_model = keras.models.load_model(saved_model_dir) - - self._assert_same_weights_and_metrics(model, new_model) - - out2 = new_model.predict(x) - self.assertAllClose(out, out2, atol=1e-05) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_sequential_model_saving_without_compile(self): - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - with self.cached_session(): - model = keras.models.Sequential() - model.add(keras.layers.Dense(2, input_shape=(3,))) - model.add(keras.layers.RepeatVector(3)) - model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) - - x = np.random.random((1, 3)) - out = model.predict(x) - - # Save the model without any compilation or training. - keras.models.save_model( - model, saved_model_dir, save_format=save_format - ) - - new_model = keras.models.load_model(saved_model_dir) - self._assert_same_weights_and_metrics(model, new_model) - - out2 = new_model.predict(x) - self.assertAllClose(out, out2, atol=1e-05) - - def test_sequential_model_saving_2(self): - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - - with tf.Graph().as_default(), self.cached_session(): - # test with custom optimizer, loss - - class CustomOp(optimizer_v1.RMSprop): - pass - - def custom_loss(y_true, y_pred): - return keras.losses.mse(y_true, y_pred) - - model = keras.models.Sequential() - model.add(keras.layers.Dense(2, input_shape=(3,))) - model.add(keras.layers.Dense(3)) - model.compile( - loss=custom_loss, optimizer=CustomOp(), metrics=["acc"] - ) - - x = np.random.random((1, 3)) - y = np.random.random((1, 3)) - model.train_on_batch(x, y) - - out = model.predict(x) - keras.models.save_model( - model, saved_model_dir, save_format=save_format - ) - - new_model = keras.models.load_model( - saved_model_dir, - custom_objects={ - "CustomOp": CustomOp, - "custom_loss": custom_loss, - }, - ) - self._assert_same_weights_and_metrics(model, new_model) - - out2 = new_model.predict(x) - self.assertAllClose(out, out2, atol=1e-05) - - def test_saving_without_compilation(self): - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - model = keras.models.Sequential() - model.add(keras.layers.Dense(2, input_shape=(3,))) - model.add(keras.layers.Dense(3)) - model.compile(loss="mse", optimizer="sgd", metrics=["acc"]) - - keras.models.save_model(model, saved_model_dir, save_format=save_format) - model = keras.models.load_model(saved_model_dir) - - def test_saving_with_tf_optimizer(self): - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - - model = keras.models.Sequential() - model.add(keras.layers.Dense(2, input_shape=(3,))) - model.add(keras.layers.Dense(3)) - model.compile( - loss="mse", - optimizer=tf.compat.v1.train.AdadeltaOptimizer(0.1), - metrics=["acc"], - ) - - keras.models.save_model(model, saved_model_dir, save_format=save_format) - model = keras.models.load_model(saved_model_dir) - - def test_saving_right_after_compilation(self): - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - with self.cached_session(): - model = keras.models.Sequential() - model.add(keras.layers.Dense(2, input_shape=(3,))) - model.add(keras.layers.Dense(3)) - model.compile(loss="mse", optimizer="sgd", metrics=["acc"]) - if not tf.compat.v1.executing_eagerly_outside_functions(): - model._make_train_function() - keras.models.save_model( - model, saved_model_dir, save_format=save_format - ) - model = keras.models.load_model(saved_model_dir) - - def test_saving_lambda_numpy_array_arguments(self): - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - - if h5py is None: - self.skipTest("h5py required to run this test") - - mean = np.random.random((4, 2, 3)) - std = np.abs(np.random.random((4, 2, 3))) + 1e-5 - inputs = keras.layers.Input(shape=(4, 2, 3)) - output = keras.layers.Lambda( - lambda image, mu, std: (image - mu) / std, - arguments={"mu": mean, "std": std}, - )(inputs) - model = keras.models.Model(inputs, output) - model.compile(loss="mse", optimizer="sgd", metrics=["acc"]) - - keras.models.save_model(model, saved_model_dir, save_format=save_format) - - model = keras.models.load_model(saved_model_dir) - - self.assertAllClose(mean, model.layers[1].arguments["mu"]) - self.assertAllClose(std, model.layers[1].arguments["std"]) - - def test_saving_model_with_long_layer_names(self): - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - with self.cached_session(): - # This layer name will make the `layers_name` HDF5 attribute blow - # out of proportion. Note that it fits into the internal HDF5 - # attribute memory limit on its own but because h5py converts - # the list of layer names into numpy array, which uses the same - # amount of memory for every item, it increases the memory - # requirements substantially. - x = keras.Input(shape=(2,), name="input_" + ("x" * (2**15))) - f = x - for i in range(4): - f = keras.layers.Dense(2, name="dense_%d" % (i,))(f) - model = keras.Model(inputs=[x], outputs=[f]) - model.compile( - "adam", loss=keras.losses.MeanSquaredError(), metrics=["acc"] - ) - - x = np.random.random((1, 2)) - y = np.random.random((1, 2)) - model.train_on_batch(x, y) - out = model.predict(x) - - keras.models.save_model( - model, saved_model_dir, save_format=save_format - ) - model = keras.models.load_model(saved_model_dir) - - if save_format in ["tf", "tensorflow"]: - return - # Check that the HDF5 files contains chunked array - # of layer names. - with h5py.File(saved_model_dir, "r") as h5file: - num_names_arrays = len( - [ - attr - for attr in h5file["model_weights"].attrs - if attr.startswith("layer_names") - ] - ) - # The chunking of layer names array should have happened. - self.assertGreater(num_names_arrays, 0) - out2 = model.predict(x) - self.assertAllClose(out, out2, atol=1e-05) - - def test_saving_model_with_long_weights_names(self): - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - - with self.cached_session(): - x = keras.Input(shape=(2,), name="nested_model_input") - f = x - for i in range(4): - f = keras.layers.Dense(2, name="nested_model_dense_%d" % (i,))( - f - ) - # This layer name will make the `weights_name` - # HDF5 attribute blow out of proportion. - f = keras.layers.Dense( - 2, name="nested_model_output" + ("x" * (2**14)) - )(f) - nested_model = keras.Model( - inputs=[x], outputs=[f], name="nested_model" - ) - - x = keras.Input(shape=(2,), name="outer_model_input") - f = nested_model(x) - f = keras.layers.Dense(2, name="outer_model_output")(f) - - model = keras.Model(inputs=[x], outputs=[f]) - model.compile(loss="mse", optimizer="adam", metrics=["acc"]) - - x = np.random.random((1, 2)) - y = np.random.random((1, 2)) - model.train_on_batch(x, y) - out = model.predict(x) - - keras.models.save_model( - model, saved_model_dir, save_format=save_format - ) - model = keras.models.load_model(saved_model_dir) - - if save_format in ["h5", "hdf5", "keras"]: - # Check that the HDF5 files contains chunked array - # of weight names. - with h5py.File(saved_model_dir, "r") as h5file: - num_weight_arrays = len( - [ - attr - for attr in h5file["model_weights"][ - "nested_model" - ].attrs - if attr.startswith("weight_names") - ] - ) - # The chunking of layer names array should have happened. - self.assertGreater(num_weight_arrays, 0) - out2 = model.predict(x) - self.assertAllClose(out, out2, atol=1e-05) - - def test_model_saving_to_pre_created_h5py_file(self): - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - with tf.Graph().as_default(), self.cached_session(): - inputs = keras.Input(shape=(3,)) - x = keras.layers.Dense(2)(inputs) - outputs = keras.layers.Dense(3)(x) - - model = keras.Model(inputs, outputs) - model.compile( - loss=keras.losses.MSE, - optimizer=optimizer_v1.Adam(), - metrics=[ - keras.metrics.categorical_accuracy, - keras.metrics.CategoricalAccuracy(), - ], - ) - x = np.random.random((1, 3)) - y = np.random.random((1, 3)) - model.train_on_batch(x, y) - - out = model.predict(x) - - keras.models.save_model( - model, saved_model_dir, save_format=save_format - ) - loaded_model = keras.models.load_model(saved_model_dir) - out1 = loaded_model.predict(x) - self.assertAllClose(out, out1, atol=1e-05) - if save_format in ["tf", "tensorflow"]: - return - - # Test h5 format specifically - fd, fname = tempfile.mkstemp(".h5") - with h5py.File(fname, mode="r+") as h5file: - keras.models.save_model(model, h5file) - loaded_model = keras.models.load_model(h5file) - out2 = loaded_model.predict(x) - self.assertAllClose(out, out2, atol=1e-05) - - # Test non-default options in h5 - with h5py.File( - "_", driver="core", mode="w", backing_store=False - ) as h5file: - keras.models.save_model(model, h5file) - loaded_model = keras.models.load_model(h5file) - out2 = loaded_model.predict(x) - self.assertAllClose(out, out2, atol=1e-05) - - # Cleanup - os.close(fd) - os.remove(fname) - - def test_model_saving_to_new_dir_path(self): - saved_model_dir = os.path.join( - self._save_model_dir(), "newdir", "saved_model" - ) - save_format = test_utils.get_save_format() - - with self.cached_session(): - model = keras.models.Sequential() - model.add(keras.layers.Dense(2, input_shape=(3,))) - model.add(keras.layers.RepeatVector(3)) - model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) - - x = np.random.random((1, 3)) - out = model.predict(x) - - keras.models.save_model( - model, saved_model_dir, save_format=save_format - ) - - new_model = keras.models.load_model(saved_model_dir) - self._assert_same_weights_and_metrics(model, new_model) - - out2 = new_model.predict(x) - self.assertAllClose(out, out2, atol=1e-05) - - def test_model_raise_exception_with_failed_saving(self): - if h5py is None: - self.skipTest("h5py required to run this test") - - saved_model_dir = self._save_model_dir() - saved_model_path = os.path.join(saved_model_dir, "saved_model.h5") - - with self.cached_session(): - model = keras.models.Sequential() - model.add(keras.layers.Dense(2, input_shape=(3,))) - model.add(keras.layers.RepeatVector(3)) - model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) - - with self.assertRaisesRegex(OSError, "Unable to create file"): - with h5py.File(saved_model_path, "w"): - keras.models.save_model(model, saved_model_path) - - def test_saving_constant_initializer_with_numpy(self): - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - - model = keras.models.Sequential() - model.add( - keras.layers.Dense( - 2, - input_shape=(3,), - kernel_initializer=keras.initializers.Constant(np.ones((3, 2))), - ) - ) - model.add(keras.layers.Dense(3)) - model.compile(loss="mse", optimizer="sgd", metrics=["acc"]) - keras.models.save_model(model, saved_model_dir, save_format=save_format) - model = keras.models.load_model(saved_model_dir) - - def test_saving_group_naming_h5py(self): - # Test saving model with layer which name is prefix to a previous layer - # name. - - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir) - h5_path = os.path.join(temp_dir, "test.h5") - - input_layer = keras.layers.Input((None, None, 3), name="test_input") - x = keras.layers.Conv2D(1, 1, name="conv1/conv")(input_layer) - x = keras.layers.Activation("relu", name="conv1")(x) - model = keras.models.Model(inputs=input_layer, outputs=x) - - model.save_weights(h5_path) - model.load_weights(h5_path) - - def test_primitive_attrs_contain_no_extraneous_strings(self): - if h5py is None: - self.skipTest("h5py required to run this test") - - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - model = keras.models.Sequential() - model.add(keras.layers.Dense(1, input_shape=[2])) - model.save(saved_model_dir, save_format=save_format) - if save_format in ["tf", "tensorflow"]: - return - - h5file = h5py.File(saved_model_dir, "r") - self.assertRegex( - h5file.attrs["keras_version"], r"^[\d]+\.[\d]+\.[\S]+$" - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_functional_model_with_custom_loss_and_metric(self): - def _make_model(): - inputs = keras.Input(shape=(4,)) - x = keras.layers.Dense(8, activation="relu")(inputs) - outputs = keras.layers.Dense(3, activation="softmax")(x) - model = keras.Model(inputs=inputs, outputs=outputs) - custom_loss = keras.layers.Lambda( - lambda x: keras.backend.sum(x * x) - )(x) - model.add_loss(custom_loss) - model.add_metric( - custom_loss, aggregation="mean", name="custom_loss" - ) - return model - - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - - with self.cached_session(): - model = _make_model() - model.compile( - loss=keras.losses.SparseCategoricalCrossentropy(), - optimizer=optimizers.gradient_descent_legacy.SGD(), - metrics=[keras.metrics.SparseCategoricalCrossentropy()], - ) - x = np.random.normal(size=(32, 4)) - y = np.random.randint(0, 3, size=32) - model.train_on_batch(x, y) - evaluation_results = model.evaluate(x, y) - # Save and reload model. - model.save(saved_model_dir, save_format=save_format) - del model # Prevent misuse. - loaded_model = keras.models.load_model(saved_model_dir) - loaded_model_eval_results = loaded_model.evaluate(x, y) - # Assert all evaluation results are the same. - self.assertAllClose( - evaluation_results, loaded_model_eval_results, 1e-9 - ) - # Check correctness of the loss calculation. - self.assertAllGreater(evaluation_results, 0.0) - evaluation_results = dict( - zip(loaded_model.metrics_names, evaluation_results) - ) - self.assertNear( - evaluation_results["sparse_categorical_crossentropy"] - + evaluation_results["custom_loss"], - evaluation_results["loss"], - 1e-6, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_save_uncompiled_model_with_optimizer(self): - with self.cached_session() as session: - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - model = keras.models.Sequential( - [keras.layers.Dense(1, input_shape=(3,))] - ) - # Set the model's optimizer but don't compile. This can happen if - # the model is trained with a custom training loop. - model.optimizer = keras.optimizers.legacy.rmsprop.RMSprop(lr=0.0001) - if not tf.executing_eagerly(): - session.run([v.initializer for v in model.variables]) - model.save(saved_model_dir, save_format=save_format) - - if save_format in ["tf", "tensorflow"]: - loaded = keras.models.load_model(saved_model_dir) - self.assertIsInstance( - loaded.optimizer, - keras.optimizers.legacy.optimizer_v2.OptimizerV2, - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_functional_model_with_getitem_op_layer(self): - inp = keras.Input(shape=(8)) - - out = inp[:] - model = keras.Model(inputs=[inp], outputs=out) - batch_size = 7 - x = tf.stack([tf.range(8) for _ in range(batch_size)]) - args = [x] - expected = x[:] - - self.assertAllEqual(model(args), expected) - self.assertAllEqual( - model.predict(args, batch_size=batch_size), expected - ) - - # Make sure it can be successfully saved and loaded. - save_format = test_utils.get_save_format() - saved_model_dir = self._save_model_dir() - keras.models.save_model(model, saved_model_dir, save_format=save_format) - - loaded_model = keras.models.load_model(saved_model_dir) - - self.assertAllEqual(loaded_model(args), expected) - self.assertAllEqual( - loaded_model.predict(args, batch_size=batch_size), expected - ) - - @test_combinations.generate( - test_combinations.combine(mode=["eager", "graph"]) - ) - def test_custom_functional_registered(self): - def _get_cls_definition(): - class CustomModel(keras.Model): - def c(self): - return "c" - - return CustomModel - - cls = _get_cls_definition() - self.assertEqual(cls.__bases__[0], keras.Model) - - with self.cached_session() as sess: - input_ = keras.layers.Input(shape=(1,)) - output = keras.layers.Dense(1)(input_) - model = cls(input_, output) - # `cls` now inherits from `Functional` class. - self.assertEqual(cls.__bases__[0], functional.Functional) - - if not tf.executing_eagerly(): - sess.run([v.initializer for v in model.variables]) - - save_format = test_utils.get_save_format() - saved_model_dir = self._save_model_dir() - keras.models.save_model( - model, saved_model_dir, save_format=save_format - ) - - loaded_model = keras.models.load_model( - saved_model_dir, custom_objects={"CustomModel": cls} - ) - self.assertIsInstance(loaded_model, cls) - - # Check with "new" `CustomModel` class definition. - new_cls = _get_cls_definition() - # The new `CustomModel` class is *not* derived from `Functional`. - self.assertEqual(new_cls.__bases__[0], keras.Model) - reloaded_model = keras.models.load_model( - saved_model_dir, custom_objects={"CustomModel": new_cls} - ) - self.assertIsInstance(reloaded_model, new_cls) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_shared_objects(self): - class OuterLayer(keras.layers.Layer): - def __init__(self, inner_layer): - super().__init__() - self.inner_layer = inner_layer - - def call(self, inputs): - return self.inner_layer(inputs) - - def get_config(self): - return { - "inner_layer": serialization.serialize_keras_object( - self.inner_layer - ) - } - - @classmethod - def from_config(cls, config): - return cls( - serialization.deserialize_keras_object( - config["inner_layer"] - ) - ) - - class InnerLayer(keras.layers.Layer): - def __init__(self): - super().__init__() - self.v = self.add_weight(name="v", shape=[], dtype=tf.float32) - - def call(self, inputs): - return self.v + inputs - - @classmethod - def from_config(cls, config): - return cls() - - # Create a model with 2 output layers that share the same inner layer. - inner_layer = InnerLayer() - outer_layer_1 = OuterLayer(inner_layer) - outer_layer_2 = OuterLayer(inner_layer) - input_ = keras.Input(shape=(1,)) - model = keras.Model( - inputs=input_, - outputs=[outer_layer_1(input_), outer_layer_2(input_)], - ) - - # Changes to the shared layer should affect both outputs. - model.layers[1].inner_layer.v.assign(5) - self.assertAllEqual(model(1), [6.0, 6.0]) - model.layers[1].inner_layer.v.assign(3) - self.assertAllEqual(model(1), [4.0, 4.0]) - - # After loading, changes to the shared layer should still affect both - # outputs. - def _do_assertions(loaded): - loaded.layers[1].inner_layer.v.assign(5) - self.assertAllEqual(loaded(1), [6.0, 6.0]) - loaded.layers[1].inner_layer.v.assign(3) - self.assertAllEqual(loaded(1), [4.0, 4.0]) - loaded.layers[2].inner_layer.v.assign(5) - self.assertAllEqual(loaded(1), [6.0, 6.0]) - loaded.layers[2].inner_layer.v.assign(3) - self.assertAllEqual(loaded(1), [4.0, 4.0]) - - # We'd like to make sure we only attach shared object IDs when strictly - # necessary, so we'll recursively traverse the generated config to count - # whether we have the exact number we expect. - def _get_all_keys_recursive(dict_or_iterable): - if isinstance(dict_or_iterable, dict): - for key in dict_or_iterable.keys(): - yield key - for key in _get_all_keys_recursive(dict_or_iterable.values()): - yield key - elif isinstance(dict_or_iterable, str): - return - else: - try: - for item in dict_or_iterable: - for key in _get_all_keys_recursive(item): - yield key - # Not an iterable or dictionary - except TypeError: - return - - with object_registration.CustomObjectScope( - {"OuterLayer": OuterLayer, "InnerLayer": InnerLayer} - ): - - # Test saving and loading to disk - save_format = test_utils.get_save_format() - saved_model_dir = self._save_model_dir() - keras.models.save_model( - model, saved_model_dir, save_format=save_format - ) - loaded = keras.models.load_model(saved_model_dir) - _do_assertions(loaded) - - # Test recreating directly from config - config = model.get_config() - key_count = collections.Counter(_get_all_keys_recursive(config)) - self.assertEqual(key_count[serialization.SHARED_OBJECT_KEY], 2) - loaded = keras.Model.from_config(config) - _do_assertions(loaded) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def test_shared_objects_wrapper(self): - """Tests that shared layers wrapped with `Wrapper` restore correctly.""" - input_ = keras.Input(shape=(1,)) - unwrapped = keras.layers.Layer(name="unwrapped") - wrapped = keras.layers.Wrapper(unwrapped, name="wrapped") - model = keras.Model( - inputs=input_, outputs=[unwrapped(input_), wrapped(input_)] - ) - - # Test recreating directly from config - config = model.get_config() - loaded = keras.Model.from_config(config) - self.assertIs(loaded.layers[1], loaded.layers[2].layer) - - # Test saving and loading to disk - save_format = test_utils.get_save_format() - saved_model_dir = self._save_model_dir() - keras.models.save_model(model, saved_model_dir, save_format=save_format) - loaded = keras.models.load_model(saved_model_dir) - self.assertIs(loaded.layers[1], loaded.layers[2].layer) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"], fit=[True, False]) - ) - def test_multi_output_metrics_name_stay_same(self, fit): - """Tests that metric names don't change with each save/load cycle. - - e.g. "head_0_accuracy" should not become "head_0_head_0_accuracy" after - saving and loading a model. - - Arguments: - fit: Whether the model should be fit before saving. - """ - # This doesn't work at all, so we can't check whether metric names are - # correct. - if not tf.executing_eagerly() and not fit: - self.skipTest("b/181767784") - - input_ = keras.Input((4,)) - model = keras.Model( - input_, - [ - keras.layers.Softmax(name="head_0")( - keras.layers.Dense(3)(input_) - ), - keras.layers.Softmax(name="head_1")( - keras.layers.Dense(5)(input_) - ), - ], - ) - metric = keras.metrics.BinaryAccuracy() - model.compile( - optimizer="rmsprop", - loss="mse", - metrics={"head_0": [metric, "accuracy"]}, - ) - - x = np.random.rand(2, 4) - y = { - "head_0": np.random.randint(2, size=(2, 3)), - "head_1": np.random.randint(2, size=(2, 5)), - } - - # Make sure metrix prefixing works the same regardless of whether the - # user has fit the model before saving. - if fit: - model.fit(x, y, verbose=0) - - # Save and reload. - save_format = test_utils.get_save_format() - saved_model_dir = self._save_model_dir() - keras.models.save_model(model, saved_model_dir, save_format=save_format) - loaded = keras.models.load_model(saved_model_dir) - - # Make sure the metrics names from the model before saving match the - # loaded model. - self.assertSequenceEqual(model.metrics_names, loaded.metrics_names) - - # Test only in eager mode because ragged tensor inputs - # cannot be used in graph mode. - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - @test_utils.run_v2_only - def test_save_functional_with_ragged_constant_input(self): - input1 = keras.Input(shape=[]) - input2 = tf.ragged.constant([[1.0, 2.0], [3.0]]) - outputs = keras.layers.Add()([input1, input2]) - model = keras.Model(input1, outputs) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir) - keras.models.load_model(saved_model_dir) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - @test_utils.run_v2_only - def test_save_functional_with_constant_input(self): - input1 = keras.Input(shape=[2]) - input2 = tf.constant([[1.0, 2.0]]) - outputs = keras.layers.Add()([input1, input2]) - model = keras.Model(input1, outputs) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir) - keras.models.load_model(saved_model_dir) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - @test_utils.run_v2_only - def test_save_functional_with_constant_string_input(self): - input1 = keras.Input(shape=[2], dtype=tf.string) - input2 = tf.constant([["å˜", "ã«"]]) - outputs = keras.layers.Concatenate()([input1, input2]) - model = keras.Model(input1, outputs) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir) - loaded_model = keras.models.load_model(saved_model_dir) - x = tf.constant([["a", "b"]]) - self.assertAllEqual(model(x), loaded_model(x)) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - @test_utils.run_v2_only - def test_save_functional_with_ragged_constant_string_input(self): - input1 = keras.Input(shape=[1], dtype=tf.string) - input2 = tf.ragged.constant([["å˜", "ã«"], ["å˜"]]) - outputs = keras.layers.Concatenate(axis=0)([input1, input2]) - model = keras.Model(input1, outputs) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir) - loaded_model = keras.models.load_model(saved_model_dir) - x = tf.constant([["a"]]) - self.assertAllEqual(model(x), loaded_model(x)) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - @test_utils.run_v2_only - def test_save_inputs_spec_with_composite_tensor_names(self): - class KerasModel(keras.Model): - def call(self, inputs): - return inputs - - spec = MaskedTensor.Spec( - tf.TensorSpec([None], name="x__values"), - tf.TensorSpec([None], dtype=tf.bool, name="x__mask"), - ) - km1 = KerasModel() - inputs = keras.Input(type_spec=spec) - km1(inputs) - self.assertEqual(km1.save_spec()[0][0].mask.name, "x__mask") - - -# Factory functions to create models that will be serialized inside a Network. -def _make_graph_network(input_size, output_size): - inputs = keras.Input(input_size) - x = keras.layers.Dense(8, activation="relu")(inputs) - y = keras.layers.Dense(output_size)(x) - return keras.Model(inputs=inputs, outputs=y) - - -def _make_sequential(input_size, output_size): - del input_size - return keras.Sequential( - [ - keras.layers.Dense(8, activation="relu"), - keras.layers.Dense(output_size), - ] - ) - - -def _make_sequential_built(input_size, output_size): - model = _make_sequential(input_size, output_size) - model.build((None, input_size)) - return model - - -def _make_sequential_graph_network(input_size, output_size): - return keras.Sequential( - [ - keras.layers.InputLayer(input_size), - keras.layers.Dense(8, activation="relu"), - keras.layers.Dense(output_size), - ] - ) - - -def _make_sequential_input_shape(input_size, output_size): - return keras.Sequential( - [ - keras.layers.Dense(8, activation="relu", input_shape=(input_size,)), - keras.layers.Dense(output_size), - ] - ) - - -class _make_subclassed(keras.Model): - def __init__(self, input_size, output_size): - super().__init__() - self._config = {"input_size": input_size, "output_size": output_size} - self._hidden_layer = keras.layers.Dense( - 8, activation="relu", name="hidden" - ) - self._logits_layer = keras.layers.Dense(output_size, name="logits") - - def call(self, inputs): - x = self._hidden_layer(inputs) - return self._logits_layer(x) - - def get_config(self): - return self._config - - @classmethod - def from_config(cls, config): - return cls(**config) - - -class _make_subclassed_built(_make_subclassed): - def __init__(self, input_size, output_size): - super().__init__(input_size, output_size) - self.build((None, input_size)) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class TestWholeModelSavingWithNesting(tf.test.TestCase, parameterized.TestCase): - """Tests saving a whole model that contains other models.""" - - @parameterized.named_parameters( - [ - ("graph_network", _make_graph_network), - ("sequential", _make_sequential), - ("sequential_built", _make_sequential_built), - ("sequential_graph_network", _make_sequential_graph_network), - ("sequential_input_shape", _make_sequential_input_shape), - ("subclassed", _make_subclassed), - ("subclassed_built", _make_subclassed_built), - ] - ) - def test_functional(self, model_fn): - """Tests serializing a model that uses a nested model to share - weights.""" - if h5py is None: - self.skipTest("h5py required to run this test") - - def _make_model(): - inputs = ( - keras.Input(shape=(4,), name="examples"), - keras.Input(shape=(4,), name="neighbors"), - ) - base_model = model_fn(inputs[0].shape.as_list()[-1], 2) - outputs = keras.layers.add( - [base_model(inputs[0]), base_model(inputs[1])] - ) - return keras.Model(inputs=inputs, outputs=outputs) - - with self.cached_session(): - x = ( - np.random.normal(size=(16, 4)).astype(np.float32), - np.random.normal(size=(16, 4)).astype(np.float32), - ) - model = _make_model() - predictions = model(x) - # Save and reload. - model_path = os.path.join(self.get_temp_dir(), "model.h5") - model.save(model_path) - del model - loaded_model = keras.models.load_model( - model_path, - custom_objects={ - "_make_subclassed": _make_subclassed, - "_make_subclassed_built": _make_subclassed_built, - }, - compile=False, - ) - self.assertAllClose(loaded_model(x), predictions, 1e-9) - - -if __name__ == "__main__": - with saved_model_utils.keras_option_scope( - save_traces=False, in_tf_saved_model_scope=True - ): - tf.test.main() diff --git a/keras/saving/legacy/save_weights_test.py b/keras/saving/legacy/save_weights_test.py deleted file mode 100644 index fbfcea01711..00000000000 --- a/keras/saving/legacy/save_weights_test.py +++ /dev/null @@ -1,764 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ,============================================================================ -"""Tests for model saving in the HDF5 format.""" - -import os -import shutil -import uuid - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.engine import training -from keras.optimizers import optimizer_v1 -from keras.saving.legacy import hdf5_format -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -try: - import h5py -except ImportError: - h5py = None - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class TestWeightSavingAndLoading(tf.test.TestCase, parameterized.TestCase): - def _save_model_dir(self, dirname="saved_model"): - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - return os.path.join(temp_dir, dirname) - - @test_combinations.run_with_all_weight_formats - def test_weight_loading(self): - saved_model_dir = self._save_model_dir() - save_format = test_utils.get_save_format() - with self.cached_session(): - a = keras.layers.Input(shape=(2,)) - x = keras.layers.Dense(3)(a) - b = keras.layers.Dense(1)(x) - model = keras.models.Model(a, b) - - x = np.random.random((3, 2)) - ref_y = model.predict(x) - weights = model.get_weights() - model.set_weights(weights) - y = model.predict(x) - self.assertAllClose(ref_y, y) - - with self.assertRaises(ValueError): - model.set_weights(weights[1:]) - with self.assertRaises(ValueError): - model.set_weights(weights[::-1]) - - model.save_weights(saved_model_dir, save_format=save_format) - model.load_weights(saved_model_dir) - y = model.predict(x) - self.assertAllClose(ref_y, y) - - def test_weight_preprocessing(self): - input_dim = 3 - output_dim = 3 - size = 2 - cases = [ - [ - (keras.layers.Bidirectional(keras.layers.SimpleRNN(2))), - [np.random.random((2, 1)), np.random.random((2, 1))], - (None, 3, 2), - ], - [ - (keras.layers.TimeDistributed(keras.layers.Dense(1))), - [np.random.random((2, 1)), np.random.random((1,))], - (None, 3, 2), - ], - [ - (keras.layers.Conv1D(output_dim, size, use_bias=False)), - [np.random.random((output_dim, input_dim, size, 1))], - (None, 4, input_dim), - ], - [ - ( - keras.layers.Conv2D( - output_dim, - size, - use_bias=False, - data_format="channels_first", - ) - ), - [np.random.random((output_dim, input_dim, size, size))], - (None, input_dim, 4, 4), - ], - [ - ( - keras.layers.Conv2DTranspose( - output_dim, - size, - use_bias=False, - data_format="channels_first", - ) - ), - [np.random.random((output_dim, input_dim, size, size))], - (None, input_dim, 4, 4), - ], - [ - ( - keras.layers.Conv2DTranspose( - output_dim, - size, - use_bias=False, - data_format="channels_last", - ) - ), - [np.random.random((size, size, input_dim, output_dim))], - (None, 4, 4, input_dim), - ], - [ - ( - keras.layers.Conv3D( - output_dim, - size, - use_bias=False, - data_format="channels_first", - ) - ), - [np.random.random((output_dim, input_dim, size, size, size))], - (None, input_dim, 4, 4, 4), - ], - [ - (keras.layers.GRUV1(output_dim)), - [ - np.random.random((input_dim, output_dim)), - np.random.random((output_dim, output_dim)), - np.random.random((output_dim,)), - np.random.random((input_dim, output_dim)), - np.random.random((output_dim, output_dim)), - np.random.random((output_dim,)), - np.random.random((input_dim, output_dim)), - np.random.random((output_dim, output_dim)), - np.random.random((output_dim,)), - ], - (None, 4, input_dim), - ], - [ - (keras.layers.LSTMV1(output_dim)), - [ - np.random.random((input_dim, output_dim)), - np.random.random((output_dim, output_dim)), - np.random.random((output_dim,)), - np.random.random((input_dim, output_dim)), - np.random.random((output_dim, output_dim)), - np.random.random((output_dim,)), - np.random.random((input_dim, output_dim)), - np.random.random((output_dim, output_dim)), - np.random.random((output_dim,)), - np.random.random((input_dim, output_dim)), - np.random.random((output_dim, output_dim)), - np.random.random((output_dim,)), - ], - (None, 4, input_dim), - ], - ] - for layer, weights, input_shape in cases: - layer.build(input_shape) - _ = hdf5_format.preprocess_weights_for_loading( - layer, weights, original_keras_version="1" - ) - - model = keras.models.Sequential([keras.layers.Dense(2, input_dim=2)]) - _ = hdf5_format.preprocess_weights_for_loading( - model, model.weights, original_keras_version="1" - ) - - x = keras.Input((2,)) - y = keras.layers.Dense(2)(x) - model = keras.models.Model(x, y) - _ = hdf5_format.preprocess_weights_for_loading( - model, model.weights, original_keras_version="1" - ) - - @parameterized.named_parameters( - ("gru", keras.layers.GRU, {"units": 2, "input_shape": (3, 5)}), - ( - "gru_with_reset_after", - keras.layers.GRU, - {"units": 2, "input_shape": (3, 5), "reset_after": True}, - ), - ("lstm", keras.layers.LSTM, {"units": 2, "input_shape": (3, 5)}), - ( - "cudnngru", - keras.layers.CuDNNGRU, - {"units": 2, "input_shape": (3, 5)}, - ), - ( - "cudnnlstm", - keras.layers.CuDNNLSTM, - {"units": 2, "input_shape": (3, 5)}, - ), - ) - def test_preprocess_weights_for_loading_rnn_should_be_idempotent( - self, layer_class, layer_args - ): - with self.cached_session(): - layer = layer_class(**layer_args) - layer.build(input_shape=layer_args.get("input_shape")) - weights1 = layer.get_weights() - weights2 = hdf5_format.preprocess_weights_for_loading( - layer, weights1 - ) - _ = [ - self.assertAllClose(x, y, rtol=1e-05) - for (x, y) in zip(weights1, weights2) - ] - - def test_sequential_weight_loading(self): - if h5py is None: - return - - h5_path = self._save_model_dir("test.h5") - - num_hidden = 5 - input_dim = 3 - batch_size = 5 - num_classes = 2 - - with self.cached_session(): - model = keras.models.Sequential() - model.add(keras.layers.Dense(num_hidden, input_dim=input_dim)) - model.add(keras.layers.Dense(num_classes)) - - x = np.random.random((batch_size, input_dim)) - ref_y = model.predict(x) - - model.save_weights(h5_path) - - model = keras.models.Sequential() - model.add(keras.layers.Dense(num_hidden, input_dim=input_dim)) - model.add(keras.layers.Dense(num_classes)) - model.load_weights(h5_path) - y = model.predict(x) - - self.assertAllClose(y, ref_y) - - @test_combinations.run_with_all_saved_model_formats( - exclude_formats=["tf_no_traces"] - ) - def test_nested_model_weight_loading(self): - save_format = test_utils.get_save_format() - saved_model_dir = self._save_model_dir() - - batch_size = 5 - shape = (None, None, 3) - - with self.cached_session(): - - def gen_model(): - def seq_model(): - model = keras.models.Sequential( - [ - keras.layers.Conv2D(3, 1, input_shape=shape), - keras.layers.BatchNormalization(), - ] - ) - return model - - x = inner_inputs = keras.layers.Input((None, None, 3)) - x = seq_model()(x) - x = seq_model()(x) - inner_model = keras.models.Model(inner_inputs, x) - - inputs = keras.layers.Input(shape) - return keras.models.Model(inputs, inner_model(inputs)) - - model = gen_model() - x = np.random.random((batch_size, 1, 1, 3)) - ref_y = model.predict(x) - - model.save_weights(saved_model_dir, save_format=save_format) - - model = gen_model() - model.load_weights(saved_model_dir) - y = model.predict(x) - - self.assertAllClose(y, ref_y) - - def test_sequential_weight_loading_group_name_with_incorrect_length(self): - if h5py is None: - return - - h5_path = self._save_model_dir("test.h5") - - num_hidden = 5 - input_dim = 3 - num_classes = 2 - with self.cached_session(): - ref_model = keras.models.Sequential() - ref_model.add( - keras.layers.Dense(num_hidden, input_dim=input_dim, name="d1") - ) - ref_model.add(keras.layers.Dense(num_classes, name="d2")) - ref_model.compile( - loss=keras.losses.MSE, - optimizer="rmsprop", - metrics=[keras.metrics.categorical_accuracy], - ) - - f_ref_model = h5py.File(h5_path, "w") - hdf5_format.save_weights_to_hdf5_group(f_ref_model, ref_model) - - f_model = h5py.File(h5_path, "r") - model = keras.models.Sequential() - model.add( - keras.layers.Dense( - num_hidden, use_bias=False, input_dim=input_dim, name="d1" - ) - ) - model.add(keras.layers.Dense(num_classes, name="d2")) - model.compile( - loss=keras.losses.MSE, - optimizer="rmsprop", - metrics=[keras.metrics.categorical_accuracy], - ) - with self.assertRaises( - ValueError, - msg=( - "Weight count mismatch for layer #0 (named d1). " - "Layer expects 1 weight(s). Received 2 saved weight(s)" - ), - ): - hdf5_format.load_weights_from_hdf5_group_by_name(f_model, model) - - hdf5_format.load_weights_from_hdf5_group_by_name( - f_model, model, skip_mismatch=True - ) - self.assertAllClose( - keras.backend.get_value(ref_model.layers[1].kernel), - keras.backend.get_value(model.layers[1].kernel), - ) - - def test_sequential_weight_loading_group_name_with_incorrect_shape(self): - if h5py is None: - return - - h5_path = self._save_model_dir("test.h5") - - num_hidden = 5 - input_dim = 3 - num_classes = 2 - with tf.Graph().as_default(), self.cached_session(): - ref_model = keras.models.Sequential() - ref_model.add( - keras.layers.Dense(num_hidden, input_dim=input_dim, name="d1") - ) - ref_model.add(keras.layers.Dense(num_classes, name="d2")) - ref_model.compile( - loss=keras.losses.MSE, - optimizer=optimizer_v1.RMSprop(lr=0.0001), - metrics=[keras.metrics.categorical_accuracy], - ) - - f_ref_model = h5py.File(h5_path, "w") - keras.backend.set_value( - ref_model.layers[1].bias, [3.5] * num_classes - ) - hdf5_format.save_weights_to_hdf5_group(f_ref_model, ref_model) - - f_model = h5py.File(h5_path, "r") - model = keras.models.Sequential() - model.add( - keras.layers.Dense( - num_hidden + 5, input_dim=input_dim, name="d1" - ) - ) - model.add(keras.layers.Dense(num_classes, name="d2")) - model.compile( - loss=keras.losses.MSE, - optimizer=optimizer_v1.RMSprop(lr=0.0001), - metrics=[keras.metrics.categorical_accuracy], - ) - with self.assertRaises( - ValueError, - msg=( - "Shape mismatch in layer #0 (named d1) for weight " - "d1_1/kernel:0. Weight expects shape (3, 10). " - "Received saved weight with shape (3, 5)" - ), - ): - hdf5_format.load_weights_from_hdf5_group_by_name(f_model, model) - - hdf5_format.load_weights_from_hdf5_group_by_name( - f_model, model, skip_mismatch=True - ) - self.assertAllClose( - [3.5] * num_classes, - keras.backend.get_value(model.layers[1].bias), - ) - - @test_combinations.run_with_all_saved_model_formats( - exclude_formats=["tf_no_traces"] - ) - @test_combinations.run_with_all_model_types - def test_load_weights_from_saved_model(self): - save_path = self._save_model_dir() - save_format = test_utils.get_save_format() - - if save_format == "h5" and test_utils.get_model_type() == "subclass": - # TODO(b/173646281): HDF5 format currently does not allow saving - # subclassed models. - return - - with self.cached_session(): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - data = np.random.random((1, 3)) - labels = np.random.random((1, 4)) - model.compile(loss="mse", optimizer="rmsprop") - model.fit(data, labels) - model.save(save_path, save_format=save_format) - new_model = test_utils.get_small_mlp(1, 4, input_dim=3) - if test_utils.get_model_type() == "subclass": - # Call on test data to build the model. - new_model.predict(data) - new_model.load_weights(save_path) - self.assertAllClose(model.weights, new_model.weights) - - -class SubclassedModel(training.Model): - def __init__(self): - super().__init__() - self.x_layer = keras.layers.Dense(3) - self.b_layer = keras.layers.Dense(1) - - def call(self, a): - return self.b_layer(self.x_layer(a)) - - -class TestWeightSavingAndLoadingTFFormat( - tf.test.TestCase, parameterized.TestCase -): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_tensorflow_format_overwrite(self): - with self.cached_session() as session: - model = SubclassedModel() - temp_dir = self.get_temp_dir() - prefix = os.path.join(temp_dir, "ckpt") - - x = tf.constant(np.random.random((3, 2)), dtype=tf.float32) - executing_eagerly = tf.executing_eagerly() - model(x) - if not executing_eagerly: - session.run([v.initializer for v in model.variables]) - model.save_weights(prefix, save_format="tensorflow") - model.save_weights(prefix, save_format="tensorflow", overwrite=True) - with self.assertRaises(EOFError): - # Indirectly tests that the user is prompted - model.save_weights( - prefix, save_format="tensorflow", overwrite=False - ) - - def test_no_default_session(self): - with tf.Graph().as_default(): - self.assertFalse(tf.compat.v1.get_default_session()) - data = np.random.random((1000, 32)).astype(np.float32) - labels = np.random.random((1000, 10)).astype(np.float32) - - model = keras.models.Sequential( - [ - keras.layers.Dense(10, activation="softmax"), - keras.layers.Dense(10, activation="softmax"), - ] - ) - - model.compile( - optimizer=tf.compat.v1.train.RMSPropOptimizer(0.001), - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - - model.fit(data, labels) - fname = os.path.join(self.get_temp_dir(), "weights", "ckpt") - model.save_weights(fname) - model.load_weights(fname) - - def test_no_graph_pollution(self): - with tf.compat.v1.get_default_graph().as_default(): - graph = tf.Graph() - with graph.as_default(), self.session(graph) as session: - model = SubclassedModel() - temp_dir = self.get_temp_dir() - prefix = os.path.join(temp_dir, "ckpt") - - x = tf.constant(np.random.random((3, 2)), dtype=tf.float32) - model(x) - session.run([v.initializer for v in model.variables]) - model.save_weights(prefix, save_format="tensorflow") - op_count = len(graph.get_operations()) - model.save_weights(prefix, save_format="tensorflow") - self.assertLen(graph.get_operations(), op_count) - - model.load_weights(prefix) - op_count = len(graph.get_operations()) - model.load_weights(prefix) - self.assertLen(graph.get_operations(), op_count) - - def _weight_loading_test_template(self, make_model_fn): - with self.cached_session(): - model = make_model_fn() - model.compile( - loss="mse", - optimizer=tf.compat.v1.train.RMSPropOptimizer(0.1), - metrics=["acc", keras.metrics.CategoricalAccuracy()], - ) - temp_dir = self.get_temp_dir() - prefix = os.path.join(temp_dir, "ckpt") - train_x = np.random.random((3, 2)) - train_y = np.random.random((3,)) - x = tf.constant(train_x, dtype=tf.float32) - - model.train_on_batch(train_x, train_y) - model.save_weights(prefix, save_format="tf") - ref_y_before_train = model.predict(train_x) - model.train_on_batch(train_x, train_y) - ref_y_after_train = model.predict(train_x) - for v in model.variables: - self.evaluate(v.assign(tf.random.normal(shape=tf.shape(v)))) - - self.addCleanup(shutil.rmtree, temp_dir) - - model.load_weights(prefix) - self.assertAllClose(ref_y_before_train, self.evaluate(model(x))) - - # Test restore-on-create if this is a subclassed Model (graph - # Networks will have already created their variables). - load_model = make_model_fn() - load_model.load_weights(prefix) - self.assertAllClose( - ref_y_before_train, self.evaluate(load_model(x)) - ) - load_model = make_model_fn() - load_model.load_weights(prefix) - # We need to run some of the restore ops for predict(), but not all - # variables have been created yet (optimizer slot variables). Tests - # incremental restore. - load_model.predict(train_x) - load_model.compile( - loss="mse", - optimizer=tf.compat.v1.train.RMSPropOptimizer(0.1), - metrics=["acc", keras.metrics.CategoricalAccuracy()], - ) - load_model.train_on_batch(train_x, train_y) - self.assertAllClose(ref_y_after_train, self.evaluate(load_model(x))) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_weight_loading_graph_model(self): - def _make_graph_model(): - a = keras.layers.Input(shape=(2,)) - x = keras.layers.Dense(3)(a) - b = keras.layers.Dense(1)(x) - return keras.models.Model(a, b) - - self._weight_loading_test_template(_make_graph_model) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_weight_loading_subclassed_model(self): - self._weight_loading_test_template(SubclassedModel) - - def _new_layer_weight_loading_test_template( - self, first_model_fn, second_model_fn - ): - with self.cached_session() as session: - model = first_model_fn() - temp_dir = self.get_temp_dir() - prefix = os.path.join(temp_dir, "ckpt") - - x = tf.constant(np.random.random((3, 2)), dtype=tf.float32) - executing_eagerly = tf.executing_eagerly() - ref_y_tensor = model(x) - if not executing_eagerly: - session.run([v.initializer for v in model.variables]) - ref_y = self.evaluate(ref_y_tensor) - model.save_weights(prefix) - self.assertEqual(prefix, tf.train.latest_checkpoint(temp_dir)) - for v in model.variables: - self.evaluate(v.assign(tf.random.normal(shape=tf.shape(v)))) - - self.addCleanup(shutil.rmtree, temp_dir) - - second_model = second_model_fn() - status = second_model.load_weights(prefix) - second_model(x) - status.run_restore_ops() - second_model.save_weights(prefix) - # Check that the second model's checkpoint loads into the original - # model - status = model.load_weights(prefix) - status.run_restore_ops(session) - y = self.evaluate(model(x)) - self.assertAllClose(ref_y, y) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_weight_loading_graph_model_added_layer(self): - def _save_graph_model(): - a = keras.layers.Input(shape=(2,)) - x = keras.layers.Dense(3, name="first")(a) - b = keras.layers.Dense(1, name="second")(x) - return keras.models.Model(a, b) - - def _restore_graph_model(): - a = keras.layers.Input(shape=(2,)) - x = keras.layers.Dense(3, name="first")(a) - y = keras.layers.Dense(1, name="second")(x) - b = keras.layers.Dense(3, name="secondjr")(y) - return keras.models.Model(a, b) - - self._new_layer_weight_loading_test_template( - _save_graph_model, _restore_graph_model - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_weight_loading_graph_model_added_no_weight_layer(self): - def _save_graph_model(): - a = keras.layers.Input(shape=(2,)) - x = keras.layers.Dense(3, name="first")(a) - b = keras.layers.Dense(1, name="second")(x) - return keras.models.Model(a, b) - - def _restore_graph_model(): - a = keras.layers.Input(shape=(2,)) - x = keras.layers.Dense(3, name="first")(a) - b = keras.layers.Dense(1, name="second")(x) - y = keras.layers.Dropout(rate=0.1)(b) - return keras.models.Model(a, y) - - self._new_layer_weight_loading_test_template( - _save_graph_model, _restore_graph_model - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_weight_loading_subclassed_model_added_layer(self): - class SubclassedModelRestore(training.Model): - def __init__(self): - super().__init__() - self.x_layer = keras.layers.Dense(3) - self.y_layer = keras.layers.Dense(3) - self.b_layer = keras.layers.Dense(1) - - def call(self, a): - return self.b_layer(self.y_layer(self.x_layer(a))) - - self._new_layer_weight_loading_test_template( - SubclassedModel, SubclassedModelRestore - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_incompatible_checkpoint(self): - save_path = tf.train.Checkpoint().save( - os.path.join(self.get_temp_dir(), "ckpt") - ) - m = DummySubclassModel() - with self.assertRaisesRegex(AssertionError, "Nothing to load"): - m.load_weights(save_path) - m.dense = keras.layers.Dense(2) - m.dense(tf.constant([[1.0]])) - with self.assertRaisesRegex( - AssertionError, "Nothing except the root object matched" - ): - m.load_weights(save_path) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_directory_passed(self): - with self.cached_session(): - m = DummySubclassModel() - v = m.add_weight(name="v", shape=[]) - self.evaluate(v.assign(42.0)) - prefix = os.path.join( - self.get_temp_dir(), str(uuid.uuid4()), "ckpt/" - ) - m.save_weights(prefix) - self.evaluate(v.assign(2.0)) - m.load_weights(prefix) - self.assertEqual(42.0, self.evaluate(v)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_relative_path(self): - with self.cached_session(): - m = DummySubclassModel() - v = m.add_weight(name="v", shape=[]) - os.chdir(self.get_temp_dir()) - - prefix = "ackpt" - self.evaluate(v.assign(42.0)) - m.save_weights(prefix) - self.assertTrue(tf.io.gfile.exists("ackpt.index")) - self.evaluate(v.assign(1.0)) - m.load_weights(prefix) - self.assertEqual(42.0, self.evaluate(v)) - - prefix = "subdir/ackpt" - self.evaluate(v.assign(43.0)) - m.save_weights(prefix) - self.assertTrue(tf.io.gfile.exists("subdir/ackpt.index")) - self.evaluate(v.assign(2.0)) - m.load_weights(prefix) - self.assertEqual(43.0, self.evaluate(v)) - - prefix = "ackpt/" - self.evaluate(v.assign(44.0)) - m.save_weights(prefix) - self.assertTrue(tf.io.gfile.exists("ackpt/.index")) - self.evaluate(v.assign(3.0)) - m.load_weights(prefix) - self.assertEqual(44.0, self.evaluate(v)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_nonexistent_prefix_directory(self): - with self.cached_session(): - m = DummySubclassModel() - v = m.add_weight(name="v", shape=[]) - self.evaluate(v.assign(42.0)) - prefix = os.path.join( - self.get_temp_dir(), str(uuid.uuid4()), "bckpt" - ) - m.save_weights(prefix) - self.evaluate(v.assign(2.0)) - m.load_weights(prefix) - self.assertEqual(42.0, self.evaluate(v)) - - -class DummySubclassModel(training.Model): - pass - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/saving/legacy/saved_model/BUILD b/keras/saving/legacy/saved_model/BUILD deleted file mode 100644 index 85d621f9f84..00000000000 --- a/keras/saving/legacy/saved_model/BUILD +++ /dev/null @@ -1,155 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -# Description: -# Keras saving and loading files for SavedModel. - -# buildifier: disable=same-origin-load - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = [ - "//keras/layers/rnn:__pkg__", - "//keras/saving:__subpackages__", - ], - licenses = ["notice"], -) - -py_library( - name = "order_preserving_set", - srcs = ["order_preserving_set.py"], -) - -py_library( - name = "load_context", - srcs = ["load_context.py"], - visibility = ["//visibility:private"], -) - -py_library( - name = "utils", - srcs = ["utils.py"], - deps = [ - "//:expect_tensorflow_installed", - "//keras/engine:base_layer_utils", - "//keras/utils:layer_utils", - ], -) - -py_library( - name = "saved_model", - srcs = [ - "base_serialization.py", - "constants.py", - "json_utils.py", - "layer_serialization.py", - "load.py", - "load_context.py", - "metric_serialization.py", - "model_serialization.py", - "network_serialization.py", - "save.py", - "save_impl.py", - "serialized_attributes.py", - ], - srcs_version = "PY3", - deps = [ - ":order_preserving_set", - ":utils", - "//:expect_tensorflow_installed", - "//keras/utils:generic_utils", - ], -) - -tf_py_test( - name = "revive_test", - size = "medium", - srcs = ["revive_test.py"], - python_version = "PY3", - shard_count = 8, - tags = [ - "no_windows", # b/158005583 - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "json_utils_test", - size = "small", - srcs = ["json_utils_test.py"], - python_version = "PY3", - deps = [ - ":saved_model", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "saved_model_test", - size = "medium", - srcs = ["saved_model_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "no_pip", # TODO(b/202022379) - "no_rocm", - "no_windows", - "notsan", #TODO(b/181771982): it is flaky - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -py_binary( - name = "create_test_saved_model", - srcs = ["create_test_saved_model.py"], - python_version = "PY3", - srcs_version = "PY3", - tags = ["no_oss"], - deps = [ - "//:expect_tensorflow_installed", - "//keras:regularizers", - "//keras/testing_infra:test_utils", - "//third_party/py/absl:app", - "//third_party/py/absl/flags", - ], -) - -tf_py_test( - name = "determinism_test", - srcs = ["determinism_test.py"], - data = [":create_test_saved_model.par"], - python_version = "PY3", - tags = ["no_oss"], - deps = [ - "//:expect_tensorflow_installed", - ], -) diff --git a/keras/saving/legacy/saved_model/README.md b/keras/saving/legacy/saved_model/README.md deleted file mode 100644 index b0bf81c6ffa..00000000000 --- a/keras/saving/legacy/saved_model/README.md +++ /dev/null @@ -1,131 +0,0 @@ -# Keras SavedModel - -For questions, feedback, and feature requests please file a bug/contact kathywu@ - -## TensorFlow Core SavedModel implementation - -In TensorFlow 2.0, all saving and loading implementations revolve around the -object graph generated from a root trackable object, and all trackable objects -connected to it through attributes. Program building blocks such as variables, -assets, and tables, and high level objects like Optimizers and Layers all -subclass the trackable class. Other objects like TensorFlow functions and -concrete functions are also saved as nodes in the object graph. When loading a -SavedModel, the object graph is used to recreate the structure of the original -object. - -Please see the links below for more details: - -- [Saved Model Guide](https://www.tensorflow.org/guide/saved_model) -- [Checkpoint Guide](https://www.tensorflow.org/guide/checkpoint) - -## Keras SavedModel implementation - -### Overview - -Keras object serialization is built on top of the core serialization. - -All attributes that impact model execution or inspection are saved to the -SavedModel to allow the model to be recreated. These attributes are divided into -three categories: - -1. python properties (e.g., layer name, layer config) -2. objects (e.g. data structures like list of variables or layers) -3. functions (e.g. call function, loss functions) - -Trackable objects and TensorFlow functions are represented as nodes in the -trackable object graph, and each node in the graph stores information about -their python properties. - -Since many attributes in Keras Layers/Models are not Trackable objects or -tf.functions, these attributes are wrapped as trackable objects/tf.functions at -serialization time. For example, `layer.variables` is implemented as a python -property that appends the lists of trainable/nontrainable variables. During -serialization, a new Trackable List object is created and saved to the -`variables` attribute. Another example is the call function. Most models do not -decorate their call function with `tf.function`, since Keras will take care of -the graph/function management. When the model is saved, the call function is -wrapped in a `tf.function` and added to the `__call__` attribute. - - -### `keras_api` attribute - -Many attributes are only relevant for revivability. Instead of attaching these -directly to the exported object, they are saved to a new `keras_api` trackable -object that is then attached to the exported object. This avoids cluttering the -exported object with objects/functions that are only used by the Keras library. - -For example, `__call__` and `call_and_return_conditional_losses` are functions -saved for all models. The `__call__` function is attached directly to the -exported object, while `call_and_return_conditional_losses` is attached to a -separate object. Say a user saves the model, then loads the SavedModel using the -core loader (tf.saved_model.load which does not rely on the Keras library to -revive the model). - -The loaded object will have a structure that looks like: - -``` - loaded object -- __call__ - -- keras_api -- __call__ - -- call_and_return_conditional_losses -``` - -The two call functions may be accessed through: - - - `loaded.__call__` or `loaded.keras_api.__call__` - - `loaded.keras_api.call_and_return_conditional_losses`. - - -### Saving details - -Keras Layers use a helper abstract class and an attribute validator class to -define and standardize the serialization implementation: - -- [`SerializationImpl`](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/saving/saved_model/base_serialization.py): -Ensures that layer python properties are saved as a serialized JSON string in -the metadata field, and gathers all attributes to save with the Keras object. -Please see the docstrings in each of the abstract methods/properties to see what -is required. -- [`SerializedAttributes`](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/saving/saved_model/serialized_attributes.py?): -Tracks all of the attributes that must be saved with a Keras object. Objects and -functions may be specified to be "keras_only", meaning that they will only -appear in the `keras_api` attribute. - -The base `Layer` serialization is defined in -[`layer_serialization.py`](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/saving/saved_model/layer_serialization.py). -See `LayerAttributes` and `LayerSerializationImpl`. - -**Adding a new attribute to base Layer SavedModel** - -1. Add a new attributes to `LayerAttributes`. -2. Modify `LayerSerializationImpl` internal methods: - - a. If adding a python property, add the key-value item to the dictionary - returned by `_python_properties_internal` - - b.If adding a new object/function, modify the dictionary returned by - `_get_serialized_attributes_internal`. - - -**Adding custom serialization for a Layer subclass.** - -1. Create a new attribute validator by copying `LayerAttributes`, and add any -new attributes to serialize. -2. Subclass `LayerSerializationImpl` -3. Implement `_python_properties_internal` and/or -`_get_serialized_attributes_internal` to return the new attributes. - -Unless you are modifying the loader (see section below on loading), please keep -the `object_identifier` the same. - -These instructions also carry over for modifying -[Model](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/saving/saved_model/model_serialization.py) -and -[Network](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/saving/saved_model/network_serialization.py) -serialization. - - -### Loading details - -TODO(kathywu): Will write this section when the loading code is moved into -\*_serialization.py files. - diff --git a/keras/saving/legacy/saved_model/__init__.py b/keras/saving/legacy/saved_model/__init__.py deleted file mode 100644 index e69de29bb2d..00000000000 diff --git a/keras/saving/legacy/saved_model/base_serialization.py b/keras/saving/legacy/saved_model/base_serialization.py deleted file mode 100644 index 51057c084dd..00000000000 --- a/keras/saving/legacy/saved_model/base_serialization.py +++ /dev/null @@ -1,141 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Helper classes that list&validate all attributes to serialize to -SavedModel.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import abc - -from keras.saving.legacy.saved_model import json_utils -from keras.saving.legacy.saved_model import utils - - -class SavedModelSaver(object, metaclass=abc.ABCMeta): - """Saver defining the methods and properties used to serialize Keras - objects.""" - - def __init__(self, obj): - self.obj = obj - - @abc.abstractproperty - def object_identifier(self): - """String stored in object identifier field in the SavedModel proto. - - Returns: - A string with the object identifier, which is used at load time. - """ - raise NotImplementedError - - @property - def tracking_metadata(self): - """String stored in metadata field in the SavedModel proto. - - Returns: - A serialized JSON storing information necessary for recreating this - layer. - """ - # TODO(kathywu): check that serialized JSON can be loaded (e.g., if an - # object is in the python property) - return json_utils.Encoder().encode(self.python_properties) - - def trackable_children(self, serialization_cache): - """Lists all Trackable children connected to this object.""" - if not utils.should_save_traces(): - return {} - - children = self.objects_to_serialize(serialization_cache) - children.update(self.functions_to_serialize(serialization_cache)) - return children - - @abc.abstractproperty - def python_properties(self): - """Returns dictionary of python properties to save in the metadata. - - This dictionary must be serializable and deserializable to/from JSON. - - When loading, the items in this dict are used to initialize the object - and define attributes in the revived object. - """ - raise NotImplementedError - - @abc.abstractmethod - def objects_to_serialize(self, serialization_cache): - """Returns dictionary of extra checkpointable objects to serialize. - - See `functions_to_serialize` for an explanation of this function's - effects. - - Args: - serialization_cache: Dictionary passed to all objects in the same - object graph during serialization. - - Returns: - A dictionary mapping attribute names to checkpointable objects. - """ - raise NotImplementedError - - @abc.abstractmethod - def functions_to_serialize(self, serialization_cache): - """Returns extra functions to include when serializing a Keras object. - - Normally, when calling exporting an object to SavedModel, only the - functions and objects defined by the user are saved. For example: - - ``` - obj = tf.Module() - obj.v = tf.Variable(1.) - - @tf.function - def foo(...): ... - - obj.foo = foo - - w = tf.Variable(1.) - - tf.saved_model.save(obj, 'path/to/saved/model') - loaded = tf.saved_model.load('path/to/saved/model') - - loaded.v # Variable with the same value as obj.v - loaded.foo # Equivalent to obj.foo - loaded.w # AttributeError - ``` - - Assigning trackable objects to attributes creates a graph, which is used - for both checkpointing and SavedModel serialization. - - When the graph generated from attribute tracking is insufficient, extra - objects and functions may be added at serialization time. For example, - most models do not have their call function wrapped with a @tf.function - decorator. This results in `model.call` not being saved. Since Keras - objects should be revivable from the SavedModel format, the call - function is added as an extra function to serialize. - - This function and `objects_to_serialize` is called multiple times when - exporting to SavedModel. Please use the cache to avoid generating new - functions and objects. A fresh cache is created for each SavedModel - export. - - Args: - serialization_cache: Dictionary passed to all objects in the same - object graph during serialization. - - Returns: - A dictionary mapping attribute names to `Function` or - `ConcreteFunction`. - """ - raise NotImplementedError diff --git a/keras/saving/legacy/saved_model/constants.py b/keras/saving/legacy/saved_model/constants.py deleted file mode 100644 index c505586310c..00000000000 --- a/keras/saving/legacy/saved_model/constants.py +++ /dev/null @@ -1,47 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Constants for Keras SavedModel serialization.""" - -# Namespace used to store all attributes added during serialization. -# e.g. the list of layers can be accessed using `loaded.keras_api.layers`, in an -# object loaded from `tf.saved_model.load()`. -KERAS_ATTR = "keras_api" - -# Keys for the serialization cache. -# Maps to the keras serialization dict {Layer --> SerializedAttributes object} -KERAS_CACHE_KEY = "keras_serialized_attributes" - - -# Name of Keras metadata file stored in the SavedModel. -SAVED_METADATA_PATH = "keras_metadata.pb" - -# Names of SavedObject Keras identifiers. -INPUT_LAYER_IDENTIFIER = "_tf_keras_input_layer" -LAYER_IDENTIFIER = "_tf_keras_layer" -METRIC_IDENTIFIER = "_tf_keras_metric" -MODEL_IDENTIFIER = "_tf_keras_model" -NETWORK_IDENTIFIER = "_tf_keras_network" -RNN_LAYER_IDENTIFIER = "_tf_keras_rnn_layer" -SEQUENTIAL_IDENTIFIER = "_tf_keras_sequential" - -KERAS_OBJECT_IDENTIFIERS = ( - INPUT_LAYER_IDENTIFIER, - LAYER_IDENTIFIER, - METRIC_IDENTIFIER, - MODEL_IDENTIFIER, - NETWORK_IDENTIFIER, - RNN_LAYER_IDENTIFIER, - SEQUENTIAL_IDENTIFIER, -) diff --git a/keras/saving/legacy/saved_model/create_test_saved_model.py b/keras/saving/legacy/saved_model/create_test_saved_model.py deleted file mode 100644 index 5a281df9c41..00000000000 --- a/keras/saving/legacy/saved_model/create_test_saved_model.py +++ /dev/null @@ -1,36 +0,0 @@ -"""A binary that creates a serialized SavedModel from a keras model. - -This is used in tests to ensure that model serialization is deterministic across -different processes. -""" - -import tensorflow.compat.v2 as tf -from absl import app -from absl import flags - -from keras import regularizers -from keras.testing_infra import test_utils - -flags.DEFINE_string("output_path", "", "The path to write the SavedModel at.") - -FLAGS = flags.FLAGS - - -def main(_) -> None: - with test_utils.model_type_scope("functional"): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - model.layers[-1].activity_regularizer = regularizers.get("l2") - model.activity_regularizer = regularizers.get("l2") - model.compile(loss="mse", optimizer="rmsprop") - - def callable_loss(): - return tf.reduce_sum(model.weights[0]) - - model.add_loss(callable_loss) - - print(f"_____Writing saved model to: {FLAGS.output_path}") - model.save(FLAGS.output_path) - - -if __name__ == "__main__": - app.run(main) diff --git a/keras/saving/legacy/saved_model/determinism_test.py b/keras/saving/legacy/saved_model/determinism_test.py deleted file mode 100755 index dc9d8835d85..00000000000 --- a/keras/saving/legacy/saved_model/determinism_test.py +++ /dev/null @@ -1,33 +0,0 @@ -"""Saves the same model twice and ensures that they are serialized the same.""" - -import subprocess - -import tensorflow.compat.v2 as tf -from absl import flags -from tensorflow.core.protobuf import saved_model_pb2 - -FLAGS = flags.FLAGS - - -class DeterminismTest(tf.test.TestCase): - def test_saving_is_deterministic(self): - create_saved_model = f"{FLAGS.test_srcdir}/create_test_saved_model.par" - saved_model_a_path = f"{FLAGS.test_tmpdir}/a" - saved_model_b_path = f"{FLAGS.test_tmpdir}/b" - - save_a = subprocess.Popen( - [create_saved_model, "--output_path", saved_model_a_path] - ) - save_b = subprocess.Popen( - [create_saved_model, "--output_path", saved_model_b_path] - ) - save_a.wait() - save_b.wait() - saved_model_a = saved_model_pb2.SavedModel() - with tf.io.gfile.GFile(f"{saved_model_a_path}/saved_model.pb") as f: - saved_model_a.MergeFromString(f.read()) - saved_model_b = saved_model_pb2.SavedModel() - with tf.io.gfile.GFile(f"{saved_model_b_path}/saved_model.pb") as f: - saved_model_b.MergeFromString(f.read()) - - self.assertProtoEquals(saved_model_a, saved_model_b) diff --git a/keras/saving/legacy/saved_model/json_utils.py b/keras/saving/legacy/saved_model/json_utils.py deleted file mode 100644 index 6d133bb1c41..00000000000 --- a/keras/saving/legacy/saved_model/json_utils.py +++ /dev/null @@ -1,237 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utils for creating and loading the Layer metadata for SavedModel. - -These are required to retain the original format of the build input shape, since -layers and models may have different build behaviors depending on if the shape -is a list, tuple, or TensorShape. For example, Network.build() will create -separate inputs if the given input_shape is a list, and will create a single -input if the given shape is a tuple. -""" - -import collections -import enum -import functools -import json - -import numpy as np -import tensorflow.compat.v2 as tf -import wrapt - -from keras.saving import serialization_lib -from keras.saving.legacy import serialization -from keras.saving.legacy.saved_model.utils import in_tf_saved_model_scope - -# isort: off -from tensorflow.python.framework import type_spec_registry - -_EXTENSION_TYPE_SPEC = "_EXTENSION_TYPE_SPEC" - - -class Encoder(json.JSONEncoder): - """JSON encoder and decoder that handles TensorShapes and tuples.""" - - def default(self, obj): - """Encodes objects for types that aren't handled by the default - encoder.""" - if isinstance(obj, tf.TensorShape): - items = obj.as_list() if obj.rank is not None else None - return {"class_name": "TensorShape", "items": items} - return get_json_type(obj) - - def encode(self, obj): - return super().encode(_encode_tuple(obj)) - - -def _encode_tuple(x): - if isinstance(x, tuple): - return { - "class_name": "__tuple__", - "items": tuple(_encode_tuple(i) for i in x), - } - elif isinstance(x, list): - return [_encode_tuple(i) for i in x] - elif isinstance(x, dict): - return {key: _encode_tuple(value) for key, value in x.items()} - else: - return x - - -def decode(json_string): - return json.loads(json_string, object_hook=_decode_helper) - - -def decode_and_deserialize( - json_string, module_objects=None, custom_objects=None -): - """Decodes the JSON and deserializes any Keras objects found in the dict.""" - return json.loads( - json_string, - object_hook=functools.partial( - _decode_helper, - deserialize=True, - module_objects=module_objects, - custom_objects=custom_objects, - ), - ) - - -def _decode_helper( - obj, deserialize=False, module_objects=None, custom_objects=None -): - """A decoding helper that is TF-object aware. - - Args: - obj: A decoded dictionary that may represent an object. - deserialize: Boolean, defaults to False. When True, deserializes any Keras - objects found in `obj`. - module_objects: A dictionary of built-in objects to look the name up in. - Generally, `module_objects` is provided by midlevel library - implementers. - custom_objects: A dictionary of custom objects to look the name up in. - Generally, `custom_objects` is provided by the end user. - - Returns: - The decoded object. - """ - if isinstance(obj, dict) and "class_name" in obj: - if obj["class_name"] == "TensorShape": - return tf.TensorShape(obj["items"]) - elif obj["class_name"] == "TypeSpec": - return type_spec_registry.lookup(obj["type_spec"])._deserialize( - _decode_helper(obj["serialized"]) - ) - elif obj["class_name"] == "CompositeTensor": - spec = obj["spec"] - tensors = [] - for dtype, tensor in obj["tensors"]: - tensors.append( - tf.constant(tensor, dtype=tf.dtypes.as_dtype(dtype)) - ) - return tf.nest.pack_sequence_as( - _decode_helper(spec), tensors, expand_composites=True - ) - elif obj["class_name"] == "__tuple__": - return tuple(_decode_helper(i) for i in obj["items"]) - elif obj["class_name"] == "__ellipsis__": - return Ellipsis - elif deserialize and "__passive_serialization__" in obj: - # __passive_serialization__ is added by the JSON encoder when - # encoding an object that has a `get_config()` method. - try: - if in_tf_saved_model_scope() or "module" not in obj: - return serialization.deserialize_keras_object( - obj, - module_objects=module_objects, - custom_objects=custom_objects, - ) - else: - return serialization_lib.deserialize_keras_object( - obj, - module_objects=module_objects, - custom_objects=custom_objects, - ) - except ValueError: - pass - elif obj["class_name"] == "__bytes__": - return obj["value"].encode("utf-8") - return obj - - -def get_json_type(obj): - """Serializes any object to a JSON-serializable structure. - - Args: - obj: the object to serialize - - Returns: - JSON-serializable structure representing `obj`. - - Raises: - TypeError: if `obj` cannot be serialized. - """ - # if obj is a serializable Keras class instance - # e.g. optimizer, layer - if hasattr(obj, "get_config"): - serialized = serialization.serialize_keras_object(obj) - serialized["__passive_serialization__"] = True - return serialized - - # if obj is any numpy type - if type(obj).__module__ == np.__name__: - if isinstance(obj, np.ndarray): - return obj.tolist() - else: - return obj.item() - - # misc functions (e.g. loss function) - if callable(obj): - return obj.__name__ - - # if obj is a python 'type' - if type(obj).__name__ == type.__name__: - return obj.__name__ - - if isinstance(obj, tf.compat.v1.Dimension): - return obj.value - - if isinstance(obj, tf.TensorShape): - return obj.as_list() - - if isinstance(obj, tf.DType): - return obj.name - - if isinstance(obj, collections.abc.Mapping): - return dict(obj) - - if obj is Ellipsis: - return {"class_name": "__ellipsis__"} - - if isinstance(obj, wrapt.ObjectProxy): - return obj.__wrapped__ - - if isinstance(obj, tf.TypeSpec): - try: - type_spec_name = type_spec_registry.get_name(type(obj)) - return { - "class_name": "TypeSpec", - "type_spec": type_spec_name, - "serialized": obj._serialize(), - } - except ValueError: - raise ValueError( - f"Unable to serialize {obj} to JSON, because the TypeSpec " - f"class {type(obj)} has not been registered." - ) - if isinstance(obj, tf.__internal__.CompositeTensor): - spec = tf.type_spec_from_value(obj) - tensors = [] - for tensor in tf.nest.flatten(obj, expand_composites=True): - tensors.append((tensor.dtype.name, tensor.numpy().tolist())) - return { - "class_name": "CompositeTensor", - "spec": get_json_type(spec), - "tensors": tensors, - } - - if isinstance(obj, enum.Enum): - return obj.value - - if isinstance(obj, bytes): - return {"class_name": "__bytes__", "value": obj.decode("utf-8")} - - raise TypeError( - f"Unable to serialize {obj} to JSON. Unrecognized type {type(obj)}." - ) diff --git a/keras/saving/legacy/saved_model/json_utils_test.py b/keras/saving/legacy/saved_model/json_utils_test.py deleted file mode 100644 index 3a86aad3152..00000000000 --- a/keras/saving/legacy/saved_model/json_utils_test.py +++ /dev/null @@ -1,107 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Tests the JSON encoder and decoder.""" - -import enum - -import tensorflow.compat.v2 as tf - -from keras.saving.legacy.saved_model import json_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class JsonUtilsTest(test_combinations.TestCase): - def test_encode_decode_tensor_shape(self): - metadata = { - "key1": tf.TensorShape(None), - "key2": [tf.TensorShape([None]), tf.TensorShape([3, None, 5])], - } - string = json_utils.Encoder().encode(metadata) - loaded = json_utils.decode(string) - - self.assertEqual(set(loaded.keys()), {"key1", "key2"}) - self.assertAllEqual(loaded["key1"].rank, None) - self.assertAllEqual(loaded["key2"][0].as_list(), [None]) - self.assertAllEqual(loaded["key2"][1].as_list(), [3, None, 5]) - - def test_encode_decode_tuple(self): - metadata = {"key1": (3, 5), "key2": [(1, (3, 4)), (1,)]} - string = json_utils.Encoder().encode(metadata) - loaded = json_utils.decode(string) - - self.assertEqual(set(loaded.keys()), {"key1", "key2"}) - self.assertAllEqual(loaded["key1"], (3, 5)) - self.assertAllEqual(loaded["key2"], [(1, (3, 4)), (1,)]) - - def test_encode_decode_type_spec(self): - spec = tf.TensorSpec((1, 5), tf.float32) - string = json_utils.Encoder().encode(spec) - loaded = json_utils.decode(string) - self.assertEqual(spec, loaded) - - invalid_type_spec = { - "class_name": "TypeSpec", - "type_spec": "Invalid Type", - "serialized": None, - } - string = json_utils.Encoder().encode(invalid_type_spec) - with self.assertRaisesRegexp( - ValueError, "No TypeSpec has been registered" - ): - loaded = json_utils.decode(string) - - def test_encode_decode_enum(self): - class Enum(enum.Enum): - CLASS_A = "a" - CLASS_B = "b" - - config = {"key": Enum.CLASS_A, "key2": Enum.CLASS_B} - string = json_utils.Encoder().encode(config) - loaded = json_utils.decode(string) - self.assertAllEqual({"key": "a", "key2": "b"}, loaded) - - @test_utils.run_v2_only - def test_encode_decode_ragged_tensor(self): - x = tf.ragged.constant([[1.0, 2.0], [3.0]]) - string = json_utils.Encoder().encode(x) - loaded = json_utils.decode(string) - self.assertAllEqual(loaded, x) - - @test_utils.run_v2_only - def test_encode_decode_extension_type_tensor(self): - class MaskedTensor(tf.experimental.ExtensionType): - __name__ = "MaskedTensor" - values: tf.Tensor - mask: tf.Tensor - - x = MaskedTensor( - values=[[1, 2, 3], [4, 5, 6]], - mask=[[True, True, False], [True, False, True]], - ) - string = json_utils.Encoder().encode(x) - loaded = json_utils.decode(string) - self.assertAllEqual(loaded, x) - - def test_encode_decode_bytes(self): - b_string = b"abc" - json_string = json_utils.Encoder().encode(b_string) - loaded = json_utils.decode(json_string) - self.assertAllEqual(b_string, loaded) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/saving/legacy/saved_model/layer_serialization.py b/keras/saving/legacy/saved_model/layer_serialization.py deleted file mode 100644 index ae7e320a019..00000000000 --- a/keras/saving/legacy/saved_model/layer_serialization.py +++ /dev/null @@ -1,211 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Classes and functions implementing Layer SavedModel serialization.""" - -import tensorflow.compat.v2 as tf - -from keras.mixed_precision import policy -from keras.saving.legacy import serialization -from keras.saving.legacy.saved_model import base_serialization -from keras.saving.legacy.saved_model import constants -from keras.saving.legacy.saved_model import save_impl -from keras.saving.legacy.saved_model import serialized_attributes - - -class LayerSavedModelSaver(base_serialization.SavedModelSaver): - """Implements Layer SavedModel serialization.""" - - @property - def object_identifier(self): - return constants.LAYER_IDENTIFIER - - @property - def python_properties(self): - # TODO(kathywu): Add python property validator - return self._python_properties_internal() - - def _python_properties_internal(self): - """Returns dictionary of all python properties.""" - # TODO(kathywu): Add support for metrics serialization. - # TODO(kathywu): Synchronize with the keras spec (go/keras-json-spec) - # once the python config serialization has caught up. - metadata = dict( - name=self.obj.name, - trainable=self.obj.trainable, - expects_training_arg=self.obj._expects_training_arg, - dtype=policy.serialize(self.obj._dtype_policy), - batch_input_shape=getattr(self.obj, "_batch_input_shape", None), - stateful=self.obj.stateful, - must_restore_from_config=self.obj._must_restore_from_config, - preserve_input_structure_in_config=self.obj._preserve_input_structure_in_config, # noqa: E501 - autocast=self.obj._autocast, - ) - - metadata.update(get_serialized(self.obj)) - if self.obj.input_spec is not None: - # Layer's input_spec has already been type-checked in the property - # setter. - metadata["input_spec"] = tf.nest.map_structure( - lambda x: serialization.serialize_keras_object(x) - if x - else None, - self.obj.input_spec, - ) - if self.obj.activity_regularizer is not None and hasattr( - self.obj.activity_regularizer, "get_config" - ): - metadata[ - "activity_regularizer" - ] = serialization.serialize_keras_object( - self.obj.activity_regularizer - ) - if self.obj._build_input_shape is not None: - metadata["build_input_shape"] = self.obj._build_input_shape - return metadata - - def objects_to_serialize(self, serialization_cache): - return self._get_serialized_attributes( - serialization_cache - ).objects_to_serialize - - def functions_to_serialize(self, serialization_cache): - return self._get_serialized_attributes( - serialization_cache - ).functions_to_serialize - - def _get_serialized_attributes(self, serialization_cache): - """Generates or retrieves serialized attributes from cache.""" - keras_cache = serialization_cache.setdefault( - constants.KERAS_CACHE_KEY, {} - ) - if self.obj in keras_cache: - return keras_cache[self.obj] - - serialized_attr = keras_cache[ - self.obj - ] = serialized_attributes.SerializedAttributes.new(self.obj) - - if ( - save_impl.should_skip_serialization(self.obj) - or self.obj._must_restore_from_config - ): - return serialized_attr - - object_dict, function_dict = self._get_serialized_attributes_internal( - serialization_cache - ) - - serialized_attr.set_and_validate_objects(object_dict) - serialized_attr.set_and_validate_functions(function_dict) - return serialized_attr - - def _get_serialized_attributes_internal(self, serialization_cache): - """Returns dictionary of serialized attributes.""" - objects = save_impl.wrap_layer_objects(self.obj, serialization_cache) - functions = save_impl.wrap_layer_functions( - self.obj, serialization_cache - ) - # Attribute validator requires that the default save signature is added - # to function dict, even if the value is None. - functions["_default_save_signature"] = None - return objects, functions - - -# TODO(kathywu): Move serialization utils (and related utils from -# generic_utils.py) to a separate file. -def get_serialized(obj): - with serialization.skip_failed_serialization(): - # Store the config dictionary, which may be used when reviving the - # object. When loading, the program will attempt to revive the object - # from config, and if that fails, the object will be revived from the - # SavedModel. - return serialization.serialize_keras_object(obj) - - -class InputLayerSavedModelSaver(base_serialization.SavedModelSaver): - """InputLayer serialization.""" - - @property - def object_identifier(self): - return constants.INPUT_LAYER_IDENTIFIER - - @property - def python_properties(self): - - return dict( - class_name=type(self.obj).__name__, - name=self.obj.name, - dtype=self.obj.dtype, - sparse=self.obj.sparse, - ragged=self.obj.ragged, - batch_input_shape=self.obj._batch_input_shape, - config=self.obj.get_config(), - ) - - def objects_to_serialize(self, serialization_cache): - return {} - - def functions_to_serialize(self, serialization_cache): - return {} - - -class RNNSavedModelSaver(LayerSavedModelSaver): - """RNN layer serialization.""" - - @property - def object_identifier(self): - return constants.RNN_LAYER_IDENTIFIER - - def _get_serialized_attributes_internal(self, serialization_cache): - objects, functions = super()._get_serialized_attributes_internal( - serialization_cache - ) - states = tf.__internal__.tracking.wrap(self.obj.states) - # SaveModel require all the objects to be Trackable when saving. If the - # states is still a tuple after wrap_or_unwrap, it means it doesn't - # contain any trackable item within it, eg empty tuple or (None, None) - # for stateless ConvLSTM2D. We convert them to list so that - # wrap_or_unwrap can make it a Trackable again for saving. When loaded, - # ConvLSTM2D is able to handle the tuple/list conversion. - if isinstance(states, tuple): - states = tf.__internal__.tracking.wrap(list(states)) - objects["states"] = states - return objects, functions - - -class VocabularySavedModelSaver(LayerSavedModelSaver): - """Handles vocabulary layer serialization. - - This class is needed for StringLookup, IntegerLookup, and TextVectorization, - which all have a vocabulary as part of the config. Currently, we keep this - vocab as part of the config until saving, when we need to clear it to avoid - initializing a StaticHashTable twice (once when restoring the config and - once when restoring restoring module resources). After clearing the vocab, - we persist a property to the layer indicating it was constructed with a - vocab. - """ - - @property - def python_properties(self): - # TODO(kathywu): Add python property validator - metadata = self._python_properties_internal() - # Clear the vocabulary from the config during saving. - metadata["config"]["vocabulary"] = None - # Persist a property to track that a vocabulary was passed on - # construction. - metadata["config"][ - "has_input_vocabulary" - ] = self.obj._has_input_vocabulary - return metadata diff --git a/keras/saving/legacy/saved_model/load.py b/keras/saving/legacy/saved_model/load.py deleted file mode 100644 index 9aef73c79bc..00000000000 --- a/keras/saving/legacy/saved_model/load.py +++ /dev/null @@ -1,1384 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras SavedModel deserialization.""" - -import re -import types -import warnings - -import tensorflow.compat.v1.logging as logging -import tensorflow.compat.v2 as tf -from google.protobuf import message - -from keras import backend -from keras import regularizers -from keras.engine import input_spec -from keras.optimizers.legacy import optimizer_v2 -from keras.protobuf import saved_metadata_pb2 -from keras.protobuf import versions_pb2 -from keras.saving import object_registration -from keras.saving.legacy import model_config -from keras.saving.legacy import saving_utils -from keras.saving.legacy import serialization -from keras.saving.legacy.saved_model import constants -from keras.saving.legacy.saved_model import json_utils -from keras.saving.legacy.saved_model import utils -from keras.saving.legacy.saved_model.serialized_attributes import ( - CommonEndpoints, -) -from keras.utils import layer_utils -from keras.utils import metrics_utils -from keras.utils import tf_inspect -from keras.utils.generic_utils import LazyLoader - -# To avoid circular dependencies between keras/engine and keras/saving, -# code in keras/saving must delay imports. - -# TODO(b/134426265): Switch back to single-quotes to match the rest of the file -# once the issue with copybara is fixed. - -models_lib = LazyLoader("models_lib", globals(), "keras.models") -base_layer = LazyLoader("base_layer", globals(), "keras.engine.base_layer") -layers_module = LazyLoader("layers_module", globals(), "keras.layers") -input_layer = LazyLoader("input_layer", globals(), "keras.engine.input_layer") -functional_lib = LazyLoader( - "functional_lib", globals(), "keras.engine.functional" -) -training_lib = LazyLoader("training_lib", globals(), "keras.engine.training") -training_lib_v1 = LazyLoader( - "training_lib_v1", globals(), "keras.engine.training_v1" -) -metrics = LazyLoader("metrics", globals(), "keras.metrics") -base_rnn = LazyLoader("base_rnn", globals(), "keras.layers.rnn.base_rnn") - - -PUBLIC_ATTRIBUTES = CommonEndpoints.all_functions.union( - CommonEndpoints.all_checkpointable_objects -) -PUBLIC_ATTRIBUTES.add(constants.KERAS_ATTR) - - -def load(path, compile=True, options=None): - """Loads Keras objects from a SavedModel. - - Any Keras layer or model saved to the SavedModel will be loaded back - as Keras objects. Other objects are loaded as regular trackable objects - (same as `tf.saved_model.load`). - - Currently, Keras saving/loading only retains the Keras object's weights, - losses, and call function. - - The loaded model can be re-compiled, but the original optimizer, compiled - loss functions, and metrics are not retained. This is temporary, and - `model.save` will soon be able to serialize compiled models. - - Args: - path: Path to SavedModel. - compile: If true, compile the model after loading it. - options: Optional `tf.saved_model.LoadOptions` object that specifies - options for loading from SavedModel. - - Returns: - Object loaded from SavedModel. - """ - # TODO(kathywu): Add saving/loading of optimizer, compiled losses and - # metrics. - # TODO(kathywu): Add code to load from objects that contain all endpoints - - # Look for metadata file or parse the SavedModel - metadata = saved_metadata_pb2.SavedMetadata() - meta_graph_def = tf.__internal__.saved_model.parse_saved_model( - path - ).meta_graphs[0] - object_graph_def = meta_graph_def.object_graph_def - path_to_metadata_pb = tf.io.gfile.join(path, constants.SAVED_METADATA_PATH) - if tf.compat.v1.gfile.Exists(path_to_metadata_pb): - try: - with tf.io.gfile.GFile(path_to_metadata_pb, "rb") as f: - file_content = f.read() - metadata.ParseFromString(file_content) - except message.DecodeError as e: - raise IOError( - f"Cannot parse keras metadata at path {path_to_metadata_pb}: " - f"Received error: {e}" - ) - else: - logging.warning( - "SavedModel saved prior to TF 2.5 detected when loading " - "Keras model. Please ensure that you are saving the model " - "with model.save() or tf.keras.models.save_model(), *NOT* " - "tf.saved_model.save(). To confirm, there should be a file " - 'named "keras_metadata.pb" in the SavedModel directory.' - ) - _read_legacy_metadata(object_graph_def, metadata, path) - - if not metadata.nodes: - # When there are no Keras objects, return the results from the core - # loader - return tf.saved_model.load(path, options=options) - - metadata = _update_to_current_version(metadata) - # Recreate layers and metrics using the info stored in the metadata. - keras_loader = KerasObjectLoader(metadata, object_graph_def) - keras_loader.load_layers(compile=compile) - - # Generate a dictionary of all loaded nodes. - nodes_to_load = {"root": None} - for node_id, loaded_node in keras_loader.loaded_nodes.items(): - nodes_to_load[keras_loader.get_path(node_id)] = loaded_node - with warnings.catch_warnings(): - warnings.filterwarnings( - "ignore", message="Trying to load ShardedVariables" - ) - loaded = tf.__internal__.saved_model.load_partial( - path, nodes_to_load, options=options - ) - - # Finalize the loaded layers and remove the extra tracked dependencies. - keras_loader.finalize_objects() - keras_loader.del_tracking() - - model = loaded["root"] - - if isinstance(model, training_lib.Model) and compile: - # TODO(kathywu): Use compiled objects from SavedModel, instead of - # creating new objects from the training config. - training_config = model._serialized_attributes["metadata"].get( - "training_config", None - ) - if training_config is not None: - model.compile( - **saving_utils.compile_args_from_training_config( - training_config - ), - from_serialized=True, - ) - saving_utils.try_build_compiled_arguments(model) - if isinstance(model.optimizer, optimizer_v2.OptimizerV2): - if model.optimizer.get_slot_names(): - logging.warning( - "Your optimizer uses slots. " - "Slots cannot be restored from saved_model, " - "as a result, your model is starting with " - "a new initialized optimizer." - ) - else: - logging.warning( - "No training configuration found in save file, so the " - "model was *not* compiled. Compile it manually." - ) - - # Force variables and resources to initialize. - if not tf.executing_eagerly(): - sess = backend.get_session() # Variables are initialized by this call. - sess.run( - tf.compat.v1.get_collection( - tf.compat.v1.GraphKeys.TABLE_INITIALIZERS - ) - ) - - return model - - -def _update_to_current_version(metadata): - """Applies version updates to the metadata proto for backwards compat.""" - for node in metadata.nodes: - if node.version.producer == 1 and node.identifier in [ - constants.MODEL_IDENTIFIER, - constants.SEQUENTIAL_IDENTIFIER, - constants.NETWORK_IDENTIFIER, - ]: - node_metadata = json_utils.decode(node.metadata) - save_spec = node_metadata.get("save_spec") - - if save_spec is not None: - node_metadata["full_save_spec"] = ([save_spec], {}) - node.metadata = json_utils.Encoder().encode(node_metadata) - return metadata - - -def _read_legacy_metadata(object_graph_def, metadata, path): - """Builds a KerasMetadata proto from the SavedModel ObjectGraphDef.""" - # Older SavedModels store the metadata directly in the proto instead of the - # separate pb file. - node_paths = _generate_object_paths(object_graph_def) - for node_id, proto in enumerate(object_graph_def.nodes): - if ( - proto.WhichOneof("kind") == "user_object" - and proto.user_object.identifier - in constants.KERAS_OBJECT_IDENTIFIERS - ): - if not proto.user_object.metadata: - raise ValueError( - "Unable to create a Keras model from SavedModel at " - f"{path}. This SavedModel was exported with " - "`tf.saved_model.save`, and lacks the Keras metadata file. " - "Please save your Keras model by calling `model.save` " - "or `tf.keras.models.save_model`. Note that " - "you can still load this SavedModel with " - "`tf.saved_model.load`." - ) - metadata.nodes.add( - node_id=node_id, - node_path=node_paths[node_id], - version=versions_pb2.VersionDef( - producer=1, min_consumer=1, bad_consumers=[] - ), - identifier=proto.user_object.identifier, - metadata=proto.user_object.metadata, - ) - - -def _generate_object_paths(object_graph_def): - """Traverses through an ObjectGraphDef and builds a map of all node - paths.""" - paths = {0: "root"} - nodes_to_visit = [0] - - while nodes_to_visit: - current_node = nodes_to_visit.pop() - current_path = paths[current_node] - for reference in object_graph_def.nodes[current_node].children: - if reference.node_id in paths: - continue - paths[reference.node_id] = f"{current_path}.{reference.local_name}" - nodes_to_visit.append(reference.node_id) - - return paths - - -def _is_graph_network(layer): - """Determines whether the layer is a graph network.""" - - if isinstance(layer, RevivedNetwork): - return False - elif isinstance(layer, functional_lib.Functional): - return layer._is_graph_network or isinstance( - layer, models_lib.Sequential - ) - return False - - -class KerasObjectLoader: - """Loader that recreates Keras objects (e.g. - - layers, models). - - Layers and models are revived from either the config or SavedModel following - these rules: - 1. If object is a graph network (i.e. Sequential or Functional) then it will - be initialized using the structure from the config only after the - children layers have been created. Graph networks must be initialized - with inputs and outputs, so all child layers must be created beforehand. - 2. If object's config exists and the class can be found, then revive from - config. - 3. Object may have already been created if its parent was revived from - config. In this case, do nothing. - 4. If nothing of the above applies, compose the various artifacts from the - SavedModel to create a subclassed layer or model. At this time, custom - metrics are not supported. - - """ - - def __init__(self, metadata, object_graph_def): - self._metadata = {x.node_id: x for x in metadata.nodes} - self._proto = object_graph_def - - self._node_paths = { - node_data.node_id: node_data.node_path - for node_data in metadata.nodes - } - self.loaded_nodes = {} # Maps node path -> loaded node - - # Store all node ids that have already been traversed when tracking - # nodes that were recreated from the config. - self._traversed_nodes_from_config = set() - - # Maps model id -> (blank model obj, list of child layer or their node - # ids) This tracks all layers in functional and sequential models. These - # models are only reconstructed after all of their child layers have - # been created. - self.model_layer_dependencies = {} - self._models_to_reconstruct = [] - - def del_tracking(self): - """Removes tracked references that are only used when loading the - model.""" - # Now that the node object has been fully loaded, and the checkpoint has - # been restored, the object no longer needs to track objects added from - # SerializedAttributes. (Note that saving a training checkpoint still - # functions correctly, because layers and variables are tracked - # separately by the Layer object.) - # TODO(kathywu): Instead of outright deleting these nodes (which would - # make restoring from a different checkpoint tricky), mark them as extra - # dependencies that are OK to overwrite. - for node in self.loaded_nodes.values(): - node = node[0] - if not isinstance(node, base_layer.Layer): - # Loaded nodes can contain other trackable objects created when - # loading layers from the config, such as variables. - continue - for name in PUBLIC_ATTRIBUTES: - node._delete_tracking(name) - - if isinstance(node, functional_lib.Functional): - # Delete the temporary layer dependencies, which were used to - # restore the checkpointed values. When the model is live, the - # user can delete or add layers to the model at any time, so - # these layer dependencies may be obsolete. - dependencies = list(node._self_unconditional_dependency_names) - for name in dependencies: - if ( - re.match(r"^layer(_with_weights)?-[\d+]", name) - is not None - ): - node._delete_tracking(name) - - def _add_children_recreated_from_config(self, obj, proto, node_id): - """Recursively records objects recreated from config.""" - - if node_id in self._traversed_nodes_from_config: - return - - parent_path = self._node_paths[node_id] - self._traversed_nodes_from_config.add(node_id) - obj._maybe_initialize_trackable() - if isinstance(obj, base_layer.Layer) and not obj.built: - metadata = json_utils.decode(self._metadata[node_id].metadata) - self._try_build_layer( - obj, node_id, metadata.get("build_input_shape") - ) - - # Create list of all possible children - children = [] - # Look for direct children - for reference in proto.children: - obj_child = obj._lookup_dependency(reference.local_name) - children.append( - (obj_child, reference.node_id, reference.local_name) - ) - - # Add metrics that may have been added to the layer._metrics list. - # This is stored in the SavedModel as layer.keras_api.layer_metrics in - # SavedModels created after Tf 2.2. - metric_list_node_id = self._search_for_child_node( - node_id, [constants.KERAS_ATTR, "layer_metrics"] - ) - if metric_list_node_id is not None and hasattr(obj, "_metrics"): - obj_metrics = {m.name: m for m in obj._metrics} - for reference in self._proto.nodes[metric_list_node_id].children: - metric = obj_metrics.get(reference.local_name) - if metric is not None: - metric_path = "{}.layer_metrics.{}".format( - constants.KERAS_ATTR, reference.local_name - ) - children.append((metric, reference.node_id, metric_path)) - - for obj_child, child_id, child_name in children: - child_proto = self._proto.nodes[child_id] - - if not isinstance(obj_child, tf.__internal__.tracking.Trackable): - continue - if ( - child_proto.user_object.identifier - in tf.__internal__.saved_model.load.registered_identifiers() - ): - setter = tf.__internal__.saved_model.load.get_setter( - child_proto.user_object - ) - elif ( - obj_child._object_identifier - in constants.KERAS_OBJECT_IDENTIFIERS - ): - setter = _revive_setter - else: - setter = setattr - - if child_id in self.loaded_nodes: - if self.loaded_nodes[child_id][0] is not obj_child: - # This means that the same trackable object is referenced by - # two different objects that were recreated from the config. - logging.warning( - "Looks like there is an object (perhaps variable or " - "layer) that is shared between different " - "layers/models. This may cause issues when restoring " - "the variable values. Object: {}".format(obj_child) - ) - continue - - # Overwrite variable names with the ones saved in the SavedModel. - if ( - child_proto.WhichOneof("kind") == "variable" - and child_proto.variable.name - ): - obj_child._handle_name = child_proto.variable.name + ":0" - - if isinstance( - obj_child, tf.__internal__.tracking.TrackableDataStructure - ): - setter = lambda *args: None - - child_path = f"{parent_path}.{child_name}" - self._node_paths[child_id] = child_path - self._add_children_recreated_from_config( - obj_child, child_proto, child_id - ) - self.loaded_nodes[child_id] = obj_child, setter - - def load_layers(self, compile=True): - """Load all layer nodes from the metadata.""" - # Load metrics after models and layers, since it's likely that models - # and layers will create the metric when initialized (this avoids - # wasting time by creating objects multiple times). - metric_list = [] - for node_metadata in self._metadata.values(): - if node_metadata.identifier == constants.METRIC_IDENTIFIER: - metric_list.append(node_metadata) - continue - - self.loaded_nodes[node_metadata.node_id] = self._load_layer( - node_metadata.node_id, - node_metadata.identifier, - node_metadata.metadata, - ) - - for node_metadata in metric_list: - try: - self.loaded_nodes[node_metadata.node_id] = self._load_layer( - node_metadata.node_id, - node_metadata.identifier, - node_metadata.metadata, - ) - except ValueError as e: - # Metrics are only needed when the model is compiled later. We - # ignore errors when trying to load custom metrics when - # `compile=False` until custom metrics are serialized properly - # (b/135550038). - if compile: - raise e - logging.warning( - "Unable to restore custom metric. Please ensure that " - "the layer implements `get_config` and `from_config` " - "when saving. In addition, please use the " - "`custom_objects` arg when calling `load_model()`." - ) - - def _load_layer(self, node_id, identifier, metadata): - """Load a single layer from a SavedUserObject proto.""" - metadata = json_utils.decode(metadata) - - # If node was already created - if node_id in self.loaded_nodes: - node, setter = self.loaded_nodes[node_id] - - # Revive setter requires the object to have a - # `_serialized_attributes` property. Add it here. - _maybe_add_serialized_attributes(node, metadata) - - config = metadata.get("config") - if _is_graph_network(node) and serialization.validate_config( - config - ): - child_nodes = self._get_child_layer_node_ids(node_id) - self.model_layer_dependencies[node_id] = (node, child_nodes) - if not child_nodes: - self._models_to_reconstruct.append(node_id) - return node, setter - - # Detect whether this object can be revived from the config. If not, - # then revive from the SavedModel instead. - obj, setter = self._revive_from_config(identifier, metadata, node_id) - if obj is None: - obj, setter = revive_custom_object(identifier, metadata) - - # Add an attribute that stores the extra functions/objects saved in the - # SavedModel. Most of these functions/objects are ignored, but some are - # used later in the loading process (e.g. the list of regularization - # losses, or the training config of compiled models). - _maybe_add_serialized_attributes(obj, metadata) - return obj, setter - - def _revive_from_config(self, identifier, metadata, node_id): - """Revives a layer/model from config, or returns None.""" - if identifier == constants.METRIC_IDENTIFIER: - obj = self._revive_metric_from_config(metadata) - else: - obj = self._revive_graph_network( - identifier, metadata, node_id - ) or self._revive_layer_or_model_from_config(metadata, node_id) - - if obj is None: - return None, None - - setter = self._config_node_setter(_revive_setter) - self._add_children_recreated_from_config( - obj, self._proto.nodes[node_id], node_id - ) - return obj, setter - - def _revive_graph_network(self, identifier, metadata, node_id): - """Revives a graph network from config.""" - # Determine whether the metadata contains information for reviving a - # functional or Sequential model. - config = metadata.get("config") - if not serialization.validate_config(config): - return None - - class_name = tf.compat.as_str(metadata["class_name"]) - if object_registration.get_registered_object(class_name) is not None: - return None - model_is_functional_or_sequential = ( - metadata.get("is_graph_network", False) - or class_name == "Sequential" - or class_name == "Functional" - ) - if not model_is_functional_or_sequential: - return None - - # Revive functional and sequential models as blank model objects for now - # ( must be initialized to enable setattr tracking and attribute - # caching). Reconstruction of the network is deferred until all of the - # model's layers have been revived. - if class_name == "Sequential": - model = models_lib.Sequential(name=config["name"]) - # The model is a custom Sequential model. - elif identifier == constants.SEQUENTIAL_IDENTIFIER: - # Uses the custom class name, since the config does not have one. - model = models_lib.Sequential(name=class_name) - else: - model = models_lib.Functional( - inputs=[], outputs=[], name=config["name"] - ) - - # Record this model and its layers. This will later be used to - # reconstruct the model. - layers = self._get_child_layer_node_ids(node_id) - self.model_layer_dependencies[node_id] = (model, layers) - if not layers: - self._models_to_reconstruct.append(node_id) - return model - - def _revive_layer_or_model_from_config(self, metadata, node_id): - """Revives a layer/custom model from config; returns None if - infeasible.""" - # Check that the following requirements are met for reviving from - # config: - # 1. Object can be deserialized from config. - # 2. If the object needs to be built, then the build input shape can - # be found. - class_name = metadata.get("class_name") - config = metadata.get("config") - shared_object_id = metadata.get("shared_object_id") - must_restore_from_config = metadata.get("must_restore_from_config") - if not serialization.validate_config(config): - return None - - try: - try: - obj = model_config.model_from_config( - serialization.serialize_keras_class_and_config( - class_name, config, shared_object_id=shared_object_id - ) - ) - except (TypeError, KeyError) as e: - # A name conflict has occurred. The `class_name` is in the Keras - # native framework; however, the value in the framework is - # different from the user's class definition which confuses the - # KerasObjectLoader. - builtin_layer = layers_module.get_builtin_layer(class_name) - if builtin_layer: - raise RuntimeError( - f"Unable to restore object of class '{class_name}'. " - "One of several possible causes could be " - "a missing custom object. " - "Decorate your custom object with " - "`@keras.utils.register_keras_serializable` and " - "include that file in your program, " - "or pass your class in a " - "`keras.utils.CustomObjectScope` " - "that wraps this load call. " - f"\n\nException: {e}" - ) from e - else: - raise - except Exception as e: - if must_restore_from_config: - raise e - else: - return None - - # Use the dtype, name, and trainable status. Often times these are not - # specified in custom configs, so retrieve their values from the - # metadata. - - obj._name = metadata["name"] - if metadata.get("trainable") is not None: - obj.trainable = metadata["trainable"] - if metadata.get("dtype") is not None: - obj._set_dtype_policy(metadata["dtype"]) - if metadata.get("stateful") is not None: - obj.stateful = metadata["stateful"] - if metadata.get("autocast") is not None: - obj._autocast = metadata["autocast"] - # Restore model save spec for subclassed models. (layers do not store a - # SaveSpec) - if isinstance(obj, training_lib.Model): - full_save_spec = metadata.get("full_save_spec") - if full_save_spec is not None: - args_spec, kwargs_spec = full_save_spec - inputs_spec = args_spec.pop(0) - obj._set_save_spec(inputs_spec, args_spec, kwargs_spec) - - build_input_shape = metadata.get("build_input_shape") - built = self._try_build_layer(obj, node_id, build_input_shape) - - if not built: - # If the layer cannot be built, revive a custom layer instead. - return None - return obj - - def _revive_metric_from_config(self, metadata): - """Revives a metric object using the config saved in the metadata.""" - class_name = tf.compat.as_str(metadata["class_name"]) - config = metadata.get("config") - - if not serialization.validate_config(config): - return None - - try: - obj = metrics.deserialize( - serialization.serialize_keras_class_and_config( - class_name, config - ) - ) - except ValueError: - return None - - build_input_shape = metadata.get("build_input_shape") - if build_input_shape is not None and hasattr(obj, "_build"): - obj._build(build_input_shape) - - return obj - - def _try_build_layer(self, obj, node_id, build_input_shape): - """Attempts to build the layer.""" - if obj.built or hasattr(obj.build, "_is_default"): - obj.built = True - return True - - if build_input_shape is None: - build_input_shape = self._infer_inputs( - node_id, convert_to_shapes=True - ) - - if build_input_shape is not None: - obj.build(build_input_shape) - base_layer.Layer.build(obj, build_input_shape) - return True - - return False - - def get_path(self, node_id): - return self._node_paths[node_id] - - def finalize_objects(self): - """Finish setting up Keras objects. - - This function is executed after all objects and functions have been - created. Call functions and losses are attached to each layer, and once - all layers have been fully set up, graph networks are initialized. - - Subclassed models that are revived from the SavedModel are treated like - layers, and have their call/loss functions attached here. - """ - # Finish setting up layers and subclassed models. This step attaches - # call functions and losses to each object, and sets model - # inputs/outputs. - layers_revived_from_config = [] - layers_revived_from_saved_model = [] - for node_id, (node, _) in self.loaded_nodes.items(): - if ( - not isinstance(node, base_layer.Layer) - # Don't finalize models until all layers have finished loading. - or node_id in self.model_layer_dependencies - ): - continue - - self._unblock_model_reconstruction(node_id, node) - - if isinstance(node, input_layer.InputLayer): - continue - elif isinstance(node, metrics.Metric): - continue - - if isinstance(node, (RevivedLayer, RevivedInputLayer)): - layers_revived_from_saved_model.append(node) - else: - layers_revived_from_config.append(node) - - _finalize_saved_model_layers(layers_revived_from_saved_model) - _finalize_config_layers(layers_revived_from_config) - - # Initialize graph networks, now that layer dependencies have been - # resolved. - self._reconstruct_all_models() - - def _unblock_model_reconstruction(self, layer_id, layer): - """Removes layer from blocking model reconstruction.""" - for model_id, v in self.model_layer_dependencies.items(): - _, layers = v - if layer_id not in layers: - continue - layers[layers.index(layer_id)] = layer - if all(isinstance(x, base_layer.Layer) for x in layers): - self._models_to_reconstruct.append(model_id) - - def _reconstruct_all_models(self): - """Reconstructs the network structure of all models.""" - all_initialized_models = set() - while self._models_to_reconstruct: - model_id = self._models_to_reconstruct.pop(0) - all_initialized_models.add(model_id) - model, layers = self.model_layer_dependencies[model_id] - self._reconstruct_model(model_id, model, layers) - _finalize_config_layers([model]) - - if all_initialized_models != set(self.model_layer_dependencies.keys()): - # This should not happen. - uninitialized_model_ids = ( - set(self.model_layer_dependencies.keys()) - - all_initialized_models - ) - uninitialized_model_names = [ - self.model_layer_dependencies[model_id][0].name - for model_id in uninitialized_model_ids - ] - raise ValueError( - "Error loading model(s) in the SavedModel format. " - "The following model(s) could not be initialized: " - f"{uninitialized_model_names}" - ) - - def _reconstruct_model(self, model_id, model, layers): - """Reconstructs the network structure.""" - config = json_utils.decode(self._metadata[model_id].metadata)["config"] - - # Set up model inputs - if model.inputs: - # Inputs may already be created if the model is instantiated in - # another object's __init__. - pass - elif isinstance(model, models_lib.Sequential): - if not layers or not isinstance(layers[0], input_layer.InputLayer): - if config["layers"][0]["class_name"] == "InputLayer": - layers.insert( - 0, - input_layer.InputLayer.from_config( - config["layers"][0]["config"] - ), - ) - elif "batch_input_shape" in config["layers"][0]["config"]: - batch_input_shape = config["layers"][0]["config"][ - "batch_input_shape" - ] - layers.insert( - 0, - input_layer.InputLayer( - input_shape=batch_input_shape[1:], - batch_size=batch_input_shape[0], - dtype=layers[0].dtype, - name=layers[0].name + "_input", - ), - ) - model.__init__(layers, name=config["name"]) - if not model.inputs: - first_layer = self._get_child_layer_node_ids(model_id)[0] - input_specs = self._infer_inputs(first_layer) - input_shapes = self._infer_inputs( - first_layer, convert_to_shapes=True - ) - model._set_inputs(input_specs) - if not model.built and not isinstance(input_specs, dict): - model.build(input_shapes) - else: # Reconstruct functional model - ( - inputs, - outputs, - created_layers, - ) = functional_lib.reconstruct_from_config( - config, created_layers={layer.name: layer for layer in layers} - ) - model.__init__(inputs, outputs, name=config["name"]) - functional_lib.connect_ancillary_layers(model, created_layers) - - # Set model dtype. - _set_network_attributes_from_metadata(model) - - # Unblock models that are dependent on this model. - self._unblock_model_reconstruction(model_id, model) - - def _get_child_layer_node_ids(self, node_id): - """Returns the node ids of each layer in a Sequential/Functional - model.""" - # Sequential and Functional track layers with names following the format - # "layer-N". Use this to generate the list of layers. - num_layers = 0 - child_layers = {} - pattern = re.compile("layer-(\\d+)") - - for child in self._proto.nodes[node_id].children: - m = pattern.match(child.local_name) - if m is None: - continue - layer_n = int(m.group(1)) - num_layers = max(layer_n + 1, num_layers) - child_layers[layer_n] = child.node_id - - ordered = [] - for n in range(num_layers): - child = child_layers.get(n) - if child is None: - break - ordered.append(child) - return ordered - - def _search_for_child_node(self, parent_id, path_to_child): - """Returns node id of child node. - - A helper method for traversing the object graph proto. - - As an example, say that the object graph proto in the SavedModel - contains an object with the following child and grandchild attributes: - - `parent.child_a.child_b` - - This method can be used to retrieve the node id of `child_b` using the - parent's node id by calling: - - `_search_for_child_node(parent_id, ['child_a', 'child_b'])`. - - Args: - parent_id: node id of parent node - path_to_child: list of children names. - - Returns: - node_id of child, or None if child isn't found. - """ - if not path_to_child: - return parent_id - - for child in self._proto.nodes[parent_id].children: - if child.local_name == path_to_child[0]: - return self._search_for_child_node( - child.node_id, path_to_child[1:] - ) - return None - - def _infer_inputs(self, layer_node_id, convert_to_shapes=False): - """Infers input shape of layer from SavedModel functions.""" - call_fn_id = self._search_for_child_node( - layer_node_id, ["call_and_return_all_conditional_losses"] - ) - if call_fn_id is None: - return None - - concrete_functions = self._proto.nodes[ - call_fn_id - ].function.concrete_functions - if not concrete_functions: - return None - call_fn_name = concrete_functions[0] - call_fn_proto = self._proto.concrete_functions[call_fn_name] - structured_input_signature = tf.__internal__.saved_model.decode_proto( - call_fn_proto.canonicalized_input_signature - ) - inputs = structured_input_signature[0][0] - if convert_to_shapes: - return tf.nest.map_structure(lambda spec: spec.shape, inputs) - else: - return inputs - - def _config_node_setter(self, setter): - """Creates edges for nodes that are recreated from config.""" - - def setattr_wrapper(obj, name, value): - # Avoid overwriting attributes of objects recreated from the config. - if obj._lookup_dependency(name) is None: - setter(obj, name, value) - - return setattr_wrapper - - -def _finalize_saved_model_layers(layers): - """Runs the final steps of loading Keras Layers from SavedModel.""" - - # 1. Set up call functions for all layers initialized from the SavedModel ( - # and not the config) - for layer in layers: - layer.built = True - layer_call = getattr( - _get_keras_attr(layer), "call_and_return_conditional_losses", None - ) - if layer_call and layer_call.concrete_functions: - call_spec = layer_utils.CallFunctionSpec( - tf_inspect.getfullargspec(layer_call) - ) - layer.call = utils.use_wrapped_call( - layer, layer_call, call_spec, return_method=True - ) - expects_training_arg = layer._serialized_attributes["metadata"][ - "expects_training_arg" - ] - if "training" in layer_call.function_spec.arg_names: - # This could change the value of `expects_training_arg` if this - # layer doesn't expect a training arg, but has a child layer - # that does. - expects_training_arg = True - layer._init_call_fn_args(expects_training_arg) - else: - layer.call = types.MethodType( - _unable_to_call_layer_due_to_serialization_issue, layer - ) - - for layer in layers: - # 2. Set model inputs and outputs. - if isinstance(layer, RevivedNetwork): - _set_network_attributes_from_metadata(layer) - - if hasattr( - _get_keras_attr(layer), "call_and_return_conditional_losses" - ): - call_fn = _get_keras_attr( - layer - ).call_and_return_conditional_losses - if not call_fn.concrete_functions: - continue - if call_fn.input_signature is None: - args, kwargs = infer_inputs_from_restored_call_function( - call_fn - ) - args = list(args) - inputs = args.pop(0) - else: - args = call_fn.input_signature - args = list(args) - inputs = args.pop(0) - kwargs = None - layer._set_save_spec(inputs, args, kwargs) - - # V1 models require calling _set_inputs to set the `.inputs` - # attr. Skip this step when there are multiple tensor inputs - # (this behavior is not well supported in V1 models). - if not any( - isinstance(x, tf.TensorSpec) - for x in tf.nest.flatten([args, kwargs]) - ): - layer._set_inputs(inputs) - - # 3. Add losses that aren't generated by the layer.call function. - _restore_layer_unconditional_losses(layer) - _restore_layer_activation_loss(layer) - - # 4. Restore metrics list - _restore_layer_metrics(layer) - - -def _unable_to_call_layer_due_to_serialization_issue( - layer, *unused_args, **unused_kwargs -): - """Replaces the `layer.call` if the layer was not fully serialized. - - Keras Model/Layer serialization is relatively relaxed because SavedModels - are not always loaded back as keras models. Thus, when there is an issue - tracing a non-signature function, a warning is logged instead of raising an - error. This results in a SavedModel where the model's call function is - saved, but the internal layer call functions are not. - - When deserialized with `tf.keras.models.load_model`, the internal layers - which do not have serialized call functions should raise an error when - called. - - Args: - layer: Layer without the serialized call function. - - Raises: - ValueError - """ - - raise ValueError( - f"Cannot call custom layer {layer.name} of type {type(layer)}, because " - "the call function was not serialized to the SavedModel." - "Please try one of the following methods to fix this issue:" - "\n\n(1) Implement `get_config` and `from_config` in the layer/model " - "class, and pass the object to the `custom_objects` argument when " - "loading the model. For more details, see: " - "https://www.tensorflow.org/guide/keras/save_and_serialize" - "\n\n(2) Ensure that the subclassed model or layer overwrites `call` " - "and not `__call__`. The input shape and dtype will be automatically " - "recorded when the object is called, and used when saving. To manually " - "specify the input shape/dtype, decorate the call function with " - "`@tf.function(input_signature=...)`." - ) - - -def _finalize_config_layers(layers): - """Runs the final steps of loading Keras Layers from config.""" - for layer in layers: - # It is assumed that layers define their unconditional losses after - # being recreated from the config and built. The exceptions to this are - # Functional and Sequential models, which only store conditional losses - # (losses dependent on the inputs) in the config. Unconditional losses - # like weight regularization must be revived from the SavedModel. - if _is_graph_network(layer): - _restore_layer_unconditional_losses(layer) - - # Some layers, like Dense, record their activation loss function in the - # config. However, not all layers do this, so the activation loss may be - # missing when restored from the config/hdf5. - # TODO(kathywu): Investigate ways to improve the config to ensure - # consistent loading behavior between HDF5 and SavedModel. - _restore_layer_activation_loss(layer) - - # Restore metrics list. - _restore_layer_metrics(layer) - - # Restore RNN layer states. - if ( - isinstance(layer, base_rnn.RNN) - and layer.stateful - and hasattr(_get_keras_attr(layer), "states") - ): - layer.states = getattr(_get_keras_attr(layer), "states", None) - for variable in tf.nest.flatten(layer.states): - backend.track_variable(variable) - - # Perform any layer defined finalization of the layer state. - layer.finalize_state() - - -def _finalize_metric(metric): - metric.update_state = types.MethodType( - metrics_utils.update_state_wrapper(metric.keras_api.update_state), - metric, - ) - metric.result = metric.keras_api.result - - -def _restore_layer_unconditional_losses(layer): - """Restore unconditional losses from SavedModel.""" - if hasattr(_get_keras_attr(layer), "layer_regularization_losses"): - losses = getattr( - _get_keras_attr(layer), "layer_regularization_losses", [] - ) - else: - # Some earlier SavedModels may not have layer_regularization_losses - # serialized separately. Fall back to using the regularization_losses - # list if it does not exist. - losses = layer._serialized_attributes.get("regularization_losses", []) - for loss in losses: - layer.add_loss(loss) - - -def _restore_layer_activation_loss(layer): - """Restore actiation loss from SavedModel.""" - # Use wrapped activity regularizer function if the layer's activity - # regularizer wasn't created during initialization. - activity_regularizer = getattr( - _get_keras_attr(layer), "activity_regularizer_fn", None - ) - if activity_regularizer and not layer.activity_regularizer: - try: - layer.activity_regularizer = activity_regularizer - except AttributeError: - # This may happen if a layer wrapper is saved with an activity - # regularizer. The wrapper object's activity regularizer is - # unsettable. - pass - - -def revive_custom_object(identifier, metadata): - """Revives object from SavedModel.""" - if tf.compat.v1.executing_eagerly_outside_functions(): - model_class = training_lib.Model - else: - model_class = training_lib_v1.Model - - revived_classes = { - constants.INPUT_LAYER_IDENTIFIER: ( - RevivedInputLayer, - input_layer.InputLayer, - ), - constants.LAYER_IDENTIFIER: (RevivedLayer, base_layer.Layer), - constants.MODEL_IDENTIFIER: (RevivedNetwork, model_class), - constants.NETWORK_IDENTIFIER: ( - RevivedNetwork, - functional_lib.Functional, - ), - constants.SEQUENTIAL_IDENTIFIER: ( - RevivedNetwork, - models_lib.Sequential, - ), - } - parent_classes = revived_classes.get(identifier, None) - - class_name = tf.compat.as_str(metadata["class_name"]) - if parent_classes is not None: - parent_classes = revived_classes[identifier] - revived_cls = type(class_name, parent_classes, {}) - return revived_cls._init_from_metadata(metadata) - else: - raise ValueError( - f'Unable to restore custom object of class "{class_name}" ' - f"(type {identifier}). Please make sure that this class is " - "included in the `custom_objects` arg when calling `load_model()`. " - "Also, check that the class implements `get_config` and " - f"`from_config`.\n\nComplete metadata: {metadata}" - ) - - -def _restore_layer_metrics(layer): - metrics_list = getattr(_get_keras_attr(layer), "layer_metrics", {}) - layer_metrics = {m.name: m for m in layer._metrics} - for name, metric in metrics_list.items(): - if name not in layer_metrics: - # Metrics may be added during initialization/building of custom - # layers. - layer._metrics.append(metric) - - -# TODO(kathywu): Centrally define keys and functions for both serialization and -# deserialization. -class RevivedLayer: - """Keras layer loaded from a SavedModel.""" - - @classmethod - def _init_from_metadata(cls, metadata): - """Create revived layer from metadata stored in the SavedModel proto.""" - init_args = dict(name=metadata["name"], trainable=metadata["trainable"]) - if metadata.get("dtype") is not None: - init_args["dtype"] = metadata["dtype"] - if metadata.get("batch_input_shape") is not None: - init_args["batch_input_shape"] = metadata["batch_input_shape"] - - revived_obj = cls(**init_args) - - with utils.no_automatic_dependency_tracking_scope(revived_obj): - - revived_obj._call_spec.expects_training_arg = metadata[ - "expects_training_arg" - ] - config = metadata.get("config") - if serialization.validate_config(config): - revived_obj._config = config - if metadata.get("input_spec") is not None: - revived_obj.input_spec = recursively_deserialize_keras_object( - metadata["input_spec"], - module_objects={"InputSpec": input_spec.InputSpec}, - ) - if metadata.get("activity_regularizer") is not None: - revived_obj.activity_regularizer = regularizers.deserialize( - metadata["activity_regularizer"] - ) - if metadata.get("_is_feature_layer") is not None: - revived_obj._is_feature_layer = metadata["_is_feature_layer"] - if metadata.get("stateful") is not None: - revived_obj.stateful = metadata["stateful"] - if metadata.get("autocast") is not None: - revived_obj._autocast = metadata["autocast"] - if metadata.get("preserve_input_structure_in_config") is not None: - revived_obj._preserve_input_structure_in_config = metadata[ - "preserve_input_structure_in_config" - ] - - return revived_obj, _revive_setter - - @property - def keras_api(self): - return self._serialized_attributes.get(constants.KERAS_ATTR, None) - - def get_config(self): - if hasattr(self, "_config"): - return self._config - else: - raise NotImplementedError - - -def _revive_setter(layer, name, value): - """Setter function that saves some attributes to separate dictionary.""" - # Many attributes in the SavedModel conflict with properties defined in - # Layer and Model. Save these attributes to a separate dictionary. - if name in PUBLIC_ATTRIBUTES: - - if isinstance(value, tf.__internal__.tracking.Trackable): - layer._track_trackable(value, name=name) - layer._serialized_attributes[name] = value - - elif ( - isinstance(layer, functional_lib.Functional) - and re.match(r"^layer(_with_weights)?-[\d+]", name) is not None - ): - # Edges named "layer-n" or "layer_with_weights-n", which are tracked in - # network._track_layers, should not be added as an attribute. They - # should be temporarily added as a dependency so that checkpointed - # values can be restored. These dependencies are manually deleted in - # KerasObjectLoader.del_tracking. - - # Set `overwrite=True` in the case that `layer` already tracks a - # different layer-n. This may cause variable values to not be loaded - # properly in the original layer-n, but we already warn the users about - # this (ctrl-f "shared between different layers/models"). - layer._track_trackable(value, name, overwrite=True) - elif getattr(layer, name, None) is not None: - # Don't overwrite already defined attributes. - pass - else: - setattr(layer, name, value) - - -class RevivedInputLayer: - """InputLayer loaded from a SavedModel.""" - - @classmethod - def _init_from_metadata(cls, metadata): - """Revives the saved InputLayer from the Metadata.""" - init_args = dict( - name=metadata["name"], - dtype=metadata["dtype"], - sparse=metadata["sparse"], - ragged=metadata["ragged"], - batch_input_shape=metadata["batch_input_shape"], - ) - revived_obj = cls(**init_args) - with utils.no_automatic_dependency_tracking_scope(revived_obj): - revived_obj._config = metadata["config"] - - return revived_obj, setattr - - def get_config(self): - return self._config - - -def recursively_deserialize_keras_object(config, module_objects=None): - """Deserialize Keras object from a nested structure.""" - if isinstance(config, dict): - if "class_name" in config: - return serialization.deserialize_keras_object( - config, module_objects=module_objects - ) - else: - return { - key: recursively_deserialize_keras_object( - config[key], module_objects - ) - for key in config - } - elif isinstance(config, (tuple, list)): - return [ - recursively_deserialize_keras_object(x, module_objects) - for x in config - ] - else: - raise ValueError( - "Unable to decode Keras layer config. Config should be a " - f"dictionary, tuple or list. Received: config={config}" - ) - - -def infer_inputs_from_restored_call_function(fn): - """Returns TypeSpec of inputs from a restored call function. - - Args: - fn: Restored layer call function. It is assumed that `fn` has at least one - concrete function and that the inputs are in the first argument. - - Returns: - TypeSpec of call function inputs in the form of (args, kwargs) - """ - - def common_spec(x, y): - if not isinstance(x, tf.TypeSpec): - # Doesn't particularly matter what is returned in this case because - # the result will be filtered out in _set_input_shape. - return x - - result = x._without_tensor_names().most_specific_common_supertype( - [y._without_tensor_names()] - ) - if result is None: - # Please file a bug if you are being hindered by this error. - raise TypeError(f"No common supertype of {x} and {y}.") - return result - - spec = fn.concrete_functions[0].structured_input_signature - for concrete in fn.concrete_functions[1:]: - spec2 = concrete.structured_input_signature - spec = tf.nest.map_structure(common_spec, spec, spec2) - return spec - - -class RevivedNetwork(RevivedLayer): - """Keras network of layers loaded from a SavedModel.""" - - @classmethod - def _init_from_metadata(cls, metadata): - """Create revived network from metadata stored in the SavedModel - proto.""" - revived_obj = cls(name=metadata["name"]) - - # Store attributes revived from SerializedAttributes in a un-tracked - # dictionary. The attributes are the ones listed in CommonEndpoints or - # "keras_api" for keras-specific attributes. - with utils.no_automatic_dependency_tracking_scope(revived_obj): - - revived_obj._call_spec.expects_training_arg = metadata[ - "expects_training_arg" - ] - config = metadata.get("config") - if serialization.validate_config(config): - revived_obj._config = config - - if metadata.get("activity_regularizer") is not None: - revived_obj.activity_regularizer = regularizers.deserialize( - metadata["activity_regularizer"] - ) - if metadata.get("autocast") is not None: - revived_obj._autocast = metadata["autocast"] - - return revived_obj, _revive_setter - - -def _set_network_attributes_from_metadata(revived_obj): - """Sets attributes recorded in the metadata.""" - with utils.no_automatic_dependency_tracking_scope(revived_obj): - - metadata = revived_obj._serialized_attributes["metadata"] - if metadata.get("dtype") is not None: - revived_obj._set_dtype_policy(metadata["dtype"]) - revived_obj._trainable = metadata["trainable"] - - -def _maybe_add_serialized_attributes(layer, metadata): - # Store attributes revived from SerializedAttributes in a un-tracked - # dictionary. The attributes are the ones listed in CommonEndpoints or - # "keras_api" for keras-specific attributes. - if not hasattr(layer, "_serialized_attributes"): - with utils.no_automatic_dependency_tracking_scope(layer): - layer._serialized_attributes = {"metadata": metadata} - - -def _get_keras_attr(layer): - return getattr(layer, "_serialized_attributes", {}).get( - constants.KERAS_ATTR, None - ) diff --git a/keras/saving/legacy/saved_model/load_context.py b/keras/saving/legacy/saved_model/load_context.py deleted file mode 100644 index 7e4d1d1b74e..00000000000 --- a/keras/saving/legacy/saved_model/load_context.py +++ /dev/null @@ -1,68 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Context for storing options for loading a SavedModel.""" - -import contextlib -import threading - -import tensorflow.compat.v2 as tf - - -class LoadContext(threading.local): - """A context for loading a model.""" - - def __init__(self): - super().__init__() - self._entered_load_context = [] - self._load_options = None - - def set_load_options(self, load_options): - self._load_options = load_options - self._entered_load_context.append(True) - - def clear_load_options(self): - self._load_options = None - self._entered_load_context.pop() - - def load_options(self): - return self._load_options - - def in_load_context(self): - return self._entered_load_context - - -_load_context = LoadContext() - - -@contextlib.contextmanager -def load_context(load_options): - _load_context.set_load_options(load_options) - try: - yield - finally: - _load_context.clear_load_options() - - -def get_load_options(): - """Returns the load options under a load context.""" - return _load_context.load_options() - - -def in_load_context(): - """Returns whether under a load context.""" - return _load_context.in_load_context() - - -tf.__internal__.register_load_context_function(in_load_context) diff --git a/keras/saving/legacy/saved_model/metric_serialization.py b/keras/saving/legacy/saved_model/metric_serialization.py deleted file mode 100644 index 4d032ca28ca..00000000000 --- a/keras/saving/legacy/saved_model/metric_serialization.py +++ /dev/null @@ -1,47 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Classes and functions implementing Metrics SavedModel serialization.""" - -import tensorflow.compat.v2 as tf - -from keras.saving import object_registration -from keras.saving.legacy.saved_model import constants -from keras.saving.legacy.saved_model import layer_serialization - - -class MetricSavedModelSaver(layer_serialization.LayerSavedModelSaver): - """Metric serialization.""" - - @property - def object_identifier(self): - return constants.METRIC_IDENTIFIER - - def _python_properties_internal(self): - metadata = dict( - class_name=object_registration.get_registered_name(type(self.obj)), - name=self.obj.name, - dtype=self.obj.dtype, - ) - metadata.update(layer_serialization.get_serialized(self.obj)) - if self.obj._build_input_shape is not None: - metadata["build_input_shape"] = self.obj._build_input_shape - return metadata - - def _get_serialized_attributes_internal(self, unused_serialization_cache): - return ( - dict(variables=tf.__internal__.tracking.wrap(self.obj.variables)), - # TODO(b/135550038): save functions to enable saving custom metrics. - {}, - ) diff --git a/keras/saving/legacy/saved_model/model_serialization.py b/keras/saving/legacy/saved_model/model_serialization.py deleted file mode 100644 index 991b92d9235..00000000000 --- a/keras/saving/legacy/saved_model/model_serialization.py +++ /dev/null @@ -1,67 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Classes and functions implementing to Model SavedModel serialization.""" - -from keras.saving.legacy import saving_utils -from keras.saving.legacy.saved_model import constants -from keras.saving.legacy.saved_model import layer_serialization -from keras.saving.legacy.saved_model import save_impl - - -class ModelSavedModelSaver(layer_serialization.LayerSavedModelSaver): - """Model SavedModel serialization.""" - - @property - def object_identifier(self): - return constants.MODEL_IDENTIFIER - - def _python_properties_internal(self): - metadata = super()._python_properties_internal() - # Network stateful property is dependent on the child layers. - metadata.pop("stateful") - metadata["is_graph_network"] = self.obj._is_graph_network - spec = self.obj.save_spec(dynamic_batch=False) - metadata["full_save_spec"] = spec - # save_spec is saved for forward compatibility on older TF versions. - metadata["save_spec"] = None if spec is None else spec[0][0] - - metadata.update( - saving_utils.model_metadata( - self.obj, include_optimizer=True, require_config=False - ) - ) - return metadata - - def _get_serialized_attributes_internal(self, serialization_cache): - default_signature = None - - # Create a default signature function if this is the only object in the - # cache (i.e. this is the root level object). - if len(serialization_cache[constants.KERAS_CACHE_KEY]) == 1: - default_signature = save_impl.default_save_signature(self.obj) - - # Other than the default signature function, all other attributes match - # with the ones serialized by Layer. - objects, functions = super()._get_serialized_attributes_internal( - serialization_cache - ) - functions["_default_save_signature"] = default_signature - return objects, functions - - -class SequentialSavedModelSaver(ModelSavedModelSaver): - @property - def object_identifier(self): - return constants.SEQUENTIAL_IDENTIFIER diff --git a/keras/saving/legacy/saved_model/network_serialization.py b/keras/saving/legacy/saved_model/network_serialization.py deleted file mode 100644 index dfc2ba33531..00000000000 --- a/keras/saving/legacy/saved_model/network_serialization.py +++ /dev/null @@ -1,27 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Classes and functions implementing to Network SavedModel serialization.""" - -from keras.saving.legacy.saved_model import constants -from keras.saving.legacy.saved_model import model_serialization - - -# FunctionalModel serialization is pretty much the same as Model serialization. -class NetworkSavedModelSaver(model_serialization.ModelSavedModelSaver): - """Network serialization.""" - - @property - def object_identifier(self): - return constants.NETWORK_IDENTIFIER diff --git a/keras/saving/legacy/saved_model/order_preserving_set.py b/keras/saving/legacy/saved_model/order_preserving_set.py deleted file mode 100644 index f2479381534..00000000000 --- a/keras/saving/legacy/saved_model/order_preserving_set.py +++ /dev/null @@ -1,93 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""A set based on dict so that it preserves key insertion order. - -Python Dicts are order-preserving since 3.6 -(https://mail.python.org/pipermail/python-dev/2017-December/151283.html), -but sets are not. This class implements a set on top of a dict so that we get -deterministic iteration order across runs. -""" - -import collections.abc - - -class OrderPreservingSet(collections.abc.MutableSet): - """A set based on dict so that it preserves key insertion order.""" - - def __init__(self, iterable=None): - self._dict = {item: None for item in (iterable or [])} - - # abstract from collections.MutableSet - def __len__(self): - return len(self._dict) - - # abstract from collections.MutableSet - def __contains__(self, value): - return value in self._dict - - # override from collections.MutableSet - def __iter__(self): - return iter(self._dict) - - # abstract from collections.MutableSet - def add(self, item): - self._dict[item] = None - - # abstract from collections.MutableSet - def discard(self, value): - del self._dict[value] - - # override from collections.MutableSet - def clear(self): - self._dict = {} - - # override from collections.Set - def __eq__(self, other): - if not isinstance(other, OrderPreservingSet): - return NotImplemented - return self._dict.keys() == other._dict.keys() - - # override from collections.Set - def __le__(self, other): - if not isinstance(other, OrderPreservingSet): - return NotImplemented - return self._dict.keys() <= other._dict.keys() - - # override from collections.Set - def __ge__(self, other): - if not isinstance(other, OrderPreservingSet): - return NotImplemented - return self._dict.keys() >= other._dict.keys() - - # override from collections.Set - def __and__(self, other): - # collections.Set defaults to the ordering in other, we want to use self - return self._from_iterable(value for value in self if value in other) - - # override from collections.Set - def __or__(self, other): - # ensure that other is ordered before performing __or__ - if not isinstance(other, OrderPreservingSet): - raise TypeError( - "cannot union an 'OrderPreservingSet' with an " - "unordered iterable." - ) - result = self._from_iterable(value for value in self) - for value in other: - result._dict[value] = None - return result - - def union(self, other): - return self | other diff --git a/keras/saving/legacy/saved_model/revive_test.py b/keras/saving/legacy/saved_model/revive_test.py deleted file mode 100644 index 4a134fc82fd..00000000000 --- a/keras/saving/legacy/saved_model/revive_test.py +++ /dev/null @@ -1,458 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Tests reviving models from config and SavedModel. - -These tests ensure that a model revived from a combination of config and -SavedModel have the expected structure. -""" - -# TODO(kathywu): Move relevant tests from saved_model_test to -import shutil - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import backend -from keras.saving.legacy.saved_model import load as keras_load -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import CustomObjectScope - - -class SubclassedModelNoConfig(keras.Model): - def __init__(self, a, b): - super().__init__() - - self.a = a - self.b = b - self.shared = CustomLayerNoConfig(a, b) - self.all_layers = [] - - def build(self, input_shape): - self.all_layers.extend( - [ - self.shared, - CustomLayerWithConfig(self.a + 1, self.b + 2), - CustomLayerNoConfig(self.a + 3, self.b + 4), - keras.Sequential( - [ - # TODO(b/145029112): Bug with losses when there are - # shared layers. self.shared, <-- Enable when bug is - # fixed. - CustomLayerNoConfig(self.a + 5, self.b + 6) - ] - ), - ] - ) - super().build(input_shape) - - def call(self, inputs): - x = inputs - for layer in self.all_layers: - x = layer(x) - return x - - -class SparseDense(keras.layers.Dense): - def call(self, inputs): - input_shape = tf.stack( - (tf.reduce_prod(tf.shape(inputs)[:-1]), self.kernel.shape[0]) - ) - output_shape = tf.concat( - (tf.shape(inputs)[:-1], [self.kernel.shape[1]]), -1 - ) - x = tf.sparse.reshape(inputs, input_shape) - return tf.reshape( - self.activation( - tf.sparse.sparse_dense_matmul(x, self.kernel) + self.bias - ), - output_shape, - ) - - -class SubclassedSparseModelNoConfig(keras.Model): - def __init__(self, a, b): - super().__init__() - self.a = a - self.shared = CustomLayerNoConfig(a, b) - self.all_layers = [SparseDense(4)] - - def call(self, inputs): - x = inputs - for layer in self.all_layers: - x = layer(x) - return self.shared(x + self.a) - - -class SubclassedModelWithConfig(SubclassedModelNoConfig): - def get_config(self): - return {"a": self.a, "b": self.b} - - @classmethod - def from_config(cls, config): - return cls(**config) - - -class CustomLayerNoConfig(keras.layers.Layer): - def __init__(self, a, b, name=None): - super().__init__(name=name) - self.a = tf.Variable(a, name="a") - self.b = b - - def a_regularizer(): - return self.a * 2 - - self.add_loss(a_regularizer) - self.sum_metric = keras.metrics.Sum(name="inputs_sum") - self.unused_metric = keras.metrics.Sum(name="not_added_to_metrics") - - def build(self, input_shape): - self.c = tf.Variable( - tf.constant(1.0, shape=input_shape[1:]), name=self.name + "_c" - ) - - def call(self, inputs): - self.add_loss(tf.reduce_sum(inputs)) - self.add_metric(self.sum_metric(inputs)) - self.add_metric(inputs, aggregation="mean", name="mean") - - return inputs + self.c - - -class CustomLayerWithConfig(CustomLayerNoConfig): - def get_config(self): - return {"a": backend.get_value(self.a), "b": self.b, "name": self.name} - - -class CustomNetworkDefaultConfig(keras.Model): - def __init__(self, num_classes, name=None): - inputs = keras.Input((2, 3), name="inputs") - x = keras.layers.Flatten(name="flatten")(inputs) - y = keras.layers.Dense(num_classes, name="outputs")(x) - super().__init__(inputs, y, name=name) - - -class CustomNetworkWithConfig(CustomNetworkDefaultConfig): - def __init__(self, num_classes, name=None): - super().__init__(num_classes, name=name) - self._config_dict = dict(num_classes=num_classes) - - def get_config(self): - return self._config_dict - - @classmethod - def from_config(cls, config): - return cls(config["num_classes"], name=config.get("name")) - - -class CustomNetworkWithConfigName(CustomNetworkWithConfig): - def __init__(self, num_classes, name=None): - super().__init__(num_classes, name=name) - self._config_dict["name"] = self.name - - -class UnregisteredCustomSequentialModel(keras.Sequential): - # This class is *not* registered in the CustomObjectScope. - - def __init__(self, **kwargs): - super().__init__(**kwargs) - self.add(keras.layers.InputLayer(input_shape=(2, 3))) - - -class FunctionalSubclassModel(keras.Model): - def __init__(self, units): - self.units = units - my_input = keras.Input(shape=(2, 3), name="inputs") - dense = keras.layers.Dense(self.units, activation="relu", name="dense") - output = dense(my_input) - outputs = {"output": output} - super().__init__(inputs=[my_input], outputs=outputs) - - def get_config(self): - return {"units": self.units} - - -class FunctionalSubclassModelWrongConfig(FunctionalSubclassModel): - def get_config(self): - return {} - - -# The WideDeepModel, whose name conflicts with a Keras built-in model, is -# registered in these tests. -class WideDeepModel(SubclassedModelWithConfig): - pass - - -class ReviveTestBase(test_combinations.TestCase): - def setUp(self): - super().setUp() - self.path = self.get_temp_dir() - self.addCleanup(shutil.rmtree, self.path, ignore_errors=True) - - def _assert_revived_correctness(self, model, revived): - self.assertAllEqual(model.input_names, revived.input_names) - self.assertAllEqual(model.output_names, revived.output_names) - if model.inputs is not None: - self.assertTrue( - all( - [ - i.shape.as_list() == r.shape.as_list() - and i.dtype == r.dtype - for (i, r) in zip(model.inputs, revived.inputs) - ] - ) - ) - self.assertTrue( - all( - [ - i.shape.as_list() == r.shape.as_list() - and i.dtype == r.dtype - for (i, r) in zip(model.outputs, revived.outputs) - ] - ) - ) - - self.assertAllClose( - self.evaluate(model.weights), self.evaluate(revived.weights) - ) - input_arr = tf.constant(np.random.random((2, 2, 3)).astype(np.float32)) - if isinstance(revived.save_spec()[0][0], tf.SparseTensorSpec): - input_arr = tf.sparse.from_dense(input_arr) - - self.assertAllClose(model(input_arr), revived(input_arr)) - self.assertAllClose(sum(model.losses), sum(revived.losses)) - self.assertAllClose(len(model.losses), len(revived.losses)) - self.assertEqual(len(model.metrics), len(revived.metrics)) - # TODO(b/150403085): Investigate why the metric order changes when - # running this test in tf-nightly. - self.assertAllClose( - sorted([m.result() for m in model.metrics]), - sorted([m.result() for m in revived.metrics]), - ) - model_layers = {layer.name: layer for layer in model.layers} - revived_layers = {layer.name: layer for layer in revived.layers} - self.assertAllEqual(model_layers.keys(), revived_layers.keys()) - - for name in model_layers: - model_layer = model_layers[name] - revived_layer = revived_layers[name] - self.assertEqual(model_layer.name, revived_layer.name) - self.assertEqual(model_layer.dtype, revived_layer.dtype) - self.assertEqual(model_layer.trainable, revived_layer.trainable) - if "WithConfig" in type(model_layer).__name__: - self.assertEqual(type(model_layer), type(revived_layer)) - else: - # When loading layers from SavedModel, a new class is - # dynamically created with the same name. - self.assertEqual( - type(model_layer).__name__, type(revived_layer).__name__ - ) - - -# These tests take a while to run, so each should run in a separate shard -# (putting them in the same TestCase resolves this). -class TestBigModelRevive(ReviveTestBase): - @test_combinations.run_with_all_model_types - def test_revive(self): - input_shape = None - if test_utils.get_model_type() == "functional": - input_shape = (2, 3) - - layer_with_config = CustomLayerWithConfig(1.0, 2) - layer_without_config = CustomLayerNoConfig(3.0, 4) - subclassed_with_config = SubclassedModelWithConfig(4.0, 6.0) - subclassed_without_config = SubclassedModelNoConfig(7.0, 8.0) - - inputs = keras.Input((2, 3)) - x = CustomLayerWithConfig(1.0, 2)(inputs) - x = CustomLayerNoConfig(3.0, 4)(x) - x = SubclassedModelWithConfig(4.0, 6.0)(x) - x = SubclassedModelNoConfig(7.0, 8.0)(x) - inner_model_functional = keras.Model(inputs, x) - - inner_model_sequential = keras.Sequential( - [ - CustomLayerWithConfig(1.0, 2), - CustomLayerNoConfig(3.0, 4), - SubclassedModelWithConfig(4.0, 6.0), - SubclassedModelNoConfig(7.0, 8.0), - ] - ) - - class SubclassedModel(keras.Model): - def __init__(self): - super().__init__() - self.all_layers = [ - CustomLayerWithConfig(1.0, 2), - CustomLayerNoConfig(3.0, 4), - SubclassedModelWithConfig(4.0, 6.0), - SubclassedModelNoConfig(7.0, 8.0), - ] - - def call(self, inputs): - x = inputs - for layer in self.all_layers: - x = layer(x) - return x - - inner_model_subclassed = SubclassedModel() - - layers = [ - layer_with_config, - layer_without_config, - subclassed_with_config, - subclassed_without_config, - inner_model_functional, - inner_model_sequential, - inner_model_subclassed, - ] - model = test_utils.get_model_from_layers( - layers, input_shape=input_shape - ) - # Run data through the Model to create save spec and weights. - model.predict(np.ones((10, 2, 3)), batch_size=10) - - # Test that the correct checkpointed values are loaded, whether the - # layer is created from the config or SavedModel. - layer_with_config.c.assign(2 * layer_with_config.c) - layer_without_config.c.assign(3 * layer_without_config.c) - - model.save(self.path, save_format="tf") - revived = keras_load.load(self.path) - self._assert_revived_correctness(model, revived) - - -class TestModelRevive(ReviveTestBase): - def test_revive_subclassed_with_nested_model(self): - model = SubclassedModelNoConfig(1.0, 2.0) - # Run data through the Model to create save spec and weights. - model.predict(np.ones((10, 2, 3)), batch_size=10) - model.save(self.path, save_format="tf") - revived = keras_load.load(self.path) - self._assert_revived_correctness(model, revived) - - def test_revive_subclassed_with_sparse_model(self): - model = SubclassedSparseModelNoConfig(1.0, 2.0) - # Run data through the Model to create save spec and weights. - x = tf.sparse.from_dense(np.ones((10, 2, 3), dtype=np.float32)) - model.predict(x, batch_size=10) - model.save(self.path, save_format="tf") - revived = keras_load.load(self.path) - self._assert_revived_correctness(model, revived) - - def test_revive_unregistered_sequential(self): - model = UnregisteredCustomSequentialModel() - x = np.random.random((2, 2, 3)).astype(np.float32) - model(x) - model.save(self.path, save_format="tf") - revived = keras_load.load(self.path) - self._assert_revived_correctness(model, revived) - - def test_revive_sequential_inputs(self): - model = keras.models.Sequential( - [ - keras.Input((None,), dtype=tf.string), - keras.layers.Lambda(tf.strings.lower), - ] - ) - model.save(self.path, save_format="tf") - revived = keras_load.load(self.path) - revived_layers = list( - revived._flatten_layers(include_self=False, recursive=False) - ) - self.assertEqual(tf.string, revived_layers[0].dtype) - - @parameterized.named_parameters( - ("default_config", CustomNetworkDefaultConfig), - ("with_config", CustomNetworkWithConfig), - ("with_config_name", CustomNetworkWithConfigName), - ) - def test_revive_network(self, model_cls): - model = model_cls(8) - model.save(self.path, include_optimizer=False, save_format="tf") - revived = keras_load.load(self.path, compile=False) - self._assert_revived_correctness(model, revived) - - def test_functional_subclass(self): - model = FunctionalSubclassModel(32) - model.save(self.path, save_format="tf") - revived = keras_load.load(self.path, compile=False) - self._assert_revived_correctness(model, revived) - - def test_functional_subclass_wrong_config(self): - model = FunctionalSubclassModelWrongConfig(32) - model.save(self.path, save_format="tf") - with self.assertRaisesRegex(TypeError, "required positional arguments"): - keras_load.load(self.path, compile=False) - - def test_load_compiled_metrics(self): - model = test_utils.get_small_sequential_mlp(1, 3) - - # Compile with dense categorical accuracy - model.compile("rmsprop", "mse", "acc") - x = np.random.random((5, 10)).astype(np.float32) - y_true = np.random.random((5, 3)).astype(np.float32) - model.train_on_batch(x, y_true) - - model.save(self.path, include_optimizer=True, save_format="tf") - revived = keras_load.load(self.path, compile=True) - self.assertAllClose( - model.test_on_batch(x, y_true), revived.test_on_batch(x, y_true) - ) - - # Compile with sparse categorical accuracy - model.compile("rmsprop", "mse", "acc") - y_true = np.random.randint(0, 3, (5, 1)).astype(np.float32) - model.train_on_batch(x, y_true) - model.save(self.path, include_optimizer=True, save_format="tf") - revived = keras_load.load(self.path, compile=True) - self.assertAllClose( - model.test_on_batch(x, y_true), revived.test_on_batch(x, y_true) - ) - - def test_revived_model_has_save_spec(self): - model = SubclassedModelWithConfig(2, 3) - model.predict(np.random.random((5, 10)).astype(np.float32)) - model.save(self.path, save_format="tf") - revived = keras_load.load(self.path, compile=True) - self.assertAllEqual( - model._get_save_spec(dynamic_batch=False), - revived._get_save_spec(dynamic_batch=False), - ) - - def test_load_model_with_name_conflict_registered_works(self): - model = WideDeepModel(2, 3) - model(np.random.random((5, 10)).astype(np.float32)) - model.save(self.path, save_format="tf") - keras_load.load(self.path, compile=True) - - -if __name__ == "__main__": - tf.compat.v1.enable_eager_execution() - with CustomObjectScope( - { - "CustomLayerWithConfig": CustomLayerWithConfig, - "CustomNetworkWithConfig": CustomNetworkWithConfig, - "CustomNetworkWithConfigName": CustomNetworkWithConfigName, - "SubclassedModelWithConfig": SubclassedModelWithConfig, - "FunctionalSubclassModel": FunctionalSubclassModel, - "FunctionalSubclassModelWrongConfig": FunctionalSubclassModelWrongConfig, # noqa: E501 - "WideDeepModel": WideDeepModel, - } - ): - tf.test.main() diff --git a/keras/saving/legacy/saved_model/save.py b/keras/saving/legacy/saved_model/save.py deleted file mode 100644 index 601f4c089ab..00000000000 --- a/keras/saving/legacy/saved_model/save.py +++ /dev/null @@ -1,157 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras legacy SavedModel saving.""" - -import os - -import tensorflow.compat.v2 as tf -from absl import logging - -from keras import backend -from keras.protobuf import saved_metadata_pb2 -from keras.protobuf import versions_pb2 -from keras.saving.legacy import saving_utils -from keras.saving.legacy import serialization -from keras.saving.legacy.saved_model import constants -from keras.saving.legacy.saved_model import save_impl -from keras.saving.legacy.saved_model import utils -from keras.utils.generic_utils import LazyLoader -from keras.utils.io_utils import ask_to_proceed_with_overwrite - -# isort: off -from tensorflow.python.saved_model import save as save_lib - -# To avoid circular dependencies between keras/engine and keras/saving, -# code in keras/saving must delay imports. - -base_layer = LazyLoader("base_layer", globals(), "keras.engine.base_layer") -training_lib = LazyLoader("training_lib", globals(), "keras.engine.training") - - -def save( - model, - filepath, - overwrite, - include_optimizer, - signatures=None, - options=None, - save_traces=True, -): - """Saves a model as a SavedModel to the filepath. - - Args: - model: Keras model instance to be saved. - filepath: String path to save the model. - overwrite: whether to overwrite the existing filepath. - include_optimizer: If True, save the model's optimizer state. - signatures: Signatures to save with the SavedModel. Applicable to the 'tf' - format only. Please see the `signatures` argument in - `tf.saved_model.save` for details. - options: (only applies to SavedModel format) `tf.saved_model.SaveOptions` - object that specifies options for saving to SavedModel. - save_traces: (only applies to SavedModel format) When enabled, the - SavedModel will store the function traces for each layer. This - can be disabled, so that only the configs of each layer are stored. - Defaults to `True`. Disabling this will decrease serialization time - and reduce file size, but it requires that all custom layers/models - implement a `get_config()` method. - - Raises: - ValueError: if the model's inputs have not been defined. - """ - # If file exists and should not be overwritten. - if not overwrite and os.path.exists(filepath): - proceed = ask_to_proceed_with_overwrite(filepath) - if not proceed: - return - - if save_traces: - if save_impl.should_skip_serialization(model): - saving_utils.raise_model_input_error(model) - - if not include_optimizer: - orig_optimizer = model.optimizer - model.optimizer = None - # TODO(b/180760306) Change to del model.optimizer if Layer's __delattr__ - # calls AutoTrackable's __delattr__. - model._delete_tracking("optimizer") - - # Trace all functions and signatures with `training=0` instead of using an - # already-set learning phase placeholder. - # This is needed for compatibility reasons until learning phase setting - # is removed from the public apis. - with serialization.SharedObjectSavingScope(): - with backend.deprecated_internal_learning_phase_scope(0): - with utils.keras_option_scope(save_traces): - saved_nodes, node_paths = save_lib.save_and_return_nodes( - model, filepath, signatures, options - ) - - # Save all metadata to a separate file in the SavedModel directory. - metadata = generate_keras_metadata(saved_nodes, node_paths) - - with tf.io.gfile.GFile( - tf.io.gfile.join(filepath, constants.SAVED_METADATA_PATH), "wb" - ) as w: - w.write(metadata.SerializeToString(deterministic=True)) - - if not include_optimizer: - model.optimizer = orig_optimizer - - -def generate_keras_metadata(saved_nodes, node_paths): - """Constructs a KerasMetadata proto with the metadata of each object.""" - metadata = saved_metadata_pb2.SavedMetadata() - for node_id, node in enumerate(saved_nodes): - if isinstance(node, base_layer.Layer): - path = node_paths[node] - if not path: - node_path = "root" - else: - node_path = f"root.{'.'.join([ref.name for ref in path])}" - - metadata.nodes.add( - node_id=node_id, - node_path=node_path, - version=versions_pb2.VersionDef( - producer=2, min_consumer=1, bad_consumers=[] - ), - identifier=node._object_identifier, - metadata=node._tracking_metadata, - ) - - # Log warning if the node's class name conflicts with a Keras - # built-in object. - class_name = node.__class__.__name__ - from keras.layers import serialization as layers_serialization - - builtin_layer = layers_serialization.get_builtin_layer(class_name) - if builtin_layer: - if not isinstance(node, builtin_layer): - logging.warning( - "%s has the same name '%s' as a built-in Keras " - "object. Consider renaming %s to avoid naming " - "conflicts when loading with " - "`tf.keras.models.load_model`. " - "If renaming is not possible, pass " - "the object in the `custom_objects` " - "parameter of the load " - "function.", - node, - class_name, - node.__class__, - ) - - return metadata diff --git a/keras/saving/legacy/saved_model/save_impl.py b/keras/saving/legacy/saved_model/save_impl.py deleted file mode 100644 index a3e769c4761..00000000000 --- a/keras/saving/legacy/saved_model/save_impl.py +++ /dev/null @@ -1,781 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras SavedModel serialization. - -TODO (kathywu): Move to layer_serialization.py. Some model-specific logic should -go to model_serialization.py. -""" - -import functools -import threading -import weakref - -import tensorflow.compat.v1.logging as logging -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer_utils -from keras.engine import input_spec -from keras.mixed_precision import autocast_variable -from keras.saving.legacy import saving_utils -from keras.saving.legacy.saved_model import constants -from keras.saving.legacy.saved_model import load as keras_load -from keras.saving.legacy.saved_model import serialized_attributes -from keras.saving.legacy.saved_model import utils -from keras.utils import layer_utils -from keras.utils import tf_contextlib -from keras.utils import tf_utils -from keras.utils import version_utils -from keras.utils.generic_utils import LazyLoader - -# To avoid circular dependencies between keras/engine and keras/saving, -# code in keras/saving must delay imports. - -# TODO(b/134426265): Switch back to single-quotes to match the rest of the file -# once the issue with copybara is fixed. - -base_layer = LazyLoader("base_layer", globals(), "keras.engine.base_layer") -metrics = LazyLoader("metrics", globals(), "keras.metrics") -input_layer = LazyLoader("input_layer", globals(), "keras.engine.input_layer") -training_lib = LazyLoader("training_lib", globals(), "keras.engine.training") -sequential_lib = LazyLoader( - "sequential_lib", globals(), "keras.engine.sequential" -) - - -def should_skip_serialization(layer): - """Skip serializing extra objects and functions if layer inputs aren't - set.""" - saved_model_input_spec_set = ( - isinstance(layer, training_lib.Model) - and layer._saved_model_inputs_spec is not None - ) - if not layer.built and not saved_model_input_spec_set: - logging.warning( - "Skipping full serialization of Keras layer {}, because " - "it is not built.".format(layer) - ) - return True - return False - - -def _filter_shards(variables): - return [var for var in variables if not hasattr(var, "_sharded_container")] - - -def wrap_layer_objects(layer, serialization_cache): - """Returns extra trackable objects to attach to the serialized layer. - - Args: - layer: Keras Layer object. - serialization_cache: Dictionary shared between all objects during - serialization. - - Returns: - A dictionary containing all checkpointable objects from a - SerializedAttributes object. See LayerAttributes and ModelAttributes for - entire list of objects - """ - # Wrap all regularization losses as tf.functions. - # First, generate list of all regularization losses in this layer and - # sublayers. - all_losses = layer._callable_losses[:] - for child_layer in utils.list_all_layers(layer): - all_losses.extend(child_layer._callable_losses) - # Next, wrap all loss functions as tf.functions. Use the serialization cache - # to store already-wrapped functions. - keras_loss_cache = serialization_cache.setdefault("keras_losses", {}) - wrapped_loss_functions = [] - for loss_fn in all_losses: - if loss_fn in keras_loss_cache: - wrapped_loss_functions.append(keras_loss_cache[loss_fn]) - else: - wrapped_loss = _wrap_unconditional_loss( - loss_fn, len(keras_loss_cache) - ) - keras_loss_cache[loss_fn] = wrapped_loss - wrapped_loss_functions.append(wrapped_loss) - wrapped_layer_losses = [ - keras_loss_cache[fn] for fn in layer._callable_losses[:] - ] - - layer_metrics = tf.__internal__.tracking.wrap( - {m.name: m for m in layer._metrics} - ) - - # Avoid duplicate creation of shard Variables on loading. - # `layer.variables` will return the shard Variables rather than the - # ShardedVariables (b/224541446), but Keras loading will create new - # ShardedVariables (and thus shard Variables) from Keras metadata if needed. - # There's no need to also save the shard Variables here, so filter them out. - variables = _filter_shards(layer.variables) - trainable_variables = _filter_shards(layer.trainable_variables) - non_trainable_variables = _filter_shards(layer.non_trainable_variables) - return dict( - variables=tf.__internal__.tracking.wrap(variables), - trainable_variables=tf.__internal__.tracking.wrap(trainable_variables), - non_trainable_variables=tf.__internal__.tracking.wrap( - non_trainable_variables - ), - layers=tf.__internal__.tracking.wrap(utils.list_all_layers(layer)), - metrics=tf.__internal__.tracking.wrap(layer.metrics), - regularization_losses=tf.__internal__.tracking.wrap( - wrapped_loss_functions - ), - layer_regularization_losses=tf.__internal__.tracking.wrap( - wrapped_layer_losses - ), - layer_metrics=layer_metrics, - ) - - -def wrap_layer_functions(layer, serialization_cache): - """Returns dict of wrapped layer call function and losses in tf.functions. - - Args: - layer: Keras Layer object. - serialization_cache: Dictionary shared between all objects during - serialization. - - Returns: - A dictionary containing all keras tf.functions to serialize. See - LayerAttributes and ModelAttributes for the list of all attributes. - """ - # Since Sequential models may be modified in place using model.add() or - # model.pop(), don't use saved functions. - if isinstance(layer, keras_load.RevivedLayer) and not isinstance( - layer, sequential_lib.Sequential - ): - return { - fn_name: getattr(layer.keras_api, fn_name, None) - for fn_name in serialized_attributes.LayerAttributes.all_functions - } - - # Reset the losses of the layer and its children. The call function in each - # child layer is replaced with tf.functions. - original_fns = _replace_child_layer_functions(layer, serialization_cache) - original_losses = _reset_layer_losses(layer) - - # Wrap all the layer call and activity regularizer functions. - - # Use LayerCallCollection to ensure that all layer call functions (__call__, - # call with losses) are traced with the same inputs. - call_collection = LayerCallCollection(layer) - call_fn_with_losses = call_collection.add_function( - _wrap_call_and_conditional_losses(layer), - f"{layer.name}_layer_call_and_return_conditional_losses", - # If any of this layer's child layers use the training arg, the traced - # call functions of this layer will have a training keyword argument. If - # the original layer does not expect the training arg, then it will have - # to be removed (by setting `match_layer_training_arg`). - match_layer_training_arg=True, - ) - call_fn = call_collection.add_function( - _extract_outputs_from_fn(layer, call_fn_with_losses), - f"{layer.name}_layer_call_fn", - # Since `call_fn` wraps call_fn_with_losses and not the original call - # function, `match_layer_training_arg` should be set to False. - match_layer_training_arg=False, - ) - - fns = { - "call_and_return_conditional_losses": call_fn_with_losses, - "__call__": call_fn, - } - - if layer._activity_regularizer is not None: - fns["activity_regularizer_fn"] = _wrap_activity_regularizer(layer) - fns[ - "call_and_return_all_conditional_losses" - ] = call_collection.add_function( - _append_activity_regularizer_loss( - layer, call_fn_with_losses, fns["activity_regularizer_fn"] - ), - f"{layer.name}_layer_call_and_return_all_conditional_losses", - match_layer_training_arg=False, - ) - else: - fns["activity_regularizer_fn"] = None - fns["call_and_return_all_conditional_losses"] = call_fn_with_losses - - # Manually trigger traces before restoring the overwritten functions. The - # functions are traced within the layer call context to ensure that layer - # functions (e.g. add_loss) behave as though running in graph mode. - with tracing_scope(): - call_collection.trace_with_input_signature() - with base_layer_utils.call_context().enter( - layer, inputs=None, build_graph=True, training=None, saving=True - ): - for fn in fns.values(): - if fn is not None and not isinstance(fn, LayerCall): - fn.get_concrete_function() - - # Restore overwritten functions and losses - _restore_child_layer_functions(original_fns) - _restore_layer_losses(original_losses) - - return fns - - -def default_save_signature(layer): - original_losses = _reset_layer_losses(layer) - fn = saving_utils.trace_model_call(layer) - _restore_layer_losses(original_losses) - return fn - - -def _replace_child_layer_functions(layer, serialization_cache): - """Replaces functions in the children layers with wrapped tf.functions. - - This step allows functions from parent layers to reference the wrapped - functions from their children layers instead of retracing the ops. - - This function also resets all losses stored in the layer. These are stored - in the returned dictionary. Use `_restore_child_layer_functions` to restore - the original attributes. - - Args: - layer: Keras Layer object. - serialization_cache: Dictionary shared between all objects during - serialization. - - Returns: - Dictionary mapping layer objects -> original functions and losses: - { Child layer 1: { - 'losses': Original losses, - 'call': Original call function - '_activity_regularizer': Original activity regularizer}, - Child layer 2: ... - } - """ - - original_fns = {} - - def replace_layer_functions(child_layer, serialized_fns): - """Replaces layer call and activity regularizer with wrapped - functions.""" - original_fns[child_layer] = { - "call": child_layer.call, - "_activity_regularizer": child_layer._activity_regularizer, - } - with utils.no_automatic_dependency_tracking_scope(child_layer): - try: - child_layer._activity_regularizer = serialized_fns.get( - "activity_regularizer_fn" - ) - except AttributeError: - # Some layers have an unsettable activity regularizer. - pass - child_layer.call = utils.use_wrapped_call( - child_layer, - serialized_fns["call_and_return_conditional_losses"], - child_layer._call_spec, - default_training_value=False, - ) - - def replace_metric_functions(child_layer, serialized_fns): - """Replaces metric functions with wrapped functions.""" - original_fns[child_layer] = { - "__call__": child_layer.__call__, - "result": child_layer.result, - "update_state": child_layer.update_state, - } - with utils.no_automatic_dependency_tracking_scope(child_layer): - child_layer.__call__ = serialized_fns["__call__"] - child_layer.result = serialized_fns["result"] - child_layer.update_state = serialized_fns["update_state"] - - for child_layer in utils.list_all_layers(layer): - if isinstance(child_layer, input_layer.InputLayer): - continue - - if child_layer not in serialization_cache[constants.KERAS_CACHE_KEY]: - serialized_functions = child_layer._trackable_saved_model_saver._get_serialized_attributes( # noqa: E501 - serialization_cache - ).functions - else: - serialized_functions = serialization_cache[ - constants.KERAS_CACHE_KEY - ][child_layer].functions - if not serialized_functions: - # This indicates either: - # - circular dependency, which means the current layer's functions - # should be wrapped first. - # - Child layer's inputs are not defined, so its functions have - # not been wrapped. In this case, no replacement is necessary so - # move on to the next child. - continue - - if isinstance(child_layer, metrics.Metric): - replace_metric_functions(child_layer, serialized_functions) - else: - replace_layer_functions(child_layer, serialized_functions) - - return original_fns - - -def _restore_child_layer_functions(original_fns): - """Restores attributes replaced with `_replace_child_layer_functions`.""" - for child_layer, fns in original_fns.items(): - with utils.no_automatic_dependency_tracking_scope(child_layer): - for fn_name, fn in fns.items(): - try: - setattr(child_layer, fn_name, fn) - except AttributeError: - # In the case of _activity_regularizer, setting the - # attribute may be disallowed. - pass - - -def _reset_layer_losses(parent_layer): - """Resets losses of layer and its sublayers, and returns original losses.""" - losses_dict = {} - for layer in utils.list_all_layers_and_sublayers(parent_layer): - losses_dict[layer] = { - "losses": layer._losses[:], - "eager_losses": layer._eager_losses[:], - } - with utils.no_automatic_dependency_tracking_scope(layer): - layer._losses = [] - layer._eager_losses = [] - return losses_dict - - -def _restore_layer_losses(losses_dict): - for layer in losses_dict: - with utils.no_automatic_dependency_tracking_scope(layer): - layer._losses = losses_dict[layer]["losses"] - layer._eager_losses = losses_dict[layer]["eager_losses"] - - -class LayerTracingContext(threading.local): - def __init__(self): - super().__init__() - self.enable_call_tracing = False - self.trace_queue = [] - - -_thread_local_data = LayerTracingContext() - - -@tf_contextlib.contextmanager -def tracing_scope(): - """Enables tracing scope.""" - # This enables the LayerCallCollection's tracing mechanism to trace all call - # functions in the collection. - previous_value = _thread_local_data.enable_call_tracing - previous_queue = _thread_local_data.trace_queue - try: - _thread_local_data.enable_call_tracing = True - _thread_local_data.trace_queue = [] - yield - finally: - # Run traces from the queue. - while _thread_local_data.trace_queue: - fn, args, kwargs, training = _thread_local_data.trace_queue.pop(0) - if training is not None: - with backend.deprecated_internal_learning_phase_scope(training): - fn.get_concrete_function(*args, **kwargs) - else: - fn.get_concrete_function(*args, **kwargs) - _thread_local_data.trace_queue = previous_queue - _thread_local_data.enable_call_tracing = previous_value - - -def add_trace_to_queue(fn, args, kwargs, training=None): - if tracing_enabled(): - _thread_local_data.trace_queue.append( - (fn, args[:], kwargs.copy(), training) - ) - - -def tracing_enabled(): - """Whether to add extra traces to the queue.""" - return _thread_local_data.enable_call_tracing - - -class LayerCallCollection: - """Groups wrapped layer call functions. - - This is used to ensure that all layer call functions are traced with the - same inputs- - - call - - call_and_return_conditional_losses - - call_and_return_all_conditional_losses - """ - - def __init__(self, layer): - self.layer = layer - - self.layer_call_method = _get_layer_call_method(layer) - self._expects_training_arg = utils.layer_uses_training_bool(layer) - self._call_spec = layer._call_spec - - # Create new call spec if the layer itself does not accept a training - # arg, but one of its child layers does. When this layer's call - # functions are traced, they will be traced with an added `training` - # keyword argument. - if not self.layer._expects_training_arg and self._expects_training_arg: - arg_spec = utils.set_training_arg_spec( - self._call_spec.full_argspec, False - ) - self._call_spec = layer_utils.CallFunctionSpec(arg_spec) - - self._layer_inputs = self._get_layer_inputs(layer) - self._functions = weakref.WeakValueDictionary() - - # Get the input argument name from the args. - if self._call_spec.arg_names: - self._input_arg_name = self._call_spec.arg_names[0] - else: - # Layer could be defined with only varargs, in which case use a - # default name. - self._input_arg_name = "inputs" - - def _get_layer_inputs(self, layer): - """Inspects layer object and returns the inferred input signature. - - Args: - layer: Layer object. - - Returns: - List of possibly nested TensorSpecs of the layer call function inputs - in the form of `(args, kwargs)` - """ - if ( - isinstance(layer.call, tf.__internal__.function.Function) - and layer.call.input_signature is not None - ): - return layer.call.input_signature, {} - elif isinstance(layer, training_lib.Model): - return saving_utils.model_call_inputs(layer) - elif ( - layer.input_spec is not None - and layer._use_input_spec_as_call_signature - ): - - def to_tensor_spec_or_none(x): - spec = input_spec.to_tensor_spec(x, layer._compute_dtype) - # If the shape is too general (e.g. multiple dimensions are - # allowed), return None so that separate functions can be - # generated for each inferred input signature. - # TODO(b/134962016): currently partial signatures are not - # supported. - if spec.shape == tf.TensorShape(None): - return None, None - return spec - - input_signature = [ - tf.nest.map_structure(to_tensor_spec_or_none, layer.input_spec) - ] - - return input_signature, {} - else: - return None, None - - def add_trace(self, *args, **kwargs): - """Traces all functions with the same args and kwargs. - - Args: - *args: Positional args passed to the original function. - **kwargs: Keyword args passed to the original function. - """ - args = list(args) - kwargs = kwargs.copy() - - for fn in self._functions.values(): - # TODO(kathywu): Replace arguments with broader shapes defined in - # the input signature. - if self._expects_training_arg: - - def trace_with_training(value, fn=fn): - nonlocal args, kwargs - (args, kwargs,) = self._call_spec.set_arg_value( - "training", value, args, kwargs, inputs_in_args=True - ) - add_trace_to_queue(fn, args, kwargs, value) - - trace_with_training(True) - trace_with_training(False) - else: - add_trace_to_queue(fn, args, kwargs) - - def training_arg_was_passed(self, args, kwargs): - return self._call_spec.arg_was_passed( - "training", args, kwargs, inputs_in_args=True - ) - - def get_training_arg_value(self, args, kwargs): - try: - return self._call_spec.get_arg_value( - "training", args, kwargs, inputs_in_args=True - ) - except KeyError: # Training is not in args or kwargs. - return None - - def get_input_arg_value(self, args, kwargs): - return self._call_spec.get_arg_value( - self._input_arg_name, args, kwargs, inputs_in_args=True - ) - - def _maybe_wrap_with_training_arg(self, call_fn, match_layer_training_arg): - """Wraps call function with added training argument if necessary.""" - if not self.layer._expects_training_arg and self._expects_training_arg: - # Add training arg to wrapper function. - def wrap_with_training_arg(*args, **kwargs): - if match_layer_training_arg: - # Remove the training value, since the original call_fn does - # not expect a training arg. Instead, the training value - # will be propagated using the call context created in - # LayerCall. - args = list(args) - kwargs = kwargs.copy() - (args, kwargs,) = self._call_spec.set_arg_value( - "training", - None, - args, - kwargs, - inputs_in_args=True, - pop_kwarg_if_none=True, - ) - return call_fn(*args, **kwargs) - - return tf.__internal__.decorator.make_decorator( - target=call_fn, - decorator_func=wrap_with_training_arg, - decorator_argspec=self._call_spec.full_argspec, - ) - - return call_fn - - def add_function(self, call_fn, name, match_layer_training_arg): - """Adds a layer call function to the collection. - - Args: - call_fn: a python function - name: Name of call function - match_layer_training_arg: If True, removes the `training` from the - function arguments when calling `call_fn`. - - Returns: - LayerCall (tf.function) - """ - fn = LayerCall( - self, - self._maybe_wrap_with_training_arg( - call_fn, match_layer_training_arg - ), - name, - ) - self._functions[name] = fn.wrapped_call - return fn - - def trace_with_input_signature(self): - """Trace with the layer/models inferred input signature if possible.""" - if self._layer_inputs[0] is None: - return - - args, kwargs = self._layer_inputs - if self._expects_training_arg: - args, kwargs = self._call_spec.set_arg_value( - "training", False, args, kwargs, inputs_in_args=True - ) - if None not in tf.nest.flatten([args, kwargs]): - # Manually add traces for layers that have keyword arguments and - # have a fully defined input signature. - self.add_trace(*args, **kwargs) - - -def _filtered_inputs(inputs): - return list(filter(tf_utils.is_tensor_or_variable, tf.nest.flatten(inputs))) - - -def layer_call_wrapper(call_collection, method, name): - """Ensures layer losses are kept the same, and runs method in call - context.""" - - # Create wrapper that deals with losses and call context. - def wrapper(*args, **kwargs): - """Calls method within call context.""" - layer = call_collection.layer - training = None - inputs = _filtered_inputs([args, kwargs]) - - if (args or kwargs) and call_collection.training_arg_was_passed( - args, kwargs - ): - training = call_collection.get_training_arg_value(args, kwargs) - - original_losses = _reset_layer_losses(layer) - with base_layer_utils.call_context().enter( - layer, - inputs=inputs, - build_graph=False, - training=training, - saving=True, - ): - with autocast_variable.enable_auto_cast_variables( - layer._compute_dtype_object - ): - ret = method(*args, **kwargs) - _restore_layer_losses(original_losses) - return ret - - # Rename to `name`, since tf.function doesn't have a name argument. Without - # this, all functions returned by this method will be named "call", which - # would be a nightmare to debug. - fn = tf.__internal__.decorator.make_decorator( - target=method, decorator_func=wrapper - ) - fn.__name__ = name - return fn - - -class LayerCall: - """Function that triggers traces of other functions in the same - collection.""" - - def __init__(self, call_collection, call_fn, name): - """Initializes a LayerCall object. - - Args: - call_collection: a LayerCallCollection, which contains the other layer - call functions (e.g. call_with_conditional_losses, call). These - functions should be traced with the same arguments. - call_fn: A call function. - name: Name of the call function. - """ - self.call_collection = call_collection - self.wrapped_call = tf.function( - layer_call_wrapper(call_collection, call_fn, name) - ) - - def _maybe_trace(self, args, kwargs): - # Trigger traces of other call functions + extra training-arg traces. - if tracing_enabled(): - self.call_collection.add_trace(*args, **kwargs) - - def __call__(self, *args, **kwargs): - self._maybe_trace(args, kwargs) - return self.wrapped_call(*args, **kwargs) - - def get_concrete_function(self, *args, **kwargs): - self._maybe_trace(args, kwargs) - return self.wrapped_call.get_concrete_function(*args, **kwargs) - - -def _wrap_call_and_conditional_losses(layer): - """Wraps call function that returns a tuple of (outputs, losses). - - The losses returned are conditional on the inputs passed to the call - function. Unconditional losses (e.g. weight regularizeration) are wrapped - separately. - - Args: - layer: a Keras layer object - - Returns: - python call function that returns outputs and conditional losses -- - excludes activity regularizer - """ - # Create function that generates both outputs and losses - layer_call = _get_layer_call_method(layer) - - def call_and_return_conditional_losses(*args, **kwargs): - """Returns layer (call_output, conditional losses) tuple.""" - call_output = layer_call(*args, **kwargs) - if version_utils.is_v1_layer_or_model(layer): - conditional_losses = layer.get_losses_for( - _filtered_inputs([args, kwargs]) - ) - else: - conditional_losses = [ - l for l in layer.losses if not hasattr(l, "_unconditional_loss") - ] - return call_output, conditional_losses - - return _create_call_fn_decorator(layer, call_and_return_conditional_losses) - - -def _extract_outputs_from_fn(layer, call_and_return_conditional_losses): - """Returns a function that returns only call function outputs.""" - if isinstance(layer, keras_load.RevivedLayer): - return layer.keras_api.__call__ - - def call(inputs, *args, **kwargs): - return call_and_return_conditional_losses(inputs, *args, **kwargs)[0] - - return _create_call_fn_decorator(layer, call) - - -def _append_activity_regularizer_loss( - layer, call_fn_with_losses, activity_regularizer_fn -): - """Appends activity regularizer loss to losses returned by the wrapped - fn.""" - - def fn(inputs, *args, **kwargs): - outputs, losses = call_fn_with_losses(inputs, *args, **kwargs) - losses.append(activity_regularizer_fn(outputs)) - return outputs, losses - - return _create_call_fn_decorator(layer, fn) - - -def _create_call_fn_decorator(layer, wrapped_call): - call_fn = _get_layer_call_method(layer) - fn, arg_spec = utils.maybe_add_training_arg( - layer._call_spec, - wrapped_call, - layer._expects_training_arg, - default_training_value=False, - ) - return tf.__internal__.decorator.make_decorator( - target=call_fn, decorator_func=fn, decorator_argspec=arg_spec - ) - - -def _wrap_unconditional_loss(loss_fn, index): - """Wraps callable/unconditional loss, returning a serializable function.""" - # Extract original loss function from partial function - fn = loss_fn.args[0] if isinstance(loss_fn, functools.partial) else loss_fn - if isinstance(fn, tf.__internal__.function.Function): - return fn - else: - return tf.__internal__.function.Function( - fn, f"loss_fn_{index}", input_signature=[] - ) - - -def _wrap_activity_regularizer(layer): - """Wraps the activity regularizer.""" - - if isinstance( - layer._activity_regularizer, tf.__internal__.function.Function - ): - return layer._activity_regularizer - return tf.__internal__.function.Function( - layer._activity_regularizer, - f"{layer.name}_activity_regularizer", - input_signature=[ - tf.TensorSpec(None, layer._compute_dtype or backend.floatx()) - ], - ) - - -def _get_layer_call_method(layer): - if isinstance(layer.call, (tf.__internal__.function.Function)): - return layer.call.python_function - return layer.call diff --git a/keras/saving/legacy/saved_model/saved_model_test.py b/keras/saving/legacy/saved_model/saved_model_test.py deleted file mode 100644 index 7ae94743645..00000000000 --- a/keras/saving/legacy/saved_model/saved_model_test.py +++ /dev/null @@ -1,1630 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Tests for saving and loading Keras models and layers from SavedModel. - -These should ensure that all layer properties are correctly assigned after -loading from the SavedModel. - -Tests that focus on the model structure should go in revive_test.py -""" - -import os -import shutil -import sys - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized -from tensorflow.core.example import example_pb2 -from tensorflow.core.example import feature_pb2 - -import keras -from keras import regularizers -from keras.feature_column.dense_features import DenseFeatures -from keras.protobuf import saved_metadata_pb2 -from keras.protobuf import versions_pb2 -from keras.saving import object_registration -from keras.saving.legacy.saved_model import json_utils -from keras.saving.legacy.saved_model import load as keras_load -from keras.saving.legacy.saved_model import save_impl as keras_save -from keras.saving.legacy.saved_model import utils as saved_model_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import control_flow_util -from keras.utils import tf_contextlib -from keras.utils import tf_inspect - - -class LayerWithLearningPhase(keras.engine.base_layer.Layer): - def build(self, input_shape): - self.input_spec = keras.layers.InputSpec( - shape=[None] * len(input_shape) - ) - self.built = True - - def call(self, x, training=None): - if training is None: - training = keras.backend.learning_phase() - output = control_flow_util.smart_cond( - training, lambda: x * 0, lambda: tf.identity(x) - ) - if not tf.executing_eagerly(): - output._uses_learning_phase = True - return output - - def compute_output_shape(self, input_shape): - return input_shape - - @property - def _use_input_spec_as_call_signature(self): - return True - - -class LayerWithLoss(keras.layers.Layer): - def call(self, inputs): - self.add_loss(tf.reduce_sum(inputs)) - return inputs * 2 - - -class LayerWithUpdate(keras.layers.Layer): - def build(self, _): - self.v = self.add_weight( - "v", - shape=[], - initializer=keras.initializers.zeros, - trainable=False, - dtype=tf.float32, - ) - - def call(self, inputs, training=True): - if training: - self.add_update(self.v.assign_add(1.0)) - return inputs * 2.0 - - -@object_registration.register_keras_serializable("Testing") -class GlobalLayerThatShouldFailIfNotAdded(keras.layers.Layer): - _must_restore_from_config = True - - -@test_combinations.run_all_keras_modes -class TestSavedModelFormatAllModes(test_combinations.TestCase): - def _save_model_dir(self, dirname="saved_model"): - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - return os.path.join(temp_dir, dirname) - - def _get_model(self): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - model.layers[-1].activity_regularizer = regularizers.get("l2") - model.activity_regularizer = regularizers.get("l2") - model.compile(loss="mse", optimizer="rmsprop") - - def callable_loss(): - return tf.reduce_sum(model.weights[0]) - - model.add_loss(callable_loss) - return model - - def _train_model(self, model, use_dataset=False): - x = np.random.random((1, 3)) - y = np.random.random((1, 4)) - - if not tf.__internal__.tf2.enabled(): - # The layer autocast behavior only runs when autocast is enabled, so - # in V1, the numpy inputs still need to be cast to float32. - x = x.astype(np.float32) - y = y.astype(np.float32) - - if use_dataset: - dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(1) - model.fit(dataset) - else: - model.train_on_batch(x, y) - - def _save_and_load(self, model): - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - loaded = keras_load.load(saved_model_dir) - return loaded - - def _test_evaluation(self, model, loaded): - # Assert that original and loaded models have the same results when - # called. - self.evaluate(tf.compat.v1.variables_initializer(loaded.variables)) - self.assertAllClose( - self.evaluate(model.weights), self.evaluate(loaded.weights) - ) - - input_arr = tf.constant(np.random.random((1, 3)).astype(np.float32)) - self.assertAllClose( - self.evaluate(model(input_arr)), self.evaluate(loaded(input_arr)) - ) - # Validate losses. The order of conditional losses may change between - # the model and loaded model, so sort the losses first. - if tf.executing_eagerly(): - self.assertAllClose( - sorted(self.evaluate(model.losses)), - sorted(self.evaluate(loaded.losses)), - ) - - @test_combinations.run_with_all_model_types - def test_model_save_and_load(self): - model = self._get_model() - self._train_model(model, use_dataset=False) - loaded = self._save_and_load(model) - self._test_evaluation(model, loaded) - - @test_combinations.run_with_all_model_types - def test_model_save_and_load_dataset(self): - model = self._get_model() - self._train_model(model, use_dataset=True) - loaded = self._save_and_load(model) - self._test_evaluation(model, loaded) - - def test_trainable_weights(self): - """Tests that trainable status of individual weights is preserved.""" - layer = keras.layers.Dense(4, name="custom_layer") - layer.build([None, 3]) - layer.add_weight( - "extra_weight", - shape=[], - initializer=tf.compat.v1.constant_initializer(11), - trainable=True, - ) - layer.add_weight( - "extra_weight_2", - shape=[], - initializer=tf.compat.v1.constant_initializer(12), - trainable=False, - ) - model = keras.Sequential( - [ - keras.Input( - [ - 3, - ] - ), - layer, - ] - ) - - saved_model_dir = self._save_model_dir() - self.evaluate(tf.compat.v1.variables_initializer(layer.variables)) - model.save(saved_model_dir, save_format="tf") - loaded_model = keras_load.load(saved_model_dir) - self.evaluate( - tf.compat.v1.variables_initializer(loaded_model.variables) - ) - - loaded = loaded_model.layers[-1] - - equal_attrs = ["name", "_expects_training_arg", "trainable"] - for attr in equal_attrs: - self.assertEqual(getattr(layer, attr), getattr(loaded, attr)) - - all_close = ["weights", "trainable_weights", "non_trainable_weights"] - for attr in all_close: - self.assertAllClose( - self.evaluate(getattr(layer, attr)), - self.evaluate(getattr(loaded, attr)), - ) - - @test_combinations.run_with_all_model_types - def test_trainable_layers(self): - """Tests that trainable status of individual layers is preserved.""" - model = model = self._get_model() - # Set the last layer to *not* be trainable. - model.layers[-1].trainable = False - self._train_model(model, use_dataset=True) - loaded = self._save_and_load(model) - - self._test_evaluation(model, loaded) - self.assertFalse(model.layers[-1].trainable) - self.assertFalse(loaded.layers[-1].trainable) - - def test_trainable_custom_model_false(self): - """Tests that overall False trainable status of Model is preserved.""" - # Set all layers to *not* be trainable. - model = test_utils.SmallSubclassMLP(1, 4, trainable=False) - model.compile(loss="mse", optimizer="rmsprop") - self._train_model(model, use_dataset=False) - loaded = self._save_and_load(model) - - self._test_evaluation(model, loaded) - self.assertEmpty(model.trainable_variables) - self.assertEmpty(loaded.trainable_variables) - - def test_maintains_losses(self): - """Tests that the layer losses do not change before and after export.""" - model = keras.models.Sequential([LayerWithLoss()]) - model.compile(loss="mse", optimizer="rmsprop") - input_arr = np.random.random((1, 3)) - target_arr = np.random.random((1, 3)) - - # Test that symbolic losses are maintained (train_on_batch saves - # symbolic losses.) - model.train_on_batch(input_arr, target_arr) - previous_losses = model.losses[:] - - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - - with previous_losses[0].graph.as_default(): - # If we try to compare symbolic Tensors in eager mode assertAllEqual - # will return False even if they are the same Tensor. - self.assertEqual(previous_losses, model.losses) - - if tf.executing_eagerly(): - # Test that eager losses are maintained. - model(input_arr) # Calls model eagerly, creating eager losses. - previous_losses = model.losses[:] - model.save(saved_model_dir, save_format="tf") - self.assertAllEqual(previous_losses, model.losses) - - def test_layer_with_learning_phase(self): - layer = LayerWithLearningPhase() - layer.build([None, None]) - saved_model_dir = self._save_model_dir() - model = test_utils.get_model_from_layers( - [layer], input_shape=[None], model_type="functional" - ) - model.save(saved_model_dir, save_format="tf") - loaded_model = keras_load.load(saved_model_dir) - loaded = loaded_model.layers[-1] - input_arr = tf.ones((4, 3)) - - # Run the layer, and use the keras backend learning phase - keras.backend.set_learning_phase(0) - self.assertAllEqual(input_arr, loaded(input_arr)) - keras.backend.set_learning_phase(1) - self.assertAllEqual(tf.zeros((4, 3)), loaded(input_arr)) - - # Run the layer while explicitly setting the training argument - self.assertAllEqual( - input_arr, loaded(input_arr, training=tf.constant(False)) - ) - self.assertAllEqual( - tf.zeros((4, 3)), loaded(input_arr, training=tf.constant(True)) - ) - - @test_combinations.run_with_all_model_types - def test_standard_loader(self): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - model.activity_regularizer = regularizers.get("l2") - - def eager_loss(): - return tf.reduce_sum(model.weights[0]) - - model.add_loss(eager_loss) - - # Call predict to ensure that all layers are built and inputs are set. - model.predict(np.random.random((1, 3)).astype(np.float32)) - saved_model_dir = self._save_model_dir() - - model.save(saved_model_dir, save_format="tf") - - loaded = tf.saved_model.load(saved_model_dir) - self.evaluate(tf.compat.v1.variables_initializer(loaded.variables)) - all_close = [ - "variables", - "trainable_variables", - "non_trainable_variables", - ] - for attr in all_close: - self.assertAllClose( - self.evaluate(getattr(model, attr)), - self.evaluate(getattr(loaded.keras_api, attr)), - ) - self.assertLen(loaded.regularization_losses, 1) - expected_layers = len(model.layers) - self.assertEqual(expected_layers, len(loaded.keras_api.layers)) - input_arr = tf.ones((4, 3)) - self.assertAllClose( - self.evaluate(model(input_arr)), - self.evaluate(loaded(input_arr, training=False)), - ) - - @test_combinations.run_with_all_model_types - def test_compiled_model(self): - # TODO(b/134519980): Issue with model.fit if the model call function - # uses a tf.function (Graph mode only). - if not tf.executing_eagerly(): - return - - input_arr = np.random.random((1, 3)) - target_arr = np.random.random((1, 4)) - - model = test_utils.get_small_mlp(1, 4, input_dim=3) - expected_predict = model.predict(input_arr) - - # Compile and save model. - model.compile("rmsprop", "mse") - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - - loaded = keras_load.load(saved_model_dir) - actual_predict = loaded.predict(input_arr) - self.assertAllClose(expected_predict, actual_predict) - - loss_before = loaded.evaluate(input_arr, target_arr) - loaded.fit(input_arr, target_arr) - loss_after = loaded.evaluate(input_arr, target_arr) - self.assertLess(loss_after, loss_before) - predict = loaded.predict(input_arr) - - ckpt_path = os.path.join(self.get_temp_dir(), "weights") - loaded.save_weights(ckpt_path) - - # Ensure that the checkpoint is compatible with the original model. - model.load_weights(ckpt_path) - self.assertAllClose(predict, model.predict(input_arr)) - - def test_metadata_input_spec(self): - class LayerWithNestedSpec(keras.layers.Layer): - def __init__(self): - super().__init__() - self.input_spec = { - "a": keras.layers.InputSpec(max_ndim=3, axes={-1: 2}), - "b": keras.layers.InputSpec( - shape=(None, 2, 3), dtype="int32" - ), - } - - @property - def _use_input_spec_as_call_signature(self): - return True - - layer = LayerWithNestedSpec() - saved_model_dir = self._save_model_dir() - model = test_utils.get_model_from_layers([layer], model_type="subclass") - model( - { - "a": tf.constant([[2, 4]]), - "b": tf.ones([1, 2, 3], dtype=tf.int32), - } - ) - model.save(saved_model_dir, save_format="tf") - loaded_model = keras_load.load(saved_model_dir) - loaded = loaded_model.layers[-1] - self.assertEqual(3, loaded.input_spec["a"].max_ndim) - self.assertEqual({-1: 2}, loaded.input_spec["a"].axes) - self.assertAllEqual([None, 2, 3], loaded.input_spec["b"].shape) - self.assertEqual("int32", loaded.input_spec["b"].dtype) - - def test_must_restore_from_config_fails_if_layer_is_not_in_scope(self): - class LayerThatShouldFailIfNotAdded(keras.layers.Layer): - _must_restore_from_config = True - - layer = LayerThatShouldFailIfNotAdded() - saved_model_dir = self._save_model_dir() - model = test_utils.get_model_from_layers( - [layer], input_shape=[3], model_type="functional" - ) - model.save(saved_model_dir, save_format="tf") - with self.assertRaisesRegex( - ValueError, "Unknown layer: 'LayerThatShouldFailIfNotAdded'" - ): - _ = keras_load.load(saved_model_dir) - - def test_must_restore_from_config_custom_object_scope(self): - class LayerThatShouldFailIfNotAdded(keras.layers.Layer): - _must_restore_from_config = True - - layer = LayerThatShouldFailIfNotAdded() - model = test_utils.get_model_from_layers( - [layer], input_shape=[3], model_type="functional" - ) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - with object_registration.CustomObjectScope( - {"LayerThatShouldFailIfNotAdded": LayerThatShouldFailIfNotAdded} - ): - _ = keras_load.load(saved_model_dir) - - def test_must_restore_from_config_registration(self): - layer = GlobalLayerThatShouldFailIfNotAdded() - saved_model_dir = self._save_model_dir() - model = test_utils.get_model_from_layers( - [layer], input_shape=[3], model_type="functional" - ) - model.save(saved_model_dir, save_format="tf") - _ = keras_load.load(saved_model_dir) - - def test_multi_input_model(self): - input_1 = keras.layers.Input(shape=(3,)) - input_2 = keras.layers.Input(shape=(5,)) - model = keras.Model([input_1, input_2], [input_1, input_2]) - saved_model_dir = self._save_model_dir() - - model.save(saved_model_dir, save_format="tf") - loaded = keras_load.load(saved_model_dir) - input_arr_1 = np.random.random((1, 3)).astype("float32") - input_arr_2 = np.random.random((1, 5)).astype("float32") - - outputs = loaded([input_arr_1, input_arr_2]) - self.assertAllEqual(input_arr_1, outputs[0]) - self.assertAllEqual(input_arr_2, outputs[1]) - - def test_revived_sequential(self): - model = keras.models.Sequential() - model.add( - keras.layers.Dense( - 5, input_shape=(3,), kernel_regularizer=regularizers.get("l2") - ) - ) - model.add( - keras.layers.Dense(2, kernel_regularizer=regularizers.get("l2")) - ) - - self.evaluate(tf.compat.v1.variables_initializer(model.variables)) - - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - loaded = keras_load.load(saved_model_dir) - - self.assertLen(loaded.layers, 2) - self.assertLen(loaded.losses, 2) - - loaded.pop() - - self.assertLen(loaded.layers, 1) - self.assertLen(loaded.losses, 1) - - loaded.add( - keras.layers.Dense(2, kernel_regularizer=regularizers.get("l2")) - ) - - self.assertLen(loaded.layers, 2) - self.assertLen(loaded.losses, 2) - - def testBatchNormUpdates(self): - model = keras.models.Sequential( - keras.layers.BatchNormalization(input_shape=(1,)) - ) - self.evaluate(tf.compat.v1.variables_initializer(model.variables)) - saved_model_dir = self._save_model_dir() - - with self.captureWritesToStream(sys.stderr) as captured_logs: - model.save(saved_model_dir, save_format="tf") - loaded = keras_load.load(saved_model_dir) - - # Assert that saving does not log deprecation warnings - # (even if it needs to set learning phase for compat reasons) - if tf.executing_eagerly(): - self.assertNotIn("deprecated", captured_logs.contents()) - - input_arr = tf.constant([[11], [12], [13]], dtype=tf.float32) - input_arr2 = tf.constant([[14], [15], [16]], dtype=tf.float32) - self.assertAllClose(self.evaluate(loaded.layers[-1].moving_mean), [0]) - - self.evaluate(loaded(input_arr, training=True)) - if not tf.executing_eagerly(): - self.evaluate(loaded.get_updates_for(input_arr)) - self.assertAllClose( - self.evaluate(loaded.layers[-1].moving_mean), [0.12] - ) - - self.evaluate(loaded(input_arr2, training=False)) - if not tf.executing_eagerly(): - self.evaluate(loaded.get_updates_for(input_arr2)) - self.assertAllClose( - self.evaluate(loaded.layers[-1].moving_mean), [0.12] - ) - - def testDisablingBatchNormTrainableBeforeSaving(self): - # We disable trainable on the batchnorm layers before saving - model = keras.models.Sequential( - keras.layers.BatchNormalization(input_shape=(1,)) - ) - model.trainable = False - self.evaluate(tf.compat.v1.variables_initializer(model.variables)) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - loaded = keras_load.load(saved_model_dir) - self.evaluate(tf.compat.v1.variables_initializer(loaded.variables)) - input_arr = tf.constant([[11], [12], [13]], dtype=tf.float32) - input_arr2 = tf.constant([[14], [15], [16]], dtype=tf.float32) - self.assertAllClose(self.evaluate(loaded.layers[-1].moving_mean), [0]) - - # Trainable should still be disabled after loading - self.evaluate(loaded(input_arr, training=True)) - if not tf.executing_eagerly(): - self.evaluate(loaded.get_updates_for(input_arr)) - self.assertAllClose(self.evaluate(loaded.layers[-1].moving_mean), [0.0]) - - # Re-enabling trainable on the loaded model should cause the batchnorm - # layer to start training again. - # Note: this only works in v2. - if tf.executing_eagerly(): - loaded.trainable = True - self.evaluate(loaded(input_arr, training=True)) - self.assertAllClose( - self.evaluate(loaded.layers[-1].moving_mean), [0.12] - ) - - self.evaluate(loaded(input_arr2, training=False)) - self.assertAllClose( - self.evaluate(loaded.layers[-1].moving_mean), [0.12] - ) - - def testSaveWithSignatures(self): - model = keras.models.Sequential() - model.add( - keras.layers.Dense( - 5, input_shape=(3,), kernel_regularizer=regularizers.get("l2") - ) - ) - model.add(keras.layers.Dropout(0.5)) - model.add( - keras.layers.Dense(4, kernel_regularizer=regularizers.get("l2")) - ) - - input_arr = np.random.random((2, 3)) - target_arr = np.random.random((2, 4)) - - model.compile(loss="mse", optimizer="rmsprop") - model.train_on_batch(input_arr, target_arr) - - @tf.function(input_signature=[tf.TensorSpec((None, 3))]) - def predict(inputs): - return {"predictions": model(inputs)} - - feature_configs = { - "inputs": tf.io.FixedLenFeature(shape=[2, 3], dtype=tf.float32) - } - - @tf.function(input_signature=[tf.TensorSpec([None], tf.string)]) - def parse_and_predict(examples): - features = tf.compat.v1.parse_single_example( - examples[0], feature_configs - ) - return { - "predictions": model(features["inputs"]), - "layer_1_outputs": model.layers[0](features["inputs"]), - } - - saved_model_dir = self._save_model_dir() - model.save( - saved_model_dir, - save_format="tf", - signatures={ - "predict": predict, - "parse_and_predict": parse_and_predict, - }, - ) - model.save( - "/tmp/saved", - save_format="tf", - signatures={ - "predict": predict, - "parse_and_predict": parse_and_predict, - }, - ) - - loaded = keras_load.load(saved_model_dir) - - self.assertAllClose( - model.predict(input_arr), - loaded.signatures["predict"]( - tf.convert_to_tensor(input_arr.astype("float32")) - )["predictions"], - ) - - feature = { - "inputs": feature_pb2.Feature( - float_list=feature_pb2.FloatList( - value=input_arr.astype("float32").flatten() - ) - ) - } - example = example_pb2.Example( - features=feature_pb2.Features(feature=feature) - ) - outputs = loaded.signatures["parse_and_predict"]( - tf.convert_to_tensor([example.SerializeToString()]) - ) - self.assertAllClose(model.predict(input_arr), outputs["predictions"]) - self.assertAllClose( - model.layers[0](input_arr), outputs["layer_1_outputs"] - ) - - def testTrainingDefaults(self): - def assert_training_default(fn, default_value): - arg_spec = tf_inspect.getfullargspec(fn) - fn_defaults = arg_spec.defaults or [] - defaults = dict() - # The call arg defaults are an n-tuple of the last n elements of the - # args list. (n = # of elements that have a default argument) - for i in range(-1 * len(fn_defaults), 0): - defaults[arg_spec.args[i]] = fn_defaults[i] - # The default training arg will be any (non-None) default specified - # in the method signature, or None if no value is specified. - defaults.update(arg_spec.kwonlydefaults or {}) - self.assertEqual(defaults["training"], default_value) - - class LayerWithTrainingRequiredArg(keras.engine.base_layer.Layer): - def call(self, inputs, training): - return control_flow_util.smart_cond( - training, lambda: inputs * 0, lambda: tf.identity(inputs) - ) - - class LayerWithTrainingDefaultTrue(keras.engine.base_layer.Layer): - def call(self, inputs, training=True): - return control_flow_util.smart_cond( - training, lambda: inputs * 0, lambda: tf.identity(inputs) - ) - - class Model(keras.models.Model): - def __init__(self): - super().__init__() - self.layer_with_training_default_none = LayerWithLearningPhase() - self.layer_with_training_default_true = ( - LayerWithTrainingDefaultTrue() - ) - self.layer_with_required_training_arg = ( - LayerWithTrainingRequiredArg() - ) - - def call(self, inputs): - x = self.layer_with_training_default_none(inputs) - x += self.layer_with_training_default_true(inputs) - x += self.layer_with_required_training_arg(inputs, False) - return x - - model = Model() - # Build and set model inputs - model.predict(np.ones([1, 3]).astype("float32")) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - load = tf.saved_model.load(saved_model_dir) - - # Ensure that the Keras loader is able to load and build the model. - _ = keras_load.load(saved_model_dir) - - assert_training_default(load.__call__, False) - assert_training_default( - load.layer_with_training_default_none.__call__, False - ) - assert_training_default( - load.layer_with_training_default_true.__call__, True - ) - - # Assert that there are no defaults for layer with required training arg - arg_spec = tf_inspect.getfullargspec( - load.layer_with_required_training_arg.__call__ - ) - self.assertFalse(arg_spec.defaults) # defaults is None or empty - - def testTraceModelWithKwarg(self): - class Model(keras.models.Model): - def call(self, inputs, keyword=None): - return tf.identity(inputs) - - model = Model() - prediction = model.predict(np.ones([1, 3]).astype("float32")) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - - with object_registration.custom_object_scope({"Model": Model}): - loaded = keras_load.load(saved_model_dir) - self.assertAllClose( - prediction, loaded.predict(np.ones([1, 3]).astype("float32")) - ) - - loaded_without_scope = keras_load.load(saved_model_dir) - if tf.__internal__.tf2.enabled(): - with self.assertRaises(NotImplementedError): - loaded_without_scope.predict(np.ones([1, 3]).astype("float32")) - - def testFeatureColumns(self): - # TODO(b/120099662): Error with table initialization with Keras models - # in graph mode. - if tf.executing_eagerly(): - numeric = tf.feature_column.numeric_column("a") - bucketized = tf.feature_column.bucketized_column( - numeric, boundaries=[5, 10, 15] - ) - cat_vocab = ( - tf.feature_column.categorical_column_with_vocabulary_list( - "b", ["1", "2", "3"] - ) - ) - one_hot = tf.feature_column.indicator_column(cat_vocab) - embedding = tf.feature_column.embedding_column( - cat_vocab, dimension=8 - ) - feature_layer = DenseFeatures([bucketized, one_hot, embedding]) - model = keras.models.Sequential(feature_layer) - - features = {"a": np.array([13, 15]), "b": np.array(["1", "2"])} - predictions = model.predict(features) - - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - loaded = keras_load.load(saved_model_dir) - loaded_predictions = loaded.predict(features) - self.assertAllClose(predictions, loaded_predictions) - - def testSaveTensorKwarg(self): - class LayerWithTensorKwarg(keras.layers.Layer): - def call(self, inputs, tensor=None): - if tensor is not None: - return inputs * tf.cast(tensor, tf.float32) - else: - return inputs - - t = self.evaluate(tf.sequence_mask(1)) - inputs = keras.layers.Input(shape=(3)) - model = keras.models.Model(inputs, LayerWithTensorKwarg()(inputs, t)) - - input_arr = np.random.random((1, 3)) - predictions = model.predict(input_arr) - - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - loaded = keras_load.load(saved_model_dir) - loaded_predictions = loaded.predict(input_arr) - self.assertAllClose(predictions, loaded_predictions) - - def testModelWithTfFunctionCall(self): - class Subclass(keras.models.Model): - @tf.function - def call(self, inputs, training=False): - return inputs * tf.cast(training, tf.float32) - - model = Subclass() - model.predict(tf.ones((1, 2)), steps=1) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - loaded = keras_load.load(saved_model_dir) - self.assertAllEqual( - [[1, 5]], - self.evaluate(loaded(tf.constant([[1, 5.0]]), training=True)), - ) - self.assertAllEqual( - [[0, 0]], - self.evaluate(loaded(tf.constant([[1, 5.0]]), training=False)), - ) - - def testReviveFunctionalModel(self): - class CustomAdd(keras.layers.Add): - def build(self, input_shape): - self.w = self.add_weight("w", shape=[]) - super().build(input_shape) - - def call(self, inputs): - outputs = super().call(inputs) - return outputs * self.w - - input1 = keras.layers.Input(shape=(None, 3), name="input_1") - input2 = keras.layers.Input(shape=(None, 3), name="input_2") - - d = keras.layers.Dense(4, name="dense_with_two_inbound_nodes") - output1 = d(input1) - output2 = d(input2) - - # Use a custom layer in this model to ensure that layers aren't being - # recreated directly from the config. - outputs = CustomAdd(name="custom")([output1, output2]) - model = keras.models.Model([input1, input2], outputs, name="save_model") - - self.evaluate(tf.compat.v1.variables_initializer(model.variables)) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - - loaded = keras_load.load(saved_model_dir) - self.assertEqual("save_model", loaded.name) - self.assertLen( - loaded.get_layer("dense_with_two_inbound_nodes")._inbound_nodes, 2 - ) - self.assertEqual("CustomAdd", type(loaded.get_layer("custom")).__name__) - self.assertLen(loaded.get_layer("custom").weights, 1) - - def _testAddUpdate(self, scope): - with scope: - layer_with_update = LayerWithUpdate() - model = test_utils.get_model_from_layers( - [layer_with_update], input_shape=(3,) - ) - - x = np.ones((10, 3)) - if test_utils.get_model_type() == "subclass": - model.predict(x, batch_size=10) - self.evaluate(tf.compat.v1.variables_initializer(model.variables)) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - - loaded = keras_load.load(saved_model_dir) - loaded_layer = loaded.layers[-1] - self.evaluate(tf.compat.v1.variables_initializer(loaded.variables)) - self.assertEqual(self.evaluate(loaded_layer.v), 0.0) - - loaded.compile("sgd", "mse") - loaded.fit(x, x, batch_size=10) - self.assertEqual(self.evaluate(loaded_layer.v), 1.0) - - @test_combinations.run_with_all_model_types - def testSaveLayerWithUpdates(self): - @tf_contextlib.contextmanager - def nullcontextmanager(): - yield - - self._testAddUpdate(nullcontextmanager()) - - @test_combinations.run_with_all_model_types - def testSaveInStrategyScope(self): - self._testAddUpdate(tf.distribute.MirroredStrategy().scope()) - - def testSaveTimeDistributedLayer(self): - model = keras.Sequential( - [ - keras.layers.TimeDistributed( - keras.layers.Dense( - 1, kernel_regularizer=regularizers.get("l2") - ), - input_shape=(None, 1), - ) - ] - ) - predictions = model.predict_on_batch(tf.ones((3, 2, 1))) - - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - - loaded = keras_load.load(saved_model_dir) - self.assertAllClose( - loaded.predict_on_batch(tf.ones((3, 2, 1))), predictions - ) - - @parameterized.named_parameters( - [("with_unrolling", True), ("no_unrolling", False)] - ) - def testSaveStatefulRNN(self, unroll): - batch = 12 - timesteps = 10 - input_dim = 8 - input_arr = np.ones((batch, timesteps, input_dim)).astype("float32") - - cells = [keras.layers.LSTMCell(32), keras.layers.LSTMCell(64)] - if unroll: - x = keras.Input(batch_shape=(batch, timesteps, input_dim)) - else: - x = keras.Input(batch_shape=(batch, None, input_dim)) - layer = keras.layers.RNN(cells, stateful=True, unroll=unroll) - y = layer(x) - - model = keras.Model(x, y) - model.compile( - "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() - ) - model.train_on_batch( - np.zeros((batch, timesteps, input_dim)).astype("float32"), - np.zeros((batch, 64)).astype("float32"), - ) - - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - - loaded = keras_load.load(saved_model_dir) - loaded_layer = loaded.layers[1] - - if not tf.executing_eagerly(): - keras.backend.get_session() # force variable initialization - - self.assertAllClose(layer.states, loaded_layer.states) - self.assertAllClose(model(input_arr), loaded(input_arr)) - - def testSaveBidirectionalLSTM(self): - # Make sure that the input spec of an unrolled RNN is not used when - # wrapped in a Bidirectional layer. - # https://github.com/keras-team/keras/issues/15454 - input_layer = keras.Input( - batch_input_shape=(1, 15, 128), name="input", dtype=tf.float32 - ) - lstm_layer = keras.layers.Bidirectional( - keras.layers.LSTM( - units=64, - name="lstm", - dropout=0.2, - trainable=False, - unroll=True, - ) - ) - output_layer = lstm_layer(input_layer) - model = keras.Model(input_layer, output_layer) - saved_model_dir = self._save_model_dir() - self.evaluate(tf.compat.v1.variables_initializer(model.variables)) - model.save(saved_model_dir, save_format="tf") - loaded = keras_load.load(saved_model_dir) - input_arr = np.random.random((1, 15, 128)).astype("float32") - self.assertAllClose(model(input_arr), loaded(input_arr)) - - @parameterized.named_parameters([("stateful", True), ("stateless", False)]) - def testSaveConvLSTM2D(self, stateful): - data_format = "channels_first" - batch, timesteps, channels, rows, cols = 12, 10, 8, 4, 4 - input_arr = np.ones((batch, timesteps, channels, rows, cols)).astype( - "float32" - ) - layer = keras.layers.ConvLSTM2D( - filters=16, - kernel_size=(1, 1), - data_format=data_format, - stateful=stateful, - ) - x = keras.Input(batch_shape=(batch, timesteps, channels, rows, cols)) - y = layer(x) - model = keras.Model(x, y) - - predict_1 = model(input_arr) - self.evaluate([v.initializer for v in model.variables]) - saved_model_dir = self._save_model_dir() - - model.save(saved_model_dir, save_format="tf") - del model - - loaded = keras_load.load(saved_model_dir) - self.evaluate([v.initializer for v in loaded.variables]) - if stateful: - loaded.reset_states() - predict_2 = loaded(input_arr) - self.assertAllClose(predict_1, predict_2) - - def testSaveWithRaggedInputs(self): - class EmbeddingMerger(keras.layers.Layer): - def __init__(self, list_features, **kwargs): - super().__init__(**kwargs) - self._supports_ragged_inputs = True - self.embeddings = { - feature: keras.layers.Embedding(10, 3) - for feature in list_features - } - self.mean = keras.layers.Lambda( - tf.reduce_mean, arguments=dict(axis=1) - ) - - def call(self, inputs): - tensors = [self.embeddings[col](inputs[col]) for col in inputs] - tensors = [self.mean(inp) for inp in tensors] - return keras.layers.Add()(tensors) - - list_features = ["feature_1", "feature_2"] - feature_1 = tf.ragged.constant([[0.0], [1, 3]]) - feature_2 = tf.ragged.constant([[1.0, 2], [4]]) - f = {"feature_1": feature_1, "feature_2": feature_2} - f_inputs = { - "feature_1": keras.Input( - shape=(None,), name="feature_1", ragged=True - ), - "feature_2": keras.Input( - shape=(None,), name="feature_2", ragged=True - ), - } - - out = EmbeddingMerger(list_features)(f_inputs) - model = keras.Model(f_inputs, out) - self.evaluate(tf.compat.v1.variables_initializer(model.variables)) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - - loaded = keras_load.load(saved_model_dir) - self.evaluate(tf.compat.v1.variables_initializer(loaded.variables)) - self.assertAllClose(model.predict(f), loaded.predict(f)) - - def testSaveMultipleInputs(self): - class CustomLayer(keras.layers.Layer): - def call(self, *input_list): - self.add_loss(input_list[-2] * 2) - return sum( - input_list[:-1] - ) # The test's last input is a non-tensor arg - - class CustomModel(keras.Model): - def build(self, _): - self.layer = CustomLayer() - - def call(self, *inputs): - inputs = list(inputs) - inputs.append( - object() - ) # Test that the layer handles non-tensor inputs - return self.layer(*inputs) - - model = CustomModel() - inp = [ - tf.constant(i, shape=[1, 1], dtype=tf.float32) for i in range(1, 5) - ] - expected = model(*inp) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - loaded = keras_load.load(saved_model_dir) - actual = loaded(*inp) - self.assertAllEqual(self.evaluate(expected), self.evaluate(actual)) - - def testSaveMultipleInputsWithTraining(self): - class CustomModel(keras.Model): - def call(self, input_1, training, input_2): - if training: - return input_1 - else: - return input_2 - - inp1 = tf.constant(1.0, shape=[1]) - inp2 = tf.constant(2.0, shape=[1]) - - model = CustomModel() - self.assertEqual(self.evaluate(model(inp1, True, inp2)), 1.0) - self.assertEqual(self.evaluate(model(inp1, False, inp2)), 2.0) - - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - loaded = keras_load.load(saved_model_dir) - self.assertEqual(self.evaluate(loaded(inp1, True, inp2)), 1.0) - self.assertEqual(self.evaluate(loaded(inp1, False, inp2)), 2.0) - - def test_wrapped_layer_training(self): - class Custom(keras.models.Model): - def __init__(self): - super().__init__() - self.layer = LayerWithLearningPhase() - - def call(self, inputs): - return self.layer(inputs) - - model = Custom() - x = tf.constant(1.0, shape=[1, 1]) - expected_default = model(x) - expected_training_true = model(x, training=True) - expected_training_false = model(x, training=False) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - - def assert_loaded_model(loaded): - actual_default = loaded(x) - actual_training_true = loaded(x, training=True) - actual_training_false = loaded(x, training=False) - self.assertAllClose( - [ - expected_default, - expected_training_true, - expected_training_false, - ], - [actual_default, actual_training_true, actual_training_false], - ) - - assert_loaded_model(keras_load.load(saved_model_dir)) - assert_loaded_model(tf.saved_model.load(saved_model_dir)) - - @parameterized.named_parameters([("true", True), ("false", False)]) - def test_save_layer_autocast(self, autocast): - class CustomLayer(keras.layers.Layer): - def __init__(self): - super().__init__(autocast=autocast) - - class CustomModel(keras.Model): - def __init__(self): - super().__init__(autocast=autocast) - - def call(self, inputs): - return inputs - - x = tf.constant([3], dtype=tf.float64) - - x_in = keras.Input((1,)) - output = CustomLayer()(x_in) - output = CustomModel()(output) - model = keras.Model(inputs=x_in, outputs=output) - - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - loaded = keras_load.load(saved_model_dir) - self.assertEqual(autocast, loaded.layers[-1]._autocast) - self.assertEqual(autocast, loaded.layers[-2]._autocast) - self.assertEqual(self.evaluate(model(x)), self.evaluate(loaded(x))) - - -class TestSavedModelFormat(tf.test.TestCase): - def _save_model_dir(self, dirname="saved_model"): - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - return os.path.join(temp_dir, dirname) - - def test_load_with_custom_model_and_layer(self): - class CustomLayer(keras.layers.Layer): - def __call__(self, inputs): - return inputs - - class Model(keras.models.Model): - def __init__(self): - super().__init__() - self.layer = CustomLayer() # noqa: F821 - - @tf.function(input_signature=[tf.TensorSpec([None, 1])]) - def call(self, inputs): - return self.layer(inputs) - - model = Model() - inp = tf.constant([[1.0]]) - model(inp) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - - # Even if the `CustomLayer` is not provided in `custom_object_scope`, - # `Model` still has that reference. - with object_registration.custom_object_scope({"Model": Model}): - loaded = keras_load.load(saved_model_dir) - self.assertAllEqual([[1.0]], self.evaluate(loaded(inp))) - self.assertAllEqual([[1.0]], self.evaluate(loaded.layer(inp))) - self.assertIsInstance(loaded.layer, CustomLayer) - - # If `CustomLayer` is provided in `custom_object_scope`, it should of - # course use that custom class. - with object_registration.custom_object_scope( - {"Model": Model, "CustomLayer": CustomLayer} - ): - loaded = keras_load.load(saved_model_dir) - self.assertAllEqual([[1.0]], self.evaluate(loaded(inp))) - self.assertAllEqual([[1.0]], self.evaluate(loaded.layer(inp))) - self.assertIsInstance(loaded.layer, CustomLayer) - - def test_save_without_tracing(self): - class DoNotTrace(keras.layers.Layer): - def __init__(self): - super().__init__() - self.input_spec = keras.layers.InputSpec(shape=[None]) - self.built = True - - def call(self, inputs): - raise ValueError("I said do not trace") - - def get_config(self): - return {} - - @property - def _use_input_spec_as_call_signature(self): - return True - - root = keras.models.Sequential() - root.add(keras.layers.Input(shape=(3,))) - root.attached_layer = DoNotTrace() - - saved_model_dir = self._save_model_dir() - - # With the default settings, the call function is traced. - with self.assertRaisesRegex(ValueError, "do not trace"): - root.save(saved_model_dir, save_format="tf") - - # When saving the config only, the layer call function should not be not - # traced. - root.save(saved_model_dir, save_format="tf", save_traces=False) - loaded = tf.saved_model.load(saved_model_dir) - self.assertTrue(hasattr(loaded, "attached_layer")) - - # This should raise an error when loaded without the custom object - loaded = keras_load.load(saved_model_dir) - with self.assertRaisesRegex(ValueError, "Cannot call custom layer"): - loaded.attached_layer(tf.constant([1.0])) - - # Try loading with the custom objects - with object_registration.CustomObjectScope({"DoNotTrace": DoNotTrace}): - loaded = keras_load.load(saved_model_dir) - with self.assertRaisesRegex(ValueError, "I said do not trace"): - loaded.attached_layer(tf.constant([1.0])) - - def test_load_non_keras_saved_model(self): - model = test_utils.get_small_functional_mlp(1, 4, input_dim=3) - saved_model_dir = self._save_model_dir() - tf.saved_model.save(model, saved_model_dir) - with self.assertRaisesRegex( - ValueError, "Unable to create a Keras model" - ): - keras_load.load(saved_model_dir) - - def test_random_generator_custom_layer(self): - class CustomDropout(keras.layers.Layer): - def __init__(self, dropout_rate=0.1, **kwargs): - super().__init__(**kwargs) - self.dropout_rate = dropout_rate - self.dropout = keras.layers.Dropout( - dropout_rate, rng_type="stateful" - ) - - def call(self, inputs, training=False): - return self.dropout(inputs, training=training) - - root = keras.models.Sequential( - [keras.layers.Input(shape=(3,)), CustomDropout()] - ) - saved_model_dir = self._save_model_dir() - root.save(saved_model_dir, save_format="tf") - - loaded = keras_load.load(saved_model_dir) - - output = loaded(tf.random.uniform([1, 3]), training=True) - self.assertAllEqual([1, 3], output.shape) - - def test_random_generator_with_tracing(self): - # This test is to ensure we trace the training = True function first, - # otherwise tf.function will raise error about creating variables in the - # non-first call. - class LayerWithDropout(keras.layers.Layer): - def __init__(self, dropout_rate): - super().__init__() - self.dropout_rate = dropout_rate - self.dropout_layer = keras.layers.Dropout(self.dropout_rate) - - def call(self, inputs, training=None): - if not training: - return inputs - else: - return self.dropout_layer(inputs, training=training) - - root = keras.models.Sequential( - [keras.layers.Input(shape=(3,)), LayerWithDropout(0.1)] - ) - saved_model_dir = self._save_model_dir() - root.save(saved_model_dir, save_format="tf") - - loaded = keras_load.load(saved_model_dir) - - output = loaded(tf.random.uniform([1, 3]), training=True) - self.assertAllEqual([1, 3], output.shape) - - -class TestLayerCallTracing(tf.test.TestCase, parameterized.TestCase): - def test_functions_have_same_trace(self): - class Layer(keras.engine.base_layer.Layer): - def call(self, inputs): - return inputs - - def call2(self, inputs): - return inputs * 2 - - layer = Layer() - - call_collection = keras_save.LayerCallCollection(layer) - fn = call_collection.add_function(layer.call, "call", True) - fn2 = call_collection.add_function(layer.call2, "call2", True) - - with keras_save.tracing_scope(): - fn(np.ones((2, 3))) - fn(np.ones((4, 5))) - - self.assertLen( - fn.wrapped_call._list_all_concrete_functions_for_serialization(), 2 - ) - self.assertLen( - fn2.wrapped_call._list_all_concrete_functions_for_serialization(), 2 - ) - - # Check that the shapes are correct - self.assertEqual( - {(2, 3), (4, 5)}, - set( - tuple(c.structured_input_signature[0][0].shape.as_list()) - for c in fn2.wrapped_call._list_all_concrete_functions_for_serialization() # noqa: E501 - ), - ) - - def test_training_arg_replacement(self): - def assert_num_traces(layer_cls, training_keyword): - layer = layer_cls() - call_collection = keras_save.LayerCallCollection(layer) - fn = call_collection.add_function(layer.call, "call", True) - - with keras_save.tracing_scope(): - fn(np.ones((2, 3)), training=True) - self.assertLen( - fn.wrapped_call._list_all_concrete_functions_for_serialization(), # noqa: E501 - 2, - ) - with keras_save.tracing_scope(): - fn(np.ones((2, 4)), training=False) - self.assertLen( - fn.wrapped_call._list_all_concrete_functions_for_serialization(), # noqa: E501 - 4, - ) - - if training_keyword: - with keras_save.tracing_scope(): - fn(np.ones((2, 5)), True) - self.assertLen( - fn.wrapped_call._list_all_concrete_functions_for_serialization(), # noqa: E501 - 6, - ) - with keras_save.tracing_scope(): - fn(np.ones((2, 6))) - self.assertLen( - fn.wrapped_call._list_all_concrete_functions_for_serialization(), # noqa: E501 - 8, - ) - - class LayerWithTrainingKeyword(keras.engine.base_layer.Layer): - def call(self, inputs, training=False): - return inputs * training - - assert_num_traces(LayerWithTrainingKeyword, training_keyword=True) - - class LayerWithKwargs(keras.engine.base_layer.Layer): - def call(self, inputs, **kwargs): - return inputs * kwargs["training"] - - assert_num_traces(LayerWithKwargs, training_keyword=False) - - class LayerWithChildLayer(keras.engine.base_layer.Layer): - def __init__(self): - self.child = LayerWithKwargs() - super().__init__() - - def call(self, inputs): - return self.child(inputs) - - assert_num_traces(LayerWithChildLayer, training_keyword=False) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_maintains_losses(self): - layer = LayerWithLoss() - layer(np.ones((2, 3))) - previous_losses = layer.losses[:] - - call_collection = keras_save.LayerCallCollection(layer) - fn = call_collection.add_function(layer.call, "call", True) - fn(np.ones((2, 3))) - - self.assertAllEqual( - self.evaluate(previous_losses), self.evaluate(layer.losses) - ) - - -@object_registration.register_keras_serializable("Testing") -class CustomMeanMetric(keras.metrics.Mean): - def update_state(self, *args): - # Sometimes built-in metrics return an op in update_state. Custom - # metrics don't support returning ops, so wrap the update_state method - # while returning nothing. - super().update_state(*args) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class MetricTest(tf.test.TestCase, parameterized.TestCase): - def _save_model_dir(self, dirname="saved_model"): - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - return os.path.join(temp_dir, dirname) - - def generate_inputs(self, num_tensor_args, shape=(1, 5)): - return [ - np.random.uniform(0, 1, shape).astype("float32") - for _ in range(num_tensor_args) - ] - - def _test_metric_save_and_load( - self, - metric, - save_dir, - num_tensor_args, - shape=(1, 5), - test_sample_weight=True, - ): - with self.cached_session(): - model = test_utils.get_model_from_layers( - [keras.layers.Layer()], input_shape=[3], model_type="functional" - ) - model.saved_metric = metric - model.save(save_dir, save_format="tf") - loaded_model = keras_load.load(save_dir) - loaded = loaded_model.saved_metric - self.evaluate([v.initializer for v in loaded.variables]) - self.assertEqual(metric.name, loaded.name) - self.assertEqual(metric.dtype, loaded.dtype) - - inputs = self.generate_inputs(num_tensor_args, shape) - actual = self.evaluate(metric(*inputs)) - self.assertAllClose(actual, loaded(*inputs)) - self.assertAllClose(metric.variables, loaded.variables) - - # Test with separate calls to update state and result. - inputs = self.generate_inputs(num_tensor_args, shape) - self.evaluate(metric.update_state(*inputs)) - self.evaluate(loaded.update_state(*inputs)) - actual = self.evaluate(metric.result()) - self.assertAllClose(actual, loaded.result()) - - if test_sample_weight: - # Test with sample weights input. - inputs = self.generate_inputs(num_tensor_args, shape) - sample_weight = self.generate_inputs(1, [])[0] - inputs.append(sample_weight) - - actual = self.evaluate(metric(*inputs)) - self.assertAllClose(actual, loaded(*inputs)) - return loaded - - @parameterized.named_parameters( - [ - ("mean", keras.metrics.Mean, 1, (1, 5)), - ("false_positives", keras.metrics.FalsePositives, 2, (1, 5)), - ( - "precision_at_top_k", - keras.metrics.Precision, - 2, - (2, 3, 4), - {"top_k": 2, "class_id": 1}, - ), - ( - "precision_at_recall", - keras.metrics.PrecisionAtRecall, - 2, - (1, 5), - {"recall": 0.8}, - ), - ("auc", keras.metrics.AUC, 2, (1, 5), {"multi_label": True}), - ("cosine_similarity", keras.metrics.CosineSimilarity, 2, (2, 3, 1)), - ] - ) - def test_metric(self, metric_cls, num_tensor_args, shape, init_kwargs=None): - init_kwargs = init_kwargs or {} - metric = metric_cls(**init_kwargs) - metric(*self.generate_inputs(num_tensor_args, shape)) - self.evaluate([v.initializer for v in metric.variables]) - loaded = self._test_metric_save_and_load( - metric, self._save_model_dir(), num_tensor_args, shape - ) - self.assertEqual(type(loaded), type(metric)) - - @parameterized.named_parameters( - [ - ("mean", keras.metrics.Mean, 1, False), - ("auc", keras.metrics.AUC, 2, False), - ("mean_tensor", keras.metrics.MeanTensor, 1, True), - ] - ) - def test_custom_metric(self, base_cls, num_tensor_args, requires_build): - class CustomMetric(base_cls): - def update_state(self, *args): - # Sometimes built-in metrics return an op in update_state. - # Custom metrics don't support returning ops, so wrap the - # update_state method while returning nothing. - super().update_state(*args) - - with self.cached_session(): - metric = CustomMetric() - save_dir = self._save_model_dir("first_save") - - if requires_build: - metric(*self.generate_inputs(num_tensor_args)) - - self.evaluate([v.initializer for v in metric.variables]) - - with self.assertRaisesRegex( - ValueError, "Unable to restore custom object" - ): - self._test_metric_save_and_load( - metric, save_dir, num_tensor_args - ) - with object_registration.CustomObjectScope( - {"CustomMetric": CustomMetric} - ): - loaded = self._test_metric_save_and_load( - metric, save_dir, num_tensor_args, test_sample_weight=False - ) - - self._test_metric_save_and_load( - loaded, - self._save_model_dir("second_save"), - num_tensor_args, - test_sample_weight=False, - ) - - def test_registered_custom_metric(self): - - with self.cached_session(): - metric = CustomMeanMetric() - save_dir = self._save_model_dir("first_save") - self.evaluate([v.initializer for v in metric.variables]) - loaded = self._test_metric_save_and_load( - metric, save_dir, num_tensor_args=1, test_sample_weight=False - ) - - self._test_metric_save_and_load( - loaded, - self._save_model_dir("second_save"), - num_tensor_args=1, - test_sample_weight=False, - ) - - def test_custom_metric_wrapped_call(self): - class NegativeMean(keras.metrics.Mean): - @tf.function(input_signature=[tf.TensorSpec(None, tf.float32)]) - def update_state(self, value): - super().update_state(-value) - - metric = NegativeMean() - self.evaluate([v.initializer for v in metric.variables]) - with object_registration.CustomObjectScope( - {"NegativeMean": NegativeMean} - ): - self._test_metric_save_and_load( - metric, self._save_model_dir(), 1, test_sample_weight=False - ) - - @test_combinations.run_with_all_model_types - def test_custom_metric_model(self): - # TODO(b/134519980): Issue with `model.fit` if the model call function - # uses a `tf.function` in graph mode. - if not tf.executing_eagerly(): - return - - x = np.random.random((1, 3)) - y = np.random.random((1, 4)) - - class CustomMetric(keras.metrics.MeanSquaredError): - pass - - def zero_metric(y_true, y_pred): - del y_true, y_pred - return 0 - - model = test_utils.get_small_mlp(1, 4, input_dim=3) - model.compile( - loss="mse", optimizer="SGD", metrics=[CustomMetric(), zero_metric] - ) - model.fit(x, y) - saved_model_dir = self._save_model_dir() - model.save(saved_model_dir, save_format="tf") - - with self.assertRaisesRegex(ValueError, "custom_objects"): - keras_load.load(saved_model_dir) - - with object_registration.CustomObjectScope( - {"CustomMetric": CustomMetric, "zero_metric": zero_metric} - ): - loaded = keras_load.load(saved_model_dir) - - self.evaluate([v.initializer for v in loaded.variables]) - loaded.fit(x, y) - - -class TestUpdateMetadata(tf.test.TestCase): - def testAddFullSaveSpec(self): - save_spec = tf.TensorSpec([3, 5], dtype=tf.int32) - node_metadata = json_utils.Encoder().encode({"save_spec": save_spec}) - - metadata = saved_metadata_pb2.SavedMetadata() - metadata.nodes.add( - version=versions_pb2.VersionDef( - producer=1, min_consumer=1, bad_consumers=[] - ), - identifier="_tf_keras_model", - metadata=node_metadata, - ) - - new_metadata = keras_load._update_to_current_version(metadata) - node_metadata = json_utils.decode(new_metadata.nodes[0].metadata) - expected_full_spec = ([tf.TensorSpec(shape=(3, 5), dtype=tf.int32)], {}) - self.assertAllEqual( - expected_full_spec, node_metadata.get("full_save_spec") - ) - - -if __name__ == "__main__": - with saved_model_utils.keras_option_scope( - save_traces=False, in_tf_saved_model_scope=True - ): - tf.test.main() diff --git a/keras/saving/legacy/saved_model/serialized_attributes.py b/keras/saving/legacy/saved_model/serialized_attributes.py deleted file mode 100644 index 6780ad669b9..00000000000 --- a/keras/saving/legacy/saved_model/serialized_attributes.py +++ /dev/null @@ -1,376 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Helper classes that list&validate all attributes to serialize to SavedModel. -""" - -import tensorflow.compat.v2 as tf - -from keras.saving.legacy.saved_model import constants -from keras.saving.legacy.saved_model import order_preserving_set as ops -from keras.saving.legacy.saved_model import save_impl -from keras.utils.generic_utils import LazyLoader - -# TODO(b/134426265): Switch back to single-quotes to match the rest of the file -# once the issue with copybara is fixed. - -base_layer = LazyLoader("base_layer", globals(), "keras.engine.base_layer") -training_lib = LazyLoader("training_lib", globals(), "keras.engine.training") -metrics = LazyLoader("metrics", globals(), "keras.metrics") -base_rnn = LazyLoader("base_rnn", globals(), "keras.layers.rnn.base_rnn") - - -class SerializedAttributes: - """Class that tracks and validates all serialization attributes. - - Keras models contain many Python-defined components. For example, the - trainable_variable property lists the model's trainable variables by - recursively retrieving the trainable variables from each of the child - layers. Another example is model.call, a python function that calls child - layers and adds ops to the backend graph. - - Only Tensorflow checkpointable objects and functions can be serialized to - SavedModel. Serializing a Keras model as-is results in a checkpointable - object that does not resemble a Keras model at all. Thus, extra - checkpointable objects and functions must be created during serialization. - - **Defining new serialized attributes** - Child classes should be defined using: - SerializedAttributes.with_attributes( - 'name', checkpointable_objects=[...], - functions=[...], copy_from=[...]) - This class is used to cache generated checkpointable objects and functions, - ensuring that new objects and functions are generated a single time. - - **Usage during serialization** - Each Layer/Model object should have a corresponding instance of - SerializedAttributes. Create a new instance by calling - `SerializedAttributes.new(obj)`. Objects and functions may be saved using - `.set_and_validate_checkpointable_objects`/`.set_and_and_validate_functions`. - The properties `.checkpointable_objects` and `.functions` returns the cached - values. - - **Adding/changing attributes to save to SavedModel** - 1. Change the call to `SerializedAttributes.with_attributes` in the correct - class: - - CommonEndpoints: Base attributes to be added during serialization. If - these attributes are present in a Trackable object, it can be - deserialized to a Keras Model. - - LayerAttributes: Attributes to serialize for Layer objects. - - ModelAttributes: Attributes to serialize for Model objects. - 2. Update class docstring - 3. Update arguments to any calls to `set_and_validate_*`. For example, if - `call_raw_tensors` is added to the ModelAttributes function list, then - a `call_raw_tensors` function should be passed to - `set_and_validate_functions`. - - **Common endpoints vs other attributes** - Only common endpoints are attached directly to the root object. - Keras-specific attributes are saved to a separate trackable object with the - name "keras_api". The number of objects attached to the root is limited - because any naming conflicts will cause user code to break. - - Another reason is that this will only affect users who call - `tf.saved_model.load` instead of `tf.keras.models.load_model`. These are - advanced users who are likely to have defined their own tf.functions and - trackable objects. The added Keras-specific attributes are kept out of the - way in the "keras_api" namespace. - - Properties defined in this class may be used to filter out keras-specific - attributes: - - `functions_to_serialize`: Returns dict of functions to attach to the root - object. - - `checkpointable_objects_to_serialize`: Returns dict of objects to attach - to the root object (including separate trackable object containing - keras-specific attributes) - - All changes to the serialized attributes must be backwards-compatible, so - attributes should not be removed or modified without sufficient - justification. - """ - - @staticmethod - def with_attributes( - name, checkpointable_objects=None, functions=None, copy_from=None - ): - """Creates a subclass with all attributes as specified in the arguments. - - Args: - name: Name of subclass - checkpointable_objects: List of checkpointable objects to be - serialized in the SavedModel. - functions: List of functions to be serialized in the SavedModel. - copy_from: List of other SerializedAttributes subclasses. The returned - class will copy checkpoint objects/functions from each subclass. - - Returns: - Child class with attributes as defined in the `checkpointable_objects` - and `functions` lists. - """ - checkpointable_objects = checkpointable_objects or [] - functions = functions or [] - - if copy_from is not None: - for cls in copy_from: - checkpointable_objects.extend(cls.all_checkpointable_objects) - functions.extend(cls.all_functions) - - # OrderPreservingSets are used here to guarantee serialization - # determinism of Keras objects. - classdict = { - "all_checkpointable_objects": ops.OrderPreservingSet( - checkpointable_objects - ), - "all_functions": ops.OrderPreservingSet(functions), - } - return type(name, (SerializedAttributes,), classdict) - - @staticmethod - def new(obj): - """Returns a new SerializedAttribute object.""" - if isinstance(obj, training_lib.Model): - return ModelAttributes() - elif isinstance(obj, metrics.Metric): - return MetricAttributes() - elif isinstance(obj, base_rnn.RNN): - return RNNAttributes() - elif isinstance(obj, base_layer.Layer): - return LayerAttributes() - else: - raise TypeError( - "Internal error during serialization. Expected Keras " - f"Layer object. Received: {obj} " - f"(of type {type(obj)})" - ) - - def __init__(self): - self._object_dict = {} - self._function_dict = {} - self._keras_trackable = tf.__internal__.tracking.AutoTrackable() - - @property - def functions(self): - """Returns dictionary of all functions.""" - return { - key: value - for key, value in self._function_dict.items() - if value is not None - } - - @property - def checkpointable_objects(self): - """Returns dictionary of all checkpointable objects.""" - return { - key: value - for key, value in self._object_dict.items() - if value is not None - } - - @property - def functions_to_serialize(self): - """Returns functions to attach to the root object during - serialization.""" - functions = {} - for key, v in self.functions.items(): - if key in CommonEndpoints.all_functions: - functions[key] = ( - v.wrapped_call if isinstance(v, save_impl.LayerCall) else v - ) - return functions - - @property - def objects_to_serialize(self): - """Returns objects to attach to the root object during serialization.""" - objects = { - key: value - for key, value in self.checkpointable_objects.items() - if key in CommonEndpoints.all_checkpointable_objects - } - objects[constants.KERAS_ATTR] = self._keras_trackable - return objects - - def set_and_validate_functions(self, function_dict): - """Saves function dictionary, and validates dictionary values.""" - for key in self.all_functions: - if key in function_dict: - if function_dict[ - key - # Not all functions are required - ] is not None and not isinstance( - function_dict[key], - ( - tf.__internal__.function.Function, - tf.types.experimental.ConcreteFunction, - save_impl.LayerCall, - ), - ): - raise ValueError( - "The tf.function dictionary contained a non-function " - f"object: {function_dict[key]} (for key {key}). Only " - "tf.function instances or ConcreteFunction instances " - "should be passed." - ) - fn = function_dict[key] - self._function_dict[key] = fn - - # Extract TensorFlow `Function` from LayerCall. - tf_fn = ( - fn.wrapped_call - if isinstance(fn, save_impl.LayerCall) - else fn - ) - setattr(self._keras_trackable, key, tf_fn) - else: - raise ValueError( - f"Function {key} missing from serialized " - "tf.function dictionary." - ) - return self.functions - - def set_and_validate_objects(self, object_dict): - """Saves objects to a dictionary, and validates the values.""" - for key in self.all_checkpointable_objects: - if key in object_dict: - if not isinstance( - object_dict[key], tf.__internal__.tracking.Trackable - ): - raise ValueError( - "The object dictionary contained a non-trackable " - f"object: {object_dict[key]} (for key {key}). " - "Only trackable objects are " - "allowed, such as Keras layers/models or " - "tf.Module instances." - ) - self._object_dict[key] = object_dict[key] - setattr(self._keras_trackable, key, object_dict[key]) - else: - raise ValueError( - f"Object {key} missing from serialized object dictionary." - ) - return self.checkpointable_objects - - -class CommonEndpoints( - SerializedAttributes.with_attributes( - "CommonEndpoints", - checkpointable_objects=[ - "variables", - "trainable_variables", - "regularization_losses", - ], - functions=[ - "__call__", - "call_and_return_all_conditional_losses", - "_default_save_signature", - ], - ) -): - """Common endpoints shared by all models loadable by Keras. - - List of all attributes: - variables: List of all variables in the model and its sublayers. - trainable_variables: List of all trainable variables in the model and its - sublayers. - regularization_losses: List of all unconditional losses (losses not - dependent on the inputs) in the model and its sublayers. - __call__: Function that takes inputs and returns the outputs of the model - call function. - call_and_return_all_conditional_losses: Function that returns a tuple of - (call function outputs, list of all losses that depend on the inputs). - _default_save_signature: Traced model call function. This is only included - if the top level exported object is a Keras model. - """ - - -class LayerAttributes( - SerializedAttributes.with_attributes( - "LayerAttributes", - checkpointable_objects=[ - "non_trainable_variables", - "layers", - "metrics", - "layer_regularization_losses", - "layer_metrics", - ], - functions=[ - "call_and_return_conditional_losses", - "activity_regularizer_fn", - ], - copy_from=[CommonEndpoints], - ) -): - """Layer checkpointable objects + functions saved to the SavedModel. - - List of all attributes: - All attributes from CommonEndpoints - non_trainable_variables: List of non-trainable variables in the layer and - its sublayers. - layers: List of all sublayers. - metrics: List of all metrics in the layer and its sublayers. - call_and_return_conditional_losses: Function that takes inputs and returns - a tuple of (outputs of the call function, list of input-dependent - losses). The list of losses excludes the activity regularizer function, - which is separate to allow the deserialized Layer object to define a - different activity regularizer. - activity_regularizer_fn: Callable that returns the activity regularizer - loss - layer_regularization_losses: List of losses owned only by this layer. - layer_metrics: List of metrics owned by this layer. - """ - - -class ModelAttributes( - SerializedAttributes.with_attributes( - "ModelAttributes", copy_from=[LayerAttributes] - ) -): - """Model checkpointable objects + functions saved to the SavedModel. - - List of all attributes: - All attributes from LayerAttributes (including CommonEndpoints) - """ - - # TODO(kathywu): Add attributes `compile_losses` and `compile_metrics`, - # which list all losses and metrics defined by `model.compile`. - - -class MetricAttributes( - SerializedAttributes.with_attributes( - "MetricAttributes", - checkpointable_objects=["variables"], - functions=[], - ) -): - """Attributes that are added to Metric objects when saved to SavedModel. - - List of all attributes: - variables: list of all variables - """ - - pass - - -class RNNAttributes( - SerializedAttributes.with_attributes( - "RNNAttributes", - checkpointable_objects=["states"], - copy_from=[LayerAttributes], - ) -): - """RNN checkpointable objects + functions that are saved to the SavedModel. - - List of all attributes: - All attributes from LayerAttributes (including CommonEndpoints) - states: List of state variables - """ diff --git a/keras/saving/legacy/saved_model/utils.py b/keras/saving/legacy/saved_model/utils.py deleted file mode 100644 index 62c49f7785b..00000000000 --- a/keras/saving/legacy/saved_model/utils.py +++ /dev/null @@ -1,289 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utility functions shared between SavedModel saving/loading -implementations.""" - -import copy -import itertools -import threading -import types - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer_utils -from keras.utils import control_flow_util -from keras.utils import tf_contextlib -from keras.utils.generic_utils import LazyLoader -from keras.utils.layer_utils import CallFunctionSpec - -training_lib = LazyLoader("training_lib", globals(), "keras.engine.training") - - -def use_wrapped_call( - layer, call_fn, call_spec, default_training_value=None, return_method=False -): - """Creates fn that adds losses returned by call_fn & returns the outputs. - - Args: - layer: A Keras layer object - call_fn: tf.function that takes layer inputs (and possibly a training - arg), and returns a tuple of (outputs, list of losses). - call_spec: The `CallFunctionSpec` for the layer's call function. - default_training_value: Default value of the training kwarg. If `None`, - the default is `tf.keras.backend.learning_phase()`. - return_method: Whether to return a method bound to the layer. - - Returns: - function that calls call_fn and returns the outputs. Losses returned by - call_fn are added to the layer losses. - """ - expects_training_arg = layer_uses_training_bool(layer) - - fn, arg_spec = maybe_add_training_arg( - call_spec, call_fn, expects_training_arg, default_training_value - ) - - def return_outputs_and_add_losses(*args, **kwargs): - """Returns the outputs from the layer call function, and adds the - losses.""" - if return_method: - args = args[1:] - - outputs, losses = fn(*args, **kwargs) - layer.add_loss(losses) - - # TODO(kathywu): This is a temporary hack. When a network of layers is - # revived from SavedModel, only the top-level layer will have losses. - # This causes issues in eager mode because the child layers may have - # graph losses (thus model.losses returns a mix of Eager and graph - # tensors). To fix this, whenever eager losses are added to one layer, - # add eager losses to all child layers. This causes `.losses` to only - # return eager losses. - - if tf.executing_eagerly(): - for i in layer._flatten_layers(): - if i is not layer: - i._eager_losses = [ - base_layer_utils.REVIVED_LOSS_PLACEHOLDER - ] - - return outputs - - decorated = tf.__internal__.decorator.make_decorator( - target=call_fn, - decorator_func=return_outputs_and_add_losses, - decorator_argspec=arg_spec, - ) - - if return_method: - return types.MethodType(decorated, layer) - else: - return decorated - - -def layer_uses_training_bool(layer): - """Returns whether this layer or any of its children uses the training - arg.""" - if layer._expects_training_arg: - return True - visited = {layer} - to_visit = list_all_layers(layer) - while to_visit: - layer = to_visit.pop() - if layer in visited: - continue - if getattr(layer, "_expects_training_arg", True): - return True - visited.add(layer) - to_visit.extend(list_all_layers(layer)) - return False - - -def list_all_layers(obj): - if isinstance(obj, training_lib.Model): - # Handle special case of Sequential, which doesn't return - # the `Input` layer. - return obj.layers - else: - return list(obj._flatten_layers(include_self=False, recursive=False)) - - -def list_all_layers_and_sublayers(obj): - s = set([obj]) - s.update( - itertools.chain.from_iterable( - list_all_layers_and_sublayers(layer) - for layer in list_all_layers(obj) - ) - ) - return s - - -def maybe_add_training_arg( - call_spec, wrapped_call, expects_training_arg, default_training_value -): - """Decorate call and optionally adds training argument. - - If a layer expects a training argument, this function ensures that - 'training' is present in the layer args or kwonly args, with the default - training value. - - Args: - call_spec: CallFunctionSpec of the layer. - wrapped_call: Wrapped call function. - expects_training_arg: Whether to include 'training' argument. - default_training_value: Default value of the training kwarg to include in - the arg spec. If `None`, the default is - `tf.keras.backend.learning_phase()`. - - Returns: - Tuple of ( - function that calls `wrapped_call` and sets the training arg, - Argspec of returned function or `None` if the argspec is unchanged) - """ - if not expects_training_arg: - return wrapped_call, None - - arg_spec = set_training_arg_spec( - call_spec.full_argspec, default_training_value - ) - call_spec = CallFunctionSpec(arg_spec) - - def wrap_with_training_arg(*args, **kwargs): - """Wrap the `wrapped_call` function, and set training argument.""" - try: - training = call_spec.get_arg_value( - "training", args, kwargs, inputs_in_args=True - ) - except KeyError: - training = None - - if training is None: - training = ( - default_training_value - or base_layer_utils.call_context().training - or backend.learning_phase() - ) - - args = list(args) - kwargs = kwargs.copy() - - def replace_training_and_call(training): - new_args, new_kwargs = call_spec.set_arg_value( - "training", training, args, kwargs, inputs_in_args=True - ) - return wrapped_call(*new_args, **new_kwargs) - - return control_flow_util.smart_cond( - training, - lambda: replace_training_and_call(True), - lambda: replace_training_and_call(False), - ) - - return wrap_with_training_arg, arg_spec - - -def set_training_arg_spec(arg_spec, default_training_value): - """Set `training=DEFAULT` argument in an ArgSpec.""" - if "training" in arg_spec.args: - # If `training` is already in the args list, try to set the default - # value. - index = arg_spec.args.index("training") - training_default_index = len(arg_spec.args) - index - defaults = ( - list(arg_spec.defaults) if arg_spec.defaults is not None else [] - ) - if ( - arg_spec.defaults - and len(arg_spec.defaults) >= training_default_index - and defaults[-training_default_index] is None - ): - defaults[-training_default_index] = default_training_value - return arg_spec._replace(defaults=defaults) - elif "training" not in arg_spec.kwonlyargs: - kwonlyargs = arg_spec.kwonlyargs + ["training"] - kwonlydefaults = copy.copy(arg_spec.kwonlydefaults) or {} - kwonlydefaults["training"] = default_training_value - return arg_spec._replace( - kwonlyargs=kwonlyargs, kwonlydefaults=kwonlydefaults - ) - - return arg_spec - - -class SaveOptionsContext(threading.local): - def __init__(self): - super().__init__() - self.save_traces = True - self.in_tf_saved_model_scope = False - - -_save_options_context = SaveOptionsContext() - - -@tf_contextlib.contextmanager -def keras_option_scope(save_traces, in_tf_saved_model_scope=True): - save_traces_previous_value = _save_options_context.save_traces - in_scope_previous_value = _save_options_context.in_tf_saved_model_scope - try: - _save_options_context.save_traces = save_traces - _save_options_context.in_tf_saved_model_scope = in_tf_saved_model_scope - yield - finally: - _save_options_context.save_traces = save_traces_previous_value - _save_options_context.in_tf_saved_model_scope = in_scope_previous_value - - -def should_save_traces(): - """Whether to trace layer functions-can be disabled in the save_traces - arg.""" - return _save_options_context.save_traces - - -def in_tf_saved_model_scope(): - return _save_options_context.in_tf_saved_model_scope - - -@tf_contextlib.contextmanager -def no_automatic_dependency_tracking_scope(obj): - """Context that disables automatic dependency tracking when assigning attrs. - - Objects that inherit from Autotrackable automatically creates dependencies - to trackable objects through attribute assignments, and wraps data - structures (lists or dicts) with trackable classes. This scope may be used - to temporarily disable this behavior. This works similar to the decorator - `no_automatic_dependency_tracking`. - - Example usage: - ``` - model = tf.keras.Model() - model.arr1 = [] # Creates a ListWrapper object - with no_automatic_dependency_tracking_scope(model): - model.arr2 = [] # Creates a regular, untracked python list - ``` - - Args: - obj: A trackable object. - - Yields: - a scope in which the object doesn't track dependencies. - """ - previous_value = getattr(obj, "_setattr_tracking", True) - obj._setattr_tracking = False - try: - yield - finally: - obj._setattr_tracking = previous_value diff --git a/keras/saving/legacy/saving_utils.py b/keras/saving/legacy/saving_utils.py deleted file mode 100644 index 3522f2214be..00000000000 --- a/keras/saving/legacy/saving_utils.py +++ /dev/null @@ -1,371 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utils related to keras model saving.""" - -import copy -import os - -import tensorflow.compat.v2 as tf - -import keras -from keras import backend -from keras import losses -from keras import optimizers -from keras.engine import base_layer_utils -from keras.optimizers import optimizer_v1 -from keras.saving.legacy import serialization -from keras.utils import version_utils -from keras.utils.io_utils import ask_to_proceed_with_overwrite - -# isort: off -from tensorflow.python.platform import tf_logging as logging - - -def extract_model_metrics(model): - """Convert metrics from a Keras model `compile` API to dictionary. - - This is used for converting Keras models to Estimators and SavedModels. - - Args: - model: A `tf.keras.Model` object. - - Returns: - Dictionary mapping metric names to metric instances. May return `None` if - the model does not contain any metrics. - """ - if getattr(model, "_compile_metrics", None): - # TODO(psv/kathywu): use this implementation in model to estimator flow. - # We are not using model.metrics here because we want to exclude the - # metrics added using `add_metric` API. - return {m.name: m for m in model._compile_metric_functions} - return None - - -def model_call_inputs(model, keep_original_batch_size=False): - """Inspect model to get its input signature. - - The model's input signature is a list with a single (possibly-nested) - object. This is due to the Keras-enforced restriction that tensor inputs - must be passed in as the first argument. - - For example, a model with input {'feature1': , 'feature2': } - will have input signature: - [{'feature1': TensorSpec, 'feature2': TensorSpec}] - - Args: - model: Keras Model object. - keep_original_batch_size: A boolean indicating whether we want to keep - using the original batch size or set it to None. Default is `False`, - which means that the batch dim of the returned input signature will - always be set to `None`. - - Returns: - A tuple containing `(args, kwargs)` TensorSpecs of the model call function - inputs. - `kwargs` does not contain the `training` argument. - """ - input_specs = model.save_spec(dynamic_batch=not keep_original_batch_size) - if input_specs is None: - return None, None - input_specs = _enforce_names_consistency(input_specs) - return input_specs - - -def raise_model_input_error(model): - if isinstance(model, keras.models.Sequential): - raise ValueError( - f"Model {model} cannot be saved because the input shape is not " - "available. Please specify an input shape either by calling " - "`build(input_shape)` directly, or by calling the model on actual " - "data using `Model()`, `Model.fit()`, or `Model.predict()`." - ) - - # If the model is not a `Sequential`, it is intended to be a subclassed - # model. - raise ValueError( - f"Model {model} cannot be saved either because the input shape is not " - "available or because the forward pass of the model is not defined." - "To define a forward pass, please override `Model.call()`. To specify " - "an input shape, either call `build(input_shape)` directly, or call " - "the model on actual data using `Model()`, `Model.fit()`, or " - "`Model.predict()`. If you have a custom training step, please make " - "sure to invoke the forward pass in train step through " - "`Model.__call__`, i.e. `model(inputs)`, as opposed to `model.call()`." - ) - - -def trace_model_call(model, input_signature=None): - """Trace the model call to create a tf.function for exporting a Keras model. - - Args: - model: A Keras model. - input_signature: optional, a list of tf.TensorSpec objects specifying the - inputs to the model. - - Returns: - A tf.function wrapping the model's call function with input signatures - set. - - Raises: - ValueError: if input signature cannot be inferred from the model. - """ - if input_signature is None: - if isinstance(model.call, tf.__internal__.function.Function): - input_signature = model.call.input_signature - - if input_signature: - model_args = input_signature - model_kwargs = {} - else: - model_args, model_kwargs = model_call_inputs(model) - - if model_args is None: - raise_model_input_error(model) - - @tf.function - def _wrapped_model(*args, **kwargs): - """A concrete tf.function that wraps the model's call function.""" - (args, kwargs,) = model._call_spec.set_arg_value( - "training", False, args, kwargs, inputs_in_args=True - ) - - with base_layer_utils.call_context().enter( - model, inputs=None, build_graph=False, training=False, saving=True - ): - outputs = model(*args, **kwargs) - - # Outputs always has to be a flat dict. - output_names = model.output_names # Functional Model. - if output_names is None: # Subclassed Model. - from keras.engine import compile_utils - - output_names = compile_utils.create_pseudo_output_names(outputs) - outputs = tf.nest.flatten(outputs) - return {name: output for name, output in zip(output_names, outputs)} - - return _wrapped_model.get_concrete_function(*model_args, **model_kwargs) - - -def model_metadata(model, include_optimizer=True, require_config=True): - """Returns a dictionary containing the model metadata.""" - from keras import __version__ as keras_version - from keras.optimizers.legacy import optimizer_v2 - - model_config = {"class_name": model.__class__.__name__} - try: - model_config["config"] = model.get_config() - except NotImplementedError as e: - if require_config: - raise e - - metadata = dict( - keras_version=str(keras_version), - backend=backend.backend(), - model_config=model_config, - ) - if model.optimizer and include_optimizer: - if isinstance(model.optimizer, optimizer_v1.TFOptimizer): - logging.warning( - "TensorFlow optimizers do not " - "make it possible to access " - "optimizer attributes or optimizer state " - "after instantiation. " - "As a result, we cannot save the optimizer " - "as part of the model save file. " - "You will have to compile your model again after loading it. " - "Prefer using a Keras optimizer instead " - "(see keras.io/optimizers)." - ) - elif model._compile_was_called: - training_config = model._get_compile_args(user_metrics=False) - training_config.pop("optimizer", None) # Handled separately. - metadata["training_config"] = _serialize_nested_config( - training_config - ) - if isinstance(model.optimizer, optimizer_v2.RestoredOptimizer): - raise NotImplementedError( - "Optimizers loaded from a SavedModel cannot be saved. " - "If you are calling `model.save` or " - "`tf.keras.models.save_model`, " - "please set the `include_optimizer` option to `False`. For " - "`tf.saved_model.save`, " - "delete the optimizer from the model." - ) - else: - optimizer_config = { - "class_name": keras.utils.get_registered_name( - model.optimizer.__class__ - ), - "config": model.optimizer.get_config(), - } - metadata["training_config"]["optimizer_config"] = optimizer_config - return metadata - - -def should_overwrite(filepath, overwrite): - """Returns whether the filepath should be overwritten.""" - # If file exists and should not be overwritten. - if not overwrite and os.path.isfile(filepath): - return ask_to_proceed_with_overwrite(filepath) - return True - - -def compile_args_from_training_config(training_config, custom_objects=None): - """Return model.compile arguments from training config.""" - if custom_objects is None: - custom_objects = {} - - with keras.utils.CustomObjectScope(custom_objects): - optimizer_config = training_config["optimizer_config"] - optimizer = optimizers.deserialize(optimizer_config) - - # Recover losses. - loss = None - loss_config = training_config.get("loss", None) - if loss_config is not None: - loss = _deserialize_nested_config(losses.deserialize, loss_config) - - # Recover metrics. - metrics = None - metrics_config = training_config.get("metrics", None) - if metrics_config is not None: - metrics = _deserialize_nested_config( - _deserialize_metric, metrics_config - ) - - # Recover weighted metrics. - weighted_metrics = None - weighted_metrics_config = training_config.get("weighted_metrics", None) - if weighted_metrics_config is not None: - weighted_metrics = _deserialize_nested_config( - _deserialize_metric, weighted_metrics_config - ) - - sample_weight_mode = ( - training_config["sample_weight_mode"] - if hasattr(training_config, "sample_weight_mode") - else None - ) - loss_weights = training_config["loss_weights"] - - return dict( - optimizer=optimizer, - loss=loss, - metrics=metrics, - weighted_metrics=weighted_metrics, - loss_weights=loss_weights, - sample_weight_mode=sample_weight_mode, - ) - - -def _deserialize_nested_config(deserialize_fn, config): - """Deserializes arbitrary Keras `config` using `deserialize_fn`.""" - - def _is_single_object(obj): - if isinstance(obj, dict) and "class_name" in obj: - return True # Serialized Keras object. - if isinstance(obj, str): - return True # Serialized function or string. - return False - - if config is None: - return None - if _is_single_object(config): - return deserialize_fn(config) - elif isinstance(config, dict): - return { - k: _deserialize_nested_config(deserialize_fn, v) - for k, v in config.items() - } - elif isinstance(config, (tuple, list)): - return [ - _deserialize_nested_config(deserialize_fn, obj) for obj in config - ] - - raise ValueError( - "Saved configuration not understood. Configuration should be a " - f"dictionary, string, tuple or list. Received: config={config}." - ) - - -def _serialize_nested_config(config): - """Serialized a nested structure of Keras objects.""" - - def _serialize_fn(obj): - if callable(obj): - return serialization.serialize_keras_object(obj) - return obj - - return tf.nest.map_structure(_serialize_fn, config) - - -def _deserialize_metric(metric_config): - """Deserialize metrics, leaving special strings untouched.""" - from keras import metrics as metrics_module - - if metric_config in ["accuracy", "acc", "crossentropy", "ce"]: - # Do not deserialize accuracy and cross-entropy strings as we have - # special case handling for these in compile, based on model output - # shape. - return metric_config - return metrics_module.deserialize(metric_config) - - -def _enforce_names_consistency(specs): - """Enforces that either all specs have names or none do.""" - - def _has_name(spec): - return spec is None or (hasattr(spec, "name") and spec.name is not None) - - def _clear_name(spec): - spec = copy.deepcopy(spec) - if hasattr(spec, "name"): - spec._name = None - return spec - - flat_specs = tf.nest.flatten(specs) - name_inconsistency = any(_has_name(s) for s in flat_specs) and not all( - _has_name(s) for s in flat_specs - ) - - if name_inconsistency: - specs = tf.nest.map_structure(_clear_name, specs) - return specs - - -def try_build_compiled_arguments(model): - if ( - not version_utils.is_v1_layer_or_model(model) - and model.outputs is not None - ): - try: - if not model.compiled_loss.built: - model.compiled_loss.build(model.outputs) - if not model.compiled_metrics.built: - model.compiled_metrics.build(model.outputs, model.outputs) - except: # noqa: E722 - logging.warning( - "Compiled the loaded model, but the compiled metrics have " - "yet to be built. `model.compile_metrics` will be empty " - "until you train or evaluate the model." - ) - - -def is_hdf5_filepath(filepath): - return ( - filepath.endswith(".h5") - or filepath.endswith(".keras") - or filepath.endswith(".hdf5") - ) diff --git a/keras/saving/legacy/saving_utils_test.py b/keras/saving/legacy/saving_utils_test.py deleted file mode 100644 index 3a34783f45e..00000000000 --- a/keras/saving/legacy/saving_utils_test.py +++ /dev/null @@ -1,553 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for saving utility functions.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras import backend -from keras.engine import sequential -from keras.feature_column import dense_features -from keras.optimizers.legacy import gradient_descent -from keras.saving.legacy import saving_utils -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class TraceModelCallTest(test_combinations.TestCase): - def _assert_all_close(self, expected, actual): - if not tf.executing_eagerly(): - with self.cached_session() as sess: - backend._initialize_variables(sess) - self.assertAllClose(expected, actual) - else: - self.assertAllClose(expected, actual) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_trace_model_outputs(self): - input_dim = 5 if test_utils.get_model_type() == "functional" else None - model = test_utils.get_small_mlp(10, 3, input_dim) - inputs = tf.ones((8, 5)) - - if input_dim is None: - with self.assertRaisesRegex( - ValueError, ".*input shape is not availabl*" - ): - saving_utils.trace_model_call(model) - model._set_inputs(inputs) - - fn = saving_utils.trace_model_call(model) - signature_outputs = fn(inputs) - if model.output_names: - expected_outputs = {model.output_names[0]: model(inputs)} - else: - expected_outputs = {"output_1": model(inputs)} - - self._assert_all_close(expected_outputs, signature_outputs) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_trace_model_outputs_after_fitting(self): - input_dim = 5 if test_utils.get_model_type() == "functional" else None - model = test_utils.get_small_mlp(10, 3, input_dim) - model.compile( - optimizer="sgd", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit( - x=np.random.random((8, 5)).astype(np.float32), - y=np.random.random((8, 3)).astype(np.float32), - epochs=2, - ) - - inputs = tf.ones((8, 5)) - - fn = saving_utils.trace_model_call(model) - signature_outputs = fn(inputs) - if model.output_names: - expected_outputs = {model.output_names[0]: model(inputs)} - else: - expected_outputs = {"output_1": model(inputs)} - - self._assert_all_close(expected_outputs, signature_outputs) - - @test_combinations.run_with_all_model_types(exclude_models="sequential") - @test_combinations.run_all_keras_modes - def test_trace_multi_io_model_outputs(self): - input_dim = 5 - num_classes = 3 - num_classes_b = 4 - input_a = keras.layers.Input(shape=(input_dim,), name="input_a") - input_b = keras.layers.Input(shape=(input_dim,), name="input_b") - - dense = keras.layers.Dense(num_classes, name="dense") - dense2 = keras.layers.Dense(num_classes_b, name="dense2") - dropout = keras.layers.Dropout(0.5, name="dropout") - branch_a = [input_a, dense] - branch_b = [input_b, dense, dense2, dropout] - - model = test_utils.get_multi_io_model(branch_a, branch_b) - - input_a_ts = tf.constant( - np.random.random((10, input_dim)).astype(np.float32) - ) - input_b_ts = tf.constant( - np.random.random((10, input_dim)).astype(np.float32) - ) - - if test_utils.get_model_type() == "subclass": - with self.assertRaisesRegex( - ValueError, ".*input shape is not availabl*" - ): - saving_utils.trace_model_call(model) - - model.compile( - optimizer="sgd", - loss="mse", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit( - x=[ - np.random.random((8, input_dim)).astype(np.float32), - np.random.random((8, input_dim)).astype(np.float32), - ], - y=[ - np.random.random((8, num_classes)).astype(np.float32), - np.random.random((8, num_classes_b)).astype(np.float32), - ], - epochs=2, - ) - - fn = saving_utils.trace_model_call(model) - # tf.function requires that the input structures match when calling a - # ConcreteFunction. For some reason V1 models defines the inputs as a - # list, while V2 models sets the inputs as a tuple. - if ( - not tf.executing_eagerly() - and test_utils.get_model_type() != "functional" - ): - signature_outputs = fn([input_a_ts, input_b_ts]) - else: - signature_outputs = fn((input_a_ts, input_b_ts)) - outputs = model([input_a_ts, input_b_ts]) - if model.output_names: - expected_outputs = { - model.output_names[0]: outputs[0], - model.output_names[1]: outputs[1], - } - else: - expected_outputs = {"output_1": outputs[0], "output_2": outputs[1]} - self._assert_all_close(expected_outputs, signature_outputs) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_trace_features_layer(self): - columns = [tf.feature_column.numeric_column("x")] - model = sequential.Sequential([dense_features.DenseFeatures(columns)]) - model_input = {"x": tf.constant([[1.0]])} - model.predict(model_input, steps=1) - fn = saving_utils.trace_model_call(model) - self.assertAllClose({"output_1": [[1.0]]}, fn(model_input)) - - columns = [ - tf.feature_column.numeric_column("x"), - tf.feature_column.numeric_column("y"), - ] - model = sequential.Sequential([dense_features.DenseFeatures(columns)]) - model_input = {"x": tf.constant([[1.0]]), "y": tf.constant([[2.0]])} - model.predict(model_input, steps=1) - fn = saving_utils.trace_model_call(model) - self.assertAllClose({"output_1": [[1.0, 2.0]]}, fn(model_input)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_specify_input_signature(self): - model = test_utils.get_small_sequential_mlp(10, 3, None) - inputs = tf.ones((8, 5)) - - with self.assertRaisesRegex( - ValueError, ".*input shape is not availabl*" - ): - saving_utils.trace_model_call(model) - - fn = saving_utils.trace_model_call( - model, [tf.TensorSpec(shape=[None, 5], dtype=tf.float32)] - ) - signature_outputs = fn(inputs) - if model.output_names: - expected_outputs = {model.output_names[0]: model(inputs)} - else: - expected_outputs = {"output_1": model(inputs)} - self._assert_all_close(expected_outputs, signature_outputs) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_subclassed_model_with_input_signature(self): - class Model(keras.Model): - def __init__(self): - super().__init__() - self.dense = keras.layers.Dense(3, name="dense") - - @tf.function( - input_signature=[ - [ - tf.TensorSpec([None, 5], tf.float32), - tf.TensorSpec([None], tf.float32), - ] - ], - ) - def call(self, inputs, *args): - x, y = inputs - return self.dense(x) + y - - model = Model() - fn = saving_utils.trace_model_call(model) - x = tf.ones((8, 5), dtype=tf.float32) - y = tf.ones((3,), dtype=tf.float32) - expected_outputs = {"output_1": model([x, y])} - signature_outputs = fn([x, y]) - self._assert_all_close(expected_outputs, signature_outputs) - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def test_model_with_fixed_input_dim(self): - """Ensure that the batch_dim is removed when saving. - - When serving or retraining, it is important to reset the batch dim. - This can be an issue inside of tf.function. See b/132783590 for context. - """ - model = test_utils.get_small_mlp(10, 3, 5) - - loss_object = keras.losses.MeanSquaredError() - optimizer = gradient_descent.SGD() - - @tf.function - def train_step(data, labels): - with tf.GradientTape() as tape: - predictions = model(data) - loss = loss_object(labels, predictions) - gradients = tape.gradient(loss, model.trainable_variables) - optimizer.apply_gradients(zip(gradients, model.trainable_variables)) - - x = np.random.random((8, 5)) - y = np.random.random((8, 3)) - - train_step(x, y) - - fn = saving_utils.trace_model_call(model) - self.assertEqual( - fn.structured_input_signature[0][0].shape.as_list(), - tf.TensorShape([None, 5]).as_list(), - ) - - -def _import_and_infer(save_dir, inputs): - """Import a SavedModel into a TF 1.x-style graph and run `signature_key`.""" - graph = tf.Graph() - with graph.as_default(), tf.compat.v1.Session() as session: - model = tf.compat.v1.saved_model.load( - session, [tf.saved_model.SERVING], save_dir - ) - signature = model.signature_def[ - tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY - ] - assert set(inputs.keys()) == set( - signature.inputs.keys() - ), f"expected {signature.inputs.keys()}, found {inputs.keys()}" - feed_dict = {} - for arg_name in inputs.keys(): - feed_dict[ - graph.get_tensor_by_name(signature.inputs[arg_name].name) - ] = inputs[arg_name] - output_dict = {} - for output_name, output_tensor_info in signature.outputs.items(): - output_dict[output_name] = graph.get_tensor_by_name( - output_tensor_info.name - ) - return session.run(output_dict, feed_dict=feed_dict) - - -class AutographedMetric(keras.metrics.Metric): - def build(self, input_shape): - pass - - def update_state(self, values): - if tf.constant(False): - x = 1 - else: - x = 2 - return x - - def reset_states(self): - pass - - def result(self): - return tf.constant(0) - - def GetMean(self): - return tf.constant(0) - - def GetCount(self): - return tf.constant(0) - - -class BasicAutographedMetricLayer(keras.layers.Layer): - def build(self, input_shape): - self._metric = AutographedMetric() - - def call(self, inp): - self._metric.update_state(inp) - # TODO(b/172853147): Test control flow here. - return inp - - -class BasicAutographedMetricModel(keras.models.Model): - def __init__(self): - super().__init__(name="test_model") - self._layer = BasicAutographedMetricLayer() - - def call(self, inputs, **kwargs): - return self._layer(inputs) - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class ModelSaveTest(test_combinations.TestCase): - def test_model_save_preserves_autograph(self): - model = BasicAutographedMetricModel() - inputs = tf.ones((8, 5)) - model._set_inputs(inputs) - - save_dir = os.path.join(self.get_temp_dir(), "saved_model") - tf.saved_model.save(model, save_dir) - - if model.output_names: - output_name = model.output_names[0] - input_name = model.input_names[0] - else: - output_name = "output_1" - input_name = "input_1" - - self.assertAllClose( - {output_name: model.predict_on_batch(inputs)}, - _import_and_infer(save_dir, {input_name: np.ones((8, 5))}), - ) - - # Test v2 loading. - # TODO(mdan): tests using _import_and_infer should uniformly do this. - self.assertAllClose( - model.predict_on_batch(inputs), - tf.saved_model.load(save_dir)(inputs), - ) - - def test_model_save(self): - input_dim = 5 - model = test_utils.get_small_mlp(10, 3, input_dim) - inputs = tf.ones((8, 5)) - - if test_utils.get_model_type() == "subclass": - model._set_inputs(inputs) - - save_dir = os.path.join(self.get_temp_dir(), "saved_model") - tf.saved_model.save(model, save_dir) - - if model.output_names: - output_name = model.output_names[0] - input_name = model.input_names[0] - else: - output_name = "output_1" - input_name = "input_1" - - self.assertAllClose( - {output_name: model.predict_on_batch(inputs)}, - _import_and_infer(save_dir, {input_name: np.ones((8, 5))}), - ) - - -class ExtractModelMetricsTest(test_combinations.TestCase): - def test_extract_model_metrics(self): - # saving_utils.extract_model_metrics is used in V1 only API - # keras.experimental.export_saved_model. - with tf.Graph().as_default(): - a = keras.layers.Input(shape=(3,), name="input_a") - b = keras.layers.Input(shape=(3,), name="input_b") - - dense = keras.layers.Dense(4, name="dense") - c = dense(a) - d = dense(b) - e = keras.layers.Dropout(0.5, name="dropout")(c) - - model = keras.models.Model([a, b], [d, e]) - extract_metrics = saving_utils.extract_model_metrics(model) - self.assertEqual(None, extract_metrics) - - extract_metric_names = [ - "dense_binary_accuracy", - "dropout_binary_accuracy", - "dense_mean_squared_error", - "dropout_mean_squared_error", - ] - if tf.__internal__.tf2.enabled(): - extract_metric_names.extend(["dense_mae", "dropout_mae"]) - else: - extract_metric_names.extend( - ["dense_mean_absolute_error", "dropout_mean_absolute_error"] - ) - - model_metric_names = [ - "loss", - "dense_loss", - "dropout_loss", - ] + extract_metric_names - model.compile( - loss="mae", - metrics=[ - keras.metrics.BinaryAccuracy(), - "mae", - keras.metrics.mean_squared_error, - ], - optimizer=tf.compat.v1.train.RMSPropOptimizer( - learning_rate=0.01 - ), - ) - extract_metrics = saving_utils.extract_model_metrics(model) - self.assertEqual(set(model_metric_names), set(model.metrics_names)) - self.assertEqual( - set(extract_metric_names), set(extract_metrics.keys()) - ) - - -class UnbuiltModelSavingErrorMessageTest(test_combinations.TestCase): - def setUp(self): - super().setUp() - if not tf.__internal__.tf2.enabled(): - self.skipTest("The test does not intend to cover TF1.") - - def test_sequential(self): - model = sequential.Sequential([keras.layers.Dense(10)]) - optimizer = gradient_descent.SGD() - model.compile(optimizer, loss="mse", steps_per_execution=10) - - # Forward pass not called yet. Input shape not available and thus error. - with self.assertRaisesRegex( - ValueError, - "Model.*cannot be saved." - "*specify an input shape either by calling.*", - ): - model.save(os.path.join(self.get_temp_dir(), "my_saved_model")) - - def test_functional(self): - inputs = keras.Input(shape=(32,)) - outputs = keras.layers.Dense(1)(inputs) - model = keras.Model(inputs, outputs) - model.compile(optimizer="adam", loss="mse", metrics=["mae"]) - - x = np.random.random((1000, 32)) - y = np.random.random((1000, 1)) - model.fit(x, y, epochs=3) - - # Functional model always has an input shape, so should save just fine. - model.save(os.path.join(self.get_temp_dir(), "my_saved_model")) - - def test_subclass_forward_pass_by_layer_underscore_call(self): - class CustomModel(keras.Model): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.dense1 = keras.layers.Dense(1) - - def train_step(self, data): - x, y = data - with tf.GradientTape() as tape: - y_pred = self.dense1(x, training=True) - loss = self.compiled_loss(y, y_pred) - - gradients = tape.gradient(loss, self.trainable_variables) - self.optimizer.apply_gradients( - zip(gradients, self.trainable_variables) - ) - return {} - - subclassed_model = CustomModel() - subclassed_model.compile(optimizer="adam", loss="mse") - - x = np.random.random((1000, 32)) - y = np.random.random((1000, 1)) - subclassed_model.fit(x, y, epochs=1) - - # Saving of this subclassed model is supposed to raise an error, even if - # `fit` has been called. This is because the model does not have - # `call()` overridden. Forward pass using `layer.__call__` works for - # training, but saving requires that `call()` be used. - with self.assertRaisesRegex( - ValueError, - r"Model.*cannot be saved.*as opposed to `model.call\(\).*", - ): - subclassed_model.save( - os.path.join(self.get_temp_dir(), "my_saved_model") - ) - - def test_subclass_forward_pass_by_model_call(self): - class CustomModel(keras.Model): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.dense1 = keras.layers.Dense(1) - - def call(self, inputs): - return self.dense1(inputs) - - def train_step(self, data): - x, y = data - with tf.GradientTape() as tape: - y_pred = self.call(x) - loss = self.compiled_loss(y, y_pred) - - gradients = tape.gradient(loss, self.trainable_variables) - self.optimizer.apply_gradients( - zip(gradients, self.trainable_variables) - ) - return {} - - subclassed_model = CustomModel() - subclassed_model.compile(optimizer="adam", loss="mse") - - x = np.random.random((1000, 32)) - y = np.random.random((1000, 1)) - subclassed_model.fit(x, y, epochs=1) - - # Saving of this subclassed model is supposed to raise an error, even if - # `fit` has been called. This is because the model has `call()` - # overridden, but the forward pass uses `Model.call` as opposed to - # `Model.__call__`, and as a result the `Model` is not really built. The - # error message hints the user to use `Model.__call__`, i.e., - # `Model(inputs)` instead. - with self.assertRaisesRegex( - ValueError, - r"Model.*cannot be saved.*as opposed to `model.call\(\).*", - ): - subclassed_model.save( - os.path.join(self.get_temp_dir(), "my_saved_model") - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/saving/legacy/serialization.py b/keras/saving/legacy/serialization.py deleted file mode 100644 index 7d55d92f58c..00000000000 --- a/keras/saving/legacy/serialization.py +++ /dev/null @@ -1,570 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Legacy serialization logic for Keras models.""" - -import threading -import weakref - -import tensorflow.compat.v2 as tf - -from keras.utils import tf_contextlib -from keras.utils import tf_inspect - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -# Flag that determines whether to skip the NotImplementedError when calling -# get_config in custom models and layers. This is only enabled when saving to -# SavedModel, when the config isn't required. -_SKIP_FAILED_SERIALIZATION = False -# If a layer does not have a defined config, then the returned config will be a -# dictionary with the below key. -_LAYER_UNDEFINED_CONFIG_KEY = "layer was saved without config" - -# Store a unique, per-object ID for shared objects. -# -# We store a unique ID for each object so that we may, at loading time, -# re-create the network properly. Without this ID, we would have no way of -# determining whether a config is a description of a new object that -# should be created or is merely a reference to an already-created object. -SHARED_OBJECT_KEY = "shared_object_id" - -SHARED_OBJECT_DISABLED = threading.local() -SHARED_OBJECT_LOADING = threading.local() -SHARED_OBJECT_SAVING = threading.local() - - -# Attributes on the threadlocal variable must be set per-thread, thus we -# cannot initialize these globally. Instead, we have accessor functions with -# default values. -def _shared_object_disabled(): - """Get whether shared object handling is disabled in a threadsafe manner.""" - return getattr(SHARED_OBJECT_DISABLED, "disabled", False) - - -def _shared_object_loading_scope(): - """Get the current shared object saving scope in a threadsafe manner.""" - return getattr(SHARED_OBJECT_LOADING, "scope", NoopLoadingScope()) - - -def _shared_object_saving_scope(): - """Get the current shared object saving scope in a threadsafe manner.""" - return getattr(SHARED_OBJECT_SAVING, "scope", None) - - -class DisableSharedObjectScope: - """A context manager for disabling handling of shared objects. - - Disables shared object handling for both saving and loading. - - Created primarily for use with `clone_model`, which does extra surgery that - is incompatible with shared objects. - """ - - def __enter__(self): - SHARED_OBJECT_DISABLED.disabled = True - self._orig_loading_scope = _shared_object_loading_scope() - self._orig_saving_scope = _shared_object_saving_scope() - - def __exit__(self, *args, **kwargs): - SHARED_OBJECT_DISABLED.disabled = False - SHARED_OBJECT_LOADING.scope = self._orig_loading_scope - SHARED_OBJECT_SAVING.scope = self._orig_saving_scope - - -class NoopLoadingScope: - """The default shared object loading scope. It does nothing. - - Created to simplify serialization code that doesn't care about shared - objects (e.g. when serializing a single object). - """ - - def get(self, unused_object_id): - return None - - def set(self, object_id, obj): - pass - - -class SharedObjectLoadingScope: - """A context manager for keeping track of loaded objects. - - During the deserialization process, we may come across objects that are - shared across multiple layers. In order to accurately restore the network - structure to its original state, `SharedObjectLoadingScope` allows us to - re-use shared objects rather than cloning them. - """ - - def __enter__(self): - if _shared_object_disabled(): - return NoopLoadingScope() - - global SHARED_OBJECT_LOADING - SHARED_OBJECT_LOADING.scope = self - self._obj_ids_to_obj = {} - return self - - def get(self, object_id): - """Given a shared object ID, returns a previously instantiated object. - - Args: - object_id: shared object ID to use when attempting to find - already-loaded object. - - Returns: - The object, if we've seen this ID before. Else, `None`. - """ - # Explicitly check for `None` internally to make external calling code a - # bit cleaner. - if object_id is None: - return - return self._obj_ids_to_obj.get(object_id) - - def set(self, object_id, obj): - """Stores an instantiated object for future lookup and sharing.""" - if object_id is None: - return - self._obj_ids_to_obj[object_id] = obj - - def __exit__(self, *args, **kwargs): - global SHARED_OBJECT_LOADING - SHARED_OBJECT_LOADING.scope = NoopLoadingScope() - - -class SharedObjectConfig(dict): - """A configuration container that keeps track of references. - - `SharedObjectConfig` will automatically attach a shared object ID to any - configs which are referenced more than once, allowing for proper shared - object reconstruction at load time. - - In most cases, it would be more proper to subclass something like - `collections.UserDict` or `collections.Mapping` rather than `dict` directly. - Unfortunately, python's json encoder does not support `Mapping`s. This is - important functionality to retain, since we are dealing with serialization. - - We should be safe to subclass `dict` here, since we aren't actually - overriding any core methods, only augmenting with a new one for reference - counting. - """ - - def __init__(self, base_config, object_id, **kwargs): - self.ref_count = 1 - self.object_id = object_id - super().__init__(base_config, **kwargs) - - def increment_ref_count(self): - # As soon as we've seen the object more than once, we want to attach the - # shared object ID. This allows us to only attach the shared object ID - # when it's strictly necessary, making backwards compatibility breakage - # less likely. - if self.ref_count == 1: - self[SHARED_OBJECT_KEY] = self.object_id - self.ref_count += 1 - - -class SharedObjectSavingScope: - """Keeps track of shared object configs when serializing.""" - - def __enter__(self): - if _shared_object_disabled(): - return None - - global SHARED_OBJECT_SAVING - - # Serialization can happen at a number of layers for a number of - # reasons. We may end up with a case where we're opening a saving scope - # within another saving scope. In that case, we'd like to use the - # outermost scope available and ignore inner scopes, since there is not - # (yet) a reasonable use case for having these nested and distinct. - if _shared_object_saving_scope() is not None: - self._passthrough = True - return _shared_object_saving_scope() - else: - self._passthrough = False - - SHARED_OBJECT_SAVING.scope = self - self._shared_objects_config = weakref.WeakKeyDictionary() - self._next_id = 0 - return self - - def get_config(self, obj): - """Gets a `SharedObjectConfig` if one has already been seen for `obj`. - - Args: - obj: The object for which to retrieve the `SharedObjectConfig`. - - Returns: - The SharedObjectConfig for a given object, if already seen. Else, - `None`. - """ - try: - shared_object_config = self._shared_objects_config[obj] - except (TypeError, KeyError): - # If the object is unhashable (e.g. a subclass of - # `AbstractBaseClass` that has not overridden `__hash__`), a - # `TypeError` will be thrown. We'll just continue on without shared - # object support. - return None - shared_object_config.increment_ref_count() - return shared_object_config - - def create_config(self, base_config, obj): - """Create a new SharedObjectConfig for a given object.""" - shared_object_config = SharedObjectConfig(base_config, self._next_id) - self._next_id += 1 - try: - self._shared_objects_config[obj] = shared_object_config - except TypeError: - # If the object is unhashable (e.g. a subclass of - # `AbstractBaseClass` that has not overridden `__hash__`), a - # `TypeError` will be thrown. We'll just continue on without shared - # object support. - pass - return shared_object_config - - def __exit__(self, *args, **kwargs): - if not getattr(self, "_passthrough", False): - global SHARED_OBJECT_SAVING - SHARED_OBJECT_SAVING.scope = None - - -def serialize_keras_class_and_config( - cls_name, cls_config, obj=None, shared_object_id=None -): - """Returns the serialization of the class with the given config.""" - base_config = {"class_name": cls_name, "config": cls_config} - - # We call `serialize_keras_class_and_config` for some branches of the load - # path. In that case, we may already have a shared object ID we'd like to - # retain. - if shared_object_id is not None: - base_config[SHARED_OBJECT_KEY] = shared_object_id - - # If we have an active `SharedObjectSavingScope`, check whether we've - # already serialized this config. If so, just use that config. This will - # store an extra ID field in the config, allowing us to re-create the shared - # object relationship at load time. - if _shared_object_saving_scope() is not None and obj is not None: - shared_object_config = _shared_object_saving_scope().get_config(obj) - if shared_object_config is None: - return _shared_object_saving_scope().create_config(base_config, obj) - return shared_object_config - - return base_config - - -@tf_contextlib.contextmanager -def skip_failed_serialization(): - global _SKIP_FAILED_SERIALIZATION - prev = _SKIP_FAILED_SERIALIZATION - try: - _SKIP_FAILED_SERIALIZATION = True - yield - finally: - _SKIP_FAILED_SERIALIZATION = prev - - -@keras_export("keras.utils.legacy.serialize_keras_object") -def serialize_keras_object(instance): - """Serialize a Keras object into a JSON-compatible representation. - - Calls to `serialize_keras_object` while underneath the - `SharedObjectSavingScope` context manager will cause any objects re-used - across multiple layers to be saved with a special shared object ID. This - allows the network to be re-created properly during deserialization. - - Args: - instance: The object to serialize. - - Returns: - A dict-like, JSON-compatible representation of the object's config. - """ - from keras.saving import object_registration - - _, instance = tf.__internal__.decorator.unwrap(instance) - if instance is None: - return None - - if hasattr(instance, "get_config"): - name = object_registration.get_registered_name(instance.__class__) - try: - config = instance.get_config() - except NotImplementedError as e: - if _SKIP_FAILED_SERIALIZATION: - return serialize_keras_class_and_config( - name, {_LAYER_UNDEFINED_CONFIG_KEY: True} - ) - raise e - serialization_config = {} - for key, item in config.items(): - if isinstance(item, str): - serialization_config[key] = item - continue - - # Any object of a different type needs to be converted to string or - # dict for serialization (e.g. custom functions, custom classes) - try: - serialized_item = serialize_keras_object(item) - if isinstance(serialized_item, dict) and not isinstance( - item, dict - ): - serialized_item["__passive_serialization__"] = True - serialization_config[key] = serialized_item - except ValueError: - serialization_config[key] = item - - name = object_registration.get_registered_name(instance.__class__) - return serialize_keras_class_and_config( - name, serialization_config, instance - ) - if hasattr(instance, "__name__"): - return object_registration.get_registered_name(instance) - raise ValueError( - f"Cannot serialize {instance} because it doesn't implement " - "`get_config()`." - ) - - -def class_and_config_for_serialized_keras_object( - config, - module_objects=None, - custom_objects=None, - printable_module_name="object", -): - """Returns the class name and config for a serialized keras object.""" - from keras.saving import object_registration - - if ( - not isinstance(config, dict) - or "class_name" not in config - or "config" not in config - ): - raise ValueError( - f"Improper config format for {config}. " - "Expecting python dict contains `class_name` and `config` as keys" - ) - - class_name = config["class_name"] - cls = object_registration.get_registered_object( - class_name, custom_objects, module_objects - ) - if cls is None: - raise ValueError( - f"Unknown {printable_module_name}: '{class_name}'. " - "Please ensure you are using a `keras.utils.custom_object_scope` " - "and that this object is included in the scope. See " - "https://www.tensorflow.org/guide/keras/save_and_serialize" - "#registering_the_custom_object for details." - ) - - cls_config = config["config"] - # Check if `cls_config` is a list. If it is a list, return the class and the - # associated class configs for recursively deserialization. This case will - # happen on the old version of sequential model (e.g. `keras_version` == - # "2.0.6"), which is serialized in a different structure, for example - # "{'class_name': 'Sequential', - # 'config': [{'class_name': 'Embedding', 'config': ...}, {}, ...]}". - if isinstance(cls_config, list): - return (cls, cls_config) - - deserialized_objects = {} - for key, item in cls_config.items(): - if key == "name": - # Assume that the value of 'name' is a string that should not be - # deserialized as a function. This avoids the corner case where - # cls_config['name'] has an identical name to a custom function and - # gets converted into that function. - deserialized_objects[key] = item - elif isinstance(item, dict) and "__passive_serialization__" in item: - deserialized_objects[key] = deserialize_keras_object( - item, - module_objects=module_objects, - custom_objects=custom_objects, - printable_module_name="config_item", - ) - # TODO(momernick): Should this also have 'module_objects'? - elif isinstance(item, str) and tf_inspect.isfunction( - object_registration.get_registered_object(item, custom_objects) - ): - # Handle custom functions here. When saving functions, we only save - # the function's name as a string. If we find a matching string in - # the custom objects during deserialization, we convert the string - # back to the original function. - # Note that a potential issue is that a string field could have a - # naming conflict with a custom function name, but this should be a - # rare case. This issue does not occur if a string field has a - # naming conflict with a custom object, since the config of an - # object will always be a dict. - deserialized_objects[ - key - ] = object_registration.get_registered_object(item, custom_objects) - for key, item in deserialized_objects.items(): - cls_config[key] = deserialized_objects[key] - - return (cls, cls_config) - - -@keras_export("keras.utils.legacy.deserialize_keras_object") -def deserialize_keras_object( - identifier, - module_objects=None, - custom_objects=None, - printable_module_name="object", -): - """Turns the serialized form of a Keras object back into an actual object. - - This function is for mid-level library implementers rather than end users. - - Importantly, this utility requires you to provide the dict of - `module_objects` to use for looking up the object config; this is not - populated by default. If you need a deserialization utility that has - preexisting knowledge of built-in Keras objects, use e.g. - `keras.layers.deserialize(config)`, `keras.metrics.deserialize(config)`, - etc. - - Calling `deserialize_keras_object` while underneath the - `SharedObjectLoadingScope` context manager will cause any already-seen - shared objects to be returned as-is rather than creating a new object. - - Args: - identifier: the serialized form of the object. - module_objects: A dictionary of built-in objects to look the name up in. - Generally, `module_objects` is provided by midlevel library - implementers. - custom_objects: A dictionary of custom objects to look the name up in. - Generally, `custom_objects` is provided by the end user. - printable_module_name: A human-readable string representing the type of - the object. Printed in case of exception. - - Returns: - The deserialized object. - - Example: - - A mid-level library implementer might want to implement a utility for - retrieving an object from its config, as such: - - ```python - def deserialize(config, custom_objects=None): - return deserialize_keras_object( - identifier, - module_objects=globals(), - custom_objects=custom_objects, - name="MyObjectType", - ) - ``` - - This is how e.g. `keras.layers.deserialize()` is implemented. - """ - from keras.saving import object_registration - - if identifier is None: - return None - - if isinstance(identifier, dict): - # In this case we are dealing with a Keras config dictionary. - config = identifier - (cls, cls_config) = class_and_config_for_serialized_keras_object( - config, module_objects, custom_objects, printable_module_name - ) - - # If this object has already been loaded (i.e. it's shared between - # multiple objects), return the already-loaded object. - shared_object_id = config.get(SHARED_OBJECT_KEY) - shared_object = _shared_object_loading_scope().get(shared_object_id) - if shared_object is not None: - return shared_object - - if hasattr(cls, "from_config"): - arg_spec = tf_inspect.getfullargspec(cls.from_config) - custom_objects = custom_objects or {} - - if "custom_objects" in arg_spec.args: - tlco = object_registration._THREAD_LOCAL_CUSTOM_OBJECTS.__dict__ - deserialized_obj = cls.from_config( - cls_config, - custom_objects={ - **object_registration._GLOBAL_CUSTOM_OBJECTS, - **tlco, - **custom_objects, - }, - ) - else: - with object_registration.CustomObjectScope(custom_objects): - deserialized_obj = cls.from_config(cls_config) - else: - # Then `cls` may be a function returning a class. - # in this case by convention `config` holds - # the kwargs of the function. - custom_objects = custom_objects or {} - with object_registration.CustomObjectScope(custom_objects): - deserialized_obj = cls(**cls_config) - - # Add object to shared objects, in case we find it referenced again. - _shared_object_loading_scope().set(shared_object_id, deserialized_obj) - - return deserialized_obj - - elif isinstance(identifier, str): - object_name = identifier - if custom_objects and object_name in custom_objects: - obj = custom_objects.get(object_name) - elif ( - object_name - in object_registration._THREAD_LOCAL_CUSTOM_OBJECTS.__dict__ - ): - obj = object_registration._THREAD_LOCAL_CUSTOM_OBJECTS.__dict__[ - object_name - ] - elif object_name in object_registration._GLOBAL_CUSTOM_OBJECTS: - obj = object_registration._GLOBAL_CUSTOM_OBJECTS[object_name] - else: - obj = module_objects.get(object_name) - if obj is None: - raise ValueError( - f"Unknown {printable_module_name}: '{object_name}'. " - "Please ensure you are using a " - "`keras.utils.custom_object_scope` " - "and that this object is included in the scope. See " - "https://www.tensorflow.org/guide/keras/save_and_serialize" - "#registering_the_custom_object for details." - ) - - # Classes passed by name are instantiated with no args, functions are - # returned as-is. - if tf_inspect.isclass(obj): - return obj() - return obj - elif tf_inspect.isfunction(identifier): - # If a function has already been deserialized, return as is. - return identifier - else: - raise ValueError( - "Could not interpret serialized " - f"{printable_module_name}: {identifier}" - ) - - -def validate_config(config): - """Determines whether config appears to be a valid layer config.""" - return ( - isinstance(config, dict) and _LAYER_UNDEFINED_CONFIG_KEY not in config - ) - - -def is_default(method): - """Check if a method is decorated with the `default` wrapper.""" - return getattr(method, "_is_default", False) diff --git a/keras/saving/object_registration.py b/keras/saving/object_registration.py deleted file mode 100644 index a64b21f3313..00000000000 --- a/keras/saving/object_registration.py +++ /dev/null @@ -1,226 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Python utilities required by Keras.""" - -import inspect -import threading - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -_GLOBAL_CUSTOM_OBJECTS = {} -_GLOBAL_CUSTOM_NAMES = {} -# Thread-local custom objects set by custom_object_scope. -_THREAD_LOCAL_CUSTOM_OBJECTS = threading.local() - - -@keras_export( - "keras.saving.custom_object_scope", - "keras.utils.custom_object_scope", - "keras.utils.CustomObjectScope", -) -class CustomObjectScope: - """Exposes custom classes/functions to Keras deserialization internals. - - Under a scope `with custom_object_scope(objects_dict)`, Keras methods such - as `tf.keras.models.load_model` or `tf.keras.models.model_from_config` - will be able to deserialize any custom object referenced by a - saved config (e.g. a custom layer or metric). - - Example: - - Consider a custom regularizer `my_regularizer`: - - ```python - layer = Dense(3, kernel_regularizer=my_regularizer) - # Config contains a reference to `my_regularizer` - config = layer.get_config() - ... - # Later: - with custom_object_scope({'my_regularizer': my_regularizer}): - layer = Dense.from_config(config) - ``` - - Args: - *args: Dictionary or dictionaries of `{name: object}` pairs. - """ - - def __init__(self, *args): - self.custom_objects = args - self.backup = None - - def __enter__(self): - self.backup = _THREAD_LOCAL_CUSTOM_OBJECTS.__dict__.copy() - for objects in self.custom_objects: - _THREAD_LOCAL_CUSTOM_OBJECTS.__dict__.update(objects) - return self - - def __exit__(self, *args, **kwargs): - _THREAD_LOCAL_CUSTOM_OBJECTS.__dict__.clear() - _THREAD_LOCAL_CUSTOM_OBJECTS.__dict__.update(self.backup) - - -@keras_export( - "keras.saving.get_custom_objects", "keras.utils.get_custom_objects" -) -def get_custom_objects(): - """Retrieves a live reference to the global dictionary of custom objects. - - Custom objects set using using `custom_object_scope` are not added to the - global dictionary of custom objects, and will not appear in the returned - dictionary. - - Example: - - ```python - get_custom_objects().clear() - get_custom_objects()['MyObject'] = MyObject - ``` - - Returns: - Global dictionary mapping registered class names to classes. - """ - return _GLOBAL_CUSTOM_OBJECTS - - -@keras_export( - "keras.saving.register_keras_serializable", - "keras.utils.register_keras_serializable", -) -def register_keras_serializable(package="Custom", name=None): - """Registers an object with the Keras serialization framework. - - This decorator injects the decorated class or function into the Keras custom - object dictionary, so that it can be serialized and deserialized without - needing an entry in the user-provided custom object dict. It also injects a - function that Keras will call to get the object's serializable string key. - - Note that to be serialized and deserialized, classes must implement the - `get_config()` method. Functions do not have this requirement. - - The object will be registered under the key 'package>name' where `name`, - defaults to the object name if not passed. - - Example: - - ```python - # Note that `'my_package'` is used as the `package` argument here, and since - # the `name` argument is not provided, `'MyDense'` is used as the `name`. - @keras.saving.register_keras_serializable('my_package') - class MyDense(keras.layers.Dense): - pass - - assert keras.saving.get_registered_object('my_package>MyDense') == MyDense - assert keras.saving.get_registered_name(MyDense) == 'my_package>MyDense' - ``` - - Args: - package: The package that this class belongs to. This is used for the - `key` (which is `"package>name"`) to idenfify the class. Note that this - is the first argument passed into the decorator. - name: The name to serialize this class under in this package. If not - provided or `None`, the class' name will be used (note that this is the - case when the decorator is used with only one argument, which becomes - the `package`). - - Returns: - A decorator that registers the decorated class with the passed names. - """ - - def decorator(arg): - """Registers a class with the Keras serialization framework.""" - class_name = name if name is not None else arg.__name__ - registered_name = package + ">" + class_name - - if inspect.isclass(arg) and not hasattr(arg, "get_config"): - raise ValueError( - "Cannot register a class that does not have a " - "get_config() method." - ) - - _GLOBAL_CUSTOM_OBJECTS[registered_name] = arg - _GLOBAL_CUSTOM_NAMES[arg] = registered_name - - return arg - - return decorator - - -@keras_export( - "keras.saving.get_registered_name", "keras.utils.get_registered_name" -) -def get_registered_name(obj): - """Returns the name registered to an object within the Keras framework. - - This function is part of the Keras serialization and deserialization - framework. It maps objects to the string names associated with those objects - for serialization/deserialization. - - Args: - obj: The object to look up. - - Returns: - The name associated with the object, or the default Python name if the - object is not registered. - """ - if obj in _GLOBAL_CUSTOM_NAMES: - return _GLOBAL_CUSTOM_NAMES[obj] - else: - return obj.__name__ - - -@keras_export( - "keras.saving.get_registered_object", "keras.utils.get_registered_object" -) -def get_registered_object(name, custom_objects=None, module_objects=None): - """Returns the class associated with `name` if it is registered with Keras. - - This function is part of the Keras serialization and deserialization - framework. It maps strings to the objects associated with them for - serialization/deserialization. - - Example: - - ```python - def from_config(cls, config, custom_objects=None): - if 'my_custom_object_name' in config: - config['hidden_cls'] = tf.keras.saving.get_registered_object( - config['my_custom_object_name'], custom_objects=custom_objects) - ``` - - Args: - name: The name to look up. - custom_objects: A dictionary of custom objects to look the name up in. - Generally, custom_objects is provided by the user. - module_objects: A dictionary of custom objects to look the name up in. - Generally, module_objects is provided by midlevel library implementers. - - Returns: - An instantiable class associated with `name`, or `None` if no such class - exists. - """ - if name in _THREAD_LOCAL_CUSTOM_OBJECTS.__dict__: - return _THREAD_LOCAL_CUSTOM_OBJECTS.__dict__[name] - elif name in _GLOBAL_CUSTOM_OBJECTS: - return _GLOBAL_CUSTOM_OBJECTS[name] - elif custom_objects and name in custom_objects: - return custom_objects[name] - elif module_objects and name in module_objects: - return module_objects[name] - return None - - -# Aliases -custom_object_scope = CustomObjectScope diff --git a/keras/saving/object_registration_test.py b/keras/saving/object_registration_test.py deleted file mode 100644 index 3b1a95ca57a..00000000000 --- a/keras/saving/object_registration_test.py +++ /dev/null @@ -1,144 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras serializable object registration functionality.""" - -import tensorflow.compat.v2 as tf - -import keras -from keras.saving import object_registration -from keras.saving import serialization_lib - - -class TestObjectRegistration(tf.test.TestCase): - def test_custom_object_scope(self): - def custom_fn(): - pass - - class CustomClass: - pass - - def check_get_in_thread(): - with object_registration.custom_object_scope( - {"CustomClass": CustomClass, "custom_fn": custom_fn} - ): - actual_custom_fn = keras.activations.get("custom_fn") - self.assertEqual(actual_custom_fn, custom_fn) - actual_custom_class = keras.regularizers.get("CustomClass") - self.assertEqual(actual_custom_class.__class__, CustomClass) - - with object_registration.custom_object_scope( - {"CustomClass": CustomClass, "custom_fn": custom_fn} - ): - actual_custom_fn = keras.activations.get("custom_fn") - self.assertEqual(actual_custom_fn, custom_fn) - actual_custom_class = keras.regularizers.get("CustomClass") - self.assertEqual(actual_custom_class.__class__, CustomClass) - checked_thread = self.checkedThread(check_get_in_thread) - checked_thread.start() - checked_thread.join() - - def test_serialize_custom_class_with_default_name(self): - @object_registration.register_keras_serializable() - class TestClass: - def __init__(self, value): - self._value = value - - def get_config(self): - return {"value": self._value} - - serialized_name = "Custom>TestClass" - inst = TestClass(value=10) - class_name = object_registration._GLOBAL_CUSTOM_NAMES[TestClass] - self.assertEqual(serialized_name, class_name) - config = serialization_lib.serialize_keras_object(inst) - self.assertEqual(class_name, config["class_name"]) - new_inst = serialization_lib.deserialize_keras_object(config) - self.assertIsNot(inst, new_inst) - self.assertIsInstance(new_inst, TestClass) - self.assertEqual(10, new_inst._value) - - # Make sure registering a new class with same name will fail. - with self.assertRaisesRegex( - ValueError, ".*has already been registered.*" - ): - - @object_registration.register_keras_serializable() - class TestClass: - def __init__(self, value): - self._value = value - - def get_config(self): - return {"value": self._value} - - def test_serialize_custom_class_with_custom_name(self): - @object_registration.register_keras_serializable( - "TestPackage", "CustomName" - ) - class OtherTestClass: - def __init__(self, val): - self._val = val - - def get_config(self): - return {"val": self._val} - - serialized_name = "TestPackage>CustomName" - inst = OtherTestClass(val=5) - class_name = object_registration._GLOBAL_CUSTOM_NAMES[OtherTestClass] - self.assertEqual(serialized_name, class_name) - fn_class_name = object_registration.get_registered_name(OtherTestClass) - self.assertEqual(fn_class_name, class_name) - - cls = object_registration.get_registered_object(fn_class_name) - self.assertEqual(OtherTestClass, cls) - - config = keras.utils.serialization.serialize_keras_object(inst) - self.assertEqual(class_name, config["class_name"]) - new_inst = keras.utils.serialization.deserialize_keras_object(config) - self.assertIsNot(inst, new_inst) - self.assertIsInstance(new_inst, OtherTestClass) - self.assertEqual(5, new_inst._val) - - def test_serialize_custom_function(self): - @object_registration.register_keras_serializable() - def my_fn(): - return 42 - - serialized_name = "Custom>my_fn" - class_name = object_registration._GLOBAL_CUSTOM_NAMES[my_fn] - self.assertEqual(serialized_name, class_name) - fn_class_name = object_registration.get_registered_name(my_fn) - self.assertEqual(fn_class_name, class_name) - - config = keras.utils.serialization.serialize_keras_object(my_fn) - self.assertEqual(class_name, config) - fn = keras.utils.serialization.deserialize_keras_object(config) - self.assertEqual(42, fn()) - - fn_2 = object_registration.get_registered_object(fn_class_name) - self.assertEqual(42, fn_2()) - - def test_serialize_custom_class_without_get_config_fails(self): - - with self.assertRaisesRegex( - ValueError, - "Cannot register a class that does not have a get_config.*", - ): - - @object_registration.register_keras_serializable( - "TestPackage", "TestClass" - ) - class TestClass: - def __init__(self, value): - self._value = value diff --git a/keras/saving/pickle_utils.py b/keras/saving/pickle_utils.py deleted file mode 100644 index fe84b548f15..00000000000 --- a/keras/saving/pickle_utils.py +++ /dev/null @@ -1,77 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Saving utilities to support Python's Pickle protocol.""" -import os -import tempfile - -import tensorflow.compat.v2 as tf - -from keras.saving import saving_lib - - -def deserialize_model_from_bytecode(serialized_model): - """Reconstruct a Model from the output of `serialize_model_as_bytecode`. - - Args: - serialized_model: (bytes) return value from - `serialize_model_as_bytecode`. - - Returns: - Keras Model instance. - """ - # Note: we don't use a RAM path for this because zipfile cannot write - # to such paths. - temp_dir = tempfile.mkdtemp() - try: - filepath = os.path.join(temp_dir, "model.keras") - with open(filepath, "wb") as f: - f.write(serialized_model) - # When loading, direct import will work for most custom objects - # though it will require get_config() to be implemented. - # Some custom objects (e.g. an activation in a Dense layer, - # serialized as a string by Dense.get_config()) will require - # a custom_object_scope. - model = saving_lib.load_model(filepath, safe_mode=False) - except Exception as e: - raise e - else: - return model - finally: - tf.io.gfile.rmtree(temp_dir) - - -def serialize_model_as_bytecode(model): - """Convert a Keras Model into a bytecode representation for pickling. - - Args: - model: Keras Model instance. - - Returns: - Tuple that can be read by `deserialize_from_bytecode`. - """ - # Note: we don't use a RAM path for this because zipfile cannot write - # to such paths. - temp_dir = tempfile.mkdtemp() - try: - filepath = os.path.join(temp_dir, "model.keras") - saving_lib.save_model(model, filepath) - with open(filepath, "rb") as f: - data = f.read() - except Exception as e: - raise e - else: - return data - finally: - tf.io.gfile.rmtree(temp_dir) diff --git a/keras/saving/pickle_utils_test.py b/keras/saving/pickle_utils_test.py deleted file mode 100644 index 66666eac263..00000000000 --- a/keras/saving/pickle_utils_test.py +++ /dev/null @@ -1,97 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for pickling / deepcopying of Keras Models.""" -import copy -import pickle - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -@test_utils.run_v2_only -class TestPickleProtocol(test_combinations.TestCase): - """Tests pickle protocol support.""" - - @test_combinations.run_with_all_model_types - @test_combinations.parameterized.named_parameters( - ("copy", copy.copy), - ("deepcopy", copy.deepcopy), - *( - ( - f"pickle_protocol_level_{protocol}", - lambda model: pickle.loads( - pickle.dumps(model, protocol=protocol) - ), - ) - for protocol in range(pickle.HIGHEST_PROTOCOL + 1) - ), - ) - def test_built_models(self, serializer): - """Built models should be copyable and picklable for all model types.""" - if not tf.__internal__.tf2.enabled(): - self.skipTest( - "pickle model only available in v2 when tf format is used." - ) - model = test_utils.get_small_mlp( - num_hidden=1, num_classes=2, input_dim=3 - ) - model.compile(optimizer="sgd", loss="sparse_categorical_crossentropy") - - # train - x = np.random.random(size=(10, 3)) - y = np.random.randint(low=0, high=2, size=(10,)) - model.fit(x, y) # builds model - y1 = model.predict(x) - # roundtrip with training - model = serializer(model) - y2 = model.predict(x) - # check that the predictions are the same - self.assertAllClose(y1, y2) - # and that we can continue training - model.fit(x, y) - y3 = model.predict(x) - # check that the predictions are the same - self.assertNotAllClose(y2, y3) - - @test_combinations.run_with_all_model_types - @test_combinations.parameterized.named_parameters( - ("copy", copy.copy), - ("deepcopy", copy.deepcopy), - ) - def test_unbuilt_models(self, serializer): - """Unbuilt models should be copyable & deepcopyable for all model - types.""" - if not tf.__internal__.tf2.enabled(): - self.skipTest( - "pickle model only available in v2 when tf format is used." - ) - original_model = test_utils.get_small_mlp( - num_hidden=1, num_classes=2, input_dim=3 - ) - # roundtrip without compiling or training - model = serializer(original_model) - # compile - model.compile(optimizer="sgd", loss="sparse_categorical_crossentropy") - if hasattr(model.optimizer, "_distribution_strategy"): - model.optimizer._distribution_strategy = None - # roundtrip compiled but not trained - model = serializer(model) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/saving/saving_api.py b/keras/saving/saving_api.py deleted file mode 100644 index e8ad58a6707..00000000000 --- a/keras/saving/saving_api.py +++ /dev/null @@ -1,315 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Public API surface for saving APIs.""" - -import os -import warnings -import zipfile - -import tensorflow.compat.v2 as tf -from tensorflow.python.util.tf_export import keras_export - -from keras.saving import saving_lib -from keras.saving.legacy import save as legacy_sm_saving_lib -from keras.utils import io_utils - -try: - import h5py -except ImportError: - h5py = None - - -@keras_export("keras.saving.save_model", "keras.models.save_model") -def save_model(model, filepath, overwrite=True, save_format=None, **kwargs): - """Saves a model as a TensorFlow SavedModel or HDF5 file. - - See the [Serialization and Saving guide]( - https://keras.io/guides/serialization_and_saving/) for details. - - Args: - model: Keras model instance to be saved. - filepath: `str` or `pathlib.Path` object. Path where to save the model. - overwrite: Whether we should overwrite any existing model at the target - location, or instead ask the user via an interactive prompt. - save_format: Either `"keras"`, `"tf"`, `"h5"`, - indicating whether to save the model - in the native Keras format (`.keras`), - in the TensorFlow SavedModel format (referred to as "SavedModel" - below), or in the legacy HDF5 format (`.h5`). - Defaults to `"tf"` in TF 2.X, and `"h5"` in TF 1.X. - - SavedModel format arguments: - include_optimizer: Only applied to SavedModel and legacy HDF5 formats. - If False, do not save the optimizer state. Defaults to True. - signatures: Only applies to SavedModel format. Signatures to save - with the SavedModel. See the `signatures` argument in - `tf.saved_model.save` for details. - options: Only applies to SavedModel format. - `tf.saved_model.SaveOptions` object that specifies SavedModel - saving options. - save_traces: Only applies to SavedModel format. When enabled, the - SavedModel will store the function traces for each layer. This - can be disabled, so that only the configs of each layer are stored. - Defaults to `True`. Disabling this will decrease serialization time - and reduce file size, but it requires that all custom layers/models - implement a `get_config()` method. - - Example: - - ```python - model = tf.keras.Sequential([ - tf.keras.layers.Dense(5, input_shape=(3,)), - tf.keras.layers.Softmax()]) - model.save("model.keras") - loaded_model = tf.keras.saving.load_model("model.keras") - x = tf.random.uniform((10, 3)) - assert np.allclose(model.predict(x), loaded_model.predict(x)) - ``` - - Note that `model.save()` is an alias for `tf.keras.saving.save_model()`. - - The SavedModel or HDF5 file contains: - - - The model's configuration (architecture) - - The model's weights - - The model's optimizer's state (if any) - - Thus models can be reinstantiated in the exact same state, without any of - the code used for model definition or training. - - Note that the model weights may have different scoped names after being - loaded. Scoped names include the model/layer names, such as - `"dense_1/kernel:0"`. It is recommended that you use the layer properties to - access specific variables, e.g. `model.get_layer("dense_1").kernel`. - - __SavedModel serialization format__ - - With `save_format="tf"`, the model and all trackable objects attached - to the it (e.g. layers and variables) are saved as a TensorFlow SavedModel. - The model config, weights, and optimizer are included in the SavedModel. - Additionally, for every Keras layer attached to the model, the SavedModel - stores: - - * The config and metadata -- e.g. name, dtype, trainable status - * Traced call and loss functions, which are stored as TensorFlow - subgraphs. - - The traced functions allow the SavedModel format to save and load custom - layers without the original class definition. - - You can choose to not save the traced functions by disabling the - `save_traces` option. This will decrease the time it takes to save the model - and the amount of disk space occupied by the output SavedModel. If you - enable this option, then you _must_ provide all custom class definitions - when loading the model. See the `custom_objects` argument in - `tf.keras.saving.load_model`. - """ - save_format = get_save_format(filepath, save_format) - - # Deprecation warnings - if save_format == "h5": - warnings.warn( - "You are saving your model as an HDF5 file via `model.save()`. " - "This file format is considered legacy. " - "We recommend using instead the native Keras format, " - "e.g. `model.save('my_model.keras')`.", - stacklevel=2, - ) - - if save_format == "keras": - # If file exists and should not be overwritten. - try: - exists = os.path.exists(filepath) - except TypeError: - exists = False - if exists and not overwrite: - proceed = io_utils.ask_to_proceed_with_overwrite(filepath) - if not proceed: - return - if kwargs: - raise ValueError( - "The following argument(s) are not supported " - f"with the native Keras format: {list(kwargs.keys())}" - ) - saving_lib.save_model(model, filepath) - else: - # Legacy case - return legacy_sm_saving_lib.save_model( - model, - filepath, - overwrite=overwrite, - save_format=save_format, - **kwargs, - ) - - -@keras_export("keras.saving.load_model", "keras.models.load_model") -def load_model( - filepath, custom_objects=None, compile=True, safe_mode=True, **kwargs -): - """Loads a model saved via `model.save()`. - - Args: - filepath: `str` or `pathlib.Path` object, path to the saved model file. - custom_objects: Optional dictionary mapping names - (strings) to custom classes or functions to be - considered during deserialization. - compile: Boolean, whether to compile the model after loading. - safe_mode: Boolean, whether to disallow unsafe `lambda` deserialization. - When `safe_mode=False`, loading an object has the potential to - trigger arbitrary code execution. This argument is only - applicable to the Keras v3 model format. Defaults to True. - - SavedModel format arguments: - options: Only applies to SavedModel format. - Optional `tf.saved_model.LoadOptions` object that specifies - SavedModel loading options. - - Returns: - A Keras model instance. If the original model was compiled, - and the argument `compile=True` is set, then the returned model - will be compiled. Otherwise, the model will be left uncompiled. - - Example: - - ```python - model = tf.keras.Sequential([ - tf.keras.layers.Dense(5, input_shape=(3,)), - tf.keras.layers.Softmax()]) - model.save("model.keras") - loaded_model = tf.keras.saving.load_model("model.keras") - x = tf.random.uniform((10, 3)) - assert np.allclose(model.predict(x), loaded_model.predict(x)) - ``` - - Note that the model variables may have different name values - (`var.name` property, e.g. `"dense_1/kernel:0"`) after being reloaded. - It is recommended that you use layer attributes to - access specific variables, e.g. `model.get_layer("dense_1").kernel`. - """ - is_keras_zip = str(filepath).endswith(".keras") and zipfile.is_zipfile( - filepath - ) - - # Support for remote zip files - if ( - saving_lib.is_remote_path(filepath) - and not tf.io.gfile.isdir(filepath) - and not is_keras_zip - ): - local_path = os.path.join( - saving_lib.get_temp_dir(), os.path.basename(filepath) - ) - - # Copy from remote to temporary local directory - tf.io.gfile.copy(filepath, local_path, overwrite=True) - - # Switch filepath to local zipfile for loading model - if zipfile.is_zipfile(local_path): - filepath = local_path - is_keras_zip = True - - if is_keras_zip: - if kwargs: - raise ValueError( - "The following argument(s) are not supported " - f"with the native Keras format: {list(kwargs.keys())}" - ) - return saving_lib.load_model( - filepath, - custom_objects=custom_objects, - compile=compile, - safe_mode=safe_mode, - ) - - # Legacy case. - return legacy_sm_saving_lib.load_model( - filepath, custom_objects=custom_objects, compile=compile, **kwargs - ) - - -def save_weights(model, filepath, overwrite=True, **kwargs): - if str(filepath).endswith(".weights.h5"): - # If file exists and should not be overwritten. - try: - exists = os.path.exists(filepath) - except TypeError: - exists = False - if exists and not overwrite: - proceed = io_utils.ask_to_proceed_with_overwrite(filepath) - if not proceed: - return - saving_lib.save_weights_only(model, filepath) - else: - legacy_sm_saving_lib.save_weights( - model, filepath, overwrite=overwrite, **kwargs - ) - - -def load_weights(model, filepath, skip_mismatch=False, **kwargs): - if str(filepath).endswith(".keras") and zipfile.is_zipfile(filepath): - saving_lib.load_weights_only( - model, filepath, skip_mismatch=skip_mismatch - ) - elif str(filepath).endswith(".weights.h5"): - saving_lib.load_weights_only( - model, filepath, skip_mismatch=skip_mismatch - ) - else: - return legacy_sm_saving_lib.load_weights( - model, filepath, skip_mismatch=skip_mismatch, **kwargs - ) - - -def get_save_format(filepath, save_format): - if save_format: - if save_format == "keras_v3": - return "keras" - if save_format == "keras": - if saving_lib.saving_v3_enabled(): - return "keras" - else: - return "h5" - if save_format in ("h5", "hdf5"): - return "h5" - if save_format in ("tf", "tensorflow"): - return "tf" - - raise ValueError( - "Unknown `save_format` argument. Expected one of " - "'keras', 'tf', or 'h5'. " - f"Received: save_format{save_format}" - ) - - # No save format specified: infer from filepath. - - if str(filepath).endswith(".keras"): - if saving_lib.saving_v3_enabled(): - return "keras" - else: - return "h5" - - if str(filepath).endswith((".h5", ".hdf5")): - return "h5" - - if h5py is not None and isinstance(filepath, h5py.File): - return "h5" - - # No recognizable file format: default to TF in TF2 and h5 in TF1. - - if tf.__internal__.tf2.enabled(): - return "tf" - else: - return "h5" diff --git a/keras/saving/saving_lib.py b/keras/saving/saving_lib.py deleted file mode 100644 index 3b279d8d4d2..00000000000 --- a/keras/saving/saving_lib.py +++ /dev/null @@ -1,722 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Python-based idempotent model-saving functionality.""" - -import datetime -import io -import json -import os -import re -import tempfile -import threading -import warnings -import zipfile - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras import losses -from keras.engine import base_layer -from keras.optimizers import optimizer -from keras.saving.serialization_lib import ObjectSharingScope -from keras.saving.serialization_lib import deserialize_keras_object -from keras.saving.serialization_lib import serialize_keras_object -from keras.utils import generic_utils -from keras.utils import io_utils - -try: - import h5py -except ImportError: - h5py = None - -# isort: off - -_CONFIG_FILENAME = "config.json" -_METADATA_FILENAME = "metadata.json" -_VARS_FNAME = "model.weights" # Will become e.g. "model.weights.h5" -_ASSETS_DIRNAME = "assets" - -# A temporary flag to enable the new idempotent saving framework. -_SAVING_V3_ENABLED = threading.local() -_SAVING_V3_ENABLED.value = True - -ATTR_SKIPLIST = frozenset( - { - "_callable_losses", - "_captured_weight_regularizer", - "_checkpoint_dependencies", - "_deferred_dependencies", - "_eager_losses", - "_inbound_nodes", - "_inbound_nodes_value", - "_output_layers", - "_input_layers", - "_keras_api_names", - "_keras_api_names_v1", - "_name_based_restores", - "_non_trainable_weights", - "_outbound_nodes", - "_outbound_nodes_value", - "_saved_model_arg_spec", - "_self_name_based_restores", - "_self_saveable_object_factories", - "_self_tracked_trackables", - "_saved_model_inputs_spec", - "_self_unconditional_checkpoint_dependencies", - "_self_unconditional_deferred_dependencies", - "_self_unconditional_dependency_names", - "_tf_api_names", - "_tf_api_names_v1", - "_trainable_weights", - "_non_trainable_weights", - "_unconditional_checkpoint_dependencies", - "_unconditional_dependency_names", - "_updates", - "_layer_call_argspecs", - "inbound_nodes", - "outbound_nodes", - "input_shape", - "output_shape", - "submodules", - "weights", - "non_trainable_weights", - "trainable_weights", - "variables", - "non_trainable_variables", - "trainable_variables", - "updates", # Would raise a warning if visited. - "state_updates", # Would raise a warning if visited. - } -) - - -def save_model(model, filepath, weights_format="h5"): - """Save a zip-archive representing a Keras model to the given filepath. - - The zip-based archive contains the following structure: - - - JSON-based configuration file (config.json): Records of model, layer, and - other trackables' configuration. - - NPZ-based trackable state files, found in respective directories, such as - model/states.npz, model/dense_layer/states.npz, etc. - - Metadata file. - - The states of Keras trackables (layers, optimizers, loss, and metrics) are - automatically saved as long as they can be discovered through the attributes - returned by `dir(Model)`. Typically, the state includes the variables - associated with the trackable, but some specially purposed layers may - contain more such as the vocabularies stored in the hashmaps. The trackables - define how their states are saved by exposing `save_state()` and - `load_state()` APIs. - - For the case of layer states, the variables will be visited as long as - they are either 1) referenced via layer attributes, or 2) referenced via a - container (list, tuple, or dict), and the container is referenced via a - layer attribute. - """ - filepath = str(filepath) - if not filepath.endswith(".keras"): - raise ValueError( - "Invalid `filepath` argument: expected a `.keras` extension. " - f"Received: filepath={filepath}" - ) - if weights_format == "h5" and h5py is None: - raise ImportError("h5py must be installed in order to save a model.") - - if not model.built: - warnings.warn( - "You are saving a model that has not yet been built. " - "It might not contain any weights yet. " - "Consider building the model first by calling it " - "on some data.", - stacklevel=2, - ) - saving_v3_enabled_value = getattr(_SAVING_V3_ENABLED, "value", False) - _SAVING_V3_ENABLED.value = True - - with ObjectSharingScope(): - serialized_model_dict = serialize_keras_object(model) - config_json = json.dumps(serialized_model_dict) - metadata_json = json.dumps( - { - "keras_version": keras.__version__, - "date_saved": datetime.datetime.now().strftime("%Y-%m-%d@%H:%M:%S"), - } - ) - # TODO(rameshsampath): Need a better logic for local vs remote path - if is_remote_path(filepath): - # Remote path. Zip to local drive and copy to remote - zip_filepath = os.path.join(get_temp_dir(), "tmp_model.keras") - else: - zip_filepath = filepath - try: - with zipfile.ZipFile(zip_filepath, "w") as zf: - - with zf.open(_METADATA_FILENAME, "w") as f: - f.write(metadata_json.encode()) - with zf.open(_CONFIG_FILENAME, "w") as f: - f.write(config_json.encode()) - - if weights_format == "h5": - weights_store = H5IOStore( - _VARS_FNAME + ".h5", archive=zf, mode="w" - ) - elif weights_format == "npz": - weights_store = NpzIOStore( - _VARS_FNAME + ".npz", archive=zf, mode="w" - ) - else: - raise ValueError( - "Unknown `weights_format` argument. " - "Expected 'h5' or 'npz'. " - f"Received: weights_format={weights_format}" - ) - - asset_store = DiskIOStore(_ASSETS_DIRNAME, archive=zf, mode="w") - - _save_state( - model, - weights_store=weights_store, - assets_store=asset_store, - inner_path="", - visited_trackables=set(), - ) - weights_store.close() - asset_store.close() - - if is_remote_path(filepath): - # Using tf.io.gfile context manager doesn't close zip file when - # writing to GCS. Hence writing to local and copying to filepath. - tf.io.gfile.copy(zip_filepath, filepath, overwrite=True) - os.remove(zip_filepath) - except Exception as e: - raise e - finally: - _SAVING_V3_ENABLED.value = saving_v3_enabled_value - - -def load_model(filepath, custom_objects=None, compile=True, safe_mode=True): - """Load a zip archive representing a Keras model.""" - - filepath = str(filepath) - if not filepath.endswith(".keras"): - raise ValueError( - "Invalid filename: expected a `.keras` extension. " - f"Received: filepath={filepath}" - ) - - saving_v3_enabled_value = getattr(_SAVING_V3_ENABLED, "value", False) - _SAVING_V3_ENABLED.value = True - - try: - with tf.io.gfile.GFile( - filepath, mode="r+b" - ) as gfile_handle, zipfile.ZipFile(gfile_handle, "r") as zf: - - with zf.open(_CONFIG_FILENAME, "r") as f: - config_json = f.read() - - # Note: we should NOT use a custom JSON decoder. Anything that - # needs custom decoding must be handled in deserialize_keras_object. - config_dict = json.loads(config_json) - if not compile: - # Disable compilation - config_dict["compile_config"] = None - # Construct the model from the configuration file in the archive. - with ObjectSharingScope(): - model = deserialize_keras_object( - config_dict, custom_objects, safe_mode=safe_mode - ) - - all_filenames = zf.namelist() - if _VARS_FNAME + ".h5" in all_filenames: - weights_store = H5IOStore( - _VARS_FNAME + ".h5", archive=zf, mode="r" - ) - elif _VARS_FNAME + ".npz" in all_filenames: - weights_store = NpzIOStore( - _VARS_FNAME + ".npz", archive=zf, mode="r" - ) - else: - raise ValueError( - f"Expected a {_VARS_FNAME}.h5 or {_VARS_FNAME}.npz file." - ) - - if len(all_filenames) > 3: - asset_store = DiskIOStore(_ASSETS_DIRNAME, archive=zf, mode="r") - else: - asset_store = None - - _load_state( - model, - weights_store=weights_store, - assets_store=asset_store, - inner_path="", - visited_trackables=set(), - ) - weights_store.close() - if asset_store: - asset_store.close() - - except Exception as e: - raise e - else: - return model - finally: - _SAVING_V3_ENABLED.value = saving_v3_enabled_value - - -def save_weights_only(model, filepath): - """Save only the weights of a model to a target filepath (.weights.h5). - - Note: only supports h5 for now. - """ - # TODO: if h5 filepath is remote, create the file in a temporary directory - # then upload it - filepath = str(filepath) - if not filepath.endswith(".weights.h5"): - raise ValueError( - "Invalid `filepath` argument: expected a `.weights.h5` extension. " - f"Received: filepath={filepath}" - ) - weights_store = H5IOStore(filepath, mode="w") - _save_state( - model, - weights_store=weights_store, - assets_store=None, - inner_path="", - visited_trackables=set(), - ) - weights_store.close() - - -def load_weights_only(model, filepath, skip_mismatch=False): - """Load the weights of a model from a filepath (.keras or .weights.h5). - - Note: only supports h5 for now. - """ - temp_dir = None - archive = None - filepath = str(filepath) - if filepath.endswith(".weights.h5"): - # TODO: download file if h5 filepath is remote - weights_store = H5IOStore(filepath, mode="r") - elif filepath.endswith(".keras"): - archive = zipfile.ZipFile(filepath, "r") - weights_store = H5IOStore( - _VARS_FNAME + ".h5", archive=archive, mode="r" - ) - - _load_state( - model, - weights_store=weights_store, - assets_store=None, - inner_path="", - skip_mismatch=skip_mismatch, - visited_trackables=set(), - ) - weights_store.close() - if temp_dir and tf.io.gfile.exists(temp_dir): - tf.io.gfile.rmtree(temp_dir) - if archive: - archive.close() - - -def is_remote_path(filepath): - if re.match(r"^(/cns|/cfs|/gcs|.*://).*$", str(filepath)): - return True - return False - - -def _write_to_zip_recursively(zipfile_to_save, system_path, zip_path): - if not tf.io.gfile.isdir(system_path): - zipfile_to_save.write(system_path, zip_path) - else: - for file_name in tf.io.gfile.listdir(system_path): - system_file_path = tf.io.gfile.join(system_path, file_name) - zip_file_path = tf.io.gfile.join(zip_path, file_name) - _write_to_zip_recursively( - zipfile_to_save, system_file_path, zip_file_path - ) - - -def _walk_trackable(trackable): - for child_attr in dir(trackable): - if child_attr.startswith("__") or child_attr in ATTR_SKIPLIST: - continue - try: - child_obj = getattr(trackable, child_attr) - except Exception: - # Avoid raising the exception when visiting the attributes. - continue - yield child_attr, child_obj - - -def _save_state( - trackable, weights_store, assets_store, inner_path, visited_trackables -): - # If the trackable has already been saved, skip it. - if id(trackable) in visited_trackables: - return - - if hasattr(trackable, "save_own_variables") and weights_store: - trackable.save_own_variables(weights_store.make(inner_path)) - if hasattr(trackable, "save_assets") and assets_store: - trackable.save_assets(assets_store.make(inner_path)) - - visited_trackables.add(id(trackable)) - - # Recursively save state of children trackables (layers, optimizers, etc.) - for child_attr, child_obj in _walk_trackable(trackable): - if _is_keras_trackable(child_obj): - _save_state( - child_obj, - weights_store, - assets_store, - inner_path=tf.io.gfile.join(inner_path, child_attr), - visited_trackables=visited_trackables, - ) - elif isinstance(child_obj, (list, dict, tuple, set)): - _save_container_state( - child_obj, - weights_store, - assets_store, - inner_path=tf.io.gfile.join(inner_path, child_attr), - visited_trackables=visited_trackables, - ) - - -def _load_state( - trackable, - weights_store, - assets_store, - inner_path, - skip_mismatch=False, - visited_trackables=None, -): - if visited_trackables and id(trackable) in visited_trackables: - return - - if hasattr(trackable, "load_own_variables") and weights_store: - if skip_mismatch: - try: - trackable.load_own_variables(weights_store.get(inner_path)) - except Exception as e: - warnings.warn( - f"Could not load weights in object {trackable}. " - "Skipping object. " - f"Exception encountered: {e}", - stacklevel=2, - ) - else: - trackable.load_own_variables(weights_store.get(inner_path)) - - if hasattr(trackable, "load_assets") and assets_store: - if skip_mismatch: - try: - trackable.load_assets(assets_store.get(inner_path)) - except Exception as e: - warnings.warn( - f"Could not load assets in object {trackable}. " - "Skipping object. " - f"Exception encountered: {e}", - stacklevel=2, - ) - else: - trackable.load_assets(assets_store.get(inner_path)) - - if visited_trackables is not None: - visited_trackables.add(id(trackable)) - - # Recursively load states for Keras trackables such as layers/optimizers. - for child_attr, child_obj in _walk_trackable(trackable): - if _is_keras_trackable(child_obj): - _load_state( - child_obj, - weights_store, - assets_store, - inner_path=tf.io.gfile.join(inner_path, child_attr), - skip_mismatch=skip_mismatch, - visited_trackables=visited_trackables, - ) - elif isinstance(child_obj, (list, dict, tuple, set)): - _load_container_state( - child_obj, - weights_store, - assets_store, - inner_path=tf.io.gfile.join(inner_path, child_attr), - skip_mismatch=skip_mismatch, - visited_trackables=visited_trackables, - ) - - -def _save_container_state( - container, weights_store, assets_store, inner_path, visited_trackables -): - used_names = {} - if isinstance(container, dict): - container = list(container.values()) - - for trackable in container: - if _is_keras_trackable(trackable): - # Do NOT address the trackable via `trackable.name`, since - # names are usually autogenerated and thus not reproducible - # (i.e. they may vary across two instances of the same model). - name = generic_utils.to_snake_case(trackable.__class__.__name__) - if name in used_names: - used_names[name] += 1 - name = f"{name}_{used_names[name]}" - else: - used_names[name] = 0 - _save_state( - trackable, - weights_store, - assets_store, - inner_path=tf.io.gfile.join(inner_path, name), - visited_trackables=visited_trackables, - ) - - -def _load_container_state( - container, - weights_store, - assets_store, - inner_path, - skip_mismatch, - visited_trackables, -): - used_names = {} - if isinstance(container, dict): - container = list(container.values()) - - for trackable in container: - if _is_keras_trackable(trackable): - name = generic_utils.to_snake_case(trackable.__class__.__name__) - if name in used_names: - used_names[name] += 1 - name = f"{name}_{used_names[name]}" - else: - used_names[name] = 0 - _load_state( - trackable, - weights_store, - assets_store, - inner_path=tf.io.gfile.join(inner_path, name), - skip_mismatch=skip_mismatch, - visited_trackables=visited_trackables, - ) - - -class DiskIOStore: - """Asset store backed by disk storage. - - If `archive` is specified, then `root_path` refers to the filename - inside the archive. - - If `archive` is not specified, then `root_path` refers to the full path of - the target directory. - """ - - def __init__(self, root_path, archive=None, mode=None): - self.mode = mode - self.root_path = root_path - self.archive = archive - self.tmp_dir = None - if self.archive: - self.tmp_dir = get_temp_dir() - if self.mode == "r": - self.archive.extractall(path=self.tmp_dir) - self.working_dir = tf.io.gfile.join(self.tmp_dir, self.root_path) - if self.mode == "w": - tf.io.gfile.makedirs(self.working_dir) - else: - if mode == "r": - self.working_dir = root_path - else: - self.tmp_dir = get_temp_dir() - self.working_dir = tf.io.gfile.join( - self.tmp_dir, self.root_path - ) - tf.io.gfile.makedirs(self.working_dir) - - def make(self, path): - if not path: - return self.working_dir - path = tf.io.gfile.join(self.working_dir, path) - if not tf.io.gfile.exists(path): - tf.io.gfile.makedirs(path) - return path - - def get(self, path): - if not path: - return self.working_dir - path = tf.io.gfile.join(self.working_dir, path) - if tf.io.gfile.exists(path): - return path - return None - - def close(self): - if self.mode == "w" and self.archive: - _write_to_zip_recursively( - self.archive, self.working_dir, self.root_path - ) - if self.tmp_dir and tf.io.gfile.exists(self.tmp_dir): - tf.io.gfile.rmtree(self.tmp_dir) - - -class H5IOStore: - def __init__(self, root_path, archive=None, mode="r"): - """Numerical variable store backed by HDF5. - - If `archive` is specified, then `root_path` refers to the filename - inside the archive. - - If `archive` is not specified, then `root_path` refers to the path of - the h5 file on disk. - """ - self.root_path = root_path - self.mode = mode - self.archive = archive - self.io_file = None - - if self.archive: - if self.mode == "w": - self.io_file = io.BytesIO() - else: - self.io_file = self.archive.open(self.root_path, "r") - self.h5_file = h5py.File(self.io_file, mode=self.mode) - else: - self.h5_file = h5py.File(root_path, mode=self.mode) - - def make(self, path): - if not path: - return self.h5_file.create_group("vars") - return self.h5_file.create_group(path).create_group("vars") - - def get(self, path): - if not path: - return self.h5_file["vars"] - if path in self.h5_file and "vars" in self.h5_file[path]: - return self.h5_file[path]["vars"] - return {} - - def close(self): - self.h5_file.close() - if self.mode == "w" and self.archive: - self.archive.writestr(self.root_path, self.io_file.getvalue()) - if self.io_file: - self.io_file.close() - - -class NpzIOStore: - def __init__(self, root_path, archive=None, mode="r"): - """Numerical variable store backed by NumPy.savez/load. - - If `archive` is specified, then `root_path` refers to the filename - inside the archive. - - If `archive` is not specified, then `root_path` refers to the path of - the npz file on disk. - """ - self.root_path = root_path - self.mode = mode - self.archive = archive - if mode == "w": - self.contents = {} - else: - if self.archive: - self.f = archive.open(root_path, mode="r") - else: - self.f = open(root_path, mode="rb") - self.contents = np.load(self.f, allow_pickle=True) - - def make(self, path): - if not path: - self.contents["__root__"] = {} - return self.contents["__root__"] - self.contents[path] = {} - return self.contents[path] - - def get(self, path): - if not path: - if "__root__" in self.contents: - return dict(self.contents["__root__"]) - return {} - if path in self.contents: - return self.contents[path].tolist() - return {} - - def close(self): - if self.mode == "w": - if self.archive: - self.f = self.archive.open( - self.root_path, mode="w", force_zip64=True - ) - else: - self.f = open(self.root_path, mode="wb") - np.savez(self.f, **self.contents) - self.f.close() - - -def get_temp_dir(): - temp_dir = tempfile.mkdtemp() - testfile = tempfile.TemporaryFile(dir=temp_dir) - testfile.close() - return temp_dir - - -def _is_keras_trackable(obj): - from keras.metrics import base_metric # To avoid circular import - - return isinstance( - obj, - ( - base_layer.Layer, - optimizer.Optimizer, - base_metric.Metric, - losses.Loss, - ), - ) - - -def saving_v3_enabled(): - return getattr(_SAVING_V3_ENABLED, "value", True) - - -# Some debugging utilities. - - -def _print_h5_file(h5_file, prefix="", action=None): - if not prefix: - print(f"Keras weights file ({h5_file}) {action}:") - if not hasattr(h5_file, "keys"): - return - for key in h5_file.keys(): - print(f"...{prefix}{key}") - _print_h5_file(h5_file[key], prefix=prefix + "...") - - -def _print_zip_file(zipfile, action): - io_utils.print_msg(f"Keras model archive {action}:") - # Same as `ZipFile.printdir()` except for using Keras' printing utility. - io_utils.print_msg( - "%-46s %19s %12s" % ("File Name", "Modified ", "Size") - ) - for zinfo in zipfile.filelist: - date = "%d-%02d-%02d %02d:%02d:%02d" % zinfo.date_time[:6] - io_utils.print_msg( - "%-46s %s %12d" % (zinfo.filename, date, zinfo.file_size) - ) diff --git a/keras/saving/saving_lib_test.py b/keras/saving/saving_lib_test.py deleted file mode 100644 index 64649eef23d..00000000000 --- a/keras/saving/saving_lib_test.py +++ /dev/null @@ -1,739 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras python-based idempotent saving functions.""" -import os -import sys -import zipfile -from pathlib import Path -from unittest import mock - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized -from tensorflow.python.platform import tf_logging as logging - -import keras -from keras import backend -from keras.optimizers import adam -from keras.saving import object_registration -from keras.saving import saving_lib -from keras.saving.legacy.saved_model import json_utils -from keras.testing_infra import test_utils -from keras.utils import io_utils - -train_step_message = "This is my training step" -assets_data = "These are my assets" -variables_data = np.random.random((10,)) - - -@keras.utils.register_keras_serializable(package="my_custom_package") -class MyDense(keras.layers.Dense): - def build(self, input_shape): - self.additional_weights = [ - self.add_weight( - "my_additional_weight", - initializer="ones", - trainable=True, - ), - self.add_weight( - "my_additional_weight_2", - initializer="ones", - trainable=True, - ), - ] - self.weights_in_dict = { - "my_weight": self.add_weight( - "my_dict_weight", - initializer="ones", - trainable=True, - ), - } - self.nested_layer = keras.layers.Dense(1) - return super().build(input_shape) - - def call(self, inputs): - call_result = super().call(inputs) - return self.nested_layer(call_result) - - def two(self): - return 2 - - -@keras.utils.register_keras_serializable(package="my_custom_package") -class LayerWithCustomSaving(MyDense): - def build(self, input_shape): - self.assets = assets_data - self.stored_variables = variables_data - return super().build(input_shape) - - def save_assets(self, inner_path): - with open(os.path.join(inner_path, "assets.txt"), "w") as f: - f.write(self.assets) - - def save_own_variables(self, store): - store["variables"] = self.stored_variables - - def load_assets(self, inner_path): - with open(os.path.join(inner_path, "assets.txt"), "r") as f: - text = f.read() - self.assets = text - - def load_own_variables(self, store): - self.stored_variables = np.array(store["variables"]) - - -@keras.utils.register_keras_serializable(package="my_custom_package") -class CustomModelX(keras.Model): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.dense1 = MyDense(1) - self.dense2 = MyDense(1) - - def call(self, inputs): - out = self.dense1(inputs) - return self.dense2(out) - - def train_step(self, data): - tf.print(train_step_message) - x, y = data - with tf.GradientTape() as tape: - y_pred = self(x) - loss = self.compiled_loss(y, y_pred) - - gradients = tape.gradient(loss, self.trainable_variables) - self.optimizer.apply_gradients(zip(gradients, self.trainable_variables)) - return {} - - def one(self): - return 1 - - -@keras.utils.register_keras_serializable(package="my_custom_package") -class ModelWithCustomSaving(keras.Model): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.custom_dense = LayerWithCustomSaving(1) - - def call(self, inputs): - return self.custom_dense(inputs) - - -@keras.utils.register_keras_serializable(package="my_custom_package") -class CompileOverridingModel(keras.Model): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.dense1 = MyDense(1) - - def compile(self, *args, **kwargs): - super().compile(*args, **kwargs) - - def call(self, inputs): - return self.dense1(inputs) - - -@keras.utils.register_keras_serializable(package="my_custom_package") -class CompileOverridingSequential(keras.Sequential): - def compile(self, *args, **kwargs): - super().compile(*args, **kwargs) - - -@keras.utils.register_keras_serializable(package="my_custom_package") -def my_mean_squared_error(y_true, y_pred): - """Identical to built-in `mean_squared_error`, added here as a custom - - func. - """ - return backend.mean(tf.math.squared_difference(y_pred, y_true), axis=-1) - - -module_my_mean_squared_error = my_mean_squared_error - - -@test_utils.run_v2_only -class SavingV3Test(tf.test.TestCase, parameterized.TestCase): - def _get_subclassed_model(self): - subclassed_model = CustomModelX() - subclassed_model.compile( - optimizer=adam.Adam(), - loss=[ - "mse", - keras.losses.mean_squared_error, - keras.losses.MeanSquaredError(), - my_mean_squared_error, - ], - ) - return subclassed_model - - def _get_sequential_model(self): - sequential_model = keras.Sequential([MyDense(1), MyDense(1)]) - sequential_model.compile( - optimizer="adam", loss=["mse", keras.losses.mean_squared_error] - ) - return sequential_model - - def _get_functional_model(self): - inputs = keras.Input(shape=(32,)) - x = MyDense(1, name="first_dense")(inputs) - outputs = MyDense(1, name="second_dense")(x) - functional_model = keras.Model(inputs, outputs) - functional_model.compile( - optimizer="adam", loss=["mse", keras.losses.mean_squared_error] - ) - return functional_model - - def test_saving_after_compile_but_before_fit(self): - temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") - subclassed_model = self._get_subclassed_model() - subclassed_model._save_experimental(temp_filepath) - - # This is so that we can register another function with the same custom - # object key, and make sure the newly registered function is used while - # loading. - del object_registration._GLOBAL_CUSTOM_OBJECTS[ - "my_custom_package>my_mean_squared_error" - ] - - @keras.utils.register_keras_serializable(package="my_custom_package") - def my_mean_squared_error(y_true, y_pred): - """Function-local `mean_squared_error`.""" - return backend.mean( - tf.math.squared_difference(y_pred, y_true), axis=-1 - ) - - loaded_model = saving_lib.load_model(temp_filepath) - self.assertEqual( - subclassed_model._is_compiled, loaded_model._is_compiled - ) - - # Everything should be the same class or function for the original model - # and the loaded model. - for model in [subclassed_model, loaded_model]: - self.assertIs( - model.optimizer.__class__, - adam.Adam, - ) - self.assertIs( - model.compiled_loss.__class__, - keras.engine.compile_utils.LossesContainer, - ) - self.assertEqual(model.compiled_loss._losses[0], "mse") - self.assertIs( - model.compiled_loss._losses[1], keras.losses.mean_squared_error - ) - self.assertIs( - model.compiled_loss._losses[2].__class__, - keras.losses.MeanSquaredError, - ) - self.assertIs( - model.compiled_loss._total_loss_mean.__class__, - keras.metrics.base_metric.Mean, - ) - - # Except for a custom function used because the loaded model is supposed - # to be using the newly registered custom function. - self.assertIs( - subclassed_model.compiled_loss._losses[3], - module_my_mean_squared_error, - ) - self.assertIs( - loaded_model.compiled_loss._losses[3], my_mean_squared_error - ) - self.assertIsNot(module_my_mean_squared_error, my_mean_squared_error) - - def test_saving_after_fit(self): - temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") - subclassed_model = self._get_subclassed_model() - - x = np.random.random((100, 32)) - y = np.random.random((100, 1)) - subclassed_model.fit(x, y, epochs=1) - subclassed_model._save_experimental(temp_filepath) - loaded_model = saving_lib.load_model(temp_filepath) - self.assertEqual( - subclassed_model._is_compiled, loaded_model._is_compiled - ) - - io_utils.enable_interactive_logging() - # `tf.print` writes to stderr. This is to make sure the custom training - # step is used. - with self.captureWritesToStream(sys.stderr) as printed: - loaded_model.fit(x, y, epochs=1) - self.assertRegex(printed.contents(), train_step_message) - - # Check that the custom classes do get used. - self.assertIsInstance(loaded_model, CustomModelX) - self.assertIsInstance(loaded_model.dense1, MyDense) - # Check that the custom method is available. - self.assertEqual(loaded_model.one(), 1) - self.assertEqual(loaded_model.dense1.two(), 2) - - # Everything should be the same class or function for the original model - # and the loaded model. - for model in [subclassed_model, loaded_model]: - self.assertIs( - model.optimizer.__class__, - adam.Adam, - ) - self.assertIs( - model.compiled_loss.__class__, - keras.engine.compile_utils.LossesContainer, - ) - self.assertIs( - model.compiled_loss._losses[0].__class__, - keras.losses.LossFunctionWrapper, - ) - self.assertIs( - model.compiled_loss._losses[1].__class__, - keras.losses.LossFunctionWrapper, - ) - self.assertIs( - model.compiled_loss._losses[2].__class__, - keras.losses.MeanSquaredError, - ) - self.assertIs( - model.compiled_loss._losses[3].__class__, - keras.losses.LossFunctionWrapper, - ) - self.assertIs( - model.compiled_loss._total_loss_mean.__class__, - keras.metrics.base_metric.Mean, - ) - - def test_saving_preserve_unbuilt_state(self): - temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") - subclassed_model = CustomModelX() - subclassed_model._save_experimental(temp_filepath) - loaded_model = saving_lib.load_model(temp_filepath) - self.assertEqual( - subclassed_model._is_compiled, loaded_model._is_compiled - ) - self.assertFalse(subclassed_model.built) - self.assertFalse(loaded_model.built) - - def test_saving_preserve_built_state(self): - temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") - model = self._get_subclassed_model() - x = np.random.random((100, 32)) - y = np.random.random((100, 1)) - model.fit(x, y, epochs=1) - model._save_experimental(temp_filepath) - loaded_model = saving_lib.load_model(temp_filepath) - self.assertEqual(model._is_compiled, loaded_model._is_compiled) - self.assertTrue(model.built) - self.assertTrue(loaded_model.built) - self.assertEqual( - model._build_input_shape, loaded_model._build_input_shape - ) - self.assertEqual( - tf.TensorShape([None, 32]), loaded_model._build_input_shape - ) - - def test_saved_module_paths_and_class_names(self): - temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") - subclassed_model = self._get_subclassed_model() - x = np.random.random((100, 32)) - y = np.random.random((100, 1)) - subclassed_model.fit(x, y, epochs=1) - subclassed_model._save_experimental(temp_filepath) - - with zipfile.ZipFile(temp_filepath, "r") as z: - with z.open(saving_lib._CONFIG_FILENAME, "r") as c: - config_json = c.read() - config_dict = json_utils.decode(config_json) - self.assertEqual( - config_dict["registered_name"], "my_custom_package>CustomModelX" - ) - self.assertEqual( - config_dict["compile_config"]["optimizer"]["config"][ - "is_legacy_optimizer" - ], - False, - ) - self.assertEqual( - config_dict["compile_config"]["optimizer"]["class_name"], - "Adam", - ) - self.assertLen(config_dict["compile_config"]["loss"], 4) - self.assertEqual( - config_dict["compile_config"]["loss"][0], - "mse", - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - layer=["tf_op_lambda", "lambda"], - ) - ) - def test_functional_model_with_tf_op_lambda_layer(self, layer): - class ToString: - def __init__(self): - self.contents = "" - - def __call__(self, msg): - self.contents += msg + "\n" - - temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") - - if layer == "lambda": - func = tf.function(lambda x: tf.math.cos(x) + tf.math.sin(x)) - inputs = keras.layers.Input(shape=(32,)) - outputs = keras.layers.Dense(1)(inputs) - outputs = keras.layers.Lambda(func._python_function)(outputs) - - elif layer == "tf_op_lambda": - inputs = keras.layers.Input(shape=(32,)) - outputs = keras.layers.Dense(1)(inputs) - outputs = outputs + inputs - - functional_model = keras.Model(inputs, outputs) - functional_to_string = ToString() - functional_model.summary(print_fn=functional_to_string) - functional_model.compile(optimizer="adam", loss="mse", metrics=["mae"]) - - x = np.random.random((1000, 32)) - y = np.random.random((1000, 1)) - functional_model.fit(x, y, epochs=3) - functional_model._save_experimental(temp_filepath) - loaded_model = saving_lib.load_model(temp_filepath, safe_mode=False) - self.assertEqual( - functional_model._is_compiled, loaded_model._is_compiled - ) - - loaded_model.fit(x, y, epochs=3) - loaded_to_string = ToString() - loaded_model.summary(print_fn=loaded_to_string) - - # Confirming the original and saved/loaded model have same structure. - self.assertEqual( - functional_to_string.contents, loaded_to_string.contents - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - model_type=["sequential", "functional", "subclassed"], - ) - ) - def test_saving_model_state(self, model_type): - temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") - model = getattr(self, f"_get_{model_type}_model")() - x = np.random.random((100, 32)) - y = np.random.random((100, 1)) - model.fit(x, y, epochs=1) - - # Assert that the archive has not been saved. - self.assertFalse(os.path.exists(temp_filepath)) - - # Mutate the `Dense` layer custom weights to ensure that list and - # dict-contained weights get restored. - model.layers[1].additional_weights[0].assign(2) - model.layers[1].weights_in_dict["my_weight"].assign(2) - model.layers[1].nested_layer.kernel.assign([[1]]) - - model._save_experimental(temp_filepath) - - # Assert that the archive has been saved. - self.assertTrue(os.path.exists(temp_filepath)) - loaded_model = saving_lib.load_model(temp_filepath) - self.assertEqual(model._is_compiled, loaded_model._is_compiled) - - # The weights are supposed to be the same (between original and loaded - # models). - for original_weights, loaded_weights in zip( - model.get_weights(), loaded_model.get_weights() - ): - np.testing.assert_allclose(original_weights, loaded_weights) - - # The optimizer variables are supposed to be the same (between original - # and loaded models). - for original_weights, loaded_weights in zip( - model.optimizer.variables, loaded_model.optimizer.variables - ): - np.testing.assert_allclose(original_weights, loaded_weights) - - def test_saving_custom_assets_and_variables(self): - temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") - model = ModelWithCustomSaving() - model.compile( - optimizer=adam.Adam(), - loss=[ - "mse", - keras.losses.mean_squared_error, - keras.losses.MeanSquaredError(), - my_mean_squared_error, - ], - ) - x = np.random.random((100, 32)) - y = np.random.random((100, 1)) - model.fit(x, y, epochs=1) - - # Assert that the archive has not been saved. - self.assertFalse(os.path.exists(temp_filepath)) - - model._save_experimental(temp_filepath) - - loaded_model = saving_lib.load_model(temp_filepath) - self.assertEqual(loaded_model.custom_dense.assets, assets_data) - self.assertEqual( - loaded_model.custom_dense.stored_variables.tolist(), - variables_data.tolist(), - ) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - model_type=["subclassed", "sequential"], - ) - ) - def test_compile_overridden_model_raises_if_no_from_config_overridden( - self, model_type - ): - temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") - model = ( - CompileOverridingModel() - if model_type == "subclassed" - else CompileOverridingSequential( - [keras.layers.Embedding(4, 1), MyDense(1), MyDense(1)] - ) - ) - model.compile("rmsprop", "mse") - model._save_experimental(temp_filepath) - - with mock.patch.object(logging, "warning") as mock_warn: - saving_lib.load_model(temp_filepath) - if not mock_warn.call_args_list: - raise AssertionError("Did not warn.") - self.assertIn( - "`compile()` was not called as part of model loading " - "because the model's `compile()` method is custom. ", - mock_warn.call_args_list[0][0][0], - ) - - def test_metadata(self): - temp_filepath = Path( - os.path.join(self.get_temp_dir(), "my_model.keras") - ) - model = CompileOverridingModel() - model._save_experimental(temp_filepath) - with zipfile.ZipFile(temp_filepath, "r") as z: - with z.open(saving_lib._METADATA_FILENAME, "r") as c: - metadata_json = c.read() - metadata = json_utils.decode(metadata_json) - self.assertIn("keras_version", metadata) - self.assertIn("date_saved", metadata) - - def test_gfile_copy_local_called(self): - temp_filepath = Path( - os.path.join(self.get_temp_dir(), "my_model.keras") - ) - model = CompileOverridingModel() - with mock.patch("re.match", autospec=True) as mock_re_match, mock.patch( - "tensorflow.compat.v2.io.gfile.copy", autospec=True - ) as mock_copy: - # Mock Remote Path check to true to test gfile copy logic - mock_re_match.return_value = True - model._save_experimental(temp_filepath) - mock_re_match.assert_called() - mock_copy.assert_called() - self.assertIn(str(temp_filepath), mock_re_match.call_args.args) - self.assertIn(str(temp_filepath), mock_copy.call_args.args) - - def test_load_model_api_endpoint(self): - temp_filepath = Path(os.path.join(self.get_temp_dir(), "mymodel.keras")) - model = self._get_functional_model() - ref_input = np.random.random((10, 32)) - ref_output = model.predict(ref_input) - model.save(temp_filepath, save_format="keras_v3") - model = keras.models.load_model(temp_filepath) - self.assertAllClose(model.predict(ref_input), ref_output, atol=1e-6) - - def test_save_load_weights_only(self): - temp_filepath = Path( - os.path.join(self.get_temp_dir(), "mymodel.weights.h5") - ) - model = self._get_functional_model() - ref_input = np.random.random((10, 32)) - ref_output = model.predict(ref_input) - saving_lib.save_weights_only(model, temp_filepath) - model = self._get_functional_model() - saving_lib.load_weights_only(model, temp_filepath) - self.assertAllClose(model.predict(ref_input), ref_output, atol=1e-6) - # Test with Model method - model = self._get_functional_model() - model.load_weights(temp_filepath) - self.assertAllClose(model.predict(ref_input), ref_output, atol=1e-6) - - def test_load_weights_only_with_keras_file(self): - # Test loading weights from whole saved model - temp_filepath = Path(os.path.join(self.get_temp_dir(), "mymodel.keras")) - model = self._get_functional_model() - ref_input = np.random.random((10, 32)) - ref_output = model.predict(ref_input) - saving_lib.save_model(model, temp_filepath) - model = self._get_functional_model() - saving_lib.load_weights_only(model, temp_filepath) - self.assertAllClose(model.predict(ref_input), ref_output, atol=1e-6) - # Test with Model method - model = self._get_functional_model() - model.load_weights(temp_filepath) - self.assertAllClose(model.predict(ref_input), ref_output, atol=1e-6) - - def test_compile_arg(self): - temp_filepath = os.path.join(self.get_temp_dir(), "mymodel.keras") - model = self._get_functional_model() - model.compile("rmsprop", "mse") - model.fit(np.random.random((10, 32)), np.random.random((10, 1))) - saving_lib.save_model(model, temp_filepath) - - model = saving_lib.load_model(temp_filepath) - self.assertEqual(model._is_compiled, True) - model = saving_lib.load_model(temp_filepath, compile=False) - self.assertEqual(model._is_compiled, False) - - def test_overwrite(self): - temp_filepath = os.path.join(self.get_temp_dir(), "mymodel.keras") - model = self._get_functional_model() - model.save(temp_filepath, save_format="keras_v3") - model.save(temp_filepath, save_format="keras_v3", overwrite=True) - with self.assertRaises(EOFError): - model.save(temp_filepath, save_format="keras_v3", overwrite=False) - - temp_filepath = os.path.join(self.get_temp_dir(), "mymodel.weights.h5") - model = self._get_functional_model() - model.save_weights(temp_filepath) - model.save_weights(temp_filepath, overwrite=True) - with self.assertRaises(EOFError): - model.save_weights(temp_filepath, overwrite=False) - - def test_partial_load(self): - temp_filepath = os.path.join(self.get_temp_dir(), "mymodel.keras") - original_model = keras.Sequential( - [ - keras.Input(shape=(3,)), - keras.layers.Dense(4), - keras.layers.Dense(5), - ] - ) - original_model.save(temp_filepath, save_format="keras_v3") - - # Test with a model that has a differently shaped layer - new_model = keras.Sequential( - [ - keras.Input(shape=(3,)), - keras.layers.Dense(4), - keras.layers.Dense(6), - ] - ) - new_layer_kernel_value = new_model.layers[1].kernel.numpy() - with self.assertRaisesRegex(ValueError, "Shape mismatch"): - # Doesn't work by default - new_model.load_weights(temp_filepath) - # Now it works - new_model.load_weights(temp_filepath, skip_mismatch=True) - self.assertAllClose( - original_model.layers[0].get_weights(), - new_model.layers[0].get_weights(), - ) - self.assertAllClose( - new_model.layers[1].kernel.numpy(), new_layer_kernel_value - ) - - # Test with a model that has a new layer - new_model = keras.Sequential( - [ - keras.Input(shape=(3,)), - keras.layers.Dense(4), - keras.layers.Dense(5), - keras.layers.Dense(5), - ] - ) - new_layer_kernel_value = new_model.layers[2].kernel.numpy() - with self.assertRaisesRegex(ValueError, "received 0 variables"): - # Doesn't work by default - new_model.load_weights(temp_filepath) - # Now it works - new_model.load_weights(temp_filepath, skip_mismatch=True) - self.assertAllClose( - original_model.layers[0].get_weights(), - new_model.layers[0].get_weights(), - ) - self.assertAllClose( - original_model.layers[1].get_weights(), - new_model.layers[1].get_weights(), - ) - self.assertAllClose( - new_model.layers[2].kernel.numpy(), new_layer_kernel_value - ) - - def test_api_errors(self): - temp_filepath = os.path.join(self.get_temp_dir(), "mymodel.notkeras") - model = self._get_functional_model() - with self.assertRaisesRegex(ValueError, "Unknown `save_format`"): - model.save(temp_filepath, save_format="invalid") - with self.assertRaisesRegex(ValueError, "Invalid `filepath` argument"): - model.save(temp_filepath, save_format="keras_v3") - - temp_filepath = os.path.join(self.get_temp_dir(), "mymodel.keras") - with self.assertRaisesRegex(ValueError, "not supported"): - model.save( - temp_filepath, include_optimizer=False, save_format="keras_v3" - ) - - def test_safe_mode(self): - temp_filepath = os.path.join(self.get_temp_dir(), "unsafe_model.keras") - model = keras.Sequential( - [ - keras.Input(shape=(3,)), - keras.layers.Lambda(lambda x: x * 2), - ] - ) - model.save(temp_filepath, save_format="keras_v3") - with self.assertRaisesRegex(ValueError, "arbitrary code execution"): - model = saving_lib.load_model(temp_filepath) - model = saving_lib.load_model(temp_filepath, safe_mode=False) - - def test_normalization_kpl(self): - # With adapt - temp_filepath = os.path.join(self.get_temp_dir(), "norm_model.keras") - model = keras.Sequential( - [ - keras.Input(shape=(3,)), - keras.layers.Normalization(), - ] - ) - data = np.random.random((3, 3)) - model.layers[0].adapt(data) - ref_out = model(data) - model.save(temp_filepath, save_format="keras_v3") - model = saving_lib.load_model(temp_filepath) - out = model(data) - self.assertAllClose(ref_out, out, atol=1e-6) - - # Without adapt - model = keras.Sequential( - [ - keras.Input(shape=(3,)), - keras.layers.Normalization( - mean=np.random.random((3,)), variance=np.random.random((3,)) - ), - ] - ) - ref_out = model(data) - model.save(temp_filepath, save_format="keras_v3") - model = saving_lib.load_model(temp_filepath) - out = model(data) - self.assertAllClose(ref_out, out, atol=1e-6) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/saving/serialization_lib.py b/keras/saving/serialization_lib.py deleted file mode 100644 index c9cbe0f6ccd..00000000000 --- a/keras/saving/serialization_lib.py +++ /dev/null @@ -1,772 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Object config serialization and deserialization logic.""" - -import importlib -import inspect -import threading -import types -import warnings - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.saving import object_registration -from keras.saving.legacy import serialization as legacy_serialization -from keras.saving.legacy.saved_model.utils import in_tf_saved_model_scope -from keras.utils import generic_utils - -# isort: off -from tensorflow.python.util import tf_export -from tensorflow.python.util.tf_export import keras_export - -PLAIN_TYPES = (str, int, float, bool) -SHARED_OBJECTS = threading.local() -SAFE_MODE = threading.local() -# TODO(nkovela): Debug serialization of decorated functions inside lambdas -# to allow for serialization of custom_gradient. -NON_SERIALIZABLE_CLASS_MODULES = ("tensorflow.python.ops.custom_gradient",) -BUILTIN_MODULES = ( - "activations", - "constraints", - "initializers", - "losses", - "metrics", - "optimizers", - "regularizers", -) - - -class Config: - def __init__(self, **config): - self.config = config - - def serialize(self): - return serialize_keras_object(self.config) - - -class SafeModeScope: - """Scope to propagate safe mode flag to nested deserialization calls.""" - - def __init__(self, safe_mode=True): - self.safe_mode = safe_mode - - def __enter__(self): - self.original_value = in_safe_mode() - SAFE_MODE.safe_mode = self.safe_mode - - def __exit__(self, *args, **kwargs): - SAFE_MODE.safe_mode = self.original_value - - -@keras_export("keras.__internal__.enable_unsafe_deserialization") -def enable_unsafe_deserialization(): - """Disables safe mode globally, allowing deserialization of lambdas.""" - SAFE_MODE.safe_mode = False - - -def in_safe_mode(): - return getattr(SAFE_MODE, "safe_mode", None) - - -class ObjectSharingScope: - """Scope to enable detection and reuse of previously seen objects.""" - - def __enter__(self): - SHARED_OBJECTS.enabled = True - SHARED_OBJECTS.id_to_obj_map = {} - SHARED_OBJECTS.id_to_config_map = {} - - def __exit__(self, *args, **kwargs): - SHARED_OBJECTS.enabled = False - SHARED_OBJECTS.id_to_obj_map = {} - SHARED_OBJECTS.id_to_config_map = {} - - -def get_shared_object(obj_id): - """Retrieve an object previously seen during deserialization.""" - if getattr(SHARED_OBJECTS, "enabled", False): - return SHARED_OBJECTS.id_to_obj_map.get(obj_id, None) - - -def record_object_after_serialization(obj, config): - """Call after serializing an object, to keep track of its config.""" - if config["module"] == "__main__": - config["module"] = None # Ensures module is None when no module found - if not getattr(SHARED_OBJECTS, "enabled", False): - return # Not in a sharing scope - obj_id = int(id(obj)) - if obj_id not in SHARED_OBJECTS.id_to_config_map: - SHARED_OBJECTS.id_to_config_map[obj_id] = config - else: - config["shared_object_id"] = obj_id - prev_config = SHARED_OBJECTS.id_to_config_map[obj_id] - prev_config["shared_object_id"] = obj_id - - -def record_object_after_deserialization(obj, obj_id): - """Call after deserializing an object, to keep track of it in the future.""" - if not getattr(SHARED_OBJECTS, "enabled", False): - return # Not in a sharing scope - SHARED_OBJECTS.id_to_obj_map[obj_id] = obj - - -@keras_export( - "keras.saving.serialize_keras_object", "keras.utils.serialize_keras_object" -) -def serialize_keras_object(obj): - """Retrieve the config dict by serializing the Keras object. - - `serialize_keras_object()` serializes a Keras object to a python dictionary - that represents the object, and is a reciprocal function of - `deserialize_keras_object()`. See `deserialize_keras_object()` for more - information about the config format. - - Args: - obj: the Keras object to serialize. - - Returns: - A python dict that represents the object. The python dict can be - deserialized via `deserialize_keras_object()`. - """ - # Fall back to legacy serialization for all TF1 users or if - # wrapped by in_tf_saved_model_scope() to explicitly use legacy - # saved_model logic. - if not tf.__internal__.tf2.enabled() or in_tf_saved_model_scope(): - return legacy_serialization.serialize_keras_object(obj) - - if obj is None: - return obj - - if isinstance(obj, PLAIN_TYPES): - return obj - - if isinstance(obj, (list, tuple)): - config_arr = [serialize_keras_object(x) for x in obj] - return tuple(config_arr) if isinstance(obj, tuple) else config_arr - if isinstance(obj, dict): - return serialize_dict(obj) - - # Special cases: - if isinstance(obj, bytes): - return { - "class_name": "__bytes__", - "config": {"value": obj.decode("utf-8")}, - } - if isinstance(obj, tf.TensorShape): - return obj.as_list() if obj._dims is not None else None - if isinstance(obj, tf.Tensor): - return { - "class_name": "__tensor__", - "config": { - "value": obj.numpy().tolist(), - "dtype": obj.dtype.name, - }, - } - if type(obj).__module__ == np.__name__: - if isinstance(obj, np.ndarray) and obj.ndim > 0: - return { - "class_name": "__numpy__", - "config": { - "value": obj.tolist(), - "dtype": obj.dtype.name, - }, - } - else: - # Treat numpy floats / etc as plain types. - return obj.item() - if isinstance(obj, tf.DType): - return obj.name - if isinstance(obj, tf.compat.v1.Dimension): - return obj.value - if isinstance(obj, types.FunctionType) and obj.__name__ == "": - warnings.warn( - "The object being serialized includes a `lambda`. This is unsafe. " - "In order to reload the object, you will have to pass " - "`safe_mode=False` to the loading function. " - "Please avoid using `lambda` in the " - "future, and use named Python functions instead. " - f"This is the `lambda` being serialized: {inspect.getsource(obj)}", - stacklevel=2, - ) - return { - "class_name": "__lambda__", - "config": { - "value": generic_utils.func_dump(obj), - }, - } - if isinstance(obj, tf.TypeSpec): - ts_config = obj._serialize() - # TensorShape and tf.DType conversion - ts_config = list( - map( - lambda x: x.as_list() - if isinstance(x, tf.TensorShape) - else (x.name if isinstance(x, tf.DType) else x), - ts_config, - ) - ) - return { - "class_name": "__typespec__", - "spec_name": obj.__class__.__name__, - "module": obj.__class__.__module__, - "config": ts_config, - "registered_name": None, - } - - inner_config = _get_class_or_fn_config(obj) - config_with_public_class = serialize_with_public_class( - obj.__class__, inner_config - ) - - # TODO(nkovela): Add TF ops dispatch handler serialization for - # ops.EagerTensor that contains nested numpy array. - # Target: NetworkConstructionTest.test_constant_initializer_with_numpy - if isinstance(inner_config, str) and inner_config == "op_dispatch_handler": - return obj - - if config_with_public_class is not None: - - # Special case for non-serializable class modules - if any( - mod in config_with_public_class["module"] - for mod in NON_SERIALIZABLE_CLASS_MODULES - ): - return obj - - get_build_and_compile_config(obj, config_with_public_class) - record_object_after_serialization(obj, config_with_public_class) - return config_with_public_class - - # Any custom object or otherwise non-exported object - if isinstance(obj, types.FunctionType): - module = obj.__module__ - else: - module = obj.__class__.__module__ - class_name = obj.__class__.__name__ - - if module == "builtins": - registered_name = None - else: - if isinstance(obj, types.FunctionType): - registered_name = object_registration.get_registered_name(obj) - else: - registered_name = object_registration.get_registered_name( - obj.__class__ - ) - - config = { - "module": module, - "class_name": class_name, - "config": inner_config, - "registered_name": registered_name, - } - get_build_and_compile_config(obj, config) - record_object_after_serialization(obj, config) - return config - - -def get_build_and_compile_config(obj, config): - if hasattr(obj, "get_build_config"): - build_config = obj.get_build_config() - if build_config is not None: - config["build_config"] = serialize_dict(build_config) - if hasattr(obj, "get_compile_config"): - compile_config = obj.get_compile_config() - if compile_config is not None: - config["compile_config"] = serialize_dict(compile_config) - return - - -def serialize_with_public_class(cls, inner_config=None): - """Serializes classes from public Keras API or object registration. - - Called to check and retrieve the config of any class that has a public - Keras API or has been registered as serializable via - `keras.utils.register_keras_serializable`. - """ - # This gets the `keras.*` exported name, such as "keras.optimizers.Adam". - keras_api_name = tf_export.get_canonical_name_for_symbol( - cls, api_name="keras" - ) - if keras_api_name is None: - registered_name = object_registration.get_registered_name(cls) - if registered_name: - return { - "module": cls.__module__, - "class_name": cls.__name__, - "config": inner_config, - "registered_name": registered_name, - } - return None - parts = keras_api_name.split(".") - return { - "module": ".".join(parts[:-1]), - "class_name": parts[-1], - "config": inner_config, - "registered_name": None, - } - - -def serialize_with_public_fn(fn, config, fn_module_name=None): - """Serializes functions from public Keras API or object registration. - - Called to check and retrieve the config of any function that has a public - Keras API or has been registered as serializable via - `keras.utils.register_keras_serializable`. If function's module name is - already known, returns corresponding config. - """ - if fn_module_name: - return { - "module": fn_module_name, - "class_name": "function", - "config": config, - "registered_name": config, - } - keras_api_name = tf_export.get_canonical_name_for_symbol( - fn, api_name="keras" - ) - if keras_api_name: - parts = keras_api_name.split(".") - return { - "module": ".".join(parts[:-1]), - "class_name": "function", - "config": config, - "registered_name": config, - } - else: - registered_name = object_registration.get_registered_name(fn) - if not registered_name and not fn.__module__ == "builtins": - return None - return { - "module": fn.__module__, - "class_name": "function", - "config": config, - "registered_name": registered_name, - } - - -def _get_class_or_fn_config(obj): - """Return the object's config depending on its type.""" - # Functions / lambdas: - if isinstance(obj, types.FunctionType): - return obj.__name__ - # All classes: - if hasattr(obj, "get_config"): - config = obj.get_config() - if not isinstance(config, dict): - raise TypeError( - f"The `get_config()` method of {obj} should return " - f"a dict. It returned: {config}" - ) - return serialize_dict(config) - elif hasattr(obj, "__name__"): - return object_registration.get_registered_name(obj) - else: - raise TypeError( - f"Cannot serialize object {obj} of type {type(obj)}. " - "To be serializable, " - "a class must implement the `get_config()` method." - ) - - -def serialize_dict(obj): - return {key: serialize_keras_object(value) for key, value in obj.items()} - - -@keras_export( - "keras.saving.deserialize_keras_object", - "keras.utils.deserialize_keras_object", -) -def deserialize_keras_object( - config, custom_objects=None, safe_mode=True, **kwargs -): - """Retrieve the object by deserializing the config dict. - - The config dict is a Python dictionary that consists of a set of key-value - pairs, and represents a Keras object, such as an `Optimizer`, `Layer`, - `Metrics`, etc. The saving and loading library uses the following keys to - record information of a Keras object: - - - `class_name`: String. This is the name of the class, - as exactly defined in the source - code, such as "LossesContainer". - - `config`: Dict. Library-defined or user-defined key-value pairs that store - the configuration of the object, as obtained by `object.get_config()`. - - `module`: String. The path of the python module, such as - "keras.engine.compile_utils". Built-in Keras classes - expect to have prefix `keras`. - - `registered_name`: String. The key the class is registered under via - `keras.utils.register_keras_serializable(package, name)` API. The key has - the format of '{package}>{name}', where `package` and `name` are the - arguments passed to `register_keras_serializable()`. If `name` is not - provided, it defaults to the class name. If `registered_name` successfully - resolves to a class (that was registered), the `class_name` and `config` - values in the dict will not be used. `registered_name` is only used for - non-built-in classes. - - For example, the following dictionary represents the built-in Adam optimizer - with the relevant config: - - ```python - dict_structure = { - "class_name": "Adam", - "config": { - "amsgrad": false, - "beta_1": 0.8999999761581421, - "beta_2": 0.9990000128746033, - "decay": 0.0, - "epsilon": 1e-07, - "learning_rate": 0.0010000000474974513, - "name": "Adam" - }, - "module": "keras.optimizers", - "registered_name": None - } - # Returns an `Adam` instance identical to the original one. - deserialize_keras_object(dict_structure) - ``` - - If the class does not have an exported Keras namespace, the library tracks - it by its `module` and `class_name`. For example: - - ```python - dict_structure = { - "class_name": "LossesContainer", - "config": { - "losses": [...], - "total_loss_mean": {...}, - }, - "module": "keras.engine.compile_utils", - "registered_name": "LossesContainer" - } - - # Returns a `LossesContainer` instance identical to the original one. - deserialize_keras_object(dict_structure) - ``` - - And the following dictionary represents a user-customized `MeanSquaredError` - loss: - - ```python - @keras.utils.register_keras_serializable(package='my_package') - class ModifiedMeanSquaredError(keras.losses.MeanSquaredError): - ... - - dict_structure = { - "class_name": "ModifiedMeanSquaredError", - "config": { - "fn": "mean_squared_error", - "name": "mean_squared_error", - "reduction": "auto" - }, - "registered_name": "my_package>ModifiedMeanSquaredError" - } - # Returns the `ModifiedMeanSquaredError` object - deserialize_keras_object(dict_structure) - ``` - - Args: - config: Python dict describing the object. - custom_objects: Python dict containing a mapping between custom - object names the corresponding classes or functions. - safe_mode: Boolean, whether to disallow unsafe `lambda` deserialization. - When `safe_mode=False`, loading an object has the potential to - trigger arbitrary code execution. This argument is only - applicable to the Keras v3 model format. Defaults to True. - - Returns: - The object described by the `config` dictionary. - - """ - safe_scope_arg = in_safe_mode() # Enforces SafeModeScope - safe_mode = safe_scope_arg if safe_scope_arg is not None else safe_mode - - module_objects = kwargs.pop("module_objects", None) - custom_objects = custom_objects or {} - tlco = object_registration._THREAD_LOCAL_CUSTOM_OBJECTS.__dict__ - gco = object_registration._GLOBAL_CUSTOM_OBJECTS - custom_objects = {**custom_objects, **tlco, **gco} - - # Fall back to legacy deserialization for all TF1 users or if - # wrapped by in_tf_saved_model_scope() to explicitly use legacy - # saved_model logic. - if not tf.__internal__.tf2.enabled() or in_tf_saved_model_scope(): - return legacy_serialization.deserialize_keras_object( - config, module_objects, custom_objects - ) - - if config is None: - return None - - if ( - isinstance(config, str) - and custom_objects - and custom_objects.get(config) is not None - ): - # This is to deserialize plain functions which are serialized as - # string names by legacy saving formats. - return custom_objects[config] - - if isinstance(config, (list, tuple)): - return [ - deserialize_keras_object( - x, custom_objects=custom_objects, safe_mode=safe_mode - ) - for x in config - ] - - if module_objects is not None: - inner_config, fn_module_name, has_custom_object = None, None, False - if isinstance(config, dict): - if "config" in config: - inner_config = config["config"] - if "class_name" not in config: - raise ValueError( - f"Unknown `config` as a `dict`, config={config}" - ) - - # Check case where config is function or class and in custom objects - if custom_objects and ( - config["class_name"] in custom_objects - or config.get("registered_name") in custom_objects - or ( - isinstance(inner_config, str) - and inner_config in custom_objects - ) - ): - has_custom_object = True - - # Case where config is function but not in custom objects - elif config["class_name"] == "function": - fn_module_name = config["module"] - if fn_module_name == "builtins": - config = config["config"] - else: - config = config["registered_name"] - - # Case where config is class but not in custom objects - else: - config = config["class_name"] - if not has_custom_object: - # Return if not found in either module objects or custom objects - if config not in module_objects: - # Object has already been deserialized - return config - if isinstance(module_objects[config], types.FunctionType): - return deserialize_keras_object( - serialize_with_public_fn( - module_objects[config], config, fn_module_name - ), - custom_objects=custom_objects, - ) - return deserialize_keras_object( - serialize_with_public_class( - module_objects[config], inner_config=inner_config - ), - custom_objects=custom_objects, - ) - - if isinstance(config, PLAIN_TYPES): - return config - if not isinstance(config, dict): - raise TypeError(f"Could not parse config: {config}") - - if "class_name" not in config or "config" not in config: - return { - key: deserialize_keras_object( - value, custom_objects=custom_objects, safe_mode=safe_mode - ) - for key, value in config.items() - } - - class_name = config["class_name"] - inner_config = config["config"] or {} - custom_objects = custom_objects or {} - - # Special cases: - if class_name == "__tensor__": - return tf.constant(inner_config["value"], dtype=inner_config["dtype"]) - if class_name == "__numpy__": - return np.array(inner_config["value"], dtype=inner_config["dtype"]) - if config["class_name"] == "__bytes__": - return inner_config["value"].encode("utf-8") - if config["class_name"] == "__lambda__": - if safe_mode: - raise ValueError( - "Requested the deserialization of a `lambda` object. " - "This carries a potential risk of arbitrary code execution " - "and thus it is disallowed by default. If you trust the " - "source of the saved model, you can pass `safe_mode=False` to " - "the loading function in order to allow `lambda` loading." - ) - return generic_utils.func_load(inner_config["value"]) - if config["class_name"] == "__typespec__": - obj = _retrieve_class_or_fn( - config["spec_name"], - config["registered_name"], - config["module"], - obj_type="class", - full_config=config, - custom_objects=custom_objects, - ) - # Conversion to TensorShape and tf.DType - inner_config = map( - lambda x: tf.TensorShape(x) - if isinstance(x, list) - else (getattr(tf, x) if hasattr(tf.dtypes, str(x)) else x), - inner_config, - ) - return obj._deserialize(tuple(inner_config)) - - # Below: classes and functions. - module = config.get("module", None) - registered_name = config.get("registered_name", class_name) - - if class_name == "function": - fn_name = inner_config - return _retrieve_class_or_fn( - fn_name, - registered_name, - module, - obj_type="function", - full_config=config, - custom_objects=custom_objects, - ) - - # Below, handling of all classes. - # First, is it a shared object? - if "shared_object_id" in config: - obj = get_shared_object(config["shared_object_id"]) - if obj is not None: - return obj - - cls = _retrieve_class_or_fn( - class_name, - registered_name, - module, - obj_type="class", - full_config=config, - custom_objects=custom_objects, - ) - - if isinstance(cls, types.FunctionType): - return cls - if not hasattr(cls, "from_config"): - raise TypeError( - f"Unable to reconstruct an instance of '{class_name}' because " - f"the class is missing a `from_config()` method. " - f"Full object config: {config}" - ) - - # Instantiate the class from its config inside a custom object scope - # so that we can catch any custom objects that the config refers to. - custom_obj_scope = object_registration.custom_object_scope(custom_objects) - safe_mode_scope = SafeModeScope(safe_mode) - with custom_obj_scope, safe_mode_scope: - instance = cls.from_config(inner_config) - build_config = config.get("build_config", None) - if build_config: - instance.build_from_config(build_config) - compile_config = config.get("compile_config", None) - if compile_config: - instance.compile_from_config(compile_config) - - if "shared_object_id" in config: - record_object_after_deserialization( - instance, config["shared_object_id"] - ) - return instance - - -def _retrieve_class_or_fn( - name, registered_name, module, obj_type, full_config, custom_objects=None -): - # If there is a custom object registered via - # `register_keras_serializable`, that takes precedence. - if obj_type == "function": - custom_obj = object_registration.get_registered_object( - name, custom_objects=custom_objects - ) - else: - custom_obj = object_registration.get_registered_object( - registered_name, custom_objects=custom_objects - ) - if custom_obj is not None: - return custom_obj - - if module: - # If it's a Keras built-in object, - # we cannot always use direct import, because the exported - # module name might not match the package structure - # (e.g. experimental symbols). - if module == "keras" or module.startswith("keras."): - api_name = module + "." + name - - # Legacy internal APIs are stored in TF API naming dict - # with `compat.v1` prefix - if "__internal__.legacy" in api_name: - api_name = "compat.v1." + api_name - - obj = tf_export.get_symbol_from_name(api_name) - if obj is not None: - return obj - - # Configs of Keras built-in functions do not contain identifying - # information other than their name (e.g. 'acc' or 'tanh'). This special - # case searches the Keras modules that contain built-ins to retrieve - # the corresponding function from the identifying string. - if obj_type == "function" and module == "builtins": - for mod in BUILTIN_MODULES: - obj = tf_export.get_symbol_from_name( - "keras." + mod + "." + name - ) - if obj is not None: - return obj - - # Retrieval of registered custom function in a package - filtered_dict = { - k: v - for k, v in custom_objects.items() - if k.endswith(full_config["config"]) - } - if filtered_dict: - return next(iter(filtered_dict.values())) - - # Otherwise, attempt to retrieve the class object given the `module` - # and `class_name`. Import the module, find the class. - try: - mod = importlib.import_module(module) - except ModuleNotFoundError: - raise TypeError( - f"Could not deserialize {obj_type} '{name}' because " - f"its parent module {module} cannot be imported. " - f"Full object config: {full_config}" - ) - obj = vars(mod).get(name, None) - - # Special case for keras.metrics.metrics - if obj is None and registered_name is not None: - obj = vars(mod).get(registered_name, None) - - if obj is not None: - return obj - - raise TypeError( - f"Could not locate {obj_type} '{name}'. " - "Make sure custom classes are decorated with " - "`@keras.utils.register_keras_serializable`. " - f"Full object config: {full_config}" - ) diff --git a/keras/saving/serialization_lib_test.py b/keras/saving/serialization_lib_test.py deleted file mode 100644 index e15b74b5dfc..00000000000 --- a/keras/saving/serialization_lib_test.py +++ /dev/null @@ -1,488 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for serialization_lib.""" - -import json - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.saving import serialization_lib -from keras.saving.legacy import serialization as legacy_serialization -from keras.testing_infra import test_utils - - -def custom_fn(x): - return x**2 - - -class CustomLayer(keras.layers.Layer): - def __init__(self, factor): - super().__init__() - self.factor = factor - - def call(self, x): - return x * self.factor - - def get_config(self): - return {"factor": self.factor} - - -class NestedCustomLayer(keras.layers.Layer): - def __init__(self, factor, dense=None, activation=None): - super().__init__() - self.factor = factor - - if dense is None: - self.dense = keras.layers.Dense(1, activation=custom_fn) - else: - self.dense = serialization_lib.deserialize_keras_object(dense) - if activation is None: - self.activation = keras.layers.Activation("relu") - else: - self.activation = serialization_lib.deserialize_keras_object( - activation - ) - - def call(self, x): - return self.dense(x * self.factor) - - def get_config(self): - return { - "factor": self.factor, - "dense": self.dense, - "activation": self.activation, - } - - -class WrapperLayer(keras.layers.Layer): - def __init__(self, layer, **kwargs): - super().__init__(**kwargs) - self.layer = layer - - def call(self, x): - return self.layer(x) - - def get_config(self): - config = super().get_config() - return {"layer": self.layer, **config} - - -@test_utils.run_v2_only -class SerializationLibTest(tf.test.TestCase, parameterized.TestCase): - def roundtrip(self, obj, custom_objects=None, safe_mode=True): - serialized = serialization_lib.serialize_keras_object(obj) - json_data = json.dumps(serialized) - json_data = json.loads(json_data) - deserialized = serialization_lib.deserialize_keras_object( - json_data, custom_objects=custom_objects, safe_mode=safe_mode - ) - reserialized = serialization_lib.serialize_keras_object(deserialized) - return serialized, deserialized, reserialized - - @parameterized.named_parameters( - ("str", "hello"), - ("bytes", b"hello"), - ("nparray_int", np.array([0, 1])), - ("nparray_float", np.array([0.0, 1.0])), - ("nparray_item", np.float32(1.0)), - ("plain_types_list", ["hello", 0, "world", 1.0, True]), - ("plain_types_dict", {"1": "hello", "2": 0, "3": True}), - ("plain_types_nested_dict", {"1": "hello", "2": [True, False]}), - ) - def test_simple_objects(self, obj): - serialized, _, reserialized = self.roundtrip(obj) - self.assertEqual(serialized, reserialized) - - def test_builtin_layers(self): - serialized, _, reserialized = self.roundtrip(keras.layers.Dense(3)) - self.assertEqual(serialized, reserialized) - - def test_tensors_and_tensorshape(self): - x = tf.random.normal((2, 2), dtype="float64") - obj = {"x": x} - _, new_obj, _ = self.roundtrip(obj) - self.assertAllClose(x, new_obj["x"], atol=1e-5) - - obj = {"x.shape": x.shape} - _, new_obj, _ = self.roundtrip(obj) - self.assertListEqual(x.shape.as_list(), new_obj["x.shape"]) - - def test_custom_fn(self): - obj = {"activation": custom_fn} - serialized, _, reserialized = self.roundtrip( - obj, custom_objects={"custom_fn": custom_fn} - ) - self.assertEqual(serialized, reserialized) - - # Test inside layer - dense = keras.layers.Dense(1, activation=custom_fn) - dense.build((None, 2)) - _, new_dense, _ = self.roundtrip( - dense, custom_objects={"custom_fn": custom_fn} - ) - x = tf.random.normal((2, 2)) - y1 = dense(x) - _ = new_dense(x) - new_dense.set_weights(dense.get_weights()) - y2 = new_dense(x) - self.assertAllClose(y1, y2, atol=1e-5) - - def test_custom_layer(self): - layer = CustomLayer(factor=2) - x = tf.random.normal((2, 2)) - y1 = layer(x) - _, new_layer, _ = self.roundtrip( - layer, custom_objects={"CustomLayer": CustomLayer} - ) - y2 = new_layer(x) - self.assertAllClose(y1, y2, atol=1e-5) - - layer = NestedCustomLayer(factor=2) - x = tf.random.normal((2, 2)) - y1 = layer(x) - _, new_layer, _ = self.roundtrip( - layer, - custom_objects={ - "NestedCustomLayer": NestedCustomLayer, - "custom_fn": custom_fn, - }, - ) - _ = new_layer(x) - new_layer.set_weights(layer.get_weights()) - y2 = new_layer(x) - self.assertAllClose(y1, y2, atol=1e-5) - - def test_lambda_fn(self): - obj = {"activation": lambda x: x**2} - with self.assertRaisesRegex(ValueError, "arbitrary code execution"): - self.roundtrip(obj, safe_mode=True) - - _, new_obj, _ = self.roundtrip(obj, safe_mode=False) - self.assertEqual(obj["activation"](3), new_obj["activation"](3)) - - def test_lambda_layer(self): - lmbda = keras.layers.Lambda(lambda x: x**2) - with self.assertRaisesRegex(ValueError, "arbitrary code execution"): - self.roundtrip(lmbda, safe_mode=True) - - _, new_lmbda, _ = self.roundtrip(lmbda, safe_mode=False) - x = tf.random.normal((2, 2)) - y1 = lmbda(x) - y2 = new_lmbda(x) - self.assertAllClose(y1, y2, atol=1e-5) - - def test_safe_mode_scope(self): - lmbda = keras.layers.Lambda(lambda x: x**2) - with serialization_lib.SafeModeScope(safe_mode=True): - with self.assertRaisesRegex(ValueError, "arbitrary code execution"): - self.roundtrip(lmbda) - with serialization_lib.SafeModeScope(safe_mode=False): - _, new_lmbda, _ = self.roundtrip(lmbda) - x = tf.random.normal((2, 2)) - y1 = lmbda(x) - y2 = new_lmbda(x) - self.assertAllClose(y1, y2, atol=1e-5) - - def test_tensorspec(self): - inputs = keras.Input(type_spec=tf.TensorSpec((2, 2), tf.float32)) - outputs = keras.layers.Dense(1)(inputs) - model = keras.Model(inputs, outputs) - _, new_model, _ = self.roundtrip(model) - x = tf.random.normal((2, 2)) - y1 = model(x) - new_model.set_weights(model.get_weights()) - y2 = new_model(x) - self.assertAllClose(y1, y2, atol=1e-5) - - def shared_inner_layer(self): - input_1 = keras.Input((2,)) - input_2 = keras.Input((2,)) - shared_layer = keras.layers.Dense(1) - output_1 = shared_layer(input_1) - wrapper_layer = WrapperLayer(shared_layer) - output_2 = wrapper_layer(input_2) - model = keras.Model([input_1, input_2], [output_1, output_2]) - _, new_model, _ = self.roundtrip( - model, custom_objects={"WrapperLayer": WrapperLayer} - ) - - self.assertIs(model.layers[2], model.layers[3].layer) - self.assertIs(new_model.layers[2], new_model.layers[3].layer) - - def test_functional_subclass(self): - class PlainFunctionalSubclass(keras.Model): - pass - - inputs = keras.Input((2,)) - outputs = keras.layers.Dense(1)(inputs) - model = PlainFunctionalSubclass(inputs, outputs) - x = tf.random.normal((2, 2)) - y1 = model(x) - _, new_model, _ = self.roundtrip( - model, - custom_objects={"PlainFunctionalSubclass": PlainFunctionalSubclass}, - ) - new_model.set_weights(model.get_weights()) - y2 = new_model(x) - self.assertAllClose(y1, y2, atol=1e-5) - self.assertIsInstance(new_model, PlainFunctionalSubclass) - - class FunctionalSubclassWCustomInit(keras.Model): - def __init__(self, num_units=1, **kwargs): - inputs = keras.Input((2,)) - outputs = keras.layers.Dense(num_units)(inputs) - super().__init__(inputs, outputs) - - model = FunctionalSubclassWCustomInit(num_units=2) - x = tf.random.normal((2, 2)) - y1 = model(x) - _, new_model, _ = self.roundtrip( - model, - custom_objects={ - "FunctionalSubclassWCustomInit": FunctionalSubclassWCustomInit - }, - ) - new_model.set_weights(model.get_weights()) - y2 = new_model(x) - self.assertAllClose(y1, y2, atol=1e-5) - self.assertIsInstance(new_model, FunctionalSubclassWCustomInit) - - def test_shared_object(self): - class MyLayer(keras.layers.Layer): - def __init__(self, activation, **kwargs): - super().__init__(**kwargs) - if isinstance(activation, dict): - self.activation = ( - serialization_lib.deserialize_keras_object(activation) - ) - else: - self.activation = activation - - def call(self, x): - return self.activation(x) - - def get_config(self): - config = super().get_config() - config["activation"] = self.activation - return config - - class SharedActivation: - def __call__(self, x): - return x**2 - - def get_config(self): - return {} - - @classmethod - def from_config(cls, config): - return cls() - - shared_act = SharedActivation() - layer_1 = MyLayer(activation=shared_act) - layer_2 = MyLayer(activation=shared_act) - layers = [layer_1, layer_2] - - with serialization_lib.ObjectSharingScope(): - serialized, new_layers, reserialized = self.roundtrip( - layers, - custom_objects={ - "MyLayer": MyLayer, - "SharedActivation": SharedActivation, - }, - ) - self.assertIn("shared_object_id", serialized[0]["config"]["activation"]) - obj_id = serialized[0]["config"]["activation"] - self.assertIn("shared_object_id", serialized[1]["config"]["activation"]) - self.assertEqual(obj_id, serialized[1]["config"]["activation"]) - self.assertIs(layers[0].activation, layers[1].activation) - self.assertIs(new_layers[0].activation, new_layers[1].activation) - - def test_legacy_internal_object(self): - from keras.layers.rnn.legacy_cells import ( - LSTMCell, # pylint: disable=C6204 - ) - - # tf.nn.rnn_cell.LSTMCell belongs to keras.__internal__.legacy namespace - cell = LSTMCell(32) - x = keras.Input((None, 5)) - layer = keras.layers.RNN(cell) - y = layer(x) - model = keras.models.Model(x, y) - model.compile(optimizer="rmsprop", loss="mse") - - x_in = np.random.random((3, 5, 5)) - y_out_1 = model.predict(x_in) - weights = model.get_weights() - - # serialize and deserialize - config = serialization_lib.serialize_keras_object(layer) - layer = serialization_lib.deserialize_keras_object( - config, - custom_objects={"LSTMCell": LSTMCell}, - ) - - # Restore RNN cell into model with weights - y = layer(x) - model = keras.models.Model(x, y) - model.set_weights(weights) - y_out_2 = model.predict(x_in) - - self.assertAllClose(y_out_1, y_out_2, atol=1e-5) - - -@keras.utils.register_keras_serializable() -class MyDense(keras.layers.Layer): - def __init__( - self, - units, - *, - kernel_regularizer=None, - kernel_initializer=None, - **kwargs - ): - super().__init__(**kwargs) - self._units = units - self._kernel_regularizer = kernel_regularizer - self._kernel_initializer = kernel_initializer - - def get_config(self): - return dict( - units=self._units, - kernel_initializer=self._kernel_initializer, - kernel_regularizer=self._kernel_regularizer, - **super().get_config() - ) - - def build(self, input_shape): - unused_batch_size, input_units = input_shape.as_list() - self._kernel = self.add_weight( - "kernel", - [input_units, self._units], - dtype=tf.float32, - regularizer=self._kernel_regularizer, - initializer=self._kernel_initializer, - ) - - def call(self, inputs): - return tf.matmul(inputs, self._kernel) - - -@keras.utils.register_keras_serializable() -class MyWrapper(keras.layers.Layer): - def __init__(self, wrapped, **kwargs): - super().__init__(**kwargs) - self._wrapped = wrapped - - def get_config(self): - return dict(wrapped=self._wrapped, **super().get_config()) - - @classmethod - def from_config(cls, config): - config["wrapped"] = keras.utils.deserialize_keras_object( - config["wrapped"] - ) - return cls(**config) - - def call(self, inputs): - return self._wrapped(inputs) - - -@test_utils.run_v2_only -class JsonSerializationTest(tf.test.TestCase, parameterized.TestCase): - def test_serialize_deserialize_custom_layer_json(self): - reg = keras.regularizers.L2(0.101) - ini = keras.initializers.Constant(1.0) - dense = MyDense(4, kernel_regularizer=reg, kernel_initializer=ini) - inputs = keras.layers.Input(shape=[3]) - outputs = dense(inputs) - model = keras.Model(inputs, outputs) - - model_json = model.to_json() - model2 = keras.models.model_from_json(model_json) - - self.assertEqual(model_json, model2.to_json()) - - def test_serialize_deserialize_custom_layer_with_wrapper_json(self): - reg = keras.regularizers.L2(0.101) - ini = keras.initializers.Constant(1.0) - dense = MyDense(4, kernel_regularizer=reg, kernel_initializer=ini) - wrapper = MyWrapper(dense) - inputs = keras.layers.Input(shape=[3]) - outputs = wrapper(inputs) - model = keras.Model(inputs, outputs) - - model_json = model.to_json() - model2 = keras.models.model_from_json(model_json) - - self.assertEqual(model_json, model2.to_json()) - - -@test_utils.run_v2_only -class BackwardsCompatibilityTest(tf.test.TestCase, parameterized.TestCase): - def assert_old_format_can_be_deserialized(self, obj, custom_objects=None): - old_config = legacy_serialization.serialize_keras_object(obj) - revived = serialization_lib.deserialize_keras_object( - old_config, custom_objects=custom_objects - ) - new_config_1 = serialization_lib.serialize_keras_object(obj) - new_config_2 = serialization_lib.serialize_keras_object(revived) - self.assertEqual(new_config_1, new_config_2) - - def test_backwards_compatibility_with_old_serialized_format(self): - optimizer = keras.optimizers.Adam(learning_rate=0.1) - self.assert_old_format_can_be_deserialized( - optimizer, custom_objects=vars(keras.optimizers) - ) - activation = keras.activations.relu - self.assert_old_format_can_be_deserialized( - activation, custom_objects=vars(keras.activations) - ) - initializer = keras.initializers.VarianceScaling(scale=2.0) - self.assert_old_format_can_be_deserialized( - initializer, custom_objects=vars(keras.initializers) - ) - regularizer = keras.regularizers.L2(0.3) - self.assert_old_format_can_be_deserialized( - regularizer, custom_objects=vars(keras.regularizers) - ) - constraint = keras.constraints.UnitNorm() - self.assert_old_format_can_be_deserialized( - constraint, custom_objects=vars(keras.constraints) - ) - layer = keras.layers.Dense(2) - self.assert_old_format_can_be_deserialized( - layer, custom_objects=vars(keras.layers) - ) - layer = keras.layers.MultiHeadAttention(2, 4) - self.assert_old_format_can_be_deserialized( - layer, custom_objects=vars(keras.layers) - ) - - # Custom objects - layer = CustomLayer(2) - self.assert_old_format_can_be_deserialized( - layer, custom_objects={"CustomLayer": CustomLayer} - ) - layer = keras.layers.Dense(1, activation=custom_fn) - self.assert_old_format_can_be_deserialized( - layer, custom_objects={**vars(keras.layers), "custom_fn": custom_fn} - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/testing_infra/BUILD b/keras/testing_infra/BUILD deleted file mode 100644 index 0d9874e1314..00000000000 --- a/keras/testing_infra/BUILD +++ /dev/null @@ -1,85 +0,0 @@ -# Description: -# Contains the Keras testing infrastructure. - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - default_visibility = ["//keras:friends"], - licenses = ["notice"], -) - -py_library( - name = "test_combinations", - srcs = [ - "test_combinations.py", - ], - srcs_version = "PY3", - deps = [ - ":test_utils", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - ], -) - -py_library( - name = "test_utils", - srcs = [ - "test_utils.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/engine:base_layer_utils", - "//keras/layers", - "//keras/models", - "//keras/optimizers/legacy:optimizers", - "//keras/utils:tf_contextlib", - "//keras/utils:tf_inspect", - ], -) - -# TODO(mattdangerw): For now, Keras will maintain its own doc checker. -# If TensorFlow exposes one, we could consider depending on that directly. -py_library( - name = "keras_doctest_lib", - srcs = ["keras_doctest_lib.py"], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - ], -) - -py_test( - name = "keras_doctest_lib_test", - srcs = ["keras_doctest_lib_test.py"], - python_version = "PY3", - tags = [ - "noasan", - "nomsan", - "notsan", - ], - deps = [ - ":keras_doctest_lib", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - ], -) - -tf_py_test( - name = "test_combinations_test", - size = "small", - srcs = ["test_combinations_test.py"], - python_version = "PY3", - tags = ["notsan"], - deps = [ - ":test_combinations", - ":test_utils", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - ], -) diff --git a/keras/testing_infra/__init__.py b/keras/testing_infra/__init__.py deleted file mode 100644 index 78cb171abba..00000000000 --- a/keras/testing_infra/__init__.py +++ /dev/null @@ -1,14 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== diff --git a/keras/testing_infra/keras_doctest_lib.py b/keras/testing_infra/keras_doctest_lib.py deleted file mode 100644 index 101eb239485..00000000000 --- a/keras/testing_infra/keras_doctest_lib.py +++ /dev/null @@ -1,223 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Run doctests for Keras.""" - -import doctest -import re -import textwrap - -import numpy as np - - -class _FloatExtractor(object): - """Class for extracting floats from a string. - - For example: - - >>> text_parts, floats = _FloatExtractor()("Text 1.0 Text") - >>> text_parts - ['Text ', ' Text'] - >>> floats - array([1.]) - """ - - # Note: non-capturing groups "(?" are not returned in matched groups, or by - # re.split. - _FLOAT_RE = re.compile( - r""" - ( # Captures the float value. - (?: - [-+]| # Start with a sign is okay anywhere. - (?: # Otherwise: - ^| # Start after the start of string - (?<=[^\w.]) # Not after a word char, or a . - ) - ) - (?: # Digits and exponent - something like: - {digits_dot_maybe_digits}{exponent}?| # "1.0" "1." "1.0e3", "1.e3" - {dot_digits}{exponent}?| # ".1" ".1e3" - {digits}{exponent}| # "1e3" - {digits}(?=j) # "300j" - ) - ) - j? # Optional j for cplx numbers, not captured. - (?= # Only accept the match if - $| # * At the end of the string, or - [^\w.] # * Next char is not a word char or "." - ) - """.format( - # Digits, a "." and optional more digits: "1.1". - digits_dot_maybe_digits=r"(?:[0-9]+\.(?:[0-9]*))", - # A "." with trailing digits ".23" - dot_digits=r"(?:\.[0-9]+)", - # digits: "12" - digits=r"(?:[0-9]+)", - # The exponent: An "e" or "E", optional sign, and at least one - # digit. "e-123", "E+12", "e12" - exponent=r"(?:[eE][-+]?[0-9]+)", - ), - re.VERBOSE, - ) - - def __call__(self, string): - """Extracts floats from a string. - - >>> text_parts, floats = _FloatExtractor()("Text 1.0 Text") - >>> text_parts - ['Text ', ' Text'] - >>> floats - array([1.]) - - Args: - string: the string to extract floats from. - - Returns: - A (string, array) pair, where `string` has each float replaced by - "..." and `array` is a `float32` `numpy.array` containing the - extracted floats. - """ - texts = [] - floats = [] - for i, part in enumerate(self._FLOAT_RE.split(string)): - if i % 2 == 0: - texts.append(part) - else: - floats.append(float(part)) - - return texts, np.array(floats) - - -class KerasDoctestOutputChecker(doctest.OutputChecker, object): - """Customizes how `want` and `got` are compared, see `check_output`.""" - - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.extract_floats = _FloatExtractor() - self.text_good = None - self.float_size_good = None - - _ADDRESS_RE = re.compile(r"\bat 0x[0-9a-f]*?>") - # TODO(yashkatariya): Add other tensor's string substitutions too. - # tf.RaggedTensor doesn't need one. - _NUMPY_OUTPUT_RE = re.compile(r"", re.DOTALL) - - def _allclose(self, want, got, rtol=1e-3, atol=1e-3): - return np.allclose(want, got, rtol=rtol, atol=atol) - - def _tf_tensor_numpy_output(self, string): - modified_string = self._NUMPY_OUTPUT_RE.sub(r"\1", string) - return modified_string, modified_string != string - - MESSAGE = textwrap.dedent( - """\n - ############################################################# - Check the documentation (go/testable-docstrings) on how to - write testable docstrings. - #############################################################""" - ) - - def check_output(self, want, got, optionflags): - """Compares the docstring output to the output gotten by running the - code. - - Python addresses in the output are replaced with wildcards. - - Float values in the output compared as using `np.allclose`: - - * Float values are extracted from the text and replaced with - wildcards. - * The wildcard text is compared to the actual output. - * The float values are compared using `np.allclose`. - - The method returns `True` if both the text comparison and the numeric - comparison are successful. - - The numeric comparison will fail if either: - - * The wrong number of floats are found. - * The float values are not within tolerence. - - Args: - want: The output in the docstring. - got: The output generated after running the snippet. - optionflags: Flags passed to the doctest. - - Returns: - A bool, indicating if the check was successful or not. - """ - - # If the docstring's output is empty and there is some output generated - # after running the snippet, return True. This is because if the user - # doesn't want to display output, respect that over what the doctest - # wants. - if got and not want: - return True - - if want is None: - want = "" - - # Replace python's addresses with ellipsis (`...`) since it can change - # on each execution. - want = self._ADDRESS_RE.sub("at ...>", want) - - # Replace tf.Tensor strings with only their numpy field values. - want, want_changed = self._tf_tensor_numpy_output(want) - if want_changed: - got, _ = self._tf_tensor_numpy_output(got) - - # Separate out the floats, and replace `want` with the wild-card version - # "result=7.0" => "result=..." - want_text_parts, self.want_floats = self.extract_floats(want) - want_text_wild = "...".join(want_text_parts) - - # Find the floats in the string returned by the test - _, self.got_floats = self.extract_floats(got) - - self.text_good = super().check_output( - want=want_text_wild, got=got, optionflags=optionflags - ) - if not self.text_good: - return False - - if self.want_floats.size == 0: - # If there are no floats in the "want" string, ignore all the floats - # in the result. "np.array([ ... ])" matches "np.array([ 1.0, 2.0 - # ])" - return True - - self.float_size_good = self.want_floats.size == self.got_floats.size - - if self.float_size_good: - return self._allclose(self.want_floats, self.got_floats) - else: - return False - - def output_difference(self, example, got, optionflags): - got = [got] - - # If the some of the float output is hidden with `...`, - # `float_size_good` will be False. This is because the floats extracted - # from the string is converted into a 1-D numpy array. Hence hidding - # floats is not allowed anymore. - if self.text_good: - if not self.float_size_good: - got.append( - "\n\nCAUTION: tf_doctest doesn't work if *some* of the " - '*float output* is hidden with a "...".' - ) - - got.append(self.MESSAGE) - got = "\n".join(got) - return super().output_difference(example, got, optionflags) diff --git a/keras/testing_infra/keras_doctest_lib_test.py b/keras/testing_infra/keras_doctest_lib_test.py deleted file mode 100644 index c31f8f05fe1..00000000000 --- a/keras/testing_infra/keras_doctest_lib_test.py +++ /dev/null @@ -1,225 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for tf_doctest.""" - -import doctest - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.testing_infra import keras_doctest_lib - - -class KerasDoctestOutputCheckerTest(parameterized.TestCase): - @parameterized.parameters( - # Don't match ints. - ["result = 1", []], - # Match floats. - ["0.0", [0.0]], - ["text 1.0 text", [1.0]], - ["text 1. text", [1.0]], - ["text .1 text", [0.1]], - ["text 1e3 text", [1000.0]], - ["text 1.e3 text", [1000.0]], - ["text +1. text", [1.0]], - ["text -1. text", [-1.0]], - ["text 1e+3 text", [1000.0]], - ["text 1e-3 text", [0.001]], - ["text +1E3 text", [1000.0]], - ["text -1E3 text", [-1000.0]], - ["text +1e-3 text", [0.001]], - ["text -1e+3 text", [-1000.0]], - # Match at the start and end of a string. - [".1", [0.1]], - [".1 text", [0.1]], - ["text .1", [0.1]], - ["0.1 text", [0.1]], - ["text 0.1", [0.1]], - ["0. text", [0.0]], - ["text 0.", [0.0]], - ["1e-1 text", [0.1]], - ["text 1e-1", [0.1]], - # Don't match floats mixed into text - ["text1.0 text", []], - ["text 1.0text", []], - ["text1.0text", []], - ["0x12e4", []], # not 12000 - ["TensorBoard: http://128.0.0.1:8888", []], - # With a newline - ["1.0 text\n 2.0 3.0 text", [1.0, 2.0, 3.0]], - # With ints and a float. - ["shape (1,2,3) value -1e9", [-1e9]], - # "." after a float. - ["No floats at end of sentence: 1.0.", []], - ["No floats with ellipsis: 1.0...", []], - # A numpy array - [ - """array([[1., 2., 3.], - [4., 5., 6.]], dtype=float32)""", - [1, 2, 3, 4, 5, 6], - ], - # Match both parts of a complex number - # python style - ["(0.0002+30000j)", [0.0002, 30000]], - ["(2.3e-10-3.34e+9j)", [2.3e-10, -3.34e9]], - # numpy style - ["array([1.27+5.j])", [1.27, 5]], - ["(2.3e-10+3.34e+9j)", [2.3e-10, 3.34e9]], - [ - """array([1.27e-09+5.e+00j, - 2.30e+01-1.e-03j])""", - [1.27e-09, 5.0e00, 2.30e01, -1.0e-03], - ], - # Check examples in tolerence. - ["1e-6", [0]], - ["0.0", [1e-6]], - ["1.000001e9", [1e9]], - ["1e9", [1.000001e9]], - ) - def test_extract_floats(self, text, expected_floats): - extract_floats = keras_doctest_lib._FloatExtractor() - output_checker = keras_doctest_lib.KerasDoctestOutputChecker() - - (text_parts, extracted_floats) = extract_floats(text) - text_with_wildcards = "...".join(text_parts) - - # Check that the lengths match before doing anything else. - try: - self.assertLen(extracted_floats, len(expected_floats)) - except AssertionError as e: - msg = "\n\n expected: {}\n found: {}".format( - expected_floats, extracted_floats - ) - e.args = (e.args[0] + msg,) - raise e - - # The floats should match according to allclose - try: - self.assertTrue( - output_checker._allclose(expected_floats, extracted_floats) - ) - except AssertionError as e: - msg = "\n\nexpected: {}\nfound: {}".format( - expected_floats, extracted_floats - ) - e.args = (e.args[0] + msg,) - raise e - - # The wildcard text should match the input text, according to the - # OutputChecker base class. - try: - self.assertTrue( - doctest.OutputChecker().check_output( - want=text_with_wildcards, - got=text, - optionflags=doctest.ELLIPSIS, - ) - ) - except AssertionError as e: - msg = f"\n\n expected: {text_with_wildcards}\n found: {text}" - e.args = (e.args[0] + msg,) - raise e - - @parameterized.parameters( - # CHeck examples out of tolerence. - ["1.001e-2", [0]], - ["0.0", [1.001e-3]], - ) - def test_fail_tolerences(self, text, expected_floats): - extract_floats = keras_doctest_lib._FloatExtractor() - output_checker = keras_doctest_lib.KerasDoctestOutputChecker() - - (_, extracted_floats) = extract_floats(text) - - # These floats should not match according to allclose - try: - self.assertFalse( - output_checker._allclose(expected_floats, extracted_floats) - ) - except AssertionError as e: - msg = ( - "\n\nThese matched! They should not have.\n" - "\n\n Expected: {}\n found: {}".format( - expected_floats, extracted_floats - ) - ) - e.args = (e.args[0] + msg,) - raise e - - def test_no_floats(self): - want = "text ... text" - got = "text 1.0 1.2 1.9 text" - output_checker = keras_doctest_lib.KerasDoctestOutputChecker() - self.assertTrue( - output_checker.check_output( - want=want, got=got, optionflags=doctest.ELLIPSIS - ) - ) - - @parameterized.parameters( - ["1.0, ..., 1.0", "1.0, 1.0, 1.0"], - ["1.0, 1.0..., 1.0", "1.0, 1.002, 1.0"], - ) - def test_warning_messages(self, want, got): - output_checker = keras_doctest_lib.KerasDoctestOutputChecker() - - output_checker.check_output( - want=want, got=got, optionflags=doctest.ELLIPSIS - ) - - example = doctest.Example("None", want=want) - result = output_checker.output_difference( - example=example, got=got, optionflags=doctest.ELLIPSIS - ) - self.assertIn("doesn't work if *some* of the", result) - - @parameterized.parameters( - ["<...>", ("<...>", False)], - ["TensorFlow", ("TensorFlow", False)], - [ - "tf.Variable([[1, 2], [3, 4]])", - ("tf.Variable([[1, 2], [3, 4]])", False), - ], - ["", ("inf", True)], - [ - "", - ("", False), - ], - [ - """""", - ( - "\n array([[2, 2],\n [3, 5]], " - + "dtype=int32)", - True, - ), - ], - [ - "[, " - + "]", - ("[array([1, 2], dtype=int32), array([3, 4], dtype=int32)]", True), - ], - ) - def test_tf_tensor_numpy_output(self, string, expected_output): - output_checker = keras_doctest_lib.KerasDoctestOutputChecker() - output = output_checker._tf_tensor_numpy_output(string) - self.assertEqual(expected_output, output) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/testing_infra/test_combinations.py b/keras/testing_infra/test_combinations.py deleted file mode 100644 index d10c558a02d..00000000000 --- a/keras/testing_infra/test_combinations.py +++ /dev/null @@ -1,589 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities for unit-testing Keras.""" - - -import collections -import functools -import itertools -import unittest - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_utils - -try: - import h5py -except ImportError: - h5py = None - -KERAS_MODEL_TYPES = ["functional", "subclass", "sequential"] - - -class TestCase(tf.test.TestCase, parameterized.TestCase): - def tearDown(self): - keras.backend.clear_session() - super().tearDown() - - -def run_with_all_saved_model_formats(test_or_class=None, exclude_formats=None): - """Execute the decorated test with all Keras saved model formats). - - This decorator is intended to be applied either to individual test methods - in a `test_combinations.TestCase` class, or directly to a test class that - extends it. Doing so will cause the contents of the individual test method - (or all test methods in the class) to be executed multiple times - once for - each Keras saved model format. - - The Keras saved model formats include: - 1. HDF5: 'h5' - 2. SavedModel: 'tf' - - Note: if stacking this decorator with absl.testing's parameterized - decorators, those should be at the bottom of the stack. - - Various methods in `testing_utils` to get file path for saved models will - auto-generate a string of the two saved model formats. This allows unittests - to confirm the equivalence between the two Keras saved model formats. - - For example, consider the following unittest: - - ```python - class MyTests(test_utils.KerasTestCase): - - @test_utils.run_with_all_saved_model_formats - def test_foo(self): - save_format = test_utils.get_save_format() - saved_model_dir = '/tmp/saved_model/' - model = keras.models.Sequential() - model.add(keras.layers.Dense(2, input_shape=(3,))) - model.add(keras.layers.Dense(3)) - model.compile(loss='mse', optimizer='sgd', metrics=['acc']) - - keras.models.save_model(model, saved_model_dir, save_format=save_format) - model = keras.models.load_model(saved_model_dir) - - if __name__ == "__main__": - tf.test.main() - ``` - - This test tries to save the model into the formats of 'hdf5', 'h5', 'keras', - 'tensorflow', and 'tf'. - - We can also annotate the whole class if we want this to apply to all tests - in the class: - ```python - @test_utils.run_with_all_saved_model_formats - class MyTests(test_utils.KerasTestCase): - - def test_foo(self): - save_format = test_utils.get_save_format() - saved_model_dir = '/tmp/saved_model/' - model = keras.models.Sequential() - model.add(keras.layers.Dense(2, input_shape=(3,))) - model.add(keras.layers.Dense(3)) - model.compile(loss='mse', optimizer='sgd', metrics=['acc']) - - keras.models.save_model(model, saved_model_dir, save_format=save_format) - model = tf.keras.models.load_model(saved_model_dir) - - if __name__ == "__main__": - tf.test.main() - ``` - - Args: - test_or_class: test method or class to be annotated. If None, - this method returns a decorator that can be applied to a test method or - test class. If it is not None this returns the decorator applied to the - test or class. - exclude_formats: A collection of Keras saved model formats to not run. - (May also be a single format not wrapped in a collection). - Defaults to None. - - Returns: - Returns a decorator that will run the decorated test method multiple - times: once for each desired Keras saved model format. - - Raises: - ImportError: If abseil parameterized is not installed or not included as - a target dependency. - """ - # Exclude h5 save format if H5py isn't available. - if h5py is None: - exclude_formats.append(["h5"]) - saved_model_formats = ["h5", "tf", "tf_no_traces"] - params = [ - (f"_{saved_format}", saved_format) - for saved_format in saved_model_formats - if saved_format not in tf.nest.flatten(exclude_formats) - ] - - def single_method_decorator(f): - """Decorator that constructs the test cases.""" - # Use named_parameters so it can be individually run from the command - # line - @parameterized.named_parameters(*params) - @functools.wraps(f) - def decorated(self, saved_format, *args, **kwargs): - """A run of a single test case w/ the specified model type.""" - if saved_format == "h5": - _test_h5_saved_model_format(f, self, *args, **kwargs) - elif saved_format == "tf": - _test_tf_saved_model_format(f, self, *args, **kwargs) - elif saved_format == "tf_no_traces": - _test_tf_saved_model_format_no_traces(f, self, *args, **kwargs) - else: - raise ValueError(f"Unknown model type: {saved_format}") - - return decorated - - return _test_or_class_decorator(test_or_class, single_method_decorator) - - -def _test_h5_saved_model_format(f, test_or_class, *args, **kwargs): - with test_utils.saved_model_format_scope("h5"): - f(test_or_class, *args, **kwargs) - - -def _test_tf_saved_model_format(f, test_or_class, *args, **kwargs): - with test_utils.saved_model_format_scope("tf"): - f(test_or_class, *args, **kwargs) - - -def _test_tf_saved_model_format_no_traces(f, test_or_class, *args, **kwargs): - with test_utils.saved_model_format_scope("tf", save_traces=False): - f(test_or_class, *args, **kwargs) - - -def run_with_all_weight_formats(test_or_class=None, exclude_formats=None): - """Runs all tests with the supported formats for saving weights.""" - exclude_formats = exclude_formats or [] - exclude_formats.append("tf_no_traces") # Only applies to saving models - return run_with_all_saved_model_formats(test_or_class, exclude_formats) - - -# TODO(kaftan): Possibly enable 'subclass_custom_build' when tests begin to pass -# it. Or perhaps make 'subclass' always use a custom build method. -def run_with_all_model_types(test_or_class=None, exclude_models=None): - """Execute the decorated test with all Keras model types. - - This decorator is intended to be applied either to individual test methods - in a `test_combinations.TestCase` class, or directly to a test class that - extends it. Doing so will cause the contents of the individual test method - (or all test methods in the class) to be executed multiple times - once for - each Keras model type. - - The Keras model types are: ['functional', 'subclass', 'sequential'] - - Note: if stacking this decorator with absl.testing's parameterized - decorators, those should be at the bottom of the stack. - - Various methods in `testing_utils` to get models will auto-generate a model - of the currently active Keras model type. This allows unittests to confirm - the equivalence between different Keras models. - - For example, consider the following unittest: - - ```python - class MyTests(test_utils.KerasTestCase): - - @test_utils.run_with_all_model_types( - exclude_models = ['sequential']) - def test_foo(self): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - optimizer = RMSPropOptimizer(learning_rate=0.001) - loss = 'mse' - metrics = ['mae'] - model.compile(optimizer, loss, metrics=metrics) - - inputs = np.zeros((10, 3)) - targets = np.zeros((10, 4)) - dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - - model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) - - if __name__ == "__main__": - tf.test.main() - ``` - - This test tries building a small mlp as both a functional model and as a - subclass model. - - We can also annotate the whole class if we want this to apply to all tests - in the class: - ```python - @test_utils.run_with_all_model_types(exclude_models = ['sequential']) - class MyTests(test_utils.KerasTestCase): - - def test_foo(self): - model = test_utils.get_small_mlp(1, 4, input_dim=3) - optimizer = RMSPropOptimizer(learning_rate=0.001) - loss = 'mse' - metrics = ['mae'] - model.compile(optimizer, loss, metrics=metrics) - - inputs = np.zeros((10, 3)) - targets = np.zeros((10, 4)) - dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - - model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) - - if __name__ == "__main__": - tf.test.main() - ``` - - - Args: - test_or_class: test method or class to be annotated. If None, - this method returns a decorator that can be applied to a test method or - test class. If it is not None this returns the decorator applied to the - test or class. - exclude_models: A collection of Keras model types to not run. - (May also be a single model type not wrapped in a collection). - Defaults to None. - - Returns: - Returns a decorator that will run the decorated test method multiple - times: once for each desired Keras model type. - - Raises: - ImportError: If abseil parameterized is not installed or not included as - a target dependency. - """ - model_types = ["functional", "subclass", "sequential"] - params = [ - (f"_{model}", model) - for model in model_types - if model not in tf.nest.flatten(exclude_models) - ] - - def single_method_decorator(f): - """Decorator that constructs the test cases.""" - # Use named_parameters so it can be individually run from the command - # line - @parameterized.named_parameters(*params) - @functools.wraps(f) - def decorated(self, model_type, *args, **kwargs): - """A run of a single test case w/ the specified model type.""" - if model_type == "functional": - _test_functional_model_type(f, self, *args, **kwargs) - elif model_type == "subclass": - _test_subclass_model_type(f, self, *args, **kwargs) - elif model_type == "sequential": - _test_sequential_model_type(f, self, *args, **kwargs) - else: - raise ValueError(f"Unknown model type: {model_type}") - - return decorated - - return _test_or_class_decorator(test_or_class, single_method_decorator) - - -def _test_functional_model_type(f, test_or_class, *args, **kwargs): - with test_utils.model_type_scope("functional"): - f(test_or_class, *args, **kwargs) - - -def _test_subclass_model_type(f, test_or_class, *args, **kwargs): - with test_utils.model_type_scope("subclass"): - f(test_or_class, *args, **kwargs) - - -def _test_sequential_model_type(f, test_or_class, *args, **kwargs): - with test_utils.model_type_scope("sequential"): - f(test_or_class, *args, **kwargs) - - -def run_all_keras_modes( - test_or_class=None, - config=None, - always_skip_v1=False, - always_skip_eager=False, - **kwargs, -): - """Execute the decorated test with all keras execution modes. - - This decorator is intended to be applied either to individual test methods - in a `test_combinations.TestCase` class, or directly to a test class that - extends it. Doing so will cause the contents of the individual test method - (or all test methods in the class) to be executed multiple times - once - executing in legacy graph mode, once running eagerly and with - `should_run_eagerly` returning True, and once running eagerly with - `should_run_eagerly` returning False. - - If Tensorflow v2 behavior is enabled, legacy graph mode will be skipped, and - the test will only run twice. - - Note: if stacking this decorator with absl.testing's parameterized - decorators, those should be at the bottom of the stack. - - For example, consider the following unittest: - - ```python - class MyTests(test_utils.KerasTestCase): - - @test_utils.run_all_keras_modes - def test_foo(self): - model = test_utils.get_small_functional_mlp(1, 4, input_dim=3) - optimizer = RMSPropOptimizer(learning_rate=0.001) - loss = 'mse' - metrics = ['mae'] - model.compile( - optimizer, loss, metrics=metrics, - run_eagerly=test_utils.should_run_eagerly()) - - inputs = np.zeros((10, 3)) - targets = np.zeros((10, 4)) - dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - - model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) - - if __name__ == "__main__": - tf.test.main() - ``` - - This test will try compiling & fitting the small functional mlp using all - three Keras execution modes. - - Args: - test_or_class: test method or class to be annotated. If None, - this method returns a decorator that can be applied to a test method or - test class. If it is not None this returns the decorator applied to the - test or class. - config: An optional config_pb2.ConfigProto to use to configure the - session when executing graphs. - always_skip_v1: If True, does not try running the legacy graph mode even - when Tensorflow v2 behavior is not enabled. - always_skip_eager: If True, does not execute the decorated test - with eager execution modes. - **kwargs: Additional kwargs for configuring tests for - in-progress Keras behaviors/ refactorings that we haven't fully - rolled out yet - - Returns: - Returns a decorator that will run the decorated test method multiple - times. - - Raises: - ImportError: If abseil parameterized is not installed or not included as - a target dependency. - """ - if kwargs: - raise ValueError(f"Unrecognized keyword args: {kwargs}") - - params = [("_v2_function", "v2_function")] - if not always_skip_eager: - params.append(("_v2_eager", "v2_eager")) - if not (always_skip_v1 or tf.__internal__.tf2.enabled()): - params.append(("_v1_session", "v1_session")) - - def single_method_decorator(f): - """Decorator that constructs the test cases.""" - - # Use named_parameters so it can be individually run from the command - # line - @parameterized.named_parameters(*params) - @functools.wraps(f) - def decorated(self, run_mode, *args, **kwargs): - """A run of a single test case w/ specified run mode.""" - if run_mode == "v1_session": - _v1_session_test(f, self, config, *args, **kwargs) - elif run_mode == "v2_eager": - _v2_eager_test(f, self, *args, **kwargs) - elif run_mode == "v2_function": - _v2_function_test(f, self, *args, **kwargs) - else: - return ValueError(f"Unknown run mode {run_mode}") - - return decorated - - return _test_or_class_decorator(test_or_class, single_method_decorator) - - -def _v1_session_test(f, test_or_class, config, *args, **kwargs): - with tf.compat.v1.get_default_graph().as_default(): - with test_utils.run_eagerly_scope(False): - with test_or_class.test_session(config=config): - f(test_or_class, *args, **kwargs) - - -def _v2_eager_test(f, test_or_class, *args, **kwargs): - with tf.__internal__.eager_context.eager_mode(): - with test_utils.run_eagerly_scope(True): - f(test_or_class, *args, **kwargs) - - -def _v2_function_test(f, test_or_class, *args, **kwargs): - with tf.__internal__.eager_context.eager_mode(): - with test_utils.run_eagerly_scope(False): - f(test_or_class, *args, **kwargs) - - -def _test_or_class_decorator(test_or_class, single_method_decorator): - """Decorate a test or class with a decorator intended for one method. - - If the test_or_class is a class: - This will apply the decorator to all test methods in the class. - - If the test_or_class is an iterable of already-parameterized test cases: - This will apply the decorator to all the cases, and then flatten the - resulting cross-product of test cases. This allows stacking the Keras - parameterized decorators w/ each other, and to apply them to test methods - that have already been marked with an absl parameterized decorator. - - Otherwise, treat the obj as a single method and apply the decorator - directly. - - Args: - test_or_class: A test method (that may have already been decorated with a - parameterized decorator, or a test class that extends - test_combinations.TestCase - single_method_decorator: - A parameterized decorator intended for a single test method. - Returns: - The decorated result. - """ - - def _decorate_test_or_class(obj): - if isinstance(obj, collections.abc.Iterable): - return itertools.chain.from_iterable( - single_method_decorator(method) for method in obj - ) - if isinstance(obj, type): - cls = obj - for name, value in cls.__dict__.copy().items(): - if callable(value) and name.startswith( - unittest.TestLoader.testMethodPrefix - ): - setattr(cls, name, single_method_decorator(value)) - - cls = type(cls).__new__( - type(cls), cls.__name__, cls.__bases__, cls.__dict__.copy() - ) - return cls - - return single_method_decorator(obj) - - if test_or_class is not None: - return _decorate_test_or_class(test_or_class) - - return _decorate_test_or_class - - -def keras_mode_combinations(mode=None, run_eagerly=None): - """Returns the default test combinations for tf.keras tests. - - Note that if tf2 is enabled, then v1 session test will be skipped. - - Args: - mode: List of modes to run the tests. The valid options are 'graph' and - 'eager'. Default to ['graph', 'eager'] if not specified. If a empty list - is provide, then the test will run under the context based on tf's - version, eg graph for v1 and eager for v2. - run_eagerly: List of `run_eagerly` value to be run with the tests. - Default to [True, False] if not specified. Note that for `graph` mode, - run_eagerly value will only be False. - - Returns: - A list contains all the combinations to be used to generate test cases. - """ - if mode is None: - mode = ( - ["eager"] if tf.__internal__.tf2.enabled() else ["graph", "eager"] - ) - if run_eagerly is None: - run_eagerly = [True, False] - result = [] - if "eager" in mode: - result += tf.__internal__.test.combinations.combine( - mode=["eager"], run_eagerly=run_eagerly - ) - if "graph" in mode: - result += tf.__internal__.test.combinations.combine( - mode=["graph"], run_eagerly=[False] - ) - return result - - -def keras_model_type_combinations(): - return tf.__internal__.test.combinations.combine( - model_type=KERAS_MODEL_TYPES - ) - - -class KerasModeCombination(tf.__internal__.test.combinations.TestCombination): - """Combination for Keras test mode. - - It by default includes v1_session, v2_eager and v2_tf_function. - """ - - def context_managers(self, kwargs): - run_eagerly = kwargs.pop("run_eagerly", None) - - if run_eagerly is not None: - return [test_utils.run_eagerly_scope(run_eagerly)] - else: - return [] - - def parameter_modifiers(self): - return [ - tf.__internal__.test.combinations.OptionalParameter("run_eagerly") - ] - - -class KerasModelTypeCombination( - tf.__internal__.test.combinations.TestCombination -): - """Combination for Keras model types when doing model test. - - It by default includes 'functional', 'subclass', 'sequential'. - - Various methods in `testing_utils` to get models will auto-generate a model - of the currently active Keras model type. This allows unittests to confirm - the equivalence between different Keras models. - """ - - def context_managers(self, kwargs): - model_type = kwargs.pop("model_type", None) - if model_type in KERAS_MODEL_TYPES: - return [test_utils.model_type_scope(model_type)] - else: - return [] - - def parameter_modifiers(self): - return [ - tf.__internal__.test.combinations.OptionalParameter("model_type") - ] - - -_defaults = tf.__internal__.test.combinations.generate.keywords[ - "test_combinations" -] -generate = functools.partial( - tf.__internal__.test.combinations.generate, - test_combinations=_defaults - + (KerasModeCombination(), KerasModelTypeCombination()), -) -combine = tf.__internal__.test.combinations.combine -times = tf.__internal__.test.combinations.times -NamedObject = tf.__internal__.test.combinations.NamedObject diff --git a/keras/testing_infra/test_combinations_test.py b/keras/testing_infra/test_combinations_test.py deleted file mode 100644 index 30493842b87..00000000000 --- a/keras/testing_infra/test_combinations_test.py +++ /dev/null @@ -1,727 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras test_utils.""" - -import unittest - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import models as keras_models -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class CombinationsTest(tf.test.TestCase): - def test_run_all_keras_modes(self): - test_params = [] - - class ExampleTest(parameterized.TestCase): - def runTest(self): - pass - - @test_combinations.generate( - test_combinations.keras_mode_combinations() - ) - def testBody(self): - mode = "eager" if tf.executing_eagerly() else "graph" - should_run_eagerly = test_utils.should_run_eagerly() - test_params.append((mode, should_run_eagerly)) - - e = ExampleTest() - if not tf.__internal__.tf2.enabled(): - e.testBody_test_mode_graph_runeagerly_False() - e.testBody_test_mode_eager_runeagerly_True() - e.testBody_test_mode_eager_runeagerly_False() - - if not tf.__internal__.tf2.enabled(): - self.assertLen(test_params, 3) - self.assertAllEqual( - test_params, - [ - ("graph", False), - ("eager", True), - ("eager", False), - ], - ) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - self.assertLen(test_params, 6) - else: - self.assertLen(test_params, 2) - self.assertAllEqual( - test_params, - [ - ("eager", True), - ("eager", False), - ], - ) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - self.assertLen(test_params, 4) - - def test_generate_keras_mode_eager_only(self): - result = test_combinations.keras_mode_combinations(mode=["eager"]) - self.assertLen(result, 2) - self.assertEqual(result[0], {"mode": "eager", "run_eagerly": True}) - self.assertEqual(result[1], {"mode": "eager", "run_eagerly": False}) - - def test_generate_keras_mode_skip_run_eagerly(self): - result = test_combinations.keras_mode_combinations(run_eagerly=[False]) - if tf.__internal__.tf2.enabled(): - self.assertLen(result, 1) - self.assertEqual(result[0], {"mode": "eager", "run_eagerly": False}) - else: - self.assertLen(result, 2) - self.assertEqual(result[0], {"mode": "eager", "run_eagerly": False}) - self.assertEqual(result[1], {"mode": "graph", "run_eagerly": False}) - - def test_run_all_keras_model_types(self): - model_types = [] - models = [] - - class ExampleTest(parameterized.TestCase): - def runTest(self): - pass - - @test_combinations.generate( - test_combinations.keras_model_type_combinations() - ) - def testBody(self): - model_types.append(test_utils.get_model_type()) - models.append(test_utils.get_small_mlp(1, 4, input_dim=3)) - - e = ExampleTest() - e.testBody_test_modeltype_functional() - e.testBody_test_modeltype_subclass() - e.testBody_test_modeltype_sequential() - - self.assertLen(model_types, 3) - self.assertAllEqual( - model_types, ["functional", "subclass", "sequential"] - ) - - # Validate that the models are what they should be - self.assertTrue(models[0]._is_graph_network) - self.assertFalse(models[1]._is_graph_network) - self.assertNotIsInstance(models[0], keras_models.Sequential) - self.assertNotIsInstance(models[1], keras_models.Sequential) - self.assertIsInstance(models[2], keras_models.Sequential) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - - self.assertLen(model_types, 6) - - def test_combine_combinations(self): - test_cases = [] - - @test_combinations.generate( - test_combinations.times( - test_combinations.keras_mode_combinations(), - test_combinations.keras_model_type_combinations(), - ) - ) - class ExampleTest(parameterized.TestCase): - def runTest(self): - pass - - @parameterized.named_parameters( - dict(testcase_name="_arg", arg=True) - ) - def testBody(self, arg): - del arg - mode = "eager" if tf.executing_eagerly() else "graph" - should_run_eagerly = test_utils.should_run_eagerly() - test_cases.append( - (mode, should_run_eagerly, test_utils.get_model_type()) - ) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - - expected_combinations = [ - ("eager", False, "functional"), - ("eager", False, "sequential"), - ("eager", False, "subclass"), - ("eager", True, "functional"), - ("eager", True, "sequential"), - ("eager", True, "subclass"), - ] - - if not tf.__internal__.tf2.enabled(): - expected_combinations.extend( - [ - ("graph", False, "functional"), - ("graph", False, "sequential"), - ("graph", False, "subclass"), - ] - ) - - self.assertAllEqual(sorted(test_cases), expected_combinations) - - -class KerasParameterizedTest(test_combinations.TestCase): - def test_run_with_all_model_types(self): - model_types = [] - models = [] - - class ExampleTest(test_combinations.TestCase): - def runTest(self): - pass - - @test_combinations.run_with_all_model_types - def testBody(self): - model_types.append(test_utils.get_model_type()) - models.append(test_utils.get_small_mlp(1, 4, input_dim=3)) - - e = ExampleTest() - e.testBody_functional() - e.testBody_subclass() - e.testBody_sequential() - - self.assertLen(model_types, 3) - self.assertAllEqual( - model_types, ["functional", "subclass", "sequential"] - ) - - # Validate that the models are what they should be - self.assertTrue(models[0]._is_graph_network) - self.assertFalse(models[1]._is_graph_network) - self.assertNotIsInstance(models[0], keras.models.Sequential) - self.assertNotIsInstance(models[1], keras.models.Sequential) - self.assertIsInstance(models[2], keras.models.Sequential) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - - self.assertLen(model_types, 6) - - def test_run_with_all_model_types_and_extra_params(self): - model_types = [] - models = [] - - class ExampleTest(test_combinations.TestCase): - def runTest(self): - pass - - @test_combinations.run_with_all_model_types - @parameterized.named_parameters( - [ - dict(testcase_name="_0", with_brackets=True), - dict(testcase_name="_1", with_brackets=False), - ] - ) - def testBody(self, with_brackets): - with_brackets = ( - "with_brackets" if with_brackets else "without_brackets" - ) - model_types.append((with_brackets, test_utils.get_model_type())) - models.append(test_utils.get_small_mlp(1, 4, input_dim=3)) - - e = ExampleTest() - e.testBody_0_functional() - e.testBody_0_subclass() - e.testBody_0_sequential() - e.testBody_1_functional() - e.testBody_1_subclass() - e.testBody_1_sequential() - - self.assertLen(model_types, 6) - self.assertAllEqual( - model_types, - [ - ("with_brackets", "functional"), - ("with_brackets", "subclass"), - ("with_brackets", "sequential"), - ("without_brackets", "functional"), - ("without_brackets", "subclass"), - ("without_brackets", "sequential"), - ], - ) - - # Validate that the models are what they should be - self.assertTrue(models[0]._is_graph_network) - self.assertFalse(models[1]._is_graph_network) - self.assertNotIsInstance(models[0], keras.models.Sequential) - self.assertNotIsInstance(models[1], keras.models.Sequential) - self.assertIsInstance(models[2], keras.models.Sequential) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - - self.assertLen(model_types, 12) - - def test_run_with_all_model_types_exclude_one(self): - model_types = [] - models = [] - - class ExampleTest(test_combinations.TestCase): - def runTest(self): - pass - - @test_combinations.run_with_all_model_types( - exclude_models="sequential" - ) - def testBody(self): - model_types.append(test_utils.get_model_type()) - models.append(test_utils.get_small_mlp(1, 4, input_dim=3)) - - e = ExampleTest() - if hasattr(e, "testBody_functional"): - e.testBody_functional() - if hasattr(e, "testBody_subclass"): - e.testBody_subclass() - if hasattr(e, "testBody_sequential"): - e.testBody_sequential() - - self.assertLen(model_types, 2) - self.assertAllEqual(model_types, ["functional", "subclass"]) - - # Validate that the models are what they should be - self.assertTrue(models[0]._is_graph_network) - self.assertFalse(models[1]._is_graph_network) - self.assertNotIsInstance(models[0], keras.models.Sequential) - self.assertNotIsInstance(models[1], keras.models.Sequential) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - - self.assertLen(model_types, 4) - - def test_run_with_all_model_types_exclude_multiple(self): - model_types = [] - models = [] - - class ExampleTest(test_combinations.TestCase): - def runTest(self): - pass - - @test_combinations.run_with_all_model_types( - exclude_models=["sequential", "functional"] - ) - def testBody(self): - model_types.append(test_utils.get_model_type()) - models.append(test_utils.get_small_mlp(1, 4, input_dim=3)) - - e = ExampleTest() - if hasattr(e, "testBody_functional"): - e.testBody_functional() - if hasattr(e, "testBody_subclass"): - e.testBody_subclass() - if hasattr(e, "testBody_sequential"): - e.testBody_sequential() - - self.assertLen(model_types, 1) - self.assertAllEqual(model_types, ["subclass"]) - - # Validate that the models are what they should be - self.assertFalse(models[0]._is_graph_network) - self.assertNotIsInstance(models[0], keras.models.Sequential) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - - self.assertLen(model_types, 2) - - def test_run_all_keras_modes(self): - l = [] - - class ExampleTest(test_combinations.TestCase): - def runTest(self): - pass - - @test_combinations.run_all_keras_modes() - def testBody(self): - mode = "eager" if tf.executing_eagerly() else "graph" - should_run_eagerly = test_utils.should_run_eagerly() - l.append((mode, should_run_eagerly)) - - e = ExampleTest() - if not tf.__internal__.tf2.enabled(): - e.testBody_v1_session() - e.testBody_v2_eager() - e.testBody_v2_function() - - if not tf.__internal__.tf2.enabled(): - self.assertLen(l, 3) - self.assertAllEqual( - l, - [ - ("graph", False), - ("eager", True), - ("eager", False), - ], - ) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - self.assertLen(l, 6) - else: - self.assertLen(l, 2) - self.assertAllEqual( - l, - [ - ("eager", True), - ("eager", False), - ], - ) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - self.assertLen(l, 4) - - def test_run_all_keras_modes_extra_params(self): - l = [] - - class ExampleTest(test_combinations.TestCase): - def runTest(self): - pass - - @test_combinations.run_all_keras_modes() - @parameterized.named_parameters( - [ - dict(testcase_name="_0", with_brackets=True), - dict(testcase_name="_1", with_brackets=False), - ] - ) - def testBody(self, with_brackets): - mode = "eager" if tf.executing_eagerly() else "graph" - with_brackets = ( - "with_brackets" if with_brackets else "without_brackets" - ) - should_run_eagerly = test_utils.should_run_eagerly() - l.append((with_brackets, mode, should_run_eagerly)) - - e = ExampleTest() - if not tf.__internal__.tf2.enabled(): - e.testBody_0_v1_session() - e.testBody_1_v1_session() - - e.testBody_0_v2_eager() - e.testBody_0_v2_function() - e.testBody_1_v2_eager() - e.testBody_1_v2_function() - - expected_combinations = { - ("with_brackets", "eager", True), - ("with_brackets", "eager", False), - ("without_brackets", "eager", True), - ("without_brackets", "eager", False), - } - - if not tf.__internal__.tf2.enabled(): - expected_combinations = expected_combinations.union( - { - ("with_brackets", "graph", False), - ("without_brackets", "graph", False), - } - ) - - self.assertLen(l, len(expected_combinations)) - self.assertEqual(set(l), expected_combinations) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - - self.assertLen(l, len(expected_combinations) * 2) - - def test_run_all_keras_modes_always_skip_v1(self): - l = [] - - class ExampleTest(test_combinations.TestCase): - def runTest(self): - pass - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def testBody(self): - mode = "eager" if tf.executing_eagerly() else "graph" - should_run_eagerly = test_utils.should_run_eagerly() - l.append((mode, should_run_eagerly)) - - e = ExampleTest() - if hasattr(e, "testBody_v1_session"): - e.testBody_v1_session() - if hasattr(e, "testBody_v2_eager"): - e.testBody_v2_eager() - if hasattr(e, "testBody_v2_function"): - e.testBody_v2_function() - - self.assertLen(l, 2) - self.assertEqual( - set(l), - { - ("eager", True), - ("eager", False), - }, - ) - - def test_run_all_keras_modes_with_all_model_types(self): - l = [] - - class ExampleTest(test_combinations.TestCase): - def runTest(self): - pass - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - def testBody(self): - mode = "eager" if tf.executing_eagerly() else "graph" - should_run_eagerly = test_utils.should_run_eagerly() - l.append( - (mode, should_run_eagerly, test_utils.get_model_type()) - ) - - e = ExampleTest() - e.testBody_v2_eager_functional() - e.testBody_v2_function_functional() - e.testBody_v2_eager_sequential() - e.testBody_v2_function_sequential() - e.testBody_v2_eager_subclass() - e.testBody_v2_function_subclass() - - if not tf.__internal__.tf2.enabled(): - e.testBody_v1_session_functional() - e.testBody_v1_session_sequential() - e.testBody_v1_session_subclass() - - expected_combinations = { - ("eager", True, "functional"), - ("eager", False, "functional"), - ("eager", True, "sequential"), - ("eager", False, "sequential"), - ("eager", True, "subclass"), - ("eager", False, "subclass"), - } - - if not tf.__internal__.tf2.enabled(): - expected_combinations = expected_combinations.union( - { - ("graph", False, "functional"), - ("graph", False, "sequential"), - ("graph", False, "subclass"), - } - ) - - self.assertLen(l, len(expected_combinations)) - self.assertEqual(set(l), expected_combinations) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - - self.assertLen(l, len(expected_combinations) * 2) - - def test_run_all_model_types_with_all_keras_modes(self): - l = [] - - class ExampleTest(test_combinations.TestCase): - def runTest(self): - pass - - @test_combinations.run_all_keras_modes - @test_combinations.run_with_all_model_types - def testBody(self): - mode = "eager" if tf.executing_eagerly() else "graph" - should_run_eagerly = test_utils.should_run_eagerly() - l.append( - (mode, should_run_eagerly, test_utils.get_model_type()) - ) - - e = ExampleTest() - e.testBody_functional_v2_eager() - e.testBody_functional_v2_function() - e.testBody_sequential_v2_eager() - e.testBody_sequential_v2_function() - e.testBody_subclass_v2_eager() - e.testBody_subclass_v2_function() - - if not tf.__internal__.tf2.enabled(): - e.testBody_functional_v1_session() - e.testBody_sequential_v1_session() - e.testBody_subclass_v1_session() - - expected_combinations = { - ("eager", True, "functional"), - ("eager", False, "functional"), - ("eager", True, "sequential"), - ("eager", False, "sequential"), - ("eager", True, "subclass"), - ("eager", False, "subclass"), - } - - if not tf.__internal__.tf2.enabled(): - expected_combinations = expected_combinations.union( - { - ("graph", False, "functional"), - ("graph", False, "sequential"), - ("graph", False, "subclass"), - } - ) - - self.assertLen(l, len(expected_combinations)) - self.assertEqual(set(l), expected_combinations) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - - self.assertLen(l, len(expected_combinations) * 2) - - def test_run_all_keras_modes_with_all_model_types_annotate_class(self): - l = [] - - @test_combinations.run_with_all_model_types - @test_combinations.run_all_keras_modes - class ExampleTest(test_combinations.TestCase): - def runTest(self): - pass - - @parameterized.named_parameters( - dict(testcase_name="_arg", arg=True) - ) - def testBody(self, arg): - mode = "eager" if tf.executing_eagerly() else "graph" - should_run_eagerly = test_utils.should_run_eagerly() - l.append( - (mode, should_run_eagerly, test_utils.get_model_type()) - ) - - e = ExampleTest() - e.testBody_arg_v2_eager_functional() - e.testBody_arg_v2_function_functional() - e.testBody_arg_v2_eager_sequential() - e.testBody_arg_v2_function_sequential() - e.testBody_arg_v2_eager_subclass() - e.testBody_arg_v2_function_subclass() - - if not tf.__internal__.tf2.enabled(): - e.testBody_arg_v1_session_functional() - e.testBody_arg_v1_session_sequential() - e.testBody_arg_v1_session_subclass() - - expected_combinations = { - ("eager", True, "functional"), - ("eager", False, "functional"), - ("eager", True, "sequential"), - ("eager", False, "sequential"), - ("eager", True, "subclass"), - ("eager", False, "subclass"), - } - - if not tf.__internal__.tf2.enabled(): - expected_combinations = expected_combinations.union( - { - ("graph", False, "functional"), - ("graph", False, "sequential"), - ("graph", False, "subclass"), - } - ) - - self.assertLen(l, len(expected_combinations)) - self.assertEqual(set(l), expected_combinations) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - - self.assertLen(l, len(expected_combinations) * 2) - - def test_run_all_keras_modes_with_all_model_types_annotate_class_2(self): - l = [] - - @test_combinations.run_with_all_model_types - class ExampleTest(test_combinations.TestCase): - def runTest(self): - pass - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters( - dict(testcase_name="_arg", arg=True) - ) - def testBody(self, arg): - mode = "eager" if tf.executing_eagerly() else "graph" - should_run_eagerly = test_utils.should_run_eagerly() - l.append( - (mode, should_run_eagerly, test_utils.get_model_type()) - ) - - e = ExampleTest() - e.testBody_arg_v2_eager_functional() - e.testBody_arg_v2_function_functional() - e.testBody_arg_v2_eager_sequential() - e.testBody_arg_v2_function_sequential() - e.testBody_arg_v2_eager_subclass() - e.testBody_arg_v2_function_subclass() - - if not tf.__internal__.tf2.enabled(): - e.testBody_arg_v1_session_functional() - e.testBody_arg_v1_session_sequential() - e.testBody_arg_v1_session_subclass() - - expected_combinations = { - ("eager", True, "functional"), - ("eager", False, "functional"), - ("eager", True, "sequential"), - ("eager", False, "sequential"), - ("eager", True, "subclass"), - ("eager", False, "subclass"), - } - - if not tf.__internal__.tf2.enabled(): - expected_combinations = expected_combinations.union( - { - ("graph", False, "functional"), - ("graph", False, "sequential"), - ("graph", False, "subclass"), - } - ) - - self.assertLen(l, len(expected_combinations)) - self.assertEqual(set(l), expected_combinations) - - ts = unittest.makeSuite(ExampleTest) - res = unittest.TestResult() - ts.run(res) - - self.assertLen(l, len(expected_combinations) * 2) - - @test_combinations.run_all_keras_modes - @parameterized.named_parameters(dict(testcase_name="argument", arg=True)) - def test_run_all_keras_modes_extra_params_2(self, arg): - self.assertEqual(arg, True) - - @test_combinations.run_with_all_model_types - @parameterized.named_parameters(dict(testcase_name="argument", arg=True)) - def test_run_with_all_model_types_extra_params_2(self, arg): - self.assertEqual(arg, True) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/testing_infra/test_utils.py b/keras/testing_infra/test_utils.py deleted file mode 100644 index 0240f03c13a..00000000000 --- a/keras/testing_infra/test_utils.py +++ /dev/null @@ -1,1187 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities for unit-testing Keras.""" - - -import collections -import contextlib -import functools -import itertools -import threading -import unittest - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras import layers -from keras import models -from keras.engine import base_layer_utils -from keras.optimizers.legacy import adadelta as adadelta_v2 -from keras.optimizers.legacy import adagrad as adagrad_v2 -from keras.optimizers.legacy import adam as adam_v2 -from keras.optimizers.legacy import adamax as adamax_v2 -from keras.optimizers.legacy import gradient_descent as gradient_descent_v2 -from keras.optimizers.legacy import nadam as nadam_v2 -from keras.optimizers.legacy import rmsprop as rmsprop_v2 -from keras.utils import tf_contextlib -from keras.utils import tf_inspect - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) -from tensorflow.python.util.tf_export import keras_export - - -def string_test(actual, expected): - np.testing.assert_array_equal(actual, expected) - - -def numeric_test(actual, expected): - np.testing.assert_allclose(actual, expected, rtol=1e-3, atol=1e-6) - - -def get_test_data( - train_samples, test_samples, input_shape, num_classes, random_seed=None -): - """Generates test data to train a model on. - - Args: - train_samples: Integer, how many training samples to generate. - test_samples: Integer, how many test samples to generate. - input_shape: Tuple of integers, shape of the inputs. - num_classes: Integer, number of classes for the data and targets. - random_seed: Integer, random seed used by numpy to generate data. - - Returns: - A tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. - """ - if random_seed is not None: - np.random.seed(random_seed) - num_sample = train_samples + test_samples - templates = 2 * num_classes * np.random.random((num_classes,) + input_shape) - y = np.random.randint(0, num_classes, size=(num_sample,)) - x = np.zeros((num_sample,) + input_shape, dtype=np.float32) - for i in range(num_sample): - x[i] = templates[y[i]] + np.random.normal( - loc=0, scale=1.0, size=input_shape - ) - return ( - (x[:train_samples], y[:train_samples]), - (x[train_samples:], y[train_samples:]), - ) - - -@keras_export("keras.__internal__.utils.layer_test", v1=[]) -@tf_test_utils.disable_cudnn_autotune -def layer_test( - layer_cls, - kwargs=None, - input_shape=None, - input_dtype=None, - input_data=None, - expected_output=None, - expected_output_dtype=None, - expected_output_shape=None, - validate_training=True, - adapt_data=None, - custom_objects=None, - test_harness=None, - supports_masking=None, -): - """Test routine for a layer with a single input and single output. - - Args: - layer_cls: Layer class object. - kwargs: Optional dictionary of keyword arguments for instantiating the - layer. - input_shape: Input shape tuple. - input_dtype: Data type of the input data. - input_data: Numpy array of input data. - expected_output: Numpy array of the expected output. - expected_output_dtype: Data type expected for the output. - expected_output_shape: Shape tuple for the expected shape of the output. - validate_training: Whether to attempt to validate training on this layer. - This might be set to False for non-differentiable layers that output - string or integer values. - adapt_data: Optional data for an 'adapt' call. If None, adapt() will not - be tested for this layer. This is only relevant for PreprocessingLayers. - custom_objects: Optional dictionary mapping name strings to custom objects - in the layer class. This is helpful for testing custom layers. - test_harness: The Tensorflow test, if any, that this function is being - called in. - supports_masking: Optional boolean to check the `supports_masking` - property of the layer. If None, the check will not be performed. - - Returns: - The output data (Numpy array) returned by the layer, for additional - checks to be done by the calling code. - - Raises: - ValueError: if `input_shape is None`. - """ - if input_data is None: - if input_shape is None: - raise ValueError("input_shape is None") - if not input_dtype: - input_dtype = "float32" - input_data_shape = list(input_shape) - for i, e in enumerate(input_data_shape): - if e is None: - input_data_shape[i] = np.random.randint(1, 4) - input_data = 10 * np.random.random(input_data_shape) - if input_dtype[:5] == "float": - input_data -= 0.5 - input_data = input_data.astype(input_dtype) - elif input_shape is None: - input_shape = input_data.shape - if input_dtype is None: - input_dtype = input_data.dtype - if expected_output_dtype is None: - expected_output_dtype = input_dtype - - if tf.as_dtype(expected_output_dtype) == tf.string: - if test_harness: - assert_equal = test_harness.assertAllEqual - else: - assert_equal = string_test - else: - if test_harness: - assert_equal = test_harness.assertAllClose - else: - assert_equal = numeric_test - - # instantiation - kwargs = kwargs or {} - layer = layer_cls(**kwargs) - - if ( - supports_masking is not None - and layer.supports_masking != supports_masking - ): - raise AssertionError( - "When testing layer %s, the `supports_masking` property is %r" - "but expected to be %r.\nFull kwargs: %s" - % ( - layer_cls.__name__, - layer.supports_masking, - supports_masking, - kwargs, - ) - ) - - # Test adapt, if data was passed. - if adapt_data is not None: - layer.adapt(adapt_data) - - # test get_weights , set_weights at layer level - weights = layer.get_weights() - layer.set_weights(weights) - - # test and instantiation from weights - if "weights" in tf_inspect.getargspec(layer_cls.__init__): - kwargs["weights"] = weights - layer = layer_cls(**kwargs) - - # test in functional API - x = layers.Input(shape=input_shape[1:], dtype=input_dtype) - y = layer(x) - if backend.dtype(y) != expected_output_dtype: - raise AssertionError( - "When testing layer %s, for input %s, found output " - "dtype=%s but expected to find %s.\nFull kwargs: %s" - % ( - layer_cls.__name__, - x, - backend.dtype(y), - expected_output_dtype, - kwargs, - ) - ) - - def assert_shapes_equal(expected, actual): - """Asserts that the output shape from the layer matches the actual - shape.""" - if len(expected) != len(actual): - raise AssertionError( - "When testing layer %s, for input %s, found output_shape=" - "%s but expected to find %s.\nFull kwargs: %s" - % (layer_cls.__name__, x, actual, expected, kwargs) - ) - - for expected_dim, actual_dim in zip(expected, actual): - if isinstance(expected_dim, tf.compat.v1.Dimension): - expected_dim = expected_dim.value - if isinstance(actual_dim, tf.compat.v1.Dimension): - actual_dim = actual_dim.value - if expected_dim is not None and expected_dim != actual_dim: - raise AssertionError( - "When testing layer %s, for input %s, found output_shape=" - "%s but expected to find %s.\nFull kwargs: %s" - % (layer_cls.__name__, x, actual, expected, kwargs) - ) - - if expected_output_shape is not None: - assert_shapes_equal(tf.TensorShape(expected_output_shape), y.shape) - - # check shape inference - model = models.Model(x, y) - computed_output_shape = tuple( - layer.compute_output_shape(tf.TensorShape(input_shape)).as_list() - ) - computed_output_signature = layer.compute_output_signature( - tf.TensorSpec(shape=input_shape, dtype=input_dtype) - ) - actual_output = model.predict(input_data) - actual_output_shape = actual_output.shape - assert_shapes_equal(computed_output_shape, actual_output_shape) - assert_shapes_equal(computed_output_signature.shape, actual_output_shape) - if computed_output_signature.dtype != actual_output.dtype: - raise AssertionError( - "When testing layer %s, for input %s, found output_dtype=" - "%s but expected to find %s.\nFull kwargs: %s" - % ( - layer_cls.__name__, - x, - actual_output.dtype, - computed_output_signature.dtype, - kwargs, - ) - ) - if expected_output is not None: - assert_equal(actual_output, expected_output) - - # test serialization, weight setting at model level - model_config = model.get_config() - recovered_model = models.Model.from_config(model_config, custom_objects) - if model.weights: - weights = model.get_weights() - recovered_model.set_weights(weights) - output = recovered_model.predict(input_data) - assert_equal(output, actual_output) - - # test training mode (e.g. useful for dropout tests) - # Rebuild the model to avoid the graph being reused between predict() and - # See b/120160788 for more details. This should be mitigated after 2.0. - layer_weights = ( - layer.get_weights() - ) # Get the layer weights BEFORE training. - if validate_training: - model = models.Model(x, layer(x)) - if _thread_local_data.run_eagerly is not None: - model.compile( - "rmsprop", - "mse", - weighted_metrics=["acc"], - run_eagerly=should_run_eagerly(), - ) - else: - model.compile("rmsprop", "mse", weighted_metrics=["acc"]) - model.train_on_batch(input_data, actual_output) - - # test as first layer in Sequential API - layer_config = layer.get_config() - layer_config["batch_input_shape"] = input_shape - layer = layer.__class__.from_config(layer_config) - - # Test adapt, if data was passed. - if adapt_data is not None: - layer.adapt(adapt_data) - - model = models.Sequential() - model.add(layers.Input(shape=input_shape[1:], dtype=input_dtype)) - model.add(layer) - - layer.set_weights(layer_weights) - actual_output = model.predict(input_data) - actual_output_shape = actual_output.shape - for expected_dim, actual_dim in zip( - computed_output_shape, actual_output_shape - ): - if expected_dim is not None: - if expected_dim != actual_dim: - raise AssertionError( - "When testing layer %s **after deserialization**, " - "for input %s, found output_shape=" - "%s but expected to find inferred shape %s.\n" - "Full kwargs: %s" - % ( - layer_cls.__name__, - x, - actual_output_shape, - computed_output_shape, - kwargs, - ) - ) - if expected_output is not None: - assert_equal(actual_output, expected_output) - - # test serialization, weight setting at model level - model_config = model.get_config() - recovered_model = models.Sequential.from_config( - model_config, custom_objects - ) - if model.weights: - weights = model.get_weights() - recovered_model.set_weights(weights) - output = recovered_model.predict(input_data) - assert_equal(output, actual_output) - - # for further checks in the caller function - return actual_output - - -_thread_local_data = threading.local() -_thread_local_data.model_type = None -_thread_local_data.run_eagerly = None -_thread_local_data.saved_model_format = None -_thread_local_data.save_kwargs = None - - -@tf_contextlib.contextmanager -def model_type_scope(value): - """Provides a scope within which the model type to test is equal to `value`. - - The model type gets restored to its original value upon exiting the scope. - - Args: - value: model type value - - Yields: - The provided value. - """ - previous_value = _thread_local_data.model_type - try: - _thread_local_data.model_type = value - yield value - finally: - # Restore model type to initial value. - _thread_local_data.model_type = previous_value - - -@tf_contextlib.contextmanager -def run_eagerly_scope(value): - """Provides a scope within which we compile models to run eagerly or not. - - The boolean gets restored to its original value upon exiting the scope. - - Args: - value: Bool specifying if we should run models eagerly in the active - test. Should be True or False. - - Yields: - The provided value. - """ - previous_value = _thread_local_data.run_eagerly - try: - _thread_local_data.run_eagerly = value - yield value - finally: - # Restore model type to initial value. - _thread_local_data.run_eagerly = previous_value - - -def should_run_eagerly(): - """Returns whether the models we are testing should be run eagerly.""" - if _thread_local_data.run_eagerly is None: - raise ValueError( - "Cannot call `should_run_eagerly()` outside of a " - "`run_eagerly_scope()` or `run_all_keras_modes` " - "decorator." - ) - - return _thread_local_data.run_eagerly and tf.executing_eagerly() - - -@tf_contextlib.contextmanager -def saved_model_format_scope(value, **kwargs): - """Provides a scope within which the savde model format to test is `value`. - - The saved model format gets restored to its original value upon exiting the - scope. - - Args: - value: saved model format value - **kwargs: optional kwargs to pass to the save function. - - Yields: - The provided value. - """ - previous_format = _thread_local_data.saved_model_format - previous_kwargs = _thread_local_data.save_kwargs - try: - _thread_local_data.saved_model_format = value - _thread_local_data.save_kwargs = kwargs - yield - finally: - # Restore saved model format to initial value. - _thread_local_data.saved_model_format = previous_format - _thread_local_data.save_kwargs = previous_kwargs - - -def get_save_format(): - if _thread_local_data.saved_model_format is None: - raise ValueError( - "Cannot call `get_save_format()` outside of a " - "`saved_model_format_scope()` or " - "`run_with_all_saved_model_formats` decorator." - ) - return _thread_local_data.saved_model_format - - -def get_save_kwargs(): - if _thread_local_data.save_kwargs is None: - raise ValueError( - "Cannot call `get_save_kwargs()` outside of a " - "`saved_model_format_scope()` or " - "`run_with_all_saved_model_formats` decorator." - ) - return _thread_local_data.save_kwargs or {} - - -def get_model_type(): - """Gets the model type that should be tested.""" - if _thread_local_data.model_type is None: - raise ValueError( - "Cannot call `get_model_type()` outside of a " - "`model_type_scope()` or `run_with_all_model_types` " - "decorator." - ) - - return _thread_local_data.model_type - - -def get_small_sequential_mlp(num_hidden, num_classes, input_dim=None): - model = models.Sequential() - if input_dim: - model.add( - layers.Dense(num_hidden, activation="relu", input_dim=input_dim) - ) - else: - model.add(layers.Dense(num_hidden, activation="relu")) - activation = "sigmoid" if num_classes == 1 else "softmax" - model.add(layers.Dense(num_classes, activation=activation)) - return model - - -def get_small_functional_mlp(num_hidden, num_classes, input_dim): - inputs = layers.Input(shape=(input_dim,)) - outputs = layers.Dense(num_hidden, activation="relu")(inputs) - activation = "sigmoid" if num_classes == 1 else "softmax" - outputs = layers.Dense(num_classes, activation=activation)(outputs) - return models.Model(inputs, outputs) - - -class SmallSubclassMLP(models.Model): - """A subclass model based small MLP.""" - - def __init__( - self, num_hidden, num_classes, use_bn=False, use_dp=False, **kwargs - ): - super().__init__(name="test_model", **kwargs) - self.num_hidden = num_hidden - self.num_classes = num_classes - self.use_bn = use_bn - self.use_dp = use_dp - - self.layer_a = layers.Dense(num_hidden, activation="relu") - activation = "sigmoid" if num_classes == 1 else "softmax" - self.layer_b = layers.Dense(num_classes, activation=activation) - if self.use_dp: - self.dp = layers.Dropout(0.5) - if self.use_bn: - self.bn = layers.BatchNormalization(axis=-1) - - def call(self, inputs, **kwargs): - x = self.layer_a(inputs) - if self.use_dp: - x = self.dp(x) - if self.use_bn: - x = self.bn(x) - return self.layer_b(x) - - def get_config(self): - config = super().get_config() - config.update( - { - "num_hidden": self.num_hidden, - "num_classes": self.num_classes, - "use_bn": self.use_bn, - "use_dp": self.use_dp, - } - ) - return config - - -class _SmallSubclassMLPCustomBuild(models.Model): - """A subclass model small MLP that uses a custom build method.""" - - def __init__(self, num_hidden, num_classes): - super().__init__() - self.layer_a = None - self.layer_b = None - self.num_hidden = num_hidden - self.num_classes = num_classes - - def build(self, input_shape): - self.layer_a = layers.Dense(self.num_hidden, activation="relu") - activation = "sigmoid" if self.num_classes == 1 else "softmax" - self.layer_b = layers.Dense(self.num_classes, activation=activation) - - def call(self, inputs, **kwargs): - x = self.layer_a(inputs) - return self.layer_b(x) - - -def get_small_subclass_mlp(num_hidden, num_classes): - return SmallSubclassMLP(num_hidden, num_classes) - - -def get_small_subclass_mlp_with_custom_build(num_hidden, num_classes): - return _SmallSubclassMLPCustomBuild(num_hidden, num_classes) - - -def get_small_mlp(num_hidden, num_classes, input_dim): - """Get a small mlp of the model type specified by `get_model_type`.""" - model_type = get_model_type() - if model_type == "subclass": - return get_small_subclass_mlp(num_hidden, num_classes) - if model_type == "subclass_custom_build": - return get_small_subclass_mlp_with_custom_build(num_hidden, num_classes) - if model_type == "sequential": - return get_small_sequential_mlp(num_hidden, num_classes, input_dim) - if model_type == "functional": - return get_small_functional_mlp(num_hidden, num_classes, input_dim) - raise ValueError(f"Unknown model type {model_type}") - - -class _SubclassModel(models.Model): - """A Keras subclass model.""" - - def __init__(self, model_layers, *args, **kwargs): - """Instantiate a model. - - Args: - model_layers: a list of layers to be added to the model. - *args: Model's args - **kwargs: Model's keyword args, at most one of input_tensor -> the - input tensor required for ragged/sparse input. - """ - - inputs = kwargs.pop("input_tensor", None) - super().__init__(*args, **kwargs) - # Note that clone and build doesn't support lists of layers in - # subclassed models. Adding each layer directly here. - for i, layer in enumerate(model_layers): - setattr(self, self._layer_name_for_i(i), layer) - - self.num_layers = len(model_layers) - - if inputs is not None: - self._set_inputs(inputs) - - def _layer_name_for_i(self, i): - return f"layer{i}" - - def call(self, inputs, **kwargs): - x = inputs - for i in range(self.num_layers): - layer = getattr(self, self._layer_name_for_i(i)) - x = layer(x) - return x - - def get_config(self): - # This test model relies on the default Keras serialization of a model, - # rather than providing the details of `model_layers`. - raise NotImplementedError - - -class _SubclassModelCustomBuild(models.Model): - """A Keras subclass model that uses a custom build method.""" - - def __init__(self, layer_generating_func, *args, **kwargs): - super().__init__(*args, **kwargs) - self.all_layers = None - self._layer_generating_func = layer_generating_func - - def build(self, input_shape): - model_layers = [] - for layer in self._layer_generating_func(): - model_layers.append(layer) - self.all_layers = model_layers - - def call(self, inputs, **kwargs): - x = inputs - for layer in self.all_layers: - x = layer(x) - return x - - -def get_model_from_layers( - model_layers, - input_shape=None, - input_dtype=None, - name=None, - input_ragged=None, - input_sparse=None, - model_type=None, -): - """Builds a model from a sequence of layers. - - Args: - model_layers: The layers used to build the network. - input_shape: Shape tuple of the input or 'TensorShape' instance. - input_dtype: Datatype of the input. - name: Name for the model. - input_ragged: Boolean, whether the input data is a ragged tensor. - input_sparse: Boolean, whether the input data is a sparse tensor. - model_type: One of "subclass", "subclass_custom_build", "sequential", or - "functional". When None, defaults to `get_model_type`. - - Returns: - A Keras model. - """ - if model_type is None: - model_type = get_model_type() - if model_type == "subclass": - inputs = None - if input_ragged or input_sparse: - inputs = layers.Input( - shape=input_shape, - dtype=input_dtype, - ragged=input_ragged, - sparse=input_sparse, - ) - return _SubclassModel(model_layers, name=name, input_tensor=inputs) - - if model_type == "subclass_custom_build": - layer_generating_func = lambda: model_layers - return _SubclassModelCustomBuild(layer_generating_func, name=name) - - if model_type == "sequential": - model = models.Sequential(name=name) - if input_shape: - model.add( - layers.InputLayer( - input_shape=input_shape, - dtype=input_dtype, - ragged=input_ragged, - sparse=input_sparse, - ) - ) - for layer in model_layers: - model.add(layer) - return model - - if model_type == "functional": - if not input_shape: - raise ValueError( - "Cannot create a functional model from layers with no " - "input shape." - ) - inputs = layers.Input( - shape=input_shape, - dtype=input_dtype, - ragged=input_ragged, - sparse=input_sparse, - ) - outputs = inputs - for layer in model_layers: - outputs = layer(outputs) - return models.Model(inputs, outputs, name=name) - - raise ValueError(f"Unknown model type {model_type}") - - -class Bias(layers.Layer): - def build(self, input_shape): - self.bias = self.add_weight("bias", (1,), initializer="zeros") - - def call(self, inputs): - return inputs + self.bias - - -class _MultiIOSubclassModel(models.Model): - """Multi IO Keras subclass model.""" - - def __init__( - self, - branch_a, - branch_b, - shared_input_branch=None, - shared_output_branch=None, - name=None, - ): - super().__init__(name=name) - self._shared_input_branch = shared_input_branch - self._branch_a = branch_a - self._branch_b = branch_b - self._shared_output_branch = shared_output_branch - - def call(self, inputs, **kwargs): - if self._shared_input_branch: - for layer in self._shared_input_branch: - inputs = layer(inputs) - a = inputs - b = inputs - elif isinstance(inputs, dict): - a = inputs["input_1"] - b = inputs["input_2"] - else: - a, b = inputs - - for layer in self._branch_a: - a = layer(a) - for layer in self._branch_b: - b = layer(b) - outs = [a, b] - - if self._shared_output_branch: - for layer in self._shared_output_branch: - outs = layer(outs) - - return outs - - -class _MultiIOSubclassModelCustomBuild(models.Model): - """Multi IO Keras subclass model that uses a custom build method.""" - - def __init__( - self, - branch_a_func, - branch_b_func, - shared_input_branch_func=None, - shared_output_branch_func=None, - ): - super().__init__() - self._shared_input_branch_func = shared_input_branch_func - self._branch_a_func = branch_a_func - self._branch_b_func = branch_b_func - self._shared_output_branch_func = shared_output_branch_func - - self._shared_input_branch = None - self._branch_a = None - self._branch_b = None - self._shared_output_branch = None - - def build(self, input_shape): - if self._shared_input_branch_func(): - self._shared_input_branch = self._shared_input_branch_func() - self._branch_a = self._branch_a_func() - self._branch_b = self._branch_b_func() - - if self._shared_output_branch_func(): - self._shared_output_branch = self._shared_output_branch_func() - - def call(self, inputs, **kwargs): - if self._shared_input_branch: - for layer in self._shared_input_branch: - inputs = layer(inputs) - a = inputs - b = inputs - else: - a, b = inputs - - for layer in self._branch_a: - a = layer(a) - for layer in self._branch_b: - b = layer(b) - outs = a, b - - if self._shared_output_branch: - for layer in self._shared_output_branch: - outs = layer(outs) - - return outs - - -def get_multi_io_model( - branch_a, branch_b, shared_input_branch=None, shared_output_branch=None -): - """Builds a multi-io model that contains two branches. - - The produced model will be of the type specified by `get_model_type`. - - To build a two-input, two-output model: - Specify a list of layers for branch a and branch b, but do not specify any - shared input branch or shared output branch. The resulting model will - apply each branch to a different input, to produce two outputs. - - The first value in branch_a must be the Keras 'Input' layer for branch a, - and the first value in branch_b must be the Keras 'Input' layer for - branch b. - - example usage: - ``` - branch_a = [Input(shape=(2,), name='a'), Dense(), Dense()] - branch_b = [Input(shape=(3,), name='b'), Dense(), Dense()] - - model = get_multi_io_model(branch_a, branch_b) - ``` - - To build a two-input, one-output model: - Specify a list of layers for branch a and branch b, and specify a - shared output branch. The resulting model will apply - each branch to a different input. It will then apply the shared output - branch to a tuple containing the intermediate outputs of each branch, - to produce a single output. The first layer in the shared_output_branch - must be able to merge a tuple of two tensors. - - The first value in branch_a must be the Keras 'Input' layer for branch a, - and the first value in branch_b must be the Keras 'Input' layer for - branch b. - - example usage: - ``` - input_branch_a = [Input(shape=(2,), name='a'), Dense(), Dense()] - input_branch_b = [Input(shape=(3,), name='b'), Dense(), Dense()] - shared_output_branch = [Concatenate(), Dense(), Dense()] - - model = get_multi_io_model(input_branch_a, input_branch_b, - shared_output_branch=shared_output_branch) - ``` - To build a one-input, two-output model: - Specify a list of layers for branch a and branch b, and specify a - shared input branch. The resulting model will take one input, and apply - the shared input branch to it. It will then respectively apply each branch - to that intermediate result in parallel, to produce two outputs. - - The first value in the shared_input_branch must be the Keras 'Input' layer - for the whole model. Branch a and branch b should not contain any Input - layers. - - example usage: - ``` - shared_input_branch = [Input(shape=(2,), name='in'), Dense(), Dense()] - output_branch_a = [Dense(), Dense()] - output_branch_b = [Dense(), Dense()] - - - model = get_multi_io_model(output__branch_a, output_branch_b, - shared_input_branch=shared_input_branch) - ``` - - Args: - branch_a: A sequence of layers for branch a of the model. - branch_b: A sequence of layers for branch b of the model. - shared_input_branch: An optional sequence of layers to apply to a single - input, before applying both branches to that intermediate result. If - set, the model will take only one input instead of two. Defaults to - None. - shared_output_branch: An optional sequence of layers to merge the - intermediate results produced by branch a and branch b. If set, - the model will produce only one output instead of two. Defaults to None. - - Returns: - A multi-io model of the type specified by `get_model_type`, specified - by the different branches. - """ - # Extract the functional inputs from the layer lists - if shared_input_branch: - inputs = shared_input_branch[0] - shared_input_branch = shared_input_branch[1:] - else: - inputs = branch_a[0], branch_b[0] - branch_a = branch_a[1:] - branch_b = branch_b[1:] - - model_type = get_model_type() - if model_type == "subclass": - return _MultiIOSubclassModel( - branch_a, branch_b, shared_input_branch, shared_output_branch - ) - - if model_type == "subclass_custom_build": - return _MultiIOSubclassModelCustomBuild( - (lambda: branch_a), - (lambda: branch_b), - (lambda: shared_input_branch), - (lambda: shared_output_branch), - ) - - if model_type == "sequential": - raise ValueError( - "Cannot use `get_multi_io_model` to construct sequential models" - ) - - if model_type == "functional": - if shared_input_branch: - a_and_b = inputs - for layer in shared_input_branch: - a_and_b = layer(a_and_b) - a = a_and_b - b = a_and_b - else: - a, b = inputs - - for layer in branch_a: - a = layer(a) - for layer in branch_b: - b = layer(b) - outputs = a, b - - if shared_output_branch: - for layer in shared_output_branch: - outputs = layer(outputs) - - return models.Model(inputs, outputs) - - raise ValueError(f"Unknown model type {model_type}") - - -_V2_OPTIMIZER_MAP = { - "adadelta": adadelta_v2.Adadelta, - "adagrad": adagrad_v2.Adagrad, - "adam": adam_v2.Adam, - "adamax": adamax_v2.Adamax, - "nadam": nadam_v2.Nadam, - "rmsprop": rmsprop_v2.RMSprop, - "sgd": gradient_descent_v2.SGD, -} - - -def get_v2_optimizer(name, **kwargs): - """Get the v2 optimizer requested. - - This is only necessary until v2 are the default, as we are testing in Eager, - and Eager + v1 optimizers fail tests. When we are in v2, the strings alone - should be sufficient, and this mapping can theoretically be removed. - - Args: - name: string name of Keras v2 optimizer. - **kwargs: any kwargs to pass to the optimizer constructor. - - Returns: - Initialized Keras v2 optimizer. - - Raises: - ValueError: if an unknown name was passed. - """ - try: - return _V2_OPTIMIZER_MAP[name](**kwargs) - except KeyError: - raise ValueError( - "Could not find requested v2 optimizer: " - "{}\nValid choices: {}".format(name, list(_V2_OPTIMIZER_MAP.keys())) - ) - - -def get_expected_metric_variable_names(var_names, name_suffix=""): - """Returns expected metric variable names given names and prefix/suffix.""" - if tf.__internal__.tf2.enabled() or tf.executing_eagerly(): - # In V1 eager mode and V2 variable names are not made unique. - return [n + ":0" for n in var_names] - # In V1 graph mode variable names are made unique using a suffix. - return [n + name_suffix + ":0" for n in var_names] - - -def enable_v2_dtype_behavior(fn): - """Decorator for enabling the layer V2 dtype behavior on a test.""" - return _set_v2_dtype_behavior(fn, True) - - -def disable_v2_dtype_behavior(fn): - """Decorator for disabling the layer V2 dtype behavior on a test.""" - return _set_v2_dtype_behavior(fn, False) - - -def _set_v2_dtype_behavior(fn, enabled): - """Returns version of 'fn' that runs with v2 dtype behavior on or off.""" - - @functools.wraps(fn) - def wrapper(*args, **kwargs): - v2_dtype_behavior = base_layer_utils.V2_DTYPE_BEHAVIOR - base_layer_utils.V2_DTYPE_BEHAVIOR = enabled - try: - return fn(*args, **kwargs) - finally: - base_layer_utils.V2_DTYPE_BEHAVIOR = v2_dtype_behavior - - return tf.__internal__.decorator.make_decorator(fn, wrapper) - - -@contextlib.contextmanager -def device(should_use_gpu): - """Uses gpu when requested and available.""" - if should_use_gpu and tf.test.is_gpu_available(): - dev = "/device:GPU:0" - else: - dev = "/device:CPU:0" - with tf.device(dev): - yield - - -@contextlib.contextmanager -def use_gpu(): - """Uses gpu when requested and available.""" - with device(should_use_gpu=True): - yield - - -def for_all_test_methods(decorator, *args, **kwargs): - """Generate class-level decorator from given method-level decorator. - - It is expected for the given decorator to take some arguments and return - a method that is then called on the test method to produce a decorated - method. - - Args: - decorator: The decorator to apply. - *args: Positional arguments - **kwargs: Keyword arguments - Returns: Function that will decorate a given classes test methods with the - decorator. - """ - - def all_test_methods_impl(cls): - """Apply decorator to all test methods in class.""" - for name in dir(cls): - value = getattr(cls, name) - if ( - callable(value) - and name.startswith("test") - and (name != "test_session") - ): - setattr(cls, name, decorator(*args, **kwargs)(value)) - return cls - - return all_test_methods_impl - - -# The description is just for documentation purposes. -def run_without_tensor_float_32(description): - """Execute test with TensorFloat-32 disabled. - - While almost every real-world deep learning model runs fine with - TensorFloat-32, many tests use assertAllClose or similar methods. - TensorFloat-32 matmuls typically will cause such methods to fail with the - default tolerances. - - Args: - description: A description used for documentation purposes, describing why - the test requires TensorFloat-32 to be disabled. - - Returns: - Decorator which runs a test with TensorFloat-32 disabled. - """ - - def decorator(f): - @functools.wraps(f) - def decorated(self, *args, **kwargs): - allowed = tf.config.experimental.tensor_float_32_execution_enabled() - try: - tf.config.experimental.enable_tensor_float_32_execution(False) - f(self, *args, **kwargs) - finally: - tf.config.experimental.enable_tensor_float_32_execution(allowed) - - return decorated - - return decorator - - -# The description is just for documentation purposes. -def run_all_without_tensor_float_32( - description, -): - """Execute all tests in a class with TensorFloat-32 disabled.""" - return for_all_test_methods(run_without_tensor_float_32, description) - - -def run_v2_only(obj=None): - """Execute the decorated test only if running in v2 mode. - - This function is intended to be applied to tests that exercise v2 only - functionality. If the test is run in v1 mode it will simply be skipped. - - See go/tf-test-decorator-cheatsheet for the decorators to use in different - v1/v2/eager/graph combinations. - - Args: - obj: function to be annotated. If None, return a - decorator the can be applied to a function or class. If `obj` is not - None, return the decorator applied to `obj`. - - Returns: - Returns a decorator that will conditionally skip the decorated test - method. - """ - condition = not tf.__internal__.tf2.enabled() - reason = "Test is only compatible with TF v2." - - def decorator(f): - if tf_inspect.isclass(f): - return unittest.skipIf(condition=condition, reason=reason)(obj) - - def decorated(self, *args, **kwargs): - if condition: - self.skipTest(reason) - return f(self, *args, **kwargs) - - return decorated - - if obj is not None: - return decorator(obj) - - return decorator - - -def generate_combinations_with_testcase_name(**kwargs): - """Generate combinations based on its keyword arguments using combine(). - - This function calls combine() and appends a testcase name to the list of - dictionaries returned. The 'testcase_name' key is a required for named - parameterized tests. - - Args: - **kwargs: keyword arguments of form `option=[possibilities, ...]` or - `option=the_only_possibility`. - - Returns: - a list of dictionaries for each combination. Keys in the dictionaries are - the keyword argument names. Each key has one value - one of the - corresponding keyword argument values. - """ - sort_by_key = lambda k: k[0] - combinations = [] - for key, values in sorted(kwargs.items(), key=sort_by_key): - if not isinstance(values, list): - values = [values] - combinations.append([(key, value) for value in values]) - - combinations = [ - collections.OrderedDict(result) - for result in itertools.product(*combinations) - ] - named_combinations = [] - for combination in combinations: - assert isinstance(combination, collections.OrderedDict) - name = "".join( - [ - "_{}_{}".format( - "".join(filter(str.isalnum, key)), - "".join(filter(str.isalnum, str(value))), - ) - for key, value in combination.items() - ] - ) - named_combinations.append( - collections.OrderedDict( - list(combination.items()) + [("testcase_name", f"_test{name}")] - ) - ) - - return named_combinations diff --git a/keras/tests/BUILD b/keras/tests/BUILD deleted file mode 100644 index bc1d7d61f8c..00000000000 --- a/keras/tests/BUILD +++ /dev/null @@ -1,380 +0,0 @@ -# Description: -# Contains Keras test utils and integration tests. - -# buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "cuda_py_test") - -# buildifier: disable=same-origin-load -load("@org_keras//keras:keras.bzl", "tf_py_test") -load("@org_keras//keras:keras.bzl", "tpu_py_test") - -package( - default_visibility = [ - "//keras:friends", - "//third_party/tensorflow/tools/pip_package:__pkg__", - ], - licenses = ["notice"], -) - -tf_py_test( - name = "get_config_test", - srcs = ["get_config_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "no_pip", - ], - deps = [ - ":get_config_samples", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "add_loss_correctness_test", - srcs = ["add_loss_correctness_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/testing_infra:test_combinations", - ], -) - -tpu_py_test( - name = "automatic_outside_compilation_test", - srcs = [ - "automatic_outside_compilation_test.py", - ], - disable_experimental = True, - disable_mlir_bridge = False, - python_version = "PY3", - tags = ["no_oss"], - deps = [ - "//:expect_tensorboard_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/distribute:distribute_strategy_test_lib", - ], -) - -tf_py_test( - name = "convert_to_constants_test", - srcs = ["convert_to_constants_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "custom_training_loop_test", - srcs = ["custom_training_loop_test.py"], - python_version = "PY3", - shard_count = 4, - tags = ["notsan"], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "graph_util_test", - srcs = ["graph_util_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "integration_test", - size = "medium", - srcs = ["integration_test.py"], - python_version = "PY3", - shard_count = 16, - tags = [ - "notsan", - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/layers/rnn:legacy_cells", - "//keras/legacy_tf_layers:layers_base", - "//keras/testing_infra:test_combinations", - ], -) - -py_library( - name = "model_architectures", - srcs = [ - "model_architectures.py", - ], - srcs_version = "PY3", - deps = [ - "//keras", - ], -) - -tf_py_test( - name = "model_architectures_test", - srcs = ["model_architectures_test.py"], - python_version = "PY3", - shard_count = 16, - deps = [ - ":model_architectures", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//keras", - "//keras/api:keras_api", - "//keras/testing_infra:test_combinations", - ], -) - -py_library( - name = "model_subclassing_test_util", - srcs = ["model_subclassing_test_util.py"], - srcs_version = "PY3", - deps = [ - "//keras", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "model_subclassing_test", - srcs = ["model_subclassing_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "no_windows", - "notsan", - ], - deps = [ - ":model_subclassing_test_util", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "model_subclassing_compiled_test", - srcs = ["model_subclassing_compiled_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "no_windows", - "notsan", - ], - deps = [ - ":model_subclassing_test_util", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/testing_infra:test_combinations", - ], -) - -cuda_py_test( - name = "memory_test", - size = "medium", - srcs = ["memory_test.py"], - tags = [ - "no_oss", - "optonly", # The test is too slow in non-opt mode - ], - # TODO(b/140065350): Re-enable - xla_enable_strict_auto_jit = False, - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//third_party/tensorflow/python/eager/memory_tests:memory_test_util", - ], -) - -tf_py_test( - name = "memory_checker_test", - size = "medium", - srcs = ["memory_checker_test.py"], - python_version = "PY3", - shard_count = 8, - tags = [ - "no_oss", - "no_pip", - "no_windows", - "noasan", # TODO(b/149948895): Re-enable. - "nomsan", # TODO(b/149948895): Re-enable. - "notsan", # TODO(b/149948895): Re-enable. - ], - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - ], -) - -tf_py_test( - name = "saved_model_test", - size = "small", - srcs = ["saved_model_test.py"], - tags = [ - "no_oss", # TODO(b/170766453) - "notap", # TODO(b/170766453) - ], - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/layers/core", - "//keras/metrics", - "//keras/optimizers/legacy:optimizers", - ], -) - -cuda_py_test( - name = "saver_test", - size = "medium", - srcs = ["saver_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras/api:keras_api", - "//keras/engine", - "//keras/layers/core", - ], -) - -tf_py_test( - name = "serialization_util_test", - size = "small", - srcs = ["serialization_util_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/engine", - "//keras/layers/core", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "temporal_sample_weights_correctness_test", - srcs = ["temporal_sample_weights_correctness_test.py"], - python_version = "PY3", - shard_count = 20, - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "tracking_test", - srcs = ["tracking_test.py"], - python_version = "PY3", - tags = [ - "no_windows", - "nomac", - ], - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/engine", - "//keras/layers/core", - "//keras/layers/normalization", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "tracking_util_test", - srcs = ["tracking_util_test.py"], - python_version = "PY3", - tags = ["notsan"], # b/74395663 - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/engine", - "//keras/layers/core", - "//keras/optimizers/legacy:optimizers", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "tracking_util_with_v1_optimizers_test", - srcs = ["tracking_util_with_v1_optimizers_test.py"], - tags = [ - "no_windows", # TODO(b/184424727): Re-enable this. - "notsan", # b/74395663 - ], - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/api:keras_api", - "//keras/engine", - "//keras/layers/core", - "//keras/testing_infra:test_combinations", - ], -) - -py_library( - name = "get_config_samples", - srcs = ["get_config_samples.py"], - srcs_version = "PY3", - deps = [], -) - -py_test( - name = "keras_doctest", - srcs = ["keras_doctest.py"], - python_version = "PY3", - tags = [ - "no_pip", - "noasan", - "nomsan", - "notsan", - ], - deps = [ - "//:expect_tensorflow_installed", - "//keras/testing_infra:keras_doctest_lib", - ], -) diff --git a/keras/tests/__init__.py b/keras/tests/__init__.py deleted file mode 100644 index e69de29bb2d..00000000000 diff --git a/keras/tests/add_loss_correctness_test.py b/keras/tests/add_loss_correctness_test.py deleted file mode 100644 index acf9ee16864..00000000000 --- a/keras/tests/add_loss_correctness_test.py +++ /dev/null @@ -1,468 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests add_loss API correctness.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import Input -from keras import Model -from keras import Sequential -from keras import layers -from keras import losses -from keras.optimizers import legacy as optimizer_legacy -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.training.rmsprop import ( - RMSPropOptimizer, -) - -MAE = losses.MeanAbsoluteError -mae = losses.mean_absolute_error - - -def get_ctl_train_step(model): - optimizer = optimizer_legacy.gradient_descent.SGD(0.05) - - def train_step(x, y, w=None): - with tf.GradientTape() as tape: - if w is not None: - model([x, y, w]) - else: - model([x, y]) - loss = tf.reduce_sum(model.losses) - gradients = tape.gradient(loss, model.trainable_weights) - optimizer.apply_gradients(zip(gradients, model.trainable_weights)) - return loss - - return train_step - - -# TODO(psv): Add tests cases where a model is used in loss function but is -# not part of the training model. - - -class TestAddLossCorrectness(test_combinations.TestCase): - def setUp(self): - super().setUp() - self.x = np.array([[0.0], [1.0], [2.0]], dtype="float32") - self.y = np.array([[0.5], [2.0], [3.5]], dtype="float32") - self.w = np.array([[1.25], [0.5], [1.25]], dtype="float32") - - @test_combinations.run_all_keras_modes - def test_loss_on_model_fit(self): - inputs = Input(shape=(1,)) - targets = Input(shape=(1,)) - outputs = test_utils.Bias()(inputs) - model = Model([inputs, targets], outputs) - model.add_loss(MAE()(targets, outputs)) - model.add_loss(tf.reduce_mean(mae(targets, outputs))) - model.compile( - optimizer_legacy.gradient_descent.SGD(0.05), - run_eagerly=test_utils.should_run_eagerly(), - ) - - history = model.fit([self.x, self.y], batch_size=3, epochs=5) - self.assertAllClose( - history.history["loss"], [2.0, 1.8, 1.6, 1.4, 1.2], 1e-3 - ) - - @test_combinations.run_with_all_model_types(exclude_models=["sequential"]) - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_loss_callable_on_model_fit(self): - model = test_utils.get_model_from_layers( - [test_utils.Bias()], input_shape=(1,) - ) - - def callable_loss(): - return tf.reduce_sum(model.weights) - - model.add_loss(callable_loss) - model.compile( - optimizer_legacy.gradient_descent.SGD(0.1), - run_eagerly=test_utils.should_run_eagerly(), - ) - - history = model.fit(self.x, batch_size=3, epochs=5) - self.assertAllClose( - history.history["loss"], [0.0, -0.1, -0.2, -0.3, -0.4], 1e-3 - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_loss_on_model_ctl(self): - def get_model_and_train_step(): - inputs = Input(shape=(1,)) - targets = Input(shape=(1,)) - outputs = test_utils.Bias()(inputs) - model = Model([inputs, targets], outputs) - model.add_loss(MAE()(targets, outputs)) - model.add_loss(tf.reduce_mean(mae(targets, outputs))) - return get_ctl_train_step(model) - - train_step = get_model_and_train_step() - loss = [train_step(self.x, self.y) for _ in range(5)] - self.assertAllClose(loss, [2.0, 1.8, 1.6, 1.4, 1.2], 1e-3) - - train_step = tf.function(get_model_and_train_step()) - loss = [train_step(self.x, self.y) for _ in range(5)] - self.assertAllClose(loss, [2.0, 1.8, 1.6, 1.4, 1.2], 1e-3) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_loss_callable_on_model_ctl(self): - def get_model_and_train_step(): - inputs = Input(shape=(1,)) - targets = Input(shape=(1,)) - outputs = test_utils.Bias()(inputs) - model = Model([inputs, targets], outputs) - - def callable_loss(): - return tf.reduce_sum(model.weights) - - model.add_loss(callable_loss) - return get_ctl_train_step(model) - - train_step = get_model_and_train_step() - loss = [train_step(self.x, self.y) for _ in range(5)] - self.assertAllClose(loss, [0.0, -0.05, -0.1, -0.15, -0.2], 1e-3) - - train_step = tf.function(get_model_and_train_step()) - loss = [train_step(self.x, self.y) for _ in range(5)] - self.assertAllClose(loss, [0.0, -0.05, -0.1, -0.15, -0.2], 1e-3) - - @test_combinations.run_all_keras_modes - def test_loss_with_sample_weight_on_model_fit(self): - inputs = Input(shape=(1,)) - targets = Input(shape=(1,)) - sw = Input(shape=(1,)) - outputs = test_utils.Bias()(inputs) - model = Model([inputs, targets, sw], outputs) - model.add_loss(MAE()(targets, outputs, sw)) - model.add_loss(3 * tf.reduce_mean(sw * mae(targets, outputs))) - model.compile( - optimizer_legacy.gradient_descent.SGD(0.025), - run_eagerly=test_utils.should_run_eagerly(), - ) - - history = model.fit([self.x, self.y, self.w], batch_size=3, epochs=5) - self.assertAllClose( - history.history["loss"], [4.0, 3.6, 3.2, 2.8, 2.4], 1e-3 - ) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_loss_with_sample_weight_on_model_ctl(self): - def get_model_and_train_step(): - inputs = Input(shape=(1,)) - targets = Input(shape=(1,)) - sw = Input(shape=(1,)) - outputs = test_utils.Bias()(inputs) - model = Model([inputs, targets, sw], outputs) - model.add_loss(MAE()(targets, outputs, sw)) - model.add_loss(tf.reduce_mean(sw * mae(targets, outputs))) - return get_ctl_train_step(model) - - train_step = get_model_and_train_step() - loss = [train_step(self.x, self.y, self.w) for _ in range(5)] - self.assertAllClose(loss, [2.0, 1.8, 1.6, 1.4, 1.2], 1e-3) - - train_step = tf.function(get_model_and_train_step()) - loss = [train_step(self.x, self.y, self.w) for _ in range(5)] - self.assertAllClose(loss, [2.0, 1.8, 1.6, 1.4, 1.2], 1e-3) - - @test_combinations.run_all_keras_modes - def test_loss_with_sample_weight_in_model_call(self): - class MyModel(Model): - def __init__(self): - super().__init__() - self.bias = test_utils.Bias() - - def call(self, inputs): - outputs = self.bias(inputs[0]) - self.add_loss(MAE()(inputs[1], outputs, inputs[2])) - self.add_loss( - tf.reduce_mean(inputs[2] * mae(inputs[1], outputs)) - ) - return outputs - - model = MyModel() - model.predict([self.x, self.y, self.w]) - model.compile( - optimizer_legacy.gradient_descent.SGD(0.05), - run_eagerly=test_utils.should_run_eagerly(), - ) - - history = model.fit([self.x, self.y, self.w], batch_size=3, epochs=5) - self.assertEqual(len(model.losses), 2) - self.assertAllClose( - history.history["loss"], [2.0, 1.8, 1.6, 1.4, 1.2], 1e-3 - ) - - eval_out = model.evaluate([self.x, self.y, self.w]) - self.assertAlmostEqual(eval_out, 1.0, 3) - - @test_combinations.run_all_keras_modes - def test_loss_with_sample_weight_in_layer_call(self): - class MyLayer(layers.Layer): - def __init__(self): - super().__init__() - self.bias = test_utils.Bias() - - def call(self, inputs): - out = self.bias(inputs[0]) - self.add_loss(MAE()(inputs[1], out, inputs[2])) - self.add_loss(tf.reduce_mean(inputs[2] * mae(inputs[1], out))) - return out - - inputs = Input(shape=(1,)) - targets = Input(shape=(1,)) - sw = Input(shape=(1,)) - - outputs = MyLayer()([inputs, targets, sw]) - model = Model([inputs, targets, sw], outputs) - model.predict([self.x, self.y, self.w]) - model.compile( - optimizer_legacy.gradient_descent.SGD(0.05), - run_eagerly=test_utils.should_run_eagerly(), - ) - - history = model.fit([self.x, self.y, self.w], batch_size=3, epochs=5) - self.assertAllClose( - history.history["loss"], [2.0, 1.8, 1.6, 1.4, 1.2], 1e-3 - ) - - output = model.evaluate([self.x, self.y, self.w]) - self.assertAlmostEqual(output, 1.0, 3) - - output = model.test_on_batch([self.x, self.y, self.w]) - self.assertAlmostEqual(output, 1.0, 3) - - @test_combinations.run_all_keras_modes - def test_loss_on_layer(self): - class MyLayer(layers.Layer): - def call(self, inputs): - self.add_loss(tf.reduce_sum(inputs)) - return inputs - - inputs = Input((3,)) - layer = MyLayer() - outputs = layer(inputs) - model = Model(inputs, outputs) - self.assertEqual(len(model.losses), 1) - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - loss = model.train_on_batch(np.ones((2, 3)), np.ones((2, 3))) - self.assertEqual(loss, 2 * 3) - - @test_combinations.run_all_keras_modes - @test_combinations.run_with_all_model_types - def test_activity_regularizer(self): - loss = {} - for reg in [None, "l2"]: - model_layers = [ - layers.Dense( - 10, - activation="relu", - activity_regularizer=reg, - kernel_initializer="ones", - use_bias=False, - ), - layers.Dense( - 1, - activation="sigmoid", - kernel_initializer="ones", - use_bias=False, - ), - ] - - model = test_utils.get_model_from_layers( - model_layers, input_shape=(10,) - ) - - x = np.ones((10, 10), "float32") - y = np.zeros((10, 1), "float32") - - optimizer = RMSPropOptimizer(learning_rate=0.001) - model.compile( - optimizer, - "binary_crossentropy", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit(x, y, batch_size=2, epochs=5) - loss[reg] = model.evaluate(x, y) - self.assertLess(loss[None], loss["l2"]) - - @test_combinations.run_all_keras_modes - @test_combinations.run_with_all_model_types - def test_activity_regularizer_loss_value(self): - layer = layers.Dense( - 1, - kernel_initializer="zeros", - bias_initializer="ones", - activity_regularizer="l2", - ) - - model = test_utils.get_model_from_layers([layer], input_shape=(10,)) - - x = np.ones((10, 10), "float32") - optimizer = RMSPropOptimizer(learning_rate=0.001) - model.compile(optimizer, run_eagerly=test_utils.should_run_eagerly()) - loss = model.test_on_batch(x) - self.assertAlmostEqual(0.01, loss, places=4) - - @test_combinations.run_all_keras_modes - def test_activity_regularizer_batch_independent(self): - inputs = layers.Input(shape=(10,)) - x = layers.Dense(10, activation="relu", activity_regularizer="l2")( - inputs - ) - outputs = layers.Dense(1, activation="sigmoid")(x) - model = Model(inputs, outputs) - - optimizer = RMSPropOptimizer(learning_rate=0.001) - model.compile(optimizer, run_eagerly=test_utils.should_run_eagerly()) - - loss_small_batch = model.test_on_batch(np.ones((10, 10), "float32")) - loss_big_batch = model.test_on_batch(np.ones((20, 10), "float32")) - self.assertAlmostEqual(loss_small_batch, loss_big_batch, places=4) - - @test_combinations.run_all_keras_modes - def test_with_shared_layer(self): - class LayerWithLoss(layers.Layer): - def call(self, inputs): - self.add_loss(tf.reduce_sum(inputs)) - return inputs * 2 - - shared_layer = LayerWithLoss() - - m = Sequential([shared_layer]) - m2 = Sequential([shared_layer, m]) - m2(tf.constant([1, 2, 3])) - self.assertEqual(len(m2.losses), 2) - self.assertAllClose(m2.losses, [6, 12]) - - @test_combinations.run_all_keras_modes - def test_with_shared_nested_layer(self): - class LayerWithLoss(layers.Layer): - def call(self, inputs): - self.add_loss(tf.reduce_sum(inputs)) - return inputs * 2 - - class LayerWithNestedLayerWithLoss(layers.Layer): - def __init__(self): - super().__init__() - self.loss_layer = LayerWithLoss() - - def call(self, inputs): - return self.loss_layer(inputs) - - shared_layer = LayerWithNestedLayerWithLoss() - - m = Sequential([shared_layer]) - m2 = Sequential([shared_layer, m]) - m2(tf.constant([1, 2, 3])) - self.assertEqual(len(m2.losses), 2) - self.assertAllClose(m2.losses, [6, 12]) - - @test_combinations.run_all_keras_modes - def test_clear_losses(self): - class LayerWithSharedNestedLossLayer(layers.Layer): - def __init__(self): - super().__init__() - self.loss_layer = layers.ActivityRegularization(l2=0.001) - self.add_weight(shape=(1,), regularizer="l2") - - def call(self, x): - x = self.loss_layer(x) - return self.loss_layer(x) - - inputs = Input(shape=(1,)) - l = LayerWithSharedNestedLossLayer() # Weight loss + 2 activity losses. - - x1 = tf.ones((1, 1)) - _ = l(x1) - if not tf.executing_eagerly(): - self.assertEqual(len(l.get_losses_for(x1)), 2) - self.assertEqual(len(l.get_losses_for(None)), 1) - - x2 = tf.ones((1, 1)) - _ = l(x2) - if not tf.executing_eagerly(): - self.assertEqual(len(l.get_losses_for(x1)), 2) - self.assertEqual(len(l.get_losses_for(x2)), 2) - self.assertEqual(len(l.get_losses_for(None)), 1) - - outputs = l(inputs) - model = Model(inputs, outputs) - if not tf.executing_eagerly(): - self.assertEqual(len(model.losses), 7) - self.assertEqual(len(l.get_losses_for(x1)), 2) - self.assertEqual(len(l.get_losses_for(x2)), 2) - self.assertEqual(len(l.get_losses_for(None)), 1) - - x3 = tf.ones((1, 1)) - model(x3) - x4 = tf.ones((1, 1)) - model(x4) - if tf.executing_eagerly(): - # Eager losses are cleared every `__call__`. - self.assertEqual(len(model.losses), 3) - else: - self.assertEqual(len(model.losses), 11) - self.assertEqual(len(model.get_losses_for(x3)), 2) - self.assertEqual(len(model.get_losses_for(x4)), 2) - self.assertEqual(len(model.get_losses_for(None)), 1) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_invalid_constant_input(self): - inputs = Input(shape=(1,)) - outputs = test_utils.Bias()(inputs) - model = Model(inputs, outputs) - with self.assertRaisesRegex( - ValueError, - "Expected a symbolic Tensors or a callable for the loss value", - ): - model.add_loss(1.0) - - @test_combinations.run_all_keras_modes(always_skip_v1=True) - def test_invalid_variable_input(self): - inputs = Input(shape=(1,)) - outputs = test_utils.Bias()(inputs) - model = Model(inputs, outputs) - with self.assertRaisesRegex( - ValueError, - "Expected a symbolic Tensors or a callable for the loss value", - ): - model.add_loss(model.weights[0]) - - @test_combinations.run_all_keras_modes - def test_add_entropy_loss_on_functional_model(self): - inputs = Input(shape=(1,)) - targets = Input(shape=(1,)) - outputs = test_utils.Bias()(inputs) - model = Model([inputs, targets], outputs) - model.add_loss(losses.binary_crossentropy(targets, outputs)) - model.compile("sgd", run_eagerly=test_utils.should_run_eagerly()) - with tf.compat.v1.test.mock.patch.object( - logging, "warning" - ) as mock_log: - model.fit([self.x, self.y], batch_size=3, epochs=5) - self.assertNotIn( - "Gradients do not exist for variables", str(mock_log.call_args) - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/tests/automatic_outside_compilation_test.py b/keras/tests/automatic_outside_compilation_test.py deleted file mode 100644 index 254679be891..00000000000 --- a/keras/tests/automatic_outside_compilation_test.py +++ /dev/null @@ -1,336 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for automatic outside compilation for TF 2.0/Keras.""" - -import collections -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl import flags - -from keras import callbacks -from keras.distribute import distribute_strategy_test -from keras.engine import base_layer -from keras.engine import sequential as sequential_model_lib -from keras.engine import training -from keras.layers import convolutional as conv_layer_lib -from keras.layers import core as layer_lib -from keras.layers import pooling as pool_layer_lib -from keras.layers import regularization as regularization_layer_lib -from keras.layers import reshaping as reshaping_layer_lib -from keras.testing_infra import test_utils - -# isort: off -from tensorboard.plugins.histogram import ( - summary_v2 as histogram_summary_v2, -) -from tensorboard.plugins.image import ( - summary_v2 as image_summary_v2, -) -from tensorboard.plugins.scalar import ( - summary_v2 as scalar_summary_v2, -) -from tensorflow.python.eager.context import ( - set_soft_device_placement, -) -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - -NUM_CLASSES = 4 - -FLAGS = flags.FLAGS -flags.DEFINE_string("tpu", "", "Name of TPU to connect to.") -flags.DEFINE_string("project", None, "Name of GCP project with TPU.") -flags.DEFINE_string("zone", None, "Name of GCP zone with TPU.") - - -def get_tpu_cluster_resolver(): - resolver = tf.distribute.cluster_resolver.TPUClusterResolver( - tpu=FLAGS.tpu, - zone=FLAGS.zone, - project=FLAGS.project, - ) - return resolver - - -def get_tpu_strategy(): - resolver = get_tpu_cluster_resolver() - tf.config.experimental_connect_to_cluster(resolver) - tf.tpu.experimental.initialize_tpu_system(resolver) - return tf.distribute.experimental.TPUStrategy(resolver) - - -class LayerForScalarSummary(base_layer.Layer): - """A pass-through layer that only records scalar values to summary.""" - - def call(self, x): - # Add summary scalar using compat v2 implementation. - scalar_summary_v2.scalar("custom_scalar_summary_v2", tf.reduce_sum(x)) - return x - - -class LayerForImageSummary(base_layer.Layer): - """A pass-through layer that only records image values to summary.""" - - def call(self, x): - # Add summary image using compat v2 implementation. - image_summary_v2.image("custom_image_summary_v2", x) - - return x - - -class LayerForHistogramSummary(base_layer.Layer): - """A pass-through layer that records histogram values to summary.""" - - def call(self, x): - # Add summary histogram using compat v2 implementation. - histogram_summary_v2.histogram("custom_histogram_summary_v2", x) - - return x - - -class CustomModel(training.Model): - """Custom model with summary ops in model call definition.""" - - def __init__(self, name=None, enable_histograms=True): - super().__init__() - self._my_layers = [ - layer_lib.Dense( - 4096, - name="dense1", - kernel_initializer=tf.compat.v1.glorot_normal_initializer( - seed=0 - ), - use_bias=False, - ), - layer_lib.Dense( - 4, - name="dense2", - kernel_initializer=tf.compat.v1.glorot_normal_initializer( - seed=0 - ), - use_bias=False, - ), - ] - if enable_histograms: - self.histogram_summary_layer = LayerForHistogramSummary() - else: - self.histogram_summary_layer = ( - base_layer.Layer() - ) # no-op pass through - self.scalar_summary_layer = LayerForScalarSummary() - - def call(self, x): - for layer in self._my_layers: - x = layer(x) - x = self.scalar_summary_layer(x) - return self.histogram_summary_layer(x) - - -def get_image_dataset(): - inputs = np.zeros((10, 28, 28, 3), dtype=np.float32) - targets = np.zeros((10, NUM_CLASSES), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10, drop_remainder=True) - return dataset - - -def mnist_model(input_shape, enable_histograms=True): - """Creates a MNIST model.""" - model = sequential_model_lib.Sequential() - - # Adding custom pass-through layer to visualize input images. - model.add(LayerForImageSummary()) - - model.add( - conv_layer_lib.Conv2D( - 32, kernel_size=(3, 3), activation="relu", input_shape=input_shape - ) - ) - model.add(conv_layer_lib.Conv2D(64, (3, 3), activation="relu")) - model.add(pool_layer_lib.MaxPooling2D(pool_size=(2, 2))) - model.add(regularization_layer_lib.Dropout(0.25)) - model.add(reshaping_layer_lib.Flatten()) - model.add(layer_lib.Dense(128, activation="relu")) - model.add(regularization_layer_lib.Dropout(0.5)) - model.add(layer_lib.Dense(NUM_CLASSES, activation="softmax")) - - # Adding custom pass-through layer for summary recording. - if enable_histograms: - model.add(LayerForHistogramSummary()) - return model - - -@test_utils.run_v2_only -class AutoOutsideCompilationWithKerasTest(tf.test.TestCase): - def setUp(self): - super().setUp() - set_soft_device_placement(True) - self.summary_dir = self.get_temp_dir() - - def validate_recorded_sumary_file(self, event_files, expected_event_counts): - event_counts = collections.defaultdict(int) - for event_file in event_files: - for e in tf.compat.v1.train.summary_iterator(event_file): - for v in e.summary.value: - event_counts[v.tag] += 1 - - event_counts = dict( - event_counts - ) # Avoid defaultdict type in repr below. - # Populate a count of 0 for tags that were expected but not found. - actual_event_counts = { - tag: event_counts.get(tag, 0) for tag in expected_event_counts - } - self.assertEqual( - expected_event_counts, - actual_event_counts, - msg="expected counts not found; all event counts: %r" - % event_counts, - ) - - def testV2SummaryWithKerasSequentialModel(self): - # Histogram summaries require the MLIR bridge; see - # b/178826597#comment107. - # TODO(https://github.com/tensorflow/tensorboard/issues/2885): remove - # this if histogram summaries are supported fully on non-MLIR bridge or - # non-MLIR bridge is no longer run. - enable_histograms = tf_test_utils.is_mlir_bridge_enabled() - strategy = get_tpu_strategy() - - with strategy.scope(): - model = mnist_model( - (28, 28, 3), enable_histograms=enable_histograms - ) - model.compile("sgd", "mse") - - dataset = get_image_dataset() - tensorboard_callback = callbacks.TensorBoard( - self.summary_dir, update_freq=2 - ) - model.fit( - dataset, - steps_per_epoch=10, - epochs=1, - callbacks=[tensorboard_callback], - ) - - event_files = tf.io.gfile.glob( - os.path.join(self.summary_dir, "train", "event*") - ) - # Since total of 10 steps are ran and summary ops should be invoked - # every 2 batches, we should see total of 5 event logs for each - # summary. - expected_event_counts = { - "sequential/layer_for_histogram_summary/custom_histogram_summary_v2": 5 # noqa: E501 - if enable_histograms - else 0, - "sequential/layer_for_image_summary/custom_image_summary_v2": 5, - } - self.validate_recorded_sumary_file( - event_files, expected_event_counts - ) - - def testV2SummaryWithKerasSubclassedModel(self): - # Histogram summaries require the MLIR bridge; see - # b/178826597#comment107. - # TODO(https://github.com/tensorflow/tensorboard/issues/2885): remove - # this if histogram summaries are supported fully on non-MLIR bridge or - # non-MLIR bridge is no longer run. - enable_histograms = tf_test_utils.is_mlir_bridge_enabled() - strategy = get_tpu_strategy() - with strategy.scope(): - model = CustomModel(enable_histograms=enable_histograms) - model.compile("sgd", "mse") - - dataset = distribute_strategy_test.get_dataset(strategy) - tensorboard_callback = callbacks.TensorBoard( - self.summary_dir, update_freq=2 - ) - model.fit( - dataset, - steps_per_epoch=10, - epochs=1, - callbacks=[tensorboard_callback], - ) - - event_files = tf.io.gfile.glob( - os.path.join(self.summary_dir, "train", "event*") - ) - # Since total of 10 steps are ran and summary ops should be invoked - # every 2 batches, we should see total of 5 event logs for each - # summary. - expected_event_counts = { - ( - "custom_model/layer_for_scalar_summary/" - "custom_scalar_summary_v2" - ): 5, - ( - "custom_model/layer_for_histogram_summary/" - "custom_histogram_summary_v2" - ): 5 - if enable_histograms - else 0, - } - self.validate_recorded_sumary_file( - event_files, expected_event_counts - ) - - def testSummaryWithCustomTrainingLoop(self): - strategy = get_tpu_strategy() - - writer = tf.summary.create_file_writer(self.summary_dir) - with strategy.scope(): - model = distribute_strategy_test.get_model() - model.compile("sgd", "mse") - - @tf.function - def custom_function(dataset): - def _custom_step(features, labels): - del labels - logits = model(features) - with tf.summary.record_if(True), writer.as_default(): - scalar_summary_v2.scalar( - "logits", - tf.reduce_sum(logits), - step=model.optimizer.iterations, - ) - return logits - - iterator = iter(dataset) - output = strategy.unwrap( - strategy.run(_custom_step, args=(next(iterator))) - ) - return output - - dataset = strategy.experimental_distribute_dataset( - distribute_strategy_test.get_dataset(strategy) - ) - - custom_function(dataset) - writer.close() - - event_files = tf.io.gfile.glob(os.path.join(self.summary_dir, "event*")) - expected_event_counts = { - "logits": 1, - } - self.validate_recorded_sumary_file(event_files, expected_event_counts) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/tests/convert_to_constants_test.py b/keras/tests/convert_to_constants_test.py deleted file mode 100644 index bb743c84103..00000000000 --- a/keras/tests/convert_to_constants_test.py +++ /dev/null @@ -1,180 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for convert_to_constants.py.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.framework import convert_to_constants -from tensorflow.python.saved_model.load import load -from tensorflow.python.saved_model.save import save - - -class VariablesToConstantsTest(tf.test.TestCase): - def _freezeModel(self, model): - """Freezes the model. - - Args: - model: Function. - - Returns: - root: AutoTrackable object with original ConcreteFunction. - output_func: frozen ConcreteFunction. - """ - root = tf.Module() - root.f = model - input_func = root.f.get_concrete_function() - - output_func = convert_to_constants.convert_variables_to_constants_v2( - input_func, lower_control_flow=False - ) - return root, output_func - - def _hasStatefulPartitionedCallOp(self, graph_def): - """Determines if a StatefulPartitionedCall op exists in the graph.""" - for node in graph_def.node: - if node.op == "StatefulPartitionedCall": - return True - return False - - def _getNumVariables(self, graph_def): - """Returns the number of ReadVariableOp in the graph.""" - return sum(node.op == "ReadVariableOp" for node in graph_def.node) - - def _testConvertedFunction( - self, obj, func, converted_concrete_func, input_data - ): - # Ensure the converted graph has no variables and no function calls. - constant_graph_def = converted_concrete_func.graph.as_graph_def() - self.assertEqual(0, self._getNumVariables(constant_graph_def)) - self.assertFalse(self._hasStatefulPartitionedCallOp(constant_graph_def)) - - # Check that the converted ConcreteFunction produces the same result as - # the original Function. - expected_value = tf.nest.flatten(func(**input_data)) - actual_value = tf.nest.flatten(converted_concrete_func(**input_data)) - - for expected, actual in zip(expected_value, actual_value): - np.testing.assert_almost_equal(expected.numpy(), actual.numpy()) - - # Ensure the shape is retained. - for tensor in converted_concrete_func.inputs: - actual_shape = input_data[tensor.name.split(":")[0]].shape - self.assertEqual(tensor.shape, actual_shape) - - # Save the converted ConcreteFunction as a signature. - save_dir = os.path.join(self.get_temp_dir(), "frozen_saved_model") - root = tf.Module() - root.f = converted_concrete_func - save(root, save_dir, {"mykey": converted_concrete_func}) - - # Load it back and make sure it works. - loaded_obj = load(save_dir) - actual_value = tf.nest.flatten( - loaded_obj.signatures["mykey"](**input_data) - ) - for expected, actual in zip(expected_value, actual_value): - np.testing.assert_almost_equal(expected.numpy(), actual.numpy()) - - @test_utils.run_v2_only - def testKerasModel(self): - """Test a basic Keras model with Variables.""" - input_data = {"x": tf.constant(1.0, shape=[1, 1])} - - # Create a simple Keras model. - x = [-1, 0, 1, 2, 3, 4] - y = [-3, -1, 1, 3, 5, 7] - - model = keras.models.Sequential( - [keras.layers.Dense(units=1, input_shape=[1])] - ) - model.compile(optimizer="sgd", loss="mean_squared_error") - model.fit(x, y, epochs=1) - - @tf.function( - input_signature=[tf.TensorSpec(shape=[1, 1], dtype=tf.float32)] - ) - def to_save(x): - return model(x) - - root, output_func = self._freezeModel(to_save) - self._testConvertedFunction(root, root.f, output_func, input_data) - - @test_utils.run_v2_only - def testKerasLSTM(self): - """Test a Keras LSTM containing dynamic_rnn ops.""" - input_data = { - "x": tf.constant( - np.array( - np.random.random_sample((10, 10, 10)), dtype=np.float32 - ) - ) - } - - model = keras.models.Sequential( - [keras.layers.LSTM(units=10, input_shape=(10, 10))] - ) - - @tf.function( - input_signature=[ - tf.TensorSpec(shape=[10, 10, 10], dtype=tf.float32) - ] - ) - def to_save(x): - return model(x) - - root, output_func = self._freezeModel(to_save) - self._testConvertedFunction(root, root.f, output_func, input_data) - - @test_utils.run_v2_only - def testEmbeddings(self): - """Test model with embeddings.""" - input_data = { - "x": tf.constant( - np.array(np.random.random_sample((20)), dtype=np.int32) - ) - } - - class EmbeddingModel(keras.Model): - def __init__(self): - super().__init__() - self.shared_weights = self.add_weight( - "weights", - shape=(2000, 300), - dtype=tf.float32, - initializer=tf.compat.v1.random_normal_initializer( - mean=0.0, stddev=300 ** (-0.5) - ), - ) - - @tf.function( - input_signature=[tf.TensorSpec(shape=(20), dtype=tf.int32)] - ) - def func(self, x): - return tf.gather(self.shared_weights, x) - - model = EmbeddingModel() - root, output_func = self._freezeModel(model.func) - self._testConvertedFunction(root, root.f, output_func, input_data) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/tests/custom_training_loop_test.py b/keras/tests/custom_training_loop_test.py deleted file mode 100644 index c9be92dbf2e..00000000000 --- a/keras/tests/custom_training_loop_test.py +++ /dev/null @@ -1,243 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for custom training loops.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class LayerWithLosses(keras.layers.Layer): - def build(self, input_shape): - self.v = self.add_weight( - name="hey", - shape=(), - initializer="ones", - regularizer=keras.regularizers.l1(100), - ) - - def call(self, inputs): - self.add_loss(tf.reduce_sum(inputs)) - return self.v * inputs - - -class LayerWithMetrics(keras.layers.Layer): - def build(self, input_shape): - self.mean = keras.metrics.Mean(name="mean_object") - - def call(self, inputs): - self.add_metric( - tf.reduce_mean(inputs), name="mean_tensor", aggregation="mean" - ) - self.add_metric(self.mean(inputs)) - return inputs - - -class LayerWithTrainingArg(keras.layers.Layer): - def call(self, inputs, training=None): - self.training = training - if training: - return inputs - else: - return 0.0 * inputs - - -def add_loss_step(defun): - optimizer = keras.optimizers.legacy.adam.Adam() - model = test_utils.get_model_from_layers( - [LayerWithLosses()], input_shape=(10,) - ) - - def train_step(x): - with tf.GradientTape() as tape: - model(x) - assert len(model.losses) == 2 - loss = tf.reduce_sum(model.losses) - gradients = tape.gradient(loss, model.trainable_weights) - optimizer.apply_gradients(zip(gradients, model.trainable_weights)) - return loss - - if defun: - train_step = tf.function(train_step) - - x = tf.ones((10, 10)) - return train_step(x) - - -def batch_norm_step(defun): - optimizer = keras.optimizers.legacy.adadelta.Adadelta() - model = test_utils.get_model_from_layers( - [ - keras.layers.BatchNormalization(momentum=0.9), - keras.layers.Dense( - 1, kernel_initializer="zeros", activation="softmax" - ), - ], - input_shape=(10,), - ) - - def train_step(x, y): - with tf.GradientTape() as tape: - y_pred = model(x, training=True) - loss = keras.losses.binary_crossentropy(y, y_pred) - gradients = tape.gradient(loss, model.trainable_weights) - optimizer.apply_gradients(zip(gradients, model.trainable_weights)) - return loss, model(x, training=False) - - if defun: - train_step = tf.function(train_step) - - x, y = tf.ones((10, 10)), tf.ones((10, 1)) - return train_step(x, y) - - -def add_metric_step(defun): - optimizer = keras.optimizers.legacy.rmsprop.RMSprop() - model = test_utils.get_model_from_layers( - [ - LayerWithMetrics(), - keras.layers.Dense( - 1, kernel_initializer="zeros", activation="softmax" - ), - ], - input_shape=(10,), - ) - - def train_step(x, y): - with tf.GradientTape() as tape: - y_pred_1 = model(x) - y_pred_2 = model(2 * x) - y_pred = y_pred_1 + y_pred_2 - loss = keras.losses.mean_squared_error(y, y_pred) - gradients = tape.gradient(loss, model.trainable_weights) - optimizer.apply_gradients(zip(gradients, model.trainable_weights)) - assert len(model.metrics) == 2 - return [m.result() for m in model.metrics] - - if defun: - train_step = tf.function(train_step) - - x, y = tf.ones((10, 10)), tf.zeros((10, 1)) - metrics = train_step(x, y) - assert np.allclose(metrics[0], 1.5) - assert np.allclose(metrics[1], 1.5) - return metrics - - -@test_combinations.run_with_all_model_types -class CustomTrainingLoopTest(test_combinations.TestCase): - @parameterized.named_parameters( - ("add_loss_step", add_loss_step), - ("add_metric_step", add_metric_step), - ("batch_norm_step", batch_norm_step), - ) - def test_eager_and_tf_function(self, train_step): - eager_result = train_step(defun=False) - fn_result = train_step(defun=True) - self.assertAllClose(eager_result, fn_result) - - @parameterized.named_parameters(("eager", False), ("defun", True)) - def test_training_arg_propagation(self, defun): - - model = test_utils.get_model_from_layers( - [LayerWithTrainingArg()], input_shape=(1,) - ) - - def train_step(x): - return model(x), model(x, training=False), model(x, training=True) - - if defun: - train_step = tf.function(train_step) - - x = tf.ones((1, 1)) - results = train_step(x) - self.assertAllClose(results[0], tf.zeros((1, 1))) - self.assertAllClose(results[1], tf.zeros((1, 1))) - self.assertAllClose(results[2], tf.ones((1, 1))) - - @parameterized.named_parameters(("eager", False), ("defun", True)) - def test_learning_phase_propagation(self, defun): - class MyModel(keras.layers.Layer): - def __init__(self): - super().__init__() - self.layer = LayerWithTrainingArg() - - def call(self, inputs): - return self.layer(inputs) - - model = MyModel() - - def train_step(x): - no_learning_phase_out = model(x) - self.assertFalse(model.layer.training) - with keras.backend.learning_phase_scope(0): - inf_learning_phase_out = model(x) - self.assertEqual(model.layer.training, 0) - with keras.backend.learning_phase_scope(1): - train_learning_phase_out = model(x) - self.assertEqual(model.layer.training, 1) - return [ - no_learning_phase_out, - inf_learning_phase_out, - train_learning_phase_out, - ] - - if defun: - train_step = tf.function(train_step) - - x = tf.ones((1, 1)) - results = train_step(x) - self.assertAllClose(results[0], tf.zeros((1, 1))) - self.assertAllClose(results[1], tf.zeros((1, 1))) - self.assertAllClose(results[2], tf.ones((1, 1))) - - @parameterized.named_parameters(("eager", False), ("defun", True)) - def test_training_arg_priorities(self, defun): - class MyModel(keras.layers.Layer): - def __init__(self): - super().__init__() - self.layer = LayerWithTrainingArg() - - def call(self, inputs, training=False): - return self.layer(inputs) - - model = MyModel() - - def train_step(x): - explicit_out = model(x, training=True) - default_out = model(x) - with keras.backend.learning_phase_scope(1): - parent_out = model(x, training=False) - lr_out = model(x) - return [explicit_out, default_out, parent_out, lr_out] - - if defun: - train_step = tf.function(train_step) - - x = tf.ones((1, 1)) - results = train_step(x) - self.assertAllClose(results[0], tf.ones((1, 1))) - self.assertAllClose(results[1], tf.zeros((1, 1))) - self.assertAllClose(results[2], tf.zeros((1, 1))) - self.assertAllClose(results[3], tf.ones((1, 1))) - - -if __name__ == "__main__": - tf.compat.v1.enable_eager_execution() - tf.test.main() diff --git a/keras/tests/get_config_samples.py b/keras/tests/get_config_samples.py deleted file mode 100644 index 12f9f7df84e..00000000000 --- a/keras/tests/get_config_samples.py +++ /dev/null @@ -1,445 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Sample `get_config` results for testing backwards compatibility.""" - -# inputs = tf.keras.Input(10) -# x = tf.keras.layers.Dense(10, activation='relu')(inputs) -# outputs = tf.keras.layers.Dense(1)(x) -# model = tf.keras.Model(inputs, outputs) -FUNCTIONAL_DNN = { - "input_layers": [["input_1", 0, 0]], - "layers": [ - { - "class_name": "InputLayer", - "config": { - "batch_input_shape": (None, 10), - "dtype": "float32", - "name": "input_1", - "ragged": False, - "sparse": False, - }, - "inbound_nodes": [], - "name": "input_1", - }, - { - "class_name": "Dense", - "config": { - "activation": "relu", - "activity_regularizer": None, - "bias_constraint": None, - "bias_initializer": {"class_name": "Zeros", "config": {}}, - "bias_regularizer": None, - "dtype": "float32", - "kernel_constraint": None, - "kernel_initializer": { - "class_name": "GlorotUniform", - "config": {"seed": None}, - }, - "kernel_regularizer": None, - "name": "dense", - "trainable": True, - "units": 10, - "use_bias": True, - }, - "inbound_nodes": [[["input_1", 0, 0, {}]]], - "name": "dense", - }, - { - "class_name": "Dense", - "config": { - "activation": "linear", - "activity_regularizer": None, - "bias_constraint": None, - "bias_initializer": {"class_name": "Zeros", "config": {}}, - "bias_regularizer": None, - "dtype": "float32", - "kernel_constraint": None, - "kernel_initializer": { - "class_name": "GlorotUniform", - "config": {"seed": None}, - }, - "kernel_regularizer": None, - "name": "dense_1", - "trainable": True, - "units": 1, - "use_bias": True, - }, - "inbound_nodes": [[["dense", 0, 0, {}]]], - "name": "dense_1", - }, - ], - "name": "model", - "output_layers": [["dense_1", 0, 0]], -} - -# inputs = tf.keras.Input((256, 256, 3)) -# x = tf.keras.layers.Conv2D(filters=3, kernel_size=(3, 3))(inputs) -# x = tf.keras.layers.Flatten()(x) -# outputs = tf.keras.layers.Dense(1)(x) -# model = tf.keras.Model(inputs, outputs) -FUNCTIONAL_CNN = { - "input_layers": [["input_2", 0, 0]], - "layers": [ - { - "class_name": "InputLayer", - "config": { - "batch_input_shape": (None, 256, 256, 3), - "dtype": "float32", - "name": "input_2", - "ragged": False, - "sparse": False, - }, - "inbound_nodes": [], - "name": "input_2", - }, - { - "class_name": "Conv2D", - "config": { - "activation": "linear", - "activity_regularizer": None, - "bias_constraint": None, - "bias_initializer": {"class_name": "Zeros", "config": {}}, - "bias_regularizer": None, - "data_format": "channels_last", - "dilation_rate": (1, 1), - "dtype": "float32", - "filters": 3, - "kernel_constraint": None, - "kernel_initializer": { - "class_name": "GlorotUniform", - "config": {"seed": None}, - }, - "kernel_regularizer": None, - "kernel_size": (3, 3), - "name": "conv2d", - "padding": "valid", - "strides": (1, 1), - "trainable": True, - "use_bias": True, - }, - "inbound_nodes": [[["input_2", 0, 0, {}]]], - "name": "conv2d", - }, - { - "class_name": "Flatten", - "config": { - "data_format": "channels_last", - "dtype": "float32", - "name": "flatten", - "trainable": True, - }, - "inbound_nodes": [[["conv2d", 0, 0, {}]]], - "name": "flatten", - }, - { - "class_name": "Dense", - "config": { - "activation": "linear", - "activity_regularizer": None, - "bias_constraint": None, - "bias_initializer": {"class_name": "Zeros", "config": {}}, - "bias_regularizer": None, - "dtype": "float32", - "kernel_constraint": None, - "kernel_initializer": { - "class_name": "GlorotUniform", - "config": {"seed": None}, - }, - "kernel_regularizer": None, - "name": "dense_2", - "trainable": True, - "units": 1, - "use_bias": True, - }, - "inbound_nodes": [[["flatten", 0, 0, {}]]], - "name": "dense_2", - }, - ], - "name": "model_1", - "output_layers": [["dense_2", 0, 0]], -} - -# inputs = tf.keras.Input((10, 3)) -# x = tf.keras.layers.LSTM(10)(inputs) -# outputs = tf.keras.layers.Dense(1)(x) -# model = tf.keras.Model(inputs, outputs) -FUNCTIONAL_LSTM = { - "input_layers": [["input_5", 0, 0]], - "layers": [ - { - "class_name": "InputLayer", - "config": { - "batch_input_shape": (None, 10, 3), - "dtype": "float32", - "name": "input_5", - "ragged": False, - "sparse": False, - }, - "inbound_nodes": [], - "name": "input_5", - }, - { - "class_name": "LSTM", - "config": { - "activation": "tanh", - "activity_regularizer": None, - "bias_constraint": None, - "bias_initializer": {"class_name": "Zeros", "config": {}}, - "bias_regularizer": None, - "dropout": 0.0, - "dtype": "float32", - "go_backwards": False, - "implementation": 2, - "kernel_constraint": None, - "kernel_initializer": { - "class_name": "GlorotUniform", - "config": {"seed": None}, - }, - "kernel_regularizer": None, - "name": "lstm_2", - "recurrent_activation": "sigmoid", - "recurrent_constraint": None, - "recurrent_dropout": 0.0, - "recurrent_initializer": { - "class_name": "Orthogonal", - "config": {"gain": 1.0, "seed": None}, - }, - "recurrent_regularizer": None, - "return_sequences": False, - "return_state": False, - "stateful": False, - "time_major": False, - "trainable": True, - "unit_forget_bias": True, - "units": 10, - "unroll": False, - "use_bias": True, - }, - "inbound_nodes": [[["input_5", 0, 0, {}]]], - "name": "lstm_2", - }, - { - "class_name": "Dense", - "config": { - "activation": "linear", - "activity_regularizer": None, - "bias_constraint": None, - "bias_initializer": {"class_name": "Zeros", "config": {}}, - "bias_regularizer": None, - "dtype": "float32", - "kernel_constraint": None, - "kernel_initializer": { - "class_name": "GlorotUniform", - "config": {"seed": None}, - }, - "kernel_regularizer": None, - "name": "dense_4", - "trainable": True, - "units": 1, - "use_bias": True, - }, - "inbound_nodes": [[["lstm_2", 0, 0, {}]]], - "name": "dense_4", - }, - ], - "name": "model_3", - "output_layers": [["dense_4", 0, 0]], -} - -# model = tf.keras.Sequential() -# model.add(tf.keras.layers.Dense(10)) -# model.add(tf.keras.layers.Dense(1)) -SEQUENTIAL_DNN = { - "layers": [ - { - "class_name": "Dense", - "config": { - "activation": "linear", - "activity_regularizer": None, - "bias_constraint": None, - "bias_initializer": {"class_name": "Zeros", "config": {}}, - "bias_regularizer": None, - "dtype": "float32", - "kernel_constraint": None, - "kernel_initializer": { - "class_name": "GlorotUniform", - "config": {"seed": None}, - }, - "kernel_regularizer": None, - "name": "dense_2", - "trainable": True, - "units": 10, - "use_bias": True, - }, - }, - { - "class_name": "Dense", - "config": { - "activation": "linear", - "activity_regularizer": None, - "bias_constraint": None, - "bias_initializer": {"class_name": "Zeros", "config": {}}, - "bias_regularizer": None, - "dtype": "float32", - "kernel_constraint": None, - "kernel_initializer": { - "class_name": "GlorotUniform", - "config": {"seed": None}, - }, - "kernel_regularizer": None, - "name": "dense_3", - "trainable": True, - "units": 1, - "use_bias": True, - }, - }, - ], - "name": "sequential_1", -} - -# model = tf.keras.Sequential() -# model.add(tf.keras.layers.Conv2D(32, (3, 3))) -# model.add(tf.keras.layers.Flatten()) -# model.add(tf.keras.layers.Dense(1)) -SEQUENTIAL_CNN = { - "layers": [ - { - "class_name": "Conv2D", - "config": { - "activation": "linear", - "activity_regularizer": None, - "bias_constraint": None, - "bias_initializer": {"class_name": "Zeros", "config": {}}, - "bias_regularizer": None, - "data_format": "channels_last", - "dilation_rate": (1, 1), - "dtype": "float32", - "filters": 32, - "kernel_constraint": None, - "kernel_initializer": { - "class_name": "GlorotUniform", - "config": {"seed": None}, - }, - "kernel_regularizer": None, - "kernel_size": (3, 3), - "name": "conv2d_1", - "padding": "valid", - "strides": (1, 1), - "trainable": True, - "use_bias": True, - }, - }, - { - "class_name": "Flatten", - "config": { - "data_format": "channels_last", - "dtype": "float32", - "name": "flatten_1", - "trainable": True, - }, - }, - { - "class_name": "Dense", - "config": { - "activation": "linear", - "activity_regularizer": None, - "bias_constraint": None, - "bias_initializer": {"class_name": "Zeros", "config": {}}, - "bias_regularizer": None, - "dtype": "float32", - "kernel_constraint": None, - "kernel_initializer": { - "class_name": "GlorotUniform", - "config": {"seed": None}, - }, - "kernel_regularizer": None, - "name": "dense_6", - "trainable": True, - "units": 1, - "use_bias": True, - }, - }, - ], - "name": "sequential_4", -} - -# model = tf.keras.Sequential() -# model.add(tf.keras.layers.LSTM(10)) -# model.add(tf.keras.layers.Dense(1)) -SEQUENTIAL_LSTM = { - "layers": [ - { - "class_name": "LSTM", - "config": { - "activation": "tanh", - "activity_regularizer": None, - "bias_constraint": None, - "bias_initializer": {"class_name": "Zeros", "config": {}}, - "bias_regularizer": None, - "dropout": 0.0, - "dtype": "float32", - "go_backwards": False, - "implementation": 2, - "kernel_constraint": None, - "kernel_initializer": { - "class_name": "GlorotUniform", - "config": {"seed": None}, - }, - "kernel_regularizer": None, - "name": "lstm", - "recurrent_activation": "sigmoid", - "recurrent_constraint": None, - "recurrent_dropout": 0.0, - "recurrent_initializer": { - "class_name": "Orthogonal", - "config": {"gain": 1.0, "seed": None}, - }, - "recurrent_regularizer": None, - "return_sequences": False, - "return_state": False, - "stateful": False, - "time_major": False, - "trainable": True, - "unit_forget_bias": True, - "units": 10, - "unroll": False, - "use_bias": True, - }, - }, - { - "class_name": "Dense", - "config": { - "activation": "linear", - "activity_regularizer": None, - "bias_constraint": None, - "bias_initializer": {"class_name": "Zeros", "config": {}}, - "bias_regularizer": None, - "dtype": "float32", - "kernel_constraint": None, - "kernel_initializer": { - "class_name": "GlorotUniform", - "config": {"seed": None}, - }, - "kernel_regularizer": None, - "name": "dense_4", - "trainable": True, - "units": 1, - "use_bias": True, - }, - }, - ], - "name": "sequential_2", -} diff --git a/keras/tests/get_config_test.py b/keras/tests/get_config_test.py deleted file mode 100644 index 73c24a920e4..00000000000 --- a/keras/tests/get_config_test.py +++ /dev/null @@ -1,59 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ,============================================================================ -"""Tests for `get_config` backwards compatibility.""" - -import tensorflow.compat.v2 as tf - -from keras.engine import sequential -from keras.engine import training -from keras.testing_infra import test_combinations -from keras.tests import get_config_samples - - -@test_combinations.run_all_keras_modes -class TestGetConfigBackwardsCompatible(test_combinations.TestCase): - def test_functional_dnn(self): - model = training.Model.from_config(get_config_samples.FUNCTIONAL_DNN) - self.assertLen(model.layers, 3) - - def test_functional_cnn(self): - model = training.Model.from_config(get_config_samples.FUNCTIONAL_CNN) - self.assertLen(model.layers, 4) - - def test_functional_lstm(self): - model = training.Model.from_config(get_config_samples.FUNCTIONAL_LSTM) - self.assertLen(model.layers, 3) - - def test_sequential_dnn(self): - model = sequential.Sequential.from_config( - get_config_samples.SEQUENTIAL_DNN - ) - self.assertLen(model.layers, 2) - - def test_sequential_cnn(self): - model = sequential.Sequential.from_config( - get_config_samples.SEQUENTIAL_CNN - ) - self.assertLen(model.layers, 3) - - def test_sequential_lstm(self): - model = sequential.Sequential.from_config( - get_config_samples.SEQUENTIAL_LSTM - ) - self.assertLen(model.layers, 2) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/tests/graph_util_test.py b/keras/tests/graph_util_test.py deleted file mode 100644 index 40884cf9d88..00000000000 --- a/keras/tests/graph_util_test.py +++ /dev/null @@ -1,177 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for tensorflow.python.client.graph_util.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras - -# isort: off -from tensorflow.core.protobuf import meta_graph_pb2 -from tensorflow.python.grappler import tf_optimizer -from tensorflow.python.training.saver import ( - export_meta_graph, -) - - -class ConvertVariablesToConstantsTest(tf.test.TestCase): - def _get_tensors(self, sess, tensor_list): - """Returns a list of Tensor objects from the Session.""" - return [ - sess.graph.get_tensor_by_name(tensor.name) for tensor in tensor_list - ] - - def _get_tensor_names(self, tensors): - """Returns a list of string names for the tensors specified.""" - return [tensor.name.split(":")[0] for tensor in tensors] - - def _evaluate_graph_def(self, graph_def, inputs, outputs, input_data): - """Evaluates the GraphDef using Sessions.""" - with tf.Graph().as_default() as graph: - tf.import_graph_def(graph_def, name="") - sess = tf.compat.v1.Session(graph=graph) - - input_tensors = self._get_tensors(sess, inputs) - output_tensors = self._get_tensors(sess, outputs) - return sess.run( - output_tensors, feed_dict=dict(zip(input_tensors, input_data)) - ) - - def _ensure_no_variables_in_graph(self, graph_def): - """Ensures there are no variables in the graph.""" - for node in graph_def.node: - self.assertNotIn( - node.op, - ["Variable", "VariableV2", "VarHandleOp", "ReadVariableOp"], - ) - - def _test_converted_keras_model( - self, model, constant_graph_def, input_data - ): - """Compares the converted Keras model.""" - expected_value = model.predict(input_data) - actual_value = self._evaluate_graph_def( - constant_graph_def, model.inputs, model.outputs, [input_data] - ) - np.testing.assert_almost_equal( - np.array([expected_value]), actual_value, 5 - ) - - def _inline_functions(self, graph_def, arrays): - meta_graph = export_meta_graph(graph_def=graph_def) - fetch_collection = meta_graph_pb2.CollectionDef() - for name in arrays: - fetch_collection.node_list.value.append(name) - meta_graph.collection_def["train_op"].CopyFrom(fetch_collection) - - # Initialize RewriterConfig with everything disabled except function - # inlining. - config = tf.compat.v1.ConfigProto() - rewrite_options = config.graph_options.rewrite_options - rewrite_options.optimizers.append("function") - return tf_optimizer.OptimizeGraph(config, meta_graph) - - def testWithEmbeddings(self): - """Freezes a graph with embeddings.""" - state_input = keras.layers.Input( - shape=(1,), name="state_input", dtype="int32" - ) - output = keras.layers.Embedding( - output_dim=16, input_dim=100, input_length=1, name="state" - )(state_input) - model = keras.models.Model(inputs=[state_input], outputs=[output]) - model.compile( - loss={"state": "sparse_categorical_crossentropy"}, optimizer="adam" - ) - - # Freeze the graph. - sess = keras.backend.get_session() - variable_graph_def = sess.graph_def - output_tensor = self._get_tensor_names(model.outputs) - constant_graph_def = ( - tf.compat.v1.graph_util.convert_variables_to_constants( - sess, variable_graph_def, output_tensor - ) - ) - - # Validate converted graph. - input_data = np.array(np.random.random_sample([1, 1]), dtype=np.int32) - self._ensure_no_variables_in_graph(constant_graph_def) - self._test_converted_keras_model(model, constant_graph_def, input_data) - - def testKerasBatchNorm(self): - """Freezes a graph with Keras batch norm.""" - inputs = keras.layers.Input(shape=(128, 128, 1)) - batch_norm = keras.layers.BatchNormalization()(inputs) - model = keras.models.Model(inputs, batch_norm, name="test") - model.compile( - optimizer="adam", - loss="categorical_crossentropy", - metrics=["accuracy"], - ) - tensor_names = [tensor.name for tensor in model.inputs + model.outputs] - - # Freeze the graph. - sess = keras.backend.get_session() - variable_graph_def = sess.graph_def - variable_graph_def = self._inline_functions( - variable_graph_def, tensor_names - ) - output_tensor = self._get_tensor_names(model.outputs) - constant_graph_def = ( - tf.compat.v1.graph_util.convert_variables_to_constants( - sess, variable_graph_def, output_tensor - ) - ) - - # Validate converted graph. - input_data = np.array( - np.random.random_sample([1, 128, 128, 1]), dtype=np.int32 - ) - self._ensure_no_variables_in_graph(constant_graph_def) - self._test_converted_keras_model(model, constant_graph_def, input_data) - - def testLSTM(self): - """Freezes a Keras LSTM.""" - model = keras.models.Sequential( - [keras.layers.LSTM(units=10, input_shape=(10, 10))] - ) - tensor_names = [tensor.name for tensor in model.inputs + model.outputs] - - # Freeze the model. - sess = keras.backend.get_session() - variable_graph_def = sess.graph_def - variable_graph_def = self._inline_functions( - variable_graph_def, tensor_names - ) - output_tensor = self._get_tensor_names(model.outputs) - constant_graph_def = ( - tf.compat.v1.graph_util.convert_variables_to_constants( - sess, variable_graph_def, output_tensor - ) - ) - - # Validate converted graph. - input_data = np.array( - np.random.random_sample([10, 10, 10]), dtype=np.int32 - ) - self._ensure_no_variables_in_graph(constant_graph_def) - self._test_converted_keras_model(model, constant_graph_def, input_data) - - -if __name__ == "__main__": - tf.compat.v1.disable_eager_execution() - tf.test.main() diff --git a/keras/tests/integration_test.py b/keras/tests/integration_test.py deleted file mode 100644 index 1ccfa02ae2b..00000000000 --- a/keras/tests/integration_test.py +++ /dev/null @@ -1,448 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Integration tests for Keras.""" - -import os -import random - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras import utils -from keras.layers.rnn import legacy_cells -from keras.legacy_tf_layers import base as base_layer -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class KerasIntegrationTest(test_combinations.TestCase): - def _save_and_reload_model(self, model): - self.temp_dir = self.get_temp_dir() - fpath = os.path.join( - self.temp_dir, f"test_model_{random.randint(0, 10000000.0)}" - ) - if tf.executing_eagerly(): - save_format = "tf" - else: - if ( - not isinstance(model, keras.Sequential) - and not model._is_graph_network - ): - return model # Not supported - save_format = "h5" - model.save(fpath, save_format=save_format) - model = keras.models.load_model(fpath) - return model - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes -class VectorClassificationIntegrationTest(test_combinations.TestCase): - def test_vector_classification(self): - np.random.seed(1337) - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=100, test_samples=0, input_shape=(10,), num_classes=2 - ) - y_train = utils.to_categorical(y_train) - - model = test_utils.get_model_from_layers( - [ - keras.layers.Dense(16, activation="relu"), - keras.layers.Dropout(0.1), - keras.layers.Dense(y_train.shape[-1], activation="softmax"), - ], - input_shape=x_train.shape[1:], - ) - model.compile( - loss="categorical_crossentropy", - optimizer=keras.optimizers.legacy.adam.Adam(0.005), - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - history = model.fit( - x_train, - y_train, - epochs=10, - batch_size=10, - validation_data=(x_train, y_train), - verbose=2, - ) - self.assertGreater(history.history["val_acc"][-1], 0.7) - _, val_acc = model.evaluate(x_train, y_train) - self.assertAlmostEqual(history.history["val_acc"][-1], val_acc) - predictions = model.predict(x_train) - self.assertEqual(predictions.shape, (x_train.shape[0], 2)) - - def test_vector_classification_shared_model(self): - # Test that Sequential models that feature internal updates - # and internal losses can be shared. - np.random.seed(1337) - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=100, test_samples=0, input_shape=(10,), num_classes=2 - ) - y_train = utils.to_categorical(y_train) - - base_model = test_utils.get_model_from_layers( - [ - keras.layers.Dense( - 16, - activation="relu", - kernel_regularizer=keras.regularizers.l2(1e-5), - bias_regularizer=keras.regularizers.l2(1e-5), - ), - keras.layers.BatchNormalization(), - ], - input_shape=x_train.shape[1:], - ) - x = keras.layers.Input(x_train.shape[1:]) - y = base_model(x) - y = keras.layers.Dense(y_train.shape[-1], activation="softmax")(y) - model = keras.models.Model(x, y) - model.compile( - loss="categorical_crossentropy", - optimizer=keras.optimizers.legacy.adam.Adam(0.005), - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - self.assertLen(model.losses, 2) - if not tf.executing_eagerly(): - self.assertLen(model.get_updates_for(x), 2) - history = model.fit( - x_train, - y_train, - epochs=10, - batch_size=10, - validation_data=(x_train, y_train), - verbose=2, - ) - self.assertGreater(history.history["val_acc"][-1], 0.7) - _, val_acc = model.evaluate(x_train, y_train) - self.assertAlmostEqual(history.history["val_acc"][-1], val_acc) - predictions = model.predict(x_train) - self.assertEqual(predictions.shape, (x_train.shape[0], 2)) - - -@test_combinations.run_all_keras_modes -class SequentialIntegrationTest(KerasIntegrationTest): - def test_sequential_save_and_pop(self): - # Test the following sequence of actions: - # - construct a Sequential model and train it - # - save it - # - load it - # - pop its last layer and add a new layer instead - # - continue training - np.random.seed(1337) - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=100, test_samples=0, input_shape=(10,), num_classes=2 - ) - y_train = utils.to_categorical(y_train) - model = keras.Sequential( - [ - keras.layers.Dense(16, activation="relu"), - keras.layers.Dropout(0.1), - keras.layers.Dense(y_train.shape[-1], activation="softmax"), - ] - ) - model.compile( - loss="categorical_crossentropy", - optimizer=keras.optimizers.legacy.adam.Adam(0.005), - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit( - x_train, - y_train, - epochs=1, - batch_size=10, - validation_data=(x_train, y_train), - verbose=2, - ) - model = self._save_and_reload_model(model) - - model.pop() - model.add(keras.layers.Dense(y_train.shape[-1], activation="softmax")) - - model.compile( - loss="categorical_crossentropy", - optimizer=keras.optimizers.legacy.adam.Adam(0.005), - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - history = model.fit( - x_train, - y_train, - epochs=10, - batch_size=10, - validation_data=(x_train, y_train), - verbose=2, - ) - self.assertGreater(history.history["val_acc"][-1], 0.7) - model = self._save_and_reload_model(model) - _, val_acc = model.evaluate(x_train, y_train) - self.assertAlmostEqual(history.history["val_acc"][-1], val_acc) - predictions = model.predict(x_train) - self.assertEqual(predictions.shape, (x_train.shape[0], 2)) - - -# See b/122473407 -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TimeseriesClassificationIntegrationTest(test_combinations.TestCase): - @test_combinations.run_with_all_model_types - def test_timeseries_classification(self): - np.random.seed(1337) - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=100, - test_samples=0, - input_shape=(4, 10), - num_classes=2, - ) - y_train = utils.to_categorical(y_train) - - layers = [ - keras.layers.LSTM(5, return_sequences=True), - keras.layers.GRU(y_train.shape[-1], activation="softmax"), - ] - model = test_utils.get_model_from_layers( - layers, input_shape=x_train.shape[1:] - ) - model.compile( - loss="categorical_crossentropy", - optimizer=keras.optimizers.legacy.adam.Adam(0.005), - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - history = model.fit( - x_train, - y_train, - epochs=15, - batch_size=10, - validation_data=(x_train, y_train), - verbose=2, - ) - self.assertGreater(history.history["val_acc"][-1], 0.7) - _, val_acc = model.evaluate(x_train, y_train) - self.assertAlmostEqual(history.history["val_acc"][-1], val_acc) - predictions = model.predict(x_train) - self.assertEqual(predictions.shape, (x_train.shape[0], 2)) - - def test_timeseries_classification_sequential_tf_rnn(self): - np.random.seed(1337) - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=100, - test_samples=0, - input_shape=(4, 10), - num_classes=2, - ) - y_train = utils.to_categorical(y_train) - - with base_layer.keras_style_scope(): - model = keras.models.Sequential() - model.add( - keras.layers.RNN( - legacy_cells.LSTMCell(5), - return_sequences=True, - input_shape=x_train.shape[1:], - ) - ) - model.add( - keras.layers.RNN( - legacy_cells.GRUCell( - y_train.shape[-1], - activation="softmax", - dtype=tf.float32, - ) - ) - ) - model.compile( - loss="categorical_crossentropy", - optimizer=keras.optimizers.legacy.adam.Adam(0.005), - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - history = model.fit( - x_train, - y_train, - epochs=15, - batch_size=10, - validation_data=(x_train, y_train), - verbose=2, - ) - self.assertGreater(history.history["val_acc"][-1], 0.7) - _, val_acc = model.evaluate(x_train, y_train) - self.assertAlmostEqual(history.history["val_acc"][-1], val_acc) - predictions = model.predict(x_train) - self.assertEqual(predictions.shape, (x_train.shape[0], 2)) - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes -class ImageClassificationIntegrationTest(test_combinations.TestCase): - def test_image_classification(self): - np.random.seed(1337) - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=100, - test_samples=0, - input_shape=(10, 10, 3), - num_classes=2, - ) - y_train = utils.to_categorical(y_train) - - layers = [ - keras.layers.Conv2D(4, 3, padding="same", activation="relu"), - keras.layers.Conv2D(8, 3, padding="same"), - keras.layers.BatchNormalization(), - keras.layers.Conv2D(8, 3, padding="same"), - keras.layers.Flatten(), - keras.layers.Dense(y_train.shape[-1], activation="softmax"), - ] - model = test_utils.get_model_from_layers( - layers, input_shape=x_train.shape[1:] - ) - model.compile( - loss="categorical_crossentropy", - optimizer=keras.optimizers.legacy.adam.Adam(0.005), - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - history = model.fit( - x_train, - y_train, - epochs=10, - batch_size=10, - validation_data=(x_train, y_train), - verbose=2, - ) - self.assertGreater(history.history["val_acc"][-1], 0.7) - _, val_acc = model.evaluate(x_train, y_train) - self.assertAlmostEqual(history.history["val_acc"][-1], val_acc) - predictions = model.predict(x_train) - self.assertEqual(predictions.shape, (x_train.shape[0], 2)) - - -@test_combinations.run_all_keras_modes -class ActivationV2IntegrationTest(test_combinations.TestCase): - """Tests activation function V2 in model exporting and loading. - - This test is to verify in TF 2.x, when 'tf.nn.softmax' is used as an - activation function, its model exporting and loading work as expected. - Check b/123041942 for details. - """ - - def test_serialization_v2_model(self): - np.random.seed(1337) - (x_train, y_train), _ = test_utils.get_test_data( - train_samples=100, test_samples=0, input_shape=(10,), num_classes=2 - ) - y_train = utils.to_categorical(y_train) - - model = keras.Sequential( - [ - keras.layers.Flatten(input_shape=x_train.shape[1:]), - keras.layers.Dense(10, activation=tf.nn.relu), - # To mimic 'tf.nn.softmax' used in TF 2.x. - keras.layers.Dense( - y_train.shape[-1], activation=tf.math.softmax - ), - ] - ) - - # Check if 'softmax' is in model.get_config(). - last_layer_activation = model.get_layer(index=2).get_config()[ - "activation" - ] - self.assertEqual(last_layer_activation, "softmax") - - model.compile( - loss="categorical_crossentropy", - optimizer=keras.optimizers.legacy.adam.Adam(0.005), - metrics=["accuracy"], - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit( - x_train, - y_train, - epochs=2, - batch_size=10, - validation_data=(x_train, y_train), - verbose=2, - ) - - output_path = os.path.join(self.get_temp_dir(), "tf_keras_saved_model") - model.save(output_path, save_format="tf") - loaded_model = keras.models.load_model(output_path) - self.assertEqual(model.summary(), loaded_model.summary()) - - -@test_combinations.run_with_all_model_types -@test_utils.run_v2_only -class TokenClassificationIntegrationTest(test_combinations.TestCase): - """Tests a very simple token classification model. - - The main purpose of this test is to verify that everything works as expected - when input sequences have variable length, and batches are padded only to - the maximum length of each batch. This is very common in NLP, and results in - the sequence dimension varying with each batch step for both the features - and the labels. - """ - - def test_token_classification(self): - def densify(x, y): - return x.to_tensor(), y.to_tensor() - - utils.set_random_seed(1337) - data = tf.ragged.stack( - [ - np.random.randint(low=0, high=16, size=random.randint(4, 16)) - for _ in range(100) - ] - ) - labels = tf.ragged.stack( - [np.random.randint(low=0, high=3, size=len(arr)) for arr in data] - ) - features_dataset = tf.data.Dataset.from_tensor_slices(data) - labels_dataset = tf.data.Dataset.from_tensor_slices(labels) - dataset = tf.data.Dataset.zip((features_dataset, labels_dataset)) - dataset = dataset.batch(batch_size=10) - dataset = dataset.map(densify) # Pads with 0 values by default - - layers = [ - keras.layers.Embedding(16, 4), - keras.layers.Conv1D(4, 5, padding="same", activation="relu"), - keras.layers.Conv1D(8, 5, padding="same"), - keras.layers.BatchNormalization(), - keras.layers.Conv1D(3, 5, padding="same", activation="softmax"), - ] - model = test_utils.get_model_from_layers(layers, input_shape=(None,)) - model.compile( - loss="sparse_categorical_crossentropy", - optimizer="adam", - metrics=["acc"], - ) - history = model.fit( - dataset, epochs=10, validation_data=dataset, verbose=2 - ) - self.assertGreater(history.history["val_acc"][-1], 0.5) - _, val_acc = model.evaluate(dataset) - self.assertAlmostEqual(history.history["val_acc"][-1], val_acc) - predictions = model.predict(dataset) - self.assertIsInstance(predictions, tf.RaggedTensor) - self.assertEqual(predictions.shape[0], len(dataset) * 10) - self.assertEqual(predictions.shape[-1], 3) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/tests/keras_doctest.py b/keras/tests/keras_doctest.py deleted file mode 100644 index 90f2c66b6d4..00000000000 --- a/keras/tests/keras_doctest.py +++ /dev/null @@ -1,158 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Run doctests for tensorflow.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import sys - -import numpy as np -import tensorflow.compat.v2 as tf -from absl import flags -from absl.testing import absltest - -from keras.testing_infra import keras_doctest_lib - -tf.compat.v1.enable_v2_behavior() - -# We put doctest after absltest so that it picks up the unittest monkeypatch. -# Otherwise doctest tests aren't runnable at all. -import doctest # noqa: E402 - -FLAGS = flags.FLAGS - -flags.DEFINE_string("module", None, "A specific module to run doctest on.") -flags.DEFINE_boolean( - "list", None, "List all the modules in the core package imported." -) -flags.DEFINE_string("file", None, "A specific file to run doctest on.") - -flags.mark_flags_as_mutual_exclusive(["module", "file"]) -flags.mark_flags_as_mutual_exclusive(["list", "file"]) - -PACKAGE = "keras." - - -def find_modules(): - """Finds all the modules in the core package imported. - - Returns: - A list containing all the modules in tensorflow.python. - """ - - tf_modules = [] - for name, module in sys.modules.items(): - if name.startswith(PACKAGE): - tf_modules.append(module) - - return tf_modules - - -def filter_on_submodules(all_modules, submodule): - """Filters all the modules based on the module flag. - - The module flag has to be relative to the core package imported. - For example, if `submodule=keras.layers` then, this function will return - all the modules in the submodule. - - Args: - all_modules: All the modules in the core package. - submodule: Submodule to filter from all the modules. - - Returns: - All the modules in the submodule. - """ - - filtered_modules = [ - mod for mod in all_modules if PACKAGE + submodule in mod.__name__ - ] - return filtered_modules - - -def get_module_and_inject_docstring(file_path): - """Replaces the docstring of the module with the changed file's content. - - Args: - file_path: Path to the file - - Returns: - A list containing the module changed by the file. - """ - - file_path = os.path.abspath(file_path) - mod_index = file_path.find(PACKAGE.replace(".", os.sep)) - file_mod_name, _ = os.path.splitext(file_path[mod_index:]) - file_module = sys.modules[file_mod_name.replace(os.sep, ".")] - - with open(file_path, "r") as f: - content = f.read() - - file_module.__doc__ = content - - return [file_module] - - -class TfTestCase(tf.test.TestCase): - def set_up(self, _): - self.setUp() - - def tear_down(self, _): - self.tearDown() - - -def load_tests(unused_loader, tests, unused_ignore): - """Loads all the tests in the docstrings and runs them.""" - - tf_modules = find_modules() - - if FLAGS.module: - tf_modules = filter_on_submodules(tf_modules, FLAGS.module) - - if FLAGS.list: - print("**************************************************") - for mod in tf_modules: - print(mod.__name__) - print("**************************************************") - return tests - - if FLAGS.file: - tf_modules = get_module_and_inject_docstring(FLAGS.file) - - for module in tf_modules: - testcase = TfTestCase() - tests.addTests( - doctest.DocTestSuite( - module, - test_finder=doctest.DocTestFinder(exclude_empty=False), - extraglobs={"tf": tf, "np": np, "os": os}, - setUp=testcase.set_up, - tearDown=testcase.tear_down, - checker=keras_doctest_lib.KerasDoctestOutputChecker(), - optionflags=( - doctest.ELLIPSIS - | doctest.NORMALIZE_WHITESPACE - | doctest.IGNORE_EXCEPTION_DETAIL - | doctest.DONT_ACCEPT_BLANKLINE - ), - ) - ) - return tests - - -if __name__ == "__main__": - absltest.main() diff --git a/keras/tests/memory_checker_test.py b/keras/tests/memory_checker_test.py deleted file mode 100644 index 23373a20a7d..00000000000 --- a/keras/tests/memory_checker_test.py +++ /dev/null @@ -1,82 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -import tensorflow.compat.v2 as tf - -import keras - -# isort: off -from tensorflow.python.framework.memory_checker import ( - MemoryChecker, -) - - -class MemoryCheckerTest(tf.test.TestCase): - def testKerasBasic(self): - # TODO(kkb): Fix the slowness on Forge. - self.skipTest("This test is too slow on Forge so disabled for now.") - - x = tf.zeros([1, 1]) - y = tf.constant([[3]]) - model = keras.models.Sequential() - model.add(keras.layers.Dense(1, input_dim=1)) - model.compile(loss="mean_squared_error") - - with MemoryChecker() as memory_checker: - for _ in range(10): - model.fit(x, y) - model.evaluate(x, y) - memory_checker.record_snapshot() - - memory_checker.report() - memory_checker.assert_no_leak_if_all_possibly_except_one() - - def testKerasAdvanced(self): - # TODO(kkb): Fix the slowness on Forge. - self.skipTest("This test is too slow on Forge so disabled for now.") - - # A real world example taken from the following. - # https://github.com/tensorflow/tensorflow/issues/32500 - # b/142150794 - - with MemoryChecker() as memory_checker: - rows = 6 - columns = 7 - model = keras.Sequential( - [ - keras.layers.Flatten(input_shape=[rows * columns, 3]), - keras.layers.Dense(7, input_shape=[rows * columns * 3]), - ] - ) - - model.compile( - optimizer=keras.optimizers.legacy.gradient_descent.SGD(lr=0.01), - loss="mean_squared_error", - metrics=["accuracy"], - ) - states = [[1] * rows * columns for _ in range(20)] - f = tf.one_hot(states, dtype="float32", depth=3) - - for _ in range(20): - model.predict(f, steps=10) - memory_checker.record_snapshot() - - memory_checker.report() - memory_checker.assert_no_leak_if_all_possibly_except_one() - - -if __name__ == "__main__": - tf.compat.v1.enable_eager_execution() - tf.test.main() diff --git a/keras/tests/memory_test.py b/keras/tests/memory_test.py deleted file mode 100644 index 4f3cb4f9cea..00000000000 --- a/keras/tests/memory_test.py +++ /dev/null @@ -1,77 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for memory leaks in eager execution. - -It is possible that this test suite will eventually become flaky due to taking -too long to run (since the tests iterate many times), but for now they are -helpful for finding memory leaks since not all PyObject leaks are found by -introspection (test_util decorators). Please be careful adding new tests here. -""" - -import tensorflow.compat.v2 as tf - -import keras - -# isort: off -from tensorflow.python.eager.memory_tests import ( - memory_test_util, -) - - -class SingleLayerNet(keras.Model): - """Simple keras model used to ensure that there are no leaks.""" - - def __init__(self): - super().__init__() - self.fc1 = keras.layers.Dense(5) - - def call(self, x): - return self.fc1(x) - - -class MemoryTest(tf.test.TestCase): - def testMemoryLeakInSimpleModelForwardOnly(self): - if not memory_test_util.memory_profiler_is_available(): - self.skipTest("memory_profiler required to run this test") - - inputs = tf.zeros([1000, 1000], tf.float32) - net = SingleLayerNet() - - def f(): - with tf.GradientTape(): - net(inputs) - - memory_test_util.assert_no_leak(f, num_iters=1000) - - def testMemoryLeakInSimpleModelForwardAndBackward(self): - if not memory_test_util.memory_profiler_is_available(): - self.skipTest("memory_profiler required to run this test") - - inputs = tf.zeros([1000, 1000], tf.float32) - net = SingleLayerNet() - - def f(): - with tf.GradientTape() as tape: - result = net(inputs) - - tape.gradient(result, net.variables) - - del tape - - memory_test_util.assert_no_leak(f, num_iters=1000) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/tests/model_architectures.py b/keras/tests/model_architectures.py deleted file mode 100644 index b3bd8864199..00000000000 --- a/keras/tests/model_architectures.py +++ /dev/null @@ -1,315 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for saving/loading function for keras Model.""" - -import collections - -import keras - -# Declaring namedtuple() -ModelFn = collections.namedtuple( - "ModelFn", ["model", "input_shape", "target_shape"] -) - - -def basic_sequential(): - """Basic sequential model.""" - model = keras.Sequential( - [ - keras.layers.Dense(3, activation="relu", input_shape=(3,)), - keras.layers.Dense(2, activation="softmax"), - ] - ) - return ModelFn(model, (None, 3), (None, 2)) - - -def basic_sequential_deferred(): - """Sequential model with deferred input shape.""" - model = keras.Sequential( - [ - keras.layers.Dense(3, activation="relu"), - keras.layers.Dense(2, activation="softmax"), - ] - ) - return ModelFn(model, (None, 3), (None, 2)) - - -def stacked_rnn(): - """Stacked RNN model.""" - inputs = keras.Input((None, 3)) - layer = keras.layers.RNN([keras.layers.LSTMCell(2) for _ in range(3)]) - x = layer(inputs) - outputs = keras.layers.Dense(2)(x) - model = keras.Model(inputs, outputs) - return ModelFn(model, (None, 4, 3), (None, 2)) - - -def lstm(): - """LSTM model.""" - inputs = keras.Input((None, 3)) - x = keras.layers.LSTM(4, return_sequences=True)(inputs) - x = keras.layers.LSTM(3, return_sequences=True)(x) - x = keras.layers.LSTM(2, return_sequences=False)(x) - outputs = keras.layers.Dense(2)(x) - model = keras.Model(inputs, outputs) - return ModelFn(model, (None, 4, 3), (None, 2)) - - -def multi_input_multi_output(): - """Multi-input Multi-output model.""" - body_input = keras.Input(shape=(None,), name="body") - tags_input = keras.Input(shape=(2,), name="tags") - - x = keras.layers.Embedding(10, 4)(body_input) - body_features = keras.layers.LSTM(5)(x) - x = keras.layers.concatenate([body_features, tags_input]) - - pred_1 = keras.layers.Dense(2, activation="sigmoid", name="priority")(x) - pred_2 = keras.layers.Dense(3, activation="softmax", name="department")(x) - - model = keras.Model( - inputs=[body_input, tags_input], outputs=[pred_1, pred_2] - ) - return ModelFn(model, [(None, 1), (None, 2)], [(None, 2), (None, 3)]) - - -def nested_sequential_in_functional(): - """A sequential model nested in a functional model.""" - inner_model = keras.Sequential( - [ - keras.layers.Dense(3, activation="relu", input_shape=(3,)), - keras.layers.Dense(2, activation="relu"), - ] - ) - - inputs = keras.Input(shape=(3,)) - x = inner_model(inputs) - outputs = keras.layers.Dense(2, activation="softmax")(x) - model = keras.Model(inputs, outputs) - return ModelFn(model, (None, 3), (None, 2)) - - -def seq_to_seq(): - """Sequence to sequence model.""" - num_encoder_tokens = 3 - num_decoder_tokens = 3 - latent_dim = 2 - encoder_inputs = keras.Input(shape=(None, num_encoder_tokens)) - encoder = keras.layers.LSTM(latent_dim, return_state=True) - _, state_h, state_c = encoder(encoder_inputs) - encoder_states = [state_h, state_c] - decoder_inputs = keras.Input(shape=(None, num_decoder_tokens)) - decoder_lstm = keras.layers.LSTM( - latent_dim, return_sequences=True, return_state=True - ) - decoder_outputs, _, _ = decoder_lstm( - decoder_inputs, initial_state=encoder_states - ) - decoder_dense = keras.layers.Dense(num_decoder_tokens, activation="softmax") - decoder_outputs = decoder_dense(decoder_outputs) - model = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs) - return ModelFn( - model, - [(None, 2, num_encoder_tokens), (None, 2, num_decoder_tokens)], - (None, 2, num_decoder_tokens), - ) - - -def shared_layer_functional(): - """Shared layer in a functional model.""" - main_input = keras.Input(shape=(10,), dtype="int32", name="main_input") - x = keras.layers.Embedding(output_dim=5, input_dim=4, input_length=10)( - main_input - ) - lstm_out = keras.layers.LSTM(3)(x) - auxiliary_output = keras.layers.Dense( - 1, activation="sigmoid", name="aux_output" - )(lstm_out) - auxiliary_input = keras.Input(shape=(5,), name="aux_input") - x = keras.layers.concatenate([lstm_out, auxiliary_input]) - x = keras.layers.Dense(2, activation="relu")(x) - main_output = keras.layers.Dense( - 1, activation="sigmoid", name="main_output" - )(x) - model = keras.Model( - inputs=[main_input, auxiliary_input], - outputs=[main_output, auxiliary_output], - ) - return ModelFn(model, [(None, 10), (None, 5)], [(None, 1), (None, 1)]) - - -def shared_sequential(): - """Shared sequential model in a functional model.""" - inner_model = keras.Sequential( - [ - keras.layers.Conv2D(2, 3, activation="relu"), - keras.layers.Conv2D(2, 3, activation="relu"), - ] - ) - inputs_1 = keras.Input((5, 5, 3)) - inputs_2 = keras.Input((5, 5, 3)) - x1 = inner_model(inputs_1) - x2 = inner_model(inputs_2) - x = keras.layers.concatenate([x1, x2]) - outputs = keras.layers.GlobalAveragePooling2D()(x) - model = keras.Model([inputs_1, inputs_2], outputs) - return ModelFn(model, [(None, 5, 5, 3), (None, 5, 5, 3)], (None, 4)) - - -class MySubclassModel(keras.Model): - """A subclass model.""" - - def __init__(self, input_dim=3): - super().__init__(name="my_subclass_model") - self._config = {"input_dim": input_dim} - self.dense1 = keras.layers.Dense(8, activation="relu") - self.dense2 = keras.layers.Dense(2, activation="softmax") - self.bn = keras.layers.BatchNormalization() - self.dp = keras.layers.Dropout(0.5) - - def call(self, inputs, **kwargs): - x = self.dense1(inputs) - x = self.dp(x) - x = self.bn(x) - return self.dense2(x) - - def get_config(self): - return self._config - - @classmethod - def from_config(cls, config): - return cls(**config) - - -def nested_subclassed_model(): - """A subclass model nested in another subclass model.""" - - class NestedSubclassModel(keras.Model): - """A nested subclass model.""" - - def __init__(self): - super().__init__() - self.dense1 = keras.layers.Dense(4, activation="relu") - self.dense2 = keras.layers.Dense(2, activation="relu") - self.bn = keras.layers.BatchNormalization() - self.inner_subclass_model = MySubclassModel() - - def call(self, inputs): - x = self.dense1(inputs) - x = self.bn(x) - x = self.inner_subclass_model(x) - return self.dense2(x) - - return ModelFn(NestedSubclassModel(), (None, 3), (None, 2)) - - -def nested_subclassed_in_functional_model(): - """A subclass model nested in a functional model.""" - inner_subclass_model = MySubclassModel() - inputs = keras.Input(shape=(3,)) - x = inner_subclass_model(inputs) - x = keras.layers.BatchNormalization()(x) - outputs = keras.layers.Dense(2, activation="softmax")(x) - model = keras.Model(inputs, outputs) - return ModelFn(model, (None, 3), (None, 2)) - - -def nested_functional_in_subclassed_model(): - """A functional model nested in a subclass model.""" - - def get_functional_model(): - inputs = keras.Input(shape=(4,)) - x = keras.layers.Dense(4, activation="relu")(inputs) - x = keras.layers.BatchNormalization()(x) - outputs = keras.layers.Dense(2)(x) - return keras.Model(inputs, outputs) - - class NestedFunctionalInSubclassModel(keras.Model): - """A functional nested in subclass model.""" - - def __init__(self): - super().__init__(name="nested_functional_in_subclassed_model") - self.dense1 = keras.layers.Dense(4, activation="relu") - self.dense2 = keras.layers.Dense(2, activation="relu") - self.inner_functional_model = get_functional_model() - - def call(self, inputs): - x = self.dense1(inputs) - x = self.inner_functional_model(x) - return self.dense2(x) - - return ModelFn(NestedFunctionalInSubclassModel(), (None, 3), (None, 2)) - - -def shared_layer_subclassed_model(): - """Shared layer in a subclass model.""" - - class SharedLayerSubclassModel(keras.Model): - """A subclass model with shared layers.""" - - def __init__(self): - super().__init__(name="shared_layer_subclass_model") - self.dense = keras.layers.Dense(3, activation="relu") - self.dp = keras.layers.Dropout(0.5) - self.bn = keras.layers.BatchNormalization() - - def call(self, inputs): - x = self.dense(inputs) - x = self.dp(x) - x = self.bn(x) - return self.dense(x) - - return ModelFn(SharedLayerSubclassModel(), (None, 3), (None, 3)) - - -def functional_with_keyword_args(): - """A functional model with keyword args.""" - inputs = keras.Input(shape=(3,)) - x = keras.layers.Dense(4)(inputs) - x = keras.layers.BatchNormalization()(x) - outputs = keras.layers.Dense(2)(x) - - model = keras.Model(inputs, outputs, name="m", trainable=False) - return ModelFn(model, (None, 3), (None, 2)) - - -ALL_MODELS = [ - ("basic_sequential", basic_sequential), - ("basic_sequential_deferred", basic_sequential_deferred), - ("stacked_rnn", stacked_rnn), - ("lstm", lstm), - ("multi_input_multi_output", multi_input_multi_output), - ("nested_sequential_in_functional", nested_sequential_in_functional), - ("seq_to_seq", seq_to_seq), - ("shared_layer_functional", shared_layer_functional), - ("shared_sequential", shared_sequential), - ("nested_subclassed_model", nested_subclassed_model), - ( - "nested_subclassed_in_functional_model", - nested_subclassed_in_functional_model, - ), - ( - "nested_functional_in_subclassed_model", - nested_functional_in_subclassed_model, - ), - ("shared_layer_subclassed_model", shared_layer_subclassed_model), - ("functional_with_keyword_args", functional_with_keyword_args), -] - - -def get_models(exclude_models=None): - """Get all models excluding the specified ones.""" - models = [model for model in ALL_MODELS if model[0] not in exclude_models] - return models diff --git a/keras/tests/model_architectures_test.py b/keras/tests/model_architectures_test.py deleted file mode 100644 index 73193c3b111..00000000000 --- a/keras/tests/model_architectures_test.py +++ /dev/null @@ -1,107 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Tests for saving/loading function for keras Model.""" - -import os -import shutil - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.optimizers import optimizer_v1 -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.tests import model_architectures - - -@test_combinations.run_with_all_saved_model_formats -class TestModelArchitectures(test_combinations.TestCase): - def _save_model_dir(self, dirname="saved_model"): - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - return os.path.join(temp_dir, dirname) - - def get_test_data(self, input_shape, target_shape): - """Generate test dataset for testing.""" - if isinstance(input_shape, list): - x = [ - np.random.random((2,) + input_shape[i][1:]) - for i in range(len(input_shape)) - ] - else: - x = np.random.random((2,) + input_shape[1:]) - - if isinstance(target_shape, list): - y = [ - np.random.random((2,) + target_shape[i][1:]) - for i in range(len(target_shape)) - ] - else: - y = np.random.random((2,) + target_shape[1:]) - - return x, y - - def get_custom_objects(self): - """Define custom_objects.""" - - class CustomOpt(optimizer_v1.SGD): - pass - - def custom_loss(y_true, y_pred): - return keras.losses.mse(y_true, y_pred) - - return {"CustomOpt": CustomOpt, "custom_loss": custom_loss} - - @parameterized.named_parameters(*model_architectures.ALL_MODELS) - def test_basic_saving_and_loading(self, model_fn): - save_format = test_utils.get_save_format() - custom_objects = self.get_custom_objects() - if "subclassed_in_functional" in model_fn.__name__: - subclass_custom_objects = { - "MySubclassModel": model_architectures.MySubclassModel, - } - custom_objects.update(subclass_custom_objects) - elif "subclassed" in model_fn.__name__ and save_format == "h5": - self.skipTest( - "Saving the model to HDF5 format requires the model to be " - "a Functional model or a Sequential model." - ) - - saved_model_dir = self._save_model_dir() - model_data = model_fn() - model = model_data.model - x_test, y_test = self.get_test_data( - model_data.input_shape, model_data.target_shape - ) - model.compile("rmsprop", "mse") - model.train_on_batch(x_test, y_test) - - # Save model. - out1 = model.predict(x_test) - keras.models.save_model(model, saved_model_dir, save_format=save_format) - # Load model. - loaded_model = keras.models.load_model( - saved_model_dir, custom_objects=custom_objects - ) - out2 = loaded_model.predict(x_test) - - self.assertAllClose(out1, out2, atol=1e-05) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/tests/model_subclassing_compiled_test.py b/keras/tests/model_subclassing_compiled_test.py deleted file mode 100644 index 1a93734f4f2..00000000000 --- a/keras/tests/model_subclassing_compiled_test.py +++ /dev/null @@ -1,479 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for compiled Model subclassing.""" - -import os - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.tests import model_subclassing_test_util as model_util - -try: - import h5py -except ImportError: - h5py = None - - -@test_combinations.run_all_keras_modes -class ModelSubclassCompiledTest(test_combinations.TestCase): - def test_single_io_workflow_with_np_arrays(self): - num_classes = 2 - num_samples = 100 - input_dim = 50 - - model = test_utils.SmallSubclassMLP( - num_hidden=32, num_classes=num_classes, use_dp=True, use_bn=True - ) - model.compile( - loss="mse", - optimizer="rmsprop", - metrics=["acc", keras.metrics.CategoricalAccuracy()], - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones((num_samples, input_dim)) - y = np.zeros((num_samples, num_classes)) - - model.fit(x, y, epochs=2, batch_size=32, verbose=0) - _ = model.evaluate(x, y, verbose=0) - - def test_multi_io_workflow_with_np_arrays(self): - num_classes = (2, 3) - num_samples = 1000 - input_dim = 50 - - model = model_util.get_multi_io_subclass_model( - num_classes=num_classes, use_dp=True, use_bn=True - ) - model.compile( - loss="mse", - optimizer="rmsprop", - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - x1 = np.ones((num_samples, input_dim)) - x2 = np.ones((num_samples, input_dim)) - y1 = np.zeros((num_samples, num_classes[0])) - y2 = np.zeros((num_samples, num_classes[1])) - - model.fit([x1, x2], [y1, y2], epochs=2, batch_size=32, verbose=0) - _ = model.evaluate([x1, x2], [y1, y2], verbose=0) - - def test_single_io_workflow_with_datasets(self): - num_classes = 2 - num_samples = 10 - input_dim = 50 - - with self.cached_session(): - model = test_utils.SmallSubclassMLP( - num_hidden=32, num_classes=num_classes, use_dp=True, use_bn=True - ) - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones((num_samples, input_dim), dtype=np.float32) - y = np.zeros((num_samples, num_classes), dtype=np.float32) - dataset = tf.data.Dataset.from_tensor_slices((x, y)) - dataset = dataset.repeat(100) - dataset = dataset.batch(10) - - model.fit(dataset, epochs=2, steps_per_epoch=10, verbose=0) - _ = model.evaluate(dataset, steps=10, verbose=0) - - def test_attributes(self): - # layers, weights, trainable_weights, non_trainable_weights, inputs, - # outputs - - num_classes = (2, 3) - num_samples = 100 - input_dim = 50 - - model = model_util.get_multi_io_subclass_model( - num_classes=num_classes, use_bn=True - ) - - x1 = np.ones((num_samples, input_dim)) - x2 = np.ones((num_samples, input_dim)) - y1 = np.zeros((num_samples, num_classes[0])) - y2 = np.zeros((num_samples, num_classes[1])) - - self.assertEqual(model.name, "test_model") - self.assertEqual(model.built, False) - self.assertEqual(len(model.weights), 0) - - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch([x1, x2], [y1, y2]) - - self.assertEqual(model.built, True) - self.assertEqual(len(model.layers), 4) - self.assertEqual(len(model.weights), 10) - self.assertEqual(len(model.trainable_weights), 8) - self.assertEqual(len(model.non_trainable_weights), 2) - - def test_updates(self): - # test that updates get run during training - num_samples = 100 - input_dim = 50 - - class BNNet(keras.Model): - def __init__(self): - super().__init__() - self.bn = keras.layers.BatchNormalization( - beta_initializer="ones", gamma_initializer="ones" - ) - - def call(self, inputs): - return self.bn(inputs) - - x = np.ones((num_samples, input_dim)) - y = np.ones((num_samples, input_dim)) - - model = BNNet() - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - y_ref = model.predict(x) - - model.train_on_batch(x, y) - y_new = model.predict(x) - self.assertGreater(np.sum(np.abs(y_ref - y_new)), 0.1) - - def test_training_and_inference_behavior(self): - # test that dropout is applied in training and not inference - - num_samples = 100 - input_dim = 50 - - class DPNet(keras.Model): - def __init__(self): - super().__init__() - self.dp = keras.layers.Dropout(0.5) - self.dense = keras.layers.Dense( - 1, use_bias=False, kernel_initializer="ones" - ) - - def call(self, inputs): - x = self.dp(inputs) - return self.dense(x) - - model = DPNet() - x = np.ones((num_samples, input_dim)) - y = model.predict(x) - self.assertEqual(np.sum(y), np.sum(x)) - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - loss = model.train_on_batch(x, y) - self.assertGreater(loss, 0.1) - - def test_training_methods(self): - # test fit, train_on_batch - # on different input types: list, dict - - num_classes = (2, 3) - num_samples = 100 - input_dim = 50 - - x1 = np.ones((num_samples, input_dim)) - x2 = np.ones((num_samples, input_dim)) - y1 = np.zeros((num_samples, num_classes[0])) - y2 = np.zeros((num_samples, num_classes[1])) - - model = model_util.get_multi_io_subclass_model( - num_classes=num_classes, use_bn=True - ) - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit([x1, x2], [y1, y2], epochs=2, batch_size=32, verbose=0) - model.fit( - {"input_1": x1, "input_2": x2}, - {"output_1": y1, "output_2": y2}, - epochs=2, - batch_size=32, - ) - model.fit( - [x1, x2], - [y1, y2], - epochs=2, - batch_size=32, - verbose=0, - validation_data=([x1, x2], [y1, y2]), - ) - - model = model_util.get_multi_io_subclass_model( - num_classes=num_classes, use_bn=True - ) - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.train_on_batch([x1, x2], [y1, y2]) - model.train_on_batch( - {"input_1": x1, "input_2": x2}, {"output_1": y1, "output_2": y2} - ) - - def test_inference_methods(self): - # test predict, evaluate, test_on_batch, predict_on_batch - # on different input types: list, dict - num_classes = (2, 3) - num_samples = 100 - input_dim = 50 - - x1 = np.ones((num_samples, input_dim)) - x2 = np.ones((num_samples, input_dim)) - y1 = np.zeros((num_samples, num_classes[0])) - y2 = np.zeros((num_samples, num_classes[1])) - - model = model_util.get_multi_io_subclass_model( - num_classes=num_classes, use_bn=True - ) - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.evaluate([x1, x2], [y1, y2]) - model.test_on_batch([x1, x2], [y1, y2]) - - model = model_util.get_multi_io_subclass_model( - num_classes=num_classes, use_bn=True - ) - model.predict([x1, x2]) - - model = model_util.get_multi_io_subclass_model( - num_classes=num_classes, use_bn=True - ) - model.predict_on_batch([x1, x2]) - - def test_saving(self): - num_classes = (2, 3) - num_samples = 100 - input_dim = 50 - - x1 = np.ones((num_samples, input_dim)) - x2 = np.ones((num_samples, input_dim)) - y1 = np.zeros((num_samples, num_classes[0])) - y2 = np.zeros((num_samples, num_classes[1])) - - model = model_util.get_multi_io_subclass_model( - num_classes=num_classes, use_bn=True - ) - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - model.fit([x1, x2], [y1, y2], epochs=2, batch_size=32, verbose=0) - y_ref_1, y_ref_2 = model.predict([x1, x2]) - - tf_format_name = os.path.join(self.get_temp_dir(), "ckpt") - model.save_weights(tf_format_name) - if h5py is not None: - hdf5_format_name = os.path.join(self.get_temp_dir(), "weights.h5") - model.save_weights(hdf5_format_name) - - model = model_util.get_multi_io_subclass_model( - num_classes=num_classes, use_bn=True - ) - - if h5py is not None: - with self.assertRaises(ValueError): - model.load_weights(hdf5_format_name) - - model.load_weights(tf_format_name) - - y1, y2 = model.predict([x1, x2]) - self.assertAllClose(y_ref_1, y1, atol=1e-5) - self.assertAllClose(y_ref_2, y2, atol=1e-5) - - if h5py is not None: - model.load_weights(hdf5_format_name) - - y1, y2 = model.predict([x1, x2]) - self.assertAllClose(y_ref_1, y1, atol=1e-5) - self.assertAllClose(y_ref_2, y2, atol=1e-5) - - def test_subclass_nested_in_subclass(self): - num_classes = 2 - num_samples = 100 - input_dim = 50 - - model = model_util.NestedTestModel1(num_classes=num_classes) - model.compile( - loss="mse", - optimizer="rmsprop", - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones((num_samples, input_dim)) - y = np.zeros((num_samples, num_classes)) - - model.fit(x, y, epochs=2, batch_size=32, verbose=0) - _ = model.evaluate(x, y, verbose=0) - - self.assertEqual(len(model.weights), 8 + len(model.test_net.weights)) - self.assertEqual( - len(model.non_trainable_weights), - 2 + len(model.test_net.non_trainable_weights), - ) - self.assertEqual( - len(model.trainable_weights), - 6 + len(model.test_net.trainable_weights), - ) - - def test_graph_nested_in_subclass(self): - num_classes = 2 - num_samples = 100 - input_dim = 50 - - model = model_util.NestedTestModel2(num_classes=num_classes) - model.compile( - loss="mse", - optimizer="rmsprop", - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones((num_samples, input_dim)) - y = np.zeros((num_samples, num_classes)) - - model.fit(x, y, epochs=2, batch_size=32, verbose=0) - _ = model.evaluate(x, y, verbose=0) - - self.assertEqual(len(model.weights), 8 + len(model.test_net.weights)) - self.assertEqual( - len(model.non_trainable_weights), - 2 + len(model.test_net.non_trainable_weights), - ) - self.assertEqual( - len(model.trainable_weights), - 6 + len(model.test_net.trainable_weights), - ) - - def test_subclass_nested_in_graph(self): - num_classes = 2 - num_samples = 100 - input_dim = 50 - - model = model_util.get_nested_model_3( - input_dim=input_dim, num_classes=num_classes - ) - model.compile( - loss="mse", - optimizer="rmsprop", - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones((num_samples, input_dim)) - y = np.zeros((num_samples, num_classes)) - - model.fit(x, y, epochs=2, batch_size=32, verbose=0) - _ = model.evaluate(x, y, verbose=0) - - self.assertEqual(len(model.weights), 16) - self.assertEqual(len(model.non_trainable_weights), 4) - self.assertEqual(len(model.trainable_weights), 12) - - def test_subclass_nested_in_sequential(self): - num_classes = 2 - num_samples = 100 - input_dim = 50 - - class Inner(keras.Model): - def __init__(self): - super().__init__() - self.dense1 = keras.layers.Dense(32, activation="relu") - self.dense2 = keras.layers.Dense(num_classes, activation="relu") - self.bn = keras.layers.BatchNormalization() - - def call(self, inputs): - x = self.dense1(inputs) - x = self.dense2(x) - return self.bn(x) - - model = keras.Sequential([Inner()]) - model.compile( - loss="mse", - optimizer="rmsprop", - metrics=["acc"], - run_eagerly=test_utils.should_run_eagerly(), - ) - - x = np.ones((num_samples, input_dim)) - y = np.zeros((num_samples, num_classes)) - model.fit(x, y, epochs=2, batch_size=32, verbose=0) - _ = model.evaluate(x, y, verbose=0) - - self.assertEqual(len(model.weights), 8) - self.assertEqual(len(model.non_trainable_weights), 2) - self.assertEqual(len(model.trainable_weights), 6) - - def test_support_for_manual_training_arg(self): - # In most cases, the `training` argument is left unspecified, in which - # case it defaults to value corresponding to the Model method being used - # (fit -> True, predict -> False, etc). - # If the user writes their model `call` method to take - # an explicit `training` argument, we must check that the correct value - # is being passed to the model for each method call. - - class DPNet(keras.Model): - def __init__(self): - super().__init__() - self.dp = keras.layers.Dropout(0.5) - self.dense = keras.layers.Dense( - 1, use_bias=False, kernel_initializer="ones" - ) - - def call(self, inputs, training=False): - x = self.dp(inputs, training=training) - return self.dense(x) - - model = DPNet() - x = np.ones((10, 10)) - y = model.predict(x) - self.assertEqual(np.sum(y), np.sum(x)) - model.compile( - loss="mse", - optimizer="rmsprop", - run_eagerly=test_utils.should_run_eagerly(), - ) - loss = model.train_on_batch(x, y) - self.assertGreater(loss, 0.1) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/tests/model_subclassing_test.py b/keras/tests/model_subclassing_test.py deleted file mode 100644 index 60136baab5a..00000000000 --- a/keras/tests/model_subclassing_test.py +++ /dev/null @@ -1,814 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Model subclassing.""" - -import copy -import os - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.tests import model_subclassing_test_util as model_util - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) -from tensorflow.python.trackable import data_structures - -try: - import h5py -except ImportError: - h5py = None - - -@test_combinations.run_all_keras_modes -class ModelSubclassingTest(test_combinations.TestCase): - def test_custom_build(self): - class DummyModel(keras.Model): - def __init__(self): - super().__init__() - self.dense1 = keras.layers.Dense(32, activation="relu") - self.uses_custom_build = False - - def call(self, inputs): - return self.dense1(inputs) - - def build(self, input_shape): - self.uses_custom_build = True - - test_model = DummyModel() - dummy_data = tf.ones((32, 50)) - test_model(dummy_data) - self.assertTrue( - test_model.uses_custom_build, - "Model should use user defined build when called.", - ) - - def test_attribute_conflict_error(self): - class ModelWithProperty(keras.Model): - @property - def read_only(self): - return 1.0 - - m = ModelWithProperty() - with self.assertRaisesRegex(AttributeError, "read_only"): - m.read_only = 2.0 - - def test_custom_build_with_fit(self): - class DummyModel(keras.Model): - def __init__(self): - super().__init__() - self.layer1 = keras.layers.Dense(10, activation="relu") - - def build(self, input_shape): - self.layer2 = keras.layers.Dense(1, activation="relu") - - def call(self, inputs): - return self.layer2(self.layer1(inputs)) - - model = DummyModel() - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - model.fit(np.ones((10, 10)), np.ones((10, 1)), batch_size=2, epochs=2) - self.assertLen(model.layers, 2) - self.assertLen(model.trainable_variables, 4) - - def test_dataset_dict_with_fit(self): - class MyModel(keras.Model): - def __init__(self): - super().__init__() - self.dense1 = keras.layers.Dense(1) - self.dense2 = keras.layers.Dense(1) - self.add = keras.layers.Add() - - def call(self, x): - return self.add([self.dense1(x["a"]), self.dense2(x["b"])]) - - model = MyModel() - model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) - - data = tf.data.Dataset.from_tensor_slices( - ({"a": np.ones((32, 10)), "b": np.ones((32, 20))}, np.ones((32, 1))) - ).batch(2) - model.fit(data, epochs=2) - - def test_invalid_input_shape_build(self): - num_classes = 2 - input_dim = 50 - - model = test_utils.SmallSubclassMLP( - num_hidden=32, num_classes=num_classes, use_dp=True, use_bn=True - ) - - self.assertFalse(model.built, "Model should not have been built") - self.assertFalse( - model.weights, - "Model should have no weights since it has not been built.", - ) - with self.assertRaisesRegex( - ValueError, "input shape is not one of the valid types" - ): - model.build(input_shape=tf.compat.v1.Dimension(input_dim)) - - def test_embed_dtype_with_subclass_build(self): - class Embedding(keras.layers.Layer): - """An Embedding layer.""" - - def __init__(self, vocab_size, embedding_dim, **kwargs): - super().__init__(**kwargs) - self.vocab_size = vocab_size - self.embedding_dim = embedding_dim - - def build(self, _): - self.embedding = self.add_weight( - "embedding_kernel", - shape=[self.vocab_size, self.embedding_dim], - dtype=np.float32, - initializer=tf.compat.v1.random_uniform_initializer( - -0.1, 0.1 - ), - trainable=True, - ) - - def call(self, x): - return tf.compat.v1.nn.embedding_lookup(self.embedding, x) - - class EmbedModel(keras.Model): - def __init__(self, vocab_size, embed_size): - super().__init__() - self.embed1 = Embedding(vocab_size, embed_size) - - def call(self, inputs): - return self.embed1(inputs) - - model = EmbedModel(100, 20) - self.assertFalse(model.built, "Model should not have been built") - self.assertFalse( - model.weights, - "Model should have no weights since it has not been built.", - ) - with self.assertRaisesRegex( - ValueError, "if your layers do not support float type inputs" - ): - model.build(input_shape=(35, 20)) - - def test_single_time_step_rnn_build(self): - dim = 4 - timesteps = 1 - batch_input_shape = (None, timesteps, dim) - units = 3 - - class SimpleRNNModel(keras.Model): - def __init__(self): - super().__init__() - self.lstm = keras.layers.LSTM(units) - - def call(self, inputs): - return self.lstm(inputs) - - model = SimpleRNNModel() - self.assertFalse(model.built, "Model should not have been built") - self.assertFalse( - model.weights, - "Model should have no weights since it has not been built.", - ) - model.build(batch_input_shape) - self.assertTrue( - model.weights, - "Model should have weights now that it has been properly built.", - ) - self.assertTrue( - model.built, "Model should be built after calling `build`." - ) - model(tf.ones((32, timesteps, dim))) - - def test_single_io_subclass_build(self): - num_classes = 2 - input_dim = 50 - batch_size = None - - model = test_utils.SmallSubclassMLP( - num_hidden=32, num_classes=num_classes, use_dp=True, use_bn=True - ) - - self.assertFalse(model.built, "Model should not have been built") - self.assertFalse( - model.weights, - "Model should have no weights since it has not been built.", - ) - model.build(input_shape=(batch_size, input_dim)) - self.assertTrue( - model.weights, - "Model should have weights now that it has been properly built.", - ) - self.assertTrue( - model.built, "Model should be built after calling `build`." - ) - model(tf.ones((32, input_dim))) - - def test_single_io_dimension_subclass_build(self): - num_classes = 2 - input_dim = tf.compat.v1.Dimension(50) - batch_size = tf.compat.v1.Dimension(None) - - model = test_utils.SmallSubclassMLP( - num_hidden=32, num_classes=num_classes, use_dp=True, use_bn=True - ) - - self.assertFalse(model.built, "Model should not have been built") - self.assertFalse( - model.weights, - "Model should have no weights since it has not been built.", - ) - model.build(input_shape=(batch_size, input_dim)) - self.assertTrue( - model.weights, - "Model should have weights now that it has been properly built.", - ) - self.assertTrue( - model.built, "Model should be built after calling `build`." - ) - model(tf.ones((32, input_dim))) - - def test_multidim_io_subclass_build(self): - num_classes = 10 - # Input size, e.g. image - batch_size = 32 - input_shape = (32, 32, 3) - - model = model_util.SimpleConvTestModel(num_classes) - self.assertFalse(model.built, "Model should not have been built") - self.assertFalse( - model.weights, - "Model should have no weights since it has not been built.", - ) - batch_input_shape = (batch_size,) + input_shape - model.build(input_shape=batch_input_shape) - self.assertTrue( - model.weights, - "Model should have weights now that it has been properly built.", - ) - self.assertTrue( - model.built, "Model should be built after calling `build`." - ) - - model(tf.ones(batch_input_shape)) - - def test_tensorshape_io_subclass_build(self): - num_classes = 10 - # Input size, e.g. image - batch_size = None - input_shape = (32, 32, 3) - - model = model_util.SimpleConvTestModel(num_classes) - self.assertFalse(model.built, "Model should not have been built") - self.assertFalse( - model.weights, - "Model should have no weights since it has not been built.", - ) - model.build(input_shape=tf.TensorShape((batch_size,) + input_shape)) - self.assertTrue( - model.weights, - "Model should have weights now that it has been properly built.", - ) - self.assertTrue( - model.built, "Model should be built after calling `build`." - ) - - model(tf.ones((32,) + input_shape)) - - def test_subclass_save_model(self): - num_classes = 10 - # Input size, e.g. image - batch_size = None - input_shape = (32, 32, 3) - - model = model_util.SimpleConvTestModel(num_classes) - self.assertFalse(model.built, "Model should not have been built") - self.assertFalse( - model.weights, - "Model should have no weights since it has not been built.", - ) - model.build(input_shape=tf.TensorShape((batch_size,) + input_shape)) - self.assertTrue( - model.weights, - "Model should have weights now that it has been properly built.", - ) - self.assertTrue( - model.built, "Model should be built after calling `build`." - ) - weights = model.get_weights() - - tf_format_name = os.path.join(self.get_temp_dir(), "ckpt") - model.save_weights(tf_format_name) - if h5py is not None: - hdf5_format_name = os.path.join(self.get_temp_dir(), "weights.h5") - model.save_weights(hdf5_format_name) - - model = model_util.SimpleConvTestModel(num_classes) - model.build(input_shape=tf.TensorShape((batch_size,) + input_shape)) - if h5py is not None: - model.load_weights(hdf5_format_name) - self.assertAllClose(weights, model.get_weights()) - model.load_weights(tf_format_name) - self.assertAllClose(weights, model.get_weights()) - - def test_multi_io_subclass_build(self): - batch_size = None - num_samples = 1000 - input_dim = 50 - model = model_util.get_multi_io_subclass_model() - self.assertFalse(model.built, "Model should not have been built") - self.assertFalse( - model.weights, - "Model should have no weights since it has not been built.", - ) - batch_input_shape = tf.TensorShape((batch_size, input_dim)) - model.build(input_shape=[batch_input_shape, batch_input_shape]) - self.assertTrue( - model.weights, - "Model should have weights now that it has been properly built.", - ) - self.assertTrue( - model.built, "Model should be built after calling `build`." - ) - x1 = tf.ones((num_samples, input_dim)) - x2 = tf.ones((num_samples, input_dim)) - model([x1, x2]) - - def test_summary(self): - class ToString: - def __init__(self): - self.contents = "" - - def __call__(self, msg): - self.contents += msg + "\n" - - # Single-io - model = test_utils.SmallSubclassMLP( - num_hidden=32, num_classes=4, use_bn=True, use_dp=True - ) - model(np.ones((3, 4))) # need to build model first - print_fn = ToString() - model.summary(print_fn=print_fn) - self.assertIn("Trainable params: 356", print_fn.contents) - - # Multi-io - model = model_util.get_multi_io_subclass_model( - num_classes=(5, 6), use_bn=True, use_dp=True - ) - model([np.ones((3, 4)), np.ones((3, 4))]) # need to build model first - print_fn = ToString() - model.summary(print_fn=print_fn) - self.assertIn("Trainable params: 587", print_fn.contents) - - # Single-io with unused layer - model = test_utils.SmallSubclassMLP( - num_hidden=32, num_classes=4, use_bn=True, use_dp=True - ) - model.unused_layer = keras.layers.Dense(10) - model(np.ones((3, 4))) # need to build model first - print_fn = ToString() - model.summary(print_fn=print_fn) - self.assertIn("Trainable params: 356", print_fn.contents) - self.assertIn("0 (unused)", print_fn.contents) - - def test_no_dependency(self): - class Foo(keras.Model): - def __init__(self): - super().__init__() - self.isdep = keras.layers.Dense(1) - self.notdep = data_structures.NoDependency( - keras.layers.Dense(2) - ) - self.notdep_var = data_structures.NoDependency( - tf.Variable(1.0, name="notdep_var") - ) - - m = Foo() - self.assertEqual([m.isdep, m.notdep], m.layers) - self.assertEqual(1, len(m._trackable_children())) - self.assertIs(m.isdep, m._trackable_children()["isdep"]) - self.assertEqual("notdep_var:0", m.notdep_var.name) - - def test_extra_variable(self): - class ExtraVar(keras.Model): - def __init__(self): - super().__init__() - self.dense = keras.layers.Dense(1) - self.var = tf.Variable(1.0) - self.not_trainable_var = tf.Variable(2.0, trainable=False) - - def call(self, inputs): - return self.dense(inputs + self.var) - - m = ExtraVar() - self.assertTrue(m.trainable) - self.assertEqual([m.dense], m.layers) - self.assertEqual([m.var, m.not_trainable_var], m.variables) - self.assertEqual([m.var], m.trainable_variables) - self.assertEqual([m.not_trainable_var], m.non_trainable_variables) - self.assertLen(m.get_weights(), 2) - m.trainable = False - self.assertEqual([m.var, m.not_trainable_var], m.variables) - self.assertEqual([], m.trainable_variables) - self.assertEqual( - [m.var, m.not_trainable_var], m.non_trainable_variables - ) - self.assertLen(m.get_weights(), 2) - m.trainable = True - - m(tf.ones([1, 1])) - - self.assertEqual([m.dense.kernel, m.dense.bias], m.dense.variables) - self.assertEqual([m.dense.kernel, m.dense.bias], m.dense.weights) - - self.assertLen(m.get_weights(), 4) - self.assertEqual( - [m.dense.kernel, m.dense.bias, m.var, m.not_trainable_var], - m.variables, - ) - self.assertEqual( - [m.dense.kernel, m.dense.bias, m.var], m.trainable_variables - ) - self.assertEqual([m.not_trainable_var], m.non_trainable_variables) - - m.dense.trainable = False - self.assertEqual( - [m.dense.kernel, m.dense.bias, m.var, m.not_trainable_var], - m.variables, - ) - self.assertEqual([m.var], m.trainable_variables) - self.assertEqual( - [m.dense.kernel, m.dense.bias, m.not_trainable_var], - m.non_trainable_variables, - ) - self.assertLen(m.get_weights(), 4) - - def test_add_weight_in_model(self): - class MyModel(keras.Model): - def __init__(self): - super().__init__() - self.b = self.add_weight("bias", (10,)) - self.c = self.add_weight("bias2", (10,), trainable=False) - - def call(self, inputs): - return inputs + self.b + self.c - - x = tf.convert_to_tensor(np.ones((10, 10), "float32")) - model = MyModel() - model(x) - self.assertEqual(1, len(model.trainable_weights)) - self.assertEqual(1, len(model.non_trainable_weights)) - self.assertEqual(2, len(model.weights)) - - class MyModelCustomBuild(keras.Model): - def build(self, input_shape): - self.b = self.add_weight("bias", (10,)) - self.c = self.add_weight("bias2", (10,), trainable=False) - - def call(self, inputs): - return inputs + self.b + self.c - - x = tf.convert_to_tensor(np.ones((10, 10), "float32")) - model = MyModelCustomBuild() - model(x) - self.assertEqual(1, len(model.trainable_weights)) - self.assertEqual(1, len(model.non_trainable_weights)) - self.assertEqual(2, len(model.weights)) - - def test_add_update_in_model(self): - class MyModel(keras.Model): - def __init__(self): - super().__init__() - self.b = self.add_weight("bias", (10,)) - self.c = self.add_weight("bias2", (10,)) - - def call(self, inputs): - # Unconditional - self.add_update(self.b.assign(self.b * 2)) - # Conditional - self.add_update(self.c.assign(inputs[1, :])) - return inputs + self.b + self.c - - x = tf.convert_to_tensor(np.ones((10, 10), "float32")) - model = MyModel() - model(x) - - if tf.executing_eagerly(): - self.assertEqual(0, len(model.updates)) - else: - self.assertEqual(2, len(model.updates)) - - -class GraphSpecificModelSubclassingTests(tf.test.TestCase): - def test_single_io_workflow_with_tensors(self): - num_classes = 2 - num_samples = 10 - input_dim = 50 - - with tf.Graph().as_default(), self.cached_session(): - model = test_utils.SmallSubclassMLP( - num_hidden=32, num_classes=num_classes, use_dp=True, use_bn=True - ) - model.compile(loss="mse", optimizer="rmsprop") - - x = tf.ones((num_samples, input_dim)) - y = tf.zeros((num_samples, num_classes)) - - model.fit(x, y, epochs=2, steps_per_epoch=10, verbose=0) - _ = model.evaluate(steps=10, verbose=0) - - def test_multi_io_workflow_with_tensors(self): - num_classes = (2, 3) - num_samples = 10 - input_dim = 50 - - with tf.Graph().as_default(), self.cached_session(): - model = model_util.get_multi_io_subclass_model( - num_classes=num_classes, use_dp=True, use_bn=True - ) - model.compile(loss="mse", optimizer="rmsprop") - - x1 = tf.ones((num_samples, input_dim)) - x2 = tf.ones((num_samples, input_dim)) - y1 = tf.zeros((num_samples, num_classes[0])) - y2 = tf.zeros((num_samples, num_classes[1])) - - model.fit( - [x1, x2], [y1, y2], epochs=2, steps_per_epoch=10, verbose=0 - ) - _ = model.evaluate(steps=10, verbose=0) - - def test_updates_and_losses_for_nested_models_in_subclassed_model(self): - - # Case 1: deferred-build sequential nested in subclass. - class TestModel1(keras.Model): - def __init__(self): - super().__init__() - self.fc = keras.layers.Dense( - 10, input_shape=(784,), activity_regularizer="l1" - ) - self.bn = keras.Sequential( - [keras.layers.BatchNormalization(axis=1)] - ) - - def call(self, x): - return self.bn(self.fc(x)) - - with tf.compat.v1.get_default_graph().as_default(), self.cached_session(): # noqa: E501 - model = TestModel1() - - x = tf.ones(shape=[100, 784], dtype="float32") - model(x) - self.assertLen(model.updates, 2) - self.assertLen(model.losses, 1) - - # Case 2: placeholder-sequential nested in subclass. - class TestModel2(keras.Model): - def __init__(self): - super().__init__() - self.fc = keras.layers.Dense( - 10, input_shape=(784,), activity_regularizer="l1" - ) - self.bn = keras.Sequential( - [keras.layers.BatchNormalization(axis=1, input_shape=(10,))] - ) - - def call(self, x): - return self.bn(self.fc(x)) - - with tf.compat.v1.get_default_graph().as_default(), self.cached_session(): # noqa: E501 - model = TestModel2() - - x = tf.ones(shape=[100, 784], dtype="float32") - model(x) - self.assertEqual(len(model.get_updates_for(x)), 2) - self.assertEqual(len(model.get_losses_for(x)), 1) - - # Case 3: functional-API model nested in subclass. - with tf.compat.v1.get_default_graph().as_default(): - inputs = keras.Input((10,)) - outputs = keras.layers.BatchNormalization(axis=1)(inputs) - bn = keras.Model(inputs, outputs) - - class TestModel3(keras.Model): - def __init__(self): - super().__init__() - self.fc = keras.layers.Dense( - 10, input_shape=(784,), activity_regularizer="l1" - ) - self.bn = bn - - def call(self, x): - return self.bn(self.fc(x)) - - with self.cached_session(): - model = TestModel3() - - x = tf.ones(shape=[100, 784], dtype="float32") - model(x) - self.assertEqual(len(model.get_updates_for(x)), 2) - self.assertEqual(len(model.get_losses_for(x)), 1) - - def test_multi_io_workflow_with_numpy_arrays_and_custom_placeholders(self): - num_classes = (2, 3) - num_samples = 1000 - input_dim = 50 - - with tf.Graph().as_default(), self.cached_session(): - model = model_util.get_multi_io_subclass_model( - num_classes=num_classes, use_dp=True, use_bn=True - ) - model.compile(loss="mse", optimizer="rmsprop") - - x1 = np.ones((num_samples, input_dim)) - x2 = np.ones((num_samples, input_dim)) - y1 = np.zeros((num_samples, num_classes[0])) - y2 = np.zeros((num_samples, num_classes[1])) - - x2_placeholder = tf.compat.v1.placeholder( - dtype="float32", shape=(None, input_dim) - ) - model._set_inputs([x1, x2_placeholder]) - - model.fit([x1, x2], [y1, y2], epochs=2, batch_size=32, verbose=0) - _ = model.evaluate([x1, x2], [y1, y2], verbose=0) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class CustomCallSignatureTests(tf.test.TestCase, parameterized.TestCase): - def test_no_inputs_in_signature(self): - model = model_util.CustomCallModel() - first = tf.ones([2, 3]) - second = tf.ones([2, 5]) - output = model(first, second) - self.evaluate([v.initializer for v in model.variables]) - expected_output = self.evaluate( - model.dense1(first) + model.dense2(second) - ) - self.assertAllClose(expected_output, self.evaluate(output)) - output = model(first, second, fiddle_with_output="yes") - self.assertAllClose(10.0 * expected_output, self.evaluate(output)) - output = model(first, second=second, training=False) - self.assertAllClose(expected_output, self.evaluate(output)) - - def test_training_args_call_build(self): - input_dim = 2 - - model = model_util.TrainingNoDefaultModel() - self.assertFalse(model.built, "Model should not have been built") - self.assertFalse( - model.weights, - "Model should have no weights since it has not been built.", - ) - model.build((None, input_dim)) - self.assertTrue( - model.weights, - "Model should have weights now that it has been properly built.", - ) - self.assertTrue( - model.built, "Model should be built after calling `build`." - ) - - def test_training_and_mask_args_call_build(self): - input_dim = 2 - - model = model_util.TrainingMaskingModel() - self.assertFalse(model.built, "Model should not have been built") - self.assertFalse( - model.weights, - "Model should have no weights since it has not been built.", - ) - model.build((None, input_dim)) - self.assertTrue( - model.weights, - "Model should have weights now that it has been properly built.", - ) - self.assertTrue( - model.built, "Model should be built after calling `build`." - ) - - def test_custom_call_kwargs_and_build(self): - first_input_shape = (2, 3) - second_input_shape = (2, 5) - - model = model_util.CustomCallModel() - self.assertFalse(model.built, "Model should not have been built") - self.assertFalse( - model.weights, - "Model should have no weights since it has not been built.", - ) - with self.assertRaisesRegex( - ValueError, "cannot build your model if it has positional" - ): - model.build(input_shape=[first_input_shape, second_input_shape]) - - def test_kwargs_in_signature(self): - class HasKwargs(keras.Model): - def call(self, x, y=3, **kwargs): - return x - - model = HasKwargs() - arg = tf.ones([1]) - model(arg, a=3) - if not tf.executing_eagerly(): - self.assertLen(model.inputs, 1) - - @tf_test_utils.assert_no_new_tensors - @tf_test_utils.assert_no_garbage_created - def test_training_no_default(self): - if not tf.executing_eagerly(): - return - model = model_util.TrainingNoDefaultModel() - arg = tf.ones([1, 1]) - model(arg, True) - - def test_positional_arg_in_call(self): - class ModelWithPositionalArgs(keras.Model): - def call(self, x, x2, x3=None): - return x + x2 - - x = np.ones((10, 1)) - y = np.ones((10, 1)) - m = ModelWithPositionalArgs() - m.compile("sgd", "mse") - with self.assertRaisesRegex(ValueError, r"Models passed to `fit`"): - m.fit(x, y, batch_size=2) - with self.assertRaisesRegex(ValueError, r"Models passed to `evaluate`"): - m.evaluate(x, y, batch_size=2) - with self.assertRaisesRegex(ValueError, r"Models passed to `predict`"): - m.predict(x, batch_size=2) - with self.assertRaisesRegex( - ValueError, r"Models passed to `train_on_batch`" - ): - m.train_on_batch(x, y) - with self.assertRaisesRegex( - ValueError, r"Models passed to `test_on_batch`" - ): - m.test_on_batch(x, y) - with self.assertRaisesRegex( - ValueError, r"Models passed to `predict_on_batch`" - ): - m.predict_on_batch(x) - - def test_deepcopy(self): - if not tf.executing_eagerly(): - self.skipTest("Run in eager mode only.") - - class MyModel(keras.Model): - def __init__(self): - super().__init__() - self.my_variable = tf.Variable(0.0, trainable=False) - self.layer = keras.layers.Dense(4) - - def call(self, obs): - return self.layer(obs) - - model = MyModel() - model.my_variable.assign_add(1.0) - - new_model = copy.deepcopy(model) - self.assertEqual(model.my_variable.numpy(), 1.0) - self.assertEqual(new_model.my_variable.numpy(), 1.0) - - model.my_variable.assign_add(1.0) - self.assertEqual(model.my_variable.numpy(), 2.0) - self.assertEqual(new_model.my_variable.numpy(), 1.0) - - # Check that Trackable logic still works. - self.assertLen(new_model.variables, 1) - self.assertLen(new_model.layers, 1) - - def test_batch_counters_not_in_variables(self): - class MyModel(keras.Model): - def __init__(self): - super().__init__() - self.layer = keras.layers.Dense(4) - - def call(self, obs): - return self.layer(obs) - - model = MyModel() - model(np.ones((10, 10))) - self.assertLen(model.variables, 2) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/tests/model_subclassing_test_util.py b/keras/tests/model_subclassing_test_util.py deleted file mode 100644 index 5d06f6c4540..00000000000 --- a/keras/tests/model_subclassing_test_util.py +++ /dev/null @@ -1,158 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras models for use in Model subclassing tests.""" - -import keras -from keras.testing_infra import test_utils - - -class SimpleConvTestModel(keras.Model): - def __init__(self, num_classes=10): - super().__init__(name="test_model") - self.num_classes = num_classes - - self.conv1 = keras.layers.Conv2D(32, (3, 3), activation="relu") - self.flatten = keras.layers.Flatten() - self.dense1 = keras.layers.Dense(num_classes, activation="softmax") - - def call(self, x): - x = self.conv1(x) - x = self.flatten(x) - return self.dense1(x) - - -def get_multi_io_subclass_model(use_bn=False, use_dp=False, num_classes=(2, 3)): - """Creates MultiIOModel for the tests of subclass model.""" - shared_layer = keras.layers.Dense(32, activation="relu") - branch_a = [shared_layer] - if use_dp: - branch_a.append(keras.layers.Dropout(0.5)) - branch_a.append(keras.layers.Dense(num_classes[0], activation="softmax")) - - branch_b = [shared_layer] - if use_bn: - branch_b.append(keras.layers.BatchNormalization()) - branch_b.append(keras.layers.Dense(num_classes[1], activation="softmax")) - - model = test_utils._MultiIOSubclassModel( - branch_a, branch_b, name="test_model" - ) - return model - - -class NestedTestModel1(keras.Model): - """A model subclass nested inside a model subclass.""" - - def __init__(self, num_classes=2): - super().__init__(name="nested_model_1") - self.num_classes = num_classes - self.dense1 = keras.layers.Dense(32, activation="relu") - self.dense2 = keras.layers.Dense(num_classes, activation="relu") - self.bn = keras.layers.BatchNormalization() - self.test_net = test_utils.SmallSubclassMLP( - num_hidden=32, num_classes=4, use_bn=True, use_dp=True - ) - - def call(self, inputs): - x = self.dense1(inputs) - x = self.bn(x) - x = self.test_net(x) - return self.dense2(x) - - -class NestedTestModel2(keras.Model): - """A model subclass with a functional-API graph network inside.""" - - def __init__(self, num_classes=2): - super().__init__(name="nested_model_2") - self.num_classes = num_classes - self.dense1 = keras.layers.Dense(32, activation="relu") - self.dense2 = keras.layers.Dense(num_classes, activation="relu") - self.bn = self.bn = keras.layers.BatchNormalization() - self.test_net = self.get_functional_graph_model(32, 4) - - @staticmethod - def get_functional_graph_model(input_dim, num_classes): - # A simple functional-API model (a.k.a. graph network) - inputs = keras.Input(shape=(input_dim,)) - x = keras.layers.Dense(32, activation="relu")(inputs) - x = keras.layers.BatchNormalization()(x) - outputs = keras.layers.Dense(num_classes)(x) - return keras.Model(inputs, outputs) - - def call(self, inputs): - x = self.dense1(inputs) - x = self.bn(x) - x = self.test_net(x) - return self.dense2(x) - - -def get_nested_model_3(input_dim, num_classes): - # A functional-API model with a subclassed model inside. - # NOTE: this requires the inner subclass to implement - # `compute_output_shape`. - - inputs = keras.Input(shape=(input_dim,)) - x = keras.layers.Dense(32, activation="relu")(inputs) - x = keras.layers.BatchNormalization()(x) - - class Inner(keras.Model): - def __init__(self): - super().__init__() - self.dense1 = keras.layers.Dense(32, activation="relu") - self.dense2 = keras.layers.Dense(5, activation="relu") - self.bn = keras.layers.BatchNormalization() - - def call(self, inputs): - x = self.dense1(inputs) - x = self.dense2(x) - return self.bn(x) - - test_model = Inner() - x = test_model(x) - outputs = keras.layers.Dense(num_classes)(x) - return keras.Model(inputs, outputs, name="nested_model_3") - - -class CustomCallModel(keras.Model): - def __init__(self): - super().__init__() - self.dense1 = keras.layers.Dense(1, activation="relu") - self.dense2 = keras.layers.Dense(1, activation="softmax") - - def call(self, first, second, fiddle_with_output="no", training=True): - combined = self.dense1(first) + self.dense2(second) - if fiddle_with_output == "yes": - return 10.0 * combined - else: - return combined - - -class TrainingNoDefaultModel(keras.Model): - def __init__(self): - super().__init__() - self.dense1 = keras.layers.Dense(1) - - def call(self, x, training): - return self.dense1(x) - - -class TrainingMaskingModel(keras.Model): - def __init__(self): - super().__init__() - self.dense1 = keras.layers.Dense(1) - - def call(self, x, training=False, mask=None): - return self.dense1(x) diff --git a/keras/tests/saved_model_test.py b/keras/tests/saved_model_test.py deleted file mode 100644 index dd80c7d007c..00000000000 --- a/keras/tests/saved_model_test.py +++ /dev/null @@ -1,65 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for trackable object SavedModel save.""" - -import os - -import tensorflow.compat.v2 as tf - -from keras.layers import core -from keras.optimizers.legacy import adam - -# isort: off -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -class _ModelWithOptimizerUsingDefun(tf.train.Checkpoint): - def __init__(self): - self.dense = core.Dense(1) - self.optimizer = adam.Adam(0.01) - - @tf.function( - input_signature=( - tf.TensorSpec([None, 2], tf.float32), - tf.TensorSpec([None], tf.float32), - ), - ) - def call(self, x, y): - with tf.GradientTape() as tape: - loss = tf.reduce_mean((self.dense(x) - y) ** 2.0) - trainable_variables = self.dense.trainable_variables - gradients = tape.gradient(loss, trainable_variables) - self.optimizer.apply_gradients(zip(gradients, trainable_variables)) - return {"loss": loss} - - -class MemoryTests(tf.test.TestCase): - def setUp(self): - super().setUp() - self._model = _ModelWithOptimizerUsingDefun() - - @tf_test_utils.assert_no_garbage_created - def DISABLED_test_no_reference_cycles(self): - x = tf.constant([[3.0, 4.0]]) - y = tf.constant([2.0]) - self._model.call(x, y) - save_dir = os.path.join(self.get_temp_dir(), "saved_model") - tf.saved_model.save(self._model, save_dir, self._model.call) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/tests/saver_test.py b/keras/tests/saver_test.py deleted file mode 100644 index bed83b35bdc..00000000000 --- a/keras/tests/saver_test.py +++ /dev/null @@ -1,164 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= -"""Tests for tensorflow.python.training.saver.py.""" - -import functools -import os - -import tensorflow.compat.v2 as tf - -from keras.engine import training -from keras.layers import core - -# isort: off -from tensorflow.python.checkpoint import ( - checkpoint as trackable_utils, -) - - -class NonLayerTrackable(tf.Module): - def __init__(self): - super().__init__() - self.a_variable = trackable_utils.add_variable( - self, name="a_variable", shape=[] - ) - - -class MyModel(training.Model): - """A concrete Model for testing.""" - - def __init__(self): - super().__init__() - self._named_dense = core.Dense(1, use_bias=True) - self._second = core.Dense(1, use_bias=False) - # We can still track Trackables which aren't Layers. - self._non_layer = NonLayerTrackable() - - def call(self, values): - ret = self._second(self._named_dense(values)) - return ret - - -class TrackableCompatibilityTests(tf.test.TestCase): - def _initialized_model(self): - input_value = tf.constant([[3.0]]) - model = MyModel() - optimizer = tf.compat.v1.train.AdamOptimizer(0.001) - optimizer_step = tf.compat.v1.train.get_or_create_global_step() - root_trackable = tf.train.Checkpoint( - optimizer=optimizer, model=model, optimizer_step=optimizer_step - ) - train_op = optimizer.minimize( - functools.partial(model, input_value), global_step=optimizer_step - ) - self.evaluate(trackable_utils.gather_initializers(root_trackable)) - self.evaluate(train_op) - # A regular variable, a slot variable, and a non-slot Optimizer variable - # with known values to check when loading. - self.evaluate(model._named_dense.bias.assign([1.0])) - self.evaluate( - optimizer.get_slot(var=model._named_dense.bias, name="m").assign( - [2.0] - ) - ) - beta1_power, _ = optimizer._get_beta_accumulators() - self.evaluate(beta1_power.assign(3.0)) - return root_trackable - - def _set_sentinels(self, root_trackable): - self.evaluate(root_trackable.model._named_dense.bias.assign([101.0])) - self.evaluate( - root_trackable.optimizer.get_slot( - var=root_trackable.model._named_dense.bias, name="m" - ).assign([102.0]) - ) - beta1_power, _ = root_trackable.optimizer._get_beta_accumulators() - self.evaluate(beta1_power.assign(103.0)) - - def _check_sentinels(self, root_trackable): - self.assertAllEqual( - [1.0], self.evaluate(root_trackable.model._named_dense.bias) - ) - self.assertAllEqual( - [2.0], - self.evaluate( - root_trackable.optimizer.get_slot( - var=root_trackable.model._named_dense.bias, name="m" - ) - ), - ) - beta1_power, _ = root_trackable.optimizer._get_beta_accumulators() - self.assertAllEqual(3.0, self.evaluate(beta1_power)) - - def testLoadFromObjectBasedGraph(self): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - - save_graph = tf.Graph() - with save_graph.as_default(), self.session(graph=save_graph) as sess: - root = self._initialized_model() - object_saver = tf.train.Checkpoint(root=root) - save_path = object_saver.save(file_prefix=checkpoint_prefix) - - # An incompatible object-based checkpoint to check error messages - var = tf.Variable(1.0, name="a") - self.evaluate(var.initializer) - second_saver = tf.train.Checkpoint(v=var) - second_path = second_saver.save( - file_prefix=os.path.join(checkpoint_directory, "second") - ) - - restore_graph = tf.Graph() - with restore_graph.as_default(), self.session( - graph=restore_graph - ) as sess: - root = self._initialized_model() - self._set_sentinels(root) - saver = tf.compat.v1.train.Saver() - saver.restore(sess=sess, save_path=save_path) - self._check_sentinels(root) - before_second_restore_ops = restore_graph.get_operations() - # Test that multiple restores do not pollute the graph - saver.restore(sess=sess, save_path=save_path) - self.assertEqual( - before_second_restore_ops, restore_graph.get_operations() - ) - with self.assertRaisesRegex( - tf.errors.NotFoundError, "Could not find some variables" - ): - saver.restore(sess=sess, save_path=second_path) - - def testLoadFromObjectBasedEager(self): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - - save_graph = tf.Graph() - with save_graph.as_default(), self.session(graph=save_graph): - root = self._initialized_model() - object_saver = tf.train.Checkpoint(root=root) - save_path = object_saver.save(file_prefix=checkpoint_prefix) - - with tf.__internal__.eager_context.eager_mode(): - root = self._initialized_model() - self._set_sentinels(root) - saver = tf.compat.v1.train.Saver( - root.model.variables + root.optimizer.variables() - ) - saver.restore(sess=None, save_path=save_path) - self._check_sentinels(root) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/tests/serialization_util_test.py b/keras/tests/serialization_util_test.py deleted file mode 100644 index 71652e63e5d..00000000000 --- a/keras/tests/serialization_util_test.py +++ /dev/null @@ -1,68 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for serialization functions.""" - -import json - -import tensorflow.compat.v2 as tf - -from keras.engine import input_layer -from keras.engine import sequential -from keras.engine import training -from keras.layers import core -from keras.saving.legacy.saved_model import json_utils -from keras.testing_infra import test_combinations - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class SerializationTests(test_combinations.TestCase): - def test_serialize_dense(self): - dense = core.Dense(3) - dense(tf.constant([[4.0]])) - round_trip = json.loads( - json.dumps(dense, default=json_utils.get_json_type) - ) - self.assertEqual(3, round_trip["config"]["units"]) - - def test_serialize_sequential(self): - model = sequential.Sequential() - model.add(core.Dense(4)) - model.add(core.Dense(5)) - model(tf.constant([[1.0]])) - sequential_round_trip = json.loads( - json.dumps(model, default=json_utils.get_json_type) - ) - self.assertEqual( - # Note that `config['layers'][0]` will be an InputLayer in V2 - # (but not in V1) - 5, - sequential_round_trip["config"]["layers"][-1]["config"]["units"], - ) - - def test_serialize_model(self): - x = input_layer.Input(shape=[3]) - y = core.Dense(10)(x) - model = training.Model(x, y) - model(tf.constant([[1.0, 1.0, 1.0]])) - model_round_trip = json.loads( - json.dumps(model, default=json_utils.get_json_type) - ) - self.assertEqual( - 10, model_round_trip["config"]["layers"][1]["config"]["units"] - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/tests/temporal_sample_weights_correctness_test.py b/keras/tests/temporal_sample_weights_correctness_test.py deleted file mode 100644 index f6efd8117c2..00000000000 --- a/keras/tests/temporal_sample_weights_correctness_test.py +++ /dev/null @@ -1,595 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests temporal sample weights correctness using Keras model.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import layers -from keras import metrics -from keras.optimizers import legacy as optimizer_legacy -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -class Bias(layers.Layer): - """Layer that add a bias to its inputs.""" - - def build(self, input_shape): - self.bias = self.add_weight("bias", (1,), initializer="zeros") - - def call(self, inputs): - return inputs + self.bias - - def compute_output_shape(self, input_shape): - return input_shape - - -def get_multi_io_temporal_model(): - timesteps = 2 - inp_1 = layers.Input(shape=(1,), name="input_1") - inp_2 = layers.Input(shape=(1,), name="input_2") - x = layers.RepeatVector(timesteps) - out_1 = layers.TimeDistributed(Bias(), name="output_1") - out_2 = layers.TimeDistributed(Bias(), name="output_2") - - branch_a = [inp_1, x, out_1] - branch_b = [inp_2, x, out_2] - return test_utils.get_multi_io_model(branch_a, branch_b) - - -def get_compiled_multi_io_model_temporal(sample_weight_mode): - model = get_multi_io_temporal_model() - model.compile( - optimizer=optimizer_legacy.gradient_descent.SGD(0.1), - loss="mae", - metrics=[metrics.MeanAbsoluteError(name="mae")], - weighted_metrics=[metrics.MeanAbsoluteError(name="mae_2")], - sample_weight_mode=sample_weight_mode, - run_eagerly=test_utils.should_run_eagerly(), - ) - return model - - -def run_with_different_sample_weight_mode_inputs(fn, partial_sw=True): - """Executes the given function with different sample weight mode inputs. - - Args: - fn: Training or eval function to execute. - partial_sw: Boolean flag to indicate whether temporal sample weight mode - should be set partially just for one output. - """ - model = get_compiled_multi_io_model_temporal(sample_weight_mode="temporal") - fn(model) - - model = get_compiled_multi_io_model_temporal( - sample_weight_mode=["temporal", "temporal"] - ) - fn(model) - - model = get_compiled_multi_io_model_temporal( - sample_weight_mode={"output_1": "temporal", "output_2": "temporal"} - ) - fn(model) - - if partial_sw: - model = get_compiled_multi_io_model_temporal( - sample_weight_mode=[None, "temporal"] - ) - fn(model) - - # TODO(b/129700800): Enable after bug is fixed. - # model = get_compiled_multi_io_model_temporal(sample_weight_mode={ - # 'output_2': 'temporal' - # }) - # fn(model) - - -@test_combinations.run_with_all_model_types(exclude_models=["sequential"]) -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class TestMetricsCorrectnessMultiIOTemporal(test_combinations.TestCase): - def custom_generator_multi_io_temporal(self, sample_weights=None): - """Generator for getting data for temporal multi io model. - - Args: - sample_weights: List of sample_weights. - - Yields: - Tuple of inputs, label, sample weights data. - """ - batch_size = 3 - num_samples = 3 - iteration = 0 - while True: - batch_index = iteration * batch_size % num_samples - iteration += 1 - start = batch_index - end = start + batch_size - x = [self.x[start:end], self.x[start:end]] - y = [self.y1[start:end], self.y2[start:end]] - if sample_weights: - sw = tf.nest.map_structure( - lambda w: w[start:end], sample_weights - ) - else: - sw = None - yield x, y, sw - - def setUp(self): - super(TestMetricsCorrectnessMultiIOTemporal, self).setUp() - - self.x = np.asarray([[0.0], [1.0], [2.0]]) - self.y1 = np.asarray([[[0.5], [1.0]], [[2.0], [2.5]], [[3.5], [2.5]]]) - self.y2 = np.asarray([[[0.5], [1.5]], [[2.0], [1.5]], [[3.5], [3.0]]]) - - # Without weights: - # Epoch 1 - bias = 0 - # y_pred_1 = [[[0.], [0.]], [[1.], [1.]], [[2.], [2.]]] - # y_pred_2 = [[[0.], [0.]], [[1.], [1.]], [[2.], [2.]]] - # mae (y1 - y_pred_1) = [[[.5], [1.]], [[1.], [1.5]], [[1.5], [.5]]] - # mae = [[3/3, 3/3]] = [[1, 1]] = 2/2 = 1 - # mae_2 (y2 - y_pred_2) = [[[.5], [1.5]], [[1.], [.5]], [[1.5], [1.]]] - # mae_2 = [[3/3, 3/3]] = [[1, 1]] = 2/2 = 1 - - # Epoch 2 - bias = 0.1 (2/2 * 0.1) - # y_pred_1 = [[[.1], [.1]], [[1.1], [1.1]], [[2.1], [2.1]]] - # y_pred_2 = [[[.1], [.1]], [[1.1], [1.1]], [[2.1], [2.1]]] - # mae (y1 - y_pred_1) = [[[.4], [.9]], [[.9], [1.4]], [[1.4], [.4]]] - # mae = [[2.7/3, 2.7/3]] = [[0.9, 0.9]] = 1.8/2 = 0.9 - # mae_2 (y2 - y_pred_2) = [[[.4], [1.4]], [[.9], [.4]], [[1.4], [.9]]] - # mae_2 = [[2.7/3, 2.7/3]] = [[0.9, 0.9]] = 1.8/2 = - # 0.9 - - self.expected_fit_result = { - "output_1_mae": [1, 0.9], - "output_2_mae": [1, 0.9], - "output_1_mae_2": [1, 0.9], - "output_2_mae_2": [1, 0.9], - "loss": [2.0, 1.8], - "output_1_loss": [1, 0.9], - "output_2_loss": [1, 0.9], - } - - self.sample_weight_1 = np.asarray([[0.5, 2.0], [0.5, 2.0], [0.5, 2.0]]) - self.sample_weight_2 = np.asarray([[2.0, 0.5], [2.0, 0.5], [2.0, 0.5]]) - - # With weights: - # Epoch 1 - # y_pred_1 = [[[0.], [0.]], [[1.], [1.]], [[2.], [2.]]] - # y_pred_2 = [[[0.], [0.]], [[1.], [1.]], [[2.], [2.]]] - # mae (y1 - y_pred_1) = [[[.5], [1.]], [[1.], [1.5]], [[1.5], [.5]]] - # with weights = [[[.5 * .5], [1 * 2]], - # [[1 * .5], [1.5 * 2]], - # [[1.5 * .5], [.5 * 2]]] - # mae (w/o weights) = [[3/3, 3/3]] = [[1, 1]] = 2/2 = 1 - # mae (weighted mean) = [[1.5/1.5, 6/6]] = [[1, 1]] = 2/2 = 1 - # mae (sum over bs) = [[1.5/3, 6/3]] = [[.5, 2]] = 2.5/2 = 1.25 - - # mae_2 (y2 - y_pred_2) = [[[.5], [1.5]], [[1.], [.5]], [[1.5], [1.]]] - # with weights = [[[.5 * 2], [1.5 * .5]], - # [[1. * 2], [.5 * .5]], - # [[1.5 * 2], [1. * .5]]] - # mae_2 (w/o weights) = [[3/3, 3/3]] = [[1, 1]] = 2/2 = 1 - # mae_2 (weighted mean) = [[6/6, 1.5/1.5]] = [[1, 1]] = 2/2 = 1 - # mae_2 (sum over bs) = [[6/3, 1.5/3]] = [[2, .5]] = 2.5/2 = 1.25 - - # Epoch 2 - bias = 0.125 (2.5/2 * 0.1) - # y_pred_1 = [[[0.125], [0.125]], [[1.125], [1.125]], [[2.125], - # [2.125]]] - # y_pred_2 = [[[0.125], [0.125]], [[1.125], [1.125]], [[2.125], - # [2.125]]] - - # mae (y1 - y_pred_1) = [[[.375], [.875]], - # [[.875], [1.375]], - # [[1.375], [.375]]] - # with weights = [[[.375 * .5], [.875 * 2.]], - # [[.875 * .5], [1.375 * 2.]], - # [[1.375 * .5], [.375 * 2.]]] - # mae (w/o weights) = [[2.625/3, 2.625/3]] = (.875+.875)/2 = .875 - # mae (weighted mean) = [[1.3125/1.5, 5.25/6]] = (.875+.875)/2 = .875 - # mae (sum over bs) = [[1.3125/3, 5.25/3]] = (0.4375+1.75)/2 = - # 1.09375 - - # mae_2 (y2 - y_pred_2) = [[[.375], [1.375]], - # [[.875], [.375]], - # [[1.375], [.875]]] - # with weights = [[[.375 * 2.], [1.375 * .5]], - # [[.875 * 2.], [.375 * .5]], - # [[1.375 * 2.], [.875 * .5]]] - # mae_2 (w/o weights) = [[2.625/3, 2.625/3]] = (.875+.875)/2 = .875 - # mae_2 (weighted mean) = [[5.25/6, 1.3125/1.5]] = (.875+.875)/2 = - # .875 - # mae_2 (sum over bs) = [[5.25/3, 1.3125/3]] = (1.75+0.4375)/2 = - # 1.09375 - - self.expected_fit_result_with_weights = { - "output_1_mae": [1, 0.875], - "output_2_mae": [1, 0.875], - "output_1_mae_2": [1, 0.875], - "output_2_mae_2": [1, 0.875], - "loss": [2.5, 2.1875], - "output_1_loss": [1.25, 1.09375], - "output_2_loss": [1.25, 1.09375], - } - - self.expected_fit_result_with_weights_output_2 = { - "output_1_mae": [1.0, 0.9], - "output_2_mae": [1, 0.875], - "output_1_mae_2": [1.0, 0.9], - "output_2_mae_2": [1.0, 0.875], - "loss": [2.25, 1.99375], - "output_1_loss": [1.0, 0.9], - "output_2_loss": [1.25, 1.09375], - } - - # In the order: 'loss', 'output_1_loss', 'output_2_loss', - # 'output_1_mae', 'output_1_mae_2', - # 'output_2_mae', 'output_2_mae_2' - self.expected_batch_result_with_weights = [ - 2.1875, - 1.09375, - 1.09375, - 0.875, - 0.875, - 0.875, - 0.875, - ] - self.expected_batch_result_with_weights_output_2 = [ - 1.99375, - 0.9, - 1.09375, - 0.9, - 0.9, - 0.875, - 0.875, - ] - self.expected_batch_result = [1.8, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9] - - def test_fit(self): - def _train_and_assert(model): - history = model.fit( - [self.x, self.x], - [self.y1, self.y2], - batch_size=3, - epochs=2, - shuffle=False, - ) - for key, value in self.expected_fit_result.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - run_with_different_sample_weight_mode_inputs(_train_and_assert) - - def test_fit_with_sample_weight(self): - def _train_and_assert(model): - history = model.fit( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - batch_size=3, - epochs=2, - shuffle=False, - ) - for key, value in self.expected_fit_result_with_weights.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - run_with_different_sample_weight_mode_inputs( - _train_and_assert, partial_sw=False - ) - - def test_fit_with_partial_sample_weight(self): - def _train_and_assert(model): - history = model.fit( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_2": self.sample_weight_2, - }, - batch_size=3, - epochs=2, - shuffle=False, - ) - for ( - key, - value, - ) in self.expected_fit_result_with_weights_output_2.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - run_with_different_sample_weight_mode_inputs(_train_and_assert) - - def test_eval(self): - def _eval_and_assert(model): - model.train_on_batch([self.x, self.x], [self.y1, self.y2]) - eval_result = model.evaluate( - [self.x, self.x], [self.y1, self.y2], batch_size=3 - ) - self.assertAllClose(eval_result, self.expected_batch_result, 1e-3) - - run_with_different_sample_weight_mode_inputs(_eval_and_assert) - - def test_eval_with_sample_weight(self): - def _eval_and_assert(model): - model.train_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - ) - eval_result = model.evaluate( - [self.x, self.x], - [self.y1, self.y2], - batch_size=3, - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - ) - self.assertAllClose( - eval_result, self.expected_batch_result_with_weights, 1e-3 - ) - - run_with_different_sample_weight_mode_inputs( - _eval_and_assert, partial_sw=False - ) - - def test_eval_with_partial_sample_weight(self): - def _eval_and_assert(model): - model.train_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_2": self.sample_weight_2, - }, - ) - eval_result = model.evaluate( - [self.x, self.x], - [self.y1, self.y2], - batch_size=3, - sample_weight={ - "output_2": self.sample_weight_2, - }, - ) - self.assertAllClose( - eval_result, - self.expected_batch_result_with_weights_output_2, - 1e-3, - ) - - run_with_different_sample_weight_mode_inputs(_eval_and_assert) - - def test_train_on_batch(self): - def _train_and_assert(model): - for _ in range(2): - result = model.train_on_batch( - [self.x, self.x], [self.y1, self.y2] - ) - self.assertAllClose(result, self.expected_batch_result, 1e-3) - - run_with_different_sample_weight_mode_inputs(_train_and_assert) - - def test_train_on_batch_with_sample_weight(self): - def _train_and_assert(model): - for _ in range(2): - result = model.train_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - ) - self.assertAllClose( - result, self.expected_batch_result_with_weights, 1e-3 - ) - - run_with_different_sample_weight_mode_inputs( - _train_and_assert, partial_sw=False - ) - - def test_train_on_batch_with_partial_sample_weight(self): - def _train_and_assert(model): - for _ in range(2): - result = model.train_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_2": self.sample_weight_2, - }, - ) - self.assertAllClose( - result, self.expected_batch_result_with_weights_output_2, 1e-3 - ) - - run_with_different_sample_weight_mode_inputs(_train_and_assert) - - def test_test_on_batch(self): - def _test_and_assert(model): - model.train_on_batch([self.x, self.x], [self.y1, self.y2]) - result = model.test_on_batch([self.x, self.x], [self.y1, self.y2]) - self.assertAllClose(result, self.expected_batch_result, 1e-3) - - run_with_different_sample_weight_mode_inputs(_test_and_assert) - - def test_test_on_batch_with_sample_weight(self): - def _test_and_assert(model): - model.train_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - ) - result = model.test_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - ) - self.assertAllClose( - result, self.expected_batch_result_with_weights, 1e-3 - ) - - run_with_different_sample_weight_mode_inputs( - _test_and_assert, partial_sw=False - ) - - def test_test_on_batch_with_partial_sample_weight(self): - def _test_and_assert(model): - model.train_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_2": self.sample_weight_2, - }, - ) - result = model.test_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_2": self.sample_weight_2, - }, - ) - self.assertAllClose( - result, self.expected_batch_result_with_weights_output_2, 1e-3 - ) - - run_with_different_sample_weight_mode_inputs(_test_and_assert) - - def test_fit_generator(self): - def _train_and_assert(model): - history = model.fit_generator( - self.custom_generator_multi_io_temporal(), - steps_per_epoch=1, - epochs=2, - ) - for key, value in self.expected_fit_result.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - run_with_different_sample_weight_mode_inputs(_train_and_assert) - - def test_fit_generator_with_sample_weight(self): - def _train_and_assert(model): - history = model.fit_generator( - self.custom_generator_multi_io_temporal( - sample_weights=[self.sample_weight_1, self.sample_weight_2] - ), - steps_per_epoch=1, - epochs=2, - ) - for key, value in self.expected_fit_result_with_weights.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - run_with_different_sample_weight_mode_inputs( - _train_and_assert, partial_sw=False - ) - - def test_fit_generator_with_partial_sample_weight(self): - def _train_and_assert(model): - history = model.fit_generator( - self.custom_generator_multi_io_temporal( - sample_weights={"output_2": self.sample_weight_2} - ), - steps_per_epoch=1, - epochs=2, - ) - for ( - key, - value, - ) in self.expected_fit_result_with_weights_output_2.items(): - self.assertAllClose(history.history[key], value, 1e-3) - - run_with_different_sample_weight_mode_inputs(_train_and_assert) - - def test_eval_generator(self): - def _test_and_assert(model): - model.train_on_batch([self.x, self.x], [self.y1, self.y2]) - eval_result = model.evaluate_generator( - self.custom_generator_multi_io_temporal(), steps=1 - ) - self.assertAllClose(eval_result, self.expected_batch_result, 1e-3) - - run_with_different_sample_weight_mode_inputs(_test_and_assert) - - def test_eval_generator_with_sample_weight(self): - def _test_and_assert(model): - model.train_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_1": self.sample_weight_1, - "output_2": self.sample_weight_2, - }, - ) - eval_result = model.evaluate_generator( - self.custom_generator_multi_io_temporal( - sample_weights=[self.sample_weight_1, self.sample_weight_2] - ), - steps=2, - ) - self.assertAllClose( - eval_result, self.expected_batch_result_with_weights, 1e-3 - ) - - run_with_different_sample_weight_mode_inputs( - _test_and_assert, partial_sw=False - ) - - def test_eval_generator_with_partial_sample_weight(self): - def _test_and_assert(model): - model.train_on_batch( - [self.x, self.x], - [self.y1, self.y2], - sample_weight={ - "output_2": self.sample_weight_2, - }, - ) - eval_result = model.evaluate_generator( - self.custom_generator_multi_io_temporal( - sample_weights={"output_2": self.sample_weight_2} - ), - steps=2, - ) - self.assertAllClose( - eval_result, - self.expected_batch_result_with_weights_output_2, - 1e-3, - ) - - run_with_different_sample_weight_mode_inputs(_test_and_assert) - - def test_error_on_fit_with_class_weight(self): - def _train_and_assert(model): - with self.assertRaises(ValueError): - model.fit( - [self.x, self.x], - [self.y1, self.y2], - class_weight={"output_1": {0.5: 0.5, 2.0: 0.5, 3.5: 0.5}}, - batch_size=3, - epochs=2, - shuffle=False, - ) - - run_with_different_sample_weight_mode_inputs(_train_and_assert) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/tests/tracking_test.py b/keras/tests/tracking_test.py deleted file mode 100644 index c8c639dcd36..00000000000 --- a/keras/tests/tracking_test.py +++ /dev/null @@ -1,639 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import os - -import numpy -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.engine import sequential -from keras.engine import training -from keras.layers import core -from keras.layers.normalization import batch_normalization_v1 -from keras.testing_infra import test_combinations - -# isort: off -from tensorflow.python.trackable import data_structures -from tensorflow.python.checkpoint import checkpoint as util - - -class HasList(training.Model): - def __init__(self): - super().__init__() - self.layer_list = tf.__internal__.tracking.wrap([core.Dense(3)]) - self.layer_list.append(core.Dense(4)) - self.layer_list.extend( - [core.Dense(5), core.Dense(6, kernel_regularizer=tf.reduce_sum)] - ) - self.layer_list += [ - core.Dense(7, bias_regularizer=tf.reduce_sum), - core.Dense(8), - ] - self.layer_list += tf.__internal__.tracking.wrap( - [core.Dense(9)] - ) + tf.__internal__.tracking.wrap([core.Dense(10)]) - self.layer_list.extend( - tf.__internal__.tracking.wrap( - list([core.Dense(11)]) + [core.Dense(12)] - ) - ) - self.layers_with_updates = tf.__internal__.tracking.wrap( - [batch_normalization_v1.BatchNormalization()] - ) - - def call(self, x): - aggregation = 0.0 - for l in self.layer_list: - x = l(x) - aggregation += tf.reduce_sum(x) - (bn,) = self.layers_with_updates - return bn(x) / aggregation - - -class ListTests(test_combinations.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testTracking(self): - with self.test_session(): - model = HasList() - output = model(tf.ones([32, 2])) - self.assertAllEqual([32, 12], output.shape) - self.assertEqual(11, len(model.layers)) - self.assertEqual(10, len(model.layer_list.layers)) - self.assertEqual( - len(model.layers), - len(model.layer_list.layers + model.layers_with_updates), - ) - for index in range(10): - self.assertEqual( - 3 + index, model.layer_list.layers[index].units - ) - children = model._trackable_children() - self.assertLen(children, 2) - self.assertIs(model.layer_list, children["layer_list"]) - self.assertIs( - model.layers_with_updates, children["layers_with_updates"] - ) - self.assertLen(children["layer_list"]._trackable_children(), 10) - self.evaluate([v.initializer for v in model.variables]) - self.evaluate( - model.variables[0].assign([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) - ) - save_path = os.path.join(self.get_temp_dir(), "ckpt") - model.save_weights(save_path) - self.evaluate(model.variables[0].assign(tf.zeros([2, 3]))) - model.load_weights(save_path) - self.assertAllEqual( - [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], - self.evaluate(model.variables[0]), - ) - v = tf.Variable(1.0) - model.var_list = [v] - self.assertTrue(any(v is t for t in model.variables)) - self.assertTrue(any(v is t for t in model.trainable_variables)) - self.assertFalse(any(v is t for t in model.non_trainable_variables)) - self.assertTrue( - any( - model.layer_list[0].trainable_weights[0] is t - for t in model.trainable_weights - ) - ) - - def testSubModelTracking(self): - model = training.Model() - model.v = tf.Variable(1.0) - self.assertIn(model.v, model.trainable_weights) - model2 = training.Model() - model2.m = [model] - self.assertIn(model.v, model2.trainable_weights) - - def testSubSequentialTracking(self): - class _Subclassed(training.Model): - def __init__(self, wrapped): - super().__init__() - self._wrapped = wrapped - - def call(self, x): - return self._wrapped(x) - - model = sequential.Sequential() - layer = core.Dense(1) - model.add(layer) - model2 = _Subclassed(model) - model2(tf.ones([1, 2])) - model2.m = [model] - self.assertIn(layer.kernel, model2.trainable_weights) - - def testLayerTrackedThroughSequential(self): - class AttrDict(dict): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.__dict__ = self - - def ffnet(layer_sizes, name): - ff = sequential.Sequential(name=name) - for i, width in enumerate(layer_sizes): - ff.add( - core.Dense( - width, - activation=( - "relu" if i < len(layer_sizes) - 1 else None - ), - ) - ) - return ff - - class MyModel2(training.Model): - def __init__(self, config, name="my_model_2"): - super().__init__(name=name) - self._num_tokens = config.num_tokens - - # list of sub-models - self._ffnet = [ - ffnet(config.module_layers + (self._num_tokens,), "ff") - ] - - def null_input(self): - return tf.zeros([1, self._num_tokens], dtype=tf.float32) - - def call(self, input_, module_index=None): - return self._ffnet[0](input_) - - m2 = MyModel2(AttrDict(num_tokens=5, module_layers=(50, 30))) - - # Construct - m2(m2.null_input()) - self.assertLen(m2.trainable_variables, 6) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testUpdatesForwarded(self): - model = HasList() - model_input = tf.ones([32, 2]) - model(model_input) - if tf.executing_eagerly(): - self.assertEqual(0, len(model.updates)) - else: - self.assertGreater(len(model.layers_with_updates[0].updates), 0) - self.assertEqual( - set(model.layers_with_updates[0].updates), set(model.updates) - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testLossesForwarded(self): - model = HasList() - model_input = tf.ones([32, 2]) - model(model_input) - self.assertEqual(2, len(model.losses)) - - def testModelContainersCompareEqual(self): - class HasEqualContainers(training.Model): - def __init__(self): - super().__init__() - self.l1 = [] - self.l2 = [] - - model = HasEqualContainers() - first_layer = HasEqualContainers() - model.l1.append(first_layer) - second_layer = HasEqualContainers() - model.l2.append(second_layer) - self.assertEqual([first_layer, second_layer], model.layers) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testTensorConversion(self): - class ListToTensor(training.Model): - def __init__(self): - super().__init__() - self.l = [1.0, 2.0, 3.0] - - self.assertAllEqual( - [1.0, 2.0, 3.0], self.evaluate(tf.constant(ListToTensor().l)) - ) - - self.assertAllEqual( - [1.0, 2.0, 3.0], - self.evaluate(tf.raw_ops.Pack(values=ListToTensor().l)), - ) - - -class ListWrapperTest(tf.test.TestCase): - def testLayerCollectionWithExternalMutation(self): - l = [] - l_wrapper = tf.__internal__.tracking.wrap(l) - layer = core.Dense(1) - l.append(layer) - self.assertEqual([layer], l_wrapper.layers) - - -class HasMapping(training.Model): - def __init__(self): - super().__init__() - self.layer_dict = tf.__internal__.tracking.wrap( - dict(output=core.Dense(7)) - ) - self.layer_dict["norm"] = tf.__internal__.tracking.wrap([]) - self.layer_dict["dense"] = tf.__internal__.tracking.wrap([]) - self.layer_dict["dense"].extend( - [core.Dense(5), core.Dense(6, kernel_regularizer=tf.reduce_sum)] - ) - self.layer_dict["norm"].append( - batch_normalization_v1.BatchNormalization() - ) - self.layer_dict["norm"].append( - batch_normalization_v1.BatchNormalization() - ) - - def call(self, x): - aggregation = 0.0 - for norm, dense in zip( - self.layer_dict["norm"], self.layer_dict["dense"] - ): - x = norm(dense(x)) - aggregation += tf.reduce_sum(x) - return self.layer_dict["output"](x) / aggregation - - -class MappingTests(test_combinations.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testTracking(self): - with self.test_session(): - model = HasMapping() - output = model(tf.ones([32, 2])) - self.assertAllEqual([32, 7], output.shape.as_list()) - self.assertEqual(5, len(model.layers)) - self.assertEqual(len(model.layers), len(model.layer_dict.layers)) - self.assertLen(model._trackable_children(), 1) - self.assertIs( - model.layer_dict, model._trackable_children()["layer_dict"] - ) - self.evaluate([v.initializer for v in model.variables]) - test_var = model.layer_dict["output"].kernel - self.evaluate(test_var.assign(tf.ones([6, 7]))) - save_path = os.path.join(self.get_temp_dir(), "ckpt") - model.save_weights(save_path) - self.evaluate(test_var.assign(tf.zeros([6, 7]))) - model.load_weights(save_path) - self.assertAllEqual(numpy.ones([6, 7]), self.evaluate(test_var)) - - def testLayerCollectionWithExternalMutation(self): - d = {} - root = tf.Module() - root.wrapper = d - self.assertEqual([], root.wrapper.layers) - self.assertEqual([], root.wrapper.trainable_weights) - layer1 = core.Dense(1) - layer2 = core.Dense(1) - d["a"] = layer1 - d["b"] = layer2 - self.assertEqual([layer1, layer2], root.wrapper.layers) - # The layers have still not created variables - self.assertEqual([], root.wrapper.trainable_weights) - - def testDictWrapperBadKeys(self): - a = tf.Module() - a.d = {} - a.d[1] = tf.__internal__.tracking.wrap([]) - model = training.Model() - model.sub = a - save_path = os.path.join(self.get_temp_dir(), "ckpt") - with self.assertRaisesRegex(ValueError, "non-string key"): - model.save_weights(save_path) - - def testDictWrapperNoDependency(self): - a = tf.Module() - a.d = data_structures.NoDependency({}) - a.d[1] = [3] - self.assertEqual([a], util.list_objects(a)) - model = training.Model() - model.sub = a - save_path = os.path.join(self.get_temp_dir(), "ckpt") - model.save_weights(save_path) - model.load_weights(save_path) - - def testNonStringKeyNotTrackableValue(self): - a = tf.Module() - a.d = {} - a.d["a"] = [3] - a.d[1] = data_structures.NoDependency([3]) - self.assertEqual([a, a.d, a.d["a"]], util.list_objects(a)) - model = training.Model() - model.sub = a - save_path = os.path.join(self.get_temp_dir(), "ckpt") - model.save_weights(save_path) - model.load_weights(save_path) - - def testNonAppendNotTrackable(self): - # Non-append mutations (deleting or overwriting values) are OK when the - # values aren't tracked. - a = tf.Module() - a.d = {} - a.d["a"] = [3] - a.d[1] = 3 - a.d[1] = 2 - self.assertEqual(2, a.d[1]) - del a.d[1] - a.d[2] = data_structures.NoDependency(tf.Module()) - second = tf.Module() - a.d[2] = data_structures.NoDependency(second) - self.assertIs(second, a.d[2]) - self.assertEqual([a, a.d, a.d["a"]], util.list_objects(a)) - model = training.Model() - model.sub = a - save_path = os.path.join(self.get_temp_dir(), "ckpt") - model.save_weights(save_path) - model.load_weights(save_path) - - def testPopNoSave(self): - model = training.Model() - model.d = {} - model.d["a"] = [] - model.d.pop("a") - save_path = os.path.join(self.get_temp_dir(), "ckpt") - with self.assertRaisesRegex(ValueError, "Unable to save"): - model.save_weights(save_path) - - def testExternalModificationNoSave(self): - model = training.Model() - external_reference = {} - model.d = external_reference - external_reference["a"] = [] - save_path = os.path.join(self.get_temp_dir(), "ckpt") - with self.assertRaisesRegex(ValueError, "modified outside the wrapper"): - model.save_weights(save_path) - - def testOverwriteCanStillSave(self): - model = training.Model() - model.d = {} - model.d["a"] = {} - model.d["a"] = {} - save_path = os.path.join(self.get_temp_dir(), "ckpt") - model.save_weights(save_path) - - def testIter(self): - model = training.Model() - model.d = {1: 3} - model.d[1] = 3 - self.assertEqual([1], list(model.d)) - new_dict = {} - # This update() is super tricky. If the dict wrapper subclasses dict, - # CPython will access its storage directly instead of calling any - # methods/properties on the object. So the options are either not to - # subclass dict (in which case update will call normal iter methods, but - # the object won't pass isinstance checks) or to subclass dict and keep - # that storage updated (no shadowing all its methods like ListWrapper). - new_dict.update(model.d) - self.assertEqual({1: 3}, new_dict) - - -class HasTuple(training.Model): - def __init__(self): - super().__init__() - self.layer_list = ( - core.Dense(3), - core.Dense(4), - core.Dense(5, kernel_regularizer=tf.reduce_sum), - ) - self.layers_with_updates = ( - batch_normalization_v1.BatchNormalization(), - ) - - def call(self, x): - aggregation = 0.0 - for l in self.layer_list: - x = l(x) - aggregation += tf.reduce_sum(x) - (bn,) = self.layers_with_updates - return bn(x) / aggregation - - -class TupleTests(test_combinations.TestCase): - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testTracking(self): - with self.test_session(): - model = HasTuple() - output = model(tf.ones([32, 2])) - self.assertAllEqual([32, 5], output.shape.as_list()) - self.assertLen(model.layers, 4) - self.assertLen(model.layer_list.layers, 3) - self.assertEqual( - len(model.layers), - len(tuple(model.layer_list.layers) + model.layers_with_updates), - ) - self.assertEqual(3, model.layer_list.layers[0].units) - self.assertEqual(4, model.layer_list.layers[1].units) - self.assertEqual(5, model.layer_list.layers[2].units) - self.assertLen(model._trackable_children(), 2) - self.assertIs( - model.layer_list, model._trackable_children()["layer_list"] - ) - self.assertIs( - model.layers_with_updates, - model._trackable_children()["layers_with_updates"], - ) - self.assertLen(model.layer_list._trackable_children(), 3) - self.evaluate([v.initializer for v in model.variables]) - self.evaluate( - model.variables[0].assign([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) - ) - save_path = os.path.join(self.get_temp_dir(), "ckpt") - model.save_weights(save_path) - self.evaluate(model.variables[0].assign(tf.zeros([2, 3]))) - model.load_weights(save_path) - self.assertAllEqual( - [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], - self.evaluate(model.variables[0]), - ) - v = tf.Variable(1.0) - model.var_list = (v,) - self.assertIn(id(v), [id(obj) for obj in model.variables]) - self.assertIn(id(v), [id(obj) for obj in model.trainable_variables]) - self.assertNotIn( - id(v), [id(obj) for obj in model.non_trainable_variables] - ) - self.assertIn( - id(model.layer_list[0].trainable_weights[0]), - [id(obj) for obj in model.trainable_weights], - ) - - @parameterized.named_parameters( - ("Module", tf.Module), - ("Model", training.Model), - ) - def testSubModelTracking(self, module_subclass): - model = module_subclass() - model.v = tf.Variable(1.0) - self.assertIn(model.v, model.trainable_variables) - model2 = module_subclass() - model2.m = (model,) - self.assertIn(model.v, model2.trainable_variables) - - def testSubSequentialTracking(self): - class _Subclassed(training.Model): - def __init__(self, wrapped): - super().__init__() - self._wrapped = wrapped - - def call(self, x): - return self._wrapped(x) - - model = sequential.Sequential() - layer = core.Dense(1) - model.add(layer) - model2 = _Subclassed(model) - model2(tf.ones([1, 2])) - model2.m = (model,) - self.assertIn(layer.kernel, model2.trainable_weights) - - def testUpdatesForwarded(self): - with tf.Graph().as_default(): - model = HasTuple() - model_input = tf.ones([32, 2]) - model(model_input) - self.assertNotEmpty(model.layers_with_updates[0].updates) - self.assertEqual( - set(model.layers_with_updates[0].updates), set(model.updates) - ) - - model = HasTuple() - model_input = tf.ones([32, 2]) - model(model_input) - self.assertEmpty(model.updates) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testLossesForwarded(self): - model = HasTuple() - model_input = tf.ones([32, 2]) - model(model_input) - self.assertLen(model.losses, 1) - - def testModelContainersCompareEqual(self): - class HasEqualContainers(training.Model): - def __init__(self): - super().__init__() - self.l1 = () - self.l2 = () - - model = HasEqualContainers() - first_layer = HasEqualContainers() - model.l1 = (first_layer,) - second_layer = HasEqualContainers() - model.l2 = (second_layer,) - self.assertEqual((first_layer,), model.l1) - d = {model.l1: 1, model.l2: 2} - self.assertEqual(1, d[model.l1]) - self.assertEqual(1, d[(first_layer,)]) - self.assertEqual(2, d[model.l2]) - self.assertEqual(2, d[(second_layer,)]) - self.assertEqual([first_layer, second_layer], model.layers) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testTensorConversion(self): - class TupleToTensor(training.Model): - def __init__(self): - super().__init__() - self.l = (1.0, 2.0, 3.0) - - self.assertAllEqual( - (1.0, 2.0, 3.0), self.evaluate(tf.constant(TupleToTensor().l)) - ) - - self.assertAllEqual( - (1.0, 2.0, 3.0), - self.evaluate(tf.raw_ops.Pack(values=TupleToTensor().l)), - ) - - -class InterfaceTests(test_combinations.TestCase): - def testNoDependency(self): - root = tf.Module() - hasdep = tf.Module() - root.hasdep = hasdep - nodep = tf.Module() - root.nodep = data_structures.NoDependency(nodep) - self.assertLen(root._trackable_children(), 1) - self.assertIs(root._trackable_children()["hasdep"], root.hasdep) - self.assertIs(root.hasdep, hasdep) - self.assertIs(root.nodep, nodep) - - class NoDependencyModel(training.Model): - @tf.__internal__.tracking.no_automatic_dependency_tracking - def __init__(self): - super().__init__() - self.a = [] - self.b = tf.Module() - - nodeps = NoDependencyModel() - self.assertEqual([nodeps], util.list_objects(nodeps)) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testDictionariesBasic(self): - a = training.Model() - b = training.Model() - a.attribute = {"b": b} - c = training.Model() - a.attribute["c"] = [] - a.attribute["c"].append(c) - a_deps = util.list_objects(a) - self.assertIn(b, a_deps) - self.assertIn(c, a_deps) - self.assertIs(b, a.attribute["b"]) - self.assertEqual({"b", "c"}, a.attribute._trackable_children().keys()) - self.assertEqual([b, c], a.layers) - self.assertEqual([b, c], a.attribute.layers) - self.assertEqual([c], a.attribute["c"].layers) - checkpoint = tf.train.Checkpoint(a=a) - save_path = checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt")) - with self.cached_session(): - checkpoint.restore( - save_path - ).assert_consumed().initialize_or_restore() - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testNoDepList(self): - a = training.Model() - a.l1 = data_structures.NoDependency([]) - a.l1.insert(1, 0) - self.assertIsInstance(a.l1, list) - checkpoint = tf.train.Checkpoint(a=a) - checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt")) - a.l2 = [] - a.l2.insert(1, tf.Module()) - with self.assertRaisesRegex(ValueError, "A list element was replaced"): - checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt")) - - -if __name__ == "__main__": - tf.compat.v1.enable_eager_execution() - tf.test.main() diff --git a/keras/tests/tracking_util_test.py b/keras/tests/tracking_util_test.py deleted file mode 100644 index 4ee3cbdf973..00000000000 --- a/keras/tests/tracking_util_test.py +++ /dev/null @@ -1,1042 +0,0 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import functools -import os -import weakref - -import tensorflow.compat.v2 as tf - -from keras.engine import input_layer -from keras.engine import sequential -from keras.engine import training -from keras.layers import core -from keras.layers import reshaping -from keras.optimizers.legacy import adam -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.checkpoint import ( - checkpoint as trackable_utils, -) -from tensorflow.python.eager import context -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) -from tensorflow.python.platform import tf_logging as logging - - -class MyModel(training.Model): - """A concrete Model for testing.""" - - def __init__(self): - super().__init__() - self._named_dense = core.Dense(1, use_bias=True) - self._second = core.Dense(1, use_bias=False) - # We can still track Trackables which aren't Layers. - self._non_layer = NonLayerTrackable() - - def call(self, values): - ret = self._second(self._named_dense(values)) - return ret - - -class NonLayerTrackable(tf.Module): - def __init__(self): - super().__init__() - self.a_variable = trackable_utils.add_variable( - self, name="a_variable", shape=[] - ) - - -class InterfaceTests(tf.test.TestCase): - def testLayerDeduplication(self): - model = training.Model() - layer_one = core.Dense(1) - layer_two = core.Dense(1) - model.other_path = [layer_one, layer_two] - model.l2 = layer_two - model.l1 = layer_one - self.assertEqual([layer_one, layer_two], model.layers) - - def testSaveWithOnlyKerasSession(self): - - with tf.Graph().as_default(), self.cached_session(): - inp = input_layer.Input([1]) - dense = core.Dense(1)(inp) - model = training.Model(inp, dense) - model.compile(optimizer="sgd", loss="mse") - model.fit([1.0], [2.0]) - checkpoint = tf.train.Checkpoint(model=model) - checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt")) - - -class CheckpointingTests(test_combinations.TestCase): - @tf_test_utils.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) - def testNamingWithOptimizer(self): - input_value = tf.constant([[3.0]]) - model = MyModel() - # A nuisance Model using the same optimizer. Its slot variables should - # not go in the checkpoint, since it is never depended on. - other_model = MyModel() - optimizer = adam.Adam(0.001) - step = tf.compat.v1.train.get_or_create_global_step() - root_trackable = tf.train.Checkpoint( - optimizer=optimizer, model=model, step=step - ) - - with tf.GradientTape() as tape: - loss = model(input_value) - variables = model.trainable_variables - gradients = tape.gradient(loss, variables) - train_op = tf.group( - optimizer.apply_gradients(zip(gradients, variables)), - step.assign_add(1), - ) - - with tf.GradientTape() as tape: - loss = other_model(input_value) - variables = other_model.trainable_variables - gradients = tape.gradient(loss, variables) - optimizer.apply_gradients(zip(gradients, variables)) - - self.evaluate(trackable_utils.gather_initializers(root_trackable)) - self.evaluate(train_op) - ( - named_variables, - serialized_graph, - _, - ) = tf.__internal__.tracking.ObjectGraphView( - root_trackable - ).serialize_object_graph() - expected_slot_keys = ( - "model/_second/kernel/.OPTIMIZER_SLOT/optimizer/m", - "model/_second/kernel/.OPTIMIZER_SLOT/optimizer/v", - "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m", - "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/v", - "model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/m", - "model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/v", - ) - expected_checkpoint_names = ( - # Created in the root node, so no prefix. - "step", - "model/_second/kernel", - "model/_named_dense/kernel", - "model/_named_dense/bias", - # non-Layer dependency of the model - "model/_non_layer/a_variable", - "optimizer/learning_rate", - "optimizer/beta_1", - "optimizer/beta_2", - "optimizer/iter", - "optimizer/decay", - ) + expected_slot_keys - suffix = "/.ATTRIBUTES/VARIABLE_VALUE" - expected_checkpoint_names = [ - name + suffix for name in expected_checkpoint_names - ] - named_variables = {v.name: v for v in named_variables} - self.assertEqual( - len(expected_checkpoint_names), len(named_variables.keys()) - ) - # Check that we've created the right full_names of objects (not - # exhaustive) - expected_names = { - "step" + suffix: "global_step", - "model/_second/kernel" + suffix: "my_model/dense_1/kernel", - "model/_named_dense/kernel" + suffix: "my_model/dense/kernel", - "optimizer/beta_1" + suffix: "Adam/beta_1", - "optimizer/beta_2" + suffix: "Adam/beta_2", - } - for nodes in serialized_graph.nodes: - for attribute in nodes.attributes: - expected_name = expected_names.pop( - attribute.checkpoint_key, None - ) - if expected_name is not None: - self.assertEqual(expected_name, attribute.full_name) - self.assertEmpty(expected_names) - # Spot check the generated protocol buffers. - self.assertEqual( - "optimizer", serialized_graph.nodes[0].children[1].local_name - ) - optimizer_node = serialized_graph.nodes[ - serialized_graph.nodes[0].children[1].node_id - ] - children = [node.local_name for node in optimizer_node.children] - self.assertEqual( - # hyper variable dependencies - len(["beta_1", "beta_2", "iter", "decay", "learning_rate"]), - len(children), - ) - serialized_slot_keys = [] - for slot in optimizer_node.slot_variables: - for attribute in serialized_graph.nodes[ - slot.slot_variable_node_id - ].attributes: - serialized_slot_keys.append(attribute.checkpoint_key) - self.assertEqual( - len([key + suffix for key in expected_slot_keys]), - len(serialized_slot_keys), - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testSaveRestore(self): - with self.test_session(): - model = MyModel() - optimizer = adam.Adam(0.001) - root_trackable = tf.train.Checkpoint( - optimizer=optimizer, model=model - ) - input_value = tf.constant([[3.0]]) - with tf.GradientTape() as tape: - loss = model(input_value) - variables = model.trainable_variables - gradients = tape.gradient(loss, variables) - train_op = optimizer.apply_gradients(zip(gradients, variables)) - self.assertFalse(root_trackable.save_counter.trainable) - self.evaluate(trackable_utils.gather_initializers(root_trackable)) - self.evaluate(train_op) - prefix = os.path.join(self.get_temp_dir(), "ckpt") - self.evaluate( - tf.compat.v1.assign(model._named_dense.variables[1], [42.0]) - ) - m_bias_slot = optimizer.get_slot( - model._named_dense.variables[1], "m" - ) - self.evaluate(tf.compat.v1.assign(m_bias_slot, [1.5])) - save_path = root_trackable.save(file_prefix=prefix) - self.evaluate( - tf.compat.v1.assign(model._named_dense.variables[1], [43.0]) - ) - self.evaluate(tf.compat.v1.assign(root_trackable.save_counter, 3)) - optimizer_variables = self.evaluate( - sorted(optimizer.variables(), key=lambda v: v.name) - ) - self.evaluate(tf.compat.v1.assign(m_bias_slot, [-2.0])) - # Immediate restoration - status = root_trackable.restore( - save_path=save_path - ).assert_consumed() - status.run_restore_ops() - self.assertAllEqual( - [42.0], self.evaluate(model._named_dense.variables[1]) - ) - self.assertAllEqual(1, self.evaluate(root_trackable.save_counter)) - self.assertAllEqual([1.5], self.evaluate(m_bias_slot)) - if not tf.executing_eagerly(): - # Restore-on-create is only supported when executing eagerly - return - on_create_model = MyModel() - on_create_optimizer = adam.Adam(0.001) - on_create_root = tf.train.Checkpoint( - optimizer=on_create_optimizer, model=on_create_model - ) - # Deferred restoration - status = on_create_root.restore(save_path=save_path) - status.assert_nontrivial_match() - status.assert_existing_objects_matched() - with self.assertRaises(AssertionError): - status.assert_consumed() - on_create_model(tf.constant([[3.0]])) # create variables - self.assertAllEqual(1, self.evaluate(on_create_root.save_counter)) - self.assertAllEqual( - [42.0], self.evaluate(on_create_model._named_dense.variables[1]) - ) - on_create_m_bias_slot = on_create_optimizer.get_slot( - on_create_model._named_dense.variables[1], "m" - ) - status.assert_existing_objects_matched() - if not tf.executing_eagerly(): - with self.assertRaises(AssertionError): - status.assert_consumed() - # Optimizer slot variables are created when the original variable is - # restored. - self.assertAllEqual([1.5], self.evaluate(on_create_m_bias_slot)) - dummy_var = tf.Variable([1.0]) - on_create_optimizer.minimize( - loss=dummy_var.read_value, var_list=[dummy_var] - ) - status.assert_existing_objects_matched() - status.assert_consumed() - self.assertAllEqual( - optimizer_variables, - # Creation order is different, so .variables() needs to be - # re-sorted. - self.evaluate( - sorted(optimizer.variables(), key=lambda v: v.name) - ), - ) - - # TODO(allenl): Debug garbage created by this test in python3. - def testDeferredRestorationUsageEager(self): - """An idiomatic eager execution example.""" - num_training_steps = 10 - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - for training_continuation in range(3): - model = MyModel() - optimizer = adam.Adam(0.001) - root = tf.train.Checkpoint(optimizer=optimizer, model=model) - root.restore(tf.train.latest_checkpoint(checkpoint_directory)) - for _ in range(num_training_steps): - # TODO(allenl): Use a Dataset and serialize/checkpoint it. - input_value = tf.constant([[3.0]]) - with tf.GradientTape() as tape: - loss = model(input_value) - variables = model.trainable_variables - gradients = tape.gradient(loss, variables) - optimizer.apply_gradients(zip(gradients, variables)) - root.save(file_prefix=checkpoint_prefix) - self.assertEqual( - (training_continuation + 1) * num_training_steps, - root.optimizer.iterations.numpy(), - ) - - def testUsageGraph(self): - """Expected usage when graph building.""" - with context.graph_mode(): - num_training_steps = 10 - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - for training_continuation in range(3): - with tf.Graph().as_default(): - model = MyModel() - optimizer = adam.Adam(0.001) - root = tf.compat.v1.train.Checkpoint( - optimizer=optimizer, model=model - ) - input_value = tf.constant([[3.0]]) - with tf.GradientTape() as tape: - loss = model(input_value) - variables = model.trainable_variables - gradients = tape.gradient(loss, variables) - train_op = optimizer.apply_gradients( - zip(gradients, variables) - ) - - checkpoint_path = tf.train.latest_checkpoint( - checkpoint_directory - ) - with self.session( - graph=tf.compat.v1.get_default_graph() - ) as session: - status = root.restore(save_path=checkpoint_path) - status.initialize_or_restore(session=session) - if checkpoint_path is None: - self.assertEqual(0, training_continuation) - with self.assertRaises(AssertionError): - status.assert_consumed() - with self.assertRaises(AssertionError): - status.assert_existing_objects_matched() - else: - status.assert_consumed() - status.assert_existing_objects_matched() - for _ in range(num_training_steps): - session.run(train_op) - root.save( - file_prefix=checkpoint_prefix, session=session - ) - self.assertEqual( - (training_continuation + 1) * num_training_steps, - session.run(root.optimizer.iterations), - ) - self.assertEqual( - training_continuation + 1, - session.run(root.save_counter), - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testAgnosticUsage(self): - """Graph/eager agnostic usage.""" - # Does create garbage when executing eagerly due to ops.Graph() - # creation. - with self.test_session(): - num_training_steps = 10 - checkpoint_directory = self.get_temp_dir() - optimizer = adam.Adam(0.001) - - def _train_fn(model, input_value): - with tf.GradientTape() as tape: - loss = model(input_value) - variables = model.trainable_variables - gradients = tape.gradient(loss, variables) - return optimizer.apply_gradients(zip(gradients, variables)) - - for training_continuation in range(3): - with test_utils.device(should_use_gpu=True): - model = MyModel() - root = tf.train.Checkpoint(optimizer=optimizer, model=model) - manager = tf.train.CheckpointManager( - root, checkpoint_directory, max_to_keep=1 - ) - status = root.restore(save_path=manager.latest_checkpoint) - input_value = tf.constant([[3.0]]) - train_fn = functools.partial(_train_fn, model, input_value) - if not tf.executing_eagerly(): - train_fn = functools.partial(self.evaluate, train_fn()) - status.initialize_or_restore() - for _ in range(num_training_steps): - train_fn() - manager.save() - self.assertEqual( - (training_continuation + 1) * num_training_steps, - self.evaluate(root.optimizer.iterations), - ) - self.assertEqual( - training_continuation + 1, - self.evaluate(root.save_counter), - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testPartialRestoreWarningObject(self): - optimizer = adam.Adam(0.0) - original_root = tf.train.Checkpoint( - v1=tf.Variable(2.0), v2=tf.Variable(3.0), optimizer=optimizer - ) - # Create a slot variable to save - optimizer.minimize(original_root.v1.read_value, [original_root.v1]) - prefix = os.path.join(self.get_temp_dir(), "ckpt") - save_path = original_root.save(prefix) - partial_root = tf.train.Checkpoint(v1=tf.Variable(0.0)) - weak_partial_root = weakref.ref(partial_root) - weak_v1 = weakref.ref(partial_root.v1) - partial_root.restore(save_path) - self.assertEqual(2.0, partial_root.v1.numpy()) - with tf.compat.v1.test.mock.patch.object( - logging, "warning" - ) as mock_log: - del partial_root - self.assertIsNone(weak_partial_root()) - self.assertIsNone(weak_v1()) - messages = str(mock_log.call_args_list) - self.assertIn("(root).v2'", messages) - self.assertIn("(root).optimizer's state 'm' for (root).v1", messages) - self.assertNotIn("(root).v1'", messages) - self.assertIn("expect_partial()", messages) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testWithDefun(self): - with self.test_session(): - num_training_steps = 2 - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - for training_continuation in range(3): - with test_utils.device(should_use_gpu=True): - model = MyModel() - # Don't actually train so we can test variable values - optimizer = adam.Adam(0.0) - root = tf.train.Checkpoint(optimizer=optimizer, model=model) - checkpoint_path = tf.train.latest_checkpoint( - checkpoint_directory - ) - status = root.restore(save_path=checkpoint_path) - - def train_fn(): - @tf.function - def _call_model(x): - return model(x) - - with tf.GradientTape() as tape: - loss = _call_model(tf.constant([[3.0]])) - gradients = tape.gradient(loss, model.variables) - return optimizer.apply_gradients( - zip(gradients, model.variables) - ) - - if not tf.executing_eagerly(): - train_fn = functools.partial(self.evaluate, train_fn()) - status.initialize_or_restore() - for _ in range(num_training_steps): - train_fn() - if training_continuation > 0: - status.assert_consumed() - self.assertAllClose( - [[42.0]], self.evaluate(model.variables[0]) - ) - else: - self.evaluate(model.variables[0].assign([[42.0]])) - root.save(file_prefix=checkpoint_prefix) - self.assertEqual( - (training_continuation + 1) * num_training_steps, - self.evaluate(optimizer.iterations), - ) - self.assertEqual( - training_continuation + 1, - self.evaluate(root.save_counter), - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testAnonymousVarsInInit(self): - class Model(training.Model): - def __init__(self): - super().__init__() - self.w = tf.Variable(0.0) - self.b = tf.Variable(0.0) - self.vars = [self.w, self.b] - - def call(self, x): - return x * self.w + self.b - - model = Model() - optimizer = adam.Adam(learning_rate=0.05) - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) - for _ in range(2): - checkpoint.save(checkpoint_prefix) - with tf.GradientTape() as tape: - loss = (tf.constant(1.0) - model(tf.constant(1.0))) ** 2 - grad = tape.gradient(loss, model.vars) - optimizer.apply_gradients( - [(g, v) for g, v in zip(grad, model.vars)] - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testDeferredSlotRestoration(self): - with self.test_session(): - checkpoint_directory = self.get_temp_dir() - - root = tf.train.Checkpoint() - root.var = trackable_utils.add_variable( - root, name="var", initializer=0.0 - ) - optimizer = adam.Adam(0.1) - variables = [root.var] - gradients = [1.0] - train_op = optimizer.apply_gradients(zip(gradients, variables)) - # Note that `optimizer` has not been added as a dependency of - # `root`. Create a one-off grouping so that slot variables for - # `root.var` get initialized too. - self.evaluate( - trackable_utils.gather_initializers( - tf.train.Checkpoint(root=root, optimizer=optimizer) - ) - ) - self.evaluate(train_op) - self.evaluate(tf.compat.v1.assign(root.var, 12.0)) - no_slots_path = root.save( - os.path.join(checkpoint_directory, "no_slots") - ) - root.optimizer = optimizer - self.evaluate(tf.compat.v1.assign(root.var, 13.0)) - self.evaluate( - tf.compat.v1.assign( - optimizer.get_slot(slot_name="m", var=root.var), 14.0 - ) - ) - slots_path = root.save( - os.path.join(checkpoint_directory, "with_slots") - ) - new_root = tf.train.Checkpoint() - # Load the slot-containing checkpoint (deferred), then immediately - # overwrite the non-slot variable (also deferred). - slot_status = new_root.restore(slots_path) - no_slot_status = new_root.restore(no_slots_path) - with self.assertRaises(AssertionError): - no_slot_status.assert_consumed() - new_root.var = trackable_utils.add_variable( - new_root, name="var", shape=[] - ) - no_slot_status.assert_consumed() - no_slot_status.run_restore_ops() - self.assertEqual(12.0, self.evaluate(new_root.var)) - new_root.optimizer = adam.Adam(0.1) - slot_status.assert_existing_objects_matched() - if not tf.executing_eagerly(): - with self.assertRaisesRegex( - AssertionError, "Unresolved object" - ): - slot_status.assert_consumed() - self.assertEqual(12.0, self.evaluate(new_root.var)) - if tf.executing_eagerly(): - # Slot variables are only created with restoring initializers - # when executing eagerly. - self.assertEqual( - 14.0, - self.evaluate( - new_root.optimizer.get_slot( - slot_name="m", var=new_root.var - ) - ), - ) - else: - # Slot variables are not created eagerly when graph building. - with self.assertRaises(KeyError): - new_root.optimizer.get_slot(slot_name="m", var=new_root.var) - variables = [new_root.var] - gradients = [1.0] - train_op = new_root.optimizer.apply_gradients( - zip(gradients, variables) - ) - # The slot variable now exists; restore() didn't create it, but we - # should now have a restore op for it. - slot_status.run_restore_ops() - if not tf.executing_eagerly(): - # The train op hasn't run when graph building, so the slot - # variable has its restored value. It has run in eager, so the - # value will be different. - self.assertEqual( - 14.0, - self.evaluate( - new_root.optimizer.get_slot( - slot_name="m", var=new_root.var - ) - ), - ) - self.evaluate(train_op) - slot_status.assert_consumed() - - def testManySavesGraph(self): - """Saves after the first should not modify the graph.""" - with context.graph_mode(): - graph = tf.Graph() - with graph.as_default(), self.session(graph): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - obj = tf.train.Checkpoint() - obj.var = tf.Variable(0.0, name="v") - obj.opt = adam.Adam(0.1) - variables = [obj.var] - gradients = [1.0] - obj.opt.apply_gradients(zip(gradients, variables)) - self.evaluate(trackable_utils.gather_initializers(obj)) - obj.save(checkpoint_prefix) - graph.finalize() - obj.save(checkpoint_prefix) - - def testManyRestoresGraph(self): - """Restores after the first should not modify the graph.""" - with context.graph_mode(): - graph = tf.Graph() - with graph.as_default(), self.session(graph): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - obj = tf.train.Checkpoint() - obj.var = tf.Variable(0.0, name="v") - obj.opt = adam.Adam(0.1) - variables = [obj.var] - gradients = [1.0] - obj.opt.apply_gradients(zip(gradients, variables)) - self.evaluate(trackable_utils.gather_initializers(obj)) - save_path = obj.save(checkpoint_prefix) - obj.restore(save_path) - graph.finalize() - obj.restore(save_path) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_sequential(self): - with self.test_session(): - model = sequential.Sequential() - checkpoint = tf.train.Checkpoint(model=model) - model.add(core.Dense(4)) - second_dense = core.Dense(5) - model.add(second_dense) - model(tf.constant([[1.0]])) - checkpoint.restore(None).initialize_or_restore() - self.evaluate( - second_dense.bias.assign(tf.constant([1.0, 2.0, 3.0, 4.0, 5.0])) - ) - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - save_path = checkpoint.save(checkpoint_prefix) - self.evaluate( - second_dense.bias.assign(tf.constant([5.0, 6.0, 7.0, 8.0, 9.0])) - ) - checkpoint.restore(save_path).assert_consumed().run_restore_ops() - self.assertAllEqual( - [1.0, 2.0, 3.0, 4.0, 5.0], self.evaluate(second_dense.bias) - ) - - deferred_sequential = sequential.Sequential() - deferred_sequential_checkpoint = tf.train.Checkpoint( - model=deferred_sequential - ) - status = deferred_sequential_checkpoint.restore(save_path) - deferred_sequential.add(core.Dense(4)) - deferred_second_dense = core.Dense(5) - deferred_sequential.add(deferred_second_dense) - deferred_sequential(tf.constant([[1.0]])) - status.run_restore_ops() - self.assertAllEqual( - [1.0, 2.0, 3.0, 4.0, 5.0], - self.evaluate(deferred_second_dense.bias), - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_initialize_if_not_restoring(self): - with self.test_session(): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - optimizer_only_prefix = os.path.join(checkpoint_directory, "opt") - with test_utils.device(should_use_gpu=True): - model = MyModel() - optimizer = adam.Adam(0.001) - root = tf.train.Checkpoint( - model=model - ) # Do not save the optimizer with the checkpoint. - optimizer_checkpoint = tf.train.Checkpoint(optimizer=optimizer) - - checkpoint_path = tf.train.latest_checkpoint( - checkpoint_directory - ) - status = root.restore(save_path=checkpoint_path) - input_value = tf.constant([[3.0]]) - - def train_fn(): - with tf.GradientTape() as tape: - loss = model(input_value) - variables = model.trainable_variables - gradients = tape.gradient(loss, variables) - return optimizer.apply_gradients(zip(gradients, variables)) - - if not tf.executing_eagerly(): - train_fn = functools.partial(self.evaluate, train_fn()) - status.initialize_or_restore() - # TODO(tanzheny): Add hyper variables to .variables(), and set - # them with set_weights etc. - variables_not_in_the_variables_property = [ - obj - for obj in optimizer._hyper.values() - if isinstance(obj, tf.Variable) - ] - self.evaluate( - [ - v.initializer - for v in optimizer.variables() - + variables_not_in_the_variables_property - ] - ) - train_fn() - model_save_path = root.save(file_prefix=checkpoint_prefix) - self.evaluate(optimizer.beta_1.assign(42.0)) - optimizer_save_path = optimizer_checkpoint.save( - optimizer_only_prefix - ) - del train_fn - - # Restore into a graph with the optimizer - with test_utils.device(should_use_gpu=True): - model = MyModel() - optimizer = adam.Adam(0.001) - root = tf.train.Checkpoint(optimizer=optimizer, model=model) - status = root.restore(save_path=model_save_path) - input_value = tf.constant([[3.0]]) - - def train_fn1(): - with tf.GradientTape() as tape: - loss = model(input_value) - variables = model.trainable_variables - gradients = tape.gradient(loss, variables) - return optimizer.apply_gradients(zip(gradients, variables)) - - if not tf.executing_eagerly(): - train_fn1 = functools.partial(self.evaluate, train_fn1()) - status.initialize_or_restore() - train_fn1() - with self.assertRaises(AssertionError): - status.assert_existing_objects_matched() - with self.assertRaises(AssertionError): - status.assert_consumed() - del train_fn1 - - # Make sure initialization doesn't clobber later restores - with test_utils.device(should_use_gpu=True): - model = MyModel() - optimizer = adam.Adam(0.001, beta_1=1.0) - root = tf.train.Checkpoint(optimizer=optimizer, model=model) - opt_root = tf.train.Checkpoint(optimizer=optimizer) - status = root.restore(save_path=model_save_path) - init_only_optimizer_status = opt_root.restore(save_path=None) - optimizer_status = opt_root.restore( - save_path=optimizer_save_path - ) - input_value = tf.constant([[3.0]]) - - def train_fn2(): - with tf.GradientTape() as tape: - loss = model(input_value) - variables = model.trainable_variables - gradients = tape.gradient(loss, variables) - return optimizer.apply_gradients(zip(gradients, variables)) - - if not tf.executing_eagerly(): - train_fn2 = functools.partial(self.evaluate, train_fn2()) - optimizer_status.run_restore_ops() - status.initialize_or_restore() - init_only_optimizer_status.initialize_or_restore() - train_fn2() - self.assertEqual(42.0, self.evaluate(optimizer.beta_1)) - - -class _ManualScope(tf.Module): - def __call__(self): - with tf.compat.v1.variable_scope("ManualScope") as vs: - self.variable_scope = vs - with trackable_utils.capture_dependencies(template=self): - return self._build() - - def _build(self): - return tf.compat.v1.get_variable(name="in_manual_scope", shape=[]) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class TemplateTests(test_combinations.TestCase): - def test_trackable_save_restore(self): - with self.test_session(): - - def _templated(): - v = tf.compat.v1.get_variable( - "v", - shape=[1], - initializer=tf.compat.v1.zeros_initializer(), - use_resource=True, - ) - v2 = tf.compat.v1.get_variable( - "v2", - shape=[1], - initializer=tf.compat.v1.zeros_initializer(), - use_resource=True, - ) - manual = _ManualScope() - return v, v + 1.0, v2, manual, manual() - - save_template = tf.compat.v1.make_template("s1", _templated) - v1_save, _, v2_save, manual_scope, manual_scope_v = save_template() - self.assertEqual( - set( - [ - id(v1_save), - id(v2_save), - id(manual_scope), - id(manual_scope_v), - id(save_template), - ] - ), - set(map(id, trackable_utils.list_objects(save_template))), - ) - self.assertDictEqual( - {"in_manual_scope": manual_scope_v}, - manual_scope._trackable_children(), - ) - optimizer = adam.Adam(0.0) - save_root = tf.train.Checkpoint( - my_template=save_template, optimizer=optimizer - ) - optimizer.minimize(v1_save.read_value, var_list=[v1_save]) - self.evaluate([v.initializer for v in save_template.variables]) - optimizer_variables = optimizer.variables() + list( - optimizer._hyper.values() - ) - self.evaluate([v.initializer for v in optimizer_variables]) - self.evaluate(v1_save.assign([12.0])) - self.evaluate(v2_save.assign([14.0])) - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - save_path = save_root.save(checkpoint_prefix) - - load_template = tf.compat.v1.make_template("s2", _templated) - load_optimizer = adam.Adam(0.0) - load_root = tf.train.Checkpoint( - my_template=load_template, optimizer=load_optimizer - ) - status = load_root.restore(save_path) - var, var_plus_one, var2, _, _ = load_template() - load_optimizer.minimize(var.read_value, var_list=[var]) - - children = load_template._trackable_children() - self.assertEqual({"v", "v2", "ManualScope"}, children.keys()) - status.assert_consumed().run_restore_ops() - self.assertAllEqual([12.0], self.evaluate(var)) - self.assertAllEqual([13.0], self.evaluate(var_plus_one)) - self.assertAllEqual([14.0], self.evaluate(var2)) - - -class CheckpointCompatibilityTests(test_combinations.TestCase): - def _initialized_model(self): - input_value = tf.constant([[3.0]]) - model = MyModel() - optimizer = adam.Adam(0.001) - root_trackable = tf.train.Checkpoint(optimizer=optimizer, model=model) - with tf.GradientTape() as tape: - loss = model(input_value) - variables = model.trainable_variables - gradients = tape.gradient(loss, variables) - train_op = optimizer.apply_gradients(zip(gradients, variables)) - self.evaluate(trackable_utils.gather_initializers(root_trackable)) - self.evaluate(train_op) - # A regular variable, a slot variable, and a non-slot Optimizer variable - # with known values to check when loading. - self.evaluate(model._named_dense.bias.assign([1.0])) - self.evaluate( - optimizer.get_slot( - var=model._named_dense.bias, slot_name="m" - ).assign([2.0]) - ) - self.evaluate(optimizer.beta_1.assign(3.0)) - return root_trackable - - def _set_sentinels(self, root_trackable): - self.evaluate(root_trackable.model._named_dense.bias.assign([101.0])) - self.evaluate( - root_trackable.optimizer.get_slot( - var=root_trackable.model._named_dense.bias, slot_name="m" - ).assign([102.0]) - ) - self.evaluate(root_trackable.optimizer.beta_1.assign(103.0)) - - def _check_sentinels(self, root_trackable): - self.assertAllEqual( - [1.0], self.evaluate(root_trackable.model._named_dense.bias) - ) - self.assertAllEqual( - [2.0], - self.evaluate( - root_trackable.optimizer.get_slot( - var=root_trackable.model._named_dense.bias, slot_name="m" - ) - ), - ) - self.assertAllEqual(3.0, self.evaluate(root_trackable.optimizer.beta_1)) - - def _write_name_based_checkpoint(self): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - with context.graph_mode(): - save_graph = tf.Graph() - with save_graph.as_default(), self.session( - graph=save_graph - ) as session: - root = self._initialized_model() - name_saver = tf.compat.v1.train.Saver() - return name_saver.save( - sess=session, - save_path=checkpoint_prefix, - global_step=root.optimizer.iterations, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testLoadFromNameBasedSaver(self): - """Save a name-based checkpoint, load it using the object-based API.""" - with test_utils.device(should_use_gpu=True): - with self.test_session(): - save_path = self._write_name_based_checkpoint() - root = self._initialized_model() - self._set_sentinels(root) - with self.assertRaises(AssertionError): - self._check_sentinels(root) - object_saver = tf.train.Checkpoint(root=root) - self._set_sentinels(root) - status = object_saver.read(save_path) - if tf.executing_eagerly(): - self._check_sentinels(root) - if tf.executing_eagerly(): - status.assert_consumed() - status.assert_existing_objects_matched() - status.assert_nontrivial_match() - else: - # When graph building, we haven't read any keys, so we don't - # know whether the restore will be complete. - with self.assertRaisesRegex(AssertionError, "not restored"): - status.assert_consumed() - with self.assertRaisesRegex(AssertionError, "not restored"): - status.assert_existing_objects_matched() - with self.assertRaisesRegex(AssertionError, "not restored"): - status.assert_nontrivial_match() - status.run_restore_ops() - self._check_sentinels(root) - self._set_sentinels(root) - status = object_saver.read(save_path) - status.initialize_or_restore() - status.assert_nontrivial_match() - self._check_sentinels(root) - # Check that there is no error when keys are missing from the - # name-based checkpoint. - root.not_in_name_checkpoint = tf.Variable([1.0]) - status = object_saver.read(save_path) - with self.assertRaises(AssertionError): - status.assert_existing_objects_matched() - - def testSaveGraphLoadEager(self): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - with context.graph_mode(): - save_graph = tf.Graph() - with save_graph.as_default(), self.session(graph=save_graph): - root = self._initialized_model() - save_path = root.save(file_prefix=checkpoint_prefix) - with tf.__internal__.eager_context.eager_mode(): - root = self._initialized_model() - self._set_sentinels(root) - root.restore(save_path).assert_consumed() - self._check_sentinels(root) - - def testSaveEagerLoadGraph(self): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - with tf.__internal__.eager_context.eager_mode(): - root = self._initialized_model() - save_path = root.save(file_prefix=checkpoint_prefix) - with context.graph_mode(): - save_graph = tf.Graph() - with save_graph.as_default(), self.session(graph=save_graph): - root = self._initialized_model() - self._set_sentinels(root) - root.restore(save_path).assert_consumed().run_restore_ops() - self._check_sentinels(root) - - def testIgnoreSaveCounter(self): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - with self.cached_session() as session: - # Create and save a model using Saver() before using a Checkpoint. - # This generates a snapshot without the Checkpoint's `save_counter`. - model = sequential.Sequential() - model.add(reshaping.Flatten(input_shape=(1,))) - model.add(core.Dense(1)) - name_saver = tf.compat.v1.train.Saver(model.trainable_variables) - save_path = name_saver.save( - sess=session, save_path=checkpoint_prefix, global_step=1 - ) - # Checkpoint.restore must successfully load that checkpoint. - ckpt = tf.train.Checkpoint(model=model) - status = ckpt.restore(save_path) - status.assert_existing_objects_matched() - # It should, however, refuse to load a checkpoint where an unrelated - # `save_counter` variable is missing. - model.layers[1].var = tf.Variable(0.0, name="save_counter") - status = ckpt.restore(save_path) - with self.assertRaises(AssertionError): - status.assert_existing_objects_matched() - - -if __name__ == "__main__": - tf.compat.v1.enable_eager_execution() - tf.test.main() diff --git a/keras/tests/tracking_util_with_v1_optimizers_test.py b/keras/tests/tracking_util_with_v1_optimizers_test.py deleted file mode 100644 index bf1d85ed7bb..00000000000 --- a/keras/tests/tracking_util_with_v1_optimizers_test.py +++ /dev/null @@ -1,812 +0,0 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for object-based saving which use tf.train.* optimizers.""" - -import functools -import os - -import tensorflow.compat.v2 as tf - -from keras.engine import training -from keras.layers import core -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - -# isort: off -from tensorflow.python.checkpoint import ( - checkpoint as trackable_utils, -) -from tensorflow.python.eager import context -from tensorflow.python.framework import ( - test_util as tf_test_utils, -) - - -class NonLayerTrackable(tf.Module): - def __init__(self): - super().__init__() - self.a_variable = trackable_utils.add_variable( - self, name="a_variable", shape=[] - ) - - -class MyModel(training.Model): - """A concrete Model for testing.""" - - def __init__(self): - super().__init__() - self._named_dense = core.Dense(1, use_bias=True) - self._second = core.Dense(1, use_bias=False) - # We can still track Trackables which aren't Layers. - self._non_layer = NonLayerTrackable() - - def call(self, values): - ret = self._second(self._named_dense(values)) - return ret - - -class CheckpointingTests(test_combinations.TestCase): - @tf_test_utils.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) - def testNamingWithOptimizer(self): - input_value = tf.constant([[3.0]]) - model = MyModel() - # A nuisance Model using the same optimizer. Its slot variables should - # not go in the checkpoint, since it is never depended on. - other_model = MyModel() - optimizer = tf.compat.v1.train.AdamOptimizer(0.001) - optimizer_step = tf.compat.v1.train.get_or_create_global_step() - root_trackable = tf.train.Checkpoint( - optimizer=optimizer, model=model, optimizer_step=optimizer_step - ) - if tf.executing_eagerly(): - optimizer.minimize( - lambda: model(input_value), global_step=optimizer_step - ) - optimizer.minimize( - lambda: other_model(input_value), global_step=optimizer_step - ) - else: - train_op = optimizer.minimize( - model(input_value), global_step=optimizer_step - ) - optimizer.minimize( - other_model(input_value), global_step=optimizer_step - ) - self.evaluate(trackable_utils.gather_initializers(root_trackable)) - self.evaluate(train_op) - ( - named_variables, - serialized_graph, - _, - ) = tf.__internal__.tracking.ObjectGraphView( - root_trackable - ).serialize_object_graph() - expected_checkpoint_names = ( - # Created in the root node, so no prefix. - "optimizer_step", - "model/_second/kernel", - "model/_named_dense/kernel", - "model/_named_dense/bias", - # non-Layer dependency of the model - "model/_non_layer/a_variable", - # The optimizer creates two non-slot variables - "optimizer/beta1_power", - "optimizer/beta2_power", - # Slot variables - "model/_second/kernel/.OPTIMIZER_SLOT/optimizer/m", - "model/_second/kernel/.OPTIMIZER_SLOT/optimizer/v", - "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m", - "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/v", - "model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/m", - "model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/v", - ) - suffix = "/.ATTRIBUTES/VARIABLE_VALUE" - expected_checkpoint_names = [ - name + suffix for name in expected_checkpoint_names - ] - named_variables = {v.name: v for v in named_variables} - self.assertEqual( - len(expected_checkpoint_names), len(named_variables.keys()) - ) - # Check that we've created the right full_names of objects (not - # exhaustive) - expected_names = { - "optimizer_step" + suffix: "global_step", - "model/_second/kernel" + suffix: "my_model/dense_1/kernel", - "model/_named_dense/kernel" + suffix: "my_model/dense/kernel", - "optimizer/beta1_power" + suffix: "beta1_power", - "optimizer/beta2_power" + suffix: "beta2_power", - } - for nodes in serialized_graph.nodes: - for attribute in nodes.attributes: - expected_name = expected_names.pop( - attribute.checkpoint_key, None - ) - if expected_name is not None: - self.assertEqual(expected_name, attribute.full_name) - self.assertEmpty(expected_names) - - # Spot check the generated protocol buffers. - self.assertEqual( - "optimizer", serialized_graph.nodes[0].children[1].local_name - ) - optimizer_node = serialized_graph.nodes[ - serialized_graph.nodes[0].children[1].node_id - ] - self.assertEqual("beta1_power", optimizer_node.children[0].local_name) - self.assertEqual( - "beta1_power", - serialized_graph.nodes[optimizer_node.children[0].node_id] - .attributes[0] - .full_name, - ) - self.assertEqual( - "my_model/dense/kernel", - serialized_graph.nodes[ - optimizer_node.slot_variables[0].original_variable_node_id - ] - .attributes[0] - .full_name, - ) - - # We strip off the :0 suffix, as variable.name-based saving does. - self.assertEqual( - "my_model/dense/kernel/Adam", - serialized_graph.nodes[ - optimizer_node.slot_variables[0].slot_variable_node_id - ] - .attributes[0] - .full_name, - ) - self.assertEqual( - "my_model/dense/kernel/Adam:0", - optimizer.get_slot(var=model._named_dense.kernel, name="m").name, - ) - self.assertEqual( - "model/_named_dense/kernel" + suffix, - serialized_graph.nodes[ - optimizer_node.slot_variables[0].original_variable_node_id - ] - .attributes[0] - .checkpoint_key, - ) - self.assertEqual("m", optimizer_node.slot_variables[0].slot_name) - self.assertEqual( - "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m" + suffix, - serialized_graph.nodes[ - optimizer_node.slot_variables[0].slot_variable_node_id - ] - .attributes[0] - .checkpoint_key, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testSaveRestore(self): - with self.test_session(): - model = MyModel() - optimizer = tf.compat.v1.train.AdamOptimizer(0.001) - root_trackable = tf.train.Checkpoint( - optimizer=optimizer, model=model - ) - input_value = tf.constant([[3.0]]) - if tf.executing_eagerly(): - optimizer.minimize(lambda: model(input_value)) - else: - train_op = optimizer.minimize(model(input_value)) - # TODO(allenl): Make initialization more pleasant when graph - # building. - root_trackable.save_counter - self.evaluate( - trackable_utils.gather_initializers(root_trackable) - ) - self.evaluate(train_op) - prefix = os.path.join(self.get_temp_dir(), "ckpt") - self.evaluate( - tf.compat.v1.assign(model._named_dense.variables[1], [42.0]) - ) - m_bias_slot = optimizer.get_slot( - model._named_dense.variables[1], "m" - ) - self.evaluate(tf.compat.v1.assign(m_bias_slot, [1.5])) - save_path = root_trackable.save(file_prefix=prefix) - self.evaluate( - tf.compat.v1.assign(model._named_dense.variables[1], [43.0]) - ) - self.evaluate(tf.compat.v1.assign(root_trackable.save_counter, 3)) - optimizer_variables = self.evaluate(optimizer.variables()) - self.evaluate(tf.compat.v1.assign(m_bias_slot, [-2.0])) - # Immediate restoration - status = root_trackable.restore( - save_path=save_path - ).assert_consumed() - status.run_restore_ops() - self.assertAllEqual( - [42.0], self.evaluate(model._named_dense.variables[1]) - ) - self.assertAllEqual(1, self.evaluate(root_trackable.save_counter)) - self.assertAllEqual([1.5], self.evaluate(m_bias_slot)) - if not tf.executing_eagerly(): - # Restore-on-create is only supported when executing eagerly - return - on_create_model = MyModel() - on_create_optimizer = tf.compat.v1.train.AdamOptimizer( - 0.001, - # Preserve beta1_power and beta2_power when applying gradients - # so we can test that they've been restored correctly. - beta1=1.0, - beta2=1.0, - ) - on_create_root = tf.train.Checkpoint( - optimizer=on_create_optimizer, model=on_create_model - ) - # Deferred restoration - status = on_create_root.restore(save_path=save_path) - status.assert_nontrivial_match() - status.assert_existing_objects_matched() - with self.assertRaises(AssertionError): - status.assert_consumed() - on_create_model(tf.constant([[3.0]])) # create variables - self.assertAllEqual(1, self.evaluate(on_create_root.save_counter)) - self.assertAllEqual( - [42.0], self.evaluate(on_create_model._named_dense.variables[1]) - ) - on_create_m_bias_slot = on_create_optimizer.get_slot( - on_create_model._named_dense.variables[1], "m" - ) - status.assert_existing_objects_matched() - with self.assertRaises(AssertionError): - status.assert_consumed() - # Optimizer slot variables are created when the original variable is - # restored. - self.assertAllEqual([1.5], self.evaluate(on_create_m_bias_slot)) - self.assertAllEqual( - optimizer_variables[2:], - self.evaluate(on_create_optimizer.variables()), - ) - dummy_var = tf.Variable([1.0]) - on_create_optimizer.minimize(loss=dummy_var.read_value) - status.assert_existing_objects_matched() - status.assert_consumed() - ( - beta1_power, - beta2_power, - ) = on_create_optimizer._get_beta_accumulators() - self.assertAllEqual( - optimizer_variables[0], self.evaluate(beta1_power) - ) - self.assertAllEqual( - optimizer_variables[1], self.evaluate(beta2_power) - ) - - # TODO(allenl): Debug garbage created by this test in python3. - def testDeferredRestorationUsageEager(self): - """An idiomatic eager execution example.""" - num_training_steps = 10 - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - for training_continuation in range(3): - model = MyModel() - optimizer = tf.compat.v1.train.AdamOptimizer(0.001) - root = tf.train.Checkpoint( - optimizer=optimizer, - model=model, - optimizer_step=tf.compat.v1.train.get_or_create_global_step(), - ) - root.restore(tf.train.latest_checkpoint(checkpoint_directory)) - for _ in range(num_training_steps): - # TODO(allenl): Use a Dataset and serialize/checkpoint it. - input_value = tf.constant([[3.0]]) - optimizer.minimize( - lambda: model(input_value), - global_step=root.optimizer_step, - ) - root.save(file_prefix=checkpoint_prefix) - self.assertEqual( - (training_continuation + 1) * num_training_steps, - root.optimizer_step.numpy(), - ) - - def testEagerDistributionStrategy(self): - num_training_steps = 10 - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - - def _train_fn(optimizer, model, root): - input_value = tf.constant([[3.0]]) - optimizer.minimize( - functools.partial(model, input_value), - global_step=root.optimizer_step, - ) - - strategy = tf.distribute.MirroredStrategy() - with strategy.scope(): - for training_continuation in range(3): - model = MyModel() - optimizer = tf.compat.v1.train.AdamOptimizer(0.001) - root = tf.train.Checkpoint( - optimizer=optimizer, - model=model, - optimizer_step=tf.compat.v1.train.get_or_create_global_step(), # noqa: E501 - ) - root.restore(tf.train.latest_checkpoint(checkpoint_directory)) - - for _ in range(num_training_steps): - strategy.extended.call_for_each_replica( - functools.partial(_train_fn, optimizer, model, root) - ) - root.save(file_prefix=checkpoint_prefix) - self.assertEqual( - (training_continuation + 1) * num_training_steps, - root.optimizer_step.numpy(), - ) - - def testGraphDistributionStrategy(self): - self.skipTest("b/121381184") - num_training_steps = 10 - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - - def _train_fn(optimizer, model, root): - input_value = tf.constant([[3.0]]) - return optimizer.minimize( - functools.partial(model, input_value), - global_step=root.optimizer_step, - ) - - for training_continuation in range(3): - with tf.Graph().as_default(): - strategy = tf.distribute.MirroredStrategy() - with strategy.scope(): - model = MyModel() - optimizer = tf.compat.v1.train.AdamOptimizer(0.001) - root = tf.train.Checkpoint( - optimizer=optimizer, - model=model, - optimizer_step=tf.compat.v1.train.get_or_create_global_step(), # noqa: E501 - ) - status = root.restore( - tf.train.latest_checkpoint(checkpoint_directory) - ) - train_op = strategy.extended.call_for_each_replica( - functools.partial(_train_fn, optimizer, model, root) - ) - with self.session() as session: - if training_continuation > 0: - status.assert_consumed() - status.initialize_or_restore() - for _ in range(num_training_steps): - session.run(train_op) - root.save(file_prefix=checkpoint_prefix) - self.assertEqual( - (training_continuation + 1) * num_training_steps, - root.optimizer_step.numpy(), - ) - - def testUsageGraph(self): - """Expected usage when graph building.""" - with context.graph_mode(): - num_training_steps = 10 - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - for training_continuation in range(3): - with tf.Graph().as_default(): - model = MyModel() - optimizer = tf.compat.v1.train.AdamOptimizer(0.001) - root = tf.compat.v1.train.Checkpoint( - optimizer=optimizer, - model=model, - global_step=tf.compat.v1.train.get_or_create_global_step(), # noqa: E501 - ) - input_value = tf.constant([[3.0]]) - train_op = optimizer.minimize( - model(input_value), global_step=root.global_step - ) - checkpoint_path = tf.train.latest_checkpoint( - checkpoint_directory - ) - with self.session( - graph=tf.compat.v1.get_default_graph() - ) as session: - status = root.restore(save_path=checkpoint_path) - status.initialize_or_restore(session=session) - if checkpoint_path is None: - self.assertEqual(0, training_continuation) - with self.assertRaises(AssertionError): - status.assert_consumed() - with self.assertRaises(AssertionError): - status.assert_existing_objects_matched() - else: - status.assert_consumed() - status.assert_existing_objects_matched() - for _ in range(num_training_steps): - session.run(train_op) - root.save( - file_prefix=checkpoint_prefix, session=session - ) - self.assertEqual( - (training_continuation + 1) * num_training_steps, - session.run(root.global_step), - ) - self.assertEqual( - training_continuation + 1, - session.run(root.save_counter), - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testAgnosticUsage(self): - """Graph/eager agnostic usage.""" - # Does create garbage when executing eagerly due to ops.Graph() - # creation. - with self.test_session(): - num_training_steps = 10 - checkpoint_directory = self.get_temp_dir() - for training_continuation in range(3): - with test_utils.device(should_use_gpu=True): - model = MyModel() - optimizer = tf.compat.v1.train.AdamOptimizer(0.001) - root = tf.train.Checkpoint( - optimizer=optimizer, - model=model, - global_step=tf.compat.v1.train.get_or_create_global_step(), # noqa: E501 - ) - manager = tf.train.CheckpointManager( - root, checkpoint_directory, max_to_keep=1 - ) - status = root.restore(save_path=manager.latest_checkpoint) - input_value = tf.constant([[3.0]]) - train_fn = functools.partial( - optimizer.minimize, - functools.partial(model, input_value), - global_step=root.global_step, - ) - if not tf.executing_eagerly(): - train_fn = functools.partial(self.evaluate, train_fn()) - status.initialize_or_restore() - for _ in range(num_training_steps): - train_fn() - manager.save() - self.assertEqual( - (training_continuation + 1) * num_training_steps, - self.evaluate(root.global_step), - ) - self.assertEqual( - training_continuation + 1, - self.evaluate(root.save_counter), - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testWithDefun(self): - with self.test_session(): - num_training_steps = 2 - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - for training_continuation in range(3): - with test_utils.device(should_use_gpu=True): - model = MyModel() - # Don't actually train so we can test variable values - optimizer = tf.compat.v1.train.AdamOptimizer(0.0) - root = tf.train.Checkpoint( - optimizer=optimizer, - model=model, - global_step=tf.compat.v1.train.get_or_create_global_step(), # noqa: E501 - ) - checkpoint_path = tf.train.latest_checkpoint( - checkpoint_directory - ) - status = root.restore(save_path=checkpoint_path) - - def train_fn(): - @tf.function - def _call_model(x): - return model(x) - - with tf.GradientTape() as tape: - loss = _call_model(tf.constant([[3.0]])) - gradients = tape.gradient(loss, model.variables) - return optimizer.apply_gradients( - zip(gradients, model.variables), - global_step=root.global_step, - ) - - if not tf.executing_eagerly(): - train_fn = functools.partial(self.evaluate, train_fn()) - status.initialize_or_restore() - for _ in range(num_training_steps): - train_fn() - if training_continuation > 0: - status.assert_consumed() - self.assertAllClose( - [[42.0]], self.evaluate(model.variables[0]) - ) - else: - self.evaluate(model.variables[0].assign([[42.0]])) - root.save(file_prefix=checkpoint_prefix) - self.assertEqual( - (training_continuation + 1) * num_training_steps, - self.evaluate(root.global_step), - ) - self.assertEqual( - training_continuation + 1, - self.evaluate(root.save_counter), - ) - - @test_combinations.generate(test_combinations.combine(mode=["eager"])) - def testAnonymousVarsInInit(self): - class Model(training.Model): - def __init__(self): - super().__init__() - self.w = tf.Variable(0.0) - self.b = tf.Variable(0.0) - self.vars = [self.w, self.b] - - def call(self, x): - return x * self.w + self.b - - model = Model() - optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=0.05) - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) - for _ in range(2): - checkpoint.save(checkpoint_prefix) - with tf.GradientTape() as tape: - loss = (tf.constant(1.0) - model(tf.constant(1.0))) ** 2 - grad = tape.gradient(loss, model.vars) - optimizer.apply_gradients( - [(g, v) for g, v in zip(grad, model.vars)] - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def test_initialize_if_not_restoring(self): - with self.test_session(): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - optimizer_only_prefix = os.path.join(checkpoint_directory, "opt") - with test_utils.device(should_use_gpu=True): - model = MyModel() - optimizer = tf.compat.v1.train.AdamOptimizer(0.001) - root = tf.train.Checkpoint( - # Do not save the optimizer with the checkpoint. - model=model, - global_step=tf.compat.v1.train.get_or_create_global_step(), - ) - optimizer_checkpoint = tf.train.Checkpoint(optimizer=optimizer) - - checkpoint_path = tf.train.latest_checkpoint( - checkpoint_directory - ) - status = root.restore(save_path=checkpoint_path) - input_value = tf.constant([[3.0]]) - train_fn = functools.partial( - optimizer.minimize, - functools.partial(model, input_value), - global_step=root.global_step, - ) - if not tf.executing_eagerly(): - train_fn = functools.partial(self.evaluate, train_fn()) - status.initialize_or_restore() - self.evaluate([v.initializer for v in optimizer.variables()]) - train_fn() - model_save_path = root.save(file_prefix=checkpoint_prefix) - self.evaluate(optimizer.variables()[0].assign(42.0)) - optimizer_save_path = optimizer_checkpoint.save( - optimizer_only_prefix - ) - - # Restore into a graph with the optimizer - with test_utils.device(should_use_gpu=True): - model = MyModel() - optimizer = tf.compat.v1.train.AdamOptimizer(0.001) - root = tf.train.Checkpoint( - optimizer=optimizer, - model=model, - global_step=tf.compat.v1.train.get_or_create_global_step(), - ) - status = root.restore(save_path=model_save_path) - input_value = tf.constant([[3.0]]) - train_fn = functools.partial( - optimizer.minimize, - functools.partial(model, input_value), - global_step=root.global_step, - ) - if not tf.executing_eagerly(): - train_fn = functools.partial(self.evaluate, train_fn()) - status.initialize_or_restore() - train_fn() - with self.assertRaises(AssertionError): - status.assert_existing_objects_matched() - with self.assertRaises(AssertionError): - status.assert_consumed() - - # Make sure initialization doesn't clobber later restores - with test_utils.device(should_use_gpu=True): - model = MyModel() - optimizer = tf.compat.v1.train.AdamOptimizer(0.001, beta1=1.0) - root = tf.train.Checkpoint( - optimizer=optimizer, - model=model, - global_step=tf.compat.v1.train.get_or_create_global_step(), - ) - opt_root = tf.train.Checkpoint(optimizer=optimizer) - status = root.restore(save_path=model_save_path) - init_only_optimizer_status = opt_root.restore(save_path=None) - optimizer_status = opt_root.restore( - save_path=optimizer_save_path - ) - input_value = tf.constant([[3.0]]) - train_fn = functools.partial( - optimizer.minimize, - functools.partial(model, input_value), - global_step=root.global_step, - ) - if not tf.executing_eagerly(): - train_fn = functools.partial(self.evaluate, train_fn()) - optimizer_status.run_restore_ops() - status.initialize_or_restore() - init_only_optimizer_status.initialize_or_restore() - train_fn() - self.assertEqual(42.0, self.evaluate(optimizer.variables()[0])) - - -class CheckpointCompatibilityTests(test_combinations.TestCase): - def _initialized_model(self): - input_value = tf.constant([[3.0]]) - model = MyModel() - optimizer = tf.compat.v1.train.AdamOptimizer(0.001) - optimizer_step = tf.compat.v1.train.get_or_create_global_step() - root_trackable = tf.train.Checkpoint( - optimizer=optimizer, model=model, optimizer_step=optimizer_step - ) - train_op = optimizer.minimize( - functools.partial(model, input_value), global_step=optimizer_step - ) - self.evaluate(trackable_utils.gather_initializers(root_trackable)) - self.evaluate(train_op) - # A regular variable, a slot variable, and a non-slot Optimizer variable - # with known values to check when loading. - self.evaluate(model._named_dense.bias.assign([1.0])) - self.evaluate( - optimizer.get_slot(var=model._named_dense.bias, name="m").assign( - [2.0] - ) - ) - beta1_power, _ = optimizer._get_beta_accumulators() - self.evaluate(beta1_power.assign(3.0)) - return root_trackable - - def _set_sentinels(self, root_trackable): - self.evaluate(root_trackable.model._named_dense.bias.assign([101.0])) - self.evaluate( - root_trackable.optimizer.get_slot( - var=root_trackable.model._named_dense.bias, name="m" - ).assign([102.0]) - ) - beta1_power, _ = root_trackable.optimizer._get_beta_accumulators() - self.evaluate(beta1_power.assign(103.0)) - - def _check_sentinels(self, root_trackable): - self.assertAllEqual( - [1.0], self.evaluate(root_trackable.model._named_dense.bias) - ) - self.assertAllEqual( - [2.0], - self.evaluate( - root_trackable.optimizer.get_slot( - var=root_trackable.model._named_dense.bias, name="m" - ) - ), - ) - beta1_power, _ = root_trackable.optimizer._get_beta_accumulators() - self.assertAllEqual(3.0, self.evaluate(beta1_power)) - - def _write_name_based_checkpoint(self): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - with context.graph_mode(): - save_graph = tf.Graph() - with save_graph.as_default(), self.session( - graph=save_graph - ) as session: - root = self._initialized_model() - name_saver = tf.compat.v1.train.Saver() - return name_saver.save( - sess=session, - save_path=checkpoint_prefix, - global_step=root.optimizer_step, - ) - - @test_combinations.generate( - test_combinations.combine(mode=["graph", "eager"]) - ) - def testLoadFromNameBasedSaver(self): - """Save a name-based checkpoint, load it using the object-based API.""" - with test_utils.device(should_use_gpu=True): - with self.test_session(): - save_path = self._write_name_based_checkpoint() - root = self._initialized_model() - self._set_sentinels(root) - with self.assertRaises(AssertionError): - self._check_sentinels(root) - object_saver = tf.train.Checkpoint(root=root) - self._set_sentinels(root) - status = object_saver.read(save_path) - if tf.executing_eagerly(): - self._check_sentinels(root) - if tf.executing_eagerly(): - status.assert_consumed() - status.assert_existing_objects_matched() - status.assert_nontrivial_match() - else: - # When graph building, we haven't read any keys, so we don't - # know whether the restore will be complete. - with self.assertRaisesRegex(AssertionError, "not restored"): - status.assert_consumed() - with self.assertRaisesRegex(AssertionError, "not restored"): - status.assert_existing_objects_matched() - with self.assertRaisesRegex(AssertionError, "not restored"): - status.assert_nontrivial_match() - status.run_restore_ops() - self._check_sentinels(root) - self._set_sentinels(root) - status = object_saver.read(save_path) - status.initialize_or_restore() - self._check_sentinels(root) - # Check that there is no error when keys are missing from the - # name-based checkpoint. - root.not_in_name_checkpoint = tf.Variable([1.0]) - status = object_saver.read(save_path) - with self.assertRaises(AssertionError): - status.assert_existing_objects_matched() - - def testSaveGraphLoadEager(self): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - with context.graph_mode(): - save_graph = tf.Graph() - with save_graph.as_default(), self.session(graph=save_graph): - root = self._initialized_model() - save_path = root.save(file_prefix=checkpoint_prefix) - with tf.__internal__.eager_context.eager_mode(): - root = self._initialized_model() - self._set_sentinels(root) - root.restore(save_path).assert_consumed() - self._check_sentinels(root) - - def testSaveEagerLoadGraph(self): - checkpoint_directory = self.get_temp_dir() - checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") - with tf.__internal__.eager_context.eager_mode(): - root = self._initialized_model() - save_path = root.save(file_prefix=checkpoint_prefix) - with context.graph_mode(): - save_graph = tf.Graph() - with save_graph.as_default(), self.session(graph=save_graph): - root = self._initialized_model() - self._set_sentinels(root) - root.restore(save_path).assert_consumed().run_restore_ops() - self._check_sentinels(root) - - -if __name__ == "__main__": - tf.compat.v1.enable_eager_execution() - tf.test.main() diff --git a/keras/tests/tracking_util_xla_test.py b/keras/tests/tracking_util_xla_test.py deleted file mode 100644 index 4867ab5f20d..00000000000 --- a/keras/tests/tracking_util_xla_test.py +++ /dev/null @@ -1,82 +0,0 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import tensorflow.compat.v2 as tf - -from keras.engine import training -from keras.layers import core -from keras.optimizers.legacy import adam - -# isort: off -from tensorflow.compiler.tests import xla_test -from tensorflow.python.checkpoint import ( - checkpoint as trackable_utils, -) - - -class NonLayerTrackable(tf.Module): - def __init__(self): - super().__init__() - self.a_variable = trackable_utils.add_variable( - self, name="a_variable", shape=[] - ) - - -class Subclassed(training.Model): - """A concrete Model for testing.""" - - def __init__(self): - super().__init__() - self._named_dense = core.Dense(1, use_bias=True) - self._second = core.Dense(1, use_bias=False) - # We can still track Trackables which aren't Layers. - self._non_layer = NonLayerTrackable() - - def call(self, values): - ret = self._second(self._named_dense(values)) - return ret - - -class CheckpointingTests(xla_test.XLATestCase): - def testDeferredRestorationUsageEager(self): - """An idiomatic eager execution example.""" - num_training_steps = 10 - checkpoint_directory = self.get_temp_dir() - for training_continuation in range(3): - with self.test_scope(): - model = Subclassed() - optimizer = adam.Adam(0.001) - root = tf.train.Checkpoint(optimizer=optimizer, model=model) - manager = tf.train.CheckpointManager( - root, checkpoint_directory, max_to_keep=2 - ) - root.restore(manager.latest_checkpoint) - for _ in range(num_training_steps): - input_value = tf.constant([[3.0]]) - with tf.GradientTape() as tape: - loss = model(input_value) - variables = model.trainable_variables - gradients = tape.gradient(loss, variables) - optimizer.apply_gradients(zip(gradients, variables)) - manager.save() - self.assertEqual( - (training_continuation + 1) * num_training_steps, - root.optimizer.iterations.numpy(), - ) - - -if __name__ == "__main__": - tf.compat.v1.enable_eager_execution() - tf.test.main() diff --git a/keras/tools/bazel_build.sh b/keras/tools/bazel_build.sh deleted file mode 100644 index f5823364651..00000000000 --- a/keras/tools/bazel_build.sh +++ /dev/null @@ -1,21 +0,0 @@ -#!/bin/bash -BAZEL_VERSION=5.4.0 -rm -rf ~/bazel -mkdir ~/bazel - -pushd ~/bazel -wget https://github.com/bazelbuild/bazel/releases/download/"${BAZEL_VERSION}"/bazel-"${BAZEL_VERSION}"-installer-linux-x86_64.sh -chmod +x bazel-*.sh -./bazel-"${BAZEL_VERSION}"-installer-linux-x86_64.sh --user -rm bazel-"${BAZEL_VERSION}"-installer-linux-x86_64.sh -popd - -PATH="/home/kbuilder/bin:$PATH" -which bazel -bazel version - -TAG_FILTERS="-no_oss,-oss_excluded,-oss_serial,-gpu,-benchmark-test,-no_oss_py3,-no_pip,-nopip" -bazel build \ - --define=use_fast_cpp_protos=false \ - --build_tag_filters="${TAG_FILTERS}" \ - -- //keras/... diff --git a/keras/tools/gpu_build/BUILD b/keras/tools/gpu_build/BUILD deleted file mode 100644 index 14204f7f3b3..00000000000 --- a/keras/tools/gpu_build/BUILD +++ /dev/null @@ -1,8 +0,0 @@ -package( - licenses = ["notice"], # Apache 2.0 -) - -sh_binary( - name = "parallel_gpu_execute", - srcs = ["parallel_gpu_execute.sh"], -) diff --git a/keras/tools/gpu_build/parallel_gpu_execute.sh b/keras/tools/gpu_build/parallel_gpu_execute.sh deleted file mode 100755 index 225c93acf48..00000000000 --- a/keras/tools/gpu_build/parallel_gpu_execute.sh +++ /dev/null @@ -1,78 +0,0 @@ -#!/usr/bin/env bash -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -# -# -# A script to run multiple GPU tests in parallel controlled with an environment -# variable. -# -# Required environment variables: -# TF_GPU_COUNT = Number of GPUs available. - -TF_GPU_COUNT=${TF_GPU_COUNT:-4} -TF_TESTS_PER_GPU=${TF_TESTS_PER_GPU:-8} - -export TF_PER_DEVICE_MEMORY_LIMIT_MB=${TF_PER_DEVICE_MEMORY_LIMIT_MB:-1024} - -# ******************************************************************* -# This section of the script is needed to -# make things work on windows under msys. -# ******************************************************************* -RUNFILES_MANIFEST_FILE="${TEST_SRCDIR}/MANIFEST" -function rlocation() { - if is_absolute "$1" ; then - # If the file path is already fully specified, simply return it. - echo "$1" - elif [[ -e "$TEST_SRCDIR/$1" ]]; then - # If the file exists in the $TEST_SRCDIR then just use it. - echo "$TEST_SRCDIR/$1" - elif [[ -e "$RUNFILES_MANIFEST_FILE" ]]; then - # If a runfiles manifest file exists then use it. - echo "$(grep "^$1 " "$RUNFILES_MANIFEST_FILE" | sed 's/[^ ]* //')" - fi -} - -TEST_BINARY="$(rlocation $TEST_WORKSPACE/${1#./})" -shift -# ******************************************************************* - -mkdir -p /var/lock -# Try to acquire any of the TF_GPU_COUNT * TF_TESTS_PER_GPU -# slots to run a test at. -# -# Prefer to allocate 1 test per GPU over 4 tests on 1 GPU. -# So, we iterate over TF_TESTS_PER_GPU first. -for j in `seq 0 $((TF_TESTS_PER_GPU-1))`; do - for i in `seq 0 $((TF_GPU_COUNT-1))`; do - exec {lock_fd}>/var/lock/gpulock${i}_${j} || exit 1 - if flock -n "$lock_fd"; - then - ( - # This export only works within the brackets, so it is isolated to one - # single command. - export CUDA_VISIBLE_DEVICES=$i - export HIP_VISIBLE_DEVICES=$i - echo "Running test $TEST_BINARY $* on GPU $CUDA_VISIBLE_DEVICES" - "$TEST_BINARY" $@ - ) - return_code=$? - flock -u "$lock_fd" - exit $return_code - fi - done -done - -echo "Cannot find a free GPU to run the test $* on, exiting with failure..." -exit 1 diff --git a/keras/tools/pip_package/BUILD b/keras/tools/pip_package/BUILD deleted file mode 100644 index 5b086a4f01c..00000000000 --- a/keras/tools/pip_package/BUILD +++ /dev/null @@ -1,44 +0,0 @@ -package(default_visibility = ["//keras:__subpackages__"]) - -# Description: -# Tools for building the TensorFlow pip package. - -COMMON_PIP_DEPS = [ - "//keras/api:keras_api", - # The following targets are not included by //keras:keras, - # eg to avoid circular dependency with TF, but they should still be included - # in the PIP package. - "//keras/legacy_tf_layers:convolutional", - "//keras/legacy_tf_layers:core", - "//keras/legacy_tf_layers:layers_base", - "//keras/legacy_tf_layers:normalization", - "//keras/legacy_tf_layers:pooling", - "//keras/layers/rnn:legacy_cell_wrappers", - "//keras/layers/rnn:legacy_cells", - "//keras/optimizers:legacy_learning_rate_decay", - # Need to include testing libraries in pip package so our pip - # release tests can run. (see py_test rule in keras.bzl for more context). - # Essentially, everything needed to run the test (except the test file itself) - # must be contained in the pip package since we strip away all deps. - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - "//keras/benchmarks:keras_benchmark_lib_pip", - "//keras/dtensor:integration_test_utils", - "//keras/dtensor:test_util", - "//keras/distribute:distribute_test_lib_pip", - "//keras/integration_test:preprocessing_test_utils", - "//keras/integration_test/models:models", - "//keras/layers/preprocessing:preprocessing_test_utils", - "//keras/layers/preprocessing/benchmarks:feature_column_benchmark", - "//keras/mixed_precision:test_util", - "//keras/tests:model_architectures", - "//keras/tests:model_subclassing_test_util", - "//keras/utils:dataset_creator", - "//keras/utils:kpl_test_utils", -] - -sh_binary( - name = "build_pip_package", - srcs = ["build_pip_package.sh"], - data = COMMON_PIP_DEPS, -) diff --git a/keras/tools/pip_package/build_pip_package.sh b/keras/tools/pip_package/build_pip_package.sh deleted file mode 100755 index 42400a50627..00000000000 --- a/keras/tools/pip_package/build_pip_package.sh +++ /dev/null @@ -1,154 +0,0 @@ -#!/usr/bin/env bash -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -set -e - -function is_absolute { - [[ "$1" = /* ]] || [[ "$1" =~ ^[a-zA-Z]:[/\\].* ]] -} - -function real_path() { - is_absolute "$1" && echo "$1" || echo "$PWD/${1#./}" -} - -function prepare_src() { - TMPDIR="$1" - - mkdir -p "$TMPDIR" - echo $(date) : "=== Preparing sources in dir: ${TMPDIR}" - - if [ ! -d bazel-bin/keras ]; then - echo "Could not find bazel-bin. Did you run from the root of the build tree?" - exit 1 - fi - cp -r "bazel-bin/keras/tools/pip_package/build_pip_package.runfiles/org_keras/keras" "$TMPDIR" - cp keras/tools/pip_package/setup.py "$TMPDIR" - cp LICENSE "$TMPDIR" - - # Verifies all expected files are in pip. - # Creates init files in all directory in pip. - python keras/tools/pip_package/create_pip_helper.py --pip-root "${TMPDIR}/keras/" --bazel-root "./keras" -} - -function build_wheel() { - if [ $# -lt 2 ] ; then - echo "No src and dest dir provided" - exit 1 - fi - - TMPDIR="$1" - DEST="$2" - PROJECT_NAME="$3" - - pushd ${TMPDIR} > /dev/null - echo $(date) : "=== Building wheel" - "${PYTHON_BIN_PATH:-python}" setup.py bdist_wheel --universal --project_name $PROJECT_NAME - mkdir -p ${DEST} - cp dist/* ${DEST} - popd > /dev/null - echo $(date) : "=== Output wheel file is in: ${DEST}" -} - -function usage() { - echo "Usage:" - echo "$0 [--src srcdir] [--dst dstdir] [options]" - echo "$0 dstdir [options]" - echo "" - echo " --src prepare sources in srcdir" - echo " will use temporary dir if not specified" - echo "" - echo " --dst build wheel in dstdir" - echo " if dstdir is not set do not build, only prepare sources" - echo "" - echo " Options:" - echo " --project_name set project name to name" - echo " --nightly build tensorflow_estimator nightly" - echo "" - exit 1 -} - -function main() { - NIGHTLY_BUILD=0 - PROJECT_NAME="" - SRCDIR="" - DSTDIR="" - CLEANSRC=1 - - while true; do - if [[ -z "$1" ]]; then - break - elif [[ "$1" == "--help" ]]; then - usage - exit 1 - elif [[ "$1" == "--nightly" ]]; then - NIGHTLY_BUILD=1 - elif [[ "$1" == "--project_name" ]]; then - shift - if [[ -z "$1" ]]; then - break - fi - PROJECT_NAME="$1" - elif [[ "$1" == "--src" ]]; then - shift - if [[ -z "$1" ]]; then - break - fi - SRCDIR="$(real_path $1)" - CLEANSRC=0 - elif [[ "$1" == "--dst" ]]; then - shift - if [[ -z "$1" ]]; then - break - fi - DSTDIR="$(real_path $1)" - else - DSTDIR="$(real_path $1)" - fi - shift - done - - if [[ -z ${PROJECT_NAME} ]]; then - PROJECT_NAME="keras" - if [[ ${NIGHTLY_BUILD} == "1" ]]; then - PROJECT_NAME="keras-nightly" - fi - fi - - if [[ -z "$DSTDIR" ]] && [[ -z "$SRCDIR" ]]; then - echo "No destination dir provided" - usage - exit 1 - fi - - if [[ -z "$SRCDIR" ]]; then - # make temp srcdir if none set - SRCDIR="$(mktemp -d -t tmp.XXXXXXXXXX)" - fi - - prepare_src "$SRCDIR" - - if [[ -z "$DSTDIR" ]]; then - # only want to prepare sources - exit - fi - - build_wheel "$SRCDIR" "$DSTDIR" "$PROJECT_NAME" - - if [[ $CLEANSRC -ne 0 ]]; then - rm -rf "${TMPDIR}" - fi -} - -main "$@" diff --git a/keras/tools/pip_package/create_pip_helper.py b/keras/tools/pip_package/create_pip_helper.py deleted file mode 100644 index 02f380e7879..00000000000 --- a/keras/tools/pip_package/create_pip_helper.py +++ /dev/null @@ -1,143 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utils to help build and verify pip package for Keras.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import argparse -import fnmatch -import os - -PIP_EXCLUDED_FILES = frozenset( - [ - "keras/api/create_python_api_wrapper.py", - "keras/applications/efficientnet_weight_update_util.py", - "keras/distribute/tpu_strategy_test_utils.py", - "keras/saving/legacy/saved_model/create_test_saved_model.py", - "keras/tools/pip_package/setup.py", - "keras/tools/pip_package/create_pip_helper.py", - ] -) - -PIP_EXCLUDED_DIRS = frozenset( - [ - "keras/benchmarks", - "keras/tests", - ] -) - -# Directories that should not have __init__.py files generated within them. -EXCLUDED_INIT_FILE_DIRECTORIES = frozenset( - [ - "keras/benchmarks", - "keras/tools", - ] -) - - -class PipPackagingError(Exception): - pass - - -def create_init_files(pip_root): - """Create __init__.py in pip directory tree. - - These files are auto-generated by Bazel when doing typical build/test, but - do not get auto-generated by the pip build process. Currently, the entire - directory tree is just python files, so its fine to just create all of the - init files. - - Args: - pip_root: Root directory of code being packaged into pip. - """ - for path, subdirs, _ in os.walk(pip_root): - for subdir in subdirs: - init_file_path = os.path.join(path, subdir, "__init__.py") - if any( - excluded_path in init_file_path - for excluded_path in EXCLUDED_INIT_FILE_DIRECTORIES - ): - continue - if not os.path.exists(init_file_path): - # Create empty file - open(init_file_path, "w").close() - - -def verify_python_files_in_pip(pip_root, bazel_root): - """Verifies all expected files are packaged into Pip. - - Args: - pip_root: Root directory of code being packaged into pip. - bazel_root: Root directory of Keras Bazel workspace. - - Raises: - PipPackagingError: Missing file in pip. - """ - for path, _, files in os.walk(bazel_root): - if any(d for d in PIP_EXCLUDED_DIRS if d in path): - # Skip any directories that are exclude from PIP, eg tests. - continue - - python_files = set(fnmatch.filter(files, "*.py")) - python_test_files = set(fnmatch.filter(files, "*test.py")) - python_benchmark_files = set(fnmatch.filter(files, "*benchmark.py")) - # We only care about python files in the pip package, see - # create_init_files. - files = python_files - python_test_files - python_benchmark_files - for f in files: - pip_path = os.path.join( - pip_root, os.path.relpath(path, bazel_root), f - ) - file_name = os.path.join(path, f) - path_exists = os.path.exists(pip_path) - file_excluded = file_name.lstrip("./") in PIP_EXCLUDED_FILES - if not path_exists and not file_excluded: - raise PipPackagingError( - "Pip package missing the file %s. If this is expected, " - "add it to PIP_EXCLUDED_FILES in " - "create_pip_helper.py. Otherwise, " - "make sure it is a build dependency of the pip package" - % file_name - ) - if path_exists and file_excluded: - raise PipPackagingError( - f"File in PIP_EXCLUDED_FILES included in pip. {file_name}" - ) - - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument( - "--bazel-root", - type=str, - required=True, - help="Root directory of Keras Bazel workspace.", - ) - parser.add_argument( - "--pip-root", - type=str, - required=True, - help="Root directory of code being packaged into pip.", - ) - - args = parser.parse_args() - create_init_files(args.pip_root) - verify_python_files_in_pip(args.pip_root, args.bazel_root) - - -if __name__ == "__main__": - main() diff --git a/keras/tools/pip_package/setup.py b/keras/tools/pip_package/setup.py deleted file mode 100644 index 490ff0d8228..00000000000 --- a/keras/tools/pip_package/setup.py +++ /dev/null @@ -1,84 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""TensorFlow Keras. - -TensorFlow Keras is an implementation of the Keras API that uses TensorFlow as -a backend. -""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import sys - -import setuptools - -DOCLINES = __doc__.split("\n") - -# This version string is semver compatible, but incompatible with pip. -# For pip, we will remove all '-' characters from this string, and use the -# result for pip. -_VERSION = "2.13.0" - -REQUIRED_PACKAGES = [ - # We depend on TensorFlow's declared pip dependencies. - # Add a new dep there if one is needed. -] - -project_name = "keras" -if "--project_name" in sys.argv: - project_name_idx = sys.argv.index("--project_name") - project_name = sys.argv[project_name_idx + 1] - sys.argv.remove("--project_name") - sys.argv.pop(project_name_idx) - - -setuptools.setup( - name=project_name, - version=_VERSION.replace("-", ""), - description="Deep learning for humans.", - long_description="\n".join(DOCLINES[2:]), - url="https://keras.io/", - download_url="https://github.com/keras-team/keras/tags", - author="Keras team", - author_email="keras-users@googlegroups.com", - packages=setuptools.find_packages(), - install_requires=REQUIRED_PACKAGES, - # Supported Python versions - python_requires=">=3.8", - # PyPI package information. - classifiers=[ - "Development Status :: 5 - Production/Stable", - "Intended Audience :: Developers", - "Intended Audience :: Education", - "Intended Audience :: Science/Research", - "License :: OSI Approved :: Apache Software License", - "Programming Language :: Python :: 3", - "Programming Language :: Python :: 3.8", - "Programming Language :: Python :: 3.9", - "Programming Language :: Python :: 3.10", - "Programming Language :: Python :: 3.11", - "Programming Language :: Python :: 3 :: Only", - "Topic :: Scientific/Engineering", - "Topic :: Scientific/Engineering :: Mathematics", - "Topic :: Scientific/Engineering :: Artificial Intelligence", - "Topic :: Software Development", - "Topic :: Software Development :: Libraries", - "Topic :: Software Development :: Libraries :: Python Modules", - ], - license="Apache 2.0", - keywords=["keras", "tensorflow", "machine learning", "deep learning"], -) diff --git a/keras/utils/BUILD b/keras/utils/BUILD deleted file mode 100644 index 72ef7da582b..00000000000 --- a/keras/utils/BUILD +++ /dev/null @@ -1,670 +0,0 @@ -# Description: -# Contains the Keras Utilities (internal TensorFlow version). - -load("@org_keras//keras:keras.bzl", "tf_py_test") - -package( - # TODO(scottzhu): Remove non-keras deps from TF. - default_visibility = ["//keras:friends"], - licenses = ["notice"], -) - -py_library( - name = "utils", - srcs = [ - "__init__.py", - "legacy/__init__.py", - ], - srcs_version = "PY3", - deps = [ - ":audio_dataset", - ":data_utils", - ":feature_space", - ":generic_utils", - ":image_dataset", - ":image_utils", - ":layer_utils", - ":np_utils", - ":sidecar_evaluator", - ":text_dataset", - ":timeseries_dataset", - ":vis_utils", - ], -) - -py_library( - name = "control_flow_util", - srcs = ["control_flow_util.py"], - srcs_version = "PY3", - deps = [], -) - -py_library( - name = "kpl_test_utils", - srcs = ["kpl_test_utils.py"], - srcs_version = "PY3", - deps = [ - "//keras", - "//keras/layers/preprocessing:string_lookup", - ], -) - -py_library( - name = "data_utils", - srcs = ["data_utils.py"], - srcs_version = "PY3", - deps = [ - ":generic_utils", - ":io_utils", - ":tf_inspect", - ], -) - -py_library( - name = "engine_utils", - srcs = [ - "conv_utils.py", - "losses_utils.py", - ], - srcs_version = "PY3", - deps = [ - ":data_utils", - ":io_utils", - ":tf_utils", - "//keras:backend", - ], -) - -py_library( - name = "io_utils", - srcs = ["io_utils.py"], - srcs_version = "PY3", - deps = [ - ":keras_logging", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "keras_logging", - srcs = ["keras_logging.py"], - srcs_version = "PY3", -) - -py_library( - name = "tf_utils", - srcs = ["tf_utils.py"], - srcs_version = "PY3", - deps = [ - ":object_identity", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "traceback_utils", - srcs = ["traceback_utils.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "generic_utils", - srcs = [ - "generic_utils.py", - ], - srcs_version = "PY3", - deps = [ - ":io_utils", - ":tf_contextlib", - ":tf_inspect", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "mode_keys", - srcs = [ - "mode_keys.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "layer_utils", - srcs = [ - "kernelized_utils.py", - "layer_utils.py", - ], - srcs_version = "PY3", - deps = [ - ":engine_utils", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras:backend", - ], -) - -py_library( - name = "metrics_utils", - srcs = [ - "metrics_utils.py", - ], - srcs_version = "PY3", - deps = [ - ":generic_utils", - ":tf_utils", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "version_utils", - srcs = [ - "version_utils.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "np_utils", - srcs = [ - "np_utils.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "object_identity", - srcs = ["object_identity.py"], - srcs_version = "PY3", - deps = [], -) - -py_library( - name = "tf_contextlib", - srcs = ["tf_contextlib.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "tf_inspect", - srcs = ["tf_inspect.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "vis_utils", - srcs = [ - "vis_utils.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "image_utils", - srcs = [ - "image_utils.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_pillow_installed", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "dataset_creator", - srcs = [ - "dataset_creator.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "image_dataset", - srcs = [ - "dataset_utils.py", - "image_dataset.py", - ], - srcs_version = "PY3", - deps = [ - ":image_utils", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/layers/preprocessing:image_preprocessing", - ], -) - -py_library( - name = "text_dataset", - srcs = [ - "dataset_utils.py", - "text_dataset.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "timeseries_dataset", - srcs = [ - "timeseries_dataset.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "audio_dataset", - srcs = [ - "audio_dataset.py", - ], - srcs_version = "PY3", - deps = [ - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "sidecar_evaluator", - srcs = ["sidecar_evaluator.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorboard_installed", - "//:expect_tensorflow_installed", - ], -) - -py_library( - name = "feature_space", - srcs = ["feature_space.py"], - srcs_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras:backend", - "//keras/layers", - ], -) - -tf_py_test( - name = "sidecar_evaluator_test", - size = "medium", - srcs = ["sidecar_evaluator_test.py"], - python_version = "PY3", - deps = [ - ":sidecar_evaluator", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "dataset_creator_test", - srcs = ["dataset_creator_test.py"], - python_version = "PY3", - deps = [ - ":dataset_creator", - "//:expect_portpicker_installed", - "//:expect_tensorflow_installed", - "//keras/distribute:multi_worker_testing_utils", - "//keras/engine", - "//keras/layers/core", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "dataset_utils_test", - size = "medium", - timeout = "moderate", - srcs = ["dataset_utils_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - ], -) - -tf_py_test( - name = "data_utils_test", - size = "medium", - srcs = ["data_utils_test.py"], - python_version = "PY3", - shard_count = 6, - tags = [ - "noasan", # times out - "notsan", - "optonly", # times out - ], - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - ], -) - -tf_py_test( - name = "generic_utils_test", - size = "small", - srcs = ["generic_utils_test.py"], - python_version = "PY3", - deps = [ - ":generic_utils", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - ], -) - -tf_py_test( - name = "version_utils_test", - size = "small", - srcs = ["version_utils_test.py"], - python_version = "PY3", - deps = [ - ":version_utils", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "tf_utils_test", - size = "small", - srcs = ["tf_utils_test.py"], - python_version = "PY3", - deps = [ - ":tf_utils", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "composite_tensor_support_test", - size = "medium", - srcs = ["composite_tensor_support_test.py"], - python_version = "PY3", - shard_count = 8, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras:engine", - "//keras/layers", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "io_utils_test", - size = "small", - srcs = ["io_utils_test.py"], - python_version = "PY3", - tags = [ - "no_windows", # TODO: needs investigation on Windows - "notsan", - ], - deps = [ - ":io_utils", - ":keras_logging", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "layer_utils_test", - size = "small", - srcs = ["layer_utils_test.py"], - python_version = "PY3", - deps = [ - ":layer_utils", - ":tf_utils", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras:backend", - "//keras/dtensor", - "//keras/dtensor:layout_map", - "//keras/dtensor:test_util", - ], -) - -tf_py_test( - name = "np_utils_test", - size = "small", - srcs = ["np_utils_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "kernelized_utils_test", - size = "small", - srcs = ["kernelized_utils_test.py"], - python_version = "PY3", - deps = [ - ":layer_utils", - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - ], -) - -tf_py_test( - name = "vis_utils_test", - size = "small", - srcs = ["vis_utils_test.py"], - python_version = "PY3", - shard_count = 4, - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - ], -) - -tf_py_test( - name = "image_utils_test", - size = "small", - srcs = ["image_utils_test.py"], - python_version = "PY3", - shard_count = 4, - tags = [ - "no_pip", - ], - deps = [ - ":image_utils", - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "conv_utils_test", - size = "small", - srcs = ["conv_utils_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - ], -) - -tf_py_test( - name = "metrics_utils_test", - size = "small", - srcs = ["metrics_utils_test.py"], - python_version = "PY3", - deps = [ - "//:expect_absl_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "losses_utils_test", - size = "small", - srcs = ["losses_utils_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "traceback_utils_test", - size = "small", - srcs = ["traceback_utils_test.py"], - python_version = "PY3", - deps = [ - "//:expect_tensorflow_installed", - "//keras", - ], -) - -tf_py_test( - name = "image_dataset_test", - size = "small", - srcs = ["image_dataset_test.py"], - python_version = "PY3", - deps = [ - ":image_dataset", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "text_dataset_test", - size = "small", - srcs = ["text_dataset_test.py"], - python_version = "PY3", - deps = [ - ":text_dataset", - "//:expect_tensorflow_installed", - "//keras", - "//keras/testing_infra:test_combinations", - ], -) - -tf_py_test( - name = "timeseries_dataset_test", - size = "small", - srcs = ["timeseries_dataset_test.py"], - python_version = "PY3", - deps = [ - ":timeseries_dataset", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "audio_dataset_test", - size = "small", - srcs = ["audio_dataset_test.py"], - python_version = "PY3", - deps = [ - ":audio_dataset", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "audio_dataset_with_tfio_test", - size = "small", - srcs = ["audio_dataset_with_tfio_test.py"], - python_version = "PY3", - deps = [ - ":audio_dataset", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//:expect_tensorflow_io_installed", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) - -tf_py_test( - name = "feature_space_test", - size = "medium", - srcs = ["feature_space_test.py"], - python_version = "PY3", - deps = [ - ":feature_space", - "//:expect_numpy_installed", - "//:expect_tensorflow_installed", - "//keras/testing_infra:test_combinations", - "//keras/testing_infra:test_utils", - ], -) diff --git a/keras/utils/__init__.py b/keras/utils/__init__.py deleted file mode 100644 index 7025b9407fb..00000000000 --- a/keras/utils/__init__.py +++ /dev/null @@ -1,71 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Public Keras utilities.""" - -# isort: off - -# Serialization related -from keras.saving.serialization_lib import deserialize_keras_object -from keras.saving.serialization_lib import serialize_keras_object -from keras.saving.object_registration import CustomObjectScope -from keras.saving.object_registration import custom_object_scope -from keras.saving.object_registration import get_custom_objects -from keras.saving.object_registration import get_registered_name -from keras.saving.object_registration import register_keras_serializable - -# Dataset related -from keras.utils.audio_dataset import audio_dataset_from_directory -from keras.utils.text_dataset import text_dataset_from_directory -from keras.utils.timeseries_dataset import timeseries_dataset_from_array -from keras.utils.image_dataset import image_dataset_from_directory -from keras.utils.dataset_utils import split_dataset - -# Sequence related -from keras.utils.data_utils import GeneratorEnqueuer -from keras.utils.data_utils import OrderedEnqueuer -from keras.utils.data_utils import Sequence -from keras.utils.data_utils import SequenceEnqueuer - -# Image related -from keras.utils.image_utils import array_to_img -from keras.utils.image_utils import img_to_array -from keras.utils.image_utils import load_img -from keras.utils.image_utils import save_img - -# Python utils -from keras.utils.tf_utils import set_random_seed -from keras.utils.generic_utils import Progbar -from keras.utils.data_utils import get_file - -# Preprocessing utils -from keras.utils.feature_space import FeatureSpace - -# Internal -from keras.utils.layer_utils import get_source_inputs -from keras.utils.layer_utils import warmstart_embedding_matrix - -# Deprecated -from keras.utils.np_utils import normalize -from keras.utils.np_utils import to_categorical -from keras.utils.np_utils import to_ordinal -from keras.utils.data_utils import pad_sequences - -# Evaluation related -from keras.utils.sidecar_evaluator import SidecarEvaluator -from keras.utils.sidecar_evaluator import SidecarEvaluatorModelExport - -# Visualization related -from keras.utils.vis_utils import model_to_dot -from keras.utils.vis_utils import plot_model diff --git a/keras/utils/audio_dataset.py b/keras/utils/audio_dataset.py deleted file mode 100644 index ec9f0847859..00000000000 --- a/keras/utils/audio_dataset.py +++ /dev/null @@ -1,433 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras audio dataset loading utilities.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.utils import dataset_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -tfio = None # Import as-needed. - -ALLOWED_FORMATS = (".wav",) - - -@keras_export("keras.utils.audio_dataset_from_directory", v1=[]) -def audio_dataset_from_directory( - directory, - labels="inferred", - label_mode="int", - class_names=None, - batch_size=32, - sampling_rate=None, - output_sequence_length=None, - ragged=False, - shuffle=True, - seed=None, - validation_split=None, - subset=None, - follow_links=False, -): - """Generates a `tf.data.Dataset` from audio files in a directory. - - If your directory structure is: - - ``` - main_directory/ - ...class_a/ - ......a_audio_1.wav - ......a_audio_2.wav - ...class_b/ - ......b_audio_1.wav - ......b_audio_2.wav - ``` - - Then calling `audio_dataset_from_directory(main_directory, - labels='inferred')` - will return a `tf.data.Dataset` that yields batches of audio files from - the subdirectories `class_a` and `class_b`, together with labels - 0 and 1 (0 corresponding to `class_a` and 1 corresponding to `class_b`). - - Only `.wav` files are supported at this time. - - Args: - directory: Directory where the data is located. If `labels` is "inferred", - it should contain subdirectories, each containing audio files for a - class. Otherwise, the directory structure is ignored. - labels: Either "inferred" (labels are generated from the directory - structure), None (no labels), or a list/tuple of integer labels of the - same size as the number of audio files found in the directory. Labels - should be sorted according to the alphanumeric order of the audio file - paths (obtained via `os.walk(directory)` in Python). - label_mode: String describing the encoding of `labels`. Options are: - - 'int': means that the labels are encoded as integers (e.g. for - `sparse_categorical_crossentropy` loss). - 'categorical' means that - the labels are encoded as a categorical vector (e.g. for - `categorical_crossentropy` loss). - 'binary' means that the labels - (there can be only 2) are encoded as `float32` scalars with values 0 - or 1 (e.g. for `binary_crossentropy`). - None (no labels). - class_names: Only valid if "labels" is "inferred". This is the explicit - list of class names (must match names of subdirectories). Used to - control the order of the classes (otherwise alphanumerical order is - used). - batch_size: Size of the batches of data. Default: 32. If `None`, the data - will not be batched (the dataset will yield individual samples). - sampling_rate: Audio sampling rate (in samples per second). - output_sequence_length: Maximum length of an audio sequence. Audio files - longer than this will be truncated to `output_sequence_length`. If set - to `None`, then all sequences in the same batch will be padded to the - length of the longest sequence in the batch. - ragged: Whether to return a Ragged dataset (where each sequence has its - own length). Default: False. - shuffle: Whether to shuffle the data. Default: True. If set to False, - sorts the data in alphanumeric order. - seed: Optional random seed for shuffling and transformations. - validation_split: Optional float between 0 and 1, fraction of data to - reserve for validation. - subset: Subset of the data to return. One of "training", "validation" or - "both". Only used if `validation_split` is set. - follow_links: Whether to visits subdirectories pointed to by symlinks. - Defaults to False. - - Returns: - A `tf.data.Dataset` object. - - If `label_mode` is None, it yields `string` tensors of shape - `(batch_size,)`, containing the contents of a batch of audio files. - - Otherwise, it yields a tuple `(audio, labels)`, where `audio` - has shape `(batch_size, sequence_length, num_channels)` and `labels` - follows the format described - below. - - Rules regarding labels format: - - if `label_mode` is `int`, the labels are an `int32` tensor of shape - `(batch_size,)`. - - if `label_mode` is `binary`, the labels are a `float32` tensor of - 1s and 0s of shape `(batch_size, 1)`. - - if `label_mode` is `categorical`, the labels are a `float32` tensor - of shape `(batch_size, num_classes)`, representing a one-hot - encoding of the class index. - """ - if labels not in ("inferred", None): - if not isinstance(labels, (list, tuple)): - raise ValueError( - "The `labels` argument should be a list/tuple of integer " - "labels, of the same size as the number of audio files in " - "the target directory. If you wish to infer the labels from " - "the subdirectory names in the target directory," - ' pass `labels="inferred"`. ' - "If you wish to get a dataset that only contains audio samples " - f"(no labels), pass `labels=None`. Received: labels={labels}" - ) - if class_names: - raise ValueError( - "You can only pass `class_names` if " - f'`labels="inferred"`. Received: labels={labels}, and ' - f"class_names={class_names}" - ) - if label_mode not in {"int", "categorical", "binary", None}: - raise ValueError( - '`label_mode` argument must be one of "int", "categorical", ' - '"binary", ' - f"or None. Received: label_mode={label_mode}" - ) - - if ragged and output_sequence_length is not None: - raise ValueError( - "Cannot set both `ragged` and `output_sequence_length`" - ) - - if sampling_rate is not None: - if not isinstance(sampling_rate, int): - raise ValueError( - "`sampling_rate` should have an integer value. " - f"Received: sampling_rate={sampling_rate}" - ) - - if sampling_rate <= 0: - raise ValueError( - "`sampling_rate` should be higher than 0. " - f"Received: sampling_rate={sampling_rate}" - ) - - global tfio - if tfio is None: - try: - import tensorflow_io as tfio - except ImportError: - raise ImportError( - "To use the argument `sampling_rate`, you should install " - "tensorflow_io. You can install it via `pip install " - "tensorflow-io`." - ) - - if labels is None or label_mode is None: - labels = None - label_mode = None - - dataset_utils.check_validation_split_arg( - validation_split, subset, shuffle, seed - ) - - if seed is None: - seed = np.random.randint(1e6) - - file_paths, labels, class_names = dataset_utils.index_directory( - directory, - labels, - formats=ALLOWED_FORMATS, - class_names=class_names, - shuffle=shuffle, - seed=seed, - follow_links=follow_links, - ) - - if label_mode == "binary" and len(class_names) != 2: - raise ValueError( - 'When passing `label_mode="binary"`, there must be exactly 2 ' - f"class_names. Received: class_names={class_names}" - ) - - if subset == "both": - train_dataset, val_dataset = get_training_and_validation_dataset( - file_paths=file_paths, - labels=labels, - validation_split=validation_split, - directory=directory, - label_mode=label_mode, - class_names=class_names, - sampling_rate=sampling_rate, - output_sequence_length=output_sequence_length, - ragged=ragged, - ) - - train_dataset = prepare_dataset( - dataset=train_dataset, - batch_size=batch_size, - shuffle=shuffle, - seed=seed, - class_names=class_names, - output_sequence_length=output_sequence_length, - ragged=ragged, - ) - val_dataset = prepare_dataset( - dataset=val_dataset, - batch_size=batch_size, - shuffle=False, - seed=seed, - class_names=class_names, - output_sequence_length=output_sequence_length, - ragged=ragged, - ) - return train_dataset, val_dataset - - else: - dataset = get_dataset( - file_paths=file_paths, - labels=labels, - directory=directory, - validation_split=validation_split, - subset=subset, - label_mode=label_mode, - class_names=class_names, - sampling_rate=sampling_rate, - output_sequence_length=output_sequence_length, - ragged=ragged, - ) - - dataset = prepare_dataset( - dataset=dataset, - batch_size=batch_size, - shuffle=shuffle, - seed=seed, - class_names=class_names, - output_sequence_length=output_sequence_length, - ragged=ragged, - ) - return dataset - - -def prepare_dataset( - dataset, - batch_size, - shuffle, - seed, - class_names, - output_sequence_length, - ragged, -): - dataset = dataset.prefetch(tf.data.AUTOTUNE) - if batch_size is not None: - if shuffle: - dataset = dataset.shuffle(buffer_size=batch_size * 8, seed=seed) - - if output_sequence_length is None and not ragged: - dataset = dataset.padded_batch( - batch_size, padded_shapes=([None, None], []) - ) - else: - dataset = dataset.batch(batch_size) - else: - if shuffle: - dataset = dataset.shuffle(buffer_size=1024, seed=seed) - - # Users may need to reference `class_names`. - dataset.class_names = class_names - return dataset - - -def get_training_and_validation_dataset( - file_paths, - labels, - validation_split, - directory, - label_mode, - class_names, - sampling_rate, - output_sequence_length, - ragged, -): - ( - file_paths_train, - labels_train, - ) = dataset_utils.get_training_or_validation_split( - file_paths, labels, validation_split, "training" - ) - if not file_paths_train: - raise ValueError( - f"No training audio files found in directory {directory}. " - f"Allowed format(s): {ALLOWED_FORMATS}" - ) - - file_paths_val, labels_val = dataset_utils.get_training_or_validation_split( - file_paths, labels, validation_split, "validation" - ) - if not file_paths_val: - raise ValueError( - f"No validation audio files found in directory {directory}. " - f"Allowed format(s): {ALLOWED_FORMATS}" - ) - - train_dataset = paths_and_labels_to_dataset( - file_paths=file_paths_train, - labels=labels_train, - label_mode=label_mode, - num_classes=len(class_names), - sampling_rate=sampling_rate, - output_sequence_length=output_sequence_length, - ragged=ragged, - ) - - val_dataset = paths_and_labels_to_dataset( - file_paths=file_paths_val, - labels=labels_val, - label_mode=label_mode, - num_classes=len(class_names), - sampling_rate=sampling_rate, - output_sequence_length=output_sequence_length, - ragged=ragged, - ) - - return train_dataset, val_dataset - - -def get_dataset( - file_paths, - labels, - directory, - validation_split, - subset, - label_mode, - class_names, - sampling_rate, - output_sequence_length, - ragged, -): - file_paths, labels = dataset_utils.get_training_or_validation_split( - file_paths, labels, validation_split, subset - ) - if not file_paths: - raise ValueError( - f"No audio files found in directory {directory}. " - f"Allowed format(s): {ALLOWED_FORMATS}" - ) - - dataset = paths_and_labels_to_dataset( - file_paths=file_paths, - labels=labels, - label_mode=label_mode, - num_classes=len(class_names), - sampling_rate=sampling_rate, - output_sequence_length=output_sequence_length, - ragged=ragged, - ) - - return dataset - - -def read_and_decode_audio( - path, sampling_rate=None, output_sequence_length=None -): - """Reads and decodes audio file.""" - audio = tf.io.read_file(path) - - if output_sequence_length is None: - output_sequence_length = -1 - - audio, default_audio_rate = tf.audio.decode_wav( - contents=audio, desired_samples=output_sequence_length - ) - if sampling_rate is not None: - # default_audio_rate should have dtype=int64 - default_audio_rate = tf.cast(default_audio_rate, tf.int64) - audio = tfio.audio.resample( - input=audio, rate_in=default_audio_rate, rate_out=sampling_rate - ) - return audio - - -def paths_and_labels_to_dataset( - file_paths, - labels, - label_mode, - num_classes, - sampling_rate, - output_sequence_length, - ragged, -): - """Constructs a fixed-size dataset of audio and labels.""" - path_ds = tf.data.Dataset.from_tensor_slices(file_paths) - audio_ds = path_ds.map( - lambda x: read_and_decode_audio( - x, sampling_rate, output_sequence_length - ), - num_parallel_calls=tf.data.AUTOTUNE, - ) - - if ragged: - audio_ds = audio_ds.map( - lambda x: tf.RaggedTensor.from_tensor(x), - num_parallel_calls=tf.data.AUTOTUNE, - ) - - if label_mode: - label_ds = dataset_utils.labels_to_dataset( - labels, label_mode, num_classes - ) - audio_ds = tf.data.Dataset.zip((audio_ds, label_ds)) - return audio_ds diff --git a/keras/utils/audio_dataset_test.py b/keras/utils/audio_dataset_test.py deleted file mode 100644 index c32dda318a2..00000000000 --- a/keras/utils/audio_dataset_test.py +++ /dev/null @@ -1,460 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for audio_dataset.""" - -import os -import shutil - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import audio_dataset - - -@test_utils.run_v2_only -class AudioDatasetFromDirectoryTest(test_combinations.TestCase): - def _get_audio_samples(self, count=16, different_sequence_lengths=False): - sequence_length = 30 - num_channels = 1 - audio_samples = [] - for _ in range(count): - if different_sequence_lengths: - random_sequence_length = np.random.randint( - 10, sequence_length + 1 - ) - audio = np.random.random((random_sequence_length, num_channels)) - else: - audio = np.random.random((sequence_length, num_channels)) - audio_samples.append(tf.audio.encode_wav(audio, 1000)) - return audio_samples - - def _prepare_directory( - self, - num_classes=2, - nested_dirs=False, - count=16, - different_sequence_lengths=False, - ): - # Get a unique temp directory - temp_dir = os.path.join( - self.get_temp_dir(), str(np.random.randint(1e6)) - ) - os.mkdir(temp_dir) - self.addCleanup(shutil.rmtree, temp_dir) - - # Generate paths to class subdirectories - paths = [] - for class_index in range(num_classes): - class_directory = f"class_{class_index}" - if nested_dirs: - class_paths = [ - class_directory, - os.path.join(class_directory, "subfolder_1"), - os.path.join(class_directory, "subfolder_2"), - os.path.join( - class_directory, "subfolder_1", "sub-subfolder" - ), - ] - else: - class_paths = [class_directory] - for path in class_paths: - os.mkdir(os.path.join(temp_dir, path)) - paths += class_paths - - # Save audio samples to the paths - i = 0 - for audio in self._get_audio_samples( - count=count, different_sequence_lengths=different_sequence_lengths - ): - path = paths[i % len(paths)] - ext = "wav" - filename = os.path.join(path, f"audio_{i}.{ext}") - with open(os.path.join(temp_dir, filename), "wb") as f: - f.write(audio.numpy()) - i += 1 - return temp_dir - - def test_audio_dataset_from_directory_standalone(self): - # Test retrieving audio samples withouts labels from a directory and its - # subdirs. - # Save a few extra audio in the parent directory. - directory = self._prepare_directory(count=7, num_classes=2) - for i, audio in enumerate(self._get_audio_samples(3)): - filename = f"audio_{i}.wav" - with open(os.path.join(directory, filename), "wb") as f: - f.write(audio.numpy()) - - dataset = audio_dataset.audio_dataset_from_directory( - directory, batch_size=5, output_sequence_length=30, labels=None - ) - batch = next(iter(dataset)) - # We return plain audio - self.assertEqual(batch.shape, (5, 30, 1)) - self.assertEqual(batch.dtype.name, "float32") - # Count samples - batch_count = 0 - sample_count = 0 - for batch in dataset: - batch_count += 1 - sample_count += batch.shape[0] - self.assertEqual(batch_count, 2) - self.assertEqual(sample_count, 10) - - def test_audio_dataset_from_directory_binary(self): - directory = self._prepare_directory(num_classes=2) - dataset = audio_dataset.audio_dataset_from_directory( - directory, batch_size=8, output_sequence_length=30, label_mode="int" - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 30, 1)) - self.assertEqual(batch[0].dtype.name, "float32") - self.assertEqual(batch[1].shape, (8,)) - self.assertEqual(batch[1].dtype.name, "int32") - - dataset = audio_dataset.audio_dataset_from_directory( - directory, - batch_size=8, - output_sequence_length=30, - label_mode="binary", - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 30, 1)) - self.assertEqual(batch[0].dtype.name, "float32") - self.assertEqual(batch[1].shape, (8, 1)) - self.assertEqual(batch[1].dtype.name, "float32") - - dataset = audio_dataset.audio_dataset_from_directory( - directory, - batch_size=8, - output_sequence_length=30, - label_mode="categorical", - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 30, 1)) - self.assertEqual(batch[0].dtype.name, "float32") - self.assertEqual(batch[1].shape, (8, 2)) - self.assertEqual(batch[1].dtype.name, "float32") - - def test_static_shape_in_graph(self): - directory = self._prepare_directory(num_classes=2) - dataset = audio_dataset.audio_dataset_from_directory( - directory, batch_size=8, output_sequence_length=30, label_mode="int" - ) - test_case = self - - @tf.function - def symbolic_fn(ds): - for x, _ in ds.take(1): - test_case.assertListEqual(x.shape.as_list(), [None, 30, None]) - - symbolic_fn(dataset) - - def test_sample_count(self): - directory = self._prepare_directory(num_classes=4, count=15) - dataset = audio_dataset.audio_dataset_from_directory( - directory, batch_size=8, output_sequence_length=30, label_mode=None - ) - sample_count = 0 - for batch in dataset: - sample_count += batch.shape[0] - self.assertEqual(sample_count, 15) - - def test_audio_dataset_from_directory_multiclass(self): - directory = self._prepare_directory(num_classes=4, count=15) - - dataset = audio_dataset.audio_dataset_from_directory( - directory, batch_size=8, output_sequence_length=30, label_mode=None - ) - batch = next(iter(dataset)) - self.assertEqual(batch.shape, (8, 30, 1)) - - dataset = audio_dataset.audio_dataset_from_directory( - directory, batch_size=8, output_sequence_length=30, label_mode=None - ) - sample_count = 0 - iterator = iter(dataset) - for batch in dataset: - sample_count += next(iterator).shape[0] - self.assertEqual(sample_count, 15) - - dataset = audio_dataset.audio_dataset_from_directory( - directory, batch_size=8, output_sequence_length=30, label_mode="int" - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 30, 1)) - self.assertEqual(batch[0].dtype.name, "float32") - self.assertEqual(batch[1].shape, (8,)) - self.assertEqual(batch[1].dtype.name, "int32") - - dataset = audio_dataset.audio_dataset_from_directory( - directory, - batch_size=8, - output_sequence_length=30, - label_mode="categorical", - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 30, 1)) - self.assertEqual(batch[0].dtype.name, "float32") - self.assertEqual(batch[1].shape, (8, 4)) - self.assertEqual(batch[1].dtype.name, "float32") - - def test_audio_dataset_from_directory_validation_split(self): - directory = self._prepare_directory(num_classes=2, count=10) - dataset = audio_dataset.audio_dataset_from_directory( - directory, - batch_size=10, - output_sequence_length=30, - validation_split=0.2, - subset="training", - seed=1337, - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 30, 1)) - dataset = audio_dataset.audio_dataset_from_directory( - directory, - batch_size=10, - output_sequence_length=30, - validation_split=0.2, - subset="validation", - seed=1337, - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (2, 30, 1)) - - def test_audio_dataset_from_directory_manual_labels(self): - directory = self._prepare_directory(num_classes=2, count=2) - dataset = audio_dataset.audio_dataset_from_directory( - directory, - batch_size=8, - output_sequence_length=30, - labels=[0, 1], - shuffle=False, - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertAllClose(batch[1], [0, 1]) - - def test_audio_dataset_from_directory_follow_links(self): - directory = self._prepare_directory( - num_classes=2, count=25, nested_dirs=True - ) - dataset = audio_dataset.audio_dataset_from_directory( - directory, - batch_size=8, - output_sequence_length=30, - label_mode=None, - follow_links=True, - ) - sample_count = 0 - for batch in dataset: - sample_count += batch.shape[0] - self.assertEqual(sample_count, 25) - - def test_audio_dataset_from_directory_no_audio(self): - directory = self._prepare_directory(num_classes=2, count=0) - with self.assertRaisesRegex( - ValueError, "No audio files found in directory" - ): - _ = audio_dataset.audio_dataset_from_directory(directory) - - def test_audio_dataset_from_directory_ragged(self): - directory = self._prepare_directory( - num_classes=2, count=16, different_sequence_lengths=True - ) - dataset = audio_dataset.audio_dataset_from_directory( - directory, ragged=True, batch_size=8 - ) - batch = next(iter(dataset)) - - self.assertEqual(batch[0].shape.as_list(), [8, None, None]) - - def test_audio_dataset_from_directory_no_output_sequence_length_no_ragged( - self, - ): - # This test case tests `audio_dataset_from_directory` when `ragged` and - # `output_sequence_length` are not passed while the input sequence - # lengths are different. - directory = self._prepare_directory( - num_classes=2, count=16, different_sequence_lengths=True - ) - # The tensor shapes are different and output_sequence_length is None - # should work fine and pad each sequence to the length of the longest - # sequence in it's batch - min_sequence_length, max_sequence_length = 10, 30 - possible_sequence_lengths = [ - i for i in range(min_sequence_length, max_sequence_length + 1) - ] - dataset = audio_dataset.audio_dataset_from_directory( - directory, batch_size=2 - ) - sequence_lengths = list(set([b.shape[1] for b, _ in dataset])) - for seq_len in sequence_lengths: - self.assertIn(seq_len, possible_sequence_lengths) - - def test_audio_dataset_from_directory_no_output_sequence_length_same_lengths( # noqa: E501 - self, - ): - # This test case tests `audio_dataset_from_directory` when `ragged` and - # `output_sequence_length` are not passed while the input sequence - # lengths are the same - directory = self._prepare_directory( - num_classes=2, count=16, different_sequence_lengths=False - ) - # The tensor shapes are different and output_sequence_length is None - # should work fine and pad each sequence to the length of the longest - # sequence in it's batch - dataset = audio_dataset.audio_dataset_from_directory( - directory, batch_size=2 - ) - sequence_lengths = list(set([batch[0].shape[1] for batch in dataset])) - self.assertEqual(len(sequence_lengths), 1) - - def test_audio_dataset_from_directory_errors(self): - directory = self._prepare_directory(num_classes=3, count=5) - - with self.assertRaisesRegex( - ValueError, "`sampling_rate` should be higher than 0. Received:" - ): - _ = audio_dataset.audio_dataset_from_directory( - directory, - ragged=False, - output_sequence_length=10, - sampling_rate=-1, - ) - - with self.assertRaisesRegex( - ValueError, - "`sampling_rate` should have an integer value. Received:", - ): - _ = audio_dataset.audio_dataset_from_directory( - directory, - ragged=False, - output_sequence_length=10, - sampling_rate=1.2, - ) - - # Only run this test case when we don't have tensorflow_io. - try: - import tensorflow_io # noqa: F401 - except ImportError: - with self.assertRaisesRegex( - ImportError, - "To use the argument `sampling_rate`.*tensorflow_io.*", - ): - _ = audio_dataset.audio_dataset_from_directory( - directory, - ragged=False, - output_sequence_length=10, - sampling_rate=44100, - ) - - with self.assertRaisesRegex( - ValueError, "Cannot set both `ragged` and `output_sequence_length`" - ): - _ = audio_dataset.audio_dataset_from_directory( - directory, ragged=True, output_sequence_length=30 - ) - - with self.assertRaisesRegex(ValueError, "`labels` argument should be"): - _ = audio_dataset.audio_dataset_from_directory( - directory, labels="other" - ) - - with self.assertRaisesRegex( - ValueError, "`label_mode` argument must be" - ): - _ = audio_dataset.audio_dataset_from_directory( - directory, label_mode="other" - ) - - with self.assertRaisesRegex( - ValueError, 'only pass `class_names` if `labels="inferred"`' - ): - _ = audio_dataset.audio_dataset_from_directory( - directory, - labels=[0, 0, 1, 1, 1], - class_names=["class_0", "class_1", "class_2"], - ) - - with self.assertRaisesRegex( - ValueError, - "Expected the lengths of `labels` to match the number of files", - ): - _ = audio_dataset.audio_dataset_from_directory( - directory, labels=[0, 0, 1, 1] - ) - - with self.assertRaisesRegex( - ValueError, "`class_names` passed did not match" - ): - _ = audio_dataset.audio_dataset_from_directory( - directory, class_names=["class_0", "class_2"] - ) - - with self.assertRaisesRegex(ValueError, "there must be exactly 2"): - _ = audio_dataset.audio_dataset_from_directory( - directory, label_mode="binary" - ) - - with self.assertRaisesRegex( - ValueError, "`validation_split` must be between 0 and 1" - ): - _ = audio_dataset.audio_dataset_from_directory( - directory, validation_split=2 - ) - - with self.assertRaisesRegex( - ValueError, '`subset` must be either "training",' - ): - _ = audio_dataset.audio_dataset_from_directory( - directory, validation_split=0.2, subset="other" - ) - - with self.assertRaisesRegex( - ValueError, "`validation_split` must be set" - ): - _ = audio_dataset.audio_dataset_from_directory( - directory, validation_split=0, subset="training" - ) - - with self.assertRaisesRegex(ValueError, "must provide a `seed`"): - _ = audio_dataset.audio_dataset_from_directory( - directory, validation_split=0.2, subset="training" - ) - - def test_audio_dataset_from_directory_not_batched(self): - directory = self._prepare_directory(num_classes=2, count=2) - dataset = audio_dataset.audio_dataset_from_directory( - directory, - batch_size=None, - output_sequence_length=30, - label_mode=None, - shuffle=False, - ) - sample = next(iter(dataset)) - self.assertEqual(len(sample.shape), 2) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/audio_dataset_with_tfio_test.py b/keras/utils/audio_dataset_with_tfio_test.py deleted file mode 100644 index 75689d29c7a..00000000000 --- a/keras/utils/audio_dataset_with_tfio_test.py +++ /dev/null @@ -1,129 +0,0 @@ -# Copyright 2023 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for audio_dataset when tfio is available.""" - -import os -import shutil - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import audio_dataset - - -@test_utils.run_v2_only -class AudioDatasetFromDirectoryWithTfioTest(test_combinations.TestCase): - def _get_audio_samples(self, count=16, different_sequence_lengths=False): - sequence_length = 30 - num_channels = 1 - audio_samples = [] - for _ in range(count): - if different_sequence_lengths: - random_sequence_length = np.random.randint( - 10, sequence_length + 1 - ) - audio = np.random.random((random_sequence_length, num_channels)) - else: - audio = np.random.random((sequence_length, num_channels)) - audio_samples.append(tf.audio.encode_wav(audio, 1000)) - return audio_samples - - def _prepare_directory( - self, - num_classes=2, - nested_dirs=False, - count=16, - different_sequence_lengths=False, - ): - # Get a unique temp directory - temp_dir = os.path.join( - self.get_temp_dir(), str(np.random.randint(1e6)) - ) - os.mkdir(temp_dir) - self.addCleanup(shutil.rmtree, temp_dir) - - # Generate paths to class subdirectories - paths = [] - for class_index in range(num_classes): - class_directory = f"class_{class_index}" - if nested_dirs: - class_paths = [ - class_directory, - os.path.join(class_directory, "subfolder_1"), - os.path.join(class_directory, "subfolder_2"), - os.path.join( - class_directory, "subfolder_1", "sub-subfolder" - ), - ] - else: - class_paths = [class_directory] - for path in class_paths: - os.mkdir(os.path.join(temp_dir, path)) - paths += class_paths - - # Save audio samples to the paths - i = 0 - for audio in self._get_audio_samples( - count=count, different_sequence_lengths=different_sequence_lengths - ): - path = paths[i % len(paths)] - ext = "wav" - filename = os.path.join(path, f"audio_{i}.{ext}") - with open(os.path.join(temp_dir, filename), "wb") as f: - f.write(audio.numpy()) - i += 1 - return temp_dir - - def test_audio_dataset_from_directory_standalone_with_resampling(self): - # Test retrieving audio samples withouts labels from a directory and its - # subdirs where we double the sampling rate. - # Save a few extra audio in the parent directory. - directory = self._prepare_directory(count=7, num_classes=2) - for i, audio in enumerate(self._get_audio_samples(3)): - filename = f"audio_{i}.wav" - with open(os.path.join(directory, filename), "wb") as f: - f.write(audio.numpy()) - - dataset = audio_dataset.audio_dataset_from_directory( - directory, - batch_size=5, - output_sequence_length=30, - labels=None, - sampling_rate=2000, # Twice the original sample rate. - ) - batch = next(iter(dataset)) - # We return plain audio. Expect twice as many samples now. - self.assertEqual(batch.shape, (5, 60, 1)) - self.assertEqual(batch.dtype.name, "float32") - # Count samples - batch_count = 0 - sample_count = 0 - for batch in dataset: - batch_count += 1 - sample_count += batch.shape[0] - self.assertEqual(batch_count, 2) - self.assertEqual(sample_count, 10) - - -if __name__ == "__main__": - try: - import tensorflow_io # noqa: F401 - - # Only run these tests if tensorflow_io is installed. - tf.test.main() - except ImportError: - pass diff --git a/keras/utils/composite_tensor_support_test.py b/keras/utils/composite_tensor_support_test.py deleted file mode 100644 index 25ce0cfd545..00000000000 --- a/keras/utils/composite_tensor_support_test.py +++ /dev/null @@ -1,718 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras composite tensor support.""" - -import numpy as np -import scipy.sparse -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.engine import input_layer -from keras.layers import Dense -from keras.layers import Embedding -from keras.layers import Layer -from keras.layers import core -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils - - -# Define test-only Layer classes to validate passing Sparse and Ragged tensors -# between layers. -class ToDense(Layer): - """Create a dense (standard) tensor from the given input tensor.""" - - def __init__(self, default_value, **kwargs): - super().__init__(**kwargs) - self._default_value = default_value - - def call(self, inputs): - if isinstance(inputs, dict): # Dicts are no longer flattened. - # Always a single element in these tests. - inputs = tf.nest.flatten(inputs)[0] - - if isinstance(inputs, tf.RaggedTensor): - output = inputs.to_tensor(default_value=self._default_value) - elif isinstance(inputs, tf.SparseTensor): - output = tf.sparse.to_dense( - inputs, default_value=self._default_value - ) - elif isinstance(inputs, tf.Tensor): - output = inputs - else: - raise TypeError(f"Unexpected tensor type {type(inputs).__name__}") - - # Return a float so that we can compile models with this as the final - # layer. - return tf.cast(output, tf.float32) - - -class ToRagged(Layer): - """Create a ragged tensor based on a given dense tensor.""" - - def __init__(self, padding, ragged_rank=1, **kwargs): - super().__init__(**kwargs) - self._padding = padding - self._ragged_rank = ragged_rank - - def call(self, inputs): - return tf.RaggedTensor.from_tensor( - inputs, padding=self._padding, ragged_rank=self._ragged_rank - ) - - -class ToSparse(Layer): - """Create a sparse tensor based on a given dense tensor.""" - - def call(self, inputs): - indices = tf.where(tf.not_equal(inputs, 0)) - values = tf.gather_nd(inputs, indices) - shape = tf.shape(inputs, out_type=tf.int64) - return tf.SparseTensor(indices, values, dense_shape=shape) - - -class _SubclassModel(keras.Model): - """A Keras subclass model.""" - - def __init__(self, layers, i_layer=None): - super().__init__() - # Note that clone and build doesn't support lists of layers in - # subclassed models. Adding each layer directly here. - for i, layer in enumerate(layers): - setattr(self, self._layer_name_for_i(i), layer) - self.num_layers = len(layers) - if i_layer is not None: - self._set_inputs(i_layer) - - def _layer_name_for_i(self, i): - return f"layer{i}" - - def call(self, inputs, **kwargs): - x = inputs - for i in range(self.num_layers): - layer = getattr(self, self._layer_name_for_i(i)) - x = layer(x) - return x - - -def get_model_from_layers_with_input( - layers, input_shape=None, input_dtype=None, model_input=None -): - """Builds a model from a sequence of layers.""" - if model_input is not None and input_shape is not None: - raise ValueError("Cannot specify a model_input and an input shape.") - - model_type = test_utils.get_model_type() - if model_type == "subclass": - return _SubclassModel(layers, model_input) - - if model_type == "sequential": - model = keras.models.Sequential() - if model_input is not None: - model.add(model_input) - elif input_shape is not None: - model.add(keras.Input(shape=input_shape, dtype=input_dtype)) - for layer in layers: - model.add(layer) - return model - - if model_type == "functional": - if model_input is not None: - inputs = model_input - else: - if not input_shape: - raise ValueError( - "Cannot create a functional model from layers with no " - "input shape." - ) - inputs = keras.Input(shape=input_shape, dtype=input_dtype) - outputs = inputs - for layer in layers: - outputs = layer(outputs) - return keras.Model(inputs, outputs) - - raise ValueError(f"Unknown model type {model_type}") - - -def get_test_mode_kwargs(): - run_eagerly = test_utils.should_run_eagerly() - return { - "run_eagerly": run_eagerly, - } - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes -class CompositeTensorInternalTest(test_combinations.TestCase): - def test_internal_ragged_tensors(self): - # Create a model that accepts an input, converts it to Ragged, and - # converts the ragged tensor back to a dense tensor. - layers = [ToRagged(padding=0), ToDense(default_value=-1)] - model = test_utils.get_model_from_layers(layers, input_shape=(None,)) - - # Define some input data with additional padding. - input_data = np.array([[1, 0, 0], [2, 3, 0]]) - expected_output = np.array([[1, -1], [2, 3]]) - output = model.predict(input_data) - self.assertAllEqual(expected_output, output) - - def test_internal_sparse_tensors(self): - # Create a model that accepts an input, converts it to Sparse, and - # converts the sparse tensor back to a dense tensor. - layers = [ToSparse(), ToDense(default_value=-1)] - model = test_utils.get_model_from_layers(layers, input_shape=(None,)) - - # Define some input data with additional padding. - input_data = np.array([[1, 0, 0], [2, 3, 0]]) - expected_output = np.array([[1, -1, -1], [2, 3, -1]]) - output = model.predict(input_data) - self.assertAllEqual(expected_output, output) - - def test_training_internal_ragged_tensors(self): - # Create a model that implements y=Mx. This is easy to learn and will - # demonstrate appropriate gradient passing. (We have to use - # RaggedTensors for this test, as ToSparse() doesn't support gradient - # propagation through the layer.) TODO(b/124796939): Investigate this. - layers = [core.Dense(2), ToRagged(padding=0), ToDense(default_value=-1)] - model = test_utils.get_model_from_layers(layers, input_shape=(1,)) - - input_data = np.random.rand(1024, 1) - expected_data = np.concatenate( - (input_data * 3, input_data * 0.5), axis=-1 - ) - - model.compile(loss="mse", optimizer="adam", **get_test_mode_kwargs()) - history = model.fit(input_data, expected_data, epochs=10, verbose=0) - - # If the model trained, the loss stored at history[0] should be - # different than the one stored at history[-1]. - self.assertNotEqual( - history.history["loss"][-1], history.history["loss"][0] - ) - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes -class CompositeTensorOutputTest(test_combinations.TestCase): - def test_ragged_tensor_outputs(self): - # Create a model that accepts an input, converts it to Ragged, and - # converts the ragged tensor back to a dense tensor. - layers = [ToRagged(padding=0)] - model = test_utils.get_model_from_layers(layers, input_shape=(None,)) - model._run_eagerly = test_utils.should_run_eagerly() - - # Define some input data with additional padding. - input_data = np.array([[1, 0, 0], [2, 3, 0]]) - output = model.predict(input_data) - - expected_values = [[1], [2, 3]] - self.assertAllEqual(expected_values, output) - - def test_ragged_tensor_rebatched_outputs(self): - # Create a model that accepts an input, converts it to Ragged, and - # converts the ragged tensor back to a dense tensor. - layers = [ToRagged(padding=0)] - model = test_utils.get_model_from_layers(layers, input_shape=(None,)) - model._run_eagerly = test_utils.should_run_eagerly() - - # Define some input data with additional padding. - input_data = np.array([[1, 0, 0], [2, 3, 0], [4, 0, 0], [5, 6, 0]]) - output = model.predict(input_data, batch_size=2) - - expected_values = [[1], [2, 3], [4], [5, 6]] - self.assertAllEqual(expected_values, output) - - def test_sparse_tensor_outputs(self): - # Create a model that accepts an input, converts it to Ragged, and - # converts the ragged tensor back to a dense tensor. - layers = [ToSparse()] - model = test_utils.get_model_from_layers(layers, input_shape=(None,)) - model._run_eagerly = test_utils.should_run_eagerly() - - # Define some input data with additional padding. - input_data = np.array([[1, 0, 0], [2, 3, 0]]) - output = model.predict(input_data) - - expected_indices = np.array([[0, 0], [1, 0], [1, 1]]) - expected_values = np.array([1, 2, 3]) - expected_dense_shape = np.array([2, 3]) - - self.assertAllEqual(output.indices, expected_indices) - self.assertAllEqual(output.values, expected_values) - self.assertAllEqual(output.dense_shape, expected_dense_shape) - - def test_sparse_tensor_rebatched_outputs(self): - # Create a model that accepts an input, converts it to Ragged, and - # converts the ragged tensor back to a dense tensor. - layers = [ToSparse()] - model = test_utils.get_model_from_layers(layers, input_shape=(None,)) - model._run_eagerly = test_utils.should_run_eagerly() - - # Define some input data with additional padding. - input_data = np.array([[1, 0, 0], [2, 3, 0], [4, 0, 0], [5, 6, 0]]) - output = model.predict(input_data, batch_size=2) - - expected_indices = np.array( - [[0, 0], [1, 0], [1, 1], [2, 0], [3, 0], [3, 1]] - ) - expected_values = np.array([1, 2, 3, 4, 5, 6]) - expected_dense_shape = np.array([4, 3]) - - self.assertAllEqual(output.indices, expected_indices) - self.assertAllEqual(output.values, expected_values) - self.assertAllEqual(output.dense_shape, expected_dense_shape) - - -def get_input_name(use_dict): - # Define the input name. - if not use_dict: - return None # This is the same as not setting 'name'. - elif test_utils.get_model_type() == "subclass": - return "input_1" # Subclass models don"t support input names. - else: - return "test_input_name" - - -def get_kwargs(use_dataset, action="predict"): - if use_dataset or not tf.executing_eagerly(): - if action == "fit": - return {"steps_per_epoch": 1} - return {"steps": 1} - else: - return {"batch_size": 2} - - -def prepare_inputs(data, use_dict, use_dataset, action, input_name): - input_data, expected_output = data - batch_size = input_data.shape[0] - # Prepare the input data. - if use_dict: - input_data = {input_name: input_data} - if use_dataset: - if action == "predict": - input_data = tf.data.Dataset.from_tensor_slices(input_data).batch( - batch_size - ) - else: - input_data = tf.data.Dataset.from_tensor_slices( - (input_data, expected_output) - ).batch(batch_size) - expected_output = None - return (input_data, expected_output) - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes -@parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - use_dict=[True, False], - use_dataset=[True, False], - action=["predict", "evaluate", "fit"], - ) -) -class SparseTensorInputTest(test_combinations.TestCase): - def test_sparse_tensors(self, use_dict, use_dataset, action): - data = [ - ( - tf.SparseTensor( - [[0, 0, 0], [1, 0, 0], [1, 0, 1]], [1, 2, 3], [2, 1, 3] - ), - np.array([[[1, -1, -1]], [[2, 3, -1]]]), - ), - ( - tf.SparseTensor( - [[0, 0, 0], [1, 0, 0], [1, 0, 1], [2, 0, 1]], - [5, 6, 7, 8], - [3, 1, 4], - ), - np.array( - [[[5, -1, -1, -1]], [[6, 7, -1, -1]], [[-1, 8, -1, -1]]] - ), - ), - ] - # Prepare the model to test. - input_name = get_input_name(use_dict) - model_input = input_layer.Input( - shape=(1, None), sparse=True, name=input_name, dtype=tf.int32 - ) - layers = [ToDense(default_value=-1)] - model = get_model_from_layers_with_input( - layers, model_input=model_input - ) - model.compile( - optimizer="sgd", - loss="mse", - metrics=["accuracy"], - **get_test_mode_kwargs(), - ) - kwargs = get_kwargs(use_dataset, action) - - # Prepare the input data - for data_element in data: - input_data, expected_output = prepare_inputs( - data_element, use_dict, use_dataset, action, input_name - ) - # Perform the action. - if action == "predict": - result = model.predict(input_data, **kwargs) - self.assertAllEqual(expected_output, result) - if action == "evaluate": - result = model.evaluate(input_data, expected_output, **kwargs) - self.assertAllEqual(1.0, result[-1]) - if action == "fit": - # TODO(momernick): What's the best way of validating that fit - # happened? - _ = model.fit( - input_data, expected_output, shuffle=False, **kwargs - ) - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes -class ScipySparseTensorInputTest(test_combinations.TestCase, tf.test.TestCase): - def test_sparse_scipy_predict_inputs_via_input_layer_args(self): - # Create a model that accepts a sparse input and converts the sparse - # tensor back to a dense tensor. Scipy sparse matrices are limited to - # 2D, so use a one-dimensional shape; note also that scipy's default - # dtype is int64. - model_input = input_layer.Input(shape=(3,), sparse=True, dtype=tf.int64) - layers = [ToDense(default_value=-1)] - model = get_model_from_layers_with_input( - layers, model_input=model_input - ) - - input_data = scipy.sparse.coo_matrix( - ([1, 2, 3], ([0, 1, 1], [0, 0, 1])), shape=[2, 3] - ) - expected_output = np.array([[1, -1, -1], [2, 3, -1]]) - output = model.predict(input_data, steps=1) - self.assertAllEqual(expected_output, output) - - input_data_2 = scipy.sparse.coo_matrix( - ([5, 6, 7, 8], ([0, 1, 1, 2], [0, 0, 1, 1])), shape=[3, 3] - ) - expected_output_2 = np.array([[5, -1, -1], [6, 7, -1], [-1, 8, -1]]) - output_2 = model.predict(input_data_2, steps=1) - self.assertAllEqual(expected_output_2, output_2) - - def test_sparse_scipy_eval_inputs(self): - # Create a model that accepts a sparse input and converts the sparse - # tensor back to a dense tensor. Scipy sparse matrices are limited to - # 2D, so use a one-dimensional shape; note also that scipy's default - # dtype is int64. - model_input = input_layer.Input(shape=(3,), sparse=True, dtype=tf.int64) - layers = [ToDense(default_value=-1)] - model = get_model_from_layers_with_input( - layers, model_input=model_input - ) - model.compile(optimizer="sgd", loss="mse", metrics=["accuracy"]) - - input_data = scipy.sparse.coo_matrix( - ([1, 2, 3], ([0, 1, 1], [0, 0, 1])), shape=[2, 3] - ) - expected_output = np.array([[1, -1, -1], [2, 3, -1]]) - - output = model.evaluate(input_data, expected_output, steps=1) - self.assertAllEqual(1.0, output[-1]) - - input_data_2 = scipy.sparse.coo_matrix( - ([5, 6, 7, 8], ([0, 1, 1, 2], [0, 0, 1, 1])), shape=[3, 3] - ) - expected_output_2 = np.array([[5, -1, -1], [6, 7, -1], [-1, 8, -1]]) - output_2 = model.evaluate(input_data_2, expected_output_2, steps=1) - self.assertAllEqual(1.0, output_2[-1]) - - def test_sparse_scipy_predict_input_dicts_via_input_layer_args(self): - # Create a model that accepts a sparse input and converts the sparse - # tensor back to a dense tensor. Scipy sparse matrices are limited to - # 2D, so use a one-dimensional shape; note also that scipy's default - # dtype is int64. - if test_utils.get_model_type() == "subclass": - input_name = "input_1" # Subclass models don"t support input names. - else: - input_name = "test_input_name" - model_input = input_layer.Input( - shape=(3,), sparse=True, name=input_name, dtype=tf.int64 - ) - layers = [ToDense(default_value=-1)] - model = get_model_from_layers_with_input( - layers, model_input=model_input - ) - - input_data = { - input_name: scipy.sparse.coo_matrix( - ([1, 2, 3], ([0, 1, 1], [0, 0, 1])), shape=[2, 3] - ) - } - expected_output = np.array([[1, -1, -1], [2, 3, -1]]) - output = model.predict(input_data, steps=1) - self.assertAllEqual(expected_output, output) - - input_data_2 = { - input_name: scipy.sparse.coo_matrix( - ([5, 6, 7, 8], ([0, 1, 1, 2], [0, 0, 1, 1])), shape=[3, 3] - ) - } - expected_output_2 = np.array([[5, -1, -1], [6, 7, -1], [-1, 8, -1]]) - output_2 = model.predict(input_data_2, steps=1) - self.assertAllEqual(expected_output_2, output_2) - - def test_sparse_scipy_eval_input_dicts(self): - # Create a model that accepts a sparse input and converts the sparse - # tensor back to a dense tensor. Scipy sparse matrices are limited to - # 2D, so use a one-dimensional shape; note also that scipy's default - # dtype is int64. - if test_utils.get_model_type() == "subclass": - input_name = "input_1" # Subclass models don"t support input names. - else: - input_name = "test_input_name" - model_input = input_layer.Input( - shape=(3,), sparse=True, name=input_name, dtype=tf.int64 - ) - layers = [ToDense(default_value=-1)] - model = get_model_from_layers_with_input( - layers, model_input=model_input - ) - model.compile(optimizer="sgd", loss="mse", metrics=["accuracy"]) - - input_data = { - input_name: scipy.sparse.coo_matrix( - ([1, 2, 3], ([0, 1, 1], [0, 0, 1])), shape=[2, 3] - ) - } - expected_output = np.array([[1, -1, -1], [2, 3, -1]]) - output = model.evaluate(input_data, expected_output, steps=1) - self.assertAllEqual(1.0, output[-1]) - - input_data_2 = { - input_name: scipy.sparse.coo_matrix( - ([5, 6, 7, 8], ([0, 1, 1, 2], [0, 0, 1, 1])), shape=[3, 3] - ) - } - expected_output_2 = np.array([[5, -1, -1], [6, 7, -1], [-1, 8, -1]]) - output_2 = model.evaluate(input_data_2, expected_output_2, steps=1) - self.assertAllEqual(1.0, output_2[-1]) - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes -@parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - use_dict=[True, False], - use_dataset=[True, False], - action=["predict", "evaluate", "fit"], - ) -) -class RaggedTensorInputTest(test_combinations.TestCase, tf.test.TestCase): - def test_ragged_input(self, use_dict, use_dataset, action): - data = [ - ( - tf.ragged.constant([[[1]], [[2, 3]]]), - np.array([[[1, -1]], [[2, 3]]]), - ) - ] - - # Prepare the model to test. - input_name = get_input_name(use_dict) - model_input = input_layer.Input( - shape=(None, None), - ragged=True, - name=input_name, - dtype=tf.int32, - batch_size=2, - ) - self.assertIsInstance(model_input._type_spec, tf.RaggedTensorSpec) - self.assertEqual(model_input.shape.as_list(), [2, None, None]) - layers = [ToDense(default_value=-1)] - model = get_model_from_layers_with_input( - layers, model_input=model_input - ) - model.compile( - optimizer="sgd", - loss="mse", - metrics=["accuracy"], - **get_test_mode_kwargs(), - ) - - # Prepare the input data - for data_element in data: - input_data, expected_output = prepare_inputs( - data_element, use_dict, use_dataset, action, input_name - ) - # Perform the action. - if action == "predict": - result = model.predict(input_data) - self.assertAllEqual(expected_output, result) - if action == "evaluate": - result = model.evaluate(input_data, expected_output) - self.assertAllEqual(1.0, result[-1]) - if action == "fit": - # TODO(momernick): What's the best way of validating that fit - # happened? - _ = model.fit(input_data, expected_output, shuffle=False) - - -@test_combinations.run_with_all_model_types -@test_combinations.run_all_keras_modes -@parameterized.named_parameters( - *test_utils.generate_combinations_with_testcase_name( - use_dict=[True, False], use_dataset=[True, False] - ) -) -class RaggedTensorInputValidationTest( - test_combinations.TestCase, tf.test.TestCase -): - def test_ragged_tensor_input_with_one_none_dimension( - self, use_dict, use_dataset - ): - # Define some input data. - data = [ - ( - tf.ragged.constant([[[1, 0]], [[2, 3]]], ragged_rank=1), - np.array([[[1, 0]], [[2, 3]]]), - ) - ] - - # Prepare the model to test. - input_shape = (None, 2) # RaggedTensorInputTest uses (None, None). - input_name = get_input_name(use_dict) - model_input = input_layer.Input( - shape=input_shape, ragged=True, name=input_name, dtype=tf.int32 - ) - layers = [ToDense(default_value=-1)] - model = get_model_from_layers_with_input( - layers, model_input=model_input - ) - model.compile( - optimizer="sgd", - loss="mse", - metrics=["accuracy"], - **get_test_mode_kwargs(), - ) - - for data_element in data: - input_data, expected_output = prepare_inputs( - data_element, - use_dict, - use_dataset, - action="predict", - input_name=input_name, - ) - result = model.predict(input_data) - self.assertAllEqual(expected_output, result) - - def test_ragged_tensor_input_with_no_none_dimension( - self, use_dict, use_dataset - ): - # Define some input data. - data = [ - ( - tf.ragged.constant([[[1, 0]], [[2, 3]]], ragged_rank=0), - np.array([[[1, 0]], [[2, 3]]]), - ) - ] - - # Prepare the model to test. - input_shape = (1, 2) # RaggedTensorInputTest uses (None, None). - input_name = get_input_name(use_dict) - model_input = input_layer.Input( - shape=input_shape, ragged=True, name=input_name, dtype=tf.int32 - ) - layers = [ToDense(default_value=-1)] - model = get_model_from_layers_with_input( - layers, model_input=model_input - ) - model.compile( - optimizer="sgd", - loss="mse", - metrics=["accuracy"], - **get_test_mode_kwargs(), - ) - kwargs = get_kwargs(use_dataset) - - for data_element in data: - input_data, expected_output = prepare_inputs( - data_element, - use_dict, - use_dataset, - action="predict", - input_name=input_name, - ) - result = model.predict(input_data, **kwargs) - self.assertAllEqual(expected_output, result) - - -@test_combinations.run_with_all_model_types() -@test_combinations.run_all_keras_modes(always_skip_v1=True) -class CompositeTensorModelPredictTest(test_combinations.TestCase): - def _normalize_shape(self, shape): - if not isinstance(shape, tuple): - shape = tuple(shape.as_list()) - return shape - - def test_sparse_tensor_model_predict(self): - # Create a model that accepts a sparse input and runs a "Dense" layer on - # it. - model_input = input_layer.Input( - shape=(3,), sparse=True, dtype=tf.float32 - ) - - self.assertEqual([None, 3], model_input.shape.as_list()) - - layers = [Dense(2)] - model = get_model_from_layers_with_input( - layers, model_input=model_input - ) - - sparse_input = tf.SparseTensor( - # A two-row matrix - indices=[(0, 0), (0, 1), (0, 2), (5, 0), (5, 1), (5, 2)], - values=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0], - dense_shape=(6, 3), - ) - - shape = model(sparse_input).shape - self.assertEqual((6, 2), self._normalize_shape(shape)) - - shape = model.predict(sparse_input, steps=1).shape - self.assertEqual((6, 2), self._normalize_shape(shape)) - - def test_ragged_tensor_model_predict(self): - # Create a model that accepts a sparse input and runs a "Dense" layer on - # it. - model_input = input_layer.Input(shape=(None,), ragged=True) - self.assertEqual([None, None], model_input.shape.as_list()) - - layers = [Embedding(input_dim=7, output_dim=5)] - model = get_model_from_layers_with_input( - layers, model_input=model_input - ) - - ragged_input = tf.ragged.constant( - [ - [1, 2, 3, 4, 5], - [2, 4], - ] - ) - - shape = model(ragged_input).shape - self.assertEqual((2, None, 5), self._normalize_shape(shape)) - - shape = model.predict(ragged_input, steps=1).shape - self.assertEqual((2, None, 5), self._normalize_shape(shape)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/control_flow_util.py b/keras/utils/control_flow_util.py deleted file mode 100644 index d895e93da68..00000000000 --- a/keras/utils/control_flow_util.py +++ /dev/null @@ -1,138 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utility functions for control flow. - -This file is copied from tensorflow/python/ops/control_flow_util.py. -""" - -import tensorflow.compat.v2 as tf - - -def InXlaContext(graph): - ctxt = graph._get_control_flow_context() - return GetContainingXLAContext(ctxt) is not None - - -def GraphOrParentsInXlaContext(graph): - while True: - if InXlaContext(graph): - return True - try: - graph = graph.outer_graph - except AttributeError: - return False - - -def IsInWhileLoop(op): - ctxt = op._get_control_flow_context() - return GetContainingWhileContext(ctxt) is not None - - -def GetContainingWhileContext(ctxt, stop_ctxt=None): - """Returns the first ancestor WhileContext of `ctxt`. - - Returns `ctxt` if `ctxt` is a WhileContext, or None if `ctxt` is not in a - while loop. - - Args: - ctxt: ControlFlowContext - stop_ctxt: ControlFlowContext, optional. If provided, the search will end - if it sees stop_ctxt. - - Returns: - `ctxt` if `ctxt` is a WhileContext, the most nested WhileContext - containing `ctxt`, or None if `ctxt` is not in a while loop. If - `stop_ctxt` is not `None`, this returns `ctxt` if it matches `stop_ctxt` - in its traversal. - """ - while ctxt: - if ctxt.IsWhileContext() or ctxt == stop_ctxt: - return ctxt - ctxt = ctxt.outer_context - return None - - -def GetContainingXLAContext(ctxt): - """Returns the first ancestor XLAContext of `ctxt`. - - Returns `ctxt` if `ctxt` is a XLAContext, or None if `ctxt` is not in a - while loop. - - Args: - ctxt: ControlFlowContext - - Returns: - `ctxt` if `ctxt` is a XLAContext, the most nested XLAContext containing - `ctxt`, or None if `ctxt` is not in a while loop. - """ - while ctxt: - if ctxt.IsXLAContext(): - return ctxt - ctxt = ctxt.outer_context - return None - - -def smart_cond(pred, true_fn=None, false_fn=None, name=None): - """Return either `true_fn()` if predicate `pred` is true else `false_fn()`. - - If `pred` is a bool or has a constant value, we return either `true_fn()` - or `false_fn()`, otherwise we use `tf.cond` to dynamically route to both. - - Args: - pred: A scalar determining whether to return the result of `true_fn` or - `false_fn`. - true_fn: The callable to be performed if pred is true. - false_fn: The callable to be performed if pred is false. - name: Optional name prefix when using `tf.cond`. - - Returns: - Tensors returned by the call to either `true_fn` or `false_fn`. - - Raises: - TypeError: If `true_fn` or `false_fn` is not callable. - """ - if isinstance(pred, tf.Variable): - return tf.cond(pred, true_fn=true_fn, false_fn=false_fn, name=name) - return tf.__internal__.smart_cond.smart_cond( - pred, true_fn=true_fn, false_fn=false_fn, name=name - ) - - -def constant_value(pred): - """Return the bool value for `pred`, or None if `pred` had a dynamic value. - - Args: - pred: A scalar, either a Python bool or a TensorFlow boolean variable - or tensor, or the Python integer 1 or 0. - - Returns: - True or False if `pred` has a constant boolean value, None otherwise. - - Raises: - TypeError: If `pred` is not a Variable, Tensor or bool, or Python - integer 1 or 0. - """ - if isinstance(pred, tf.Tensor): - return tf.get_static_value(pred) - if pred in {0, 1}: # Accept 1/0 as valid boolean values - return bool(pred) - if isinstance(pred, bool): - return pred - if isinstance(pred, tf.Variable): - return None - raise TypeError( - "`pred` must be a Tensor, or a Python bool, or 1 or 0. " - f"Received: {type(pred)}" - ) diff --git a/keras/utils/conv_utils.py b/keras/utils/conv_utils.py deleted file mode 100644 index e9946ccb2e2..00000000000 --- a/keras/utils/conv_utils.py +++ /dev/null @@ -1,581 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities used by convolution layers.""" - -import itertools - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend - - -def convert_data_format(data_format, ndim): - if data_format == "channels_last": - if ndim == 3: - return "NWC" - elif ndim == 4: - return "NHWC" - elif ndim == 5: - return "NDHWC" - else: - raise ValueError( - f"Input rank not supported: {ndim}. " - "Expected values are [3, 4, 5]" - ) - elif data_format == "channels_first": - if ndim == 3: - return "NCW" - elif ndim == 4: - return "NCHW" - elif ndim == 5: - return "NCDHW" - else: - raise ValueError( - f"Input rank not supported: {ndim}. " - "Expected values are [3, 4, 5]" - ) - else: - raise ValueError( - f"Invalid data_format: {data_format}. " - 'Expected values are ["channels_first", "channels_last"]' - ) - - -def normalize_tuple(value, n, name, allow_zero=False): - """Transforms non-negative/positive integer/integers into an integer tuple. - - Args: - value: The value to validate and convert. Could an int, or any iterable of - ints. - n: The size of the tuple to be returned. - name: The name of the argument being validated, e.g. "strides" or - "kernel_size". This is only used to format error messages. - allow_zero: Default to False. A ValueError will raised if zero is received - and this param is False. - - Returns: - A tuple of n integers. - - Raises: - ValueError: If something else than an int/long or iterable thereof or a - negative value is - passed. - """ - error_msg = ( - f"The `{name}` argument must be a tuple of {n} " - f"integers. Received: {value}" - ) - - if isinstance(value, int): - value_tuple = (value,) * n - else: - try: - value_tuple = tuple(value) - except TypeError: - raise ValueError(error_msg) - if len(value_tuple) != n: - raise ValueError(error_msg) - for single_value in value_tuple: - try: - int(single_value) - except (ValueError, TypeError): - error_msg += ( - f"including element {single_value} of " - f"type {type(single_value)}" - ) - raise ValueError(error_msg) - - if allow_zero: - unqualified_values = {v for v in value_tuple if v < 0} - req_msg = ">= 0" - else: - unqualified_values = {v for v in value_tuple if v <= 0} - req_msg = "> 0" - - if unqualified_values: - error_msg += ( - f" including {unqualified_values}" - f" that does not satisfy the requirement `{req_msg}`." - ) - raise ValueError(error_msg) - - return value_tuple - - -def conv_output_length(input_length, filter_size, padding, stride, dilation=1): - """Determines output length of a convolution given input length. - - Args: - input_length: integer. - filter_size: integer. - padding: one of "same", "valid", "full", "causal" - stride: integer. - dilation: dilation rate, integer. - - Returns: - The output length (integer). - """ - if input_length is None: - return None - assert padding in {"same", "valid", "full", "causal"} - dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1) - if padding in ["same", "causal"]: - output_length = input_length - elif padding == "valid": - output_length = input_length - dilated_filter_size + 1 - elif padding == "full": - output_length = input_length + dilated_filter_size - 1 - return (output_length + stride - 1) // stride - - -def conv_input_length(output_length, filter_size, padding, stride): - """Determines input length of a convolution given output length. - - Args: - output_length: integer. - filter_size: integer. - padding: one of "same", "valid", "full". - stride: integer. - - Returns: - The input length (integer). - """ - if output_length is None: - return None - assert padding in {"same", "valid", "full"} - if padding == "same": - pad = filter_size // 2 - elif padding == "valid": - pad = 0 - elif padding == "full": - pad = filter_size - 1 - return (output_length - 1) * stride - 2 * pad + filter_size - - -def deconv_output_length( - input_length, - filter_size, - padding, - output_padding=None, - stride=0, - dilation=1, -): - """Determines output length of a transposed convolution given input length. - - Args: - input_length: Integer. - filter_size: Integer. - padding: one of `"same"`, `"valid"`, `"full"`. - output_padding: Integer, amount of padding along the output dimension. - Can be set to `None` in which case the output length is inferred. - stride: Integer. - dilation: Integer. - - Returns: - The output length (integer). - """ - assert padding in {"same", "valid", "full"} - if input_length is None: - return None - - # Get the dilated kernel size - filter_size = filter_size + (filter_size - 1) * (dilation - 1) - - # Infer length if output padding is None, else compute the exact length - if output_padding is None: - if padding == "valid": - length = input_length * stride + max(filter_size - stride, 0) - elif padding == "full": - length = input_length * stride - (stride + filter_size - 2) - elif padding == "same": - length = input_length * stride - - else: - if padding == "same": - pad = filter_size // 2 - elif padding == "valid": - pad = 0 - elif padding == "full": - pad = filter_size - 1 - - length = ( - (input_length - 1) * stride + filter_size - 2 * pad + output_padding - ) - return length - - -def normalize_data_format(value): - if value is None: - value = backend.image_data_format() - data_format = value.lower() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError( - "The `data_format` argument must be one of " - f'"channels_first", "channels_last". Received: {value}' - ) - return data_format - - -def normalize_padding(value): - if isinstance(value, (list, tuple)): - return value - padding = value.lower() - if padding not in {"valid", "same", "causal"}: - raise ValueError( - "The `padding` argument must be a list/tuple or one of " - '"valid", "same" (or "causal", only for `Conv1D). ' - f"Received: {padding}" - ) - return padding - - -def conv_kernel_mask(input_shape, kernel_shape, strides, padding): - """Compute a mask representing the connectivity of a convolution operation. - - Assume a convolution with given parameters is applied to an input having N - spatial dimensions with `input_shape = (d_in1, ..., d_inN)` to produce an - output with shape `(d_out1, ..., d_outN)`. This method returns a boolean - array of shape `(d_in1, ..., d_inN, d_out1, ..., d_outN)` with `True` - entries indicating pairs of input and output locations that are connected by - a weight. - - Example: - - >>> input_shape = (4,) - >>> kernel_shape = (2,) - >>> strides = (1,) - >>> padding = "valid" - >>> conv_kernel_mask(input_shape, kernel_shape, strides, padding) - array([[ True, False, False], - [ True, True, False], - [False, True, True], - [False, False, True]]) - - where rows and columns correspond to inputs and outputs respectively. - - - Args: - input_shape: tuple of size N: `(d_in1, ..., d_inN)`, spatial shape of the - input. - kernel_shape: tuple of size N, spatial shape of the convolutional kernel / - receptive field. - strides: tuple of size N, strides along each spatial dimension. - padding: type of padding, string `"same"` or `"valid"`. - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - - Returns: - A boolean 2N-D `np.ndarray` of shape - `(d_in1, ..., d_inN, d_out1, ..., d_outN)`, where `(d_out1, ..., d_outN)` - is the spatial shape of the output. `True` entries in the mask represent - pairs of input-output locations that are connected by a weight. - - Raises: - ValueError: if `input_shape`, `kernel_shape` and `strides` don't have the - same number of dimensions. - NotImplementedError: if `padding` is not in {`"same"`, `"valid"`}. - """ - if padding not in {"same", "valid"}: - raise NotImplementedError( - f"Padding type {padding} not supported. " - 'Only "valid" and "same" are implemented.' - ) - - in_dims = len(input_shape) - if isinstance(kernel_shape, int): - kernel_shape = (kernel_shape,) * in_dims - if isinstance(strides, int): - strides = (strides,) * in_dims - - kernel_dims = len(kernel_shape) - stride_dims = len(strides) - if kernel_dims != in_dims or stride_dims != in_dims: - raise ValueError( - "Number of strides, input and kernel dimensions must all " - f"match. Received: stride_dims={stride_dims}, " - f"in_dims={in_dims}, kernel_dims={kernel_dims}" - ) - - output_shape = conv_output_shape( - input_shape, kernel_shape, strides, padding - ) - - mask_shape = input_shape + output_shape - mask = np.zeros(mask_shape, bool) - - output_axes_ticks = [range(dim) for dim in output_shape] - for output_position in itertools.product(*output_axes_ticks): - input_axes_ticks = conv_connected_inputs( - input_shape, kernel_shape, output_position, strides, padding - ) - for input_position in itertools.product(*input_axes_ticks): - mask[input_position + output_position] = True - - return mask - - -def conv_kernel_idxs( - input_shape, - kernel_shape, - strides, - padding, - filters_in, - filters_out, - data_format, -): - """Yields output-input tuples of indices in a CNN layer. - - The generator iterates over all `(output_idx, input_idx)` tuples, where - `output_idx` is an integer index in a flattened tensor representing a single - output image of a convolutional layer that is connected (via the layer - weights) to the respective single input image at `input_idx` - - Example: - - >>> input_shape = (2, 2) - >>> kernel_shape = (2, 1) - >>> strides = (1, 1) - >>> padding = "valid" - >>> filters_in = 1 - >>> filters_out = 1 - >>> data_format = "channels_last" - >>> list(conv_kernel_idxs(input_shape, kernel_shape, strides, padding, - ... filters_in, filters_out, data_format)) - [(0, 0), (0, 2), (1, 1), (1, 3)] - - Args: - input_shape: tuple of size N: `(d_in1, ..., d_inN)`, spatial shape of the - input. - kernel_shape: tuple of size N, spatial shape of the convolutional kernel / - receptive field. - strides: tuple of size N, strides along each spatial dimension. - padding: type of padding, string `"same"` or `"valid"`. - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - filters_in: `int`, number if filters in the input to the layer. - filters_out: `int', number if filters in the output of the layer. - data_format: string, "channels_first" or "channels_last". - - Yields: - The next tuple `(output_idx, input_idx)`, where `output_idx` is an integer - index in a flattened tensor representing a single output image of a - convolutional layer that is connected (via the layer weights) to the - respective single input image at `input_idx`. - - Raises: - ValueError: if `data_format` is neither `"channels_last"` nor - `"channels_first"`, or if number of strides, input, and kernel number - of dimensions do not match. - - NotImplementedError: if `padding` is neither `"same"` nor `"valid"`. - """ - if padding not in ("same", "valid"): - raise NotImplementedError( - f"Padding type {padding} not supported. " - 'Only "valid" and "same" are implemented.' - ) - - in_dims = len(input_shape) - if isinstance(kernel_shape, int): - kernel_shape = (kernel_shape,) * in_dims - if isinstance(strides, int): - strides = (strides,) * in_dims - - kernel_dims = len(kernel_shape) - stride_dims = len(strides) - if kernel_dims != in_dims or stride_dims != in_dims: - raise ValueError( - "Number of strides, input and kernel dimensions must all " - f"match. Received: stride_dims={stride_dims}, " - f"in_dims={in_dims}, kernel_dims={kernel_dims}" - ) - - output_shape = conv_output_shape( - input_shape, kernel_shape, strides, padding - ) - output_axes_ticks = [range(dim) for dim in output_shape] - - if data_format == "channels_first": - concat_idxs = ( - lambda spatial_idx, filter_idx: (filter_idx,) + spatial_idx - ) - elif data_format == "channels_last": - concat_idxs = lambda spatial_idx, filter_idx: spatial_idx + ( - filter_idx, - ) - else: - raise ValueError( - f"Data format `{data_format}` not recognized." - '`data_format` must be "channels_first" or "channels_last".' - ) - - for output_position in itertools.product(*output_axes_ticks): - input_axes_ticks = conv_connected_inputs( - input_shape, kernel_shape, output_position, strides, padding - ) - for input_position in itertools.product(*input_axes_ticks): - for f_in in range(filters_in): - for f_out in range(filters_out): - out_idx = np.ravel_multi_index( - multi_index=concat_idxs(output_position, f_out), - dims=concat_idxs(output_shape, filters_out), - ) - in_idx = np.ravel_multi_index( - multi_index=concat_idxs(input_position, f_in), - dims=concat_idxs(input_shape, filters_in), - ) - yield (out_idx, in_idx) - - -def conv_connected_inputs( - input_shape, kernel_shape, output_position, strides, padding -): - """Return locations of the input connected to an output position. - - Assume a convolution with given parameters is applied to an input having N - spatial dimensions with `input_shape = (d_in1, ..., d_inN)`. This method - returns N ranges specifying the input region that was convolved with the - kernel to produce the output at position - `output_position = (p_out1, ..., p_outN)`. - - Example: - - >>> input_shape = (4, 4) - >>> kernel_shape = (2, 1) - >>> output_position = (1, 1) - >>> strides = (1, 1) - >>> padding = "valid" - >>> conv_connected_inputs(input_shape, kernel_shape, output_position, - ... strides, padding) - [range(1, 3), range(1, 2)] - - Args: - input_shape: tuple of size N: `(d_in1, ..., d_inN)`, spatial shape of the - input. - kernel_shape: tuple of size N, spatial shape of the convolutional kernel / - receptive field. - output_position: tuple of size N: `(p_out1, ..., p_outN)`, a single - position in the output of the convolution. - strides: tuple of size N, strides along each spatial dimension. - padding: type of padding, string `"same"` or `"valid"`. - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - - Returns: - N ranges `[[p_in_left1, ..., p_in_right1], ..., - [p_in_leftN, ..., p_in_rightN]]` specifying the region in the - input connected to output_position. - """ - ranges = [] - - ndims = len(input_shape) - for d in range(ndims): - left_shift = int(kernel_shape[d] / 2) - right_shift = kernel_shape[d] - left_shift - - center = output_position[d] * strides[d] - - if padding == "valid": - center += left_shift - - start = max(0, center - left_shift) - end = min(input_shape[d], center + right_shift) - - ranges.append(range(start, end)) - - return ranges - - -def conv_output_shape(input_shape, kernel_shape, strides, padding): - """Return the output shape of an N-D convolution. - - Forces dimensions where input is empty (size 0) to remain empty. - - Args: - input_shape: tuple of size N: `(d_in1, ..., d_inN)`, spatial shape of the - input. - kernel_shape: tuple of size N, spatial shape of the convolutional kernel / - receptive field. - strides: tuple of size N, strides along each spatial dimension. - padding: type of padding, string `"same"` or `"valid"`. - `"valid"` means no padding. `"same"` results in padding evenly to - the left/right or up/down of the input such that output has the same - height/width dimension as the input. - - Returns: - tuple of size N: `(d_out1, ..., d_outN)`, spatial shape of the output. - """ - dims = range(len(kernel_shape)) - output_shape = [ - conv_output_length(input_shape[d], kernel_shape[d], padding, strides[d]) - for d in dims - ] - output_shape = tuple( - [0 if input_shape[d] == 0 else output_shape[d] for d in dims] - ) - return output_shape - - -def squeeze_batch_dims(inp, op, inner_rank): - """Returns `unsqueeze_batch(op(squeeze_batch(inp)))`. - - Where `squeeze_batch` reshapes `inp` to shape - `[prod(inp.shape[:-inner_rank])] + inp.shape[-inner_rank:]` - and `unsqueeze_batch` does the reverse reshape but on the output. - - Args: - inp: A tensor with dims `batch_shape + inner_shape` where `inner_shape` - is length `inner_rank`. - op: A callable that takes a single input tensor and returns a single. - output tensor. - inner_rank: A python integer. - - Returns: - `unsqueeze_batch_op(squeeze_batch(inp))`. - """ - with tf.name_scope("squeeze_batch_dims"): - shape = inp.shape - - inner_shape = shape[-inner_rank:] - if not inner_shape.is_fully_defined(): - inner_shape = tf.shape(inp)[-inner_rank:] - - batch_shape = shape[:-inner_rank] - if not batch_shape.is_fully_defined(): - batch_shape = tf.shape(inp)[:-inner_rank] - - if isinstance(inner_shape, tf.TensorShape): - inp_reshaped = tf.reshape(inp, [-1] + inner_shape.as_list()) - else: - inp_reshaped = tf.reshape( - inp, tf.concat(([-1], inner_shape), axis=-1) - ) - - out_reshaped = op(inp_reshaped) - - out_inner_shape = out_reshaped.shape[-inner_rank:] - if not out_inner_shape.is_fully_defined(): - out_inner_shape = tf.shape(out_reshaped)[-inner_rank:] - - out = tf.reshape( - out_reshaped, tf.concat((batch_shape, out_inner_shape), axis=-1) - ) - - out.set_shape(inp.shape[:-inner_rank] + out.shape[-inner_rank:]) - return out diff --git a/keras/utils/conv_utils_test.py b/keras/utils/conv_utils_test.py deleted file mode 100644 index f7a11ad0842..00000000000 --- a/keras/utils/conv_utils_test.py +++ /dev/null @@ -1,402 +0,0 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for conv_utils.""" - -import itertools - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.utils import conv_utils - - -def _get_const_output_shape(input_shape, dim): - return tuple([min(d, dim) for d in input_shape]) - - -input_shapes = [ - (0,), - (0, 0), - (1,), - (2,), - (3,), - (1, 0), - (0, 3), - (1, 1), - (1, 2), - (3, 1), - (2, 2), - (3, 3), - (1, 0, 1), - (5, 2, 3), - (3, 5, 6, 7, 0), - (3, 2, 2, 4, 4), - (1, 2, 3, 4, 7, 2), -] - - -class TestBasicConvUtilsTest(tf.test.TestCase): - def test_convert_data_format(self): - self.assertEqual( - "NCDHW", conv_utils.convert_data_format("channels_first", 5) - ) - self.assertEqual( - "NCHW", conv_utils.convert_data_format("channels_first", 4) - ) - self.assertEqual( - "NCW", conv_utils.convert_data_format("channels_first", 3) - ) - self.assertEqual( - "NHWC", conv_utils.convert_data_format("channels_last", 4) - ) - self.assertEqual( - "NWC", conv_utils.convert_data_format("channels_last", 3) - ) - self.assertEqual( - "NDHWC", conv_utils.convert_data_format("channels_last", 5) - ) - - with self.assertRaises(ValueError): - conv_utils.convert_data_format("invalid", 2) - - def test_normalize_tuple(self): - self.assertEqual( - (2, 2, 2), - conv_utils.normalize_tuple(2, n=3, name="strides", allow_zero=True), - ) - self.assertEqual( - (2, 1, 2), - conv_utils.normalize_tuple( - (2, 1, 2), n=3, name="strides", allow_zero=True - ), - ) - self.assertEqual( - ( - 1, - 2, - 3, - ), - conv_utils.normalize_tuple((1, 2, 3), n=3, name="pool_size"), - ) - self.assertEqual( - (3, 3, 3), conv_utils.normalize_tuple(3, n=3, name="pool_size") - ) - - with self.assertRaisesRegex( - ValueError, - r"including \{-1\} that does not satisfy the requirement `> 0`", - ): - conv_utils.normalize_tuple((3, -1, 3), n=3, name="negative_size") - - with self.assertRaisesRegex( - ValueError, - r"The `strides` argument .* a tuple of 3 integers.* \(2, 1\)$", - ): - conv_utils.normalize_tuple( - (2, 1), n=3, name="strides", allow_zero=True - ) - - with self.assertRaisesRegex( - ValueError, - r"The `kernel_size` argument .* tuple of 3 integers.* None$", - ): - conv_utils.normalize_tuple(None, n=3, name="kernel_size") - - with self.assertRaisesRegex( - ValueError, r"including \{-4\} that does not .* `>= 0`" - ): - conv_utils.normalize_tuple(-4, n=3, name="strides", allow_zero=True) - - with self.assertRaisesRegex( - ValueError, r"including \{0\} that does not .* `> 0`" - ): - conv_utils.normalize_tuple((0, 1, 2), n=3, name="pool_size") - - def test_normalize_data_format(self): - self.assertEqual( - "channels_last", conv_utils.normalize_data_format("Channels_Last") - ) - self.assertEqual( - "channels_first", conv_utils.normalize_data_format("CHANNELS_FIRST") - ) - - with self.assertRaises(ValueError): - conv_utils.normalize_data_format("invalid") - - def test_normalize_padding(self): - self.assertEqual("same", conv_utils.normalize_padding("SAME")) - self.assertEqual("valid", conv_utils.normalize_padding("VALID")) - - with self.assertRaises(ValueError): - conv_utils.normalize_padding("invalid") - - def test_conv_output_length(self): - self.assertEqual(4, conv_utils.conv_output_length(4, 2, "same", 1, 1)) - self.assertEqual(2, conv_utils.conv_output_length(4, 2, "same", 2, 1)) - self.assertEqual(3, conv_utils.conv_output_length(4, 2, "valid", 1, 1)) - self.assertEqual(2, conv_utils.conv_output_length(4, 2, "valid", 2, 1)) - self.assertEqual(5, conv_utils.conv_output_length(4, 2, "full", 1, 1)) - self.assertEqual(3, conv_utils.conv_output_length(4, 2, "full", 2, 1)) - self.assertEqual(2, conv_utils.conv_output_length(5, 2, "valid", 2, 2)) - - def test_conv_input_length(self): - self.assertEqual(3, conv_utils.conv_input_length(4, 2, "same", 1)) - self.assertEqual(2, conv_utils.conv_input_length(2, 2, "same", 2)) - self.assertEqual(4, conv_utils.conv_input_length(3, 2, "valid", 1)) - self.assertEqual(4, conv_utils.conv_input_length(2, 2, "valid", 2)) - self.assertEqual(3, conv_utils.conv_input_length(4, 2, "full", 1)) - self.assertEqual(4, conv_utils.conv_input_length(3, 2, "full", 2)) - - def test_deconv_output_length(self): - self.assertEqual( - 4, conv_utils.deconv_output_length(4, 2, "same", stride=1) - ) - self.assertEqual( - 8, conv_utils.deconv_output_length(4, 2, "same", stride=2) - ) - self.assertEqual( - 5, conv_utils.deconv_output_length(4, 2, "valid", stride=1) - ) - self.assertEqual( - 8, conv_utils.deconv_output_length(4, 2, "valid", stride=2) - ) - self.assertEqual( - 3, conv_utils.deconv_output_length(4, 2, "full", stride=1) - ) - self.assertEqual( - 6, conv_utils.deconv_output_length(4, 2, "full", stride=2) - ) - self.assertEqual( - 5, - conv_utils.deconv_output_length( - 4, 2, "same", output_padding=2, stride=1 - ), - ) - self.assertEqual( - 7, - conv_utils.deconv_output_length( - 4, 2, "same", output_padding=1, stride=2 - ), - ) - self.assertEqual( - 7, - conv_utils.deconv_output_length( - 4, 2, "valid", output_padding=2, stride=1 - ), - ) - self.assertEqual( - 9, - conv_utils.deconv_output_length( - 4, 2, "valid", output_padding=1, stride=2 - ), - ) - self.assertEqual( - 5, - conv_utils.deconv_output_length( - 4, 2, "full", output_padding=2, stride=1 - ), - ) - self.assertEqual( - 7, - conv_utils.deconv_output_length( - 4, 2, "full", output_padding=1, stride=2 - ), - ) - self.assertEqual( - 5, - conv_utils.deconv_output_length( - 4, 2, "same", output_padding=1, stride=1, dilation=2 - ), - ) - self.assertEqual( - 12, - conv_utils.deconv_output_length( - 4, 2, "valid", output_padding=2, stride=2, dilation=3 - ), - ) - self.assertEqual( - 6, - conv_utils.deconv_output_length( - 4, 2, "full", output_padding=2, stride=2, dilation=3 - ), - ) - - -@parameterized.parameters(input_shapes) -class TestConvUtils(tf.test.TestCase, parameterized.TestCase): - def test_conv_kernel_mask_fc(self, *input_shape): - padding = "valid" - kernel_shape = input_shape - ndims = len(input_shape) - strides = (1,) * ndims - output_shape = _get_const_output_shape(input_shape, dim=1) - mask = np.ones(input_shape + output_shape, bool) - self.assertAllEqual( - mask, - conv_utils.conv_kernel_mask( - input_shape, kernel_shape, strides, padding - ), - ) - - def test_conv_kernel_mask_diag(self, *input_shape): - ndims = len(input_shape) - kernel_shape = (1,) * ndims - strides = (1,) * ndims - - for padding in ["valid", "same"]: - mask = np.identity(int(np.prod(input_shape)), bool) - mask = np.reshape(mask, input_shape * 2) - self.assertAllEqual( - mask, - conv_utils.conv_kernel_mask( - input_shape, kernel_shape, strides, padding - ), - ) - - def test_conv_kernel_mask_full_stride(self, *input_shape): - padding = "valid" - ndims = len(input_shape) - kernel_shape = (1,) * ndims - strides = tuple([max(d, 1) for d in input_shape]) - output_shape = _get_const_output_shape(input_shape, dim=1) - - mask = np.zeros(input_shape + output_shape, bool) - if all(d > 0 for d in mask.shape): - mask[(0,) * len(output_shape)] = True - - self.assertAllEqual( - mask, - conv_utils.conv_kernel_mask( - input_shape, kernel_shape, strides, padding - ), - ) - - def test_conv_kernel_mask_almost_full_stride(self, *input_shape): - padding = "valid" - ndims = len(input_shape) - kernel_shape = (1,) * ndims - strides = tuple([max(d - 1, 1) for d in input_shape]) - output_shape = _get_const_output_shape(input_shape, dim=2) - - mask = np.zeros(input_shape + output_shape, bool) - if all(d > 0 for d in mask.shape): - for in_position in itertools.product( - *[[0, d - 1] for d in input_shape] - ): - out_position = tuple([min(p, 1) for p in in_position]) - mask[in_position + out_position] = True - - self.assertAllEqual( - mask, - conv_utils.conv_kernel_mask( - input_shape, kernel_shape, strides, padding - ), - ) - - def test_conv_kernel_mask_rect_kernel(self, *input_shape): - padding = "valid" - ndims = len(input_shape) - strides = (1,) * ndims - - for d in range(ndims): - kernel_shape = [1] * ndims - kernel_shape[d] = input_shape[d] - - output_shape = list(input_shape) - output_shape[d] = min(1, input_shape[d]) - - mask = np.identity(int(np.prod(input_shape)), bool) - mask = np.reshape(mask, input_shape * 2) - - for p in itertools.product( - *[range(input_shape[dim]) for dim in range(ndims)] - ): - p = list(p) - p[d] = slice(None) - mask[tuple(p * 2)] = True - - mask = np.take(mask, range(0, min(1, input_shape[d])), ndims + d) - - self.assertAllEqual( - mask, - conv_utils.conv_kernel_mask( - input_shape, kernel_shape, strides, padding - ), - ) - - def test_conv_kernel_mask_wrong_padding(self, *input_shape): - ndims = len(input_shape) - kernel_shape = (1,) * ndims - strides = (1,) * ndims - - conv_utils.conv_kernel_mask(input_shape, kernel_shape, strides, "valid") - - conv_utils.conv_kernel_mask(input_shape, kernel_shape, strides, "same") - - self.assertRaises( - NotImplementedError, - conv_utils.conv_kernel_mask, - input_shape, - kernel_shape, - strides, - "full", - ) - - def test_conv_kernel_mask_wrong_dims(self, *input_shape): - kernel_shape = 1 - strides = 1 - - conv_utils.conv_kernel_mask(input_shape, kernel_shape, strides, "valid") - - ndims = len(input_shape) - - kernel_shape = (2,) * (ndims + 1) - self.assertRaises( - ValueError, - conv_utils.conv_kernel_mask, - input_shape, - kernel_shape, - strides, - "same", - ) - - strides = (1,) * ndims - self.assertRaises( - ValueError, - conv_utils.conv_kernel_mask, - input_shape, - kernel_shape, - strides, - "valid", - ) - - kernel_shape = (1,) * ndims - strides = (2,) * (ndims - 1) - self.assertRaises( - ValueError, - conv_utils.conv_kernel_mask, - input_shape, - kernel_shape, - strides, - "valid", - ) - - strides = (2,) * ndims - conv_utils.conv_kernel_mask(input_shape, kernel_shape, strides, "valid") - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/data_utils.py b/keras/utils/data_utils.py deleted file mode 100644 index dc02c285404..00000000000 --- a/keras/utils/data_utils.py +++ /dev/null @@ -1,1144 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Utilities for file download and caching.""" - -import functools -import hashlib -import multiprocessing.dummy -import os -import pathlib -import queue -import random -import shutil -import tarfile -import threading -import time -import typing -import urllib -import warnings -import weakref -import zipfile -from abc import abstractmethod -from contextlib import closing - -import numpy as np -import tensorflow.compat.v2 as tf -from six.moves.urllib.parse import urlsplit - -from keras.utils import io_utils -from keras.utils import tf_inspect -from keras.utils.generic_utils import Progbar - -# isort: off -from tensorflow.python.util.tf_export import keras_export -from six.moves.urllib.request import urlopen - -# Required to support google internal urlretrieve -if True: # This gets transformed to `if sys.version_info[0] == 2:` in OSS. - - def urlretrieve(url, filename, reporthook=None, data=None): - """Replacement for `urlretrieve` for Python 2. - - Under Python 2, `urlretrieve` relies on `FancyURLopener` from legacy - `urllib` module, known to have issues with proxy management. - - Args: - url: url to retrieve. - filename: where to store the retrieved data locally. - reporthook: a hook function that will be called once on - establishment of the network connection and once after each block - read thereafter. The hook will be passed three arguments; a count - of blocks transferred so far, a block size in bytes, and the total - size of the file. - data: `data` argument passed to `urlopen`. - """ - - def chunk_read(response, chunk_size=8192, reporthook=None): - content_type = response.info().get("Content-Length") - total_size = -1 - if content_type is not None: - total_size = int(content_type.strip()) - count = 0 - while True: - chunk = response.read(chunk_size) - count += 1 - if reporthook is not None: - reporthook(count, chunk_size, total_size) - if chunk: - yield chunk - else: - break - - response = urlopen(url, data) - with open(filename, "wb") as fd: - for chunk in chunk_read(response, reporthook=reporthook): - fd.write(chunk) - -else: - from urllib.request import urlretrieve - - -def is_generator_or_sequence(x): - """Check if `x` is a Keras generator type.""" - builtin_iterators = (str, list, tuple, dict, set, frozenset) - if isinstance(x, (tf.Tensor, np.ndarray) + builtin_iterators): - return False - return ( - tf_inspect.isgenerator(x) - or isinstance(x, Sequence) - or isinstance(x, typing.Iterator) - ) - - -def _resolve_path(path): - return os.path.realpath(os.path.abspath(path)) - - -def _is_path_in_dir(path, base_dir): - return _resolve_path(os.path.join(base_dir, path)).startswith(base_dir) - - -def _is_link_in_dir(info, base): - tip = _resolve_path(os.path.join(base, os.path.dirname(info.name))) - return _is_path_in_dir(info.linkname, base_dir=tip) - - -def _filter_safe_paths(members): - base_dir = _resolve_path(".") - for finfo in members: - valid_path = False - if _is_path_in_dir(finfo.name, base_dir): - valid_path = True - yield finfo - elif finfo.issym() or finfo.islnk(): - if _is_link_in_dir(finfo, base_dir): - valid_path = True - yield finfo - if not valid_path: - warnings.warn( - "Skipping invalid path during archive extraction: " - f"'{finfo.name}'." - ) - - -def _extract_archive(file_path, path=".", archive_format="auto"): - """Extracts an archive if it matches tar, tar.gz, tar.bz, or zip formats. - - Args: - file_path: Path to the archive file. - path: Where to extract the archive file. - archive_format: Archive format to try for extracting the file. - Options are `'auto'`, `'tar'`, `'zip'`, and `None`. - `'tar'` includes tar, tar.gz, and tar.bz files. - The default 'auto' is `['tar', 'zip']`. - `None` or an empty list will return no matches found. - - Returns: - True if a match was found and an archive extraction was completed, - False otherwise. - """ - if archive_format is None: - return False - if archive_format == "auto": - archive_format = ["tar", "zip"] - if isinstance(archive_format, str): - archive_format = [archive_format] - - file_path = io_utils.path_to_string(file_path) - path = io_utils.path_to_string(path) - - for archive_type in archive_format: - if archive_type == "tar": - open_fn = tarfile.open - is_match_fn = tarfile.is_tarfile - if archive_type == "zip": - open_fn = zipfile.ZipFile - is_match_fn = zipfile.is_zipfile - - if is_match_fn(file_path): - with open_fn(file_path) as archive: - try: - if zipfile.is_zipfile(file_path): - # Zip archive. - archive.extractall(path) - else: - # Tar archive, perhaps unsafe. Filter paths. - archive.extractall( - path, members=_filter_safe_paths(archive) - ) - except (tarfile.TarError, RuntimeError, KeyboardInterrupt): - if os.path.exists(path): - if os.path.isfile(path): - os.remove(path) - else: - shutil.rmtree(path) - raise - return True - return False - - -@keras_export("keras.utils.get_file") -def get_file( - fname=None, - origin=None, - untar=False, - md5_hash=None, - file_hash=None, - cache_subdir="datasets", - hash_algorithm="auto", - extract=False, - archive_format="auto", - cache_dir=None, -): - """Downloads a file from a URL if it not already in the cache. - - By default the file at the url `origin` is downloaded to the - cache_dir `~/.keras`, placed in the cache_subdir `datasets`, - and given the filename `fname`. The final location of a file - `example.txt` would therefore be `~/.keras/datasets/example.txt`. - - Files in tar, tar.gz, tar.bz, and zip formats can also be extracted. - Passing a hash will verify the file after download. The command line - programs `shasum` and `sha256sum` can compute the hash. - - Example: - - ```python - path_to_downloaded_file = tf.keras.utils.get_file( - origin="https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz", - extract=True, - ) - ``` - - Args: - fname: Name of the file. If an absolute path `/path/to/file.txt` is - specified the file will be saved at that location. If `None`, the - name of the file at `origin` will be used. - origin: Original URL of the file. - untar: Deprecated in favor of `extract` argument. - boolean, whether the file should be decompressed - md5_hash: Deprecated in favor of `file_hash` argument. - md5 hash of the file for verification - file_hash: The expected hash string of the file after download. - The sha256 and md5 hash algorithms are both supported. - cache_subdir: Subdirectory under the Keras cache dir where the file is - saved. If an absolute path `/path/to/folder` is - specified the file will be saved at that location. - hash_algorithm: Select the hash algorithm to verify the file. - options are `'md5'`, `'sha256'`, and `'auto'`. - The default 'auto' detects the hash algorithm in use. - extract: True tries extracting the file as an Archive, like tar or zip. - archive_format: Archive format to try for extracting the file. - Options are `'auto'`, `'tar'`, `'zip'`, and `None`. - `'tar'` includes tar, tar.gz, and tar.bz files. - The default `'auto'` corresponds to `['tar', 'zip']`. - None or an empty list will return no matches found. - cache_dir: Location to store cached files, when None it - defaults to the default directory `~/.keras/`. - - Returns: - Path to the downloaded file. - - âš ï¸ **Warning on malicious downloads** âš ï¸ - - Downloading something from the Internet carries a risk. - NEVER download a file/archive if you do not trust the source. - We recommend that you specify the `file_hash` argument - (if the hash of the source file is known) to make sure that the file you - are getting is the one you expect. - """ - if origin is None: - raise ValueError( - 'Please specify the "origin" argument (URL of the file ' - "to download)." - ) - - if cache_dir is None: - cache_dir = os.path.join(os.path.expanduser("~"), ".keras") - if md5_hash is not None and file_hash is None: - file_hash = md5_hash - hash_algorithm = "md5" - datadir_base = os.path.expanduser(cache_dir) - if not os.access(datadir_base, os.W_OK): - datadir_base = os.path.join("/tmp", ".keras") - datadir = os.path.join(datadir_base, cache_subdir) - _makedirs_exist_ok(datadir) - - fname = io_utils.path_to_string(fname) - if not fname: - fname = os.path.basename(urlsplit(origin).path) - if not fname: - raise ValueError( - "Can't parse the file name from the origin provided: " - f"'{origin}'." - "Please specify the `fname` as the input param." - ) - - if untar: - if fname.endswith(".tar.gz"): - fname = pathlib.Path(fname) - # The 2 `.with_suffix()` are because of `.tar.gz` as pathlib - # considers it as 2 suffixes. - fname = fname.with_suffix("").with_suffix("") - fname = str(fname) - untar_fpath = os.path.join(datadir, fname) - fpath = untar_fpath + ".tar.gz" - else: - fpath = os.path.join(datadir, fname) - - download = False - if os.path.exists(fpath): - # File found; verify integrity if a hash was provided. - if file_hash is not None: - if not validate_file(fpath, file_hash, algorithm=hash_algorithm): - io_utils.print_msg( - "A local file was found, but it seems to be " - f"incomplete or outdated because the {hash_algorithm} " - "file hash does not match the original value of " - f"{file_hash} " - "so we will re-download the data." - ) - download = True - else: - download = True - - if download: - io_utils.print_msg(f"Downloading data from {origin}") - - class DLProgbar: - """Manage progress bar state for use in urlretrieve.""" - - def __init__(self): - self.progbar = None - self.finished = False - - def __call__(self, block_num, block_size, total_size): - if not self.progbar: - if total_size == -1: - total_size = None - self.progbar = Progbar(total_size) - current = block_num * block_size - - if total_size is None: - self.progbar.update(current) - else: - if current < total_size: - self.progbar.update(current) - elif not self.finished: - self.progbar.update(self.progbar.target) - self.finished = True - - error_msg = "URL fetch failure on {}: {} -- {}" - try: - try: - urlretrieve(origin, fpath, DLProgbar()) - except urllib.error.HTTPError as e: - raise Exception(error_msg.format(origin, e.code, e.msg)) - except urllib.error.URLError as e: - raise Exception(error_msg.format(origin, e.errno, e.reason)) - except (Exception, KeyboardInterrupt): - if os.path.exists(fpath): - os.remove(fpath) - raise - - # Validate download if succeeded and user provided an expected hash - # Security conscious users would get the hash of the file from a - # separate channel and pass it to this API to prevent MITM / corruption: - if os.path.exists(fpath) and file_hash is not None: - if not validate_file(fpath, file_hash, algorithm=hash_algorithm): - raise ValueError( - "Incomplete or corrupted file detected. " - f"The {hash_algorithm} " - "file hash does not match the provided value " - f"of {file_hash}." - ) - - if untar: - if not os.path.exists(untar_fpath): - _extract_archive(fpath, datadir, archive_format="tar") - return untar_fpath - - if extract: - _extract_archive(fpath, datadir, archive_format) - - return fpath - - -def _makedirs_exist_ok(datadir): - os.makedirs(datadir, exist_ok=True) - - -def _resolve_hasher(algorithm, file_hash=None): - """Returns hash algorithm as hashlib function.""" - if algorithm == "sha256": - return hashlib.sha256() - - if algorithm == "auto" and file_hash is not None and len(file_hash) == 64: - return hashlib.sha256() - - # This is used only for legacy purposes. - return hashlib.md5() - - -def _hash_file(fpath, algorithm="sha256", chunk_size=65535): - """Calculates a file sha256 or md5 hash. - - Example: - - ```python - _hash_file('/path/to/file.zip') - 'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855' - ``` - - Args: - fpath: Path to the file being validated. - algorithm: Hash algorithm, one of `'auto'`, `'sha256'`, or `'md5'`. - The default `'auto'` detects the hash algorithm in use. - chunk_size: Bytes to read at a time, important for large files. - - Returns: - The file hash. - """ - if isinstance(algorithm, str): - hasher = _resolve_hasher(algorithm) - else: - hasher = algorithm - - with open(fpath, "rb") as fpath_file: - for chunk in iter(lambda: fpath_file.read(chunk_size), b""): - hasher.update(chunk) - - return hasher.hexdigest() - - -def validate_file(fpath, file_hash, algorithm="auto", chunk_size=65535): - """Validates a file against a sha256 or md5 hash. - - Args: - fpath: path to the file being validated - file_hash: The expected hash string of the file. - The sha256 and md5 hash algorithms are both supported. - algorithm: Hash algorithm, one of 'auto', 'sha256', or 'md5'. - The default 'auto' detects the hash algorithm in use. - chunk_size: Bytes to read at a time, important for large files. - - Returns: - Whether the file is valid - """ - hasher = _resolve_hasher(algorithm, file_hash) - - if str(_hash_file(fpath, hasher, chunk_size)) == str(file_hash): - return True - else: - return False - - -class ThreadsafeIter: - """Wrap an iterator with a lock and propagate exceptions to all threads.""" - - def __init__(self, it): - self.it = it - self.lock = threading.Lock() - - # After a generator throws an exception all subsequent next() calls - # raise a StopIteration Exception. This, however, presents an issue when - # mixing generators and threading because it means the order of - # retrieval need not match the order in which the generator was called. - # This can make it appear that a generator exited normally when in fact - # the terminating exception is just in a different thread. In order to - # provide thread safety, once self.it has thrown an exception we - # continue to throw the same exception. - self._exception = None - - def __iter__(self): - return self - - def next(self): - return self.__next__() - - def __next__(self): - with self.lock: - if self._exception: - raise self._exception - - try: - return next(self.it) - except Exception as e: - self._exception = e - raise - - -def threadsafe_generator(f): - @functools.wraps(f) - def g(*a, **kw): - return ThreadsafeIter(f(*a, **kw)) - - return g - - -@keras_export("keras.utils.Sequence") -class Sequence: - """Base object for fitting to a sequence of data, such as a dataset. - - Every `Sequence` must implement the `__getitem__` and the `__len__` methods. - If you want to modify your dataset between epochs, you may implement - `on_epoch_end`. The method `__getitem__` should return a complete batch. - - Notes: - - `Sequence` is a safer way to do multiprocessing. This structure guarantees - that the network will only train once on each sample per epoch, which is not - the case with generators. - - Examples: - - ```python - from skimage.io import imread - from skimage.transform import resize - import numpy as np - import math - - # Here, `x_set` is list of path to the images - # and `y_set` are the associated classes. - - class CIFAR10Sequence(tf.keras.utils.Sequence): - - def __init__(self, x_set, y_set, batch_size): - self.x, self.y = x_set, y_set - self.batch_size = batch_size - - def __len__(self): - return math.ceil(len(self.x) / self.batch_size) - - def __getitem__(self, idx): - low = idx * self.batch_size - # Cap upper bound at array length; the last batch may be smaller - # if the total number of items is not a multiple of batch size. - high = min(low + self.batch_size, len(self.x)) - batch_x = self.x[low:high] - batch_y = self.y[low:high] - - return np.array([ - resize(imread(file_name), (200, 200)) - for file_name in batch_x]), np.array(batch_y) - ``` - """ - - @abstractmethod - def __getitem__(self, index): - """Gets batch at position `index`. - - Args: - index: position of the batch in the Sequence. - - Returns: - A batch - """ - raise NotImplementedError - - @abstractmethod - def __len__(self): - """Number of batch in the Sequence. - - Returns: - The number of batches in the Sequence. - """ - raise NotImplementedError - - def on_epoch_end(self): - """Method called at the end of every epoch.""" - pass - - def __iter__(self): - """Create a generator that iterate over the Sequence.""" - for item in (self[i] for i in range(len(self))): - yield item - - -def iter_sequence_infinite(seq): - """Iterates indefinitely over a Sequence. - - Args: - seq: `Sequence` instance. - - Yields: - Batches of data from the `Sequence`. - """ - while True: - for item in seq: - yield item - - -# Global variables to be shared across processes -_SHARED_SEQUENCES = {} -# We use a Value to provide unique id to different processes. -_SEQUENCE_COUNTER = None - - -# Because multiprocessing pools are inherently unsafe, starting from a clean -# state can be essential to avoiding deadlocks. In order to accomplish this, we -# need to be able to check on the status of Pools that we create. -_DATA_POOLS = weakref.WeakSet() -_WORKER_ID_QUEUE = None # Only created if needed. -_WORKER_IDS = set() -_FORCE_THREADPOOL = False -_FORCE_THREADPOOL_LOCK = threading.RLock() - - -def dont_use_multiprocessing_pool(f): - @functools.wraps(f) - def wrapped(*args, **kwargs): - with _FORCE_THREADPOOL_LOCK: - global _FORCE_THREADPOOL - old_force_threadpool, _FORCE_THREADPOOL = _FORCE_THREADPOOL, True - out = f(*args, **kwargs) - _FORCE_THREADPOOL = old_force_threadpool - return out - - return wrapped - - -def get_pool_class(use_multiprocessing): - global _FORCE_THREADPOOL - if not use_multiprocessing or _FORCE_THREADPOOL: - return multiprocessing.dummy.Pool # ThreadPool - return multiprocessing.Pool - - -def get_worker_id_queue(): - """Lazily create the queue to track worker ids.""" - global _WORKER_ID_QUEUE - if _WORKER_ID_QUEUE is None: - _WORKER_ID_QUEUE = multiprocessing.Queue() - return _WORKER_ID_QUEUE - - -def init_pool(seqs): - global _SHARED_SEQUENCES - _SHARED_SEQUENCES = seqs - - -def get_index(uid, i): - """Get the value from the Sequence `uid` at index `i`. - - To allow multiple Sequences to be used at the same time, we use `uid` to - get a specific one. A single Sequence would cause the validation to - overwrite the training Sequence. - - Args: - uid: int, Sequence identifier - i: index - - Returns: - The value at index `i`. - """ - return _SHARED_SEQUENCES[uid][i] - - -@keras_export("keras.utils.SequenceEnqueuer") -class SequenceEnqueuer: - """Base class to enqueue inputs. - - The task of an Enqueuer is to use parallelism to speed up preprocessing. - This is done with processes or threads. - - Example: - - ```python - enqueuer = SequenceEnqueuer(...) - enqueuer.start() - datas = enqueuer.get() - for data in datas: - # Use the inputs; training, evaluating, predicting. - # ... stop sometime. - enqueuer.stop() - ``` - - The `enqueuer.get()` should be an infinite stream of data. - """ - - def __init__(self, sequence, use_multiprocessing=False): - self.sequence = sequence - self.use_multiprocessing = use_multiprocessing - - global _SEQUENCE_COUNTER - if _SEQUENCE_COUNTER is None: - try: - _SEQUENCE_COUNTER = multiprocessing.Value("i", 0) - except OSError: - # In this case the OS does not allow us to use - # multiprocessing. We resort to an int - # for enqueuer indexing. - _SEQUENCE_COUNTER = 0 - - if isinstance(_SEQUENCE_COUNTER, int): - self.uid = _SEQUENCE_COUNTER - _SEQUENCE_COUNTER += 1 - else: - # Doing Multiprocessing.Value += x is not process-safe. - with _SEQUENCE_COUNTER.get_lock(): - self.uid = _SEQUENCE_COUNTER.value - _SEQUENCE_COUNTER.value += 1 - - self.workers = 0 - self.executor_fn = None - self.queue = None - self.run_thread = None - self.stop_signal = None - - def is_running(self): - return self.stop_signal is not None and not self.stop_signal.is_set() - - def start(self, workers=1, max_queue_size=10): - """Starts the handler's workers. - - Args: - workers: Number of workers. - max_queue_size: queue size - (when full, workers could block on `put()`) - """ - if self.use_multiprocessing: - self.executor_fn = self._get_executor_init(workers) - else: - # We do not need the init since it's threads. - self.executor_fn = lambda _: get_pool_class(False)(workers) - self.workers = workers - self.queue = queue.Queue(max_queue_size) - self.stop_signal = threading.Event() - self.run_thread = threading.Thread(target=self._run) - self.run_thread.daemon = True - self.run_thread.start() - - def _send_sequence(self): - """Sends current Iterable to all workers.""" - # For new processes that may spawn - _SHARED_SEQUENCES[self.uid] = self.sequence - - def stop(self, timeout=None): - """Stops running threads and wait for them to exit, if necessary. - - Should be called by the same thread which called `start()`. - - Args: - timeout: maximum time to wait on `thread.join()` - """ - self.stop_signal.set() - with self.queue.mutex: - self.queue.queue.clear() - self.queue.unfinished_tasks = 0 - self.queue.not_full.notify() - self.run_thread.join(timeout) - _SHARED_SEQUENCES[self.uid] = None - - def __del__(self): - if self.is_running(): - self.stop() - - @abstractmethod - def _run(self): - """Submits request to the executor and queue the `Future` objects.""" - raise NotImplementedError - - @abstractmethod - def _get_executor_init(self, workers): - """Gets the Pool initializer for multiprocessing. - - Args: - workers: Number of workers. - - Returns: - Function, a Function to initialize the pool - """ - raise NotImplementedError - - @abstractmethod - def get(self): - """Creates a generator to extract data from the queue. - - Skip the data if it is `None`. - # Returns - Generator yielding tuples `(inputs, targets)` - or `(inputs, targets, sample_weights)`. - """ - raise NotImplementedError - - -@keras_export("keras.utils.OrderedEnqueuer") -class OrderedEnqueuer(SequenceEnqueuer): - """Builds a Enqueuer from a Sequence. - - Args: - sequence: A `tf.keras.utils.data_utils.Sequence` object. - use_multiprocessing: use multiprocessing if True, otherwise threading - shuffle: whether to shuffle the data at the beginning of each epoch - """ - - def __init__(self, sequence, use_multiprocessing=False, shuffle=False): - super().__init__(sequence, use_multiprocessing) - self.shuffle = shuffle - - def _get_executor_init(self, workers): - """Gets the Pool initializer for multiprocessing. - - Args: - workers: Number of workers. - - Returns: - Function, a Function to initialize the pool - """ - - def pool_fn(seqs): - pool = get_pool_class(True)( - workers, - initializer=init_pool_generator, - initargs=(seqs, None, get_worker_id_queue()), - ) - _DATA_POOLS.add(pool) - return pool - - return pool_fn - - def _wait_queue(self): - """Wait for the queue to be empty.""" - while True: - time.sleep(0.1) - if self.queue.unfinished_tasks == 0 or self.stop_signal.is_set(): - return - - def _run(self): - """Submits request to the executor and queue the `Future` objects.""" - sequence = list(range(len(self.sequence))) - self._send_sequence() # Share the initial sequence - while True: - if self.shuffle: - random.shuffle(sequence) - - with closing(self.executor_fn(_SHARED_SEQUENCES)) as executor: - for i in sequence: - if self.stop_signal.is_set(): - return - - self.queue.put( - executor.apply_async(get_index, (self.uid, i)), - block=True, - ) - - # Done with the current epoch, waiting for the final batches - self._wait_queue() - - if self.stop_signal.is_set(): - # We're done - return - - # Call the internal on epoch end. - self.sequence.on_epoch_end() - self._send_sequence() # Update the pool - - def get(self): - """Creates a generator to extract data from the queue. - - Skip the data if it is `None`. - - Yields: - The next element in the queue, i.e. a tuple - `(inputs, targets)` or - `(inputs, targets, sample_weights)`. - """ - while self.is_running(): - try: - inputs = self.queue.get(block=True, timeout=5).get() - if self.is_running(): - self.queue.task_done() - if inputs is not None: - yield inputs - except queue.Empty: - pass - except Exception as e: - self.stop() - raise e - - -def init_pool_generator(gens, random_seed=None, id_queue=None): - """Initializer function for pool workers. - - Args: - gens: State which should be made available to worker processes. - random_seed: An optional value with which to seed child processes. - id_queue: A multiprocessing Queue of worker ids. This is used to indicate - that a worker process was created by Keras and can be terminated using - the cleanup_all_keras_forkpools utility. - """ - global _SHARED_SEQUENCES - _SHARED_SEQUENCES = gens - - worker_proc = multiprocessing.current_process() - - # name isn't used for anything, but setting a more descriptive name is - # helpful when diagnosing orphaned processes. - worker_proc.name = f"Keras_worker_{worker_proc.name}" - - if random_seed is not None: - np.random.seed(random_seed + worker_proc.ident) - - if id_queue is not None: - # If a worker dies during init, the pool will just create a replacement. - id_queue.put(worker_proc.ident, block=True, timeout=0.1) - - -def next_sample(uid): - """Gets the next value from the generator `uid`. - - To allow multiple generators to be used at the same time, we use `uid` to - get a specific one. A single generator would cause the validation to - overwrite the training generator. - - Args: - uid: int, generator identifier - - Returns: - The next value of generator `uid`. - """ - return next(_SHARED_SEQUENCES[uid]) - - -@keras_export("keras.utils.GeneratorEnqueuer") -class GeneratorEnqueuer(SequenceEnqueuer): - """Builds a queue out of a data generator. - - The provided generator can be finite in which case the class will throw - a `StopIteration` exception. - - Args: - generator: a generator function which yields data - use_multiprocessing: use multiprocessing if True, otherwise threading - random_seed: Initial seed for workers, - will be incremented by one for each worker. - """ - - def __init__(self, generator, use_multiprocessing=False, random_seed=None): - super().__init__(generator, use_multiprocessing) - self.random_seed = random_seed - - def _get_executor_init(self, workers): - """Gets the Pool initializer for multiprocessing. - - Args: - workers: Number of works. - - Returns: - A Function to initialize the pool - """ - - def pool_fn(seqs): - pool = get_pool_class(True)( - workers, - initializer=init_pool_generator, - initargs=(seqs, self.random_seed, get_worker_id_queue()), - ) - _DATA_POOLS.add(pool) - return pool - - return pool_fn - - def _run(self): - """Submits request to the executor and queue the `Future` objects.""" - self._send_sequence() # Share the initial generator - with closing(self.executor_fn(_SHARED_SEQUENCES)) as executor: - while True: - if self.stop_signal.is_set(): - return - - self.queue.put( - executor.apply_async(next_sample, (self.uid,)), block=True - ) - - def get(self): - """Creates a generator to extract data from the queue. - - Skip the data if it is `None`. - - Yields: - The next element in the queue, i.e. a tuple - `(inputs, targets)` or - `(inputs, targets, sample_weights)`. - """ - try: - while self.is_running(): - inputs = self.queue.get(block=True).get() - self.queue.task_done() - if inputs is not None: - yield inputs - except StopIteration: - # Special case for finite generators - last_ones = [] - while self.queue.qsize() > 0: - last_ones.append(self.queue.get(block=True)) - # Wait for them to complete - for f in last_ones: - f.wait() - # Keep the good ones - last_ones = [ - future.get() for future in last_ones if future.successful() - ] - for inputs in last_ones: - if inputs is not None: - yield inputs - except Exception as e: - self.stop() - if "generator already executing" in str(e): - raise RuntimeError( - "Your generator is NOT thread-safe. " - "Keras requires a thread-safe generator when " - "`use_multiprocessing=False, workers > 1`. " - ) - raise e - - -@keras_export( - "keras.utils.pad_sequences", "keras.preprocessing.sequence.pad_sequences" -) -def pad_sequences( - sequences, - maxlen=None, - dtype="int32", - padding="pre", - truncating="pre", - value=0.0, -): - """Pads sequences to the same length. - - This function transforms a list (of length `num_samples`) - of sequences (lists of integers) - into a 2D Numpy array of shape `(num_samples, num_timesteps)`. - `num_timesteps` is either the `maxlen` argument if provided, - or the length of the longest sequence in the list. - - Sequences that are shorter than `num_timesteps` - are padded with `value` until they are `num_timesteps` long. - - Sequences longer than `num_timesteps` are truncated - so that they fit the desired length. - - The position where padding or truncation happens is determined by - the arguments `padding` and `truncating`, respectively. - Pre-padding or removing values from the beginning of the sequence is the - default. - - >>> sequence = [[1], [2, 3], [4, 5, 6]] - >>> tf.keras.utils.pad_sequences(sequence) - array([[0, 0, 1], - [0, 2, 3], - [4, 5, 6]], dtype=int32) - - >>> tf.keras.utils.pad_sequences(sequence, value=-1) - array([[-1, -1, 1], - [-1, 2, 3], - [ 4, 5, 6]], dtype=int32) - - >>> tf.keras.utils.pad_sequences(sequence, padding='post') - array([[1, 0, 0], - [2, 3, 0], - [4, 5, 6]], dtype=int32) - - >>> tf.keras.utils.pad_sequences(sequence, maxlen=2) - array([[0, 1], - [2, 3], - [5, 6]], dtype=int32) - - Args: - sequences: List of sequences (each sequence is a list of integers). - maxlen: Optional Int, maximum length of all sequences. If not provided, - sequences will be padded to the length of the longest individual - sequence. - dtype: (Optional, defaults to `"int32"`). Type of the output sequences. - To pad sequences with variable length strings, you can use `object`. - padding: String, "pre" or "post" (optional, defaults to `"pre"`): - pad either before or after each sequence. - truncating: String, "pre" or "post" (optional, defaults to `"pre"`): - remove values from sequences larger than - `maxlen`, either at the beginning or at the end of the sequences. - value: Float or String, padding value. (Optional, defaults to 0.) - - Returns: - Numpy array with shape `(len(sequences), maxlen)` - - Raises: - ValueError: In case of invalid values for `truncating` or `padding`, - or in case of invalid shape for a `sequences` entry. - """ - if not hasattr(sequences, "__len__"): - raise ValueError("`sequences` must be iterable.") - num_samples = len(sequences) - - lengths = [] - sample_shape = () - flag = True - - # take the sample shape from the first non empty sequence - # checking for consistency in the main loop below. - - for x in sequences: - try: - lengths.append(len(x)) - if flag and len(x): - sample_shape = np.asarray(x).shape[1:] - flag = False - except TypeError as e: - raise ValueError( - "`sequences` must be a list of iterables. " - f"Found non-iterable: {str(x)}" - ) from e - - if maxlen is None: - maxlen = np.max(lengths) - - is_dtype_str = np.issubdtype(dtype, np.str_) or np.issubdtype( - dtype, np.unicode_ - ) - if isinstance(value, str) and dtype != object and not is_dtype_str: - raise ValueError( - f"`dtype` {dtype} is not compatible with `value`'s type: " - f"{type(value)}\nYou should set `dtype=object` for variable length " - "strings." - ) - - x = np.full((num_samples, maxlen) + sample_shape, value, dtype=dtype) - for idx, s in enumerate(sequences): - if not len(s): - continue # empty list/array was found - if truncating == "pre": - trunc = s[-maxlen:] - elif truncating == "post": - trunc = s[:maxlen] - else: - raise ValueError(f'Truncating type "{truncating}" not understood') - - # check `trunc` has expected shape - trunc = np.asarray(trunc, dtype=dtype) - if trunc.shape[1:] != sample_shape: - raise ValueError( - f"Shape of sample {trunc.shape[1:]} of sequence at " - f"position {idx} is different from expected shape " - f"{sample_shape}" - ) - - if padding == "post": - x[idx, : len(trunc)] = trunc - elif padding == "pre": - x[idx, -len(trunc) :] = trunc - else: - raise ValueError(f'Padding type "{padding}" not understood') - return x diff --git a/keras/utils/data_utils_test.py b/keras/utils/data_utils_test.py deleted file mode 100644 index 093281cda85..00000000000 --- a/keras/utils/data_utils_test.py +++ /dev/null @@ -1,516 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for data_utils.""" - -import os -import tarfile -import urllib -import zipfile -from itertools import cycle - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.utils import data_utils - - -class TestGetFile(tf.test.TestCase): - def test_get_file_and_validate_it(self): - """Tests get_file from a url, plus extraction and validation.""" - dest_dir = self.get_temp_dir() - orig_dir = self.get_temp_dir() - - text_file_path = os.path.join(orig_dir, "test.txt") - zip_file_path = os.path.join(orig_dir, "test.zip") - tar_file_path = os.path.join(orig_dir, "test.tar.gz") - - with open(text_file_path, "w") as text_file: - text_file.write("Float like a butterfly, sting like a bee.") - - with tarfile.open(tar_file_path, "w:gz") as tar_file: - tar_file.add(text_file_path) - - with zipfile.ZipFile(zip_file_path, "w") as zip_file: - zip_file.write(text_file_path) - - origin = urllib.parse.urljoin( - "file://", - urllib.request.pathname2url(os.path.abspath(tar_file_path)), - ) - - path = keras.utils.data_utils.get_file( - "test.txt", origin, untar=True, cache_subdir=dest_dir - ) - filepath = path + ".tar.gz" - hashval_sha256 = keras.utils.data_utils._hash_file(filepath) - hashval_md5 = keras.utils.data_utils._hash_file( - filepath, algorithm="md5" - ) - path = keras.utils.data_utils.get_file( - "test.txt", - origin, - md5_hash=hashval_md5, - untar=True, - cache_subdir=dest_dir, - ) - path = keras.utils.data_utils.get_file( - filepath, - origin, - file_hash=hashval_sha256, - extract=True, - cache_subdir=dest_dir, - ) - self.assertTrue(os.path.exists(filepath)) - self.assertTrue( - keras.utils.data_utils.validate_file(filepath, hashval_sha256) - ) - self.assertTrue( - keras.utils.data_utils.validate_file(filepath, hashval_md5) - ) - os.remove(filepath) - - origin = urllib.parse.urljoin( - "file://", - urllib.request.pathname2url(os.path.abspath(zip_file_path)), - ) - - hashval_sha256 = keras.utils.data_utils._hash_file(zip_file_path) - hashval_md5 = keras.utils.data_utils._hash_file( - zip_file_path, algorithm="md5" - ) - path = keras.utils.data_utils.get_file( - "test", - origin, - md5_hash=hashval_md5, - extract=True, - cache_subdir=dest_dir, - ) - path = keras.utils.data_utils.get_file( - "test", - origin, - file_hash=hashval_sha256, - extract=True, - cache_subdir=dest_dir, - ) - self.assertTrue(os.path.exists(path)) - self.assertTrue( - keras.utils.data_utils.validate_file(path, hashval_sha256) - ) - self.assertTrue(keras.utils.data_utils.validate_file(path, hashval_md5)) - os.remove(path) - - for file_path, extract in [ - (text_file_path, False), - (tar_file_path, True), - (zip_file_path, True), - ]: - origin = urllib.parse.urljoin( - "file://", - urllib.request.pathname2url(os.path.abspath(file_path)), - ) - hashval_sha256 = keras.utils.data_utils._hash_file(file_path) - path = keras.utils.data_utils.get_file( - origin=origin, - file_hash=hashval_sha256, - extract=extract, - cache_subdir=dest_dir, - ) - self.assertTrue(os.path.exists(path)) - self.assertTrue( - keras.utils.data_utils.validate_file(path, hashval_sha256) - ) - os.remove(path) - - with self.assertRaisesRegexp( - ValueError, 'Please specify the "origin".*' - ): - _ = keras.utils.data_utils.get_file() - - def test_get_file_with_tgz_extension(self): - """Tests get_file from a url, plus extraction and validation.""" - dest_dir = self.get_temp_dir() - orig_dir = self.get_temp_dir() - - text_file_path = os.path.join(orig_dir, "test.txt") - tar_file_path = os.path.join(orig_dir, "test.tar.gz") - - with open(text_file_path, "w") as text_file: - text_file.write("Float like a butterfly, sting like a bee.") - - with tarfile.open(tar_file_path, "w:gz") as tar_file: - tar_file.add(text_file_path) - - origin = urllib.parse.urljoin( - "file://", - urllib.request.pathname2url(os.path.abspath(tar_file_path)), - ) - - path = keras.utils.data_utils.get_file( - "test.txt.tar.gz", origin, untar=True, cache_subdir=dest_dir - ) - self.assertEndsWith(path, ".txt") - self.assertTrue(os.path.exists(path)) - - def test_get_file_with_integrity_check(self): - """Tests get_file with validation before download.""" - orig_dir = self.get_temp_dir() - file_path = os.path.join(orig_dir, "test.txt") - - with open(file_path, "w") as text_file: - text_file.write("Float like a butterfly, sting like a bee.") - - hashval = keras.utils.data_utils._hash_file(file_path) - - origin = urllib.parse.urljoin( - "file://", urllib.request.pathname2url(os.path.abspath(file_path)) - ) - - path = keras.utils.data_utils.get_file( - "test.txt", origin, file_hash=hashval - ) - self.assertTrue(os.path.exists(path)) - - def test_get_file_with_failed_integrity_check(self): - """Tests get_file with validation before download.""" - orig_dir = self.get_temp_dir() - file_path = os.path.join(orig_dir, "test.txt") - - with open(file_path, "w") as text_file: - text_file.write("Float like a butterfly, sting like a bee.") - - hashval = "0" * 64 - - origin = urllib.parse.urljoin( - "file://", urllib.request.pathname2url(os.path.abspath(file_path)) - ) - - with self.assertRaisesRegex( - ValueError, "Incomplete or corrupted file.*" - ): - _ = keras.utils.data_utils.get_file( - "test.txt", origin, file_hash=hashval - ) - - -class TestSequence(keras.utils.data_utils.Sequence): - def __init__(self, shape, value=1.0): - self.shape = shape - self.inner = value - - def __getitem__(self, item): - return np.ones(self.shape, dtype=np.uint32) * item * self.inner - - def __len__(self): - return 100 - - def on_epoch_end(self): - self.inner *= 5.0 - - -class FaultSequence(keras.utils.data_utils.Sequence): - def __getitem__(self, item): - raise IndexError(item, "item is not present") - - def __len__(self): - return 100 - - -@data_utils.threadsafe_generator -def create_generator_from_sequence_threads(ds): - for i in cycle(range(len(ds))): - yield ds[i] - - -def create_generator_from_sequence_pcs(ds): - for i in cycle(range(len(ds))): - yield ds[i] - - -class TestEnqueuers(tf.test.TestCase): - def test_generator_enqueuer_threads(self): - enqueuer = keras.utils.data_utils.GeneratorEnqueuer( - create_generator_from_sequence_threads( - TestSequence([3, 200, 200, 3]) - ), - use_multiprocessing=False, - ) - enqueuer.start(3, 10) - gen_output = enqueuer.get() - acc = [] - for _ in range(100): - acc.append(int(next(gen_output)[0, 0, 0, 0])) - - self.assertEqual(len(set(acc) - set(range(100))), 0) - enqueuer.stop() - - @data_utils.dont_use_multiprocessing_pool - def test_generator_enqueuer_processes(self): - enqueuer = keras.utils.data_utils.GeneratorEnqueuer( - create_generator_from_sequence_threads( - TestSequence([3, 200, 200, 3]) - ), - use_multiprocessing=True, - ) - enqueuer.start(4, 10) - gen_output = enqueuer.get() - acc = [] - for _ in range(300): - acc.append(int(next(gen_output)[0, 0, 0, 0])) - self.assertNotEqual(acc, list(range(100))) - enqueuer.stop() - - def test_generator_enqueuer_fail_threads(self): - enqueuer = keras.utils.data_utils.GeneratorEnqueuer( - create_generator_from_sequence_threads(FaultSequence()), - use_multiprocessing=False, - ) - enqueuer.start(3, 10) - gen_output = enqueuer.get() - with self.assertRaises(IndexError): - next(gen_output) - - @data_utils.dont_use_multiprocessing_pool - def test_generator_enqueuer_fail_processes(self): - enqueuer = keras.utils.data_utils.GeneratorEnqueuer( - create_generator_from_sequence_threads(FaultSequence()), - use_multiprocessing=True, - ) - enqueuer.start(3, 10) - gen_output = enqueuer.get() - with self.assertRaises(IndexError): - next(gen_output) - - def test_ordered_enqueuer_threads(self): - enqueuer = keras.utils.data_utils.OrderedEnqueuer( - TestSequence([3, 200, 200, 3]), use_multiprocessing=False - ) - enqueuer.start(3, 10) - gen_output = enqueuer.get() - acc = [] - for _ in range(100): - acc.append(next(gen_output)[0, 0, 0, 0]) - self.assertEqual(acc, list(range(100))) - enqueuer.stop() - - @data_utils.dont_use_multiprocessing_pool - def test_ordered_enqueuer_processes(self): - enqueuer = keras.utils.data_utils.OrderedEnqueuer( - TestSequence([3, 200, 200, 3]), use_multiprocessing=True - ) - enqueuer.start(3, 10) - gen_output = enqueuer.get() - acc = [] - for _ in range(100): - acc.append(next(gen_output)[0, 0, 0, 0]) - self.assertEqual(acc, list(range(100))) - enqueuer.stop() - - def test_ordered_enqueuer_fail_threads(self): - enqueuer = keras.utils.data_utils.OrderedEnqueuer( - FaultSequence(), use_multiprocessing=False - ) - enqueuer.start(3, 10) - gen_output = enqueuer.get() - with self.assertRaises(IndexError): - next(gen_output) - - @data_utils.dont_use_multiprocessing_pool - def test_ordered_enqueuer_fail_processes(self): - enqueuer = keras.utils.data_utils.OrderedEnqueuer( - FaultSequence(), use_multiprocessing=True - ) - enqueuer.start(3, 10) - gen_output = enqueuer.get() - with self.assertRaises(IndexError): - next(gen_output) - - @data_utils.dont_use_multiprocessing_pool - def test_on_epoch_end_processes(self): - enqueuer = keras.utils.data_utils.OrderedEnqueuer( - TestSequence([3, 200, 200, 3]), use_multiprocessing=True - ) - enqueuer.start(3, 10) - gen_output = enqueuer.get() - acc = [] - for _ in range(200): - acc.append(next(gen_output)[0, 0, 0, 0]) - # Check that order was keep in GeneratorEnqueuer with processes - self.assertEqual(acc[100:], list([k * 5 for k in range(100)])) - enqueuer.stop() - - @data_utils.dont_use_multiprocessing_pool - def test_context_switch(self): - enqueuer = keras.utils.data_utils.OrderedEnqueuer( - TestSequence([3, 200, 200, 3]), use_multiprocessing=True - ) - enqueuer2 = keras.utils.data_utils.OrderedEnqueuer( - TestSequence([3, 200, 200, 3], value=15), use_multiprocessing=True - ) - enqueuer.start(3, 10) - enqueuer2.start(3, 10) - gen_output = enqueuer.get() - gen_output2 = enqueuer2.get() - acc = [] - for _ in range(100): - acc.append(next(gen_output)[0, 0, 0, 0]) - self.assertEqual(acc[-1], 99) - # One epoch is completed so enqueuer will switch the Sequence - - acc = [] - self.skipTest("b/145555807 flakily timing out.") - for _ in range(100): - acc.append(next(gen_output2)[0, 0, 0, 0]) - self.assertEqual(acc[-1], 99 * 15) - # One epoch has been completed so enqueuer2 will switch - - # Be sure that both Sequence were updated - self.assertEqual(next(gen_output)[0, 0, 0, 0], 0) - self.assertEqual(next(gen_output)[0, 0, 0, 0], 5) - self.assertEqual(next(gen_output2)[0, 0, 0, 0], 0) - self.assertEqual(next(gen_output2)[0, 0, 0, 0], 15 * 5) - - # Tear down everything - enqueuer.stop() - enqueuer2.stop() - - def test_on_epoch_end_threads(self): - enqueuer = keras.utils.data_utils.OrderedEnqueuer( - TestSequence([3, 200, 200, 3]), use_multiprocessing=False - ) - enqueuer.start(3, 10) - gen_output = enqueuer.get() - acc = [] - for _ in range(100): - acc.append(next(gen_output)[0, 0, 0, 0]) - acc = [] - for _ in range(100): - acc.append(next(gen_output)[0, 0, 0, 0]) - # Check that order was keep in GeneratorEnqueuer with processes - self.assertEqual(acc, list([k * 5 for k in range(100)])) - enqueuer.stop() - - -class PadSequencesTest(tf.test.TestCase): - def test_pad_sequences(self): - a = [[1], [1, 2], [1, 2, 3]] - - # test padding - b = data_utils.pad_sequences(a, maxlen=3, padding="pre") - self.assertAllClose(b, [[0, 0, 1], [0, 1, 2], [1, 2, 3]]) - b = data_utils.pad_sequences(a, maxlen=3, padding="post") - self.assertAllClose(b, [[1, 0, 0], [1, 2, 0], [1, 2, 3]]) - - # test truncating - b = data_utils.pad_sequences(a, maxlen=2, truncating="pre") - self.assertAllClose(b, [[0, 1], [1, 2], [2, 3]]) - b = data_utils.pad_sequences(a, maxlen=2, truncating="post") - self.assertAllClose(b, [[0, 1], [1, 2], [1, 2]]) - - # test value - b = data_utils.pad_sequences(a, maxlen=3, value=1) - self.assertAllClose(b, [[1, 1, 1], [1, 1, 2], [1, 2, 3]]) - - def test_pad_sequences_str(self): - a = [["1"], ["1", "2"], ["1", "2", "3"]] - - # test padding - b = data_utils.pad_sequences( - a, maxlen=3, padding="pre", value="pad", dtype=object - ) - self.assertAllEqual( - b, [["pad", "pad", "1"], ["pad", "1", "2"], ["1", "2", "3"]] - ) - b = data_utils.pad_sequences( - a, maxlen=3, padding="post", value="pad", dtype=">> data = np.random.random(size=(1000, 4)) - >>> left_ds, right_ds = tf.keras.utils.split_dataset(data, left_size=0.8) - >>> int(left_ds.cardinality()) - 800 - >>> int(right_ds.cardinality()) - 200 - - """ - dataset_type_spec = _get_type_spec(dataset) - - if dataset_type_spec not in [tf.data.Dataset, list, tuple, np.ndarray]: - raise TypeError( - "The `dataset` argument must be either a `tf.data.Dataset` " - "object or a list/tuple of arrays. " - f"Received: dataset={dataset} of type {type(dataset)}" - ) - - if right_size is None and left_size is None: - raise ValueError( - "At least one of the `left_size` or `right_size` " - "must be specified. Received: left_size=None and " - "right_size=None" - ) - - dataset_as_list = _convert_dataset_to_list(dataset, dataset_type_spec) - - if shuffle: - if seed is None: - seed = random.randint(0, int(1e6)) - random.seed(seed) - random.shuffle(dataset_as_list) - - total_length = len(dataset_as_list) - - left_size, right_size = _rescale_dataset_split_sizes( - left_size, right_size, total_length - ) - left_split = list(dataset_as_list[:left_size]) - right_split = list(dataset_as_list[-right_size:]) - - left_split = _restore_dataset_from_list( - left_split, dataset_type_spec, dataset - ) - right_split = _restore_dataset_from_list( - right_split, dataset_type_spec, dataset - ) - - left_split = tf.data.Dataset.from_tensor_slices(left_split) - right_split = tf.data.Dataset.from_tensor_slices(right_split) - - # apply batching to the splits if the dataset is batched - if dataset_type_spec is tf.data.Dataset and is_batched(dataset): - batch_size = get_batch_size(dataset) - if batch_size is not None: - left_split = left_split.batch(batch_size) - right_split = right_split.batch(batch_size) - - left_split = left_split.prefetch(tf.data.AUTOTUNE) - right_split = right_split.prefetch(tf.data.AUTOTUNE) - - return left_split, right_split - - -def _convert_dataset_to_list( - dataset, - dataset_type_spec, - data_size_warning_flag=True, - ensure_shape_similarity=True, -): - """Convert `tf.data.Dataset` object or list/tuple of NumPy arrays to a list. - - Args: - dataset : A `tf.data.Dataset` object or a list/tuple of arrays. - dataset_type_spec : the type of the dataset - data_size_warning_flag (bool, optional): If set to True, a warning will - be issued if the dataset takes longer than 10 seconds to iterate. - Defaults to True. - ensure_shape_similarity (bool, optional): If set to True, the shape of - the first sample will be used to validate the shape of rest of the - samples. Defaults to True. - - Returns: - List: A list of tuples/NumPy arrays. - """ - dataset_iterator = _get_data_iterator_from_dataset( - dataset, dataset_type_spec - ) - dataset_as_list = [] - - start_time = time.time() - for sample in _get_next_sample( - dataset_iterator, - ensure_shape_similarity, - data_size_warning_flag, - start_time, - ): - if dataset_type_spec in [tuple, list]: - # The try-except here is for NumPy 1.24 compatibility, see: - # https://numpy.org/neps/nep-0034-infer-dtype-is-object.html - try: - arr = np.array(sample) - except ValueError: - arr = np.array(sample, dtype=object) - dataset_as_list.append(arr) - else: - dataset_as_list.append(sample) - - return dataset_as_list - - -def _get_data_iterator_from_dataset(dataset, dataset_type_spec): - """Get the iterator from a dataset. - - Args: - dataset : A `tf.data.Dataset` object or a list/tuple of arrays. - dataset_type_spec : the type of the dataset - - Raises: - ValueError: - - If the dataset is empty. - - If the dataset is not a `tf.data.Dataset` object - or a list/tuple of arrays. - - If the dataset is a list/tuple of arrays and the - length of the list/tuple is not equal to the number - - Returns: - iterator: An `iterator` object. - """ - if dataset_type_spec == list: - if len(dataset) == 0: - raise ValueError( - "Received an empty list dataset. " - "Please provide a non-empty list of arrays." - ) - - if _get_type_spec(dataset[0]) is np.ndarray: - expected_shape = dataset[0].shape - for i, element in enumerate(dataset): - if np.array(element).shape[0] != expected_shape[0]: - raise ValueError( - "Received a list of NumPy arrays with different " - f"lengths. Mismatch found at index {i}, " - f"Expected shape={expected_shape} " - f"Received shape={np.array(element).shape}." - "Please provide a list of NumPy arrays with " - "the same length." - ) - else: - raise ValueError( - "Expected a list of `numpy.ndarray` objects," - f"Received: {type(dataset[0])}" - ) - - return iter(zip(*dataset)) - elif dataset_type_spec == tuple: - if len(dataset) == 0: - raise ValueError( - "Received an empty list dataset." - "Please provide a non-empty tuple of arrays." - ) - - if _get_type_spec(dataset[0]) is np.ndarray: - expected_shape = dataset[0].shape - for i, element in enumerate(dataset): - if np.array(element).shape[0] != expected_shape[0]: - raise ValueError( - "Received a tuple of NumPy arrays with different " - f"lengths. Mismatch found at index {i}, " - f"Expected shape={expected_shape} " - f"Received shape={np.array(element).shape}." - "Please provide a tuple of NumPy arrays with " - "the same length." - ) - else: - raise ValueError( - "Expected a tuple of `numpy.ndarray` objects, " - f"Received: {type(dataset[0])}" - ) - - return iter(zip(*dataset)) - elif dataset_type_spec == tf.data.Dataset: - if is_batched(dataset): - dataset = dataset.unbatch() - return iter(dataset) - elif dataset_type_spec == np.ndarray: - return iter(dataset) - - -def _get_next_sample( - dataset_iterator, - ensure_shape_similarity, - data_size_warning_flag, - start_time, -): - """ "Yield data samples from the `dataset_iterator`. - - Args: - dataset_iterator : An `iterator` object. - ensure_shape_similarity (bool, optional): If set to True, the shape of - the first sample will be used to validate the shape of rest of the - samples. Defaults to True. - data_size_warning_flag (bool, optional): If set to True, a warning will - be issued if the dataset takes longer than 10 seconds to iterate. - Defaults to True. - start_time (float): the start time of the dataset iteration. this is - used only if `data_size_warning_flag` is set to true. - - Raises: - ValueError: - If the dataset is empty. - - If `ensure_shape_similarity` is set to True and the - shape of the first sample is not equal to the shape of - atleast one of the rest of the samples. - - Yields: - data_sample: A tuple/list of numpy arrays. - """ - try: - dataset_iterator = iter(dataset_iterator) - first_sample = next(dataset_iterator) - if isinstance(first_sample, (tf.Tensor, np.ndarray)): - first_sample_shape = np.array(first_sample).shape - else: - first_sample_shape = None - ensure_shape_similarity = False - yield first_sample - except StopIteration: - raise ValueError( - "Received an empty Dataset. `dataset` must " - "be a non-empty list/tuple of `numpy.ndarray` objects " - "or `tf.data.Dataset` objects." - ) - - for i, sample in enumerate(dataset_iterator): - if ensure_shape_similarity: - if first_sample_shape != np.array(sample).shape: - raise ValueError( - "All `dataset` samples must have same shape, " - f"Expected shape: {np.array(first_sample).shape} " - f"Received shape: {np.array(sample).shape} at index " - f"{i}." - ) - if data_size_warning_flag: - if i % 10 == 0: - cur_time = time.time() - # warns user if the dataset is too large to iterate within 10s - if int(cur_time - start_time) > 10 and data_size_warning_flag: - warnings.warn( - "The dataset is taking longer than 10 seconds to " - "iterate over. This may be due to the size of the " - "dataset. Keep in mind that the `split_dataset` " - "utility is only for small in-memory dataset " - "(e.g. < 10,000 samples).", - category=ResourceWarning, - source="split_dataset", - ) - data_size_warning_flag = False - yield sample - - -def _restore_dataset_from_list( - dataset_as_list, dataset_type_spec, original_dataset -): - """Restore the dataset from the list of arrays.""" - if dataset_type_spec in [tuple, list]: - return tuple(np.array(sample) for sample in zip(*dataset_as_list)) - elif dataset_type_spec == tf.data.Dataset: - if isinstance(original_dataset.element_spec, dict): - restored_dataset = {} - for d in dataset_as_list: - for k, v in d.items(): - if k not in restored_dataset: - restored_dataset[k] = [v] - else: - restored_dataset[k].append(v) - return restored_dataset - else: - return tuple(np.array(sample) for sample in zip(*dataset_as_list)) - return dataset_as_list - - -def _rescale_dataset_split_sizes(left_size, right_size, total_length): - """Rescale the dataset split sizes. - - We want to ensure that the sum of - the split sizes is equal to the total length of the dataset. - - Args: - left_size : The size of the left dataset split. - right_size : The size of the right dataset split. - total_length : The total length of the dataset. - - Raises: - TypeError: - If `left_size` or `right_size` is not an integer or float. - ValueError: - If `left_size` or `right_size` is negative or greater - than 1 or greater than `total_length`. - - Returns: - tuple: A tuple of rescaled left_size and right_size - """ - left_size_type = type(left_size) - right_size_type = type(right_size) - - # check both left_size and right_size are integers or floats - if (left_size is not None and left_size_type not in [int, float]) and ( - right_size is not None and right_size_type not in [int, float] - ): - raise TypeError( - "Invalid `left_size` and `right_size` Types. Expected: " - "integer or float or None, Received: type(left_size)=" - f"{left_size_type} and type(right_size)={right_size_type}" - ) - - # check left_size is a integer or float - if left_size is not None and left_size_type not in [int, float]: - raise TypeError( - "Invalid `left_size` Type. Expected: int or float or None, " - f"Received: type(left_size)={left_size_type}. " - ) - - # check right_size is a integer or float - if right_size is not None and right_size_type not in [int, float]: - raise TypeError( - "Invalid `right_size` Type. " - "Expected: int or float or None," - f"Received: type(right_size)={right_size_type}." - ) - - # check left_size and right_size are non-zero - if left_size == 0 and right_size == 0: - raise ValueError( - "Both `left_size` and `right_size` are zero. " - "At least one of the split sizes must be non-zero." - ) - - # check left_size is non-negative and less than 1 and less than total_length - if ( - left_size_type == int - and (left_size <= 0 or left_size >= total_length) - or left_size_type == float - and (left_size <= 0 or left_size >= 1) - ): - raise ValueError( - "`left_size` should be either a positive integer " - f"smaller than {total_length}, or a float " - "within the range `[0, 1]`. Received: left_size=" - f"{left_size}" - ) - - # check right_size is non-negative and less than 1 and less than - # total_length - if ( - right_size_type == int - and (right_size <= 0 or right_size >= total_length) - or right_size_type == float - and (right_size <= 0 or right_size >= 1) - ): - raise ValueError( - "`right_size` should be either a positive integer " - f"and smaller than {total_length} or a float " - "within the range `[0, 1]`. Received: right_size=" - f"{right_size}" - ) - - # check sum of left_size and right_size is less than or equal to - # total_length - if ( - right_size_type == left_size_type == float - and right_size + left_size > 1 - ): - raise ValueError( - "The sum of `left_size` and `right_size` is greater " - "than 1. It must be less than or equal to 1." - ) - - if left_size_type == float: - left_size = round(left_size * total_length) - elif left_size_type == int: - left_size = float(left_size) - - if right_size_type == float: - right_size = round(right_size * total_length) - elif right_size_type == int: - right_size = float(right_size) - - if left_size is None: - left_size = total_length - right_size - elif right_size is None: - right_size = total_length - left_size - - if left_size + right_size > total_length: - raise ValueError( - "The sum of `left_size` and `right_size` should " - "be smaller than the {total_length}. " - f"Received: left_size + right_size = {left_size+right_size}" - f"and total_length = {total_length}" - ) - - for split, side in [(left_size, "left"), (right_size, "right")]: - if split == 0: - raise ValueError( - f"With `dataset` of length={total_length}, `left_size`=" - f"{left_size} and `right_size`={right_size}." - f"Resulting {side} side dataset split will be empty. " - "Adjust any of the aforementioned parameters" - ) - - left_size, right_size = int(left_size), int(right_size) - return left_size, right_size - - -def _get_type_spec(dataset): - """Get the type spec of the dataset.""" - if isinstance(dataset, tuple): - return tuple - elif isinstance(dataset, list): - return list - elif isinstance(dataset, np.ndarray): - return np.ndarray - elif isinstance(dataset, dict): - return dict - elif isinstance(dataset, tf.data.Dataset): - return tf.data.Dataset - else: - return None - - -def is_batched(tf_dataset): - """ "Check if the `tf.data.Dataset` is batched.""" - return hasattr(tf_dataset, "_batch_size") - - -def get_batch_size(tf_dataset): - """Get the batch size of the dataset.""" - if is_batched(tf_dataset): - return tf_dataset._batch_size - else: - return None - - -def index_directory( - directory, - labels, - formats, - class_names=None, - shuffle=True, - seed=None, - follow_links=False, -): - """Make list of all files in `directory`, with their labels. - - Args: - directory: Directory where the data is located. - If `labels` is "inferred", it should contain - subdirectories, each containing files for a class. - Otherwise, the directory structure is ignored. - labels: Either "inferred" - (labels are generated from the directory structure), - None (no labels), - or a list/tuple of integer labels of the same size as the number of - valid files found in the directory. Labels should be sorted according - to the alphanumeric order of the image file paths - (obtained via `os.walk(directory)` in Python). - formats: Allowlist of file extensions to index (e.g. ".jpg", ".txt"). - class_names: Only valid if "labels" is "inferred". This is the explicit - list of class names (must match names of subdirectories). Used - to control the order of the classes - (otherwise alphanumerical order is used). - shuffle: Whether to shuffle the data. Default: True. - If set to False, sorts the data in alphanumeric order. - seed: Optional random seed for shuffling. - follow_links: Whether to visits subdirectories pointed to by symlinks. - - Returns: - tuple (file_paths, labels, class_names). - file_paths: list of file paths (strings). - labels: list of matching integer labels (same length as file_paths) - class_names: names of the classes corresponding to these labels, in - order. - """ - if labels != "inferred": - # in the explicit/no-label cases, index from the parent directory down. - subdirs = [""] - class_names = subdirs - else: - subdirs = [] - for subdir in sorted(tf.io.gfile.listdir(directory)): - if tf.io.gfile.isdir(tf.io.gfile.join(directory, subdir)): - if subdir.endswith("/"): - subdir = subdir[:-1] - subdirs.append(subdir) - if not class_names: - class_names = subdirs - else: - if set(class_names) != set(subdirs): - raise ValueError( - "The `class_names` passed did not match the " - "names of the subdirectories of the target directory. " - f"Expected: {subdirs}, but received: {class_names}" - ) - class_indices = dict(zip(class_names, range(len(class_names)))) - - # Build an index of the files - # in the different class subfolders. - pool = multiprocessing.pool.ThreadPool() - results = [] - filenames = [] - - for dirpath in (tf.io.gfile.join(directory, subdir) for subdir in subdirs): - results.append( - pool.apply_async( - index_subdirectory, - (dirpath, class_indices, follow_links, formats), - ) - ) - labels_list = [] - for res in results: - partial_filenames, partial_labels = res.get() - labels_list.append(partial_labels) - filenames += partial_filenames - if labels not in ("inferred", None): - if len(labels) != len(filenames): - raise ValueError( - "Expected the lengths of `labels` to match the number " - "of files in the target directory. len(labels) is " - f"{len(labels)} while we found {len(filenames)} files " - f"in directory {directory}." - ) - class_names = sorted(set(labels)) - else: - i = 0 - labels = np.zeros((len(filenames),), dtype="int32") - for partial_labels in labels_list: - labels[i : i + len(partial_labels)] = partial_labels - i += len(partial_labels) - - if labels is None: - io_utils.print_msg(f"Found {len(filenames)} files.") - else: - io_utils.print_msg( - f"Found {len(filenames)} files belonging " - f"to {len(class_names)} classes." - ) - pool.close() - pool.join() - file_paths = [tf.io.gfile.join(directory, fname) for fname in filenames] - - if shuffle: - # Shuffle globally to erase macro-structure - if seed is None: - seed = np.random.randint(1e6) - rng = np.random.RandomState(seed) - rng.shuffle(file_paths) - rng = np.random.RandomState(seed) - rng.shuffle(labels) - return file_paths, labels, class_names - - -def iter_valid_files(directory, follow_links, formats): - if not follow_links: - walk = tf.io.gfile.walk(directory) - else: - walk = os.walk(directory, followlinks=follow_links) - for root, _, files in sorted(walk, key=lambda x: x[0]): - for fname in sorted(files): - if fname.lower().endswith(formats): - yield root, fname - - -def index_subdirectory(directory, class_indices, follow_links, formats): - """Recursively walks directory and list image paths and their class index. - - Args: - directory: string, target directory. - class_indices: dict mapping class names to their index. - follow_links: boolean, whether to recursively follow subdirectories - (if False, we only list top-level images in `directory`). - formats: Allowlist of file extensions to index (e.g. ".jpg", ".txt"). - - Returns: - tuple `(filenames, labels)`. `filenames` is a list of relative file - paths, and `labels` is a list of integer labels corresponding to these - files. - """ - dirname = os.path.basename(directory) - valid_files = iter_valid_files(directory, follow_links, formats) - labels = [] - filenames = [] - for root, fname in valid_files: - labels.append(class_indices[dirname]) - absolute_path = tf.io.gfile.join(root, fname) - relative_path = tf.io.gfile.join( - dirname, os.path.relpath(absolute_path, directory) - ) - filenames.append(relative_path) - return filenames, labels - - -def get_training_or_validation_split(samples, labels, validation_split, subset): - """Potentially restict samples & labels to a training or validation split. - - Args: - samples: List of elements. - labels: List of corresponding labels. - validation_split: Float, fraction of data to reserve for validation. - subset: Subset of the data to return. - Either "training", "validation", or None. If None, we return all of the - data. - - Returns: - tuple (samples, labels), potentially restricted to the specified subset. - """ - if not validation_split: - return samples, labels - - num_val_samples = int(validation_split * len(samples)) - if subset == "training": - print(f"Using {len(samples) - num_val_samples} files for training.") - samples = samples[:-num_val_samples] - labels = labels[:-num_val_samples] - elif subset == "validation": - print(f"Using {num_val_samples} files for validation.") - samples = samples[-num_val_samples:] - labels = labels[-num_val_samples:] - else: - raise ValueError( - '`subset` must be either "training" ' - f'or "validation", received: {subset}' - ) - return samples, labels - - -def labels_to_dataset(labels, label_mode, num_classes): - """Create a tf.data.Dataset from the list/tuple of labels. - - Args: - labels: list/tuple of labels to be converted into a tf.data.Dataset. - label_mode: String describing the encoding of `labels`. Options are: - - 'binary' indicates that the labels (there can be only 2) are encoded as - `float32` scalars with values 0 or 1 (e.g. for `binary_crossentropy`). - - 'categorical' means that the labels are mapped into a categorical - vector. (e.g. for `categorical_crossentropy` loss). - num_classes: number of classes of labels. - - Returns: - A `Dataset` instance. - """ - label_ds = tf.data.Dataset.from_tensor_slices(labels) - if label_mode == "binary": - label_ds = label_ds.map( - lambda x: tf.expand_dims(tf.cast(x, "float32"), axis=-1), - num_parallel_calls=tf.data.AUTOTUNE, - ) - elif label_mode == "categorical": - label_ds = label_ds.map( - lambda x: tf.one_hot(x, num_classes), - num_parallel_calls=tf.data.AUTOTUNE, - ) - return label_ds - - -def check_validation_split_arg(validation_split, subset, shuffle, seed): - """Raise errors in case of invalid argument values. - - Args: - validation_split: float between 0 and 1, fraction of data to reserve for - validation. - subset: One of "training", "validation" or "both". Only used if - `validation_split` is set. - shuffle: Whether to shuffle the data. Either True or False. - seed: random seed for shuffling and transformations. - """ - if validation_split and not 0 < validation_split < 1: - raise ValueError( - "`validation_split` must be between 0 and 1, " - f"received: {validation_split}" - ) - if (validation_split or subset) and not (validation_split and subset): - raise ValueError( - "If `subset` is set, `validation_split` must be set, and inversely." - ) - if subset not in ("training", "validation", "both", None): - raise ValueError( - '`subset` must be either "training", ' - f'"validation" or "both", received: {subset}' - ) - if validation_split and shuffle and seed is None: - raise ValueError( - "If using `validation_split` and shuffling the data, you must " - "provide a `seed` argument, to make sure that there is no " - "overlap between the training and validation subset." - ) diff --git a/keras/utils/dataset_utils_test.py b/keras/utils/dataset_utils_test.py deleted file mode 100644 index 1de07df756b..00000000000 --- a/keras/utils/dataset_utils_test.py +++ /dev/null @@ -1,593 +0,0 @@ -"""Tests for Dataset Utils""" - -import os -import shutil - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.testing_infra import test_utils -from keras.utils import dataset_utils - - -@test_utils.run_v2_only -class SplitDatasetTest(tf.test.TestCase): - def test_numpy_array(self): - dataset = np.ones(shape=(200, 32)) - res = dataset_utils.split_dataset( - dataset, left_size=0.8, right_size=0.2 - ) - - self.assertLen(res, 2) - left_split, right_split = res - - self.assertIsInstance(left_split, tf.data.Dataset) - self.assertIsInstance(right_split, tf.data.Dataset) - - self.assertLen(left_split, 160) - self.assertLen(right_split, 40) - - self.assertAllEqual(dataset[:160], list(left_split)) - self.assertAllEqual(dataset[-40:], list(right_split)) - - def test_list_of_numpy_arrays(self): - # test with list of np arrays with same shapes - dataset = [np.ones(shape=(200, 32)), np.zeros(shape=(200, 32))] - res = dataset_utils.split_dataset(dataset, left_size=4) - - self.assertLen(res, 2) - left_split, right_split = res - - self.assertIsInstance(left_split, tf.data.Dataset) - self.assertIsInstance(right_split, tf.data.Dataset) - - self.assertEqual(np.array(list(left_split)).shape, (4, 2, 32)) - self.assertEqual(np.array(list(right_split)).shape, (196, 2, 32)) - - # test with different shapes - dataset = [np.ones(shape=(5, 3)), np.ones(shape=(5,))] - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=0.3 - ) - - self.assertEqual(np.array(list(left_split), dtype=object).shape, (2, 2)) - self.assertEqual( - np.array(list(right_split), dtype=object).shape, (3, 2) - ) - - self.assertEqual( - np.array(list(left_split)[0], dtype=object).shape, (2,) - ) - self.assertEqual(np.array(list(left_split)[0][0]).shape, (3,)) - self.assertEqual(np.array(list(left_split)[0][1]).shape, ()) - - self.assertEqual( - np.array(list(right_split)[0], dtype=object).shape, (2,) - ) - self.assertEqual(np.array(list(right_split)[0][0]).shape, (3,)) - self.assertEqual(np.array(list(right_split)[0][1]).shape, ()) - - def test_dataset_with_invalid_shape(self): - with self.assertRaisesRegex( - ValueError, - "Received a list of NumPy arrays with different lengths", - ): - dataset = [np.ones(shape=(200, 32)), np.zeros(shape=(100, 32))] - dataset_utils.split_dataset(dataset, left_size=4) - - with self.assertRaisesRegex( - ValueError, - "Received a tuple of NumPy arrays with different lengths", - ): - dataset = (np.ones(shape=(200, 32)), np.zeros(shape=(201, 32))) - dataset_utils.split_dataset(dataset, left_size=4) - - def test_tuple_of_numpy_arrays(self): - dataset = (np.random.rand(4, 3), np.random.rand(4, 3)) - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=2 - ) - - self.assertIsInstance(left_split, tf.data.Dataset) - self.assertIsInstance(right_split, tf.data.Dataset) - - self.assertEqual(len(left_split), 2) - self.assertEqual(len(right_split), 2) - - self.assertEqual(np.array(list(left_split)[0]).shape, (2, 3)) - self.assertEqual(np.array(list(left_split)[1]).shape, (2, 3)) - - # test with fractional size - dataset = (np.random.rand(5, 32, 32), np.random.rand(5, 32, 32)) - left_split, right_split = dataset_utils.split_dataset( - dataset, right_size=0.4 - ) - self.assertIsInstance(left_split, tf.data.Dataset) - self.assertIsInstance(right_split, tf.data.Dataset) - - self.assertEqual(np.array(list(left_split)).shape, (3, 2, 32, 32)) - self.assertEqual(np.array(list(right_split)).shape, (2, 2, 32, 32)) - - self.assertEqual(np.array(list(left_split))[0].shape, (2, 32, 32)) - self.assertEqual(np.array(list(left_split))[1].shape, (2, 32, 32)) - - self.assertEqual(np.array(list(right_split))[0].shape, (2, 32, 32)) - self.assertEqual(np.array(list(right_split))[1].shape, (2, 32, 32)) - - # test with tuple of np arrays with different shapes - dataset = ( - np.random.rand(5, 32, 32), - np.random.rand( - 5, - ), - ) - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=2, right_size=3 - ) - self.assertIsInstance(left_split, tf.data.Dataset) - self.assertIsInstance(right_split, tf.data.Dataset) - - self.assertEqual(np.array(list(left_split), dtype=object).shape, (2, 2)) - self.assertEqual( - np.array(list(right_split), dtype=object).shape, (3, 2) - ) - - self.assertEqual( - np.array(list(left_split)[0], dtype=object).shape, (2,) - ) - self.assertEqual(np.array(list(left_split)[0][0]).shape, (32, 32)) - self.assertEqual(np.array(list(left_split)[0][1]).shape, ()) - - self.assertEqual( - np.array(list(right_split)[0], dtype=object).shape, (2,) - ) - self.assertEqual(np.array(list(right_split)[0][0]).shape, (32, 32)) - self.assertEqual(np.array(list(right_split)[0][1]).shape, ()) - - def test_batched_tf_dataset_of_vectors(self): - vectors = np.ones(shape=(100, 32, 32, 1)) - dataset = tf.data.Dataset.from_tensor_slices(vectors) - dataset = dataset.batch(10) - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=2 - ) - - # Ensure that the splits are batched - self.assertEqual(len(list(right_split)), 10) - - left_split, right_split = left_split.unbatch(), right_split.unbatch() - self.assertAllEqual(np.array(list(left_split)).shape, (2, 32, 32, 1)) - self.assertAllEqual(np.array(list(right_split)).shape, (98, 32, 32, 1)) - dataset = dataset.unbatch() - self.assertAllEqual(list(dataset), list(left_split) + list(right_split)) - - def test_batched_tf_dataset_of_tuple_of_vectors(self): - tuple_of_vectors = ( - np.random.rand(10, 32, 32), - np.random.rand(10, 32, 32), - ) - dataset = tf.data.Dataset.from_tensor_slices(tuple_of_vectors) - dataset = dataset.batch(2) - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=4 - ) - - # Ensure that the splits are batched - self.assertEqual(np.array(list(right_split)).shape, (3, 2, 2, 32, 32)) - self.assertEqual(np.array(list(left_split)).shape, (2, 2, 2, 32, 32)) - - left_split, right_split = left_split.unbatch(), right_split.unbatch() - self.assertAllEqual(np.array(list(left_split)).shape, (4, 2, 32, 32)) - self.assertAllEqual(np.array(list(right_split)).shape, (6, 2, 32, 32)) - - dataset = dataset.unbatch() - self.assertAllEqual(list(dataset), list(left_split) + list(right_split)) - - def test_batched_tf_dataset_of_dict_of_vectors(self): - dict_samples = {"X": np.random.rand(10, 3), "Y": np.random.rand(10, 3)} - dataset = tf.data.Dataset.from_tensor_slices(dict_samples) - dataset = dataset.batch(2) - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=2 - ) - - self.assertAllEqual(np.array(list(left_split)).shape, (1,)) - self.assertAllEqual(np.array(list(right_split)).shape, (4,)) - - left_split, right_split = left_split.unbatch(), right_split.unbatch() - self.assertEqual(len(list(left_split)), 2) - self.assertEqual(len(list(right_split)), 8) - for i in range(10): - if i < 2: - self.assertEqual( - list(left_split)[i], list(dataset.unbatch())[i] - ) - else: - self.assertEqual( - list(right_split)[i - 2], list(dataset.unbatch())[i] - ) - - # test with dict of np arrays with different shapes - dict_samples = { - "images": np.random.rand(10, 16, 16, 3), - "labels": np.random.rand( - 10, - ), - } - dataset = tf.data.Dataset.from_tensor_slices(dict_samples) - dataset = dataset.batch(1) - left_split, right_split = dataset_utils.split_dataset( - dataset, right_size=0.3 - ) - - self.assertAllEqual(np.array(list(left_split)).shape, (7,)) - self.assertAllEqual(np.array(list(right_split)).shape, (3,)) - - dataset = dataset.unbatch() - left_split, right_split = left_split.unbatch(), right_split.unbatch() - self.assertEqual(len(list(left_split)), 7) - self.assertEqual(len(list(right_split)), 3) - for i in range(10): - if i < 7: - self.assertEqual(list(left_split)[i], list(dataset)[i]) - else: - self.assertEqual(list(right_split)[i - 7], list(dataset)[i]) - - def test_unbatched_tf_dataset_of_vectors(self): - vectors = np.ones(shape=(100, 16, 16, 3)) - dataset = tf.data.Dataset.from_tensor_slices(vectors) - - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=0.25 - ) - - self.assertAllEqual(np.array(list(left_split)).shape, (25, 16, 16, 3)) - self.assertAllEqual(np.array(list(right_split)).shape, (75, 16, 16, 3)) - - self.assertAllEqual(list(dataset), list(left_split) + list(right_split)) - - dataset = [np.random.rand(10, 3, 3) for _ in range(5)] - dataset = tf.data.Dataset.from_tensor_slices(dataset) - - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=2 - ) - self.assertAllEqual(list(dataset), list(left_split) + list(right_split)) - - def test_unbatched_tf_dataset_of_tuple_of_vectors(self): - # test with tuple of np arrays with same shape - X, Y = (np.random.rand(10, 32, 32, 1), np.random.rand(10, 32, 32, 1)) - dataset = tf.data.Dataset.from_tensor_slices((X, Y)) - - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=5 - ) - - self.assertEqual(len(list(left_split)), 5) - self.assertEqual(len(list(right_split)), 5) - self.assertAllEqual(list(dataset), list(left_split) + list(right_split)) - - # test with tuple of np arrays with different shapes - X, Y = ( - np.random.rand(5, 3, 3), - np.random.rand( - 5, - ), - ) - dataset = tf.data.Dataset.from_tensor_slices((X, Y)) - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=0.5 - ) - - self.assertEqual(len(list(left_split)), 2) - self.assertEqual(len(list(right_split)), 3) - self.assertEqual(np.array(list(left_split)[0][0]).shape, (3, 3)) - self.assertEqual(np.array(list(left_split)[0][1]).shape, ()) - - def test_unbatched_tf_dataset_of_dict_of_vectors(self): - # test with dict of np arrays of same shape - dict_samples = {"X": np.random.rand(10, 2), "Y": np.random.rand(10, 2)} - dataset = tf.data.Dataset.from_tensor_slices(dict_samples) - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=2 - ) - self.assertEqual(len(list(left_split)), 2) - self.assertEqual(len(list(right_split)), 8) - for i in range(10): - if i < 2: - self.assertEqual(list(left_split)[i], list(dataset)[i]) - else: - self.assertEqual(list(right_split)[i - 2], list(dataset)[i]) - - # test with dict of np arrays with different shapes - dict_samples = { - "images": np.random.rand(10, 16, 16, 3), - "labels": np.random.rand( - 10, - ), - } - dataset = tf.data.Dataset.from_tensor_slices(dict_samples) - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=0.3 - ) - self.assertEqual(len(list(left_split)), 3) - self.assertEqual(len(list(right_split)), 7) - for i in range(10): - if i < 3: - self.assertEqual(list(left_split)[i], list(dataset)[i]) - else: - self.assertEqual(list(right_split)[i - 3], list(dataset)[i]) - - # test with dict of text arrays - txt_feature = ["abb", "bb", "cc", "d", "e", "f", "g", "h", "i", "j"] - dict_samples = { - "txt_feature": txt_feature, - "label": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], - } - dataset = tf.data.Dataset.from_tensor_slices(dict_samples) - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=0.45, right_size=0.55 - ) - self.assertEqual(len(list(left_split)), 4) - self.assertEqual(len(list(right_split)), 6) - for i in range(10): - if i < 4: - self.assertEqual(list(left_split)[i], list(dataset)[i]) - else: - self.assertEqual(list(right_split)[i - 4], list(dataset)[i]) - - def test_list_dataset(self): - dataset = [np.ones(shape=(10, 10, 10)) for _ in range(10)] - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=5, right_size=5 - ) - self.assertEqual(len(left_split), len(right_split)) - self.assertIsInstance(left_split, tf.data.Dataset) - self.assertIsInstance(left_split, tf.data.Dataset) - - dataset = [np.ones(shape=(10, 10, 10)) for _ in range(10)] - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=0.6, right_size=0.4 - ) - self.assertEqual(len(left_split), 6) - self.assertEqual(len(right_split), 4) - - def test_invalid_dataset(self): - with self.assertRaisesRegex( - TypeError, - "The `dataset` argument must be either a `tf.data.Dataset` " - "object or a list/tuple of arrays.", - ): - dataset_utils.split_dataset(dataset=None, left_size=5) - with self.assertRaisesRegex( - TypeError, - "The `dataset` argument must be either a `tf.data.Dataset` " - "object or a list/tuple of arrays.", - ): - dataset_utils.split_dataset(dataset=1, left_size=5) - with self.assertRaisesRegex( - TypeError, - "The `dataset` argument must be either a `tf.data.Dataset` " - "object or a list/tuple of arrays.", - ): - dataset_utils.split_dataset(dataset=float(1.2), left_size=5) - with self.assertRaisesRegex( - TypeError, - "The `dataset` argument must be either a `tf.data.Dataset` " - "object or a list/tuple of arrays.", - ): - dataset_utils.split_dataset(dataset=dict({}), left_size=5) - with self.assertRaisesRegex( - TypeError, - "The `dataset` argument must be either a `tf.data.Dataset` " - "object or a list/tuple of arrays.", - ): - dataset_utils.split_dataset(dataset=float("INF"), left_size=5) - - def test_valid_left_and_right_sizes(self): - dataset = np.array([1, 2, 3]) - splitted_dataset = dataset_utils.split_dataset(dataset, 1, 2) - self.assertLen(splitted_dataset, 2) - left_split, right_split = splitted_dataset - self.assertEqual(len(left_split), 1) - self.assertEqual(len(right_split), 2) - self.assertEqual(list(left_split), [1]) - self.assertEqual(list(right_split), [2, 3]) - - dataset = np.ones(shape=(200, 32)) - res = dataset_utils.split_dataset(dataset, left_size=150, right_size=50) - self.assertLen(res, 2) - self.assertIsInstance(res[0], tf.data.Dataset) - self.assertIsInstance(res[1], tf.data.Dataset) - - self.assertLen(res[0], 150) - self.assertLen(res[1], 50) - - dataset = np.ones(shape=(200, 32)) - res = dataset_utils.split_dataset(dataset, left_size=120) - self.assertLen(res, 2) - self.assertIsInstance(res[0], tf.data.Dataset) - self.assertIsInstance(res[1], tf.data.Dataset) - - self.assertLen(res[0], 120) - self.assertLen(res[1], 80) - - dataset = np.ones(shape=(10000, 16)) - res = dataset_utils.split_dataset(dataset, right_size=20) - self.assertLen(res, 2) - self.assertIsInstance(res[0], tf.data.Dataset) - self.assertIsInstance(res[1], tf.data.Dataset) - - self.assertLen(res[0], 9980) - self.assertLen(res[1], 20) - - dataset = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) - splitted_dataset = dataset_utils.split_dataset( - dataset, left_size=0.1, right_size=0.9 - ) - self.assertLen(splitted_dataset, 2) - left_split, right_split = splitted_dataset - self.assertEqual(len(left_split), 1) - self.assertEqual(len(right_split), 9) - self.assertEqual(list(left_split), [1]) - self.assertEqual(list(right_split), [2, 3, 4, 5, 6, 7, 8, 9, 10]) - - dataset = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) - splitted_dataset = dataset_utils.split_dataset( - dataset, left_size=2, right_size=5 - ) - self.assertLen(splitted_dataset, 2) - left_split, right_split = splitted_dataset - self.assertEqual(len(left_split), 2) - self.assertEqual(len(right_split), 5) - self.assertEqual(list(left_split), [1, 2]) - self.assertEqual(list(right_split), [6, 7, 8, 9, 10]) - - def test_float_left_and_right_sizes(self): - X = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]) - dataset = tf.data.Dataset.from_tensor_slices(X) - left_split, right_split = dataset_utils.split_dataset( - dataset, left_size=0.8, right_size=0.2 - ) - self.assertEqual(len(left_split), 2) - self.assertEqual(len(right_split), 1) - - def test_invalid_float_left_and_right_sizes(self): - expected_regex = ( - r"^(.*?(\bleft_size\b).*?(\bshould be\b)" - r".*?(\bwithin the range\b).*?(\b0\b).*?(\b1\b))" - ) - with self.assertRaisesRegexp(ValueError, expected_regex): - dataset = [ - np.ones(shape=(200, 32, 32)), - np.zeros(shape=(200, 32, 32)), - ] - dataset_utils.split_dataset(dataset, left_size=1.5, right_size=0.2) - - expected_regex = ( - r"^(.*?(\bright_size\b).*?(\bshould be\b)" - r".*?(\bwithin the range\b).*?(\b0\b).*?(\b1\b))" - ) - with self.assertRaisesRegex(ValueError, expected_regex): - dataset = [np.ones(shape=(200, 32)), np.zeros(shape=(200, 32))] - dataset_utils.split_dataset(dataset, left_size=0.8, right_size=-0.8) - - def test_None_and_zero_left_and_right_size(self): - expected_regex = ( - r"^.*?(\bleft_size\b).*?(\bright_size\b).*?(\bmust " - r"be specified\b).*?(\bReceived: left_size=None and" - r" right_size=None\b)" - ) - - with self.assertRaisesRegex(ValueError, expected_regex): - dataset_utils.split_dataset( - dataset=np.array([1, 2, 3]), left_size=None - ) - with self.assertRaisesRegex(ValueError, expected_regex): - dataset_utils.split_dataset( - np.array([1, 2, 3]), left_size=None, right_size=None - ) - - expected_regex = ( - r"^.*?(\bleft_size\b).*?(\bshould be\b)" - r".*?(\bpositive\b).*?(\bsmaller than 3\b)" - ) - with self.assertRaisesRegex(ValueError, expected_regex): - dataset_utils.split_dataset(np.array([1, 2, 3]), left_size=3) - - expected_regex = ( - "Both `left_size` and `right_size` are zero. " - "At least one of the split sizes must be non-zero." - ) - with self.assertRaisesRegex(ValueError, expected_regex): - dataset_utils.split_dataset( - np.array([1, 2, 3]), left_size=0, right_size=0 - ) - - def test_invalid_left_and_right_size_types(self): - expected_regex = ( - r"^.*?(\bInvalid `left_size` and `right_size` Types" - r"\b).*?(\bExpected: integer or float or None\b)" - ) - with self.assertRaisesRegex(TypeError, expected_regex): - dataset_utils.split_dataset( - np.array([1, 2, 3]), left_size="1", right_size="1" - ) - - expected_regex = r"^.*?(\bInvalid `right_size` Type\b)" - with self.assertRaisesRegex(TypeError, expected_regex): - dataset_utils.split_dataset( - np.array([1, 2, 3]), left_size=0, right_size="1" - ) - - expected_regex = r"^.*?(\bInvalid `left_size` Type\b)" - with self.assertRaisesRegex(TypeError, expected_regex): - dataset_utils.split_dataset( - np.array([1, 2, 3]), left_size="100", right_size=None - ) - - expected_regex = r"^.*?(\bInvalid `right_size` Type\b)" - with self.assertRaisesRegex(TypeError, expected_regex): - dataset_utils.split_dataset(np.array([1, 2, 3]), right_size="1") - - expected_regex = r"^.*?(\bInvalid `right_size` Type\b)" - with self.assertRaisesRegex(TypeError, expected_regex): - dataset_utils.split_dataset( - np.array([1, 2, 3]), left_size=0.5, right_size="1" - ) - - def test_end_to_end(self): - x_train = np.random.random((10000, 28, 28)) - y_train = np.random.randint(0, 10, size=(10000,)) - - left_split, right_split = dataset_utils.split_dataset( - (x_train, y_train), left_size=0.8 - ) - - self.assertIsInstance(left_split, tf.data.Dataset) - self.assertIsInstance(right_split, tf.data.Dataset) - - self.assertEqual(len(left_split), 8000) - self.assertEqual(len(right_split), 2000) - - -@test_utils.run_v2_only -class IndexDirectoryStructureTest(tf.test.TestCase): - def test_explicit_labels_and_unnested_files(self): - - # Get a unique temp directory - temp_dir = os.path.join( - self.get_temp_dir(), str(np.random.randint(1e6)) - ) - os.mkdir(temp_dir) - self.addCleanup(shutil.rmtree, temp_dir) - - # Number of temp files, each of which - # will have its own explicit label - num_files = 10 - - explicit_labels = np.random.randint(0, 10, size=num_files).tolist() - - # Save empty text files to root of temp directory - # (content is not important, only location) - for i in range(len(explicit_labels)): - with open(os.path.join(temp_dir, f"file{i}.txt"), "w"): - pass - - file_paths, labels, class_names = dataset_utils.index_directory( - temp_dir, labels=explicit_labels, formats=".txt" - ) - - # Files are found at the root of the temp directory, when - # `labels` are passed explicitly to `index_directory` and - # the number of returned and passed labels match - self.assertLen(file_paths, num_files) - self.assertLen(labels, num_files) - - # Class names are returned as a sorted list - expected_class_names = sorted(set(explicit_labels)) - self.assertEqual(expected_class_names, class_names) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/feature_space.py b/keras/utils/feature_space.py deleted file mode 100644 index f3e0a004543..00000000000 --- a/keras/utils/feature_space.py +++ /dev/null @@ -1,772 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""FeatureSpace structured data preprocessing & encoding utility.""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import base_layer -from keras.saving import saving_lib -from keras.saving import serialization_lib -from keras.utils.generic_utils import LazyLoader - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -layers = LazyLoader("layers", globals(), "keras.layers") - - -class Cross: - def __init__(self, feature_names, crossing_dim, output_mode="one_hot"): - if output_mode not in {"int", "one_hot"}: - raise ValueError( - "Invalid value for argument `output_mode`. " - "Expected one of {'int', 'one_hot'}. " - f"Received: output_mode={output_mode}" - ) - self.feature_names = tuple(feature_names) - self.crossing_dim = crossing_dim - self.output_mode = output_mode - - @property - def name(self): - return "_X_".join(self.feature_names) - - def get_config(self): - return { - "feature_names": self.feature_names, - "crossing_dim": self.crossing_dim, - "output_mode": self.output_mode, - } - - @classmethod - def from_config(cls, config): - return cls(**config) - - -class Feature: - def __init__(self, dtype, preprocessor, output_mode): - if output_mode not in {"int", "one_hot", "float"}: - raise ValueError( - "Invalid value for argument `output_mode`. " - "Expected one of {'int', 'one_hot', 'float'}. " - f"Received: output_mode={output_mode}" - ) - self.dtype = dtype - if isinstance(preprocessor, dict): - preprocessor = serialization_lib.deserialize_keras_object( - preprocessor - ) - self.preprocessor = preprocessor - self.output_mode = output_mode - - def get_config(self): - return { - "dtype": self.dtype, - "preprocessor": serialization_lib.serialize_keras_object( - self.preprocessor - ), - "output_mode": self.output_mode, - } - - @classmethod - def from_config(cls, config): - return cls(**config) - - -@keras_export("keras.utils.FeatureSpace", v1=[]) -class FeatureSpace(base_layer.Layer): - """One-stop utility for preprocessing and encoding structured data. - - Arguments: - feature_names: Dict mapping the names of your features to their - type specification, e.g. `{"my_feature": "integer_categorical"}` - or `{"my_feature": FeatureSpace.integer_categorical()}`. - For a complete list of all supported types, see - "Available feature types" paragraph below. - output_mode: One of `"concat"` or `"dict"`. In concat mode, all - features get concatenated together into a single vector. - In dict mode, the FeatureSpace returns a dict of individually - encoded features (with the same keys as the input dict keys). - crosses: List of features to be crossed together, e.g. - `crosses=[("feature_1", "feature_2")]`. The features will be - "crossed" by hashing their combined value into - a fixed-length vector. - crossing_dim: Default vector size for hashing crossed features. - Defaults to 32. - hashing_dim: Default vector size for hashing features of type - `"integer_hashed"` and `"string_hashed"`. Defaults to 32. - num_discretization_bins: Default number of bins to be used for - discretizing features of type `"float_discretized"`. - Defaults to 32. - - **Available feature types:** - - Note that all features can be referred to by their string name, - e.g. `"integer_categorical"`. When using the string name, the default - argument values are used. - - ```python - # Plain float values. - FeatureSpace.float(name=None) - - # Float values to be preprocessed via featurewise standardization - # (i.e. via a `keras.layers.Normalization` layer). - FeatureSpace.float_normalized(name=None) - - # Float values to be preprocessed via linear rescaling - # (i.e. via a `keras.layers.Rescaling` layer). - FeatureSpace.float_rescaled(scale=1., offset=0., name=None) - - # Float values to be discretized. By default, the discrete - # representation will then be one-hot encoded. - FeatureSpace.float_discretized( - num_bins, bin_boundaries=None, output_mode="one_hot", name=None) - - # Integer values to be indexed. By default, the discrete - # representation will then be one-hot encoded. - FeatureSpace.integer_categorical( - max_tokens=None, num_oov_indices=1, output_mode="one_hot", name=None) - - # String values to be indexed. By default, the discrete - # representation will then be one-hot encoded. - FeatureSpace.string_categorical( - max_tokens=None, num_oov_indices=1, output_mode="one_hot", name=None) - - # Integer values to be hashed into a fixed number of bins. - # By default, the discrete representation will then be one-hot encoded. - FeatureSpace.integer_hashed(num_bins, output_mode="one_hot", name=None) - - # String values to be hashed into a fixed number of bins. - # By default, the discrete representation will then be one-hot encoded. - FeatureSpace.string_hashed(num_bins, output_mode="one_hot", name=None) - ``` - - Examples: - - **Basic usage with a dict of input data:** - - ```python - raw_data = { - "float_values": [0.0, 0.1, 0.2, 0.3], - "string_values": ["zero", "one", "two", "three"], - "int_values": [0, 1, 2, 3], - } - dataset = tf.data.Dataset.from_tensor_slices(raw_data) - - feature_space = FeatureSpace( - features={ - "float_values": "float_normalized", - "string_values": "string_categorical", - "int_values": "integer_categorical", - }, - crosses=[("string_values", "int_values")], - output_mode="concat", - ) - # Before you start using the FeatureSpace, - # you must `adapt()` it on some data. - feature_space.adapt(dataset) - - # You can call the FeatureSpace on a dict of data (batched or unbatched). - output_vector = feature_space(raw_data) - ``` - - **Basic usage with `tf.data`:** - - ```python - # Unlabeled data - preprocessed_ds = unlabeled_dataset.map(feature_space) - - # Labeled data - preprocessed_ds = labeled_dataset.map(lambda x, y: (feature_space(x), y)) - ``` - - **Basic usage with the Keras Functional API:** - - ```python - # Retrieve a dict Keras Input objects - inputs = feature_space.get_inputs() - # Retrieve the corresponding encoded Keras tensors - encoded_features = feature_space.get_encoded_features() - # Build a Functional model - outputs = keras.layers.Dense(1, activation="sigmoid")(encoded_features) - model = keras.Model(inputs, outputs) - ``` - - **Customizing each feature or feature cross:** - - ```python - feature_space = FeatureSpace( - features={ - "float_values": FeatureSpace.float_normalized(), - "string_values": FeatureSpace.string_categorical(max_tokens=10), - "int_values": FeatureSpace.integer_categorical(max_tokens=10), - }, - crosses=[ - FeatureSpace.cross(("string_values", "int_values"), crossing_dim=32) - ], - output_mode="concat", - ) - ``` - - **Returning a dict of integer-encoded features:** - - ```python - feature_space = FeatureSpace( - features={ - "string_values": FeatureSpace.string_categorical(output_mode="int"), - "int_values": FeatureSpace.integer_categorical(output_mode="int"), - }, - crosses=[ - FeatureSpace.cross( - feature_names=("string_values", "int_values"), - crossing_dim=32, - output_mode="int", - ) - ], - output_mode="dict", - ) - ``` - - **Specifying your own Keras preprocessing layer:** - - ```python - # Let's say that one of the features is a short text paragraph that - # we want to encode as a vector (one vector per paragraph) via TF-IDF. - data = { - "text": ["1st string", "2nd string", "3rd string"], - } - - # There's a Keras layer for this: TextVectorization. - custom_layer = layers.TextVectorization(output_mode="tf_idf") - - # We can use FeatureSpace.feature to create a custom feature - # that will use our preprocessing layer. - feature_space = FeatureSpace( - features={ - "text": FeatureSpace.feature( - preprocessor=custom_layer, dtype="string", output_mode="float" - ), - }, - output_mode="concat", - ) - feature_space.adapt(tf.data.Dataset.from_tensor_slices(data)) - output_vector = feature_space(data) - ``` - - **Retrieving the underlying Keras preprocessing layers:** - - ```python - # The preprocessing layer of each feature is available in `.preprocessors`. - preprocessing_layer = feature_space.preprocessors["feature1"] - - # The crossing layer of each feature cross is available in `.crossers`. - # It's an instance of keras.layers.HashedCrossing. - crossing_layer = feature_space.crossers["feature1_X_feature2"] - ``` - - **Saving and reloading a FeatureSpace:** - - ```python - feature_space.save("myfeaturespace.keras") - reloaded_feature_space = keras.models.load_model("myfeaturespace.keras") - ``` - """ - - @classmethod - def cross(cls, feature_names, crossing_dim, output_mode="one_hot"): - return Cross(feature_names, crossing_dim, output_mode=output_mode) - - @classmethod - def feature(cls, dtype, preprocessor, output_mode): - return Feature(dtype, preprocessor, output_mode) - - @classmethod - def float(cls, name=None): - from keras.layers.core import identity - - name = name or backend.unique_object_name("float") - preprocessor = identity.Identity( - dtype="float32", name=f"{name}_preprocessor" - ) - return Feature( - dtype="float32", preprocessor=preprocessor, output_mode="float" - ) - - @classmethod - def float_rescaled(cls, scale=1.0, offset=0.0, name=None): - name = name or backend.unique_object_name("float_rescaled") - preprocessor = layers.Rescaling( - scale=scale, offset=offset, name=f"{name}_preprocessor" - ) - return Feature( - dtype="float32", preprocessor=preprocessor, output_mode="float" - ) - - @classmethod - def float_normalized(cls, name=None): - name = name or backend.unique_object_name("float_normalized") - preprocessor = layers.Normalization( - axis=-1, name=f"{name}_preprocessor" - ) - return Feature( - dtype="float32", preprocessor=preprocessor, output_mode="float" - ) - - @classmethod - def float_discretized( - cls, num_bins, bin_boundaries=None, output_mode="one_hot", name=None - ): - name = name or backend.unique_object_name("float_discretized") - preprocessor = layers.Discretization( - num_bins=num_bins, - bin_boundaries=bin_boundaries, - name=f"{name}_preprocessor", - ) - return Feature( - dtype="float32", preprocessor=preprocessor, output_mode=output_mode - ) - - @classmethod - def integer_categorical( - cls, - max_tokens=None, - num_oov_indices=1, - output_mode="one_hot", - name=None, - ): - name = name or backend.unique_object_name("integer_categorical") - preprocessor = layers.IntegerLookup( - name=f"{name}_preprocessor", - max_tokens=max_tokens, - num_oov_indices=num_oov_indices, - ) - return Feature( - dtype="int64", preprocessor=preprocessor, output_mode=output_mode - ) - - @classmethod - def string_categorical( - cls, - max_tokens=None, - num_oov_indices=1, - output_mode="one_hot", - name=None, - ): - name = name or backend.unique_object_name("string_categorical") - preprocessor = layers.StringLookup( - name=f"{name}_preprocessor", - max_tokens=max_tokens, - num_oov_indices=num_oov_indices, - ) - return Feature( - dtype="string", preprocessor=preprocessor, output_mode=output_mode - ) - - @classmethod - def string_hashed(cls, num_bins, output_mode="one_hot", name=None): - name = name or backend.unique_object_name("string_hashed") - preprocessor = layers.Hashing( - name=f"{name}_preprocessor", num_bins=num_bins - ) - return Feature( - dtype="string", preprocessor=preprocessor, output_mode=output_mode - ) - - @classmethod - def integer_hashed(cls, num_bins, output_mode="one_hot", name=None): - name = name or backend.unique_object_name("integer_hashed") - preprocessor = layers.Hashing( - name=f"{name}_preprocessor", num_bins=num_bins - ) - return Feature( - dtype="int64", preprocessor=preprocessor, output_mode=output_mode - ) - - def __init__( - self, - features, - output_mode="concat", - crosses=None, - crossing_dim=32, - hashing_dim=32, - num_discretization_bins=32, - ): - if not features: - raise ValueError("The `features` argument cannot be None or empty.") - self.crossing_dim = crossing_dim - self.hashing_dim = hashing_dim - self.num_discretization_bins = num_discretization_bins - self.features = { - name: self._standardize_feature(name, value) - for name, value in features.items() - } - self.crosses = [] - if crosses: - feature_set = set(features.keys()) - for cross in crosses: - if isinstance(cross, dict): - cross = serialization_lib.deserialize_keras_object(cross) - if isinstance(cross, Cross): - self.crosses.append(cross) - else: - if not crossing_dim: - raise ValueError( - "When specifying `crosses`, the argument " - "`crossing_dim` " - "(dimensionality of the crossing space) " - "should be specified as well." - ) - for key in cross: - if key not in feature_set: - raise ValueError( - "All features referenced " - "in the `crosses` argument " - "should be present in the `features` dict. " - f"Received unknown features: {cross}" - ) - self.crosses.append(Cross(cross, crossing_dim=crossing_dim)) - self.crosses_by_name = {cross.name: cross for cross in self.crosses} - - if output_mode not in {"dict", "concat"}: - raise ValueError( - "Invalid value for argument `output_mode`. " - "Expected one of {'dict', 'concat'}. " - f"Received: output_mode={output_mode}" - ) - self.output_mode = output_mode - - self.inputs = { - name: self._feature_to_input(name, value) - for name, value in self.features.items() - } - self.preprocessors = { - name: value.preprocessor for name, value in self.features.items() - } - self.encoded_features = None - self.crossers = { - cross.name: self._cross_to_crosser(cross) for cross in self.crosses - } - self.one_hot_encoders = {} - self.built = False - self._is_adapted = False - self.concat = None - self._preprocessed_features_names = None - self._crossed_features_names = None - - def _feature_to_input(self, name, feature): - return layers.Input(shape=(1,), dtype=feature.dtype, name=name) - - def _standardize_feature(self, name, feature): - if isinstance(feature, Feature): - return feature - - if isinstance(feature, dict): - return serialization_lib.deserialize_keras_object(feature) - - if feature == "float": - return self.float(name=name) - elif feature == "float_normalized": - return self.float_normalized(name=name) - elif feature == "float_rescaled": - return self.float_rescaled(name=name) - elif feature == "float_discretized": - return self.float_discretized( - name=name, num_bins=self.num_discretization_bins - ) - elif feature == "integer_categorical": - return self.integer_categorical(name=name) - elif feature == "string_categorical": - return self.string_categorical(name=name) - elif feature == "integer_hashed": - return self.integer_hashed(self.hashing_dim, name=name) - elif feature == "string_hashed": - return self.string_hashed(self.hashing_dim, name=name) - else: - raise ValueError(f"Invalid feature type: {feature}") - - def _cross_to_crosser(self, cross): - return layers.HashedCrossing(cross.crossing_dim, name=cross.name) - - def _list_adaptable_preprocessors(self): - adaptable_preprocessors = [] - for name in self.features.keys(): - preprocessor = self.preprocessors[name] - # Special case: a Normalization layer with preset mean/variance. - # Not adaptable. - if isinstance(preprocessor, layers.Normalization): - if preprocessor.input_mean is not None: - continue - if hasattr(preprocessor, "adapt"): - adaptable_preprocessors.append(name) - return adaptable_preprocessors - - def adapt(self, dataset): - if not isinstance(dataset, tf.data.Dataset): - raise ValueError( - "`adapt()` can only be called on a tf.data.Dataset. " - f"Received instead: {dataset} (of type {type(dataset)})" - ) - - for name in self._list_adaptable_preprocessors(): - # Call adapt() on each individual adaptable layer. - - # TODO: consider rewriting this to instead iterate on the - # dataset once, split each batch into individual features, - # and call the layer's `_adapt_function` on each batch - # to simulate the behavior of adapt() in a more performant fashion. - - feature_dataset = dataset.map(lambda x: x[name]) - preprocessor = self.preprocessors[name] - # TODO: consider adding an adapt progress bar. - # Sample 1 element to check the rank - for x in feature_dataset.take(1): - pass - if x.shape.rank == 0: - # The dataset yields unbatched scalars; batch it. - feature_dataset = feature_dataset.batch(32) - if x.shape.rank in {0, 1}: - # If the rank is 1, add a dimension - # so we can reduce on axis=-1. - # Note: if rank was previously 0, it is now 1. - feature_dataset = feature_dataset.map( - lambda x: tf.expand_dims(x, -1) - ) - preprocessor.adapt(feature_dataset) - self._is_adapted = True - self.get_encoded_features() # Finish building the layer - self.built = True - - def get_inputs(self): - self._check_if_built() - return self.inputs - - def get_encoded_features(self): - self._check_if_adapted() - - if self.encoded_features is None: - preprocessed_features = self._preprocess_features(self.inputs) - crossed_features = self._cross_features(preprocessed_features) - merged_features = self._merge_features( - preprocessed_features, crossed_features - ) - self.encoded_features = merged_features - return self.encoded_features - - def _preprocess_features(self, features): - return { - name: self.preprocessors[name](features[name]) - for name in features.keys() - } - - def _cross_features(self, features): - all_outputs = {} - for cross in self.crosses: - inputs = [features[name] for name in cross.feature_names] - outputs = self.crossers[cross.name](inputs) - all_outputs[cross.name] = outputs - return all_outputs - - def _merge_features(self, preprocessed_features, crossed_features): - if not self._preprocessed_features_names: - self._preprocessed_features_names = sorted( - preprocessed_features.keys() - ) - self._crossed_features_names = sorted(crossed_features.keys()) - - all_names = ( - self._preprocessed_features_names + self._crossed_features_names - ) - all_features = [ - preprocessed_features[name] - for name in self._preprocessed_features_names - ] + [crossed_features[name] for name in self._crossed_features_names] - - if self.output_mode == "dict": - output_dict = {} - else: - features_to_concat = [] - - if self.built: - # Fast mode. - for name, feature in zip(all_names, all_features): - encoder = self.one_hot_encoders.get(name, None) - if encoder: - feature = encoder(feature) - if self.output_mode == "dict": - output_dict[name] = feature - else: - features_to_concat.append(feature) - if self.output_mode == "dict": - return output_dict - else: - return self.concat(features_to_concat) - - # If the object isn't built, - # we create the encoder and concat layers below - all_specs = [ - self.features[name] for name in self._preprocessed_features_names - ] + [ - self.crosses_by_name[name] for name in self._crossed_features_names - ] - for name, feature, spec in zip(all_names, all_features, all_specs): - dtype = feature.dtype.name - - if spec.output_mode == "one_hot": - preprocessor = self.preprocessors.get( - name - ) or self.crossers.get(name) - cardinality = None - if not feature.dtype.name.startswith("int"): - raise ValueError( - f"Feature '{name}' has `output_mode='one_hot'`. " - "Thus its preprocessor should return an int64 dtype. " - f"Instead it returns a {dtype} dtype." - ) - - if isinstance( - preprocessor, (layers.IntegerLookup, layers.StringLookup) - ): - cardinality = preprocessor.vocabulary_size() - elif isinstance(preprocessor, layers.CategoryEncoding): - cardinality = preprocessor.num_tokens - elif isinstance(preprocessor, layers.Discretization): - cardinality = preprocessor.num_bins - elif isinstance( - preprocessor, (layers.HashedCrossing, layers.Hashing) - ): - cardinality = preprocessor.num_bins - else: - raise ValueError( - f"Feature '{name}' has `output_mode='one_hot'`. " - "However it isn't a standard feature and the " - "dimensionality of its output space is not known, " - "thus it cannot be one-hot encoded. " - "Try using `output_mode='int'`." - ) - if cardinality is not None: - encoder = layers.CategoryEncoding( - num_tokens=cardinality, output_mode="multi_hot" - ) - self.one_hot_encoders[name] = encoder - feature = encoder(feature) - - if self.output_mode == "concat": - dtype = feature.dtype.name - if dtype.startswith("int") or dtype == "string": - raise ValueError( - f"Cannot concatenate features because feature '{name}' " - f"has not been encoded (it has dtype {dtype}). " - "Consider using `output_mode='dict'`." - ) - features_to_concat.append(feature) - else: - output_dict[name] = feature - - if self.output_mode == "concat": - self.concat = layers.Concatenate(axis=-1) - return self.concat(features_to_concat) - else: - return output_dict - - def _check_if_adapted(self): - if not self._is_adapted: - if not self._list_adaptable_preprocessors(): - self._is_adapted = True - else: - raise ValueError( - "You need to call `.adapt(dataset)` on the FeatureSpace " - "before you can start using it." - ) - - def _check_if_built(self): - if not self.built: - self._check_if_adapted() - # Finishes building - self.get_encoded_features() - self.built = True - - def __call__(self, data): - self._check_if_built() - if not isinstance(data, dict): - raise ValueError( - "A FeatureSpace can only be called with a dict. " - f"Received: data={data} (of type {type(data)}" - ) - - data = {key: tf.convert_to_tensor(value) for key, value in data.items()} - rebatched = False - for name, x in data.items(): - if x.shape.rank == 0: - data[name] = tf.reshape(x, [1, 1]) - rebatched = True - elif x.shape.rank == 1: - data[name] = tf.expand_dims(x, -1) - - preprocessed_data = self._preprocess_features(data) - crossed_data = self._cross_features(preprocessed_data) - merged_data = self._merge_features(preprocessed_data, crossed_data) - if rebatched: - if self.output_mode == "concat": - assert merged_data.shape[0] == 1 - return tf.squeeze(merged_data, axis=0) - else: - for name, x in merged_data.items(): - if x.shape.rank == 2 and x.shape[0] == 1: - merged_data[name] = tf.squeeze(x, axis=0) - return merged_data - - def get_config(self): - return { - "features": serialization_lib.serialize_keras_object(self.features), - "output_mode": self.output_mode, - "crosses": serialization_lib.serialize_keras_object(self.crosses), - "crossing_dim": self.crossing_dim, - "hashing_dim": self.hashing_dim, - "num_discretization_bins": self.num_discretization_bins, - } - - @classmethod - def from_config(cls, config): - return cls(**config) - - def get_build_config(self): - return { - name: feature.preprocessor.get_build_config() - for name, feature in self.features.items() - } - - def build_from_config(self, config): - for name in config.keys(): - self.features[name].preprocessor.build_from_config(config[name]) - self._is_adapted = True - - def save(self, filepath): - """Save the `FeatureSpace` instance to a `.keras` file. - - You can reload it via `keras.models.load_model()`: - - ```python - feature_space.save("myfeaturespace.keras") - reloaded_feature_space = keras.models.load_model("myfeaturespace.keras") - ``` - """ - saving_lib.save_model(self, filepath) - - def save_own_variables(self, store): - return - - def load_own_variables(self, store): - return diff --git a/keras/utils/feature_space_test.py b/keras/utils/feature_space_test.py deleted file mode 100644 index ee3a8770290..00000000000 --- a/keras/utils/feature_space_test.py +++ /dev/null @@ -1,400 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for FeatureSpace utility.""" - -import os - -import tensorflow.compat.v2 as tf - -import keras -from keras import layers -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import feature_space - - -@test_utils.run_v2_only -class FeatureSpaceTest(test_combinations.TestCase): - def _get_train_data_dict( - self, as_dataset=False, as_tf_tensors=False, as_labeled_dataset=False - ): - data = { - "float_1": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], - "float_2": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], - "float_3": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], - "string_1": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"], - "string_2": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"], - "int_1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], - "int_2": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], - "int_3": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], - } - if as_dataset: - return tf.data.Dataset.from_tensor_slices(data) - elif as_tf_tensors: - return tf.nest.map_structure(tf.convert_to_tensor, data) - elif as_labeled_dataset: - labels = [0, 1, 0, 1, 0, 0, 1, 0, 1, 1] - return tf.data.Dataset.from_tensor_slices((data, labels)) - return data - - def test_basic_usage(self): - fs = feature_space.FeatureSpace( - features={ - "float_1": "float", - "float_2": "float_normalized", - "float_3": "float_discretized", - "string_1": "string_categorical", - "string_2": "string_hashed", - "int_1": "integer_categorical", - "int_2": "integer_hashed", - "int_3": "integer_categorical", - }, - crosses=[("float_3", "string_1"), ("string_2", "int_2")], - output_mode="concat", - ) - # Test unbatched adapt - fs.adapt(self._get_train_data_dict(as_dataset=True)) - # Test batched adapt - fs.adapt(self._get_train_data_dict(as_dataset=True).batch(4)) - - # Test unbatched call on raw data - data = { - key: value[0] for key, value in self._get_train_data_dict().items() - } - out = fs(data) - self.assertEqual(out.shape.as_list(), [195]) - - # Test unbatched call on TF tensors - data = self._get_train_data_dict(as_tf_tensors=True) - data = {key: value[0] for key, value in data.items()} - out = fs(data) - self.assertEqual(out.shape.as_list(), [195]) - - # Test batched call on raw data - out = fs(self._get_train_data_dict()) - self.assertEqual(out.shape.as_list(), [10, 195]) - - # Test batched call on TF tensors - out = fs(self._get_train_data_dict(as_tf_tensors=True)) - self.assertEqual(out.shape.as_list(), [10, 195]) - - def test_output_mode_dict(self): - fs = feature_space.FeatureSpace( - features={ - "float_1": "float", - "float_2": "float_normalized", - "float_3": "float_discretized", - "string_1": "string_categorical", - "string_2": "string_hashed", - "int_1": "integer_categorical", - "int_2": "integer_hashed", - "int_3": "integer_categorical", - }, - crosses=[("float_3", "string_1"), ("string_2", "int_2")], - output_mode="dict", - ) - fs.adapt(self._get_train_data_dict(as_dataset=True)) - - # Test unbatched call on raw data - data = { - key: value[0] for key, value in self._get_train_data_dict().items() - } - out = fs(data) - self.assertIsInstance(out, dict) - self.assertLen(out, 10) - self.assertEqual(out["string_1"].shape.as_list(), [11]) - self.assertEqual(out["int_2"].shape.as_list(), [32]) - self.assertEqual(out["string_2_X_int_2"].shape.as_list(), [32]) - - # Test batched call on raw data - out = fs(self._get_train_data_dict()) - self.assertIsInstance(out, dict) - self.assertLen(out, 10) - self.assertEqual(out["string_1"].shape.as_list(), [10, 11]) - self.assertEqual(out["int_2"].shape.as_list(), [10, 32]) - self.assertEqual(out["string_2_X_int_2"].shape.as_list(), [10, 32]) - - # Test batched call on TF tensors - out = fs(self._get_train_data_dict(as_tf_tensors=True)) - self.assertIsInstance(out, dict) - self.assertLen(out, 10) - self.assertEqual(out["string_1"].shape.as_list(), [10, 11]) - self.assertEqual(out["int_2"].shape.as_list(), [10, 32]) - self.assertEqual(out["string_2_X_int_2"].shape.as_list(), [10, 32]) - - def test_output_mode_dict_of_ints(self): - cls = feature_space.FeatureSpace - fs = feature_space.FeatureSpace( - features={ - "float_1": "float", - "float_2": "float_normalized", - "float_3": "float_discretized", - "string_1": cls.string_categorical(output_mode="int"), - "string_2": cls.string_hashed(num_bins=32, output_mode="int"), - "int_1": cls.integer_categorical(output_mode="int"), - "int_2": cls.integer_hashed(num_bins=32, output_mode="int"), - "int_3": cls.integer_categorical(output_mode="int"), - }, - crosses=[ - cls.cross( - ("float_3", "string_1"), output_mode="int", crossing_dim=32 - ), - cls.cross( - ("string_2", "int_2"), output_mode="int", crossing_dim=32 - ), - ], - output_mode="dict", - ) - fs.adapt(self._get_train_data_dict(as_dataset=True)) - data = { - key: value[0] for key, value in self._get_train_data_dict().items() - } - out = fs(data) - self.assertIsInstance(out, dict) - self.assertLen(out, 10) - self.assertEqual(out["string_1"].shape.as_list(), [1]) - self.assertEqual(out["string_1"].dtype.name, "int64") - self.assertEqual(out["int_2"].shape.as_list(), [1]) - self.assertEqual(out["int_2"].dtype.name, "int64") - self.assertEqual(out["string_2_X_int_2"].shape.as_list(), [1]) - self.assertEqual(out["string_2_X_int_2"].dtype.name, "int64") - - def test_functional_api_sync_processing(self): - fs = feature_space.FeatureSpace( - features={ - "float_1": "float", - "float_2": "float_normalized", - "float_3": "float_discretized", - "string_1": "string_categorical", - "string_2": "string_hashed", - "int_1": "integer_categorical", - "int_2": "integer_hashed", - "int_3": "integer_categorical", - }, - crosses=[("float_3", "string_1"), ("string_2", "int_2")], - output_mode="concat", - ) - fs.adapt(self._get_train_data_dict(as_dataset=True)) - inputs = fs.get_inputs() - features = fs.get_encoded_features() - outputs = layers.Dense(1)(features) - model = keras.Model(inputs=inputs, outputs=outputs) - model.compile("adam", "mse") - ds = self._get_train_data_dict(as_labeled_dataset=True) - model.fit(ds.batch(4)) - model.evaluate(ds.batch(4)) - ds = self._get_train_data_dict(as_dataset=True) - model.predict(ds.batch(4)) - - def test_tf_data_async_processing(self): - fs = feature_space.FeatureSpace( - features={ - "float_1": "float", - "float_2": "float_normalized", - "float_3": "float_discretized", - "string_1": "string_categorical", - "string_2": "string_hashed", - "int_1": "integer_categorical", - "int_2": "integer_hashed", - "int_3": "integer_categorical", - }, - crosses=[("float_3", "string_1"), ("string_2", "int_2")], - output_mode="concat", - ) - fs.adapt(self._get_train_data_dict(as_dataset=True)) - features = fs.get_encoded_features() - outputs = layers.Dense(1)(features) - model = keras.Model(inputs=features, outputs=outputs) - model.compile("adam", "mse") - ds = self._get_train_data_dict(as_labeled_dataset=True) - # Try map before batch - ds = ds.map(lambda x, y: (fs(x), y)) - model.fit(ds.batch(4)) - # Try map after batch - ds = self._get_train_data_dict(as_labeled_dataset=True) - ds = ds.batch(4) - ds = ds.map(lambda x, y: (fs(x), y)) - model.evaluate(ds) - ds = self._get_train_data_dict(as_dataset=True) - ds = ds.map(fs) - model.predict(ds.batch(4)) - - def test_advanced_usage(self): - cls = feature_space.FeatureSpace - fs = feature_space.FeatureSpace( - features={ - "float_1": cls.float(), - "float_2": cls.float_normalized(), - "float_3": cls.float_discretized(num_bins=3), - "string_1": cls.string_categorical(max_tokens=5), - "string_2": cls.string_hashed(num_bins=32), - "int_1": cls.integer_categorical( - max_tokens=5, num_oov_indices=2 - ), - "int_2": cls.integer_hashed(num_bins=32), - "int_3": cls.integer_categorical(max_tokens=5), - }, - crosses=[ - cls.cross(("float_3", "string_1"), crossing_dim=32), - cls.cross(("string_2", "int_2"), crossing_dim=32), - ], - output_mode="concat", - ) - fs.adapt(self._get_train_data_dict(as_dataset=True)) - data = { - key: value[0] for key, value in self._get_train_data_dict().items() - } - out = fs(data) - self.assertEqual(out.shape.as_list(), [148]) - - def test_manual_kpl(self): - data = { - "text": ["1st string", "2nd string", "3rd string"], - } - cls = feature_space.FeatureSpace - - # Test with a tf-idf TextVectorization layer - tv = layers.TextVectorization(output_mode="tf_idf") - fs = feature_space.FeatureSpace( - features={ - "text": cls.feature( - preprocessor=tv, dtype="string", output_mode="float" - ), - }, - output_mode="concat", - ) - fs.adapt(tf.data.Dataset.from_tensor_slices(data)) - out = fs(data) - self.assertEqual(out.shape.as_list(), [3, 5]) - - def test_no_adapt(self): - data = { - "int_1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], - } - fs = feature_space.FeatureSpace( - { - "int_1": "integer_hashed", - }, - output_mode="concat", - ) - out = fs(data) - self.assertEqual(out.shape.as_list(), [10, 32]) - - def test_saving(self): - cls = feature_space.FeatureSpace - fs = feature_space.FeatureSpace( - features={ - "float_1": cls.float(), - "float_2": cls.float_normalized(), - "float_3": cls.float_discretized(num_bins=3), - "string_1": cls.string_categorical(max_tokens=5), - "string_2": cls.string_hashed(num_bins=32), - "int_1": cls.integer_categorical( - max_tokens=5, num_oov_indices=2 - ), - "int_2": cls.integer_hashed(num_bins=32), - "int_3": cls.integer_categorical(max_tokens=5), - }, - crosses=[ - cls.cross(("float_3", "string_1"), crossing_dim=32), - cls.cross(("string_2", "int_2"), crossing_dim=32), - ], - output_mode="concat", - ) - fs.adapt(self._get_train_data_dict(as_dataset=True)) - data = { - key: value[0] for key, value in self._get_train_data_dict().items() - } - ref_out = fs(data) - - temp_filepath = os.path.join(self.get_temp_dir(), "fs.keras") - fs.save(temp_filepath) - fs = keras.models.load_model(temp_filepath) - - # Save again immediately after loading to test idempotency - temp_filepath = os.path.join(self.get_temp_dir(), "fs2.keras") - fs.save(temp_filepath) - - # Test correctness of the first saved FS - out = fs(data) - self.assertAllClose(out, ref_out) - - inputs = fs.get_inputs() - outputs = fs.get_encoded_features() - model = keras.Model(inputs=inputs, outputs=outputs) - ds = self._get_train_data_dict(as_dataset=True) - out = model.predict(ds.batch(4)) - self.assertAllClose(out[0], ref_out) - - # Test correctness of the re-saved FS - fs = keras.models.load_model(temp_filepath) - out = fs(data) - self.assertAllClose(out, ref_out) - - def test_errors(self): - # Test no features - with self.assertRaisesRegex(ValueError, "cannot be None or empty"): - feature_space.FeatureSpace(features={}) - # Test no crossing dim - with self.assertRaisesRegex(ValueError, "`crossing_dim`"): - feature_space.FeatureSpace( - features={ - "f1": "integer_categorical", - "f2": "integer_categorical", - }, - crosses=[("f1", "f2")], - crossing_dim=None, - ) - # Test wrong cross feature name - with self.assertRaisesRegex(ValueError, "should be present in "): - feature_space.FeatureSpace( - features={ - "f1": "integer_categorical", - "f2": "integer_categorical", - }, - crosses=[("f1", "unknown")], - crossing_dim=32, - ) - # Test wrong output mode - with self.assertRaisesRegex(ValueError, "for argument `output_mode`"): - feature_space.FeatureSpace( - features={ - "f1": "integer_categorical", - "f2": "integer_categorical", - }, - output_mode="unknown", - ) - # Test call before adapt - with self.assertRaisesRegex(ValueError, "You need to call `.adapt"): - fs = feature_space.FeatureSpace( - features={ - "f1": "integer_categorical", - "f2": "integer_categorical", - } - ) - fs({"f1": [0], "f2": [0]}) - # Test get_encoded_features before adapt - with self.assertRaisesRegex(ValueError, "You need to call `.adapt"): - fs = feature_space.FeatureSpace( - features={ - "f1": "integer_categorical", - "f2": "integer_categorical", - } - ) - fs.get_encoded_features() - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/generic_utils.py b/keras/utils/generic_utils.py deleted file mode 100644 index 3d831683301..00000000000 --- a/keras/utils/generic_utils.py +++ /dev/null @@ -1,557 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Python utilities required by Keras.""" - -import binascii -import codecs -import importlib -import marshal -import os -import re -import sys -import time -import types as python_types - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.utils import io_utils -from keras.utils import tf_inspect - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -def func_dump(func): - """Serializes a user defined function. - - Args: - func: the function to serialize. - - Returns: - A tuple `(code, defaults, closure)`. - """ - if os.name == "nt": - raw_code = marshal.dumps(func.__code__).replace(b"\\", b"/") - code = codecs.encode(raw_code, "base64").decode("ascii") - else: - raw_code = marshal.dumps(func.__code__) - code = codecs.encode(raw_code, "base64").decode("ascii") - defaults = func.__defaults__ - if func.__closure__: - closure = tuple(c.cell_contents for c in func.__closure__) - else: - closure = None - return code, defaults, closure - - -def func_load(code, defaults=None, closure=None, globs=None): - """Deserializes a user defined function. - - Args: - code: bytecode of the function. - defaults: defaults of the function. - closure: closure of the function. - globs: dictionary of global objects. - - Returns: - A function object. - """ - if isinstance(code, (tuple, list)): # unpack previous dump - code, defaults, closure = code - if isinstance(defaults, list): - defaults = tuple(defaults) - - def ensure_value_to_cell(value): - """Ensures that a value is converted to a python cell object. - - Args: - value: Any value that needs to be casted to the cell type - - Returns: - A value wrapped as a cell object (see function "func_load") - """ - - def dummy_fn(): - - value # just access it so it gets captured in .__closure__ - - cell_value = dummy_fn.__closure__[0] - if not isinstance(value, type(cell_value)): - return cell_value - return value - - if closure is not None: - closure = tuple(ensure_value_to_cell(_) for _ in closure) - try: - raw_code = codecs.decode(code.encode("ascii"), "base64") - except (UnicodeEncodeError, binascii.Error): - raw_code = code.encode("raw_unicode_escape") - code = marshal.loads(raw_code) - if globs is None: - globs = globals() - return python_types.FunctionType( - code, globs, name=code.co_name, argdefs=defaults, closure=closure - ) - - -def has_arg(fn, name, accept_all=False): - """Checks if a callable accepts a given keyword argument. - - Args: - fn: Callable to inspect. - name: Check if `fn` can be called with `name` as a keyword argument. - accept_all: What to return if there is no parameter called `name` but - the function accepts a `**kwargs` argument. - - Returns: - bool, whether `fn` accepts a `name` keyword argument. - """ - arg_spec = tf_inspect.getfullargspec(fn) - if accept_all and arg_spec.varkw is not None: - return True - return name in arg_spec.args or name in arg_spec.kwonlyargs - - -@keras_export("keras.utils.Progbar") -class Progbar: - """Displays a progress bar. - - Args: - target: Total number of steps expected, None if unknown. - width: Progress bar width on screen. - verbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose) - stateful_metrics: Iterable of string names of metrics that should *not* - be averaged over time. Metrics in this list will be displayed as-is. - All others will be averaged by the progbar before display. - interval: Minimum visual progress update interval (in seconds). - unit_name: Display name for step counts (usually "step" or "sample"). - """ - - def __init__( - self, - target, - width=30, - verbose=1, - interval=0.05, - stateful_metrics=None, - unit_name="step", - ): - self.target = target - self.width = width - self.verbose = verbose - self.interval = interval - self.unit_name = unit_name - if stateful_metrics: - self.stateful_metrics = set(stateful_metrics) - else: - self.stateful_metrics = set() - - self._dynamic_display = ( - (hasattr(sys.stdout, "isatty") and sys.stdout.isatty()) - or "ipykernel" in sys.modules - or "posix" in sys.modules - or "PYCHARM_HOSTED" in os.environ - ) - self._total_width = 0 - self._seen_so_far = 0 - # We use a dict + list to avoid garbage collection - # issues found in OrderedDict - self._values = {} - self._values_order = [] - self._start = time.time() - self._last_update = 0 - self._time_at_epoch_start = self._start - self._time_at_epoch_end = None - self._time_after_first_step = None - - def update(self, current, values=None, finalize=None): - """Updates the progress bar. - - Args: - current: Index of current step. - values: List of tuples: `(name, value_for_last_step)`. If `name` is - in `stateful_metrics`, `value_for_last_step` will be displayed - as-is. Else, an average of the metric over time will be - displayed. - finalize: Whether this is the last update for the progress bar. If - `None`, defaults to `current >= self.target`. - """ - if finalize is None: - if self.target is None: - finalize = False - else: - finalize = current >= self.target - - values = values or [] - for k, v in values: - if k not in self._values_order: - self._values_order.append(k) - if k not in self.stateful_metrics: - # In the case that progress bar doesn't have a target value in - # the first epoch, both on_batch_end and on_epoch_end will be - # called, which will cause 'current' and 'self._seen_so_far' to - # have the same value. Force the minimal value to 1 here, - # otherwise stateful_metric will be 0s. - value_base = max(current - self._seen_so_far, 1) - if k not in self._values: - self._values[k] = [v * value_base, value_base] - else: - self._values[k][0] += v * value_base - self._values[k][1] += value_base - else: - # Stateful metrics output a numeric value. This representation - # means "take an average from a single value" but keeps the - # numeric formatting. - self._values[k] = [v, 1] - self._seen_so_far = current - - message = "" - now = time.time() - info = f" - {now - self._start:.0f}s" - if current == self.target: - self._time_at_epoch_end = now - if self.verbose == 1: - if now - self._last_update < self.interval and not finalize: - return - - prev_total_width = self._total_width - if self._dynamic_display: - message += "\b" * prev_total_width - message += "\r" - else: - message += "\n" - - if self.target is not None: - numdigits = int(np.log10(self.target)) + 1 - bar = ("%" + str(numdigits) + "d/%d [") % (current, self.target) - prog = float(current) / self.target - prog_width = int(self.width * prog) - if prog_width > 0: - bar += "=" * (prog_width - 1) - if current < self.target: - bar += ">" - else: - bar += "=" - bar += "." * (self.width - prog_width) - bar += "]" - else: - bar = "%7d/Unknown" % current - - self._total_width = len(bar) - message += bar - - time_per_unit = self._estimate_step_duration(current, now) - - if self.target is None or finalize: - info += self._format_time(time_per_unit, self.unit_name) - else: - eta = time_per_unit * (self.target - current) - if eta > 3600: - eta_format = "%d:%02d:%02d" % ( - eta // 3600, - (eta % 3600) // 60, - eta % 60, - ) - elif eta > 60: - eta_format = "%d:%02d" % (eta // 60, eta % 60) - else: - eta_format = "%ds" % eta - - info = f" - ETA: {eta_format}" - - for k in self._values_order: - info += f" - {k}:" - if isinstance(self._values[k], list): - avg = np.mean( - self._values[k][0] / max(1, self._values[k][1]) - ) - if abs(avg) > 1e-3: - info += f" {avg:.4f}" - else: - info += f" {avg:.4e}" - else: - info += f" {self._values[k]}" - - self._total_width += len(info) - if prev_total_width > self._total_width: - info += " " * (prev_total_width - self._total_width) - - if finalize: - info += "\n" - - message += info - io_utils.print_msg(message, line_break=False) - message = "" - - elif self.verbose == 2: - if finalize: - numdigits = int(np.log10(self.target)) + 1 - count = ("%" + str(numdigits) + "d/%d") % (current, self.target) - info = count + info - for k in self._values_order: - info += f" - {k}:" - avg = np.mean( - self._values[k][0] / max(1, self._values[k][1]) - ) - if avg > 1e-3: - info += f" {avg:.4f}" - else: - info += f" {avg:.4e}" - if self._time_at_epoch_end: - time_per_epoch = ( - self._time_at_epoch_end - self._time_at_epoch_start - ) - avg_time_per_step = time_per_epoch / self.target - self._time_at_epoch_start = now - self._time_at_epoch_end = None - info += " -" + self._format_time(time_per_epoch, "epoch") - info += " -" + self._format_time( - avg_time_per_step, self.unit_name - ) - info += "\n" - message += info - io_utils.print_msg(message, line_break=False) - message = "" - - self._last_update = now - - def add(self, n, values=None): - self.update(self._seen_so_far + n, values) - - def _format_time(self, time_per_unit, unit_name): - """format a given duration to display to the user. - - Given the duration, this function formats it in either milliseconds - or seconds and displays the unit (i.e. ms/step or s/epoch) - Args: - time_per_unit: the duration to display - unit_name: the name of the unit to display - Returns: - a string with the correctly formatted duration and units - """ - formatted = "" - if time_per_unit >= 1 or time_per_unit == 0: - formatted += f" {time_per_unit:.0f}s/{unit_name}" - elif time_per_unit >= 1e-3: - formatted += f" {time_per_unit * 1000.0:.0f}ms/{unit_name}" - else: - formatted += f" {time_per_unit * 1000000.0:.0f}us/{unit_name}" - return formatted - - def _estimate_step_duration(self, current, now): - """Estimate the duration of a single step. - - Given the step number `current` and the corresponding time `now` this - function returns an estimate for how long a single step takes. If this - is called before one step has been completed (i.e. `current == 0`) then - zero is given as an estimate. The duration estimate ignores the duration - of the (assumed to be non-representative) first step for estimates when - more steps are available (i.e. `current>1`). - - Args: - current: Index of current step. - now: The current time. - - Returns: Estimate of the duration of a single step. - """ - if current: - # there are a few special scenarios here: - # 1) somebody is calling the progress bar without ever supplying - # step 1 - # 2) somebody is calling the progress bar and supplies step one - # multiple times, e.g. as part of a finalizing call - # in these cases, we just fall back to the simple calculation - if self._time_after_first_step is not None and current > 1: - time_per_unit = (now - self._time_after_first_step) / ( - current - 1 - ) - else: - time_per_unit = (now - self._start) / current - - if current == 1: - self._time_after_first_step = now - return time_per_unit - else: - return 0 - - def _update_stateful_metrics(self, stateful_metrics): - self.stateful_metrics = self.stateful_metrics.union(stateful_metrics) - - -def make_batches(size, batch_size): - """Returns a list of batch indices (tuples of indices). - - Args: - size: Integer, total size of the data to slice into batches. - batch_size: Integer, batch size. - - Returns: - A list of tuples of array indices. - """ - num_batches = int(np.ceil(size / float(batch_size))) - return [ - (i * batch_size, min(size, (i + 1) * batch_size)) - for i in range(0, num_batches) - ] - - -def slice_arrays(arrays, start=None, stop=None): - """Slice an array or list of arrays. - - This takes an array-like, or a list of - array-likes, and outputs: - - arrays[start:stop] if `arrays` is an array-like - - [x[start:stop] for x in arrays] if `arrays` is a list - - Can also work on list/array of indices: `slice_arrays(x, indices)` - - Args: - arrays: Single array or list of arrays. - start: can be an integer index (start index) or a list/array of indices - stop: integer (stop index); should be None if `start` was a list. - - Returns: - A slice of the array(s). - - Raises: - ValueError: If the value of start is a list and stop is not None. - """ - if arrays is None: - return [None] - if isinstance(start, list) and stop is not None: - raise ValueError( - "The stop argument has to be None if the value of start " - f"is a list. Received start={start}, stop={stop}" - ) - elif isinstance(arrays, list): - if hasattr(start, "__len__"): - # hdf5 datasets only support list objects as indices - if hasattr(start, "shape"): - start = start.tolist() - return [None if x is None else x[start] for x in arrays] - return [ - None - if x is None - else None - if not hasattr(x, "__getitem__") - else x[start:stop] - for x in arrays - ] - else: - if hasattr(start, "__len__"): - if hasattr(start, "shape"): - start = start.tolist() - return arrays[start] - if hasattr(start, "__getitem__"): - return arrays[start:stop] - return [None] - - -def to_list(x): - """Normalizes a list/tensor into a list. - - If a tensor is passed, we return - a list of size 1 containing the tensor. - - Args: - x: target object to be normalized. - - Returns: - A list. - """ - if isinstance(x, list): - return x - return [x] - - -def to_snake_case(name): - intermediate = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name) - insecure = re.sub("([a-z])([A-Z])", r"\1_\2", intermediate).lower() - # If the class is private the name starts with "_" which is not secure - # for creating scopes. We prefix the name with "private" in this case. - if insecure[0] != "_": - return insecure - return "private" + insecure - - -def is_all_none(structure): - iterable = tf.nest.flatten(structure) - # We cannot use Python's `any` because the iterable may return Tensors. - for element in iterable: - if element is not None: - return False - return True - - -def check_for_unexpected_keys(name, input_dict, expected_values): - unknown = set(input_dict.keys()).difference(expected_values) - if unknown: - raise ValueError( - f"Unknown entries in {name} dictionary: {list(unknown)}. " - f"Only expected following keys: {expected_values}" - ) - - -def validate_kwargs( - kwargs, allowed_kwargs, error_message="Keyword argument not understood:" -): - """Checks that all keyword arguments are in the set of allowed keys.""" - for kwarg in kwargs: - if kwarg not in allowed_kwargs: - raise TypeError(error_message, kwarg) - - -def default(method): - """Decorates a method to detect overrides in subclasses.""" - method._is_default = True - return method - - -def is_default(method): - """Check if a method is decorated with the `default` wrapper.""" - return getattr(method, "_is_default", False) - - -def populate_dict_with_module_objects(target_dict, modules, obj_filter): - for module in modules: - for name in dir(module): - obj = getattr(module, name) - if obj_filter(obj): - target_dict[name] = obj - - -class LazyLoader(python_types.ModuleType): - """Lazily import a module, mainly to avoid pulling in large dependencies.""" - - def __init__(self, local_name, parent_module_globals, name): - self._local_name = local_name - self._parent_module_globals = parent_module_globals - super().__init__(name) - - def _load(self): - """Load the module and insert it into the parent's globals.""" - # Import the target module and insert it into the parent's namespace - module = importlib.import_module(self.__name__) - self._parent_module_globals[self._local_name] = module - # Update this object's dict so that if someone keeps a reference to the - # LazyLoader, lookups are efficient (__getattr__ is only called on - # lookups that fail). - self.__dict__.update(module.__dict__) - return module - - def __getattr__(self, item): - module = self._load() - return getattr(module, item) diff --git a/keras/utils/generic_utils_test.py b/keras/utils/generic_utils_test.py deleted file mode 100644 index a580513a316..00000000000 --- a/keras/utils/generic_utils_test.py +++ /dev/null @@ -1,433 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras generic Python utils.""" - - -import os -import sys -from functools import partial - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.saving import serialization_lib -from keras.saving.legacy import serialization -from keras.utils import generic_utils -from keras.utils import io_utils - - -class SnakeCaseTest(tf.test.TestCase): - def test_snake_case(self): - self.assertEqual(generic_utils.to_snake_case("SomeClass"), "some_class") - self.assertEqual(generic_utils.to_snake_case("Conv2D"), "conv2d") - self.assertEqual( - generic_utils.to_snake_case("ConvLSTM2D"), "conv_lstm2d" - ) - - -class HasArgTest(tf.test.TestCase): - def test_has_arg(self): - def f_x(x): - return x - - def f_x_args(x, *args): - _ = args - return x - - def f_x_kwargs(x, **kwargs): - _ = kwargs - return x - - def f(a, b, c): - return a + b + c - - partial_f = partial(f, b=1) - - self.assertTrue( - keras.utils.generic_utils.has_arg(f_x, "x", accept_all=False) - ) - self.assertFalse( - keras.utils.generic_utils.has_arg(f_x, "y", accept_all=False) - ) - self.assertTrue( - keras.utils.generic_utils.has_arg(f_x_args, "x", accept_all=False) - ) - self.assertFalse( - keras.utils.generic_utils.has_arg(f_x_args, "y", accept_all=False) - ) - self.assertTrue( - keras.utils.generic_utils.has_arg(f_x_kwargs, "x", accept_all=False) - ) - self.assertFalse( - keras.utils.generic_utils.has_arg(f_x_kwargs, "y", accept_all=False) - ) - self.assertTrue( - keras.utils.generic_utils.has_arg(f_x_kwargs, "y", accept_all=True) - ) - self.assertTrue( - keras.utils.generic_utils.has_arg(partial_f, "c", accept_all=True) - ) - - -class SerializeKerasObjectTest(tf.test.TestCase): - def test_serialize_none(self): - serialized = serialization_lib.serialize_keras_object(None) - self.assertEqual(serialized, None) - deserialized = serialization_lib.deserialize_keras_object(serialized) - self.assertEqual(deserialized, None) - - def test_serializable_object(self): - class SerializableInt(int): - """A serializable object to pass out of a test layer's config.""" - - def __new__(cls, value): - return int.__new__(cls, value) - - def get_config(self): - return {"value": int(self)} - - @classmethod - def from_config(cls, config): - return cls(**config) - - layer = keras.layers.Dense( - SerializableInt(3), - activation="relu", - kernel_initializer="ones", - bias_regularizer="l2", - ) - config = keras.layers.serialize(layer) - new_layer = keras.layers.deserialize( - config, custom_objects={"SerializableInt": SerializableInt} - ) - self.assertEqual(new_layer.activation, keras.activations.relu) - self.assertEqual( - new_layer.bias_regularizer.__class__, keras.regularizers.L2 - ) - self.assertEqual(new_layer.units.__class__, SerializableInt) - self.assertEqual(new_layer.units, 3) - - def test_nested_serializable_object(self): - class SerializableInt(int): - """A serializable object to pass out of a test layer's config.""" - - def __new__(cls, value): - return int.__new__(cls, value) - - def get_config(self): - return {"value": int(self)} - - @classmethod - def from_config(cls, config): - return cls(**config) - - class SerializableNestedInt(int): - """A serializable object containing another serializable object.""" - - def __new__(cls, value, int_obj): - obj = int.__new__(cls, value) - obj.int_obj = int_obj - return obj - - def get_config(self): - return {"value": int(self), "int_obj": self.int_obj} - - @classmethod - def from_config(cls, config): - return cls(**config) - - nested_int = SerializableInt(4) - layer = keras.layers.Dense( - SerializableNestedInt(3, nested_int), - name="SerializableNestedInt", - activation="relu", - kernel_initializer="ones", - bias_regularizer="l2", - ) - config = keras.layers.serialize(layer) - new_layer = keras.layers.deserialize( - config, - custom_objects={ - "SerializableInt": SerializableInt, - "SerializableNestedInt": SerializableNestedInt, - }, - ) - # Make sure the string field doesn't get convert to custom object, even - # they have same value. - self.assertEqual(new_layer.name, "SerializableNestedInt") - self.assertEqual(new_layer.activation, keras.activations.relu) - self.assertEqual( - new_layer.bias_regularizer.__class__, keras.regularizers.L2 - ) - self.assertEqual(new_layer.units.__class__, SerializableNestedInt) - self.assertEqual(new_layer.units, 3) - self.assertEqual(new_layer.units.int_obj.__class__, SerializableInt) - self.assertEqual(new_layer.units.int_obj, 4) - - def test_nested_serializable_fn(self): - def serializable_fn(x): - """A serializable function to pass out of a test layer's config.""" - return x - - class SerializableNestedInt(int): - """A serializable object containing a serializable function.""" - - def __new__(cls, value, fn): - obj = int.__new__(cls, value) - obj.fn = fn - return obj - - def get_config(self): - return {"value": int(self), "fn": self.fn} - - @classmethod - def from_config(cls, config): - return cls(**config) - - layer = keras.layers.Dense( - SerializableNestedInt(3, serializable_fn), - activation="relu", - kernel_initializer="ones", - bias_regularizer="l2", - ) - config = keras.layers.serialize(layer) - new_layer = keras.layers.deserialize( - config, - custom_objects={ - "serializable_fn": serializable_fn, - "SerializableNestedInt": SerializableNestedInt, - }, - ) - self.assertEqual(new_layer.activation, keras.activations.relu) - self.assertIsInstance(new_layer.bias_regularizer, keras.regularizers.L2) - self.assertIsInstance(new_layer.units, SerializableNestedInt) - self.assertEqual(new_layer.units, 3) - self.assertIs(new_layer.units.fn, serializable_fn) - - def test_serialize_type_object_initializer(self): - layer = keras.layers.Dense( - 1, - kernel_initializer=keras.initializers.ones, - bias_initializer=keras.initializers.zeros, - ) - config = keras.layers.serialize(layer) - self.assertEqual( - config["config"]["bias_initializer"]["class_name"], "Zeros" - ) - self.assertEqual( - config["config"]["kernel_initializer"]["class_name"], "Ones" - ) - - def test_serializable_with_old_config(self): - # model config generated by tf-1.2.1 - old_model_config = { - "class_name": "Sequential", - "config": [ - { - "class_name": "Dense", - "config": { - "name": "dense_1", - "trainable": True, - "batch_input_shape": [None, 784], - "dtype": "float32", - "units": 32, - "activation": "linear", - "use_bias": True, - "kernel_initializer": { - "class_name": "Ones", - "config": {"dtype": "float32"}, - }, - "bias_initializer": { - "class_name": "Zeros", - "config": {"dtype": "float32"}, - }, - "kernel_regularizer": None, - "bias_regularizer": None, - "activity_regularizer": None, - "kernel_constraint": None, - "bias_constraint": None, - }, - } - ], - } - old_model = serialization_lib.deserialize_keras_object( - old_model_config, module_objects={"Sequential": keras.Sequential} - ) - new_model = keras.Sequential( - [ - keras.layers.Dense( - 32, input_dim=784, kernel_initializer="Ones" - ), - ] - ) - input_data = np.random.normal(2, 1, (5, 784)) - output = old_model.predict(input_data) - expected_output = new_model.predict(input_data) - self.assertAllEqual(output, expected_output) - - def test_deserialize_unknown_object(self): - class CustomLayer(keras.layers.Layer): - pass - - layer = CustomLayer() - config = serialization_lib.serialize_keras_object(layer) - if tf.__internal__.tf2.enabled(): - with self.assertRaisesRegex( - TypeError, - "Could not locate class 'CustomLayer'. Make sure custom classes", # noqa: E501 - ): - serialization_lib.deserialize_keras_object(config) - else: - with self.assertRaisesRegex( - ValueError, "using a `keras.utils.custom_object_scope`" - ): - serialization.deserialize_keras_object(config) - restored = serialization_lib.deserialize_keras_object( - config, custom_objects={"CustomLayer": CustomLayer} - ) - self.assertIsInstance(restored, CustomLayer) - - -class SliceArraysTest(tf.test.TestCase): - def test_slice_arrays(self): - input_a = list([1, 2, 3]) - self.assertEqual( - keras.utils.generic_utils.slice_arrays(input_a, start=0), - [None, None, None], - ) - self.assertEqual( - keras.utils.generic_utils.slice_arrays(input_a, stop=3), - [None, None, None], - ) - self.assertEqual( - keras.utils.generic_utils.slice_arrays(input_a, start=0, stop=1), - [None, None, None], - ) - - -# object() alone isn't compatible with WeakKeyDictionary, which we use to -# track shared configs. -class MaybeSharedObject: - pass - - -class SharedObjectScopeTest(tf.test.TestCase): - def test_shared_object_saving_scope_single_object_doesnt_export_id(self): - with serialization.SharedObjectSavingScope() as scope: - single_object = MaybeSharedObject() - self.assertIsNone(scope.get_config(single_object)) - single_object_config = scope.create_config({}, single_object) - self.assertIsNotNone(single_object_config) - self.assertNotIn( - serialization.SHARED_OBJECT_KEY, single_object_config - ) - - def test_shared_object_saving_scope_shared_object_exports_id(self): - with serialization.SharedObjectSavingScope() as scope: - shared_object = MaybeSharedObject() - self.assertIsNone(scope.get_config(shared_object)) - scope.create_config({}, shared_object) - first_object_config = scope.get_config(shared_object) - second_object_config = scope.get_config(shared_object) - self.assertIn(serialization.SHARED_OBJECT_KEY, first_object_config) - self.assertIn(serialization.SHARED_OBJECT_KEY, second_object_config) - self.assertIs(first_object_config, second_object_config) - - def test_shared_object_loading_scope_noop(self): - # Test that, without a context manager scope, adding configs will do - # nothing. - obj_id = 1 - obj = MaybeSharedObject() - serialization._shared_object_loading_scope().set(obj_id, obj) - self.assertIsNone( - serialization._shared_object_loading_scope().get(obj_id) - ) - - def test_shared_object_loading_scope_returns_shared_obj(self): - obj_id = 1 - obj = MaybeSharedObject() - with serialization.SharedObjectLoadingScope() as scope: - scope.set(obj_id, obj) - self.assertIs(scope.get(obj_id), obj) - - def test_nested_shared_object_saving_scopes(self): - my_obj = MaybeSharedObject() - with serialization.SharedObjectSavingScope() as scope_1: - scope_1.create_config({}, my_obj) - with serialization.SharedObjectSavingScope() as scope_2: - # Nesting saving scopes should return the original scope and - # should not clear any objects we're tracking. - self.assertIs(scope_1, scope_2) - self.assertIsNotNone(scope_2.get_config(my_obj)) - self.assertIsNotNone(scope_1.get_config(my_obj)) - self.assertIsNone(serialization._shared_object_saving_scope()) - - def test_custom_object_scope_correct_class(self): - train_step_message = "This is my training step" - temp_dir = os.path.join(self.get_temp_dir(), "my_model") - - class CustomModelX(keras.Model): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.dense1 = keras.layers.Dense(1) - - def call(self, inputs): - return self.dense1(inputs) - - def train_step(self, data): - tf.print(train_step_message) - x, y = data - with tf.GradientTape() as tape: - y_pred = self(x) - loss = self.compiled_loss(y, y_pred) - - gradients = tape.gradient(loss, self.trainable_variables) - self.optimizer.apply_gradients( - zip(gradients, self.trainable_variables) - ) - return {} - - def func_that_returns_one(self): - return 1 - - subclassed_model = CustomModelX() - subclassed_model.compile(optimizer="adam", loss="mse") - - x = np.random.random((100, 32)) - y = np.random.random((100, 1)) - subclassed_model.fit(x, y, epochs=1) - subclassed_model.save(temp_dir, save_format="tf") - - with keras.utils.custom_object_scope({"CustomModelX": CustomModelX}): - loaded_model = keras.models.load_model(temp_dir) - - io_utils.enable_interactive_logging() - # `tf.print` writes to stderr. - with self.captureWritesToStream(sys.stderr) as printed: - loaded_model.fit(x, y, epochs=1) - if tf.__internal__.tf2.enabled(): - # `tf.print` message is only available in stderr in TF2. Check - # that custom `train_step` is used. - self.assertRegex(printed.contents(), train_step_message) - - # Check that the custom class does get used. - self.assertIsInstance(loaded_model, CustomModelX) - # Check that the custom method is available. - self.assertEqual(loaded_model.func_that_returns_one(), 1) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/image_dataset.py b/keras/utils/image_dataset.py deleted file mode 100644 index 449a8d4624d..00000000000 --- a/keras/utils/image_dataset.py +++ /dev/null @@ -1,369 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras image dataset loading utilities.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.utils import dataset_utils -from keras.utils import image_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -ALLOWLIST_FORMATS = (".bmp", ".gif", ".jpeg", ".jpg", ".png") - - -@keras_export( - "keras.utils.image_dataset_from_directory", - "keras.preprocessing.image_dataset_from_directory", - v1=[], -) -def image_dataset_from_directory( - directory, - labels="inferred", - label_mode="int", - class_names=None, - color_mode="rgb", - batch_size=32, - image_size=(256, 256), - shuffle=True, - seed=None, - validation_split=None, - subset=None, - interpolation="bilinear", - follow_links=False, - crop_to_aspect_ratio=False, - **kwargs, -): - """Generates a `tf.data.Dataset` from image files in a directory. - - If your directory structure is: - - ``` - main_directory/ - ...class_a/ - ......a_image_1.jpg - ......a_image_2.jpg - ...class_b/ - ......b_image_1.jpg - ......b_image_2.jpg - ``` - - Then calling `image_dataset_from_directory(main_directory, - labels='inferred')` will return a `tf.data.Dataset` that yields batches of - images from the subdirectories `class_a` and `class_b`, together with labels - 0 and 1 (0 corresponding to `class_a` and 1 corresponding to `class_b`). - - Supported image formats: jpeg, png, bmp, gif. - Animated gifs are truncated to the first frame. - - Args: - directory: Directory where the data is located. - If `labels` is "inferred", it should contain - subdirectories, each containing images for a class. - Otherwise, the directory structure is ignored. - labels: Either "inferred" - (labels are generated from the directory structure), - None (no labels), - or a list/tuple of integer labels of the same size as the number of - image files found in the directory. Labels should be sorted according - to the alphanumeric order of the image file paths - (obtained via `os.walk(directory)` in Python). - label_mode: String describing the encoding of `labels`. Options are: - - 'int': means that the labels are encoded as integers - (e.g. for `sparse_categorical_crossentropy` loss). - - 'categorical' means that the labels are - encoded as a categorical vector - (e.g. for `categorical_crossentropy` loss). - - 'binary' means that the labels (there can be only 2) - are encoded as `float32` scalars with values 0 or 1 - (e.g. for `binary_crossentropy`). - - None (no labels). - class_names: Only valid if "labels" is "inferred". This is the explicit - list of class names (must match names of subdirectories). Used - to control the order of the classes - (otherwise alphanumerical order is used). - color_mode: One of "grayscale", "rgb", "rgba". Default: "rgb". - Whether the images will be converted to - have 1, 3, or 4 channels. - batch_size: Size of the batches of data. Default: 32. - If `None`, the data will not be batched - (the dataset will yield individual samples). - image_size: Size to resize images to after they are read from disk, - specified as `(height, width)`. Defaults to `(256, 256)`. - Since the pipeline processes batches of images that must all have - the same size, this must be provided. - shuffle: Whether to shuffle the data. Default: True. - If set to False, sorts the data in alphanumeric order. - seed: Optional random seed for shuffling and transformations. - validation_split: Optional float between 0 and 1, - fraction of data to reserve for validation. - subset: Subset of the data to return. - One of "training", "validation" or "both". - Only used if `validation_split` is set. - When `subset="both"`, the utility returns a tuple of two datasets - (the training and validation datasets respectively). - interpolation: String, the interpolation method used when resizing images. - Defaults to `bilinear`. Supports `bilinear`, `nearest`, `bicubic`, - `area`, `lanczos3`, `lanczos5`, `gaussian`, `mitchellcubic`. - follow_links: Whether to visit subdirectories pointed to by symlinks. - Defaults to False. - crop_to_aspect_ratio: If True, resize the images without aspect - ratio distortion. When the original aspect ratio differs from the target - aspect ratio, the output image will be cropped so as to return the - largest possible window in the image (of size `image_size`) that matches - the target aspect ratio. By default (`crop_to_aspect_ratio=False`), - aspect ratio may not be preserved. - **kwargs: Legacy keyword arguments. - - Returns: - A `tf.data.Dataset` object. - - - If `label_mode` is None, it yields `float32` tensors of shape - `(batch_size, image_size[0], image_size[1], num_channels)`, - encoding images (see below for rules regarding `num_channels`). - - Otherwise, it yields a tuple `(images, labels)`, where `images` - has shape `(batch_size, image_size[0], image_size[1], num_channels)`, - and `labels` follows the format described below. - - Rules regarding labels format: - - - if `label_mode` is `int`, the labels are an `int32` tensor of shape - `(batch_size,)`. - - if `label_mode` is `binary`, the labels are a `float32` tensor of - 1s and 0s of shape `(batch_size, 1)`. - - if `label_mode` is `categorical`, the labels are a `float32` tensor - of shape `(batch_size, num_classes)`, representing a one-hot - encoding of the class index. - - Rules regarding number of channels in the yielded images: - - - if `color_mode` is `grayscale`, - there's 1 channel in the image tensors. - - if `color_mode` is `rgb`, - there are 3 channels in the image tensors. - - if `color_mode` is `rgba`, - there are 4 channels in the image tensors. - """ - if "smart_resize" in kwargs: - crop_to_aspect_ratio = kwargs.pop("smart_resize") - if kwargs: - raise TypeError(f"Unknown keywords argument(s): {tuple(kwargs.keys())}") - if labels not in ("inferred", None): - if not isinstance(labels, (list, tuple)): - raise ValueError( - "`labels` argument should be a list/tuple of integer labels, " - "of the same size as the number of image files in the target " - "directory. If you wish to infer the labels from the " - "subdirectory " - 'names in the target directory, pass `labels="inferred"`. ' - "If you wish to get a dataset that only contains images " - f"(no labels), pass `labels=None`. Received: labels={labels}" - ) - if class_names: - raise ValueError( - "You can only pass `class_names` if " - f'`labels="inferred"`. Received: labels={labels}, and ' - f"class_names={class_names}" - ) - if label_mode not in {"int", "categorical", "binary", None}: - raise ValueError( - '`label_mode` argument must be one of "int", ' - '"categorical", "binary", ' - f"or None. Received: label_mode={label_mode}" - ) - if labels is None or label_mode is None: - labels = None - label_mode = None - if color_mode == "rgb": - num_channels = 3 - elif color_mode == "rgba": - num_channels = 4 - elif color_mode == "grayscale": - num_channels = 1 - else: - raise ValueError( - '`color_mode` must be one of {"rgb", "rgba", "grayscale"}. ' - f"Received: color_mode={color_mode}" - ) - interpolation = image_utils.get_interpolation(interpolation) - dataset_utils.check_validation_split_arg( - validation_split, subset, shuffle, seed - ) - - if seed is None: - seed = np.random.randint(1e6) - image_paths, labels, class_names = dataset_utils.index_directory( - directory, - labels, - formats=ALLOWLIST_FORMATS, - class_names=class_names, - shuffle=shuffle, - seed=seed, - follow_links=follow_links, - ) - - if label_mode == "binary" and len(class_names) != 2: - raise ValueError( - 'When passing `label_mode="binary"`, there must be exactly 2 ' - f"class_names. Received: class_names={class_names}" - ) - - if subset == "both": - ( - image_paths_train, - labels_train, - ) = dataset_utils.get_training_or_validation_split( - image_paths, labels, validation_split, "training" - ) - ( - image_paths_val, - labels_val, - ) = dataset_utils.get_training_or_validation_split( - image_paths, labels, validation_split, "validation" - ) - if not image_paths_train: - raise ValueError( - f"No training images found in directory {directory}. " - f"Allowed formats: {ALLOWLIST_FORMATS}" - ) - if not image_paths_val: - raise ValueError( - f"No validation images found in directory {directory}. " - f"Allowed formats: {ALLOWLIST_FORMATS}" - ) - train_dataset = paths_and_labels_to_dataset( - image_paths=image_paths_train, - image_size=image_size, - num_channels=num_channels, - labels=labels_train, - label_mode=label_mode, - num_classes=len(class_names), - interpolation=interpolation, - crop_to_aspect_ratio=crop_to_aspect_ratio, - ) - val_dataset = paths_and_labels_to_dataset( - image_paths=image_paths_val, - image_size=image_size, - num_channels=num_channels, - labels=labels_val, - label_mode=label_mode, - num_classes=len(class_names), - interpolation=interpolation, - crop_to_aspect_ratio=crop_to_aspect_ratio, - ) - train_dataset = train_dataset.prefetch(tf.data.AUTOTUNE) - val_dataset = val_dataset.prefetch(tf.data.AUTOTUNE) - if batch_size is not None: - if shuffle: - # Shuffle locally at each iteration - train_dataset = train_dataset.shuffle( - buffer_size=batch_size * 8, seed=seed - ) - train_dataset = train_dataset.batch(batch_size) - val_dataset = val_dataset.batch(batch_size) - else: - if shuffle: - train_dataset = train_dataset.shuffle( - buffer_size=1024, seed=seed - ) - - # Users may need to reference `class_names`. - train_dataset.class_names = class_names - val_dataset.class_names = class_names - # Include file paths for images as attribute. - train_dataset.file_paths = image_paths_train - val_dataset.file_paths = image_paths_val - dataset = [train_dataset, val_dataset] - else: - image_paths, labels = dataset_utils.get_training_or_validation_split( - image_paths, labels, validation_split, subset - ) - if not image_paths: - raise ValueError( - f"No images found in directory {directory}. " - f"Allowed formats: {ALLOWLIST_FORMATS}" - ) - - dataset = paths_and_labels_to_dataset( - image_paths=image_paths, - image_size=image_size, - num_channels=num_channels, - labels=labels, - label_mode=label_mode, - num_classes=len(class_names), - interpolation=interpolation, - crop_to_aspect_ratio=crop_to_aspect_ratio, - ) - dataset = dataset.prefetch(tf.data.AUTOTUNE) - if batch_size is not None: - if shuffle: - # Shuffle locally at each iteration - dataset = dataset.shuffle(buffer_size=batch_size * 8, seed=seed) - dataset = dataset.batch(batch_size) - else: - if shuffle: - dataset = dataset.shuffle(buffer_size=1024, seed=seed) - - # Users may need to reference `class_names`. - dataset.class_names = class_names - # Include file paths for images as attribute. - dataset.file_paths = image_paths - return dataset - - -def paths_and_labels_to_dataset( - image_paths, - image_size, - num_channels, - labels, - label_mode, - num_classes, - interpolation, - crop_to_aspect_ratio=False, -): - """Constructs a dataset of images and labels.""" - # TODO(fchollet): consider making num_parallel_calls settable - path_ds = tf.data.Dataset.from_tensor_slices(image_paths) - args = (image_size, num_channels, interpolation, crop_to_aspect_ratio) - img_ds = path_ds.map( - lambda x: load_image(x, *args), num_parallel_calls=tf.data.AUTOTUNE - ) - if label_mode: - label_ds = dataset_utils.labels_to_dataset( - labels, label_mode, num_classes - ) - img_ds = tf.data.Dataset.zip((img_ds, label_ds)) - return img_ds - - -def load_image( - path, image_size, num_channels, interpolation, crop_to_aspect_ratio=False -): - """Load an image from a path and resize it.""" - img = tf.io.read_file(path) - img = tf.image.decode_image( - img, channels=num_channels, expand_animations=False - ) - if crop_to_aspect_ratio: - img = image_utils.smart_resize( - img, image_size, interpolation=interpolation - ) - else: - img = tf.image.resize(img, image_size, method=interpolation) - img.set_shape((image_size[0], image_size[1], num_channels)) - return img diff --git a/keras/utils/image_dataset_test.py b/keras/utils/image_dataset_test.py deleted file mode 100644 index cc4c26c2408..00000000000 --- a/keras/utils/image_dataset_test.py +++ /dev/null @@ -1,455 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for image_dataset.""" - -import os -import shutil - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import image_dataset -from keras.utils import image_utils - -try: - import PIL -except ImportError: - PIL = None - - -@test_utils.run_v2_only -class ImageDatasetFromDirectoryTest(test_combinations.TestCase): - def _get_images(self, count=16, color_mode="rgb"): - width = height = 24 - imgs = [] - for _ in range(count): - if color_mode == "grayscale": - img = np.random.randint(0, 256, size=(height, width, 1)) - elif color_mode == "rgba": - img = np.random.randint(0, 256, size=(height, width, 4)) - else: - img = np.random.randint(0, 256, size=(height, width, 3)) - img = image_utils.array_to_img(img) - imgs.append(img) - return imgs - - def _prepare_directory( - self, - num_classes=2, - grayscale=False, - nested_dirs=False, - color_mode="rgb", - count=16, - ): - # Get a unique temp directory - temp_dir = os.path.join( - self.get_temp_dir(), str(np.random.randint(1e6)) - ) - os.mkdir(temp_dir) - self.addCleanup(shutil.rmtree, temp_dir) - - # Generate paths to class subdirectories - paths = [] - for class_index in range(num_classes): - class_directory = f"class_{class_index}" - if nested_dirs: - class_paths = [ - class_directory, - os.path.join(class_directory, "subfolder_1"), - os.path.join(class_directory, "subfolder_2"), - os.path.join( - class_directory, "subfolder_1", "sub-subfolder" - ), - ] - else: - class_paths = [class_directory] - for path in class_paths: - os.mkdir(os.path.join(temp_dir, path)) - paths += class_paths - - # Save images to the paths - i = 0 - for img in self._get_images(color_mode=color_mode, count=count): - path = paths[i % len(paths)] - if color_mode == "rgb": - ext = "jpg" - else: - ext = "png" - filename = os.path.join(path, f"image_{i}.{ext}") - img.save(os.path.join(temp_dir, filename)) - i += 1 - return temp_dir - - def test_image_dataset_from_directory_standalone(self): - # Test retrieving images without labels from a directory and its - # subdirs. - if PIL is None: - return # Skip test if PIL is not available. - - # Save a few extra images in the parent directory. - directory = self._prepare_directory(count=7, num_classes=2) - for i, img in enumerate(self._get_images(3)): - filename = f"image_{i}.jpg" - img.save(os.path.join(directory, filename)) - - dataset = image_dataset.image_dataset_from_directory( - directory, batch_size=5, image_size=(18, 18), labels=None - ) - batch = next(iter(dataset)) - # We return plain images - self.assertEqual(batch.shape, (5, 18, 18, 3)) - self.assertEqual(batch.dtype.name, "float32") - # Count samples - batch_count = 0 - sample_count = 0 - for batch in dataset: - batch_count += 1 - sample_count += batch.shape[0] - self.assertEqual(batch_count, 2) - self.assertEqual(sample_count, 10) - - def test_image_dataset_from_directory_binary(self): - if PIL is None: - return # Skip test if PIL is not available. - - directory = self._prepare_directory(num_classes=2) - dataset = image_dataset.image_dataset_from_directory( - directory, batch_size=8, image_size=(18, 18), label_mode="int" - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 18, 18, 3)) - self.assertEqual(batch[0].dtype.name, "float32") - self.assertEqual(batch[1].shape, (8,)) - self.assertEqual(batch[1].dtype.name, "int32") - - dataset = image_dataset.image_dataset_from_directory( - directory, batch_size=8, image_size=(18, 18), label_mode="binary" - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 18, 18, 3)) - self.assertEqual(batch[0].dtype.name, "float32") - self.assertEqual(batch[1].shape, (8, 1)) - self.assertEqual(batch[1].dtype.name, "float32") - - dataset = image_dataset.image_dataset_from_directory( - directory, - batch_size=8, - image_size=(18, 18), - label_mode="categorical", - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 18, 18, 3)) - self.assertEqual(batch[0].dtype.name, "float32") - self.assertEqual(batch[1].shape, (8, 2)) - self.assertEqual(batch[1].dtype.name, "float32") - - def test_static_shape_in_graph(self): - if PIL is None: - return # Skip test if PIL is not available. - - directory = self._prepare_directory(num_classes=2) - dataset = image_dataset.image_dataset_from_directory( - directory, batch_size=8, image_size=(18, 18), label_mode="int" - ) - test_case = self - - @tf.function - def symbolic_fn(ds): - for x, _ in ds.take(1): - test_case.assertListEqual(x.shape.as_list(), [None, 18, 18, 3]) - - symbolic_fn(dataset) - - def test_sample_count(self): - if PIL is None: - return # Skip test if PIL is not available. - - directory = self._prepare_directory(num_classes=4, count=15) - dataset = image_dataset.image_dataset_from_directory( - directory, batch_size=8, image_size=(18, 18), label_mode=None - ) - sample_count = 0 - for batch in dataset: - sample_count += batch.shape[0] - self.assertEqual(sample_count, 15) - - def test_image_dataset_from_directory_multiclass(self): - if PIL is None: - return # Skip test if PIL is not available. - - directory = self._prepare_directory(num_classes=4, count=15) - - dataset = image_dataset.image_dataset_from_directory( - directory, batch_size=8, image_size=(18, 18), label_mode=None - ) - batch = next(iter(dataset)) - self.assertEqual(batch.shape, (8, 18, 18, 3)) - - dataset = image_dataset.image_dataset_from_directory( - directory, batch_size=8, image_size=(18, 18), label_mode=None - ) - sample_count = 0 - iterator = iter(dataset) - for batch in dataset: - sample_count += next(iterator).shape[0] - self.assertEqual(sample_count, 15) - - dataset = image_dataset.image_dataset_from_directory( - directory, batch_size=8, image_size=(18, 18), label_mode="int" - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 18, 18, 3)) - self.assertEqual(batch[0].dtype.name, "float32") - self.assertEqual(batch[1].shape, (8,)) - self.assertEqual(batch[1].dtype.name, "int32") - - dataset = image_dataset.image_dataset_from_directory( - directory, - batch_size=8, - image_size=(18, 18), - label_mode="categorical", - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 18, 18, 3)) - self.assertEqual(batch[0].dtype.name, "float32") - self.assertEqual(batch[1].shape, (8, 4)) - self.assertEqual(batch[1].dtype.name, "float32") - - def test_image_dataset_from_directory_color_modes(self): - if PIL is None: - return # Skip test if PIL is not available. - - directory = self._prepare_directory(num_classes=4, color_mode="rgba") - dataset = image_dataset.image_dataset_from_directory( - directory, batch_size=8, image_size=(18, 18), color_mode="rgba" - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 18, 18, 4)) - self.assertEqual(batch[0].dtype.name, "float32") - - directory = self._prepare_directory( - num_classes=4, color_mode="grayscale" - ) - dataset = image_dataset.image_dataset_from_directory( - directory, batch_size=8, image_size=(18, 18), color_mode="grayscale" - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 18, 18, 1)) - self.assertEqual(batch[0].dtype.name, "float32") - - def test_image_dataset_from_directory_validation_split(self): - if PIL is None: - return # Skip test if PIL is not available. - - directory = self._prepare_directory(num_classes=2, count=10) - dataset = image_dataset.image_dataset_from_directory( - directory, - batch_size=10, - image_size=(18, 18), - validation_split=0.2, - subset="training", - seed=1337, - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 18, 18, 3)) - dataset = image_dataset.image_dataset_from_directory( - directory, - batch_size=10, - image_size=(18, 18), - validation_split=0.2, - subset="validation", - seed=1337, - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (2, 18, 18, 3)) - - train_dataset, val_dataset = image_dataset.image_dataset_from_directory( - directory, - batch_size=10, - image_size=(18, 18), - validation_split=0.2, - subset="both", - seed=1337, - ) - batch = next(iter(train_dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8, 18, 18, 3)) - batch = next(iter(val_dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (2, 18, 18, 3)) - - def test_image_dataset_from_directory_manual_labels(self): - if PIL is None: - return # Skip test if PIL is not available. - - directory = self._prepare_directory(num_classes=2, count=2) - dataset = image_dataset.image_dataset_from_directory( - directory, - batch_size=8, - image_size=(18, 18), - labels=[0, 1], - shuffle=False, - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertAllClose(batch[1], [0, 1]) - - def test_image_dataset_from_directory_follow_links(self): - if PIL is None: - return # Skip test if PIL is not available. - - directory = self._prepare_directory( - num_classes=2, count=25, nested_dirs=True - ) - dataset = image_dataset.image_dataset_from_directory( - directory, - batch_size=8, - image_size=(18, 18), - label_mode=None, - follow_links=True, - ) - sample_count = 0 - for batch in dataset: - sample_count += batch.shape[0] - self.assertEqual(sample_count, 25) - - def test_image_dataset_from_directory_no_images(self): - directory = self._prepare_directory(num_classes=2, count=0) - with self.assertRaisesRegex(ValueError, "No images found."): - _ = image_dataset.image_dataset_from_directory(directory) - - def test_image_dataset_from_directory_crop_to_aspect_ratio(self): - if PIL is None: - return # Skip test if PIL is not available. - - directory = self._prepare_directory(num_classes=2, count=5) - dataset = image_dataset.image_dataset_from_directory( - directory, - batch_size=5, - image_size=(18, 18), - crop_to_aspect_ratio=True, - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (5, 18, 18, 3)) - - def test_image_dataset_from_directory_errors(self): - if PIL is None: - return # Skip test if PIL is not available. - - directory = self._prepare_directory(num_classes=3, count=5) - - with self.assertRaisesRegex(ValueError, "`labels` argument should be"): - _ = image_dataset.image_dataset_from_directory( - directory, labels="other" - ) - - with self.assertRaisesRegex( - ValueError, "`label_mode` argument must be" - ): - _ = image_dataset.image_dataset_from_directory( - directory, label_mode="other" - ) - - with self.assertRaisesRegex(ValueError, "`color_mode` must be one of"): - _ = image_dataset.image_dataset_from_directory( - directory, color_mode="other" - ) - - with self.assertRaisesRegex( - ValueError, 'only pass `class_names` if `labels="inferred"`' - ): - _ = image_dataset.image_dataset_from_directory( - directory, - labels=[0, 0, 1, 1, 1], - class_names=["class_0", "class_1", "class_2"], - ) - - with self.assertRaisesRegex( - ValueError, - "Expected the lengths of `labels` to match the number of files", - ): - _ = image_dataset.image_dataset_from_directory( - directory, labels=[0, 0, 1, 1] - ) - - with self.assertRaisesRegex( - ValueError, "`class_names` passed did not match" - ): - _ = image_dataset.image_dataset_from_directory( - directory, class_names=["class_0", "class_2"] - ) - - with self.assertRaisesRegex(ValueError, "there must be exactly 2"): - _ = image_dataset.image_dataset_from_directory( - directory, label_mode="binary" - ) - - with self.assertRaisesRegex( - ValueError, "`validation_split` must be between 0 and 1" - ): - _ = image_dataset.image_dataset_from_directory( - directory, validation_split=2 - ) - - with self.assertRaisesRegex( - ValueError, - '`subset` must be either "training", "validation" or "both"', - ): - _ = image_dataset.image_dataset_from_directory( - directory, validation_split=0.2, subset="other" - ) - - with self.assertRaisesRegex( - ValueError, "`validation_split` must be set" - ): - _ = image_dataset.image_dataset_from_directory( - directory, validation_split=0, subset="training" - ) - - with self.assertRaisesRegex(ValueError, "must provide a `seed`"): - _ = image_dataset.image_dataset_from_directory( - directory, validation_split=0.2, subset="training" - ) - - def test_image_dataset_from_directory_not_batched(self): - if PIL is None: - return # Skip test if PIL is not available. - - directory = self._prepare_directory(num_classes=2, count=2) - dataset = image_dataset.image_dataset_from_directory( - directory, - batch_size=None, - image_size=(18, 18), - label_mode=None, - shuffle=False, - ) - sample = next(iter(dataset)) - self.assertEqual(len(sample.shape), 3) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/image_utils.py b/keras/utils/image_utils.py deleted file mode 100644 index c5f13274a3e..00000000000 --- a/keras/utils/image_utils.py +++ /dev/null @@ -1,480 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities related to image handling.""" - - -import io -import pathlib -import warnings - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -try: - from PIL import Image as pil_image - - try: - pil_image_resampling = pil_image.Resampling - except AttributeError: - pil_image_resampling = pil_image -except ImportError: - pil_image = None - pil_image_resampling = None - - -if pil_image_resampling is not None: - _PIL_INTERPOLATION_METHODS = { - "nearest": pil_image_resampling.NEAREST, - "bilinear": pil_image_resampling.BILINEAR, - "bicubic": pil_image_resampling.BICUBIC, - "hamming": pil_image_resampling.HAMMING, - "box": pil_image_resampling.BOX, - "lanczos": pil_image_resampling.LANCZOS, - } - -ResizeMethod = tf.image.ResizeMethod - -_TF_INTERPOLATION_METHODS = { - "bilinear": ResizeMethod.BILINEAR, - "nearest": ResizeMethod.NEAREST_NEIGHBOR, - "bicubic": ResizeMethod.BICUBIC, - "area": ResizeMethod.AREA, - "lanczos3": ResizeMethod.LANCZOS3, - "lanczos5": ResizeMethod.LANCZOS5, - "gaussian": ResizeMethod.GAUSSIAN, - "mitchellcubic": ResizeMethod.MITCHELLCUBIC, -} - - -@keras_export("keras.preprocessing.image.smart_resize", v1=[]) -def smart_resize(x, size, interpolation="bilinear"): - """Resize images to a target size without aspect ratio distortion. - - Warning: `tf.keras.preprocessing.image.smart_resize` is not recommended for - new code. Prefer `tf.keras.layers.Resizing`, which provides the same - functionality as a preprocessing layer and adds `tf.RaggedTensor` support. - See the [preprocessing layer guide]( - https://www.tensorflow.org/guide/keras/preprocessing_layers) - for an overview of preprocessing layers. - - TensorFlow image datasets typically yield images that have each a different - size. However, these images need to be batched before they can be - processed by Keras layers. To be batched, images need to share the same - height and width. - - You could simply do: - - ```python - size = (200, 200) - ds = ds.map(lambda img: tf.image.resize(img, size)) - ``` - - However, if you do this, you distort the aspect ratio of your images, since - in general they do not all have the same aspect ratio as `size`. This is - fine in many cases, but not always (e.g. for GANs this can be a problem). - - Note that passing the argument `preserve_aspect_ratio=True` to `resize` - will preserve the aspect ratio, but at the cost of no longer respecting the - provided target size. Because `tf.image.resize` doesn't crop images, - your output images will still have different sizes. - - This calls for: - - ```python - size = (200, 200) - ds = ds.map(lambda img: smart_resize(img, size)) - ``` - - Your output images will actually be `(200, 200)`, and will not be distorted. - Instead, the parts of the image that do not fit within the target size - get cropped out. - - The resizing process is: - - 1. Take the largest centered crop of the image that has the same aspect - ratio as the target size. For instance, if `size=(200, 200)` and the input - image has size `(340, 500)`, we take a crop of `(340, 340)` centered along - the width. - 2. Resize the cropped image to the target size. In the example above, - we resize the `(340, 340)` crop to `(200, 200)`. - - Args: - x: Input image or batch of images (as a tensor or NumPy array). Must be in - format `(height, width, channels)` or `(batch_size, height, width, - channels)`. - size: Tuple of `(height, width)` integer. Target size. - interpolation: String, interpolation to use for resizing. Defaults to - `'bilinear'`. Supports `bilinear`, `nearest`, `bicubic`, `area`, - `lanczos3`, `lanczos5`, `gaussian`, `mitchellcubic`. - - Returns: - Array with shape `(size[0], size[1], channels)`. If the input image was a - NumPy array, the output is a NumPy array, and if it was a TF tensor, - the output is a TF tensor. - """ - if len(size) != 2: - raise ValueError( - f"Expected `size` to be a tuple of 2 integers, but got: {size}." - ) - img = tf.convert_to_tensor(x) - if img.shape.rank is not None: - if img.shape.rank < 3 or img.shape.rank > 4: - raise ValueError( - "Expected an image array with shape `(height, width, " - "channels)`, or `(batch_size, height, width, channels)`, but " - f"got input with incorrect rank, of shape {img.shape}." - ) - shape = tf.shape(img) - height, width = shape[-3], shape[-2] - target_height, target_width = size - if img.shape.rank is not None: - static_num_channels = img.shape[-1] - else: - static_num_channels = None - - crop_height = tf.cast( - tf.cast(width * target_height, "float32") / target_width, "int32" - ) - crop_width = tf.cast( - tf.cast(height * target_width, "float32") / target_height, "int32" - ) - - # Set back to input height / width if crop_height / crop_width is not - # smaller. - crop_height = tf.minimum(height, crop_height) - crop_width = tf.minimum(width, crop_width) - - crop_box_hstart = tf.cast( - tf.cast(height - crop_height, "float32") / 2, "int32" - ) - crop_box_wstart = tf.cast( - tf.cast(width - crop_width, "float32") / 2, "int32" - ) - - if img.shape.rank == 4: - crop_box_start = tf.stack([0, crop_box_hstart, crop_box_wstart, 0]) - crop_box_size = tf.stack([-1, crop_height, crop_width, -1]) - else: - crop_box_start = tf.stack([crop_box_hstart, crop_box_wstart, 0]) - crop_box_size = tf.stack([crop_height, crop_width, -1]) - - img = tf.slice(img, crop_box_start, crop_box_size) - img = tf.image.resize(images=img, size=size, method=interpolation) - # Apparent bug in resize_images_v2 may cause shape to be lost - if img.shape.rank is not None: - if img.shape.rank == 4: - img.set_shape((None, None, None, static_num_channels)) - if img.shape.rank == 3: - img.set_shape((None, None, static_num_channels)) - if isinstance(x, np.ndarray): - return img.numpy() - return img - - -def get_interpolation(interpolation): - interpolation = interpolation.lower() - if interpolation not in _TF_INTERPOLATION_METHODS: - raise NotImplementedError( - "Value not recognized for `interpolation`: {}. Supported values " - "are: {}".format(interpolation, _TF_INTERPOLATION_METHODS.keys()) - ) - return _TF_INTERPOLATION_METHODS[interpolation] - - -@keras_export( - "keras.utils.array_to_img", "keras.preprocessing.image.array_to_img" -) -def array_to_img(x, data_format=None, scale=True, dtype=None): - """Converts a 3D Numpy array to a PIL Image instance. - - Usage: - - ```python - from PIL import Image - img = np.random.random(size=(100, 100, 3)) - pil_img = tf.keras.utils.array_to_img(img) - ``` - - - Args: - x: Input data, in any form that can be converted to a Numpy array. - data_format: Image data format, can be either `"channels_first"` or - `"channels_last"`. Defaults to `None`, in which case the global - setting `tf.keras.backend.image_data_format()` is used (unless you - changed it, it defaults to `"channels_last"`). - scale: Whether to rescale the image such that minimum and maximum values - are 0 and 255 respectively. Defaults to `True`. - dtype: Dtype to use. Default to `None`, in which case the global setting - `tf.keras.backend.floatx()` is used (unless you changed it, it - defaults to `"float32"`) - - Returns: - A PIL Image instance. - - Raises: - ImportError: if PIL is not available. - ValueError: if invalid `x` or `data_format` is passed. - """ - - if data_format is None: - data_format = backend.image_data_format() - if dtype is None: - dtype = backend.floatx() - if pil_image is None: - raise ImportError( - "Could not import PIL.Image. " - "The use of `array_to_img` requires PIL." - ) - x = np.asarray(x, dtype=dtype) - if x.ndim != 3: - raise ValueError( - "Expected image array to have rank 3 (single image). " - f"Got array with shape: {x.shape}" - ) - - if data_format not in {"channels_first", "channels_last"}: - raise ValueError(f"Invalid data_format: {data_format}") - - # Original Numpy array x has format (height, width, channel) - # or (channel, height, width) - # but target PIL image has format (width, height, channel) - if data_format == "channels_first": - x = x.transpose(1, 2, 0) - if scale: - x = x - np.min(x) - x_max = np.max(x) - if x_max != 0: - x /= x_max - x *= 255 - if x.shape[2] == 4: - # RGBA - return pil_image.fromarray(x.astype("uint8"), "RGBA") - elif x.shape[2] == 3: - # RGB - return pil_image.fromarray(x.astype("uint8"), "RGB") - elif x.shape[2] == 1: - # grayscale - if np.max(x) > 255: - # 32-bit signed integer grayscale image. PIL mode "I" - return pil_image.fromarray(x[:, :, 0].astype("int32"), "I") - return pil_image.fromarray(x[:, :, 0].astype("uint8"), "L") - else: - raise ValueError(f"Unsupported channel number: {x.shape[2]}") - - -@keras_export( - "keras.utils.img_to_array", "keras.preprocessing.image.img_to_array" -) -def img_to_array(img, data_format=None, dtype=None): - """Converts a PIL Image instance to a Numpy array. - - Usage: - - ```python - from PIL import Image - img_data = np.random.random(size=(100, 100, 3)) - img = tf.keras.utils.array_to_img(img_data) - array = tf.keras.utils.image.img_to_array(img) - ``` - - - Args: - img: Input PIL Image instance. - data_format: Image data format, can be either `"channels_first"` or - `"channels_last"`. Defaults to `None`, in which case the global - setting `tf.keras.backend.image_data_format()` is used (unless you - changed it, it defaults to `"channels_last"`). - dtype: Dtype to use. Default to `None`, in which case the global setting - `tf.keras.backend.floatx()` is used (unless you changed it, it - defaults to `"float32"`). - - Returns: - A 3D Numpy array. - - Raises: - ValueError: if invalid `img` or `data_format` is passed. - """ - - if data_format is None: - data_format = backend.image_data_format() - if dtype is None: - dtype = backend.floatx() - if data_format not in {"channels_first", "channels_last"}: - raise ValueError(f"Unknown data_format: {data_format}") - # Numpy array x has format (height, width, channel) - # or (channel, height, width) - # but original PIL image has format (width, height, channel) - x = np.asarray(img, dtype=dtype) - if len(x.shape) == 3: - if data_format == "channels_first": - x = x.transpose(2, 0, 1) - elif len(x.shape) == 2: - if data_format == "channels_first": - x = x.reshape((1, x.shape[0], x.shape[1])) - else: - x = x.reshape((x.shape[0], x.shape[1], 1)) - else: - raise ValueError(f"Unsupported image shape: {x.shape}") - return x - - -@keras_export("keras.utils.save_img", "keras.preprocessing.image.save_img") -def save_img(path, x, data_format=None, file_format=None, scale=True, **kwargs): - """Saves an image stored as a Numpy array to a path or file object. - - Args: - path: Path or file object. - x: Numpy array. - data_format: Image data format, either `"channels_first"` or - `"channels_last"`. - file_format: Optional file format override. If omitted, the format to - use is determined from the filename extension. If a file object was - used instead of a filename, this parameter should always be used. - scale: Whether to rescale image values to be within `[0, 255]`. - **kwargs: Additional keyword arguments passed to `PIL.Image.save()`. - """ - if data_format is None: - data_format = backend.image_data_format() - img = array_to_img(x, data_format=data_format, scale=scale) - if img.mode == "RGBA" and (file_format == "jpg" or file_format == "jpeg"): - warnings.warn( - "The JPG format does not support RGBA images, converting to RGB." - ) - img = img.convert("RGB") - img.save(path, format=file_format, **kwargs) - - -@keras_export("keras.utils.load_img", "keras.preprocessing.image.load_img") -def load_img( - path, - grayscale=False, - color_mode="rgb", - target_size=None, - interpolation="nearest", - keep_aspect_ratio=False, -): - """Loads an image into PIL format. - - Usage: - - ```python - image = tf.keras.utils.load_img(image_path) - input_arr = tf.keras.utils.img_to_array(image) - input_arr = np.array([input_arr]) # Convert single image to a batch. - predictions = model.predict(input_arr) - ``` - - Args: - path: Path to image file. - grayscale: DEPRECATED use `color_mode="grayscale"`. - color_mode: One of `"grayscale"`, `"rgb"`, `"rgba"`. Default: `"rgb"`. - The desired image format. - target_size: Either `None` (default to original size) or tuple of ints - `(img_height, img_width)`. - interpolation: Interpolation method used to resample the image if the - target size is different from that of the loaded image. Supported - methods are `"nearest"`, `"bilinear"`, and `"bicubic"`. If PIL version - 1.1.3 or newer is installed, `"lanczos"` is also supported. If PIL - version 3.4.0 or newer is installed, `"box"` and `"hamming"` are also - supported. By default, `"nearest"` is used. - keep_aspect_ratio: Boolean, whether to resize images to a target - size without aspect ratio distortion. The image is cropped in - the center with target aspect ratio before resizing. - - Returns: - A PIL Image instance. - - Raises: - ImportError: if PIL is not available. - ValueError: if interpolation method is not supported. - """ - if grayscale: - warnings.warn( - 'grayscale is deprecated. Please use color_mode = "grayscale"' - ) - color_mode = "grayscale" - if pil_image is None: - raise ImportError( - "Could not import PIL.Image. The use of `load_img` requires PIL." - ) - if isinstance(path, io.BytesIO): - img = pil_image.open(path) - elif isinstance(path, (pathlib.Path, bytes, str)): - if isinstance(path, pathlib.Path): - path = str(path.resolve()) - with open(path, "rb") as f: - img = pil_image.open(io.BytesIO(f.read())) - else: - raise TypeError( - f"path should be path-like or io.BytesIO, not {type(path)}" - ) - - if color_mode == "grayscale": - # if image is not already an 8-bit, 16-bit or 32-bit grayscale image - # convert it to an 8-bit grayscale image. - if img.mode not in ("L", "I;16", "I"): - img = img.convert("L") - elif color_mode == "rgba": - if img.mode != "RGBA": - img = img.convert("RGBA") - elif color_mode == "rgb": - if img.mode != "RGB": - img = img.convert("RGB") - else: - raise ValueError('color_mode must be "grayscale", "rgb", or "rgba"') - if target_size is not None: - width_height_tuple = (target_size[1], target_size[0]) - if img.size != width_height_tuple: - if interpolation not in _PIL_INTERPOLATION_METHODS: - raise ValueError( - "Invalid interpolation method {} specified. Supported " - "methods are {}".format( - interpolation, - ", ".join(_PIL_INTERPOLATION_METHODS.keys()), - ) - ) - resample = _PIL_INTERPOLATION_METHODS[interpolation] - - if keep_aspect_ratio: - width, height = img.size - target_width, target_height = width_height_tuple - - crop_height = (width * target_height) // target_width - crop_width = (height * target_width) // target_height - - # Set back to input height / width - # if crop_height / crop_width is not smaller. - crop_height = min(height, crop_height) - crop_width = min(width, crop_width) - - crop_box_hstart = (height - crop_height) // 2 - crop_box_wstart = (width - crop_width) // 2 - crop_box_wend = crop_box_wstart + crop_width - crop_box_hend = crop_box_hstart + crop_height - crop_box = [ - crop_box_wstart, - crop_box_hstart, - crop_box_wend, - crop_box_hend, - ] - img = img.resize(width_height_tuple, resample, box=crop_box) - else: - img = img.resize(width_height_tuple, resample) - return img diff --git a/keras/utils/image_utils_test.py b/keras/utils/image_utils_test.py deleted file mode 100644 index 07e103c0039..00000000000 --- a/keras/utils/image_utils_test.py +++ /dev/null @@ -1,503 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for image_utils.""" - -import io -import os -import pathlib - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import image_utils - - -@test_utils.run_v2_only -class TestImageUtils(test_combinations.TestCase): - def test_smart_resize(self): - test_input = np.random.random((20, 40, 3)) - output = image_utils.smart_resize(test_input, size=(50, 50)) - self.assertIsInstance(output, np.ndarray) - self.assertListEqual(list(output.shape), [50, 50, 3]) - output = image_utils.smart_resize(test_input, size=(10, 10)) - self.assertListEqual(list(output.shape), [10, 10, 3]) - output = image_utils.smart_resize(test_input, size=(100, 50)) - self.assertListEqual(list(output.shape), [100, 50, 3]) - output = image_utils.smart_resize(test_input, size=(5, 15)) - self.assertListEqual(list(output.shape), [5, 15, 3]) - - @parameterized.named_parameters( - ("size1", (50, 50)), - ("size2", (10, 10)), - ("size3", (100, 50)), - ("size4", (5, 15)), - ) - def test_smart_resize_tf_dataset(self, size): - test_input_np = np.random.random((2, 20, 40, 3)) - test_ds = tf.data.Dataset.from_tensor_slices(test_input_np) - - resize = lambda img: image_utils.smart_resize(img, size=size) - test_ds = test_ds.map(resize) - for sample in test_ds.as_numpy_iterator(): - self.assertIsInstance(sample, np.ndarray) - self.assertListEqual(list(sample.shape), [size[0], size[1], 3]) - - def test_smart_resize_batch(self): - img = np.random.random((2, 20, 40, 3)) - out = image_utils.smart_resize(img, size=(20, 20)) - self.assertListEqual(list(out.shape), [2, 20, 20, 3]) - self.assertAllClose(out, img[:, :, 10:-10, :]) - - def test_smart_resize_errors(self): - with self.assertRaisesRegex(ValueError, "a tuple of 2 integers"): - image_utils.smart_resize( - np.random.random((20, 20, 2)), size=(10, 5, 3) - ) - with self.assertRaisesRegex(ValueError, "incorrect rank"): - image_utils.smart_resize(np.random.random((2, 4)), size=(10, 5)) - with self.assertRaisesRegex(ValueError, "incorrect rank"): - image_utils.smart_resize( - np.random.random((2, 4, 4, 5, 3)), size=(10, 5) - ) - - -@test_utils.run_v2_only -class TestImageLoading(test_combinations.TestCase): - def test_load_img(self): - tmpdir = self.create_tempdir() - filename_rgb = os.path.join(tmpdir.full_path, "rgb_utils.png") - filename_rgba = os.path.join(tmpdir.full_path, "rgba_utils.png") - filename_grayscale_8bit = os.path.join( - tmpdir.full_path, "grayscale_8bit_utils.png" - ) - filename_grayscale_16bit = os.path.join( - tmpdir.full_path, "grayscale_16bit_utils.tiff" - ) - filename_grayscale_32bit = os.path.join( - tmpdir.full_path, "grayscale_32bit_utils.tiff" - ) - - original_rgb_array = np.array( - 255 * np.random.rand(100, 100, 3), dtype=np.uint8 - ) - original_rgb = image_utils.array_to_img(original_rgb_array, scale=False) - original_rgb.save(filename_rgb) - - original_rgba_array = np.array( - 255 * np.random.rand(100, 100, 4), dtype=np.uint8 - ) - original_rgba = image_utils.array_to_img( - original_rgba_array, scale=False - ) - original_rgba.save(filename_rgba) - - original_grayscale_8bit_array = np.array( - 255 * np.random.rand(100, 100, 1), dtype=np.uint8 - ) - original_grayscale_8bit = image_utils.array_to_img( - original_grayscale_8bit_array, scale=False - ) - original_grayscale_8bit.save(filename_grayscale_8bit) - - original_grayscale_16bit_array = np.array( - np.random.randint(-2147483648, 2147483647, (100, 100, 1)), - dtype=np.int16, - ) - original_grayscale_16bit = image_utils.array_to_img( - original_grayscale_16bit_array, scale=False, dtype="int16" - ) - original_grayscale_16bit.save(filename_grayscale_16bit) - - original_grayscale_32bit_array = np.array( - np.random.randint(-2147483648, 2147483647, (100, 100, 1)), - dtype=np.int32, - ) - original_grayscale_32bit = image_utils.array_to_img( - original_grayscale_32bit_array, scale=False, dtype="int32" - ) - original_grayscale_32bit.save(filename_grayscale_32bit) - - # Test that loaded image is exactly equal to original. - - loaded_im = image_utils.load_img(filename_rgb) - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual(loaded_im_array.shape, original_rgb_array.shape) - self.assertAllClose(loaded_im_array, original_rgb_array) - - loaded_im = image_utils.load_img(filename_rgba, color_mode="rgba") - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual(loaded_im_array.shape, original_rgba_array.shape) - self.assertAllClose(loaded_im_array, original_rgba_array) - - loaded_im = image_utils.load_img(filename_rgb, color_mode="grayscale") - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual( - loaded_im_array.shape, - (original_rgb_array.shape[0], original_rgb_array.shape[1], 1), - ) - - loaded_im = image_utils.load_img( - filename_grayscale_8bit, color_mode="grayscale" - ) - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual( - loaded_im_array.shape, original_grayscale_8bit_array.shape - ) - self.assertAllClose(loaded_im_array, original_grayscale_8bit_array) - - loaded_im = image_utils.load_img( - filename_grayscale_16bit, color_mode="grayscale" - ) - loaded_im_array = image_utils.img_to_array(loaded_im, dtype="int16") - self.assertEqual( - loaded_im_array.shape, original_grayscale_16bit_array.shape - ) - self.assertAllClose(loaded_im_array, original_grayscale_16bit_array) - # test casting int16 image to float32 - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertAllClose(loaded_im_array, original_grayscale_16bit_array) - - loaded_im = image_utils.load_img( - filename_grayscale_32bit, color_mode="grayscale" - ) - loaded_im_array = image_utils.img_to_array(loaded_im, dtype="int32") - self.assertEqual( - loaded_im_array.shape, original_grayscale_32bit_array.shape - ) - self.assertAllClose(loaded_im_array, original_grayscale_32bit_array) - # test casting int32 image to float32 - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertAllClose(loaded_im_array, original_grayscale_32bit_array) - - # Test that nothing is changed when target size is equal to original. - - loaded_im = image_utils.load_img(filename_rgb, target_size=(100, 100)) - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual(loaded_im_array.shape, original_rgb_array.shape) - self.assertAllClose(loaded_im_array, original_rgb_array) - - loaded_im = image_utils.load_img( - filename_rgba, color_mode="rgba", target_size=(100, 100) - ) - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual(loaded_im_array.shape, original_rgba_array.shape) - self.assertAllClose(loaded_im_array, original_rgba_array) - - loaded_im = image_utils.load_img( - filename_rgb, color_mode="grayscale", target_size=(100, 100) - ) - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual( - loaded_im_array.shape, - (original_rgba_array.shape[0], original_rgba_array.shape[1], 1), - ) - - loaded_im = image_utils.load_img( - filename_grayscale_8bit, - color_mode="grayscale", - target_size=(100, 100), - ) - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual( - loaded_im_array.shape, original_grayscale_8bit_array.shape - ) - self.assertAllClose(loaded_im_array, original_grayscale_8bit_array) - - loaded_im = image_utils.load_img( - filename_grayscale_16bit, - color_mode="grayscale", - target_size=(100, 100), - ) - loaded_im_array = image_utils.img_to_array(loaded_im, dtype="int16") - self.assertEqual( - loaded_im_array.shape, original_grayscale_16bit_array.shape - ) - self.assertAllClose(loaded_im_array, original_grayscale_16bit_array) - - loaded_im = image_utils.load_img( - filename_grayscale_32bit, - color_mode="grayscale", - target_size=(100, 100), - ) - loaded_im_array = image_utils.img_to_array(loaded_im, dtype="int32") - self.assertEqual( - loaded_im_array.shape, original_grayscale_32bit_array.shape - ) - self.assertAllClose(loaded_im_array, original_grayscale_32bit_array) - - # Test down-sampling with bilinear interpolation. - - loaded_im = image_utils.load_img(filename_rgb, target_size=(25, 25)) - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual(loaded_im_array.shape, (25, 25, 3)) - - loaded_im = image_utils.load_img( - filename_rgba, color_mode="rgba", target_size=(25, 25) - ) - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual(loaded_im_array.shape, (25, 25, 4)) - - loaded_im = image_utils.load_img( - filename_rgb, color_mode="grayscale", target_size=(25, 25) - ) - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual(loaded_im_array.shape, (25, 25, 1)) - - loaded_im = image_utils.load_img( - filename_grayscale_8bit, - color_mode="grayscale", - target_size=(25, 25), - ) - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual(loaded_im_array.shape, (25, 25, 1)) - - loaded_im = image_utils.load_img( - filename_grayscale_16bit, - color_mode="grayscale", - target_size=(25, 25), - ) - loaded_im_array = image_utils.img_to_array(loaded_im, dtype="int16") - self.assertEqual(loaded_im_array.shape, (25, 25, 1)) - - loaded_im = image_utils.load_img( - filename_grayscale_32bit, - color_mode="grayscale", - target_size=(25, 25), - ) - loaded_im_array = image_utils.img_to_array(loaded_im, dtype="int32") - self.assertEqual(loaded_im_array.shape, (25, 25, 1)) - - # Test down-sampling with nearest neighbor interpolation. - - loaded_im_nearest = image_utils.load_img( - filename_rgb, target_size=(25, 25), interpolation="nearest" - ) - loaded_im_array_nearest = image_utils.img_to_array(loaded_im_nearest) - self.assertEqual(loaded_im_array_nearest.shape, (25, 25, 3)) - self.assertTrue(np.any(loaded_im_array_nearest != loaded_im_array)) - - loaded_im_nearest = image_utils.load_img( - filename_rgba, - color_mode="rgba", - target_size=(25, 25), - interpolation="nearest", - ) - loaded_im_array_nearest = image_utils.img_to_array(loaded_im_nearest) - self.assertEqual(loaded_im_array_nearest.shape, (25, 25, 4)) - self.assertTrue(np.any(loaded_im_array_nearest != loaded_im_array)) - - loaded_im = image_utils.load_img( - filename_grayscale_8bit, - color_mode="grayscale", - target_size=(25, 25), - interpolation="nearest", - ) - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual(loaded_im_array.shape, (25, 25, 1)) - - loaded_im = image_utils.load_img( - filename_grayscale_16bit, - color_mode="grayscale", - target_size=(25, 25), - interpolation="nearest", - ) - loaded_im_array = image_utils.img_to_array(loaded_im, dtype="int16") - self.assertEqual(loaded_im_array.shape, (25, 25, 1)) - - loaded_im = image_utils.load_img( - filename_grayscale_32bit, - color_mode="grayscale", - target_size=(25, 25), - interpolation="nearest", - ) - loaded_im_array = image_utils.img_to_array(loaded_im, dtype="int32") - self.assertEqual(loaded_im_array.shape, (25, 25, 1)) - - # Test different path type - with open(filename_grayscale_32bit, "rb") as f: - path_ = io.BytesIO(f.read()) # io.Bytesio - loaded_im = image_utils.load_img(path_, color_mode="grayscale") - loaded_im_array = image_utils.img_to_array(loaded_im, dtype=np.int32) - self.assertAllClose(loaded_im_array, original_grayscale_32bit_array) - - path_ = filename_grayscale_32bit # str - loaded_im = image_utils.load_img(path_, color_mode="grayscale") - loaded_im_array = image_utils.img_to_array(loaded_im, dtype=np.int32) - self.assertAllClose(loaded_im_array, original_grayscale_32bit_array) - - path_ = filename_grayscale_32bit.encode() # bytes - loaded_im = image_utils.load_img(path_, color_mode="grayscale") - loaded_im_array = image_utils.img_to_array(loaded_im, dtype=np.int32) - self.assertAllClose(loaded_im_array, original_grayscale_32bit_array) - - path_ = pathlib.Path( - os.path.join(tmpdir.full_path, "grayscale_32bit_utils.tiff") - ) - loaded_im = image_utils.load_img(path_, color_mode="grayscale") - loaded_im_array = image_utils.img_to_array(loaded_im, dtype=np.int32) - self.assertAllClose(loaded_im_array, original_grayscale_32bit_array) - - # Check that exception is raised if interpolation not supported. - - loaded_im = image_utils.load_img( - filename_rgb, interpolation="unsupported" - ) - with self.assertRaises(ValueError): - loaded_im = image_utils.load_img( - filename_rgb, target_size=(25, 25), interpolation="unsupported" - ) - - # Check that the aspect ratio of a square is the same - - filename_red_square = os.path.join( - tmpdir.full_path, "red_square_utils.png" - ) - arr = np.zeros((50, 100, 3), dtype=np.uint8) # rectangle image 100x50 - arr[20:30, 45:55, 0] = 255 # red square 10x10 - red_square_array = np.array(arr) - red_square = image_utils.array_to_img(red_square_array, scale=False) - red_square.save(filename_red_square) - - loaded_im = image_utils.load_img( - filename_red_square, target_size=(25, 25), keep_aspect_ratio=True - ) - loaded_im_array = image_utils.img_to_array(loaded_im) - self.assertEqual(loaded_im_array.shape, (25, 25, 3)) - - red_channel_arr = loaded_im_array[:, :, 0].astype(bool) - square_width = np.sum(np.sum(red_channel_arr, axis=0)) - square_height = np.sum(np.sum(red_channel_arr, axis=1)) - aspect_ratio_result = square_width / square_height - - # original square had 1:1 ratio - self.assertNear(aspect_ratio_result, 1.0, 0.01) - - def test_array_to_img_and_img_to_array(self): - height, width = 10, 8 - - # Test the data format - # Test RGB 3D - x = np.random.random((3, height, width)) - img = image_utils.array_to_img(x, data_format="channels_first") - self.assertEqual(img.size, (width, height)) - - x = image_utils.img_to_array(img, data_format="channels_first") - self.assertEqual(x.shape, (3, height, width)) - - # Test RGBA 3D - x = np.random.random((4, height, width)) - img = image_utils.array_to_img(x, data_format="channels_first") - self.assertEqual(img.size, (width, height)) - - x = image_utils.img_to_array(img, data_format="channels_first") - self.assertEqual(x.shape, (4, height, width)) - - # Test 2D - x = np.random.random((1, height, width)) - img = image_utils.array_to_img(x, data_format="channels_first") - self.assertEqual(img.size, (width, height)) - - x = image_utils.img_to_array(img, data_format="channels_first") - self.assertEqual(x.shape, (1, height, width)) - - # grayscale 32-bit signed integer - x = np.array( - np.random.randint(-2147483648, 2147483647, (1, height, width)), - dtype=np.int32, - ) - img = image_utils.array_to_img(x, data_format="channels_first") - self.assertEqual(img.size, (width, height)) - - x = image_utils.img_to_array(img, data_format="channels_first") - self.assertEqual(x.shape, (1, height, width)) - - # Test tf data format - # Test RGB 3D - x = np.random.random((height, width, 3)) - img = image_utils.array_to_img(x, data_format="channels_last") - self.assertEqual(img.size, (width, height)) - - x = image_utils.img_to_array(img, data_format="channels_last") - self.assertEqual(x.shape, (height, width, 3)) - - # Test RGBA 3D - x = np.random.random((height, width, 4)) - img = image_utils.array_to_img(x, data_format="channels_last") - self.assertEqual(img.size, (width, height)) - - x = image_utils.img_to_array(img, data_format="channels_last") - self.assertEqual(x.shape, (height, width, 4)) - - # Test 2D - x = np.random.random((height, width, 1)) - img = image_utils.array_to_img(x, data_format="channels_last") - self.assertEqual(img.size, (width, height)) - - x = image_utils.img_to_array(img, data_format="channels_last") - self.assertEqual(x.shape, (height, width, 1)) - - # grayscale 16-bit signed integer - x = np.array( - np.random.randint(-2147483648, 2147483647, (height, width, 1)), - dtype=np.int16, - ) - img = image_utils.array_to_img(x, data_format="channels_last") - self.assertEqual(img.size, (width, height)) - - x = image_utils.img_to_array(img, data_format="channels_last") - self.assertEqual(x.shape, (height, width, 1)) - - # grayscale 32-bit signed integer - x = np.array( - np.random.randint(-2147483648, 2147483647, (height, width, 1)), - dtype=np.int32, - ) - img = image_utils.array_to_img(x, data_format="channels_last") - self.assertEqual(img.size, (width, height)) - - x = image_utils.img_to_array(img, data_format="channels_last") - self.assertEqual(x.shape, (height, width, 1)) - - # Test invalid use case - with self.assertRaises(ValueError): - x = np.random.random((height, width)) # not 3D - img = image_utils.array_to_img(x, data_format="channels_first") - - with self.assertRaises(ValueError): - x = np.random.random((height, width, 3)) - # unknown data_format - img = image_utils.array_to_img(x, data_format="channels") - - with self.assertRaises(ValueError): - # neither RGB, RGBA, or gray-scale - x = np.random.random((height, width, 5)) - img = image_utils.array_to_img(x, data_format="channels_last") - - with self.assertRaises(ValueError): - x = np.random.random((height, width, 3)) - # unknown data_format - img = image_utils.img_to_array(x, data_format="channels") - - with self.assertRaises(ValueError): - # neither RGB, RGBA, or gray-scale - x = np.random.random((height, width, 5, 3)) - img = image_utils.img_to_array(x, data_format="channels_last") - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/io_utils.py b/keras/utils/io_utils.py deleted file mode 100644 index e4fbac1d3be..00000000000 --- a/keras/utils/io_utils.py +++ /dev/null @@ -1,127 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Utilities related to disk I/O.""" - -import os -import sys -import threading - -from absl import logging - -from keras.utils import keras_logging - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -INTERACTIVE_LOGGING = threading.local() -INTERACTIVE_LOGGING.enable = keras_logging.INTERACTIVE_LOGGING_DEFAULT - - -@keras_export("keras.utils.enable_interactive_logging") -def enable_interactive_logging(): - """Turn on interactive logging. - - When interactive logging is enabled, Keras displays logs via stdout. - This provides the best experience when using Keras in an interactive - environment such as a shell or a notebook. - """ - INTERACTIVE_LOGGING.enable = True - - -@keras_export("keras.utils.disable_interactive_logging") -def disable_interactive_logging(): - """Turn off interactive logging. - - When interactive logging is disabled, Keras sends logs to `absl.logging`. - This is the best option when using Keras in a non-interactive - way, such as running a training or inference job on a server. - """ - INTERACTIVE_LOGGING.enable = False - - -@keras_export("keras.utils.is_interactive_logging_enabled") -def is_interactive_logging_enabled(): - """Check if interactive logging is enabled. - - To switch between writing logs to stdout and `absl.logging`, you may use - `keras.utils.enable_interactive_logging()` and - `keras.utils.disable_interactie_logging()`. - - Returns: - Boolean (True if interactive logging is enabled and False otherwise). - """ - # Use `getattr` in case `INTERACTIVE_LOGGING` - # does not have the `enable` attribute. - return getattr( - INTERACTIVE_LOGGING, "enable", keras_logging.INTERACTIVE_LOGGING_DEFAULT - ) - - -def print_msg(message, line_break=True): - """Print the message to absl logging or stdout.""" - if is_interactive_logging_enabled(): - if line_break: - sys.stdout.write(message + "\n") - else: - sys.stdout.write(message) - sys.stdout.flush() - else: - logging.info(message) - - -def path_to_string(path): - """Convert `PathLike` objects to their string representation. - - If given a non-string typed path object, converts it to its string - representation. - - If the object passed to `path` is not among the above, then it is - returned unchanged. This allows e.g. passthrough of file objects - through this function. - - Args: - path: `PathLike` object that represents a path - - Returns: - A string representation of the path argument, if Python support exists. - """ - if isinstance(path, os.PathLike): - return os.fspath(path) - return path - - -def ask_to_proceed_with_overwrite(filepath): - """Produces a prompt asking about overwriting a file. - - Args: - filepath: the path to the file to be overwritten. - - Returns: - True if we can proceed with overwrite, False otherwise. - """ - overwrite = ( - input(f"[WARNING] {filepath} already exists - overwrite? [y/n]") - .strip() - .lower() - ) - while overwrite not in ("y", "n"): - overwrite = ( - input('Enter "y" (overwrite) or "n" (cancel).').strip().lower() - ) - if overwrite == "n": - return False - print_msg("[TIP] Next time specify overwrite=True!") - return True diff --git a/keras/utils/io_utils_test.py b/keras/utils/io_utils_test.py deleted file mode 100644 index 445bbaab76d..00000000000 --- a/keras/utils/io_utils_test.py +++ /dev/null @@ -1,88 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for io_utils.""" - -import builtins -import sys -from pathlib import Path - -import tensorflow.compat.v2 as tf - -from keras.testing_infra import test_combinations -from keras.utils import io_utils - - -class TestIOUtils(test_combinations.TestCase): - def test_ask_to_proceed_with_overwrite(self): - with tf.compat.v1.test.mock.patch.object(builtins, "input") as mock_log: - mock_log.return_value = "y" - self.assertTrue( - io_utils.ask_to_proceed_with_overwrite("/tmp/not_exists") - ) - - mock_log.return_value = "n" - self.assertFalse( - io_utils.ask_to_proceed_with_overwrite("/tmp/not_exists") - ) - - mock_log.side_effect = ["m", "y"] - self.assertTrue( - io_utils.ask_to_proceed_with_overwrite("/tmp/not_exists") - ) - - mock_log.side_effect = ["m", "n"] - self.assertFalse( - io_utils.ask_to_proceed_with_overwrite("/tmp/not_exists") - ) - - def test_path_to_string(self): - class PathLikeDummy: - def __fspath__(self): - return "dummypath" - - dummy = object() - # conversion of PathLike - self.assertEqual(io_utils.path_to_string(Path("path")), "path") - self.assertEqual(io_utils.path_to_string(PathLikeDummy()), "dummypath") - - # pass-through, works for all versions of python - self.assertEqual(io_utils.path_to_string("path"), "path") - self.assertIs(io_utils.path_to_string(dummy), dummy) - - def test_print_msg(self): - enabled = io_utils.is_interactive_logging_enabled() - - io_utils.disable_interactive_logging() - self.assertFalse(io_utils.is_interactive_logging_enabled()) - - with self.assertLogs(level="INFO") as logged: - io_utils.print_msg("Testing Message") - self.assertIn("Testing Message", logged.output[0]) - - io_utils.enable_interactive_logging() - self.assertTrue(io_utils.is_interactive_logging_enabled()) - - with self.captureWritesToStream(sys.stdout) as printed: - io_utils.print_msg("Testing Message") - self.assertEqual("Testing Message\n", printed.contents()) - - if enabled: - io_utils.enable_interactive_logging() - else: - io_utils.disable_interactive_logging() - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/keras_logging.py b/keras/utils/keras_logging.py deleted file mode 100644 index fce36863fcf..00000000000 --- a/keras/utils/keras_logging.py +++ /dev/null @@ -1,19 +0,0 @@ -# Copyright 2022 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Flags for logging control.""" - -# LINT.IfChange(external_interactive_logging) -INTERACTIVE_LOGGING_DEFAULT = True -# LINT.ThenChange(../../utils/keras_logging.py:internal_interactive_logging) diff --git a/keras/utils/kernelized_utils.py b/keras/utils/kernelized_utils.py deleted file mode 100644 index 22fee770824..00000000000 --- a/keras/utils/kernelized_utils.py +++ /dev/null @@ -1,112 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utility methods related to kernelized layers.""" - -import tensorflow.compat.v2 as tf - - -def _to_matrix(u): - """If input tensor is a vector (i.e., has rank 1), converts it to matrix.""" - u_rank = len(u.shape) - if u_rank not in [1, 2]: - raise ValueError( - f"The input tensor should have rank 1 or 2. Received rank: {u_rank}" - ) - if u_rank == 1: - return tf.expand_dims(u, 0) - return u - - -def _align_matrices(x, y): - """Aligns x and y tensors to allow computations over pairs of their rows.""" - x_matrix = _to_matrix(x) - y_matrix = _to_matrix(y) - x_shape = x_matrix.shape - y_shape = y_matrix.shape - if y_shape[1] != x_shape[1]: # dimensions do not match. - raise ValueError( - "The outermost dimensions of the input tensors should match. " - f"Received y = {y_shape[1]} vs x = {x_shape[1]}." - ) - - x_tile = tf.tile(tf.expand_dims(x_matrix, 1), [1, y_shape[0], 1]) - y_tile = tf.tile(tf.expand_dims(y_matrix, 0), [x_shape[0], 1, 1]) - return x_tile, y_tile - - -def inner_product(u, v): - u = _to_matrix(u) - v = _to_matrix(v) - return tf.matmul(u, v, transpose_b=True) - - -def exact_gaussian_kernel(x, y, stddev): - r"""Computes exact Gaussian kernel value(s) for tensors x and y and stddev. - - The Gaussian kernel for vectors u, v is defined as follows: - K(u, v) = exp(-||u-v||^2 / (2* stddev^2)) - where the norm is the l2-norm. x, y can be either vectors or matrices. If - they are vectors, they must have the same dimension. If they are matrices, - they must have the same number of columns. In the latter case, the method - returns (as a matrix) K(u, v) values for all pairs (u, v) where u is a row - from x and v is a row from y. - - Args: - x: a tensor of rank 1 or 2. It's shape should be either [dim] or [m, dim]. - y: a tensor of rank 1 or 2. It's shape should be either [dim] or [n, dim]. - stddev: The width of the Gaussian kernel. - - Returns: - A single value (scalar) with shape (1, 1) (if x, y are vectors) or a - matrix of shape (m, n) with entries K(u, v) (where K is the Gaussian - kernel) for all (u,v) pairs where u, v are rows from x and y respectively. - - Raises: - ValueError: if the shapes of x, y are not compatible. - """ - x_aligned, y_aligned = _align_matrices(x, y) - diff_squared_l2_norm = tf.reduce_sum( - tf.math.squared_difference(x_aligned, y_aligned), 2 - ) - return tf.exp(-diff_squared_l2_norm / (2 * stddev * stddev)) - - -def exact_laplacian_kernel(x, y, stddev): - r"""Computes exact Laplacian kernel value(s) for tensors x & y using stddev. - - The Laplacian kernel for vectors u, v is defined as follows: - K(u, v) = exp(-||u-v|| / stddev) - where the norm is the l1-norm. x, y can be either vectors or matrices. If - they are vectors, they must have the same dimension. If they are matrices, - they must have the same number of columns. In the latter case, the method - returns (as a matrix) K(u, v) values for all pairs (u, v) where u is a row - from x and v is a row from y. - - Args: - x: a tensor of rank 1 or 2. It's shape should be either [dim] or [m, dim]. - y: a tensor of rank 1 or 2. It's shape should be either [dim] or [n, dim]. - stddev: The width of the Gaussian kernel. - - Returns: - A single value (scalar) with shape (1, 1) if x, y are vectors or a matrix - of shape (m, n) with entries K(u, v) (where K is the Laplacian kernel) for - all (u,v) pairs where u, v are rows from x and y respectively. - - Raises: - ValueError: if the shapes of x, y are not compatible. - """ - x_aligned, y_aligned = _align_matrices(x, y) - diff_l1_norm = tf.reduce_sum(tf.abs(tf.subtract(x_aligned, y_aligned)), 2) - return tf.exp(-diff_l1_norm / stddev) diff --git a/keras/utils/kernelized_utils_test.py b/keras/utils/kernelized_utils_test.py deleted file mode 100644 index cc562325eaf..00000000000 --- a/keras/utils/kernelized_utils_test.py +++ /dev/null @@ -1,127 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for kernelized_utils.py.""" - -import functools - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.utils import kernelized_utils - - -def _exact_gaussian(stddev): - return functools.partial( - kernelized_utils.exact_gaussian_kernel, stddev=stddev - ) - - -def _exact_laplacian(stddev): - return functools.partial( - kernelized_utils.exact_laplacian_kernel, stddev=stddev - ) - - -class KernelizedUtilsTest(tf.test.TestCase, parameterized.TestCase): - @parameterized.named_parameters( - ("gaussian", _exact_gaussian(stddev=10.0), [[1.0]]), - ("laplacian", _exact_laplacian(stddev=50.0), [[1.0]]), - ) - def test_equal_vectors(self, exact_kernel_fn, expected_values): - """Identical vectors give exactly the identity kernel value.""" - x = tf.constant([0.5, -0.5, -0.5, 0.5]) - y = tf.constant([0.5, -0.5, -0.5, 0.5]) - exact_kernel = exact_kernel_fn(x, y) - shape = exact_kernel.shape.as_list() - self.assertLen(shape, 2) - # x and y are identical and therefore K(x, y) will be precisely equal to - # the identity value of the kernel. - self.assertAllClose(expected_values, exact_kernel, atol=1e-6) - - @parameterized.named_parameters( - ("gaussian", _exact_gaussian(stddev=10.0), [[1.0]]), - ("laplacian", _exact_laplacian(stddev=50.0), [[1.0]]), - ) - def test_almost_identical_vectors(self, exact_kernel_fn, expected_values): - """Almost identical vectors give the identity kernel value.""" - x = tf.constant([1.0, 0.4, -2.1, -1.1]) - y = tf.constant([1.01, 0.39, -2.099, -1.101]) - exact_kernel = exact_kernel_fn(x, y) - shape = exact_kernel.shape.as_list() - self.assertLen(shape, 2) - # x and y are almost identical and therefore K(x, y) will be almost - # equal to the identity value of the kernel. - self.assertAllClose(expected_values, exact_kernel, atol=1e-3) - - @parameterized.named_parameters( - ("gaussian", _exact_gaussian(stddev=1.0), [[0.99], [0.977]]), - ("laplacian", _exact_laplacian(stddev=5.0), [[0.96], [0.94]]), - ) - def test_similar_matrices(self, exact_kernel_fn, expected_values): - """Pairwise "close" vectors give high kernel values (similarity - scores).""" - x = tf.constant([1.0, 3.4, -2.1, 0.9, 3.3, -2.0], shape=[2, 3]) - y = tf.constant([1.1, 3.35, -2.05]) - exact_kernel = exact_kernel_fn(x, y) - shape = exact_kernel.shape.as_list() - self.assertLen(shape, 2) - # The 2 rows of x are close to y. The pairwise kernel values (similarity - # scores) are somewhat close to the identity value of the kernel. - self.assertAllClose(expected_values, exact_kernel, atol=1e-2) - - @parameterized.named_parameters( - ( - "gaussian", - _exact_gaussian(stddev=2.0), - [[0.997, 0.279], [0.251, 1.0], [0.164, 0.019]], - ), - ( - "laplacian", - _exact_laplacian(stddev=2.0), - [[0.904, 0.128], [0.116, 1.0], [0.07, 0.027]], - ), - ) - def test_matrices_varying_similarity( - self, exact_kernel_fn, expected_values - ): - """Test matrices with row vectors of varying pairwise similarity.""" - x = tf.constant([1.0, 2.0, -2.0, 0.9, 3.3, -1.0], shape=[3, 2]) - y = tf.constant([1.1, 2.1, -2.0, 0.9], shape=[2, 2]) - exact_kernel = exact_kernel_fn(x, y) - - shape = exact_kernel.shape.as_list() - self.assertLen(shape, 2) - self.assertAllClose(expected_values, exact_kernel, atol=1e-2) - - @parameterized.named_parameters( - ("gaussian", _exact_gaussian(stddev=1.0), [[0.0]]), - ("laplacian", _exact_laplacian(stddev=1.0), [[0.0]]), - ) - def test_completely_dissimilar_vectors( - self, exact_kernel_fn, expected_values - ): - """Very dissimilar vectors give very low similarity scores.""" - x = tf.constant([1.0, 3.4, -2.1, -5.1]) - y = tf.constant([0.5, 2.1, 1.0, 3.0]) - exact_kernel = exact_kernel_fn(x, y) - shape = exact_kernel.shape.as_list() - self.assertLen(shape, 2) - # x and y are very "far" from each other and so the corresponding kernel - # value will be very low. - self.assertAllClose(expected_values, exact_kernel, atol=1e-2) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/kpl_test_utils.py b/keras/utils/kpl_test_utils.py deleted file mode 100644 index e96677f447f..00000000000 --- a/keras/utils/kpl_test_utils.py +++ /dev/null @@ -1,205 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Test related utilities for KPL + tf.distribute.""" - -import random -import tempfile - -import tensorflow.compat.v2 as tf - -import keras -from keras.layers.preprocessing import string_lookup - - -class DistributeKplTestUtils(tf.test.TestCase): - """Utils for test of tf.distribute + KPL.""" - - FEATURE_VOCAB = [ - "avenger", - "ironman", - "batman", - "hulk", - "spiderman", - "kingkong", - "wonder_woman", - ] - LABEL_VOCAB = ["yes", "no"] - - def define_kpls_for_training(self, use_adapt): - """Function that defines KPL used for unit tests of tf.distribute. - - Args: - use_adapt: if adapt will be called. False means there will be - precomputed statistics. - - Returns: - feature_mapper: a simple keras model with one keras StringLookup layer - which maps feature to index. - label_mapper: similar to feature_mapper, but maps label to index. - - """ - if use_adapt: - feature_lookup_layer = string_lookup.StringLookup(num_oov_indices=1) - feature_lookup_layer.adapt(self.FEATURE_VOCAB) - label_lookup_layer = string_lookup.StringLookup( - num_oov_indices=0, mask_token=None - ) - label_lookup_layer.adapt(self.LABEL_VOCAB) - else: - feature_lookup_layer = string_lookup.StringLookup( - vocabulary=self.FEATURE_VOCAB, num_oov_indices=1 - ) - label_lookup_layer = string_lookup.StringLookup( - vocabulary=self.LABEL_VOCAB, num_oov_indices=0, mask_token=None - ) - - raw_feature_input = keras.layers.Input( - shape=(3,), dtype=tf.string, name="feature", ragged=True - ) - feature_id_input = feature_lookup_layer(raw_feature_input) - feature_mapper = keras.Model( - {"features": raw_feature_input}, feature_id_input - ) - - raw_label_input = keras.layers.Input( - shape=(1,), dtype=tf.string, name="label" - ) - label_id_input = label_lookup_layer(raw_label_input) - label_mapper = keras.Model({"label": raw_label_input}, label_id_input) - - return feature_mapper, label_mapper - - def dataset_fn(self, feature_mapper, label_mapper): - """Function that generates dataset for test of tf.distribute + KPL. - - Args: - feature_mapper: a simple keras model with one keras StringLookup layer - which maps feature to index. - label_mapper: similar to feature_mapper, but maps label to index. - - Returns: - Generated dataset for test of tf.distribute + KPL. - - """ - - def feature_and_label_gen(): - # Generator of dataset. - while True: - features = random.sample(self.FEATURE_VOCAB, 3) - label = ["yes"] if self.FEATURE_VOCAB[0] in features else ["no"] - yield {"features": features, "label": label} - - raw_dataset = ( - tf.data.Dataset.from_generator( - feature_and_label_gen, - output_signature={ - "features": tf.TensorSpec([3], tf.string), - "label": tf.TensorSpec([1], tf.string), - }, - ) - .shuffle(100) - .batch(32) - ) - - train_dataset = raw_dataset.map( - lambda x: ( - {"features": feature_mapper(x["features"])}, - label_mapper(x["label"]), - ) - ) - return train_dataset - - def define_model(self): - """A simple model for test of tf.distribute + KPL.""" - # Create the model. The input needs to be compatible with KPLs. - model_input = keras.layers.Input( - shape=(3,), dtype=tf.int64, name="model_input" - ) - - # input_dim includes a mask token and an oov token. - emb_output = keras.layers.Embedding( - input_dim=len(self.FEATURE_VOCAB) + 2, output_dim=20 - )(model_input) - emb_output = tf.reduce_mean(emb_output, axis=1) - dense_output = keras.layers.Dense(units=1, activation="sigmoid")( - emb_output - ) - model = keras.Model({"features": model_input}, dense_output) - return model - - def define_reverse_lookup_layer(self): - """Create string reverse lookup layer for serving.""" - - label_inverse_lookup_layer = string_lookup.StringLookup( - num_oov_indices=0, - mask_token=None, - vocabulary=self.LABEL_VOCAB, - invert=True, - ) - return label_inverse_lookup_layer - - def create_serving_signature( - self, model, feature_mapper, label_inverse_lookup_layer - ): - """Create serving signature for the given model.""" - - @tf.function - def serve_fn(raw_features): - raw_features = tf.expand_dims(raw_features, axis=0) - transformed_features = model.feature_mapper(raw_features) - outputs = model(transformed_features) - outputs = tf.squeeze(outputs, axis=0) - outputs = tf.cast(tf.greater(outputs, 0.5), tf.int64) - decoded_outputs = model.label_inverse_lookup_layer(outputs) - return tf.squeeze(decoded_outputs, axis=0) - - model.feature_mapper = feature_mapper - model.label_inverse_lookup_layer = label_inverse_lookup_layer - # serving does NOT have batch dimension - return serve_fn.get_concrete_function( - tf.TensorSpec(shape=(3), dtype=tf.string, name="example") - ) - - def test_save_load_serving_model( - self, model, feature_mapper, label_inverse_lookup_layer - ): - """Test save/load/serving model.""" - - serving_fn = self.create_serving_signature( - model, feature_mapper, label_inverse_lookup_layer - ) - - saved_model_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) - model.save( - saved_model_dir, - save_format="tf", - signatures={"serving_default": serving_fn}, - ) - - # Test the saved_model. - loaded_serving_fn = keras.saving.legacy.save.load_model( - saved_model_dir - ).signatures["serving_default"] - - # check the result w/ and w/o avenger. - prediction0 = loaded_serving_fn( - tf.constant(["avenger", "ironman", "avenger"]) - )["output_0"] - self.assertIn(prediction0.numpy().decode("UTF-8"), ("yes", "no")) - - prediction1 = loaded_serving_fn( - tf.constant(["ironman", "ironman", "unknown"]) - )["output_0"] - self.assertIn(prediction1.numpy().decode("UTF-8"), ("yes", "no")) diff --git a/keras/utils/layer_utils.py b/keras/utils/layer_utils.py deleted file mode 100644 index 071bbff62ea..00000000000 --- a/keras/utils/layer_utils.py +++ /dev/null @@ -1,1111 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Utilities related to layer/model functionality.""" - -import copy -import functools -import re -import weakref - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import initializers -from keras.utils import io_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.utils.get_source_inputs") -def get_source_inputs(tensor, layer=None, node_index=None): - """Returns the list of input tensors necessary to compute `tensor`. - - Output will always be a list of tensors - (potentially with 1 element). - - Args: - tensor: The tensor to start from. - layer: Origin layer of the tensor. Will be - determined via tensor._keras_history if not provided. - node_index: Origin node index of the tensor. - - Returns: - List of input tensors. - """ - if not hasattr(tensor, "_keras_history"): - return tensor - - if layer is None or node_index: - layer, node_index, _ = tensor._keras_history - if not layer._inbound_nodes: - return [tensor] - else: - node = layer._inbound_nodes[node_index] - if node.is_input: - # Reached an Input layer, stop recursion. - return tf.nest.flatten(node.input_tensors) - else: - source_tensors = [] - for layer, node_index, _, tensor in node.iterate_inbound(): - previous_sources = get_source_inputs(tensor, layer, node_index) - # Avoid input redundancy. - for x in previous_sources: - if all(x is not t for t in source_tensors): - source_tensors.append(x) - return source_tensors - - -def validate_string_arg( - input_data, - allowable_strings, - layer_name, - arg_name, - allow_none=False, - allow_callables=False, -): - """Validates the correctness of a string-based arg.""" - if allow_none and input_data is None: - return - elif allow_callables and callable(input_data): - return - elif isinstance(input_data, str) and input_data in allowable_strings: - return - else: - allowed_args = "`None`, " if allow_none else "" - allowed_args += "a `Callable`, " if allow_callables else "" - allowed_args += f"or one of the following values: {allowable_strings}" - if allow_callables: - callable_note = ( - f"If restoring a model and `{arg_name}` is a custom callable, " - "please ensure the callable is registered as a custom object. " - "See https://www.tensorflow.org/guide/keras/save_and_serialize" - "#registering_the_custom_object for details. " - ) - else: - callable_note = "" - raise ValueError( - f"Unkown value for `{arg_name}` argument of layer {layer_name}. " - f"{callable_note}Allowed values are: {allowed_args}. Received: " - f"{input_data}" - ) - - -def count_params(weights): - """Count the total number of scalars composing the weights. - - Args: - weights: An iterable containing the weights on which to compute params - - Returns: - The total number of scalars composing the weights - """ - unique_weights = {id(w): w for w in weights}.values() - # Ignore TrackableWeightHandlers, which will not have a shape defined. - unique_weights = [w for w in unique_weights if hasattr(w, "shape")] - weight_shapes = [w.shape.as_list() for w in unique_weights] - standardized_weight_shapes = [ - [0 if w_i is None else w_i for w_i in w] for w in weight_shapes - ] - return int(sum(np.prod(p) for p in standardized_weight_shapes)) - - -def weight_memory_size(weights): - """Calculate the memory footprint for weights based on their dtypes. - - Args: - weights: An iterable contains the weights to compute weight size. - - Returns: - The total memory size (in Bytes) of the weights. - """ - unique_weights = {id(w): w for w in weights}.values() - - total_memory_size = 0 - for w in unique_weights: - # Ignore TrackableWeightHandlers, which will not have a shape defined. - if not hasattr(w, "shape"): - continue - elif None in w.shape.as_list(): - continue - weight_shape = np.prod(w.shape.as_list()) - per_param_size = w.dtype.size - total_memory_size += weight_shape * per_param_size - return total_memory_size - - -def dtensor_variable_summary(weights): - """Group and calculate DTensor based weights memory size. - - Since DTensor weights can be sharded across multiple device, the result - will be grouped by the layout/sharding spec for the variables, so that - the accurate per-device memory size can be calculated. - - Args: - weights: An iterable contains the weights to compute weight size. - - Returns: - total_weight_count, total_memory_size and per_sharing_spec_result which - is a dict with normalized layout spec as key and tuple of weight count - and weight size as value. - """ - unique_weights = {id(w): w for w in weights}.values() - total_weight_count = 0 - total_memory_size = 0 - per_sharing_spec_result = {} - for w in unique_weights: - # Ignore TrackableWeightHandlers, which will not have a shape defined. - if not hasattr(w, "shape"): - continue - if not isinstance(w, tf.experimental.dtensor.DVariable): - continue - layout = w.layout - # Remove all the duplication axis, and sort the column name. - # 1D replicated and 2D replicated variable will still be fully - # replicated, and [batch, model] sharding will have same memory - # footprint as the [model, batch] layout. - reduced_sharding_spec = list(sorted(set(layout.sharding_specs))) - if tf.experimental.dtensor.UNSHARDED in reduced_sharding_spec: - reduced_sharding_spec.remove(tf.experimental.dtensor.UNSHARDED) - reduced_sharding_spec = tuple(reduced_sharding_spec) # For dict key - weight_count, memory_size = per_sharing_spec_result.get( - reduced_sharding_spec, (0, 0) - ) - reduced_weight_shape = np.prod(w.shape.as_list()) - per_param_size = w.dtype.size - weight_count += reduced_weight_shape - memory_size += reduced_weight_shape * per_param_size - per_sharing_spec_result[reduced_sharding_spec] = ( - weight_count, - memory_size, - ) - total_weight_count += reduced_weight_shape - total_memory_size += reduced_weight_shape * per_param_size - return total_weight_count, total_memory_size, per_sharing_spec_result - - -def print_dtensor_variable_summary(model, print_fn, line_length): - if getattr(model, "_layout_map", None) is not None: - mesh = model._layout_map.get_default_mesh() - elif hasattr(model, "distribute_strategy") and hasattr( - model.distribute_strategy, "_mesh" - ): - mesh = model.distribute_strategy._mesh - else: - # Not running with DTensor - mesh = None - if mesh: - ( - total_weight_count, - total_memory_size, - per_sharing_spec_result, - ) = dtensor_variable_summary(model.weights) - total_per_device_memory_size = 0 - for sharding_spec in sorted(per_sharing_spec_result.keys()): - count, memory_size = per_sharing_spec_result[sharding_spec] - if len(sharding_spec) == 0: - print_fn( - f"{count} / {total_weight_count} params " - f"({readable_memory_size(memory_size)}) " - "are fully replicated" - ) - per_device_size = memory_size - else: - sharding_factor = np.prod( - [mesh.dim_size(s) for s in sharding_spec] - ) - per_device_size = memory_size / sharding_factor - print_fn( - f"{count} / {total_weight_count} params " - f"({readable_memory_size(memory_size)}) are sharded based " - f"on spec '{sharding_spec}' and across {sharding_factor} " - f"devices." - ) - total_per_device_memory_size += per_device_size - print_fn( - "Overall per device memory usage: " - f"{readable_memory_size(total_per_device_memory_size)}" - ) - print_fn( - "Overall sharding factor: {:.2f}".format( - total_memory_size / total_per_device_memory_size - ) - ) - print_fn("_" * line_length) - - -def readable_memory_size(weight_memory_size): - """Convert the weight memory size (Bytes) to a readable string.""" - units = ["Byte", "KB", "MB", "GB", "TB", "PB"] - scale = 1024 - for unit in units: - if weight_memory_size / scale < 1: - return "{:.2f} {}".format(weight_memory_size, unit) - else: - weight_memory_size /= scale - return "{:.2f} {}".format(weight_memory_size, units[-1]) - - -def get_layer_index_bound_by_layer_name(model, layer_range=None): - """Get the layer indexes from the model based on layer names. - - The layer indexes can be used to slice the model into sub models for - display. - - Args: - model: `tf.keras.Model` instance. - layer_names: a list or tuple of 2 strings, the starting layer name and - ending layer name (both inclusive) for the result. All layers will - be included when `None` is provided. - - Returns: - The index value of layer based on its unique name (layer_names). - Output will be [first_layer_index, last_layer_index + 1]. - """ - if layer_range is not None: - if len(layer_range) != 2: - raise ValueError( - "layer_range must be a list or tuple of length 2. Received: " - f"layer_range = {layer_range} of length {len(layer_range)}" - ) - if not isinstance(layer_range[0], str) or not isinstance( - layer_range[1], str - ): - raise ValueError( - "layer_range should contain string type only. " - f"Received: {layer_range}" - ) - else: - return [0, len(model.layers)] - - lower_index = [ - idx - for idx, layer in enumerate(model.layers) - if re.match(layer_range[0], layer.name) - ] - upper_index = [ - idx - for idx, layer in enumerate(model.layers) - if re.match(layer_range[1], layer.name) - ] - - if not lower_index or not upper_index: - raise ValueError( - "Passed layer_names do not match the layer names in the model. " - f"Received: {layer_range}" - ) - - if min(lower_index) > max(upper_index): - return [min(upper_index), max(lower_index) + 1] - return [min(lower_index), max(upper_index) + 1] - - -def print_summary( - model, - line_length=None, - positions=None, - print_fn=None, - expand_nested=False, - show_trainable=False, - layer_range=None, -): - """Prints a summary of a model. - - Args: - model: Keras model instance. - line_length: Total length of printed lines - (e.g. set this to adapt the display to different - terminal window sizes). - positions: Relative or absolute positions of log elements in each line. - If not provided, defaults to `[0.3, 0.6, 0.70, 1.]`. - print_fn: Print function to use. - It will be called on each line of the summary. - You can set it to a custom function - in order to capture the string summary. - It defaults to `print` (prints to stdout). - expand_nested: Whether to expand the nested models. - If not provided, defaults to `False`. - show_trainable: Whether to show if a layer is trainable. - If not provided, defaults to `False`. - layer_range: List or tuple containing two strings, - the starting layer name and ending layer name (both inclusive), - indicating the range of layers to be printed in the summary. The - strings could also be regexes instead of an exact name. In this - case, the starting layer will be the first layer that matches - `layer_range[0]` and the ending layer will be the last element that - matches `layer_range[1]`. By default (`None`) all - layers in the model are included in the summary. - """ - if print_fn is None: - print_fn = io_utils.print_msg - - if model.__class__.__name__ == "Sequential": - sequential_like = True - elif not model._is_graph_network: - # We treat subclassed models as a simple sequence of layers, for logging - # purposes. - sequential_like = True - else: - sequential_like = True - nodes_by_depth = model._nodes_by_depth.values() - nodes = [] - for v in nodes_by_depth: - if (len(v) > 1) or ( - len(v) == 1 and len(tf.nest.flatten(v[0].keras_inputs)) > 1 - ): - # if the model has multiple nodes - # or if the nodes have multiple inbound_layers - # the model is no longer sequential - sequential_like = False - break - nodes += v - if sequential_like: - # search for shared layers - for layer in model.layers: - flag = False - for node in layer._inbound_nodes: - if node in nodes: - if flag: - sequential_like = False - break - else: - flag = True - if not sequential_like: - break - - if sequential_like: - line_length = line_length or 65 - positions = positions or [0.45, 0.85, 1.0] - if positions[-1] <= 1: - positions = [int(line_length * p) for p in positions] - # header names for the different log elements - to_display = ["Layer (type)", "Output Shape", "Param #"] - else: - line_length = line_length or 98 - positions = positions or [0.3, 0.6, 0.70, 1.0] - if positions[-1] <= 1: - positions = [int(line_length * p) for p in positions] - # header names for the different log elements - to_display = ["Layer (type)", "Output Shape", "Param #", "Connected to"] - relevant_nodes = [] - for v in model._nodes_by_depth.values(): - relevant_nodes += v - - if show_trainable: - line_length += 11 - positions.append(line_length) - to_display.append("Trainable") - - layer_range = get_layer_index_bound_by_layer_name(model, layer_range) - - def print_row(fields, positions, nested_level=0): - left_to_print = [str(x) for x in fields] - while any(left_to_print): - line = "" - for col in range(len(left_to_print)): - if col > 0: - start_pos = positions[col - 1] - else: - start_pos = 0 - end_pos = positions[col] - # Leave room for 2 spaces to delineate columns - # we don't need any if we are printing the last column - space = 2 if col != len(positions) - 1 else 0 - cutoff = end_pos - start_pos - space - # Except for last col, offset by one to align the start of col - if col != len(positions) - 1: - cutoff -= 1 - if col == 0: - cutoff -= nested_level - fit_into_line = left_to_print[col][:cutoff] - # For nicer formatting we line-break on seeing end of - # tuple/dict etc. - line_break_conditions = ("),", "},", "],", "',") - candidate_cutoffs = [ - fit_into_line.find(x) + len(x) - for x in line_break_conditions - if fit_into_line.find(x) >= 0 - ] - if candidate_cutoffs: - cutoff = min(candidate_cutoffs) - fit_into_line = fit_into_line[:cutoff] - - if col == 0: - line += "|" * nested_level + " " - line += fit_into_line - line += " " * space if space else "" - left_to_print[col] = left_to_print[col][cutoff:] - - # Pad out to the next position - # Make space for nested_level for last column - if nested_level and col == len(positions) - 1: - line += " " * (positions[col] - len(line) - nested_level) - else: - line += " " * (positions[col] - len(line)) - line += "|" * nested_level - print_fn(line) - - print_fn(f'Model: "{model.name}"') - print_fn("_" * line_length) - print_row(to_display, positions) - print_fn("=" * line_length) - - def print_layer_summary(layer, nested_level=0): - """Prints a summary for a single layer. - - Args: - layer: target layer. - nested_level: level of nesting of the layer inside its parent layer - (e.g. 0 for a top-level layer, 1 for a nested layer). - """ - try: - output_shape = layer.output_shape - except AttributeError: - output_shape = "multiple" - except RuntimeError: # output_shape unknown in Eager mode. - output_shape = "?" - name = layer.name - cls_name = layer.__class__.__name__ - if not layer.built and not getattr(layer, "_is_graph_network", False): - # If a subclassed model has a layer that is not called in - # Model.call, the layer will not be built and we cannot call - # layer.count_params(). - params = "0 (unused)" - else: - params = layer.count_params() - fields = [name + " (" + cls_name + ")", output_shape, params] - - if show_trainable: - fields.append("Y" if layer.trainable else "N") - - print_row(fields, positions, nested_level) - - def print_layer_summary_with_connections(layer, nested_level=0): - """Prints a summary for a single layer (including its connections). - - Args: - layer: target layer. - nested_level: level of nesting of the layer inside its parent layer - (e.g. 0 for a top-level layer, 1 for a nested layer). - """ - try: - output_shape = layer.output_shape - except AttributeError: - output_shape = "multiple" - connections = [] - for node in layer._inbound_nodes: - if relevant_nodes and node not in relevant_nodes: - # node is not part of the current network - continue - - for ( - inbound_layer, - node_index, - tensor_index, - _, - ) in node.iterate_inbound(): - connections.append( - f"{inbound_layer.name}[{node_index}][{tensor_index}]" - ) - - name = layer.name - cls_name = layer.__class__.__name__ - fields = [ - name + " (" + cls_name + ")", - output_shape, - layer.count_params(), - connections, - ] - - if show_trainable: - fields.append("Y" if layer.trainable else "N") - - print_row(fields, positions, nested_level) - - def print_layer(layer, nested_level=0, is_nested_last=False): - if sequential_like: - print_layer_summary(layer, nested_level) - else: - print_layer_summary_with_connections(layer, nested_level) - - if expand_nested and hasattr(layer, "layers") and layer.layers: - print_fn( - "|" * (nested_level + 1) - + "¯" * (line_length - 2 * nested_level - 2) - + "|" * (nested_level + 1) - ) - - nested_layer = layer.layers - is_nested_last = False - for i in range(len(nested_layer)): - if i == len(nested_layer) - 1: - is_nested_last = True - print_layer(nested_layer[i], nested_level + 1, is_nested_last) - - print_fn( - "|" * nested_level - + "¯" * (line_length - 2 * nested_level) - + "|" * nested_level - ) - - if not is_nested_last: - print_fn( - "|" * nested_level - + " " * (line_length - 2 * nested_level) - + "|" * nested_level - ) - - for layer in model.layers[layer_range[0] : layer_range[1]]: - print_layer(layer) - print_fn("=" * line_length) - - if hasattr(model, "_collected_trainable_weights"): - trainable_count = count_params(model._collected_trainable_weights) - trainable_memory_size = weight_memory_size( - model._collected_trainable_weights - ) - else: - trainable_count = count_params(model.trainable_weights) - trainable_memory_size = weight_memory_size(model.trainable_weights) - - non_trainable_count = count_params(model.non_trainable_weights) - non_trainable_memory_size = weight_memory_size(model.non_trainable_weights) - - total_memory_size = trainable_memory_size + non_trainable_memory_size - - print_fn( - f"Total params: {trainable_count + non_trainable_count} " - f"({readable_memory_size(total_memory_size)})" - ) - print_fn( - f"Trainable params: {trainable_count} " - f"({readable_memory_size(trainable_memory_size)})" - ) - print_fn( - f"Non-trainable params: {non_trainable_count} " - f"({readable_memory_size(non_trainable_memory_size)})" - ) - print_fn("_" * line_length) - - print_dtensor_variable_summary(model, print_fn, line_length) - - -def convert_dense_weights_data_format( - dense, previous_feature_map_shape, target_data_format="channels_first" -): - """Utility useful when changing a convnet's `data_format`. - - When porting the weights of a convnet from one data format to the other, - if the convnet includes a `Flatten` layer - (applied to the last convolutional feature map) - followed by a `Dense` layer, the weights of that `Dense` layer - should be updated to reflect the new dimension ordering. - - Args: - dense: The target `Dense` layer. - previous_feature_map_shape: A shape tuple of 3 integers, - e.g. `(512, 7, 7)`. The shape of the convolutional - feature map right before the `Flatten` layer that - came before the target `Dense` layer. - target_data_format: One of "channels_last", "channels_first". - Set it "channels_last" - if converting a "channels_first" model to "channels_last", - or reciprocally. - """ - assert target_data_format in {"channels_last", "channels_first"} - kernel, bias = dense.get_weights() - for i in range(kernel.shape[1]): - if target_data_format == "channels_first": - c, h, w = previous_feature_map_shape - original_fm_shape = (h, w, c) - ki = kernel[:, i].reshape(original_fm_shape) - ki = np.transpose(ki, (2, 0, 1)) # last -> first - else: - h, w, c = previous_feature_map_shape - original_fm_shape = (c, h, w) - ki = kernel[:, i].reshape(original_fm_shape) - ki = np.transpose(ki, (1, 2, 0)) # first -> last - kernel[:, i] = np.reshape(ki, (np.prod(previous_feature_map_shape),)) - dense.set_weights([kernel, bias]) - - -def is_builtin_layer(layer): - if not getattr(layer, "_keras_api_names", None): - return False - - # Subclasses of `Layer` that are not exported inherit the export name - # of the base layer class. - return layer._keras_api_names != ( - "keras.layers.Layer", - ) and layer._keras_api_names_v1 != ("keras.layers.Layer",) - - -def cached_per_instance(f): - """Lightweight decorator for caching lazily constructed properties. - - When to use: - This decorator provides simple caching with minimal overhead. It is designed - for properties which are expensive to compute and static over the life of a - class instance, and provides no mechanism for cache invalidation. Thus it is - best suited for lazily exposing derived properties of other static data. - - For classes with custom getattr / setattr behavior (such as trackable - objects), storing cache results as object attributes is not performant. - Instead, a specialized cache can significantly reduce property lookup - overhead. (While still allowing the decorated property to be lazily - computed.) Consider the following class: - - ``` - class MyClass: - def __setattr__(self, key, value): - # Some expensive class specific code - # ... - # ... - - super(MyClass, self).__setattr__(key, value) - - @property - def thing(self): - # `thing` is expensive to compute (and may not even be requested), so we - # want to lazily compute it and then cache it. - output = getattr(self, '_thing', None) - if output is None: - self._thing = output = compute_thing(self) - return output - ``` - - It's also worth noting that ANY overriding of __setattr__, even something as - simple as: - ``` - def __setattr__(self, key, value): - super(MyClass, self).__setattr__(key, value) - ``` - - Slows down attribute assignment by nearly 10x. - - By contrast, replacing the definition of `thing` with the following - sidesteps the expensive __setattr__ altogether: - - ''' - @property - @tracking.cached_per_instance - def thing(self): - # `thing` is expensive to compute (and may not even be requested), so we - # want to lazily compute it and then cache it. - return compute_thing(self) - ''' - - Performance: - The overhead for this decorator is ~0.4 us / call. A much lower overhead - implementation (~0.085 us / call) can be achieved by using a custom dict - type: - - ``` - def dict_based_cache(f): - class Cache(dict): - __slots__ = () - def __missing__(self, key): - self[key] = output = f(key) - return output - - return property(Cache().__getitem__) - ``` - - However, that implementation holds class instances as keys, and as a result - blocks garbage collection. (And modifying it to use weakref's as keys raises - the lookup overhead to ~0.4 us) As a result, the WeakKeyDictionary - implementation below turns out to be more prudent. - - Args: - f: The function to cache. - - Returns: - f decorated with simple caching behavior. - """ - - cache = weakref.WeakKeyDictionary() - - @functools.wraps(f) - def wrapped(item): - output = cache.get(item) - if output is None: - cache[item] = output = f(item) - return output - - wrapped.cache = cache - return wrapped - - -def filter_empty_layer_containers(layer_list): - """Filter out empty Layer-like containers and uniquify.""" - # TODO(b/130381733): Make this an attribute in base_layer.Layer. - existing = set() - to_visit = layer_list[::-1] - while to_visit: - obj = to_visit.pop() - if id(obj) in existing: - continue - existing.add(id(obj)) - if hasattr(obj, "_is_layer") and not isinstance(obj, type): - yield obj - else: - sub_layers = getattr(obj, "layers", None) or [] - - # Trackable data structures will not show up in ".layers" lists, but - # the layers they contain will. - to_visit.extend(sub_layers[::-1]) - - -class CallFunctionSpec: - """Caches the spec and provides utilities for handling call function - args.""" - - def __init__(self, full_argspec): - """Initialies a `CallFunctionSpec`. - - Args: - full_argspec: the FullArgSpec of a call function of a layer. - """ - self._full_argspec = full_argspec - - self._arg_names = list(self._full_argspec.args) - # Scrub `self` that appears if a decorator was applied. - if self._arg_names and self._arg_names[0] == "self": - self._arg_names = self._arg_names[1:] - self._arg_names += self._full_argspec.kwonlyargs or [] - - call_accepts_kwargs = self._full_argspec.varkw is not None - self._expects_training_arg = ( - "training" in self._arg_names or call_accepts_kwargs - ) - self._expects_mask_arg = ( - "mask" in self._arg_names or call_accepts_kwargs - ) - - call_fn_defaults = self._full_argspec.defaults or [] - defaults = dict() - # The call arg defaults are an n-tuple of the last n elements of the - # args list. (n = # of elements that have a default argument) - for i in range(-1 * len(call_fn_defaults), 0): - defaults[self._arg_names[i]] = call_fn_defaults[i] - # The default training arg will be any (non-None) default specified in - # the method signature, or None if no value is specified. - defaults.update(self._full_argspec.kwonlydefaults or {}) - self._default_training_arg = defaults.get("training") - - @property - def full_argspec(self): - """Returns the FullArgSpec of the call function.""" - return self._full_argspec - - @property - def arg_names(self): - """List of names of args and kwonlyargs.""" - # `arg_names` is not accurate if the layer has variable positional args. - return self._arg_names - - @arg_names.setter - def arg_names(self, value): - self._arg_names = value - - @property - @cached_per_instance - def arg_positions(self): - """Returns a dict mapping arg names to their index positions.""" - # `arg_positions` is not accurate if the layer has variable positional - # args. - call_fn_arg_positions = dict() - for pos, arg in enumerate(self._arg_names): - call_fn_arg_positions[arg] = pos - return call_fn_arg_positions - - @property - def expects_training_arg(self): - """Whether the call function uses 'training' as a parameter.""" - return self._expects_training_arg - - @expects_training_arg.setter - def expects_training_arg(self, value): - self._expects_training_arg = value - - @property - def expects_mask_arg(self): - """Whether the call function uses `mask` as a parameter.""" - return self._expects_mask_arg - - @expects_mask_arg.setter - def expects_mask_arg(self, value): - self._expects_mask_arg = value - - @property - def default_training_arg(self): - """The default value given to the "training" argument.""" - return self._default_training_arg - - def arg_was_passed(self, arg_name, args, kwargs, inputs_in_args=False): - """Returns true if argument is present in `args` or `kwargs`. - - Args: - arg_name: String name of the argument to find. - args: Tuple of args passed to the call function. - kwargs: Dictionary of kwargs passed to the call function. - inputs_in_args: Whether the input argument (the first argument in the - call function) is included in `args`. Defaults to `False`. - - Returns: - True if argument with `arg_name` is present in `args` or `kwargs`. - """ - # Performance optimization: do no work in most common case. - if not args and not kwargs: - return False - - if arg_name in kwargs: - return True - call_fn_args = self._arg_names - if not inputs_in_args: - # Ignore `inputs` arg. - call_fn_args = call_fn_args[1:] - return arg_name in dict(zip(call_fn_args, args)) - - def get_arg_value(self, arg_name, args, kwargs, inputs_in_args=False): - """Retrieves the value for the argument with name `arg_name`. - - Args: - arg_name: String name of the argument to find. - args: Tuple of args passed to the call function. - kwargs: Dictionary of kwargs passed to the call function. - inputs_in_args: Whether the input argument (the first argument in the - call function) is included in `args`. Defaults to `False`. - - Returns: - The value of the argument with name `arg_name`, extracted from `args` - or `kwargs`. - - Raises: - KeyError if the value of `arg_name` cannot be found. - """ - if arg_name in kwargs: - return kwargs[arg_name] - call_fn_args = self._arg_names - if not inputs_in_args: - # Ignore `inputs` arg. - call_fn_args = call_fn_args[1:] - args_dict = dict(zip(call_fn_args, args)) - return args_dict[arg_name] - - def set_arg_value( - self, - arg_name, - new_value, - args, - kwargs, - inputs_in_args=False, - pop_kwarg_if_none=False, - ): - """Sets the value of an argument into the given args/kwargs. - - Args: - arg_name: String name of the argument to find. - new_value: New value to give to the argument. - args: Tuple of args passed to the call function. - kwargs: Dictionary of kwargs passed to the call function. - inputs_in_args: Whether the input argument (the first argument in the - call function) is included in `args`. Defaults to `False`. - pop_kwarg_if_none: If the new value is `None`, and this is `True`, - then the argument is deleted from `kwargs`. - - Returns: - The updated `(args, kwargs)`. - """ - if self.full_argspec.varargs: - try: - arg_pos = self.full_argspec.args.index(arg_name) - if self.full_argspec.args[0] == "self": - arg_pos -= 1 - except ValueError: - arg_pos = None - else: - arg_pos = self.arg_positions.get(arg_name, None) - - if arg_pos is not None: - if not inputs_in_args: - # Ignore `inputs` arg. - arg_pos = arg_pos - 1 - if len(args) > arg_pos: - args = list(args) - args[arg_pos] = new_value - return tuple(args), kwargs - if new_value is None and pop_kwarg_if_none: - kwargs.pop(arg_name, None) - else: - kwargs[arg_name] = new_value - return args, kwargs - - def split_out_first_arg(self, args, kwargs): - """Splits (args, kwargs) into (inputs, args, kwargs).""" - # Grab the argument corresponding to the first argument in the - # layer's `call` method spec. This will either be the first positional - # argument, or it will be provided as a keyword argument. - if args: - inputs = args[0] - args = args[1:] - elif self._arg_names[0] in kwargs: - kwargs = copy.copy(kwargs) - inputs = kwargs.pop(self._arg_names[0]) - else: - raise ValueError( - "The first argument to `Layer.call` must always be passed." - ) - return inputs, args, kwargs - - -@keras_export("keras.utils.warmstart_embedding_matrix") -def warmstart_embedding_matrix( - base_vocabulary, - new_vocabulary, - base_embeddings, - new_embeddings_initializer="uniform", -): - """Warm start embedding matrix with changing vocab. - - This util can be used to warmstart the embedding layer matrix when - vocabulary changes between previously saved checkpoint and model. - Vocabulary change could mean, the size of the new vocab is different or the - vocabulary is reshuffled or new vocabulary has been added to old vocabulary. - If the vocabulary size changes, size of the embedding layer matrix also - changes. This util remaps the old vocabulary embeddings to the new embedding - layer matrix. - - Example: - Here is an example that demonstrates how to use the - `warmstart_embedding_matrix` util. - >>> import keras - >>> vocab_base = tf.convert_to_tensor(["unk", "a", "b", "c"]) - >>> vocab_new = tf.convert_to_tensor( - ... ["unk", "unk", "a", "b", "c", "d", "e"]) - >>> vectorized_vocab_base = np.random.rand(vocab_base.shape[0], 3) - >>> vectorized_vocab_new = np.random.rand(vocab_new.shape[0], 3) - >>> warmstarted_embedding_matrix = warmstart_embedding_matrix( - ... base_vocabulary=vocab_base, - ... new_vocabulary=vocab_new, - ... base_embeddings=vectorized_vocab_base, - ... new_embeddings_initializer=keras.initializers.Constant( - ... vectorized_vocab_new)) - - Here is an example that demonstrates how to get vocabulary and embedding - weights from layers, use the `warmstart_embedding_matrix` util to remap the - layer embeddings and continue with model training. - ``` - # get old and new vocabulary by using layer.get_vocabulary() - # for example assume TextVectorization layer is used - base_vocabulary = old_text_vectorization_layer.get_vocabulary() - new_vocabulary = new_text_vectorization_layer.get_vocabulary() - # get previous embedding layer weights - embedding_weights_base = model.get_layer('embedding').get_weights()[0] - warmstarted_embedding = keras.utils.warmstart_embedding_matrix( - base_vocabulary, - new_vocabulary, - base_embeddings=embedding_weights_base, - new_embeddings_initializer="uniform") - updated_embedding_variable = tf.Variable(warmstarted_embedding) - - # update embedding layer weights - model.layers[1].embeddings = updated_embedding_variable - model.fit(..) - # continue with model training - - ``` - - Args: - base_vocabulary: The list of vocabulary terms that - the preexisting embedding matrix `base_embeddings` represents. - It can be either a 1D array/tensor or a tuple/list of vocabulary - terms (strings), or a path to a vocabulary text file. If passing a - file path, the file should contain one line per term in the - vocabulary. - new_vocabulary: The list of vocabulary terms for the new vocabulary - (same format as above). - base_embeddings: NumPy array or tensor representing the preexisting - embedding matrix. - new_embeddings_initializer: Initializer for embedding vectors for - previously unseen terms to be added to the new embedding matrix (see - `keras.initializers`). Defaults to "uniform". new_embedding matrix - needs to be specified with "constant" initializer. - matrix. Default value is None. - - Returns: - tf.tensor of remapped embedding layer matrix - - """ - # convert vocab to list - base_vocabulary = convert_vocab_to_list(base_vocabulary) - new_vocabulary = convert_vocab_to_list(new_vocabulary) - - # Initialize the new embedding layer matrix - new_embeddings_initializer = initializers.get(new_embeddings_initializer) - new_embedding = new_embeddings_initializer( - shape=(len(new_vocabulary), base_embeddings.shape[1]), - dtype=base_embeddings.dtype, - ) - - # create mapping dict {vocab:index} - base_vocabulary_dict = dict( - zip(base_vocabulary, range(len(base_vocabulary))) - ) - - indices_base_vocabulary = [] - indices_new_vocabulary = [] - for index, key in enumerate(new_vocabulary): - if key in base_vocabulary_dict: - indices_base_vocabulary.append(base_vocabulary_dict[key]) - indices_new_vocabulary.append(int(index)) - - # update embedding matrix - if indices_base_vocabulary: - values_to_update = tf.gather(base_embeddings, indices_base_vocabulary) - new_embedding = tf.tensor_scatter_nd_update( - new_embedding, - tf.expand_dims(indices_new_vocabulary, axis=1), - values_to_update, - ) - return new_embedding - - -def convert_vocab_to_list(vocab): - """Convert input vacabulary to list.""" - vocab_list = [] - if tf.is_tensor(vocab): - vocab_list = list(vocab.numpy()) - elif isinstance(vocab, (np.ndarray, tuple, list)): - vocab_list = list(vocab) - elif isinstance(vocab, str): - if not tf.io.gfile.exists(vocab): - raise ValueError(f"Vocabulary file {vocab} does not exist.") - with tf.io.gfile.GFile(vocab, "r") as vocabulary_file: - vocab_list = vocabulary_file.read().splitlines() - else: - raise ValueError( - "Vocabulary is expected to be either a NumPy array, " - "list, 1D tensor or a vocabulary text file. Instead type " - f"{type(vocab)} was received." - ) - if len(vocab_list) == 0: - raise ValueError( - "Vocabulary is expected to be either a NumPy array, " - "list, 1D tensor or a vocabulary text file with at least one token." - " Received 0 instead." - ) - return vocab_list diff --git a/keras/utils/layer_utils_test.py b/keras/utils/layer_utils_test.py deleted file mode 100644 index 7fd128a9bea..00000000000 --- a/keras/utils/layer_utils_test.py +++ /dev/null @@ -1,964 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for layer_utils.""" - -import collections -import contextlib -import io -import multiprocessing.dummy -import os -import pickle -import shutil -import sys -import tempfile -import time -import timeit - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras import backend -from keras import layers -from keras.dtensor import dtensor_api as dtensor -from keras.dtensor import layout_map as layout_map_lib -from keras.dtensor import test_util -from keras.testing_infra import test_utils -from keras.utils import io_utils -from keras.utils import layer_utils -from keras.utils import tf_utils - -_PICKLEABLE_CALL_COUNT = collections.Counter() - - -class MyPickleableObject(tf.__internal__.tracking.AutoTrackable): - """Needed for InterfaceTests.test_property_cache_serialization. - - This class must be at the top level. This is a constraint of pickle, - unrelated to `cached_per_instance`. - """ - - @property - @layer_utils.cached_per_instance - def my_id(self): - _PICKLEABLE_CALL_COUNT[self] += 1 - return id(self) - - -class LayerUtilsTest(tf.test.TestCase, parameterized.TestCase): - def setUp(self): - super().setUp() - # Reset the UID so that all the layer/model ID will always start with 1. - # This will help remove the undetermined IDs from the model.summary() - backend.reset_uids() - - def test_print_summary(self): - model = keras.Sequential() - model.add( - keras.layers.Conv2D( - filters=2, - kernel_size=(2, 3), - input_shape=(3, 5, 5), - name="conv", - ) - ) - model.add(keras.layers.Flatten(name="flat")) - model.add(keras.layers.Dense(5, name="dense")) - - file_name = "model_1.txt" - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - fpath = os.path.join(temp_dir, file_name) - writer = open(fpath, "w") - - def print_to_file(text): - print(text, file=writer) - - try: - layer_utils.print_summary(model, print_fn=print_to_file) - self.assertTrue(tf.io.gfile.exists(fpath)) - writer.close() - with open(fpath, "r") as reader: - lines = reader.readlines() - self.assertEqual(len(lines), 15) - except ImportError: - pass - - def test_print_summary_without_print_fn(self): - model = keras.Sequential( - [keras.layers.Dense(5, input_shape=(10,), name="dense")] - ) - io_utils.enable_interactive_logging() - with self.captureWritesToStream(sys.stdout) as printed: - layer_utils.print_summary(model) - self.assertIn("dense (Dense)", printed.contents()) - - def test_print_summary_format_long_names(self): - shape = (8, 8, 3) - - model = keras.Sequential( - [ - keras.Input(shape), - keras.layers.Conv2D(4, 3, name="Really-Long-name-test"), - keras.layers.Conv2D(4, 3, name="Another-long-name-test"), - keras.layers.Flatten(), - keras.layers.Dense(2, name="long-name-test-output"), - ] - ) - file_name = "sequential.txt" - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - fpath = os.path.join(temp_dir, file_name) - writer = open(fpath, "w") - - def print_to_file(text): - print(text, file=writer) - - layer_utils.print_summary(model, print_fn=print_to_file) - self.assertTrue(tf.io.gfile.exists(fpath)) - writer.close() - reader = open(fpath, "r") - lines = reader.readlines() - reader.close() - check_str = ( - 'Model: "sequential"\n' - "_________________________________________________________________\n" # noqa: E501 - " Layer (type) Output Shape Param # \n" # noqa: E501 - "=================================================================\n" # noqa: E501 - " Really-Long-name-test (Con (None, 6, 6, 4) 112 \n" # noqa: E501 - " v2D) \n" # noqa: E501 - " \n" # noqa: E501 - " Another-long-name-test (Co (None, 4, 4, 4) 148 \n" # noqa: E501 - " nv2D) \n" # noqa: E501 - " \n" # noqa: E501 - " flatten (Flatten) (None, 64) 0 \n" # noqa: E501 - " \n" # noqa: E501 - " long-name-test-output (Den (None, 2) 130 \n" # noqa: E501 - " se) \n" # noqa: E501 - " \n" # noqa: E501 - "=================================================================\n" # noqa: E501 - "Total params: 390 (1.52 KB)\n" - "Trainable params: 390 (1.52 KB)\n" - "Non-trainable params: 0 (0.00 Byte)\n" - "_________________________________________________________________\n" # noqa: E501 - ) - fin_str = "".join(lines) - self.assertIn(fin_str, check_str) - self.assertEqual(len(lines), 20) - - def test_print_summary_expand_nested(self): - shape = (None, None, 3) - - def make_model(): - x = inputs = keras.Input(shape) - x = keras.layers.Conv2D(3, 1)(x) - x = keras.layers.BatchNormalization()(x) - return keras.Model(inputs, x) - - x = inner_inputs = keras.Input(shape) - x = make_model()(x) - inner_model = keras.Model(inner_inputs, x) - - inputs = keras.Input(shape) - model = keras.Model(inputs, inner_model(inputs)) - - file_name = "model_2.txt" - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - fpath = os.path.join(temp_dir, file_name) - writer = open(fpath, "w") - - def print_to_file(text): - print(text, file=writer) - - try: - layer_utils.print_summary( - model, print_fn=print_to_file, expand_nested=True - ) - self.assertTrue(tf.io.gfile.exists(fpath)) - writer.close() - reader = open(fpath, "r") - lines = reader.readlines() - reader.close() - check_str = ( - 'Model: "model_2"\n' - "_________________________________________________________________\n" # noqa: E501 - " Layer (type) Output Shape Param # \n" # noqa: E501 - "=================================================================\n" # noqa: E501 - " input_3 (InputLayer) [(None, None, None, 3)] 0 \n" # noqa: E501 - " \n" # noqa: E501 - " model_1 (Functional) (None, None, None, 3) 24 \n" # noqa: E501 - "|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|\n" # noqa: E501 - "| input_1 (InputLayer) [(None, None, None, 3)] 0 |\n" # noqa: E501 - "| |\n" # noqa: E501 - "| model (Functional) (None, None, None, 3) 24 |\n" # noqa: E501 - "||¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯||\n" # noqa: E501 - "|| input_2 (InputLayer) [(None, None, None, 3)] 0 ||\n" # noqa: E501 - "|| ||\n" # noqa: E501 - "|| conv2d (Conv2D) (None, None, None, 3) 12 ||\n" # noqa: E501 - "|| ||\n" # noqa: E501 - "|| batch_normalization (Bat (None, None, None, 3) 12 ||\n" # noqa: E501 - "|| chNormalization) ||\n" # noqa: E501 - "|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|\n" # noqa: E501 - "¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯\n" # noqa: E501 - "=================================================================\n" # noqa: E501 - "Total params: 24 (96.00 Byte)\n" - "Trainable params: 18 (72.00 Byte)\n" - "Non-trainable params: 6 (24.00 Byte)\n" - "_________________________________________________________________\n" # noqa: E501 - ) - - fin_str = "".join(lines) - - self.assertIn(fin_str, check_str) - self.assertEqual(len(lines), 25) - except ImportError: - pass - - def test_summary_subclass_model_expand_nested(self): - class Sequential(keras.Model): - def __init__(self, *args): - super().__init__() - self.module_list = list(args) if args else [] - - def call(self, x): - for module in self.module_list: - x = module(x) - return x - - class Block(keras.Model): - def __init__(self): - super().__init__() - self.module = Sequential( - keras.layers.Dense(10), - keras.layers.Dense(10), - ) - - def call(self, input_tensor): - x = self.module(input_tensor) - return x - - class Base(keras.Model): - def __init__(self): - super().__init__() - self.module = Sequential(Block(), Block()) - - def call(self, input_tensor): - x = self.module(input_tensor) - y = self.module(x) - return x, y - - class Network(keras.Model): - def __init__(self): - super().__init__() - self.child = Base() - - def call(self, inputs): - return self.child(inputs) - - net = Network() - inputs = keras.Input(shape=(10,)) - outputs = net(inputs) - model = keras.models.Model(inputs=inputs, outputs=outputs) - - file_name = "model_3.txt" - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - fpath = os.path.join(temp_dir, file_name) - writer = open(fpath, "w") - - def print_to_file(text): - print(text, file=writer) - - try: - layer_utils.print_summary( - model, - line_length=120, - print_fn=print_to_file, - expand_nested=True, - ) - self.assertTrue(tf.io.gfile.exists(fpath)) - writer.close() - with open(fpath, "r") as reader: - lines = reader.readlines() - # The output content are slightly different for the input shapes - # between v1 and v2. - if tf.__internal__.tf2.enabled(): - self.assertEqual(len(lines), 39) - else: - self.assertEqual(len(lines), 40) - except ImportError: - pass - - def test_print_summary_show_trainable(self): - model = keras.Sequential(name="trainable") - untrained = keras.layers.Conv2D( - filters=2, kernel_size=(2, 3), input_shape=(3, 5, 5), name="conv" - ) - model.add(untrained) - model.add(keras.layers.Flatten(name="flat")) - model.add(keras.layers.Dense(5, name="dense")) - - untrained.trainable = False - - file_name = "model_4.txt" - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - fpath = os.path.join(temp_dir, file_name) - writer = open(fpath, "w") - - def print_to_file(text): - print(text, file=writer) - - try: - layer_utils.print_summary( - model, print_fn=print_to_file, show_trainable=True - ) - self.assertTrue(tf.io.gfile.exists(fpath)) - writer.close() - with open(fpath, "r") as reader: - lines = reader.readlines() - check_str = ( - 'Model: "trainable"\n' - "____________________________________________________________________________\n" # noqa: E501 - " Layer (type) Output Shape Param # Trainable \n" # noqa: E501 - "============================================================================\n" # noqa: E501 - " conv (Conv2D) (None, 2, 3, 2) 62 N \n" # noqa: E501 - " \n" # noqa: E501 - " flat (Flatten) (None, 12) 0 Y \n" # noqa: E501 - " \n" # noqa: E501 - " dense (Dense) (None, 5) 65 Y \n" # noqa: E501 - " \n" # noqa: E501 - "============================================================================\n" # noqa: E501 - "Total params: 127 (508.00 Byte)\n" - "Trainable params: 65 (260.00 Byte)\n" - "Non-trainable params: 62 (248.00 Byte)\n" - "____________________________________________________________________________\n" # noqa: E501 - "____________________________________________________________________________\n" # noqa: E501 - ) - - fin_str = "".join(lines) - - self.assertIn(fin_str, check_str) - self.assertEqual(len(lines), 15) - except ImportError: - pass - - def test_print_summary_expand_nested_show_trainable(self): - shape = (None, None, 3) - - def make_model(): - x = inputs = keras.Input(shape, name="input2") - untrainable = keras.layers.Conv2D(3, 1) - untrainable.trainable = False - x = untrainable(x) - x = keras.layers.BatchNormalization()(x) - return keras.Model(inputs, x) - - x = inner_inputs = keras.Input(shape, name="input1") - x = make_model()(x) - inner_model = keras.Model(inner_inputs, x) - - inputs = keras.Input(shape, name="input3") - model = keras.Model(inputs, inner_model(inputs)) - - file_name = "model_6.txt" - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - fpath = os.path.join(temp_dir, file_name) - writer = open(fpath, "w") - - def print_to_file(text): - print(text, file=writer) - - try: - layer_utils.print_summary( - model, - print_fn=print_to_file, - expand_nested=True, - show_trainable=True, - ) - self.assertTrue(tf.io.gfile.exists(fpath)) - writer.close() - with open(fpath, "r") as reader: - lines = reader.readlines() - check_str = ( - 'Model: "model_2"\n' - "____________________________________________________________________________\n" # noqa: E501 - " Layer (type) Output Shape Param # Trainable \n" # noqa: E501 - "============================================================================\n" # noqa: E501 - " input3 (InputLayer) [(None, None, None, 3)] 0 Y \n" # noqa: E501 - " \n" # noqa: E501 - " model_1 (Functional) (None, None, None, 3) 24 Y \n" # noqa: E501 - "|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|\n" # noqa: E501 - "| input1 (InputLayer) [(None, None, None, 3)] 0 Y |\n" # noqa: E501 - "| |\n" # noqa: E501 - "| model (Functional) (None, None, None, 3) 24 Y |\n" # noqa: E501 - "||¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯||\n" # noqa: E501 - "|| input2 (InputLayer) [(None, None, None, 3)] 0 Y ||\n" # noqa: E501 - "|| ||\n" # noqa: E501 - "|| conv2d (Conv2D) (None, None, None, 3) 12 N ||\n" # noqa: E501 - "|| ||\n" # noqa: E501 - "|| batch_normalization (Bat (None, None, None, 3) 12 Y ||\n" # noqa: E501 - "|| chNormalization) ||\n" # noqa: E501 - "|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|\n" # noqa: E501 - "¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯\n" # noqa: E501 - "============================================================================\n" # noqa: E501 - "Total params: 24 (96.00 Byte)\n" - "Trainable params: 6 (24.00 Byte)\n" - "Non-trainable params: 18 (72.00 Byte)\n" - "____________________________________________________________________________\n" # noqa: E501 - ) - - fin_str = "".join(lines) - - self.assertIn(fin_str, check_str) - self.assertEqual(len(lines), 25) - except ImportError: - pass - - def test_print_summary_layer_range(self): - model = keras.Sequential() - model.add( - keras.layers.Conv2D( - filters=2, - kernel_size=(2, 3), - input_shape=(3, 5, 5), - name="conv", - ) - ) - model.add(keras.layers.Flatten(name="flat")) - model.add(keras.layers.Dense(5, name="dense")) - - file_name = "model_7.txt" - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - fpath = os.path.join(temp_dir, file_name) - writer = open(fpath, "w") - - def print_to_file(text): - print(text, file=writer) - - try: - layer_utils.print_summary( - model, print_fn=print_to_file, layer_range=["conv", "flat"] - ) - self.assertTrue(tf.io.gfile.exists(fpath)) - writer.close() - with open(fpath, "r") as reader: - lines = reader.readlines() - # The expected lenght with no layer filter is 15 - # we filtered out 2 lines by excluding the layer 'dense' - self.assertEqual(len(lines), 15 - 2) - except ImportError: - pass - - def test_print_summary_layer_range_with_expand_nested(self): - shape = (None, None, 3) - - def make_model(): - x = inputs = keras.Input(shape, name="input_2") - x = keras.layers.Conv2D(3, 1)(x) - x = keras.layers.BatchNormalization()(x) - return keras.Model(inputs, x, name="2nd_inner") - - x = inner_inputs = keras.Input(shape, name="input_1") - x = make_model()(x) - inner_model = keras.Model(inner_inputs, x, name="1st_inner") - - inputs = keras.Input(shape, name="input_3") - model = keras.Model(inputs, inner_model(inputs)) - - file_name = "model_8.txt" - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - fpath = os.path.join(temp_dir, file_name) - writer = open(fpath, "w") - - def print_to_file(text): - print(text, file=writer) - - try: - layer_utils.print_summary( - model, - print_fn=print_to_file, - expand_nested=True, - layer_range=["1st_inner", "1st_inner"], - ) - layer_utils.print_summary( - model, - expand_nested=True, - layer_range=["1st_inner", "1st_inner"], - ) - self.assertTrue(tf.io.gfile.exists(fpath)) - writer.close() - with open(fpath, "r") as reader: - lines = reader.readlines() - check_str = ( - 'Model: "model"\n' - "_________________________________________________________________\n" # noqa: E501 - " Layer (type) Output Shape Param # \n" # noqa: E501 - "=================================================================\n" # noqa: E501 - " 1st_inner (Functional) (None, None, None, 3) 24 \n" # noqa: E501 - "|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|\n" # noqa: E501 - "| input_1 (InputLayer) [(None, None, None, 3)] 0 |\n" # noqa: E501 - "| |\n" # noqa: E501 - "| 2nd_inner (Functional) (None, None, None, 3) 24 |\n" # noqa: E501 - "||¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯||\n" # noqa: E501 - "|| input_2 (InputLayer) [(None, None, None, 3)] 0 ||\n" # noqa: E501 - "|| ||\n" # noqa: E501 - "|| conv2d (Conv2D) (None, None, None, 3) 12 ||\n" # noqa: E501 - "|| ||\n" # noqa: E501 - "|| batch_normalization (Bat (None, None, None, 3) 12 ||\n" # noqa: E501 - "|| chNormalization) ||\n" # noqa: E501 - "|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|\n" # noqa: E501 - "¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯\n" # noqa: E501 - "=================================================================\n" # noqa: E501 - "Total params: 24 (96.00 Byte)\n" - "Trainable params: 18 (72.00 Byte)\n" - "Non-trainable params: 6 (24.00 Byte)\n" - "_________________________________________________________________\n" # noqa: E501 - ) - - check_lines = check_str.split("\n")[ - :-1 - ] # Removing final empty string which is not a line - - fin_str = "".join(lines) - self.assertIn(fin_str, check_str) - self.assertEqual(len(lines), len(check_lines)) - except ImportError: - pass - - def test_weight_memory_size(self): - v1 = tf.Variable(tf.zeros(shape=(1, 2), dtype=tf.float32)) - v2 = tf.Variable(tf.zeros(shape=(2, 3), dtype=tf.float64)) - v3 = tf.Variable(tf.zeros(shape=(4, 5), dtype=tf.int16)) - v4 = tf.Variable(tf.zeros(shape=(6,), dtype=tf.uint8)) - - weights = [v1, v1, v2, v3, v4] - weight_memory_size = layer_utils.weight_memory_size(weights) - expected_memory_size = 1 * 2 * 4 + 2 * 3 * 8 + 4 * 5 * 2 + 6 * 1 - self.assertEqual(weight_memory_size, expected_memory_size) - - @parameterized.parameters( - (0, "0.00 Byte"), - (1000, "1000.00 Byte"), - (1024, "1.00 KB"), - (1024 * 2 - 1, "2.00 KB"), - (1024 * 2 + 1, "2.00 KB"), - (1024**2 + 1, "1.00 MB"), - (1024**3 - 1, "1024.00 MB"), - (1024**3, "1.00 GB"), - (1024**4, "1.00 TB"), - (1024**5, "1.00 PB"), - (1024**5 * 1.41415, "1.41 PB"), - ) - def test_readable_weight_memory_size(self, size, expected_result): - result = layer_utils.readable_memory_size(size) - self.assertEqual(result, expected_result) - - def test_property_cache(self): - test_counter = collections.Counter() - - class MyObject(tf.__internal__.tracking.AutoTrackable): - def __init__(self): - super().__init__() - self._frozen = True - - def __setattr__(self, key, value): - """Enforce that cache does not set attribute on MyObject.""" - if getattr(self, "_frozen", False): - raise ValueError("Cannot mutate when frozen.") - return super().__setattr__(key, value) - - @property - @layer_utils.cached_per_instance - def test_property(self): - test_counter[id(self)] += 1 - return id(self) - - first_object = MyObject() - second_object = MyObject() - - # Make sure the objects return the correct values - self.assertEqual(first_object.test_property, id(first_object)) - self.assertEqual(second_object.test_property, id(second_object)) - - # Make sure the cache does not share across objects - self.assertNotEqual( - first_object.test_property, second_object.test_property - ) - - # Check again (Now the values should be cached.) - self.assertEqual(first_object.test_property, id(first_object)) - self.assertEqual(second_object.test_property, id(second_object)) - - # Count the function calls to make sure the cache is actually being - # used. - self.assertAllEqual(tuple(test_counter.values()), (1, 1)) - - def test_property_cache_threaded(self): - call_count = collections.Counter() - - class MyObject(tf.__internal__.tracking.AutoTrackable): - @property - @layer_utils.cached_per_instance - def test_property(self): - # Random sleeps to ensure that the execution thread changes - # mid-computation. - call_count["test_property"] += 1 - time.sleep(np.random.random() + 1.0) - - # Use a RandomState which is seeded off the instance's id (the - # mod is because numpy limits the range of seeds) to ensure that - # an instance returns the same value in different threads, but - # different instances return different values. - return int( - np.random.RandomState(id(self) % (2**31)).randint(2**16) - ) - - def get_test_property(self, _): - """Function provided to .map for threading test.""" - return self.test_property - - # Test that multiple threads return the same value. This requires that - # the underlying function is repeatable, as cached_property makes no - # attempt to prioritize the first call. - test_obj = MyObject() - with contextlib.closing(multiprocessing.dummy.Pool(32)) as pool: - # Intentionally make a large pool (even when there are only a small - # number of cpus) to ensure that the runtime switches threads. - results = pool.map(test_obj.get_test_property, range(64)) - self.assertEqual(len(set(results)), 1) - - # Make sure we actually are testing threaded behavior. - self.assertGreater(call_count["test_property"], 1) - - # Make sure new threads still cache hit. - with contextlib.closing(multiprocessing.dummy.Pool(2)) as pool: - start_time = ( - timeit.default_timer() - ) # Don't time pool instantiation. - results = pool.map(test_obj.get_test_property, range(4)) - total_time = timeit.default_timer() - start_time - - # Note(taylorrobie): The reason that it is safe to time a unit test is - # that a cache hit will be << 1 second, and a cache miss is guaranteed - # to be >= 1 second. Empirically confirmed by 100,000 runs with no - # flakes. - self.assertLess(total_time, 0.95) - - def test_property_cache_serialization(self): - # Reset call count. .keys() must be wrapped in a list, because otherwise - # we would mutate the iterator while iterating. - for k in list(_PICKLEABLE_CALL_COUNT.keys()): - _PICKLEABLE_CALL_COUNT.pop(k) - - first_instance = MyPickleableObject() - self.assertEqual(id(first_instance), first_instance.my_id) - - # Test that we can pickle and un-pickle - second_instance = pickle.loads(pickle.dumps(first_instance)) - - self.assertEqual(id(second_instance), second_instance.my_id) - self.assertNotEqual(first_instance.my_id, second_instance.my_id) - - # Make sure de-serialized object uses the cache. - self.assertEqual(_PICKLEABLE_CALL_COUNT[second_instance], 1) - - # Make sure the decorator cache is not being serialized with the object. - expected_size = len(pickle.dumps(second_instance)) - for _ in range(5): - # Add some more entries to the cache. - _ = MyPickleableObject().my_id - self.assertEqual(len(_PICKLEABLE_CALL_COUNT), 7) - size_check_instance = MyPickleableObject() - _ = size_check_instance.my_id - self.assertEqual(expected_size, len(pickle.dumps(size_check_instance))) - - def test_warmstart_embedding_matrix_with_list(self): - vocab_base = ["unk", "a", "b", "c"] - vocab_new = ["unk", "unk", "a", "b", "c", "d", "e"] - vectorized_vocab_base = np.random.rand(len(vocab_base), 3) - vectorized_vocab_new = np.random.rand(len(vocab_new), 3) - warmstarted_embedding_matrix = layer_utils.warmstart_embedding_matrix( - base_vocabulary=vocab_base, - new_vocabulary=vocab_new, - base_embeddings=vectorized_vocab_base, - new_embeddings_initializer=keras.initializers.Constant( - vectorized_vocab_new - ), - ) - self.assertAllEqual( - warmstarted_embedding_matrix[2], - vectorized_vocab_base[1], - ) - - def test_warmstart_embedding_matrix_with_nparray(self): - vocab_base = np.array(["unk", "a", "b", "c"]) - vocab_new = np.array(["unk", "unk", "a", "b", "c", "d", "e"]) - vectorized_vocab_base = np.random.rand(len(vocab_base), 3) - vectorized_vocab_new = np.random.rand(len(vocab_new), 3) - warmstarted_embedding_matrix = layer_utils.warmstart_embedding_matrix( - base_vocabulary=vocab_base, - new_vocabulary=vocab_new, - base_embeddings=vectorized_vocab_base, - new_embeddings_initializer=keras.initializers.Constant( - vectorized_vocab_new - ), - ) - self.assertAllEqual( - warmstarted_embedding_matrix[2], - vectorized_vocab_base[1], - ) - - @test_utils.run_v2_only - def test_warmstart_embedding_matrix_with_tensor(self): - vocab_base = tf.convert_to_tensor(["unk", "a", "b", "c"]) - vocab_new = tf.convert_to_tensor( - ["unk", "unk", "a", "b", "c", "d", "e"] - ) - vectorized_vocab_base = np.random.rand(vocab_base.shape[0], 3) - vectorized_vocab_new = np.random.rand(vocab_new.shape[0], 3) - warmstarted_embedding_matrix = layer_utils.warmstart_embedding_matrix( - base_vocabulary=vocab_base, - new_vocabulary=vocab_new, - base_embeddings=vectorized_vocab_base, - new_embeddings_initializer=keras.initializers.Constant( - vectorized_vocab_new - ), - ) - self.assertAllEqual( - warmstarted_embedding_matrix[2], - vectorized_vocab_base[1], - ) - - def test_warmstart_embedding_matrix_with_file_name(self): - def _write_list_to_file(filename, content_list): - with tf.io.gfile.GFile(filename, "w") as output_file: - for line in content_list: - output_file.write(line + "\n") - - vocab_base = ["UNK", "a", "b", "c"] - vocab_base_file = tempfile.mktemp(".tsv") - _write_list_to_file(vocab_base_file, vocab_base) - vocab_new = ["UNK", "UNK", "a", "b", "c", "d", "e"] - vocab_new_file = tempfile.mktemp(".tsv") - vectorized_vocab_base = np.random.rand(len(vocab_base), 3) - vectorized_vocab_new = np.random.rand(len(vocab_new), 3) - _write_list_to_file(vocab_new_file, vocab_new) - warmstarted_embedding_matrix = layer_utils.warmstart_embedding_matrix( - base_vocabulary=vocab_base_file, - new_vocabulary=vocab_new_file, - base_embeddings=vectorized_vocab_base, - new_embeddings_initializer=keras.initializers.Constant( - vectorized_vocab_new - ), - ) - self.assertAllEqual( - warmstarted_embedding_matrix[3], - vectorized_vocab_base[2], - ) - - def test_warmstart_default_initialization(self): - def _write_list_to_file(filename, content_list): - with tf.io.gfile.GFile(filename, "w") as output_file: - for line in content_list: - output_file.write(line + "\n") - - vocab_base = ["UNK", "a", "b", "c"] - vocab_base_file = tempfile.mktemp(".tsv") - _write_list_to_file(vocab_base_file, vocab_base) - vocab_new = ["UNK", "UNK", "a", "b", "c", "d", "e"] - vocab_new_file = tempfile.mktemp(".tsv") - vectorized_vocab_base = np.random.rand(len(vocab_base), 3) - _write_list_to_file(vocab_new_file, vocab_new) - warmstarted_embedding_matrix = layer_utils.warmstart_embedding_matrix( - base_vocabulary=vocab_base_file, - new_vocabulary=vocab_new_file, - base_embeddings=vectorized_vocab_base, - ) - self.assertAllEqual( - warmstarted_embedding_matrix[3], - vectorized_vocab_base[2], - ) - - def test_warmstart_default_value(self): - vocab_base = np.array(["unk", "a", "b", "c"]) - vocab_new = np.array(["unk", "unk", "a", "b", "c", "d", "e"]) - vectorized_vocab_base = np.random.rand(len(vocab_base), 3) - warmstarted_embedding_matrix = layer_utils.warmstart_embedding_matrix( - base_vocabulary=vocab_base, - new_vocabulary=vocab_new, - base_embeddings=vectorized_vocab_base, - ) - self.assertAllEqual( - warmstarted_embedding_matrix[2], - vectorized_vocab_base[1], - ) - - def test_warmstart_with_randomuniform_initializer(self): - vocab_base = np.array(["unk", "a", "b", "c"]) - vocab_new = np.array(["unk", "unk", "a", "b", "c", "d", "e"]) - vectorized_vocab_base = np.random.rand(len(vocab_base), 3) - warmstarted_embedding_matrix = layer_utils.warmstart_embedding_matrix( - base_vocabulary=vocab_base, - new_vocabulary=vocab_new, - base_embeddings=vectorized_vocab_base, - new_embeddings_initializer="RandomUniform", - ) - self.assertAllEqual( - warmstarted_embedding_matrix[2], - vectorized_vocab_base[1], - ) - - def test_warmstart_with_nothing_in_common(self): - vocab_base = np.array(["unk", "a", "b", "c"]) - vocab_new = np.array(["d", "e", "f", "g", "h"]) - vectorized_vocab_base = np.random.rand(len(vocab_base), 3) - vectorized_vocab_new = np.random.rand(len(vocab_new), 3) - warmstarted_embedding_matrix = layer_utils.warmstart_embedding_matrix( - base_vocabulary=vocab_base, - new_vocabulary=vocab_new, - base_embeddings=vectorized_vocab_base, - new_embeddings_initializer=keras.initializers.Constant( - vectorized_vocab_new - ), - ) - self.assertAllEqual( - warmstarted_embedding_matrix, - vectorized_vocab_new, - ) - - def test_warmstart_with_new_vocab_smaller(self): - vocab_base = np.array(["unk", "a", "b", "c"]) - vocab_new = np.array(["d", "e", "f", "a"]) - vectorized_vocab_base = np.random.rand(len(vocab_base), 3) - warmstarted_embedding_matrix = layer_utils.warmstart_embedding_matrix( - base_vocabulary=vocab_base, - new_vocabulary=vocab_new, - base_embeddings=vectorized_vocab_base, - new_embeddings_initializer="uniform", - ) - self.assertAllEqual( - warmstarted_embedding_matrix[3], - vectorized_vocab_base[1], - ) - - -@test_utils.run_v2_only -class DTensorVariableSummaryTest(test_util.DTensorBaseTest): - def setUp(self): - super().setUp() - backend.reset_uids() - backend.enable_tf_random_generator() - tf_utils.set_random_seed(1337) - global_ids = test_util.create_device_ids_array((2, 2)) - local_device_ids = np.ravel(global_ids).tolist() - mesh_dict = { - "CPU": dtensor.Mesh( - ["batch", "model"], - global_ids, - local_device_ids, - test_util.create_device_list((2, 2), "CPU"), - ) - } - self.mesh = self.configTestMesh(mesh_dict) - self.replicated_2d = dtensor.Layout.replicated(self.mesh, rank=2) - self.replicated_1d = dtensor.Layout.replicated(self.mesh, rank=1) - self.sharded_2d = dtensor.Layout(["model", "batch"], self.mesh) - self.sharded_1d = dtensor.Layout(["model"], self.mesh) - - def test_model_summary(self): - layout_map = layout_map_lib.LayoutMap(mesh=self.mesh) - layout_map["d1.kernel"] = self.replicated_2d - layout_map["d1.bias"] = self.replicated_1d - layout_map["d2.kernel"] = self.sharded_2d - layout_map["d2.bias"] = self.sharded_1d - - with layout_map.scope(): - inputs = layers.Input((10,), batch_size=10) - x = layers.Dense(20, name="d1")(inputs) - x = layers.Dropout(0.1)(x) - output = layers.Dense(30, name="d2")(x) - - model = keras.Model(inputs, output) - - # For dtype = float32, following value are expected from memory stats - expected_result = {} - replicated_var_count = 10 * 20 + 20 # For d1 kernel and bias - model_batch_shard_var_count = 30 * 20 # For d2 kernel - model_shard_var_count = 30 # For d2 bias - expected_result[()] = (replicated_var_count, replicated_var_count * 4) - expected_result[("batch", "model")] = ( - model_batch_shard_var_count, - model_batch_shard_var_count * 4, - ) - expected_result[("model",)] = ( - model_shard_var_count, - model_shard_var_count * 4, - ) - - expected_total_weight_count = ( - replicated_var_count - + model_batch_shard_var_count - + model_shard_var_count - ) - expected_total_memory_size = expected_total_weight_count * 4 - - ( - total_weight_count, - total_memory_size, - per_sharing_spec_result, - ) = layer_utils.dtensor_variable_summary(model.weights) - - self.assertEqual(total_weight_count, expected_total_weight_count) - self.assertEqual(total_memory_size, expected_total_memory_size) - self.assertDictEqual(per_sharing_spec_result, expected_result) - - output_buffer = io.StringIO() - - def print_to_buffer(content): - output_buffer.write(content) - - model.summary(print_fn=print_to_buffer) - - self.assertRegex( - output_buffer.getvalue(), - f"{replicated_var_count} / {expected_total_weight_count} params " - ".* are fully replicated", - ) - self.assertRegex( - output_buffer.getvalue(), - f"{model_batch_shard_var_count} / {expected_total_weight_count} " - r"params .* are sharded based on spec .*batch.*model" - r".* across 4 devices", - ) - self.assertRegex( - output_buffer.getvalue(), - f"{model_shard_var_count} / {expected_total_weight_count} " - r"params .* are sharded based on spec .*model" - r".* across 2 devices", - ) - self.assertIn( - "Overall per device memory usage: 1.50 KB", output_buffer.getvalue() - ) - self.assertIn("Overall sharding factor: 2.21", output_buffer.getvalue()) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/legacy/__init__.py b/keras/utils/legacy/__init__.py deleted file mode 100644 index d4dd953bea8..00000000000 --- a/keras/utils/legacy/__init__.py +++ /dev/null @@ -1,21 +0,0 @@ -# Copyright 2023 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Legacy public Keras utilities.""" - -# isort: off - -# Serialization related -from keras.saving.legacy.serialization import deserialize_keras_object -from keras.saving.legacy.serialization import serialize_keras_object diff --git a/keras/utils/losses_utils.py b/keras/utils/losses_utils.py deleted file mode 100644 index 2630326bcf9..00000000000 --- a/keras/utils/losses_utils.py +++ /dev/null @@ -1,434 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Utilities related to loss functions.""" - -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.engine import keras_tensor -from keras.utils import tf_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.losses.Reduction", v1=[]) -class ReductionV2: - """Types of loss reduction. - - Contains the following values: - - * `AUTO`: Indicates that the reduction option will be determined by the - usage context. For almost all cases this defaults to - `SUM_OVER_BATCH_SIZE`. When used with `tf.distribute.Strategy`, outside of - built-in training loops such as `tf.keras` `compile` and `fit`, we expect - reduction value to be `SUM` or `NONE`. Using `AUTO` in that case will - raise an error. - * `NONE`: No **additional** reduction is applied to the output of the - wrapped loss function. When non-scalar losses are returned to Keras - functions like `fit`/`evaluate`, the unreduced vector loss is passed to - the optimizer but the reported loss will be a scalar value. - - Caution: **Verify the shape of the outputs when using** `Reduction.NONE`. - The builtin loss functions wrapped by the loss classes reduce one - dimension (`axis=-1`, or `axis` if specified by loss function). - `Reduction.NONE` just means that no **additional** reduction is applied - by the class wrapper. For categorical losses with an example input shape - of `[batch, W, H, n_classes]` the `n_classes` dimension is reduced. For - pointwise losses you must include a dummy axis so that `[batch, W, H, 1]` - is reduced to `[batch, W, H]`. Without the dummy axis `[batch, W, H]` - will be incorrectly reduced to `[batch, W]`. - - * `SUM`: Scalar sum of weighted losses. - * `SUM_OVER_BATCH_SIZE`: Scalar `SUM` divided by number of elements in - losses. This reduction type is not supported when used with - `tf.distribute.Strategy` outside of built-in training loops like - `tf.keras` `compile`/`fit`. - - You can implement 'SUM_OVER_BATCH_SIZE' using global batch size like: - ``` - with strategy.scope(): - loss_obj = tf.keras.losses.CategoricalCrossentropy( - reduction=tf.keras.losses.Reduction.NONE) - .... - loss = tf.reduce_sum(loss_obj(labels, predictions)) * - (1. / global_batch_size) - ``` - - Please see the [custom training guide]( - https://www.tensorflow.org/tutorials/distribute/custom_training) for more - details on this. - """ - - AUTO = "auto" - NONE = "none" - SUM = "sum" - SUM_OVER_BATCH_SIZE = "sum_over_batch_size" - - @classmethod - def all(cls): - return (cls.AUTO, cls.NONE, cls.SUM, cls.SUM_OVER_BATCH_SIZE) - - @classmethod - def validate(cls, key): - if key not in cls.all(): - raise ValueError( - f'Invalid Reduction Key: {key}. Expected keys are "{cls.all()}"' - ) - - -def remove_squeezable_dimensions( - labels, predictions, expected_rank_diff=0, name=None -): - """Squeeze last dim if ranks differ from expected by exactly 1. - - In the common case where we expect shapes to match, `expected_rank_diff` - defaults to 0, and we squeeze the last dimension of the larger rank if they - differ by 1. - - But, for example, if `labels` contains class IDs and `predictions` contains - 1 probability per class, we expect `predictions` to have 1 more dimension - than `labels`, so `expected_rank_diff` would be 1. In this case, we'd - squeeze `labels` if `rank(predictions) - rank(labels) == 0`, and - `predictions` if `rank(predictions) - rank(labels) == 2`. - - This will use static shape if available. Otherwise, it will add graph - operations, which could result in a performance hit. - - Args: - labels: Label values, a `Tensor` whose dimensions match `predictions`. - predictions: Predicted values, a `Tensor` of arbitrary dimensions. - expected_rank_diff: Expected result of `rank(predictions) - rank(labels)`. - name: Name of the op. - - Returns: - Tuple of `labels` and `predictions`, possibly with last dim squeezed. - """ - with backend.name_scope(name or "remove_squeezable_dimensions"): - if not tf_utils.is_tensor_or_extension_type(predictions): - predictions = tf.convert_to_tensor(predictions) - if not tf_utils.is_tensor_or_extension_type(labels): - labels = tf.convert_to_tensor(labels) - predictions_shape = predictions.shape - predictions_rank = predictions_shape.ndims - labels_shape = labels.shape - labels_rank = labels_shape.ndims - if (labels_rank is not None) and (predictions_rank is not None): - # Use static rank. - rank_diff = predictions_rank - labels_rank - if rank_diff == expected_rank_diff + 1 and predictions_shape.dims[ - -1 - ].is_compatible_with(1): - predictions = tf.squeeze(predictions, [-1]) - elif rank_diff == expected_rank_diff - 1 and labels_shape.dims[ - -1 - ].is_compatible_with(1): - labels = tf.squeeze(labels, [-1]) - return labels, predictions - - # Use dynamic rank. - rank_diff = tf.rank(predictions) - tf.rank(labels) - if (predictions_rank is None) or ( - predictions_shape.dims[-1].is_compatible_with(1) - ): - predictions = tf.cond( - tf.equal(expected_rank_diff + 1, rank_diff), - lambda: tf.squeeze(predictions, [-1]), - lambda: predictions, - ) - if (labels_rank is None) or ( - labels_shape.dims[-1].is_compatible_with(1) - ): - labels = tf.cond( - tf.equal(expected_rank_diff - 1, rank_diff), - lambda: tf.squeeze(labels, [-1]), - lambda: labels, - ) - return labels, predictions - - -def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None): - """Squeeze or expand last dimension if needed. - - 1. Squeezes last dim of `y_pred` or `y_true` if their rank differs by 1 - (using `remove_squeezable_dimensions`). - 2. Squeezes or expands last dim of `sample_weight` if its rank differs by 1 - from the new rank of `y_pred`. - If `sample_weight` is scalar, it is kept scalar. - - This will use static shape if available. Otherwise, it will add graph - operations, which could result in a performance hit. - - Args: - y_pred: Predicted values, a `Tensor` of arbitrary dimensions. - y_true: Optional label `Tensor` whose dimensions match `y_pred`. - sample_weight: Optional weight scalar or `Tensor` whose dimensions match - `y_pred`. - - Returns: - Tuple of `y_pred`, `y_true` and `sample_weight`. Each of them possibly has - the last dimension squeezed, - `sample_weight` could be extended by one dimension. - If `sample_weight` is None, (y_pred, y_true) is returned. - """ - y_pred_shape = y_pred.shape - y_pred_rank = y_pred_shape.ndims - if y_true is not None: - - # If sparse matrix is provided as `y_true`, the last dimension in - # `y_pred` may be > 1. Eg: y_true = [0, 1, 2] (shape=(3,)), y_pred = - # [[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]] (shape=(3, 3)) In - # this case, we should not try to remove squeezable dimension. - y_true_shape = y_true.shape - y_true_rank = y_true_shape.ndims - if (y_true_rank is not None) and (y_pred_rank is not None): - # Use static rank for `y_true` and `y_pred`. - if (y_pred_rank - y_true_rank != 1) or y_pred_shape[-1] == 1: - y_true, y_pred = remove_squeezable_dimensions(y_true, y_pred) - else: - # Use dynamic rank. - rank_diff = tf.rank(y_pred) - tf.rank(y_true) - squeeze_dims = lambda: remove_squeezable_dimensions(y_true, y_pred) - is_last_dim_1 = tf.equal(1, tf.shape(y_pred)[-1]) - maybe_squeeze_dims = lambda: tf.cond( - is_last_dim_1, squeeze_dims, lambda: (y_true, y_pred) - ) - y_true, y_pred = tf.cond( - tf.equal(1, rank_diff), maybe_squeeze_dims, squeeze_dims - ) - - if sample_weight is None: - return y_pred, y_true - - weights_shape = sample_weight.shape - weights_rank = weights_shape.ndims - if weights_rank == 0: # If weights is scalar, do nothing. - return y_pred, y_true, sample_weight - - if (y_pred_rank is not None) and (weights_rank is not None): - # Use static rank. - if weights_rank - y_pred_rank == 1: - sample_weight = tf.squeeze(sample_weight, [-1]) - elif y_pred_rank - weights_rank == 1: - sample_weight = tf.expand_dims(sample_weight, [-1]) - return y_pred, y_true, sample_weight - - # Use dynamic rank. - weights_rank_tensor = tf.rank(sample_weight) - rank_diff = weights_rank_tensor - tf.rank(y_pred) - maybe_squeeze_weights = lambda: tf.squeeze(sample_weight, [-1]) - - def _maybe_expand_weights(): - expand_weights = lambda: tf.expand_dims(sample_weight, [-1]) - return tf.cond( - tf.equal(rank_diff, -1), expand_weights, lambda: sample_weight - ) - - def _maybe_adjust_weights(): - return tf.cond( - tf.equal(rank_diff, 1), maybe_squeeze_weights, _maybe_expand_weights - ) - - # squeeze or expand last dim of `sample_weight` if its rank differs by 1 - # from the new rank of `y_pred`. - sample_weight = tf.cond( - tf.equal(weights_rank_tensor, 0), - lambda: sample_weight, - _maybe_adjust_weights, - ) - return y_pred, y_true, sample_weight - - -def _safe_mean(losses, num_present): - """Computes a safe mean of the losses. - - Args: - losses: `Tensor` whose elements contain individual loss measurements. - num_present: The number of measurable elements in `losses`. - - Returns: - A scalar representing the mean of `losses`. If `num_present` is zero, - then zero is returned. - """ - total_loss = tf.reduce_sum(losses) - return tf.math.divide_no_nan(total_loss, num_present, name="value") - - -def _num_elements(losses): - """Computes the number of elements in `losses` tensor.""" - with backend.name_scope("num_elements") as scope: - return tf.cast(tf.size(losses, name=scope), dtype=losses.dtype) - - -def reduce_weighted_loss( - weighted_losses, reduction=ReductionV2.SUM_OVER_BATCH_SIZE -): - """Reduces the individual weighted loss measurements.""" - if reduction == ReductionV2.NONE: - loss = weighted_losses - else: - loss = tf.reduce_sum(weighted_losses) - if reduction == ReductionV2.SUM_OVER_BATCH_SIZE: - loss = _safe_mean(loss, _num_elements(weighted_losses)) - return loss - - -@keras_export("keras.__internal__.losses.compute_weighted_loss", v1=[]) -def compute_weighted_loss( - losses, - sample_weight=None, - reduction=ReductionV2.SUM_OVER_BATCH_SIZE, - name=None, -): - """Computes the weighted loss. - - Args: - losses: `Tensor` of shape `[batch_size, d1, ... dN]`. - sample_weight: Optional `Tensor` whose rank is either 0, or the same rank - as `losses`, or be broadcastable to `losses`. - reduction: (Optional) Type of `tf.keras.losses.Reduction` to apply to - loss. Default value is `SUM_OVER_BATCH_SIZE`. - name: Optional name for the op. - - Raises: - ValueError: If the shape of `sample_weight` is not compatible with - `losses`. - - Returns: - Weighted loss `Tensor` of the same type as `losses`. If `reduction` is - `NONE`, this has the same shape as `losses`; otherwise, it is scalar. - """ - ReductionV2.validate(reduction) - - # If this function is called directly, then we just default 'AUTO' to - # 'SUM_OVER_BATCH_SIZE'. Eg. Canned estimator use cases. - if reduction == ReductionV2.AUTO: - reduction = ReductionV2.SUM_OVER_BATCH_SIZE - if sample_weight is None: - sample_weight = 1.0 - with backend.name_scope(name or "weighted_loss"): - # Save the `reduction` argument for loss normalization when distributing - # to multiple replicas. Used only for estimator + v1 optimizer flow. - tf.compat.v1.get_default_graph()._last_loss_reduction = reduction - - if not isinstance(losses, (keras_tensor.KerasTensor, tf.RaggedTensor)): - losses = tf.convert_to_tensor(losses) - - if not isinstance( - sample_weight, (keras_tensor.KerasTensor, tf.RaggedTensor) - ): - sample_weight = tf.convert_to_tensor(sample_weight) - - # Convert any non float dtypes to floats, to avoid it loss any precision - # for dtype like int or bool. - if not losses.dtype.is_floating: - input_dtype = losses.dtype - losses = tf.cast(losses, "float32") - input_casted = True - else: - input_casted = False - sample_weight = tf.cast(sample_weight, losses.dtype) - # Update dimensions of `sample_weight` to match with `losses` if - # possible. - ( - losses, - _, - sample_weight, - ) = squeeze_or_expand_dimensions(losses, None, sample_weight) - weighted_losses = tf.multiply(losses, sample_weight) - - # Apply reduction function to the individual weighted losses. - loss = reduce_weighted_loss(weighted_losses, reduction) - if input_casted: - # Convert the result back to the input type. - loss = tf.cast(loss, input_dtype) - return loss - - -def scale_loss_for_distribution(loss_value): - """Scales and returns the given loss value by the number of replicas.""" - num_replicas = tf.distribute.get_strategy().num_replicas_in_sync - if num_replicas > 1: - loss_value *= 1.0 / num_replicas - return loss_value - - -def cast_losses_to_common_dtype(losses): - """Cast a list of losses to a common dtype. - - If any loss is floating-point, they will all be casted to the most-precise - floating-point loss. Otherwise the losses are not casted. We also skip - casting losses if there are any complex losses. - - Args: - losses: A list of losses. - - Returns: - `losses`, but they have been casted to a common dtype. - """ - highest_float = None - for loss in losses: - if loss.dtype.is_floating: - if highest_float is None or loss.dtype.size > highest_float.size: - highest_float = loss.dtype - elif {loss.dtype, highest_float} == {"bfloat16", "float16"}: - highest_float = "float32" - if loss.dtype.is_complex: - return ( - losses # If we find any complex losses, do not cast any losses - ) - if highest_float: - losses = [tf.cast(loss, highest_float) for loss in losses] - return losses - - -def get_mask(y_p): - """Returns Keras mask from tensor.""" - return getattr(y_p, "_keras_mask", None) - - -def apply_mask(y_p, sw, mask): - """Applies any mask on predictions to sample weights.""" - if mask is not None: - mask = tf.cast(mask, y_p.dtype) - if sw is not None: - sw = tf.cast(sw, mask.dtype) - mask, _, sw = squeeze_or_expand_dimensions(mask, sample_weight=sw) - sw *= mask - else: - sw = mask - return sw - - -def apply_valid_mask(losses, sw, mask, reduction): - """Redistribute sample weights considering only valid entries.""" - if mask is not None: - mask = tf.cast(mask, losses.dtype) - - if reduction in (ReductionV2.AUTO, ReductionV2.SUM_OVER_BATCH_SIZE): - # Valid entries have weight `total/valid`, while invalid ones - # have 0. When summed over batch, they will be reduced to: - # - # mean(loss * sample_weight * total / valid) - # = sum(loss * sample_weight * total / valid) / total - # = sum(loss * sample_weight) / total * total / valid - # = sum(loss * sample_weight) / valid - - total = tf.cast(tf.size(mask), losses.dtype) - valid = tf.reduce_sum(mask) - mask *= total / valid - - return apply_mask(losses, sw, mask) diff --git a/keras/utils/losses_utils_test.py b/keras/utils/losses_utils_test.py deleted file mode 100644 index 03c531bf1db..00000000000 --- a/keras/utils/losses_utils_test.py +++ /dev/null @@ -1,82 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for losses_utils.""" - -import tensorflow.compat.v2 as tf - -from keras.testing_infra import test_combinations -from keras.utils import losses_utils - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class RemoveSqueezableTest(tf.test.TestCase): - """Test remove_squeezable_dimensions""" - - def test_ragged_3d_same_shape(self): - """shape (2, (sequence={1, 2}), 3)""" - x = tf.ragged.constant([[[1, 2, 3]], [[4, 5, 6], [7, 8, 9]]]) - rank = x.shape.ndims - x_p, _ = losses_utils.remove_squeezable_dimensions(x, x) - self.assertEqual(x_p.shape.ndims, rank) - - def test_ragged_3d_4d_squeezable(self): - """shapes: - - x: (2, (sequence={1, 2}), 3) - y: (2, (sequence={1, 2}), 3, 1) - """ - x = tf.ragged.constant([[[1, 2, 3]], [[4, 5, 6], [7, 8, 9]]]) - y = tf.expand_dims(x, axis=-1) - self.assertEqual(x.shape.ndims, 3) - self.assertEqual(y.shape.ndims, 4) - _, y_p = losses_utils.remove_squeezable_dimensions(x, y) - y_p.shape.assert_is_compatible_with(x.shape) - self.assertEqual(y_p.shape.ndims, 3) - - x_p, _ = losses_utils.remove_squeezable_dimensions(y, x) - x_p.shape.assert_is_compatible_with(x.shape) - self.assertEqual(x_p.shape.ndims, 3) - - def test_dense_2d_3d_squeezable(self): - x = tf.constant([[1, 2], [3, 4]]) - y = tf.constant([[[1], [2]], [[3], [4]]]) - _, y_p = losses_utils.remove_squeezable_dimensions(x, y) - y_p.shape.assert_is_compatible_with(x.shape) - self.assertEqual(y_p.shape.ndims, x.shape.ndims) - x_p, _ = losses_utils.remove_squeezable_dimensions(y, x) - x_p.shape.assert_is_compatible_with(x.shape) - - -class RemoveSqueezableTestGraphOnly(tf.test.TestCase): - """Test remove_squeezable_dimensions (graph-mode only).""" - - def test_placeholder(self): - """Test dynamic rank tensors.""" - with tf.Graph().as_default(): - x = tf.compat.v1.placeholder_with_default( - [1.0, 2.0, 3.0], shape=None - ) - y = tf.compat.v1.placeholder_with_default( - [[1.0], [2.0], [3.0]], shape=None - ) - _, y_p = losses_utils.remove_squeezable_dimensions(x, y) - y_p.shape.assert_is_compatible_with(x.shape) - self.assertAllEqual(tf.shape(x), tf.shape(y_p)) - x_p, _ = losses_utils.remove_squeezable_dimensions(y, x) - x_p.shape.assert_is_compatible_with(x.shape) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/metrics_utils.py b/keras/utils/metrics_utils.py deleted file mode 100644 index 8664657c8be..00000000000 --- a/keras/utils/metrics_utils.py +++ /dev/null @@ -1,1013 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Utils related to keras metrics.""" - -import functools -import weakref -from enum import Enum - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras import backend -from keras.utils import losses_utils -from keras.utils import tf_utils -from keras.utils.generic_utils import to_list - -NEG_INF = -1e10 - - -class Reduction(Enum): - """Types of metrics reduction. - - Contains the following values: - - * `SUM`: Scalar sum of weighted values. - * `SUM_OVER_BATCH_SIZE`: Scalar sum of weighted values divided by - number of elements. - * `WEIGHTED_MEAN`: Scalar sum of weighted values divided by sum of weights. - """ - - SUM = "sum" - SUM_OVER_BATCH_SIZE = "sum_over_batch_size" - WEIGHTED_MEAN = "weighted_mean" - - -def update_state_wrapper(update_state_fn): - """Decorator to wrap metric `update_state()` with `add_update()`. - - Args: - update_state_fn: function that accumulates metric statistics. - - Returns: - Decorated function that wraps `update_state_fn()` with `add_update()`. - """ - - def decorated(metric_obj, *args, **kwargs): - """Decorated function with `add_update()`.""" - strategy = tf.distribute.get_strategy() - - for weight in metric_obj.weights: - if ( - backend.is_tpu_strategy(strategy) - and not strategy.extended.variable_created_in_scope(weight) - and not tf.distribute.in_cross_replica_context() - ): - raise ValueError( - "Trying to run metric.update_state in replica context when " - "the metric was not created in TPUStrategy scope. " - "Make sure the keras Metric is created in TPUstrategy " - "scope. " - ) - - with tf_utils.graph_context_for_symbolic_tensors(*args, **kwargs): - update_op = update_state_fn(*args, **kwargs) - if update_op is not None: # update_op will be None in eager execution. - metric_obj.add_update(update_op) - return update_op - - return tf.__internal__.decorator.make_decorator(update_state_fn, decorated) - - -def result_wrapper(result_fn): - """Decorator to wrap metric `result()` function in `merge_call()`. - - Result computation is an idempotent operation that simply calculates the - metric value using the state variables. - - If metric state variables are distributed across replicas/devices and - `result()` is requested from the context of one device - This function wraps - `result()` in a distribution strategy `merge_call()`. With this, - the metric state variables will be aggregated across devices. - - Args: - result_fn: function that computes the metric result. - - Returns: - Decorated function that wraps `result_fn()` in distribution strategy - `merge_call()`. - """ - - def decorated(metric_obj, *args): - """Decorated function with merge_call.""" - replica_context = tf.distribute.get_replica_context() - - # The purpose of using `merge_call` to call `result()` is to trigger - # cross replica aggregation of metric state variables - # (SyncOnReadVariable). After we introduced - # `variable_sync_on_read_context`, in principle there is no need to use - # `merge_call` here. However the branch still exists because: - # - # 1. Keras V1 training code sometimes assumes `result_t` is the same - # tensor across replicas (achieved by `merge_call`). With - # `variable_sync_on_read_context` each replica gets their own tensors - # residing on replica's device, thus breaking the assumption. - # 2. Keras c/fit creates a tf.function (a.k.a, train_function) that - # returns the metric values of the first replica. With - # `variable_sync_on_read_context` since each replica gets their own - # tensors, the metric result tensors on the non-first replicas are - # not in the return value of train_function, making TF graph - # optimizer prune the branch that computes and aggregates those - # metric results. As a result, if NCCL is used to do the aggregation, - # the program will hang because NCCL ops are only launched on the - # non-pruned first replica. - # - # We condition on strategy_supports_no_merge_call() since we know if it - # is True, the program uses `jit_compile` to compile replica fn, meaning - # it is not V1 training (hence #1 is okay), and no pruning will happen - # as compiled functions are not inlined (hence #2 is okay). - if ( - replica_context is None - or tf.__internal__.distribute.strategy_supports_no_merge_call() - ): - with tf.__internal__.distribute.variable_sync_on_read_context(): - raw_result = result_fn(*args) - # Results need to be wrapped in a `tf.identity` op to ensure - # correct execution order. - if isinstance(raw_result, (tf.Tensor, tf.Variable, float, int)): - result_t = tf.identity(raw_result) - elif isinstance(raw_result, dict): - result_t = tf.nest.map_structure(tf.identity, raw_result) - else: - try: - result_t = tf.identity(raw_result) - except (ValueError, TypeError): - raise RuntimeError( - "The output of `metric.result()` can only be a " - "single Tensor/Variable, or a dict of " - "Tensors/Variables. " - f"For metric {metric_obj.name}, " - f"got result {raw_result}." - ) - else: - # TODO(psv): Test distribution of metrics using different - # distribution strategies. - - # Creating a wrapper for merge_fn. merge_call invokes the given - # merge_fn with distribution object as the first parameter. We - # create a wrapper here so that the result function need not have - # that parameter. - def merge_fn_wrapper(distribution, merge_fn, *args): - # We will get `PerReplica` merge function. Taking the first one - # as all are identical copies of the function that we had passed - # below. - result = distribution.experimental_local_results(merge_fn)[0]( - *args - ) - - # Wrapping result in identity so that control dependency between - # update_op from `update_state` and result works in case result - # returns a tensor. - return tf.nest.map_structure(tf.identity, result) - - # Wrapping result in merge_call. merge_call is used when we want to - # leave replica mode and compute a value in cross replica mode. - result_t = replica_context.merge_call( - merge_fn_wrapper, args=(result_fn,) + args - ) - - # We are saving the result op here to be used in train/test execution - # functions. This basically gives the result op that was generated with - # a control dep to the updates for these workflows. - metric_obj._call_result = result_t - return result_t - - return tf.__internal__.decorator.make_decorator(result_fn, decorated) - - -def weakmethod(method): - """Creates a weak reference to the bound method.""" - - cls = method.im_class - func = method.im_func - instance_ref = weakref.ref(method.im_self) - - @functools.wraps(method) - def inner(*args, **kwargs): - return func.__get__(instance_ref(), cls)(*args, **kwargs) - - del method - return inner - - -def assert_thresholds_range(thresholds): - if thresholds is not None: - invalid_thresholds = [ - t for t in thresholds if t is None or t < 0 or t > 1 - ] - if invalid_thresholds: - raise ValueError( - "Threshold values must be in [0, 1]. " - f"Received: {invalid_thresholds}" - ) - - -def parse_init_thresholds(thresholds, default_threshold=0.5): - if thresholds is not None: - assert_thresholds_range(to_list(thresholds)) - thresholds = to_list( - default_threshold if thresholds is None else thresholds - ) - return thresholds - - -class ConfusionMatrix(Enum): - TRUE_POSITIVES = "tp" - FALSE_POSITIVES = "fp" - TRUE_NEGATIVES = "tn" - FALSE_NEGATIVES = "fn" - - -class AUCCurve(Enum): - """Type of AUC Curve (ROC or PR).""" - - ROC = "ROC" - PR = "PR" - - @staticmethod - def from_str(key): - if key in ("pr", "PR"): - return AUCCurve.PR - elif key in ("roc", "ROC"): - return AUCCurve.ROC - else: - raise ValueError( - f'Invalid AUC curve value: "{key}". ' - 'Expected values are ["PR", "ROC"]' - ) - - -class AUCSummationMethod(Enum): - """Type of AUC summation method. - - https://en.wikipedia.org/wiki/Riemann_sum) - - Contains the following values: - * 'interpolation': Applies mid-point summation scheme for `ROC` curve. For - `PR` curve, interpolates (true/false) positives but not the ratio that is - precision (see Davis & Goadrich 2006 for details). - * 'minoring': Applies left summation for increasing intervals and right - summation for decreasing intervals. - * 'majoring': Applies right summation for increasing intervals and left - summation for decreasing intervals. - """ - - INTERPOLATION = "interpolation" - MAJORING = "majoring" - MINORING = "minoring" - - @staticmethod - def from_str(key): - if key in ("interpolation", "Interpolation"): - return AUCSummationMethod.INTERPOLATION - elif key in ("majoring", "Majoring"): - return AUCSummationMethod.MAJORING - elif key in ("minoring", "Minoring"): - return AUCSummationMethod.MINORING - else: - raise ValueError( - f'Invalid AUC summation method value: "{key}". ' - 'Expected values are ["interpolation", "majoring", "minoring"]' - ) - - -def _update_confusion_matrix_variables_optimized( - variables_to_update, - y_true, - y_pred, - thresholds, - multi_label=False, - sample_weights=None, - label_weights=None, - thresholds_with_epsilon=False, -): - """Update confusion matrix variables with memory efficient alternative. - - Note that the thresholds need to be evenly distributed within the list, eg, - the diff between consecutive elements are the same. - - To compute TP/FP/TN/FN, we are measuring a binary classifier - C(t) = (predictions >= t) - at each threshold 't'. So we have - TP(t) = sum( C(t) * true_labels ) - FP(t) = sum( C(t) * false_labels ) - - But, computing C(t) requires computation for each t. To make it fast, - observe that C(t) is a cumulative integral, and so if we have - thresholds = [t_0, ..., t_{n-1}]; t_0 < ... < t_{n-1} - where n = num_thresholds, and if we can compute the bucket function - B(i) = Sum( (predictions == t), t_i <= t < t{i+1} ) - then we get - C(t_i) = sum( B(j), j >= i ) - which is the reversed cumulative sum in tf.cumsum(). - - We can compute B(i) efficiently by taking advantage of the fact that - our thresholds are evenly distributed, in that - width = 1.0 / (num_thresholds - 1) - thresholds = [0.0, 1*width, 2*width, 3*width, ..., 1.0] - Given a prediction value p, we can map it to its bucket by - bucket_index(p) = floor( p * (num_thresholds - 1) ) - so we can use tf.math.unsorted_segment_sum() to update the buckets in one - pass. - - Consider following example: - y_true = [0, 0, 1, 1] - y_pred = [0.1, 0.5, 0.3, 0.9] - thresholds = [0.0, 0.5, 1.0] - num_buckets = 2 # [0.0, 1.0], (1.0, 2.0] - bucket_index(y_pred) = tf.math.floor(y_pred * num_buckets) - = tf.math.floor([0.2, 1.0, 0.6, 1.8]) - = [0, 0, 0, 1] - # The meaning of this bucket is that if any of the label is true, - # then 1 will be added to the corresponding bucket with the index. - # Eg, if the label for 0.2 is true, then 1 will be added to bucket 0. If the - # label for 1.8 is true, then 1 will be added to bucket 1. - # - # Note the second item "1.0" is floored to 0, since the value need to be - # strictly larger than the bucket lower bound. - # In the implementation, we use tf.math.ceil() - 1 to achieve this. - tp_bucket_value = tf.math.unsorted_segment_sum(true_labels, bucket_indices, - num_segments=num_thresholds) - = [1, 1, 0] - # For [1, 1, 0] here, it means there is 1 true value contributed by bucket - # 0, and 1 value contributed by bucket 1. When we aggregate them to - # together, the result become [a + b + c, b + c, c], since large thresholds - # will always contribute to the value for smaller thresholds. - true_positive = tf.math.cumsum(tp_bucket_value, reverse=True) - = [2, 1, 0] - - This implementation exhibits a run time and space complexity of O(T + N), - where T is the number of thresholds and N is the size of predictions. - Metrics that rely on standard implementation instead exhibit a complexity of - O(T * N). - - Args: - variables_to_update: Dictionary with 'tp', 'fn', 'tn', 'fp' as valid keys - and corresponding variables to update as values. - y_true: A floating point `Tensor` whose shape matches `y_pred`. Will be - cast to `bool`. - y_pred: A floating point `Tensor` of arbitrary shape and whose values are - in the range `[0, 1]`. - thresholds: A sorted floating point `Tensor` with value in `[0, 1]`. - It need to be evenly distributed (the diff between each element need to - be the same). - multi_label: Optional boolean indicating whether multidimensional - prediction/labels should be treated as multilabel responses, or - flattened into a single label. When True, the valus of - `variables_to_update` must have a second dimension equal to the number - of labels in y_true and y_pred, and those tensors must not be - RaggedTensors. - sample_weights: Optional `Tensor` whose rank is either 0, or the same rank - as `y_true`, and must be broadcastable to `y_true` (i.e., all dimensions - must be either `1`, or the same as the corresponding `y_true` - dimension). - label_weights: Optional tensor of non-negative weights for multilabel - data. The weights are applied when calculating TP, FP, FN, and TN - without explicit multilabel handling (i.e. when the data is to be - flattened). - thresholds_with_epsilon: Optional boolean indicating whether the leading - and tailing thresholds has any epsilon added for floating point - imprecisions. It will change how we handle the leading and tailing - bucket. - - Returns: - Update op. - """ - num_thresholds = thresholds.shape.as_list()[0] - - if sample_weights is None: - sample_weights = 1.0 - else: - sample_weights = tf.__internal__.ops.broadcast_weights( - tf.cast(sample_weights, dtype=y_pred.dtype), y_pred - ) - if not multi_label: - sample_weights = tf.reshape(sample_weights, [-1]) - if label_weights is None: - label_weights = 1.0 - else: - label_weights = tf.expand_dims(label_weights, 0) - label_weights = tf.__internal__.ops.broadcast_weights( - label_weights, y_pred - ) - if not multi_label: - label_weights = tf.reshape(label_weights, [-1]) - weights = tf.cast(tf.multiply(sample_weights, label_weights), y_true.dtype) - - # We shouldn't need this, but in case there are predict value that is out of - # the range of [0.0, 1.0] - y_pred = tf.clip_by_value(y_pred, clip_value_min=0.0, clip_value_max=1.0) - - y_true = tf.cast(tf.cast(y_true, tf.bool), y_true.dtype) - if not multi_label: - y_true = tf.reshape(y_true, [-1]) - y_pred = tf.reshape(y_pred, [-1]) - - true_labels = tf.multiply(y_true, weights) - false_labels = tf.multiply((1.0 - y_true), weights) - - # Compute the bucket indices for each prediction value. - # Since the predict value has to be strictly greater than the thresholds, - # eg, buckets like [0, 0.5], (0.5, 1], and 0.5 belongs to first bucket. - # We have to use math.ceil(val) - 1 for the bucket. - bucket_indices = tf.math.ceil(y_pred * (num_thresholds - 1)) - 1 - - if thresholds_with_epsilon: - # In this case, the first bucket should actually take into account since - # the any prediction between [0.0, 1.0] should be larger than the first - # threshold. We change the bucket value from -1 to 0. - bucket_indices = tf.nn.relu(bucket_indices) - - bucket_indices = tf.cast(bucket_indices, tf.int32) - - if multi_label: - # We need to run bucket segment sum for each of the label class. In the - # multi_label case, the rank of the label is 2. We first transpose it so - # that the label dim becomes the first and we can parallel run though - # them. - true_labels = tf.transpose(true_labels) - false_labels = tf.transpose(false_labels) - bucket_indices = tf.transpose(bucket_indices) - - def gather_bucket(label_and_bucket_index): - label, bucket_index = ( - label_and_bucket_index[0], - label_and_bucket_index[1], - ) - return tf.math.unsorted_segment_sum( - data=label, - segment_ids=bucket_index, - num_segments=num_thresholds, - ) - - tp_bucket_v = tf.vectorized_map( - gather_bucket, (true_labels, bucket_indices), warn=False - ) - fp_bucket_v = tf.vectorized_map( - gather_bucket, (false_labels, bucket_indices), warn=False - ) - tp = tf.transpose(tf.cumsum(tp_bucket_v, reverse=True, axis=1)) - fp = tf.transpose(tf.cumsum(fp_bucket_v, reverse=True, axis=1)) - else: - tp_bucket_v = tf.math.unsorted_segment_sum( - data=true_labels, - segment_ids=bucket_indices, - num_segments=num_thresholds, - ) - fp_bucket_v = tf.math.unsorted_segment_sum( - data=false_labels, - segment_ids=bucket_indices, - num_segments=num_thresholds, - ) - tp = tf.cumsum(tp_bucket_v, reverse=True) - fp = tf.cumsum(fp_bucket_v, reverse=True) - - # fn = sum(true_labels) - tp - # tn = sum(false_labels) - fp - if ( - ConfusionMatrix.TRUE_NEGATIVES in variables_to_update - or ConfusionMatrix.FALSE_NEGATIVES in variables_to_update - ): - if multi_label: - total_true_labels = tf.reduce_sum(true_labels, axis=1) - total_false_labels = tf.reduce_sum(false_labels, axis=1) - else: - total_true_labels = tf.reduce_sum(true_labels) - total_false_labels = tf.reduce_sum(false_labels) - - update_ops = [] - if ConfusionMatrix.TRUE_POSITIVES in variables_to_update: - variable = variables_to_update[ConfusionMatrix.TRUE_POSITIVES] - update_ops.append(variable.assign_add(tp)) - if ConfusionMatrix.FALSE_POSITIVES in variables_to_update: - variable = variables_to_update[ConfusionMatrix.FALSE_POSITIVES] - update_ops.append(variable.assign_add(fp)) - if ConfusionMatrix.TRUE_NEGATIVES in variables_to_update: - variable = variables_to_update[ConfusionMatrix.TRUE_NEGATIVES] - tn = total_false_labels - fp - update_ops.append(variable.assign_add(tn)) - if ConfusionMatrix.FALSE_NEGATIVES in variables_to_update: - variable = variables_to_update[ConfusionMatrix.FALSE_NEGATIVES] - fn = total_true_labels - tp - update_ops.append(variable.assign_add(fn)) - return tf.group(update_ops) - - -def is_evenly_distributed_thresholds(thresholds): - """Check if the thresholds list is evenly distributed. - - We could leverage evenly distributed thresholds to use less memory when - calculate metrcis like AUC where each individual threshold need to be - evaluated. - - Args: - thresholds: A python list or tuple, or 1D numpy array whose value is - ranged in [0, 1]. - - Returns: - boolean, whether the values in the inputs are evenly distributed. - """ - # Check the list value and see if it is evenly distributed. - num_thresholds = len(thresholds) - if num_thresholds < 3: - return False - even_thresholds = np.arange(num_thresholds, dtype=np.float32) / ( - num_thresholds - 1 - ) - return np.allclose(thresholds, even_thresholds, atol=backend.epsilon()) - - -def update_confusion_matrix_variables( - variables_to_update, - y_true, - y_pred, - thresholds, - top_k=None, - class_id=None, - sample_weight=None, - multi_label=False, - label_weights=None, - thresholds_distributed_evenly=False, -): - """Returns op to update the given confusion matrix variables. - - For every pair of values in y_true and y_pred: - - true_positive: y_true == True and y_pred > thresholds - false_negatives: y_true == True and y_pred <= thresholds - true_negatives: y_true == False and y_pred <= thresholds - false_positive: y_true == False and y_pred > thresholds - - The results will be weighted and added together. When multiple thresholds - are provided, we will repeat the same for every threshold. - - For estimation of these metrics over a stream of data, the function creates - an `update_op` operation that updates the given variables. - - If `sample_weight` is `None`, weights default to 1. - Use weights of 0 to mask values. - - Args: - variables_to_update: Dictionary with 'tp', 'fn', 'tn', 'fp' as valid keys - and corresponding variables to update as values. - y_true: A `Tensor` whose shape matches `y_pred`. Will be cast to `bool`. - y_pred: A floating point `Tensor` of arbitrary shape and whose values are - in the range `[0, 1]`. - thresholds: A float value, float tensor, python list, or tuple of float - thresholds in `[0, 1]`, or NEG_INF (used when top_k is set). - top_k: Optional int, indicates that the positive labels should be limited - to the top k predictions. - class_id: Optional int, limits the prediction and labels to the class - specified by this argument. - sample_weight: Optional `Tensor` whose rank is either 0, or the same rank - as `y_true`, and must be broadcastable to `y_true` (i.e., all dimensions - must be either `1`, or the same as the corresponding `y_true` - dimension). - multi_label: Optional boolean indicating whether multidimensional - prediction/labels should be treated as multilabel responses, or - flattened into a single label. When True, the valus of - `variables_to_update` must have a second dimension equal to the number - of labels in y_true and y_pred, and those tensors must not be - RaggedTensors. - label_weights: (optional) tensor of non-negative weights for multilabel - data. The weights are applied when calculating TP, FP, FN, and TN - without explicit multilabel handling (i.e. when the data is to be - flattened). - thresholds_distributed_evenly: Boolean, whether the thresholds are evenly - distributed within the list. An optimized method will be used if this is - the case. See _update_confusion_matrix_variables_optimized() for more - details. - - Returns: - Update op. - - Raises: - ValueError: If `y_pred` and `y_true` have mismatched shapes, or if - `sample_weight` is not `None` and its shape doesn't match `y_pred`, or - if `variables_to_update` contains invalid keys. - """ - if multi_label and label_weights is not None: - raise ValueError( - "`label_weights` for multilabel data should be handled " - "outside of `update_confusion_matrix_variables` when " - "`multi_label` is True." - ) - if variables_to_update is None: - return - if not any( - key for key in variables_to_update if key in list(ConfusionMatrix) - ): - raise ValueError( - "Please provide at least one valid confusion matrix " - "variable to update. Valid variable key options are: " - f'"{list(ConfusionMatrix)}". ' - f'Received: "{variables_to_update.keys()}"' - ) - - variable_dtype = list(variables_to_update.values())[0].dtype - - y_true = tf.cast(y_true, dtype=variable_dtype) - y_pred = tf.cast(y_pred, dtype=variable_dtype) - - if thresholds_distributed_evenly: - # Check whether the thresholds has any leading or tailing epsilon added - # for floating point imprecision. The leading and tailing threshold will - # be handled bit differently as the corner case. At this point, - # thresholds should be a list/array with more than 2 items, and ranged - # between [0, 1]. See is_evenly_distributed_thresholds() for more - # details. - thresholds_with_epsilon = thresholds[0] < 0.0 or thresholds[-1] > 1.0 - - thresholds = tf.convert_to_tensor(thresholds, dtype=variable_dtype) - num_thresholds = thresholds.shape.as_list()[0] - - if multi_label: - one_thresh = tf.equal( - tf.cast(1, dtype=tf.int32), - tf.rank(thresholds), - name="one_set_of_thresholds_cond", - ) - else: - [y_pred, y_true], _ = ragged_assert_compatible_and_get_flat_values( - [y_pred, y_true], sample_weight - ) - one_thresh = tf.cast(True, dtype=tf.bool) - - invalid_keys = [ - key for key in variables_to_update if key not in list(ConfusionMatrix) - ] - if invalid_keys: - raise ValueError( - f'Invalid keys: "{invalid_keys}". ' - f'Valid variable key options are: "{list(ConfusionMatrix)}"' - ) - - if sample_weight is None: - y_pred, y_true = losses_utils.squeeze_or_expand_dimensions( - y_pred, y_true - ) - else: - sample_weight = tf.cast(sample_weight, dtype=variable_dtype) - ( - y_pred, - y_true, - sample_weight, - ) = losses_utils.squeeze_or_expand_dimensions( - y_pred, y_true, sample_weight=sample_weight - ) - y_pred.shape.assert_is_compatible_with(y_true.shape) - - if top_k is not None: - y_pred = _filter_top_k(y_pred, top_k) - if class_id is not None: - # Preserve dimension to match with sample_weight - y_true = y_true[..., class_id, None] - y_pred = y_pred[..., class_id, None] - - if thresholds_distributed_evenly: - return _update_confusion_matrix_variables_optimized( - variables_to_update, - y_true, - y_pred, - thresholds, - multi_label=multi_label, - sample_weights=sample_weight, - label_weights=label_weights, - thresholds_with_epsilon=thresholds_with_epsilon, - ) - - pred_shape = tf.shape(y_pred) - num_predictions = pred_shape[0] - if y_pred.shape.ndims == 1: - num_labels = 1 - else: - num_labels = tf.math.reduce_prod(pred_shape[1:], axis=0) - thresh_label_tile = tf.where( - one_thresh, num_labels, tf.ones([], dtype=tf.int32) - ) - - # Reshape predictions and labels, adding a dim for thresholding. - if multi_label: - predictions_extra_dim = tf.expand_dims(y_pred, 0) - labels_extra_dim = tf.expand_dims(tf.cast(y_true, dtype=tf.bool), 0) - else: - # Flatten predictions and labels when not multilabel. - predictions_extra_dim = tf.reshape(y_pred, [1, -1]) - labels_extra_dim = tf.reshape(tf.cast(y_true, dtype=tf.bool), [1, -1]) - - # Tile the thresholds for every prediction. - if multi_label: - thresh_pretile_shape = [num_thresholds, 1, -1] - thresh_tiles = [1, num_predictions, thresh_label_tile] - data_tiles = [num_thresholds, 1, 1] - else: - thresh_pretile_shape = [num_thresholds, -1] - thresh_tiles = [1, num_predictions * num_labels] - data_tiles = [num_thresholds, 1] - - thresh_tiled = tf.tile( - tf.reshape(thresholds, thresh_pretile_shape), tf.stack(thresh_tiles) - ) - - # Tile the predictions for every threshold. - preds_tiled = tf.tile(predictions_extra_dim, data_tiles) - - # Compare predictions and threshold. - pred_is_pos = tf.greater(preds_tiled, thresh_tiled) - - # Tile labels by number of thresholds - label_is_pos = tf.tile(labels_extra_dim, data_tiles) - - if sample_weight is not None: - sample_weight = tf.__internal__.ops.broadcast_weights( - tf.cast(sample_weight, dtype=variable_dtype), y_pred - ) - weights_tiled = tf.tile( - tf.reshape(sample_weight, thresh_tiles), data_tiles - ) - else: - weights_tiled = None - - if label_weights is not None and not multi_label: - label_weights = tf.expand_dims(label_weights, 0) - label_weights = tf.__internal__.ops.broadcast_weights( - label_weights, y_pred - ) - label_weights_tiled = tf.tile( - tf.reshape(label_weights, thresh_tiles), data_tiles - ) - if weights_tiled is None: - weights_tiled = label_weights_tiled - else: - weights_tiled = tf.multiply(weights_tiled, label_weights_tiled) - - update_ops = [] - - def weighted_assign_add(label, pred, weights, var): - label_and_pred = tf.cast(tf.logical_and(label, pred), dtype=var.dtype) - if weights is not None: - label_and_pred *= tf.cast(weights, dtype=var.dtype) - return var.assign_add(tf.reduce_sum(label_and_pred, 1)) - - loop_vars = { - ConfusionMatrix.TRUE_POSITIVES: (label_is_pos, pred_is_pos), - } - update_tn = ConfusionMatrix.TRUE_NEGATIVES in variables_to_update - update_fp = ConfusionMatrix.FALSE_POSITIVES in variables_to_update - update_fn = ConfusionMatrix.FALSE_NEGATIVES in variables_to_update - - if update_fn or update_tn: - pred_is_neg = tf.logical_not(pred_is_pos) - loop_vars[ConfusionMatrix.FALSE_NEGATIVES] = (label_is_pos, pred_is_neg) - - if update_fp or update_tn: - label_is_neg = tf.logical_not(label_is_pos) - loop_vars[ConfusionMatrix.FALSE_POSITIVES] = (label_is_neg, pred_is_pos) - if update_tn: - loop_vars[ConfusionMatrix.TRUE_NEGATIVES] = ( - label_is_neg, - pred_is_neg, - ) - - for matrix_cond, (label, pred) in loop_vars.items(): - - if matrix_cond in variables_to_update: - update_ops.append( - weighted_assign_add( - label, pred, weights_tiled, variables_to_update[matrix_cond] - ) - ) - - return tf.group(update_ops) - - -def _filter_top_k(x, k): - """Filters top-k values in the last dim of x and set the rest to NEG_INF. - - Used for computing top-k prediction values in dense labels (which has the - same shape as predictions) for recall and precision top-k metrics. - - Args: - x: tensor with any dimensions. - k: the number of values to keep. - - Returns: - tensor with same shape and dtype as x. - """ - _, top_k_idx = tf.math.top_k(x, k, sorted=False) - top_k_mask = tf.reduce_sum( - tf.one_hot(top_k_idx, tf.shape(x)[-1], axis=-1), axis=-2 - ) - return x * top_k_mask + NEG_INF * (1 - top_k_mask) - - -def ragged_assert_compatible_and_get_flat_values(values, mask=None): - """If ragged, it checks the compatibility and then returns the flat_values. - - Note: If two tensors are dense, it does not check their compatibility. - Note: Although two ragged tensors with different ragged ranks could have - identical overall rank and dimension sizes and hence be compatible, - we do not support those cases. - Args: - values: A list of potentially ragged tensor of the same ragged_rank. - mask: A potentially ragged tensor of the same ragged_rank as elements in - Values. - - Returns: - A tuple in which the first element is the list of tensors and the second - is the mask tensor. ([Values], mask). Mask and the element in Values - are equal to the flat_values of the input arguments (if they were - ragged). - """ - if isinstance(values, list): - is_all_ragged = all(isinstance(rt, tf.RaggedTensor) for rt in values) - is_any_ragged = any(isinstance(rt, tf.RaggedTensor) for rt in values) - else: - is_all_ragged = isinstance(values, tf.RaggedTensor) - is_any_ragged = is_all_ragged - if is_all_ragged and ((mask is None) or isinstance(mask, tf.RaggedTensor)): - to_be_stripped = False - if not isinstance(values, list): - values = [values] - to_be_stripped = True - - # NOTE: we leave the flat_values compatibility to - # tf.TensorShape `assert_is_compatible_with` check if both dynamic - # dimensions are equal and then use the flat_values. - nested_row_split_list = [rt.nested_row_splits for rt in values] - assertion_list = _assert_splits_match(nested_row_split_list) - - # if both are ragged sample_weights also should be ragged with same - # dims. - if isinstance(mask, tf.RaggedTensor): - assertion_list_for_mask = _assert_splits_match( - [nested_row_split_list[0], mask.nested_row_splits] - ) - with tf.control_dependencies(assertion_list_for_mask): - mask = tf.expand_dims(mask.flat_values, -1) - - # values has at least 1 element. - flat_values = [] - for value in values: - with tf.control_dependencies(assertion_list): - flat_values.append(tf.expand_dims(value.flat_values, -1)) - - values = flat_values[0] if to_be_stripped else flat_values - - elif is_any_ragged: - raise TypeError( - "Some of the inputs are not tf.RaggedTensor. " - f"Input received: {values}" - ) - # values are empty or value are not ragged and mask is ragged. - elif isinstance(mask, tf.RaggedTensor): - raise TypeError( - "Ragged mask is not allowed with non-ragged inputs. " - f"Input received: {values}, mask received: {mask}" - ) - - return values, mask - - -def _assert_splits_match(nested_splits_lists): - """Checks that the given splits lists are identical. - - Performs static tests to ensure that the given splits lists are identical, - and returns a list of control dependency op tensors that check that they are - fully identical. - - Args: - nested_splits_lists: A list of nested_splits_lists, where each split_list - is a list of `splits` tensors from a `RaggedTensor`, ordered from - outermost ragged dimension to innermost ragged dimension. - - Returns: - A list of control dependency op tensors. - Raises: - ValueError: If the splits are not identical. - """ - error_msg = ( - "Inputs must have identical ragged splits. " - f"Input received: {nested_splits_lists}" - ) - for splits_list in nested_splits_lists: - if len(splits_list) != len(nested_splits_lists[0]): - raise ValueError(error_msg) - return [ - tf.debugging.assert_equal(s1, s2, message=error_msg) - for splits_list in nested_splits_lists[1:] - for (s1, s2) in zip(nested_splits_lists[0], splits_list) - ] - - -def binary_matches(y_true, y_pred, threshold=0.5): - """Creates int Tensor, 1 for label-prediction match, 0 for mismatch. - - Args: - y_true: Ground truth values, of shape (batch_size, d0, .. dN). - y_pred: The predicted values, of shape (batch_size, d0, .. dN). - threshold: (Optional) Float representing the threshold for deciding - whether prediction values are 1 or 0. - - Returns: - Binary matches, of shape (batch_size, d0, .. dN). - """ - y_pred = tf.convert_to_tensor(y_pred) - threshold = tf.cast(threshold, y_pred.dtype) - y_pred = tf.cast(y_pred > threshold, y_pred.dtype) - return tf.cast(tf.equal(y_true, y_pred), backend.floatx()) - - -def sparse_categorical_matches(y_true, y_pred): - """Creates float Tensor, 1.0 for label-prediction match, 0.0 for mismatch. - - You can provide logits of classes as `y_pred`, since argmax of - logits and probabilities are same. - - Args: - y_true: Integer ground truth values. - y_pred: The prediction values. - - Returns: - Match tensor: 1.0 for label-prediction match, 0.0 for mismatch. - """ - reshape_matches = False - y_pred = tf.convert_to_tensor(y_pred) - y_true = tf.convert_to_tensor(y_true) - y_true_org_shape = tf.shape(y_true) - y_pred_rank = y_pred.shape.ndims - y_true_rank = y_true.shape.ndims - - # If the shape of y_true is (num_samples, 1), squeeze to (num_samples,) - if ( - (y_true_rank is not None) - and (y_pred_rank is not None) - and (len(backend.int_shape(y_true)) == len(backend.int_shape(y_pred))) - ): - y_true = tf.squeeze(y_true, [-1]) - reshape_matches = True - y_pred = tf.math.argmax(y_pred, axis=-1) - - # If the predicted output and actual output types don't match, force cast - # them to match. - if backend.dtype(y_pred) != backend.dtype(y_true): - y_pred = tf.cast(y_pred, backend.dtype(y_true)) - matches = tf.cast(tf.equal(y_true, y_pred), backend.floatx()) - if reshape_matches: - matches = tf.reshape(matches, shape=y_true_org_shape) - return matches - - -def sparse_top_k_categorical_matches(y_true, y_pred, k=5): - """Creates float Tensor, 1.0 for label-TopK_prediction match, 0.0 for - mismatch. - - Args: - y_true: tensor of true targets. - y_pred: tensor of predicted targets. - k: (Optional) Number of top elements to look at for computing accuracy. - Defaults to 5. - - Returns: - Match tensor: 1.0 for label-prediction match, 0.0 for mismatch. - """ - reshape_matches = False - y_true = tf.convert_to_tensor(y_true) - y_pred = tf.convert_to_tensor(y_pred) - y_true_rank = y_true.shape.ndims - y_pred_rank = y_pred.shape.ndims - y_true_org_shape = tf.shape(y_true) - - # Flatten y_pred to (batch_size, num_samples) and y_true to (num_samples,) - if (y_true_rank is not None) and (y_pred_rank is not None): - if y_pred_rank > 2: - y_pred = tf.reshape(y_pred, [-1, y_pred.shape[-1]]) - if y_true_rank > 1: - reshape_matches = True - y_true = tf.reshape(y_true, [-1]) - - matches = tf.cast( - tf.math.in_top_k( - predictions=y_pred, targets=tf.cast(y_true, "int32"), k=k - ), - dtype=backend.floatx(), - ) - - # returned matches is expected to have same shape as y_true input - if reshape_matches: - return tf.reshape(matches, shape=y_true_org_shape) - - return matches diff --git a/keras/utils/metrics_utils_test.py b/keras/utils/metrics_utils_test.py deleted file mode 100644 index e099781b4fb..00000000000 --- a/keras/utils/metrics_utils_test.py +++ /dev/null @@ -1,548 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for metrics_utils.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras import backend -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import metrics_utils - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class RaggedSizeOpTest(tf.test.TestCase, parameterized.TestCase): - @parameterized.parameters( - [ - {"x_list": [1], "y_list": [2]}, - {"x_list": [1, 2], "y_list": [2, 3]}, - {"x_list": [1, 2, 4], "y_list": [2, 3, 5]}, - {"x_list": [[1, 2], [3, 4]], "y_list": [[2, 3], [5, 6]]}, - ] - ) - def test_passing_dense_tensors(self, x_list, y_list): - x = tf.constant(x_list) - y = tf.constant(y_list) - [x, y], _ = metrics_utils.ragged_assert_compatible_and_get_flat_values( - [x, y] - ) - x.shape.assert_is_compatible_with(y.shape) - - @parameterized.parameters( - [ - { - "x_list": [1], - }, - { - "x_list": [1, 2], - }, - { - "x_list": [1, 2, 4], - }, - { - "x_list": [[1, 2], [3, 4]], - }, - ] - ) - def test_passing_one_dense_tensor(self, x_list): - x = tf.constant(x_list) - [x], _ = metrics_utils.ragged_assert_compatible_and_get_flat_values([x]) - - @parameterized.parameters( - [ - {"x_list": [1], "y_list": [2]}, - {"x_list": [1, 2], "y_list": [2, 3]}, - {"x_list": [1, 2, 4], "y_list": [2, 3, 5]}, - {"x_list": [[1, 2], [3, 4]], "y_list": [[2, 3], [5, 6]]}, - {"x_list": [[1, 2], [3, 4], [1]], "y_list": [[2, 3], [5, 6], [3]]}, - {"x_list": [[1, 2], [], [1]], "y_list": [[2, 3], [], [3]]}, - ] - ) - def test_passing_both_ragged(self, x_list, y_list): - x = tf.ragged.constant(x_list) - y = tf.ragged.constant(y_list) - [x, y], _ = metrics_utils.ragged_assert_compatible_and_get_flat_values( - [x, y] - ) - x.shape.assert_is_compatible_with(y.shape) - - @parameterized.parameters( - [ - { - "x_list": [1], - }, - { - "x_list": [1, 2], - }, - { - "x_list": [1, 2, 4], - }, - { - "x_list": [[1, 2], [3, 4]], - }, - { - "x_list": [[1, 2], [3, 4], [1]], - }, - { - "x_list": [[1, 2], [], [1]], - }, - ] - ) - def test_passing_one_ragged(self, x_list): - x = tf.ragged.constant(x_list) - [x], _ = metrics_utils.ragged_assert_compatible_and_get_flat_values([x]) - - @parameterized.parameters( - [ - {"x_list": [1], "y_list": [2], "mask_list": [0]}, - {"x_list": [1, 2], "y_list": [2, 3], "mask_list": [0, 1]}, - {"x_list": [1, 2, 4], "y_list": [2, 3, 5], "mask_list": [1, 1, 1]}, - { - "x_list": [[1, 2], [3, 4]], - "y_list": [[2, 3], [5, 6]], - "mask_list": [[1, 1], [0, 1]], - }, - { - "x_list": [[1, 2], [3, 4], [1]], - "y_list": [[2, 3], [5, 6], [3]], - "mask_list": [[1, 1], [0, 0], [1]], - }, - { - "x_list": [[1, 2], [], [1]], - "y_list": [[2, 3], [], [3]], - "mask_list": [[1, 1], [], [0]], - }, - ] - ) - def test_passing_both_ragged_with_mask(self, x_list, y_list, mask_list): - x = tf.ragged.constant(x_list) - y = tf.ragged.constant(y_list) - mask = tf.ragged.constant(mask_list) - [ - x, - y, - ], mask = metrics_utils.ragged_assert_compatible_and_get_flat_values( - [x, y], mask - ) - x.shape.assert_is_compatible_with(y.shape) - y.shape.assert_is_compatible_with(mask.shape) - - @parameterized.parameters( - [ - {"x_list": [1], "mask_list": [0]}, - {"x_list": [1, 2], "mask_list": [0, 1]}, - {"x_list": [1, 2, 4], "mask_list": [1, 1, 1]}, - {"x_list": [[1, 2], [3, 4]], "mask_list": [[1, 1], [0, 1]]}, - { - "x_list": [[1, 2], [3, 4], [1]], - "mask_list": [[1, 1], [0, 0], [1]], - }, - {"x_list": [[1, 2], [], [1]], "mask_list": [[1, 1], [], [0]]}, - ] - ) - def test_passing_one_ragged_with_mask(self, x_list, mask_list): - x = tf.ragged.constant(x_list) - mask = tf.ragged.constant(mask_list) - [x], mask = metrics_utils.ragged_assert_compatible_and_get_flat_values( - [x], mask - ) - x.shape.assert_is_compatible_with(mask.shape) - - @parameterized.parameters( - [ - {"x_list": [[[1, 3]]], "y_list": [[2, 3]]}, - ] - ) - def test_failing_different_ragged_and_dense_ranks(self, x_list, y_list): - x = tf.ragged.constant(x_list) - y = tf.ragged.constant(y_list) - with self.assertRaises(ValueError): - [ - x, - y, - ], _ = metrics_utils.ragged_assert_compatible_and_get_flat_values( - [x, y] - ) - - @parameterized.parameters( - [ - {"x_list": [[[1, 3]]], "y_list": [[[2, 3]]], "mask_list": [[0, 1]]}, - ] - ) - def test_failing_different_mask_ranks(self, x_list, y_list, mask_list): - x = tf.ragged.constant(x_list) - y = tf.ragged.constant(y_list) - mask = tf.ragged.constant(mask_list) - with self.assertRaises(ValueError): - [ - x, - y, - ], _ = metrics_utils.ragged_assert_compatible_and_get_flat_values( - [x, y], mask - ) - - # we do not support such cases that ragged_ranks are different but overall - # dimension shapes and sizes are identical due to adding too much - # performance overheads to the overall use cases. - def test_failing_different_ragged_ranks(self): - dt = tf.constant([[[1, 2]]]) - # adding a ragged dimension - x = tf.RaggedTensor.from_row_splits(dt, row_splits=[0, 1]) - y = tf.ragged.constant([[[[1, 2]]]]) - with self.assertRaises(ValueError): - [ - x, - y, - ], _ = metrics_utils.ragged_assert_compatible_and_get_flat_values( - [x, y] - ) - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class FilterTopKTest(tf.test.TestCase, parameterized.TestCase): - def test_one_dimensional(self): - x = tf.constant([0.3, 0.1, 0.2, -0.5, 42.0]) - top_1 = self.evaluate(metrics_utils._filter_top_k(x=x, k=1)) - top_2 = self.evaluate(metrics_utils._filter_top_k(x=x, k=2)) - top_3 = self.evaluate(metrics_utils._filter_top_k(x=x, k=3)) - - self.assertAllClose( - top_1, - [ - metrics_utils.NEG_INF, - metrics_utils.NEG_INF, - metrics_utils.NEG_INF, - metrics_utils.NEG_INF, - 42.0, - ], - ) - self.assertAllClose( - top_2, - [ - 0.3, - metrics_utils.NEG_INF, - metrics_utils.NEG_INF, - metrics_utils.NEG_INF, - 42.0, - ], - ) - self.assertAllClose( - top_3, - [0.3, metrics_utils.NEG_INF, 0.2, metrics_utils.NEG_INF, 42.0], - ) - - def test_three_dimensional(self): - x = tf.constant( - [ - [[0.3, 0.1, 0.2], [-0.3, -0.2, -0.1]], - [[5.0, 0.2, 42.0], [-0.3, -0.6, -0.99]], - ] - ) - top_2 = self.evaluate(metrics_utils._filter_top_k(x=x, k=2)) - - self.assertAllClose( - top_2, - [ - [ - [0.3, metrics_utils.NEG_INF, 0.2], - [metrics_utils.NEG_INF, -0.2, -0.1], - ], - [ - [5.0, metrics_utils.NEG_INF, 42.0], - [-0.3, -0.6, metrics_utils.NEG_INF], - ], - ], - ) - - def test_handles_dynamic_shapes(self): - # See b/150281686. # GOOGLE_INTERNAL - - def _identity(x): - return x - - def _filter_top_k(x): - # This loses the static shape. - x = tf.numpy_function(_identity, (x,), tf.float32) - - return metrics_utils._filter_top_k(x=x, k=2) - - x = tf.constant([0.3, 0.1, 0.2, -0.5, 42.0]) - top_2 = self.evaluate(_filter_top_k(x)) - self.assertAllClose( - top_2, - [ - 0.3, - metrics_utils.NEG_INF, - metrics_utils.NEG_INF, - metrics_utils.NEG_INF, - 42.0, - ], - ) - - -class MatchesMethodsTest(tf.test.TestCase, parameterized.TestCase): - def test_sparse_categorical_matches(self): - matches_method = metrics_utils.sparse_categorical_matches - - # Test return tensor is type float - y_true = tf.constant(np.random.randint(0, 7, (6,))) - y_pred = tf.constant(np.random.random((6, 7))) - self.assertEqual(matches_method(y_true, y_pred).dtype, backend.floatx()) - - # Tests that resulting Tensor always has same shape as y_true. Tests - # from 1 dim to 4 dims - dims = [] - for _ in range(4): - dims.append(np.random.randint(1, 7)) - y_true = tf.constant(np.random.randint(0, 7, dims)) - y_pred = tf.constant(np.random.random(dims + [3])) - self.assertEqual(matches_method(y_true, y_pred).shape, y_true.shape) - - # Test correctness if the shape of y_true is (num_samples,) - y_true = tf.constant([1.0, 0.0, 0.0, 0.0]) - y_pred = tf.constant([[0.8, 0.2], [0.6, 0.4], [0.7, 0.3], [0.9, 0.1]]) - self.assertAllEqual( - matches_method(y_true, y_pred), [0.0, 1.0, 1.0, 1.0] - ) - - # Test correctness if the shape of y_true is (num_samples, 1) - y_true = tf.constant([[1.0], [0.0], [0.0], [0.0]]) - y_pred = tf.constant([[0.8, 0.2], [0.6, 0.4], [0.7, 0.3], [0.9, 0.1]]) - self.assertAllEqual( - matches_method(y_true, y_pred), [[0.0], [1.0], [1.0], [1.0]] - ) - - # Test correctness if the shape of y_true is (batch_size, seq_length) - # and y_pred is (batch_size, seq_length, num_classes) - y_pred = tf.constant( - [ - [[0.2, 0.3, 0.1], [0.1, 0.2, 0.7]], - [[0.3, 0.2, 0.1], [0.7, 0.2, 0.1]], - ] - ) - y_true = tf.constant([[1, 0], [1, 0]]) - self.assertAllEqual( - matches_method(y_true, y_pred), [[1.0, 0.0], [0.0, 1.0]] - ) - - def test_sparse_top_k_categorical_matches(self): - matches_method = metrics_utils.sparse_top_k_categorical_matches - - # Test return tensor is type float - y_true = tf.constant(np.random.randint(0, 7, (6,))) - y_pred = tf.constant(np.random.random((6, 7)), dtype=tf.float32) - self.assertEqual( - matches_method(y_true, y_pred, 1).dtype, backend.floatx() - ) - - # Tests that resulting Tensor always has same shape as y_true. Tests - # from 1 dim to 4 dims - dims = [] - for _ in range(4): - dims.append(np.random.randint(1, 7)) - y_true = tf.constant(np.random.randint(0, 7, dims)) - y_pred = tf.constant(np.random.random(dims + [3]), dtype=tf.float32) - self.assertEqual( - matches_method(y_true, y_pred, 1).shape, y_true.shape - ) - - # Test correctness if the shape of y_true is (num_samples,) for k = - # 1,2,3 - y_true = tf.constant([1.0, 0.0, 0.0, 0.0]) - y_pred = tf.constant( - [[0.7, 0.2, 0.1], [0.5, 0.3, 0.2], [0.6, 0.3, 0.1], [0.0, 0.1, 0.9]] - ) - self.assertAllEqual( - matches_method(y_true, y_pred, 1), [0.0, 1.0, 1.0, 0.0] - ) - self.assertAllEqual( - matches_method(y_true, y_pred, 2), [1.0, 1.0, 1.0, 0.0] - ) - self.assertAllEqual( - matches_method(y_true, y_pred, 3), [1.0, 1.0, 1.0, 1.0] - ) - - # Test correctness if the shape of y_true is (num_samples, 1) - # for k = 1,2,3 - y_true = tf.constant([[1.0], [0.0], [0.0], [0.0]]) - y_pred = tf.constant( - [[0.7, 0.2, 0.1], [0.5, 0.3, 0.2], [0.6, 0.3, 0.1], [0.0, 0.1, 0.9]] - ) - self.assertAllEqual( - matches_method(y_true, y_pred, 1), [[0.0], [1.0], [1.0], [0.0]] - ) - self.assertAllEqual( - matches_method(y_true, y_pred, 2), [[1.0], [1.0], [1.0], [0.0]] - ) - self.assertAllEqual( - matches_method(y_true, y_pred, 3), [[1.0], [1.0], [1.0], [1.0]] - ) - - # Test correctness if the shape of y_true is (batch_size, seq_length) - # and y_pred is (batch_size, seq_length, num_classes) for k = 1,2,3 - y_pred = tf.constant( - [ - [[0.2, 0.3, 0.1], [0.1, 0.2, 0.7]], - [[0.3, 0.2, 0.1], [0.7, 0.2, 0.1]], - ] - ) - y_true = tf.constant([[1, 0], [1, 0]]) - self.assertAllEqual( - matches_method(y_true, y_pred, 1), [[1.0, 0.0], [0.0, 1.0]] - ) - self.assertAllEqual( - matches_method(y_true, y_pred, 2), [[1.0, 0.0], [1.0, 1.0]] - ) - self.assertAllEqual( - matches_method(y_true, y_pred, 3), [[1.0, 1.0], [1.0, 1.0]] - ) - - def test_binary_matches(self): - matches_method = metrics_utils.binary_matches - - # Test return tensor is type float - y_true = tf.constant(np.random.random((6, 7))) - y_pred = tf.constant(np.random.random((6, 7))) - self.assertEqual( - matches_method(y_true, y_pred, 0.5).dtype, backend.floatx() - ) - - # Tests that resulting Tensor always has same shape as y_true. Tests - # from 1 dim to 4 dims. - dims = [] - for _ in range(4): - dims.append(np.random.randint(1, 7)) - y_true = y_pred = tf.constant(np.random.random(dims)) - self.assertEqual( - matches_method(y_true, y_pred, 0.0).shape, y_true.shape - ) - - # Testing for correctness shape (num_samples, 1) - y_true = tf.constant([[1.0], [0.0], [1.0], [1.0]]) - y_pred = tf.constant([[0.75], [0.2], [0.2], [0.75]]) - self.assertAllEqual( - matches_method(y_true, y_pred, 0.5), [[1.0], [1.0], [0.0], [1.0]] - ) - - # Testing for correctness shape (num_samples,) - y_true = tf.constant([1.0, 0.0, 1.0, 1.0]) - y_pred = tf.constant([0.75, 0.2, 0.2, 0.75]) - self.assertAllEqual( - matches_method(y_true, y_pred, 0.5), [1.0, 1.0, 0.0, 1.0] - ) - - # Testing for correctness batches of sequences - # shape (num_samples, seq_len) - y_true = tf.constant([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 0.0]]) - y_pred = tf.constant( - [[0.75, 0.2], [0.2, 0.75], [0.2, 0.75], [0.75, 0.2]] - ) - self.assertAllEqual( - matches_method(y_true, y_pred, 0.5), - [[1.0, 1.0], [1.0, 1.0], [0.0, 0.0], [1.0, 1.0]], - ) - - -@test_utils.run_v2_only -class UpdateConfusionMatrixVarTest(tf.test.TestCase, parameterized.TestCase): - def setUp(self): - self.tp = metrics_utils.ConfusionMatrix.TRUE_POSITIVES - self.tn = metrics_utils.ConfusionMatrix.TRUE_NEGATIVES - self.fp = metrics_utils.ConfusionMatrix.FALSE_POSITIVES - self.fn = metrics_utils.ConfusionMatrix.FALSE_NEGATIVES - self.variables_to_update = { - self.tp: tf.Variable([0], dtype=tf.float32), - self.tn: tf.Variable([0], dtype=tf.float32), - self.fp: tf.Variable([0], dtype=tf.float32), - self.fn: tf.Variable([0], dtype=tf.float32), - } - - def test_without_sample_weight(self): - y_true = tf.constant([[1, 1, 0], [0, 0, 1]]) - y_pred = tf.constant([[0.8, 0.7, 0.1], [0.1, 0.6, 0.4]]) - thresholds = [0.5] - - metrics_utils.update_confusion_matrix_variables( - variables_to_update=self.variables_to_update, - y_true=y_true, - y_pred=y_pred, - thresholds=thresholds, - ) - self.assertEqual(self.variables_to_update[self.tp].numpy()[0], 2) - self.assertEqual(self.variables_to_update[self.tn].numpy()[0], 2) - self.assertEqual(self.variables_to_update[self.fp].numpy()[0], 1) - self.assertEqual(self.variables_to_update[self.fn].numpy()[0], 1) - - def test_with_sample_weight(self): - y_true = tf.constant([[1, 1, 0], [0, 0, 1]]) - y_pred = tf.constant([[0.8, 0.7, 0.1], [0.1, 0.6, 0.4]]) - thresholds = [0.5] - sample_weight = [2, 1] - - metrics_utils.update_confusion_matrix_variables( - variables_to_update=self.variables_to_update, - y_true=y_true, - y_pred=y_pred, - thresholds=thresholds, - sample_weight=sample_weight, - ) - self.assertEqual(self.variables_to_update[self.tp].numpy()[0], 4) - self.assertEqual(self.variables_to_update[self.tn].numpy()[0], 3) - self.assertEqual(self.variables_to_update[self.fp].numpy()[0], 1) - self.assertEqual(self.variables_to_update[self.fn].numpy()[0], 1) - - def test_with_class_id(self): - y_true = tf.constant([[1, 1, 0], [0, 0, 1]]) - y_pred = tf.constant([[0.8, 0.7, 0.1], [0.1, 0.6, 0.4]]) - thresholds = [0.5] - class_id = 2 - - metrics_utils.update_confusion_matrix_variables( - variables_to_update=self.variables_to_update, - y_true=y_true, - y_pred=y_pred, - thresholds=thresholds, - class_id=class_id, - ) - self.assertEqual(self.variables_to_update[self.tp].numpy()[0], 0) - self.assertEqual(self.variables_to_update[self.tn].numpy()[0], 1) - self.assertEqual(self.variables_to_update[self.fp].numpy()[0], 0) - self.assertEqual(self.variables_to_update[self.fn].numpy()[0], 1) - - def test_with_sample_weight_and_classid(self): - y_true = tf.constant([[1, 1, 0], [0, 0, 1]]) - y_pred = tf.constant([[0.8, 0.7, 0.1], [0.1, 0.6, 0.4]]) - thresholds = [0.5] - sample_weight = [2, 1] - class_id = 2 - - metrics_utils.update_confusion_matrix_variables( - variables_to_update=self.variables_to_update, - y_true=y_true, - y_pred=y_pred, - thresholds=thresholds, - sample_weight=sample_weight, - class_id=class_id, - ) - self.assertEqual(self.variables_to_update[self.tp].numpy()[0], 0) - self.assertEqual(self.variables_to_update[self.tn].numpy()[0], 2) - self.assertEqual(self.variables_to_update[self.fp].numpy()[0], 0) - self.assertEqual(self.variables_to_update[self.fn].numpy()[0], 1) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/mode_keys.py b/keras/utils/mode_keys.py deleted file mode 100644 index 7ba5a17585e..00000000000 --- a/keras/utils/mode_keys.py +++ /dev/null @@ -1,20 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras model mode constants.""" - -# isort: off -from tensorflow.python.saved_model.model_utils.mode_keys import ( # noqa: F401,E501 - KerasModeKeys as ModeKeys, -) diff --git a/keras/utils/np_utils.py b/keras/utils/np_utils.py deleted file mode 100644 index 60cad3fa619..00000000000 --- a/keras/utils/np_utils.py +++ /dev/null @@ -1,142 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Numpy-related utilities.""" - -import numpy as np - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export("keras.utils.to_categorical") -def to_categorical(y, num_classes=None, dtype="float32"): - """Converts a class vector (integers) to binary class matrix. - - E.g. for use with `categorical_crossentropy`. - - Args: - y: Array-like with class values to be converted into a matrix - (integers from 0 to `num_classes - 1`). - num_classes: Total number of classes. If `None`, this would be inferred - as `max(y) + 1`. - dtype: The data type expected by the input. Default: `'float32'`. - - Returns: - A binary matrix representation of the input as a NumPy array. The class - axis is placed last. - - Example: - - >>> a = tf.keras.utils.to_categorical([0, 1, 2, 3], num_classes=4) - >>> print(a) - [[1. 0. 0. 0.] - [0. 1. 0. 0.] - [0. 0. 1. 0.] - [0. 0. 0. 1.]] - - >>> b = tf.constant([.9, .04, .03, .03, - ... .3, .45, .15, .13, - ... .04, .01, .94, .05, - ... .12, .21, .5, .17], - ... shape=[4, 4]) - >>> loss = tf.keras.backend.categorical_crossentropy(a, b) - >>> print(np.around(loss, 5)) - [0.10536 0.82807 0.1011 1.77196] - - >>> loss = tf.keras.backend.categorical_crossentropy(a, a) - >>> print(np.around(loss, 5)) - [0. 0. 0. 0.] - """ - y = np.array(y, dtype="int") - input_shape = y.shape - - # Shrink the last dimension if the shape is (..., 1). - if input_shape and input_shape[-1] == 1 and len(input_shape) > 1: - input_shape = tuple(input_shape[:-1]) - - y = y.reshape(-1) - if not num_classes: - num_classes = np.max(y) + 1 - n = y.shape[0] - categorical = np.zeros((n, num_classes), dtype=dtype) - categorical[np.arange(n), y] = 1 - output_shape = input_shape + (num_classes,) - categorical = np.reshape(categorical, output_shape) - return categorical - - -@keras_export("keras.utils.to_ordinal") -def to_ordinal(y, num_classes=None, dtype="float32"): - """Converts a class vector (integers) to an ordinal regression matrix. - - This utility encodes class vector to ordinal regression/classification - matrix where each sample is indicated by a row and rank of that sample is - indicated by number of ones in that row. - - Args: - y: Array-like with class values to be converted into a matrix - (integers from 0 to `num_classes - 1`). - num_classes: Total number of classes. If `None`, this would be inferred - as `max(y) + 1`. - dtype: The data type expected by the input. Default: `'float32'`. - - Returns: - An ordinal regression matrix representation of the input as a NumPy - array. The class axis is placed last. - - Example: - - >>> a = tf.keras.utils.to_ordinal([0, 1, 2, 3], num_classes=4) - >>> print(a) - [[0. 0. 0.] - [1. 0. 0.] - [1. 1. 0.] - [1. 1. 1.]] - """ - y = np.array(y, dtype="int") - input_shape = y.shape - - # Shrink the last dimension if the shape is (..., 1). - if input_shape and input_shape[-1] == 1 and len(input_shape) > 1: - input_shape = tuple(input_shape[:-1]) - - y = y.reshape(-1) - if not num_classes: - num_classes = np.max(y) + 1 - n = y.shape[0] - range_values = np.arange(num_classes - 1) - range_values = np.tile(np.expand_dims(range_values, 0), [n, 1]) - ordinal = np.zeros((n, num_classes - 1), dtype=dtype) - ordinal[range_values < np.expand_dims(y, -1)] = 1 - output_shape = input_shape + (num_classes - 1,) - ordinal = np.reshape(ordinal, output_shape) - return ordinal - - -@keras_export("keras.utils.normalize") -def normalize(x, axis=-1, order=2): - """Normalizes a Numpy array. - - Args: - x: Numpy array to normalize. - axis: axis along which to normalize. - order: Normalization order (e.g. `order=2` for L2 norm). - - Returns: - A normalized copy of the array. - """ - l2 = np.atleast_1d(np.linalg.norm(x, order, axis)) - l2[l2 == 0] = 1 - return x / np.expand_dims(l2, axis) diff --git a/keras/utils/np_utils_test.py b/keras/utils/np_utils_test.py deleted file mode 100644 index d108e10dd61..00000000000 --- a/keras/utils/np_utils_test.py +++ /dev/null @@ -1,84 +0,0 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for np_utils.""" - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -from keras.testing_infra import test_combinations -from keras.utils import np_utils - -NUM_CLASSES = 5 - - -class TestNPUtils(test_combinations.TestCase): - @parameterized.parameters( - [ - ((1,), (1, NUM_CLASSES)), - ((3,), (3, NUM_CLASSES)), - ((4, 3), (4, 3, NUM_CLASSES)), - ((5, 4, 3), (5, 4, 3, NUM_CLASSES)), - ((3, 1), (3, NUM_CLASSES)), - ((3, 2, 1), (3, 2, NUM_CLASSES)), - ] - ) - def test_to_categorical(self, shape, expected_shape): - label = np.random.randint(0, NUM_CLASSES, shape) - one_hot = np_utils.to_categorical(label, NUM_CLASSES) - # Check shape - self.assertEqual(one_hot.shape, expected_shape) - # Make sure there is only one 1 in a row - self.assertTrue(np.all(one_hot.sum(axis=-1) == 1)) - # Get original labels back from one hots - self.assertTrue( - np.all(np.argmax(one_hot, -1).reshape(label.shape) == label) - ) - - def test_to_categorial_without_num_classes(self): - label = [0, 2, 5] - one_hot = np_utils.to_categorical(label) - self.assertEqual(one_hot.shape, (3, 5 + 1)) - - @parameterized.parameters( - [ - ((1,), (1, NUM_CLASSES - 1)), - ((3,), (3, NUM_CLASSES - 1)), - ((4, 3), (4, 3, NUM_CLASSES - 1)), - ((5, 4, 3), (5, 4, 3, NUM_CLASSES - 1)), - ((3, 1), (3, NUM_CLASSES - 1)), - ((3, 2, 1), (3, 2, NUM_CLASSES - 1)), - ] - ) - def test_to_ordinal(self, shape, expected_shape): - label = np.random.randint(0, NUM_CLASSES, shape) - ordinal = np_utils.to_ordinal(label, NUM_CLASSES) - # Check shape - self.assertEqual(ordinal.shape, expected_shape) - # Make sure all the values are either 0 or 1 - self.assertTrue(np.all(np.logical_or(ordinal == 0, ordinal == 1))) - # Get original labels back from ordinal matrix - self.assertTrue( - np.all(ordinal.cumprod(-1).sum(-1).reshape(label.shape) == label) - ) - - def test_to_ordinal_without_num_classes(self): - label = [0, 2, 5] - one_hot = np_utils.to_ordinal(label) - self.assertEqual(one_hot.shape, (3, 5)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/object_identity.py b/keras/utils/object_identity.py deleted file mode 100644 index 856e6182023..00000000000 --- a/keras/utils/object_identity.py +++ /dev/null @@ -1,253 +0,0 @@ -"""Utilities for collecting objects based on "is" comparison.""" -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import collections -import weakref - - -# LINT.IfChange -class _ObjectIdentityWrapper: - """Wraps an object, mapping __eq__ on wrapper to "is" on wrapped. - - Since __eq__ is based on object identity, it's safe to also define __hash__ - based on object ids. This lets us add unhashable types like trackable - _ListWrapper objects to object-identity collections. - """ - - __slots__ = ["_wrapped", "__weakref__"] - - def __init__(self, wrapped): - self._wrapped = wrapped - - @property - def unwrapped(self): - return self._wrapped - - def _assert_type(self, other): - if not isinstance(other, _ObjectIdentityWrapper): - raise TypeError( - "Cannot compare wrapped object with unwrapped object. " - "Expect the object to be `_ObjectIdentityWrapper`. " - f"Got: {other}" - ) - - def __lt__(self, other): - self._assert_type(other) - return id(self._wrapped) < id(other._wrapped) - - def __gt__(self, other): - self._assert_type(other) - return id(self._wrapped) > id(other._wrapped) - - def __eq__(self, other): - if other is None: - return False - self._assert_type(other) - return self._wrapped is other._wrapped - - def __ne__(self, other): - return not self.__eq__(other) - - def __hash__(self): - # Wrapper id() is also fine for weakrefs. In fact, we rely on - # id(weakref.ref(a)) == id(weakref.ref(a)) and weakref.ref(a) is - # weakref.ref(a) in _WeakObjectIdentityWrapper. - return id(self._wrapped) - - def __repr__(self): - return f"<{type(self).__name__} wrapping {self._wrapped!r}>" - - -class _WeakObjectIdentityWrapper(_ObjectIdentityWrapper): - - __slots__ = () - - def __init__(self, wrapped): - super().__init__(weakref.ref(wrapped)) - - @property - def unwrapped(self): - return self._wrapped() - - -class Reference(_ObjectIdentityWrapper): - """Reference that refers an object. - - ```python - x = [1] - y = [1] - - x_ref1 = Reference(x) - x_ref2 = Reference(x) - y_ref2 = Reference(y) - - print(x_ref1 == x_ref2) - ==> True - - print(x_ref1 == y) - ==> False - ``` - """ - - __slots__ = () - - # Disabling super class' unwrapped field. - unwrapped = property() - - def deref(self): - """Returns the referenced object. - - ```python - x_ref = Reference(x) - print(x is x_ref.deref()) - ==> True - ``` - """ - return self._wrapped - - -class ObjectIdentityDictionary(collections.abc.MutableMapping): - """A mutable mapping data structure which compares using "is". - - This is necessary because we have trackable objects (_ListWrapper) which - have behavior identical to built-in Python lists (including being unhashable - and comparing based on the equality of their contents by default). - """ - - __slots__ = ["_storage"] - - def __init__(self): - self._storage = {} - - def _wrap_key(self, key): - return _ObjectIdentityWrapper(key) - - def __getitem__(self, key): - return self._storage[self._wrap_key(key)] - - def __setitem__(self, key, value): - self._storage[self._wrap_key(key)] = value - - def __delitem__(self, key): - del self._storage[self._wrap_key(key)] - - def __len__(self): - return len(self._storage) - - def __iter__(self): - for key in self._storage: - yield key.unwrapped - - def __repr__(self): - return f"ObjectIdentityDictionary({repr(self._storage)})" - - -class ObjectIdentityWeakKeyDictionary(ObjectIdentityDictionary): - """Like weakref.WeakKeyDictionary, but compares objects with "is".""" - - __slots__ = ["__weakref__"] - - def _wrap_key(self, key): - return _WeakObjectIdentityWrapper(key) - - def __len__(self): - # Iterate, discarding old weak refs - return len(list(self._storage)) - - def __iter__(self): - keys = self._storage.keys() - for key in keys: - unwrapped = key.unwrapped - if unwrapped is None: - del self[key] - else: - yield unwrapped - - -class ObjectIdentitySet(collections.abc.MutableSet): - """Like the built-in set, but compares objects with "is".""" - - __slots__ = ["_storage", "__weakref__"] - - def __init__(self, *args): - self._storage = set(self._wrap_key(obj) for obj in list(*args)) - - @staticmethod - def _from_storage(storage): - result = ObjectIdentitySet() - result._storage = storage - return result - - def _wrap_key(self, key): - return _ObjectIdentityWrapper(key) - - def __contains__(self, key): - return self._wrap_key(key) in self._storage - - def discard(self, key): - self._storage.discard(self._wrap_key(key)) - - def add(self, key): - self._storage.add(self._wrap_key(key)) - - def update(self, items): - self._storage.update([self._wrap_key(item) for item in items]) - - def clear(self): - self._storage.clear() - - def intersection(self, items): - return self._storage.intersection( - [self._wrap_key(item) for item in items] - ) - - def difference(self, items): - return ObjectIdentitySet._from_storage( - self._storage.difference([self._wrap_key(item) for item in items]) - ) - - def __len__(self): - return len(self._storage) - - def __iter__(self): - keys = list(self._storage) - for key in keys: - yield key.unwrapped - - -class ObjectIdentityWeakSet(ObjectIdentitySet): - """Like weakref.WeakSet, but compares objects with "is".""" - - __slots__ = () - - def _wrap_key(self, key): - return _WeakObjectIdentityWrapper(key) - - def __len__(self): - # Iterate, discarding old weak refs - return len([_ for _ in self]) - - def __iter__(self): - keys = list(self._storage) - for key in keys: - unwrapped = key.unwrapped - if unwrapped is None: - self.discard(key) - else: - yield unwrapped - - -# LINT.ThenChange(//tensorflow/python/util/object_identity.py) diff --git a/keras/utils/sidecar_evaluator.py b/keras/utils/sidecar_evaluator.py deleted file mode 100644 index 82b3c1df04d..00000000000 --- a/keras/utils/sidecar_evaluator.py +++ /dev/null @@ -1,432 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Python module for evaluation loop.""" - -import re - -import tensorflow as tf - -# isort: off -from tensorflow.python.platform import tf_logging as logging -from tensorflow.python.util import deprecation -from keras.callbacks import ModelCheckpoint -from keras.optimizers import optimizer -from tensorflow.python.util.tf_export import keras_export - -_PRINT_EVAL_STEP_EVERY_SEC = 60.0 -_ITERATIONS_UNINITIALIZED = -1 -_CHECKPOINT_TIMEOUT_SEC = 30 - - -def list_checkpoint_attributes(ckpt_dir_or_file): - """Lists all the attributes in a checkpoint. - - Checkpoint keys are paths in a checkpoint graph, and attribute is the first - element in the path. e.g. with a checkpoint key - "optimizer/iter/.ATTRIBUTES/VARIABLE_VALUE", optimizer is the attribute. The - attribute is also used to save/restore a variable in a checkpoint, - e.g. tf.train.Checkpoint(optimizer=optimizer, model=model). - - Args: - ckpt_dir_or_file: Directory with checkpoints file or path to checkpoint. - - Returns: - Set of attributes in a checkpoint. - """ - reader = tf.train.load_checkpoint(ckpt_dir_or_file) - variable_map = reader.get_variable_to_shape_map() - return {name.split("/")[0] for name in variable_map.keys()} - - -@keras_export("keras.utils.SidecarEvaluator", v1=[]) -class SidecarEvaluator: - """A class designed for a dedicated evaluator task. - - `SidecarEvaluator` is expected to be run in a process on a separate machine - from the training cluster. It is meant for the purpose of a dedicated - evaluator, evaluating the metric results of a training cluster which has one - or more workers performing the training, and saving checkpoints. - - The `SidecarEvaluator` API is compatible with both Custom Training Loop - (CTL), and Keras `Model.fit` to be used in the training cluster. Using the - model (with compiled metrics) provided at `__init__`, `SidecarEvaluator` - repeatedly performs evaluation "epochs" when it finds a checkpoint that has - not yet been used. Depending on the `steps` argument, an eval epoch is - evaluation over all eval data, or up to certain number of steps (batches). - See examples below for how the training program should save the checkpoints - in order to be recognized by `SidecarEvaluator`. - - Since under the hood, `SidecarEvaluator` uses `model.evaluate` for - evaluation, it also supports arbitrary Keras callbacks. That is, if one or - more callbacks are provided, their `on_test_batch_begin` and - `on_test_batch_end` methods are called at the start and end of a batch, and - their `on_test_begin` and `on_test_end` are called at the start and end of - an evaluation epoch. Note that `SidecarEvaluator` may skip some checkpoints - because it always picks up the latest checkpoint available, and during an - evaluation epoch, multiple checkpoints can be produced from the training - side. - - Example: - ```python - model = tf.keras.models.Sequential(...) - model.compile(metrics=tf.keras.metrics.SparseCategoricalAccuracy( - name="eval_metrics")) - data = tf.data.Dataset.from_tensor_slices(...) - - tf.keras.SidecarEvaluator( - model=model, - data=data, - # dir for training-saved checkpoint - checkpoint_dir='/tmp/checkpoint_dir', - steps=None, # Eval until dataset is exhausted - max_evaluations=None, # The evaluation needs to be stopped manually - callbacks=[tf.keras.callbacks.TensorBoard(log_dir='/tmp/log_dir')] - ).start() - ``` - - `SidecarEvaluator.start` writes a series of summary files which can be - visualized by tensorboard (which provides a webpage link): - - ```bash - $ tensorboard --logdir=/tmp/log_dir/validation - ... - TensorBoard 2.4.0a0 at http://host:port (Press CTRL+C to quit) - ``` - - If the training cluster uses a CTL, the `checkpoint_dir` should contain - checkpoints that track both `model` and `optimizer`, to fulfill - `SidecarEvaluator`'s expectation. This can be done by a - `tf.train.Checkpoint` and a `tf.train.CheckpointManager`: - - ```python - # Same `checkpoint_dir` supplied to `SidecarEvaluator`. - checkpoint_dir = ... - checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) - checkpoint_manager = tf.train.CheckpointManager( - checkpoint, checkpoint_dir=..., max_to_keep=...) - checkpoint_manager.save() - ``` - - If the training cluster uses Keras `Model.fit` API, a - `tf.keras.callbacks.ModelCheckpoint` should be used, with - `save_weights_only=True`, and the `filepath` should have 'ckpt-{epoch}' - appended: - - ```python - # Same `checkpoint_dir` supplied to `SidecarEvaluator`. - checkpoint_dir = ... - model_checkpoint = tf.keras.callbacks.ModelCheckpoint( - filepath=os.path.join(checkpoint_dir, 'ckpt-{epoch}'), - save_weights_only=True) - model.fit(dataset, epochs, callbacks=[model_checkpoint]) - ``` - """ - - def __init__( - self, - model, - data, - checkpoint_dir, - steps=None, - max_evaluations=None, - callbacks=None, - ): - """Initializes an `SidecarEvaluator` object. - - Args: - model: Model to use for evaluation. The model object used here should - be a `tf.keras.Model`, and should be the same as the one that is - used in training, where `tf.keras.Model`s are checkpointed. The - model should have one or more metrics compiled before using - `SidecarEvaluator`. - data: The input data for evaluation. `SidecarEvaluator` supports all - data types that Keras `model.evaluate` supports as the input data - `x`, such as a `tf.data.Dataset`. - checkpoint_dir: Directory where checkpoint files are saved. - steps: Number of steps to perform evaluation for, when evaluating a - single checkpoint file. If `None`, evaluation continues until the - dataset is exhausted. For repeated evaluation dataset, user must - specify `steps` to avoid infinite evaluation loop. - max_evaluations: Maximum number of the checkpoint file to be - evaluated, for `SidecarEvaluator` to know when to stop. The - evaluator will stop after it evaluates a checkpoint filepath ending - with '-'. If using - `tf.train.CheckpointManager.save` for saving checkpoints, the kth - saved checkpoint has the filepath suffix '-' (k=1 for - the first saved), and if checkpoints are saved every epoch after - training, the filepath saved at the kth epoch would end with - '-. Thus, if training runs for n epochs, and the - evaluator should end after the training finishes, use n for this - parameter. Note that this is not necessarily equal to the number of - total evaluations, since some checkpoints may be skipped if - evaluation is slower than checkpoint creation. If `None`, - `SidecarEvaluator` will evaluate indefinitely, and the user must - terminate evaluator program themselves. - callbacks: List of `keras.callbacks.Callback` instances to apply - during evaluation. See - [callbacks](/api_docs/python/tf/keras/callbacks). - """ - self.model = model - self.data = data - self.checkpoint_dir = checkpoint_dir - self._iterations = tf.Variable( - name="iterations", - initial_value=_ITERATIONS_UNINITIALIZED, - dtype=tf.int64, - ) - self.max_evaluations = max_evaluations - self.steps = steps - self.callbacks = callbacks or [] - - def _timeout_fn(self): - logging.info( - "No checkpoints appear to be found after " - f"{_CHECKPOINT_TIMEOUT_SEC} seconds. " - "Please check if you are properly using a " - "`tf.train.Checkpoint/CheckpointManager` or " - "`tf.keras.callbacks.ModelCheckpoint(save_weights_only=True)` to " - "save checkpoints by the training. See " - "`tf.keras.SidecarEvaluator` doc for recommended flows " - "of saving checkpoints." - ) - return False - - def start(self): - """Starts the evaluation loop.""" - if self.model.optimizer and isinstance( - self.model.optimizer, optimizer.Optimizer - ): - checkpoint = tf.train.Checkpoint( - model=self.model, optimizer=self.model.optimizer - ) - else: - optimizer_checkpoint = tf.train.Checkpoint(iter=self._iterations) - checkpoint = tf.train.Checkpoint( - model=self.model, optimizer=optimizer_checkpoint - ) - for latest_checkpoint in tf.train.checkpoints_iterator( - self.checkpoint_dir, - timeout=_CHECKPOINT_TIMEOUT_SEC, - timeout_fn=self._timeout_fn, - ): - try: - # `expect_partial` because the checkpoint can have other - # `Trackable`s such as `optimizer`. - checkpoint.restore(latest_checkpoint).expect_partial() - checkpoint_attributes = list_checkpoint_attributes( - latest_checkpoint - ) - # The checkpoint should contain model and optimizer for - # SidecarEvaluator to work. But the model weights saved by - # ModelCheckpoint callback does not contain model as an - # attribute. To make SidecarEvaluator compatibly work in this - # case, use model.load_weights to load the model's weights, - # while self._iterations is still restored by checkpoint - # variable. - if "model" not in checkpoint_attributes: - self.model.load_weights(latest_checkpoint) - # The model checkpoint might not include optimizer in cases, - # e.g. using a custom training loop. Directly assign the - # iterations property to be used in callbacks. - if self.model.optimizer and not isinstance( - self.model.optimizer, - optimizer.Optimizer, - ): - # experimental optimizer automatically restores the - # iteration value. - self.model.optimizer.iterations.assign(self._iterations) - except (tf.errors.OpError,) as e: - if isinstance(e, tf.errors.UnavailableError): - # With distribute training, worker preemption can result in - # `UnavailableError`. Raise this to be handled outside the - # evaluation loop. - raise e - - # A couple errors can happen here with the coordinator racing to - # write checkpoint: - # 1) OpError: open failed for : No such file or - # directory - # 2) NotFoundError (subclass of OpError): Unsuccessful - # TensorSliceReader constructor. - # TODO(rchao): Remove this except block once b/150954027 is - # resolved. - logging.info( - "SidecarEvaluator encountered an error when loading the " - f"checkpoint at {latest_checkpoint}. Retrying. " - f"Error: {e.__class__.__name__}: {e}" - ) - continue - if ( - self._iterations.numpy() == _ITERATIONS_UNINITIALIZED - and not isinstance( - self.model.optimizer, - optimizer.Optimizer, - ) - ): - raise RuntimeError( - "Variable `iterations` cannot be loaded from the " - f"checkpoint file at {self.checkpoint_dir}. " - "Please ensure `iterations` is " - "included in the checkpoint saved during training." - ) - - logging.info( - "Evaluation starts: Model weights loaded from latest " - f"checkpoint file {latest_checkpoint}" - ) - self.model.evaluate( - self.data, steps=self.steps, callbacks=self.callbacks, verbose=2 - ) - - return_metrics = {} - for metric in self.model.metrics: - result = metric.result() - if isinstance(result, dict): - return_metrics.update(result) - else: - return_metrics[metric.name] = result - - logging.info( - "End of evaluation. Metrics: %s", - " ".join( - [ - f"{name}={value.numpy()}" - for name, value in return_metrics.items() - ] - ), - ) - - if self.max_evaluations and ( - self.max_evaluations <= int(latest_checkpoint.split("-")[-1]) - ): - # Exit the loop because we have evaluated the final checkpoint - # file. - logging.info( - "Last checkpoint evaluated. SidecarEvaluator stops." - ) - return - - -@keras_export("keras.experimental.SidecarEvaluator", v1=[]) -@deprecation.deprecated_endpoints("keras.experimental.SidecarEvaluator") -class SidecarEvaluatorExperimental(SidecarEvaluator): - """Deprecated. Please use `tf.keras.utils.SidecarEvaluator` instead. - - Caution: `tf.keras.experimental.SidecarEvaluator` endpoint is - deprecated and will be removed in a future release. Please use - `tf.keras.utils.SidecarEvaluator`. - """ - - def __init__(self, *args, **kwargs): - logging.warning( - "`tf.keras.experimental.SidecarEvaluator` endpoint is " - "deprecated and will be removed in a future release. Please use " - "`tf.keras.utils.SidecarEvaluator`." - ) - super().__init__(*args, **kwargs) - - -@keras_export("keras.callbacks.SidecarEvaluatorModelExport") -class SidecarEvaluatorModelExport(ModelCheckpoint): - """Callback to save the best Keras model. - - It expands the functionality of the existing ModelCheckpoint callback to - enable exporting the best models after evaluation with validation dataset. - - When using the `SidecarEvaluatorModelExport` callback in conjunction with - `keras.utils.SidecarEvaluator`, users should provide the `filepath`, which - is the path for this callback to export model or save weights to, and - `ckpt_filepath`, which is where the checkpoint is available to extract - the epoch number from. The callback will then export the model that the - evaluator deems as the best (among the checkpoints saved by the training - counterpart) to the specified `filepath`. This callback is intended to be - used by SidecarEvaluator only. - - Example: - - ```python - model.compile(loss=..., optimizer=..., - metrics=['accuracy']) - sidecar_evaluator = keras.utils.SidecarEvaluator( - model=model, - data=dataset, - checkpoint_dir=checkpoint_dir, - max_evaluations=1, - callbacks=[ - SidecarEvaluatorModelExport( - export_filepath=os.path.join(checkpoint_dir, - 'best_model_eval', - 'best-model-{epoch:04d}'), - checkpoint_filepath=os.path.join(checkpoint_dir, - 'ckpt-{epoch:04d}'), - save_freq="eval", - save_weights_only=True, - monitor="loss", - mode="min", - verbose=1, - ), - ], - ) - sidecar_evaluator.start() - # Model weights are saved if evaluator deems it's the best seen so far. - - Args: - export_filepath: Path where best models should be saved by this - `SidecarEvaluatorModelExport` callback. Epoch formatting options, such - as `os.path.join(best_model_dir, 'best-model-{epoch:04d}')`, can be - used to allow saved model to preserve epoch information in the file - name. SidecarEvaluatorModelExport will use the "training epoch" at - which the checkpoint was saved by training to fill the epoch - placeholder in the path. - checkpoint_filepath: Path where checkpoints were saved by training. This - should be the same as what is provided to `filepath` argument of - `ModelCheckpoint` on the training side, such as - `os.path.join(checkpoint_dir, 'ckpt-{epoch:04d}')`. - """ - - def __init__(self, export_filepath, checkpoint_filepath, **kwargs): - super().__init__( - filepath=export_filepath, - save_best_only=True, - **kwargs, - ) - - self._checkpoint_filepath = checkpoint_filepath - - def on_test_begin(self, logs=None): - """Updates export_index to the latest checkpoint.""" - - most_recent_filepath = ( - self._get_most_recently_modified_file_matching_pattern( - self._checkpoint_filepath - ) - ) - if most_recent_filepath is not None: - self.export_index = ( - int( - re.match(r".*ckpt-(?P\d+)", most_recent_filepath)[ - "ckpt" - ] - ) - - 1 - ) - else: - self.export_index = 0 - - def on_test_end(self, logs): - """Saves best model at the end of an evaluation epoch.""" - - self.epochs_since_last_save += 1 - self._save_model(epoch=self.export_index, batch=None, logs=logs) diff --git a/keras/utils/sidecar_evaluator_test.py b/keras/utils/sidecar_evaluator_test.py deleted file mode 100644 index f336393470e..00000000000 --- a/keras/utils/sidecar_evaluator_test.py +++ /dev/null @@ -1,460 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Test covering sidecar_evaluator.py.""" - -import enum -import os -import shutil -import threading -import time - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.optimizers import sgd -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import np_utils -from keras.utils import sidecar_evaluator as sidecar_evaluator_lib -from keras.utils.sidecar_evaluator import SidecarEvaluatorModelExport - -# isort: off -from tensorflow.python.platform import tf_logging as logging - -_BATCH_SIZE = 32 -TRAIN_SAMPLES = 20 -TEST_SAMPLES = 20 -INPUT_DIM = 3 -NUM_CLASSES = 2 -NUM_HIDDEN = 5 -BATCH_SIZE = 5 - - -class TestModel(keras.Model): - def __init__(self): - super().__init__(name="test_model") - self.dense = keras.layers.Dense(10) - - def call(self, inputs): - return self.dense(inputs) - - -class DictMetric(keras.metrics.MeanSquaredError): - def result(self): - res = super().result() - return {"mean_squared_error_1": res, "mean_squared_error_2": res} - - -class ModelType(enum.Enum): - SEQUENTIAL = "sequential" - SUBCLASS = "subclass" - - -def _test_model_builder(model_type: ModelType, compile_model, build_model): - if model_type == ModelType.SEQUENTIAL: - model = keras.Sequential([keras.layers.Dense(10)]) - elif model_type == ModelType.SUBCLASS: - model = TestModel() - - if compile_model: - model.compile( - sgd.SGD(), - loss="mse", - metrics=[keras.metrics.CategoricalAccuracy(), DictMetric()], - ) - if build_model: - model.build((None, 32)) - - return model - - -@test_utils.run_v2_only -class SidecarEvaluatorTest(tf.test.TestCase, parameterized.TestCase): - def assertSummaryEventsWritten(self, log_dir): - # Asserts summary files do get written when log_dir is provided. - summary_files = tf.io.gfile.listdir(log_dir) - self.assertNotEmpty( - summary_files, - "Summary should have been written and log_dir should not be empty.", - ) - - # Asserts the content of the summary file. - event_pb_written = False - event_tags = [] - for summary_file in summary_files: - for event_pb in tf.compat.v1.train.summary_iterator( - os.path.join(log_dir, summary_file) - ): - if event_pb.step > 0: - self.assertEqual(event_pb.step, 32) - event_tags.append(event_pb.summary.value[0].tag) - event_pb_written = True - self.assertCountEqual( - event_tags, - [ - "evaluation_categorical_accuracy_vs_iterations", - "evaluation_loss_vs_iterations", - "evaluation_mean_squared_error_1_vs_iterations", - "evaluation_mean_squared_error_2_vs_iterations", - ], - ) - - # Verifying at least one non-zeroth step is written to summary. - self.assertTrue(event_pb_written) - - def assertModelsSameVariables(self, model_a, model_b): - # Check both have the same number of variables. - self.assertEqual(len(model_a.variables), len(model_b.variables)) - - # Check variable values to be equal. - for var_a, var_b in zip(model_a.variables, model_b.variables): - self.assertAllEqual(var_a.numpy(), var_b.numpy()) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], - model_type=[ModelType.SEQUENTIAL, ModelType.SUBCLASS], - ) - ) - def testIterationsNotSavedWillRaiseError(self, model_type): - model = _test_model_builder( - model_type=model_type, compile_model=False, build_model=True - ) - - checkpoint_dir = self.get_temp_dir() - checkpoint = tf.train.Checkpoint(model=model) - checkpoint_manager = tf.train.CheckpointManager( - checkpoint, checkpoint_dir, max_to_keep=2 - ) - checkpoint_manager.save() - - sidecar_evaluator = sidecar_evaluator_lib.SidecarEvaluator( - model, data=None, checkpoint_dir=checkpoint_dir - ) - with self.assertRaisesRegex( - RuntimeError, - "`iterations` cannot be loaded from the checkpoint file.", - ): - sidecar_evaluator.start() - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], - model_type=[ModelType.SEQUENTIAL, ModelType.SUBCLASS], - ) - ) - def testModelNotBuiltRaiseError(self, model_type): - model = _test_model_builder( - model_type=model_type, compile_model=False, build_model=False - ) - - checkpoint_dir = self.get_temp_dir() - checkpoint = tf.train.Checkpoint(model=model) - checkpoint_manager = tf.train.CheckpointManager( - checkpoint, checkpoint_dir, max_to_keep=2 - ) - checkpoint_manager.save() - - sidecar_evaluator = sidecar_evaluator_lib.SidecarEvaluator( - model, data=None, checkpoint_dir=checkpoint_dir - ) - with self.assertRaisesRegex(AssertionError, "Nothing to load."): - sidecar_evaluator.start() - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], - model_type=[ModelType.SEQUENTIAL, ModelType.SUBCLASS], - build_model=[True, False], - ) - ) - def testSidecarEvaluatorOutputsSummary(self, model_type, build_model): - # Create a model with synthetic data, and fit for one epoch. - model = _test_model_builder( - model_type=model_type, compile_model=True, build_model=False - ) - data = np.random.random((1000, 32)) - labels = np.random.random((1000, 10)) - dataset = tf.data.Dataset.from_tensor_slices((data, labels)) - dataset = dataset.batch(32) - model.fit(dataset, epochs=1) - - # Save a checkpoint. - checkpoint_dir = os.path.join(self.get_temp_dir(), "ckpt") - log_dir = os.path.join(self.get_temp_dir(), "summary") - logging.info( - "checkpoint_dir = %s, log_dir = %s", checkpoint_dir, log_dir - ) - checkpoint = tf.train.Checkpoint(model=model, optimizer=model.optimizer) - checkpoint_manager = tf.train.CheckpointManager( - checkpoint, checkpoint_dir, max_to_keep=2 - ) - logging.info( - "Checkpoint manager saved to: %s", checkpoint_manager.save() - ) - self.assertNotEmpty( - tf.io.gfile.listdir(checkpoint_dir), - "Checkpoint should have been written and " - "checkpoint_dir should not be empty.", - ) - - # Create a new model used for evaluation. - eval_model = _test_model_builder( - model_type=model_type, compile_model=True, build_model=build_model - ) - # Have a sidecar_evaluator evaluate once. - sidecar_evaluator = sidecar_evaluator_lib.SidecarEvaluator( - eval_model, - data=dataset, - checkpoint_dir=checkpoint_dir, - max_evaluations=1, - callbacks=[keras.callbacks.TensorBoard(log_dir=log_dir)], - ) - sidecar_evaluator.start() - # Eval model has been restored to the same state as the original model, - # so their weights should match. If not, restoration of the model didn't - # work. - self.assertModelsSameVariables(model, eval_model) - - self.assertSummaryEventsWritten(os.path.join(log_dir, "validation")) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], - model_type=[ModelType.SEQUENTIAL, ModelType.SUBCLASS], - build_model=[True, False], - ) - ) - def testSidecarEvaluatorOutputsSummarySavedWithCallback( - self, model_type, build_model - ): - checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoints") - log_dir = os.path.join(self.get_temp_dir(), "summary") - # Create a model with synthetic data, and fit for one epoch. - model = _test_model_builder( - model_type=model_type, compile_model=True, build_model=False - ) - data = np.random.random((1000, 32)) - labels = np.random.random((1000, 10)) - dataset = tf.data.Dataset.from_tensor_slices((data, labels)) - dataset = dataset.batch(_BATCH_SIZE) - save_callback = keras.callbacks.ModelCheckpoint( - filepath=os.path.join(checkpoint_dir, "ckpt-{epoch}"), - save_weights_only=True, - ) - model.fit(dataset, epochs=1, callbacks=[save_callback]) - self.assertNotEmpty( - tf.io.gfile.listdir(checkpoint_dir), - "Checkpoint should have been written and " - "checkpoint_dir should not be empty.", - ) - - # Create a new model used for evaluation. - eval_model = _test_model_builder( - model_type=model_type, compile_model=True, build_model=build_model - ) - # Have an sidecar_evaluator evaluate once. - sidecar_evaluator = sidecar_evaluator_lib.SidecarEvaluator( - eval_model, - data=dataset, - checkpoint_dir=checkpoint_dir, - max_evaluations=1, - callbacks=[keras.callbacks.TensorBoard(log_dir=log_dir)], - ) - with self.assertLogs() as cm: - sidecar_evaluator.start() - - metrics_logging = [ - line for line in cm.output if "End of evaluation" in line - ] - self.assertLen(metrics_logging, 1) - expected_logged_metrics = [ - "loss", - "categorical_accuracy", - "mean_squared_error_1", - "mean_squared_error_2", - ] - for metric_name in expected_logged_metrics: - self.assertRegex(metrics_logging[0], f"{metric_name}=") - - # Eval model has been restored to the same state as the original model, - # so their weights should match. If not, restoration of the model didn't - # work. - self.assertModelsSameVariables(model, eval_model) - - # check the iterations is restored. - self.assertEqual( - sidecar_evaluator.model.optimizer.iterations.numpy(), _BATCH_SIZE - ) - - self.assertSummaryEventsWritten(os.path.join(log_dir, "validation")) - - @tf.__internal__.distribute.combinations.generate( - tf.__internal__.test.combinations.combine( - mode=["eager"], - model_type=[ModelType.SEQUENTIAL, ModelType.SUBCLASS], - build_model=[True, False], - ) - ) - def testTimeoutFunction(self, model_type, build_model): - checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoints") - # Create a model with synthetic data, and fit for one epoch. - data = np.random.random((1000, 32)) - labels = np.random.random((1000, 10)) - dataset = tf.data.Dataset.from_tensor_slices((data, labels)) - dataset = dataset.batch(_BATCH_SIZE) - - # Create a new model used for evaluation. - eval_model = _test_model_builder( - model_type=model_type, compile_model=True, build_model=build_model - ) - # Have an sidecar_evaluator evaluate once. - sidecar_evaluator = sidecar_evaluator_lib.SidecarEvaluator( - eval_model, - data=dataset, - checkpoint_dir=checkpoint_dir, - max_evaluations=1, - ) - with self.assertLogs() as cm: - threading.Thread( - target=sidecar_evaluator.start, daemon=True - ).start() - time.sleep(50) - - metrics_logging = [ - l for l in cm.output if "No checkpoints appear to be found" in l - ] - self.assertGreaterEqual(len(metrics_logging), 1) - - def testExperimentalDeprecatedMessage(self): - - warning_messages = [] - - def warning(msg): - warning_messages.append(msg) - - with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): - sidecar_evaluator_lib.SidecarEvaluatorExperimental(None, None, None) - - warning_msg = ( - "`tf.keras.experimental.SidecarEvaluator` endpoint is deprecated" - ) - self.assertIn(warning_msg, "\n".join(warning_messages)) - - @test_combinations.run_with_all_model_types - def test_best_model_exporter_with_sidecarevaluator(self): - temp_dir = self.get_temp_dir() - self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) - - # Create a model with synthetic data, and fit for 20 epochs. - layers = [ - keras.layers.Dense( - NUM_HIDDEN, input_dim=INPUT_DIM, activation="relu" - ), - keras.layers.Dense(NUM_CLASSES, activation="softmax"), - ] - model = test_utils.get_model_from_layers(layers, input_shape=(3,)) - model.compile( - loss="categorical_crossentropy", - optimizer="rmsprop", - metrics=["acc"], - ) - - (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( - train_samples=TRAIN_SAMPLES, - test_samples=TEST_SAMPLES, - input_shape=(INPUT_DIM,), - num_classes=NUM_CLASSES, - ) - y_test = np_utils.to_categorical(y_test) - y_train = np_utils.to_categorical(y_train) - - callbacks = [ - keras.callbacks.ModelCheckpoint( - filepath=os.path.join( - os.path.join(temp_dir, "ckpt"), "ckpt-{epoch:04d}" - ), - monitor="loss", - save_best_only=True, - save_weights_only=True, - save_freq="epoch", - mode="min", - ) - ] - - model.fit( - x_train, - y_train, - batch_size=BATCH_SIZE, - validation_data=(x_test, y_test), - callbacks=callbacks, - epochs=20, - verbose=0, - ) - self.assertNotEmpty( - tf.io.gfile.listdir(os.path.join(temp_dir, "ckpt")), - "Checkpoints should have been written and " - "checkpoint_dir should not be empty.", - ) - - # Have a sidecar_evaluator evaluate once. - dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)) - dataset = dataset.batch(BATCH_SIZE) - sidecar_evaluator = keras.utils.SidecarEvaluator( - model=model, - data=dataset, - checkpoint_dir=os.path.join(temp_dir, "ckpt"), - max_evaluations=1, - callbacks=[ - SidecarEvaluatorModelExport( - export_filepath=os.path.join( - os.path.join(temp_dir, "ckpt"), - "best_model_eval", - "best-model-{epoch:04d}", - ), - checkpoint_filepath=os.path.join( - os.path.join(temp_dir, "ckpt"), "ckpt-{epoch:04d}" - ), - save_weights_only=False, - monitor="loss", - mode="min", - verbose=1, - ), - ], - ) - sidecar_evaluator.start() - - # Asserts output directory exists. - assert os.path.exists( - os.path.join(os.path.join(temp_dir, "ckpt"), "best_model_eval") - ) - - # Asserts best model files do get written. - self.assertRegex( - str( - tf.io.gfile.listdir( - os.path.join( - os.path.join(temp_dir, "ckpt"), "best_model_eval" - ) - ) - ), - r"(.*best-model.*)+", - ) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/text_dataset.py b/keras/utils/text_dataset.py deleted file mode 100644 index d6c6d9ee5bf..00000000000 --- a/keras/utils/text_dataset.py +++ /dev/null @@ -1,282 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras text dataset generation utilities.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.utils import dataset_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.utils.text_dataset_from_directory", - "keras.preprocessing.text_dataset_from_directory", - v1=[], -) -def text_dataset_from_directory( - directory, - labels="inferred", - label_mode="int", - class_names=None, - batch_size=32, - max_length=None, - shuffle=True, - seed=None, - validation_split=None, - subset=None, - follow_links=False, -): - """Generates a `tf.data.Dataset` from text files in a directory. - - If your directory structure is: - - ``` - main_directory/ - ...class_a/ - ......a_text_1.txt - ......a_text_2.txt - ...class_b/ - ......b_text_1.txt - ......b_text_2.txt - ``` - - Then calling `text_dataset_from_directory(main_directory, - labels='inferred')` will return a `tf.data.Dataset` that yields batches of - texts from the subdirectories `class_a` and `class_b`, together with labels - 0 and 1 (0 corresponding to `class_a` and 1 corresponding to `class_b`). - - Only `.txt` files are supported at this time. - - Args: - directory: Directory where the data is located. - If `labels` is "inferred", it should contain - subdirectories, each containing text files for a class. - Otherwise, the directory structure is ignored. - labels: Either "inferred" - (labels are generated from the directory structure), - None (no labels), - or a list/tuple of integer labels of the same size as the number of - text files found in the directory. Labels should be sorted according - to the alphanumeric order of the text file paths - (obtained via `os.walk(directory)` in Python). - label_mode: String describing the encoding of `labels`. Options are: - - 'int': means that the labels are encoded as integers - (e.g. for `sparse_categorical_crossentropy` loss). - - 'categorical' means that the labels are - encoded as a categorical vector - (e.g. for `categorical_crossentropy` loss). - - 'binary' means that the labels (there can be only 2) - are encoded as `float32` scalars with values 0 or 1 - (e.g. for `binary_crossentropy`). - - None (no labels). - class_names: Only valid if "labels" is "inferred". This is the explicit - list of class names (must match names of subdirectories). Used - to control the order of the classes - (otherwise alphanumerical order is used). - batch_size: Size of the batches of data. Default: 32. - If `None`, the data will not be batched - (the dataset will yield individual samples). - max_length: Maximum size of a text string. Texts longer than this will - be truncated to `max_length`. - shuffle: Whether to shuffle the data. Default: True. - If set to False, sorts the data in alphanumeric order. - seed: Optional random seed for shuffling and transformations. - validation_split: Optional float between 0 and 1, - fraction of data to reserve for validation. - subset: Subset of the data to return. - One of "training", "validation" or "both". - Only used if `validation_split` is set. - When `subset="both"`, the utility returns a tuple of two datasets - (the training and validation datasets respectively). - follow_links: Whether to visits subdirectories pointed to by symlinks. - Defaults to False. - - Returns: - A `tf.data.Dataset` object. - - If `label_mode` is None, it yields `string` tensors of shape - `(batch_size,)`, containing the contents of a batch of text files. - - Otherwise, it yields a tuple `(texts, labels)`, where `texts` - has shape `(batch_size,)` and `labels` follows the format described - below. - - Rules regarding labels format: - - if `label_mode` is `int`, the labels are an `int32` tensor of shape - `(batch_size,)`. - - if `label_mode` is `binary`, the labels are a `float32` tensor of - 1s and 0s of shape `(batch_size, 1)`. - - if `label_mode` is `categorical`, the labels are a `float32` tensor - of shape `(batch_size, num_classes)`, representing a one-hot - encoding of the class index. - """ - if labels not in ("inferred", None): - if not isinstance(labels, (list, tuple)): - raise ValueError( - "`labels` argument should be a list/tuple of integer labels, " - "of the same size as the number of text files in the target " - "directory. If you wish to infer the labels from the " - "subdirectory names in the target directory, " - 'pass `labels="inferred"`. ' - "If you wish to get a dataset that only contains text samples " - f"(no labels), pass `labels=None`. Received: labels={labels}" - ) - if class_names: - raise ValueError( - "You can only pass `class_names` if " - f'`labels="inferred"`. Received: labels={labels}, and ' - f"class_names={class_names}" - ) - if label_mode not in {"int", "categorical", "binary", None}: - raise ValueError( - '`label_mode` argument must be one of "int", ' - '"categorical", "binary", ' - f"or None. Received: label_mode={label_mode}" - ) - if labels is None or label_mode is None: - labels = None - label_mode = None - dataset_utils.check_validation_split_arg( - validation_split, subset, shuffle, seed - ) - - if seed is None: - seed = np.random.randint(1e6) - file_paths, labels, class_names = dataset_utils.index_directory( - directory, - labels, - formats=(".txt",), - class_names=class_names, - shuffle=shuffle, - seed=seed, - follow_links=follow_links, - ) - - if label_mode == "binary" and len(class_names) != 2: - raise ValueError( - 'When passing `label_mode="binary"`, there must be exactly 2 ' - f"class_names. Received: class_names={class_names}" - ) - - if subset == "both": - ( - file_paths_train, - labels_train, - ) = dataset_utils.get_training_or_validation_split( - file_paths, labels, validation_split, "training" - ) - ( - file_paths_val, - labels_val, - ) = dataset_utils.get_training_or_validation_split( - file_paths, labels, validation_split, "validation" - ) - if not file_paths_train: - raise ValueError( - f"No training text files found in directory {directory}. " - "Allowed format: .txt" - ) - if not file_paths_val: - raise ValueError( - f"No validation text files found in directory {directory}. " - "Allowed format: .txt" - ) - train_dataset = paths_and_labels_to_dataset( - file_paths=file_paths_train, - labels=labels_train, - label_mode=label_mode, - num_classes=len(class_names), - max_length=max_length, - ) - val_dataset = paths_and_labels_to_dataset( - file_paths=file_paths_val, - labels=labels_val, - label_mode=label_mode, - num_classes=len(class_names), - max_length=max_length, - ) - - train_dataset = train_dataset.prefetch(tf.data.AUTOTUNE) - val_dataset = val_dataset.prefetch(tf.data.AUTOTUNE) - if batch_size is not None: - if shuffle: - # Shuffle locally at each iteration - train_dataset = train_dataset.shuffle( - buffer_size=batch_size * 8, seed=seed - ) - train_dataset = train_dataset.batch(batch_size) - val_dataset = val_dataset.batch(batch_size) - else: - if shuffle: - train_dataset = train_dataset.shuffle( - buffer_size=1024, seed=seed - ) - # Users may need to reference `class_names`. - train_dataset.class_names = class_names - val_dataset.class_names = class_names - dataset = [train_dataset, val_dataset] - else: - file_paths, labels = dataset_utils.get_training_or_validation_split( - file_paths, labels, validation_split, subset - ) - if not file_paths: - raise ValueError( - f"No text files found in directory {directory}. " - "Allowed format: .txt" - ) - dataset = paths_and_labels_to_dataset( - file_paths=file_paths, - labels=labels, - label_mode=label_mode, - num_classes=len(class_names), - max_length=max_length, - ) - dataset = dataset.prefetch(tf.data.AUTOTUNE) - if batch_size is not None: - if shuffle: - # Shuffle locally at each iteration - dataset = dataset.shuffle(buffer_size=batch_size * 8, seed=seed) - dataset = dataset.batch(batch_size) - else: - if shuffle: - dataset = dataset.shuffle(buffer_size=1024, seed=seed) - # Users may need to reference `class_names`. - dataset.class_names = class_names - return dataset - - -def paths_and_labels_to_dataset( - file_paths, labels, label_mode, num_classes, max_length -): - """Constructs a dataset of text strings and labels.""" - path_ds = tf.data.Dataset.from_tensor_slices(file_paths) - string_ds = path_ds.map( - lambda x: path_to_string_content(x, max_length), - num_parallel_calls=tf.data.AUTOTUNE, - ) - if label_mode: - label_ds = dataset_utils.labels_to_dataset( - labels, label_mode, num_classes - ) - string_ds = tf.data.Dataset.zip((string_ds, label_ds)) - return string_ds - - -def path_to_string_content(path, max_length): - txt = tf.io.read_file(path) - if max_length is not None: - txt = tf.compat.v1.strings.substr(txt, 0, max_length) - return txt diff --git a/keras/utils/text_dataset_test.py b/keras/utils/text_dataset_test.py deleted file mode 100644 index 532eb06cf84..00000000000 --- a/keras/utils/text_dataset_test.py +++ /dev/null @@ -1,324 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for text_dataset.""" - -import os -import random -import shutil -import string - -import tensorflow.compat.v2 as tf - -from keras.testing_infra import test_combinations -from keras.testing_infra import test_utils -from keras.utils import text_dataset - - -@test_utils.run_v2_only -class TextDatasetFromDirectoryTest(test_combinations.TestCase): - def _prepare_directory( - self, num_classes=2, nested_dirs=False, count=16, length=20 - ): - # Get a unique temp directory - temp_dir = os.path.join( - self.get_temp_dir(), str(random.randint(0, 1e6)) - ) - os.mkdir(temp_dir) - self.addCleanup(shutil.rmtree, temp_dir) - - # Generate paths to class subdirectories - paths = [] - for class_index in range(num_classes): - class_directory = f"class_{class_index}" - if nested_dirs: - class_paths = [ - class_directory, - os.path.join(class_directory, "subfolder_1"), - os.path.join(class_directory, "subfolder_2"), - os.path.join( - class_directory, "subfolder_1", "sub-subfolder" - ), - ] - else: - class_paths = [class_directory] - for path in class_paths: - os.mkdir(os.path.join(temp_dir, path)) - paths += class_paths - - for i in range(count): - path = paths[i % len(paths)] - filename = os.path.join(path, f"text_{i}.txt") - with open(os.path.join(temp_dir, filename), "w") as f: - text = "".join( - [random.choice(string.printable) for _ in range(length)] - ) - f.write(text) - return temp_dir - - def test_text_dataset_from_directory_standalone(self): - # Test retrieving txt files without labels from a directory and its - # subdirs. Save a few extra files in the parent directory. - directory = self._prepare_directory(count=7, num_classes=2) - for i in range(3): - filename = f"text_{i}.txt" - with open(os.path.join(directory, filename), "w") as f: - text = "".join( - [random.choice(string.printable) for _ in range(20)] - ) - f.write(text) - - dataset = text_dataset.text_dataset_from_directory( - directory, batch_size=5, label_mode=None, max_length=10 - ) - batch = next(iter(dataset)) - # We just return the texts, no labels - self.assertEqual(batch.shape, (5,)) - self.assertEqual(batch.dtype.name, "string") - # Count samples - batch_count = 0 - sample_count = 0 - for batch in dataset: - batch_count += 1 - sample_count += batch.shape[0] - self.assertEqual(batch_count, 2) - self.assertEqual(sample_count, 10) - - def test_text_dataset_from_directory_binary(self): - directory = self._prepare_directory(num_classes=2) - dataset = text_dataset.text_dataset_from_directory( - directory, batch_size=8, label_mode="int", max_length=10 - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8,)) - self.assertEqual(batch[0].dtype.name, "string") - self.assertEqual(len(batch[0].numpy()[0]), 10) # Test max_length - self.assertEqual(batch[1].shape, (8,)) - self.assertEqual(batch[1].dtype.name, "int32") - - dataset = text_dataset.text_dataset_from_directory( - directory, batch_size=8, label_mode="binary" - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8,)) - self.assertEqual(batch[0].dtype.name, "string") - self.assertEqual(batch[1].shape, (8, 1)) - self.assertEqual(batch[1].dtype.name, "float32") - - dataset = text_dataset.text_dataset_from_directory( - directory, batch_size=8, label_mode="categorical" - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8,)) - self.assertEqual(batch[0].dtype.name, "string") - self.assertEqual(batch[1].shape, (8, 2)) - self.assertEqual(batch[1].dtype.name, "float32") - - def test_sample_count(self): - directory = self._prepare_directory(num_classes=4, count=15) - dataset = text_dataset.text_dataset_from_directory( - directory, batch_size=8, label_mode=None - ) - sample_count = 0 - for batch in dataset: - sample_count += batch.shape[0] - self.assertEqual(sample_count, 15) - - def test_text_dataset_from_directory_multiclass(self): - directory = self._prepare_directory(num_classes=4, count=15) - - dataset = text_dataset.text_dataset_from_directory( - directory, batch_size=8, label_mode=None - ) - batch = next(iter(dataset)) - self.assertEqual(batch.shape, (8,)) - - dataset = text_dataset.text_dataset_from_directory( - directory, batch_size=8, label_mode=None - ) - sample_count = 0 - iterator = iter(dataset) - for batch in dataset: - sample_count += next(iterator).shape[0] - self.assertEqual(sample_count, 15) - - dataset = text_dataset.text_dataset_from_directory( - directory, batch_size=8, label_mode="int" - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8,)) - self.assertEqual(batch[0].dtype.name, "string") - self.assertEqual(batch[1].shape, (8,)) - self.assertEqual(batch[1].dtype.name, "int32") - - dataset = text_dataset.text_dataset_from_directory( - directory, batch_size=8, label_mode="categorical" - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8,)) - self.assertEqual(batch[0].dtype.name, "string") - self.assertEqual(batch[1].shape, (8, 4)) - self.assertEqual(batch[1].dtype.name, "float32") - - def test_text_dataset_from_directory_validation_split(self): - directory = self._prepare_directory(num_classes=2, count=10) - dataset = text_dataset.text_dataset_from_directory( - directory, - batch_size=10, - validation_split=0.2, - subset="training", - seed=1337, - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8,)) - dataset = text_dataset.text_dataset_from_directory( - directory, - batch_size=10, - validation_split=0.2, - subset="validation", - seed=1337, - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (2,)) - - train_dataset, val_dataset = text_dataset.text_dataset_from_directory( - directory, - batch_size=10, - validation_split=0.2, - subset="both", - seed=1337, - ) - batch = next(iter(train_dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (8,)) - batch = next(iter(val_dataset)) - self.assertLen(batch, 2) - self.assertEqual(batch[0].shape, (2,)) - - def test_text_dataset_from_directory_manual_labels(self): - directory = self._prepare_directory(num_classes=2, count=2) - dataset = text_dataset.text_dataset_from_directory( - directory, batch_size=8, labels=[0, 1], shuffle=False - ) - batch = next(iter(dataset)) - self.assertLen(batch, 2) - self.assertAllClose(batch[1], [0, 1]) - - def test_text_dataset_from_directory_follow_links(self): - directory = self._prepare_directory( - num_classes=2, count=25, nested_dirs=True - ) - dataset = text_dataset.text_dataset_from_directory( - directory, batch_size=8, label_mode=None, follow_links=True - ) - sample_count = 0 - for batch in dataset: - sample_count += batch.shape[0] - self.assertEqual(sample_count, 25) - - def test_text_dataset_from_directory_no_files(self): - directory = self._prepare_directory(num_classes=2, count=0) - with self.assertRaisesRegex(ValueError, "No text files found"): - _ = text_dataset.text_dataset_from_directory(directory) - - def test_text_dataset_from_directory_errors(self): - directory = self._prepare_directory(num_classes=3, count=5) - - with self.assertRaisesRegex(ValueError, "`labels` argument should be"): - _ = text_dataset.text_dataset_from_directory( - directory, labels="other" - ) - - with self.assertRaisesRegex( - ValueError, "`label_mode` argument must be" - ): - _ = text_dataset.text_dataset_from_directory( - directory, label_mode="other" - ) - - with self.assertRaisesRegex( - ValueError, 'only pass `class_names` if `labels="inferred"`' - ): - _ = text_dataset.text_dataset_from_directory( - directory, - labels=[0, 0, 1, 1, 1], - class_names=["class_0", "class_1", "class_2"], - ) - - with self.assertRaisesRegex( - ValueError, - "Expected the lengths of `labels` to match the number of files", - ): - _ = text_dataset.text_dataset_from_directory( - directory, labels=[0, 0, 1, 1] - ) - - with self.assertRaisesRegex( - ValueError, "`class_names` passed did not match" - ): - _ = text_dataset.text_dataset_from_directory( - directory, class_names=["class_0", "class_2"] - ) - - with self.assertRaisesRegex(ValueError, "there must be exactly 2"): - _ = text_dataset.text_dataset_from_directory( - directory, label_mode="binary" - ) - - with self.assertRaisesRegex( - ValueError, "`validation_split` must be between 0 and 1" - ): - _ = text_dataset.text_dataset_from_directory( - directory, validation_split=2 - ) - - with self.assertRaisesRegex( - ValueError, - '`subset` must be either "training", "validation" or "both"', - ): - _ = text_dataset.text_dataset_from_directory( - directory, validation_split=0.2, subset="other" - ) - - with self.assertRaisesRegex( - ValueError, "`validation_split` must be set" - ): - _ = text_dataset.text_dataset_from_directory( - directory, validation_split=0, subset="training" - ) - - with self.assertRaisesRegex(ValueError, "must provide a `seed`"): - _ = text_dataset.text_dataset_from_directory( - directory, validation_split=0.2, subset="training" - ) - - def test_text_dataset_from_directory_not_batched(self): - directory = self._prepare_directory() - dataset = text_dataset.text_dataset_from_directory( - directory, batch_size=None, label_mode=None, follow_links=True - ) - - sample = next(iter(dataset)) - self.assertEqual(len(sample.shape), 0) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/tf_contextlib.py b/keras/utils/tf_contextlib.py deleted file mode 100644 index d988badaaf5..00000000000 --- a/keras/utils/tf_contextlib.py +++ /dev/null @@ -1,35 +0,0 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""TFDecorator-aware replacements for the contextlib module.""" - -import contextlib as _contextlib - -import tensorflow.compat.v2 as tf - - -def contextmanager(target): - """A tf_decorator-aware wrapper for `contextlib.contextmanager`. - - Usage is identical to `contextlib.contextmanager`. - - Args: - target: A callable to be wrapped in a contextmanager. - Returns: - A callable that can be used inside of a `with` statement. - """ - context_manager = _contextlib.contextmanager(target) - return tf.__internal__.decorator.make_decorator( - target, context_manager, "contextmanager" - ) diff --git a/keras/utils/tf_inspect.py b/keras/utils/tf_inspect.py deleted file mode 100644 index d9ea152cd27..00000000000 --- a/keras/utils/tf_inspect.py +++ /dev/null @@ -1,442 +0,0 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""TFDecorator-aware replacements for the inspect module.""" -import collections -import functools -import inspect as _inspect - -import tensorflow.compat.v2 as tf - -if hasattr(_inspect, "ArgSpec"): - ArgSpec = _inspect.ArgSpec -else: - ArgSpec = collections.namedtuple( - "ArgSpec", - [ - "args", - "varargs", - "keywords", - "defaults", - ], - ) - -if hasattr(_inspect, "FullArgSpec"): - FullArgSpec = _inspect.FullArgSpec -else: - FullArgSpec = collections.namedtuple( - "FullArgSpec", - [ - "args", - "varargs", - "varkw", - "defaults", - "kwonlyargs", - "kwonlydefaults", - "annotations", - ], - ) - - -def _convert_maybe_argspec_to_fullargspec(argspec): - if isinstance(argspec, FullArgSpec): - return argspec - return FullArgSpec( - args=argspec.args, - varargs=argspec.varargs, - varkw=argspec.keywords, - defaults=argspec.defaults, - kwonlyargs=[], - kwonlydefaults=None, - annotations={}, - ) - - -if hasattr(_inspect, "getfullargspec"): - _getfullargspec = _inspect.getfullargspec - - def _getargspec(target): - """A python3 version of getargspec. - - Calls `getfullargspec` and assigns args, varargs, - varkw, and defaults to a python 2/3 compatible `ArgSpec`. - - The parameter name 'varkw' is changed to 'keywords' to fit the - `ArgSpec` struct. - - Args: - target: the target object to inspect. - - Returns: - An ArgSpec with args, varargs, keywords, and defaults parameters - from FullArgSpec. - """ - fullargspecs = getfullargspec(target) - argspecs = ArgSpec( - args=fullargspecs.args, - varargs=fullargspecs.varargs, - keywords=fullargspecs.varkw, - defaults=fullargspecs.defaults, - ) - return argspecs - -else: - _getargspec = _inspect.getargspec - - def _getfullargspec(target): - """A python2 version of getfullargspec. - - Args: - target: the target object to inspect. - - Returns: - A FullArgSpec with empty kwonlyargs, kwonlydefaults and annotations. - """ - return _convert_maybe_argspec_to_fullargspec(getargspec(target)) - - -def currentframe(): - """TFDecorator-aware replacement for inspect.currentframe.""" - return _inspect.stack()[1][0] - - -def getargspec(obj): - """TFDecorator-aware replacement for `inspect.getargspec`. - - Note: `getfullargspec` is recommended as the python 2/3 compatible - replacement for this function. - - Args: - obj: A function, partial function, or callable object, possibly decorated. - - Returns: - The `ArgSpec` that describes the signature of the outermost decorator that - changes the callable's signature, or the `ArgSpec` that describes - the object if not decorated. - - Raises: - ValueError: When callable's signature can not be expressed with - ArgSpec. - TypeError: For objects of unsupported types. - """ - if isinstance(obj, functools.partial): - return _get_argspec_for_partial(obj) - - decorators, target = tf.__internal__.decorator.unwrap(obj) - - spec = next( - ( - d.decorator_argspec - for d in decorators - if d.decorator_argspec is not None - ), - None, - ) - if spec: - return spec - - try: - # Python3 will handle most callables here (not partial). - return _getargspec(target) - except TypeError: - pass - - if isinstance(target, type): - try: - return _getargspec(target.__init__) - except TypeError: - pass - - try: - return _getargspec(target.__new__) - except TypeError: - pass - - # The `type(target)` ensures that if a class is received we don't return - # the signature of its __call__ method. - return _getargspec(type(target).__call__) - - -def _get_argspec_for_partial(obj): - """Implements `getargspec` for `functools.partial` objects. - - Args: - obj: The `functools.partial` object - Returns: - An `inspect.ArgSpec` - Raises: - ValueError: When callable's signature can not be expressed with - ArgSpec. - """ - # When callable is a functools.partial object, we construct its ArgSpec with - # following strategy: - # - If callable partial contains default value for positional arguments (ie. - # object.args), then final ArgSpec doesn't contain those positional - # arguments. - # - If callable partial contains default value for keyword arguments (ie. - # object.keywords), then we merge them with wrapped target. Default values - # from callable partial takes precedence over those from wrapped target. - # - # However, there is a case where it is impossible to construct a valid - # ArgSpec. Python requires arguments that have no default values must be - # defined before those with default values. ArgSpec structure is only valid - # when this presumption holds true because default values are expressed as a - # tuple of values without keywords and they are always assumed to belong to - # last K arguments where K is number of default values present. - # - # Since functools.partial can give default value to any argument, this - # presumption may no longer hold in some cases. For example: - # - # def func(m, n): - # return 2 * m + n - # partialed = functools.partial(func, m=1) - # - # This example will result in m having a default value but n doesn't. This - # is usually not allowed in Python and can not be expressed in ArgSpec - # correctly. - # - # Thus, we must detect cases like this by finding first argument with - # default value and ensures all following arguments also have default - # values. When this is not true, a ValueError is raised. - - n_prune_args = len(obj.args) - partial_keywords = obj.keywords or {} - - args, varargs, keywords, defaults = getargspec(obj.func) - - # Pruning first n_prune_args arguments. - args = args[n_prune_args:] - - # Partial function may give default value to any argument, therefore length - # of default value list must be len(args) to allow each argument to - # potentially be given a default value. - no_default = object() - all_defaults = [no_default] * len(args) - - if defaults: - all_defaults[-len(defaults) :] = defaults - - # Fill in default values provided by partial function in all_defaults. - for kw, default in partial_keywords.items(): - if kw in args: - idx = args.index(kw) - all_defaults[idx] = default - elif not keywords: - raise ValueError( - "Function does not have **kwargs parameter, but " - "contains an unknown partial keyword." - ) - - # Find first argument with default value set. - first_default = next( - (idx for idx, x in enumerate(all_defaults) if x is not no_default), None - ) - - # If no default values are found, return ArgSpec with defaults=None. - if first_default is None: - return ArgSpec(args, varargs, keywords, None) - - # Checks if all arguments have default value set after first one. - invalid_default_values = [ - args[i] - for i, j in enumerate(all_defaults) - if j is no_default and i > first_default - ] - - if invalid_default_values: - raise ValueError( - f"Some arguments {invalid_default_values} do not have " - "default value, but they are positioned after those with " - "default values. This can not be expressed with ArgSpec." - ) - - return ArgSpec(args, varargs, keywords, tuple(all_defaults[first_default:])) - - -def getfullargspec(obj): - """TFDecorator-aware replacement for `inspect.getfullargspec`. - - This wrapper emulates `inspect.getfullargspec` in[^)]* Python2. - - Args: - obj: A callable, possibly decorated. - - Returns: - The `FullArgSpec` that describes the signature of - the outermost decorator that changes the callable's signature. If the - callable is not decorated, `inspect.getfullargspec()` will be called - directly on the callable. - """ - decorators, target = tf.__internal__.decorator.unwrap(obj) - - for d in decorators: - if d.decorator_argspec is not None: - return _convert_maybe_argspec_to_fullargspec(d.decorator_argspec) - return _getfullargspec(target) - - -def getcallargs(*func_and_positional, **named): - """TFDecorator-aware replacement for inspect.getcallargs. - - Args: - *func_and_positional: A callable, possibly decorated, followed by any - positional arguments that would be passed to `func`. - **named: The named argument dictionary that would be passed to `func`. - - Returns: - A dictionary mapping `func`'s named arguments to the values they would - receive if `func(*positional, **named)` were called. - - `getcallargs` will use the argspec from the outermost decorator that - provides it. If no attached decorators modify argspec, the final unwrapped - target's argspec will be used. - """ - func = func_and_positional[0] - positional = func_and_positional[1:] - argspec = getfullargspec(func) - call_args = named.copy() - this = getattr(func, "im_self", None) or getattr(func, "__self__", None) - if ismethod(func) and this: - positional = (this,) + positional - remaining_positionals = [ - arg for arg in argspec.args if arg not in call_args - ] - call_args.update(dict(zip(remaining_positionals, positional))) - default_count = 0 if not argspec.defaults else len(argspec.defaults) - if default_count: - for arg, value in zip(argspec.args[-default_count:], argspec.defaults): - if arg not in call_args: - call_args[arg] = value - if argspec.kwonlydefaults is not None: - for k, v in argspec.kwonlydefaults.items(): - if k not in call_args: - call_args[k] = v - return call_args - - -def getframeinfo(*args, **kwargs): - return _inspect.getframeinfo(*args, **kwargs) - - -def getdoc(obj): - """TFDecorator-aware replacement for inspect.getdoc. - - Args: - obj: An object, possibly decorated. - - Returns: - The docstring associated with the object. - - The outermost-decorated object is intended to have the most complete - documentation, so the decorated parameter is not unwrapped. - """ - return _inspect.getdoc(obj) - - -def getfile(obj): - """TFDecorator-aware replacement for inspect.getfile.""" - unwrapped_object = tf.__internal__.decorator.unwrap(obj)[1] - - # Work around for the case when object is a stack frame - # and only .pyc files are used. In this case, getfile - # might return incorrect path. So, we get the path from f_globals - # instead. - if ( - hasattr(unwrapped_object, "f_globals") - and "__file__" in unwrapped_object.f_globals - ): - return unwrapped_object.f_globals["__file__"] - return _inspect.getfile(unwrapped_object) - - -def getmembers(obj, predicate=None): - """TFDecorator-aware replacement for inspect.getmembers.""" - return _inspect.getmembers(obj, predicate) - - -def getmodule(obj): - """TFDecorator-aware replacement for inspect.getmodule.""" - return _inspect.getmodule(obj) - - -def getmro(cls): - """TFDecorator-aware replacement for inspect.getmro.""" - return _inspect.getmro(cls) - - -def getsource(obj): - """TFDecorator-aware replacement for inspect.getsource.""" - return _inspect.getsource(tf.__internal__.decorator.unwrap(obj)[1]) - - -def getsourcefile(obj): - """TFDecorator-aware replacement for inspect.getsourcefile.""" - return _inspect.getsourcefile(tf.__internal__.decorator.unwrap(obj)[1]) - - -def getsourcelines(obj): - """TFDecorator-aware replacement for inspect.getsourcelines.""" - return _inspect.getsourcelines(tf.__internal__.decorator.unwrap(obj)[1]) - - -def isbuiltin(obj): - """TFDecorator-aware replacement for inspect.isbuiltin.""" - return _inspect.isbuiltin(tf.__internal__.decorator.unwrap(obj)[1]) - - -def isclass(obj): - """TFDecorator-aware replacement for inspect.isclass.""" - return _inspect.isclass(tf.__internal__.decorator.unwrap(obj)[1]) - - -def isfunction(obj): - """TFDecorator-aware replacement for inspect.isfunction.""" - return _inspect.isfunction(tf.__internal__.decorator.unwrap(obj)[1]) - - -def isframe(obj): - """TFDecorator-aware replacement for inspect.ismodule.""" - return _inspect.isframe(tf.__internal__.decorator.unwrap(obj)[1]) - - -def isgenerator(obj): - """TFDecorator-aware replacement for inspect.isgenerator.""" - return _inspect.isgenerator(tf.__internal__.decorator.unwrap(obj)[1]) - - -def isgeneratorfunction(obj): - """TFDecorator-aware replacement for inspect.isgeneratorfunction.""" - return _inspect.isgeneratorfunction( - tf.__internal__.decorator.unwrap(obj)[1] - ) - - -def ismethod(obj): - """TFDecorator-aware replacement for inspect.ismethod.""" - return _inspect.ismethod(tf.__internal__.decorator.unwrap(obj)[1]) - - -def ismodule(obj): - """TFDecorator-aware replacement for inspect.ismodule.""" - return _inspect.ismodule(tf.__internal__.decorator.unwrap(obj)[1]) - - -def isroutine(obj): - """TFDecorator-aware replacement for inspect.isroutine.""" - return _inspect.isroutine(tf.__internal__.decorator.unwrap(obj)[1]) - - -def stack(context=1): - """TFDecorator-aware replacement for inspect.stack.""" - return _inspect.stack(context)[1:] diff --git a/keras/utils/tf_utils.py b/keras/utils/tf_utils.py deleted file mode 100644 index 2ca549e0cdf..00000000000 --- a/keras/utils/tf_utils.py +++ /dev/null @@ -1,755 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""TensorFlow-related utilities.""" - -import collections -import contextlib -import copy -import platform -import random -import threading - -import numpy as np -import tensorflow.compat.v2 as tf -from absl import logging - -from keras import backend -from keras.engine import keras_tensor -from keras.utils import object_identity -from keras.utils import tf_contextlib - -# isort: off -from tensorflow.python.framework import ops -from tensorflow.python.util.tf_export import keras_export -from tensorflow.python import pywrap_tfe - - -@keras_export("keras.utils.set_random_seed", v1=[]) -def set_random_seed(seed): - """Sets all random seeds for the program (Python, NumPy, and TensorFlow). - - You can use this utility to make almost any Keras program fully - deterministic. Some limitations apply in cases where network communications - are involved (e.g. parameter server distribution), which creates additional - sources of randomness, or when certain non-deterministic cuDNN ops are - involved. - - Calling this utility is equivalent to the following: - - ```python - import random - import numpy as np - import tensorflow as tf - random.seed(seed) - np.random.seed(seed) - tf.random.set_seed(seed) - ``` - - Arguments: - seed: Integer, the random seed to use. - """ - if not isinstance(seed, int): - raise ValueError( - "Expected `seed` argument to be an integer. " - f"Received: seed={seed} (of type {type(seed)})" - ) - random.seed(seed) - np.random.seed(seed) - tf.random.set_seed(seed) - backend._SEED_GENERATOR.generator = random.Random(seed) - - -def get_random_seed(): - """Retrieve a seed value to seed a random generator. - - Returns: - the random seed as an integer. - """ - if getattr(backend._SEED_GENERATOR, "generator", None): - return backend._SEED_GENERATOR.generator.randint(1, 1e9) - else: - return random.randint(1, 1e9) - - -def is_tensor_or_tensor_list(v): - v = tf.nest.flatten(v) - if v and isinstance(v[0], tf.Tensor): - return True - else: - return False - - -def get_reachable_from_inputs(inputs, targets=None): - """Returns the set of tensors/ops reachable from `inputs`. - - Stops if all targets have been found (target is optional). - - Only valid in Symbolic mode, not Eager mode. - - Args: - inputs: List of tensors. - targets: List of tensors. - - Returns: - A set of tensors reachable from the inputs (includes the inputs - themselves). - """ - inputs = tf.nest.flatten(inputs, expand_composites=True) - reachable = object_identity.ObjectIdentitySet(inputs) - if targets: - remaining_targets = object_identity.ObjectIdentitySet( - tf.nest.flatten(targets) - ) - queue = collections.deque(inputs) - - while queue: - x = queue.pop() - if isinstance(x, tuple(_user_convertible_tensor_types)): - # Can't find consumers of user-specific types. - continue - - if isinstance(x, tf.Operation): - outputs = x.outputs[:] or [] - outputs += x._control_outputs - elif isinstance(x, tf.Variable): - try: - outputs = [x.op] - except AttributeError: - # Variables can be created in an Eager context. - outputs = [] - elif tf.is_tensor(x): - outputs = x.consumers() - else: - raise TypeError( - "Expected tf.Operation, tf.Variable, or tf.Tensor. " - f"Received: {x}" - ) - - for y in outputs: - if y not in reachable: - reachable.add(y) - if targets: - remaining_targets.discard(y) - queue.appendleft(y) - - if targets and not remaining_targets: - return reachable - - return reachable - - -# This function needs access to private functions of `nest`. - - -def map_structure_with_atomic(is_atomic_fn, map_fn, nested): - """Maps the atomic elements of a nested structure. - - Args: - is_atomic_fn: A function that determines if an element of `nested` is - atomic. - map_fn: The function to apply to atomic elements of `nested`. - nested: A nested structure. - - Returns: - The nested structure, with atomic elements mapped according to `map_fn`. - - Raises: - ValueError: If an element that is neither atomic nor a sequence is - encountered. - """ - if is_atomic_fn(nested): - return map_fn(nested) - - # Recursively convert. - if not tf.nest.is_nested(nested): - raise ValueError( - f"Received non-atomic and non-sequence element: {nested} " - f"of type {type(nested)}" - ) - if tf.__internal__.nest.is_mapping(nested): - values = [nested[k] for k in sorted(nested.keys())] - elif tf.__internal__.nest.is_attrs(nested): - values = _astuple(nested) - else: - values = nested - mapped_values = [ - map_structure_with_atomic(is_atomic_fn, map_fn, ele) for ele in values - ] - return tf.__internal__.nest.sequence_like(nested, mapped_values) - - -def get_shapes(tensors): - """Gets shapes from tensors.""" - return tf.nest.map_structure( - lambda x: x.shape if hasattr(x, "shape") else None, tensors - ) - - -def convert_shapes(input_shape, to_tuples=True): - """Converts nested shape representations to desired format. - - Performs: - - TensorShapes -> tuples if `to_tuples=True`. - tuples of int or None -> TensorShapes if `to_tuples=False`. - - Valid objects to be converted are: - - TensorShapes - - tuples with elements of type int or None. - - ints - - None - - Args: - input_shape: A nested structure of objects to be converted to - TensorShapes. - to_tuples: If `True`, converts all TensorShape to tuples. Otherwise - converts all tuples representing shapes to TensorShapes. - - Returns: - Nested structure of shapes in desired format. - - Raises: - ValueError: when the input tensor shape can't be converted to tuples, eg - unknown tensor shape. - """ - - def _is_shape_component(value): - return value is None or isinstance(value, (int, tf.compat.v1.Dimension)) - - def _is_atomic_shape(input_shape): - # Ex: TensorShape or (None, 10, 32) or 5 or `None` - if _is_shape_component(input_shape): - return True - if isinstance(input_shape, tf.TensorShape): - return True - if isinstance(input_shape, (tuple, list)) and all( - _is_shape_component(ele) for ele in input_shape - ): - return True - return False - - def _convert_shape(input_shape): - input_shape = tf.TensorShape(input_shape) - if to_tuples: - input_shape = tuple(input_shape.as_list()) - return input_shape - - return map_structure_with_atomic( - _is_atomic_shape, _convert_shape, input_shape - ) - - -def validate_axis(axis, input_shape): - """Validate an axis value and returns its standardized form. - - Args: - axis: Value to validate. Can be an integer or a list/tuple of integers. - Integers may be negative. - input_shape: Reference input shape that the axis/axes refer to. - - Returns: - Normalized form of `axis`, i.e. a list with all-positive values. - """ - input_shape = tf.TensorShape(input_shape) - rank = input_shape.rank - if not rank: - raise ValueError( - f"Input has undefined rank. Received: input_shape={input_shape}" - ) - - # Convert axis to list and resolve negatives - if isinstance(axis, int): - axis = [axis] - else: - axis = list(axis) - for idx, x in enumerate(axis): - if x < 0: - axis[idx] = rank + x - - # Validate axes - for x in axis: - if x < 0 or x >= rank: - raise ValueError( - "Invalid value for `axis` argument. " - "Expected 0 <= axis < inputs.rank (with " - f"inputs.rank={rank}). Received: axis={tuple(axis)}" - ) - if len(axis) != len(set(axis)): - raise ValueError(f"Duplicate axis: {tuple(axis)}") - return axis - - -class ListWrapper: - """A wrapper for lists to be treated as elements for `nest`.""" - - def __init__(self, list_to_wrap): - self._list = list_to_wrap - - def as_list(self): - return self._list - - -def convert_inner_node_data(nested, wrap=False): - """Either wraps or unwraps innermost node data lists in `ListWrapper` - objects. - - Args: - nested: A nested data structure. - wrap: If `True`, wrap innermost lists in `ListWrapper` objects. If - `False`, unwraps `ListWrapper` objects into lists. - - Returns: - Structure of same type as nested, with lists wrapped/unwrapped. - """ - - def _is_serialized_node_data(nested): - # Node data can be of form `[layer_name, node_id, tensor_id]` or - # `[layer_name, node_id, tensor_id, kwargs]`. - if ( - isinstance(nested, list) - and (len(nested) in [3, 4]) - and isinstance(nested[0], str) - ): - return True - return False - - def _is_atomic_nested(nested): - """Returns `True` if `nested` is a list representing node data.""" - if isinstance(nested, ListWrapper): - return True - if _is_serialized_node_data(nested): - return True - return not tf.nest.is_nested(nested) - - def _convert_object_or_list(nested): - """Convert b/t `ListWrapper` object and list representations.""" - if wrap: - if isinstance(nested, ListWrapper): - return nested - if _is_serialized_node_data(nested): - return ListWrapper(nested) - return nested - else: - if isinstance(nested, ListWrapper): - return nested.as_list() - return nested - - return map_structure_with_atomic( - _is_atomic_nested, _convert_object_or_list, nested - ) - - -def shape_type_conversion(fn): - """Decorator that handles tuple/TensorShape conversion. - - Used in `compute_output_shape` and `build`. - - Args: - fn: function to wrap. - - Returns: - Wrapped function. - """ - - def wrapper(instance, input_shape): - # Pass shapes as tuples to `fn` - # This preserves compatibility with external Keras. - if input_shape is not None: - input_shape = convert_shapes(input_shape, to_tuples=True) - output_shape = fn(instance, input_shape) - # Return shapes from `fn` as TensorShapes. - if output_shape is not None: - output_shape = convert_shapes(output_shape, to_tuples=False) - return output_shape - - return wrapper - - -def are_all_symbolic_tensors(tensors): - return all(map(is_symbolic_tensor, tensors)) - - -_user_convertible_tensor_types = set() - - -def is_extension_type(tensor): - """Returns whether a tensor is of an ExtensionType. - - github.com/tensorflow/community/pull/269 - Currently it works by checking if `tensor` is a `CompositeTensor` instance, - but this will be changed to use an appropriate extensiontype protocol - check once ExtensionType is made public. - - Args: - tensor: An object to test - - Returns: - True if the tensor is an extension type object, false if not. - """ - return isinstance(tensor, tf.__internal__.CompositeTensor) - - -def is_symbolic_tensor(tensor): - """Returns whether a tensor is symbolic (from a TF graph) or an eager - tensor. - - A Variable can be seen as either: it is considered symbolic - when we are in a graph scope, and eager when we are in an eager scope. - - Args: - tensor: A tensor instance to test. - - Returns: - True for symbolic tensors, False for eager tensors. - """ - if isinstance(tensor, tf.Tensor): - return hasattr(tensor, "graph") - elif is_extension_type(tensor): - component_tensors = tf.nest.flatten(tensor, expand_composites=True) - return any(hasattr(t, "graph") for t in component_tensors) - elif isinstance(tensor, tf.Variable): - # Variables that are output of a Keras Layer in Functional API mode - # should be considered symbolic. - # TODO(omalleyt): We need a better way to check this in order to - # enable `run_eagerly=True` for Models containing Layers that - # return Variables as outputs. - return ( - getattr(tensor, "_keras_history", False) - or not tf.executing_eagerly() - ) - elif isinstance(tensor, tuple(_user_convertible_tensor_types)): - tensor = ops.convert_to_tensor_or_composite(tensor) - return is_symbolic_tensor(tensor) - else: - return False - - -@keras_export("keras.__internal__.utils.register_symbolic_tensor_type", v1=[]) -def register_symbolic_tensor_type(cls): - """Allows users to specify types regarded as symbolic `Tensor`s. - - Used in conjunction with `tf.register_tensor_conversion_function`, calling - `tf.keras.__internal__.utils.register_symbolic_tensor_type(cls)` - allows non-`Tensor` objects to be plumbed through Keras layers. - - Example: - - ```python - # One-time setup. - class Foo: - def __init__(self, input_): - self._input = input_ - def value(self): - return tf.constant(42.) - - tf.register_tensor_conversion_function( - Foo, lambda x, *args, **kwargs: x.value()) - - tf.keras.__internal__.utils.register_symbolic_tensor_type(Foo) - - # User-land. - layer = tf.keras.layers.Lambda(lambda input_: Foo(input_)) - ``` - - Args: - cls: A `class` type which shall be regarded as a symbolic `Tensor`. - """ - global _user_convertible_tensor_types - if cls not in _user_convertible_tensor_types: - keras_tensor.register_keras_tensor_specialization( - cls, keras_tensor.UserRegisteredTypeKerasTensor - ) - _user_convertible_tensor_types.add(cls) - - -def type_spec_from_value(value): - """Grab type_spec without converting array-likes to tensors.""" - if is_extension_type(value): - return value._type_spec - # Get a TensorSpec for array-like data without - # converting the data to a Tensor - if hasattr(value, "shape") and hasattr(value, "dtype"): - return tf.TensorSpec(value.shape, value.dtype) - else: - return tf.type_spec_from_value(value) - - -def is_ragged(tensor): - """Returns true if `tensor` is a ragged tensor or ragged tensor value.""" - return isinstance( - tensor, (tf.RaggedTensor, tf.compat.v1.ragged.RaggedTensorValue) - ) - - -def is_sparse(tensor): - """Returns true if `tensor` is a sparse tensor or sparse tensor value.""" - return isinstance(tensor, (tf.SparseTensor, tf.compat.v1.SparseTensorValue)) - - -def is_tensor_or_variable(x): - return tf.is_tensor(x) or isinstance(x, tf.Variable) - - -def is_tensor_or_extension_type(x): - """Returns true if 'x' is a TF-native type or an ExtensionType.""" - return tf.is_tensor(x) or is_extension_type(x) - - -def convert_variables_to_tensors(values): - """Converts `Variable`s in `values` to `Tensor`s. - - This is a Keras version of `convert_variables_to_tensors` in TensorFlow - variable_utils.py. - - If an object in `values` is an `ExtensionType` and it overrides its - `_convert_variables_to_tensors` method, its `ResourceVariable` components - will also be converted to `Tensor`s. Objects other than `ResourceVariable`s - in `values` will be returned unchanged. - - Args: - values: A nested structure of `ResourceVariable`s, or any other objects. - - Returns: - A new structure with `ResourceVariable`s in `values` converted to - `Tensor`s. - """ - - def _convert_resource_variable_to_tensor(x): - if isinstance(x, tf.Variable): - return tf.convert_to_tensor(x) - elif is_extension_type(x): - return x._convert_variables_to_tensors() - else: - return x - - return tf.nest.map_structure(_convert_resource_variable_to_tensor, values) - - -def assert_no_legacy_layers(layers): - """Prevent tf.layers.Layers from being used with Keras. - - Certain legacy layers inherit from their keras analogs; however they are - not supported with keras and can lead to subtle and hard to diagnose bugs. - - Args: - layers: A list of layers to check - - Raises: - TypeError: If any elements of layers are tf.layers.Layers - """ - - # isinstance check for tf.layers.Layer introduces a circular dependency. - legacy_layers = [l for l in layers if getattr(l, "_is_legacy_layer", None)] - if legacy_layers: - layer_str = "\n".join(" " + str(l) for l in legacy_layers) - raise TypeError( - f"The following are legacy tf.layers.Layers:\n{layer_str}\n" - "To use keras as a " - "framework (for instance using the Network, Model, or Sequential " - "classes), please use the tf.keras.layers implementation instead. " - "(Or, if writing custom layers, subclass from tf.keras.layers " - "rather than tf.layers)" - ) - - -@tf_contextlib.contextmanager -def maybe_init_scope(layer): - """Open an `init_scope` if in V2 mode and using the keras graph. - - Args: - layer: The Layer/Model that is currently active. - - Yields: - None - """ - # Don't open an init_scope in V1 mode, when using legacy tf.layers, or in a - # local-variable scope. - # The local-variable scope should ensure that created variables are local to - # the function being executed, rather than lifted out of the graph by - # `init_scope`. This way the variables are freely usable and mutable within - # the function, which enables a visitation guarantee for model evaluation, - # when the scope is applied to metric variable creation. - if ( - tf.compat.v1.executing_eagerly_outside_functions() - and getattr(layer, "_keras_style", True) - and not in_local_vars_context() - ): - with tf.init_scope(): - yield - else: - yield - - -@tf_contextlib.contextmanager -def graph_context_for_symbolic_tensors(*args, **kwargs): - """Returns graph context manager if any of the inputs is a symbolic - tensor.""" - if any(is_symbolic_tensor(v) for v in list(args) + list(kwargs.values())): - with backend.get_graph().as_default(): - yield - else: - yield - - -def dataset_is_infinite(dataset): - """True if the passed dataset is infinite.""" - if tf.compat.v1.executing_eagerly_outside_functions(): - return tf.equal( - tf.data.experimental.cardinality(dataset), - tf.data.experimental.INFINITE_CARDINALITY, - ) - else: - dataset_size = backend.get_session().run( - tf.data.experimental.cardinality(dataset) - ) - return dataset_size == tf.data.experimental.INFINITE_CARDINALITY - - -def get_tensor_spec(t, dynamic_batch=False, name=None): - """Returns a `TensorSpec` given a single `Tensor` or `TensorSpec`.""" - - if isinstance(t, tf.TypeSpec): - spec = t - elif is_extension_type(t): - # TODO(b/148821952): Should these specs have a name attr? - spec = t._type_spec - elif hasattr(t, "_keras_history") and hasattr( - t._keras_history[0], "_type_spec" - ): - return t._keras_history[0]._type_spec - elif isinstance(t, keras_tensor.KerasTensor): - spec = t.type_spec - elif hasattr(t, "shape") and hasattr(t, "dtype"): - spec = tf.TensorSpec(shape=t.shape, dtype=t.dtype, name=name) - else: - return None # Allow non-Tensors to pass through. - - if not dynamic_batch: - return spec - - shape = spec.shape - if shape.rank is None or shape.rank == 0: - return spec - - shape_list = shape.as_list() - shape_list[0] = None - # TODO(b/203201161) Remove this deepcopy one type_spec_with_shape has been - # updated to not mutate spec. - spec = copy.deepcopy(spec) - return keras_tensor.type_spec_with_shape(spec, tf.TensorShape(shape_list)) - - -def sync_to_numpy_or_python_type(tensors): - """Syncs and converts a structure of `Tensor`s to `NumPy` arrays or Python - scalar types. - - For each tensor, it calls `tensor.numpy()`. If the result is a scalar value, - it converts it to a Python type, such as a float or int, by calling - `result.item()`. - - Numpy scalars are converted, as Python types are often more convenient to - deal with. This is especially useful for bfloat16 Numpy scalars, which don't - support as many operations as other Numpy values. - - Async strategies (such as `TPUStrategy` and `ParameterServerStrategy`) are - forced to - sync during this process. - - Args: - tensors: A structure of tensors. - - Returns: - `tensors`, but scalar tensors are converted to Python types and non-scalar - tensors are converted to Numpy arrays. - """ - if isinstance(tensors, tf.distribute.experimental.coordinator.RemoteValue): - tensors = tensors.fetch() - if isinstance(tensors, list) and isinstance( - tensors[0], tf.distribute.experimental.coordinator.RemoteValue - ): - tensors = tf.nest.map_structure(lambda t: t.fetch(), tensors) - - def _to_single_numpy_or_python_type(t): - # Don't turn ragged or sparse tensors to NumPy. - if isinstance(t, tf.Tensor): - t = t.numpy() - # Strings, ragged and sparse tensors don't have .item(). Return them - # as-is. - if not isinstance(t, (np.ndarray, np.generic)): - return t - return t.item() if np.ndim(t) == 0 else t - - return tf.nest.map_structure(_to_single_numpy_or_python_type, tensors) - - -def _astuple(attrs): - """Converts the given attrs to tuple non-recursively.""" - cls = type(attrs) - fields = getattr(cls, "__attrs_attrs__", None) - if fields is None: - raise ValueError(f"{cls} is not an attrs-decorated class.") - values = [] - for field in fields: - values.append(getattr(attrs, field.name)) - return tuple(values) - - -def can_jit_compile(warn=False): - """Returns True if TensorFlow XLA is available for the platform.""" - if platform.system() == "Darwin" and "arm" in platform.processor().lower(): - if warn: - logging.warning( - "XLA (`jit_compile`) is not yet supported on Apple M1/M2 ARM " - "processors. Falling back to `jit_compile=False`." - ) - return False - if pywrap_tfe.TF_ListPluggablePhysicalDevices(): - if warn: - logging.warning( - "XLA (`jit_compile`) is not supported on your system. " - "Falling back to `jit_compile=False`." - ) - return False - return True - - -_metric_local_vars_scope = threading.local() - - -def get_metric_local_vars_scope(): - try: - return _metric_local_vars_scope.current - except AttributeError: - return None - - -def in_local_vars_context(): - ctx = get_metric_local_vars_scope() - return ctx is not None - - -@contextlib.contextmanager -def with_metric_local_vars_scope(): - previous_scope = getattr(_metric_local_vars_scope, "current", None) - _metric_local_vars_scope.current = MetricLocalVarsScope() - yield - _metric_local_vars_scope.current = previous_scope - - -class MetricLocalVarsScope: - """Turn on local variable creation for Metrics. - - No functionality is needed here, it just exists to modulate Metric's - variable creation.""" diff --git a/keras/utils/tf_utils_test.py b/keras/utils/tf_utils_test.py deleted file mode 100644 index 023cd123f04..00000000000 --- a/keras/utils/tf_utils_test.py +++ /dev/null @@ -1,488 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras TF utils.""" - -from unittest.mock import MagicMock -from unittest.mock import patch - -import numpy as np -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.testing_infra import test_combinations -from keras.utils import tf_utils - -try: - import attr -except ImportError: - attr = None - - -@test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) -class TestIsSymbolicTensor(tf.test.TestCase, parameterized.TestCase): - def test_default_behavior(self): - if tf.executing_eagerly(): - self.assertFalse( - tf_utils.is_symbolic_tensor( - tf.Variable(name="blah", initial_value=0.0) - ) - ) - self.assertFalse( - tf_utils.is_symbolic_tensor(tf.convert_to_tensor(0.0)) - ) - self.assertFalse( - tf_utils.is_symbolic_tensor( - tf.SparseTensor( - indices=[[0, 0], [1, 2]], - values=[1, 2], - dense_shape=[3, 4], - ) - ) - ) - else: - self.assertTrue( - tf_utils.is_symbolic_tensor( - tf.Variable(name="blah", initial_value=0.0) - ) - ) - self.assertTrue( - tf_utils.is_symbolic_tensor(tf.convert_to_tensor(0.0)) - ) - self.assertTrue( - tf_utils.is_symbolic_tensor( - tf.SparseTensor( - indices=[[0, 0], [1, 2]], - values=[1, 2], - dense_shape=[3, 4], - ) - ) - ) - - def test_works_with_registered(self): - class CustomClass: - def value(self): - return tf.convert_to_tensor(42.0) - - tf.register_tensor_conversion_function( - CustomClass, lambda value, **_: value.value() - ) - - tf_utils.register_symbolic_tensor_type(CustomClass) - - if tf.executing_eagerly(): - self.assertFalse( - tf_utils.is_symbolic_tensor( - tf.Variable(name="blah", initial_value=0.0) - ) - ) - self.assertFalse( - tf_utils.is_symbolic_tensor(tf.convert_to_tensor(0.0)) - ) - self.assertFalse( - tf_utils.is_symbolic_tensor( - tf.SparseTensor( - indices=[[0, 0], [1, 2]], - values=[1, 2], - dense_shape=[3, 4], - ) - ) - ) - self.assertFalse(tf_utils.is_symbolic_tensor(CustomClass())) - else: - self.assertTrue( - tf_utils.is_symbolic_tensor( - tf.Variable(name="blah", initial_value=0.0) - ) - ) - self.assertTrue( - tf_utils.is_symbolic_tensor(tf.convert_to_tensor(0.0)) - ) - self.assertTrue( - tf_utils.is_symbolic_tensor( - tf.SparseTensor( - indices=[[0, 0], [1, 2]], - values=[1, 2], - dense_shape=[3, 4], - ) - ) - ) - self.assertTrue(tf_utils.is_symbolic_tensor(CustomClass())) - - def test_enables_nontensor_plumbing(self): - if tf.executing_eagerly(): - self.skipTest("`compile` functionality changed.") - # Setup. - - class Foo: - def __init__(self, input_): - self._input = input_ - self.value = tf.convert_to_tensor([[42.0]]) - - @property - def dtype(self): - return self.value.dtype - - tf.register_tensor_conversion_function( - Foo, lambda x, *args, **kwargs: x.value - ) - tf_utils.register_symbolic_tensor_type(Foo) - - class PlumbingLayer(keras.layers.Lambda): - def __init__(self, fn, **kwargs): - def _fn(*fargs, **fkwargs): - d = fn(*fargs, **fkwargs) - x = tf.convert_to_tensor(d) - d.shape = x.shape - d.get_shape = x.get_shape - return d, x - - super().__init__(_fn, **kwargs) - self._enter_dunder_call = False - - def __call__(self, inputs, *args, **kwargs): - self._enter_dunder_call = True - d, _ = super().__call__(inputs, *args, **kwargs) - self._enter_dunder_call = False - return d - - def call(self, inputs, *args, **kwargs): - d, v = super().call(inputs, *args, **kwargs) - if self._enter_dunder_call: - return d, v - return d - - # User-land. - model = keras.Sequential( - [ - keras.layers.InputLayer((1,)), - PlumbingLayer(Foo), # Makes a `Foo` object. - ] - ) - # Let's ensure Keras graph history is preserved by composing the models. - model = keras.Model(model.inputs, model(model.outputs)) - # Now we instantiate the model and verify we have a `Foo` object, not a - # `Tensor`. - y = model(tf.convert_to_tensor([[7.0]])) - self.assertIsInstance(y, Foo) - # Confirm that (custom) loss sees `Foo` instance, not Tensor. - obtained_prediction_box = [None] - - def custom_loss(y_obs, y_pred): - del y_obs - obtained_prediction_box[0] = y_pred - return y_pred - - # Apparently `compile` calls the loss function enough to trigger the - # side-effect. - model.compile("SGD", loss=custom_loss) - self.assertIsInstance(obtained_prediction_box[0], Foo) - - -class ConvertInnerNodeDataTest(tf.test.TestCase): - def test_convert_inner_node_data(self): - data = tf_utils.convert_inner_node_data( - ( - tf_utils.ListWrapper(["l", 2, 3]), - tf_utils.ListWrapper(["l", 5, 6]), - ) - ) - self.assertEqual(data, (["l", 2, 3], ["l", 5, 6])) - - data = tf_utils.convert_inner_node_data( - ((["l", 2, 3], ["l", 5, 6])), wrap=True - ) - self.assertTrue( - all(isinstance(ele, tf_utils.ListWrapper) for ele in data) - ) - - -class AttrsTest(tf.test.TestCase): - def test_map_structure_with_atomic_accept_attr(self): - if attr is None: - self.skipTest("attr module is unavailable.") - - @attr.s(frozen=True) - class Foo: - - bar = attr.ib() - - self.assertEqual( - Foo(2), - tf_utils.map_structure_with_atomic( - is_atomic_fn=lambda x: isinstance(x, int), - map_fn=lambda x: x + 1, - nested=Foo(1), - ), - ) - - -class TestIsRagged(tf.test.TestCase): - def test_is_ragged_return_true_for_ragged_tensor(self): - tensor = tf.RaggedTensor.from_row_splits( - values=[3, 1, 4, 1, 5, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8] - ) - self.assertTrue(tf_utils.is_ragged(tensor)) - - def test_is_ragged_return_false_for_list(self): - tensor = [1.0, 2.0, 3.0] - self.assertFalse(tf_utils.is_ragged(tensor)) - - -class TestIsSparse(tf.test.TestCase): - def test_is_sparse_return_true_for_sparse_tensor(self): - tensor = tf.SparseTensor( - indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4] - ) - self.assertTrue(tf_utils.is_sparse(tensor)) - - def test_is_sparse_return_true_for_sparse_tensor_value(self): - tensor = tf.compat.v1.SparseTensorValue( - indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4] - ) - self.assertTrue(tf_utils.is_sparse(tensor)) - - def test_is_sparse_return_false_for_list(self): - tensor = [1.0, 2.0, 3.0] - self.assertFalse(tf_utils.is_sparse(tensor)) - - -class TestIsExtensionType(tf.test.TestCase): - def test_is_extension_type_return_true_for_ragged_tensor(self): - self.assertTrue( - tf_utils.is_extension_type(tf.ragged.constant([[1, 2], [3]])) - ) - - def test_is_extension_type_return_true_for_sparse_tensor(self): - self.assertTrue( - tf_utils.is_extension_type(tf.sparse.from_dense([[1, 2], [3, 4]])) - ) - - def test_is_extension_type_return_false_for_dense_tensor(self): - self.assertFalse( - tf_utils.is_extension_type(tf.constant([[1, 2], [3, 4]])) - ) - - def test_is_extension_type_return_false_for_list(self): - tensor = [1.0, 2.0, 3.0] - self.assertFalse(tf_utils.is_extension_type(tensor)) - - -class TestIsTensorOrExtensionType(tf.test.TestCase): - def test_is_tensor_or_extension_type_return_true_for_ragged_tensor(self): - self.assertTrue( - tf_utils.is_tensor_or_extension_type( - tf.ragged.constant([[1, 2], [3]]) - ) - ) - - def test_is_tensor_or_extension_type_return_true_for_sparse_tensor(self): - self.assertTrue( - tf_utils.is_tensor_or_extension_type( - tf.sparse.from_dense([[1, 2], [3, 4]]) - ) - ) - - def test_is_tensor_or_extension_type_return_true_for_dense_tensor(self): - self.assertTrue( - tf_utils.is_tensor_or_extension_type(tf.constant([[1, 2], [3, 4]])) - ) - - def test_is_tensor_or_extension_type_return_true_for_custom_ext_types(self): - class DummyExtensionType(tf.experimental.ExtensionType): - ... - - self.assertTrue( - tf_utils.is_tensor_or_extension_type(DummyExtensionType()) - ) - - def test_is_tensor_or_extension_type_return_false_for_list(self): - self.assertFalse(tf_utils.is_tensor_or_extension_type([1.0, 2.0, 3.0])) - - -@test_combinations.generate(test_combinations.combine(mode=["eager"])) -class TestConvertVariablesToTensors(tf.test.TestCase): - def test_convert_variables_to_tensors(self): - x = tf.Variable([1.0]) - result = tf_utils.convert_variables_to_tensors(x) - self.assertIsInstance(result, tf.Tensor) - self.assertAllEqual(result, [1.0]) - - def test_convert_variables_in_list_to_tensors(self): - x = [tf.Variable([1.0]), tf.constant([2.0])] - result = tf_utils.convert_variables_to_tensors(x) - self.assertLen(result, 2) - self.assertIsInstance(result[0], tf.Tensor) - self.assertAllEqual(result[0], [1.0]) - self.assertIs(result[1], x[1]) - - def test_convert_variables_in_composite_tensor_to_tensors(self): - class Spec(tf.TypeSpec): - value_type = property(lambda self: CompositeVariable) - - def _serialize(self): - pass - - def _component_specs(self): - pass - - def _to_components(self, value): - return value.variables - - def _from_components(self, variable_list): - return CompositeVariable(variable_list) - - class CompositeVariable(tf.__internal__.CompositeTensor): - def __init__(self, variable_list): - self.variables = variable_list - - @property - def _type_spec(self): - return Spec() - - def _convert_variables_to_tensors(self): - self.variables = tf.nest.map_structure( - tf_utils.convert_variables_to_tensors, self.variables - ) - return self - - cv = CompositeVariable([tf.Variable([1.0])]) - self.assertIsInstance(cv.variables[0], tf.Variable) - result = tf_utils.convert_variables_to_tensors(cv) - self.assertLen(result.variables, 1) - self.assertIsInstance(result.variables[0], tf.Tensor) - self.assertAllEqual(result.variables[0], [1.0]) - - -class TestRandomSeedSetting(tf.test.TestCase): - def test_seeds(self): - if not tf.__internal__.tf2.enabled(): - self.skipTest("set_random_seed() is only expected to work in tf2.") - - def get_model_output(): - model = keras.Sequential( - [ - keras.layers.Dense(10), - keras.layers.Dropout(0.5), - keras.layers.Dense(10), - ] - ) - x = np.random.random((32, 10)).astype("float32") - ds = tf.data.Dataset.from_tensor_slices(x).shuffle(32).batch(16) - return model.predict(ds) - - tf_utils.set_random_seed(42) - y1 = get_model_output() - tf_utils.set_random_seed(42) - y2 = get_model_output() - self.assertAllClose(y1, y2, atol=1e-6) - - -class CustomTypeSpec(tf.TypeSpec): - """Stubbed-out custom type spec, for testing.""" - - def __init__(self, shape, dtype): - self.shape = tf.TensorShape(shape) - self.dtype = tf.dtypes.as_dtype(dtype) - - def with_shape(self, new_shape): - return CustomTypeSpec(new_shape, self.dtype) - - # Stub implementations for all the TypeSpec methods: - value_type = None - _to_components = lambda self, value: None - _from_components = lambda self, components: None - _component_specs = property(lambda self: None) - _serialize = lambda self: (self.shape, self.dtype) - - -class TestGetTensorSpec(parameterized.TestCase): - @parameterized.parameters( - [ - (lambda: tf.constant([[1, 2]]), [1, 2]), - (tf.TensorSpec([8, 3], tf.int32), [8, 3]), - (tf.TensorSpec([8], tf.int32), [8]), - (tf.TensorSpec([], tf.int32), []), - (tf.TensorSpec(None, tf.int32), None), - (tf.RaggedTensorSpec([8, 3], tf.int32), [8, 3]), - (tf.SparseTensorSpec([8, 3], tf.int32), [8, 3]), - ] - ) - def test_without_dynamic_batch(self, t, expected_shape): - if callable(t): - t = t() - result = tf_utils.get_tensor_spec(t) - self.assertTrue(result.is_compatible_with(t)) - if expected_shape is None: - self.assertIsNone(result.shape.rank) - else: - self.assertEqual(result.shape.as_list(), expected_shape) - - @parameterized.parameters( - [ - (lambda: tf.constant([[1, 2]]), [None, 2]), - (tf.TensorSpec([8, 3], tf.int32), [None, 3]), - (tf.TensorSpec([8], tf.int32), [None]), - (tf.TensorSpec([], tf.int32), []), - (tf.TensorSpec(None, tf.int32), None), - (tf.RaggedTensorSpec([8, 3], tf.int32), [None, 3]), - (tf.SparseTensorSpec([8, 3], tf.int32), [None, 3]), - ] - ) - def test_with_dynamic_batch(self, t, expected_shape): - if callable(t): - t = t() - result = tf_utils.get_tensor_spec(t, True) - self.assertTrue(result.is_compatible_with(t)) - if expected_shape is None: - self.assertIsNone(result.shape.rank) - else: - self.assertEqual(result.shape.as_list(), expected_shape) - - def test_with_keras_tensor_with_ragged_spec(self): - t = keras.engine.keras_tensor.KerasTensor( - tf.RaggedTensorSpec(shape=(None, None, 1)) - ) - self.assertIsInstance(tf_utils.get_tensor_spec(t), tf.RaggedTensorSpec) - - -class TestSyncToNumpyOrPythonType(parameterized.TestCase): - @parameterized.parameters( - [ - (0.5,), - (b"string value",), - ] - ) - def test_types(self, value): - if not tf.executing_eagerly(): - self.skipTest("`sync_to_numpy_or_python_type` only works in eager") - tensor = tf.constant(value) - - self.assertEqual(tf_utils.sync_to_numpy_or_python_type(tensor), value) - - -class TestCanJitCompile(tf.test.TestCase): - def test_darwin_arm_xla(self): - with patch("platform.processor", MagicMock(return_value="arm")): - with patch("platform.system", MagicMock(return_value="Darwin")): - self.assertFalse(tf_utils.can_jit_compile()) - - def test_linux_xla(self): - with patch("platform.system", MagicMock(return_value="Linux")): - self.assertTrue(tf_utils.can_jit_compile()) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/timeseries_dataset.py b/keras/utils/timeseries_dataset.py deleted file mode 100644 index 60c37b116d9..00000000000 --- a/keras/utils/timeseries_dataset.py +++ /dev/null @@ -1,275 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Keras timeseries dataset utilities.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -# isort: off -from tensorflow.python.util.tf_export import keras_export - - -@keras_export( - "keras.utils.timeseries_dataset_from_array", - "keras.preprocessing.timeseries_dataset_from_array", - v1=[], -) -def timeseries_dataset_from_array( - data, - targets, - sequence_length, - sequence_stride=1, - sampling_rate=1, - batch_size=128, - shuffle=False, - seed=None, - start_index=None, - end_index=None, -): - """Creates a dataset of sliding windows over a timeseries provided as array. - - This function takes in a sequence of data-points gathered at - equal intervals, along with time series parameters such as - length of the sequences/windows, spacing between two sequence/windows, etc., - to produce batches of timeseries inputs and targets. - - Args: - data: Numpy array or eager tensor - containing consecutive data points (timesteps). - Axis 0 is expected to be the time dimension. - targets: Targets corresponding to timesteps in `data`. - `targets[i]` should be the target - corresponding to the window that starts at index `i` - (see example 2 below). - Pass None if you don't have target data (in this case the dataset will - only yield the input data). - sequence_length: Length of the output sequences (in number of timesteps). - sequence_stride: Period between successive output sequences. - For stride `s`, output samples would - start at index `data[i]`, `data[i + s]`, `data[i + 2 * s]`, etc. - sampling_rate: Period between successive individual timesteps - within sequences. For rate `r`, timesteps - `data[i], data[i + r], ... data[i + sequence_length]` - are used for creating a sample sequence. - batch_size: Number of timeseries samples in each batch - (except maybe the last one). If `None`, the data will not be batched - (the dataset will yield individual samples). - shuffle: Whether to shuffle output samples, - or instead draw them in chronological order. - seed: Optional int; random seed for shuffling. - start_index: Optional int; data points earlier (exclusive) - than `start_index` will not be used - in the output sequences. This is useful to reserve part of the - data for test or validation. - end_index: Optional int; data points later (exclusive) than `end_index` - will not be used in the output sequences. - This is useful to reserve part of the data for test or validation. - - Returns: - A tf.data.Dataset instance. If `targets` was passed, the dataset yields - tuple `(batch_of_sequences, batch_of_targets)`. If not, the dataset yields - only `batch_of_sequences`. - - Example 1: - - Consider indices `[0, 1, ... 98]`. - With `sequence_length=10, sampling_rate=2, sequence_stride=3`, - `shuffle=False`, the dataset will yield batches of sequences - composed of the following indices: - - ``` - First sequence: [0 2 4 6 8 10 12 14 16 18] - Second sequence: [3 5 7 9 11 13 15 17 19 21] - Third sequence: [6 8 10 12 14 16 18 20 22 24] - ... - Last sequence: [78 80 82 84 86 88 90 92 94 96] - ``` - - In this case the last 2 data points are discarded since no full sequence - can be generated to include them (the next sequence would have started - at index 81, and thus its last step would have gone over 98). - - Example 2: Temporal regression. - - Consider an array `data` of scalar values, of shape `(steps,)`. - To generate a dataset that uses the past 10 - timesteps to predict the next timestep, you would use: - - ```python - input_data = data[:-10] - targets = data[10:] - dataset = tf.keras.utils.timeseries_dataset_from_array( - input_data, targets, sequence_length=10) - for batch in dataset: - inputs, targets = batch - assert np.array_equal(inputs[0], data[:10]) # First sequence: steps [0-9] - # Corresponding target: step 10 - assert np.array_equal(targets[0], data[10]) - break - ``` - - Example 3: Temporal regression for many-to-many architectures. - - Consider two arrays of scalar values `X` and `Y`, - both of shape `(100,)`. The resulting dataset should consist samples with - 20 timestamps each. The samples should not overlap. - To generate a dataset that uses the current timestamp - to predict the corresponding target timestep, you would use: - - ```python - X = np.arange(100) - Y = X*2 - - sample_length = 20 - input_dataset = tf.keras.utils.timeseries_dataset_from_array( - X, None, sequence_length=sample_length, sequence_stride=sample_length) - target_dataset = tf.keras.utils.timeseries_dataset_from_array( - Y, None, sequence_length=sample_length, sequence_stride=sample_length) - - for batch in zip(input_dataset, target_dataset): - inputs, targets = batch - assert np.array_equal(inputs[0], X[:sample_length]) - - # second sample equals output timestamps 20-40 - assert np.array_equal(targets[1], Y[sample_length:2*sample_length]) - break - ``` - """ - if start_index: - if start_index < 0: - raise ValueError( - "`start_index` must be 0 or greater. Received: " - f"start_index={start_index}" - ) - if start_index >= len(data): - raise ValueError( - "`start_index` must be lower than the length of the " - f"data. Received: start_index={start_index}, for data " - f"of length {len(data)}" - ) - if end_index: - if start_index and end_index <= start_index: - raise ValueError( - "`end_index` must be higher than `start_index`. " - f"Received: start_index={start_index}, and " - f"end_index={end_index} " - ) - if end_index >= len(data): - raise ValueError( - "`end_index` must be lower than the length of the " - f"data. Received: end_index={end_index}, for data of " - f"length {len(data)}" - ) - if end_index <= 0: - raise ValueError( - "`end_index` must be higher than 0. " - f"Received: end_index={end_index}" - ) - - # Validate strides - if sampling_rate <= 0: - raise ValueError( - "`sampling_rate` must be higher than 0. Received: " - f"sampling_rate={sampling_rate}" - ) - if sampling_rate >= len(data): - raise ValueError( - "`sampling_rate` must be lower than the length of the " - f"data. Received: sampling_rate={sampling_rate}, for data " - f"of length {len(data)}" - ) - if sequence_stride <= 0: - raise ValueError( - "`sequence_stride` must be higher than 0. Received: " - f"sequence_stride={sequence_stride}" - ) - if sequence_stride >= len(data): - raise ValueError( - "`sequence_stride` must be lower than the length of the " - f"data. Received: sequence_stride={sequence_stride}, for " - f"data of length {len(data)}" - ) - - if start_index is None: - start_index = 0 - if end_index is None: - end_index = len(data) - - # Determine the lowest dtype to store start positions (to lower memory - # usage). - num_seqs = end_index - start_index - (sequence_length - 1) * sampling_rate - if targets is not None: - num_seqs = min(num_seqs, len(targets)) - if num_seqs < 2147483647: - index_dtype = "int32" - else: - index_dtype = "int64" - - # Generate start positions - start_positions = np.arange(0, num_seqs, sequence_stride, dtype=index_dtype) - if shuffle: - if seed is None: - seed = np.random.randint(1e6) - rng = np.random.RandomState(seed) - rng.shuffle(start_positions) - - sequence_length = tf.cast(sequence_length, dtype=index_dtype) - sampling_rate = tf.cast(sampling_rate, dtype=index_dtype) - - positions_ds = tf.data.Dataset.from_tensors(start_positions).repeat() - - # For each initial window position, generates indices of the window elements - indices = tf.data.Dataset.zip( - (tf.data.Dataset.range(len(start_positions)), positions_ds) - ).map( - lambda i, positions: tf.range( - positions[i], - positions[i] + sequence_length * sampling_rate, - sampling_rate, - ), - num_parallel_calls=tf.data.AUTOTUNE, - ) - - dataset = sequences_from_indices(data, indices, start_index, end_index) - if targets is not None: - indices = tf.data.Dataset.zip( - (tf.data.Dataset.range(len(start_positions)), positions_ds) - ).map( - lambda i, positions: positions[i], - num_parallel_calls=tf.data.AUTOTUNE, - ) - target_ds = sequences_from_indices( - targets, indices, start_index, end_index - ) - dataset = tf.data.Dataset.zip((dataset, target_ds)) - dataset = dataset.prefetch(tf.data.AUTOTUNE) - if batch_size is not None: - if shuffle: - # Shuffle locally at each iteration - dataset = dataset.shuffle(buffer_size=batch_size * 8, seed=seed) - dataset = dataset.batch(batch_size) - else: - if shuffle: - dataset = dataset.shuffle(buffer_size=1024, seed=seed) - return dataset - - -def sequences_from_indices(array, indices_ds, start_index, end_index): - dataset = tf.data.Dataset.from_tensors(array[start_index:end_index]) - dataset = tf.data.Dataset.zip((dataset.repeat(), indices_ds)).map( - lambda steps, inds: tf.gather(steps, inds), - num_parallel_calls=tf.data.AUTOTUNE, - ) - return dataset diff --git a/keras/utils/timeseries_dataset_test.py b/keras/utils/timeseries_dataset_test.py deleted file mode 100644 index 77f6acd33d3..00000000000 --- a/keras/utils/timeseries_dataset_test.py +++ /dev/null @@ -1,226 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for timeseries_dataset.""" - -import numpy as np -import tensorflow.compat.v2 as tf - -from keras.testing_infra import test_utils -from keras.utils import timeseries_dataset - - -@test_utils.run_v2_only -class TimeseriesDatasetTest(tf.test.TestCase): - def test_basics(self): - # Test ordering, targets, sequence length, batch size - data = np.arange(100) - targets = data * 2 - dataset = timeseries_dataset.timeseries_dataset_from_array( - data, targets, sequence_length=9, batch_size=5 - ) - # Expect 19 batches - for i, batch in enumerate(dataset): - self.assertLen(batch, 2) - inputs, targets = batch - if i < 18: - self.assertEqual(inputs.shape, (5, 9)) - if i == 18: - # Last batch: size 2 - self.assertEqual(inputs.shape, (2, 9)) - # Check target values - self.assertAllClose(targets, inputs[:, 0] * 2) - for j in range(min(5, len(inputs))): - # Check each sample in the batch - self.assertAllClose( - inputs[j], np.arange(i * 5 + j, i * 5 + j + 9) - ) - - def test_timeseries_regression(self): - # Test simple timeseries regression use case - data = np.arange(10) - offset = 3 - targets = data[offset:] - dataset = timeseries_dataset.timeseries_dataset_from_array( - data, targets, sequence_length=offset, batch_size=1 - ) - i = 0 - for batch in dataset: - self.assertLen(batch, 2) - inputs, targets = batch - self.assertEqual(inputs.shape, (1, 3)) - # Check values - self.assertAllClose(targets[0], data[offset + i]) - self.assertAllClose(inputs[0], data[i : i + offset]) - i += 1 - self.assertEqual(i, 7) # Expect 7 batches - - def test_no_targets(self): - data = np.arange(50) - dataset = timeseries_dataset.timeseries_dataset_from_array( - data, None, sequence_length=10, batch_size=5 - ) - # Expect 9 batches - i = None - for i, batch in enumerate(dataset): - if i < 8: - self.assertEqual(batch.shape, (5, 10)) - elif i == 8: - self.assertEqual(batch.shape, (1, 10)) - for j in range(min(5, len(batch))): - # Check each sample in the batch - self.assertAllClose( - batch[j], np.arange(i * 5 + j, i * 5 + j + 10) - ) - self.assertEqual(i, 8) - - def test_shuffle(self): - # Test cross-epoch random order and seed determinism - data = np.arange(10) - targets = data * 2 - dataset = timeseries_dataset.timeseries_dataset_from_array( - data, - targets, - sequence_length=5, - batch_size=1, - shuffle=True, - seed=123, - ) - first_seq = None - for x, y in dataset.take(1): - self.assertNotAllClose(x, np.arange(0, 5)) - self.assertAllClose(x[:, 0] * 2, y) - first_seq = x - # Check that a new iteration with the same dataset yields different - # results - for x, _ in dataset.take(1): - self.assertNotAllClose(x, first_seq) - # Check determism with same seed - dataset = timeseries_dataset.timeseries_dataset_from_array( - data, - targets, - sequence_length=5, - batch_size=1, - shuffle=True, - seed=123, - ) - for x, _ in dataset.take(1): - self.assertAllClose(x, first_seq) - - def test_sampling_rate(self): - data = np.arange(100) - targets = data * 2 - dataset = timeseries_dataset.timeseries_dataset_from_array( - data, targets, sequence_length=9, batch_size=5, sampling_rate=2 - ) - for i, batch in enumerate(dataset): - self.assertLen(batch, 2) - inputs, targets = batch - if i < 16: - self.assertEqual(inputs.shape, (5, 9)) - if i == 16: - # Last batch: size 4 - self.assertEqual(inputs.shape, (4, 9)) - # Check target values - self.assertAllClose(inputs[:, 0] * 2, targets) - for j in range(min(5, len(inputs))): - # Check each sample in the batch - start_index = i * 5 + j - end_index = start_index + 9 * 2 - self.assertAllClose( - inputs[j], np.arange(start_index, end_index, 2) - ) - - def test_sequence_stride(self): - data = np.arange(100) - targets = data * 2 - dataset = timeseries_dataset.timeseries_dataset_from_array( - data, targets, sequence_length=9, batch_size=5, sequence_stride=3 - ) - for i, batch in enumerate(dataset): - self.assertLen(batch, 2) - inputs, targets = batch - if i < 6: - self.assertEqual(inputs.shape, (5, 9)) - if i == 6: - # Last batch: size 1 - self.assertEqual(inputs.shape, (1, 9)) - # Check target values - self.assertAllClose(inputs[:, 0] * 2, targets) - for j in range(min(5, len(inputs))): - # Check each sample in the batch - start_index = i * 5 * 3 + j * 3 - end_index = start_index + 9 - self.assertAllClose( - inputs[j], np.arange(start_index, end_index) - ) - - def test_start_and_end_index(self): - data = np.arange(100) - dataset = timeseries_dataset.timeseries_dataset_from_array( - data, - None, - sequence_length=9, - batch_size=5, - sequence_stride=3, - sampling_rate=2, - start_index=10, - end_index=90, - ) - for batch in dataset: - self.assertAllLess(batch[0], 90) - self.assertAllGreater(batch[0], 9) - - def test_errors(self): - # bad start index - with self.assertRaisesRegex(ValueError, "`start_index` must be "): - _ = timeseries_dataset.timeseries_dataset_from_array( - np.arange(10), None, 3, start_index=-1 - ) - with self.assertRaisesRegex(ValueError, "`start_index` must be "): - _ = timeseries_dataset.timeseries_dataset_from_array( - np.arange(10), None, 3, start_index=11 - ) - # bad end index - with self.assertRaisesRegex(ValueError, "`end_index` must be "): - _ = timeseries_dataset.timeseries_dataset_from_array( - np.arange(10), None, 3, end_index=-1 - ) - with self.assertRaisesRegex(ValueError, "`end_index` must be "): - _ = timeseries_dataset.timeseries_dataset_from_array( - np.arange(10), None, 3, end_index=11 - ) - # bad sampling_rate - with self.assertRaisesRegex(ValueError, "`sampling_rate` must be "): - _ = timeseries_dataset.timeseries_dataset_from_array( - np.arange(10), None, 3, sampling_rate=0 - ) - # bad sequence stride - with self.assertRaisesRegex(ValueError, "`sequence_stride` must be "): - _ = timeseries_dataset.timeseries_dataset_from_array( - np.arange(10), None, 3, sequence_stride=0 - ) - - def test_not_batched(self): - data = np.arange(100) - - dataset = timeseries_dataset.timeseries_dataset_from_array( - data, None, sequence_length=9, batch_size=None, shuffle=True - ) - sample = next(iter(dataset)) - self.assertEqual(len(sample.shape), 1) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/traceback_utils.py b/keras/utils/traceback_utils.py deleted file mode 100644 index 6cbc804319e..00000000000 --- a/keras/utils/traceback_utils.py +++ /dev/null @@ -1,168 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utilities related to Keras exception stack trace prettifying.""" - -import inspect -import os -import sys -import traceback -import types - -import tensorflow.compat.v2 as tf - -_EXCLUDED_PATHS = ( - os.path.abspath(os.path.join(__file__, "..", "..")), - os.path.join("tensorflow", "python"), -) - - -def include_frame(fname): - for exclusion in _EXCLUDED_PATHS: - if exclusion in fname: - return False - return True - - -def _process_traceback_frames(tb): - """Iterate through traceback frames and return a new, filtered traceback.""" - last_tb = None - tb_list = list(traceback.walk_tb(tb)) - for f, line_no in reversed(tb_list): - if include_frame(f.f_code.co_filename): - last_tb = types.TracebackType(last_tb, f, f.f_lasti, line_no) - if last_tb is None and tb_list: - # If no frames were kept during filtering, create a new traceback - # from the outermost function. - f, line_no = tb_list[-1] - last_tb = types.TracebackType(last_tb, f, f.f_lasti, line_no) - return last_tb - - -def filter_traceback(fn): - """Filter out Keras-internal stack trace frames in exceptions raised by - fn.""" - if sys.version_info.major != 3 or sys.version_info.minor < 7: - return fn - - def error_handler(*args, **kwargs): - if not tf.debugging.is_traceback_filtering_enabled(): - return fn(*args, **kwargs) - - filtered_tb = None - try: - return fn(*args, **kwargs) - except Exception as e: - filtered_tb = _process_traceback_frames(e.__traceback__) - # To get the full stack trace, call: - # `tf.debugging.disable_traceback_filtering()` - raise e.with_traceback(filtered_tb) from None - finally: - del filtered_tb - - return tf.__internal__.decorator.make_decorator(fn, error_handler) - - -def inject_argument_info_in_traceback(fn, object_name=None): - """Add information about call argument values to an error message. - - Arguments: - fn: Function to wrap. Exceptions raised by the this function will be - re-raised with additional information added to the error message, - displaying the values of the different arguments that the function - was called with. - object_name: String, display name of the class/function being called, - e.g. `'layer "layer_name" (LayerClass)'`. - - Returns: - A wrapped version of `fn`. - """ - - def error_handler(*args, **kwargs): - signature = None - bound_signature = None - try: - return fn(*args, **kwargs) - except Exception as e: - if hasattr(e, "_keras_call_info_injected"): - # Only inject info for the innermost failing call - raise e - signature = inspect.signature(fn) - try: - # The first argument is `self`, so filter it out - bound_signature = signature.bind(*args, **kwargs) - except TypeError: - # Likely unbindable arguments - raise e - - # Add argument context - arguments_context = [] - for arg in list(signature.parameters.values()): - if arg.name in bound_signature.arguments: - value = tf.nest.map_structure( - format_argument_value, - bound_signature.arguments[arg.name], - ) - else: - value = arg.default - arguments_context.append(f" • {arg.name}={value}") - - if arguments_context: - arguments_context = "\n".join(arguments_context) - # Get original error message and append information to it. - if isinstance(e, tf.errors.OpError): - message = e.message - elif e.args: - # Canonically, the 1st argument in an exception is the error - # message. This works for all built-in Python exceptions. - message = e.args[0] - else: - message = "" - display_name = f"{object_name if object_name else fn.__name__}" - message = ( - f"Exception encountered when calling {display_name}.\n\n" - f"{message}\n\n" - f"Call arguments received by {display_name}:\n" - f"{arguments_context}" - ) - - # Reraise exception, with added context - if isinstance(e, tf.errors.OpError): - new_e = e.__class__(e.node_def, e.op, message, e.error_code) - else: - try: - # For standard exceptions such as ValueError, TypeError, - # etc. - new_e = e.__class__(message) - except TypeError: - # For any custom error that doesn't have a standard - # signature. - new_e = RuntimeError(message) - new_e._keras_call_info_injected = True - else: - new_e = e - raise new_e.with_traceback(e.__traceback__) from None - finally: - del signature - del bound_signature - - return tf.__internal__.decorator.make_decorator(fn, error_handler) - - -def format_argument_value(value): - if isinstance(value, tf.Tensor): - # Simplified representation for eager / graph tensors - # to keep messages readable - return f"tf.Tensor(shape={value.shape}, dtype={value.dtype.name})" - return repr(value) diff --git a/keras/utils/traceback_utils_test.py b/keras/utils/traceback_utils_test.py deleted file mode 100644 index cb223f38b31..00000000000 --- a/keras/utils/traceback_utils_test.py +++ /dev/null @@ -1,189 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for traceback_utils.""" - -import tensorflow.compat.v2 as tf - -from keras import layers -from keras.utils import traceback_utils - - -class TracebackUtilsTest(tf.test.TestCase): - def test_info_injection_basics(self): - def error_fn(arg_1, arg_2, keyword_arg_1=None, keyword_arg_2=None): - raise ValueError("Original message") - - with self.assertRaises(ValueError) as e: - traceback_utils.inject_argument_info_in_traceback( - error_fn, "ObjName" - )(1, 2, keyword_arg_1=3, keyword_arg_2=4) - self.assertIn("Original message", str(e.exception)) - self.assertIn( - "Exception encountered when calling ObjName", str(e.exception) - ) - self.assertIn("Call arguments received", str(e.exception)) - self.assertIn("arg_1=1", str(e.exception)) - self.assertIn("arg_2=2", str(e.exception)) - self.assertIn("keyword_arg_1=3", str(e.exception)) - self.assertIn("keyword_arg_2=4", str(e.exception)) - - with self.assertRaises(ValueError) as e: - traceback_utils.inject_argument_info_in_traceback(error_fn)( - 1, 2, keyword_arg_1=3, keyword_arg_2=4 - ) - self.assertIn( - "Exception encountered when calling error_fn", str(e.exception) - ) - - def test_info_injection_no_args(self): - def error_fn(): - raise ValueError("Original message") - - with self.assertRaises(ValueError) as e: - traceback_utils.inject_argument_info_in_traceback(error_fn)() - self.assertEqual(str(e.exception).count("Call arguments received"), 0) - - def test_info_injection_unbindable(self): - def error_fn(arg_1, keyword_arg_1=1): - return arg_1 + keyword_arg_1 - - with self.assertRaises(TypeError) as e: - traceback_utils.inject_argument_info_in_traceback(error_fn)() - self.assertIn( - "missing 1 required positional argument", str(e.exception) - ) - - def test_info_injection_nested(self): - def inner_fn(arg_1): - raise ValueError("Original message") - - def outer_fn(arg_1): - return inner_fn(arg_1) - - with self.assertRaises(ValueError) as e: - traceback_utils.inject_argument_info_in_traceback(outer_fn)(1) - self.assertEqual(str(e.exception).count("Call arguments received"), 1) - - def test_info_injection_tf_op_error(self): - def error_fn(arg_1, keyword_arg_1=1): - return arg_1 + keyword_arg_1 + tf.zeros((2, 3)) - - with self.assertRaises(tf.errors.InvalidArgumentError) as e: - traceback_utils.inject_argument_info_in_traceback(error_fn)( - tf.zeros((3, 3)) - ) - self.assertIn("Incompatible shapes", str(e.exception)) - self.assertIn("Call arguments received", str(e.exception)) - - -class LayerCallInfoInjectionTest(tf.test.TestCase): - def assert_info_injected(self, fn): - tf.debugging.enable_traceback_filtering() - try: - fn() - except Exception as e: - # Info should be injected exactly once. - self.assertEqual(str(e).count("Call arguments received"), 1) - - def test_custom_layer_call_nested(self): - class InnerLayer(layers.Layer): - def call(self, inputs, training=False, mask=None): - return inputs + tf.zeros((3, 4)) - - class OuterLayer(layers.Layer): - def __init__(self): - super().__init__() - self.inner = InnerLayer() - - def call(self, inputs, training=True): - return self.inner(inputs) - - def fn(): - layer = OuterLayer() - layer(tf.zeros((3, 5)), training=False) - - self.assert_info_injected(fn) - - def test_custom_layer_call_eager_dense_input(self): - class MyLayer(layers.Layer): - def call(self, inputs, training=False, mask=None): - return inputs + tf.zeros((3, 4)) - - def fn(): - layer = MyLayer() - layer(tf.zeros((3, 5)), training=False) - - self.assert_info_injected(fn) - - def test_custom_layer_call_eager_sparse_input(self): - class MyLayer(layers.Layer): - def call(self, inputs, training=False, mask=None): - return inputs + tf.zeros((3, 4)) - - def fn(): - layer = MyLayer() - layer( - tf.SparseTensor( - indices=[[0, 0]], values=[1], dense_shape=[3, 5] - ), - training=False, - ) - - self.assert_info_injected(fn) - - def test_custom_layer_call_eager_ragged_input(self): - class MyLayer(layers.Layer): - def call(self, inputs, training=False, mask=None): - return inputs + tf.zeros((3, 4)) - - def fn(): - layer = MyLayer() - layer(tf.ragged.constant([[0, 0, 0], [0, 0]]), training=False) - - self.assert_info_injected(fn) - - def test_custom_layer_call_symbolic(self): - class MyLayer(layers.Layer): - def call(self, inputs, training=False, mask=None): - return inputs + tf.zeros((3, 4)) - - def fn(): - layer = MyLayer() - layer(layers.Input((3, 5)), training=False) - - self.assert_info_injected(fn) - - def test_custom_layer_call_unbindable(self): - class MyLayer(layers.Layer): - def __init__(self): - super().__init__() - self.input_spec = layers.InputSpec(shape=(3, 4)) - - def call(self, inputs, training=False, mask=None): - return inputs + tf.zeros((3, 4)) - - def fn(): - layer = MyLayer() - layer(bad=True, arguments=True) - - with self.assertRaisesRegex( - ValueError, "The first argument to `Layer.call` must always" - ): - fn() - - -if __name__ == "__main__": - if tf.__internal__.tf2.enabled(): - tf.test.main() diff --git a/keras/utils/version_utils.py b/keras/utils/version_utils.py deleted file mode 100644 index ba73509210b..00000000000 --- a/keras/utils/version_utils.py +++ /dev/null @@ -1,130 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Utilities for Keras classes with v1 and v2 versions.""" - -import tensorflow.compat.v2 as tf - -from keras.utils.generic_utils import LazyLoader - -# TODO(b/134426265): Switch back to single-quotes once the issue -# with copybara is fixed. - -training = LazyLoader("training", globals(), "keras.engine.training") -training_v1 = LazyLoader("training_v1", globals(), "keras.engine.training_v1") -base_layer = LazyLoader("base_layer", globals(), "keras.engine.base_layer") -base_layer_v1 = LazyLoader( - "base_layer_v1", globals(), "keras.engine.base_layer_v1" -) -callbacks = LazyLoader("callbacks", globals(), "keras.callbacks") -callbacks_v1 = LazyLoader("callbacks_v1", globals(), "keras.callbacks_v1") - - -class ModelVersionSelector: - """Chooses between Keras v1 and v2 Model class.""" - - def __new__(cls, *args, **kwargs): - use_v2 = should_use_v2() - cls = swap_class(cls, training.Model, training_v1.Model, use_v2) - return super(ModelVersionSelector, cls).__new__(cls) - - -class LayerVersionSelector: - """Chooses between Keras v1 and v2 Layer class.""" - - def __new__(cls, *args, **kwargs): - use_v2 = should_use_v2() - cls = swap_class(cls, base_layer.Layer, base_layer_v1.Layer, use_v2) - return super(LayerVersionSelector, cls).__new__(cls) - - -class TensorBoardVersionSelector: - """Chooses between Keras v1 and v2 TensorBoard callback class.""" - - def __new__(cls, *args, **kwargs): - use_v2 = should_use_v2() - start_cls = cls - cls = swap_class( - start_cls, callbacks.TensorBoard, callbacks_v1.TensorBoard, use_v2 - ) - if ( - start_cls == callbacks_v1.TensorBoard - and cls == callbacks.TensorBoard - ): - # Since the v2 class is not a subclass of the v1 class, __init__ has - # to be called manually. - return cls(*args, **kwargs) - return super(TensorBoardVersionSelector, cls).__new__(cls) - - -def should_use_v2(): - """Determine if v1 or v2 version should be used.""" - if tf.executing_eagerly(): - return True - elif tf.compat.v1.executing_eagerly_outside_functions(): - # Check for a v1 `wrap_function` FuncGraph. - # Code inside a `wrap_function` is treated like v1 code. - graph = tf.compat.v1.get_default_graph() - if getattr(graph, "name", False) and graph.name.startswith( - "wrapped_function" - ): - return False - return True - else: - return False - - -def swap_class(cls, v2_cls, v1_cls, use_v2): - """Swaps in v2_cls or v1_cls depending on graph mode.""" - if cls == object: - return cls - if cls in (v2_cls, v1_cls): - return v2_cls if use_v2 else v1_cls - - # Recursively search superclasses to swap in the right Keras class. - new_bases = [] - for base in cls.__bases__: - if ( - use_v2 - and issubclass(base, v1_cls) - # `v1_cls` often extends `v2_cls`, so it may still call `swap_class` - # even if it doesn't need to. That being said, it may be the safest - # not to over optimize this logic for the sake of correctness, - # especially if we swap v1 & v2 classes that don't extend each - # other, or when the inheritance order is different. - or (not use_v2 and issubclass(base, v2_cls)) - ): - new_base = swap_class(base, v2_cls, v1_cls, use_v2) - else: - new_base = base - new_bases.append(new_base) - cls.__bases__ = tuple(new_bases) - return cls - - -def disallow_legacy_graph(cls_name, method_name): - if not tf.compat.v1.executing_eagerly_outside_functions(): - error_msg = ( - f"Calling `{cls_name}.{method_name}` in graph mode is not " - f"supported when the `{cls_name}` instance was constructed with " - f"eager mode enabled. Please construct your `{cls_name}` instance " - f"in graph mode or call `{cls_name}.{method_name}` with " - "eager mode enabled." - ) - raise ValueError(error_msg) - - -def is_v1_layer_or_model(obj): - return isinstance(obj, (base_layer_v1.Layer, training_v1.Model)) diff --git a/keras/utils/version_utils_test.py b/keras/utils/version_utils_test.py deleted file mode 100644 index 6c73cda93a2..00000000000 --- a/keras/utils/version_utils_test.py +++ /dev/null @@ -1,175 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras utilities to split v1 and v2 classes.""" - -import abc - -import numpy as np -import tensorflow.compat.v2 as tf - -import keras -from keras.engine import base_layer -from keras.engine import base_layer_v1 -from keras.engine import training -from keras.engine import training_v1 -from keras.testing_infra import test_combinations - - -@test_combinations.run_all_keras_modes -class SplitUtilsTest(test_combinations.TestCase): - def _check_model_class(self, model_class): - if tf.compat.v1.executing_eagerly_outside_functions(): - self.assertEqual(model_class, training.Model) - else: - self.assertEqual(model_class, training_v1.Model) - - def _check_layer_class(self, layer): - if tf.compat.v1.executing_eagerly_outside_functions(): - self.assertIsInstance(layer, base_layer.Layer) - self.assertNotIsInstance(layer, base_layer_v1.Layer) - else: - self.assertIsInstance(layer, base_layer_v1.Layer) - - def test_functional_model(self): - inputs = keras.Input(10) - outputs = keras.layers.Dense(1)(inputs) - model = keras.Model(inputs, outputs) - self._check_model_class(model.__class__.__bases__[0]) - self._check_layer_class(model) - - def test_subclass_model_with_functional_init(self): - inputs = keras.Input(10) - outputs = keras.layers.Dense(1)(inputs) - - class MyModel(keras.Model): - pass - - model = MyModel(inputs, outputs) - model_class = model.__class__.__bases__[0].__bases__[0] - self._check_model_class(model_class) - self._check_layer_class(model) - - def test_subclass_model_with_functional_init_interleaved_v1_functional( - self, - ): - with tf.Graph().as_default(): - inputs = keras.Input(10) - outputs = keras.layers.Dense(1)(inputs) - _ = keras.Model(inputs, outputs) - - inputs = keras.Input(10) - outputs = keras.layers.Dense(1)(inputs) - - class MyModel(keras.Model): - pass - - model = MyModel(inputs, outputs) - model_class = model.__class__.__bases__[0].__bases__[0] - self._check_model_class(model_class) - self._check_layer_class(model) - - def test_sequential_model(self): - model = keras.Sequential([keras.layers.Dense(1)]) - model_class = model.__class__.__bases__[0].__bases__[0] - self._check_model_class(model_class) - self._check_layer_class(model) - - def test_subclass_model(self): - class MyModel(keras.Model): - def call(self, x): - return 2 * x - - model = MyModel() - model_class = model.__class__.__bases__[0] - self._check_model_class(model_class) - self._check_layer_class(model) - - def test_layer(self): - class IdentityLayer(base_layer.Layer): - """A layer that returns it's input. - - Useful for testing a layer without a variable. - """ - - def call(self, inputs): - return inputs - - layer = IdentityLayer() - self._check_layer_class(layer) - - def test_multiple_subclass_model(self): - class Model1(keras.Model): - pass - - class Model2(Model1): - def call(self, x): - return 2 * x - - model = Model2() - model_class = model.__class__.__bases__[0].__bases__[0] - self._check_model_class(model_class) - self._check_layer_class(model) - - def test_user_provided_metaclass(self): - class AbstractModel(keras.Model, metaclass=abc.ABCMeta): - @abc.abstractmethod - def call(self, inputs): - """Calls the model.""" - - class MyModel(AbstractModel): - def call(self, inputs): - return 2 * inputs - - with self.assertRaisesRegex(TypeError, "instantiate abstract class"): - AbstractModel() - - model = MyModel() - model_class = model.__class__.__bases__[0].__bases__[0] - self._check_model_class(model_class) - self._check_layer_class(model) - - def test_multiple_inheritance(self): - class Return2: - def return_2(self): - return 2 - - class MyModel(keras.Model, Return2): - def call(self, x): - return self.return_2() * x - - model = MyModel() - bases = model.__class__.__bases__ - self._check_model_class(bases[0]) - self.assertEqual(bases[1], Return2) - self.assertEqual(model.return_2(), 2) - self._check_layer_class(model) - - def test_fit_error(self): - if not tf.compat.v1.executing_eagerly_outside_functions(): - # Error only appears on the v2 class. - return - - model = keras.Sequential([keras.layers.Dense(1)]) - model.compile("sgd", "mse") - x, y = np.ones((10, 10)), np.ones((10, 1)) - with tf.compat.v1.get_default_graph().as_default(): - with self.assertRaisesRegex( - ValueError, "instance was constructed with eager mode enabled" - ): - model.fit(x, y, batch_size=2) - - -if __name__ == "__main__": - tf.test.main() diff --git a/keras/utils/vis_utils.py b/keras/utils/vis_utils.py deleted file mode 100644 index 7cb0115992b..00000000000 --- a/keras/utils/vis_utils.py +++ /dev/null @@ -1,497 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - - -"""Utilities related to model visualization.""" - -import os -import sys - -import tensorflow.compat.v2 as tf - -from keras.utils import io_utils -from keras.utils import layer_utils - -# isort: off -from tensorflow.python.util.tf_export import keras_export - -try: - # pydot-ng is a fork of pydot that is better maintained. - import pydot_ng as pydot -except ImportError: - # pydotplus is an improved version of pydot - try: - import pydotplus as pydot - except ImportError: - # Fall back on pydot if necessary. - try: - import pydot - except ImportError: - pydot = None - - -def check_pydot(): - """Returns True if PyDot is available.""" - return pydot is not None - - -def check_graphviz(): - """Returns True if both PyDot and Graphviz are available.""" - if not check_pydot(): - return False - try: - # Attempt to create an image of a blank graph - # to check the pydot/graphviz installation. - pydot.Dot.create(pydot.Dot()) - return True - except (OSError, pydot.InvocationException): - return False - - -def is_wrapped_model(layer): - from keras.engine import functional - from keras.layers import Wrapper - - return isinstance(layer, Wrapper) and isinstance( - layer.layer, functional.Functional - ) - - -def add_edge(dot, src, dst): - if not dot.get_edge(src, dst): - dot.add_edge(pydot.Edge(src, dst)) - - -@keras_export("keras.utils.model_to_dot") -def model_to_dot( - model, - show_shapes=False, - show_dtype=False, - show_layer_names=True, - rankdir="TB", - expand_nested=False, - dpi=96, - subgraph=False, - layer_range=None, - show_layer_activations=False, - show_trainable=False, -): - """Convert a Keras model to dot format. - - Args: - model: A Keras model instance. - show_shapes: whether to display shape information. - show_dtype: whether to display layer dtypes. - show_layer_names: whether to display layer names. - rankdir: `rankdir` argument passed to PyDot, - a string specifying the format of the plot: - 'TB' creates a vertical plot; - 'LR' creates a horizontal plot. - expand_nested: whether to expand nested models into clusters. - dpi: Dots per inch. - subgraph: whether to return a `pydot.Cluster` instance. - layer_range: input of `list` containing two `str` items, which is the - starting layer name and ending layer name (both inclusive) indicating - the range of layers for which the `pydot.Dot` will be generated. It - also accepts regex patterns instead of exact name. In such case, start - predicate will be the first element it matches to `layer_range[0]` - and the end predicate will be the last element it matches to - `layer_range[1]`. By default `None` which considers all layers of - model. Note that you must pass range such that the resultant subgraph - must be complete. - show_layer_activations: Display layer activations (only for layers that - have an `activation` property). - show_trainable: whether to display if a layer is trainable. Displays 'T' - when the layer is trainable and 'NT' when it is not trainable. - - Returns: - A `pydot.Dot` instance representing the Keras model or - a `pydot.Cluster` instance representing nested model if - `subgraph=True`. - - Raises: - ValueError: if `model_to_dot` is called before the model is built. - ImportError: if pydot is not available. - """ - - if not model.built: - raise ValueError( - "This model has not yet been built. " - "Build the model first by calling `build()` or by calling " - "the model on a batch of data." - ) - - from keras.engine import functional - from keras.engine import sequential - from keras.layers import Wrapper - - if not check_pydot(): - raise ImportError( - "You must install pydot (`pip install pydot`) for " - "model_to_dot to work." - ) - - if subgraph: - dot = pydot.Cluster(style="dashed", graph_name=model.name) - dot.set("label", model.name) - dot.set("labeljust", "l") - else: - dot = pydot.Dot() - dot.set("rankdir", rankdir) - dot.set("concentrate", True) - dot.set("dpi", dpi) - dot.set_node_defaults(shape="record") - - if layer_range is not None: - if len(layer_range) != 2: - raise ValueError( - "layer_range must be of shape (2,). Received: " - f"layer_range = {layer_range} of length {len(layer_range)}" - ) - if not isinstance(layer_range[0], str) or not isinstance( - layer_range[1], str - ): - raise ValueError( - "layer_range should contain string type only. " - f"Received: {layer_range}" - ) - layer_range = layer_utils.get_layer_index_bound_by_layer_name( - model, layer_range - ) - if layer_range[0] < 0 or layer_range[1] > len(model.layers): - raise ValueError( - "Both values in layer_range should be in range (0, " - f"{len(model.layers)}. Received: {layer_range}" - ) - - sub_n_first_node = {} - sub_n_last_node = {} - sub_w_first_node = {} - sub_w_last_node = {} - - layers = model.layers - if not model._is_graph_network: - node = pydot.Node(str(id(model)), label=model.name) - dot.add_node(node) - return dot - elif isinstance(model, sequential.Sequential): - if not model.built: - model.build() - layers = super(sequential.Sequential, model).layers - - # Create graph nodes. - for i, layer in enumerate(layers): - if (layer_range) and (i < layer_range[0] or i >= layer_range[1]): - continue - - layer_id = str(id(layer)) - - # Append a wrapped layer's label to node's label, if it exists. - layer_name = layer.name - class_name = layer.__class__.__name__ - - if isinstance(layer, Wrapper): - if expand_nested and isinstance(layer.layer, functional.Functional): - submodel_wrapper = model_to_dot( - layer.layer, - show_shapes, - show_dtype, - show_layer_names, - rankdir, - expand_nested, - subgraph=True, - show_layer_activations=show_layer_activations, - show_trainable=show_trainable, - ) - # sub_w : submodel_wrapper - sub_w_nodes = submodel_wrapper.get_nodes() - sub_w_first_node[layer.layer.name] = sub_w_nodes[0] - sub_w_last_node[layer.layer.name] = sub_w_nodes[-1] - dot.add_subgraph(submodel_wrapper) - else: - layer_name = f"{layer_name}({layer.layer.name})" - child_class_name = layer.layer.__class__.__name__ - class_name = f"{class_name}({child_class_name})" - - if expand_nested and isinstance(layer, functional.Functional): - submodel_not_wrapper = model_to_dot( - layer, - show_shapes, - show_dtype, - show_layer_names, - rankdir, - expand_nested, - subgraph=True, - show_layer_activations=show_layer_activations, - show_trainable=show_trainable, - ) - # sub_n : submodel_not_wrapper - sub_n_nodes = submodel_not_wrapper.get_nodes() - sub_n_first_node[layer.name] = sub_n_nodes[0] - sub_n_last_node[layer.name] = sub_n_nodes[-1] - dot.add_subgraph(submodel_not_wrapper) - - # Create node's label. - label = class_name - - # Rebuild the label as a table including the layer's activation. - if ( - show_layer_activations - and hasattr(layer, "activation") - and layer.activation is not None - ): - if hasattr(layer.activation, "name"): - activation_name = layer.activation.name - elif hasattr(layer.activation, "__name__"): - activation_name = layer.activation.__name__ - else: - activation_name = str(layer.activation) - label = "{%s|%s}" % (label, activation_name) - - # Rebuild the label as a table including the layer's name. - if show_layer_names: - label = f"{layer_name}|{label}" - - # Rebuild the label as a table including the layer's dtype. - if show_dtype: - - def format_dtype(dtype): - if dtype is None: - return "?" - else: - return str(dtype) - - label = f"{label}|{format_dtype(layer.dtype)}" - - # Rebuild the label as a table including input/output shapes. - if show_shapes: - - def format_shape(shape): - return ( - str(shape) - .replace(str(None), "None") - .replace("{", r"\{") - .replace("}", r"\}") - ) - - try: - outputlabels = format_shape(layer.output_shape) - except AttributeError: - outputlabels = "?" - if hasattr(layer, "input_shape"): - inputlabels = format_shape(layer.input_shape) - elif hasattr(layer, "input_shapes"): - inputlabels = ", ".join( - [format_shape(ishape) for ishape in layer.input_shapes] - ) - else: - inputlabels = "?" - label = "{%s}|{input:|output:}|{{%s}|{%s}}" % ( - label, - inputlabels, - outputlabels, - ) - - # Rebuild the label as a table including trainable status - if show_trainable: - label = f"{'T' if layer.trainable else 'NT'}|{label}" - - if not expand_nested or not isinstance(layer, functional.Functional): - node = pydot.Node(layer_id, label=label) - dot.add_node(node) - - # Connect nodes with edges. - for i, layer in enumerate(layers): - if (layer_range) and (i <= layer_range[0] or i >= layer_range[1]): - continue - layer_id = str(id(layer)) - for i, node in enumerate(layer._inbound_nodes): - node_key = layer.name + "_ib-" + str(i) - if node_key in model._network_nodes: - for inbound_layer in tf.nest.flatten(node.inbound_layers): - inbound_layer_id = str(id(inbound_layer)) - if not expand_nested: - assert dot.get_node(inbound_layer_id) - assert dot.get_node(layer_id) - add_edge(dot, inbound_layer_id, layer_id) - else: - # if inbound_layer is not Model or wrapped Model - if not isinstance( - inbound_layer, functional.Functional - ) and not is_wrapped_model(inbound_layer): - # if current layer is not Model or wrapped Model - if not isinstance( - layer, functional.Functional - ) and not is_wrapped_model(layer): - assert dot.get_node(inbound_layer_id) - assert dot.get_node(layer_id) - add_edge(dot, inbound_layer_id, layer_id) - # if current layer is Model - elif isinstance(layer, functional.Functional): - add_edge( - dot, - inbound_layer_id, - sub_n_first_node[layer.name].get_name(), - ) - # if current layer is wrapped Model - elif is_wrapped_model(layer): - add_edge(dot, inbound_layer_id, layer_id) - name = sub_w_first_node[ - layer.layer.name - ].get_name() - add_edge(dot, layer_id, name) - # if inbound_layer is Model - elif isinstance(inbound_layer, functional.Functional): - name = sub_n_last_node[ - inbound_layer.name - ].get_name() - if isinstance(layer, functional.Functional): - output_name = sub_n_first_node[ - layer.name - ].get_name() - add_edge(dot, name, output_name) - else: - add_edge(dot, name, layer_id) - # if inbound_layer is wrapped Model - elif is_wrapped_model(inbound_layer): - inbound_layer_name = inbound_layer.layer.name - add_edge( - dot, - sub_w_last_node[inbound_layer_name].get_name(), - layer_id, - ) - return dot - - -@keras_export("keras.utils.plot_model") -def plot_model( - model, - to_file="model.png", - show_shapes=False, - show_dtype=False, - show_layer_names=True, - rankdir="TB", - expand_nested=False, - dpi=96, - layer_range=None, - show_layer_activations=False, - show_trainable=False, -): - """Converts a Keras model to dot format and save to a file. - - Example: - - ```python - input = tf.keras.Input(shape=(100,), dtype='int32', name='input') - x = tf.keras.layers.Embedding( - output_dim=512, input_dim=10000, input_length=100)(input) - x = tf.keras.layers.LSTM(32)(x) - x = tf.keras.layers.Dense(64, activation='relu')(x) - x = tf.keras.layers.Dense(64, activation='relu')(x) - x = tf.keras.layers.Dense(64, activation='relu')(x) - output = tf.keras.layers.Dense(1, activation='sigmoid', name='output')(x) - model = tf.keras.Model(inputs=[input], outputs=[output]) - dot_img_file = '/tmp/model_1.png' - tf.keras.utils.plot_model(model, to_file=dot_img_file, show_shapes=True) - ``` - - Args: - model: A Keras model instance - to_file: File name of the plot image. - show_shapes: whether to display shape information. - show_dtype: whether to display layer dtypes. - show_layer_names: whether to display layer names. - rankdir: `rankdir` argument passed to PyDot, - a string specifying the format of the plot: 'TB' creates a vertical - plot; 'LR' creates a horizontal plot. - expand_nested: Whether to expand nested models into clusters. - dpi: Dots per inch. - layer_range: input of `list` containing two `str` items, which is the - starting layer name and ending layer name (both inclusive) indicating - the range of layers for which the plot will be generated. It also - accepts regex patterns instead of exact name. In such case, start - predicate will be the first element it matches to `layer_range[0]` and - the end predicate will be the last element it matches to - `layer_range[1]`. By default `None` which considers all layers of model. - Note that you must pass range such that the resultant subgraph must be - complete. - show_layer_activations: Display layer activations (only for layers that - have an `activation` property). - show_trainable: whether to display if a layer is trainable. Displays 'T' - when the layer is trainable and 'NT' when it is not trainable. - - Raises: - ImportError: if graphviz or pydot are not available. - ValueError: if `plot_model` is called before the model is built. - - Returns: - A Jupyter notebook Image object if Jupyter is installed. - This enables in-line display of the model plots in notebooks. - """ - - if not model.built: - raise ValueError( - "This model has not yet been built. " - "Build the model first by calling `build()` or by calling " - "the model on a batch of data." - ) - - if not check_graphviz(): - message = ( - "You must install pydot (`pip install pydot`) " - "and install graphviz " - "(see instructions at https://graphviz.gitlab.io/download/) " - "for plot_model to work." - ) - if "IPython.core.magics.namespace" in sys.modules: - # We don't raise an exception here in order to avoid crashing - # notebook tests where graphviz is not available. - io_utils.print_msg(message) - return - else: - raise ImportError(message) - - dot = model_to_dot( - model, - show_shapes=show_shapes, - show_dtype=show_dtype, - show_layer_names=show_layer_names, - rankdir=rankdir, - expand_nested=expand_nested, - dpi=dpi, - layer_range=layer_range, - show_layer_activations=show_layer_activations, - show_trainable=show_trainable, - ) - to_file = io_utils.path_to_string(to_file) - if dot is None: - return - _, extension = os.path.splitext(to_file) - if not extension: - extension = "png" - else: - extension = extension[1:] - # Save image to disk. - dot.write(to_file, format=extension) - # Return the image as a Jupyter Image object, to be displayed in-line. - # Note that we cannot easily detect whether the code is running in a - # notebook, and thus we always return the Image if Jupyter is available. - if extension != "pdf": - try: - from IPython import display - - return display.Image(filename=to_file) - except ImportError: - pass diff --git a/keras/utils/vis_utils_test.py b/keras/utils/vis_utils_test.py deleted file mode 100644 index 1665c8b0268..00000000000 --- a/keras/utils/vis_utils_test.py +++ /dev/null @@ -1,317 +0,0 @@ -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Keras Vis utils.""" - -import tensorflow.compat.v2 as tf -from absl.testing import parameterized - -import keras -from keras.applications import efficientnet -from keras.utils import layer_utils -from keras.utils import vis_utils - - -class ModelToDotFormatTest(tf.test.TestCase, parameterized.TestCase): - def test_plot_model_cnn(self): - model = keras.Sequential() - model.add( - keras.layers.Conv2D( - filters=2, - kernel_size=(2, 3), - input_shape=(3, 5, 5), - name="conv", - ) - ) - model.add(keras.layers.Flatten(name="flat")) - model.add(keras.layers.Dense(5, name="dense")) - dot_img_file = "model_1.png" - try: - vis_utils.plot_model( - model, to_file=dot_img_file, show_shapes=True, show_dtype=True - ) - self.assertTrue(tf.io.gfile.exists(dot_img_file)) - tf.io.gfile.remove(dot_img_file) - except ImportError: - pass - - def test_plot_model_with_wrapped_layers_and_models(self): - inputs = keras.Input(shape=(None, 3)) - lstm = keras.layers.LSTM(6, return_sequences=True, name="lstm") - x = lstm(inputs) - # Add layer inside a Wrapper - bilstm = keras.layers.Bidirectional( - keras.layers.LSTM(16, return_sequences=True, name="bilstm") - ) - x = bilstm(x) - # Add model inside a Wrapper - submodel = keras.Sequential( - [keras.layers.Dense(32, name="dense", input_shape=(None, 32))] - ) - wrapped_dense = keras.layers.TimeDistributed(submodel) - x = wrapped_dense(x) - # Add shared submodel - outputs = submodel(x) - model = keras.Model(inputs, outputs) - dot_img_file = "model_2.png" - try: - vis_utils.plot_model( - model, - to_file=dot_img_file, - show_shapes=True, - show_dtype=True, - expand_nested=True, - ) - self.assertTrue(tf.io.gfile.exists(dot_img_file)) - tf.io.gfile.remove(dot_img_file) - except ImportError: - pass - - def test_plot_model_with_add_loss(self): - inputs = keras.Input(shape=(None, 3)) - outputs = keras.layers.Dense(1)(inputs) - model = keras.Model(inputs, outputs) - model.add_loss(tf.reduce_mean(outputs)) - dot_img_file = "model_3.png" - try: - vis_utils.plot_model( - model, - to_file=dot_img_file, - show_shapes=True, - show_dtype=True, - expand_nested=True, - ) - self.assertTrue(tf.io.gfile.exists(dot_img_file)) - tf.io.gfile.remove(dot_img_file) - except ImportError: - pass - - model = keras.Sequential( - [keras.Input(shape=(None, 3)), keras.layers.Dense(1)] - ) - model.add_loss(tf.reduce_mean(model.output)) - dot_img_file = "model_4.png" - try: - vis_utils.plot_model( - model, - to_file=dot_img_file, - show_shapes=True, - show_dtype=True, - expand_nested=True, - ) - self.assertTrue(tf.io.gfile.exists(dot_img_file)) - tf.io.gfile.remove(dot_img_file) - except ImportError: - pass - - @parameterized.parameters( - {"show_shapes": False, "show_dtype": False}, - {"show_shapes": False, "show_dtype": True}, - {"show_shapes": True, "show_dtype": False}, - {"show_shapes": True, "show_dtype": True}, - ) - def test_plot_model_cnn_with_activations(self, show_shapes, show_dtype): - model = keras.Sequential() - model.add( - keras.layers.Conv2D( - filters=2, - kernel_size=2, - input_shape=(9, 9, 3), - activation="relu", - ) - ) - model.add( - keras.layers.Conv2D( - filters=4, kernel_size=2, strides=(2, 2), activation="relu" - ) - ) - model.add(keras.layers.Flatten(name="flat")) - model.add(keras.layers.Dense(5, name="head", activation="softmax")) - dot_img_file = "model_5.png" - try: - vis_utils.plot_model( - model, - to_file=dot_img_file, - show_shapes=show_shapes, - show_dtype=show_dtype, - show_layer_activations=True, - ) - self.assertTrue(tf.io.gfile.exists(dot_img_file)) - tf.io.gfile.remove(dot_img_file) - except ImportError: - pass - - @parameterized.parameters( - {"layer_range": ["block1a_project_conv", "block1a_activation"]}, - {"layer_range": ["block1a_activation", "block1a_project_conv"]}, - {"layer_range": [r"block*", "block2a_se_excite"]}, - {"layer_range": [r"block\da_activation", r"block\da_project_bn"]}, - ) - def test_dot_layer_range(self, layer_range): - model = efficientnet.EfficientNetB0(weights=None) - layer_ids_from_model = get_layer_ids_from_model(model, layer_range) - try: - dot = vis_utils.model_to_dot(model, layer_range=layer_range) - dot_edges = dot.get_edges() - layer_ids_from_dot = get_layer_ids_from_dot(dot_edges) - self.assertAllEqual( - sorted(layer_ids_from_model), sorted(layer_ids_from_dot) - ) - except ImportError: - pass - - @parameterized.parameters( - {"layer_range": ["block1a_project_conv", "block1a_activation"]}, - {"layer_range": ["block1a_activation", "block1a_project_conv"]}, - {"layer_range": [r"block*", "block2a_se_excite"]}, - {"layer_range": [r"block\da_activation", r"block\da_project_bn"]}, - ) - def test_plot_layer_range(self, layer_range): - model = efficientnet.EfficientNetB0(weights=None) - effnet_subplot = "model_effnet.png" - try: - vis_utils.plot_model( - model, to_file=effnet_subplot, layer_range=layer_range - ) - self.assertTrue(tf.io.gfile.exists(effnet_subplot)) - except ImportError: - pass - finally: - if tf.io.gfile.exists(effnet_subplot): - tf.io.gfile.remove(effnet_subplot) - - @parameterized.parameters( - {"layer_range": ["block1a_se_squeeze", "block2a_project_conv"]}, - {"layer_range": [r"block\da_se_reshape", r"block*"]}, - ) - def test_layer_range_assertion_fail(self, layer_range): - model = efficientnet.EfficientNetB0(weights=None) - try: - with self.assertRaises(AssertionError): - vis_utils.model_to_dot(model, layer_range=layer_range) - with self.assertRaises(AssertionError): - vis_utils.plot_model(model, layer_range=layer_range) - except ImportError: - pass - - @parameterized.parameters( - {"layer_range": ["block1a_activation"]}, - {"layer_range": []}, - { - "layer_range": [ - "input", - "block1a_activation", - "block1a_project_conv", - ] - }, - {"layer_range": [9, "block1a_activation"]}, - {"layer_range": [29, 9]}, - {"layer_range": ["block8a_se_reshape", "block*"]}, - ) - def test_layer_range_value_fail(self, layer_range): - model = efficientnet.EfficientNetB0(weights=None) - try: - with self.assertRaises(ValueError): - vis_utils.model_to_dot(model, layer_range=layer_range) - with self.assertRaises(ValueError): - vis_utils.plot_model(model, layer_range=layer_range) - except ImportError: - pass - - def test_model_with_tf_op(self): - # Test fix for a bug in which inputs to a TFOp layer past the 1st one - # were not connected in the Keras model plot. - a = keras.Input((2,)) - b = keras.Input((2,)) - model = keras.Model(inputs=[a, b], outputs=a + b) - try: - dot = vis_utils.model_to_dot(model) - self.assertLen(dot.get_edges(), 2) # This model has 2 edges. - except ImportError: - pass - - def test_model_with_brackets_in_shape(self): - # Test fix for a bug in which plotting the model shapes fails if - # any labels contain brackets - class DictLayer(keras.layers.Layer): - def call(self, inputs) -> tf.Tensor: - tensor_input, dict_input = inputs - return tf.concat(list(dict_input.values()), axis=1) - - inputs = { - "a": keras.Input(name="a", shape=(1), dtype=tf.float32), - "b": keras.Input(name="b", shape=(1), dtype=tf.float32), - } - outputs = DictLayer()((inputs["a"], inputs)) - model = keras.Model( - inputs=inputs, - outputs=outputs, - ) - try: - vis_utils.model_to_dot( - model, show_shapes=True, show_dtype=True, show_layer_names=True - ) - except ImportError: - pass - - def test_plot_model_with_show_trainable(self): - model = keras.Sequential(name="trainable") - - untrained = keras.layers.Conv2D( - filters=2, kernel_size=(2, 3), input_shape=(3, 5, 5), name="conv" - ) - model.add(untrained) - model.add(keras.layers.Flatten(name="flat")) - model.add(keras.layers.Dense(5, name="dense")) - - # Should display as Non Trainable - untrained.trainable = False - - dot_img_file = "model_trainable.png" - try: - vis_utils.plot_model( - model, - to_file=dot_img_file, - show_shapes=True, - show_dtype=True, - show_trainable=True, - ) - self.assertTrue(tf.io.gfile.exists(dot_img_file)) - tf.io.gfile.remove(dot_img_file) - except ImportError: - pass - - -def get_layer_ids_from_model(model, layer_range): - layer_range = layer_utils.get_layer_index_bound_by_layer_name( - model, layer_range - ) - layer_ids_from_model = [ - str(id(layer)) - for layer in model.layers[layer_range[0] : layer_range[1]] - ] - return layer_ids_from_model - - -def get_layer_ids_from_dot(dot_edges): - layer_ids_from_dot = [] - for edge in dot_edges: - for pt in edge.obj_dict["points"]: - if pt not in layer_ids_from_dot: - layer_ids_from_dot.append(pt) - return layer_ids_from_dot - - -if __name__ == "__main__": - tf.test.main() diff --git a/oss_setup.py b/oss_setup.py deleted file mode 100644 index 07db3105ccb..00000000000 --- a/oss_setup.py +++ /dev/null @@ -1,92 +0,0 @@ -# Copyright 2023 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Setup script for the Keras pip package.""" - -import os - -import setuptools - -DESCRIPTION = """Keras is a deep learning API written in Python, -running on top of the machine learning platform TensorFlow. - -It was developed with a focus on enabling fast experimentation and -providing a delightful developer experience. -The purpose of Keras is to give an *unfair advantage* to any developer -looking to ship ML-powered apps. - -Keras is: - -- **Simple** -- but not simplistic. Keras reduces developer *cognitive load* - to free you to focus on the parts of the problem that really matter. - Keras focuses on ease of use, debugging speed, code elegance & conciseness, - maintainability, and deployability (via TFServing, TFLite, TF.js). -- **Flexible** -- Keras adopts the principle of *progressive disclosure of - complexity*: simple workflows should be quick and easy, while arbitrarily - advanced workflows should be *possible* via a clear path that builds upon - what you've already learned. -- **Powerful** -- Keras provides industry-strength performance and - scalability: it is used by organizations and companies including NASA, - YouTube, and Waymo. That's right -- your YouTube recommendations are - powered by Keras, and so is the world's most advanced driverless vehicle. -""" - -with open(os.path.abspath(__file__)) as f: - contents = f.read() - if contents.count("{PACKAGE}") > 1 or contents.count("{VERSION}") > 1: - raise ValueError( - "You must fill the 'PACKAGE' and 'VERSION' " - "tags before running setup.py. If you are trying to " - "build a fresh package, you should be using " - "`pip_build.py` instead of `setup.py`." - ) - -setuptools.setup( - name="{{PACKAGE}}", - # Version strings with `-` characters are semver compatible, - # but incompatible with pip. For pip, we will remove all `-`` characters. - version="{{VERSION}}", - description="Deep learning for humans.", - long_description=DESCRIPTION, - url="https://keras.io/", - download_url="https://github.com/keras-team/keras/tags", - author="Keras team", - author_email="keras-users@googlegroups.com", - packages=setuptools.find_packages(), - install_requires=[], - # Supported Python versions - python_requires=">=3.8", - # PyPI package information. - classifiers=[ - "Development Status :: 5 - Production/Stable", - "Intended Audience :: Developers", - "Intended Audience :: Education", - "Intended Audience :: Science/Research", - "License :: OSI Approved :: Apache Software License", - "Programming Language :: Python :: 3", - "Programming Language :: Python :: 3.8", - "Programming Language :: Python :: 3.9", - "Programming Language :: Python :: 3.10", - "Programming Language :: Python :: 3.11", - "Programming Language :: Python :: 3 :: Only", - "Topic :: Scientific/Engineering", - "Topic :: Scientific/Engineering :: Mathematics", - "Topic :: Scientific/Engineering :: Artificial Intelligence", - "Topic :: Software Development", - "Topic :: Software Development :: Libraries", - "Topic :: Software Development :: Libraries :: Python Modules", - ], - license="Apache 2.0", - keywords=["keras", "tensorflow", "machine learning", "deep learning"], -) diff --git a/pip_build.py b/pip_build.py deleted file mode 100644 index 708f1dc75d5..00000000000 --- a/pip_build.py +++ /dev/null @@ -1,507 +0,0 @@ -"""Build the Keras pip package. - -The steps are as follows: - -0. Run bazel build in the Keras root directory to obtain protobuf Python files. -1. Create a temporary build directory (e.g. `/tmp/keras_build`) -2. Copy the Keras codebase to it (to `/tmp/keras_build/keras/src`) - and rewrite internal imports so that they refer to `keras.src` rather than - just `keras`. -3. Also copy `setup.py` to the build directory. -4. List and import every file in the codebase (in `/tmp/keras_build/keras/src`), - so we can inspect the symbols the codebase contains. -5. Use the annotations left by the `keras_export` decorator to filter the - symbols that should be exported, as well as their export path (default one - and v1 one). -6. Use this information to generate `__init__.py` files in - `tmp/keras_build/keras/`. -7. Run the setup script to write out build artifacts to `tmp/keras_build/dist`. -8. Copy the artifacts out. This is what should be uploaded to PyPI. - -This script borrows heavily from Namex (https://github.com/fchollet/namex). - -Notes: - -* This script should be run on the Keras codebase as obtained from GitHub - (OSS-facing), not the Google-internal one. The files are expect to be already - converted to their public form. -* This script only targets Linux x86 64. It could be adapted to MacOS - relatively easily by changing requirements.txt and the bazel build script. -* This script should be run from an environment that has all Keras dependencies - installed. Note that their specific version is not important; the only - thing that matters is that we should be able to import the Keras codebase - in its current state (so we can perform step 4). If you install the - dependencies used by the latest TF-nightly you should be good. -""" - -import argparse -import datetime -import glob -import importlib -import inspect -import os -import pathlib -import shutil -import subprocess -import sys -import tempfile - -PACKAGE_NAME = "keras" -DIST_DIRNAME = "dist" -SRC_DIRNAME = "src" -TMP_BUILD_DIRNAME = "keras_build" -TMP_TEST_DIRNAME = "keras_test" -VERBOSE = True -INIT_FILE_HEADER = """AUTOGENERATED. DO NOT EDIT.""" -# These are symbols that have export issues and that we skip for now. -SYMBOLS_TO_SKIP = ["layer_test"] - - -def copy_keras_codebase(source_dir, target_dir): - disallowed = [ - "tools", - "integration_test", - ] - - def ignore(path, names): - to_ignore = [] - for name in names: - if name.endswith("_test.py"): - to_ignore.append(name) - elif name in disallowed: - to_ignore.append(name) - return to_ignore - - shutil.copytree(source_dir, target_dir, ignore=ignore) - - -def convert_keras_imports(src_directory): - def _convert_line(line): - if "import keras.protobuf" in line or "from keras.protobuf" in line: - return line - # Imports starting from `root_name`. - if line.strip() == f"import {PACKAGE_NAME}": - line = line.replace( - f"import {PACKAGE_NAME}", - f"import {PACKAGE_NAME}.{SRC_DIRNAME} as {PACKAGE_NAME}", - ) - return line - - line = line.replace( - f"import {PACKAGE_NAME}.", - f"import {PACKAGE_NAME}.{SRC_DIRNAME}.", - ) - line = line.replace( - f"from {PACKAGE_NAME}.", - f"from {PACKAGE_NAME}.{SRC_DIRNAME}.", - ) - line = line.replace( - f"from {PACKAGE_NAME} import", - f"from {PACKAGE_NAME}.{SRC_DIRNAME} import", - ) - # A way to catch LazyLoader calls. Hacky. - line = line.replace('globals(), "keras.', 'globals(), "keras.src.') - return line - - for root, _, files in os.walk(src_directory): - for fname in files: - if fname.endswith(".py") and not fname.endswith("_pb2.py"): - fpath = os.path.join(root, fname) - if VERBOSE: - print(f"...processing {fpath}") - with open(fpath) as f: - contents = f.read() - lines = contents.split("\n") - in_string = False - new_lines = [] - for line in lines: - if line.strip().startswith('"""') or line.strip().endswith( - '"""' - ): - if line.count('"') % 2 == 1: - in_string = not in_string - else: - line = _convert_line(line) - new_lines.append(line) - - with open(fpath, "w") as f: - f.write("\n".join(new_lines) + "\n") - - -def generate_keras_api_files(package_directory, src_directory): - if VERBOSE: - print("# Compiling codebase entry points.") - - codebase_walk_entry_points = [] - for root, _, files in os.walk(src_directory): - for fname in files: - parts = root.split("/") - parts = parts[parts.index("keras") :] - base_entry_point = ".".join(parts) - if fname == "__init__.py": - codebase_walk_entry_points.append(base_entry_point) - elif fname.endswith(".py") and not fname.endswith("_test.py"): - module_name = fname[:-3] - codebase_walk_entry_points.append( - base_entry_point + "." + module_name - ) - - # Import all Python modules found in the code directory. - modules = [] - sys.path.insert(0, os.getcwd()) - for entry_point in codebase_walk_entry_points: - if VERBOSE: - print(f"Load entry point: {entry_point}") - mod = importlib.import_module(entry_point, package=".") - modules.append(mod) - - if VERBOSE: - print("# Compiling list of symbols to export.") - - # Populate list of all symbols to register. - all_symbols = set() - processed = set() - from tensorflow.python.util import tf_decorator - - for module in modules: - for name in dir(module): - if name in SYMBOLS_TO_SKIP: - continue - symbol = getattr(module, name) - - # Get the real symbol behind any TF decorator - try: - _, symbol = tf_decorator.unwrap(symbol) - except ModuleNotFoundError: - # unwrap will not work on a ModuleSpec (which can't be - # an API symbol anyway) - continue - - # Skip if already seen - if id(symbol) in processed: - continue - processed.add(id(symbol)) - - try: - if not hasattr(symbol, "_keras_api_names"): - continue - except: # noqa: E722 - if VERBOSE: - print( - f"[!] Could not inspect symbol '{name}' from {module}." - ) - continue - # If the symbol is a non-registered subclass of - # a registered symbol, skip it. - skip = False - - def has_same_metadata(a, b): - if ( - hasattr(a, "_keras_api_names") - and hasattr(b, "_keras_api_names") - and a._keras_api_names == b._keras_api_names - and a._keras_api_names_v1 == b._keras_api_names_v1 - ): - return True - return False - - try: - classes = inspect.getmro(symbol) - if len(classes) >= 2: - parents = classes[1:] - for p in parents: - if has_same_metadata(p, symbol): - skip = True - except AttributeError: - # getmro will error out on a non-class - # (in which case there can be no subclassing issues). - pass - if not skip: - all_symbols.add(symbol) - - # Generate __init__ files content. - if VERBOSE: - print("# Processing export path data for each symbol.") - init_files_content = grab_symbol_metadata(all_symbols, is_v1=False) - init_files_content_v1 = grab_symbol_metadata(all_symbols, is_v1=True) - - if VERBOSE: - print("# Writing out API files.") - write_out_api_files( - init_files_content, - target_dir=pathlib.Path(package_directory).parent.resolve(), - ) - v1_path = os.path.join(package_directory, "api", "_v1") - v2_path = os.path.join(package_directory, "api", "_v2") - write_out_api_files( - init_files_content, - target_dir=v2_path, - root_offset=["api", "_v2", "keras"], - ) - write_out_api_files( - init_files_content_v1, - target_dir=v1_path, - root_offset=["api", "_v1", "keras"], - ) - # Add missing __init__ files in api dirs. - with open(os.path.join(package_directory, "api", "__init__.py"), "w"): - pass - with open(os.path.join(v1_path, "__init__.py"), "w"): - pass - with open(os.path.join(v2_path, "__init__.py"), "w"): - pass - - -def grab_symbol_metadata(all_symbols, is_v1=False): - # init_files_content is a dict mapping a directory path to a list of - # symbol metadata entries to populate the __init__ file for the directory. - # Each entry is a dict with keys 'symbol' and 'export_name'. - init_files_content = {} - for symbol in all_symbols: - if VERBOSE: - print(f"...processing symbol '{symbol.__name__}'") - if is_v1: - api_names = symbol._keras_api_names_v1 - else: - api_names = symbol._keras_api_names - for export_path in api_names: - export_modules = export_path.split(".") - export_name = export_modules[-1] - parent_path = os.path.join(*export_modules[:-1]) - if parent_path not in init_files_content: - init_files_content[parent_path] = [] - init_files_content[parent_path].append( - {"symbol": symbol, "export_name": export_name} - ) - for i in range(1, len(export_modules[:-1])): - intermediate_path = os.path.join(*export_modules[:i]) - if intermediate_path not in init_files_content: - init_files_content[intermediate_path] = [] - init_files_content[intermediate_path].append( - { - "module": export_modules[i], - "location": ".".join(export_modules[:i]), - } - ) - return init_files_content - - -def write_out_api_files(init_files_content, target_dir, root_offset=None): - # Go over init_files_content, make dirs, - # create __init__.py file, populate file with public symbol imports. - root_offset = root_offset or [] - for path, contents in init_files_content.items(): - os.makedirs(os.path.join(target_dir, path), exist_ok=True) - init_file_lines = [] - modules_included = set() - for symbol_metadata in contents: - if "symbol" in symbol_metadata: - symbol = symbol_metadata["symbol"] - name = symbol_metadata["export_name"] - if name == symbol.__name__: - init_file_lines.append( - f"from {symbol.__module__} import {symbol.__name__}" - ) - else: - init_file_lines.append( - f"from {symbol.__module__} " - f"import {symbol.__name__} as {name}" - ) - elif "module" in symbol_metadata: - if symbol_metadata["module"] not in modules_included: - parts = path.split("/") - parts = [parts[0]] + root_offset + parts[1:] - module_location = ".".join(parts) - init_file_lines.append( - f"from {module_location} " - f"import {symbol_metadata['module']}" - ) - modules_included.add(symbol_metadata["module"]) - - init_path = os.path.join(target_dir, path, "__init__.py") - if VERBOSE: - print(f"...writing {init_path}") - init_file_lines = sorted(init_file_lines) - with open(init_path, "w") as f: - contents = ( - f'"""{INIT_FILE_HEADER}"""\n\n' - + "\n".join(init_file_lines) - + "\n" - ) - f.write(contents) - - -def build_pip_package( - keras_root_directory, - build_directory, - package_directory, - src_directory, - dist_directory, - is_nightly=False, -): - # Build Keras with Bazel to get the protobuf .py files - os.chdir(keras_root_directory) - os.system(f"sh {os.path.join('keras', 'tools', 'bazel_build.sh')}") - os.chdir(build_directory) - - # Copy sources (`keras/` directory and setup files) to build directory - copy_keras_codebase( - os.path.join(keras_root_directory, "keras"), src_directory - ) - shutil.copy( - os.path.join(keras_root_directory, "oss_setup.py"), - os.path.join(build_directory, "setup.py"), - ) - - # Add blank __init__.py file at package root - # to make the package directory importable. - with open(os.path.join(package_directory, "__init__.py"), "w") as f: - pass - - # Move protobuf .py files to package root. - shutil.rmtree(os.path.join(src_directory, "protobuf")) - shutil.move( - os.path.join(keras_root_directory, "bazel-bin", "keras", "protobuf"), - package_directory, - ) - # Add blank __init__.py file in protobuf dir. - with open( - os.path.join(package_directory, "protobuf", "__init__.py"), "w" - ) as f: - pass - - # Convert imports from `keras.xyz` to `keras.src.xyz`. - convert_keras_imports(src_directory) - - # Generate API __init__.py files in `keras/` - generate_keras_api_files(package_directory, src_directory) - - # Make sure to export the __version__ string - version = getattr( - importlib.import_module("keras.src", package="."), "__version__" - ) - if is_nightly: - date = datetime.datetime.now() - version += f".dev{date.strftime('%Y%m%d%H')}" - with open(os.path.join(package_directory, "__init__.py")) as f: - init_contents = f.read() - with open(os.path.join(package_directory, "__init__.py"), "w") as f: - f.write(init_contents + "\n\n" + f'__version__ = "{version}"\n') - - # Insert {{PACKAGE}} and {{VERSION}} strings in setup.py - if is_nightly: - package = PACKAGE_NAME + "-nightly" - else: - package = PACKAGE_NAME - with open(os.path.join(build_directory, "setup.py")) as f: - setup_contents = f.read() - with open(os.path.join(build_directory, "setup.py"), "w") as f: - setup_contents = setup_contents.replace("{{VERSION}}", version) - setup_contents = setup_contents.replace("{{PACKAGE}}", package) - f.write(setup_contents) - - # Build the package - os.system("python3 -m build") - - # Save the dist files generated by the build process - saved_filenames = [] - for filename in glob.glob(os.path.join(build_directory, "dist", "*.*")): - if VERBOSE: - print(f"Saving build artifact {filename}") - shutil.copy(filename, dist_directory) - saved_filenames.append(filename) - if VERBOSE: - print(f"Saved artifacts to {dist_directory}") - return saved_filenames, version - - -def test_wheel(wheel_path, expected_version, requirements_path): - test_directory = os.path.join(tempfile.gettempdir(), TMP_TEST_DIRNAME) - os.mkdir(test_directory) - os.chdir(test_directory) - symbols_to_check = [ - "keras.layers", - "keras.Input", - "keras.__internal__", - "keras.experimental", - ] - checks = ";".join(symbols_to_check) - script = ( - "#!/bin/bash\n" - "virtualenv kenv\n" - f"source {os.path.join('kenv', 'bin', 'activate')}\n" - f"pip3 install -r {requirements_path}\n" - f"pip3 install {wheel_path} --force-reinstall\n" - f"python3 -c 'import keras;{checks};print(keras.__version__)'\n" - f"python3 -c 'import tensorflow as tf;tf.compat.v1.layers.Dense'\n" - ) - try: - # Check version is correct - output = subprocess.check_output(script.encode(), shell=True) - output = output.decode().rstrip().split("\n")[-1].strip() - if not output == expected_version: - raise ValueError( - "Incorrect version; expected " - f"{expected_version} but received {output}" - ) - finally: - shutil.rmtree(test_directory) - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument( - "--nightly", - action="store_true", - help="Whether this is for the `keras-nightly` package.", - ) - args = parser.parse_args() - is_nightly = args.nightly - - build_directory = os.path.join(tempfile.gettempdir(), TMP_BUILD_DIRNAME) - keras_root_directory = pathlib.Path(__file__).parent.resolve() - dist_directory = os.path.join(keras_root_directory, DIST_DIRNAME) - package_directory = os.path.join(build_directory, PACKAGE_NAME) - src_directory = os.path.join(build_directory, PACKAGE_NAME, SRC_DIRNAME) - if VERBOSE: - print( - "Using:\n" - f"build_directory={build_directory}\n" - f"keras_root_directory={keras_root_directory}\n" - f"dist_directory={dist_directory}\n" - f"package_directory={package_directory}\n" - f"src_directory={src_directory}\n" - f"is_nightly={is_nightly}" - ) - if os.path.exists(build_directory): - raise ValueError(f"Directory already exists: {build_directory}") - os.mkdir(build_directory) - os.mkdir(package_directory) - if not os.path.exists(dist_directory): - os.mkdir(dist_directory) - try: - saved_filenames, version = build_pip_package( - keras_root_directory, - build_directory, - package_directory, - src_directory, - dist_directory, - is_nightly, - ) - wheel_filename = [f for f in saved_filenames if f.endswith(".whl")][0] - if VERBOSE: - print("Testing wheel artifact.") - test_wheel( - wheel_path=os.path.join(dist_directory, wheel_filename), - expected_version=version, - requirements_path=os.path.join( - keras_root_directory, "requirements.txt" - ), - ) - if VERBOSE: - print("Test successful.") - finally: - # Clean up: remove the build directory (no longer needed) - if VERBOSE: - print(f"Deleting temp build directory at {build_directory}...") - shutil.rmtree(build_directory) diff --git a/requirements.txt b/requirements.txt deleted file mode 100644 index f7a995e30da..00000000000 --- a/requirements.txt +++ /dev/null @@ -1,21 +0,0 @@ -# All the required dependencies should come with tf-nightly package. -# The rest of the packages are mostly used for testing purpose. -pandas -pydot -scipy ~= 1.7.2 -# Remove once both TensorFlow and Keras nightly builds pass. -# Temporarily enforce 3.20.3 version, as the only version which is compatible -# with both new and old protobuf stubs. This is needed to resolve -# Keras-TensorFlow circular dependency issue, when one of them gets a dependency -# incompatible with another one (protobuf in this specific case). -protobuf==3.20.3 -tf-nightly -portpicker -pyyaml -Pillow -# TF uses a different NumPy version for Python 3.10 and lower; b/262592253 -numpy ~= 1.22.0; python_version < '3.11' -numpy ~= 1.23.2; python_version >= '3.11' # Sync with the numpy version used in TF -black==22.3.0 -isort==5.10.1 -flake8==4.0.1 \ No newline at end of file diff --git a/setup.cfg b/setup.cfg deleted file mode 100644 index 2f53d6d6975..00000000000 --- a/setup.cfg +++ /dev/null @@ -1,11 +0,0 @@ -[isort] -force_single_line=True -known_first_party=keras -line_length=80 -profile=black - -[flake8] -# imported but unused in __init__.py, that's ok. -per-file-ignores=*__init__.py:F401 -ignore=E203,W503,W605,F632,E266,E731,E712,E741 -max-line-length=80 diff --git a/shell/format.sh b/shell/format.sh deleted file mode 100755 index 234634b3727..00000000000 --- a/shell/format.sh +++ /dev/null @@ -1,4 +0,0 @@ -#!/bin/bash -isort --sl keras -black --line-length 80 keras -flake8 keras diff --git a/shell/lint.sh b/shell/lint.sh deleted file mode 100755 index 0f06e65ca39..00000000000 --- a/shell/lint.sh +++ /dev/null @@ -1,23 +0,0 @@ -#!/bin/bash -isort --check --sl -c keras -if ! [ $? -eq 0 ] -then - echo "Please run \"sh shell/format.sh\" to format the code." - exit 1 -fi -echo "no issues with isort" -flake8 keras -if ! [ $? -eq 0 ] -then - echo "Please fix the code style issue." - exit 1 -fi -echo "no issues with flake8" -black --check --line-length 80 keras -if ! [ $? -eq 0 ] -then - echo "Please run \"sh shell/format.sh\" to format the code." - exit 1 -fi -echo "no issues with black" -echo "linting success!" diff --git a/third_party/BUILD b/third_party/BUILD deleted file mode 100644 index 9be54076cb1..00000000000 --- a/third_party/BUILD +++ /dev/null @@ -1,10 +0,0 @@ -package( - licenses = ["notice"], # Apache 2.0 -) - -exports_files([ - "LICENSE", - "six.BUILD", -]) - -package(default_visibility = ["//visibility:public"]) diff --git a/third_party/six.BUILD b/third_party/six.BUILD deleted file mode 100644 index b6ac069fb78..00000000000 --- a/third_party/six.BUILD +++ /dev/null @@ -1,23 +0,0 @@ -# Copyright 2021 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -package(default_visibility = ["//visibility:public"]) - -licenses(["notice"]) - -py_library( - name = "six", - srcs = ["six.py"], -)